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2 Dortmund, Germany 

Each second year, the European Society for Research 
in Mathematics Education (ERME) organises a confer-
ence. The 9th Congress of ERME (CERME9) took place 
in Prague (Czech Republic), 4–8 February 2015. A de-
tailed report on this conference and brief remarks 
on further ERME activities can be found in Krainer 
and Vondrová (2015) who acted as the Chair of the 
International Programme Committee (IPC) and the 
Chair of the Local Organising Committee (LOC) of this 
conference.

It is clear per definition that CERMEs are “European”, 
however, we are happy to welcome colleagues from all 
parts of the world. CERME9 was attended by 672 peo-
ple from 49 countries from all over the world. With 
these figures, CERME9 was the largest CERME ever. 
This number of participants was significantly high-
er than what had been anticipated. Nada Vondrová, 
LOC chair, and all the members of the local organising 
committee managed to host in very good conditions 
all the participants. We received a great number of 
testimonies from participants expressing their high 
satisfaction for the scientific programme and the local 
organisation. 

The programme comprised three content-related ple-
nary activities: (a) a plenary panel on “What do we 
mean by cultural contexts in European Research in 
Mathematics Education?”, held by Barbara Jaworski, 
Mariolina Bartolini Bussi, Edyta Nowinska, and 
Susanne Prediger; (b) a plenary lecture on “Research 
in teacher education and innovation at schools – 
Cooperation, competition or two separate worlds?” 
by Jarmila Novotná; and (c) a plenary lecture on 

“Understanding randomness: Challenges for research 
and teaching” by Carmen Batanero. The plenary lec-
tures contributed substantially to the success of the 
conference. 

Of central importance for each CERME are the 
Thematic Working Groups (TWGs). At CERME9, due 

to the huge number of 436 research reports and 106 
posters that were accepted, 20 TWGs needed to be 
implemented. All TWG leaders and their co-leaders 
(from 23 countries) did a great job before, during, 
and after the conference. Among them, five acted 
at CERME9 their third time as a TWG leader which 
means that they need to be substituted according to 
the ERME rules for CERME10: Jeremy Hodgen, Uffe 
Thomas Jankvist (who also acted as the Vice-chair of 
IPC), Roza Leikin, Elena Nardi, and Jana Trgalova.

In particular, the presence of societies like EMS 
(President Pavel Exner), its Education Committee 
(Chair Günter Törner) and ICMI (former President 
Michèle Artigue), gave the conference a special fla-
vour, as well as interesting excursions and splen-
did classical music during the opening and closing 
ceremony produced by students of the Faculty of 
Education, the host of CERME9.

CERME9 shows also considerable innovations regard-
ing the organisation of the proceedings. Following a 
decision of the ERME Board, there will be posted on 
the HAL database. This will be a very valuable evo-
lution serving the dissemination of our works for 
CERME9, and for the next CERME conferences. On 
behalf of the ERME Board and all the ERME commu-
nity we address many thanks to the editors, Konrad 
Krainer and Nada Vondrová, for this huge work. 

Although these proceedings do not contain any docu-
ment related to it, let us mention another fundamental 
event that took place one day before the opening of the 
Congress: the YERME (Young European Researchers 
in Mathematics Education) day. This is now a constant 
appointment where young researchers – doctoral 
students or post-doctoral researchers - meet expert 
scholars in thematic discussion groups. At CERME9 
the organization of the YERME day was coordinated 
by João Pedro da Ponte (Chair of the programme com-
mittee) and Jarmila Novotná, chair of the local organis-
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ing committee. The activities were led by Paolo Boero, 
Rita Borromeo-Ferri, Uffe Thomas Jankvist, Esther 
Levenson, Despina Potari, Susanne Prediger, Cristina 
Sabena, Mario Sánchez, Susanne Schnell.

Without the deep involvement of its members, ERME 
and CERME will not exist. Each CERME conference 
represents a challenge that was successfully achieved 
by all involved people, but especially by Konrad 
Krainer, Chair of the IPC, and Nada Vondrová chair 
of the LOC. We address sincere thanks to both for the 
incredible work they have done in preparing and su-
pervising the organisation of the conference, and the 
editing of the proceedings. We extend our thanks to 
Uffe Thomas Jankvist and Jarmila Novotná respec-
tively co-chair of the IPC and of the LOC, to all the IPC 
members and to all the local organisers for their hard 
work, and to the Charles University in Prague, for 
making us so welcome. 

We encourage interested researchers to meet us 
at the next CERME that will take place in February 
2017, in Dublin (Ireland). 

Viviane Durand-Guerrier,
ERME President

Susanne Prediger,
ERME Vice-President
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The proceedings which the reader just opens is a 
shared product of many people, beginning with 
the authors of plenaries and papers from Thematic 
Working Groups (TWGs), the TWG leaders, and end-
ing with the two editors. 

So far, the process of editing CERME proceedings has 
not been openly discussed and the editors of previ-
ous proceedings approached the task differently. In 
order to take a step forward, we decided to describe 
the process here in a more detailed way, in particular 
highlighting innovations. This might allow the new 
editors for CERME10 to follow in our steps and im-
prove the process further.

The work on the proceedings of CERME9 started 
immediately after the conference itself in February 
2015. Already some weeks before CERME9, all TWGs 
presentations as well as abstracts of all plenary pre-
sentations had been available on the conference web-
site as a kind of pre-conference proceedings. Then, 
the authors of TWG contributions were advised to 
elaborate their papers in order to meet the standard 
of proceedings papers of CERME, in particular, taking 
into account feedback they received during CERME9. 
In the next stage, the TWG leaders evaluated all the 
papers and posters and negotiated any necessary 
changes with the authors. This stage ended by send-
ing the papers as complete bundles to the two editors, 
including letters of consent that the papers can be 
published in the Hall database (see below).

The proceedings consist of two main parts. The first 
part includes the texts of invited plenary activities, 
that is, the two plenary lectures and the plenary panel. 
There was no review process as such, but the editors 
commented on the papers (see below). The main part 
of the proceedings consists of 20 “chapters”, each of 
them devoted to one TWG. Each chapter starts with 
a short introduction written by TWG leaders. In the 

cases of TWG09 and TWG20, the leaders responded 
to our call for a special kind of introduction, which is 
more than a short text about the papers in the TWG 
and a brief summary. Their introduction is rather a 
research paper on the advances in the topic of the 
TWG, however, relating it also to the developments 
in this field besides CERMEs. 

The research reports and posters following the intro-
duction are ordered alphabetically. All reports were 
reviewed twice. Prior to the conference, the papers 
were peer reviewed by authors from the same TWG 
and by at least one TWG leader. After the conference, 
the papers were reviewed again. TWG leaders and 
co-leaders acted, in fact, as chapter editors for the 
proceedings. They were responsible for checking 
the quality of the papers. Papers include accepted 
research papers (with a maximum of 10 pages in the 
original template) as well as summaries of accepted 
posters or short versions of not-accepted research pa-
pers (both with a maximum of 2 pages in the original 
template). The goal was to have all discussed papers 
and posters in the proceedings, if their quality allows. 
It was up to the TWG leaders to decide whether the 
final acceptance of the paper is done by them and 
co-leaders only, or whether people from the TWGs 
(e.g., former reviewers or new ones) are asked to help.1 
If the TWG leaders were unsure about the quality of 
the paper, they could ask the TWG liaisons in the IPC 
for help with the decision (before communication 
with the authors again), or the editors directly (this 
happened in two cases only).

1  For instance, when the modifications were major and the origi-

nal reviewer should check them, or when the original reviewers 

did not agree on their decision, a different reviewer could see 

the modified version of the paper after the conference.

mailto:Konrad.Krainer%40aau.at?subject=
mailto:nada.vondrova%40pedf.cuni.cz?subject=
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a) Editorial process for the plenary contributions

The texts for two plenaries and one panel were 
read and commented on by both editors. The com-
ments were sent to the authors and they consid-
ered them. This process repeated until the editors 
and authors agreed that the papers were in good 
shape to be included in the proceedings.

b) Editorial process for the TWG introductory texts

The common CERME introductory texts were 
read by the two editors in order to check for any 
inconsistencies. The two special introductions 
were peer reviewed by both editors and by the 
leader of the second piloting TWG. The aim was 
to do a first systematic attempt to have all con-
tent-related texts in the proceedings (also intro-
ductions to TWGs) as research papers. This might 
help readers to better range the work of a TWG 
in the international context, might offer TWG 
leaders a second opportunity for a peer-reviewed 
paper, and, of course, contributes to raising the 
quality of CERME proceedings.

c) Editorial process for research papers and posters

All the files of research papers and posters were 
gone through by the two editors in the following 
way: The abstract and keywords were read in full 
and the rest of the text was scanned in order to 
see whether the language and content seemed 
to be on a good level. Only two papers had to be 
sent to their authors again to be proofread and 
several posters were sent to their authors so that 
they included an abstract and keywords. Then, 
the list of references were scanned in order to see 
whether the APA style was kept by the authors. 
We have to mention that there were several chal-
lenges in this area. Several papers had to be sent 
back to their authors to improve the literature 
as bibliography items missed a lot of informa-
tion such as pages, editors, publisher, place of 
publishing. There were even problems with the 
name of the journal or the source document, etc. 
When it was possible, the editors made the chang-
es themselves. However, the whole process was 
very time-consuming and finally, the editors had 
to give up on polishing the bibliography sections 
of papers and thus the APA style is not totally 

followed (but it is always clear what the bibliog-
raphy item refers to). 

After that, the approved texts were sent to the typog-
rapher (who had made a suggestion for the layout of 
the proceedings previously). This time we went, hope-
fully, for a more professional look of the proceedings, 
different from the mere saving of Word files into pdfs. 
Of course, it meant more work for the typographer, 
editors and also TWG leaders. 

Each chapter of the proceedings related to TWGs un-
derwent several rounds of proofreading. When the 
pdf files were made by the typographer, the two edi-
tors scanned the files for any typographic errors, in-
consistencies (e.g., in the numbering of figures, fonts 
used for different parts of the text) and problems pos-
sibly caused by the transfer of the file into pdf. These 
changes were sent to the typographer who prepared 
the second version of the text which was sent to the 
TWG leader. His/her task was to check the files for the 
TWG chapter again: whether all papers were included 
and in the appropriate (alphabetical) order and none 
was omitted, whether, by mistake, some table or figure 
or mathematics formula disappeared and any other 
issue which might draw his/her attention. After their 
comments were taken into account by the typographer, 
the pre-final version was checked by the editors again. 

The process was similar for the plenary texts. 

The proceedings of CERME9 will be the first ones to 
be uploaded to Hal archive website https://hal.ar-
chives-ouvertes.fr. The ERME Board made this deci-
sion in order for proceedings to be openly available, 
easily searchable and downloadable and overall, more 
visible. It is assumed that all new proceedings will 
be put on the same website so that they are not in dif-
ferent places and elaborated in different ways. Some 
previous proceedings are downloadable as separate 
files only, some as a complete file. The Hall database 
enables both options. That is, the papers can be organ-
ised according to the TWGs (chapters) but can also be 
downloaded as separate files. 

We wish the readers a pleasant journey through the 
ideas raised at CERME9. We thank all people men-
tioned above greatly contributing to these proceed-
ings!

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr
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DEDICATION

Our young friends Mustafa Alpaslan and Zişan Güner Alpaslan passed away in a terrible car accident on 

July 31, 2015. Both were in CERME9: Mustafa in TWG12 (History of Mathematics Education) and his wife 

Zişan in TWG13 (Early Years Mathematics). They both were brilliant researchers and active members 

of the ERME community. In CERME9, Mustafa was elected as a representative of young researchers 

in the ERME Board. Mustafa took part in the preparation of this panel: We enjoyed his background 

in history of mathematics and his deep knowledge of the history of Turkish Mathematics Education, 

that made him very sensitive to the issue of cultural contexts. This text is dedicated to both of them.

The authors and guest-authors of this contribution 
worked together to prepare a plenary panel at CERME9. 
Starting from acknowledging the diversity of cultural 
contexts in which we work, the following questions are 
addressed:
― What do we mean by cultural contexts in European 

Research in Mathematics Education? 
― How do cultural influences challenge the univer-

sality of research and design practices and their 
outcomes?

― Which (hidden) values in different cultural con-
texts influence research and design practices?

― How could cultural awareness among Mathematics 
Education researchers be raised?

The authors give concrete examples of cultural differenc-
es and their impact on research and design practices in 
Mathematics Education. They address various cultural 
contexts, covering mathematics, classrooms, research 
community contexts and international comparisons. 
The centrality and nature of theories in addressing 
mathematics educational context are also discussed. 
Young researchers as guest-authors contribute further 
experiences and reflections. The joint reflection offers 
multiple suggestions for raising cultural awareness in 
Mathematics Education research and design practices 
and policy issues. 

Keywords: differences in cultural contexts, research 

practices, theoretical approaches as epistemic cultures, 

raising cultural awareness.

1. INTRODUCTION 

While approaching the complex topic of cultural 
contexts and their impacts on research and design 
practices, we addressed four main questions: 

 ― What do we mean by cultural contexts in 
European Research in Mathematics Education? 

 ― How do cultural influences challenge the univer-
sality of research and design practices and their 
outcomes?

 ― Which (hidden) values in different cultural con-
texts influence research and design practices?

 ― How could cultural awareness among Mathemat-
ics Education researchers be raised?

We have settled on three themes as a focus for our 
input and subsequent discussion, presented respec-

mailto:b.jaworski%40lboro.ac.uk?subject=
mailto:mariagiuseppina.bartolini%40unimore.it?subject=
mailto:prediger%40math.uni-dortmund.de?subject=
mailto:nowinska%40amu.edu.pl?subject=
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tively by Maria G. Bartolini Bussi, Barbara Jaworski 
and Susanne Prediger. These are:

1) Mathematics and Mathematics Education; how 
we analyse mathematical concepts; how these 
ways of explaining and analysing mathematical 
concepts can be developed for the curriculum 
and influence the curriculum.

2) Classrooms, teachers and students – how the 
cultures which underpin interaction and com-
munication, and the use of language, enable or 
restrict attention to classroom approaches to 
mathematics, ways of conducting research and 
the ethical and moral principles in Mathematics 
Education.

3) Research approaches and theoretical perspec-
tives, and ways in which they underpin research 
interpretations, the ways in which research find-
ings emerge in research communities and are 
presented in published works.

We also include reflections from a group of young 
researchers: Annica Andersson, Mustafa Alpaslan, 
Edyta Nowinska and Marta Pytlak; represented in the 
panel and in this writing by Edyta Nowinska. 

Section 2 addresses the three themes. In Section 3 we 
have the reflections of the young researchers. Section 
4 presents a synthesis of ideas, looking backwards 
and then forwards towards taking up cultural issues 
and in Section 5 we offer questions for our ongoing 
practices as mathematics educators.

2. MEETING CULTURAL DIFFERENCES ON 
DIFFERENT LEVELS – THREE THEMES

2.1 Mathematics in cultural contexts 
(Maria G. Bartolini Bussi) 

Every thought, when coming towards the other, ques-
tions itself about its own unthought.

(Jullien, 2006, p. vi)

2.1.1 Introduction 
The mathematics developed in the West by profession-
al mathematicians is, in some sense, near-universal 
(see Barton, 2009, who introduced the acronym NUC, 
that is Near-Universal Conventional mathematics, p. 
10). This mathematics had become dominant all over 

the world, mainly for its century old effective appli-
cations to the development of science and technology. 
Nevertheless, the process of mathematical encultura-
tion (Bishop, 1988) is, at least at the beginning, strongly 
dependent on the local context (often, although not 
always, identified with a country or a region where 
a language is spoken). Yet, sometimes people are so 
embedded in their own context as to ignore that in 
other contexts the “same” mathematical objects (yet, 
are these objects really the same?) might have had 
a different history and might convey even different 
meanings. It is only when, for some reasons, one is 
forced to exit her safe “niche” that she may become 
aware of that. There is a very positive feature in such 
a dialogue: “every thought, when coming towards the 
other, questions itself about its own unthought” as 
strongly claims Jullien (2006, p. vi) in his beautiful dis-
cussion of Chinese and European-Greek cultures. This 
awareness encourages the exploration of the geogra-
phy and history of mathematical thinking (Bartolini 
Bussi, Baccaglini, & Ramploud, 2014).

2.1.2 First example: Whole numbers
My first example focuses on some aspects of whole 
numbers. This choice seems provocative: are there 
things more universal than numbers, at least small 
whole numbers, when we move from one context to 
another, from one language to another? 

There is an extended classical literature on the history 
of numbers (e.g., Menninger, 1969; Ifrah, 1985) and on 
the use of numbers in far contexts, where, for instance, 
the body parts are used to represent whole numbers 
(Saxe, 2014) or spatial arrangements substitute the 
lack of number words in complex arithmetical calcu-
lations (Butterworth & Reeve, 2008). 

Moreover, Barton (2009) tells the story of the verbal 
roles of number words in Maori.

In Maori, prior to European contact, numbers in 
everyday talk were like actions. […] Our aware-
ness of this old Maori grammar of number sud-
denly sharpened when we tried to negate sen-
tences that used numbers. […] To negate a verb in 
Maori the word kaore is used. […] Unlike English, 
where negating both verbs and adjectives re-
quires the word ‘not’, in Maori, to negate an ad-
jective a different word is used, ehara. (Barton, 
2009, p. 5) 
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In Maori language to negate the sentences “there is 
a big house” and “there are four hills” two different 
wording of “not” are used. When this verbal feature of 
Maori numbers was ignored, the mathematics vocab-
ulary process, translated from English, acted against 
the original ethos of the Maori language.

One might think that these examples are relevant only 
for historians or anthropologists or ethnomathemati-
cians, but the pragmatic use of numbers in everyday 
communication offers some surprising evidence in 
familiar languages too.

There are examples (in many languages) where ex-
pressions with numbers are used to denote indefi-
nite quantities. Bazzanella, Pugliese, and Strudsholm 
(2011) analyse translation problems between different 
languages. For instance, the Italian expression “Do 
you want two spaghetti?”, that does not mean exactly 

“two” but “a few”, might produce very funny episodes, 
in spoken communication between an Italian host and 
a not Italian guest, with the latter puzzled by the idea 
of eating exactly “two spaghetti” for dinner. In this 
case, the number is used in indeterminate or vague 
meaning. In other cases, what is focused is the start-
ing point of the measuring process: for instance, an 
Italian speaker says “8 days” or “15 days” to mean one 
week or two weeks (e.g., “8 days from today” means “a 
week from today”). Actually in Italy a week is 7 days 
like everywhere, but, in similar expressions, it seems 
that today (the “zero” day) is counted. 

Philosophers studied vagueness since antiquity. More 
recently, Black (1937) transferred the philosophical 
attention on vagueness to human language and Quine 
(1960) introduced his famous principle of indetermi-
nacy of translation: 

There is no need to insist that the native word 
can be equated outright to any one English word 
or phrase. Certain contexts may be specified in 
which the word is to be translated one way and 
others in which the word is to be translated in 
another way (Quine, 1960, p. 69).

Humans do not really need to be precise in every situ-
ation and use vagueness and indeterminacy in think-
ing and communication, but are not always aware of 
that. It is worthwhile to reflect on the vague meanings 
of whole numbers that depend on the cultural context, 

for the importance they might have in the educational 
setting. 

From the perspective of a mathematics teacher: is the 
everyday use of vague numbers consistent with the 
use of numbers in the mathematics classroom (e.g., 
just half a glass, please)? What about different utter-
ances in the mathematics classroom, when the focus 
shifts from communication (“Be attentive for two min-
utes, please!”) to an arithmetic statement (“two times 
ten is twenty”)? What about multicultural classrooms 
where translation issues are interlaced with mathe-
matical issues? Might vagueness foster or inhibit the 
construction of number meanings? 

From the perspective of a researcher in Mathematics 
Education, is vagueness to be taken into account, as 
a tool, by researchers in studies on arithmetic teach-
ing and learning in the mathematics classroom? Is 
the presence of either precise or vague meaning of 
numbers related to the development of the two core 
systems described by neuropsychologists for repre-
senting either small numbers of individual objects in 
a precise way or magnitudes in an approximate way 
(Feigenson et al., 2004)?

Some observation may be made also about curriculum 
development, when a cultural lens is used. We refer to 
two very recent “twin” papers prepared for the panel 
on “Traditions in Whole Numbers Arithmetic”, to be 
held on the occasion of the “Primary School Study on 
Whole Numbers” (the 23rd ICMI Study, Macau, China, 
June 3–7, 2015). They are authored by Bartolini Bussi 
(2015) and Sun (2015) and address very popular ap-
proaches to whole numbers in the West and in China. 

Sun (2015) reconstructs the ancient Chinese tradition 
of whole number arithmetic and its strong connection 
with today’s curriculum. She emphasizes both linguis-
tic and historic-epistemological perspectives. From 
the linguistic perspective, Sun’s paper reads (p. 141):

Unlike English and most Indo-European languag-
es, written Chinese is logographic rather than 
alphabetic, and uses the radical (“section head-
er”) as the basic writing unit. Most (80–90%) of 
characters are phono-semantic compounds, com-
bining a semantic radical with a phonetic radical. 
Thus, the large majority of words have a compound, 
or part-part-whole structure. This differs from the 
phonetically based structure of writing in most 
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Western languages, in which order is more impor-
tant than the combination of parts (my emphasis). 

Then Sun mentions “classifiers” or measure units, 
which, as in many East Asian languages, are required 
when using numerals with nouns (spoken numbers). 
In Chinese, each type of object that is counted has a 
particular classifier associated with it. As a weaken-
ing of this rule, today it is often acceptable to use the 
generic classifier “ones” in place of a more specific 
classifier. As a character, “ones” (classifier) is pro-
nounced gè and written 个 which represents a bamboo 
shoot. This feature highlights the focus on separate 
units since the ancient ages in China to present days. 

Mathematics in ancient China was identified with 
arithmetic and numbers, and, in particular, with cal-
culation1. To calculate with whole numbers in China, 
straight rods (also named counting sticks) were used 
2500 years ago and influenced the early representa-
tion of digits (see Figure 1). The rods had square cross 
sections to prevent them from rolling and were car-
ried in hexagonal bundles (Figure 2) consisting of 271 
pieces with 9 rods on each edge (Lam & Ang, 2004, p. 
44, see Figure 3): whenever calculation was needed, 
they were brought out and computation was per-
formed on a flat surface. 

Figure 2 shows the structure of the bundles of rod 
numerals and appears in ancient pottery. The photo-
graph in Figure 3 was taken by the author in Banpo, a 
neolithic settlement close to Xi’an, dating back 5600–
6700 years, and shows a fragment of a potsherd. The 
explanation reads: “This potsherd makes the concept 
of point and surface, number and shape together. It 
proves Banpo ancestors have certain knowledge of 
mathematics.”

This focus on numbers as discrete quantities has re-
mained in the tradition of teaching arithmetic. Even 
today, Chinese spoken numerals are the following:

Chinese spoken numerals (and English literal 
translation):

一个、二个、…
One ones, two ones, …

1  Actually, in Chinese 数学 (shùxué, i.e., mathematics) literal-

ly means “number study” whilst in Greek μάθημα (mathema) 

means “knowledge, what has to be learnt”.

一十一个、一十二个、…
one tens & one ones, one tens & two ones, …

二十个，二十一个…
 two tens, two tens & one…

The tools for calculation in ancient China were rods or, 
later, suànpán, the Chinese abacus. Drawing on both 
tools, spoken numerals are transparent for place val-
ue. Actually, place value was (and still is) considered 
an overarching principle for whole number arith-
metic. No specific chapter on place value appears in 
Chinese textbooks, as place value representation is 
the only way to approach numbers in language, in 
written representation and calculation practice. 
Finally, Sun concludes:

By comparison, if the number concept is repre-
sented by the number line, used with calculations 
by counting up or down, or skip counting, the as-
sociativity of addition is developed less naturally 
than with the composition/decomposition model 
incorporated into the suànpán […] The suànpán 
makes place value explicit, and the calculation 
procedures of combining ones with ones, tens 
with tens, and so forth, are built into its structure. 
The model for numbers provided by the suànpán 
may be contrasted with the number line, which 
is a continuous, non-digital model for numbers, 
and is not naturally connected with place value. 
(Sun, 2015, pp. 151–154)

One might contend that discrete quantities and fig-
ured numbers such as the ones in Figure 2 and Figure 
3 were known and used in ancient Greece since the age 
of Euclid and earlier. But these figural representations 
of numbers did not show any connection with verbal 
and written representation of numbers in calculation 
at that age. Hence, place value came later (through the 
Arabic mediation) and had to fight against the practi-
cal ways of calculating by means of abacus as a famous 
picture shows (Menninger, 1969, p. 350).

As far as the number line is concerned, Bartolini Bussi 
(2015) reconstructs the origin of this number rep-
resentation, dating back to Euclid and reconsidered 
in the 17th century when scholars such as Descartes 

Figure 1: The first nine numerals from rods tradition
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and Wallis exploited the synergy between arithmetic 
and geometry. Euclid’s use of straight line to represent 
numbers (in the Book 7 of the Elements, Heath, Vol. 2, 
p. 277 ff.) is interpreted by Netz (1999). 

Often the proof is about “any integer”, a quan-
tity floating freely through the entire space of 
integers, where it has no foothold, no barriers. 
[…] A dot representation implies a specific num-
ber, and therefore immediately gives rise to the 
problem of the generalisation from that particu-
lar to a general conclusion, from the finite to the 
infinite. Greek mathematicians need, therefore, 
a representation of a number which would come 
close to the modern variable. This variable […] 
is the line itself. The line functions as a variable 
because nothing is known about the real size of 
the number it represents (Netz, 1999, p. 268).

This interpretation puts the number line into a 
Western cultural process, where the issue of varia-
ble, generality and proof are approached following 
Euclid’s style. 

We may conclude that rods and suànpán on the one 
hand and the number line on the other hand are cul-
tural artefacts characterizing the Chinese and the 
Western curriculum. As cultural artefacts, they re-
veal valuable information about the society that made 
or used them and, when continuity between tradi-
tion and today’s practices is maintained, foster the 
students’ cultural awareness of the role mathematics 
played in their society. This was not always the case, in 
mathematics curricula, as the second example shows.

2.1.3 Second example: Fractions
The second example concerns the idea of fraction 
that appears in the language of everyday life, but is 
perceived as advanced and difficult in Mathematics 

Education. I have recently published with two col-
leagues (Bartolini Bussi et al., 2014) a short piece of 
speculation about the geography and the history of 
the idea of fraction. We observed that in most Eastern 
languages (Chinese, Japanese, Korean, Burmese and 
similar) fractions were written and are still read bot-
tom up, i.e., reading first the denominator and then the 
numerator. This idea mirrors the genesis of fraction 
as a part of a whole: to know first in how many parts 
the whole has been broken and to tell later how many 
pieces one takes. This way of writing and reading frac-
tions was presented also in the Liber abaci, the text, 
authored in Latin by Leonardo Fibonacci drawing on 
Arabic sources, that introduced into Europe the so-
called Hindu-Arabic notation and written algorithms 
(Cajori, 1928, p. 269). It is still extant in some European 
languages developed in countries which were for cen-
turies under the influence of Arabic and Persian cul-
ture (e.g., Turkey). Then the story of fraction names 
in the European languages diverged, going farther 
from the genesis and adopting a top-down writing and 
reading, with the additional puzzle of using ordinals 
for the denominator. A similar process happened in 
some Eastern countries (e.g., Myanmar) under the 
effects of colonialism that cut the roots with local tra-
ditions in schools. 

From the perspective of a mathematics teacher: the 
awareness of the gap between the genesis and rep-
resentation of fractions may possibly be used to 
support low achievers.  Actually, the inversion of 
numerator and denominator and the use of cardinal 
numbers, based on the Chinese reading and writing 
(“three parts, take one!” “five parts, take two!”) had 
an immediate positive effect on the performances of 
dyscalculic students in the task of quick positioning 
of a given fraction between 0 and 1 on a number line 
(Bartolini Bussi et al., 2014).

Figure 2: Cross-section of a hexagonal 

bundle of rods

Figure 3: A fragment in Banpo museum
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From the perspective of a curriculum developer: 
how do we consider the present trend of “imitating” 
Western curricula to innovate early schooling in 
many developing countries, when it cuts the roots 
with local languages and everyday experience, espe-
cially in those cases when the local language is closer 
to the genesis of the mathematical idea (see also Boero, 
2013, pp. 25–26)?

2.1.4 Third example: Infinity and limit
The third example shortly refers to a recent study 
carried out by Kim, Ferrini-Mundy, and Sfard (2012) 
about students’ colloquial and mathematical discours-
es on infinity and limit. The study involved large sam-
ples of USA and Korean undergraduate students. The 
findings of the study were interesting and the inter-
pretation even more interesting. In a part of the study, 
the students were asked to create sentences with the 
words infinite and infinity (a separate sentence for 
each of these words). The two ethnic groups showed 
very different productions. In the USA group infinite 
was used in the context of real-life phenomena, whilst 
in the Korean group the context of the sentences was 
predominantly abstract and mathematical with a 
disconnection between colloquial and mathematical 
discourses on infinity. USA speakers produced pro-
cessual sentences, whilst Korean speakers were more 
likely to produce structural sentences that are closer 
to formal mathematical discourse.

In English, there is an obvious lexical continuity 
throughout all levels of infinity discourse. The 
principal link that keeps all kinds of English in-
finity talk together as a cohesive whole is the use 
of the single word infinite throughout all relevant 
themes and levels, and in both informal and for-
mal versions of infinity discourse. […] (Kim et al., 
2012, p. 93).

In Korean, in contrast, there is a lexical rupture be-
tween levels. For instance, the Korean term for infin-
ity (in everyday language) is taken from the Chinese 
mu-su (verbatim numberlessness) or mu-gung (ver-
batim endlessness), whilst the formal term (in mathe-
matics) is taken from the Chinese mu-han (verbatim 
boundlessness). There is no emphasis on the shared 
part mu that means none. Hence, there is an evident 
break between everyday and mathematical terms 
(Kim et al., 2012).

It seems that English and, more generally, those 
European languages that were developed under the 
influence of the Greek thought, defined a path to-
wards the mathematical idea of infinite and infinity 
(as it was constructed by mathematicians in the 19th 
century) that in some sense may model also the slow 
process of students from these cultures through the 
idea of potential and actual infinity. But this process 
is not likely to be the same for students coming from 
cultures where these ideas were developed only in 
schools (and not in everyday life), after and under the 
pressure of Western mathematics. 

From the perspective of a researcher in Mathematics 
Education: have these findings the potential to ques-
tion the faith in the “universal” validity of studies 
about the obstacles met by Western students in ad-
vanced mathematics?

2.1.5 Concluding remarks
In my contribution, I have considered only language 
to hint at the local culture and context. The examples 
contain arguments towards different and even oppo-
site strategies for developing mathematics curricula: 
to exploit local languages and everyday experience 
with a slow transition from colloquial discourse to 
mathematical formal discourse versus to start from 
scratch ignoring the relationships between colloquial 
discourse and mathematical formal discourse. Is the 
difference related to the focus, i.e., elementary ver-
sus advanced mathematics? In all cases, however, it 
seems that considering the history and geography of 
mathematical thinking and the parallel development 
of language are essential for explaining and analysing 
the didactical phenomena to be considered in the de-
sign and implementation of mathematical curricula 
(Boero, 2013). Without this attention, it is likely that 
researchers from different contexts do not even un-
derstand each other and cannot exploit each other’s 
findings (Bartolini Bussi & Martignone, 2013). This is 
one of the reasons why in the ongoing ICMI Study 23 
(Primary Study on Whole Numbers, http://www.umac.
mo/fed/ICMI23) a mandatory cover document about 
the context of each submitted paper was required in 
the Discussion Document. The papers which were 
submitted offered evidence not only of language dif-
ferences (with strong effects on the arithmetic taught 
in primary school) but also of different societal norms, 
customs, institutional conditions, values and theoret-
ical approaches, in one word, of different cultures.

http://www.umac.mo/fed/ICMI23
http://www.umac.mo/fed/ICMI23
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In this section, I have offered mathematical examples, 
maybe strongly unexpected mathematical examples, 
as the audience’s reaction showed in the panel and be-
yond. They question the idea of mathematics as a “uni-
versal language” or lingua franca of the modern world 
(Kim et al., 2012). In addition to general arguments 
about cultural relativism, mathematical examples of-
fer a staggering evidence that cannot be ignored. They 
contribute to determine the contexts, the gap between 
them and the possibility/impossibility of easily trans-
posing theories, findings and methodologies from one 
context to another, both in research and in classroom 
practice (Ramploud, 2015) against the naïve myth of 

“universality” of Mathematics Education research. In 
this case, it is the stunning difference that produces 
information.

The examples come from ethnomathematics, from 
the pragmatic use of numbers in everyday commu-
nication and from the comparison of mathematics 
curricula. In a more general way, examples may come 
from the curiosity about the history and geography of 
mathematical thinking. They concern both elementa-
ry and advanced mathematical thinking, with a poten-
tial conflict concerning continuity versus discontinu-
ity between everyday and mathematical language. In 
particular, I challenge the presumed “universality” of 
number words and of mathematics language and, as a 
consequence, of theories, methodologies and findings 
in the studies on Mathematics Education.

2.2 Researchers, teachers, students in 
Mathematics Education and their values 
in cultural contexts (Barbara Jaworski) 
The previous section (2.1) has pointed out that some-
times people are so embedded in their own context, the 
safe ‘niche’, as to ignore differences in other contexts. 
What seem like “the same” mathematical objects might 
have had a different history and might convey even 
different meanings. It is only when, for some reasons, 
someone is forced to exit her safe niche that she may 
become aware of that. The section focused on mathe-
matics itself and the ways in which it is represented 
in writing and talking in differing cultures. Here, I 
take up this theme of the “safe niche” to look more 
broadly at context in mathematics learning, teaching 
and research in Mathematics Education to seek out 
cultural distinctions and anomalies. This will take 
us beyond mathematics itself into educational issues, 
particularly those that stem from the ways in which 
mathematics is regarded in education and society.

2.2.1 Introduction – who we are, and 
how this influences our work as 
Mathematics Education researchers
When we engage in research which involves human 
participants, we have moral and ethical responsibil-
ity towards our research participants (Pring, 2004). 
Pring writes:

I shall argue that education itself is a moral prac-
tice … Ideally the ‘practice’ should be in the hands 
of moral educators (who themselves should mani-
fest the signs of moral development). (2004, p. 12) 

As researchers in Mathematics Education, we are 
required to attend to ethical issues in our research. 
Pring (2004) goes further to suggest that we are tasked 
with a moral agenda where research in education is 
concerned. A question for us all is what such moral-
ity involves. For example, we need to be aware of the 
values we bring to interactions, decisions, interpre-
tations and judgments (Bishop, 2001; Chin, Leu, & Lin, 
2001), how they relate to mathematics itself, and how 
they fit with the cultures in which our research takes 
place. These cultures are manifested in our lives and 
work, the societies and systems of which we are a part. 

As a mathematics educator, I have ways of seeing and 
arguing rooted in the mathematics which has formed 
a central part of my studies and professional life; this 
is likely to distinguish me from educators in other sub-
jects or from scholars in the natural sciences or hu-
manities. Mathematics itself has cultural resonances, 
related to moral questions and values within society, 
as I shall discuss further below. Indeed, Section 2.1 has 
drawn attention to many aspects of mathematics and 
how these vary across parts of the world. However, 
other cultures are also central to our activity. As a 
researcher, I belong to a different culture from that of 
a teacher I work with although we are both interested 
in the learning and teaching of mathematics – I have 
university and research values; the teacher has school 
and teaching values (Jaworski, 2008). Here, culture is 
related to where we work and the values associated 
with the job we do. My own values are theory-related, 
since an expectation of a university role is to engage 
with theory and research as well as the university as 
an institution; a teacher is concerned with school val-
ues, students’ characteristics and needs, and societal 
and political demands such as examination results 
and league tables of ‘effective’ schools.
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Being a teacher involves different expectations and 
values in different settings, particularly across na-
tional boundaries. Such differences are highlighted 
by a Finnish colleague, Kirsti Hemmi, who wrote to 
me as follows about her experiences as a teacher of 
mathematics in Finland and in Sweden:

I was recruited to Sweden to teach Finnish speak-
ing children in the beginning of [19]80s. Since 
then, over thirty years, I have worked in the 
cross-section of these two educational cultures 
and experienced and witnessed other teachers’ 
similar experiences about the very different at-
titudes towards what it means to be a primary 
school teacher and towards what kind of skills 
and understanding we expect children to devel-
op in reading, writing and mathematics during 
the first school years. In this work the different 
cultural-educational traditions really collided 
in various ways, not only through the Finnish 
and Swedish teachers’ different educational back-
grounds but also through the character of the 
teaching materials, especially in mathematics 
produced in these two countries. Sometimes the 
differences were concrete, sometimes they were 
hard to articulate. (Kirsti Hemmi, personal com-
munication)

Kirsti Hemmi’s words provide insight into differ-
ences between cultural settings where, more super-
ficially, there might be expected to be common un-
derstandings and ways of interpreting educational 
issues. When we work as researchers across national 
boundaries, how we understand each other becomes 
central to the ways in which we undertake research. 
In a personal communication, Heidi Krzywacki (from 
Finland) wrote to me about her experiences of con-
ducting professional development research in Peru, 
to provide new ideas about Mathematics Education 
and teacher education not common in the current 
educational reality in Peru. She writes: 

I have reflected on some issues related to lan-
guage in international cooperation and devel-
opment work that we have had with Peruvian 
partners for developing their education sys-
tem. For example, it took a while to under-
stand that we had no common apprehension 
of action research: for the Finnish partners it 
was used for referring to a methodological ap-
proach, but Peruvian partners interpreted it 

(after translation) as personal reflections.   
(Heidi Krzywacki, Personal Communication)

These words alert us to differences in perception that 
may be ignored, perhaps dangerously for the ensuing 
research, because the language of communication 
hides important subtleties of meaning. Since differ-
ences in practices and cultural values underpin what 
is possible in educational environments, research-
ers working in these environments must be alert to 
such differences and must factor them into a research 
study; not easy to achieve, and requiring awareness 
and sensitivity. In the next section, I offer further ex-
amples to highlight issues which arise from cultural 
norms, sensitivities and differing values.

2.2.2 Cultural contexts and their influence 
on how we think and behave
I start with examples from my own experience. I have 
worked as a teacher and as a researcher in several 
countries including Pakistan and Norway, where I 
come from a different culture (call it, rather superfi-
cially, a British culture) from the people in whose coun-
try I am working. In Norway, we share western ways 
of thinking and a Christian tradition, but there are 
differences, some subtle, but nevertheless important. 
One example, which I met very early in relationships 
with Norwegian colleagues, is the Law of Jante, creat-
ed by the Dano-Norwegian author Aksel Sandemose 
(Sandemose, 1933/2005) – the idea that there is a pat-
tern of group behaviour towards individuals within 
Scandinavian communities that negatively portrays 
and criticizes individual success and achievement as 
unworthy and inappropriate (Wikipedia; (http://
en.wikipedia.org/wiki/Law_of_Jante accessed 20-4-15).

Most Danes seem to [be] much more reserved 
and humble in everyday life. These rules refrain 
people from “judging a book by its cover,” as they 
encourage assuming that they are no better than 
the person they are meeting. (Gratale, 2014).

In discussions with colleagues in Norway about re-
search approaches and the teaching of mathematics, 
it became an issue for me to take a more modest, or 
‘humble’ stance on my own perspectives. Thus, aware-
ness of culture impacted on how I as a researcher in-
teracted with colleagues and approached my research 
role.

http://en.wikipedia.org/wiki/Law_of_Jante accessed 20-4-15
http://en.wikipedia.org/wiki/Law_of_Jante accessed 20-4-15
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In Pakistan, the cultural differences are more obvious, 
and religion plays an important role – the Muslim 
religion and associated social values permeate how 
people think and what is possible in schools and class-
rooms (Farah & Jaworski, 2005). For example, when 
working with teachers in a master’s programme in 
Pakistan, I emphasised the value (in mathematics) of 
asking questions about the mathematics in which we 
engaged. My argument was that inquiry approaches to 
mathematics, involving questioning of relationships 
and procedures, encourage students to go beyond the 
procedural towards more conceptual understand-
ings of the mathematics in focus (Jaworski, 1994). One 
teacher chose to write an essay about ‘questioning 
as a pedagogic approach’. She drew attention to the 
fact that in Pakistani society questioning is largely 
discouraged because it shows a lack of respect for 
parents, teachers or anyone senior in the commu-
nity (Jaworski, 2001, p. 312). This observation led to 
our addressing questioning not only as a pedagogic 
approach in mathematics, but also as an issue of values 
in the Pakistani society impinging on what is possible 
in the mathematics classroom. We see here issues re-
lated to pedagogic practice designed to improve the 
learning of mathematics and specific societal norms, 
alongside the communicative difficulties across cul-
tural boundaries. 

Anjum Halai addresses such issues from within her 
own and another cultural context, Mathematics 
Education in Pakistan and in East Africa, raising 
wider social issues that have a compelling need to 
be addressed. 

Recognition of learners who are marginalized 
due to socio-economic status, gender, language 
or other factors would mean questioning deep 
seated assumptions that underpin the organising 
structure and process of classrooms, in this case 
mathematics classrooms. For example, in patri-
archal societies with roles defined on the basis of 
gender, teachers often subscribe to the dominant 
social and cultural views that boys are inherent-
ly better in mathematics thereby marginalizing 
girls in terms of participation in mathematics. 
(Halai, 2014, p. 69) 

For researchers, not questioning those deeply held 
cultural views, which limit participation of both, boys 
and girls, is to take a moral position. Halai positively 
recommends questioning, claiming that it is through 

questioning that we challenge entrenched discrimina-
tory practices. This clearly raises issues for research-
ers who wish to conduct research without offending 
their respondents/participants, but who nevertheless 
see a moral dimension to their questioning of values, 
both in teaching and learning mathematics and in the 
wider society. Halai writes further:

For skills development, processes of teaching 
and learning in the mathematics classrooms 
would move away from routine memorization 
of procedures and algorithmic knowledge to-
wards participatory learning involving appli-
cation of mathematics knowledge to problems. 
Mathematics knowledge embedded in the history 
and culture of the learners would be a significant 
element of the cultural capital being re-distrib-
uted. This would socio-culturally embed mathe-
matics learning and reduce alienation of learners 
with school mathematics. (Halai, 2014, p. 69)

We see here serious challenges for researchers 
cross-culturally: while respecting the cultures in 
which we work as researchers, and without alienating 
those with whom we work, we need to address what we 
know to be good didactic and pedagogic practices in 
mathematics for the good of the students whose lives 
depend on it. These words suggest that research and 
educational development go hand in hand to promote 
practices which theory and research support as more 
likely to promote mathematical learning.

Diverse perspectives on what constitutes good learn-
ing of mathematics and how this relates to cultural per-
spectives have permeated Mathematics Education’s 
recent history, in both developed and developing 
worlds. Mathematics is seen in many countries as 
an essential ingredient of a good education, having 

“exchange value” for entry to diverse disciplines and 
work opportunities (e.g., Williams, 2011). However, 
for many people mathematics appears to be outside 
their comprehension, creating serious sociocultural 
antipathies, as the next section reflects.

2.2.3 Perceptions of mathematics and mathematical 
achievement in diverse cultures and systems
In Mathematics Education, teachers and educators 
have the task of promoting mathematical learning 
and understanding among the students with whom 
they work, and researchers study the processes, 
practices and outcomes of this work. In 1990, writing 
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from an ICMI study focusing on the Popularisation 
of Mathematics, Howson and Kahane (1990, p. 2/3) 
wrote that, in most developed countries, the public 
image of mathematics is bad. They quote from their 
respondents: “All problems are already formulated”; 

“Mathematics is not creative”, “Mathematics is not part 
of human culture”, “The only purpose of mathematics 
is for sorting out students”. Moreover, “the image of 
mathematicians is still worse: arrogant, elitist, middle 
class, eccentric, male social misfits. They lack anten-
nae, common sense, and a sense of humour”. We might 
ask why mathematics elicits such negative responses 
from a wide range of people. In more recent years, in a 
study of students’ views of mathematics in secondary 
classrooms in the UK, Nardi and Steward (2003) char-
acterized students’ views as expressing tedium, isola-
tion, rote learning, elitism and depersonalization (pp. 
355–360) – students were T.I.R.E.D, of/with mathemat-
ics. These findings are an indictment on the students’ 
experiences of mathematics in their schooling. Such 
unwelcome messages challenge the educational status 
quo in the cultures to which they relate and impact on 
systems and practices. The challenges for researchers, 
and associated responsibilities, go beyond pointing 
out the failings towards a recognition of where per-
sistent practices are failing learners.

For example, in the UK, long-standing practices which 
resist challenge involve the grouping students into 

‘sets’ for mathematics based on achievement within 
the system. Such setting, based on achievement, is 
much less common in other disciplinary areas. Setting 
practices have discriminated against certain groups 
of students, leaving them to be defined as ‘low achiev-
ing’ or even ‘low ability’ (Boaler & Wiliam, 2001). In 
particular, setting regimes and associated forms of na-
tional assessment were found by Cooper and Dunne 
(2000) to discriminate again girls and students of low-
er social class. Why such practices are maintained, 
given the research evidence against them, is a cultural 
phenomenon, deeply embedded in the educational 
system and perceptions of policy-makers and teach-
ers. In a study based on the ways in which committed 
teachers interpreted mathematics teaching in two 
schools in the UK, Boaler (1997) showed that differ-
ences in school organisation and teaching approach 
led to different ways in which students perceived 
and succeeded with mathematics, with differential 
effects for boys and girls. Such research findings at a 
national level beg questions about educational prac-
tices and learning outcomes in other countries which 

are addressed through international comparisons in 
mathematics.

In international comparisons of mathematics achieve-
ment, successive IEA studies have shown that several 
European countries perform relatively poorly in con-
trast with achievements in some eastern countries 
(Mullis, Martin, Gonzalez, & Chrostowski, 2004). We 
might ask whether ‘TIRED’ students are unlikely to 
achieve highly; or perhaps whether forms of ‘setting’ 
can be linked to national outcomes. It seems clear that 
the outcomes of testing students in international com-
parisons reflect cultural perspectives in mathemat-
ics and in education. As well as comparing learner 
outcomes in these countries, such studies beg many 
questions about the educational systems, classroom 
practices and education of teachers to which student 
learning outcomes relate. More recent studies, such 
as the TEDS-M study (Tatto et al., 2012), have taken up 
some of these questions.

For example, comparing national results in the 
TEDS-M study of teacher education, Kaiser and col-
leagues (2014) address the question: “What are the 
professional competencies of future mathematics 
teachers [in the countries to which the study relates]?” 
They write: 

In the secondary study, participants from Chinese 
Taipei outperformed all other participants, in 
relation to MCK [mathematical content knowl-
edge] as well as MPCK [mathematical pedagogic 
content knowledge]. Participants from Russia, 
Singapore, Poland and Switzerland followed the 
Chinese Taipei prospective teachers with their 
achievements in MCK, German and US American 
prospective teachers achieved slightly above the 
average, … .

These results point to interesting differences be-
tween prospective teachers for primary level and 
secondary level and confirm the superior perfor-
mance of Eastern prospective teachers compared 
to their Western counterparts in most areas.

In contrast, in Scandinavian countries, North 
and South America, and in countries shaped by 
US-American influence such as the Philippines 
or Singapore a so-called “progressive education” 
with child-centred approaches characterises 
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school and teacher education. (Kaiser et al., 2014, 
pp. 42f )

By focusing on national achievements, these authors 
alert us to the differing systems and beliefs which 
underpin educational achievements. They suggest 
that links can be seen between these findings and 
those from surveys of student achievement in the 
same countries, and point towards the differing ‘ori-
entations’ between countries as contributing to the 
findings of the study:

The studies explore amongst others the extent to 
which a country’s culture can be characterised 
by an individualistic versus a collectivistic ori-
entation using the cultural-sociological theory 
of Hofstede (1986). The collectivism-individual-
ism antagonism describes the extent to which 
the individuals of a society are perceived as au-
tonomous, the role and the responsibility of the 
individual for knowledge acquisition plays an 
important role. (Kaiser et al., 2014, p. 44)

Our attention is drawn here to the differing beliefs 
which shape an education system, and which are 
rooted in the collectivist-individualist debate which 
underpins the values on which educational practice 
is based. It is far from simple to address such estab-
lished positions, especially when they are supported 
by politics and legislation; nevertheless as moral edu-
cator-researchers we cannot ignore such challenges. 

2.2.4 Values as a determinant of difference
Questions related to values have been addressed ex-
plicitly in research looking at the importance of values 
in relation to classroom mathematics. The values that 
a teacher holds are influential on the ways in which 
curriculum content is addressed in the classroom. For 
example, Alan Bishop has written: 

If a teacher continually chooses to present oppor-
tunities for investigation, discussion and debate 
in her class, we might surmise she values the abil-
ity for logical argument. (Bishop, 2001, p. 238) 

Maybe further, we might surmise she believes that 
logical argument is important to mathematical con-
ceptualization. Bishop argues that beliefs and values 
are reflexively linked for teachers deciding how to 
bring mathematics to the students in their classroom. 
For the TIRED students in the study reported by Nardi 

and Steward, we might wonder about the beliefs and 
values underpinning the teaching of these students. 
Although such issues are not addressed explicitly in 
their paper, Nardi and Steward write nevertheless: 

“The students seemed to resent mathematical learning 
as a rote learning activity that involves the manipula-
tion of unquestionable rules and yields unique meth-
ods and answers to problems.” (p. 362) Thus, promoting 
rote learning can be perceived by some as a legitimate 
way of teaching mathematics and is related to class-
room values underpinning findings in this study.

In research in Taiwan, Chin, Leu, and Lin (2001) com-
pared and contrasted the beliefs and values of two 
teachers and concluded that the process of making 
their values explicit had effects on their teaching re-
lated to the particular values they espoused. In one 
case, the teacher came to realize that using language 
that is more familiar to students, encouraging stu-
dents to express mathematical ideas in their own lan-
guage and only later moving to formal expressions, 
has positive outcomes for students’ mathematical 
learning. 

Language also formed a central issue for Lee (2006) 
in a study of her own teaching approaches in a UK 
comprehensive school. She pointed to the importance 
of the transition from students’ own natural language 
to mathematical language, designing and exploring 
classroom approaches that promoted students’ devel-
opment of mathematical language. Students had to 
get used to using mathematical terms and expressing 
in their own ways the meanings of these terms. Lee, 
acting as teacher-researcher, stood out against the 
prevailing ethos in her school in relation to the wider 
educational system. Her research demonstrates possi-
bilities for promoting the development of mathemat-
ical language in the classroom and stands as a beacon 
for other teachers within the system.

These examples point to morality issues at the class-
room level, involving teachers working with their 
students. However, teachers have to work within 
the prevailing system which imposes values beyond 
their own activity and that of their students. The ed-
ucational system, with its ways of organising schools, 
curriculum and examinations, is formed within the 
nation’s societal and political forces which are cul-
turally determined.
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2.2.5 Ways of knowing and being
Cultural determination within any society might 
be seen in terms of ‘ways of knowing and being’. 
Research by Belenky and colleagues (1986) pointed to 

“Women’s Ways of Knowing”, drawing attention to the 
ways in which women perceive their various ‘worlds’ 
differently from male perceptions. Such worlds are 
the focus of Holland and colleagues (1998) who have 
suggested that humans make sense within “figured 
worlds”, or figurative, narrativized or dramatized 
worlds:

[A figured world is] a socially and culturally 
constructed realm of interpretation in which 
particular characters and actors are recognized, 
significance is assigned to certain acts, and par-
ticular outcomes are valued over others. (Holland 
et al., 1998, p. 52) 

Ways of knowing or figured worlds can be seen to un-
derpin the ways in which Mathematics Education 
is approached and practiced in culturally different 
educational settings. The examples provided above 
are all situated with respect to such worlds which 
may be local national or cross-national. Researchers 
working in cross-national frames may be unaware of 
the worlds of their partners, of ways of interpreting 
constructs and concepts, of overpowering societal or 
political forces. Issues arising may present tensions 
and dilemmas which need to be exposed, discussed 
and deconstructed in reports from the research.

I have drawn attention to cultural values permeat-
ing mathematics learning and teaching in and be-
yond national boundaries raising moral and ethical 
questions for teachers, educators and researchers. 
Research activity and practices cannot be divorced 
from the educational values that permeate societies 
and are promoted by systems, politics and legislation. 
The researcher is more than a recorder of practices 
and issues and cannot avoid involvement. We there-
fore need much more cognisance of ways in which 
research questions cut across ways of knowing and 
being in the worlds in which we do our research. This 
in itself is a research agenda.

2.2.6 Key concepts
The following is a list of the key concepts addressed 
in this section:

1) The moral and ethical nature of Mathematics 
Education practices and associated responsibil-
ities of practitioners and researchers;

2) The centrality of values to educational research 
and practice in mathematics;

3) Perceptions of mathematics and their relation to 
didactic and pedagogic practices;

4) Differences of perception of mathematics edu-
cational practice rooted in cultural contexts and 
issues for researchers in challenging established 
ways of being;

5) International studies with cross-national com-
parisons and the challenges they raise for cul-
ture-bound practices;

6) Figured worlds which narrativise the human col-
lective in Mathematics Education and require 
recognition and acknowledgement in their power 
to condition beliefs and values, and hence teach-
ing and learning.

2.3 Research approaches and research 
communities as and in cultural contexts 
(Susanne Prediger)
The previous two sections have discussed differences 
in cultural contexts concerning the mathematics itself 
(in Section 2.1) and the contexts of teaching and learn-
ing mathematics (in Section 2.2). For both cultural con-
texts, it was shown how the hidden assumption about 
the universality of our own practices and values (of 
writing and doing mathematics, ways of teaching, of 
educating teachers) must be challenged. Instead, the 
mathematical and educational practices and values 
are deeply shaped by the culture we live in. Problems 
of intercultural misunderstandings can appear when 
we are not aware of this cultural boundedness and 
assume that approaches or knowledge can easily be 
transferred between cultural contexts. 

In both sections, the “culture” in “cultural contexts” 
mainly referred to countries or regions, where in-
tercultural reflections can be triggered by interna-
tional comparisons. However, Maria G. Bartolini 
Bussi has already mentioned the differences between 
everyday language and mathematics language about 
whole numbers and Barbara Jaworski has already 
mentioned cultural differences within a country, for 
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example, the researchers’ culture versus the teachers’ 
culture. This widened use of the construct “culture” is 
in line with modern conceptualizations, not only as 
national culture but as a system of shared meanings, 
values and practices shared by a group of people, also 
within a country (Geertz, 1973; Knorr Cetina, 1999). 
Specifically, Knorr Cetina (1999) has coined the term 
epistemic cultures and showed how implicit values 
and practices can shape the work of research com-
munities and their research approaches. 

Within the Mathematics Education community, 
especially the diversity of different theoretical ap-
proaches and the underlying research practices have 
been discussed as different cultural contexts. This 
section reports briefly on the raising awareness on 
these more subtle cultural contexts and discusses 
how strategies invented for dealing with diversity 
of research approaches can be transferred to other 
cultural differences. Thus, in this section, the relation 
between research approaches and cultural contexts 
is twofold: on the one hand, the research approaches 
are themselves considered as epistemic cultures with 
their own values and practices, on the other hand, re-
search approaches have emerged in different interna-
tional contexts and different research communities, 
and their specific characteristics have always shaped 
the epistemic cultures. 

On this meta-level, the mathematics is more implicit: 
although the theories and research approaches deal 
with mathematics and its epistemological specificity, 

the reflection on how to combine different approaches 
is not so specific to mathematics anymore. 

2.3.1 Different research approaches – a further 
cultural context influencing research 
and design practices
Since 2005, the ERME community has gained an in-
creasing awareness of the existence of different the-
oretical approaches. At CERME congresses, the meth-
odological discourse was installed by establishing a 
Working Group which is ongoing now for 10 years 
(Artigue, Bartolini Bussi, Dreyfus, Gray, & Prediger, 
2005 at CERME5; Arzarello, Bosch, Lenfant, & Prediger, 
2007 at CERME6; and successors). Successively, the 
awareness increases that theoretical approaches are 
always connected to research practices, this section 
hence talks about research approaches at large, in-
cluding the theories framing the research as well as 
the underlying aims and values. 

No empirical finding exists independent from the 
way it is generated within a theoretical approach, 
even if this theoretical approach is not made explicit. 
However, the complexity of mathematics teaching 
and learning can be conceptualized in very different 
ways, depending on the chosen theory and research 
approach. Figure 4 sketches an example (presented 
and discussed in Prediger, 2010) of the empirical 
problem that immigrant students have difficulties 
with mathematical word problems. This problem 
can be conceptualized, described and explained by 
different lenses which are connected to different 
theoretical approaches, either in an individual cog-

Figure 4: Different theoretical approaches to the same empirical problem (similar to Prediger, 2010, p. 183)
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nitive perspective or a social perspective: Some focus 
(micro-sociologically) on the culture of mathematics 
classroom, and others also focus (macro-sociologi-
cally) on connections to students’ social background 
and structures in society (cf., Sierpinska & Lerman, 
1996, for the difference between cognitive and social 
perspectives at large). 

In each case, the activated approach influences (but 
not determines) the way the problem is researched. 
The original problem changes its character, since the 
theoretical approach shapes the problem into a so-
called conceptualized phenomenon (Bikner-Ahsbahs, 
Prediger, & the Networking Theories Group, 2014, p. 
238). Additionally, the specific conceptualization 
of the problem influences the design consequences 
drawn for overcoming it. If the problem is conceptu-
alized as students’ missing conceptual understanding, 
the design might focus on fostering understanding. 
In contrast, the conceptualization as a habitualized 
neglect of realistic consideration due to inadequate 
sociomathematical norms in the classroom might 
lead to changing the sociomathematical norms about 
how to deal with word problems. If the immigrant 
students are mainly considered as students with 
underprivileged social background, a more explicit 
teaching might be claimed as consequences drawn 
from Bernstein’s theoretical approach. In contrast, 
the conceptualization as multilingual students might 
result in fostering students’ academic language or 
raising more general issues of equity (Prediger, 2010). 
Especially, considering challenges relating to a specif-
ic group of students (such as here immigrant students) 
allows for macro-sociological perspectives on issues 
of equity, but can also be treated as a purely cognitive 
problem within a specific mathematical topic. 

Even this very rough outline of alternative approach-
es and design consequences shows how each theoreti-
cal approach influences research and design practices. 
This sketched example can raise the cultural aware-
ness that no empirical finding exists independent from 

its conceptualization within a (more or less explicit) the-
oretical approach. 

It also shows that the diversity of approaches is not 
only another example of cultural differences (here 
difference of epistemic cultures), but that it is also nec-
essary in order to grasp different aspects of the com-
plexity of mathematics teaching and learning. Having 
acknowledged the necessity of different epistemic cul-
tures is however not enough to make use of the diver-
sity, because the diversity can mainly become fruitful 
if the research approaches are connected (Artigue 
et al., 2005). As classroom reality is always complex 
and multi-facetted, connecting different theoretical 
approaches and research practices is promising in 
order to grasp a higher complexity at the same time.

2.3.2 Dealing with diverse research approaches and 
theories as an issue of methodological reflection
How can the discipline of Mathematics Education 
make use, more systematically, of the diversity of 
different epistemic cultures? As dealing with the 
diversity was identified as an important challenge 
for the international community, a subgroup of the 
CERME working group started to work more inten-
sively in order to elaborate the methodological reflec-
tions, first on theories alone, later more widely on 
research approaches and the underlying epistemic 
cultures (Bikner-Ahsbahs, Prediger, & the Networking 
Theories Group, 2014).

Given the high complexity of mathematics teaching 
and learning, one big unified theory is not a realistic 
and adequate goal. Instead, the group developed the 
idea of aiming at connecting two or three approaches 
each. For this purpose, the group developed a land-
scape of so-called networking strategies by which 
these connections can be realized (Prediger, Bikner-
Ahsbahs, & Arzarello, 2008).

Practical experiments with comparing and contrast-
ing different theoretical approaches in different set-
tings led to an increasing awareness that theoretical 

Figure 5: A landscape of strategies for connecting theoretical approaches (Prediger et al., 2008, p. 170)
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approaches influence each step in a research process, 
not only the analysis of data as the initial example in 
Figure 4 might suggest:

 ― initial identification of a problem in classroom 
practice, loosely framed;  

 ― conceptualisation of the classroom problem; 

 ― transformation of the problem into more focused 
research questions;

 ― development of research design (including meth-
odological choices on kinds of data, sample…);

 ― collecting data;

 ― choice and formulation of a research question;

 ― data analysis;

 ― consequences for a design of learning opportu-
nities;

 ― evaluation of learning opportunities;

 ―  …

It was therefore an interesting experience to convert 
research problems from one research approach into 
another, because this required changes in every step 
of the research practice as well. These experiences 
showed the strong intertwinement between theo-
ries and research practices and hence the meaning 
of Knorr Cetina’s (1999) construct “epistemic cultures”.

Although there is no shared unique definition of 
theory or theoretical approach among Mathematics 
Education researchers (see Assude, Boero, Herbst, 
Lerman, & Radford, 2008), many authors emphasize 
the double role of theory being the outcome of re-
search and, at the same time, the background theory 
guiding the research practice as a framework (Assude 
et al., 2008). Radford (2008) takes this intertwinement 
into account by describing theories as “way[s] of pro-
ducing understandings and ways of action based on 
[…] basic principles, which include implicit views and 
explicit statements that delineate the frontier of what 
will be the universe of discourse and the adopted re-
search perspective; a methodology […. and] a set of par-
adigmatic research questions” (Radford, 2008, p. 320). 

Radford’s triplet includes the so-called background 
theories (Mason & Waywood, 1996) with many hidden 
assumptions and general philosophical stances which 
often remain implicit. 

For example, adopting a macro-sociological perspec-
tive on the example problem in Figure 4 immediately 
makes the researcher think about the students’ back-
ground and how this is related to the mathematics 
learning. Relevant questions in this perspective must 
include societal questions. At the same time, the math-
ematics might be able to be treated in a more generic 
sense. In contrast, the cognitive perspective would fo-
cus on the specificity of the mathematical topic and its 
obstacles and might neglect the students’ background 
as this question is not considered as important. Which 
approach is chosen might also depend on the national 
or regional contexts: where equity issues are promi-
nently discussed, the macro-sociological perspective 
has entered Mathematics Education earlier than in 
other countries or regions.

Making crucial aspects of an approach explicit is there-
fore a major task when connecting theories and re-
search approaches. That is why understanding another 
theory and making the own theory understandable was 
specified as the first networking strategy (cf. Figure 5), 
since these two strategies already require big efforts of 
the researchers for an “intercultural communication”. 

Before applying networking strategies with higher 
degrees of integration like combining, coordinating 
or synthesizing, the compatibility of the approaches 
in view must carefully been checked. This is neces-
sary to avoid inconsistencies in the built network (cf. 
Bikner-Ahsbahs et al., 2014).

2.3.3 Theoretical approaches and research 
and design practices as embedded 
in different research communities 
and institutional backgrounds
Conceptualizing theories as ways of producing un-
derstandings and ways of action corresponds to cul-
turalistic conceptualizations of research as being con-
ducted in communities of practice” (Wenger, 1998). The 
construct practice is explained by Wenger as socially 
bound to its community: 

The concept of practice connotes doing, but not 
just doing in and of itself. It is doing in a histor-
ical and social context that gives structure and 
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meaning to what we do. In this sense, practice 
is always social practice. Such a concept of prac-
tice includes both the explicit and the tacit. It in-
cludes what is said and what is left unsaid; what 
is represented and what is assumed. It includes 
language, tools, documents, images, symbols, 
well-defined roles, specified criteria, codified pro-
cedures, regulations and contracts that various 
practices make explicit for a variety of purposes. 
But it also includes all the implicit relations, tacit 
conventions, subtle cues, untold rules of thumb, 
recognizable intuitions, specific perceptions, 
well-tuned sensitivities, embodied understand-
ing, underlying assumptions, and shared world 
views. Most of these may never be articulated, 
yet they are unmistakable signs of membership 
in communities of practice and are crucial to the 
success of their enterprises. (Wenger, 1998, p. 47)

This conceptualization of research as always being 
bound in epistemic cultures, or here more precisely 
in research communities of practice, makes it clear 
that the choice of a theoretical approach is not a free 
individual choice but always limited and fired by the 
specific research community and their institutional 
background. 

The fact that Maria G. Bartolini Bussi, in Section 2.1, fo-
cuses on the mathematics itself and Barbara Jaworski 
in Section 2.2 on teachers, classrooms and values of 
the society, might also be traced back to the different 
research communities and institutional backgrounds 
in which the researchers work: Being located in the 
mathematics or more attached to the general educa-
tion department might affect the choices about focus, 
perspective and theoretical approach. In this sense, 
every research is strongly influenced by the commu-
nity of practice and its institutional background.

This point is also made by Marta Pytlak in Section 
3.2: Different institutional conditions influence the 
research practices we can choose. For the individual 
young researcher, it might hence be challenging to 
switch between the communities. 

2.3.4 Learning for cultural 
contexts on other levels? 
After ten years of methodological reflection on the 
diversity of research approaches and strategies and 
issues for dealing with it, we can ask whether we can 
learn something from this cultural context on the re-

search level for other cultural contexts (e.g., on the 
mathematical level or the classroom level, see Section 
2.1 and 2.2 as well as 3). Are there aspects of cultural 
awareness that can be transferred from the level of 
research cultures to other levels of cultural contexts 
raised in other sections? 

Here are some preliminary aspects which should be 
further discussed: 

 ― Being aware of differences is the first step to 
avoid too hasty generalizations. It is worth not to 
take the own assumptions for granted universally.

 ― Differences do not only pose problems, but also 
offer chances since they provide a larger variety 
of options and increase the repertoire of research 
and design practices.

 ― Beyond openly visible differences, there are al-
ways substantial differences in more subtle, im-
plicit layers which are more difficult to commu-
nicate. That is why understanding other contexts 
and making the own context understandable is a 
challenge in itself which should be taken seriously.

 ― Comparing and contrasting cultural contexts is 
a strategy that allows making implicit thought 
and aspects explicit. 

 ― Converting from one cultural context to another 
requires very careful adaptations or even trans-
positions in order to adjust to the cultural context 
soundly. 

 ― Combining different contexts requires very care-
ful considerations of checking compatibility in 
order to avoid inconsistencies. 

3. YOUNG RESEARCHERS’ 
EXPERIENCES AND REFLECTIONS

The previous sections give concrete examples in 
which the invisible culture of mathematical thoughts 
(Section 2.1), classrooms, their norms and values 
(Section 2.2 and 2.3) had been made visible throughout 
a deep analysis of particular cultural contexts. These 
examples indicate cultural determinants of the math-
ematics taught and learned in mathematics classes. In 
the given cultural context (determined by its history, 
tradition, institutions, systems of values, ideologies), 
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the invisible culture is so natural and obvious that its 
participants might take it for granted also for other 
contexts. 

From the point of view of researchers it is necessary 
to be aware of these determinants. This awareness 
requires a holistic view of the learning process as a 
part of a certain context and its culture. The reflec-
tions worked out in Section 2.4 explain from a me-
ta-level how researchers’ awareness of the cultural 
dimension of learning processes might be affected 
by the tradition of dealing with particular theoretical 
perspectives being characteristic for their commu-
nity. These reflections point out another level of an 
invisible culture – the invisible culture of scientif-
ic thought in Mathematics Education – and explain 
well-established strategies for raising the cultural 
awareness on this level.

The reflections presented by three experienced re-
searchers motivated a group of four young research-
ers (Annica Andersson, Mustafa Alpaslan, Edyta 
Nowinska, and Marta Pytlak) to analyse and discuss 
their own experience in conducting and communicat-
ing research in Mathematics Education. Some results 
of these processes are presented in this section. They 
document 

 ― the essential role of an intercultural discourse 
(Section 3.1 and 3.3) in raising the cultural aware-
ness of research practices, 

 ― the influence of the institutional context affect-
ing the effectiveness of such a discourse (Section 
3.2), and

 ― the need for researchers’ awareness of the invis-
ible culture underpinning ways of thinking and 
acting in mathematics classes in order to design 
effective methods for improvement of teaching 
and learning practices (Section 3.4). 

Section 3.5 presents a discussion of the critical points 
raised by the young researchers and puts them in re-
lation to the reflections presented in the previous 
sections. The discussion emphasizes the need for 
the cultural and theoretical sensitivities for better un-
derstanding of the surrounding invisible cultures in 
research practices in Mathematics Education. 

3.1 International perspectives on local 
phenomena – A personal experience 
(guest-author Annica Andersson) 
In my reflections, I focus on my experiences from 
Mathematics Education research and teacher ed-
ucation in the diverse cultural settings I have had 
the opportunity to work in, for example, Sweden, 
Denmark, Colombia, Australia, Papua New Guinea 
and Greenland. These cultural experiences have 
shown that our own languages, contexts and cultures 
may become visible when we see them from the outsider’s 
perspective, or when others confront us with questions 
motivating us to reflect on our own use of the languages, 
contexts and cultures we participate in or are familiar 
with. This has been one of my richest learning expe-
riences when communicating my cultural research 
with others. 

For my thesis research, focusing on students’ nar-
ratives about their hating/ disliking/worrying 
about/ Mathematics and Mathematics Education 
(cf. Andersson & Valero, 2015), I collected my data 
in Swedish upper secondary schools. The fact that 
I analysed my data while being outside Sweden, in 
an English-speaking environment (Australia), and 
communicated my research within an internation-
al research group in Aalborg (Denmark), facilitated 
me to explain and express the data to people of other 
languages and cultures. Consequently, I recognised 
some aspects influencing the ways of thinking and 
acting in school contexts in Sweden, and realized that 
languages, cultures and contexts fluctuate and are 
not stable. The opportunity to communicate this re-
search within an international community raised my 
awareness on how one’s own cultural context may be 
different from other contexts and how it influences 
the ways of acting as a teacher or researcher and, con-
sequently, also teaching methods, research questions 
and theoretical approaches. 

For example, Elin, a mathematics teacher I collaborat-
ed with, talked about herself as being a “Curling teach-
er” (Andersson, 2011). Curling is a culturally-bounded 
winter ice sport where competitors sweep the ice in 
front of a stone to get it in the best position. The meta-
phor of a curling teacher is transferred from the term 

“curling parent”, which, in Sweden, refers to parents 
who “sweep the way”, hence serve their children to get 
the right, or best, positions, solving possible problems 
and tensions beforehand and thus make children’s 
lives as smooth and easy as possible. The idea of a 
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“curling teacher” was culturally-bounded and not ob-
vious for an international research community.

The international (or rather inter-cultural) discourse 
on my research contributed to make my research 
problems, approaches and results clear and under-
standable for external research communities. My ex-
periences allow me to argue that there is value in rais-
ing discussions about understanding Mathematics 
Education research as culturally developed and 
situated. Here the question arises on how to value 
the “universality” of research results within an inter-
national community. It seems that this question has 
to be discussed from the background of the cultural 
contexts in which the research questions appear to 
be relevant.

3.2 Divergent expectations in different 
research communities – A personal 
experience (guest-author Marta Pytlak)
ERME conferences (CERMEs) are a great opportunity 
to get access to a research community in Mathematics 
Education, and get insight into new research problems, 
methods and theoretical approaches. Here, problems 
related to school mathematics, teaching and learn-
ing situations in real settings in mathematics classes 
are discussed from different theoretical perspectives. 
Theories developed in Mathematics Education are 
considered as important scientific achievements and 
research tools. CERME papers document research and 
development work of their authors and their quality 
must satisfy scientific criteria. 

However, the institutional context of my work as a re-
searcher in Mathematics Education in Poland – Faculty 
of Mathematics – has other criteria to evaluate my 
work and publications. Since Mathematics Education 
is not recognized here as a scientific discipline, my 
work is evaluated on the basis of the same criteria 
as the work of mathematicians. Papers published in 
CERME proceedings or in Mathematics Education 
journals are not considered as results of scientific 
work, regardless of the content. I am expected to focus 
in my work on problems relevant for a scientific work 
in mathematics and to deal with mathematical theo-
ries. Methods, approaches and theoretical constructs 
developed in Mathematics Education seem to be irrel-
evant in this context. This hinders the development 
of research communities in Mathematics Education 
in Poland and makes the communication within an 
international community very difficult.

In my PhD thesis, I focused on the development of 
algebraic thinking in elementary school students. In 
the whole process of my PhD project I used theoretical 
constructs, approaches and methods developed and 
used in international communities in Mathematics 
Education. While discussing my research within such 
communities, I received constructive responses re-
garding the novelty and importance of my research 
questions and results. Because of references to prob-
lems and literature known in Mathematics Education 
my work was understandable for others. 

Due to my institutional context in Poland, it was nev-
ertheless important to adapt my final version of the 
PhD to the institutional expectations and reduce the 
part related to theories in Mathematics Education. 
Instead, I wrote one chapter with elaboration on ad-
vanced mathematical theories relevant for my work. 
Addressing some historical aspects of the develop-
ment of algebra allowed me to make some links be-
tween this chapter and other chapters in my thesis. 
The changes made to satisfy the institutional criteria 
for a PhD thesis brought into my work new aspects. 
But they also shifted the focus from theories which 
I had used to conceptualize particular problems in 
Mathematics Education to the more “universal” math-
ematical theories. Consequently, this changed the way 
that this work is embedded in the discourse of the 
European Mathematics Education community.

My experience indicates one of many challenges for 
researchers in Mathematics Education in Poland 
which sometimes hinder the development of research 
communities and the access of the small group of 
Polish researchers to an international community.

3.3 Cultural biases in review 
procedures – A personal experience 
(guest-author Mustafa Alpaslan)
My reflections are related to my experiences as a PhD 
student and graduate assistant working in teacher 
education for pre-service middle school (ages 11 to 
14) mathematics teachers at the Middle East Technical 
University, in Ankara, Turkey. 

My research interests focus on the integration of his-
tory of mathematics in the education of pre-service 
mathematics teachers. One component of my master 
thesis was to investigate Turkish pre-service middle 
school mathematics teachers’ knowledge of history of 
mathematics and to develop a valid test for this inves-
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tigation. Since the history of mathematics is a large 
area, the scope of the test was restricted to the histor-
ical and institutional context of mathematics taught 
and learned in Turkish middle schools. Mathematics 
curricula, textbooks and guidelines for mathemat-
ics teachers’ competencies were used as a reference 
frame for decisions concerning this restriction. 

Besides items reflecting various cultures’ contribu-
tions to the historical development of mathematics, 
one item addressed the history of Turkish mathe-
matical language. In it, Mustafa Kemal Atatürk’s 
contribution to create a new mathematical language 
according to the new Turkish language, with Latin 
alphabet rather than the old Ottoman Turkish with 
Arabic alphabet, was captured. In Turkey, this contri-
bution is valued as an element of our cultural identity 
and the awareness of it is seen as a part of mathematics 
teachers’ professional knowledge. Atatürk’s reason 
for preferring the new Turkish was that it was actu-
ally the spoken language in the public, thus it would 
provide easier and more meaningful understanding 
of geometrical concepts.

The context-bound nature of my research seemed to 
be very natural in discussions with researchers from 
Turkey. However, a discussion with researchers from 
the International Study Group on the Relations between 
the History and Pedagogy of Mathematics raised my 
awareness of the fact, that some items of the test de-
signed in my research may not be understandable for 
this intercultural community. For example, one item 
in form of a multiple-choice question asking to mark 
Atatürk’s contributions to the development of math-
ematics in Turkey was interpreted by the reviewers 
coming from other countries as an inadequate con-
ceptualization of the investigated construct (teach-
ers’ knowledge of history of mathematics). This chal-
lenged me to provide additional information about 
the specific characteristic of my research context. By 
giving more context information, the reviewers de-
creased their doubts about the missing universality 
and significance of my research results. By my con-
text-bound argumentation justifying my research 
questions, approach and results in the cultural con-
text of mathematics teacher education in Turkey, I 
succeeded to publish an article from my master’s the-
sis (see Alpaslan, Işıksal, & Haser, 2014). The cultural 
context was accepted by the reviewers as an essential 
contribution making my research understandable 
for them and for the potential international readers 

of this paper. Increased cultural awareness may help 
to avoid biases in review procedures.

3.4 Implementation of design 
research in new contexts – A 
personal experience (Edyta Nowinska)
In 2011, a group of researchers in Mathematics 
Education from Germany was assigned by the German 
foreign aid organization MISEREOR to support teach-
er education and the development of the quality of 
mathematics classes on the Indonesian island Sumba 
in order to educate the learners better for their ca-
reer opportunities. For this aim, a long-term design 
research project had been conducted. The focus was 
on teaching and learning mathematics at the begin-
ning of a secondary school, in particular on learners’ 
cognitive habitus in learning mathematics.

Our first analysis revealed that the Sumbanese learn-
ers have difficulties with critical thinking and mathe-
matical reasoning: On each level in the school system 
there, learners are used to learning by memorizing, 
an swering collectively and waiting until the teacher 
tells them what is correct. They are not used to ask-
ing questions and practice monitoring (cf. Sembiring 
et al., 2008). Our further observations showed that 
there were some culture-bound variables influenc-
ing students’ learning behaviour and hindering this 
kind of thinking and reasoning in mathematics class-
es. Critical thinking and rational reasoning are not 
essential characteristics of the Sumbanese culture, 
neither in the religion based on myths and legends, 
nor in everyday routines and system of values. This 
society exhibits a short-term point of view rather 
than a pragmatic future-oriented perspective based 
on critical thinking and precise planning.

It seems that the cultural context determines the ways 
of thinking and acting of teachers and learners. This 
determination results in culturally acquired episte-
mological obstacles, and beliefs that there are no alter-
native ways of acting and thinking. Thus, prior to the 
implementation of the teaching and learning concept 
developed on the basis of design principles worked 
out in the context of German secondary schools 
(cf. Cohors-Fresenborg & Kaune, 2005), a group of 
Indonesian pre-service mathematics teachers collab-
orated with the German educators to reflect on their 
(unconscious) ways of acting and change their own 
learning attitudes and teaching practice.
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In this process of learning and reflecting, the pre-ser-
vice teachers constructed mental models for mathe-
matical reasoning, a system of metaphors enabling 
them to understand the core ideas of stepwise con-
trolled mathematical argumentations and new beliefs 
about mathematics. They were astonished by the fact 
that the so-called mathematical “rules” can be derived 
and explained and that the meaning of symbols and 
signs can be negotiated in social interactions in class. 
The experience that Sumbanese learners are able to 
engage in such social interactions convinced the par-
ticipating pre-service teachers that changes in the 
cognitive behaviour of the learners are possible to 
achieve, although the intended cognitive behaviour 
is not typical for the attitudes accumulated in the cul-
ture and everyday practices of the local society.

After two years of teacher professionalization courses 
and adapting the intervention developed in the con-
text of German secondary schools to the Indonesian 
context, remarkable improvements in teaching and 
learning mathematics and in learners’ competencies 
have been achieved (Nowinska, 2014). This was possi-
ble due to our holistic view of teaching and learning as 
a part of a certain cultural context and a culture itself. 
Neglecting this context and avoiding the interactive 
process with the participants of our project would 
change our intervention to a kind of indoctrination 
or anarchy and result in new forms of acting without 
understanding. 

This cultural awareness and sensitivity motivated us 
to provide in our publications (cf. Nowinska, 2014) 
some explanations concerning the cultural context 
of our research, complementarily to the theoretical 
framework guiding our perception and conceptu-
alization of “problems” in Mathematics Education. 
However, our experience suggests that it is a diffi-
cult task for reviewers to relate research problems 
and results from research and design practice in 
Mathematics Education to the context of this prac-
tice. It seems that in evaluating and reviewing design 
and research practices, the cultural aspect is often ne-
glected and the major attention is paid to theoretical 
considerations and novelty of results. This may lead 
to trivialization of research problems and results in 
Mathematics Education.

3.5 Critical points raised by young researchers 
(Nowinska, Andersson, Pytlak, Alpaslan)
Internationalization of research in Mathematics 
Education (including international research confer-
ences, publications, and collaborative and/or com-
parative cross-country research projects) challenges 
researchers to be aware of various contexts and their 
power to influence research and design practices in 
particular countries, cultures, societies, institutions 
and communities (cf. Atweh & Clarkson, 2001). The 
experiences described by four young researchers in 
this section indicate the essential role played by an in-
ternational discourse in initiating reflections on one’s 
own ways of thinking and acting as a researcher, edu-
cator or designer in a particular community, culture 
and society. Such a discourse challenges researchers 
to see their own practices from a broader perspective 
and may contribute to making them understandable 
for others.

The experience described by Annica Andersson in-
dicates possible benefits that can result from partic-
ipating and working in various contexts and from 
discourse within an international community of re-
searchers for perception and better understanding 
of the unique characteristic of their own cultural 
context. Cultural differences and similarities become 
visible first as results of reflection and comparisons. 
Thus, an international discourse requires and facili-
tates cultural awareness. 

Evidence of possible difficulties emerging in such 
a discourse is given in the reflections of Mustafa 
Alpaslan. His decisions while conducting his research 
project were affected by the historical context of the 
development of mathematical language in Turkey, yet 
this context was not made explicit when submitting a 
paper to an international community. Consequently, 
the novelty and importance of his research could not 
be understood by the reviewers coming from other 
cultural context until additional reflections on the cul-
tural context of his research had been made explicit. 

Similar challenges, yet related to the institutional 
context, are mentioned in the reflections provided 
by Marta Pytlak. The institutional criteria used to 
evaluate the work of many Polish researchers in 
Mathematics Education hinder the development of 
research communities and their work on problems 
related to teaching and learning of mathematics in 
schools.
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Designing, justifying and evaluating indirect didac-
tical actions is at the heart of research practices aim-
ing at better understanding and improving teaching 
and learning processes (cf. Sierpinska, 1998). The 
experience described by Edyta Nowinska indicates 
that interventions and design principles resulting 
from design research cannot be seen as universal 
solutions for educational problems (cf. Plomp, 2013), 
even if some of these problems seem to be shared in 
various cultures. 

From the perspective of researchers, seeing simi-
larities in the nature of educational problems may 
contribute to a better understanding of these prob-
lems. However, complementarily, crucial differences 
between contexts where they appear should be con-
sidered. They provide some strategic guidelines for 
raising cultural awareness in our “daily” design and 
research practices: The challenge is to perceive the 
unique characteristic of the cultural context in which 
the design and research practices are conducted or 
have to be transferred into and to make them under-
standable for the participants of research as well as for 
readers and reviewers of research papers. Hofstede’s 
dimensions of national culture (e.g., individualism 
versus collectivism, masculinity versus femininity, 
uncertainty avoidance, and long term orientation) 
(Hofstede, Hofstede, & Minkov, 2010) can be used to 
facilitate the cultural sensitivity needed to perceive 
such characteristics, complementarily to the theoret-
ical sensitivity guiding researchers’ perception and 
conceptualization of “problems” in Mathematics 
Education.

The reflections written by the four young research-
ers give insight into the complexity and variety of 
contexts that have to be taken into consideration to 
raise one’s own cultural awareness. Some factors mo-
tivating and facilitating this kind of awareness can be 
identified. It seems that internalization of research 
and design in Mathematics Education, in particular 
the movement of young researchers within the in-
ternational community, bring the importance of this 
theme again and again to light.

Critical points raised in reflections exposed by the 
young researchers:

 ― An international discourse initiates and facili-
tates reflections on one’s own practices in a par-
ticular community of researchers, in a culture 

and society. It challenges researchers to raise 
cultural awareness and supports this awareness 
by providing new perspectives for contrasting 
one’s own ways of acting and thinking with the 
ways of others.

 ― The challenge for raising cultural awareness 
of researchers is to make explicit the implicit 
decisions associated with their own design and 
research processes. It seems that a discursive 
approach within a community of researchers 
from different contexts may initiate, facilitate 
and raise cultural awareness of individuals. 

 ― Writing about one’s own research without justi-
fying the choices of research questions and meth-
ods in the particular context of this research may 
not be understood by reviewers from another 
cultural context. Cultural awareness can help to 
avoid biases in review procedures.

 ― Internalization and globalization of design and 
research in Mathematics Education support 
transfer of knowledge and experience among 
researchers, in particular curricula and teaching 
interventions. However, teaching interventions 
cannot be implemented to a new context when the 
details of these interventions do not make sense 
in this context. Adaptation of design principles 
must take the local context into consideration.

Not only theoretical considerations but also various 
aspects of the particular social, historical, cultural 
and institutional context make design and research 
activities understandable.

4. LOOKING BACK AND LOOKING FORWARD 

4.1 Looking back: Cultural 
differences in various contexts
The experiences and reflections presented in Sections 
2 and 3 by experienced and young researchers all re-
port on cultural differences which were only partly 
explicit and on how the differences or their implicit-
ness affected the research or design practices. 

However, these rich examples are located on different 
(of course overlapping) levels of cultural contexts (cf. 
Figure 6), covering the mathematics itself (Section 
2.1), but also contexts of mathematics classrooms and 
the societies (Sections 2.2 and 3.1, 3.3 and 3.4), or the 
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institutional contexts of the research communities 
(Section 2.3 and 3.2).

On the one hand, none of these differences are really 
surprising. In principle, we (should) know that these 
kinds of differences exist, and the international com-
parative studies on classroom cultures have shown 
such kind of differences systematically (cf. Stigler, 
Gonzales, Kawanka, Knoll, & Serrano, 1999; Clarke, 
Emanuelsson, Jablonka, & Mok, 2006). Additionally, 
the research on multicultural issues within one coun-
try has shown how differences in the societal context 
affect students in classrooms (e.g., Secada, 1992; and 
many others). 

On the other hand, our principal awareness does often 
not reach our everyday research and design practices 
or it reaches them late, as a result of our practices in-
stead as an input of them. The examples have shown 
that our daily research is often implicitly guided by 
the hidden assumption that contexts, problems, and 
outcomes are or should be universal and not shaped 
by the cultural relativity, briefly, the hidden assump-
tion of universality. Instead, we plead for constantly 
questioning this hidden assumption of universality of 
research and design practices and outcomes and for 
raising cultural awareness. This seems necessary to 
establish the ERME community as an epistemic com-
munity using the multicultural diversity of its individ-
ual members and working groups to produce, widen 
and enrich our knowledge.

4.2 Looking forward: Raising cultural awareness
Being aware of differences and overcoming the hid-
den assumptions of the universality of research and 
development practices and outcomes, we and others 
can act in the directions outlined below:

 ― when addressing mathematics, we can try to be 
aware of cultural contingencies; we can challenge 
our own ways of perceiving and expressing math-
ematical constructs;

 ― when reading other’s papers, we can avoid naïve 
transfers of constructs, approaches and out-
comes from other cultural contexts; for example, 
what worked in Spain need not in Poland;

 ― when reading other’s papers, we can systematical-
ly investigate the adequacy of transfers, not only 
for results, but also for theoretical constructs 
and approaches;

 ― when writing papers, we can describe explicitly 
our own cultural context, paying attention to 
the ways it affects what we write about research 
methodology and findings;

 ― when conducting own research and development, 
we can try to learn from other cultural contexts 
in order not to take for granted our own condi-
tions.

Being aware of dominances and overcoming the hid-
den assumption of the universality of research and 
development practices and outcomes, we can attend 
to the following in our work with others:

 ― when collaborating with colleagues from other cul-
tural contexts, we can take enough time to learn 
about other cultural contexts and consider differ-
ences; and we can exploit the gap between us, in 
order to become aware of our own unthoughts;

 ― when importing research to other countries, we 
can discuss and apply methodologies that allow 
us to be sensitive to the cultural contexts we join;

Figure 6:  Nested cultural context on different levels which all influence the research and 

design practices in Mathematics Education
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 ― when acting as reviewers or editors for journals or 
conferences, we can try to avoid the dominance 
of Western empirical research, where the sole 
adoption of the Western format of presentation 
(theoretical framework, research questions, 
methodology, findings) risk to hide new and fresh 
ideas, which have the potential to enrich our vi-
sion of the world; 

 ― when responsible for policy issues in international 
communities, we can follow good practices of ICMI 
and ERME to strictly try to realize regional bal-
ances in all committees in order to alleviate cul-
tural dominance;

 ― when responsible for policy issues in international 
communities, we can try to foster the standards 
for making explicit cultural contexts in writing 
and review guidelines (as, for example, in the 
practices seen in ERME guidelines, ICMI stud-
ies…);

 ― when supervising PhD students from non-af-
fluent countries, we can reflect how far 
to impose own values on their research. 

5. CONCLUSION: RAISING CULTURAL 
AWARENESS AS A COMMUNITY TASK

The focus here is both back onto mathematics and 
forward onto cultural awareness. We reflect on what 
we have written above and encourage questioning 
of our future practice. Our challenges in developing 
our own awarenesses place us in a position of respon-
sibility to our academic and research communities 
in promoting more global values with respect to the 
cultural dimensions within which we work. Our in-
tention here is to encourage discussion, and possibly 
debate, through which issues can be raised and ad-
dressed widely. 

5.1 What makes mathematics central and 
different from other disciplinary areas?
In Section 2.1, we have raised issues relating to the 
ways in which mathematics is represented, symbol-
ised and conceived in different parts of the world. 
Examples have shown how certain representational 
forms can foster or promote differing conceptions, 
some of which might be seen to limit how mathematics 
is understood. Perceptions of universality in math-

ematics can therefore be dangerous if they remain 
implicit and resist being challenged. Even the most 
experienced mathematics educators can learn from 
alternative cultural representations and build richer 
representational frames. 

Section 2.2 has shown that teaching approaches and 
the ways in which mathematics is offered to learners 
carry a high responsibility with regard to learning 
outcomes. Narrow insistence on the internal con-
sistency of mathematics as disseminated through 
representational forms and adherence to procedur-
al rules, without corresponding attention to the un-
derpinning concepts, have to bear a responsibility for 
public perceptions of mathematics and for mathemat-
ical achievement in diverse cultures. Richer cultural 
awarenesses can open up mathematical discourses 
that promote access and understanding and a broader 
willingness to engage and succeed with mathematics. 
However, these processes of innovation must them-
selves respect cultural differences. 

5.2 How can a focus on mathematics 
take into account the moral and ethical 
issues of education for all?
The moral and the ethical are human constructs: 
being moral and ethical places responsibilities on 
mathematics educators as human beings. We have 
responsibilities to our disciplines of mathematics 
and education, and importantly to the people whose 
education in mathematics we promote. The intrinsic 
educational levels here present a complex weaving 
of responsibilities: educating students in mathe-
matics; educating teachers in teaching mathematics; 
educating new researchers in theory and research; 
educating mathematics educators who educate at all 
of these levels. The awarenesses referred to in Section 
5.1 with regard to mathematics underpin this edifice: 
we have to weigh the issues in deciding how best to 
interpret the role of educator. For example, the mathe-
matics teacher who, with thoroughly good intentions, 
over-simplifies a mathematical concept to avert the 
struggles of the learner may not assist in the com-
plexities in appreciating the concept; or a lecturer 
who emphasizes the fine details of a proof without 
attention to the sociohistorical origins of the proof 
may be true to mathematical rigor but leave a student 
mystified. Awareness of the choices we exercise as 
educators requires moral and ethical judgments in 
how we operate in our professional roles.
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5.3 How can a focus on mathematics address 
the figured worlds of all who learn and teach?
The concept of figured worlds (Holland et al., 1998; cf. 
Section 2.2.5) recognizes that human beings are lo-
cated within a complex synergy of cultures: societal, 
disciplinary, professional, familial, philosophical and 
personal, to name a few. In professional human rela-
tions, many of these ‘worlds’ are hidden; we have seen 
clear examples of this in the sections above. While any 
one or group cannot be expected to discern the extent 
of such complexity, we can be expected to be aware 
that it exists. This requires us to give overt attention 
to difference and meaning and their (potential) re-
lationships to the concepts we address. It requires 
a willingness to be open, to encourage our learners 
to express their own conceptions and inform us of 
how things are done and seen in their contexts. As 
educators we have to do our best to make moral and 
ethical choices within our own knowledge and what 
we hear and learn by listening to others.

5.4 Which theories, research and design 
approaches can grasp the complexity 
and cultural differences?
As the reality of mathematics teaching and learn-
ing is very complex with all these different nuances 
and challenges, no single isolated theory, no single 
research or design approach can do justice to this 
complexity (cf. Section 2.3). Mathematics Education 
research that really contributes to relevant innova-
tions in educational practices requires us to connect 
different approaches. 

Raising cultural awareness also supports us to be-
come aware of the strengths and limits of different 
epistemic cultures. This applies for Mathematics 
Education as well as for every other subject matter 
education and general education and requires not 
only the efforts of single researchers but the whole 
community.

5.5 What are the big issues that we should 
be addressing?
We wish to be true to mathematics as we know it. 
However, we can always learn more to enrich our own 
perceptions. As educators we are challenged continu-
ally to explore how best to bring mathematics and its 
learning and teaching to our learners. However, the 
biggest issue is not the question ‘how can we bring 
mathematics and its learning and teaching to our 
learners?’, but, ‘how can we make exploration of such 

a question the basis of our professional activity’? We 
have to keep addressing this issue. For learners to see 
that their teachers, at any level of education, are also 
learners, questioning the very practices in which the 
teacher and learners are engaged, can be empowering 
and exhilarating, although it can also be frustrating 
for those who seek closure. 

Closure is a philosophical position, related to seeking 
certainty and end points, and is something we have 
to address overtly. Rather than seeing closure in this 
concept, or this idea, or this issue, all participants can 
see themselves at their own stage of the educational 
journey, where the coming stages are open for partic-
ipation. This very idea needs cultural reorientation 
in many contexts: for example, recognition that if 
we seek the ‘right answer’ to a mathematics problem, 
what is right may depend on a range of contextual 
factors; if we seek to define a mathematical entity, the 
very act of definition excludes other possibilities; if 
we present a Mathematics Education thesis in Poland, 
it will be judged differently from the same thesis in 
Spain. This is not to say there are no right answers, 
or to undermine the value of definitions, or to reject 
the judgments made in different communities; rather, 
while agreeing an answer or a definition, the limita-
tions and exclusions of such acts need to be recognised 
and (insofar as we are able) addressed. Therefore, 
there are no end points, but many choices, challeng-
es, and judgments. We have to embrace diversity and 
seek out alternative meanings and roots. Those more 
experienced are there to help all engage, to scaffold 
their growth of understanding, encourage progress 
and develop awareness, not to set limits or close off 
possibilities. This is the moral challenge for all of us!
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The ubiquity of randomness and the consequent need 
to understand random phenomena in order to make 
adequate decisions led many countries to include proba-
bility throughout the curricula from primary education 
to University level. This need was also recognized by the 
mathematicians who developed the probability theory. 
This is a relatively young field, and is not free of contro-
versies, which are also reflected in the lack of agreement 
on a common definition of randomness. Psychological 
and didactical research, suggest widespread miscon-
ceptions and misperceptions of randomness; however, 
these results have not always been taken into account 
in teaching, where randomness is considered a trans-
parent concept. 

Keywords: Randomness, epistemology, subjective views, 

teaching and learning.

The most decisive conceptual event of twentieth cen-
tury physics has been the discovery that the world is 
not deterministic. Causality, long the bastion of meta-
physics was toppled, or at least tilted... A space was 
cleared for chance (Hacking, 1990, p. 1).

When I was kindly asked to contribute with a plenary 
talk to this conference, I decided to select a topic that 
reflected a part of European research to stochastic 
education. Randomness is a good example, since it 
may be examined from the philosophical, psycholog-
ical, mathematical and didactic perspectives, each of 
which has been dealt with by European researchers, 
and which globally reflect the European perspective 
for didactics. Furthermore, there is an increasing 
tendency to teach probability to very young children. 
However, as we will analyse in my presentation, this 
concept is far from elementary and we still have to 
find adequate ways to introduce it to students at dif-
ferent ages.

With this view in mind, I will first describe some of the 
meanings attributed to the idea of randomness since 
its emergence; secondly, I will summarize the main 
research dealing with the personal meanings that peo-
ple attribute to randomness. I will finish with some 
personal suggestions for teaching and future stochas-
tic education research that may help to increase our 
understanding and managing of random situations.

FROM CHANCE TO RANDOMNESS

From childhood, we are surrounded by uncertainty, 
in our personal lives, our social activities and pro-
fessional work. The omnipresence of randomness 
implies our need to understand random phenomena 
in order to make adequate decisions when confronted 
with uncertainty. Mathematicians developed the field 
of probability as a set of models that can be applied to 
uncertain situations; however, progress in mathemat-
ical methods did not solve the philosophical debate 
around randomness. 

Today, mathematics curricula for compulsory teach-
ing levels increase the study of random phenomena. 
Expressions such as “random experiments”, “random 
digit”, “random variable”, “random variation”, “ran-
dom even”, “random sampling”, “randomly”, “random-
ization”, “random variable” appear in curricular doc-
uments (e.g., CCSSI, 2010; Franklin et al., 2007), as well 
as in the school textbooks. 

However, in these documents, the meaning of ran-
domness is not always clear and unequivocal, because 
these expressions refer to an abstract entity, not en-
tirely defined; thus, increasing potential difficulties 
for students or teachers arise. Randomness is a mul-
tifaceted object, as shown in the various interpreta-
tions received throughout history (Batanero, Green, 
& Serrano, 1998; Batanero, Henry, & Parzysz, 2005; 
Bennett, 1999; Saldanha & Liu, 2014). Even today, we 
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find no simple definition that we can use unambig-
uously to classify a given event or process as being 
random or not. In the following, the reflections about 
the nature of randomness by eminent statisticians, 
philosophers, psychologists and researchers in math-
ematics education are summarised. 

Primitive ideas
Early notions of chance were found in many ancient 
cultures. However, for centuries there was no theo-
retical speculation about the nature of randomness 
or systematic study of frequencies of results of these 
games. Possible reasons for the tardy development of 
probability, such as the connection of chance and divi-
nation to predict the future, were discussed by David 
(1962). Borovcnik and Kapadia (2014a) suggest that 
in Greek mathematics, data about variability was ig-
nored as contrary to their ideal of scientific argument. 
Later, many different conceptions of chance arose, in 
particular (Batanero, Henry, & Parzysz, 2005, p. 27):

Believing in a destiny predetermined by God or 
spirits; Assuming a personal chance factor, un-
equal for different individuals; Accepting natural 
necessity, ineluctably subjected to laws which 
still are partially unknown and which govern 
the world’s origin and evolution; Arguing the in-
extricable complexity of the infinitesimal causes 
generating macroscopic phenomena, which we 
consider fortuitous as the only possible reason-
able interpretation; Assuming the existence of a 
fundamental, chaotic and absolute natural ran-
domness.

Bennet (1999) analysed different historical concep-
tions of chance that was later formalized in the mathe-
matical concept of randomness (Saldanha & Liu, 2014). 
Some of these conceptions still appear in students and 
teachers (Batanero, Arteaga, Serrano, & Ruiz, 2014; 
Engel & Sedlmeier, 2005). Below I give a brief sum-
mary of these developments.

Chance and causality 
We can find a first meaning of randomness in the 
Spanish dictionary by Moliner (2000) where “random” 
is defined as “Uncertain. It is said of what depends 
on luck or chance” (p. 123), and “chance” is defined 
as “the presumed cause of events that are neither ex-
plained by natural necessity nor by a human or divine 
intervention” (p. 320). In this description, random is 

something with unknown causes and chance is the 
assumed cause of random phenomena. 

This meaning was prevalent in a first historical 
phase in the development of randomness according 
to Bennett (1999). According to David (1962), the as-
tralagus was used in games of chance around 3500 B.C. 
Cubic dice were abundant in primitive civilizations 
like the Egyptian or Chinese civilizations, which used 
games of chance in an attempt to predict or control 
fate in decision-making. In spite of this wide use, there 
was no scientific idea of randomness until the Middle 
Ages. Whether it was attributed to supernatural 
forces or not, randomness suppressed the possibili-
ty that human will, intelligence or knowledge would 
influence decisions or destiny (Poincaré, 1909/2011). 

Throughout this period, some philosophers related 
chance to causality (Bennet, 1999): Democritus sug-
gested that everything is the combined fruit of chance 
and need. Leucippus believed that nothing happens 
at random; everything happens for a reason and out 
of necessity. Aristotle considered that chance results 
from the coincidence of several independent events 
whose interaction results in an unexpected result. 
Implicit in this meaning is to believe that every phe-
nomenon has a cause. Randomness is only the mea-
sure of our ignorance. Random phenomena are, by 
definition, those whose laws are unknown (Poincaré, 
1909/2011).

A deterministic vision of the world was common 
throughout the Renaissance as is visible in Bernoulli 
(1713/1987, p. 14):

All which benefits under the sun from past, pre-
sent or future, being or becoming, enjoys itself an 
objective and total certainty… since if all what is 
future would not arrive with certainty, we cannot 
see how the supreme Creator could preserve the 
whole glory of his omniscience and omnipotence. 

This conception of chance as opposed to cause and 
due to our ignorance remained until the 19th cen-
tury: “Present events are connected with preceding 
ones by a link based upon the evident principle that 
a thing cannot occur without a cause which produces 
it” (Laplace, 1814/1995, p. vi).
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Modern concept of chance
This conception changed at the beginning of the 20th 
century. For example, Poincaré (1912/1987) noticed 
that some processes with unknown laws, such as 
death, are considered deterministic. Moreover, other 
phenomena, such as Brownian motion, are described 
by deterministic laws at a macroscopic level, while the 
behaviour of particles is random. Other situations 
are considered to be random because “A very small 
cause, which escapes us, determines a considerable 
effect that we cannot fail to see, and then we say that 
this effect is due to chance” (Poincaré, 1912/1987, p. 4).

Among the phenomena with unknown laws, Poincaré 
distinguished random phenomena that can be stud-
ied with probability calculus from other phenome-
na where probability is not applicable. Furthermore, 
probability will not lose its validity when we find out 
the rules governing the random phenomena. Thus, 
the director of a life insurance company is ignorant 
of the precise date when each person taking the in-
surance will die. Moreover, the distribution of the 
entire population´s lifetime does not change when 
we add knowledge about the precise death for each 
particular individual. Today, we accept the existence 
of fundamental chance around us and, in addition 
to the theory of probability, other theories, such as 
those of complexity or chaos, may be used to describe 
randomness.

The different philosophical conceptions of chance are 
compatible with the axiomatic mathematical theory of 
probability, which provides a system of concepts and 
procedures that serve to analyse uncertain situations 
(Batanero, Henry, & Parzysz, 2005). Mathematical 
probability does not enter philosophical debates and 
uses the ideas of random experiment and randomness 
as primitive (with no consideration of the nature of 
chance in each particular application). However, even 
today, the interpretations of randomness and proba-
bility continue to be subject of philosophical debates 
and the teacher of probability needs to be aware of 
these interpretations, because they influence stu-
dents’ reasoning when confronted with chance sit-
uations.

CONCEPTUALIZING RANDOMNESS 

According to Hacking (1975), probability was con-
ceptualized from two complementary perspectives 
since its emergence: as a personal degree of belief 

in the likelihood of random events (epistemic view), 
and as method to find objective mathematical rules 
through data and experiments (statistical view). These 
two views unfolded in multiple perspectives that de-
scribed what random events are, and how can we as-
sign probabilities to them.

Randomness as Equiprobability
In the earlier applications of probability, randomness 
was related to equiprobability, which was a reasonable 
assumption in games such as flipping coins or draw-
ing balls from an urn. Consequently, it was assumed 
that a member of a class was random (or was selected 
at random), when there was exactly the same proba-
bility to obtain this object or any other member of the 
same class. Thus, there is exactly the same probability 
to get the number 1 or any other number from 1 to 6, 
when throwing a dice. We can find, for example, this 
interpretation of randomness in the Liber de Ludo 
Aleae by Cardano (1663/1961, p. 189). 

The most fundamental principle of all in gam-
bling is simply equal conditions...of money, of 
situation...and of the dice itself. To the extent to 
which you depart from that equality, if it is in 
your opponent’s favour, you are a fool, and if in 
your own, you are unjust.

Accordingly, in the classical definition of probability 
given by de Moivre (1718/ 1967) and refined by Laplace 
(1814/1995), probability is simply the number of fa-
vourable cases to a particular event divided by the 
number of all cases possible in that experiment, pro-
vided all the possible cases are equiprobable.

Kyburg (1974) criticised this definition of randomness 
since it imposes unnatural restrictions to its applica-
tions. We can only consider that an object is a random 
member of a class if the class is finite. If the class is in-
finite, then the probability for selecting each member 
is zero, and so (apparently) identical, even when the 
selection method is biased. Applying this definition 
in order to discriminate a random from non-random 
member in a given class is difficult, even in games of 
chance. How could we know, for example, that a given 
coin is not slightly biased? 

Randomness as stability of frequencies
By the end of the 18th century, the study of random 
phenomena was extended beyond the world of games 
of chance to natural and social sciences. In these ap-
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plications, for example, to the study of the blood type 
of a newborn, we cannot apply equiprobability. The 
concept of independence was essential to assure ran-
domness in successive trials (Bennet, 1999). In this 
new view, we consider an object as a random member 
of a class if we could select it through a method pro-
viding a given a priori relative frequency in the long 
run to each member of this class. 

In his attempt to extend the scope of probability to 
insurance and life-table problems, Jacques Bernoulli 
(1713/1987) gave the first proof of the Law of Large 
Numbers and justified the use of relative frequencies 
to estimate the value of probabilities. In the frequen-
tist approach sustained later by von Mises (1928/1952) 
or Renyi (1966/1992), probability is defined as the 
hypothetical number towards which the relative fre-
quency tends. Such a convergence had been observed 
in many natural phenomena so that the frequentist 
approach extended the range of applications enor-
mously. A practical drawback of this conception is 
that we never get the exact value of probability; its es-
timation varies from one repetition of the experiment 
(called sample) to another. Moreover, this approach 
is not appropriate when it is impossible to repeat 
the experiment under exactly the same conditions. 
Another theoretical problem is that the number of ex-
periments that provides sufficient evidence to prove 
the random nature of the object is undefined.

Subjective view of randomness
In the classical and in the frequentist approaches, ran-
domness is an objective property of an event or an 
element of a class. Kyburg (1974) criticized this view 
and proposed a subjective interpretation of random-
ness composed of the following four elements:

 ― The object that is supposed to be a random mem-
ber of a class;

 ― The set of which the object is a random member 
(population or collective);

 ― The property with respect to which the object is 
a random number of the given class;

 ― The knowledge of the person giving the judge-
ment of randomness.

In this interpretation, randomness depends on the 
person’s knowledge. Consequently, what is random 

for one person might be non-random for another; ran-
domness is no longer a physical objective property, 
but a subjective judgement. We recognize here the 
parallelism with the subjective conception of proba-
bility, in which all probabilities are conditioned by 
information, and this is adequate in situations where 
some information may affect our judgement of ran-
domness.

This view was reinforced by the Bayes’s theorem, pub-
lished in 1763, that proved that the probability for a hy-
pothetical event could be revised in light of new avail-
able data. Following this new interpretation, some 
mathematicians like Keynes (1921), Ramsey (1931), 
or de Finetti (1937/1974) considered probability as a 
personal degree of belief that depends on a person’s 
knowledge or experience. Via the Bayes’ theorem, an 
initial (prior) distribution about an unknown proba-
bility changes by relative frequencies into a posterior 
distribution. However, the subjective character of the 
prior distribution in this approach was criticized; 
even if the impact of the prior diminishes by objective 
data and de Finetti (1934/1974) proposed a system of 
axioms to justify this view.

Axiomatization and formal mathematical views
Despite the fierce discussion on the foundations, the 
application of probability in all sciences and sectors 
of life was enormous. Throughout the 20th century, 
different mathematicians tried to formalize the math-
ematical theory of probability. Following Borel’s work 
on set and measure theory, Kolmogorov (1933/1950) 
proposed an axiomatic theory that was accepted by 
the different probability schools because the dif-
ferent view of probability (no matter the classical, 
frequentist or subjectivist view) may be encoded by 
Kolmogorov’s axioms. However, the particular inter-
pretation of probability and the method used to assign 
probabilities to events differ according to the school 
one adheres to. 

The development of statistical inference and the im-
portance of assuring random sampling to apply in-
ferential methods led to the practical interest to find 
procedures to produce sequences of “pseudo-random” 
digits. This need induced new discussion about theo-
retical models of randomness (Zabell, 1992). The need 
to distinguish two components in randomness was 
clear: the generation process (random experiment) 
and the pattern of the random sequences produced. 
We can generate random sequences with two different 
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methods: one is using physical devices, such as coins 
or dice. Another is using deterministic algorithms; 
therefore, we can separate the generating process 
from the result (random sequence). More correctly, 
these results are called pseudo-random, because the 
generating process is a deterministic algorithm, al-
though the sequence can pass some statistical tests 
for randomness. Most computer packages and calcu-
lators incorporate these algorithms, and thus we can 
easily obtain pseudo-random sequences of a given 
length with particular characteristics.

Different approaches served to describe the prop-
erties of a random sequence (Fine, 1971). Von Mises 
(1928/1952) defined a collective (population) as a mass 
phenomenon, a repetitive event or a long series of ob-
servations, for which we could accept the hypothesis 
of stabilization or the relative frequency towards a 
fixed limit. Starting from this idea, he defined a se-
quence of events to be random if, in any infinitely 
long series of outcomes, the relative frequencies of 
the various events have limiting values, and these 
values do not change in an infinite subsequence ar-
bitrarily selected. Thus, contrary to the belief held 
by many players, there is no algorithm (at least theo-
retically) that serves to predict the behaviour of ran-
dom sequences. However, since no statistical test can 
consider all potential pattern generators—because 
there are infinitely many—the possibility that a given 
sequence, in spite of having passed all our tests must 
always remain, and it should have some unnoticed 
pattern and so not really be random. Another prob-
lem is that we only produce finite sequences, so inev-
itably some tests will fail. In this sense, randomness 
is a theoret ical concept and can only be applied to a 
process producing infinite sequences.

Kolmogorov (1965) defined the randomness of a se-
quence using the idea of computational complexity, 
taken from automata and computability theory. The 
complexity of a sequence is the difficulty in describ-
ing the sequence with a code that we can use later to 
reconstruct the sequence (or to store in a computer). 
The minimal number of signs needed to codify a se-
quence provides a scale of complexity. For example, 
0101010101 can easily be coded with just a few symbols: 
5{01}; while 0100110001 defies finding a shorter code, 
and then the first sequence is more complex than the 
second. In this approach, a sequence would be random 
if any coded description of the same is as long as the 
sequence itself. Therefore, a sequence would be ran-

dom if the simplest way in which we could describe 
it is by listing all its components. Chaitin (1975) sug-
gested that this definition establishes a hierarchy in 
the degree of randomness for different sequences and 
that perfect randomness is only theoretical.

Epistemic meanings of randomness
To sum up, we can use some ideas from the onto-se-
miotic approach to mathematics education. In this 
framework, mathematical knowledge has a socio-epis-
temic dimension, since it is linked to the activity in 
which the subject is involved and depends on the 
institutional and social context in which it is embed-
ded. Mathematical activity is described in terms of 
practices or sequences of actions, regulated by insti-
tutionally established rules, oriented towards solving 
a problem (Drijvers, Godino, Font, & Trouche, 2013). 
In this framework, the meaning of mathematical ob-
jects is linked to the mathematical practices carried 
out by somebody (a person or an institution) to solve 
specific mathematical problems. Around the mathe-
matical practices linked to these specific problems, 
different rules (concepts, propositions, procedures) 
emerge (Godino, Batanero, & Font, 2007); these rules 
are supported by mathematics language (terms and 
expressions, symbols, graphs, etc.), which, in turn is 
regulated by the rules. All these objects are linked to 
arguments that serve to communicate the problem 
solution properties and procedures, and to validate 
and generalize them to other contexts and problems. 

An epistemic configuration (either institutional or 
personal) is the system of objects involved in the 
mathematical practices carried out to solve a specific 
problem (Figure 1). Each different epistemic meaning 
of randomness is linked to a specific type of problem 
whose solution involves particular mathematical 
objects, part of which are summarised in Table 1. 
Consequently, there is a specific onto-semiotic con-
figuration linked to each of these meanings, which 
differ from each other not only in the philosophical 
aspects debated in the previous sections, but in the 
mathematical objects that characterize them. As a 
result, reducing the teaching of randomness to only 
one or a few of these views implies a reduction of the 
overall meaning of the concept.
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SUBJECTIVE CONCEPTUALIZATION 
OF RANDOMNESS

Research dealing with people’s conceptualization of 
randomness has a long history, and different research 
paradigms are visible in this research.

Levels of acquisition of the 
concept of randomness
The pioneer work in probabilistic reasoning was due 
to Piaget and Inhelder (1951) who described levels (or 
stages) in children’s understanding of chance and 

probability. These authors assumed that random-
ness is produced by the interference of independent 
causes, and then, children first have to understand de-
terministic cause-and-effect phenomena before they 
can grasp the nature of random events. Another pre-
requisite for understanding randomness, according 
to these authors is combinatorial reasoning, which is 
needed to describe the set of possibilities in random 
phenomena, and to accept that each isolated outcome 
is unpredictable. 

Piaget and Inhelder (1951) investigated the under-
standing of patterns in random distributions by chil-
dren.1 They designed an experiment simulating the 
fall of raindrops on the tiles of a pavement. After situ-
ating a few counters (raindrops) on the pavement, they 
asked the children where the next raindrop would fall. 
In a first stage (6–9 year-old), the children assumed 
that the raindrops would approximately fall in equal 
numbers on each square of the pavement. When there 
was one drop in every square of the pavement, ex-
cept for one empty square, the children invariably 
located the next drop in the empty square, so that a 
uniform distribution was achieved. With increasing 

1 Piaget and Inhelder based their research on the classical view 

of probability.

Meaning of 
randomness

Problem Concepts/Properties Procedures

Intuitive Divination
Attempt to control chance

Luck, fate
Opinion, belief

Physical devices (dice, coins...)

Classical Establishing the fair betting 
in a game of chance

Equiprobability
Proportionality
Favourable/possible cases
Expectation

Enumeration
Combinatorial analysis
Laplace’s rule 
A priori analysis of the experiment

Frequentist Estimating the tendency in 
the long run

Repeatable experiment 
Frequency
Convergence

Collecting data
Estimation
Limit in the long run

Subjective Updating a degree of belief Subjective character
Depends on information
Non repeatable
Conditional probability
Prior distribution
Posterior distribution
Likelihood, risk

Bayes’ theorem
Decision theory and methods

Formal Describing mathematical 
properties of randomness

Random experiment
Sample space
Events algebra
Measure
Complexity
Random sequence

Abstract mathematics (e.g., set theory)
Randomness tests
Simulation
Algorithms that produce pseudo-random 
sequences

Table 1: Example of mathematical objects linked to different epistemic meanings of randomness

Figure 1: Onto-semiotics configurations involved in mathematical 

practices (Drijvers, Godino, Font, & Trouche, 2013, p. 28)
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age, Piaget and Inhelder assumed that the irregularity 
of the distribution would be accepted and that adoles-
cents would understand randomness.

Later research, however, contradicted this assump-
tion: Green (1989) investigated the probabilistic rea-
soning of 2 930 children in the United Kingdom and 
used some tasks related to perception of randomness 
at age 11–16; his findings suggest that the percentage of 
students recognizing random distributions does not 
improve with age (stagnation of children’s perception 
of randomness during this period). Similar results 
were found by Green (1991) and Engel and Sedlmeier 
(2005) with different tasks (to students at age 10–15). 

Intuitions and personal beliefs 
While Inhelder and Piaget focused on the formal un-
derstanding of randomness, other authors tried to 
describe personal beliefs and intuitive understand-
ing of this concept. This research suggests that the 
paradoxes and controversies about the meaning of 
randomness are reproduced in the intuitions people 
build when they face random situations; these in-
tuitions often contradict the mathematical rules of 
probability (Borovcnik & Kapadia, 2014a). 

Children use qualitative expressions (probable, un-
likely, feasible, etc.) to express their degrees of belief 
in the occurrence of random events; however, their 
ideas are too imprecise and have difficulty in dif-
ferentiating random and deterministic phenomena 
(Fischbein & Gazit, 1984). Young children may not 
see stable properties in random generators such as 
dice or marbles in urns and believe that such gener-
ators have a mind of their own or can be controlled by 
them (Fischbein, Nello, & Marino, 1991; Truran, 1994). 
Although older children may accept the need to assign 
numbers (probabilities) to events to compare their 
likelihood, a correct probabilistic reasoning rarely 
develops spontaneously without a specific instruction 
(Fischbein, 1975); for this reason, adults often have 
wrong intuitions about probability. 

Fischbein’s assumption has been confirmed by re-
search in the field of decision making under uncer-
tainty, where erroneous judgements in out-of-school 
settings are pervasive. The widely known studies by 
Kahneman and his collaborators (e.g., Kahneman, 
Slovic, & Tversky, 1982) support the idea that people 
violate probabilistic rules and use specific heuris-

tics2 to simplify uncertain decisions. According to 
these authors, heuristics such as representativeness 
or availaibility reduce the complexity of probabili-
ty tasks and may be useful in many situations; how-
ever, under specific circumstances these heuristics 
cause systematic biases with serious consequences. 
Furthermore, some people do not understand the 
purpose of probabilistic methods, which allow us to 
predict the behaviour of a distribution, but are invalid 
to predict each specific outcome (Konold, 1989). A de-
tailed survey of students’ intuitions, strategies and 
learning at different ages may be found in Chernoff 
and Sriraman (2014), Jones (2005), Jones, Langrall, and 
Mooney (2007), and Shaughnessy (1992). 

Generating and recognizing randomness
There is a wide research into adults’ subjective percep-
tion of randomness (e.g., Bar-Hillel & Wagenaar, 1991; 
Batanero & Serrano, 1999; Chernoff, 2009; 2011; Engel 
& Sedlmeier, 2005; Falk, 1981; Kahneman & Tversky, 
1972; Wagenaar, 1972), Two types of tasks have com-
monly been used: (a) In generation tasks subjects fol-
low standard instructions to invent a series of out-
comes from a typical random process, such as tossing 
a coin; (b) In comparative likelihood tasks (Chernoff, 
2011), people are asked to select the most or least likely 
of several sequences of results that have been pro-
duced by a random device or to decide whether some 
given sequences were produced by a random mech-
anism. Related tasks have also been proposed using 
two-dimensional random distributions of points on 
a squared grill (e.g., Batanero & Serrano, 1999; Green, 
1991; Engel & Sedlmeier, 2005; Toohey, 1995).

Generation tasks: Producing random distributions 
In a longitudinal study on randomness with 7 to 11 
year-old children, Green (1991) asked them to invent 
random sequences of heads and tails representing the 
results of flipping 50 times a fair coin. He first anal-
ysed whether the children produced approximately 
the same number of heads and tails in their sequences 
and found that they were very exact in reproducing 
equiprobability (the average number of heads was 
close to 25); furthermore, the children produced se-
quences with very consistent first and second parts 
(about 12 heads in each part). Green concluded that 
children were too consistent to reflect the random 

2 The specific meaning of word heuristics in this research is 

a cognitive process that helps to solve a problem by reducing 

part of the data.
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variability. Moreover, these children did not perceive 
the independence, as they produced sequences with 
too short runs (of heads or of tails), as compared to 
the length we expect in a random sequence. As sug-
gested by Bryant and Nunes (2012), the independence 
of random events is hard to grasp and many adults 
believe that a head is more likely to appear on the sixth 
flipping of a coin after a run of five tails. 

Comparative likelihood tasks: Properties 
attributed to randomness 
Results from research asking people to distinguish 
random from non-random sequences of events sug-
gest that our judgements about what random se-
quences are, is subjected to biases (e.g., Batanero & 
Serrano, 1999; Chernoff, 2009, 2011; Green, 1983, 1991; 
Kahneman & Tversky, 1972; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993; Shaughnessy, 1977). 

An example of this research is Green’s (1983) study 
with 11–16 year-old children. In his questionnaire, he 
asked the children to discriminate between a random 
and a non-random sequence (both sequences consisted 
of results of flipping a coin 150 times). Most partici-
pants in the study chose the non-random sequence, 
regardless of their age. Some of them provided in-
correct reasons to justify their choice; for example, 
they argued that the pattern of the sequence was too 
irregular (and then they did not accept the variability 
of the random sequence). Other participants expected 
exactly 50% of heads and tails in a random sequence 
or rejected the possibility of long runs. Very similar 
results were found in another study (Green, 1991) 
where the author asked the children to discriminate 
random and non-random sequences of heads and tails, 
as well as random and non-random bi-dimensional 
distribution of points.

Toohey (1995) used part of Green’s tasks in a study 
with 75 12–16 year olds in Melbourne. He suggested 
that the understanding of randomness involves ac-
cepting the ideas of equal/unequal likelihood, multi-
ple possibilities, model, causality and unpredictability. 
He also identified two different possibilities (local and 
global) in attributions of randomness. The local per-
spective of randomness is based on isolated results, 
while global perspective is reliant on the frequency 
distribution of the different outcomes.

Batanero and Serrano (1999) proposed some items 
taken from Green (1991) to 277 students aged 14 and 

18 and analysed the reasons they gave to decide that a 
sequence or a distribution was random. The students’ 
arguments were related to the observed frequencies 
of events (close or different from the expected value), 
the overall pattern of the distribution (uniform distri-
bution or variability), the length of the runs (too short 
or too long runs), the existence of multiple possibili-
ties and the unpredictability of results. Even when the 
authors found some widespread misconceptions, they 
also noticed that the students were able to perceive the 
characteristics of the random sequences presented to 
them and that this recognition improved by age. They 
also identified some partly correct conceptions that 
reproduced the conceptions of randomness described 
in the first sections of this paper, which were consid-
ered correct in different historical periods. Consistent 
results were reported by Engel and Sedlmeier (2005) 
in a cross sectional study that examined German stu-
dents’ understanding of variability in empirical data 
and by Batanero, Gómez, Gea, and Contreras (2014) 
in a study with Spanish prospective primary school 
teachers3.

Facing the subjects with their own misconceptions: 
statistical analysis of their own data
As analysed in the previous sections, the perception 
of randomness is deduced with either generation or 
recognition tasks. Batanero and colleagues (2014) 
combined both tasks in a study with 208 Spanish pro-
spective primary school teachers, using a formative 
activity with two parts. In the first part (a classroom 
session), the prospective teachers carried out an 
experiment to decide whether the group had good 
intuitions on randomness or not. The experiment 
consisted of trying to write down apparent random 
results of flipping a fair coin 20 times (without really 
throwing the coin, just inventing the results) in such 
a way that other people would think the coin was 
flipped at random (invented sequence). Participants 
recorded the invented sequences on a recording sheet 
(this is a typical generation tasks). These sequences 
were analysed by the researchers and were consistent 
with previous research reported on generation tasks.

Batanero and colleagues also asked the prospective 
teachers to analyse some variables deduced from 

3 Prospective primary school teachers do not follow a specific 

course of probability. They study elementary probability in their 

first year of studies and along secondary school (as a part of 

mathematics).
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their invented sequences (number of heads, number 
of runs, and length of the longer run) and compare 
them with the same variables in real coin-flipping 
sequences as a result of flipping a fair coin 20 times. 
The prospective teachers were asked to carry out the 
statistical analysis of differences between the same 
variables in the real coin-flipping and invented se-
quences for the whole group. They were also asked 
to prepare a report with their conclusions about how 
good their perception of randomness based on the 
statistical analysis, was. Each prospective teacher an-
alysed the results in his or her group (30–40 students 
per group) using elementary graphs and statistics; 
they had freedom to use any method they wished. This 
second part of the activity is a sophisticated version 
of a comparative likelihood task, because the partici-
pants were not only asked to discriminate the random 
(real flipping) from non-random (invented) sequenc-
es. They were only asked to perform (intuitively) the 
type of analysis that researchers use to study people’s 
perception of randomness. This activity was highly 
motivating for the prospective teachers and served 
to simultaneously increase their statistical and didac-
tical knowledge.

Results from this second part firstly showed that these 
prospective teachers were able to use their statistical 
knowledge to solve a real world problem (deciding 
if the perception of randomness in the group was 
good). They secondly completed a modelling cycle: 
they started from a real problem (studying the intu-
itions on randomness), simplified the problem, and 
decided which aspects were relevant. They thirdly 
built some mathematical models to study the problem, 
worked with the models, and finally interpreted the 
results to answer the real world question. As regards 
their perception of randomness, many of the primi-
tive conceptions described in Batanero and Serrano 
(1999) appeared and part of them were identified by 
the prospective teachers’ themselves. Participants 
also recognised that the classroom showed a good per-
ception of the expected value and a poor conception of 
both independence and variation. Some new results 
emerged; for example, some prospective teachers 
believed that it is not possible to apply mathemati-
cal methods (statistics) to study random phenomena, 
because of their unpredictability. A few participants 
also believed they could predict or control the out-
comes in a random process (illusion of control de-
scribed by Langer, 1975).

Other research paradigms
A different approach to evaluate people’s percep-
tion was taken by Konold, Lohmeier, Pollatsek, and 
Well (1991) who concentrated on the random process 
(instead of concentrating on the random sequence). 
They asked the subjects in their study to decide wheth-
er different types of situations (processes) were or 
were not random and justify their responses. They 
used processes with equiprobable and non-equiprob-
able outcomes. While they found no differences in the 
subjects’ categorization of the situations as random, 
novices tended to feel that the non-equiprobable sit-
uations were not random. The analysis of students’ 
arguments served to describe the following concep-
tions of randomness:

 ― Randomness as equiprobability: Subjects that only 
consider randomness where all the possible re-
sults are equally probable.

 ― Randomness as opposed to causality, or as a special 
type of cause.

 ― Randomness as uncertainty; existence of multiple 
possibilities in the same conditions.

 ― Randomness as a model to represent some phe-
nomenon, depending on our information about it.

Randomization is an important statistical procedure 
that assures the proper application of statistical meth-
ods, such as statistical tests. Pratt (2000) and Pratt and 
Noss (2002) investigated children’s understanding of 
randomization when playing chance games and found 
10-year olds that understood the connection between 
randomness and fairness, and the role of randomiza-
tion in ensuring fairness (see also Johnston-Wilder 
& Pratt, 2007; Paparistodemou, Noss, & Pratt, 2008). 
Pratt (2000) suggests that children reason with two 
different meanings for randomness (very close to 
the description by Toohey, 1995): a local perception 
is related to the impossibility to predict the process 
behaviour in each trial, while a global perception in-
volves the children´s understanding of patterns in the 
long run and in the distributions. 

As it is apparent in our survey, research into people’s 
perception of randomness has been faced with differ-
ent paradigms that provided complementary results. 
Yet new questions remain open; in particular, it is not 
clear what model of randomness is better suited for 
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children at different ages, or how we can help stu-
dents acquire progressively more complete models 
of randomness as they become adult. We now analyse 
the way the topic has been taken into account in the 
curricula.

TEACHING AND LEARNING 

Randomness in school curricula
The different views of probability have been reflect-
ed on the teaching of probability in schools, and on 
the way, randomness has been conceptualized in the 
curricula in Spain and other European countries; the 
concept itself is often only introduced via examples of 
random and non-random situations, or with indirect 
reference to isolated properties (e.g., unpredictabili-
ty) (Azcárate, Cardeñoso, & Serradó, 2005), but is not 
formally defined. 

According to Henry (2010), the classical view of prob-
ability based on combinatorial calculus dominated 
the French school curricula until the 80s, and this 
was also the case in Spain and other European coun-
tries. Since combinatorial reasoning is difficult, the 
teaching of probability was postponed until grades 8 
or 9 (14 year-olds), an age where wrong intuitions diffi-
cult to eradicate are already acquired. Throughout the 

“modern mathematics” era, probability was used to 
illustrate set theory; there was little interest in model-
ling random phenomena from the real world. In these 
two approaches, the applications were restricted to 
games of chance; consequently, many school teach-
ers considered probability as a part of recreational 
mathematics, with not much value for the education 
of children and tended to reduce its teaching.

Today, due to the technology available, we use the 
frequentist view to introduce probability as the limit 
of relative frequencies in a long series of trials. This 
change also involves a shift from a formula-based 
approach to an emphasis on providing probabilistic 
experience. Even very young children are encouraged 
to perform random experiments or simulations, for-
mulate questions or predictions about the tendency 
of outcomes in a series of these experiments, collect 
and analyse data to test their conjectures, and justi-
fy their conclusions based on these data. This view 
also connects to the current interest for modelling in 
school mathematics (Henry, 2010), since simulation 
can also help students distinguish between model (the 

theoretical probability) and reality (frequencies of ex-
perimental results) (Girard, 1997; Engel & Vogel, 2004). 

Randomness receives prominence today at high 
school level in relation to the introduction of inference 
(or “informal inference”). For example, in the CCSSI 
(2010) for grade 7 we find “use random sampling to 
draw inferences about a population” and “understand 
and evaluate random processes underlying statisti-
cal experiments”. For high school (grades 9–12), this 
curriculum specifies “define a random variable for a 
quantity of interest by assigning a numerical value”, 

“use random number generators”, and “collect data 
from a random sample of a population”. Many other 
curricula in Europe, as well as in the Australia, New 
Zealand and the United States approach probability 
and inference in a frequentist way, using simulation 
and resampling to estimate the probabilities of inter-
est (e.g., Frischemeier & Biehler, 2013). The subjective 
view, that takes into account one-off decisions, which 
are frequent in everyday life, and where we cannot 
apply the frequentist view, is hardly considered in 
the curriculum. Moreover, the experiments we often 
simulate are atypical examples of random situations, 
in the sense that in few real-life applications of prob-
ability can we repeat a process many times in exactly 
the same conditions (Borovcnik & Kapadia, 2014a).

A didactic approach to randomness
The many perspectives and properties of random-
ness described in the previous sections suggest that 
a complete understanding of randomness is only 
achieved gradually. Moreover, probability models do 
not exactly fit reality and therefore should be viewed 
more as scenarios to explore reality than as images of 
this reality (Borovcnik, 2006). Since feedback in prob-
ability is only indirect (after a long series of trials), 
understanding of probability is not easy.

Throughout primary school, we can encourage chil-
dren to discriminate certain, possible and impossible 
events in different context, and use the language of 
chance. Starting with specific materials with symmet-
rical properties, such as dice or coins, the children can 
compare their predictions from the a-priori analysis 
of the structure with frequency from data collected 
from repeated experiments to estimate probability.

In a second stage, we can progressively move to the 
study of materials lacking symmetry properties – 
spinners with unequal areas, thumbtacks, etc.  –, 
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where we only can estimate probability from frequen-
cies. Once this phase is successful, we can turn to real 
life (e.g., sports, demographic, or social phenomena), 
using data available from the daily press, Internet, 
or other sources. Subjective situations (e.g., should 
the teacher ask me next time?) where only personal 
probabilities can be applied, can complete the field of 
application of probability. 

By the end of primary school or in early middle school 
(10–11 year olds) children can start simulating simple 
situations using devices such as the box model simu-
lator in the National Library of Virtual Manipulatives 
(http://nlvm.usu.edu/). Today, there are plenty of tech-
nological resources, including software specially de-
signed to explore probability (see also Lee & Lee, 2009). 
With simulation, we introduce a modelling approach 
where the essential features of the situation are mod-
elled by the simulator and irrelevant properties are 
disregarded. As shown by Pratt (2000), simulation 
of familiar objects like dice, can help 10–11 year-old 
children express their previous beliefs and articulate 
a more complete meaning for randomness in the light 
of their experiences with the simulator. 

Towards the end of secondary school (15–16 year olds) 
a deeper analysis of the properties of the random 
numbers generated through a calculator or computer 
may be introduced. The experiments, recording and 
analysis of the sequences produced in these simula-
tion activities will help to integrate study of proba-
bility and statistics. Eichler and Vogel (2014) propose 
a modelling approach for each of the main views of 
probability (classical, frequentist and subjective) and 
discuss the role of simulation in supporting students’ 
understanding in each of these perspectives. The con-
text of decision making, such as for example, taking 
insurance, is useful to introduce subjective views. 
When facing the uncertainty of a single decision, this 
decision could be made more transparent if we ask 
the students to weigh up the different possibilities, 
and compute the expected values of costs or prizes 
(Borovcnik, 2006).

The gradual introduction of concepts and notation 
will serve to mathematically explain the regularities 
observed in the data. Exploration of microworlds (e.g, 
Cerulli, Chioccariello, & Lemut, 2006) may serve to 
confront children´s intuitions to mathematical ideas. 
Johnston-Wilder and Pratt (2007) suggest that these 
tools help children see randomness as a dynamic pro-

cess, since a printout of a random sequence loses the 
essence of what random is to be.

Through these activities, students will progressive-
ly acquire understanding of the following essential 
characteristics of random phenomena:

 ― In a random situation there is uncertainty; more 
than one result is possible. 

 ― The actual result, which will occur, is unpredict-
able (local variability of random processes).

 ― We can analyse either the process (random gen-
erator) or the sequence of random results: these 
two aspects can be separated.

 ― In a few situations (e.g., games of chance) we can 
analyse the process before the experiment; this 
analysis will inform us of the likelihood of pos-
sible results

 ― Commonly, there is the possibility—at least in 
the imagination—of repeating the experiment 
(or observation) many times in (almost) similar 
conditions. 

 ― In this case, the sequence of results obtained 
through repetition lacks a pattern; we cannot 
control or predict each result (local variability).

 ― In this apparent disorder, a multitude of global 
regularities can be discovered, the most obvious 
being the stabilization of the relative frequencies 
of each possible result. This global regularity is 
the basis that allows us to study random phenom-
ena using the theory of probability.

 ― In one-off uncertain situations we still can apply 
probability if our initial degrees of beliefs are 
consistent (have reasonable properties).

 ― To conclude, randomness is a model we apply to 
some situations, because this model is useful to 
predict or control the situations. 

As argued by Konold and colleagues (1991), it is prefer-
able to consider randomness as a label with which we 
associate many concepts, such as experiment, event, 
sample space, probability, etc. In this sense, the word 
randomness refers to a collection of mathematical 
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concepts and procedures, which we can apply to un-
certain situations. We need to think about the orienta-
tion we take towards the phenomenon that we qualify 
as “random” rather than think of randomness as an 
objective quality of the phenomenon itself. We apply 
a mathematical model to the situation, because it is 
useful to describe it and to understand it; but we do 
not believe that the situation is identical to the model. 
Deciding when a probability model is more appropri-
ate for the situation than other mathematical models 
is a part of the competence we want the students to 
develop.

FINAL REFLECTIONS

The complexity of the idea of randomness explains 
the counterintuitive results that abound even in ba-
sic probabilistic concepts (Székely, 1986; Borovcnik 
& Peard, 1996). This complexity is also reflected at 
higher levels in probability theorems (e.g., the Central 
Limit theorem) that are expressed in terms of prob-
ability. According to Borovcnik and Kapadia (2014b), 
our poor intuitions in this field may be explained by 
our desire for deterministic explanations, but they 
might also be attributed to an inadequate education.

In spite of this complexity, “Probability is the only reli-
able means we have to predict and plan for the future; 
it plays a huge role in our lives, so we cannot ignore 
it, and we must teach it to all future citizens” (Devlin, 
2014, p. ix). It is then important to reinforce proba-
bility in the school curricula and to find appropriate 
conceptualizations of randomness for different ages.

One goal of probability education is to take advantage 
of children’s intuitions from elementary school as 
a basis for the acquisition of probability reasoning. 
One important insight into this line of research is 
the power of representation formats, such as natural 
frequencies (Gigerenzer & Hoffrage, 1995) or “tinker 
cubes” and other manipulatives (Martignon, Laskey, 
& Kurz-Milcke, 2007). Experimental interaction with 
mathematical modelling in a co-operative setting can 
likewise help children develop secondary intuitions 
(Nilson, 2003). Besides, as suggested by Andrà and 
Stanja (2013) it is important to pay attention to the in-
terpretation and use of signs, which is not self-evident 
in probability, and may be interfered with experience 
with the same signs in other mathematical domains.

It is also important to confront the students with their 
own misconceptions and erroneous beliefs. As dis-
cussed by Borovcnik and Kapadia (2014b), progress in 
the development of mathematical concepts is usually 
accompanied by ruptures and conflicts, but there is 
an opportunity for learning when one tries to solve 
the conflict and understand paradoxical results. 

Eichler and Vogel (2014) analyse the role of simula-
tion to explore a model that already exists, develop 
an unknown model approximately, and represent 
data generation. However, though simulation is vital 
to improve students’ probabilistic intuitions and to 
materialize probabilistic problems, a genuine knowl-
edge of probability can only be achieved through the 
study of some formal probability theory. Of course, 
the acquisition of such formal knowledge by students 
should be gradual and supported by experience with 
random experiments. 

We should also complement the objective and subjec-
tive views of probability. Even when many people be-
lieve that events have a unique probability rather than 
considering probability as a measure of our knowl-
edge (Devlin, 2014), the idea of updating previous in-
formation in the light of new data is very intuitive as 
it reflects the way how people think. 

It is also important to empower teachers with a 
specific preparation to teach probability because 
teachers’ beliefs influence their instructional plan-
ning, their classroom practices, and have an impact 
on their students’ learning (Eichler, 2011). Even if 
prospective teachers have a major in mathematics, 
they may be unfamiliar with different meanings of 
randomness and probability, or with their students’ 
most common misconceptions. Teachers should also 
be conscious that teaching principles valid for other 
areas of mathematics, are not always appropriate 
in the field of probability (Batanero & Díaz, 2012). 
As described in a teaching experiment reported 
by Brousseau, Brousseau, and Warfield (2002), the 
teacher may fail to produce a specific random result 
when needed (even if he/she manages to assure a good 
probability of happening for the given result). Thus, 
even a reasonable knowledge of probability would 
not suffice for the teacher to be able to reproduce the 
didactic situation exactly as he/she prefers, and this 
could be a source of challenge for the teacher.
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The preparation of teachers requires the design of ac-
tivities where teachers are first confronted with their 
previous ideas and then perform and discuss experi-
ments (e.g., Batanero, Biehler, Engel, Maxara, & Vogel, 
2005; Batanero et al., 2014) in order to simultaneously 
increase teachers’ probabilistic and didactic knowledge. 
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The plenary lecture builds on the plenary lecture from 
ICME10 (Survey team 3). The lecture defined areas that 
had attracted little attention of researchers but were 
crucial (not only) for teacher education. It also comes 
out of discussions on ICMI Study 15 and recommenda-
tions formulated in these discussions. The lecture is also 
significantly informed by the work of Working Groups 
at CERME conferences since CERME1 until CERME8, 
partially also taking into account information from 
CERME9. The field of research in mathematics teach-
er education has changed considerably over the years 
since ICME10, which asks for a new definition of issues 
and trends. The goal of the lecture is to point out some 
trends in this area of research, especially in the field of 
cooperation between teacher education and innova-
tions at school.

The first part of the text focuses on trends in current re-
search into teacher education and practice. The goal of 
this part is not an exhaustive overview but indication of 
the main trends in the research domain. The second part 
of the text presents a more detailed discussion of several 
current research areas, their theoretical backgrounds as 
well as applications of their findings in teacher educa-
tion and everyday school practice.

Keywords: Teacher education, cooperation of teachers 

and researchers, changes in teachers’ knowledge, beliefs 

and approaches, problem solving.

INTRODUCTION 

Let me begin the text by my personal confession: 
When the Programme Committee of CERME9 offered 
me to give a plenary lecture on the topic “Research 
into teacher education and practice“, I felt that this 
was great honour and I was excited, even thrilled 

by the ideas of starting work on the plenary lecture. 
However, my initial enthusiasm slowly lessened. The 
reason for this faltering were not any doubts on the 
relevance of the topic. However, the deeper I emerged 
into the issue, the more aware I grew of the immense 
scope of research I could get access to. I realized that 
my lecture would never be and could not be exhaust-
ing and that I would have to focus on selected aspects 
of the issue only. I decided to build the plenary lecture 
on three important resources to which I had person-
ally contributed:

 ― The plenary lecture from ICME10 (Adler, Ball, 
Krainer, Lin, & Novotná, 2004) in which the areas 
that had attracted little attention of researchers 
but were crucial (not only) for teacher education 
were defined. However, the field of research in 
mathematics teacher education has changed con-
siderably over the years since ICME10, which asks 
for a new definition of issues and trends. 

 ― ICMI Study 15 “The Professional Education and 
Development of Teachers of Mathematics” (Ball 
& Even, 2009). This study confirmed the great va-
riety of research in this area. All this research 
attracts a lot of attention worldwide and brings 
new and interesting results.

 ― CERME conferences, where teacher education 
has always been paid much attention to. The focal 
point has been shifting with respect to the devel-
opment of research in the area. However, it has 
always been based on the interaction between 
practices in teacher education and requirements 
of everyday school practice. 

The focus of the first part of the text is on develop-
ments in research into teacher education and practice 
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until present. The goal of this part is to point out main 
trends in the research domain. It is important not only 
to list the topics addressed by research since CERME1 
but also to show the used methodologies and posed 
research questions. 

The aim of the second part of the text is to illustrate 
some of the trends in research in teacher education 
and innovations at schools, focusing mainly on the 
further development of teachers’ knowledge, beliefs 
about and approaches to mathematics education re-
sulting from cooperation with researchers. When 
selecting from the many, the attention was paid to 
those areas of research that the author is familiar with 
and in which she has been involved.

RESEARCH INTO TEACHER EDUCATION 
AND PRACTICE UNTIL PRESENT

Survey Team 3 at ICME10. Research 
on mathematics teacher education: 
Mirror images of an emerging field 
The Survey Team 3 (ST3) consisted of the following 
members: Jill Adler, Deborah Ball, Konrad Krainer, 
Fou-Lai Lin and Jarmila Novotná.

As a member of ST3 at ICME10 in Copenhagen, I was 
involved in collecting information on research fo-
cusing on mathematics teacher education in the 
years 1999–2003 (Adler et al., 2005). This work clear-
ly showed it was inevitable to delimit the areas and 
issues we would come out of. The survey included 
published research in international mathematics ed-
ucation journals, international handbooks of mathe-
matics education and some international mathemat-
ics education conference proceedings. Some regional 
sources from various parts of the world were also 
included. The survey was restricted to 1999–2003, 
covering the period between ICME9 and ICME10. 
More than 200 papers were analysed.

The central question for the survey was: Is research 
in the field contributing to the improvement of the edu-
cation of teachers of mathematics? 

The work was framed by the following considerations: 
What is the state and status of research in mathemat-
ics teacher education, within and across contexts? 
Which problems have been constructed as central in 
this field in the recent past, and how have these been 
approached? What shifts – theoretical and method-

ological – can be discerned and how might they be 
explained? Who does the research? Where? What 
progress has been made, empirically, theoretically, 
methodologically? Are there evident gaps, and if so 
where? What kind? 

We investigated “the who (who was writing/doing the 
research, and from where), the how (what methods 
were used) and the what (what was being studied, 
theoretical orientations, assumptions and outcomes)” 
(Adler et al., 2004). We also examined the range of 
findings and conclusions in these studies. These 
helped to identify four areas that asked for further 
investigation. 

Where is the centre of the field? The investigated pub-
lications were divided into two groups. The first in-
cludes publications focusing on theorising and un-
derstanding teacher learning. The second concerns 
aspects of curriculum reform, the goals of teacher 
education initiatives, i.e., evaluation. We identified 
the shift from studies that tended to tell success sto-
ries about teacher education initiatives, and advo-
cacy in the initial phases of curriculum reform, to 
deeper reflective research that is more convincing in 
the scholarly sense. Teacher educators’ learning was 
paid much less attention to. It was noted that: “We do 
not understand well enough how mathematics and 
teaching, as inter-related objects, come to produce and 
constitute each other in teacher education practice. 
We lack adequate knowledge about what and how this 
happens inside a teacher education program, and then 
across ranging or contrasting programs, contexts and 
conditions.” 

What are the theories and methods in the field? We stat-
ed that the field is emerging and needs to increase 
rigour. The vast majority of this research is case study 
research, where at least one of the researchers is also 
a teacher educator, and often the educator(s) whose 
programme is under study. It certainly makes sense 
if we want to study teachers’ learning and teaching 
practices. The emergence of theories of situated learn-
ing, and attempts to theorise learning of professional 
practice were identified. In many papers, theoretical 
frameworks are left implicit. Small-scale qualitative 
research predominates.

Contexts of mathematics teacher education research: 
Who, where, and with whom? Most teacher education 
research is conducted by teacher educators studying 
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the teachers with whom they are working. Attention 
has mainly been paid to showing that particular pro-
grammes of teacher education ‘work’; a large number 
of papers were dealing with reform processes, par-
ticularly in the USA, and with teachers in professional 
communities and in other institutional settings. 

Dominance of English-speaking world. This dominance 
was remarkable (e.g., 80% of the papers published in 
JMTE have been written by authors from, and re-
port research done in, English-speaking countries). 
Obviously, the situation is different if we focus on 
national or regionally focused conferences and jour-
nals. The influence of this situation on the orientation 
of research was not analysed but it certainly has a 
great impact. 

ST3 also formulated domains of interest that were 
underrepresented in the analysed resources. It was 
noted that there were fewer studies on:

Teacher working outside of “reform” contexts: Many 
teachers make effort to develop their teaching skills 
in environments where reform is not the dominant 
issue but where they are assisting a wide range of 
learners in learning mathematics. 

Teachers’ learning from experience: We do not know 
enough what teachers learn from experience, wheth-
er they learn from experience at all, and what actually 
supports learning from experience. Teachers spend 
most of their time doing teaching; we do not under-
stand enough about what helps some teachers to learn 
from their own teaching while others do not.

Teachers’ learning to directly address inequality and 
diversity in their teaching of mathematics: We do not 
know enough about teachers’ learning to directly ad-
dress inequality and diversity within their teaching 
of mathematics (culture, gender, language, socio eco-
nomic status and mathematical background).

Comparisons of different opportunities to learn: We lack 
comparisons in the field that compare different oppor-
tunities to learn. How does one approach to helping 
teachers to learn mathematics compare with another?

“Scaling up”: We do not know enough about what 
happens when programmes spread to multiple sites, 
what it means to scale up or what it means to extend a 
programme that has worked in one setting to another 

setting – what works, what goes wrong, what design-
ers need to know and think about.

Education of teacher educators: Despite their impor-
tant role in the system of teacher education, educa-
tors’ education, professional background, etc. was 
not studied in the analysed publications.

This was the situation in 2004 perceived through the 
analyses of ST3. Approximately at the same time, an-
other important event focusing on teacher education, 
The Fifteenth ICMI Study, was launched. The study 
was designed to offer an opportunity to develop a 
cross-cultural conversation about mathematics teach-
er education in mathematics around the world. The 
Study Volume is described below (Even & Ball, 2009).

ICMI Study 15: The Professional Education and 
Development of Teachers of Mathematics
ICMI Study 15 focused on mathematics teacher educa-
tion practice and policy around the world. As stated 
in (Even & Ball, 2009), its premise was that the educa-
tion and continued development of teachers are keys 
to pupils’ opportunities to learn mathematics. What 
teachers of mathematics know, care about, and do is 
a product of their experiences and socialization both 
prior to and after entering teaching, together with the 
impact of their professional education. It was claimed 
that systems of teacher education, both initial and con-
tinuing, are built on features that are embedded in cul-
ture, the organization and nature of schooling, and too 
rarely is there cross-cultural exchange of knowledge 
and information about the professional development 
of teachers of mathematics. Learning about practices 
and programmes around the world can provide im-
portant resources for research, practice, and policy 
in teacher education, locally and globally.

The contributions accepted to ICMI Study 15 were di-
vided into two Themes: Theme 1 – Initial mathematics 
teacher education, and Theme 2 – Learning in and from 
practice. In several aspects, both Themes brought new 
ideas in the issues considered by ST3 as less studied 
in 2004. It is evidenced by the list of main questions 
discussed in the ICMI Study 15.

Theme 1 focused on the following main questions:

Structure of teacher preparation: How is the prepara-
tion of teachers organized – into what kinds of in-
stitutions, over what period of time, and with what 
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connections with other post-secondary study? Who 
teaches teachers, and what qualifies them to do so? 
How long is teacher preparation, and how is it distrib-
uted between formal study and field or apprentice-
ship experience? How is the preparation of teachers 
for secondary schooling distinguished from that of 
teachers for primary and middle levels of schooling? 

Curriculum of teacher preparation: What is the nature 
of the diversity most pressing within a particular con-
text – for example, linguistic, cultural, socio-econom-
ic, religious, racial – and how are teachers prepared 
to teach the diversity of pupils whom they will face 
in their classes? How are teachers prepared to know 
mathematics for teaching? What are the special prob-
lems of content preparation in different settings, and 
how are they addressed?

Recruitment and retention: Who enters teaching, and 
what are the incentives or disincentives to choose 
teaching as a career in particular settings? What 
proportion of those who prepare to teach actually 
end up teaching, and for how long?

Most pressing problems of preparing teachers: Across 
the initial preparation and early years, what are the 
special problems of teaching mathematics within a 
particular context and how are beginning teachers 
prepared to deal with these problems?

The early years of teaching: What are the conditions 
for beginning teachers of mathematics in particular 
settings? What supports exist, and how effective are 
they, for what aspects of the early years of teaching? 
What are the special problems faced by beginning 
teachers, and how are these experienced, mediated, 
or solved? What is the retention rate of beginning 
teachers, and what factors seem to affect whether or 
not beginning teachers remain in teaching? What sys-
tems of evaluation of beginning teachers are used, and 
what are their effects?

Mathematics educators’ activities and knowledge: It 
concerns one of the underrepresented domains men-
tioned by ST3. These contributions focused mainly 
on models of educators’ development, their quality, 
national support, their own practice and research.

During the Theme 1 sessions at the ICMI Study 15 con-
ference, additional important questions emerged that 
had not been included in the Study Volume: What 

is the role of didactics of mathematics (mathematics 
education) in teacher education? What is the place of 
ICT in teacher education? How is the practical part of 
this preparation (the teaching practicum) integrated? 
What do we know about the construction of profes-
sional knowledge of teachers in relation to teacher 
education programmes?

The collection of papers in Theme 2 provides a range 
of approaches to studying teachers’ learning. The pa-
pers focused on four main domains: 

Development of teaching in and from practice: What 
are the characteristics of the process of developing 
professional expertise in the teaching of mathematics 
in and from practice? What are the beliefs, experi-
ences and structures that are significant as far as the 
development of mathematics teachers and teaching 
are concerned? What are the conceptual, institution-
al, cultural, etc. structures that enable and constrain 
research into teacher development?

Process of learning in and from practice: What are the 
changes and approaches to professional develop-
ment? How is the new organization of professional 
development initiatives for teachers conceived and 
implemented? 

Models, tools and strategies to support learning in and 
from practice: What are the tools, dynamics, tasks, con-
texts, and learning settings that can be mobilized for 
pre- and in-service mathematics teacher education? 
What are the tasks for mathematics teacher education 
that are offered to teachers for deepening their knowl-
edge of what and how to teach their pupils? What can 
be learned from analysing instructional episodes? 
What is the role and advantages of forming teachers’ 
learning communities where they can share experi-
ences, meanings, knowledge, lessons, etc. from their 
school practice? 

Balance of teachers’ mathematical content and pedago-
gy knowledge: How can we overcome the difficulties in 
practising teacher education and professional devel-
opment that are caused by the complexity of the knowl-
edge required for teaching? What is the relationship 
between teachers’ content knowledge and pedagogical 
practices, considering it from various perspectives?

The Study Volume contains one chapter summarising 
key issues for research in education and professional 
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development of teachers of mathematics. It focuses 
on the goals of education, the role of mathematics 
education, understanding of practice-based profes-
sional development for mathematics teachers and the 
future of strengthening practice in and research on 
professional education and development of teachers 
of mathematics. 

Examples of more recent work 
Research in the area of teacher education and in the 
area of the potential and consequences of cooperation 
between teachers and researchers has undergone tur-
bulent developments over the decade since ICME10 
and ICMI Study 15. This can be documented by the 
variety of publications in the area – monographs, arti-
cles and special issues of renowned journals as well as 
various conferences focusing on research in this area. 
Let us present examples of some more recent work 
that do not focus narrowly on one aspect of research 
in the field but try to relate this area into a wider con-
text of mathematics education. Considerable attention 
is paid to involvement of teachers in research, albeit 
in the form communities between teachers and teach-
er educators (see, e.g., Jaworski, 2005; Novotná et al., 
2006) or in the form of independent research conduct-
ed by teachers themselves (see, e.g., Kincheloe, 2012). 
All these research studies stress the benefit of teach-
ers’ participation in them, despite some limitations. 

Teacher education also attracts attention of the 
International Group for Psychology of Mathematics 
education. Every year the area is addressed by a 
significant number of research reports, short oral 
presentations, posters, working sessions, discussion 
groups and other components of the programme and 
is frequently addressed in plenary lectures, panels 
and research forums. The importance that IGPME 
pays to teacher education is highlighted also by pub-
lishing Handbook of Research on the Psychology of 
Mathematics Education (Gutiérrez & Boero, 2006) 
where the fifth section includes two chapters sum-
marizing the PME research on teacher education and 
professional life of mathematics teachers (Llinares & 
Krainer, 2006; da Ponte & Chapman, 2006).

Third International Handbook of Mathematics 
Education (Clements, Bishop, Keitel, Kilpatrick, 
& Leung, 2013)
The book offers an overview of past, present and fu-
ture aspects of all areas of mathematics education 
(social, political and cultural dimensions in mathe-

matics education; mathematics education as a field 
of study; technology in the mathematics curriculum; 
and international perspectives on mathematics edu-
cation). Four out of the eight chapters of the second 
section focus on mathematics teacher education; they 
present research methods in mathematics teacher 
education, teachers as researchers, teachers’ learning 
from teachers and developing mathematics educators. 

The chapter Developing mathematics educators dis-
cusses different types of mathematics educators in-
cluding teacher educators. It addresses cooperation 
between teachers and researchers. The concept of 
teachers as researchers is discussed from different 
points of view. It contributes to the area described 
as underrepresented in research in the material pre-
pared by Survey team on ICME10.

Note: The issue of teacher educators has been ad-
dressed increasingly in the last ten years. An im-
portant step was Volume 4 of the Handbook of 
Mathematics Teacher Education (Jaworski & Woods, 
2008). Recently, the proceedings of the international 
conference on “Educating the Educators” were pub-
lished (Maaß, Törner, Wernisch, Schäfer, & Reits-
Koncebovski, 2015).

Encyclopedia of Mathematics 
Education (Lerman, 2014)
This reference work covers all topics in the area of 
mathematics education. The entries offer theoretical 
background, summary of important findings and re-
sults in the area and provide references to important 
publications where more detailed information can 
be found. 

One section coordinated by Mellony Graven addresses 
research in teacher education. The entries cover both 
the areas of pre- and in-service teacher education and 
the area of teacher educators, i.e. an area described as 
underrepresented in research on ICME10. More than 
twenty entries address directly teacher education and 
teacher practice and many other are somehow con-
nected to the areas. The consequence of this effort 
to describe fully and comprehensively all aspects of 
mathematics education is that also topics described 
as underrepresented in research on ICME10 were 
paid due attention. Very valuable are the references 
to other literature and publications dealing with the 
topics but also focusing on development of research 
in the area over years.
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ZDM, Mathematics Education (special issue, 
47(1), Rösken-Winter, Hoyles, & Blömeke, 2015)
This special issue of the journal focuses on scaling up 
sustainable interventions through evidence-based 
CPD. In the articles, four perspectives are consid-
ered: crucial aspects of teacher learning, different 
CPD frameworks and their influence on develop-
ments in CPD, the meaning of developing CPD in an 
evidence-based way and crucial aspects of spread-
ing CPD on a large scale. As Roesken-Winter, Hoyles 
and Blömeke state in their introductory survey paper, 
they “draw on Coburn’s four dimensions characteriz-
ing the process of scaling CPD interventions, depth, 
sustainability, spread, and shift in reform ownership 
to discuss how the challenge of scaling high-quality 
CPD might be successfully addressed”. The articles 
help to fill in some gaps in areas identified by Adler, 
Ball, Krainer, Lin and Novotná (2004) as underrepre-
sented in research. 

CERME CONFERENCES

An immense amount of work on the topic of teacher 
education and professional development has been 
done during the CERME conferences, from their early 
beginnings in Osnabrück, Germany in 1998. Teacher 
education has always been paid much attention. One 
Thematic Working Group has always focused on the 
issue, both on pre-service and in-service levels. Table 1 
contains a more detailed look at the development of 

the issue at CERME conferences. Proceedings from 
CERMEs are available online at http://www.mathe-
matik.uni-dortmund.de/~erme/index.php?slab=pro-
ceedings. It shows that even if the programme compo-
nents did not have the same focus and followed con-
temporary trends in research in the area of teacher 
education in the corresponding period, they always 
paid attention to interactions between practices in 
teacher education and requirements of everyday 
school practice.

The significance of the issue of teacher education 
since the beginnings of CERME conferences is con-
firmed by the publication of a separate third part of 
CERME1 proceedings: On Research in Mathematics 
Teacher Education. From a Study of Teaching Practices 
to Issues in Teacher education (Krainer, Goffree, & 
Berger, 1999). The book builds on the work done by 
Working Group 3 Theory and practice of teaching 
from pre-service to in-service teacher education. It is 
divided into six parts with respect to the topic that is 
addressed: Teacher education and investigations into 
teacher education; Teacher education and investiga-
tions into teachers’ beliefs; Teacher education and 
investigations into teachers’ knowledge; Teacher ed-
ucation and investigations into teachers’ practice(s); 
Teacher education through teachers’ investigation 
into their own practice; Investigations into teacher 
education: Trends, future research, and collaboration.

CERME WG Other programme type

1 Theory and practice of teaching from pre-service 
to in-service teacher education

2 Theory and practice of teaching from pre-service 
to in-service teacher education

3 Inter-relating theory and practice in mathematics 
teacher education

Plenary panel Theory and Practice: Facilitating teach-
ers’ investigation into their own teaching

4 From a study of teaching practices to issues in 
teacher education

5 From a study of teaching practices to issues in 
teacher education

6 Mathematical curriculum and practice

7 From a study of teaching practices to issues in 
teacher education 

Plenary lecture Research into Pre-service elementary 
teacher education courses

8 From a study of teaching practices to issues in 
teacher education

9 Mathematics teacher education and professional 
development

Plenary lecture Research in teacher education and 
innovation at schools – Cooperation, competition or two 
separate worlds?

Table 1: Development of the topic at CERME conferences

http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=proceedings
http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=proceedings
http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=proceedings
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As far as the focus of this plenary lecture is concerned, 
the most interesting is the last of the above listed areas. 
The title of the plenary lecture speaks of collaboration, 
not competition or two separate worlds. Let us reca-
pitulate here the main ideas presented in CERME1 
proceedings. They remain topical for research in 
teacher education and innovation at schools despite 
being published in a book from 1999 (i.e., 16 years ago). 

In the area of Research in the perspective of teacher 
education, the following questions, substantial for 
the area, are studied: To what extent do mathematics 
teachers’ general beliefs relate to local beliefs (e.g., 
to specific topics as teaching algebra)? What are the 
conditions and constraints that influence teaching 
practice? How do teachers manage the connection 
between pupils’ activities and the acquisition of math-
ematical knowledge? (The term “acquisition” used 
here is worth attention, it is broader than the term 
learning.) What is the interplay between mathemat-
ical knowledge and ability, self-confidence, personal 
history and conceptions of mathematics teachers? 
How do internal factors interplay with external fac-
tors concerning the professional development of 
teachers? How can problem solving be used as a tool 
to find out of mathematics teachers’ beliefs in order 
to improve teachers’ mathematical knowledge and 
mathematics teaching? 

In the area of Research in the context of teacher educa-
tion, authors study, for example, the following ques-
tions: Considering the professional development of 
teachers, what is the interplay between cognitive pro-
cesses and cultural, social, affective processes? How 
do (student) teachers construct (what) knowledge? 
What is the role of discourse and collaboration? What 
kind of knowledge do teachers bring to in-service ed-
ucation and how does it grow? Is the gap between what 
teachers learn at the university (pre-service educa-
tion) and their practice at schools evident and how 
could we explore it? How do student teachers develop 
their understanding of children’s ways of thinking 
during school practice? Why and how do mathematics 
teachers from one school (want to) further develop 
their teaching practice using alternative learning and 
teaching methods?

In the contributions, serious attempts to find bridges 
between theories and practices of teacher education 
are present. In particular, the idea of viewing learning 
environments for (student) teachers at the same time 

as a meta-learning environment for teacher educators 
who investigate into (student) teachers’ growth and 
at the same time reflect on their influence within the 
interaction process is obvious. 

The following are the major trends sketched in the 
texts. A broader understanding of research in teacher 
education is needed; it covers investigations focusing 
on teachers including their beliefs, knowledge and 
practice, and engagement of (student) teachers in in-
vestigating their own practice. There is an increasing 
importance of action research as the systematic reflec-
tion of practitioners into their own practice. There 
is an increasing importance of “stories” (narratives, 
curricula vitae, cases, …). It seems more attention 
should be paid to cultural, situated, and organiza-
tional aspects of processes in classroom and teacher 
education courses. Moreover, looking for integration 
and interconnections is crucial.

Pupils’ learning, (student) teachers’ learning and re-
searchers’ and teacher educators’ learning are con-
sidered as three domains of strongly interconnected 
learning. The attention is paid to learning from in-
vestigations (learning from research questions, from 
research methodologies, from elaborating the data 
and from presenting the research). 

The Working Group continued its work also at 
CERME2. Its focus was on “teacher education between 
issues and practical realization”. The contributions 
were based on teachers’ knowledge, investigations 
into teachers’ practices, their attitudes; research on 
the impact of the use of information technologies was 
also included.

The work in the WG was characterized as follows by 
its coordinators: “More than in other fields, the re-
searcher in the field of teacher education subject has 
to balance what is suggested by the theoretical con-
siderations and what is possible to realize in practice. 
The discussion reflected this position and the themes 
touched fluctuated between the two poles.”

The WG formulated perspectives for the future: To in-
vestigate professional growth of pre-service teachers, 
qualified teachers and teacher educators, relationship 
between theory and practice, teacher development in 
the classroom, connection between pre-service and 
in-service education, development of teachers’ subject 
knowledge.
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At CERME3, two components of the programme were 
devoted to teacher education: The WG Inter-relating 
theory and practice in mathematics teacher education 
and the Plenary Panel Theory and Practice: Facilitating 
teachers’ investigation into their own teaching. 

The topic of the WG attracted an increasing number 
of authors. In order to keep the discussions efficient, 
the participants were divided into five subgroups: 
Teaching approaches in particular curricular are-
as; Teaching approaches and their development; 
Elements of reflection in teacher education; Role and 
nature of collaborative work in teacher education; 
Inter-relating theory and practice.

WG formulated issues emerging from discussions: 
Situations and problems in teaching are complex 
and need particular solutions that can only be devel-
oped in the specific context of their appearance. There 
are no general solutions that might be transferred 
from theory to practice; also at schools, improving 
and understanding one’s own practice is important. 
More teachers who reflect critically on their teaching, 
exchange their experiences, and read theory-driven 
papers in order to broaden their understanding of 
educational processes are needed. More teacher ed-
ucators who take their teacher education practice as 
an object of evaluation and research are needed. Also 
more collaboration between teacher educators and 
teachers in order to promote teacher education – as 
a field of practice and research is essential. 

The Plenary Panel, chaired by B. Jaworski, focused on 
the relationship of theory and practice in mathemat-
ics education. Besides Jaworski’s introductory and 
final thoughts, three panellists presented examples 
from their own country. Bartolini Bussi (2004) briefly 
presented one special national project for education 
in Science and Technology SeT Project (1999–2002). 
Krainer (2004) investigated the relationship theo-
ry-practice in the theoretical perspective of four di-

mensions of “learning systems”: Action; Reflection; 
Autonomy; Networking. Bergsten (2004) showed the 
theory-practice relation in mathematics education 
as multifaceted.

At CERME4 and 5, WGs related to teacher education 
were focusing on the same main topic: From a study 
of teaching practices to issues in teacher education. In 
both cases, the work was organized in subgroups; see 
Table 2 where corresponding topics are in the same 
row.

It is also of interest to compare emerging issues from 
the discussion in WGs at both conferences, see Table 3.

Much attention was paid to communities of practice 
and collaborative work in them. Cooperation between 
teachers and researchers was evaluated as impor-
tant. It attracted much more attention at CERME5. At 
CERME4, attention was also paid to the assessment 
in mathematics teaching and implementation of ICT. 
At CERME5, these topics became so common in the 
discussion that they needed no special emphasis. 
Moreover, they were also discussed in other WGs 
focusing on ICT in mathematics education or assess-
ment. 

At CERME6, teacher education and development were 
included in WG Mathematical curriculum and prac-
tice where teacher education was directly linked with 
school practices. Its subtitle From study of teaching 
practices to issues in teacher education evoked its close 
link with the corresponding WG at CERME4 and 5. 
The call for papers asked for theoretical, methodolog-
ical, empirical or developmental papers on teachers’ 
practices, professional knowledge and teacher ed-
ucation. The work of this WG was organized in the 
following subgroups: Mathematical curriculum and 
practice; Professional knowledge (similar but differ-
ent terms used: knowledge base for teaching; pedagog-
ical content knowledge; competence; subject didac-

CERME4 CERME5

Understanding practice, understanding and promoting 
the mathematics teacher’s development

Models to analyse the practice

Process of becoming a mathematics teacher Knowledge for teaching (or professional knowledge).

Means, resources and methodology to research on and 
promote the mathematics teachers’ development

Tasks and resources in pre-service teacher education

Approaching reflection in mathematics teachers’ profes-
sional development

Table 2: Subgroups at CERME4 and 5
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tical competence; practical knowledge – beliefs and 
knowledge); Professional development; Approaching 
reflection and collaboration in mathematics teachers’ 
professional development (Reflection is a privileged 
way for professional enhancement. Collaboration is a 
means for professional development and for research 
strategy.); Models to analyse the practice (The practice 
of teachers includes classroom teaching, as well as 
education and other professional development con-
texts; How can we manage to make research results 
and instruments useful for teachers as means in their 
professional development, and for educators in edu-
cation contexts?).

One of the main conclusions formulated in this WG 
was the following: “As for primary teachers, also for 

secondary teachers, mathematical content knowledge 
and pedagogical content knowledge must be interre-
lated in teacher education.“ (Durand-Guerrier, Soury-
Lavergne, & Arzarello, 2010, p. 1690).

At CERME7 and 8, WGs returned back to the previ-
ous title From a study of teaching practices to issues in 
teacher education, which clearly expresses the main 
focus of the work. In Table 4, the subgroups at both 
conferences are summarized; again, the allied topics 
are in the same row.

At both conferences, critical issues instead of emerg-
ing issues were formulated. The descriptions of these 
issues at both conferences differ substantially in their 
number as well as details in their formulations.

CERME4 CERME5

Demand for theories, perspectives and methods captur-
ing or approaching the flavour and the essence of the 
classroom activity (various theoretical frameworks) 

Discussion on theories, perspectives and methods to ap-
proach the flavour of classroom activity

Incompleteness of current models to give an account of 
the real teaching-learning process

Confrontations of frameworks and models by means of 
analysing some corpus of a classroom teacher practice 
observation

Relationship between researchers and teachers

The nature and conditions of collaborative work. 
Particularly the role of the experts, and the necessity of 
making it possible that teachers meet together in order to 
reflect on their practices

Knowledge, pedagogical content knowledge, teachers´ 
competence (including communities of practice and the 
socio-cultural theory)

Notion of community of practice and related notions

Different notions about reflection

Assessment instruments as a tool to support learning

The role of teacher when using ICT

Table 3: Emerging issues formulated at CERME4 and 5

CERME7 CERME8

Mathematical content knowledge for teaching Resources for teaching: Teacher knowledge and teacher 
beliefsProfessional content knowledge for teaching

Reflection in mathematics teachers’ professional devel-
opment

Teacher reflection 

Professional development Teacher education and professional development)

Collaboration in mathematics teachers’ professional de-
velopment

Teacher collaboration

Conceptions and practices
Studying mathematics teaching

Interaction in the classroom

Table 4: Subgroups at CERME7 and 8
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CERME7:

 ― Recognition of the value and complementarities 
of different approaches to the professional devel-
opment of teachers

 ― Recognition that there are constraints and affor-
dances for different approaches, which vary be-
tween cultural contexts; working across cultures 
on teacher development projects, which employ 
different strategies, was considered to be a useful 
way of moving forward our understanding of 
different approaches

 ― Considerable work to be done in understanding 
how different frameworks relate to one another 
and in supporting researchers in selecting ele-
ments of different frameworks that will enable 
them to answer specific research questions

CERME8

 ― Working with multiple frameworks

 ― Suitable model for teacher knowledge

 ― The purpose for developing new theoretical mod-
els or for modifying/revising the existing ones

 ― Analyses of the influence of different types of 
knowledge

 ― Ways for promoting teacher knowledge

 ― Study of the mutual relation between teachers´ 
knowledge and practice

 ― The role of context

 ― Role of teacher educators in helping students/
teachers to develop different components of their 
knowledge – differences for prospective teachers 
and in-service teachers

Sierpińska’s (2011) plenary lecture was devoted to 
research in teacher education and practices. In the 
talk, results of an ongoing research, focusing on a 
framework for analysing the “Teaching Mathematics” 
courses were presented. “Teaching Mathematics” 
courses were designed and implemented by the au-
thor in cooperation with her colleague. Sierpińska 

presented her research conducted within the frame 
of implementation of these courses. The framework 
of this research might be useful for other researchers 
wishing to contribute to professionalization of ele-
mentary mathematics teacher educators’ work.

At CERME9, for the first time, teacher education was 
the theme of three TWGs: Mathematics teacher ed-
ucation and professional development, Mathematics 
teacher and classroom practices and Mathematics 
teacher knowledge, beliefs and identity. For the detailed 
information about all three TWGs discussions and 
results see the corresponding chapters in CERME9 
proceedings.

However, research on teacher knowledge can be 
come across not only in the corresponding TWGs, it 
pervades all TWGs, whichever area of mathematics 
education they deal with. In every TWG, one can come 
across papers that focus on the topic of the working 
group but at the same time are related to teacher ed-
ucation. And this is why I decided to call my plenary 
lecture Research in teacher education and innovation 
at schools – Cooperation, competition or two separate 
worlds? Are teacher education and innovation at 
schools closely related areas or are they two separate 
worlds that have very little or nothing in common? Is 
teachers’ attitude to innovation in mathematics edu-
cation influenced predominantly by the environment 
of the school they work at, their own experience with 
pupils, or by what they have learnt in their teacher 
education? In other words: Is teacher education an 
obstacle in the introduction of innovation at schools 
or does it support the process? Or are they independ-
ent of each other? It is very easy to understand the 
questions, to formulate them. However, it is far from 
easy to find answer to them and it seems the answers 
will not allow to be generalized. 

Research studies – Summary
Research studies in the field of teacher education and 
innovation at schools on international level can be 
divided into at least two main areas: I. Focus on curric-
ula of teacher education; II. Focus on the knowledge a 
mathematics teacher needs to teach well.

Area I usually includes issues of pre-service teacher 
education (primary and secondary) and the first years 
of their teaching practice: for example, structure of 
teacher education; admission of students into teacher 
education and their prospective career in the field; 
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curricula for pre-service mathematics teachers; con-
ditions for novice teachers; preparation of teachers 
for overcoming obstacles they will come across in 
their practice; history and development of systems 
of education in various countries; international com-
parative studies of teacher education.

The fundamental question related to life-long learn-
ing of mathematics teachers and primary teachers is 
how they can learn for, during and from their teaching 
practice. 

The areas in the spotlight are: What can mathemat-
ics teachers learn from their own and other teach-
ers’ practice? How do they further develop their 
knowledge of mathematics and of the ways of teach-
ing mathematics if they work with recordings from 
teaching practice? How do they learn important in-
formation about variety, sociocultural and economic 
background of their pupils? How is teachers’ life-long 
learning organized? How difficult is it for a teacher 
to get access to materials such as video recordings, 
journals, to come to lessons and observe them, etc.?

Research in Area II focuses on the knowledge pre-
requisite to successful teaching of mathematics. 
International community distinguishes between 
several types of prerequisite knowledge related to 
mathematics: the most prominent ones are mathe-
matical content knowledge, MCK, and pedagogical 
content knowledge, PCK (Shulman, 1986).

There is a lot of discussion on whether MCK and PCK 
should be regarded as independent of each other or 
interlinked: For example, should pre-service teachers 
be taught pedagogical knowledge separately from 
content knowledge in different courses and seminars 
or should this be taught simultaneously as pedagogi-
cal content knowledge? Much attention is also paid to 
comparison of experience of novice and experienced 
teachers.

The turbulent developments in ICT has brought fast 
development of research focusing on the impact of 
ICT on teaching mathematics. Knowledge of the po-
tential, advantages and possible risks of using ICT in 
teaching has become an important part of a teacher’s 
knowledge. ICT supported mathematics education is a 
complex activity that requires a teacher’s deep insight 
into mathematics, knowledge of a suitable ICT tool and 
understanding of pupils’ thinking processes. That is 

why the PCK model was amended by knowledge from 
the area of technology, the so called TPCK (technology 
pedagogical content knowledge) (Mishra & Koehler, 
2006). Apart from the concept of TPCK, research also 
focuses on consequences of TPCK for teacher educa-
tion programmes.

COOPERATION OF TEACHERS 
AND RESEARCHERS

In the second part of the text, we will focus on one as-
pect of the relationship between teachers’ knowledge, 
approaches to teaching and beliefs on the one hand 
and innovation at schools on the other. It is connected 
to two areas: teachers as researchers and cooperation 
of teachers, teacher educators and researchers. This 
theme is not new, for example, a PME working group, 
Teachers as Researchers, first met in 1988, and then 
was meeting annually for nine years. Its work was 
based on the belief that classroom teachers could and 
should carry out research connected to the practice 
of teaching mathematics. The output of this work is 
the publication of a book (Zack, Mousley, & Breen, 
1997). The attention paid at PME conferences to the 
topic did not end with this publication. The Plenary 
Panel at PME 27 focused on the issue “Teachers as 
researchers” (Novotná, Lebethe, Rosen, & Zack, 2003). 
The follow-up was organized in various forms: discus-
sion groups, working groups and a research forum 
(Novotná et al., 2006).

In literature, a lot of attention is paid to the impact 
of teachers’ contact with new educational trends 
in the development of their knowledge in a variety 
of ways: organisation of teacher education (pre- as 
well as in-service), opportunities to experience new 
approaches, access to appropriate resources, etc. 
Jaworski (2005) believes that one way to add to the 
body of knowledge is through ‘co-learning partner-
ships’: 

The action research movement has demonstrat-
ed that practitioners doing research into their 
own practice […] learn in practice through in-
quiry and reflection. There is a growing body of 
research which provides evidence that outsider 
researchers, researching the practice of other 
practitioners in co-learning partnerships, con-
tribute to knowledge of and in practice within 
the communities of which they are a part. (p. 2)
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The important issue of teachers as researchers, ei-
ther cooperating in communities with researchers 
or doing their own research, is frequently analysed 
from the perspective of what it adds to the body of 
knowledge on mathematics education. Less investi-
gated is the issue of what impact this type of teachers’ 
activities has on their beliefs, teaching approaches, 
their knowledge. 

There is no doubt that the cooperation of teachers 
and researchers is influenced by their pedagogical 
beliefs and mainly by teachers’ reactions to innova-
tive approaches.  Hofmannová, Novotná and Hadj-
Moussová (2003) investigated how in-service and 
pre-service teachers react to them.1 The authors are 
convinced that without deep changes in teachers’ be-
liefs and attitudes, major changes in pupil learning 
cannot occur. This corresponds to (Rogers, 1996): “The 
introduction of learning changes into the area of at-
titudes is perhaps the most difficult task that faces 
the teacher educator.” The results of the presented 
research into affective barriers showed prevailing 
negative attitudes of participating teachers towards 
new educational trends. The following scheme of cat-
egories based on Rogers (1996) was created:

Inner barriers: fear of failing, fear of not meeting the 
requirements, fear of uncertain success. The identi-
fied causes of inner barriers were: changes caused 
by aging, negative self-concept, too high self-require-
ments and too positive perception of the others, fa-
tigue.

Outer barriers: lack of time, personal and family prob-
lems. The identified causes of outer barriers: inability 
in time management, too much stress. 

These findings had a major impact on the teacher ed-
ucation course because it enabled inclusion of new 
incentives into the course curricula. These new ele-
ments focus on work with teachers’ motivation and 
attitudes. Barriers could thus turn into resources 
(Moschkovich, 2002). 

1  The innovative approach selected for this study was Content 

and Language Integrated Learning (CLIL): CLIL refers to any 

teaching of a non-language subject through the medium of 

a second or foreign language. CLIL suggests equilibrium be-

tween content and language learning.

In the following, one example of collaboration of 
teachers and researchers with an important input 
of participating teachers is described. The research 
project is presented from the point of view of the fur-
ther development of teachers’ beliefs and approaches 
to mathematics education resulting from the coop-
eration. It shows one form of research collaboration 
between university academics and teachers of math-
ematics. The question in the background is: What are 
the advantages and limitations of such cooperation? 

Impact of teachers’ participation in research 
(Eisenmann, Novotná, Přibyl, & Břehovský, 2015) 
This study is a part of a three-year research project 
GAČR P407/12/1939 Development of culture of problem 
solving in mathematics in Czech schools. The goal of 
the research project is the development of a theory 
of mathematics problem solving with a focus on the 
role heuristic strategies play in the development of 
pupils’ culture of solving problems (CSP). CSP is under-
stood as a structure of internal factors that influence 
a pupil’s performance and success in problem solving 
(Eisenmann, Novotná, & Přibyl, 2014). 

In short-term (3 months) and long-term (18 month) 
experiments, lower and upper secondary pupils were 
introduced by their teachers to heuristic strategies 
that they rarely or never came across in usual lessons 
but that are very effective and useful in problem solv-
ing. The pupils were led systematically to the use of a 
suitable heuristic strategy when they come across a 
problem they cannot solve using “school solving algo-
rithm” (Eisenmann, Novotná, & Přibyl, 2014; Novotná, 
Eisenmann, & Přibyl, 2015). The research focused on 
a number of research questions two of which are con-
nected to the area of teacher education and teacher 
pedagogical beliefs: Will the experiments have impact 
on the teachers involved? And what will this impact 
be?

The research team developed sets of problems that 
can effectively be solved using one heuristic strate-
gy. All these problems were carefully elaborated and 
commented upon and can be solved in several ways. 
Selected problems were also subject to a priori anal-
ysis (Nováková, 2013) and were piloted on a one-time 
basis in non-participating classes. 

All participating teachers can be described as com-
mitted teachers who invest a lot of energy into their 
teaching and who had attended in-service teacher 
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education courses. They were introducing their pu-
pils to the use of heuristic strategies through solving 
problems for the period of the experiments.

During both types of experiments, the impact on the 
participating teachers was analysed. The following 
changes are reported based on interviews and ob-
servation data from the collaborative work with the 
teachers over the period of the whole experiment and 
on the basis of the analysis of the structured inter-
views. The teachers (Novotná, Eisenmann, & Přibyl, 
2015)

 ― lowered their demands on accuracy and cor-
rectness in their pupils’ communication and 
recording in favour of understanding the prob-
lem solving procedures (which does not entirely 
correspond with the commonly accepted char-
acterization of mathematics as a domain where 
accuracy and correctness of communication is 
an important issue),

 ― showed more tolerance to variety in pupils’ solu-
tions,

 ― acknowledged a change in their teaching towards 
constructivist and inquiry-based approaches,

 ― grew more interested in pupils’ solving processes 
while solving problems;

 ― one of them reported that she started to think how 
to eliminate the pervasive pupils’ sense of failure 
(e.g., she decided to use group work more often).

One of the most important results is that most of the 
participating teachers started to pose their own prob-
lems with the aim of making the pupils understand 
the various strategies better.

How is this research study linked with the results pre-
sented in (Hofmannová, Novotná, & Hadj-Moussová, 
2003)? It contributes to the discussion on the con-
ditions of cooperation between researchers and 
teachers and on its benefits for the involved teach-
ers. Deeper understanding of the conditions for suc-
cessful participation of teachers in research offers

teachers the scientific background by provid-
ing information about research results which 
is stimulating and which influences their work. 

Subsequently, the movement reversed and teams 
of researchers and teachers worked together, ei-
ther in order to create and disseminate tools for 
improving education (curriculum, materials, rec-
ommendations) or to answer the ongoing needs of 
certain researchers. (Novotná, Brousseau, Bureš, 
& Nováková, 2012, p. 326)

The cooperation of teachers and researchers in math-
ematics education represents a broad and relevant 
topic. The focus is mostly on the improvement of the 
quality of mathematics teaching and learning (Brown 
& Coles, 2000). The above presented studies focus on 
another research area which is a change in behaviour 
and practices of teachers involved in research in the 
area of mathematics education.

CONCLUDING REMARKS 

The plenary lecture only covers a small part of re-
search on teacher education and its relationship to 
innovative teaching strategies. Its ambition was not to 
be (and considering the scope of the issue could never 
be) exhaustive. As it was already mentioned, there is 
an immense number of individual and collective mon-
ographs on the issue, a great number of national and 
international conferences, seminars, summer schools, 
there are journals specializing on mathematics teach-
er education, for example, the renowned Journal of 
Mathematics Teacher Education (JMTE). 

Teacher education is the topic of a number of inter-
national projects, for example, the completed pro-
ject Teacher Education and Development Study in 
Mathematics TEDS-M (Tatto et al., 2012; http://teds.
educ.msu.edu/) focusing on pre-service teacher edu-
cation or the currently running project FIRSTMATH – 
The First Five Years of Mathematics Teaching (first-
math.educ.msu.edu/) focusing on the first five years of 
teaching practice of novice teachers. One of the recent 
events, ICMI Study 23 Primary Mathematics Study on 
Whole Numbers, whose conference took place in June 
2015 (Sun, Kaur, & Novotná, 2015) and the Volume is 
now under preparation, pays considerable attention 
to research in teacher education – two chapters in the 
volume focus on this topic.

The presented survey in various resources implies 
that some of the issues that seemed to be underrepre-
sented at ICME10 in Copenhagen are now much more 
fully developed (e.g., the issues concerning teacher 

http://teds.educ.msu.edu/
http://teds.educ.msu.edu/
http://firstmath.educ.msu.edu/
http://firstmath.educ.msu.edu/
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educators). However, there are still areas that deserve 
more attention and research work.

To conclude, let us recapitulate the main and most 
frequent areas of study in research into teacher ed-
ucation since ICME10: Much attention has been paid 
to the balance between mathematical content knowl-
edge (MCK) and pedagogical content knowledge (PCK). 
This area also covers works on knowledge prerequi-
site to cross curricular teaching of mathematics (in-
side mathematics or between mathematics and other 
subjects). Another important issue is the field of pro-
fessional seeing of (student) teachers of mathematics 
and the “ability to notice” as integral part of PCK.

Also technology pedagogical content knowledge 
(TCPK) is one of the subjects of research in mathe-
matics education that have become more prominent. 
The use of e-learning and b-learning (blended learn-
ing) environments in teacher education and teaching 
practice belong to this field.

School mathematics is based on problem solving. 
Therefore it comes as no surprise that much atten-
tion of research is paid to a teacher’s knowledge 
prerequisite to the efficient use of various solving 
strategies when solving mathematics problems (see 
e.g., Novotná, Brousseau, Bureš, & Nováková, 2012). 
This is closely related to a teacher’s competence to 
pose problems.

Another research area that got more attention is the 
issue of mathematical literacy and numeracy. This 
research studies the relations between mathematical 
literacy and mathematics education and tries to define 
the requirements on the teacher and their knowledge. 
Important here is the teacher’s mathematical culture 
and the potential for its development. Some research-
ers also focus on knowledge and skills prerequisite 
to the development of pupils’ mathematical culture 
which has important consequences for research 
into assessment in mathematics and into didactic ap-
proaches to possible learners’ difficulties. All this is in 
a narrow relationship with the cooperation between 
researchers and teachers and the further develop-
ment of mathematics teachers’ beliefs. 

The paper started with the author’s personal con-
fession. Let it be concluded in a similar spirit: The 
three presented examples come from research stud-
ies in which the author was involved. They illustrate 

different views on the topic of this plenary lecture. I 
am convinced teacher education and innovation at 
schools are related to each other, they influence each 
other and if they are separate, the conditions for their 
development are much worse. Researchers in mathe-
matics education should always bear in mind whom 
the research concerns and how to make the teaching 
community interested in the findings. Either by invit-
ing teachers to participate in the research, its design 
and activities, or by communicating the findings well 
to practising teachers, giving them support and get-
ting from them feedback on how the innovation works 
in real school conditions.
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INTRODUCTION

The role and importance assigned to argumentation 
and proof in the last decades has led to an enormous va-
riety of approaches to research in this area. The 21 pa-
pers and 5 posters presented in TWG Argumentation 
and proof come from 15 countries, residing in 4 conti-
nents, and offering a wide spectrum of perspectives. 
These contributions intertwine educational issues 
with explicit references to mathematical, logical, his-
torical, philosophical, epistemological, psychological, 
curricular, anthropological and sociological issues.

Taking into account this diversity, the contributions 
were presented and discussed in working sessions 
under seven themes: theoretical and philosophical 
issues; theoretical and philosophical issues includ-
ing Habermas’ rationality; argumentation and proof 
in teacher education; argumentation and proof in 
textbooks; argumentation and proof at the univer-
sity level; proof representation; and performance, 
assessment and abilities. 

THEORETICAL AND PHILOSOPHICAL ISSUES

The three papers presented in this session concerned 
various theoretical issues. 

Knipping, Rott and Reid contrast three different per-
spectives when analyzing classroom argumentation 
(interactional, task analysis, and sociological). In par-
ticular, they state that multiple perspectives and levels 
of analysis are required in research on classroom ar-
gumentation, showing that each of these perspectives 
offers insights into students’ argumentations but no 
single perspective is adequate to completely describe 

the nature of students’ argumentations and ways to 
support their development.

In the framework of Husserl’s transcendental phe-
nomenology, Moutsios-Rentzos and Spyrou present 
a reading of the genesis of proof in ancient Greece. 
The philosophical and historical analysis aims to set 
up a didactical framework to foster students’ need 
for proving. 

The paper by Raman-Sunström and Öhman focuses 
on the notion of mathematical ‘fit’, with the goal of 
identifying some of its characteristics. In particular, 
their analysis leads to investigation of the relations 
between the ‘mathematical fit’, the notion of explana-
tion and some issues related to the aesthetic aspects 
of proof.

Finally, two posters were presented. Pericleous dis-
cusses a study in a Cypriot classroom in the frame-
work of Activity Theory. Vallejo and Ordoñez provide 
an example of proof-based teaching discussing knowl-
edge construction in the field of natural numbers.

THEORETICAL AND PHILOSOPHICAL ISSUES, 
INCLUDING HABERMAS RATIONALITY

Three presentations were concerned with the ‘scien-
tific culture’ in the classroom and in particular with 
analysis of different aspects based on Habermas’ 
(1998) construct of rationality. Cramer investigates 
how Habermas’ theory helps to explore obstacles and 
barriers to argumentation. Goizueta and Mariotti fo-
cus on the assessment of the validity of mathematical 
models in a problem-solving situation and underline 
the need for research to analyze epistemological as-
pects of the mathematical culture of the classroom. 
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Boero applies Habermas’ theory to analyze a univer-
sity student’s attempt to prove an elementary theo-
rem concerning continuous functions in epsilon-delta 
calculus. 

The presentation of papers stimulated a rich discus-
sion on Habermas’ theory of rationality as a research 
tool which provides a ‘dynamic vision’ of mathemati-
cal activity, and as a general perspective for analyzing 
the epistemological dimension of classroom interac-
tions and its socio-interactive roots. 

The two posters presented in the session involve dif-
ferent frameworks that were discussed and compared 
with Habermas’ rationality: the Toulmin (1958) model 
in the Ishii’s poster, and a competence-based four step 
model set up by Süss-Stepancik and Götz.  

ARGUMENTATION AND PROOF 
IN TEACHER EDUCATION

In recent years, the general interest in research in 
mathematics teacher education has stimulated many 
questions in research about argumentation and proof 
and teacher education. The presentations of papers 
in this session considered a variety of different tasks 
and activities. 

Kempen and Biehler focus on perception of generic 
proofs in number theory and identify three different 
kinds of pre-service teachers’ perceptions of proof: 
logical acceptance and psychological conviction, 
general acceptance of the concept and psychological 
uncertainty, and inappropriate understanding of the 
concept. 

The paper by Buchbinder and Cook is concerned with 
learning opportunities for pre-service teachers. They 
suggest that proof construction can be fruitfully in-
spired by exploring unconventional computational 
algorithms presented through math-tricks. 

From a different point of view, Erkek and Işıksal-
Bostan’s paper focuses on advantages and disadvan-
tages of the use of GeoGebra in a study involving 
pre-service elementary mathematics teachers.

The poster by Modeste and Rojas discusses a research 
project that aims to build a model of mathematical 
activity that can be used in primary teacher education.

The main issues discussed in the session were the de-
sign of proving tasks with the goal to avoid cultivating 
misconceptions in the teaching of proof, and to foster 
positive attitudes towards mathematics.

ARGUMENTATION AND PROOF IN TEXTBOOKS

Textbooks play a major role in everyday mathemat-
ics practice in many countries around the world and 
many teachers rely heavily on their textbooks that 
influence their decisions of which tasks to implement 
in the classroom, and how to implement them. Using 
different theoretical frameworks and adopting differ-
ent approaches to the analysis, three papers investi-
gate aspects related to argumentation and proof in 
textbooks in four different countries: Israel, Spain, 
Sweden and Finland.

Silverman and Even characterize justification and ex-
planation for mathematical statements offered in 7th 
grade Israeli textbooks. The analysis revealed that the 
textbooks commonly used several modes of reason-
ing in explanations for each statement. Nearly every 
justification was deductive or empirical, yet different 
modes of reasoning were used for geometric and for 
algebraic statements. 

Bergwall presents a framework for analyzing general-
ity in proving tasks in calculus in Swedish and Finnish 
textbooks. The author discusses the usefulness of 
framework in analyzing and comparing textbooks 
and states that there is not necessarily a correlation 
between the number of general proving tasks and the 
opportunities for students to engage in reasoning 
about arbitrary functions.

Finally, Conejo, Arce and Ortega present the evolu-
tion of the proof schemes shown in grades 11 and 12 
textbooks related to the theorems of limits. In par-
ticular, they develop a framework based on Harel and 
Sowder’s (1998) notion of “proof schemes” and show a 
case study applying the framework to Spanish math-
ematical textbooks from the 70s until today.

The discussion focused on methodological aspects 
related to the unit of analysis (e.g. task, lesson, chap-
ter, etc.) and on the difficulties identifying proof and 
argumentation tasks in textbooks (e.g. looking for 
keywords like “prove” or “show” might not be enough). 
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ARGUMENTATION AND PROOF 
AT THE UNIVERSITY LEVEL

Mathematics education at university level and, in 
particular, the teaching of proof and proving require 
specific methodological approaches and theoretical 
considerations that take into account the specific 
goals and the modality of teaching in this academic 
setting.

The theoretical paper presented by Annie Selden and 
John Selden suggests a perspective for understanding 
university students’ proof constructions based on 
the ideas of conceptual and procedural knowledge, 
explicit and implicit learning, behavioral schemas, 
automaticity, working memory, consciousness, and 
two systems cognition. 

One technique that future mathematicians should 
master is proof by reductio ad absurdum. Alvarado 
and González focus on it and present part of a re-
search study in which college students performed 
a task which required application of this technique. 

During the session, the discussion focused on the 
need for development of tasks, sequences of tasks and 
courses, as well as specific didactical approaches to 
support university students’ proof production and 
comprehension. In this vein, Pfeiffer and Quinlan 
presented a paper on proof evaluation tasks in a uni-
versity mathematics course. The responses to the task, 
in which students were asked to evaluate and rank 
different proposed proofs, provided rich opportu-
nities for students to attend to the nature and func-
tions of mathematical proofs; the task also revealed 
some interesting features of students’ thinking. The 
authors argue that proof evaluation tasks can afford 
rich learning opportunities as well as enable novice 
students to participate in authentic mathematical 
practice.

PROOF REPRESENTATION

Contributions in this session discuss aspects of rep-
resentation of proof, with particular attention to oral 
and written modes of representation, which involve 
different cognitive processes, and require careful con-
sideration when one attempts to interpret research 
findings on students’ conceptions of proof, and when 
comparing findings from different studies.

In particular, Andreas Stylianides focuses on the role 
of the mode of representation in students’ argument 
constructions. He discusses findings from a class-
room-based design experiment suggesting that the 
use of an oral mode of representation may be more 
likely, compared to a written mode, to support the con-
struction of an argument that approximates or meets 
the standard of proof. This raises concern about the 
validity of research findings reported in the literature 
on students’ conceptions of proof, and creates difficul-
ties in comparing findings across different studies.

Azrou’s paper deals with the writing of a proof text 
as the final step of the proving process. She describes 
university students’ difficulties to get a satisfactory 
product, which frequently result in an unclear text 
in a disorganized form, in particular when students 
are asked to answer open questions.

The aim of Moulin’s and Deloustal-Jorrand’s work is to 
explore potential functions of stories in the learning 
of Science and Mathematics with the focus on poten-
tial connections between the mathematical space and 
the rhetorical space during problem solving activity. 
They characterize theoretically a processes-trans-
ferring space between the narrative activity and the 
problem solving activity. By analyzing oral and writ-
ten products of children work, they show that the nar-
ration act supports students’ mathematical reasoning.

PERFORMANCE, ASSESSMENT, ABILITIES

The main issues discussed in this session concerned 
the importance of a priori analysis of assessment 
tasks in order to understand their requirements and 
compare to students’ mathematical histories, and the 
influence of the type of curriculum on students’ proof 
performance. 

In particular, Sears and Chávez examine students’ 
performance on a proof task about corresponding 
parts of congruent triangles. Using data from 1936 
students, they show that, regardless of curriculum 
type, students experience difficulty with constructing 
this type of proof. 

Luz and Yerushalmy examine the design principles of 
e-assessment of understanding of geometric proofs. 
In particular, they review various proving task-design 
studies, looking for a template that incorporates in-
teractive sketching that can be checked automatically.
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Finally, the participants were involved in a debate 
on the question about the possibility, in mixed-abili-
ty lower secondary school classrooms, to engage all 
students in proof without compromising the devel-
opment of the proof abilities of the most “talented” 
students. In particular, Moya, Gutiérrez and Jaime 
present a study on the ability to make proofs of math-
ematically talented secondary students attempting 
geometry proof problems. 

CONCLUSIONS

We think that TWG on argumentation and proof has 
offered the participants the richness of diversity in 
this research domain and the opportunity of fruit-
ful discussions. It also seemed to stimulate not only 
the interest of comparison but also the curiosity of 
undertaking a possible integration of different per-
spectives and the need of enhancing the development 
of international collaborations.
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One technique that future mathematicians should 
dominate is proof by reductio ad absurdum. This pa-
per presents part of a research study in which college 
students performed a task in which they needed to ap-
ply the knowledge gained using this technique. Small 
group discussions and a discussion led by the teacher 
were the methodology used in the classroom to solve the 
task. Both types of interactions were analyzed using the 
RBC-C model (Schwarz, Dreyfus, & Hershkowitz, 2009) 
to document how the construction process took place. It 
was found through consolidation of epistemic actions 
that although the students had to deal with difficulties 
associated with the proof, they were able to use the newly 
acquired knowledge. 

Keywords: Proof, interaction, construction, knowledge.

INTRODUCTION

One of the main activities in mathematics is to prove. 
However, in recent years, some countries, such as 
Spain and Mexico have almost banished the practice of 
proofs from the school curriculum: “The idea of   prov-
ing has changed over time; it depends on the context 
and cultural environment. Since the development of 
modern mathematics, which put too much emphasis 
on formal proofs, there has been a decline in their use 
in high school, this has strong implications for the 
transition to college”(Gómez-Chacón, 2009).

Possible reasons for the difficulties students face 
when having to develop a proof are a poor ability to 
formulate [and identify] mathematical statements, 
inappropriate concept images, a lack of training to 
generate and use their own examples and only an in-
tuitive understanding of the concepts involved in the 
proof (Moore, 1994).

Everyday language is an obstacle for the learning of 
a mathematical proof because of the differences be-
tween this language and mathematical language (Epp, 
2003). A conditional statement in every day language 
often admits various connotations of causality and 
temporality that makes its meaning quite different 
from the mathematical sense. Sometimes, ordinary 
language gives a different meaning to the statement 
caused by the tendency to deduce what is not said. In 
this sense, Epp (2003) suggests that the difference 
between everyday language and mathematical lan-
guage can lead to committing the “reciprocal error” 
in accepting that “p only if q” is logically equivalent 
to “if p then q”; to difficulty in the interpretation of 
quantified propositions; and to the mistakes made in 
trying to deny the implications. 

A lack of knowledge of proof techniques, how to 
choose the facts and theorems to be applied or when 
to use or not knowledge based solely on symbolic ma-
nipulation and the use of mathematical procedures 
are also perceived as problematic (Weber, 2001). Logic 
and proof are conceived separately; to avoid this, in-
struction must show the proof as a form of validation 
and the usefulness of language in developing and com-
municating proofs (Weber, 2001).

In this paper the process of solving a task using proof 
by reductio ad absurdum is analyzed in a study with 
university students in Mexico. This activity is part 
of a broader research study about the design of in-
structional tasks for teaching proofs and recording 
the advances made in the process of proving followed 
by the students as they solved these tasks. The solving 
process performed both in small groups and through 
guided interaction with the teacher are analyzed. 

However, observation and detailed analysis of the 
process of construction of proofs in context can be 

mailto:angelina.alvarado%40gmail.com?subject=
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very complicated when the data are massive and 
confusing. Hershkowitz, Hadas, Dreyfus, & Schwarz 
(2007) provides an example of research in which the 
flow of knowledge from one student to another is 
analyzed until they arrive at a common knowledge 
base. This type of research focuses on the process of 
construction and on the constructs at a given point 
until consolidation is acquired. The authors consider 
knowledge to be shared if the common knowledge 
base allows the group of students to continue building 
and updating knowledge collaboratively on the same 
topic. The authors acknowledge that they have relied 
on the work by Cobb (1995) in regard to collaborative 
learning.

CONCEPTUAL FRAMEWORK

Since students are expected to develop abstract 
mathematical knowledge, we consider Abstraction 
in Context (AiC) by Schwarz, Dreyfus, & Hershkowitz 
(2009) as the a suitable framework for analysis of the 
interaction. In AiC, abstraction is defined as “a vertical 
activity for the reorganization of previous mathe-
matical constructs within mathematics and by math-
ematical meanings so as to lead to a construct that is 
new to the learner” (Schwarz, Dreyfus, & Hershkowitz, 
2009, p. 24).

An abstraction process has three stages: the need for 
a new construct, emergence and consolidation. The 
abstraction cannot occur without the need for a new 
contruct; this need may arise from an intrinsic moti-
vation to overcome contradictions, surprises, or un-
certainty. The second stage is central and is where 
the new construct emerges. Three epistemic actions 
can be observed in this stage: R-actions (Recognizing), 
in which the learner recognizes that a specific prior 
construct is relevant to the situation at hand, B-actions 
(Building-with), with which the learner constructs 
recognized acts to achieve understanding of a situa-
tion or solve a problem; C-actions (Constructing), us-
ing B-actions and integrating previous actions to pro-
duce a new construct. The C-action refers to the first 
time that the learner uses or mentions a construct. 
In this process, R-actions are nested within B-actions 
and B-actions are nested within C-actions. C-actions 
can be nested in C-actions at a higher level. Finally, the 
third step, consolidation, is a long-term process which 
occurs when the construct is mentioned, constructed 
or used after a C-action. This stage is characterized 
by personal evidence, trust, immediacy, flexibility 

and care when working with the construct (Dreyfus 
& Tsamir, 2004) and also when the language is becom-
ing more precise (Hershkowitz, Schwarz, & Dreyfus, 
2001), although Kidron (2008) and Gilboa, Dreyfus, & 
Kidron (2011) consider that the increase in language 
precision is characteristic of the construction stage 
itself and not just the consolidation. 

In AiC the epistemic actions referred to are known 
the as RBC model (Recognizing, Building with, 
Constructing) and the RBC-C model, with the second 
C corresponding to the second stage of consolidation.

The aim of this paper is to describe the process of 
students’ proof construction and how they transfer 
the knowledge already acquired to solve new situa-
tions. We analyze the interaction of a group of five 
students and with the teacher using the AiC model 
(Hershkowitz, Schwarz, & Dreyfus, 2001). Therefore 
the research questions to be answered are: what are 
the epistemic actions that arise in the course of an 
interaction in a group and with the teacher during the 
process of proving a statement by reductio ad absur-
dum? And, are the students capable of consolidation 
during a long process of teaching of the concept of 
proof through a collaborative work effort?

METHODOLOGY

The activity described below is part of a broader re-
search study about introducing mathematical proofs 
to university students in their first semester of the 
Bachelor of Applied Mathematics program of Juarez 
University of Durango State, Mexico. The average age 
of the students was 18. Specifically, the task present-
ed in this paper pertains to the eleventh session and 
their participation was voluntary. The students had 
previously worked with other tasks about proofs such 
as the generation of definitions (Alvarado & González, 
2013a), which gave them some preliminary knowledge 
about proofs, the identification of the parts of a mathe-
matical proposition (Alvarado & González, 2013b), the 
use of logical connectives, the generation of examples 
and counterexamples, the formulation of conjectures 
and the proof by direct demonstration (Alvarado & 
Gonzalez, 2013c). In this session, the students were 
introduced to the process of proof by contradiction. 
The teacher began by explaining this technique with 
the following example: Show that prime numbers 
never finish, there is always one more. Different tasks 
were proposed to the students to prove some state-
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ments in the way shown by the teacher and once they 
had proved them, a challenge task, described in the 
next section, was proposed. The challenge task was 
to prove the following statement: It is impossible to 
write numbers using each of the ten digits once so that 
their sum is 100.

The classroom activity was conducted in a group 
with five students working on their own. Once they 
obtained an answer, an interaction with the teacher 
took place. Through collaborative dynamics the stu-
dents were given the opportunity to develop knowl-
edge together and express their ideas verbally. Planas 
& Morera (2011) argue that interaction is a skill that 
must be practiced by students and teachers in math 
class. This kind of an interaction is based on every 
participant’s right to express their opinion and try 
to convince the others of the validity of their ideas. 

The interactions can be effective if they feature a real 
and true exchange or communication. That is to say, if 
the participants: 1) undertake social interactions vol-
untarily with peers and with the teacher; 2) actively 
participate in interactions and engage with the task; 
3) have developed the basis for sharing and receiving 
(taken-as-shared) in equal conditions; and 4) do not 
represent a mathematical authority in the course of 
the interaction. Cobb (1995) and Steffe & Wiefel (1992) 
consider points 3) and 4) necessary for small group 
interactions, for good communication and genuine 
collaborative learning in mathematics. In this sense 
it is expected that effective interaction will result in 
a product (definition, rationale, conjecture, method, 
argument, demonstration, illustration, etc.) agreed 
on by all participants.

During small group work, the teacher can see if stu-
dents spend a long time looking for a way to approach 
the task. For this case the researchers had previously 
suggested that the teacher should interact with the 
students and give adequate support to their thinking. 
The teacher must take into account the four “teach-
er movements” (Jacobs & Ambrose, 2008) while the 
students continued working on the task. These move-
ments are: a) ensure that students understand the 
task (what do they know about the problem?) and if 
necessary change the context to a more familiar one, 
b) change the problem to a similar one with simpler 
values  , c) ask students what they have tried until that 
moment, and d) suggest using another strategy.

Discussions in the small group and with the teacher 
were videotaped and transcribed in their entirety. The 
analysis of interventions was made by identifying dif-
ferent units of analysis determined by the discussion 
of one aspect of the student’s task. For each unit of 
analysis the epistemic actions evidenced were iden-
tified, and this identification was then triangulated 
between the researchers. To identify the epistemic 
actions, in this analysis R-actions were considered 
to be the epistemic actions that the students used to 
recognize the information assumed to be true, as well 
as the definitions and concepts involved, the B-actions 
were those that emerged from the statement by ex-
traction of its meaning, or when calculations were 
performed to obtain deductions and to understand 
the meaning of the statement, to finally build the re-
quested proof and organize it (C-action). The C-action 
occurred once the statement of the proposition and 
its proof were considered as a unit.

DATA ANALYSIS

Below we describe, characterize and analyze the 
process of solving this task which took place in the 
classroom during the interaction of a group with five 
students. We have differentiated two parts: the first 
one describes the work in the group and the second 
one the corresponding interaction with the teacher. 

Group discussion
In the following dialogues only the students partic-
ipated. We have not differentiated which student 
made each contribution because we are interested 
in the whole process as the overall production of the 
group. Each contribution is numbered indicating that 
it belongs to one of the students.  The comments in 
brackets are comments made by the researchers.

The first R-actions served to recognize the assump-
tions or information available [2, 4], the conclusion 
[1 and 12] and the extraction of meaning from the data 
[5, 6]. As discussed below, students misinterpreted the 
information. They were considering a 10-digit num-
ber (all possible combinations) in which the digits 0 
through 9 appear only once.

1  We must see that [a number] with the 
given conditions is impossible. 

2  We have to use each of the 10 digits. 
3  Yeah. It is impossible. 
4  In P [the hypothesis] we have 10 digits. 
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5  We can put that we form a total of how-
ever many numbers but the digits 0 
through 9 always appear. 

6  You are going to do all such combina-
tions. One would be 1234567890.

Following this misinterpretation, we can identi-
fy some B-actions (advances in the proof from the 
R-actions) in their arguments [7–9 and 14] i.e. the com-
mutative property was applied. The students showed 
flexible thinking [10] using another B-action linked to 
the process of deducting from the back to the front 

“The only way you have 100 would be ...” and as a result 
some [12 and 13] B-actions took place to extend their 
peers’ understanding.

7 [...] The sum will always be the same because 
the digits change places but not their value. 

8  Good. P is that. Then P1 [the first deduction] 
which does not change the sum. 

9  And by the property of the sum 0 + 1 + 2 + ... + 9 
10  The only way you have 100 is with 10 places 

where the numbers were 10 and that’s not 
possible. 

11 I don’t understand. 
12  If the sum of all digits must give 100… 
13 You are going to have a big number with 10 

digits. Which you want without repeating. 
But their sum is not going to give 100. 

14  [They read again] Well, the sum will always 
be equal using the commutative property. 

15  But not different. It will always be the same. 
16  See. It says that it is impossible. 
17  How to build a contradiction?  
18  Now, what must we prove? 
19  That it’s impossible that the sum is 100. That 

is Q [the conclusion] //. 
20  Here’s something missing. The sum will al-

ways be 45. 

Another B-action occurred when formulating the 
negation of Q [21]. Finally [22 and 23] they found a 
contradiction and that was the step used to conclude 
that this was sufficient for proving the statement so 
this was the final C-action, i.e. the construction of a 
contradiction and thus the proof of the statement. It 
is important to mention that the statement did not 
appear in the conventional form “if P then Q”, and 
the students did not realize that the numbers could 
be formed with any number of digits, but each digit 

from 0 to 9 could only appear once. This led them to 
prove a different proposition from the one requested.

21  First there are 0, 1, ..., 9. Then assume that 
their sum is 100. 

22  Now I do the sum 0 + 1 + … + 9 and that gives 
me 45 different from 100. 

23  Since the digits always add up to 45 although 
we change positions, then the sum can never 
be that, and therefore Q is impossible, that 
the sum would be 100.

The figure below shows the written production made 
by the students, well-organized by steps in order to 
clearly communicate their ideas, even though they 
have not proved the adequate proposition.

Interaction with the teacher
The teacher reread the proof written by the group. 
First, he clarified the misunderstanding of the prop-
osition as students had thought they had to consider 
a single number with 10 digits and with each of the 
digits from 0 through 9 only once. In [24] the teacher 
presented an example involving two numbers [25]. 
The teacher [25] reframed the situation and students 
in R-actions [26 and 27] recognised the hypothesis and 
the negation of the conclusion [27] and implicitly the 
conclusion. They recognized [29] that they should 
move from hypothesis and NO Q to construct a contra-
diction. The teacher considered it important to verify 
that the interpretation of the task was suitable and 
asked for some examples [30]. They showed B-actions 
[31–35] to build examples with the aim of understand-
ing the nature of numbers and the negation of the 
conclusion.

24  Teacher:  [...] seems to be a confusion [...] 
Of course, if I write a number with the 
digits 0 to 9 each written once, their sum 
does not give me 100. But look. The exer-
cise is the sum of numbers written with 
these digits used only once [He writes 
two numbers: 12345, 6789] what is the 
sum? 

25  Teacher:  Well I can write it this way [two 
numbers] but the digits can appear once. 
Let’s see, what would be the way to re-
frame this situation? What do we know? 

26  Students:  The set of digits is 0, 1, 2, 3, 4, 5, 
6, 7, 8, 9. 
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27 Students:  The sum of them is equal to 100. 
That would be the negation [NO Q ]. 

28  Teacher:  How to build a contradiction? 
29  Student:  We must think of different num-

bers and their sum must be equal to 100. 
30  Teacher:  I have several numbers. I do not 

know how many. Their sum must be 
equal to 100. In addition, together they 
can contain no more than each digit 
once. See, what numbers would I use? 

31  Student:  So a1, a2 ... ak should only have 
each digit once. 

32  Teacher:  That is, you may have one, two 
or more numbers, but if one digit is here 
in that number, you cannot use it in an-
other number. 

33  Student:  Yes, [...] if I have 13, I cannot 
put 34 in another number [adding].

34  Student:  But if in that case, we can ob-
tain a sum even higher than 100. 

35  Student:  Yes, it may be higher, but we 
have assumed that it equals 100 [we must 
prove that it is impossible to add up to 
100 and then its negation is that their 
sum is 100]

In the following excerpt, deductions were made from 
the hypothesis (they used numbers like 1245, 736 and 
89) and the information derived from the negation 
of the conclusion. For the first deduction the teacher 

asked the students to analyze the digit of the units and 
think about what is required in this position so that 
the sum would be 100. They deduced with B-actions 
[37] that the sum of the digits of the units should give 
multiples of 10 or 20. They proposed examples of num-
bers to be in the position of the units [39–43] which 
is a B-action because it is a construction made by the 
students from the statement. Exploring with B-actions, 
they discovered that it was impossible to obtain the 
sum with 3-digit numbers [44–48]. When considering 
two-digit numbers [49] another B-action addressing 
the possibilities of the sum of the digits in the tens po-
sition [51] is given. They also gave an extreme example 
with the single case of a number with all digits. In this 
case the sum is itself [53 B-action] and greater than 100.

36  Teacher:  Yes. It would be 100 [the sum], 
and what does that imply? For example, 
look at the numbers of units. What is 
needed to be 100? 

37  Students:  The units must give me a multi-
ple of 10 [another student says]. Perhaps 
10 or 20. 

38  Teacher:  What would it be? For example? 
39–43 Students:  1 and 9 / 8 and 2 / 5, 2 and 3 / 7, 2 

and 1 / 1, 4, 2 and 3. 
44  Teacher:  For example, in the case of 9 and 

1, what happens? What about the oth-
er digits? Would they have a chance? If 
there were two numbers I would have 

Figure 1: Students’ written production
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to accommodate the 8 digits left. Also if 
there were three-digit numbers the last 
digit of the third one would be 0. 

45  Student:  And I should accommodate 7 
digits [2,3,4,5,6,7,8]. 

46  Teacher:  So, at least on one of those three 
numbers we would have 3 locations to 
accommodate digits. 

47  Students:  Yes. 
48  Teacher:  But the sum is greater than 100, 

then that happens with numbers with 
more than three digits. 

49  Students:  One can do it if the number has 
two-digits, but I can’t explain. Well, for 
example 5 two-digit numbers, using 
0,1,2,3,4… 

50  Teacher: For the units? 
51  Student:  Yeah, and then one must accom-

modate 5, 6, 7, 8, 9. We need to obtain in 
the tens, 9 [adding the units makes 10, 
therefore it accumulates 1 in the tens] 
and no ... 

52  Teacher:  Yes, well. I see.... Well, you can 
work on this idea. What matters to me is 
that you understand that the basic idea 
of   reductio ad absurdum is to assume 
that the sum is 100 accompanied by the 
hypothesis. If I explore the possibilities 
and arrive at a contradiction, then we 
have proved the proposition. 

53  Student:  Well, if we think of a number 
with all digits the sum would not be 100 
but rather greater. 

Finally, the teacher stopped the discussion consid-
ering that the important thing is to understand the 
technique and the students must continue working 
later on the proof of the proposition on their own. As 
this took place in the last two days of school we were 
not able to collect the final evidence of the students’ 
work on this proposition.

FINAL REMARKS

In this activity, a group discussion, the students’ writ-
ten production and the discussion led by the teacher 
to encourage knowledge construction from what they 
previously knew have allowed us to document the 
interactive generation of knowledge. The students 
recognized the hypothesis, the conclusion, and their 
role in the proof, they could construct the negation of 

the conclusion and from there, they proved the prop-
osition although they made a misinterpretation of the 
statement. This is evidence of the consolidation of the 
knowledge acquired by the students.

They carefully managed the premises and construct-
ed deductions from them, which is an indication of the 
consolidation of the new constructs as established in 
the RBC-C model and as shown by personal evidence. 
They also discussed the ideas they shared, showed 
confidence, immediacy, use of the construct when 
changing the context, working both in the group and 
with the teacher, seeking to clarify and refine their 
thinking, which may allow their language to increase 
in accuracy.

The RBC-C model allowed us to document and capture 
the complexity of group work for the construction of 
knowledge. Thanks to this model as a theoretical and 
methodological tool, we were able to identify the epis-
temic actions that occurred during the process. The 
group discussion with peers allowed students with 
the same level of knowledge to confront each other 
and identify some weaknesses, in this case compre-
hension of the task statement. The activity began with 
R-actions that progressed until a C-action. This activ-
ity sometimes required feedback to clarify to a class-
mate the reasoning performed, for example when a 
student says he does not understand. Throughout the 
task the students were persistent. They used examples 
in order to look at their structure, to understand their 
nature and to extract information in the construction 
of the contradiction. 

Interaction with the teacher was essential in this case 
to clarify the meaning of the proposition. In relation 
to comprehension and application of proof by reduc-
tio ad absurdum, the students managed the technique, 
handled it properly and they understood the function 
of negation of the conclusion in this proof. 
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This paper deals with the writing of a proof text as the 
final step of the proving process. In particular, students’ 
difficulties to get a satisfactory product, which frequently 
result in an unclear text in a disorganised form, are an-
alysed. Differently from other difficulties related to proof 
and proving, we noticed this phenomenon particularly 
when third year university students were answering 
some open questions where the process has to be built 
up, differently from traditional questions of calculation 
or direct use of a mathematical result where the steps of 
the process are known, regardless the correctness of the 
proof. We’ll try to identify the reasons behind writing an 
unclear, messy draft instead of a clear readable proof 
text; its consequences on students’ making proofs at the 
university level will be considered.

Keywords: Proof, university, proof text, open tasks, meta-

mathematics knowledge.

INTRODUCTION

The study reported in this paper is a part of a PhD 
research on proof and proving at the undergraduate 
level, focused on students’ difficulties when making 
proofs within a course of Complex Analysis. Research 
concerns third year university students’ productions 
while responding to tests during the academic year. 
These students are prepared to become engineers in 
a high level selective university in Algeria; the mathe-
matics programme for them is the same as for mathe-
matics majors in any other university, but with more 
time and more complete exercise activities. Each test 
contained three questions, chosen in order to investi-
gate difficulties of students’ proving. During the anal-
ysis of collected data (consisting of students’ written 
productions) of the three tests, for a few students an 
expected difficulty emerged related to the production 
of the final written proof text; a fourth test was de-
signed to explore that competence. In the first three 
tests, the questions were closed (like ‘calculate’, ‘prove 
that’), and most students’ proof texts were quite clear, 

well organized and legible, regardless the correctness 
of the solution. In the fourth test, the questions were 
open (like ‘why…’, ‘is it possible to have …’) and students 
were required to justify their answers: we realized 
that in most cases the final proof text was written like 
a draft, in a messy form that makes it difficult to read, 
even though, most of the time the idea behind seemed 
to be correct. 

We then decided to investigate the problem of writing 
a proof at the undergraduate level, because we think 
that it’s a crucial skill and one of the factors that pre-
vent students from making successful proofs or/and 
completing correctly a proof already began.  When 
the first sentences are insufficiently developed and 
written like a draft in a disorganised style, they cannot 
be a strong base to develop a complete well organized 
proof and even to check the correctness of reasoning; 
moreover the students may misread what they wrote, 
thus they are misguided in their way through.

In a previous study (Azrou, 2013), performed with 
first year university students attending an algebra 
course, the findings indicated that most of the proofs 
given by the students in closed-type tasks, even the 
incorrect ones, were clearly written and could be read 
easily. The purpose of the study reported in this paper 
is to try to identify the reasons why many students 
produced those disorganised unreadable proof texts 
while answering open questions. 

My hypothesis is that reasons might have been in-
herent: in the didactic contract that shapes the teach-
er-learners relationships; in the lack of meta-mathe-
matical knowledge (in particular, as concerns proof ); 
and in the cognitive difficulties inherent in moving 
from intuitions, knowledge and evidences elaborated 
at the inner or oral level, to a well-organized and clear 
written proof text, with an appropriate and correct 
use of mathematical language. Based on this work-
ing hypothesis, in the next section we will consider 
some theoretical elaborations concerning the above 

mailto:nadiazrou%40gmail.com?subject=
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possible reasons, in order to address and deepen our 
analyses. 

THEORETICAL BACKGROUND

The final proof text is a result of a process involving 
various components and is influenced by several 
factors. First of all, we will consider the relationship 
with the teaching and how proof texts are written by 
teachers; this will be explored using the construct of 
didactic contract (Brousseau, 1988) that concerns, in 
particular, the relationships between what teachers 
do and expect from the students, regarding knowl-
edge that teachers have and intend to teach, and what 
students think that their teachers expect from them. 
Several teachers’ expectations (concerning what stu-
dents should do and learn) are not made explicit, or, 
when explicit, are not understood by students in the 
right way. On the contrary, the efficiency of a didactic 
relation assumes students having some intelligence 
about the intentions of the teacher (Mercier, 2010). In 
the case of proof, different teachers write different 
kinds of proofs at the blackboard according to their 
conceptions about what is relevant in a mathematical 
proof, and according to the needs of the moment. Some 
teachers write all the details, while others write only 
what seem to be important for them in that moment. 
Some teachers add special comments on proving, 
others write only a chain of symbolic statements and 
comment them orally. Students “by contract” might 
tend to provide proofs that are as close as possible to 
their teachers’ ones. 

At a meta-mathematical level, most students do not 
know what doing mathematics is, which means knowl-
edge about mathematics as a science. By teaching only 
its contents, several teachers (especially school teach-
ers) assume that over time, students will be able one 
day to acquire knowledge about that science and find 
out how it works. But it has been shown (see Morselli, 
2007) that some university students’ difficulties are 
still caused by lack of meta-mathematical knowledge, 
particularly as concerns proving, like: how to exploit 
a known theorem while proving another theorem; 
what is the difference between a definition and a the-
orem; what is a counter-example; thus, they ignore 
some important rules of the game. Moreover, as point-
ed out by Morselli (2007), frequently students confuse 
exploratory argumentation and proof; they produce 
written arguments that are different from a proof by 
writing their “proofs” when they are engaged in the 

exploratory phase. The problem is that teachers do not 
know that students ignore what exactly a proof and 
a complete proving process are, and thus they might 
tend to stick to models derived from their teachers’ 
presentations of proof-models, which may be differ-
ent from one teacher to another. We say briefly that, 
concerning proof, several students lack knowledge 
about it (which we consider as meta-knowledge about 
proof ); and we hypothesize that this fact may result 
in a stronger influence of the didactic contract, which 
works as the only factor orienting their behaviour. 

As concerns the writing of proof, it is also close to lan-
guage and expression issues. The nature of mathemat-
ical language, with attention paid to the case of proof, 
was described in (Boero, Douek, & Ferrari, 2008), in 
particular as concerns the specific use of current ver-
bal expressions in mathematics (with change of mean-
ings, in comparison with ordinary language), and the 
integration of mathematical symbols within a verbal 
written text. In that paper, the authors also present-
ed some results concerning university students en-
gaged in problem-solving in an Algebra course; they 
found out that almost all those who, in an entrance 
test demanding verbal explanations, had produced 
answers with no verbal comment, or with rambling 
words and poorly organized sentences,  failed the fi-
nal exam. That paper is a general reference for our 
work: it offers a frame which provides a definition 
of mathematical language (pp. 265–266), a rich set of 
reflections and a wide perspective to deal with stu-
dents’ difficulties concerning mathematical language. 

Finally, we’ll also consider the logical structure of 
students’ proof texts and how they link their writ-
ten propositions together. For this, we’ll make ref-
erence to Durand Guerrier’s research work on the 
logical aspect of proving. In particular, students’ use 
of ‘then’ should be considered: it is currently used in 
mathematics to introduce a conclusion, to end a proof 
or set the desired result, and within the “if...then...” 
construct. Students may misuse it or not use it when 
they should, which makes a proof sound strange as 
there is no connection between the different prop-
ositions. In general students need to validate their 
different steps to carry on the proof process; if they 
are not able to do so because of difficulties related to 
logical symbols and connectives (cf.  Boero et al., 2008; 
Durand Guerrier et al., 2012), their proof are likely to 
be vague and unclear, or mistaken.
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METHODOLOGY 

To study proof text, it’s important to analyze students’ 
proofs written individually. We have designed a test 
with open questions (thus not in the form: “prove 
that”), whose answers should not result from a stan-
dard procedure involving a mathematical result or 
a theorem, but rather engage students in a creative 
process. The test, administered to 98 students, pro-
poses three simple short questions about a definition, 
a property or a result well known by the students, to 
be answered during thirty minutes. The degree of dif-
ficulty (complexity, connections to be established be-
tween known properties) of the questions was lower 
than in the case of some questions already tackled by 
the students during the exercises sessions. However, 
the questions were asked in a way unfamiliar to them, 
which put the students in a new situation that engaged 
them in gathering and linking their information and 
organizing them in order to build up a proof clearly 
written. This choice was aimed at identifying specif-
ic reasons influencing writing, and resulting in con-
fused, unreadable proof texts. 

The construct of didactic contract will be used to iden-
tify the relationships between students’ productions, 
and how proofs were usually presented to the stu-
dents by the two teachers (I’m one of them) during the 
course and the exercises sessions. Teaching the course 
consisted in two lecture sessions and one exercises 
session each week, all during a period of twelve weeks. 
There was no special focus on proofs even though all 
results are proved in lectures. The focus was rather 
on contents, statements of theorems, results and defi-
nitions and how students understand and use them; 
most of the exercises were about calculations, only 
some ones were about reasoning and links about con-
cepts; time was not enough to develop in details every 
concept. There was no check of students’ answers to 
questions (additional or not completely answered 
questions) posed to them, or of proofs written by them 
during the exercise sessions. Most of what students 
wrote was copying down what was already written by 
the teacher at the blackboard. The analysis will also 
consider students’ oral expression ability during the 
academic year and how they managed to talk mathe-
matically: as I know the students, I can tell about that 
for the students whose productions are analyzed. 

The study will be focused on the organisation of the 
students’ steps of reasoning in their proof texts; in 

order to better classify them, we will distinguish be-
tween three phases of proof production (Arzarello, 
2006): 

Step1: exploration and production of reasons for val-
idating the statement.

Step2: organisation of reasoning into a cogent argu-
mentation.

Step3: production of a standard deductive text.

Moreover, students’ productions will be examined 
from a logical aspect, by exploring how they link the 
different steps and whether and how they deduce any 
written statement from the previous one, and what 
are the means used for that: are they, in particular, 
logical connectives, or symbols like the arrow impli-
cation, or other transition words like ‘then’, ‘thus’ or 

‘finally’?

A-PRIORI ANALYSIS OF THE FOURTH TEST

The questions of the fourth test were of open type and 
needed to be answered by producing the answer and 
building up a proof to validate it in an autonomous 
way (as concerns the whole process). The three ques-
tions were as follows:

1) Is it possible to find a holomorphic function that 
admits 0 as a simple pole such that Residue of f at 
0 is 0 (Res (f, 0) =0)? 

2) May the residue of a holomorphic function at the 
infinity be zero? Justify.

3) Why is the residue of a removable singularity zero?

Like in the other tests, questions were related to prop-
erties and results that should have been well known 
by the students (and indeed other tests demonstrated 
that it was so). We aimed at ascertaining if the stu-
dents were able to write down the argument, based 
on known definitions and theorems, in a well organ-
ised, clear mathematical form. Even if this kind of 
open questions was familiar for students in an oral 
form, it was quite new for them in a written form: 
they had never seen the written answers to such kind 
of question; they had never been engaged in produc-
ing written answers to them. Thus questions could 
have revealed the students’ competence of autono-
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mous proof writing (proof writing not induced by a 
stereotyped request) and the consciousness about its 
functions (related to the very nature of proof: shortly, 
as an unchaining of propositions aimed at validating 
a statement). The most interesting data have been col-
lected through the first question. 

The question is about some results concerning simple 
poles and residues (P ⇒ Q ) and its negation (P and Q ) 
at the same time, which results in a contradiction: 
if a holomorphic function has a point 0 as a simple 
pole (P), it means that the residue of the function at 
this point (which is the coefficient of 1/z in its Laurent 
development) cannot be zero (Q ); the reason is that, 
in the case at stake, the residue is calculated by the 
formula lim zf(z) when z → 0, which is exactly the 
coefficient of 1/z already taken not zero. Logically 
speaking: the fact that the residue at a point is not 0 
is a direct consequence of that point being a simple 
pole for the function. We have chosen to refer to the 
point 0 to simplify the formula. There was no doubt 
that students knew all these concepts because they 
had used them many times before, but always when 
performing calculations (to calculate the residue for 
a given point, to establish whether given points were 
simple poles, multiple poles or other singularities). 
However no request of identifying and exploring the 
links between concepts had been made especially in 
a written way.  

ANALYSIS OF SOME STUDENTS’ PRODUCTIONS 

We’ll present and analyze two examples of students’ 
productions (French is the ordinary used language) 
that consist of a disorganised, unreadable proof text. 
This will exemplify the work done on the collected 
productions, and how we got the conclusions reported 
in the next sections. 

Student 1:
The student starts by rewriting the hypothesis of the 
question: ‘a function admitting 0 as a simple pole’. She 

continues at the beginning of the line by putting an 
implication arrow, followed by crossing out (x=0); then 
she writes f/x, adding the Laurent series of the func-
tion - not complete, with some blanks in it. Another 
implication arrow follows by stating the definition 
of the residue (that is the C k coefficient). The student 
goes on by marking a slash, ‘if  the’ and a comma; then 
she calculates the formula of the residue of f at 0 which 
is, according to the student, the limit when some non 
declared ‘a’ goes to 0 of xf(z), which is zero. With a 
last implication arrow, the student ends her proof by 
stating that f(z) is not a simple pole. 

The proof in this production is not totally wrong 
but is not written correctly and not complete. This 
doesn’t tell clearly if the student’s reasoning is cor-
rect or is a result of a mere coincidence. The first 
thing to notice is that two variables are used: x and 
z. According to the student a function that admits 0 
as a simple pole has a denominator with x, which is 
correct. She certainly meant to write f(x)=g(x)/x, but 
the way she expresses it is so odd, she writes f/x; she 
wanted probably to say that the principal part of the 
Laurent development contains only 1/x. This shows 
how the student struggles to translate her intuitive 
vague idea about the formula into a mathematical 
expression with mathematical symbols. The writing 
of the student is confusing; she gives flashes of what 
seems important to her without taking into account 
how the proof should be presented to the reader and 
how the different steps and formulas should be linked, 
which indicates poor meta-knowledge about proof. 
Many variables like z0, ck, cn and ‘a’ are used without 
defining and specifying their meanings; we are not 
sure that their meanings are clear for her. At the end, 
she deduces, by an implication arrow, that f(z) cannot 
be a simple pole, and certainly she meant the point 0. 
She writes down briefly how she remembers the re-
lated definitions and shows the main ingredients of 
the proof (one denominator with z, one coefficient is 
the residue and a non zero limit is for a simple pole). 

Figure 1: Student 1
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She works within the step 1, the exploratory phase and 
production of the reasons for validating the result. 

We can see how the student’ effort, influenced by the 
didactic contract, is aimed at showing to the teacher 
that she got the most important ideas related to the 
question, no matter if several details are mistaken 
or neglected. The text also allows to guess her own 
proof conception, which seems to be shaped by doing 
it for the teacher, who is supposed to understand the 
missing details and the unsaid words, according to the 
student. The logical links are not clear, particularly 
the implication used is not the logical one: it is more 
about shifting to another idea not necessarily and 
clearly connected to the previous one; moreover the 
student doesn’t tell about her proof technique, which 
seems to be a proof by contradiction. From a language 
point of view, the student is one of those who showed 
real difficulty orally when expressing any question or 
a comment involving a mathematical idea. Her natu-
ral spoken language is confusing and poor, and lacks 
flexibility to express mathematical meanings (Boero 
et al., 2008).    

Student 2 
In this production, it’s hard, first, to decipher the 
handwriting of the student and to follow the lines that 
are broken, so it’s not clear where a line starts and 
where it continues and ends. He starts by explaining 
what means that a function admits 0 as a simple pole 
by putting one arrow, which is meant to be the implica-
tion arrow, oriented towards f(z) expressed as φ(z)/z, φ 
being holomorphic. Then, the reader is puzzled where 
to continue reading, is it on the same line or beneath? 
At the same line, the student calculates the residue 
value by the limit formula, but it’s indicated with z 
going to ∞ instead to 0, even though the result is with 
z going to 0 which is φ(0); this last result is declared 
to be different from 0, without any justification, as 
an obvious fact. At the next line, he states that φ(z) is 

c0z with a hesitation on the power of z; at the next line, 
he adds that f(z) is c0/x plus a sum of cn and something 
not clear; at the end, he concludes by writing ‘then’ 
it is not pole, without explicitly indicating what is ‘it’. 
With an unreadable handwriting presenting the proof 
like a sketch, the organisation fails to clarify what 
the student is exactly doing.  However, after reading 
this text many times, the first part appears to be not 
totally incorrect. The student gives the definition of 
0 being a simple pole and calculates the residue of the 
function, which is not 0, a valid step of reasoning, but 
this would need a conclusion: that is a contradiction 
to the question. The student gives the main idea: the 
formula of the function f is given by a holomorphic 
function (φ(z)) with z at the denominator in the case 
of having 0 as a simple pole, and then calculate the 
first element of the Laurent development of f, which 
should correspond to c0, but fails to justify and make 
explicit the other details taken as obvious, like: why 
c0 ≠ 0, which is an important point in the proof. In 
doing so, the student is about showing to the teacher 
(or doing like the teacher) that he got the main idea 
of the proof, which seems more important than clar-
ifying explicitly the “small details” which are clear 
for him. Leaving some blanks in the proving process 
makes inevitably the statements logically disconnect-
ed, especially because the student doesn’t use logi-
cal connectors (except one ‘then’ at the end) to link a 
statement to another. I remember this student as one 
of the brilliant ones, but he is weak both orally and 
at writing. When he talks, no one understands him: 
he swallows his words, bubbles and repeats the same 
expression to say different meanings. On a cognitive 
level, he is very smart and most of the times he finds 
the good idea where all other students are stuck; it 
is rare that his answers are wrong, which makes his 
proof ’s idea possibly correct. For him, writing a proof 
text is writing a set of partial arguments presented 
in a disorganised way with incomplete formulas, far 
from how a proof should be. 

Figure 2: Student 2
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RESULTS 

Analysis indicates that students’ difficulties concern-
ing writing an organised and understandable proof 
text are originated in the didactic contract that substi-
tutes the mathematically relevant aim of structuring 
and writing a clear proof text with the aim of imitating 
teacher’ incomplete proofs. This results in a disor-
ganised, poor text somehow similar to some sketch-
es of proofs produced by teachers at the blackboard. 
Moreover, writing a proof is strongly influenced by 
students’ engagement in showing to the teacher what 
they know (the relevant idea to achieve the proof ), un-
derestimating the importance of writing a complete, 
well organised proof text. The previous texts show 
that students fail to go through the three steps of the 
proving process; they only develop the first explor-
atory phase and write it down by presenting the main 
ideas and missing many details. Failing to engage in 
the second phase and  reach the third phase of writ-
ing the proof text, logical links between statements 
remain unclear (student 1) and even missing (student 
2); with misused logical connectors (the implication 
arrow for student 1 and ‘then’ for student 2), the logi-
cal structure of the proof text is totally disconnected. 
Such students’ behaviors might be contrasted by a 
good meta-knowledge about proof, but as their me-
ta-knowledge about proof is poor, what is suggested 
by the didactic contract becomes dominant. The poor 
proof texts show difficulties inherent in the mastery 
of natural language (for both students) in the math-
ematical register (Boero et al., 2008), particularly as 
concerns its logical features, which contributes to 
students’ difficulties of logically connecting the steps 
of reasoning in an explicit and appropriate way, and 
to their using incomplete definitions and formulas 
(student 1 and 2). In some cases, disorganised proof 
texts have been produced by students with difficulties 
in mastering of natural language: students 1 and 2 are 
examples of them. Thus a flexible mastery of natural 
language (which cannot be achieved by means of every 
day-life experience alone, and requires specific inter-
ventions also concerning scientific communication) 
appears to be a necessary condition for mathematical 
proficiency (in agreement with (Boero et al., 2008), 
even for a course at the undergraduate level). The 
above presentation of the results of the analysis of 
students’ productions suggests that the four compo-
nents used to interpret the poor quality of the proof 
texts are not independent, but rather overlapping 
and intertwining. 

DISCUSSION

Our hypothesis on difficulties of writing proofs to 
open tasks that require a creative construction of a 
proving process and writing clearly the logic struc-
ture of how links are created between different ar-
guments and concepts were set on: lack of flexible 
mastery of natural language; lack of knowledge about 
proof at a meta-level; influence of the didactic con-
tract; and weak consideration of logical proof struc-
ture. This led to the question of identifying the pos-
sible reasons for these results and suggesting some 
possible didactical implications to cope with these 
problems.

According to the didactic contract, we may hypothe-
size some links between the identified difficulties and 
our teaching of mathematics at the undergraduate 
level, which does not introduce learning of proofs 
and less writing a proof text. Moreover, during the 
grading of exams copies, we base our positive eval-
uation on correct ideas in students’ proofs and give 
partial credit, even if they are not clearly and rigor-
ously presented. As far as I’m concerned as a teacher, 
it happens that I write some of the proofs at the black-
board by giving the plan and the main idea, and devote 
the short available time to the full explanation of the 
concepts to be used, and the links between the ideas 
of the proof. I sometimes leave the final text to the 
initiative of the students, who feel satisfied by getting 
the main idea and the main details. Both students and 
I (as a teacher) have always held the assumption that 
when the main idea of the proof is clearly explained 
and understood, writing the proof details and or-
ganizing the proof text is a simple thing! However, 
the fourth test provides strong evidence that this is 
wrong. Most of the meta-mathematical knowledge 
about proof is absent in our teaching, in particular 
as concerns the relationships between the proving 
process and the proof text. The lack of this knowledge 
might explain why students write directly their final 
text at the same time when they explore the question: 
they have no mean to interpret and situate what their 
teachers do when they write a proof at the blackboard. 
We (teachers) generally write proofs in a direct linear 
way; knowing already the steps of the proof, we write 
them one after another, till the conclusion. We do not 
show the exploratory phase and how the partial argu-
ments produced in that phase are re-considered and 
arranged to produce the final text (similar situation 
with mathematics textbooks).  Students learn to do 



Proof writing at undergraduate level  (Nadia Azrou)

85

the same: when they first set some ideas about how 
to solve a problem, they write their first exploratory 
draft as a final text because they were never shown 
how to go further till the written proof text. Another 
component of the meta-knowledge about proof that 
would have helped to cope with the problem of writ-
ing the proof text is about the difference between 
argumentation and proof, which is not clear for the 
students especially from a structural perspective. The 
logical structure of an argumentation differs from the 
logical structure of a proof: while in a proof all steps 
are deductive, in an argumentation the steps may be 
of different nature: abductive steps or inductive steps 
(Peirce, 1960; Polya, 1962 cited in Pedemonte, 2007). 
In this case, the construction of a deductive proof 
requires a structural change: from abductive or in-
ductive to deductive steps. This change is not always 
straightforward for students, but is usually necessary 
(Pedemonte, 2007). The results support the intrinsic 
cognitive difference between the open and the closed 
tasks, which implies different roles of verbal language. 
With closed tasks, proof text plays a narrative ritual 
function, while in the open ones, the text plays, in the 
first phase, a constructive creative function. With 
proofs for closed tasks, students go through a secure 
process, behaving in a conventional ritual way and 
showing a coherent reasoning guided by the didactic 
contract, according to teachers’ and textbooks’ mod-
els. The result is a clear, well organisation proof text 
(regardless the correctness of the proof ). The use and 
control of meta-mathematics knowledge is needless 
in this case. On the contrary, in proofs for open tasks, 
a creative organisation of the arguments is needed, 
but lack of meta-mathematics knowledge about proof 
and some uncompleted proof text models offered by 
teachers lead students to write their proofs when rea-
soning (which is a nonlinear process). Failing to go 
through the two following phases, the text would look 
more like a draft. Furthermore, an in-depth analysis 
of students’ mastery of their native language and of 
written French is needed to complete our study. 

What instructional interventions can be effective in 
overcoming these difficulties? Teaching meta-math-
ematical knowledge and especially meta-knowledge 
about proof seems to be extremely important and ef-
fective for introducing the learning of proof. It should 
regard the differences between deductive, abductive 
and inductive reasoning, the logical structure of proof, 
and how to organize proof text. Introducing some 
open tasks, among the activities, would break the 

ritual pattern of proofs for closed tasks and encour-
age creativity. Explaining proofs and writing them 
directly fails to show students how really they are 
constructed in different phases; while some writing 
proof exercises proposed to students with hints and 
main idea of proof would enhance writing proof text.
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In this paper I present an analytic framework for gen-
erality in textbook proving tasks that involve functions. 
The framework is discussed in relation to results ob-
tained when analysing tasks in integral calculus. The 
results show that the frameworks’ categories are easily 
distinguishable if the functions are explicitly described. 
The results are also promising regarding the possibility 
to clarify differences between textbooks. The analysed 
sections exemplify that there is not necessarily a corre-
lation between the number of general proving tasks and 
the opportunities for students to engage in reasoning 
about arbitrary functions. Limitations and possible 
refinements of the framework are also discussed. 

Keywords: Mathematical proof, mathematics textbook, 

upper secondary school, undergraduate mathematics, 

integral calculus.

INTRODUCTION

Research on the teaching and learning of proof often 
involves the distinction between specific and general 
arguments and properties. For instance, students’ ten-
dency to take specific cases as sufficient justification 
of general properties is well documented (Harel & 
Sowder, 2007). The distinction between specific and 
general has also been used to study how mathemat-
ics textbooks support proof-related activities and 
learning (e.g., Stylianides, 2008; Thompson, Senk, & 
Johnson, 2012).

In an ongoing study, we use the analytical framework 
of Thompson and colleagues (2012) to investigate 
Swedish and Finnish upper secondary textbooks. One 
part of the analysis consists of determining whether 
or not textbook tasks provide opportunities for gen-
eral reasoning. When tasks involve functions, this 
distinction is not always obvious. Various combina-
tions of dependent variables, independent variables 
and other parameters mean significant differences in 
the ‘degree of generality’ between tasks. This suggests 

that such a textbook analysis would benefit from a 
more fine-grained classification of generality. In this 
paper I will address this issue by discussing a tenta-
tive generality framework for proving tasks based 
on the ‘size’ of the set of functions that the tasks call 
for a proof about. I will refer to this as the function 
generality framework. By ‘proving task’, I mean a text-
book exercise explicitly asking the student to prove 
or show a mathematical property. 

The function generality framework is an answer 
to the first of three questions stated below, around 
which this paper is focused. By applying it to proving 
tasks in Swedish and Finnish textbooks, some results 
relating to the other two questions will be obtained. 
The questions are: (1) How can ‘degree of generality’ 
in proving tasks involving functions be framed? (2) 
What analytical difficulties arise when proving tasks 
are classified according to function generality? (3) 
What can classification according to function general-
ity reveal about textbooks that a ‘specific-or-general’ 
classification cannot? 

Some initial results concerning the analysed text-
books will also be discussed.

BACKGROUND

One characteristic feature of a mathematical proof 
is that it usually provides a valid justification for a 
general property. However, numerous studies (many 
of which are referred to in Harel and Sowder (2007)) 
show that students on most educational levels, even at 
university (e.g., Hemmi, 2008; Weber, 2001), have lim-
ited understanding of this aspect of proof. Typically, 
students justify general statements with specific ex-
amples, view counter-examples as exceptions, believe 
that counter-examples might exist even if there is a 
general proof etc. In the literature, this has been re-
ferred to as empirical response (Bell, 1976), pragmat-
ic justification (Balacheff, 1988) and empirical proof 
scheme (Harel & Sowder, 1998). Central to all these 
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frameworks is some kind of distinction between the 
general and the specific. 

Even though no curriculum program is self-enacting, 
research has stressed the wide use of textbooks in 
classrooms and how they are crucial links between 
national curricula and teaching practice (e.g., Stein, 
Remillard, & Smith, 2007). In line with this research, 
mathematics textbooks can be seen as potential 
sources for opportunities to learn. Hence, textbooks’ 
treatment of reasoning and proving is an important 
object of study. Historically, such studies are rare 
(Hanna & de Bruyn, 1999), but in the past decade a 
number of studies with this focus have been pub-
lished (Nordström & Löfwall, 2005; Stylianides, 2008; 
Thompson et al., 2012). In an analysis of an American 
reform-based curriculum for middle school, it was 
found that 40% of the textbook tasks were designed to 
engage students in reasoning and proving, but only 
12% of these offered opportunities to provide general 
proofs (Stylianides, 2008). Thompson and colleagues 
(2012) report on an extensive study of US textbooks 
for upper secondary school, concerning opportuni-
ties offered for students to engage in proof-related 
reasoning within the topics of exponents, logarithms 
and polynomials. Their study showed that about 50% 
of the properties stated in narratives were given some 
kind of justification; 30% with a general argument 
(i.e. a proof ) and 20% with a specific case. About 5% 
of all exercises were considered proof-related, half 
of them of a general kind and half a specific kind. 
Approximately 1% of all exercises urged the student 
to develop a general argument.

The frameworks used by Stylianides (2008) and 
Thompson and colleagues (2012) are similar to (or 
inspired by) those used by Bell (1976), Balacheff (1988) 
and Harel and Sowder (1998). Hence, they also distin-
guish between specific and general aspects of textbook 
content. In an ongoing study, we have used the frame-
work of Thompson and colleagues (2012) to analyse 
Swedish and Finnish textbooks. Traditionally, deduc-
tive reasoning has primarily been studied in geome-
try courses, but more recently it has been suggested 
that reasoning and proof are important in all content 
areas (e.g. NCTM, 2000). Therefore, Thompson and 
colleagues (2012) choose to focus on algebraic top-
ics instead of geometry. For the same reason, and to 
further complement their study, we have focused on 
calculus. In this broader study we analyse all parts of 
textbooks: expository sections, worked examples, ex-

ercise sets, review exercises etc. It is during this work 
that I have encountered differences in generality that I 
have found difficult to capture with the earlier frame-
works, and which I therefore address in this paper.

When functions are involved in mathematical tasks, 
there are dependent as well as independent variables. 
A task like “Prove that Dx2 = 2x” is general in the sense 
that the student is asked to prove something for all x, 
but specific in the sense that it only concerns one 
particular function. The inclusion of more or less 
arbitrary functions, parameter families of functions 
and other parameters also means (potential) differ-
ences in the ‘degree of generality’. Tasks like “Prove 
that Dekx = kekx” and “Prove that Df(kx) = kf'(x)” are both 
general in the sense that the identities hold for all x 
and all k, but the second one is obviously more general 
than the first since it also holds for any differentiable 
function f. This difference in generality also implies 
different content focus; while the first focuses on 
properties of a certain function, the second focuses 
on a fundamental property of differentiation itself. 
These examples show a need for a more fine-grained 
framing of generality based on properties of the func-
tions involved in the tasks. 

I have also found several tasks formulated as “Show 
that …” but that were not general in any sense and only 
required a routine calculation. Sometimes it was the 
other way around: theoretically and cognitively de-
manding tasks that from a mathematical point of view 
concerned proving but were formulated in words like 

“Why is it …” or “Motivate why …”. This relates to find-
ings regarding proofs being “invisible” in textbooks 
(Nordström & Löfwall, 2005). While other studies (e.g., 
Stylianides, 2008; Thompson et al., 2012) look for op-
portunities to engage in reasoning and proving in 
a broad sense, it is therefore important to also look 
specifically at proving tasks. 

METHODOLOGY

Topic, context and textbooks
For the pilot study reported here, I have restricted 
the analysis to proving tasks in integral calculus. Like 
differential calculus, this topic is central in upper sec-
ondary school as well as in introductory courses at 
universities. However, the theory of integrals is more 
complicated and proofs are often omitted. There is 
a tendency that the underlying theory is not treat-
ed in detail in introductory courses at universities 
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but rather postponed to intermediate courses, due 
to students’ difficulties with a theoretical approach 
(Hemmi, 2006). Thus, it is a real challenge for upper 
secondary textbook authors to incorporate elements 
of reasoning and proving within this topic, and it is of 
research interest to study how this is done. 

To get a reasonably rich set of data, four different 
textbook sources were chosen (see Table 1 below): two 
Swedish upper secondary textbook series (referred to 
as SW1 & SW2), one Swedish undergraduate textbook 
(SWU), and one Finnish textbook for upper secondary 
school (FI1). Publishers are unwilling to reveal their 
market share, but it is well-known that SW1 and its 
predecessors have long dominated the Swedish mar-
ket. In 2011, more than 80% of those entering engineer-
ing programs at Örebro University reported having 
used these textbooks. The main reason for choosing 
SW2 was that, while SW1 is a traditional Swedish text-
book, SW2 is a newer one with more reform-oriented 
intentions and a stated focus on reasoning. FI1 is the 
only Finnish textbook series available in Swedish 
for use in the Swedish-speaking parts of Finland. Its 
Finnish original is probably the most widely used text-
book in Finland. Finally, for the sake of curiosity, and 
to get an indication of the usefulness of the function 
generality framework on introductory calculus texts 
for the university level, SWU was included; this is a 
Swedish single-variable calculus textbook that has 
been around for several decades.

Swedish upper secondary school is course-based. 
There are five mathematics courses, of which the first 
four are often a prerequisite for university studies in 
science and technology. Integral calculus is treated in 
Courses 3 and 4. The first three courses exist in dif-
ferent versions, depending on whether they are part 

of a vocational program (Track a), a program in the 
social sciences (Track b) or a program in science and 
technology (Track c). For this study, only textbooks 
for Track c were chosen. In Finland there is a short 
mathematics course serving as preparation for uni-
versity studies in, for example, the humanities, and 
a long course serving as preparation for university 
education involving higher mathematics. The long 
course is divided into 13 parts, the first ten of which 
are mandatory. Part 10 is devoted to integral calculus 
only (but this topic is further developed in Parts 12 
and 13). This study only includes Part 10.

Method
First, all textbook sections specifically dealing with in-
tegral calculus were identified. All exercises in these 
sections were included in the analysis, as were the 
review exercises on integral calculus (which were typ-
ically placed at the end of the book). The only excep-
tion was exercises on continuous distributions, which 
were all omitted since only one of the textbooks treat-
ed probability theory within the sections on integrals. 
Concerning the unit of analysis, whenever an exercise 
was divided into an enumerated list of subtasks, each 
subtask was regarded as one task. This resulted in a 
total number of 1,739 textbook tasks to be analysed 
(see Table 1). Since the function generality framework 
is meant to be a tool for analysing the opportunities 
offered to students to associate ‘proving’ with general 
justifications, I next looked for tasks explicitly asking 
the student to ‘show’ or ‘prove’ something. Such tasks 
are referred to as proving tasks. In total there were 80 
proving tasks, all of which could be interpreted as 
concerning functions. 

In SW1, SW2 and SWU all proving tasks were for-
mulated as “Show that …”; i.e., the word ‘prove’ was 

Table 1: Textbooks, tasks and proving tasks within sections on integral calculus

Publisher Series Book Total no. of

tasks proving tasks

SW1 Liber Matematik 5000 3c & 4 371 21 (6%)

SW2 Sanoma utbildning Origo 3c & 4 450 13 (3%)

FI1 Schildts Ellips 10 529 30 (6%)

SWU Matematik-centrum, 
Lund

Analys i en vari-
abel

Exercises 379 16 (4%)

1,739 80 (5%)
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never used. In FI1 ‘prove’ was used as often as ‘show’. 
On three occasions, all in SW1, ‘show’ was used in 
a non-mathematical way, as in “Show in detail how 
you calculate the integral …” (SW1, Book 3c, p. 185, ex. 
3412a). I chose to include them in the analysis since 
they play a role in forming what students will associ-
ate with the word ‘show’.

For every proving task, a detailed account was made 
of the function(s) it concerned. This included informa-
tion on whether the task concerned specific functions, 
parameter families of functions (including the num-
ber of parameters) or more general non-parametric 
classes of functions. Notes were taken about the kind 
of elementary functions involved (polynomial, trig-
onometric function, exponential etc.) or, in the more 
general cases, what classes of functions were involved 
(continuous, periodic, odd etc.). It was also noted if a 
task contained additional parameters (not connected 
to the functions), or if it could be seen as general in 
some other sense.

Analytical framework
One way to determine whether a proving task offers 
opportunities for general reasoning is to determine 
whether the property to prove itself is general or spe-
cific. Therefore, all proving tasks were categorized as 
case-specific or case-general following the framework 
of Thompson and colleagues (2012). As mentioned 
earlier, the distinction between specific and gener-
al is sometimes difficult to make for tasks involving 
functions. The general principle used in this paper 
is that if one can think of a more specific case than 
what is stated in the task, without substituting the 
independent variable with a specific number, then the 
task is considered case-general. This means that the 
presence of an independent variable  is not enough 
for a property concerning functions to be deemed 
case-general – either there need to be other parame-
ters involved, or the property must concern a class of 
functions. Thus, for example, a proving task about e2x  
is usually considered case-specific (unless other pa-
rameters are involved), whereas a proving task about 
ax or ekx is considered case-general (see the Results 
section for further examples). I believe this is in line 
with how Thompson and colleagues (2012) would have 
distinguished between specific and general cases. To 
further clarify this notion, consider the following 
properties, which were all found (explicitly or implic-
itly) among the analysed proving tasks:

a )  ∫ 41 √xdx =  14
3   

(SW1, Book 3c, p. 197, ex. 12a)

b )  ∫ a1 1
x2 dx never exceeds π  

(SW2, Book 4, p. 158, ex. 4371c)

c) F(x) =  ax

ln a  is a primitive to f(x) = ax  
(SW2, Book 3c, p. 159 ex. 5124)  

d )  ∫ a
−a f(x)dx = 2 ∫ a0 f(x)dx if f(x) is even  

(FI1, p. 156, ex. F1)

Here (a) is case-specific, while (b)–(d) are all case-gen-
eral due to the parameter . But, like the examples given 
in the Background section, there are differences in the 
‘degree of generality’ between (b), (c) and (d). While (b) 
concerns one specific function, (c) holds for a one-pa-
rameter family of functions and (d) holds for all even 
functions, a class too large to be represented by use 
of a finite number of parameters. In order to capture 
these differences, I introduce the function generality 
framework with three subcategories: statements about 
a finite number of specific functions, like (b), will be 
called non-general; statements about parameter fami-
lies of functions, like (c), will be called finitely general 
and measured by the number of parameters, as long as 
the number of parameters is finite; statements about 
more general sets of functions, like (d), which are too 
large to be represented by use of a finite number of 
parameters, will be called infinitely general.

From the student perspective, the difference between 
non-general and finitely general proving tasks is that 
in the latter case the student needs to distinguish the 
independent variable from other variables, and to be 
able to handle parameters when manipulating func-
tion expressions. But in both cases there are expres-
sions available for algebraic manipulation. In the case 
of infinite generality, though, the student needs to 
find suitable ways to represent and use the relevant 
property (like the property ‘being even’ in (d)). Thus, 
I believe the three categories of function generality 
to be of educational relevance, even though it is some-
times easier to prove an infinitely general statement 
than a non-general one.

The classification of tasks according to function gen-
erality can be done independently of the classification 
of tasks as case-specific or case-general. But since all 
case-specific tasks will be non-general, nothing is 
gained by applying the function generality frame-
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work to case-specific tasks. I therefore only apply this 
framework to case-general tasks; i.e. I see function 
generality as a way to divide case-general tasks into 
subcategories. 

During the analysis I soon discovered that proving 
tasks often express a relation between different class-
es of functions. In such cases, the task was classified 
according to the ‘largest’ of these classes. Examples 
are given in the Results section.

In our broader study, mentioned earlier, a second 
Finnish textbook series is included and parts of the 
analysis have been done independently by two re-
searchers. During this work we have discussed and 
compared our coding and resolved all differences.

Finally, even though Examples (a)–(d) are from inte-
gral calculus, the ambition is for the framing of gen-
erality described here to be applicable to any topic 
involving functions. Aspects of generality that might 
be unique to integral calculus will be touched upon 
in the discussion.

RESULTS

In this section I will present a representative sample of 
the analysed proving tasks belonging to the different 
framework categories, as well as tasks that highlight 
the strengths and weaknesses of the framework as an 
analytical tool. A summary of the number of proving 
tasks, by textbook series and generality, is shown in 
Table 2. For example, SW2 had 13 proving tasks: three 
case-specific and ten case-general. When these ten 
were analysed according to function generality, three 
were found to be non-general, six finitely general, and 
one infinitely general.

In SW1 and SW2 (but not in FI1 or SWU) I found 
proving tasks that were case-general, even though 
they were non-general in the sense that they only 

concerned specific functions. This was always due 
to additional parameters, typically as limits of inte-
gration, as in Example (b) in the framework section. 

Proving tasks of finite generality mostly concerned 
one- or two-parameter families of functions. SW2 also 
contained two tasks with three-parameter families. In 
FI1, six out of 13 finitely general tasks had the constant 
of integration as its only parameter, as in “Prove the 
integration formula ∫ sin x dx = −cos x + C” (FI1, p. 29, 
ex. 259a). 

In SW1 there was no proving task of infinite generality, 
while in SW2 there was one: “Show that if f(x) is contin-
uous in a ≤ x ≤ b then ∫ b

a f(x)dx = −∫ a
b f(x)dx” (SW2, Book 4, 

p. 146, ex. 4340).  About a third of the proving tasks in 
FI1 were infinitely general. Half of these were similar 
to “Prove the integration formula ∫ f'(x)ef(x) dx = ef(x) + C” 
(FI1, p. 35, ex. 271b); i.e., they were essentially related 
to the chain rule.

During the classification according to function gen-
erality, only three tasks proved somewhat difficult to 
categorize, all of them in FI1. The first reads as follows: 

“Show that all primitive functions to  g(x) = x2(5 + 4x3)2 
are strictly increasing” (FI1, p. 25, ex. 250). In this task 
only one specific function is explicitly given, but the 
statement concerns the one-parametric class of its 
primitive functions. Therefore, I classified this task 
as finitely general. However, the proof need not take 
into account any parameters, since it mainly rests on 
the fact that g(x) > 0. 

A similar difficulty concerns ex. 460, p. 112 in FI1, 
where the student is asked to prove a general formu-
la for the area bounded by a parabola and a straight 
line. No explicit formulas are given for the two curves. 
However, since lines and parabolas are graphs of first- 
and second-degree polynomials, i.e. two- and three-pa-
rameter families of functions, I classified this task as 
finitely general.

Table 2: Numbers of proving tasks of different case and function generality

Proving tasks Case-specific Case-general

Total Non- 
general

Finitely 
general

Infinitely 
general

SW1 21 15 6 1 5 0

SW2 13 3 10 3 6 1

FI1 30 8 22 0 13 9

SWU 16 13 3 0 1 2
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The third example connects to the uniqueness of 
primitive functions, but is actually a result of differ-
ential calculus, often referred to as Rolle’s theorem: 

“If f'(x) = 0 everywhere then f is constant” (FI1, p. 156, 
ex. F3). The conclusion of this theorem means that the 
class of functions the theorem concerns is one-para-
metric. But in the proof, f must be handled as an arbi-
trary function with the property f’(x) = 0. I therefore 
considered this proving task to be infinitely general.

DISCUSSION

In the introduction I posed three questions. The first 
was how the ‘degree of generality’ in proving tasks 
involving functions could be framed. To answer this 
question, I have described a framework based on the 

‘size’ of the class of functions under consideration. 
Applying this to proving tasks in integral calculus in 
four sets of textbooks has made it clear that proving 
tasks of all three kinds (non-general, finitely general 
and infinitely general) exist, and that the classifica-
tion is straightforward as long as the proving tasks 
are explicit regarding which functions they concern. 
This indicates that for a generality analysis of upper 
secondary textbook proving tasks, the categories of 
the function generality framework are relevant and 
well-defined.

The second question concerned analytical difficulties. 
The three concluding examples in the Results section 
indicate that my framing of generality is less suitable 
when the functions under consideration are not ex-
plicitly given. In such tasks, the first step in providing 
a proof is often to find a suitable representation of 
the functions involved. One might therefore expect 
students to experience them as more general than our 
classification shows. This dimension of generality is 
not captured by my framework. The third example 
shows the difficulty in measuring generality in terms 
of the size of the class of functions when the statement 
itself is about this size. It is reasonable to believe that 
such difficulties arise more often when theoretically 
oriented textbooks are analysed, regardless of wheth-
er or not the topic is integral calculus. 

The third question concerned the usefulness of the 
framework. Let us first look at the differences be-
tween the textbooks, shown in Table 2. A larger part 
of the proving tasks are case-general in SW2 than in 
SW1, and the same holds if we focus on function gen-
erality. But if we compare SW2 and FI1, the function 

generality framework reveals differences that can-
not be seen simply by checking case generality. The 
proportion of case-specific to case-general proving 
tasks is approximately the same (1:3) for these text-
books. But while a third of the case-general proving 
tasks in SW2 turn out to be non-general when it comes 
to function generality, FI1 has no such non-general 
tasks. In addition, nine out of 30 proving tasks in FI1 
are infinitely general (concerns ‘any’ function), while 
there is only one such proving task in SW2. The fact 
that SW1 has no infinitely general proving tasks and 
SW2 has only one also means that they provide few (if 
any) opportunities to associate the imperative ‘prove’ 
with the providing of a general argument valid for 

‘any’ function. Since proving tasks concerning specific 
functions or parameter families of functions turn the 
attention to features specific to these functions and 
not to properties of integration in itself, the absence of 
proving tasks of infinite generality also means fewer 
opportunities for reification (Sfard, 1991) of the inte-
gral concept. Such information about textbooks may 
be of importance to teachers in planning and choos-
ing complementary materials so they will be able to 
offer students sufficient opportunities to learn the 
generality aspects of reasoning and proof.

Since the analysis presented here only includes sec-
tions on integral calculus, we cannot draw any general 
conclusions about the analysed textbooks. What is 
said above only applies to the exercise sets in the in-
tegral sections. But the point here is that the results 
show that the function generality framework has the 
potential to reveal textbook properties of educational 
importance that a categorization of proving tasks as 
case-specific or case-general cannot. It is reasonable 
to believe that this holds true for other mathematical 
topics as well. As a first step, we plan to widen the 
analysis to differential calculus and to include tasks 
that are proof-related in a broader sense. 

There are of course other aspects of proving that are 
not captured with this framework, and situations in 
which this framing of generality may be misleading. 
One topic-specific aspect concerns the constant of in-
tegration. As mentioned in the Results section, half 
of the finitely general proving tasks in FI1 had this 
constant as their only parameter. In such tasks, this 
parameter is seldom an essential part of the proof. 
Hence, the number of finitely general proving tasks 
can be misleading without further analysis of the pa-
rameters of the tasks. Another aspect relates to find-
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ings in the university textbook SWU. I was surprised 
to find so few general proving tasks in this book. On 
the other hand, my impression was that while proving 
tasks in the upper secondary textbooks often required 
only routine calculation (direct use of standard for-
mulas for differentiation and integration), the prov-
ing tasks in SWU were more non-routine. They often 
concerned inequalities, and the proofs required that 
functions be estimated. One way to put it is that au-
thors of upper secondary textbooks seem to want to 
acquaint students with the word ‘show’ by using it 
when one could just as well have asked them to cal-
culate. This tendency is not evident in the university 
text. The extent to which proving tasks actually re-
quire reasoning and not simply standard symbolic 
manipulation is not covered by my framework, but 
would certainly be an important element of textbook 
proving tasks to investigate further.
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The purpose of this paper is to analyze and discuss a 
think-aloud production of a first year university student 
trying to prove an elementary theorem, concerning con-
tinuous functions, within the frame of the epsilon-delta 
Calculus. I will shortly consider current studies on the 
relationships between a visual justification, based on the 
graphical representation of a continuous function, and 
such epsilon-delta proving. Then I will try to show how 
a comprehensive theoretical framework (integrating 
different tools) based on Habermas’ construct of ration-
ality may account for the complexity of the whole process, 
for the difficulties met by the student in the transition 
from the visual-graphical to the epsilon-delta proving, 
and for the relevance of the visual-graphical reasoning 
to overcome them.

Keywords: Calculus proof, visual-graphical rationality, 

epsilon-delta rationality. 

INTRODUCTION

The transition, in the first half of the nineteenth 
century, from Calculus based on the ideas of conti-
nuity and derivability of a function as continuity 
and smoothness of its graphical representation, to 
epsilon-delta Calculus (i.e. Calculus based on the 
epsilon-delta definitions of limit, and subsequently 
of continuity and derivative, usually also called the 
Cauchy-Weierstrass Calculus) has been dealt with 
by several authors in different disciplines (History 
of Mathematics, Epistemology of Mathematics, 
Psychology, Mathematics Education). In particular, 
the historical-epistemological analyses (see Grabiner, 
1981; Jahnke, 2003) have shown the need of consid-
ering different reasons for that transition, like: the 
emergence of monsters and contradictions within the 
intuitive-visual treatment of continuous functions, 
when new types of functions not represented by or-
dinary formulas were considered; the nineteenth cen-

tury movement towards formal set-theoretic rigour, 
particularly when proving was concerned (see also 
Tall and Katz, 2014); the need of dealing in a rigorous 
way with Calculus in many variables (where reference 
to visual – graphical evidence may be lost, as concerns 
the validation of statements); and also the increas-
ing needs arising from the applications of Calculus 
(particularly stressed in Jahnke, 2003). As concerns 
the cognitive side, the general agreement about the 
fact that transition to epsilon-delta Calculus results 
in many difficulties for students does not correspond 
to an unique interpretation of those difficulties. For 
most past Authors difficulties mainly originate in the 
passage from an intuitive, visual conceptualization 
to a formal treatment of the same notions. More re-
cently, researchers belonging to the embodied cogni-
tion stream of research (cf. Nunez, Edwards, & Matos, 
1999) put into evidence the fact that the natural notion 
of continuity of a function and the epsilon-delta no-
tion of continuity refer to very different grounding 
metaphors: a dynamic metaphor, for natural conti-
nuity; and three static metaphors (among which the 
Preservation of closeness), in the second case, which 
result in a hard to overcome conflict with the notions 
developed according to the dynamic metaphor under-
lying natural continuity. Nowadays, by integrating 
historical- epistemological studies on the origins and 
development of Calculus and cognitive analyses, Tall 
and Katz (2014) provide us with reasons for

a re-evaluation of the relationship between the 
natural geometry and algebra of elementary 
calculus that continues to be used in applied 
mathematics, and the formal set theory of math-
ematical analysis that develops in pure mathe-
matics and evolves into the logical development 
of non-standard analysis using infinitesimal 
concepts (p. 97). 

mailto:boero%40dima.unige.it?subject=
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During the nineties I had the opportunity, as teacher 
of an experimental course of calculus for first year 
university students in Mathematics, of collecting 
some interesting data (written texts, transcripts of 
oral think-aloud solving processes and notes taken 
by the observers concerning related gestures and at-
titudes). Students had been presented the intuitive, 
graphical notions of continuity and derivative for a 
real function defined on real numbers (or on an inter-
val of real numbers), then the epsilon-delta definition 
of continuity at a point had been introduced. The de-
rivative at a point had been introduced through the 
prolongation by continuity of the incremental ratio. 
Main theorems of calculus in one variable (in particu-
lar, the intermediate value theorem, IVT [1] in the fol-
lowing) had been presented with their epsilon-delta 
proofs; and some tasks demanding the epsilon-delta 
proof of easy properties by using those theorems had 
been proposed. Finally, the usual epsilon- delta no-
tions of limit had been introduced (both in the case 
of finite and in the case of infinite limits) and applied 
to solve some exercises and to put into evidence how 
both continuity and derivative at a point were par-
ticular cases of the notion of limit. 

Such an experimental approach somehow differed 
from the usual teaching of the epsilon-delta Calculus 
in Italy and in many other countries, based on the 
epsilon-delta definition of limit, because in our ex-
periment the approach to the epsilon-delta reasoning 
referred to the intuitive notion of regular functions 
(smooth, continuous functions), according to the his-
torical treatment of functions before the epsilon-delta 
revolution, and then moved to a formal description of 
regularity with the epsilon-delta language, and only 
at the end considered the epsilon-delta definition of 
limits.

Students were aware of the experimental character 
of that teaching of Calculus; they knew very well 
(thanks to elder students’ experience) the difficulty 
of the subject matter, thus they were willing to engage 
in an alternative experience of teaching and learning, 
which possibly might have diminished the difficulties 
met in the ordinary learning of epsilon-delta calculus. 
Students volunteered in furnishing documents like 
private writings, informal drawings, oral reasoning 
in think-aloud situations. 

I will not present the (modest) results of that teach-
ing experiment, and I will not discuss the limitations 

and the heavy consequences on students of the usu-
al teaching of Calculus focusing on the epsilon-del-
ta systematization (cf. Nunez et al, 1999; Tall & Katz, 
2014) – in the reality, the teaching experiment did not 
represent a radical alternative to it, and probably it is 
not possible to do more at the university level. I only 
wanted to introduce the document analyzed in this pa-
per by describing its context of production, in order to 
open the reflection on it. It is a written and oral docu-
ment produced by a brilliant student (we will call him 
Ivan), during a think-aloud problem solving session; 
it concerns the epsilon-delta validation of a rather 
elementary statement of calculus. The interest of the 
document depends on the very detailed presentation 
offered in it of the mental path followed by Ivan to get 
the proof and on the fact that the difficulties met (and 
overcome) by him are very frequent (and frequently 
not overcome!) among students when they want to 
validate a statement according to the epsilon-delta 
criteria. 

The aim of the research reported in this paper is to 
build a suitable theoretical framework to account 
for what happened during Ivan’s problem solving, 
and to put into evidence the role played there by the 
visual – graphical treatment of the problem and its 
importance in the students’ approach to epsilon-delta 
proving.

THE DOCUMENT

Myself as the teacher of the course and a Master 
Degree student of mine took notes about what we 
observed, and then compared and completed those 
field notes, finally integrating them in the transcript 
of the student’s speech. The document is faithfully 
reported here. (...) for pauses of at least 5”; italic for 
sentences written by Ivan.

The problem:

Prove that there is at least one point c such that  
f(c)=0

Ivan reads the text and after a few seconds draws the 
x and y axes, and two arrows, upwards on the right, 
downwards on the left; then he makes a gesture join-
ing with a finger the two arrows and slowly and re-

f: R→R is a continuous function; 
lim f(x) = +∞;  lim f(x)= –∞. 

x→-∞x→+∞
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peatedly crossing the x-axis; finally Ivan joins the two 
arrows by drawing an “oscillating” line.

1 Well, it seems to me that (...) yes, it is a 
case of the IVT.

2 IVT says that I may find c such that f(c)=0    
(...) 

3 yes, but how to find a and b? First, I have 
to find a and b  (...)

4 and to exploit continuity

Ivan comes back to look at the drawing; two index fin-
gers are placed on the upwards and downward arrows.

5 Yes, the limit perhaps says something. 

Ivan makes an horizontal movement with his right 
index finger and crosses the right upwards arrow.

6 If I take a value of y, the function must 
be over that value when x is enough big. 
But how to choose a value of x? (...)

7 Before I need to choose a value of y. But 
the value of y is whichever    (...)

8 Whichever M, I take M and I may find T 
such that for every x>T     (...)

Ivan makes again a horizontal movement with his 
right index finger and crosses the right upwards ar-
row.

9 This might be the value of M, the value of 
y, then I find the value of x, the value of 
x which is b, such that if x>b then f(x)>M

10 But I have f(x)>M, not f(x)=M
11 Is it f(b)=M?     (...)
12 Not sure!   (...)
13 I might take one point x’ such that f(x’)>M; 

that point is the extremity of the inter-
val on the right!

14 But why f(x’) >0? 
15 Yes, I need to take M>0! M is a number, 

whichever number!
16 On the left it is the same: I find x” such 

that f(x”)<0. 
17 The interval for the IVT is  (x”, x’). Let us 

write the proof:

Ivan speaks and writes at the same time, by dictating 
to himself what he says

18 Thanks to continuity of f and IVT, f(x”)
f(x’)<0 implies that c exists in (x”,x’) such 
that f(c)=0.

19 Not, it does not work! First, I need to 
find x’ and x”.

20 Thanks to hypotheses on limits, given x’>0 
I find f(x’)>0.

21 Not, still it does not work! I need to come 
back to how I could find x’>o such that!

 No, not how, why I could find it! Because 
of limits!  How to write it well?

22 Thanks to the hypothesis on limits, given 
M>0 I may find x’>0 such that       (...)

23 Not: I may find xM such that for every 
x>xM  I have f(x)>M.

Ivan puts a strikethrough over all what he had already 
written, and starts again to dictate to himself and to 
write down:

24 Thanks to the hypothesis on limits, giv-
en M>0 I may find xM such that for every 
x>xM I have f(x)>M. I take one point x’> xM.     
f(x’)>M>0.

25 Well, now it works.  
26 In the same way I find x” such that f(x”)<0.        

(...)
27 There is a point c,  x”<c<x’, such that f(c)=0     

(...)
28 Not, this is the conclusion, before it I 

must write the hypothesis and then the 
conclusion.

Ivan puts a strikethrough over the last line, named 
27 above, and dictates to himself and writes down:

29 Now I may apply the IVT to the function 
f in the interval (x”, x’): f(x”)f(x’)<0, thus 
c exists in the interval (x”, x’), such that 
f(c)=0

When the document was analyzed, the complexity 
of the student’s behaviour and the analytical tools 
available in that moment (1995) did not allow to per-
form an exhaustive, in-depth description and inter-
pretation of the difficulties met by the student and of 
how he was able to overcome them. At that time we 
were only able to find some elements that could qual-
ify as mature Ivan’s mastery of the visual-graphical 
notion of continuity and infinite limits at the infinity, 
his identification of IVT as the theorem which might 
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have allowed him to perform a rigorous validation of 
the statement, the immediate reference to the prob-
lem of finding the extremities of the interval where to 
apply IVT, and the identification of the epsilon-delta 
definition of infinite limits at infinity as the crucial 
tool to solve the problem. Then Ivan enters the epsi-
lon-delta reasoning and the situation seems to become 
more and more confuse: the search for the extremi-
ties of the interval where to apply IVT results in an 
apparently messy sequence of steps of reasoning to 
get the abscissa of a point where the function is posi-
tive. When the interval to apply IVT is constructed, a 
further problem concerns the organization of the text 
in order to satisfy the textual and logical constraints 
of a proof text. This description is a pure narration 
of Ivan problem solving process. It does not allow to 
account for:

- the functional relationships between Ivan inner ques-
tioning (see steps 3, 6, 11, 14, 21) and the different kinds 
of answers (sometimes a decision concerning how 
to go on, sometimes the control of a proposition or a 
chain of propositions);

- the nature of the difficulty met in the central part of 
the process (from 6 to 17), and what allowed to over-
come them;

- the nature of the difficulties met in the last part of the 
process (from 18 to 29).

THE NEED FOR A COMPREHENSIVE 
FRAMEWORK: THE HABERMAS 
CONSTRUCT OF RATIONALITY

The document does not speak by itself; we need theo-
retical tools to make Ivan’s voice understandable by 
us, and possibly identify an intentionality that might 
drive Ivan’s towards the final result, in spite of the su-
perficial impression of “a random walk luckily result-
ing in a good conclusion” (according to the evaluation 
of the document by a colleague of mine who teaches 
Calculus for first year university students). We need 
also to understand why apparently so obvious steps 
(like finding a point x where f(x)>0, given the hypothe-
sis of +∞ limit at +∞) become so difficult when the path 
moves through the epsilon-delta forest. 

The first need suggested us to try and adapt Habermas’ 
construct of rational behavior to Ivan’s problem solv-
ing (as a process driven by intentionality to get a cor-

rect result by enchaining correct steps of reasoning, 
and to communicate it in an understandable way in a 
given community). The second need was satisfied by 
integrating, within the use of Habermas’ construct, 
an analysis of some phases of Ivan problem solving 
process in terms of mental dynamics related to the 
treatment of propositions and the mastery of logi-
cal constraints, according to the Guala and Boero’s 
elaboration on mental dynamics in problem solving 
(see Guala & Boero, 1999). They consider “mind times” 
that may be generated during the problem solving 
process: e.g. when imagining to move back from an 
hypothetically attained goal to a previous situation; 
or when going back and retrieving some information 
from memory, and projecting it in an imagined, future 
situation; etc. 

Habermas’ construct of rational behavior deals with 
the complexity of discursive practices according to 
three interrelated elements: knowledge at play (epis-
temic rationality); action and its goals (teleological 
rationality); communication and related choices (com-
municative rationality). Thus, it seems suitable for 
being applied to mathematical activities like proving 
and modeling that move along between epistemic va-
lidity, strategic choices and communicative require-
ments. The following aspects of Habermas’ elabora-
tion (1998, pp. 310–316) are relevant for us.

Concerning epistemic rationality
We know facts and have knowledge of them only 
when simultaneously know why the correspond-
ing judgments are true. (...) Someone is irration-
al if she puts forward her beliefs dogmatically, 
clinging to them although she sees that she cannot 
justify them. In order to qualify a belief as ration-
al, it is sufficient that it can be held to be true on 
the basis of good reasons in the relevant context 
of justification (...) The rationality of a judgment 
does not imply its truth but merely its justified 
acceptability in a given context. (p. 312)

The intentional character of rational behavior on the 
epistemic side emerges from these remarks in a per-
spective of progressive development of knowledge 
(the qualifying element being the tension towards 
knowing “why the corresponding judgments are true”). 
In Habermas’ elaboration, the exercise of epistemic 
rationality is strictly intertwined with speech and 
with action (i.e. teleological rationality)— the latter 
resulting in the evolutionary character of knowledge:
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Of course, the reflexive character of true judg-
ments would not be possible if we could not rep-
resent our knowledge, that is, if we could not ex-
press it in sentences, and if we could not correct 
it and expand it; and this means: if we were not 
able also to learn from our practical dealings with 
a reality that resists us. To this extent, epistemic 
rationality is entwined with action and the use 
of language. (p. 312)

We will see how this way of conceiving the interplay 
between knowledge, speech, and action will account 
for some relevant aspects of Ivan’s proving.

 Concerning teleological rationality
Once again, the rationality of an action is pro-
portionate not to whether the state actually 
occurring in the world as a result of the action 
coincides with the intended state and satisfies 
the corresponding conditions of success, but 
rather to whether the actor has achieved this re-
sult on the basis of the deliberately selected and 
implemented means (or, in accurately perceived 
circumstances, could normally have done so). (p. 
313)

Let us consider problem solving in its widest meaning 
(including conjecturing, proving, modeling, finding 
counter-examples, generalizing, and so on): the above 
sentence highlights the quality of a process, which 
may be qualified as rational (on the teleological side) 
even if the original aim is not attained. The intention-
ality of action (including the choice and use of the 
means to achieve the goal) and the reflective attitude 
towards it are two relevant features of teleological 
rationality.

A successful actor has acted rationally only if he 
(i) knows why he was successful (or why he could 
have realized the set goal in normal circumstanc-
es) and if (ii) this knowledge motivates the actor 
(at least in part) in such a way that he carries out 
his action for reasons that can at the same time 
explain its possible success. (pp. 313–314)

Concerning communicative rationality
(...) communicative rationality is expressed in the 
unifying force of speech oriented toward reach-
ing understanding, which secures for the par-
ticipating speakers an intersubjectively shared 
lifeworld (...). (p. 314)

The above sentence illustrates an ideal practice of 
communicative rationality, and the related values. 
Then Habermas presents a condition that qualifies 
an actual individual behavior as rational on the com-
municative side:  

(...) The rationality of the use of language orient-
ed toward reaching understanding then depends 
on whether the speech acts are sufficiently com-
prehensible and acceptable for the speaker to 
achieve illocutionary success with them (or for 
him to be able to do so in normal circumstances). 
(p. 314)

Even in the above sentence the intentional, reflective 
character is pointed out (for the specific case of com-
municative rationality).

Habermas’ construct offers a model to deal (after 
adaptation) with important aspects of mathematical 
activity, without capturing all the aspects (see Boero 
& Planas, 2014, pp. 207–208 for a brief presentation of 
some of its intrinsic limitations). It has been initially 
used as a tool to analyse students’ rational behavior in 
proving activities according to the researchers’ (and 
teachers’) expectations (see Boero, 2006; Morselli & 
Boero, 2011). Its application to analyses that also use 
other constructs gradually resulted in a rich toolkit 
with various applications (see Boero & Planas, 2014).

ANALYSIS OF THE DOCUMENT [2]

In the perspective of the Habermas’ construct of ra-
tionality, integrated with Guala and Boero’s elabora-
tion on mental dynamics, the document provides us 
with the opportunity to analyze and interpret Ivan’s 
proving as a rational enterprise. It also offers an occa-
sion (based on that analysis) to reflect on some crucial 
aspects of a successful approach to what we may call 
the epsilon-delta rationality. Indeed in the reported 
document we may identify:

- the continuously renewing, conscious interplay, 
driven by an inner questioning (steps 3, 6, 11, 14, 21), 
between the need of performing strategic choices (tel-
eological rationality) aimed at getting the elements to 
move forth, and the epistemic control on how they fit 
(or do not fit) the requirements of epistemic rationality;

- some mental dynamics (cf. Guala & Boero, 2009) re-
lated to Ivan’s strategic choices (teleological rational-
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ity) performed to meet epistemic requirements. We 
may observe how in the first part of Ivan’s work he 
follows (as the movements of his hands show – see 
description before step 1) the time ordering of the text 
of the task, moving from the hypothesis on limits to 
the visual-physical search of the points of intersec-
tion with the x axis. Then an abductive shift is made 
to the IVT, which should guarantee the same result 
within the theory: this means a shift to a different 
epistemic rationality. At that point, a reverse mental 
movement is made, from focusing on the existence 
of the intersection point (step 2), to the search for the 
interval to which the IVT should be applied (step 3). 
This movement means moving back from the time 
of the solved problem to the time of the hypotheses 
that guarantee the solution. A similar movement will 
be replicated later (step 7), and expressed through 
a temporal adverb (“before”, “prima” in Italian). In 
both cases an inner question related to how to vali-
date (epistemic rationality) a partial result got dur-
ing the development of the problem solving process 
suggests to go back to the condition that ensures its 
validity.  Let us consider now what we might call the 
quantifiers game, played from step 7 to step 15 and 
then at least partially echoed in the writing phase 
(steps 18 to 24, where the epistemic rationality and 
the communicative rationality constraints are inter-
twined). From the satisfied condition of infinite limit 
at the infinity: for every M there is xM such that if x> xM  
then f(x)>M  it is necessary to move to: in particular, I 
choose M≥0 and then I get x’ such that f(x’)>M≥0, with a 
change of logical status: from general quantification 
and consequent existential quantification and subse-
quent universal quantification, to particularization 
of the generality of M in order to get a point where 
the function is positive. Focus must move from the 
general condition of limit to a specific implication of 
it. The condition to be satisfied becomes f(x’)>0, thus 
M must be chosen as M≥0. The Mind times toolkit, ap-
plied to a micro-analysis of this phase of the process, 
allows to interpret the mental weight inherent in this 
phase and its difficulty: a projection in the future time 
of the application of the IVT results in the choice of a 
particular value of M, at the beginning of the logical 
and mentally temporal chain of quantifiers, suitable 
to get the appropriate value of x’; 

- the full mastery of the logical and temporal structure 
of a theorem, interfaced with the above change of fo-
cus; this is evident in the steps 18 to 24;

- the need to satisfy the requirements of communica-
tive rationality, consciously related to the epistemic 
requirements. Communicative rationality must ac-
count for satisfied epistemic requirements in the outer 
speech/writing, while epistemic requirements drive 
the inner dialogue towards consequent actions: this 
emerges in the steps 23–29, with communicative con-
straints particularly evident in the steps 27–29.

REFLECTIONS ON THE ANALYSIS 
OF THE DOCUMENT

The adaptation of the Habermas’ construct to 
Mathematics Education offers the opportunity to 
qualify the visual-graphical Calculus as fully rational. 
Indeed that pre-Cauchy Calculus, when dealing with 

“ordinary” functions, has its own criteria of epistemic 
validity, its own strategies to solve problems, its own 
means of intentional communication. This is reflected 
in the first part of Ivan’s elaboration: requirements of 
epistemic validity are of visual nature, and the chosen 
strategy to solve the problem consists in the transla-
tion of the verbal hypotheses of the statement into 
visual-graphical hypotheses, which will be connected 
to the thesis through the gesture of the finger that 
crosses the x axis in order to connect downwards and 
upwards arrows. Also inner and outer communica-
tion is mainly visual (through the signs on the sheet 
of paper and the gestures). This is not new (cf. some 
remarks by Nunez et al., 1999, and by Tall & Katz, 2014), 
but the use of Habermas’ construct of rationality sug-
gests us to reflect on how that system of thinking (with 
its specific epistemic, teleological and communicative 
characters), relevant in the history of mathematics, 
may work today not only as an intuitive first step 
when moving towards the epsilon-delta proving, but 
also as a resource during the epsilon-delta proving to 
support some of the most delicate student’s actions (in 
the case of Ivan, this is particularly evident, thanks 
to his gestures, in the descriptions after the steps 4, 
5 and 8).

In Ivan’s elaboration, the statement of the IVT “repre-
sents” what is already clear in his first approach, and 
guaranteed by a gesture (see above); it also opens the 
way to its formal treatment by orienting the search 
for the interval in which it can be applied, based on 
the formal definition of infinite limit at infinity. We 
may interpret IVT as a pivot in Ivan’s transition from 
the visual-graphical rationality to the epsilon-delta 
rationality in the treatment of the problem.



Analyzing the transition to epsilon-delta Calculus: A case study (Paolo Boero)

99

In terms of mental dynamics, we may better un-
derstand the complex relationships between the 
visual-graphical rationality and the epsilon-delta 
rationality, and the difficulties to manage the latter. 
On one side, the management of mind times in the ep-
silon-delta Calculus implies the necessity of changing 
the temporal and logical order of quantifiers, moving 
from f(x) > M (whichever M) to the choice of a value of 
M such that we can get x’ and f(x’) > M. This suggests 
a perspective (alternative to Nunez, Edwards and 
Matos elaboration) to interpret why it is so difficult 
to move from visual-graphical to epsilon-delta calcu-
lus. On the other side, on the teleological dimension, 
the visual-graphical rationality provides Ivan with 
the visual and gestural support to bear the weight of 
the complex logical and temporal operations needed 
to construct the (x”, x’) interval where to apply the 
IVT. Indeed the movement of his right index finger 
not only suggests the existence of a point where the 
function is positive, but also provides Ivan with the 
opportunity of “seeing” how to move from a general 
quantification on M, to the choice of a particular M in 
order to get a value x’ such that f(x’) > 0, thus orienting 
Ivan’s mental dynamics.

CONCLUSIONS

The case of Ivan’s think-aloud proving of a simple 
theorem of epsilon-delta Calculus was an occasion 
to search for a comprehensive framework to deal 
with the problem of analyzing the transition from 
visual-graphical proving, to epsilon-delta proving 
in Calculus. The Habermas’ construct of rationality, 
integrated with an analysis of the proving process in 
terms of mental dynamics, suggests a solution, which 
in the case of Ivan accounts for his intentional work 
and his difficulties. It also suggests to reconsider the 
visual-graphical treatment of proving not only as a 
heuristic starting point, but also as a consistent ration-
ality and, as such, a permanent, sure reference when 
students move within the forest of the epsilon-del-
ta proving during the approach to the epsilon-delta 
Calculus as taught in most universities.
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ENDNOTES 

1. Precisely, by IVT we mean the theorem whose state-
ment in Ivan’s textbook is: “If f is a continuous func-
tion in an interval (a,b) and f(a) . f(b) < 0, then at least 
one point c exists in the interval (a,b) such that f(c) = 0.”

2. In the Turin international symposium (November, 
21, 2014) on “Mathematics Education as a transver-
sal discipline”, Ferdinando Arzarello presented an 
alternative analysis of the same protocol, based on an 
integration of the Habermas construct with analytical 
tools derived from Hintikka’s Logic of inquiry, with 
some points of contact with the analysis presented 
in this paper as concerns the teleological dimension 
of rationality.
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This paper contributes to the ongoing effort to create 
rich learning opportunities for prospective teachers to 
engage with reasoning and proving. Twenty elementary 
and middle school pre-service teachers completed indi-
vidual projects in which they explored “math-tricks” – 
unconventional computational algorithms – as a part 
of an undergraduate proof course. Our findings suggest 
that the task evoked uncertainty with respect to why the 
tricks work and motivation to resolve the uncertainty by 
means of algebraic proof. We discuss the potential of this 
task to create rich opportunities for prospective teachers 
to conduct explorations, construct algebraic proofs and 
reflect on their experience from learner’s perspective.

Key words: Proof, pre-service teachers, uncertainty, 

algebraic reasoning.

INTRODUCTION 

The central role of reasoning and proof in teaching 
and learning mathematics has been long recognized 
by mathematics education community and by policy 
makers. In recent years there has been a movement 
in the United States towards making proof an integral 
part of mathematics curriculum not just for students 
in high-school geometry but across all grade levels 
(NCTM, 2000; CCSSO, 2010). This trend is also asso-
ciated with growing demand for deeper conceptual 
knowledge of number sense and algebraic reasoning 
(CCSSO, 2010). 

In order to provide students with learning environ-
ments that emphasize reasoning and proof, teachers 
themselves need to have strong subject matter knowl-
edge and a solid understanding of proof (e.g., Knuth, 
2002, Stylianides & Ball, 2008). However, research 
studies consistently show that pre-service teachers 
(PSTs) have inadequate conceptions of proof, and 

experience difficulties in distinguishing between 
empirical and deductive arguments and in under-
standing the different roles of proof in mathematics 
(e.g., Martin & Harel, 1989; Ko, 2010).

In recognizing the impact of teachers’ knowledge 
of proof on students’ experiences with proof, many 
teacher education programs have designed courses 
and instructional activities oriented towards devel-
oping pre-service teachers’ conceptions of proof, es-
pecially at the elementary and middle school levels 
(e.g. Stylianides & Stylianides, 2009). According to 
Ball, Hill and Bass (2005) teachers need to experience 
mathematics from the learner’s perspective in order 
to gain appreciation of mathematical ideas, develop 
better understanding of the ways students interact 
with them and become aware of the difficulties stu-
dents encounter. With respect to proving, this might 
entail engaging PSTs in mathematical exploration, 
conjecturing, and proof construction. However, de-
signing such tasks for elementary and middle school 
teachers is a pedagogical challenge for teacher educa-
tors. Teachers’ prior knowledge of mathematical con-
tent might hinder their ability to grasp the complexity 
of underlying mathematical ideas or their ability to 
consider students’ perspective. It also might reinforce 
an inadequate view of proof as a routine exercise of 
justifying well-known and prior established facts 
(Knuth, 2002).

Several approaches to address this issue have been 
suggested. For example, Barkai and colleagues (2002) 
asked elementary PSTs to analyse students’ argu-
ments in elementary number theory. Stylianides and 
Stylianides (2009) suggested a “construction-evalua-
tion” model in which elementary teacher candidates 
were asked to write a proof of a given statement and 
then to evaluate the validity and generality of their 
arguments. Despite the reported success of these 
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approaches, Ko (2010) points to the need for more re-
search on strategies for developing PSTs’ conceptions 
of proof and adequate knowledge of proving. 

With this paper we aim to contribute to the ongoing 
effort of the field to create learning opportunities 
for teacher candidates to engage with reasoning and 
proving. We report on one task that was developed 
and implemented in our undergraduate course ti-
tled “Reasoning, Justification and Proof for elemen-
tary and middle school teachers”. The task aimed at 
promoting PSTs’ understanding of algebraic proof 
through analysis of unconventional computational 
algorithms (math-tricks) and through reflection on 
their proving experiences. Qualitative methods were 
used to analyse the types of student-generated proofs, 
their spontaneous use of algebraic proof and/or of 
algebraic notation in it, and to explore cognitive and 
affective aspects of the ways in which prospective 
teachers’ coped with the task from the students’ per-
spective.  

THEORETICAL CONSIDERATIONS

Our approach for designing the task “exploration of 
math-tricks” is grounded in several theoretical no-
tions. First, we build on Harel’s (2007) premise that 
instruction should appeal to and foster students’ in-
tellectual need to prove. Implementation of this prin-
ciple entails creating learning situations in which the 
need for proof arises intrinsically. One possible way 
to achieve this is by creating uncertainty regarding 
whether a certain mathematical phenomenon is true 
or false. Research studies have shown that such tasks 
generated a need to resolve the evoked uncertainty 
by means of argumentation, explanation, convinc-
ing and proving (e.g. Buchbinder & Zaslavsky, 2011; 
Hadass, Hershkowitz, & Schwarz 2000). 

Zazkis (1999) suggests that uncertainty can be evoked 
by exploration of “non-conventional” mathematical 
objects such as number systems other than base 10 
or non-Cartesian coordinate systems. Building on 
this approach, we created a task that invited PSTs to 
evaluate non-conventional computational algorithms, 
or math-tricks, and either prove or refute them. Thus, 
prospective teachers could explore unfamiliar math-
ematical phenomena embedded within familiar con-
tent. 

Finally, our work is grounded in the research that 
highlights the importance of teachers’ reflection on 
their own thinking from the learner’s perspective. 
According to Zaslavsky and Sullivan (2011) the process 
of resolving uncertainty combined with reflection on 
personal experience can lead teachers to revaluate 
and refine their understanding of mathematical con-
tent of the task, and promote teachers’ awareness of 
difficulties students might experience while engaging 
with this content.

THE SETTING 

Twenty elementary and middle school PSTs partici-
pated in the course on mathematical reasoning and 
proof which most students took during the 3rd or the 
4th year of their program. The task “Exploration of 
math-tricks” was given to PSTs as individual project 
and asked them to (a) watch, understand and describe 
a math-trick presented in a video in their own words; 
(b) analyse the math-trick and either prove that it 
works or disprove it by a counterexample; (c) com-
pare the math-trick to the corresponding convention 
algorithm and discuss similarities and differences 
between them; and finally (d) write a reflection on the 
exploration and proving process in this task. The stu-
dents were given four weeks to complete the project. 
They were encouraged to cooperate with each other, 
but required to submit their original work. 

Task analysis  
The content to which we refer as “math-tricks” is a 
collection of short videos which we found on the web1. 
Each video presents an unconventional, albeit correct 
under limitations, algorithm for one of: multiplica-
tion, division, calculation of square or cube roots, 
solving systems of linear equations and many oth-
ers. Due to space constrains we present here a short 
description of two such math-tricks (Figure 1). 

These algorithms can be regarded as unconvention-
al since they differ substantially from standard al-
gorithms found in mathematical textbooks both in 
content and in presentation style.  In the video, the 
presenter used several numeric examples to illus-
trate each algorithm, describing them as “faster, 
easier and smarter ways”, “math-tricks”, and “pure 
magic”, without any expectation on the part of the 

1  It is not our intent to either criticize or promote this online 

content for any purpose beyond described in this paper. 
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viewer to understand why these algorithms produce 
correct results. However, as shown in Figure 2, when 
represented algebraically, the “tricks” appear to be 
just special cases of multiplication of two two-digit 
numbers. Thus, the math tricks could be analysed 
with algebraic techniques accessible to pre-service 
elementary teachers.

Data and analytic techniques
The data for this paper come from 20 student pro-
ject papers on 13 different math-tricks. In order to 
explore the students’ proof production, their math-
ematical arguments were analysed through open 
coding (Staruss, 1987). Two major criteria emerged, 
along with corresponding categories focusing on al-
gebraic notation and proof justification. For the first 
criterion – proof production - the following catego-
ries emerged: Invalid justification – students either 
relied solely on empirical evidence or did not produce 

a proper justification. For example, students in this 
category merely restated the algorithm or wrote that 
it works because of its similarity to conventional al-
gorithm. Two other categories were Partial general 
argument - unfinished general argument or missing 
details, and Valid proof. For the second criterion, use 
of algebraic notation, we identified the following cat-
egories: No algebraic notation– students used only nu-

meric examples or described their thinking in words; 
Semi-algebraic notation – although some variables and 
algebraic symbols were present in student work, they 
were not used meaningfully or were not functional 
for proof construction; and Correct algebraic nota-
tion. The latter category was further divided into two 
sub-categories: Standard algebraic notation, such as 
using (10a + b) to represent a two-digit number; and 
Self-invented notation, meaning that students came 
up with their own correct algebraic representations.  

When analysing students’ written reflections we 
looked for evidence of uncertainty evoked by the task 
and students’ approaches to resolve it. We also identi-
fied and examined instances of students reflecting on 
their proof experiences as learners, their mathemati-

Figure 2: Algebraic representation of the conventional multiplication and two “math-tricks”2

2 Note that the constrains on variables in both tricks account 

for the place value of the digits in the product in such way 

that adding the unit digits can be described as “placing” them 

in the units place.

Figure 1: Description of two “math-tricks” as presented in the video
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cal struggle, and connections to their future teaching. 
Due to the space constraints not all categories will be 
reported herein.

RESULTS 

Students’ mathematical arguments
First we report on the kinds of PSTs’ mathematical 
arguments and their use of algebraic notation. This 
section illustrates some of the categories described 
above with examples of students’ arguments and 
excerpts from their reflections. Figure 3 below sum-
marizes distribution of students’ arguments across 
all categories.

Our data suggests that success with proof production 
was strongly related to use of algebraic representa-
tion. PSTs who used correct algebraic notation were 
able to either produce valid proofs or partial gener-
al arguments that could potentially be turned into 
proofs. Interestingly, only 3 PSTs used standard alge-
braic notation, while 8 students invented their own 
representations (see examples below). Five students 
used, what we call, semi-algebraic notation, mean-
ing that their use of variables was insufficient or not 
functional and did not result in production of valid 
proofs. Nevertheless, 3 students provided additional 
written explanations and produced partial general 

arguments.  Four students whose arguments were 
categorized as invalid either relied solely on empirical 
evidence or used semi-algebraic notation. Only one 
of them seemed to be aware of limitations of such a 
line of reasoning.

Examples of students’ work 
Melanie’s work on the Special trick for multiplication 
(Figure 4) illustrates the category of arguments that 
used semi-algebraic notation and produced invalid 
justification.

Melanie recognised the similarity between the con-
ventional algorithm and the math-trick, and tried 
convey it in her explanation. She described her ob-
servations eloquently, but provided little insight on 
why the trick works. For example, it is not clear from 
her explanation how the similarity of “both beginning 
portions” of the two factors “allows for consistency 
between the parts of the algorithm”. In her reflection, 
Melanie described the challenges she encountered in 
representing the trick algebraically and in explaining 
why it works. She also referred to her experiences as 
student and difficulties in understanding algorithms 
in general:   

…. creating an algebraic notation was very chal-
lenging […] I found it very challenging to under-

Figure 3: Distribution of teacher candidates’ mathematical arguments (N=20)

Figure 4: Melanie’s analysis and justification of Special trick for multiplication 
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stand why the trick works as a whole, although I 
can understand how to do it and its limitations. I 
have personally never been one very strong in un-
derstanding the functioning of algorithms at the 
core so it did not surprise me that I had difficulty 
understanding how the trick worked.

Another student, Thomas, who analysed the same trick, 
came up with his own way to represent two-digit num-
bers and used it to produce a valid proof (Figure 5).

Thomas represented a two-digit number using nota-
tion somewhat similar to the standard, as (a + b), where 
a represents tens. He then used the distributive prop-
erty to show that the product of two two-digit numbers 
yields the same algebraic expression as described in 
the math-trick. One disadvantage to Thomas’s nota-
tion is the need to remember that the variables a and 
c in the final expression represent different things: 
tens and units respectively—a detail imperative to ac-
count for place value of the product’s digits. Thomas’s 
reflection is a detailed account of his thinking process, 
his initial frustration and feeling of excitement when 
the proof was completed:   

I was impressed with this trick from the beginning, 
but I struggled expressing it algebraically. It seems 
simple now, but at the time it was very frustrating. 
During the process of writing my equation I kept 
treating a like it was a single digit number instead 
of treating it like the place value that it held. […] I 

am not sure why it clicked, but I realized a was the 
tens digit, while b and c were the ones digits […] It 
has been quite some time since I have been as ex-
cited as I was when all of this clicked. It took me 
analyzing and breaking down both the trick and 
the conventional algorithm to create my equation.

Another student, Cindy, also came up with her own 
version of base 10 notation to analyse the Trick for 
squaring numbers 10 – 19 (Figure 1) and was able to 
produce a valid proof for this trick. Cindy used n to 
denote the entire two-digit number between 10 and 19, 
and used (n − 10) to represent the units digit (Figure 5).

Cindy’s reflection reveals both cognitive and affective 
sides of the process she went through in her explora-
tion. Although the exploration of math-trick was not 
an easy task for Cindy she persevered and was able 
to solve it correctly. She wrote:   

This task was a little time consuming and confus-
ing at first. […] I did this by trial and error, until I 
realized a key element I was missing. My “aha” mo-
ment was when writing the general rule. […] I kept 
trying to manipulate the equation in different ways, 
and finally realized that I need to account that we 
are solving for the first 2 digits in a 3-digit number. 
Therefore, I need to multiply the first portion of the 
equation by 10 to account for the 10’s and 100’s digits.

Figure 5: Thomas’s analysis and justification of Special trick for multiplication

Figure 5: Cindy’s analysis and justification of “Trick for squaring numbers 10–19”
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Cindy and Thomas’s reflection shows that the analysis 
of an unconventional algorithm led them to consider 
more carefully the standard multiplication algorithm 
and place value. This was a recurring theme in most 
of students’ reflections, including students who even-
tually were not successful in producing valid proofs. 

Students’ reflections on the 
exploration process 
In our analysis of PSTs’ reflections we identified 
evidence for the uncertainty evoked by the task, 
expressions of students’ interest in the math-trick 
project and their consideration of the task from the 
leaner’s perspective. This analysis was overlaid onto 
an analysis of students’ mathematical arguments. Not 
surprisingly, students who produced valid proofs 
or partial general arguments described feelings of 
accomplishment and satisfaction with the project 
(including the two students who produced invalid 
arguments but were unaware of this). Although the 
degree of uncertainty evoked by the task varied with-
in the group, almost all PSTs indicated that they were 
surprised by the math-tricks. PSTs distinguished be-
tween challenges involved in understanding the steps 
of the trick, why it works, and constructing a proof. 
Some PSTs who understood the trick relatively easily, 
but struggled with proving, tended to describe the 
task as frustrating, or hard. For example, Lisa wrote:  

It was easy for me to see how the trick was connected 
to the conventional method and to see that it would 
always work. The hard part was explaining it be-
cause I cannot think of a way to put this trick in 
algebraic notation and it is very hard to visualize 
the math using words. 

Other students felt initially perplexed by the algo-
rithms, but felt more comfortable once they repre-
sented them algebraically. For instance, Helen wrote:  

Understanding how to complete the trick wasn’t too 
complicated, but understanding why it works was 
a difficult task. […] for me, the “Aha” moment was 
once I thought of using variables. Seeing the steps 
in variable form, instead of using numbers made 
it very clear to me how the process worked. 

For the majority of PSTs, transitioning from empiri-
cal exploration to algebraic representation was not a 
straightforward process. Aside from 3 students who 
felt comfortable with it, the group reported on dif-

ficulties they encountered, the strategies employed 
to resolve the impasse and their “Aha!” moments. 
Students like Melanie or Lisa, who felt that they did 
not resolve the uncertainty, shared feelings of frus-
tration and lesser competence in their mathematical 
ability. This might have been avoided or reduced by 
encouraging greater collaboration and sharing ideas 
among students. 

Several students reflected on their exploration of 
math-tricks from both learner and future teacher 
perspectives. Following is an excerpt from Natalie’s 
project paper, with the original emphasis: 

This process was different for me because my role 
was to be both a student and a teacher. When I was 
a student in this process I had to figure out how the 
trick worked, but when I was a teacher in this pro-
cess, I had to explain why the trick worked. As a 
student, this involved noticing patterns, and as a 
teacher, this involved synthesizing and explaining 
the real math behind the trick. 

CONCLUSION

In this paper we described the design and implemen-
tation of the task “Exploration of math-tricks” with 
elementary and middle school pre-service teachers. 
The task aimed to enhance PSTs’ appreciation of proof 
and highlight its exploratory function through in-
vestigation of unconventional computational algo-
rithms – “math-tricks”. Our data show that, as antic-
ipated, the task evoked uncertainty regarding how 
and why these algorithms function, which most of 
the students resolved through proving. The majority 
of students in our course used standard or self-in-
vented algebraic representations to produce proofs 
or partial general arguments. Not surprisingly, pro-
spective teachers who felt less proficient with alge-
bra were less successful in producing proofs and in 
resolving uncertainty as evident from their com-
ments. Nevertheless, exploration of unconventional 
algorithms allowed teacher candidates to review and 
refine their knowledge of standard computational 
algorithms and algebraic techniques. Our findings 
concur with theoretical notions underlying the role 
of uncertainty in fostering a need for proving and 
with empirical studies which utilized exploration of 
unconventional mathematical objects in instructional 
tasks with PSTs (e.g., Buchbinder & Zaslavsky, 2011; 
Zaslavsly, 2005; Zazkis, 1999). 
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Our analysis of PSTs’ reflections revealed a complex 
account of cognitive and affective aspects of engage-
ment with exploration of math-tricks; while some 
PSTs described difficulties in transitioning from in-
formal argument to algebraic proof, others felt that 
algebraic notation aided in expressing their math-
ematical ideas. PSTs reported on mixed feelings of 
initial challenge and struggle with the task; but also 
on their excitement after successful (in their view) 
production of proof, or frustration when failed to 
produce one. We conclude that exploration of math-
tricks combined with reflection on their own proving 
process allowed PSTs to evaluate this experience from 
learners’ perspective and, in some cases, consider dif-
ficulties students might encounter with the concept 
of place value in multi-digit arithmetic.  Furthermore, 
it seems that engaging in exploration and proving of 
math-tricks can provide pre-service teachers with 
the valuable opportunity to consider the role of both 
student and teacher. 
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In this paper we present the evolution of the proof 
schemes shown in grades 11 and 12 textbooks of a 
Spanish publisher related to the theorems of limits. In 
order to analyse this evolution, we use a framework de-
veloped from the definitions of proof schemes, preformal 
proofs and functions of proofs. Firstly, we describe our 
framework and then we show a case study applying the 
framework to textbooks (from the 70s until today) of a 
Spanish publisher. Some results and reflections about 
the analysis are described at the end as well as conse-
quences for further studies. 

Keywords: Proof schemes, preformal proofs, textbooks, 

limits. 

INTRODUCTION

The main goal of a mathematical proof is to verify the 
correctness of mathematical statements. Under the 
perspective of mathematical education research we 
agree with Hanna (1995), who claims that mathemati-
cal proof promotes understanding. Moreover, Hanna 
& Barbeau (2010) think that proofs are bearers of math-
ematical knowledge in the classroom because proofs 
embody “methods, tools, strategies and concepts for 
solving problems” (Rav, 1999, p. 6) which is the essence 
of mathematics. Textbooks (that is, any book used by 
teachers and students, during a scholar year, in a 
teaching and learning process of a certain subject, 
González, 2002) are important elements in the teach-
ing and learning process. Schubring (1987) claims 
that „teaching practice is not so much determined by 
ministerial decrees and official syllabuses as by the 
textbooks used for teaching“ (p. 41). In addition, anal-
ysis of textbooks give us information about the math-
ematical knowledge that a society considers relevant 
in a particular historical moment (González, 2002) be-

cause they affect what and how students should learn 
(García-Rodeja, 1997). Spanish Educational System 
is an example of the effect described by Schubring 
(1987) because textbooks at pre-university education 
are usually the main reference material for teachers 
and students during the scholar year. Since the 70s, 
several changes of the Spanish Educational Law have 
occurred so a large amount of textbooks have been 
published and they have evolved in how they present 
mathematics.  

The limit of a function is one of the most difficult and 
important concepts which are introduced at pre-uni-
versity school in Spain. Research about this concept 
has shown that its learning involves a lot of difficulties. 
There are different studies which investigate how this 
concept could be taught at pre-university school: in 
an intuitive way (Henning & Hoffkamp, 2013), exploit-
ing graphs of functions (Gunčaga, 2009),... Blázquez, 
Gatica & Ortega (2007) consider that students will be 
able to understand the ε-δ definition once they have 
understood the concept of limit as a tendency and 
approximation. We also think that proving results re-
lated to limits contributes to students’ understanding 
of the concept, so we are interested in how textbooks 
present the concept of limit and justify the results 
related to them. Closer to our study, several research-
es have been developed about proving in secondary 
school textbooks in other countries but due to the 
limitation of space we do not include a detailed de-
scription of them but we will compare them with our 
own work in the future. For example, Nordströn & 
Löfwall (2005), who studied proof in Swedish text-
books, noticed that the frequency of proof items is low 
but they often exist invisible in the textbooks and this 
is a bit similar in Spanish textbooks. Ibañes & Ortega 
(2001) studied the student’s proof schemes in the last 
courses of Secondary school and they conclude that 
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students have difficulties in understanding proofs. 
Dos Santos (2010) noticed that mathematical proofs 
are disappearing in textbooks, that is, the newer a 
textbook is, the less number of mathematical proofs 
are in it. We claim that mathematical proofs is impor-
tant in the understanding of mathematics, so it must 
be included in textbooks and for that we want to know 
how textbooks deal with this element of mathematics. 
The main goal of this study is to analyse the evolution 
of mathematical proof in textbooks and if they use 
other alternative justification procedures. To achieve 
this goal, we will try to answer some questions: are 
mathematical proofs replaced by other processes of 
justification? What kinds of justifications are used? 
Are all functions of mathematical proofs considered? 
Here we present a case study about the evolution of 
the treatment of mathematical proof in textbooks 
belonging to a Spanish publisher since the 70s until 
the present. 

THEORETICAL FRAMEWORK

The aim of our study is to analyse the processes found 
in textbooks than could be used to convey students 
about the validity of the mathematical statements 
formulated in them. We use the concept of personal 
proof scheme (PPS) defined by Harel & Sowder (1998) 
because it includes other kinds of justification apart 
from mathematical formal proofs. Ibañes & Ortega 
(2001) studied the grade 11 students’ proof schemes 
and they noticed that students accept any kind of 
proof schemes as a justification of a mathematical re-
sult, and some of these kinds of proof schemes could 
be found in textbooks. We are conscious that we do 
not know the intentionality of the publishers/editors. 
However, we want to classify the processes shown 
in textbooks according to the characteristics of per-
sonal proof schemes that they exhibit because these 
processes establish different levels of comprehension 
of the proofs. For that reason, we have adapted the 
definition of PPS to textbooks in the following way: 

Proof scheme (PS) of textbooks: it consists of what 
is showed in the textbook which can constitute as-
certaining and persuading for a generic reader of 
this textbook (here, a math student of the grade of 
the textbook), meaning by ascertaining the process 
showed in the textbook which could allow the reader 
to remove her or his own doubts about the truth of 
an assertion and meaning by persuading the pro-
cess showed in the textbook that the reader could 

employ to remove other’s doubts about the truth 
of an assertion. 

The processes of persuading and ascertaining are 
complementary, and both together constitute a PS. 
Regarding this definition, we have adapted the cate-
gories of classification developed by Harel & Sowder 
(1998) and Ibañes & Ortega (2001), including a new 
category using the concept of preformal proof (Van 
Asch, 1993). 

PS0: there are no procedures of justification of the 
theorem.

Inductive PS of 1 case (IPS1): we convey anyone 
about the validity of a conjecture by illustrating 
an example.  

Inductive PS of several cases (IPSs): as in the pre-
vious case, but now we verify several different ex-
amples.

Inductive systematic PS (IsPS): as in the previous 
cases, but now examples are chosen in a systematic 
way, out different possible cases. 

Transformational PS (TPS): it is done by transfor-
mations of elements in a deductive way. 

Axiomatic PS (APS): the theorem is proved using ax-
ioms, meaning by axioms any primary results and 
other results which have been deduced previously. 

Preformal Proof (PP): a line of reasoning which can 
be formalised to a formal proof, by in which the es-
sential idea is already present. It takes the same 
character of axiomatic and transformational PS.

Figure 1 shows an example of inductive systematic 
PS. Something can be classified like an inductive PS 
if the textbook shows something which suggests that 
the example could be generalized to any other case. 
If not, it could be only considered like an application 
example of the theorem. 

Transformational and axiomatic PS are the closest 
categories to a formal mathematical proof. Sometimes, 
we could find that a proof scheme has characteris-
tics of both kinds of proof schemes, so they could be 
classified in both categories. Anyway, we classify the 
proof schemes found in textbooks only in the predom-
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inant category to make their first count easier. Figure 
2 shows some steps of an example of transformational 
proof scheme, although it uses some results which 
make it to be also considered as an axiomatic proof 
scheme. We classify it as a TPS because the author 
shows mainly transformations to justify the result. 
In the example, the justification ends by calculating 
the areas described below and comparing. 

In the category of axiomatic PS we classify any formal 
mathematical proof. This kind of proof scheme uses 
always other theorems that were established before 
and they use deductive reasoning to prove the theo-
rem. One well-known example of axiomatic PS could 
be the ε-δ proof to establish the uniqueness of the limit 
of a function if it exists.  

Finally, we show an example of preformal proof. 
These kinds of justifications are rarely used but we 
think that they could be useful at these educational 
levels because they allow the students to understand a 
deductive reasoning without doing the abstraction of 
using a general case. In the example (LOGSE 11, 1998), 
the author justifies that the limit of a polynomial func-
tion at infinity is equal to the limit of the dominant 
term of the polynomial. The author shows the steps 

of the formal proof in a specific function instead in 
a general polynomial function, so the students only 
need to substitute by the general function to reach 
the formal proof. 

Let be P(x) = 2x3 – 5x2 + 8x – 12. We study the ratio of 
P(x) by its dominant term 2x3:

P(x)
2x3  = 1 −  2

2x  +  8
2x2 −  12

2x3 
x→±∞ 1

Except number 1, when x→±∞ any addend approach 
to 0. For that reason, the limit is 1.  

Other important aspects that we consider are func-
tions of mathematical proofs which are shown in the 
text. For that, we consider De Villiers (1990) model 
functions of proof (verification, explanation, system-
atization, discovery and communication). As Ibañes & 
Ortega (2001) defend, we also believe that the greatest 
worth of proofs is their function of explanation, al-
though it is not their only value, and formal proofs 
could be exchanged for other kind of proofs. Apart 
from these classifications, we consider other aspects 
of proof in our broader study, but due to the limitation 
of space, we will not describe these items. 

Figure 2: Example of transformational PS of “the limit at zero of f(x) = x/sin(x) is 1” (translated from the textbook LGE 10, 1980)

Figure 1: Example of inductive systematic PS to show the limits of functions defined 

by natural number powers (translated from the textbook LOGSE 11, 1998)
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METHODOLOGY

Our research problem is related to the teaching and 
learning process of mathematical proof. We want to 
know how proofs have been treated in Spanish text-
books since the 70s. In the 70s it was enacted the first 
Spanish Educational Law which structures all the 
Spanish Educational System for the first time, they 
appeared the first common curricula and the govern-
ment made control of the published textbooks. After 
that, there have been two changes in the Educational 
Law, and also in the curricula. As Dos Santos (2010) 
claims, we think that proofs are disappearing of 
Secondary School textbooks. In Spain, textbooks are 
used by almost every teacher and in almost every 
classroom of pre-university education, so the analysis 
of textbooks gives us information about the teaching 
of mathematics of a special moment. Due to the his-
torical character of our work, we have combined two 
methods which are appropriate to this kind of work, 
the method of historical research on education (Ruiz-
Berrio, 1976) and the research process on education 
described by Fox (1969). The combination of both 
methods gives us a method but here we only show 
a part of the general study, considering the analysis 
items of proof schemes and preformal proofs. By us-
ing these analysis items, we have classified the justifi-
cations which appear in textbooks according to them. 
Then, we have compared the different PS or PP used 
in each textbooks and their evolution along the time.

Although we are analysing textbooks of four different 
Spanish publishers (selected according to two crite-
ria: publishers that have been widely used by Spanish 
mathematics teachers and those which exist since the 
70’s), here we show the analysis of one of them as a 
case study. We focus on proofs of theorems related to 
limits which are taught at pre-university levels, that is, 
the last courses of Secondary School (grades 11 and 12, 
16–17 and 17–18-year-old students). The textbooks of 
this publisher correspond to three different education 
laws: the first one, LGE, was promulgated in 1970, the 
second one, LOGSE, in 1990, and the third one, LOE, in 
2006, and it is still in force for the considered courses. 

The sample is composed by seven textbooks: one cor-
responding to LGE (grade 10; limits do not appear in 
grades 11 and 12), four corresponding to LOGSE (we 
have found two different collections corresponding 
to different years which differ on the treatment given 
to limits, and we have the textbooks of grades 11 and 
12 of both collections) and two related to LOE (grade 
11 and grade 12). We will use the code Law G (Year) for 
each textbook to simplify the notation, where “Law” 
denotes the Law of the textbook, “G”, the grade, and 

“Year”, the year of edition.  In the Table 1 we show a 
summary of our sample.

ANALYSIS RESULTS

Each textbook considers a different treatment of the 
concept of limit and different ways of justifying the 
results that they show. We have only found some si-
militude in the presentation of the concept and its 
properties between textbooks of the same collection. 
For example, LGE 10 (1980) considers an unusual way 
to present limits: it firstly defines the continuity of a 
function and it presents limits in the chapter of de-
rivability (in fact, it uses a description of limit in the 
definition of continuity). In the study of limits, the 
textbook shows the behaviour of functions in points 
of discontinuity and then, it defines the concept of 
limit of a function. 

Textbooks corresponding to second period (LOGSE) 
present limits in a different way depending on the col-
lection: the older collection (textbooks from 1998 and 
1999) presents limits like a tool to study functions and 
their graphics; for example, they give a description of 
limit using an example and then, they give examples 
and describe the properties of the limit of a function. 
The newer collection (textbooks from 2003 and 2004) 
makes a more traditional presentation of limits: they 
do not present limits like a tool to study functions 
but they give formal definitions, the one in terms of 
sequences and the one in terms of absolute value (but 
they don’t justify the equivalence between different 
definitions). Textbooks corresponding to the third 
period (LOE) give a simpler treatment of limits: firstly 

Education Law LGE (1970–90) LOGSE (1990–2006) LOE (2006–14)

Textbook LGE 10 (1980) LOGSE 11 (1998)
LOGSE 12 (1999)
LOGSE 11 (2003)
LOGSE 12 (2004)

LOE 11 (2008)
LOE 12 (2009)

Table 1: Sample of textbooks analysed
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they consider all the definitions of limit of a function 
(finite limits, infinite limits, limits at a point or limits 
at the infinite) and then they formulate the arithmetic 
properties of limits. The differences between grade 
11 and 12 are that in grade 12 definitions are formal (it 
gives the ε-δ definition) instead the intuitive defini-
tion of grade 11 (we say that the limit of a function f(x) at 
the point a is L if the function f(x) approach to L as much 
as we want, whenever we take a value for x sufficiently 
close to the value, LOE 11, 2008) and it goes deeper in 
the calculus of limits than the textbook corresponding 
to grade 11. 

As we have seen before, there are significant differ-
ences in how textbooks deal with the concept of limit 
and the definitions that they use (formal, intuitive, no 
definition,...) These differences in how to present and 
define the concept affect the kind of proofs which can 
be used (informal definitions do not allow the editor 
to make formal proofs). Regarding the properties of 
limits, the uniqueness is only formulated in LGE 10 
(1980); one-sided limits always appeared in these text-
books (they are necessary in the study of functions) 
but they are not always used to characterise the limit 
of a function: LOGSE 11 (1998) and LOGSE 12 (1999) are 
textbooks that do not link the existence and equality 
of one-sided limits to the existence of the limit of a 
function at a point. The arithmetic of limits is for-
mulated in all textbooks but it is never justify except 
in one textbook (LGE 10, 1980). Indeterminate forms 
are always presented in the textbooks so, that let us 
think that textbooks are more oriented to promote me-
chanical calculus of limits than understanding of the 
concept. However, some textbooks give justifications 
of some cases of indeterminate forms, so we think that 
this indicates the consideration of the explanation 
function of proof in some cases. 

Table 2 shows a summary of the proof schemes used in 
textbooks to justify the results corresponding to lim-
its. We notice a big difference on the number of results 
considered in each textbook. It is due to the different 
ways in which the textbooks present the properties 
of limits: some of them consider separately the arith-
metic of finite limits at a point, of finite limits at the 
infinity, of infinity limits at a point and of infinity lim-
its at infinity; other ones consider only the difference 
between finite and infinity limits; there are textbooks 
which study the limits of families of basic functions, 
and consider them like theorems... This diversity 
in what a textbook considers as a result affects the 
amount of results presented in textbooks. Regarding 
the kind of proof schemes used, we notice that there is 
a significant change after 1999: the amount of results 
is smaller than in the previous years, but the number 
of justifications too. The predominant behaviour in all 
textbooks is not to justify the results (77.7% of results 
are classified as PS0). Among the different categories 
of justifications, it depends on the textbooks: LGE 10 
(1980) only uses transformational and axiomatic PS; 
the textbooks of the older collection of LOGSE use 
all kind of justifications, but the predominant PS are 
inductive PS of 1 case in grade 11 (16%) and transfor-
mational PS in grade 12 (14.3%); on the contrary, the 
newer collection does not justify except two inductive 
PS of several cases in grade 11; finally, textbooks of 
LOE mainly use inductive PS of 1 case (18.2% in grade 
11 and 16.7% in grade 12). 

The results justified by textbooks are generally re-
lated to limits of any kind of functions (potential, 
polynomial, rational, logarithmic or exponential 
functions). Textbooks never justify the properties 
related to arithmetic of limits (except the addition 
in LGE 10 (1980)). Moreover, this one is the textbook 
which uses more axiomatic PS, although it is not the 
one which shows more results. We specify the results 

Textbook Proof schemes Total 
resultsPS0 IPS1 IPSs IsPS TPS APS PP

LGE 10 (1980) 21 0 0 0 2 3 0 26

LOGSE 11 (1998) 16 4 3 0 1 0 1 25

LOGSE 12 (1999) 35 3 1 1 7 1 1 49

LOGSE 11 (2003) 9 0 2 0 0 0 0 11

LOGSE 12 (2004) 23 0 0 0 0 0 0 23

LOE 11 (2008) 9 2 0 0 0 0 0 11

LOE 12 (2009) 9 2 0 0 1 0 0 12

Table 2: Proof schemes used by textbooks
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which are proved in each textbook in Table 3. Due to 
the number of inductive PS found in textbooks, we 
think that authors try to convince students about the 
validity of the results from intuition and not from 
mathematical reasoning.

Regarding the functions of proofs, the kind of re-
sults that are justified and the kind of PS used let us 
think that the predominant function that is showed 
in textbooks is communication. We also consider the 
function of verification in the justifications classified 
like axiomatic or transformational PS. The function 
of explanation could be noticed in some textbooks 
which select examples that contribute to explain why 
the result is true, but we do not notice this function 
especially in proofs but in the application examples 
of theorems. Indeed, this function appears in results 
related to calculus of limits (indeterminate forms or 
the arithmetic of limits).

FINAL REMARKS AND QUESTIONS 
FOR FUTURE RESEARCH

As we have seen, there is not a significant fall of the 
number of mathematical proofs in textbooks since 
the 70’s in this publisher. That is because there are 
only three axiomatic PS and two transformational PS 
in the first book and there are four axiomatic PS and 

eleven transformational PS in all of them. However, 
we have noticed that the number of justifications have 
dropped along the time. It can be due to diversity in 
how textbooks deal with limits: for example, the new-
er collection of the LOGSE period does not show for-
mal definitions, so they do not justify. Textbooks make 
few references to the justifications procedures used, 
only in some cases they specify that they are justifying. 
We think that more justifications must be included 
in textbooks and it should be indicated that this is a 
justification and what kind it is. We conjecture that 
all textbooks (except LGE 10, 1980) have the intention 
of teaching students to calculate limits but they are 
not so interested in the understanding of the concept. 
We will go deeply in this aspect in future research. 

The analysis shown in this paper gives a first insight 
in this topic, but there are a lot of open questions. For 
example, we have said that the differences of justi-
fications founded in textbooks probably depend on 
the way that these textbooks introduce the concept of 
limit, so it is necessary to study how it affects to proofs. 
Other future questions to answer are: Which is the 
best way (from a didactical point of view) to present 
and develop this concept? Is it better to consider in-
tuitive definitions of the concept than a formal one? 
We think that a good way to present limits is to adopt 
a rigorous (but not formal) definition of limit in the 

Textbooks Proof schemes

LGE 10 (1980) TPS: equivalent infinitesimals, limit at zero of f(x) = x/sin(x) 
APS: uniqueness of limit, addition of finite limits at a point, limit at infinity of logarith-
mic function 

LOGSE 11 (1998) IPS1: limits of types →k/→∞ and →k/→0, limits at infinity of polynomial functions, limit 
of exponential functions
IPSs: limits at infinity of f(x) = xn, g(x) = x-n, h(x) = x1/n

TPS: limit at zero of f(x) = x/sin(x)
PP: limits at infinity of rational functions

LOGSE 12 (1999) IPS1: limit at infinity of f(x) = x2+k, limits of exponential and logarithmic functions
IPSs: limit at infinity of f(x) = 1/xn

IsPS: limit at infinity of f(x) = xn 
TPS: limits at a point of rational functions (→0/→0), limit at zero of f(x) = sin(x)/x, addi-
tion of infinities, equivalent infinities, equivalent infinitesimals, limits of (1 + f(x))1/f(x) 
and f(x)g(x) (when they contain indeterminate forms, →1→∞)
APS: limits at infinity of rational functions
PP: limits at infinity of polynomial functions

LOGSE 11 (2003) IPSs: limits at infinity of polynomial and exponential functions

LOE 11 (2008) IPS1: equivalence of existence and equality of one-sided limits and the definition of lim-
it, limits at infinity of rational functions

LOE 12 (2009) IPS1: equivalence of existence and equality of one-sided limits and the definition of lim-
it, limits at infinity of rational functions
TPS: limit at zero of f(x) = sin(x)/x 

Table 3: Results related to the proof schemes used
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sense defined by Blázquez, Gatica & Ortega (2007) and 
then, introduce the formal definitions. An example 
of these authors’ definition is: the limit of a function 
f(x) at a point a is L if, for every approximation K of L, 
K≠L, there exist a punctured neighborhood of a such that 
the images of all its points are closer to L than K. We 
also recommend using preformal proofs, as a way to 
introduce formal reasoning, using specific functions 
that allow students to understand the mathematical 
reasoning without abstraction. This kind of reason-
ing is also preferred by students as it is claimed in 
González (2012). Finally, this case study is not enough 
to know how textbooks deal with the concept of limit 
and the justifications, but it let us realize of the diffi-
culties of this kind of analysis (for example, how to 
compare among proofs when results are organizing 
or formulated  in different ways), and that will help 
us in our future work. 
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Teaching mathematical argumentation is a challenging 
task, and how to teach argumentation to students from 
all backgrounds remains an open question. It is especial-
ly difficult to say why some situations evoke the vivid ex-
change of arguments, while other situations completely 
fail to engage students in argumentation. This paper 
points out how two related concepts from Habermas’ 
theory of communicative action may help to explore 
possible barriers and obstacles to argumentation: The 
rules of discourse ethics for argumentation processes, 
procedures and products and the consideration of ra-
tionality from the epistemic, the teleological and the 
communicational perspective. Both approaches help 
to recognize that mathematical argumentation requires 
more than mathematical content knowledge. 

Keywords: Argumentation, Habermas, rationality, 

discourse ethics.

INTRODUCTION

Argumentation is highly relevant for the learning 
of mathematics, and may even be seen as a prereq-
uisite for learning (Krummheuer, 1995). Besides 
argumentative learning, Knipping and Reid (2015) 
point to learning argumentation as an important 
research interest. In order to learn argumentation 
and proving, Boero states that (2011, p. 120, italics in 
original) “the best didactical choice is to exploit suit-
able mathematical activities of argumentation and 
proof ”. Learning argumentation is a good starting 
point in school, because as Douek (1999) highlights: if 
an emphasis is put on proving this can be a restraint 
to argumentation. But beyond the question of how 
to find suitable mathematical activities for fostering 
mathematical argumentation there remains the open 
question of how to ensure that all students may par-
ticipate in argumentation, regardless of their soci-
oeconomic or linguistic background. In the light of 

research results for problem solving and modelling 
activities, Knipping (2012, p.1) warns that: “classroom 
argumentation could become a social filter” if this 
question does not remain in focus. Gaining a better 
understanding of argumentation in general is a good 
first step towards identifying possible filtering effects. 

Knipping and Reid (2015) point out that analysing 
argumentation in the mathematics classroom is im-
portant in order to gain a better understanding of 
its characteristics. Situations in which argumenta-
tion remains below expectation in that it either does 
not happen at all or not in the way anticipated by the 
teacher are equally interesting to consider if we want 
to shed a light on the difficulties argumentation en-
tails for students. In this paper I consider a lesson 
from my research work in which argumentation did 
not happen in the intended way. Two related parts of 
Habermas’ theory of communicative action are used 
to identify obstacles and barriers to argumentation: 
Habermas’ view on argumentation as a process, pro-
cedure and product from his work on discourse eth-
ics as introduced in Cramer (2014a) and the threefold 
perspective on communicative, teleological and epis-
temic rationality as introduced to mathematics educa-
tion by Boero (2006). In the first part of the analysis, I 
consider moments in which a student does not engage 
in argumentation. By means of Habermas’ discourse 
ethics I analyse the situational conditions and pres-
ent a possible explanation by identifying subjectively 
perceived barriers. In a second analysis I focus on 
rudimentary arguments, which either broke off or did 
not provide a contribution to the solution of the task. 
Communicative, teleological and epistemic aspects 
are considered to identify obstacles within the argu-
mentation process. Benefits and limits of the double 
approach are discussed in the end.

mailto:cramerj@math.uni-bremen.de
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THE IMPORTANCE OF (LEARNING) 
ARGUMENTATION

Proof lies at the heart of mathematics as an academic 
discipline, and argumentation is vitally important 
for the development of mathematical understanding. 
Krummheuer (1995) even considers participation in 
collective argumentation processes as the social pre-
condition for learning. Argumentation, proof and 
their “complex, productive and unavoidable relation-
ship” (Boero, 1999) have been central to mathematics 
education research for several decades. In my re-
search, I adopt Habermas’ (1981, p.38) definition of ar-
gumentation as a type of speech in which participants 
discuss controversial claims and support or criticise 
these by arguments containing reasons which are ra-
tionally connected to the claim. Proving processes lie 
within this definition of argumentation. Proof as the 
goal of classroom activity can be a restraint for the 
development of argumentation, according to Douek 
(1999). Therefore, argumentation in general is the 
focus of my research, including, but not limited to, 
deductive reasoning as the path towards proving. 

The learning of mathematics is tightly interwoven 
with, if not even dependent on, student participation 
in argumentation processes. Taking this into consid-
eration, the emphasis on mathematical arguments 
in NCTM and other national standards documents 
is a welcome development. It is, however, unclear 
how to achieve involvement of all students in argu-
mentation. Lubienski (2000) has shown that children 
from lower socioeconomic backgrounds benefit less 
from the reform-based emphasis on problem solv-
ing. Concerning the achievement of children in high-
stakes tests, Prediger and colleagues (2013) have point-
ed out that language proficiency is the main predictor 
for success. Knipping (2012) highlights the necessity 
of decontextualized language in argumentation. To 
avoid the looming filtering effect of argumentation 
she envisages that a thorough analysis of unsuccessful 
attempts at including argumentation in class could be 
helpful. In the following, I choose the term “barrier” 
for occasions in which argumentation did not develop, 
whereas “obstacle” is used when argumentation is 
begun but breaks off. I distinguish these two terms 
because they are different in nature. I will clarify 
the distinction by exploring two different threefold 
concepts from Habermas’ theory of communicative 
action for the analysis of situations when argumen-
tation remained below the teacher’s expectations. By 

the analysis, I hope to better understand what makes 
access to argumentation difficult.  

A TWOFOLD HABERMAS RESEARCH TOOL

The foundation for my analyses is laid in Habermas’ 
theory of communicative action (1981) and related 
works. Within this framework, Habermas (1983) de-
scribes communicative action and strategic action 
as two opposed forms of social conduct. Whereas in 
strategic action the speaker’s intention is to enforce a 
claim regardless of means, speakers who act commu-
nicatively seek consent by supporting their claim with 
suitable arguments. These arguments are exchanged 
in discourse. To foster vivid discussions and active ar-
gumentation in the mathematics classroom, discourse 
opportunities must be created. 

Barriers arising from argumentation as 
process, procedure and product
Discourse is described by Habermas (1983) as a 
communicative situation shaped by argumentation. 
New knowledge is inferred from shared common 
knowledge. Habermas (1983) describes rules for ar-
gumentation from the interwoven perspectives of 
processes, procedures and products. These rules need 
to be subjectively fulfilled for speakers to engage in 
argumentation. In the following I present a translated 
adaptation of these rules for the mathematics class-
room (cf. Cramer 2014a). 

The first of the three interwoven perspectives 
Habermas presents is the view on argumentation as 
a process, traditionally considered by the science of 
rhetoric. Characterizing features of argumentation 
processes are the exclusion of force and the reliance 
on nothing but the best argument. The process rules 
are: 

(R1) Everyone may participate in discussions. 

(R2) The topics to be discussed are conjointly de-
termined. 

(R3) There are equal rights and no compulsion to 
participate in communication.

Argumentation can also be seen as a procedure of hy-
pothetically checking claims by giving reasons, free 
from any immediate pressure to action. This view on 
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argumentation is traditionally rooted in the science 
of dialectics. Its rules are: 

(D1) A speaker is only allowed to claim what he or 
she believes to be true. 

(D2) Shared knowledge may not be attacked with-
out reasons. 

Arguments are the products of argumentation. 
Their structure is governed by the rules of logic and 
Habermas gives three rules from this perspective: 

(L1) No speaker may contradict himself. 

(L2) Who uses a warrant in one situation must be 
willing to use it in analogous cases. 

(L3) Expressions need to have shared meanings. 

These three perspectives must not be regarded as sep-
arate entities. According to Habermas, they are all 
equally important preconditions for argumentation. 
For participation, all of the rules have to be subjec-
tively fulfilled. Of course, perfectly equal positions 
and the conjoint determination of topics in school 
are virtually impossible to achieve. However, I have 
explored before (Cramer, 2014b) how the subjective 
fulfilment of these rules can be shown in the situation 
of a logical game in which argumentation was success-
fully evoked. The focus of this paper is on communica-
tive situations where argumentation unexpectedly 
did not develop. My interpretations of the students’ 
subjective interpretations of the situational precondi-
tions are based on their contributions and the detailed 
analysis of the situation as a whole. Within these, I 
try to identify barriers resulting from the subjective 
non-fulfilment of the rules for argumentation pro-
cesses, procedures or products, as Habermas claims 
that subjective fulfilment of these criteria is a prereq-
uisite for engaging in argumentation. 

Obstacles arising from epistemic, teleologic 
and communicative rationality
Boero (2006) introduced Habermas’ threefold per-
spective on rationality into mathematics education 
research to account for students’ rational behaviour 
in proving activities. As Boero and Planas (2014) re-
mark, epistemic, teleological and communicative per-
spectives on rationality gradually became a toolkit for 
many different aspects of research in mathematics 

education. I use Habermas’ elaborations on rationality 
to account for obstacles that students may encounter 
in argumentation processes, leading to breakdowns 
or failures in reaching the pursued goal. 

According to Habermas (2009), a person’s behaviour 
can be described as rational if that person can account 
for his or her behaviour from three different but in-
terwoven perspectives. Epistemic rationality is con-
cerned with the propositional structure of knowledge. 
In order to act rationally from the epistemic point of 
view, an interlocutor needs to be aware not only of 
whether he or she holds certain statements to be true, 
but also of the reasons he or she has to justify this 
belief. In discourse, epistemic rationality leads to the 
possibility of negotiating and transferring knowledge, 
as the speakers are not only capable of sharing their 
convictions and beliefs, but also their justifications. 
Rational action is furthermore characterized by the 
actors’ conscious choices of strategies and tools to 
help them arrive at mutual or even shared under-
standing. This conscious choice of strategies accord-
ing to the aim the actor is following is called teleologic 
rationality. It implies that there are reasons for the ac-
tor why he prefers one tool to another, and that these 
reasons justify the actor’s belief that he can achieve 
his aim under certain preconditions. In mathemat-
ical argumentation, actions are usually expressed 
with words. Language serves as the link between 
knowledge, aims and the communicative situation. 
Language is not, however, rational in itself (Habermas, 
1996). Communicative rationality is located within the 
use of speech in discourse to develop a common un-
derstanding. This uniting power of speech secures the 
continuity of shared knowledge and the frame within 
which all interlocutors can refer to it.  

The practice of argumentation unifies and requires 
all three forms of rationality (Habermas, 2009, p. 17). 
Obstacles may be encountered on the epistemic, tele-
ologic or communicative rationality layer. In contrast 
to the aforementioned barriers, these obstacles occur 
after a student has begun to engage in argumentation. 
They can cause the argumentation to break off, which 
makes them an interesting analysis approach.

GREY AND WHITE BOXES

The analyses in this paper are based on data from my 
dissertation project in which I worked as a teacher-re-
searcher with a group of five 15-year-old girls, all of 
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whom are non-native German speakers from differ-
ent schools. The lesson took place one week into the 
project; it was the first content lesson after an intro-
ductory interview in the preceding week. Before the 
project, the girls knew neither me as their teacher, nor 
each other. In the lesson considered, four girls were 
present. They worked in pairs with very little teacher 
guidance in order to foster the creation of their own 
arguments. The following problem was given to the 
students:  

In a square of grey boxes you are supposed to place 
white boxes. The grey boxes must no longer touch 
afterwards. Example for 16 squares: 

How many white boxes do you need if the square  
consists of 36, 100, 1024 grey boxes?

The tasks allows for many different solutions (split-
ting the square into 2 × 2 squares with three white box-
es each, recognizing that every second column and 
half of every second row are filled with white boxes, 
etc.). The desired outcome was that the students find a 
pattern that allows them to deduce that for even side 
lengths, 0.75 times the number of grey boxes is the 
solution. In the following, I describe episodes from 
Ayla and Jawahir’s pair work process to illustrate how 
the two approaches from Habermas’ work may help to 
identify barriers and obstacles. A combination of de-
scriptions and transcript excerpts is used for clarity. 

Getting started: argumentation barriers
After distribution of the problem, some introductory 
teacher comments and further clarification of the task, 
the girls start to work on the task individually and in 
silence. Only few comments are exchanged; both girls 
are visibly engaged in drawing and counting activities. 
Some minutes after Ayla instructed Jawahir to draw 
a 6x6 square for the 36 boxes task, they exchange re-
sults. Both arrived at 27 white squares as the correct 
answer by drawing and counting. Hardly any other 
verbal exchange takes place. Four minutes after their 
comparison and 17 minutes after the problem was 
given, the first longer conversation takes place. The 

transcript of this episode about the number of white 
boxes for 100 grey boxes is given in the following. 

3 Ayla:  Did you just do one hundred? (…)
4 Jawahir: I have six rows here, here.  
5 Ayla:  But why six?
6 Jawahir: I wanted five, I did f/, I did six. (..)
7 Ayla:  But look, (..) you did six here, 

didn’t you? Do //four//
8 Jawahir: //Mh// (affirmatory). 
9 Ayla: f/, no. 
10 Jawahir:  It is supposed to be hundred, 

ehm
11 Ayla:  Yes yes but look, you can just do 

it like this (takes piece of paper) simply ten 
here (points in one direction with a pen) and 
ten here (points to another direction with a 
pen). Then you have hundred in here. 

12 Jawahir: (….) I hate maths. 

In this exchange, Ayla inquires about Jawahir’s ap-
proach to the task. She wants to know why Jawahir 
chose six as the side length of her “square”. Jawahir 
does not respond with an argument for her approach, 
but states that she had originally planned to work with 
a side length of five (6). Ayla questions her approach 
by pointing to the preceding task where Jawahir had 
used six as the side length (7). It is not clear if she 
names four as the side length of the example on the 
worksheet or if she wants to tell Jawahir to enlarge 
the number of rows and columns by four. Jawahir re-
sponds by recalling the task (10). Finally, Ayla takes 
over and gives the argument that a ten by ten square 
contains 100 grey boxes (11). Jawahir neither reacts 
to justify her solution, nor does she articulate agree-
ment with Ayla’s justification. Instead, after a short 
pause, she claims to hate maths (12). Two minutes af-
ter this exchange, Jawahir says, “I am stupid” in the 
middle of her work. 

In the situation at hand, Ayla is trying to enter into a 
social process of argumentation with Jawahir, while 
Jawahir does not enter into the discourse. Regarding 
Habermas’ preconditions we can deduce from Ayla’s 
behaviour that she does not meet any barriers that 
prevent her from requiring or giving arguments. 
She justifies her choice of ten as the side length of the 
square, she questions Jawahir’s approach to the task 
and substantiates her doubts by referring to the for-
mer task where six already served as the side length 
for the 36 boxes square (7). Jawahir, on the other hand, 

Figure 1
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does not justify her solutions nor does she ask for 
reasons when Ayla presents her approach. 

In the following, I speculate on possible barriers 
for Jawahir’s participation in argumentation. From 
the process perspective on argumentation, there are 
several possible subjective limiting factors. Jawahir 
does not participate in the discussion. It is therefore 
possible that she does not feel welcome to contribute 
(R1). Her statement that she “hates math” makes math-
ematical content an unlikely choice of discussion top-
ic for her (R2). Furthermore, her claim “I am stupid” 
suggests that she does not perceive herself as an equal 
discussion partner (R3). The same claim also shows 
a lack of confidence in her mathematical abilities. It 
is well possible that this presents a barrier inherent 
in the procedure precondition that speakers are only 
allowed to claim what they believe to be true (D1). No 
knowledge is exchanged, so nothing can be deduced 
about shared knowledge (D2). As no arguments are 
produced, the barriers arising from the product per-
spective can hardly be assessed. Speculations are that 
mathematical insecurity might lead to self-contradic-
tion (L1), deficiencies in the knowledge of mathemati-
cal structures and concepts may lead to problems with 
identifying analogous situations where warrants can 
be transferred (L2), and a lack of conceptual knowl-
edge could lead to differing usages of expressions (L3). 

Although it is difficult to nail down exactly what it 
is that kept her from entering into discourse, it is 
clear that Jawahir in contrast to Ayla did not engage 
in argumentation in the situation at hand. A lack of 
mathematical content knowledge probably contrib-
utes to the problem, but self-perception seems to be 
equally relevant. A deficiency in deductive reasoning 
skills can be excluded as the cause of her silence, as 
Jawahir produced highly sophisticated arguments in 
other situations (cf. Cramer 2014b). Within the com-
plex interplay of situational constraints, Habermas’ 
discourse ethics rules provide a tool that can account 
for some barriers for participation. 

Spontaneous breakdowns: 
argumentation obstacles. 
Several minutes later, the girls are still engaged in 
drawing boxes and counting. No exchange about pat-
terns or generalities has been observed so far. The 
teacher directs the attention towards the side length 
of the 1024 square. Following some hints, Ayla finds 
out that the solution is connected to the calculation 

of square roots. She is used to working with a table of 
square roots from her text book (she calls it “clever 
book”). After she has looked up the square roots of 
36 and 100, this exchange takes place:  

40 Teacher: So why does that match the side 
lengths?

41 Ayla: Because it is the same, isn’t it, this 
way (hand from bottom to top) and this way 
(hand from left to right). 

The table in her book only contains numbers below 
1000, so the teacher uses a calculator and shows 32, the 
square root of 1024 to Ayla and Jawahir. Afterwards, 
Jawahir starts conversation by asking the teacher for 
a way to solve the task: 

60 Jawahir: How does the thousand work, 
I mean this (points at worksheet) here? 

61 Teacher:  Think about that together. (…) 
Ayla already found the side length of that 
thing. (..) And maybe you see something 
HERE (points to the worksheet) that you can 
(.) carry on (.) somehow. Something this and 
this here (.) have in common. If you look at 
them all next to each other, this and this and 
this.

62 Ayla: Yes, there always is one, and then 
not, and then one, and then not. 

63 Teacher:  Yes, exactly. And then there for 
example is a row where there is nothing. 

64 Ayla:  Mhm. (Affirmatory) 
65 Teacher:  And that is actually kind of the 

same everywhere. And maybe you find 
something general (.) how you can find it 
out WITHOUT COUNTING.

The teacher leaves the table. 50 seconds later, Ayla 
starts talking: 

66 Ayla:  So if thirty (..) times thirty is nine 
hundred (..) nine hundred thirty, (..) nine 
hundred thirty, thirt/ (5 sec), nine hundred 
sixty. It has to be nine hundred sixty. See (.) 
write that down. (..) I will now draw these 
boxes, if nine hundred sixty comes out I was 
(..) right. 

After this monologue, Ayla and Jawahir start to create 
a 32x32 square by gluing together various pieces of 
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paper. Some interesting comments during this activ-
ity:

67 Ayla: Wow, how many boxes ARE 
THERE? (..) I think this (.) is this one thou-
sand-thingy, isn’t it, isn’t it, isn’t it?  

Due to the limited time, their drawing remains in-
complete. During the whole-group comparison, Ayla 
presents 960 as their solution. She justifies her answer 
as follows: 

81 Ayla: We first (.) calculated the square 
root with you. And then ehm, we arrived at 
thirty-two. Then we tried (.) to do thirty-two 
boxes, top and bottom. We didn’t manage to. 
Yes, and we got to nine hundred sixty, be-
cause we calculated it. 

82 Teacher: So what did you calculate to get 
to the nine hundred sixty?

83 Ayla: Yes well, because the book said 
ehm (.) thirty by thirty is nine hundred, and 
then we calculated a bit.  

This longer episode is very interesting from the per-
spective of rationality. From the epistemic perspective, 
it is observable that Ayla has understood the concept 
of square root as possibility to calculate the side length 
of a square (41). She does, however, appear surprised 
at discovering the huge number of boxes in the 32x32 
square they create (67). A possible explanation for her 
surprise is that she does not see squaring as a reverse 
operation to calculating the square root. This can be 
seen an epistemic obstacle. It leads both to difficulties 
in her calculation attempt for 32 squared (66) and to 
her disbelief faced with the enormous number of box-
es in the 32 by 32 square. 

Her abovementioned lack of understanding square 
roots can also be considered a teleologic obstacle, as 
it goes hand in hand with her strategy of multiplying 
seemingly random numbers. Ayla multiplies 30, the 
highest number in her multiplication table, by 32, the 
result for the square root of 1024 given by the calcula-
tor (66). Even when asked (82), Ayla does not give any 
reasons for the appropriateness of her strategy. Ayla’s 
identification of the pattern (62) sheds light on anoth-
er obstacle in her teleologic rationality. Although she 
recognizes an overarching structure for the different-
ly sized squares, she cannot transfer this insight into a 
useable tool towards finding a mathematical solution. 

Finally, Ayla’s justifications “because the book said” 
and “we calculated a bit” (83) show obstacles in her 
communicative rationality. Ayla does not seem to 
know how to justify her solutions in a mathemati-
cally acceptable manner. Furthermore, she does not 
or cannot use algebra as a tool to represent the pattern 
she discovered (62), “one, and then not, and then one, 
and then not”. 

Possible obstacles can be identified on all three levels 
of rationality and provide a possible explanation for 
why Ayla did not arrive at a mathematically correct 
solution to the task despite her willingness to engage 
in argumentation. Identifying these obstacles for ar-
gumentation can however provide teachers with a 
tool to work on better support for their students. In 
Ayla’s case, working on calculating square roots and 
squaring as reversing each other could be beneficial, 
but also a fostering of using algebra to express pat-
terns might prove helpful. 

OUTLOOK AND DISCUSSION 

In this paper, I have elaborated on two different but 
related concepts from Habermas’ theory of commu-
nicative action that can help to cast a new light on bar-
riers and obstacles for argumentation. The subjective 
fulfilment of Habermas’ rules for argumentation as 
process, procedure and product can help to identify 
barriers leading to non-participation in argumenta-
tion. The threefold perspective on epistemic, teleolog-
ic and communicative rationality on the other hand 
provides a tool for the detailed analysis of obstacles 
leading to unsuccessful argumentation. 

Both approaches are united in that they take a per-
spective that simultaneously highlights and limits 
the importance of mathematical content knowledge 
for argumentation. A lack of knowledge can be both 
a barrier to engaging in, and an obstacle for being 
successful at argumentation. However, among other 
influences, the social situation, feelings of inequali-
ty, availability of suitable strategies and knowledge 
about communicative practices are equally important 
to consider if we want all students to engage in argu-
mentation, especially in the light of looming effects 
of social and linguistic disparities. Habermas’ con-
siderations underline the importance of perceived 
equality, shared meanings and the absence of force 
for engaging in argumentation. He also shows that 
the awareness of justifications, suitable tools and 
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means of communication is essential both to start 
and to continue argumentation. More research on 
barriers and obstacles for argumentation may help 
to finally overcome them and enable participation in 
argumentation to all students. 
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The purpose of this study was to investigate the ad-
vantages and disadvantages of using GeoGebra in an 
argumentative application. For this purpose, the data 
were collected from eight prospective elementary math-
ematics teachers via video recordings, reflection papers 
and interviews. Data were analyzed through qualitative 
data analysis methods. According to the results, mak-
ing accurate drawings, creating confident justifications 
based on exact measurements, dragging objects to see 
relationships and saving time were the main advantag-
es of GeoGebra in argumentation. On the other hand, 
not attending class discussion and not reasoning the 
relationships after measuring with GeoGebra were the 
disadvantages for argumentation.

Keywords: Argumentation, GeoGebra, geometry, 

advantageous, disadvantageous.

INTRODUCTION

Argumentation is defined as “a process of establish-
ing or validating a conclusion on the basis of reasons 
or the act of proposing, supporting, evaluating and 
refining the process, context, or products of an in-
quiry (Sampson & Clark, 2011, p. 66). Toulmin (1958), 
the pioneer of this multidisciplinary trend in litera-
ture, proposed the Argumentation Model, which is 
used to determine arguments in numerous scientific 
studies. In this model, an argument comprises three 
elements which are claim, data and warrant (Toulmin, 
1958). Claim is a statement to be supported. The other 
element data corresponds to evidence presented for 
supporting the claim. Warrant is an inference rule 
enabling data to be connected to the claim. In addition 
to these elements, Toulmin (1958) also asserted that 
qualifier, rebuttal and backing may also be needed to 
describe an argument. While qualifier refers to the 
strength of the argument, the rebuttal expresses a 
counter-argument. Backing corresponds to addition-

al support for the warrant of an argument. Although, 
Inglis, Mejia-Ramos and Simpson (2007) asserted that 
the full version of the Toulmin model need to be used 
in mathematics, backings, modal qualifiers and re-
buttals are less often used in the studies related to 
mathematics education corresponding to the nature 
of mathematics. Toulmin’s (1958) argumentation 
scheme was represented in the Figure 1. 

The importance of argumentation has increased grad-
ually in learning and education and many research-
ers implied that the students should participate in 
discussions for mathematics learning (Krummheuer, 
1995; Stein, Engle, Smith, & Hughes, 2008).  Inglis and 
colleagues (2007) pointed out that the first research-
er who integrated Toulmin’s argumentation scheme 
into the mathematics field was Krummheuer (1995) 
who analyzed classroom-based mathematical argu-
ments. Krummheuer (1995) used the term collective 
argumentation and defined it as “a social phenom-
enon when cooperating individuals tried to adjust 
their intentions and interpretations by verbally pre-
senting the rationale of their actions” (p. 229). After 
this first attempt, the number of studies related to 
the applications of argumentation into mathematics 
has increased (Inglis et al., 2007; Pedemonte, 2007; 
Wentworth, 2009). For instance, Wentworth (2009)’s 
study include technology allowing online synchro-
nous and asynchronous discussion to explore argu-
mentation of prospective teachers and secondary 

Figure 1: Toulmin’s (1958) Model of Argumentation (p. 104) 
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school students. The results indicated that it is diffi-
cult for participants to write all their arguments and it 
is difficult to detect and follow their reasoning process 
only from their writings (Wentworth, 2009). In the 
same way, mathematics educators are aware of the fact 
that logical inferences and formal justifications are 
not always convincing and comprehensible so they 
propose that additional informal justification ways, 
like dynamic geometry tools, are necessary (Prusak, 
Hershkowitz, & Schwarz, 2012). Thus, mathematics 
educators have developed dynamic geometry tools 
allowing inquiry-based environment and encour-
age argumentation in geometry (Prusak et al., 2012). 
Furthermore, researchers emphasized the impor-
tance of dragging in conjecturing in many studies 
(Arzarello, Olivero, Paolo, & Robutti, 2002; Baccaglini-
Frank & Mariotti, 2010). For instance, Arzarello and 
colleagues (2002) stated that dragging encourages 
conjecturing and exploring since individuals have 
the chance of observing the invariant properties after 
changing the shapes. Obtaining immediate feedbacks 
was claimed to be helpful for discovering and prov-
ing invariant properties of drawings (Arzarello et al., 
2002). Dynamic geometry software allows students to 
construct and experiment with geometrical objects 
to make conjectures and interpretations (Healy & 
Hoyles, 2001). Since conjecturing is a crucial action 
in argumentation, it is worth to study the advantag-
es and disadvantages of dynamic geometry program 
(GeoGebra) in argumentation process. It is claimed 
that it is not only the technology that brings an edu-
cational change but also the teacher (Arzarello et al., 
2002). However, few studies analyzed the prospective 
elementary mathematics teachers’ argumentation in 
geometry. The prospective teachers’ argumentation 
skills are important to be searched because they are 
the people who will facilitate and manage the whole 
class discussions, ask questions, listen to students 
who will develop mathematical understanding in the 
future (Stigler & Hiebert, 1999). Their own proficiency 
in developing arguments has also great importance 
for their future performances in argumentation ap-
plications. Therefore, the investigation of the argu-
mentation process with dynamic geometry program, 
GeoGebra, will be beneficial to determine the critical 
issues to be considered by prospective teachers.  

This study is significant since the results would pro-
vide insight to prospective teachers and teachers 
who want to integrate GeoGebra and argumentation 
into their geometry lessons. In addition, the results 

would provide a clear picture of possible benefits and 
problems that prospective elementary mathematics 
teachers may confront while experiencing argumen-
tation with GeoGebra. Based on the rationale men-
tioned above, the purpose of the present study was 
to investigate advantages and disadvantages of using 
GeoGebra in argumentation while solving geometry 
tasks. The following research question has guided the 
study: What are the advantages and disadvantages of 
using GeoGebra in argumentation process?

METHODOLOGY

This study is a qualitative case study. Purposeful 
sampling was used to identify the participants. The 
researchers selected 8 prospective teachers enrolled 
in Elementary Mathematics Education program of a 
public university in Ankara, Turkey. All participants 
were 4th grade students who have completed almost 
all courses related to elementary mathematics edu-
cation program. The four participants in GeoGebra 
group were voluntary students who have taken the 
elective course called “Exploring geometry with dy-
namic geometry applications”. In this way, there is no 
need to teach them how to use GeoGebra program. The 
other four participants in Paper-pencil group were 
the communicative students who have not taken the 
course. The application was done in one session for 
each group and it lasted 2 hours to solve three geom-
etry tasks.

To triangulate data, we utilized multiple data sources. 
Data collection took place in the spring semester of 
2012–2013 education year through video and audio 
recordings of the two applications, reflection papers 
and interviews. Interviews were also recorded with 
a camera. 

The researcher who was the participant observer in 
the classroom settings started the application by giv-
ing some information about argumentation in each 
group. The purpose of this was to give an idea to the 
participants about the application process and to en-
courage them to justify their claims as much as pos-
sible. Also, the researcher asked them to think aloud 
in pair-work to share their ideas with their partners. 
Moreover, the researcher asked participants to con-
centrate on the discussion on the board in order to 
encourage all students’ contribution to the classroom 
discussion. There were 3 geometry tasks in the appli-
cation. The first geometry task was like a warm-up 
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task which was discussed in pairs and then the class 
discussion began. After getting all different solutions, 
the researcher moved to the second task’s pair discus-
sion. In the same way, the third task was discussed in 
pairs and later with the whole class. The researcher 
reworded the claims of students in order to provide a 
collective argumentation environment and to make it 
clear for other participants. In addition, the research-
er asked probing questions such as “Why do you think 
so? Are you sure about that? What is your justification 
for that? Do you all agree with your friend’s claim?”. 
That is, the researcher motivated students to justify 
why a conjecture is true or false and convince others. 
The subsequent class discussions focused on student 
reasoning and argumentation.  

In GeoGebra group there were two pairs of students 
and each pair had one computer and one worksheet 
to study together. In Paper-pencil group there were 
two pairs of students and they had a ruler, a compass 

and a protractor to be able to draw accurate shapes 
and one worksheet to study collaboratively. After the 
participants solved the tasks in each group, one vol-
untary pair was interviewed; the other pair wrote a 
reflection paper in order to collect more information 
about their experiences regarding the benefits and 
the drawbacks of using GeoGebra in argumentation.  

For the data analysis, the recorded dialogues of the 
participants were transcribed. Toulmin (1958)’s 
Argumentation Model was used to determine the ar-
guments of the participants. By using the Toulmin’s 
(1958) predefined argument elements, the researcher 
had the chance of organizing the arguments of the 
GeoGebra and the Paper-pencil groups in such a way 
that they are comparable because they discussed the 
same geometry tasks. Two experts assisted with the 
researcher determining the argument schemas from 
video recordings. An inter-rater reliability agreement 
was 90%. In addition, the reflection papers and inter-

Figure 2: Geometry tasks
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views were also open coded for triangulation of the 
data to detect advantages and disadvantages of using 
GeoGebra in argumentation. 

Data collection tools
Three geometry tasks about triangles (see Figure 2) 
were selected for the argumentation application based 
on the criteria such that the tasks should be suitable 
for the discussion and argumentation, have alterna-
tive solutions, and be able to be solved via GeoGebra 
and paper-pencil. After getting permissions from 
the authors, the tasks were translated into Turkish. 
Expert opinions were taken for the statements to be 
clear for the participants. The first task was about the 
circumcircle and taken from the study of Prusak and 
colleagues (2012, p. 28). The second task was prepared 
by Ceylan (2012) and it was adapted by the research-
er to be able to be suitable for argumentation. The 
third task was prepared by Domenech (2009) for high 
school students. 

The researcher prepared interview questions for the 
voluntary pair just after watching the video of the 
application. The day after the implementations the 
interviews were conducted. If the participants did 
not remember some details about their arguments, 
the video record of that part was shown to make them 
remember what they did in the application. The aims 
of implementing interview were to obtain the ideas of 
participants about the advantages and disadvantages 
of GeoGebra while solving geometry tasks through 
argumentation and to clarify their arguments. Some 
components of arguments may be missing in discus-
sion when the discussion flows to different directions. 
In some situations, the participants may not explain 
their reasoning but imply it somehow. The research-
ers asked those parts to the participants through 
interviews in order to make correct interpretations. 

RESULTS AND DISCUSSION 

After the applications, the schemas of all the argu-
ments of the participants were drawn and then the 
arguments of GeoGebra group and Paper-pencil 
group were compared in terms of the number of ar-
guments, the existence of argument elements and the 
contents of argument elements. Considering Inglis 
and colleagues’ (2007) suggestion the elements of the 
full model of Toulmin were searched but it was de-
tected that few modal qualifiers and rebuttals and no 
backings were expressed by the participants. In addi-
tion to this, some arguments were generated by more 
than one student during the class discussion. That is, 
claim was stated by one student while the warrant of 
that claim was stated by another student. By compar-
ing these arguments, the researcher concluded that 
GeoGebra was both advantageous and disadvanta-
geous in argumentation depending on the educational 
goals of teachers and the nature of tasks.

Advantages of using geogebra 
in argumentation
One of the advantages was that the participants in 
GeoGebra group were able to made accurate and dy-
namic drawings for the tasks. In this way, they could 
see the relationships easily, became more confident 
in their arguments, and went on forming justifica-
tions and inferences. However, in Paper-pencil group, 
they were not sure about their conjectures or made 
wrong conjectures because of their inaccurate draw-
ings. The conversation and argument schema below 
in paper-pencil group exemplifies such a situation.

Teacher: How can we find the circumcenter of any 
triangle?

S2:  We could not remember the rule so we 
could not determine the lines which 
intersect and generate circumcenter. 

Figure 3: A Sample Argument Schema for the conversation
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Maybe it can be the intersection point 
of medians. Let me try it. 

(S2 drew an acute triangle, a circumcircle and me-
dians of the triangle on the board and saw that the 
centroid approximately seems to be the center of 
the circumcircle)

S2: Oh they are the same points. I think we 
can find circumcenter by intersecting 
medians of a triangle.

In the conversation above, S2 concluded that the cir-
cumcenter of a triangle may be the intersection point 
of the medians, centroid. This was a wrong argument 
and the reasons for the mistake were approximate 
drawing and not thinking all triangle types. S2 thought 
that centroid and circumcenter are the same point but 
in fact they were very close to each other in an acute 
triangle that she draw. The other students were also 
satisfied with the drawing and they did not discuss the 
solution further. Then the instructor asked wheth-
er that was valid for an obtuse triangle or not? This 
question helped participants to think other triangle 
types. However, in GeoGebra group, the students drew 
the medians and found the centroid and compared 
it with the circumcenter in different triangle types. 
In this way they did not generate wrong arguments. 
Therefore, they formed further arguments and found 
different solutions.  

Another advantage of the use of GeoGebra in argu-
mentation can be the dragging option which enables 
maintaining some geometrical properties of a fig-
ure and exploring the relationships. The students 

in GeoGebra group used dragging option effectively 
and made generalizations easily which support con-
ceptual understanding. Moreover, they were more 
motivated to discuss and to find alternative solutions 
to the problem. For instance, when they saw any rela-
tionship in an equilateral triangle, they could check 
whether the relationship was valid for other triangles 
by dragging the vertices of the triangle and changing 
its properties. However, in Paper-pencil group, par-
ticipants did not have such an opportunity. They got 
stuck while they were drawing the new shape again 
and again on the paper with materials such as ruler, 
protractor and compass. Therefore, the participants 
had difficulties in focusing on the relationships be-
tween the unchanging properties of different shapes, 
because of repetitive drawings and their motivation 
for discussion decreased. For instance, in GeoGebra 
group while participants were discussing the geom-
etry task 2, they noticed that |AH| is angle bisector 
when |DE| is perpendicular to |AH| (see Figure 4).  In 
addition, they investigated that |AH| is angle bisector 
when ADHE is deltoid. Then they analyzed whether 
|AH| is angle bisector when ADHE is any other type of 
quadrilateral. They used dragging option and see the 
relationships in a short time. In the end, they conclud-
ed that |AH| is angle bisector when ADHE is deltoid 
and rhombus. However, in Paper-pencil group, par-
ticipants concluded that |AH| is angle bisector when 
ADHE is only deltoid since they could not move F and G 
points to obtain different quadrilaterals on the paper.         

It can be said that dragging option in GeoGebra was 
beneficial in argumentation because the participants 
could see the relations that they could not see on fixed 
shapes drawn on the paper and they justified willingly 

Figure 4: A drawing for task 2 in GeoGebra group class discussion
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their reasoning based on the properties of the differ-
ent shapes composed by dragging.

Based on the findings, the other advantage of GeoGebra 
is time issue. The participants drew shapes easily and 
quickly with GeoGebra options such as measuring 
angle, measuring side, drawing circle, drawing per-
pendicular or parallel line etc. In GeoGebra group, the 
participants did not spend too much time on draw-
ings but they used most of their time for reasoning 
and argumentation. However, it was time consuming 
for Paper-pencil group to measure angle, to draw an-
gle bisector, to draw circle with compass… etc. They 
sometimes had to draw the shape again because of 
wrong conjectures and the argumentation paused 
very often. In a similar situation, the GeoGebra group 
members had the chance of going back on the screen 
with “Ctrl+Z” and continue to draw on the same shape. 
Thus, GeoGebra was useful in order to save time and 
to retain the argumentation.

Dynamic geometry software were developed in order 
to engage inquiry based strategies and argumentation 
in geometry (Prusak et al., 2012). In argumentation, 
the participation of all students is crucial because 
all students should evaluate others’ arguments and 
contribute to their solutions. At the same time, they 
should convince others by justifying their claims. As 
for the advantages, Geogebra allowed the participants 
to use dragging option, to construct accurate draw-
ings such as segments, angles, angle bisectors, parallel 
lines, perpendicular lines. In line with the results of 
Prusak and colleagues’ (2012) study, dragging option 
gave students the opportunity to see relationships 
visually (Healy & Hoyles, 2001) and check whether 
their conjectures are valid. Thus, they could obtain 
immediate feedback and enable rethinking and mak-
ing new conjectures and geometrical analysis to solve 
problems (Prusak et al., 2012) which promoted their 
argumentation. In this way, the reasoning process of 
participants could be followed by the instructor clear-
ly with the help of their arguments in classroom inter-
actions and their products with GeoGebra. Moreover, 
GeoGebra was time saving for drawings and motivat-
ing for students to discuss the task. When the teachers 
do not want to spend much time for drawing shapes 
but to promote reasoning on the task, they can inte-
grate Geogebra into their lessons so that students will 
draw the accurate shapes quickly and discuss on the 
properties of the shapes more. 

Disadvantages of using GeoGebra 
in argumentation
The results indicated that there were some disadvan-
tages of the use of GeoGebra in argumentation. One of 
them was that all students were not at the same pace 
in using GeoGebra and interpreting the drawings. 
Therefore, it was difficult to control all participants 
and to make them participate in the class discussion. 
When one of the students came to the board to show 
her solution, some of the students who were thinking 
on their own drawings did not follow the discussion 
and did not make comments for the solution. However, 
all participants should have followed and contributed 
to the arguments of others in collective argumenta-
tion process in order to reach a conclusion. When 
all students could not follow the discussion, there 
may be some missing points in their understanding. 
In the collective argumentation, the arguments are 
developed through two or more students’ participa-
tion (Krummheuer, 1995). In order to critically make 
sense of the arguments developed, the interaction 
with other students was stated to be crucial in col-
lective argumentation (Yackel, 2002). Thus, teachers 
should promote student interactions by rewording 
their claims and asking probing “Why” questions 
during the argumentation.

Another disadvantage was that the task may not be 
compatible with the GeoGebra usage so students 
who obtain feedbacks from GeoGebra immediately 
may generalize easily without reasoning. De Villiers 
(2003) asserted continuous transformations of ob-
jects with dynamic geometry software made students 
convinced easily with general validity of a conjec-
ture. For instance, in the second task, they said that 

“I measured with GeoGebra and dragged point A to 
check for other triangles. The lengths are equal for 
all triangles.” In such a situation the teacher asked 
the reason why these lengths are equal and made 
them justify their solution. In the class discussion, 
the teacher directed participants to think about the 
reasons for this equality to obtain their justifica-
tions. However, in Paper-pencil group, participants 
started to reason whenever they see the worksheet 
and their discussion was more productive and they 
formed more arguments. This is because the geom-
etry task 2 was not suitable for GeoGebra use since 
the measurement tool in GeoGebra program stopped 
the argumentation of the participants. It is stated that 
conjecturing and justifying has a great importance 
in argumentation (AEC, 1991). However, the tasks 
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should be suitable for conjecturing and the use of 
Geogebra to find different solutions. Otherwise, the 
participants will solve the task on their worksheet 
and use GeoGebra only for checking the solution by 
dragging or measuring. That is, the tasks that can be 
solved with some measurements via GeoGebra may 
terminate the argumentation. This may not promote 
their argumentation and they may not justify their 
claims so that they do not state warrants. When the 
geometry task requires conjecturing and dragging to 
recognize the relationships and teacher needs to hear 
students’ justifications to decide whether they con-
ceptually understand the topic or not, the GeoGebra 
might be advantageous for students. Otherwise, the 
students might not think critically on the task so the 
argumentation might not be effective. Thus, it was 
suggested that the teachers should select GeoGebra 
tasks carefully and determine whether Geogebra 
should be used or not in their argumentation based 
geometry lessons considering the objectives of the 
lessons and the needs of their students.
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We account for different strategies used by a group of 
students to talk about and assess the validity of math-
ematical models while working in a problem-solving 
task. Two main competing strategies are described, one 
centred in ritualized uses of well-known mathematical 
constructs as a means to cope with perceived didactical 
expectations and a second strategy centred in the assess-
ment of the representativeness of mathematical models 
when accounting for the proposed empirical situation. 
The interactions analyzed exemplify the difficulties 
students and teachers experience when dealing with 
epistemological aspects of knowledge being constructed 
in classroom conversations. Our findings point to the 
need for research to focus on epistemological aspects of 
the mathematical culture of the classroom.

Keywords: Validity, argumentation, mathematics 

classroom epistemology, classroom culture.

INTRODUCTION

It is widely accepted that argumentative competencies 
should be developed within the mathematical activity 
in the classroom, both as a product of this activity and 
as a means to support it. We share Boero’s (2011) idea 
that a ‘culture of argumentation’ is to be developed 
in the classroom and that it should include practices 
on the production of conjectures, meta-mathemati-
cal knowledge about the acceptability of references 
advanced for the validation (acceptance/rejection) of 
claims and knowledge about the role of counter-ex-
amples and generality. It should include elements for 
evaluation of mathematical productions and general 
ideas about the use of all this knowledge within argu-
mentative practices, along with the needed awareness 
to allow deliberate and autonomous control of the 
process.

In order to promote such a culture, the processes by 
which students actually construct and validate math-

ematical knowledge in classroom activities, as well as 
the meta-mathematical knowledge underpinning this 
processes, should be better understood. This report 
is part of a series in which we argue that it is worth 
characterizing this processes in terms of validity con-
ditions emergence and fulfilment in order to account 
for the epistemological dimension of classroom inter-
action and its socio-interactive roots (see Goizueta, 
Mariotti, & Planas, 2014). Our main interest is to in-
vestigate the epistemological basis of argumentative 
practices in the mathematics classroom and, particu-
larly, how is validity interactively negotiated in rich 
problem-solving mathematical activities. In this occa-
sion, we compare different strategies for validation of 
mathematical models observed in a secondary mathe-
matics classroom. We account for the epistemological 
complexity of these strategies and explain, from this 
point of view, the difficulties students face to discuss 
the validity of mathematical models.

THEORETICAL FRAMEWORK

According to Habermas (1998), accepting a validity 
claim is tantamount to accepting that its legitimacy 
may be adequately justified, that is, that conditions 
for validity may be fulfilled.  Validity conditions are 
not restricted to absolute standards; instead, they are 
contingent constraints that emerge to accommodate 
elements considered suitable for validity appraisal 
in a given context (Goizueta, Mariotti, & Planas, 2014). 
They embody what are intersubjectively considered 
good reasons in a particular context of justification. 
Thus, validity relates to acceptance based on contin-
gent validity conditions fulfilment. This implies that 
validity is not a property of claims themselves, but 
emerges from the mode they are contextually dealt 
with. It should be stressed that whatever is considered 
as a good reason, must not necessarily be explicit or 
even stateable, nor the individuals must be aware of 
it in a conscious way, it might be enacted implicitly in 
successful social participation (Ernest, 1998).
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According to Habermas’ construct of rational behav-
ior (Habermas, 1998) and its adaptation by Boero and 
colleagues (2010), in the students’ argumentative 
practices we can distinguish an epistemic dimension 
(inherent in the epistemologically constrained con-
struction and control of propositions, justifications 
and validations), a teleological dimension (inherent 
in the strategic decision-making processes embedded 
in the goal-oriented classroom environment) and a 
communicative dimension (inherent in the selection 
of suitable registers and semiotic means to commu-
nicate within the given mathematical culture). Such 
a distinction reveals useful to reconstruct the origin 
of specific validity conditions. For instance, focus-
ing on the epistemological dimension and following 
Steinbring (2005), we assume that a “specific social 
epistemology of mathematical knowledge is consti-
tuted in classroom interaction and this assumption 
influences the possibilities and the manner of how to 
analyse and interpret mathematical communication” 
(p. 35). Within this socially constituted mathematics 
classroom epistemology a criterion of mathematical 
validity is interactively negotiated between the par-
ticipants. A central consequence of these assumptions 
is the basic necessity for interpretative research to 
reconstruct the situated conditions in which (and 
from which) mathematical validity emerges as part of 
the interactive development of mathematical knowl-
edge. Although ‘conditions’ might be considered in a 
broader sense, we are particularly interested in the 
epistemological assumptions at stake, the referenc-
es (mathematical and not) that might be considered 
as relevant and the social environment in which the 
process is embedded.

In the context of the mathematics classroom, the gen-
eral relation between classroom epistemology, mathe-
matical activity and social environment must be con-
sidered under the light of a specific, content-related 
didactical contract (Brousseau, 1997). Mathematical 
acceptability of students’ explanations is linked to 
the reciprocal expectations and obligations perceived 
within the didactical situation by the teacher and the 
students and to the mathematical contents at stake 
(or perceived as being at stake). Thus, when faced 
with a problem, the didactical contract may indicate 
relevant mathematical knowledge and references to 
the students, according to the proposed didactical 
situation. However, not all the emerging references 
are linkable to well established and intersubjectively 
shared mathematical knowledge. We might also need 

to consider other references (statements, visual and 
experimental evidence, physical constraints, etc.) 
that are not part of institutionalized corpora, such 
as scholar mathematics, but (nevertheless) are used de 
facto as taken-as-shared, unquestionable knowledge 
(Douek, 2007). This corpus of references might be tac-
itly and operatively used by students to make sense 
of the task, semantically ground their mathematical 
activity and back their arguments. Accounting for 
the reference corpus at stake might be particularly 
relevant when considering problem-solving settings 
in which empirical references are to be considered as 
part of the proposed milieu.

PARTICIPANTS, TASK AND DATA COLLECTION

The participants in our design experiment were thir-
ty 14/15-year-old students and their teacher in two 
lessons in a secondary school mathematics classroom 
in Barcelona, Spain. It was a problem-solving setting, 
with time for small group work and whole-class dis-
cussion. The researchers suggested the following task:

Two players are flipping a coin in such a way that the 
first one wins a point with every head and the other 
wins a point with every tail. Each is betting €3 and 
they agree that the first to reach 8 points gets the €6. 
Unexpectedly, they are asked to interrupt the game 
when one of them has 7 points and the other 5. How 
should they split the bet? Justify your answer.

As we ascertained in a pilot experiment, this task can 
be approached and solved using arithmetical tools, 
without having been taught formal probability con-
tents, which was the case of this group. The teacher 
was explicitly asked to avoid showing approval or 
disapproval to the students’ numerical answers and 
proposed models. Instead of hint-guiding the students 
towards a correct answer, she was asked to foster the 
emergence of competing models and their discussion. 
By avoiding directive guidance, teacher’s interven-
tions were meant to foster autonomous processes of 
validation within the students’ mathematical activity. 
Models observed during the pilot were discussed with 
the teacher and numerical variations of the problem 
were designed in order to help her problematize these 
models when and if necessary. 

We were aware of the high complexity of the problem 
as a modelling task. The construction by the students 
of a situation model (in the sense of Blum & Borromeo-
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Ferri, 2009) is related to some well-known episte-
mological obstacles regarding probability-thinking 
development (García Cruz, 2000; Wilensky, 1997). 
This circumstance, along with reports on the use of 
this problem in the classroom (García Cruz, 2000), 
suggested it might be a good candidate to promote 
a rich argumentative environment and to foster the 
discussion of mathematical, but also meta-mathemat-
ical issues. The novelty of the task was expected to 
prevent students from using mechanical approaches 
based on well-established solving strategies. Different 
situation models were expected to emerge and, conse-
quently, a variety of mathematization processes. The 
need to compare competing mathematical models was 
expected to foster the emergence of different argu-
ments to validate them. 

For data collection, three small groups were video-
taped and written protocols were collected. The data 
were analysed and coded with the aid of qualitative 
data analysis software. By constant comparison of 
similarly interpreted situations and triangulation 
with other research team members’ perspective, key 
aspects of the classroom mathematical work were 
inductively inferred. This process was iterated for 
analysis refinement and confirmation.

DATA ANALYSIS AND RESULTS

Constructing a situation model: 
Initial validity conditions
Whether explicitly or implicitly students bring to 
the discussion taken as shared references about the 
proposed empirical situation. In so doing, they often 
describe it as a ‘random game’ and use words associ-
ated with this notion in informal ways. An example is 
the following intervention by a student, Anna, during 
the first session:

Anna Obviously, because it’s random, the 
game (...) A does have more chances 
of winning but B could win as well (…) 
From what we’ve got so far, A would 
have to get more money, because he’s 
got more points.

These taken as shared references, a cluster of empir-
ical information, beliefs and words to talk about the 
situation, conform part of the reference corpus the 
students resort to in order to semantically and em-
pirically ground the task, understand the problem 

and conform (often in a tacit way) an associated sit-
uation model. Observed in all groups and illustrated 
by Anna, a validity condition emerges expressing the 
need for the winning player to get more money. Any 
possibly valid mathematical model, within which an 
acceptable answer can be constructed, should fulfil 
this requirement, so we categorize it as a validity con-
dition. Students’ choices also indicate adherence to 
common clauses of the didactical contract: they tend 
to disregard and discard solutions that appear spon-
taneously but are not considered mathematics-related 
(e.g., ‘each one gets his money back because the game 
did not come to an end’). A common clause of the di-
dactical contract constrains them to actually do some 
mathematics in order to solve the problem. The need 
for the solution to be mathematics-related acts as a 
validity condition that students take into account to 
decide on the model’s validity.

Often, the first numerical answer students propose 
roots on models associated to typical school problems 
about proportional costs, which tend to be solved by 
manipulating the numerical data appearing in the 
wording. A ritualized way of presenting this solu-
tion may be paraphrased as: ‘if by winning 8 points a 
player gets €6, for each point won a player should get 
€0.75’. The students quickly realize that the amounts 
of money distributed according to this model, namely 
€5,25 and €3,75, do not add up to six euros, what, ac-
cording to them, falsifies the model. The necessity for 

‘adding up to six’ emerges as a validity condition that 
any numerical answer, and the model within which 
it is constructed, should fulfil.

The emergence of these validity conditions (namely 
the need for the winning player to get more money, 
the need for the distributed amounts of money to add 
up to six euros and the need for the solution to be 
mathematics-related) was observed in all groups, as 
well as the resorting to them as means for validity 
appraisal. While the need for the solution to be math-
ematics-related derives from expectations related to 
the didactical contract, the other validity conditions 
relate to the need for any possible valid model to ac-
count for the empirical references considered by the 
students. This stance accounts for both the epistemic 
and the teleological dimensions of the students’ activ-
ity: a mathematical model that satisfies the validity 
conditions considered must be constructed; it should 
be acceptable in the context of the mathematics class-
room and lead to an acceptable solution for the game.



Constructing validity in classroom conversations (Manuel Goizueta and Maria Alessandra Mariotti)

131

The proportional solution
In the following we focus on the case of the group of 
Lyn, Ely, Tim and Lucy.

After ascertaining that the initial model does not ful-
fil the validity conditions, Tim considers the twelve 
points won by both players and proposes a second 
model: give away the bet proportionally to the points 
won: €3.50 for the winning player and €2.50 for the 
other; what corresponds to 7/12 and 5/12 of the bet 
respectively. Let us call it, from now on, ‘the propor-
tional solution’1.

41 Tim Look, we add the points, right? 
We take the money and divide it by the num-
ber of points, then we get how much is one 
point worth out of these twelve points that 
we have. Then we divide it and we get zero 
point five.

42 Lyn No, because seven plus five is not 
eight!

43 Tim Three point five plus two point 
five is six! One gets three point five and the 
other two point five.

44 Lyn OK, but listen: seven plus five is 
not eight. OK?

45 Tim It is twelve.
46 Lyn Right, and the six euros were for 

eight points.
47 Tim Yeah, but, because that was 

not right [referring to the ‘€0,75 per point’ 
model], we distribute it this way. ‘Cos they 
couldn’t finish, we must distribute it this 
way!

By focusing in a well-known procedure [41] Tim is 
suggesting that proportionality might be an adequate 
model to solve the problem. He infers from the nu-
merical information the “correct numbers” to intro-
duce in the model: it is not eight but twelve what they 
should use. Lyn [42] does not address Tim’s proposal 
in a straightforward manner; it is just by looking at 
her three utterances that we may try to understand 
what she is actually talking about. Lyn focuses [46] on 
the rules of the game: a player wins by winning eight 
points and by no other circumstances. We conjecture 
that Lyn objects taking twelve points into consider-
ation because this action does not represent these 

1  For the case of Anna’s group we describe the emergence of 

this model in (Goizueta, Mariotti, & Planas, 2014).

rules. This interpretation will be confirmed later 
(see [63] below). Tim responds [43] by focusing on a 
validity condition: the amounts of money distributed 
according to this model ‘add up to six’. We infer that, 
for him, this indicates some degree of certainty about 
the validity of the model and the numerical solution, 
although the epistemic status is not addressed in an 
intelligible way. We observe the emergence and fulfil-
ment of validity conditions as a means for validation. 
The shift of foci in Tim’s utterances [41] and [43] and 
the disconnected answer in [45] might indicate that 
he is simply not understanding Lyn’s objection. It is 
just after Lyn’s clarification [47] that Tim seems to 
address it, but rejecting it in a rather authoritarian 
way. Noticeably, on the one hand Tim does not take 
care of Lyn’s objection about the representativeness 
of his model, on the other hand Lyn seems not be able 
to make her objection explicit or even clear. It is not 
possible to infer from these utterances whether Tim 
does not understand the objection or does not find it 
relevant.

The teacher’s intervention
The teacher comes and the following conversation 
takes place:

54 Lyn Ok, if there are just six euros 
to distribute... and six euros are for eight 
points but there are twelve points in total... 
Do we have to forget that six euros are for 
eight points?

55 Teacher No! You should never forget. You 
are confusing things; six euros are for eight 
points of one single person. When you say 
twelve points, the twelve points were ob-
tained by two persons. All right?

56 Lyn I know, but distributing means 
giving to both...

57 Teacher No. Because the first arriving to 
eight gets everything; the whole six euros 
(…) The problem is that, because the game 
couldn’t be finished, we have to distribute.

58 Tim I have given to the twelve points, 
the six euros, and then one gets three point 
five and the other two point five. And it 
would be fair.

59 Lyn But that doesn’t make sense, 
‘cos...

60 Teacher Why it doesn’t make sense? 
That’s a possible solution. I agree. A crite-
rion to divide the money is what Tim just 
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said. Now Lyn says it doesn’t make sense. You 
should give me an argument why it doesn’t.

61 Lyn Because... I mean... No, no, no. 
Because the six euros are for eight points. 
And what he is doing is picking the six euros 
and dividing by all the points.

62 Teacher  He’s done that exactly.
63 Lyn No, no, no. I mean... That is not 

like the rules we have.
64 Teacher To see if our solution is consist-

ent, what we can do is to change how the 
game ended up. Let’s imagine six-two. They 
are six-two when the game is interrupted. 
Let’s check how to split the money and check 
if it’s fair or not.

Lyn refers in a highly condensed way [54] to what they 
have done to this point and to their current dispute. 
If we consider this intervention as continuing the 
students’ conversation, it provides the group with 
new elements to understand Lyn’s objection: dividing 
the money by twelve entails “forgetting” that it corre-
sponds to eight points. The teacher, who is interacting 
with this group for the first time, seems not capable of 
inferring the precedents and thus of understanding 
the epistemological complexity of the discussion. She 
interprets [55] Lyn’s intervention as a mere confu-
sion. The following utterances [56] [57] confirm the 
ineffectiveness of the exchange. Tim interrupts with 
his explanation [58], focusing on a procedure and the 
numerical answer it yields, which surely reveals to 
the teacher the proportional solution. Lyn address-
es [59] the problem of the representativeness of the 
model again, but still in a rather unintelligible way 
for the teacher, who reacts to Lyn’s objection [60] by 
apparently supporting Tim and asking Lyn for a jus-
tificatory argument. Although it is not clear how the 
students might interpret the teacher’s utterance, it 
is in line with the didactical planning of the session: 
fostering the emergence of competing models and 
students’ discussion of them. By saying “a possible 
solution” and “a criterion” she is implying that other 
models and criteria could be considered as well. The 
following utterances by Lyn [61] [63] seem to reveal 
that the teacher interventions do not help her better 
frame the problem of the representativeness of the 
model. Even when she tries to reformulate the issue 
[63], the teacher does not address it directly. Instead, 
she sticks again to the planning and proposes [64] to 
consider a numerical variation of the problem along 
with a hint. It is difficult to decide how the students 

might interpret the words ‘consistent’ and ‘fair’, but 
the teacher seems to suggest that the model’s validi-
ty can be assessed by assessing the ‘fairness’ of the 
solutions it yields. The epistemological status of such 
a link is not made clear, but the teacher is tacitly indi-
cating a new objective to the students: to explore this 
validity criterion for the situation model that they 
intend to exploit.

Lyn and Tim’s actions suggest different epistemolog-
ical and teleological stances underlining and shaping 
their arguments. Lyn seems to understand their im-
mediate task as assessing the relation between the pro-
posed mathematical model and the implicit situation 
model; thus her intention (as we interpret it) is to put 
in evidence the lack of representativeness of Tim’s 
mathematical model. Tim seems to focus the solution 
of the task on the identification and skilful execution 
of well-known, suitable mathematical procedures; by 
evoking proportionality in a rather ritualistic way 
and proposing a numerical result, he copes with that 
demand. While Lyn’s activity suggests the need for a 
reflective approach, Tim’s suggests a reproductive 
one.

A shift of attention: Towards 
a probabilistic model
After working for some minutes alone, Lyn proposes 
a new idea:

87 Lyn Look, I don’t know where I want 
to get to with this, but to arrive to where you 
get six, this needs just one and this needs 
three. So, based on that... let’s see how to 
distribute the eight. But I don’t know how.

Lyn shifts the focus of attention from the actual score, 
the base of the proportional solution, to the poten-
tial scores, the base of a probability related solution. 
Although we have observed this shift in other groups, 
Lyn’s case is exceptional in that it is not the response to 
teacher’s regulative interventions (in fact it involves 
disregarding them); hence it is not a case of perceived 
expectations fulfilment. It seems to be a genuine, 
autonomous attempt to investigate elements of the 
empirical situation in order to construct a situation 
model and look for a representative mathematical one.

95 Lyn If we divide six euro by this, that 
is what is missing [writes down ‘3 + 1 = 4’ and 
‘6/4 = 1,5’]. We get one point five. [writes down 
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‘3 x 1,5 = 4,5’ and ‘1 x 1,5 = 1,5’] But we should 
give more to this [winning player], ‘cos he’s 
closer than this [losing player]. So, what I 
would do is to give this [‘4,5’] crossed to this 
[winning player] and this [‘1,5’] crossed to 
this [losing player]. I don’t know why!

96 Ely That looks OK!
97 Lyn But, why?
98 Ely ‘Cos it’s proportional. I think it’s 

OK.
104 Lyn I think it makes sense. But I don’t 

know why!
105 Ely If you add them up you get six.

Lyn’s argument [95] develops through relating the 
data ‘3’ and ‘1’ (points needed to win) to the loosing 
and wining players respectively. By simple extension, 
the product ‘4,5’ ends up to be associated to the losing 
player while the product ‘1,5’ does to the winning one, 
what does not conform to what she considers a validity 
condition. She proposes a ‘crossed association’, but 
recognizes it as arbitrary by stressing that she does 
not find a reason to do so. Instead, Ely supports this 
solution [96] [98] [105] by referring it to well-known 
validity conditions: the soundness of proportionality 
as an adequate mathematical construct to solve the 
task and the two distributed amounts of money adding 
up to six. However, such support does not fit Lyn’s fun-
damental need for validating the mathematical model 
according to its representativeness of the empirical 
situation [95] [97] [104]. We observe again different 
epistemological and teleological stances underlying 
students’ arguments. Lyn subordinates the validity 
of the mathematical model, she proposes establishing 
a relation between it and the implicit situation mod-
el. Instead, Ely positively assesses the validity of the 
mathematical model on the basis of the soundness of 
proportionality, to which she associates it, and the ful-
filment of previously considered validity conditions.

CONCLUDING DISCUSSION

As observed throughout the analysis, the students 
seem to be unable of explaining to each other the 
base on which they claim or challenge the validity 
of the models they propose. This may be interpreted 
referring to the difference between the teleological 
and epistemological stances they adopt. Tim and Ely 
seem to understand the task as the need for identify-
ing some known, relevant mathematical construct to 

produce a sound answer that is consistent with shared 
expectation of the didactical contract. Accordingly, 
the goal they are pursuing is that of producing a 
numerical solution through a proportional model, 
tacitly linked to the problem through its ritualistic 
use in situations of distribution. It is this link and 
the fulfilment of the related validity conditions what 
seems to confer validity to the model. However, the 
evaluation of the model always remains implicit. Lyn’s 
activity reveals a different stance: the mathematical 
model must represent the empirical situation if it is 
to be considered valid, thus her immediate goal when 
discussing Tim’s model and her own is assessing their 
representativeness.

Both cases illustrate how different epistemological 
perspectives may influence students’ teleological 
stances and thus students’ attitudes towards validat-
ing the models they produce, but also how undevel-
oped is this attitude and far from a desirable culture 
of argumentation. In the case of Lyn, although she 
clearly focuses on validating the model with respect 
to how accurately it represents the proposed situation, 
she seems unable to share her ideas with her peers 
in an intelligible way. Meanwhile, Tim and Ely prove 
incapable of interpreting her stance and seemingly 
unaware of the necessity of linking the validity of 
the model to its representativeness. Even the teach-
er seems unable to perceive the tension between the 
different stances and help the students fruitfully 
discuss it.

From our point of view, this experience illustrates 
a more general situation, namely that students and 
teachers do not always have the tools to deal with, or 
talk about, the epistemological complexity of math-
ematical knowledge in the classroom. If a desirable 
culture of argumentation is to be fostered in the class-
room to allow students to autonomously construct 
and validate mathematical knowledge, some aware-
ness about one’s and other’s epistemological stances 
should be developed as a condition for a critical, re-
flexive account of one’s and other’s actions. It should 
not only be about producing valid arguments that 
satisfy conventional communicative requirements, 
but also about being aware of and able to discuss the 
grounds for their validity in their context of justi-
fication. Suitably fostering such discussions in the 
classroom should be the teleological counterpart of 
such epistemological stance. We suggest that more 
attention should be paid to the mechanisms that reg-
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ulate the emergence of the mathematics classroom 
epistemology in order to provide teachers with ade-
quate means to plan and control its development as 
part of a desirable culture of argumentation. To this 
regard, we claim that the interpretation of classroom 
mathematical activity in terms of validity conditions 
emergence and fulfilment might be worthwhile in 
order to reveal epistemological aspects of classroom 
interaction and their socio-interactive roots. This 
interpretation might help researchers describe and 
model the advocated development of a culture of ar-
gumentation.
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In this paper, we present our concept of the usage of four 
different types of proofs to engage students in the proving 
process: the generic proof (with numbers), the generic 
proof in the context of figurate numbers, the so-called 

“formal proof”, and the proof in the context of figurate 
numbers using “geometric variables”. Further, we re-
port from our case study, where 12 pre-service teachers 
were interviewed after attending our bridging-course, 
which had a focus on argumentation and proof. We 
investigated students’ perceptions of the generic proof 
with numbers. Our findings suggest the classification 
of perceptions in three categories: “Logical acceptance 
and psychological conviction”, “general acceptance of 
the concept and psychological uncertainty”, and “inap-
propriate understanding of the concept“.

Keywords: Generic proof, conviction, transition, figurate 

numbers.

INTRODUCTION

Constructing mathematical proofs is said to be a major 
hurdle for many university freshmen. It still remains 
a challenge of tertiary education to impart knowl-
edge about the notion of proof. Selden (2012) stresses: 

“Understanding and constructing such proofs entails 
a major transition for students but one that is often 
supported by relatively little explicit instruction” 
(Ibid., 392). To tackle this problem, the University of 
Paderborn offers the course “Introduction into the 
culture of mathematics” as an obligatory course for 
the first year secondary pre-service teachers (non 
grammar schools). This course has been developed 
and taught by the second author in collaboration with 
the first author. Its content was selected in order to 
help students to successfully get to know the way of 
mathematical proving that is prevalent at university. 
During this course, the students are to investigate 
mathematical problems (e.g., concerning figurate 

numbers) and to construct generic proofs and formal 
proofs. Refining and evaluating the course are a main 
focus of the first author’s dissertation. In this context, 
students’ perceptions of the different kinds of proofs 
were investigated.

THEORETICAL FRAMEWORK 
AND RELATED RESEARCH

In their article concerning generic examples, Mason 
and Pimm (1984) describe the basic feature of a gener-
ic proof: “The generic proof, although given in terms 
of a particular number, nowhere relies on any specific 
properties of that number” (Mason & Pimm, 1984, 284). 
This concept of a general verification in a concrete 
context has mainly been substantiated in Leron and 
Zaslavsky (2009) and Rowland (1998). But still there 
seems to be no overarching consensus regarding the 
notion of generic proofs as valid mathematical proofs. 
However, generic proofs are said to be especially use-
ful in the learning of reasoning and proving in the 
field of number theory (e.g., Karunakaran et al., 2014; 
Rowland 2002; Stylianides, 2012). The advantages are 
mainly seen in the accessibility even for low-perform-
ing students because of the absence of algebraic var-
iables. But as shown by Biehler and Kempen (2013), 
the concept and the construction of a generic proof 
remain problematic for many pre-service teachers. 

It is very common to give examples of generic proofs 
with the use of arrays or patterns of dots. This is a 
valid mathematical approach, since these patterns of 
dots can be considered as a notation system (Dörfler, 
2008). In a semiotic view, concrete numbers, or pat-
terns of dots, with their different properties and rules 
for operations, can build the notation system to per-
form diagrammatic reasoning and to construct valid 
mathematical proofs (e.g., Stjernfelt, 2000). 

mailto:kempen%40khdm.de?subject=
http://dict.leo.org/ende/index_de.html#/search=inappropriate&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=inappropriate&searchLoc=0&resultOrder=basic&multiwordShowSingle=on


Pre-service teachers’ perceptions of generic proofs in elementary number theory (Leander Kempen and Rolf Biehler)

136

In contrast to the recommended use of generic proofs, 
it seems surprising, that students’ perception of ge-
neric proofs has not been investigated in detail yet. 
The research of Tabach and colleagues (2010) indi-
cates that teachers often reject correct verbal justifica-
tions (including generic proofs), because of a claimed 
lack of generality and an assumed overemphasis of 
concrete examples. But as was shown by Malek and 
Movshovitz-Hadar (2011), students can benefit from 
being presented to generic proofs concerning proof 
comprehension and proof construction.

THE CONCEPT OF OUR BRIDGING COURSE

The course is meant to introduce students to the cul-
ture of the science mathematics, as it is practiced at 
university. We want to illustrate the procedural as-
pects and also give considerations to the ready-made 
knowledge of mathematics. Therefore, the students 
are to investigate assertions, build up hypotheses, test 
conjectures and form lines of arguments to finally 
achieve a mathematical proof. We also want to deal 
with the topics, which are known to be a barrier in 
the transition to tertiary level, so its content covers (1) 
discovery and proving in arithmetic, (2) figurate num-
bers, (3) proof by induction, (4) assertions, reasoning, 
types of proofs, (5) equations, and (6) functions.

The first chapter starts with the question “Someone 
claims: The sum of three consecutive natural numbers 
is always divisible by three. Is this correct?”. Here, the 
students are engaged in testing concrete examples 
and in discussing their informative value. In this con-
text of discovery and justification, we distinguish the 
significance of examples in a logical and in a psycho-
logical way: Logically, it is not important how many 
concrete examples one has tested, as the assumption 
is made for all natural numbers. Psychologically, the 
testing of several concrete examples can be seen posi-
tively to understand the assertion, to strengthen one’s 
presumption on the validity of the assertion and may-
be to get an idea why the statement is true (in all cas-
es). Following these considerations, we introduce a 
generic proof of the statement as a possible student’s 
answer (see below).

The concept of the generic proof is then exposed 
with an emphasis of its general argumentation. As 
a generic proof, we consider the combination of the 
following three parts: (1) there are operations on con-
crete examples that can be generalized, (2) one gives a 

(generic) argumentation, why the assumption is true 
in these specific cases and finally, (3) one has to point 
out, why this argumentation also fits all possible cases. 
In doing so, it becomes possible to highlight the dif-
ference between purely empirical verifications and 
general valid arguments. And in using generic proofs, 
the phase of examples-based exploration becomes 
an intuitive part of the proving process. Referring 
to the generic proof, we formulate a correspondent 
formal proof using algebraic variables (see below). 
Although this proof production seems to be an almost 
trivial task for a mathematician, our experience has 
shown, that our freshmen are not used to this kind of 
argumentation and are not familiar with this usage 
of algebraic variables. 

We also construct the correspondent proofs in the 
notation system of figurate numbers (see below). 
Afterwards, the assertion with three consecutive num-
bers gets generalized: “Is the sum of four consecutive 
numbers always divisible by four” and so on. At the 
end of the chapter, we attain the statement that the 
sum of k consecutive natural numbers is divisible by 
k if and only if k is odd. 

In this first chapter, arithmetic is the area for doing 
research and proving conjectures. Here, the notation 
system of figurate numbers is a tool for construct-
ing alternative types of proofs (see below). But in the 
second chapter, the figurate numbers themselves be-
come the object of investigation, where arithmetic 
and algebra can be treated as tools for proving. The 
field of figurate numbers (e.g., triangular numbers 
and square numbers) offers excellent possibilities for 
exploration, forming conjectures and proving. Here, 
it seems very natural to argue with the arrangement 
and the number of dots. 

FOUR TYPES OF PROOFS

As we pointed out above, the generic proof is firstly 
presented in the context of the value of testing sever-
al examples. (See the following generic proof to the 
claim: The sum of three consecutive natural numbers 
is always divisible by three).

Generic proof with numbers:
1 + 2 + 3 = (2 - 1) + 2 + (2 + 1) = 3 × 2 
4 + 5 + 6 = (5 - 1) + 5 + (5 + 1) = 3 × 5
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You can always write the sum of three consecutive num-
bers as: (“number in the middle“-1) + “number in the 
middle” + (“number in the middle“+1). Since this sum 
equals three times the „number in the middle“, the sum 
is always divisible by three.

It is the narrative reasoning that follows the generic 
examples, which makes a generic proof a valid general 
argument. So it gets possible to stress the differences 
between purely empirical examples and valid general 
arguments. In this way, we work against the miscon-
ception that examples on their own can form a valid 
proof. But the use of generic proofs is also meant to 
pick up a form of argumentation that is said to be used 
at school (e.g., Leiß & Blum, 2006). So our students 
could be somehow familiar with this type of proof 
and if not, they get equipped with this appropriate 
way of proving for their future work. In the following 
transition to the so-called formal proof (see below), 
it gets possible to introduce and promote the mathe-
matical symbolic language: (1) to express generality, 
(2) to communicate general incidents, (3) to explore 
further a supposed relationship, (4) to fulfill arguing 
and proving and (5) to provide a complete verification 
of a given statement (as recommended by Malle (1993) 
and Mason and colleagues (2005)).

Formal proof:
For all n є N \ {1}: (n - 1) + n + (n + 1) = n + n + n = 3 × n. This 
sum is divisible by three, because n є N \ {1}.

In the whole course we establish figurate numbers 
(geometrical representations and operations with ar-
rays or patterns of dots or squares) as another nota-
tion system. So the students are also asked to construct 
generic proofs using figurate numbers (see below) 
and the proof with geometric variables (see below). 

Generic proof in the context 
of figurate numbers:
In the example, one can see the sum 3 + 4 + 5 and 5 + 6 + 7. 
In every sum of three consecutive numbers, one obtains 
the same steps, independent from the starting number. 
After the transposition of the square at the far right, one 
always obtains three equal lines of squares. So, the sum 
is always divisible by three.

Proof with geometric variables:

We defined the representation of an arbitrary number 
by inserting three little dots as a “geometrical variable” 
to have an analogy to the algebraic variables in the 
notation system of figurate numbers. This parallel 
treatment of arithmetic/algebra and geometric rep-
resentation is said to be useful to ease the transition 
from arithmetic to algebra. Flores (2002) suggests a 
similar approach. Moreover, by using these alterna-
tive notation systems, it gets possible to stress the im-
manent quality of an argument, independent from 
its representation. While in the generic proof, the 
argument is given in a concrete context, which has 
to be generalized, the variables in the formal proof 
imply generality. So, it gets possible to emphasize the 
notion of variables in algebra and also in the geomet-
rical context.

RESEARCH QUESTIONS

We will address the following research questions in 
this paper: 

1) With which type of proof do the students start 
their proving process? 

2) How can students’ different perceptions of gener-
ic proofs with numbers be characterized?

3) How can the different perceptions of gener-
ic proofs with numbers be distinguished with 
regard to the logical and psychological aspects 
mentioned above?

The research presented in this paper is part of a wid-
er research project, which comprises the following 
further research questions: Are the students able to 
construct the four different kinds of proofs? Are there 
common pitfalls in their proof productions and if so, 
what are these? How can students’ different percep-
tions of proofs in the context of figural numbers be 

Table 1: The sum of three consecutive numbers represented by figurate numbers

Table 2: A proof with “geometric variables” and figurate numbers
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characterized? How can these perceptions be distin-
guished in regard to the logical and the psychologi-
cal aspects? How do the students judge the different 
proofs in comparison to each other? By knowing our 
entire research interest, the following research de-
sign becomes coherent.

RESEARCH-DESIGN

Our study took place in the last week of the semester. 
We conducted sessions including proof construction 
and interviews with six different pairs of students, 
which were randomly selected from a group of volun-
teers. In the beginning of each session, the students 
were asked to proof a theorem (see “task analysis and 
expected solutions”) and afterwards, to construct 
the remaining three types of proof that they had not 
used spontaneously. For every proof production, the 
students were given two sheets of papers, the “draft 
paper” and the “clean copy”. The first sheet was meant 
to be used for their individual work, e.g., tests, ex-
plorations and proofs. After having finished the task 
individually, the two students were asked to develop a 
joint solution on the basis of their draft solutions and 
to write it correctly on the “clean copy”. After having 
constructed all proofs, the students and the inter-
viewer looked through the proofs, correcting gaps 
or inaccuracies. This phase was included in order to 
ensure the reference to correct proofs in the following 
interview phase. At the beginning of the interview, the 
students had to answer a questionnaire and to rate the 
four proofs with respect to their persuasiveness, their 
validity, their quality of explanation and their appro-
priateness for school mathematics on a six-level Likert 
scale. The last part of the session was an interview. 
Firstly, the students’ were asked about the reasons 
for their spontaneously chosen type of proof at the 
beginning. Secondly, the interviewer asked questions 
based on the students’ responses in the questionnaire 
to get to know their perceptions of the different types 
of proof. All sessions were recorded with two cameras, 
one in front, in order to capture gestures as well as 
motions in particular, and one in the back, filming 
students’ writings. 

TASK AND EXPECTED SOLUTIONS

At the beginning of each session, the following task 
was given to the students:

Prove or disprove: If one takes a natural number and 
adds its square, the result will always be divisible by 2.

Since we only discuss students’ different perceptions 
of generic proofs with numbers in this paper, we will 
only give one possible solution for the generic proof 
with numbers:

Generic proof (with numbers): 
3 + 3² = 3 × (1 + 3) = 3 × 4 = 12 
 4 + 4² = 4 × (1 + 4) = 4 × 5 = 20

The sum of a natural number and its square always 
equals the product of the initial number and its succes-
sor. One of two consecutive natural numbers is always 
even and the other one is odd. Since the product of an 
odd and an even number is always even, the sum is even, 
i.e. divisible by two.

DATA-ANALYSIS

We transcribed each session and analyzed the tran-
scripts and students’ proof productions. For this case 
study investigating students’ perceptions of the ge-
neric proof with numbers, we followed the quasi-ju-
dicial procedure developed by Bromley (1986). We 
focused on common and characteristic patterns in 
students’ comments to ultimately categorize them 
as cases of a certain type. The findings suggest three 
different types of students’ perceptions of generic 
proofs with numbers.

RESULTS

Students’ spontaneous choice of types of 
proof at the beginning of the session
Out of the 12 students participating in the study, nine 
started immediately to construct a formal proof. In 
one group, the two students started with testing the 
statement with two concrete examples. Afterwards, 
one student explained, referring to their examples 
(3+9=12 and 4+16=20), that the sum must be even, be-
cause the square of an odd number is always odd. And 
if you add any two odd numbers, the sum is always 
an even number. So, she discovered a part of a gener-
al argument, she could use for a generic proof with 
numbers. But afterwards, both students started to 
construct a formal proof with algebraic variables to 
verify the statement.
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All participants started to use algebraic variables 
when writing down the assertion. For their choice of 
the formal proof with algebraic variables, they named 
different reasons: their socialization in school and/or 
university, that the formal proof is easier, because 
one does not have to have an “idea”, or they thought 
that the construction of the formal proof would be 
the intended task.

Only one student immediately wrote “generic proof ” 
and started to investigate concrete examples. She gave 
the following reasons for her choice in the interview:

Yes, for me it is a support. […] When I’m writing 
these things down, I recognise how it works. And 
afterwards, I insert variables. […] I’m looking for 
regularity or something similar.

Students’ perceptions of generic 
proof with numbers
Analyzing the data, we could identify three different 
kinds of perceptions of generic proofs with numbers, 
which are described briefly and illustrated by exam-
ples from the transcripts. (The following transcripts 
were translated and linguistically smoothed.)

(1) Logical acceptance and 
psychological conviction
A student with this perception fully understands the 
concept of the generic proof and accepts the imma-
nent general verification. The generic proof convinc-
es the student without any doubt that the statement 
holds in any case. Moreover, he gets an insight, why 
the statement is true.

Michael reports his perception of generic proofs:

Michael: So, I marked “strongly agree” [for va-
lidity]. Because … step by step, one can 
immediately follow the idea, e.g., you 
add this one and then you add the next 
one and so one. It is not the same as in 
a formal proof: It is just there and you 
have to prove it and that’s it. This [the 
generic proof ] is not [as] illustrative 
[as a proof ] with pictures, but one can 
clearly see what happens. […] That’s 
what I like about a generic proof. If you 
see this, you can easily understand the 
way it has been done. There are always 
some examples given which are used for 

the following argumentation you can 
easily understand. 

(2) General acceptance of the concept 
and psychological uncertainty
In this case a student understands the concept of the 
generic proof and is willing to accept the immanent 
general verification. In contrast to this conviction, a 
subjective, intuitive doubt remains, but this emotion-
al uncertainty is considered as unnecessary. Sarah 
mentions her perception of generic proof with regard 
to the persuasiveness:

Sarah: I do understand its [the generic proof ’s] 
general validity and overall meaning. 
But with regard to the persuasiveness: 
if one submits a generic proof to me, I 
would say: “Can I also have a formal 
one?”. For me, it is more convincing.

Christin describes her intuitive need to test the as-
sumption for all natural numbers: 

Christin: But this one [the formal proof ] – for me – 
is somehow a more correct and coherent 
proof. For me, I would have to test it for 
all “n” - but it is nonsense, because one 
recognises the scheme, but…

(3) Inappropriate understanding of the concept
A student with this perception does not (fully) under-
stand the concept of the generic proof. The student 
focuses on the concrete examples, without noticing 
the whole wider scheme and its general argument. 
The generic proof gets misinterpreted as a purely 
empirical verification.

We cite Paul and Amy as examples of perception (3). 
Paul quotes, that in a generic proof you are only test-
ing specific examples:

Paul: It [the formal proof ] is just – let me say – 
more correct.

Interviewer: What does it mean “more correct”?

Paul: Yes, correct in the sense that it shows its 
[the statement’s] accuracy, so the validi-
ty, yes. And that the proposition is valid. 
We also show this in the generic proof, 

http://dict.leo.org/ende/index_de.html#/search=uncertainness&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=unnecessary&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=inappropriate&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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but this only applies to the numbers, we 
have tested.

Amy mentions her perception of generic proofs, 
which illustrates her misconception:

Amy: Yes. If it [the generic proof ] is sufficient 
for me? I’m not sure. So I wouldn’t say 
that there is 100%-validity. Since there 
has been a homework, where we had to 
refute or to prove a statement. And then 
we had to test examples. I found two ex-
amples that worked, but maybe, there 
is a third one that doesn’t. So for me, it 
[the generic proof ] is not sufficient for 
I have not proven it. I did only prove it 
for these two examples and not for all 
numbers. So there is no validity.

Considering all interviews, we only found one student 
holding perception (1), identified four participants 
with perception (2) and five with perception (3). In 
two cases we could not categorize students’ answers, 
as they did not state clear positions.

DISCUSSION AND FINAL REMARKS

Nearly all students in our study started to work on 
the given task with formalisation and the construc-
tion of a formal proof using algebraic variables. Their 
socialization during their time in school and the rep-
utation of advanced mathematics may be considered 
as reasons for this result. But one has to stress, that 
we explicitly did not try to convey an overemphasis of 
the formal proof in our course, but tried to highlight 
the validity of all four types of proofs. However, in 
this simple task the formal proof can be considered 
the easiest one. Another possible explanation could 
be that students think that “to provide a proof ” im-
plies the use of algebraic variables as we did not ask 
them to provide a “generic proof ”. Students may have 
misinterpreted this as a semiotic norm in the sense 
of Dimmel and Herbst (2014). Although this is inco-
herent to the semiotic norm the course has intended 
to establish.

Our findings concerning students’ perceptions of ge-
neric proofs with numbers indicate that even after 
having passed our course, the notion of generic proof 
still remains problematic for a substantial proportion 
of our students. Only about half of the students in our 

study hold a perception, where the generic proof is a 
general and logical valid argument [perception (1) and 
(2)]. Five students did not realize the generic aspect 
of the investigated examples and still hold the view 
of generic proofs as purely empirical verifications 
[perception (3)]. One can identify an important pitfall 
in the usage of generic proofs: When students do not 
understand the important difference between testing 
several examples and generic examples combined 
with valid narrative reasoning, they might be con-
firmed in their understanding that checking several 
examples may constitute a proof. Here, the question 

“why is it true” in combination with the explanatory 
power of proofs seem to be a promising way to address 
this misconception. One has to point out, that percep-
tions (1) and (2) are desired effects of our course. While 
there are students, who are completely convinced by a 
generic proof, others accept its logic, but still feel an 
intuitive doubt. For the latter group, the meaning of 
variables and the usage of the mathematical language 
can be pointed out even clearer. While we argue, that 
our proposed use of generic proofs and formal proof 
gives a meaningful introduction into the process of 
proving and the mathematical language, it becomes 
clear, that generic proofs are not “generic” by them-
selves. 
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Understanding students’ classroom argumentation re-
quires the analysis at multiple levels and from multiple 
perspectives. Using analyses of students’ arguments 
when solving the Problem of Points we illustrate three 
perspectives: a classroom interactional perspective, a 
Stoffdidaktik task analysis (at the individual level), and 
a sociological theoretical perspective (at the community 
level). Each of these perspectives offers insights into stu-
dents’ argumentation in mathematical contexts, but no 
single one is adequate to completely describe the nature 
of students’ argumentations, their underlying influenc-
es, and ways to support their development.  Multiple 
perspectives and levels of analysis are required when 
researching classroom argumentation in particular 
and mathematics learning in general. 

Keywords: Argumentation, classroom interaction, task 

design, social context.

In this paper we argue that understanding students’ 
classroom argumentation requires the analysis at 
multiple levels and from multiple perspectives. Levels 
of analysis touched on here include individual, small 
group, whole class, school and community, but more 
are possible. Perspectives considered here include a 
classroom interactional perspective, a Stoffdidaktik 
task analysis (at the individual level), and a sociolog-
ical theoretical perspective (at the community level). 

We begin with a short description of a task which was 
used in our research and a brief description of some 
of our results. We then compare these results to those 
of  Goizueta (2014; Goizueta, Mariotti, & Planas 2014) 
and offer his framework for analysis as the first per-
spective considered: an interactional perspective at 
the classroom level. Goizueta proposed the task in 
Spanish and we proposed it in German, and we will 
consider changes to the task that may have occurred 
in translation, using a second perspective from the 
work of Schupp (1986): a Stoffdidaktik task analysis at 
the individual level. We will then describe additional 

results from our research that suggest that addition-
al perspectives are needed. An interesting parallel 
between our results and those obtained by Holland 
(1981) suggests a third perspective that applies to our 
results: a sociological theoretical perspective at the 
community level. We close with some final comments 
on the need for multiple perspectives and levels of 
analysis in researching classroom argumentation in 
particular and mathematics learning in general. 

THE PROBLEM OF POINTS

Rott (2014) asked 14/15-year-old students at 
Gymnasium (grammar school/college prep school) 
in Bremen (Germany) to solve the classic Problem of 
Points in the context of their regular classroom math-
ematics lessons.

Silke and Acun take turns flipping a coin. Silke 
scores a point if the coin comes up heads. Acun 
scores a point if the coin comes up tails. At the be-
ginning of the game Silke and Acun each bet 3€. 
The first to score 8 points receives the 6€. When 
the score is 7 to 5 in Silke’s favour, they have to 
interrupt their game. How can they now divide 
the money? (Our translation from Rott, 2014, p. 25) 

Rott classifies the students’ answers into five types:

Proportional  A total of 12 rounds were played 
(7 + 5) and there is 6€ to be won. So each round 
played scores obtained 0.50€. Accordingly, Silke 
wins 7 · 0.50€ = 3.50€. Acun receives 2.50€.

Point Difference  Silke requires only one throw 
to win. The difference between Silke and Acun is 2 
points. So Silke gets 2€ more than Acun.

Mistaken Reasoning  Silke receives 7/8 of 
the 6€, Acun 5/8. However, that totals too much: 
5.25€ + 3.75€ = 9€. So Silke gets 3.75€ and Acun 
6€ – 3.75€ = 2.25€. 

mailto:knipping%40math.uni-bremen.de?subject=
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Point-Ratio  The ratio of the scores so far is 7:5 
= 1.4 So Silke gets 1.4 · 3€ = 4.20€. That leaves 1.80€ 
for Acun.

Winner  Silke has more points.

(p. 40, our translation)

INTERACTION AT THE CLASSROOM 
LEVEL: RATIONAL BEHAVIOUR AND 
THE DIDACTIC CONTRACT 

Some of these types of answers correspond to 
answers obtained by Goizueta (as reported in 
Goizueta, Mariotti, & Planas, 2014) and they can be 
accounted for by an analysis from the same theoret-
ical perspective. Goizueta et al. analyse Goizueta’s 
data using Habermas’ construct of rational behav-
iour, in which accepting a validity claim amounts to 
accepting that certain conditions for validity have 
been fulfilled. This means that the criteria for va-
lidity have also been accepted. They describe three 
dimensions in students’ argumentations:

According to Habermas’ construct of rational be-
havior and its adaptation by Boero et al. (2010), in 
the students’ argumentative practices we can dis-
tinguish an epistemic dimension (inherent in the 
epistemologically constrained construction and 
control of propositions, justifications and valida-
tions), a teleological dimension (inherent in the 
strategic decision-making processes embedded 
in the goal-oriented classroom environment) and 
a communicative dimension (inherent in the se-
lection of suitable registers and semiotic means 
to communicate within the given mathematical 
culture). (pp. 169–170)

They also make use of Brousseau’s (1997) concept of 
the didactic contract, the implicit rules of acceptable 
classroom behaviour that govern teachers’ and stu-
dents’ actions, and Douek’s (2007) notion of a refer-
ence corpus, knowledge which is assumed to be un-
questionable and shared and hence available as a basis 
for argumentation. 

The five types of answers observed by Rott and list-
ed above share a common characteristic which is of 
special interest to us here. They are all mathemati-
cal. Goizueta et al. account for this characteristic in 

the answers Goizueta recorded by reference to the 
didactic contract.

When Vasi reminds the group of the need to resort 
to calculation, we recognize a constraint imposed 
by the didactic contract: any possible correct an-
swer must be mathematics-related. (p. 172)

According to the teleological and communicational 
dimensions, the didactic contract-related need to 
provide a mathematics-related answer, acting as 
a necessary normative validity condition, is what 
drives the students’ efforts towards the construc-
tion of a first mathematical model. (pp. 174–175)

In short, from the perspective adopted by Goizueta 
et al. the students’ choice to give mathematical an-
swers to the question is accounted for by the didactic 
contract, which operates at the level of the classroom. 

STOFFDIDAKTIK TASK ANALYSIS: 
LANGUAGE AT THE INDIVIDUAL LEVEL

The five types of answers listed above leave out one 
type that Rott observed: Money Back, of which an ex-
ample is “The game was not completed. Both have a 
chance to win. The game was interrupted, without 
either reaching 8 points. The game is a tie.” (2014, p. 
40). This type of answer differs from the others in that 
it is not mathematical, instead making reference to 
everyday practices in game playing. Only two answers 
of this type were observed in the Gymnasium class, 
but its occurrence requires an explanation as it is not 
accounted for by Goizueta and colleagues’ analysis. 

The work of Schupp (1986) provides a different per-
spective that suggests a reason for the occurrence of 
such an answer. Schupp considers different wordings 
of the Problem of Points and suggests how students’ 
answers might vary in relation to different word-
ings. He distinguishes three fundamentally different 
views of the problem: 1) situative; 2) quantitative; 3) 
stochastic and proposes different formulations of the 
problem to communicate these different views. The 
formulations all begin in the same way: “Two players 
are flipping a coin … Unexpectedly, they are asked to 
interrupt the game when one of them has 7 points 
and the other 5. …”
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Situative view: What now?
One possibly ending to the task formulation is very 
open, asking “What now?” or “What happens next?” 
Schupp suggests that such a formulation invites a 

“situative view” of the problem resulting in answers 
drawing on everyday experiences of game playing. 
For example, students might answer: “Why not con-
tinue at another time?”, “Why not annul the game 
and give both players their money back?” “Toss the 
coin one more time to decide the winner.” All these 
answers seem plausible but they are not mathematical, 
as Schupp points out (p. 217).  

Quantitative view: Fair division; 
how can this be accomplished?
Another possible ending is “The two players decide to 
split the money fairly. How can this be done?” (p. 218, 
our translation). Such a formulation invites a math-
ematical answer based on ratios. Interestingly, such 
answers were among the first given to the problem 
by mathematicians such as Pacioli. Many students 
in Goizueta’s and Rott’s research also seem to take 
this view. 

Stochastic view: Dividing the pot 
according to probability 
A third formulation considered by Schupp makes it 
clear that a “fair” division must take into account the 
players chances of winning when the game is inter-
rupted, for example, by stating “Before dividing they 
agree that a ‘fair’ division must be done according to 
the probability each have at that moment of winning 
the game. How then must the pot be split?” (p. 218) This 
formulation of the problem motivates solutions like 
those given historically by Pascal and Fermat. In con-
trast to other approaches the focus is on the rounds 
that have not been played. 

The tasks as given
How do the formulations of the task used by Goizueta 
and Rott fit into Schupp’s categories? Both Goizueta’s 
Spanish formulation and Rott’s German formulation, 
like Schupp’s, begin “Two players are flipping a coin 

… Unexpectedly, they are asked to interrupt the game 
when one of them has 7 points and the other 5.” It is 
in the way the final question is asked that they differ.  

Goizueta’s formulation ends, “¿Cómo deben repar-
tirse el dinero? Justifiquen su respuesta.” (Goizueta, 
personal communication). The phrase “¿Cómo deben 
repartirse el dinero?” (How should they split the mon-

ey?) refers only to dividing the money, and not to the 
concepts of fairness and probability. However, the 
word “deben” (should) suggests that there is a single 
correct answer to this question. Also, the requirement 
to “Justifiquen su respuesta.” (Justify your answer) in 
the context of a mathematics class could suggest that 
mathematical methods of justification are expected. 
Hence, while this formulation is not as clearly promot-
ing a quantitative view as Schupp’s example of invok-
ing “fairness”, it is not surprising that a quantitative 
view was adopted by all the students in Goizueta’s 
study.

Rott’s formulation ends, “Wie können sie nun das 
Geld aufteilen? Begründe deine Antwort!” (Rott, 2014, 
p. 25). The phrase “Wie können sie nun das Geld auft-
eilen?” refers only to dividing the money, and not to 
the concepts of fairness and probability. And the 
word “können” (can) is more open than the alterna-
tive “sollen” (should). However, Rott’s formulation 
is not so open as Schupp’s examples of situational 
view formulations as there is an explicit mention of 
dividing: “aufteilen” and a requirement to justify the 
answer “Begründe deine Antwort!”. This places the 
formulation somewhere in between the situational 
and the quantitative which would account for answers 
of both kinds occurring in the Gymnasium class. The 
task formulation gave students the option of choosing 
between taking a situational or a quantitative view, 
and while most took a quantitative view some did 
not, perhaps reflecting personal preferences at the 
individual level. 

A SOCIOLOGICAL PERSPECTIVE AT 
THE COMMUNITY LEVEL: RESULTS 
FROM THE OBERSCHULE

Rott did not only propose the Problem of Points in 
the Gymnasium class. She also proposed it in anoth-
er class, in an Oberschule (comprehensive or mixed 
school). There the results were strikingly different. 
No students gave mathematical answers of the five 
types listed above. Most answered that Silke and Acun 
should get their money back. The only other type of 
answer Rott observed was a group that discussed 
extensively a variation on the Point-Difference ar-
gument, in which the difference of each players’ win-
nings from their original bet of 3€ should be equal 
to the point difference between the players. As one 
member of the group, Melanie, put it: 
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If the score were six five, would then, they would 
then — ah, if it were six five, I would say that she 
gets two Euro, because that, he would get two Euro 
and she four Euro, but it is actually seven five. One 
point less. Then I would make it five Euro and one 
Euro. (Rott, 2014, p. 56, our translation)

If the score were 6:5 the point difference would be 
one, so Silke would win 1€ more than she bet, that is 
4€, and Acun would win 1€ less than he bet, 2€. As 
the score is actually 7:5, the point difference is two, so 
Silke wins 2€ more than she bet, 5€, and Acun wins 2€ 
less than he bet, 1€. Melanie’s group did not accept this 
argument, and at the very end of their work together, 
they almost persuaded her to accept the answer given 
by the standard Point-Difference argument, but she 
objected, and their final answer is a sort of compro-
mise without any justification. 

125 Melanie: Let’s make it Silke four and Acun 
two. 

126 Ines: [???] 
127 Melanie:  But then, look, just think, then 

Acun has two Euro, no? And she has, she has 
three 

128  Euro, only one euro of Acun, although she 
has ǁtwoǁ points more. 

129  Anne:  ǁlet’s make itǁ one fifty for him 
and four-fifty for her. - 

130  Ines:  That’s also an idea. Then both are 
somehow on the same wavelength, so then 
the two are

131   actually equal. 
132  Melanie:  Okay, do that. (p. 55)

Earlier Rott asked Melanie how she arrived at her 
answer of 5€ from Silke and 1€ for Acun. 

92 D. Rott:  How did you get that Silke gets 
five euros and Acun one Euro? 

93 Melanie:  (Points to the worksheet) So 
there it was, yes seven to five. 

94 D. Rott:  Yes. 
95 Melanie:  And if the score would be seven 

to six, Silke would get four and Acun
96 two, but it is actually seven to five, so Silke 

gets more and Acun one Euro. 
97 D. Rott:  And what did you calculate ex-

actly, to get that? 
98 Melanie: Nothing 
99 D. Rott:  Just by intuition? 

100 Melanie:  Yes. (p. 57)

Rott calls this groups argument “Intuition” in light 
of Melanie’s comment about not calculating, and the 
group’s quick conclusion to divide the money 4.50€ to 
1.50€. While this group’s arguments included mathe-
matical elements, which is unusual for the Oberschule 
groups, their final answer does not have a mathemat-
ical basis. 

Recall that the answers from the Gymnasium groups 
were mostly justified in mathematical ways, except 
for a few who said to give the money back. In the 
Oberschule, however, the situation is the opposite. 
Almost all the groups said to give the money back, with 
only one group providing an intuitive argument with 
some mathematical elements. We can be sure the for-
mulation of the task was the same in the Gymnasium 
and the Oberschule as it was provided to the teachers 
by Rott. How then to account for the very different 
types of answers? To do so we will need further results 
from the two classes, as well as another perspective, 
at another level.

A second difference between the two classes is in 
the number of different answers students gave. In 
the Gymnasium it was expected and happened that 
students gave alternative answers, including that 
the players should get their money back. The seven 
groups offered a total of 11 answers, of six different 
types, while in the Oberschule the five groups gave 
one answer each, four answering that the players 
should get their money back. One could account for 
this by saying the didactic contract is different in the 
two classrooms. However, even when pushed to give 
alternative answers in the interview, the Oberschule 
students only gave answers based on everyday expe-
rience. The different preferences of the students, for 
mathematical answers in the Gymnasium and answers 
based on everyday experience in the Oberschule, com-
bined with the ability of the Gymnasium students to 
give answers based on everyday experience as well 
as mathematical answers, is reminiscent of a study 
done by Holland (1981). 

Holland gave 8 year old children the task of sorting 
photographs of familiar foods. She found that chil-
dren from middle-class backgrounds tended to sort 
the photographs in terms of abstract properties (e.g., 

“animal/vegetable/dairy/cereal” or “from the sea/
farm”). On the other hand, working-class children 
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tended to sort the photographs in terms of their per-
sonal experiences (e.g., “things I eat for breakfast/
lunch/supper”). Furthermore, when asked to re-sort 
the photographs, the children from middle class 
backgrounds could do so, sorting them in terms of 
their personal experiences, while the working class 
children could not offer additional sortings. As this 
result is very similar to the differences between the 
Gymnasium students and the Oberschule students, it 
is worth considering the theoretical framework used 
by Holland and looking at Rott’s results at a sociolog-
ical level. 

A sociological perspective
The neighbourhoods of Bremen are classified by the 
government into different types. The Oberschule is 
located in a Group A neighbourhood, in which the 
proportion of families with immigrant backgrounds 
as well as the proportion of people on social assis-
tance is above average.  Specifically in the neighbour-
hood around the school, the proportion of families 
with immigrant backgrounds is 65–86% and many 
parents have low levels of education (Die Senatorin 
für Bildung, Wissenschaft und Gesundheit, 2012a, p. 
55). The Gymnasium, on the other hand, is a private 
religious  school located in a Group B neighbourhood 
in which the proportion of families with immigrant 
backgrounds is below average (15–30%). This does not 
mean that all the students in the school come from 
upper-middle-class homes, but it does mean that the 
majority do.

This difference suggests that a sociological perspec-
tive might be useful in understanding the different 
answers given by students in the two schools to the 
Problem of Points. 

Sociological approaches fall roughly into two groups. 
One approach collects data on very large groups of 
people and uses statistical techniques to draw con-
clusions about the relative weight of various social 
factors in determining, for example, success in school 
mathematics. Such an approach is clearly not suita-
ble in this case. A second approach involves applying 
well developed sociological theories to describe and 
analyse the actions of smaller groups of people. We 
have chosen one such theory, the work of Bernstein, 
to analyse the data presented here.

Holland makes use of several concepts from 
Bernstein’s work: restricted and elaborated orienta-

tions to meaning, realisation and recognition rules, 
and re-contextualisation. 

For Bernstein an orientation to meaning is created 
by inter-actional practices which act selectively 
on what is to be meant, and what form the reali-
zation of meaning takes in which contexts. The 
inter-actional practices in the family and school 
transmit recognition rules which mark contexts 
as requiring a specific text, and realization rules 
which regulate what meanings are to be offered 
and how these are to be made public. Bernstein 
argues that families in different social class lo-
cations are typified by different inter-actional 
practices which regulate different recognition 
and realization rules and generate an elaborat-
ed or restricted code ... (Bernstein, 1977) or ... an 
orientation to context independent meanings or 
to context dependent meanings. For some chil-
dren then the re-contextualizing principle of the 
school will entail recognition and realization rules 
very different from those acquired in the family. 
(Holland, 1981, p. 2)

Children learn at home how to recognise contexts 
that require certain ways of making meaning, and 
how to realise those ways of making meaning. School 
is a context in which meaning is context independ-
ent. Children’s experiences are re-contextualised in 
school into abstractions (Bernstein, 1977). The middle 
class children in Holland’s study had both the recogni-
tion rules to see Holland’s task as calling for abstract 
categories, as well as the realisation rules needed to 
use abstract categories in classifying. The working 
class children did not. Bernstein (1977) characterises 
an orientation to abstract, context independent mean-
ings as an elaborated orientation, and an orientation 
to context dependent meanings as a restricted ori-
entation. From this perspective we can account for 
the differences between the argumentations of the 
Gymnasium students and the Oberschule students 
by suggesting that the out of school  experiences of 
the students led some to develop elaborated orien-
tations to meaning, including both recognition and 
realisation rules related to using mathematical ar-
guments in school contexts, while others developed 
restricted orientations to meaning, lacking either the 
recognition or the realisation rules needed to produce 
mathematical argumentations in school contexts. 
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Cooper and Dunne (2000) describe difficulty recognis-
ing the border between everyday and mathematical 
contexts as the “boundary problem”. They researched 
sixth grade and ninth grade students’ solutions to 
test items of two types: “realistic” items in which a 
mathematical task is embedded in an everyday con-
text, and “esoteric” items in which the task was de-
contextualised. Working class students performed 
less well than middle class students, especially on 
realistic items. However, in an interview situation 
in which the students were explicitly told to disregard 
the context, they were successful on items they had in-
correctly answered in the test situation. This suggests 
that their difficulty did not stem from an inability to 
act appropriately. Rather, they faced the boundary 
problem; they lacked the recognition rules to distin-
guish between everyday and mathematical contexts. 
If this was also the difficulty faced by the Oberschule 
students, then a formulation of the task that more 
clearly invokes a mathematical or stochastic view of 
the problem might help them to recognise the type of 
argument expected. In addition, a reframing of the 
didactic contract to more explicitly require multiple 
solutions and mathematical solutions might also help 
to overcome the boundary problem. 

Knipping (2012) discusses the value of sociological ap-
proaches to research on argumentation, and identifies 
decontextualised language as a key issue. She cites 
the work of Hasan (2001), who studied the opportuni-
ties children have to engage in this kind of discourse 
in their homes before they begin schooling. In some 
homes the talk of adults to small children remains tied 
to the context, related directly to the activities and 
objects that are present to the senses. In others there 
is already at this early age a fluid shifting between 
decontextualised and contextualised language, which 
Hasan refers to as a “con/textual shift”. There is rea-
son to believe that the division Hasan found, between 
home situations in which con/textual shifts occur of-
ten and those where they occur rarely, is influenced 
by social class. This could provide a mechanism to 
account for the occurrence of the boundary problem 
among the Oberschule students. 

CONCLUSIONS

In this paper we have offered three different perspec-
tives at three levels that help us account for students’ 
responses to the Problem of Points: a classroom in-
teractional perspective, a Stoffdidaktik task analysis 

at the individual level, and a sociological theoretical 
perspective at the community level. We have made 
no effort to integrate these perspectives into a single 
all-encompassing model. This is likely to be impossi-
ble given the different fundamental assumptions of 
the theories involved. Moreover, as Reid (1996) points 
out, multiple perspectives offering different interpre-
tations are valuable, even if contradictory, as no sin-
gle perspective can capture the complexity of human 
learning in social contexts. And as we take a closer or 
wider view of phenomena of interest, different the-
ories become applicable. Learning can be viewed at 
many different levels, from the neurological to the 
ecological. Different theories and methodologies are 
appropriate for these different levels. “Discourses 
concerned with different phenomena (such as radical 
or social constructivism—or neurology, ecology, or 
biological evolution) can be simul taneously incom-
mensurate with one another and appropriate to their 
particular research foci.” (Davis & Simmt, 2003, p. 143). 

Researching classroom argumentation must involve 
theories at at least three levels. Argumentation is con-
ducted by human beings, and influences the thinking 
of human beings, and so perspectives at the level of in-
dividual human cognition are needed. But argumen-
tation is also a necessarily social phenomenon which 
takes place among groups of people using language. 
Perspectives that focus on communication, language, 
and interactions between people in small groups are 
therefore needed. People and communication develop 
in larger social and cultural contexts that shape them 
and are shaped by them. Argumentation in mathemat-
ics classrooms cannot be considered independently of 
argumentation in mathematics and people in mathe-
matics classrooms cannot be considered independent-
ly of their social and cultural backgrounds. Multiple 
perspectives at every level are needed.  
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The present study is part of a larger one examining the 
design principles of e-assessment of understanding of 
geometric proofs. The interactive assessment tasks are 
checked automatically and feedback is generated. We 
reviewed various proving task design studies, looking for 
a template that incorporates interactive sketching and 
that can be checked automatically. Our findings suggest 
that examples sketched in a dynamic geometry envi-
ronment in order to complete the assessment task are a 
challenging target for e-assessment and are relevant for 
eliciting the students’ understanding of geometric terms, 
geometric statements, and their validity.

Keywords:  Assessment, DGE, examples, validity. 

BACKGROUND

The present paper focuses on the challenge of auto-
mated assessment of knowledge of geometric proofs. 
Specifically, we propose to assess processes of conjec-
turing and argumentation. To this end, we study the 
roles of examples (designed to be checked automati-
cally) demonstrating the logical validity of geometric 
statements. 

Assessing understanding of geometric proofs 
For decades an extensive efforts has been made to 
automate the process of checking proofs. But a de-
ductive proof is a complex process, and most of the 
proofs produced by students are subject to their 
teachers’ evaluation. We are interested in a facet that 
is not often checked in a school setting (neither by 
humans nor by machines), although it is an inherent 
part of mathematicians’ work on proofs: conjectures 
and argumentation. In the process of conjecturing, 
mathematicians try to generate different examples, 
including extreme and boundary examples, in order 
to create a rich example space from which a pattern 
can emerge. When mathematicians investigate the 

validity of a new conjecture, they usually do not only 
look for the proof but try to construct counter-ex-
amples by means of quasi-empirical testing, because 
such testing can expose hidden contradictions, errors, 
or unstated assumptions (De Villiers, 1990). Proving 
often involves understanding how the proof relates 
to specific examples and how these examples can il-
lustrate it. Being able to follow a sequence of infer-
ences in a proof based on a specific example has been 
considered by mathematicians to be an indispensable 
tool for understanding a proof. Mejia-Ramos and col-
leagues (2012) constructed a model for assessing the 
comprehension of aspects of a proof.  They discovered 
four main facets: summarizing the main idea of the 
proof, understanding the components or modules of 
the proof, applying the method of the proof in other 
contexts, and illustrating the proof with examples or 
diagrams.  Kuzniak (2013) presented a new framework 
for the didactics of geometry work. The framework 
encapsulates instrumental processes. It transforms 
artefacts, such as dynamic geometry software, into 
tools in the construction process and into a discur-
sive process of the proof that confers meaning on the 
properties used within the mathematical reasoning. 
The assessment template we designed follows Ramos’s 
(2012) assessment model and is inspired by the frame-
work suggested by Kuzniak (2013). 

Buchbinder and Zaslavsky (2009) offered a mathemat-
ical framework for designing tasks that question the 
students’ understanding of the role of examples in 
determining the validity of mathematical statements. 
This framework provides a basis for constructing 
tasks that assess and support students’ understand-
ing of the logical connections between examples and 
statements. Any mathematical statement can be re-
duced to two sets of mathematical objects: the “if” part 
of the statement, which is the domain, the set of all 
mathematical objects to which the statement refers 
(e.g., isosceles triangles), and the “then” part of the 
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statement, the proposition that defines the set of all 
mathematical objects that exhibit a certain property 
(e.g., right angle triangles). In this context, the status 
of the example object can be defined as follows: a sup-
porting example is an object in domain D that exhibits 
P (e.g., an isosceles triangle that is a right-angle trian-
gle ). A counter-example is an object in domain D 
that does not exhibit P (e.g., an isosceles triangle that 
is not a right-angle triangle ). 

Interactive diagrams
Herbst and Arbor (2004) found that building rea-
soned conjectures or using deductive reasoning to 
find out what could or should be true can be supported 
by tasks that engage students in generative interac-
tions with diagrams. This study uses interactive dia-
grams as a tool to create examples that either support 
or refute conjectures. The interactive diagrams we 
use are designed to describe the domain and context 
of the task (an example of a geometric figure or draw-
ing) and to support autonomous guided inquiry, by 
enabling direct manipulations of the example and by 
providing feedback that reflects the process of inquiry 
(Yerushalmy, 2005). Students interact with the dia-
gram while  exploring the conditions under which a 
version of the problem can be solved (Herbst & Arbor, 
2004). By dragging a dynamic diagram students gener-
ate an example that demonstrates specific properties. 
The use of dragging allows students to experience 
kinematic dependence that can be interpreted as logi-
cal dependence within the dynamic environment, but 
also within the geometric context (Mariotti, 2006). 
According to Mariotti, the dragging interaction can 
be compared with formal arguments used in mathe-
matical proofs (Mariotti, 2006).

e-Assessment
Whereas traditional assessment focused primarily 
on testing factual knowledge, new technologies gave 
rise to the need to assess new skills, such as problem 
solving, creativity, critical thinking, and risk-taking. 
To nurture and develop these skills, the assessment 
strategy should aim beyond testing factual knowl-
edge and capture the less tangible themes that un-
derlie these skills. Although technology offers a rich 
learning experience, studies show limitations when 
it comes to assessing solutions for complex mathe-
matical problems. First-generation e-assessment was 
limited to multiple choice questions, subsequently 
enhanced by short verbal or numeric answers (Scalise 
& Gifford, 2006). Studies show that assessments based 

exclusively on questions of this sort lead to limited 
learning and incorrect inferences of purpose of the 
assessment, such as “there is only one right answer,” 

“ the right answer resides in the head of the teacher or 
test maker,” and “the role of the student is to get the 
answer by guessing” (Bennett, 1993). To assess the 
complex processes involved in proofs we must un-
derstand the role that examples play in proofs and the 
links between these examples (in our case, dynamic 
figures) and logical argumentation.

THE STUDY

Objectives
The present paper presents results derived from a 
broader research study for which we developed a tool 
to assess students’ skills in geometry proofs. The tool 
provides immediate multiple representation feedback 
and analysis at the level of the single student, group, 
or class, based on the teacher’s choice. The challenge 
of the innovative development is to study strategies 
followed by students in investigating the validity of a 
geometric statement and in generating examples. We 
proposed to determine which aspects of the compre-
hension of a geometry proof are demonstrated by the 
automatically generated evaluation presented either 
as a personal solution or as a visually comparative 
collection of answers, and which aspects are demon-
strated in the accumulated visual feedback.  

Study setup
Sixty three middle school students participated in 
the study; 33 were in the 8th and 30 in 9th grade. The 
geometry classrooms featured mixed abilities, includ-
ing gifted students and students with special needs. 
We use the terms “high-, medium-, and low-skill stu-
dents” for students who showed high, medium, and 
low achievement in the subject of the examination 
before the experiment. 

The experiment included a practice session, an ex-
amination session, and a whole-class discussion pe-
riod. Before the examination, students had a practice 
session aimed at presenting the instructions and 
the technological interface (personal tablets) using 
a similar template task. The examination included 
three problem-solving tasks with a repeated five-item 
template [1]. In this paper we report the results of the 
work on two items of the template appearing in three 
tasks. We also report on the class discussion that took 
place a few days after the examination and on task-
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based interviews with three pairs of students (two 
high-skilled and one low-skilled) solving the same 
examination items a few weeks after the exam. The 
group feedback used in the whole-class discussion 
and the task-based interviews were conducted for the 
purpose of triangulation.

Design of the research tools
Task: The examination included three tasks that are 
instances of the same five-item template. Three items 
focused on the comprehension of terms and the read-
ing of the proof. Here we discuss the other two items, 
which focused on assessing students’ understanding 
of the validity of a geometric statement and generat-
ing supporting or counter-examples. The students 

were asked to provide a counter-example for the uni-
versal statement and a supporting example for the ex-
istential statement (Figure 1). The students could also 
choose “none,” indicating that such an example does 
not exist.  The domain of both items was identical in 
each task. The interactive diagram was a figure, there-
fore robustly in the class of objects described by the 
domain, and the properties defining the domain were 
invariant under dragging. The initial orientation of 
the figure does not represent the correct answer, and 
students must actively drag the diagram to generate 
the correct answer. The items of the three tasks are 
described in Table 1.

Figure 1: Page setup of paired items B1 and B2 (points A, B, C are draggable)

Objectives Domain (if ) Proposition (then) Diagram

A1. Counter- ex-
ample

AB = AC
BD = CE

AEFD cannot be a square

A2. Supporting 
example

∆FDB can be an isosceles triangle

B1. Counter- ex-
ample

AB = AC
DA, DB and DC are bisec-
tors

The bisectors always divide the triangle 
into three congruent triangles

B2. Supporting 
example

One of the triangles created by the bi-
sectors can be an acute triangle

C1. Counter-
example

AB⟘CD
∠A=∠D

∆AMC ~ ∆DMB

C2. Supporting 
example

∆AMC ≅ ∆DMB

Table 1: The logical structure of the three pairs items 

http://geo.gigaclass.com/tasks/en/task1bEn.html
http://geo.gigaclass.com/tasks/en/task1cEn.html
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In each diagram, some measures of lengths and angles 
were displayed. Other measures that were required 
for constructing the example were such that could be 
derived from the displayed measures and the prop-
erties of the domain (e.g., the measure of only one of 
the equal sides of an isosceles triangle is displayed). 
The use of measurements in interactive diagrams 
confronts students with the issue of the relationship 
between measurement and proof (Chazan, 1988).

Rubric: A rubric was developed for each task based 
on a literature review of relevant misconceptions and 
on pilot trials of the tasks conducted with students 
(mostly pre-service mathematics teachers). 

Feedback: We designed two feedback sheets. A per-
sonal feedback sheet displayed the student’s exam-
ination answers and personal evaluation feedback 
[2]. The feedback was not provided to the students 
immediately after completion of the examination in 
order to support an unbiased class discussion. The 
group feedback sheet (Figure 6) was designed to dis-
play the collective answers and results of all students 
for a single item. 

Data sources and analysis
Data analysis included the personal and group feed-
back sheets, the class discussion videotape, and vide-
otapes and transcripts of the interviews. We verified 
the automatic check by manually checking the results. 
Next, we used the group feedback to look for patterns 
of mistakes. Expected pre-configured misconceptions 
were captured by the automatic check, and other mis-
takes were identified manually. We conjectured about 
the source of the mistake and later verified our con-
jectures during the interviews. 

FINDINGS AND RESULTS

The findings are classified into three categories: strat-
egies, misinterpretation of terms, and understanding 
statement validity according to the three questions 
formulated in the objectives of the study. Each catego-
ry includes the triangulation of the results obtained 
by analysis of the three research tools. 

Strategies used to create examples
During the examination we found that highly skilled 
students demonstrated active and fearless engage-
ment with the interactive diagrams, dragging points 
to the extreme and collapsing them to a single point. 

This impression was verified during the interviews, 
when the two high-skill pairs intensively dragged the 
diagram from an initial state to extremes, constantly 
expanding the example space (Figure 2), whereas the 
low-skill pair showed hesitating and careful dragging, 
making small changes to the initial diagram (Figure 3).

Some students (mostly high-skill) submitted extreme 
examples even when standard examples were suf-
ficient to provide a counter-example, as shown in 
Figure 4.

Another strategy was the use of symmetrical dia-
grams, with as regular as possible shapes. This strat-
egy helped students to avoid common error such as 
matching non-corresponding sides, trying to create 
congruent triangles (see Figure 5) or examining isos-
celes triangle as a possible counter example to the 
statement “the median divides the triangle into two 
equal area triangles”. 

Figure 2: Example space of item B2 created by the high-skill pair

Figure 3: Example space of item B2 created by the low–skill pair
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Analyzing terms in the given statement
The study uses the group feedback sheet to demon-
strate the affordance of the assessment tool to in-
form the teacher in regard to students’ interpreta-
tion of the terms in the given geometric statement. 
The examination feedback provided a view of the 

interpretation of terms and concepts in class. In the 
feedback sheet for the task “if AB ⟘ CD and ∠A = ∠D, 
and M is the intersection point of AB and CD, then 
∆ACM ≅ ∆DBM” (Figure 6), we were able to identify 
misinterpretations of the concept of “corresponding 
parts in congruent triangles.” Although most students 
generated triangles with equal angles and one pair of 
equal sides, a substantial number of them (marked in 
orange) matched non-corresponding sides (AM = CM, 
instead of AM = DM).  

Another common misinterpretation was found on 
the group feedback sheet of another task (B2), where 
students were asked to provide a supporting exam-
ple for the incorrect existential statement: “the bi-
sectors of an isosceles triangle create an acute trian-
gle” (Figure 7). Although the example on the left is 
an extreme one and the closest to an acute triangle, 
the bisectors in the other two diagrams create clearly 
obtuse triangles. We conjectured that students misin-
terpreted the term “acute triangle.” This assumption 
was verified in the class discussion following the ex-

Figure 5: Examples of common strategy in item C2 (using isosceles 

triangles)

Figure 6: Group feedback for item C2

Figure 7: Partial feedback sheet for item B2 supporting example

Figure 4: Counter-examples for item B1 
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amination with students who defined an acute trian-
gle as one that includes a single acute angle.

Determining the validity of the statement
In general, students were able to determine the va-
lidity of the statement, as can be seen in Table 2. The 
lower scores were in task B2, where the term “acute 
triangle” was misinterpreted by many.

Although most students correctly identified the valid-
ity of the statement, they did not necessarily provide 
a correct example figure (e.g. correspondence in con-
gruent triangles). In a class discussion following the 
examination, students were asked to justify the “none” 
answers presented in the aggregated feedback sheet. 
All students based their justifications on empirical 
evidence, which means that they were not able to find 
any examples. This phenomenon was confirmed in the 
interviews. But during the interviews the high-skill 
pairs were able to produce a deductive explanation 
relatively quickly.

DISCUSSION

Based on the partial findings presented above we can 
draw several conclusions with regard to the objectives 
of the study: (a) we were able to learn what strategies 
students used, and take pedagogical action, such as 
encouraging low-skill students to use more active and 
fearless dragging in order to investigate extreme ex-
amples; (b) we were able to use the group feedback 
sheet as a tool to identify misinterpretations of terms; 
(c) the design of the items and the automatic checking 
provided immediate quantitative and personal data 
about the validity of the understanding of the geomet-
ric statement, but not about the presence of a justifi-
cation when examples were not available; students 
simply based their answers on empirical evidence. 

The visual feedback sheet helped us quickly identify 
central patterns of knowledge in class. In a discus-
sion that took place in class after the examination, we 
displayed the group feedback sheet and found that it 

encouraged active discussion, as students were eager 
to participate in a conversation based on their gener-
ated examples. Successful brain-storming, involving 
many members of the class, was conducted about the 
existence of multiple correct answers, the importance 
of a large-scale example space and the use of active 
and fearless dragging strategy for expanding it, the 
role of extreme examples, and the need for students 
to justify their “no such example” answer. Future re-
search on the role, use, and format of personal and 
group visual feedback should be a fruitful field for 
studying the use of the ample and immediate data 
produced by e-assessment.
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ENDNOTES

1. Third test task can be viewed at: http://geo.gigaclass.
com/tasks/en/task2bEn.html  

2. Third task feedback is available at: http://geo.giga-
class.com/tasks/en/fb2b2En.html

http://geo.gigaclass.com/tasks/en/task2bEn.html
http://geo.gigaclass.com/tasks/en/task2bEn.html
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 As a part of a multidisciplinary research lead by a team 
from the S2HEP Laboratory, the aim of our work is to 
explore the potential functions of stories in Scientifics 
and Mathematics learning. In this paper we focus on 
the potential connections between the mathematical 
space and rhetoric space during problem solving activ-
ity. We first characterized theoretically, and then tested 
experimentally, thanks to a didactical engineering, a 
didactical environment. We characterise a process-
es-transferring space between the narrative activity 
and the problem solving activity. Our results show that 
the narration act supports the student’s mathematical 
reasoning.

Keywords: Problem solving, stories, narration act, 

processes-transferring space.

INTRODUCTION

This paper aims to study the contributions of the 
narrative act in the proving process. There is in-
deed a natural inclination of the Humans for stories 
(Bruner, 2003) with a valuable heuristic potential. Our 
research group has shown, for instance, how the sto-
ries’ plot and possible worlds brought by fiction can 
lead children to question their knowledge and build 
new scientific knowledge (Bruguière & Triquet, 2012). 
This heuristic prospective leads us to imagine that a 
reasoning1 can be built on narrative structures even 
in mathematics. The reasoning and the narrative acts 
are both structured process and thanks to Bruner’s 
and Fayol’s works, we can assume that the develop-
ment of a reasoning can rely, from a structural point of 

1  In this paper, we call “reasoning” the cognitive process that 

consists in drawing conclusions from facts, evidence, etc. In 

school, a reasoning is expected form the children when solving 

a problem.

view, on narrative structures. Six years old children, 
who are as able as adults to build complex narratives 
structures (Fayol, 1985), have to develop mathematical 
and logical structures. Maybe theses structures and 
the proof skills related can grow for a part on those 
already mastered abilities.  Following this idea, we 
developed a model allowing us to anticipate and study 
connections between the reasoning and the narra-
tive act (Moulin, 2013). In the first part of this paper, 
we share some theoretical elements about relations 
between problem solving and story writing activity. 
We focus on the processes involved and character-
ize a processes-transferring space. Then, we present 
a didactical environment shaped in order to allow a 
joint development between narrative and reasoning. 
We show on chosen examples how the narration-act 
provides structured guidelines and take part in the 
proving process.

THEORETICAL ELEMENTS:  
PROCESSES-TRANSFERING SPACE

The aim of this theoretical part is to define what we 
call a processes-transferring space between the rea-
soning act in problem solving activity and the nar-
rative act in story building. We rest on Scardamalia 
& Beireiter’s framework (1987) that postulates that 
during the drafting of a text, the interactions between 
the rhetoric space (inherent to the construction of the 
text) and the content’s space (concerning disciplinary 
knowledge) lead to the application of high cognitive 
functions and to the transformation of the relevant 
knowledge in both fields (Figure 1). 

Outlooks opened by this model lead us to the assump-
tion that during problem solving activity, the commit-
ment to a task related to story building can allow chil-
dren to initiate, build, structure and/or prove their 
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reasoning. This assumption brings us to consider a 
double theoretical framework.  

Characteristic elements of mathematical 
problems2 and solving process
This first point, about problem solving activity, settles 
down in the field of the didactics of mathematics. Most 
European curricula consider that the main objective 
of problem solving is to develop the reasoning and log-
ic skills and to give meaning to mathematical objects. 
In our work, we study this activity by getting inter-
ested in the (cross-disciplinary) skills involvements 
linked to a heuristic activity (Polya, 1945). To study 
the processes involved in problem solving, we choose 
to consider as one object the problem and the solution 
in a three-block framework (Figure 2). 

Problem solving is then a combination of processes 
developing the necessary actions to determine the 
solution(s) taking care of the mathematical object(s). 
Each one of the three problem’s components must be 
handled. The complete processing of each compo-
nent is equivalent to the problem’s resolution. The 
problem can bee seen as solved when you have either: 

2  According to us, the name mathematical problem group to-

gether all the situations involving a mathematical object and 

asking one (or several) question(s) to which it is possible to 

answer only after the elaboration of a reasoning.

Determine the whole data’s structure with structur-
ing and modelling processes; or build valid conjec-
tures about the nature and the value of the solution 
involving conception and reflexive processes; or cal-
culate the value of the solution and prove the validity 
of the calculations using among other explanation and 
argumentative processes.

The proving process depends on each of theses cogni-
tive processes, which are dependant of the quality of 
the problem environment. However, school problems 
are not always enough complex to impose to the pupil 
the construction of reasoning. Supported by various 
linguistic tools, we realized an analysis of school prob-
lem statement (French textbooks) as if they where sto-
ries. As a matter of fact, school problems are often 

(if not always) presented as little stories. But, none 
of them included neither problematic elements nor 
triggering factors as intended in the context of stories 
(Moulin et al., 2012). We could raise here the question 
of the relevance to present a problem in the form of 
a story if we remove the element from it that indeed 

“poses problem”. But our main focus here is to grant 
a larger place to the story dimension already given 
in the problem’s statements. The purpose of this ap-
proach is to supplement problem-solving process with 
stories functions that will be presented in the following 
point.

The rhetorical need to build a tran-
sition can, for instance, bring up 
a relation that was not seen before.

Figure 1: Problem spaces and interactions extract from Knowledge Transforming Strategy (Scardamalia & Beireiter, 1987)

Figure 2: Mathematical problem’s components and reasoning process
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Characteristic functions of stories 
and narrative act process
We move our focus off didactics to the heuristic and 
structuring functions of stories linked to the nar-
rative act. With this opening we want to highlight 
similarities in the cognitive activities and processes 
related to both activities (structuring, explanation, 
problematization, argumentation). When it comes to 
stories, one first thinks of a linguistic object, telling 
a story and showing some characteristics of singular 
shape. However, one can also approaches stories from 
the angle of their elaboration, as a mindset, with re-
gard to the heuristic, and structuring functions put 
forward by several researchers such as Bruner and 
Ricœur. This is the way we chose.

To involve theses functions in the problem solving 
process, we have to consider in the same kind of way 
in one hand problems and stories and in the other 
hand reasoning and narrative act process. Stories 
have structural characteristics (Reuter, 2009) of their 
own organized around a plot. The plot may be consid-
ered as a question to which it is necessary to try to 
answer. From then on, the reception of a story, just 
like its production, involves cognitive processes of 
recognition and reproduction of this structuring. The 
solving of the plot therefore corresponds to a (more 
or less complex) sequence of movements of actions 
proposed by the story allowing to find a state of bal-
ance. Combining Genette’s (1972) and Bruner’s (2003) 
work, we came up with a three-block design for stories 
(Figure 3).

The characteristics of the story object express them-
selves in the processes of thought allowing to under-
stand it, to build it and conversely. The solver/reader 
has to imagine from the information different explan-
atory possibilities. Fiction, as a characteristic of sto-
ries, brings a whole space to do it. For Ricœur (1983), 
the story has moreover this capacity to organize what 
is disparate into a coherent whole (holos). The recep-
tion, like the production of a story, therefore imposes 
to (re)build the temporal, spatial and causal relations 
of the presented events. These heuristic and struc-
turing functions of stories are strongly connected 
to problematization and are submitted to an internal 
logic. So they play a part in similar processes to those 
that we have described for problem solving. There are 
three main functions considered in our work: 

 ― The structuring function through situation, 
structure and information;

 ― The problematization function induces by the 
complication and the plot’s study;

 ― The explanation function linked to the solving of 
the plot and the resolution.

Process transferring space in problem 
solving and story writing activity
We can now identify a potential process transferring 
space between the content problem space (including 
the mathematical problem) and the rhetorical prob-
lem space within with the story is build (Figure 4). 
Considering, as Scardamalia & Beireiter (1987) did, 
that a process is an answer to a local problem we can 
assume that each local problem (content or rhetoric) 
and the related process can be either realised in the 
content problem space or in the rhetoric one. In the 
context of a mathematic problem, we can make a 

“transfer hypothesis” assuming that every processes 
related to the proving process (explanation, conjecturing, 
argumentation, etc.) can be handled with the help of 
tools available in the rhetoric space and vice versa. In 
other words, as part of a problem solving activity, the 
narrative act and the narrative functions going with 
it can under certain conditions come in the solving 
and proving process.

In our work, we develop the story scope in integrating 
it as an essential component of the didactical envi-
ronment (Brousseau, 1998). We position stories as 
an antagonistic object of the pupil in problem solving Figure 3: Stories’ components and narrative act process
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activity. Indeed, with a structure and logic of its own, 
story complements the didactical environment. The 
story structures a space of thought in accordance with 
the situation at stake in the problem. According to us, 
this structured space allows the pupil to build and to 
validate his/her reasoning. We set up an experiment 
to test various aspects of the interactions between the 
story and mathematical reasoning. We present the 
original situation in the following point.

SITUATION AND DIDACTICAL ENVIRONMENT

With the aim of testing our transfer hypothesis, we 
shaped a didactical environment (Brousseau, 1998) 
with the objective of ensuring a joint development 
between narrative and reasoning. The situation of 
problem solving we offer is built around a game of 
spinning tops in which two players are in confronta-
tion according to the rules given in Figure 5.

Due to its progress – a sequence of rounds bringing 
gains and losses of points – this game has a structure 
that is possible to determine completely through the 
application of mathematical rules. For instance, the 
score of the winner of a game is always between 7 
and 9 and it is necessary to play a minimum of three 
rounds to end a game. These properties form, among 
others, the mathematical and logical structure fix-
ing the possibilities and the impossibilities of the 
situation. It is on this structure, constituting a local 
axiom (Tarski, 1969), that we built our mathematical 
problems. 

In a first time, we asked children to produce descrip-
tive narratives based on games actually made. These 
descriptive stories were meant to be a support for the 
children to move from a material situation to a more ob-
jective one. At this point, the events of the game are the 

Figure 4: Process transferring space

The game is divided in rounds. To the signal, both players throw their spinning 
top in a stadium at the same time. It contains a play area and two areas of penalty. 
The round ends when: One of the spinning tops does not spin any more; One of the 
spinning tops is in the penalty area; One of the spinning tops is not any more in the 
stadium; A player touches the stadium. When the round is over, the points are dis-
tributed (the rules are applied in order, as soon as a point is given or removed, we 
move to the following round):
- 1 for the player who throws his spinning top outside the stadium; 
- 3 for the player who touches the stadium during the round;
+3 for the player who sends the spinning top of his/her opponent outside the stadi-
um;
+2 for the player who corners the spinning top of his/her opponent in the penalty 
area;
+ 1 for the player whose spinning top is the last one to stop.
The first player who gets 7 points (or more) wins the game.

 Figure 5: Rules
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events of the story; the scores are included in the story 
and the game’s rules are automatically taking cared of. 

Then, in a second time, we confronted them to various 
mathematical problems about the mathematical struc-
ture of the game and the properties presented above 
(about possible scores, number of rounds, etc.) To ad-
dress these problematic situations, children could 
use anticipated-games narratives (based on imagi-
nary games). At this point, the (imaginary) events of 
the game are still the events of the stories; however, 
points became mathematical objects and the game’s 
rules are a mathematical structure. The problem’s 
question reflects on the story’s complication. There 
is a room for co-building between the reasoning and 
the story. In the built situation, the resolution of the 
problem and the proof process is subject to three types 
of constraints (Figure 6):

 ― Constraints of the local axiom: These are the 
constraints carried by the situation (Durand-
Guerrier & Diaz, 2005). In our context, they 
define what can be done or not in the situation 
and are related to the structure and the data. For 
instance, the winner always ends the game with 
a 7, 8 or 9 points.

 ― External constraints: These are the constraints 
imposed by instructions. They are one or several 
additional constraint(s), which add up to those of 
the local axiom. They take place in the question. 
For example, to impose that the winner wins with 

8 points instead of leaving the possibility that he 
ends up with 7 or 9.

 ― Internal constraints to the story: These are the con-
straints imposed by the style of the story. As the 
latter is a structured production, it has to respect 
an internal logic of time, characters and place.

The interaction between the two structures is the es-
sence of our didactical environment. While solving 
various problems, children can rely on an environ-
ment that includes all the feasible games in accord-
ance with the local axiom. We made the local hypoth-
esis that children can produce their results through 
their stories and validate them thanks to the math-
ematical and logical rules that govern the situation. 
The construction through the interaction between 
the structure of the game and the production of the 
story constitutes the originality of our experiment. 
The outcomes presented in the following point are 
part of a larger research (Moulin, 2014).

RESULTS

We put ourselves in the methodological framework of 
didactical engineering (Artigue, 1988). This one allows 
us to confront the potentialities of our environment, 
by an analysis of the choices made determining the 

“possibilities of action, choice, decision, control and 
validation that [the pupil] has at his disposal”  (p. 258), 
to the effective productions of the pupils. Therefore, 
we can validate, in an internal way, our hypothesis 
thanks to the confrontation between a priori and a 

Figure 6: Constraints and didactical environment
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posteriori analysis. We conducted our experiment 
in three primary schools (six class of 10–11 years old 
children, 138 children). We collected and analysed 
oral interactions in the class and children written pro-
ductions. In this part of this article we present some 
chosen extracts to highlight two significant results 
regarding argumentation and proof.

Result 1: Children’s natural tendency to 
stories in conjecturing and arguing
The first meaningful result we want to highlight is 
that, even in a mathematical context, children have a 
natural tendency to stories. 

For instance, after playing and write some descriptive 
stories children were asked to establish to conjectures 
about the mathematical structure of the situation: 

1. In your opinion, what is/are the score/s that can 
be obtain by the game’s winner? 

2. In your opinion, what is the minimum number 
of rounds needed to end a game.

The only constraint they had in some cases was to jus-
tify all of their answer (using the shape of a story or 
not). They indeed used stories to justify and/or prove. 
For the most part, 61 over 113, children use an explan-
atory possible story to justify their answer3. Only ten 
answers are based on mathematics using numbers 
and calculations. It seems easier for children to work 
in the narrative space than in the mathematical one 
(which concerns directly the game’s rules). Moreover, 
the justifications build in the narrative space produce 
more correct conjectures than the one build on the 
mathematical space. 85% of the thirty-two complete 
conjectures came along narrative justification. 

When we orally asked children to conjecture about 
the structure of the situation, they build and used 
stories in various ways: 

 ― Anticipate potentially feasible games to put for-
ward a conjecture;

 ― Propose an example (or a counter-example) to 
validate (or invalidate) a conjecture; the valida-
tion (or non-validation) is made by the confron-
tation between the stories, the mathematical 

3  The other answers were based on the games played during 

the previous session or on the game’s rules. For instance, “you 

can have 8 points because when I played I won with 8 points” 

or “you can have 7 points because when you have 7 you won”.

structure of the situation and the constraints of 
the question.

While producing stories, students embrace the math-
ematical constraints of the situations and step back 
from the sensible world. No more restrained by ma-
terial thinking, the students were more inclined to 
mathematical approach. Therefore, they develop or 
enhance their mathematical proving skills (example 
and counter-example arguments, mathematical con-
jectures and demonstrations, etc.). Some of them even 
produced mathematical proof of the impossibility to 
reach ten points.

Result 2: Children easily travel between 
the two spaces to solve problems
During our experiment, we asked children to solve 
various mathematical problems. For the most part, 
according to Vergnaud’s typology for additive struc-
tures, they were problem with a composition of trans-
formations (Vergnaud, 1986). The one we present now 
had this structure and the following wording:

Laura plays with spinning tops. During the begin-
ning of the game, she wins 5 points. In total, she 
gains 3 points. What happened during the end of 
the game?

With this formulation, we didn’t constraint the chil-
dren to use a narrative answer. We could have asked 
them to “tell” like we did in other exercises. However, 
a lot of them use narrative ways in order to solve this 
problem and the same type’s other problems. We got a 
good rate of success comparing to the usual rate with 
this kind of problem4. But, most of all, we want to fo-
cus here on the effective practice use by the pupils to 
solve these problems. The oral correction sessions re-
veals that children easily travel between two problem 
spaces: the mathematical one and the rhetorical one. 
In this specific problem, the difficulty was to identify 
that you need two transformations (instead of one) to 
get the lost of two points. In the following example you 
can notice that the child goes from the narrative point 
of view, to the mathematical one, then again to the 
narrative one and finish with the mathematical one.

At the beginning, I though that it needed just one 
round, just that … because it’s said that she gain [loose] 

4  More than 50% against 25% according to Vergnaud (1986) in 

similar situations.
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three points. She had five points in the beginning so 
she lost two points. And then, because there is no rules 
bringing the lost of two points, there is only minus one 
or minus three (…) so I said that I needed two rounds. 

It seems that the combination of the narrative and 
the mathematical space offers a rich environment 
for children to work in. Instead of being considered 
only in the mathematical space, the problem can be 
part-treated in the story space (Figure 7). 

The management of the problem in the narrative space 
brings children to improve their study of the situation. 
Because of that, their solving and proving are more 
accurate. Due to their heuristic and structural func-
tions (Bruner, 2003), stories can play a part in problem 
solving. The act of narration supports the student’s 
mathematical reasoning and justification. The story 
enriches, with the meaning of Hersant (2010), the di-
dactical environment: there is more possibilities to 
explore the empirical part of the environment thanks 
to the fiction brings by stories; there is a need of proof 
brings by the structural aspects of stories. In accord-
ance with our theoretical framework, story building 
together with a problem solving activity produces an 
environment allowing pupils to commit themselves, 
to structure and to justify the followed reasoning. 

CONCLUSION

Our analysis of oral and written children productions 
reveals that stories are a powerful asset in problem 

solving activity. By integrating the story into the di-
dactical environment, we offer children a structured 
space to reason and argue about problematic situa-
tions. Taking charge of an explanatory possible or im-
possible, via story building, allows them to argue and 
so to conjecture and to get into a proof approach. In 
a more general way, all the functions of the story can 
be mobilized as part of problem solving. Structuring, 
explanation, argumentation are inherent processes 
for both story writing and problem solving. The pos-
sibilities of interaction between these two activities 
let imagine a joint development, in the pupils, of the 
capacities needed in the proving process.
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In this essay, we present a reading of the genesis of 
proof in ancient Greece through the lenses of Husserl’s 
transcendental phenomenology. We argue that the 
Husserlian perspective acts as the epistemological bed-
rock upon which a didactical framework that fosters 
the students’ need for proof may be built. Importantly, 
we posit that this framework allows for the students’ 
developing internal need for organising the corpus of 
mathematical knowledge within a deductively derived 
structure.

Keywords: Proof, geometry, Husserl, phenomenology.

THE STUDENTS’ NEED FOR PROOF

The notion of proof is at the crux of modern mathe-
matics, constituting the backbone of the axiomatic 
system implied by Euclid. Mathematics educators 
have investigated the phenomena related to proof, 
considering amongst others different protagonists 
(including students, teachers, mathematicians), their 
conceptions of proof and its functions, their cognitive 
and affective proving products and processes (Boero, 
2007; Moutsios-Rentzos & Kalozoumi-Paizi, 2014; Reid 
& Knipping, 2010).

Though researchers have documented various func-
tions of proof (including verification, explanation, 
systemisation; Hanna, 2000), the students seem not to 
share these conceptions. For example, high-school stu-
dents appear to consider proof as means for establish-
ing verification and to a lesser extent for explaining 
and communicating (Healy & Hoyles, 2000). Moreover, 
mathematics undergraduates would employ math-
ematical proof as an exam-appropriate answer, but 
they may choose a ‘softer’ argument (example, fig-
ure etc) to convince themselves (Moutsios-Rentzos & 

Simpson, 2011): they produce a proof to meet the ex-
ternally-set requirements of a task, but their internal 
need for proof seems not to necessarily be in line with 
a fully-fledged conception of proof. The students need 
a reason to produce a proof (Balacheff, 1991), which 
may be externally or internally referenced (Moutsios-
Rentzos & Simpson, 2011).

Zaslavsky, Nickerson, Stylianides, Kidron and 
Winicki-Landman (2012) discussed the mathemati-
cal and pedagogical aspects about the need for proof, 
differentiating internal needs amongst: certainty (ver-
ification of the truth of a statement), causality (why 
a statement is true), computation (quantification of 
definitions, properties or relationships through alge-
braic symbolism), communication (formulation and 
formalisation in conveying ideas), structure (logical 
re-organisation of knowledge).

Everyday activities utilising the notion of inquiry 
are suggested as possible means for fostering the 
students’ developing these aspects of internal need 
for proof. Though existing didactical frameworks may 
be employed to help the students to develop internal 
need for proof, we argue that a Husserlian reading of 
the genesis of proof in ancient Greece may provide the 
epistemological backbone of a didactical framework 
that would foster the students’ developing all aspects 
of internal need for proof, notably ‘structure’. The 
realistic mathematics education research paradigm 
(Streefland, 1991) appears to be a suitable framework, 
since a problematic situation that is perceived as ‘real’ 
for the students is actively re-organised by the stu-
dents with the teachers’ guidance. The re-organisa-
tion of the situation results in the ‘re-invention’ of 
the required mathematical tools that, constructed 
as a response to a ‘real’ need, are meaningful for the 
students. The process of mathematisation of the ‘real’ 
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situation allows the incorporation of the constructed 
mathematical ideas within the existing mathematical 
world, but it does not explicitly address ‘structure’. 
The new mathematical constructs need to derive from 
existing mathematical knowledge, but this necessari-
ly implies (at best) only a local mathematical structure 
and certainly there is no ‘real’ need for attempting 
to re-organise the re-invented mathematical tools 
within a global mathematical structure (such as an 
axiomatic system). Additional requirements have 
to be activated for a student to develop the internal 
need for the logical re-organisation of the re-invent-
ed mathematical tools. From a different perspective, 
Radford (2003) emphasised the sociocultural aspects 
of mathematical thinking, suggesting a semiotic-cul-
tural approach to highlight the subjective nature of 
the meaning constructed through semiotic activities. 
Meaning is constructed by subjects within specific 
sociocultural context and, thus, proof is meaningful 
for a student who experiences a specific sociocultural 
reality. Though we acknowledge the importance of the 
socio-semiotic dimension, Radford’s research was not 
focused on the students’ development of an internal 
need for proof.

Overall, in this essay we address the fundamental 
question: What are the didactical principles consti-
tuting an epistemologically coherent framework that 
may foster the students’ developing a fully-fledged need 
for proof?

THE GENESIS OF PROOF IN ANCIENT GREECE

Katz (2009) notes that the notion of proof appeared 
in ancient Greece. Many of the mathematical results 
were already known, in the same way that something 
is known in the sensory-perceived world: as rules that 
held true for all the till then considered cases. With 
Greek mathematics things changed, including “ob-
jects whose existence cannot be visualised and which 
cannot be physically realised” (Grabiner, 2012, p. 152). 
Moreover, the mathematical ideas were re-organised 
to form a primitive proof-based version of an axiomat-
ic system. A multiplicity of factors formed a complex-
ity within which proof appeared to be ‘natural’. But 
which were those factors?

The sociocultural context of the ancient Greek city 
(polis) appears to be the crucial factor that enabled 
the change of perspective about the issues that proof 
addresses in mathematics. Polis was the result of 

a transformation from monarchy to democracy. 
Employing the case of ancient Athens as an exemplar, 
we find that the legislation of Solon and crucially of 
Cleisthenes changed the social structure of Athens, 
resulting to a radically transformed lived social real-
ity. The Athenians were administratively organised 
in ten geographical regions that purposefully did 
not correspond to the traditional phyla (‘families’), 
in order to shuffle the traditional, blood-centred, 
immediate social circle of the individual. Thus, the 
new immediate social family was based not only on 
blood relations, but also on a purposefully arbitrary 
geographical proximity. Moreover, each of the ten 
new regions was the ruling region for a tenth of the 
solar year. This meant that each ruling month was not 
a lunar month. The time that a region was in power 
was not measured with reference to nature, but ac-
cording to a purposefully arbitrary chosen fraction 
of the solar year. ‘Arbitrary’ is emphasised, because 
the number of the new regions could be anything that 
would ensure the un-settlement of the old structure. 
Furthermore, Solon’s changes produced a hierarchy 
of citizens, according to specific analogies forming a 
harmony (2/1, 3/2, 4/3). Cleisthenes’ reform reduced 
all these relationships to a single analogy, the simplest 
possible: 1/1. All the citizens were equal with respect 
to access and power within the polis, regardless of 
their profession, family name or wealth.

Within the polis all the important aspects of life as-
sumed a public character. The ‘significant’ private 
obtains its ‘significant’ status by becoming object of 
the community. For example, murder was not a pri-
vate matter to be resolved amongst individuals. It is 
a public matter open to the actions of the community 
which focus on the ‘objective’, verbally described char-
acteristics of the situation, rather than on who was 
involved in the incident. In order for ‘justice’ to be 
reached, the community had to be convinced of what 
happened, to construct a shared logos. Note that log-
os in Greek has a multiplicity of meanings including 
oral speech, reasoning and ratio (and relationship in 
general). The common logos emerged as the ruling 
power of the city, forming a differentiated from ethics 
law; the ethically acceptable may or may not be lawful. 
Justice became a matter of a social, non-metaphysical, 
construction. The citizens of the polis were character-
ised as such by actively participating in the common 
matters. The Athenian idiot (‘private’) was the person 
who either lacked the reasoning skills or chose not 
to contribute in the public affairs. The citizen was 
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a ‘subject’ to the logos, to the verbal communication 
and co-construction of the common, argued meaning. 
Language and the arguments employed were at the 
crux of this process. Through language the private 
meanings were communicated and through conver-
gences and divergences the shared public meaning 
emerged.

Cleisthenes’ changes towards the equality of the cit-
izens within the public affairs allowed the transcen-
dental notion of power to obtain an anthropological 
character: the numerical majority was right, true and 
responsible and the minority had to accept it. The rul-
ing power was not divinely-given, nor inherited, but 
lied within the countable community. The shared logos, 
the thesis voted by the citizens was within the reach 
of every citizen-subject, as long as it was accepted as 
such by the majority. This conceptual lift from the 
subjectively described to the objectively defined by a 
simple number, by a numerical relationship, allowed 
for the city itself to obtain a transcendental aspect, 
to exist regardless of who were its citizens. Its infra-
structure transcended the people who represented 
it. In this way, the polis achieved its supertemporal 
continuity. Thus, the subject was at the same time 
unique and the same, one and many, important and 
insignificant. Heraclitus stressed that “although log-
os is common to all, most people live as if they had a 
wisdom of their own” and that “having listened not 
to me but to the logos it is wise to agree that one is 
all”. It should be clarified that Heraclitus wording 
for ‘agree’ is homo-logo (common logos), indicating 
that agreement is a result of a shared logos. Hence, 
common logos implies all private understandings 
and reasonings are in agreement with (homo-logia), 
in a relationship with, the public logos. Notice that 
the shared logos does not imply the disappearing of 
personal identity (Vernant, 1983), as the self becomes 
a multiplicity of higher mental internalised social 
relationships. Vygotsky (1978) notes that the external 
social processes are closely linked with the internal 
psychological processes so that in “their own private 
sphere, human beings retain the functions of social 
interaction” (p. 164). Thus, the argument became a 
dominant social instrument.

Within this sociocultural framework, the require-
ment of producing a proof for a mathematical state-
ment seemed to naturally fit in. The mathematical 
community as part of the general community re-
quires arguments that cannot be logically disputed. 

Such an argument could not be based on perception, 
which was philosophically treated at the time as false, 
changeable or unreliable. Nor could it be based on 
authority or affective linguistic tricks. The Sophists, 
the Eleates (notably Zeno) and the philosophy of Plato 
and Aristotle crucially determined Euclid’s decision 
to organise old and new mathematical ideas in a de-
ductive structure, within which each proposition de-
rives from already proved or accepted as true ideas.

Moreover, within a social framework that the public 
is appreciated and the private is frowned upon, math-
ematical ideas had to be open to the community and 
not to be only for a certain social cast (the clergy or 
other). This required resorting to commonly lived 
experiences, which were inescapably bodily experi-
ences masked as ‘semi-abstract’ ideas. This is reflect-
ed in the ‘pseudo-axiomatic’ character of Euclid’s 
elements. The definitions, the common ideas, the 
axioms derived from the shared lived perceptual re-
ality, which ensures the wider acceptance of the logos 
that draws upon such a structure, but clearly limits 
the breadth and depth of the mathematical structure. 
Nevertheless, Euclid’s organisation enabled the syn-
thesis of seemingly unrelated ideas, deriving from 
the same underlying ideas and reasoning (for exam-
ple, the study of incommensurable magnitudes and 
the irrational numbers). Though Szabó (1978) claims 
that the notion of deductive proof did not meet any 
practical needs, we argue that it met the lived needs 
within the broader ancient Greek sociocultural con-
text when transposed in the abstract-like Euclidean 
world. In this conceptual extension of the perceived 
reality, the logos and the argument are the only means 
for establishing the truth of a proposition.

Overall, we agree with Vernant (1975) who argued 
that the formation of the polis was the decisive event 
that allowed the shared logos to become the backbone 
of the social structure. We briefly discussed some of 
the factors that may have constituted this event: the 
shared logos; a purposefully arbitrary administrative 
structure; the 1/1 citizen relationship; the countable 
decisive power; the convincing the majority verbal 
argument; the reign of the public over the private; the 
quantification of power; the argument based on com-
monly experienced notions and ideas; the inescapable 
reign of the deductive over the inductive within an ax-
iomatic-like system. All these elements are some of 
the crucial events that posed the need for a deductive 
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proof, rather than settling for an inductive or other 
argument.

ELEMENTS OF HUSSERL’S PHENOMENOLOGY

Husserl’s phenomenology may be summarised in 
the phrase “back to ‘the things themselves’” (Husserl, 
2001, p. 168), implying the attempt to ‘unearth’ the 
sedimented relationships and the decisive factors, 
in order to mobilise the mental processes that con-
stitute an ideality. Husserl’s idealities crucially differ 
from the platonic ideas in that they are intentionally 
subjectively constructed once within history. Once 
objectified, they become atemporal, in the sense that 
every subsequent subjective knowing requires only 
the reactivation of this objectification. Language (oral 
or written) constitutes the means for the objectifica-
tion of the subjective experiences, allowing their sub-
sequent transcendental existence. The reactivation of 
objectification requires the subject to develop suitable 
intentionality, suitable “conscious relationship […] to 
an object”, (Sokolowski, 2000, p. 8). Such intentionality 
requires the suspension of the subjects’ natural atti-
tude, their “straightforward involvement of things 
and the world” (Audi, 1999, p. 405), implying that the 
objectification is not merely a psychological process, 
as it explicitly incorporates the relationship between 
the subject and the community.

Husserl contrasts the intersubjective experience of 
the communicated shared meaning with the tran-
scendental subjectivity in which there is an aware-
ness of a phenomenon that transcends the subjective 
perceptual experience: “a possible communicative 
subjectivity [...] through possible intersubjective acts 
of consciousness, it encloses together into a possible 
allness a multiplicity of individual transcendental 
subjects” (Husserl, 1974, p. 31). In order for such pro-
cesses to be activated, Husserl’s phenomenological 
reduction (epoché) is required. By bracketing out, 
suspending, natural attitude and by investigating 
the sedimented intentional history of the object, the 
phenomenological attitude is activated in order for 
the subject to “seek for its “constitutive origins” and 
its “intentional genesis” (Klein, 1940, p. 150). During 
epoché, the subjects’ thinking is characterised by the 
subjects’ intentionality and immanence to bring to 
the surface the sedimented already constructed and 
existing within the community knowledge.

TOWARDS A DIDACTICAL FRAMEWORK

In what way can the aforementioned genesis of proof 
be read through a Husserlian perspective in order 
to inform a didactical framework that fosters a ful-
ly-fledged need for proof? Though ‘replicating’ histo-
ry in the classroom is clearly not possible, an ancient 
idea “through an adaptive didactic work, may proba-
bly be redesigned and made compatible with modern 
curricula in the context of the elaboration of teaching 
sequences” (Radford, 1997, p. 32). We shall argue that 
the Husserlian perspective may help in determining 
the principles of the ‘adaptive’ work required.

In order to identify the ways that Husserl’s views 
may inform a didactical framework, we should first 
consider the following: What is the students’ natural 
attitude towards mathematics and learning in gen-
eral? What is the role of language? Of technology? 
What is the perceived by the students’ natural form 
of argumentation in mathematics? In everyday life? 
We do not claim that there are universally applicable 
answers to these questions. Each country, city, school 
unit, class have their special characteristics consti-
tuting a unique system (Moutsios-Rentzos, Kalavasis, 
& Sofos, 2013). Nevertheless, we shall describe some 
elements that we think characterise the lived reality 
in Greece. With respect to the students’ natural atti-
tude to mathematics, it appears that many students’ 
consider mathematics to be beyond their lived reali-
ty, to be hard, boring or unnecessary (Brown, Brown, 
& Bibby, 2008). Healy (1999) argues that the current 
technologies prevent the students’ minds from de-
veloping deductive reasoning, while it has a negative 
effect on their “ability to remain actively focussed 
on a task” (p. 201). Though such claims may sound 
too strong, the current sociocultural context is fast, 
based on inductive arguments and decisions, while 
the virtual social networking sites produce a multi-
plicity of realities within which the students act and 
interact (Moutsios-Rentzos et al., 2013). The role of 
language in this complex context appears to have rad-
ically transformed. The need for fast, usually factual, 
communication developed shorter versions of words, 
sentences, meanings. Such abbreviated forms hardly 
suffice when discussing mathematical objects. Thus, 
the verbal, logically complete argument identified as 
the main vehicle for establishing the need for proof 
appears to be in stark contrast with the contemporary 
linguistic habits. A further consequence of the steep 
rate of change is that even a local ‘logos’ or connota-
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tions may suffice for the arguer to accomplish his/her 
purpose. The shared memory is short and the lived 
present is even shorter; there is no real need for im-
manence. This fragmented, disjunctive, sociotempo-
rarily fragile common ‘logos’ and practices do not bear 
any resemblance to the common logos experienced 
in ancient Athens. Moreover, the contemporary way 
of living is characterised by connectedness, by the 
existence of non-linear networks. The seemingly sim-
plistic linear, deductive argument makes sense to be 
considered by the students as incompatible or even 
useless in such a connected, seemingly non-hierarchi-
cal reality, favouring other forms of argumentation 
(including inductive or abductive). Consequently, the 
shared ‘logos’ of the contemporary sociocultural stu-
dents’ reality, their natural attitude, seems to be far 
from the phenomenological attitude that lead to the 
genesis of proof. Which pedagogies may facilitate the 
students’ experiencing the reactivation of the need for 
proof? We argue that an appropriate epoché should 
be cultivated to suspend the students’ ‘natural atti-
tude’ (for example, not to prove something obvious), 
allowing for the students’ phenomenological attitude 
to reactivate their need for proof.

Drawing upon these and upon the realistic mathe-
matics research paradigm (the epistemological bed-
rock of which is close to a Husserlian perspective), 
we provide a sketch of a didactical framework (with 
examples deriving from Moutsios-Rentzos, Spyrou, 
& Peteinara, 2014). First, the students should be fa-
miliar with the practical, everyday uses of mathe-
matical ideas. Mathematics should be ‘real’ for the 
students, it should be ‘discerned’ in the lived world, 
as it can be practical, useful. This may require the 
teachers’ drawing the students’ attention to everyday 
situations that incorporate sedimented mathemat-
ical ideas. For this purpose, the starting point may 
be a problematic ‘real’ situation for the students that 
requires the re-invention of mathematical tools to be 
resolved. For example, the construction of a table re-
quires a perpendicularity identification physical tool 
and the construction of such a tool may facilitate the 
students’ re-invention of a mathematical tool (e.g. the 
Pythagorean Theorem). It should be stressed that the 
materials employed in the students’ investigations 
are at the crux of the proposed framework, since they 
constitute the physical shared reference of each com-
munication (see Moutsios-Rentzos, in press).

In line with our reading of the genesis of proof, the 
mathematical ideas should derive from some common 
(at least in the beginning) to human principles. For 
this purpose, the common to the human body sensory 
experiences of the world may be the bedrock upon 
which the shared logos may be professed. Though 
perceptually born, those common principles can, 
by the necessity of obtaining a shared meaning, be 
potentially stripped of their subjective nature. For 
example, the human body is evolutionally designed 
to identify verticality, which enables us to survive in a 
perceived as perpendicular to verticality (horizontal) 
world. The sensory experience of perpendiculari-
ty –in order to be potentially infinitely communicat-
ed– is required to be linguistically described with 
appropriate signs. The aforementioned perpendic-
ularity identification physical tool may be initially 
constructed with reference to an independent from 
human activity, naturally existing, perpendicularity 
(e.g., the angle between the surface of the liquid and 
the string of the ‘plumb-bob’).

Furthermore, appropriate interventions may facil-
itate the students’ conceptual shift in the semiotic 
registries employed in their communicating their em-
bodied experiences. For this purpose, it is crucial for 
the students to realise the need for employing more 
symbolic and abstract semiotic registries in order to 
successfully resolve the situation and to communicate 
(and to convince) their argument about the validity of 
their solution to their classmates, to their teacher, to 
whomever whenever may face such a situation. For 
example, the students may construct a wooden trian-
gular frame that visually fits the natural perpendicu-
larity, but the teacher’s guidance towards revealing 
what are the properties that the frame has that ren-
ders such a fit feasible may foster the employment of 
mathematical symbolism. For this purpose, the stu-
dents may be guided to realise the constraints of the 
physical material in conveying the ‘general’ (rule, case, 
etc.) to a large (potentially infinite) audience.

Mathematical symbolism may help in realising that 
the mathematical ideas logico-deductively derive 
(through mathematisation processes) from the com-
municated, shared experiences, but they no longer 
(need to) exist within the experience. They (may) have 
a pragmatic reference, but only ideal essence. For ex-
ample, the triangle the lengths of the sides of which 
are 3, 4 and 5 units is right-angled regardless of the 
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physical magnitude of the unit, since 52 = 32 + 42 holds 
true under the usual algebra.

Establishing a common linguistic expression (ho-
mo-logia) of the shared sedimented axiomatic system 
of some common ideal, yet anthropological, princi-
ples is a crucial step in transforming this system to 
an object upon which mental processes may be acted. 
In the proposed didactical framework, the students 
realise that the backbone of the axiomatic system de-
rives from the physical constraints of the human body 
and as such cannot be absolute or ‘given’. Hence, once 
the axiomatic framework has been objectified, it can 
itself be subjected to metacognitive investigations. 
For example, “What if … we perceptually experience 
the surface we walk as the surface of a sphere?”. Or, 

“What if … the 52 = 32 + 42 is not true?”. Our reading of 
Husserl’s phenomenology allows the students’ ques-
tioning the very fabric upon which the situation is 
perceived, because the central role of language and 
communication allows the learners to realise (re-re-
veal) that the mathematics they experience everyday 
are only an instance of the infinite potential mathe-
matics the mind can create. Within this potential, the 
students may come to realise that the mind games with 
the constituting common principles can be played 
only with conceptual tools, with reason (for exam-
ple, algebraic geometry). The need for proof in these 
strange (to perception) worlds appear to be natural, 
since proof is the only means for evaluating the va-
lidity of a statement. At the same time, the lack of a 
means for establishing some perceptually derived 
intuition of the new structure facilitates the students’ 
developing the need for proof as the gatekeeper of the 
structure itself.

Overall, we argue that the Husserlian reading of the 
genesis of proof in ancient Greece helped in identi-
fying pedagogical principles – a ‘real’; problematic 
situation, embodied experiences, pre-scientific materi-
als, language (oral or written), communication (argu-
mentation) to self and others through different semiotic 
registries – that form an epistemologically coherent 
didactical framework. Within this framework, the 

“divergences of the different levels of communication 
and experience are constantly re-negotiated in order 
to converge to a shared logos of condensed meanings 
and experiences” (Moutsios-Rentzos, in press), thus 
fostering the students’ developing a fully-fledged 
need for proof (including ‘structure’).
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A characteristic differentiating mathematically talent-
ed students from average students is their ability to solve 
problems, in particular proof problems. Many publica-
tions analyzed mathematically talented students’ ways 
to solve problems, but there is a lack of data about the 
ways those students learn to make proofs. We present 
results from a study were we posed some geometry proof 
problems to secondary school students having different 
degrees of mathematical ability. We have classified their 
answers into categories of proofs. Our results suggest 
that the ability to make proofs of the mathematically 
talented secondary school students is better than that of 
the average students in their grade and also that math-
ematically talented students could be ready to begin 
learning to make deductive proofs even at secondary 
school grade 1.

Keywords: Mathematically talented and gifted students, 

learning proof, secondary school, geometry education.

INTRODUCTION

During last decades there is being an increasing num-
ber of publications informing on research on several 
components of teaching and learning proof (Hanna 
& de Villiers, 2012; Reid & Knipping, 2010; Harel & 
Sowder, 2007; Mariotti, 2006). Another important 
area of research in mathematics education is related 
to mathematically talented students (MT students 
hereafter), including, in particular, mathematical-
ly gifted students. The literature pays attention to 
their identification and to several aspects of those 
students’ learning, reasoning, problem solving styles, 
behaviour, affectivity, etc. (Greenes, 1981; Leikin, 2010; 
Sriraman, 2008). A frequent methodology to iden-
tify MT students’ characteristics is to compare the 
ways they and average students solve the same tasks 
(Heinze, 2005).

We are interested in the link between both research 
programs: The ways MT secondary school students 
learn to make mathematical proofs. There is a gener-
al agreement that MT students’ learning processes 
are different from their age peers’ ones (Sriraman, 
2004). To better understand MT students and to de-
sign adequate ways to teach them proof, teachers and 
researchers work on identifying those differences. 
In particular, two research questions still needing 
an answer are:

Are secondary school MT students different from their 
classmates when solving geometry proof problems?

Are secondary school MT students in various school 
grades different when solving geometry proof problems?

To get information on these questions, we carried 
out a research experiment aimed to analyze proofs 
produced by secondary school students and to find 
possible differences among students with different 
levels of mathematical ability or in different school 
grades. We posed several geometry proof problems 
to a sample of 1st and 4th grade students and we clas-
sified their answers according to the categories of 
proofs in Marrades & Gutiérrez (2000). Due to the 
limited number of MT students in our experiment, 
we do not pretend to get general conclusions, but to 
bring data from this case study that might point at 
some differences.

LITERATURE REVIEW

Most of the literature on teaching and learning proof 
pays attention to whole class groups or, when they are 
based on case studies, to ordinary students. On the 
other side, many publications on MT or gifted stu-
dents pay attention to their ways to solve problems, 
in particular proof problems, but they do not inform 

mailto:juan.moya@uv.es
mailto:angel.gutierrez@uv.es
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on characteristics of proofs produced by MT students 
nor on MT students’ progress in learning to prove.

Leikin (2010) reflects on some aspects of classes for 
groups of MT students. She suggests that classes must 
be challenging for the students and a way to get it is 
by means of problem solving. Then, Leikin analyzes 
different types of challenging problem solving tasks, 
namely inquiry-based, multiple-solution, and proof 
tasks. The paper also presents an example of a lesson 
for 9th grade MT students, including examples of stu-
dents solving proof problems, but Leikin’s analysis 
does not enter into the characteristics of the proofs 
produced.

Koichu & Berman (2005) present a study based on MT 
students trained to solve olympiad-style problems. 
They analyze students’ preferences for algebraic or 
geometric ways to solve geometry problems. Their 
conclusions show that MT students choose or value 
proofs taking into consideration effectiveness and el-
egance, and also that, when students are deciding how 
to solve problems, they may experience a conflict due 
to their preference for effectiveness or for elegance.

Housman & Porter (2003) analyzed the types of proof 
schemes (Harel & Sowder, 1998) produced by under-
graduate mathematics majors who had received none, 
one or two proof-oriented courses, and had earned 
only A’s and B’s in their university mathematics sub-
jects. The authors considered that these students 
were above-average mathematically talented. The 
students were presented 7 conjectures, and they 
were asked to state whether the conjectures are true 
or false and write the proof. Some conjectures are 
false, so one would expect empirical proofs (show a 
counter-example) for them. Housman and Porter’s 
results demonstrate that we should expect a variety 
of types of proofs in any group of MT students, but 
they did not inform on students’ processes to learn 
to prove nor included average students solving the 
same tasks.

Sriraman (2003) compared average and MT 9th grade 
students’ solutions to non-routine combinatorial 
problems. His results show that the MT students were 
able to get generalized solutions, while the average 
students used particular cases. Although Sriraman’s 
problems are not proof problems, the ability of his MT 
students to generalize is an indicator that they could 
give deductive answers to proof problems.

Sriraman (2004) analyzed the answers to a proof prob-
lem on triangles by 9th grade gifted students with no 
previous contact with proof. Students’ processes of 
solution began with a checking of examples; they 
concluded that the conjecture is true only for equi-
lateral triangles; then the students looked for coun-
ter-examples for non-equilateral triangles and, finally, 
they tried to prove the conjecture for the equilateral 
triangle. Sriraman did not give information about 
the types of proof produced by the students, but it 
seems that their proofs were empirical although near 
to deductive.

All the authors referenced in this section have used 
proof problems as part of their experiments, but none 
of them has analyzed students’ processes of learning 
to make proofs. Only Housman & Porter (2003) paid 
attention to the types of proofs produced by MT stu-
dents, although they did not compare MT and average 
students.

THEORETICAL FRAMEWORK

The literature shows a diversity of definitions of 
(mathematically) able, talented or gifted students, 
where some authors consider the terms as equiva-
lent while others consider them as different (Leung, 
1994; Sriraman, 2004), but entering into the analysis 
of different definitions is not our objective. For us, 
MT students are those who, when doing mathematics, 
show certain traits of mathematical ability higher or 
more developed than other students with the same 
age, experience, or school grade. Behaviour traits 
of MT students have been identified, among others, 
by Freiman (2006), Greenes (1981), Krutetskii (1976) 
and Miller (1990). In this context, we consider math-
ematically gifted students as an extreme case of MT 
students (that, in many countries, got more than 130 
points in an IQ test).

In the context of secondary school mathematics, a 
mathematics education research line focuses on stu-
dents’ process of learning to prove, including both 
the ability to make a proof and the understanding of 
the characteristics of mathematical proofs. There is, 
among teachers and researchers, a diversity of po-
sitions respect to the concept of mathematical proof 
(Cabassut et al., 2012). For some of them, the term 
proof refers to the logic-formal proofs, and they use 
terms like justification, argument or explanation to 
refer to non-formal ways to warrant the truthfulness 
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of a mathematical conjecture. Others define a proof 
as any mathematical argument created to convince 
somebody (oneself or an interlocutor) of the truthful-
ness of a conjecture. We agree with the later, since it 
has proved to be very fruitful to consider as proofs 
both authoritarian or ritual arguments, empirical 
arguments, informal deductive arguments, and log-
ic-formal arguments (Harel & Sowder, 2007). In this 
framework, the process of learning to prove can be 
seen as a continuous progress, along the years, start-
ing with authoritarian proofs and ending with log-
ic-formal proofs.

Marrades & Gutiérrez (2000) presented a structure 
of categories of empirical and deductive proofs. We 
have used a variation of that structure (Figure 1) to or-
ganize the proofs made by our students. This consists 
of: i) Remove the “intellectual” category, since it really 
can only be matched to generic example proofs, so it 
is unnecessary. ii) Add the category of “informal de-
ductive proofs” to discriminate deductive proofs lack-
ing the formal style of language from formal proofs; 
those proofs are typical of students beginning to un-
derstand the need of deductive proofs (3rd Van Hiele 
level). We also add a “No answer” category, addressed 
to those outcomes that were either blank or providing 
no information at all about students’ reasoning.

The categories cannot be linearly ordered according 
to their quality, but there is a perception that empir-
ical categories are more elaborated from top (failed) 
to bottom (generic example). The same can be said for 
deductive categories of proofs.

METHODOLOGY

The research experiment took place in a secondary 
school in a big city in Spain. The students were a con-
venience sample consisting on several class groups of 
pupils of a mathematics teacher willing to collaborate. 
Table 1 shows the number of students in each group. 
We are reporting here results from students in grades 
1 (aged 12–13) and 4 (aged 15–16). A part of the students 
participating in the experiment were in average class 
groups (without MT students), while the others were 
MT students attending a workshop devoted, mainly, 
to problem solving. The students participating in the 
experiment had not worked before on the stated prob-
lems nor on other similar ones.

To inform on the two questions stated in the intro-
duction, we present data to compare the answers i) 
by grade 1 average and MT students and ii) by grade 
1 and grade 4 MT students. We do not use here data 
from the grade 4 average students.

We selected several paper-and-pencil geometry proof 
problems to pose two problems to each group of stu-
dents participating in the experiment. We did not use 
the term “prove” in the statements to avoid the pos-
sibility of a misunderstanding by some students that 
could not be habituated to it. To select the problems 
we had to take into account i) that the students should 
know the geometric contents necessary to solve them 

Figure 1: Structure of categories of mathematical proofs

Grade 1 Grade 4
Average students 13 41
MT students 3 4

Table 1: Distribution of the students in the sample
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but they had not solved the problems previously, and 
ii) that the topics of the problems should be related 
to the one being studied by the average groups at the 
time of the administration. The second condition to 
be fulfilled impeded us to pose the same problems to 
all students. Our aim is to identify the types of proofs 
produced by the students so data may suggest differ-
ences among average and MT students in the same 
grade or among MT students in different grades.

The problems were posed to each group of students in 
an ordinary class session of about 50 minutes. They 
worked alone and the teacher answered questions 
about the meaning of the statements but he did not 
give clues for the solution. Our data are the students’ 
written answers.

In grade 1, the two problems posed both to the average 
and the MT groups where:

1) How many diagonals does an n-sided polygon have? 
Justify your answer.

2) How much is the sum of the internal angles of an 
n-sided polygon? Justify your answer.

The two problems posed to the grade 4 MT group were 
problem 1 and:

3) In square ABCD (figure on the right), 
M is the midpoint of side AB. We draw 
the two diagonals and segments CM 
and DM. Which fraction of the total 

area is the area of the shaded shape? Justify your an-
swer.

To facilitate the answers to less able students and to 
students who did not come up with a way to solve a 
problem, each problem had two parts, labelled A and B. 
Part A was the statements given above. Part B included 
a clue aimed to help students to start solving the prob-
lem or to find a way to the answer. Problem 1B was:

1B) How many diagonals can be drawn from a vertex 
of a pentagon? How many diagonals can be drawn from 
a vertex of an n-sided polygon? How many diagonals 
does an n-sided polygon have? Justify your answer. 

Problem 2B asked for the sum of the 
internal angles of a quadrilateral, 
a  pentagon and an n-sided polygon. 
Problem 3B had the same statement 
as problem 3A but the figure was the 
one on the right.

To prevent the possibility that students could answer 
part A of a problem after having read the statement 
of part B, students were given part B of the problems 
only after they had completed part A and had given 
it back to the teacher.

RESULTS

We have classified students’ answers according to 
the categories of proofs displayed in Figure 1. In the 
following paragraphs, we include information about 

No an-
swer

Empir. 
failed Naive empiricism Crucial experiment

Generic 
ex.

Percep. Induct.
Examp. 
-based Constr. Analyt.

AV MT AV MT AV MT AV MT AV MT AV MT AV MT AV MT
Problem 1A 3 3 1 2 1 4 1 1
Problem 1B 6 1 1 1 2 1 1 1 1
Problem 2A 6 2 1 2 2 1 1
Problem 2B 7 2 1 1 1 1 1

Deduct. 
failed Thought experiment Informal Formal

Transf. Struct. Transf. Struct. Transf. Struct.
AV MT AV MT AV MT AV MT AV MT AV MT AV MT

Problem 1A
Problem 1B 1
Problem 2A 1
Problem 2B 1 1

Table 2: Proofs made by grade 1 average (AV, 13 students) and MT students (3 students)
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the results of the experiment respect to the question 
stated in the introduction.

Do average and MT students in the 
same grade make different proofs?
Table 2 presents the types of proofs made by the grade 
1 students in the sample.

All 12 possible MT students’ answers (100%) were 
meaningful proofs. Respect to the categories of proofs 
produced, 5 out of 12 possible MT students’ proofs 
(41,7% of the answers) were basic empirical proofs 
(naive empiricism perceptual) and 7 proofs (58,3%) 
were in the most elaborated types of empirical proofs 
and in the basic type of deductive proofs (2 crucial 
experiment analytic, 3 generic example, and 2 thought 
experiment structural proofs).

On the other hand, 20 out of 52 possible average stu-
dents’ answers (38,5%) were meaningful proofs. All 
these proofs were in the different empirical types, 
with more presence in the basic empirical categories 
(70% of the answers; 7 naive empiricism and 7 crucial 
experiment example-based proofs) than in the more 
elaborated categories (30%; 1 crucial experiment con-
structive, 1 crucial experiment analytic, and 4 generic 
example proofs). The average students did not pro-
duce any deductive proof.

Do MT students in grade 1 and 
grade 4 make different proofs?
Both MT students in grades 1 and 4 solved problem 
1, so we can give an answer to this question based on 
their proofs in this problem. Table 3 presents the types 
of proofs made in problem 1 by the MT students in 
grades 1 and 4.

In problem 1A, all MT students in grade 1 (100%) and 3 
MT students in grade 4 (75%) made empirical proofs. 
In problem 1B, 2 MT students in grade 1 (67%) and 2 MT 
students in grade 4 (50%) made empirical proofs. All 
but one deductive proofs made were the type thought 
experiment structural and one MT student in grade 
4 made an informal structural proof for problem 1B. 
Figure 2 shows the answer of this student to problem 
1A. He started by checking some specific polygons (4, 
5, 6, 8 sides); this let him identify a relationship that 
he succeeded in expressing as a (correct) formula, al-
though he was not able to prove its truthfulness. This 
incomplete proof has the characteristics of a thought 
experiment structural, since the student uses some 
examples to get an abstract relationship.

This student demonstrates the usefulness of parts A 
and B of the problems, since the help in problem 1B al-
lowed him to write the deductive proof that he was not 
able to imagine when he was working in problem 1A.

This complete proof has the characteristics of a de-
ductive informal structural proof, since the student 
does not use examples to write the deductive proof 
of the formula.

CONCLUSIONS

Related to the first research question (about differenc-
es in proof abilities among MT and average students 
in the same grade), our data show a clear difference in 
the ability to write mathematical proofs in favour of 
secondary school grade 1 MT students (100% of their 
answers) respect to their average peers (38,5% of their 
answers). Although the number of MT students does 
not allow a valid statistical comparison with the aver-
age students, the data from our experiment suggest a 

No answer
Empir. 
failed Naive empiricism Crucial experiment Generic ex.

Percep. Induct.
Examp. - 

based Constr. Analyt.
G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4

Problem 1A 2 1 1 1 1
Problem 1B 1 1 1 1

Deduct. 
failed Thought experiment Informal Formal

Transf. Struct. Transf. Struct. Transf. Struct.
G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4 G 1 G 4

Problem 1A 1
Problem 1B 1 1 1

Table 3: Proofs made by grade 1 (3 students) and grade 4 (4 students) MT students in problem 1
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clear difference in the capabilities of MT and average 
students to produce mathematical proofs, in favour 
of the former.

It is not surprising that very few deductive proofs 
were produced by the 1st graders, nor that all of them 
were in the basic deductive category (thought exper-
iment). The deductive proofs were made by one MT 
student in part B of the problems. This suggests that 
it would be worth study more in detail whether, as 
early as in grade 1, MT students could be introduced 
into deductive reasoning and, with some help from the 
teacher, some of them could write simple deductive 
proofs.

Related to the second research question (about differ-
ences in proof abilities among MT students in several 
grades), the data show that the empirical proofs made 
by the MT 4th graders were better than those made 
by the MT 1st graders, since 4th graders did not made 
naive empiricism proofs and most of their empirical 
proofs were in the types crucial experiment analytic 
and generic example.

MT 4th graders made more deductive proofs than 
MT 1st graders, and the proofs made by MT students 
in grade 4 were in the same type or better than those 
made by MT grade 1 students. These data suggest that 
secondary school MT students are able to advance 
in the learning of mathematical proof when they are 

allowed to gain experience in solving proof problems 
and they have guidance by their teachers. In our case, 
the ordinary classes provided such experience and, 
mainly, the workshop they were attending.

As a final summary, we can conclude that MT second-
ary school students seem to be more capable of pro-
ducing mathematical proofs (either empirical or de-
ductive) than the average students in the same grades, 
and also that MT students are able to begin learning 
mathematical proofs from grade 1, and they can learn 
to express their justifications in an organized way, 
progressing along the grades in their ability to make 
more elaborated proofs, even deductive proofs.
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This article reports on our experience, arising from an 
earlier research study, of incorporating proof evaluation 
tasks into a university mathematics curriculum. In par-
ticular, we discuss a task in which students were asked 
to evaluate and rank five different proposed proofs of a 
statement from elementary linear algebra. The students’ 
responses to this task prompted rich learning oppor-
tunities on the nature and functions of mathematical 
proofs, as well as revealing some interesting features of 
their thinking. We argue that proof evaluation tasks can 
afford rich learning opportunities as well as enabling 
novice students to participate in authentic mathemat-
ical practice.

Keywords: Proof, proof evaluation, curriculum.

BACKGROUND

A CERME 7 article by Kirsten Pfeiffer (2011a) presents 
a conceptual schema that provides a frame of refer-
ence for consideration of what needs attention in a 
proof evaluation exercise. In accordance with Hemmi 
(2008), Pfeiffer regards proof and proofs as artefacts of 
mathematical practice. She adapts ideas of Hilpinen 
(2004) on evaluation of artefacts in general and spe-
cializes them to the case of mathematical proofs. In this 
context an artefact is a (physical or conceptual) object 
that is designed and made by an author (or authors) in 
order to fulfil a specific purpose (or purposes). Thus 
the quality of an artefact can only be judged in terms 
of its success at achieving its purpose(s). In the case 
of a proof of a mathematical statement, a primary 
and non-negotiable purpose is that the argument es-
tablishes the truth of the statement. Other purposes 
might include provision of a satisfying explanation, 
enhancing understanding of the concepts involved, 
and so on. Motivated by Hilpinen, Pfeiffer suggests 
that a proof can be evaluated in relating the three fea-
tures of an artefact, its intended character, its actual 
character, and its purposes. Therefore evaluating a 
proposed proof might involve three considerations: 

that the author’s intention or “proof design” is appro-
priately matched to the purpose of the proof, that the 
author’s intention is appropriately realized in the 
actual written proof, and that the written proof appro-
priately achieves its purpose. The point of Pfeiffer’s 
schema is to provide some context and terminology 
for discussion of what proof evaluation entails and 
for discussion of specific evaluations of particular 
proofs. It is intended not as a rigid framework but as 
a helpful  theoretical construction. 

The outcomes of Pfeiffer’s research study (Pfeiffer, 
2011b) included strong indications that proof evalu-
ation tasks, including those involving more than one 

“proof ” of the same statement, have the potential to 
prompt students to consider the mechanism and fit-
ness-for-purpose of a proof in a serious way. Some stu-
dents in the study even recognised a change in their 
own thinking stimulated by the task of comparing 
different proofs of the same statement. These obser-
vations encouraged us to include proof evaluation 
tasks in the curriculum alongside learning activities 
of other types. 

Over the last decade several investigations into 
students’ performances when validating or read-
ing mathematical proofs have shown that students 
have difficulties in determining whether a proof is 
valid (Selden & Selden, 2003; Alcock & Weber  2005). 
Other studies describe the behaviour of experienced 
mathematicians when validating proofs (Weber & 
Mejia-Ramos, 2011) or the differences between nov-
ice and experienced readers (Inglis & Alcock, 2013). 
Techniques or teaching methods to improve students’ 
proof comprehension have been suggested, for exam-
ple unpacking proofs or proof frameworks (Selden & 
Selden, 1995), inclusion of instructional sequences in 
mathematics courses (Stylianides & Stylianides, 2008),  
e-proofs (Alcock & Wilkinson, 2011) or self-explanation 
(Hodds, Alcock, & Inglis, 2014). We consider proof eval-
uation exercises as another possible teaching practice 
to accomplish proof reading skills. In our experiences 
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proof validation activities provide a rich teaching and 
learning tool provoking fruitful discussions and ulti-
mately making a wide range of features and purposes 
of mathematical proof visible to learners. We aim to 
test the efficiency of proof evaluation exercises incor-
porated into a University level mathematics course 
and also to prepare resources for use by teachers.

In this paper we report on one particular proof eval-
uation exercise performed in a linear algebra course 
for first year students run by the second author of 
this article, who is a research mathematician and a 
lecturer in a university mathematics department. We 
will show that the students’ responses to proposed 
proofs potentially stimulate a considerable variety 
of themes to discuss in a teaching/learning environ-
ment. As students have engaged with the relevant 
mathematical context and the suggested proofs in 
advance, and as they are encouraged to discuss their 
own feedback rather than experts’ proofs and evalu-
ations, students are inclined to participate actively 
and appreciate these discussions. We will also report 
on our experiences with the construction of suitable 
partly flawed ‘proofs’ and show how Pfeiffer’s schema 
is useful to assure opportunities to highlight various 
aspects of proof.

EXAMPLE OF A PROOF EVALUATION EXERCISE 

The task described below was included in the first 
written homework assignment in an introductory 
course on Linear Algebra for first year students. The 
students were familiar with the concept of a linear 
transformation of R2 as a function that respects ad-
dition and multiplication by scalars, and they were 
familiar with the matrix representation of a linear 
transformation and with the procedure of using ma-
trix-vector multiplication to evaluate a transforma-
tion at a particular point.

The proof evaluation task 
Students were presented with the following text.

Alison, Bob, Charlie, Deirdre and Ed are thinking 
about proving the following statement.

If the function T:R2→R2 is a linear transformation, 
then T fixes the origin, i.e. T(0,0)=(0,0). 

Alison’s Proof
Suppose that T(1,1)=(a,b). Then 

T[(1,1)+(0,0)]=T(1+0,1+0)=T(1,1)=(a,b).

But on the other hand since T respects addition

T[(1,1)+(0,0)]=T(1,1)+T(0,0)=(a,b)+T(0,0)=(a,b) from 
above.

So T(0,0)=(a,b)-(a,b)=(0,0).

Bob’s Proof
We know that for any element u of R2 and for any 
real number k we have T(ku)=kT(u).

Then applying T to (0,0) and multiplying the result 
by any real number k must give the same result as 
multiplying (0,0) by k first and then applying T. But 
multiplying (0,0) by k always results in (0,0) no mat-
ter what the value of k is. So it must be that the im-
age under T of (0,0) is a point in R2  which does not 
change when it is multiplied by a scalar. The only 
such point is (0,0). So it must be that T(0,0)=(0,0).

Charlie’s Proof
Think of T as the function that moves every point 
one unit to the right. So T moves the point (0,0) to 
the point (1,0). Then T is a linear transformation 
but T does not fix the origin. This example proves 
that the statement is not true. 

Deirdre’s Proof 
Suppose that (a,b) is a point in R2 for which 
T(a,b)=(0,0). Then 

T[2(a,b)]=T(2a,2b)=2T(a,b)=2(0,0)=(0,0).

Thus T(2a,2b)=T(a,b), so (2a,2b)=(a,b), so 2a=a and 
2b=b. Thus a=0, b=0 and T(0,0)=(0,0).

Ed’s Proof
Since T is a linear transformation it can be repre-
sented by a matrix. Suppose that the matrix of T is

Then the image of (0,0) under T can be calculated 
as follows:

So T(0,0)=(0,0).
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The students were asked the following questions 
about the text above.

(a) Does Alison’s answer prove that the statement 
is true? If not, why not?

(b) Does Bob’s answer prove that the statement is 
true? If not, why not?

(c) Does Charlie’s answer prove that the statement 
is not true? If not, why not?

(d) Does Deirdre’s answer prove that the statement 
is true? If not, why not?

(e) Does Ed’s answer prove that the statement is 
true? If not, why not?

(f ) Please rank the five answers in order of your 
preference (according to your own opinion). 
Include some comments to explain your ranking. 

The five proposed proofs provide a sufficient variety 
of different approaches to provoke learning and dis-
cussion about the nature and features of mathemat-
ical proof and about the process of proof evaluation. 
Alison’s proof is sufficient to prove the statement, it 
actually proves a more general statement. An evalu-
ator might question the unexplained introduction of 
the point (1,1) and whether there is a reason for this 
choice. Bob’s proof is written in text and also proves 
a wider statement than required. Charlie mistakenly 
proposes a counterexample to prove that the state-
ment is incorrect. Deirdre’s approach is written in 
a style which is familiar to students in the context 
of mathematical proof. However, her proof contains 
significant logical errors and does not establish the 
truth of the statement. Using Pfeiffer’s terminology, 
the evaluator may find mismatches between the in-
tended character and purpose of the proof, and be-
tween the actual and intended characters. Ed’s proof 
establishes the truth the statement, but other purpos-
es of proof such as enhancing understanding of the 
content and context of the statement are not met, i.e. 
the intended character of Ed’s proof does not match 
these wider purposes.

DISCUSSION OF THE RESPONSES 
AND OPPORTUNITIES FOR 
DISCUSSION AND LEARNING

The 28 students whose responses are discussed here 
are those who fully answered all six parts of the ques-
tion and included comments (many other students 
answered only some parts or gave “yes/no” answers 
without explanation). This account is intended to 
highlight some features of these students’ thinking 
about proof and some opportunities for learning 
(for both the students and instructor) that arise. We 
followed the task with a lecture-based discussion ses-
sion focussing on the themes mentioned below and 
prompted by the students’ work. This session, though 
conducted with a large group, was notable for the stu-
dents’ interested attention and for an unusually high 
level of interaction. This may be due to the fact that 
many of the themes of the discussion arose directly 
from the students’ written comments. 

Alison’s proof – responses and 
learning opportunities 
Of the 28 respondents, 17 expressed the view that 
Alison proves that the statement is true. One was 
non-commital, and the other 10 stated that Alison’s 
answer does not prove that the statement is true. 

Five students objected to the introduction of the point 
(1,1), apparently believing that focussing attention 
on this chosen point constituted a restriction of the 
statement to a particular example. Another accepted 
Alison’s proof as correct, but commented:

Student: I would prefer if she used a point (c,d) 
in R2 instead of (1,1).

This last comment prompted a discussion about pur-
poses of proofs. The student approves the proof but 
suggests altering it to avoid the choice of a particular 
vector. This alteration may make the argument more 
accessible for some readers, for example for the five 
of our students who were misled by the introduction 
of (1,1) to the extent that they rejected Alison’s proof. 
On the other hand, some readers might see Alison’s 
specification of a particular vector as simplifying the 
presentation and might prefer this to the alternative 
of cluttering the text with “general” notation that is 
not strictly necessary. The comment quoted above 
gave us the opportunity to highlight the fact that 
readers may have different mathematical tastes and 
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that alternative presentations of essentially the same 
argument may appeal differently to different readers. 

Bob’s proof – responses and 
learning opportunities
21 students accepted Bob’s proof as correct. One stu-
dent described it as partially correct, and 6 considered 
it to be incorrect. It was the second most popular of 
all the proposed proofs, being ranked first (or joint 
first) by 8 students.  

The six students who rejected Bob’s proof stated two 
reasons for doing so. Two students objected to the as-
sertion in Bob’s proof that  (0,0) is the only element of 
R2 that “does not change when multiplied by a scalar” 
pointing out that (for example) “(2,3) does not change 
when multiplied by the scalar 1”.  This misinterpreta-
tion of Bob’s intention highlights the importance of 
precision in mathematical proof.

The other four students who rejected Bob’s proof (as 
well as three who accepted it) complained that it only 
used part of the definition of a linear transformation, 
namely the property of respecting scalar multiplica-
tion. All seven of these students criticized Alison’s 
proof on the same grounds; the following is a repre-
sentative comment.

Student: Bob supplies the other half of Alison’s 
proof, he proves the statement for scalar 
multiplication. He is also half right.

The students who reject or criticize Bob’s and Alison’s 
proofs on these grounds appear to  recognize the strat-
egy of reasoning from a definition towards a desired 
conclusion, but their verdict that the argument can-
not be complete if it uses only part of the definition 
seems to be automatic. Their written comments do 
not indicate attempts to assess the significance to the 
argument of the “missing” part of the definition; their 
conclusions appear to be founded purely on an inspec-
tion of features of the proof without consideration of 
its logical structure.

No student cited as a reason to favour the proof of 
either Bob or Alison that both of these arguments 
prove a more general statement that they are directly 
concerned with. Alison’s argument proves that every 
additive function fixes the origin, and Bob’s proves 
that every function that respects scalar multiplication 
fixes the origin.  

In the ensuing discussion, attention was drawn to 
the logical structure of Bob’s proof and to the more 
general statement that it establishes. Students were 
reminded that a proof evaluator must consider the 
full content of what is achieved or omitted in a line of 
reasoning, and not hastily accept or dismiss an argu-
ment on the basis of superficial inspection. From the 
instructor’s point of view, the student responses to 
Bob’s proof highlight the important point that novice 
students are sometimes more attentive to the internal 
details of an argument than to its deductive quality.

Charlie’s proof – responses and 
learning opportunities
Charlie’s proof was considered incorrect by 25 stu-
dents, and correct by three. It was ranked last by 21 
students.

Of the 25 students who rejected Charlie’s proof, only 
11 did so on the grounds that the proposed counter-
example is not or may not be a linear transformation. 

Not all of the remaining 14 students who rejected 
Charlie’s proof gave clear reasons. It is possible that 
the conflict between Charlie’s conclusion and those 
of the other authors prompted some to object, but 
only two students cited this as a reason. Six students 
objected to the restriction of attention to a particu-
lar function. There is no sign in the work of these six 
students of acknowledgement that Charlie’s goal is 
exceptional amongst the five, that he is trying to dis-
prove the statement by exhibiting a counterexample. 
In the context of Pfeiffer’s schema, their evaluations of 
Charlie’s proof do not appear to include consideration 
of the relationship between the content of the proof 
and its main purpose. 

A possibly surprising feature of the responses to 
Charlie’s argument is that of the three students who 
considered it to be correct, each also accepted at least 
one of other four proofs. For example, one commented 
as follows on Charlie’s proof:

Student: As he notes, the linear transformation 
could possibly move every point one 
unit to the right. Therefore T does not 
fix the origin.

The same student accepted (for example) Bob’s 
proof, and recognized the conflict between Bob’s and 
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Charlie’s positions, commenting on ranking Charlie’s 
proof 3rd:

Student: Even though Charlie disproves the 
statement, it’s a very valid reason to 
disprove it.

The three students who approved Charlie’s proof 
did not appear to be troubled by the inconsistency 
of their own positions, and apparently believed that 
the statement could simultaneously be validated by a 
correct proof and contradicted by a counterexample. 
The intriguing phenomenon of such beliefs is inves-
tigated and thoughtfully discussed by Stylianides and 
Al-Murani (2010). 

Our in-class discussion of the responses to Charlie’s 
proof focussed on the exceptional character of his 
argument among the five, on the roles of examples 
and counterexamples in mathematical reasoning, and 
on the inappropriateness of rejecting an argument 
solely on the grounds that it consists of a single ex-
ample, without considering what it claims to establish. 
The opportunity arises also to discuss the question of 
whether a statement which has a valid proof can ever 
admit “exceptions”, a question whose answer seems to 
be less clear to inexperienced students than to prac-
tising mathematicians.

Deirdre’s proof – responses and 
learning opportunities
Deirdre’s proof was considered correct by 19 students, 
and ranked 1st or 2nd by 11 of these. It was considered 
incorrect by 8 students, with one reporting no verdict.

Deirdre’s argument begins with a linear transforma-
tion T and a hypothesized point (a,b) whose image 
under T is the origin. (There is no a priori guarantee 
that such a point exists.) From the fact that T respects 
multiplication by scalars, it is established that (a,b) 
and (2a,2b) have the same image under T. It is then 
erroneously deduced that these two points must be 
the same and hence that a=b=0. This is a specific error 
in the line of reasoning documented in Deirdre’s ar-
gument. The argument also suffers from a structural 
error in its logic: what it attempts to establish is not 
that T(0,0)=(0,0) for every linear transformation T, but 
that if a point is mapped by a linear transformation 
to (0,0), then that point must be (0,0). In the context 
of the schema of Pfeiffer, this error corresponds to 
an opposition between the author’s proof strategy 

(the intended character of her proof ) and her purpose 
(establishing that T(0,0)=(0,0) for a linear transforma-
tion T). The “internal” error in Deirdre’s proof, (that 
T(a,b)=(0,0)=T(2a,2b) means (a,b)=(2a,2b)) corresponds 
to a failure in the author’s implementation of her 
strategy, a mismatch between the intended character 
and actual character of her proof. That such an error 
must exist is inevitable in this instance, since the au-
thor’s intention is to prove an untrue statement.

Obviously notable is the fact that two-thirds of the 
students accepted an argument that has (at least) two 
serious flaws, one in its overall logical structure and 
one in its internal deductions. Many identified simi-
larities between Deirdre’s proof and Bob’s, which may 
partly explain their readiness to accept this funda-
mentally flawed proof. 

The 8 students who rejected Deirdre’s proof did so for 
a variety of reasons. Two of them (as well as two who 
accepted the proof ) criticized the use of the scalar 2 
instead of a general k. Two of these students suggest-
ed that this specialization amounted to restriction to 
a special case and constituted a reason to reject the 
proof, the other two only that it compromised the 
quality of the argument (as opposed to its correctness). 

Two students rejected Deirdre’s proof on the basis of 
the erroneous deduction that T(a,b)=T(2a,2b) means 
(a,b)=(2a,2b). For example,

Student: Her second line contains a mistake, when 
she states T(2a,2b)=T(a,b) (2a,2b)=(a,b). 
This is not necessarily true. She is in-
correct.

For us, the most remarkable feature of the data on 
our students’ responses to Deirdre’s proof is that not 
one student noted its significant logical flaw. The 
only possible reference to the unexpected structure 
of Deirdre’s argument is an oblique one from a student 
who accepted the proof and commented:

Student: she works backwards to reach her con-
clusion.

From their comments it is not evident that any of the 
students gave careful critical attention to the ques-
tion of “fitness-for-purpose” of Deirdre’s strategy. In 
the context of Pfeiffer’s schema, none of the students’ 
written comments indicate consideration of the rela-
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tionship between the intended or actual characters 
of this argument and its purpose. A key learning 
outcome for the instructor here is that the mathema-
tician’s practice of constantly testing the connection 
between the text of an argument and the statement 
that it purports to prove is not automatically adopted 
by students. Our discussion on Deirdre’s proof fo-
cussed on this mental discipline and its essential role 
in mathematical practice and in the development and 
validation of mathematical knowledge. The validity of 
a mathematical argument cannot be assessed without 
analysis of the deductive process from the hypotheses 
to the conclusion. To conduct such analysis, a reader 
of proofs needs to have a measure of confidence in her 
ability to extract the logical thread from  a passage of 
text, and to assess whether it does what it claims. As 
students progress through mathematical education 
at university, we expect their sense of their own reli-
able mathematical authority to evolve. Alertness to 
the possibility of logical failures in an argument is a 
habit of mind whose development may need explic-
it attention from both teachers and students. It is a 
key feature of mathematical practice, which might 
plausibly be encouraged by critical study of proofs, 
including some that are incorrect or inadequate in 
different ways. 

Ed’s proof – responses and 
learning opportunities
Ed’s proof was accepted as correct by all 28 students, 
and was by far the most popular of the five proofs, 
being ranked 1st by 18 students and 2nd by 5 students. 

Few students commented in detail on Ed’s proof. 
Typical remarks included that it was clear, simple, 
short and easy to understand. Overall the group 
demonstrated a clear preference for Ed’s transla-
tion of the problem into an easy matrix calculation 
over Alison and Bob’s processes of reasoning from 
the defining properties of a linear transformation. 
The matrix representation of a linear transformation 
had been discussed in detail in lectures, and manipu-
lations with matrices featured in several other tasks 
on the homework assignment that included this proof 
evaluation exercise. 

Our discussion of Ed’s proof and the responses to it fo-
cussed on the wider purposes of proof and on the rea-
sons that a reader might have for preferring Alison or 
Bob’s proof to Ed’s, despite the fact that more effort is 
required to understand them. Students were invited 

to consider whether any of these proofs enhanced 
their appreciation of the significance of the defining 
properties of a linear transformation, or their under-
standing of why the statement is true.  

CONSTRUCTION OF PROOF 
EVALUATION TASKS

Composing a suitable collection of “proofs” for a proof 
evaluation task can be an absorbing but time-consum-
ing challenge for an instructor. It is not essential that 
such a task involves multiple proposed proofs, but our 
experience suggests that the invitation to compare 
different attempts to prove the same statement can 
stimulate meaningful learning opportunities. A first 
step in constructing a task of the type described here 
is to identify a statement is relevant to the discipli-
nary learning context, and admits different proofs 
that students have the requisite knowledge to under-
stand. In the preparation of “proofs”, there are at least 
two areas of potential scope for variability. One is the 
manner in which the proof is presented – whether it 
primarily consists of text or of algebraic formulation; 
whether it includes diagrams, either as a support or 
as the main content; whether the style of text content 
is formal and technical or more conversational. The 
presentation style can often be varied independent-
ly of considerations of the correctness of the proofs, 
and we have found it useful to give different styles 
of writing and presentation to our fictitious authors.

Another important dimension of variability is in the 
nature of errors or imperfections that appear in the 
range of proposed proofs. In this context the schema 
of Pfeiffer provides a useful framework for prepa-
ration of variously erroneous proof attempts. A task 
designer might decide to include one or more “proofs” 
in which the author’s intention is mismatched to the 
stated aim, for example because of inappropriate log-
ical structure (as in Deirdre’s proof ), inadvertent re-
striction to special cases, or unjustifiable deductions. 
A proof whose intended character is appropriate for 
the purpose but poorly conveyed in the actual charac-
ter might also be included. Such a mismatch might be 
manifested through an insufficiently explained (but 
justifiable) line of reasoning, through the omission of 
some routine but necessary ingredient, or through 
imprecise or unclear statements.  Proof evaluation 
tasks are flexible and adaptable and a number of de-
grees of freedom exist for their design. Instructors 
wishing to include such tasks in curricula will find 
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opportunities to highlight essential points relating 
both to the nature and purposes of proofs and to rel-
evant disciplinary knowledge. 

A shared repository of adaptable proof evaluation 
tasks relating to different subject areas and levels 
would be a very useful resource.

CONCLUDING REMARKS

As anticipated by the research study of Pfeiffer (2011b), 
our incorporation of the activity of proof evaluation 
into a linear algebra course led to positive learning 
opportunities for our students as well as giving us 
some insights into their thinking about proof. We 
were surprised by the range of discussion opportu-
nities that arose from students’ responses to the task. 
Examples include the importance of precision, the 
role of counterexamples, and attention in proof-read-
ing to overall structure as well as internal features. 
Proof evaluation activities with an advanced course 
in group theory have been similarly encouraging. All 
of these experiences motivate us to extend our re-
sources for the use of proof evaluation tasks and to 
conduct comprehensive tests of their effectiveness 
for the development of proof-reading skills. 

As a further argument for the incorporation of tasks 
of this nature in learning activities, we remark that 
a great deal of the professional activity of research 
mathematicians is concerned, directly or indirectly, 
with the validation and evaluation of proofs. However, 
in our experience it is rarely the subject of explicit at-
tention in curricula. We propose that proof evaluation 
tasks, as well as providing meaningful opportunities 
in teaching and learning, also provide opportunities 
for students at all stages of expertise to participate in 
authentic mathematical practice.

Finally, we remark that our classroom experience with 
proof evaluation tasks demonstrates the potential of 
collaboration between researchers in mathematics ed-
ucation and academic mathematicians to deliver rich 
learning opportunities for students. Cooperation and 
mutual support of this nature is essential if insights 
arising from research in mathematics education are 
to have a significant impact on curricula and on the 
learning of mathematics at university level. 
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INTRODUCTION

Mathematics, as a subject, stands out from other fields 
in several ways. Even if proofs derive from axioms, 
there is a sense – which is grounded in the rigorous 
process of proving – that certain claims can be shown 
to be true or false. This is part of what makes math-
ematics satisfying. There are answers that can be 
shown to be, beyond a shadow of a doubt, true. Similar 
to the feeling one gets from establishing the truth of 
a claim, one can often experience a feeling in mathe-
matics that a claim is right, that a certain proof fits a 
theorem, or that a particular argument is exactly the 
one needed. This is a stronger and somewhat more 
mysterious requirement than that a particular claim 
is true. There might be many arguments that establish 
the truth of a claim, but what is that makes us feel that 
some arguments are right? Is this just a subjective 
feeling or is there some objective grounding for this 
feeling? The purpose of this paper is to sketch some 
criteria for what it might mean for the (somewhat 
more limited and hence manageable) question of what 
it means for a proof to fit a theorem. While the crite-
ria grew originally from empirical data (polling data 
and discussions with mathematicians) we present the 
paper as a theoretical one, with the idea of building, 
or at least starting to build, a framework that could 
be tested more broadly.

FIT IN THE LITERATURE

The notion of fit has been discussed in both sci-
ence and mathematics communities. For instance, 
Wechsler (1978) compares the experience of “fit” to 
more aesthetic experiences often considered to be 
more artistic (and less scientific):

Scientists talking about their own work and that of 
other scientists use the terms “beauty,” “elegance,” 
and “economy” with the euphoria of praise more 
characteristically applied to painting, music, and 
poetry. Or there is the exclamation of recognition 

— the “Aha” that accompanies the discovery of a 
connection or an unexpected but utterly right re-
alization in art and science. These are epithets of 
the sense of “fit” — of finding the most appropriate, 
evocative and correspondent expression for a re-
ality heretofore unarticulated and unperceived, 
but strongly sensed and actively probed.

Sinclair (2002) has discussed the role of fit in the pro-
cess of mathematical discovery. She discusses several 
different kinds of fit. One kind of fit has to do with 
recognizing a particular theorem in a larger class of 
theorems (a case of a square was a specific case of the 
more general category of polygon.) Another kind of 
fit has to do with a corporeal sensation of physically 
putting together a vertex and an edge in a diagram 
to get a desired result. Sinclair connects these expe-
riences of fit to a more general aesthetic sensibility. 
She quotes Beardsley who said that the first feature 
of aesthetic experience was “a feeling that things are 
working or have worked themselves out fittingly” 
(Sinclair, 2002, p. 288).

Fit, or the related notion of fitting (more on this dis-
tinction in the discussion), are natural, but somewhat 
vague terms to describe an aesthetic experience in 
mathematics, of something being appropriate or right, 
or something sharing some sort of family member-

mailto:manya.sundstrom@umu.se
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ship or having some kind of inner coherence. In this 
paper we try to clarify what some of the character-
istics of fit might be (we do not claim that the list of 
characteristics is exhaustive, but it is at least a start). 
We illustrate our analysis with two contrasting proofs 
of the Pythagorean theorem.

THEORETICAL MODEL

Here we discuss two ways that a proof can be fitting in 
mathematics, which we will refer to as intrinsic and 
extrinsic fit. Proofs are not the only mathematical ob-
jects that can possess fit. Definitions, diagrams, even 
theories, might be fitting, but in this paper we will 
limit the discussion to proofs. In this section we list 
some criteria for determining if a proof has intrinsic 
or extrinsic fit.

Criteria for intrinsic fit
Intrinsic fit refers to the relationship between a the-
orem and the underlying ideas in a proof of the the-
orem. It is what gives one a sense of what is going on 
in a proof, and how accessible the underlying ideas 
are. There are (at least) three criteria for intrinsic fit.

I1: Economy. The underlying ideas are represented 
as concisely as possible. We say a proof is economic 
(or not economic).

The number of words is not really what determines 
economy. Sometimes a proof can be too terse to see 
what is going on. The proof should be as short as 
possible, but a knowledgeable reader should still 
be able to follow it, filling in the missing details as 
appropriate. 

I2: Transparency. The proof allows the underlying 
idea to be easily grasped. The structure of the ar-
gument is clear. We say a proof is transparent (or 
not transparent).

This criterion deals with the question of how easy 
is it to see what is going on in a proof. This has two 
components: that the general logical structure of 
the proof is clearly presented, and that the underly-
ing idea that makes the proof work is clearly stated. 

I3: Coherence. The proof is stated in the same terms 
as the theorem. We say that a proof is coherent (or 
not). 

A proof that coheres has a clear underlying idea 
that is explicitly put to use in proving the theorem. 
The terms with which one would naturally state 
the proof idea (such as areas or graph cycles or 
eigenvalues of matrices) are the same terms which 
are stated in the theorem, allowing one to easily see 
why that particular idea is essential to the theorem. 

Criteria for extrinsic fit 
Extrinsic fit refers to the relationship between a par-
ticular proof and a family of proofs. The single case 
and the family might be related via an idea, but what 
stands out is not as much the idea as the family mem-
bership. When you realize that a proof is in the family 
you think, “Oh it is one of those!” There are (at least) 
three criteria for extrinsic fit:

E1: Generality. The idea of the proof generalizes 
to a larger class of theorems. We say that a proof 
is general (or not), though we often mean that the 
idea of the proof is general. 

This criterion deals with how well an underly-
ing idea generalizes to prove a class of theorems. 
The proof at hand is seen as a specific instance of 
a more general claim. Generality is not the same 
as explanation. For instance in category theory, 
theorems might be perfectly general but not at all 
explanatory. See Steiner (1978) for other examples.

E2: Specificity. The proof requires a specific tool, or 
a particular technical approach, to make it tracta-
ble. We say that a proof is specific (or not). 

This criterion also deals with how well a proof fits 
into a class of theorems, but not through the idea, as 
with the criterion of generality above, but through 
the specific choice of technical tool that makes the 
proof work. Whereas with the criterion of general-
ity the focus is on the family membership (This is 
one of those kinds of proofs!), here the focus is on 
the appropriateness of the specific technical tool 
for the job (We found a tool that works!). The tool 
itself is not as much of interest as is the fact that 
the proof is now within reach.

E3: Connectedness. The proof idea connects to 
proof ideas of other theorems. We say a proof is 
connected (or not). 
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We see this particular proof as one of family of 
proofs. This criterion is at the heart of what is 
meant by family membership. The idea in one 
proof is the same as the idea in a family of proofs, 
and the common idea is what makes the proofs 
hang together as a family. 

AN EXAMPLE 

We take as an example a classic, and much discussed 
theorem — the Pythagorean theorem. We will show 
two proofs of the theorem and use the model described 
above to discuss the extent to which each proof fits 
the theorem. The first proof comes from Euclid (300 
B.C./2008, VI. 31) and has been discussed, for instance, 
in Polya (1954), as a particularly nice proof of the the-
orem. We suggest this proof is a clear example of a 
proof that really fits the theorem. It has been suggest-
ed that this proof captures exactly what the theorem 
is about (e.g., Steiner, 1978). The second proof, which 
uses a clever argument based on trigonometry, does 
not fit. Our model helps clarify why this is the case. 

Theorem: In a right triangle with sides a and b and 
hypotenuse c, a2 + b2 = c2.

Proof 1: We are given a triangle with sides a and b 
and hypotenuse c. Also line h ^ line c.

We can see that the sum of the areas of the smaller 
triangles is the same as area of the large triangle 
(by construction). We can also see (you can im-
agine folding out each of the three triangles over 
its longest side), that the sum of the areas of the 
triangles on sides a and b is equal the area of the 
triangle on side c. This relationship will hold for 
any similar figures on those sides, in particular 
squares, so a2 + b2 = c2. QED

Why does this proof exhibit fit? Let us consider the 
criteria:

I1: Economy. The proof is economic. It gives rele-
vant information simply and concisely. It could 
also be made more concise assuming more knowl-

edge of the reader. (In this paper we have added 
some details for ease of reading.)

I2: Transparency. This proof is transparent. The 
proof consists of two main ideas, clearly presented, 
namely the dissection of the triangle into similar 
triangles, and that the equality of the areas carries 
over to arbitrary shapes.

I3: Coherence. The proof is coherent because the 
proof and the theorem are in the same terms, name-
ly area. The theorem is a statement about the rela-
tionship of certain areas, and the proof directly re-
lates these areas using properties of the triangles.

We also note that the idea of preserving areas is in line 
with the more famous proof in Euclid, where the areas 
of the squares constructed on either side are shown 
to be equal by area-preserving steps. A “Greek” proof 
that two areas are equal should ideally show that the 
one shape can be transformed into the other shape, 
using only area-preserving steps. The area-preserv-
ing step in the present proof is the reflection of either 
small triangle in the corresponding side of the large 
triangle. The scaling argument can also be traced to 
Euclid, and the present proof is also (less famously) 
given in Euclid.

E1: Generality. The proof is general. Steiner (1978) 
gives an account for this generality. This proof hap-
pens to be, according to Steiner, the proof that is 
most explanatory and most general. The general-
ity comes from the fact that the proof works for 
arbitrary similar shapes constructed on the sides 
of the triangle.

E2: Specificity. The proof fulfils the criterion of 
specificity. The technical tool that works in this 
case is dividing the original triangle into sim-
ilar triangles. Put more generally, this could be 
described as dissection. This division allows us 
to see the crucial relationship, namely that all 
three triangles are similar and their areas add up. 
The move to arbitrary similar figures, including 
squares, is a relatively small one.

E3: Connectedness. This criterion is not as easy 
to apply here as the other criteria, but we are in-
clined to say that this proof is connected. The class 
of proofs to which the proof can be seen to belong 
(other classes may be possible) might be taken to 

Figure 1
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be proofs by area preservation, for instance the 
one referred to as “Greek” above.

Now consider the second proof, from Zimba (2009), 
which uses trigonometry.

Proof 2: Suppose we are given the subtraction 
formulas for sine and cosine:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β), and 
sin(α − β) = sin(α) cos(β) − cos(α) sin(β)

Let α be the angle opposite to side a, and β be 
the angle opposite to side b, and without loss of 
generality, assume that 0 < α ≤ β < 90°. 

We now have: 
cos(β) = cos(α − (α − β)) = cos(α) cos(α − β) +  
+ sin(α) sin(α − β) = cos(α)(cos(α) cos(β) +  
+ sin(α) sin(β)) + sin(α)(sin(α) cos(β) −  

− cos(α) sin(β)) = (cos2 (α) + sin2 (α))cos(β)

from which it follows that cos2 (α) + sin2 (α) = 1, 
since cos(β) is the ratio between one leg and 
the hypotenuse of a right triangle, and as such 
is never zero. The theorem now follows from the 
definitions of sine and cosine and scaling. QED

To what extent does this proof fulfill the criteria for 
intrinsic and extrinsic fit?

I1: Economy. The proof is economic. It gives rele-
vant information simply and concisely, and here 
some details are left out.  

I2: Transparency. This proof is not transparent. 
There is no clear sense of direction in the calcula-
tions performed. The structure of the proof is clear 
enough, and each step can easily be verified, but 
it seems that there is little in the way of a natural 
sequence of ideas, and the introduction of trigo-
nometric quantities seems extraneous. Also, it is 
hard to see, for instance, why one would initially 
want to rewrite cos(β) as cos(α − (α − β)).

I3: Coherence. The proof is not coherent. The trigo-
nometry used in this proof is not in the same terms 
as the theorem, which is about areas. The work of 
the proof, that is to say the algebra, takes place in 
the language of trigonometry. We translate in and 

out of that language to see that the trigonometric 
manipulations establish the theorem.

E1: Generality. The proof as it stands is not gener-
al. It is true that once cos2 (α) + sin2 (α) = 1 is estab-
lished, one can add the scaling argument to show 
that the result holds for arbitrary similar shapes, 
but the scaling argument is not an integral part 
of the proof.

E2: Specificity. The proof exhibits specificity, in that 
the tool used (the subtraction formulas), surpris-
ingly works out to be adequate for the conclusion 
to be drawn.

E3: Connectedness. The proof is not connected. It 
is, as far as we know, the only trigonometric proof 
of the Pythagorean theorem, so there is no obvious 
family of proofs it would belong to.

Comparison
Here is how the two proofs compare in terms of fit, 
according to the six criteria. An X indicates that the 
proof satisfies the given criterion.

Criterion I1 I2 I3 E1 E2 E3

Proof 1 X X X X X X

Proof 2 X X

 
We conclude from this analysis that Proof 1 fits the 
Pythagorean theorem better than Proof 2 does. Notice 
that our notion of fit appears to be gradable. It seems 
natural to say that one proof fits better than another 
without all the criteria being fulfilled (or not fulfilled). 
What is less clear is how many criteria must be ful-
filled to say that a proof exhibits fit at all. Further, 
the criteria are not equally weighted. It seems more 
central to the notion of fit to be coherent than to be 
economic. 

DISCUSSION

We will now take up a few issues relating to fit that 
have a more general nature than those discussed 
above. First, we will discuss the relation between the 
terms ‘fit’ and ‘fitting’. Next we will discuss the relation 
between fit and two other concepts, explanation and 
beauty. Finally we will discuss the applicability of the 
model given here.
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Fit, Fitting, Fitness
There are several words related to fit which differ in 
meaning and use. With the examples above in mind 
of what it means for a proof to fit a theorem, or to fit 
into a class of theorems, we will explore the relation 
between these words. First, fit and fitting: Fit appears, 
commonly, to be a relation between two objects. A 
glove fits a hand. A model fits the data. The objects 
may be abstract, such as: The experience of going to 
Rome fits my expectations. The term can also be used 
metaphorically: Anna is a good fit for Roberto. In all of 
these cases, the objects that fit work like puzzle pieces. 
One set of objects has features that complement the 
features of the other object. When the match is found, 
we get a sense of satisfaction from having made and 
accomplished that match.  However the fit might be 
more or less good, as in the case of a glove fitting a 
hand, or might be a perfect match, as in the case of a 
key fitting a lock.

Fitting, which has similar meaning to ‘fit’ has a slightly 
different connotation. Fitting often means ‘appropri-
ate’, such as “that behavior was fitting for a man of his 
stature”. Unlike fit, fitting often has a connotation of 
being socially appropriate. One would not say that a 
square is a fitting choice for this particular tessella-
tion. ‘Fit’ refers more broadly to patterns found in 
nature, mathematics, etc. while ‘fitting’ is more re-
stricted to the human sphere.

Fitness might not seem as obviously related to fit, but 
we mention it here to raise a question about whether 
the notion of ‘fit’ in mathematics might be at all related 
to the notion of ‘fitness’, say, in natural selection. One 
use of the term fitness has to do with physical aptitude. 
One trains to stay fit. When one is fit, one has achieved 
some level of fitness. In Darwinian terms, fitness is re-
lated to adaptability. The more adapted a species is for 
the environment the better it will fit. This reading of 

‘fit’ or ‘fitness’ is not so different from what we call ex-
trinsic fit above. The features that make a proof fit into 
a family of other proofs might be the ones that make 
it ‘survive’ in some sense, that it is more likely to be 
remembered, cited, and/or developed in mathematics. 
(This discussion bears resemblance to Gopnik (2000) 
who links understanding with sexual reproduction.)

Relation to explanation
Intrinsic fit and extrinsic fit have some parallels with 
contemporary treatments of mathematical explana-
tion. We make no attempt here to summarize the lit-

erature in this area, and we do not try to spell out in 
detail any of the main models of mathematical expla-
nation, but simply point to a few places in some of the 
more prominent theories where there are similarities 
with our account of mathematical fit.

Steiner (1978) provides an account of mathematical 
explanation in terms of ‘characterizing property’. He 
described this as “a property unique to a given entity 
or structure within a family or domain of such enti-
ties or structures”. This description of characterizing 
property has an obvious parallel with our notion of 

‘coherence’. Familial membership is central, both in 
identifying an entity as one that could explain, as 
well as in finding the grounds for the explanation. 
As Steiner continues, “an explanatory proof makes 
reference to a characterizing property of an entity or 
structure mentioned in the theorem, such that from 
the proof it is evident that the result depends on the 
property.” Similar, but not identical, with our notion 
of coherence, the relationship between the entity or 
structure and the result is central for determining if 
a proof explains (or has fit). A proof that has the same 
terms as a theorem, which is how we have character-
ized coherence, seems similar to a proof that evidently 
gives rise to a particular result.

We will mention very briefly Steiner’s notion of ‘de-
formation’ because it is essential to his view of ex-
planation (though it has been criticized elsewhere, 
e.g., Hafner & Mancosu, 2005). To Steiner, a proof that 
explains can be modified for members of a particu-
lar family (e.g. the set of all polygons) while keeping 
the proof idea the same. An explanatory proof can 
be deformed to produce a new theorem [3]. While 
problematic, the idea behind ‘deformation’, that an 
explanatory proof contains an idea that is invariant 
to certain inter-family sorts of transformations, is 
not completely counter-intuitive. The focus on char-
acterizing properties and deformation seems to build 
on an intuition similar to that which underlies our 
distinction between intrinsic and extrinsic fit. In both 
Steiner’s account of explanation and our account of 
fit there is some aspect that is internal and related 
to proof idea (and its accessibility, in the case of fit), 
and there is some aspect that is external and related 
to situating a proof as a member of a larger family.

Contemporary philosophy of mathematics has 
reached no consensus on mathematical explanation, 
but we will consider two more theories, one of which 
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is more aligned with our notion of connectedness, and 
the other with our notion of coherence. These two as-
pects of fit correlate most closely related with current 
accounts of explanation.

Kitcher (1989) offers a view of explanation that is 
considered to be a counter proposal to Steiner’s view, 
based on the notion of unification. Kitcher says that 
explanation arises from the use of arguments that 
have the same form (see Lange (in press) for a sum-
mary of this view). These explanations can be found 
in what Kitcher calls “the explanatory store” and the 
main task of a theory of explanation is to “specify 
conditions on the explanatory store” (Kitcher, 1989, p. 
80). While the details of what gives rise to an explana-
tion differ greatly in Kitcher’s and Steiner’s account, 
one similarity seems to be the emphasis on familial 
membership, or what we would call connectedness. 
In Steiner’s account the membership comes about via 
characterizing properties, and in Kitcher’s account it 
comes about via the explanatory store. The fact that 
there is some kind of unification or some sort of family 
traits that naturally carry over to similar entities or 
structures seems central both in these two accounts 
of mathematical explanation and in our account of 
mathematical fit.

In contrast to Steiner and Kitcher, whose views of 
explanation seem to have some component similar 
to that of connectedness, Lange (in press) suggests 
a view with three components (unity, salience, and 
symmetry), the first of which seems to be related to co-
herence. To Lange, “A proof is unified when it exploits 
a property that all of the cases covered by the theorem 
have in common and treats all of those cases in the 
same way” (personal communication). Unlike Kitcher 
and Steiner, whose unification and characterizing 
property ideas involve family membership, Lange’s 
notion of unity is one that is intrinsic to the proof. 
Lange’s concept of salience might also overlap with 
our criteria for intrinsic fit. Salience is a feature that 
is “worthy of attention” (Lange, p. 27). Transparency 
includes a feature that makes a certain idea accessible. 
While not exactly the same concept, the idea that cer-
tain features of a proof make it more readily processed 
by the mind seem to be a commonality between our 
account of mathematical fit and Lange’s account of 
mathematical explanation.

Relation to beauty
Less clear than the relation between fit and explana-
tion is the relation between fit and beauty. The open-
ing quote by Wechsler hints at a connection, as does 
the quote by Beardsley (that the aesthetic experience 
arises from things working themselves out fittingly). 
Could there be any motivation in mathematics for 
aesthetic experiences to arise from some sense of fit 
or fittingness? 

We have gathered a small amount of pilot data relat-
ed to this question. The proofs of the Pythagorean 
theorem, given above, were shown to a group of six 
mathematicians and three mathematics educators, 
along with several other proofs of the theorems. 
Participants were asked to rank the proofs according 
to which was most aesthetically pleasing. All of the 
mathematicians ranked the first proof higher than 
the second. The two math educators who chose the 
second proof stated that they did so because they felt 
they did not fully understand the first proof, but they 
could follow the steps of the second proof. The words 
given by the mathematicians to describe the first proof 
included “simple”, “beautiful” and “conceptually cor-
rect”. The words given for the second proof included 

“ugly”, “clever” and “unnatural”. Note that a proof can 
be clever without it being beautiful.

While far from conclusive, this data seems to suggest 
that there might be reasons to believe that fit has some-
thing to do with beauty. The criteria of economy and 
coherence seem to be similar what the mathemati-
cians meant by simplicity and conceptual correctness.

Some applications of the model
The model proposed here for mathematical fit is only 
a sketch, but it may be a small step toward clarify-
ing a few open questions related to the philosophy 
and aesthetics of mathematics. First, it helps identify 
some ways that current theories of explanation are at 
odds with each other. Steiner’s account of explanation, 
which overlaps with our category of coherence, and 
Kitcher’s account, which is more related to our catego-
ry of connectedness, might be, like the parable of the 
blind men and the elephant, in which the men describe 
different parts of the beast, characterising different, 
but not necessarily contradictory, aspects of fit.

Second, our model takes a modest step towards clar-
ifying what beauty in mathematics might have to do 
with explanation. If Wechsler is right that beauty 
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involve some sort of fit, we have sketched two differ-
ent kinds of fit that might play a role in our aesthetic 
judgments. This may also be a way to identify whether 
beauty is an objective quality.
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ENDNOTES

1. Algebraic details: Let A, B, and C be the areas on the 
sides a, b, and c, respectively. Then A/a2 = B/b2 = C/c2, 
which implies A+B=a2C/c2+b2C/c2. Since A + B = C, it fol-
lows that (a2+b2)/c2 = 1 which implies a2+b2= c2.

2. Note that for angles between 0 and 180 degrees, the 
subtraction formulas can be proven without recourse 
to the notion of distance, and are hence not dependent 

on the Pythagorean theorem. This proof is therefore 
not circular.

3. Counterexamples to this claim have been suggested, 
e.g. in Lange (in press).

http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
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 This descriptive study examines students’ performance 
on a proof task about corresponding parts of congruent 
triangles. We collected data from 1936 students, 59.8% 
used a subject-specific curriculum and 40.2 % used an 
integrated curriculum. Our findings indicate that, re-
gardless of curriculum type, students experience dif-
ficulty with constructing the proof. Additionally, we 
observed that although students from the integrated 
curriculum were more likely to obtain partial credit 
when compared to their subject-specific counterparts, 
only 28 students in the sample (21 from subject-specific 
curriculum and 7 from the integrated curriculum) were 
able to obtain full marks. 

Keywords:  Proof, geometry, US textbooks, high school.

OVERVIEW 

Although there is a consensus that students should 
have experiences with proof in all areas of mathemat-
ics (NCTM, 2000), proof has traditionally been part of 
only the geometry curriculum (Zaslavsky et al., 2012). 
Proof plays a central role in mathematics, and yet for 
many high school students it remains an alien concept, 
as suggested by weak performance of secondary stu-
dents in proving (Harel & Sowder, 2007). For example, 
Senk (1985), studied 1520 students doing geometrical 
proofs and found that only 30% of students enrolled 
in a geometry course were able to demonstrate mas-
tery of proof. Despite the low performance across 
the various proof tasks, Senk noted 47% of students 
were able to prove that a pair of congruent triangles 
was congruent. Similarly, Healy and Hoyles (1999) 
noted 19% of students were able to write a complete 
proof for familiar geometry statements, and 4.8% of 
students were able to write complete a proof for an 
unfamiliar geometry statements. Moore (1994) noted 
that students who are challenged to write proofs, may 

have difficulty with language and notation, may lack 
understanding of the concept, cannot state appropri-
ate definitions, have difficulty structuring the proof, 
or may not know how to begin the proof.

Furthermore, large-scale assessments have docu-
mented that student performance in geometry is 
relatively poor. In the 1996 NAEP mathematics as-
sessment, geometry was identified as a strand where 
student performance was low, particularly for 12th 
grade students (Martin & Strutchens, 2000). Moreover, 
extended constructed response items in the NAEP 
assessment had a much lower rate of satisfactory 
responses than multiple-choice items or short con-
structed responses for grades 8 and 12 (Silver, Alacaci, 
& Stylianou, 2000).  Furthermore, in its report on 
evaluation of curriculum effectiveness, the National 
Research Council (2004) analyzed nine evaluation 
studies of NSF-supported curricula, and geometry 
was one of the strands where these curricula failed 
to show strong favorable results. On the other hand, 
two of four studies of commercial materials showed 
favorable results in geometry. Nevertheless, neither 
the analysis of NAEP data nor the NRC report specif-
ically included results regarding proof in geometry. 

Textbooks convey a mathematical progression for 
curriculum objectives and cognitive developmental 
structures for learners (Van Dormolen, 1986). The 
majority of secondary schools in U.S. follow a curricu-
lum built around a sequence of three full-year cours-
es, Algebra 1, Geometry, and Algebra 2 or Algebra 
1, Algebra 2, and Geometry (Dossey, Halvorsen, & 
McCrone, 2008). Integrated curriculum materials 
developed since 1990 have been adopted in some high 
schools. These materials integrate algebra and geom-
etry content, together with functions, data analysis, 
and discrete mathematics each year of the secondary 
mathematics curriculum (Hirsch, 2007).
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Researchers have been interested in the different stu-
dent outcomes that can be attributed to the use of these 
different types of textbooks. For example, at the fifth 
and sixth grade levels, Carroll (1998) found that stu-
dents who used the UCSMP (an integrated curriculum 
that is designed to align with NCTM Standards (NCTM, 
2000) outperformed on geometrical reasoning activ-
ities their counterparts that used a subject-specific 
curriculum, which are publisher-developed (Stein, 
Remillard, & Smith, 2007). Otten, Males, & Gilbertson 
(2014) documented that reasoning and proof tasks are 
visible in high school geometry subject-specific text-
books and integrated textbooks; however, few studies 
have documented high school students performance 
of proof in respect to the organizational structure of 
the curriculum used. Chávez and colleagues (2013) 
found that students using an integrated curriculum 
scored significantly higher than those using a sub-
ject-specific curriculum on a common objectives test. 
In this paper we examine students’ performance on a 
geometrical proof task from this common objectives 
test with consideration to the curriculum type used. 
We investigated the following research questions: 

 ― How successful are students on a proof about 
congruent parts of congruent triangles? 

 ― What differences are there between curriculum 
types for students’ performance on a geometrical 
proof task about congruent parts of congruent 
triangles?

METHOD

The mathematical task used and students’ data were 
drawn from Test E in the Comparing Options in 
Secondary Mathematics: Investigating Curriculum 
(COSMIC) study. Test E is one of 5 tests developed for 
the COSMIC study (Chávez et al., 2011). This longitu-
dinal study examined the impact of different content 
organizations on students’ learning. The mathematics 

emphasized on Test E was functions and other top-
ics that were common to both types of textbooks and 
were considered important, namely: symbolic alge-
bra, Pythagorean Theorem and a proof for congru-
ent triangles. Test E had 10 items: 1 multiple-choice 
item, 1 matching item, and the 8 remaining items were 
constructed response. For this paper, we will discuss 
students’ performance on the proof task. 

Mathematical task 
In Test E, question 7 (Figure 1) required students to 
prove that two sides of two triangles were congruent. 
The given information was enough to prove that the 
triangles were congruent and therefore the corre-
sponding sides were congruent. Figure 1 includes 
the task, as presented to students in the assessment 
instrument. The purpose of this task was to assess 
students’ ability to write a proof for a very typical 
geometry problem. Our curriculum analysis had 
shown that tasks similar to this were found on both 
sets of textbooks.

This item was scored on a 9-point scale. The scoring 
rubric is shown in Figure 2. According to this rubric, 
the item was divided into four subitems, correspond-
ing to the four expected components of a correct an-
swer. Students were awarded points for identifying a 
pair of congruent triangles, pointing out at least two 
pairs of congruent angles, stating the correct theo-
rem as to why the triangles were congruent, and for 
providing a concluding reasoning that the sides of 
congruent triangles were congruent. These four sub-
items are referred to as 7.1, 7.2, 7.3 and 7.4. As described 
elsewhere (Chávez et al., 2011), the rubric and the prob-
lem itself were submitted to external reviewers. The 
problem was also piloted before being use with the 
study participants. From these rounds of review, revi-
sion, piloting, and revision, we were confident that the 
problem was appropriate and that the scoring rubric 
was suitable. In particular, the scoring rubric enabled 
us to document student understanding, and also was 

Figure 1:  Proof task relative to corresponding parts of congruent triangles 
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sensible enough to allow us to measure variation in 
student’s responses.

Participants 
As described in previous papers (Grouws et al., 2013; 
Tarr et al., 2013), the schools in our study were high 
schools that offered both an integrated mathematics 
sequence (Course 1, Course 2, Course 3, Course 4) 
and a subject-specific sequence (Algebra 1, Geometry, 
Algebra 2, Pre-calculus); and that gave students the 
choice between these two alternatives without track-
ing them by ability.  The students in the study ages 
ranged from 15–18 years old. Our sample included 10 
high schools in six United States (US) school districts 

located in five geographically diverse 
states. Core-Plus Course 3 (Coxford et al., 
2003) was the textbook series used by all 
of the teachers teaching an integrated 
curriculum.  Teachers of subject-specif-
ic curriculum used Algebra 2 textbooks 
produced by several different publishers.  

The textbooks had similar content (Chávez, 
Papick, Ross, & Grouws, 2011; Chávez, Tarr, 
Grouws, & Soria, 2013). For example, in 
most subject-specific geometry text-
books Chapter 4 focuses on Congruent 
Triangles (Sears & Chávez, 2014). Teachers 
that used subject-specific geometry cur-
riculum acknowledged that the chapter 
on congruent triangles is used to develop 
students’ conceptions about proof (Sears 
& Chavez, 2014).  

We collected data from 1936 students from 
these 10 high schools. Of these, 1157 stu-
dents (59.8 %) used a subject-specific text-
book; 779 (40.2 %) used an integrated text-
book. The students in the study were in 
the third course for their respective cur-
riculum sequence (Course 3 and Algebra 
2, respectively). There is a slight variation 
among the subject-specific textbooks on 
their attention to proof (Sears & Chávez, 
2014; Otten, Males, & Gilbertson, 2014). 
Given our focus on the impact of content 
organization on students learning, in this 

Figure 2: Rubric for proof task relative to corresponding parts 

of congruent triangles

Table 1: Scores for Question 7, Test E

Score Frequency %

Did not 
attempt

223 11.5

0 1092 56.4

1 190 9.8

2 166 8.6

3 89 4.6

4 51 2.6

5 36 1.9

6 28 1.4

7 20 1.0

8 13 0.7

9 28 1.4

Total 1936 100.0
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paper we make no distinction between the different 
subject-specific curricula. 

Results 

Most students did not attempt the task or obtained 
no credit for the task if they did attempt it. Table 1 
shows the frequency of students who were awarded 
the different possible scores in this task. As indicated 
in Table 2, 8.1% of the students stated that segments 
TM and MB were congruent and offered a justification. 

In Table 3 we can see that, although partial credit was 
given for correct statements (without justification), 
about pairs of angles that are congruent, very few 
students received partial or full credit. Furthermore, 
few students stated that the two triangles were con-
gruent (Table 4). Only half of those who did offered 
any justification.

The vast majority of students did not conclude that 
congruent sides of congruent triangles were congru-
ent (Table 5). 

Frequency by curriculum type
The following tables (Tables 6–10) show the scores 
by curriculum type. A larger percentage of students 
using subject-specific curriculum did not attempt to 
solve the problem. Among those students using sub-
ject-specific curriculum who did attempt the problem, 
a larger percentage received no points compared to 
those using integrated curriculum that attempted the 
problem. On the other hand, comparatively fewer stu-
dents using the integrated curriculum received full 
credit for the problem. The mean score for question 7 

Score Frequency %

0 1331 68.8

1 119 6.1

2 150 7.7

3 36 1.9

4 77 4.0

Did not 
attempt

223 11.5

Total 1936 100.0

Table 3: Scores on Test E Question 7.2        

Score Frequency %

0 1503 77.6

1 110 5.7

2 100 5.2

Did not 
attempt

223 11.5

Total 1936 100.0

Table 4: Scores on Test E Question 7.3

Score Frequency %

0 1562 80.7

1 151 7.8

Did not attempt 223 11.5

Total 1936 100.0

Table 5: Scores on Test E Question 7.4

SS INT

Score Frequency % Frequency %

Did not 
attempt

139 12.0 84 10.8

0 680 58.8 412 52.9

1 116 10.0 74 9.5

2 83 7.2 83 10.7

3 39 3.4 50 6.4

4 26 2.2 25 3.2

5 20 1.7 16 2.1

6 16 1.4 12 1.5

7 11 1.0 9 1.2

8 6 .5 7 .9

9 21 1.8 7 .9

Total 1157 100.0 779 100.0

Table 6: Scores for Question 7 Test E, by curriculum type

Table 2: Scores on Test E Question 7.1 

Score Frequency %

0 1329 68.6

1 227 11.7

2 157 8.1

Did not
attempt

223 11.5

Total 1936 100.0

SS INT

Frequency Percent Frequency %

0 801 69.2 528 67.8

1 132 11.4 95 12.2

2 85 7.3 72 9.2

Did not 
attempt

139 12.0 84 10.8

Total 1157 100.0 779 100.0

Table 7: Scores on Test E Question 7.1 by curriculum type
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was significantly different in these two groups, after 
controlling for prior achievement (F = 6.355, p = 0.012). 
Nevertheless, it is important to consider these differ-
ences in the context of the full test and taking into 
account all the relevant variables (Chávez et al., 2013). 
The results in these tables are simple summaries of 
the points scored by students in one assessment item.

DISCUSSION

Our results are consistent with others in showing that 
students, regardless of curriculum type, have difficul-
ties writing proofs. There is evidence, however, that 
the organizational structure of curriculum can have 
implications on students’ opportunities to prove. In 
particular, students in subject specific curricula were 
less likely to complete the proof task or to receive no 

points than students using inte-
grated textbooks.  Most students 
were not able to obtain full credit 
on the task.  According to the re-
sults, only 1.8% of students in sub-
ject curricula, and 0.9% of students 
in integrated curricula were able to 
obtain full credit, which suggests 
that students continue to struggle 
with writing proofs.  Otten et al 
(2014) noted that, although both 
subject-specific and integrated cur-

riculum provides opportunities for students to differ-
entiate between deductive and inductive reasoning, 
students were seldom required to construct complete 
proof arguments. This can be problematic, because 
it deprives students from viewing proofs in their 
entirety and can potentially contribute to students 
experiencing difficulty in starting proofs, as well as 
conceptualizing the structure of proofs (Moore, 1994). 

Students should experience proofs more often. 
They should learn to expect that posing conjectures 
and proving statements is central to mathematics. 
Classroom observations for the COSMIC study in-
dicated that teachers using integrated curriculum 
placed a greater focus on reasoning than teachers us-
ing subject-specific curriculum, “although it was not a 
strong focus for either group of teachers” (Grouws et 
al., 2013, p. 442). Complete proofs are seldom included 
in assessments, and more often they appear as fill-
in-the-blank tasks. Emphasis on ritualistic aspects 
of proof may explain why students have difficulties 
writing proofs on their own.

CONCLUSION

Without a doubt, the results summarized here show 
that students in US high schools, regardless of the 
curriculum used in their schools, have difficulties 
writing proofs in geometry. Work done by Sharon 
Senk in the 1980s, among others, shows that this is an 
old problem. It was beyond the scope of the COSMIC 
study to conduct a fine-grained analysis of this spe-
cific topic. Nevertheless, it is clear that the evidence 
presented here points to grave deficiencies in how 
geometry is taught in schools. The case of proof is a 
particularly delicate one, because teachers attempt 
to teach proof as a topic that must be taught among 
other topics in the curriculum, rather than as a way 
to communicate mathematics. Therefore, these re-

Table 9: Scores on Test E Question 7.3, by curriculum type  

SS INT

Frequency % Frequency %

0 891 77.0 612 78.6

1 67 5.8 43 5.5

2 60 5.2 40 5.1

Did not 
attempt

139 12.0 84 10.8

Total 1157 100.0 779 100.0

SS INT

Frequency % Frequency %

0 930 80.4 632 81.1

1 88 7.6 63 8.1

Did not 
attempt

139 12.0 84 10.8

Total 1157 100.0 779 100.0

0 930 80.4 632 81.1

Table 10: Scores on Test E Question 7.4, by curriculum type

Table 8: Scores on Test E Question 7.2, by curriculum type

SS INT

Frequency Percent Frequency Percent

0 821 71.0 510 65.5

1 62 5.4 57 7.3

2 76 6.6 74 9.5

3 14 1.2 22 2.8

4 45 3.9 32 4.1

Did not attempt 139 12.0 84 10.8

Total 1157 100.0 779 100.0
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sults may be interpreted as a lack of certain skills. 
It would be more appropriate, however, to consider 
them as an indication that when proof is taught as a 
set of rules that should be applied to specific problems 
in geometry rather than as a way of communicating 
mathematics, students learn neither. Hence, curric-
ulum developers, and educators, must find ways to 
introduce experiences with proof in their materials 
and lessons, so that students develop sound habits of 
justification and proof.
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This theoretical paper suggests a perspective for under-
standing university students’ proof construction based 
on the ideas of conceptual and procedural knowledge, 
explicit and implicit learning, behavioral schemas, au-
tomaticity, working memory, consciousness, and System 
1 and System 2 cognition. In particular, we will discuss 
proving actions, such as the construction of proof frame-
works, that could be automated, thereby reducing the 
burden on working memory and enabling university 
students to devote more resources to the truly hard parts 
of proofs.

Keywords: University level, proving actions, behavioral 

schemas, System 1 and System 2 cognition, proof 

framework.

INTRODUCTION

This theoretical paper suggests a perspective for 
understanding university mathematics students’ 
proof constructions and how the ability and skill to 
construct proofs might be learned and taught. We 
are interested both in how various types of knowl-
edge (e.g., implicit, explicit, procedural, conceptual) 
are used during proof construction, and also in how 
such knowledge can be acquired. If that were better 
understood, then it might be possible to facilitate 
university students’ learning through doing, that is, 
through proof construction experiences. Although 
one can learn some things from lectures, this is al-
most certainly not the most effective, or efficient, way 
to learn proof construction. Indeed, inquiry-based 
transition-to-proof courses seem more effective than 
lecture-based courses (e.g., Smith, 2006). Here we are 
referring just to inquiry into proof construction, not 
into theorem or definition generation. These ideas 
emerged from an ongoing sequence of design exper-
iment courses meant to teach proof construction in a 
medium-sized U.S. PhD-granting university.

The Courses 
There were two kinds of courses. One kind was for 
mid-level undergraduate mathematics students and 
was similar (in purpose) to transition-to-proof cours-
es found in many U.S. university mathematics depart-
ments (Moore, 1994). In the U.S., such courses are often 
prerequisite for 3rd and 4th year courses in abstract 
algebra and real analysis. The other, somewhat un-
usual, kind of course was for beginning mathemat-
ics graduate students who felt that they needed help 
with writing proofs. The undergraduate course had 
from about 15 to about 30 students and the graduate 
course had between 4 and 10 students. Both kinds of 
course were taught from notes and devoted entire-
ly to students attempting to construct proofs and to 
receiving feedback and advice on their work. Both 
courses included a little sets, functions, real analysis, 
and algebra. The graduate course also included some 
topology. 

Psychological considerations
Much has been written in the psychological, neu-
ropsychological, and neuroscience literature about 
ideas of conceptual and procedural knowledge, ex-
plicit and implicit learning, automaticity, working 
memory, consciousness, and System 1 (S1) and System 
2 (S2) cognition (e.g., Bargh & Chartrand, 2000; 
Bargh & Morsella, 2008; Bor, 2012; Cleeremans, 1993; 
Hassin, Bargh, Engell, & McCulloch, 2009; Stanovich 
& West, 2000). In trying to relate these ideas to proof 
construction, we have discussed procedural knowl-
edge, situation-action links, and behavioral schemas 
(Selden, McKee, & Selden, 2010; Selden & Selden, 2011). 
However, more remains to be done in order to weave 
these ideas into a coherent perspective. In doing this, 
two key ideas are working memory and the roles that 
S1 and S2 cognition can play in proof construction. 
Working memory includes the central executive and 
makes cognition possible. It is related to learning and 
attention and has a limited capacity which varies 
across individuals. When working memory capacity 
is exceeded, errors and oversights can occur. The idea 
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behind S1 and S2 cognition is that there are two kinds 
of cognition that operate in parallel. S1 cognition is 
fast, unconscious, automatic, effortless, evolution-
arily ancient, and places little burden on working 
memory. In contrast, S2 cognition is slow, conscious, 
effortful, evolutionarily recent, and puts considerable 
call on working memory (Stanovich & West, 2000). Of 
the several kinds of consciousness, we are referring to 
phenomenal consciousness—approximately, report-
able experience. We turn now to the first of the two 
components of the proposed perspective.

THE PERSPECTIVE: MATHEMATICAL 
COMPONTENT

The genre of proofs
There are a number of characteristics that appear to 
commonly occur in published proofs. They tend to 
reduce unnecessary distractions to validation (read-
ing for correctness) and raise the probability that any 
errors will be found, thereby increasing the reliability 
of the corresponding theorems. Proofs are not reports 
of the proving process, contain little redundancy, and 
contain minimal explanations of inferences. They con-
tain only very short overviews or advance organizers 
and do not quote entire definitions that are available 
outside the proof. Symbols are generally introduced 
in one-to-one correspondence with objects. Finally, 
proofs are “logically concrete” in the sense that they 
avoid quantifiers, especially universal quantifiers, 
and their validity is independent of time, place, and 
author. (Selden & Selden, 2013).

Structure in proofs
A proof can be divided into a formal-rhetorical part 
and a problem-centered part. The formal-rhetorical 
part is the part of a proof that depends only on un-
packing and using the logical structure of the state-
ment of the theorem, associated definitions, and ear-
lier results. In general, this part does not depend on 
a deep understanding of, or intuition about, the con-
cepts involved or on genuine problem solving in the 
sense of Schoenfeld (1985, p. 74). Instead it depends on 
a kind of “technical skill”. We call the remaining part 
of a proof the problem-centered part. It is the part that 
does depend on genuine problem solving, intuition, 
and a deeper understanding of the concepts involved 
(Selden & Selden, 2009, 2011).

A major feature of the formal-rhetorical part is what 
we have called a proof framework, of which there are 

several kinds, and in most cases, both a first-level 
and a second-level framework. For example, given 
a theorem of the form “For all real numbers x, if P(x) 
then Q(x)”, a proof framework would be “Let x be a 
real number. Suppose P(x). … Therefore Q(x).” A sec-
ond-level framework would be obtained by “unpack-
ing” the meaning of Q(x) and putting the second-level 
framework for that between the beginning and end 
of the first-level framework. Thus, the proof would 

“grow” from both ends toward the middle, instead of 
being written from the top down. In case there are sub-
proofs, these can be handled in a similar way. A more 
detailed explanation with examples can be found in 
(Selden, Benkhalti, & Selden, 2014). 

THE PERSPECTIVE: PSYCHOLOGICAL 
COMPONTENT

In this second, psychological component of the per-
spective, we view the proof construction process as a 
sequence of actions which can be physical (e.g., writ-
ing a line of the proof or drawing a sketch) or mental 
(e.g., changing one’s focus from the hypothesis to the 
conclusion or trying to recall a relevant theorem). The 
sequence of all of the actions that eventually lead to 
a proof is usually considerably longer than the final 
written proof itself. This fine-grained approach ap-
pears to facilitate noticing which actions should be 
taken to write various parts of a proof correctly and 
how to encourage such actions on the part of students. 

Situations and actions
We mean by an (inner) situation in proving, a portion 
of a partly completed proof construction, perhaps 
including an interpretation, drawn from long-term 
memory, that can suggest a further action. The in-
terpretation is likely to depend on recognition of the 
situation, which is easier than recall, perhaps because 
fewer brain areas are involved (Cabeza, et al., 1997). An 
inner situation is unobservable. However, a teacher 
can often infer an inner situation from the corre-
sponding outer situation, that is, from the, usually 
written, portion of a student’s partly completed proof.

Here we are using the term, action, broadly, as a re-
sponse to a situation. We include not only physical 
actions (e.g., writing a line of a proof ), but also men-
tal actions. The latter can include trying to recall 
something or bringing up a feeling, such as a feeling 
of caution or of self-efficacy (Selden & Selden, 2014). 
We also include “meta-actions” meant to alter one’s 
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own thinking, such as focusing on another part of a 
developing proof construction.

Situation-action links and behavioral schemas
If, in several proof constructions in the past, similar 
situations have corresponded to similar actions, then, 
just as in traditional associative learning, a link may 
be learned between them, so that another similar situ-
ation yields the corresponding action in future proof 
constructions without the earlier need for deliberate 
cognition. Using situation-action links strengthens 
them and after sufficient practice/experience, they 
can become overlearned, and thus, automated. A 
person executing an automated action tends to (1) 
be unaware of any needed mental processes, (2) be 
unaware of intentionally initiating the action, (3) put 
little load on working memory, and (4) find it difficult 
to stop or alter the action. We call automated situa-
tion-action links behavioral schemas. Morsella (2009) 
has pointed out

Regarding skill learning and automaticity, it is 
known that the neural correlates of novel ac-
tions are distinct from those of actions that are 
overlearned, such as driving or tying one’s shoes. 
Regions [of the brain] primarily responsible for 
the control of movements during the early stag-
es of skill acquisition are different from the re-
gions that are activated by overlearned actions. 
In essence, when an action becomes automatized, 
there is a ‘gradual shift from cortical to subcorti-
cal involvement …’ (p. 13).

Because cognition often involves inner speech, 
which in turn is connected with the physical control 
of speech production, the above information on the 
brain regions involved in physical skill acquisition 
is at least a hint that forming behavioral schemas not 
only converts S2 cognition into S1 cognition, but also 
suggests that different parts of the brain are involved 
in access and retrieval. Something very similar to the 
above ideas on automaticity in proof construction has 
been investigated by social psychologists examining 
everyday life (e.g., Bargh & Chartrand, 2000). 

We see behavioral schemas as partly conceptual 
knowledge (recognizing the situation) and partly 
procedural knowledge (the action), and as related to 
Mason and Spence’s (1999) idea of “knowing-to-act in 
the moment”. We suggest that, in the use of a situa-
tion-action link or a behavioral schema, almost always 

both the situation and the action (or its result) will be 
at least partly conscious.

Here is an example of one such possible behavioral 
schema. One might be starting to prove a statement 
having a conclusion of the form p or q. This would be 
the situation at the beginning of the proof construc-
tion. If one had encountered this situation a number 
of times before, one might readily take an appropri-
ate action, namely, in the written proof assume not 
p and prove q or vice versa. While this action can be 
warranted by logic (if not p then q, is equivalent to, 
p or q), there would no longer be a need to bring the 
warrant to mind.

It is our contention that large parts of proof construc-
tion skill can be automated, that is, that one can facil-
itate mid-level university students in turning parts 
of S2 cognition into S1 cognition, and that doing so 
would make more resources, such as working mem-
ory, available for the truly hard problems that need 
to be solved to complete many proofs.

The idea that much of the deductive reasoning that 
occurs during proof construction could become 
automated may be counterintuitive because many 
psychologists, and (given the terminology) probably 
many mathematicians, assume that deductive reason-
ing is largely S2.

Sequences of behavioral schemas
Behavioral schemas were once actions arising from 
situations through warrants, but that no longer need 
to be brought to mind. So one might reasonably ask, 
can several behavioral schemas be “chained togeth-
er” outside of consciousness? For most persons, this 
seems not to be possible. If it were so, one would ex-
pect that a person familiar with solving linear equa-
tions could start with 3x + 5 = 14, and without bringing 
anything else to mind, immediately say x = 3. We expect 
that very few (or no) people can do this, that is, con-
sciousness is required.

Implicit learning of behavioral schemas
It appears that the entire process of learning a behav-
ioral schema, as described above, can be implicit. That 
is, a person can acquire a behavioral schema without 
being aware that this is happening. Indeed, such un-
intentional, or implicit, learning happens frequently 
and has been studied by psychologists and neurosci-
entists (e.g., Cleeremans, 1993). In the case of proof 
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construction, we suggest that with the experience 
of proving a considerable number of theorems in 
which similar situations occur, an individual might 
implicitly acquire a number of relevant behavioral 
schemas, and as a result, simply not have to think 
quite so deeply as before about certain portions of 
the proving process and might, as a consequence of 
having more working memory available, take fewer 

“wrong turns”.

Something similar has been described in the psy-
chology literature regarding the automated actions 
of everyday life. For example, an experienced driv-
er can reliably stop at a traffic light while carrying 
on a conversation. But not all automated actions are 
positive. For example, a person can develop a preju-
dice without being aware of the acquisition process 
and can even be unaware of its triggering situations. 
This suggests that we should consider the possibility 
of mathematics students developing similarly unin-
tended negative situation-action links, and behavioral 
schemas, implicitly during mathematics learning, and 
in particular, during proof construction.

Detrimental behavioral schemas
We begin with a simple and perhaps very familiar 
algebraic error. Many teachers can recall having a 
student write √(a2 + b2) = a + b, giving a counterexam-
ple to the student, and then having the student make 
the same error somewhat later. Rather than being a 
misconception (i.e., believing something that is false), 
this may well be the result of an implicitly learned det-
rimental behavioral schema. If so, the student would 
not be thinking very deeply about this calculation 
when writing it. Furthermore, having previously un-
derstood the counterexample would also have little 
effect in the moment. It seems that to weaken/remove 
this particular detrimental schema, the triggering 
situation of the form √(a2 + b2) should occur a number 
of times when the student can be prevented from au-
tomatically writing “= a + b” in response. However, this 
might require working with the student individually 
on a number of examples, mixed with nonexamples.

For another example of an apparently implicitly 
learned detrimental behavioral schema, we turn to 
Sofia, a first-year graduate student in one of the above 
mentioned graduate courses. Sofia was a diligent stu-
dent, but as the course progressed what we came to 
call an “unreflective guess” schema emerged (Selden, 
McKee, & Selden, 2010, pp. 211–212). After completing 

just the formal-rhetorical part of a proof (essentially 
a proof framework) and realizing there was more to 
do, Sofia often offered a suggestion that we could not 
see as being remotely helpful. At first we thought she 
might be panicking, but on reviewing the videos there 
was no evidence of that. A first unreflective guess 
tended to lead to another, and another, and after a 
while, the proof would not be completed.

In tutoring sessions, instead of trying to understand, 
and work with, Sofia’s unreflective guesses, we tried 
to prevent them. At what appeared to be the appropri-
ate time, we offered an alternative suggestion, such as 
looking up a definition or reviewing the notes. Such 
positive suggestions eventually stopped the unreflec-
tive guesses, and Sofia was observed to have consider-
ably improved in her proving ability by the end of the 
course (Selden, McKee, & Selden, 2010, p. 212).

USING THIS PERSPECTIVE

Decomposing the proving process
In order to facilitate students’ automation of certain 
parts of the proving process by developing helpful 
behavioral schemas, we have been decomposing the 
reasoning parts of the proving process, and focus-
ing on those that occur frequently. Such decomposi-
tions of parts of the proving process can be mainly 
mathematical in nature or mainly psychological in 
nature. We find the psychological decompositions 
to be more surprising because they include things 
one might expect university students to be able to do 
without instruction. Some more mathematical possi-
bilities are: (1) writing the first- and second-level proof 
frameworks which themselves can have parts (Selden, 
Benkhalti, & Selden, 2014; Selden & Selden, 1995); (2) 
noting when a conclusion is negatively phrased (e.g., 
a set is empty or a number is irrational) and early in 
the proving process attempting a proof by contradic-
tion; and (3) noticing when the conclusion asserts the 
equivalence of two statements, “knowing” there are 
two implications to prove, and actually originating 
the two subproofs. 

Here are some decompositions that may be more psy-
chological in nature. One can change one’s focus, for 
example by deciding to unpack the conclusion of a the-
orem, by finding or recalling a relevant definition, or 
by applying a definition. Such actions are sometimes 
part of constructing a second-level proof framework 
(Selden, Benkhalti, & Selden, 2014; Selden & Selden, 
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1995). Also developing a feeling of knowing or of 
self-efficacy can have a major effect (Selden & Selden, 
2014). A student may develop and have for a time a 
feeling of not knowing what to do next, that is, the 
student might be at an impasse. Upon reaching such 
an impasse, the student might decide to do something 
else for a while, and coming back later, might hope to 
get a new idea. Many mathematicians have benefitted 
from this kind of “incubation”. Nonemotional cogni-
tive feelings (Selden, McKee, & Selden, 2010), such as 
those mentioned above can play a considerable role 
in proof construction, but we do not have space to 
elaborate on them here.

Proving activities that we have tried to help students 
automate include converting formal mathematical 
definitions into operable interpretations, which are 
similar to Bills and Tall’s (1998) idea of operable defini-
tions. For example, given f: X →Y and A ⊆ Y, we define 
f -1(A) = { x ∊ X | f(x) ∊ A}. An operable interpretation 
would say, “If you have b ∊ f -1(A), then you can write 
f(b) ∊ A and vice versa”. One might think that this sort 
of translation into an operable form would be easy, but 
we have found that for some students it is not, even 
when the definition can be consulted. We have also 
noted instances in which students have had availa-
ble both a definition and an operable interpretation, 
but still did not act appropriately. Thus, actually im-
plementing the action is separate from knowing that 
one can implement it. We are not sure whether, in 
implementing such actions, automaticity is difficult 
to achieve, but not acting appropriately can clearly 
prevent a student from proving a theorem.

Seeing similarities, searching, and exploring
How does one recognize situations as similar? 
Different people see situations as similar depending 
both upon their past experiences and upon what they 
choose to, or happen to, focus on. While similarities 
can sometimes be extracted implicitly, teachers may 
occasionally need to direct students’ attention to rel-
evant proving similarities. On the other hand, such 
direction should probably be as little as possible be-
cause the ability to autonomously see similarities can 
be learned.

For example, it would be good to have general sugges-
tions for helping students to “see”, without being told, 
that the situations of a set being empty (i.e., having 
no elements), of a number being irrational (i.e., not 
rational), and of the primes being infinite (i.e., not 

finite) are similar. That is, the three situations—empty, 
irrational, and infinite—may not seem similar until 
one rephrases them to expose the existence of a neg-
atively worded definition. Unless students rephrase 
these situations, it seems unlikely that they would 
see this similarity and link these situations (when 
they occur as conclusions of theorems to prove) to the 
action of beginning a proof by contradiction. 

In addition to automating small portions of the prov-
ing process, we would also like to enhance students’ 
searching skills (i.e., their tendency to look for helpful 
previously proved results) and to enhance students’ 
tendency to “explore” possibilities when they don’t 
know what to do next. In a previous paper (Selden & 
Selden, 2014, p. 250), we discussed the kind of explor-
ing entailed in proving the rather difficult (for stu-
dents) Theorem: If S is a commutative semigroup with 
no proper ideals, then S is a group. Well before such 
a theorem appears in course notes, one can provide 
students with advice/experience showing the value 
of exploring what is not obviously useful (e.g., start-
ing with abba = e to show a semigroup with identity e, 
where for all s ∊ S, s2 = e, is commutative, as discussed 
in Selden, Benkhalti, and Selden, 2014).

Understanding students’ proof attempts
Here is a sample student’s incorrect proof attempt of 
the Theorem: Let S be a semigroup with identity e. If, for 
all s in S, ss = e, then S is commutative. The student’s ac-
companying scratchwork consisted of the definitions 
of identity and commutative. Here, the line numbers 
are for reference only.

1  Let S be a semigroup with an identity element, e.

2  Let s ∊ S such that ss = e.

3  Because e is an identity element, es = se = s.

4  Now, s = se = s(ss).

5  Since S is a semigroup, (ss)s = es = s.

6  Thus es = se.

7  Therefore, S is commutative. QED.

Line 2 only hypothesizes a single s and should have 
been, “Suppose for all s ∊ S, ss = e.” With this change, 
Lines 1, 2, and 7 are the correct first-level framework. 
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There is no second-level framework between Lines 2 
and 7. This was a beneficial action not taken and should 
have been: “Let a ∊ S and b ∊ S.  … Then ab = ba.” between 
Lines 2 and 7. Line 3 violates the genre of proof by in-
cluding a definition easily available outside the proof. 
Lines 3, 4, 5, and 6 are not wrong, but do not move the 
proof forward. Writing these lines may have been 
detrimental actions that subconsciously primed the 
student’s feeling that something useful had been ac-
complished, and thus, may have brought the proving 
process to a premature close.

TEACHING AND RESEARCH CONSIDERATIONS

The above considerations can lead to many possi-
ble teaching interventions. This then brings up the 
question of priorities. Which proving actions, of the 
kinds discussed above, are most useful for mid-level 
university mathematics students to automate, when 
they are learning how to construct proofs? Since such 
students are often asked to prove relatively easy the-
orems—ones that follow directly from definitions re-
cently provided—it would seem that noting the kinds 
of structures that occur most often might be a place 
to start. Indeed, since every proof can be constructed 
using a proof framework, we consider constructing 
proof frameworks as a reasonable place to start. 

Also, helping students interpret formal mathematical 
definitions so that these become operable might be 
another place to start. This would be helpful because 
one often needs to convert a definition into an opera-
ble form in order to use it to construct a second-level 
framework. However, eventually students should 
learn to make such interpretations themselves. 

Finally, we believe this particular perspective on 
proving, using situation-action links and behavioral 
schemas, together with information from psychology 
and neuroscience, is mostly new to the field and is 
likely to lead to additional insights.
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The goal of this study is to characterize the justifications 
and explanations offered in 7th grade Israeli textbooks 
for mathematical statements. The justifications and 
explanations offered in eight 7th grade Israeli textbooks 
for ten selected mathematical statements were analysed, 
using the modes of reasoning framework (Stacey & 
Vincent, 2009). The analysis revealed that the textbooks 
commonly used several modes of reasoning in explana-
tions for each statement. Nearly every justification was 
deductive or empirical, yet different modes of reasoning 
were used for geometric and for algebraic statements. It 
was also found that empirical justifications were more 
prevalent in textbooks of limited scope, whereas deduc-
tive justifications were typically offered in textbooks of 
regular/ extended scope.

KEYWORDS: Modes of reasoning, textbook analysis, 

justifications, explanations, empirical and deductive 

justifications.

INTRODUCTION

Proving, justifying, and explaining are important 
components of doing and learning mathematics. 
However, the extensive research on students’ concep-
tions of proof and ways of justifying mathematical 
claims reveals students’ difficulties in understand-
ing the need for justification and in distinguishing 
between deductive and other types of justification 
(e.g., Harel & Sowder, 1998). One factor that consider-
ably influences classroom instruction and students’ 
opportunities to learn mathematics is the textbook 
used in class (Eisenmann & Even, 2011; Haggarty & 
Pepin, 2002). 

Studies of justification and proof in mathematics text-
books have examined various aspects, such as reason-
ing and proving activities (e.g., Davis, Smith, Roy, & 
Bilgic, 2014; Fujita & Jones, 2014), the nature of proof 

(e.g., Miyakawa, 2012), and the opportunities provided 
in the textbook for students to learn reasoning and 
proof (e.g., Dolev & Even, 2012; Stacey & Vincent, 2009). 
To better understand students’ opportunities to devel-
op the habit of justifying, and to learn how to justify 
in mathematics, this study examines the justifications 
and explanations to key mathematical statements of-
fered in mathematics textbooks, specifically 7th grade 
Israeli textbooks.

BACKGROUND

Justifications of mathematical statements vary in their 
nature, from informal and intuitive explanations to 
rigorous deductive proofs (e.g., Blum & Kirsch, 1991; 
Harel & Sowder, 2007; Sierpinska, 1994). Research 
on the issue of justifications in school mathematics 
attends to a wide range of aspects. Some researchers 
focus on the formality of justifications (Blum & Kirsch, 
1991); others consider the community addressed 
(Sierpinska, 1994); and yet others focus on the proof 
scheme of justifications (Harel & Sowder, 2007). 

Studies of the opportunities for students to read jus-
tifications and explanations in textbooks show that 
textbooks justify mathematical statements in several 
ways, and that valid proofs are rare. Building on Harel 
and Sowder’s (2007) framework, Stacey and Vincent 
(2009) developed the modes of reasoning framework 
and used it to analyse Australian textbook explana-
tions. Stacey and Vincent identified seven modes of 
reasoning in textbook explanations:

 ― Appeal to authority: null explanation or reliance 
on an external source of authority.

 ― Qualitative analogy: reliance on a surface simi-
larity to non-mathematical situations.

mailto:boaz.silverman%40weizmann.ac.il?subject=
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 ― Experimental demonstration: identifying a pat-
tern after checking selected examples.

 ― Concordance of a rule with a model: comparing 
specific results of a rule and a model.

 ― Deduction using a model: a model that serves to 
illustrate a mathematical structure.

 ― Deduction using a specific case: an inference pro-
cess conducted using a special case.

 ― Deduction using a general case: an inference pro-
cess conducted using a general case.

These seven modes can be generally divided into three 
categories: External sources (appeal to authority and 
qualitative analogy); Empirical justifications (experi-
mental demonstration and concordance of a rule with a 
model); and Deductive justifications (deduction using 
a model, a specific case, or a general case). Stacey and 
Vincent found that justifications offered in the ana-
lysed textbooks used several modes of reasoning, yet 
students were given no indication regarding which 
can be classified as deductive proofs and which can 
only serve as supportive empirical evidence at best. 

Drawing on Stacey and Vincent’s (2009) conceptual 
framework, Dolev (2011) analysed the modes of rea-
soning in justifications offered for three mathematical 
claims in six 7th grade Israeli textbooks (experimen-
tal version). She found that all the textbooks offered 
justifications for the sampled claims, at times using 
several modes of reasoning. Additionally, Dolev 
found a difference between the modes of reasoning 
used in algebra and in geometry – geometric claims 
were often justified by deduction using a general case, 
whereas algebraic claims were rarely justified that 
way. A similar pattern was noted in other studies – an 
abundance of  proofs in geometry (e.g., Fujita & Jones, 
2014; Hanna & de Bruyn, 1999), and a small number of 
formal proofs in algebra (e.g., Davis et al., 2014; Hanna 
& de Bruyn, 1999).

This study builds on these studies, and expands their 
scope. The research objective is to examine the justifi-
cations and explanations for key mathematical state-
ments offered in mathematics textbooks, centring on 
7th grade Israeli textbooks (approved version). We 
examine three aspects: (1) the modes of reasoning 
offered, (2) the nature of justifications of algebraic 

vs. geometric statements, and (3) the nature of justi-
fications in textbooks of limited vs. regular/extended 
scope, designed for students with different achieve-
ment levels. 

METHODOLOGY

Ten key mathematical statements were selected for 
analysis from the Israeli 7th grade mathematics na-
tional curriculum (Ministry of Education, 2009), 
across several curricular topics, similar to those 
in Stacey and Vincent’s (2009) study on Australian 
textbooks. The selection criteria for each analysed 
statement were: (1) it contains a mathematical idea 
or concept that requires justification in the nation-
al mathematics curriculum, and (2) it is considered 
to be an important result in the curriculum and in 
mathematics education literature. The statements 
are listed in the following:

Algebra:
 ― The distributive property:  a . (b + c) = ab + ac for 

every three numbers a, b, c.

 ― The product of two negative numbers is a positive 
number.

 ― Division by zero is undefined.

 ― Performing a basic operation on both sides of an 
equation maintains their balance.

 ― Two algebraic expressions are equivalent if for 
arbitrary values of the symbols in them the equal-
ity holds.

Geometry:
 ― Vertically opposite angles are congruent.

 ― The area formula for a trapezium with bases a, b 
and altitude h is (a + b) . h/2.

 ― The area formula for a circle with radius r is πr2.

 ― Angle sum of a triangle is 180o.

 ― The corresponding angles between parallel lines 
are equal.

Analysis included all eight approved 7th grade text-
books for Hebrew speakers and their accompanying 
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teacher guides and supplementary materials. Six 
textbooks are of regular/extended scope, designed 
for the general student population (labelled A-F); two 
are of limited scope, designed for students with low 
achievements (labelled G-H). Data analysis included 
the textbook chapters introducing the statements – a 
total of 677 textbook pages; 57–110 pages (9–15%) from 
each textbook. 

We analysed the explanations and justifications in the 
explanatory texts and those embedded in tasks and 
problems in the related task pools. Over 70% of the 
selected sections in the textbooks were analysed and 
discussed by 2–6 members of our research team until 
a consensus was achieved, and the remaining sections 
were analysed by the first author alone. First we iden-
tified distinct justifications of the statements in each 
section of the textbooks (i.e., explanatory texts and 
task pools). We then classified each justification for 
its mode of reasoning (following Stacey and Vincent, 
2009) and compared frequencies relevant to the ex-
amined aspects: (1) the modes of reasoning offered; 
(2) algebra vs. geometry; and (3) limited vs. regular/
extended scope.

FINDINGS

A total of 200 distinct justifications of statements were 
found in the textbooks. Comparison of the justifica-
tions by textbook section revealed that justifications 

were typically included in the explanatory texts, and 
seldom in tasks intended for student individual or 
small-group work, as shown in Table 1. This pattern 
was found in all textbooks (except textbook A) – re-
gardless of the target student population, and in all 
statements – both in geometry and in algebra. 

The modes of reasoning offered
Six of the seven modes of reasoning included in Stacey 
and Vincent’s framework (2009) were identified in the 
Israeli textbook justifications, all but concordance of a 
rule with a model. Figures 1–6 exemplify justifications 
representing each of the identified modes of reason-
ing (translated from Hebrew).

Figure 1 illustrates a justification using an appeal to 
authority – a null explanation. The textbook merely 
presented a reminder for the area formula of a disc.

Figure 2 illustrates a justification using a qualitative 
analogy. The textbook included – among justifications 
using other modes of reasoning for the law of signs 

– an analogy that relies on a superficial similarity to 
the proverb “the enemy of my enemy is my friend”. 
This justification does not reflect the mathematical 
structure of multiplication.

Figure 3 illustrates a justification using an experimen-
tal demonstration. The students were asked to tear 
paper triangles and rearrange the three angles, in 
order to convince themselves that the angle sum in a 
triangle is a straight angle.

Figure 1: A justification using an appeal to authority

Textbook

Section A B C D E F G H Total

Explanatory texts 16 22 26 17 25 28 20 23 177

Task pools 14 3 0 5 0 0 1 0 23

Total 30 25 26 22 25 28 21 23 200

Table 1: Number of distinct justifications by textbook section for each textbook

Figure 2: A justification using a qualitative analogy
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Figure 4 illustrates a justification using a deduction 
using a model. The textbook relied on a structural sim-
ilarity between the scales (the model) and balancing 
equations (the mathematics involved) to justify the 
statement.

Figure 5 illustrates a justification using a deduction 
using a special case. The textbook justified the area 
formula of a trapezium by splitting the area of a spe-
cific trapezium and forming a chain of reasoning, in 
which each step is logically deduced from previous 
steps. The given lengths are intended as a generic case 
(i.e., the specific values can be replaced without loss 
of generality).

Figure 6 illustrates a justification using a deduction 
using a general case. The textbook justified the area 
formula of a trapezium by splitting the area of a gen-
eral trapezium and forming a chain of reasoning, in 
which each step is logically deduced from previous 
steps. Pronumerals are used to note the lengths of the 
bases and of the altitude in the trapezium.

The textbooks provided justifications for all analysed 
statements (with one exception in Textbook E), com-
monly using several modes of reasoning in justifica-
tions for each statement, as shown in Table 2. Most of 
the justifications were of empirical (in blue) or deduc-
tive (in green, dark green, and olive green) modes, and 
only three instances of external sources (in red and 
dark red) were found. As Table 2 depicts, textbooks 
often justified a statement by using a certain mode of 
reasoning multiple times.

Algebra vs. geometry
Analysis of the modes of reasoning in the explanations 
offered in the textbooks revealed that different modes 
of reasoning were used for statements in algebra and 
in geometry. As Table 2 shows, algebraic statements 
(five top rows) were typically justified by deductive 
modes of reasoning, whereas geometric statements 
(five bottom rows) were usually justified by both 
deductive and empirical modes of reasoning. This 
analysis further shows that deduction using a gener-
al case appeared more in justifications of geometric 

Figure 3: A justification using an experimental demonstration

Figure 4: A justification using a deduction using a model
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statements than in justifications of algebraic state-
ments. Figure 7 presents the frequencies of modes of 
reasoning in textbook explanations in each textbook 
by content topic – algebra and geometry. 

Limited scope vs. regular/extended Scope
Comparison of the explanations offered in textbooks 
of limited scope and of regular/extended scope was 

conducted on seven of the ten statements due to the 
textbooks’ structure, a total of 136 distinct justifica-
tions. Figure 8 presents the distribution of the modes 
of reasoning in textbook explanations for these seven 
statements. A chi-square test of independence was 
used to test the association between textbook scope 
and empirical justifications. Textbooks of limited 
scope offered significantly more empirical justifi-

Figure 5: A justification using a deduction using a specific case

Figure 6: A justification using a deduction using a general case 

Textbook

Statement A B C D E F G H

Distributive law m,m e,m m,s m,m ,s e,m m,m,s,g e,m m,s

Multiplication of negative 
integers

q,m,m, 
m,s,g

s,s s,g s,g s,g g a,e g

Division by zero m,s,s s s,g s,g s,g s,g s s,g

Balancing equations e,m s e,m,s s e,m,g m,s e m,s

Equivalent expressions e,m,m,s e,m,m,s e,e,m,m e,s e,m,m,m,s e,s e,m,m,s e,e,m,m

Opposite angles e,g e,g s,g g s,g e,g e,s s,g

Area of a trapezium s,s,s,g s,s, g,g,g e,s,s, s,g e,e,e, s,s e,e,e,s e,e,s,g e,e,e,g e,e,e, s

Area of a disc g g g g a e,g g g

Angle sum of a triangle e,g,g e,e,e, g,g e,e,g e,g,g e,e,g
e,e,e,g, 
g,g,g

e,e,g e,e,e

Corresponding angles e,s,g e,g e,e e,g e e e e,e

Legend: a= appeal to authority; q= qualitative analogy; e= experimental demonstration;        m= deduction using a mod-
el; s= deduction using a specific case; g= deduction using a general case.

Table 2: Distribution of modes of reasoning in textbook explanations (n=200)
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cations than textbooks of regular/extended scope 
– roughly twice as much, χ12 = 6.49 (p = 0.01). An addi-

tional chi-square test was used to test the association 
between textbook scope and deductive justifications. 
Textbooks of regular/extended scope offered signifi-
cantly more deductive justifications than textbooks of 
limited scope – roughly twice as much, χ12 = 7.16 (p < 0.01).

DISCUSSION

The findings reveal that Israeli 7th grade mathematics 
textbooks provide justifications for all the analysed 
key statements (but one statement in one textbook), 
commonly using several modes of reasoning in jus-
tifications for each statement. The inclusion of mul-
tiple modes of reasoning in textbooks might indicate 
an attentiveness of the textbook authors to the com-
plexity of developing mathematical understanding, as 
the richness and diversity of textbook justifications 
might provide opportunities for students with differ-
ent abilities, strengths, and backgrounds to learn and 
understand mathematics. Our results are in line with 
Stacey and Vincent’s (2009) results on similar topics 

in Australian textbooks and with Dolev’s (2011) results 
in Israeli textbooks (experimental version).

Our study shows that while most of the justifications 
for the analysed mathematical statements in 7th grade 
Israeli textbooks were included in the explanatory 
texts, some were embedded in the task pools intended 
for student individual or small-group work. However, 
our findings show that inclusion of the latter type 
of justifications in our analysis did not change the 
emerging patterns.

We found that 197 out of the 200 justifications ana-
lysed in the Israeli textbooks were deductive or em-
pirical, implying that the textbooks typically explain 
each statement rather than present rules without rea-
son. This finding does not comply with the findings 
reported in Stacey and Vincent’s (2009) study, where 
17% of the explanations for similar topics were neither 
deductive nor empirical.

Despite their emphasis on mathematical reasoning, 
our analysis shows that Israeli textbooks generally 

Figure 7: Frequencies of modes of reasoning by textbook and topic: algebra / geometry

Figure 8: Frequency of modes of reasoning by textbook
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give no indication regarding which justification can 
be considered a mathematically valid deductive proof 
and which serves only as a didactical tool to assist 
students’ learning. 

Comparison of the justifications for geometric state-
ments and for algebraic statements in the Israeli 
textbooks showed that the textbooks typically use 
different modes of reasoning: deductive for algebraic 
statements, and both deductive and empirical for ge-
ometric statements. This finding is surprising at first 
glance due to the historic bias toward geometry as a 
subject suitable for teaching proof. However, careful 
analysis shows that the mode of reasoning closest to 
formal proof – deduction using a general case – ap-
peared more in justifications of geometry statements 
than in justifications of algebra statements. Similar 
results were reported in Dolev (2011). 

This study also shows that empirical justifications 
were more prevalent in textbooks of limited scope, 
whereas deductive justifications were predominant 
in textbooks of regular/extended scope. This pattern 
implies that student with different achievement levels 
are exposed to different types of justifications, and 
specifically that students with low achievements have 
fewer opportunities to deal with higher-order think-
ing and reasoning. These differences may have the po-
tential to considerably limit the opportunities of stu-
dents with low achievements to learn how to justify in 
mathematics, because teachers often follow teaching 
sequences suggested by textbooks (Eisenmann & Even, 
2011; Haggarty & Pepin, 2002). 

Our study focused on 7th grade textbooks. As 
Thompson (2014) notes, the similarities and differ-
ences we identified in this particular grade level – 
between textbook sections, between target student 
populations, and between curricular topics – might 
change over a textbook series. Additional research 
is needed to characterize the modes of reasoning in 
textbooks intended for higher grades.
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Research into students’ understanding of proof has gen-
erally considered few of the factors that can mediate the 
relation between students’ argument constructions or 
their evaluations of given arguments and conclusions 
about students’ understanding of proof. This raises con-
cern about the validity of research findings and creates 
difficulties in comparing findings from different studies. 
I summarize some of these factors and explore the role 
played by another one: the mode of representation used 
in students’ argument constructions. In particular, I re-
port and discuss findings from a classroom-based design 
experiment suggesting that the use of an oral mode of 
representation may be more likely, compared to a writ-
ten mode, to support the construction of an argument 
that approximates or meets the standard of proof. 

Keywords: Proof, argument construction, oral 

representation, written representation.

INTRODUCTION

An assumption (often tacit) underpinning the find-
ings of many studies on students’ understanding of 
proof is that students’ argument constructions or stu-
dents’ evaluations of given (researcher-generated) 
arguments are indicative of their understanding of 
proof.  While this is a sensible assumption to make, 
there exist some factors, often uncontrolled for in rel-
evant studies, that may mediate the relation between 
students’ argument constructions or evaluations and 
researchers’ conclusions about students’ understand-
ing of proof based on that work.  For example, there is 
evidence to suggest the following: it is easier for stu-
dents to evaluate given arguments than it is for them 
to construct their own arguments (Reiss, Hellmich, & 
Reiss, 2002); it is easier for students to identify invalid 
arguments as invalid than it is for them to identify val-
id arguments as valid (ibid); students’ constructions 
can be poor indicators of their understanding of proof, 

as students can be well aware of limitations of their 
non-proof constructions (Stylianides & Stylianides, 
2009); and students can evaluate given arguments in 
different ways based on different perspectives, such 
as what would satisfy them personally or what would 
satisfy their teachers (Healy & Hoyles, 2000).  

Studies in this area considered at most one or two of 
these factors that may mediate the relation between 
students’ argument constructions or evaluations and 
conclusions about students’ understanding of proof. 
Thus a concern is raised about validity of research 
findings regarding students’ understanding of proof. 
Take, for example, a study that draws conclusions 
about students’ understanding of proof based on 
students’ argument constructions in response to a 
number of proving tasks.  This study is likely to report 
a poorer picture of students’ understanding of proof 
than another study that considered also students’ eval-
uations of their own constructions, for relevant re-
search (Stylianides & Stylianides, 2009) suggests some 
students are fully aware of the reasons for which their 
non-proof constructions are not proofs.  In addition to 
the issue of validity of research findings, there is also 
the difficulty in comparing findings from different 
studies; this creates in turn an obstacle to the develop-
ment of a cumulative and coherent body of research 
knowledge in this area. 

In this paper, I explore another factor that is worth 
attention by future research in this area.  The factor 
relates to the mode of representation (Stylianides, 2007) 
used in students’ argument constructions, that this, 
the forms of expression (written, oral, pictorial, etc.) 
with which an argument is communicated (ibid).  I 
focus on two main modes of representation – writ-
ten and oral – and I address the following research 
question: How does the mathematical sophistication 
of a student’s arguments, for the same claim, compare 
when the bulk of each argument is communicated 

mailto:as899@cam.ac.uk
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with a different mode of representation – written 
versus oral?1 

There is some evidence to suggest that the verbal 
mode of representation may be associated with argu-
ments of higher level of mathematical sophistication 
than the written mode (Schoenfeld, 1985). Schoenfeld 
described an episode where two students produced 
a lucid verbal argument, essentially a proof, for a 
geometrical construction problem, but then the stu-
dents put down their ideas in writing by producing a 
contorted argument following the strictly prescribed 

‘two-column’ presentational form (statement; reason).  
If further evidence was found that oral modes of rep-
resentation were generally associated with mathe-
matical arguments of higher level of mathematical 
sophistication than written modes, an important 
methodological implication would follow: An inter-
view study that examined orally students’ argument 
constructions would likely report a better picture 
of students’ understanding of proof than a survey 
study that examined in writing the argument con-
structions of the same group of students and using 
the same proving tasks.

RESEARCH CONTEXT

The data for the paper are derived from a design ex-
periment, which examined what may be involved in 
engineering classroom instruction to support sec-
ondary students to learn about proof.  The design ex-
periment was carried out in an English state school 
with 165 Year 10 students (14–15 year olds) who were 
set in seven classes according to their performance 
in a national assessment at the end of Year 9.  All 61 
students from the two highest attaining Year 10 class-
es, and the two mathematics teachers of these classes, 
participated in the research over a period of two years.  

The focus of the study on high-attaining students was 
partly motivated by the findings of a prior large-scale 
longitudinal study in England (Küchemann & Hoyles, 
2001–03) that showed (1) weak knowledge about proof 
amongst a national sample of high-attaining Year 
8–10 students and (2) modest (if any) improvements 
in students’ knowledge from Year 8 to Year 10.  These 
findings raised concerns about English high-attaining 
secondary students’ learning about proof, and sug-
gested an even more pessimistic prospect for lower 
attaining or younger students.

The design experiment involved the development, 
implementation, and analysis of the effectiveness of 
six lesson sequences, each ranging from one to five 
45-minute periods.  Lesson sequences 1–4 were im-
plemented when the students were in Year 10, while 
the rest in Year 11.  At the beginning of the study I 
took the lead role in planning the lesson sequences, 
but over time the teachers felt more confident to take 
responsibility for planning the lesson sequences and 
this allowed me to assume more of a supportive role.  
All lessons were taught by the regular teacher of each 
class.

In this paper, I focus on lesson sequence 2, which 
lasted three 45-minute periods in one class and two 
in the other. It was implemented three months into 
Year 10 and capitalized on lesson sequence 1. Lesson 
sequence 1 lasted two 45-minute periods in each class, 
was implemented one month into Year 10, and had 
two main goals: (1) to help students begin to realize 
the limitations of empirical arguments as methods 
for validating mathematical generalizations and see 
a need to learn about more secure validation meth-
ods (i.e., proofs); and (2) to introduce students to the 
notion of proof in mathematics, including a list of cri-
teria for deciding whether a mathematical argument 
met the standard of proof.  The criteria were as follows.

An argument that counts as proof [in our class] 
should satisfy the following criteria:

1. It can be used to convince not only myself or a 
friend but also a sceptic.

 ― It should not require someone to make a leap 
of faith (e.g., “This is how it is” or “You need 
to believe me that this [pattern] will go on 
forever.”) 

2. It should help someone understand why a state-
ment is true (e.g., why a pattern works the way it 
does).

3. It should use ideas that our class knows already 
or is able to understand (e.g., equations, pictures, 
diagrams).

4. It should contain no errors (e.g., in calculations).

5. It should be clearly presented. (PowerPoint slide 
used during Lesson Sequence 1)
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The criteria were consistent with the 
following definition of proof, with care 
taken so that the phrasing of the criteria 
was suitable for secondary students.  

Proof is a mathematical argument, a 
connected sequence of assertions 
for or against a mathematical claim, 
with the following characteristics:

1. It uses statements accepted by the 
classroom community (set of accept-
ed statements) that are true and avail-
able without further justification;

2. It employs forms of reasoning 
(modes of argumentation) that are 
valid and known to, or within the conceptual reach 
of, the classroom community; and

3. It is communicated with forms of expression 
(modes of argument representation) that are ap-
propriate and known to, or within the conceptual 
reach of, the classroom community. (Stylianides, 
2007, p. 291)

Criteria 1 and 4 correspond to the requirement in 
the definition for valid modes of argumentation; cri-
terion 5 to the requirement for appropriate modes 
of argument representation; and criterion 3 to the 
requirement that all components of a mathematical 
argument (set of accepted statements, modes of argu-
mentation, and modes of argument representation) 
be readily accepted, known to, or within the concep-
tual reach of the class.  Furthermore, criteria 1 and 
2 reflect, respectively, two important functions that 
the development of arguments and proofs intended 
to serve in the two classes: to promote conviction at 
both the individual and social levels (e.g., Mason, 1982) 
and understanding (e.g., Hanna, 1995).     

The goals of lesson sequence 2 were (1) to help stu-
dents further understand the proof criteria and (2) to 
offer students opportunities to apply these criteria in 
three proving tasks. The tasks were mathematically 
similar though not necessarily of the same level of 
difficulty; they all involved making and proving a gen-
eralization by reference to an underlying structure. 
Lesson sequence 2 started with review of the proof cri-
teria, and then the teacher introduced task 1 (Figure 1). 
There was individual or small group work on the task, 

during which the teacher asked the students to write 
down their ‘best’ arguments. The students were given 
ample time to do that and were free to work in pairs 
or larger groups. While students were instructed 
to write down individually their arguments, few of 
them wrote arguments in pairs.  Finally, there was a 
whole class discussion during which several students 
presented individually or in pairs their arguments. 
Similar procedure was followed for tasks 2 and 3.

METHOD

Data
The data for the paper are the written arguments of, 
and transcripts of the subsequent oral presentations 
of these arguments by, 17 students in the two class-
es.  These were all the students who, in response to 
an open call by the teachers, offered to present their 
arguments for any of the three proving tasks during 
whole class discussions.  Thirteen of these students 
presented arguments for only one task while two 
students presented arguments for two tasks.  The 
distribution of student-presenters across the three 
tasks was 10 students for the first task, 4 for the second, 
and 3 for the third.   

Analysis
A research assistant and myself coded independently 
all written and oral (transcribed) arguments of the 17 
students.  First, we used the coding scheme developed 
by Stylianides and Stylianides (2009) to code each 
argument into one of the following five categories 
according to the argument’s level of mathematical 
sophistication.  The codes are presented in decreasing 

Figure 1: The first proving task
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level of mathematical sophistication.  We compared 
our codes and discussed disagreements to reach con-
sensus.

 ― code M1: proof

 ― code M2: valid general argument but not a proof

 ― code M3: unsuccessful attempt for a valid general 
argument

 ― code M4: empirical argument

 ― code M5: non-genuine argument

All three tasks required proving the truth of a gener-
alization.  The definition of code M1 was consistent 
with Stylianides’ (2007) definition of proof, which un-
derpinned in turn the criteria for proof used in the 
two classes.  Specifically, code M1 was defined to be an 
argument that was general (i.e., it referred to all cases 
in the domain of the generalization), used valid modes 
of argumentation (i.e., it offered conclusive evidence 
for the truth of the generalization), and was accessible 
to the students in the class (i.e., it used statements that 
were readily acceptable by the class as well as modes 
of argumentation and modes of argument representa-
tion that were known to the students or within their 
conceptual reach at the particular time).  Code M2 
was used for arguments that approximated but not 
quite met the standard of proof, because, for example, 
of missing or inadequate justification of an assertion 
that could not be considered readily acceptable by the 
class.  Code M3 was used for arguments that reflected 
an attempt to justify the generalization for all cases in 
its domain, but were either incomplete or used invalid 
modes of argumentation (i.e., they included a logical 
flaw).  Code M4 was used for arguments that verified 
the truth of the generalization only in a proper subset 
of the cases in its domain but concluded it was true for 
all cases.  Finally, code M5 was used for responses to 
the proving tasks that showed minimal engagement, 
were irrelevant to what was being asked, or were 
potentially relevant but the relevance was not made 
evident to the coder. 

In addition to the above, for each argument we coded 
the following: 

 ― Who wrote or orally presented the argument: an 
individual student or a pair of students;

 ― The kind of input from the teacher or the rest of 
the class during the oral presentation of the argu-
ment: no input, some but not substantial input (i.e., 
input that simply reiterated or briefly clarified 
a point mentioned by the student without influ-
encing the presented argument), or substantial 
input (i.e., input that influenced the presented 
argument and possibly altered its level of math-
ematical sophistication).

Furthermore, we examined whether there was any ev-
idence to suggest that preceding oral presentations of 
arguments for a proving task influenced subsequent 
presentations for the same task.  We found no evi-
dence of such influence: students’ oral presentations 
were rather distinct from one another; students’ oral-
ly presented arguments matched closely their writ-
ten arguments (e.g., oral presentations tended to be 
based on the same figures or drawings as in students’ 
written work); and students looked at or referred to 
their written work during their oral presentations.  

Yet, the temporal sequencing of students’ arguments 
(first written, then oral) was a factor we could not ac-
count for.  It is possible that a student’s original efforts 
to write an argument for a proving task helped the 
student build familiarity with the task and underly-
ing concepts, thus placing the student in a position to 
orally present later on an argument of higher level 
of mathematical sophistication.  Another factor we 
could not account for was whether the teacher of-
fered any substantial input during students’ written 
work in small groups.  According to the plan that I 
had agreed with the teachers prior to the lessons, the 
teachers would ask students probing questions, but 
they would not directly influence students’ argument 
constructions.  There was no concrete evidence that 
the teachers deviated from the agreed plan.  But even 
if they had done that, the result would have been bet-
ter written arguments and, presumably, better oral 
presentations of those arguments, too.  Thus there 
would likely be limited if any impact on the compari-
son between the levels of mathematical sophistication 
of the written and oral arguments, which is the issue 
examined in this article.

RESULTS

The results are summarized in Figures 2–4, which 
show the relationship between the level of mathemati-
cal sophistication of the written arguments produced 



The role of mode of representation in students’ argument constructions (Andreas J. Stylianides)

217

by certain groups of students and the correspond-
ing level of orally presented arguments by the same 
groups.  The numbers in the figures represent fre-
quencies of students.

Nine of the 17 students wrote and presented their ar-
guments individually, with no input from the teach-
er or the rest of the class during those presentations 
(Figure 2).  Five of these students wrote and presented 
proofs (M1), one wrote and presented a valid general 
argument but not a proof (M2), and the other three 
presented more mathematically sophisticated argu-
ments than they had written earlier: two wrote ar-
guments that reflected an unsuccessful attempt for 
a valid general argument (M3) but presented M1 and 

M2 arguments respectively, while one wrote an em-
pirical argument (M4) but presented an M2 argument.

Four other students presented their arguments in 
pairs and received no input from the teacher or the 
test of the class during those presentations (Figure 3).  
The students in one of the pairs wrote together an M4 
argument but presented (again together) an M2 argu-
ment.  The students in the other pair wrote different 
arguments but made a joint presentation, which was 
coded as M1; one student had written an M1 argument 
while the other had written an M4 argument.

The remaining four students wrote and presented 
their arguments individually, but during their presen-
tations they received input from the teacher (Figure 4).  

Figure 2: Students who wrote and presented their arguments individually, with no input (N=9)

Figure 3: Students who presented their arguments in pairs, with no input (N=4)
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Yet, in two of the cases the input was not substantial: 
the teacher simply reiterated or clarified briefly a 
point mentioned by the students during their presen-
tations, without influencing the presented argument.  
One student wrote an M3 argument and presented an 
M1 argument, and the other wrote an M2 argument 
and presented an M1 argument.  In the remaining two 
cases the input from the teacher was substantial.  For 
example, in one of the cases the teacher made a com-
ment at a point during the student’s oral presentation 
when the student paused and seemed to have difficul-
ty articulating the general case; this comment might 
have helped the student articulate an argument of a 
higher level of mathematical sophistication than she 
would have presented otherwise.  In both cases the 
presented arguments were of higher level of math-
ematical sophistication than the arguments the stu-
dents had written in their papers: one was M4 and 
became M1, while the other was M3 and became M2.

To sum up, the proportion of arguments for which 
the teacher’s input was substantial was small (2 out 
of 17), while in all of the cases the orally presented ar-
guments were of the same or of higher level of mathe-
matical sophistication compared to the corresponding 
written arguments.  All orally presented arguments 
were either proofs (M1) or valid general arguments 
but not proofs (M2).  Eight of the written arguments 
were already at the M1 or M2 levels, but the remain-
ing nine were either empirical (M4) or unsuccessful 
attempts for a valid general argument (M3) and yet, 

during the oral presentations, all of these arguments 
were elevated to the M1 or M2 levels.  

DISCUSSION

The findings offer support to the hypothesis that the 
level of mathematical sophistication of students’ ar-
guments for the same claims may depend on the mode 
of representation (oral vs. written) students use to 
communicate these arguments.  The students whose 
arguments I examined in this study tended to omit few 
essential steps or explanations in their written work, 
but they addressed most of these omissions during 
their oral presentations.  All orally presented argu-
ments were of the same or higher level of mathemati-
cal sophistication than their written counterparts.  A 
methodological issue stands out from these findings: 
If a study had analyzed students’ oral arguments only, 
it would have reported a better picture of students’ 
ability to construct arguments than another study 
that analyzed students’ written arguments only.  Yet, 
limitations of the research design, notably the lack of 
control over the temporal sequencing of students’ ar-
guments (first written, then oral), do not warrant any 
definite statement that the oral mode of representa-
tion is generally advantageous over the written mode 
in the construction of arguments that approximate or 
meet the standard of proof.  

Below I present four other possible and not neces-
sarily competing reasons for which students’ oral 

Figure 4: Students who wrote and presented their arguments individually, with input (N=4)
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arguments tended to rank higher than their written 
arguments.2  Reasons 1 and 2 reinforce, while reasons 
3 and 4 weaken, the presumed role played by the mode 
of representation in the observed differences between 
students’ written and oral arguments, thus highlight-
ing the need for more research in this area.  

1. Relative difficulty of written versus oral argu-
ments. Writing mathematical arguments may 
be genuinely more difficult than presenting 
orally mathematical arguments, especially 
for students who were recently introduced 
to the concept of proof as were the students 
in this study. 

2. Relative preference for oral versus written ex-
pression. Students may tend to prefer oral 
over written expression of their mathemati-
cal ideas, and so students in the study might 
have responded in a minimalistic way to the 
teacher’s expectation to produce written ar-
guments for the three tasks (indeed, a didac-
tical contract regarding proof work was not 
yet established in the class). 

3. Possible role of the specific nature of proving 
tasks. The three proving tasks all belonged to 
a special family of tasks and involved making 
and proving a generalization by reference 
to an underlying structure. High linguistic 
demands are imposed on solvers as they try 
to express a general argument by reference to 
a specific diagram that nevertheless exempli-
fies the underlying mathematical structure; 
students may be better able to cope with these 
demands when they express their ideas orally 
rather than in writing.

4. Possible influence of the broader social context 
on students’ oral presentations. Even though 
almost all of the oral presentations were car-
ried out with no verbal input from others in 
the class, extra-linguistic forms of expression, 
notably gestures, might have given to present-
ers some non-verbal cues (cf. Roth, 2001) that 
encouraged them to also evaluate or elaborate 
more on their arguments, thus addressing 
some of their limitations and elevating their 
status (cf. Stylianides & Stylianides, 2009).

To conclude, in this paper I have called, and reinforced 
the need, for more research into factors mediating the 
relation between students’ argument constructions 
or evaluations and conclusions about students’ un-
derstanding of proof. Do we, as a field, document an 
accurate picture of students’ understanding of proof? 
Are findings from different studies in this area com-
parable with each other?

ACKNOWLEDGEMENT

The research reported in this paper was supported 
by a grant from the Economic and Social Research 
Council in England (RES-000-22-2536).  The opinions 
are those of the author and do not necessarily reflect 
the position or policy of the Council.  

REFERENCES

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in 

algebra. Journal for Research in Mathematics Education, 

31, 396–428.

Hanna, G. (1995). Challenges to the importance of proof. For the 

Learning of Mathematics, 15(3), 42–49.

Küchemann, D., & Hoyles, C. (2001–03). Longitudinal Proof 

Project (Technical reports for Year 8–10 surveys). London: 

Institute of Education. (Retrieved 3 May 2009 from http://

www.mathsmed.co.uk/ioe-proof/techreps.html.)

Mason, J. (with L. Burton, & K. Stacey). (1982). Thinking mathe-

matically. London: Addison-Wesley.

Reiss, K., Hellmich, F., & Reiss, M. (2002). Reasoning and proof in 

geometry: Prerequisites of knowledge acquisition in sec-

ondary school students. In A. D. Cockburn & E. Nardi (Eds.), 

Proceedings of the 26th Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 4 

(pp. 113–120). Norwich, England: University of East Anglia.

Roth, W. M. (2001). Gestures: Their role in teaching and learning. 

Review of Educational Research, 71, 365–392.

Schoenfeld, A. H. (1985). Mathematical problem solving. 

Orlando: Academic Press.

Stylianides, A. J. (2007). Proof and proving in school mathemat-

ics. Journal for Research in Mathematics Education, 38, 

289–321.

Stylianides, A. J., & Stylianides, G. J. (2009). Proof constructions 

and evaluations. Educational Studies in Mathematics, 72, 

237–253.

ENDNOTES

1. While a written or an oral mode of representation 
may be used to communicate the bulk of a student’s 

http://www.mathsmed.co.uk/ioe-proof/techreps.html
http://www.mathsmed.co.uk/ioe-proof/techreps.html


The role of mode of representation in students’ argument constructions (Andreas J. Stylianides)

220

argument, other modes of representation can also 
be used alongside this mode.  For example, a student 
who presents orally an argument in front of a class 
can draw on the board a picture, or write on the board 
an algebraic expression, in order to supplement the 
verbal expression of the argument.

2. I do not mention time as a possible reason, for stu-
dents were given ample time to produce their writ-
ten arguments. Yet, one cannot completely exclude 
the possibility that few students recorded in writing 
their ‘exploratory’ work and then, during whole class 
discussion, shifted to a more ‘deductive’ form of pre-
sentation of their finished products.
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In this research project we evaluate the Toulmin model 
to analyse students’ mathematical arguments (Toulmin, 
2003). We use this method to analyse a teaching episode 
in which the sum of the interior angles in a five-cornered 
polygon was discussed. This episode took part in a math-
ematics lesson in junior high school, Japan. The analysis 
highlights students’ difficulties to understand ideas of 
their peers, and how these led to an improved level of 
discussion. 

Keywords: Argument, problem solving, Toulmin’s model, 

argumentation, 180(n-2).

THE AIM OF RESEARCH

Teachers promote problem solving in a mathematical 
lesson. In the beginning of the lesson the teacher in-
troduced the topic to initiate a discussion. In order to 
achieve the purpose of the lesson, it is necessary for 
the teacher to evaluate students’ arguments correctly.  
However, it can be difficult to understand students’ 
arguments. The purpose of this research is to examine 
if the Toulmin model (Toulmin, 2003) helps to gain 
a better understanding of students’ mathematical 
arguments.

THE METHOD OF RESEARCH

I chose the Toulmin Model as a tool to analyse students’ 
arguments. Toulmin claims that arguments typically 
consist of six parts: claim(C), data (D), warrants (W), 
qualifiers (Q ), rebuttals (R), and backing (B) (Hitchcock 
& Verheij, 2006). A typical Toulim diagram to describe 
an argument may look as follows:

EPISODE

The episode which I describe here took part in a math-
ematics lesson in the second grade of junior high 
school in Japan. The topic of this lesson was the sum 
of the interior angles of a polygon. The teacher’s aim 
was for students to develop the fact that the sum of the 
inside of an n-cornered polygon is 180(n-2). 

Individual solutions and preparation of the argumen-
tation are summarized in the following diagrams or 
comments from students D-G (Figure 2). 

Figure 1: The Toulmin Model

Figure 2

mailto:michael.smith@yahoo.com
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The discussion leading to this result began with an 
explanation given by student H. Then student G ex-
plained his view which is opposed to H’s. His argument 
showed that H was wrong. From this result the follow-
ing points can be deduced why the mistake occurred 
and how correct evidence can be concluded. Student 
D’s figure illustrates a misconception caused by the 
fact that an additional angle has been constructed in 
the centre of the pentagon. As student E’s figure shows, 
all the angles are included in the polygon. Therefore 
this figure illustrates the general formula. 

THE CONCLUSION OF RESEARCH

We use the Toulmin Model to describe the arguments 
of students H and G, as illustrated in Fig 3 and Fig 4 
below.

H was not able to understand the solution of D cor-
rectly. The difficulty to understand the other students’ 
ideas was emphasized in our analysis. And since H 
misunderstood, G felt excited. Although feeling con-
trolled the understanding to become a new driving 
force was decided in the restorative. As a result, the 
quality of arguments improved remarkably.
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Figure 3: Student H’s argument described by the Toulmin Model

Figure 3: Student G’s argument described by the Toulmin Model
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We present a research project that aims to build a model 
of mathematical activity that can be used in primary 
teacher education. This model must be useful both for 
teacher training and be able to support teachers’ prac-
tices. We propose the idea of Unpacking and Repacking 
mathematical activity to achieve this goal.

Keywords: Unpacking, repacking, teacher training, 

mathematical activity.

CONTEXT, HYPOTHESIS AND 
RESEARCH QUESTIONS

Assuming that experiencing mathematical activity 
(MA) is important in learning mathematics, a corol-
lary for mathematics teacher education is that teach-
ers have to be confronted with an authentic MA in or-
der to learn mathematics, to be conscious of its nature 
and to be able to deal with it at school. By authentic, 
we mean an activity that is open in the meaning that 
in it, the didactical contract leaves more mathematical 
responsibilities to the students than classical tasks in 
the classroom and is closer to the experts’ practice of 
mathematics (mathematicians).

In order to make effective and efficient the opportu-
nities to experience and think about MA in primary 
teacher training, conceptual and didactical tools are 
needed. We aim at building such tools, by tackling the 
following questions: Can a model of MA and a way 
to experience and think about it can be proposed in 
primary teacher education? How primary teacher 
education can include opportunities using this model 
in order to develop knowledge of the activity? Do such 
a model and opportunities make primary teachers use 
MA in their classrooms and help them to deal with 
it? Does it impact teachers’ conceptions about MA or 
their conceptions about teaching mathematics?

THEORETICAL APPROACHES

Genres
MA involves different genres of activity, that is to say 
a set of prototypical practices which configure this 
activity. Research in mathematics education often 
distinguish mathematizing and modelling; defining; 
specifying, generalizing and extending; proving (rea-
soning, demonstrating), among others. Particularly, 
the MTSK model (Carrillo et al., 2013) develop the 
knowledge about mathematics as a dimension that 
is considered as a part of the mathematics teacher 
specialized knowledge. This dimension includes 
knowledge of ways of knowing and creating or pro-
ducing in Mathematics, aspects of mathematical com-
munication, reasoning and testing, knowing how to 
define and use definitions, establishing relations, cor-
respondences and equivalences, selecting representa-
tions, arguing, generalizing and exploring. 

Unpacking and repacking
The model we want to develop must be designed to be 
used by teachers and teacher educators to think about 
MA when they solve problems or give opportunities 
to their student do it. We consider as important to deal 
with deep epistemological aspects of the MA, in the 
sense that it is fundamental to understand, through a 
reflexive MA, what are the objects, the objectives, the 
ways of validating, etc., in mathematics.

This is why we propose, inspired by Martin (2013), 
the concept of unpacking the MA, which is the work 
of separating and analysing each part of the mathe-
matical practice and its role and place in the global 
process of problem solving. Genres would be a first 
level of unpacking. Besides, repacking is the part of 
the work that permits to underline the links between 
the different parts and levels unpacked and under-
stand how they interplay.
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We claim that a teacher who can unpack and repack 
his/her (and others’) mathematical work would be 
better equipped to deal with MA in the classroom.

METHODOLOGICAL PLAN

In order to tackle the research questions, we plan to:

 ― Build a model of MA and its genres, based on 
specialized research results on each genre, but 
also on literature on problem solving, advanced 
mathematical thinking, Theory of Didactical 
Situations, or other theories dealing with MA;

 ― Propose problems that permit primary teachers 
to experience a MA that can be unpacked and 
repacked, involving different genres – here, us-
ing Research Situations for Classroom (Gravier 
& Ouvrier-Buffet, 2009) may be pertinent;

 ― Experiment with mathematicians, mathemat-
ics educators, and then with primary teachers 
to analyse the potential for unpacking and re-
packing;

 ― Propose a model of unpacking and repacking and 
experiment it in primary teacher education with 
selected and well-tried problems;

 ― Evaluate the impact on teachers’ conceptions 
about mathematics and its teaching, how they 
feel prepared and how they manage with MA in 
school.
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This report focuses on a research study the aim of which 
is to investigate the activity of proving as constituted in 
a Cypriot classroom for 12 year old students. By draw-
ing on Activity Theory, this study explores the way the 
teacher is working with the students to foreground math-
ematical argumentation. Analysis from classroom dis-
cussions points toward a teacher-directed mathematical 
argumentation as an approach to establish justification 
as a socio-mathematical norm in the classroom

Keywords: Activity theory, proving, socio-mathematical 

norms.

BACKGROUND OF THE STUDY

In recent years, it has been established that proof 
and proving should be integrated across all levels 
of schooling (Hanna, 2000; Stylianides, 2007). In this 
context, explanation, justification and argumenta-
tion are aspects of proof that provide a foundation for 
further work on developing deductive reasoning and 
the transition to a more formal mathematical study. 
In the social environment of the classroom, where 
hypothesising, explaining and justifying geometric 
conjectures is encouraged, the tools and tasks used, 
the rules of the classroom, the way the students work 
together, the way the teacher negotiates meanings and 
other external factors all interact, interrelate and in-
fluence each other in forming classroom activity. The 
purpose of the present study is to explore the way the 
structural resources of the classroom setting shape 
students’ argumentation. Research has responded to 
the need to conceptualise proof and proving in such a 
way that is can be applied not only to older students 
but also to those in elementary school (Stylianides, 
2007). The question remains however to understand 
how proof is constituted in such classrooms. 

METHOD

Cultural Historical Activity Theory (CHAT) provides 
this study with a theoretical basis to steer the identifi-
cation of forces that interact to shape pre-proving ac-
tivity in a complex environment. That is, CHAT is used 
both as a framework for conceptualising the research 
and formulating the research design. This study was 
conducted in a year 6 classroom in a public primary 
school in Cyprus. The content of the curriculum cov-
ered during the classroom observations was the area 
of triangles, and the circumference and area of circles. 
The overall process of analysis of the collected data 
was one of progressive focusing. The systematisation 
of the data led to the evolution of two activities: (i) 
activity of exploration which is concerned with the 
degree of exploring mathematics in the classroom. It 
includes the exploration of mathematical situations 
and exploration for supporting mathematical con-
nections and (ii) activity of explanation which is con-
cerned with instances of classroom discussion that 
are related with explaining the purpose of which is 
to clarify aspects of one’s mathematical thinking that 
might not be apparent to others and, explaining why, 
that is justification the aim of which is to establish for 
somebody else the validity of a statement. 

FINDINGS AND DISCUSSION

Analysis of the classroom episodes show the teacher 
frequently using the word ‘play’. Two contrasting val-
ues have emerged through the teacher’s ambiguous 
use of the term ‘play’; play/learn. When providing 
opportunities for exploration and investigation, the 
teacher was presenting the exploration constructive-
ly as ‘play.’ The word ‘play’ had a negative value when 
the exploration was interpreted as ‘play’ instead of 
learning. Closing down a task clashed with the object 
of the activity of exploration. The use of play high-
lights a tension between the two activities of explora-
tion and explanation. Exploration was understood by 
the teacher as worthwhile in order for the students to 

mailto:mariapericleous19%40gmail.com?subject=


How is proving constituted in Cypriot classroom? (Maria Pericleous)

227

seek out explanation but at the same time exploration 
in her eyes might have led to loss of focus, which might 
have resulted in different activity from explaining. By 
closing down the investigation, the students did not 
have the opportunity either to initiate a solution, or to 
test the hypothesis made, thus limiting their explain-
ing and justifying. The ‘play’ contradiction relates to 
the notion of the play paradox (Hoyles & Noss, 1992) 
and the notion of the planning paradox (Ainley, Pratt, 
& Hansen, 2006). While a play-like exploration can 
facilitate learning, it is not automatically clear that it 
is the teacher who decides what counts as meaningful. 
Thus, the teacher may find it difficult to take advan-
tage of such opportunities. The teacher had concerns 
about focus and discipline, which seemed to lead to 
such closing down. The intention therefore in leading 
the discussion around justification to establish this as 
a socio-mathematical norm is comfortably in line with 
maintaining focus. We might therefore conjecture 
that the students will have few opportunities in the 
near future to engage with proving related activity 
in a more independent way.  
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Extending the spiral curriculum which is originally 
focused on content matter areas dealing with typical 
mathematical activities we create a competence-based 
four step model to develop arguing. According to the four 
levels, the use of technology has different purposes: from 
exploring at the beginning to explaining at the end of 
the search for mathematical reasons. This cannot only 
prove but also enlighten certain problem areas. 

Keywords: Argumentation competence, use of technology, 

reasoning, proof.

ARGUMENTATION AND PROOF

The Austrian educational standards for Mathematics 
at grade 8 define competences such as “cognitive 
abilities which are available for a longer time (and the 
readiness to make use of them)”. Moreover, they de-
fine standards descriptors within four content areas 
and four types of mathematical activities/processes 
that students should make use of when making use of 
their content related competence (IDM, 2007). One of 
these activities is, as with many other mathematical 
standards Reasoning and Proof. To be able to reason 
and prove requires continuing development. For that 
we propose to extend the spiral curriculum with its 
main ideas (revisiting topics, increasing complexity) 
to typical mathematical activities. Accounting this we 
generated a four level model to develop arguing on 
mathematical topics from grade 5 to grade 12.

A competence based four level 
model for arguing     
Based on the forgoing our model includes several lev-
els. All levels can occur in a specific field of arguing. 
Each level should be dealt with in one particular grade 
or even across grades. 

Level 1 (Disposition): Disposition to engage in mathe-
matical tasks that demand (simple) reasoning. 

Level 2 (Comprehension): Ability to understand, com-
prehend and explain prescribed reasons. An impor-
tant aspect in this context is to identify the frame of 
reference. 

Level 3 (Communication): Ability to explain and ar-
gue completed mathematical proof in communication 
situations.

Level 4 (Autonomy): Finding a reason for a (mathemat-
ical) statement/conjecture, including the choice of the 
frame of reference, autonomously.

The four levels in a specific field
The Pythagorean Theorem is an example for a broad 
field for reasoning and proof with various possibil-
ities to use a paper and pencil approach as well as 
technology. Applets like the one shown in Figure 1 
(left) can engage students in reasoning tasks (Level 
1) as well as explaining and arguing a proof (Level 3). 
Figure 1 (right) addresses Level 2.

Here technology fosters the exploration and genera-
tion of conjectures.

The four levels across several grades
In grade 6 students explore triangles and construct 
particular points of a triangle. These points have in-

Figure 1: http://tube.geogebra.org/student/b615817#; Proof by 

Zhou bi suan jing 
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teresting traces under certain conditions. The explo-
ration of the shapes of these traces leads from Level 1 to 
Level 4 if one starts with the following task (Figure 2): 
Assume vertex C of triangle ABC moves on a line par-
allel to AB and observe the trace of the orthocentre H 
(Figure 2, left). In grade 6 on Level 1 students should 
explain why the trace of H always intersects the verti-
ces A and B. Here technology helps to explore the phe-
nomenon. In grade 9 and on Level 3 students should 
find a quadratic function that describes the trace of 
the orthocentre H, a parabola. Here a slider helps to 
find the fitting parameter of the function (Figure 2, 
middle). Also in grade 9 on Level 2 students should 
understand the analytic description of the trace of 
the orthocentre H. For that purpose the triangle is 
embedded in a coordinate system. Here technology 
helps to see that the movement of C is just a numerical 
variation of the coordinate z (Figure 2, right). After 
finishing these levels it is possible to reach Level 4. At 
this level students should find an analogous result for 
the circumcenter (low requirement) or the incircle 
(high requirement). 
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Figure 2: The trace of the orthocentre H and the embedded triangle ABC
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This study provides an example of what proof-based 
teaching is and how students of elementary school lev-
el can construct their own knowledge about division 
and divisibility of natural numbers by following this 
approach.  

Keywords: Proof-based teaching, constructing 

mathematical knowledge, elementary school level 

mathematics.

BACKGROUND

In the last decades research on the teaching and learn-
ing of mathematical proof has substantially increased 
(Blanton et al., 2011; Reid & Knipping, 2010; among oth-
ers). In addition to this, there is worldwide a growing 
tendency to include mathematical proofs in  school 
programs, including at the elementary level, as ex-
emplified by the Principles and Standards for School 
Mathematics from the National Council of Teachers 
of Mathematics (NCTM, 2000). 

Despite all of this interest, most of the time it is still 
quite common to find researches focused on mathe-
matical proof as a subject of study and not as a means 
to contribute to constructing mathematical knowl-
edge. On that subject, Reid (2011) has proposed that 
proving could be the vehicle for learning new math-
ematics through what he calls “proof-based teaching”. 
He tells us:      

We must ensure that we see proof as fundamental 
to mathematics as a way to develop understanding 
of mathematical concepts, and as a way to discov-
er new and significant mathematical knowledge. 
Proof cannot be limited to the format of proofs, 
and to the role of verification of knowledge (for 
which there is probably good empirical or other 
evidence already). (p. 28)

THE EXAMPLE

The work of Ordoñez (2014) was developed with stu-
dents around 7–8 years old who did not have prior 
knowledge about division when this research began. 
This study provides a clear example of what Reid (2011) 
calls proof-based teaching. In this work, for which 
Estela Vallejo was the supervisor, Ordoñez shows how 
third graders are capable of constructing their own 
knowledge of division and divisibility of natural num-
bers from the key notion of equitable and maximum 
distribution, which is understood by students in a 
natural way. The knowledge construction becomes 
evident when students are capable of answering prob-
lems that demand justifications of their answers. In 
the process of knowledge construction, it can be seen 
that students not only participate actively, but are also 
encouraged to correct their classmates’ or their own 
answers, refine ideas, suggest conjectures, etc. All 
of this shows us that it is possible to develop a class-
room environment rich in knowledge construction, 
in which the students experience similar processes 
to those experienced by professional mathematicians, 
including especially the process of proving to discov-
er and establish new knowledge. 

In this research study two important elements of 
proof-based teaching are combined: establishing a 
framework of established knowledge from which to 
prove, and establishing an expectation that answers 
should be justified within this framework. 

This transcript from the class shows these two ele-
ments:

Tutor: Can we have 3 marbles left after a dis-
tribution of certain number of marbles 
among 3 people?

Student 1: No, because you have to distribute the 
maximum number of marbles.

mailto:e.vallejo%40pucp.pe?subject=
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Tutor:  So, does it mean I have not distributed 
the maximum number of marbles?

Student 2:  We can still distribute these 3 mar-
bles! One more for each person!

The tutor’s question could be answered with a ‘yes’ 
or ‘no’, but the student provides a justification as well, 
in keeping with the expectation that answers should 
be justified. It refers explicitly to the basic notion of 
maximum distribution, which is part of the frame-
work of established knowledge. The tutor questions 
whether this basic notion applies in this case, and the 
second student provides an additional justification, 
a backing for the use of the basic notion in this case. 
This way of constructing division knowledge helped 
these students to realize why they cannot have 3, or 
a number greater than 3, as a remainder when they 
are dividing by 3.

REFERENCES

Stylianou, D.A., Blanton, M.L., & Knuth, E.J. (Eds.). (2009). 

Teaching and learning proof across the grades: A K-16 

perspective. New York: Routledge.

National Council of Teachers of Mathematics (2000). Principles 

and standards for school mathematics. Reston VA: Author.

Ordoñez, C.C. (2014). La construcción de la noción de división 

y divisibilidad de números naturales, mediada por justifi-

caciones, en alumnos de tercer grado de nivel primaria. 

(Master’s Thesis). Retrieved from: http://tesis.pucp.edu.pe/

repositorio/handle/123456789/5653

Reid, D. (2011, October). Understanding proof and transforming 

teaching. In Wiest, L., & Lamberg, T. (Eds.), Plenary present-

ed at the Annual Meeting of the North American Chapter of 

the International Group for the Psychology of Mathematics 

Education (pp. 15–30). Reno, NV: University of Nevada. 

Reid, D., & Knipping, C. (2010). Proof in Mathematics Education. 

Research, Learning and Teaching. Rotterdam, The 

Netherlands: Sense.



232CERME9 (2015) – TWG02

TWG02 

Arithmetic and 

number systems



233CERME9 (2015) – TWG02

Introduction to the papers of TWG02: 
Arithmetic and number systems 

Sebastian Rezat1, Lisser Rye Ejersbo2, Darina Jirotkova3 and Elisabeth Rathgeb-Schnierer4 

1 University of Paderborn, Institute for Mathematics, Paderborn, Germany, srezat@math.upb.de

2 Aarhus University, Department of Education, Aarhus, Denmark

3 Charles University in Prague, Faculty of Education, Prague, Czech Republic

4 University of Education Weingarten, Weingarten, Germany

THE FOCUS AND SCOPE OF TWG02

Thematic Working Group 2 focused on six questions 
related to teaching and learning of arithmetic and 
number systems from grades 1 to 12:

1) What is the interplay between conceptual un-
derstanding and procedural skills for number 
operations, and how should these two aspects be 
balanced in the design of learning environments?

2) What does it mean to operate flexibly with num-
bers, and what knowledge and skills are required 
therefore?

3) What are the roles of models in teaching and 
learning of arithmetic and number systems, and 
how do they support flexibility and conceptual 
understanding?

4) What are effective approaches for teaching and 
learning of arithmetic and number systems in 
inclusive education? How can this content area 
be taught for students with special needs? 

5) What aspects of number theory (including spe-
cific reasoning) are supposed to be taught in pri-
mary and secondary school, and how can this be 
done? 

6) How is it possible to support and analyze long-
term learning processes from grade 1 to grade 12? 
How can different transitions that come with a 
long-term learning process be taken into account, 
especially the primary-secondary transition, but 
also the secondary-tertiary transition. 

NUMBER SENSE, CONCEPTUAL 
UNDERSTANDING AND FLEXIBILITY

Although it is not mentioned explicitly in the focus of 
TWG02, the notion of number sense included in most 
of these questions. 

In their paper, Sayers and Andrews remind us that 
there are very different definitions of number sense. 
Not only different notions of number sense are used 
in different domains, but in fact, there are no two 
researchers who use the same definition of number 
sense. Sayers and Andrews distinguish three distinct 
perspectives on number sense, which they label pre-
verbal, applied and foundational. In their paper, they 
aim to offer a concise conceptualisation of what they 
call foundational number sense in a way that would 
support a range of activities, including developments 
in curriculum, teacher education or assessment, as 
well as cross-cultural classroom analyses. 

An important issue related to the first question is 
the role of counting strategies in the development of 
conceptual understanding of number and operations 
with numbers. Counting strategies are usually regard-
ed as an intermediate stage in the development of con-
ceptual understanding of number. On the one hand, 
it is assumed that counting strategies are necessary, 
but on the other hand, they need to be substituted by 
other strategies that rely on knowledge about number 
facts and relationships between numbers. At a certain 
point counting strategies are even regarded as an in-
dication for mathematics disabilities. 

Gaidoschik, Fellmann and Guggenbichler challenge 
the view that counting strategies are actually a neces-
sary intermediate stage in the development. They in-
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vestigate how teaching of derivation strategies affects 
strategy use by first graders. They are able to provide 
empirical support for the claim that counting-on is 
not a necessary strategy in the development of con-
ceptual understanding of number and operations 
with numbers. 

Häsel-Weide is also interested in possible ways of sub-
stituting counting strategies. Her study focuses on 
the role of peer interaction in cooperative learning 
situations that encourage children to pay attention 
and use number relations as well as relations between 
tasks and problems. She concludes that it is rewarding 
for both children in heterogeneous pairs to work to-
gether. Additionally, she observed that children rather 
focus on number relations than on relations between 
tasks and problems. 

The first question also addresses the design of learning 
environments as an important issue. Nührenbörger 
and Schwarzkopf tackle this issue related to the con-
ceptual understanding of equations. They investigate 
the development of a rich learning environment that 
enable students to access the algebraic meaning of 
equalities and the equal sign. Furthermore, they ar-
gue that a rich learning environment itself does not 
suffice, and highlight the importance of argumenta-
tion in order to foster the learning process.

Veldhuis and van den Heuvel-Panhuizen also empha-
size the fact that it is not only the design of learning 
environments and related activities that foster stu-
dents’ learning of mathematics, but also a matter of 
classroom assessment. In a large-scale experimental 
study they are able to provide evidence that teachers’ 
use of classroom assessment techniques in mathe-
matics has a positive effect on students’ achievement. 

The notion of flexibility in terms of operating flexibly 
and adaptively with numbers is taken up in the second 
question. Explicitly or implicitly flexibility is seen as 
an indicator of what Sayers and Andrews call applied 
number sense. The papers in this TWG focus mainly 
on two aspects of flexibility:

 ― conceptualizing flexibility and adaptivity in men-
tal calculation, 

 ― promoting flexibility in mental calculation. 

Rathgeb-Schnierer and Green target to identify de-
grees of flexibility in students’ mental arithmetic 
by revealing the cognitive elements that sustain the 
solution process (learned procedures or problem 
characteristics, number patterns, and relationships). 
They are able to identify three forms of reasoning: 
flexible (multiple reasons predominantly referring 
to characteristics), rigid (one reason referring to a 
solution procedure) and mixed (multiple reasons 
when referring to characteristics, one reason when 
referring to a solution procedure). Furthermore, the 
results show the tendency that students who refer to 
problem characteristics in their reasoning seem to 
be more cognitively flexible.

Serrazina and Rodrigues are also concerned with 
the notion of flexibility in terms of adaptive think-
ing. However, their approach is different since they 
do not regard strategies as the unit of analysis, but 
quantitative reasoning. They argue that quantitative 
reasoning underlies the development of flexible cal-
culation because it focuses on the description and 
modeling of situations and the involved comparative 
relationships. In a qualitative approach they attempt 
to understand how children establish a network of 
connections through their reasoning about different 
representations of the numbers, and about relation-
ships between numbers and quantities.

Given the importance of the fundamental arithmetic 
properties for flexible mental calculations on the one 
hand, and for algebraic thinking on the other hand, 
Larson aims to better understand how students make 
sense of arithmetical properties in particular of the 
distributive property in multiplicative calculations. 
She analyses students’ arguments when they have to 
evaluate the validity of (wrong) strategies to carry 
out a multiplication of two two-digit numbers. Finally, 
she makes inferences from students’ arguments to 
students’ understanding of the distributive property. 

Besides developing a better theoretical understanding 
of the notion of flexibility, the issue of fostering the 
development of flexibility is another important issue 
related to the second question. Rechtsteiner-Merz and 
Rathgeb-Schnierer pay attention to the development 
of flexible mental calculation in less advanced stu-
dents. In this regard, they investigate the contribution 
of a specific approach (called “Zahlenblickschulung”) 
to foster the recognition of problem characteris-
tics, number patterns and numerical relationships. 
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Within a qualitative design they identify different 
types based on three dimensions: (1) the amount of 
correct solutions, (2) solution procedures, and (3) 
related reasoning. They conclude that knowledge of 
basic facts and strategies seem to be insufficient for 
the development of a deep understanding of calcula-
tion that goes beyond counting. Therefore, the focus 
on numerical relationships and structures is essential 
in order to develop flexibility in mental calculation. 
Their approach of “Zahlenblickschulung” seems to 
be promising in this regard.  

Lübke tackles the issue of estimation as another as-
pect related to number sense. She investigates fourth 
graders’ conceptual understanding of computational 
estimation using indirect estimation questions. She 
argues that the interrelation between an estimate 
and the exact calculation is not only a very important 
aspect of understanding computational estimation, 
but also proved to be a useful tool to analyse students’ 
concept of computational estimation. Her findings 
indicate that even students who are able to carry out 
estimations do not necessarily understand the con-
cept of estimation. 

Carvalho and da Ponte as well as Almeida and Bruno 
address aspects of number sense in the domain of ra-
tional numbers. Carvalho and da Ponte analyze men-
tal computation strategies and errors of 6th grade stu-
dents particularly focusing on how they use relational 
thinking. Based on the theory of mental models they 
are able to better understand the relation between 
mental representations and mental calculation strat-
egies and errors respectively. 

Almeida and Bruno analyze the effects of an interven-
tion on three abilities of grade 8 students related to 
number sense in the domain of fractions: the use of 
benchmarks, the use of graphical representations of 
numbers and operations, and the recognition of the 
reasonableness of a result. 

THE ROLE OF MODELS

The third question relates to the role of models in 
teaching and learning arithmetic. The notion of model 
consciously has been left open. The papers in the TWG 
mainly address four different kinds of models: models 
in the sense of manipulatives, models in the sense of 
visual representations, models in the sense of mental 
models, and finally, models in the sense of role models. 

Hejný, Jirotková and Slezáková offer a theoretical ap-
proach to the role of models in the learning process. 
A process that they call “desemantization” lies at the 
heart of their Theory of generic models. It describes 
stages of learning processes in mathematics in terms 
of two different kinds of mental models, which dif-
fer in their semantic embedding: isolated models de-
note the set of pupils’ experiences related to a certain 
mathematical concept, relationship, or situation, and 
generic models refer to generalizations of this previ-
ous experience. Through an abstraction process the 
generic model is transferred into abstract knowledge, 
which does not include the semantic embedding. The 
ability of pupils to work with models is thus an indi-
cator of their level of understanding of mathematical 
phenomena.

Finesilver analyzes strategies and errors of S.E.N. stu-
dents when asked to determine the number of cubes 
in cuboid blocks made up of multilink cubes. It was 
intended to evoke the use of different multiplicative 
strategies by highlighting different structures using 
different colors. The tasks proved to be a useful tool to 
understand students’ multiplicative thinking in terms 
of structuring, enumeration and errors. 

Hattermann and vom Hofe analyze the effects of a 
game in the domain of negative numbers on students’ 
performance in tasks with addition and subtraction 
of negative numbers and students’ argumentation 
schemes. The intention of the game is to foster meta-
phorical reasoning, which is regarded as crucial 
for the understanding of negative numbers and the 
construction of mental models by the authors. First 
results that are based on a small number of students 
indicate positive effects on both, performance and 
metaphorical reasoning. 

Pöhler, Prediger and Weinert investigate the influ-
ence of different representations (numerical, visual, 
verbal) in percent problems on students’ performance 
in relation to their language proficiency. Their find-
ings indicate that the difficulties with verbal test items 
cannot be explained by students’ restricted reading 
proficiency, but rather seem to be a consequence of 
their lack in conceptual understanding of percent-
ages. 

Papadopoulos focuses on the teacher as a role model. 
He analyses the influence of a teacher’s persistent 
misconceptions on students’ performance. The re-



Introduction to the papers of TWG02: Arithmetic and number systems  (Sebastian Rezat, Lisser Rye Ejersbo, Darina Jirotkova and Elisabeth Rathgeb-Schnierer)

236

sults highlight once more the importance of content 
knowledge in pre- and in-service teacher education.

SUBJECT-MATTER ANALYSIS

Three papers take the subject-matter and related 
content knowledge as their starting point. Real 
and Figueras present a framework of notions, con-
cepts and processes for fractions and rational num-
bers, which was developed based on Freudenthal’s 
Didactical Phenomenology. The framework is organ-
ized according to five classes of phenomena / process-
es related to fractions: describing, comparing, divid-
ing, distributing, and measuring. It has proved to be 
a useful analytical tool.  

Nicolaou and Pitta-Pantazi evaluate the impact of 
an intervention, which was based on a framework 
comprising seven abilities that are supposed to be im-
portant for conceptual understanding of fractions in 
elementary school. They conclude that the interven-
tion had a positive impact on students’ understanding 
of fractions. 

Gómez and García carry out a rational analysis of 
problems with unequal ratios. In the first step, their 
analysis aims to work out critical components of the 
problems in order to evaluate them empirically in the 
second step. Their findings indicate that students do 
not apply different strategies flexibly when solving 
the problems, but rather stick to a standard strategy. 

OPEN QUESTIONS AND FUTURE DIRECTIONS

Many of the papers in TWG relate to the notion of 
number sense. Consequently, number sense can be 
regarded as one of the focal concepts of this TWG. The 
papers in this TWG have contributed significantly to 
improve the understanding and applicability of this 
concept. However, many questions are still open. 

First of all, very different conceptualizations of num-
ber sense are used in different domains. Whereas 
number sense in cognitive psychology refers to the 
innate arithmetic of the human brain, in mathematics 
didactics it relates to the ability to perceive number 
relations and to make use of them when solving prob-
lems. It seems promising to relate these different per-
spectives and strive for a comprehensive definition 
of number sense. Main questions in this context are: 

 ― How is number sense in the didactical meaning 
related to the innate number sense of the brain?

 ― How can insights into the innate number sense 
contribute to the development of number sense 
in the didactical meaning of the term?

Secondly, the relation between number sense on the 
one hand and flexibility and adaptivity on the other 
hand needs to be further clarified. Is number sense 
conceptualized via flexibility and adaptivity or is it a 
prerequisite for flexibility and adaptivity? 

Finally, it is tempting to use the term number sense 
related to other number domains than the natural 
numbers – and some papers in this TWG actually do 
so. However, it is not clear yet, what number sense 
means related to these number domains and how it 
relates to the number sense in the domain of natural 
numbers. 

Important questions related to number sense in every 
number domain are:

 ― What influences the development of number 
sense? 

 ― What is the role of metaphors, manipulatives, 
models, and mental models in the development 
of (didactical) number sense? 

 ― What is the role of reasoning and argumentation 
in the development of (didactical) number sense? 

 ― What is the role of counting in the development 
of (didactical) number sense? 
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Number sense involves the understanding and the abil-
ity to use numbers and operations in a reasonable and 
flexible way. This paper refers to part of a qualitative 
study that is being conducted to analyse the development 
of number sense through an intervention designed for 
this purpose. Our work aims to analyse the strategies 
used by 8th grade students when solving numerical tasks 
before and after an intervention. An initial and a final 
interview were conducted on 11 students to analyse the 
effect of the intervention on their tendency to use differ-
ent types of strategies. The results show improvements in 
the understanding of fractions and on the use of number 
sense, but also underscore the difficulties still encoun-
tered by some students.

Keywords: Number sense, rational numbers, secondary 

education, strategies.

RATIONALE AND PURPOSE

In recent decades mathematics education has focused 
on the development of skills that make students com-
petent to use this knowledge in a flexible and justi-
fied way. These kinds of mathematical skills include 
an understanding of numbers and operations and 
the ability to use them flexibly, exhibiting different 
strategies for handling numbers and operations, and 
the ability to evaluate the reasonableness of results, 
which is commonly called number sense (McIntosh, 
Reys, & Reys, 1992). This term appears in the curricula 
of several countries and is an important topic to be 
studied. Research intended to assess number sense 
in students and teachers in primary and secondary 
education showed a lack of these abilities (Reys & Yang, 
1998; Veloo, 2010; Yang, Reys, & Reys, 2009). Although 
research indicates this is a problem for many students, 
there is a minority who made use of number sense. 
At this point some questions arise: Which of these 
strategies do they know? Can students learn number 

sense strategies through a suitable intervention? 
What changes occur after a classroom intervention 
regarding the use of number sense strategies?

BACKGROUND

The term number sense refers to a broad set of skills 
and knowledges, and as such it does not have a closed 
definition. However, some researchers agree that 
number sense is recognised in the action itself and 
that it includes the knowledge and flexible use of 
numbers, operations and their properties, the use of 
different strategies to solve numerical problems and 
being able to recognise the reasonableness of the prob-
lem statement and data, the way it is solved and the 
result obtained (McIntosh et al., 1992; Sowder, 1992). 
The term number sense is included in the curriculum 
of different countries, such as Australia, the United 
States, Canada and Spain, but it seems that this ability 
is not being sufficiently developed in every country, 
despite being featured in the teaching objectives.

In an effort to devise a more operational term, there 
have been attempts to describe it by components 
(McIntos et al., 1992; NCTM, 1989; Reys & Yang, 1998; 
Yang, 2003).  They all agree on the aspects involved 
in number sense, though some are more detailed. For 
this study the framework considered to characterise 
number sense is composed by the following compo-
nents: (1) understand the meaning of numbers; (2) rec-
ognise the relative and absolute size of numbers and 
magnitudes using estimates or numerical properties 
to make comparisons; (3) use benchmarks to estimate 
a number or magnitude when comparing or doing cal-
culations; (4) use graphical, manipulative or pictorial 
representations of numbers and operations; (5) un-
derstand operations and their properties; (6) under-
stand the relationship between the problem’s context 
and the operation required; (7) realise that there are 
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multiple strategies; (8) recognise the reasonableness 
of the problem (data, strategies and results).

Research on number sense has focused on evaluating 
primary education students and teachers (Veloo, 2010; 
Yang, 2003; Yang et al., 2009), with less research be-
ing conducted on secondary education (Reys & Yang, 
1998; Veloo, 2010). All of these studies have found that 
there is a lack of number sense in these groups when 
solving numerical tasks. A tendency to use algorithms 
and written computation, and a lack of relationship 
between good written computations and good num-
ber sense have been shown in several studies on high 
grades of primary education and lower secondary 
education (Reys & Yang, 1998; Veloo, 2010). In contrast, 
it was revealed that students with higher academic 
marks in mathematics performed better in number 
sense tests (Veloo, 2010) as did those with good mental 
computation and estimation skills (Sowder, 1992). In 
an effort to address this situation, interventions to 
develop number sense have been designed. Markovits 
and Sowder (1994) established that number sense can 
be developed, but over a long period of time, and that 
students, in addition to gaining new knowledge, reor-
ganised prior knowledge. Those studies that included 
an intervention to develop number sense agree on the 
idea that activities must contain a process of numeri-
cal exploration, the search of number and operation 
properties and a methodology based on the discussion 
(Veloo, 2010; Yang, 2003). All of them have shown that 
this type of learning is more significant than tradition-
al learning and that it is possible to develop number 
sense and the activities they used for it. These studies 
only show pre-test and post-test results that enable us 
to see that the activities worked, but qualitative data 
concerning the changes in their use of strategies is 
still needed.

OBJECTIVES AND METHODOLOGY

This work is part of a broader study whose objective is 
to identify the strategies used by students before and 
after an intervention to analyse the possible changes 
in their use of number sense. Since this term encom-
passes multiple concepts that are developed over the 
course of mandatory schooling, in this case we have 
opted to focus our study on three of the lesser studied 
components in research into this topic involving sec-
ondary students. The intervention focused on the de-
velopment of three components from the framework 
involving whole, decimal and rational numbers: (3) 

use of benchmarks; (4) use of graphical representa-
tions of numbers and operations; (8) recognise when 
the result is reasonable. The design was intended to 
foster these three components, although the use of 
other components was expected since they are not 
independent. 

The sample consisted of two groups (25 and 22) of 8th 
grade students (12–13 years old) from a public second-
ary school in Spain. These students were involved in 
an intervention designed to develop and encourage 
the use of number sense. The students’ existing knowl-
edge of number sense was in keeping with Spain’s cur-
riculum in traditional numerical learning, which at 
this level involves consolidating students’ knowledge 
of whole, decimal and rational numbers.

Initial test
The students were given an initial written test that 
included 12 items designed to evaluate the strategies 
used when facing numerical tasks focused on the use 
of the three components mentioned above. This initial 
test revealed the students’ shortcomings in the use 
of benchmarks and in making graphs to aid in esti-
mating numbers and in operations, their preferences 
for using rules or algorithms, and conceptual errors, 
especially with fractions (arranging them considering 
differences between the numerator and denominator, 
making incorrect graphical representations of frac-
tions and operations) (Almeida & Bruno, 2014). The 
test yielded background information that was used 
to design the classroom intervention tasks.

Classroom intervention
The classroom intervention took place over the course 
of eleven 50-minute sessions and was based on a col-
laborative environment and on discussions between 
students of each task. They solved tasks working 
individually, in pairs, in small groups or as a whole, 
though always showing the strategies they used so as 
to discuss them with the rest of their classmates in a 
final discussion. Since, generally, students tended to 
use memorized rules, at the end of each task during 
discussion they were asked to find different strategies 
in order to explore numbers and find number sense 
strategies. This methodology allows students to share 
their knowledge and to discover number sense strate-
gies without the intervention of the teacher/research-
er. The students were given written tasks designed by 
the researchers that were intended to show that an 
exact answer or calculation is not always necessary 
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to resolve certain questions, to highlight the impor-
tance of questioning one’s results by evaluating if an 
answer is reasonable or not, and to develop strategies 
that involve the use or graphical representations and 
show the usefulness of taking benchmarks. The tasks 
themselves involved estimating quantities, sorting 
numbers and doing operations with whole numbers, 
decimals and fractions while encouraging debates 
among the students to find the most suitable strategy.

Interviews before and after the 
classroom intervention (case studies)
The initial test was also used to select 11 students who 
were interviewed before and after the classroom in-
tervention with the aim of making a case study of 
the possible improvement. Both interviews, while 
designed by the researchers, also relied on previous 
research (Yang & Huang, 2004; Reys & Barger, 1991). 
Their aim was to assess the use of the three compo-
nents being studied. The interviews consisted of two 
phases. In the first one the students solved all of the 
tasks without the researcher’s intervention. Once 
they had finished, they were asked to explain each 
answer by trying to find new strategies without using 
a written computation method. If they had not used 
a graphical representation, they were encouraged 
to find a way to use one. The initial interview had 
six items and the final one had five. Regarding the 
analysis of the data from interview, the answers of 
the eleven students were analysed to identify the cor-
rectness (1 for correct answers and 0 otherwise) and 
the type of strategy used. A category system adapted 
from Yang and colleagues (2009) was used to classify 
their reasoning: number sense based (NS), when they 
used exclusively one or several components of the 
number sense framework; partially number sense 
based (PNS), if they combined the use of number sense 
components by using memorised rules and/or algo-
rithms; not number sense (NNS), when they only made 
use of algorithms or memorised rules; other (Oth), 
when students do not provide sufficient grounds to 
identify the reasoning that led them to the final an-
swer(s); blank (B), when the question is unanswered. 
The NS and PNS categories also considered the type 
of component used.

Due to space limitations, in this paper we present the 
results of one item that was similar in the initial test 
and in both interviews. This allows us to compare the 
answers of the eleven students before and after the 
intervention. Focusing on just one item, we wish to 

exemplify the type of analysis that we are undertak-
ing. These items were the following: Initial interview, 

“Sort from smallest to largest the following numbers: 
2/5, 7/8 and 4/3”; Final interview, “Sort from smallest 
to largest the following numbers: 7/8, 0.3, 4/3, 0.55 and 
2/9”. We opted for this problem type involving sorting 
fractions because of the poor results obtained on the 
initial test, along with the variety of answers given 
based on rules. It was also presented in the initial 
and final interviews, and despite having a standard 
problem statement, it can be solved using the compo-
nents of number sense that are being studied, which 
allows us to observe how the students put them into 
practice. Specifically, the objective of these items con-
cerning the number sense was to encourage students 
to use benchmarks (component 3) and/or graphical 
representations (component 4) to compare fractions 
without the need to use written computation. All of 
the tasks in the initial and final interviews were de-
signed such that they could be solved using the com-
ponents in this study. The initial and final interviews 
were separated by a period of three months. Over this 
time the students were involved in a classroom inter-
vention. Of the eleven sessions, two were devoted to 
working on tasks related to the items analysed, i.e. 
sorting rational numbers. An example of one inter-
vention task is shown below. 

The students were given a problem to solve individ-
ually for later discussion with the whole group. The 
statement was: “Sort from smallest to largest the fol-
lowing numbers: 9/20, 8/5 and 3/10”. After solving the 
problem individually, they were asked to present their 
strategies on the blackboard. In this case the instruc-
tor’s intervention was not needed and the students 
found all of the strategies expected: (1) compute the 
least common multiple to apply an algorithm and ex-
press all the fractions with a common denominator; 
(2) apply the division algorithm to express fractions 
as decimal numbers; (3) graphically represent the 
fractions; (4) use the benchmarks ½ and 1 to compare 
the fractions. The idea was to show every possible way 
they knew to solve the problem so that the students 
could see the different possible strategies and be able 
to choose the one they preferred. In those cases with 
insufficient variety, they were encouraged to explore 
numbers in different ways such as understanding the 
meaning of numbers, the magnitude, use of bench-
marks, graphical representions, etc. 
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RESULTS AND DISCUSSION

The eleven students interviewed answered the two 
items mentioned above, using different methods when 
asked to do so. Table 1 shows a summary of the results 
by the category of the strategy the students used for 
each task. The number in parentheses shows the com-
ponent from the number sense framework that they 
primarily used. The first problem (1st) was the one the 
students did on their own without the interviewer’s 
intervention, and the rest resulted from asking them 
to use new strategies to solve the task.

In the answers we find four out of five different catego-
ries: NS, NNS, Oth and B. A description of the strategies 
included in each category is presented below. The PSN 
category did not appear in this item, as the students 
made exclusive use of number sense components or 
rules independently, though there were strategies 
that combined the use of both in other items in the 
interviews.

Number sense (NS)
Component 1: Using the properties of numbers to ex-
press fractions as equivalent fractions or decimals as 
fractions indicates an understanding of the meaning 
of numbers. An example of this is provided by student 
S4, who states for the task in the final interview “(...) 
we can express decimals as fractions to compare them, 
for example, 0.3 is equal 3/10 and 0.55 is around ½ (...)”.

Component 3: Using benchmarks to facilitate com-
parisons. The students used different benchmarks, 
some using more than others to compare against. 
One example of the use of benchmarks is provided 
by student S1 who, after the intervention, used four 
different benchmarks (1, ½, 1/3 and ¼): “7/8 is almost 
1, 0.3 is a third, 4/3 is greater than 1, 0.55 is a half and 
2/9 is close to ¼”.

Component 4: Using graphical representations to 
ascertain a number’s magnitude for comparison 
purposes, especially for fractions. Figure 1 shows an 
example from the final interview.

Not number sense (NNS)
We found two kinds of strategies that made use of 
rules and/or algorithms. The most common in the 
initial interview was to compute the least common 
multiple to apply an algorithm and express the frac-
tions with a common denominator. The other strategy 

Student Initial interview’s strategies Final interview’s strategies 

1st 2nd 3th  1st 2nd 3th  4th

S1 0NS(1) 1NS(3) 0NS(4) 1NS(3)

S2 1NS(3) 1NS(4) 1NS(3) 1NS(4)

S3 1NNS 1NS(3) 1NS(4) 1NS(3) 1NS(4)

S4 1NNS 1NS(3) 1NS(4) 1NNS 1NS(3) 1NS(1) 1NS(4)

S5 0NNS 1NS (3) 0NS(4) 0NS(3) 0NS (4)

S6 0B 1NS(3) 1NS(4) 1NS(3) 0NS(4)

S7 1NNS 1NS(3) 0NS(4) 1NNS 1NS(3) 0NS(4)

S8 0NNS 0NS(3) 1NS(4) 1NNS 1NS(4)

S9 0NNS 0NS (4) 0NS(3) 0NS(4)

S10 0Oth 0NS (4) 0NS (4)

S11 0B 1NS(3) 0NS(4) 1NS(3) 1NS(4)

0: Correct final answer; 1: Incorrect final answer.
NS: Number sense; NNS: Not number sense; Oth: Other; B: Blank.
(1) Understand the meaning of numbers; (3) Use of benchmarks; (4) Use of graphical representations; 

Table 1: Strategies classification for the item selected in both interview by student

Figure 1: Answer from S2 in the final interview
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found in this category was a memorised rule in which 
they established that a fraction was greater than oth-
er if the difference between the numerator and the 
denominator was smaller, without making sense of 
the fraction concept and the incorrectness of the rule 
for cases with different denominators. In the final 
interview, the most common strategy was to apply the 
division algorithm to express fractions as decimals. 

Other and blank (Oth and B)
Common to the answers in these two categories is 
the fact that they did not have a justification for the 
reasoning or, in the case of “Blank”, even an answer.

Analysis of the answers 
An individual analysis of the students’ answers re-
veals the improvements and/or differences in the use 
of strategies (Table 1) when solving this item. 

NS answers before and after the intervention
Students S1, S2 and S6 used number sense strategies 
as their initial answers in both interviews, though 
we observed more confidence in the use of number 
sense strategies after the intervention, since in the 
initial interview students argued that they were used 
to use exact written computation so they were not 
allowed to use what they named as “logical reasoning” 
referring to estimates or the use of benchmarks, but 
in the final interview they made use of number sense 
strategies without this statement, a hint of changes in 
the didactic contract during the intervention. S1 used 
benchmarks and graphical representations correctly 
in both interviews, whereas students S1 and S6 had 
problems with the graphical representations of frac-
tions and decimals before and after the instruction. 
We regard Student 1 as being representative of this 
group.

In the initial interview, Student 1 used three different 
strategies to answer the task, but only one of them was 
completely correct. In his first answer his reasoning 
was correct, making use of the fraction’s properties 
to find equivalent fractions, but he made a mistake 
when estimating the magnitude of 2/5. The student 
was unable to graphically represent the fractions al-
though he was able to correctly compare them with 
1 and ½. After the intervention, the student decided 
to use this last strategy but in this case using more 
benchmarks (1, 1/2, 1/3 and 1/4) before stating that he 
did not know how to represent fractions. This student, 
although he knew some number sense strategies, did 

not show any apparent improvement involving the 
use of graphical representation. He demonstrated a 
mastery of the use of appropriate benchmarks, even 
more so after the intervention.

NNS answers before and after the intervention 
Students S4, S7 and S8 were characterised by their 
preference to use rules for the first answer despite 
knowing other procedures involving either graphical 
representation or benchmarks. We regard Student 7 
as being representative of this group.

Student 7 had similar results in both interviews; in his 
first answers he gave rule-based reasoning, although 
in the initial interview this involved computing the 
least common multiple and in the final one it was relat-
ed to the division algorithm. For the other strategies 
used, he followed the same reasoning in each inter-
view, including the use of benchmarks and graphical 
representations, but although it was correct, he was 
unable to interpret it. Therefore, the student made no 
progress in this task after the intervention.

Improvement in NS after the intervention
Students S3, S5 and S11 were characterised by exhib-
iting a change in strategy between the two interviews 
toward an improved use of number sense. The case of 
student 11 is described in greater detail below.

Student 11 used the same strategies in both interviews 
but with a clear improvement in the second case. Both 
times she used benchmarks and graphical representa-
tions; regarding benchmarks, she exhibited a rich-
er justification in the final interview, choosing two 
benchmarks (1 and ½), while in the initial interview 
she said she was not able to do so, and giving more 
accurate explanations of their comparison; as con-
cerns graphical representations, she demonstrated 
an improvement in this aspect as well, being able to 
represent all the numbers. This last improvement is 
evident since in the initial interview she was not able 
to represent fractions correctly, dividing the units 
into unequal portions.

No improvement in NS after the intervention
Students S9 and S10 used incorrect strategies when 
they attempted to employ improperly memorised 
rules before the instruction. However, they exhib-
ited a change in intention after the final interview 
by trying to make sense of fractions and their mag-
nitude instead of using memorized and non-argued 
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rules. They applied number sense strategies, although 
conceptual errors related to fractions that remained 
after the intervention impeded them from obtaining 
the correct answer. As an example of this group, let 
us consider the answers given by student 9. 

In the initial interview, Student 9’s answers demon-
strated a lack of understanding of fractions; she 
applied a memorised rule in which she decided the 
magnitude of the fractions based on the difference 
between the numerator and denominator, which led 
her to an incorrect answer. She also tried to use a 
graphical representation in which she divided the 
units without realising that the pieces had to be equal 
for each fraction. After the intervention, she demon-
strated an improvement by attempting to make sense 
of the strategy used and not applying a memorised 
rule. She tried to apply the use of benchmarks and 
graphical representations but the improvement was 
insufficient, given her misconception of the meanings 
of the numerator and the denominator: namely, she 
reversed their meanings (Figure 2). 

CONCLUSION

Students who used number sense strategies in the 
initial interview as their first answer continued to use 
these strategies, but were more confident using them, 
knowing that they were allowed to use any strategy 
they knew (S1, S2 and S6). In contrast, after the inter-
vention some students preferred to use strategies 
classified as not number sense as their first option (S4, 
S7 and S8). These students expressed a knowledge of 
other number sense strategies and yet opted to con-
tinue with rule-based methods, as they were more at 
ease with them and because they felt their teachers 
expected them to use these procedures. There were 
also students who changed their strategies towards 
the use of number sense, although in some cases their 
misconceptions concerning graphical representa-

tions of decimal numbers kept them from obtaining 
the correct answers (S3, S5 and S11). 

As other interventions that aim to encourage the use 
of number sense have shown, developing these strate-
gies is a long-term process (Markovits & Sowder, 1992). 
Evidence of this statement is the insufficient improve-
ment of S9 and S10 related with their mathematical 
misconceptions concerning rational numbers. The 
use of number sense requires the use of conceptual 
ideas that, in this case, involve rational numbers, their 
meaning and properties. Therefore, in cases where 
misconceptions arise, more time might be needed 
to develop number sense strategies. These mistakes 
are particularly evident as they relate to the concept 
of fraction and to the graphical representations of 
fractions as a means for obtaining an answer to a 
problem. Even though not every student showed op-
timal improvement, some changes were noted as a 
consequence of the intervention. The results of the 
interviews led us to delve into the different options 
students used to obtain an answer: in some cases 

students used a rule-based strategy, but they were 
able to use number sense strategies as a second or 
third option. This flexibility in the use of strategies 
is one limitation of a written test, since students only 
show one strategy that conceals the number sense 
they may possess, perhaps because they think that 
is what teacher expected or because they feel more 
confident using written computations.
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Mental computation is an important skill for mathe-
matics learning. This paper analyzes mental compu-
tation strategies and errors in grade 6 students with 
positive rational numbers in a teaching experiment 
based on tasks.  The tasks involve the four basic oper-
ations and are done in conjunction with a discussion 
of strategies with the entire class. We focussed on stu-
dent relational thinking and our findings suggest that 
open number sentences highlight the meaning of the 
equal sign and the importance of using properties of 
operations in mental computation.  This is reflected in 
student’s strategies when they use numerical relation-
ships to compute mentally. Mental representations such 
as propositional representations are strongly linked to 
strategies based on numerical relationships.

Keywords: Mental computation, rational numbers, student 

errors, student strategies, relational thinking.

INTRODUCTION

Carrying out mental computation tasks in the class-
room helps in the development of important mathe-
matics skills. As Taton (1969) indicates, mental com-
putation develops notions of order, logic, reflection, 
concentration and memory. It also prepares students 
for daily life, providing them with tools to perform 
simple computations without the help of external re-
sources. Former studies (e.g., Caney & Watson, 2003; 
McIntosh, 2006) highlight the importance of under-
standing student strategies in mental computation, 
particularly the numerical relationships they use in 
solving problems involving rational numbers. This 
understanding may support teacher planning and 
teaching activity. This paper is drawn from a teaching 
experiment based on mental computation tasks in-
volving open number sentences with four operations 

and the discussion of strategies analyzing mental com-
putation strategies and errors in grade 6 student, fo-
cusing on how they use relational thinking. 

MENTAL COMPUTATION WITH 
RATIONAL NUMBERS

Reys, Reys, Nohda and Emori (1995) refer to mental 
computation as the process of computing exact arith-
metic results without external support. In line with 
this perspective this paper takes mental computation 
to be the process of computing arithmetic results in a 
quick and efficient way using number facts (e.g., mul-
tiplication tables), memorized rules (e.g., how to mul-
tiply by powers of ten) and numerical relationships 
(e.g., converting between different representations) 
supported by mental representations (e.g., mental 
images of fractions or relational thinking based on 
propositional representations). 

The main elements of our framework are the use of (i) 
number facts; (ii) memorized rules, (iii) numerical re-
lationships and (iv) mental representations (Figure 1).

Figure 1: Conceptual framework

mailto:renatacarvalho@campus.ul.pt
mailto:jpponte@ie.ulisboa.pt


Student strategies and errors in mental computation with rational numbers in open number sentences (Renata Carvalho and João Pedro da Ponte)

246

To develop mental computation, Heirdsfield (2011) 
indicates that students need to know number facts but 
also to understand the size and the value of numbers, 
the effect of an operation on a number, and to be able 
to make estimates to check if the solution is reason-
able. As computing mentally with rational numbers 
involves more complex reasoning than computing 
with whole numbers (Barnett-Clarke, Fisher, Marks, 
& Ross, 2010), we assume that the use of memorized 
rules may also support student computation and re-
lational thinking (Empson, Levi, & Carpenter, 2010).

The use of mathematical relationships is evidence of 
relational thinking. This is related to the capacity to 
use fundamental properties of operations and the 
notion of equality to analyse and solve problems. As 
Carpenter, Franke and Levi (2003) highlight, “many 
fundamental mathematical ideas involve relations be-
tween different representations of numbers and oper-
ations on them” (p. 38). From their perspective, the use 
of open number sentences (e.g., 1/2 − __ = 1/4) may be a 
viable way to draw a student’s attention to relations 
between numbers and operations and, if students 
are experienced in looking at these kind of relations, 
they will be able to use them to compute quickly. For 
example, if students understand that 3/4 may be split 
into 3 × 1/4 they quickly compute 3/4 ÷ __ = 1/4. Also, if 
they understand 10% as a benchmark and know how to 
multiply/divide by powers of ten, they easily compute 
5% by halving or 20% by doubling. 

Another important idea to consider in mental com-
putation is the fact that we construct mental repre-
sentations from the world that surrounds us, which 
we use in sense making and making inferences. 
Understanding student mental representations may 
help us to understand their relational thinking be-
cause they use mental representations to relate num-
bers and operations to their real world knowledge, in-
cluding knowledge about mathematics. In the theory 
of mental models (Johnson-Laird, 1990), these mental 
representations may be mental models, mental imag-
es or propositional representations: (i) mental models 
are generalized perceptions of the world (e.g., using 
a generalized context of sales to compute 20% of 25); 
(ii) images involve a more specific perception of a real 
world where some characteristics are considered (e.g., 
relating the symbolic representations 1/2 to one part 
of a pizza divided in two parts); (iii) propositional rep-
resentations represent true/false propositions that 
play an important role in the inference process (e.g., 

to compute 40% of ? = 48, using a sequence of proposi-
tions leading to the solution: ‘if 48 are 40%, 48 ÷ 4 are 
10% which is 12. So, 10% × 10 is 100% and 12 × 10 is 120 
which is the missing value’). 

When students compute mentally, they often make 
errors that arise from a lack of understanding of 
rational numbers. This is incorrect usage of the ele-
ments presented in Figure 1. Carpenter and colleagues 
(2003) suggest that such errors may be based on gen-
eralizing properties in other situations. For example, 
knowing that multiplication and addition are com-
mutative may lead students to apply this knowledge 
to subtraction and division. In adding fractions stu-
dents often regard them not as a single number but 
as two separate numbers (Lamon, 2006), thus adding 
numerators and denominators. As McIntosh (2006) 
indicates students make conceptual and procedural 
errors in mental computation. A conceptual error 
arises when the student fails to understand the na-
ture of the numbers or of the operation involved and a 
procedural error takes place when the student knows 
what strategy to use but makes a computation error 
when putting it into practice.

RESEARCH METHODOLOGY 

The study is qualitative and interpretative with a 
design research approach (Cobb, Confrey, diSessa, 
Lehere, & Schauble, 2003). This is a developmental 
study that aims to solve problems identified from 
practice—the difficulties in learning rational num-
bers and near absence of mental computation with 
this number set. It is based on a teaching experiment 
with mental computation tasks that provide opportu-
nities for discussing student strategies and errors. It 
was carried out in three phases: preparation; exper-
imentation and analysis. In the preparation phase 
(2010) a preliminary study in grade 5 was undertaken 
(conducted by the first author in their classes) in order 
to collect information on strategies that students use 
and errors that they make when computing mentally 
with rational numbers.  This showed that practical 
aspects of students’ mental computation practice 
were potentially important for planning the teaching 
experiment. Such planning also took into account re-
search on rational numbers and mental computation 
with rational numbers. In the second phase (2012–13), 
two experimental cycles were implemented involving 
two teachers and two grade 6 classes (39 students) 
from two different schools with the first author as 
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a participant observer. During this phase some re-
finements were made in the teaching experiment (e.g., 
changing the sequence of tasks). Data was collected 
through video and audio recordings of classwork with 
mental computation and researcher notes. Finally, in 
the analysis phase, audio and video records of student 
strategies and errors were transcribed. In this paper 
we focus on the collective discussions in order to un-
derstand student strategies and errors, particularly 
student relational thinking in questions involving 
open number sentences. The analysis of student men-
tal computation strategies is carried out using catego-
ries taken from previous studies (e.g., Caney & Watson, 
2003) and from the concept  of mental representations 
(mental models, images and propositional representa-
tions), number facts, memorized rules, and numerical 
relationships. From these concepts and taking into 
account the data, three main categories of strategies 
were defined (numerical relationships, number facts 
and memorized rules) and in each of these, several 
subcategories (Table 1). The categorization was made 
according to the strongest concept involved in student 
strategy. For example, if there is strong usage of nu-
merical relationships, for example, the part-whole 
relationship  a strategy from the category “numerical 
relationships” and subcategory “comparison part-
whole” was named Mental representations were not 
considered as a fourth category since they are com-
mon to all categories.  Thus mental representations 

were analyzed as a support to student strategies. To 
analyze student errors McIntosh’s (2006) notion of 
conceptual and procedural error was used. In each 
of these categories some subcategories are identified 
as shown in Table 2.

THE TEACHING EXPERIMENT 

The teaching experiment relies on the conjecture that 
a systematic work with mental computation tasks with 
rational numbers represented as fractions, decimals 
and percentages, and whole class discussions may 
contribute to the development of students’ mental 
computation strategies and understanding of their 
errors. Before the teaching experiment the students 
had already worked with rational numbers in differ-
ent representations and operations, with an emphasis 
on algorithms. The teaching experiment involves ten 
mental computation tasks (with several number sen-
tences or word problems each) with rational numbers 
to carry out weekly, all prepared by the first author 
and discussed in detail with the participating teachers. 
These tasks (Table 3) were presented at the beginning 
of a mathematics class, using a timed PowerPoint. The 
students had 15 seconds to solve each number sen-
tence and 20 seconds to solve each word problem indi-
vidually, in both cases recording the results on paper. 

Categories

Numerical relationships Number facts Memorized rules

Su
bc

at
eg

or
ie

s

Equivalence
Part-part comparison
Part-whole comparison
Inverse operation

Two halves make a unit
A half of a half is a quarter
Two quarters is a half
10% of…

Rule to multiply/divide by powers of ten
Rule to add/subtract fractions with dif-
ferent denominators

Table 1: Categories of strategies in mental computation with rational numbers

Categories

Conceptual error Procedural error

Su
bc

at
eg

or
ie

s Strong use of additive reasoning in multiplicative prob-
lems
Ignore the place value in decimal representation
Add/subtract numerators/denominator when operat-
ing with fractions

Calculation error
Solve a part of an expression when a valid strategy is 
possible to identify

Table 2: Categories of errors in mental computation with rational numbers



Student strategies and errors in mental computation with rational numbers in open number sentences (Renata Carvalho and João Pedro da Ponte)

248

Each task has two parts, with 5 numbers sentences or 
4 word problems in each part. On finishing each part, 
there was a collective discussion of student strategies 
and errors. These mental computation lessons lasted 
between 30 and 90 minutes. Some examples of the 
content of the tasks used in the teaching experiment 
are presented in Table 3. The timed tasks were seen 
as a way to challenge students to compute mentally. 
The discussion moments were regarded as the most 
important part of the lesson, and allowed students to 
show how they think, the strategies that they use, and 
the errors that they make. They were important for 
students to think, reflect, analyze, make connections, 
share, and extend mental computation strategies, as 
well as to identify skills that they could develop in 
numbers and operations.

In the teaching experiment the students began to com-
pute mentally with rational numbers represented as 
fractions (addition/subtraction in task 1 and multipli-
cation/ division in task 2), then with decimal and frac-
tion representations with the four basic operations 
(task 3), and then solely with decimal representation 
(addition/ subtraction in task 4 and multiplication/
division in task 5).  Then they solved word problems 
in measurement and comparison contexts involving 
fractions and decimals (task 6). The percent rep-
resentation was used in task 7, as the teacher began 
working with statistics. Then, students used the three 
representations (decimal, fractions and percent) in 
tasks 8, 9 and 10. In task 10, they solved word problems. 

The design of tasks is based on three principles, taking 
into account previous research on mental computa-
tion and rational numbers.

Principle 1. Use contexts to help students to give mean-
ing to numbers. Structured knowledge is associated 
with the context in which it was learned and most 
of the time it is difficult for a student to bridge this 
knowledge to new situations. Therefore, number 
sentences and word problems were used to provide 

students with a variety of contexts and help them to 
establish connections between them. 

Principle 2. Use multiple representations of ration-
al numbers. Fractions, decimals, and percent rep-
resentations were used in the same task and in several 
tasks across the teaching experiment (e.g., , question 
from task 3). We used even numbers and multiples 
of 5 and 10, benchmarks such as 25% or 1/2 to facil-
itate equivalence between decimals, fractions and 
percent, and to stress numerical relationships (e.g., 
multiplying by 1/5 is the same as dividing by 5) and 
part-whole relationships (e.g., if 10% corresponds to 
5, then 100% is 10 times bigger). The rational number 
representation used was related to the topics that stu-
dents were working on in class with their teacher be-
cause the tasks had been integrated into the teachers 
overall planning. This option provided students with 
a further opportunity to learn rational numbers on 
different mathematical topics throughout the math-
ematics curriculum.

Principle 3. Use tasks with different cognitive de-
mands. For example, taking into account mental com-
putation levels (Callingham & Watson, 2004) tasks in 
which the students have to use the concept of half to 
compute (e.g. 50% of 20 or 1/2 + 1/2=__) or need to use  
more complex numerical relationships (e.g., 20% of 

__ = 8) to do the computation were designed.

In planning the lessons, we tried to anticipate possi-
ble student strategies and errors, to prepare better 
collective discussions. All classroom activities were 
led by the teachers with the first author making oc-
casional interventions to clarify aspects related to 
student strategy presentation.

STUDENT MENTAL COMPUTATION 
STRATEGIES AND ERRORS

Student relational thinking through their strategies 
and errors, supported by mental representations in 

Think fast! What is the exact value?

Task 1 :        3/4 − 1/2 = __; 1/2 − __ = 1/4

Task 6:      
The area of the base of a cylinder is 4.2 m2 and the volume 12.6 m3 Calculate the height of the 
cylinder.

Task 7 90% of 30 = __

Task 8: __% of 20 = 18

Table 3: Examples of tasks
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open number sentences was analysed. Examples of 
related questions were chosen (regarding numbers 
or the numerical relations between them).

In task 1, students were challenged to mentally com-
pute “3/4 − 1/2 = __” and “1/2 − __ = 1/4”. These sentenc-
es involve two possibilities to reach 1/4. To solve 

“3/4 − 1/2 = __” Ivo explained: “I made the rule. 2 multiply 
by 2 gives 4 and then following this I multiplied by 2 
also. Then 3 minus 2 is 1. 1/4.”  Ivo used a strategy based 
on memorized rules where he applied the procedure 
to subtract two fractions with different denominators, 
which may have been supported by a mental image 
of a written algorithm. Concerning “1/2 − __ = 1/4”, we 
present a dialogue where it is possible to understand 
Marta’s and Rogério’s relational thinking and Eva’s 
error: 

Eva:  I put two quarters. 
Teacher:  First, Eva will explain to us why she put 

two quarters. 
Eva:  Because if we multiply by 2 ... We need 

to have the same denominator and if we 
multiply the 2 by 2 it gives us 4. It gives 
us 4 and then 2 multiplied by 1 gives 2. 
One quarter … gives two quarters. 

Teacher:  Now, you are going to listen to your col-
leagues and then I will talk to you. 

Ivo:  Eh, I had a quarter and I crossed it out! 
Teacher:  Do you think that a quarter is correct 

Ivo? 
Ivo:  Yes. 
Teacher:  Why? 
Ivo:  Because 2 minus 2 is not one . . . Because 

following this in the numerator, 2 mi-
nus 2 is not 1. If you use two quarters 
you have to multiply the numerator by 
2 and the denominator also, and it is not 
2 minus 2.

Teacher:  Marta.
Marta:  It gives a quarter. I saw that 1/4 + 1/4 is 

1/2 then, if we take a quarter from a half, 
it gives us a quarter.

Teacher:  Rogério, did you hear Marta? 
Rogério:  I put a quarter. 
Teacher:  Explain your reasoning. Let’s see if it’s 

the same as Marta or not. 
Rogério:  We have a cake. A half of a cake. We ate 

a half [from this cake] and left only a 
quarter. So, it is half less a quarter. 

Marta and Rogério presented a number fact strategy, 
but supported by different mental representations. 
Marta used the number fact “1/4 + 1/4 = 1/2” and the 
propositional representation: (if 1/4 + 1/4 is 1/2 then, 
1/2 − 1/4 is 1/4) to relate this knowledge with the open 
number sentences that she needed to solve. She ap-
plies a property of subtraction (to get the subtractive, 
we take the difference from the additive). Rogério also 
used a number fact (a half of a half is a quarter) but 
he used a mental image (“A half of a cake”; “We ate a 
half ”; “and left only a quarter”). Eva had a strategy to 
solve the question but she only focused on the fraction 
equivalent to 1/2 and did not make the subtraction 
between 2/4 and 1/4 so she made a procedural error. 
It seems that she was trying to apply the same rule 
that Ivo used above and a similar mental representa-
tion (mental image of a written algorithm). The ex-
planations of Marta and Rogério show that a strategy 
based on number facts may be supported by different 
mental representations, probably according to the stu-
dent’s strongest experience. Marta used mathematical 
knowledge in her propositional representation and 
Rogério used a real world experience in his mental 
image, which shows their relational thinking.  A stu-
dent’s experience is crucial in defining the mental 
image that supports their strategies. Rogério used a 
different mental image from those used by Ivo and 
Eva. A strong mental image of a written algorithm 
(like Ivo and Eva used) does not emphasize student 
relational thinking and may lead them to make some 
errors (like Eva did) because they are focused on the 
procedure and not on the relationships between num-
bers and operations.

In the second part of task 6 students were challenged 
to compute word problems mentally. To solve the 
problem shown in Table 3 involving the concept of 
volume the students could use open number sentenc-
es like “12.6 = 4.2 __”. To solve the problem Pedro, Maria 
and Acácio used different strategies supported by 
propositional representations. They explained: “It 
gives 3. I divided 12.6 by 4.2” (Pedro), “I didn’t divide. I 
multiplied. I tried to find a number. 4.2 times a number 
to get 12.6 and I found 3” (Maria) and “It gives 3.3. I 
divide 12.6 by 4.2. 4 plus 4 is 8, plus 4 is 12. 2 plus 2 is 
4, plus 2 is 6” (Acácio). They probably had in mind the 
open number sentence that we had indicated. Pedro 
and Maria used relational thinking, taking advantage 
of the properties of operations (Pedro) and relations 
between the numbers on each side of the equal sign 
(Maria). Pedro used the inverse operation strategy 
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and a propositional representation based on the prop-
osition “if 4.2, then ,” showing knowledge about the 
relation between multiplication and division. Maria 
used an equivalence strategy supported by a propo-
sitional representation based on a sequences of true/
false propositions where she “tried to find a number” 
that could make the equivalence true (4.21 = 12.6 (false); 
4.22 = 12.6 (false) and 4.23 = 12.6 (true)). Acácio made 
a conceptual error because he was not able to under-
stand how to give meaning to his result. He identified 
the correct operation (12.6  4.2 like Pedro did) and used 
a splitting strategy (separating the integer and the 
decimal points of the number in order to operate/
compare them) but was not able to understand that 
the relation concerning the whole number must be 
seen and not each part separately. His strategy may 
be supported by a propositional representation based 
on a false proposition:  12 is  and 6 is.If 12.6 is “a twelve 
plus a six” and 4.2 is “a four plus a two” then the result 
is 3.3, “a three plus a three”). The origin of this error 
could   lie in the additive reasoning used by Acácio. 
The three students used different strategies but the 
same type of mental representation in their relational 
thinking. This suggests that propositional representa-
tions play an important role in this process, where 
different mathematical knowledge must be analyzed 
and related. Acácio could have achieved success in 
his relational thinking if his reasoning were more 
multiplicative and not as strongly additive. 

In task 7, students had to compute “90% of 30 = __”, 
which is related to the open number sentence “__% of 
20 = 18” from task 8. To solve these sentences, Dina 
and João used different strategies based on proposi-
tional representations. Dina explained: “100% of 30 
is 30. 10% of 30 is 3. Then, from 100% to 10% this gives 
27”. She used a part-whole comparison strategy sup-
ported by a propositional representation: (if 100% is 
30 and 10% is 3, then 100% - 10% is 90% and 30 - 3 is 27). 
She used 10% as a benchmark, compared 90% with the 
whole and removed 10% from 100%. To solve “___% of 
20 = 18”, João used a part-part comparison strategy  
and explained: “I saw that 10% was 2. So I divided 18 
by 2 which is the same as dividing the total [result 18] 
by 10% which gives me 9.  Then I multiplied 9 by 10 to 
get 90.” He used 10% as a benchmark (like Dina did) 
and probably, 10% of 20 as a number fact (he did not 
explain how he computed 10% of 20) to relate part to 
part based on a propositional representation: (If 10% 
of 20 is 2 and % of 20 is 18, then ?% / 10% = 18/ 2), He divid-
ed 18 by 2 not to “divide the total by 10%” but to relate 

part to part. He gets 9 and multiplies it by 10 to get 90 
because the whole is 10 times bigger than 10%. Dina’s 
and João’s strategies show that they understood that 
the equal sign expresses a relation, an important as-
pect in relational thinking. Once more, propositional 
representations seem to play an important role in stu-
dent relational thinking. The part-whole (Dina) or the 
part-part strategy (João) used by students requires a 
systematic analysis of the relation between the whole 
and its parts which is supported by true propositions. 
These propositions help students to make inferences 
about the relationships between numbers and opera-
tions on each side of the equal sign.

CONCLUSION

Students’ mental computation strategies are mostly 
based on using equivalence, number facts, operation 
properties, and part-part or part-whole comparison, 
supported by mental representations. Their relation-
al thinking is more evident when they use strategies 
based on numerical relationships. We also identified 
conceptual and procedural errors (McIntosh, 2006). 
The source of some of these errors may be a lack of 
some mental representations as well as a lack of un-
derstanding of multiplicative structures, especially 
in operating with rational numbers. The theory of 
mental models (Johnson-Laird, 1990) helps us to un-
derstand and interpret the mental representations 
used by students as a support of their mental com-
putation strategies. For example, a strong use by stu-
dents of mental images of written algorithms suggests 
a lack of knowledge of relationships between num-
bers and operations and a poor repertoire of mental 
representations, obstacles to relational thinking and 
conceptual understanding. In contrast, as has been 
shown, the use of propositional representations based 
on true propositions is evidence of student relation-
al thinking. It highlights student understanding of 
properties of operations and how they use them to 
establish numerical relationships and use the equal 
sign to express relationships between numbers and 
operations. This was more explicit in sentences like 

“__% of 20 = 18”. Such open number sentences lead stu-
dents to analyze numbers and operations in a system-
atic way on both sides of the equal sign as they did in 
the part-part comparison strategy. 

We understand that in analyzing procedural errors 
students have a viable strategy to compute mentally 
but a computation error has led them to an incorrect 
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solution. An emphasis on applying memorized rules 
and procedures based on mental images of written 
algorithms may also contribute to such an error. 
Students that make strong use of additive reasoning 
(as Acácio) make conceptual errors easily as they fail 
to understand the multiplicative relation that exists 
in the rational numbers set.

This study provides suggestions for the teachers prac-
tice in the classroom in developing student mental 
computation and relational thinking. It provides in-
formation to teachers about the kinds of knowledge 
that students need and use to compute mentally such 
as number facts, memorized rules, numerical rela-
tionships, and mental representations. It also shows 
the kind of errors that need to be clarified and dis-
cussed in the classroom to improve student mathe-
matics learning.
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The move from understanding and working with ar-
ithmetical structures in one dimension (i.e. additive) 
to two or more dimensions (i.e. multiplicative) requires 
a significant change in children’s thinking. This paper 
investigates the varied and developing strategies and 
understandings of young people struggling with that 
change, through a series of 3D array enumeration tasks. 
Participants relied heavily on counting-based strate-
gies, and a new analytical framework is proposed with 
which to diagnose initial (mis-)conceptions and observe 
microprogressions on the path towards multiplicative 
understanding.

Keywords: Numeracy, counting, arithmetical strategies, 

multiplicative thinking, low attainment.

THEORETICAL BACKGROUND

2D and 3D arrays
The 2D rectangular array is a standard visuospatial 
representation for working with multiplicative struc-
tures, such as solving simple multiplication and divi-
sion problems, or connecting replicating spatial pat-
terns with repeated addition and multiplication. By 
age 11, all students in UK mainstream education will 
have encountered rectangular arrays (both dots and 
grids), and these representations linked to multiplica-
tion. The 2D array is thought to have particularly good 
potential for supporting reasoning in multiplication, 
and is one of the best for demonstrating the commu-
tative and distributive laws (Harries & Barmby, 2007). 

While clearly a powerful tool, the 2D array is limited 
in terms of enumeration. With a 3D array, the options 
are more complex: when all dimensions are >2 units, 
simply counting the visible cubes will not work, as 
there are non-visible interior cubes; successful enu-
meration must rely on conceptualising the organisa-
tional structure of the array as a space-filling object. 

While the expected final, formal strategy for students 
would be a three-dimensional multiplicative formula, 
on the way to this stage, there are various potential 
concrete, visuospatial strategies in which the cuboid 
structure is deconstructed into manageable parts, 
such as a stack of 2D layers.

An influential series of writings on 3D array tasks 
(Battista & Clements, 1996, 1998; Battista, 1999) intro-
duced the concept of spatial structuring, which I adopt.

We define spatial structuring as the mental act 
of constructing an organization or form for an 
object or set of objects. The process . . . includes 
establishing units, establishing relationships be-
tween units . . . and recognizing that a subset of 
the objects, if repeated properly, can generate 
the whole set (the repeating subset forming a 
composite unit). (Battista & Clements, 1996, 282) 

Ben-Haim’s work during the 1980s on 3D arrays in-
volved students interpreting isometric drawings of 
cuboids (e.g. Figure 1a), so requiring participants to 
interpret a pattern of identical rhombuses as a solid 
object. Thus, his set of proposed error types reflects 
students’ tendency to interact with the presented im-
age as a flat object (“1. counting the actual number of 
faces showing” (Ben-Haim, Lappan, & Houang, 1985), 
or to have difficulty picturing the cubes not shown. 
During the 1990s Battista’s research on 3D arrays 
used line drawings with perspective projection (e.g. 
Figure 1b). His expansion of the set of error categories 

Figures 1a-b: Isometric and perspective cuboid images
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(Battista & Clements, 1996) reflects similar difficulties. 
Thus, there is impetus to observe the strategies and 
errors when participants are, instead, simply present-
ed with the solid shape itself.

Counting in multiplicative tasks
The use of counting ‘in ones’ as a major strategy in 
additive and multiplicative situations is generally as-
sociated with younger children, but persists through 
adolescence and indeed, adulthood as a supplementa-
ry or back-up strategy. However, there is a distinction 
to be made between retaining counting as a backup, 
and relying on it as a primary enumeration strategy.  
Studies (e.g., Siegler, 1988; Geary, Bow-Thomas, & Yao, 
1992; Gray & Tall, 1994) indicate that children with 
arithmetical difficulties are more likely than their 
typically-attaining peers to rely on counting-based 
strategies (compared with, e.g. retrieval or derived 
fact strategies). 

Anghileri (1995, 1997) describes a progression in chil-
dren’s counting in multiplicative scenarios, beginning 
with ‘unitary counting’, through ‘rhythmic counting’, 
to ‘skip counting’ (or ‘step counting’). I propose a re-
finement: that ‘rhythmic counting’ is actually made 
up of two sub-stages, (a) grouping of the numbers 
and (b) regular rhythmic emphasis of vocalisation 
or gesture. I use ‘grouped counting’ for the former, 
reserving ‘rhythmic counting’ to describe the specific 
phenomenon of the musical ‘drive’ that results from 
temporally equally-spaced sounds/movements and 
emphases.

METHOD

The data derive from tasks set during a series of in-
dividual or paired problem-solving interviews (with 
the author), which took place as part of a larger pro-
ject using microgenetic methods to study emerging 
and developing multiplicative structure in low-at-
taining students’ use of visuospatial representations. 
The thirteen participants were aged 11–15, attending 
mainstream schools in inner London, and identified 
by their mathematics teachers as numerically weak 
(compared with peers). All names have been changed.

In each interview, students were presented with a 
cuboid block formed of multilink cubes, and informed 
that the blocks were solid, not hollow. The blocks were:

(1) One 3×4×5 cuboid (colours mixed randomly);

(2) One 3×3×5 cuboid (as above); 

(3) Two 2×3×6 cuboids, one constructed in three 
differently-coloured 2×6 layers, the other in 
six differently-coloured 2×3 layers; students 
were given the choice which of the two to enu-
merate;

(4) Two identical 2×2×3 cuboids, both coloured in 
2×3 layers; students were asked for the total 
number of cubes.

The intention was that through these tasks students 
should come to perceive and use the multiplicative 
structures inherent in the objects, and their initial 
and changing conceptualisations could be diagnosed. 
Specifics of each block were based on the previous 
observed performances. No time constraint was 
imposed (actual time varied from 1–15 minutes). If 
necessary, I provided a series of minimal prompts 
(described below). Students were allowed to handle 
the blocks but not pull them apart.

Documentation was via audio recording, photographs, 
scans of students’ papers and observation notes made 
during and immediately following each interview.

FINDINGS

Task 1: Initial responses
When presented with the first block, all students used 
counting-based strategies, and all 13 gave incorrect 
answers. Battista and Clements’s analytical catego-
ries, while intended for drawn array images, include 
descriptors also applicable to solids (e.g. “counts 
outside cubes on all six faces” (1996, 263). However, 
my students not only made errors in which cubes to 
count, but in the counting process. Thus one must 
distinguish an erroneous strategy from errors made 
in carrying out a correct strategy.

Two students independently made perceptive, effec-
tive use of one deconstruction of the array structure, 
and would have been successful had they not made 
minor counting errors delivering answers of 59 and 
61 rather than 60. With the block on the table, they 
placed a finger on one of the cubes in the top (4×5) layer 
and said “1, 2, 3”, referring to the touched cube and the 
two vertically beneath it, then moved the finger along, 
continuing to group-count threes for every cube in 
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the top layer of 20. It is notable that neither appeared 
to recognise the set of multiples of three. 

Ten of the remaining students began by counting the 
top layer, then moved onto the other faces of the block, 
turning it around and attempting to count all the ex-
ternal cubes. Although some students asked for con-
firmation that the shape was solid as opposed to hol-
low, their face-based counting strategies nevertheless 
ignored non-visible interior cubes. Meanwhile, the 
lack of clear points at which to start and stop counting, 
and of an obvious ‘route’ around the six faces, also led 
to some cubes and/or whole faces being counted more 
than once, while others were missed. Close observa-
tion of gestures and comments indicated that four 
of the students were attempting to avoid double- or 
triple-counting cubes, but the other six gave no sign 
of noticing. The last student unsuccessfully tried to 
count cubes one colour at a time.

Prompts 
If a student was consistently trying to enumerate the 
squares making up the surface area rather than the 
cubes making up the volume, I used two prompts: (a) 
picking up a single loose cube, reminding that these 
were the items to count; and (b) pointing to a vertex 
cube, demonstrating how it might be double- or tri-
ple-counted. After one or both of these, all students 
were observed attempting not to over-count edge and 
vertex cubes. Further prompts drew attention to the 
layered structure, i.e. the vertical replication aspect 
of the cuboid shape. The ‘layers’ prompts were:

Enquiring how many cubes made up the top lay-
er; 

Enquiring how many were in the layer under-
neath (and, if necessary, the next layer);

Commenting explicitly that all layers contained 
the same numbers of cubes;

Stating the numbers in each layer in the form 
of an addition (and, if necessary, supporting or 
performing that calculation).

Six students responded to one of the first three 
prompts by stating the number of cubes in each lay-
er and calculating a total of 60, while others heard a 
full demonstration and gave verbal indications that 
they understood. One (Paula) gave no such indication 

that she understood either the addition procedure or 
its relevance. 

One student’s response indicates the potential effec-
tiveness of a single prompt. 

CF: How many are in just the top layer?
Leo: [Step-counts 5, 10, 15, 20] Ah!
CF: Does that help at all with getting the total 

number?
Leo: Well now I think I have a solution to 

this! If you were able to split this, if you 
chop the layers off, it’ll be 20 there – un-
derneath that is another 20, and under-
neath that is another 20! [draws Figure 2] 
That’s 20 there and 20 there. You could 
just pull it out like a drawer, then pull 
that out like a drawer. It would be 20, 20, 
20.

Task 2
The second interview, I presented a slightly smaller/
easier 3×3×5 cuboid. Two students used a full layers 
strategy correctly, and three others (including Leo) 
began by stating the number in the top layer, but 
then needed one or more prompts. Of the two who 
had used the columns strategy the first time, one re-
used it, while the other tried horizontal rows instead. 
Four students reverted to counting around the faces, 
but switched to layers when prompted. Paula again 
gave no sign of understanding.

Task 3
So far only four students could carry out effective 
strategies without prompts; one appeared not to 
follow even complete demonstrations, and all oth-
ers were at a stage of partial understanding and 
operationalisation. Hence, in the third interview I 
highlighted the physical structure by constructing 
blocks with each layer a different colour. Rather than 
force students into a single colour structure (and thus 
numerical structure), I gave them the choice of two 
equal-sized blocks: a 3-colour block in horizontal 2×6 

Figure 2: ‘Drawers’
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layers or a 6-colour block in vertical 2×3 layers. This 
time 11 students used the layers structure; of these, 
nine were independently successful, while two re-
quired prompts. Only two students’ initial response 
was still face-based, and Paula was for the first time 
able to comprehend and work through the task (with 
support). The coloured layers were also indicated to 
be helpful by student comments, such as “[if there are] 
6 cubes there [i.e. in one layer] then you know there’s 
six in the rest”. 

Task 4
The final interview introduced an additional struc-
tural aspect: I presented students with two identical 
colour-layered blocks, and asked for the total number. 
With a numerical structure of 2(2×3×3), this task ex-
tension allowed increased calculation possibilities for 
the more confident students. Ten produced a correct 
answer without any arithmetical or strategic support, 
and the other three succeeded with prompts. All made 
clear use of the cuboid structure – in particular re-
ferring to the coloured layers. 

Regarding the duplicate blocks, five students used 
some form of layer-organised counting for the first, 
then continued the count similarly for the second. 
Two students pushed the two blocks together to make 

them a single mass. Five worked out there were 18 
cubes in the first block and doubled (or added another 
18) for the total; one more thought of doing this, but 
was unsure the two blocks were really the same, and 
insisted on counting the second as well. 

ANALYSIS

The data are considered under three distinct but con-
nected analytical aspects: structuring (i.e. how the 
physical structure of the blocks is used by students, 
and the corresponding numerical structures drawn 
from them); enumeration (i.e. how students used the 
numbers they derived from the physical blocks), and 
errors (what went wrong in their invention, selection 
and application of enumeration strategies).

Structuring
The classification for spatial structuring is based on 
that of Battista and Clements (1996), adapting their 
descriptors to apply to actual physical objects, re-or-
dering them into a loose hierarchy, and expanding 
the category structure.

Apart from the two C3-strategy students, initial re-
sponses to the task lacked awareness of the array 
structure. Students interacted with one face at a time, 

M The student conceptualises the set of cubes as a 3D multiplicative structure
    Student finds the length, width and height of the block, and multiplies.

L The student conceptualises the set of cubes as a stack of 2D layers    
  1 Layer multiplication: Student computes or counts the number of cubes in one layer, counts the number 

of layers, and multiplies the two. 

  2 Layer addition: Student computes or counts the number of cubes in one layer and uses addition or 
step-counting to get total.

  3 Counting subunits of layers: Student’s counting of cubes is organised by layers, but the student unit-
counts or step-counts by a number smaller than the number of cubes in a layer

C The student conceptualises the set of cubes as a 2D array of columns
  1 Column multiplication: Student counts the number of cubes in one column, counts the number of col-

umns, and multiplies the two.

  2 Column addition: Student counts the number of cubes in one column and uses addition or step-count-
ing to get total.

  3 Counting subunits of columns: Student’s counting of cubes is organized by columns, but the student 
unit-counts or step-counts by a number smaller than the number of cubes in a column.

F The student conceptualises the set of cubes in terms of its faces
  Student counts one or more faces of the cuboid. They may be counting cubes (partial volume) or count-

ing squares (surface area).

O Other Student uses a conceptualisation other than those described above.

Table 1: Spatial structurings of a 3D array
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failed to coordinate orthogonal views from different 
perspectives, and in many cases did not even have a 
complete faces-based conceptualisation (i.e. surface 
area). All showed increased awareness of structure 
following prompts, but the amount of prompting re-
quired and strategic change observed varied widely. 
There was a general move from F towards L strategies, 
as would be expected. Only Paula and one other at-
tempted an F strategy on all occasions, and both could 
identify and use layers (with colours and prompts) 
eventually. However, there was no clear trend within 
conceptualisation types, i.e. from L3 to L2 to L1 (or 
equivalent). 

On finding a successful strategy, some students re-
peated it, while others tried alternatives. Battista 
and Clements consider layers strategies an indica-
tion of “see[ing] the array as space-filling” and having 

“completed a global restructuring of the array” (1998, 
234), while “Those in transition, whose restructuring 
was local rather than global, utilized [column-based] 
strategies . . . They had not yet formed an integrated 
conception of the whole array” (ibid). It is unclear 

why a columns-based spatial structuring should be 
considered any less sophisticated than a layers-based 
one. The former deconstructs a 3D array into a 2-di-
mensional array of 1-dimensional stacks, the latter 
a 1-dimensional stack of 2-dimensional arrays; both 
are equally valid (and complementary) space-filling 
conceptions.

Enumeration
The enumeration classification is based on that of 
Anghileri (1997), and may be used in combination 
with the spatial structuring categories (producing, 
e.g., C3R).

All students began with some form of counting-based 
strategy, and overall these were by far the most popu-
lar. Four students clearly used multiplication in Tasks 
3–4, and there were other instances where language 
implied multiplicative thinking. However, between 
unitary counting and multiplication was observed a 
spectrum of ad-hoc grouped-, rhythmic-, step-count-
ing, and addition, and mixed methods.

1 Multiplication
    Student calculates a total without any interim step-counting.

2 Step-counting/Addition
    Student counts in steps formed of the cardinal number of each layer or column, without any interim num-

bers (i.e. using a number pattern).

3 Counting
S Step-counting (within a layer or face)

  R Rhythmic counting: Student counts each cube individually, in rhythmically consistent sequence, with clear 
emphases on cardinal numbers of subgroups.

  G Grouped counting: Student counts each cube individually, but with the count sequence organised into sub-
groups.

  U Unitary counting: Student counts each cube individually, with no grouping.

Table 2: Enumeration strategies for a 3D array

Spatial structuring (SS)
Student uses an incomplete or incorrect conceptualisation of the array structure, e.g. double-counting edge cubes, 
not accounting for interior cubes.

Numeric calculation or retrieval (NC) 
Student makes an error in calculating or retrieving a number fact while multiplying, adding or step-counting, e.g. 
“three twelves... 12, 24, 38”.

Verbal count sequence (VC) 
Student makes an error in their counting, e.g. “26, 27, 29, 30”.

Visuospatial/kinaesthetic (VK) 
Student makes an error relating to the physical aspect of counting, e.g. desynchronisation of verbal count and ges-
ture, repeating a layer/column, etc.

Table 3: Types of error in enumerating 3D arrays
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Errors
Under the analytical aspect error are proposed the 
four types below, between which are covered all er-
rors observed in this dataset.

SS: Issues of spatial structuring have already been 
covered. While most students’ initial responses to 
Task 1 involved mis-structuring, there were only nine 
subsequent SS errors. 

NC: On nine occasions, students mis-recalled addi-
tion facts and number patterns, or unsuccessfully 
attempted formal ‘vertical’ addition notation for 
the layers; however, the predominant preference of 
low-attaining students for counting-based strategies 
meant that recall of arithmetical facts or procedures 
was not often required. 

VC: Students were all confident in their ability to unit-
count individual cubes, yet there were examples of 
missing and repeating a single number, and missing 
out a decade. 

VK: The most common error type, 22 instances were 
observed. Some appeared related to fine motor skills, 
e.g. ‘jumping over’ a cube. Students also skipped rows, 
layers and faces, lost track of their start point, etc. 
Spatial structuring affected this error type: end point 
and rotation issues happen when working on faces, 
but with a columns or layers conceptualisation, the 
block can remain immobile throughout. 

Issues of classification
The framework above is useful for identifying indi-
vidual trajectories and group trends. However, there 
may be issues in identifying strategies used, e.g. with a 
student who works silently or with minimal gestures, 
and does not have the verbal skills to explain coher-
ently how answers were obtained. With students who 
do verbalise their work, there may be inconsistencies 
between what they report and what is observed. On 
several occasions, students used language of multi-
plication (e.g. “it’s three twelves”), but employed a 
counting strategy; they perceived the multiplicative 
structure yet were unable to carry out the multipli-
cation operation in any other way. 

CONCLUSIONS

Students’ understanding of 
multiplicative structures
Contemplating the visuospatial patterns within phys-
ical structures can reasonably be expected to increase 
awareness of the numeric structures embodied within, 
at both more advanced stages and the most fundamen-
tal stages. E.g. the motion required to move a pointing 
finger to the next row (etc.) causes a pause in the ver-
bal count, naturally grouping the counting sequence 
and emphasising the last number spoken. Thus even 
an incorrect faces-based spatial structuring of a 3D 
array contains enough structure to serve a useful pur-
pose for the very weakest. While one might assume 
that students’ enumeration of arrays stems directly 
from their spatial structuring, the relationship is bi-
directional; enumeration can also guide structuring. 
E.g., a student better at step-counting long sequences 
of small steps than adding a short sequence of larger 
numbers may (sensibly) opt for a C2 strategy, despite 
perceiving the layers. Students may seize on familiar 
number patterns; e.g. noticing there were five units 
in a row, column or stack could make that the salient 
grouping of the physical/numeric structure. If strug-
gling students have access to more than one potential 
structuring, they can choose the one that best suits 
their capabilities and preferences.

Development of strategies over time 
and in response to prompts
On finding their initial solutions incorrect, one might 
expect the kind of cognitive conflict which results in 
reflection and adaptation; this did not happen. Some 
students immediately started to re-count in the same 
way as previously, i.e. they believed in the efficacy of 
their strategy, but mistrusted their ability to have car-
ried it out properly. Some acquiesced to failure, while 
others were engaged enough to argue and insist their 
answer was correct. However, none independently 
responded by thinking critically about the strategy 
they had used and improving it or attempting an alter-
native. Strategic progression in every case required 
external input. I suggest individuals’ willingness (or 
otherwise) to try alternatives is linked to their rela-
tionship with mathematics (or school); on finding a 
successful strategy, arithmetically insecure students 
cling to it, while security allows for experimentation. 
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Further reflections
This simple task proved extremely rich in informa-
tion about the nature of individuals’ current multi-
plicative thinking, the ‘gaps’ in their multiplicative 
understanding, and the variety of enumerative strate-
gies in use. Presented with a task that could be solved 
by counting, but where that counting was non-trivial 
and non-routine, adolescents had to reconsider this 
most basic of numerical skills, and how to apply it. 
Use of task variants with the same students on four 
occasions allowed tracking of their progression in 
terms of spatial structuring, enumeration and error 
patterns. 

Although the layered spatial structure of a cuboid 
seems obvious to a teacher, and indeed, seemed ob-
vious to some students once given a minimal prompt, 
others struggled significantly to conceptualise the 
array as a coordinated, space-filling structure. The 
use of minimal, sequential prompts, along with the 
introduction of colour-defined structure, demonstrat-
ed the variation in how much input and effort it can 
take for a student to ‘see it’. Furthermore, individual 
students took their own paths from an essentially 
2D, faces-based conceptualisation to a coordinated 
space-filling structure, with paths through layers, col-
umns, rows, stacks, and combinations of these. While 
the ability to perceive multiple structurings is un-
necessary in the short term (i.e. for solution of this 
particular task), I assert that in the wider scheme, it 
is mathematically advantageous and to be encouraged.
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Regarding first-grade strategy use, counting-on is widely 
promoted as an alternative to counting-all. However, 
there are concepts of initial arithmetic education that 
aim at developing derivation strategies systematically 
from the outset, skipping counting-on. This paper re-
fers to an ongoing study that provides some empirical 
evidence in support of the latter approach. Students of 
four Austrian classes whose teachers participated in a 
professional development programme designed to pro-
mote derivation strategies were interviewed to ascertain 
their computation strategies at the end of first grade. 
We present first results comparing them to those of a 
previous study that, using the same tasks, examined a 
random sample of children whose arithmetic education 
followed a distinctly different pathway.

Key words: Counting-on, derivation strategies, difficulties 

in learning mathematics, in-service teacher education.

INTRODUCTION

In the German-language literature on mathemat-
ics education it is widely held that the use of count-
ing-based strategies constitutes “a necessary stage in 
each child’s learning process” that “none can skip” (cf. 
Lorenz, 2003, p. 105; our emphasis). Less frequent, but 
still to be found, are explicit recommendations such as 
by Schipper, Wartha, and von Schroeders (2011, p. 14) 
that children first be encouraged to use counting-on 
rather than counting-all. In the respective English-
language literature – as far as we oversee it [1] – sim-
ilar recommendations are the rule. According to van 
de Walle (2004, p. 164), counting-on is “the most wide-
ly promoted strategy” in the USA. In the UK, Australia 
and New Zealand the working out and consolidation 
of counting-on constitutes a central element of na-
tional programmes to promote numeracy (cf. e.g. New 

Zealand Ministry of Education [NZME], 2010). Nota 
bene: Counting-on is promoted merely as a transi-
tional strategy; also, there is broad international con-
sensus that children should eventually overcome the 
use of whatever kind of counting-based strategy (cf. 
Schipper et al., 2011; NZME, 2010). Reliance on count-
ing to add or subtract in higher grades is considered 
to be a main characteristic of so-called mathematics 
disabilities (cf. Häsel-Weide & Nührenbörger, 2013).

It is mainly in view of mathematics disabilities which 
prompts us to call for a revision of notions concern-
ing counting-on like the ones cited above – knowing 
that we are not the first to do so. Referring to the state 
of research we shall set forth that promoting count-
ing-on is by no means necessary nor, as we argue, is it 
conducive. We shall then discuss first interim results 
of an ongoing study that promises to provide valua-
ble empirical material for the further exploration of 
potential alternatives.

EMPIRICAL AND THEORETICAL FRAMEWORK

The recommendation that early mathematics educa-
tion should first systematically foster counting-on 
is, as a rule, embedded in developmental models 
suggesting that numeracy evolves through stages 
of counting-all and counting-on to finally arrive at 
fact retrieval (cf. NZME, 2010). Usually such models 
draw upon, although not always explicitly, Siegler’s 
(cf. 2001) “Model of Children’s Strategic Choices”. 

As for the notion of a quasi-natural sequence of stages 
it has already been pointed out that at least the last 
stage, fact retrieval, is obviously not achieved by all 
children. What is empirically validated is the first 
step: Most children are able to solve one-digit addi-
tions and subtractions already at preschool age, main-
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ly by counting-all (cf. Verschaffel, Greer, & De Corte, 
2007). However, also at an early stage they use other 
strategies as well, e.g., counting-on, which they often, 
and prior to any classroom instruction, discover as 
a short-cut (cf. Baroody & Tiilikainen, 2003). In par-
allel, or even earlier, many children come to devise 
strategies using their fingers. Some of these strategies 
do not include counting (see below). Many children 
do soon retrieve from memory at least single tasks. 
Already at preschool age, some draw on tasks commit-
ted to memory to derive other tasks (cf. Gaidoschik, 
2010, p. 332–340). Thus, not only is the usual devel-
opment too varied to be captured by a stage model. It 
also differs from child to child and, most important, 
does not remain unaffected by exterior influences 
(cf. Verschaffel et al., 2007, p. 565). In this light, there 
is no reason to claim that each step is necessary: With 
influences changing, a different development is at 
least conceivable. That the strategies pursued by 
children usually also include counting-on does not 
provide sufficient justification to direct the influence 
of classroom-instruction towards the elaboration or 
consolidation thereof. 

For such an approach to be justified, counting-on 
would have to prove conducive to overcoming count-
ing strategies. This is what Siegler’s model of strategic 
development suggests. According to Siegler (2001, pp. 
377–383), each time a child provides a correct solution 
by counting, the “bonds of association” between task 
and solution in long-term memory will get strength-
ened. As soon as the “associative strength” between a 
task and the resulting number exceeds a certain value, 
the child would abandon counting and retrieve the 
result from memory instead. Counting-on is consid-
ered to be instrumental for this process to succeed in 
that it increases both the probability and speed with 
which correct solutions are obtained (cf. Schipper et 
al., 2011, p. 16).

What speaks against this model are empirical findings 
like those by Gray (1991). Gray’s theory of the “procep-
tual divide” distinguishes between children who come 
to abandon counting following their recognition of 
relationships between numbers and numerical oper-
ations, and those for which the use of counting-based 
strategies is rather an obstacle in developing viable 
concepts. The “schema-based view” proposed by 
Baroody and Tiilikainen (2003) argues in a similar 
way, maintaining that the decisive factor in abandon-
ing counting strategies is conceptual knowledge of 

numbers and operations, i.e., the ability to recognise 
relationships as a basis upon which to derive tasks 
from other tasks. Intercultural studies also add evi-
dence in support of the targeted promotion of deriva-
tion rather than of counting-on. Geary, Bow-Thomas, 
Fan, and Siegler (1996), e.g., comparing children in 
the US with their Chinese counterparts found that 
on problems up to 20 the latter had by and large aban-
doned counting strategies already by the end of first 
grade, whereas the former still used counting on 40 
% of tasks by the end of third grade. Those differenc-
es certainly ensue, at least in parts, from different 
teaching traditions – unlike in the US, in China it is 
common to promote derivation as an alternative to 
counting from early on. As intervention studies show 
the learning of derivation strategies based on insight 
facilitates the abandonment of counting strategies (cf., 
e.g., Steinberg, 1985). To the same direction points a 
recent study by Rechtsteiner-Merz (2013) which eval-
uated a similar teaching conception. 

This is further corroborated by a longitudinal inter-
view-based study conducted by Gaidoschik (2010; 
2012) which investigated into the calculation strat-
egies of 139 randomly selected children at the begin-
ning, in the middle, and at the end of first grade. A 
significantly higher share of children who by the mid-
dle of the school year had solved a task by derivation 
did retrieve the same task from memory by the end of 
the year compared to those that formerly had relied 
on counting-on. Teacher interviews indicated that 
in all of the children’s 22 classes arithmetic lessons 
followed a rather uniform pattern in two central re-
spects: derivation strategies were widely neglected, 
while counting-based strategies were fostered at least 
during the first term. Against this backdrop, by the 
end of the year some 27 % of children would work out 
solutions to problems up to 10 mainly by counting 
whereas some 33 % would use non-counting strate-
gies (cf. Table 2). These children, except for two, had 
repeatedly used derivations also in the course of the 
interviews. Children who predominantly resorted to 
counting were not observed making use of derivation 
strategies (cf. Gaidoschik, 2010, p. 438).

Interim conclusion: Studies conducted to date do not 
allow inferring a necessity to pursue counting-on for 
a considerable period of time. Nor do findings cor-
roborate the thesis that fostering the consolidation 
of counting-on is conducive to overcoming the use 
of counting strategies. Studies on the relationships 
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between the development of strategies and concep-
tual knowledge as well as theories derived thereof, in 
fact, suggest promoting derivation as an alternative 
to counting-on early in first grade.

PRESENT STUDY

The recent study on which we elaborate in the fol-
lowing may be characterised as an ad-hoc field study 
designed to investigate a number of questions arising 
from the findings by Gaidoschik (2010, p. 519–521) as 
set out above. “Ad hoc” means that the four classes cov-
ered by the study had actually been selected to serve 
another end, notably the conduct of a design study 
on second-grade teaching of multiplication. Decisive 
for the selection of classes was their teachers’ partic-
ipation in a professional development programme 
which is offered (so far without any participation of 
the authors of this study) in the Austrian province of 
Carinthia under the name “EVEU – Ein Veränderter 
Elementar-Unterricht” [2]. As one of its main ele-
ments, EVEU recommends the systematic working 
out of derivation strategies on additive basic tasks in 
first, and on multiplications in second grade. With a 
view to optimise the cooperation with the teachers, 
visits to the four classes were made already at the end 
of first grade. These included sitting in individual 
arithmetic lessons and interviewing teachers about 
their teaching derivation strategies over the school 
year. Inquiries were made also into children’s ways 
of working out solutions to addition and subtraction 
tasks up to 20. Both the lists of tasks and the proce-
dure were the same as those administered in the 
interviews conducted at the end of first grade in the 
framework of the previous study (Gaidoschik, 2010, 
p. 237–245). This allows us to compare strategies as 
applied by two different groups of children at the end 
of first grade drawing on identical tasks. On the basis 
of guideline-based interviews with their teachers ten-
tative conclusions may be drawn concerning these 
children’s arithmetic lessons. The overall analysis will 
particularly be devoted to answering the following 
questions: 

A) During first grade, did EVEU teachers – unlike 
the teachers of the 2010 study who had not partic-
ipated in any specific professional development 
programme – actually work out and consolidate 
derivation strategies? If so, how, with what inten-
sity and consistency? 

B) By the end of first grade, are there any impor-
tant differences between EVEU children and the 
sample surveyed by Gaidoschik (2010) regarding 
the use of calculation strategies? If so, may these 
differences (also) be attributed to differing teach-
ing concepts?

Sample and design
The sample surveyed for the present study was com-
prised of teachers and pupils (six and seven-year-old) 
of four first-grade classes (A-D) from four public ele-
mentary schools in Carinthia. The teachers had com-
pleted the first year of the EVEU programme (8 half-
days) outlined above. The interviews covered all chil-
dren of each class provided firstly that 2013/2014 was 
actually their first school year and secondly they had 
a command of the teaching language – qualifications 
that had applied also to the 2010 study. In addition in 
eight cases parents refused to give their consent. Due 
to these restrictions, the sample covered 11 children 
(out of 23) from school A, 16 (out of 20) from school B, 
19 (out of 22) from school C, and 25 (out of 25) from 
school D. 

The interviews were conducted by the authors them-
selves in June 2014, towards the end of the school year, 
in some extra rooms near the classrooms. The chil-
dren were presented with 22 tasks up to 10 (like 3+4, 
3+7, 4+6 or10-9, 7-4, 10-7), and 14 tasks up to 20 (like 
6+6, 5+8 or 12-6, 14-9; for more details cf. Gaidoschik, 
2010, p. 239–241). Each task was read aloud by the 
interviewer, at the same time the child was shown 
the task written on a DIN A7 card. The children were 
asked to solve the task mentally in the same way as 
they would usually do and state the result verbally. 
Immediately thereafter, in case the solution was not 
provided spontaneously or by using a strategy that 
could be perceived by observation without any doubt 
(see below), the child was asked to explain or show how 
it had obtained the solution.

The video-based evaluation was carried out anal-
ogously to Gaidoschik (2010, p. 243–245), i.e. the 
children’s strategies were coded on the basis of the 
children’s utterances, their gestures and facial ex-
pressions, and the time needed to produce a solution, 
as well. The videotapes, without using transcriptions, 
were analysed repeatedly by one, respectively (in 
randomly selected 10 % of cases), two members of the 
interviewing team; disagreements on single codings 
were resolved through discussion. The main catego-
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ries that were applied are as follows: Fact retrieval, if a 
correct solution was produced spontaneously (within 
two seconds); erroneous retrieval, if a spontaneously 
uttered solution was incorrect; derivation, if the solu-
tion followed an at least short, recognizable reflection 
and the child described a fitting derivation strategy 
as his or her solution path thereafter; counting, dif-
ferentiated into counting-all, counting-on and partial 
finger counting, if fingers were obviously used as a 
counting-device, or if there were signs of intrinsic 
counting (nodding of the head etc.) or attempts at 
using fingers surreptitiously. In the latter case the 
children were asked to explicitly demonstrate their 
problem-solving pathway, what they usually did with-
out any further concealing. 

We are aware of the flaws inherent in the chosen meth-
od (cf. Verschaffel et al., 2007); however, in the absence 
of a more valid alternative we did our best to classify 
the children’s strategies as appropriately as possible. 

First results with regard to participating 
teachers (cf. question A)
The four teachers stated unanimously that enabling 
children to compute without counting had been one of 
their priorities and that they had strived to work out 
derivation strategies based upon a solid conception 
of numbers as composed of other numbers. As the 
main element of classroom practices they referred 
to classroom discussions, which set the stage for chil-
dren to put forward proposals as to the most appro-
priate solution to a task. The teachers also noted that 
efforts had ever been directed at enabling possibly 

all children to use non-counting strategies, whereas 
counting-strategies were not encouraged at any stage 
of arithmetic lessons. 

A content-analytical evaluation of the semi-structured 
interviews yielded clear evidence of differing intensi-
ties and consistencies of the instruction in mainly two 
aspects. Firstly, with regard to “helping facts” such as 
doubles (e.g., 4+4=8), ten facts (e.g., 3+7=10), or parti-
tions by the power of five (e.g., 8=5+3), teachers A, B 
and C stated that, once elaborated, these facts were 
continuously exercised as an important derivation 
basis with a view to automatisation. Teacher D, on 
the other hand, conceded that she might have failed 
to make sure that these facts were thoroughly known 
by all children. Secondly, teachers A, B and C made 
a point of emphasising how essential it was to push 
children tenaciously, virtually in every arithmetic 
unit, to explain their solving strategies and again and 
again put single derivation strategies centre stage. 
Teacher D reported self-critically, that the effortless-
ness with which many children went about deriva-
tions during classroom discussions, misled her into 
believing that other children would solve problems 
in the same way, i.e., by non-counting strategies. Not 
least, she confessed, did she often feel overtaxed given 
the rather large size of her classroom (25 children). 

First results with regard to the 
participating children (cf. question B)
Table 1 shows the frequency at which counting strate-
gies were used on problems by the children of the four 
EVEU classrooms and those surveyed in 2010. In the 

Number of instances in which tasks were solved by 
counting  

out of 14 nontrivial tasks with sums/minuends up 
to 10

Number of instances in which tasks were solved by 
counting  

out of 8 problems with one digit-numbers and totals 
greater than 10

mean/
median

standard
deviation

min max
mean/

median
standard
deviation

min max

2010 
overall 5.5 / 5 4.6 0 14 3.7 / 4.0 2.6 0 7

2014 
class A 0.1 / 0.0 0.3 0 1 0.0 / 0.0 0.0 0 0

2014 
class B 0.0 / 0.0 0.0 0 0 0.0 / 0.0 0.0 0 0

2014 
class C 1.0 / 0.5 1.6 0 5 0.9 / 0.5 1.5 0 5

2014 
class D 1.9 / 1.0 2.6 0 10 1.7 / 1.0 2.0 0 6

Table 1: Problems solved through counting in different groups of students
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framework of the 2010 study, a total of 14 problems up 
to 10 had proved nontrivial, i.e., were known by rote 
by less than two thirds of children. Table 1 compares 
means, medians, standard deviations, as well as the 
minimums and maximums of solutions to these 14 
problems as well as to 8 additions and subtractions 
with one-digit numbers and totals greater than 10 that 
were achieved by counting-strategies.

As can be seen from Table 1, in the course of interviews 
conducted in classrooms A and B there was only one 
single instance of counting-on. In classrooms C and, 
more significantly, D, besides the vast majority who 
mostly or entirely used non-counting strategies, there 
were single children who were still making relatively 
abundant use of counting. The Kruskal-Wallis test 
reveals significant differences (p < .001) between me-
dians across the five groups of students with regard 
to both sorts of tasks. Post-hoc pairwise comparisons 
based upon the Mann-Whitney U test show that in 
each of the four EVEU classrooms problems from both 
sorts of tasks were solved by counting to a significant-
ly less extent (p < .001) than in the previous sample. 
Taking into consideration teachers’ statements cited 
above it appears legitimate to draw a distinction in 
terms of the quality of mathematics education be-
tween classrooms A, B and C as a subgroup on the 
one hand and classroom D on the other. Differences 
are significant (p < .001) also between these subgroups 
within EVEU classrooms. 

With regard to the children’s strategy preferences 
during their first year of school, within the random 
sample surveyed by Gaidoschik (2010, p. 425–461) six 
types of strategy development could be distinguished 
(empirically grounded construction of types, cf. Kelle 
& Kluge 1999). Given the fact that EVEU children were 
interviewed only once, assignment to a certain type 
must be done with caution. Still, it is instructive. Table 
2 shows frequencies only of the two types represent-
ing the poles in strategy preference at the end of the 
school year on problems up to 10.

The type “Counting, no derived facts”, while not oc-
curring at all in EVEU classrooms A and B, is rare 

also in classrooms C and D comprising only 5, and 8 %, 
respectively. In the previous sample, the percentage 
of children who could be assigned to this type, with 
solving more than two thirds of problems up to 10 
by counting and not a single one by derivation, was 
about 27 %. In EVEU classrooms A and B, conversely, 
all children belonged to the type “Retrieval and de-
rived facts”, i.e., they displayed a high level of retrieval 
complemented by a flexible use of several derivation 
strategies. In the 2010 sample, only one third corre-
sponded to this type. In EVEU classrooms, two sub-
types could be distinguished within this type – the 
first being comprised (mostly) of children with a clear 
prevalence of direct fact retrieval even on tasks in-
volving going-through-ten. Derivation, therefore, was 
not needed any more in most cases; if, however, it was 
done quickly and could be clearly explained. On the 
other hand, there were a few children who frequently 
resorted to derivation even on tasks up to 10. For a few, 
this obviously was an arduous process with single 
derivations taking 30 seconds and longer. Still they 
would not regress to a counting strategy. These chil-
dren too were able to provide plausible explanations 
of their derivation pathways. 

In classrooms C (3 children) and D (4 children) a type 
could be identified that the random sample surveyed 
in the previous study did not display so distinctly: chil-
dren who, although not resorting to counting, used 
fact retrieval or derivation on less than two thirds of 
tasks up to 10. On the rest they would use non-count-
ing finger strategies – e.g., to figure out the solution to 
9-8 they would, without counting, put up nine fingers 
in one move and subsequently, again in one move and 
with obvious routine, put down eight fingers (four of 
each hand) to “read off ” the result from their finger 
pattern. 

DISCUSSION AND OUTLOOK

The study provides some further empirical support 
for van de Walle’s (2004, p. 164) dictum according to 
which counting-on “is not necessary if other strategies 
are used”. The EVEU children, according to teachers’ 
statements, had not been encouraged in the classroom 

2010 overall 2014 class A 2014 class B 2014 class C 2014 class D

Counting, no derived facts 27 % 0 % 0 % 5 % 8 %

Retrieval and derived facts 33 % 100 % 100 % 63 % 44 %

Table 2: Distribution of strategy preferences on tasks up to 10 at the end of first grade
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to use counting-on as a strategy at any point of time. 
Rather, and deliberately, computation was addressed 
only after it had been attempted to consolidate chil-
dren’s conceiving of numbers as being composed of 
other numbers. From the very beginning, tasks were 
dealt with in relation to other tasks; relationships 
were used to derive other tasks. In two out of four 
classrooms students had almost entirely abandoned 
counting even on problems with totals greater than 
10; in the other two classrooms only one and two chil-
dren, respectively, relied predominantly on counting 
strategies. Such level of achievement by the end of first 
grade is not at all a matter of course – it is at least this 
which can be derived from the comparison with the 
random sample surveyed by Gaidoschik (2010). 

Given the ad-hoc character of the present study, con-
clusions on the EVEU children’s levels of achievement 
at the beginning of first grade must be drawn mainly 
based on teachers’ statements. Teacher A noted that 
her students were “high performers” in comparison 
to previous classrooms. Teachers B, C and D described 
their classes as “average”. All the four schools are char-
acterised by a mixed catchment area; socioeconomic 
backgrounds, however, could not be established for 
all children. Actually many spheres of influence on 
children’s learning remain largely obscure. While we 
are far from attributing the children’s differing uses 
of counting/non-counting strategies exclusively to the 
respective classroom practices (which were, moreo-
ver, established with limited methods), still we find 
it plausible that these may also have been important. 

Evidence of didactically important differences re-
garding classroom concepts can be found also be-
tween the four EVEU classes. Thus, in classroom D 
both the preparation and reinforcement of deriva-
tion was obviously done less consistently than in the 
other classrooms. This may at least partially account 
for the significantly higher share of counting strate-
gies use in classroom D. The frequent occurrence of 
non-counting finger strategies in classrooms C and D, 
on the other hand, corresponds with teachers’ C and 
D statements that this kind of strategy was explicitly 
encouraged any time children were observed using 
their fingers for counting. Whether children who, by 
the end of first grade, still rely heavily on non-count-
ing finger strategies will in second grade move on to 
fact retrieval and derived facts strategies; whether 
this requires targeted support, and what kind of sup-

port, are just a few of the many questions we intend 
to address in a follow-up study. 

Implementing the classroom concept set out above 
was perceived as a great challenge by each of the four 
teachers surveyed. It is indeed plausible that the larg-
er the classroom and the greater its heterogeneity, 
the more demanding the teacher’s role (cf. teacher D 
quoted above). This is why we consider it all the more 
important that teachers in implementing innovative 
concepts regarding central contents of elementary 
school mathematics be given long-term support within 
the framework of design studies. Professional devel-
opment programmes, while providing didactic stim-
uli, cannot, as a matter of principle, translate into a 
technology. An analysis of teacher interviews against 
the backdrop of the theory of recontextualisation (cf. 
Fend, 2006) reveals a mismatch, particularly in case 
of teacher D, between the knowledge explicated in the 
EVEU programme and the teacher’s implicit knowl-
edge [3]. Such kind of difficulties should not come as 
a surprise, so this is why expert teachers’ visits on a 
weekly basis form an integral part of the EVEU ap-
proach. As to our discipline of mathematics education, 
we would essentially have to provide scientific exper-
tise to such kinds of measures seeking to work out, to-
gether with teachers, solutions to concrete questions 
arising in the classroom day-by-day and to evaluate 
the impact of relevant decisions in order to create the 
basis for the design to be developed further. 

Particular attention should be paid to children with 
learning difficulties. In our study, there were three 
students in classroom C, and five in classroom D, who 
had considerable difficulties especially with sums 
greater than 10. Unable to apply any of the non-count-
ing strategies taught in the classroom, they – as some 
explicitly admitted – regarded counting strategies 
as something they were not supposed to use. As a re-
sult, they seemingly did not know what to do at all. 
All teachers convincingly stated that solving tasks by 
counting had not been forbidden at any point of time. 
Yet, with classroom practices persistently pursuing 
alternatives to counting, it may be difficult for some 
children not to think of counting as something they 
are simply not allowed to do. This might be disregard-
ed if at the same time non-counting strategies were 
available for all students, which in classrooms C and 
D was not the case. That for these students counting 
is a necessity which must not be withheld from them 
is a conclusion we think is premature – especially in 
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view of the encouraging findings of this study. We 
do see, however, the need for further development 
of designs that promote alternatives to counting as a 
computation strategy from the very beginning. 

REFERENCES

Baroody, A. J., & Tiilikainen, S. H. (2003). Two Perspectives 

on Addition Development. In A. J. Baroody & A. Dowker 

(Eds.), The Development of Arithmetic Concepts and Skills: 

Constructing Adaptive Expertise (pp. 75–125). Mahwah, NJ: 

Lawrence Erlbaum Associates.

Benke, G., Kittner, A., & Krainer, K. (2014). Facilitating stake-

holders: Experiences from the Austrian IMST project. The 

Mathematics Enthusiast, 11(1), 123–134.

Fellmann, A. (2013). Handlungsleitende Orientierungen und pro-

fessionelle Entwicklung in der Lehrerbildung – Untersucht 

in einer Studie zur Umsetzung eines innovativen Lehr-

Lernformats im Mathematikunterricht der Klassenstufen 

1–6. Münster, Germany: Waxmann.

Fend, H. (2006). Neue Theorie der Schule. Einführung in das 

Verstehen von Bildungssystemen. Wiesbaden, Germany: 

Verlag für Sozialwissenschaften.

Gaidoschik, M. (2012a). First-Graders’ Development of 

Calculation Strategies: How Deriving Facts Helps 

Automatize Facts. Journal für Mathematik-Didaktik, 33(2), 

287–315.

Gaidoschik, M. (2012b). Wie Kinder rechnen lernen – oder auch 

nicht. Frankfurt, Germany: Peter Lang.

Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. (1996). 

Development of Arithmetical Competences in Chinese 

and American Children: Influence of Age, Language, and 

Schooling. Child Development, 67, 2022–2044.

Gray, E. M. (1991). An Analysis of Diverging Approaches to 

Simple Arithmetic: Preference and its Consequences. 

Educational Studies in Mathematics, 22, 551–574.

Häsel-Weide, U., & Nührenbörger, M. (2013). Replacing Counting 

Strategies: Children´s Constructs on Number Sequences. 

In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of 

the Eight Congress of the European Society for Research 

in Mathematics Education CERME 8 (pp. 303–312). Ankara, 

Turkey: Middle East Technical University.

Kelle, U., & Kluge, S. (1999). Vom Einzelfall zum Typus. Opladen, 

Germany: Leske+Budrich.

Lorenz, J. H. (2003). Lernschwache Rechner fördern. Berlin, 

Germany: Cornelsen.

New Zealand Ministry of Education (2010). New Zealand 

Curriculum and Standards. Retrieved from http://www.

nzmaths.co.nz/nzc-and-standards. 

Rechtsteiner-Merz, Ch. (2013). Flexibles Rechnen und 

Zahlenblickschulung. Entwicklung und Förderung von 

Rechenkompetenzen bei Erstklässlern, die Schwierigkeiten 

beim Rechnenlernen zeigen. Münster, Germany: Waxmann.

Schipper, W., Wartha, S., & von Schroeders, N. (2011). BIRTE 2. 

Bielefelder Rechentest für das zweite Schuljahr. Handbuch 

zur Diagnostik und Förderung. Braunschweig, Germany: 

Schroedel.

Siegler, R. (2001). Das Denken von Kindern. München, Germany: 

Oldenbourg.

Steinberg, R. (1985). Instruction on Derived Facts Strategies 

in Addition and Subtraction. Journal for Research in 

Mathematics Education, 16(5), 337–355.

Van de Walle, J. A. (2004). Elementary and Middle School 

Mathematics: Teaching Developmentally. Boston, MA: 

Pearson.

Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number 

concepts and operations. In F. K. Lester (Ed.), Second 

Handbook of Research on Mathematics Teaching and 

Learning 1 (pp. 557–628). Charlotte, NC: NCTM.

 
ENDNOTES

1. We admit that our knowledge is incomplete with 
regard to English-language literature and completely 
lacking as regards literature in languages other than 
German or English. 

2. “A changed way of instruction in elementary 
school”; for details  see (Benke, Kittner, & Krainer, 
2014). 

3. Going into greater detail as to the possible impli-
cations for the implementation of innovative forms 
of teaching and learning is beyond the scope of this 
paper. For a theoretical embedding see Fellmann, 2013.
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In this work, the comparison of unequal ratios tasks in 
commercial offers contexts is studied. A rational and em-
pirical analysis of tasks helps to identify the critical com-
ponents and students responses to each task. The results 
confirm the deficits in the relative thought of pre-service 
teachers, and also that their difficulties are not in the 
algorithmic aspects and “norming” techniques, but in 
conceptual aspects and ratio referents.

Keywords: Ratio and proportion, relatively, norming, 

didactic phenomenology.

INTRODUCTION AND RESEARCH OBJECTIVES

“The box of Bites (net weight 16 oz.) costs $3.36 and the 
box of Bits (net weight 12 oz.) costs $2.64. Which cereal 
is the better buy?”. This example is used by Lamon 
(2012, p. 106) to encourage thinking flexibly in uni-
tizing. Examples of this type involve the comparison 
of relative quantities, which are ratios, though the 
explicit formulation of the problem needs a relational 
term, the word “relatively”, to specify the price com-
parison must be in relation to the weight of the prod-
uct. The ability to compare the large amounts in this 
way widens the range of applicability of certain words, 
such as the word “more” which has two meanings, one 
absolute or additive and one relative or multiplicative, 
both of them are correct.

As Streefland (1985, p. 75) says: “In mathematics pro-
grams for elementary instruction as far as ratio is con-
cerned, one is often struck by the poverty and brevity 
of the approach chosen by their authors”. The poverty 
of this approach to ratio can be more generally char-
acterized as follows: the concept building is exercised 
with mathematical objects unrelated to reality; the 

lack of real applications, and isolation of the subject 
“ratio”, which is not connected with any other subject.

In this way, Freudenthal (1983) in his didactic phenom-
enology, highlights the importance of considering 
ratios in situations in which the idea of “relatively” 
(or comparatively) and the complex of techniques 
designated by norming are required.

Understanding “relatively” in the sense of “in rela-
tion to...” involves the use of the term ratio as Smith 
(2002, p.14) proposes: “I will use the term ratio to de-
scribe a relational number that has two properties: 
(1) it relates two quantities in one situation, and (2) it 
projects that relationship onto a second situation in 
which the relative amounts of the two quantities re-
main the same”. This use of ratio is in accordance with 
the very meaning of ratio: “to speak about equality 
(and inequality) of ratios, without knowing how large 
the ratio is” (Freudenthal, 1983, p. 180).

All of this situates our interest in problems of quan-
titative comparison of ratios. In particular, in com-
mercial offers comparison, which offer discounts that 
are given as relative amounts. As a standard norming 
percentages are usually used to express discounts.

In order to provide relevant tasks for a didactic phe-
nomenology of ratio involving these ideas, a test has 
been designed. The tasks, which are typical of com-
mercial offers, have been analyzed in a rational and 
empirical way. This allowed for a better understand-
ing of critical components and their relationship with 
the response patterns of students.

According to Cramer, Post & Currier (1993, p. 2), “the 
critical component of proportional situations is the 
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multiplicative relationship that exists among quanti-
ties that represent the situation”. In the quantitative 
comparison of ratios problems, the multiplicative 
relationship that exists between the quantities rep-
resented in the situation can be equal or unequal. 
These multiplicative relationships express relative 
quantities, that is, quantities put in multiplicative 
relationship with other quantity of reference. This 
is usually called “the referent”. So, we consider that 
the critical components (c.c.) in these situations are: 
not only the multiplicative relationships, but their 
equality or inequality and their referents.

Note that tasks that have been experimented can be 
used not only with the intention of assessing knowl-
edge, but also in teaching situations and for teacher 
training. It allows them to promote the metacognitive 
reflection about their own cognitive processes and the 
didactic task complexity and the mathematical con-
tents involved. So, the research questions are: which 
are the critical components of tasks?, what strategies 
do the students use?, and what difficulties do the stu-
dents show?

CONCEPTUAL FRAMEWORK

As we have just said before, comparing relatively is to 
put something in relation to, and norming is a process 
of reconceptualization of a system in relation to some 
fixed unit or standard (Lamon, 1994, p.94). One of the 
common forms of norming is the unification of the 
antecedent (numerator) or consequent (denomina-
tor) of the ratios to favor the comparison. This can 
be done by an algorithmic process that links them to 
the unit (e.g. the unit rate obtained by quotient), the 
decimal numbering system (percentage or decimal) 
or equivalent fractions. These techniques connect the 
various forms of ratio: fraction, decimal, percentage 
or quotient, and are linked to the flexibility of think-
ing in order to choose convenience.

The norming techniques are used with the intention 
to make more visible the comparison of pairs of phe-
nomena that Freudenthal (1983) calls “expositions” 
or “compositions”. When two distinct defined expo-
sitions are compared on the same set, e.g., Ω is a set 
of countries, each with its assigned inhabitants and 
its area by the ω1 and ω2 functions. Then ratio ω1/ω2 
expresses the population density. Comparison of den-
sity couples allows to state whether a country has in 
proportion to its area the same number of inhabitants 

or a higher or lower number than another country. 
In the comparison of two compositions on the same 
set, e.g., Ω is an alloy composed by copper and zinc to 
form bronze and each component is assigned a dif-
ferent mass in each alloy by the ω1 and ω2 functions. 
Comparison of the pairs of internal ratios, copper 
mass/zinc mass, allows one to know which alloy has 
relatively more, less or the same amount of copper to 
zinc (Freudenthal, 1983, p. 186).

The “best buy problems” can be interpreted as a 
pair of expositions or compositions. Under this in-
terpretation, we define the objectives of this study. 
The first one is to determine, through the rational 
analysis, the critical components of the tasks such 
as: the multiplicative relationships, the equality or 
inequality of ratios and their referents. The second 
one is to determine, through the empirical analysis, 
the relationship between these components and stu-
dents’ performance.

METHODOLOGY

The work is based on the methodology of the empirical 
and rational analysis of tasks. According to Lamon 
(2007, p. 641), the distinction between empirical and 
rational analysis is adopted to distinguish between 
children’s mathematics (children’s actual perfor-
mance on tasks); and the exam of content from a ma-
ture mathematical perspective, making assumptions 
about the ways of thinking that are necessary to solve 
problems. The rational analysis begins at the theoret-
ical level, in order to identify the critical components 
of tasks and their procedural cognitive and conceptu-
al objectives, to support theoretical inferences from 
the data obtained in the empirical analysis. The em-
pirical analysis begins with the implementation of 
tasks given to students in order to interpret their 
responses. This is taken as criteria for analyzing the 
critical components identified in the rational analysis.

We choose 4 tasks for a pencil and paper test. They are 
called Pizza, Beer, Softener and Mosquito repellent. 
They are realistic tasks taken from offers in current 
commercial brochures. Due to their typology they are 
characterized as quantitative comparison of ratios 
tasks, where one has to judge which of two ratios is 
higher, lower, or perhaps the same, so you can do it 
roughly or precisely. Moreover, they may be charac-
terized by their phenomenology as pairs of exposi-
tions or compositions involving comparing relatively 
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and applying norming techniques, as Freudenthal 
says. So, we choose these tasks because they are real 
applications of ratio and one has to judge equality or 
inequality of ratios, as Streefland and Freudenthal 
require. The test was implemented using individual 
worksheets given to 9 groups of students working 
in a normal mathematics class time in their second 
year of the teaching degree, at the beginning of the 
course (341 students). The study was conducted dur-
ing 2013–2014 at the University of Valencia.

We select these participants because, according to 
Ben-Chaim, Ilany & Keret (2002), we think that the 
pre-service teachers need to improve their knowledge 
and their attitudes toward mathematics, in general, 
and all of the components and aspects of ratio and 
proportion, in particular. And we think that realistic 
tasks, such as the commercial offers, are suitable for 
teaching the topic of ratio and proportion in pre-ser-
vice elementary teacher education.

TASKS

In Pizza, one asks: What is better, two regular piz-
zas 30cm in diameter for 14.95€ each or a large pizza 
50cm diameter for 27.95€? Justify your answer. In 

Softener, the question is: Which of the two options 
is more expensive, the concentrate on the left or the 
non concentrate on the right? Justify your answer.

In Beer, the text says: Usually beer cans are 1/3 liter 
or what is the same, 33’3cc. One option offers a 15% 
discount on the price and the other option has 14% 
more beer. What is more expensive? And, in Mosquito 
repellent: Fogo and Bloom sell for the same price and 
have the same volume without any promotion. What 
discount is better? Explain your answer. Softener and 
Mosquito are easier than the other two because the 
text provides all the data needed for doing a correct 
comparison.

Rational analysis and critical 
components of tasks
In Pizza and Softener the critical component is the 
equality or inequality relationship of the two relative 
quantities. These quantities are given by composed 
ratios formed by the pair (€, washes) or (€, cm2). It 
is required to apply norming by quotient for mak-
ing the comparison visible. In Pizza, the solution 
process requires finding the areas and the cost of the 
pizzas, and comparing prices with areas or vice versa. 
Alternatively, one can compare areas, prices, and then 

Figure 1: Pizza and Softener

Figure 2: Beer and Mosquito repellent
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compare both comparisons. In Softener, the process is 
reduced to compare the relative quantities €/washes. 
In Beer and Mosquito, it is needed to convert the gift in 
a discount or vice versa, i.e., to change one of the two 
referents. Beer task requires finding the volume of the 
larger can and calculating what percentage discount 
is equivalent to the extra volume. Once found, we can 
compare two discounts. Likewise, the mosquito repel-
lent task requires finding what discount percentage 
is equivalent to the 33% extra free nights. Once found, 
you can compare the discount percentage in Bloom 
with the 25% discounts in Fogo. In both tasks, the re-
ciprocal process (to transform a discount percentage 
into a gift percentage) is similar.

The processes that account for these transformations, 
calculations and norming techniques, are displayed 
in tables from 1 to 6, as pairs of expositions or compo-
sitions. In the case of pair of expositions, Ω is formed 
by the set of offers; and, in the case of pair of composi-
tions, Ω is composed by the parts that form each offer.

As we can see in tables 1 and 2, in comparing norming 
ratios by quotient, ω1(Ω)/ω2(Ω)=cost/cm2 or cost/whas-
es, the unit rate (u.r.) or its reciprocal (r.u.r.) are ob-
tained. These comparisons are the main c.c., because 
they show which offer pays more, less or the same com-
pared to what is acquired (comparing how many € per 
cm2 or per wash). Alternatively, in Pizza, while com-
paring the internal norming ratios, ωi(Ω)/ωi(Ω)=cost 

Table 1: Couple of expositions. Pizza task

Table 2: Couple of expositions. Softener task

Table 3: Couple of compositions. Beer task

Table 4: Couple of compositions. Mosquito repellent task
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regular pizza/cost large pizza, or regular pizzas area/
large pizza area, we see that for almost the same price, 
the large pizza has got more area.

When comparing the norming ratios by quotient, 
ω1(Ω)/ω2(Ω)=free part/total product or ωi(Ω)/ωi(Ω)= free 
part/part paid, after homogenizing the referent with 
respect to the part paid (h.p., tables 3 and 4) or with 
respect to the product acquired (h.a., tables 5 and 6) 
decimals or percentages are obtained. All of these pro-
cesses are the c.c., because they show which discount 
or increase percentage are higher, lower or the same.

EMPIRICAL ANALYSIS OF TASKS

The empirical analysis takes into account the re-
sponse patterns of students in relation to their strat-
egies and their difficulties. Apart from the difficulties 
related to the c.c. other conceptual difficulties have 
been observed such as: the linearity (specific of Pizza) 
and the misinterpretation of the r.u.r. We highlight 
also two strategies that have appeared in the tasks 
and they are different from the strategies pointed in 
tables from 1 to 6.

Most significant alternative strategies 
and difficulties: Examples
Difficulty in linearity of the unit rate in Pizza task. 
Students adopt a relative approach, comparing exter-
nal ratios and applying norming by quotient to obtain 
a u.r. Rather than comparing prices with pizza areas, 
they compare prices with pizza diameters (example 

1). In this case, the difficulty is in the referent of the 
relative quantities that they have to compare.

(14.95/30)·2 = 0.996; 27.95/50 = 0.559. A cm of the 
large pizza is cheaper. That is, the large pizza is 
more economical.

Example 1: Student’s response to Pizza task

The student compares the relative amounts given by 
the ratios between the diameters and the prices, i.e. 
the u.r. of each offer. This strategy could be valid if 
there was only one item in each offer because more 
diameter implies more area. Note that the student 
multiplies the u.r. of a regular pizza by 2 [Regular: 
(14.95/30)·2=0.996]. This calculation suggests us that 
he is not aware of the invariance of the ratio.

Difficulty in interpreting the reciprocal of the unit rate. 
Students adopt a relative approach, comparing exter-
nal ratios and applying norming to obtain a unit rate, 
but they interpret the unit rate in the reverse way that 
corresponds to the stated ratio. In this answer, the 
difficulty is the loss of meaning of the referent when 
they apply norming techniques.

b) 100% - 15% = 85% price → 33cl; a) 14% of 33.3 = 
4.662 cl more. 33.3 + 4.662 = 37.962 cl in can A; 
33/85 = 0.388; 37.962/100 = 0.3796. In offer B you 
pay 0.388€ per cl, while in offer A you pay 0.3796€ 
per cl so that, offer A is cheaper.

Example 2: Student’s response to Beer task

Table 5: Couple of expositions. Beer task

Table 6: Couple of expositions. Mosquito repellent task
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The student compares the ratios cc-acquired/percent-
age-paid and applies norming by quotient: 33/85=0.388 
and 37.96/100=0.3796, but interprets these unit rates 
as what is paid per cc, which is the reciprocal of the 
ratio: cc acquired per unit paid. This leads to giving 
the opposite answer expected.

Comparison of quantities of the same nature. This 
strategy consists of comparing the areas, the volumes, 
the number of washes, the costs and the percentages 
among them, and if it is necessary compare the results 
of these comparisons. They can adopt an absolute ap-
proach (not using ratios) or a relative approach (see 
Table 1, internal comparison). In the first one, the com-
parison is rough and uses the reasoning: there is more, 
less or equal in one than in the other. It includes also 
the usual additive calculations (no example included). 
The answer may be insufficient (examples 3 and 4), or 
not (example 5). The second one has been explained 
above in Pizza.

This student assigns the arbitrary price of 1€ to a 33cc 
can. Then, the student calculates the larger can vol-
ume, 37.96cc, which will cost 1€, and calculates the cost 
of the smaller can after the discount, 0.85€. Finally, 
the costs are compared. This data is insufficient to 
determine which one is the most expensive can.

The student sets an arbitrary price, 10€, then, calcu-
lates 33% of 10 and adds it to the price, 13.30€. The 

student calculates 25% of 10 and deducts it from the 
price, 7.50€, and compares it with the discount given.

A large pizza is better because the sum of the 
area of two regular pizzas is lower and, moreo-
ver, is more expensive: 2 × 30 = 706.5 × 2 = 1413 cm2; 
π·r2 = π·152 = 706.5 cm2; π·r2 = π·252 = 1962.5 cm2

Example 5: Student’s response to Pizza task. Adequate

The student compares the difference between the 
areas with the difference between the prices. It is 
sufficient only in this case because the data favor it.

Cost comparison increasing or decreasing the matching 
amounts. Students establish the total cost or the cost 
of a unit of a product. After that, they determine if by 
increasing or decreasing the amount of the product 
to match the other you get the same total price. While 
in the intermediate process students can use relative 
quantities (example 7), they finally compare absolute 
amounts. It seems to be that this strategy has not been 
identified in the previous research.

This student fixes an arbitrary price of 40€ to the non 
promotional products. He finds the cost of Fogo, 30€ 
after the discount. Then, he calculates what the Bloom 
reducing to 45 nights would cost and if it keeps pro-
portionate to their offer price. It is concluded “it is 
the same because in both of them, 45 nights cost 30€”.

Example 3: Student’s response to Beer task. Inadequate

Example 4: Student’s response to Mosquito repellent task. Inadequate

Example 6: Student’s response to Mosquito repellent task
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At first glance, it is obvious that the concentrate 
is more expensive, as it costs 3.72€, which is 
0.082cents per cup. On the other hand, the 36 
wash product has an added cost of 0.080 for each 
of the 9 cup difference and results in a price of 
3.61€, making it cheaper than the concentrate 
and therefore, less expensive than the one 
on the right.2.89/36 = 0.080    2.89 + 0.72 = 3.61; 
0.080·9 = 0.72→cup difference from the concen-
trate.

Left: 45 cups = 3.72. Right: 45 cups = 3.61.

Example 7: Student’s response to Softener task

This student finds the difference between the 2 
softeners: 9=45-36; calculating both unit rates: 
3.72/45=0.082€/wash the concentrate softener, and 
2.89/36=0.080€/wash the non concentrate softener, 
and uses one of them to calculate the total cost that the 
non concentrate softener would have if there were a 
9 wash increase. If he had 36+9 washes, it would cost 
2.89+9·0.080=3.60€, which is cheaper than the 3.72€ 
concentrate.

RESULTS

The absolute frequencies are displayed in Table 7. The 
columns (from left to right) show: the number of stu-
dents that use the strategy of u.r., those who have diffi-
culties in this strategy, students who homogenized the 
referent, the participants who compare the quantities 
of the same nature, those who use the strategy of cost 
comparison after matching amounts, and the group 
of qualitative answers, random, blank, etc (others).

Regarding the critical components of the tasks, we 
observed that in Beer and Mosquito there are more 
students who compare absolute quantities instead 
of relative quantities. Nevertheless, in Pizza and 
Softener tasks the contrary occurs. Moreover, there 

are very few students who homogenize the referents 
(4 in Beer, 2 in Mosquito). They may not interpret the 
gift like a discount or vice versa. It highlights how stu-
dents are inclined to calculate the u.r. although it is not 
needed in this case. If we focus on the strategies and 
difficulties identified, in Pizza there are few students 
who calculate the u.r. or its reciprocal without diffi-
culties because of the linearity. In fact, 175 students 
calculate the u.r. with the diameter instead of the area. 
In contrast, in Softener the u.r. strategy dominates as 
we expected. Only 23 students show difficulties calcu-
lating the r.u.r. Finally, there are students who give 
blank, random, qualitative or incomplete respons-
es, especially in Beer (82 students) and Mosquito (44 
students).

CONCLUSIONS

Predominance of the unit rate strategy in Beer and 
Mosquito tasks can be due to the lack of flexibility and 
the application of a mechanical rule learnt at school. 
The use of this strategy implies to assign an arbitrary 
price although it is not needed. It does not imply that 
their responses are wrong, but it is an indicative of a 
price-dependence attitude. Note that, there are other 
more efficient strategies. In addition, resistance is 
also observed in accepting that an increase percent-
age can be interpreted as a discount and vice versa. 
Moreover, there are students who misunderstand the 
r.u.r., suggesting a mechanical knowledge of the rule. 
Finally, the use of linearity is widespread in Pizza, and 
very few students perceive the invariance of the ratio 
calculating the u.r. of two regular pizzas instead of 
the u.r. of one regular pizza. They do not realize that 
both of them are equivalent.

These results confirm the deficits in the relative 
thought of pre-service teachers, and that, accord-
ing to Ben-Chaim, Ilany & Keret (2002, p. 81), their 
knowledge is frequently technical, unrelated and 
incoherent. Moreover, the difficulties shown by the 

Table 7: Tasks’ results
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students are not the algorithmic aspects and norming 
techniques, but in conceptual aspects, ratio referents 
and the “price-dependence” when they are comparing 
discounts in commercial offers. The next step is to 
design a teaching sequence that helps the students 
to widen their knowledge of ratio and, according to 
Lamon (2012, p. 107), to help them to develop flexibility 
in situations like the best buy problems, to encourage 
multiple correct strategies and to discuss which strat-
egies are easier, faster or more reasonable.
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Persistent counting strategies often come along with a 
weakness in arithmetic. Due to this, the central objec-
tive is to replace counting strategies by teaching how to 
realize, recognize and use structures. Within the con-
text of the project ZebrA1 (Zusammenhänge erkennen 
und besprechen – Rechnen ohne Abzählen) cooperative 
learning settings were developed to encourage children 
to use different interpretations of patterns and struc-
tures instead of counting. Results show that working 
in pairs of children with heterogeneous competences 
is productive for both partners. Especially activities 
like “comparing” and “sorting” are suitable to make 
children interact about mathematics and help them 
become aware of mathematical structures.

Keywords: Counting, cooperative learning, difficulties in 

learning mathematic, design research.

INTRODUCTION

Meta-analysis verified that forms of cooperative 
and peer-assisted learning at elementary schools go 
hand in hand with stronger effects in content knowl-
edge than in traditional forms of teaching (Rohrbeck, 
Ginsburg-Block, Fantuzzo, & Miller, 2003). The learn-
ing performance of children with learning difficul-
ties improves especially in well-structured, heterog-
enous and tutorial learning environments (Gillies 
& Ashman, 2000). Research also seems to show that 
children with difficulties in learning mathematics 
can profit from cooperative learning. For that reason 
cooperative learning is chosen for an intervention 
intended for children who use counting strategies as 
a persistent strategy. It is well known that persistent 
counting is one of the central symptoms of weakness 
in arithmetic. It is thus necessary for further success 

1  Recognizing and speaking about connections – calculating 

without counting on

in mathematics that children replace counting strate-
gies with mental computation and the use of adaptive 
strategies.

This paper intends to show how learning environ-
ments could be of such design that all children profit 
from cooperative situations. On the one hand chil-
dren with a weakness in arithmetic get a first under-
standing of mathematical structures and relations 
which are important to replace counting strategies 
(Häsel-Weide & Nührenbörger, 2013). On the other 
hand children who already use mental computation 
and adaptive strategies can deepen their knowledge 
and improve their competences in verbalising and 
reasoning. Working together in pairs of children with 
heterogeneous competences may be a chance for both 
of them.

THEORETICAL UND EMPIRICAL 
STARTING POINTS

Replacing persistent counting strategies
The central symptom for a weakness in arithmetic is 
the persistent use of counting while problem-solving. 
Children who use counting as a main strategy in grade 
2 and beyond often develop wide problems in math-
ematics since counting is not a calculation strategy 
that can be built up to work in higher number spac-
es. Besides, persistent counting often comes along 
with a mechanical, non-reflected procedure as well 
as isolated problem solving. There is a risk that the 
missing insights evolve to comprehension problems 
in mathematics education.

To replace persistent counting strategies children 
have to develop alternative strategies like mental com-
putation or the use of derived-fact strategies. Most 
importantly an understanding of numbers and opera-
tions has to be built up which than can be followed by 
exercises to memorize the central problems. Fostering 

mailto:haeselweide@mathematik.uni-siegen.de


Replacing persistent counting strategies with cooperative learning (Uta Häsel-Weide)

275

children in replacing persistent counting strategies 
should enable them to represent numbers and opera-
tions and imagine them as well as to recognize and use 
the relationship between numbers and problems. The 
central objective is also a comprehensive structural 
view on numbers and operations. This means in effect 
that those children who have problems in recognizing 
structures need to be enabled to see them. In practice 
children with persistent counting strategies should be 
enabled to realize, decompose, represent and describe 
numbers as structured quantities. The following four 
aspects characterise the comprehensive objective: 
(1) The ordinal conception of numbers – which often 
comes along with counting procedures – needs to be 
complemented by a conception of quantities; especial-
ly the part-whole-concept needs to be understood. (2) 
Counting in ones needs to be extended with counting 
in steps and furthermore be used to identify quanti-
ties. (3) Children need to figure out that addition and 
subtraction come along with changes of quantities. 
In a fourth step based on this, (4) basic problems can 
be memorized and first relations could be used in cal-
culation (Häsel-Weide, Nührenbörger, Moser Opitz, 
& Wittich, 2014). All mentioned aspects are not “ex-
traordinary” ones as they contain competences that 
are essential for all pupils to be achieved during the 
first years in elementary school. The competences 
are so fundamental that they are taught not only in 
grade 1 but are continuously taught and extended on 
in the next grades of primary school. The respective 
lessons are suitable for cooperative learning because 
children with heterogeneous competences can work 
on the same contents but on different levels of un-
derstanding. In this setting, children with persistent 
counting strategies can profit from the work of their 
partner that might probably be different, more elab-
orated and structure-focused. 

Therefore the learning environments need to be de-
signed in a way which allows working at various lev-
els. In addition the children should be motivated to 
recognize and talk about the mathematical structures. 

Cooperation and interaction in 
mathematics education
As mentioned above, cooperative learning seems to 
be a successful teaching method. This is true espe-
cially for forms of cooperative learning which are 
strongly structured and use clear and common meth-
ods (Tarim & Akdenzi, 2008). Nonetheless the way 
children interact in cooperative situations is vitally 

important. The success of cooperative learning seems 
to depend on interaction activities like verbalising, 
defending, asking and arguing (Pijls, Dekker, & van 
Hout-Wolters, 2007). Learning opportunities occur 
for children if they interpret actions and comments 
of others.

Children need to learn to communicate about math-
ematics, to describe their solution process, to defend 
their ideas or to question the idea of another child. In 
classroom interaction as well as in cooperative learn-
ing (young) pupils may need the moderation of the 
teacher. Teachers are invited to ask open questions 
and give children the opportunity to show their in-
sights and perceptions. The best way to support the 
cooperation process of students is to give them help 
in structuring the cooperative process instead of sup-
porting the finding of the (right) solution (Dekker & 
Elshout-Mohr, 2004). Teacher activities should lead 
children to stay and participate in discussions and 
support them to disagree with each other (Wood, 
1999). 

All in all for the designing of cooperative learning 
environments it is also important that the tasks and 
the methodical setting initiate different perceptions 
which will be communicated between the children. 
The methodical setting of cooperative learning needs 
to be complemented by a content structure in the 
tasks encouraging different views. In order to replace 
counting strategies and focus on relations between 
numbers and operations cooperative learning envi-
ronments need to initiate different perspectives of 
numbers, number representations and operations. 

DESIGN OF THE STUDY

The present study is a part of the project 
ZebrA (Zusammenhänge erkennen und bespre-
chen  –  Rechnen ohne Abzählen). It combines the 
design of learning arrangements and the empirical 
research of the interaction and learning processes 
that can be reconstructed when children work in their 
environments. In that way the design of the study fol-
lows the idea of mathematics research as design sci-
ence (Wittmann, 1995) and comes along with many el-
ements of design research (Gravemeijer & Cobb, 2006).

According to the idea of design science 20 lessons 
– cooperative learning environments – have been 
constructed to foster children in replacing persis-
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tent counting strategies (Häsel-Weide et al., 2014). The 
learning environments focus on an understanding, 
demonstration and imagination of numbers and op-
erations as well as on realizing the relations between 
them. The children learn the cooperative methods by 
working in the learning environments. 

The environments are used at the beginning of grade 
2 in primary school (ages 7 and 8) or grade 4 in special 
education schools. This period seems to be a proper 
time for two reasons: (1) In Germany the children in 
grade 1 work with numbers up to 20, figure out rela-
tions between those numbers and add and subtract 
with numbers up to 20. Obviously, children are al-
lowed and encouraged to make experience with high-
er numbers, but according to the German curriculum 
the number space is opening up to one hundred at the 
beginning of grade 2. Here children orientate them-
selves in the new number space, they work with rep-
resentations of numbers and focus on the relations 
between them. These contents run in parallel to a 
deeper understanding of numbers and operations 
in the lower number space. (2) The limits of counting 
strategies become very obvious when children oper-
ate with numbers up to one hundred. If the familiar 
counting strategies become exhausting, children can 
easily be encouraged to try an alternative strategy 
(Gaidoschik, 2012). 

The study was realised from September to December 
2010. All children of the class are taking part in the 
lessons. Each child who uses counting as its main 
computational strategy works with a partner who 
uses different strategies. The pairs are put together 
by the teachers considering their own estimation of 
children`s competences and strategy utilization, as 
well as the results from a test that was developed, re-
alized and analysed in the scope of further researches 
of the project ZebrA. 

The project is accompanied by two empirical studies 
which allow focusing the replacement of persistent 
counting strategies from different empirical points of 

view. Whereas the quantitative study researches the 
effects of cooperative fostering the study presented in 
this paper focused on the interpretations of children 
dealing with the problems and discussing with the 
partner. We are interested to explore if and how chil-
dren using counting strategies can be encouraged to 
consider and use mathematical structures. Therefore 
the work of five children using counting strategies as 
persistent computation (three boys and two girls) and 
their partners – belonging to four different classes 
and three schools – was video-graphed in ten lessons 
of the ZebrA-project. Corresponding transcripts have 
been made and interpreted by a group of researchers. 
The analyses has been compared in an interactive way 
with empirical findings of other studies and theoreti-
cal approaches (Häsel-Weide & Nührenbörger, 2013). 
Only the results are presented in this paper.

SELECTED RESULTS

Learning environments
In the tradition of mathematics education as design 
science the designed arrangements are central part 
of research output (Wittmann, 1995). So the design 
principles are pointed out below and it is shown ex-
emplarily in which way they become apparent in the 
learning environments.

Structure-focused view on numbers and operations

To replace counting strategies children need – among 
other things – to figure out that operations change 
quantities. Subtraction needs to be understood as 
taking away or determining the difference. To help 
children build up this idea a transparency is used 
(Figure  1). The transparency allows covering an 
amount of dots at one go. So subtraction in the model 
of taking away is linked with the action of “covering” 
and not by “counting” (back).

The transparency can be used to cover concrete dots 
or dotfields which allows finding the difference by 
a quasi-simultaneous determination of the uncov-

Figure 1a & b: Representation of 15-5=10 and 35-5=30
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ered dots. The children are taught in two learning 
environments to handle the transparency. First, in a 
dotfield only the ones are covered, so that problems, 
e. g. 25 – 5 = 10, are represented and solved. In this 
environment called “subtraction to tens” we focus 
on the decimal structure of the number systems. The 
children may realize that these types of problems are 
easy to solve and that they can manage them without 
counting – even in higher number spaces. In a sec-
ond learning environment other “easy” subtraction 
problems, e.g. “minus 1”, “minus 10”, “minus tens” and 

“minus ones” are focused on. 

Sophisticated tasks

The contents of the developed learning environments 
for replacing counting strategies are designed for all 
children of a class. Children with persistent counting 
strategies have the possibility to work on a central 
understanding while other children deepen their 
competences. But therefore the given task has to be 
so complex that different levels of understanding 
and working are possible. Learning environments 
according to this so-called “natural differentiation” 
(Krauthausen & Scherer, 2013) are characterised by 
tasks that are (partly) open and/or include descrip-
tions, explanations and arguments. Open problems 
allow the children to pick up on their own mathemat-
ical ideas, to deepen their understanding of contents 
or problems and sometimes to extend their own limits. 

In the learning environment “subtraction to tens” 
each pair of children gets a couple of cards. There 
are some cards with quantities until 20 and some with 
quantities up to hundred (Fig 2). The children are free 
to choose which cards and how many. They are asked 
to cover the ones and note the corresponding subtrac-

tion problem. If children manage already without the 
transparency, they are free to do so.

Cooperative settings and discursive tasks

According to the research result that successful co-
operation is based on structured settings, two coop-
erative are developed. The cooperative setting “path 
fork”2 starts with a period of individual work which is 
followed by a period of working together on a further 
task. This task is build upon the individual work and 
focused on interaction about the insights and strate-
gies. In the second cooperative method “seesaw”3 the 
children work together on a problem from the begin-
ning. They undertake different activities which are 
referred to each other. In the consequence they pick 
up the interpretation of their partner and carry on. 
The tasks for the cooperative method need to allow dif-
ferent interpretations so that a discussion can follow. 

The learning environment “subtraction to tens” fol-
lows the cooperative setting “path fork”. First, the chil-
dren work with the cards on their own as described 
above. Then they collect their problems with the 
difference 10 on a worksheet (Figure 3). In the cards 
not all numbers from 10 until 19 are represented as 

2  Weggabelung   

3  Wippe 

Figure 2: Material for sophisticated learning Figure 3: Cooperative worksheet
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quantities, so the children are challenged to find the 
missing ones. They could use the discovered struc-
ture or find other problems such as 30 – 20 = 10 or 
45 – 35 = 10. The freedom in the interpretation of the 
formulation on the worksheet allows and probably 
stimulates interaction. 

In some environments “discursive tasks” are used to 
strengthen the difference and the discussion. Children 
of a pair are not given the same tasks but tasks which 
refer to each other (Figure 5). After each of them has 
solved their card they should compare and describe 
common and different features. Moreover “sorting” 
is used as an alternative method to induce different 
interpretations and an interaction about them (Häsel-
Weide & Nührenbörger, 2013).

Results of the analyses of 
cooperative situations
The interaction of the children is analyzed to figure 
out in which way the interpretations of the children 
are affected by the cooperative interaction with their 
partners. Especially the interpretation of relations 
between numbers and problems in the interaction 
are analyzed. As pointed out above, it was of interest 
if and how the interpretations of the children with 
counting strategies differ from the interpretation 
of their partner and if these children modify the 
interpretations in the course of interaction. In this 
paper selected results of the analyses are presented 
and illustrated with examples. For a deeper insight 
into the interpretation process see Häsel-Weide and 
Nührenbörger (2013).

All children of the study were able to work and to co-
operate in the learning environments. Children with 
persistent counting strategies bring in own ideas and 
act as real partners.  

Example 1: After Kolja and Medima have noticed 
the problems according to the cards in the learn-
ing environment “subtraction to ten” they are now 
asked to find new problems. Kolja, a child with per-
sistent counting strategies, suggest the problems  
20 – 10 = 10 and 30 – 20 = 10. It is not clear if he wants to 
create a new, different pattern of problems or if he ex-
presses common problems with the result ten. In the 
interaction his partner Medima notes the problems 
without questioning and the children find a struc-
tured column of problems in turns (Figure 4). On the 
basis of Kolja’s idea they find a structured sequence 
of problems. Even if Kolja was not aware of the new 
structure he suggested, he could pick it up and find 
the next problem. Since Medima seems to realize the 
structure immediately nobody feels a need to para-

Figure 5: Discursive tasks with reconstructed results of Thomas and Max

Figure 4: Document of Kolja and Medima
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phrase the action. Both children are pleased to note 
the problems and also do not notice the mistake.  

The example as well as the results of the analyses made 
clear that children need reasons to negotiate different 
interpretations (Nührenbörger & Steinbring, 2009). 
First of all comparing and sorting as formal coopera-
tive settings function as reason to interact. In informal 
situations some interactions come up by mistakes. 

Example 2: Asked to compare the cards (Figure 5) 
in the second period of the cooperative setting “path 
fork”, Thomas said:

Thomas: Hey Max, Max, I have noticed something. 
Here I have ten above [points at the 10 
on the left card] and you have ten here 
below [points at the 10 on the right card]. 

Max: Oh. I have notice something, too. I have 
something different, too. There must 
be nine [rubs out the result 11 and notes 
9]. Nine. Look, because nine plus nine 
equals eighteen. 

Thomas notices that the difference ten can be found 
on both cards on different positions. He focuses on a 
concrete mathematical sign and describes its physical 
position. But it seems as if his interpretation causes a 
process in Max’s thinking. Perhaps Max realizes that 
there are two other equal results, but not two other 
equal problems. His statement is not clear at that point. 
However, it seems to be a consequence of Thomas’s 
comment that Max now realizes that he has made a 
mistake. He corrects it and explains to his partner why 
the new result should be correct now. Here Max uses 
the inverse relation between the addition problem 
9 + 9 = 18 and the given problem 18 – 9 = 9.

In this episode, relations between problems are real-
ized and described in the cooperative setting, proba-
bly initiated through the discursive tasks. It is open 
how far Thomas, the child with persistent counting 
strategies, understands Max’s argumentation and 
realizes the relations and differences for himself, be-
cause the interaction ends at this point. But there is a 
chance that he picks up this argumentation later on.

Thomas’s interpretation which focuses on corre-
sponding signs was one of the typical interpreta-
tions of children using persistent counting strategies. 
According to results from Gray, Pitta and Tall (1999) 

the analysis show, that children with persistent count-
ing strategies focus often on similar signs. Furthermore 
the children focus on relations between numbers in-
stead of relations between problems as Thomas did in 
comparing the cards as well. 

Thomas: Hey, here is nine [points on the “9” in the 
problem 18 – 9 = on the right card] and 
there it is eight [point on the “8” in the 
problem 18 – 8 =]. It is one more and there 
[point on the problem 18 – 7 =] it is one less. 

Here, Thomas describes the relations between 
the subtrahends. He seems to formulate their 
relation based on a cardinal concept of numbers. 

It becomes clear that the children see correct aspects, 
however they do not seem to realize the relations 
between problems as whole. As a consequence it is 
difficult for them to use the relations for deriving. 
Realizing corresponding signs and first relations be-
tween numbers is essential but not sufficient for de-
veloping derived fact strategies. It needs to be pointed 
out that children who already solve problems without 
counting, formulate relations between problems only 
in few episodes. Mostly they also focus on concrete 
objects and relations between numbers (Häsel-Weide, 
2013). Analyses shows that even teachers are pleased 
if children do so and do not ask them to figure out the 
consequence of the relation between numbers for the 
relations between problems. Probably children with 
counting strategies benefit less than possible from 
the cooperation because the interpretation of their 
partner did not differ essentially from their own. 

CONCLUSION AND OUTLOOK

The presented study aims at developing and research-
ing cooperative learning environments which ena-
bles a structure-focused view on relation between 
numbers and problems for all children in grade 2. The 
design results and the results of qualitative research 
show that it is possible and productive for children 
with heterogeneous competences to work together. 
Children with counting as persistent strategy act as 
real partners in the cooperation and bring in own 
interpretations and solutions. Although informal 
cooperation processes are observed the formal coop-
erative settings, especially the activities “comparing” 
and “sorting”, are suitable to make children interact 
about mathematics. 
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The children’s interpretations show that the children 
focus on relations between numbers. In the next step 
children need to focus on relations between problems. 
This could only be observed in very few episodes of 
the study. Since even children without problems in 
mathematics focus mainly on the relation between 
numbers, further research has to show if another com-
bination of pairs (perhaps with partners of higher age) 
or a more direct moderation by the teacher make all 
children recognize and describe structures between 
problems. Besides, it has to be figured out how far an 
explicit focus on relations between problems goes 
along with non-counting procedures (Gaidoschik, 
2012). 
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In the context of an experimental project targeted at im-
proving the teaching and learning of negative numbers, 
we explored the argumentation schemes of students in 
terms of solving respective tasks. The test items used to 
record the learning progress of the students were tak-
en from the large-scale PALMA-study. While learning 
gains were above average, the argumentation schemes 
of our experimental students show both, expected and 
unexpected patterns. Interestingly, we find well per-
forming students with a preference for metaphorical 
reasoning instead of a mixed argumentation including 
formal reasoning.

Keywords: Negative numbers, lesson studies, 

metaphorical reasoning.

THEORETICAL FRAMEWORK

The Theory of Grundvorstellungen (GVs)
The theory of Grundvorstellungen (GVs) has a long 
tradition in Germany (e.g., vom Hofe, 1995). It reflects 
on the fact that the intuitive level of thinking is often 
responsible for the understanding and building up 
of mathematical knowledge as well as for problems 
in mathematical thinking in the sense of Fishbein:

It is very well known that concepts and formal 
statements are very often associated, in a per-
son’s mind, with some particular instances. What 
is usually neglected is the fact that such particu-
lar instances may become, for that person, uni-
versal representatives of the respective concepts 
and statements and then acquire the heuristic 
attributes of models. (Fishbein, 1987, p. 149f.)

In contrast to the opinion that mathematics is pure 
logic, GVs take social aspects into account as well as 
the environment in which mathematical concepts are 
built up. The theory of GVs has its anglo-american 

correlate in the term concept image which forms a 
fundamental part of Tall and Vinner’s theory of men-
tal models:

We shall use the term concept image to describe 
the total cognitive structure that is associated 
with the concept, which includes all the mental 
pictures and associated properties and processes. 
It is built up over the years through experiences 
of all kinds, changing as the individual meets new 
stimuli and matures. (Tall & Vinner, 1981, p. 2)

The concept image must be differentiated from the 
concept definition that consists of   formal defini-
tions dealing with mathematics. The theory of GVs 
(e.g., Kleine, Jordan, & Harvey, 2005) exemplifies the 
given idea of concept image in more detail and wid-
ens the perspective to descriptive and prescriptive 
utilization.

GVs as a prescriptive notion describe adequate 
interpretations of the core of the respective 
mathematical contents which are intended by 
the teacher in order to combine the level of for-
mal calculating with corresponding real life sit-
uations. In contrast, the term GV in descriptive 
empirical studies is used also as a descriptive 
notion to describe ideas and images which stu-
dents actually have and which usually more or 
less differ from the GVs intended by mathemati-
cal instruction. (vom Hofe et al., 2008, p. 49)

GVs can be formulated in different contexts, such as 
fractions (part of a whole, operator, ratio), subtrac-
tion (taking away, supplementing, comparing) or 
functions. On the one hand the descriptive and pre-
scriptive characters of GVs allow on the one hand the 
formulation of desirable GVs in different contexts 
and on the other hand the testing of individuals’ GVs . 

mailto:mathias.hattermann%40uni-bielefeld.de?subject=
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GRUNDVORSTELLUNGEN AND 
METAPHORICAL REASONING

Metaphorical reasoning is fundamental to human 
thinking and can lead to the construction of mental 
models (English, 1997). According to Lakoff and Nunez 
(1997) metaphors can serve as a tool to understand 
difficult and new concepts in mathematics. They see 
mathematics on the one hand as a product of human 
imagination and on the other hand as a product of the 
embodied mind. Sfard (1994) emphasizes that met-
aphors allow the translation of bodily experiences 
into abstract mathematical ideas. This means that a 
metaphor maps from a source domain (experienc-
es) to a target domain (mathematics) and theses ex-
periences help to understand the abstract ideas in 
mathematics. Lakoff and Nunez (1997) propose four 
grounding metaphors to understand basic arithmetic. 
These four grounding metaphors (Motion along a Path 
(numbers as point locations or movements), Object 
Collection (bringing together, taking away), Object 
Construction (combining, decomposing), Measuring 
stick (comparing) link structures from every-day life 
to mathematics. But these grounding metaphors are 
insufficient to handle operations with negative num-
bers, so Lakoff and Nunez (1997) propose to stretch 
these metaphors to be useful for the explanation of 
the enlarged number domain including zero and 
negative numbers, aware of the fact they get more 
contrived the more they are stretched. In this respect 
metaphors can be used to build up GVs for different 
contexts in mathematics. However, it is well known 
that the use of metaphorical reasoning also has dis-
advantages since it is less efficient compared to facts 
or algorithms. Thus, it is important to investigate the 
relation between prescriptive GVs of an individual 
that is based on metaphorical reasoning (in our case 
a card game called Plus-Minus-Game) and the compe-
tence of the individual to solve computational tasks.

THE PALMA-PROJECT

The Project for the Analysis of Learning and 
Achievement in Mathematics (PALMA) focused on 
students’ development in mathematics throughout 
grades five to ten in Bavaria, Germany (vom Hofe et 
al., 2008), with probands of eleven to sixteen years of 
age. The theoretical framework stressed the differ-
ences between the performance of algorithmic op-
erations and the activation of basic concept images/
GVs. Because of its longitudinal design, the PALMA 

study allowed new insights into the achievement de-
velopment of students as well as into the impact of 
modelling competences that require the utilization 
of basic concept images/GVs. PALMA included an-
nual assessments between 2002 and 2007. About 2000 
students from 83 classes and 42 schools participated 
in the study so that the development of achievement 
was observed over a period of 6 years (vom Hofe et 
al., 2008). 

CURRENT RESEARCH ON NEGATIVE NUMBERS

The genesis of negative numbers in mathematical his-
tory is of historical-cultural significance (Schubring, 
1986). Since decades negative numbers have been part 
of the curriculum in many countries and for Germany 
it was Freudenthal who pointed out that dealing with 
them must be studied in detail (Freudenthal, 1973). 
He talks about didactic models of negative numbers, 
a problem that is still relevant today. Nearly all exist-
ing models dealing with everyday life and negative 
numbers contain specific insufficiencies, so that an 
ideal model for their teaching and instruction does 
not exist. Fishbein takes reference to the fundamen-
tal article by Glaeser (1981) and refers to this issue 
as follows: 

The difficulty of accepting the negative numbers 
as meaningful mathematical entities derives 
from the difficulty of identifying a good intuitive, 
familiar model which would consistently satis-
fy all the algebraic properties of these numbers, 
says Glaeser. As a matter of fact, such a model 
does not exist. One may create some models, but 
only by using a system of artificial conventions. 
(Fishbein, 1987, p. 100) 

Current research in Germany concerning negative 
numbers is insufficient. Nevertheless, schoolbooks 
around the world (with only a few exceptions) pro-
mote the utilization of didactic models such as temper-
atures, balance-debt-models or elevator-models. With 
regard to our focus of interest, two publications are of 
peculiar interest. Chiu (2001) analyzes the utilization 
of metaphors (in the sense of Lakoff and Nunez 1997 
standing in line with the discussed theories of GVs 
and concept images) for the explanation of computa-
tions with negative numbers in a quantitative study 
and with the help of additional clinical interviews. 
He concludes



Students’ argumentation schemes in terms of solving tasks with negative numbers  (Mathias Hattermann and Rudolf vom Hofe)

283

…that both novices and experts have the same 
arithmetic metaphors but use them differently. 
[…]. Experts used metaphors less often in favor 
of more efficient methods. Both used metaphors 
when they faced difficulties. However, novices 
had more difficulties and used metaphors more 
often. (Chiu, 2001, p. 113) 

In her work with 99 students Kilhamn (2008) also ex-
amines forms of metaphorical reasoning. 23 probands 
justified their answers to the task “-3 − (-8) = ” by met-
aphorical reasoning using the thermometer, money 
debts or movements along a number line in their 
explanations. The result of the study is surprising 
because all students who solely referred to metaphor-
ical reasoning failed (n = 14), whereas every student 
who used both metaphorical reasoning and arithme-
tic rules succeeded (n = 9) in solving the task -3 − (-8) = 
(Kilhamn, 2008, p. 6). In spite of the small amount of 
probands, it seems as if both, metaphorical reasoning 
and formal computations are substantial elements 
when dealing with tasks related to negative numbers. 

RESEARCH PROJECT: DESIGN, 
QUESTIONS AND METHODOLOGY

Design
Our current project focuses on the generation of spe-
cific GVs and argumentation schemes based partly 
on metaphorical reasoning with regard to negative 
numbers in a long term-study. As the cited studies 
show, GVs as well as metaphorical reasoning are very 
relevant for the effective learning of negative num-
bers, even though a formalized understanding must 
complete the GVs. It is known that the stretching of 
the grounding metaphors (see the theoretical part) to 
handle negative numbers is problematic and yields 
not always to the desired results, so we will use a card 
game to build up GVs and to research students’ ar-
gumentation schemes for the addition/subtraction 
of integers. Our project, lasting from 2012 to 2015, is 
based on a collaboration between Bielefeld University 
and the Laboratory School Bielefeld. The latter is inno-
vative with respect to both, its educational profile as 
well as its Teacher-as-Researcher Model (Hollenbach 
& Tillmann, 2009). This model allows teachers to eas-
ily perform educational or subject-related research 
that compensates for parts of their teaching obliga-
tions. Three teachers and three researchers have 
collaborated to plan a 12-weeks-unit of instruction 
for negative numbers in grade 7 (n = 21 students), in 

which GVs play a fundamental role. The unit is divided 
into three parts: 1. introduction, 2. addition/subtrac-
tion, 3. multiplication/division of negative numbers. 
In the second part we introduced the Plus-Minus-
Game which is explained in the next paragraph. It is 
designed to build up GVs and to foster metaphorical 
reasoning for the addition and subtraction of negative 
numbers. Teachers and researchers worked together 
on the methodological basis of Lesson Studies (e.g., 
Hart, Alston, & Murata, 2011). This collaborative meth-
od has proven to be effective with regard to teachers’ 
professional development. 

The Plus-Minus-Game
The game consists of a dice with a green, a blue, a 
red, a yellow, a black and a white face, 11 green and 
11 red cards. The 11 green cards are labelled with the 
numbers from 0 to 10. The 11 red cards are labelled 
with the numbers from -10 to 0. The game is played 
by three to four players. After having shuffled the 
cards, you put a deck of green cards and a deck of 
red cards on the table. Every player draws a card and 
puts it on the table without covering it. The youngest 
player begins to throw the die. For each colour the 
die shows, there are specific instructions what to do. 
Green: Take a green card from the deck. Blue: Give 
any green card to your left neighbor. Red: Take a red 
card from the deck. Yellow: Give any red card to your 
left neighbor. Black: Give the red card with the highest 
absolute value to your left neighbor. White: Give the 
red card with the lowest absolute value to your left 
neighbor. The aim of the game is to get the highest 
score in total. The game is over when all cards are 
collected. After playing the game, we introduced the 
notation presented in Figure 1 to motivate the utiliza-
tion of brackets as claimed by Malle (2007). We used 
brackets to differentiate between a card value and a 
score. In an equation, we interpret the first summand 
as a score (without brackets), the second summand as 
a card value (with brackets) and the result as a score 
(without brackets). Figure 1 focuses on the notation in 
addition and subtraction tasks. The interpretation of 
the minuend as a score in a subtraction task is crucial. 
Example: 3 − (-6) = 9 Interpretation: The player has 
several cards (e.g. (5), (-6) and (4) which are added up 
to 3). He has to give away the card (-6), so the player’s 
new score is 9. If someone interprets the minuend as 
a card value instead of a score, the interpretation will 
fail because it is not possible to give away the card (-6) 
while holding only the card with value (3). Problems 
resulting from such misinterpretations are analyzed 
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in detail in Hattermann (2013). For more information 
concerning teaching experiences see Hattermann, 
vom Hofe and Viehmeister (2014).

Research questions
In this paper we focus on three selected research 
questions of the project. Since the students who took 
part in the PALMA study did not participate in les-
sons focusing on the development of GVs, as it was 
the case with our experimental group, we formulate 
the first question: 1. How does the experimental class 
from the Laboratory School perform in answering the 
PALMA-items on negative numbers in comparison to 
the PALMA-students after the instruction unit on neg-
ative numbers? 2. What argumentation schemes (GVs) 
can be identified in the students’ explanations for the 
tasks “(-5) + (-7) =“ and “(-9) − (-4) =” after having fin-
ished the course of addition/subtraction of negative 
numbers? 3. Are there any particular interrelations 
between both, the argumentation schemes identified 
and the students’ success by solving computational 
tasks?

Methodology
After the second and the third part of the course the 
students took part in an evaluation in which they 
computed different tasks and answered questions 
that sought to identify underlying conceptions and 
GVs. In the first evaluation students had to answer 
the following question:

 Imagine your classmate Jacob was ill last week 
and he was not able to attend class. Write a short 

letter in which you explain to him what has to 
be done in the following tasks and explain why: 
a) (-5) + (-7) = and b) (-9) − (-4) =. You may use all 
devices for an explanation that we used in class.

The written letters were analyzed with regard to 
the argumentation schemes used by the students by 
means of a qualitative text analysis. In a first analysis 
the research group analyzed together five letters to 
create categories of argumentation schemes. In the 
following two researchers analyzed independently 
students’ letters to Jacob and decided for one of these 
categories. In a last step inconsistent classifications 
were discussed and the categories were revised. In 
a second step the identified individual argumenta-
tion schemes were confirmed with semi-standardized 
interviews. In these interviews tasks as “(-3) + (-7) =” 
occurred (as in the letter to Jacob) and students’ were 
motivated to solve these tasks and to explain their ar-
gumentation explicitly. They could use a number line, 
the plus-minus-game or other explanations. The video 
analysis was carried out by two researchers. They 
assigned independently argumentation schemes to 
students’ statements in the interview. Finally, the ar-
gumentation patterns of the students were compared 
to their performance in solving 14 computational 
tasks e.g. “(-12) + (-7) =”. Our students worked on the 
PALMA items on negative numbers at the end of the 
school year (like the students in PALMA).

RESULTS 

Exemplary results from the experimental 
class in comparison to PALMA
To answer our first research question, we compared 
the solution rates with regard to PALMA-items 
(grade 7) on negative numbers of the representative 
PALMA-sample and with our experimental group 
at the Laboratory School Bielefeld. For example, the 
task termed Justifying from PALMA had a solution 
frequency of only 19%, the lowest solution rate of all 
items on negative numbers in the PALMA-sample. It 
read: “If you add two negative numbers, you get a neg-
ative number again. Is this statement correct? Justify 
your answer.” (Figure 2)

Figure 2 displays the task in German together with the 
solution of Leo (pseudonym) from our experimental 
group. Leo writes: “Yes, it is right, because if you add 
more negative numbers it becomes less.” The overall 
solution rate of 43% of our experimental group for 

Figure 1: Notation and interpretation for addition and subtraction 

tasks with integers
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this exemplary task provides evidence for our suc-
cess in building up GVs for mathematical concepts. 
Altogether, the students worked on 20 PALMA-items 
dealing with negative numbers. The solution rates of 
the experimental class were at least 10% higher com-
pared to the PALMA-rates for six tasks. One example 
of these tasks is the following: “The water level of a 
water reservoir declines to 8cm. On the next day the 
water level rises about 3cm. How does the water level 
change in these two days.” In contrast to that, the ex-
perimental group solution rate was at least 12% lower 
than for the PALMA-group for four items. These are 
the following items: (+9) · (-8) = ; (-27) + (+3) = ; (-6) · (-8) 

= In the fourth task the probands had to determine 
a temperature on a thermometer and the solution 
rates were 71% (experimental group) respectively 86% 
(PALMA). We explain these results by the fact that the 
plus-minus-game was not used to explain the multipli-
cation of integers. Furthermore the solution rates of 
the thermometer task are high in comparison to the 
other solution rates. This gives evidence that this task 
is one of the easiest tasks and mistakes occur by care-
lessness. For the ten tasks remaining, the difference 
of solution rates did not exceed 9%. One example of 
these tasks is the following: “Mr. Knodel has 450€ on 
his bank account. He transfers an invoice amount. The 
actual balance is -300€. What amount did he trans-
fer?” Despite of the small amount of probands in our 
experimental class, the results show that the average 
achievement of our experimental group is compara-
ble to the achievement of the PALMA-probands, who 
came from Bavaria being one of the high-performance 
regions in Germany. 

Exemplary results from the evaluation 
and the interview-study
In the letters that were written to Jacob during the 
first evaluation, we identified four consistent argu-
mentation schemes that were verified in the following 
interviews. The first one is called formal reasoning: e.g. 

“In both tasks you can use the additive inverse of the 
second number and change the arithmetic operator 
(-3) − (-5) is the same as (-3) + (+5) = (+2).” 

The second scheme is called metaphorical reasoning. 
In our case, the students’ respective justifications 
were based on the number line or the Plus-Minus-
Game: e.g. “Dear Jacob, in a) you have -5, the + means 
that you get a card and because this card is -7 you have 
7 less so -12. “

The third scheme is called mixed argumentation. It 
contains parts of both formal and metaphorical rea-
soning: e.g. “In task b) your score is -9 and then you 
give your [card] -4 so you get -5 you get the same by 
calculating -9 + additive inverse (+4).” This example 
shows both metaphorical reasoning and formal rea-
soning. Whereas the explanation with the card game 
is identified as a kind of metaphorical reasoning, the 
identification of +4 as the additive inverse of -4 hints 
to a formal understanding.

Figure 2: Task for justification from Leo from the experimental class 

Figure 3: Example for formal reasoning

Figure 4: Example for metaphorical reasoning
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In the fourth category no justification can be identi-
fied, e.g.: “Because I learned it this way.” In a last step 
we compared the students’ argumentation scheme(s) 
with their results on 14 computational tasks on neg-
ative numbers as for example “(-12) + (-7) =” (Figure 6). 
We show only the results of these 17 out of 21 students 
who wrote a letter to Jacob and took part in the eval-
uation.

As Figure 6 displays, 13 out of 17 students score at least 
11 out of 14 points. Four students score less than 11 
points whereas three of these students are not able to 
justify or explain their strategies in the letter to Jacob 
or to the interviewer. We find very good results (13 or 
14 points) of students who used mixed argumentation, 
formal reasoning or metaphorical reasoning, whereas 
the mixed argumentation seems to be dominant with 
high achievers. This result is in line with those of 
Kilhamn (2008). In contrast to her study, however, we 
find students with results of 11 and 13 points in spite 
of their preference for only metaphorical reasoning. 
An explanation for this result is the structure of the 
Plus-Minus card game, which undoubtedly repre-

sents a form of metaphorical reasoning, while it also 
represents the mathematical structure very clearly 
and omits other contexts, such as those of everyday 
life. In addition, however, we find three students who 
used metaphorical reasoning only and scored only 9 
and 11 points of 14. One reason for this might be the 
fact that the Plus-Minus-Game represents addition 
and subtraction tasks within a maximal number range 
from -55 to +55, whereas the students had to solve tasks 
such as -530 + (-210) in the computation part as well.

PERSPECTIVES

In the near future, we will revise the unit on negative 
numbers and teach it again in more classes. We will 
use several models, such as the balance-debt-model, 
the Plus-Minus-Game and a model dealing with the 
number line to identify more argumentation schemes 
that are specific for these models. Our aim is to gain 
more insight into individual problems, when dealing 
with specific models. Furthermore we will work on 
an effective combination of models and underlying 
argumentation schemes for addition/subtraction and 
multiplication of negative numbers. 

Figure 5: Example for mixed argumentation

Figure 6: Argumentation schemes and achieved results in computational tasks
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A child’s first experience with mathematics comes from 
their everyday life. The child does not know what three 
is but knows what three fingers, apples or candies are. 
Later, in consequence to abstraction, this semantic an-
choring of mathematical ideas is expanded by ideas and 
concepts that are not directly dependent on semantics. 
We call this process “desemantization”. If the process of 
desemantization ousts semantic links from a pupil’s 
mind as a result of too fast a drill of additive and lat-
er multiplicative structures, we speak of irreversible 
desemantization whose consequence is mechanical 
knowledge of a child. The paper develops this concept.

Keywords: Desemantization, cognitive process, mental 

schema, generic model.

INTRODUCTION

Czech pupils’ and students’ negative attitudes to math-
ematics which can be observed e.g. in international 
surveys TIMSS and PISA and their low level of un-
derstanding of mathematics are a prevailing problem 
of school mathematics in the Czech Republic and a 
challenge for mathematics educators. Our experience 
and research imply that responsible for inauspicious 
situation is not the content of mathematics but the 
way it is taught at school. We are convinced that in 
most cases the teacher presents and explains new sub-
ject matter and their pupils only imitate the teacher, 
they reproduce what has been said and by repetition 
try to store it in their memory. A pupil is not expected 
to use their natural will to discover, he/she is reduced 
to the role of a consumer of knowledge transmitted 
by the teacher. Knowledge of mathematics enters a 
pupil’s mind from the outside and makes a mosaic of 
more or less isolated items of knowledge. The chance 
that this knowledge will not be forgotten and that it 
will be linked to other knowledge is very low. It has 
been known for many years that if transmissive model 
of teaching is replaced by constructivist approach, 

where new knowledge is born in a pupil’s mind as a 
result of the pupil’s intellectual activity, the situation 
changes (Noddings, 1990; Pehkonen, 1997; Gruszczyk-
Kolczyńska, 2012). The here presented study casts the 
light on the possible causes of why key knowledge of 
arithmetic is often stored as mechanical knowledge 
in a pupil’s mind and thus becomes unusable in the 
future when the pupil meets new topics and solves 
new problems. It also looks for a solution of the first 
three main questions formulated for TWG02 both on 
CERME 8 and CERME 9.

The stories used in the paper as illustration of our 
points come from several different research projects 
from different periods of time.

THEORETICAL BACKGROUND

We understand the cognitive process in mathemat-
ics as a pentad of stages in the sense of the Theory of 
Generic Models (for details see Hejný, 2012): 

1. motivation, it guides the cognitive process 
and provides energy;

2. creation of items of initially disconnected 
experience – isolated models;

3. discovery of generalized knowledge – gener-
ic model; 

4. discovery of abstract knowledge;1 

5. crystallization when the new item of knowl-
edge becomes organic part of mathematical 
knowledge of the individual. This stage in 
fact underlies all the first four stages.

1 The difference between generalized and abstract knowledge 

is illustrated in Story 4.

mailto:michael.smith@yahoo.com
mailto:michael.smith@yahoo.com
mailto:michael.smith@yahoo.com
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This learning process was introduced to CERME au-
dience in (Hejný & Kratochvílová, 2005). Hejný (2012) 
states that unlike a number of other theoretical stud-
ies describing the cognitive process, the Theory of 
Generic Models (TGM) is well comprehensible both 
to researchers and teachers. The division of the cog-
nitive process into stages allows a comprehensible 
application of the theory both into primary and lower 
secondary education. TGM explains what the sources 
of development pupils’ mechanical knowledge are and 
how this can be prevented and reeducated. A com-
plete set of textbooks covering all areas of primary 
mathematics were developed based on this theory. 
Over the past 8 years the set of textbooks has spread 
into 20% of all elementary schools in Czech Republic 
and currently it is being piloted at several schools in 
Poland and Slovakia.  

The Theory of Generic Models has been also used as 
a tool for analysis of experiments related to cognitive 
processes as well as when conceiving textbooks for 
pre-service teacher education. 

Sets of generic models in a pupil’s mind create math-
ematical mental schemas that are the bearers of an 
individual’s mathematical knowledge (Hejný, 2012). 

Attention should be paid to two abstraction transfers: 

isolated models 
→ generic models 

→ abstract knowledge,(*)

in which a pupil’s semantic experience changes into 
abstract cognition. 

Let us remark that the process (*) as a tool for discov-
ery of mathematics happens not only in ontogeny, 
but also in phylogeny. Ernst Haeckel’s biogenetic law, 
which states that ontogeny recapitulates phylogeny, 
is inspiring also for didactics of mathematics.  P. M. 
Erdnijev (1978, p. 197) formulated the idea as follows: 

“The growth of the tree of mathematics knowledge 
in an individual’s mind will be successful only if we 
recapitulate to a certain degree the history of de-
velopment of mathematics.” We also work with this 
idea. When exploring the issue of desemantization we 
build on our former studies as well as works (Krpec 
& Zemanová, 2011) and (Zemanová, 2014). 

THE CONCEPT OF DESEMANTIZATION 

The term desemantization refers to the process (*). It 
emphasizes the fact that once abstract knowledge is 
formed, it is no longer dependent on the initial se-
mantic ideas and exists independently. 

Story 1 
I ask a five-year-old Adam how much two plus three 
is. The boy looks at apples on the table and asks: “Two 
apples and three apples?” and when I agree he first 
takes two apples, then three apples, puts them togeth-
er, counts them and says: “five apples”. Then I point at 
a bowl with candies and ask: “How much is two candies 
and three candies?” The boy proceeds analogically 
and says: “five candies”. He does not realize that in 
both cases it is the same calculation. This is surprising 
for Adam’s father who was observing us. The father 
was convinced I should have told the boy that he could 
use the first calculation in the second case. The father 
was disappointed that his son failed to see the analogy. 

Half a year later, when asked how much two and three 
is, the boy used his fingers to find out the result is 

“five”. Another year later the boy answers “five” was 
without counting. When he later mastered numbers 
in the language of higher abstraction, he was able to 
record this knowledge in the abstract form: 2 + 3 = 5.

What has taken place in the boy’s mind is deseman-
tization. If the symbol 2* describes a semantically 
anchored number 2 and similarly symbols 3* and 
5* semantically anchored numbers 3 and 5, then the 
described desemantization can be described as the 
transfer (2* + 3* = 5*) → (2 + 3 = 5). When practicing 
addition and subtraction at school, the link gets au-
tomated. However, when his younger sister asks him 
how much two plus three is, his advice is to count it 
on fingers. This implies that the abstract knowledge 
2 + 3 = 5 is still connected to semantics in Adam’s mind. 
The boy is able to make the abstract item of knowledge 
2 + 3 = 5 comprehensible to his sister using the rela-
tion 2* + 3* = 5*. The desemantization that Adam went 
through has not broken the individual stages of the 
process (*). The boy naturally goes back to the stage 
of isolated models. That is why we speak in this case 
of reversible desemantization.  

Story 2 
Adam is in the second grade and is one of the fastest 
arithmeticians in his class. He can add, subtract, multi-
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ply and partially also divide very quickly and reliably. 
He is not so good at word problems. The class is solving 
the following problem:

Problem 1. Mum paid 163 CZK for her shopping. She 
has 509 CZK after this purchase. How many crowns 
did mum have before she went shopping?

Adam sees the signal word “spent” but is not sure 
whether to subtract, as he finds the text a bit strange. 
He prefers to ask his teacher: “Miss, is it plus or mi-
nus?” The teacher answers plus. Adam then quickly 
answers six hundred and seventy two. And the teach-
er commends him for his answer. 

The teacher overvalues calculation skills and fails to 
realize that Adam fails to understand mathematics. 
She does not realize that calculation in word prob-
lems is only secondary, what is of primary importance 
is understanding the assignment, the pupil’s ability 
to grasp in their mind what the problem asks and 
requires. When the teacher commends the boy, she 
deforms his metacognitive belief that mathematics 
is about being fast in calculations rather than about 
thinking. The boy’s mathematical cognition is no lon-
ger supported in his semantic ideas. If we ask him to 
pose a problem with addition 163 + 509, he will use the 
standard addition of two sets of data. If we ask him to 
use the word “spent” in the assignment, he will not 
manage to do so. Desemantization in the boy’s mind 
is in this case irreversible. 

Story 3 
Adam is in the seventh grade. He can now add frac-
tions. This knowledge entered his mind not by the 
process (*) but through structural deduction. First 
the pupils were introduced to reduction and raising of 
fractions and based on this knowledge the teacher de-
duced the relation: a/b + c/d = ad/bd + bc/bd = (ad + bc)/bd. 
Adam does not understand the presented deduction 
and thus has no idea of what is actually happening as 
there are very few real-life problems based on this 
concept of fractions.   Adam has only learnt a rule 
and knows that when adding fractions he must follow 
this specific rule.  

When his younger sister asks him how to add one half 
and one third, he shows her the rule. When she asks 
him for an explanation of this rule, he says it cannot 
be explained, it must be learnt. 

In this case Adam’s knowledge of addition of fractions 
is not supported by semantic ideas as it entered the 
boy’s mind from the outside with very little semantic 
support which is, moreover, not further developed 
in the subsequent lessons. On the contrary, the little 
semantic support that existed was forced out through 
the subsequent drill. Desemantization is very weak 
in this case and the support in semantic ideas ceases 
to exist. In this case we also speak of irreversible dese-
mantization. More precisely we speak of mechanical 
knowledge that does not enter pupils’ minds by (*) but 
by direct transmission. 

ISOLATED MODELS

Adam’s story shows how a pupil with clear ideas about 
mathematics turns into a pupil without any ideas. The 
story also illustrates the important stages of isolated 
models. Once we master abstract thinking and cogni-
tion, we often believe it is a waste of time to be learning 
isolated models. That is the case of Adam’s father from 
Story 1 and the teacher who was teaching Adam to 
add fractions. This common mistake can be avoided 
if the teacher carefully monitors how their pupils 
understand mathematics and if they look for ideas 
in history of mathematics. Let us present here one 
historical illustration which is underlain by phyloge-
netic parallel to Adam’s ontogenetic activity in Story 1. 

Phylogenetic parallel 
We can find evidence of the fact that addition can be 
dependent on the objects we calculate with also in 
phylogeny. For example the Japanese numeral “two” 
is “ni” and is recorded by the character (二). However, 
this concept is not on the level of abstract cognition 
as in the semantic context the Japanese supplement 
this numeral by a particle called numerative. This 
means that in our transcription they do not work with 
number 2 but with anchored number 2*. Thus two 
people are futari (二人), two small animals are nihiki 
(二匹), two large animals are nitó (二頭), two elongat-
ed cylindrical objects are nihon (本), two glasses are 
nihai (二杯) etc.

The number of Japanese numeratives shows that cre-
ation of a generic model may require a considerable 
number of isolated models. It is almost impossible to 
find out how many different calculations 2* + 3* = 5* 
had been carried out by Adam in Story 1 before he 
grasped the relation 2 + 3 = 5.  
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Both isolated models of the relation 2* + 3* = 5* pre-
sented in Story 1 were of the same type: 

A) number + number = number. 

But the relation 2 + 3 = 5 has more semantic contexts. 
For example two more types:

B) address + operator of comparison = address 
(I live on the 2nd floor, Michal lives 3 floors 
higher. Which floor does Michal live on?) 

C) operator of change + operator of change = 
operator of change  (I make 2 steps, then 3 
steps. How many steps have I made?) 

The spectrum of different contexts of isolated models 
is crucially important for the quality of future dese-
mantization. First of all it brings a variety of ideas 
into the nascent schema of “addition and subtraction” 
and enriches semantic background of arithmetic. 
Moreover it prepares the grounds for new concepts 
and relations and also type 

A) prepares the grounds for the concept of frac-
tion as we can add 1/2 of an apple + 1/3 of an 
apple; 

B) prepares for grasping the concept of a num-
ber line on which there will be all numbers; 

C) prepares for work with vanishing models of 
numbers (e.g. three steps, three winks, they 
vanish once they have been carried out) and 
negative numbers. 

The presented stories, their analysis and further 
considerations show that a well-built rich system of 
isolated models is prerequisite to good and successful 
desemantization. Although we discuss here only in-
troduction to arithmetic, the conclusion is universally 
valid. It applies also to fractions, decimal numbers, 
equations, perimeters and areas of plane figures, com-
binatorics. Combinatorics will be the setting of the 
story in the following chapter.    

FIRST ABSTRACTION TRANSFER

Based on the analysis of several dozens of video re-
cordings of the cognitive processes, the stage of iso-
lated models was divided into four sub-stages: 

1) First experience enters our mind – the seed of fu-
ture knowledge.

2) Gradual entry of more isolated models that are not 
interlinked yet. It may happen that we accept qua-
si-models and refuse surprising models. 

3) Some of the models start pointing at each other, we 
group them together and separate them from other 
models. We get the feeling that these models are some-
how alike. 

4) Discovery of this alikeness results in creation of a 
community of at least a subset of all isolated models.

As soon as the pupil has reached stage four, he/she 
chooses one of the isolated models and says “and this 
is how it always works”. This isolated model becomes 
a generic model, which shows how to solve problems 
of this type. In Adam’s case from Story 1 this generic 
model was the addition 2 fingers + 3 fingers = 5 fingers. 

Story 4 
In the second grade pupils were solving problems with 
sticks. The following is one of the problems. 

Problem 2. Continue making other triangular win-
dows and write down into the table how many sticks 
you need.  

The problem was solved about 10 days ago and the 
pupils had found out that for creation of 3 (4, 5) win-
dows they needed 7 (9, 11) sticks. None of the pupils 
had noticed the number of sticks was increasing by 
two. It means that the pupils reached the 1st and 2nd 
sub-stage of isolated models. 

Figure 1: How many sticks? 
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Later, Ben was solving the problem at home on his own. 
When he put numbers 3, 5, 7 and 9 in the table, he saw 
the numbers were increasing by two. (Ben reached the 
3rd sub-stage.) Therefore he added number 11 beneath 
number 5 and checked the result. He was happy to see 
that his conjecture worked. (Ben reached the 4th sub-
stage.) He filled in the whole table and ran to his father 
to show. The father commended his son and asked how 
many sticks would be needed for 50 windows. The 
boy realizes that this will require a lot of writing and 
calculations. He takes his things and goes to work in 
his room. He makes Table 1.

While filling in the table he notices that beneath num-
bers 19 and 29 there are numbers 39 and 59. Then he 
realizes that beneath numbers 20 and 30 there are 
numbers 41 and 61. He is convinced that beneath num-
bers 40 and 50 there will be numbers 81 and 101. He 
runs to his father to show him this discovery. He com-
mends his son and asks him what number there will 
be beneath number 57. Ben creates table for numbers 
50, 51 to 57 and beneath numbers 101, 103 and 115. The 
father asks what number there will be beneath num-
ber 100. Ben writes 100 and beneath immediately 201. 
The father asks what there will be beneath number 
113. Ben writes 110, 111, 112 and 113. Beneath 221, 223 
and 225. The father applauds.

The father resisted the temptation to disclose to his 
son that the rule works for all numbers, not just tens. 
Ben discovered this rule later together with his other 
two classmates and recorded it in a very simple way: 
sticks = 2⋅windows + 1. Later when Ben was explaining 
it to his friend, he wrote briefly s = 2⋅w + 1. 

Ben’s solving procedure contains all 4 sub-stages of 
isolated models. The first two took place in the class-
room when pupils were solving the problem for 3, 4 
and 5 windows. The third sub-stage was supported 
by the use of the table thanks to which the first dis-
covery was made: the numbers increase by two. Ben 
discovered the instruction on how the process con-
tinues. This was the 4th sub-stage that immediately 
transcended into a generic model. Generic models of 
this type are therefore called processual.   

The father, by asking about number 50, guided the boy 
to search for the rule how the number of sticks can 
be derived from the number of windows immediate-
ly, without having to make a long table. The boy first 
discovered the answer for numbers 10, 20, 30, … This 
is a discovery of the model that we will call partial-
ly conceptual. Finally the third discovery made with 
classmates is a fully conceptual model.    

The story shows a complex, several day long process of 
discovery of a generic model. Each of the three AHA-
effects accompanying the process was a very exhila-
rating experience. And this experience guarantees 
that the knowledge about the relation of windows and 
sticks given by the abstract formula s = 2⋅w + 1 is the 
consequence of reversible desemantization. Ben is 
able to recapitulate the whole process even a year later.  

ISOMORPHISM OF GENERIC MODELS 

In the paragraph on Isolated models we presented 
several different semantic types of anchoring of the 
knowledge 2 + 3 = 5. The rich spectrum of sematic 
anchoring of most knowledge in mathematics helps 
reversibility of desemantization. Let us illustrate this 
on an example of knowledge of combinatorics: () = 10. 

Problem 3. Alice has birthday. She invited her friends 
Betty, Cecil, Dee and Elis to her party. Each who came 
kissed each other girl who had already come to the 
party. How many kisses were there?

Problem 4. Find out how many matches will take place 
in a football tournament if there are 5 teams, each of 
them playing each other once. 

Both problems serve as a semantic illustration of com-
binatorial number (). 

Problem 3 is of processual, problem 4 of conceptual 
nature. 

Story 5 
Problem 3 was assigned to 5th graders. Jana was solv-
ing it by a simulated dramatization and then she drew 
5 points A, B, C, D and E on a sheet of paper. She joined 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Table 1: How many cells and sticks? 
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A to points B, C, D and E and wrote 4. Then she joined 
B with C, D and E and wrote + 3 next to 4. Thus she 
continued with C and D and finally gained the result 
4 + 3 + 2 + 1 = 10. Jana finished very fast so the teacher 
asked her to try to solve the problem for 6 and even 
10 girls. Jana started to work. She got engulfed and 
was working only on this problem until the end of the 
lesson. Ivan found the problem difficult but together 
with his friend managed to get the result. 

A month later the same class was working on problem 
4. Hynek wrote down the names of 5 teams: Sparta, 
Ostrava, Brno, Hradec, Jihlava. Then he wrote down 
all the matches: Sparta – Ostrava, Sparta – Brno, … In 
the end he stated that there were 11 matches because 
he had calculated Brno – Hradec and Hradec – Brno.  

Jana gave up looking for the solution. She said she 
did not understand football. The teacher knew Jana 
liked playing chess and so she advised the girl to solve 
the same problem for a chess tournament. Jana then 
started to solve the problem and later, when the prob-
lem was discussed by the whole class, she contributed 
with a very powerful idea. 

The first to speak was Hynek (deliberately, be-
cause his solution 11 was wrong). When he wrote 
Sparta – Ostrava, Mirek suggested he should write 
only S – O to speed up the process. So Hynek changed 
it and discovered on his own that if there is B – H, he 
cannot add H – B. There were more pupils who had 

been solving the problem analogically to Hynek. 
Each such solution is an isolated model of the result 
of problem 4. The most popular solution (especially 
with boys) was Ivan’s solution. He created a table of the 
tournament and showed there would be 10 matches. 
This table (Table 2) is closer to a generic model than 
to an isolated model. 

Lada was waving her hand to get the attention of the 
class to explain that this was the same as kisses on 
Alice’s party. Some pupils agreed but most did not 
understand. Then Jana suggested it was pretty clear: 
before each match the captains shake hands, which is 
the same as when the girls kiss. She ran to the board, 
drew 5 points and joint each point with all the other 
points (Figure 2). She said this was how it could be 
drawn – both Alice and the matches. Everybody could 
understand this explanation. Jana’s drawing became a 
generic model and Hynek’s and Ivan’s solution were 
in this perspective merely isolated models. 

When they reached 7th grade, these pupils learnt that 
the combinatorial number () is

the number of all 2-element subsets of an n-element 
set. The first to understand this difficult definition 
was Jana. She pointed out that for n = 5 it is the same 
as with Alice or with the matches. Understanding of 
the abstract concept () is now for some pupils based 
on the generic model “Alice’s party for n girls”, for 
other pupils on the generic model “tournament for n 
teams” but for more pupils on isomorphism of both 
these models represented by an n-gon, its all sides 
and diagonals. Obviously the understanding of the 
last group of pupils is the deepest.  

CONCLUSION

The above presented stories were used to cast light 
on the process of desemantization and to point out 
the phenomenon of reversibility and irreversibility 
of this process, which is of paramount importance 
with respect to understanding arithmetical phenom-
ena.  We showed that desemantization is impossible 
where the abstract idea enters a pupil’s mind from 
the outside, without previous semantic preparation. 
Story 5 illustrated the case where semantic prepara-
tion took place three years before the abstract concept 
was introduced from the outside.  

A B C D E
A X X X X

B X X X

C X X

D X

E

Table 2: How many tournament matches?

Figure 2: Jana’s drawing 
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The scope of this paper does not allow us to discuss 
the issue of desemantization in detail. Some of the 
phenomena had to be omitted. For example the impor-
tance of counting backwards for reversible deseman-
tization, amalgamation process-concept (Gray & Tall, 
1994), or grasping, coding and transformative power of 
language for second abstraction transfer (Kvasz, 2010). 

Let us conclude this study by a summary of the main 
findings of our research:

 ― Desemantization is a long-term mental process 
whose mechanism can be described by two ab-
straction transfers (*).

 ― Desemantization is reversible if the pupil even 
after having achieved the abstract level is able to 
project abstract ideas into generic models.

 ― Reversibility of desemantization has positive 
influence on the richness of generic models and 
links between them.  

 ― Knowledge that enters a pupil’s mind from the 
outside in its final form (i.e. mechanical knowl-
edge) has no semantic anchoring. In this case we 
cannot speak of desemantization. However, se-
mantic anchoring can be developed later.
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Equal groups and rectangular arrays are examples of 
multiplicative situations that have different qualities 
related to students’ understanding of the distributive 
and the commutative properties. These properties are, 
inter alia, important for flexible mental calculations. 
In order to design effective instruction we need to inves-
tigate how students construct understanding of these 
properties. In this study sixth grade students were invit-
ed to reason with a peer about calculation strategies for 
multiplication with the goal of explaining and justifying 
distributivity. Their discussions demonstrate that the 
representation of multiplication as equal groups helps 
them to explain and justify distributivity. At the same 
time this representation hinders their efficient use of 
commutativity.

Keywords: Multiplicative reasoning, distributivity, 

commutativity, equal groups.

INTRODUCTION

Three fundamental properties of arithmetic, the dis-
tributive, the commutative and the associative prop-
erty all apply to multiplication. These properties un-
derpin flexible mental calculations and later algebraic 
understanding (Carpenter, Levi, Franke, & Koehler, 
2005; Ding & Li, 2010; Lampert, 1986; Young-Loveridge, 
2005). Although the significance of these properties 
is well known, researchers have only recently “begun 
to discuss ways to teach these ideas in the elementary 
grades” (Ding & Li, 2010, p. 147). To design effective 
teaching of the arithmetical properties more knowl-
edge about students’ understanding of the properties 
is needed. This study’s aim is to investigate how stu-
dents make sense of the arithmetical properties in 
multiplicative calculations. The distributive property 
(DP) is the main focus, but the commutative property 
(CP) for multiplication is also investigated since stu-
dents need to manage the CP when they undertake 

calculations involving the DP. The associative prop-
erty is not discussed here, which is not a reflection 
on its importance but this paper’s focus. In the next 
section some general concepts central to this study are 
presented followed by a review of findings concerning 
students’ understanding of the DP and the CP before, 
finally, the aims for this study are clarified.

BACKGROUND

The DP, which states that a·(b+c)=(a·b)+(a·c), under-
pins mental multiplication by splitting one factor to 
make two multiplications which are then summed. For 
example one might solve 7·14 as 7·(10+4) = (7·10)+(7·4) 

= 70+28. Students can develop this mental strategy 
when they view multiplication as repeated addition 
and focus on the invariance of the total (Schifter, 
Monk, Russel, & Bastable, 2008). When this implicit 
use of the DP is transferred to problems where both 
factors are multi-digit numbers, a common error is 
to solve multiplications such as 26·19 by only multi-
plying the first terms and the second terms with each 
other; (20+6)·(10+9) = 20·10 + 6·9 (Lo, Grant, & Flowers, 
2008). Ding and Li (2014) suggest that the difficulties 
students have learning arithmetical properties, lead-
ing to calls for more concretisation, stem from their 
abstractness and “lack [of ] close relevance to learners’ 
lives” (p. 103). Concretisation by contextual and visual 
representations, in order to build a mental image of 
the operation and its properties, is argued to help 
students to structure and “organize their thinking 
and reasoning” (Yackel, 2001, p. 27). Both contextu-
al and visual representations can reflect different 
multiplicative situations such as equal groups and 
rectangular arrays. A simple equal group situation 
is 4 bags of 8 apples in each bag, while a simple rec-
tangular array can be a chocolate bar with 4 rows of 
8 squares. In asymmetrical situations, such as equal 
groups, one factor is the multiplier (number of bags) 
and the other the multiplicand (number of apples). In 
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symmetrical situations, such as rectangular arrays, 
the two factors have the same role.

A contextual representation suitable for illustrating 
the DP is the total cost for 4 cups of coffee and 4 cakes, 
where the answer would be the same whether you 
first multiply the cost for one coffee by 4, then the 
cost for one cake by 4and then add the products or if 
you first add the cost for one coffee and one cake and 
then multiply that sum by 4. A visual representation 
for equal groups can be used for discussing the ways 
the total number of objects could be calculated, by 
means of the DP (Lampert, 1986). A rectangular array 
of dots or squares can also illustrate how 7 rows, each 
with 14 objects, can be partitioned flexibly by use of 
the DP into for example 2·14 + 5·14 rectangles (Young-
Loveridge, 2005).

The CP, a·b = b·a, allows numbers to change places in 
multiplication and addition. Young students seem to 
discover and understand the CP for addition without 
instruction but not for multiplication (Squire, Davies, 
& Bryant, 2004). The rectangular array model is well 
suited to concretise the CP, as its rotational quality 
makes it perceptually self-explanatory, for example 
a box of 18 eggs in 3 rows of 6, which, when rotated 
90° is simply perceived as 6 rows of 3 eggs. With an 
equal groups situation, it is not perceptually trans-
parent that 7 bags of 14 coins is equivalent to 14 bags 
of 7 (Lo et al., 2008). Carpenter and colleagues (2003), 
however, found young students justifying an equal 
groups approach to the CP by rearranging the objects 
in the group, as exemplified by a students who said: “I 
would always get new groups that are the same size as 
the number of groups I started with and the number 
of new groups I would get would be the same as the 
number I had in each of the old groups” (p. 95). Some 
researchers argue that rectangular arrays should be 
introduced to enrich students’ images for multiplica-
tion and to illustrate the DP (Carpenter et al., 2003; 
Young-Loveridge, 2005). Indeed, the illustration of 
integer multiplication as a rectangular array can ex-
plain standard algorithms and illustrate the extension 
of multiplication to rational numbers.

Squire and colleagues (2004) investigated 9–10 year 
old students’ ability to use the DP and the CP in varied 
contextual situations. They gave a multiple-choice test 
whereby a multiplicative situation was given as a cue, 
and the problem was to solve a word problem of the 
same situation by means of either the DP or the CP. The 

DP problems presented the total number of objects in 
a groups of b objects (an equal groups problem) and 
asked for the total number of objects in a+1 groups 
of b objects. For example the students were given a 
multiplicative word problem incorporating the asser-
tion 26·21 = 546 and invited to solve a similar problem 
involving 27·21. The CP problems were constructed 
analogously; if the cue stated the total number of ob-
jects in a groups of b objects the task objective was to 
find total amount of objects in b groups of a objects. 
They concluded that 9–10 years old English students 
could manage the CP in all situations but not the DP. 
DP problem reflecting equal groups were more often 
solved correctly than any other situations, leading 
Squire and colleagues to suggest that the representa-
tion of equal groups might be a natural way for young 
students to imagine what happens when the multipli-
er is changed by one. They conclude that equal groups 
should be employed when introducing students to 
the DP. This is in line with Lampert’s (1986) findings 
that fourth grade students (about 10 years old) made 
sense of the DP by means of stories in combination 
with drawings illustrating equal groups. She argues 
that equal groups is more intuitive for young students 
than array models as that is how they model multipli-
cation. This is also confirmed by literature in the field 
of early algebra (Schifter et al., 2008).

In short, we know that younger students (9–10 years 
old) do not invoke the DP as easily as the CP; that equal 
groups are more intuitive for the understanding of 
the DP than rectangular arrays, even though rectan-
gular array is proposed to enrich students’ under-
standing of the DP. But for middle grade students 
(12–13 years old) there is a lack of research of how 
they understand the DP and what representations 
they employ when reasoning about multiplication. 
Given the importance of arithmetical properties for 
the understanding of algebra as well as flexibility in 
calculation, it is appropriate to pose the question: how 
do sixth grade students understand distributivity?

METHOD 

Students from two sixth grade classes already en-
rolled in a research project were invited to take part in 
this study. The 19 students who agreed to participate 
do not form a random or representative sample but a 
typical mix of Swedish students; some have diagnoses 
concerning concentration or dyslexia, some struggle 
with mathematics while others excel. In order to en-
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hance the possibility of a rich discussion, students 
were placed in homogeneous pairs (one worked alone) 
based on the evidence of earlier tests and interviews 
concerning the forms of multiplicative reasoning 
they had previously shown. They were presented 
with three problems written on separate cards, see 
Figure 1, each comprising a strategy from a fictitious 
student for the calculation of 26·19. The students’ 
tasks were to discuss each problem with their peer 
and a) evaluate the validity of the suggested strategy 
and b) reason why the suggested strategy was valid 
or not. They were not informed that the suggested 
strategies were incorrect. A separate card with the 
multiplication problem (26·19) was visible throughout 
the discussions.

Problem1, (P1), reflects an incomplete use of the DP, 
where one factor is partitioned and multiplied by the 
other factor but the last part of the partitioned factor 
is added to the product without any multiplication.

Problem 2, (P2), is analogous to a common method 
for addition, where a suitable part is moved from one 
term to the other, in order to make an easier calcula-
tion.

Problem 3, (P3), reflects a well known error (Lo et al., 
2008). However, all three strategies derived from (in-
correct) strategies exploited by this group of students 
the previous year when they were tested on multipli-
cation of two-digit numbers.

Each of the three problems is an example of how 
students have partitioned the numbers in order to 
simplify calculation. When using the DP correctly 
partitioning is the starting point, but to demonstrate 
understanding of the DP involves explaining what to 
do with the parts as well as why. By inviting students to 
evaluate and explain an incorrect use of the DP it was 

possible to draw conclusions from their reasoning 
about how they understand the DP.

The students’ discussions, which took place in a room 
adjacent to their normal classroom, were video and 
audio recorded and all written material collected. The 
tasks were explained to the students, who were explic-
itly told that they did not need to do any calculations 
themselves. Each card was read aloud and left on the 
table. The discussions for all three problems lasted 
between 10 and 25 minutes including the oral infor-
mation about the tasks. The transcribed student dis-
cussions were repeatedly read and their answers cat-
egorised according to the arguments they employed 
to explain their decisions about the validity of the 
strategy. Some students used multiple arguments for 
each problem and some arguments were used in all 
problems while other arguments were used for one 
or two of the problems.

RESULTS

In this section the categories of arguments that 
emerged from the data are presented and exemplified 
by excerpts from the students’ discussions. These are 
followed by a discussion about the different types of 
reasoning in respect to the DP.

General justification reflects the arguments of four 
students who not only solved P2 by justifying why the 
suggested strategy was invalid but also investigated 
the strategy further in order to find out under what 
conditions it would work and when the answer would 
be bigger or smaller. Their arguments clearly reflect 
a discussion about multiplication and its properties.

Emil If you increase the smaller number and 
decrease the larger number, then it al-
ways gets bigger.

Figure 1: Problem 1 (P1), Problem 2 (P2) and Problem 3 (P3)
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Marcus: It might not work with zero point, but 
with ordinary numbers, whole numbers, 
then it always…

Here, Emil concluded that the product gets bigger if 
you move one from the larger factor to the other, and 
Marcus’ statement reflected a discussion-derived ar-
gument concerning which numbers Emil’s claim is 
valid for. In this case, “zero point” refers to decimal 
numbers.

Equal groups is a category where students made con-
textual references and represented 26·19 as 26 sets of 
19 objects or 19 sets of 26. This argument was used in 
all three problems and reflected an awareness of why 
the DP is valid in multiplication.

Lucas If you take away one pile, then you take 
away nineteen. And that should be put 
in twenty-five piles. That doesn’t work.

Here Lucas showed why the strategy was invalid, that 
one in the number 26 represents a group of 19, which 
is construed as understanding the DP.

Counterexample was used to evaluate the calculation 
strategy by use of numerical examples. Hence, it re-
flected multiplicative reasoning by implicit use of the 
DP. Students gave examples of moves of one from one 
factor to the other would not yield the same product, 
as exemplified by Ida.

Ida It is not the same, if it is eight times nine 
or seven times ten.

Here, Ida showed an awareness that if she used the 
same strategy as suggested by the fictitious student 
in P2, the calculation would yield an incorrect result, 
since it transformed the problem. She transferred the 
strategy into easier numbers to make arguments of 
why the strategy did not work. There were also stu-
dents who gave counterexamples to the suggested 
strategy in P1, which reflected knowledge of the DP, 
stating that 6 needs to be multiplied by 19 and then 
the two partial products can be added.

Check the answer was used to assess the result rather 
than the strategy, and drew on a calculation of the 
answers for both the suggested strategy and for 26·19; 
if the answers were not the same the strategy must be 
invalid. This reflected a result-oriented view on multi-

plication without argumentation as to why the results 
differ; hence, such an argument does not demonstrate 
understanding of the DP. It was used for P2 and P3 and 
is exemplified by Hanna.

Hanna I will calculate that [25·20] and then this 
[26·19] and see if it is the same.

Experience was when students knew that the strate-
gy was invalid or “knew” that it was valid from their 
experience of calculations. This argument offered no 
evidence of understanding of the DP since there was 
no reasoning as to why the strategy does not work. 
Alice used it to justify the falseness of P3 and Wilma 
its truth.

Alice That does not work. […] I thought it 
worked before, but it doesn’t.

Wilma It works. That is how I calculate.

Additive reasoning reflects the students’ incorrect 
additive reasoning when calculating. This type of 
reasoning occurred in relation to all three problems.

Matilda If you first take twenty-six, and split it, 
that’s the same. You can take nineteen 
and then take [one] to first make a twen-
ty, that is, you can take one from the six 
to the nineteen, so it becomes twenty 
times twenty, and then just add five. 
Then you will get the same answer, just 
that you split it in different [parts].

Here, Matilda described an additive way of handling 
big numbers to partition the numbers into parts that 
are easier to handle. She suggested that 26 is split into 
20 and 6, and then add 1 from the six (splitting 6 into 
5 and 1) to make 20, take 20·20. Then finally add 5, 
((19+1)·(26-1-5)+5).

The category other consists of vague and unclear argu-
ments as well as no answer. Felicia gives an example of 
a vague argument and Alva of unclear reasoning to P1.

Felicia Then the six isn’t timesed [multiplied].

Alva It is hard to explain, but it is just wrong.

Some of the students who reasoned like Felicia meant 
to take 20·19 + 6·19, others meant 20·19·6, while others 
never explained further how the six should be mul-
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tiplied. Alva’s statement is an example from which it 
is impossible to draw any conclusions about the stu-
dent’s understanding of the DP, which is this study’s 
aim.

When the categories of arguments were analysed 
further, and in relation to the DP, different types of 
reasoning were found. Four students investigated 
the suggested strategy in P2 on a meta-level; for exam-
ple, under what premises their arguments were valid, 
which can be described as an investigative reasoning 
on a meta-level about multiplication. These students 
not only considered the structure of multiplication 
but also the generality of their claims. The arguments, 
which drew on ‘equal groups’ and ‘counterexamples’, 
were construed as multiplicative reasoning by the DP 
since arguments in both these categories reflected an 
implicit understanding of the DP as a theorem-in-ac-
tion (Vergnaud, 2009). The difference between the two 
categories of argument was that in ‘equal groups’ all 
arguments were validated by contextual examples, 
e.g., Lucas’ piles (see above), while the ‘counterexam-
ples’ were validated by numerical examples without 
references to objects in groups. In contrast to the 
category ‘check the answer’, ‘counterexample’ was 
focussed on explaining why the strategy was invalid 
while ‘check the answer’ was focussed on calculating 
answers, and hence labelled as procedural reasoning. 
To use ‘experience’ reflects a descriptive reasoning by 
stating that the suggested strategy was invalid, but not 
why. The descriptions were focussed on the calcula-
tions as a procedure to get the right answer, implying 
that the student did not understand the DP. Finally, 
there were students who gave arguments not showing 
multiplicative reasoning, some by ‘additive reasoning’ 
and some categorised as “other”. Vague arguments 
and unclear statements are not necessarily indicative 
of their not being able to use multiplicative reasoning; 
they might have had problems verbalising their un-
derstanding. All arguments are presented in Table 1. 

Since many students gave multiple arguments for 
the same problem, the sum of arguments for P2 and 
P3 exceed the number of participating students. The 
category “other” is only presented when students did 
not provide any other argument, hence reflecting the 
number of students unable to give any clear argument 
to each problem.

The distribution of arguments for each problem 
varies. For P1 six students employed multiplicative 
reasoning when they explained why the suggested 
strategy was invalid and thirteen used arguments 
showing no multiplicative reasoning. For P2 the dis-
tribution of arguments spread over all categories 
except ‘experience’, and the 19 students used 33 ar-
guments, demonstrating students’ use of multiple 
arguments. This problem also engaged students in 
general justifications, which did not occur for the oth-
er problems. For P3 six students drew on ‘experience’, 
three correct and three incorrect, in the evaluation 
of the erroneous strategy. The incorrect evaluations 
drawing on experience are the only arguments, be-
sides additive reasoning, which led students to make 
incorrect conclusions about the validity of strategies.

In the rich discussions where students reasoned 
about P2 it was possible to infer understanding of 
both the DP and the CP. The following utterance from 
Emil shows his distinguishing the multiplier from 
the multiplicand. The transcript also demonstrates 
that he was aware of the CP when speaking about cal-
culating “the other way around”, a common way for 
Swedish students to talk about the CP.

Emil But if you take less there [pointing at 19] 
then it has to be fewer times multiplied. 
Or it depends if you do it the other way 
around, so if I calculate 19·26, then it is 
anyway twenty-six times multiplied…

Type of reasoning Category of arguments P1 P2 P3
Investigative reasoning on meta-level General justification 0 4 0

Multiplicative reasoning by the DP
Equal groups 2 6 7

Counterexample 4 8 0

Procedural reasoning Check the answer 0 9 8

Descriptive reasoning Experience 0 0 3+3

Not showing multiplicative reasoning
Additive reasoning 1 4 4

Other/no answer 12 2 3

Table 1: Number of students using different arguments for each problem
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When students reasoned about equal groups they 
distinguished the multiplier from the multiplicand. 
Some of them interpreted 26·19 with 19 as the multi-
plier, others interpreted 26 as the multiplier. In some 
pairs this different interpretation of a fixed factor as 
the multiplier caused some confusion. However, all 
students were aware of the CP being valid for multipli-
cation and overcame confusion by stating, that it did 
not matter which factor was multiplier, as exemplified 
by Johanna and Ida.

Johanna Ida, it is ten times nineteen. Not ten 
times twenty-six.

Ida What? You did it like this before, and 
then I thought twenty-six times … but 
it doesn’t matter what way around you 
do it.

During the discussions about all three problems some 
students offered other suggestions as to how to cal-
culate 26·19. These suggestions clarified how they un-
derstand the DP, as with Hugo’s statement where he 
gives a suggestion how to proceed with the strategy 
in P2 to get a correct answer.

Hugo She has multiplied twenty times, and 
then she must take away what stands 
for one time, that is twenty-five. She 
has to take away twenty-five. […] Then 
she gets that one times nineteen, so 
she has plus nineteen.

Here, Hugo demonstrates his understanding of the 
DP as he proposes compensating for the erroneous 
strategy of taking 25·20 instead of 26·19 by subtracting 
25 and adding 19 to the product of 25·20; 26·19 = (26 - 
1)·(19+1) - (1·25) + (1·19).

In summary, by engaging in the evaluation of incor-
rect strategies for two-digit multiplication, students 
with an implicit understanding of the DP demonstrat-
ed their understanding, mainly by reasoning about 
multiplication as equal groups. In equal groups the 
multiplier is distinguished from the multiplicand 
and this representation helped students to offer valid 
justifications about the incorrect strategies and to 
suggest other valid strategies employing the DP, but 
it also contributed to miscommunication connected 
to the CP. The arguments to explain and justify strat-
egies demonstrated different types of reasoning in-

volving both the DP and the CP as building blocks for 
understanding of multiplication. Students showing 
additive reasoning did not show knowledge about the 
arithmetical properties.

DISCUSSION AND CONCLUSIONS

The different arguments that students gave for the 
invalidity of the three strategies reflected different de-
grees of understanding the DP. When students cannot 
explain why or how a multiplication strategy works or 
not works it might be due to difficulties in expressing 
what they mean. It might also reflect shallow under-
standing of multiplication or explanatory difficulties 
due to perceptions of self-evidence. From my read-
ings of students’ explanations to P1, I infer that it was 
too easy for the majority of students to explain why 
you need to multiply the six as well. Still, one student, 
Matilda, who showed additive reasoning to all three 
problems, was convinced that P1 was a valid strategy, 
which she had trouble reconciling with the fact that 
the answer was wrong.

Matilda It should work, but it doesn’t. It might 
work if you take 20·19 and then mul-
tiply by 6. (After checking the calcu-
lation.)

Even though students like Matilda can be exposed as 
additive reasoners, P1 was not very productive since 
most students’ answers and arguments were vague. 
This is in contrast to the other two problems, espe-
cially P2. The suggested strategy in P2, to move one 
from one factor to the other, caused long and elabo-
rate discussions among most of the pairs. One reason 
might be that this strategy was new to most students. 
The novelty, and the analogous strategy for addition, 
might have evoked students’ curiosity to investigate 
and engage in discussion about the strategy on a more 
general level than the other problems. In contrast to 
novelty, six students drew on experience to P3, the 
common mistake to only multiply tens by tens and 
ones by ones (Lo et al., 2008). Experience might have 
decreased the interest to engage in discussions about 
the strategy; students just knew that it “worked” or 
did not work.

Students who represented multiplication as equal 
groups in order to make sense of the DP and calcu-
lation strategies were successful, see for example 
Lucas’ explanation why the suggested strategy in P2 
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did not work. The representation of equal groups as 
piles of objects served as a thinking tool to sort out 
the multiplication. To use the representation of equal 
groups as a thinking tool was demonstrated both for 
invalid strategies in the problems and for valid strate-
gies employing the DP that the students offered as an 
alternative calculation. These Swedish middle school 
students seemed to prefer thinking about multiplica-
tion as equal groups just as the younger students from 
other studies (Lampert, 1986; Squire et al., 2004) and 
prospective teachers (Lo et al., 2008). However, the 
successful representation of multiplication as equal 
groups in respect to the DP proved to have a draw-
back concerning the CP. Even though students knew 
the validity of the CP for multiplication, there were 
instances where their view of one of the factors as 
the multiplier hindered their understanding of their 
peer’s reasoning. This may be due to the fact that they 
represented the expression 26·19 differently, either 
as 26 groups of 19 or as 19 groups of 26. The students’ 
explicit statements about the CP being valid can be 
construed as if the students did not take the CP as 
something self-evident when they were engaged in 
discussions drawing on equal groups. Interestingly, 
there were no utterances at all where students drew 
on rectangular array to make sense of calculation 
strategies or the CP.

The results of this study suggest that if we want stu-
dents to learn and understand the DP we might bet-
ter introduce the DP by equal groups and discuss the 
limits of its validity as well as how it can be used. On 
the other hand, the rectangular array, also an impor-
tant representation of multiplication, highlights the 
CP by making it self-evident that a·b = b·a (Carpenter 
et al., 2003) and can also be used to illustrate the DP 
(Carpenter et al., 2003; Young-Loveridge, 2005). If the 
underlying reason for illustrating the abstract prop-
erties of multiplication by contextual and visual rep-
resentations is to build mental representations that 
can enhance understanding of the concepts (Yackel, 
2001), it would be of interest to introduce multiple rep-
resentations of multiplication. The findings from this 
study also suggest that more effort might be needed 
to incorporate representation of multiplication by 
rectangular arrays (and areas) in the instruction as 
complimentary representation to the equal groups, 
not as a substitute. Further research might give sug-
gestions to how instruction can enhance the possi-
bilities for students to build solid and useful mental 
representations of multiplication and its properties.
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This paper presents selected findings from a qualitative 
study that has the main goal to investigate the proce-
dures and concepts of fourth grade pupils solving com-
putational estimations problems within the context of 
spending money. It gives theoretical background with 
respect to understanding computational estimation, 
and it points out a hitherto unmentioned concept un-
derlying computational estimation – the interrelation of 
an estimate and the exact calculation – which is closely 
related to task characteristics. Therefore, the data anal-
ysis and the discussion focus on the role of this concept 
as well as of the role of task characteristics.
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INTRODUCTION

The necessity of computational estimation in the 
mathematics curriculum has been discussed for years, 
especially since the 1980s. Theoretical reflections and 
prior research have shown that it is an important skill 
in everyday life as well as in mathematics because it 
is strongly interwoven with number sense and flex-
ibility in mathematical thinking (e.g. Sowder, 1992; 
Verschaffel, Greer, & De Corte, 2007). A considerable 
number of research about computational estimation 
exists, mainly focussing on estimation strategies used 
by secondary pupils and adults in America and Asia 
(e.g., Alajmi, 2009; B. Reys, R. Reys, & Peñafiel, 1991; 
R. Reys, B. Reys, Nohda et al., 1991; R. Reys, Rybolt, 
Bestgen, & Wyatt, 1982), and on the adaptivity of strat-
egy choices (e.g., Lemaire & Lecacheur, 2002; Lemaire, 
Lecacheur, & Farioli, 2000). Depending on the specific 
problems and its underlying mathematical structures 
as well as on individual preferences there are differ-

ent strategies that can be used to make an estimate 
(see Table 1). At the same time empirical studies gave 
evidence that rounding is the predominant one being 
used to solve computational estimation tasks, as soon 
as it is brought up in the classroom (cf. R. Reys et al., 
1991; R. Reys et al., 1982) and whether or not it leads to 
the correct answer. According to this it is assumed that 
this strategy is often used without understanding (e.g. 
Schoen, Blume, & Hoover, 1990). These findings are 
mainly based on quantitative studies. Thus, it is only 
little known about pupils’ thinking, and about their 
concepts of computational estimation. Therefore, this 
paper deals with the concepts underlying computa-
tional estimation by means of a qualitative study with 
fourth grade pupils.

THEORETICAL FRAMEWORK

What is computational estimation?
To clarify the underlying concepts of computational 
estimation, the term itself will be defined first, since 
there are several, sometimes inconsistently used 
terms and definitions. In the English language, prob-
ably one of the most widely used expressions is esti-
mation. On the one hand, this term refers to activities 
like measurement and numerosity estimation: In these 
cases some information is missing, and therefore an 
exact calculation is not possible and consequently as-
sumptions about a quantity have to be made. On the 
other hand, estimation refers to computational esti-
mation, which is the focus of this paper. In this case all 
quantities, respectively numbers, are known, but an 
exact calculation is not necessary due to the context. 
Thus, an exact calculation is consciously ‘refused’ in 
favour of a simplification (cf. Breidenbach 1969). This 
idea of simplifying a calculation to make it easier is 
finally one of the main goals of computational estima-
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tion (cf. LeFevre, Greenham, & Waheed, 1993; Star & 
Rittle-Johnson, 2009).

Concepts of computational estimation
Although most of the previous research deals with 
strategy execution, there are some studies that are 
concerned with the concepts of computational esti-
mation as well (e.g., Cochran & Dugger, 2013; LeFevre 
et al., 1993; Sowder & Wheeler, 1989; Star, Lee, Chang, 
Glasser, & Rittle-Johnson, 2007). Sowder & Wheeler 
(1989) differentiated five components involved in com-
putational estimation with conceptual components 
as one of them (p. 132). According to this, there are 
three concepts pupils have to understand in order 
to make an appropriate estimate (Cochran & Dugger, 
2013; Sowder & Wheeler, 1989): 

 ― Role of Approximate Numbers: Recognition 
that the process of computational estimation re-
quires computing with approximate numbers, 
and that an estimate is an approximation.

 ― Multiple Processes/Multiple Outcomes: 
Acceptance of several possible processes for ob-
taining an estimate, and of more than one possi-
ble value as an estimate.

 ― Appropriateness: Recognition that appropri-
ateness depends on the context and the desired 
accuracy. 

An interview study focusing on these concepts 
(Sowder & Wheeler, 1989) found that pupils (grades 
3, 5, 7 and 9) hardly seem to recognize these concepts. 
For instance, many pupils preferred a compute-then-
round method in place of a simplification of the prob-
lem, and hence, did not seem to recognize the role of 
approximate numbers in the sense of Sowder and 
Wheeler (1989).

In addition to the conceptual components provid-
ed by Sowder and Wheeler (1989), Star and Rittle-
Johnson (2009) operationalize conceptual knowledge 
of computational estimation by tasks that focus on 

the impact of estimation strategies on distance from 
the correct answer. In accordance with this, van den 
Heuvel-Panhuizen (2001) points out a peculiarity for 
so-called indirect estimation questions. These are 
types of estimation problems like “Quickly decide 
if the total of 186, 495 and 197 points is more or less 
than 1000” (van den Heuvel-Panhuizen, 2001, 184). For 
this sort of question the answer is not a number, but a 
decision. Since an exact calculation is not necessary, 
a simplification is sufficient. Therefore, an estimate 
is an adequate, but not a sufficient solution strategy: 

However, in order to answer the estimation ques-
tion with some degree of certainty, some reason-
ing is still necessary. With the problem about the 
total number of points, students must be able to 
perceive that rounding up three times (besides 
the fact that the sum of the rounded off numbers 
is only 900) allows them to be certain that the total 
must be under 1000 (van den Heuvel-Panhuizen, 
2001, 184).

This quotation points out two aspects: It is not only 
important to take into account the impact of estima-
tions strategies in an operational way, as emphasized 
by Star and Rittle-Johnson (2009), but it is another 
relevant concept of computational estimation to per-
ceive that an estimate is directly intertwined with 
the original problem. In other words, an estimate is 
a model for an exact calculation. This means, pupils 
must understand that there is an interrelation of an 
estimate and the exact calculation and an estimate 
finally has to be interpreted (adjusted) to lead to a 
correct answer of an indirect estimation question.

Combining the concepts pointed out by Sowder and 
Wheeler (1989) on the one hand, and Star and Rittle-
Johnson (2009), and van den Heuvel-Panhuizen (2001) 
on the other hand, the concepts of computational es-
timation can be summarized as follows:

 ― Role of Approximate Numbers

 ― Multiple Processes/Outcomes

139 + 119 + 124 ≈
Rounding 100 + 100 + 100 = 300

Translation e.g. 3 · 130 = 390

Compensation  
(Adjustment while or after an estimate)

100 + 100 + 100 = 300, it has to be more because of rounding 
down, ≈ 370

Table 1: Examples of computational estimation strategies (cf.  R. Reys et al., 1982)
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 ― Appropriateness

 ― Interrelation of an estimate and exact calculation 
(operational and conceptual)

Not investigated before, the last concept became one 
of the four foci of a study on the concepts and proce-
dures of grade four pupils solving direct and indirect 
estimation questions (cf. Hunke, 2012) and leads to the 
following question:

To what extent do pupils respect the concept of the in-
terrelation of an estimate and exact calculation when 
they solve indirect estimation questions (“Is it enough 
money?”)?

Since this aspect is closely related to the necessity of 
interpreting an estimate, the findings in this paper 
will be discussed along the following questions (Q )

Q1: How do children arrive at the answer to 
an indirect estimation question when 
they start with an estimate? Do they in-
terpret their estimates?

Q2: If the situation should arise – How do 
they carry out such an interpretation? 

Q3: What are possible reasons for not inter-
preting estimates?

METHOD

Since the estimation process is quite complex it would 
be difficult to get insights into pupils’ concepts and 
thinking only by analysing written documents and 
outcomes of a task (cf. Heirdsfield, 2002; Schoen et al., 
1987). Carpenter, Coburn and Reys (1976, 299) pointed 
out that “to obtain a valid measure of a student’s abili-
ty to estimate it is probably necessary to observe that 
student estimating”. Thus, all in all 42 fourth grade 

pupils from four different primary schools in the 
state of North Rhine-Westphalia (Germany) were in-
terviewed. To gain a broad and balanced overview of 
strategies and concepts pupils showing low, average 
and high performance in mathematics were chosen 
for the interviews. This ranking was made according 
to the teachers’ evaluation of the pupils. However, the 
pupils’ background was not deeper taken into account 
for analysis.

Two different sets of problems were used in the 
interviews, following the idea of van den Heuvel-
Panhuizen (2001) to differentiate between direct and 
indirect estimation questions. As pointed out earlier, 
especially the indirect estimation questions require 
the concept of interrelation of an estimate and exact 
calculation to be answered successfully. One prob-
lem set only consisted of direct estimation questions 
(“Approximately how much does it cost?”), where a 
number as a result was necessary. The other set only 
consisted of indirect estimation questions (“Do you 
have enough money?”), where a mathematically based 
decision had to be made (see Figure 1). With regard 
to the aforementioned research questions, only data 
gained by solving the indirect estimation questions 
are taken into account for this paper. 

The settings contained six addition and six multipli-
cation problems. Whole numbers as well as decimals 
were used. To get an insight in the concepts of compu-
tational estimation, some of the problems contained 
numbers that make an interpretation necessary when 
a conventional rounding strategy is used first (e.g., 
the problem in Figure 1). Since there also were also 
other research foci not discussed in this paper, the 
numbers in some of the other problems were rather 
chosen to operationalize other aspects of computa-
tional estimation (Hunke, 2012, 117ff.). Nonetheless, 
all these problems were taken into account for the 
following analysis.

Figure 1: Indirect estimation question (addition) (cf. van den Heuvel-Panhuizen, 2001)
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All interviews were video recorded and transcribed 
for data analysis. Afterwards the data were coded 
along the four research foci. Therefore, categories 
were developed according to the theoretical frame-
work, the research questions as well as to the data 
itself (cf. Schmidt, 1997). 

FINDINGS

Data analysis on behalf of question 1 (Q1) led to four 
considerably different approaches (categories) how 
children deal with their estimates gained by rounding, 
to arrive at the answer to the “Do you have enough 
money?”-problems [1]. Each approach is represented 
by one arrow in Figure 2. It shows that an interpre-
tation of the estimate, which would indicate a certain 
amount of conceptual knowledge, is not naturally in-
cluded in the children’s approaches.

Q2: How do the children carry out such an interpre-
tation? 

The children who use one of the upper three ap-
proaches all show a certain amount of conceptual 
understanding, because, to some extent, they recog-
nize the interrelation of their estimate and exact cal-
culation as they conduct some sort of interpretation. 
The following excerpt of the interview with Franziska 
illustrates the second approach ‘estimate – compen-
sation – exact calculation – answer’ used by her for 
finding an answer to the addition problems illustrated 

in Figure 1. Franziska starts with an estimate and then 
argues as follows:

“You have got € 30. You buy a CD for € 19.95 and a 
book for € 9.55. Do you have enough money?”

Franziska: That would be 30 Euro. Since I round-
ed up here and here, well, I don’t believe 
that it makes 30 all together. Give me a 
second, now I calculate it like this (writes 
down and executes an exact calculation, 
see Figure 3). Yes, because here, I round-
ed up and rounded up, it’s actually more, 
and thus 30 Euro. 

Franziska is conscious of the fact that the estimate is 
‘only’ a model for an exact calculation, which for this 
certain problem has to be interpreted. She carries out 
this interpretation with a compensation strategy first 
(“Since I rounded up here and here”). But it seems that 
Franziska does not feel comfortable with this because 
she checks her arguing by an additional exact calcu-
lation. At least, this example shows that Franziska 

Figure 3: Franziska’s estimate and subsequent exact calculation

Figure 2: Four approaches of finding an answer to an indirect estimation question
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already has an understanding of the concept of the 
interrelation of an estimate and the corresponding 
exact calculation from an operational as well as from 
a conceptual perspective. On the contrary, some chil-
dren had difficulty in carrying out a compensation 
strategy although they were conscious about the need 
of it (cf. Hunke, 2012). Nonetheless, Franziska has to 
gain more confidence in her number sense, because 
for this certain problem a further exact calculation 
was not necessary. 

Q3: What are possible reasons for not interpreting 
estimates?

Next to those three approaches, that to some extent 
reflect conceptual knowledge, it is the fourth of the 
aforementioned approaches that seems to be espe-
cially interesting, since it represents those children 
who do not take into account the interrelation of an 
estimate and the exact calculation. In fact, some pupils 
directly generate their answers from their estimates, 
which is exemplified by Jessica’s and Anna’s reason-
ing:

As well as Franziska, Jessica easily finds an estimate 
for the problem “Larissa has got € 25. She wants to buy 
seven wooden ornamental letters to put on her bedroom 
door. Each letter costs € 3.55. Has she got enough money?”:

Jessica: […] I prefer taking € 4 … multiplied by 7, 
makes 28! Thus, it’s not enough money, 
she hasn’t saved enough. € 3 are missing. 

She rounds up the price from € 3.55 to € 4 that leads 
to an estimate above the budget. Jessica then directly 
generates her answer to the problem on basis of her 
estimate (approach 4) instead of taking into account 
her rounding. This is evident by her statement “€ 3 
are missing”. Thus, Jessica finally gets an incorrect 
answer to the problem. In fact, due to the process of 
rounding up, the exact result must be smaller than 
€ 28 and thus some fine-tuning is still necessary to 
find out if eventually there is enough money. This 
demonstrates that for Jessica an estimate seems to be 
an autonomous form of calculation with no relation to 
the original task. Consequently, it has to be supposed 

that she does not yet have a comprehensive under-
standing of the concepts of computational estimation.

More or less the same can be stated for Anna. In addi-
tion, her reasoning leads to a further problem which 
emphasizes the importance of the concept of compu-
tational estimation concerning the interrelation of 
an estimate and the exact calculation. Anna solves 
all the problems with an exact calculation at first. She 
only makes estimates when the interviewer explicitly 
encourages her to do so. For some problems this leads 
to two competing results as in the following case: “You 
have got € 30. You buy a CD for € 15.55, a woolly hat for € 
5.99 and a scarf for € 8,98. Do you have enough money?”

At first, Anna chooses the written algorithm to get to 
the exact result of € 29.42, and according to that she 
arrives at the answer that she has got enough money. 
After that, the interviewer asks her to solve the prob-
lem with an estimate as well. Consequently, she gets to 
the estimate 16 + 9 + 6 = 31, and comes to the conclusion 
that “it doesn’t work with an estimate, actually”:

Interviewer: So, what is the answer, finally?

Anna: There is enough money, because 58 Cent 
are left, but you cannot buy anything 
expensive in addition to that. 

Interviewer: And what about the estimate?

Anna: Yes, well…(speaks quietly) 15 plus 9, 25. 
It’s 31 with estimation. That doesn’t work. 

Here, the assumption comes up that, although Anna 
is able to execute an estimate, she regards it as an au-
tonomous calculation form which leads to another 
conclusion to the question than the exact calculation, 
and therefore, to Anna’s mind, estimation is not pos-
sible here. Thus, Anna’s approach is also categorized 
as approach number 4 – she tries to generate her 
answer to the question directly on the basis of her 
estimate. This can be a hint that Anna does not have 
a comprehensive understanding of the concepts of 
computational estimation. In Anna’s case this might 
as well be the reason for preferring exact calculations. 
For her, estimation does not seem to make sense, and 
thus she resigns it.

Figure 4
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CONCLUSION

This paper supports previous findings that com-
putational estimation is a complex task for which a 
comprehensive understanding is needed. Theoretical 
analysis of the concepts of computational estimation 
led to a hitherto unmentioned and therefore unexam-
ined concept of computational estimation, namely the 
concept of the interrelation between an estimate and 
the exact calculation. 

The empirical snapshot underlined the theoretical 
considerations that this concept is a very important 
aspect of understanding computational estimation. Of 
course, these results cannot be generalized because 
of the small scope of the study. Nonetheless, for the 
case of indirect estimation questions it could be point-
ed out that although the subjects of this study were 
generally able to carry out an estimate they did not 
necessarily understand what an estimate really is. 
This especially was apparent in those approaches 
where the children directly generated an answer to 
the question “Do you have enough money?” from their 
estimates. While this approach is sufficient for direct 
estimation questions (“Approximately how much…?”), 
it is not generalizable for every type of estimation 
problem.

In consequence, indirect estimation questions turned 
out to be a useful tool to make this certain concept of 
computational estimation visible. At the same time the 
findings give useful indications for teaching computa-
tional estimation. If we want to teach computational 
estimation with understanding, we need to provide 
tasks that allow pupils to develop the aforementioned 
concepts. Indirect estimation questions as used in this 
study seem to be adequate for this because they give 
the opportunity to discuss the interrelation of the 
estimate and the exact calculation from an operational 
as well as from a conceptual perspective. 

Although estimation questions like “How much does 
it cost approximately?” (direct estimation question) 
and “Do you have enough money?” (indirect estima-
tion question) have been typical estimation tasks in 
textbooks in the German primary classroom before, 
their respective potential does not yet seem to be 
utilized. According to van den Heuvel-Panhuizen 
(2001) a learning-teaching trajectory is suggested 
that starts with indirect estimation questions. Not 
only can these questions evoke other strategies than 

rounding (Hunke, 2012; van den Heuvel-Panhuizen, 
2001), but they can also be used to discuss the con-
cepts of approximation and interrelation, before the 
children learn any estimation strategy that might 
be executed without understanding. Thus, further 
research is needed. Design experiments therefore 
seem to be especially desirable. Pursuing such an 
experimental approach, further research questions 
could be “Which design principles are needed for 
fostering children’s understanding of computation-
al estimation? How can direct and indirect estima-
tion questions be used systematically in the primary 
classroom? Which numbers are especially suitable to 
make this certain concept obvious? How can children 
be encouraged to evoke more number sensed based 
strategies for computational estimation problems?”. 
Finally it is particularly necessary to support teach-
ers to become more sensitive for this very important 
topic, especially what it means to teach estimation 
with understanding.
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1. More than one half of the indirect estimation ques-
tions have been solved with an estimation strategy, 
mainly rounding (Hunke, 2012).



309CERME9 (2015) – TWG02

The impact of a teaching intervention on 
sixth grade students’ fraction understanding 
and their performance in seven abilities 
that constitute fraction understanding 

Aristoklis A. Nicolaou1 and Demetra Pitta-Pantazi2

1 Ministry of Education of Cyprus, Strovolos and University of Nicosia, Egkomi, Cyprus, educati@cytanet.com.cy

2 University of Cyprus, Strovolos, Cyprus

In a previous study, we found that students’ abilities 
in fraction recognition, definitions and explanations, 
argumentations and justifications, relative magnitude 
of fractions, representations, connections and reflec-
tion constitute fraction understanding of sixth grade 
students. In the present study, we examine the impact 
of an intervention comprising of lessons for developing 
the seven abilities on students’ fraction understanding 
and their performance in the seven abilities. The sample 
comprised of 343 sixth grade students. Repeated meas-
ures analysis showed that the students of the experi-
mental group outperformed those of the control group 
in their level of fraction understanding and their ability 
in fraction recognition, definitions and explanations, 
argumentations and justifications, connections and 
reflection.   

Keywords: Fraction understanding, repeated measures 

analysis, sixth grade, students’ abilities, teaching 

intervention.

INTRODUCTION

Fraction complexities and students’ difficulties have 
led a number of researchers in the past to study frac-
tion understanding carrying out research programs 
and teaching experiments (e.g. Cramer, Post, & delMas, 
2002). In the present study, we examine the impact of a 
teaching intervention which is based upon a different 
perspective compared to the studies already carried 
out. More specifically, in a previous study conducted 
by the authors (Nicolaou & Pitta-Pantazi, 2011), we 
confirmed a theoretical model with seven abilities 
that constitute fraction understanding at elementary 

school. The seven abilities were: (a) fraction recogni-
tion, (b) definitions and mathematical explanations 
for fractions, (c) argumentations and justifications 
about fractions, (d) relative magnitude of fractions, (e) 
representations of fractions, (f ) connections of frac-
tions with decimals, percentages and division, and (g) 
reflection during the solution of fraction problems. 
Five of these abilities, definitions and mathematical 
explanations, argumentations and justifications, rep-
resentations, connections and reflection correspond 
to the mathematical processes suggested by NCTM 
(2000) that are important for understanding math-
ematical concepts. We consider that apart from the 
various issues related to fraction understanding that 
were already investigated, students’ ability to engage 
in processes such as reflection during the solution of 
fraction problems, explanations for fractions, argu-
mentations and justifications about fractions, rep-
resentations of fractions and connections of fractions 
with decimals, percentages and division are essential 
for fraction understanding. Additionally, we included 
fraction recognition and the relative magnitude of 
fractions in the abilities required for fraction under-
standing at elementary school (the reasons for this 
decision are provided in the next section “Theoretical 
Background”).     

In the present study, we examine the impact of a teach-
ing intervention comprising of lessons for developing 
the seven abilities on sixth grade students’ fraction 
understanding and their performance in the seven 
abilities. The aim was twofold: (a) To examine the im-
pact of the intervention on sixth grade students’ frac-
tion understanding, and (b) To examine the impact of 
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the intervention on students’ performance in each of 
the seven abilities.

THEORETICAL BACKGROUND

The seven abilities 
According to NCTM (2000), mathematical processes 
are very important for understanding mathematical 
concepts. Based on this rationale, we considered that 
students’ abilities in these processes are also impor-
tant for fraction understanding at elementary school. 
We also included two more abilities as explained be-
low. In this section we will briefly refer to these seven 
abilities (for more details see Nicolaou & Pitta-Pantazi, 
2011).

Reflection during the solution of fraction problems 
refers to students’ ability to reason their thinking and 
their answer while solving fraction problems, to sup-
port the reasonableness of their answer and verify 
a given answer. In order to solve fraction problems, 
students should be able to use the various fraction 
sub-constructs; they should be able to think of frac-
tions embedded in mathematical problems corre-
sponding to these sub-constructs and utilize them 
accordingly to solve the problem. Moreover, students 
should be able to carry out operations with fractions. 
Argumentations and justifications about fractions re-
fer to a kind of “informal proof ” at elementary school. 
For the purpose of the present study, argumentations 
and justifications refer to students’ ability to judge 
statements about fractions as true or false, justifying 
at the same time their choice. Definitions and mathe-
matical explanations for fractions refer to students’ 
ability to define in their own words what a fraction is 
and also to explain in various ways (verbally, by us-
ing drawings, examples etc.) other issues concerning 
fractions (e.g., fraction equivalence, comparison, den-
sity). Connections refer to students’ ability to connect 
fractions to other forms of rational numbers (deci-
mals and percentages) and division. Representations 
of fractions refer to students’ ability to translate to 
visual, verbal and symbolic representations and their 
ability to construct drawings for fractions.

In order to propose a model that would provide a suf-
ficient description of fraction understanding, we also 
included fraction recognition and relative magnitude 
of fractions in the abilities required for fraction un-
derstanding. Fraction recognition refers to students’ 
ability to recognize structural characteristics of frac-

tions and detect similarities and differences between 
fractions. It also includes students’ ability to catego-
rize fractions on the basis of a common characteristic. 
The relative magnitude of fractions refers to students’ 
ability to compare and order fractions and is crucial 
for fraction understanding, since in the case students 
are not able to compare and order fractions, then they 
probably do not understand the meaning of fractions. 

METHODOLOGY

The rationale of the intervention – Its principles
The intervention comprised of activities which aimed 
at developing the seven abilities. The design of the in-
tervention was based on some principles. According 
to the first principle, the activities and the problems 
should be interesting, arise from everyday life and 
attract students’ interest (Elbers, 2003). The second 
principle referred to the sequence of the activities 
from the easiest to the more difficult ones. The third 
principle was about the way students worked; either 
individually or in small groups favoring discussion 
and exchange of ideas (Elbers, 2003; Martino & Maher, 
1999; Terwel, Van Oers, van Dijk, & van den Eeden, 
2009). After working individually or in small groups, 
students discussed their ideas in the whole classroom 
and this procedure helped them to share their views 
and interact (Elbers, 2003; Martino & Maher, 1999; 
Terwel et al., 2009). Additionally, in every activity 
students had to explain their thinking and provide 
adequate reasoning for their decisions. The fourth 
principle referred to the modification of the lesson 
plans according to the strengths and weaknesses of 
the students and their previous knowledge of frac-
tions. The fifth principle referred to the role of the 
teacher as a facilitator of learning. While students 
worked individually or in small groups, the teacher 
moved around the classroom, provided support and 
feedback. During the whole class discussion and ex-
change of ideas, the teacher was expected to guide the 
discussion and pose questions that would stimulate 
further inquiry (Martino & Maher, 1999). 

Participants, instruments and 
procedure of the study
Participants in the present study, which was quanti-
tative in nature, were 343 sixth grade students (age 
range 10.8–11.8 years old). A test comprising 37 tasks 
for measuring the seven abilities was developed. The 
tasks of the test were content and face validated by 
four experienced primary school teachers and two 
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university tutors of mathematics education before 
their administration. Tasks 1–3 were used to meas-
ure fraction recognition, tasks 4–7 definitions and 
mathematical explanations for fractions, tasks 8–12 
argumentations and justifications about fractions, 
tasks 13–15 and 32–37 were about reflection during 
the solution of fraction problems, tasks 16a-16c and 17 
were about the relative magnitude of fractions, tasks 
18–27 measured representations, while tasks 28–31 
examined students’ ability to link fractions to dec-
imals, percentages and division. Examples of tasks 
used to measure each one of the abilities are presented 
in Table 1.

The first measurement was conducted at the be-
ginning of the school year in the first two weeks of 
October. After the first measurement, the participants 
were split into experimental and control group. The 
experimental group comprised of eight classes (144 
students), while the control group comprised of elev-
en classes (199 students). 

The intervention comprised of nine lessons, four of 
which had a duration of 80 minutes, two 60 minutes, 
while the other three 40 minutes. The total time de-
voted was 14x40 minutes. The time devoted to the 

development of each of the seven abilities was about 
the same (2–3 40 minute periods) with the exception 
of the relative magnitude of fractions, which was de-
voted less time (about 40 minutes). The reason for 
this is that similar activities for developing this kind 
of ability are included in school textbooks. It should 
also be stressed that some lessons aimed at developing 
more than one ability and comprised of activities that 
served towards this goal. 

The implementation of the intervention started at 
the end of October after the first administration of 
the test for measuring the seven abilities (pre-test). 
Its duration was about nine weeks until the end of 
January before the second administration of the 
test (post-test). The teachers that participated in the 
study were asked to teach one lesson every week. The 
students of the control group during this time were 
taught according to the Cyprus National Mathematics 
Curriculum which included topics such as recogniz-
ing representations of fractions, some activities of 
explaining what a fraction is, recognizing fractions 
as the division of the numerator by the denominator, 
equivalent fractions, fraction comparison and order-
ing, improper fractions and mixed numbers, decimals 
and percentages and their conversion to fractions. It 

Fraction recognition One of the following fractions differs from the others. Find 
that fraction and circle it.

2
7     

3
2    

14
49    

10
35    

4
14  

                

Definitions and mathematical explanations for 
fractions

Imagine that your teacher asked you to explain to one of your 
classmates what a fraction is. Use as many different ways you 
can.

Argumentations and justifications about frac-
tions

If I double both the numerator and the denominator of a frac-
tion, then the formed fraction has twice value compared to 
the initial one.

      T      F
Justify your answer: 

Relative magnitude of fractions Order the fractions 1
2 , 4

3 , 2
3 , 1

4   starting 
from the smallest one. 

Representations of fractions Marinos ates 1
2  of a cake and Marinas 3

8  of the same cake. 
Construct a drawing to show what part each child ate and 
what part the two children ate together.

Connections of fractions with decimals, percent-
ages and division

Convert the following fractions to decimals.
a) 1

4  =        b) 2
5  =         c) 3

10 =       d) 1
20 = 

Reflection during the solution of fraction prob-
lems

In order to prepare a cake, I need 1
10 L milk. If I have 4

15  L milk, 
then how many cakes can I prepare? You should definitely 
reason about your answer. 

Table 1: Tasks used to measure each ability
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must be noted that the total time devoted to fraction 
teaching was about the same for the two groups.

After the completion of the intervention, all students 
(including those of the experimental group) were 
taught according to the Cyprus National Mathematics 
Curriculum until the end of the sixth grade. They prac-
ticed simplifying and comparing fractions, adding 
and subtracting fractions with the same or different 
denominator, adding and subtracting mixed numbers, 
solving fraction problems, fraction multiplication 
and division, solving problems of mixed numbers and 
multiplication and division of mixed numbers. About 
three months after the second measurement, a third 
measurement took place (retention-test) for exam-
ining the duration of the impact of the intervention. 

The lessons
The activities designed for implementing the goals of 
the intervention shared a scenario that was challeng-
ing, attractive and pleasant for students. The scenario 
referred to the trip of the “Mathematician” to the land 
of fractions. The trip comprised of various activities 
and the participants were called to answer questions 
and solve some problems. The scenario was designed 
in order to please students and motive them to engage 
in the activities with enthusiasm.

The first lesson with duration 80 minutes aimed at de-
veloping students’ ability in “defining” what a fraction 
is, recognizing fractions in various representational 
systems, placing fractions on number line and linking 
the concept of fractions to the division numerator ÷ de-
nominator. The goal of the second 80 minutes lesson 
was the development of students’ ability to connect 
fractions to the other two forms of rational numbers, 
decimals and percentages and was complementary to 
the first lesson. During the lesson, the teacher raised 
questions: “What are decimals?”, “What are percent-
ages?” that would lead to the definition of decimals 
and percentages. Students were also asked to convert 
fractions to decimals and percentages and the reverse. 
Emphasis was placed on understanding the conver-
sion and not just applying the rules. Students also 
worked on textbook activities. The third 40 minutes 
lesson cultivated students’ ability to construct visual 
representations of fractions and acquire a feeling of 
the relative magnitude of fractions. Students worked 
in pairs and were encouraged to construct various 
representations. Students also worked on textbook 
activities that referred to fraction comparison and 

ordering by utilizing visual representations. The 
fourth lesson with duration 80 minutes referred to the 
development of students’ ability to convert verbal and 
symbolic representations to visual ones and vice ver-
sa. The fourth lesson was complementary to the first 
and third lessons regarding the development of stu-
dents’ abilities in representations. In some activities, 
problems of fractions were presented to students and 
they had to write the equation and construct draw-
ing/drawings in order to solve them (translation from 
verbal to symbolic and visual representations). Other 
activities asked students to translate from symbolic to 
visual and verbal representations. In these activities, 
the equation was given and students had to write a 
problem that could be solved by this equation or 
construct a drawing. Finally, students were called to 
write problems on the basis of visual representations 
(from visual to verbal representation). Lessons 5 and 
6, with duration 60 minutes each, aimed at developing 
students’ ability in reflection during the solution of 
fraction problems. Five carefully selected problems 
were presented to students and they had to solve them 
and were encouraged to reason their thinking, ex-
plain the strategy they used, express their confidence 
about their solution, examine whether the path they 
followed was correct or not and what they did correct 
and what wrong. Furthermore, they were called to 
think about the reasonableness of their answer and 
verify their answer. The seventh and eighth lessons 
with duration 40 minutes each aimed at developing 
students’ abilities in fraction recognition, mathemat-
ical explanations for fractions, justifications about 
fractions and reflection. The two lessons included 
activities requiring students to detect fraction simi-
larities, fraction differences and write fractions that 
share a common property. The ninth 80 minutes 
lesson aimed at developing students’ abilities in ar-
gumentations and justifications about fractions and 
reflection. 

Statistical analyses
To answer the two research questions about the im-
pact of the teaching intervention on students’ frac-
tion understanding and their performance in the 
seven abilities, the z-scores that emerged from the 
Confirmatory Factor Analysis utilized in a previous 
study carried out by the authors (Nicolaou & Pitta-
Pantazi, 2011) were used. Descriptive statistics (means 
and standard errors of estimate) for students’ fraction 
understanding and the seven abilities were first found 
for the control and the experimental group respec-
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tively. Afterwards, Repeated Measures Analysis was 
used with dependent variable the score for fraction 
understanding and then for each of the seven abilities 
separately and independent variables the kind of con-
dition (control or experimental) and the time of the 
measurement (pre-test, post-test, retention-test). The 
independent samples t-test was also used to test for 
the equality of the two groups in the pre-test.

RESULTS

Table 2 shows means and standard errors of estimate 
of fraction understanding for the experimental and 
the control group for each of the three measurements.

Table 2 illustrates that before the intervention, the 
two groups of students were equal with respect to 
their level of fraction understanding. This was 
also confirmed by the application of t-test (t=.182, 
p=.856>0.05). In the period of the implementation of 
the intervention, both groups improved, but the im-
provement of the experimental group was greater. In 
the period three months after the intervention the 
two groups continued to improve and the difference 
found in the post-test was maintained in the retention 
test. Repeated Measures Analysis showed that the 
means of fraction understanding differed significant-
ly between the three measurements (Pillai’s_F(2,340)=.516, 
p<0.01), and additionally, there was a statistically sig-
nificant interaction of fraction understanding with 
the kind of the condition (Pillai’s_F(2,340)=.029, p<0.01). 
Therefore, the differences found between the two 
groups of students could be attributed to the imple-
mentation of the intervention which gave the exper-
imental group superiority over the control group.

Descriptive statistics for students’ performance in 
each of the seven abilities are shown in Table 3.

From Table 3, we observe that the experimental and 
the control group had about equal means for all the 
seven abilities at the pre-test. This was also confirmed 
by the application of the t-test, which showed the equal-

ity of the two groups of students before the conduction 
of the intervention (for fraction recognition t=-0.603, 
p>0.05; for definitions and mathematical explanations 
t=0.170, p>0.05; for argumentations and justifications 
t=0.600, p>0.05; for relative magnitude of fractions 
t=-0.203, p>0.05; for representations t=0.901, p>0.05; 
for connections t=0.827, p>0.05; for reflection t=-0.641, 
p>0.05). Regarding the evolution of students’ abilities, 
the experimental group showed continuous improve-
ment during the period of the three measurements in 
the relative magnitude of fractions, representations, 
connections and reflection, whereas this was not the 
case for fraction recognition, definitions and mathe-
matical explanations and argumentations and justifica-
tions where there was improvement from the pre-test 
to the post-test and then a decline in the period three 
months after the intervention. Concerning the control 
group, students’ ability in the relative magnitude of 
fractions and reflection showed continuous improve-
ment in the period of the three measurements. For rep-
resentations, a very small improvement was observed 
during the period from the pre-test to the post-test, but 
this improvement was much greater in the period from 
the post-test to the retention test. Students’ ability in 
fraction recognition and connections had an increase 
during the period from the pre-test to the post-test 
and then a decline in the period from the post-test to 
the retention-test. For definitions and mathematical 
explanations and argumentations and justifications 
there was improvement in the period between the 
pre-test and the post-test and then stabilization. The 
improvement of the students of the control group in 
some of the abilities can be attributed to maturity and 
teaching. Nevertheless, both at the post-test and at the 
retention-test the experimental group outperformed 
the control group in all the abilities with the exception 
of the relative magnitude of fractions where the two 
groups were about equal. The application of Repeated 
Measures Analysis revealed that the means for all 
the seven abilities differed significantly between the 
three measurements. Additionally, for five abilities: 
fraction recognition, definitions and mathematical 
explanations, argumentations and justifications, con-

Pre-test Post-test Retention test

Group SE* SE SE

Experimental (n=144) 11.48 0.49 17.04 0.51 18.56 0.60

Control (n=199) 11.37 0.42 15.28 0.44 16.45 0.51
*SE: Standard Error of Estimate
Table 2: Means and standard errors of estimate of fraction understanding for the experimental and the control group for each of the 

three measurements
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nections and reflection there was an interaction with 
the condition (experimental or control) (the results 
are presented in Table 4). Therefore, the higher means 
of the experimental group at the post-test and reten-
tion-test can be attributed to the implementation of 
the intervention, which according to the results of the 
Repeated Measures Analysis was effective in improv-
ing students’ abilities in fraction recognition, defini-

tions and mathematical explanations, argumentations 
and justifications, connections and reflection.

DISCUSSION

The results of the present study revealed that the in-
tervention was effective in developing sixth-grade 
students’ fraction understanding and their abilities 

Fraction recognition

Pre-test Post-test Retention test

Group SE SE SE

Experimental  1.91 0.05 2.43 0.05 2.17 0.05

Control 1.95 0.05 2.22 0.04 2.01 0.04

Definitions and mathematical explanations for fractions

Pre-test Post-test Retention test

Group SE SE SE

Experimental 0.50 0.04 0.84 0.04 0.70 0.04

Control 0.49 0.03 0.59 0.04 0.59 0.03

Argumentations and justifications about fractions

Pre-test Post-test Retention test

Group SE SE SE

Experimental 0.99 0.07 1.60 0.07 1.42 0.07

Control 0.94 0.06 1.25 0.06 1.26 0.06

Relative magnitude of fractions

Pre-test Post-test Retention test

Group SE SE SE

Experimental 1.70 0.08 2.27 0.08 2.49 0.08

Control 1.73 0.06 2.27 0.07 2.41 0.07

Representations of fractions

Pre-test Post-test Retention test

Group SE SE SE

Experimental 3.06 0.10 3.29 0.10 3.87 0.12

Control 2.95 0.09 2.98 0.09 3.63 0.10

Connections with decimals, percentages and division

Pre-test Post-test Retention test

Group SE SE SE

Experimental 4.67 0.31 7.25 0.32 7.51 0.33

Control 4.59 0.26 6.43 0.27 6.18 0.28

Reflection during the solution of fraction problems

Pre-test Post-test Retention test

Group SE SE SE

Experimental 1.02 0.08 1.85 0.11 2.05 0.13

Control 1.08 0.07 1.52 0.09 1.69 0.11

Table 3: Means and standard errors of estimate of students’ performance in each of the seven abilities for the experimental and the 

control group for each of the three measurements
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in fraction recognition, definitions and mathematical 
explanations for fractions, argumentations and justi-
fications about fractions, connections with decimals, 
percentages and division and reflection during the 
solution of fraction problems. Therefore, the content 
of the intervention and the principles followed were ef-
fective in improving students’ fraction understanding 
and their performance in five out of the seven abilities. 

The conduction of the retention test added value to the 
findings of the present study, as it permitted the extrac-
tion of conclusions about the duration of the effects of 
the intervention. The conduction of three measure-
ments also provided some evidence for the evolution 
of each of the seven abilities for the students of the 
control classes that did not receive the intervention. 

For two of the abilities, the relative magnitude of 
fractions and representations of fractions, the inter-
vention did not have significant effects. Concerning 
the relative magnitude of fractions, the results might 
be attributed to the fact that the curriculum provid-
ed much emphasis in developing this kind of ability. 
For representations, the results can also be due to the 
moderate emphasis given by the curriculum towards 
developing students’ ability in representations of frac-
tions. However, in the case of representations it must be 
stressed that the experimental group was superior to 
the control group both in the post and the retention test, 
but this superiority was not statistically significant. 

The contribution of the present study in the area is sit-
uated in that the intervention focused on the abilities 
that are essential for fraction understanding at elemen-
tary school, while the focus of other studies was dif-
ferent (for example, Lamon (2012) examined fraction 

understanding addressing fraction sub-constructs). 
The present study also has implications for teaching 
fractions with understanding as teachers can utilize 
the content of the intervention for developing students’ 
fraction understanding and their performance in the 
five abilities applying at the same time its principles. 

REFERENCES

Cramer, K.A., Post, T.R., & delMas, R.C. (2002). Initial fraction 

learning by fourth- and fifth-grade students: A compari-

son of the effects of using Commercial Curricula with the 

effects of using the Rational Number Project. Journal for 

Research in Mathematics Education, 33, 111–144.

Elbers, E. (2003). Classroom interaction as reflection: Learning 

and teaching mathematics in a community of inquiry. 

Educational Studies in Mathematics, 54, 77–99. DOI: 

10.1023/B:EDUC.0000005211.95182.90

Lamon, S. J. (2012). Teaching fractions and ratios for under-

standing: Essential content knowledge and instructional 

strategies for teachers (3rd ed.). New York, NY: Routledge.

Martino, A., & Maher, C. (1999). Teacher questioning to promote 

justification and generalization in mathematics: What 

research practice has taught us. Journal of Mathematical 

Behavior, 18, 53–78. doi:10.1016/S0732-3123(99)00017-6

Nicolaou, A., & Pitta-Pantazi, D. (2011). Factors that constitute 

understanding a mathematical concept at the elementa-

ry school: Fractions as the concept of reference. Article 

presented at the 4th Conference of the Union of Greek 

Researchers in Mathematics Education (pp. 351–361). 

University of Ioannina, Ioannina, Greece. 

Terwel, J., Van Oers, B., van Dijk, I., & van den Eeden, P. (2009). 

Are representations to be provided or generated in 

primary mathematics education? Effects on transfer. 

Educational Research and Evaluation, 15, 25–44. DOI: 

10.1080/13803610802481265

Between the three measurements Interaction with the condition

Ability Pillai’s F(2,340) Pillai’s F(2,340)

Fraction recognition 0.248** 0.031**

Definitions and mathematical 
explanations
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Learning of mathematics in primary classes should 
not be reduced to learning algorithms and routines or 
procedures. As we see the learning of mathematics as 
a process of interpreting mathematical structures and 
generalizations, it is more important to foster children`s 
thinking and learning of meaningful relations between 
objects and operations in the context of equations. In 
this sense children have to learn algebraic relations in 
primary classes without using algebraic signs. In this 
paper the results of a design study and a video-based 
qualitative analysis of teaching/learning situations in 
the field of reasoning of equations are discussed.

Keywords: Argumentation, equation, algebraic thinking.

INTRODUCTION 

This paper is about the well-known problems around 
the equal-sign in mathematics learning processes: 
Many pupils understand the equal sign as a clear 
action-symbol, e.g. the left side of the sign has to be 
interpreted as a computing-demand, whereas on the 
right side there can only be found a single number, i.e. 
the solution of the computing-task (Seo & Ginsburg, 
2003; Kieran, 2011; Russel, 2011; Steinweg, 2013). Those 
pupils don´t accept equations like “8 + 5 = 10 +3” or 

“7+9 = 2⋅8” because they offend against the clear rule 
to have the computing term on the left and the result 
on the right side of the equal sign. For most situations 
in primary level, this “task-result-interpretation” 
(Winter, 1982) of equations may be sufficient. But, 
having in mind the algebra of secondary level cur-
ricula, someday the learners will have to overcome 
this restricted view on equations. 

It’s more important, I think, to give them many 
opportunities to use symbols in many situations 
than simply to tell them, let´s say: this is the equals 

sign and what ́s one side of the equals sign should 
be the same as what´s the other side of the equals 
sign (Seo & Ginsburg, 2003, p. 169).

To realise such learning opportunities we need rich 
learning environments that make algebraic struc-
tures accessible to children in primary schools. But, 
this is not enough. In the following, we give an exam-
ple to illustrate that the rich learning environment 
alone does not lead to thinking about equalities in a 
structural way. Afterwards, we will discuss the neces-
sity of argumentation-processes to motivate funda-
mental learning processes, i.e. to support the children 
on their way to an algebraic view on equalities. At 
least, we will give an example from our design study 
of how to initiate such collective argumentations. 

An example of a fourth grade class 
The example took place in a learning unit that was on 
the structure of “Rechendreiecke” (for an example see 
Figure 1), a substantial learning environment based 
on the well-known “arithmogons” (Wittmann, 2001): 
Every two numbers in the inner fields of the triangle 
are added, and the sum is noted in the appropriate 
field outside of the figure.

At the beginning of the unit the teacher gave the 
children some ordinary tasks in computing, i.e. the 

Figure 1
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numbers for the inner fields were given and the chil-
dren had to calculate the sums for the fields outside of 
the triangle. After some of these standard-exercises 
the children made the first discovery on the essen-
tial structures of the triangles: The sum of the outer 
numbers is twice the sum of the numbers in the inner 
fields, because every inner number appears in two 
outer fields. 

In the present lesson, the teacher´s goal was to discuss 
the most difficult tasks within this learning environ-
ment: She wanted the children to find the inner num-
bers for a triangle with given numbers in the outer 
fields. So, she wrote an example for this kind of task 
on the blackboard (Figure 2), and asked the whole class 
for first ideas about how to solve this problem. The 
teacher clearly expected that the children would use 
the discovery mentioned above to find out the inner 
numbers: Firstly, they could calculate the sum of the 
inner numbers (by halving the sum of the given outer 
numbers). Then, they could find a fitting partition of 
this sum for the inner numbers by trying a systematic 
way. 

Having in mind this problem-solving approach, the 
teacher asked Robert for his idea:

Robert I think that this is the same problem as 
we had with the number-walls, that 30 
plus 32 take away 42 divided by two, the 
result must be noted in the bottom field 
(while talking, the pupil arrives at the 
blackboard).

Children (make some noise to demonstrate their 
incomprehension)

Robert Then we will have the ten there (notes 10 
in the bottom field on the left) and twen-
ty there (notes 20 in the bottom field on 
the right, then notes 12 in the field on 
the top, Figure 3) 

Teacher Okay, now we have a ten here and a twen-
ty over there (points to the numbers in 
the figure on the blackboard). How can 
we go on? The idea of Robert is not bad!

Clarissa We could change the places of the twenty 
and the ten. Because, I think it would fit 
better. Then one would note twenty-two 
at the top and we had the result. (Clarissa 
modifies the numbers, Figure 4)

After this episode, the teacher and the pupils seemed 
to be satisfied, having found the fitting inner numbers. 
Neither the pupils nor the teacher not even Robert 
himself had the need to analyse whether it is coin-
cidence or not that Clarissa only had to change the 
places of Robert’s numbers in order to find the right 
solution of the triangle. Hence, even though the class 
found a solution for the special task, the underlying 
mathematical structure of the general problem re-
mained covered. In other words: The learning oppor-
tunity given by the idea of Robert did not unfold its 
structural potential, we name it a “missed substantial 
learning opportunity”.

Briefly, two questions remain, resulted from our ob-
servation of this episode:

1) Why is Robert’s idea so hard to under-
stand?

Figure 2

Figure 3

Figure 4
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2) Why is there obviously no need to ana-
lyse the proposal of Robert, and no need 
to question whether the idea may lead to 
a general way of problem solving?

Analysis: The mathematical core of 
the missed learning opportunity
Even if Robert´s proposal does not lead to the correct 
solution, the underlying idea is correct: Given the in-
ner numbers a, b, c, Robert firstly builds the sum of 
two outer numbers (i.e. a+b + b+c). Afterwards, he takes 
away the third outer number (a+c), the result is the 
double of one of the inner numbers (here 2b).

Although we do not want to shift the mathematics 
curriculum of the secondary level into the primary 
school, from our point of view, it should be possible to 
discuss arithmetical structures like the one above in a 
fourth grades class. For example, one could organise 
the learning process within a reflective exercise (s. 
Figure 5), forcing the children to calculate with the 
outer numbers in the way Robert does: “Build the sum 
of two outer numbers and take away the third one 

– what do you observe?” Having in mind that every 
outer number is built by the sum of two inner num-
bers, the children might be able to explain the result of 
their calculations, and then to use this new knowledge 
as an effective solving strategy for problems like the 
one above.

The main difficulty on the way to find an explanation 
like this is the necessary flexibility in interpreting 
the inner and outer numbers: Sometimes, they are 
computing numbers, sometimes they are the result of 
a computation and the problem-solver has to decide 
which number would be used to calculate and which 
one must be understood as a computing-result.

From our point of view, we should help the children 
to construct a flexible understanding of equations 
already in primary level. But, again, we do not want 

to shift the mathematics curriculum of the secondary 
level into the primary school. Hence, we propose to 
promote the development of a content-related, flex-
ible understanding of equality rather than teaching 
the children how to handle equations in an adequate 
form to prepare algebraic notations. According to 
Steinbring (2005), the children in primary school 
should work on a flexible concept of mathematical 
equality mainly by constructing several adequate 
reference contexts rather than learning how to use 
the standard mathematical signs within the solution 
of equations. 

THE PRESENT PROJECT

Within our project we started a variety of different 
teaching-learning experiments, like whole class in-
struction, group working and peer interviews. The 
experiments were planned on the basis of already 
existing substantial learning environments, main-
ly taken from the project “mathe 2000” (Wittmann, 
2001). Our goal is to strengthen the content-related 
concept of equality. Hence, the equal sign and its al-
gebraic correct and formal rules to use do not play 
the leading role within the learning environments. 
In some of them (like arithmogons, number walls, 
etc.; Wittmann, 2001), this special sign does not even 
appear in the tasks. But nevertheless, the learning 
environments focus on equality. For example, the chil-
dren have to find different number walls with equal 
numbers in the top stones. 

Our main research interest is to understand the mi-
cro-processes of teaching and learning mathematics 
rather than to measure the success of a learning en-
vironment. Hence, our analysis of the teaching-learn-
ing-experiments follows the interpretative paradigm, 
mainly using approaches of symbolic interactionism 
and ethnomethodology (Bauersfeld, Krummheuer, & 
Voigt, 1998; Voigt, 1994; Yackel & Cobb, 1996), episte-
mological theories (Steinbring, 2005) and theories of 
argumentation (Schwarzkopf, 2003). In the following 
sections we discuss some aspects of the first results 
of the study.

Theoretical embedding: Different 
types of learning processes
What does it mean to modify a restricted “task-result” 
interpretation of the equal-sign to a more sophisticat-
ed, flexible and structurally sustainable concept of 
equality? Following Steinbring (2005), the construc-

Figure 5
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tion of an adequate equality-concept moves between 
two epistemological poles: 

On the one hand, there is an empirical, situated de-
scription of mathematical knowledge like finding the 
result for a computing task in the sense of Clarissa´s 
offer for the solution of the problem above. This kind 
of knowledge is easy to handle in communication, one 
simply has to offer some empirical facts, and every-
body will know what they mean. But, in conclusion, 
the pupils can only learn new facts; the associated 
learning opportunities will not help them to construct 
a better structural understanding of the mathematical 
background.

On the other hand, the understanding of Robert’s idea 
for example, requires a relational generality of mathe-
matical knowledge. Learning opportunities that con-
centrate on this kind of knowledge have to offer the 
need for the children to create a new interpretation of 
the thematic mathematics. At the same time one has to 
consider that the pupils cannot create interpretations 
that are completely detached from their experienced 
points of view. 

These fundamental learning processes (cf. Miller, 1986, 
2002) can only be realised in situations of collective 
argumentations, i.e. the children must be confronted 
with a problem that makes it somehow impossible for 
them to go on by routine and they first have to solve 
that problem in an argumentative way (Miller, 1986; 
Schwarzkopf, 2003). But, according to Miller, argu-
mentation is a very stressful kind of interaction, and, 
normally, people try hard to solve their problems in 
a non-argumentative way. 

Even within mathematics classrooms, where argu-
mentation is one of the learning goals, there are many 
opportunities to avoid a content related argumenta-
tion – at least one can always ask the teacher as an 
expert in mathematics. Remember the example above: 
There is no need for an argumentation around the 
idea of Robert because Clarissa found an easier way 
to solve the problem by changing numbers, and pre-
senting directly the correct solution. In the sense of 
Steinbring (2005, p. 194–213), the offers of Clarissa 
and Robert stand for the two poles of communica-
tion between which the interactive constructions of 
knowledge move: Whereas Clarissa´s gives a simple 

“mediation of facts” (correct calculations), an adequate 
understanding of Robert´s idea needs a “construction 

of a new interpretation” that is obviously not accessi-
ble to the communication partners. 

Hence, collective argumentations do not emerge in 
mathematics lessons in a somehow natural way. On 
the contrary, the teacher has to initiate the concern-
ing processes in both, a careful and persistent way 
(Schwarzkopf, 2000). For this, it is important to think 
about social requirements and mathematical learning 
goals that are necessary to initiate substantial learn-
ing opportunities by cooperative argumentation.  

To enforce the emergence of substantial learning 
opportunities, we develop tasks that initiate math-
ematical needs for collective argumentation. Our 
intention is to confront the children with a “produc-
tive irritation” (Nührenbörger & Schwarzkopf, 2013), 
concerning their social experiences in classroom dis-
cussions. The tasks or problems, for example, provide 
phenomena that were not expected by the children so 
that they have to reflect on the given structures and 
see the need to re- interpret the experienced mathe-
matics behind the problem. 

This approach bases on Piaget´s (1985) work on cog-
nitive conflicts. Roughly speaking, Piaget points out 
that a child develops new ideas when it is confront-
ed with facts or beliefs that contradict their expecta-
tions, depending on their individual experiences. If 
the concerning cognitive schemas resist the child´s 
possibilities of assimilation, there is a need for the 
child to generate a cognitive consensus, i.e. a learn-
ing-process emerges. 

To initiate productive learning opportunities in this 
sense, one of the main difficulties is that an obser-
vation of a pattern or a surprising discovery is not 
enough to create the need of argumentation – we gave 
an example at the beginning of this paper. Moreover, it 
is necessary that the observation becomes an amazing 
phenomenon for the pupils. For example, the children 
discover a pattern in a series of tasks. Then, they are 
confronted with another task that does not exactly fit 
to the previously solved series and they are asked to 
make a prognosis: Will the result of the next task fit to 
the pattern or not? By this we try to force the children 
to create an expectation on the result of the next task. 
The initiation of a “productive irritation” is successful, 
when this expectation fails while computing the next 
result – by this, there is an interactive need to find 
explanations for the failure of the prognosis. In this 
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sense, a productive irritation can widen the implicit 
working, often sense-restricting   “sociomathematical 
norms” (Yackel & Cobb, 1996) that influence the inter-
pretation of arithmetical terms in routinized (cf. Voigt 
1994) classroom discussions.

Initiating productive irritations: 
Arguing for amazing equalities 
In the following part we give an example for a short 
learning unit with the goal to initiate an argumen-
tation, initiated by a productive irritation within a 
primary class (3rd or 4th class). The content comes from 
the well-known substantial learning environment 

“number-walls” (see Figure 6), where you have to note 
the sum of the numbers in every stone from the two 
stones under it. Typically, children discover different 
types of terms to describe the top stone of the wall (e.g. 
as a result of a calculation or as a relation between the 
bottom stones: a+b + b+c = a+2b+c).

In the first part of the present learning unit, the chil-
dren calculate a series of number-walls and discover 
a pattern, that is very familiar to them: Increasing 
the number in the right bottom-stone and decreas-
ing the number in the left bottom-stone by the same 
difference will leave the number at the top of the wall 
constant (keeping the same number in the middle of 
the bottom, of course) in this example 650 (Figure 7). 

The children can calculate the number of the top as 
well as they can argue with the relations between 
the stones of a number wall. To point out the equali-
ties between the number walls the children can use 
so called “term walls” (see Figure 8), noting calcu-
lations instead of their results in the stones. These 
term-walls might build bridges for the children to 
change their interpretations of the numbers as results 
(e.g. 650 = 460 + 190 and 650 = 450 + 200) and to see 
them as computing numbers (650 = 380 + 2 × 80 + 110 = 

= 370 × 2x80 + 120). 

However, having calculated some of these tasks, the 
children are confronted with another number-wall 
that does not exactly fit to the previously discovered 
pattern (e.g., the one in Figure 9), and they are asked 
about their expectations on the result: Will the num-
ber at the top of the wall change or not? Figure 6

Figure 7

Figure 8a

Figure 8b
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The following episode takes place in an interview-sit-
uation, where a teacher-student works together with 
two children on the above given number walls. The 
children have already discovered that the top num-
bers of the number-walls in Figure 7 are all the same, 
namely 650. This pattern seemed to be clear for the 
children, having in mind that from wall to wall one 
of the bottom numbers increases and one of the oth-
ers decreases by the same difference. Afterwards, 
the teacher showed the children some number walls 
like the one in Figure 9, asking for a prognosis about 
the number of the top-stone. As expected, both of the 
children gave the prognosis that the top stone must 
change, because two of the bottom-numbers increase 
by fifteen and only one of them decreases by fifteen. 

Teacher Do you think that in this top stone (point-
ing to the right number-wall in Figure 9) 
there will be the 650 again? 

Moritz no.
Luisa no.
Teacher Why do you say no?
Moritz Well, here are fifteen more than there 

(points to 380 and 365), and here are fif-
teen more than there (points to 110 and 
95 in the right bottom stone), but here 
are fifteen more than there (points to 95 
in the middle bottom stone and 80), and 
fifteen plus fifteen are together thirty 
and not fifteen (.), exactly.

Moritz reasons by comparing the changes of the two 
increasing bottom numbers with the decreasing num-
ber. In this way, he activates his experiences with the 
constancy-law of additions that was successfully used 
in the first part of the unit. The teacher moderates 
the interaction, so that also Luisa has to reason for 
her prognosis:

Teacher Luisa, do you have the same opinion?
Luisa Yes, the result here above is the same.
Teacher How do you mean it?

Luisa Well, if you add the bottom stones 
(points to 365, 80, 110) then they must 
have the same result as there (points to 
380, 95, 95) for getting the same result 
on the top, and this is another sum. 

Luisa points out a hypothesis for a general rule: Two 
number walls with the same numbers in the top stones 
must be equal in the sum of the bottom numbers. 

Even if the two given arguments are different in detail, 
from an epistemological point of view, both of them 
can be characterised as an empirical, situated descrip-
tion of knowing (Steinbring, 2005; Schwarzkopf, 2003): 
The comparisons of the (unknown) top numbers are 
based on empirical observations of the given exam-
ples without leading to a structural deeper under-
standing of the mathematical structures.

After the children have verified their hypothesis and 
found out that their observation offended against 
their expectation, they rethink the arithmetical struc-
tures between the stones of the number walls and find 
new arguments: 

Luisa Mmm, they are the same because this 
(points to the left and right bottom stone, 
Figure 10) is coming to the other stones, 
and this (points two times to the middle 
bottom stone) meets twice. So we have 
to calculate them together. 

Moritz Mmm, because in the middle we have 
460 is equal 365 plus 95 (.) that is 460 (.), 
and because there are not four bottom 
stones you have to calculate once again 
95 plus 95 is equal 190 (.). You have to 
take once again the 95.

Teacher Ok, and why do we get in both number 
walls the same number 650 in the top?

Moritz Because you need the 95 for both sides. 
However, for example, here you have to 

Figure 9

Figure 10
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take 15 more and here exactly the same 
(points to both number walls).

In their arguments, both children become aware of the 
special function of the number in the middle bottom 
stone. On the first view, Luisa argues in a somehow dy-
namic, still empirical way – as if the numbers would 
crawl through the stones to the top. But regarding 
her offer in detail, the argument already shows qual-
ities of a more theoretical approach: The middle stone 

“meets twice”, although the number exists only once. 
This discovery builds the bridge from the empiri-
cal view to the structural understanding of number 
walls: The meaning of the numbers result of their po-
sition in the wall. Moritz modulates this approach 
(Krummheuer, 1992) of Luisa to a more static view, 
and by this he strengthens the theoretical character of 
the argumentation: The number in the middle bottom 
stone is not a concrete, single object, but it is part of 
two calculations. His remark “there are not four bot-
tom stones” builds the bridge between the empirical 
understanding of the numbers as objects (that crawl 
through the wall) and the numbers as part of calcu-
lations that depend only on their position in the wall: 
An empirical version of the number wall would have 
four bottom stones (see Figure 11), providing every 
number as often as it will be needed in the wall.

Finally, Moritz is able to interpret the new view on 
the number walls on his hypothesis of the beginning 
of the episode: Changing the numbers in the bottom 
stones means changing the operators in the calcula-
tion terms.

The main aspect within this argumentation seems to 
be that the numbers of the task have changed their 
computational functions: Previously, the pupils in-
terpreted the number wall in the sense of a task-re-
sult-view on equations: At the bottom there are three 
numbers, and at the top there is one result. Within 
the argumentation for the unexpected equality, they 
changed this view to a more flexible, theoretical one 
(Figure 12): No longer the numbers, but the comput-

ing-terms are the main objects of the number-wall 
(Steinweg, 2013). In this sense, the children have to 
construct this as a common object a new term con-
cerning twice the decrease of 15 and the increase of 15: 
(380 + 80) + (80 + 110) = (380 − 15 + 80 + 15) + (80 + 15 + 110 − 15) = 

= (365 + 95) + (95 + 95).

In conclusion, the pupils construct a new interpreta-
tion of the arithmetical relations which is related to 
their old knowledge. According to Steinbring (2005), 
the children construct a relational generality of math-
ematical knowledge. 

FINAL REMARKS

By initiating substantial learning opportunities we 
try to promote the development of a flexible and struc-
tural sustainable concept of mathematical equality. 
In our work we mean by “understanding equalities 
in primary classes” that the children operate with 
the structures of computing-terms rather than only 
focussing on pure numbers as if they were concrete 
objects. To understand equality between two terms 
means to find one theoretical interpretation that fits 
for two different looking terms (Winter, 1982). In this 
paper, we discussed a somehow reflective approach to 
the promotion of accompanying activities, concern-
ing the initiation of collective argumentation through 
productive irritations. 
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In this paper a two-stage project is presented concerning 
the rules for the order of operations. During the first 
stage the mal-rules used by an experienced teacher as 
he evaluated arithmetical expressions were recorded 
and a session for repairing these misinterpretations 
followed. During the second stage the influence of the 
teacher’s teaching on his sixth graders was examined. 
The findings showed that the initial understanding of 
the teacher was so persistent that almost all his students 
and in order to evaluate the same arithmetical expres-
sions used exactly the same mal-rules.   

Keywords: Mal-rules, order of operations.

INTRODUCTION

The major issue in mathematics teaching and learn-
ing is whether students really know mathematics or 
whether they just memorize rules or conventions. 
The rules for the order of operations that are intro-
duced during the fifth and sixth grades constitute a 
representative example. Even though, one can argue 
that the precedence rules are a matter of procedural 
knowledge. Lampert (1986) claims that there are con-
texts that order of operations matters, and according 
to Merlin (2008) the order of precedence is not sim-
ply the sort of convention adopted without careful 
consideration; rather, it reflects something essential 
and deep about the operations themselves. Students 
are taught that symbols of inclusion (i.e., ( ), [ ]) can 
be used to show which operation is to be performed 
first in an expression. If there are more than three 
operations then there would be so many parentheses 
and brackets that the expression would look extreme-
ly complex. Therefore, in order to avoid this, mathe-
maticians have agreed on an order for performing 
the operations and the parentheses are used only to 
change this order (Foerster, 1994). The rules for the 
order of operations are:

i. Brackets first

ii. Evaluate expressions with exponents

iii. Carry out multiplications or divisions from 
left to right

iv. Carry out additions or subtractions from 
left to right.

For young students these rules might appear random 
and therefore meaningless. So, according to Wu (2007) 
the situation is like this: students are encouraged to 
memorize things without understanding their use or 
meaning and teachers are also becoming part of the 
game as they know that exam points can be surely 
achieved by this useless memorization. This way of 
teaching order of operations results in some overgen-
eralizations that are used equally by primary school 
students (Linchevski & Herscovics, 1994), middle 
school students (Blando, Kelly, Schneider, & Sleeman, 
1989), university students (Pappanastos, Hall, & 
Honan, 2002), and prospective elementary teachers 
(Glidden, 2008). However, there is no research on the 
teaching practice of in-service teachers in this topic. 
This leaves out in-service teachers. Therefore, in this 
study we try to find out how such misconceptions of 
an experienced in-service primary school teacher 
may influence the way his students conceive the topic 
of the order of operations.

BRIEF LITERATURE REVIEW

Perhaps, the whole story starts during the early years 
of schooling when teachers use problems of the type 
5 + 2 x 3 + 10 – 5 = ?. In these problems each operation 
is followed by “and then” (i.e., 5 plus 2 and then what 
you found times 3 and then that answer plus 10, etc.). 
Indeed, very often this kind of problems is considered 
as a proper one since the students are encouraged to 
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think and carry out mental operations. However, this 
may – unintentionally- contribute to students’ diffi-
culties related to the order of operations convention 
(Schrock & Morrow, 1993). They disregard the order 
of operations practice and therefore learn that oper-
ations are simply worked from left to right (Kieran, 
1989). Linchevski and Livneh (1999), working with 
53 sixth graders, found that possibly students have 
generalized incorrectly the rule for the order of oper-
ations and believe that addition takes precedence over 
subtraction and multiplication over division. This is 
not unrelated to the fact that in many textbooks the 
order of operations is given via the known mnemon-
ic BOMDAS (Brackets first then “Of ”, Multiplication, 
Division, Addition and Subtraction) (Herscovics & 
Linchevski, 1994). PEMDAS (Please Excuse My Dear 
Aunt Sally, which stands for Parentheses, Exponents, 
Multiplication and Division (from left to right), 
Addition and Subtraction (from left to right)) is an-
other example of students’ reliance on mnemonics. 
Pappanastos, Hals, and Honan (2002) surveyed over 
300 business school students at two universities and 
the results showed that (a) they recalled the above men-
tioned acronym, and (b) one third of the respondents 
applied incorrectly the order of operations. Rambhia 
(2002) states that as a result of PEMDAS focused teach-
ing many students are convinced that multiplication 
has to be done before division and that addition is 
more important than subtraction. Thus, PEMDAS and 
similar mnemonic devices either hide or assist the 
learning of operations. But what is especially interest-
ing in the case of these mnemonics is that their use is 
a symptom of a lack of attention to structure. Finally, 
Glidden (2008) who investigated how well 381 pro-
spective elementary teachers solved four arithmetic 
problems that required using the order of operations 
found that fewer than half of them answered more 
than two questions correctly. 

All these findings are important since (a) teachers 
must know the correct order of operations to teach 
the concept correctly, and (b) light might be shed on 
whether students do in fact understand the order of 
operations completely or merely interpret the mne-
monics literally (Pappanastos et al., 2002). However, 
despite the importance of these findings there is an 
aspect that is not represented in the body of the re-
search literature. The above mentioned presented 
studies concern how very young students overgener-
alize the order of operations (Linchevski & Herscovics, 
1994), and then how older students tend to perform 

the operations sequentially from left to right (Kieran, 
1979), and then how college students use mnemon-
ics devices to remember order of operations since 
they do not understand the proper order of prece-
dence that should applied to mathematical operations 
(Pappanastos et al., 2002), and then how prospective 
elementary school teachers give incorrect answers 
attributable to misunderstanding the order of oper-
ations (Glidden, 2008). All this incorrectly learned 
information perhaps continues to handicap learning 
into their next math courses and beyond for several 
years. So, what if an in-service teacher did not manage 
to “repair” this incorrect knowledge acquired years 
ago? How this influences the way he teaches the spe-
cific concept to his young students? How easily these 
errors are transferred as an incorrect knowledge to 
them? Actually, these are the research questions of 
this paper.                

THE SETTING OF THE STUDY

This is a two-stage study. During the first stage a col-
lection of tasks was designed to uncover errors with 
precedence rules. The collection of the tasks was ad-
ministered to an in-service primary school teacher 
before teaching the unit of order of operations to his 
6th graders. Four of the tasks are presented in Table 1.

The answers of the teacher were examined and the 
incorrect answers were coded on the basis of the work 
of Blando  and colleagues (1989). In their work, errors 
are mentioned as mal-rules which stand for violations 
of legal mathematics rules. Their theoretical model 
relies on repair theory which states that errors occur 
when a student is faced with a difficult or unfamiliar 
feature of a task. In this case the student may react by 
modifying a known procedure and applying it (incor-
rectly) to the task. Blando and his colleagues (1989) 
described the students’ incorrect solutions in term 
of mal-rules. In relation to Precedence Errors they 
listed six mal-rules using acronyms (see examples 
in Table 2).

Item 1:   14 : 2 ⋅ 14 – 12 =

Item 2:   18 + 19 + 14 ⋅ (11 + 22) =

Item 3:   9 + 23 + (11 - 3) ⋅ (4 : 2) =

Item 4:   7 ⋅ (6 ⋅ 6 + 14) ⋅ 5 + 6 =

Table 1: Tasks of the study
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Thus, in our study, the teacher’s errors were coded 
according to the above mentioned list. 

In Item-1 the solution given by the teacher was:

14 : 2 ⋅14 – 12 = (14 : 2) ⋅ (14 - 12) = 7 ⋅ 2 = 14

The general format of this task is a : b ⋅ c - d, the correct 
rule is [(a : b) ⋅ c] - d and one of the possible mal-rules 
is (a : b) ⋅ (c - d). This could be regarded as “subtract 
before multiplying” (PSM) mal-rule. The teacher cor-
rectly made the division 14 : 2. But then he ignored 
the multiplication and chose to subtract 14 - 12 before 
multiplying. 

In Item-2 the solution of the teacher was:

18 + 19 + 14 ⋅ (11 + 22) = (18 + 19 + 14) ⋅ (11 + 22) =  
51 ⋅ 33 = 1683

The general format of the task is a + b + c ⋅ (d + e). The 
correct solution is a + b + [c ⋅ (d + e)] and the mal-rule 
applied by the teacher was (a + b + c) ⋅ (d + e), which 
means “add before multiplying” (i.e., PAM). The teach-
er correctly evaluated the part inside the parentheses 
but then he violated the precedence rule and carried 
out addition prior to multiplication.

In Item-3 the answer given by the teacher was:

9 + 23 + (11 - 3) ⋅ (4 : 2) = [(9 + 23) + (11 - 3)] ⋅ (4 : 2) =  
(32 + 8) ⋅ 2 = 40 ⋅ 2 = 80

Even though the general format seems to be more 
complex than the previous one, the core idea of the 
teacher’s error was the same. He did not ignore the 
parentheses (11-3=8, 4:2=2), however, he added before 
multiplying (PAM) instead of following the correct 
rule (i.e., 9 + 23 + [(11 - 3) ⋅ (4 : 2)]).

Finally, in Item-4, the PAM mal-rule was again prev-
alent:

7 ⋅ (6 ⋅ 6 + 14) ⋅ 5 + 6 = [7 ⋅ (6 ⋅ 6 + 14)] ⋅ (5 + 6) =  
[7 ⋅ (36 + 14)] ⋅ 11 = 7 ⋅ 50 ⋅ 11 = = 350 ⋅ 11 = 3850

The correct solution was [7 ⋅ (36 + 14) ⋅ 5] + 6 = 
(7 ⋅ 50 ⋅ 5) + 6 = 1750 + 6 = 1756. For one more time what 
actually the teacher did was to add (5 + 6 = 11) before 
multiplying (PAM). Once more he respected the paren-
theses but then he incorrectly evaluated the expres-
sion 5+6 before multiplying. These answers signalled 
the need for an intervention session aiming to let the 
teacher become aware of his errors. Research has 
suggested that interventions focused on developing 
teachers’ subject-matter knowledge can positively 
impact teachers’ knowledge (Swafford et al.. 1997) 
and makes them able to improve their ability to make 
sense of and evaluate students’ thinking strategies in a 
variety of mathematical context (Tyminski et al., 2014)

The session was decided to take place at school and 
lasted about 90 minutes. During the session a lot of 
examples were discussed offering the opportunity 
for the teacher to internalize (a) the order of opera-
tions as an introduction to the necessity for structure 
and rules, and (b) the need to have a unique answer 
in tasks and also to have rules required to achieve 
it. For each example it was clarified that there was a 
unique answer. The application of various mal-rules 
result to different outcomes but only one answer is 
the correct and certain rules are required to achieve 
it. When multiple operations are included in an ex-
pression, different numerical results are obtained 
according to the precedence given to some operations 
over others. Visual representations were used to il-
lustrate the notion of operation precedence. More 
specifically, the tree diagrams were used (Kirshner 
& Awtry, 2004). Their central feature is an iterative 
procedure for analysing the syntactic structure of 
a mathematical expression, and representing it as 
a partially ordered hierarchical structure.  In a tree 
diagram the operation that is more precedent appears 
lower on the tree than an operation less precedent. In 
this tree notation it is easy to see the independence of 

PAM Add before multiplying Example: 4 + 2 x 3→ 6 x 3

PAD Add before dividing Example: 10 / 2 + 3→10 / 5

PSM Subtract before multiplying Example: 9 – 2 x 3→7 x 3

PSD Subtract before dividing Example: 8 – 6 / 2→2 / 2

PAS Add before subtracting Example: 6 – 4 + 3→6 – 7

PIP Ignore Parenthesis Example: 8 - (2 + 4)→6 + 4

Table 2: List of mal-rules for precedence errors (from Blando et al. (1989))
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the operations in the separateness of the tree’s main 
“branches”. In Figure 1 two tree diagrams illustrating 
the precedence decision for Item-1 are presented.

Following Ernest (1987), the teacher’s errors might 
be attributed to a failure to discern the hierarchical 
syntactical structure or orders of precedence with-
in mathematical expressions. So the tree model was 
used exactly to exhibit this structure explicitly to the 
teacher. He was ‘trained’ to analyse expressions into 
written tree forms.

It is worth mentioning that the teacher was an expe-
rienced one in the sense that he had been teaching for 
at least 25 years. This means that during this period 
he was carrying this incorrect perspective about the 
order of operations which may influence the learn-
ing of his students. Consequently, the question is: To 
what extend an intervention can sufficiently help the 
teacher to correct his stable errors relevant to order 
of operations?

This is why the teacher was left to teach the specific 
unit to his students which lasted for about a week. The 
second stage of the study took place almost a month af-
ter completing the unit and at that moment the teacher 
was not aware of our intention to come back again and 

work with his 6th graders. This decision was made 
on purpose since it was important to let the teach-
er work on his own terms and not under the feeling 
that he has to be cautious due to our future return 
into his classroom. We requested permission to work 
with the students on this topic. He gladly agreed and 
confessed that in the meantime he was wondering 
about the possible impact of this experience on him 
and/or on his students. 

So, the students were invited to cope with the same 
collection of the tasks that was initially administered 
to their teacher. Twenty two 6th graders participated. 
The study took place a month after the beginning of 

the school year. The students had been taught com-
parison between natural and decimal numbers as 
well as the four operations among these numbers. 
Their worksheets were collected and their incorrect 
answers were coded according to two criteria: (a) 
whether their incorrect answers corresponded to 
the mal-rule list of Blando and colleagues (1989), and 
(b) whether their answers reflected their teacher’s 
incorrect ones.    

RESULTS AND DISCUSSION

The students’ answers were classified into three cat-
egories:

(i) Incorrect answers that were identical to their teach-
er’s ones (i.e., the ones during the first stage of the 
study).

(ii) Answers that were correct, and

(iii) Answers that did not fit to any of these two cat-
egories (i.e., the students did not answer the item at 
all or the students answered but there was not a clear 
way of showing their thinking for the computations).

Figure 1: Tree diagrams for Item-1

 Incorrect answers identical 
to the teacher’s ones (stu-
dents followed mal-rules)

Correct solutions (correct 
application of the rules for 

the order of operation)

Other

Item-1 (PSM) 6 (27.27%) 12 (54.54%) 4 (18.19%)

Item-2 (PAM) 19 (86.36%) 3 (13.64%) -

Item-3 (PAM) 18 (81.81%) 3 (13.64%) 1 (4.55%)

Item-4 (PAM) 12 (54.54%) 4 (18.19%) 6 (27.27%)

Table 3: Summarized view of the student’s answers



The rules for the order of operations: The case of an inservice teacher (Ioannis Papadopoulos)

328

A summarized view of the students’ answers is pre-
sented below in Table 3.

It is interesting that many students used symbols of 
inclusion that facilitated their erroneous way of eval-
uating the arithmetical expressions. Even though they 
followed mal-rules for the order of operations they 
respected the symbols of inclusion they used. Some 
examples of the students’ usage of inclusion symbols 
that supported their incorrect generalization for the 
order of operations can be seen in Figure 2.

It is evident that almost the whole class reacted exactly 
in the same way their teacher did a month before. The 
percentages for Items 2–4 are extremely high. More 
than half the students repeated the mal-rule of their 
teacher for Item-4 (12/22), all but three students for 
Item-2 (19/22), and all but four students for Item-3 
(18/22). It seems that this did not happen for Item-1 
since only 6 students out of 22 repeated the mal-rule 
of “subtract before multiplying” (PSM). A potential 
explanation for this might be that the students were 
accustomed to work sequentially from left to right. 
During their early grades the students were given 
exercises which disregarded the order of operations 
and therefore many of them learned incorrectly that 
operations are simply worked from left to right. The 
fact is that in Item-1 following the operations from left 
to right happened to be the same as following the rules 
for the order of operations and this possibly explains 
the small percentage of the PSM mal-rule.

The results were also equally surprising for the teach-
er since he realized how similarly incorrect were his 
own errors to his students’ ones. So, the question is: 
Given that during the intervening session the rules 
for the order of operations were examined and be-
came clear, then what would be a possible explana-
tion for having almost all the students repeating their 
teacher’s initial errors?

Before presenting our thesis it has to be acknowledged 
that teachers’ content knowledge in the subject area 
does not suffice for good learning. However, it is also 
true that the knowledge of mathematics obviously 
influences the teachers’ teaching of mathematics and 
subsequently they cannot help children learn things 
they themselves do not understand. This could ex-
plain the impact of the specific teacher in his students’ 
performance for the time period before this study. 
The difference now was that the teacher was led to 
face his weak mathematical background concerning 
order of operations and moreover he participated in a 
session that made him to see why the rules he applied 
were mal-rules as well as to get practice on a series of 
tasks that challenged him to apply now the correct 
rules for the precedence of operations. He declared 
that he understood the violation of the rules for the 
order of operations he used to follow.  However, the 
findings of the study did show that the teaching that 
took place after the session was dominated by his per-
sistent misinterpretation on the order of operations. 
This contradiction may be explained by accepting that 
the session that took place was not sufficient to con-
front the teacher’s erroneous long-time way of teach-
ing. Thus, a stronger intervention might be needed 
to establish a more compact knowledge on order of 
operations accompanied with guidance concerning 
instructional strategies for the unit. Moreover, it can 
be said that learners generalize in a way that they are 
initially taught and this can lead to the construction 
of schemata at an early stage that have a strong inher-
ent robustness (Waren, 2003). Linchevski and Livneh 
(2002) claim that occasionally these old schemata be-
come tacit models of comprehension and this could 
mean that –as in our case- despite the intervening 
session, initial understanding persists.

Figure 2: Students’ usage of inclusion symbols
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CONCLUSIONS

The deep content knowledge of mathematics is –
among others- necessary for teaching successfully 
mathematics. Until a few years ago, the subject matter 
knowledge of teachers was largely taken for granted 
in teacher education. But recent research focused on 
the ways in which teachers and prospective teach-
ers understand the subjects they teach, reveals that 
they often have misconceptions or gaps in knowledge 
(Ball & McDiarmid, 1990). In the same paper Ball and 
McDiarmid also argue that as teachers are themselves 
products of elementary and secondary schools in 
which pupils rarely develop deep understanding 
of the subject matter they encounter, we should not 
be surprised by teachers’ inadequate subject matter 
preparation. This was clearly presented in our study. 
An experienced teacher, teaching more than 25 years, 
introduced a specific mathematical topic (i.e., order of 
operations) based on certain mal-rules that probably 
influenced the quality of learning of his students.

It also seems that these misinterpretations of the cor-
rect rules for the order of operations made it difficult 
for the teacher to have control over his own teaching 
under the light of the new information. Despite a ses-
sion that aimed to support the teacher to confront 
the situation the findings showed that he continued 
to be based on the same mal-rules. It seems that the 
session was not really efficient. This is verified by the 
fact that his students showed similar behaviour to his 
towards the same collection of tasks. Their responses 
followed the same incorrect formats that were used by 
their teacher. This is very helpful to depict clearly the 
situation in our country. And the situation is like this:

The mathematical content knowledge of primary 
school teachers takes place only during their uni-
versity courses. Later on, for pre-service and in-ser-
vice teachers there are training programs but all of 
them are focused on the new curriculum, on the new 
teaching methods, on the usage of technology in math-
ematics classrooms, etc. Implicitly, all these training 
programs take for granted that these people know 
mathematics and this is why they give emphasis to 
pedagogical aspects of mathematics teaching. So, in 
this paper we tried to show that this is a rather false 
image of the real situation. Even though the work of 
only one teacher was presented and this could be con-
sidered as a case study (and therefore we could not 
generalize) we still believe that this is evidence that 

cannot be ignored. Part of the training programs must 
give emphasis on the subject matter knowledge of the 
persons who are responsible for teaching mathemat-
ics in young students and influence by their teaching 
the mathematical thinking of their students. 
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Students with low academic language proficiency are 
often considered to meet specific comprehension chal-
lenges with word problems. But how do conceptual and 
reading challenges interfere in these situations? We ap-
proach this question by investigating how performance 
depends on the problem format for different problem 
types. A test with N=250 students investigates cracking 
percent problems in pure, text, and visual format. The 
results show that text formats are most difficult for ele-
mentary problem types, whereas (con-)text can enhance 
the accessibility for more complex problem types. Item 
difficulties differ similarly for students with high and 
low language proficiency, hence reading challenges 
seem as crucial as conceptual challenges. A deeper 
analysis shows specific linguistic challenges with the 
expressions reduced to and reduced by. 

Keywords: Percentages, word problems, visual models, 

language proficiency.

BACKGROUND 

Word problems in mathematics tests – reading 
challenges or conceptual challenges for 
students with low language proficiency?
Secondary students’ academic language proficiency 
is a crucial factor for their performance in mathe-
matics tests, as has been found in various empirical 
studies (Abedi, 2006; OECD, 2007; Prediger et al., 2013). 
Especially in the context of high stakes testing in the 
US, language biases in mathematical word problems 
have been investigated for students with low language 
proficiency (in brief: low LP) (Abedi, 2006). Many re-
searchers emphasize that students with low LP have 
specific reading comprehension difficulties with word 
problems (e.g., Duarte et al., 2011, for an overview) 

whereas test items with less text are often assumed 
to be “language fairer”. 

However, at least for the German high stakes test 
ZP10 NRW, this assumption turned out to apply only 
partially (Prediger et al., 2014): In nearly all items, 
language proficient students outperformed their less 
language proficient peers. But the items in which the 
former had even more difficulties than expected due 
to their general performance (the items with signifi-
cant DIF-values) could not be characterized by reading 
challenges, but by conceptual or process-oriented 
challenges. We tentatively concluded that reading 
might not be the main obstacle for students with low 
LP to crack problems, but their restricted conceptual 
understanding accumulated in ten years of schooling 
with language disadvantages. However, the phenom-
enon requires a deeper investigation. 

In many different mathematical topics and for stu-
dents of all levels of language proficiency, word 
problems have proved to be more difficult than pure 
items (e.g., Kouba et al., 1988). For students with low 
LP, these text formats seem to pose specific challenges 
(cf. Duarte et al., 2011) that require further exploration. 
However, some studies (especially in primary schools) 
have shown that using contexts in problems can also 
support students’ performance since a context can 
enhance the accessibility of the problem and the 
underlying mathematical concepts (van den Heuvel-
Panhuizen, 2005). 

Whereas the role of text and context is discussed 
incoherently in mathematics education research 
throughout age levels, there is a consensus on the role 
of visual models as having the potential to facilitate 
the accessibility of a test item (shown, for example, in 
Walkington et al., 2013). One could even assume that 

mailto:birte.poehler%40math.uni-dortmund.de?subject=
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students with low LP do equally well as their more 
language proficient peers in visually presented items 
if there were no problems in conceptual understand-
ing, only in text comprehension. 

These different considerations motivated our re-
search interest on comparing difficulties in different 
problem formats. We treated it for the exemplary 
mathematical topic of percentages with the following 
research questions:

 ― How do students perform in parallel test items 
on percentages with text format, visual format 
and pure format? 

 ― How does the role of texts and visual models in 
test items on percentages differ for students with 
high versus low language proficiency?

Cracking percent problems as 
identifying different problem types 
The mathematical topic percentages was chosen 
because it is important in many everyday contexts, 
and percent problems in assessments bear various 
difficulties for students (Parker & Leinhardt, 1995; 
Prediger et al., 2013). Compared to other areas of arith-
metic and proportions, relatively few recent studies 
exist that explore students’ competencies and diffi-
culties, (historical exceptions are named in Parker 
& Leinhardt, 1995; recent exceptions are Dole et al., 
1997; Jitendra & Star, 2012 and Walkington et al., 2013). 

Typical for percent problems is that students’ math-
ematizing process is shaped by one core step, identi-
fying the problem type (Dole et al., 1997). Classically, 
three elementary problem types are distinguished (ibid., 
with different names): ‘Find the amount (if rate and 
base are given)’, ‘Find the rate (if amount and base 
are given)’, and ‘Find the base (if amount and rate are 
given)’. Empirical studies show different success rates 
for different problem types, often ‘Find the amount’ is 
easier than the two others (e.g., Kouba et al., 1988, p. 17), 
and this type being overgeneralized to ‘Find the base’. 

Beyond these three elementary problem types, more 
complex problem types pose even bigger challenges 
for students, for example ‘percentage growth’, ‘per-
centage comparison’ or ‘Find the base after reduction 
(if discount and reduced amount are given)’ (Parker 
& Leinhardt, 1995, p. 439). These complex problem 
types bear reading challenges as well as conceptual 

challenges and are therefore interesting to compare 
to elementary types in this study. 

Existing empirical studies have compared students’ 
performances on percent problems mainly with re-
spect to problem types (Kouba et al., 1988; Dole et al., 
1997). In contrast, the comparison of problem formats 
have been less considered (an exception is Walkington 
et al., 2013). Furthermore, little is known on difficul-
ties with percent problems of students with varying 
language proficiency. Especially the more complex 
problem types seem to pose additional comprehen-
sion challenges that are worth being considered in 
more detail. These indications and the limited state of 
research on percent problems suggest the following 
additional research question:

 ― How successful do students of low / high lan-
guage proficiency identify different percentage 
problem types? What supports them for more 
complex problem types?

RESEARCH DESIGN

The study presented in this paper was conducted as 
a mixed methods study with a paper and pencil test 
on percent problems for N=250 students (age 13 to 
15) in two countries, Germany and German-speaking 
Switzerland, and complementary interviews. Here, 
we mainly focus on the tests. 

Test design 
Language proficiency. Students’ language proficiency 
was assessed by a C-Test in German, an economical 
and reliable measure of a complex construct of gener-
al language proficiency of first- and second-language 
learners (Grotjahn et al., 2002). By its specific con-
struction in a gap text receptive and productive skills 
in lexical and grammatical areas are addressed. 

Three problem types for percent problems. Students’ 
varying performances for percent problems were 
measured by a paper-and pencil test with 15 items, 
systematically constructed in three selected problem 
types ‘Find the amount’, ‘Find the base’ and ‘Find the 
base after reduction’ (Table 1 shows the 14 items, some 
taken from Hafner, 2012, which are relevant for this 
paper). The problem type ‘Find the rate’ was omitted 
as it is the easiest to distinguish from the others by 
merely considering the involved units. 



Cracking percent problems in different formats… (Birte Pöhler, Susanne Prediger and Henrike Weinert)

333

Item set for problem type “Find amount” Frequencies

Pure format (Item Find the Amount) What is 5 % of 400 €? Find the amount. 78 %

Visual  
format

(Item Bar Amount) How many GB have already been downloaded? Find the missing val-
ue. 67 %

Text  
formats

(Item 1 Potatoes) Potatoes consist of 75 % water.  
How much water (in g) is contained in 1000 g potatoes?
(Item 2 Foundation) A school transfers 60 % of the revenue earned with a school celebra-
tion to the “Aktion Mensch” (a foundation). The revenue was 1400 €. How much money 
does the school transfer?
(Item 3 Sport Festival) 30 % of the revenue won at a sport festival in the context of a tom-
bola, being at the amount of 700 €, were dedicated to philanthropy. How much was the 
donation?

46 %
I1: 33 %

I2: 61 %

I3: 45 %
Item set for problem type “Find base”

Pure format (Item Find the Base) 30 % are 60 €. Find the base. 67 %

Visual  
format

(Item Bar Base) What is unknown here? Find the missing value. 67 %

Text  
formats

(Item 4 Jeans) Mr. Koch pays 40 € for jeans in the summer sale.  
The jeans were reduced to 80 %. How much did the jeans cost before?
(Item 5 Kitchen) When buying a new kitchen, Family Mays receives a discount of 250 €, 
that was 5 % of the regular price. What is the normal price of the kitchen?
(Item 6 Holiday Trip) Mrs. Fuchs has prepaid 40 % of the price for her holiday trip. These 
were 800 €. How expensive is the trip?

53 %
I4: 34 %

I5: 62 %

I6: 63 %
Item set for problem type “Find base after reduction”

Pure format (Item Find the Base after reduction) Calculate the former price (base).  
New price: 750 € Discount: 25 % 44 %

Visual  
format

(Item Bar Reduction) What is unknown here? Find the missing values. 59 %

67 % for 
percent, 
51 % for 

base

Text  
formats

(Item 7 Dress) Mrs. Schmidt pays 30 € for a dress in the summer sale.  
The dress was reduced by 40 %. How much did the dress cost before? 
(Item 8 Cross trainer) A customer buys a cross trainer in a shop. She pays 450 € for the 
equipment. As she is a member of a sports club, she receives a discount of 10 %. What is 
the normal price of the cross trainer? 

41 %
I7: 39 %

I8: 43 %

Table 1: Item sets in three different formats for three problem types (translated) with frequencies of correct identification and 

mathematization in the whole sample
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Three problem formats for percent problems. Each 
problem type was presented in three formats: For 
the pure format, exercises were given together with 
the technical terms (hence the decision of problem 
type is already explicit, see Table 1). The visual format 
roused the bar model, an established visual model for 
percentages (van den Heuvel-Panhuizen, 2003), here 
contextualized in download bars, a familiar everyday 
context for teenagers (Prediger, 2013). Three or two 
items for each problem type were constructed in text 
formats with varying language difficulties. 

Sampling and subsampling
The sample consisted of 15 classes in 7 schools, in sum 
N = 250 students (age 13 - 15). In order to investigate 
robustness of the findings to national curricular 
specificities, the test was conducted in two coun-
tries, Germany (in the metropolitan Ruhr region) and 
Switzerland (in the German-speaking region of Lake 
Constance). Due to differences in the school systems 
(streaming in Germany since Grade 5 versus a more 
comprehensive Swiss system), the selected Swiss 
schools have a higher general achievement level. For 
investigating differences in students’ achievements 
with varied language proficiency (LP), the sample was 
split into three groups with high, medium and low LP 
(the medium group is not considered here); the cut-
offs being set by the standardized test norms. 

Complementary clinical interviews
In order to deepen the insights into students’ dif-
ficulties and to gain explanations for difficulties, 
the quantitative data were triangulated by a small 
interview study in which students solved the prob-
lems in a thinking aloud format. So far, we analyzed 
interviews with forty students, in sum 594 minutes 
of video, which were completely transcribed. Due to 
space restrictions, we only briefly refer to the results 
of these analyses for selectively strengthen possible 
explanations even if there is only limited space for 
transcripts. 

Data analysis and hypothesis
For the written tests, an evaluation of success in 
problem type identification and mathematization for 
each item was binary-coded in order to allow hypoth-
esis-testing on achievements for different formats 
etc. with t-tests (Davison, 2003). More precisely, the 
following hypotheses were tested through attempting 
to falsify the corresponding null hypotheses: 

(H1)  Problems in text format are more difficult 
than in pure format due to comprehension 
difficulties for word problems (Kouba et al., 
1988). 

(H1*) Problems in text format are easier than in pure 
format since contexts can enhance students’ 
accessibility of the problem (as shown for 
elementary arithmetic problems by van den 
Heuvel-Panhuizen, 2005). 

(H2)  Problems in visual format are easier than 
in text and pure format since visual models 
can enhance the accessibility of the problem 
(Walkington et al., 2013).

(H3)  Students with low language proficiency have 
difficulties with other problem formats than 
students with high language proficiency; es-
pecially they have specific difficulties with 
problems in text format. 

For testing hypothesis (H3), the data were treated 
in a Rasch-Model for identifying differential item 
functioning with respect to the students’ language 
proficiency (Fischer & Molenaar, 1995). Additionally, 
a categorization of students’ written solutions al-
lowed deeper insights into students’ challenges 
and resources, shown here for two similar items (in 
Section Reduce to versus reduce by: An example for 
linguistic challanges). 

Language-driven subsampling
Regional subsampling

Whole sample Subsample with low LP Subsample with high LP

Whole sample N = 250 n = 60 n = 84

German Subsample n = 98 n = 25 n = 33

Swiss Subsample n = 152 n = 35 n = 51

Table 2: Sample and subsamples
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RESULTS

First results and their discussion
For each problem format, Table 3 shows the frequen-
cies of successful problem type identification and 
mathematizations (here interpreted as finding ad-
equate expressions but not necessarily successful 
calculations of the result). Frequencies are given for 
the whole sample and split for the German and Swiss 
subsample.

These empirical results show that hypothesis (H1) 
must be restricted to well known problem types: 
Problems in text format are significantly more dif-
ficult than in pure format only for the basic prob-
lem types “Find the amount” and “Find the base”  
(p <0.0009). In contrast, the ranking of difficulty differs 

for the more complex and less acquainted problem 
type “Find the base after reduction” (no significance 
for higher difficulty with p=0.175). In the German sub-
sample, this problem type is marginally easier in text 
format than in pure format (p=0.097), hence hypothe-
sis (H1*) tend to apply. The interviews strengthen our 
interpretation that the context of shopping discount 
can enhance the accessibility, and this role of context 
can compensate potential comprehension problems 
posed by the text format in this less known problem 
type (at least for the subsample of high language pro-
ficiency, see below). This is illustrated by the written 
comment of a student (see Figure 1) referring to Item 
Dress (printed in Table 1). 

Problem type
Problem format

  Find amount   Find base   Find base after reduction

Pure Visual Text Pure Visual Text Pure Visual Text

Whole sample 78 % 67 % 46 % 67 % 67 % 53 % 44 % 59 % 41 %

German subsample   70 %    60 % 36 % 51 % 47 % 40 % 15 % 38 % 21 %

Swiss subsample 82 % 72 % 53 % 78 % 80 % 61 % 63 % 73 % 53 %

Table 3: Frequencies of correct identification / mathematization in two regional subsamples

Figure 1: Statement of a student referring to Item Dress

Figure 2: Frequencies of correct mathematization in subsamples with different language proficiency 
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In contrast, the Swiss subsample, which was more ac-
quainted with the problem type, could solve the pure 
format more frequently than the text format. 

Hypothesis (H2) on the role of the visual format is con-
firmed for all problem types for the text format: In 
both subsamples, problems with the visual bar model 
were solved significantly more frequently than in text 
format (p <0.0009). In contrast, the visual format is 
easier than the pure format only for the less known 
problem type “Find the base after reduction” in both 
subsamples (p<0.021). Also the interviews show that 
the visual bar model can enhance students’ access to 
the problem when the key concepts do not suggest 
routine solutions.

Except for one deviance (text format for less known 
problem type “Find base after reduction”), the general 
pattern of difficulties between problem formats seem 
to be parallel in the German and Swiss subsamples. 
Unexpectedly, the mentioned differences are even 
significant in the separate subsamples (except for (H2) 
in the German subsample).

As Figure 2 shows, the described tendencies seem 
to apply for students with low as well as with high 
language proficiency in similar ways: the difference 
between pure format and text format is very similar 
for “Find the amount” (31 percent points for high LP 
and 34 percent points for low LP; of course with a 
higher rate) and “Find the base” (17 percent points 
for both samples). 

These rather heuristic comparisons are confirmed by 
statistically more elaborate methods: The estimated 
item-difficulties in the Rasch-model had no differenc-
es for both subsamples, low LP and high LP. Significant 
differential item functioning was only found with 
respect to students’ mathematics achievement, but 
not between the language proficiency subsamples. 
Hence, LP does not seem to determine specific diffi-
culties. As a consequence, hypothesis (H3) can partly 
be falsified: Students with low language proficiency 
perform lower in all items, but their weaker achieve-
ment in the text formats is not per se an evidence for 
reading challenges being most dominant. In contrast, 
the differences between the formats of the problems 
proceeds in a related way for students with low LP as 
for students with high LP. The visual format which 
might be assumed to be relatively less difficult for stu-
dents with low LP shows similar differences to the 

pure format for “Find the amount” (7 percent points 
for high LP and 10 percent points for low LP) and “Find 
the base” (0 percent points for high LP and 6 percent 
points for low LP). These comparisons of formats al-
low us to conclude that not the language alone, but 
the conceptual understanding (needed when the item 
format does not betray the problem type) is the highest 
difficulty for students with low LP. 

This conclusion is strengthened by the analysis of the 
interviews, from which we show only one singular 
example, Tom’s way of solving the Item Cross trainer 
(cf. Table 1). The student with low LP makes evident 
his conceptual understanding when subtracting the 
number indicating the percentage from the price (#2). 
He even validates and corrects his solution (#6 / 8), but 
still with no understanding that Euros and percent 
cannot be combined directly. 

2 Tom: Well, first, the client buys a 
crosstrainer in a sport shop. Yes, she 
pays 450 € for the equipment. That is 
the price which – how much it costs. She 
receives a discount of 10 % because she is 
a member. And now, we should calculate 
the normal price.... of the cross trainer. 
And I received: 440. And I have calculat-
ed 450 minus 10 %.

… … …
6 Tom: But actually, the normal price 

should be [reads the text again] should 
be higher.

… … …
8 Tom: Yes, now I have 460.

Like Tom, many students with low LP succeed in un-
derstanding the situation in the text but have too limit-
ed conceptual understanding to mathematize correct-
ly. As a consequence, not only problems in text format 
are difficult for them, but all problems in which the 
mathematization is not pre-given by technical terms 
(like in pure format). 

Reduce to versus reduce by: An 
example for linguistic challenges
Even if conceptual challenges are most crucial for 
students with low LP, there exist also linguistic chal-
lenges. We give an example from the deeper analysis 
of two similarly formulated items, both in text format: 
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Item Jeans (Find the base): 40 € for jeans, were reduced 
to 80 %. What did they cost before?

Item Dress (Find base after red.): 30 € for dress, was 
reduced by 40 %. What did it cost before? 

The prepositions in the expressions “reduce to” ver-
sus “reduce by” determine the problem type, and the 
typical challenge to recognize this difference (as dis-
cussed by Parker & Leinhardt, 1995, p. 439). Table 4 
shows students’ mathematizations for both items.  

Only 40 % of the students have identified different 
problem types and have hence recognized a difference 
between the two items, 36 % of the students with high 
LP and 49 % of those with low LP (the difference being 
significant with p =0.049). In contrast, 59 % have not 
recognized the difference while treating the items (65 
% with low LP and 52 % with high LP again a significant 
difference with p =0.049). 

However, the fact that only 14 % identified both prob-
lem types correctly show that al-though there is a 
significant linguistic challenge that requires atten-
tion in classrooms, the conceptual challenges are still 
virulent. This can again be illustrated by Tom’s way 
of solving the Item Jeans (cf. Table 1): 

1 Tom: [after reading and calculating]: 
Yes okay, okay the amount is to be found, 
short W. 

CONCLUSION AND OUTLOOK

The results of the presented test with N=250 students 
confirm that the same problem formats can provide 
different challenges: students have most difficulties in 
cracking percent problems in text format compared to 
those in pure or visual format. Whereas for elemen-
tary problem types, items in pure format are solved 
better than those in visual format, the visual model 
seems to enhance the accessibility for more complex, 
more unknown problem types. A methodological lim-
itation of the study is that we did not account for the 
specific classroom curricula, which might influence 
students’ varied abilities. 

Although the language proficient students outper-
formed the students with low language proficiency 
in all items, the general pattern of differences in item 
difficulties is similar for both groups. This contradicts 
commonly held assumptions that disparities are big-
ger for text formats than for pure formats. It suggests 
that not exclusively the students’ restricted reading 
proficiency is responsible for difficulties in tests, but 
also their lacking conceptual understanding in per-
centages (similar in grade 10, cf. Prediger et al. 2014). 

In the future research, the findings will be extended 
by (1) an extended sample, (2) by deeper qualitative 
insights into students’ difficulties by the interview 
study, and (3) by investigating whether these findings 
also apply to other problem formats.

Already the current state of the results is taken into 
account when designing a remediating course for 
enhancing students’ conceptual understanding for 
percentages and dealing with word problems in this 
topic. 

Students’ identifications of the problem types 
“Find the base” (Item Jeans) versus “Find the 
base after reduction” (Item Dress)

Frequency in 
whole sample
(N=250)

Frequency  
in subsample low 
LP (n=60)

Frequency  
in subsample high 
LP (n=84)

Significance of 
differences low-
high LP

recognizing a difference 40 % 36 % 49 % p=0.049

      (both problem types correctly identified) 14 % 7 % 21 % p=0.004

      (one problem type correctly identified) 6 % 7 % 4 % n.s.

      (no problem type correctly identified) 20 % 22 % 24 % n.s.

recognizing no difference 59 % 65 % 52 % p=0.049

     (one problem type correctly identified) 39 % 35% 37 % n.s.

     (no problem type correctly identified) 6 % 12 % 5% n.s.

     (both items not treated) 14 % 18 % 10 % n.s.

Table 4: Identifying the difference between Item Jeans (“reduced to”) and Item Dress (“reduced by”)

Figure 3
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This study focuses on sorting and reasoning patterns 
in second and fourth grade elementary students. Based 
on a theoretical interpretation of flexibility in mental 
calculation we argue that sorting and reasoning for ad-
dition and subtraction problems provide information 
about students’ cognitive flexibility. For the study report-
ed here, a problem-oriented, guideline-based interview 
incorporating 12 two-digit addition and subtraction 
problems was conducted with American and German 
students. Following the theoretical background and de-
sign, this article gives an overview of results concerning 
reasoning patterns.

Keywords: Reasoning patterns for easy and hard problems, 

flexibility in mental addition and subtraction, cross cultural 

study.

SYNOPSIS OF THEORETICAL BACKGROUND 

In recent decades math educators and researchers 
have taken an increasing interest in students’ tech-
niques for performing mental addition and subtrac-
tion. Similarly, math educators have emphasized the 
importance of developing flexibility in performing 
mental calculations (e.g., Anghileri, 2001; National 
Council of Teachers of Mathematics, 2000; Selter, 
2000). In this context, mental calculation, in the sense 
of solving multi-digit arithmetic problems mentally 
without using paper and pencil procedures, has re-
ceived increasing attention among researchers (e.g., 
Blőte, Klein, & Beishuizen, 2000; Heirdsfield & Cooper, 
2004; Rathgeb-Schnierer, 2006; Threlfall, 2009).

Recent research on flexibility in mental addition and 
subtraction has revealed the following general pat-
terns: (1) a negative impact on flexibility when addition 

and subtraction are learned by examples (Heirdsfield 
& Cooper, 2004); (2) students’ mental strategies influ-
enced by multiple factors (Blöte, Klein, & Beishuizen, 
2000; Rathgeb-Schnierer, 2006; Torbeyns, De Smedt, 
Ghesquière, & Verschaffel, 2009), (3) some approaches 
more than others support the development of men-
tal math flexibility in elementary students (Heinze, 
Marschick, & Lipowsky, 2009; Rathgeb-Schnierer, 
2006), (4) greater mathematical competence among 
students who exhibit flexibility in mental calculation 
(Heirdsfield & Cooper, 2004; Threlfall, 2002), and (5) 
recognition of number patterns and relationships 
correlated with computational flexibility (Macintire 
& Forrester, 2003; Rathgeb-Schnierer, 2010; Threlfall, 
2009).    

At the same time, inconsistent perspectives appear 
in the research literature on mental calculation 
flexibility (Rathgeb-Schnierer & Green, 2013; Star & 
Newton, 2009). For example, nearly all definitions 
have the same basic idea of flexibility in mental cal-
culation as an appropriate way of acting when faced 
with a problem, which is to say that flexible strate-
gies are adapted dynamically to problem situations.  
Nevertheless, there exist in current research crucial 
differences concerning the meaning of what con-
stitutes “appropriate” as well as the use of different 
methods to measure “flexibility” and “appropriate 
ways of acting” (Rechtsteiner-Merz, 2013). Many re-
searchers define flexibility as the choice of the most 
appropriate solution to a problem (Star & Newton, 
2009; Verschaffel, Luwel, Torbeyns, & Van Dooren, 
2009). While Torbeyns and colleagues (2009) had the 
same notion, they enhanced their definition to incor-
porate both computational accuracy and timeliness: 

“strategy flexibility is conceived as selecting the strat-
egy that brings the child most quickly to an accurate 
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answer to the problem” (Torbeyns et al., 2009, p. 583). 
Even contrasting views of “flexibility” focus on mental 
outcomes, including elements of speed and accuracy. 

The project described here refers to a notion of flex-
ibility based on the model of process of calculation 
(Rathgeb-Schnierer, 2011; Rathgeb-Schnierer & Green, 
2013) and current research results which underscore 
the crucial role of number patterns and relationships 
for flexibility in mental math (see above). Therefore, 
the following definition of flexibility has evolved: cog-
nitive actions that match the combination of strategic 
means [1] (Rathgeb-Schnierer & Green, 2013) to the 
recognized number patterns and relationships of a 
given problem in the context of processing a problem 
solution. In this sense, our definition incorporates the 
capacity to use several strategies and adaptive think-
ing and is similar to Threlfall’s “interaction between 
noticing and knowledge” (2002, p. 29):

When faced with a fresh problem, the child or adult 
who follows different solution paths depending on 
the numbers does not do so by thinking about what 
the alternatives are and trying to decide which one 
to do. Rather, he or she thinks about the numbers 
in the problem, noticing their characteristics and 
what numbers they are close to, and considering 
possibilities for partitioning or rounding them. 
(Threlfall, 2002, p. 41)

Our work seeks to understand the mental processes 
that underlie problem solutions, the cognitive elements 
[2] that support the solution process. Therefore, we ex-
amine directly whether students recognize problem 
characteristics, number patterns, and relationships, 
and whether they use this knowledge for solving a 
problem (Rathgeb-Schnierer & Green, 2013). Our defi-
nition of flexibility differentiates between solution 
processes based on learned procedures (step-by-step 
mental calculations) and recognized problem charac-
teristics, number patterns, and relationships.  Hence, 
our project is aimed at identifying degrees of flexibil-
ity in students’ mental arithmetic by identifying the 
cognitive elements that sustain the solution process 
(learned procedures or problem characteristics, num-
ber patterns, and relationships). 

SYNOPSIS OF THE PROJECT

The project incorporated interview questions direct-
ed at students’ recognition of problem characteristics, 

number patterns, and relationships. Students were 
encouraged to look at the given problems, sort them 
into either ‘easy’ or ‘hard’ categories, and give rea-
sons for the sorting (details in Rathgeb-Schnierer & 
Green, 2013). In addition, we examined country and 
classroom-related differences. 

Generally, our study was aimed at answering the fol-
lowing empirical questions: Do students recognize 
problem characteristics, number patterns, and rela-
tionships, and what reasoning do they exhibit about 
these elements?  To what extent is cognitive flexibility 
in mental calculation related to sorting and reason-
ing patterns? Do students of different grade levels 
or countries exhibit differences or similarities (or 
both) in sorting and reasoning? In this paper, we focus 
predominantly on the first question. 

Design
A qualitative study with guideline-based interviews 
was conducted with 78 second and fourth grade 
American (Charlotte, North Carolina) and German 
(Baden-Württemberg) students from ten different 
classrooms (three from 2nd grade and two from 4th 
grade in each country). These classrooms were cho-
sen purposely by observing several math lessons and 
characterizing them by the degree of directness of 
instruction and openness of tasks. Typically, seven 
students per classroom were interviewed, and these 
were teacher selected as being either average or 
strong in arithmetic. 

The qualitative, problem-oriented and guide-
line-based interview contained twelve two-digit ad-
dition and subtraction problems that were displayed 
on small cards. Each problem was purposely designed 
with at least one special numerical pattern or relation-
ship feature: 31-29 (renaming required; range of num-
bers; 29 is close to thirty), 46-19 (renaming required; 
19 is close to twenty), 63-25 (renaming required), 66-
33 (no renaming required; double and half relation; 
double digits; inverse problem to 33+33), 88-34 (no 
renaming required; double and half relation of the 
ones), 95-15 (no renaming required; fives at the ones 
place), 33+33 (no regrouping required; double digits; 
double facts at the ones place; inverse problem to 66-
33), 34+36 (regrouping required; double facts at the 
tens place; ones add up to ten), 47+28 (regrouping 
required), 56+29 (regrouping required; 29 close to 
thirty), 65+35 (regrouping required; fives at the ones 
place add up to ten), 73+26 (no regrouping required).
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Students were interviewed one-on-one for 15 to 30 
minutes, with video recording. Normally, each inter-
view had two parts: (1) sorting problems into catego-
ries “easy” and “hard” and talking about the reasons 
for sorting, and (2) solving problems (if not already 
done during the sorting process). If it was indicated 
by the situation (for instance by utterance or action 
of the student), a third part was sometimes added to 
compare selected problems and direct student’s at-
tention to the characteristics of the problem 46-19 (“Is 
there way to make this problem easier?”). The cards 
were mixed and laid out on the table, and students 
were asked to sort cards one-by-one under “easy” or 

“hard” labels placed on opposite sides of the table. After 
a card was placed, students were asked, “Why is this 
problem easy/hard for you?” 

Interviews were conducted by one researcher and 
took part in the last two months of the academic year 
(Germany 2010 and 2012, USA 2011). All interviews 
were transcribed in their original language for con-
tent-analysis. 

Based on theory and student data, a coding system was 
developed. Two types of reasoning were applied to 
both easy and hard problems: reasoning by problem 
characteristics for easy (RCE) and hard (RCH) prob-
lems and reasoning by solution procedures for easy 
(RSE) and hard (RSH) problems. Reasoning by problem 
characteristics was coded when students referred for 
instance to features of numbers (e.g. similarity of tens 

and ones), numerical relations (e.g. double and half, 
analogies), and relations of tasks (e.g. invers problem).  
Reasoning by solution procedures was coded when 
students immediately started to describe a technique 
of mental, step-by-step computation (e.g., Selter, 2000; 
Threlfall, 2002). 

All interviews were coded using event sampling, the 
individual sort for each of the 12 cards.  An event was 
defined as one complete statement of reasoning that 
began with a student’s first utterance after sorting 
a card and ended either when the student stopped 
talking or was interrupted by the interviewer. 
Multiple codes in the same category could be assigned 
to an individual event, but the assignment to one of 
the four core categories was exclusive. For example, 
a student’s reasoning could either be coded as rea-
soning by characteristics (RCE/RCH) or reasoning 
by solution procedure (RSE/RSH), never to both; the 
deciding factor was always the very first statement. 
For validation, the entire data set was scored by two 
independent judges, and all disagreements were re-
solved through discussion. 

RESULTS

Sixty-nine students were included in our analysis 
(eight interviews were dropped [3]): 28 fourth graders, 
17 American students and 11 German students, as well 
as 41 second graders, 19 American students and 22 
German students. 

Figure 1: An example of categorizing 

Figure 2: Frequency of sorting and reasoning 
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General patterns in sorting and reasoning
In terms of sorting and reasoning, Figure 2 displays 
frequencies for easy and hard problems sorted by 
reasoning category.  

In total, 902 reasons appeared in the sample, an aver-
age of 13.07 per student (minimum 8, maximum 17). 
More than two-thirds of the problems were judged as 
easy. Regarding the two types of reasoning, 54.54% be-
long to reasoning by problem characteristics, 31.48% 
to reasoning by solution procedure, and 14.07% to oth-
er reasons (which were excluded here from further 
data analyses). Regarding the category “reasoning by 
problem characteristic” the ratio for easy to hard is 
2.48 to 1; within the category “reasoning by solution 
procedure” the ratio is 5.24 to 1.

The percentage of each reasoning type related to all 
given arguments in each grade (separated by problem 
characteristics and solution procedures) is shown in 
Figure 3. Differences between grades occurred for 
both problem characteristics and solution proce-
dures. Regarding the fourth graders, 69.53% of the 
arguments referred to problem characteristics and 

30.47% to solution procedures. In contrast, second 
graders exhibited 10% fewer arguments belonging 
to problem characteristics and 10% more to solution 
procedures. Prior research by Selter (2000) had led 
us to expect fourth graders to argue more using solu-
tion procedures, since they are more familiar with 
the standard algorithms than second graders (in 
Germany the standard algorithms are introduced in 
third grade). Interestingly, our fourth graders exhib-
ited less solution procedure reasoning than second 
graders, and they used nearly 50% more reasoning 
by problem characteristics than by solution proce-
dures. This finding might be affiliated with the range 
of numbers used in the interview tasks and is prob-
ably explainable by the greater familiarity of fourth 
graders with two digit numbers. 

In order to examine students’ recognition of problem 
characteristics, number patterns, and relationships, 
we focused on the core categories “reasoning by prob-
lem characteristics.” Figure 4 shows the percentage of 
the entire sample for each code in the two core catego-
ries “easy” and “hard.” Distinct differences between 
easy and hard problems are readily apparent. With 

Figure 3: Percentage of reasoning in each grade

Figure 4: Reasoning by characteristics for easy and hard problems
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reasoning for easy problems, students consistently 
referred to a variety of number patterns and problem 
characteristics. They pointed, for example, to basic 
facts [4] (23.36%), analogies between tens and ones 
(8.83%), numerical relations (27.06%, e.g. range of both 
numbers, double half, inverse problem), special fea-
tures of numbers at the ones place (16.23%, e.g. two 
fives at the ones place or numbers that add up to ten), 
special numbers (22.50%, e.g. double digits or num-
bers close to the next ten), and also size of numbers 
(1.99%).

A completely different pattern was exhibited with 
reasoning by problem characteristics for hard prob-
lems. Students referred predominantly to “features 
of ones” (84.39%), referring directly to the numbers 
in the ones place. One typical characteristic for hard 
problems was the specific constellation of numbers 
in the ones place that leads to the need for renaming. 

Student:  So ((selects the card 46-19)) ok ((puts it 
in the “hard” column)) I’ll put that one 
in the hard. So 46 plus, um, minus 19 
((points at the numbers on the card)) I 
think it’s a little harder because first 
((points at the tens on the card)) you can 
do four minus one which is three, and 
that one ((points at the 6 and the 9)) is 
kind of hard, because this one ((points 
at the 9)) is bigger than that one ((points 
at the 6)).

Even if problems that required renaming were often 
considered as hard, we also found opposite judgments 
especially with those problems that include one num-
ber which is close to the next ten (predominantly 
numbers with a nine) for instance  31-29 (see Figure 
2), 46-19 or 56+29. Whenever students discovered 
problem characteristics other than the requirement of 
renaming, they considered those problems to be easy. 

Example for 56+29:

Student:  This one is easy ((points to the problem 
56+29)) because 29 is close to 30, I only 
have to add one.

Interviewer: That means you add one to 29?

Student: Here is 30 ((points to 29)), and here 55 
((points to 56)), um, and I do 30 plus 55. 

Example for 46-19:

Student:  ((points on 46-19)) One could easily sub-
tract 20 ((points on the minuend)).  

Interviewer: Mhm.

Student: So, for 46 minus 20 you need no special 
trick, you know the answer immediately.  

Interviewer: Yes.

Student:  - this is 26, and then you need (..) to (..) 
–moment (..) to add one. 

Interviewer: Why do you need to add one? Is this 
correct?

Student:  Yes, because we have one more subtract-
ed, that means we have subtracted one 
number more. 

Summarizing, our data analyses suggest that addition 
and subtraction problems that require renaming are 
not regarded by students to be hard in general. In fact, 
in our sample, students depicted a more differentiated 
assessment of problems that required renaming: They 
considered those problems to be easy when additional 
problem characteristics (e.g., 9 in ones place) were 
obvious. 

Reasoning in different classrooms
Qualitative analyses suggest classroom-related ten-
dencies concerning reasoning patterns. Figure 5 
shows students’ reasoning patterns from three differ-
ent second grade classrooms. Each column represents 
the arguments of one student, and the size of the dots 
displays the quantity of arguments in the category. 
The math lessons in classrooms A (American) and C 
(German) showed the same high degree of open tasks 
and self-regulated learning, whereas in classroom 
B (German) predominantly direct instruction and 
closed tasks were observed.

Students from classroom A referred almost exclusive-
ly to problem characteristics to explain why a problem 
seems to be easy or hard. Students from classroom B 
showed a distinct preference for reasoning by solu-
tion procedures and exhibited a quite restricted range 
in their reasoning: Whenever reasoning based on 
solution procedures appeared, “composing and de-
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composing” strategies were exhibited. The few times 
reasoning based on problem characteristics emerged, 
students referred predominantly to “known facts” 
(basic facts). Classroom C students can be described 
as more comprehensive, since problem-based and pro-
cedure-based reasons coexist. In that sense, this group 
showed a great variety of problem related arguments 
and no variety at all in the section of procedure relat-
ed arguments (note that solution procedures for both 
hard and easy problems were coded “compose and 
decompose”). This is an important pattern revealed 
throughout the whole data: Whenever students’ rea-
soning referred to problem characteristic and number 
patterns, a great variety was noticeable. Therefore, 
we presume that those students act dynamically and 
can be considered as mentally flexible. On the other 
hand, whenever students depicted reasoning based 
on solution procedures, a quite restricted range of 
reasons was empirically observable. Hence, those 
students acted very statically and can be considered 
as mentally rigid. 

CONCLUSION

In summary, we have reported a variety of patterns in 
students’ reasoning for easy and hard problems that 
reflected the characteristics we built into the prob-
lems. There was obviously a greater variety of argu-
ments for easy problems than for hard ones. Based on 
individual and classroom related reasoning patterns, 
we were able to identify three forms of reasoning: 
flexible (multiple reasons predominantly referring 

to characteristics), rigid (one reason referring to a 
solution procedure) and mixed (multiple reasons 
when referring to characteristics, one reason when 
referring to a solution procedure). Data analyses 
suggested that students who exhibited reasoning by 
characteristics were more cognitively flexible than 
students who didn’t. Our next step will be to identify 
whether the recognized characteristics (that were vis-
ible in students’ reasoning) function to sustain the 
solution process, and therefore can be considered as 
cognitive elements.  
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ENDNOTES

1. Strategic means are neither holistic strategies nor 
cognitive menus that complete a solution path; they 
are distinct devices that can be combined in flexible 
ways to modify complex problems to make them eas-
ier. Strategic means include decomposing and com-
posing, modifying a problem, deriving the solution 
from a known problem, and using decade analogies. 

2. Students’ solution processes are based on specific 
experiences that we designate with the term “cogni-
tive elements.” Such cognitive elements that sustain 
a solution process can be learned procedures (such 
as computing algorithms) or number characteristics 
(such as number patterns and relationships). 

3. Eight interviews were dropped from the analysis 
for inaudibility, early termination or irreversible 
deviation from the interview guideline.

4. The code “basic facts” was purposely assigned to 
the core category “reasoning by problem character-
istics.” In our opinion, referring to basic facts is not a 
sign of procedure, but an indicator of the recognition 
that parts of the problem belong to basic facts. In this 
context, we only assigned an argument to the code 

“basic facts” when students expressed clearly and con-
sciously that part of a problem or a whole problem is 
known by heart. The naming of a result by itself was 
not assigned to the code “basic facts.”
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One of the main purposes of the research project that is 
being carried out in Mexico consists on building, from 
Filloy’s point of view, a Local Theoretical Model (LTM) 
for fractions and rational numbers. For this purpose, 
four components of the LTM have to be constructed: 
models of formal competence, teaching models, models 
for the cognitive processes and models of communica-
tion. In this paper, a network of notions, concepts and 
processes for fractions and rational numbers that con-
stitutes a fundamental part of the models of formal com-
petence is described. This network was structured taking 
into account five mathematical processes grounded on 
Freudenthal’s specimen of Didactical Phenomenology 
of fractions.

Keywords: Fractions, rational numbers, mathematical 

processes, teaching models.

INTRODUCTION

In the sixties, prestigious university educators dis-
cussed two approaches for the teaching of fractions 
in basic education. One group argued that decimal 
numbers could replace common fractions while the 
other one asserted that fractions should be taught, but 
only those that are more frequently used in everyday 
life (Rappaport, 1962). Those different positions gen-
erated discussions about the teaching and learning 
of fractions. Rappaport (1962) argued that fractions 
should be taught, since it is a necessary mathemati-
cal concept in order to understand rates and ratios. 
Usiskin (1979) claimed that a fraction is a representa-
tion of many numbers, and identified different uses of 
fractions involved in situations of splitting up, rates, 
proportions, mathematical formulae and equations.

Kieren’s research (1976 & 1988) showed the complexity 
of the rational number concept. He stated that in or-
der to construct a permanent knowledge of rational 
numbers, a person has to understand several con-
structs: measure, quotient, operator and ratio. For 
Kieren, part-whole relationship serves as a basis for 
connecting those constructs, which supports a con-
struction of more formal knowledge that includes 
equivalence, and additive and multiplicative struc-
tures of a quotient field.

Lesh, Landau and Hamilton (1980) pointed out that 
the concept of rational number is a group of sub-con-
structs and integrated processes related to a wide 
range of basic concepts, appearing in a variety of 
problem situations.

Aware of the constructs identified by Kieren (1976); 
Behr, Lesh, Post and Silver (1983) proposed a model 
by grouping them in view of their relationships and 
links to equivalence, operations and problem solving. 
They also considered that the part-whole relationship 
is a fundamental meaning in order to understand the 
other meanings.

Although the part-whole relationship is an important 
meaning of fractions, Freudenthal (1983, p. 144) ar-
gued that the teaching based only on this relationship 
is restricted not only phenomenologically, but also 
mathematically, for it yields only proper fractions.

The research findings influenced worldwide ed-
ucational reforms in the 90s, in order to improve 
the teaching and learning of fractions and rational 
numbers. In Mexico, in 1993, three different fraction 
meanings (quotient, measure and ratio) were includ-
ed explicitly in the study programmes for primary 
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and secondary school. However, nowadays second-
ary school students go on obtaining low scores on 
questions about fractions in national tests. For in-
stance, a comparative study (data from 2005 to 2008 
provided by the Instituto Nacional para la Evaluación 
de la Educación [INEE], 2012) showed that the correct 
answers obtained by third grade secondary school 
students in the Excale test, applied in Mexico, were 
lower than 40%.

For many years – at least since 1962, as mentioned 
above– it has been thought that knowledge of fraction 
concept is important in understanding other mathe-
matical concepts. Siegler and colleagues (2012) found 
that “elementary school students’ knowledge of frac-
tions and division uniquely predicts students’ knowl-
edge of algebra and overall mathematics achievement 
in high school” (p. 691). Siegler and collaborators’ 
findings imply that almost 60% of Mexican students 
would have a poor performance in mathematics in 
high school. Therefore, the teaching and learning of 
fractions and rational numbers pose still a problem-
atic area for mathematics education.

As a consequence, it was decided to design a research 
project so as to characterise the structure and organ-
ization of the current teaching model of fractions; to 
analyse the interpretation made by authors of text-
books of the study programmes, and to characterise 
the effectiveness of the overall design and the under-
standing of those authors. This information will pro-
vide knowledge for designing an alternative teaching 
model of fractions for secondary school, and carrying 
out its experimentation in the classroom.

In this paper the most important result of the building 
up of the models of formal competence of the LTM for 
fractions and rational numbers is described. This out-
come is a network of notions, concepts and processes 
for fractions and rational numbers, which is used as 
a methodological tool for analysing and designing 
teaching models.

THEORETICAL FRAMEWORK 

Filloy’s Local Theoretical Models theory (see Filloy, 
Rojano, & Puig, 2008) is used as a theoretical and meth-
odological framework to organize the research bear-
ing in mind its four components: 1) models of formal 
competence, 2) teaching models,      3) models for the 
cognitive processes, and 4) models of communication. 

Models of formal competence are related to fractions 
and rational numbers as mathematical objects; the 
teaching models and models of communication are 
associated to those mathematical objects as teaching 
objects, and models for the cognitive processes deal 
with fractions and rational numbers as learning ob-
jects.

METHODOLOGY 

To construct the LTM, a specific methodology has 
been defined for each component. The models of 
formal competence were built mainly considering 
Freudenthal’s Didactical Phenomenology of fractions 
(1983). The teaching models comprise analyses of the 
Mexican current study programme for secondary 
school and mathematics textbooks used by students. 
The models for the cognitive processes and commu-
nication include: 1) Kieren’s explicative model (1988) 
which provides a global overview of individual con-
struction of rational numbers knowledge; 2) a review 
of the results found in empirical studies carried out 
among secondary school students; 3) an analysis of 
other theoretical perspectives; 4) a characterisation 
of Mathematical System of Signs (MSS) (Filloy et al., 
2008) of fractions and rational numbers, and 5) an 
analysis of items designed to assess these kinds of 
knowledge.

MODELS OF FORMAL COMPETENCE

This component of the LTM is related to mathematical 
knowledge, emphasising the structure and properties 
of fractions and rational numbers as mathematical 
objects. It is an important component due to: 1) the 
observer of educational experimentation should be 
capable to interpret the messages and texts gener-
ated by students and their teacher in the classroom. 
Therefore, the researcher needs more abstract MSS 
that encompasses all the MSSs used in the observed 
processes (Filloy et al., 2008, p. 36); 2) the design of a 
teaching model requires the knowledge of the charac-
teristics of a competent user of fractions and rational 
numbers, and 3) the task designer must have examples 
of diverse situations in which these numbers are used 
readily available. 

For the authors of this paper, the fulfilment of those re-
quirements is possible through analysis of Didactical 
Phenomenology of fractions done by Freudenthal 
(1983). In these types of analyses, those phenomena 
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organized by fraction and rational number concepts 
are described; consequently they provide diverse 
examples of how those numbers are used in various 
situations. In the processes of identifying different 
phenomena, the characteristics of the necessary com-
petencies for using fractions and rational numbers 
for solving problems emerge.

Freudenthal starts the characterisation of phenomena 
from the first ideas of fractions embedded in everyday 
language through to the complex concepts included 
in the mathematical theory of rational numbers. 

The specimen of Didactical Phenomenology of frac-
tions was reinterpreted by the authors, identifying 
classes of phenomena: description and comparison 
of quantities, magnitude values or objects, division 
of substances measured by magnitudes, distribution 
of quantities, measurement, and numbers as part of a 
numerical system. For each one of the first five class-
es, different notions and concepts of fractions and 
rational numbers were identified, organized, sche-
matized and linked with five mathematical process-
es: describing, comparing, dividing, distributing and 
measuring. The sixth class refers to the mathematical 
constructions of rational numbers. 

In the following sections of this paper a brief descrip-
tion of these processes/classes of phenomena asso-
ciated with fractions and rational numbers is made.

Describing. In everyday language there are expres-
sions in which fractions are used to describe: i) a quan-
tity or magnitude value through another quantity or 
magnitude value, ii) a measure expressed by numbers, 
iii) cyclic or periodic processes, and      iv) ratios. These 
expressions are related to the process of ‘describing’ 
(see Figure 1) and are linked with four kinds of phe-
nomena in different contexts in which the fraction is 
acting as a descriptor.

Expressions such as: ‘half of a way’, ‘three quarters 
of an hour’ and ‘one third of the world’s population 
will suffer water shortages by 2015’ are examples in 
which a description of a quantity or magnitude value 
through total distance of a way, of a number of min-
utes of an hour, and of the number of people that live 
in the world is made. Measures can be described using 
phrases as ‘½ litre of milk’ or ‘¾ of a pound’. Different 
cyclic or periodic processes are described using frac-
tions and mixed numbers, for example: ‘a driver only 
could run ½ times the track due to a mechanical fail-
ure’ and ‘a Chinese competitor presented an almost 
perfect dive in which he rotated 2 ½ times’. Likewise, 
fractions are employed to describe ratios relating two 
quantities or magnitude values. For instance, ‘3 out of 
5 parts’ and ‘six of every one hundred Mexican people 
speak an indigenous language’.

Comparing. Three types of phenomena associated to 
the process of ‘comparing’ in which fractions represent 
comparers were identified (see Figure 2). Fractions are 
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Figure 1: Schematic representation of the ‘describing’ process as part of the network
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also used in everyday language to express the result 
of a comparison between two quantities or magnitude 
values; this comparison is related to a first abstraction 
level. In a comparison of the salary of two persons, one 
that earns 1 800 € and the other      1 200 € it is possible 
to say: ‘one person earns 3/2 times than the other’.

In a second abstraction level, diverse aspects of the 
fraction were incorporated: fracturing operator, 
fracturing relation, ratio relation, ratio operator and 
transformer. 

Two objects that are brought close together, or are 
in some other way considered, as though the smaller 
were part of the bigger, can be compared using the 
fracturing operator or fracturing relation. For exam-
ple, if we compare the height of two bookcases, one 
has six shelves and the other has seven shelves, the 
fractions 6/7 and 7/6 represent these two possible 
comparisons.

Fraction as a ratio relation is the result of comparing 
two objects that are separated. This comparison can be 

made with respect to a number or a magnitude value 
of each object. To compare the height of two of the 
tallest towers in the world: the Tokyo Skytree and the 
Canton Tower, having in mind that one of them meas-
ures 634 m and the other 610 m, the fractions 634/610, 
317/305, 610/634 and 305/317 are ratio relations that 
represent the comparisons of the towers’ heights.

The aspect of fraction as ratio operator acts on a quan-
tity or magnitude value, transforming it into another 
quantity or magnitude value. For example, to obtain 
the amount that each type of heir gets from an inher-
itance of 60 000 €, knowing that 2/3 are for the sons 
and 1/3 for the widow, the fractions 2/3 and 1/3 are 
ratio operators that transform 60 000 € in 40 000 € 
and 20 000 € respectively.

In its intermediate stage as transformer, the fraction 
performs on dimensions of objects by deforming or 
mapping to a scale a/b. To determine a scale of the 
transformation of an image whose size is 1280 x 960 
pixels to another size of 1600 x 1200 pixels, the fraction 
5/4 represents both a scale and a transformer.
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Figure 2: Schematic representation of the ‘comparing’ process as part of the network
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Dividing. To divide substances measured by magni-
tudes, the whole is partitioned in equal parts, relating 
it to one or more of those parts (see Figure 3). In that 
way, the fractions represent part-whole relationships 
and are acting as fracturers. For instance, 18/27 parts of 
the roulette are black or 11/25 of the numbers of a bin-
go card are even numbers. The expression numerator/
denominator represents the part-whole relationship.

There are different methods of fracturing in equal 
parts: in an irreversible, reversible or symbolic way. 
The estimating of equality of the parts can be made 
at sight, by feel or by others methods like the use of 
congruences or symmetries or employing different 
measuring instruments. Regarding the whole it can be 
discrete, continuous, definite, indefinite, structured 
or lacking structure. There are transitions among 
those types of wholes. The parts of the whole can be 
connected or disconnected.

Distributing. A distribution process of small or large 
quantities can be related to a finite set model and/or 
to a magnitude model (see Figure 4); the fraction rep-
resents the result of this process. On the one hand, when 
10 leaf packs are distributed among 5 persons, each 
person gets 1/5 of the total of leaf packs (10 leaf packs ÷ 
5 persons = 2 leaf packs per person = 1/5 of 10 leaf packs 

for each person). In this case, the process has finished 
and is associated with the finite set model. 

On the other hand, if 3 sacks of rice whose mass is 
50 kg each are distributed between 2 persons, each 
person would get 1 whole sack of rice and it would 
be necessary to distribute the remaining sack con-
sidering its mass, thus each person would get ½ of a 
sack more (50 kg ÷ 2 persons = 25 kg per person = ½ of 
a sack per person). In this case, the process is related 
to a magnitude model because the use of the mass unit 
has made possible the distribution.

When the magnitude model is introduced to distrib-
ute the remainder, it is necessary to constitute a mag-
nitude in a system of quantities that include different 
requirements ranging from an equivalent relation to 
the division of an object in an arbitrary number of par-
tial objects. The expression numerator/denominator 
represents, in this case, the quotient of a division; in 
other words, it is the result of the distribution process.

Measuring. Fractions also represent measures of 
magnitudes (see Figure 5). Magnitudes can be meas-
ured with unconventional units or using metric and 
non-metric systems. The metric system is related to 
decimal fractions. The non-metric systems are the an-
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cient systems of measurement and the English system; 
some of the former have various decimal relations; for 
example, in the Egyptian system 1 khet = 100 sq cubits.

Decimal fractions can be thought of as elements of 
ever finer nets. There are connections among these 
elements in the same net through addition, subtrac-
tion and comparison, or between elements from two 
different nets using multiplication.

To measure magnitudes it is also possible to use the 
number line, selecting an arbitrary length to repre-
sent a unit of measurement to be used for building 
different scales of length, time, temperature and mass 
measurements among other magnitudes. The fraction 

represents the result of a measurement process and acts 
as a measurer.

In the last part of the network of notions, concepts and 
processes, the phenomena that are associated with the 
rational numbers as a number system are included. 
Two ways of constructing this kind of numbers out-
lined by Freudenthal – an a posteriori axiomatic way 
(as equivalence classes of fractions) connected with 
the algebraic nature of these numbers, and an a prio-
ri genetic way (as a commutative semigroup) linked 
with the ratio operator– were considered as the sixth 
class of phenomena. These constructions of rational 
numbers correspond to a more abstract level. In the 
latter construction, an arbitrary length was selected 
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in order to discover rational numbers as measures of 
a segment or points on the number line.

The network encompasses from the use of first ideas 
of fractions embedded in everyday language through 
to the mathematical constructions of rational num-
bers. Due to the extension of the network, it cannot 
be included in this paper, but the authors expect that 
readers could get a general idea from the above par-
agraphs.

THE USE OF NETWORK AS 
METHODOLOGICAL TOOL

In order to analyse a teaching model of fractions, the 
network was used as a methodological tool through 
examination of the activities included in mathemat-
ics textbooks, which were used by secondary school 
students in Valencia, Spain (Real, Figueras, & Gómez, 
2013). The results of that analysis showed that the as-
pects of fractions in such teaching model are: descrip-
tor, fracturer, ratio operator, and measurer (this last 
aspect appears in an implicit way). For representing 
a part-whole relationship the fraction as descriptor 
is used. The fraction as comparer is utilised for com-
paring two quantities or magnitude values. For trans-
forming a quantity or magnitude value into another 
one, the fraction as ratio operator is employed. The 

fraction as a measurer is a means for solving some 
activities, but its use to compare different fractions 
in the number line is not included. In an overall view, 
some phenomena within the network are included 
in this teaching model of fractions, even though the 
authors state that it is based on problem solving.

FINAL REMARKS

All these mathematical processes related to different 
notions and concepts of fractions and rational num-
bers, included in the network, describe an overall per-
spective about teaching and learning of these math-
ematical objects. The network and its description 
constitute a potential theoretical element to analyse 
and to design an activity or a teaching model. Its use 
as a methodological tool has been proved through the 
analysis of two different teaching models: one from 
Spain (Real et al., 2013) mentioned above, and the other 
from Mexico (Real, 2014). Additionally its validation 
to design a teaching model for secondary school stu-
dents in Mexico is being carried out.
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The study focuses on the development of mental calcu-
lation of elementary students who show difficulties in 
learning math. In total, 20 children in 8 classes were 
observed during their first year at school. The math ed-
ucation of five classes was based on a special approach 
called “Zahlenblickschulung”, whereas three classes ex-
perienced more regular lessons. The collected data al-
lowed a development of a typology of flexibility in mental 
calculation. Additionally, it was possible to describe the 
development of each student. The data analysis shows 
that instruction with “Zahlenblickschulung” also sup-
ports less advanced students in developing flexibility in 
mental calculation. Another result indicates that the 
recognition of number patterns and numerical rela-
tionships is crucial for learning to calculate (beyond 
counting). 

Keywords: Flexible mental calculation, less advanced 

students in mathematics, elementary arithmetic.

THEORETICAL FRAMEWORK

For over more than a decade, developing flexible men-
tal calculation has been considered as an important 
goal in elementary school (Lorenz, 1997; Selter, 2009). 
Nevertheless, there is still no consensus on instruc-
tional approaches and support for less advanced stu-
dents in learning calculation. The study described 
below focuses on the development of flexible mental 
calculation of less advanced students in mathematics. 
Thereby, we define less advanced children as those 
who have problems in learning mathematics and need 
a special support (Schipper, 2005). 

Notions and related research results 
Current literature offers different definitions of flex-
ible mental calculation (Rathgeb-Schnierer & Green, 
2013; Threlfall, 2009; Verschaffel, Luwel, Torbeyns, 

& van Dooren, 2009). Most of these definitions in-
volve two common aspects: flexibility and adaptivity. 
Thereby, flexibility is commonly understood as the 
ability to switch between different tools of solution 
(Rathgeb-Schnierer & Green, 2013; Verschaffel et al., 
2009), whereas adaptivity “puts more emphasis on se-
lecting the most appropriate strategy” (Verschaffel et 
al., 2009, 337). What is meant by adaptivity is consid-
ered differently (Rechtsteiner-Merz, 2013; Verschaffel 
et al., 2009): 

 ― adaptivity of solution methods and problem char-
acteristics (Blöte, van der Burg, & Klein, 2001),

 ― adaptivity of solution methods and speed of 
obtaining a solution (Torbeyns, Verschaffel, & 
Ghesquière, 2005; Verschaffel et al., 2009),

 ― adaptivity of cognitive elements that underlie 
the solution process (Rathgeb-Schnierer & Green, 
2013; Threlfall, 2002, 2009).

In this project, flexible mental calculation involves 
both aspects: flexibility as mentioned above and adap-
tivity. Referring to Rathgeb-Schnierer and Green 
(2013, 2015), this project is based on the assumption 
that the aspect of adaptivity in flexible mental calcula-
tion is related to the recognition of problem character-
istics, number patterns and numerical relationships.

Number sense – structure sense – “Zahlenblick”
Our basic assumption of flexible mental calculation 
influences the notion of how to teach towards flexibil-
ity. If flexible mental calculation is related to problem 
characteristics, number patterns and numerical rela-
tionships, it is necessary to provide activities that en-
courage students to focus on these aspects. Therefore, 
the crucial aim is to develop “Zahlenblick” (Schütte, 
2004; Rathgeb-Schnierer, 2006; Rechtsteiner-Merz, 
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2013). To describe the meaning of “Zahlenblick”, it is 
necessary to regard the constructs number sense und 
structure sense. 

The term number sense is connected with two differ-
ent notions: as a result of experience based develop-
ment or as an inherent skill. 

“With respect to its origins, some consider num-
ber sense to be part of our genetic endowment, 
whereas others regard it as an acquired skill set 
that develops with experience.” (Berch, 2005, 
333f.)

Regarding the construct structure sense, the notions 
are quite similar. Lükens’ definition (2010) of early 
structure sense reminds us of an inherent compe-
tence, whereas Linchevski and Livneh (1999) point 
out the necessity of its development. “Zahlenblick” is 
considered a result of development and means the 
competence to recognize problem characteristics, 
number patterns and numerical relationships imme-
diately, and to use them for solving problems (Schütte, 
2004). Comparing number sense, structure sense and 

“Zahlenblick” it is obvious that the meaning of number 
and structure sense as acquired skills that can be de-
veloped by special activities is quite similar to our 
notion of “Zahlenblick”. Since there are still discus-
sions about the different definitions, we use the term 

“Zahlenblick” in the previously described sense of 
Schütte (see above). To support the development of 

“Zahlenblick”, it is crucial to provide activities, which 
highlight problem characteristics, patterns and nu-
merical relationships (Rechtsteiner-Merz, 2013; 
Schütte, 2004). Generally, these activities target the 
development of number concepts, understanding of 
operations and strategic means [1]. They encourage 
students to recognize number patterns, problem char-
acteristics and relations between numbers and prob-
lems, and to sort and arrange problems by using 
structural relations. These activities include cogni-
tively challenging questions to provoke students’ 
thinking and reflection. By combining mathematical 
topics with challenging questions, an increase of 
metacognitive competences is intended (Rechtsteiner-
Merz, 2013). This can be illustrated by an activity 
called “Problem-Family” (Figure 1): The students start 
with one problem, for instance 5+5=10. Then, they 
were asked to arrange lots of cards with related prob-
lems (e.g. 5+6, 6+6, 4+6 etc.) around the first one with 
the aim of making the relations visible. Subsequently, 

the students were encouraged to describe their ar-
rangements, and give reasons for their decisions. This 
activity does not focus on solving problems, but on 
recognising problem features and relationships.

“Zahlenblickschulung” is not considered as an addi-
tional program. Rather, it can be understood as an 
essential principle of teaching arithmetic. 

OVERVIEW OF THE PROJECT

Questions
Referring to prior research, we assume that

 ― “Zahlenblickschulung” is a good vehicle for de-
veloping flexible mental calculation (Rathgeb-
Schnierer, 2006; Schütte, 2004) and 

 ― not only middle and high achievers, but also less 
advanced students can develop flexible mental 
calculation (Torbeyns et al., 2005; Verschaffel et 
al., 2009).

These assumptions lead to the following research 
question: Are first graders with difficulties in learn-
ing math (numbers and operations) able to develop 
flexible mental calculation when educated with 

“Zahlenblickschulung”?

Design
Based on the theoretical notion of flexibility intro-
duced above, a qualitative study that focuses on learn-
ing processes has been designed. The study included 
two parts: the instructional approach and the inves-
tigation of learning processes (Figure 1).

The investigation started with an extended period of 
observation to find students with problems in learn-

Figure 1: A “Problem-family” (Rechtsteiner-Merz, 2013, 113)
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ing numbers and operation. Therefore, two different 
not standardized tests were conducted with all stu-
dents. Those who performed poorly were subsequent-
ly observed over a period of 6 to 8 weeks. As Schipper 
(2005) describes, approx. 20% of each class develops 
problems in learning mathematics. Based on this 20% 
benchmark, we decided to choose 20 students from 
eight different classes. Twelve students (five classes) 
experienced “Zahlenblickschulung” in one of four 
math lessons per week; eight students (three classes) 
had regular math classes.

From February until October 2008, each student was 
interviewed four times. The interviews were guide-
line-based, problem-orientated, and documented by 
videotape. Due to different moments in the academ-
ic year, each interview included different activities, 
except the one that was finally analysed. This special 
activity did not change and contained two parts: First, 
students were asked to sort addition problems and 
to talk about their reasons for sorting. Second, stu-
dents were encouraged to solve the problems and to 
describe their solution procedures. The first three in-
terviews included addition problems with single-digit 
numbers. In the last interview, several problems, up 
to 100, were added additionally. 

Data analysis
For data analysis, interviews were transcribed. With 
the aim to reveal solution procedures and cognitive 
elements that sustain these procedures, two coding 
systems were designed based on the “Qualitative 
Inhaltsanalyse” of Mayring (2008): To classify the 
solution procedures, an a priori system was used. The 
analyses of sorting and reasoning were done with an 
inductively developed coding system (Rechtsteiner-

Merz, 2013). Since there was a huge difference in 
the quality of students’ reasoning, it was necessary 
to judge the value of arguments. Based on a theory 
called “Argumentationsanalyse” (analyses of argu-
ments) (Fetzer, 2011; Toulmin, 1996) and the theory 
of proof (Almeida, 2001; Sowder & Harel, 1998), it was 
possible to judge different arguments according to 
the theory of flexible mental calculation (see above). 

According to Kelle and Kluge (2010), types were con-
structed by interrelating three dimensions: (1) the 
amount of correct solutions, (2) the solution proce-
dures, and (3) the reasoning for sorting and solving 
(Rechtsteiner-Merz, 2013). Therefore, it was neces-
sary to build two feature spaces: First, the dimen-
sion “amount of correct solution” and the dimension 

“solution procedures” were combined. At this level, it 
was possible to construct pre-types which describe 
calculation in first grade. In the second step these pre-
types were linked to the dimension “reasoning for 
sorting and solving”. On this level, it was possible to 
develop a typology of flexible mental calculation in 
first grade (Figure 2).

RESULTS AND OUTLOOK

Finally, nine types could be derived from the data, four 
main types and five temporary types (Rechtsteiner-
Merz, 2013) (Figure 3). The main types focus on a typ-
ical phase at the beginning of first grade (counting 
strategies) or on an intended phase at the end of first 
grade (consistent use of procedural mastery, partly ba-
sic facts with relational expertise or basic facts extended 
with relational expertise). The temporary types rep-
resent stages of developments when students learn 
calculating (beyond counting). 

Figure 2: Design
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The arrangement of the types in Figure 3 must be un-
derstood as the combination of the two dimensions 

“counting subsumed by calculating” (horizontal di-
mension) and “reliance on numerical relationship in 
argumentation” (vertical dimension).

Subsequently, we describe the main types, followed by 
the temporary types: Students with counting strategies 
[2] solve each problem by counting, usually starting 
from the large number. Students with consistent use 
of procedural mastery are able to solve most of the 
problems up to twenty by calculating. Therefore, they 
always use the same solution procedure without no-
ticing any problem characteristics. They argue for 
example “I do always like this” or “like always up to ten 
and then the rest”. Students who exhibit partly basic 
facts with relational expertise use different strategic 
means by relying on problem characteristics. They are 
able to describe the solution process and give reasons 
for their strategic means in an elaborate way as the 
following example shows: “These problems are easy 
(points to 8+5 and 4+9), because here it’s one less and 
here it’s one more (points to 4 and 9)”. Students who 
depict basic facts extended with relational expertise re-
lay on basic facts with addition problems up to twenty. 
Additionally, they are able to solve problems with two 
digit numbers (higher than twenty) based on recog-

nized characteristics and numerical relationships 
(even if this is not a topic in first grade). This type is 
special for first grade since all addition problems up 
to twenty can be memorized by heart.

Students who solve problems predominantly by 
counting are divided in two groups: those who rely 
on procedures (temporary type 1) and those who rely 
sometimes on numerical relationships (temporary type 
3). Students who belong to the temporary type 1 pre-
dominantly practice counting as a rule. Sometimes, 
they suddenly use strategic means or number facts, 
although they cannot describe their approach or give 
a reason for it. Students who belong to the temporary 
type 3 also use predominantly counting to solve addi-
tion problems, but sometimes they notice numerical 
relationships, and they are able to describe and reason 
their approach. 

There are also students who solve problems predom-
inantly by calculating relying usually on procedures 
(temporary type 2). Based on procedures, they can 
solve many problems up to twenty. Exceptionally, 
they rely sometimes on numerical relationships when 
solving a problem or giving reasons for the sorting. 
On the other hand, there are students from the tem-
porary type 5 who solve problems predominantly by 

Figure 3: Typology of flexible mental calculation (Rechtsteiner-Merz, 2013)
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calculating relying on numerical relationships. They 
are also able to solve a lot of problems up to twenty, 
but they recognize and use problem characteristics 
and numerical relationships. 

Students who solve problems by calculating relying 
sometimes on numerical relationships (temporary type 
4) are able to solve all the problems up to 20 by going 
beyond counting. Some solutions rely on procedures, 
others on numerical relationships. Whenever a solu-
tion is based on numerical relationships, it can be de-
scribed and reasoned. 

Finally, we give examples of students’ development 
that were apparent in the timeframe from January 
in first grade to October in second grade. 

Two students who used counting strategies at the be-
ginning of second grade exhibited a predominance 
of counting relying on procedures (temporary type 1) 
in January. Finally, they showed a kind of regression, 
since their use of basic facts or strategic means were 
higher in the middle of first grade than at the begin-
ning of second grade. 

Four students who used counting strategies in January 
switched to the temporary type 1 and solved problems 
by predominantly counting relying on procedures be-
tween April and July (end of first grade). After this 
change, no further development was obvious; it seems 
that they were trapped in counting. 

Two students who reached the type consistent use of 
procedural mastery showed different ways of develop-
ment. However, both exhibited relying on numerical 
relationships by calculating at least in one interview. 

Five students who belong to the type partly basic facts 
with relational expertise at beginning of second grade 
started in January from temporary type 1, and solved 
problems predominantly by counting relying on proce-
dures. They relied obviously on numerical relation-
ships in April; some still by counting, others overcame 
counting. Lena, for example, solved the same number 
of problems predominantly by counting in January 
and April. But, there was a big difference in her rea-
soning: In January she did not recognize any problem 
characteristics, in April she used numerical relation-
ships in solving and reasoning at least sometimes.

When comparing students’ developments 
with and without math education based on 

“Zahlenblickschulung”, some crucial differences can 
be described. Most students (only two exceptions) 
who did not experience “Zahlenblickschulung” stuck 
with their counting strategies based on procedures. 
Actually, those students did not show any progress in 
the second term of first grade. In contrast, all students 
who experienced “Zahlenblickschulung” (except 
Yannik) were able to overcome their counting strate-
gies at least until the end of first grade. Additionally, 
all these students (except Amelie) used numerical re-
lationships for solving problems, and they were able 
to reason sorting procedures in very elaborate ways.

Developed hypotheses: Conclusions
Focusing on students who have difficulties in learning 
addition, data analysis suggests the development of 
four central hypotheses: 

 ― Relying on numerical relationships is an absolute 
condition for developing calculation strategies 
that go beyond counting.

 ― “Zahlenblickschulung” supports the development 
of conceptual knowledge.

 ― “Zahlenblickschulung” supports the development 
of flexible mental calculation. 

 ― Activities in “Zahlenblickschulung” are a fun-
damental condition for developing calculation 
strategies and flexible mental calculation.

Subsequently, two hypotheses will be reported in 
detail:

Relying on numerical relationships is an absolute 
condition for developing calculation strategies 
that go beyond counting.

The knowledge of basic facts and strategic means 
seems to be insufficient for the development of a deep 
understanding of calculation that goes beyond count-
ing. Therefore, the focus on numerical relationships 
and structures is essential. All students who over-
came their counting strategies were able to “calculate 
without counting” at the beginning of second grade, 
and relied on numerical relationships at least in one 
stage of development. On the other hand, all students 
who were predominantly counting relying on proce-
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dures remained in this stage and could not progress. 
This temporary type 1 seems to be like a dead-end road. 
Thus, the recognition and use of number patterns and 
numerical relations seems to be a crucial prerequisite 
for going beyond counting. 

Activities in “Zahlenblickschulung” are a funda-
mental condition for developing calculation strat-
egies and flexible mental calculation.

In order to develop flexible mental calculation 
in elementary school, Rathgeb-Schnierer (2006) 
and Schütte (2004) emphasized the necessity of 

“Zahlenblickschulung”. Focusing on calculation com-
petence of middle and high-achieving first graders, 
Torbeyns and colleagues (2005) showed that they are 
much more flexible than students who are considered 
as low-achieving peers. This observation indicates 
that middle- and high-achiever students develop a 
minimum of number patterns and numerical rela-
tionships for going beyond counting independently. 
However, students who have difficulties in learning 
arithmetic benefit from the “Zahlenblickschulung” 
approach; first to overcome counting, and second to 
develop an appropriate degree of flexibility in mental 
calculation.

The study reveals that less advanced first grade stu-
dents are also able to develop competences in flexible 
mental calculation. Thereby, “Zahlenblickschulung” 
is an important and supportive vehicle. Especially 
for less advanced students, the recognition of number 
patterns and numerical relationships is the key for 
learning to calculate (beyond counting) and devel-
oping flexibility.
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ENDNOTES

1. Strategic means are distinct devices to modify prob-
lems to them easier. They can be flexibly combined in a 
solution process, and include for instance composing 
and decomposing, modifying a problem, deriving the 
solution from a known fact, and using analogies (i.a., 
Rathgeb-Schnierer, 2006)

2. For calculating you can use different tools for solu-
tion: counting, basic facts, strategic means. Counting 
can be distinguished if it’s with or without models and 
in there are counting-all or counting-on strategies 
used (Carpenter & Moser, 1982).



361CERME9 (2015) – TWG02

Foundational number sense: Summarising the 
development of an analytical framework

Judy Sayers and Paul Andrews

Stockholm University, Stockholm, Sweden, judy.sayers@mnd.su.se, paul.andrews@mnd.su.se 

What number-related competences do grade one 
students need to ensure later success and avoid later 
failure? We address this question by summarising re-
cent work on the development of an eight component 
framework, which we call foundational number sense 
(FoNS), in which those necessary learning outcomes are 
categorised. We then present summaries of three case 
studies undertaken to evaluate the robustness of the 
FoNS framework. Each case study, which focused on the 
teaching of a different mathematical topic, was under-
taken in two different European grade one classrooms. 
Analyses confirm not only the sensitivity of the FoNS 
framework to both cultural and mathematical contexts 
but also its power as a tool for both cross cultural re-
search and teacher education practices.

Keywords: Foundational Number Sense, grade one, 

teaching framework.

INTRODUCTION

The influence of a child’s basic number understanding 
in later mathematical successes (Aubrey & Godfrey, 
2003; Aunola et al., 2004) and failures (Geary, 2013; 
Gersten et al., 2012) is well known internationally. 
Consequently, it would seem sensible for research-
ers and teachers to be clear as to what such basic 
understandings entail.  In this paper, focusing on 
the first year of schooling and from an international 
perspective, we do two things. Firstly, we summarise 
the competences research has shown will both avoid 
later difficulties and ensure later success in an eight 
component framework. Secondly, we summarise 
three recent case studies, each of which evaluates the 
framework’s analytical efficacy by comparing specific 
topic-related practices of teachers from two different 
European countries.

DEVELOPING THE FRAMEWORK

In relation to the role of children’s basic number un-
derstanding in their later mathematical development, 
the expression number sense dominates the literature. 
However, despite its ubiquity its definition has been 
elusive (Griffin, 2004). Indeed, despite its importance, 

“no two researchers have defined number sense in 
precisely the same fashion” (Gersten et al., 2005, p. 
296). Our reading indicates that this has, in no small 
way, been due to psychologists and educators work-
ing with different conceptualisations (Berch, 2005), 
a problem exacerbated by psychologists employing 
different definitions according to whether they work 
in general cognition or learning disabilities. That said, 
our reading reveals three distinct but related perspec-
tives on number sense, which we label preverbal, ap-
plied and foundational.

Preverbal number sense reflects those number in-
sights innate to all humans and comprises an un-
derstanding of small quantities that allows for com-
parison (Ivrendi, 2011; Lipton & Spelke, 2005). For 
example, young babies can discern 1:2 but not 2:3 
ratios (Feigenson et al., 2004). This, numerical dis-
crimination is independent of formal instruction 
and develops as a consequence of human, and other 
species’ evolution (Dehaene, 2001; Feigenson et al., 
2004). Applied number sense concerns those number 
competences related to arithmetical flexibility that 
prepare learners for an adult world (McIntosh et al., 
1992). Foundational number sense (FoNS) comprises 
those understandings that precede applied, typical-
ly arise during the first year of school and require 
instruction (Ivrendi, 2011; Jordan & Levine, 2009). 
Unlike preverbal number sense, it is a “construct that 
children acquire or attain, rather than simply possess” 
(Robinson et al. 2002, p. 85). Unlike applied number 
sense, it does facilitate a world beyond school but later 
arithmetical competence. FoNS is to the development 
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of mathematical competence what phonic awareness 
is to reading (Gersten & Chard, 1999).

Below we summarise the key components of FoNS. 
Our intention was not to offer an extensive list of 
learning outcomes, as found in Berch (2005) or Howell 
and Kemp (2006), but a concise conceptualisation that 
would support a range of activities, including devel-
opments in curriculum, teacher education or assess-
ment, as well as cross-cultural classroom analyses. To 
achieve these objectives we exploited the constant 
comparison analysis advocated by grounded theo-
rists, a process we describe in full in Andrews and 
Sayers (2015). 

In brief, research papers typically addressing grade 
one students’ acquisition of number-related compe-
tence were identified. These were read and FoNS-
related categories identified. With each new category, 
previous articles were re-examined for evidence of 
the new. This approach, drawing on literature from 
psychology, mathematics education, learning difficul-
ties and generic education, placed, for example, rote 
counting to five and rote counting to ten, two narrow cat-
egories discussed by Howell and Kemp (2005), within 
the same broad category of systematic counting.  

Number recognition: Children recognise number sym-
bols and know their vocabulary and meaning. They 
can identify a particular number symbol from a col-
lection of number symbols and name a number when 
shown that symbol; 

Systematic counting: Children count systematically 
and understand ordinality and cardinality. They 
count to twenty and back, or count upwards and back-
wards from arbitrary starting points, knowing that 
each number occupies a fixed position in the sequence 
of all numbers.

Awareness of the relationship between number and 
quantity: Children understand not only the one-to-
one correspondence between a number’s name and 
the quantity it represents but also that the last number 
in a count represents the total number of objects.

Quantity discrimination: Children understand mag-
nitude and can compare different magnitudes. They 
use language like bigger than or smaller than. They 
know that eight represents a quantity that is bigger 
than six but smaller than ten.

An understanding of different representations of num-
ber: Children understand that numbers can be rep-
resented differently, including the number line, dif-
ferent partitions, various manipulatives and fingers.

Estimation: Children can estimate, whether it be the 
size of a set or an object. Estimation involves moving 
between representations of number; for example, 
placing a number on an empty number line.

Simple arithmetic competence: Children perform sim-
ple arithmetical operations, which Jordan and Levine 
(2009) describe as the transformation of small sets 
through addition and subtraction.

Awareness of number patterns: Children extend and 
are able to identify a missing number in simple num-
ber sequences.

In sum, our systematic review identified eight dis-
tinct and not unrelated FoNS components. The fact 
that they are not unrelated is important as number 
sense “relies on many links among mathematical 
relationships, mathematical principles..., and math-
ematical procedures” (Gersten et al., 2005, p. 297). In 
other words, without the encouragement of such links 
children may be able to count but not understand that 
four is less than six.

EVALUATING THE FRAMEWORK’S EFFICACY

Having derived an eight component FoNS-related en-
titlement for grade one students, our purpose was 
to evaluate the framework’s efficacy for identifying 
FoNS-related opportunities in different cultural con-
texts. Such a process facilitates both instrument re-
finement and an evaluation of its sensitivity to cultur-
al nuances. In the following we summarise three re-
cently reported case studies in which we evaluated the 
efficacy of the FoNS framework. The first examined 
the teaching of sequences in England and Hungary 
(Back et al., 2014), the second the development of stu-
dents’ conceptual subitising in Hungary and Sweden 
(Sayers et al., 2014) and the third focused on teachers’ 
use of the number line in Poland and Russia (Andrews 
et al., 2015).

Each examined lesson, typically drawn from vid-
eo-based teacher professional development pro-
grammes independent of not only the research pre-
sented here but also each other, involved a teacher 
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construed against local criteria as effective. Thus, no 
lesson was captured with a FoNS-related analysis in 
mind. Two lessons were identified from those avail-
able for topic-based case studies. Such an approach, 
drawing on data intended for purposes other than a 
FoNS analysis, made these lessons ideal for evaluating 
the framework’s capacity for identifying topic-related, 
but essentially incidental, FoNS-related occurrences. 
In all cases teachers had been video-recorded in ways 
that would optimise the capture of their actions and 
utterances. Each video, with transcripts, was repeat-
edly scrutinised for evidence of FoNS components 
by two researchers independently. These analyses 
were then compared and agreements reached with 
respect to which FoNS-related components were being 
encouraged at different times. Significantly, such an 
approach allowed lesson episodes to be multiply-cod-
ed according to which components were observed.

As data derived from different projects in five dif-
ferent countries, ethical procedures were managed 
according to local norms. In all countries permission 
from school principals and participating teachers was 
obtained by means of letters confirming the right of 
teachers to withdraw without notice or reason and 
anonymity. With respect to the Hungarian, Polish and 
Russian students, all parents, at the point at which 
their children entered their school, had signed to 
agree their child’s participation in ethically conduct-
ed classroom based research. In England and Sweden, 
parental permission letters explained the projects 
and, alongside the promise of minimal classroom dis-
ruption, guaranteed the same protective principles 
as above.

RESULTS

In the following we do two things. Firstly, we summa-
rise qualitatively the pilot studies introduced above. 
Space prevents detailed summaries but we believe 
that sufficient has been included to demonstrate the 
FoNS framework’s sensitivity to both cultural and 
mathematical context. Secondly, acknowledging the 
limitations of case study, we present a simple, frequen-
cy-based, quantitative analysis to highlight not only 
how FoNS-related learning was managed but also in-
teresting similarities and differences in the ways the 
various codes interact in the case study episodes. In 
so doing we show how the FoNS framework can facil-
itate the sorts of complex analyses discussed above in 

relation to our earlier European study of mathematics 
teaching.

The qualitative analyses
In the first study (Back et al., 2014) episodes focused 
on number sequences were analysed. In addition to 
examining the functionality of the FoNS framework 
an aim was to examine how teaching, focused explic-
itly on one FoNS component, would yield other com-
ponents. The analyses, based on three episodes from 
each lesson sequence, indicated that Klara in Hungary 
addressed six of the eight FoNS components while 
Sarah in England addressed four. Both encouraged, 
throughout their respective episodes, students’ rec-
ognition of number symbols, vocabulary and meaning. 
Both encouraged the awareness of number patterns 
and the identification of missing numbers and both 
exploited simple arithmetical operations, typically 
to facilitate finding the next values in a sequence. In 
respect of differences Klara addressed three catego-
ries, the relationship between numbers and quantities, 
comparisons of magnitude and different representa-
tions of number that Sarah did not, while Sarah was 
seen to address systematic counting when Klara did 
not.

However, while both teachers encouraged various 
FoNS components, Klara’s teaching was more didac-
tically complex, with an average of four components 
per episode, than Sarah’s, with an average of barely 
two. Moreover, Klara’s practice resonated with earlier 
research highlighting the cognitively demanding but 
coherent learning outcomes of Hungarian classrooms, 
while Sarah’s reflected the relatively unsophisticated 
promotion of modest and less coherent goals of her 
English colleagues.

In the second study (Sayers et al., 2014), analyses 
focused on conceptual subitising in grade one les-
son sequences taught by Klara, again, in Hungary, 
and Kerstin, in Sweden. Conceptual subitising, the 
ways in which individuals identify large quantities 
through identifying smaller quantities that comprise 
the whole, has been promoted as a key component 
of early number learning. In both cases, an average 
of five FoNS components were identified in each of 
the teacher’s three analysed episodes, indicating that 
claims for the efficacy of teaching focused on concep-
tual subitising are not without warrant.
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It was interesting that in neither case was conceptual 
subitising an explicit intention, nor were teachers 
expecting to address FoNS categories of learning. It is 
also interesting to note that despite substantial differ-
ences in the management of their lessons - Klara spent 
all her lesson orchestrating whole class activity with 
only occasional expectations of students working in-
dividually, while Kerstin spent the great majority of 
her time managing and supporting students working 
in pairs - the FoNS components addressed in their re-
spective excerpts were remarkably similar.

Finally, the third pilot study (Andrews et al., 2015) 
examined episodes drawn from lesson sequences 
focused on the introduction and exploitation of the 
number line taught by Olga, in Russia, and Maria, in 
Poland. Here the analyses, as in the first case study, 
showed that such a didactical emphasis on one FoNS 
component does not necessarily restrict opportuni-
ties for other FoNS outcomes. For example, Olga’s epi-
sodes addressed an average of almost five components, 
while Maria’s almost four. Not surprisingly, bearing 
in mind the number line emphasis, all analysed epi-
sodes addressed number recognition and systematic 
counting, while all bar one showed evidence of chil-
dren being asked to work with a different representa-
tion of number.

With respect to differences, whenever Olga asked 
her students to represent a number on the number 
line, she insisted on their pointing simultaneously to 
zero with their left hand and the desired number with 
their right. In this manner her teaching focused on the 
relationship between number and quantity. By way 
of contrast, Maria presented simultaneously three 
distinct number lines, each showing zero to eight but 
with different sized intervals. In so doing she high-
lighted the arbitrary size of the interval alongside the 
need for a consistent interval size. Both teachers also 
used the number line to facilitate simple arithmetical 
operations, including tasks involving several opera-
tions simultaneously. Finally, Maria used the number 
line in relation to number patterns, particularly even 
numbers and the identification of missing numbers. 
Interestingly, key differences were also found in 
Maria’s frequent use of number line representations 
drawn from the real world, thermometers, measuring 
tapes, measuring jugs and so on, something that Olga 
did not do.

The quantitative analysis
It is important to remember that when teaching their 
respective classes, none of the case study teachers 
were focusing explicitly on FoNS-related learning 
opportunities. Moreover, despite the quality of in-
struction focused on it, neither Kerstin nor Klara 
were explicitly aware of conceptual subitising as a 
learning goal. In other words, all project teachers, in 
varying degrees and in varying ways, addressed a 
range of FoNS-related learning outcomes in inciden-
tal rather than planned ways. The extent to which 
these varying ways played out can be seen in Table 1. 
This shows a summary of the codes applied to each 
analysed episode. In addition, the mean number of 
codes calculated for each teacher’s three episodes is 
included alongside the teacher’s name. Finally, the 
table shows the total number of occurrences for each 
FoNS component.

At a very crude level, one could argue that the mean 
number of categories applied to a teacher’s episodes 
could be construed as a measure of didactical com-
plexity. For example, Sarah’s number patterns-relat-
ed practice, as reflected in a mean of 2.3 categories 
per episode, seemed considerably lower than that of 
her colleagues. In this respect, the next lowest mean, 
Maria’s 3.7, was almost one and a half categories per 
episode more. Thus, Sara’s practice seemed to lack 
the didactical complexity typically found in her col-
leagues’ episodes. However, the more interesting 
differences, it could be argued, emerged at the level 
of the topic. Notwithstanding Sarah’s low didactical 
complexity in relation to Klara when teaching number 
patterns, Olga’s episodes, with respect to the number 
line, appeared more didactically complex than Maria’s, 
particularly in the former’s repeated opportunities 
for her students to explore the relationship between 
number and quantity. With respect to conceptual 
subitising such differences were minor, although it 
could be argued that Klara paid much more attention 
to systematic counting than did Kerstin. However, 
such conclusions remain tentative, although they 
allude to the sensitivity of the FoNS framework to 
culturally-located differences. 

It is also interesting to note that the topics them-
selves seemed to invoke different levels of complex-
ity. Admittedly, such distinctions are crude, but are 
supported by the fact that Klara was involved in both 
the highest and lowest topic means. As can be seen 
from the topic means in Table 1, episodes focused on 
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number patterns invoked, in general terms, relatively 
few FoNS categories, while those focused on concep-
tual subitising the most. Indeed, the data suggest that 
some topics have a greater propensity for teachers to 
address a range of FoNS-related learning possibilities. 
However, such conclusions, while tentative, tend to 
confirm the sensitivity of the FoNS framework to top-
ical differences.

Finally, with respect to this particular analysis, Table 1 
highlights the relative paucity of opportunities for 
students to engage in quantity discrimination and 
the complete absence of encouragement to estimate. 
While it could be argued that such FoNS categories 
may not be suited to the three topics examined here, 
the fact that Klara managed to invoke quantity dis-
crimination in two of her three number sequence-re-
lated episodes may suggest otherwise. Also, the com-

plete lack of invitation to estimate may say something 
different about how teachers construe mathematics 
as a precise rather than imprecise discipline, not least 
because it is not difficult to imagine a teacher asking 
students to estimate, say, the twentieth member of a 
sequence or where a given number would be placed 
on an empty number line.

DISCUSSION

Our aim was to introduce and summarise recent work 
on the development of foundational number sense 
(FoNS). Our uncovering of three forms of number 
sense has gone a long way with respect to the prob-
lem of definition. Our atypical use of constant com-
parison has facilitated the development of an eight 
component FoNS framework that we have shown to 
be functional in different cultural contexts and with 
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Sarah
(2.3)

Number pat-
terns (3.2)

1 X X

2 X X X

3 X X

Klara
(4.0)

1 X X X

2 X X X X X X

3 X X X

Olga
(4.7)

Number line 
(4.2)

1 X X X X

2 X X X X X

3 X X X X X

Maria
(3.7)

1 X X X

2 X X X X

3 X X X X

Kerstin
(4.7)

Subitising 
(4.8)

1 X X X X

2 X X X X X

3 X X X X X

Klara
(5.0)

1 X X X X X

2 X X X X X

3 X X X X X

Totals 15 11 10 2 14 0 12 9

Table 1: Codes applied to each episode with summary statistics
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different mathematical topics. Importantly, the case 
studies show that different teachers, while attending 
to similar core topic-related outcomes, also privilege 
different things. For example, Olga and Maria, in their 
number line-related teaching, encouraged several 
similar outcomes, although Olga focused attention 
on the relationship between number and quantity 
while Maria emphasised real world representations 
of the number line. In similar vein, when working on 
number patterns, Klara addressed almost twice as 
many FoNS-related outcomes as Sarah, confirming 
earlier research about the relative didactical complex-
ity of Hungarian and English mathematics teaching. 
The analyses also show that the three topics failed 
to yield any episodes in which teachers encouraged 
their students to estimate, a key predictor of later ar-
ithmetical competence (Booth & Siegler, 2006), while 
only two, identified during Klara’s teaching of number 
patterns, alluded to quantity discrimination, also a 
key predictor of later competence (Titeca et al., 2014). 

In closing we speculate a little and suggest that the 
FoNS framework has the potential to inform the prac-
tices of teacher education for elementary teachers; 
its simple structure makes it a suitable starting point 
for students’ professional learning, particularly from 
the perspective of practicum-related planning and 
teaching. It can also be used as a simple assessment 
tool for provoking post lesson discussion. 
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This paper is part of the Project “Adaptive thinking and 
flexible computation: Critical issues”. It discusses what 
is meant by adaptive thinking and presents the results 
of individual interviews with four pupils. The main goal 
of the study is to understand pupils’ reasoning when 
solving numerical tasks involving additive situations, 
and identify features associated with adaptive thinking. 
The results show that, in the case of first grade pupils, 
the semantic aspects of the problem are involved in its 
resolution and the pupils’ performance appears to be 
related to the development of number sense. The 2nd 
grade pupils seem to see the quantitative difference as 
an invariant numerical relationship.

Keywords: Adaptive thinking, numerical relationships, 

quantitative difference.

INTRODUCTION

This paper is part of the Project “Adaptive thinking 
and flexible computation: Critical issues” being devel-
oped by the Schools of Education of Lisbon, Setúbal 
and Portalegre that has two main focus: (a) to charac-
terize the development of pupils’ numerical thinking 
and flexibility in mental calculation from 5 to 12 years, 
and (b) to describe teachers’ practices that facilitate 
that development.

In this paper we will discuss different perspectives 
on adaptive thinking and flexible calculation with re-
gard to addition and subtraction in the literature, and 
present preliminary findings obtained by conducting 
individual clinical interviews with four pupils (two 
from first grade and two from second grade). We in-
tend to understand pupils’ reasoning when solving 
numerical tasks involving additive situations, and 
identify aspects related to adaptive thinking. Besides 
this goal, the interviews were also conducted to test 
tasks to later implement a teaching experiment.

THEORETHICAL FRAMEWORK

In the last decade, flexible calculation has been con-
sidered an ability that all pupils should develop in 
elementary school (Anghileri, 2001). Being proficient 
in mathematics implies the ability to use the knowl-
edge in a flexible way and apply in an appropriate way 
what is learned in a situation to another (NCTM, 2000). 

The flexible idea appears associated to mental calcu-
lation and arithmetic problem solving. There are dif-
ferent ways of solving an arithmetic problem mentally, 
usually mentioned as strategies. Strategic flexibility 
in mental calculation refers to the way as the problem 
is affected by circumstances to be solved (Threlfall, 
2009). These circumstances may be related with spe-
cific features of the tasks or with individual character-
istics or contextual variables. Threlfall (2009) refers 
to the mechanism behind calculation-strategy-flexi-
bility as zeroing-in, still referring that it is not a fully 
conscious and rational process, involving partial ex-
ploratory calculations arising from noticing specific 
features of the numbers involved and their respective 
relationships. “The calculation-strategy is not select-
ed and applied, it is arrived to” (Threlfall, 2009, p. 548). 
In a different perspective, Star and Newton (2009) 
define flexibility as knowing multiple solutions as 
well as the capacity and tendency to choose the most 
appropriated for a given problem and a particular ob-
jective of problem solving. These authors also stated 
that flexibility exists at a continuum; when the pupils 
gain flexibility they may first show a greater knowl-
edge of multiple strategies, then particular preferenc-
es, and finally, the appropriate use of the preferred 
strategy. The ‘appropriate’ term refers to the more 
effective strategy: one which requires the least num-
ber of intermediate calculation steps to arrive at the 
result. Other authors (Baroody & Rosu, 2006; Rathgeb-
Schnierer & Green, 2013) reported that flexibility in 
calculation is related to the fact that children discover 
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patterns and relations, as they develop number sense, 
thus building a network of relationships. For example, 
pupils who recognize the commutative property of ad-
dition, given the need to calculate 3 + 9, know they can 
do 9 + 3. The way this property is mobilized, revealing 
or not the contextual aspects of the tasks, can vary 
depending on the age of the children. In this regard, 
several authors (De Corte & Verschaffel, 1987; Greer, 
2012) report that the semantic aspects of the tasks in-
fluence how young children solve them. Pupils who 
understand the various compositions of a number 
in different parts (for example, 1 + 7, 2 + 6, 3 + 5, and 
4 + 4 = 8…) and decompositions (e.g., 8 = 1 + 7, 2 + 6, 3 + 5, 
4 + 4) are more likely to develop ways of thinking as 

“doubles +1” (e.g., 7 + 8 = 7 + 7 + 1 = 14 + 1) or making a “ten” 
(9 + 7 = 9 + 1 + 6 = 10+6). As the network of relationships 
is being built, children acquire the flexibility to use 
these relationships in concrete situations of calcula-
tion, which depends on their knowledge of numbers 
and operations (Rathgeb-Schnierer & Green, 2013).

In our perspective, adaptive thinking refers to a think-
ing that can be flexibly adapted to new as well as famil-
iar tasks. Its focus is not on calculation-strategy, but 
on quantitative reasoning. Children can mechanically 
use learned strategies without considering the context 
or the numbers involved in the task (Brocardo, 2014) 
and in this sense, they can compute accurately without 
flexibility. The flexible calculation and the additive 
quantitative reasoning are two dimensions that are 
interrelated to each other. Because the quantitative 
reasoning focuses on the description and modeling 
of situations and comparative relationships involved 
(Thompson, 1993), it ultimately underlies the develop-
ment of flexible calculation as a calculation that mo-
bilizes numerical relationships, in an intelligent and 
adaptive way to situations and numbers themselves. 
So the adaptive thinking involves the development 
of a flexible and relational understanding enabling 
the pupils to produce new known facts from old ones. 

The quantitative reasoning involves reasoning about 
relationships between quantities. It “is the analysis 
of a situation into a quantitative structure — a net-
work of quantities and quantitative relationships” 
(Thompson, 1993, p. 165). What matters are the re-
lationships between quantities and not the numbers 
and number relations. In this regard, this kind of 
reasoning approaches the algebraic reasoning. To 
clarify the distinction between quantity and num-
ber, Thompson (1993) connects the idea of measure 

to the notion of quantity, although this is not only 
applicable to continuous measurable quantities, and 
the reasoning does not depend on their measures. It 
is important to develop research in children’s abilities 
to deal with complexity in situations. A relationally 
complex situation involves at least six quantities and 
three quantitative operations. Comparing two quan-
tities to find the excess of one relative to the other is a 
quantitative operation. The result of the quantitative 
operation of comparing two quantities additively is 
the excess found, that is to say, the quantitative differ-
ence. The author stresses also the distinction between 
the concepts of numerical difference, as the result of 
subtracting, and quantitative difference. On the one 
hand, a quantitative difference is not always evalu-
ated by subtraction and on the other hand, subtrac-
tion can be used to compute quantities that are not 
quantitative differences. The results of the teaching 
experiment held with 5th-grade children referred in 
Thompson (1993) show that these children (i) did not 
distinguish the quantitative and the arithmetical oper-
ations, and (ii) had trouble with two aspects of the con-
cept of quantitative difference, namely the difference 
as an additive comparison of quantities and when they 
conceived the quantitative difference as an invariant 
numerical relationship as they assumed the relative 
change as an absolute amount and needed to know 
absolute values before they could make comparisons.

The additive comparison is closely linked to inverse 
reasoning, involving the mobilization of reversible 
thought. According to Greer (2012), the inversion is of 
central importance to the arithmetic of natural num-
bers and the four basic operations involving these 
numbers, with important implications in relation to 
flexible computation. Regarding comparison prob-
lems, the author draws attention to the fact that the 
inverse relationship relates the difference between A 
and B to the complementary difference between B and 
A, which is “quite a different conception” (p. 434). So, 
although this author refers to the inverse relationship 
between addition and subtraction and the quantita-
tive reasoning involves additive quantitative opera-
tions that are distinct of these arithmetic operations, 
we can consider that the inversion is an intrinsically 
topic underlying the quantitative reasoning.

METHODOLOGY

This study follows a qualitative approach within an 
interpretive paradigm. It aims describing and inter-
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preting an educational phenomenon (Erickson, 1986). 
Data collection for this paper was done through clin-
ical interviews (Hunting, 1997). It is a technique that 
is directed by the researcher and seeks a description 
of the ways of thinking of respondents. 

Individual interviews were conducted in January 
2014 by the authors of this paper, both members of 
the research team of the Project. The four pupils were 
attending for the first time the respective grades and 
were selected by their teachers. The selection crite-
rions were: (i) pupils that usually express what they 
think, and (ii) pupils with reasonable performance 
in Mathematics. For the ethical principle of confi-
dentiality, we use fictitious names for the children 
interviewed. The interviews were audiotaped and 
occurred in a room outside pupils’ classrooms and 
had lasting less than 30 minutes. We also used the 
observation technique in the course of interviews, 
recording after its end the children’s performance 
observed in field notes.

Each pupil solved three/four tasks but not all solved 
the same tasks. The task boxes with balls, inspired by 
Cobb, Boufi, McClain and Whitenack (1997) (Figure 1), 
was proposed to two first graders (Ana and Rui) and 
two second graders (João and Diogo).

The task game of marbles, adapted from Thompson 
(1993) (Figure 2), was only solved by João of 2nd grade.

Because the limited size of the paper we do not present 
all five tasks proposed in the interview. We chose 
these two tasks for the paper because they have rele-
vant features to reveal adaptive thinking. The task 
boxes with balls was chosen because it reveals the 
children’s thinking about flexible partitioning (e.g., a 
collection of 9 items conceptualized in imagination 
as: five and four, three and six, etc.). It is embedded in 
a fairytale context with the purpose of captivating 
young children and appealing to their imaginary 
world in which inanimate objects (such as balls) come 
to life and jump from one box to another, without hu-
man interference. The idea of movement (change of 
state) was central for the task design. So, considera-
tion of the dynamic part of that movement will induce 
the pupils to explore different possibilities of decom-
position of 9, since the balls are not distributed stat-
ically into two boxes but continue to jump from one 
box to the other, varying in number at each moment. 
The existence of two and no more boxes relates to the 
fact that it is desired to induce the representation of 
9 into two groups, facilitating the development of the 
additive structure of N and the obtaining of certainty 
of the totality of solutions by the use of some organi-
zation in the disposition of them. For instance, in this 
scheme, we can see a structure of increasing and de-
creasing sequences and a central symmetry that sup-
port the exhaustion of splittings (Freudhental, 1983):

The other task was chosen because it aims to empha-
size the notion of quantitative difference as signifi-

9  8  7  6  5  4  3  2  1  0 
0  1  2  3  4  5  6  7  8  99 = +

Figure 1: Task boxes with balls

Figure 2: Task game of marbles
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cantly independent of the knowledge of the values of 
the additive and subtractive. It reveals the children’s 
ability to reason inversely and to distinguish between 
quantitative difference and the absolute value. This is 
a fundamental aspect in flexible calculation.

Based on our adopted approach to flexible calculation 
and adaptive thinking in which we integrate the theo-
retical framework of Threlfall (2009) and Thompson 
(1993) that is presented in the previous section, the 
data were analyzed trying to understand how the chil-
dren were able to establish a network of connections 
through their reasoning about different representa-
tions of the numbers, and about relationships between 
numbers and quantities. The analytical categories 
built from the theoretical framework and inductively 
emerged from the data focused on pupils’ process of 
solving the tasks: applied relationships (relating the 
numbers, relating the operations, using the inverse 
relationship, comparing quantities); applied proper-
ties of addition (exhausting all possibilities).

SOME EMPIRICAL RESULTS

Addition and subtraction: From 
concrete to abstract thinking
In the task boxes with balls the collection of balls repre-
sented in the sheet of paper remained visible through-
out the interview so that each child might be able to 
propose various ways in which the balls could be in 
the boxes. A sheet of paper with two drawn boxes was 
available for the pupils. 

Once the first grade pupils had trouble with reading, 
the researcher read the task to be sure that there were 
not problems of understanding. Ana answered im-
mediately:

Ana: 5 + 4

Researcher: And other ways?

Ana wrote immediately on the paper: 2+7, 7+2, 8+1, 1+8, 
4+5, 3+6, 6+3.

After these records, Ana added there could still be 9 
+ 0. When questioned if it would be needed to write 
2 + 7 and 7 + 2, Ana replied: “It gives the same, but it is 
not the same. Here [pointing to the firs box] there are 
2 and there 7 [pointing to the second box] and here [7 + 
2] is the opposite.”

It seems that Ana thought about the concrete balls, 
and looked at the sums as ordered pairs of numbers. 

In the case of Rui, after registering 5 + 4, the sequence 
of registration was: 4+5, 6+3, 3+6, 8+1, 1+8, 9+0.

After a moment, Rui wrote on the paper: 7+2 and 2+7.

Rui also responded to the question whether or not 6 + 
3 is the same as 3 + 6: “It is. Only that is unlike.”

Both children, Ana and Rui, represented first the 
situation of 5+4. Both pupils were able to visualize 
all decompositions of 9 thinking about the real situ-
ation — boxes and balls, although they did not need to 
draw them in the boxes. So, it seems that both thought 
about ordered pairs of numbers, trying to write all 
the pairs, using their different images of 9. Both seem 
to identify the commutative property because they 
wrote commutative pairs of numbers in a consistent 
way. Rui, after having written 5+4 and 4+5, he wrote 
6+3, 3+6, using the increase/decrease 1 property. The 
same seems to happen with Ana, when she wrote 8+1, 
1+8 following 2+7, 7+2.

In case of the two second grade pupils, João wrote 
“4+5, 3+6, 2+7, 1+8” and then stopped. Asked if there 
were more chances, João replied: “No, because I could 
change the order of numbers, but it would be the same 
thing, the sum is the same.” Diogo wrote on the paper: 
5 + 4, 6 + 3, 8 + 1, 7 + 2.

When the researcher asked if he already had written 
all the possibilities, he said: “Yes. If I change, its sum 
is the same, 9”. 

Both second graders made all possible non-empty 
decompositions of 9, not having considered the pos-
sibility of 9 + 0 (or 0 + 9). It should be noted that João 
used the increase/decrease 1 property to write all the 
decompositions, while Diogo appeared to start in that 
way, but changed his strategy when wrote 8+1 after 
6+3 (increase/decrease 2?) and then seems to come 
back to the first one. But they did not express their 
ways of thinking.

These pupils seem to be able to think about the num-
bers abstracting from real situations. More, it appears 
that they have already understood the commutative 
property of addition.
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Thus, we see that the consideration of the contextual 
situation was taken over by first graders but not by 
second graders who ignored the fact that the parcels 
play different roles in the proposed situation. The 
first grade pupils understand the concrete situation, 
and their thoughts are close to real situations since 
they considered ordered pairs of numbers. Instead, 
the second graders overcame the concrete situation. 

Quantitative difference
In the task game of marbles, João used a tabulated reg-
istration. He began to register the total wins of mar-
bles for each player: “+10”; “+13”; “+0”. After, he put the 
total losses for each player by reading the sentences 
allusive to the wins: “-9”; “-3”; “-11”. For that, he mobi-
lized an inverse reasoning, understanding that the 
number of marbles won from someone is the number 
of marbles that someone had lost. His resolution can 
be seen in Figure 3.

Then he focused on the item a) of the task, considering 
that André would have the minimum number of 12 
marbles at the beginning of the games to have lost 11. 
He raised other hypotheses for this initial number 
like 20 or 30. 

Researcher: And less than 12, no?

João: No, he had to have marbles.

This question focuses the absolute quantity of mar-
bles. João held various hypotheses for the number of 
marbles of André before the games, all above 11, but 
assumed that at least André would have had 12 mar-
bles. Probably, he did not equate the hypothesis of 11 
marbles for having discarded the possibility of André 
having no marbles at the end of the games. 

After, João did the balance of wins and losses of Luís’s 
marbles, concluding that Luís would have 10 mar-
bles more at the end of the games and recorded “=10” 
(“+13/-3=10”). In the trace corresponding to the begin-
ning of the games, João wrote “10”.

João: [At the end] Luís got ten more (...).

Researcher: At the beginning, did Luís have 10 or 
10 more?

João: He had ten marbles.

João wrote “20” in the final of Luís’s line correspond-
ing to the total number of Luís’s marbles at the end 
of the games. Next, the researcher guided João to the 
case of Ana:

Researcher: And Ana? She won ten and lost nine. 
After all, did she have more or less mar-
bles at the end of the game?

João: Less. Before, she had ten marbles.

Researcher: If she started the games with ten mar-
bles, won 10, with how many would she 
have at the end?

João: Twenty.

Researcher: And then she lost nine...

João: She had eleven.

João failed to make the balance between wins and loss-
es of Ana’s marbles, and concluded that Ana would 
have less marbles without mentioning how many. He 
wrote “10” in the trace corresponding to the beginning 
of the games. After, he registered “=20” (“+10/-9=20”) as 
the number of Ana’s marbles after 10 marbles won in 
the two games, and finally recorded “11” after losses, 
corresponding to the total number of Ana’s marbles 
at the end of the games. João did not confront this 
final record with his previous statement (“Less”) or 
verbalized that Ana had one more marble at the end 
of the games.

The critical issue inherent to this task is the distinc-
tion between quantitative difference and the abso-
lute value. João did not make confusion between 
one thing and another, distinguishing the relative 
change (plus 10) from the absolute amount (20) in the 
second trace of the Luís’s line, allusive to the end of 
the games. However he was not able to express the 
quantitative difference for the start of the two games 
(minus 10), needing to put absolute numbers for each 
player. João used the same equal symbol in the lines 

Figure 3: João’s resolution of the task game of marbles
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of Ana and Luís (“=20”; “=10”), but he attributed dif-
ferent meanings to the numbers: in the case of Ana, 
20 is the absolute amount; in the case of Luís, 10 is the 
quantitative difference, that is to say, it is the result of 
relative change — the amount by which one quantity 
fell short or exceeded of another. The need to refer to 
the absolute amount — the concrete number of mar-
bles — is also evident in the way João determines the 
absolute value of the number of marbles of Ana and 
Luís at the end of the games (“11”; “20”).

FINAL REMARKS

In the task boxes with balls pupils established different 
decompositions of the number 9 using their network 
of connections to have 9 based on properties of addi-
tion or making a direct subtraction and realizing that, 
for instance, by taking 4 from 9 they get 5. In both 
situations, pupils dealt with the operations addition 
and subtraction as being intrinsically inverse to one 
another (Greer, 2012). The quantity of nine balls can 
be symbolized by the number nine (Thompson, 1993) 
expressed by different sums representing the parti-
tion of a collection of objects or the decomposition of 
the number nine. The results show that all pupils dealt 
with the number, and not properly with the quanti-
ty. They did not divide the set of balls. Although the 
collection of balls represented in the sheet of paper 
remained visible, the pupils ignored them, thinking in 
a higher level about the number 9 conceptualized in 
imagination as sums representing its decompositions. 
For that, they seem to understand the relationships 
between those sums.

Although all the pupils started with the numbers 4 
and 5 (or 5 and 4) adopting the approach of double 
through the decomposition of 9 into almost equal 
groups, the first and second graders solved the first 
task in different ways. Even though, first grade pupils 
did not need to materialize the situation with manipu-
latives or drawings, they solved the task very close to 
its context. We suspect that they were sure that they 
had generated all the possibilities because they ap-
plied some organization in the generation of the pairs 
of numbers writing consistently commutative pairs. 
So they looked for ordered pairs of numbers that to-
gether make 9. Instead, the second graders disengaged 
from the concrete situation, and only considered the 
fact that they had to obtain 9 from a sum. João did it 
systematically (increase/decrease 1) while Diogo did 
not do it for all decompositions. As they already know 

the commutative property  (though not in a formal 
way) they applied it to justify that they found all the 
cases. So, they solved the problem in mathematics 
terms but not the actual proposed problem, where it 
should be considered the two different boxes and, in 
this perspective, it is not the same to have the balls 
in the red box or in the blue box. All the pupils al-
ready seem to understand the commutative proper-
ty, but use it in a different way: the first graders use 
it to exhaust all possibilities through the symmetry 
of ordered commutative pairs of numbers (Ana: “It 
gives the same but it is not the same”), and the second 
graders use it not to present the commutative pairs, 
whereas the symmetrical parts would be the same 
(Diogo: “If I change, its sum is the same 9”). De Corte 
and Verschaffel (1987) stress that younger children 
are more influenced by the semantic aspects of the 
tasks. So it seems that the differences in the answers 
of first and second graders may be related with their 
age and their level of mathematical thinking.

In the task game of marbles, João shows an additive 
adaptive thinking as he seems to apply the inverse 
relationship between the wins and losses of marbles. 
Unlike the pupils of 5th grade reported by Thompson 
(1993), João did not confuse the notions of quantitative 
difference and absolute value of marbles nor needed 
to know the initial number of marbles to be able to 
think about wins and losses. However, he needed to 
be anchored in concrete numbers of marbles as hap-
pened with the pupils studied by Thompson (1993). 
Because João felt the need to attribute absolute val-
ues to the initial numbers of marbles, he showed to 
reason in terms of difference as quantitative opera-
tion without separating it from the involved partic-
ular arithmetical calculations. It is to say, João could 
not speak of relative changes associated to additive 
comparisons without referring to absolute amounts, 
showing conceiving the quantitative difference as an 
invariant numerical relationship. Thompson (1993) 
argues that it is important to conceive a quantitative 
difference independently of numerical information 
about quantities and relationships. However, we sus-
pect that young pupils of 2nd grade are not able to con-
ceive the independence of the values of the additive 
and subtractive when they reason quantitatively. For 
that reason, we consider that this task is not suitable 
for pupils of this grade, and we will not implement it 
in the teaching experiment.
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The results reported here support the idea that flexi-
ble calculation is related to the knowledge and use of 
numerical relationships, being richer as pupils are 
developing their number sense, and are able to use the 
network of relationships that are building (Baroody & 
Rosu, 2006; Rathgeb-Schnierer & Green, 2013). 
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We report on the results of the Improving Classroom 
Assessment (ICA) project in the Netherlands that was 
aimed at improving primary students’ mathematics 
achievement through improving their teachers’ class-
room assessment. Towards this end we first investigated 
primary teachers’ assessment practice in a large-scale 
survey study. After having described and profiled teach-
ers’ current assessment practice, we designed a number 
of classroom assessment techniques, which were tested 
for feasibility in two small-scale sub-studies. Finally, 
we evaluated the effectiveness of the use of these class-
room assessment techniques in a large-scale evaluation. 
Results indicate that students generally benefit from 
their teachers’ improved use of classroom assessment 
techniques in mathematics.

Keywords: Classroom assessment; primary school; 

assessment technique; achievement.

BACKGROUND AND FOCUS OF THE PROJECT

Developing and keeping track of students’ mathemat-
ical abilities are important parts of every primary 
mathematics teacher’s daily practice. In order for 
teachers to gauge their students’ learning, class-
room assessment plays a pivotal role (Cizek, 2010). 
By using classroom assessment teachers can gather 
information about their students’ mathematical skills 
and level of understanding. Collecting information 
on students’ learning is primordial for at least two 
reasons: to find out whether the instruction has had 
its desired effect and to generate ideas for how to 
proceed in the subsequent lessons. Based on assess-
ment information teachers can align their teaching 
to their students’ needs, which in turn can result into 
adapting their teaching, but can of course also mean 
not changing anything and continuing with what was 
planned before. 

Many of the characteristics of classroom assessment 
appear to be part of merely good teaching practice, as 
Ginsburg (2009) wrote in the context of mathematics 
education:

Good teaching [...] sometimes involves the same 
activities as those comprising formative assess-
ment: understanding the mathematics, the trajec-
tories, the child’s mind, the obstacles, and using 
general principles of instruction to inform the 
teaching of a child or a group of children (p. 126). 

Classroom assessment is broader: it comprises all ac-
tivities that permit teachers to find out where their 
students are at a particular moment in terms of com-
prehension of the subject and to give information on 
what is going right and wrong. Policymakers as well 
as influential researchers have urged the educational 
community, and in particular teachers, to embrace 
(formative) classroom assessment in their practice. 
For instance, the U.S. National Council of Teachers of 
Mathematics (NCTM, 2013) recently took the follow-
ing position on formative assessment in mathematics 
education: 

The use of formative assessment has been shown 
to result in higher achievement. The National 
Council of Teachers of Mathematics strongly en-
dorses the integration of formative assessment 
strategies into daily instruction (p. 1).

Teachers are the only ones that can actively integrate 
these formative assessment strategies into their prac-
tice. Advocating positions such as these were mainly 
inspired by the influential review study by Black and 
Wiliam (1998) that reported the different practical 
expressions of classroom assessment to be the most 
effective interventions for teachers to improve stu-
dent learning. Recently, several researchers have 
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questioned the size of the effectiveness of (formative) 
assessment on student learning through reviews or 
meta-analyses of existing studies (e.g., McMillan, 
Venable, & Varier, 2013). Common to these critical 
examinations, although their specificities differ, is 
that they do not contest the positive effect formative 
assessment is purported to have on student achieve-
ment, but only the size of this effect.

Why then is classroom assessment by teachers sup-
posed to lead to improved student learning in mathe-
matics? In order to answer this question researchers 
have drawn parallels between the concepts and prac-
tices of formative assessment, self-regulated learning, 
feedback, and scaffolding (see for an overview, among 
many others, Clark, 2012). An intuitive way of saying 
it would be: if teachers are better aware of their stu-
dents’ mathematical abilities and understanding, then 
they can undoubtedly better adapt their teaching to 
the needs of the students. In doing this and providing 
explicit and implicit feedback students also become 
more aware of their own functioning, and the circle 
is complete: students and teacher simultaneously ad-
vance. This does have its limits, because “the teacher 
must actually use the assessment data to inform some 
change in the conduct of instruction” (Erickson, 2007, 
p. 189, original emphasis). In order for teachers to 
be willing to use classroom assessment techniques, 
these have to provide them with valuable and easily 
usable information about students’ understanding of 
mathematics in a timely manner, otherwise it would 
not contribute to better teaching and, in the end, to 
better student achievement.

In the ICA-project we strived to improve primary stu-
dents’ mathematics performance through improving 
their teachers’ use of classroom assessment in Grade 
3. As a start we investigated the current classroom 
assessment practice of primary mathematics teachers 
in the Netherlands (Study 1). Secondly we identified 
a meaningful profile characterization of these teach-
ers’ mathematics assessment practice (Study 2). Now 
that the current practice was known we could test the 
feasibility of classroom assessment techniques that 
were designed to match the mathematics curriculum 
of the second half of Grade 3 in the Netherlands and 
provide valuable information to the teachers (Study 
3). Finally we evaluate the effectiveness of the use 
of these classroom assessment techniques in a large-
scale experimental study (Study 4).

STUDY 1: PRIMARY TEACHERS’ USE OF 
CLASSROOM ASSESSMENT IN MATHEMATICS

We conducted a survey of the classroom assess-
ment practices of Dutch primary school teachers in 
mathematics education (Veldhuis, van den Heuvel-
Panhuizen, Vermeulen, & Eggen, 2013). International 
studies have shown that teachers use a wide range of 
methods to collect information about their students’ 
learning (e.g., Suurtamm, Koch, & Arden, 2010). To find 
out students’ skills and comprehension level, teachers 
can use methods ranging from standardized tests and 
tests that come with a textbook, to asking questions 
and observing students while they are working. The 
assessment methods teachers choose to reveal their 
students’ learning processes depend on several fac-
tors. A first factor that has been found to affect this 
choice is teachers’ beliefs concerning classroom as-
sessment (Dixon, Hawe, & Parr, 2011). A second factor 
in choosing a particular assessment method, beside 
beliefs, concerns the assessment purpose teachers 
have in mind (Suurtamm et al., 2010), for instance a 
formative or summative purpose. A further deter-
mining factor of using particular assessment meth-
ods is the view on education in which the assessment 
takes place. The methods used for assessment often 
correspond to the approach to education as reflected 
in the adhered learning theory and the curriculum 
that is taught (Shepard, 2000).

Method
We investigated, using an online questionnaire, how 
primary teachers in the Netherlands collect informa-
tion on their students’ progress in mathematics and 
how teachers’ assessment methods, purposes, and 
beliefs about the usefulness of assessment are related. 
This questionnaire contained 40 items, pertaining to 
the teachers’ (i) background characteristics, (ii) mathe-
matics teaching practice, (iii) assessment practice, and 
(iv) perceived usefulness of assessment. Questions 
with different formats were included: fixed-response 
and items with a rating scale, but also some open-end-
ed items. The sample of participating teachers was 
obtained through an open invitation by e-mail, which 
was sent successfully to 5094 primary schools for 
regular education in the Netherlands. Teachers who 
were willing to respond to the online questionnaire 
were promised a set of digital mathematical exercise 
material as a reward.
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Results and discussion
In total 960 teachers at 557 Dutch primary schools 
responded to the questionnaire. Observation-based 
assessment methods of questioning, observing, and 
correcting written work, were the most frequently 

– that is weekly – applied methods, whereas instru-
ment-based methods, particularly using textbook 
tests and student monitoring tests were employed 
several times a year (see Figure 1).

Teachers used assessment mainly for formative pur-
poses and they considered the assessment methods 
they used themselves as most relevant. We found that 
teachers in primary mathematics education in the 
Netherlands use a variety of assessment methods, use 
instrument-based and observation-based assessment 
methods on average just as frequently and find assess-
ment generally useful. This perceived usefulness is 
shown by the overall very positive reactions teachers 
gave on the different uses of assessment. The two main 
instrument-based assessment methods, textbook tests 
and tests from a student monitoring system, are re-
ported as the most relevant, with asking questions and 
observing students the most relevant of the observa-
tion-based assessment methods. Furthermore, the 
teachers’ responses to the questionnaire revealed that 
they used assessment both for formative and summa-
tive purposes. The results of our survey indicate that 
teachers do use assessment information for various 
purposes, from giving feedback via adapting instruc-
tion to stimulating thinking.

STUDY 2: PRIMARY TEACHER PROFILES 
IN MATHEMATICS ASSESSMENT

After this general overview of the current assessment 
practice we were interested in finding out more about 
individual teachers. The second study was aimed at 
gaining knowledge of how the assessment practices 
of individual teachers could be characterized within 
the universe of assessment skills and activities. In 
fact, we wanted to understand assessment from the 
conglomerate of choices a single teacher is making 
when collecting information about his or her students’ 
learning process. To achieve this we performed a sec-
ondary analysis of the earlier gathered questionnaire 
data to identify a profile characterization of every 
teacher’s assessment practice (Veldhuis & van den 
Heuvel-Panhuizen, 2014). The rationale for distin-
guishing assessment profiles of teachers is that these 
can contribute to our theoretical understanding of as-
sessment as it teachers carry it out. In addition, knowl-
edge about these assessment profiles can help us in a 
practical sense with designing tailor-made courses for 
professional development that fit the teachers’ needs.

Analyses
We analyzed the survey data in two steps. To identi-
fy the latent structure of what was measured by the 
questionnaire and be able to construct assessment 
profiles of teachers we used a combination of latent 
variable modeling techniques. To explore the under-
lying structure of the items measuring teachers’ math-

Figure 1: Percentages of frequencies of assessment methods’ use (ns > 940)
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ematics assessment practice, we performed explor-
atory factor analyses. To investigate whether these 
latent factors could also be used to interpret classes 
of teachers, we performed a latent class analysis. This 
is a statistical technique permitting the identification 
of underlying classes of individuals based on differ-
ences in their responses on items in a questionnaire 
or test. The teachers in our sample were assigned to 
the different latent classes–that we will call assess-
ment profiles–through modal assignment, i.e. they 
were assigned to the latent class to which they had 
the highest probability of belonging. 

Results and discussion
After comparing one- to seven-factor solutions and 
eliminating items with cross loadings over |0.4|, an 
exploratory factor analysis delivered a five-factor 
solution that had a good enough fit (χ2(1076, N = 960) = 
5494.1, p < .001, RMSEA = .064, CFI = .961). We named 
the five factors based on the items they contained: Goal 
centeredness of assessment (items on teachers’ pur-
poses of assessment), Authentic nature of assessment 
(items on authentic assessment methods), Perceived 
usefulness of assessment (statements on usefulness), 
Diversity of assessment problem format (items on prob-
lem formats), and Allocated importance of assessing 
skills and knowledge (items on the importance of as-
sessing particular skills and knowledge). To be able to 
characterize teachers’ assessment practice and assign 
them to different assessment profiles we performed a 

latent class analysis using all variable scores as input. 
As such we were able to check whether we would be 
able to show differences between the latent classes of 
teachers on the five factors we found in the separately 
performed factor analysis. Four latent classes provid-
ed the best fitting solution. To find out whether teach-
ers thus assigned to the four latent classes differed 
on the five factors of assessment practice identified 
before, we performed several analyses of variance. 
The results showed that teachers from one latent class 
to another differed significantly from each other (see 
Figure 2 for the size and the direction of these differ-
ences). These differences suggest that teachers with 
particular assessment profiles have qualitatively dif-
ferent assessment practices.

The assessment profile to which most teachers (35.5%) 
in our sample belonged was the mainstream assessors 
profile. In this profile most teachers regularly used 
different types of assessment, test-based and obser-
vation-based, for both summative and formative pur-
poses. On all factors teachers with this profile scored 
around the mean.

The next biggest group (28.5%) were the enthusiastic 
assessors. Teachers with this profile were very aware 
of the different possibilities assessment offers them 
and used them likewise. On all components these 
teachers scored above the mean, with a peak on Goal 
centeredness of assessment. An almost equally large 

Figure 2: Mean standardized scores on factors for teachers in the four latent classes
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group of teachers (25.8%) were the non-enthusiastic 
assessors. These teachers viewed assessment more 
often in a negative way and used it accordingly less. 
On all factors, teachers with this profile scored below 
average. Finally, there were the alternative assessors 
(10.3%). Teachers with this profile had an ambiguous 
view of assessment. Although they reported a lot of 
own input in assessment and devised their own tasks 
and tests, they did not find assessment important or 
necessary. 

Through this profile characterization of teachers’ as-
sessment practice we were able to select some of the 
skills and activities from the universe of assessment 
skills and activities of teachers. In this way we brought 
structure to the many possible characterizations of as-
sessment practice and gained a more clear idea of what 
to expect from teachers prior to the introduction of 
the assessment techniques in our consecutive studies.

STUDY 3: EXPLORING THE FEASIBILITY 
AND EFFECTIVENESS OF CLASSROOM 
ASSESSMENT TECHNIQUES IN MATHEMATICS

In this small-scale study the focus switched from the 
current practice of teachers to how this practice could 
be improved. Many types of formative or classroom 
assessment techniques have been proposed and used 
in international research (e.g., Black, Harrison, Lee, 
Marshall, & Wiliam, 2004) or in more practice-ori-
ented work (e.g., Keeley & Tobey, 2011). In mathe-
matics education there exist many different forms 
of these classroom assessment techniques, through 
our survey of current practice we could determine 
that these techniques were not very often used by 
primary teachers in the Netherlands. The Dutch 
Inspectorate (Inspectie van het onderwijs, 2013) also 
pointed out that many primary (40%) and secondary 
schools (33%) do not systematically use assessments 
to monitor their students’ progress. In any case, from 
available findings it becomes clear that there is a need 
for investigation of the use of classroom assessment 
techniques in mathematics education.

The purpose of this study was to investigate the feasi-
bility and effectiveness of classroom assessment tech-
niques for mathematics in primary school. We wanted 
to find out whether teachers and students were prone 
to use assessment techniques and whether the use of 
an ensemble of these techniques would be related to 
an increase in achievement.

Method
Ten teachers (with 214 students; 14 to 29 students 
per class) participated in monthly workshops in 
the second semester of Grade 3 in two consecutive 
sub-studies (four teachers in the first; six teachers 
in the second). In the workshops, consisting of three 
or four teachers and the first author, classroom as-
sessment techniques were presented, discussed, and 
evaluated. The teachers were approached by e-mail 
and volunteered to participate. The schools were all 
situated in urbanized areas with highly mixed stu-
dent populations, and the teachers used four different 
textbooks that were all based on realistic mathematics 
education principles as is common in the Netherlands. 

The feasibility of the classroom assessment techniques 
was investigated by conducting regular classroom 
observations of every teacher in between workshops. 
These observations were intertwined with short in-
formal interviews. To investigate the effectiveness of 
the use of classroom assessment techniques we used 
a pre-/post-test evaluation of students’ mathematics 
achievement. The pre-test data consisted of the results 
from the midyear student-monitoring test for Grade 
3 (Cito LOVS M5) and the results from the end of year 
student-monitoring test for Grade 3 (Cito LOVS E5) 
served as post-test data (Janssen, Verhelst, Engelen, 
& Scheltens, 2010). These biannual student-monitor-
ing tests are used in virtually all primary schools in 
the Netherlands to monitor students’ development 
in mathematical ability over the years. The teachers 
administered the tests in their own classes as is com-
mon in educational practice in the Netherlands. The 
scores on these tests are mathematical ability scores 
calculated through item response theory models.

We proposed a collection of classroom assessment 
techniques consisting of short activities of less than 
10 minutes to the teachers. The techniques were sup-
posed to help teachers to quickly find out something 
about their students’ mathematical skills and un-
derstanding, provide teachers with indications for 
further instruction, and focus on some of the math-
ematics content of the second semester of Grade 3. 
Most techniques were centred on the assessment of 
number knowledge, mainly in the context of addition 
and subtraction, but they could also be used to assess 
multiplication and division tables. In Figure 3 we pro-
vide an example of a technique called Red/Green cards. 
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The teacher asks all students a series of questions 
that can be answered quickly with Yes (green) or No 
(red). By inspecting the waving red and green cards 
the teacher gets an immediate overview of all students’ 
responses. Especially when students have to carry 
out mental additions and subtractions with two-digit 
numbers it is crucial that they can instantaneously 
identify whether two numbers cross ten or not, be-
cause this has consequences for the strategy to be 
applied. This technique provides the teacher quickly 
with information on particular number sense knowl-
edge of the students. 

Results and discussion
Teachers and students reported enjoying the tech-
niques and finding them useful in the sense that they 
provided them with valuable information that sup-
ported their teaching and learning. Teachers also 
mentioned that the techniques were easy to apply in 
their classrooms. In terms of mathematics achieve-
ment, results indicate students improving consider-
ably (Mgain substudy 1 = +9.7; Mgain substudy 2 = +7.6). It could 
of course be expected that students advance in their 
mathematical ability, whether teachers perform 
specific assessment activities or not; the scores of 
the national norm sample also showed this direction 
(Mgain norm = +5.1).

Even though the treatment group was relatively small 
and there was no control group in this study, these 
results do provide an indication for the feasibility and 
effectiveness of the use of the classroom assessment 
techniques in mathematics: teachers use the tech-
niques and students appear to advance more from the 
midyear to the end of the year testing than expected.

STUDY 4: TEACHERS’ USE OF CLASSROOM 
ASSESSMENT IMPROVING STUDENTS’ 
MATHEMATICS ACHIEVEMENT

To verify whether the students’ achievement im-
provement we found in Study 3 was really due to the 
teachers’ use of the classroom assessment techniques 
in mathematics and not just to an attention (also 
Hawthorne) effect, we replicated this investigation 
in a large-scale experiment.

Method
The same pre-/post-test design was used as in Study 
3, but now with a control group and an extra ma-
nipulation. Thirty teachers (and their 616 students) 
participated and were randomly distributed over 
the three experimental conditions and one control 
condition. In the experimental conditions teachers 
participated in the same type of workshops as in 
Study 3. These experimental conditions differed 
on the intensity of the professional development 
teachers received: in Experimental I there was one 
workshop, in Experimental II, two workshops, and 
in Experimental III, three workshops, and in the con-
trol condition teachers did not have any workshops. 
In these workshops the same classroom assessment 
techniques were discussed; there was more time for 
every technique if teachers had more workshops.

Results and discussion
Teachers’ use of classroom assessment techniques in 
mathematics was associated with students’ improved 
mathematics achievement. More specifically, when 
teachers participated in three workshops and, as 
such, developed more ownership of the techniques, 
their students showed more improvement in terms 
of mathematics achievement than in the other condi-
tions (Mgain Experimental III = +8.1; Mgain other = <+5.9; cf. Figure 
4 with the results of an ANCOVA, correcting posttest 
scores for pretest differences). Supporting teachers in 
the use of classroom assessment techniques for math-

Figure 3: An example of the Red/Green cards. The focus is on number sense: the comprehension that two numbers together can be 

more or less than 10, 100, or 1000
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ematics in three workshops clearly benefits students’ 
mathematics achievement.
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This poster focus on an exploratory study which is part 
of a research study which aims to understand how to 
develop students’ emerging understanding of ration-
al numbers, at elementary school, looking into how 
number sense development is promoted, through the 
use of different representations - percents, decimals 
and fractions - being the percentage the introductory 
one. Through a design research, based on a teaching 
experiment, guided by a conjecture, we intend to an-
alyse the interactions, the strategies and the students’ 
productions when solving tasks. In this poster some 
data analysis from the exploratory study, concerning 
the use of percents, will be presented. This data show 
that percentage seems to be a good starting to introduce 
rational numbers. 

Keywords: Learning, rational numbers, number sense, 

taken-as-shared meaning.

Rational numbers is a complex content for the devel-
opment of a sustainable construction of mathemati-
cal knowledge (Fosnot & Dolk, 2002). Moss and Case 
(1999), developed an experimental curriculum to in-
troduce rational numbers where the first topic was 
percentage, following by two-place decimal numbers 
and fractional notation as introduced last. Based on 
this idea, the first author of this poster is developing 
a design research study, based on a teaching experi-
ment, guided by a conjecture. This conjecture sustains 
that a detailed and sequenced work with percentage, 
and the subsequent interrelation with the other rep-
resentations (decimal and fraction), can be a powerful 
learning pathway in emerging student’s understand-
ings of rational numbers, as they participate in social 
activity in the classroom and build taken-as-shared 
meanings, in a number sense development perspec-
tive. This conjecture has two dimensions: a mathemat-
ical content dimension and a pedagogical dimension. 

The first one focuses on a comprehensive concepts’ 
learning construction related with rational num-
bers, in a perspective of number sense development. 
Teaching for development of number sense, as Fosnot 
and Dolk (2002) say, can be seen as the development 
of powerful strategies, models and big ideas that pro-
vide practical, flexible, and efficient computation, to 
handle numerical problems. The pedagogical dimen-
sion is based on a sociocultural perspective, where the 
construction of knowledge happens in the classroom, 
through active engagement in communication and 
interaction. These two dimensions complement each 
other and allow the study of pupils’ learning and its 
evolution, by articulating a social perspective with 
a psychological perspective of the learning process 
(Cobb et al., 2011).

An exploratory study was developed at the beginning 
of third grade, in a class of 20 students and aimed to 
identify students’ perception on percentage and their 
intuition regarding proportions. The results show 
that all the involved students recognize the expres-
sion 100% and associate it, in the context of a mobile 
phone battery, to a “full” battery, that is completely 
charged. The majority of those students are able to 
correspond 50% to half. Justifications like “Codfish 
with 50% discount costs half the price” or “ It’s 20€ 
because the jumper was 40€ and since it has a 50% 
discount it is half-price” reveal that this intuition ex-
ists and seems to come about, in some way, associated 
to the student´s experiences, mainly outside school. 

Also, in the exploratory study, students were asked 
to take a stand concerning the statement “More than 
half of the document is saved!” in a situation where it 
was possible to see a computer status bar, when 80% of 
a document would already be processed. Agreement 
statements like “saving document ends at 100% and 
half has passed, which is 50%, because it is already in 
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82%” or “Because the saving document ends in 100% 
and that has already passed half 100, which is 50 and 
it is already in 82%” show that most of the students 
in the classroom reveal some knowledge related to 
this domain. Other situations presented involved 
mainly reference numbers and were associated to 
strong visual models, as percentage bars. It is worth 
noting that percentage had not been a topic worked 
in the context of the classroom.  Using communica-
tion technologies in life creates a set of opportunities 
that can enhance school learning contexts. The data 
analyses of this exploratory study pointed towards 
integrating in school the knowledge built from the 
use of technologies in life. Percentage makes sense in 
school because it is part of life. Percentage bars pro-
vide a powerful visual concrete representation and 
can further contribute to build a connection between 
children’s intuitions about proportions and rational 
numbers. The purpose is to grasp those experiences 
and trigger the construction of a knowledge network, 
towards rational numbers. 

The ongoing study will seek to reconstruct episodes 
of student’s work, in a detailed analysis of the events 
that took place, guided by the chosen interpretative 
theoretical framework. This analysis should allow the 
presentation of student’s understandings embedded 
in the emergence of taken-as-shared meaning, in the 
learning of rational numbers, which may provide 
some clues for research in this area.   
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In CERME9, as a long-standing group, TWG03 
“Algebraic thinking” continued the work carried out 
in previous CERME conferences (e.g., Cañadas, Dooley, 
Hodgen, & Oldenburg, 2013). 

There were a total of 15 papers and 7 posters with a 
total of 24 group participants representing 18 coun-
tries: Argentina, Canada, Cyprus, Czech Republic, 
Germany, Hungary, Ireland, Italy, Mexico, Norway, 
Portugal, Romania, Spain, Sweden, Turkey, Ukraine, 
UK, the USA.

THE RANGE AND DIVERSITY OF 
RESEARCH FRAMEWORKS

As we have observed in previous CERME work-
ing group reports, algebraic thinking is a “mature” 
sub-domain within mathematics education research 
(e.g., Cañadas et al., 2011). As a result, our group discus-
sions touched on many familiar themes. Of particular 
interest to the group was the range of research frame-
works, models and theories that participants drew on. 
In order to understand this diversity, we developed 
a categorisation of the frameworks used in TWG03 
papers, where authors of TWG03 papers are given 
in square brackets.1

A. Models for conceptualising algebra, 
algebraic activity and algebraic thinking

 ― Kaput’s (2008) model for conceptualisation of 
algebraic thinking [Chimoni & Pitta-Pantazi] 
[Glassmeyer & Edwards] [Twohill] 

 ― Arzarello, Bazzini and Chiappini’s (2001) model 
for analysis of algebraic thinking [Cusi & Malara]

 ― Drijvers, Goddijn and Kindt’s (2011) model for 
categorisation of algebra [Pittalis, Pitta-Pantazi, 
& Christou]

 ― Kieran’s (2004) model for conceptualisation of 
algebraic activity [Strømskag]

 ― Driscoll’s (1999) framework for algebraic habits 
of mind [Eroglu & Tanisili]

 ― Pittalis and colleagues’ (2013, 2014) model of early 
number sense [Pittalis, Pitta-Pantazi, & Christou]

B. Frameworks of variables 
and equation solving

 ― Bloedy-Vinner’s (1994) dichotomy of “algebra-
ic-analgebraic” to analyse students’ difficulties 
with parameters [Postelnicu & Postelnicu] 

 ― Hadjidemetriou and Williams’ (2010) concept of 
linearity prototype for graphs [Pilous & Janda]

 ― Lima and Healy’s (2010) notion of didactic cut in 
equation solving [Block]

 ― Star and Rittle-Johnson’s (2008) strategies for 
solving linear equations [Block]

C. Frameworks of functions 
and functional thinking

 ― Vinner and Dreyfus’ (1989) distinction between 
concept definition and concept image for the con-
cept of function [Panaoura, Michael-Chrysanthou, 
& Philippou]

mailto:Jeremy.Hodgen%40nottingham.ac.uk?subject=
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 ― Isoda’s (1996) application of van Hiele levels as a 
model for development of the function concept 
[Szanyi]

 ― McEldoon and Rittle-Johnson’s (2010) framework 
for functional thinking assessment [Xolocotzin 
& Rojano]

 ― Rivera and Becker’s (2011) framework for pattern 
generalisation [Twohill]

D. General theories about teaching 
and learning mathematics 

 ― Duval’s (2006) theory of semiotic registers [Cusi 
& Malara]

 ― Bikner-Ahsbahs and Halverscheid’s (2014) theory 
of interest-dense situations [Janssen & Radford]

 ― Radford’s (2007) theory of objectification [Janssen 
& Radford]

 ― Godino, Batanero and Font’s (2007) onto-semiotic 
approach to research in mathematics education 
[Godino, Neto, Wilhelmi, Aké, Etchegaray, & Lasa] 

 ― Dekker and Elshout-Mohr’s (1998) model for 
interaction and mathematical level raising 
[Simensen, Fuglestad, & Vos]

 ― Matute, Roselli and Ardila’s (2007) framework 
for neuropsychological children assessment 
[Xolocotzin & Rojano]

 ― van der Niet, Hartmann, Smidt and Visscher’s 
(2014) framework for modelling relationships 
between bodily movement and academic achieve-
ment [Henz, Oldenburg, & Schöllhorn]

 ― Wertsch’s (1991) concept of mediating tools 
[Wathne]

E. Holistic theories encompassing 
instructional design

 ― Brousseau’s (1997) theory of didactical situations, 
TDS [Norquist] [Strømskag]

 ― Chevallard’s (2003) anthropological theory of the 
didactic, ATD [Mavongou & González-Martin]

 ― Marton, Runesson and Tsui’s (2004) variation 
theory [O’Neil & Doerr]

Interestingly, the research frameworks are at differ-
ent levels. The most common type of research frame-
work (as outlined above in A, B and C) can be consid-
ered as what Eisenhart (1991) refers to as conceptual 
frameworks. They are skeletal structures of justifi-
cation, rather than structures of explanation based 
on a formal theory (which would be the case with a 
theoretical framework). The frameworks described 
in D are conceptual frameworks that are “general” in 
their roots, where algebra is the focal topic “imported” 
into the framework by the authors.

The frameworks in F are holistic theories that en-
compass a methodology of instructional design. The 
methodological principle of TDS is that a piece of 
mathematical knowledge is represented by an epis-
temological model – a situation – that involves prob-
lems that can be solved in an optimal manner, using 
the targeted knowledge. The general epistemological 
model provided by the ATD proposes a description of 
mathematical knowledge in terms of mathematical 
praxeologies whose main components are types of 
tasks, techniques, technologies, and theories. In this 
way, TDS and ATD provide tools for both designing 
and analysing mathematical activities. The concepts 
and models of these theories provide guidance for task 
design, so that the mathematical tasks – as research 
instruments – will be an integrated part of the whole 
research enterprise. 

FUNCTIONAL THINKING

We were struck by the large number of papers at 
this conference that addressed the nature and role 
of functional thinking in the development of algebraic 
thinking and focused on students’ and teachers’ diffi-
culties with functions and functional thinking (Cusi 
& Malara; Eroglu & Tanisli; Glassmeyer & Edward; 
Godino, Neto, Wilhelmi, Aké, Etchegaray, & Lasa; 
O’Neil & Doerr; Panaoura, Michael-Chrysanthou, & 
Philippou; Pilous & Janda; Postelnicu & Postelnicu; 
Prendergast & Treac; Szanyi; Xolocotzin, & Rojano). 

The following considerations were prompted by the 
mathematical content of the tasks of the research 
studies presented in the papers and posters of the 
Algebraic Thinking group. Euler’s, Dirichlet’s, and 
Bourbaki’s definitions of function were used, paral-
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leling the historical development of the concept of 
function and matching the students’ developmental 
stage. With few exceptions, like O’Neil and Doerr’s 
paper on logarithmic functions, or Pilous and Janda’s 
poster with examples of rational functions, linear and 
quadratic functions and equations were predominant. 
There seemed to be a consensus on the importance of 
students’ and teachers’ fluency within and between 
various perspectives of functions, and connecting 
between multiple representations of functions. Some 
papers and posters presented tasks specific to Early 
Algebra approaches such as pattern-based or quanti-
tative reasoning approaches (Mavoungou & González-
Martín; Strømskag; Twohill; Ugalde & Zazueta). Some 
tasks reflected our traditional algebra curriculum, 
influenced by the historical quest for solving equa-
tions, by focusing on the equation approach to algebra 
(Block). 

In several papers, the contexts of tasks and the focus 
of research departed somewhat from the functional 
thinking, like in papers that dealt with factors that 
may influence algebraic thinking. Among those fac-
tors were other ways of thinking (Chimoni & Pitta-
Pantazi; Norqvist), the interaction of the task with the 
teacher’s actions, type of learner, and the learning 
environment and its affordances (Henz, Oldenburg, & 
Schöllhorn; Janssen & Radford; Pittalis; Pitta-Pantazi 
& Christou; Simensen, Fuglestad, & Vos). Theses shifts 
in the focus of research, away from the nature of al-
gebraic thinking and thought, prompted a discussion 
about the new borderlines of the research on algebraic 
thinking. 

BORDERLINES: LOOKING 
FORWARD TO CERME10

In the working group, we noticed various borderlines 
that define but also limit the scope of the algebraic 
thinking TWG. It is an interesting strategic question 
how the group, particular as a mature group, should 
react to these borderlines.

As in past conferences, the TWG has concentrated 
much on the core of algebra and algebraic thinking 
that includes approaches to algebra, early algebra, 
functional thinking, algebraic reasoning, develop-
ment issues related to all that, misconceptions, epis-
temic actions in algebra, learner generated examples 
and teachers’ goals. In recent conferences (but not 
2015), we have discussed papers on the history and 

philosophy of algebra and the use of technology to pro-
mote algebraic thinking. Yet, although revolutionary 
new insights have become rare, but still the situation 
of algebra in schools is not satisfactory. What hin-
ders progress is, among other things, the existence 
of subtle differences in understanding notions (e.g. 
what is a functional approach) that result in borders 
within the subject. Moreover, differences between 
teaching cultures in different countries (and within 
countries) are enormous and restrict generality of 
results very much. 

Furthermore, we observe a number of emerging 
borderlines which have been studied to some extent, 
but in our view not yet sufficiently. For example, how 
much algebraic thinking is needed, how is it applied 
and how can algebraic ‘defects’ be hindered in various 
other aspects of education in schools? For example: 

 ― Probability, e.g. what algebraic competence 
is needed to work with expressions like 
P(|X – np| < k) > 95 %.

 ― Geometry: g ⊥ h ∧ h ⊥ l ⟹ g ∥ l 

 ― Computer science: f vs. f(x)

 ― Physics: U = RI

The crucial question that should be cleared in further 
discussion is if these points are within or beyond the 
border of algebraic thinking.

Another related question is how do other school sub-
jects act back on algebra? How do students cope with 
the fact that in other areas different rules apply? For 
example:

 ― A random variable is not a variable

 ― A physical quantity may not be a variable (but a 
function of time) 

 ― Letters in geometry are labels or names of objects, 
not variables

Some of the paper in CERME9 hinted at emerging 
opportunities to cross boundaries to other subjects 
of research:
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 ― Inclusion of lower achieving students raises 
questions usually studied in social sciences 

 ― Gestures, bodily movement and brain research 
are traditionally more central in cognitive sci-
ence 

These new ‘borderline’ areas certainly open up the 
opportunity to understand algebraic thinking from 
new perspectives. The group acknowledges this but 
has a strong view about maintaining a strong mathe-
matical focus to the algebraic thinking group. 

Finally, a feature of the group has been continuity 
and we hope very much to be joined by many of the 
CERME9 TWG03 participants at CERME10.
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Flexible algebraic action on quadratic equations
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This paper describes a study that explores the compe-
tencies of flexible algebraic action of German students 
in grade nine and ten when dealing with quadratic 
equations. A theoretical framework for the concept of 
flexibility in algebraic action in the context of quadratic 
equations is provided. Further on, data analysis and 
some important early results of the study are discussed. 
The study examines which features of quadratic equa-
tions the students perceive, what meanings they infer 
from these features and to what extent this is conducive 
to or obstructive for flexible algebraic action. Two types 
of meta-tasks were used in the study and analyzed with 
qualitative data analysis methods.

Keywords: Quadratic equations, flexibility, algebra.

INTRODUCTION

When professional mathematicians solve quad-
ratic equations like (1) x2 + x − 6 = 0, (2) x2 + 2x = 0, 
(3) (x − 3)(x + 5) = 0 or (4) (x − 3)(x + 5) = 7 they will use 
different methods to find the solutions in effective 
and less error-prone ways. They do so, because they 
recognize different features of the equations and 
they are able to draw appropriate conclusions for 
solving the equations. E.g., equation (1) and (2) look 

very similar with a sum as the term on the left-hand 
side and zero on the right-hand side. The difference 
is the missing constant in (2), which indicates that 
this equation can be easily solved by factoring. In 
contrast, using the pq-formula1 is a suitable proce-
dure for solving equation (1). The equations (3) and 
(4) have the same structure on the left-hand side. The 
only, but important difference is the number on the 
righthand side. The solutions of (3) can be immedi-
ately determined without any calculation, whereas 
for solving (4), it is necessary to expand the brackets 
and use the pq-formula. Although all quadratic equa-
tions can be solved by using the pqformula, for (2) und 
(3) it is not an effective way because the calculations 
performed before or while using the pq-formula are 
not necessary. Furthermore these calculations are 
error-prone, especially for students with problems in 
algebraic conversions. When they use the pq-formula 
for (2) a common mistake is using a wrong value for 
q in the formula. The expanding of brackets in (3) is 
also a wellknown field of mistakes. Using different 
solution methods depending on the characteristics of 
the equation can be called flexibility in contrast to the 
use of only one standard routine like the pq-formula 
for each type of quadratic equations.

Figure 1: Comparison of flexible algebraic action and algebraic action
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QUADRATIC EQUATIONS AND 
FLEXIBLE ALGEBRAIC ACTION

Flexible algebraic action is defined as the ability to 
choose an adequate processing method depending on 
the specific features of the task and the abilities of the 
individual. This definition refers to the concept of flex-
ibility in mental calculation (e.g., Rathgeb-Schnierer, 
2006; Threlfall, 2002) and a general discussion about 
what flexibility can mean (e.g., Star & Newton, 2009). 
Figure 1 shows the comparison of flexible algebraic 
action and algebraic action just with one standard 
routine. 

For quadratic equations a didactical map can show 
the complexity of the situation students have to cope 
with, when they learn to solve this type of equation. 
A didactical map is a graphic depiction on an issue 
which contains important information for didactical 
considerations under special questioning. To clarify 
the difference between linear and quadratic equations 
in situations of learning and regarding the necessi-
ty of flexibility, a didactical map of linear equations 
(Figure 2) will be contrasted to a didactical map of 
quadratic equations (Figure 3). The construction re-
fers to the “Didactical cut” which was first named by 
Filloy and Rojano (1984, 1989) and later on discussed 
by several researchers (e.g., Herscovics & Linchevski, 
1994; Lima & Healy, 2010; Vlassis, 2002). 

The map shows, that linear equations can be divided 
into two main groups: In the first, the unknown is only 
appearing once on one side of the equation. These 
equations can be solved by arithmetical procedures. 
It is not necessary to act on or with the unknown 
because they can be solved by using the reverse op-
erations, e.g. 3x + 7 = 19 can be solved by calculating 
(19 − 7) ÷ 3. To solve the second group of equations, 

in which the unknown occurs on both sides or more 
than once on one side, it is necessary to use algebraic 
procedures to act on or with the unknown. According 
to this classification, Lima and Healy (2010) call these 
two groups ‘evaluation’ and ‘manipulation’ equations 
which resembles the classification by Filloy and 
Rojano (1984, 1989) for linear equations, but which is 
farther-reaching also for classifying quadratic equa-
tions. Lima and Healy focus on the activities which are 
necessary to solve an equation and not on the question, 
where or how often the variable occurs. In contrast to 
the evaluation equations, for the manipulation equa-
tions it is necessary to manipulate algebraic symbols. 
The group of manipulation equations can be divided 
into two subgroups. For the first, where the variable 
is only appearing on one side but more than once, al-
gebraic procedures are only necessary for the terms 
on one side. For the second, where the variable ap-
pears on both sides, equivalent transformations on 
both sides of the equation are necessary. To describe 
the important differences between the three groups 
regarding the different requirements of arithmetical 
and algebraic skills, the author suggests using the 
term “cognitive step” which is also suitable for the 
quadratic equations.

The aim of each algorithmic solving process for lin-
ear equations is to transform the equation into the 
form of the first group. The possible transformations 
are indicated by the arrows on the map. One facet of 
flexibility on acting with linear equations should be 
e.g. the ability to recognize that 3x + 4 = 3x + 5 has no 
solution without starting algebraic procedures on 
this equation. The map shows that the field of line-
ar equations has got a manageable number of cases. 
Nevertheless, there are also flexible and intelligent 
strategies to solve linear equations by simplifying 
the given equation without strictly using algebraic 

Figure 2: Didactical map of linear equations
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algorithms (e.g., Star & Rittle-Johnson, 2008). For ex-
ample for solving the equation 5(x + 2) = 20 it is not 
necessary to expand the brackets, when recognizing 
that the term in brackets has to be 4 and then solving 
the equation x + 2 = 4 instead of the given equation. But 
this type of flexibility is depending only on special 
numbers. The idea behind this is to get an equation 
which is solvable with arithmetic procedures but the 
way to achieve this type depends on the numbers and 
the structure and it is not strictly algorithmically per-
forming. 

In contrast to this fairly simple model, the didacti-
cal map of quadratic equations (Figure 3) shows the 
wide variety of types of quadratic equations under 
the view of different effective solution methods. 
The study is only focussing on basic types of quad-
ratic equations and not on non-standard examples 
like sin2(x) + 2sin(x) + 1 = 0 or x4 − 6x2 + 9 = 0, for which 
identifying and interpreting of features as a basis 
for acting flexible is also very important. There are 
two main groups of equations: The first is solvable 
with quasi-arithmetical procedures such as inverse 
operations, extracting radicals or using the fact, that 
a product equals zero if one of the factors equals zero. 
The last case is indicated as a special case by the verti-
cal spotted line, because a special knowledge is needed 
and no arithmetic operations are necessary. To solve 
the second group, algebraic procedures are necessary. 
This group can be divided into two subgroups: The 
first is characterized by the fact that the algebraic 
procedures are explicitly done when factoring the 
equation with the missing constant term. After this, 
the solutions are obvious using the knowledge about 
cases when a product equals zero. Using the pq-for-

mula for all other types, the algebraic procedure of 
solving is not completely visible, so it is called implicit. 
This classification of the two main groups is according 
to the terms ‘evaluation’ and ‘manipulation’ equations 
Lima (2007) used. In contrast to the linear equations, 
the cognitive steps do not depend on the fact where 
and how often the variable appears.

The dashed arrows indicate that some equations 
can be interpreted as special cases of other types of 
equations. The types of equations differ in the types 
of the terms appearing. The structure of the terms 
is indicated by the form of the frames. A product is 
indicated by a frame shaped like an ellipse and a sum 
by a hexagon. The rectangle indicates the special case, 
where the unknown appears linear in a product but 
the term is a sum. To indicate the different suitable 
methods of solving, the frames have different kinds 
of lines. The dashed lines indicate the pq-formula, the 
dot-dash-lines extracting radicals as an appropriate 
method and the dot-dot-dash-lines stand for the pos-
sibility to get the solutions by factoring the term. 

It is obvious that the types of quasi-arithmetical and 
algebraic solvable equations correspond in a complex 
way. For choosing an effective solution method it is 
not sufficient to look just at the type or structure of 
the term on one side of the equation. It is also neces-
sary to look at the structure of the equation as a whole 
and the appearing numbers at special places in the 
equation (e.g. zero on one side of the equation). The 
main difference between the linear and the quadratic 
equations in the process of flexible solving is, that for 
quadratic equations it is not the aim to transform all 
types just into one, which can be solved by a stand-

Figure 3: Didactical map of quadratic equations
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ard method, as it is with the linear equations where 
it is the aim to produce a type of equation which can 
be solved by arithmetical procedures. Flexibility in 
solving quadratic equations means choosing different 
algorithmic solving methods, depending on special 
features of the equations. To master this, it is required 
to consider the relationships shown in the didactical 
map and to know, which features of an equation are 
important to indicate a suitable more or less algorith-
mic solving method.

METHOD OF THE STUDY

The three main questions in this study are: 1. Which 
features of quadratic equations do students perceive? 
2. What meanings do they infer from these features? 
3. To what extent is this conducive to or obstructive 
for flexible algebraic action?

To answer these questions two types of studies were 
made: 1. Laboratory study in a one-to-one situation (re-
searcher and participant) with eleven students from 
grade nine from four different classes from two differ-
ent German high-schools (Gymnasium). 2. Classroom 
study with 26 students from grade nine and 20 stu-
dents from grade 10 from yet another Gymnasium. 
In the classroom study the tasks were integrated in a 
lesson by a teacher who was exactly instructed how to 
moderate the lesson. In the German high-school cur-
riculum normally quadratic equations are a topic at 
the end of grade eight, so that all participants had tak-
en part in lessons about quadratic equations and re-
garding this the groups are comparable. From another 
point of view potential varieties of the two groups 
in the classroom study can be recognized during the 
process of data-analysis. The frame-data from the 
participants in the laboratory study, marks for math-
ematics and results of the DEMAT 9-Test (Schmidt, 
Ennemoser, & Krajewski, 2013) reveal that this is a 
mixed group regarding the level of general mathemat-
ical skills. For the classroom study frame-data couldn’t 
be collected. The teacher reported that both classes 
show no abnormality regarding the level of general 
mathematical skills.

In the laboratory study, the participants had to pro-
cess three tasks. In the first task, a quadratic equation 
was given and the students were asked to create new 
equations by varying the given one. In the second task, 
they had to solve five quadratic equations of different 

types to check which strategies the students use to 
solve the equations. 

The third task, which is at the centre of the study, is 
a meta-task like the first one. 20 quadratic equations 
were given on cards of carton and the participants 
had to assort them. These equations represent the 
different categories shown in the didactical map of 
quadratic equations, e.g. the equations discussed in 
the introduction are part of the selection. The number 
20 was chosen based on the time needed to get an over-
view of the equations and the capacity of the visual 
field. There were no rules given and the participants 
had all freedom to assort the equations as they like. It 
was remarked that there was not only one possibility 
to assort them. While working on the tasks, the partic-
ipants were video recorded and asked to think aloud. 
The students were asked to explain the meanings of 
the features of the groups. 

The participants of the classroom study had to process 
two tasks. The variation-task was left out because the 
laboratory study showed that the most interesting 
information of this task was given by the thinking 
aloud of the participants which was not recordable 
in the classroom study. Deviating from the labora-
tory study, the students had to work in pairs on the 
sorting-task to encourage multiple solutions for the 
assorting. This seemed to be necessary because there 
was no researcher beneath the participants during 
process on the task like in the laboratory study to in-
itiate more than one solution. The participants had to 
write down their assorting with an explanation of the 
meanings of the features on a special documentation 
sheet which referred to a tool used in sorting-tasks in 
a study with teachers by Zaslavsky and Leikin (2004). 
Selected pairs of students presented their arguments 
for assorting and their reasoning in the class which 
was recorded by video. 

The transcriptions of the videos and the documenta-
tion sheets for the sorting-task were analyzed with 
qualitative data analysis methods, like an open cod-
ing, with the aim to develop categories (cf. Corbin 
& Strauss, 2008) of reasoning for assorting and the 
meanings of the recognized features of the equations. 
The sorting-task as an analyzingmeta-task is particu-
larly suitable to examine the questions of the study. To 
process on this task it is insufficient to know a routine 
to handle quadratic equations. It is necessary to have 
an explicit look on the features of the equations and 
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to detect the syntactic or semantic differences which 
are preconditions for flexible algebraic action. By rea-
soning for assorting, the meanings of the features can 
be explained. Evaluating the identified categories of 
assorting and meanings can show how far the mental 
structures of the students are conducive to or obstruc-
tive for flexible action. 

DATA ANALYSIS: SELECTED RESULTS 
OF THE SORTING-TASK

Analyses of the data in the classroom studies reveal 
that there were six main categories for assorting the 
equations, which were also found in the laboratory 
study. These categories and some main sub-categories 
are shown in Figure 4.

The meanings inferred from the features for assort-
ing the equations were first and mainly evaluated by 
analyzing the interviews from the laboratory study 
because the videos contain much more information 
than the documentation sheets from the classroom 
study. The meanings can be divided into helpful and 
conducive to or obstructive for flexible algebraic ac-
tion. There are also features and meanings which are 
obscure for flexible action but they show insight into 
the students’ mental concept concerning the dealing 
with equations. In the following selected examples, 
features and reasons for assorting are discussed. 

One dominating reason for the assorting in the cat-
egory “Term” was the appearing of brackets in the 
equations. A lot of participants argued, that terms 
with brackets had to be expanded to simplify them. 
This result is in accordance with a result Lima and 
Tall (2006) found in a study, where the quadratic equa-

tion (x − 3) ⋅ (x − 2) = 0 was (not successfully) solved 
by the most participants by expanding the brackets. 
Similar difficulties with equations in this structure 
were also noticed by Vaiyavutjamai, Ellerton and 
Clements (2005). The brackets operate as a signal to 
expand the term regardless whether it is necessary or 
useful or not. In other studies (e.g., Dreyfus & Hoch, 
2004; Wenger, 1987), other signals like radicals or frac-
tions, which evoke routines regardless of the context 
or the questions that should be answered, were iden-
tified. Focussing on such signals could be an indica-
tion, that the students do not plan their approach (cf. 
Wenger, 1987) which is a necessary step in flexible 
action. Expanding the brackets can prevent an effi-
cient solving process and can lead to mistakes during 
expansion or the subsequent use of the pq-formula. 
One reason for this habit can be the way transforming 
terms is taught. When transforming is called “simpli-
fying” and most of the tasks require expanding prod-
ucts then it is obvious that for most students, brackets 
have to be expanded in any case. This hypothesis is 
supported by the explanation that terms with brack-
ets are more complicated, which was remarked by a 
lot of participants of the laboratory study.

The remarks about brackets often occur together with 
remarks about solving methods. The participants de-
scribe that it is more difficult to isolate the variable 
when it occurs in brackets. This argument mirrors 
the strategy for linear equations, i.e. isolating the 
variable on one side of the equation, which was used 
in the solvingtask for 26.8% of the equations (from all 
samples) but successful only for 45.1% of these equa-
tions. The correct solutions with this strategy were 
all produced for the equation (x − 8)2 = 0 by using the 
inverse operations or arguing with the semantics of 

Figure 4: Categories and main sub-categories of assorting quadratic equations
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this equation. The other strategies used for isolating 
the variable, misapplied on equations for which the 
pq-formula or factorizing is a suitable solving meth-
od, were division by the variable x or eliminating 
the exponent of x2 by a division by 2, by extracting 
radicals just from this monomial or by summarizing 
monomials with different exponents. These faulty 
strategies of isolating the variable are all related to the 
idea of solving the equation by extracting the linear 
variable on one side of the equation to find the solu-
tion then on the other side. This is the idea of solving 
linear equations which works for quadratic equations 
only in special cases. Obviously, a generalization of 
this strategy leads to the effect that it is used in situ-
ations where it is unsuitable. The argumentation of 
the participants in the sortingtask points to a lower 
level of understanding of the concept of equations in 
general and especially of different types of equations 
like linear and quadratic equations. This hypothesis 
is promoted by results of studies about the under-
standing of equations (e.g., Lima & Tall, 2008). The 
isolation-strategy, which evokes the expanding of 
brackets, is opposed to strategies for solving quad-
ratic equations where brackets are produced when 
factoring a term or where the brackets indicate a sim-
ple way to find the solutions because they show that 
the term is a product. 

A more general problem is the mentioned difficulty to 
identify the equations as quadratic when brackets are 
appearing. This topic responds to the aspect of symbol 
sense in algebra in the context of understanding the 
meaning of variables and parameters in equations 
(cf. Postelnicu & Postelnicu, 2015) and to the ability to 
anticipate the effect of transforming terms.

Another feature that appeared in the category 
“Equation” for nearly every participant as a category 
was the presence of zero on one side of the equation. 
In contrast to the reasons of the importance for the 
occurrence of brackets, no blocking points for flexible 
action were found in the argumentation for this fea-
ture. However, only one pair of students in the class-
room study explained, that the occurrence of zero on 
one side of the equation is the necessary precondition 
to use the pq-formula or to find the solutions when 
the term on the other side is a product. A lot of par-
ticipants explained that zero on one side is necessary 
to use the pq-formula. This explanation is not wrong, 
but it was referred to all equations with zero on one 
side, regardless of the type and structure of the term 

on the other side of the equation, e.g. (x − 3)(x + 5) = 0 or 
4x2 − 10 = 0 which can be easily solved by the fact that 
a product should be zero or by extracting a radical. 
The students focussed only on one single feature not 
following the need to analyse potential sub-features 
of this group of equations. If this feature works as 
a signal to use the pq-formula, it can be obstructive 
for flexible algebraic action. This is as much more 
remarkable when looking on the results of the solving-
task. From all samples 34.3% of the equations were 
solved by using the pq-formula, 70.3% of these correct. 
This indicates, that the pq-formula as a standard-meth-
od is not executed as well as you can expect for a 
standard algorithm. These results are compatible to 
a study by Lima and Tall (2006) where most partici-
pants solved quadratic equations with trial-and-error 
or with the pq-formula, but mostly unsuccessfully. 
Similar to this focussing on only one single feature, 
for the feature x2on one side of the equation some par-
ticipants argued that if x2 is on one side, extracting 
radicals is a suitable solving method without regard-
ing what is on the other side of the equation, e.g. x2 = x 
or x2 = −16x − 64. Following the faulty meaning of this 
feature and the revealing solving method can produce 
individual faulty strategies to handle the other side 
and wrong solutions. 

Another explanation for assorting by zero on one side 
was that there are special rules to be regarded when 
a zero appears. It is true that the special rules (like 
division by zero is not possible) are valid for handling 
equations. This argumentation, at a first glance, seems 
not to be connected to flexibility therefore it is neither 
conducive to nor obstructive for flexible action. But 
if this is the only and dominating importance of this 
feature in the awareness of the students, it can overlay 
meanings which are important for flexible action and 
in this way it can be obstructive.

CONCLUSION

The first data analyses of the sorting-task show some 
important findings regarding the competencies of 
flexible algebraic action in the context of quadratic 
equations. A lot of explanations in the sorting-task 
which can be obstructive for flexible action were 
identified and only a few participants show that their 
understanding of quadratic equations and solving 
methods is based on a concept of flexibility. The qual-
itative analyses used in this study are appropriate to 
identify the reasons for the established deficits. This 
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knowledge can be used to develop improvements for 
teaching. The results show that some problems the 
students have with quadratic equations are founded 
in the teaching of previous topics (like transforming 
terms and the dominance of expanding brackets). 
Other problems like focussing just on one feature (e.g. 
zero on one side or x2 on one side) should be addressed 
in the lessons by using suitable types of tasks which 
focus not on finding solutions of equations but on clas-
sifying different types of equations. It would seem that 
the meta-tasks, used in this study, have the potential to 
be a useful tool for the design of mathematic lessons 
which aim to enable the learners to act flexibly.
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The aim of the present study is to investigate the relation-
ship of algebraic thinking with different types of reason-
ing processes. Using regression analyses techniques to 
analyze data of 348 students between the ages of 10 to 13 
years old, this study examined the associations between 
algebraic thinking and achievement in two tests, the 
Naglieri Non-Verbal Ability Test and a deductive rea-
soning test. The data provide support to the hypothesis 
that a corpus of reasoning processes, such as reasoning 
by analogy, serial reasoning, and deductive reasoning, 
significantly predict students’ algebraic thinking. 

Keywords: Algebraic thinking, cognitive mechanisms, 

reasoning processes.

INTRODUCTION 

In recent years, researchers, policy makers and cur-
riculum designers have recommended that algebraic 
thinking should become central to all students’ math-
ematical experiences across K-12 grades (e.g., NCTM, 
2000; RAND Mathematics Study Panel, 2003). The 
realization of this need stems primarily from the 
fact that algebra and algebraic thinking are closely 
linked to the development, establishment and com-
munication of knowledge in all areas of mathematics, 
including arithmetic, geometry and, statistics (NCTM, 
2000). Secondly, students’ abrupt and isolated intro-
duction to algebra in the middle school has led them 
to experience difficulties in understanding core al-
gebraic concepts (Cai & Knuth, 2005).Thirdly, it has 
been argued that the mere focus of elementary math-
ematics on arithmetic and computational fluency de-
prives the conceptual development of mathematical 
ideas (Blanton & Kaput, 2005). Fourthly, the call for 
reconceptualising the nature of school algebra across 
all grades is underlined by the belief that algebraic 
thinking is within the conceptual reach of all students. 

This belief is supported by several research findings 
which offer evidences that as early as the elementary 
grades students are able to develop algebraic thinking 
in supportive classroom environments (e.g., Radford, 
2008). Moreover, available research provide insights 
into appropriate pedagogical factors, such as cur-
riculum materials, technological tools, and instruc-
tional strategies that facilitate this development (e.g., 
Blanton & Kaput, 2005). 

Despite the considerable advances in the field, still 
realizing and achieving the goal for developing al-
gebraic thinking as early as the elementary grades is 
challenging. The NCTM’s research agenda (Arbaugh 
et al., 2010) highlighted that a main topic of focus is 
the identification of mathematical concepts and rea-
soning processes which facilitate the learning of alge-
bra. English (2010) also stressed that one of the main 
priorities in the field of mathematics education is to 
define the key mathematical understandings, skills, 
and reasoning processes that students need, in order 
to succeed in mathematics. In this context, the present 
study aims to unfold the relationship between alge-
braic thinking and specific reasoning processes. This 
analysis might provide useful insights onto the skills 
which enable younger students to think algebraically. 
Students of the 4th, 5th, 6th and 7th grades were select-
ed, in order to illuminate the ways by which abilities 
involved in reasoning processes might facilitate or 
restrict algebraic thinking within this age range. 

THEORETICAL FRAMEWORK

The notion of algebraic thinking 
Several researchers made efforts to analyze the 
nature and content of algebraic thinking, focusing 
on what individuals do and the way in which their 
abilities for generalizing and using symbols devel-
op. One of the most influential developments of the 
past decades in respect to conceptualizing the notion 
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of algebra as a multidimensional activity is Kaput’s 
theoretical model. Kaput (2008) specified that there 
are two core aspects of algebraic thinking: (i) making 
generalizations and expressing those generalizations 
in increasingly, conventional symbol systems, and (ii) 
reasoning with symbolic forms, including the syntac-
tically guided manipulations of those symbolic forms. 
In the case of the first aspect, generalizations are pro-
duced, justified and expressed in various ways. The 
second aspect refers to the association of meanings to 
symbols and to the treatment of symbols independent-
ly of their meaning. Kaput (2008) asserted that these 
two aspects of algebraic thinking denote reasoning 
processes that are considered to flow through varying 
degrees throughout three strands of algebraic activi-
ty: (i) generalized arithmetic, (ii) functional thinking, 
and (iii) the application of modeling languages for 
describing generalizations.

This conceptualization breaks down the wide field of 
algebraic thinking into major components of mathe-
matical activity. Furthermore, Kaput’s (2008) ideas 
articulate ways in which algebraic activities might 
be applied both in early and secondary school algebra 
contexts. 

Algebraic thinking and reasoning processes
The view of algebraic thinking reported above focus-
es on the establishment of generalizations, taken to 
mean the detection and expression of structure and 
a growing understanding of symbolization. This ap-
proach raises the question: “which are the cognitive 
mechanisms that regulate this process?”. English and 
Sharry (1996) show that analogical reasoning consti-
tutes an essential mechanism when students resolve 
algebraic tasks. Specifically, they describe analogical 
reasoning as the mental source for extracting com-
monalities between relations and constructing mental 
representations for expressing generalizations. For 
example, the action of noticing differences and com-
monalities among different expressions of equations 
is considered as cognitive in nature and includes the 
formulation of a generalized concept that does not 
completely coincide with any of its particular cases. 

Likewise, Radford (2008) developed a definition of the 
process of generalizing a pattern which unfolds the 
involvement of various forms of reasoning:

Generalizing a pattern algebraically rests on the 
capability of grasping a commonality noticed on 

some particulars (say p1, p2, p3,…, pk); extending or 
generalizing this commonality to all subsequent 
terms (pk + 1, pk + 2, pk + 3, …), and being able to use the 
commonality to provide a direct expression of 
any term of the sequence. (p. 84)

As the quotation suggests, this process first involves 
the identification of differences and similarities be-
tween the parts of the sequence – described as ana-
logical reasoning by English and Sharry (1996). Then 
the commonality founded is generalized through 
predicting a plausible generalization. This stage is 
considered by Rivera and Becker (2007) as abductive 
in nature since it is abductive reasoning that boosts 
conjecturing and adopting a hypothesis that is con-
sidered testable. Finally, the tested commonality be-
comes the basis for inducing the generalized concept 
of the sequence. Here, the role of inductive reasoning 
is considered as pivotal (Ellis, 2007). 

The role of processes of induction and deduction has 
also been highlighted by recent literature. Ayalon and 
Even (2013) emphasized the role of inductive reason-
ing when students investigate algebraic expressions. 
Martinez and Pedemonte (2014) have shown that a 
prerequisite for linking inductive argumentation 
in arithmetic and deductive proof in algebra is the 
co-existence of arithmetic and algebra for supporting 
the arguments developed within an argumentation. 

METHODOLOGY 

Research Question 
The purpose of the present study is to investigate the 
way specific reasoning processes influence achieve-
ment in tasks that examine their algebraic thinking. 
Specifically, the present study addresses the following 
question: Is there a relation between specific reasoning 
processes and individuals’ algebraic thinking abilities? 

Participants 
The participants were 348 students that were select-
ed by convenience from four different schools. The 
students were divided to four age groups: 55 were 
students of Grade 4 (10 years old), 89 were students 
of Grade 5 (11 years old), 101 were students of Grade 
6 (12 years old) and, 120 were students of Grade 7 (13 
years old). Taking into consideration the fact that the 
data collection instruments would be the same for all 
of the participants of the study, no younger or older 
groups of students were selected. On the one hand, 
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third grade students would not be able to manipu-
late the tasks, probably due to developmental reasons 
and absence of experience. On the other, eighth grade 
students were considered as more skillful in solving 
algebraic tasks due to their intensive involvement in 
algebra courses. 

The tests
The participants were tested with three tests.  Forty 
minutes were allowed to complete each of the three 
tests.

Algebraic thinking test 
The test consisted of 25 tasks that were adapted from 
previous research studies related to the notions of 
algebra and algebraic thinking or algebraic proof 
(e.g., Blanton & Kaput, 2005; Mason et al., 2005) and 
past studies that evaluated students’ mathematical 
achievement in international or national level (e.g., 
TIMSS, 2011; NAEP, 2011; MCAS, 2012). These were 
accordingly categorized into four groups: 

(a) The use of arithmetic as a domain for expressing 
and formalizing generalizations (generalized arith-
metic). These tasks involved solving equations and 
inequalities. The participants had to treat equations 
as objects that expressed quantitative relationships, 
without any reference to the meaning of the symbols.

(b) Generalizing numerical patterns to describe func-
tional relationships (functional thinking). These tasks 
required finding the nth term in patterns and func-
tional relationships and expressing them in a verbal, 
symbolic or any other form.

 (c) Modeling as a domain for expressing and for-
malizing generalizations: These tasks required the 
expression and formalization of generalizations by 
analysing information that are presented verbally, 
symbolically or in a table. 

(d) Algebraic proof: These tasks reflected different 
activities and associated abilities of algebraic proof. 
For example, one of these tasks required the use of a 
generalization that was previously established (what 
is the sum of two odd numbers) for building a new 
generalization (what is the sum of three odd numbers).

The first three groups reflected the three strands of 
algebra as these were described by Kaput’s (2008) the-
oretical framework. The fourth group was added to 
the test addressing the strand of algebraic proof. The 
examination of the construct validity of the items in 
the test to measure the factors of algebraic thinking 
was assessed through Confirmatory Factor Analysis 
using the MPLUS statistical package. The results 
indicated that the data fit the model well (CFI=0.95, 
x2=103.345 df=131, x2/df=1.19, RMSEA=0.03), verifying 
the structure of the proposed model. Table 1 presents 
examples of tasks for each of the four categories.

The Naglieri Non-Verbal Ability Test (NNAT)
The NNAT measures cognitive ability independently 
of linguistic and cultural background (Naglieri, 1997). 
There are seven different levels of the test correspond-
ing to different age-groups of students. The test is a 
matrix reasoning type of exam that contains patterns 
formed by shapes that are organized into designs. All 
the tasks are multiple choice and students are asked 
to choose the answer that best completes the pattern. 

Generalized Arithmetic The sum 245676 + 535731 is odd or even number? Explain your answer.

Functional thinking Bill is arranging squares in the following way. How many squares there will be 
in the 16th figure?

    Figure 1          Figure 2             Figure 3

Modeling as a domain of 
expressing and formalizing 
generalizations

Joanna will take computers lesson twice a week. Which is the best offer? 

Algebraic Proof What is the sum of three odd numbers?

OFFER Α: €8 for 
each lesson

OFFER B: €50 for the first 5 les-
sons of the month and then €4 for 
every additional lesson

Table 1: Examples of tasks in the algebraic thinking test
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The NNAT was selected among other tests that are 
used extensively for assessing students’ cognitive 
ability due to the fact that the NNAT includes different 
categories of questions which reflect different types of 
reasoning skills. Specifically, it contains four different 
groups of questions: pattern completion, reasoning 
by analogy, serial reasoning and spatial visualization.

Based on available mathematics education literature, 
the reasoning processes that seem to be related to al-
gebraic thinking and at the same time are measured 
by the NNAT are: 

(a) Reasoning by analogy: In this category of items, 
students have to recognize commonalities between 
several geometric shapes and determine which an-
swer is correct by focusing on how the objects change 
as one moves across the rows and down the columns 
in the design. Correspondingly, English and Sharry 
(1996) have described as analogical reasoning the 
process where students map similarities between 
algebraic expressions.

(b) Serial reasoning: The items in serial reasoning 
matrices are constructed using a series of shapes 
that change across the row horizontally and the col-
umns vertically throughout the design. As the design 
moves down the matrix it also moves one position to 
the right, creating a series of designs that changes 
over the matrix. Students have to identify where the 
sequence finishes and starts again from a different 
starting point. The strategy that students follow in 
this kind of items shares common features with in-
ductive reasoning. According to mathematics educa-
tion literature, inductive reasoning is pivotal when 
students explore pattern sequences (e.g., Rivera & 
Becker, 2007). In these tasks students have to make 
generalizations, based on recognizing that a series of 
numbers or figures constitute a sequence that follows 
a specific rule.

The NNAT test’ reliability was tested with norms based 
on a sample of more than 100,000 students (Naglieri, 
1997). In this study, the internal consistency of scores 
measured by Cronbach’s alpha was satisfactory for 
the NNAT test (a=0.84).

Deductive Reasoning Test
A test on deductive reasoning was constructed, guid-
ed by existing theory and research on deductive rea-
soning. In particular, items in this test were adapted 

from a test that was used by Watters and English 
(1995). This test was considered as appropriate due 
to the fact that it was used and validated for measur-
ing deductive reasoning among students that were 
approximately of the same age as the participants 
in the current study. In Watters and English’s study, 
students’ performance in the deductive reasoning 
test was related to their performance in scientific 
problem solving. In our case, students’ performance 
in the deductive reasoning test will be related to their 
performance in algebraic thinking. The items in this 
test represented 10 syllogisms which requested the 
students to reason deductively. This process included 
the analysis of premises that describe formal truth 
relationships, without reference to their empirical 
or practical truth value and the extraction of a logical 
fact, result or consequence. The internal consistency 
of scores measured by Cronbach’s alpha was satisfac-
tory for this test (a=0.79).

Analysis 
The quantitative analysis of the data was carried 
out using the SPSS statistical package. Pearson cor-
relation analysis and Regression analyses were per-
formed. This study assumes that reasoning processes 
(as these are indicated by available literature) might 
predict algebraic thinking abilities. To test this as-
sumption, Regression analysis was selected since 
this kind of analysis informs on the way one or more 
independent variables predicts the variance of a de-
pendent variable. 

The assumptions of multilinear regression are met 
since the Tolerance and VIF values were for all of the 
independent variables close to 1 (.972, .863, .876 and 
1.03, 1.16, 1.14). This fact indicates that the multicolline-
arity and singularity assumptions are met. Moreover, 
standardized predicted X standardized residuals plot 
showed that the residuals did not violate the homosce-
dasticity of residuals and linearity assumptions.

RESULTS 

The question of the present study addressed the re-
lationship between algebraic thinking abilities and 
specific reasoning processes. Therefore, a correlation 
analysis was conducted in order to find out whether 
algebraic thinking and abilities involved in reasoning 
processes are significantly correlated. According to 
Pearson indicator, there is a statistically significant 
correlation between the individuals’ achievement in 
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the algebraic thinking test and the NNAT test (R=0.510, 
p=0.000<0.05). Moreover, the results show that there 
is a statistically significant correlation between the 
achievement in the algebraic thinking test and the de-
ductive reasoning test (R=0.278, p=0.000<0.05). These 
results support previous reports which denoted that 
successful engagement with algebraic tasks involves 
several types of reasoning processes. 

The nature of the relationship between algebraic 
thinking and specific reasoning processes was fur-
ther explained by conducting regression analyses. 
Specifically, the analysis examined the way in which 
the achievement in the NNAT test and the deductive 
reasoning test (control variables) predict the achieve-
ment in the algebraic thinking test (depended varia-
ble).

Table 2 presents the results of the regression analysis. 
The B is the regression coefficient and represents the 
change in the outcome resulting from a unit change 
in the predictor, whereas, the beta coefficient (β) is 
the standardized version of the B coefficient where all 
variables have been adjusted to standard score form 
(Field, 2005). As the R-square shows, a percentage of 
54.2% of the variance can be explained by the inde-
pendent variables NNAT and deductive reasoning. 
This result indicates that as achievement in the two 
tests increases, the total achievement in the algebra-
ic thinking test also increases. NNAT categories and 
deductive reasoning are indicated as predictors of 
algebraic thinking abilities. In order to further ex-
amine this relationship, multiple regression analysis 
was conducted with criterion (depended variables) 
the total achievement in the algebraic thinking test 
and predictors (independent variables) the abilities in 
three reasoning processes: reasoning by analogy, se-
rial reasoning, and deductive reasoning. The results 
of the multiple regressions are presented in Table 3. 
According to these, all of the three reasoning process-

es exert a significant influence on the prediction of 
individuals’ achievement in algebraic thinking. 

The data show that the factor with the greatest effect 
on the prediction of achievement in algebraic thinking 
tasks is reasoning by analogy (β=.308). Serial reason-
ing also seems to be a significant predictor of individ-
uals’ total achievement in the algebraic thinking test 
(β=.238). Serial reasoning addresses the recognition of 
sequences and finding changes in the sequence.  The 
abilities involved in the serial reasoning tasks share 
common features with the abilities involved in activ-
ities with pattern. According to the model, deductive 
reasoning (β=.180) explains a respectable proportion 
of variance in individuals’ total achievement in the al-
gebraic thinking test. It is anticipated that the effect of 
deductive reasoning could be higher if deductive rea-
soning was measured through non-verbal methods, as 
in the NNAT.  The deductive reasoning test was not a 
language-free test of ability. Students from different 
linguistic groups where tested through a test that in-
volved logical premises written in Greek. In contrast, 
the NNAT is not dependent on verbal abilities. 

DISCUSSION

As English (2010) suggested, a priority for mathemat-
ics education research is the definition of fundamental 
skills and reasoning processes which enhance students’ 
efforts for achieving understanding in mathematical 
learning. NCTM (Arbaugh et al., 2010) also emphasized 
the need for coherently defining mathematical con-
cepts and reasoning processes that enable individuals 
to develop algebraic thinking. Motivated by this argu-
ment, the present study aimed at examining students’ 
algebraic thinking abilities with different reasoning 
processes. The importance of this study also lies 
in the fact that aims to capture a more holistic view 
of the algebraic thinking concept, by using Kaput’s 
theoretical model as a referent point. 

Algebraic thinking B(SE) B

NNAT categories .391 (.040) .473*

Deductive reasoning .471 (.122) .188*

R2=.542 , *p=.000

Table 2: Regression Analysis of the achievement in NNAT test 

and the deductive reasoning test with dependent variable the 

achievement in the algebraic thinking test 

Algebraic thinking B(SE) B

Reasoning by analogy .883 (.161) .308*

Serial reasoning .962 (.229) .238*

Deductive reasoning .452 (.123) .180*

R2=.544 , *p=.000

Table 3: Regression Analysis of the achievement in each of the three 

reasoning processes with dependent variable the achievement in 

algebraic thinking test 
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The findings obtained from the quantitative data indi-
cate that students’ achievement in algebraic thinking 
tasks is influenced by reasoning by analogy, serial 
reasoning, and deductive reasoning. Reasoning by 
analogy appears to be the factor with the most sig-
nificant effect on algebraic thinking abilities. This 
result lends support to the findings of previous stud-
ies which indicated a relationship between algebra-
ic thinking and analogical reasoning. According to 
English and Sharry (1996), analogical reasoning pro-
vides the basis for algebraic abstraction in tasks where 
students have to identify similarities and differences 
between a group of algebraic equations. Therefore, it 
seems reasonable to argue that analogical reasoning 
constitutes a basic process for succeeding in tasks of 
identifying structure and relationships. 

Our findings also suggest that serial reasoning has 
a significant role in algebraic thinking. This result 
might be attributed to the fact that serial reasoning 
shares common features with inductive reasoning. 
This ability has been reported by related literature 
as crucial for the engagement in activities of deter-
mining pattern rules, recognizing the part that is re-
peated, and finding not observable terms (e.g., Rivera 
& Becker, 2008). Deductive reasoning also seemed to 
account for some variance in the algebraic thinking 
test. One plausible explanation for this result might 
be the fact that deductive reasoning is associated to 
the notion of proof. According to Blanton and Kaput 
(2005) activities such as using generalizations to build 
other generalizations, generalizing mathematical 
processes, and testing conjectures, and justifying 
reflect categories of algebraic thinking that are in-
terwoven with proof.

As Kaput (2008) recommended, several reasoning pro-
cesses run through algebraic activities. The analysis 
of the data provides empirical validation of these ide-
as and sheds some light on the crucial issue of which 
might these processes be and what is their nature.  
Furthermore, these findings can be used for inform-
ing educators about the sources that act as means 
for mastering different forms of algebraic thinking. 
Future teaching interventions might support the de-
velopment of different types of reasoning, in order 
to test advances in developing algebraic thinking. 
According to English (2011), the key to reach advanced 
forms of reasoning is the creation of cognitively de-
manding learning activities in appropriate contexts. 

The present study seemed to provide some evidence 
regarding the associations between students’ algebra-
ic thinking and fundamental reasoning processes. Yet, 
one limitation of the study is the context in which it 
was conducted. The relationships found in the present 
study need to be further examined, in other educa-
tional systems in which algebraic thinking might be 
approached through the mathematics curriculum in 
a different way. In respect to the methodology, a limi-
tation of the study seems to be the fact that analogical 
reasoning and inductive reasoning were examined 
with a non-verbal test and deductive reasoning was 
tested with a verbal test. Future research could exam-
ine these associations within tests that follow similar 
design and features. Also, students of lower primary 
grades or higher secondary grades could be added to 
the sample. Finally, future research could identify the 
associations of algebraic thinking with other core pro-
cesses and mental operations, in order to approach a 
wider picture of the algebraic thinking concept. 
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In this paper, we will focus on the effects of teachers’ lack 
of the algebraic knowledge and sensitiveness that are 
necessary to effectively control the plurality of levels of 
interpretation involved within activities aimed at mak-
ing students aware of the meanings associated to their 
use of algebraic language. Our analysis of class discus-
sions conducted by a group of middle-school teachers 
involved in university training courses enabled us to 
highlight profound gaps, between modeling and inter-
pretation, that prevent them from becoming aware of 
what it is important to stress when facing this kind of 
activities with students.

Keywords: Interpretative processes, algebraic thinking, 

algebraic teacher knowledge, teacher education.

FOCUS ON INTERPRETATIVE ASPECTS 
IN THE TEACHING OF ALGEBRA: 
KEY ROLE OF THE TEACHER

Since the development of the first studies on the prob-
lems related to the learning and teaching of algebra, 
many researchers reject the previous widespread 
idea that students’ difficulties are mainly related to 
the complexity of algebraic syntax (see, for instance, 
Ursini, 1990; Kieran, 1992). The focus has therefore 
shifted on students’ control of the meanings associat-
ed to their use of algebraic language. Different studies 
stress the importance of stimulating them with the 
aim of fostering their aware use of symbols as tools to 
represent, communicate, generalize, solve problems, 
develop reasoning (Arcavi, 1994; Arzarello, Bazzini, 
& Chiappini, 2001; Kieran, 2004). Bell (1996) states, in 
particular, that if students are given the possibility to 
have experience of the use of algebraic symbolism as 
a tool to express regularities and represent relation-

ships, they could be guided through what he calls the 
“essential algebraic cycle”, characterised by three main 
typical algebraic activities: to represent, to manipu-
late and to interpret.

In this work we focus on the third component of the 
essential algebraic cycle: the interpretative process-
es that are typical of algebraic activities. When we 
use the term ‘interpretative processes’ we refer both 
to Duval’s (2006) idea of conversions between dif-
ferent representation registers (in the case of alge-
bra, from symbolic to verbal register and vice versa, 
but also from graphic, to symbolic, to verbal) and to 
Arzarello, Bazzini and Chiappini (2001)’s model for 
teaching algebra as a game of interpretations. These 
last researchers highlight, in particular, how the acti-
vation of conceptual frames (defined as an “organized 
set of notions, which suggests how to reason, manip-
ulate formulas, anticipate results while coping with 
a problem”) and the changes from a frame to another 
and from a knowledge domain to another could rep-
resent fundamental steps in the activation of inter-
pretative processes.

The problem of algebraic modeling and of the coordi-
nation between verbal and algebraic language have 
been a central focus of research since the eighties. A 
paradigmatic study is the one developed by Clement 
(1982), who documented erroneous approaches devel-
oped by science-oriented college students in facing 
simple kind of algebra word problems. As regard to 
this problem, Smith and Thompson (2007) suggest 
that students’ difficulties with algebra result not only 
from algebra curricula that lack meaning and coher-
ence, but also from elementary curricula that fail to 
develop students’ abilities to reason about relation-
ships. This observation has been shared by different 
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research studies developed in the realm of Early 
Algebra. Blanton and Kaput (2005, 2011), for example, 
highlight the crucial role played, in elementary school 
mathematics, by the algebraic reasoning embedded in 
finding, describing, justifying and symbolizing math-
ematical relationships between quantities, advocating 
a functional approach to algebra in the elementary 
grades. This is in tune with Kieran (2004), who refers 
to the shift of focus from the calculation of numerical 
answers to the relationships between quantities as 
one of the fundamental adjustments that students 
should make in their transition from arithmetic to 
algebra. This vision is in tune with the approach that 
we have developed within the ArAl Project (see, for 
instance, Cusi, Malara, & Navarra, 2011), aimed at pro-
posing a relational and linguistic approach to Early 
Algebra and also meant to constitute an integrated 
teacher education program. 

A recent study by Magiera, van den Kieboom and 
Moyer (2013) has highlighted that pre-service middle 
school teachers demonstrated a rather limited ability 
to recognize the full potential of algebra-based tasks 
to elicit algebraic thinking in students. They suggest, 
therefore, that there is a need of making teachers un-
derstand the contexts in which the various features 
of algebraic thinking might arise in order to enable 
them to effectively engage students. In tune with these 
results, Strand and Mills (2014), in their survey of re-
search literature on prospective elementary school 
teachers’ knowledge of algebra, state that it is well 
documented that these teachers tend to struggle to 
effectively interpret and use algebraic symbols (even 
those that they have produced themselves), to inter-
pret graphical representations and to make connec-
tions between representations. 

Our experience as teacher educators enabled us to 
observe similar problems also in the Italian context. 
Although research results about the importance of 
guiding students through the whole essential alge-
braic cycle have been widespread, Italian teachers 
are frequently not used to focusing on interpreta-
tive aspects. As a result, formalism and application 
dominate. This requires us to shift the focus on the 
teacher knowledge of the interpretative aspects 
connected to algebraic thinking and on the effects of 
this knowledge on students’ learning. A framework 
to identify the knowledge for teaching school alge-
bra has been developed by McCrory, Floden, Ferrini-
Mundy, Reckase and Senk (2012), who stress the role 

played by teachers’ capability of selecting, applying, 
and translating among mathematical representations 
and of making connections between manipulatives 
and mathematical ideas explicitly. But this way of 
behaving in the class must be educated. In order to 
foster teachers’ overcoming of these difficulties and 
their effective approach in guiding students in the 
transition from arithmetic to algebra, in our in-ser-
vice training courses for middle-school teachers we 
propose specific laboratorial activities focused on 
this theme.

In this paper we will present the main results from 
the analysis of the first of these activities, which was 
aimed at making trainee-teachers (in the following 
TT) directly experience how (and if ) they are able to 
foster students’ activation of interpretative processes 
during whole class discussions about a task involving 
proportional relations. In particular, we will high-
light how this analysis enabled us to document the 
effects, in the way TT conducted class processes, of 
their lack of the specific knowledge that could favour 
students’ development of interpretative attitudes.

METHODOLOGY OF WORK WITH 
TRAINEE-TEACHERS 

The laboratorial activity we present was the first one 
proposed to a group of 58 middle-school (grades 6–7–
8) TT involved in a training course aimed at making 
them achieve a teaching qualification. This course, 
which lasted six months, was specifically devoted to 
temporary teachers that have been working in school 
for at least three years. In Italy, in fact, also people who 
do not have a teaching qualification could work as 
teachers in school. As regards, in particular, the mid-
dle-school context, mathematics is mainly taught by 
teachers who do not have a mathematics background 
(their degrees could be in biology, chemistry, natural 
science, geology…).

During the whole training period, the TT attended 
to different courses in Mathematics Education, car-
ried out by the authors themselves and by another 
colleague involved in the ArAl project. Many lessons 
were devoted to the problem of the teaching of algebra, 
with a specific focus on the main new trends in Early 
Algebra and on the role played by the teacher in the 
class. The first laboratorial activity in which the TT 
were involved was focused on a problem that we are 
going to analyse in detail in the following section. The 
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TT were asked to propose the problem to their stu-
dents and to carry out its resolution during a whole 
class discussion. This is the text of the problem:

“A florist sends to a flower grower an email, asking 
to send him plants of sage and rosemary. However 
he does not indicate the exact number of plants, but 
specifies that for every 4 plants of sage he wants 6 
plants of rosemary. Let r represents the quantity of 
plants of rosemary and s the quantity of plants of sage. 
Represent: (a) the relation between these two quan-
tities; (b) the number of plants of sage through the 
number of plants of rosemary; (c) the number of plants 
of rosemary through the number of plants of sage.

Draw, in the Cartesian plane O(r, s), the graph of the 
relation that expresses the quantity of plants of sage 
through the quantity of plants of rosemary. Then draw, 
in the plane O(s, r), the graph of the relation that ex-
presses the quantity of plants of rosemary through 
the quantity of plants of sage.

The flower grower delivers 66 plants of sage and tells 
him that he will send later the plants of rosemary. How 
many plants of rosemary does he have to deliver?”

This problem can be located among the activities, usu-
ally proposed in grade 7, which are aimed at linking 
the discrete arithmetic of natural numbers to the 
arithmetic of rational and real numbers.

We have chosen this specific problem because it 
could be both faced: (1) Adopting an “arithmetical 
approach” – typical of the Italian school tradition – 
focused on the application of properties of propor-
tions; (2) Referring to an idea of proportionality as a 
functional relation, idea that could open the way to the 
development of algebraic reasoning. The approach 
that we have suggested TT to adopt in their classes was 
the second. Our aim was, in fact, to make them become 
aware that classical problems that, according to the 
Italian school tradition, are usually faced through the 
application of “rules” could instead be solved through 
the study of relations and, therefore, through the acti-
vation of an interesting game of interpretations. This 
approach to the resolution of the problem involves, 
in fact, the intertwining of different interpretative 
levels (as we will highlight in the next section) and the 
activation of different representations of the propor-
tional relation involved. 

The objectives of the problem and the main processes 
to be activated during a class discussion on its reso-
lution were therefore shared with TT with the aim of 
making them recognise the potential of the task to 
elicit algebraic reasoning in students. 

RESEARCH AIMS AND RESEARCH 
METHODOLOGY

In this paper we are going to focus on our analysis of 
the transcripts of the class discussions conducted by 
TT. Our main aim is to highlight what kind of difficul-
ties they faced when they implemented the problem in 
their classes, trying to follow our suggestion of adopt-
ing an ‘algebraic approach’ to its resolution (namely 
an approach focused on the algebraic representation 
of the relation involved and aimed at the activation of 
different interpretative processes).

In the following we will analyse the problem intro-
duced in the previous paragraph. This a-priori anal-
ysis of the problem has two main aims:

(1) The first aim is to highlight the multifaceted in-
terpretative processes that could be activated in its 
resolution. Since this analysis was shared with TT, this 

“hypothetical” resolution represents also the path that 
they were asked to follow when facing the problem 
during the whole class discussions with their classes. 

(2) The second aim is to identify specific indicators for 
our analysis of the transcripts of the class discussions 
conducted by TT. These indicators refer to the games 
of interpretations and the meta-level reflections that 
TT should have tried to develop in their interaction 
with students.

Analysis of the problem and identification 
of the indicators for the analysis of the way 
TT guided their classes in its resolution
As we stated above, if we focus on an “algebraic ap-
proach” to the resolution of the problem, it could be 
characterised by a deep twine between aspects re-
lated to the use of different representation registers 
and aspects related to the activation of interpretative 
processes at different levels. 

To carry out the task in the class the teacher should 
initially guide students in the analysis of the text of 
the problem and in the identification of the key verbal 
relation that has to be translated into a mathematical 
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sentence. This requires considering proportions be-
tween couples of numbers that exemplify the relation 
itself and their classical representation (i.e., 8:12=4:6, 
12:18=4:6…), then translating them into fractional 
terms (i.e., 8/12=4/6, 12/18=4/6…). 

A discussion aimed at a real sharing of the meaning of 
the letters r and s, introduced in the text of the prob-
lem, should precede the formalization of the relation 
between the number of plants of sage and the number 
of plants of rosemary. The possible formalizations 
of this relation should be compared and interpret-
ed through their verbalisation. For instance: if the 
relation is represented through the proportion , it 
can be interpreted as “the quantity of plants of sage 
is to the quantity of plants of rosemary as 4 is to 6”; 
but it could also be represented through , that can 
be interpreted as “the fourth part of the quantity of 
plants of sage is equal to the sixth part of the quantity 
of plants of rosemary”; etc. This moment, devoted to 
the interpretation of the formalizations proposed by 
students, prevents from the uncritical acceptance of 
erroneous symbolic formalizations such as , where 
letters play the role of simple labels.

During this discussion, the teacher should also fos-
ter the representation and subsequent verbal inter-
pretation of the previous proportions in terms of 
equivalence between fractions. This leads to the re-
quired representation of the number of plants of sage 
through the number of plants of rosemary and vice 
versa. For example, starting from the equality  and 
the simplified , the class could interpret the latest as 

“the ratio between s and r is 2/3” and then as “s is 2/3 
of r”, that can quickly lead to , which is the required 
symbolic representation of the number of plants of 
sage through the number of plants of rosemary.

After the identification of the two representations – 
and  – of the relations between s and r, another inter-
pretative process should be activated: the particular-
ization of the two formulas through the analysis of 
specific numerical cases, which could foster students’ 
acquisition of the concept of variable. The couples 
of values determined through this particularization 
could be inserted into two tables that better enable to 
highlight the interrelations between one couple of val-
ues and the one that is obtained inverting the values.

After the construction of the two required graphs 
through the identification of the points correspond-

ing to the couples of values collected in the two tables, 
the teacher should guide students in noticing that, 
although the alignment of the points could induce the 
idea of drawing a continuous line, not all the couples 
of numbers that are solutions of the two equations are 
also representatives of the phenomenon that has been 
modelled. Another aspect to be discussed in this phase 
is the pertinence of the solution r = 99, s = 66 according 
to the florist’s request. These observations could be 
followed by a geometrical examination of the model, 
discussing the meaning of the two ratios 2/3 and 3/2 
and introducing the neutral reference system (x,y) to 
compare the graphs of the two equations and empiri-
cally identify their geometrical relation.

This analysis enabled us to identify four main 
key-phases that characterise the resolution of the 
problem and four main groups of indicators, corre-
sponding to the different phases, which are summa-
rised in the Table 1.

As we stated above, this a-priori analysis was shared 
with TT before they proposed the problem to their 
classes. TT were asked to audio-record the discussions 
they conducted with their students and to reflect on 
these discussions referring to three different per-
spectives: the mathematical content at play, the role 
played by the teacher, the students’ approaches to the 
problem and reactions to the teacher’s interventions. 
After they performed this task, they sent us both the 
transcripts of their class discussions and the corre-
sponding reflections. 

We therefore analysed both the transcripts them-
selves and the reflections of the TT and the results of 
our analysis were discussed with them during a fur-
ther lesson. In this paper, because of space limitations, 
we are focusing only on our analysis of the transcripts 
of the discussions of the TT, aimed at highlighting the 
difficulties they faced when they implemented the 
problem in their classes trying to follow our sugges-
tions. The transcripts’ analysis, whose main results 
will be presented in the next section, was performed 
referring to the four key-phases and the correspond-
ing indicators that we have identified thanks to the 
a-priori analysis of the problem. 



Which algebraic learning can a teacher promote when her teaching does not focus on interpretative processes? (Annalisa Cusi and Nicolina A. Malara)

409

DATA ANALYSIS: IDENTIFICATION OF 
SOME PROBLEMATICAL ASPECTS IN THE 
DISCUSSIONS CONDUCTED BY TT

Through our analysis of discussions of TT we have 
identified specific problematic aspects, connected 
to their incapability of guiding students within the 
games of interpretation and reflection necessary to 
make them develop those competencies and aware-
ness that are objectives of an “algebraic approach” to 
this kind of activities.

As regards the first phase in the resolution of the prob-
lem (the transition from proportions to the formaliza-
tion of the proportionality law), some TT were not able 
to support students in abandoning the quantitative/
numerical level. They adopted a procedural approach, 
making students only formulate the numerical pro-
portions necessary to determine the couples of val-
ues that satisfy the relation and directly construct the 
graphs from the table of values. The modeling process 
was therefore inhibited. 

In some classes students were able to formulate dif-
ferent proportional laws starting from the numeri-
cal examples they constructed, but the TT accepted 
all these laws without asking students to interpret 
them through their verbalization. Many TT declared, 
during the class discussions, that “all the construct-
ed proportions are the same proportion”, instead of 
highlighting that, although their equivalence, the 
relations expressed by these proportions are differ-
ent. This erroneous conception, probably induced by 
some textbooks, could be overcome only through the 
activation of interpretative processes.

As regards the second phase in the resolution of the 
problem (the twine between syntactical and semantic 
aspects in the transition from the implicit forms of the 
relation to its two explicit forms), we have highlighted 
a really alarming phenomenon. Most of the TT did not 
support students in controlling and discussing the 
meaning of the two formulas derived from the propor-
tional laws. In fact, very few of them made students 
analyse the formulas through their particularization 
to introduce the role played by the letters as variables; 

Key-phases in the resolution 
of the problem

The teacher guides the students in the:

Phase 1: 
The transition from proportions 
to the formalization of the pro-
portionality law

Identification of the couples of numbers that satisfy the condition required in the 
problem;
Generalization and corresponding construction, through the introduction of let-
ters, of the proportions representing the relation between the two quantities;
Verbalization of the constructed proportions;
Interpretation of the proportions in fractional terms. 

Phase 2: 
The twine between syntactical 
and semantic aspects in the 
transition from the implicit 
forms of the relation to its two 
explicit forms

Control of the syntactical transformations that lead to the two explicit formulas;
Identification of the calculation process subtended to each formula;
Verbalization of the meaning expressed by each formula;
Conceptualization of the letters as variables and identification of their different 
roles (independent vs dependent variable);
Discovery of the predicting power of each formula;
Conceptualization of each formula as an equation and of the couples of numerical 
values that verify it as solutions of this equation;
Discovery of the direct connection between the two formulas and exploration of the 
interrelation between their solutions.

Phase 3: 
The representation of the two 
relations on the Cartesian plane.

Coordination between symbolic and graphic registers to represent the graphs of 
the two formulas in the Cartesian planes (r,s) and (s,r);
Re-nominalization of the variables to represent both the formulas in the Cartesian 
plane (x,y);
Interpretation of the graphs in relation to the problem and discovery of their pre-
dicting power.

Phase 4: 
Control of the adherence of the 
mathematical model to the spe-
cific problem-situation.

Comparison between the domain and codomain of each relation and the domain 
and codomain of the corresponding restrictions that model the problem-situation;
Reflection on the acceptability of certain couples of values (e.g., s = 66 and r = 99) as 
solutions of the problem.

Table 1: Indicators for the analysis of the transcripts of the discussions conducted by TT in their classes
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almost none of them made students verbalize the for-
mulas they had determined.

Another problematical aspect connected to this phase 
is that different TT often used terms such as “find s/r; 
search for s/r; calculate s/r” – instead of “make s/r ex-
plicit” or “express s/r through r/s” – to invite students 
to construct the two explicit formulas. Also the use 
of this procedural language inhibits the conceptu-
alization of variable. Finally, most of the TT guided 
students in the determination of the two explicit 
formulas starting from the constructed proportions, 
but they did not highlight how they could be obtained 
from each other, nor foster a reflection on their rela-
tionships.

As regards the third phase in the resolution process 
(the representation of the two relations on the Cartesian 
plane), an aspect that we have highlighted is that some 
TT let that students construct the graphs determining 
the couples of values that are solutions of the two ex-
plicit equations through proportions, without stress-
ing on the predicting power of the two formulas. In 
our view, this behaviour testifies that they conceive 
the modeling phase as something unnecessary and 
that they do not interpret the two formulas as the rep-
resentation of all the possible pairs of numbers having 
the same ratio. Moreover, the fact that students do not 
refer to the formulas in constructing the graph is an 
evidence of a lack in their control of the meaning that 
the formulas convey.

Another widespread problem related to the capability 
of TT of coordinating the verbal, the algebraic and 
the graphic registers is that, although many TT ex-
amined with students the geometrical properties of 
the graphs, almost none of them made students inter-
pret the graphs, highlighting their predicting power. 
Moreover they accepted continuous lines or semi-
lines as graphs of the relations, without developing 
a reflection on the fact that only some points of these 
lines are representatives of the phenomenon that has 
been modelled.

This last aspect is also connected to the problematic 
ones that we have noticed in analysing the discussions 
of the TT according to the indicators concerning the 
fourth phase of the resolution process (control of the 
adherence of the mathematical model to the specific 
problem-situation). Few TT, in fact, made students re-
flect on the domain and codomain of the relations that 

model the problem-situation and on the acceptability 
of certain couples of values as solutions of the prob-
lem (during most of the discussions the value 66 as 
a possible number of plants of sage was uncritically 
accepted).

CONCLUSIONS

Through the analysis of the transcripts of discussions 
of TT, we highlighted that, although they had shared 
with us the aims of the activity and the a priori analysis 
of the problem, many of them were unable to activate 
the necessary interpretative processes and meta-level 
reflections and therefore to exploit the potential of 
this task to elicit algebraic reasoning in students.

The evident blocks in the games of interpretation 
that should have been activated during the class dis-
cussions testify corresponding profound gaps in the 
knowledge of the TT. These gaps, in fact, prevent them 
from becoming aware of what it is important to stress 
when facing this kind of activities with students. If 
teachers do not overcome these difficulties, they will 
not be effective models for their students, making 
them develop erroneous attitudes. This is a crucial 
problem in the didactic of algebra, because of the 
plurality of levels of interpretation that a teacher is 
required to effectively control. 

These results suggest that research should better 
scrutinize teachers and students’ difficulties in co-
ordinating the different levels of interpretation often 
involved in the algebraic activity, in order to identi-
fy possible strategies to overcome them. At the same 
time, as it was also stressed in the discussion within 
the TWG03, a reflection should be developed on how 
teacher education programs must be engineered 
according to these results with the aim of enabling 
teachers to become effective activators of interpre-
tative processes. 
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The present pilot study investigates how bodily move-
ment and mental motion interact during solving of dif-
ferent types of mathematical tasks. In an experimental 
study, subjects performed algebraic, geometric, and nu-
merical reasoning tasks at three complexity levels under 
static and dynamic postural control affordances during 
sitting. Electroencephalographic brain activity was re-
corded at resting baseline and during all experimental 
conditions. Results support the hypothesis that bodily 
movement has a positive effect on cognitive processing 
of demanding cognitive tasks. Moreover, our results 
indicate that mental symbolic transformations are 
processed within a visuo-motor representation that is 
aligned with the mental representation of physical space.

Keywords: Mental motion, bodily movement, 

electroencephalography.

INTRODUCTION

Current research in cognitive science demonstrates 
close interrelations between the cognitive and the 
motor system. One interesting research question 
for teaching and learning mathematics is how bod-
ily movement interacts with cognitive processing 
of mathematical problems, both in learning of con-
cepts and in the application of learned procedures. 
Recent research shows that spatial abilities predict 
mathematical performance (Tosto et al., 2014), but it 
is unclear how this correlation depends on the spe-
cific type of the task. Moreover, this influence may 
result from prior learning that has been influenced 
by bodily experiences or by bodily movement during 
cognitive task processing. In the present study, we 
focus on mathematical thinking that might have been 
developed using metaphors that ultimately build on 

experiences of moving in space. We assess students’ 
behavior in terms of mathematical performance, and 
measure the corresponding electrical brain activity 
during solving mathematical tasks under different 
manipulations of movement behavior.

Bodily movement and cognitive performance
Ongoing research has demonstrated effects of bodily 
movement on cognitive and psychological function-
ing (for a meta-analysis see Etnier, Nowell, Landers, 
& Sibley, 2006). Positive effects of moderate aerobic 
exercise have been shown for attentional, executive, 
and sensorimotor task performance (van der Niet, 
Hartmann, Smith, & Visscher, 2014). A large body of 
research shows close interrelations between the cog-
nitive and the postural control system (e.g., Hwang et 
al., 2013). To test interactions between the cognitive 
and motor or postural control system, usually a dual 
task paradigm is administered in an experimental 
setting in which participants are asked to perform 
two tasks, one task taxing motor, and the other task 
cognitive demands, at the same time. Most studies 
show that performance is affected in either one or 
both tasks depending on task difficulty and type of 
tasks administered compared to conditions where 
only one task has to be performed. One explanation 
is that cognitive processing is impaired when two 
tasks are performed taxing the same informational 
processing subsystem and therefore occupy its ca-
pacity, completely. For instance, the famous working 
memory model proposed by Baddeley and Hitch (1974) 
postulates specific subsystems, one for verbal, and the 
other for visuo-spatial information processing where 
cognitive resources are allocated depending on their 
coding format. Several studies have shown that move-
ment information and visuo-spatial information are 
processed within the same subsystem. This was shown 
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for spatially directed movements (e.g., Logie & Della 
Sala, 2005), and gestures (Rumiati & Tessari, 2002).

Bodily movement and mathematical 
problem solving
The famous book “Where mathematics comes from“ 
by Lakoff and Núñez (2000) puts out the strong thesis 
that “all abstract ideas are built by metaphors that 
are based on experience made possible by our body 
interacting with the physical world” (p. 496) and thus 
has triggered research in mathematics education that 
investigates the role of bodily movement in learning 
and explaining mathematics. A similarly strong con-
ception is found in Wittmann , Flood and Black (2012): 

All human concepts, including mathematical con-
cepts, are based in the perceptual motor system 
experiences we have while interacting with the 
world around us. 

With this background they investigate gestures of 
mathematics students while solving differential equa-
tions and formulate and give support for the hypoth-
esis that algebraic symbols are moved during com-
putation in a way similar to physical objects. When 
students multiply an equation by a denominator d 
their behavior is consistent with the view that d moves 
along some path from one side of the equation to the 
other.

In judging the strong claim that all mathematical 
concepts are formed by metaphors that are based on 
bodily experiences it might be useful to introduce 
the notion of ‘metaphorical distance’. Concepts that 
are directly linked to bodily experiences have a short 
metaphorical distance to bodily experiences, while 
others may have a long distance that spans a chain of 
metaphors. It seems likely that concepts with smaller 
metaphorical distance to bodily experience might be 
stronger related to other concepts with short distance 
to similar bodily experiences. We suppose, although 
we have no a-posteriori empirical evidence for this, 
that the metaphorical distance increases, e.g., in the 
following sequence: spatial rotation, moving symbols 
in equations, applying inverse operations, perform-
ing algorithms of numeric calculations. This line of 
argumentation suggests that arithmetical tasks are 
affected less by bodily movement than spatial geome-
try tasks or algebra tasks that afford moving symbols 
mentally.

Besides the metaphorical distance another dimen-
sion concerns the question whether bodily experience 
was essential in forming the concepts but is no longer 
relevant when these concepts are applied or if actual 
bodily experience (such as movements or gestures) 
becomes relevant during applications.

Further, we elaborate the above mentioned point that 
algebraic sub-expressions may be moved in a way 
similar to physical objects. It is interesting to note 
that researchers from different teaching traditions 
have noted that students tend to use the language of 
moving objects (e.g., Tall, 2013, p. 12). From the point 
of view of diagrammatic thinking signs do not refer to 
mathematical objects, but they are the mathematical 
objects. If this is combined together with the above 
theory of moving symbolic objects, the distinction 
between physical objects and symbolic mathematical 
objects is completely blurred. 

From this discussion, we extract the following hypoth-
esis of the existence of an algebraic symbol space: alge-
braic manipulations are carried out in a visuo-motor 
representation, either physically or mentally. Mental 
processes within this visuo-motor representation are 
supposed to be metaphorically close to experiences 
of bodily movements.

Moving in physical space may involve similar brain 
regions as moving in algebraic symbol space. Thus, it 
may be, that prior exercising one of them may have 
positive effects on the other, and it may be that simul-
taneous exercising may decrease (due to capacity lim-
its) or increase (due to psychophysiological activa-
tion) performance. Neurophysiological evidence for 
a pre-motor implementation of metaphorical motion 
could be demonstrated by Fields (2013). In the pres-
ent study, we investigate effects of unspecific bodily 
motion (i.e. motion that is not directly related to the 
structure of the mathematical task) on mathematical 
performance by variation of postural control affor-
dances during sitting while participants are work-
ing on the mathematical tasks. The corresponding 
brain activation is assessed as a neural substrate for 
the postulated common visuo-motor representation 
that underlies the processing of algebra and geome-
try tasks. Increases in electroencephalographic (EEG) 
theta (4.0–7.5 Hz), and alpha (8.0–13.0 Hz) activity in 
central, and posterior (parietooccipital) brain areas 
should reflect visuo-motor information processing 
in algebra and geometry, whereas increases in EEG 
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beta (13.0–30.0 Hz), and gamma (30.0–70.0 Hz) activity 
should indicate concentrative, attentionally mediated 
information processing.

In summary, the present paper advances two research 
questions: The first is whether bodily movement has 
an effect on mathematical performance measured in 
terms of behavioral data and corresponding brain 
activity. The second section tests the hypothesis 
that transformational algebraic manipulations are 
processed within a visuo-motor representation by 
investigating correlations between tasks that differ 
in the metaphorical distance to bodily movement 
and measure corresponding brain activation in ar-
eas related to processing of visuo-motor information 
in a frequency range (theta and alpha activity) that 
indicates working memory processes. We therefore 
expect increases in EEG theta and alpha activity in 
central, parietal, and occipital brain areas indicating 
visuo-motor working memory processes in algebra, 
similar to brain activation patterns in geometry.

MATERIALS AND METHODS

Participants
In the present study, n = 15 university students (mean 
age = 22.1 years, age range = 19–25 years) were tested. 
For a sub-sample of students (n = 6), electroencephalo-
graphic (EEG) activity was recorded for the entire du-
ration of the test. All subjects were right handed, had 
normal or corrected to normal vision, and no history 
of neurological impairments. All participants gave 
informed consent and were naïve as to the purpose 
of the study. Due to small sample size and its selec-
tion, the present pilot study has to be considered as 
an exploratory study.

Study design and tasks
The laboratory study was carried out in a 
3 (mathematical task: algebra, geometry, numerical 
calculation) x 3 (task difficulty: low, intermediate, 
high) x 2 (postural control: static, dynamic) within-
subject design. We presented three different types 
of mathematical tasks within each type three levels 
of difficulty have been distinguished. The last factor 
was that of control of bodily movement. In the stat-
ic condition, students were instructed not to move, 
while in the dynamic sitting condition participants 
sat on a stool that allows to move in all directions, and 
therefore promotes a dynamic control of bodily pos-

ture. For a sub-sample of students, EEG was recorded 
for the entire duration of the test.

The three types of mathematical tasks were arith-
metics or numerical calculations (Num), algebra (Alg) 
and spatial geometry (Geo). All tasks were presented 
in a multiple choice format and processed mentally 
by the students, i.e. they were not allowed to write 
down any calculations or notes. The 3 x 3 x 2 item sets 
were presented in a randomized order. Within each 
cell students worked on the items for five minutes. 
To avoid exhaustion the whole test was split up into 
three sessions. 

The arithmetical items were constructed ad hoc but 
informed by established theories of task difficulty 
in calculations (e.g. number of digits and carries). 
Example items are shown in Table 1.

Algebraic items tested the ability to determine the 
solution of linear equations in one unknown. On 
the basic level 1 the unknown was located on the left-
hand side of the equation and could be determined by 
arithmetical calculation as read of directly from the 
equation. At level 2, difficulty is increased by larger 
number involved and by flipping right and left side of 
the equation. Both of these levels concern equations 
that are classified by Filloy (2008) as arithmetical 
equations, as they do not require to operate on the 
unknown itself, but only on numbers around it. At 
level 3, equations are of Filloy’s algebraic type, i.e. they 
require true operating with unknown. All test items 
require to move the unknown across the equal sign 
as in 20x + 4x = 50 − x. Example items for algebra are 
shown in Table 2.

Performance in spatial geometry tasks was measured 
by the “Bausteine-Test” (Birkel, Schein, & Schumann, 
2002). The test is not designed to have three levels of 
difficulty but the solution probabilities of all items in 
a large sample are published in the test manual and 
we used this to group the items into three level sets.

A constraint of our setup is that all items are present-
ed in a multiple choice form so that taking possible 
solutions as distractors might lead participants to 
find the right answer not by transformational alge-
bra but by checking which of the numbers matches 
the equation. However, it is well known that students 
usually apply learned transformational methods 
even when inserting is more effective (e.g., Kouki & 
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Chellougui, 2013, for a recent confirmation) so that we 
expect that most students choose transformational 
strategies. Violations of this assumption would tend 
to decrease sensitivity of our tests, so that results that 
we can show would remain valid.

Analysis of behavioral data
As measure of the students’ performance in each ex-
perimental condition we take the number of correct 
answers achieved in the fixed time frame of five min-
utes. These numbers are denoted by a type signifier 
(Num, Alg, Geo), and the level, e.g., Geo1, Alg3, Num2. 
Lower levels are easier so that there are more correct 
answers, e.g., Alg1 > Alg2 > Alg3. When forming sum 
scores for the types of tasks, we calculated weighted 
sums to achieve approximately equal weight of all 
levels, e.g., Alg = Alg1 + 2 * Alg2 + 3 * Alg3. Classical test 
theory was applied to determine effects of the factors 
on achievement.

EEG recordings and data analysis
Electrical brain activity was recorded at resting 
baseline with eyes open before and after experi-
mental tasks, and during each experimental con-
dition. EEG was recorded (Micromed Brainquick, 
Micromed Systems Evolution) from 19 electrodes 
positioned according to the international 10–20 sys-
tem. Vertical and horizontal electrooculogram was 
recorded from two electrodes. Impedances were 
kept below 4.0 kΩ. The EEG signal was digitized at 
256 samples/s. After removal of oculomotor and 
electromyographic artifacts EEG data were subject-

ed to Fast-Fourier-Transformations. Power density 
spectra were calculated for the theta (4.0–7.5 Hz), 
alpha (8.0–13.0 Hz), beta (13.0–30.0 Hz), and gamma 
band (30.0–70.0 Hz) for each subject. Data of power 
density spectra were averaged over all participants 
and were subjected to a 2 (postural control: static, 
dynamic) x 3 (mathematical task: algebra, geometry, 
numerical calculation) x 3 (level: low, intermediate, 
high) analysis of variance for repeated measurements 
with Bonferroni-corrected post-hoc t-tests.

RESULTS

Behavioral data 
For all conditions we found that – according to what 
one would expect – the higher the level, the smaller 
was the number of correct answers. Cronbach’s alpha 
for the scales formed by the three levels for each type 
were 0.79, 0.95, 0.74 for Num, Alg, Geo respectively. 
However, the Shapiro test for normality of this scales 
had p-values of 4.9e-05, 0.028 and 0.21 due to the skew-
ness introduced by one exceptional well performing 
student. In the smaller sample without this student, 
normal distribution can be assumed. We checked that 
the results presented below vary only very little when 
run with the full or the smaller sample. We decided 
to report results including this student because n is 
already rather small.

The unspecific effect of bodily motion was positive in 
all cases, i.e. working in the dynamic condition yield-

Level Task Distractors

1 279 − 69 = 191, 190, 210, 220, 230

2 283 − 144 = 125, 139, 129, 149, 141

3 1980 / 44 = 47, 46, 45, 44, 43

Table 1: Examples for arithmetic items

Level Task Distractors

1 8x + 7 = 47 1, 2, 3, 4, 5

2 79 = 11x + 2 2, 7, 3, 5, 6

3 x + 15 = x + 10 + x 5, 10, 15, 20, 25

Table 2: Examples for algebra items

Task type Num Alg Geo

Cohen’s d 0.41 0.39 0.12

Table 3: Cohen’s d effect sizes
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ed higher scores. The Cohen’s d effect sizes for paired 
samples are shown in Table 3.

However, all of these differences fail slightly to be 
significant (significance level p = 0.05) as measured by 
the Wilcoxon test due to the rather small sample size. 

Considering the first research question we performed 
a linear regression (R 2013, method lm). Results are 
shown in Table 4. In this case, it is important to note 
that with the smaller sample that satisfies normality 
assumption almost the same results appear. The most 
interesting β-weight of Geo in Alg3 is 0.064 in this 
case and significant as well. To complete data analysis, 
we calculated correlations of the relevant variables 
(see Table 5). The high correlation between Alg1 and 
Num is to be expected as reading these equations back-
wards yields a calculation task. Basically, to deal with 
Alg1 items one needs to determine by calculation a 
numerical unknown. This last aspect explains the 
rather high correlation between Alg1 and Alg3.

In all 3 x 3 combinations of levels and task types stu-
dents performed better under the dynamic sitting 
condition. However, due to the small number of partic-
ipants the effects could not be shown to be significant 
although effect sizes (Cohen’s d for paired samples) 
indicated at least medium effects going up to d = 0.49 
for Alg3.

EEG data
Results for EEG brain activity are depicted in Figure 1 
(the nose of the head models is directed towards the top 
of the page). Significant main effects were obtained for 
posture control, F(1, 5) = 7.02, p < .05, task, F(2, 10) = 5.46, 
p < .05, and level, F(2, 10) = 5.72, p < .05, with a significant 

posture control x task x level interaction, F(4, 20) = 4.13, 
p < .05. EEG data show increased theta and alpha pow-
er in central and posterior regions during algebraic 
and geometric tasks at high complexity level in the 
dynamic postural control condition (p < .05) indicat-
ing an increase of activity in brain regions related 
to processing of visuo-motor information. Gamma 
power was increased over all brain regions during 
numerical reasoning at high complexity level under 
dynamic postural control (p < .05) which is a correlate 
for an internalized attentional processing mode that 
is not dependent on sensory modality of information. 

DISCUSSION AND CONCLUSION

To our knowledge, this is the first study examining 
effects of postural control manipulation on mathemat-
ical performance. Behavioral and neurophysiological 
data show positive effects of dynamic postural control 
on mathematical reasoning performance. Different 
patterns of brain activation could be observed de-
pending on postural control affordances, mathemat-
ical task, and task difficulty. Task-dependent EEG acti-
vation patterns indicate that mathematical reasoning 
is affected differently by manipulation of postural 
control affordances. We suppose that stimulation of 
the postural control system activates a visuo-motor 
representational mode during solving of algebraic 
and geometric tasks which is indicated by an increase 
in EEG theta and alpha activity in central and pos-
terior brain areas, whereas attentional information 
processing is enhanced in numerical reasoning tasks 
indicated by increases in gamma activity in all brain 
regions. Therefore, our results confirm the hypoth-
esis that algebraic and geometric tasks are processed 
in a different mode than arithmetic tasks.

Alg1 ~ Geo + Num Alg3 ~ Geo + Num

β-weight p-value β-weight p-value

Geo 0.004 0.89 0.067 0.039 *

Num 0.246 0.3 × 10–9 *** 0.135 0.45 × 10–6  ***

Table 4: Linear models for Alg1 and Alg3

Num Alg1 Alg3 Geo

Num 1 0.90 0.76 0.47

Alg1 1 0.87 0.43

Alg3 1 0.58

Geo 1

Table 5: Correlations of task types
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Further, our results support the hypothesis of an 
algebraic symbol space. The significant non-zero 
correlation found in behavioral data supports the 
hypothesis of the existence of an algebraic symbol 
space. Increased EEG theta and alpha in algebraic and 
geometric reasoning tasks indicate that both tasks are 
processed within a common working memory rep-
resentation when the cognitive system is stimulated 
by bodily movement. However, further research is 
needed to clarify this hypothesis.

Finally, we present two theoretical explanations for 
the found patterns of results: (1) Increased mathemat-
ical performance is found in conditions of dynamic 
postural control affordances due to an increase of 
level of psychophysiological arousal, and therefore 
enhanced wakefulness. In a previous study (Maus, 
Henz, & Schöllhorn, 2013) increased attentional per-
formance during dynamic sitting was demonstrated. 
EEG brain activation mirrored the found patterns 
of results as shown by an increase in beta activity in 
brain areas related to visual processing. EEG brain 
activation at high task difficulty level under postural 
control supports the hypothesis of increased psycho-
physiological arousal. Our results are in line with a 
study conducted by Vourkas and colleagues (2014) 
who observed differences in EEG brain activity in 

arithmetic tasks depending on task difficulty in chil-
dren. (2) The occurrence of different EEG brain acti-
vation patterns in algebraic and geometric tasks in 
contrast to arithmetic tasks under dynamic postural 
control confirms the hypothesis that the presented 
tasks are processed within different cognitive sub-
systems. Increased central and posterior EEG alpha 
and theta activity in algebraic and geometric tasks 
at high task difficulty levels under dynamic postural 
control indicates that visuo-spatial working memory 
processes are stimulated by additional bodily move-
ment, and therefore are responsible for the observed 
enhanced mathematical performance.

With the design of the current pilot study, we present 
a new methodological approach to investigate the un-
derlying cognitive and neurophysiological processes 
in mathematical problem solving and their interaction 
with bodily movement. The found results contribute 
to a better understanding of cognitive processes that 
occur during solving of different types of mathemat-
ical problems, and encourage to design movement 
interventions which alleviate mathematical process-
ing in learners. Our results have important implica-
tions for designing environments that promote bodily 
movements in learners of mathematics to increase 
their academic performance as could be shown in cur-

Figure 1: EEG activity during mathematical problem solving in static and dynamic postural conditions. The nose of the head models is 

directed towards the top of the page. EEG frequency bands: A Theta (4.0–7.5 Hz). B Alpha (8.0–13.0 Hz). C Gamma (30.0–70.0 Hz)
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rent research (e.g., van der Niet et al., 2014). Further, 
our results encourage to apply visuo-motor learning 
and teaching strategies in algebra, such as gestures 
(for a discussion see Janßen & Radford, 2015), due to 
the shown physiological preference of the brain for 
visuo-motor processing of algebra.
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The goal of this paper is to contribute to the research on 
the introduction of solving linear equations. Subsumed 
in the “Comparing and Contrasting” category intro-
duced in Prediger, Bikner-Ahsbahs and Arzarello’s 
(2008) networking strategies, we contrast two episodes 
informed by two distinct theories and offer an insight 
into the teacher’s role in introducing new knowledge in 
the classroom and the meaning-making narratives of 
hands-on didactic approaches to algebra. We examine 
the teachers’ gestures and hints and what appears to be 
unsayable in the teacher-students’ interaction.

Keywords: Linear equations, networking theories, 

teaching-learning, gestures.

INTRODUCTION

In the discussion of a particular classroom episode 
we found that our distinct research projects resorted 
to a very similar approach to introducing the process 
of solving linear equations. However, the equation’s 
contexts, as well as the student-teacher interaction – 
in particular what the teachers were willing to say – 
were substantially different. The analysis of the epi-
sodes through the lenses of the theories that informed 
the design and implementation of the tasks as well 
as the interpretation of the data  – the Gathering-
Connecting-Structure-seeing (GCSt) model (Bikner-
Ahsbahs & Halverscheid, 2014) and the Theory of 
Objectification (Radford, 2007) – led us to achieve a 
deeper understanding of the teaching-learning that 
is usually involved in a hands-on introduction to 
solving linear equations. In particular, resorting to 
a comparative analysis, which corresponds to what 
Prediger, Bikner-Ahsbahs, and Arzarello (2008) iden-
tify as “Contrasting and Comparing” theories, gave us 
new insights into the constraints and affordances with 
which teachers are endowed in their interaction with 

the students. Our comparative analysis also makes 
visible the limits of what is considered to be unsayable 
(i.e., that which would be improper to mention by the 
teacher) and how this unsayable shapes the contour of 
the space and kind of gestures teachers deploy in the 
interaction with the students. Last but not least, we 
reached a new awareness about the learning impact 
that the didactic context has as a potential horizon 
of narrative-based meaning production in the intro-
ductory steps in learning to solve linear equations. 

RESEARCH BACKGROUNDS AND THE 
CONTEXT OF THIS RESEARCH

The authors of this paper both study the development 
of algebraic thinking. The first author is interested in 
algebraic structure sense (Hoch & Dreyfus, 2010) as 
a dynamic entity. The second author is interested in 
the social co-transformative sense-making processes 
through which the students gradually become criti-
cally acquainted with historically constituted cultural 
meanings and forms of reasoning and action.

In the course of a discussion about two classroom ep-
isodes dealing with students solving linear equations, 
one informed by research following the GCSt model 
and the other following the Theory of Objectification, 
an important distinction became apparent between 
the social-constructivist first theory that leaves lots 
of freedoms to the actors in the classroom on the one 
hand, and on the other hand the second theory that 
stresses the importance of the cultural nature and 
basis of the mathematical content – the idea that the 
algebra we teach in school is not a natural develop-
mental outcome, but the outcome of a historical-cul-
tural evolution. This important distinction turned out 
to set limits to what teachers can say in the classroom 
and thus defines what they cannot say – the unsaya-
ble. It also has an impact on the teacher’s hints, ges-
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tures, and their meaning. This paper is an attempt to 
describe what we learned from comparing the same 
phenomenon – teaching-learning linear equations – 
and to formulate it in terms of the specificities of the 
target algebraic knowledge and the teacher’s role in 
the introduction of a new concept.

THEORETICAL BACKGROUND

The Theory of Objectification (TO) considers knowl-
edge as a historically developed cultural synthesis 
of actions and reflections (e.g., how to solve linear 
equations), which is concretized or realized in certain 
activities. In most cases, and especially in school, stu-
dents do not enter this process on their own. Teachers 
and students engage in joint activity in order to make 
the cultural synthesis of actions and reflection no-
ticeable to the students. In doing so, knowledge be-
comes an object of consciousness and thought. In the 
TO, the teacher’s and students’ joint activity or joint 
labour is referred to as “teaching-learning activity.” 
The joint nature of teaching-learning does not mean 
that teachers and students play the same role. There 
is an asymmetrical division of labour that makes 
teaching-learning a tense process (Radford & Roth, 
2011) filled with emotionality and fragility. Under 
this premise, the TO can be used as an instrument to 
thoroughly plan teaching-learning, however always 
with an awareness for the ever-developing relation 
between the actors.

The Gathering-Connecting-Structure-seeing (GCSt) 
model (Bikner-Ahsbahs & Halverscheid, 2014) aims at 
describing the epistemic actions that are carried out 
in so called interest-dense situations. In these situa-
tions, the class or parts of it collectively participate in 
the name-giving epistemic actions: Gathering refers to 
the collection of bits of mathematical meaning in the 
given situation, e.g. empirical values. These are then 
connected with limited scope. In the example that may 
be a table or a graph. Based on the connections, the 
students may come to see structures, an event which 
is understood as constituting the construction of new 
knowledge. In the example, the students may see line-
arity as a feature of the examined function. Therefore, 
what qualifies as knowledge is not so much defined a 
priori, but rather by the observed behaviour of the 
students. This also implies a rather open task design 
and requires the teacher to be open towards the learn-
ing routes taken by the students.

METHODOLOGICAL CONSIDERATIONS

In the TO, learning is mediated by teaching-learning 
activities underpinned by a range of semiotic resourc-
es, such as signs (e.g., spoken and written language, 
diagrams), embodied actions (gestures, tactility, per-
ception), and rhythm. Furthermore, the relationship 
between the involved individuals is seen as an impor-
tant factor. In the GCSt model, the epistemic actions 
form the centre of the researchers’ attention. As dis-
cussed above, no presuppositions are made about the 
nature of the actions, thus, depending on the context, 
they may cover the same semiotic resources that are 
of interest in the TO. As a result, to investigate learn-
ing, both the TO and the GCSt model privilege video 
analyses. 

The analysis of the classroom episodes below is an 
instance of the “Comparing and Contrasting” cate-
gory introduced in Prediger, Bikner-Ahsbahs, and 
Arzarello’s (2008) networking strategies, seeking to 
conceptualize the role of the individuals, social inter-
action, and the specificities of the target knowledge.

DATA OVERVIEW

The data to be discussed here was originally collected 
in two projects with different foci and scopes. In the 
German project a grade 8 class (13–14-year-old stu-
dents) in an integrated school in Bremen was filmed 
for about seven months in those lessons where alge-
braic structures were the target topic. The episode 
discussed here is from the very first of these lessons. 
In the Canadian project a Grade 2 class (7–8-year-old 
students) in Sudbury was followed for 5 years when 
the students were learning algebra.  The episode 
discussed here is from the second day of the algebra 
lessons.

In both cases the solving of linear equations was in-
troduced in a non-mathematical context that emulat-
ed the mathematical rules of linear equations. In the 
Canadian project, the students were presented a task 
that went as follows (the equation was illustrated by 
envelopes and cards on the blackboard see Figure 1):

Sylvain and Chantal have some hockey cards. Chantal 
has 3 cards and Sylvain has 2 cards. Her mother puts 
some cards in three envelopes making sure to put the 
same number of hockey cards in each envelope. She 
gives 1 envelope to Chantal and 2 to Sylvain. Now, both 
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children have the same amount of hockey cards. How 
many hockey cards are in an envelope?

In the German project, the students had matchbox 
equations on their tables that were introduced as puz-
zles. The students were told that on both sides of the 
equal sign there was the same total number of matches, 
some of them hidden in matchboxes. All of the match-
boxes would contain the same amount of matches.

Abstracting from the two scenarios in both cases there 
were a) representations of unknown quantities with 
each of them representing the same quantity, and b) 
two sets composed of known and unknown quantities 
of objects with the same total quantity of objects in 
each set. Based on these two rules, linear equations 
may be presented in many more imagined contexts.

As implied by the GCSt model, the teacher of the class 
in Germany had instructions to give as little help as 
possible to allow the students develop their own ways 
of finding the correct solution. In contrast, the teacher 
in Canada had talked about the method of isolation on 
the previous day: the method that consists of remov-
ing same quantities from both sides of an equation in 
order to isolate the unknown.

For the purpose of this analysis, both transcripts were 
translated into English. Where the transcripts indi-
cated important actions by the students or the teacher, 
stills were created from the video to accompany the 
transcript.

ANALYSIS OF THE EPISODES

The episode from the Canadian study is framed as 
a classroom discussion, while the episode from the 
German study shows a discussion solely between 

the teacher and two students who work on the task 
together. In both cases the students first followed an 
arithmetic trial-and-error approach and had already 
found and tested the correct solution to the equation. 
However, each teacher still wanted the students to get 
to the target algebraic approach.

As mentioned above, the teachers’ instructions were 
very different in the two cases. The teacher in Canada 
engaged the class in a discussion about various meth-
ods to solve equations and was comfortable asking 
questions, submitting ideas and a new vocabulary. 
Thus, in the discussion below, which happened after 
the students suggested a trial-and-error method (see 
Radford, 2014), she suggests to use what the class has 
come to term the previous day the “isolating strategy,” 
that is, the strategy based on removing equal terms 
from both sides of the equation. As we shall see, the 
teacher follows the still not fully linguistically artic-
ulated actions of Cheb and Cheb’s pointing gestures, 
by moving the concrete envelopes and cards on the 
blackboard, making thereby apparent to the class:

94 Teacher:  I’ll go with the isolating strategy, 
Ok? Cheb? (see Figure 1)

95 Cheb: Umm… you remove one of 
Sylvain’s envelopes and one of  (the teacher 
has already put the hand on the envelope, yet 
she stops to wait for the next part of C’s utter-
ance, turning her head towards C) Chantal’s 
envelopes

96 T: Is it important to remove the 
same thing from each side of the equal [sign]? 
(she makes a two-hand gesture around the 
equal sign moving the hands to the bottom of 
the blackboard, where envelopes and cards 
have been moved, to indicate that removing 
action is happening in both sides of the equal-
ity)

97 C: Yes. And you can remove the oth-
er envelope… Oh non! One of Sylvain’s cards 
and one card from Chantal’s (the teacher re-
moves one card from Chantal’s, see Figure 2, 
left image).

98 T: Aw! Again, one envelope, we re-
move one envelope (see Figure 2, centre image, 
where the teacher points to the removed enve-
lopes), one card , [and] one card (see Figure 2, 
right image, where the teacher touches the two 
removed cards) …

Figure 1: The envelope equation can be seen on the blackboard 

in the background
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99 C: You remove one of Sylvain’s 
cards and you remove one of Chantal’s cards 
(the teacher moves the cards towards the top 
of the blackboard)

100 T: We remove another card of 
Chantal’s cards. Then, that gives us…

101 C: The answer!

As we can see, the teacher moves the objects and per-
forms the proposed actions. Where appropriate, she 
interrupts the flow of the discussion to emphasize for 
the whole class the algebraic conceptual meaning of 
the actions.

In contrast, the teacher in Germany has trouble doing 
so due to her professional self-concept (that was, at 
least in part, a result of the layout of the study she 
and her class were involved in). This leads to an in-
teraction that is much longer than the one laid out 
above, and can thus only be presented in a condensed 
form. We particularly investigate how the teacher’s 
struggle becomes apparent through her gesturing.

In the beginning of the interaction analysed here (line 
10), the teacher gestures towards the two sides of the 
equation:

10. Teacher: (briefly lays her hand on the right 
side, where Herbert is just finishing his count-
ing – see Figure 3, left image) Well what can 
one change here for example. so that it stays 
(briefly holds both her hands above the two 
tables) the same. (multiply taps the tables with 
all of her fingers – see Figure 3, right image) 
that must always stay the same that is very 
important.

A closer analysis of this first scene reveals that there 
are two gestures (see Figure 3). First, the teacher 
briefly and unspecifically lays her hand on the right 
side of the table and refers to this gesture by the word 

“here”. Her idea is to focus on one side of the equation. 
However, at the same time the equation must stay an 
equation, which the teacher tries to stress by saying 

“so that it stays the same”. The pronoun is concretised 
by the gestures shown in the right image: She means 
that the number of matches on both sides stays the 
same. This is too complex for the students, as neither 
the matches nor the sides of the equation are explicitly 
named as the relevant objects. Of course, this problem 
also applies to the aforementioned gesture. As a result, 
the students can make no sense of the teachers hint.

Figure 2: The teacher takes a card from the right side and moves it to the top of the blackboard (left image); she indicates the two 

envelopes (centre image) and then the two cards (right image) that have been removed

Figure 3: The two gestures in the first scene: Pointing at the right side of the equation (left) and 

highlighting the equality of the two sides (right)
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After this first occurrence of gestures the teacher re-
frains from using any for almost two minutes. This is 
even more striking as she does in two instances use 
unspecific pronouns that would require clarification 
about what they refer to. The teacher’s behaviour is 
probably due to the agreement that she should refrain 
from direct hints to the solution of the problem – an 
approach founded in the idea that the students should 
come to see structures on their own. However, during 
this time, she does talk about the two sides of the equa-
tion as the relevant objects. One could argue that from 
this explicit talk about the two sides it should indeed 
be clear for the students where they are expected to 
act, in terms of the GCSt model, the teacher helps with 
the gathering to make connecting and structure-see-
ing happen. But the structure is a new one, and it is 
hard to see without a break with the existing view.

In the scene that ends the comparatively long absence 
of gestures, the teacher uses gestures that point more 
directly at the two sides of the equation:

64 Sabine: (moves her torso backwards, then 
to the front again, gestures with both arms) 
The simplest would be if you simply tell us 
the solution. (runs her fingers through her 
hair, Herbert laughs)

65 T: Well it must (points with her right 
hand first at the left and then at the right side, 
then turns it with the palm up) always be the 
same but maybe- a bit (makes a sudden up-
ward movement with her right hand) clearer. 
(stands up straight again, crosses her arms)

66 S: (looks up at the teacher) What 
does clearer mean? (Sabine and the teacher 
look at each other) (2sec)

However, she still uses the unspecific singular pro-
noun “it”, again referring to the number of matches 
on the two sides. At the same time the word “it” stands 
for the whole situation that should become “a bit clear-
er”. The students thus focus on what she means by 

“clearer”. They demand a plan for action – this becomes 
visible already in the line before. In the last two utter-
ances to be discussed here, the teacher reproduces 
the two gestures from the beginning, as can be seen 
in Figure 4. The teacher multiply taps on the right 
side (see Figure 4, left image). Here, for the first time, 
she adds a hint that taking away something might 
help, by claiming that “that are so many”. However, 
the students still keep on aimlessly guessing what to 
do (88–91), meaning that they have no goal for their 
actions. Finally, the teacher additionally makes clear 
where the equality is to be preserved (see Figure 4, 
right image).

But only when the teacher gives her very concrete 
advice (“take away something”), Sabine is very quick 
at finding out what to take away. Here it proves that 
the groundwork laid before may not have been in vain, 
but can now be activated:

98 T: Okay what can one do on both 
sides so that it gets clearer you must always 
do the same. (Herbert removes some dust from 
the table, the teacher looks at Sabine for some 
time, Sabine looks at the table, still holding the 
three boxes in her hand) (3sec) (gets up and 
walks away, whispering in Sabine’s ear) ,take 
away something.

Figure 4: The two gestures re-enacted: Indicating the relevant side of the equation (left) and making clear 

that equality must be preserved (right). See Figure 3 for comparison
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DISCUSSION

What are the students to learn 
and how can they learn it?
The isolation method is not the first method to which 
children resort when they are asked to solve an equa-
tion. Indeed, it is far from trivial to “isolate” the un-
known to solve the equation. This is the method of 
analysis that the ancient Greeks devised. It is a deduc-
tive method, where relationships are deduced through 
a long chain of deductions, the last one being one in 
which you have the unknown equal to something. For 
students, it is at first much more reasonable to assume 
numbers and try and see if the assumption confirms 
the story (trial-and-error method), which is indeed 
what can be seen in both episodes.

In the examples presented here, the (linear) equation 
is supposed to emerge from an original context from 
where things and actions acquire an initial meaning 
(cards and envelopes in one case, matches and boxes 
in the other). This context is set in terms of a narrative 
that establishes an equality involving known and un-
known numbers. Formally speaking, the two contexts 
explored here are similar. We can say that, in prin-
ciple, the context offers the same potential in terms 
of algebraic meaning-making. Our analysis suggests, 
however, that the narrative (i.e., the linguistically con-
nected account of events) is much more emphasized in 
the Canadian study. Cheb and the teacher talk much 
more in terms of cards and envelopes than the stu-
dents and the teacher talk about matches and boxes 
in the German study. The potential significance of the 
context appears hence not to be equally exploited. 

However, the exploitation of the significance of a 
meaningful context is not enough for the students 
to envision the algebraic isolation method. Indeed, 
to proceed to the simplification of the equation, the 
original narrative has to be disrupted by a (mathe-
matical, in this case algebraic) sense that is already a 
real-life counter-sense. It is hardly natural to think 
about removing cards from the individuals in the sto-
ry, while in fact the question is about the number of 
cards in an envelope. There is a shift from quantities 
as such to relations between quantities. The teacher 
and the students have to expand the narrative so that 
the removing actions and their results may acquire 
a new meaning. Hence there is a need for the teacher 
to interrupt the flow of actions and to make sure that 
the class finds a new mathematical meaning in what 

has been done to the equations, after the removal of 
same quantities. In the Canadian episode, the teacher 
shows a developed sense of the importance of this 
interruption and the special value of the algebraic 
solution so that she can refer to it at the appropriate 
moment. This developed sense is not natural. It was 
nurtured during the design of the classroom activity. 
The German episode ends with the teacher telling one 
of the students what to do on the two sides of the equa-
tion, which she has just identified as the place of action. 
The course of action appears improvised under the 
impression of the difficulties that arise rather than 
didactically planned.

Teacher intervention by gestures 
and its limitations
Until she decides to help the students in a more direct 
manner, the German teacher’s attempts to guide her 
students consist mainly of gestures, as if the contex-
tual actions required to simplify the equations had an 
ostensive meaning. However, gestures always work 
within the parameters of how teachers conceive of 
themselves in their teaching. They are directed to one-
self and to others. It supposes that they work within 
the parameters of what we take a good teacher-stu-
dents interaction to be, i.e., the meaning ascribed to 
interaction in the classroom. We see this tension in 
the manner in which the teacher in Germany refrains 
from telling the students. She tries to point to a solu-
tion solely by gestures.

However, to be understandable, to be meaningful as 
a hint to make connections (in the GCSt model) or as a 
guide into a cultural activity (in the TO), gestures need 
an explanation about what they refer to, and what it 
is that can be done. As has been pointed out, this is far 
from trivial, especially when we consider the fram-
ings of the problem: In both cases it is embedded in a 
narrative that makes the required actions meaningful 
in an abstract sense – an abstract sense that is opposed 
to the more quotidian sense where one may try to use 
trial-and-error methods.

The central hypothesis about the teacher’s gestures in 
this episode is that they are too abstract. They require 
a deeper students’ understanding than the one they 
have at this point. In particular, the teacher presumes 
that the students already see the same objects and re-
lations between these objects as she does. It seems that 
the gestures are made from the standpoint of someone 
for whom the equation is already of a symbolic nature. 
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Maybe an understanding of the sides of the equation 
as the useful unit of analysis would suffice for the 
gestures to be fruitful, but the teacher does not even 
try to induce that explicitly. The teacher’s gestures 
cannot find a kind of contextual narrative support to 
provide a rationale for the algebraic actions to find a 
meaning that may be accessible to the students.

CONCLUSIONS

The introduction of algebraic methods and ways of 
thinking is a crucial point in students’ individual 
paths through mathematics – a point where many 
lose touch with the subject. The two episodes make 
clear that a teacher with an appropriate understand-
ing of his or her role can help students substantially. 
Awareness for the novelty of algebraic methods is the 
essence of this understanding. It can help realize the 
decisive steps that the students have to take and to 
position other forms of help, such as gestures, in the 
teaching-learning situation. Without the considera-
tion of context, otherwise helpful gestures are at risk 
to stay opaque to the students.

The result is surprising from the point of view where 
the learning should come from the students and is 
seen as an autonomous act of construction, as it is 
in the GCSt model. The episodes and their analysis 
presented here raises the question how one could 
even expect students to develop the complex deduc-
tive method of solving an equation without getting an 
introduction by an experienced person. In both epi-
sodes, the learning that happens in the end (or more 
precisely: that begins in the end, as the new knowledge 
will need to be consolidated) is based on an input from 
the teacher-students’ interaction. To inform better 
teaching, it should be a goal of mathematics education 
researchers to better understand what this input is in 
different content fields, as we have tried here regard-
ing the solving of linear equations.
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In a previous paper, we proposed a characterization of 
algebraic reasoning in primary education, based on the 
onto-semiotic approach to mathematical knowledge 
and instruction, where we distinguish three levels of 
algebraization. In defining these levels we took into ac-
count the types of representations used, the generaliza-
tion processes involved and the analytical calculation 
performed in mathematical activity. In this paper, we 
extend this previous model by including three more 
advanced levels of algebraic reasoning in order to ana-
lyze the mathematical activity carried out in secondary 
education. These new levels are based on the following 
considerations: 1) using and processing parameters to 
represent families of equations and functions; 2) the 
study of algebraic structures themselves, their defini-
tions and properties.

Key words: Algebraic reasoning, primary education, 

secondary education, onto-semiotic approach, teachers’ 

education.

INTRODUCTION

Recognizing the characteristic features of algebraic 
thinking is an issue that has attracted many mathemat-
ics education researchers, because it is necessary to 
promote such reasoning at different levels of elemen-
tary and secondary education (Kieran, 2007; Filloy, 
Rojano, & Puig, 2008; Kaput, 2008). Depending on how 
the school algebra is conceived, decisions are taken 
concerning whether to introduce such algebra since 
early levels, or to delay its teaching until secondary ed-
ucation as well as to change the corresponding instruc-
tional strategies. In fact, the “early algebra” research 
and development program (Carraher & Schliemann, 

2007; Cai & Knuth, 2011) is supported on a conception 
of algebra that recognizes signs of algebraic thinking 
in mathematical activities of initial educational lev-
els, as shown in NCTM (2000). While there has been 
progress in the characterization of school algebra, the 
interconnection between primary and secondary ed-
ucation algebra is not completely solved.  

In previous publications (Aké, Godino, Gonzato, & 
Wilhelmi, 2013; Godino, Aké, Gonzato, & Wilhelmi, 
2014) we proposed a model of algebraic thinking for 
primary education, with three different levels of alge-
braic thinking. Furthermore, we established criteria 
to delimit these algebraic levels from 0 (arithmetic 
nature of mathematical activity) to 3 (clear algebraic 
activity), with two intermediate levels of proto-alge-
braic activity.  The criteria to define these levels were 
based on the type of mathematical objects and pro-
cesses involved in mathematical activity, according 
to the onto-semiotic approach (OSA) to mathematical 
knowledge (Godino, Batanero, & Font, 2007; Godino, 
Font, Wilhelmi, & Lurduy, 2011)1. These algebraization 
levels are assigned to the operative and discursive 
practices performed by a mathematical subject that 
solves a mathematical task, rather than to the task 
itself, which can be solved in different ways, and may 
bring into play different algebraic activity.

1  The Onto-Semiotic Approach of mathematical knowledge 

and instruction (OSA) is a theoretical framework that adopts 

semiotic and anthropological assumptions about mathemat-

ics, and socio-constructivist and interactionist principles for 

the study of teaching and learning processes. Due to space 

limitation, it is not possible to include a synthesis of the main 

theoretical tools that compose this framework; the readers 

might consult Godino and colleagues (2007) and Godino and 

colleagues (2011).

mailto:jgodino@ugr.es
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In this paper, we extend that model of algebraization 
levels to secondary school, mathematical activity. 
This extension is also supported by the onto-semi-
otic distinctions considered in the OSA; particularly 
by the presence, use and processing of functions and 
equations parameters. The work is organized in four 
sections. In the following section we summarize the 
features of algebraic reasoning levels in elementary 
education; next, we define three new levels of alge-
braization, include some illustrative examples and 
connect the new levels to the presence of discontinu-
ities in the onto-semiotic configurations involved in 
mathematical practices.

LEVELS OF ALGEBRAIC REASONING 
IN PRIMARY EDUCATION

In Table 1 we summarize the essential features of the 
three preliminary algebraization levels described by 
Godino, Aké, Gonzato and Wilhelmi (2014), complet-
ed by level 0 (absence of algebraic characteristics). An 
example is also included to help understanding the dis-
tinction among levels. In summary, the definition of lev-
els is based on the following onto-semiotic distinctions:

 ― Presence of intensive algebraic objects (i.e., enti-
ties of general or indeterminate character).

 ― Transformations (operations) based on structur-
al properties applied to these objects.

 ― Type of used language (natural, iconic, gestural, 
symbolic).

Obviously, these levels do not exhaust the algebraiza-
tion processes of school mathematical activity. Instead, 
they describe the gradual enrichment of solving prob-
lems tools with an increasing degree of symbolization 
in other contexts of use. These processes, in the end 
of primary school and junior secondary school, may 
evolve to higher algebraization levels. The criteria 
used to distinguish the different algebraic levels have 
been gradually refined through its application to the 
analysis of responses from different samples of stu-
dent teachers (Aké et al., 2013; Godino et al., 2014).

LEVELS OF ALGEBRAIC REASONING 
IN SECONDARY EDUCATION

In this section, we extend the model of algebraization 
levels to secondary and high school mathematical ac-

tivity, in describing three additional algebraization 
levels for this educational stage.

The use and treatment of parameters is a criterion 
for defining higher levels of algebraization, as it is 
linked to the presence of equations and functions 
families, and, therefore it implies new “layers” or 
levels of generality (Radford, 2011). The intervention 
of parameters will be linked to the fourth and fifth 
algebraization levels, while the study of specific al-
gebraic structures will mark a sixth algebraization 
level of mathematical activity.

Fourth algebraization level: using parameters 
The use of parameter for expressing equations and 
function families is indicative of a higher level of 
algebraic reasoning, as compared to the third alge-
braization level considered by Aké and colleagues 
(2013), which is linked to operations with unknowns 
or variables. This “first encounter” with parameters 
and variable coefficients involves the discrimination 
of the domain and range of parametric functions, i.e. 
functions that assigns a specific function or equation 
to each value of the parameter. As suggested by Ely 
and Adams (2012, p. 22) “A significant conceptual shift 
must occur in order for students to be comfortable 
using placeholders in algebraic expressions rather 
than just numbers”.

Example 1: The linear function
In the algebraic expression, y = 2x, the literal symbols 
x and y represent variables, symbols that can take any 
value from a previously established number set, usu-
ally R. The numerical values x and y   co-vary in terms 
of each other, according to the rule laid down in the 
corresponding expression; in this case, y is twice the 
value assigned to x. The factor multiplying x can be 
generalized to any value in a certain domain; as we see 
in the expression y = ax. Here the letter a intervenes 
as a parameter: it can take different values   within a 
certain domain, so that for each possible value a, we 
obtain a particular function. For example, for a = 2, 
we have y = 2x. 

Consequently, a parameter is a literal symbol involved 
in an expression with other variables, such that for 
each particular value assigned to it, a function is 
obtained.  We express such families of functions as 
F = {f(x) = ax/aR}, or more precisely, a family of func-
tions that depend on the domain D of definition of the 
functions f: FD = {f(x) = ax | aR; xD}.
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The symbols x and y (f(x)) are variables indicative of a 
first level of generality; their definition domains and 
range are the numeric sets in which they are defined. 
The symbol a is also a variable; however a second level 
of generality is involved, since its  definition domain 
could either be (D) as before or just another number 
set, and the range of values   is the family of functions 
FD.

Example 2: Quadratic equation
Parameters are used not only to express and operate 
with function families, but also with equation families 
(Ely & Adams, 2012). For example, ax2 + bx + c = 0 (a ≠ 0) 
is the general expression for the quadratic equations 
family. There is only one unknown, x. The letters a, 
b, c, usually considered as variable coefficients, take 

Task: Students either go by car or they walk to a certain school. There are 3 students walking for every 3 student go-
ing by car. If the school has 212 students, how many of them use each means of transportation?

LEVELS OBJECTS TRANSFORMATIONS LANGUAGES

0 No intensive objects 
are involved.
In structural tasks 
unknown data can be 
used. 

Operations are carried out with extensive 
objects.

Natural, numerical, iconic, ges-
tural; symbols referring exten-
sive objects or unknown data can 
take part. 

Example of resolution: 
For every 3 students who walk, there is 1 going by car. Hence, in every group of 4 students (3 + 1) there is 1 
going by car (a fourth of students). Thus, 50 out of 200 students go by car and 3 out of 12 students use the 
car. Therefore, 53 students use the car and three times that amount, that is, 159, walk to the school.

1 In structural tasks 
unknown data can be 
used.  
In functional tasks 
intensive objects are 
recognized. 

In structural tasks relations and properties 
of operations are applied. 
In functional tasks calculation involve exten-
sive objects.

Natural, numerical, iconic, ges-
tural; symbols referring to inten-
sive recognized can be used.

Example of resolution:
For every 4 students there are 3 which walk. We write out the following proportion: 
                            4 (children) ------> 3 walk 
                       212 (children) ------> x walk 

4
3  = 212

x ; x = 3 × 212
4 ; x = 159

Once we obtain the number of children who walk to the school, the number of students going by car is eas-
ily obtained, 212 – 159 = 53.

2 Indeterminate or vari-
ables are involved.

In structural tasks equations are of the form 
Ax ± B = C.  
In functional tasks generality is recognized 
but operations with variables are not carried 
out to get canonical forms of expressions. 

Symbolic – literal, used to re-
fer the intensive recognized, 
although linked to the spatial, 
temporal and contextual infor-
mation.

Example of resolution: 
212 = x + 3x

212 = 4x;    x = 212 / 4;    x = 53
53 children go by car and 212 − 53 = 159 walk.

3 Indeterminate or vari-
ables intervene.

In structural tasks equations are of the form 
Ax ± B =Cx ± D.  
Operations with indeterminate or variables 
are carried out.

Symbolic – literal; symbols are 
used analytically, without refer-
ring to contextual information. 

Resolution example:
x = Children going by car
y = Children walking 
               x + y = 212                      x + 3x = 212; 
                    y = 3x      4x = 212; x = 212/4 = 53

Table 1: Characteristic features of elementary algebraic reasoning levels
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specific values   within a set of possible values   (real 
numbers and a ≠ 0) to produce a particular equation. 

Therefore, a parameter is a variable that is used with 
two or more other variables to specify a family of 
functions or equations. For families of equations the 
parameter is commonly named coefficient. In some 
way, the parameter plays the role of independent var-
iable in a function whose domain is the set in which 
the parameter takes its values   and whose rank is a 
set of functions. For each value assigned to the pa-
rameter a function image is obtained. Therefore, the 
expression y = ax2+bx+c, is not a function but a family 
of functions, though it is usually referred to as “the 
quadratic function.” It is an expression in which three 
parameters indicated by the letters a, b, c are involved. 
Giving a particular value to each of the parameters a 
specific quadratic function is obtained.

Fifth level of algebraization: 
treatment of parameters
We can assign a higher level of algebraization to 
mathematical activity displayed, when analytical (syn-
tactic) calculations are carried out involving one or 
more parameters. Operations with parameter involve 
a higher semiotic complexity level, since the objects 
emerging from these systems of practices are built 
on algebraic objects of the previous level (equations 
or functions families).

Example 3: Obtaining the general formula for quadratic 
equations
To obtain the general formula for quadratic equations 
we perform symbolic manipulation and use succes-
sive equivalences. Assuming the director coefficient 
a is not 0 (a ≠ 0) – otherwise the equation would not 
be quadratic – we have:

ax2 + bx + c = 0 ⇔ x2 + b
a x + b

a  = 0 ⇔ x2+ b
a x = − c

a  ⇔

x2 + b
a x + b2

4a2  = − c
a  + b2

4a2  ⇔ x2 + b
a x + b2

4a2  = − 4ac
4a2  + b2

4a2  ⇔ 

(x + b
2a)2 = b2 − 4ac

4a2  ⇔ x + b
2a  = ± √ b2 − 4ac

4a2  ⇔ x = − b
2a  ± √b2 − 4ac

2a  ⇔

x = −b ± √b2 − 4ac
2a  

Thus, in this case the solution is written in terms of 
the parameters linked by rational operations (addi-
tion, subtraction, multiplication, division) and square 
roots.

Example 4: Geometric progressions 
We define the general term of a geometric progression 
(Figure 1) by discursive practices in which two param-
eters, a1 (first term of the sequence) and r (progression 
ratio) are involved. The sequence is a function with 
domain N and range R; therefore the parameters a1 
and r define a family of functions (sequences), and con-
sequently this discursive practice uses an algebrai-
zation level 4. The description and proof of the  sum 
of the first n terms of a geometric progression (r ≠ 0) 
involves a computation with parameters, as shown in 
Figure 1; therefore it implies the algebraization level 5.

Sixth level of algebraization
The introduction of certain algebraic structures 
(such as vector spaces, or groups) and the study of 
functional algebra (addition, subtraction, division, 
multiplication, and composition) start at high school. 
These practices bring into play higher level algebraic 
objects and processes according to its onto-semiotic 
complexity than those considered at level five. It may 
be useful, therefore, to characterize a sixth algebraiza-
tion level to focus our attention on the specific nature 
of the mathematical activity involved. High school 

36.8 Finite Geometric Series
When we sum a known number of terms in a geo-
metric sequence, we get a finite geometric series. We 
know that we can write out each term of a geometric 
sequence in the general form:
an = a1 ⋅ rn-1 
where
• n is the index of the sequence;
• an is the nth-term of the sequence;
• a1 is the first term;
• r is the common ratio (the ratio of any term to the 
previous term).

By simply adding together the first n terms, we are actu-
ally writing out the series
Sn = a1 + a1 r + a1 r

2 + . . . + a1 r
n-2 + a1 r

n−1 
We may multiply the above equation by r on both sides, 
giving us
rSn = a1r + a1r

2 + a1r
3 + . . . + a1r

n−1 + a1r
n

....
Dividing by (r − 1) on both sides, we arrive at the general 
form of a geometric series:

Figure 1: Finite geometric series (Free High School Science Texts, Mathematics Grades 10 – 12, p. 469, 2008)
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books include texts and activities corresponding to 
this sixth algebraization level:

Example 5: Vector space
Figure 2 shows a general formulation for the vector 
space algebraic structure. In this first encounter with 
this algebraic structure a set of mathematical objects 
(vectors) are defined on which operations satisfying 
a set of specific properties are carried out. An initial 

“structural study” of vectors is required, since in this 
type of (axiomatic) presentation, the properties of the 
vector addition and multiplication by numbers have 
to be established. 

Example 6: Composition of functions
In Figure 3 the notion of function is used in all its gen-
erality, in replacing a particular family of functions 
by any function. Operations are carried out over func-
tions to produce new functions, whose properties will 
be studied in general. For example, properties such 
as “the composition of functions is not commutative” 
would arise. In fact, a set of functions (polynomials, 
for example) satisfying certain operations (addition, 
multiplication, etc.) is an “algebra”.

Algebraization levels and strands 
of algebraic reasoning
In various studies Kaput has proposed a model of al-
gebraic reasoning as a complex composite organized 
around five interrelated forms, or strands of reason-
ing listed below (Kaput & Blanton, 2001; Kaput, 2008):

1) Algebra as Generalizing and Formalizing 
Patterns & Constraints,

2) Algebra as Syntactically-Guided Manipulation 
of Formalisms.

3) Algebra as the Study of Structures and Systems 
Abstracted from Computations and Relations.

4) Algebra as the Study of Functions, Relations, and 
Joint Variation

5) Algebra as a Cluster of Modeling and Phenomena-
Controlling Languages

The algebraization levels we propose are related to 
strands 1 and 2. Strand 1 is specified in our model 
by levels 1 and 2 of proto-algebraic reasoning, while 
strand 2 is associated with level 3, where algebra is al-
ready consolidated.  Strands 3, 4 and 5 basically corre-
spond to fields or areas of school algebra (generalized 
arithmetic, study of abstract structures, functions, 
modeling).

Our algebrization levels of primary and second-
ary school mathematical activity can be identified 
in each mathematical content strands, and involve 
a progressive epistemic and cognitive complexity 
degree due to the level of generality of mathemati-
cal objects, ostensive representations and syntactic 
calculation used. The presence and manipulation of 
parameters associated with levels 4 and 5 take place 
within the strands “Algebra as the study of functions”, 
and “Algebra as a cluster of modeling of phenomena”. 
Kaput’s (2008) algebraic reasoning model is oriented 
mainly to characterize algebra as institutionalized 
mathematical content, while our model attempts to 

Imagining a vector idea as an arrow help conceive 
the vector space: sets of vectors among which some 
operations satisfying certain properties are defined. 
But there are other mathematic entities with the same 
operations and properties. So, the definition of vec-
tor space is much broader and open than collections 
of “arrows”. We have a set, V; among their elements 
(called vectors) two operations are defined:

SUM OF TWO ELEMENTS OF V: if  u, v ∊ V , 
then  u, v ∊ V

PRODUCT BY A REAL NUMBER: if a ∊ R and u ∊ V, 
then a ⋅ u ∊ V

If (V, +, ⋅) satisfies the following properties then is a 
vector space on R.

SUM OF VECTORS

ASSOCIATIVE (u + v) + w = u + (v + w)

COMMUTATIVE u + v = v + u

NULL VECTOR
It is a vector called 0 such that if v ∊ V  
fulfils: v + 0 = v

OPPOSITE 
VECTOR

All v has its opposite −v:
v + (−v) = 0

MULTIPLYING A VECTOR BY A NUMBER

ASSOCIATIVE (a ⋅ b) ⋅ v = a ⋅ (b ⋅ v)

DISTRIBUTIVE I (a + b) ⋅ v = a ⋅ v + b ⋅ v

DISTRIBUTIVE II a ⋅ (u + v) = a ⋅ u + a ⋅ v

PRODUCT BY 1 If  v ∊ V then 1⋅ v = v

Figure 2: Vector space (Colera & Oliveira, 2009, p. 62)



Algebraic reasoning levels in primary and secondary education (Juan D. Godino, Teresa Neto, Miguel R. Wilhelmi, Lilia Aké, Silvia Etchegaray and Aitzol Lasa)

431

characterize the algebraic activity performed by the 
individuals solving mathematical tasks. Therefore 
both theoretical school algebra models are compatible 
and complementary. 

ALGEBRAIZATION LEVELS AND ONTO-
SEMIOTIC DISCONTINUITIES 

Algebraization levels are basically generality levels, 
combining various registers of semiotic representa-
tion (RSR), theirs transformations and conversions 
(Duval, 1995). Under the OSA these levels can be 
characterized by the presence of different types of 
onto-semiotic configurations (Godino, Font, Wilhelmi, 
& Lurduy, 2011) which involve practices, objects and 
processes implying new levels of generality or syntac-
tic calculus, supported by symbolic representations 
of the corresponding objects. Furthermore, they im-
ply unitization, materialization and reification pro-
cesses involved in generalization and representation 
(Godino et al., 2014).

Considering algebraization levels of mathematical 
activity can help raise awareness of gaps or disconti-
nuities in didactical trajectories. These gaps involve 
the use of different registers of semiotic representa-
tion, their treatment and conversion, as well as the 
establishment of relations between conceptual, prop-
ositional, procedural and argumentative objects of 
higher generality. In other words, these gaps can be 
explained by analyzing how the numerical-iconic and 
analytical – algebraic onto-semiotic configurations 
involved are articulated, and not only by the treatment 
or conversion of RSR. Strømskag (2015) referring sev-
eral studies emphasizes that it is not generalization 
tasks that are difficult for students but they are relat-
ed to the way tasks are designed. We think that taking 
into account the levels of algebraization could help 
in selecting and design tasks that increase students’ 
opportunities to learn algebra.

SYNTHESIS AND IMPLICATIONS 
FOR TEACHER EDUCATION

In this work we complemented the work by Ake and 
colleagues (2013) and Godino and colleagues (2014) on 
the identification of algebraization levels of mathe-
matical activity in primary education, including three 
new levels that characterize secondary mathematics. 
As a summary we propose the following six levels of 
algebraic thinking in primary and secondary educa-
tion (along with level 0, indicating absence of alge-
braization):

Level 0: Operations with particular objects us-
ing natural, numerical, iconic, gestural 
languages are carried out.

Level 1: Use of intensive objects (generic enti-
ties), the algebraic structure properties 
of N and the algebraic equality (equiva-
lence).  

Level 2: Use of symbolic – alphanumeric rep-
resentations to refer the intensive rec-
ognized, although linked to the spatial, 
temporal and contextual information; 
solving equations of the form Ax ± B =C.   

Level 3: Symbols are used analytically, without 
referring to contextual information. 
Operations with indeterminate quan-
tities or variables are carried out.

Level 4: Studying families of equations and func-
tions using parameters and coefficients.

Level 5: Analytical (syntactic) calculations are 
carried out involving one or more pa-
rameters.

It is possible to combine two functions by adding, subtracting, multiplying or dividing two given func-
tions. 
There is another way to combine two functions to create a new function. It is called composition of two 
functions. It is a process through which we will substitute an entire function into another function. 
First let’s get acquainted with the notation that is used for composition of functions. When we want to 
find the composition of two functions we use the notation (f ∘ g)(x). 
Another way to write this is (f(g(x)). This is probably the more practical notation although the first nota-
tion is what appears most often in books. 

Figure 3: Composition of functions (AlgebraLAB. Project Manager. Mainland High School)

http://www.algebralab.org/
http://www.mainlandhighschool.org/
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Level 6: Study of algebraic structures them-
selves, their definitions and structural 
properties. 

These algebraic reasoning levels have implications 
for teacher training, both in primary and secondary 
education. In addition to develop curricular propos-
als (NCTM, 2000) including algebra from the earliest 
levels of education, the teacher need to act as the main 
agent of change in the introduction and development 
of algebraic reasoning in elementary classrooms, and 
its progression in secondary education. Reflecting on 
the recognition of algebraic thinking objects and pro-
cesses can help identify the features of mathematical 
practices on which the teachers can intervene to grad-
ually increase the algebraization levels of students’ 
mathematical activity.

Consequently, recognizing the algebraization levels 
4, 5 and 6 by secondary school teachers, along with its 
articulation with the previous levels, can help raise 
their awareness of the gaps or onto-semiotic discon-
tinuities which may appear when carrying out tasks 
proposed to their students.
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Using variation theory to design tasks to 
support students’ understanding of logarithms
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In this paper, we discuss three implementations of a 
task in which students were asked to generate examples 
of logarithm expressions equal to a given value. We sit-
uate the design of the task in variation theory and in 
research on learner generated examples, which describe 
learning as developing students’ ways of seeing, particu-
larly in regards to the dimensions of variation and the 
range of permissible change. The analysis of the three 
implementations reveals students’ understanding of 
logarithms, as well as what is possible to learn given the 
task-as-implemented, or the enacted object of learning. 
We claim that using variation theory in task design can 
support students in developing important capabilities 
for reasoning about logarithms in powerful ways.

Keywords:  Logarithms, variation theory, learner generated 

examples.

While exponential functions have been emphasized 
as a key mathematical understanding in secondary 
school (Confrey & Smith, 1995), their inverses, loga-
rithmic functions, have received very little attention 
in the research literature. Besides the significance 
of logarithms for their relationship to exponential 
functions, the applications of logarithms to various 
phenomena, such as sound, earthquakes, and human 
growth (Wood, 2005), are important in their own right. 

According to the Common Core State Standards 
(National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010), 
recently adopted in the United States, the emphasis 
on the algebra of logarithms in a typical Algebra II 
course, as well as subsequent courses in mathematics 
(e.g., precalculus), means that upwards of 2.5 million 
American students will be expected to engage with 
and develop an understanding of these ideas each 
year (National Center for Education Statistics, 2014; 
National Science Board, 2010). Despite this, there 

is a dearth of research literature involving student 
learning of logarithmic functions, in general, and the 
algebra of logarithms, in particular. Of the literature 
available, much of the focus is on suggested mathe-
matical and pedagogical approaches to logarithms 
with no empirical data related to students’ learning 
using these approaches. Weber (2002) concluded that 
many students do not have a process understanding 
of exponentiation and logarithms and suggested nu-
merical approaches to encourage the development of 
these understandings, but not for logarithms directly. 
Wood (2005) suggested verbal explanations from stu-
dents about the meaning of logarithmic expressions 
such as  in order to build an understanding of this 
expression as a numerical value. Confrey and Smith 
(1995) and Panagiotou (2011) both suggest drawing on 
the historical development of logarithms as a basis for 
teaching about logarithms. Confrey and Smith fur-
ther claim that building the isomorphism between the 
counting, or additive, world and the splitting, or mul-
tiplicative, world is building the rules of logarithms. 
The purpose of this study is to address this research 
gap by exploring a task design that develops students’ 
understanding of logarithms. In the recent ICMI 22 
Study, Margolinas (2013) indicated the importance of 
tasks for generating mathematical activity that afford 
students the opportunity to encounter concepts and 
strategies. This study focuses on three iterations of a 
task designed to elicit students’ current understand-
ing of logarithms, as well as lead them to generaliza-
tions related to the properties of logarithms. 

The task design and analysis is situated within both 
variation theory, developed by Marton and colleagues 
(Marton, Runesson, & Tsui, 2004), and research relat-
ed to learner generated examples, LGEs, (e.g. Watson 
& Mason, 2005). Variation theory is most concerned 
with the object of learning, comprised of three as-
pects: (1) the intended, (2) the enacted, and (3) the lived 
(Marton et al., 2004). The intended object of learning 

mailto:ahoneil@syr.edu
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is what the teacher intends the students to learn at 
the outset or in the planning of a lesson. The enacted 
object of learning is what was actually made possible 
for students to learn in the implementation of a les-
son. The lived object of learning is what the students 
actually did learn at the completion of the lesson, 
and beyond. Marton and colleagues (2004) defines 
learning as the development of capabilities, where 
a capability is described as seeing, experiencing, or 
understanding something in a certain way. In order to 
develop a particular capability (way of seeing, experi-
encing, or understanding), one must simultaneously 
focus on the critical features of the particular object 
of learning. A variation theory perspective claims 
that we can only focus on that which we discern; we 
can only discern what we experience to vary; we can 
only experience variation if we have experienced dif-
ferent instances previously and can juxtapose our 
previous experiences with our current experience 
simultaneously. 

Marton and colleagues (2004) contend that we can 
only learn that which we experience to vary. In or-
der to ascertain the enacted object of learning, it is 
necessary to be concerned with what varies and what 
remains invariant in a learning situation. Marton et 
al. describe what varies and what remains invariant 
as a pattern of variation and identify four of these: (1) 
contrast, (2) generalization, (3) separation, and (4) fu-
sion. The first pattern of variation, contrast, refers to 
the comparison between what something is and what 
it is not. For example, in the context of logarithms, 
log 100 = 2 can be contrasted with log2 8 = 3 in order 
to discern which aspects of a logarithm statement 
can vary. In order to understand what it means for 
a logarithm to have base ten, students need to expe-
rience logarithms that are not base ten. The second 
pattern of variation is generalization, which refers to 
experiencing the varying appearances of an object of 
learning in order to separate it from irrelevant fea-
tures. For instance, seeing log2 8, log 1000, log3 27, and 
ln e3 as equivalent log expressions that all equal three, 
can help students to generalize what it means for a 
logarithm to be equal to three. The base of the loga-
rithm is an irrelevant aspect here; but the power of 
the input in terms of the base is significant. The third 
pattern of variation, separation, involves varying a 
particular aspect of an object of learning while hold-
ing the other aspects invariant. This draws attention 
to the particular aspect that is allowed to change. The 
example above held the value of the logarithm invar-

iant while changing the base, which then determined 
the input. Marton et al. contend that systematically 
varying certain aspects, while keeping other aspects 
invariant, can prepare students for various other sit-
uations related to the capability in question. Fusion, 
the last pattern of variation, is the experiencing of 
all of the critical aspects simultaneously. Through 
fusion, learners develop the ability to make gener-
alizations that link the critical aspects of an object of 
learning (Holmqvist, 2011). For instance, discerning 
the relationship between the base of a logarithm and 
the input, in order to hold the value of the logarithm 
invariant, is a result of fusion and experiencing si-
multaneous changes in both the base and the input 
of the logarithm.

Drawing on Marton’s work, Watson and Mason (2005) 
suggest that LGEs are an appropriate way to introduce 
new concepts in mathematics. The use of LGEs, howev-
er, may appear to be in conflict with variation theory, 
as the task designer/instructor concedes control of 
the presentation of specific examples to the students. 
Variation theory, however, does not suggest particular 
ways of arranging for learning, only that variation 
must be present for discernment. Rather, Marton 
and colleagues (2004) claim that the particular way 
of arranging for learning is dependent upon the thing 
to be learned, and research can be undertaken to de-
termine the most conducive arrangement for student 
learning of that particular thing. In this sense, then, 
there is no tension between variation theory and the 
use of LGEs, as LGEs, when used in conjunction with 
collaboration, can create the variation in features 
necessary for discernment.

Watson and Shipman (2008) found that the use of 
LGEs, in a supportive classroom atmosphere, can suc-
cessfully introduce new concepts for both advanced 
and low-achieving learners. Watson and Shipman 
suggest that while the discernment of critical fea-
tures of a concept (Marton’s dimensions of variation) 
through a set of examples may reveal the structure of 
the concept, learning through exemplification occurs 
through discerning the generalization of relation-
ships across the dimensions of variation. Drawing on 
this work, the task used in this study was developed 
with the intended object of learning as generaliza-
tions related to the properties of logarithms, such as 
logb (xy) = logb x + logb y, logb ( x

y ) = logb x − logb y, and 
logb xn = n⋅logb x, as well logb bx = x, which proceeds from 
the equivalence relationship between logarithmic and 
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exponential statements: logb a = x ↔ bx = a. As will be 
discussed in the analysis below, over the course of 
the three implementations of this task, the intended 
object of learning was shifted based on the insights 
gained in the first two implementations of the task.

METHODOLOGY

A task that involved learner-generation of examples 
of logarithm statements was enacted by the first au-
thor as the teacher/researcher with three groups of 
students: two sections of pre-freshman engineering 
students enrolled in a summer mathematics course, 
one of which was composed of students who had pre-
viously studied calculus (n=13) and the other of which 
was composed of students who had previously studied 
precalculus (n=12), and a small problem-solving ses-
sion comprised of two pre-freshman students who 
were recruited from a summer precalculus course. 
The task was enacted with groups of students of var-
ying achievement levels in order to expand on the 
teacher/researcher’s understanding of the variation 
in students’ reasoning about logarithms as revealed 
by the task. The first enactment was with the group 
of engineering students who had previously studied 
calculus; the second enactment was in a problem-solv-
ing session with two pre-calculus students; the third 
enactment was with the group of engineering stu-
dents who had previously studied precalculus. Each 
enactment of the task was carried out by the teacher/
researcher, and each of the enactments was video-re-
corded. Students’ written work was also collected.

By the time students encounter logarithms in a typical 
precalculus course in the United States, students have 
already been introduced to logarithmic functions, the 
properties of logarithms, and have used logarithms 
to solve exponential equations (in a typical Algebra II 
course). Hence, logarithms were not a new concept for 
these students, but rather a concept that many of the 
students still struggled with in terms of recalling, ap-
plying, and reasoning with and about the properties 
of logarithms. Prior research also suggests that stu-
dents tend to struggle with the relationship between 
logarithms and exponents, as well as the properties 
of logarithms (Weber, 2002; Wood, 2005). This study, 
then, expands on previous work related to the use of 
LGEs to introduce new concepts (Watson & Shipman, 
2008) by using LGEs to deepen students’ understand-
ing of and reasoning about a previously introduced 

concept. This research study addressed the following 
questions:

1) What does the task, as implemented, reveal about 
students’ understanding of logarithms?

2) What is the enacted object of learning, or what is 
possible to learn, given the task-as-implemented?

Task design and data analysis
As the task itself cannot be separated from its enact-
ment, the way in which the task was implemented in 
each iteration varied. The variation in the task-as-im-
plemented was influenced by the teacher/research-
er’s insights garnered from the previous implemen-
tation(s), as well as the particular space of variation 
opened in that implementation. Despite the differenc-
es in the implementation of the task among the three 
groups of students, commonalities between the spaces 
of variation opened in each of the implementations 
revealed much about students’ understanding of log-
arithms and served to focus the teacher/researcher’s 
intended object of learning for later implementations, 
as well as to refine the task.

The basic structure of the task in all three implemen-
tations involved (1) individual student generated ex-
amples, (2) group assessment and group generation 
of examples, (3) collective class organization/cate-
gorization of the student generated examples, and 
(4) generalization. In each iteration of the task, the 
teacher asked the students to write a log expression 
that was equal to three. Then the students were asked 
to write another. The student generation of examples 
was meant to draw on students’ prior knowledge of 
logarithms and elicit students’ understanding of 
logarithms, in general, and the value of a logarithm, 
in particular. The students were then arranged into 
groups of two to four students to share what they 
wrote with each other. The teacher distributed a set 
of index cards to each group, asking them to write a 
different log expression that equalled three on each 
card. This potentially required that the group gener-
ate additional examples as their original examples 
may have been duplicative. As groups of students fin-
ished writing their examples on the cards, the teach-
er asked them to tape their cards on the board. The 
teacher then gathered the students around the cards 
on the board and asked them to collectively categorize 
the cards. The collective student sorting of the log 
statements allowed the teacher to gain insight into 
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what critical features of logarithms the students were 
attending to, as well as the structure of logarithms, as 
perceived collectively by the students. A discussion 
of the students’ categories followed, along with addi-
tional student generation of examples of logarithm 
expressions equal to two and five, and finally, student 
generalizations.

Each of the three implementations were analysed us-
ing the framework of variation theory in an attempt 
to understand the intended object of learning and the 
enacted object of learning (or the space of variation). 
While this framework served to answer the second 
research question most directly, the analysis also 
addressed what was revealed about students’ under-
standing of logarithms. The variation in the student 
generated examples, as well as what was revealed 
about students’ prior understanding of logarithms, 
served to answer the first research question.

RESULTS

This section describes the insights garnered by the 
teacher/researcher primarily during the first two im-
plementations of the task and the refinement of the 
task through the third implementation. The intended 
object of learning shifted from the properties of loga-
rithms to the equivalence relationship between loga-
rithms and exponents and the generalization logbbx = x 
to generate additional examples, equal to any given 
number, x. In all three implementations of the task, 
the categorization of the LGEs, largely by the base, 
showed that the base of the logarithm and the input of 
the logarithm, were brought to the fore as aspects of a 
logarithm that were possible to change, and the range 
of permissible change for each of these aspects was 
explored, to some extent. While all students were able 
to generalize the process of writing a log statement 
equal to a given number, higher achieving students 
were more readily able to recognize a generalization 
comprised of a single statement, such as logbbx = x. 
Extending the task to include combinations of log-
arithm expressions may create an opportunity for 
students to verify the properties of logarithms and 
explore the relationship between the properties of 
logarithms and the properties of exponents.

The intended object of learning 
The intended object of learning in the first im-
plementation of this task was the generalizations 
related to the properties of logarithms, such as 

logb (xy) = logb x + logb y,  logb ( x
y ) = logb x − logb y, and 

logb xn = n⋅logb x, as well as the equivalence relation: 
logb a = x ↔ bx = a. We had anticipated LGEs of the form 
log2 8 = 3, but had also anticipated that some students 
would extend their thinking to include an example 
such as log10 10 + log10 100 = 3. Goldenberg and Mason 
(2008) discuss how example generation is not just a 
memory lookup, but rather found that students of-
ten start with some known example(s) and through 
combinatorial approaches can construct new exam-
ples. As students began generating examples in the 
first part of the task, the teacher/researcher quickly 
realized that while the combinatorial approach was 
not appearing, other examples that had not been an-
ticipated were being generated by the students, such 
as examples with fractional bases.

In the second implementation the generalization 
logb bx = x was the intended object of learning, with 
b and x as the dimensions of variation. We were also 
interested in how to extend the task in such a way 
that allowed students to gain access to examples that 
included a combinatorial approach, as they did not 
appear in either the first implementation, or in the 
first portion of this problem solving session. The stu-
dents were asked to use the logarithm statements that 
they had already generated and combine them in some 
ways (using addition, subtraction, multiplication, or 
division) to generate other logarithm statements 
equal to three. While this allowed students to recall 
and verify the properties of logarithms that they had 
previously learned, students could not discern why 
these properties were valid and they were unclear 
about the relationship between the properties of log-
arithms and the properties of exponents.  

The third implementation of the task was a refined 
version, based upon our insights from the first two 
implementations of the task. In this implementation, 
the intended object of learning focused on the equiva-
lence relationship between logarithmic and exponen-
tial statements: logb a = x ↔ bx = a, as well as the general 
logarithm statement logb bx = x for generating loga-
rithm statements equal to a given value, x. Students 
were not asked to combine logarithm expressions to 
generate new statements equal to a given value in 
this task. Rather, the combination of logarithms was 
separated into a distinct, but linked task, for the sake 
of time and depth.
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Categorization of LGEs
After students shared their generated examples in a 
small group and on the board, the whole class catego-
rized the examples they had generated. The first class 
separated the examples into four categories, deter-
mined largely by the base of the logarithm: (1) whole 
number, (2) base 10, (3) fractional bases, (4) special, 
and (5) wrong. The students in the third implementa-
tion were not able to use graphing calculators (that can 
calculate logarithm expressions with various bases), 
but rather used simple four-function calculators to 
calculate a larger power of a number. As suspected, 
perhaps due to the change in the type of calculator 
available for a tool, fractional bases for the logarithm 
expressions did not appear in the third implementa-
tion of the task. In the first portion of the second im-
plementation, the students still organized their exam-
ples according to the base, first separating them into 
even and odd categories, then deciding to list them 
out from statements with base two up to statements 
with base ten. In the second part of the session, the 
students were asked to generate combinations of log-
arithm expressions equal to three and reorganize the 
examples, in consideration of the additional examples. 
The students chose, then, to categorize the LGEs by 
operation. The students in the third implementation 
also categorized the LGEs according to the base of the 
statement, however, they included four subdivisions 
or “branches”: (1) Odd, (2) Even, (3) Base 10, and (4) 
Fractional, under the “big tree” of the equivalence 
relationship logb a = x ↔ bx = a. This is similar to the stu-
dents in the first implementation who also explained 
how all of their correct examples “followed the same 
rule,” after they had determined a generalization for 
logarithms with whole number bases. The students 
in the third implementation also included a “wrong” 
category, a “natural log” category, which were actually 
exponential statements that included natural log in 
the exponent (e.g. eln 3 = 3), and a “unique” category, 
which included only the statement log3 ( 729

27 ) = 3. 

In all three implementations of the task, the students’ 
categorization of the LGEs showed that the base of 
the logarithm, as well as the input of the logarithm, 
was brought to the fore as aspects of a logarithm 
that were possible to change. The combinatorial ap-
proach did not spontaneously appear. In terms of 
revealing student understanding, however, Watson 
and Goldenberg (2008), point out that, “the fact that 
[students] don’t display an example does not imply 
that it is not within their accessible [example] space, 

just that they have not perceived a reason to express 
it” (p. 189). As such, it appears that the task as enacted 
did not cue or trigger students to think of examples 
using the combinatorial approach. The enacted object 
of learning, in the first and third implementation, as 
well as the first portion of the second implementation, 
was restricted to the generalization logb a = x ↔ bx = a, 
the equivalence relationship between logarithm and 
exponential statements, and the generalization 
logb bx = x, which expresses the structure of the cor-
rect logarithm statements.

Range of permissible change
The LGEs served to reveal students’ understanding 
of the range of permissible change, particularly in the 
base of the logarithm statement. As mentioned above, 
the combination of logarithm statements did not arise 
spontaneously, indicating that students did not, in 
that instance, recognize combinations of statements 
as within the range of permissible change for the struc-
ture of a logarithm expression equal to three. Without 
this range of LGEs, students tended to categorize the 
examples of logarithm statements according to the 
value of the base, despite the common structural form. 
Their choice to separate logarithm statements with 
a whole number base from those with base ten was 
perhaps indicative of their greater familiarity with 
base ten, or their understanding of the common log as 
somehow more important than logs in other bases. We 
did not anticipate the use of fractional bases students’ 
generated examples; this may have been related to 
students’ graphing calculator usage while generating 
their examples, particularly since this did not occur 
in the subsequent implementations when students 
were restricted to four function calculators. Students’ 
choice of separating base e and base π logarithm 
statements as “special” could perhaps be indicative 
of students’ sense of e and π as symbols that represent 
something other than a specific number. Students’ rec-
ognition, however, of log1 1 = 3, log0 0 = 3, and log−1 −1 = 3 
as “wrong” logarithm statements served to restrict 
the range of permissible change. Student attempts at 
both justifying these statements and explaining why 
these logarithm statements were incorrect created 
an opportunity to deepen students’ understanding 
of both exponents and logarithms.

Only a single example began to directly confront the 
range of permissible change for the input of the log-
arithm. The students seemed to recognize that the 
input of the logarithm would change, dependent on 
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the base of the logarithm, but failed to see the range 
of possibilities in writing the input. In the third im-
plementation, the example  log3 ( 729

27 ) = 3 was placed 
in the “unique” category. The statement log3 ( 729

27 ) = 3 
is equivalent to the statement log3 27 = 3. Therefore, 
it has the same structure as the other LGEs, but the 
students did not recognize it as such. This indicates 
that students could use more exposure to varia-
tion in the input of the logarithm. This was also 
the only instance when combinations of logarithm 
statements arose spontaneously. Two students in 
the third implementation insisted that the way that 
you would deal with this statement is to rewrite it as 
log3 729 − log3 27 = 6 − 3 = 3. Thus, students recalled the 
logarithm property logb ( x

y ) = logb x − logb y, and applied 
it, but this appeared to overshadow a more flexible 
and efficient means of simplifying the statement to 
show its equivalence to three. 

Generalizations
In the last part of the task, the teacher/researcher 
asked the students to write a logarithm statement that 
was equal to any number. Some students generated 
two separate statements that was often a restatement 
of the equivalence relation: logb a = x ↔ bx = a. Others 
were able to succinctly describe the generalization 
as logb bx = x. Being able to symbolically write down a 
generalization did not indicate that students would 
be successful at verbalizing the generalization. For 
instance, Evette, in the third class, wrote the symbolic 
statement logb a = x ↔ bx = a, and the verbal statement: 

“That ‘any number’ that you want it to equal, must be 
raised to the base value.” While Evette correctly wrote 
the symbolic statement, she incorrectly stated that the 
exponent would be the base value. It is also ambiguous 
what she is referring to with the use of “it”. This is per-
haps related to a lack of opportunities to explain and 
communicate verbally in the mathematics classroom.

Lower achieving students had more difficulty than 
higher achieving students in discerning a generaliza-
tion comprised of a single statement, such as logb bx = x. 
This is perhaps related to an underdeveloped sense 
of variable and equality, and the failure to recognize 
the substitution of equivalent expressions. This could 
also be related to a preference of seeing each “part” of 
the logarithm statement (the base, the input, and the 
output) as distinct and a failure to fuse these critical 
aspects together.

Combinations of logarithm expressions
The expansion of the example space to include com-
binations of logarithm expressions in the second im-
plementation served to broaden the space of variation 
when compared to the first and third implementations. 
Through opening up the variation of the statement 
to include combinations of logarithm expressions, it 
becomes possible to discern both how the logarithm 
expressions can be combined and the ways in which 
the dimensions of variation are related within a given 
statement. Watson (2000) described these two ways 
of seeing pattern as ‘going with the grain,’ indicating 
a recursive continuation of pattern to generate more 
instances that may not indicate structure (in this case, 
how the logarithm can be combined), and ‘going across 
the grain’, a metaphor that indicates the revelation of 
the internal structure itself (here, the relationship be-
tween the dimensions of variation). Thus, this opening 
of the space of variation has the potential to provide 
students with the opportunity to “see” the relation-
ship between logarithms and exponents in ways that 
they had, perhaps, not experienced before. One of the 
students wrote about what he had learned during the 
problem solving session:

The exponents in exponential equations are used 
as the values for logarithmic functions. For ex-
ample:

52 + 51 = 53

log5 (25) + log5 (5) = 3

2 + 1 = 3

While the exponential statement is erroneous, this 
student is beginning to discern variation ‘across the 
grain’, and we would argue, is on his way to develop-
ing a certain way of seeing logarithms, and hence de-
veloping important capabilities for reasoning about 
logarithms in powerful ways.

CONCLUSION

Based on the three iterations of this task, using LGEs 
with students who have had previous exposure to a 
concept can serve to reveal students’ understanding 
of the dimensions of variation of a concept, as well as 
the range of permissible change in those aspects. The 
use of LGEs, in this particular task, revealed students’ 
understanding of the range of permissible change in 
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the base of the logarithm and led to opportunities 
to connect exponential and logarithmic functions. 
Holding the value of the logarithm statement invari-
ant (for a time) created an opportunity for students to 
explore what happens when a single aspect, namely – 
the base of the logarithm, is varied. 

While this task draws students’ attention to the rela-
tionship among the dimensions of variation in a log-
arithm statement, as well as the range of permissible 
change of those dimensions, further consideration of 
how tasks can be designed to generate and develop 
an understanding of the relationship between com-
binatorial properties of exponents and logarithms is 
needed to more fully develop students’ facility with 
logarithms. 
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The present study investigates students’ abilities to un-
derstand the concept of function. Secondary education 
students were asked to (i) define the concept of function 
and present examples of functions, (ii) translate between 
different representations of a function and (iii) solve 
function problems. Findings revealed students’ great 
difficulties in proposing a definition of function, in 
solving tasks of conversions between different modes 
of representation, and in solving function problems. 
Based on the students’ abilities and misconceptions 
about functions, teaching practices for improving the 
students’ understanding of functions are discussed. 

Keywords: Function, definition, use of representations, 

teaching methodology. 

INTRODUCTION

For more than twenty years, the concept of function 
has been internationally considered as a unifying 
theme in mathematics curricula (Steele, Hillen, & 
Smith, 2013). Students face many instructional ob-
stacles when developing an understanding of func-
tions (Sajka, 2003; Sierpinska, 1992). Kieran (1992) 
questions whether students’ inability of conceptually 
understanding functions is related to its teaching or 
is due to students’ inappropriate way of approach-
ing function tasks. Sajka (2003) indicates that stu-
dents’ abilities in solving tasks involving functions 
are influenced by the typical nature of school tasks, 
leading to the use of standard procedures. According 
to a standard didactic sequence, students are asked 
to infer the properties of a function using the given 
graph, by following a specific procedure. 

In relation to the above, our study examines students’ 
conceptions of function, as it is one of the most impor-
tant topics of the curriculum and it is related to other 

subjects, such as physics (Sanchez & Llinares, 2003). In 
fact, the results we present in this paper are a part of 
a large scale cross-sectional study examining the use 
of different modes of representations in functions at 
the secondary school level. Adopting a developmental 
perspective at different grades of secondary educa-
tion, we aim to trace students’ abilities in defining 
functions, recognizing and manipulating them across 
representations and in problem solving, emphasizing 
the approach used (algebraic or geometric). Thus, our 
main questions are: (i) What abilities do students have 
to define and flexibly manipulate functions and solve 
function problems?, and (ii) What are the differences 
in students’ performance at the 3rd, 4th and 5th grades 
of secondary education? Based on our results, we 
provide suggestions for teaching practices that can 
facilitate students’ understanding of functions. 

THEORETICAL FRAMEWORK

The role of multiple representations 
in the understanding of functions
There is strong support in the mathematics education 
community that students can grasp the meaning of a 
mathematical concept by experiencing multiple math-
ematical representations of that concept (Sierpinska, 
1992). One of the main characteristics of the concept of 
functions is that they can be represented in a variety of 
ways (tables, graphs, symbolic equations, verbally) and 
an important aspect of its understanding is the ability 
to use those multiple representations and translate 
the necessary features from one form to another (Lin 
& Cooney, 2011). In order to be able to use the different 
forms of representations as tools in order to construct 
a proof, students have to understand the basic features 
of each representation and the limitations of using 
each form of representation. 

mailto:pre.pm@fit.ac.cy
mailto:pmicha@ucy.ac.cy
mailto:andreas.philippou@cytanet.com.cy
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According to Steele and colleagues (2013), it is typical 
in the U.S. for the definition of a function and a con-
nection to the graphic mode of the function concept to 
occur in the late middle grades, while the formal study 
of function with an emphasis on symbolic and graphi-
cal forms occurs in high school. According to Bardini, 
Pierce and Stacey (2004), in their brief overview of 
Australian school mathematics textbooks, symbolic 
equation solving follows graphical work. A proper 
understanding of algebra, however, requires that stu-
dents be comfortable with both of these aspects of func-
tions (Schwartz & Yerushalmy, 1992). It is thus evident 
that the influence of teaching is extremely strong, and 
the promotion of specific tools or processes enforces 
the development of specific cognitive processes and 
structures. For example, it has been suggested that 
one way to improve learners’ understanding of some 
mathematical concepts might be the use of graphic and 
symbolic technologies (Yerushalmy, 1991). 

The role of definition in the 
understanding of functions
In mathematics definitions have a predominant role 
in the construction of mathematical thinking and 
conceptions. Vinner and Dreyfus (1989) focus on the 
influence of concept images over concept definitions. 
Over time, the images coordinate even more with an 
accepted concept definition, which in turn, enhances 
intuition to strengthen reasoning. A balance between 
definitions and images, however, is not achieved by 
all students (Thompson, 1994). Actually, pupils’ defini-
tions of function can be seen as an indication of their 
understanding of the notion and as valuable evidence 
of their mistakes and misconceptions. Elia, Panaoura, 
Eracleous and Gagatsis (2007) examined secondary 
pupils’ conceptions of function based on three indi-
cators: (1) pupils’ ideas of what function is, (2) their 
ability to recognize functions in different forms of 
representations, and (3) problem solving that involved 
the conversion of a function from one representation 
to another. Findings revealed pupils’ difficulties in 
giving a proper definition for the concept of function. 
Even those pupils who could give a correct definition 
of function were not necessarily able to successfully 
solve function problems. 

METHODOLOGY

Participants
The participants were 756 secondary school students 
from eight schools in Cyprus. There were 315 students 

at 3rd grade of gymnasium (15 years old), 258 students 
at 4th grade of lyceum (16 years old) and 183 students 
at 5th grade of lyceum (17 years old). The students at 5th 
grade follow a scientific orientation and attend more 
advanced levels of mathematics courses. Students’ 
participation was due to the voluntarily participa-
tion of their teachers, thus our sampling procedure 
was not randomized.

Procedure
Two tests including different types of tasks were de-
veloped. The tests were developed by the researchers 
and secondary mathematics teachers. The tasks were 
mainly aligned to the level of the 3rd graders and the 
tests were piloted to almost 100 students at each grade. 
At the middle of the school year, each test was adminis-
tered to students by a researcher or by a teacher who 
had been instructed on how to correctly administer 
the test. The testing period was 40 minutes. The tests 
were scored by the researchers, using 1 and 0 for cor-
rect and wrong answers, respectively. 

The tasks focused on (a) defining and explaining the 
concept of function, (b) recognizing, manipulating 
and translating functions from one representation to 
another (algebraic, verbal and graphical), (c) solving 
problems. 

The first test asked students to (i) present a definition 
of function and an example, (ii) explain their proce-
dure for recognizing that a graph does not represent 
a function and present a non-example of function, 
(iii) write the symbolic representation of six verbal 
expressions (e.g. “the area E of a square in relation 
to its side”), (iv) draw a graph to solve a problem, (v) 
recognize graphs of functions, (vi) explain a graph 
in terms of the context, and (vii) examine whether 
symbolic expressions and graphs represent functions. 
In the second test students had to (i) present their pro-
cedure for examining whether a graph represents a 

Costas has €20 and spends €1 per day. His sister has €15 
and spends €0,5 per day. 
i. Find the function expressing the amount of money 

(y) each person will have in relation to the number 
of days (x).

ii. Design the graph showing this function for each 
person.

iii. In how many days will the two brothers have the 
same amount of money? What will this amount of 
money be? 

Figure 1: Example of a problem solving task
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function, (ii) draw graphs of given functions, (iii) rec-
ognize graphs of given verbal or symbolic expressions, 
and (iv) write the symbolic equations of given graphs. 
The reliability for the total of the items on both tests 
was high (Cronbach’s alpha=0.868).

RESULTS

According to our research questions, we first present 
the results of students’ performance on defining the 
concept of function and their ability to present an 
example in order to explain the definition. Then, we 
concentrate our attention on the procedure students 
follow in order to justify whether a verbal expression 
or an equation is a function. A crosstabs analysis gives 
further insight into the performance of students in 
defining and recognizing functions. Finally, differ-
ences between students in the three grade levels are 
presented. 

Based on the results of our descriptive analysis, 159 
students were able to present a correct definition, 242 
presented a wrong definition, and 358 students did 
not give any answer. Most of the students who pre-
sented a correct definition (Table 1) were at the 4th 
and 5th grade. The results were similar to the task that 
asked students to present an example for explaining 
the definition of function. Only 401 of the students 
presented an example, and of these, 323 were correct. 
The highest percentages of correct examples (Table 
1) were at the 4th and 5th grade. This result is the first 
indication that students are perhaps more capable 
of providing an example in order to explain a mathe-
matical concept than of defining it verbally by using 
formal language and/or symbolization. 

In the first test students were asked to explain their 
procedure for identifying a graph that does not rep-
resent a function and provide a relation that does 
not represent function. In the second test, students 
were asked to explain their procedure for identifying 
a graph that represents a function and to provide an 
example of a function. Table 2 indicates the percent-
ages of correct answers for the specific tasks. In all 
cases, the results were higher in the 5th grade, as was 
expected, but there were especially negative results 
for students in the 3rd grade. The majority of the 3rd 
graders did not give an answer and many of those who 
answered presented a wrong procedure.

We analysed, by using crosstabs analysis (Table 3), the 
performance of students who correctly described a 
procedure for determining whether a graph repre-
sents a function in relation to their ability to correctly 
identify functions presented graphically. Results indi-
cated that less than half of the students, who correctly 
described a procedure, correctly recognized the graph 
that represented a function (44.1%). 

We further analysed, by using crosstabs analysis 
(Table 3), the characteristics of students who were 
able to correctly define function. Consequently, these 
students seemed to have a more conceptual under-
standing of function. Results indicated that 89.4% of 
the students presented both a correct definition of 
function and a correct example, showing that they 
likely have a strong theoretical understanding of the 
concept. At the same time, of the students that provid-
ed a correct definition of function, 74.2% also succeed-
ed in describing a procedure for determining whether 
a graph did not represent a function, and 62.7% also 
succeeded in describing the procedure for recogniz-
ing whether a graph did represent a function. These 
initial results permit us to assume that the students 
who are able to define function and explain by pro-
viding an example are the students with the highest 
conceptual understanding. 

Correct definition Correct example 

Grade 3 
(N=315)

  8.2% 23.0%

Grade 4 
(N=258)

58.5% 57.0%

Grade 5 
(N=183)

32.7% 55.7%

Table 1: Students’ correct definitions and examples for each grade

 Tasks 3rd (%) 4th (%) 5th (%) Total 
(%)

Procedure indicating 
that a verbal  expression  
or an equation is not 
function

2.2 38.4 42.0 24.3

Procedure indicating 
that an expression is 
function

2.5 32.6 47.5 23.7

An example of a func-
tion

19.4 50.4 55.7 38.6

A non-example of a 
function

3.8 38.4 38.3 23.9

Table 2: Percentages of students’ correct answers at specific tasks
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In the second test, students who were able to correct-
ly describe a procedure for determining whether a 
graph represented a function were generally able to 
present an example of function (90.4%). Of the stu-
dents who were able to correctly describe a procedure 
for determining whether a graph did not represent 
a function, 83.7% were also able to present a symbol-
ic non-example of a function. It is important to note, 
however, that of the total sample, only 153 students 
correctly presented a procedure for recognizing a 
graph that represented a function, while only 135 stu-
dents correctly presented a procedure for recognizing 
a graph that did not represent a function. Similarly, 
only 241 students correctly presented an example of 
a function, and only 165 students correctly presented 
a non-example. 

The second objective of the study was to identify sta-
tistically significant differences (p<0.05) concerning 
the concept of function in respect to students’ grade 
level in order to investigate the developmental aspect 
of a conceptual understanding of function. ANOVA 
analysis was used for comparing students’ means in 
presenting the definition of the concept and giving 
an example of a function in respect to the categorical 
variable of their grade. In the first case, Scheffé anal-
ysis indicated that there was a statistically significant 
difference (F2,397 = 33.396, p<0.01) between the students 
at the 3rd grade with the students at the 4th and 5th grade 
(x3 = 0.11, x4 = 0.53, x5 = 0.48). Although the highest mean 
was at the 4th grade, there was not any statistically 

significant difference between the two grades at the 
lyceum. Concerning the presentation of an example 
in order to explain the definition of the concept, the 
difference was statistically significant (F2,398 = 5.896, 
p<0.01) only between the 3rd and the 4th grade (x3 = 0.72,  
x4 = 0.88, x5 = 0.78). The same analysis was conducted 
concerning students’ ability to describe a procedure 
for recognizing an equation which did not represent 
a function, in respect to grade level. There were sta-
tistically significant differences between the 3rd grade 
and the two other grades (F2,292 = 33.510, p<0.01) with a 
large difference between the means (x3 = 0.12, x4 = 0.47, 
x5 = 0.55). 

Items from both tests were grouped in order to be able 
to further analyse students’ performance concerning 
the specific aspects which were the main interest of 
this study: (i) Propose definition, (ii) present examples 
to explain a concept or a procedure, (iii) recognition 
of the concept, (iv) translation of the concept from one 
representation to another, (v) construction of graphs 
which represent functions, as an indication of ma-
nipulating the concept and (vi) problem solving tasks. 
Table 4 presents the means and standard deviations of 
students’ performance on these specific dimensions. 

ANOVA analysis was conducted for examining the sta-
tistically significant differences for each of the above 
aspects of a conceptual understanding of function in 
respect to the three grade levels. Statistically signif-
icant differences (p<0.05) were found only concern-
ing three of the dimensions. There was a statistically 
significant difference (F2,182 = 7.678, p<0.01) concerning 
the proposed definition of the concept. The Scheffé 
analysis indicated that the difference was between the 
3rd grade with the 4th and the 5th grade (x3 = 0.33, x4 = 0.75, 
x5 = 0.71). The second statistically significant differ-
ence was for the students’ ability to recognize func-
tions presented in different forms of representations 
(F2,570 = 18.926, p<0.01).  The difference was between the 
students at the 3rd grade in comparison to the students 
at the 4th and 5th grade (x3 = 0.48, x4 = 0.41, x5 = 0.40). It 

Example
for
defini-
tion

Describing a 
procedure for 
determining 
whether a 
graph repre-
sents a func-
tion

Describing 
a proce-
dure for 
determining 
whether a 
graph does 
not repre-
sent a func-
tion

Recognition 
of function

— 44.1% —

Correct 
definition

89.4% 62.7% 74.2%

Function 
Example 

— 90.4% —

Function 
Non-
example

— — 83.7%

Table 3: Crosstabs analysis for students’ (total sample) 

understanding of functions

X SD

Definition 
Examples
Recognition
Translation 
Construction 
Problem solving

0.718
0.837
0.449
0.619
0.648
0.393

0.261
0.231
0.152
0.212
0.354
0.169

Table 4: Means and standard deviations of students’ performance
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was unexpected that in this case the performance at 
the 3rd grade was higher than the two other grades. The 
third statistically significant difference was for the 
students’ ability to translate the functions from one 
type of representation to another (F2,165 = 11.077, p<0.01). 
The students at the 3rd grade had a lower performance 
than the older students (x3 = 0.343,  x4 = 0.547, x5 = 0.702). 

DISCUSSION

We have concentrated on students’ ability to define 
the concept of function and on their ability to han-
dle flexibly the different modes of representation of 
function. The results of the present study confirm pre-
vious findings that students face many difficulties in 
understanding function at different ages of secondary 
education (Sajka, 2003; Tall, 1991). Findings revealed 
serious student difficulties in proposing a proper defi-
nition for function or a tendency to avoid proposing 
a definition due to their possible belief that the intui-
tive and informal presentations of their conceptions 
cannot be part of the mathematical learning. Those 
difficulties are consistent with Elia and colleagues’ 
(2007) findings. Although formal definitions of mathe-
matical concepts are included in the mathematics text-
books for secondary education, mathematics teachers 
do not focus on definitions. Instead they promote the 
use of algorithmic procedures for solving tasks, as 
actions and processes (Cottrill et al., 1996), and un-
derestimate the word and meaning (Morgan, 2013) 
as interrelated dimensions of the concept. 

Secondly, it seems easier for students to present an 
example for explaining a mathematical concept, rath-
er than using a non-example in order to explain the 
respective negative statement. At the same time, it is 
easier for them to use an example for explaining the 
concept of function rather than explaining the pro-
cedure they follow for determining whether a graph 
represents a function. This is probably a consequence 
of the teachers’ method of using examples in order to 
explain an abstract mathematical concept. Thirdly, 
students had a higher performance on manipulating 
the concept in graphical form and translating from 
one type of representation to another, than on rec-
ognizing functions in algebraic and graphical forms. 
Symbolic equation solving follows the graphical work 
(Llinares, 2000), and probably for this reason, the per-
formance on graphical functions was higher. Finally, 
the results of the students at the 3rd grade of secondary 
education were especially negative, thus we have to 

further examine whether their processing efficiency 
and cognitive maturity prevent us from teaching the 
specific concept at that age. Despite the tendency to 
use the spiral development of concept in the teaching 
process and the curriculum (Ministry of Education 
and Culture, 2010), we have to rethink the teaching 
methods we use at the different ages and the cognitive 
demands of tasks at each age.  

We believe that it is not adequate just to describe the 
students’ knowledge of a concept, but it is interesting 
to design and implement didactic activities and exam-
ine their effectiveness. Brown (2009) suggests that the 
construction of concept maps will enable teachers 
to have in mind all the necessary dimensions of the 
understanding of the concept. The distinction of the 
procedural understanding and the conceptual un-
derstanding and the lack of interrelations between 
aspects such as the definition of the concept, the ma-
nipulation of the concept and problem solving related 
to a concept have as a possible result the phenome-
non of compartmentalization (Elia, Gagatsis, & Gras, 
2005). Thus, the use of multiple representations, the 
connection, coordination and comparison with each 
other and the relation with the definition of the con-
cept should not be left to chance, but should be taught 
and learned systematically. 

The verification of the interrelations between the 
different aspects of understanding functions are 
within our next steps, which include the confirma-
tory factor analysis (CFA), for confirming the theory 
about the structural organization of the conceptual 
understanding of functions. We are going to examine 
whether the students’ abilities in defining the concept, 
in recognizing and manipulating the concept and in 
translating the concept from one representation to 
another are important dimensions of the conceptual 
understanding of functions. Specifically we will focus 
on the interrelationship between these dimensions. 
Special emphasis will be given to the role and influ-
ence of the definition on the remaining dimensions 
of the conceptual understanding of functions, as our 
results revealed students’ great difficulties in this par-
ticular aspect of the concept. 

Concluding, the present study enables us to know and 
understand how students conceptualize the notion 
of function and to realize the students’ obstacles and 
misunderstandings. Teaching processes and teaching 
materials need to be enriched with problem solving 
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situations. The given examples presented by students 
were mathematically structured by using a formal-
istic way and there was not any reference to a daily 
experience. In the context of the interdisciplinary 
social reality, the concept of function has to be related 
to other relevant domains such as physics, engineer-
ing, and technology.

Limitations
A limitation of our study concerns the administra-
tion of the tests. In cases where the administration 
was not performed by the researchers, there is no 
certainty that the proper amount of time was giv-
en to the students. Thus we cannot be sure that the 
same conditions held in every classroom during the 
administration of the tests, and this may have affected 
the reliability of the tests. The teachers who adminis-
tered the tests, however, were provided with all the 
necessary instructions. A further limitation of the 
study was our inability to control the teaching method 
which was used for the specific concept. In Cyprus, 
however, teachers receive the same instructions by 
the Ministry of Education for the teaching methods 
they have to use in their classes and the same in-ser-
vice training. There is also a common curriculum and 
a common textbook for students. 
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The present study adopted a theoretical model, suggest-
ing that number sense consists of elementary number 
sense, conventional arithmetic and algebraic arithme-
tic, to trace the development of students’ early number 
sense. Two hundred and four 1st grade students were 
individually tested on five time-points. Data analysis 
suggested that number sense follows a linear growth rate 
and six groups of students were identified that follow 
different growth patterns. Two of the groups had a low 
initial value, two had a moderate initial value and two 
had high initial value. Systematically, one of the two 
groups with the same initial value exhibited a greater 
growth rate. The gap of the groups with same initial 
value in algebraic arithmetic progressively increased 
across the five time-points of the study. 

Keywords: Early number sense, arithmetic, algebraic 

arithmetic.

INTRODUCTION

The development of students’ number sense is con-
sidered as an important outcome and key ingredient 
of school curricula and a foundation for developing 
formal mathematical concepts and skills in elemen-
tary school (Yang, 2005). Research findings support 
that number sense is a powerful predictor of mathe-
matics outcomes and a vital prerequisite to success in 
mathematics (Malofeeva, Day, Saco, Young, & Ciancio, 
2004). Recent longitudinal studies documented that 
number sense skills developed in pre-K and kinder-
garten are not only foundational, but also correlate 
with first grade mathematics achievement (Jordan et 
al., 2006). It was found that the mastery of counting 
principles correlates significantly with arithmetic 
abilities. Moreover, Jordan, Glutting, Ramineni and 
Watkins (2010) showed that core number competences 
in kindergarten have strong predictive validity on 

mathematics computation and problem solving even 
at third grade.

The present study capitalizes on previous studies 
asserting that early number sense consists of three 
distinct, but interrelated components (Pittalis, Pitta-
Pantazi, & Christou, 2013, 2014). Our adopted model 
hypothesizes that student’s early number sense con-
sists of (a) elementary number sense, (b) conventional 
arithmetic and (c) algebraic arithmetic. The innova-
tive aspect of this model lies on the inclusion of al-
gebraic arithmetic as a component of number sense 
and builds on the theoretical premise that the artifi-
cial separation of arithmetic and algebra deprives 
students of powerful ways of thinking about math-
ematics in early grades and makes it more difficult 
for them to learn algebra in later grades. Algebraic 
arithmetic adopts Drijvers and his colleagues (2011) 
description of algebra as a synthesis of (a) patterns 
and formulas, (b) restrictions and (c) functions. This 
conceptualization of algebraic arithmetic leads to a 
broader, more dynamic and flexible construct that 
underlies the importance of grasping the relations 
among numbers and manipulating numbers and num-
ber relations with flexibility. 

In this study, we extend the work presented in PME 
38 and present the results of a longitudinal study that 
traced student’s number sense in grade 1 and at the 
beginning of grade 2.  In particular the aims of the 
study were to: (a) to trace the development of six year 
old students’ number sense and (b) to identify differ-
ent growth patterns. 

LITERATURE REVIEW

Number sense is one of the most important concepts 
to be developed in early mathematics (Baroody et al., 
2009; McGuire & Wiggins, 2009). Children’s number 
sense is a key predictor of later mathematical success, 
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both in the short (Aunio & Niemivirta, 2010) and the 
longer term. For instance, research findings suggest 
that early number sense development contributes 
in learning more complex mathematics concepts, it 
promotes numerical fluency and it is foundational 
to all aspects of early mathematical skills (Baroody et 
al., 2009; Jordan et al., 2010). Inadequate development 
of number sense in early grades may be related to 
mathematics learning difficulties. In addition, it is 
widely supported that students who enter school with 
strong number sense are more likely to benefit from 
mathematics teaching in the elementary grades and 
that the effect of weak number sense may be cumula-
tive (Jordan et al., 2010).

Number sense develops gradually and matures with 
experience and knowledge (Reys & Yang, 1998). It de-
velops as a result of exploring numbers in a variety of 
contexts and relating them in ways not limited to tra-
ditional algorithms (Sood & Jitendtra, 2007). Moreover, 
number sense is highly personal and is a by-product 
of teaching for understanding. Longitudinal studies 
provided evidence regarding the growth of students’ 
early number sense in kindergarten and in elemen-
tary early grades. For instance, Jordan and her col-
leagues (2010) traced empirically three growth tra-
jectories: (a) children who started with low number 
competence and stayed low, (b) children who started 
with high number competence and stayed high, and 
(c) those who started with low number sense but made 
relatively good growth. A growing body of research 
with converging data (Gersten et al., 2005; Jordan et al., 
2010) assert that the identification of growth groups 
is extremely important to trace students that need 
early intervention. 

A number of researchers proposed that number sense 
is difficult to define, while different research studies 
identified different conceptual understandings and 
components of number sense (Malofeeva, Day, Saco, 
Young, & Ciancio, 2004).A well-accepted and broad 
definition of number sense refers to a coherent un-
derstanding of what numbers mean, numerical rela-
tionships and the ability to handle daily life situations 
which involve numbers (Yang, 2005). In the present 
study we define early number sense as a synthesis of 
elementary number sense, conventional arithmetic 
and algebraic arithmetic (see Pittalis, Pitta-Pantazi, 
& Christou, 2013, 2014). Elementary number sense 
refers to key elements of numbers sense. It consists of 
counting, number identification, number knowledge, 

quantity discrimination, enumeration and non-verbal 
calculations (Jordan, et al., 2006). Counting relates to 
grasping one to one correspondence, knowing the 
count sequence and mastering counting principles, 
such as stable order and cardinality (Jordan, et al., 
2006). Number knowledge refers to discriminating 
and coordinating quantities and making numerical 
magnitude comparisons. Enumeration relates to the 
ability of enumerating sets, irrespectively of the ori-
entation of the objects. Number identification refers to 
the ability of naming written symbols. Non-verbal cal-
culations refer to the ability of manipulating non-ver-
bal addition-subtraction situations with objects, while 
quantity discrimination relates to the ability of recog-
nizing the relative magnitude size (Reys, & Yang, 1998). 
Conventional arithmetic includes students’ ability 
to calculate number combinations, conceptualize 
the effect of operations (Yang, 2005) and solve story 
problems. Number combinations relates to students’ 
ability of executing calculations with no object refer-
ents (Jordan et al., 2007). Understanding the effect of 
operations involves students’ ability to conceptualize, 
judge and interpret the meaning of operations. Story 
problems conceptualize the ability to solve simple 
word problems, without using manipulative. 

Algebraic arithmetic refers to the dimension of early 
number sense that moves beyond conventional arith-
metic. It encompasses the development of a more sus-
tainable and abstract understanding of the relations 
among numbers. Thus, the inclusion of algebraic 
arithmetic as a component of number sense could 
be considered as a move from particular numbers and 
measures towards relations among sets of numbers 
and measures. It can be conceived as a generalized 
arithmetic of numbers and quantities in which the 
concept of function assumes a major role. The inclu-
sion of algebraic arithmetic as a factor of number 
sense results in reconceptualising the conception of 
number sense. The proposed nature of number sense 
defines a more dynamic and flexible construct that 
could facilitate students’ advancements and transi-
tion to a more abstract and relational system of think-
ing. In particular, algebraic arithmetic encompasses 
the general cognitive ability of relational thinking, 
since it focuses on relations than on calculating an-
swers (Carpenter, Levi, Franke, & Zeringue, 2005). 
In particular, algebraic arithmetic refers to number 
patterns, functions and restrictions (equations and 
balance scale restrictions), as proposed by Drijvers 
and his colleagues (2011). The parameter of number 



The development of student’s early number sense  (Marios Pittalis, Demetra Pitta-Pantazi and Constantinos Christou)

448

patterns involves searching for regularity and pat-
terns to recognize a common algebraic structure. The 
dimension of restrictions describes students’ ability 
in finding what value(s) of the unknown satisfies the 
required conditions in various situations; balance 
scale tasks or in more formal setting, such as equa-
tions. The function component involves students’ 
ability to investigate arithmetic relations between 
quantities/variables.

METHODOLOGY

Subjects
The subjects of the study were 204 first grade students 
from 7 urban primary schools in Cyprus. The school 
sample is representative of a broad spectrum of soci-
oeconomic background. Students were assessed on 
the number sense measures four times during the 
period October to June (approximately one adminis-
tration per two months). A fifth measure took place 
at the beginning of the following year, when students 
attended grade 2. During each measurement students 
were interviewed in two sessions of approximately 
30 minutes each. Students had a time restriction 
for each type of task (one minute for the majority of 
tasks). Students were individually tested in all five 
occasions. The order of the parts was rotated in the 
five time series.

Measures
The majority of the test items were adopted from the 
Curriculum Based Measurement (Fernstrom & Powell, 
2007) and the rest ones were developed based on the 
theoretical considerations of the study. Six types 
of tasks were used to measure elementary number 
sense: (a) counting tasks, (b) number recognition, (c) 
quantity discrimination, (d) number knowledge, (e) 
enumeration, and (f ) non-verbal calculation. In the 
counting tasks, students were asked to enumerate 
objects, in the number recognition tasks, students 
had to read numbers, in the quantity discrimination 
tasks students were asked to decide which was the 
largest number, in the number knowledge tasks, stu-
dents were asked to find smaller and bigger numbers 
of a given one and in the non-verbal calculation tasks 
students had to add or delete objects in a given set so 
the number of objects corresponds to a given num-
ber. Conventional arithmetic was measured by three 
types of tasks: (a) story problems, (b) understanding 
of operations and (b) number combinations. In story 
problems tasks, students had to select the appropri-

ate number sentence for a list of story problems. In 
the understanding of operations tasks, students were 
presented with simple word problems and were asked 
to select out of 4 mathematical sentences, the one that 
fitted the problem. In number combinations tasks 
students had to find mentally the result of addition, 
subtraction, multiplication and division combina-
tions. Finally, algebraic arithmetic was measured by 
four types of tasks: (a) number patterns, (b) restric-
tions-equations, (c) restrictions-balance scale and (d) 
functions. In number patterns tasks, students had 
to extend or complete number patterns, such as 5, 
8, 11, … The ability to solve number patterns implies 
that a student can conceptualize the relations among 
numbers to fill in or extend a number pattern. For 
the assessment of students’ abilities in number re-
strictions two types of tasks were used, number equa-
tions and balance scales. In the number equations, 
students were asked to complete the missing terms 
of equations, such as 3+5=4+▫. Solving number equa-
tions encompasses conceptualizing the equal sign as 
equity of two quantities and the relations among all 
its components. In addition, estimating the missing 
term by analysing the relations among the compo-
nents of the equation, instead of executing calcula-
tions, indicates students’ flexibility and it is less time 
consuming. The other restriction task appeared in the 
form of a balance scale. Students had to identify the 
value of two or three shapes which balanced in the 
balance scale with a given number. Finally, regard-
ing student’s abilities with functions, students were 
presented with function machines and a table which 
showed the input and output values. Students were 
requested to provide the input or output numbers 
which were missing. The task was an adaptation of a 
task presented by Drijvers and his colleagues (2011). 
Students had to identify the relation between the in-
put and the output value, identify the effect of change 
and examine whether their hypothesized rule was 
valid in all cases.

Data Analysis
To trace the development of number sense we used 
latent growth models. Growth models examine the de-
velopment of individuals on one or more outcome var-
iables over time. In order to evaluate model fit, three 
widely accepted fit indices were computed (Muthén & 
Muthén, 2007): The chi-square to its degree of freedom 
ratio (x2/df should be <2); the comparative fit index 
(CFI should be >.9); and the root mean-square error 
of approximation (RMSEA should be close to or low-
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er than .08). Latent class analysis was used to trace 
categories of students reflecting different develop-
mental patterns in number sense; this is a statistical 
method for finding sub-types of related cases from 
multivariate data. To make the extraction of an aver-
age score for each dimension of number sense feasible, 
it was thought appropriate to set the highest score 
in each test across the five time-points as 1 and then 
make the necessary adaptations. That was necessary 
because all the tasks were equivalent and the time 
restriction did not allow the setting of an ultimate 
maximum score. The same procedure was followed 
for the extraction of an average number sense score.

RESULTS

Student’s early number sense development
To evaluate change in students’ number sense com-
ponents, the repeated measures longitudinal date 
were analysed using latent growth curve analysis. 
The latent intercept of number sense was defined by 
fixing all loadings at 1, whereas the loadings for the 
latent slope of number sense were set to the values 
of each time-point (i.e, t1=beginning of Year 1, t2=Jan-
uary, t3=March, t4=June, t5=beginning of Year 2). It 
was assumed that t1=0, indicating that the intercept 
of each component can be interpreted as the individ-
ual initial value and the slope as the individual rate 
of change over time. The hypothesized latent growth 
model assumed that student’s early number sense 
followed a linear growth rate across the five time-
points. Alternative models hypothesizing (a) a quad-
ratic trend in the slope and (b) a logarithmic trend 
were examined. Figure 1 presents the way in which 
the factors of the model relate to each other.

The results of the study showed that the hypothesized 
linear growth model had an excellent fit to the data (χ2/
df=1.94, CFI=.99, RMSEA=.07). The fit of the two alter-
native models was extremely poor (χ2/df>10, CFI<.70, 
RMSEA>1). Thus, it was concluded that student’s ear-
ly number sense followed a linear growth rate. Two 
latent factors were estimated for number sense, the 
intercept (or initial value) of the latent number sense 
and the slope (or growth rate). Each contains a latent 
growth factor mean and variance, with the covariance 
being allowed between them. Both the mean intercept 
and mean slope of number sense were significantly 
greater than zero. The results of the model fit and 
significant slope mean and variance supported the 
proposed growth model regarding the linear develop-

ment of the parameters of number sense. The analysis 
showed that the mean value of student’s number sense 
intercept was 0.20 and the mean value of the slope 
across the five time-points was 0.07. The MN.S.value of 
0.07 can be interpreted as the increase in performance 
per unit of time (i.e., 0.07 × 4 = 0.28), which corresponds 
to the actual increase of the mean value of number 
sense from time-point 1 to time-point 5. The amounts 
of variation of the intercept factor and slope factor 
were significant larger than zero. This finding is ex-
tremely important because we could conclude that 
there is variability. The correlation between the inter-
cept and the slope was positively strong (r=.55, z>1.96), 
indicating that students entering first grade with a 
strong number sense may exhibit greater growth rate. 

Tracing growth patterns
To trace categories of students that follow different 
growth behaviour, latent class analysis was used. To 
do so, we first examined whether students varied at 
entering grade 1. Thus, we applied a stepwise meth-
od to validate the model under the assumption that 
there were one, two, three, four or five categories of 
students at time 1 (first measurement). The best fitting 
model with the smallest AIC and BIC indices and the 
largest entropy was the one involving three categories 
of students. The mean value of the three categories 
were 0.13 (n1=62), 0.20 (n2=99) and 0.30 (n3=36), respec-
tively. Then, we repeated the same procedure for each 
category of students, using the data of the four re-
maining measurements. The results of the three latent 
class analysis showed that each of the three initial cat-
egories of students could be more accurately modelled 
by two sub-categories of students. Thus, in total we 
traced six groups of students that varied across the 
five time-points. Figure 2 presents the development 
rate of the six groups. 

Figure 1: The hypothesized growth model

* w corresponds to time wave
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Groups 1 (nGr.1=32) and 2 (nGr.2=30) represent the two 
subgroups of the first initial category. Groups 1 and 
2 had almost the same initial value, but progressive-
ly Group 2 adopted a greater growth rate. Groups 3 
(nGr.3=70) and 4 (nGr.4=21) represent students entering 
grade 1with moderate initial value. However, Group 4 
exhibited a remarkable growth rate, overtaking after 
the third measurement a group that had a greater ini-
tial value (Group 5). Groups 5 (nGr.5=19) and 6 (nGr.6=17) 
exhibited the greatest initial value. Overall, the mean 
value of Group 5 increased from 0.29 to 0.56 (see Table 
1), while the mean value of Group 6 increased from 0.31 
to 0.68, indicating a significantly greater growth rate.

Summing up, we traced six groups of students that 
followed different growth patterns. Two groups with 
low initial value, with the one following a moderate 
growth rate and the other one adopting a remarkable 
growth rate, two groups with moderate initial value, 
with the first adopting a moderate growth rate and 
the second exhibiting an amazing progress, and two 
groups with high initial value, with the one adopt-
ing a constant greater increasing rate. To get a better 
insight of the reasons that may explain the different 

developmental trends of the six groups of students, we 
examined their growth rate in the three dimensions 
of number sense.

Figure 3 presents the development of the six groups 
of students in the three dimensions of number sense. 
Comparing groups 1 and 2 (with low intercept), it 
could be concluded that in the first four time-points 
the gap between the two groups in elementary arith-
metic got constantly bigger and it was reduced in the 
last measurement (beginning of grade 2). The gap 
between the two groups in conventional arithmetic 
increased until the third measurement and then it 
stabilized. However, the gap between the two groups 
in algebraic arithmetic increased systematically, espe-
cially after the third measurement. It should be noted 
that the gap between the two groups with moderate 
initial value (Groups 3 and 4) got impressively larg-
er every successive time-point in all number sense 
components. On the contrary, the gaps of the three 
components between the two groups with high in-
itial number sense (Groups 5 and 6) followed three 
different patterns. Their gap in elementary number 
sense increased until the third time point and then 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Total

N.S.T_1 0.12 0.13 0.20 0.22 0.29 0.31 0.20

N.S.T_2 0.18 0.21 0.27 0.30 0.36 0.40 0.27

N.S.T_3 0.22 0.27 0.31 0.38 0.41 0.49 0.32

N.S.T_4 0.28 0.35 0.40 0.52 0.48 0.59 0.40

N.S.T_5 0.35 0.41 0.46 0.62 0.56 0.68 0.47

Table 1: Means of the six groups

N
um

be
r 

Se
ns

e

T-point

Figure 2: The development rate of the six groups
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stabilized. The gap in conventional arithmetic got 
systematically bigger until the fourth time point and 
then reduced, while their gap in algebraic arithmetic 
progressively increased.

DISCUSSION

The present study utilized the model proposed by 
Pittalis, Pitta-Pantazi and Christou (2013, 2014), sug-
gesting that students’ early number sense consists of 
elementary, conventional and algebraic arithmetic, 
to trace six year old student’s development in num-
ber sense. The results of the study showed that stu-
dent’s early number sense followed a linear growth 
rate from the beginning of grade 1 to the beginning of 
grade 2, suggesting a constant increase across the five 
time-points. However, the variation in the intercept 
and slope factors suggest that there are individual 

trajectories in the development of number sense. In 
addition, mixture growth analysis showed that six 
groups of students could model more accurately stu-
dent’s variances in the five time-points. We identi-
fied two groups of students with low initial number 
sense, two groups with moderate initial value and 
two groups with high initial value. Systematically, 
the one of the two groups with the same initial value 
adopted a greater growth rate in all the dimensions 
of number sense. 

We might suggest that the gap between the groups 
with same initial value could be explained by their 
progress in algebraic arithmetic. This could be con-
cluded by the fact that the gap between the groups 
with the same initial value progressively increased 
across all the five time-points only for algebraic arith-
metic. Thus, we might suggest that algebraic arithme-

Figure 3: Development of the six groups in the dimensions of number sense
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tic might be the source of large individual differences 
in number sense development. In addition, it might be 
assumed that the development of students’ algebraic 
arithmetic might positively affect the development 
of the other number sense components. For instance, 
Group 4 every major improvement in algebraic arith-
metic was followed by a corresponding huge improve-
ment in conventional arithmetic in the following time 
point. These findings highlight the dynamic nature 
of algebraic arithmetic and underlie the significance 
of studying (a) more extensively the factors that may 
enhance or prohibit the development of algebraic 
arithmetic and consequently the development of stu-
dent’s early number sense, (b) the interaction among 
the growth of the three components of number sense 
and (c) the effect of instruction and teaching material 
on their growth rate.
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A study was conducted with 26 college students with the 
purpose of gaining insight into students’ conceptual 
understanding of parameters in algebra. Participants 
contributed to a whole-class discussion, solved prob-
lems with parameters, and identified the parameters 
in each problem. About one third of the students had 
difficulty identifying parameters. Even when successful 
at identifying parameters, students had great difficulty 
solving the problems with parameters. The difficulty 
was even greater when the mathematical object was a 
family of quadratic equations. This suggests that the 
true difficulty lies not with identifying parameters, but 
with parameters in action, that is to say when solving 
problems with parameters. 

Keywords: Parameter, algebra, college students.

INTRODUCTION

At the time Šedivý (1976) wrote “A note on the role 
of parameters in mathematics teaching,” the New 
Math era in the United States was replaced by the 
Back-to-Basic movement.  The New Math secondary 
algebra curriculum, characterized by a structural 
approach and deductive reasoning, was replaced 
by a collection of “basic” algorithms to solve simple 
equations (Kilpatrick & Izsák, 2008).  Solving equa-
tions with parameters like, x + √x2 − 2ax = b (Šedivý, 
1976), using symbolic manipulation, disappeared 
from the secondary algebra curriculum.  During the 
Back-to-Basic movement, the research on parameters 
was very scarce (Bloedy-Vinner, 1994). According to 
Furinghetti and Paola (1994), in the journals For the 
Learning of Mathematics, and Educational Studies in 
Mathematics only one article with the word “param-
eter” in the title was published, the one written by 
Šedivý (1976). The secondary algebra curriculum of 
the standards-based era that followed the Back-to-

Basic movement departed from the static equation 
solving and gradually introduced the dynamic func-
tional approach and the use of graphing technologies 
(Kilpatrick, Mesa, & Sloane, 2007). The research on pa-
rameters remained scarce (Ursini & Trigueros, 2004) 
and only in the last decade gained some momentum 
by focusing on ways in which graphing technologies 
may contribute to student understanding of param-
eters (Abramovich & Norton, 2006; Green, 2008). The  
purpose of the study reported here is to revisit the 
students’ conceptual understanding of parameters 
in algebra, given the curriculum  shifts from the past 
five decades. 

THE CONCEPT OF PARAMETER

There is a consensus that the concept of variable is 
multi-facetted and context-dependent  (Kuchemann, 
1978; Philipp, 1992; Schoenfeld & Arcavi, 1988; Usiskin, 
1988). Variables as parameters have the role to stand 
for values or numbers “on which other numbers 
depend” (Usiskin, 1988). Parameters are “general 
constants” (Philipp, 1992) or “general numbers, but 
of  second order, that is, required when generalizing 
first order general statements.” (Ursini & Trigueros, 
2004)  Discriminating between  parameters and other 
variables implies both a  variable hierarchy (Bloedy-
Vinner, 1994; Philipp, 1992; Šedivý, 1976), and a reifi-
cation of the mathematical objects defined with the 
help of parameters (Sfard & Linchevski, 1994). With 
respect to the mathematical objects with parameters, 
in the secondary algebra curriculum in the United 
States, the students encounter mostly families of lin-
ear and quadratic equations and functions in which 
one particular value of the parameter generates one 
specific equation or function.  

One example given by  Philipp (1992) is conceiving 
of the parameter k in the family of linear functions 
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C = kg, where C is the cost per gas (in $), k is the price 
of gas per gallon (in $ per gallon), and g is the quantity 
of gas (in gallons). First, one has to imagine selecting 
the price of gas, i.e., instantiating k with posible val-
ues (e.g., $2.49, $2.69, $2.99), and only then can one 
construct the specific mathematical object, i.e., the 
specific linear function that describes the quantitity 
of gas, g, and the cost, C, varying together with a con-
stant rate of change, k. Thus, discriminating between  
the parameter  k, the dependent variable C, and the 
independent variable g, implies both a  variable hi-
erarchy and a reification of the family of linear func-
tions. With respect to the family of functions C = kg 
or C(k, g) = kg, from the student point of view, it may 
be difficult to conceive of k as the literal coefficient 
of the variable g and instantiate it with one value at 
a time to obtain particular linear functions C(g) = kg. 
If we use the subscript notation for the parameter k 
in the family of functions Ck(g) = kg as suggested by 
Šedivý (1976), we fulfill the need to specify explicitly 
which variable is considered a parameter, and which 
ones are considered the independent and dependent 
variables. As well, it may be even more difficult for 
students to conceive of k as a variable with a specific 
domain, attend to all its values simultaneously, and 
conceive of  the whole family of linear functions 
C(k, g) = kg as a mathematical object. 

Another example used in this study (see Problem 1, in 
the Method chapter) is conceiving of the parameter m 
in the family of quadratic functions Em(x) = mx2 + 2x + 3. 
Within this context, we can pose the problem:

Find the values of m, where m ∊ R − {0}, such that 
the equation Em(x) = 0 has only real solutions.

Unfortunately, in our secondary algebra curriculum 
we rarely use the subscript notation. Therefore we 
formulate Problem 1 this way:

Find the values of m, where m ∊ R − {0}, such that 
the equation mx2 + 2x + 3 has only real solutions.

Assuming that a student with “symbol sense” – a “feel 
for symbols,”  “at the heart of competency in algebra”, 
as described by Arcavi (1994), identifies the parameter 
m, and conceives of the quadratic equation mx2 + 2x + 3, 
there remains the hardest part yet, requiring both 

“symbol sense” and knowledge of quadratic equations, 
linear inequalites, and intersection of sets. The stu-
dent should interpret the paramenter m as a literal 

constant, impose the condition of positivity for the 
discriminant of the quadratic equation, accept the role 
change for the symbol m (now a variable for the linear 
inequality), solve the linear inequality 4 − 12m ≥ 0, and 
intersect the solution set with the domain of the pa-
rameter m.  The final solution, A = (−∞,  1

3 ) − {0}, should 
have meaning for the student – every value of the 
parameter m from A instantiates a quadratic equa-
tion Em(x) = 0 that has two real solutions. In short, the 
student should conceive of the family of quadratic 
equations Em(x) = 0 (m ∊ R − {0}) as a mathematical 
object (Sfard, 1991) at the beginning of the problem, 
unpack the mathematical processes the mathematical 
object entails, and reify the new mathematical object 
Em(x) = 0 (m ∊ (−∞,  1

3 ) − {0}) that satifies the condition 
imposed by the problem.

The literature on student understanding of param-
eters points to student difficulty to discriminate be-
tween parameters and other variables, reify math-
ematical objects (Sfard, 1991), and succefully solve 
problems with parameters especially when the con-
text is unfamiliar (Bloedy-Vinner, 1994; Furinghetti 
& Paola, 1994; Šedivý, 1976; Ursini & Trigueros, 2004).  

The theoretical framework we propose for analyzing 
student understanding of the concept of parameter 
has two levels:  I) identifying parameters; and II) pa-
rameters in action. 

Each level has three categories, corresponding to 
student actions as observed. When asked to identify 
parameters, students: i) correctly identify parameters; 
ii) identify “actual” parameters; or iii) identify other 
variables as parameters, like the independent and 
dependent variable in a function. 

The term “actual” is borrowed from computer science 
and represents constants or expressions used in plac-
es where parameters might have been used in another 
context. For example, a student may reason this way: 
a, b, c are parameters in ax2 + ax + c = 0, therefore “m, 2, 
and 3 are all parameters in mx2 + 2x + 3 = 0.” 

Across the level parameters in action, we have three 
categories for student actions. When asked to solve 
the problem with parameters, students: i) solve the 
problem and check/discuss the solution given the con-
straints of the problem; ii) apply the right algorithm to 
solve the problem without considering the constraints 
of the problem; or iii) cannot solve the problem. 
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This theoretical framework is a departure from the 
dichotomy “algebraic-analgebraic” used by Bloedy-
Vinner (1994) to analyze students’ difficulties with 
parameters. By treating all the incorrect answers as 

“analgebraic” we lose access to  valuable information 
with respect to students’  difficulties and concequently 
to ways of overcoming those difficulties. In our frame-
work, the two levels capture those two reifications 
needed to solve problems with mathematical objects 
defined with the help of parameters, the second level 
posing more difficulties to students than the first one. 
Morevoer, the intermediate categories capture the 
students’ over-reliance on pseudo-empirical abstrac-
tions (Piaget, 2001). Piaget (2001) discriminates be-
tween pseudo-empirical knowledge abstracted from 
individual actions on objects, and reflective knowl-
edge abstracted from coordinated actions on objects. 
For example, in Problem 1, when the student identifies 

“m, 2, and 3 are all parameters in mx2 + 2x + 3 = 0,” we 
may infer that the parameters are recognized as the 
coefficients of x2,  x, and x0 in  the mathematical object 
ax2 + ax + c = 0. As such, the student performs individ-
ual actions on the quadratic equation mx2 + 2x + 3 = 0, 
and therefore relies on pseudo-empirical abstractions.  
Reflective knowledge may be inferred if the student 
identifies m as the parameter after conceiving of the 
family of quadratic equations mx2 + 2x + 3 = 0, where 
m ∊ R − {0}, poses the condition of positivity of the 
discriminant to ensure real solutions for quadrat-
ic equation, solves the inequality that results from 
posing the condition of positivity, and intersects its 
solution with the domain of the parameter. Thus, the 
student performs coordinated actions on the family of 
quadratic equations. Moreover, after solving Problem 
1, the student conceives of a new mathematical object- 
the family of quadratic equations with real solutions 
only, mx2 + 2x + 3 = 0, where m ∊ (−∞,  1

3 ) − {0}.  The co-
ordination of actions can be interrupted at any time, 
for example if a student stops solving Problem 1 after 
substituting m, 2 and 3 the quadratic formula for solv-
ing mx2 + 2x + 3 = 0. We may consider this latter case as 
another example of generalization via pseudo-empir-
ical abstractions, as the student fails to link it to a new 
action, at a higher level (Piaget, 2001), in this case the 
reification of the family of quadratic equations with 
real solutions only. 

METHOD 

This study is part of an ongoing study on student un-
derstanding of parameters. We report here only the 

exploratory phase, used to inform our teaching in-
tervention. Participants in this study were 26 college 
students, enrolled in an Introduction to Proofs class at 
a university in the United States. All students complet-
ed at least the Calculus I course, and at the time of the 
study they have just began an introduction to logical 
quantifiers and elementary methods of proof. There 
was no lesson taught on the topic of parameters, there-
fore students’ knowledge on parameters was acquired 
prior to this study. To answer the question “What is 
a parameter?”  all students were asked to come pre-
pared to class with written examples of problems with 
parameters. The task was to identify the parameters, 
and justify the choice. A whole-class discussion on 
the concept of parameter was conducted, and every 
student attempted to answer the question “What is a 
parameter?” and commented on the other students’ 
previous answers. The instructor (the first author) 
wrote the students’ examples and comments on the 
whiteboard, took pictures for analysis (see Figure 1, 
in the Analysis chapter), and collected the students’ 
written answers for analysis. The discussion lasted 
the whole class period, 50 minutes. The consensus 
was reached by the students, without the instructor’s 
validation. The next day, a 30-minute questionnaire 
was administered to all students. Students were asked 
to solve four problems, and identify the parameters in 
those problems. We report here on only two of those 
problems. Problem 1 was inspired from the research 
literature on parameters (Šedivý, 1976), and Problem 
2 from the current mathematics curriculum at the 
secondary level. We wanted to minimize the role 
of context in students’ difficulties with parameters, 
therefore we proposed only problems with familiar 
contexts (e.g., linear and quadratic equations and 
functions) and familiar tasks (e.g., solving a quadrat-
ic equation, graphing a linear function). At the same 
time, we wanted to compare our students’ difficulties 
with those reported in literature (Problem 1), and to 
gain insight into our students’ understanding of pa-
rameters, given their exposure to graphing technol-
ogies (Problem 2):

Problem 1. Find the values of m, where m ∊ R − {0}, 
such that the equation mx2 + 2x + 3 = 0 has only 
real solutions.

Problem 2. Graph the function f: R → R, f(x) = kx, 
where k ∊ R.
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Students’ answers were scored, first using two ru-
brics (“0” for correct, “1” for incorrect, and re-scored 
using three rubrics   (“0” for correct, “1” for partial 
correct, “-1” for “incorrect”) by two raters, with high 
inter-rater agreement, measured using Cohen’s k 
statistic (Cohen, 1960), k = .90 (p < .05). Open coding 
techniques and procedures described by Strauss and 
Corbin (1998) were used to develop the theoretical 
framework used for analysis. A conceptual analysis 
(Postelnicu & Postelnicu, 2013; Steffe & Thompson, 
2000) of the data was performed, with the goal of an-
swering the following research question: What is the 
students’ conceptual understanding of parameters?  
We tried to infer students’ conceptual understanding 
of parameters by analysing their constructions and 
actions. The data collected was subjected to repeated 
linkage processes, and systematic inferences, both 
inductive and deductive. We adjusted our working 
hypothesis. i.e., our proposed models to account for 
students’ conceptual understanding of parameters, 
until the data no longer contradicted our hypothe-
sis.  The last viable hypothesis was reported as the 
students’ conceptual understanding of parameters. 

ANALYSIS AND RESULTS

Identifying parameters 
During the whole-class discussion, the students 
seemed to agree that parameters are some sort of 

“general constants” (Philipp, 1992) or variables that 
appear in the definition of a mathematical object, but 
do not affect the structure of the mathematical object. 
When parameters change their values, the specific 
mathematical object changes, but keeps its structure 
(see Figure 1). 

As can be seen from Figure 1, during the whole-class 
discussion, the students could discriminate between 
parameters and other variables, in the context of lin-
ear and quadratic functions.

There was some debate if parameters are variables 
or constants, illustrated by the following comments:

“Parameter is the quantity that influences the out-
put of a function and is usually constant. Example 
1:  m and b are parameters in y = mx + b because 
they’re constants in this case that affect what the 
function looks like. This is a linear function so 
it’ll always look like a line.”

 “[A parameter is] a constant or variable that de-
termines the specific form of the function but not 
the general nature. E.g., y = ax2 + ax + c where a, b, 
and c are all parameters.” 

“Parameters are variables that have fixed num-
ber. An example is the equation of a line y = mx + b, 
[where] m is a parameter that is equal to the slope 
of the line, and b is a parameter that is equal to 
the y-intercept of the line.” 

The idea of variable hierarchy (i.e., first parameters 
are instantiated, and only then the mathematical 
object becomes specific) did not appear explicitly in 
students’ discussions. 

After the whole-class discussion, our working hypoth-
esis was that our students conceived of parameters 
as “general numbers of the second order” (Ursini 
& Trigueros, 2004), and they could identify parame-
ters in the context of linear and quadratic functions 
and equations. It was not clear if our students consid-
ered the parameters variables or constants. Students’ 
answers on the questionnaires showed that the issue 
of the nature of parameter – variable or constant that 
appeared during the whole-class discussion was more 
problematic (see Table 1).

Figure 1:  Identifying parameters in families of linear and quadratic 

functions
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In Table 1, we present the frequencies of student an-
swers per problem and category across the level iden-
tifying parameters, accompanied by corresponding 
examples of student answers. We have already com-
mented on students’ answers to Problem 1 from the 
mid-column, when the students rely on pseudo-em-
pirical abstractions, and identify the parameters 
based on their places in the symbolic representation 
of the quadratic equation. With respect to students’ 
answers to Problem 2 from the mid-column, we can 
infer pseudo-empirical knowledge, too. We interpret 
the observation that the parameter depends of the 
value taken by k as the students’ need for instantiation. 
We infer that the students operate with instances of 
the mathematical object defined with the help of pa-
rameters, i.e., one specific linear function instantiated 
by a specific value of k, and not with the whole family 
of linear functions.  Looking at the students’ answers 
from the last column, when the other variables, x or y 
were identified as parameters that can affect the math-
ematical object, equation or function, we infer that the 
parameters might have been considered variables by 
students if they attended to the domain of the varia-
ble x (at least in the linear function in Problem 2), or 
might have been considered constants by students if 
they attended to particular instances or values of x, 
one at a time. In both situations, a failure to identi-
fy the parameters implies that the student operates 
with a particular instance of the mathematical object 
defined with the help of parameters. This raises the 
question whether, in the absence of the reification of 
the mathematical object, one can perform any opera-
tions on the object. The obvious answer is no, and the 
analysis across the second level, parameters in action, 
supports this answer.

Parameters in action
The students who could not identify the parameters in 
Problem 1 could not solve the problem. Most students 
(N=21) tried unsuccessfully to solve it by manipulating 

it symbolically in various ways (e.g., solving the quad-
ratic equation by factoring, completing the square, 
using the quadratic formula). All students exhibited 
a weak competency in algebra (Arcavi, 1994), when 
they tried to solve the equation and write the solu-
tions explicitly, instead of just posing the condition 
of positivity of the discriminant and solving the lin-
ear inequality obtained. From those 18 students who 
identified the parameter m in Problem 1, none solved 
the problem completely. Five students almost solved 
the problem, without completing the last necessary 
step – checking that the solution they found (m <  1

3 , 
sometimes m <  1

3 ) fulfils the constraints of the problem 
(m ≠ 0). In this case, when m = 0, we obtain a degen-
erated equation. Considering the students’ schemes 
of operations (Piaget, 2001), we may infer that their 
reifications of the family of quadratic equations from 
Problem 1 are structurally weak (Sfard, 1991). Indeed, 
when solving Problem 1, about one third of the stu-
dents failed the first reification the family of equations 
mx2 + 2x + 3 = 0, where m ∊ R − {0} and there is no evi-
dence of  a  successful second reification of the family 
of equations mx2 + 2x + 3 = 0, where m ∊ (−∞,  1

3 ) − {0}.

Under the assumption that our students have been ex-
posed to graphing technologies, we did not anticipate 
difficulties with Problem 2, which required graphing 
a family of linear functions. In Problem 2, only one 
student provided the correct graphic representation 
and highlighted the fact that the line x = 0 is not part 
of the solution, fifteen students graphed several lines, 
while all the other students graphed only one line.  
We can infer that the students who graphed only one 
or several lines conceived only of an instance or sev-
eral instances of the family of linear functions, re-
spectively. With the exception of one student, all the 
students failed to represent graphically the family of 
linear functions as the geometric locus of all the lines 
passing through the origin, except the line with the 
equation x = 0. 

Identifies parameters Identifies “actual” parameters Identifies other variables as 
parameters

Problem 1 (N=18)
m is the parameter in 
mx2 + 2x + 3 = 0

(N=3)
m, 2, and 3  are all parameters in 
mx2 + 2x + 3 = 0

(N=5)
x is the parameter in 
mx2 + 2x + 3 = 0

Problem 2 (N=21)
k is the parameter in 
f(x) = kx

(N=2)
the parameter depends on what 
value takes k in f(x) = kx

(N=3)
x is the parameter in f(x) = kx

Table 1:  Identifying parameters 
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DISCUSSION 

In retrospect, during the past five decades, the con-
cept of parameter has remained an elusive one, even 
for college students. Our study supports previous 
findings with respect to student difficulty identifying 
parameters. We believe that this difficulty can be ad-
dressed by using subscript notation or logical quan-
tifiers when using mathematical objects defined with 
the help of parameters. This means that the curricu-
lum ought to be augmented by special topics, like con-
necting symbolic representations and logical quanti-
fiers with ways of defining mathematical objects with 
the help of parameters. Identifying parameters is only 
the tip of the iceberg, the true difficulty lies with pa-
rameters in action. Of note, Godino, Neto, Wilhelmi, 
Aké, Etchegaray, & Lasa (2015) also proposed two levels 
of algebraic thinking involving parameters, the supe-
rior level referring to the “treatment of parameters” 
in problems requiring higher algebraic competency. 
Indeed, the real issue seems to be the weak algebraic 
competency (Arcavi, 1994; Sfard, 1991) inferred from 
the students’ pseudo-empirical knowledge that hin-
ders the reification of mathematical objects, or from 
the lack of active knowledge, like the knowledge about 
the role the discriminant of a quadratic equation in 
Problem 1. Our findings suggest that in spite of the use 
of graphing technologies, students continue to have 
difficulty connecting symbolic and graphic represen-
tations of mathematical objects defined with the help 
of parameters, and thus they have difficulty conceiv-
ing of those mathematical objects as geometric loci, 
like in the case of the family of linear functions (family 
of lines passing through the origin, except the line x 

= 0) in Problem 2. To conclude, the students’ difficulty 
when solving problems with parameters – is the rei-
fication of the mathematical objects, reification that 
is dependent on the students’ fluency in unpacking 
and packing the mathematical processes behind the 
mathematical objects. 
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In recent years, there has been concern regarding the 
performance of Irish second level students in mathe-
matics and in particular algebra. In response, the Irish 
Government have introduced ‘Project Maths’ which is a 
major reform of second level mathematics. It was intro-
duced on a phased basis in 2008 and involves changes 
to what students learn, how they learn it and how it is 
assessed. One of the main changes is the promotion of 
a functions based approach to teaching algebra. This 
is much different from the transformational rule based 
approach which had dominated Irish classrooms. The 
new algebra strand and functions based approach was 
introduced in second level schools in September 2011. 
This paper aims to investigate the immediate effect, if 
any, of such an approach on student’s transformation-
al algebraic ability. This will be done by analysing the 
mathematics diagnostic scores of incoming third level 
students at an Irish University.

Keywords: Algebra, curriculum change, teaching 

approaches. 

THE STUDY

This paper aims to investigate the immediate effect 
(if any) of the functions based approach to teaching 
algebra that has been implemented in Irish schools 
instead of the transformational (rule and procedure) 
based approach which was previously used. The pa-
per will do this through analysing the results of a di-
agnostic test taken by incoming first year students 
at an Irish University. There are eight algebra based 
questions on the diagnostic test and all of them are 
transformational based in nature. Hence this paper 
will compare student’s algebraic ability from a techni-
cal perspective in aspects such as manipulating terms 
and solving equations. 

BACKGROUND TO THE STUDY

Irelands ‘Algebra Problem’
Algebra has long been identified as an area of difficulty 
in the teaching and learning of mathematics. In the in-
troductory note to his monumental Arithmetica, writ-
ten ca. 250 AC, Diophantus of Alexandria mentions 
the discouragement that students usually feel when 
learning what we now term ‘algebraic techniques’ 
to solve word-problems. Fast forwarding to 1982, 
Cockcroft identified algebra as a source of consider-
able confusion and negative attitudes among students.  
This was followed by Herscovics and Linchevski (1994, 
p. 62) who reported that many students consider al-
gebra an unpleasant, even alienating experience and 
find it difficult to understand.”How can we multiply by 
x when we don’t know what x is?” (12 year old student). 
Furthermore Artigue and Assude (2000) posit that 
many students see algebra as the area where mathe-
matics abruptly becomes a non-understandable world. 

Evidence of this confusion is common in Irish class-
rooms. Chief Examiners’ Reports have identified 
algebra as an area of weakness over the past num-
ber of years. According to these reports, Irish stu-
dent performance in algebra has shown little or no 
progress in the last fifteen years. In the 1999 Junior 
Certificate (JC) Higher Level paper, there were two 
questions based primarily on algebra, while other 
parts of questions also involved algebra. The long 
questions on algebra were both low scoring and un-
popular choices. Question 3, yielding an average mark 
of 24.3 out of 50, was the lowest scoring on the paper 
thus reflecting the extent of candidates’ difficulties 
with algebra. Furthermore, candidates often ignored 
parts of other questions which involved the topic. In 
the 2003 JC Higher Level paper, the Chief Examiner 
Report (2003) concluded that while there was some 
improvement in relation to algebraic skills, further 
improvement was still needed. Questions 3 and 4 
relating to algebra demonstrated that the algebraic 
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skills of candidates need to be enhanced so that they 
can handle with ease topics such as manipulation of 
formulae, quadratic equations, solving inequalities 
and setting up equations. Again the lowest scoring 
question on the paper (Question 4, yielding an average 
mark of 29.1 out of 50), was based on algebra (Chief 
Examiners Report, 2003). This was also the case in the 
most recent Chief Examiners Report (2006). On this 
occasion Question 4 yielded an average mark of 27.1 
out of 50. This report noted that improvements were 
required in areas such as simplifying and removing 
brackets from algebraic expressions, particularly ex-
pressions containing minuses and also simplifying 
algebraic fractions. Hence on the evidence of these re-
ports it is clear that although algebra has long enjoyed 
a place of distinction in the mathematics curriculum, 
many students have difficulty in understanding and 
applying even its most basic concepts. “Algebra means 
hours of instruction that you don’t even come close to 
understanding” (seventh-grade student as cited in 
House, 1988, p. 1). 

Reasons for such poor performance in algebra
In Ireland, research has suggested that there has been 
an over reliance on traditional methods when teach-
ing algebra. Transformational based activities have 
dominated lessons. Algebra was a paper and pencil 
activity involving the following of rules and proce-
dures. A minimalist approach to algebraic sense mak-
ing took place. Each day of instruction was textbook 
led and focused on a particular type of manipulation. 
For example, the textbook started by introducing the 
concept of a variable, followed by the notion of alge-
braic expressions and then equations (Kieran, 1992). 
This structure ensured that algebra was considered as 
a series of skills to be mastered (Chazan, 1996). Success 
in the subject was determined by the ability to mem-
orise procedures by rote, nothing else (Bracey, 1992). 

Research has found that many mathematics teachers 
felt there was no alternative to teaching mathemat-
ics through the traditional chalk and talk or the com-
mon method of following sections through a textbook 
(Lyons et al., 2003). Using such a method with algebra 
forced students to memorise procedures and solve 
artificial problems that had no meaning to their lives. 
They were drilled on the possession of mathematical 
rules and manipulations and they were graded not on 
their understanding of the mathematical concepts, but 
on producing the right symbol series. As a result what 
students learned was a collection of procedures and 

skills to be performed, having no logical coherence, 
very little connection with previously learned arith-
metic, and no applications in other school subjects 
or in the outside world (MacGregor, 2004). Although 
such procedures and skills are important outcomes 
of learning algebra, what students need even more is 
a sound understanding of algebraic concepts and the 
ability to use knowledge in new and often unexpected 
ways. Students need to be given the opportunity to 
construct their own mathematical knowledge along 
with understanding its importance and usefulness 
in every day applications.

The ‘Solution’
As a result of Irish students’ poor performance 
in mathematics and indeed algebra, the Irish 
Government have introduced ‘Project Maths’ [1]. 
This is an ambitious reform of Irish second level ed-
ucation [2] which has an overall aim to teach math-
ematics in a way which leads to real understanding 
(Department of Education and Skills (DES), 2010).  It 
involves changes to what students learn in mathemat-
ics, how they learn it and how they will be assessed. 
The initiative is designed to ensure an appropriate 
balance between understanding mathematical theory 
and concepts and developing practical applications 
skills. There is a much greater emphasis placed on stu-
dent understanding of mathematical concepts, with 
increased use of contexts and applications. The focus 
is on students understanding the concepts involved, 
building from the concrete to the abstract, from the 
informal to the formal and learning to apply their 
knowledge in familiar and unfamiliar contexts (DES, 
2010). Changes have being phased in over a number 
of years covering 5 strands of mathematics (Number, 
Algebra, Statistics and Probability, Geometry and 
Trigonometry, Functions), with assessment in the 
examinations being adapted as each strand of math-
ematics comes on stream. The assessment reflects the 
different emphasis on problem solving and applica-
tions in the teaching and learning of the subject.

Changes to the teaching, learning 
and assessment of algebra
Although the initiative first began in 24 pilot schools 
in 2008, it was not rolled out nationally until 2010 
and the new algebra strand was not introduced to all 
schools until September 2011. In a major shift from 
the transformational based approach which had dom-
inated Irish classrooms, the new strand advocates a 
functions based approach to teaching algebra. The 
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functions based approached envisages that students 
may be able to work with variables and the rules of 
arithmetic and learn to use algebraic notation and 
techniques themselves. There is an opportunity for 
students to see algebraic notation arising as a natu-
ral and useful consequence of expressing generality 
(Pegg & Redden, 1990). 

Through Project Maths, the new approach reflects 
inquiry methods through which students take respon-
sibility when dealing with new problems rather than 
rehearsing known procedures. Students examine 
functions derived from some kind of context, e.g., 
familiar everyday situations, imaginary contexts or 
arrangements of tiles or blocks. They express gen-
eralisations mathematically using algebraic sym-
bolism, interpret expressions as rules for functions 
and use the Cartesian plane as a space to display and 
consider a variety of meanings of the results (Chazan 
& Yerushalmy, 2003). Therefore students represent 
the problem using words, numbers, symbols, tables 
and graphs. This approach builds on the learner’s 
prior knowledge and allows them to see different 
representations which should enable a deeper un-
derstanding of the topic.

The change in teaching approach to algebra has also 
led to a change in the assessment approach for the 
strand. The Project Maths assessment reflects the 
changes in emphasis of a functions based approach 
in which students are required to take an everyday 
problem, solve it mathematically using tables, func-
tions and graphs and then interpret their results in 
the context of the problem.  

Success of Project Maths and the 
Functions Based Approach?
The phased implementation of Project Maths means 
that 2014 was the first year in which all strands of 
the revised syllabi were examined. Indeed it will be 
2017 before a first cohort of students who have ex-
perienced all 5 strands of Project Maths from 1st to 
6th year [3] will be examined. Thus it is very early 
to make any conclusions regarding the successes / 
failures of the initiative. However, an interim report 
commissioned by the NCCA and conducted by the 
National Foundation for Educational Research (NFER, 
UK) has been published and includes findings on stu-
dents’ attitudes and achievements. Overall this report 
found that there is emerging evidence of the positive 
impacts of Project Maths on students’ experiences of, 

and attitudes towards, mathematics (Jeffes et al., 2013). 
Furthermore, students’ are achieving more at indi-
vidual strand level, and in some instances students 
appear to be successfully drawing together their 
knowledge across different mathematics topics (Jeffes 
et al., 2013). This suggests that students are beginning 
to acquire a deeper understanding of mathematics 
and how it can be applied (Jeffes et al., 2013).

With a specific reference to algebra, the revised strand 
was first examined at LC level in June 2012. The NFER 
report found that out of the five strands, algebra is 
in the lowest two strands, both in terms of student 
confidence and student achievement (Jeffes et al., 
2013). Furthermore although students’ performance 
in other strands is similar to international students 
who participated in TIMSS 2007, students appear to 
find algebra especially difficult when compared to 
international standards (Jeffes et al., 2013). However 
on a positive note for the functions based approach, 
the report found that students feel more motivated 
to learn algebra when it is taught in a way that makes 
it seem more relevant to everyday life and when they 
can see that it interlinks with other mathematics topics. 

METHODOLOGY

The methodology of this study involves comparing 
student’s results on a number of transformational 
based algebra questions from a university diagnos-
tic test. The results will be compared between two 
cohorts, 2011 in which students were taught using tra-
ditional methods, and 2013 in which students were 
taught using a functions based approach. 

The instrument
The diagnostic test from which the data is compared 
was designed and implemented in the University of 
Limerick (UL) in 1997. It was designed to help identify 
students who may be at risk of failing service math-
ematics examinations (O’Donoghue, 1999; Gill, 2006). 
Within the design process, a team of experienced ser-
vice mathematics lecturers analysed and adjusted an 
initial list of 70 questions, reducing this to the final 40 
question version. Thirty four of these questions are 
set at a LC Ordinary Level standard or below, with the 
other six questions set at a LC Higher Level standard. 
To ensure the validity of this test, it was then piloted 
in Irish second level schools and compared with the 
SEFI Core Level Zero syllabus for engineers, the Irish 
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JC mathematics syllabus, the Irish LC mathematics 
syllabus and further diagnostic tests (Gill et al., 2010). 

The test was intended specifically to suit the mathe-
matical level of the students in each of the targeted 
service mathematics modules in UL, namely Science 
Mathematics 1 and Technological Mathematics 1. Since 
1998 students from these cohorts have been assigned 
the 40 question diagnostic test which assesses basic 
skills and procedures in various mathematical topics.  
These topics include arithmetic (13 questions), alge-
bra (8 questions), geometry (4 questions), trigonome-
try (3 questions), co-ordinate geometry (4 questions), 
complex numbers (2 questions), differentiation (3 
questions), integration (2 questions), and modelling (1 
question).  The test is presented to students in their first 
mathematics lecture of each year since and they are not 
informed beforehand that they are required to take it. 

The layout of the test and each of the 40 questions have 
remained unchanged over the years to ensure reliabil-
ity. The UL database which contains data from these 
diagnostic tests dating from 1998 to 2013 currently 
holds information on over 10,100 students.  

THE STUDY

This paper will focus on the results of students from 
the 8 algebra questions (see appendix 1) in the year 
2011 in comparison to the results from 2013. It is im-
portant to note that the algebra questions included 
in the test are transformational based in nature and 
hence do not reflect a student’s overall algebraic 
ability.  The years 2011 and 2013 were selected as the 
algebra strand of Project Maths was first phased into 
Irish schools in September 2011. Hence the students 
who took the 2011 UL diagnostic test would have been 
taught algebra using the transformational based ap-

proach. The students who took the 2013 UL diagnostics 
test would have been taught algebra using the func-
tions based approach. 685 students took the diagnostic 
test in 2011 and 645 took it in 2013. Analysis of this 
data will aid the authors is answering the following 
research question: 

Is there a difference in the transformational algebraic 
ability of incoming third level students who have been 
taught using different approaches?

RESULTS

Descriptive analysis of the data found that there was 
a statistically significant difference (t=4.463, p =.000) 
between the mean algebra scores of the students in 
2011 (M: 59.01; SD: 24.07) compared to the mean scores 
in 2013 (M: 53.16; SD: 23.74). In order to get a more 
in-depth analysis of this finding, the results of each 
of the eight algebra questions from both years were 
compared (see Figure 1).

Students who had been taught using the transforma-
tional based approach scored higher in six out of the 
eight algebra questions. There was a statistically sig-
nificant difference in the mean scores of students in 
four of the eight algebra questions (Q14, 17, 18, 21) in 
2011 when compared to 2013 (see Table 1).

A closer inspection of the four questions (See 
Appendix 1 Q14, 17, 18, 21) in which there were statis-
tically significant differences between the cohorts 
does not reveal any correlation between the questions. 
Question 14 involves the rearrangement of formula, 
Question 17 and 18 involve solving equations (quad-
ratic and simultaneous respectively) and Question 
21 concerns the subtraction of algebraic fractions. 
Similarly, no correlation appears to exist between 

Figure 1: Student results in eight algebra questions
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the questions in which there were no statistically 
significant differences (See Appendix 1 – Q15, 16, 19, 
20). Question 15 involves substitution, Question 16 
involves solving a linear equation, Question 19 is the 
expansion of brackets while Question 20 concerns 
solving inequalities. Each of the eight questions are JC 
Higher Level / LC Ordinary Level standard and would 
have been on the traditional syllabus, in addition to 
being on the current Project maths syllabus. 

DISCUSSION AND CONLCUSION

Despite the perceived success of Project Maths and the 
functions based approach to teaching algebra (Jeffes et 
al., 2013), the analysis of the UL diagnostic test results 
shows that there is statistically significant differenc-
es in the 2013 mean algebra scores of students when 
compared to 2011. Analysis of the LC grades shows that 
both cohorts had very similar grades in mathematics 
upon completing second level. The mean number of 
LC points achieved by these students through math-
ematics in 2011 was 54.27 while, in 2013 this cohort 
produced a mean number of 53.64 points. However the 
performance of the 2013 cohort in the algebra section 
of the diagnostic test is significantly lower than the 
2011 cohort. This would suggest that the introduction 
of the new algebra strand in Project Maths and the 
change in teaching approach has had a detrimental 
effect on student’s transformational algebraic ability.

The findings of the study are hardly surprising given 
that diagnostic test used to gather the data focuses 
solely on transformational activities and the empha-
sis on such activities has been diminished under the 
new curriculum. However the eight algebra questions 
contained in the test (See Appendix 1) are of a very 
basic standard and all Irish students would have en-
countered such concepts at Junior Cycle / Senior Cycle 
level in both syllabuses. Thus the results of this study, 

in this regard are surprising. Whatever the approach 
to teaching algebra at second level, it is expected that 
students entering third level on degree programmes 
with a mathematics component, should be competent 
in rearranging basic formula, expanding brackets, 
substitution and solving basic equations. The authors 
argue that such skills should be acquired by second 
level students regardless of whether they are being 
taught algebra using a transformational, a functions 
based or indeed any other approach. 

Thus the challenge for Irish mathematics educators 
on the basis of this study is to ensure that the transi-
tion to the functions based approach does not result 
in a neglect of teaching the technique and rule-bound 
aspects of the algebraic language (Prendergast & 
O’Donoghue, 2014). While the transition to the func-
tions based activities of Project Maths is a welcome 
move, it is also important that the algebraic purpose 
behind such activities is not lost. This results with stu-
dents not knowing how to move from their informal 
constructions to a formal and algebraic relationship 
(Stacey & MacGregor, 1997).This was evidenced in the 
UK where the search for meaning and the consequent 
suppression of symbolism led to a situation in the ear-
ly 1990s where students were doing hardly any symbol 
manipulation (Sutherland, 1997). Problem solving by 
whatever means had all but replaced algebra (Kieran, 
2004). The hope was that, in focusing on algebraic 
understanding, the techniques would take care of 
themselves. However, a study carried out by Artigue 
in France in the mid 1990’s on the use of DERIVE in 
French classrooms found that the techniques did not 
take care of themselves (Kieran, 2004). As anticipat-
ed, the researchers found that the teachers were em-
phasising the conceptual elements while neglecting 
the role of the procedural work in algebra learning. 
However, this emphasis on conceptual work was pro-
ducing neither a clear understanding of the proce-

Question Mean and SD 2011 Mean and SD  2013 Independent T-test

14 .54 (.499) .40 (.490) t=5.390, p =.000

15 .65 (.478) .66 (.475) t=-3.52, p =.725

16 .82 (.383) .82 (.386) t=0.156, p =.876

17 .66 (.476) .52 (.500) t=5.087, p =.000

18 .66 (.474) .59 (.492) t=2.551, p =.011

19 .77 (.420) .75 (.436) t=1.131, p =.258

20 .33 (.471) .30 (.460) t=1.138, p =.255

21 .29 (.453) .22 (.414) t=2.895, p =.004

Table 1: Mean Score, Standard Deviation and Independent T-tests
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dural aspects, nor a definite enhancement of students’ 
conceptual understanding, “easier calculation did 
not automatically enhance students reflections and 
understanding” (Lagrange, 2003, as cited in Kieran, 
2004, p. 28). Thus traditional exposition and practice 
must be retained alongside more opportunities for 
practical work, problem solving, investigations and 
discussion and providing purpose to the activities 
(Sutherland, 1997). The work of ‘Project Maths’ in 
Ireland must facilitate the curriculum and teachers in 
making such an evolution. While the new curriculum 
is having many positive benefits it is important that 
techniques and conceptual understanding are taught 
together rather than in opposition.

REFERENCES

Artigue, M., & Assude, T. (2000). Teaching and Learning 

Algebra: Approaching Complexity through Complimentary 

Perspectives. Retrieved from http://pepite.univ-lemans.fr/

English/4-txtBG-MA_icm2001.pdf. 

Bracey, G. (1992). ‘If you ask me—Cut out Algebra! Mostly it’s a 

useless, impractical exercise’. Washington Post (June 12), 

5, Section C.

Chazan, D. (1996). Algebra for All Students. Journal of 

Mathematical Behaviour, 15, 455–477.

Chief Examiners Report (1999; 2003; 2006). Junior Cert 

Examinations – Mathematics. Retrieved from http://www.

examinations.ie. 

Chazan, D., & Yerushalmy, M. (2003). On appreciating the cog-

nitive complexity of school algebra: Research on algebra 

learning and directions of curricular change. In J. Kilpatrick, 

D. Schifter, & G. Martin, A Research Companion to the 

Principles and Standards for School Mathematics (pp. 

123–135). Reston, Virginia: NCTM.

Cockcroft, W.H. (1982). Mathematics Counts: Report of the 

Committee of Inquiry into the Teaching of Mathematics in 

Schools. London: HMSO.

Department of Education and Skills (2010). Report of the 

Project Maths Implementation Support Group. Dublin: 

Department of Education and Skills.

Gill, O., O’Donoghue, J., Hannigan, A., & Faulkner, F. (2010). 

Trends in Performance of Science and Technology 

Students (1997–2008) in Ireland. International Journal of 

Mathematical Education in Science and Technology, 41(3), 

323–339.

Herscovics, N., & Linchevski, L. (1994). A Cognitive Gap be-

tween Arithmetic and Algebra. Educational Studies in 

Mathematics, 27(1), 59–78.

Hidi, S., & Harackiewicz, J.M. (2000). Motivating the 

Academically Unmotivated: A Critical Issue for the 21st 

Century. Review of Educational Research, 70(2) 151–179.

House, P. A. (1988). Reshaping school algebra: Why and how? 

In A. F. Coxford (Ed.), The NCTM Yearbook: The Ideas of 

Algebra, (pp. 1-7). Reston, VA: NCTM.

Jeffes, J., Jones, E., Wilson, M., Lamont, E., Straw, S., Wheater, R., 

& Dawson, A. (2013). Research into the impact of Project 

Maths on student achievement, learning and motivation: 

final report. Slough: NFER.

Kieran, C. (1992). The learning and teaching of school algebra. 

In D. Grouws (Ed.), Handbook of research on mathematics 

teaching and learning (pp. 390–419). New York: Macmillan 

Publishing Company.

Kieran, C. (2004). The Core of Algebra: Reflections on its Main 

Activities. In Stacey, K., Chick, H., & Kendal, M. (Eds.), The 

Future of the Teaching and Learning of Algebra – The 12th 

ICMI Study. London: Kluwer Academic Publishers.

Lyons, M., Lynch, K., Close, S., Sheerin, E., & Boland, P. (2003). 

Inside Classrooms – The Teaching and Learning of 

Mathematics in the Social Context. Dublin: Institute of 

Public Administration.

MacGregor, M. (2004). Goals and content of an algebra curric-

ulum for the compulsory years of schooling. In K. Stacey, 

H. Chick, & M. Kendal (Eds.), The Future of Teaching and 

Learning of Algebra. The 12th ICMI Study (pp. 313–328). 

London: Kluwer.

Pegg, J., & Redden, E. (1990). Procedures for, and experiences 

in, introducing algebra in New South Wales. Mathematics 

Teacher, 83, 386–391.

Prendergast, M., & O’Donoghue, J. (2014). ’Students enjoyed 

and talked about the classes in the corridors’: pedagogical 

framework promoting interest in algebra. International 

Journal of Mathematical Education in Science and 

Technology. Retrieved from www.tandfonline.com/doi/full/1

0.1080/0020739X.2013.87760. 

Stacey, K., & MacGregor, M. (1997). Curriculum reform and 

approaches to algebra. In R. Sutherland, T. Rojano, A. 

Bell, & R. Lins (Eds.), Algebraic processes and structure. 

Dordrecht, The Netherlands: Kluwer Academic Publishers.

Sutherland, R. (1997). Teaching and Learning Algebra pre–19. 

Report of a Royal Society/ JMC Working Group. Retrieved 

from http://royalsociety.org/displaypagedoc.asp?id=11493. 

ENDNOTES

1. ‘Project Maths’ is the name under which the reform 
of the Irish mathematics curriculum has been imple-
mented.

http://pepite.univ-lemans.fr/English/4-txtBG-MA_icm2001.pdf
http://pepite.univ-lemans.fr/English/4-txtBG-MA_icm2001.pdf
http://www.examinations.ie
http://www.examinations.ie
http://www.tandfonline.com/doi/full/10.1080/0020739X.2013.87760
http://www.tandfonline.com/doi/full/10.1080/0020739X.2013.87760


Analysing Ireland’s Algebra Problem (Mark Prendergast and Paraic Treacy)

466

2. There are three levels to the Irish education system 
– primary level, second level and third level. Second 
level students are typically aged 12–18 years.

3. 1st to 6th year – Second level education is typically 
of 6 years duration.

APPENDIX 1
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This paper reports on a case study aiming to deepen 
our understanding of low achieving students’ learning 
of algebra, in particular when they work with pattern 
problems. We observed one low achieving student, May, 
who participated and worked in three different hetero-
geneous settings. Data were analysed from a multimod-
al perspective on key and regulating activities in the 
groups. The analysis revealed that May’s contribution 
varied, depending on the composition of the groups, and 
that her contributions were influenced by regulating 
activities by peers and access to physical artefacts. The 
findings show that a low achieving student is able to 
generalise beyond her arithmetic knowledge, but the 
environment in a heterogeneous group did not offer her 
the space to do so.

Keywords: Regulating activities, low achieving, pattern 

problems, heterogeneous groups.

INTRODUCTION

Pattern problems have been studied extensively in 
classroom situations, particularly in group work 
(Radford, 2009; Ryve, Larsson, & Nilsson, 2013). 
Pattern problems can be tackled using different strat-
egies, including arithmetic strategies (counting) and 
grouping strategies, before advancing to generalised 
explicit formulae (Lannin, Barker, & Townsend, 2006). 
Radford (2012) has explained that generalising is cen-
tral in algebraic thinking, not symbolising. With pat-
tern problems, students can reason informally, yet 
algebraically, they can even generalise their answers, 
without immediate need to symbolise. 

To supplement the studies of students working on pat-
tern problems, we are interested in how to facilitate 
low achieving students’ learning of algebra within het-

erogeneous groups. We define low achieving students 
as students following regular mathematics lessons, 
but achieving low on tests compared to their peers. 
Many studies have demonstrated that these students 
are able to reason algebraically, but their potential is 
often not captured by standard tests (Karsenty, Arcavi, 
& Hadas, 2007; Watson, 2002). 

The rationale for our study of low achieving students 
within heterogeneous groups is that in Norway, the 
official policy is an inclusive school system: it is not 
allowed to teach in fixed ability groups over time 
(The Educational Act, 1998). Research on learning 
in group settings has identified that heterogeneous 
groups are beneficial to students’ learning and invite 
all students to become active participants (Dekker & 
Elshout-Mohr, 1998; Webb, 1991). 

In the current paper we present a case study of May, 
who is considered as a low achieving student by her 
teacher and based on test results. We observed her 
work with pattern problems in three different groups. 

THEORETICAL FRAMEWORK

Algebra learning is defined to involve both symbol-
ic expressions and reasoning about generalisation 
(Caspi & Sfard, 2011; Måsøval, 2011). In our study, we fo-
cus on the algebraic reasoning and generalising, and 
to a lesser extent on symbolising. Strømskag (2015) 
emphasises the importance of natural language as a 
basis for symbolic expressions which might be even 
more crucial for low achieving students. According 
to Karsenty and colleagues (2007), low achieving stu-
dents do have a potential to think algebraically, yet 
they are not always capable of working with symbols. 
Therefore, low achieving students’ algebraic poten-

mailto:anita.m.simensen@uia.no
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tial might be more visible in natural language than 
in symbolic expressions. 

A relation between students’ communication and al-
gebraic thinking is emphasised by Caspi and Sfard 
(2011) when they define algebra as a discourse. This 
definition is promising for researching low achieving 
students’ algebra learning because it “transfers alge-
bra from the category of passive tools to that of human 
activities” (p. 470). In their study, students’ communi-
cation is analysed according to verbal interaction and 
written products, not focusing on gestures. However, 
research on low achieving students has identified ges-
tures to be crucial for students’ active participation 
in meaning making processes (Simensen, Fuglestad, 
& Vos, 2014).

Radford (2009) demonstrates how students’ written 
products from generalisation processes can be traced 
back to their use of speech, gestures and actions (such 
as using physical artefacts) during the solution pro-
cess. He also argues that gestures in isolation do not 
tell much; it is when all three actions work together 
that observing communication can give insight into 
students’ meaning making. Radford refers to activities 
where students combine speech, gestures, and actions 
as multimodal activities (2009, p. 120). Multimodal ac-
tivities are not only local products of the situation in 
which they take place; they have roots in previous 
situations and contribute to future communication 
(Civil & Planas, 2004). Therefore, facilitating all stu-
dents to become active participants is not only about 
an individual’s empowerment to become an active 
contributor by offering appropriate tasks and physi-
cal artefacts; it is also about previous communication, 
and mutual encouragement of communication. 

Dekker and Elshout-Mohr (1998) have defined two 
categories that can be used to analyse multimod-
al activities: regulating activities and key activities. 
Regulating activities are activities that encourage 
students to communicate about their work, namely 
by questioning or critisising it, for instance: “What 
are you doing? Why are you doing that?” (Pijls, Dekker, 
& van Hout-Wolters, 2007, p. 312). Regulating activities 
can be practiced by other students, the teacher, or by 
the student herself. 

Regulating activities do not only encourage commu-
nication, they can also be used to define students’ key 
activities. Four key activities have been identified as 

indicators for level raising in mathematics (Dekker 
& Elshout-Mohr, 1998) and they can be observed in 
students’ communication. The four key activities are: 
showing one’s work; explaining one’s work; justifying 
one’s work; and, reconstructing one’s work.

Pijls and colleagues (2007) have carefully demonstrat-
ed how to classify utterances according to regulat-
ing and key activities. They emphasise particularly 
the key activities’ dependence on regulating activi-
ties, because the regulating activities are crucial to 
categorise key activities. For instance, Pijls and col-
leagues (2007) claim that it can be difficult to decide 
whether a student is showing or justifying her work. 
The decision should then be based on the regulating 
activity that initiated the actual key activity. For ex-
ample, justifying one’s work is always a response to 
critique, while showing is not (p. 313). For further ex-
planations of regulating and key activities, we refer to 
work by Dekker and Elshout-Mohr (1998) and Pijls and 
colleagues (2007). Heterogeneous groups in which 
all four key activities were identified showed to be 
the most beneficial for attaining mathematical level 
raising (Pijls et al., 2007). Nevertheless, students who 
demonstrate fewer key activities, like showing and 
justifying, can attain a certain degree of level raising. 
We build on these studies, but extend the analysis 
beyond utterances, and also analyse other multimodal 
activities.

Despite the large amount of research concerning al-
gebraic thinking and communication, not much of it 
relates to low achieving students’ communication and 
their algebraic learning potential. For this reason, we 
want to investigate: How do regulating activities en-
courage or hinder a low achieving student’s communi-
cation about pattern problems in heterogeneous groups?

METHODS

To answer our research question, we designed tasks 
on hexagon patterns in such a way that the questions 
should be easy to understand and such that they 
could be solved by multiple methods. Motivated by 
Radford’s (2009) claim that students’ use of gestures 
and artefacts is crucial for communication on pattern 
problems, we made hexagon tiles and sheets with hex-
agon patterns available for the students. We assumed 
that these factors (questions that were easy to under-
stand, multiple methods for solving, availability of 
physical artefacts) would invite all students to become 
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active participants. Based on these problems, we car-
ried out a task-based intervention on three different 
days during one week in a Grade 8 class. 

For this case study, we will focus on one student, May, 
who performed low on a National Test for Grade 8. 
Before the intervention, we had communicated with 
the teacher, and created a group in which we assumed 
that May would become an active participant: May 
(low achieving), Tom (average achieving) and Bo (high 
achieving). But Bo was sick when our intervention 
started and we had to reorganise the groups, replacing 
Bo with Eva (high achieving). After that first session, 
Bo was back and May could work with Bo and Tom in 
the ensuing session. This accidental change in our 
study enabled us to observe May in two heteroge-
neous settings, which turned out to be very differ-
ent. Because of the different outcomes, we became 
interested in learning more about what encouraged 
or hindered May’s communication in heterogeneous 
settings. Therefore, we carried out an additional, 
third session in which we asked May to work togeth-
er with Siv. Siv is not only May’s friend, but she has 
special educational needs as well. We assumed that 
these two factors, working with a friend and being 
the most knowledgeable, might empower May to take 
an active role in the work. A third choice we made 
to strengthen May’s role as the most knowledgeable 
peer, was to give May and Siv a task with which May 
was familiar from the work in Group 2 (see Figure 1).  

All the sessions were video recorded and transcribed. 
We then counted the number of utterances made by 
May in each group, and this gave us a quantification of 

her participation in the communication between the 
group members. However, counting the number of ut-
terances does not give insight into the nature of utter-
ances nor the chain of activities that the utterances are 
part of. We therefore analysed the communication ac-
cording to key and regulating activities, as developed 
by Dekker and Elshout-Mohr (1998). In this analysis, 
the four key activities can be identified independently, 
one activity is not dependent on others, and they are 
incremental in the sense that we can see attempts to 
carry out key activities, partly or strongly. Because 
of this, we consider key and regulating activities as 
suitable to identify both students’ actual level raising 
and their potential level raising. In previous studies 
(Dekker & Elshout-Mohr, 1998; Pijls et al., 2007), key 
activities and regulating activities are only observed 
in students’ speech, and not in their gestures and ac-
tions. However, we decided to analyse communica-
tion according to key and regulating activities from 
a multimodal perspective, following Radford (2009). 

RESULTS

We carried out a frequency count of May’s utterances 
in the three groups. In the first group she hardly said 
a word (3 % of the group’s utterances are from May), 
in the second group her contribution raised to 16% 
of the groups’ utterances, while in the third group 
she contributed with 53 % of the utterances. Below we 
will report exemplar episodes from the three groups.

Group 1
On the first day of the intervention, May sat with Tom 
and Eva. They discussed pattern problems on finding 

Figure 1: Tasks and organisation of heterogeneous groups
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the number of hexagon tiles required to build vari-
ous figures. In their discussions, Tom and Eva agreed 
about how to find this number, reasoning from a re-
cursive approach, namely by adding the next figure 
number to the number of tiles in the present figure. 
May said little and her utterances were in general 
short, consisting of one or two words. 

Tom asked May several times if she understood how 
he and Eva had found the number of hexagon tiles in 
the figures without counting. Every time May nodded, 
but except for the nodding, she did not move her arms 
or body. As can be observed in Figure 2 she was sitting 
further away from the other group participants, as 
if she was not part of the group (see Figure 2). There 
were a few moments, when May’s nodding was fol-
lowed by Tom asking if she really understood. This 
could indicate that he did not accept May’s nodding 
as sufficient confirmation that she understood. 

Eventually, Tom asked May to explain it to him:

122 Tom: Ok, explain it for me. I need an 
explanation. [Looks at May and moves the 
hexagons in her direction]

123 Eva: You know the explanation. 
[Looks at Tom and gathers the hexagons]

124 Tom: Yes, but I want her to understand. 
[Points to May]

125 Eva: To get the next figure number, 
you have to add the next figure number. 
[Looks at Tom] 

In utterance122 Tom extended his attempt to invite 
May to contribute. Here he asked her explicitly to ex-
plain her understanding and he offered her artefacts 
(hexagon tiles) that could have supported her expla-
nation. However, the invitation was not answered by 
May but by Eva, both verbally and physically (123). 
May did not give any explanation. 

We interpret Tom’s question about May’s under-
standing to be a regulating activity, aiming at invit-
ing May to contribute. However, we do not interpret 
the nodding to be a key activity, because we cannot 
learn about May’s ideas from the nodding. In utter-
ance 122, Tom makes a verbal regulating activity, and 
he strengthens it by physically offering the hexagon 
tiles to May. Eva’s subsequent contribution (123) can 
be interpreted as a barrier to May’s acceptance of the 
invitation. Eva is hindering at two levels: by taking 
the hexagons physically and by verbally answering. 
We therefore consider both contributions from Tom 
as examples of regulating activities, asking May to 
explain. However, they do not result in May using 
key activities.

Group 2
On the second day of the intervention the groups were 
reorganised and May’s group was joined by Bo (high 
achieving) instead of Eva. Therefore, Group 2 consist-
ed of May, Tom, and Bo. Their work was still related 
to the hexagon patterns, but now the question was to 
find the perimeter of the figures. 

The discussion started similarly to what happened 
on the previous day, with Bo asking May if she under-
stood. She responded in exactly the same way as she 
did in Group 1, by nodding. However, Bo did not repeat 
the question like Tom did in Group 1. Bo rephrased it 
into “May, do you want to count how many sides the 
second figure has?”, at the same time as he pointed at 
the illustrations on the worksheet. Later on Bo initi-
ated an invitation to May to give an explanation:

691 Bo: Why is it multiplied by 6?
692 May: Because it is 6 more each time.

…
722 May: You take the number of sides on 

one brick.
[Teacher nods]
723 May: And multiply by the figure num-

ber.

Figure 2: Organisation of the three groups
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…
738 Bo: Instead of writing it in words, 

can you write it like you would have written 
it in your notebook? What do you write if 
you want to do a calculation?

739 May: N multiplied by 6.

The excerpt shows how Bo acted like a teacher, guiding 
May to make explanations without using artefacts. In 
utterance 691 he asked May to justify why the perime-
ters can be found by multiplying by six. In utterance 
692 May indicates that this is about the multiplica-
tion table of six continuing by adding 6. Further, in 
utterances 722 and 723 May explained in words how 
to find the number of tiles in a random figure, and in 
utterance 739 she showed how it can be generalised 
with symbols. 

We interpret Bo’s explicit questions at the beginning 
of the discussion in Group 2 as regulating activities, 
inviting May to contribute with speech, gestures, and 
use of artefacts. May shows her ideas by pointing at 
the physical artefacts and we interpret it as key activ-
ities demonstrated with multimodal expressions. In 
the episodes given above, we identified key activities 
such as: justify (692), explain (722 and 723), and show 
(739) one’s ideas. 

To sum up, in the heterogeneous setting of Group 2 
we first observed how Bo asked May to explain her 
understanding, which did not evoke May’s use of key 
activities. When he asked her explicitly to show her 
ideas (“do you want to count?”), this was followed by 
May demonstrating the key activities of showing her 
ideas. Finally, when Bo asked May again to explain 
her ideas (691), she demonstrated the key activity 
explanation by offering the generalised formula “N 
multiplied by 6”. 

Group 3
The third setting in which May participated was dif-
ferent from the previous ones in several ways: (1) only 
two students were involved, Siv and May; (2) Siv is 
identified to be in need of special education and, there-
fore, May was the relatively high achieving student in 
this setting; (3) the students were given the task from 
Group 2, so May was knowledgeable about the task, 
while Siv was not. 

First May demonstrated that the perimeter could be 
found by counting the physical sides one by one. We 

interpret this as the key activity ‘showing one’s idea’. 
May then carried out a regulating activity by asking 
Siv to count the sides. Thereafter May initiated other 
strategies to find the perimeters:

51 May: Do you know what we can do 
instead of counting one by one?

52 Siv: Hm?
53 May: We can, or it is fine to just count. 

We only have to add these. 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37. [Points on 
the “new” sides in Figure 5] Then we know 
that it is 37 sides around. Do you see a pat-
tern?

54 Siv: Where?
55 May: Here. [Points on the diagram in 

the task]
56 Siv: No.
57 May: It is the times six table. 6, 12, 18, 

23, 37. For example: 6 plus 6 equals 12. It is 6 
twice. If we have 6 three times, then we have 
18. 12, 13, 14, 15, 16, 17, 18. [Counts on her fin-
gers]

In the above episode (53) May suggested that the pe-
rimeter can be found by counting on from the previ-
ous figure’s perimeter, which is a recursive strategy. 
Thereafter, she claimed that the perimeters are equal 
to numbers in the “times six table” (57), which is an 
explicit formula for the perimeter of the triangular 
hexagon pattern. 

We interpret the utterance “Do you know what we can 
do instead of counting…” (51) as a regulating activity. 
This regulating activity is followed by May showing 
her idea (53). Within that very same utterance (53), 
we also observe a regulating activity: asking for a 
pattern. Finally, when May showed her idea (57), she 
demonstrated another key activity. In utterances 53 
and 57 she scrutinises the counting process, which 
we interpret as searching for generalisation. She did 
not detect that the numbers she found were incorrect, 
which illustrates how her willingness and potential 
to generalise goes beyond her skills in mathematics. 

May’s contributions in Group 3 differed from the oth-
er groups, because her contributions did not depend 
much on others’ regulating activities directed at her. 
May’s contributions in Group 3 demonstrated both 
regulating activities and key activities. In Group 3 
we observe that May’s contributions relate little to 
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the other participant (Siv gives little feedback), and 
more to the nature of the tasks, use of gestures, and 
access to physical artefacts. 

DISCUSSION AND CONCLUSION

The empirical material presented in this paper shows 
how differently a low achieving student can contrib-
ute in various heterogeneous settings. When working 
with higher achieving students, May’s communica-
tion was strongly affected by the regulating activities 
from the other students. She was mostly awaiting and 
only answering when others invited her to contribute. 
In contrast, when working with a special needs stu-
dent, May was the leader; she was the one initiating 
and regulating the communication. Our findings are 
consistent with work by Civil and Planas (2004), and it 
indicates that being categorised as a low achieving stu-
dent might position a student into a similar position 
as students who are marginalised because of social 
inequality. Therefore, we assume that regulating ac-
tivities are crucial for the lowest achieving student’s 
contribution in heterogeneous groups. 

Although May’s contributions in both Group 1 and 
Group 2 were strongly related to the regulating activ-
ities by the other students, her contributions in these 
two groups were different. In the first group we ob-
served how regulating activities can fail to encourage 
low achieving students’ contribution. Tom asked May 
several times about her ideas but May just nodded and 
did not answer in words. Pijls and colleagues (2007) re-
ported similar observations and claim that two main 
factors are crucial for students’ use of key activities. 
First, the use of key activities depends on whether 
someone asks you about your work. Second, students 
should think their contribution makes sense to other 
students. In our study we observed that there was no 
communication space for May’s response because 
the regulating activities by Tom were blocked by Eva.

Further, in Group 2 we observed how Bo’s attempts 
to encourage May to carry out key activities, did not 
become successful until May had access to artefacts. 
This suggests that access to artefacts might be another 
important factor for low achieving students to be able 
to carry out key activities. Therefore, our findings 
indicate that regulating activities can encourage low 
achieving students’ communication about pattern 
problems, but it is crucial that they have access to 
combine speech, gestures, and use of artefacts in or-

der to communicate their ideas. A new finding is that 
regulating activities can also hinder low achieving 
students’ active participation in communication. We 
observed how artefacts were moved away, and speech 
blocked the regulating activities that were originally 
aiming to invite for contributions. This is in line with 
Radford (2009) who advocates that thinking happens 
not only as a mental process, but in and through the 
use of speech, gestures, and actions (like use of arte-
facts). In our study we observed that these multimodal 
expressions were important for May in showing her 
ideas, specifically when she used counting (relying 
on arithmetic) to communicate about the pattern 
problem. Later on, when she demonstrated more ab-
stract strategies like recursive reasoning and how to 
express the problem explicitly in a formula, in Group 
2, she did not use gestures and artefacts. This may 
indicate a development: in the first session gestures 
and artefacts were important for the key activities, 
and May needed them to express ideas that were not 
yet completely her own. But at the end of the session in 
Group 2 she expressed her ideas verbally without use 
of gestures and artefacts, which was possible because 
Bo encouraged her. In Group 3 she could confidently 
claim that the pattern of the perimeters is equal to the 
multiplication table of six. This indication of develop-
ment needs more research addressing low achieving 
students’ use of multimodal expressions when gener-
alising beyond their arithmetic knowledge.   

Our results show the complexity of how to empow-
er low achieving students’ in order to become active 
contributors in heterogeneous groups. We observed 
in Group 2 that a regulating activity for a low achiev-
ing student can be an explicit invitation to combine 
speech, gestures, and artefacts for showing one’s 
ideas. The key activity of ‘showing one’s ideas’ is a 
prerequisite which enables low achieving students 
to demonstrate other key activities. Therefore, teach-
ers can empower the students to use key activities by 
giving access to artefacts and by designing tasks in-
viting all students to show their ideas. While further 
work is required to explore low achieving students’ 
learning and their ability to generalise, our findings 
also indicate that further research is needed on low 
achieving students in heterogeneous settings where 
the low achieving student is relatively high achieving, 
for instance when they work with younger students.
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With a focus on epistemology, this paper discusses what 
pattern generalisation as an algebraic activity involves. 
Further, it presents a review of empirical studies where 
a pattern-based approach is used to teach algebra. This 
shows that students’ problems with establishing algebra-
ic rules from patterns and tables can be explained by:          
1) difficulties caused by students’ use of invalid meth-
ods to identify explicit formulae; 2) difficulties caused 
by students’ tendency to focus on recurrence relations; 
and 3) institutional constraints. As an alternative to a 
traditional task on a shape pattern, the paper presents 
an epistemological model designed to implement the 
equivalence statement: 1 + 3 + 5 + L + 2n − 1 = n2.

Keywords: Algebraic activity, pattern generalisation, 

epistemological model, milieu.

INTRODUCTION

According to Reed (1972), humans have a natural incli-
nation to observe patterns, and to impose patterns on 
different experiences. Inspired by Steen (1988), Devlin 
(1994), and others, I consider mathematics as the sci-
ence of patterns. Mathematicians seek patterns in 
different areas, including numbers (arithmetic and 
number theory), form (geometry), motion (calculus), 
reasoning (logic), possibilities (probability theory), 
and position (topology). In the development of mathe-
matical knowledge, generalisation is an essential pro-
cess. This is asserted by for instance Krutetskii (1976), 
who classifies generalisation as one of the higher cog-
nitive abilities demonstrated by mathematics learners. 

Generalisation of shape patterns and numerical 
sequences is part of the elementary and secondary 
curriculum in many countries, for example England 
(Department for Education, 2014); the United States 
(National Council of Teachers of Mathematics, 2000); 
Canada (Ontario Ministry of Education and Training, 

1 The author has earlier published under the name

2005); and, Norway (Directorate for Education and 
Training, 2013). A purpose of students’ engagement 
with patterns is to provide a reference context (phys-
ical, iconic or numerical) for generalisation and alge-
braic thinking. 

A shape pattern is usually instantiated by some con-
secutive geometrical configurations in an alignment 
imagined as continuing until infinity. In this paper, 
geometrical configurations will be referred to as ele-
ments, and the constituents of an element will be re-
ferred to as components. Generalising a pattern alge-
braically rests on noticing a commonality (a structure) 
of the components of some elements of the pattern, 
and using it to provide an expression of an arbitrary 
member of the number sequence mapped from the 
pattern. This will be explained in more detail below. 

PATTERN GENERALISATION AS 
AN ALGEBRAIC ACTIVITY

A model for conceptualising algebraic activity is pro-
posed by Kieran (2004), where she introduces three 
interrelated principal activities of school algebra: 
generational activity‚ transformational activity‚ and 
global/meta-level activity. The generational activities 
involve the creation of algebraic expressions and 
equations like (i) equations that represent quantitive 
problem situations; (ii) expressions of generality aris-
ing from shape patterns or numerical sequences; and 
(iii) expressions of the rules that determine numerical 
relationships (Kieran, 2004). I interpret the letters 
used in the three examples as having the role as un-
knowns, variables and parameters, respectively. The 
transformational activities involve syntactically-guid-
ed manipulation of formalisms including: collecting 
like terms; factoring; expanding brackets; simplifying 
expressions; exponentiation with polynomials; and, 
solving equations (Kieran, 2004). These are the activ-
ities with which school algebra has traditionally been 
associated. The global/meta-level activities involve ac-
tivities for which algebra is used as a tool, and include: 

mailto:heidi.stromskag@hist.no
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problem solving; modelling and predicting; studying 
structure and change; analysing relationships; and, 
generalising and proving (Kieran, 2004). 

The elements of a shape pattern are carriers of mul-
tiple structures which have to be interpreted by the 
students. The process of interpreting and represent-
ing these structures algebraically, involves general-
isation of arithmetical relationships in members of 
the sequence mapped from the shape pattern. A shape 
pattern can be generalised either through an indi-
rect approach, where the result is a recursive for-
mula (a relationship between consecutive elements), 
or through a direct approach, where the result is an 
explicit formula (a functional relationship between 
position and numerical value of an element). 

Måsøval (2011) distinguishes between two types of 
shape patterns: arbitrary patterns (Figure 1), and con-
jectural patterns (Figure 2). 

These patterns correspond respectively to two dif-
ferent mathematical objects aimed at in the process 
of generalising: formula (for the general member of 
the sequence mapped from the shape pattern; e.g., 
an = 3n + 1  in Figure 1), and theorem (in terms of a gen-
eral numerical statement; e.g., 1 + 3 + 5 + … + 2n − 1 = n2 in 
Figure 2). Institutionalisation of the knowledge in the 
case when algebraic generalisation aims at a formula 
(for an arbitrary pattern) is not institutionalisation 
of the formula per se. It is institutionalisation of how 
the formula can be derived through identification of 
an invariant structure in the elements of the pattern. 
Further, it is institutionalisation of how the invariant 
structure is interpreted into arithmetical relation-
ships and how these in turn are generalised algebra-

ically in terms of a formula. The cultural, reusable 
knowledge in this case is the nature of the relation-
ship between the algebraic expression and its referent 
(a generic element of the pattern). On the other hand, 
institutionalisation of the knowledge in the case when 
algebraic generalisation aims at a theorem (illustrated 
by a conjectural pattern) involves decontextualisation 
of the general numerical statement from the shape 
pattern on the basis of which it is developed. The cul-
tural, reusable knowledge in this case is a general re-
lationship between sequences of numbers (in Figure 
2, between odd and square numbers).  

In the following, I illustrate briefly a strategy for gen-
eralisation of an arbitrary pattern, where I focus on 
the connection between the iconic, the arithmetical, 
and the algebraic representation of the pattern. For 
a detailed epistemological analysis of shape pattern 
generalisation, see (Måsøval, 2011, Chapter 5). The 
target knowledge is the nature of the relationship 
between the sought generalisation (an algebraic ex-
pression) and its referent (a generic element of the 
pattern). A direct approach to generality is employed. 
The invariant structure of a shape pattern provides 
the possibility to decompose the elements into differ-
ent repetitive parts. Decomposition refers to diagram-
matic isolation (encircling, painting with different 
colours, or other techniques) of various parts of the el-
ements in order to visualise the invariant structure of 
the pattern. The point is to express the number of com-
ponents of each partition of an element as a function 
of the element’s position in the shape pattern. These 
arithmetical expressions are used to express the total 
number of components of the element. Generalisation 
of the sequence of arithmetical expressions will lead 
to a formula where letters are placeholders for po-
sitions. An example of the first three elements of a 
quadratic pattern is presented in Figure 3. 

Figure 4 presents a possible decomposition of this pat-
tern, with corresponding arithmetical expressions 

Figure 1: Example of the first three elements of an arbitrary pattern

Figure 2: Example of the first four elements of a conjectural pattern Figure 3: The first three elements of a shape pattern
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representing the number of components in the par-
titions of the first three elements.

The decomposition shown in Figure 4 corresponds to 
an interpretation which means that each element con-
sists of three components plus four times the square of 
the position of the element. The corresponding arith-
metical expressions suggest a generalisation in terms 
of the formula, f(n) = 4n2 + 3. An alternative decompo-
sition (discussed without illustration) involves filling 
in components at “empty places” to make each element 
into a square; this is compensated by subtraction in 
the arithmetical expression. In order to build a square, 
the n-th element would need to get an extra of 4n − 2 
components. The resulting formula would then be 
given by g(n) = (2n + 1)2 − (4n − 2). 

The example in Figure 3 conceptualised 
through Kieran’s (2004) framework
The process of interpreting and decomposing the 
pattern is a global/meta-level activity. It is a model-
ling process that involves studying and representing 
the quadratic relationship between the position and 
the corresponding member of the number sequence 
mapped from the pattern. Establishment of a formula 
(here, a function) is a generational activity, where the 
variable n is a placeholder for an element in the do-
main (natural numbers). The two different decompo-
sitions presented above result in different formulae, 
where transformational activity can be used to justify 
that they are equivalent. 

Justification of the new knowledge (the formula), 
which is a global/meta-level activity, can be done 
through decomposition of a generic example. This is 
done to illustrate references between the partitions 
of the generic element, on the one hand, and the math-
ematical symbols of the formula, on the other. 

EMPIRICAL STUDIES OF STUDENTS’ 
PATTERN GENERALISATION

Students’ difficulties in establishing 
algebraic rules from patterns and tables
Several studies have documented students’ difficul-
ties in establishing algebraic rules from patterns 
and tables. Stacey (1989) reports responses to linear 
generalising problems of 140 students aged between 
9 and 13. Generalisation of the given problems was 
of the type f(x) = ax + b with b ≠ 0. It turned out that 
mainly two ideas were used. Stacey refers to these 
as the difference method and the whole-object method. 
The difference method involves multiplying the com-
mon difference between members of a sequence by 
the rank of a member to calculate its numerical value. 
The whole-object method involves taking a multiple of 
the numerical value of a member of a sequence to cal-
culate the numerical value of a member with a higher 
rank; that is, implicitly assuming that f(mn) = mf(n). 
The two methods will be applicable only when the lin-
ear problems are direct proportionalities. Because the 
problems used in Stacey’s study were not of this type, 
the difference method and the whole-object method 
were invalid. The erroneous generalisations were 
not discovered by the students because they failed to 
check the validity of the rules they produced. 

Another finding from Stacey’s (1989) study was that 
students showed a tendency to focus on recurrence 
relations in one variable rather than on functional re-
lationships between two variables. The same conclu-
sion about students’ tendency to focus on recurrence 
relations was reached by MacGregor and Stacey (1995). 
They tested approximately 1200 students in Years 7 to 
10 in ten schools on recognising, using, and describ-
ing rules relating two variables; 14 students were 
interviewed. The results showed that the students 
had difficulties in perceiving functional relationships 
and expressing them in words and as equations. The 
students’ tendency to find recurrence relations in 
patterns and tables were in most cases counter-pro-
ductive to identification of a relationship between two 
variables. Hence, MacGregor and Stacey recommend 
teachers to use examples where it is not possible to 
find differences between consecutive members of a 
sequence.

Orton and Orton (1996) conducted a study in which 
1040 students from Years 6, 7 and 8 (ages 10 to 13) com-
pleted a written test on different pattern questions; 

f(1) = 4 ⋅ 12 + 3 f(2) = 4 ⋅ 22 + 3 f(3) = 4 ⋅ 32 + 3

Figure 4: A possible decomposition of elements of the pattern 

in Figure 3
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30 of the students were interviewed about their re-
sponses. Results from this study are consistent with 
findings from Stacey (1989) and MacGregor and Stacey 
(1995): students have a clear tendency to use differenc-
ing methods and identify a recursive pattern. 

Lannin, Barker and Townsend (2006) explored stu-
dents’ use of recursive and explicit relationships by 
examining the reasoning of 25 sixth-grade students, 
including a focus on four target students, as they 
approached three generalisation tasks while using 
computer spreadsheets as an instructional tool. Their 
results demonstrate students’ difficulty in moving 
from successful recursive formulae towards explicit 
formulae. One obstacle to students’ ability to connect 
recursive and explicit formulae was their limited un-
derstanding of connections between mathematical 
operations, such as addition and multiplication. 

Måsøval (2011) reports from a case study of six (two 
groups of three) student teachers’ collaborative 
engagement with four tasks on shape pattern gen-
eralisation (with some teacher involvement). Three 
categories of constraints to students’ generalisation 
processes emerged from a process of open coding 
of transcripts of video recordings, conceptualised 
through the theory of didactical situations (Brousseau, 
1997). The constraints are explained in terms of: 1) an 
inadequate adidactical milieu, in particular caused by 
unfavourable design of tasks (where the focus is on 
number of components rather than on the multiple 
structures inherent in the pattern); 2) complexity of 
transforming observations and conjectures repre-
sented in informal language into algebraic symbol-
ism (from action to formulation); and 3) complexity 
of justifying proposed generalisations (validation), in 
particular caused by students’ use of empirical rea-
soning instead of rigorous mathematical reasoning 
(Måsøval, 2011). 

The foregoing discussion of students’ difficulties in 
establishing algebraic rules from patterns and tables 
can be summarised in three points. First, there are 
difficulties caused by students’ use of invalid or un-
successful methods to identify explicit formulae (the 
difference method and differencing, and the whole-ob-
ject method). Second, there are difficulties caused by 
students’ tendency to focus on recurrence relations 
which are not easily transformed into explicit for-
mulae. Third, there is an institutional constraint 
caused by the use of stereotype tasks (focusing on 

“How many?”) and further, by the way pattern gener-
alisation is taught. 

Components of a successful pattern-
based approach to elementary algebra
Results from Redden’s (1996) study demonstrate a 
significant correlation between natural language de-
scriptions and symbolic notation used by students. On 
the basis of investigation of how 1435 children aged 10 
to 13 responded on requests to generalise shape pat-
terns, he found that natural language descriptions ex-
clusively in terms of functional relationships appear 
to lead to students’ successful use of algebraic nota-
tion. This finding points at the importance of relating 
the independent variable (the position of a member) 
to the dependent variable (the member itself ).  

Warren (2000) demonstrates significant correlation 
between students’ ability to reason visually (identify, 
analyse, and describe patterns) and successful alge-
braic generalisations from shape patterns and tables 
of values. Warren’s finding is based on responses on 
two written tests administered to 379 students (aged 
between 12 and 15 years); 16 of the students were inter-
viewed in groups of four. Warren, Cooper and Lamb 
(2006) examined the development of students’ func-
tional thinking during a teaching experiment that was 
conducted in two classrooms with a total of 45 Year 
4 students (average age nine and a half years). They 
found that tables with input values not increasing 
in equal steps assisted students to search for a rela-
tionship between two data sets instead of focusing on 
variation within one. Randomness of the input values 
encouraged students to think relationally instead of 
sequentially, a finding consistent with MacGregor and 
Stacey’s (1995) recommendation referred to above.

The results referred to above can be combined to 
provide a recommendation for students’ engagement 
with shape patterns: Students’ should be encouraged 
to express functional relationships in natural language, 
because this is important for the ability to use sym-
bolic notation. It is relevant here that students remain 
connected to the iconic representation and reason vi-
sually, which is a condition for successful algebraic 
generalisations. Further, visual reasoning can poten-
tially prevent students from senseless pattern spot-
ting in numerical sequences without connection to 
the original mathematical situation. The strategy pre-
sented above (exemplified by the pattern in Figure 3) 
for generalising a pattern algebraically is favoura-
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ble in that it has the recommended features: first, it 
involves analysis of geometrical configurations (de-
composition); and second, it involves identification of 
functional relationships between two sets (position 
and numerical value of element, respectively).

Several studies suggest that it is not generalisation 
tasks in themselves that are difficult; the problems 
that students encounter are rather due to the way 
tasks are designed and limitations of the teaching 
approaches employed (Moss & Beatty, 2006; Måsøval, 
2011, 2013; Noss, Healy, & Hoyles, 1997). Motivated by 
this, I designed an epistemological model – a situation 
(Brousseau, 1997) – that involves a problem that can 
be solved in an optimal manner by using the knowl-
edge aimed at. In the concluding section of the paper, I 
explain this epistemological model and its devolution 
to a class of twenty student teachers enrolled on a 
master programme for primary and lower secondary 
education. The data from the experiment are students’ 
notes and solutions in addition to my field notes.

AN EPISTEMOLOGICAL MODEL OF 
A PIECE OF KNOWLEDGE

Inspired by TDS, the theory of didactical situations 
(Brousseau, 1997), I created an epistemological model 
of the general numerical statement that “the sum of 
the first n odd numbers is equal to the n-th square 
number”. The choice of this piece of knowledge was 
motivated by Måsøval (2011) who reports from stu-
dents’ (less successful) engagement with this equiv-
alence statement through a traditional task, based on 
a shape pattern similar to the one in Figure 2. 

Devolution
I had cut out sets of twelve paper forms, consisting of 
from 1 to 25 unit squares (a selection of which is shown 
below). In the classroom I presented the context (be-
low), and gave each pair of students an envelope with 
a set of cut-outs. 

“The company TILEL (in class, represented by the en-
velopes) sells a special kind of tile formations that 
can be used to cover squares. The tile formations have 
shapes as Ls, and consist of an odd number of unit 
squares. There is also a degenerated L-form which 
consists of only one unit square. You and your partner 
are supposed to construct a quadratic area of tiles, 
using L-forms from TILEL. You decide on the size of 
a square, and the task is for your partner to go and 

get a selection of L-forms which precisely covers the 
chosen square. There is a restriction on the L-forms: 
they shall all be of different size.  

When your partner returns with the L-forms he/she 
has bought, the two of you shall arrange them into a 
square. If you lack some L-forms, or have anyone left 
over, your partner will have to go back to TILEL for 
supplements or returns. Each time this is necessary, 
a charge must be paid, so buying the right L-forms at 
once is important.” 

Some of the features of the milieu were, due to time 
constraints, hypothetical (e.g., purchase of tile for-
mations and the fee charged for supplements and 
returns). The adidactical situation might have been 
designed as a game, where the winner would be the 
group that solved the task with least costs, and/or had 
the best recipe, etc. Figure 5 shows the task given to 
the students for work in pairs, after the context was 
presented.

Features of the milieu derived 
from the knowledge at stake
The target knowledge in this case is the equivalence 
statement: “the sum of the first n odd numbers is 
equal to the n-th square number”, potentially repre-
sented by 1 + 3 + 5 + L + 2n − 1 = n2. A model of the target 
knowledge is created using a dissection of a square 
into L-forms consisting of consecutive odd numbers 

1.  One of you chooses the size of a square; 
the other one gets L-forms to cover it. 
Collaborate to arrange the L-forms into the 
chosen square. (ACTION) 

2.  On the basis of the work you have done, 
make a recipe for how to cover a square of 
random size with L-forms of different sizes, 
without having to go back for supplements 
or returns. Let another group try your reci-
pe and see if it works. (FORMULATION)

3.  Explain why your recipe will always work 
(for a random square). (VALIDATION)

Figure 5: The task given to the students for work in pairs
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of unit squares (1 is represented by one unit square, 
hence a degenerated L). A generic example is given in 
Figure 6, illustrating that 1 + 3 + 5 + 7 = 42. 

It is important that the L-forms given to the students 
are of different size; this is what guarantees that the 
square is made of a sum of consecutive odd numbers. 
The fee charged for not getting the correct L-forms 
is intended to motivate students’ (in the situation of 
action) to develop a model that relates odd numbers 
and square numbers. It is expected that the students 
(in the situation of formulation) express in natural 
language that it is necessary to add as many odd num-
bers (from 1 and upward) as the rank of the chosen 
square number. The situation of validation is intend-
ed to motivate reasoning based on the nature of the 
knowledge at stake, even if algebraic notation might 
not be used. For this to happen, it is necessary that 
the students have a technique (prior knowledge) for 
representing odd numbers in terms of 2 ⋅ 1 − 1, 2 ⋅ 2 − 1, 
2 ⋅ 3 − 1, and so on.

Due to limited space, I comment only on the validation 
phase (in whole class). Two approaches were used 
to justify the conjecture: One was a visual proof (cf. 
Figure 6), where students argued by a generic exam-
ple that the next square is reached by adding the next 
odd number (2(n + 1) − 1) to the current square. The oth-
er approach started with the statement in algebraic 
notation, 1 + 3 + 5 + L + 2n − 1 = n2; students showed that 
the sum on the left hand side is equal to n2 by using 
the Gaussian method (adding the first and last terms, 
then the second and last but one term, etc.). There 
was a discussion of implementation of the model in 
different grades in school.  

The adequacy of an epistemological model is based on 
the quality of the underlying epistemological analysis 
(EA). An EA should provide a rationale that would 
make the students’ engagement in the problem situ-
ation sensible. An EA is however “work in progress”; 

experiments feed back to, and might strengthen, the 
EA and hence the model based on it. A relevant direc-
tion for future research on pattern generalisation is 
therefore the design and study of implementation 
of epistemological models of pieces of algebraic 
knowledge – in order to improve the models. Due to 
its epistemological focus, TDS would be a favourable 
framework to use in this kind of research.   
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Function is a basic concept of mathematics, in particu-
lar, mathematical analysis. With an appropriate devel-
opment of a function approach, it becomes possible for 
students to use function models to describe mathemati-
cal and non-mathematical problems. After an analysis 
of the function concept development process, I propose 
a model of rule following and rule recognition skills 
development that combines features of the van Hiele 
levels and the levels of language about function (Isoda, 
1996). Using this model I investigate students’ rule fol-
lowing and rule recognition skills from the viewpoint of 
the preparation for the function concept of sixth grade 
students (11–12 years old) in the Ukrainian education 
system. 

Keywords: Function concept, Ukrainian secondary 

education, features of van Hiele levels, rule following and 

rule recognition skills.

INTRODUCTION 

The function concept interweaves the whole teaching 
of mathematics. Functions are incorporated in the 
concepts of numbers, equations, inequalities, ratio, 
proportionality, geometrical transformations, etc. 
Through the teaching of functions, it is also possible 
for students to develop creativity, functional think-
ing, and other cognitive strategies (Czeglédy, Orosz, 
Szalontai, & Szilák, 1994).

In her study, Sierpinska (1992) sets out the conditions 
of understanding the notion of function. These condi-
tions illustrate that it takes time to reach a thorough 
understanding of the function concept. There is a long 
journey between beginning to develop an understand-
ing of the links between the elements of sets to the 
robust function concept. In this study I examined 
the portion of this journey that happens during the 
fifth – sixth grade, which is the period before learning 

the definition of the function (preparation period). 
The study was based on the analyses of the Ukrainian 
curriculum framework. The study revealed that the 
development of rule following and rule recognition 
(hereafter referred to as RF and RR) skills are miss-
ing from the curriculum. Dreyfus and Vinner (1989), 
however, point out that a function can also be defined 
as a rule, and the rule is an element of the function 
concept (Kwari, 2007). The present study examines RF 
and RR skills that are necessary in the formation of the 
function concept and in the construction of function 
tables, which help children to figure out the relation-
ship between quantities (Blanton & Kaput, 2011). The 
participants were a class of sixth grade (11–12 years 
old) students, studying in the Ukrainian education 
system.

THEORETICAL BACKGROUND

Definition plays an important role in mathematics. 
According to Skemp (1987), definitions have their 
specific places in mathematical concept develop-
ment. Concepts of a higher order than those which 
people already have an understanding of, cannot be 
communicated to them by a definition, but rather by 
presenting to them a suitable connection of examples. 
Since in mathematics these examples are almost in-
variably other concepts, it must first be ensured that 
these are already formed in the mind of the learner 
(Skemp, 1987). 

The modern definition of function that frames this 
study is the Dirichlet-Bourbaki definition, which is 

“a correspondence between two nonempty sets that 
assigns to every element in the first set (the domain) 
exactly one element in the second set (the codomain)” 
(Vinner & Dreyfus, 1989, p. 357). So in order to develop 
a concept of function, the knowledge of both simple 
and higher level concepts is necessary, and this for-
mation is a long process. 
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Vinner and Dreyfus (1989) discuss the notions of 
function put forth by secondary school students after 
being given the definition of function. The authors, 
drawing on Vinner (1983), categorized students’ defi-
nitions of function into six categories: (A) correspon-
dence (the Dirichlet-Bourbaki definition); (B) depen-
dence relation (dependence between two variables); 
(C) rule (a function is a rule; a rule is expected to have 
some regularity, whereas a correspondence may be 

”arbitrary”); (D) operation (a function is an operation 
or manipulation); (E) formula (a function is a formula, 
an algebric expression, or an equation); and, (F) rep-
resentation (graphical or symbolic representation) 
(Vinner & Dreyfus, 1989, p. 360). 

Taking into account these categories and the above 
mentioned studies, it can be highlighted that the func-
tion concept has many elements. Sierpinska (1992) 
described the “worlds” that the study of functions 
should focus on: the world of changes or changing 
objects; the world of relationships or processes; and, 
the world of rules, patterns, and laws. Likewise, Kwari 
(2007) showed the constitutive elements or aspects of 
the function concept that should be developed: change 
and what changes; relationships (attribute ― builds 
rules to determine a unique y-value from any given 
x-value); rules (symbolically given by, e.g., f(x) = ax + b); 
representation; and, language/notation. Of the skills 
that could be linked to the above listed aspects, posses-
sion of the rule recognition and rule following skills 
are significant for the students in this study in order 
to recognise and express function-like relations. So, 
this study concentrates on the investigation of these 
skills and only touches upon the question of symbol-
isation (the articulation of rule by arithmetic oper-
ations), but does not intend to go further (to write 
function-like links with symbols, e.g., f(x) = ax + b).

As a skill is considered to be the psychic feature of an 
individual, that evolves by the practice of some kind of 
activity, and is manifested in the doing of that activity, 
then the mentioned skills can also be developed by 
cognitive operations. The recognition of a rule (reg-
ularity), the following of the rule, and in some cases, 
the appropriate application of the rule, presumes the 
execution of a series of cognitive operations (categori-
sation, selection, and link-recognition).

The information acquisition process is strongly in-
fluenced by the development of students’ cognitive 
operations. Two Dutch didacticians, Pierre van Hiele 

and Dina van Hiele-Geldof developed a pedagogical 
theory in 1957 for the understanding of the process of 
geometric thinking, which differentiates between five 
levels of geometric thinking: visualization; analysis; 
informal deduction; deduction; and, rigor (as cited in 
Herendiné Kónya, 2003, p. 51). 

Freudenthal (1973) and Isoda (1996) extend the van 
Hiele levels from geometry to other areas. Freudenthal 
viewed progressive mathematization as the main 
goal of school mathematics. For this ongoing task, he 
provided a framework by recursively defined levels: 
the activity of the lower level, that is the organizing 
activity by the means of this level, becomes an object 
of analysis on the higher level. Freudenthal’s theoret-
ical approach rests on the Van Hiele levels. Van Hiele, 
himself, has written about levels in arithmetic and 
algebra (van Hiele, 2002). He observed ‘a change in lev-
el’ from the act of counting to the concept of number. 
Isoda’s paper (1996) points out features of van Hiele 
levels and shows that they are also characteristics of 
the proposed levels of language about function. These 
features include: (1) Language hierarchy. Each level 
has its own language and the levels are hierarchical; 
(2) The existence of untranslatable concepts. The cor-
responding contents of different levels sometimes 
conflict; (3) Duality of object and method. The think-
ing of each level has its own inquiring object (subject 
matter) and inquiring method (the way of learning); 
(4) Mathematical language and student thinking in 
context. While the levels are distinguished as sets of 
mathematical language, the actual thinking of each 
student varies depending on the teaching and learn-
ing context.

Isoda (1996) first discusses the levels of function from 
the point of view of language, and shows the duali-
ty between object and method in van Hiele’s levels 
(the levels of geometry) and in the levels of function. 
These levels of language are: Level 1. Level of everyday 
language (students describe relation in phenomena 
using everyday language obscurely: students explore 
phenomena (object) using obscure relations or varia-
tion (method)); Level 2. Level of arithmetic (students 
describe the rules of relations using tables. They make 
and explore tables with arithmetic: students explore 
the relations using rules); Level 3. Level of algebra 
and geometry (students describe function using equa-
tions and graphs: students explore the rules using 
notations of function); Level 4. Level of calculus (stu-
dents describe function using calculus);  Level 5. Level 
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of analysis (an example of language for description is 
functional analysis which is a metatheory of calculus). 

The present study examines the preparatory part of 
the notion of function in the sixth grade in light of the 
state framework curriculum, using features (1) and 
(3)  of van Hiele levels and the first three of the five 
levels of function described by Isoda (1996). I set out 
the levels of the cognitive operations that are crucial 
for the possession of RF and RR skills and the criteria 
for categorising activity forms into levels. Noticing 
an analogy between these levels and the van Hiele 
levels, I used the names of the van Hiele levels for the 
marking of the discussed levels. The levels which I 
created by joining the features of van Hiele levels and 
Isoda‘s levels and using them to develop a deeper un-
derstanding in (sixth grade) students‘ development of 
the function concept, are the following:

Level 1 (visualization): Students recognise some 
kind of rule (functional relation) (method) be-
tween the element pairs (object) and follow the 
recognised rule (level of everyday language). 

Level 2 (analysis): Students are able to phrase the 
recognised rule (they can argue in favor of the 
recognised links between the cohesive element 
pairs) and follow the rule which is given by words 
or by simple formulas (level of everyday language 
and level of arithmetic).

Level 3 (informal deduction): At this level the 
harmony of the simple (2–3 steps) rule-making 
and its description with formula develops (level 
of arithmetic).

METHODOLOGY

Sample
Participants were 26 sixth grade students (11–12 
years old), with moderate abilities, in a school with 
Hungarian as the language of instruction in Ukraine. 
The students had four classes of mathematics a week, 
according to the state curriculum framework. The 
Hungarian version of the mathematics textbook is 
used at this level and is approved by the Ukrainian 
Ministry of Education and Science. As the research 
was carried out in March, during the second semester 
of the sixth grade, students were already familiar with 
the natural numbers, fractions (common fractions 
and decimals), and had learned arithmetic operations 
with rational numbers. The introduction of propor-
tional amounts and linear relationships occurred 
during this period, with the practical application in 
the initial phase.

Background
In the Ukrainian education system, function as a 
mathematical concept is defined at the seventh grade 
of the secondary school. In the lower classes, students 
are prepared with the use of different materials for 
introduction of the function concept. Analysing the 
curriculum and the textbooks for the fifth and sixth 
grade from the point of view of topics and their con-
tent that are supposed to support the development of 
the function concept, major deficiencies come to the 
surface in the requirements for developing RF and 
RR skills (in the lower classes it does not exist at all). 
In the development requirements of the themes of 
the curriculum, rule recognition and rule following 
skills are not mentioned. Prior research (cf., studies 
cited above), however, suggest that they are neces-

Class Themes Development requirements

5.
Number line The representation of natural numbers on the number line.

Letter expressions
The recognition of number- and letter expressions and the illustration with exam-
ples.

6.

Linear relationship
Illustration of proportional amounts with examples, the definition of the concept 
of linear relationship, finding the unknown element of the proportion, defining 
the proportion between amounts.

Diagrams Editing column- and circle diagrams.

Cartesian coordinate 
system

Finding the coordinate of the point in the coordinate plane and representing the 
given coordinate point. 

Graphs
Representing correlations between quantities by graphs and analysing these 
graphs. The student is able to read the data from the graphs.

Table 1: Themes preparing the function concept in the Ukrainian textbooks1 and curricula2
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sary for the development of the function concept. In 
Table 1, I summarized the textbook themes that could 
support the preparation of the function concept. It 
can clearly be seen in the table that RF and RR skills 
are not amongst the development requirements of 
the materials.

Based on these aspects, in this study I am looking for 
the answers to the following questions: At the end of 
the 6th grade, what level do students reach in their RF 
and RR skills? What are the typical mistakes students 
make when carrying out activities at each level and 
what might explain these errors?

The questionnaire
A written test was used in order to investigate the 
RF and RR skills of students. Students worked inde-
pendently and had 30 minutes to complete the test. The 
test contained five tasks that were based on the rec-
ognition and application of the relationship between 
the cohesive elements (assignment rules), as well as 
on the expression of the recognised rule, including as 
a formula. I was interested in students’ possession of 
the necessary skills for the preparation of the func-
tion concept. In some exercises, the cohesive element 
pairs did not clearly make a function, so more rules 
might be possible. In the direction to the test, however, 
I tried to make it clear that I wanted students to find 
only one adequate rule. When constructing the test, 
I included tasks for levels 1, 2 and 3. When choosing 
the tasks, I predominately relied on the literature and 
used some of them without any alterations.

I indicate the level of the task, parenthetically, with-
in the instructions (see figures below). The first two 
tasks (Figure 1 and Figure 2) targeted the recognition, 
application and verbal expression of the relationship 
between cohesive elements (words and numbers). The 
filling in of the blank places of the tables assessed the 
application of the rule. Although the correct solution 
of both tasks assumes the same level of cognitive op-
erations and activity forms (level 1 and level 2), the 
difference can be found in the context of the tasks: 
While in the first task the cohesive element pairs are 
words, in the second they are numbers. Because func-
tion relationships do not only occur between numbers, 
it is crucial that students recognise this relationship, 
as well.

The aim of the third task (Figure 3) was to make stu-
dents recognise the relationship between the elements, 
apply it, and to express it with both words and sym-
bols. In order to reach the first level, it is necessary to 
recognise some kind of relationship between the cohe-
sive elements (x and y), but unlike in the first two tasks, 
the table is extended by an extra (first) column which 
serves as a hint to record the recognised relationship 
in the language of arithmetic (2nd level). When asking 
students to express the relationship with a formula, 
I touch upon the question of symbolisation (3rd level), 
but I do not intend to examine it deeper in this study. 
The “end product” (y value) should be found with the 
help of the given “raw material” (x value) according to 
the recognised rule, while in the previous two tasks 
knowing the “end product” and using the recognised 
rule, the raw material should be found.

The fourth task (Figure 4) was aimed at the interpre-
tation and following of a predefined rule. In order 
to solve the task, the student needed to possess the 
activity forms of the two levels in order to interpret 
(analyse) the given formula. A correct completion 

pék tér ló bál görög

kép rét ól derék savas

Figure 1

1)  Find a rule between the first and second row of the table. 
Fill in the table according to the rule (Level 1)! Write 
down the recognised rule in words (Level 2).

40 80 12 60 44 100 160

10 20 3 1 13 31 95

Figure 2

2)  Find a rule for the numbers in the columns and fill 
in the blank places of the table according to that rule 
(Level 1). Write down the recognised rule in words 
(Level 2).

3)  Find a relationship between the x and y values of the 
columns and based on it, complete the table with the 
missing elements (Level 1)! Write down the relationship 
with words (Level 2) and as an expression (Level 3)!

x 1 10 7 0 9 20 38

y 5 23 17

y=_________________

Figure 3
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of the table indicated a correct interpretation of the 
symbolic rule. 

In the fifth task (Figure 5) I examined rule recognition 
and its mode of illustration during the solution of a 
task given in context. In this case, the rule is given 
verbally, in context. I take students’ correct responses 
for parts (a) through (e) (2nd level) as an indication 
that the student had correctly interpreted the rule. 
A correct response to part (f ) indicated that students’ 
understanding of function had reached the third level, 
since the student was able to generalise the task, i.e. 
write down the relationship using a formula. 

RESULTS

Analysis of students’ answers
All of the students filled in the table in Task 1 correctly. 
This indicated that the students could recognise some 
kind of regularity between the first and the second 
row of the table, and they could apply the recognised 
rule. This means that when the cohesive element pairs 
are words, students can recognise the relationship 
between them. Writing down the recognised rule in 
words, however, was difficult for eight students. Some 
students skipped this part of the task or gave a rule 
that was not supported by the completed table. Some 
examples of correct responses for recognised rules: 

“Words should be read backwards”; “If we change the 
first and the last letters we get another meaningful 
word”.

In the second task, where the cohesive element pairs 
were numbers, only 18 students’ gave a correct solu-
tion, while 14 students were able to give the rec-

ognised rule in words. The other students made one 
of the following mistakes: (1) they filled in the blank 
squares in the second row of the table according to a 
recognised rule, but in the first row they filled in the 
blank squares using another rule; that is, they did 
not apply the inverse of the recognised rule and in-
terpreted this part of the table separately. From the 
point of view of the function concept, these mistakes 
indicated issues in recognising and differentiating 
between the basic set and the image set; (2) students 
tried to find different rules for each column and filled 
in the squares according to it. This could be the conse-
quence of being unfamiliar with the table illustration 
of cohesive amounts. Here are some examples of cor-
rect responses for recognised rules:

“If the square in the second row is empty the num-
ber above it has to be divided by four, and where 
the first row square is empty the second row num-
ber has to be multiplied by four” ; “Numbers of 
the first row are the fourfold of the lower row”.

Only two students completed the third task, while 
other students did not give any indication of their 
thinking. This let me conclude that those students 
who possess the skill of one step rule recognition and 
rule creation may have difficulty with two step rule 
recognition.

In the fourth task, the rule was given symbolically. 
Students had to understand the symbolic rule and 
fill in the table accordingly. The given rule could have 
been familiar to the students, as letter expressions 
were from the fifth grade mathematics material, when 
they had to define the value of the letter expression 
along the certain values of the variable, but the val-
ues were not given in table form. Presumably, this 
new situation confused many students. Only twelve 
students could solve the task with only minor calcu-
lation mistakes. 

Only ten students could answer all of the sub ques-
tions of the fifth task, including the last (f ), so they 
could generalise the rule of calculating the amount 
of water in the tank if the elapsed time was unknown, 
and they could illustrate the relationship between the 
results with a table. Eight students could calculate 
with concrete numbers (parts (a) through (e)), but 
failed to complete the (f ) question.

x -3 4 44 48 -20 0

y

4)  Fill in the table according to the following rule: y=2x+3. 
Write down the rule in words  (Level 2). 

Figure 4

5)  2 litres/second of water flows from a tap to a tank. How 
much water is in the tank at: 

a) 1 s,
b)  2 s,

c) 5  s,
d) 10 s,

e) 16 s, (Level 2)  
f) x s    (Level 3)

later if the tank was empty at the beginning? Illustrate the 
relationship between the amounts in a table.

Figure 5
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By analysing the responses of the students in the 
tasks according to the criteria of the set out levels 
it can be said that a student reached level 1 if he/she 
could complete at least one of Tasks 1, 2, or 3. I con-
sidered that a student had reached Level 2 when he/
she correctly provided the rule in at least three tasks 
out of the five. The student reached Level 3 if he/she 
gave the correct answer to all of the questions of the 
third task. In some tasks students made calculation 
mistakes (such as in Tasks 4 and 5), but I did not take 
these into consideration if the student demonstrated 
the correct reasoning.

The students’ answers were analysed based on the 
levels at which the various parts of the tasks were 
categorised. The results are summarised in Table 2.

Based on the analysis, the students were most success-
ful at demonstrating a Level 1 understanding in the 
first task since every student correctly completed it. 
However, the part of the same task, which was cate-
gorised as Level 2, was completed by fewer students 
(18). It can be concluded, however, that in the case of 
each task, the highest results were reached on Level 
2, as compared to the other levels. The third task was 
the most difficult. Only two students gave a complete 
solution.

Based on these aspects, out of 26 students, 14 are on 
the first level, ten are on the second level, and only two 
students are on the third level. So, most of the students 
can recognise some kind of rule between the element 
pairs and can follow it, but to write these rules down 
with words cause them difficulties. In addition, in-
terpreting the rules given by symbols and making 
multistep rules also seems to be problematic. This 
study also confirmed the hierarchy of the levels. There 
was no student who could meet the requirements of 
Level 3, but not Level 1 or Level 2. 

CONCLUSIONS

The goal of this paper was to investigate the RF and 
RR skills of sixth grade students studying in the 
Ukrainian education system, from the point of view 
of the development of the function concept. The re-
sults showed that students certainly reached level 1, 
indicating that they can recognise the relationship 
between simple elements. In many cases, however, 
I could see that some students fulfilled the require-
ments of level 1, but could not get to level 2 due to 
possible deficiencies in the area of communication 
in the language of mathematics. Many could also not 
successfully use the table as a tool for displaying co-
hesive elements. I suspect that students’ deficiencies 
are not only age-specific, but are also related to the 
absence of tables from the curriculum requirements 
and from the textbook tasks. Students’ lack of success 
in correctly completing Tasks 4 and 5, which entailed 
the use of already known concepts (letter expressions 
and linear relationship) in new situations (problem 
solving), indicated that this was also a problematic 
area for the students. 

Finally, I would highlight a component of van Hiele’s 
theory: that reaching a level does not only depend on 
the age of the student, but also on the teaching meth-
ods used and the quality of student learning. Based on 
this suggestion, with appropriate teaching methods 
and practical exercises integrated into the teaching/
learning process, we can ensure that students possess 
the adequate skills for at least the first two levels in or-
der to make the introduction of the abstract concepts 
easier in the seventh grade. 
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Functional reasoning is a key strand of early algebrai-
zation. This paper presents a cross-sectional study that 
analysed functional thinking in a sample of 94 elemen-
tary school students. Aspects such as following and iden-
tifying covariation rules showed dramatic differences 
between Grade 2, Grade 4, and Grade 6, whereas increas-
es in the abilities to command verbal and symbolic rep-
resentations were much smaller. After controlling for 
the influence of nonverbal reasoning, overall functional 
reasoning was found to be strongly associated with cal-
culation skills, but not with skills such as counting, the 
understanding of numerals, and arithmetic problem 
solving. These results are discussed in terms of the na-
ture of functional reasoning and its relationships to the 
arithmetical skills learnt during elementary education.

Keywords: Functional thinking, early algebra, arithmetic, 

quantitative methods. 

INTRODUCTION

There is an increasing interest for understanding how 
algebraic ideas might be introduced during elementa-
ry education. Studies of early algebraization suggest 
that young children are capable of acquiring algebraic 
competences such as understanding the relationship 
between two quantities x and y, figuring out a co-var-
iation rule (Carraher, Martinez, & Schliemann, 2008), 
and explaining and symbolically representing such 
rule (Cooper & Warren, 2007). However, the extent to 
what children’s cognitive development permits their 
learning of algebraic notions remains to be fully un-
derstood (Carraher, Schliemann, Brizuela, & Earnest, 
2006), and the interest for linking algebraic ideas with 
children’s existing arithmetic knowledge are fairly 
recent (Russell, Schifter, & Bastable, 2011). This paper 
adds to the current literature by studying the acqui-
sition of algebraic ideas such as that of function, by 
exploring the ways in which this might be linked to 

the arithmetical skills that children acquire during 
elementary education. This paper reports a cross-sec-
tional study designed with two aims. First, the study 
aimed to identify the progression of a range of func-
tional thinking aspects comparing children in Grade 
2, Grade 4 and Grade 6. Second, the study analysed 
the extent to what overall functional thinking might 
be related to non-verbal reasoning and arithmetical 
skills, including counting, numerical understanding, 
calculation and problem solving. 

Functional thinking in the early grades
The functional approach to teaching algebra is based 
on situations involving the simultaneous variation of 
two quantities and a rule governing such variation. 
Functional reasoning used to be absent in the elemen-
tary mathematics curriculum. However, during the 
last 15 years the development of the function concept 
gained recognition as a strand of early algebraization 
and, consequently, education programs addressing 
the mathematics of variation are increasingly com-
mon. For example, the Principles and Standards for 
School Mathematics introduce the subject ‘Analyse 
change in various contexts’ from Pre-K2 to Grade 
12 (http://www.nctm.org/standards/content.aspx-
?id=26853). This is in part due to the recognition 
amongst researchers of the importance of introduc-
ing young pupils to mathematical representations 
of everyday situations (Blanton & Kaput, 2011), and 
responds to the evidence that technological environ-
ments effectively support the manipulation of dynam-
ic mathematical representations of variation without 
algebraic representations (Rojano, 2008). The current 
study addressess two research questions.

How do functional thinking aspects 
progress across elementary grades?
Function tables are powerful tools for scaffolding and 
studying functional reasoning in the early grades 
(Martinez & Brizuela, 2006), since they help chil-
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dren to figure out relationships between quantities 
(Blanton & Kaput, 2011) and to elaborate algebraic 
conceptions such as co-variation and generalized cor-
respondence (Tanışlı, 2011). Function tables are used 
in the current study for assessing a set of aspects of 
children’s early understanding of functions, namely 
following explicit covariation rules, identifying and 
using such rules without an explicit definition, and 
understanding and generating verbal and symbolic 
representations of such rules (McEldoon & Rittle-
Johnson, 2010). 

What arithmetic skills are related 
to functional thinking? 
It is well documented that children rely on their 
arithmetic knowledge to face their first encounters 
with algebraic problems (e.g., Van Amerom, 2003). 
Disregarding these intuitive arithmetical attempts 
and urging children to use formal algebraic meth-
ods might be misleading (Smith & Thompson, 2008). 
Therefore, there has been advocacy for grounding 
early algebraization on arithmetical knowledge (e.g., 
Russell, Schifter, & Bastable, 2011). This study adds 
to this research line by describing the relationship 
between functional thinking and a set of arithmeti-
cal skills that children usually learn during primary 
school. 

METHOD

Design
This descriptive study relied on a cross-sectional 
design to compare aspects of functional reasoning 
across elementary school grades. 

Participants and context of the study
The final sample for this study consisted of 94 stu-
dents (58 girls) attending Grade 2 (n = 29, Mean age 

= 8.0 years, SD = 0.7), Grade 4 (n = 33, Mean age = 10.0 
years, SD =0.5), and Grade 6 (n = 32, Mean age = 11.9 
years, SD =0.5). The sample was randomly taken from 
the morning and evening shifts of a school located in 
a middle-size city in central Mexico. There are two 
considerations to make about the context of the study. 
First, at the moment of the study the mathematics per-
formances of the two shifts in the participant school 
were fairly close to the national average in the na-
tion-wide assessment ENLACE (SEP, 2014), which is 
similar to national standardized tests such as UK’s 
SATs. This might be a helpful reference to understand 
how the participants in this study might compare 

to the rest of the Mexican population. Second, it is 
known that Mexico tends to rank at bottom positions 
in international mathematics assessments such as 
PISA (OECD, 2013). This is helpful to understand the 
relevance of this study for an international audience. 

Measures
Functional Thinking Assessment
We wanted to link the progression of functional 
reasoning across elementary school grades with 
children’s arithmetical knowledge. Therefore, we 
employed one instrument designed to do that, name-
ly McEldoon & Rittle-Johnson’s (2010) Functional 
Thinking Assessment (FTA). The items in the FTA are 
based on function tables that, as mentioned above, 
are adequate for approaching functional thinking. 
The FTA covers four aspects of functional reasoning: 

 ― Apply rule: The student can use a given rule de-
scribing the relationship between the numbers 
in two table columns in order to determine new 
values of a table.

 ― Recognize rule: The student recognizes an x – y 
correspondence rule in a table, and uses it to de-
termine the next y value.

 ― Generate and use a verbal rule: The student 
writes a correspondence rule verbally, e.g.,  “you 
add 4 to the number in the x column to get the num-
ber in the y column”.

 ― Generate an explicit symbolic rule: The student 
writes a correspondence rule using algebraic 
symbols, i.e., letters.

These aspects and their order were defined on the 
basis of both a review of existing educational ma-
terials involving function tables, and an empirical 
analysis of FTA validity and reliability. Item Response 
Theory measures showed that for all items, the prob-
ability of correct response implicated greater ability. 
Classical measures indicated high internal consisten-
cy (McEldoon & Rittle-Johnson, 2010). These proper-
ties suggest that the FTA possess adequate construct 
validity since it reliably identifies progression across 
ages, and the grouping of its items is consistent with 
the aspects that it is intended to assess. 

A pilot study (Xolocotzin & Rojano, 2014) confirmed 
the appropriateness of the FTA, but it was also discov-
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ered that it might be beneficial to increase the number 
of items in the FTA, in order to give children a better 
opportunity to demonstrate their skills. Therefore, 
we added 4 items that required the generation of a ver-
bal and a symbolic rule, without having to use it. These 
items added to the existing ones assessing the identi-
fication, generation, and usage of a covariation rule, 
which combination indexed the ability to command 
the verbal and symbolic representation of relation-
ships between numbers. Other 4 items were added to 
balance the operations, for instance, to equalize the 
number of items involving additions and subtractions. 
Exploratory analyses (not reported) showed that these 
added items had similar difficulty and discrimination 
capacity as the original ones. 

Non-verbal intelligence
Participants completed the Matrix Reasoning sub-
test of the Weschler Intelligence Scale for Children 
IV (Wechsler, 2007) according to the standard proce-
dure. In order to have an age-standardized measure 
of non-verbal intelligence, the raw scores were con-
verted to scaled scores for Mexican population.  

Arithmetic ability
General arithmetic abilities were indexed with the raw 
scores obtained in the Arithmetic scale of the Evaluación 
Neuropsicológica Infantil (Neuropsychological Children 
Assessment, ENI) by Matute, Rosselli, & Ardila (2007). 
This is a battery for children aged 5 to 15. This instru-
ment was selected because it assesses a comprehensive 
set of arithmetic abilities: 

 ― Counting. This includes items that require num-
bering objects with and without interference, e.g., 

“How many stars and bells are in this card?”

 ― Numerical understanding. This includes items 
indexing abilities for commanding numerals, 
such as reading numbers, writing numbers, com-
paring numbers, and ordering numbers. 

 ― Calculation. This subtest requires the making of 
numerical series, both forwards and backwards, 
as well as the verbal and written solution of arith-
metic operations (e.g., 23 + 14).

 ― Arithmetical problems. This subtest requires 
the verbal solution of word-problems (e.g., 

“A second-hand motorcycle was sold in $ 8, 700, 

which is three-fourths of its original price. What 
is its original price?”).

Procedure
After selecting the school, the corresponding authori-
ties were contacted in order to explain the project in-
tentions and requirements and obtain official permis-
sion for accessing the students. Parents of the selected 
groups were required to give informed consent for 
their children’s participations. After this, complete 
groups of Grade 2, Grade 4 and Grade 6 were tested 
collectively with the FTA. Grade 4 and Grade 6 groups 
answered the FTA in one session lasting up to one 
hour, whereas children in Grade 2 groups were tested 
in two sessions of up to 30 minutes each. In total, 196 
children were tested with the FTA. A sub-sample of 100 
students was randomly selected for this study. Except 
for few children who required two sessions due to 
interruptions, the testing of arithmetic ability and 
non-verbal intelligence was made individually in one 
session lasting 45 minutes to one hour. Children were 
made to perform other tasks related to their cognitive 
development, the results of which are not reported 
here. The testing took place in a quiet room within the 
school, with presence of the researcher and the child 
only. Before each session, children were requested to 
verbally consent with the activities, after being clar-
ified that their participation was anonymous, volun-
tary, and that they could stop at any moment. Three 
children did not complete the testing sessions because 
they decided to stop, and other three did not complete 
a second session, leaving a final sample of 94 children.  

RESULTS

Comparisons by functional thinking 
aspect, grade and gender
The percentages of correct responses in each of the 
FTA aspects were analysed with a mixed ANOVA in-
cluding the within-participants factor Aspect (Apply 
rule/Recognize rule/Verbal representation/ Symbolic 
representation) and the between-participants factors 
Grade (Grade 2/Grade 4/Grade 6) and Gender (male/
female). None of the scores was weighted. The as-
sumption of sphericity was violated, and although the 
results of the analysis with and without corrections 
were virtually equal, here we report the Greenhouse-
Geisser corrected results. There was a significant 
main effect of Aspect [F (2.46, 217.037) = 118.323, p <.001, 
h2 = .573], suggesting that children were more able to 
apply a rule than to recognize a rule, representing it 
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verbally, or representing it symbolically, in that order. 
The significant main effect of Grade [F (1, 88) = 42.789, 
p <.001, h2 = .493] indicated that the functional thinking 
aspects changed from one grade to another. There 
was also a significant aspect x grade interaction [F (6, 
217.037) = 42.789, p < .001, h2 = .493].

Post-hoc pairwise tests with Bonferroni adjustments 
revealed that the aspect apply rule increased signifi-
cantly from Grade 2 to Grade 4, but not from Grade 4 
to Grade 6. Also, the aspects verbal representation and 
symbolic representation increased only from Grade 
4 to Grade 6, but not from Grade 2 to Grade 4. Neither 
the main effect of Gender [F (1, 88) = 0.57, ns] or the 
interactions aspect x gender [F (3, 217.037) = 0.93, ns], 
and aspect x grade x gender [F (6, 217.037) = 0.11, ns] 
resulted significant. Figure 1 illustrates these results.

Relationships between arithmetic 
and functional thinking
A multivariate regression analysis identified the 
arithmetic strands that might have been related to 
children’s performance in the FTA. The dependent 
variable was a composite score indexing overall func-
tional thinking, defined as the summed raw scores of 
the FTA indexes, namely apply rule, recognize rule, 
verbal representation and symbolic representation. 
Positive and significant correlations (not report-
ed) were found between these scores (all rs > .39, all 
ps < .001), justifying their aggregation. 

The independent variables in the regression analyses 
included two dummy variables that identified Grade 
2 and Grade 4 individuals, the scaled scores of the 
matrix reasoning test, and each of Arithmetic scale 

Figure 1: Percentage of correct responses by aspect and grade

Independent variables B SE β p

Grade 2 -14.480 1.231 -.777 <.001

Grade 4 -7.614 1.179 -.422 <.001

Matrix reasoning .776 .233 .231 .001

Calculation .285 .117 .184 .017

Notes: all ps two-sided, only significant results are presented

Table 1: Summary of the multivariate regression analysis including overall FTA score as dependent variable and 

Grade, matrix reasoning and the indexes of the ENI Arithmetic scale as independent variables
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scores of the ENI, mean-centred by Grade. The results 
are shown in Table 1.

Children in Grade 2 and Grade 4 scored lower in the 
FT test than children in Grade 6, which is consistent 
with the results of the ANOVA presented above. The 
coefficient of the matrix reasoning score indicated 
that those who had a more non-verbal reasoning also 
scored higher in the FT test. As for the arithmetic 
scores, counting, numerical understanding, and ar-
ithmetical problems, were not significantly related to 
the FT. In contrast, the positive and significant effect 
of calculation indicated that those who were more able 
to make numerical series and resolve arithmetical 
operations were also better at responding the FTA. 

DISCUSSION

How do functional thinking aspects 
progress across elementary grades?
The comparisons by aspect, grade, and gender, are 
consistent with the results reported with other appli-
cations of the FTA (McEldoon & Rittle-Johnson, 2010), 
suggesting its adequateness for assessing function-
al thinking. The absence of gender effects suggests 
that functional reasoning is accessible for both boys 
and girls. Performance in all of the aspects increased 
across grades. However, there were differences in 
their rates of increase from one grade to another. The 
ability to apply a rule develops steadily, and approach-
es top performance by Grade 4. This seems only natu-
ral considering that applying rules is a form of follow-
ing instructions, which is something that children get 
familiar with from early stages of education. Younger 
children might be unable to apply a given covaria-
tion rule because they do not understand it, as is in-
dicated by their lower performance recognizing and 
representing such rules. Performance recognizing a 
rule seems to progress regularly across elementary 
grades, although is not fully commanded by older 
students. The difficulty to command verbal and sym-
bolic representations is noticeable. The differences 
across grades are apparently not regular and rather 
modest, especially for symbolic representation. Recall 
that children in Grade 4 perform at the same level of 
children in Grade 2, and children in Grade 6 failed to 
reach above 30% of correct responses. 

The low performance on symbolic representation 
might be the result of either low students’ abilities 
or hard items. This is difficult to disentangle with the 

collected data, so the results of this aspect should be 
interpreted cautiously. Analyses of the items’ discrim-
ination and difficulty for the current sample showed 
that 5 out of the 9 items involved were very difficult, 
even for top performers. The rest were also difficult 
but at least 30% of top performers were able to solve 
them. The items also involved different mathematical 
relationships, including addition, subtraction, mul-
tiplication, and combinations of these. The effects of 
potential differences in the capacity to handle these 
operations might be confounded with the capacity to 
symbolize. Also, the assessment of symbolization as a 
unitary aspect might not be optimal. This might be ad-
dressed by decomposing it in sub-aspects of different 
difficulty. For instance, symbolizing a covariation rule 
that has been presented in natural language might 
be one easier sub-aspect than symbolizing directly 
from data. 

Functional reasoning aspects change differently 
across grades, suggesting that the progression from 
one aspect to the other is not necessarily uniform. 
Further studies should be designed to replicate 
these results, especially those regarding symbolic 
representation aspect, considering the apparent dif-
ficulty for assessing this aspect.

Non-verbal intelligence and 
functional reasoning
The significant relationship between matrix reason-
ing and the FT scores reflects that perceptual reason-
ing, indexed by the understanding visual patterns, 
is closely linked with the development of mathe-
matic abilities in general (Parkin & Beaujean, 2012). 
Nevertheless, future studies should investigate if un-
dersanding numerical patterns could be specifically 
related to the understanding of functions. 

What arithmetic skills are related 
to functional thinking? 
The results of the multivariate regression analysis 
outline the arithmetic skills that might be associated 
with functional thinking. The effects of the Grade 2 
and Grade 4 dummies are not discussed since they 
replicate the grade effects discussed above. The sig-
nificant matrix reasoning effect was expected since 
performance in this test tends to be correlated with 
general mathematics ability ( Jordan, Glutting, & 
Ramineni, 2010) and, therefore, it was important to 
account for the influence of this variable when as-
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sessing the relationships between arithmetic and 
functional thinking. 

The lack of significant counting effects might reflect 
the abstract nature of functional thinking. Counting 
was assessed with tasks in which children numbered 
objects accessible to visual perception. In contrast, 
functional thinking tasks required working with re-
lationships, either explicit or not, between abstract 
quantities, i.e., represented by numerals. The lack 
of numerical understanding effects might be seen 
as counterintuitive. One would expect that skills for 
mastering the symbolic number system might be also 
used for functional thinking. Both of these involve 
generalizations. However, this seems to be not the 
case, at least for this sample. Children might command 
the structure of ten base-10 system, generalizing the 
relationship between the location of a numeral in a 
number and its value. For instance, knowing what the 
numeral 3 represents depending of whether is located 
first (32) or second (132). However, this sort of gener-
alization seems unrelated to generalizations about 
relationships between different sets of quantities.

The significant effects of calculation suggest that 
those more able for making sequences and resolving 
arithmetical operations also resolved more FT items. 
Probably they attempted the function tables with iter-
ative calculations, or by trial and error, and then they 
figured out the covariation rules. Another possibil-
ity is that they figured out the covariation rule first 
and then proceeded to do the calculations. The later 
seems less likely considering that items involving rep-
resentation were more difficult than items involving 
the imputation of missing data, such as following a 
rule or employing a non-explicit rule. Further studies 
might shed light on this issue. It is important to men-
tion that this result seems consistent with suggestions 
made about the important role that calculation might 
have for grounding algebraic reasoning. Russell and 
colleagues (2011) identified activities that sustain both 
arithmetic and algebra, namely understanding op-
erations, generalizing and justifying, extending the 
number system, and using notation with meaning. 
Whether children might engage with these activities 
whilst doing function tables deserves attention.  

The lack of significant effects of arithmetic problems 
does not rule out that problem solving is associated 
with functional reasoning. There was a sizable coeffi-
cient and a large standard error (B= .64, SE= .47). This 

might be related to the instrument. This score was 
obtained from a single test with eight items, which is 
small compared to the calculation score, made with 
42 items from 4 tests. Thus, a small increase in the 
arithmetic problems score could be associated with 
large increases in the FT score, producing the ob-
served large B. However, with standardized scores, 
calculation’s β remained sizeable, whereas the arith-
metic problems one decreased notoriously (.18 and 

.09 respectively). This might suggest that calculation 
is more related to functional thinking than arith-
metic problem solving. However, this is uncertain 
considering the differences in their measurement. 
Future studies should include convergent measures 
of arithmetic problem solving in order to make a fair 
measurement of this aspect and assess its relationship 
with functional thinking more accurately. 

Limitations and further studies   
The sample for this study was selected purposfully, 
and comes from a very particular population. It would 
be useful to conduct other studies with samples from 
different populations to observe similarities or dif-
ferences in functional reasoning. Also, measurement 
limitations for symbolic representation and prob-
lem solving indicate cautios interpretations of the 
results related to these aspects. The cross-sectional 
design does not allow for developmental inferences. 
It is highly desirable to collect longitudinal data for 
studying the development of functional reasoning. 
This study is part of a larger project aimed to identify 
the cognitive underpinnings of functional reasoning. 
In future, studies will be carried out to confirm the 
presented findings, and to investigate a wide set of 
cognitive capacities in addition to arithmetic. 
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This paper illustrates students’ algebraic habits of 
minds through interviews and demonstrates how stu-
dents have difficulties in algebra. In this study we present 
data from clinical interviews with sixth grade students, 
which were analyse using Driscolls’ (1999) framework 
of algebraic habits of mind. All students show different 
algebraic habits of mind and their difficulties in alge-
braic concepts constrain their ways of thinking. 

Keywords: Algebra, habits of mind.

INTRODUCTION

One major learning goal of mathematics education 
is to improve students’ different ways of thinking. 
When students spontaneously and are likely to use 
mathematical ways of thinking, it is reasonable to call 
them mathematical habits. Several researchers have 
studied mathematical habits of mind (Lim & Selden, 
2009). Mathematical habits of mind are viewed as 

students’ mathematical thinking in the same way 
mathematicians do (Cuoco, Goldenberg, & Mark; 1996). 
Mathematical habits of mind are general approaches 
and there are also content-specific habits such as al-
gebraic habits of mind. Driscoll (1999) provides a the-
oretical framework for algebraic habits of mind. He 
considers algebraic habits of mind habituated ways 
of thinking that help students succeed in learning 
algebra. Further, Driscoll (1999) concentrates on three 
algebraic habits of mind: (1) doing-undoing, (2) build-
ing rules to represent functions, and (3) abstracting 
from computation. These critical habits of mind help 
students to use and apply what they know and have 
learned when they encounter any problem they haven 
not specifically learned. Students who have not devel-
oped different habituated ways of thinking struggle 
particularly with algebra and mathematics in general. 
This research, being in the initial stage   of an ongo-
ing longitudinal study is designed to bring students 
in algebraic habits of mind in over two years. The 
purpose of the study is to investigate sixth grade ele-

Categories Indicators NUR ALİ GÜL CAN

Doing-Undoing
Working the steps of a procedure backward ✓ ✓ ✗ ✓
Finding initial conditions from a solution ✓ ✗ ✗ ✓

Building Rules 
to Represent 
Functions

Organizing information in useful ways ✓ ✗ ✓ ✓
Describing change in a process ✓ ✓ ✓ ✓
Noticing a rule at work and trying it how it works ✗ ✗ ✓ ✓
Describing the steps of a rule without using specific in-
puts

✗ ✗ ✗ ✗

Justifying why a rule works for any number ✗ ✗ ✗ ✗
Seeking and using connections across different contexts 
or different representations 

✗ ✗ ✗ ✓

Abstracting 
From 
Computation

Looking for shortcut in computation ✗ ✓ ✗ ✓
Thinking about calculations independently of the particu-
lar number used

✗ ✓ ✗ ✓

Recognizing equivalence between expressions ✓ ✓ ✓ ✓
Expressing generalizations about operations symbolically ✗ ✗ ✗ ✓

Table 1: Each student’s algebraic habits of mind
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mentary students’ acquired algebraic habits of mind 
after completing their first year of algebra domain. 
Initial interview results will help us to plan the next 
steps of this research to support students’ algebraic 
habits of mind. 

METHODOLOGY

Participants of this study were four sixth grade mid-
dle school students. Data were collected through clin-
ical interviews at the end of the sixth grade. Students 
were given problems to solve and, after solving each 
problem, they were asked for detailed descriptions, 
and to apply different ways to solve problem. The 
four interviews were fully transcribed and students’ 
responses were put into one of the Driscoll’s algebraic 
habits of mind indicators and categories. 

RESULTS AND DISCUSSION

The results indicate that all students exhibited some 
algebraic habits of minds at the end of the sixth grade 
(Table 1). However, students’ difficulties in conceptu-
alizing algebraic concepts appeared to constrain their 
ways of thinking.

As shown in Table 1, the indicators of algebraic habits 
of mind vary across individual students. In the in-
terviews, all students described change in a process 
and recognized equivalence between expressions. In 
addition, none of the students described the steps of 
a rule without using inputs, and justified why a rule 
works for any number. Thus, students did not seem 
to exhibit various and different thinking ways. This 
has implications for teachers and for us. Teachers 
should benefit from students’ thinking in designing 
their mathematics courses, and use interviews as a 
tool to further investigate their students’ thinking. As 
a next step, we will further design our mathematics 
course primarily to gain students how to describe 
the steps of the rules without using specific input 
and how to justify why a rule works for any number. 
Additionally, we will overcome students’ difficulties 
about algebraic concepts and support all indicators 
of students’ algebraic habits of mind.
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The purpose of this study was to investigate United States 
mathematics teachers’ thinking about algebraic reason-
ing within the context of their middle school classrooms. 
After collecting document and observation data from 
19 teachers in a two-week summer professional devel-
opment workshop, we analysed how teachers defined 
algebraic reasoning in their classroom and their de-
scription of algebraic reasoning tasks for their students. 
Our findings detail the ways teachers initially described 
algebraic reasoning in the context of their classroom 
and the changes in thinking teachers reported during 
and after the workshop.

Keywords: Algebraic reasoning, professional development, 

teacher thinking.

AIMS AND RESEARCH QUESTION 

Algebraic reasoning is an essential habit of mind for 
building conceptual knowledge in K-12 mathemat-
ics (Kaput, 2008), yet little is known about how K-12 
mathematics teachers think about algebraic reason-
ing in the context of their classroom (Blanton & Kaput, 
2005; Ellis, 2011). In this project, we aimed to address 

this research need by examining how algebraic rea-
soning was considered by middle school in-service 
mathematics teachers who taught grades 6, 7, or 8 in 
the United States. Our research question was: how do 
teachers develop their understanding of algebraic 
reasoning in the context of their classroom through 
a two-week professional development session? This 
question focused our efforts on characterizing how 
teachers communicated their understanding of alge-
braic reasoning throughout the professional develop-
ment and during the following months, after teachers 
returned to their classrooms. We use Blanton and 
Kaput’s (2005) definition of algebraic reasoning as 

“a process in which students generalize mathemat-
ical ideas from a set of particular instances, estab-
lish those generalizations through the discourse of 
argumentation, and express them in increasingly 
formal and age-appropriate ways” (p. 413). We use 
these authors’ depiction of algebraic reasoning as a 
framework for this study.

METHODS 

The participants of this study were 19 middle school 
teachers from the Southern United States engaged in 

Code Reflection 1 Reflections 2–5 Reflection 6

Single Solution 11 (58%) 0 (0%) 0 (0%)

Single Solution Strategy 6 (32%) 0 (0%) 0 (0%)

Single Representation 2 (11%) 0 (0%) 0 (0%)

Multiple Solutions 1 (5%) 4 (21%) 1 (5%)

Multiple Solution Strategies 5 (26%) 17 (89%) 6 (32%)

Multiple Representations 3 (16%) 8 (42%) 3 (16%)

Procedural knowledge 12 (63%) 3 (16%) 0 (0%)

Conceptual knowledge 10 (53%) 14 (74%) 11 (58%)

Expressing Generalization 2 (11%) 13 (68%) 5 (26%)

Functional Thinking 1 (5%) 7 (37%) 0 (0%)

Table 1: Counts of how many teachers (n=19) made statements coded using our coding dictionary before (reflection 1), 

during (reflections 2–5) and after (reflection 6) the professional development
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a two-week professional development session and a 
follow-up meeting two months later. We conducted 
observations and collected documents from teachers 
during and after a two-week professional develop-
ment session. Data consisted of teachers’ daily re-
flections prompting teachers to reveal their thinking 
about algebraic reasoning and researcher notes about 
teacher work on various activities and conversations 
during the professional development sessions. We 
used content analysis to analyze teachers’ reflections 
and our observation notes by creating and refining 
our codes based on existing literature.  

FINDINGS

As summarized in Table 1, we found that teachers’ 
initial thinking about algebraic reasoning includ-
ed procedural tasks with a single solution, solution 
strategy, or representation. At the end of the two-week 
professional development, teachers described alge-
braic reasoning as requiring conceptual knowledge 
and multiple solutions, solution strategies, or rep-
resentations. Some teachers also associated aspects 
of generalization and functional thinking as part of 
algebraic reasoning. Two months after the profes-
sional development, teachers still described algebraic 
reasoning as tasks requiring conceptual knowledge 
rather than procedural skills, and included multiple 
solutions or solutions strategies. Teachers did not 
continue to associate generalization or functional 
thinking as part of algebraic reasoning. 

These findings may help other teacher educators an-
ticipate teacher thinking when working to develop 
algebraic reasoning in professional development 
settings and identifies more work with teachers’ al-
gebraic reasoning is needed to support teachers’ use 
of generalization and functional thinking in their 
classrooms. 
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We examine how pattern-based activities presented in 
textbooks for primary education allow developing the 
notions of variation and covariation, using the con-
ceptual tool of institutional relationship of Chevallard 
(2003). Our sample is formed by the textbooks currently 
approved by the Quebec Ministry of Education. Ours 
results reveal a didactic void in the textbooks.

Keywords: Variation and covariation, textbook analysis, 

institutional relationship.

INTRODUCTION AND RESEARCH PROBLEM

Researchers have identified numerous difficulties 
faced by students in learning functions. Because el-
ementary school students are able to grasp pre-alge-
braic concepts, researchers recommend introducing 
pre-algebra at the primary level to facilitate the sub-
sequent learning of algebra and functions at higher 
levels. The notions of variation and covariation have 
been highlighted for their role in fostering a better 
understanding of functions at the secondary level 
(Hitt & González-Martín, 2015). In primary education, 
the notions of variation and covariation can be taught 
using pictorial growth patterns, which foster two 
modes of reasoning: figural and numerical. Becker 
and Rivera (2005) found that prospective elementary 
school teachers predominantly use numerical reason-
ing to analyse patterns with their pupils. Because both 
modes of reasoning should be present in the class-
room, and considering the tendency of teachers and 
students to favour numerical reasoning, we are inter-
ested in examining how pattern-based activities are 
presented in elementary school textbooks and how 
this reveals the institutional relationship with these 
notions. Specifically, our research questions are: 1) 
how are notions related to pictorial growth patterns 

organised in elementary school textbooks and what 
type of reasoning do they tend to favour, and, 2) do 
the textbooks’ activities effectively allow students to 
develop the notions of variation and covariation?

THEORETICAL FRAMEWORK

Our research leans heavily on Chevallard’s anthropo-
logical theory of the didactic (ATD, 2003). In particular, 
we employ the notion of institutional relationship to 
study institutional choices concerning the use of the 
mathematical objects of variation and covariation in 
textbooks. We also use the notion of praxeology to 
characterise the institutional relationship with the 
notions of variation and covariation.

METHODOLOGY

The content analysis applied to textbooks in this study 
was performed with tools provided by ATD. We ana-
lysed the three current elementary school textbooks 
approved by the Quebec Ministry of Education for the 
final years of primary school (10- and 11-year-old stu-
dents), focusing on the following elements: the nature 
of symbols used (numerical or pictorial), the types 
of tasks and the praxeologies they define, the goal of 
these tasks, the independent and dependent variables 
at play in the task, the regularity from one position to 
subsequent positions, the mode of reasoning favoured, 
and the relationships between variables. We paid par-
ticular attention to how the textbooks lead students 
to use the information presented to accomplish tasks 
and develop an awareness of relationships between 
two given quantities.
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DATA ANALYSIS AND DISCUSSION

We found only 18 cases, in two of the three textbooks, 
in which a task makes use of patterns: 11 tasks using 
numerical patterns, six tasks using patterns pre-
sented both numerically and pictorially, and one task 
using pictorial patterns. We identified three different 
types of tasks: 1) introducing the definition of a pat-
tern, 2) predicting subsequent terms, and, 3) gener-
alising through an expression. Each of these types of 
task defines a different mathematical organisation: 
the first attempts to familiarise students with the idea 
of change or variation, the second aims to teach stu-
dents the idea of covariation, and the third focuses on 
dependence relations through a rule. The relationship 
between variables is not specified in either of the two 
textbooks and both use the symbol n in formulae with-
out explicitly giving any meaning to it. All 18 tasks can 
be solved using just two standard techniques, which 
favour the use of numerical reasoning. Moreover, the 
technology that could reinforce and give meaning to 
the notions of variation and covariation is absent, and 
therefore students are not provided with optimal con-
ditions for developing these notions. The institutional 
relationship with these notions is characterised by a 
didactic void, especially with regard to the theoretical 
block. We are aware that this research has been con-
ducted on a small scale and that further study is neces-
sary to investigate whether children are given better 
opportunities to develop the notions of variation and 
covariation in primary school. For this reason, we are 
planning to examine potential difficulties students 
may encounter when presented with patterns and 
other generalisation activities. We also wish to study 
teachers’ practices and professional teacher educa-
tion in the effective use of patterns. 
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In a study with 91 upper-secondary students the efficien-
cy of two different types of mathematical practice tasks, 
procedural based algorithmic tasks and creative rea-
soning tasks, were studied. It was found that although 
the algorithmic group outperformed the creative group 
during practice the latter performed significantly better 
on a follow-up test. Closer inspection revealed that the 
difference in test performance was, contrary to common 
beliefs, driven by the cognitively weaker students.

Keywords: Mathematical reasoning, creative reasoning, 

cognitive proficiency.

LEARNING BY IMITATIVE AND 
CREATIVE REASONING

Starting off from research that points to the ineffi-
ciency of rote learning, the LICR design research 
project is studying the efficiency of different kinds 

of practice tasks. One sort of task where the student 
is presented with an already complete solution or for-
mula and has to practice this, much like the layout in 
most textbooks (Algorithmic Reasoning, AR). This is 
contrasted by a task type that gives no indication on 
how to solve the specific task, constructed in such a 
way that it gives the student a chance to, with small 
creative steps, construct a general solution (Creative 
Mathematically founded Reasoning, CMR). The tasks 
are designed based on the mathematical reasoning 
framework (Lithner, 2008) utilizing a specific adidac-
tical situation (Brousseau, 1997).

METHOD

Our sample consisted of 131 students at the Natural 
Science program from four Swedish upper second-
ary schools (16–17 year olds) that after attrition and 
screening for ceiling effects was reduced to 91 (48 AR 
and 43 CMR). We used two cognitive tests, Raven’s 

Figure 1: The left diagram shows the mean result for practice and test for all participants while the right shows the mean 

result for the lowest cognitive tertile (error bars represent two standard error of means)
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Progressive Matrices (non-verbal problem solving 
ability) and Operation Span (working memory capac-
ity), to construct a cognitive composite score. Both of 
these tests have been proven to be of importance for 
mathematics achievement (Primi, Ferrão, & Almedia, 
2010; Alloway, Gathercole, Kirkwood, & Elliot, 2009). 
The cognitive composite score, mathematics grade 
and gender were used to match the participants into 
two comparable practice groups, AR and CMR. 

The two groups got to practice on 14 task sets, each 
with a specific target knowledge. The CMR-group 
solved three tasks per task set while the AR-group 
solved five tasks to compensate for the quicker AR-
tasks. The allotted practice time was the same for 
both groups but there was a slight difference in used 
practice time, 29 min (SD, 10) for CMR and 21 min 
(SD, 6) for AR. One week later the two groups took 
the same test. The test consisted of three tasks per 
task set. They evaluated: 1) memorized knowledge of 
a specific formula, 2) if a mathematical principle was 
memorized, and 3) if the formula or principle could 
be reconstructed if forgotten. 

RESULT

Looking at the test result (Figure 1) the CMR-group 
significantly outperformed the AR-group, t(89) = 3.54, 
p = .001, d = 0.73, on all three tasks even though the 
AR-group performed much better during practice. 
The analysis also showed that the test performance of 
the AR-group was highly predicted by their cognitive 
score. The test performance of the CMR-group was 
predicted by their practice result and here a teacher 
can have huge impact. The most interesting result 
however is that the differences in test results were 
mainly driven by the cognitively weaker students 
rather than by the stronger students as might be 
expected according to common beliefs. Put together, 
these results would imply that CMR practice is more 
efficient with regard to remembered knowledge and 
also more neutral in terms of cognitive prerequisites 
(Jonsson, Norqvist, Liljekvist, & Lithner, 2014).
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The aim of presentation was to demonstrate our exten-
sion of previous theoretical framework of prototypes – 
a term of cognitive psychology – in mathematics educa-
tion, illustrated by examples of students’ outcomes and 
sets out a research project based on this framework. The 
study was supported by Charles University in Prague, 
project GA UK No 227-364.

Keywords: Prototype, function, example, mathematical 

concept, classification.

THE THEORY OF PROTOTYPES

The theoretical framework of the concept of proto-
types lying in cognitive psychology is presented in 
two ways. First, traditionally, by a description of his-
torical evolution from first research studies carried 
out by Eleanor Rosch in the 70’th and introduction 

of prototypes to mathematics education by Rina 
Hershkowitz and others in the 80’th of the twentieth 
century. Second, we will demonstrate inherent usage 
of prototypes in mental representation of mathemat-
ical, well-defined concepts through introspection of 
poster readers.

Schwarz and Hershkowitz (1999) describe prototypes 
as construct of probabilistic approach to concept 
learning –“special examples, that are more central to 
learning than others”. Hadjidemetriou and Williams 
(2010) offer strong example, linearity, ascribing it to 
schooling. Our goal is to define and identify proto-
types of mathematical concepts and also observe long-
term development of prototypes. In this poster, we 
concentrate on two questions:

Figure 1: A student’s solution

mailto:derek.pilous%40seznam.cz?subject=


Prototypes in secondary and university mathematical education (Derek Pilous and David Janda)

505

1) How to characterize prototypes of mathematical 
concepts in a way which will provide criteria for 
their detection?

2) Which prototypes of common important mathe-
matical concepts like functions and real numbers 
do students use?

In the theoretical part of poster we pose two condi-
tions for useful definition of prototypes in context 
of mathematical education and present our working 
definition: A prototype is any instance of concept, a set 
of instances or any property functionally connected to 
concept, which is statistically preferred by an individual 
in usage of that concept, if this preference cannot be 
explained by a mathematical essence of that concept 
and informational complexity of the would-be prototype.

Theoretical framework is followed by examples of 
prototypes from our observations of students’ pro-
totypes in ordinary lessons of mathematics and from 
our research not specifically focused on prototypes 
(Janda, 2013). One such example is given in Figure 1. 
A group of 40 secondary school students solved the 
problem “How does f(x) change if we replace x by various 
integers? Describe or represent it.” for four functions.

As we can see, substituting two or three numbers for x 
satisfied the student enough to draw supposed graphs 
of functions. Numbers 1 and 2 were the most often 
used (hence, we consider small positive integers to be 
prototypes of real numbers), number 0 was used only 
once, negative numbers were not used at all (only 14% 
of the students inserted at least one negative number 
into any of the rules).

Figure 1 is an example of the tendency to “linearize” 
graphs of functions which was generally very strong 
among students; in Figure 1, we can even see that the 
student omitted the result of the evaluation for x = 3 
(by crossing out the evaluation itself and the corre-
sponding point in the Cartesian plane) because it did 
not conform with the linear function passing through 
points which resulted from previous evaluations.
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In the research project presented, I categorise the strat-
egies employed by four Fourth class girls and four Sixth 
class girls when asked to construct a general term for a 
visual spatial pattern. The approach adopted by each 
girl is categorised as either explicit or recursive, and the 
mode of generalisation is categorised as either linear 
or numeric.

Keywords: Visual spatial pattern, generalisation strategies, 

reasoning.

THEORETICAL BACKGROUND

Generalisation is considered by many to be a highly 
significant component of algebraic reasoning (Kaput, 
2008). Patterning plays a key role in supporting chil-
dren’s developing skills in generalisation, and inter-
nationally visual spatial patterning tasks have been 
utilised in many research projects to investigate chil-
dren’s success in generalising (e.g., Rivera & Becker, 
2011). 

Lannin (2004) presents two approaches to the con-
struction of generalisations from patterns. An ‘ex-
plicit’ approach involves identifying a rule for the 
relationship between a term and its position in the 
pattern, whereas a ‘recursive’ approach focuses on 
a relationship between successive terms. Rivera and 
Becker (2011) discuss the tendency of some children in 
their research to adopt a ‘numerical’ rather than ‘figu-
ral’ mode of generalising, which in some cases caused 
difficulty in the children’s own reasoning about the 
generalisations they had constructed. 

Within the algebra strand of the Irish Primary School 
Mathematics Curriculum (PSMC) it is proposed 
that children be facilitated in establishing rules for 
number sequences, but explicit approaches are not 
mentioned, and examples given all indicate constant 
differences between terms (Government of Ireland, 
1999). Generalisation is not mentioned and visual 

spatial patterning is not suggested for consideration, 
beyond repeating patterns of shapes aimed at the 
youngest children in primary school. In light of this, 
the research discussed in this paper aims to explore 
the responses of primary school children in Ireland 
when asked to construct generalisations from a visual 
spatial pattern.

METHOD

Individual clinical interviews were used to gather 
data on children’s constructions of generalisations. 

Four girls were randomly selected from each of Fourth 
class and Sixth class in an Irish primary school. The 
cohorts from the two classes had mean ages of 10.08 
years and 12.19 years respectively. Pseudonyms are 
used. The girls were asked to describe, extend and 
construct near and far generalisations from the pat-
tern terms shown in Figure 1. Suggestive questions 
were asked to support children in making progress 
in the solution of tasks.

FINDINGS AND DISCUSSION

During the clinical interview, each girl was asked to 
identify the 100th term in the pattern, as a far gener-
alisation. Each girl’s generalisation, or work towards 
a generalisation, was deemed to be figural or numeric. 
A response was deemed to be figural if the child re-
ferred to the position of the diamonds, by referring 
to the ‘top’ or ‘bottom’ or through gesture and use of 
the deictic ‘there’. Table 1 summarises the mode of 
generalisation adopted by each girl and whether the 
approach adopted in working with the pattern was 
recursive or explicit. An incomplete generalisation 

Figure 1: Diamonds pattern
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refers to an instance when a participant did not con-
struct the 100th term.

Within the PSMC the 6th Class girls may have en-
countered many number sequences which favour 
recursive thinking. Lannin (2004) suggests that such 
immersion may cause difficulty in considering an ex-
plicit approach. Additionally, the numeric approach 
of Aoife and Rachel seemed to inhibit their thinking 
about the general term, in a manner consistent with 
the findings of Rivera and Becker (2011).
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Name Class 
Level

Numeric/figural 
mode of generalisa-
tion

Recursive or explicit approach Validity of generalisation

Natasha 4th Figural Explicit Complete, but flawed nu-
merically

Bella 4th Figural Explicit Complete and valid

Tara 4th Did not respond Did not respond No response

Nikki 4th Numeric Recursive and later explicit Complete and valid

Lisa 6th Numeric Recursive and later explicit Complete and valid

Sarah 6th Figural Did not explain her thinking Complete and valid

Aoife 6th Numeric Recursive Incomplete

Rachel 6th Numeric Recursive Incomplete

Table 1: Classifications of girls’ constructions of a far generalisation
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We investigate similarities and differences in two 
teachers’ way of introducing algebraic expressions by 
designed examples. One teacher moves from the specific 
to the general, and the other moves from the general to 
the specific. They both mediate the passage from the 
students’ real world and the school mathematics they 
know, to algebra. 

Keywords: The introduction of algebra, designed 

examples, mediating tools.

Two teachers, Kari and Ola, are introducing algebra 
in two Norwegian grade eight classrooms. Kari holds 
up a set of large playing cards and writes on the black-
board what is written in the corner of the cards. Ola 
starts walking in one direction in the classroom, ask-
ing the students to describe what he is doing. These 
are the starting points of two examples that each 
teacher has designed as a tool for communicating and 
explaining new algebraic ideas in her/his classroom. 
Kari makes the students familiar with using letters 
for numbers with the help of playing cards. Ola makes 
the students familiar with algebraic expressions and 
variables with the help of body movement.

The aim of this study is to investigate the introductory 
lesson when two teachers mediate algebraic concepts 
through their examples. The purpose of the analysis 
is to capture how the teachers approach the complex-
ity students meet in such learning situations. More 
specifically: Which procedures do the teachers’ use 
to introduce the concept of algebraic expressions?

THE THEORETICAL FRAMEWORK

The shift in school mathematics from arithmetic to 
algebra is known to be challenging for students. The 
learning of algebra includes new symbols, new con-
cepts and also new ways of thinking. Examples play 

a central role in the teaching and learning of mathe-
matics as described among others by Rowland (2008). 

The concepts of mediation and mediating tool 
(Wertsch, 1991) have emerged from our empirical 
material. The theoretical term of mediating tools fa-
cilitates our analysis in making a distinction between 
the goals of the lessons (including the mathematical 
objects of variables and algebraic expressions) and 
the tools (designed examples, concretes and semiotic 
items) that the teachers employ in their interaction 
with the students. 

THE METHOD

In order to accomplish the aims of the study we use 
a qualitative approach to collect and analyze the em-
pirical data grounded in a sociocultural theoretical 
perspective of learning. The data has been collected 
after the VIDEOMAT design (Kilhamn & Röj-Lindberg, 
2013); we observed the first five algebra lessons in each 
classroom (videotaping), interviewed the teachers af-
ter the fifth lesson (audiotaping) and collected written 
material used in the classrooms (teacher and student 
material). As a first approach to the collected data, 
lesson graphs for each lesson were elaborated, and 
the first lesson in all classrooms was transcribed. 

The two examples were chosen through a process in-
volving the lesson graphs and several viewings of the 
video material. They comprise the introductory part 
of the first lesson in each classroom. The designed 
examples stood out as unique in the international 
video material. The examples are also referred to in 
later lessons by the teachers and therefore play an 
important role in the introduction of algebra in these 
two classrooms.
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RESEARCH RESULTS 

There are similarities and differences in these teach-
ers’ way of introducing algebra. The two teachers both 
design introductory examples which are used as their 
central means for explaining the same concepts (var-
iable and algebraic expression).  The examples are 
easily distinguishable in their use of concrete mate-
rials, cards versus the body. However, there are more 
fundamental differences in the examples’ structures. 

Kari starts with numbers, number operations, and 
arithmetic expressions, and she makes generaliza-
tions introducing algebraic expressions. She con-
tinually connects the arithmetic and the algebraic 
elements, and sees variables as numbers. Kari moves 
from the specific to the general in her approach to 
introduce algebraic expressions. 

Ola, on the other hand, establishes an algebraic ex-
pression directly from the imaginary number line 
with given direction and units (first step, then foot) 
without using numbers. He builds the algebraic ex-
pression through a transformation chain following 
this path: bodily movement – words – abbreviations 

– variables, and sees variables as quantities, numbers 
included. Ola moves from the general to the specific 
in his approach to introduce algebraic expressions. 

The aim of this study has not been to propose how 
algebra should be introduced in the classroom. The 
analysis illuminates the complexity students meet 
when facing introductory algebra in school, and the 
challenge it is for teachers to make algebra accessi-
ble for all students. The main procedure of the teach-
ers in this study has been to use examples designed by 
themselves, mediating the passage from the students’ 
real world and the school mathematics they know to 
algebra. 
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INTRODUCTION

TWG04 on geometrical thinking had more than 22 
participants from 10 countries. During the sessions, 
the participants discussed thirteen papers and three 
posters (one paper and two posters were submitted 
but not discussed in the working group). 

TWG04 about geometrical thinking has been working 
on this topic for many CERME sessions, and mostly 
studied what geometrical thinking would mean. It 
is concerned with research and development of ge-
ometrical thinking from pre-school up to University 
teaching and learning, including any type of geome-
try. In line with the previous sessions, CERME8 tried 
to identify four competencies that helped describe 
geometrical thinking: reasoning, figural, operational 
and visual (Maschietto et al., 2013). The discussion 
paper focused on educational aspects related to the 
development of these geometrical competencies for 
students, the difficulties of learning and the design 
of curricula and their implementation. These four 
poles were very helpful to use a common language 
and shared reference concepts. They also allowed to 
show how the many faces of geometrical activity are 
intertwined, which made necessary a clarification of 
what was meant by these poles.

In this working group at CERME 9, there were more 
specific contributions about the way geometry is, or 
should be, taught: for instance, in-class observations, 
pre-service teachers education, going from everyday 
concepts to geometrical knowledge, specific issues in 
geometry. As a consequence, the four competencies 

were used as a general way of describing the geomet-
rical activity and for creating links between different 
points of view. For instance, line symmetry was stud-
ied either in a didactical engineering perspective or 
to characterize ordinary classrooms practices. Then, 
the papers and posters contributed to study what is 
at stake in the teaching and learning processes.

During the discussions, the work was structured by 
four specific themes, specifically studied in the con-
tributions:

 ― Initial geometrical knowledge

 ― Visualization

 ― Transformations and 3D

 ― Actions on objects (material and mental)

We will emphasize here how the papers about these 
four themes deal with the following questions, and 
more specifically:

 ― Who is the research about?

 ― Pupils

 ― Teachers

 ― Teachers educators

 ― What are the aims of the research?
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 ― In the description of existing teaching and 
learning phenomena

 ― In the design of new tasks

 ― How do we study this?

 ― Theoretical tools

 ― Methodology

 ― What are the interactions with the other themes? 
This question also concerned the role of language 
and social interactions that appeared as a com-
mon issue to several papers.

THE ROLE OF INITIAL GEOMETRICAL 
KNOWLEDGE

We chose to use this notion, instead of pre-concepts, 
to emphasize a general issue in geometry: going 
to everyday concepts to geometrical ones does not 
only concern early ages geometry. The participants 
showed that “intuitive notions” are very important 
for the construction of geometrical knowledge. This 
is true for many topics as rotation (Swoboda), line 
symmetry (Chesnais & Mathé), polygons (Ulusoy), 
polyhedra (Mithalal-Le Doze & Papadaki) and at 
every age from the beginning of the primary school 
(Rodrigues & Serrazina) to prospective teachers’ ed-
ucation (Brunheria & da Ponte, Kuzniak & Nechache).

This idea of initial geometrical knowledge is linked 
to the idea of “geometrization”, seen as a dynamical 
and continuous process that turns it into an institu-
tionalized geometrical knowledge, with the develop-
ment of geometrical competencies. This process is a 
fundamental part of geometrical thinking, like the 
more scientific knowledge it helps building. We could 
see that this process involves at the same time pupils, 
teachers, teacher educators, and researchers.

It is necessary for teachers to be aware of how pupils’ 
personal previous experience may influence their 
learning geometry, in order to design efficient teach-
ing sequences (Loureiro & Serrazina, Herendiné-
Kónya). Therefore, they need theoretical tools, espe-
cially pedagogical and didactical knowledge, to adapt 
the in-class experience to the pupils and the topics.

Many frameworks were evoked - and had been men-
tioned in the previous CERME works. Some of those 
frameworks are very specific to geometry, as Van 
Hiele levels (Papadaki), Geometrical Working Spaces 
(Kuzniak & Nechache), concept image and concept 
definition (Rodrigues & Serrazina, Ulusoy), figural 
concept (Ulusoy), visualization (Papadaki, Mithalal-
Le Doze). Other frameworks are more general in math-
ematics education, as Theory of Didactical Situation 
(Douaire & Emprin) or from psychologists (mainly 
Battista or Gagatsis’ works exploited by Loureiro and 
Serrazina). The papers have shown that in this case, it 
is possible to design tasks involving outdoor activities, 
real-life experiences, with high didactical potential 
(Douaire & Emprin).

ACTION ON OBJECTS

The first point concerns the role of action on objects, 
both mental ones and material ones. A paradoxical 
situation was raised, as it is at the same time very nat-
ural to pupils, and quite difficult for the teachers to 
develop their geometrical competencies from it and 
not to use it only with young pupils to increase their 
engagement.

“Action on objects” is quite confusing, and we decided 
to reduce its meaning to action performed by hand on 
material or tangible objects -- which includes the use 
of instruments (like transparent paper by Chesnais 
and Mathé, or Uygan et al.) or Dynamic Geometry 
Software (Mithalal-Le Doze). We studied the many 
functions of action (Pytlak): it helps the pupils to 
develop intuition, concept image and definition, ge-
ometrical imagination, and at the same time it makes 
children’s knowledge more visible to the teachers.

This function strongly depends on specific conditions, 
and for many of us it was essential that manipulation 
came first, to create a need for anticipation, validation 
or control that may justify geometrical knowledge. 
This articulation is organized by the tasks themselves, 
the backing of the teacher and the social interactions.

TRANSFORMATION AND 3D GEOMETRY

These two topics were developed in many papers, 
which gave good examples of how complex the rela-
tions between action, visualization and geometrical 
knowledge, are.
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The learning of geometrical transformations (rota-
tion by Swoboda, line symmetry by Chesnais  & Mathé, 
or isometrics by Thaqi et al. and Uygan et al.) depends 
on linking multiple contexts and representations. It 
also requires articulating a global and a punctual 
point of view and going from perception to geomet-
rical properties.

The same questions were discussed for 3D geometry, 
and we showed that the greatest issues were not only 

“sight” issues. Indeed, a psychological point of view 
shows the role of getting better “images” to act on 
(physically or mentally), but many of the previously 
mentioned mathematical aspects are part of the vis-
ualization process. For instance, Dynamic Geometry 
Software, and more generally geometrical tools, were 
seen as ways of making geometrical knowledge useful 
for a better control of the actions and visualization. 
This knowledge was at the heart of the visualization 
process when using only the sense of touch: linking 
the subparts that were perceived by touch is a mathe-
matical process linked to what Duval calls deconstruc-
tions (see Mithalal-Le Doze, Papadaki). At the end, we 
showed that visualization depends on perceptual, psy-
chological, but also – and this is fundamental – on 
mathematical aspects.

VISUALIZATION

Eventually, we had to clarify what we called visuali-
zation. It was involved in studies of mental abilities 
(especially for initial geometrical knowledge and 
action on objects), classification (how do we discrim-
inate the information while seeing), and analysis of 
drawings in a deductive geometry context (Brunheria 
& da Ponte, Herendiné-Kónya). We underlined that, 
in this case, visualizing aims at being able to solve ge-
ometry problems, so that it both depends on very par-
ticular cognitive processes and mathematical knowl-
edge. Therefore, a great difficulty is the gap between 
visualization by teachers, based on categories and 
geometrical properties, and by pupils, often based 
on prototypes. The main theoretical tools used were 
Laborde’s work about drawings and figures (Mithalal-
Le Doze), and Duval’s distinction between iconic and 
non-iconic visualization (see Mithalal-Le Doze).

CONCLUSION

The discussions in TWG04 confronted very different 
points of view on geometry teaching and learning, 

with complementary issues (e.g., teaching practices 
studies vs. task design), very different cultural and 
educational contexts that change the role of geom-
etry in the curricula and the way it is presented. It 
also appeared that these contexts had an influence on 
our researcher positioning, which not only concerns 
geometry: Does it mean our research practice or the 
teachers’ education practice that most of us share? 
What can we learn from research on everyday prac-
tices? How is it possible to better combine our teacher, 
teacher educators, and researcher positions?

Eventually, let us mention the new issue of the role of 
language and social interactions in the teaching and 
learning geometry processes. This has been little dis-
cussed during the previous sessions, but it appeared 
that this could play a great role in each of the topics 
mentioned above and that some of the phenomena are 
very specific to geometry.
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We aim to characterize how prospective teachers per-
form in defining and classifying quadrilaterals through 
working on exploratory tasks. Data was gathered from 
the participants’ reports and portfolios. Results show 
most understood the meaning of defining and present-
ed correct definitions, using properties they previously 
ignored, and showing comprehension of the underlying 
concepts. They produced economical definitions in few 
cases, and performed better in inductive than deductive 
reasoning. The classifications showed conflicts between 
prior classifications and structural criteria that rules 
a geometrical classification. The exploratory work al-
lowed participants to construct their knowledge in a 
meaningful way and reflection played an important 
role in becoming aware of personal preconceptions and 
knowledge.

Keywords: Teacher education, geometry, geometric 

reasoning, exploratory approach.

INTRODUCTION

This paper addresses prospective elementary 
teachers’ preparation in geometry. Recent studies 
in Portugal show less than satisfactory results con-
cerning the geometric knowledge they present before 
and after attending their teacher education programs 
(Menezes, Serrazina, & Fonseca, 2014; Tempera, 2010). 
A similar conclusion is also found in studies from 
other countries, concerning teachers and prospec-
tive teachers, indicating that geometry is an area in 
which they perform poorly, have little self-confidence, 
and show weak geometric vocabulary (Clements & 
Sarama, 2011; Fujita & Jones, 2006; Jones, Mooney, & 
Harries, 2002). In addition, there are very different 
views about what geometry can or should be taught 
in teacher preparation courses, which is problematic 
as the success of the teachers’ work depends, to a great 

extent, on their deep understanding of geometry. And, 
we must also remember that knowing geometry does 
not ensure effectiveness, how teachers come to know 
it matters as well (Jones, Mooney, & Harries, 2002).

This scenario challenges us to improve teacher’s 
curriculum and preparation in this area and investi-
gate its outcomes. The work we report in this paper 
fits into a wider study with that goal. We developed 
a design research experiment in the context of a cur-
ricular unit of geometry based on exploratory work, 
linking geometry and didactics and valuing prospec-
tive teachers’ reflection on their learning. We seek 
to characterize how prospective teachers perform 
in processes which are components of geometric 
reasoning, focusing on defining, but also looking at 
classifying.

CONCEPTUAL FRAMEWORK 

Prospective elementary teacher 
education in geometry 
For the National Council of Teachers of Mathematics 
[NCTM] the knowledge necessary for teaching in-
cludes 

the content and discourse of mathematics, includ-
ing mathematical concepts and procedures and 
the connections among them; multiple represen-
tations of mathematical concepts and procedures; 
ways to reason mathematically, solve problems, 
and communicate mathematics effectively at dif-
ferent levels of formality. (1991, p. 132)

This perspective is coherent with the idea advocated 
by Ma (1999) that teachers need a profound under-
standing of fundamental mathematics. But what does 
this mean in geometry? The NCTM (1991) states that 
all teachers should understand how geometry is used 
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to describe the world we leave in and how it is used to 
solve concrete problems; analyze a diverse set of two 
and three dimensional figures; use synthetic geometry, 
coordinates and transformations; improve their skills 
in producing arguments, justifications and privilege 
spatial visualization. In 2000, the Conference Board 
for the Mathematical Sciences (CBMS) proposed that 
prospective K-5 teachers must develop competence 
in the following areas: Visualization skills (projec-
tions, cross-sections, decompositions; representing 
3D objects in 2D and constructing 3D objects from 2D 
representations); basic shapes, their properties, and 
relationships among them (angles, transformations, 
congruence and similarity); and communicating geo-
metric ideas (learning technical vocabulary and un-
derstanding the role of mathematical definition). The 
recent report of CBMS (2012) updates the main ideas 
for teaching preparation in geometry, presenting less 
topics and less complex competencies: 

 ― Understanding geometric concepts of angle, 
parallel, and perpendicular, and using them in 
describing and defining shapes; describing and 
reasoning about spatial locations (including the 
coordinate plane).

 ― Classifying shapes into categories and reasoning 
to explain relationships among the categories.

 ― Reason about proportional relationships in scal-
ing shapes up and down. (p. 30) 

This shift confirms the lack of agreement about the 
geometric knowledge teachers should hold. In ad-
dition, the education of teachers concern also the 
ways they are taught. Regarding the results of sev-
eral studies about prospective teachers’ knowledge 
of mathematics, Watson and Mason (2007) propose 
that courses should prompt participants to engage 
in mathematical thinking through working on suit-
able mathematics tasks, develop their understanding 
about the features and power of those tasks, reflect on 
the experience of doing mathematics tasks individu-
ally or with others, challenge approaches dominated 
by procedures which depend on rote memorization 
and observe and listen to learners. These orientations 
are also consistent with ideas underlined by other 
investigators: in teacher education, the prospective 
teachers should learn using the same methods that are 
recommended they should use in the future (Ponte & 
Chapman, 2008); connecting subject matter knowl-

edge and pedagogy is a promising strategy to devel-
op both kinds of knowledge and their integration, 
which is critical to teach well (Ball, 2000). The work 
we conducted follows these proposals, as we focus 
on prospective teachers’ learning as they work on 
exploratory tasks and reflect on their own learning. 
Exploratory tasks demand students to engage active-
ly in the construction of their knowledge by solving 
situations where there is no clear solution or method. 
Sometimes, they are also challenged to ask questions 
or extend the purpose of the task. Students need to 
interpret the given information, develop strategies, 
represent and communicate their solutions. This pro-
motes the understanding of representations, concepts, 
and procedures, and also develops the ability to argue 
about ideas, as they communicate such ideas to others. 
Work on exploratory tasks develops usually in three 
phases (Ponte, 2005): (i) presenting and interpreting 
the task; (ii) carrying out the task individually, in pairs, 
or in small groups; and (iii) presenting and discussing 
results and final synthesis.

Geometric reasoning
The study of geometry is the natural context to de-
velop and use visualization, special reasoning and 
geometric modeling to solve problems (NCTM, 2000). 
Despite the growing focus on geometric reasoning 
and visualization in research, clarification of their 
meanings is still missing (Gutiérrez, 1996). This is 
even more complicated by the many expressions 
used with similar meanings (geometric reasoning, 
visual reasoning, visualization, spatial thinking…). 
For example, for Battista (2007) “geometric reasoning 
consists, first and foremost, of the invention and use 
of formal conceptual systems to investigate shape 
and space” (p. 843), a definition we may find too broad. 
Also, the van Hiele’s model describes how students’ 
geometric reasoning develops and includes five levels: 
1) visual-holistic reasoning; 2) descriptive-analytic 
reasoning; 3) relational-inferential reasoning; 4) 
formal deductive proof; and 5) rigor (Battista, 2009). 
These levels cover different forms of reasoning. So 
the need to investigate the development of geomet-
ric reasoning drove us to ask what is specific of this 
kind of reasoning and what main features does it have. 
A possible approach to study geometric reasoning 
consists in analyzing it from its processes, which are 
present in other areas but have some specificity in 
geometry. In this paper we will focus on the processes 
of defining and classifying.
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Defining is a crucial activity in mathematics. For de 
Villiers, Govender and Patterson (2009), it is so im-
port as solving problems, conjecturing or proving 
and, despite that, is much neglected in mathematics 
teaching. Their work with students in grades 9 to 12 
suggests that producing definitions improves stu-
dents’ understanding of geometric definitions and 
concepts. Zazkis and Leikin (2008) emphasize that, for 
teachers to be able to support students in this process, 
they need to be competent in performing it. In a study 
involving prospective teachers, the construction and 
analysis of definitions for square showed their ability 
to distinguish necessary and sufficient conditions, 
use adequate language and show conceptions about 
defining. 

The process of defining implies also classifying be-
cause of their mutual relationship: 

The classifications of any set of concepts implic-
itly or explicitly involves defining the concepts 
involved, whereas defining concepts in a certain 
way automatically evolves their classification. (de 
Villiers et al., 2009, p. 191)

In the perspective of Mariotti and Fischbein (1997), 
the process of defining must also be considered as a 
component of geometric reasoning. For those inves-
tigators,

a classification task consists of stating an equiv-
alence among similar but figurally different 
objects, towards a generalization. That means 
overcoming the particular case and consider this 
particular case as an instance of a general class. 
In other terms, the process of classification con-
sists of identifying pertinent common properties, 
which determine a category. (pp. 243–244)

In a study with grade 6 students, those investigators 
found that classifications often resort to structural 
criteria which are not immediately clear and very 
often conflict with perceptual criteria we are used to 
refer in spontaneous classifications. Hence, achieving 
correct definitions makes students to question their 
prototypes which frequently introduces properties 
perceptually relevant that do not conform to the gen-
eral requirements of the definition.

METHODOLOGY

This paper addresses an investigation with an inter-
vention, in order to change practices and enhance 
teachers’ preparation in geometry. The research fo-
cus is on learning in context, starting from the con-
ception of strategies and teaching tools, following a 
design-based research as methodology, in the form 
of a prospective teacher experiment (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003) in which the teacher 
also plays the role of researcher. We expect to run 
trough cycles of creation and revision, trying to deal 
with the problems that we will find along the way. At 
the present time, a first cycle was conducted involving 
60 prospective teachers. The participants are in the 
second year of their teacher education program and 
attend a curricular unit of geometry taught by the first 
author of this paper. The study of quadrilaterals was 
developed in five lessons, following three sequential 
steps suggested by de Villiers and colleagues (2009): 
(i) to investigate the properties of quadrilaterals using 
the dynamic geometry environment (DGE) Geogebra; 
(ii) to classify them; and (iii) to define quadrilaterals. 
In the first step, they solved the clown task (Battista, 
2007) adapted for Geogebra, where one has to manip-
ulate quadrilaterals to overlap others, forcing them 
to use the relations among them (e.g., a rectangle may 
overlap a square but not the opposite). Afterwards, the 
participants registered all the properties that they 
found in each quadrilateral. In the second step, they 
classified the figures using a flowchart and a Venn 
diagram with the purpose of realizing that different 
criteria lead to different organizations. In addition, 
the participants also worked on a definition task. 

Data gathered includes the participants’ records of 
tasks solved in the classroom, an assessment task and 
reflections concerning quadrilaterals collected from 
portfolios. We also present the results of two multiple 
choice questions about quadrilaterals addressed in an 
initial individual diagnostic test. In the first question 
the participants identified relations among quadri-
laterals, and in the second one they had to decide on 
possible definitions for square. The data was analyzed 
through several processes. Regarding the process of 
defining we adopted the categorization of de Villiers’ 
and colleagues (2009): economical definitions, cor-
rect definitions and incorrect definitions. In this last 
case we considered definitions containing necessary 
properties but insufficient to define the intended set; 
in this category are also the definitions presenting 
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properties that do not apply to some or all objects. 
Correct definitions present properties necessary 
and sufficient; if those properties are minimal, the 
definition is economical. In respect to the processes 
of classifying, the categorization emerged from the 
data, and we refer the comprehension of inclusive 
classification of quadrilaterals and the use of logical 
reasoning and communication skills. 

RESULTS 

In the first lesson, 57 prospective teachers solved 
the diagnostic test. The results show that only 25% 
considered that all squares are rectangles (but not 
the opposite) and 39% considered incorrectly that all 
quadrilaterals with two pairs of congruent sides are 
rectangles. Confronted with four possible definitions 
for square, 86% chose correctly “Polygon with four 
congruent sides and four congruent angles”, but 75% 
also pointed “Polygon with four congruent sides”. 
Only 23% considered valid “Quadrilateral with con-
gruent and perpendicular diagonals”. These results 
are not significantly different for participants that 
studied and did not studied mathematics in high 
school. They show that most of the participants ig-
nored the relations between quadrilaterals and did 
not notice properties related to diagonals or lines of 
symmetry. In addition they were very connected to 
rigid prototypes and reasoned about figures by com-
parison to those prototypes, which is associated to 
van Hiele’s level 1. Also they seemed to accept that a 
correct description of the quadrilateral may function 
as a definition. 

The first two tasks of the sequence confronted the par-
ticipants with their previous conceptions and made 
them realize there are relations among figures they 
did not know or expect and helped them to under-
stand these relations:

When I began to solve this task, I thought I would 
only recall some ideas about quadrilaterals. 
However, trough out the activity not only I recall 
them but also I was able to fit in to my head the hi-
erarchy between some quadrilaterals. (Reflection 
written in the participant’s portfolio about the 
classification task)

In the definition task, the participants worked in 
small groups, registered their answers which were 
discussed collectively at the end of the lesson. They 

were asked to: 1) Identify all the rectangles’ properties; 
2) Propose two different definitions for rectangle; 3) 
Propose two different definitions for parallelogram. 

In respect to 1), most of the groups identified correct-
ly all the main properties of rectangles (using sides, 
angles, diagonals and symmetry). Questions 2) and 
3) show that they understood that there is no need to 
present all properties of an object to define it and most 
produced correct definitions, which is associated to 
van Hiele’s level 2 (Battista, 2009). The next response 
is an example of a correct definition for rectangle, in 
which one of the properties is valid but unnecessary:

Group A: Rectangles’ properties: 4 right angles; 2 
by 2 parallel sides; 2 lines of symmetry; 
bisected diagonals; congruent diago-
nals.

Definition: quadrilateral with 4 right 
angles and 2 lines of symmetry. 

Although less frequent, some definitions were incor-
rect:

Group A: Parallelogram: quadrilateral without 
lines of symmetry.

Group B: A parallelogram is a figure composed by 
2 paires of congruent and parallel sides, 
forming 2 acute angles (opposite) and 
another 2 obtuse (opposite).

Group E: Rectangle: The diagonals intercept in 
the center but are not perpendicular;

2 symmetry lines (1 horizontal, 1 verti-
cal) passing in the center of the figure. 

Group F: Rectangle: Geometric figure with 4 sides 
where the length should be bigger than 
the height.

Parallelogram: Geometric figure similar 
to rectangle, where the shorter lines are 
oblique.

The definitions for parallelogram proposed by groups 
A and B exclude all rhombuses in the first case and all 
the rectangles in the second, so their definitions are 
not inclusive. Similarly, the first definition presented 
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by group E excludes squares. These examples show 
some difficulty to abandon previous conceptions and 
recognize the hierarchical organization of quadrilat-
erals. Still in group E, the second definition is incor-
rect because it does not exclude some rhombuses. Yet, 
the more striking feature of this definition is that it is 
dependent of the position that rectangles are usually 
presented. Group F’s response is the only one that con-
siders as properties the relations between the dimen-
sion of the sides and its position. Although incorrect, 
these definitions were presented collectively, which 
led into an important discussion. Some students ar-
gued about their validity giving counter-examples 
or correcting the statements and others noticed and 
reflected on their own misunderstandings.

Finally, some examples of economical definitions 
demonstrate an interesting analysis, where students 
used less usual properties they discovered with 
Geogebra:

Group C: Rectangle: Quadrilateral with two con-
gruent and bisecting diagonals. 

Parallelogram: Each diagonal divides it 
into congruent triangles.

Group D: Rectangle: Quadrilateral with 2 lines of 
symmetry passing through the middle 
points of opposite sides.

In the first definition of group C, the prospective teach-
ers draw a quadrilateral where the diagonals do not 
bisect so they justify the need to include this property. 
The second, although roughly written, is very inter-
esting because the word “each” makes a difference 
(one diagonal would not be enough because of kites). 
Group D presents a definition focused on the lines of 
symmetry, but stating their position which is neces-
sary (all rhombuses have also two lines of symmetry 
in a different location). 

Overall, we found four types of problems. Producing 
economical definitions was the most common difficul-
ty and the hardest to overcome, especially because 
the participants did not know how to be sure that the 

properties were sufficient to identify each quadri-
lateral. A second problem that came up some times 
was the production of non-inclusive definitions. Even 
for participants that seemed to understand previous-
ly the hierarchical relation between quadrilaterals, 
sometimes they stopped to consider it, showing diffi-
culties to let go previous conceptions. All these cases 
correspond to van Hiele’s level 2, according do Battista 
(2009). The third problem, happened in very few cas-
es and corresponds to definitions linked to certain 
positions or relations between parts of the quadri-
laterals, clearly associated to frequent prototypes 
(corresponding to van Hiele’s level 1). Despite their 
low frequency, these cases must keep us aware of how 
striking the systematic exposure to rigid prototypes 
may be (Yu, Barret, & Presmeg, 2009). Finally, there 
was only one definition containing an insufficient 
property to define the quadrilateral. 

The previous examples demonstrate some difficulties, 
but also some interesting successes if we remember 
that it was the first time that these participants de-
fined something. To formulate definitions implies to 
investigate invariants. We must identify the common 
properties to all the elements we include in that class, 
mobilizing inductive reasoning and visual abilities, 
in particular visual discrimination and perceptual 
constancy (Gutierrez, 1996). So, given the fact that 
most of the definitions were correct, we consider that 
as a positive indicator regarding those abilities and 
inductive reasoning. The few participants that pro-
duced economical definitions moved to van Hiele’s 
level 3 (Battista, 2009) and showed a significant im-
provement. Given the fact that formulating econom-
ical definitions involves also deductive reasoning, it 
appears the participants showed more difficulty in it. 

The production of definitions was a good opportunity 
for the participants to learn about the quadrilaterals 
and to revise their conceptions about the process of 
defining, as this reflection shows: 

This task raised some doubts because, before we 
done it, I thought I knew the definitions of each 
figure, I thought there existed only one for each 
figure . . . I came across basic definitions about 
square or rectangle completely different from 
what I learned until then. To define figures I nev-
er had use angles, diagonals or even lines of sym-
metry; indeed, I was unaware of their major role. 
(Reflection written in the participant’s portfolio)

Figure 1
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Regarding the process of classifying, the work we 
have developed prompted most of the participants to 
consider quadrilaterals as classes of figures. However, 
this evolution does not happen all at once. It is possible 
that an individual recognize some relations and oth-
ers do not. The following response regards a question 
in the final test, where the participants were asked to 
comment on two sentences: All kites are squares; there 
are trapeziums with perpendicular diagonals. 

The first sentence is wrong. Kites are not squares. 
The squares can be kites because they have two 
equal consecutive sides.

The second sentence is wrong. A quadrilater-
al with perpendicular diagonals is a rhombus, 
which doesn’t belong to trapezium’s family. 

These answers show several difficulties we also iden-
tified in other cases. In the first place, this participant 
recognized that a square is a kite, but did not recog-
nize that a rhombus is a trapezium, supporting the 
conclusion that learning to classify is progressive and 
is not independent of the objects it regards. Second, 
it shows a logical problem: for the second sentence 
to be true, it is not necessary that all the trapeziums 
have perpendicular diagonals, so one counterexam-
ple does not deny that statement. Third, a problem 
of rigor in communicating: instead of “Kites are not 
squares”, one should say “Some kites are not squares” 
and also the word “pairs” is missing from the kite’s 
description. Communicating using the precise words 
has a fundamental role in the processes we are deal-
ing with. A prospective teacher asked once during 
a lesson: “If a parallelogram is a trapezium, why do 
they have different names?”, a question that shows 
difficulties in interpretation. 

CONCLUSION

In the beginning of the experience, the prospective 
teachers showed weak knowledge about quadri-
laterals and their relations. However, the work on 
the sequence of tasks (investigating quadrilaterals’ 
properties, classifying and defining) seems to have 
promoted their reasoning and the reconstruction of 
their knowledge. In the definition task, most of the 
participants understood the meaning of the process 
itself and presented mostly correct definitions using 
properties that they previously ignored, showing the 
comprehension of the underlying concepts, which 

supports de Villiers and colleagues’s conjecture 
(2009). However, the participants produced econom-
ical definitions in few cases, suggesting that they 
perform better in inductive rather than deductive 
reasoning. Classifications (associated or not with defi-
nitions) showed, in some cases, a conflict between pri-
or classifications, based on perception, and structural 
criteria that rules geometrical classifications, which 
is fundamental to the learning process (also a result 
indicated by Mariotti and Fischbein, 1997). The pro-
cess of classifying also mobilized logical reasoning 
and communication, which presented difficulties for 
some participants. However, the nature of the work 
developed in classes favored discussion and nego-
tiation of meanings, which is essential to overcome 
those difficulties (de Villiers, 1994). This idea lead us 
to conclude that the exploratory work in which the 
participants engaged, using a DGE, allowed them to 
investigate and discuss their findings and construct 
their knowledge in a meaningful way. As the testi-
mony of a prospective teacher shows, reflection may 
play an important role in becoming aware of personal 
preconceptions and knowledge, which is an essential 
part of teacher education (Ponte & Chapman, 2008).
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The research presented here builds on an experimental 
work ran at the end of primary school (9–10 y. o. chil-
dren) about line symmetry. We intend on questioning 
the factors that drive the evolution of geometrical activ-
ity of students and analyze in that purpose the articu-
lation between student’s and teacher’s activity. We try 
to highlight the fact that learning in geometry relies on 
both an adaptation process when confronted to a task 
(individual and adaptationist dimension) and a collec-
tive and social construction mediated by interactions 
between teacher and students and between students.

Keywords: Line symmetry, adaptation, social construction, 

language.

This paper focuses on the teaching and learning of 
line symmetry at the end of primary school (9–10 year 
old children). The corpus that we study was collected 
during 5th grade classroom sessions where situations 
were used that had been created by a group mixing 
teachers from primary and secondary school and 
a researcher (one of the authors of this paper). The 
group had elaborated situations trying to take into 
account difficulties related to the transition from 
primary to secondary school and then implemented 
them in the classes of the teachers belonging to the 
group (Chesnais & Munier, 2013). Some videos of these 
classroom sessions are used here as a corpus for a re-
search which intends on questioning the articulation 
between students’ and teacher’s geometrical activi-
ties. This research coordinates two different ways to 
understand the learning and teaching of geometry. 
The first one tries to describe the geometrical activity 
of students interacting with a given task, in all its com-
plexity. It studies the factors that drive the evolutions 
of this activity in a movement for learning (Mathé, 
2012; Bulf, Mathé, & Mithalal, 2011; Barrier, Hache, & 
Mathé, 2013). The other one, following up with pre-

vious work about everyday teaching practices and 
line symmetry, (Chesnais, 2009; Chesnais & Mathé, 
2013; Chesnais & Munier, 2013), tries to investigate 
more precisely how teaching practices influence stu-
dents’ activity and hence students’ learning, and also 
to get a better understanding of what drives teaching 
practices. 

We take as a premise that learning in geometry re-
lies on both an adaptation process when confronted 
to a task (individual and adaptationist dimension) 
and a collective and social construction mediated 
by interactions between teacher and students and 
between students. Our goal is here to highlight the 
complementarity of two approaches to get a better 
understanding of how the two processes articulate. 
After clarifying the elements of knowledge at stake 
in the learning of the concept of line symmetry, we 
will present the task and the methodology we used 
to analyze the productions of a pair of students and 
the teacher’s activity during two sessions. We finally 
present on the results of this analysis and conclude.

ABOUT LINE SYMMETRY

What is mainly aimed at in 5th grade in France about 
line symmetry is that pupils understand an “instru-
mental definition” of symmetrical figures: two figures 
are symmetrical to each other with respect to a line 
if they are superimposable by folding along this line. 
They are also supposed to be able to find lines of sym-
metry on simple figures and to know some properties 
such as the fact that the mirror image is flipped over 
compared to the initial figure, the two figures are equi-
distant (in a global way) from the line and have same 
shape and dimensions. 

At this stage, symmetry is mainly handled as a trans-
formation acting on surfaces (2D-elements), and 
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considered as restriction to the plane of a rotation of 
180° around an axis included in the plane. Properties 
are then considered in a global manner and closely 
related to perception. However, working on symme-
try might imply back-and-forth movements from re-
lations between surfaces (and a line) and relations 
between 2D, 1D or 0D elements of the figures. For 
example, the dimension conservation property can 
either be perceived globally or focusing on the length 
of segment lines. In a similar way, equidistance to the 
line may be understood in terms of surfaces or el-
ements of surfaces or event points. In fact, the idea 
of distance from a figure to a line is difficult at this 
level. It may refer either to the distance between the 
figure and the line perceived globally (Grenier, 1988), 
the distance between elements of the figure and the 
line perceived globally, the fact that the midpoint of 
a segment joining a point to its image belongs to the 
line, the distance from points to the line, seen as the 
length of the segment joining the point and its orthog-
onal projection on the line or its projection in a given 
direction. 

About instruments, students at this level essentially 
use folding or tracing paper to control the symmetry 
of figures or to construct mirror images, mainly work-
ing on surfaces. Students might sometimes also use 
a ruler – as in the corpus presented below – which 
implies another way of considering figures (which is 
also the one that is at stake when working on grid pa-
per): working with 1D-objects (segment lines, sides of 
surfaces). Switching from one way to the other makes 
it necessary to coordinate a view of figures as surfaces 
on one hand and as a network of segment lines on the 
other hand (what Duval (2005) calls “dimensional de-

construction”). The relation between symmetry and 
a movement in 3D-space is also less obvious. 

Moreover, one of the goals of the work about sym-
metry in primary school is to make pupils overcome 
some wrong conceptions they might have about line 
symmetry, which particularly appear when working 
on surfaces (Grenier, 1988). Particularly those relat-
ed to vertical lines, making them act as if the mirror 
image of a horizontal (resp. vertical) segment line 
is also horizontal (resp. vertical); the conception of 
alignment (resulting from the conjunction of verti-
cal or horizontal lines and vertical and horizontal 
figures: the image of a segment line perpendicular 
to the axis is then aligned with its image); confusion 
with translation (which is related to the flipping over 
property); conception of symmetry as a transforma-
tion moving figures from one half-plane onto the other 
one (essentially related to folding) (Chesnais, 2009). 

THE IMPLEMENTED TASK

The task is the second one in a sequence about line 
symmetry in a 5th grade class. In the first task, tak-
ing place during a previous session, students were 
supposed to predict what would paint stains become 
when folding a paper along various axes and then to 
identify some properties of line symmetry (equidis-
tance of the two figures from the axis, shape and size 
conservation, flipping over property). In the present 
task, pupils were asked to draw the mirror image of a 
geometric figure (in the shape of an “L”) with respect 
to a given line in various configurations (cf. Figure 
1). Didactic variables (orientation of the figure and 
orientation of the axis) were used to make students 

Figure 1: Configurations for the task
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encounter one or the other of the properties and/or 
wrong conceptions.

Work was organized as follows: pairs of students were 
successively given six sheets – corresponding to each 
configuration. They were asked to draw the images 
approximately without folding they were allowed to 
use a pen and a ruler. A tracing paper on which the 
initial figure and the line were drawn for the first 
two cases and which was blank for the other four 
was provided to control their answer. The teacher 
went from one pair to another one to help them, and 
provided tracing paper when they were done drawing. 
A collective discussion with the whole class, based on 
some productions selected by the teacher, took place 
between the work in pairs on each case. The first three 
configurations were handled in a first session, which 
ended up by writing a couple of rules (mentioning 
the flipping over property, the equidistance to the 
line, conservation of shape and dimensions and the 
relation with folding), on a paper then posted on the 
wall. The work on the three other cases took place in 
a second session.  

In this paper, we will particularly focus on one of 
the major properties of reflection: the “flipping over 
property” even if some other ones were also mobilized 
in the task. Mathematically speaking, it corresponds 
to the fact that line symmetry is an inversion. It is also 
related to the idea of “mirror image” or “reflection in 
a mirror”. Materially speaking, it implies that a figure 
and its image are superimposable when the figure is 
flipped over, which means that a rotation of 180° de-
grees in 3D-space around a line included in the plane 
is applied to it. In practical terms, it can be obtained 
by folding the paper along the line or by flipping over 
tracing paper (and positioning it such that the line 
stays invariant). This property is difficult to express 
with common words because “flipping over” could 
also refer to a half-turn and then symmetry around a 
point whereas turning a page would end up flipping it 
over for example. Eventually, verbal language is not 
sufficient to handle this property and coordinating it 
with movements and material actions is necessary to 
make students identify and understand it (Chesnais 
& Mathé, 2013).

This property is part of what is at stake in the task. In 
the first case, flipping doesn’t change the orientation 
of the sides of the figure (vertical stays vertical and 
horizontal stays horizontal). It does change it in all 

the other cases. Hence, it will be contradictory with 
what would other conceptions imply (especially the 
conceptions related to vertical and horizontal axis, 
and the one about alignment). In case 6, flipping can 
be hard to anticipate if the students have a conception 
of symmetry as transformation acting from one half-
plane onto the other one (related to folding). 

METHODOLOGY

We try to characterize students’ activity, teacher’s 
activity and the way they both articulate. Our indi-
cators are mostly the material actions (folding, use of 
tracing paper and hands movements) and the inter-
actions between students and students and teacher. 
We describe difficulties experienced by one pair of 
students throughout the work on the task, especially 
when the flipping over property is at stake. Based on 
the observation of this evolution, we then investigate 
how the task and social interactions participate in it 
towards an understanding of the flipping over prop-
erty and symmetry. We also aim at understanding 
how the teacher identifies and uses students’ activities 
and how she helps them completing the task. 

GEOMETRICAL ACTIVITY OF A PAIR OF 
STUDENTS AND ITS EVOLUTION, BETWEEN 
ADAPTATIONISM AND SOCIAL PROCESS 

In this part, we present an overview of what happened 
for each configuration during the sessions, focusing 
our attention on what the pair of students produced, 
the way they validated their answer and the content 
of the interactions with the teacher (when there are 
some) and of collective discussions. We aim at describ-
ing the evolution of geometrical activity of this pair 
of students throughout their work on the six configu-
rations and try to identify what drives this evolution. 

Configuration 1. They used a ruler to draw the image, 
taking into account the conservation of shape and di-
mensions, but without flipping the figure over (Figure 
2). They probably didn’t imagine the movement in 
3D-space and then didn’t anticipate the image. They 
used tracing paper for validation, but they couldn’t 
figure out how to proceed differently when they found 
out that they did not get the right answer.

During the discussion with the class, the teacher chose 
to comment on their production. The class pointed out 
the absence of inversion. The teacher accompanied 
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the students trying to put this in words. Students used 
various wordings (“the other side”, “in the other way 
around”, “transferred”, “turned over”). Their difficul-
ties ended up in making the use of gestures necessary. 
The words “turned over” and gestures were also used 
by the teacher. 

Configuration 2. One of the two students of the pair 
started by drawing globally the image with her finger: 
the position and orientation seemed correct and she 
flipped the figure over. Afterwards, she folded (not 
completely) the sheet of paper in order to find the 
precise position of one of the vertices of the image 
and then used a ruler to measure a first side of the 
figure to construct its image, transferring its length. 

They finally gave then a third try, switching the ori-
entation of the biggest part of the “L” but not the one 
of the smallest one (Figure 4).

The teacher chose again their production to comment 
during the final discussion. She makes the class explic-
it a mistake related to the conservation of shape (one 
of the students says “we had a 7, we get a 1”), but the 
link between the change of shape and flipping over 

the figure or elements of the figure is not pointed out. 
Flipping is not mentioned. 

Configuration 3. They drew an image on the other 
side of the line, with the same size and same shape but 
without flipping it over (Figure 5). The students didn’t 
seem to take into account the line and translated the 
figure, without imagining the rotation in 3D-space. 
Afterwards, they validated their answer using tracing 
paper (on which they draw both the figure and the 
line) but they slided the tracing paper, instead of flip-
ping it over (Figure 6). 

The teacher asked them how they controlled their an-
swer and she pointed out the fact that the way they 
tried to control their answer was not correct, without 
mentioning a correct way to do it. 

Part of the collective discussion was devoted to dis-
cussing this production. The class immediately point-
ed out the flipping over “problem”. A work on putting 

Figure 4: Final

Figure 5: Production

Figure 6: Validation

Figure 2: Production of configuration 1

Figure 3: Construction of configuration 2
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it into words was conducted once again by the teacher 
and expressions like “in the same direction”, “a little 
bit turned around”, “completely turned around” were 
said. 

“Turned over” was finally mentioned, repeated by the 
teacher and accompanied with gestures. At the end of 
this first session, the teacher elaborated a paper trail. 
She mentioned the “mistake often made” by this pair of 
students, pointing out that they often drew the figure 

“in the wrong direction”. The teacher then wrote down 
that “the image has to be flipped over compared to the 
initial figure”. 

Configuration 4 (session 2). At first, the two students 
translated the figure along a direction given by the 
small part of the L (Figure 7); one of the two students, 
taking a wider look at it, realized the mistake. But con-
structing the image line by line made her do the same 
mistake again for her second try. Realizing it, they did 
a third try. The image was flipped over, but they did 
not switch the orientation, extending the sides of the 
small part of the L (Figure 7) and acting as if the line of 
symmetry was perpendicular to these sides. The other 
student tried to modify it so that the image touches 
the line at the same place as the initial figure (Figure 
7). Taking into account the conservation of the shape 
led them to end up at the final production (Figure 7). 

Trying to validate their answer, one of them drew the 
initial L and the line on tracing paper and then tried 
to turn the paper around (keeping it in the horizon-
tal plane). The other one took it, flipped it over and 
replaced it so that the two lines matched. 

The teacher then started a discussion with the pair. 
She placed the tracing paper sheet in its original po-
sition, then flipped it over and placed it such that the 
two lines matched. She tried here to link explicitly 
the flipping over movement of the tracing paper sheet 
and the flipping over property characterizing the re-
lation between the initial L and its image (considered 

as relation between two figures in the plane). She then 
accompanied the two students to interpret feedback 
from superimposition of their production with the 
flipped over tracing paper. In particular, she showed 
them that the orientation of the bigger part of the L 
was correctly switched whereas the orientation of 
the smaller part didn’t match. “Your line is straight, 
prolonging the other one, while it should have been 
tilted like that (she showed the side of the flipped over 
L)”. She helped them taking into account the relation 
between global flipping of the figure and change in the 
orientation of 2D elements of the figure (the smaller 
part of the L and the bigger part), relation that was 
difficult for them to identify in the previous tasks. 

The flipping over property was not mentioned during 
the collective discussion. 

Observing the resolution of this four cases, we see the 
difficulties students encountered to perceive and take 
into account the fact that the initial figure and its im-
age are flipped over, one compared to the other. They 
often anticipate approximately the correct position 
and orientation of the image in a global way, as well 
as they realize their mistakes when they look globally 
at their production after drawing. But drawing the 
image with a ruler makes them consider the figure 
in a very different way. It is not seen as a surface (2D) 
anymore, but as a grid of segment lines (1D) which 
images have to be constructed separately. Students 
seem then to forget about the symmetry as rotation 
of 180° degrees around the line in 3D-space and they 
keep working in the plane. Yet they don’t have any 
other definition of symmetry than this instrumental 
definition (see above), which refers to folding (real or 
simulated). The different attempts for case 2 show 
that it is difficult for them to articulate the switch of 
orientation for each of the segments (or 2D elements 
of the figure – smaller or bigger part of the L) and 
conservation of shape. Students also have difficul-
ties using tracing paper to control their productions, 

Figure 7: Try 1 Try 3 Try 4 Final production



Articulation between students’ and teacher’s activity during sessions about line symmetry (Aurélie Chesnais and Anne-Cécile Mathé)

527

which makes it hard to use pragmatic feedback as we 
could observe about cases 2 and 3. 

Configuration 5. At first, one of the two students drew 
an image, flipped over compared to the initial figure, 
but with an approximate orientation. The other one 
changed the drawing to get a better orientation and 
a better corresponding size. (Figure 8)

The collective discussion dealt with the question of 
the difference between “turned around” and “flipped 
over”, about the productions of students who applied 
a symmetry around a point. Flipping over (rotation 
in 3D-space of 180° around the line) was again pointed 
out by the teacher, as opposed to rotation in the plane. 
Words were accompanied by a lot of gestures.  

The teacher then pointed out the link between the 
need for flipping over and folding, which had been 
used to construct mirror images during the previous 
session. She folded a sheet of tracing paper so that 
folding makes the initial L flip over. 

Configuration 6 The pair of students produced a 
flipped over figure, with same size and same shape 
as the initial L (Figure 9). The orientation of each part 
of the figure was correctly reversed. The invariance 
of points of the line was only partially completed. 

The teacher pointed it out during the collective dis-
cussion that followed.

The analysis of students’ activity on the first four con-
figurations showed that the interactions between the 

students and the task didn’t seem sufficient to cause 
an evolution in their activity towards complete con-
ceptualization of the flipping over property. However, 
an evolution has occurred in their ability to construct 
and validate, towards a better consideration of this 
property: their first idea was to translate the figure 
without flipping it over for the first four configura-
tions, but they flipped it over directly for configura-
tions 5 and 6. How can we understand what drove this 
evolution? 

What we chose to observe leads us especially to pay 
attention to oral interactions during task completing. 
Consistently with our theoretical frame, this leads 
us to identify that, in this example, the evolution of 
pupils’ activity is caused by a double process, adap-
tationist (students interacting with a task) and social, 
(essentially here through interactions between stu-
dents and teacher). How do both interactions between 
the students and the task and interactions between 
students and teacher articulate to contribute to the 
evolution of the ability of students to acknowledge 
the flipping over property?

We distinguish two types of interactions: the inter-
actions between the pair and the teacher, when she 
comes to talk to them during their validation; the 
interactions between the students and the teacher 
during collective discussions. Each of these types 
is a place where teacher and students’ activities ar-
ticulate, completing interactions between students’ 
and the task, in order to make their understanding 
of the task and of the ‘milieu’ change. During the in-
teractions between the students and the teacher, we 
identify three objectives of the teacher: helping them 
to identify mistakes (about the alignment of segments, 
in configuration 4), asking them to use tracing paper 
to control their answer to make them go back to mate-
rial actions (configuration 3), and helping them using 
tracing paper correctly to flip it over and replace it so 
that the two lines match: what is at stake here is the 
link between the flipping over of the figure and the 
switch in the orientation of 1D elements. The teacher 
accompanies them in what interactions with the task 
was not sufficient to ensure. We suggest that, among 
these interventions, some have a productive function 
(Robert, 2008) (help students to complete the task) and 
some have a more constructive function (Ibid.) (help 
students transform activity into knowledge).

Figure 8

Figure 9



Articulation between students’ and teacher’s activity during sessions about line symmetry (Aurélie Chesnais and Anne-Cécile Mathé)

528

During collective discussions, the teacher based 
the debate on students’ productions and mistakes. 
She made students explicit the flipping over prop-
erty, then put it into words, and decontextualized it. 
However, she didn’t emphasize the link between this 
property and the material action of folding or flipping 
tracing paper as much as she does when interacting 
with the two students (except for configuration 6). 

RESULTS AND CONCLUSION

Our analysis of the evolution of productions of a pair 
of students on a task about symmetry allowed us to 
identify factors of this evolution: the feedbacks pro-
vided by the task but also interactions between stu-
dents and between students and teacher. It points out 
how an adaptationist and a social process intertwine 
to ensure this evolution. 

Finally, we claim that, in the observed sessions, stu-
dents’ progression towards a better consideration of 
the flipping over property results from articulation 
of four types of interactions between students and 
milieu:

 ― interactions between the students and the task, 
their use of instruments and the way they adapt 
to pragmatic feedback coming from the control 
with tracing paper; 

 ― the verbal interactions between the two students 
in the pair; 

 ― the interactions between the pair and the teach-
er, when she comes to talk to them during their 
validation; 

 ― the interactions between the students and the 
teacher during collective discussions.

This study also informs on the way the teacher’s ac-
tivity may articulate with students’ one: choice of the 
task, interactions with them during research, use of 
productions during collective discussions. Finally, it 
points out that linking various dimensions of activi-
ty (material, verbal and conceptual) is a condition to 
ensure learning. 
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For students from 5 to 8 years old, the spatial and ge-
ometrical learning concern mainly the control of its 
relations to real space (tracking, travelling), the recog-
nition of objects and shapes, and their representation 
by drawings using straight lines. The ERMEL team, in 
France, is experimenting teaching situations on space 
and geometric learning in the 2nd cycle of primary edu-
cation (5–8 years old student) and is building complete 
engineering to teach math in elementary school. Our 
methodology involves an analysis of the student’s way 
to solve problems and thus their abilities. Experiments 
conducted in a great number of classrooms allow us to 
better understand the components of this learning in 
terms of knowledge and abilities.  Thanks to these results, 
our hypothesis and choices have evolved.

Keywords: Geometry, teaching, learning, primary 

education, spatial problems solving. 

RESEARCH’S PRESENTATION

Issue of this paper
Our research takes place in the French context of 
geometry teaching in primary school. Our goal is to 
build proven, complete and reliable teaching engi-
neering and thus to improve geometry teaching.

By submitting our results and remaining questions 
we want to contribute to the working group’s thought. 
In a European context we also want to compare our 
approach to others and seek our results significance.

Why working on geometry teaching?
For a long time, Berthelot and Salin (1992, 1993), high-
lighted the difficulties of geometry teaching in France: 

No one disputes, for example the usefulness of 
knowing how to do a multiplication, so learning it 

in school, has been normal for a century or so. [...] 
For the geometrical knowledge, beliefs are less 
assertive, [...]. So they feel “authorized” to take 
leeway with the school curricula, that is to say, to 
ignore this part (as well as high school teachers 
ignore 3D geometry) (translated from (Berthelot 
& Salin, 1993, p. 39))

An analysis of teachers’ representation about geome-
try teaching (in process) confirms that in 2014, things 
have not really changed. This work, based on inter-
views, also shows that both geometrical and didactics 
knowledge of teachers (even experienced) is weak. 

As far as geometry is concerned, textbooks mainly 
focus on students’ work, on drawings and being able 
to write the proper name on the proper drawing.

Geometry learning is not seen as a social necessity by 
the families and sometimes by teachers. Moreover, its 
contribution to subsequent learning is often reduced 
in the classrooms at an early learning, even ineffec-
tive, of geometrical vocabulary.

This research is also based on the idea that students’ 
abilities are insufficiently taken into account in ge-
ometry teaching in primary school. Thus we have to 
identify the knowledge at stake in this learning and 
take former students’ knowledge into account.

By starting our research from the analysis of students’ 
abilities and geometric concepts we develop an un-
common methodology (described below).

About us 
ERMEL is a research team on mathematics education 
in primary school (in French “Équipe de Recherche 
en Mathématiques à l’École Élémentaire”), which be-
longs to the French institute of education (IFé). This 
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team is made up of primary school teachers, teachers’ 
trainers and researchers working in different cities 
of France (Châlons-en-Champagne, Grenoble, Lyon, 
Paris…).

The ERMEL team conducted studies on teaching and 
learning of number system and arithmetic’s form 
1985 to 1998 and since 1998 on geometry teaching and 
learning. Results of theses researches lead to compre-
hensive book publications on teaching engineering 
(Équipe de Recherche en Mathématiques à l’École 
Élémentaire [ERMEL], 1998, 1999 & 2006).

The aim of the current research is to analyse spatial 
and geometric skills that 5 to 8 years old students can 
build.

Methodology
Our research has been and is sometimes called “action 
research” in the French tradition. We do not deny that 
term in its meaning and use Hugon and Seibel’s (1988): 

“Research in which there is a deliberate transforma-
tion of reality; research that has a dual purpose: to 
transform reality and produce knowledge about these 
changes.” Our research actually intended to produce 
resources that are analysing issues of education in 
relation with school curricula and their changes.

On the other hand, our methodology is quite differ-
ent form the English tradition of “action research in 
education” as defined by Sagor (2000, p. 3):

It is a disciplined process of inquiry conducted 
by and for those taking the action. The primary 
reason for engaging in action research is to assist 
the “actor” in improving and/or refining his or 
her actions. Practitioners who engage in action 
research inevitably find it to be an empowering 
experience.

Even if teachers and teachers training have an impor-
tant place in our research, we define our methodol-
ogy as a didactic engineering. Our approach has in 
common with the didactic engineering concept the 
general questions it allows to address. In fact, the 
term “didactic engineering” appears in the mathe-
matics teaching in France in the early 80s as a way to 
answer two fundamental questions translated from 
Chevallard (1982 as cited in Artigue, 2002, p.59): 

How to take into account the complexity of the 
classroom in research methodology? 

How to think about the relationship between re-
search and action on the education system? […] As 
a research methodology, didactic engineering is 
different from the usual experimental methods 
by its validation mode. This internal validation 
method is based on the confrontation between an 
a priori analysis in which are engaged a number 
of assumptions and a post hoc analysis that relies 
on data from the actual implementation.  

The ERMEL research team develops an analysis of 
students’ knowledge, issues of teaching, and offers 
a didactic engineering based on an experiment con-
ducted in many classrooms for several years. 

This research is derived from the analysis of the chal-
lenges of teaching mathematics in the field. Once the 
needs are identified, such research involves several 
steps: 

1) An analysis of the mathematical knowledge (prob-
lems, properties...) at stake, as well as students’ knowl-
edge and abilities;

2) An explanation of educational issues and the organ-
isation of the study of the different notions through-
out the years;

3) Development of teaching situations and tests in 
several classrooms. 

These last three components interact: the identifica-
tion of students’ abilities is the outcome of experi-
ments conducted. 

4) Writing a book for teachers and trainers with an 
explanation of the issues of learning and teaching, a 
description of the identified learning situations, a 
reasoned choice of learning roadmap and syllabus 
planning. These books are often references in training 
in France.

The diagram below (Diagram 1) illustrates our meth-
odology.

Analysing teaching and learning process require the-
oretical frameworks.
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Theoretical frameworks
We mainly focus on a framework that is preemi-
nent in the French context, the Theory of Didactical 
Situations based on the ideas below:

Mathematicians don’t communicate their re-
sults in the form in which they discover them; 
they re-organize them, they give them as gener-
al a form as possible. Mathematicians perform 
a “didactical practice” which consists of putting 
knowledge into a communicable, decontextual-
ized, depersonalized, detemporalized form.

The teacher first undertakes the opposite action; 
a recontextualization and a repersonalization of 
knowledge. She looks for situations which can 
give meaning to the knowledge to be taught. But 
when the student has answered to the proposed 
situation (…) she will have to redepersonalize 
and redecontextualize, with the assistance of 
the teacher, the knowledge she has produced so 
that she can see that it has a universal charac-
ter, and that it is re-usable cultural knowledge. 
(Brousseau, 1997, p. 227)

For teachers, building learning-situations is building 
a problem where the knowledge is recontextualized. 
By solving this problem, the student will acquire the 
knowledge at stake. There are different kinds of prob-

lems corresponding to different ways to reach the 
knowledge (more or less efficiently).

As far as geometry is concerned, we also use concepts 
highlighted by former researches.  We distinguish be-
tween spatial knowledge and geometrical knowledge:

In general we can distinguish between two kinds 
of problems: 

 ― spatial problems thus characterized: their 
purpose concerns the sensitive world; they 
can focus on implementing actions: making, 
shifting, moving, drawing, etc. communica-
tion about actions or findings [...] The success 
or failure is determined by the subject itself 
by comparing the expected result and the 
result;

 ― geometric problems, like that word is used in 
mathematics: Solving a geometrical problem 
is an activity involving the necessary and 
non-adversarial nature of certain properties 
of the geometrical objects” (translated from 
Berthelot & Salin, 1993, p. 41).

We also use the work of these authors, which defines 
different kinds of space in which spatial problems 
can be placed: micro space (very close to the subject, 

Diagram 1: Steps of ERMEL’s methodology
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object can be moved, touched, turned) meso-space 
(surrounding space, between the arms of the subject, 
he can have a comprehensive view, he can move in the 
space) and macro space (far space, the view is more 
local, subject has to conceptualize). The space defined 
by the sheet of paper can be called graphical space 
and has also special features. Computer screen also 
form a new type of space depending on software uses 
(for example dynamical geometry software). Theses 
spaces are so many choices and so many parameters 
of the learning situation.

We focus on the alignment and straightness concept 
to make our approach explicit.

ALIGNMENT AND STRAIGHTNESS IN 
THE 2ND CYCLE OF EDUCATION

(2nd cycle of French school is 1st and 2nd grade in the 
USA)

This research was attributable mainly to the fact 
that the teaching of geometry in the primary grades 
does not adequately take into account the knowledge 
children can develop when solving problems. This 
research therefore requires identifying the skills in-
volved in these learnings and take into account the 
initial knowledge in these fields.

As often with geometric concepts introduced in el-
ementary school, the concept of straight line has a 
double aspect:

- it allows to represent real-world objects or actions 

- it is a component of a geometric knowledge constitu-
tion that has properties that students gradually dis-
cover: in this case it is the properties of the straight 
line and the constraints of its drawing.

This learning raises several questions: in the 2nd cycle, 
what are the possible links between these two aspects 
(alignment of points and straightness of lines)? In 
particular can the procedures developed in the me-
so-space be reused on the paper? Is it better to start 
with experiences in the meso-space to show a straight 
line as a solution of an alignment problem?

Meanings of the straight line 
The notion of straight line can be understood by 
the 2nd cycle’s student through different meanings 

induced by perception or experience, which can be 
used in problems for:

1) The graphic representation of physical objects so-
liciting properties of the straight line, including: 

 ― a material object: a stretched wire, a straight edge 
object, a light ray, the fold of a paper ... 

 ― a border between material objects :

 ― two planar regions of space, as the edges of 
a polyhedron; 

 ― two regions of the map, as the sides of a poly-
gon, of half-planes ;

 ― a subject of the graphics world : a straight line 
(which may be extended beyond the ends); 

 ― a trace : 

 ― a print trace produced by a path with the 
ruler ;

 ― a print screen trace caused by the “straight” 
tool in a dynamic geometry software (like 
Cabri Geometry)...; 

 ― the path of a rectilinear object (ball ...).

For all these problems in connection with these 
first meanings, the points do not play an impor-
tant role. 

2) a set of aligned points : the locus of points aligned 
with two points, for instance for sight problems 
in the meso-space. 

Properties 
Our previous work research (ERMEL, 2006) on ge-
ometric learning has confirmed that the properties 
attributed to the straight line by the students aged 8 to 
9 (CE2), are limited to those related to the perception 
of lines drawn. From a theoretical point of view, if a 
straight line can be characterized in various ways, 
as the effect (invariance) of a transformation, as the 
intersection of planes, for the student of six or seven 
years old the concept of the direction (extension) is 
the first they meet. In fact for students of this age a 
straight line is simply the straight line drawn on a 
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sheet. Several properties of the line, as a mathematical 
object (in particular the fact that the line is formed 
by an infinite set of points) are not accessible to the 
primary school.

Questions 
One of the challenges of our research on 2nd cycle was 
for us to determine: 

 ― What is the initial knowledge of the students? 
What perceptions, what experience do they have 
of straight lines? 

 ― Among the meanings of straight line which must 
be preferred?

Initial hypothesis 
We therefore sought to clarify the meanings of straight 
lines that may be encountered or that are accessible 
to 2nd cycle students and to create problems, allowing 
a passage to geometric knowledge. 

We thought that the fact that a line can be extended 
for solving an alignment problem should be learned.

At the beginning of this research, we considered teach-
ing a grasp of the concept of alignment through the 
experiment centred on the idea of hiding an object (us-
ing the sight) in the meso-space, then again on paper in 
order to highlight the utility of using the straight line. 

We proposed a problem (“Plots”) that takes place in 
the schoolyard (Figure 1): students have to find loca-
tions (using the sight) where an object hides another 
one (I see the red plot hiding the green one and the 
yellow plot hiding the orange one). The problem was 
after proposed on the paper sheet (representing a 
top view of the yard). In solving the problem on pa-
per the students were not using straight lines to find 

the locations; broken lines have been uses to depict 
alignments.

These experiments revealed activity transition-relat-
ed difficulties conducted in the meso-space activities 
on paper.

First experimental results for CP (1st grade US 
– Year 2 GB) and CE1 (2nd grade US – Year 3 GB) 
Students had developed spatial resolution proce-
dures based on the sight and other gestures in the 
meso-space. But the modelling by a straight line was 
not effective in solving a similar situation on paper. In 
addition there were difficulties for drawing straight 
lines with a ruler, many productions included broken 
lines and not straight lines to represent the target.

Analysis of the difficulties in the transition 
from meso-space to micro-space 
They seem related to: 

1) An understanding of modelling on a sheet of a 
situation experienced in the schoolyard:

 ― Meso 3D / micro 2D (top view ...) and the disap-
pearance of the subject (student) in the micro- 
space device. 

 ― A representation of physical objects by schema-
tizations (circles, dots).

2) What the straight line was supposed to represent. 

3)  For the drawing of plots straight lines.

The use of dynamic geometry software (DGS) seemed 
to enable this switch in CE1 (7-years-old): students us-
ing the straight lines to produce with DGS a solution 
to the alignment problem. However, we have not been 

Figure 1: “Plot” situation in the schoolyard (left) and in sheet of paper (right)
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able to check the reinvestment in the longer term on 
the sheet of paper. 

The analysis of these problems (items 2 and 3 above) 
also highlighted the need for a specific work to allow 
the apprehension of the meanings and some proper-
ties right from the 2nd cycle (the term « straightness ») 
relatively independent of the alignment point prob-
lems. This corresponds to the first set of meanings of 
the straight line as shown on page 5.

Rolet (2003, p. 7) who also analysed 8-year-old stu-
dents’ work in different spaces noticed difficulties: 

“[students] they took the piece of rope not like a part 
of a line but like a segment. […] Cabri-geometry was 
also a good instrumented space to give a real status to 
concepts like points: ‘visible’ vs defined, ‘draggable’ (or 
independent) vs fixed (or dependent). But understand-
ing of these concepts still presents many difficulties 
for all students.”

SPECIFIC LEARNING OF STRAIGHTNESS

Meanings of the concept of straight line 
The meanings of the straight line can be associated 
with problems concerning either: the production 
of straight lines, the identification of straight lines 
(judgment), the choice and use of instruments that 
could be used to identify or produce an alignment or 
a straight line. 

Among the meanings of a straight line, we chose to 
emphasize, for 6-year-old students, those of edge par-
allel strips, contour of a geometric figure. Validation 
criteria are either simply perceptual (regularity of the 
trace or resemblance to a model) or related to a more 
or less explicit reference to parallelism (direction ...) 
or consist of a practical validation (coincidence ends, 
overlay actions objects ...).

Presentation of a situation and common Goals 
Students are working on “superpositioned form”. 
They have to do a stack of shapes (rectangles, trian-
gles) and draw their superposition. 

These meanings can be associated to problems con-
cerning either: 

 ― the production of straight lines; 

 ― the identification of straight lines (judgment); 

 ― the recognition and use of instruments that could 
be used to identify where to produce an align-
ment or a straight line. 

This work on the notion of “ straightness”, although 
it can be started in kindergarten (Year 1 in GB, called 

“grande section” in France) with the production of 
regular lines made in drawing activities, really takes 
its geometric dimension at 1st grade (6-years-old, CP 
in France) where the properties of straight line can 
therefore be apprehended. These properties are not 
yet objects of study for themselves, but are first ex-
periences:

 ― a line can represent something that does not leave 
a physical form (e.g. sight); 

 ― a drawn line may be associated with instruments; 

 ― a line may be extended, for example to represent 
a hidden object.

Different levels of understanding control may be as-
sociated with these meanings:

 ― understand the need to draw a straight line to 
solve the problem; this is the role of formulations 
(validation through language, rather consensual), 
role of gestures (hands); 

 ― learn how to place the ruler to draw a longer line; 
it is the knowledge of the method and the techno-
logical aspect: name tools, describe the action... 

 ― mastery of drawing (validation by production).

ASSESSMENT FINDINGS AND QUESTIONS 

Robustness/reliability of situations 
 ― Devices (progressions, situations) that we have 

developed favour a knowledge construction 
based on problem solving. They have a certain 

“robustness” due in particular to the fact that the 
results and procedures that will be produced by 
students in a class are described in the descrip-
tion of situations, allowing the teacher, in gen-
eral non-specialist in mathematics, to anticipate 
their decisions based on its own class produc-
tions. This reliability seems partly due to the co-
herence between the concepts of learning and 
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the proposed situations and, secondly, to their 
experimentation in many classes for many years. 

One of the challenges of our methodology is to allow 
ownership by teachers of educational created devices. 

The conditions that we consider necessary for the 
appropriation of our devices by those teachers are: 

 ― a better perception of the relationship between 
spatial knowledge and geometrical knowledge 
that students can develop;

 ― an awareness of all the meanings of a concept and 
situations associated; 

 ― the identification of the essential characteristics 
of teaching situations; 

For this we highlight these elements in our publica-
tions.
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The perimeter and area are two important geometric 
concepts, which are taught through many years in 
schools. Although the curriculum and the textbooks in 
Hungary consist of both qualitative and quantitative ap-
proaches by teaching area and perimeter, the students’ 
performance is low. The main goal of this research is to 
investigate students’ ideas of the concepts area and pe-
rimeter from 5th to 8th grade. We identify typical solving 
strategies in order to understand students’ imagination 
connected to these mathematical objects.
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concept formation.

INTRODUCTION

The perimeter and area are two important geomet-
ric concepts, which are taught through many years 
in schools. We know from the works of many re-
searchers and from our experience too that the 
teaching-learning process on this topic poses many 
problems. Although the curriculum and the textbooks 
in Hungary consist of both qualitative and quantita-
tive approaches by teaching area and perimeter, the 
students’ performance is low. In Hungary quite the 
same misconceptions and troubles are observed as 
in other countries.

The main goal of this research is to investigate stu-
dents’ ideas of the concepts area and perimeter from 
5th to 8th Grade. We find the students’ long term mem-
ory interesting, because it forms a correct view about 
the level of understanding concepts examined in the 
study. It happens in schools usually that teachers ex-
amine students’ new knowledge in a few days after 
teaching a certain topic and they find that the students 
acquired the new concepts and procedures. The good 
result of such kind of tests can be misleading: some 

month later students don’t even remember the basic 
ideas.

THEORETICAL BACKGROUND

One of the goals of education is to help students store 
information in long-term memory and to use it in or-
der to solve problems. There are three different parts 
of long-term memory. Episodic memory refers to our 
ability to recall personal experiences from our past. 
Semantic memory stores concepts, rules, principles, 
and problem-solving skills. Information is more easily 
stored in semantic memory when it is easily related 
to existing, well-established schemata. Procedural 
memory refers to the ability to remember the steps of 
performing a task or employing a strategy (Baddeley, 
Eysenck, & Anderson, 2010; Skemp, 1975).

The topic of measurement is very useful to develop 
students’ skills in problem solving, spatial sense, es-
timation and concept of numbers (Korenova, 2014).

In primary school by teaching measurement, general 
measurement principles are used: quantity conserva-
tion; direct comparison of quantities without measur-
ing; the need for repeated (standard or non-standard) 
units; estimation before measuring; exploration of 
the inverse relationship between the size of the unit 
and the number required to measure; choosing an 
appropriate standard unit for a concrete quantity 
(Curry, Mitchelmore, & Outhred, 2006; Herendiné-
Kónya, 2013). In Hungary in the teaching of length, 
mass or capacity these principles are accepted, but 
they are not followed in the teaching of area and pe-
rimeter. The steps listed are mainly left out; the em-
phasis is usually placed on the measurement of length 
and mode of calculation.

The perimeter and area are at the same time geometric 
concepts and measurable quantities too. This is the 
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reason we use two approaches in the teaching of this 
topic, a qualitative and a quantitative one.

In the teaching of area two approaches are gen-
erally used. One that can be considered as formal 
which refers to the calculation of areas with for-
mulae and another, informal, that emphasizes 
the conservation of area in figures of a different 
shape. (Acuna & Santos, 2012, p. 1)

We agree with Acuna and Santos, that there is a gap 
between these aspects of the area, furthermore there 
is also a gap between the qualitative and quantitative 
aspects of the perimeter. We know very well, that stu-
dents used to have deficiency of area and perimeter 
measurement. Researchers describe that these prob-
lems arise among others from the early teaching of 
formulas (Baturo & Nason, 1996; Vighi & Marchini, 
2011; Zacharos, 2006).

Usiskin (2012) speaks about a multidimensional ap-
proach of understanding, which helps to clarify the 
meaning of a certain concept and elaborate teaching 
materials to develop it. The dimensions of under-
standing of area and perimeter according to Usiskin 
are the following:

1) Skill-algorithm understanding: Knowing how to 
get an answer, i.e. choosing an appropriate algo-
rithm to calculate the area and the perimeter of 
a given figure.

2) Property-proof understanding: Knowing why 
the way of obtaining the answer worked, i.e. 
knowing the derivation of the basic formulas 
and the relation between area and perimeter of 
the same figure.

3) Use-application understanding (modelling): 
Knowing when doing something, i.e. recognizing 
area and perimeter measurement in everyday 
life problems.

4) Representation-metaphor understanding: 
Knowing represent the concept in some way, i.e. 
area with congruent tiles, perimeter with the 
length of a fence.

According to Usiskin, the dimensions are relatively 
independent, and there is no precedence among them 
in terms of difficulty. In the present study the focus is 

on the 1st and 4th dimension. We compare the level of 
the skill-algorithm and the representation-metaphor-
ical understanding in different grades.

RESEARCH QUESTION

The present research is looking for the answer to the 
following questions:

What do the concepts of area and perimeter mean 
for students at different ages? What are the students’ 
typical strategies and misconceptions by solving area 
and perimeter tasks?

Our hypothesis is that the older students perform 
better with respect to the two investigated dimension 
of understanding (skill-algorithm and representa-
tion-metaphor), due to the expanding knowledge. We 
assume furthermore that the most frequent mistakes 
arise from identifying the formulae with the concept 
itself.

METHODOLGY

The research sample comprises 84 students from the 
same school in Hungary, from the following classes: 
26 students from the class 5/A, 29 from the class 6/A, 
19 from the class 7/A, 21 students from the class 8/A. 
The age of the students was from 11 to 14. The four 
classes are special language classes, they have more 
language lessons per week as usual and only the 
minimum mathematics lessons; 3 lessons per week. 
Students involved in this study didn’t show particular 
talent and interest in mathematics.

We made interviews with the mathematics class-teach-
ers in order to know the exact teaching-learning situ-
ation connected to our topic. By studying the curric-
ulum and relevant textbook we can outline the teach-
ing-learning process in the previous school years.

4th class, 8–10 lessons per year: Recognizing area and 
perimeter as an attribute of plane figures. Measuring 
perimeter of polygons by adding the side lengths. 
Measuring area by counting congruent tiles. Finding 
the perimeter of a rectangle, applying the formulae 
(a+b)⋅2, or a⋅2+b⋅2. Measuring areas by counting 
unit squares, finding the area of a rectangle with 
whole-number side lengths by multiplying the side 
lengths and applying the formulae a⋅b.
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5th class, 10–12 lessons per year: Finding areas of rec-
tilinear figures by decomposing them into rectangles 
and adding the areas of the parts. Finding the area and 
perimeter of rectangles/rectilinear figures in the con-
text of solving real world and mathematical problems. 
Recognising rectangles with the same perimeter and 
different areas or with the same area and different 
perimeters.

6th class, 4–6 lessons per year: Finding the area of 
right triangles, other triangles, and parallelograms 
by cutting and rearranging into rectangles.

7th class, 10–12 lessons per year: Knowing the formu-
las for the area and perimeter of triangles, special 
quadrilaterals, circles and use them to solve problems.

To investigate and compare the actual level of the 
understanding of area and perimeter, we designed 
a 30-minute written test. In one part of the tasks, the 
area and the perimeter of concrete shapes had to be 
calculated with the use of known formulae, where 
we either gave the required lengths or they had to be 
measured. In case of solving other part of tasks the 
development or representation of qualitative images 
were required. The first three tasks were the same in 
every class. As these tasks are considered very easy 
routine tasks for those in the 7–8 grades, we assumed 
they would need shorter time to solve them, so we 
assigned two further tasks for them. Students were 
familiar with the type of the tasks, because they solved 
such kind of problems earlier. It was considered to be 
also important to have a real-size picture to every task.

While we are interested in students’ long term mem-
ory, we did the test on the first week of the new school 
year, on the 3rd of September 2014. This date provides 
that the students haven’t dealt with mathematics es-
pecially with area and perimeter for at least 3 months, 
so we can consider our test as a delayed test.

TASK ANALYSIS AND RESEARCH FINDINGS

The structure of the test
Task 1: Students had to calculate the perimeter and 
area of three rectangles with the sides 3 cm x 7 cm, 5 
cm x 5 cm, and 2 cm x 8 cm. The rectangle’s position 
on the worksheet was usual; the sides were parallel 
or perpendicular to the paper edges. We wanted to 
know if students use the adequate calculating method 
correctly. The perimeter of the rectangles was the 

same, the area was not. We asked the following ques-
tion: “What do you observe?” We wondered whether 
students notice that the same perimeter not necessary 
results the same area.

Task 2: Calculate the perimeter and area of the plane 
figure. (Figure 1)

In this case there are no concrete formulae for pe-
rimeter and area. Students have to know that the pe-
rimeter of a polygon means the sum of the lengths of 
every side.

They also learned about the additivity of the area and 
finding area of rectilinear figures by decomposing it. 
Following Vighi and Marchini (2011), only the neces-
sary numbers are given. We were looking for the level 
of understanding of these two concepts and typical 
solving strategies.

Task 3: “Find the area of the triangle if the distance be-
tween two adjacent grid points is 1 cm. Draw two other 
plane figures with the same area as the triangle has.”(-
Figure 2)

The area of a plane figure means the number of unit 
squares which cover the figure without gaps and 
overlapping. Determining the area often requires 
appropriate cutting and rearranging. There is also a 
possibility to apply the area formulae for triangles: 
b⋅h/2. Drawing figure with a given area means more 
than formal understanding of the procedure for cal-
culating the area.

Task 4 (for Grade 7–8): “Calculate the area of the tri-
angle.” (Figure 3)

Figure 1

Figure 2
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We wonder whether students know the concept of alti-
tude, and apply the formulae learned last school year. 
The question was the following: is there any student 
who recognizes that the triangle has a right angle?

Task 5 (for Grade 7–8): “Calculate the area of the par-
allelograms. Measure the necessary data by ruler.” 
(Figure 4)

The parallelograms have the same sides but different 
angles. The first was in “usual” position and the sec-
ond was rotated. We assume that the unusual position 
causes problems by determining the altitude of the 
parallelogram. While the parallelograms have the 
same perimeter, it’s easy to recognize that the areas 
are different.

The understanding of the idea of perimeter
Every student from the Classes 5 and 8 determined 
the perimeter of the rectangles in Task 1; except 3 stu-
dents from Class 6 and 2 from Class 7 gave correct 
answers too, which means that they are familiar with 
the calculating method of rectangle perimeter.

The solution of the Task 2 indicates whether the stu-
dent understands the perimeter concept well or not. 
In this case there isn’t any formula; students have to 
add all the sides of the rectilinear figure. The diagram 
below (Figure 5) shows the result of students in differ-
ent classes. We found that the percentage of the cor-
rect answer (10 cm) is not more than 40% in the classes, 
and what is more, the 5th Graders performed the best. 
We detected four mistakes as typical. (1) Students of-
ten left out one or maximum two sides from the sum. 
This side is obviously the horizontal side of 2 cm. (2) 
They added only the given numbers, which indicates 
the lack of the perimeter meaning. (3) Relatively lots 
of students applied wrong formulae blindly which is 
analogue to the rectangular formula. For example: (3 
cm + 1 cm + 1 cm +1 cm)⋅2. (4) The “additivity of perim-
eter” also appears in a following way: some students 
divide the figure in two parts, calculate the perimeters 
of these parts than add them. It means that the pro-
cedure used when calculating the area doesn’t work 
when calculating the perimeter. Vighi and Marchini 
(2011) call this symptom as “area-perimeter conflict”, 
i.e.: “the use of a procedure for area to compute perim-
eter”. The only distinction is that we experienced this 
problem not in the Grade 4, but Grade 8.

Reviewing the results of the classes we can establish 
that the level of understanding perimeter doesn’t in-
crease and from the detected solving strategies the 
wrong rectangle analogy disappeared in Class 8, but 
we came up with another: using perimeter as an ad-
ditive quantity.

We noticed that there are 4; 1; 2 and 1 student in Classes 
5; 6; 7 and 8, who mixed the words “perimeter” and 

“area” consequently through all the tasks. The present 
test was not able to say whether they interchanged 
only the words, i.e. the label of the concepts or the 

Figure 3

Figure 4

Figure 5: Calculating the perimeter of a rectilinear figure
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concepts itself. This finding requires further research 
on real life word problems.

The understanding of the idea of area
The solution of the Task 3 gives information about 
the representation-metaphorical understanding 
(Usiskin, 2012) of the concept of area. The grid sug-
gests the unit squares (1 cm2) for determining the area 
of the triangle. If a student is able to draw another 
figure with the same area it means that he/she has 
a correct mental image of the concept even if he/or 
she can’t make the connection between this image 
and the calculation (Figure 6). Studying the result 
on the Figure 7 we can see, that the percentage of the 
correct answer is significantly lower than in case of 
perimeter. Furthermore students from the Class 8 

achieved the best result (close to 50%), it’s more than 
they achieved in the perimeter task.

The most frequent misconception was measuring 
the sides of the triangle. Most of the students who 
measured the length of the sides multiplied the three 
lengths in order to achieve the area. Some of them 
added the sides or completed the triangle to a min-
imal rectangle which includes it. The percentage of 
incorrect answers in Class 6 and 7 are remarkable. 
6th Graders forgot about the square grid which is a 
tool for area measurement, so their solutions were 
unsuccessful. 7th Graders learnt about decomposing 
figures and about the formulae of the triangle last 
year, but the grid-context was “new” for them, so they 
tried to apply something similar to the well-known 
rectangular formulae.

Task 2 is based on the knowledge that the area is an 
additive quantity (area conservation). The diagram 
on Figure 8 shows that the rate of correct answers in 
Classes 5; 6 and 7 are very low. Two typically wrong 
solving strategies can be detected: multiplying sides 
(some or all) and applying wrong rectangle analogy. 
In this last case we recognised not only using a pro-
cedure for rectangle to compute the area of the rec-

Figure 6: The solution of Dorina from Class 7

Figure 7: Calculating the area of a triangle drawn on a grid

Figure 8: Calculating the area of a rectilinear figure
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tilinear figure, but using a procedure similar to the 
surface area of a rectangular solid.

For example in the work of Dorina (Class 7) (Figure 9), 
we can notice the use of a procedure for computing 
the perimeter (K) of the rectilinear figure, analogue 
to the perimeter of a rectangle. She determines the 
area (T) with special formulae: she produces each dif-
ferent product of two factors from given sides then 
ads these factors.

Students who gave the correct solution for Task 2 or 
3 were able to solve Task 1 too.

Relation between the area and 
the perimeter of rectangles
In Task 1, after determining the perimeters and areas 
of the three rectangles we asked “What do you ob-
serve?” There were only a few students (3; 3; 2 and 4 in 
Classes 5; 6; 7 and 8) who described explicitly that the 
same perimeter doesn’t imply the same area in case 
of rectangles: “The perimeter of all of the rectangles 
are the same while the areas are not.” One student in 
Class 8 gave some more explanation:

Lili: The perimeters of the three rectangles 
are the same, but the areas are different. 
It depends on the ratio between the sides 
of the figures.

Determining the area of triangles 
and parallelograms
While students learnt about the area of triangles 
and parallelograms in Grade 6, we wonder whether 
students in Class 7–8 are able to solve such kind of 
simple tasks.

We constructed the Task 4 and 5 to observe the use 
of appropriate formulae, the understanding of the 

concept of altitude and the influence of the position of 
the figures. In Class 7 there was only one student who 
calculated the area of the triangle correctly (12⋅5/2) 
and nobody was able to calculate the area of the paral-
lelograms. In Class 8 the result was better: 11 students 
had success with the triangle and 2 students with the 
parallelograms. 10 students (Class 7) and 2 students 
(Class 8) calculated the area of the triangle as the prod-
uct of the sides. Nearly the same was the situation in 
Task 5: 10 (Class 7) and 5 (Class 8) students thought that 
the area of the parallelogram is the product of the two 
different sides. So the area of the two parallelograms 
became the same and the students didn’t use visual 
control: it was easy to see that the areas are different. 
A new example confirmed our earlier opinion that the 
formulae without any meaning substitute the under-
standing of the concept itself. 5 students from Class 8 
who tried to use the diagonals of the parallelograms 
(e⋅f/2), did not take into consideration that this par-
allelogram isn’t a rhombus, and the diagonals aren’t 
perpendicular. Of course the position of the figures 
leaded to misconception too.

CONCLUSION

The findings of our study show the lack of understand-
ing the two geometric concepts we investigated. We 
thought that the older students perform better due to 
the expanding knowledge. In contrast we can see for 
example from the analysis of Task 3, that the mental 
image of the area concept didn’t necessarily develop, 
students even forgot the ideas established earlier. The 
formulas cover the meaning of the concepts and cause 
many misconceptions. One of the main findings of our 
research is that students think of the concept of area 
as the product of the sides. The new knowledge also 
brings mistakes if this knowledge hasn’t a strong basis. 
The additive feature of the area implies the additive 
property of the perimeter. The introduction of a new 

Figure 9: Dorina’s (Class 7) solution
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formula (e.g. e⋅f/2 for the area of the rhombus) causes 
trouble in finding the adequate calculating method. 
We observed and confirmed many misconceptions 
which were mentioned in the literature before.

Our experiences related to this research highlight the 
fact that students can easily forget concepts and pro-
cedures if they do not have the possibility to establish 
and practice it. The efficiency requires meaningful 
and continuous practice. The present study is the part 
of a wide research which aims at developing a complex 
teaching experiment in classes 3–8, on the topic of 
geometrical measurement.
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A frequently-asked question by in-service teachers dur-
ing training sessions relates to the overall organisation 
of the geometric work at primary school level. Indeed, 
teachers have difficulties to integrate the various re-
sources and activities discovered during their training 
in a general progression for their teaching of geometry. 
This issue is difficult even for teacher trainers who have 
to meet students’ expectations. In this paper, we consider 
some elements that could help teacher trainers devise 
an overall coherent teaching of geometry. We address 
this issue from the analysis of a teaching sequence in 
geometry proposed for Grade 4 - 6 students. This anal-
ysis is mainly based on the Geometric Working Spaces 
model used as a tool to clarify and structure a coherent 
teaching of geometry.

Keywords: Geometry, geometric working space, 

pedagogical progression. 

INTRODUCTION AND OBJECTIVES

As a teacher trainer, one of the authors (Assia 
Nechache) is in charge of several training sessions, 
especially in geometry, for in-service primary school 
teachers.  Various activities are used during these 
training sessions and are selected from available re-
sources written in French and dedicated to teacher 
training, such as the book Concertum (2002) edited 
by the French Commission for primary school teach-
ers’ training or journals like Grand N. The trainees 
expressed their interest and pleasure in discovering 
and doing these activities, but at the same time they 
were very anxious about devising and organising an 
overall progression of the teaching of geometry using 
these new, specific activities in their classrooms.

Indeed, it is usually possible to find ideas and exam-
ples of activities to implement in a classroom situ-

ation: resources such as those we mentioned above 
are relatively numerous. By contrast, very few are 
concerned with providing tools to help teachers re-
flect on and develop their own overall progression 
in geometry. 

In these conditions, we may wonder how a teacher 
trainer can help teachers integrate new and interest-
ing tasks in their classroom progression. This is by no 
means an easy question to answer, even for teacher 
trainers. We therefore focused our study on possible 
tools to help teacher trainers deal with this specific 
issue.  

In another context, that of the research in geometry, 
the model of the Geometric Working Spaces (GWS) is 
used to understand and structure the various ways of 
thinking about the teaching of geometry throughout 
compulsory schooling. We wondered whether this 
model originally designed for education research 
could also be a tool for the training of primary school 
teachers, as it could help them conceive and imple-
ment a progression in geometry. Thus, as a first step, 
we decided to explore the use of the GWS model with 
teacher trainers to highlight the main elements that 
organise a long teaching sequence on a specific topic 
and see how it can help structure an overall progres-
sion. 

In this paper, we first present the model of the 
Geometric Working Spaces and then report an anal-
ysis of a complex and long sequence of activities on the 
concept of circle. The analysis was conducted with a 
group of 27 teacher trainers during a working group 
devoted to the teaching of geometry. The analysis is 
mainly based on the GWS model and it allows us to 
highlight some key points to think about the teach-
ing of geometry in elementary school. The reported 
experiment is not a product of pure mathematics 

mailto:kuzniak@math.univ-paris-diderot.fr
mailto:assia.nechache%40hotmail.fr?subject=
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education research according to the standards of 
didactic engineering, but can be considered as an ac-
tion research process, and thus as an initial attempt to 
adapt and transpose a theoretical tool from research 
to teacher training education.

THE MODEL OF THE GEOMETRIC 
WORKING SPACES

The Geometric Working Spaces (GWS) and geometri-
cal paradigms have already been presented, includ-
ing during former CERME sessions. For a general 
presentation of paradigms, we refer to Houdement 
and Kuzniak (2003) where the three paradigms GI, 
GII and GIII are identified. An introduction to GWS 
was presented in a plenary lecture during the last 
CERME session in Turkey (Kuzniak, 2013).  The GWS 
are now part of the more general framework of the 
Mathematical Working Spaces (MWS) described by 
Kuzniak and Richard (2014)1. We will summarise here 
some key points which we think are useful to under-
stand the analysis that we will report in the paper. 

The Geometric Working Spaces
The description of the geometric work done by stu-
dents in school is the main purpose of the Geometric 
Working Spaces (GWS). As its name suggests, the 
geometric work is at the centre of the model and mo-
tivates the reflection on the teaching and learning of 
geometry (Kuzniak, 2014). In this approach, the cru-
cial function of educational institutions and teachers 

is to develop a rich environment which will enable 
students to solve geometric problems in an appro-
priate way. 

To describe the specific activity of students solving 
problems in geometry, the GWS is organised into two 
planes or levels. The first, “epistemological” plane de-
fines a priori expectations about the activity according 
to the requirements of the mathematical domain, in 
this instance geometry. As regards geometry, three in-
teracting components are characteristic of geometric 
activity in its purely mathematical dimension: 

 ― A real and local space as material support, with 
one set of concrete and tangible objects such as 
figures or drawings;

 ― A set of artefacts such as drawing instruments 
or software;

 ― A theoretical reference system based on defini-
tions and properties.

The geometry that is taught and learnt at school is not 
a disembodied set of properties and objects reduced 
to signifiers which can be manipulated by formal 
systems – it is first and foremost a human activity. 
Therefore, it is essential to understand how commu-
nities of individuals, but also specific individuals, use 
and internalise their knowledge of geometry in their 
practice of the discipline. This implies a second, “cog-

Figure 1: General diagram of the Geometric Working Spaces 
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nitive” level centred on the subject viewed as a cogni-
tive subject solving problems. Considering geometric 
activity, these processes are as follows: 

 ― A process of visualisation related to the repre-
sentation of both space and the material support;

 ― A process of construction and function of the 
used instruments (e.g. rulers, compass) and the 
respective geometrical configurations;

 ― A discursive process producing arguments and 
proofs.

This set of relationships could be described proceed-
ing from the elements of the following diagram which, 
in addition, shows the relationships between the two 
levels with three different dimensions or geneses: 
semiotic, instrumental, and discursive. 

Various types of input in the geometric work
The above diagram shows three specific work dimen-
sions between epistemological and cognitive planes 
which will require three specific genetic develop-
ments named geneses.

1) A figural and semiotic genesis that gives the tangi-
ble objects their status of operating mathematical 
objects;

2) An instrumental genesis that transforms arte-
facts into tools within the construction process, 
which is crucial in the case of geometry; 

3) A discursive genesis of proof that gives a mean-
ing to the properties used within mathematical 
reasoning. 

The diagram in Figure 1 shows three vertical planes 
that match the connections between these dimensions 
and that will help us later to specify the precise ge-
ometric work existing in the GWS when students 
solve tasks given by their teachers. The three levels 

can be identified by the genesis they implement [Sem-
Ins] (blue), [Ins-Dis] (red) and [Sem-Dis] (green).  The 
objective of the analysis we present in this present 
was to understand precisely the nature and dynamics 
of these planes during the resolution of a series of 
geometric problems.

DIDACTIC ANALYSIS OF A TEACHING 
SEQUENCE THROUGH THE GWS VIEWPOINT 

According to the theoretical framework, we assume 
that a geometric work can be considered “complete” 
when a geometric entity is built throughout the three 
semiotic, instrumental, and discursive dimensions 
of GWS. For this reason, a geometric entity, here the 

“circle”, will be considered a triplet [sign, artefact (ma-
terial or symbolic), property]. As a result, building a 
progression in geometry first requires the identifica-
tion of key geometric entities in the curriculum and 
then the analysis of the work associated with these 
entities in terms of GWS dimensions. We focus here 
only on the second point related to a long teaching 
sequence on the circle entity.  

The selected sequence “Le cercle sans tourner en 
rond” was conceived and implemented by two well-
known and experienced French scholars in the do-
main, Fénichel & Taveau (2009). It has been tested in 
various classrooms under different conditions and 
is relatively known by teacher trainers. Dedicated 
to Grade 4 – 6 students, the whole program is very 
ambitious and includes eight sessions – from half an 
hour to one hour – which can be administered over 
three months according to a spiral program. The main 
objectives of the sequence are to introduce the global 
notion of circle as the set of all points equidistant from 
a given point, the centre; to use this property to solve 
distance problems; to relate it to construction with 
compass used also to transfer distances. According 
to our analysis, the “circle” entity targeted by the 
sequence can be described with the triplet [circle as 
drawing, compass, equal distance].   

Figure 2: GWS vertical planes
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Some activities of the sequence have been chosen for 
a common analysis with the 27 teacher educators in 
a working group setting. We here only report on the 
activities corresponding to classroom sessions 1, 2, 
3, 4 and 7.2 Each of the five selected sessions has been 
analysed using the GWS model. In particular, partic-
ipants in the working group were asked to identify, if 
possible, the different input dimensions (semiotic, in-
strumental, discursive) in the geometric work and the 
favoured planes (plane [Sem-Ins], plane [Sem-Dis] and/
or plane [Ins-Dis]). This identification highlights the 
dynamics of the geometric work during the different 
studied sessions and allows for the characterization 
of the overall implemented GWS.  

We first detail the analysis of session 1.  

The objective of the session is to highlight the fact that 
the circle is the set of all points equidistant from a giv-
en point, the centre. A varied amount of material and 
artefacts is made available: blank and tracing paper, 
twine, square set, compass...

Students are asked to draw 15 points at a given dis-
tance from a point A. During this phase of action, they 
need to place a point A on the white sheet and then a 
point B. After that, they need to place 15 points “sit-
uated at a distance from A which is the same as the 
distance of B from A”. The geometric work starts in 
the plane [Sem-Ins]. 

Then, during a phase of formulation, some students’ 
productions are displayed on the blackboard and dis-
cussed. The strategies they used to carry out the task 
are clarified and formulated. The objective is first to 
validate the notion of circle as discussed by the pu-
pils based on the pupils’ constructions. The notion of 
equidistance to a given point is expected to emerge. 
Some geometric terms are institutionalized and the 
characteristic property of the circle is given by the 

teacher and enriches the theoretical referential in 
the GWS. 

The analysis made by the teacher educators is sum-
marised in the following table (Table 1). 

We have carried out the same work with other ses-
sions. The different forms of the geometric work 
identified in the five sessions are presented in the 
following table and linked to a GWS diagram (Table 2). 

To summarise, the geometric work is centred on the 
development of the notion of “circle” viewed as the 
set of all points equidistant from a given point and it 
is closely linked to the use of the compass. The epis-
temological plane can be defined by the triplet [circle 
as drawing, compass, and equal distance]. 

The geometric work conceived by the designers of 
the sequence is based, firstly, on the material artefact 
to bring out a property and enrich the set of theoret-
ical tools. Then, the material artefact is set aside to 
promote a discursive reasoning using the theoretical 
notion of circle associated with the notion of equal 
distance. 

At the end of the sequence, a return to the material 
artefact is operated to introduce a new use of the 
compass, which triggers a new circulation of the ge-
ometric work trough the different vertical planes. All 
the aspects of the work pertain to Geometry I but the 
sequence clearly paves the way for a prospective work 
in Geometry II at secondary school.

Teacher trainer viewpoints  
As mentioned above, the global analysis of the se-
quence has first been conducted by the two authors 
and then some of the activities have been chosen for a 
common work with teacher trainers during a working 
group: that ensures a stronger relevance to the final 

Sessions Input in geometric work GWS Diagrams

Session 1
The circle 
defined as 
the set of all 
points equi-
distant from 
a given point, 
the centre

The geometric work starts in the plane [Sem-Ins] and is conclud-
ed by the enunciation of the characteristic property of the circle 
which enriches the theoretical referential in the GWS. Properties 
and definitions of various figures used in this Grade are included 
in the referential.
At this level, figures are generally introduced by “ostension”; it is 
worth noticing that such is not the case here: the proposed session 
clearly contrasts with traditional classroom sessions.  

[Sem-Ins] → Dis

Table 1: The analysis of session 1 
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analysis which is based on the convergence of the dif-
ferent contributions made by participants. 

In relation to in-service training and our initial 
question, the identification of the types of input in 
geometry seems successful in helping teacher train-
ers consider an overall progression in the teaching 
of geometry based on the organisation of a set of ge-
ometric tasks to promote a complete geometric work 

along the three GWS dimensions.  Teacher trainers 
agree with this idea and underline that it is possible 
to have a global vision of geometry thanks to the GWS 
model. Moreover, teacher trainers have been aware 
of the importance of linking the different dimensions 
(semiotic, instrumental and discursive) within the 
geometric work.  

Sessions Input in geometric work GWS Diagrams

Session 2
Geometric prob-
lem solving with 
use of the stated 
property during 
session 1

The new theoretical property needs to be used to solve a prob-
lem.  The input into the work is first rather semiotic but the 
use of a discursive proof is required to validate the solution. 
The use of drawing instruments strongly depends on the pre-
vious identification of the characteristic property of the circle. 
Artefacts are proposed, in option, as verification tools after the 
task is solved in the plane [Sem-Dis].

[Sem-Dis] (→ Ins)

Session 3
Giving sense to 
Session 1 proper-
ty by using it on 
freehand draw-
ings. 

The geometric work is this time in the plane [Sem-Dis] but with 
a clear discursive input because freehand drawings are used 
and can be considered as symbolic signs. Drawing instruments 
are set aside. As a consequence, the discursive dimension 
is now essential to the validation of the solution. The idea is 
to show that the “circle” is a theoretical object grounded in a 
characteristic property and not only an empirical object per-
ceptively and instrumentally linked to a drawing. Validation 
is based on a discursive proof within Geometry I and appro-
priate to the primary school level, but it is paving the way for 
Geometry II, which is the challenge of geometry teaching in 
French secondary education. 
As was the case previously, the authors still give students the 
opportunity to return to the experimental validation if it is 
necessary for their understanding. 

[Sem-Dis]

Session 4
Discovering cir-
cle and disk uses 
to solve equal 
distances prob-
lems.

This time, the activity supposes a construction after modelling 
the problem.  Once the task is interpreted, the geometric work 
is mainly located in the plane [Dis-Ins] using the theoretical 
referential: the characteristic property of the circle appears as 
a theoretical tool to build the solution. The data are provided 
in the semiotic register and the circle property ensures the 
validity of the solution.

[Sem-Dis]→[Dis-Ins]

Session 7
Triangle con-
struction us-
ing the circle 
property  and 
introduction of 
the compass as 
length-transfer-
ring tool 

The compass will acquire a new function. Initially considered 
as a tool dedicated to the construction of circles, the compass is 
used to transfer lengths and construct other geometric figures 
such as triangles. An enlargement of the use of the artefact is 
intended and it is related to the theoretical referential and the 
“circle” figure. The geometric work starts in the plane [Sem-
Dis] and then enriches the instrumental dimension.

[Sem-Dis] → Ins

Table 2: The analysis of the other sessions
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Teacher trainers insist on the fact that an analysis 
using the GWS model is relevant to highlight the dy-
namic evolution of the mathematical work during 
the different sessions. The evolution of the work is 
illustrated in the following global diagram (Figure 3).

CONCLUSION

Our initial question was how to devise an overall 
progression in the teaching of geometry at primary 
school. As the issue is very complex even for teacher 
trainers, we started our study by working with them 
during a workshop. To deal with this issue, we intro-
duced a twofold approach: first, the foremost mathe-
matical entities targeted by the curriculum need to 
be identified; then, activities and tasks related to a 
specific entity can be analysed according GWS model 
to ensure a global consistency. In the paper, we fo-
cused on the analysis of a sequence of activities on the 

“circle” entity to identify the different favoured GWS 
dimensions. The GWS which appear in the selected 
sequence are structured around a set of tasks related 
to the triplet [circle-drawing, compass, equal distance]. 
This set of tasks mobilises different articulations3 be-
tween the three vertical planes of the GWS diagram 
and gives birth to a real and complete dynamic cycle 
in the geometric work. 

According to the teacher trainers involved in the study, 
this approach gives a global vision of the geometric 
work and highlights the choices of the designers. It 
allows teachers to assess the consistency of a sequence 
and permits them to discuss the choices made. For 
instance, some teacher trainers did not agree with 
the idea of focusing on the characteristic property 
of the circle at this level of schooling. We may then 
wonder what are the consequences of other inputs 
giving priority to the use of software or spatial activi-
ty on the geometric work. With the GWS tool, it seems 

possible to discuss the « best dynamics » to favour the 
geometric work among teachers and pupils. 

The question remains of the use of the model in teach-
er training and teachers’ practice. We hypothesize 
that it is more adapted to teacher trainers than to 
teachers. Indeed, the priority in teacher education 
is to explain the mathematical content involved in 
teaching sequences but our reflection on the didactic 
transposition of the GWS theoretical model should 
be furthered and is one of our prospective research 
topics. What is clear from our experience is that it is 
not necessarily required to present the GWS model in 
depth to teacher trainers: a short introduction based 
on the GWS diagram has enabled us to conduct our 
analysis with convincing results. 
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ENDNOTES

1. For readers interested in the development of the 
model see the web-page http://turing.scedu.umon-
treal.ca/etm/documents/Actes-ETM3.pdf where the 
proceedings of ETM3 can be found.

2. The whole sequence is online on Alain Kuzniak’s 
web-page: http://www.irem.univ-paris-diderot.
fr/~kuzniak/publi/Publications. Even though the text 
is in French, we hope that the reader can understand 
the main phases of the different geometrical activities.

3. These smooth and graduate transitions between 
planes or dimensions are called “fibrations” in the 
GWS model.

http://turing.scedu.umontreal.ca/etm/documents/Actes-ETM3.pdf
http://turing.scedu.umontreal.ca/etm/documents/Actes-ETM3.pdf
http://www.irem.univ-paris-diderot.fr/~kuzniak/publi/Publications
http://www.irem.univ-paris-diderot.fr/~kuzniak/publi/Publications
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This study aims to understand the contributions of 
collective moments of whole-group discussions for the 
construction of didactical pathways, based on geometric 
tasks experimented with children in the 2nd and 3rd 
years of primary school (6–10 years old). The experiment 
contributes to the understanding of Battista’s model in 
its two dimensions of spatial and geometric structur-
ing as well as the relationship between them (Battista, 
2008). The data we gathered, although its analysis is still 
in progress, help us to build a framework from which 
it seems possible to identify a connection between the 
individual forms of mathematical knowledge for each 
student, the taken-as-shared mathematical practices 
of the classroom community and the taken-as-shared 
mathematical practices of wider society (Cobb, Yackel, 
& Wood, 1992).

Keywords: Spatial structuring, geometric structuring, 

whole-group discussions.

INTRODUCTION 

In the Portuguese educational context the teaching 
of elementary geometry is still very poor and has 
adverse consequences for future teachers (Tempera, 
2010). As pre-service and in-service teacher educators 
we recognize the need to enhance this area, seeking 
to produce useful materials for teacher education. 
These requirements are consistent with research in-
terests in this area (Battista, 2007).

This communication is part of a PhD research project 
of the first author whose purpose is to study the teach-
ing and learning of geometry in the early years. Its 
main objective was to design, test and evaluate teach-
ing didactical pathways in Geometry and Geometric 
Measure for the first cycle of basic education (6 to 
10 years old children). Our investigation, a design 

research (Van den Akker, Gravemeijer, McKenney, 
& Nieveen, 2006), was guided by a framework in 
three phases (Jackson, Garrison, Wilson, Gibbons, & 
Shahan, 2013). This framework, which arises from 
Stein, Smith, Henningsen and Silver (2000), includes 
the installation of a task, phase 1, and its implemen-
tation, split in two distinct components, phase 2, the 
moment when students work on the task, and phase 3, 
the moment of whole group discussion. Progressively, 
implementing tasks in different classes phase 3 has 
gained greater importance increasing the role of the 
researcher as a teacher, but always acting together 
with the class teachers.

The objective of this study is to identify and un-
derstand the contributions of collective moments 
of whole-group discussions for the construction of 
didactical pathways, based on tasks focused on the 
spatial and geometric structuring (Battista, 2008). We 
try to highlight the importance of these moments and 
some critical aspects that help to decide the orienta-
tion of the pathways and to establish the links between 
the tasks that integrate them.

THEORETICAL CONSIDERATIONS 

The research is based on three fundamental axes: the 
structuring of geometric reasoning (Battista, 2008; 
Freudenthal, 1991); didactical pathways based on 
hypothetical learning trajectories (Confrey & Kazak, 
2006; Gravemeijer, 1998; Simon, 1995); implementa-
tion of mathematical tasks (Jackson et al., 2013; Stein 
et al., 2000; Yackel & Cobb, 1996).

We adopt the structuring perspective of Battista 
(2008) involving three items: (a) Spatial structuring; 
(b) Geometric structuring; and (c) Logical/Axiomatic 
structuring. At this level of instruction we only face 
the first two, although we have in mind that the devel-

mailto:michael.smith@yahoo.com
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opment of good formal logical structuring depends on 
a good geometrical structuring, as the development of 
the later depends on the quality of spatial structuring. 
According to Battista:

Spatial structuring determines a person’s per-
ception/conception of an object’s natures or 
shape by identifying its spatial components, 
combining components into spatial composites, 
and establishing interrelationships between and 
among components and composites. (p. 138)

For instance, a geoboard is an instrument of spatial 
structuring through an orthogonal normal structure. 
We use it to spatially structure rectangles. If the sides 
of the rectangle coincide with the lines, structuring 
is immediate. If not, it is necessary some kind of visu-
alization feature to spatial structuring the rectangle. 
On the other hand, analyzing a number of different 
rectangles and identifying the existence of four right 
angles as invariant we are geometric structuring rec-
tangles. This way we are constructing a rectangle 
model. This conceptual scheme allows the square to 
be recognized as a rectangle. This example illustrates, 
as Battista says, how “for a geometric structuring to 
make sense to a person, it must evoke an appropriate 
spatial structuring for the person” (p. 138).

In our investigation, we follow the visualization per-
spective of Presmeg (1997):

Visualization is taken to include processes of con-
structing and transforming both visual mental 
imagery and all of the inscriptions of a spatial 
nature that may be implicated in doing mathe-
matics. (p. 304)

In the context of geometry, the need for research on 
the nature of tasks that develop spatial visualization 
skills and visualization is recognized for the devel-
opment of spatial and geometric structuring. We 
connect this with learning trajectories. We use the 
name of didactical pathways to identify a set of tasks 
suitably structured, based on hypothetical learning 
trajectories, after experimental use in a classroom 
which allows its refinement from experimentation. 
In a way, a didactical pathway can be considered as 
a photograph of a journey of learning and teaching, 
already performed, including their reflective analysis.

We attend to students different roles and responsi-
bilities, distinguishing thinking responsibility and 
participation responsibility (Wood, 1999; Wood & 
Turner-Vorbek, 1999), the sense of orchestrating to 
promote productive classroom discussions (Smith & 
Stein, 2011; Stein & Smith, 1998; Stein et al., 2008), the 
role and kind of questions (clarification, argumenta-
tion, confirmation) and their importance to obtain 
productive exchanges (Boaler & Brodie, 2004; Wood 
& Turner-Vorbek, 1999).

METHOD

Concerning the method, this research is an education-
al design research according to Van den Akker and col-
leagues (2006). At the end of the fieldwork conducted 
by the first author, we managed to get four didactical 
pathways. Many of the tasks have been tried more 
than once, in different classes and years of schooling, 
with particular focus in the 2nd and 3rd years. The 
goal was to keep improving their implementation, as 
well as sequencing. Each path operates as a learning 
cycle (Simon, 1995) and the development of research 
constitutes itself as a cumulative cyclic process where 
interpretation of a trajectory provides added value 
for the planning, experience, reflection and inter-
pretation of the following cycles. So intervention di-
mensions, iteration and orientation processes were 
valued. The introduction of new tasks was one of the 
important aspects in the iteration of cycles of expe-
riences.

The tasks are of an open nature and provide collec-
tive discussions based on students’ productions. They 
provide an easy adhesion because their understand-
ing is very simple and students can reason and act 
in a personally meaningful manner (Gravemeijer & 
Cobb, 2006). Students worked first individually and 
the tasks were performed with geoboard or dotted 
paper as a visual thinking support. 

The fieldwork was divided into two periods. The 2nd 
one is marked by a dual role of the researcher who 
assumed the leadership of phase 3. This change oc-
curred because during the 1st period collective dis-
cussions were very poor or nonexistent. This change 
was possible due to the established relationship with 
the four teachers involved as well as with their stu-
dents. In the second period, which occurred in two 
consecutive school years, all tasks have been tried 
with the same students from one of the classes in their 
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2nd (episode 1) and 3rd years (episode 2) of schooling. 
These lessons were recorded on video. Subsequently, 
we identified several relevant episodes of collective 
discussion as the unit of analysis. 

EXAMPLES, COUNTEREXAMPLES, SPATIAL 
AND GEOMETRIC STRUCTURING

The following two episodes pretend to illustrate the 
role of examples constructed by students, as well as of 
counterexamples. They also illustrate various aspects 
of spatial and geometric structuring present in the 
tasks and the importance of giving them prominence 
in geometric figures as the work was going on.

Episode 1 – “Almost equal”
The proposed task consisted of identifying pairs of 
congruent figures. Two squares raised some contro-
versy. The researcher asked the students if the two last 
copies were or not congruent (Figure 1). Almost all 
students said they were equal, although one student 
said they were not. The researcher asked one student, 

Beatriz, to show her colleagues why they were equal.

As we expected this could happen, we prepared two 
acetates with figures and we gave them to Beatriz to 
experiment, corresponding to the practice of antici-
pating (Smith & Stein, 2011). She tried to overlap them, 
at the overhead projector, so they matched. Beatriz 
said nothing, but went around the acetates to get the 
match. During this process the other students ob-
served. The researcher asked “who does still think 
that the two squares are equal?”. Several students 
were saying “they are not equal”. However, Beatriz 
remained stubbornly trying to match them. The re-
searcher asked students to argue:

Ana: One of the squares is larger than the 
other.

Leonor: We can’t put one above the other.

Joel: The number of dots inside the square is 
different. One square has 4 points and 
the other 5.

We have three different validations and the last one is 
more elaborate, denoting a more refined visualization. 
Leonor and Ana still seem to think based on the figure 
as a whole, while Joel shows the ability to distinguish 
the underlying structure to the figure to conclude 
that the two squares can not be congruent. Should we 
follow the reasoning of this student and share it? What 
is the contribution of this reasoning to the geometric 
structuring? This tension between taking advantage 
of good individual contributions and deciding the 
orientation of the collective movement was present in 
several episodes. It is the basis of significant dilemmas 
that teachers face during practice classroom (Carter & 
Richards, 1999; Wood & Turner-Vorbek, 1999) and act-
ing as a filter of students’ contributions (Sherin, 2002).

Episode 2 – “The rectangle that is not rectangle” 
This second episode occurred later. It takes place in 
another pathway in which quadrilaterals have been 
worked as composite figures, highlighting its compo-
nents and seeking to establish simple relationships 
between these elements, namely the angles. The path-
way consisted of six tasks that allowed four moments 
of collective discussion. This episode occurred at the 
end of the second task and the discussion was about 
the students’ work conducted in tasks 1 and 2. The task 
was to find out as much of squares and rectangles on 
geoboard. Students’ works were exhibited with the 
solutions they found for squares and rectangles.

In the first part of the discussion the researcher and 
the teacher tried to interest students on the discussion 
they intended to create, as the appropriation by the 
students of social rules of whole-group discussion is 
a slow process and built over several experiments 
(Wood & Turner-Vorbeck, 1999). The discussion be-
gan with an appeal to respect different opinions, high-
lighting the value of students’ opinions, with attention 
and care to not repeat what others have said which is 
very common among small children.

The researcher asked the students if they had any dif-
ferent figure, squares or rectangles. Two students, 
Inês and Beatriz, raised their fingers. They went to 
the black board to expose their magnified figures. This 
preparation of figures occurred during phase 2, cor-
responding to the practice of selecting, according to 

Figure 1: Squares that generated the controversy surrounding 

the congruence
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Smith and Stein (2011), as we already knew that these 
figures would be important for the discussion. Those 
students thought that they had made a rectangle, how-
ever, when they showed it to their colleagues these at 
once identified it as a parallelogram.

Two students in chorus:   
It is a parallelogram.

The researcher asked students to remain calm and 
asked Inês to justify why she thought her figure was 
a rectangle. The episode evolved with a long dialogue 
with many voices involving several students trying 
to show why Inês’ parallelogram was not a rectangle.

Hugo:  It is so because it has two beaks on one 
side.

Hugo shows with his fingers and surrounds the paral-
lelogram. He points to two opposite sides and says they 
were inclined compared to the rectangle he considers 
not to be inclined. Hugo must reinforce the compar-
ison with another figure, a rectangle in prototypical 
position “on high”, identifying important elements for 
this decision. Given his difficulty in justifying his rea-
soning, the researcher decided to ask another student.

Duarte:  It is not a rectangle because it is wry. 
Instead of being like this, is like this.

Duarte accompanied what he was saying with gestures 
with his hands (Figure 2). First he made with the hands 
two parallel segments, ||, then he made two inclined 
parallel threads, //, and surrounded the parallelogram 
with his fingers. Moreover, he was able to do with his 
hands the necessary modification to transform the 
parallelogram into a rectangle, the angle of two con-
secutive sides should be a right angle. He compares 
with another rectangle exposed in a non-prototypical 
position, that is, “tilted”. Although Duarte showed that 

he had very clear ideas about geometric justifications, 
he was not able to fully verbalize them.

All this discussion focused on the observation and 
analysis of quadrilaterals, showed the need to work 
more aspects of spatial structuring of quadrilater-
als and the need to give more attention to spatial 
structuring, required for geometric structuring of 
quadrilaterals (Battista, 2008). It also emphasizes the 
requirement to pay attention to the elements that com-
pose a figure, in this case the angles and sides. It also 
identified difficulties in verbalizing the reasoning, 
revealing that in most cases the mental images of stu-
dents are correct and appropriate to their arguments. 

This episode revealed the need to enhance students’ 
language and to provide them with a simple tool of 
visualization to highlight and compare angles. This 
object, which we call “right angles’ detector”, is not 
more than a corner of an A4 sheet cut so as to be easily 
manipulated and had already been widely used in pre-
vious experiments of these tasks. This episode marked 
guidance route for the sequence of this didactical path-
way, which focused mainly on the spatial structuring. 
The following tasks were directed to discovering and 
comparing angles in quadrilaterals. Thus highlights 
the focus on the right angle as a reference for spatial 
and geometric structuring, without even resorting 
to any measurement system to identify acute, obtuse 
and right angles in plane geometric figures.

Both described episodes, as well as many others expe-
rienced, illustrate how students gradually assumed 
responsibility for discovering examples and counter-
examples, incorrect or not complying figures with the 
established conditions, families of quadrilaterals in 
hierarchical classification. This was found successful 
to give students leadership in validation of mathemat-
ical knowledge in spatial and geometric structuring 
tasks.

DISCUSSION 

We follow two lines of discussion, the first about ge-
ometry and the other on social constructivist aspects 
of learning.

We consider that the data collected value the potential 
of the structuring model of Battista (2007, 2008), and 
help us to better understand spatial and geometric 
structuring, as well as the relation among them. We 

Figure 2: The controversial parallelogram and the rectangle Duarte 

used to compare
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emphasize the importance of visualization in spatial 
structuring of quadrilaterals and the need to find 
strategies and objects to support visualization, for 
example, dot papers, colouring the angles, the  “right 
angles detector”. We saw the importance of structur-
ing quadrilaterals as composed by four angles figures, 
especially the rectangle as a four right angles com-
posite figure, (Battista, 2008), aimed to structure each 
of the various types of quadrilaterals in hierarchi-
cal classification (de Villiers, 1994). We emphasize 
the need to incorporate several spatial structuring 
models to obtain personal’s mental models that deter-
mines her or his own way of thinking (Battista, 2008). 

With regard to the geometrical structure, it seems to 
give new contributions for the classification of angles 
embedded in composite figures (quadrilaterals) and 
for an understanding of the geometric structure of 
quadrilateral on several levels (isolated figure, as part 
of a class, class relation). The examples we worked 
on showed us it is possible to implement meaning-
ful tasks for young children, demanding in terms of 
geometric structuring (congruence of figures, un-
derstanding of a figure as part of a class, the class un-
derstanding, organization of quadrilaterals in hier-
archical classes) from didactical pathways. Applying 
these pathways, with special attention to the collective 
moments of whole-group discussions proved to be a 
key factor in design tasks and for taking decisions 
for tasks sequence. 

Second part of discussion is about social construc-
tivist aspects of learning. The data collected makes 
us aware of the challenges associated with a practice 
focused on student work when you want them to be-
come providers of mathematical knowledge (Wood & 
Turner-Vorbeck, 1999), and seeks a balance between 

the mathematical value of the work of each student 
and ensuring that this work is in the mathematical 
point of view recognized and accepted (Cobb et al., 
1992; Yackel & Cobb, 1996). We are in the process of 
establishing indicators and frameworks based on vid-
eotaped episodes. We are trying to construct a frame-
work on learning environment, roles and responsi-
bilities for learning in whole-group discussions from 
inquiry tasks (Figure 3).

Comparing columns A and B (Figure 3), we face the 
relation between teacher and students. Teacher action 
is more like a double mirror reflecting but also allow-
ing seeing through it. As Wood and Turner-Vorbeck 
(1999) says this is a matter of ways of structuring so-
cial interaction and discourse to create contexts for 
learners’ personal construction of meaning.  

The parallel that may exist between both columns and 
the approximation of the identified practices, high-
light the student’s responsibility in the construction 
of mathematical knowledge. It seems therefore that 
this work getting closer forms of mathematical knowl-
edge for each individual student, shared mathemati-
cal practices of the community classroom and shared 
mathematical practices of wider society (Cobb et al., 
1992).

The lived episodes help us to understand the re-
quirement of the teacher role at moments of whole 
group discussions. This requirement is expressed 
in simultaneous attention needed to give individual 
student’s contributions and the collective movement 
that teacher has to provide so the whole class advanc-
es, ensuring that the ideas and processes at play are 
widely accepted as having mathematical value and 
are necessary for future school mathematics learn-

Teacher responsibility (A) Students responsibility (B)

Taken-as-shared 
Mathematical practices 
of the community class-

room
(Cobb et al., 1992)

Discursive practices
Ask question

Discursive practices
Validation of own or colleagues 

knowledge 

Responsibility for think-
ing

(Wood & Turner-
Vorbeck, 1999)

(Smith & Stein, 2011)

Reflective practices
Decisions on the progress of the 

discussion

Reflective practices
(Emerging)

Collective discussion 
management

(Oliveira, Menezes, & 
Canavarro, 2013)

Interactive practices
Student participation management

Interactive practices
Engagement in discussion Responsibility for partic-

ipation
(Wood & Turner-

Vorbeck, 1999)

Reflective practices
(Underlie teacher decisions on 

students’ participation)

Reflective practices
(Underlie initiatives and actions of 

students)

Figure 3: Framework for whole-group discussions from inquiry tasks (in construction) 
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ing. It also illustrates the critical importance of col-
lective moments to construct a challenging learning 
environment for students, giving them autonomy 
and authority in the validation of ideas and mathe-
matical knowledge, their own and those of colleagues. 
Regarding the teacher’s role the indicators of orches-
tration practices are relevant (Smith & Stein, 2011), 
questions with potential (Boaler & Brodie, 2004) and 
dilemmas (Carter & Richards, 1999; Wood & Turner-
Vorbeck, 1999). 

As a final idea for this discussion, we return to the in-
itial purpose of this research to recall the importance 
this experience has taken to help design and evaluate 
teaching pathways in geometry, showing as one of the 
critical aspects of these pathways the links that can 
be established between the tasks that integrate them.
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In this article, we study the issues in making students 
use deductive geometry, both from epistemological and 
cognitive points of view. We show that working on ge-
ometrical objects needs at the same time working on 
diagrams in a specific way (instrumental and dimen-
sional deconstruction), and that this can be trained by 
specific tasks. In this process, instrumental work is a 
crucial point of the work and, using the cK¢ model, we 
characterize two instrumental deconstruction that are 
involved in this evolution of the geometrical work.

Keywords: Dynamic 3D geometry, visualization, 

geometrical paradigm, dimensional deconstruction, cK¢ 

model.

INTRODUCTION

The issue of pupils using diagrams in order to solve 
deductive geometry problems is well known and has 
been studied a lot in this working group: they can 
read results so that mathematical proof is useless to 
them. We presented (Mithalal, 2009) preliminary re-
sults about didactical situations, based on Cabri 3D 
(a 3D Dynamic Geometry Environment), that aimed 
at making students use natural axiomatic geometry 
(Houdement & Kuzkiak, 2006). We shown (Mithalal, 
2009, 2010) that such conditions leaded them to work 
on geometrical objects, and not only on diagrams. 
At first sight, making them use deductive reasoning 
could be considered as the major part of this evolution. 
In this article we will show that, in fact, instrumen-
tal activity should be considered as a pivot point that 
makes the whole process possible. We use Duval’s 
(2005) framework, and show that instrumental de-
construction is the link between iconic and non-icon-
ic visualization. We use the cK¢ model (Balacheff & 
Margolinas, 2003) to combine an epistemological and 
a cognitive understanding of geometrical activity 
into an operational tool for its precise analysis. We 

show that two instrumental deconstructions are to be 
distinguished. On the one hand, there are only small 
differences between them, but on the other hand mov-
ing from the first to the second one is fundamental in 
this process. At the end, deductive geometry turns 
to be meaningful because of new conceptions about 
construction tasks.

USING DIAGRAMS FOR DEDUCTIVE GEOMETRY

Epistemological and cognitive points of view
Using diagrams is very ambiguous for pupils when 
learning deductive geometry: they are used to reading 
results on it, but suddenly this turns to be forbidden. 
Now, they have to use diagrams for heuristic work but 
not for proving, which is very confusing as they see 
what will take much time to be proved. Nevertheless, 
many authors, such as Parzysz (1988), Chaachoua 
(1997) or Jahnke (2007), have shown that that geom-
etry involves a mix of practical activities and axio-
matic reasoning, and that “inventing hypothesis and 
testing their consequences is more productive for 
the understanding of the epistemological proof than 
forming elaborate chain of deduction” (Jahnke, 2007, 
p. 79). Working with diagrams is, then, fundamental.

Laborde and Capponi (1994) made a distinction be-
tween drawings and figures: a drawing is a graphi-
cal object (hand-drawn shape, diagram, digital rep-
resentation, manipulative....), while a figure is the 
matching between an ideal object and a set of draw-
ings that represent it correctly. This emphasizes that 
a drawing can be considered for itself or as a rep-
resentation of something, and extends Fischbein’s 
(1993) theory of figural concepts. Considering that our 
question is now “how could we make pupils work on fig-
ures instead of drawings?”, two kind of issues must be 
take into account: epistemological and cognitive ones. 
We already gave a few words about epistemological 
issues, and we will use the well known framework of 
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geometrical paradigms (Houdement & Kuzniak, 2003, 
2006) to express it: pupils have to move from natural 
geometry (GI) to natural axiomatic geometry (GII) 
which is about figures.

Cognitive point of view
A cognitive point of view is essential, as it explains 
why using drawings is unavoidable, and why this is so 
hard to perform. Chaachoua (1997, pp. 32–42) showed 
that drawings play fundamental roles in the geomet-
rical activity – which not only includes the resolution 
process –, both for teachers and learners. In order for 
the resolution to be correctly performed, drawings 
must satisfy three conditions: (i) they have to display 
geometrical properties the text doesn’t necessarily 
mention (ii) they may carry out an illustration func-
tion, to illustrate either the problem’s statements, the 
resolution steps or the final solution (iii) they may 
carry out an experimentation function, so that the 

“geometer” can work  on the drawing, which leads to 
perceive new sub-figures or relations, to make or eval-
uate conjectures, etc. Therefore, to be able to work 
with drawings is fundamental, and teaching geometry 
without using drawings would be a nonsense.

However, Duval (2005) showed that this operations 
are very hard to perform, because of visualization 
issues. He explains that there are two ways in which 
one sees a drawing: the iconic and the non-iconic vis-
ualization. Iconic Visualization (I.V.) means that the 
recognition of an object is due to the similarity of its 
shape with an already known object: if something 
looks like a square, it is one of those. A well-known 
consequence is the obstacle of typical configura-
tions, which leads some pupils to identify a square 
as a rhombus, but not a square, because its position is 
the typical position of a rhombus (Figure 1). Another 
consequence is that you cannot modify or analyse the 
drawings: adding lines changes the shape, and then 
the nature of the objects decomposing the object into 
lines is impossible as nothing but the global shape is 

perceived. This second consequence, more subtle, is 
fundamental for deductive geometry which involves 
experimental work and analytic study of the drawings.

With Non-Iconic Visualization (NI.V.), one consid-
ers that a drawing is nothing but one of the rep-
resentations of a geometrical object, and there is no 
contradiction between modifying the drawing and 
considering that it remains a representation of the 
same object. Moreover, the general shape is no longer 
a fundamental characteristic of the drawing, which 
results of assembling lower dimension components, 
the figural units (such as points, lines, segments, cir-
cles, etc.) Then, visualization is based on three oper-
ations: mereological deconstruction, instrumental 
deconstruction (one answer to the following question 

“How is it possible to construct this drawing with a giv-
en set of tools?”) and dimensional deconstruction (a 
discursive process in which a figure is seen as a set of 
figural units linked by geometrical properties, which 
leads to the geometrical object). Mathematical proof 
becomes meaningful to the pupils when they use 
non-iconic visualization and dimensional deconstruc-
tion. Nevertheless, Duval (2005, pp. 45–48) claimed 
that going from iconic to non-iconic visualization is 
neither easy nor natural. We showed (Mithalal, 2009, 
2010) with space geometry, iconic visualization is no 
longer efficient. Construction tasks with 3D DGEs 
make 10th grade students use dimensional decon-
struction. In this article, we assume this evolution 
is not a revolution, and we will study how continu-
ous this process is. More precisely, we will show that 
instrumental deconstruction can be related both to 
iconic and non-iconic visualization, depending of tiny 
differences, and helps the pupils’ activity evolution.

GOING FROM ICONIC VISUALIZATION 
TO DIMENSIONAL DECONSTRUCTION: 
AN EXPERIMENTAL STUDY

The following case study aims at describing such a 
continuum and the role of instrumental deconstruc-
tion. We will use the results of an experiment more 
precisely exposed in Mithalal (2010), that consists of 
a knowledge diagnosis simple construction task.

Let  ABCDEHGF1F2F3 be a truncated cube (Figure 2), 
the pupils had to find as many ways as possible to 
construct the missing vertex, and to verify that the 
cube was still a cube when dragging point A to modify 
its size: the construction procedure had to be based, 

Figure 1: A square, a rhombus and “something from a square”  

(Iconic visualization)
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explicitly or implicitly, on geometrical properties so 
that the result was robust (Healy, 1994). They were 
asked to describe each method in a few words.

Interpreting the question with the various points of 
view we mentioned led to distinct aims and methods. 
For instance, with an “iconic” interpretation, the aim 
was to construct the missing part of the shape with-
out considering geometrical properties, whereas a 

“non-iconic” interpretation should lead to use the cube 
properties (such as symmetry) to construct nothing 
but F. We identified (Mithalal, 2010) four distinct in-
terpretations corresponding to specific resolution 
strategies: (1) to draw the missing part so that the re-
sult looks like a cube (iconic) (2) to draw the missing 
part so that the result looks like a cube and with the 
same length as the original (iconic) (3) to draw a point 
using a construction procedure that fits with a cube 
(instrumental deconstruction) (4) to construct a point 
linked to the truncated cube with its geometrical prop-
erties (dimensional deconstruction)

Instrumental deconstruction: 
Connected both to I.V. and to NI.V.
We propose now to illustrate the evolutions of two 
groups’ geometrical work, representative of usual 
evolutions: on the one hand Pierre and Ludovic, mov-
ing from iconic visualization to instrumental decon-
struction, on the other hand Paul, Julie and Marie, 
whose interpretation of the task went from instru-
mental (3rd strategy) to dimensional deconstruction 
(4th strategy). Pierre and Ludovic’s aim was to con-
struct the shape: “Why do you absolutely want to use 

‘triangle’?” – “Because it is a triangle!” (5’43) They spent 
about 25 minutes trying to put a point at the right 
place, but this is almost impossible. They concluded 
so after multiple trials and viewpoint changes, and 
decided that they needed new methods: 

16’06 Ludovic:  Anyway, we can’t see anything. 

21’57 Pierre:  It looked good, but when we 
move it, it looks like nothing… 

26’22 Pierre:  We have to find another solution. 

Their aim still was that “it looks good”, but they real-
ised that the means for it had to be improved. Then, 
they tried various methods, including intersecting the 
three truncated edges (two would have been enough), 
constructing parallels, or trying to use vectors (they 
failed): they started using instrumental deconstruc-
tion. Very often, pupils interpreted robustness prop-
erties as mechanical ones, but did not connect it to 
geometrical properties. This is why Duval (2005) 
considered there was no link between the two decon-
structions. However Cabri 3D’s mechanical tools are 
based on geometry, so even “mechanical” problems 
make dimensional deconstruction very useful for 
anticipating the strategies and their validities, and 
for convincing each other. This happened with Marie, 
Paul and Julie. They first decided that “reconstructing 
the cube” was not sufficient and that they had to fill 
it in: it was a shape problem, and they used similar 
methods to the former group. 

13’19 Paul:  Maybe we should try with a 
point, just a point here, at the right place. 

13’24 Marie:  But in this case you leave it to 
chance!  

13’27 Paul:  No!  I mean, yes!  Well, you make 
it… 

Their problem was to be sure that the construction 
was good, and they eventually decided that it was “ap-
proximatively good”, which was enough for them. This 
is why they decided to use more sophisticated methods 
based on dimensional deconstructions of a cube, such 
as edges intersections or symmetry, but during half 
an hour the correctness was determined by the shape 
(iconic) and the robustness (instrumental). But the 
fact that a new method was really new turned to be 
a dimensional deconstruction problem. They previ-
ously constructed F by intersecting 3 edges (Figure 3, 
left). Then, they tried another solution, constructing 
the symetrical of the truncated cube, and using it to 
draw lines (Figure 3, 2nd & 3rd pictures).

25’46 Julie:  Look, you construct the same 
next to it. You’ll see, the shape will do 

Figure 2: The truncated cube pupils had to complete
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schlack, schlack, you see it will be a rhom-
bus. Then, you use from this one to that one. 
To its symmetrical. Then, you only have 
to do this… Then you create the line, and 
you’re done. 

31’50 Marie:  Wait, wait, because I just thought 
about it: the [second] cube is absolutely use-
less… 

32’14 Paul:  Yes, in fact you just did the same!  

32’15 Marie:  Exactly. That’s it, you just added 
a cube on the two sides. 

The result was visually very different, and so was the 
construction process, but they used the same lines: 
this statement made them decide this was not a new 
method, no matter they constructed it differently, be-
cause they used the same dimensional deconstruction 
of the cube. This shows how the two deconstructions 
can be strongly linked: the dimensional one is a good 
way for designing instrumental deconstruction and 
for controlling its validity, and reciprocally the instru-
mental problems make dimensional deconstruction 
(and deductive geometry) play a greater and greater 
role.

The fundamental role of Instrumental 
Deconstruction
The example we mentioned here show the two main 
reasons for the pupils to move from iconic to non-icon-
ic visualization. First, they needed to act more easily 
and to make vision more efficient. Then, they needed 
to better control and anticipate their actions, so that 
dimensional deconstruction was required to control 
instrumental processes. This points out that, in fact 
there are two kinds of instrumental deconstruction. 
The first one (we call it I.D.iv) is linked to iconic visu-
alization problems, and a second one (I.D.niv) is a way 
for dimensional deconstruction to be operative. More 
than these two processes, moving from I.D.iv to I.D.niv 
is fundamental because it strongly modifies the way 

problems are interpreted, becoming more theoret-
ical, which makes deductive geometry meaningful. 
Our aim is now to confirm this statement. External 
signs of these two instrumental deconstructions are 
usually very similar, which make it hard to analyse. 
Same processes might be used with different purpos-
es, and a similar aim may generate different strate-
gies, depending on the pupil’s knowledge, cognitive 
abilities, and interpretation. To get a more precise 
description of the deconstructions, we used the cK¢ 
model that perfectly fits the duality between acting 
and controlling the actions.

ANALYSING INSTRUMENTAL 
DECONSTRUCTION WITH CK¢

The cK¢ model
cK¢ is a knowledge model (Balacheff, 2011), linked to 
the Theory of Conceptual Fields (Vergnaud, 1990) and 
to the Theory of Didactical Situations (Brousseau, 
1997). Mathematical knowledge is characterized by 
the problem it solves. It is both determined by a sub-
ject and the milieu that generates the problem, so this 
is a [subject<>milieu] system balance, with an action/
feedback loop: the subject acts, and the feedback from 
the milieu has to be good. This is very local, deeply 
linked to a specific context, and Balacheff (2011) calls 
it conception. Then, knowledge is a set of one subject’s 
conceptions, and concept is a more general set of 

“knowledges”. The social, more general, textual con-
struct is called savoir. 

Conceptions are what pupils work with during prob-
lem solving, and the cK¢ model describes it as a col-
lection of 4 sets. P is a set of problems (pi). A problem 
is basically a disturbance of the system balance, and 
the conception may solve these problems. R is a set 
of operators (ri), that turn a problem into another 
problem belonging to P. It causes action, and this is 
the most directly visible part of the conception. L is 
a representation system for P and R expression. Σ is 
a control structure that ensures the conception is co-
herent and judges whether an operator has to be used 

Figure 3: Construction with three lines or with the symmetrical of the cube
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or not, whether a problem is solved or not… Σ is a set 
of controls (σi). As we can see, this is a very formal 
description, and it is essential to be conscious that 
it does not give any theoretical explanation for what 
happens, but it methodologically helps describing 
observations in a way that is supposed to be precise 
enough. In our case, L is always the same – drawings, 
oral language – and the possibilities of initial prob-
lems of a conception are well identified. The main 
evolution during the experiment is about R, Σ, and 
the relation between it.

Some nuances in very similar examples
Let us go back to the former examples. Pierre and 
Ludovic, Marie, Paul and Julie, used exactly the same 
construction process: construct the lines from the 
truncated edges, make the intersection, fill in the 
cube so that “it looks like a cube”. From a mathemat-
ical point of view, the third line was useless, so that 
we consider that all of them tried to draw the origi-
nal shape. Pierre and Ludovic “[had] to find another 
solution” (26’22) and reproduced what another group 
was doing (We’ll do the same as they do!, 27’25), but the 
shape was so important that they also constructed the 
three “missing” triangles. Marie, Paul and Julie tried 
this strategy at the beginning: 

3’11 Paul:  (Marie created a line on a trun-
cated edge.)  Tell me what you’re doing!  

3’20 Marie:  You perfectly see what I’m doing. 

3’22 Paul:  Yes, you put a line, but explain 
us what you want to do. 

3’28 Paul:  (Marie: created the two other 
lines.) Ok, and then?  

3’30 Marie:  And then, you think I’m stupid!  
Don’t you see the cube is done?  

Marie knew what she was doing and that the solution 
was right, because she used the properties of the cube 
to control, a priori, the construction process. This 

helps understand why she didn’t need visual control 
to validate the construction, and at the end little dif-
ferences are very meaningful.

In other words, the two procedures and the results 
were very similar, but our interpretations of it are 
different: Marie, Paul & Julie considered that all was 
about the shape, but they could use geometrical knowl-
edge to control their actions. Pierre & Ludovic failed 
when geometrical controls were unavoidable. The 
great difference was about controlling, which leads to 
the following conclusion: the first group used a I.D.iv 

interpretation, whereas the second one interpreted 
the task with I.D.niv, so that geometrical knowledge 
and mechanical properties were connected.

Operators and controls
Analysing these examples, we didn’t fully describe 
the students’ conceptions. Would it be possible, this 
paper is too small. We used cK¢ to point out the main 
aspects of their conceptions, but this is more accurate 
when studying operators and controls. 

An operator is an association between a purpose 
(I want to do this) and a mean for it ([aim ⇒ action]). 
For instance, an operator could be “I want to construct 
a parallel to (d), so I have to use the “parallel tool” of 
Cabri 3D to select (d) and a point”. Nor the aim, neither 
the action, reflect the kind of geometry used, the inter-
pretation has to be based on their association (⇒). Let 
us consider another frequently used operator, “I want 
to construct a parallel to (d), so I have to use the line 
tool, select two points to create a line (d’), and move 
one of the points so that (d) and (d’) are parallel”. The 
purpose is the same, but the action shows that neither 
robustness nor geometrical properties are taken into 
account, and that “are parallel” mean something very 
perceptual, so that this operator is associated more 
to iconic than to non-iconic visualization. A control 
isn’t directly linked to an action, it is a judgment on 
it, and then it is a [Statement1 ⇒ Statement2] system. 
The first one is a fact, the second one is a conclusion, 
and here again the association (⇒) mean something 
about the kind of geometry used.

Pierre and Ludovic Marie, Paul and Julie

Interpretation, final control Shape (iconical)

Operators Three lines, 3 triangles Three lines

Control of actions Visual-instrumental geometrical

Table 1: Two interpretations of the problems
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One of the greatest issues with defining operators 
and controls is the not so clear frontier between them. 
Balacheff (2003) mention that, for instance, “the sym-
metrical of a segment is another segment” could be 
either an operator — that indicates how to draw it — or 
a control — to judge the correctness of a construction. 
Our formal description helps understanding this: a 
single property may be linked to an operator or a con-
trol, because it mainly justifies the ( ⇒ ) link in both 
cases, but it is a tool in one case — linked to an action 

— and a fact, an object, in the other one. Operators are 
easier to catch, and also give information about their 
visualization. For instance, constructing three lines 
was useless, so this combination of operators (we call 
it procedure) indicated an iconic interpretation of 
the problem. 

The two main ways to catch controls are dialog anal-
ysis and inferences from the observed procedures: 
an observation is associated to a procedure, linked 
to a set of controls and a type of conception. It is all 
the more important that the differences we shown be-
tween the two former instrumental deconstructions 
were mainly based on some specific controls, and on 
their role, but not on operators. Indeed, controlling 
the final validity with some dimensional deconstruc-
tion-based control mean something very different 
than using this deconstruction only as a tool to control 
the action. This is why we need to take into account 
the moment when the controls are used. 

1. Before acting, controls determine the inter-
pretation of the problems, a set of possibly 
adequate operators, i.e. a selection function 
(Vadcard, 2000), and a priori reasons for the 
validity of a strategy. 

2. During the action, controls ensure that op-
erators are adequate and help interpreting 
the feedback. 

3. After acting, controls provide a posteriori 
judgment about the validity of a solution. 

(2) is close to a “tool” role for using operators, and then 
for the kind of geometry they are based on. (1) and (3) 
are more about how geometry problems are interpret-
ed and about the pupils’ knowledge. Of course, using 
deductive geometry requires that (1) and (3) mainly in-
volve controls based on dimensional deconstruction, 
but identifying (2) controls is very important. It gives 
information about the coherence of the conception, 
about knowledge that are used only for practical rea-
sons, and most of all about the evolution mechanism 
of the conception.

Characterization of two 
instrumental deconstructions
With this description, it is now possible to make the 
difference more clear. The two instrumental decon-
structions both consist in considering the objects as 
the result of a construction process that involves figu-
ral units and some specifications about “how it works”. 
But the kind of objects involved, their properties, the 
tools pupils use and the controls that are needed, can 
be different. Of course, these are prototypes.

Pierre and Ludovic gave us a very good example of 
I.D.iv we already analysed. Leelah and Catherine’s 
deconstruction was very different. At the very be-
ginning they tried approximate shape constructions, 
but they gave up immediately and repeated many 
times that the shape didn’t matter (6’06, Catherine: 

Figure 4: The two instrumental deconstructions
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Yes, but no, the point can be anywhere.; 17’44, C.: But 
you don’t need to create the tetrahedrons to get the 
points, the intersection of the [planes] already made 
it.; 32’44, C.: No, but the aim is not the numerical stuff, 
for us…). Contrary to the other groups we mentioned, 
they anticipated and validated every strategy before 
the action: 

6’06 Leelah:  I’d like to put a plane like this, a 
plane like this, a plane like this. […] By ex-
tending the truncated sides… 

22’51 Catherine:  Later I thought of a much eas-
ier solution!  Symmetry with respect to this 
point: hop, done!  

Then, a priori controls based on dimensional de-
construction and deductive geometry allowed these 
pupils to validate a strategy before action, and to de-
sign precisely their procedure by transforming the 
geometrical information into an operational pro-
cess. One great consequence is that visual control is 
no longer required, as Catherine expressed it very 
clearly: “Middle of this segment… We can’t see it, but 
it’s done! ” (21’59) Eventually, we can describe the dif-
ferences this way:

CONCLUSION

Many studies about teaching geometry underline how 
difficult it is to make pupils use axiomatic geometry 
and proof, and consider that there is no continuity 
of the cognitive process (Duval, 2005). We showed 
here that in particular cases, such as construction 
tasks with 3D DGEs, a continuous evolution is possible. 
This is linked to a more general statement: there are 
in fact two instrumental deconstructions, which are 
at the same time very different cognitive process, but 
very close ways of acting. Eventually, characterising 
the differences needs a very precise tool combining 
epistemological and cognitive points of view, which 
was provided by cK¢. We only could underline the 
similarities between I.D.iv and I.D.niv, and the evolution 
process between it remains to be studied.
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In this paper, I will present some of the results of research 
that was carried out, during my master studies, that 
aimed to examine the strategies that visually impaired 
students develop while coping with the transition from 
2-dimensional (2D) to 3-dimensional (3D) geometrical 
objects, and also their correlation with the concepts of 
visualization, haptic perception, gestures and language. 
A teaching experiment took place in a support unit for 
visually impaired students. The results showed that the 
students develop geometrical thinking procedures that 
are influenced by the concepts of visualization, haptic 
perception, gestures and language.

Keywords: Geometry, visualization, haptic perception, 

visual impairment.

INTRODUCTION

The subject of geometry has always been and contin-
ues to be a “headache” for most students. For many 
years researchers in didactics of mathematics, have 
studied the levels of students’ geometrical thinking 
(Van Hiele, 1986; Gutierrez, Jaime, & Fortuny, 1991), as 
well as the processes that students follow in geometry 
(Battista, 2007; Duval, 2011). But if geometry is one of 
the most demanding subjects for the “mainstream” 
students, what happens in the case of students with 
visual impairments? How does a student who doesn’t 
have the luxury of vision, cope with the demands of 
geometry, which besides mathematical abilities also 
includes visualization and spatial abilities? 

Such questions and concerns led us to address these 
issues and conduct research in order to observe how 
visually impaired students interact with the objects 
of geometry and what strategies they develop while 
solving geometrical problems that connect 2D with 

3D geometry. The basic concepts I will use to exam-
ine the strategies developed by students are: visual-
ization, gestures and language that students use in 
order to describe geometrical objects and also haptic 
perception. Through these concepts, I will observe the 
processes of reasoning developed by students during 
their transition from 2D to 3D geometry, in the context 
of two tasks.

THEORETICAL FRAMEWORK

Important theories on the evolution 
of geometrical thinking
Many researchers have studied students’ geometri-
cal thinking and here I will present some significant 
theories of the evolution of geometrical reasoning, as 
well as some other concepts that relate to it, such as 
similes. In the field of didactics of mathematics and 
especially as far as geometry is concerned, much re-
search has been done regarding the levels of students’ 
geometrical thinking. The Dutch mathematician Van 
Hiele proposed a widely accepted description of the 
development of students’ geometrical thinking (Van 
Hiele, 1986) through five levels, which show the way 
students think about figures and other geometrical 
concepts. Gutierrez, Jaime & Fortuny (1991), extend-
ed the Van Hiele levels for the case of three-dimen-
sional shapes. They describe four stages concerning 
students’ thinking levels regarding the geometry of 
solid objects and their properties. Gutierrez (1992) 
extended these levels, examining them also from the 
perspective of visualization.

An important contribution to research concerning 
students’ geometrical thinking is the research work 
of Duval. Duval (2011) argues that when observing a 
figure from a mathematical perspective, we should 
determine its figural units, depending on its dimen-

mailto:chrysi%40uni-bremen.de?subject=
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sions, i.e. its different dimensional components (see 
examples in Table 1). This procedure can help us see 
the same shape as a composition of different figural 
units. In this way we choose the composition that is 
useful for solving a specific problem. 

Similes, haptic perception, 
gestures and geometry
Visually impaired students often use, phrases like: 

“I see it” or “I do not see that yet”. These phrases are 
usually verbal expressions of their haptic experi-
ence. Another phenomenon in language is the great 
influence of everyday life on visually impaired stu-
dents’ vocabulary. It is many times that influence that 
makes it difficult for these students to describe their 
thoughts in the formal terms of geometry. The results 
of Potari, Diakogiorgi & Zanni (2003), showed that 
similes are an important tool for students’ access to 
geometrical concepts, which were inaccessible only 
with the use of formal terminology. 

According to Figueiras and Arcavi (2012), haptic per-
ception provides us with access to spatial details that 
would not be easy to observe in another way. This is 
due to the fact that haptic exploration combines the 
process of visualizing an object and “action”, since 
it actually is the translation of a haptic stimulus to 
a mental representation, without the existence of a 
visual stimulus. According to Triantafillidis (1995), 
when exploring an object by touch, a series of steps 
is required in order to identify its shape. As a first 
step, the key characteristics of the shape are identi-
fied, though without following any particular strategy. 
Then a more detailed exploration of the shape begins, 
which is this time based on some strategies that will 
reveal in greater detail its characteristics and proper-
ties. For students with visual impairments, haptic ex-
ploration of shapes or figures plays for them the role 
of vision. It is the way through which they can “see” the 
shapes. According to Williams (1983) and Millar (1981), 

blind students explore an object in such a way that 
provides them a comprehensive view of it, thus lead-
ing them to a more accurate mental representation of 
its figure. According to Triantafillidis (1995), there is 
a correlation between the strategies a student chooses 
to use and the level of his/her geometrical thinking 
(Van Hiele levels). As a consequence, vision is not the 
only source of mental images in mathematics. To “feel” 
some physical objects with our hands, without seeing 
them with our own eyes, is also a source of a rich pro-
duction of mental images. 

Our hands though, are not a tool useful only for our 
ability to perceive haptic stimuli. They can also be 
used as mediations of our thoughts, through the ges-
tures they perform while we argue or think. McNeill 
(1992) categorizes gestures in Iconic, Metaphoric, 
Deictic and Beat gestures, depending on the role they 
had in the talk of the speaker. Radford (2009) argues 
that thinking is not something that occurs only in the 
mind, but also through language, body and the tools 
one has at his disposal. He argues that gestures are 
operative components of thought. This means that 
gestures do not only make apparent to us what some-
one thinks, but they are in fact the ones to generate 
ideas, the ones that incite thinking.

Visualization and geometry
Gutierrez (1996) describes visualization in mathemat-
ics, as the kind of reasoning activity based on the use 
of visual or spatial elements, mental or physical, in 
order to solve a problem or prove properties. But what 
happens in the case of students with visual impair-
ments? If someone cannot see, how can (s)he visualize? 
Just because someone is blind, it does not mean that 
(s)he cannot “see”. Miller (1987) argues that mathe-
matical visualization also involves intuition through 
pictures formed in the eyes of the mind. As described 
by Jackson (2002), visualization may go far beyond the 
sense of vision, because it implies the kind of under-

Figural Units (Components)

  Shape

 
Cube  

(3D shape)

0D/3D   Vertices      (zero-dimensional components)

1D/3D   Edges          (one-dimensional components)

2D/3D   Faces           (two-dimensional components)

3D/3D   Cube            (three-dimensional object)

 
Square  

(2D shape)

0D/2D   Vertices      (zero-dimensional components)

1D/2D   Edges          (one-dimensional components)

2D/2D   Square         (two-dimensional object)

Table 1: Figular units of cube and square
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standing that comes from the intuition described by 
Miller. However, in order to achieve this kind of un-
derstanding, we should not isolate visualization from 
a general mathematical context, but instead connect 
it with other kinds of reasoning. 

Lohman (1988) correlates directly the concept of 
visualization to that of spatial ability, defining the 
concept of spatial visualization, which refers to the 
ability to comprehend imaginary movements in a 
three dimensional space or the ability to manipulate 
objects in imagination. According to Kospentaris and 
colleagues (2011), a student’s visualization process can 
influence the strategies (s)he chooses in order to cope 
with a geometrical task, as also the way in which (s)he 
implements these strategies. It is therefore apparent 
that there is a strong correlation between visualiza-
tion and the formation of geometrical thinking.

RESEARCH QUESTIONS – METHODOLOGY

My research questions in the study were the follow-
ing:

1) What kind of strategies and procedures do the stu-
dents follow during the transition from the 2D to 3D 
geometry?

2) What is the contribution of gestures, the use of 
similes, and visualization in the selection and imple-
mentation of these procedures? 

Participants. The research took place in a support unit 
for students with visual impairments. Five students 
participated in the study. The students were chosen 
according to their age, visual ability and their mental 
ability (visually impaired students with mental dis-
abilities did not take part in this research as its focus 
was on students with only visual impairments). The 
reason why we wanted to have students of different 
ages and grades is that at different ages, students have 
gathered different experiences from their everyday 

lives and different levels of geometry knowledge 
from school. The research was conducted within the 
frame of interviews. There was no classroom situa-
tion. During the interviews the researcher was alone 
with one or two of the participants at a time. Students 
M and A worked together (group 1) as also students D 
and T (group 2), while student B worked alone.

Tasks. For the purpose of the study, four tasks were 
given to the students. Here I will present and analyze 
the results of only two of these tasks.

Procedure – Aim of Task 1 (Plane figure Rotation). 
The students were asked to think about what kind of 
solids will be created by the rotation of a plane figure 
(Rectangle, Right triangle, Disk), around a vertical 
axis of their choice. They used 2D objects (plastic 
plane figures) which they could rotate and manipulate 
freely. The objects were neither attached nor fixed on 
the desk or anywhere else. The students did not use 
any 3D objects. The procedure of the task was that 
the students touch the plane figures, create a rotation, 
imagine the solid being “created” and finally identify 
it. Students’ prior knowledge regarding rotation was 
related mainly to what they knew about the earth’s 
rotation around its axis.

Procedure – Aim of Task 2 (Nets of Solids). The stu-
dents were asked to identify a solids’ nets that were 
given to them. They started with the net of a cube 
and I asked of them to construct as many different 
nets as they could, which when folded would create 
a cube. Later they also did the same for more solids 
(Triangular pyramid, Square pyramid). My aim was, 
through the nets of the solids, to see how students 
handle the properties of the above mentioned solids, 
as also if they could identify a solid by its net and the 
properties its net “reveals” at the levels 0D/3D, 1D/3D 
and 2D/3D.

The nets were consisted of hard plastic parts (squares 
and triangles) which were detachable. The connec-

STUDENTS M A B D T

GENDER Male Female Male Female Female

AGE 18 16 19 14 17

GRADE 12th 9th 12th 7th 11th

VISUAL 
IMPAIRMENT

Low 
vision

Congenitally 
blind

Low
vision

Congenitally 
blind

Congenitally 
blind

Table 2: Participants’ profile
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tions between the parts of the nets were flexible and 
could be folded in order to create the 3D objects. In 
a discussion with the students, which took place be-
fore the beginning of the teaching experiment I asked 
them some questions regarding their theoretical 
background in geometry. I learned that they all had 
knowledge of the basic plane figures and solids and 
their properties, from the school course of geometry. 
My goal was to “challenge” the students to identify 
the solids during their creation, either through the 
rotation of plane figures or by their nets.

The first step of the analysis was the transcription of 
the recordings of the interviews. At first, the record-
ings of the interviews’ discussions were transcribed. 
Then some critical events in each group were identi-
fied and analyzed based on the concepts explicated in 
the theoretical framework of this study. The critical 
events were classified as such based on the following 
criteria: (a) haptic exploration of the figures and stu-
dents’ haptic perception about figures, (b) students’ 
geometrical thinking and spatial perception regard-
ing the task they performed, the figures these includ-
ed and their properties, (c) the way in which students 
seem to visualize the plane figures and the solid ob-
jects and their properties through haptic exploration 
and geometrical thinking, (d) the students’ gestures 
while trying to explain what they were thinking/doing 
or in their attempt to argue about their answers, (e) 

the students’ reasoning processes in order to accom-
plish the transition from 2D to 3D geometry.

RESULTS
Task 1 – Plane figure rotation
During the rotation task, some students (A, M, D and 
T) chose to rotate the figure for a while and then stop, 
making the rotation a picture in their minds. Student 
B chose to rotate the figure nonstop, in order to identi-
fy the solid that was being created. The common factor 
in all cases was the haptic exploration of the invisible 
solid that was being created. All the students touched 
the plane figure during its rotation, as well as the trace 
that was imaginably left of it on the desk, forming the 
basis of the solid. All of the students recognized the 
solids created, moving from a part to the whole of the 
solid, that is starting from the bottom and then mov-
ing to other parts of the solid. The different ways of 
rotation (temporary or nonstop), and hence visual-
ization and spatial perception of the plane figure’s 
movement, combined with the haptic exploration of 
the formed solid, led students in different strategies 
of spatial visualization of the solid created (Table 3). 
All the visualization processes and the strategies were 
identified based on students’ verbal and gestural de-
scriptions. During the identification procedure the 
students were always asked by the researcher to de-
scribe loudly their thinking processes and also the 

ROTATED 
PLANE FIGURE

ROTATION 
AXIS

SOLID STRATEGIES

Rectangle One of longer 
edges of the rec-
tangle

Cylinder ― Identification of the base of the solid. Then identification of 
the whole solid by its net. (students A and M)

― Infinite number of identical rectangles in circular array (one 
behind the other), with common edge the rotation axis. (stu-
dent B)

― Two horizontal disks, joined together by infinite vertical 
lines or two horizontal disks with height difference. (student 
D)

Right Triangle The longer per-
pendicular edge 
of the triangle

Cone ― Infinite number of identical right triangles in circular array, 
with common edge the rotation axis. (student B)

― A “cylinder” that narrows gradually towards the top. Instead 
of a base, the top of the solid is formed to a vertex. (students 
A, M, D and T)

Disk One of the diam-
eters of the disk

Sphere ― Infinite number of identical vertical semicircles in circular 
array, with common part the vertical diameter. (student B)

― Infinite number of horizontal circles of different diameters, 
one above the other. The circle with the largest diameter is in 
the “middle”, whereas moving above and below it the circles 
have gradually reduced diameters. (students A and M)

Table 3: Strategies of visualization process of solids
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ways in which the images of the 3D objects were cre-
ated in their minds.

Through these strategies we can distinguish the dif-
ferent ways in which students apprehend and concep-
tually manipulate the plane figures and solids. For in-
stance, the strategy in which students visualize a solid 
as a composition/array of infinite number of identical 
plane figures is perhaps a result of their choice never 
to stop rotating the figure until they identify the solid 
that is being generated.

The students argued about the way of rotation and 
the figures they felt being created during the rotation, 
based on the properties of both the rotating plane fig-
ure and the created solid. For example, student B’s 
decision regarding the rotation axis of the disk was 
based on his knowledge of the infinite number of its 
diameters. In the case of the cone, the students jus-
tified its creation by the rotation of a right triangle 
because of the existence of the hypotenuse, which 

“forces the solid to have a pointed top instead of a face 
top”. By the end of the interview, all the students had 
successfully identified all the created solids. 

While thinking or arguing, students used gestures 
and similes. The similes concerned familiar objects 
from their everyday lives, which had the same shape 
as the geometrical solids investigated. The cone was 
described as a funnel or the orange cone used in 
football workouts, the cylinder as a milk can and the 
sphere as a ball, the earth or a “round” egg. Student B 
and the students D and T (group 2) described the solids’ 
shape in their own words. The use of gestures was par-
ticularly strong in describing the rotation of the plane 
figure and the creation of the solid. Students used ges-
tures sometimes in order to describe what they said 
(iconic gestures, McNeill, 1992) and other times to 
highlight some specific features of the figures, like 
a vertex or an edge (deictic gestures, McNeill, 1992).

Task 2 – Nets of solids
In this task the procedure of visualization was based 
to a great degree on students’ haptic perception. They 
touched and explored the units of a net and identified 
their shape and through tactile contact they created 
visual images in their minds, which allowed them to 
imagine the solid that would be created by the fold-
ing of the net. Also here students used a lot of ges-
tures. While thinking and visualizing the folding of 
the nets, their thoughts were followed by iconic and 

beat gestures (ibid.) described the ways in which they 
were imagining the folding of the net. These gestures 
helped them get a better understanding of the final 
shape of the created solid. The students started iden-
tifying haptically the figural units of the nets (faces). 
The basic strategies the students followed to identify 
the solids, while manipulating their nets, were:

1) Identification based on the properties of the figural 
units of the solid

At first the students identified the solids based on 
their figural units, without following the process of 
the imaginary or real folding of the nets. Thus, the 
presence of six squares indicated the existence of a 
cube, while the presence of triangles in the net indicat-
ed the creation of a pyramid. For example, in the case 
of the nets of the pyramids, student D said something 
very enlightening about her working process: “The 
pyramids are the only solids having triangles in their 
nets”. This statement emphasizes the importance of 
knowing the properties of a geometrical shape, which 
can help a student create connections between ge-
ometries of different dimensions, evolving his/her 
geometrical thinking not only on the level of just 2D or 
just 3D geometry, but most importantly between them.

2) Identification by the imaginary folding of the net

In this case the students started identifying the figur-
al units of a net, but still that was not the “guide” in 
finding the solid that corresponded to the net. In order 
to identify the solid they started to fold the net men-
tally. At this point one can recognize the important 
contribution of the process of spatial visualization 
in geometry and the decisive nature of a student’s 
ability to visualize geometrical shapes dynamically. 
Students managed to create, in their minds, dynamic 
images of the net, which they could manipulate and 
fold mentally thus resulting in the identification of 
the solid being formed. This is a complex process that 
requires the student to be familiar with the proper-
ties of the shapes and their manipulation, even in the 
absence of visual contact with the object. In our case, 
only student B managed to manipulate mentally and 
in a dynamic way the object that was given to him. 
After the identification of the net that was given to 
group 1 of students A and M (cube), I asked them if a 
change in the net would result again to the creation 
of a cube. Student M explained that not all nets with 
six squares result to the creation of a cube, but only 
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those that do not “leave gaps” somewhere in the solid 
when being folded. 

These two strategies may differ. However, both of 
them are of great importance since each one shows 
a different aspect of the transition from 2D to 3D ge-
ometry, indicating that not all students perceive the 
geometrical shapes in the same way.

CONCLUSIONS – DISCUSSION 

Through the strategies they followed, the students 
were able to successfully perform transitions from 2D 
to 3D geometry. The strategies were formed as a com-
bination of both students’ everyday-life experiences 
with objects, both plane figures and solid shapes, and 
their knowledge regarding the geometrical proper-
ties of plane figures and solids from the school subject 
of geometry. Their tactile experiences of plane figures 
and solids both from everyday life and school also 
made a very important contribution to students’ vi-
sualization processes and reasoning in the transition 
from 2D to 3D geometrical objects.

The students identified the geometrical solids created, 
starting from a part and moving to the whole of the 
solid. This way the students managed to gradually 
build an image of the object, which was the result of 
a synthesis of all its individual parts. This procedure 
was not limited only to the synthesis of an image of a 
plane figure or a solid, but also continued to the com-
position of the one through the manipulation of the 
other. This process is consistent with Duval’s view, 
which supports the partial identification of a solid 
by its figural units, but is in contrast to the usual, and 
more holistic, procedure of solids’ identification by 
sighted students.

In most cases students used gestures, such as those 
mentioned by McNeill (1992), in order to describe 
something they could not easily express with words 
or the formal mathematical terminology. Such was 
also the role of similes used by students. It was often 
difficult for students to verbally express their reason-
ing through formal mathematical terminology. Thus, 
they used similes from their everyday lives, in order 
to describe the shape or form of a geometrical object 
or even some of its properties. 

In all tasks the visualization process of the geomet-
rical objects and their manipulation by the students 

was most apparent. The students created images like 
the ones described by Presmeg (2006), calling them 

“mental images”. These images were sometimes stat-
ic while other times students assigned to them a dy-
namic character, by moving them mentally, creating 
new images. Thus, the contribution of visualization 
was particularly important both in manipulating and 
identifying geometrical objects, as also for the transi-
tion of geometrical reasoning between geometries of 
different dimensions. This bidirectional relationship 
between visualization and geometrical reasoning can 
help students develop their geometrical thinking. 

In the field of didactics of mathematics, no research 
has yet been done as to the levels of visual impaired 
students’ geometrical thinking. Thus, and mainly be-
cause of some parameters that do not exist in the case 
of sighted students (e.g. lack of real visual images for 
solids), we cannot be sure whether we are allowed to 
classify the levels of the participating students’ geo-
metrical thinking, using Gutierrez’s levels classifica-
tion (1992). What we can say though, based on these 
results, is that the strategies followed by the students, 
and also the way they chose to implement them and 
result to their responses, show that the students based 
their geometrical reasoning on the properties of both 
the plane figures and solids, as also on the relations be-
tween these properties. However, realizing the limita-
tions mentioned above, and also the limitations of our 
research (e.g. limited time and number of students), 
we cannot but emphasize the importance of further 
research in this field of mathematics’ education, so 
that we are able to draw clear conclusions. 

Agreeing with Healy’s view (2012), that if we man-
age to understand the similarities and differences 
in practices of blind students in relation to these of 
sighted students we will then be able to understand 
even better the correlation between experience and 
understanding, we think that it would be extremely 
helpful, not only for visually impaired students but 
for all students, that the examples these five students 
gave to us on how to cope with geometrical objects, 
find their role in the field of didactics of geometry and 
not be left unexploited.
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Teaching of geometry in the elementary school in Poland 
is carried out in a very static way. Students learn vari-
ous geometrical concepts in concrete, typical situations. 
They rarely meet these concepts in less common situa-
tions or not directly related to the geometry. In this paper, 
I will present a part of activities that have been carried 
out among pupils in the fourth grade of primary school. 
During these courses, students had the opportunity to 
take a look at familiar geometric concepts (square, cube, 
perpendicular, parallelism) from a new perspective.

Keywords: Geometry, primary school education, spatial 

cards, teaching geometry, 2D and 3D geometry.

INTRODUCTION

In recent years, there has been a lot of discussion in 
Poland on changing the education system. The results 
achieved by Polish students in various tests and ex-
ams showed that this topic is a lot of catching up to 
do. The new curriculum for mathematics has pointed 
out that it is necessary to develop students’ competen-
cies, which are important not only during a math class, 
but also in everyday life. A lot of space was devoted 
to geometry, which so far has not been significantly 
present in teaching, especially at the lower levels of 
education. And often geometrical problems are ig-
nored or treated unfavorably by teachers at a lower 
level of education (kindergarten education and I-III 
grades of primary school). Teaching geometry is con-
fined to familiarize students with the basic geometric 
shapes, i.e. square, rectangle, triangle and circle. In 
addition, students learn to measure the length of a 
segment, draw straight lines and segments which are 
perpendicular or parallel. At the next level of educa-
tion geometry appears as a separate branch of mathe-
matics, where the student is expected to have a formal 
geometrical knowledge. This leap from the first to the 
second level of education meant that for many stu-

dents geometry has become as a very difficult subject. 
An additional difficulty is also the fact that geometry 
requires a much different approach than other areas 
of mathematics, e.g., arithmetic or algebra. It cannot 
be “algorithm and routine” and put in rigid frames. 
Thus, few questions appear: How to help students in 
the transition between the levels? How to help stu-
dents develop their geometric intuition, which will be 
the basis for their future formal knowledge? Trying 
to find the answer to these questions 

I decided to organize a series of activities with the stu-
dents, whose goal would be to develop their interest 
in geometry. The activities were organized in such a 
way so that the student would recognize geometric 
issues somehow by accident, while having fun.

THEORETICAL BACKGROUND

Geometry is an integral part of our daily life even if 
we do not realize it. Geometry teaches the basic skills 
of logical thinking and reasoning. We can observe that 
in the latest trends in early education a large emphasis 
is placed on developing the skills needed for a child to 
explore and understand the world and to cope with 
different situations of everyday life. The skills that 
are particularly useful in various situations include 
analyzing, critical thinking and putting and verifying 
hypotheses. The tasks of the school according the new 
curriculum include the care that a child could acquire 
the knowledge and skills needed to understand the 
world and the tools the child needs in math skills in 
real-life and school situations and for solving the 
problems. 

The most important skills acquired by the student 
in the course of general education in elementary 
school should be, inter alia, mathematical thinking, 
comprehension as the ability to use the basic tools of 
mathematics in his or her daily live and carrying out 
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elementary mathematical procedures. On the higher 
stages of education mathematics is presented as struc-
tured and ordered formal knowledge, with specified 
chapters of mathematics. This enables the advanced 
work both on exploring and developing mathematical 
knowledge and develop formal (symbolic) mathemat-
ical language. At lower levels of education (especially 
in the lower grades of primary school) students are 
not presented a finished, formal knowledge from 
different areas of mathematics, but are introduced 
them to the world of arithmetic and geometry (Hejný & 
Jirotková, 2006). The world of arithmetic is ultimately 
structured and governed by clear rules. Individual 
records and symbols used in this world are read by 
all in the same way. The presents the situation in the 
world of geometry is different, as Hejný and Jirotková 
(2006) write:

The world of geometry is a community of indi-
viduals or small families and there is a large di-
versity in the linkages between them. From the 
didactic point of view, arithmetic is suitable for 
developing abilities systematically, and geometry 
is more suitable for abilities such as experiment-
ing, discovering, concept creation, hypothesizing 
and creating mini-structures. (p. 394)

By analyzing the historical development of geometry 
we can notice that it was accompanied by human in his 
activities since the dawn of time (much like arithme-
tic). Initially, geometry was not a theoretical science, 
but appeared from the need and desire of people to 
arrange the space around them, solve many practi-
cal problems - from construction by travelling to the 
ornamentation (Hejný, 1990). However, this geome-
try was the first “scientific field within mathematics” 
which was created by human. Its significance for the 
study of the ancient world was great. It had an im-
portant role in mathematics. This historical trait also 
points the way for didactical approaches to teaching 
school geometry: geometrical knowledge arises by 
action. Thus, it is important to gain experience, and 
practical problem solving. 

The importance of geometry in the education of 
children and young people was the topic of many re-
searchers’ considerations. There is a belief that geom-
etry can support the overall development of the child’s 
competence in mathematics. Swoboda (2009) has writ-
ten the importance of geometry in teaching children 
and adolescents. She emphasizes that a geometrical 

approach is closer to a child than an arithmetic one 
and can open doors to the world of mathematics. It is 
important that “Geometrical cognition starts from 
a reflection upon the perceived phenomena and in 
this way correlates with the basic ways of learning 
among children” (p. 29). In addition, geometry gives 
the opportunity to develop the mathematical ways of 
thinking such as generalization, abstraction, perceiv-
ing relations and understanding rules. 

Although geometry has a great potential to devel-
op mathematical thinking of students in the school 
teaching it is not treated with due care. It consists of a 
number of factors. As Karwowska-Paszkiewicz, Łyko, 
Mamczur and Swoboda (2001) write, one of them is the 
very limited number of lessons concerning geometry. 
It is the reason why during geometric lessons some 

“ready knowledge” is given and students “did not have 
the opportunity to learn the properties of the figures 
through manipulating and even if they had it, it was 
only apparent” (p. 86). Hence, there is no place in this 
teaching style for problem solving teaching, and there 
arise difficulties in the connection between the prob-
lem, the procedure of solving it and the solution. 

To take advantage of the full capabilities of the ge-
ometry in the education of children and youth, you 
need to change the approach to its teaching. Geometry 
was born out of the action and of humans needs for 
development and structuring of space around them. 
Therefore, an important element in the teaching of 
geometry should be acting. As we can see in Swoboda 
(2001):

Action play an important role in the formation 
of geometrical concept because there is always 
correlation between concept and the activity ad-
dressed to the concept. The object from the real 
world are perceived as the gestalt. The way of 
gathering information is perception, but after 
that the action with the object leads to the verbal 
description in their properties. (p.151)

So an important didactical issue is how to organize 
activity in mathematics lessons in such a way as to 
encourage students to actually participate in the les-
son and to give them a chance to creative thinking and 
discovering mathematics.

The experience plays an important role in the learn-
ing process. Specifically writes about this Hejný in his 
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theory of the General Model (Hejný, 2001). Children 
create their own knowledge primarily based on the 
experience they have. For a description of these ex-
periences they use language - as it is close to them. 
The closest experience for a child is the language of 
gestures. It is the first language, how a child learns. 
This language is very helpful during learning of 
mathematics. Just as Cook and Goldin-Meadow (2006) 
say: “children who produce gestures modeled by the 
teacher during a lesson are more likely to profit from 
the lesson than children who do not produce the ges-
tures”. Only at a later stage of learning a child meets 
the formal language of mathematics. It is important 
that the experience and action in the acquisition of 
mathematical knowledge appears first, followed by 
language, and only at the end there is formal knowl-
edge. According to Burton (2009), the human activity 
is the first and after that mathematics arise. And math-
ematical language (mathematical concepts, objects 
and relationship) arise through natural language, 
and within particular socio-cultural environments, 
in response to human thinking about quantity, rela-
tionship and space.

METHODOLOGY

Data for this paper were collected during classes with 
third grade students from primary school. It was a 
series of meetings, whose main purpose was to devel-
op the students’ interest and talents of mathematics. 
Classes took place once a week and last one school 
hour (45 minutes). Twenty students from the third 
grade of primary school (10–11 years old) took part in 
these meetings. They were students, who coped pret-
ty well with school mathematics. They had no major 
problems with the mastery of the material carried 
in the classroom. They were students willing to un-
dertake new challenges. During these meetings the 
students through fun developed their mathematical 
abilities. Much of the class was devoted to geometry. 
Students through play, by using paper and scissors, 
learn about various properties of figures in the plane 
and in space. The purpose of these meetings was to 
develop spatial imagination and the ability to perceive 
relationships and analogies between objects on the 
plane and space. Also worked on the development of 
students’ mathematical language, and, in particular, 
to bring students the terms such as parallelism and 
perpendicularity.

During each class, students had access to colored card-
board, scissors, duct tape, crayons, markers. Classes 
were recorded with a video camera. After each meet-
ing a protocol was prepared. The research materials 
consist of the works done by students, videos and chat 
records.

In this paper, I would like to present the classes con-
cerning geometry called “play with geometry”. The 
main purpose of the course was to develop spatial 
imagination and students’ interest in geometry. In 
addition, I wanted to examine:

 ― How will students cope with the creation of 
three-dimensional models?

 ― How will they move between dimensions?

 ― Will they be able to notice the parallel and per-
pendicular elements in three-dimensional mod-
els?

 ― Will they be able to describe the work made by 
them in the mathematical language?

Activities under the name of “play with geometry” 
are divided into two parts. During the first of them 
students prepared spatial cards from pre-made tem-
plates. They cut out, filed and attached elements so 
that after unfolded their cards they received spatial 
composition. These classes were analyzed together, 
as making certain cuts or submit reflected in the final 
work. Students have tried to capture all the relation-
ships that exist between objects. 

After working with ready-made templates it was the 
time for students own creativity. They were given 
colored cards and scissors. Their task was to create 
any space card. Both themes of work and how to per-
form it completely belonged to students. 

This task apparently had little to do with geometry. 
My aim was to show students that in such seemingly 
non-mathematics activities mathematical – geometri-
cal ideas can be found. This kind of geometry we can 
find in our daily life.

Students began working on the worksheet in half. 
Then they began to mutilate the card. At first their 
work was very spontaneous and not targeted. After 
some time, students began to notice that the method 
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of cutting and bending the paper affects how their 
work. So they began to think over each of the next 
move, already analyzed the resulting image and then 
decide on the next move. Very often the first work 
done was treated as a “training card”. After its execu-
tion students looked at it, analyzed it, in order to say 
what they managed to achieve. Only then they started 
working on the “final card”. When all the students had 
finished their work, everyone had the opportunity to 
present what he did. Also a discussion was conducted, 
in which all the students participated. During this dis-
cussion, the teacher drew attention to the manner of 
carrying out the cuts by the students. There were such 
concepts as “parallel”, “perpendicular”. Attention was 
also drawn to the properties of figures that appeared 
in the works.

ANALYSIS OF STUDENTS’ WORK

The work of Maks 
Maks, a student of average ability, he made a very sim-
ple job. In an interview with the teacher noted that his 
foundation was to cut the “three squares”. Initially, 
however, he did not quite know what it really means.

Teacher:  Maks did the card and he colored it. 
Please, tell us about your work

Maks:  I cut three squares.
Teacher: What does it mean?
Maks:  I do not know.
Teacher:  [goes to the Maks’ bench, takes his work 

consists in half and shows the class] 
Maks cut three squares. But how did 
you do it?

Maks:  I fold it and cut here, here, here, here, 
here and here. [he shows a pair of scis-
sors, how to carry out cutting]

Teacher:  Ok, and what is next? 
Maks:  I opened it and pull out [he shows the 

way of making the card]. I watched how 
it looks and coloured.

Teacher:  Ok.. And what were these cuts that cre-
ated a square?

Maks:  [silence]

No one in the class could answer the question posed 
by the teacher. Everyone knew how to make a “square”, 
most of the students had it in their work. They could 
not, however, describe how to construct this object 
using mathematical language. To help students teach-
er presented the experience. The teacher took a piece 
of paper and scissors and made a few cuts. Only then 
the students began to pay attention to the geometrical 
relationships.

Teacher:  If cutting can be free? Well, look: I take 
the card, fold it in half and I will cut it. 
Here and here [holds the card in two 
places]. Maks said, that for every square 
he made two cuts. So I have two cuts and 
I put the cut piece to the center of my 
cards [he shows]. Look, did I leave the 
square?

Students:  No.
Teacher:  Look, if I want to make a square, the same 

as Maks did, how should I cut.
Student 1:  Well... like a square.
Teacher:  And what does it mean „like a square”?
Student 1:  Well ... squarely.
Teacher:  And what is characterized by square?
Student 2:  Because it has all equal sides
Teacher:  Well, what else can we say about the 

square?
Student 3:  That is edgy.
Teacher:  That is edgy? 
Student 2:  Because it has all sides perpendicular 

and the right angle.
Student 1:  And it has four sides
Teacher:  Very well. So now let’s get it all together: 

a square has four sides. You said that it 
has right angle.

Student 2:  All sides are equal.

Figure 1: The card made by Maks

Figure 2: Squares in Maks’s work
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Teacher:  Yes, all sides are the same length. And 
what else can we say about the square?

Maks:  [he is looking at his work and pointing 
to the opposite sides of the cut square] 
And these are parallel.

Teacher:  Great Maks. So what had to be done?
Maks:  You have to make two parallel cuts of 

the same length.
Student 2:  Why had not I thought of it? 

Square is the first figure, faced by students. It is well 
known to them, everyone can indicate a square and 
describe its properties. However, during their work 
students forgot about the “mathematical” side of a 
square. In everyday language the square “is such a 
squared (edgy) thing, which has equal sides”. Such a 
description is sufficient for students at some stage. 
And this one students applied during the class. The 
parallelism of the opposite sides and the perpendicu-
larity of the adjacent sides was a secondary issue for 
them. Both concepts have been widely discussed dur-
ing the lessons of mathematics. Students had drawn 
perpendicular and parallel segments. They even 
marked on the square (using colored pencils) which 
the sides are parallel and perpendicular.. However, 
these situations were “pure mathematical”. Students 
know that now they are talking about perpendicular-
ity and parallelism. During the course of creating the 
spatial cards nobody pointed them that “this is math”. 
They initially did not see the mathematical context in 
what they were doing. It was for them just a normal 
execution of simple art work. Only a common con-
versation with the teacher allowed students to call in 
an appropriate way what they have made. Only then 
they began to use mathematical language in their de-
scriptions. These experiences have allowed students 
to realize new opportunities for creating future cards. 

Filip’s work
Filip first created a “test card”. He worked quickly, 
did not pay attention to accuracy. When the card 

was ready, he looked at it, analyzed the arrangement 
of individual elements, and then created a new card. 
This time, however, he proceeded very carefully. The 
effect of his work is presented in picture 3.

The boy was also aware of how it should carry out 
further cuts to achieve the desired end result. The 
following conversation with the teacher in an evi-
dence of this: 

Teacher:  Great job, Filip. Tell us, how did you 
make it?

Filip:  I cut strips
Teacher:  And how did you cut these strips?
Filip:  Getting shorter. Once a thinner, once a 

wider.
Teacher:  Ok.. And on what more do you pay at-

tention while preparing the work?
Filip:  [silence]
Teacher:  Well, how do these cuts take place?
Filip:  Well ... straight
Teacher:  Straight? What does it mean straight, 

Filip?
Filip:  [long break, he looks at his work] 

Perpendicular to this line [he puts on 
the edge of the sheet] (...)

Teacher:  And how are these cuts are related to 
each other?

Filip:  Parallel.

The boy knew the concept of perpendicularity and 
parallelism. He could also use in practice the relation-
ship of the perpendicularity and parallelism of objects. 
However, initially he could not name these concepts. 
He used the terms “straight, equally”. These are the 
terms taken from everyday life, from everyday lan-
guage. During creating the cards, it was enough for 
him. Just in describing what he did, he had to start 
using mathematical language. Students initially treat-
ed the task posed to them as a typical manual-plastic 
one: I have to make a spatial card. In their work they 
were rather to the directed to the visual aspect and 
did not refer to geometrical knowledge (although 
classes were held in the framework of mathematics 
lessons). A common discussion on the work made by 
students made them realize that what they were doing 
was hidden geometry. 

Students were very surprised about that. Often ap-
peared the statements: “oh, here is also a mathemat-
ics” or “Can we use the geometry here?” Therefore, in Figure 3: Filip’s work
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their further work they tried to use knowledge from 
geometry to create new spatial cards.

CONCLUSION 

For 9–10 years old students the classes were in a new 
form. During the classes the students turned out to be 
open to new challenges. They approached the problem 
creatively. The care taken on the details of the created 
cards can prove the huge interest in the presented 
subject.

Although the concept of parallelism and perpendic-
ularity were well known for pupils, they had prob-
lems with the indication of perpendicular or parallel 
objects. It seems that there are two different aspects: 
knowing concept definition and using it in practice. 
An additional difficulty was also a movement between 
two planes: the students during cutting worked on a 
flat plane, and the effect of their work was viewed in 
three dimensional space. When students were cutting 
out a “square” they received as a result a “cube”.

When discussing the concepts of parallelism and 
perpendicularity during math class the focus was on 
two-dimensional geometry. On a flat sheet of paper the 
students were shown perpendicular and parallel seg-
ments and by using a ruler they drew perpendicular 
and parallel lines. Meanwhile, during the course pre-
sented here they “cut out” perpendicular and parallel 
lines which was a new experience for them.

Hejný (2004) in his theory of the development of stu-
dent’s mathematical knowledge writes that it is very 
important in the learning process to gain experiences, 
which are the basis for the creation of formal mathe-
matical knowledge. The more different experiences, 
the better assimilation of knowledge. To the knowl-
edge of students which is stable, flexible and opera-
tional, you need to provide them with as much variety 
of experiences related to a given concept, recorded in 
the different planes.

For primary school students the issues connected 
with geometry are not easy. The classes presented 
here were an attempt to find a way to present these 
issues in such a way that students could experience, 
see. By following the view that it is best to learn by 
experience, I tried to organize the activities in such a 
way that students can manipulate the materials given 
to them and solve the task by themselves. The open 

question is whether this is the right way to introduce 
the student to the world of three-dimensional geom-
etry. In my opinion – yes, it is good direction. In my 
further work I would like to focus on the development 
of a geometrical environment which will be on the one 
hand appropriate and conductive for teaching and 
on the second hand - student-friendly. What should 
be this geometrical environment? What tools should 
be used in this environment? What kind of tasks and 
problems help to teaching and learning geometry?

REFERENCES

Arzarello, F. (2006). Semiosis as a multimodal process. Revista 

Latinoamericana de Investigación en Matemática 

Educativa. Special Issue on Semiotics, Culture, and 

Mathematical Thinking, 267–299.

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation 

in the mathematics classroom: Artefacts and signs after 

a Vygotskian perspective. In L. English (Ed.), Handbook 

of International Research in Mathematics Education (2nd 

Edition, pp. 746–783). New York: Routledge.

Barton, B. (2009). The Language of Mathematics: Telling 

Mathematics Tales. The Netherlands: Springer. 

Brown, T. (1997). Mathematics Education and Language. The 

Netherlands: Kluwer Academic Publisher.

Broaders, S., Cook, S.W., Mitchell, Z., & Goldin-Meadow, S. (2007). 

Making children gesture brings out implicit knowledge and 

leads to learning. Journal of Experimental Psychology: 

General, 136, 539–550.

Cook, S.W., & Goldin-Meadow, S. (2006). The role of gesture 

in learning: Do children use their hands to change their 

minds? Journal of Cognition and Development, 7, 211–232.

Hejny, M., (2004). Mechanizmus poznávací procesu In M. Hejny, 

J.Novotna & N. Stehlikova (Eds.), Dvacet pět kapitol z di-

daktiky matematiky (pp. 23–42). Prague, Czech Republic: 

Pedagogická fakulta.

Jirotkova, D. (2010). Cesty ke zkvalitňování výuky geometrie. 

Prague, Czech Republik:  Univerzita Karlova, Pedagogická 

fakulta.

Karwowska-Paszkiewicz, A., Łyko, A., Mamczur. R., & Swoboda, 

E. (2001). Activities about similar figures in the primary 

education. In J. Novotna & M. Hejný (Eds.), Proceedings of 

SEMT’01 (pp. 85–90). Prague, Czech Republic.

Stevanoni, E., & Salmon, K. (2005). Giving memory a hand: 

Instructing children to gesture enhances their event recall. 

Journal of Nonverbal Behavior, 29, 217–233.

Swoboda, E. (2001). How to prepare prospective teachers to 

teach geometry in primary education – some remarks. In 

J. Novotna & M. Hejný (Eds.), Proceedings of SEMT’01 (pp. 

150–154). Prague, Czech Republic.



Learning geometry through paper-based experiences (Marta Pytlak)

577

Swoboda, E. (2006). Przestrzeń, regularności geometryczne 

i kształty w uczeniu się i nauczaniu dzieci [Space, geo-

metrical regularity and shapes in learning and teaching 

children]. Rzeszów, Poland: Wydawnictwo Uniwersytetu 

Rzeszowskiego.

Swoboda, E. (2009). Geometrical regularities in children’s 

learning. In E. Swoboda & J. Guncada (Eds.), Child 

and Mathematics (pp. 42–52). Poland: Wydawnictwo 

Uniwersytetu Rzeszowskiego.



578CERME9 (2015) – TWG04

Six year old pupils’ intuitive 
knowledge about triangles

Maria Paula Rodrigues1 and Maria de Lurdes Serrazina2

1 Universidade de Lisboa, Unidade de Investigação do Instituto de Educação, Lisboa, Portugal, mariapaular@campus.ul.pt

2 Universidade de Lisboa, Escola Superior de Educação de Lisboa, UIDEF, Lisboa, Portugal, lurdess@eselx.ipl.pt 

This communication discusses the intuitive knowledge 
that six years old pupils reveal about triangles. Data is 
collected through a class group discussion, which was 
videotaped and transcribed. The results show that pu-
pils articulate visual prototypes with known attributes 
to recognize triangles. Furthermore they identify nonex-
amples and its features to recognize this shape. Position 
didn’t seem to be a problema to identify triangles, how-
ever, some features, as curved lines or topological prop-
erties, appear to be a problema on triangles recognition. 
Pupils used mainly a partitive classification type but, 
when they observed and discussed known attributes or 
properties, they can also use hierarchical classification 
type.

Keywords: Shapes, properties, classification.

INTRODUCTION

The research presented on this paper reports six 
years old pupils’ intuitive knowledge about triangles 
when solving tasks, which were based on those pre-
sented in (Clements et al., 1999).

This is an exploratory study whose main goal is to 
get some clues about the intuitive knowledge that 
Portuguese six years old pupils have about shapes. 
It is a part of a larger PhD study of the first author, 
named Shapes classification: a teaching experience 
in the early years. The work reported on this paper 
intends to discuss what kind of intuitive knowledge 
Portuguese six years old pupils reveal about triangles.

All participating pupils are six years old and belong 
to a 1 st grade class. The data collected addresses to 
intuitive knowledge about circles, squares, triangles 
and rectangles but, in this paper, we only focus on 
triangles.

CONCEPTUAL FRAMEWORK

When we presented a set of figures in order to iden-
tify the shapes which belong it is possible for pupils 
to reveal knowledge that is related to intuitive char-
acter thought, based on visual prototypes, without 
considering attributes or properties of those forms 
(Clements et al., 1999). This knowledge can be relat-
ed to previous experiences and promotes different 
levels of development (Burger & Shaughnessy, 1986). 
Also, visual representations, impressions and expe-
riences make up the initial concept image (Vinner & 
Hershkowitz, 1980).

Intuitive character thought can be related to major 
theories of concept formation: classical view and the 
prototypical view (Klausmeier & Sipple 1980; Smith, 
Shoben, & Rips 1974; Smith & Medin, 1981). According 
to the classical view, categories are represented by a 
set of defining features which are shared by all exam-
ples. The prototypical view proposes the existence of 
ideal examples, called prototypes, which are often 
acquired first and serve as a basis for comparison 
when categorizing additional examples and nonex-
amples (Attneave, 1957; Posner & Keele, 1968; Reed, 
1972; Rosch, 1973).

Initially, the mental construct of a concept includes 
mostly visual images based on perceptual similarities 
of examples, also known as characteristic features 
(Smith et al., 1974). This initial discrimination may 
lead to only partial concept acquisition. Later on, 
examples serve as a basis for both perceptible and 
nonperceptible attributes, ultimately leading to a con-
cept based on its defining features (Tsamir, Tirosh, 
& Levenson, 2008). Following this idea, some pupils 
may recognize shapes supported on the recognition of 
properties of those shapes and others will articulate 
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visual prototypes with known attributes or proper-
ties to identify the same shapes (Clements et al., 1999).

Non-prototypical examples, are often regarded as non-
examples (Hershkowitz, 1989; Schwarz & Hershkowitz, 
1999; Wilson, 1990) and specifically, “nonexamples 
serve to clarify boundaries” of a concept (Bills et al., 
2006, p. 127). On the other hand, Fisher (1965) admits 
that topological properties, mental structures that 
enable shapes abstraction, such as the configuration 
or appearance, cannot leave some pupils arrive to the 
identification of a particular shape, because they can’t 
consider specific properties of that shape.

Regarding to classification, Clements and Sarama 
(2007) mentioned that pupils tend to a partitive type 
of classification, where various subsets of concepts 
are disconnected from each other, into opposition to 
a hierarchy classification, where the most particular 
concepts integrates the general ones (de Villiers, 1994). 

Tsamir and colleagues (2008) claim that concepts of-
ten serve as a means by which people may categorize 
different things, deciding whether or not something 
belongs to this class. In other words, one of the func-
tions of a concept is to enable a person to identify both 
examples and nonexamples of the category. 

At a partitive classification process pupils can iden-
tify the shapes name without ever having been the 
opportunity to reflect on their names, attributes or 
properties and only a small part will be able to provide 
nonexamples (de Villiers, 1994).

In front of a different figures sets, where the goal is 
to identify circles; squares; triangles and rectangles, 
Clements and colleagues (1999) and Sandhofer and 
Smith (1999) claim that, in order of difficulty, children 
identify the circle; square; rectangle and triangle.

METHODOLOGY

The exploratory study reported in this paper fol-
lows a qualitative interpretative approach (Denzin 
& Lincoln, 1989). Participants were all six years old 
and belong to the same 1 st grade class, constituted by 
21 pupils, of an elementary private school near Sintra, 
a small village of Lisbon area. All of them attended 
the kindergarten at the same school and belong to a 
socio-economical high level. All participants had had 
informal contact with different shapes during last 

school year and that fact influenced their intuitive 
knowledge of shapes.

The study started with four clinical interviews, car-
ried out by the first author to four pupils to test a 
reworking of tasks used by Clements and colleagues 
(1999), whose goal was to identify all circles, squares, 
triangles and rectangles of figures sets. So, the task 
where children must identify triangles followed two 
different steps: on a first approach four pupils, two 
boys and two girls, in different four days, were taken 
out of the classroom and solved the tasks, as we want 
to experiment the task with pupils before taking it 
into classroom. Furthermore, the first four clinical 
interviews intended, on the one hand, identify the 
first knowledge about triangles of these four children, 
and, on the other hand, the given answers served as a 
starting point to all group discussion. The intention 
was to create a kind of game where pupils not inter-
viewed should guess whose triangles had been chosen 
by their colleagues. This game was a motivation for a 
collective selection of triangles and a discussion about 
it.  These interviews were videotaped. After this first 
step, the researcher took the task for the classroom 
and promoted a whole class discussion session, which 
was also videotaped. The researcher played a kind of 
game where pupils who did not participate in indi-
vidual interviews tried to guess which shapes were 
chosen by the interviewed pupils. The data presented 
in this paper focus on this whole group discussion. 

So, data collection was through a group discussion, 
by videotaping, where pupils could discuss different 
ideas, complete or disagree with arguments, creating 
new reasoning and clarify concepts. This group dis-
cussion intended to lead pupils to the possibility of 
inclusive classification through the construction of 
shape families that display equal or similar attributes 
or properties.

The work consisted on a chosen triangles task using 
a manipulative set of figures, placed in the same posi-
tion as the one presented by Clements and colleagues 
(1999), each figure printed on a separate card allowed 
pupils compare, rotate, overlap, among others. On this 
set of manipulative figures, pupils had to choose all 
triangles, justifying their choices. During this stage 
we intended to understand what kind of knowledge 
pupils used to recognize triangles: visual prototypes; 
shape attributes or properties; nonexamples; among 
others. Besides, their justifications and new questions, 
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related with their answers, we tried to forward them 
to the construction of shape families to look out to 
hierarchical classification.

The data were analyzed regarding to the pupils an-
swers, based on visual prototypes, without consider-
ing attributes or properties of that forms (Clements et 
al., 1999), and when they claim that visual representa-
tions, impressions and experiences make up the ini-
tial concept image (Vinner & Hershkowitz, 1980).

Another aspect we considered on the analysis of data 
refers to a partitive type of classification influenced 
by Clements and Sarama (2007) and de Villiers (1994), 
which mentioned that pupils tend to a partitive type 
of classification, where various subsets of concepts 
are disconnected from each other, into opposition to a 
hierarchical classification, where the most particular 
concepts integrates the general ones.

Finally, we had in consideration that, probably, trian-
gles, according to Clements and colleagues (1999) and 
Sandhofer and Smith (1999), will be a difficult shape 
to identify.

With this kind of methodology we wanted to get some 
clues about intuitive knowledge of six years old pupils 
about triangles; what kind of language they use to 
express this knowledge; understand how large group 
discussions can lead pupils to a better knowledge of 
triangles and their properties and, finally, understand 
if large group discussions facilitate the idea of hier-
archical classification.

To preserve the identity of all pupils, on the analysis 
we used fictitious names initiated by the same capital 
letter of their real names.

PUPILS’ INTUITIVE KNOWLEDGE 
ABOUT TRIANGLES

As we wrote before, the task where children must 
identify triangles followed two different steps: the 
first one we carried out individual interviews with 
four pupils out of their classroom. With the data col-
lected on these interviews a group discussion session 
was organized. The researcher played a kind of game 
with the pupils who had not participated in individual 
interviews. They should try to guess which were the 
shapes chosen by the interviewed children. To start 

the researcher asked to all group which were the trian-
gles they thought had been chosen by their colleagues.

Researcher: In front of these set of shapes, 
António; Geraldo; Marta and Mara 
should choose only triangles. Which 
ones do you think they chose?

Augusto: I think they didn’t chose number 2. 
Because it has 4 sides and triangles only 
have 3 sides.

Some pupils, as Augusto, could recognize triangles 
identifying a nonexample of them, nominating attrib-
utes as the number of sides. Here he seemed regarded 
non-prototypical examples as nonexamples.

Joel: Picture 2 has 4 sides and 4 angles.
Researcher: So it can belongs to which family?
All group: Rhombus…
Augusto: … and squares.
Researcher: Why?
Maria Manuela: Because it has 4 sides and 4 an-

gles.
Researcher: So, square and rhombus can be part 

of which family? 
Geraldo: Rectangles.

The group discussions conducted children to observe 
some attributes or properties and this observation, 
sometimes, led to comparisons between figures and 

Figure 1: Set of shapes to identify triangles (Burger & Shaughnessy, 

1986; Clements & Battista, 1992a)

Figure 2: A nonexample of triangle given by Augusto
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their properties and offered a larger possibility to 
identify common attributes or properties that can 
produce a primary idea of hierarchical classification. 
However, last answer needs a different kind of work 
because all mentioned shapes don’t have equal attrib-
utes or properties and can’t be part of same family.

Researcher: What about you Geraldo… which 
triangles do you think your      colleagues 
had chosen?

Geraldo: Pictures 1, 3, 4, 6, 7, 8, 11 e 13.

Analyzing Geraldos’s choices we can understand that 
when he had chosen figures number 3; 4; 7 and 13, his 
choices were based on topological properties, such 
configuration or appearance, without consider spe-
cific properties of triangles.

However, when he chose figures 6 and 8 he seemed 
recognize triangles articulating visual prototypes 
and known attributes. Already, when he identified 
figure 11 it is possible to say that he had identified some 
attributes and properties of triangles because the tri-
angle identified by number 11 was a long and narrow 
scalene triangle which isn’t a common representation 
of triangle represented on an unusual position.

Researcher: Augusto said that picture 10 has 6 
sides but, António, you had identified 
it as a triangle. What do you think now, 
António? 

António: It’s a non triangle because it has 6 sides.

When children were in group discussion they were 
encouraged to discuss shapes, attributes or proper-

ties, they could compare and integrate new concepts 
as the one showed on transcription “non triangle”, 
which meant that these group discussions might be-
come richer in terms of concepts. Moreover, the group 
discussions allowed all pupils participation, sharing, 
abstraction and reflection about triangles attributes 
or properties. 

Researcher: António, you said that picture 14 is 
a triangle, but Geraldo, Mara and Marta 
said that is a non triangle. Who is right?

António: I think I was wrong..
Researcher: Why?
António: Because, now I can observe it has curved 

lines .
Researcher: So, do you think triangles shouldn’t 

have curved lines?
[…]
Marta: Triangles only could have straight lines 

because they have 3 angles.
Lívia: I agree with Marta, triangles have angles 

because it doesn’t have curved lines.
Researcher: So, picture 14 is a triangle or, like 

Marta and Geraldo said, a non triangle?
All group: A non triangle.

Once more, group discussion seems to be a place 
where pupils can reflect about appearance, proto-
types, attributes and properties and clarify concepts. 

Researcher: António, now, you said that picture 
14 is a non triangle because it has curved 
lines and because of that they can’t have 
any angles.

 Can you identify other pictures from 
the same family?

Mara: Pictures 3 and 7 are not triangles be-
cause they don’t have any angles.

 Figure 3: Triangles identified by Geraldo

Figure 4: Figure identified as a triangle by António

Figure 5: Figure identified as a triangle by António

Figure 6: Figures identified as “zero” angles family
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Lívia: I think they all can belong to “zero” an-
gles family.

When pupils establish relations between different 
reasoning and identify necessary shape conditions, 
inclusive classification may emerge.

Researcher: Marco said that António, Geraldo, 
Marta and Mara probably had chosen 
picture 13. 

 Do you all agree?
Lívia: I didn’t because it has open lines. All 

triangles should have 3 sides, all close. 
I think picture 13 is a non triangle.

During all discussion, Lívia seems to understand what 
are the necessary conditions to be a triangle and also 
a necessary condition to be a two dimension shape, 
when she considered the attribute “close lines”.

Researcher: After all this discussion, who wants 
to tell me what pictures we are sure that 
represent triangles on this set?

Large group of pupils: Pictures 1; 6; 8 and 11.

At the end of group discussion a very large number of 
pupils seemed to have clarified the concept of triangle 
and a strong concept image of this shape, while they 
were observing features of discussed figures and were 
articulating attributes and properties of triangles.

DISCUSSION

In this exploratory study the pupils articulated visual 
prototypes with known attributes, for instance, when 
they identify examples and nonexamples of triangles 

and were able to justify it, which is according to the 
results obtained by Clements and colleagues (1999). 

In line with Rosch (1973) and other authors, few pupils 
used nonexamples to identify triangles and justify 
their choices. But in this study nonexamples served 
to clarify boundaries of a concept (Bills et al., 2006).

A group of pupils seems to have some difficulties to 
identify triangles because of some topological prop-
erties, as appearance or configuration that prevent 
the recognition of triangle specific properties. These 
results are according to those mentioned by Fisher 
(1995).

Contrary to what would be expected, some pupils 
recognized triangles independently of the figures 
position, which may be related with their previous 
experiences. Burger and Shaughnessy (1986) reveal 
that experiences and informal contacts with different 
shapes are very important factors at children intui-
tive knowledge of shapes. 

Finally, we think it’s possible to say that when pupils of 
1 st grade were encouraged to discuss shapes attributes 
or properties, in group discussions, they can observe 
differences and similarities and hierarchical classifi-
cation could emerge (de Villiers, 1994). Furthermore, 
they seemed to be able to clarify concepts and con-
struct new ones (Tsamir et al., 2008).
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The inspiration for observation was an idea of getting 
movement to a static school geometry. In the school cur-
riculum, the only area where you can consciously refer 
to the movement are questions related to isometrics. I 
took the premise that the mathematization of movement 
should be based on student perceptions related to the 
physical movement of objects. Conducted observation 
shows that the mathematization of rotation might not 
be so obvious. 

Keywords: Dynamic geometric reasoning, 

mathematization of physical movement, rotation. 

RATIONALE

The process of solving geometrical problems needs an 
idea of the action. Almost every geometric problem 
requires focusing attention on certain compounds 
for their mental transformation. Hence, thinking in 
geometry requires mental skills to manipulate ob-
jects or its fragments. Such approach is visible also in 
many places of Euclid ‘Elements’. Despite the formal 
expulsion of the movement from Greek geometry, rea-
soning were based, without doubt, on the imagination 
of making movement.

In Duval (1998, p. 38), “geometry involves three kinds 
of cognitive processes which fulfil specific episte-
mological functions: visualisation, (…) construction, 
(…) reasoning (…)”. I understand this statement very 
widely: cognitive processes are elements of thought 
processes, and constructions act as actions. 

Theories about the formation of geometrical concepts 
emphasize that the origins of geometrical knowledge 
proceed without words and rely mainly on visual per-
ception of static phenomena (van Hiele, 1986; Hejný, 
2001). Therefore, the problem of bringing students to 
the ability of making mental transformations I treat 
as an educational task. In the literature, there is no 

explicit opinion on what educational level there is 
possible to create such skills.

Today, while solving geometric problems in school, 
special computer programs that allow to receive dy-
namic images are often used (Ferrara & Mammana, 
2013). Without doubt, they support not only visual-
isation, but also construction and reasoning. They 
facilitate experimentation – students can check cer-
tain assumptions, verify the hypothesis. Imagination 
at the screen shows what happens to the object when 
changing certain parameters – students can watch 
the following phases of these changes. Sometimes the 
student decides what action to perform (like dragging 
a specific point to make deformation of the figure). In 
the other situation the whole actions are defined: sym-
metrical reflection with respect to a particular line, 
parallel movement to another location, turning about 
a specific angle relatively to a fixed point. Student sees 
the overall effect of the change, without going into the 
mechanism beneath this. These two types of action are 
different, because they give student the opportunity 
to experiment in other ways, either through the use of 
ready-made tools without going into their mode of ac-
tion, or through planning action based on a conscious 
determination of conditions governing the changes.

These tools were absent at the time when the geometry 
was created as a scientific discipline. Mathematicians 
were able to imagine some of the compounds with-
out seeing them, predict the outcome of actions per-
formed only mentally. How did they develop this abili-
ty in them? Can we develop the same in the traditional 
way of teaching? And maybe today only dynamic com-
puter programs give the opportunity for the creation 
of dynamic representations of geometric objects?

For me, the starting point for using action in geomet-
rical thinking is the problem of turning attention on 
movement as such. In the Polish school curriculum, 
the only area where we can consciously refer to the 
movement in geometry are topics related to isomet-

mailto:eswoboda@ur.edu.pl
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rics. Isometries are most often introduced as a static 
relation figure to figure. Names of geometric trans-
formations suggest that isometric transformations 
are the result of interiorization of rigid movements 
that take place in a physical space. This trend can be 
treated as didactic suggestion how to teach isometries 
at school. Mathematical concepts undoubtedly have a 
relationship with reality as the result of mathematiza-
tion. But preparing students to the mathematization 
of movement raises many questions. Here there are 
some of them:

 ― How does the mathematization is done by a young 
student – shouldn’t we attempt to correct some of 
the dependencies that a child draws attention to?

 ― Maybe some properties are so deeply rooted in 
intuitions that the child does not even recognize 
that they operate? So what is the role of the teach-
er - what behaviours should he be sensitive about 
in order not to impose a ready-made mathemat-
ical formulas to students, but develop sponta-
neous knowledge and skills; what to talk about, 
what to indicate, what to question?

 ― Don’t we commit abuses assuming that the 
mathematization of movements is based on the 
experiences gained in physical experiments? A 
mathematician and a physicist look otherwise on 
the physical movement of the object, regardless 
of the fact that both base on their own experi-
ences in physical reality. Both must, therefore, 
focus attention on different observed phenom-
ena. Which of them are important for making 
mathematization?

My previous research suggests that students fre-
quently use a rotary movement in solving geomet-
rical problems (Swoboda, 2013), are even are able to 
bring the configuration of the figures which can be 
described in the language of mathematical transfor-
mations (Jagoda & Swoboda, 2011). The results of these 
observations, however, do not provide answers on 
how close the student is able to get in order to under-
line terms which define such a movement.

Marchini & Vighi (2011), describing their own research 
aimed on building intuition of geometric transforma-
tions among young students, they relates their obser-
vations to the Duval theory on different perception of 
geometric phenomena (Duval, 2006). They emphasize 

that the mathematical representations of isometrics 
can be read in two different registers. Mathematical 
concepts such as parallel shift, rotation, axial sym-
metry, can be defined both as the static relationships 
between objects or as transformations. In the light 
of the Duval theory, this known mathematical fact 
takes a new didactic interpretation. Not only that the 
position of the object to the object can function as a 
relation or as a transformation -  perhaps the mental 
abilities of students mean that some will opt more to-
wards static perception, and others - in a static image 
can easily see a movement. In Marchini and Vighi’s 
experiment, children spontaneously were able to give 
the dynamism to the static arrangement of the two 
objects. In addition, students have used the words 
from the everyday language which can be treated as 
the equivalent of parallel displacement, axial sym-
metry, rotation. To what extent is this interpretation 
possible for another group of children? How do these 
results bring us closer to the process of movement’s 
mathematization?

METHODOLOGY 

The described research was conducted among 12–13 
year old students in two schools in Rzeszów (Poland), 
in May 2014. So far their geometrical knowledge was 
associated mainly with geometrical figures. They also 
had many opportunities to deal with axial symmetry 
treated as a static relation, although for them there 
was the only isometric transformation they knew. On 
the other hand, it is worth mentioning that these stu-
dents should not use computer animation in the pro-
cess of learning geometry. Students worked in pairs. 
They were those students who cope with mathematics 
without problems and were open in their coopera-
tion with others. The teacher leading the conversation 
with the students attended the research session as well 
[1]. At this stage, our goal was to observe and analyze 
the spontaneous behavior of the students working 
in the learning environment. That could be the basis 
for the understanding of isometric transformations 
on the plane.

Analysis of students’ actions should lead to:

 ― identification of spontaneous student’s behavior 
related to the representation of movement on the 
plane, 
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 ― capture those elements that may be included in 
the mathematical image of isometrics, and those 
that should be ousted during the development of 
mathematical concepts,

 ―  diagnose how the proposed activities can be used 
as a starting point for talking with students about 
movements in geometry.

In this article we analyze the work of two students - 
Eliza and Gabriela. They had to create an animation of 
a moving triangle. Schoolgirls had a small book (size 
10cm × 10cm) with 30 clean sheets for their disposal, to 
create animations. For facilitate drawing, they got a 
template of acute-angled triangle. They also had basic 
geometrical instruments (ruler, set square, compass, 
protractor) on the table. Girls could draw with a pencil 
or marker.

Purpose of the meeting was presented to the girls 
by their colleagues who had previously participated 
in a similar session. Using ready-made booklet, they 
showed to the girls how you can get the effect of mov-
ing the wings of a butterfly through a quick thumb 
through books. 

A teacher, participating in the study, formulated a 
task:

Teacher: We’d like you draw a triangle in 
your booklet and make anima-
tions that it changed its position. 

A formulation of the request does not dictate the way 
in which the figure is to be moved. The entire session 
was filmed. Film and prepared transcripts became the 
basis for the study.

RESULTS OF OBSERVATION 

Determine the type of movement 
The girls started their work by determining what 
kind of movement they will animate. They moved 
the triangle across the table, alternately offering 
various moves. All proposals were close to the rota-
tion, and the whole course of this part of the meeting 
led to clarification how the movement will run. Girls 
were getting closer and closer to the idea of   rotation 
around a clearly defined point - one of the vertices 
of the triangle. The first proposal (Figure 1a) – is a 
circular movement around the closed wheel, with 

the comment: something like this; the second (Figure 
1b) – parallel motion showing by hand on the coun-
ter, with the arc trajectory, the third (Figure 1c) – the 
rotation of the triangle with one fixed point placed 
rather somewhere inside of the triangle, the fourth 
(Figure 1d) – rotation of the triangle with respect to 
one of the vertices. 

The latter choice was commented, and the medium to 
convey thoughts were the movements:

Eliza:  and I like it more like this: she keeps the 
triangle with the fingers of one hand and 
with the other hand she is trying to rotate 
the figure relative to one vertex, in counter 
clockwise direction.

In the next step girls have discussed the initial posi-
tion of a triangle. Finally they decided (through ap-
propriate arrangement) that the longest side would 
be parallel to the lateral edge of the page.

This first phase of work revealed rotation as such from 
intuition and the feeling that it is done with respect 
to a particular point. This point became more and 
more clear, it marked the organization of the whole 
movement. In the next stage, the discussion has been 
subjected to the initial orientation of the triangle. This 
position is also taken as the reference for determining 
the angle of rotation.

The centre of rotation
It seems that girls could not knowingly benefit from 
the center of rotation, till the end of their work. 
Although in their intentions triangle had to move  in 
relation to one of the vertices, they do not feel the need 
to highlight this point – to tick, to discuss, to establish 
as a point of reference. 

The beginning of their work indicates that the loca-
tion of the triangle in the following slides is very prob-
lematic for students. Girls outlined the template of 

Figure 1: Four approximations leading to determination the type 

of the movement
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triangle on the first sheet of paper, turned a card in the 
booklet – and stopped embarrassed. They tried to find 
a way how to repeat the previous triangle position. 
Their first idea was to use the parallel shift: one of the 
girls tried to slip triangle out of the books (Figure 2a), 
then the second girl turned the page and they tried 
to push the triangle on this new card (Figure 2b, 2c) 
repeating its earlier position. Quickly they stated that 
it is not a good idea because the shift was not parallel 
and in their movements girls went as far as the “left 
side” of the earlier page (Figure 2d).

Gabriela found the other solution. She puts the tri-
angle on the left side of the first contour (Figure 3a), 
closes the book (Figure 3b), turns it on the opposite 
side so that the triangle in the booklet falls down onto 
a second card (Figure 3c, 3d). These manipulations can 
be seen as the use of intuition of the axial symmetry, 
or folding. The girl uses it for placing a figure onto 
another plane in the same distance from the edges 
of the paper.

Later, the next few slides were drawn by using 
Gabriela’s method. Then the girls have perfected 
their work – noted that on the following pages you 
can see the outline of the previous triangle position. 

So she have used this contour as a point of reference, 
to create a change. 

While drawing further slides, girls tried to rotate the 
template relatively to one of the vertices belonging 
to the longest side. Sometimes they kept the vertex 
with their finger, but mostly – after the initial place-
ment of the template on the track they only have tilted 
the template and thus determined the new position. 
There were moments when the girls manipulated the 
template quite freely, and the center of rotation was 
located somewhere inside the triangle.

The analysis of position of one of the vertices of the 
triangle through the following slides – that one, with 
respect to which the movement took place - shows how 
much this point was unstable. This is evident even in 
the pictures below (Figure 4, 5) and it is shown on the 
diagram beside, on which the arrangement (A) marks 
the position on the first “slide” and (B) – on the last one.

Comment: These first approaches prove that in at-
tempts to perform the movement, the parallel shift 
and mirror reflection (understand as the tool) are 
closer to them than rotation. The girls mainly want 
to reconstruct the earlier position of the entire tri-

Figure 2: Following phases of shifting the triangle 

Figure 3: Gabriela’s way to restore the position of the triangle from the previous slide 

Figure 4 Figure 5 Figure 6
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angle. In further work this position will be treated as 
a starting point for making changes in the position. 
Despite earlier manipulation on the table by hand, in 
which rooted movement at one fixed point was visible, 
they have no idea of the location of the center of rota-
tion. What’s more, the center of rotation escapes from 
their attention, it  does not look not as an important 
constitutive element of movement.

Oriented angle
The first change of the triangle position was held af-
ter establishing its earlier position. When the girls 
dubbed the triangle’s location from the first slide, 
carefully twisted template trying not to change the 
location of one vertex. Further stages of their  work 
were similar - doubling the “old” position and light 
twist of template. It was evident that what was par-
ticularly important for them was the change of the 
placement of one of the triangle’s sides (the longest 

- which end by the center of rotation) in relation to its 
previous position. Such action guided them from the 
very beginning of the work, which was confirmed in 
a conversation with the teacher:

Ex. 1 

Teacher:  What’s your idea for the animation? 
Students:  Wow, that he would be so, so twisted 

(both show by the hand the movement, in 
which it is clear that one vertex is station-
ary). So around. 

Teacher:  So drawing the next steps, the next 
slides of you animation, you turn your 
attention to something? What do you 
pay attention to, because I see that Eliza 
draws a triangle, then she closes the 
book 

Gabriela:  that is, the first we make from that first 
contour… 

Teacher:  What, why so? 
Students:  In order to know how it was before, then 

we move it a little bit so (Gabi is aided with 
her hands jammed into the table and one 
arm shows how to turn) 

Teacher: To move it a little further, or to rotate it 
a little bit? 

Students: rotate 
Teacher: Oh, do you move it in any way or just 

only rotate it? 
Gabriela:  just rotate (Eliza is busy with another 

page) 

Teacher: aha.

Even when they discovered that there is an easier way 
of finding the proper position than the book manipu-
lation, the essence of their work has not changed. The 
girls noticed that they can use the contour, which is 
reflected in the following pages. This location was 
used as the starting point for making changes.

Ex.2

Teacher: What now, Gabi, this facility will consist 
of? 

Gabriela: So now you will not need to bounce it, 
but here it is already marked, and now 
only to apply (she shows a position of the 
template on the track) and to twist.

When the motion is realized, the most important is to 
change the position of one side of a triangle in relation 
to its position at an earlier slide. This change takes 
place in a specific way - as a change in slope. With this 
approach, the angle is understood as a measure, not as 
a geometrical figure. Thus, it refers to one of the oldest 
ways of describing the angle. The definition from the 
first book ‘Elements’ of Euclid, we have: 

Definition 8. And a plane angle is the inclination of 
the lines to one another, when two lines in a plane 
meet one another, and are not lying in a straight-
line. [3]

For girls, it is enough ‘to skew’ a triangle. The exist-
ence of a fixed point is pushed aside. Such it looks in 
implementation, even in an interview the fixed point 
is marked, supported by gestures.

Size of the angle for the following ‘slides’ is taken in-
tuitively, although girls try to make rotation rather 
on the same angle. At no time of their work were they 
interested by which total angle the triangle is rotated. 
Girls draw slide after slide, which can be explained by 
focusing only on the animation of movement; planned 
movement effect is the main goal of their work. 

What you will observe, is a constant angle’s orienta-
tion. This is evident in many moments of their work. 
While replacing themselves in drawing (they do it 
alternately) they remain continuously the same di-
rection of rotation. At some point Gabi, taking the 
book for drawing, asks Eliza:
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Gabriela: In which way it spins? so? (she shows the 
movement by turning the template). 

Eliza: Oh, in this way (shows movement by the 
hand on the bench). 

Gabriela: Oh (turns her triangle in the same direc-
tion).

FINAL REMARKS 

‘Mental rotation’ is an issue multilaterally studied by 
psychologists. Sometimes their studies are used in the 
didactics of geometry (Steinwandel & Ludwig, 2011). 
However, these studies recognize the problem from 
a different side than the one that is presented in this 
essay. Generally, they are focused on solving tasks 
which require the mental rotation of three-dimen-
sional figure or the mental movement in space. Our 
observations are not so much related to rotation usage, 
but to visualization of rotary motion with regard to its 
mathematical aspects. In such approach, we intend to 
realize two aims - the creation of geometrical concepts 
(here – a geometric transformations: rotation) and 
the formation of dynamic images in geometry. We 
are committed that the visualization emphasize those 
elements that are relevant to the mathematical defini-
tion of the rotation and underline the idea of motion.

During this meeting the teacher repeatedly posed the 
question to participated students, whether the task 
they perform can be offered to other students during 
a math class. The girls had no idea what relationship 
may these classes have with geometry. It is clear that 
paper geometry (even when learning use of physical 
models) does not create many opportunities to realize 
a movement that underlies conducting of the geomet-
ric reasoning.

Conducted observation shows that the mathematiza-
tion of rotation might not be so obvious. The girls do 
not really have revealed these elements that define 
the rotation. Their activity gave a fairly imprecise 
effect of rotation, but did not allow to extract those 
elements that appear in the definition:

 ― Centre of rotation - the only fixed point in the 
transformation - is carried out in a quite fuzzy 
manner. The clash of what they want to do with 
what they actually realize shows that there are 
two different worlds. Action in the physical re-
ality is not translated to the representation of 
the movement by the drawing. While creating a 

drawing they don’t retain the features designated 
through physical action, and especially do not 
respect the stability of the center of rotation. The 
center of rotation stops being the most import-
ant point of reference in changing the position 
of the object.

 ― The angle of rotation is treated as a measure of 
the change of slope of the segment. This change is 
the essence of the functioning of the movement. It 
takes place in a weak relationship with the center 
of rotation. Perhaps this is the clearest element 
in this movement, showing the change. It seems 
likely that children are more focused on what is 
changed, and not on what is fixed. After all  – the 
movement lies in the change. 

 ― Orientation of rotated angle was accented in a 
very clear way. The initial position and the final 
position are always indicated. In subsequent stag-
es, the final position moves into initial position 

- this causes that the movement is smooth, still 
directed in the same way. 

 ― The measurement of the entire angle was not sig-
nificant for girls. Only the initial position and 
fixed side of the triangle was scheduled, which 
was to define the first arm of the angle. Further 
work was regulated by the amount of sheets in the 
booklet – the amount of slides in the animation. 
Each subsequent turn was held by a small angle 

– about 5 degrees – but at no stage of their work 
this value was specified in a conscious way. It can 
be assumed that for the girls it was enough to 
have a situation where the following slides’ layout 
was noticeably different from the initial position.

All these conclusions are related to the work of only 
one pair of students. Therefore they can’t be the base 
for any generalizations. However, it should be not-
ed, that they were students who work well with the 
school mathematics. For me, collected observations 
are the starting point for a critical analysis of the 
other students’ work, dealing in the same learning 
environment. 
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In this paper, we try to show that in the process of un-
derstanding of isometric transformations, the mean-
ing of isometric transformations is characterized as a 
function of whole figure to whole figure, as a function 
of the parts of the figure to the correspondent parts of 
the figure, and as a function of the set of points of figure 
to set of points of the same or other figures. This percep-
tion of isometric transformation has been observed in 
an experimental study which enabled us to define and 
understand different levels of difficulties in recognition 
of isometric transformation, from which the details are 
presented in this paper. 

Keyword: Geometric transformation, function, teaching 

geometry, concept images.  

INTRODUCTION

Considering low level of geometric reasoning of fu-
ture teachers observed in the experiences and showed 
by different investigations (Thaqi, 2009), our interest 
is the foundations of the professional development of 
the prospective teacher of mathematical education. 
For that reason we have to design, plan and imple-
ment a practice on learning to teach the mathematics; 
to analyze elements of the constructions of person-
al meanings of future teachers about mathematics 
and, to recognize the difficulties of the students to 
understand, relate and organize mathematical con-
tents, terms and properties associated to that content. 
During last years with my colleges we tried to contrib-
ute in this process focused concretely in geometri-
cal transformations (Thaqi, Gimenez, & Rosich, 2011; 
Thaqi & Gimenez, 2012). In this paper we research 
nature and causes of difficulties in teaching/learning 
geometrical transformation and the relation of such 

difficulties with concept images constructed about 
geometrical transformation.  

Some investigations have highlighted the reasons 
and advantages that provide the study of geomet-
rical transformations (Jackson, 1975; Küchemann, 
1980; Jaime, 1993; Harper, 2003; Jagoda & Swoboda, 
2011; Thaqi, 2009). A main reason to study the trans-
formation is curricular, since “The transformations 
are applications of the geometrical functions, and 
this treatment is fundamental for all the mathemat-
ics” (Jackson, 1975, p. 554). Other reason is that the 
transformations provide geometrical dynamic task. 
Despite these reasons and advantages that the trans-
formations teaching offers, generally we know that 
the students show a low level of learning about the 
transformations (Thaqi, Gimenez, & Rosich, 2011) and 
we highlight that a program for the education of the 
teachers must integrate the same objectives that the 
scholar geometries classes have; the need of addition-
al formation in formal geometry and empathize the 
conceptual understanding, starting from the analy-
sis of the geometrical environment with conceptual 
explorations. The study of how prospective teachers 
build a meaning of the concept of isometrics transfor-
mation in process of understanding of geometrical 
properties and their relation with difficulties is one 
of the aims of this research.  

THEORETICAL FRAMEWORK

Sundry authors have distinguished the everyday 
concepts (known as spontaneous) and so did the 
scientific (Piaget, 1970; Vygotsky, 1987). Fischbein 
(1993) considered that there have been seen three 
types of conceptual constructions in the investiga-
tion: inductive, deductive and inventive building of 
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concept. Later on, the same author tells us that the 
concepts are the results of accumulated social expe-
riences (Fischbein, 1993). We consider that there has 
to be built the conceptual meaning in interaction with 
contexts grounded in the experiences, to later build 
images and abstractions. Some authors like Sowder 
(1996) proposed that what characterizes a concept is 
to state an idea that is given like an answer to non 
similar stimulation (to varnish the understood like 
examples). In the opinion of Fischbein (1993) what 
characterizes the concept is the fact to state a idea, 
general representation of a class that is based in com-
mon characteristics.

The conceptual construction rests on a set of process-
es of construction, visualization, exploration of prop-
erties, elaboration of explanations and classifications, 
within others. Among more and better experiences 
we have, the conceptual image gets closer to the con-
cept because, like Vinner and Hershkowitz states: 

to acquire a concept means, to acquire a mecha-
nism of construction and identification through 
what will be possible to identify and build all the 
examples of the concept, the same way as that is 
conceived from the mathematical community 
[Cited for Jaime & Gutierrez, 1995]. 

As it concerns to the various investigations about 
the subject (Jaime & Gutiérrez, 1995; Pearman, 1990) 
generally they put the manifest that between the 
Piagetian concept of conservation of the length and 
the invariance there is a tight relation that they can 
be saved (Jaime & Gutiérrez, 1995). 

The constructs “concept image” and “concept defini-
tion” (Tall & Vinner, 1981) will be useful to us also to 
describe the status of the knowledge of the individual 
fellow with a relation to a mathematical concept. It 
is meant to the mental entities that are introduced 
to distinguish the mathematical concepts formally 
defined and the cognitive concepts through which 
they are conceived. With the expression:

concept image describes that the cognitive 
structure is totally associated to a concept, that 
includes the mental images and associated pro-
cesses and properties (Tall & Vinner, 1981, p. 152). 

Jaime & Gutiérrez (1995) state that in the formation of 
images of a concept that a person has, the experience 

and the examples that has been seen or used, both in 
a scholar and extra-scholar context have a basic role. 
Frequently the examples are few and the students 
convert them in prototypes. Jagoda & Swoboda  (2011) 
study the process of construction of the concept in 
rotation spotlighting that “recognition of a specific 
figure to figure position is only a static image of this 
relationship, not connected with the movement of one 
object onto the other”. In fact they confirm that the 
idea of geometrical transformation is necessary to 
conceive the specific movement that is transforming 
the initial figure into the final one, through which it 
is important that such conception stems from men-
tal reflection on the phenomenon of movement. Our 
position is based on the meaning of the concept of 
geometrical transformation as a function of (whole) 
figure to (whole) figure that is the basic level of knowl-
edge about geometrical transformations. It has also 
been shown by several authors that pre-service ele-
mentary teachers have difficulties in determining: (1) 
the correct attributes of transformation and motion 
to move an object from one point to another; (2) the 
results of transformations involving multiple combi-
nations of figures; (3) the use of transformations as 
mathematically-general operations which require the 
specification of inputs, but as particular actions, each 
with given prototypical parameters (Harper 2003). 

A recent study concerning prospective teachers‘ 
knowledge of rigid transformations (Yanik & Flores 
2009) revealed that scholars: (1) started by referring 
to transformations as undefined motions of a single 
object which is equivalent  with Static Arrangement 
Figure To Figure (Jagoda & Swoboda, 2011), followed 
by (2) using transformations as defined motions of a 
single object, and (3) the understanding of transfor-
mations as defined motions of all points on the plane 
which is equivalent with  transformation as function of 
set of points to set of points. In our research we will try 
to explain that precisely these three ways of change 
of concept images of geometrical transformations 
enable us to explain and understand the difficulties 
of the understanding of the concept of geometrical 
transformation. A head we will show the relationship 
between the process of construction of the concept of 
geometrical transformation and the function of the 
set of the points of figure to the set of points of the 
(same or) another figure.
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METHODOLOGY

The methodology was adapted to several techniques 
that allowed to approach the construction of the goals 
of the investigation and allowed to rate it as a theoret-
ical formal study within the interpretative focus. In 
this way we have elaborated a design in which was 
combined the own techniques of the studies with case 
studies. Considering our own experience in the math-
ematical education of the teachers, we considered 
adults who acquire a professional scientific knowl-
edge, and our work that has transformed a vision of 
the processes in the creation of a meaning, we iden-
tify that the investigation, action and formation are 
the three sides of a same methodological triangle. So, 
the investigation comprises theoretical component 
with epistemological and cultural character, also an 
experimental type component. These two parts of 
the investigation are intimately related giving the 
product - analysis of the speech and analysis of the 
personal constructions, to be able to form the con-
clusions of the investigation. 

Participants of the study were 18 students of Faculty 
of Education in University of Gjilan – Kosovo. This 
is because two authors of this study have worked in 
regular lectures with these students in the program of 
preparing prospective teachers. Participants where 
purposefully chosen, and voluntary participated for 
this study. They are 20–22 years old students – from 
different, rural and urban places, from both sexes and 
with different studies done in prior studies.  A previ-
ous curricular-cultural analysis based on textbooks, 
official curricular proposals and teachers’ training 

materials, of these context is the same as showed in 
the deep study (Thaqi, 2009), not detailed in this paper. 

During the development of the practical sessions 
dedicated learning to teach geometrical transforma-
tions, there has been prepared for every student, work 
sheets, to be able to have their productions and later 
analyze them. The quantity of the practical sessions 
and their length is what we present in the following 
table (see the main ideas in Table 1). 

The results of a final semi structured questionnaire, 
was the basic data considered in this paper.  Data were 
collected from descriptive notes, reflective notes, in-
terviews and video records. The collected data was 
analysed using method described by Strauss & Corbin 
(1998) along with analytic induction. Such a question-
naire is the last step for a more wide developmental 
study in which group of students have the same train-
ing about learning to teach geometrical transforma-
tions (Thaqi, 2009).

The activities have been realized in usual classrooms 
of the Faculty of Education. In the group there were 18 
students of 3rd grade of the study program of primary 
education. Some other questions were added to iden-
tify reasoning and specific cultural elements about 
geometric transformations, ideas about teaching 
and learning, and about their thinking about future 
classrooms in teaching geometrical transformations. 
The students come to the final test after having taken 
training course (Table 1) about teaching geometric 
transformations in the school, during spring semester 
2013 course. The students were given the question-

Aspect of meaning of geomet-
ric transformation

Identified Activities

Isometrics and the everyday 
life (SI)

Presentation: An experience about isometric transformation - (SIP)

1.2. The activities about the isometric transformations (SIA) 

1.3. Didactical activity: Presentation - video of teaching symmetry (SID).

Learning the usage and the 
value of the sources to teach 
the transformations (SR) 

2.1.Presentation: Scientific article as resource for teacher education (SRP) 

2.2. Activities about didactical sources and geometrical transformations (SRA)

Projections and shadow (SP) 3.1. Recognition of work about shadow  in primary school (SPP) 

3.2. Properties of shadow (SPA) 

Reasoning, arguing and justi-
fication of geometric transfor-
mations (SA) 

4.1. Presentation of topics (SAP) 

4.2. Activities about reasoning, proof and justification of geometr. transformations. 
(SAA) 

Table 1: Sets of questions related to mathematical ideas about transformations
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naire the last day of the course, and all students have 
responded to the questionnaire. The issue in focus is 
the identification of the prospective teachers’ concept 
images and the way they make use of their images and 
the mathematical definition of certain concepts for 
geometric transformations that they will find cen-
tral when they begin their professional life as math-
ematics teachers. The selection of questions in the 
questionnaire is closely related to the realized, the 
same four sessions of didactic practice on learning 
to teach geometric transformations, in the Faculty 
of Education in Gjilan.

In the sessions showed in Table 1, there are presented 
activities that one of the investigation goal was to pre-
pare activities where, the basic knowledge of geomet-
rical transformations are based in the intuitive teach-
ing and experiences about the search, the discovery 
and the comprehension from the prospective teacher. 
In this way, the prospective teacher learns the knowl-
edge and geometrical properties from the everyday 
world aspects constructing them as the concept im-
age.  In the first sessions (SI and SR) there is realised 
the treatment of the isometrics, the development of 
activities of using various resources. In the session 
SP there is developing activities to learn how to teach 
the non-isometric transformations  (deformations, 
projections), while the session SA holds activities of 
the development of the capacity of arguing, justifying 
and reasoning in the process of personal construction 
of the meaning of geometrical transformation.

The students were asked to give an explanation to the 
following aspects: terminology and type of transfor-
mations, properties and relations on transforma-
tions, processes of changes, and other aspects about 
geometric transformations as reasoning, teaching, 
attitude, etc. We analyzed how the prospective teacher 
approaches to recognize isometric transformation 
and construct concept images during the process of 

a practice of learning isometric transformation; how 
is the level of recognition of the relationships and the 
hierarchy between different properties, and levels of 
difficulties in reasoning about the isometric transfor-
mations and communication of the results. 

RESULTS

In the analysis of the context (Thaqi, 2009) we have 
seen that the Program of Geometry in Faculty of 
Education, talks about the formative teaching, and 
plans the contents as a set of knowledge and proce-
dures. The study of geometry in this program has as 
a goal the mathematical knowledge, that basing on the 
qualified posture as formalist it can be understood as 
the rules that from some affirmations logically are 
followed some others. We present now the analysis of 
the moments of progress or difficulties of the student 
for future teacher of Primary school, in the process of 
building the idea of geometrical transformation that 
figure A is transformed in figure B, the usage of the 
adequate terminology in every case and identification 
of different types of transformations. Few students 
talk explicitly about the isometrics as a transforma-
tion that conserve the size and shape. Instead, they do 
identify the symmetries, rotations and translations as 
transformation as such property. Anyhow, in some 
cases, the activity makes the intuitive go ahead the 
structured knowledge. In that way, when we are in 
front of the observation of the embroidery, some stu-
dents show rotation as a unique isometric, since they 
identify it as the only transformation that acts on the 
module that is marked (Figure 1). So, the conceptu-
al image of the geometrical transformation is build 
basing on visual properties (transform=deform), and 
movement (Isometric=displacement).

Firstly, let´s say that in some cases the transformation 
is seen as a function of a set of points to the other one, 
but that function isn´t identified between the posi-

Figure 1: Reproduction embroidery using mirrors
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tions of the objects in two different places. This can 
be explained with the symmetric figures, because it 
gets established easily the correspondence between 
the two parts of the figure or object. Instead, for other 
types of transformations, they should imagine the 
initial and final position of the transformed figure 
to be able to establish the idea of transformation as 
function or correspondence between parts of figure. 
We got convinced that it´s that way when we analyzed 
the answer to the problem where there is asked to ex-
plain the transformation of the figure A in the figure B, 
when Blerina (participant of investigation) explains 
it using transformation of set of points in the figure 
A on the correspondent points of the figure B. Only 
one of all participants’ talks about isometric transfor-
mation as a transformation that conserves the shape 
and size – conservation of shape and size is the defi-
nition of function; while the others identify it as a 
repetition - which is associated with difficulties on 
identifying properties of transformations. We find 
that considering transformation with identification 
of invariants (form and size) is better level than con-
sidering transformation as simple repetitions. 

Indeed, in the cases of considering transformation as 
simple repetition (that is equivalent with considering 
transformation as a function of whole figure to whole 
figure) they do not reach to precise the angle of the 
rotation, around what point or axis, etc. Actually, as 
the Figure 2 shows, to consider transformation as a 
function of set of point of figure A to set of points of 
figure B, they feel the need of naming the vertex of the 

triangle, and later on, they expresses the functional 
dependence:

Blerina: .... firstly there has been a displacement 
of the point A, and during the movement 
of the point A, the point B and C get the 
position presented as in the figure.....

In that way, it is constructed the idea of rotation as a 
function of three points in other three points under 
the condition:

Blerina: … so the point C has gone out of the col-
umn of the point A one row lower, the 
point B has gone on point´s A place.

The second step of this process will be to indicate the 
axial symmetry with the axes of the symmetry instead 
of the mirror: “…we would see it better if we would 
imagine a mirror placed in the column of the point A, 
where the point A is not reflected (moved) and instead, 
the points B and C are reflected” (explain Blerina). We 
observe now the findings in the case of the deforma-
tions. The activity SAA5 shows the dynamic transfor-
mation of a triangle – two stable vertexes and the third 
one move horizontally inside a segment (Figure 3a). 
The students have to explain the properties that are 
observed in this transformation.

About the transformation with the property of invari-
ance of the surface and the variables; it´s interesting 
for us that the students first identify these properties 

Figure 2: Transformation of triangle as function 

Figure 3: Dynamic transformation of triangle. Invariance and variable
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and then justify the announced result. We find that 
Blerina identifies correctly the elements of the trian-
gle that change and the elements of triangle that don´t 
change. She identifies the change of the shape, perim-
eter, position and what does not change like surface, 
base of the triangle and the height of the triangle. As 
an illustration we show the part of the dialogue with 
Blerina, who does a correct justification that the sur-
face of the triangle does not change using the correct 
symbolization (the formula for the calculation of the 
surface of triangle: (S = bh

2 ) basing on the definition of 
the surface of triangle as a product of the base and the 
height (Figure 3b):

Blerina:  The triangle gets converted in a 
rectangle triangle...

Tutor:  What does change in this process? What 
does not?

Blerina:  The height of the triangle doesn´t change.
Tutor:  What other changes do we have?.
Blerina:  The angles and the sides change and, the 

surface and height do not.
Tutor:  How can you argue that the surface does 

not change?
Blerina:  The surface of the triangle is in function 

of the base and the height. As said, the 
base and height does not change and 
either does the height … so the surface is 
constant independently of the position 
of the upper vertex. 

With the development of this and of the activity SAA4 
we identify that the dynamic presentation of a defor-
mation makes it possible that the students approach 
to recognize and build the concept of geometric trans-
formation as a function of variables and  constants 
S=b·h/2 ( this is to identify the elements of deformation 
that are conserved and variables). In the activities 
SRA3 there is asked to draw a symmetric image of the 

figure, having as a symmetric axis the straight line 
drawn (activity SRA3, Figure 4). The students have 
mirrors as a didactic resource for their activity. We 
haven´t noticed in the observation that any of the stu-
dents didn´t reach to reproduce the symmetric figure 
from the given one. In the video recordings we have 
found important to describe the process of reproduc-
tion for some students. Before Blerina started to do 
the construction of the symmetric figure gives the 
comment: “I draw any figure in the plot of points. Later 
I draw a straight line in that way that it touches one 
vertex of the given figure. After that, I count that the 
straight line has to be the axis of the symmetry. Is it 
so? …. This means that I do an function of each vertex 
of the figure counting little squares in the other side of 
the axis...” Blerina does the symmetry using the prop-
erties of the symmetry: the axis, the same distances 
to the axis and the process of the application point-to-
point. It is not needed to determine each point of the 
figure, she finds the vertexes of the figure and later, 
she uses the property of the aligned points: aligned 
points get transformed in aligned points (Figure 4).

High grade students recognize the transformation 
if they recognize the relevant elements of geometric 
transformation using the process of the function 
point-to-point, and the property of the aligned points: 
aligned points get transformed in aligned points.

CONCLUSION

Analyzing this findings we can say that in the program 
of mathematics for prospective teachers the main goal 
of the teaching of geometrical transformation is the 
informative knowledge, while is necessary program 
for the teacher education, intended to cultivate and 
practice the logical reasoning. We consider that the 
best is an equilibrating education between thinking 
and acting, or between the cultivated knowledge and 

Figure 4: The process of construing symmetric figure



The meaning of isometries as function of a set of points… (Xhevdet Thaqi, Joaquim Gimenez and Ekrem Aljimi)

597

practical knowledge. In the cases that students recog-
nize the transformation as a process of function of 
points to points, it is easy to identify the functional 
dependence between positions, the important prop-
erties of the transformation such as symmetry axis, 
vector of translation, center and angle of rotation, etc. 
and it established the complete concept image about 
isometric transformation. In cases when students con-
sider isometric transformation as a fold, changing 
position or repetition of an object or figure, they are 
confronted with difficulties to establish the impor-
tant elements of the transformation process. In other 
words, those who construct the idea of   transformation 
as correspondence between sets of points do not find 
it difficult to have the complete concept image about 
isometric transformation, correctly identifying the 
properties and elements of that transformation as 
the orientation of the image, the axis of symmetry, the 
angle of rotation, the translation vector, invariance 
and variables etc.
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A meta-classification for students’ selections 
of quadrilaterals: The case of trapezoid
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This study aimed to propose a meta-classification for 
middle school students’ selections of quadrilaterals in 
terms of trapezoid. Data were collected from thirteen 
seventh grade students via a trapezoid selection instru-
ment and semi-structured interviews. Data analyses 
were executed by using thematic coding of qualitative 
research methods by synthesising past and current the-
ories about teaching geometry (figural concepts, concept 
image-definition, prototypical phenomenon etc.). Meta-
classification was characterized considering the types of 
students’ selections, concept images, and errors through 
seven special categories. This meta-classification shad-
ed light on how students conceive a shape as trapezoid, 
what they notice their selection procedure and what 
influences their selections for trapezoids.

Keywords: Concept images, figural concepts, prototypes, 

quadrilaterals, trapezoid.

INTRODUCTION

NCTM (2000) implies the importance of analyzing 
characteristics and properties  of two-and three-di-
mensional geometric figures and developing math-
ematical arguments about geometric relationships. 
In this regard, one of the basic topics of geometry is 
quadrilaterals which involve the concepts of rectan-
gle, square, rhombus, parallelogram, kite and trape-
zoid. Among these 2D-figures, there have been two 
different definitions of trapezoid in geometry text-
books. While one is that a quadrilateral with exactly 
one pair of parallel sides, another is that a quadrilat-
erals with at least one pair of parallel sides. As the for-
mer one is an example of exclusive definitions (e.g. 
parallelograms are not also trapezoids), latter one 
is a type of inclusive definitions (e.g. parallelograms 
are also trapezoids). Since the trapezoids high up in 
the hierarch of quadrilaterals, the choice of the defi-
nition influences the derivation of properties both of 

trapezoid and parallelograms, rectangle, rhombus-
es, and squares (Usiskin & Griffin, 2008). Despite the 
importance of the concept, there are a few studies 
specifically focused on trapezoid (Manizade & Mason, 
2012; Nakahara, 1995; Türnüklü, 2014). Among them, 
Türnüklü (2014) conducted a qualitative study to 
determine middle school students’ and prospective 
teachers’ concept images regarding trapezoid. She 
reached that individuals used non-critical proper-
ties in non-formal and incorrect definitions and they 
made overgeneralizations. When considering con-
ducted other studies, it can be claimed that scattered 
and limited literature related to trapezoid does not 
give a complete picture about students’ conceptions. 
From this perspective, the aim of this study was to pro-
pose a comprehensive meta-classification model for 
students’ selections regarding trapezoid. Thus, this 
study will put forth more complete and well-coordi-
nated structure shedding light on how students select 
a shape as trapezoid, what they notice their selections 
and what influences their selections for trapezoids.

THEORETICAL BACKROUND

In this study, it is necessary to clarify the meaning 
of essential terms that used when classifying and ex-
plaining students’ selections, statements, and draw-
ings. All the required terms within the current study 
were described in the following.

Concept Image/Definition: Concept image is the set of 
all the mental representations associated in the stu-
dents’ mind with the concept name. The image might 
be nonverbal and implicit. On the other hand, concept 
definition constitutes a form of words which are used 
to specify the concept (Vinner, 1991). According to this 
framework, suitable and robust interactions between 
concept definition and concept image might guaran-
tee the conceptual learning rather than instrumental 
ones. Unfortunately, learners do not make sense to 

mailto:fadimebayik%40gmail.com?subject=
http://www.nctm.org/standards/content.aspx?id=314#analyze
http://www.nctm.org/standards/content.aspx?id=314#analyze
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link between the two elements because there might 
be irrelevant properties about the concept evoking 
in students’ mind specifically. For instance, the re-
sults of some studies indicate that many of students 
at different grade levels have a concept image of 
equilateral triangle having a right angle or slanted 
sides of equal length (Burger & Shaughnessy, 1992; 
Clements & Battista, 1992). In this sense, if students 
are encountered limited examples having common 
figural features of a geometric concept in school or 
other context, these examples lead to prototypes phe-
nomenon (Hershkowitz,1989). 

Prototypes Phenomenon: The prototype examples are 
usually the subset of examples that had the “longest” 
list of attributes all the critical attributes of the con-
cept and those specific (noncritical) attributes that 
had strong visual characteristics” (Hershkowitz, 1990, 
p. 82). Students often see figures in a static way rather 
than in the dynamic way that would be necessary to 
understand the inclusion relations of the geometri-
cal figures (de Villiers, 1994). For instance, students 
receive square is not a rectangle because of their mis-
conception about the length of the opposite sides of 
rectangle. Consequently, a contradiction between con-
cept images and concept definitions emerges, which 
may elicit misconceptions in students’ mind when 
classifying quadrilaterals. In the current study con-
text, although a student has learned trapezoid as quad-
rilaterals with at least one pair of parallel sides, she/
he may not admitted parallelogram, rhombus, square, 
and rectangle as a trapezoid, which clearly asserts 
the influence of prototype examples on relationship 
between concept image and concept definition that 
was structured in student’s mind.

Personal/formal figural concepts: Geometrical con-
cepts are characterized as having double nature by two 
aspects: figural and conceptual (Mariotti & Fischbein, 
1997; Fischbein, 1993) similar to the concept image 
and concept definition (Vinner, 1991) respectively. 
While figural aspect involves spatial properties like 
shape, position, and magnitude; conceptual aspect 
involves abstract and theoretical nature as ideality, 
abstractness, generality and perfection. According 
to Fischbein (1993), figural aspect is generally more 
dominant than conceptual one. For example, paral-
lelograms do not look like a trapezoid, but they are 
formally trapezoids considering the formal exclusive 
definition of trapezoid in our context. Based on these 
ideas, Fujita and Jones (2007) proposed the ideas of 

personal and formal figural concepts. Formal figural 
concepts involve formal concept images and defini-
tions in Euclidian geometry. However, personal fig-
ural concepts were constituted through individuals’ 
own geometry learning experiences about geometric 
shapes. For instance, “rectangle is a parallelogram 
with four right angles” is a formal figural concept 
definition. Besides, the expression of “a rectangle is a 
quadrilateral with only opposite sides congruent and 
four 90° angles” in a student’s mind reflects student’s 
personal figural concept. 

Undergeneralization and Overgeneralization: Two 
types of common errors that are exhibited by students 
have been described in the literature as undergener-
alization and overgeneralization (Klausmeier & Allen, 
1978). Undergeneralization occurs when examples of 
a concept are encountered but are not identified as 
examples. It results when the examples provided in 
instruction are not sufficiently different from one 
another in the variable attributes (Klausmeier & 
Allen, 1978, p. 217). In the context of this study, for 
example, a student who has experienced only right 
trapezoids having exactly one pair of parallel sides 
may not identify trapezoids not having right angle 
even it has exactly one pair of parallel sides. On the 
other hand, overgeneralization occurs when examples 
of other concepts treated as members of target con-
cept (Klausmeier & Allen, 1978, p. 217). In the  current 
context, a quadrilateral having no parallel sides and 
non-equal length of sides or a polygon having more 
than four sides may be treated as trapezoid because 
of some reasons as omitting key properties of the con-
cept or focusing only language-related factors. 

METHOD

In this study, basic qualitative design methods were 
utilized to classify students’ selections of trapezoids 
such as semi-structured interviews for data collection 
and thematic coding for the data analysis.

Participants
Firstly, an elementary school located in the capital city 
of Turkey was selected in order to determine the par-
ticipants. At the school, there were two seventh grade 
classes with 47 students in total. After determining the 
school, I had an interview with mathematics teachers 
of the both classes to get information about students’ 
mathematics grades and personal characteristics (e.g., 
talkative). Furthermore, each class was observed for 
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four hours in order to monitor students’ behaviors. 
Based on the maximum variation sampling, I conduct-
ed semi-structured interviews with 13 seventh grade 
students aged thirteen who were enumerated from 
S1 to S13. Their achievement levels were categorized 
according to their average math note belonging to the 
first and second semester. Semester notes were cate-
gorized as 5-5 was high; 5-4, 4-5 4-4, 3-4 and 4-3 were 
middle; and 3-3 and lower ones were low. According 
to semester notes, three students (S1, S2 and S3) were 
attended low achievement level. Five students (from 
S4 to S8) were attended middle achievement level and 
five students (from S9 to S13) were attended to high 
achievement level.

Instrument and data collection procedure
To understand how students select trapezoids in var-
ious polygons, researcher generated an instrument 
of “Which figures are trapezoid?”(see Figure 1). The 
instrument was organized in a manner of containing 
prototype and non-prototype polygons having differ-
ent sizes and orientations. While creating the instru-
ment, similar questionnaires about parallelogram in 
the literature were analyzed (Fujita, 2012; Nakahara, 
1995; Okazaki, 1995). Then, a preliminary study was 
conducted with 86 seventh grade students to under-
stand what they think about trapezoid concept. In the 
preliminary study, they only defined trapezoid and 
drew three different trapezoids in a grid paper. After 
examining the results of the preliminary study, sev-
en possible selection categories were formed (Note: 
Details were explained in the heading of characteris-

tic features of meta-classification). According to seven 
possible categories, figures were added into the data 
collection tool. Finally, data collection tool was con-
trolled by experts and pilotted with five seventh grade 
students throughout the interview sessions. Before 
the selection procedure, participants also asked to 
make definition and different drawings for trapezoids 
to support data coming from students’ selections of 
trapezoid.

Data were collected via semi-structured individual in-
terviews for in-depth analysis. Average time of an in-
terview was twenty minutes. During interviews, par-
ticipants explained their selections and the reasons 
why they select a figure as a trapezoid. Furthermore, 
they made definition and drawing of trapezoids. All 
interviews were videotaped and transcribed. To an-
alyse the data, the researcher carefully examined the 
students’ selections, drawings, and definitions. Then, 
thematic analysis was used to identify, analyse and 
report the themes in the data. For this purpose, all 
data were examined by taking account the phases of 
familiarization with data, generating initial codes, 
searching for themes among codes, reviewing themes, 
defining and naming themes, and producing the final 
report (Braun & Clarke, 2006).

Characteristic features of meta-classification
To propose a comprehensive meta-classification for 
students’ selections of quadrilaterals in terms of 
trapezoid, I formed seven specific categories after 
the thematic analysis (see Table 1). The types of cate-

gories in meta-classification model 
were characterized considering the 
types of errors, and concept images 
with the correctness of students’ se-
lections, drawings, and definitions. 
To be more precise, the categories 
show the way in which students 
made to discriminate trapezoids in 
various polygons.  Error types reflect 
whether students’ errors have a 
character of undergeneralization or 
overgeneralization for each selec-
tion category. For instance, students 
either made undergeneralization by 
focusing only right trapezoid and 
exclusive selections or they made 
overgeneralization by selecting 
quadrilaterals with no parallel sides 
and irregular polygons. Since types Figure 1: The instrument of “Which figures (1–16) are trapezoid?”
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of the students’ concept images changed throughout 
the categories, it was necessary to differentiate the 
concept images for each category. All other details 
were given in the following paragraph.

Category 1 reflects learners’ correct selections of trap-
ezoid according to hierarchical (inclusive) relation 
among quadrilaterals. This category indicates an ide-
al situation including a harmony between the two 
aspects of a figural concept (Fischbein, 1993). In other 
words, learners’ personal figural concepts were com-
pletely and correctly consistent with formal figural 
concepts (Fujita & Jones, 2007). In category 2, learn-
ers can connect the correct relations between some 
quadrilaterals; however, they make their selections 
by considering partial hierarchical relations (e.g. they 
only select parallelograms as a trapezoid rather than 
selecting rhombus, rectangle etc.) even they know 
the geometric concept in terms of conceptual aspect. 
This situation supports the idea about the domination 
of figural aspect (Fischbein, 1993) which can be a re-
sult of encountering prototypes in learning process 
(Hershkowitz, 1990). Category 3 reflects students’ pure 
prototypical images because they select only all proto-
typical examples of trapezoids according to exclusive 
definition even they know the inclusive definition 
of trapezoid in written or verbal form. As a result, 
they do not select parallelogram, rhombus, rectangle 
and square as a trapezoid, which reflects undergen-
eralization error. According to the students, a square 
does not figurally a trapezoid, which reflects a conflict 
that may appear between the figural and the formal 
constraints as indicated in Fischbein and Nachlieli’s 
study (1998). In a similar vein, category 4 reflects stu-
dents’ partial prototypical concept images about trap-
ezoid because they think only prototypical examples 
such as isosceles/right trapezoids, which leads the 
error of undergeneralization. In summary, catego-

ry 2-3-4 show students’ personal figural concepts of 
trapezoid consist of correct concept definition and 
limited images. In category 5, learners make incorrect 
selections considering only similarity of the shapes 
in terms of position and visual appearance without 
thinking formal definition and critical attributes of 
the figure. This situation causes overgeneralization 
error because they treat irrelevant figures as a trap-
ezoid. Category 6 reflects students’ language-based 
images because they think the meaning of the word 
of “trapezoid” in Turkish ordinary language with the 
meaning of “oblique”. As a result, they image trape-
zoid as a figure having more than 4 sides. In other 
words, they treat some non-examples as examples by 
extending their knowledge to another context in an 
inappropriate way, which indicates overgeneraliza-
tion error. Finally, category 7 reflects the consistency 
of students’ selections based on the contradiction in 
their between definition, drawings and selections. To 
sum, category 5-6-7 indicate students’ personal figur-
al concepts of trapezoid consist of incorrect concept 
image and concept definition.

RESULTS AND DISCUSSION

In a general sense, results of the current study indi-
cated that although higher level students generally 
selected shapes according to exclusive relations of 
quadrilaterals nobody made a selection on inclusive 
relations without a mistake. In other words, there 
were no students classified in category 1&2 in which 
learners require connecting even partially hierarchi-
cal relations among quadrilaterals. 

Category 3&4: Generally higher level students (S7-
S12-S13) selected trapezoids based on exclusive rela-
tions of quadrilaterals and they attended in category 
3. As a result, they did not think that parallelogram, 

Category Correctness Image Types Error types

Cat-1 Correct Hierarchical No error

Cat-2 Correct and incomplete Partial hierarchical Undergeneralization

Cat-3 Pure prototypical

Cat-4 Partial prototypical

Cat-5
Incorrect

Visual Overgeneralization

Cat-6 Language-based

Cat-7 Contradictive

Table 1:* Classification of students’ selections for trapezoid

*This table reflects the selections of students who learn inclusive definition of trapezoid in their lessons.
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rhombus, rectangle and square were also a trape-
zoid, which showed undergeneralization that stu-
dents made with pure prototypical concept images. 
Students explained the selection procedure as below:

S12: (By referring prototype trapezoid shape) 
we drew trapezoid as a quadrilateral 
having only two parallel sides in our 
lessons.

S13:  I remembered trapezoid as a shape hav-
ing different angles and sides but top 
and bottom sides must be parallel. 

On the other hand, two middle level students’ an-
swers (S5 and S8) were placed in the fourth category. 
Students chose only figures of 1 and 14 as trapezoids. 
They stated that there must be one pair of parallel 
sides in a trapezoid and they added unnecessary con-
ditions as having two right angles. To understand 
their pre-existing concept images, I asked them to 
construct and to define trapezoid before the selec-
tion procedure. Their definitions and drawings also 
indicated that they had a concept image of trapezoid 
as a right trapezoid, which was the presence of the 
undergeneralization due to the restricted prototyp-
ical concept image development.

Specifically, the selections attended category 3&4 
showed students’ limited understanding based on 
prototypical concept images of trapezoid (Fujita, 
2012; Hershkowitz, 1990). Yet, their selections were 
interestingly based on exclusive definitions although 
they learned inclusive definition of trapezoid in their 
lessons. As a result, students tried to explain the con-
cept based on critical attributes less than required. 
In other words, they made undergeneralization. The 
reason may be associated with the influence of giv-
ing prototype examples of trapezoid in the classroom 
and textbooks. In the textbooks, while trapezoid was 
defined a quadrilaterals with at least one pair of par-
allel sides, prototype trapezoid shapes were heavily 
given to illustrate the concept. Additionally, when the 

researcher examined students’ notebooks to under-
stand how their teachers explained trapezoid, it was 
received that teachers gave only prototype trapezoids. 
To prevent the formation of prototype concept images, 
it is recommended that teachers need to focus on the 
definitions by giving examples (e.g. quadrilaterals 
with at least one pair of parallel sides) and non-exam-
ples (e.g. five-sided shape or a quadrilateral with no 
parallel sides) of the concept (Bills et al., 2006; Petty 
& Jansson, 1987).  

Category 5: Different from the situation in category 
3&4 students (S9, S10 and S11) having high achieve-
ment level selected the quadrilaterals with no par-
allel sides as trapezoid in addition to all prototypes 
trapezoid shapes in category 5. Students noticed only 
similarity of the shapes in terms of position and visual 
appearance rather than having at least one pair of 
parallel sides. Additionally, when researcher asked 
them to explain the reasons why they selected that 
shapes as trapezoid, their explanations indicated 
that they also perceived trapezoid as a quadrilater-
al having non-equal sides. Students’ concept images 
were limited only visual representation of trapezoid 
with personal definitions rather than a formation of 
formal definition and properties.  In this way, they 
reached overgeneralization for special cases by ex-
tending their information to special cases in an inap-
propriate way rather than considering the parallelism 
property as a critical attribute. At this point, Chazan 
(1993) proposed various reasons for overgeneraliza-
tion in mathematics such as use of an insufficient set 
of examples, prevalent concept images and beliefs. 
To overcome students’ overgeneralizations, the defi-
nition and critical attributes of the shape should be 
stressed. In this regard, using geometry software 
might be useful since they involve dynamic manip-
ulations such as dragging that preserves critical at-
tributes of the shape in the hierarchical perspective 
(Erez &Yerushalmy, 2006). 

Category 6: Lower (S2-S3) and middle (S4-S6) level stu-
dents selected an irregular polygon (the shape of 16) 

Figure 2: Students’ drawings for the trapezoid in category 6 



A meta-classification for students’ selections of quadrilaterals: The case of trapezoid (Fadime Ulusoy)

603

as a trapezoid with language-based concept images, 
which was supported by the results of similar nation-
al studies (Erşen & Karakuş, 2013; Türnüklü, 2014). 
Students in this category were not able to identify 
attributes of a trapezoid. Students’ drawings were 
given in Figure 2 to reflect their concept images about 
trapezoid.

Furthermore, students written and verbal definitions 
indicated that they did not know the formal defini-
tion and properties of trapezoid (e.g. the number of 
sides) of a trapezoid. In Turkish language, the word of  

”yamuk” is used instead of “trapezoid” in all textbooks 
and teachers’ instruction. However, “yamuk” is syn-
onym and also means “oblique” in Turkish ordinary 
language. As a result, they made drawings under the 
influence of linguistic factors rather than focusing on 
definition and properties of the concept. Because lan-
guage influences students’ knowledge, ability and im-
ages about mathematical concepts (Monaghan, 2000; 
Silfverberg & Matsuo, 2008) teachers and curriculum 
developers must be more careful about whether they 
use both necessary and sufficient mathematical and 
linguistic structure for definitions of the concepts. 

Category 7: This category showed the complexity of a 
lower level student’s (S1) concept image and concept 
definition of trapezoid. Student’s selections, defini-
tion and drawing of trapezoid contradicted them-
selves. Although student appeared to make a partial 
connection with inclusive relations by selecting par-
allelograms and rectangles as trapezoid, her drawing 
and definition of trapezoid revealed the imperfect 
nature of concept images in her mind. 

As seen in Figure 3, although student stated there are 
no parallel sides of trapezoid, she drew a figure having 
a pair of parallel sides, but |AB| ∕∕ |DC|, and selected 
all parallelograms and rectangles as trapezoids, which 
showed student’s insufficient knowledge about pre-
requisite concepts such as parallelism of two lines. 
Moreover, she drew a figure having four sides, but 
she selected irregular polygons having more than 
four sides. As a result, it can be inferred student had 
contradictive concept images and she did not know 

what trapezoid and its properties are. This result has 
reflected the importance of having prior knowledge 
about basic geometric concepts. Students’ inadequate 
knowledge on geometric concepts may influence their 
concept images about quadrilaterals because many 
properties of quadrilaterals are based on basic geo-
metric concepts such as parallelism and perpendic-
ularity (Monaghan, 2000). For this reason, teachers 
should give more attention to whether their students 
obtained all required prior knowledge before intro-
ducing a new mathematical concept. As a final point, 
in-depth analysis of this study was limited to exami-
nation of thirteen seventh grade students’ trapezoid 
selections. However, the idea of meta-classification of 
learners’ selections can be applied and extended to 
other classes of quadrilaterals. Thus, the similarity 
and difference between the structures of meta-clas-
sification model may be analysed on the basis of dif-
ferent quadrilateral concepts. Furthermore, it will 
be more interesting to compare methods of teaching 
quadrilaterals classification in different mathematics 
curriculum. 
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In the first part of the communication, we present the 
research question, as well as the theoretical framework 
and methodology used to answer this question. In the 
second part, we describe a task given to students and 
provide a detailed analysis of some extracts from the 
session we observed. Based on the results obtained from 
the analysis, the last part provides a practical answer 
to our research question.

Keywords: Geometry, geometric work space, validation.

DESCRIPTION OF THE POSTER CONTENT

Section 1 – Introduction and the research aim
What is the place of signs in the validation process in 
geometry at the end of compulsory schooling? This 
question is the starting point for my communication. 
From the beginning of primary school, students are 
confronted with various geometric situations, such as: 
recognition and comparison of geometric forms, and 
reproduction of figures with drawing tools. Through 
these activities, they can identify invariants which 
are directly perceived on figures and then develop a 
conceptualization of geometric objects through char-
acteristic properties. Then when they enter college, 
students are initiated to deductive reasoning, and 
thereafter engage in the transcription of this reason-
ing as a demonstration. 

Section 2 – Research questions 
 ― What is the place of signs in the process of vali-

dation in geometry in ninth grade?

 ― How does the teacher use the semiotic approach 
in the process of validation?

In French secondary education, teaching and learning 
validation (reasoning, argumentation, evidence and 
demonstration) represent a specific central mathe-
matical issue (Balacheff, 1982). This teaching is initi-
ated into the geometry field from the entry to college. 
Moreover, the teaching of validation is mainly based 
on the various registers of semiotic representation 
as a support to help build up a proof. This is where 
we use the theoretical framework. On one hand, it is 
necessary to consider the place of signs in the process 
of validation in geometry. On the other hand, we will 
analyze how the teacher uses the semiotic dimension 
in the process of validation.

Section 3 – Theoretical framework
Our analysis is mainly based on the theoretical frame-
work of Mathematical Working Spaces (Kuzniak, 
2011) and the use of the concepts of geometrical par-
adigms (Houdement & Kuzniak, 2006). With this 
framework, “style” validation adopted by teachers 
will be described, and particularly the way they in-
tegrate the semiotic approach in the discursive and 
deductive reasoning.

Section 4 – Data collection methodology
Our central question is the use of signs in the pro-
cess of validation in geometry by secondary school 
teachers. To answer this question, we have chosen 
to analyze a ninth grade class session. In this session, 
students have to solve an exercise (chosen from the 
textbook used in class) using the concept of Thales’ 
theorem and its reciprocal. 

This session analysis is conducted in two steps: an “a 
priori” task analysis to identify paradigms at stake, 
as well as the validation process expected by the text-
book authors. Secondly, using the geometric working 
spaces diagram (Kuzniak, 2013) the geometric work 

mailto:assia.nechache%40hotmail.fr?subject=
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done during the activity is identified, allowing to see 
how the teacher leads the validation.

Section 5 – Results analysis
A specific working was highlighted during the vali-
dation process. In fact, the teacher uses the semiot-
ic dimension (in a particular figure) and sets up a 

“maieutics” didactical contract in order to carry out 
his teaching project. We also notice that the mathe-
matical work of validation put in place by the teach-
er himself is different than the one suggested in the 
textbook. This difference of validation work leads to a 
misunderstanding and mental blocks among students.
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Geometrical transformations is one of the basic learn-
ing domains of geometry and mathematics teachers’ 
content knowledge has a big impact on construction of 
middle school students’ knowledge in this context. For 
this reason, the purpose of this study was to research 
preservice mathematics teachers’ content knowledge 
and to design a teaching process including an appropri-
ate scaffolding tool to provide participants to shift from 
informal thinking to formal thinking on geometrical 
transformations. According to results it was revealed 
that acetate could be designed as an effective scaffolding 
tool for developing the view of “bijective function”, explor-
ing relations, and making generalizations regarding the 
geometric transformations.

Keywords: Geometrical transformations, geometric habits 

of mind, preservice mathematics teachers.

INTRODUCTION

Unit of Geometrical Transformations, one of the ba-
sic learning domains of geometry, takes part in the 
Turkish Middle School Mathematics Curriculum in-
cluding translation, reflection and rotation (MoNE, 
2013).  However, mathematics teachers’ content knowl-
edge about geometrical transformations has a big im-
pact on the construction of middle school students’ 
knowledge at this unit (Li, 2013). Starting from this 
point, we researched preservice mathematics teach-
ers’ content knowledge on geometrical transforma-
tions and what kind of scaffolding tools and learning 
activities can be designed with intent to improve their 
knowledge in this context.

METHODOLOGY

In this study designed as a teaching experiment re-
search, participants are 28 preservice teachers en-
rolled in elementary mathematics education under-
graduate program at a public university from middle 
region of Turkey. Two participants, coded as Ayse and 
Fatma, were selected as focal participants who would 
attend to clinical interviews among 28 participants. 

Teaching experiment and design 
of a scaffolding tool
According to data obtained from pre-clinical in-
terviews, it was seen that participants explained 
transformations with informal words as “moving”, 

“folding” and they used trial-error strategies while 
solving problems.  Starting from the constructivist 
approach, researchers discussed about appropriate 
learning tools that can provide participants to ex-
plore geometrical relations in transformations with 
informal experiments as “moving”, “folding” and 

“rotating” the materials. Finally researchers decid-
ed that an acetate can be used as a scaffolding tool 
presenting both physical movement and one to one 
correspondence of points in the context. In addition 
to this, geometry activities were designed according 
to Geometric Habits of Mind (Driscoll et al., 2007) 
and the teaching process focused on visualization of 
geometrical transformations, exploring “function” 
meaning of transformations, generalizing strategies 
and discovering relationships between reflection and 
perpendicular bisector as well as between rotation 
and circle (Figure 1).

mailto:cuygan@ogu.edu.tr
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RESULTS

During the posterior clinical interviews held, it was 
seen that the participants stated the role of “parame-
ters” of geometric transformations within the context 
of “function”. In addition, the participants, in their 
strategies, referred to their generalizations based on 
the isosceles trapezoid, radius, chord and perpendic-
ular bisector. According to results, preservice math-
ematics teachers’ content knowledge evolved from 
movement-based informal thinking to formal think-
ing in the context of geometrical transformations 
within teaching episodes including acetate mediated 
activities.  Therefore it was seen that acetate could be 
designed as an effective scaffolding tool presenting 
both physical movement and one to one correspon-
dence of points for developing the view of “bijective 
function”, exploring relations, and making general-
izations regarding the geometrical transformations.
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Figure 1: Using acetate for visualizing and analyzing reflection and rotation



610CERME9 (2015) – TWG05

TWG05 

Probability and 

statistics education



611CERME9 (2015) – TWG05

Introduction to the papers of TWG05: 
Probability and statistics education

Corinne Hahn1, Andreas Eichler2, Sibel Kazak3, Aisling Leavy4 and Caterina Primi5

1 ESCP Europe, Paris, France, hahn@escpeurope.eu

2 Kassel University, Kassel, Germany, eichler@mathematik.uni-kassel.de

3 Pamukkale University, Denizli, Turkey, skazak@pau.edu.tr

4 MIC-University of Limerick, Limerick, Ireland, aisling.leavy@mic.ul.ie

5 Neurofarba-University of Florence, Florence, Italy, primi@unifi.it

OVERVIEW

TWG gathered 37 participants from 16 countries. 22 
papers and 11 posters were accepted.

We started with two ice-breaker activities. The first 
one allowed participants to introduce themselves. 
During the second activity, we collected answers to 
two questions and organized a debate from their an-
swers. The questions and the main answers are gath-
ered in Figure 1.

The papers were organized into five groups, each of 
which was managed and chaired by one of the co-lead-
ers.

1) KNOWLEDGE AND ATTITUDES 
(AISLING LEAVY)

This subtheme explored the nature of the knowledge 
and understandings of statistics held by particular 
groups (middle grade students, pre-service teachers) 
when engaged in particular tasks and activities (com-
paring data sets, examining data displays), or commu-
nicated in textbooks.

It identified the attitudes of learners towards statis-
tics and identified and/or categorized knowledge and 
attitudes using a variety of frameworks, scales and 
perspectives (qualitative content analysis, procedu-

Figure 1: Ice-breaker activity responses
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ral vs conceptual distinctions, Vergnaud’s Theory of 
Conceptual Fields, Onto-semiotic approach, SATS).

2) PROBABILITY EDUCATION (CATERINA PRIMI)

This subtheme was about the relation between prob-
ability and statistics. 

It addressed the questions of probabilistic reasoning 
and statistical literacy: 

 ― How to integrate the different theoretical per-
spectives? 

 ― When to start to teach probability?

 ― Which content is more suitable for different age 
groups?

A major question was the question of the use of si-
mulation to teach probability and of its strengths and 
weaknesses.

3) INFORMAL STATISTICAL 
INFERENCE (SIBEL KAZAK)

The third subtheme was about informal statistical 
inference.

The discussion of the papers in this session focused 
on the key elements supporting students’/teachers’ 
reasoning that leads to making informal statistical 
inferences based on data (cf. Makar, Bakker, & Ben-Zvi, 
2011). These included:

 ― Knowledge of statistics: Statistical concepts, i.e., 
sampling, sample representativeness, sample 
size, uncertainty

 ― Knowledge of context given in the problem/task

 ― Design of learning environment: Task (i.e., use 
of physical objects, open-ended investigations), 
computer tools (i.e., TinkerPlots), students’ age/
level, teacher-student interaction, student-stu-
dent interaction

 ― Transition from informal to formal statistical 
inference

4) STOCHASTIC THINKING AND 
TEACHERS (ANDREAS EICHLER)

The perspective of teachers in terms of teachers’ 
knowledge and beliefs was the main topic in the 
fourth subtheme.  This topic is important when re-
searching the daily practice of teaching statistics and 
probability. Thus, teachers’ knowledge and beliefs 
strongly impact on their instructional planning, their 
classroom practice and also impact on their students’ 
learning. Not surprisingly, several papers at CERME9 
refer to the teachers’ knowledge and beliefs. Three 
papers concern the teachers’ knowledge and beliefs 
before the teachers’ classroom practice referring to 
teachers’ knowledge about variability (Jacob, Lee, 
Tran, & Doerr), simulation approaches for informal 
inference (Lee, Tran, Nickel, & Doerr), and teachers’ 
strategies for fostering decision making (Gonzales). 
One paper focuses on the relationship of teachers’ es-
poused beliefs and the teachers’ classroom practice 
(Bakogianni). Many important questions came out 
from the debates. For example, since research often 
yield shortcomings in teachers’ knowledge, a chal-
lenge of research in mathematics education could be 
to develop a clear concept of what teachers have to 
know. Based on such a concept it could be possible 
to describe further the considerable corpus of the 
teachers’ knowledge.

5) STATISTICS, CONTEXT AND 
REALITY (CORINNE HAHN)

The four papers presented in this group raise the 
question of the critical dimension of statistics edu-
cation. These papers explore how we interpret statis-
tical information from authentic contexts (newspaper 
articles mainly). The research works presented were 
conducted with a variety of audiences: teachers (Ozen 
& Cakiroglu), high school students in mathematics 
classrooms (Sturm & Eichler) or biology (Plicht et al.), 
tertiary students (Monteiro et al.).

They showed the influence of beliefs and affective 
aspects in the interpretation of statistical information. 
They raise the question of what can be considered as 
statistical as well as the question of the authenticity 
of the activities.
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CONCLUSION

In this working group, we challenged current frame-
works and perspectives on statistics education re-
search.

Some important issues emerged from the discussions: 
The role of technology in statistical teaching and re-
search, the relationship between statistics and proba-
bility, the goals for teacher education:

(What are the big ideas in teaching statistics?), the 
question of attitudes, motivation and efficacy in te-
aching statistics, the role of context in statistics, the 
question of methods and approaches to research in 
teaching statistics ...

We also anticipated directions of change: New role of 
technology, new topics (e.g., Big data…)
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Statistical inquiry, although beneficial for develop-
ing students’ statistical thinking, constitutes a quite 
demanding task for the mathematics teacher. In this 
paper, I focus on the transformation of a statistical 
inquiry-based task. In the context of a study group of 
five secondary mathematics teachers, I investigate the 
various stages that the task passes through (set up phase, 
implementation phase, reflection) and explore factors 
that seem to frame the process of transformation. The 
emerging factors related to teachers’ familiarity with the 
content and the teaching of statistics, students’ prior sta-
tistical knowledge, classroom reality issues and issues 
related to the stochastic context of statistical problems 
are presented and further discussed. 

Keywords: Statistics education, secondary mathematics 

education, teaching practice, task transformation, 

statistical enquiry cycle.  

INTRODUCTION

Last years, statistics has increased its role in mathe-
matics education (e.g. NCTM, 2000). The stochastic 
nature of statistics and the complexity of the un-
derlying concepts and procedures require teaching 
approaches that promote active involvement of the 
students, personal investigation, experiences with 
meaningful contexts and explorations with real data 
(Jones et al., 2004). 

Regarding the particularities of the statistical con-
tent, many researchers have turned their lens on the 
characteristics of teachers’ knowledge related to the 
teaching of statistics (e.g., Burgess, 2007). Although 
the interest on teachers and teachers’ knowledge for 
teaching statistics is growing rapidly in the statistics 
education research field, we still know very little on 

how this knowledge is transformed in the actual teach-
ing. Rowland and his team (Rowland et al., 2009) de-
fine the transformation of knowledge as the ability of 
teachers to transfer what they know in a way that can 
be appropriate and accessible to students and they set 
transformation as one of the four categories in the 
knowledge quartet of mathematics teaching. The study 
of the process of transformation can contribute not 
only to the process of students’ learning but also to 
the professional development of teachers.   This study 
aims to get insight into the process of transformation 
in the context of teaching statistics and explore factors 
that seem to frame this process.

THEORETICAL BACKGROUND

Statistical tasks that promote inquiry in the classroom, 
engage students in a dynamic context where they 
explore, negotiate, make interpretations, search for 
solutions, communicate their results and proceed to 
informal inference. Such tasks are considered as es-
sential learning experience for the students (Garfield, 
1995). 

Chapman (2013) argues that the way teachers trans-
form what they know into tasks for their students, de-
termines students’ opportunities to engage in a mean-
ingful way with mathematical activities and develop 
a conceptual understanding of concepts and proce-
dures. Stein and Lane (1996) state that, the structural 
characteristics of a mathematical task (features, cog-
nitive demands) can be changed through the process 
of transformation, often failing to achieve its learning 
potential. According to their findings, the transfor-
mation process of a mathematical task can be affected 
by various factors, such as teachers’ learning goals, 
teachers’ knowledge related to the content and to the 
students, factors related to the classroom norms and 
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students’ behaviour, which alter the high-demanding 
character of the task to a low one.     

Regarding statistical inquiry tasks, Makar (2008) re-
fers to some teaching skills that are almost rare in 
mathematics classroom but remain essential for sta-
tistical activities. Among these skills are: the ability to 
cope with ambiguity and uncertainty, the re-balance 
between teacher guidance and students’ independ-
ence, the recognition of opportunities for learning 
in unexpected outcomes, flexible and creative think-
ing, deep understanding of disciplinary content and 
tolerance for periods of noise and disorganization. 
Considering the particularities of the statistical con-
text, my aim is to study the process of transformation 
in the case of inquiry-based statistical tasks and iden-
tify factors that seem to affect the learning potential 
of such tasks.

I see the transformation process in the context of a 
study group. Many researchers emphasize the utility 
of study groups as form of professional development 
for teachers and refer to how the educational commu-
nity can benefit from the research of study groups in 
order to get insight into how teaching practices are 
developed and changed (e.g., Arbaugh, 2003). I also 
explore the potentiality of this context to study the 
process of transformation in the case of statistical 
inquiry tasks, and investigate factors that seem to 
frame this process.  

THE STUDY

In the context of a study group, 10 secondary mathe-
matics teachers and two researchers worked togeth-
er voluntarily for a period of two academic years 
(2012–2014). The groups’ work focuses on the teaching 
and learning of statistics through a sequence of (a) 
deepening in a specific topic (b) design a task for the 
classroom-design phase (c) implement the task in the 
classroom-implementation phase (d) reflect on this ex-
perience-reflection phase. The role of the researchers 
in the study is mainly to finalize the groups’ meetings’ 
agenda and support the teachers by giving them par-
ticular tasks, materials and resources. Collaboration 
and interaction among the teachers was encouraged 
in all phases of their work.

In this paper I focus on five teachers who worked as a 
team on the design and implementation of the statisti-
cal investigation cycle in the mathematics classroom.   

The participants of the study
All five teachers have a mathematics degree and post-
graduate studies in mathematics education. Dinos, 
is a practising teacher with 10 years of teaching ex-
perience while the others, Sofi, Cloe, Anna and Ersi 
are novice teachers with little teaching experience. 
Although the practising teacher has no particular 
experience in teaching statistics, he is quite familiar 
with the statistical content due to personal involve-
ment in statistical methods, while novice teachers’ 
involvement with the statistical content is limited to 
their university experience. Due to the lack of teach-
ing experience and to their unfamiliarity with the 
statistical content, the four novice teachers consider 
Dinos as a team leader.     

The work of the group 
The five teachers were asked to design a task for the 
classroom and implement it. For the design, the teach-
ers were supposed to build on the former phase of 
the study groups’ work in which they had focused on 
sample and sampling notions and their relation to the 
concept of probability. For this phase the teachers met 
seven times, each meeting lasted about two and a half 
hours. The author was present in all meetings, and the 
wider group met in the four of the seven meetings (10 
teachers and 2 researchers), exchanging views and 
giving support to one another.

The task was intended for the 8th Grade students with 
no background in statistics. The main learning goal, 
as set up by the teachers, was to help students under-
stand in a first level the idea of the margin error in 
statistical results and how it relates to the sample size. 
The teachers decided to engage students with all the 
steps of a statistical investigation cycle based on the 
PPDAC (Problem-Plan-Data-Analysis-Conclusions) 
model (see Wild & Phannkuch, 1999) transformed as 
seen in Figure 1. As seen in the picture, a worksheet 
was designed between the steps of Data and Analysis. 
This worksheet aimed to introduce students to the 
concepts of mean value, sample and margin error that 
were necessary for the last steps of the statistical in-
vestigation.

The task was implemented in Dinos’ classroom. 
Although all the members of the team were present 
in the implementation, Dinos had the leading role 
while the others (including the author) were mainly 
observers, taking field notes and supporting the var-
ious stages of the task. The implementation covered 5 
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didactical hours (1hour for PPD steps, 2hours for AC 
steps and 2 hours for the worksheet between).

After the implementation the group met two more 
times for feedback and reflection. The first time the 
discussion was based on their impressions regarding 
students’ reactions and an overall assessment for the 
teams’ work. In the second meeting, the teachers were 
asked to analyze more systematically the character-
istics and the cognitive demands of the designed task 
and to evaluate the consistency with the initial goals 
and demands in the implementation phase. The group 
had a three-hour meeting discussing on their analysis 
and reflecting on their practice. 

The data of the study consist of the audio and video 
recordings from the seven meetings’ regarding the 
design phase, the field notes from the implementation 
and audio recordings from the two meetings of the 
reflection phase.      

Analysis of the data
The first analysis of the data was conducted in col-
laboration with the teachers. We used the Stein’s & 
Lane’s (1996) framework for the relationship between 
instructional tasks and students’ learning outcomes. 
Stein & Lane identify three stages that instructional 
tasks pass through: (a) instructional task as represent-
ed in curricular/instructional material (b) instruc-
tional task as set up by teachers in the classroom and 
(c) instructional task as implemented by students in 
the classroom. In each of these stages, they define two 
interrelated dimensions, the task features and the 

cognitive demands. The task features refer to charac-
teristics of the task that are related to the engagement 
of students’ reasoning, thinking and sense making, 
such as the extent to which the task lends itself to 
multiple solution strategies, the extent to which the 
task encourages multiple representations or the ex-
tent to which the task demands explanations from the 
students.  The cognitive demands refer to the kind of 
thinking processes contained in the task, such as use 
of complex, non-algorithmic thinking or use of proce-
dures with connection to underlying conceptual ideas. 

Following this framework as a guide of analysis, we 
identified the task’s features and cognitive demands 
and analyzed them in the set up and the implementa-
tion stage. For the set up, based on the audio record-
ings of the groups’ meetings and the final worksheet 
intended for the students, we made a characterization 
of the extent to which these features and cognitive 
demands were supported by the design of the task. 
This characterization was mainly on a Small/Big note. 
Afterwards, using the field notes from inside the class-
room, we studied the consistency of the design in the 
implementation phase. For example, if we note as Big 
the extent to which the task demands explanations 
from the students, we then explored if, through the 
implementation, this demand remained in a big extent 
or declined or supported more than expected. For 
every change identified between the set up and the 
implementation we further discussed possible factors 
that may influence such a change. The analysis of the 
task was part of the study’s group work. 

Figure 1: The investigation cycle as performed by the teachers and the related skills
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In a second analysis, using the transcriptions of the 
groups’ discussions from the design and the reflection 
phase, I focused on the process of transformation. The 
data were analysed with respect to the two dimensions 
as explored in the first part of the analysis, namely 
tasks’ features and cognitive demands, focusing on 
factors that seem to frame the observed consistency 
or shift on the various elements of the task.

FINDINGS

The results from the first analysis, which was conduct-
ed in collaboration with the teachers, are described 
on Table 1.

As seen on the above table, in the set up stage the 
teachers aimed at large extent features and cogni-
tive demands that set the task as a high-level activity 
for the students. 

The fact that the teachers worked as a team during the 
design phase combined with the fact that all of them 

supported the implementation phase, were conditions 
that could lead to the assumption that the demands of 
the activity would remain in a high-level through the 
implementation, contrariwise, things proved to be dif-
ferent. In the most cognitive demanding parts of the 
PPDAC, the most of the task demands show a decline 
in the extent to which they were sustained. Since the 
analysis of the features and demands of the task is not 
central in this paper, a more detailed description of 
this phase’s results is available in our research report, 
regarding teacher’s reflection on the of PPDAC in the 
mathematics classroom (see Efstathiou et al., 2014).

The group’s discussions from the set up and reflec-
tion phase helped me to get insight into factors that 
seem to frame the transformation process. The fac-
tors emerged from the analysis regarding the two di-
mensions under study, tasks’ features and cognitive 
demands, were grouped in terms of whether they indi-
cate consistency or shift. In Table 2 there is a summary 
of the main factors as appeared in each group.        

Table 1: Features and Cognitive Demands in the various phases of the task

Table 2: Factors that frame the process of transformation in the case of a statistical investigation cycle
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Shifts on task features
On the left column of the table, I refer to factors that 
seem to cause a decline into the features of the task 
through the process of transformation. The first fac-
tor that seems to be essential is the prior knowledge 
of students. The fact that students did not have any 
previous statistical knowledge, resulted in the teach-
ers’ decision to limit students’ engagement in several 
parts of the task at the set up phase (e.g., on the deci-
sion of the statistical variable or the method of the 
investigation). The same factor compared with time 
limitations led to a decline on giving students space 
for explanations and active engagement. Moreover, in 
our case students did not have access to a computer 
room and this proved to be a crucial factor. According 
to the design of the task, the teachers were supposed to 
counterbalance this restriction by giving time to stu-
dents to discuss and negotiate throughout the activity 
on the software, but due to time limitations there was 
no appropriate time for interaction and discussion 
causing a further decline in the engagement feature. 
Characteristically, Dinos admitted in his a posterio-
ri analysis: “We didn’t prevent students from being 
observers. I tried to engage them by asking questions, 
but the time was too limited, I am not sure that they 
could easily follow what was happening, the majority 
of them probably couldn’t.”     

Shifts on task’s cognitive demands
The factors regarding cognitive demands were sepa-
rated into two subcategories, the cognitive demands 
related to mathematical issues and the cognitive de-
mands related to stochastic issues (see Figure 1). The 
mathematical issues of the tasks refer to the first two 
demands as displayed on Table1 while the stochastic 
refer to the other three. The lack of students’ prior 
knowledge in statistics resulted in dedicating time 
for constructing the necessary background for the 
goals of the task. Nonetheless, students seem to have 
coped well with the mathematical demands when they 
worked on the mathematical context but had difficul-
ties when they needed to transfer their mathematical 
knowledge to the reference context of the problem. 
Moreover, due to time limitations there was not 
enough time for the teachers to make the appropri-
ate connections and students remained to trust more 
their intuitions than their mathematical knowledge 
to make conclusions for their problem. 

The cognitive demands related to stochastic issues 
proved to be the most challenging to maintain in a 

high-level during the process of transformation. First, 
the teachers’ overemphasis on the mathematical ideas 
seems to act as barrier in their aim to help students 
develop statistical thinking. Characteristically, Dinos, 
in the discussion through the reflection phase, admit-
ted: “In my view I could say that we succeed in helping 
students connect the sample notions with the con-
cept of probability, but, the development of stochastic 
thinking proved to be difficult. I am not sure that we 
succeed in that.” 

In addition to this, another factor that seems to play 
a crucial role is the disconnection of the reference 
context of the problem. The disconnection of the ref-
erence context results in disorientating students from 
the underlying problem and they tend to think more 
in terms of what is right and what is wrong and less in 
terms of what is reasonable and acceptable. Although 
the teachers tried to restrict the effect of disconnec-
tion, they didn’t spend adequate time on the neces-
sary connections causing a decline in the cognitive 
demands of the task. The allocation of available time 
in the various parts of the task, is also an emerged 
factor in the transformation process. The above ex-
tract is indicative of the teachers’ reconsidering the 
time allocation:

Dinos: If I were to implement it again, I would 
spend most of the time on the experi-
mentation with the software. Students 
need to explore themselves, to see, to 
explore more and more samples. This 
is how they can start thinking in a dif-
ferent way.

Cloe: I totally agree with Dinos. We spent a lot 
of time in talking about combinations 
and we lost our goal. The point is the 
statistics. It is important for students 
to have the opportunity to make their 
own explorations. I don’t think that the 
way we used the software was rather 
beneficial for the students. They needed 
more time in working on the software.

In the extract above, another factor is apparent, the 
balance between teacher guidance and student inde-
pendence. The restriction of students’ independence 
was something that results on a decline of the statisti-
cal thinking demand from the set up phase, and due to 
time limitations a further decline was caused in the 
implementation phase.  The teachers seem to develop 
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an awareness of the difficulty to encourage students’ 
statistical thinking, and also an appreciation for the 
role of the exploration and personal engagement with 
data in this respect.

Another factor is the appropriateness of chosen ex-
amples. In this case, the teachers, in order to help stu-
dents understand the variety of possible samples in a 
given population and understand better the meaning 
of the margin error of the mean in a sample with a giv-
en size, gave students an example of population with 
size 5 and asked them to explore all possible samples 
with size 3, but according to Dinos reflection: “this 
example gives students the impression of a certain-
ty that does not exist in bigger populations, actually 
framing their stochastic thinking.”

Finally, as in the previous category, time limitations 
seem to be dominant in this case as well. Students 
proved to need much time in order to develop statis-
tical thinking, time for more explorations, more dis-
cussions and inquiry processes, but the time available 
was not the appropriate. For their attempt to chal-
lenge students in the way they use proportional rea-
soning when they think about samples they discussed:

Sofi:   I think that we manage to make them 
conflict with the idea of proportionality.

Dinos:  Yes, we actually did it, but, then what? 
You could see that there is nothing to 
come after. When they rejected the 
proportionality, they answered almost 
randomly. The development of an alter-
native thinking, more distributional, 
needs time, it requires more data ex-
plorations by the students themselves.

Although the teachers in the design phase had con-
sidered proportional reasoning as a potential obsta-
cle, they didn’t anticipate students’ difficulty in pro-
ceeding to distributional reasoning. This difficulty 
appears to be unexpected and hard to handle.

Maintenance of learning potentials
In this last category I included factors that seem to 
act beneficially in the process of transformation. The 
first factor is the strengthening of teachers’ subject 
matter knowledge. In the phase of the task design, the 
teachers discussed a lot on the statistical concepts and 
procedures, they read textbooks and research reports 
regarding the investigation cycle and they asked for 

help and clarifications in many instances. This route 
helped them to identify specific learning goals, to rec-
ognize the underlying concepts in the various steps 
of the PPDAC and to support challenging learning 
opportunities for the students. Moreover, the collab-
oration among the teachers seems to act as catalyst 
for the process of transformation. The interactions 
among them and the feeling of support in every step of 
the design and the implementation, seem to help them 
form and accomplish high-levels of statistical activity 
for the students. It is indicative that in the reflection 
phase, all the teachers mentioned that they wouldn’t 
try such an activity if they didn’t have the support of 
their colleagues. 

Another factor that seems to be essential is teachers’ 
flexibility and availability to act in the moment. In our 
case, the fact that the task was mainly implemented 
by Dinos, who is an experienced teacher with famil-
iarity to the statistical content, had a great impact in 
the task’s features. For example, in the extract below 
the teachers discuss on the questions that would be 
posed to the students in the part of the data analysis:

Anna: This part requires a lot of guiding by the 
teacher. Let’s write down the questions 
step by step.

Sofi: We don’t need to be so strict with the 
questions. It will be better to be more 
open, to give more space to students.

Anna: Don’t we write the questions?
Sofi: Don’t forget that Dinos is the one who 

will manage this. Dinos can handle it.

From this extract, we can see a feeling of insecuri-
ty regarding open questions. The fact that the team 
members seem to trust Dinos’ ability to act in the mo-
ment affected the engagement of students during the 
implementation. 

CONCLUSION 

This study helped us to get insight into the trans-
formation process of a statistical investigation task. 
Regarding the context of statistics, the management 
of the uncertainty proved to be, not only a difficult 
learning goal to achieve, but also a significant teach-
ing challenge. The factors that appeared to affect the 
transformation process constitute an amalgam of 
teachers’ subject matter knowledge, teachers’ skills 
and abilities to confront with uncertainty and manage 
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classroom discussions and teachers’ knowledge of 
students in terms of students’ prior knowledge and of 
ways students can be assisted in developing stochas-
tic thinking as well. Many of the required skills and 
abilities, although determinant in statistical inquiry 
as mentioned by Makar (2008), are rare in mathemat-
ics classrooms. The collaboration among the teach-
ers seems to encourage them to support statistical 
inquiry and promote high cognitive demands in the 
mathematics classroom. Through collaboration and 
interaction, teachers have the opportunity to under-
stand deeper the statistical concepts and procedures, 
to define specific learning goals regarding the statis-
tical content, and to be aware of learning difficulties 
that are related to them. Moreover, the support among 
the teachers in the implementation phase, and the 
collaborative management of classroom, can result 
in an increase regarding the use of open questions 
and inquiring strategies by the teachers.

On the other hand, an overemphasis on mathematical 
ideas and disconnections of the reference context of 
the problem, can result in a decline of the stochas-
tic demands of the task. Furthermore, limitations 
regarding the time allocation in the various parts of 
the task, the use of inappropriate examples and the 
imbalance between teacher’s guidance and students’ 
engagement, can also cause a decline in the task’s cog-
nitive demands. Other factors that appeared to play a 
crucial role on shifts in the characteristics of the task 
are students’ unfamiliarity with statistical concepts 
compared with the limited time available for explora-
tion and development of conceptual understanding. 
Lack in access of statistical software, that allows stu-
dents to interact with the data, is an additive obstacle 
to helping students develop stochastic thinking.   

Stein’s and Lane’s (1996) framework proved to be use-
ful not only as a tool for exploring the transformation 
process but also as a tool for teachers’ reflection. The 
analysis of the characteristics of the task and the in-
vestigation of shifts through the various stages that 
instructional tasks pass, seemed to help the teachers 
evaluate their practice, identify sources of complexity 
and consider alternative strategies to develop more 
effective teaching.
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Female students tend to underestimate their abilities 
and to have more negative attitudes toward quantitative 
disciplines when compared to male students. In teach-
ing statistics this concern has to be taken into account 
since it may create an obstacle for learning. The aim 
of the present study was twofold: to test if women had 
less confidence and more negative attitude than men 
regardless their actual abilities, and to investigate if 
achievement in statistics was affected by these factors 
controlling for gender. Results showed that women did 
not differ in their abilities but showed less confidence 
and more negative attitudes when compared to men. 
Moreover, confidence and attitude played a role on 
achievement in women but not in men. The importance 
of enhancing attitudes toward statistics in female stu-
dents was discussed. 

Keywords: Statistics education, attitudes toward statistics, 

gender differences.

INTRODUCTION

Since statistical literacy is a key ability expected of 
citizens in information-laden societies, and is deemed 
a necessary component of adults’ numeracy and liter-
acy (Gal, 2002), it is crucial to develop students’ statis-
tical learning. To accomplish this goal, i.e., to provide 
students with tools for understanding data-related 
arguments, building intuition about data, and making 
reasoned judgments and decisions in their profession-
al and private lives, statistics has been included into 
a wide range of university programs. Thus, in many 
countries students progressing towards a degree oth-
er than statistics have to pass at least a compulsory 
statistics exam, and concerns related to teaching and 
learning statistics are internationally shared (for a 
review see, e.g., Zieffler et al., 2008).

In teaching statistics in postsecondary education 
gender might be a relevant factor since, although all 
students experience stress and difficulties in learning 
statistics, female students are more likely to feel un-
easy in dealing with this discipline. Indeed, they tend 
to underestimate their abilities and to have more neg-
ative attitudes toward quantitative disciplines when 
compared to male students. For instance, referring to 
mathematics, it has been shown that women’ self-effi-
cacy is consistently and significantly lower than those 
of men (e.g., Pajares & Miller, 1994; Stevens, Wang, 
Olivarez, & Hamman, 2007) regardless their actual 
ability (Quest, Hyde, & Linn, 2010). This phenome-
non, called the confidence gap (Sadker & Sadker, 1994), 
emerges during the high school years and impacts 
on the subsequent scholastic/academic choices, i.e. 
female students tend to avoid scientific secondary and 
postsecondary degrees and prefer non-mathematical 
ones (e.g., Halpern et al., 2007). 

Nonetheless, female students enrolled in non-math-
ematical degrees such as Psychology, Education, and 
Health Sciences encounter statistics courses in their 
programs. Thus, it is likely that their confidence gap 
might affect their approach to a discipline like sta-
tistics. Indeed, it has been widely demonstrated that, 
along with cognitive components (e.g., mathematical 
knowledge and general scholastic background), non 
cognitive factors play a determinant role in learning 
statistics (Chiesi & Primi, 2010; Harlow, Burkholder, & 
Morrow, 2002; Nasser, 2004; Schutz, Drogsz, White, 
& Distefano, 1998; Tempelaar, Van Der Loeff, & 
Gijselaers, 2007; Tremblay, Gardner, & Heipel, 2000; 
Wisenbaker, Scott, & Nasser, 2000). Among the non 
cognitive factors, large attention has been paid to the 
attitudes toward statistics that include a self-confi-
dence dimension (e.g., the trust in one’s own knowl-
edge and skills when applied to statistics) along with 
measures of feelings concerning statistics, and beliefs 
about the usefulness and the difficulty of statistics.
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Starting from these premises, the present study aimed 
to investigate the relationship between attitudes to-
ward statistics and achievement in male and female 
psychology students attending introductory statis-
tics courses. In detail, the aim of the present study 
was twofold: to test if females showed more negative 
attitudes toward statistics (and, specifically, less 
self-confidence) than males, and to investigate if atti-
tudes affected their achievement. These relationships 
were investigated controlling for the students’ actual 
ability, i.e., mathematical basics deemed necessary for 
introductory statistics courses. 

As refers to the first aim, literature on gender differ-
ences in attitudes toward statistics reports contra-
dictory results. Some authors reported that men ex-
pressed more positive attitudes toward statistics than 
women (e.g., Auzmendi, 1991; Tempelaar & Nijhuis, 
2007). Others found no gender differences (e.g., 
Estrada, Batanero, Fortuny, & Díaz, 2005; Judi, Ashaari, 
Mohamed, & Wook, 2011; Martins, Nascimento, & 
Estrada, 2011; Schau, Stevens, Dauphinee, & Del 
Vecchio, 1995; Wisenbaker et al., 2000). Some others 
have reported more positive attitudes for women 
(e.g., Mahmud & Zainol, 2008; Rhoads & Hubele, 2000). 
Assuming that those differences might be partially 
related to the sample characteristics (engineering 
students, economic students, psychology students, 
pre-service teachers), and referring to the above 
mentioned literature on the confidence gap, we hy-
pothesized that psychology female students had more 
negative attitude toward statistics than their male 
counterpart, and, specifically, they show less confi-
dence in their knowledge and skills when applied to 
statistics. 

From a different perspective, i.e., the “stereotype 
threat” theory (Spencer, Steele, & Quinn, 1999), it 
could be argued that since psychology female stu-
dents are not confronted with many male students, 
they should have higher confidence and more posi-
tive attitudes. Indeed, the “stereotype threat” refers 
to the concern that is experienced when one feels at 
risk of confirming, as self-characteristic, a negative 
stereotype about one’s group. Given the stereotype 
concerning gender and math ability - that propose that 
women have less mathematical aptitude than men-

, several studies suggest that gender differences in 
math performance occur in environments in which 
gender identity is salient, e.g., a class with a majori-
ty of male students is sufficient to create a threaten-

ing environment for female students. Nonetheless, 
in this stage of our research, we were interested in 
measuring students’ competence and attitudes at 
the beginning of the course in order to highlight the 
way in which the students start to deal with statistics. 
As such, in line with previous studies (e.g., Chiesi & 
Primi, 2010; Nasser, 2004; Schutz et al., 1998) we as-
sume that their initial attitudes do not depend on the 
current educational context, but on their previous 
experience with quantitative disciplines during the 
high school. Additionally, as reported by Hyde and 
colleagues (2008) and Quest and colleagues (2010) for 
mathematics, we hypothesized that, regardless gender 
similarities in abilities, women had less confidence 
and overall more negative attitude toward statistics 
than men.

Concerning the second aim, we investigated the rela-
tionships among mathematical competence, attitudes 
and achievement in men and women. Referring to 
literature on cognitive and non cognitive factors in-
fluencing statistics achievement, we hypothesized 
that mathematical knowledge has an effect on achieve-
ment (e.g., Chiesi & Primi, 2010; Harlow et al., 2002; 
Schutz et al., 1998; Tremblay et al., 2000; Wisenbaker 
et al., 2000), and, referring to the literature on female 
students’ attitudes toward the quantitative disciplines 
(e.g., Hyde et al., 1990; McGraw et al., 2006; Pajares & 
Miller, 1994; Stevens et al., 2007), we hypothesised that 
attitudes, and especially self-perceived competence, 
might impact on women’ performance differently 
than in men.

METHOD

Participants
Participants were 179 psychology students enrolled 
in an introductory statistics course at the University 
of Florence in Italy. The course was compulsory for 
first year students that represent the majority of the 
sample (91.3%). The course was scheduled to take place 
over 10 weeks, at 6 hours per week (for a total amount 
of 60 hours). It covered the usual introductory topics 
of descriptive and inferential statistics, and their ap-
plication in psychological research. During each class 
some theoretical issues were introduced followed by 
examples and exercises. Students were requested to 
solve exercises by paper-and-pencil procedure (no 
computer package was used), and then solutions were 
presented and discussed. 
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Participants’ age ranged from 19 to 54 with a mean 
age of 22.0 years (SD = 5.26). Female students were 113 
(mean age= 21.9, SD=4.77) and male students were 68 
(mean age= 22.7, SD=6.24). All students participated 
on a voluntary basis after they were given informa-
tion about the general aim of the investigation (i.e., 
collecting information to improve students’ statistics 
achievement). 

Measures and procedure

In a previous study (Chiesi & Primi, 2010), we pro-
vided evidence that some mathematical basics are 
needed for introductory courses and to measure them 
we developed the Prerequisiti di Matematica per la 
Psicometria (PMP) scale (Galli, Chiesi, & Primi, 2011). 
The contents were defined on the basis of the basic 
mathematics abilities requested to solve descriptive 
and inferential statistics problems. The PMP is com-
posed of 30 multiple choice (one correct out of four 
alternatives) questions including fractions, set theory 
(inclusion-exclusion, and intersection concepts), first 
order equations, relations (between numbers that 
range from 0 to 1 and numbers expressed in absolute 
values), and probability (base-rates, independence 
notion, disjunction and conjunction rules). Fractions 
are employed both in descriptive and inferential sta-
tistics tasks (e.g., to compute the standard deviation, 
as well as the t or z values). Equations are required, 
for instance, in the standardization procedure and in 
regression analysis. Establishing relations between 
numbers is necessary to compare the computed and 
critical value in the hypothesis testing. Set theory 
principles help to understand probability rules, and 
basics of probability are the prerequisite of the hy-
pothesis testing. A single composite, based on the sum 
of correct answers, was calculated (range 0–30). 

Attitude toward statistics was measured adminis-
tering the 28-item version of the Survey of Attitudes 
toward Statistics (SATS) (Schau et al., 1995; Italian ver-
sion: Chiesi & Primi, 2009). We chose SATS since it 
was proved to be invariant respect to gender (Hilton, 
Schau, & Olsen, 2004), i.e., equally suitable for male 
and female respondents, and because it assesses four 
attitudes dimensions including a self-confidence di-
mension. In detail, Cognitive Competence subscale (6 
items) measures students’ attitudes about their intel-
lectual knowledge and skills when applied to statistics 
(e.g. “I can learn statistics”); Affect subscale (6 items) 
measures positive and negative feelings concerning 

statistics (e.g. “I feel insecure when I have to do sta-
tistics problems”); Value subscale (9 items) measures 
attitudes about the usefulness, relevance, and worth 
of statistics in personal and professional life (e.g. 

“Statistics is worthless”); Difficulty subscale (7 items) 
measures students’ attitudes about the difficulty of 
statistics as a subject (e.g. “Statistics is a complicated 
subject”). The scale contains Likert-type items using a 
7-point scale ranging from strongly disagree to strongly 
agree. Responses to negatively scored items were re-
versed, and then scores were obtained for each sub-
scale, with higher ratings representing more positive 
attitudes. In the present sample, Cronbach’s alphas 
for the four subscales were: Cognitive Competence = 

.76, Affect = .80, Value = .74 and Difficulty = .65.

Students were administered the SATS and the PMP 
in this order during the first day of class. The ques-
tionnaires were introduced briefly to the students 
and instructions for completion were given. Answers 
were collected in paper-and-pencil format and the 
time needed to complete them ranged from 25 to 40 
minutes.

To measure achievement, we employed a midcourse 
test developed to monitor learning during the course 
and administered toward the end of the fifth week of 
the course. The test was composed as follow. Students 
were given a data matrix (3–4 variables, 10–12 cases) 
and referring to it they had to solve two problems 
(e.g., report frequency and percentage distributions, 
construct a two-way table, draw graphs, compute 
central tendency, spread and association measures) 
by paper-and-pencil procedure without the support 
of a statistics computer package. Additionally, they 
had to answer two open-ended questions (e.g., to de-
fine the measures of central tendency, to interpret 
the meaning of z values or percentiles). All the items 
pertained to contents covered in class. The test was 
timed (1 hour) and books and notes were not allowed 
to be used. For each problem the score ranged from 
0 to 3: 0 = totally incorrect or not solved; 1 = partially 
solved; 2 = almost solved; 3 = completely solved. For 
each question the score ranged from 0 to 2: 0 = totally 
incorrect or no answer; 1 = partially answered; 2 = cor-
rectly answered. Two assistant teachers, preliminary 
trained, scored the tasks. The scores were aggregated 
in a single measure (range 0–10). 
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RESULTS

Gender difference in mathematical knowledge, atti-
tudes, and achievement. All descriptives are report-
ed in Table 1. No gender differences were found in 
mathematical knowledge (t(177) = 1.10, p = .271) and in 
the Value scores (t(158) = -0.45, p = .97). In contrast, dif-
ferences were found in Cognitive Competence (t(158) 

= 2.05, p < .05, d = .31), Affect (t(158) = 3.68, p < .001, d = 
.55), and Difficulty scores (t(158) = 2.13, p < .05, d = .32) 
indicating that men were more confident about their 
own capabilities, had more positive feelings toward 
the discipline, and deemed the discipline less difficult 
than women. Concerning achievement, differences 
between male and female students were not statically 
significant (t(155) = 1.38, p = .17)

Gender difference in the relationships among mathe-
matical knowledge, attitudes, and achievement. We in-
vestigated if mathematical knowledge and attitudes 
were related to achievement looking at the Pearson 
product-moment correlations separately in male and 
female students (Table 2). Males’ achievement was 
related to mathematical knowledge whereas it was 
not related to attitudes toward statistics with the only 
exception of a small correlation with the Cognitive 

Competence dimension. Females’ achievement was 
related to mathematical knowledge and to attitudes 
toward statistics with the exception of the Value di-
mension. 

Since in both gender groups mathematical knowledge 
was related to attitudes and achievement, the corre-
lations between them might be biased. Therefore, 
partial correlations were computed controlling for 
mathematical knowledge. For the male students the 
correlation with the Cognitive Competence score was 
not significant (r = .04, p = .83) once the effect of math-
ematical knowledge was controlled. Instead, for the 
female students the correlations between achieve-
ment and Affect (r = .24, p < .05) was still significant, 
as well as the correlations between achievement and 
Cognitive Competence (r = .37, p < .01).

Mathematical knowledge, Affect, and Cognitive 
Competence as predictors of achievement in female 
students. To establish the relative impact of mathe-
matical knowledge, Cognitive Competence, and Affect 
on achievement in women, regression hierarchical 
analyses were run (Table 3). In the first step, the math-
ematical knowledge, and, in the second step Cognitive 
Competence and Affect were added as predictors. The 

Males Females

M SD M SD

PMP 23.71 4.34 22.90 4.94

SATS-Cognitive Competence 31.59 6.67 29.70 5.43

SATS-Affect 26.00 6.93 22.27 6.63

SATS-Value 46.00 8.20 46.05 7.54

SATS-Difficulty 25.91 5.62 24.30 4.49

MT 6.34 2.25 5.77 2.19

Table 1: Means and standard deviations of mathematical knowledge (PMP), attitudes toward statistics (SATS) subscales, and achievement 

(midcourse test = MT) for Males and Females

Males Females

1 2 3 4 5 1 2 3 4 5

1. PMP

2. SATS-CC .40** .35**

3. SATS-A .13 .81** .33** .72**

4. SATS_V .22* .54** .55** .07 .39** .44**

5. SATS-D .34* .66** .74** .38* .26* .55** .68** .25*

6. MT .46** .22* .05 -.06 -.01 .52** .48** .36** .07 .25*

** Correlation is significant at the 0.01 level (2-tailed) * Correlation is significant at the 0.05 level (2-tailed)

Table 2:  Intercorrelations between mathematical knowledge (PMP), attitudes toward statistics (SATS subscales: A= Affect; CC= Cognitive 

Competence; V=Value, D= Difficulty), and achievement (midcourse test = MT) in Males and Females
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two dimensions of attitudes toward statistics were 
kept separate to avoid multicollinearity due to the 
high correlation between them (r = .72) that makes 
difficult to estimate the single contribution of each 
one when kept together in the same analysis. Results 
showed that the mathematical knowledge was a signif-
icant predictor (F (1,79) = 29.35, p < .001) that accounted 
for the 27% of the variability in achievement. Adding 
separately at the two dimensions of attitudes, results 
showed that the model was significant both when 
Cognitive Competence was included (F (2,78) = 22.78, 
p < .001), and when Affect was included (F (2,78) = 17.53, p 
< .001). In both cases, they contributed significantly to 
explain achievement along with mathematical knowl-
edge. Nonetheless, Affect explained only an additional 
4% whereas Cognitive Competence accounted for an 
additional 10% of the variability in achievement.

DISCUSSION

The current study aimed at investigating the interplay 
among previous competence, attitudes, and achieve-
ment in statistics and taking into account gender-relat-
ed differences. In detail, the first aim was investigating 
gender differences in attitudes toward statistics and 
the relationships with mathematical competences. As 
expected (and in line with Auzmendi, 1991; Tempelaar 
& Nijhuis, 2007), when compared to men, women were 
less confident about their own ability in dealing with 
statistics, perceived it more difficult, and had more 
negative feeling about the discipline. However, the 
present results shows that these differences were not 
related to different mathematical knowledge since 
any gender differences were detected in mathematical 
basics deemed necessary for introductory statistics 
courses. The second aim concerned the predictive 
role of mathematical knowledge and attitudes toward 
statistics on achievement. Confirming previous re-
sults, the Cognitive Competence, Affect and Difficulty 
components, but not the Value one, were related to 
achievement (Tempelaar et al., 2007; Wisenbaker et 
al., 2000), as well as mathematical knowledge (e.g., 

Chiesi & Primi, 2010; Harlow et al., 2002; Schutz et al., 
1998; Tremblay et al., 2000; Wisenbaker et al., 2000). 
Concerning gender differences, as expected, gender 
induced changes in the relationships between achieve-
ment and its predictors. More in detail, mathematical 
knowledge was the only significant predictor for men, 
whereas – along with mathematical knowledge – the 
Affect and Cognitive Competence attitude components 
had an additional effect on performance for wom-
en. That is, low self-perceived abilities accounted for 
worse achievement, and more negative affect was 
associated to lower achievement (and vice versa). In 
particular, Affect had a smaller effect than Cognitive 
Competence.

Given these findings, it becomes important to identify 
methods for counteracting female students’ tendency 
to underestimate their competence and to have nega-
tive feeling toward the discipline. In this way it could 
be possible to promote a better approach to the dis-
cipline and, as a consequence, a better performance. 
Specifically, it might be useful to arrange activities 
during the course in which students could realize 
that they can master the topics, develop confidence, 
perceive the subject easier, and reduce negative feel-
ings toward the discipline. Thus, future researches 
might be conducted collecting repeated measures of 
attitudes from the beginning to the end of the course 
in order to monitor changes that might be due to the 
course itself and to specific activities implemented 
by teachers and tutors. 

The present study has some limitations that we have 
to take into account when interpreting the results. 
First, we used the midcourse test score as indicator of 
achievement. For the purpose of the present investi-
gation, we deemed this measure as an adequate indi-
cator but it could be interesting to take into account 
the final examination’s grades to better ascertain the 
role of attitudes on general achievement. In doing 
that, it should be necessary, as stated above, to monitor 
the changes in the attitudes that could occur during 

Predictors β t p R2 R2 change F change p

Step 1:   PMP .52 5.42 <.001 .27 - - -

Step 2a: PMP
          + SATS-A

.45

.21
4.52
2.10

<.001
<.05

.31
-
.04

-
4.43

-
<.05

Step 2b: PMP
      + SATS-CC

.40

.33
4.20
3.48

<.001
<.01

.37
-
.10

-
12.09

-
<.01

Table 3: Hierarchical regression analyses on statistics achievement for Females. PMP = mathematical knowledge, SATS-A = Affect, 

SATS-CC = Cognitive Competence



Gender differences in attitudes toward statistics: Is there a case for a confidence gap? (Francesca Chiesi and Caterina Primi)

627

the course, i.e., to have a measure of the student’s at-
titudes at the end of the course, just before to take 
the final exam. Additionally, given the relevance of 
the self-confidence dimension (i.e., the trust in one’s 
own knowledge and skills when applied to statistics) 
more attention should be paid in investigating more 
in detail this aspect, for instance using instrument 
to measure specifically the student’s confidence in 
solving successfully typical statistic tasks. Finally, the 
present research was conducted with Italian psychol-
ogy students and this may limit the generalizability 
of the current findings. Thus, future investigations 
should be conducted with different student popula-
tions to provide further evidence.
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Our work aims at developing means to facilitating the 
access to stochastic thinking, especially for non-mathe-
matically oriented learners. To this end, we draw on 
metaphoric and enactive approaches to the teaching 
and learning of randomness. More precisely, we report 
on a challenging didactical situation implemented in 
various classrooms, with students and prospective and 
practicing teachers, concerning problem posing and 
solving in the context of randomness that is approached 
through enactive metaphoring. The findings suggest 
that this sort of approach allows non-mathematically 
oriented learners to make sense of and abduct otherwise 
inaccessible mathematical notions and facts. 

Keywords: Enaction, metaphor, randomness, embodiment, 

waiting time.

INTRODUCTION    

We are concerned about facilitating the access to sto-
chastic thinking and its practice and appreciation by 
the learners as one way to make sense of the world. 
We are especially interested in approaches that might 
be meaningful and helpful for “general” non-math-
ematically oriented students in school, college and 
university. 

The approaches we develop relay on metaphoring, en-
action, embodied and situated cognition. Our main hy-
pothesis is that most students – especially those with 
no special mathematical skills – can think mathemat-
ically if they enact first suitable didactical situations, 
involving problem posing and solving.  Here enacting 
is meant in the most literal sense, as when enacting a 
role, bodily, on stage. In this way they may notice and 

“see” facts or relations that they may have trouble see-
ing in an abstract or symbolic setting. We put this into 
practice here in the context of probabilistic and statis-
tical thinking, with challenging tasks like figuring out 
the expected waiting time for success in a dichotomic 
success-failure random experiment. Of course even 

learners with no probabilistic background can tackle 
this sort of task in a pure experimental statistical way, 
calculating the average waiting time for an increas-
ingly larger number of repetitions of the experiment. 
Many of them may become sensitive nevertheless to 
the fact that they are calculating blindly without being 
able to anticipate, i.e., to “see” beforehand, what value 
the experimental average will be close to. We also 
aim at fostering the development of this sensitivity as 
an antidote to the common misconception of mathe-
matics as just rote formula applying and calculating. 
These approaches have been tested with students and 
teachers with various backgrounds, ranging from ele-
mentary and secondary school students to university 
students majoring in science and humanities and to 
prospective and in service elementary and secondary 
school teachers.   

THEORETICAL FRAMEWORK: METAPHORS, 
DIDACTICAL SITUATIONS AND ENACTION    

Metaphors in cognitive science 
and mathematics education  
Widespread agreement has been reached in cognitive 
sciences that metaphor serves as the often unknow-
ing foundation for human thought (Gibbs 2008; Soto-
Andrade 2014) since our ordinary conceptual system, 
in terms of which we both think and act, is fundamen-
tally metaphorical in nature (Johnson & Lakoff, 2003)

We find remarkably theory-constitutive metaphors 
that do not “worn out” like literary metaphors and 
provide us with heuristics and guide our research 
(Boyd, 1993; Lakoff & Núñez, 1997). We might even 
claim metaphorically that a theory is just the unfold-
ing of a metaphor! Recall the “tree of life” metaphor 
in Darwin’s theory of evolution or the “encapsulation 
metaphor” in Dubinsky’s APOS theory (Soto-Andrade, 
2014). In what follows we will use the metaphorical 
approach as a meta-theory to describe the other the-
oretical frameworks we will use. 
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In mathematics education proper it has been pro-
gressively recognized during the last decade (Araya, 
2000; Chiu, 2000; English, 1997; Johnson & Lakoff, 
2003; Lakoff  & Núñez, 2000; Presmeg, 1997; Sfard, 
2009, Soto-Andrade, 2006, 2007, 2013 and many oth-
ers) that metaphors are not just rhetorical devices, 
but powerful cognitive tools, that help us in build-
ing or grasping new concepts, as well as in solving 
problems in an efficient and friendly way. See also 
Soto-Andrade (2014) for a recent survey. We make 
use of conceptual metaphors (Lakoff  & Núñez, 2000), 
that appear as mappings from a “source domain” into 
a “target domain”, carrying the inferential structure 
of the source into the one of the target, enabling us 
to understand the latter, usually more abstract and 
opaque, in terms of the former, more down-to-earth 
and transparent.  Our metaphoric approach to the 
learning of mathematics emphasizes their “poietic” 
role, that brings concepts into existence (“reification” 
in the terms of Sfard, 2009). For instance we may bring 
the concept of probability into existence when, stud-
ying a symmetric random walk on the integers, we 
see the walker splitting into 2 equal halves instead of 
going equally likely right or left (Soto-Andrade, 2013).

Didactical situations 
The theory of didactical situations (Brousseau, 1998) 
might be described as an unfolding of the emergence 
metaphor for mathematical content: mathematical 
concepts or procedures we intend to teach should 
emerge in a suitable challenging situation the learn-
er is enmeshed in, as the only means to “save his life”. 
No real learning is possible if mathematical concepts 

“come out of the blue” or are “airborne” from Olympus.         

Metaphors play an important role in didactical sit-
uations, that we describe with the help of a “voltaic 
metaphor”: Key metaphors are likely to emerge, as 
sparking voltaic arcs, in and among the learners, 
when enough “didactical tension” builds up in a di-
dactical situation for them. Typically this happens 
when students try hard and long enough, interacting 
with each other, to solve a challenging problematic 
situation. Suddenly a key metaphor to solving the 
problem emerges in one – or several – of them. Of 
course, to have the students sustain and endure the 
necessary didactical tension, is not an easy task in 
most classrooms... 

Enaction 
An unfolding metaphor for enaction is Antonio 
Machado’s poem (Thompson, 2007; Malkemus, 2012):

“Caminante, son tus huellas el camino, y nada más; 
caminante, no hay camino, se hace camino al andar” 
[Wanderer, your footsteps are the path, nothing else; 
there is no path, you lay down a path in walking]. 

Indeed Varela had already metaphorized enaction 
as the laying down of a path in walking (Varela, 1987, 
p. 63), when he introduced the enactive approach in 
cognitive science (Varela, Thompson, & Rosch, 1991).  
In his own words: “The world is not something that 
is given to us but something we engage in by moving, 
touching, breathing, and eating. This is what I call 
cognition as enaction since enaction connotes this 
bringing forth by concrete handling” (Varela, 1999, 
p. 8). 

Enaction in mathematics education may be traced 
back to Bruner (1953), who introduced it as “learning 
by doing”. In fact he described enactive representation 
of a domain of knowledge (or a problem therein) as 
a set of actions appropriate for achieving a certain 
result, in contrast with iconic representation, where 
summary images or graphics are employed, or symbol-
ic representation, based on symbols and their syntax.  
Later Bruner’s ideas were successfully implemented 
and diffused via Singapore’s CPA (Concrete-Pictorial-
Abstract) methodology.  For recent significant theoret-
ical and practical developments of enaction in the field 
of education, which highlight the role of the teacher 
as an enactive practitioner acting in situation and 
prompt us to focus on the ways of being that can be 
fostered in the classroom rather than just monitoring 
the specific mathematical knowledge generated, see  
Masciotra, Roth, & Morel (2007) and Proulx & Simmt 
(2013).

ENACTIVE METAPHORIC APPROACHES 
TO MATHEMATICAL NOTIONS: 
THE EXPECTATION OF A WAITING TIME  

We have discussed elsewhere (Soto-Andrade, 2013) an 
enactive metaphoric approach to the case of a sym-
metric 2D random walk (Brownie’s walk). Here we 
will address the case of an important and ubiquitous 
family of random variables, to wit waiting times, and 
their expected values. The simplest case is that of the 
waiting time for success in a dichotomic success-fail-
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ure random experiment, with success probability p 
and failure probability q. We specialize here to the 
simplest case  p = q =½, that can be modeled, or meta-
phorized, by tossing a coin and waiting for heads.   

Methodology
The task (rather a problematic situation) proposed to 
the undergraduate students described below, was to 
figure out how long (how many tosses) they had to wait 
to get heads when tossing a coin. They had not been 
exposed to probability and statistics at the University 
and they were invited not to recall what they had 
heard about probability and statistics at school (where 
the subject is badly taught anyway). So   they tackled 
this “impossible question” essentially bare handed. 
Notice that figuring  out a sensible answer for our 
impossible question with no definite answer, is part 
of the task.  We have then an “open task” that becomes 
stepwise more precise through the interactive work of 
the students (see a priori analysis below), accordingly 
with the enactive approach where problems are not 

“out there” waiting to be solved but are co-constructed 
by the cognitive subject and the world (Varela, 1987, 
1999). It is our aim that the students learn to explore 
when tackling a problematic situation and then to con-
jecture and “see” beforehand ways of solution instead 
of blindly calculating the sum of an infinite series or 
computing an average over many repetitions.   

Our experimentation regarding this task was carried 
out in the classroom with: 

a. 1st year University of Chile students majoring in 
social sciences and humanities, from 2011 to 2014 
(1 semester mathematics course, averaging 60 
students per semester). 

b. 25 University of Chile students enrolled in an 
optional one semester course in Post Modern 
Mathematics, majoring in mathematics or in 
pedagogy in physics and mathematics, in 2012.    

c. 40 University of Chile prospective physics and 
mathematics secondary school teachers (one se-
mester probability and statistics course) in 2014.

Students were observed by the authors during inter-
active 90 minute work sessions. They did group work 
splitting usually into two groups of no more than 20 
each.    

We describe now the mathematical analysis and the 
a priori and a posteriori analyses of this experimen-
tation in the sense of didactical engineering (Artigue, 
2009).  

The mathematical situation    
Notice that the experiment of flipping a coin until 
you get heads can be looked upon   as a symmetric 
random walk on a truncated binary tree (you begin 
at the root and turn right if you get heads and to the 
left if you get tails, stopping when you get heads the 
first time), so that the question “How long will I have 
to wait for heads?” becomes “How long will it take the 
walker to get to one of the absorbing ends of the tree?” 
So flipping a coin or walking on the tree, are each one 
a metaphor for the other. 

Since the random variable T = “waiting time for heads 
when flipping a coin” takes values n with probabili-
ties 1/2n , its expectation E(T) is given by the series 

. Adding terms diagonally one can show that this 
series coincides with the geometric series , whose 
sum is 2.   

The challenge we address below is whether the stu-
dents could enactively “see” this result without calcu-
lating the corresponding series (symbolic approach, 
rather unfriendly for many) or averaging over an in-
creasing number of repetitions of the experiment (sta-
tistical approach, also unfriendly for many). Notice 
that most students, and teachers, do not usually see 
another way to tackle the problem, besides the theo-
retical-symbolic one and the empirical-statistical one!

The didactical situation: Tentative script 
and a priori analysis of the enactment 
The teacher flips a coin once and asks for interesting 
exploratory questions. Very likely some students 
suggest to flip it again. Various interesting questions 
may arise. In particular, if the teacher gets, say, 2 or 
3 tails in a row, students may begin to wait for heads. 
Eventually the whole class may get interested in the 
question: How long has one to wait for heads? 

Different answers may come up, the level 0 answer 
being: “Nobody knows, only Jesus knows!”  Other 
answers are expressed in gestural language. Some 
students may suggest experimenting. Each of them 
flips a coin until he or she gets heads.   They realize 
the variability of their waiting times. Some may find 
that the situation is hopeless. Others, more positively 
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minded, may suggest to average. They average their 
waiting times and find, say, 1,7 or 2,6. So what?  

This stirs usually a lot of discussion. Some students 
suggest further experimenting. Other make guesses, 
like “the average should tend to 3”. One natural ques-
tion is what average are we likely to get if we entice 
all students on campus to do the experiment?  

Some become tired of experimenting and begin to 
look for a more theoretical approach. Eventually they 
draw the corresponding possibility tree (a truncated 
binary tree) and assign probabilities with the help of a 
hydraulic or pedestrian metaphor, as in Soto-Andrade 
(2013). Recall that in the first one we visualize the pos-
sibility tree in vertical position, root at the top, pour a 
litre of water at the root and let it drain evenly down-
wards. Probabilities are metaphorized as quantities of 
water. In the second one a suitable number of pedestri-
ans (a power of 2 in this case) starts at the root splitting 
evenly at each junction. Probabilities appear now as 
proportions (ratios) of pedestrians reaching a node in 
the tree. This is easy, but then they realize that to calcu-
late the theoretical average, i.e. the expected waiting 
time, they have to calculate the infinite sum  ,  that 
is rather unwieldy for them. Some students begin to 
intuit  that there should be something like a limiting 
value for the average (if all Chinese waited for heads…) 
or either an “ideal average”. It is not clear for them 
however how to pin it down. The teacher prompts the 
students to suggest other approaches. If no new ideas 
arise, the teacher may suggest to enact the situation, 
all together. 

More precisely, she suggests that all students stand 
up in a circle and each waits for heads when flipping 
a coin. She asks then how they would calculate the 
average waiting time. The students suggest the obvious 
way that entails asking each one of them how many 
times he had to flip the coin to obtain heads, add all 
these waiting times and divide by the number of play-
ers.  The problem arises then however that this proce-
dure does not allow them to guess or to estimate nei-
ther the experimental average waiting time nor the 

“ideal average waiting time”. It is nevertheless clear 
for most of them that “ideally” half of them should get 
heads at the first flip. Then among those who failed, 
ideally one half will get heads at the second flip. This 
is an interesting idea that actually comes up from 
some students, but leads them to an infinite sum all 
the same (although simpler to evaluate than the sum 

above). So the students are still motivated to look for 
a friendlier approach. 

At this point the teacher might suggest that to ask 
every player how long she had to wait for heads is a bit 
cumbersome. The question arises as to how could the 
students proceed in a friendlier and more concrete 
way, so that they really “see” what has happened to 
each one of them (notice the switch to a non verbal 
cognitive style). After some minutes thought at least 
one student suggests:  flip several coins, one after the 
other, instead of just one! All appreciate this bright 
idea and begin to flip one coin after another (eventu-
ally the teacher has to lend coins to some students).  
After a while, each of them has a group of coins in 
front of her.  If nothing happens, the teacher may 
ask them: what do you see?  Some may say: “not very 
much, just a bunch of coins on the floor”. But others 
remark quickly: “there is just one head in front of each 
of us”. Other recall that to calculate the average we 
should count the total number of coins on the floor 
and divide by the number of players.  Said that way  
however, the result is not easy to estimate beforehand.  
Then usually a few students realize that they will be 
dividing the total number of coins by the number of 
coins showing heads.  But they “know” which is the 

“ideal ratio” here: if I see 17 coins showing heads on 
the floor, I would have expected “ideally” 34 coins in 
all. Of course there might be 37 coins instead.  But this 
shows that “ideally” the average of all waiting times 
should be 2.  After this breakthrough, usually the 
teacher invites the students to keep silent and quiet 
for a little while (one minute, say), in an introspective 
attitude, and to visualize the whole picture.  After that 
she may prompt them to draw an image of the whole 
enactment (the circle of players, each with a bunch of 
coins in front of him…), so as to enter the iconic regis-
ter.  And then, according to the mathematical profile of 
the students, she can prompt them to formulate their 
conclusions in symbolic language.

An interesting fact that we have observed is that for 
most mathematicians this enactment is a proof while 
for most secondary school teachers it is not!  Putting 
the whole situation on its head, we could even say that 
we have found an enactive metaphorical proof that the 
infinite sum  adds up to 2. We claim that this is 
closer to real mathematics that the usual purely sym-
bolic, abstract and axiomatic approach, thst is just one 
genre among many possible ones (Manin, 2007; Soto - 
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Andrade, 2014). Finally we should remark that also 
the  equality  =  may be gleaned from our enact-
ment:  when students realize that they should collect 
all coins lying on the floor, the teacher may prompt 
them to suggest different ways to do it.  Usually some 
students come up with the idea of the “common pot” 
(as in a soup-kitchen), like the one squatters occupy-
ing a school in protest would organize (a familiar ex-
perience for many students). The idea is that to collect 
all the coins, the teacher should ask first everyone 
to put one coin into the common pot. All can do that. 
Then she would ask for a second coin. Ideally only 
half of the players are able to do that. And so on. This 
shows immediately that the ideal average of waiting 
times coincides with the sum , hence the equality 
of the two infinite sums above.

The didactical situation: A posteriori analysis
The idea of flipping a new coin after each failure in 
getting heads came up as easily in students majoring 
in humanities and social sciences as in students ma-
joring in mathematics or pedagogy in physics and 
mathematics. The fact that the number of students in 
the circle coincides with the number of coins showing 
heads did not come up very quickly, but we saw no 
significant difference between mathematically ori-
ented students and humanists. Some of them realized 
this after contemplation of an iconic representation 
of their enactment, others did it after staring hard at 
the coins on the floor. A lot of discussion emerges as 
to how to register their results.  

The relationship between the experimental average 
waiting time and the ideal one emerged rather slow-
ly. Estimates of the experimental average of waiting 
times for millions of people varied in a significant way 
between students a and b, c.  Recall  that the former 
had previously flipped a coin 100 times and registered 
what they observed (not just the final result, but the 
whole process!). So they realized that the simplest av-
atar of randomness already creates shapes that look 
like mountain ridges and stock exchange charts.  They 
were less prone than students b and c to think that 
in we cannot say anything sensible or even approx-
imate about random experiment results. They also 

“saw” more easily that the ideal average waiting time 
should be 2, the inverse of the ideal relative frequency 
of heads when you flip many times a coin. 

In all groups of students those who intuited that the 
ideal average waiting time should be 2 (out of statis-

tical experimentation) related this immediately with 
the inverse of the ideal relative frequency of heads 
when flipping a coin many times. All students con-
jectured quickly after this experience that the ideal 
average waiting time for   “ace” when tossing a dice 
should be 6. Further work in more advanced symbol-
ic mode was easier with students b and c that had a 
more intensive mathematical training. Sometimes a 
game emerged after this enactment, that may suggest 
another approach to the expected waiting time: the 
teacher gives each student as many coins as necessary 
to get heads flipping them one after another. When 
a student finally gets heads, the game is over and he 
keeps all flipped coins. The natural question is:  How 
much should the teacher charge for playing this game, 
so that it becomes a fair game?

DISCUSSION AND CONCLUSIONS   

Crossing a priori and a posteriori analyses we see that 
several years of traditional mathematical training 
(students b and c) did not make a significant difference 
in performance in an enactment like the one we report 
here: students a, who come directly from high school, 
usually with a poor relationship to mathematics, did at 
least as well as students b and c, when trying to figure 
out enactively the value of the ideal average waiting 
time for heads. In fact they did even better regarding 
their intuition of the behaviour of the experimental 
average waiting time for an increasing number of 
flippers. We conjecture that this phenomenon is due 
to the fact that – in contrast to students b and c - they 
had made the enactive experience of flipping a coin 
100 times and registering the whole stochastic pro-
cess, realizing its relationship with everyday shapes 
like mountain ridges and stock exchange charts.  This 
suggests that in some sense enactive experiences 
may concatenate and interact in a feedback loop in 
the life story of the learners, as suggested in Varela, 
Thompson and Rosch (1991):   “cognition is not the rep-
resentation of a pre-given world by a pre- given mind 
but is rather the enactment of a world and a mind on 
the basis of a history of the variety of actions that a 
being in the world performs” (emphasis is ours).

We also observed that learning enactively is not a 
one man (or woman) show, it is a   collective social 
undertaking, that may be seen upon in some cases 
as an avatar of swarm intelligence. We have noticed, 
especially in group a, that among students reacting 
remarkably faster and better than the average in 
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enactive situations, a high percentage of come from 
alternative Montessori or Waldorf schools.  

We should remark that our enactive approach poses 
some significant challenges: teachers and students 
need to be able to play tightrope walkers and transit 
seamlessly between different cognitive styles (from 
symbolic to enactive particularly). Special support 
and dedication is needed for those who come from 
more formal and robotic school systems, so that they 
can progressively adapt to new ways of working and 
approaching mathematical experience and knowl-
edge. If this sort of “cognitive therapy” is not provided 
(by a devoted highly qualified teacher assistant, for 
instance) the risk arises of a severe stratification in the 
classroom, that could demotivate many students. We 
see then that significant situational intelligence, in the 
sense of Masciotra, Roth, & Morel (2007) is required 
from teachers as enactive practitioners.

On the other hand, as pluses of our approach we 
have observed that is very often highly motivating 
for the students, involves surprise (a key factor for 
learning, according to Peirce and Freire), knowledge 
is constructed in a cooperative way in the classroom, 
space is given for questions to emerge from the stu-
dents in experiential situations, instead of answers 
being given to them before they have a chance to 
ask the questions first (Freire, 2011; Tillich as cited 
by Brown, 1971;  Mason, 2014) and finally, it fosters 
participation so that students become  protagonists 
of their learning.

As open ends, we may mention, among others:  the 
didactical study of histories of enactive experiences of 
the learners; the relation between enaction and intui-
tion (first steps in this direction may be found in Diaz-
Rojas, 2013); the systematic study of the emergence 
of enactive metaphoring in suitable didactical situ-
ations; the enactive exploration of the real meaning 
of being mathematical in the classroom in the sense 
of Mason (2014), research on curriculum reshaping 
motivated by the enactive approach in mathematics 
education.
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In the qualitative part of a larger research project aim-
ing to investigate students mental modelling of statisti-
cal situations we found aspects of a statistical situation 
that provoke intended but also not intended (conceptual) 
changes of students’ mental modelling. To describe these 
changes, we firstly outline the results of our former re-
search followed by a brief discussion of our theoretical 
framework and our method. Then, we discuss results 
from the perspective of changing mental models. 

Keywords: Statistical mental models, conceptual change, 

interview study. 

INTRODUCTION

The contemporary educational research on statistics 
follows mostly the approach of intervention studies 
(Jones & Thornton, 2005). The amount of this research 
has grown in recent decades, since statistics become 
a crucial part of the curriculum of stochastics (sta-
tistics and probability) in many countries (Batanero, 
Burrill, & Reading, 2011). By contrast research refer-
ring unschooled students’ acting and reasoning with-
in data-centred statistical situations of uncertainty is 
sparsely developed (Eichler & Vogel, 2012). For this 
reason, we started a research project aiming to an-
alyse non-schooled students’ modelling and reason-
ing about statistical situations. The main aim of this 
research is to gather more information about young 
students’ primary statistical thinking as an empirical 
based starting point for statistics education in school.

In this paper, we refer to the qualitative part of our 
research including interviews with young students, 
who act within statistical situations. For this, we 
outline our theoretical framework. Then, we briefly 
outline the main findings of our previous work and 
derive the research questions of this paper followed 

by a short report of our methodological approach. 
Finally, we give an account of research results, and 
particularly of both students’ mental modelling when 
reflecting on comparable statistical situations given 
in paper-pencil-task, and a (conceptual) change of 
mental modelling when handling those situations in 
reality afterwards.

THEORETICAL FRAMEWORK

Students’ conceptions are not always compatible with 
the intended statistical con ceptions. This finding can 
often be explained by the influence of (naïve) prior 
conceptions and non-accomplished processes of their 
reconstruction. The mental model theory (Johnson-
Laird, 1983) and a mental model oriented conceptual 
development approach (Vosniadou, 2002) meet the 
demands to capture this problem from a theoretical 
point of view. We outline briefly those aspects of our 
theoretical framework that are relevant for this paper.  

Mental models
Johnson-Laird (1983, p. 156) states: “A mental mod-
el […] plays a direct repre sen ta tio nal role since it is 
analogous to the structure of the corresponding state 
of affairs in the world – as we perceive or conceive 
it.” From the perspective of information pro cessing 
Schnotz and Bannert (1999) describe mental models 
as being constructed individually according to a task 
and its requirements within a specific situation. By 
this, they conclude that a mental model represents 
the structure as well as the function of the modelled 
situation that could be described as follows: 

 ― Structure: An essential process of mentally mod-
elling a situation’s structure is recognising the 
observable or not observable physical objects of 
the situation, as well as the relationship of these 
objects that an individual identifies as mainly 
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impacting on the situation. Given data are also to 
be seen as being part of a situation’s structure be-
cause they represent results of a process having 
passed. For example a die, the characteristics of 
the die, the player throwing the die, the ground 
where the die will roll and even data representing 
results of the die having been thrown before are 
characteristics of the situation that an individual 
has to process when he build up a mental model 
of the situation. 

 ― Function: Concerning the dynamic aspect of men-
tal models, i.e. the function, Seel (2001) suggests 
that, when coping with demands of a specific situ-
ation, an individual constructs a mental model in 
order to simulate relevant aspects of the situation 
by anticipating possible results. The functional 
aspect of statistical situations is directly reason-
able, since it represents a qualitative simulation 
of the situation in terms of making a prediction, 
for example of those numbers a die will show 
in the next throws. In general, such mental sim-
ulations cannot result in quantitatively exact 
conclusions – for example when a die with an 
unsymmetrical shape is given – but in qualitative 
ideas about reasonably expectable outcomes of 
such simulations (De Kleer & Brown, 1983). These 

“qualitative simulations” (ibid., p. 155) require 
sense making about the system or process that 
should be simulated, its constituent components 
and their relationships.

Conceptual development and change 
in terms of mental model theory
With regard to conceptual development mental mod-
els play different important roles: They serve as aids 
in the construction of explanations, are mediators in 
the interpretation and acquisition of new informa-
tion, and provide tools that allow experimentation 
and theory revision (Vosniadou, 2002; Van Dooren 
et al., 2006). 

Conceptual change in terms of mental model theory 
involves a validation of the model that necessitates 
a moderately changed or a fundamentally renewed 
model of a situation (Vosniadou, 2006). Posner and 
colleagues (1982) identify a disadvantage of existing 
models concerning new facts or phenomena as well 
as the existence of alternative models that seem to 
be – evidently or not – more promising to explain 
new facts or phenomena. In some sense an individu-

al’s conceptual change equals the acquirement of new 
pieces of knowledge. However, it is not necessary that 
this new knowledge eliminate the “old” knowledge 
(Vosniadou, 2006). Thus, students who conduct a con-
ceptual change may construct different mental mod-
els of structural similar situations that were provoked 
dependent of the specific situation or task (Siegler, 
1996). Because such different mental models occupy 
an autonomous role (Morgan & Morrison, 1999) they 
have not be consistent in an objective sense but they 
have to be experienced as being useful concerning 
their explanatory power in a subjective sense. 

The situational perspective of mental model theories 
is closely connected with the approach of situated cog-
nition: “Situations might be said to co-produce knowl-
edge through activity. Learning and cognition, it is 
now possible to argue, are fundamentally situated.” 
(Brown, Collins, & Duguid, 1989, p. 32) Amongst other 
theoretical approaches, the conceptual change ap-
proach refers fundamentally to situativity and mental 
model theory (Vosniadou, 2002). For this reason, we 
regard the change of a student’s mental model from 
the perspective of conceptual change.

PREVIOUS WORK

Theoretical aspects 
In our research we use the mental model approach 
for conceptual framing the aspects of students’ mod-
elling within specific statistical situations (Vogel & 
Eichler, 2014). Because we are especially interested 
in what Fischbein (1975) calls students’ primary in-
tuitions concerning statistics situations of everyday 
life we reduce ourselves to the descriptive mode (cf. 
Prediger, 2008) of mental modelling (referring to the 
interpretations students actually use) and leave out 
the prescriptive mode (referring to the mathemat-
ical interpretations intended to be learned). As an 
example, the situation of a frog jump is described in 
Figure 1.

The characteristics of the structure and the function 
of the mental model concept are provided in the situ-
ation of frog jumps: The structure consists of non-hu-
man objects (the frog, the fields, the starting line and 
so on), human objects (the player) and the relations 
among the objects. Further, the data (the shims on the 
fields; cf. Figure 1) are a part of the structure repre-
senting previous results of the situation. The function 
of a mental model is implicitly incorporated in the 
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situation, i.e. a mental simulation of the situation, e.g. 
resulting in estimation for the next jump. 

The situations and the mentioned characteristics of 
mental models allowed us to derive a theoretical mod-
el of task complexity with three influencing factors 
(Eichler & Vogel, 2012): The tasks could provide all 
the objects that potentially impact on the situation 
(or not), the tasks could provide data (or not), and the 
tasks could require a request of a mental simulation 
(or not).

Empirical aspects 
Using the results of a questionnaire survey, the com-
plexity model could be empirically backed up in a 
quantitative way (ibid.). Additional qualitative anal-
yses of students’ responses yield interesting insights 
in students thinking (ibid.): For example, students 
tend to show a bigger variation of mental models 
when there were situations to be judged in which 
random processes were apparently, at least partially, 
influenced by human. This assumption can be under-
lined for example by an overview of the analyses of 
74 written student responses concerning a task using 
rolling dice on the one hand, and a task using jumping 
paper frogs (cf. ibid.). In the so-called die task no stu-
dent mentioned the hand of the person which throws 
the dice whereas in the frog task (as well as in other 
tasks which not comprise dice) human influence was 
considered in different elaborated ways. 

RESEARCH QUESTIONS

The research question referring the qualitative part 
of our research is a result of our previous findings 
and future aims. 

In this qualitative part, the students work with the 
concrete material that is shown in the statistical sit-
uations in the tasks (e.g., the frogs, the fields and the 
starting line). Besides other (primary) goals of this 
part, it aims to disclose possible changes of students’ 
mental modelling in specific statistical situation. This 
aim seems to be necessary to focus on how to engage 
students to change their mental models, e.g. as a result 
of an intervention. For this, beyond the mental model 
concept we use the conceptual change approach (see 
above). We are aware that the time span provided for 
the students to work within the statistical situations 
in our research might be not sufficient to get evidence 
for conceptual changes. However, if a student changes 
his mental model concerning a statistical situation 
this change could be interpreted as a beginning of a 
conceptual change that potentially took place on the 
long run.

We derive our research questions from these con-
siderations: Confronted with a statistical situation 
(like the frog jump) a student could build up an initial 
mental model of this situation and conduct mental 
simulations only based on this model. When a student 
tackles the situation in reality and works with the con-
crete objects afterwards, it is possible that the student 
changes his mental models. Based on our previous 

Figure 1: The situation of the frog jump
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work we are especially interested in the following 
two questions:

 ― When a student changes his notion of the objects 
from hardly to strongly impacting on the results 
of a situation of uncertainty (or rather the other 
way around), in which way will he or she express 
this by arguing and/or acting?

A student changing his notions of the impact of the 
objects could potentially also change his notion of 
the process of data generation and, accordingly, the 
function of the situation. In concrete, we ask:

 ― When a student start with the notion of a deter-
ministic impact of one or more objects on the 
results of a situation and change this notion to a 
perception as a random situation (or rather the 
other way round), in which way will he or she 
express this by arguing and/or acting?

METHOD

The sample of the qualitative part of our research pro-
ject consists of about 60 students grouped in pairs. 
We use pairs of students because we want them to 
solve a statistical problem situation together by ar-
guing, discussing (cf. Dreher & Dreher, 1982) and thus, 
externalizing their ongoing mental modelling dur-
ing this collaboration. 24 students (12 pairs) of this 
sample worked with the situation of the frog jump 
as it is shown in Figure 1. The students (grade 6; age 
11–13) come from schools of urban and rural regions in 
Germany. We collected data in videotaped interviews 
with pairs of students lasting about 20 minutes and 
consisting of three steps:

1) Each student was asked to solve one of two tasks 
representing similar versions of the situation 
of the frog jump. In this step the students were 
asked to work alone and without any interven-
tion of the interviewer.

2) The students were asked to explain their tasks 
and their solution to each other, and, further, to 
find consistent solutions for each task. The in-
terviewer had the task to moderate the students’ 
discussion and prompt the students to continue 
their explanations until the other student under-
stand this explanation. 

3) The interviewers used the physical objects of the 
situations represented in the tasks. The students 
were asked to re-enact the situation of the frog 
task and to conduct the experiment of the frog 
jumps. After this step, the students were asked 
to modify their collective solution. 

The interviews were transcribed verbatim. The anal-
ysis of transcripts follows a coding approach close 
to Grounded Theory (cf. Kuckartz, 2012; Strauss & 
Corbin, 1998). 

RESULTS

We firstly illustrate the diversity of students’ mental 
models referring the structure when they explained 
their solutions in the pairs (step 2) after working alone 
on the paper and pencil tasks (step 1). This diversity 
replicates qualitatively the diversity that we found in 
our quantitative survey (Eichler & Vogel, 2012).

Chris: “If I let the frogs jump in the same way 
as showed on the picture then I will hit 
this field as well.”

Gerd: “The frog is not able to jump that far.”

Both students stem from different groups. The stu-
dents mostly mentioned the player (human object) or 
the frog (non-human object) to have the main impact 
on the situation. Only few students also refer to the 
fields and the border between two fields. In all cases, 
the notion of the structure presupposes the mental 
simulation of the situation resulting in a prediction 
for the next jump.

According to results of former studies (ibid.), the 
students’ rationales for a prediction of the next frog 
jumps differ considerably.  Differences refer to the 
relevance and the number of situations’ information 
represented by objects or data that the students used 
in their rationales. We want only to illustrate these 
differences by quoting the responses of two students. 
Both students predicted a certain field for the next 
jump of the frog and afterwards justified their pre-
diction:

Ernest: “I made it in this field, because in the 
second field are the most of the coins [he 
points to the sheet with the task].”

George: “The frog is heavy. He will crash to the 
ground easily.”



Aspects of students’ changing mental models when acting within statistical situations  (Andreas Eichler and Markus Vogel)

640

When the pairs of students were asked to conduct the 
experiment of the frog jumps (step 3), it was striking 
that all students were immediately able to re-enact 
the situation and to conduct the experiment as it is 
represented in the task. This result is crucial for our 
analysis since there is no evidence that the students 
misinterpreted the situation presented in a task on 
a paper sheet. 

However, when the students experimented with the 
frogs, in some cases signs for a potential (conceptual) 
change concerning the situation’s evaluation can be 
reconstructed. We illustrate exemplarily a change 
in mental modelling concerning the pair of Eva and 
Franka (in comparison to Figure 1, in this case, the 
tasks include a slightly different distribution of coins 
or rather frog jumps):  

Eva:  “I believe that the frog will end 70 times 
by 100 attempts in the third field, be-
cause he ended in this field 7 times by 
10 attempts. Thus, I have only added a 
0, because concerning 100 there is also 
a 0 more at the end in comparison to 10.”

Before they conducted the experiment, Eva and 
Franka seem to identify the frog (non-human object) 
to be mainly impacting on the situation. It is not de-
cidable, if the students mentally model the situation 
randomly or in a deterministic way. 

When dealing with the frogs, they changed their men-
tal modelling by judging the human object (the player) 
instead of the non-human object (the frog) as having 
the main impact on the situation. 

Franka:  “It depends of the force. If you let the 
frog jump with little force, the frog will 
not jump as far if you let him jump with 
more force.”

After the first experiments, both students feel certain 
that they are able to produce any desired results. The 
reason of variation in the results seems to be deter-
mined only by the intention of the students. Thus, the 
mental simulation seems to be mostly of deterministic 
nature. 

After a period, in which the students experiment 
several times with the frogs the answers of Eva and 
Franka provide indications of another (conceptual) 

change. Firstly, they re-changed their judgement of 
the object as mainly impacting on the situation and, 
further, changed their mental simulation from a more 
deterministic to a more stochastic way:

Franka:  “I think they [the frogs] approximately 
will jump equally.”

Eva:  “I think this depends on fortune.”
Franka:  “Yes. I think that there would not been 

many exceptions from that the frogs will 
jump equally. At most a little. I think the 
frogs will jump equal distances.”

Like these both students, other pairs of students also 
seemed to change their mental models one or more 
times to yield a fit of the model and the situation. 
However, most of the students appear to consolidate 
one mental model at the end of the interview. A cat-
egorizing of all student pairs’ answers yields the fol-
lowing change type (for which Eva and Franka are 
representatively standing):

Change type I: From a deterministic model of 
a situation of uncertainty to a stochastic mod-
el that includes a pattern (“the frogs will jump 
equally”) but also a first idea of variation 
(“fortune”, “exceptions” from equal jumps).

If we hypothesise that these changes of mental mod-
elling are the beginning of a conceptual change in 
the long run, the trajectory of changes is desirable. 
Referring the structure of the mental model this type 
includes a change from the human to the non-human 
object as mainly impacting factor and a change from a 
deterministic to a stochastic mental simulation.

Of course, the latter interpretation leads to a hypothe-
sis that has to be proven in further situations, or simi-
lar argumentation have to be shown by other pairs of 
students. Actually, few of the pairs of students showed 
a change of mental modelling like Eva and Franka. In 
contrast, more pairs of students showed changes that 
are in contrast to the change type described above. 
We illustrate this other type with the case of Hubert 
and Ian.

Hubert:  “He will jump in this field because [he 
points to the sheet with the task] here 
are only four, here are much [coins], and 
here is only one.”
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Firstly, the frog was considered as mainly impacting 
on the situation thereby the data were taken into ac-
count. After jumping the frog several times, Ian and 
Hubert stated the following:

Ian:  “I think I know it. The more I press at 
the back the farther the frog jumps.”

Hubert:  “But if you press to far at the end it does 
not work.” […]

Ian:  “The jump depends on who it makes.” 

Both students jumped the frog again and again result-
ing in different lengths of the jumps. They changed 
their position and made further frog jumps. They 
commented their results from time to time, consol-
idating that the jumper (the human object) has the 
main impact on the situation. They ended with the 
following assertion:

Ian:  “The most important thing is, how I hold 
the frog and how I make it [the jump]”

Both students initially tended to favour a stochastic 
model of the situation based on an informal data anal-
ysis. When they jumped the frogs, each of the students 
showed a considerable variation of length that could 
potentially evoke a notion of a jumping distribution 
including a centre and variation. However, these 
students as well as other pairs of students represent 
another change type than Eva and Franka. 

Change type II: From a stochastic model of a situ-
ation of uncertainty that includes a pattern and 
a first idea of variation to a deterministic model.

This result condensed in the second change type was 
surprising on the one side and was not intended on 
the other. Following Fischbein (1975) this change type 
potentially show a trajectory from an appropriate 
primary intuition to a misleading secondary intuition.

DISCUSSION AND CONCLUSION

In this paper we reported the qualitative part of our 
research into young students’ changing mental mod-
els when they act within statistical situations. The aim 
is to gather information about initial mental models 
of young students judging a statistical situation and 
changes of these models when they can tackle the sit-
uation. In an educational point of view the changes 
to sufficient mental models concerning statistical 

situations are especially interesting when they are 
stable over time. For this reason, we refer beyond the 
mental model concept also to the conceptual change 
approach. Of course we do not claim that working 
within a certain statistical situation will be followed 
by a conceptual change, this is never possible to state 
in general. But we consider reconstructed changed 
mental models as a potential initiation of a conceptual 
change that potentially endures. Under these theo-
retical conditions we derived two aspects, to which 
students’ mental model changing possible refer to: the 
extent to which certain objects impact on the results of 
a statistical situation and the preference concerning 
a more deterministic or a more stochastic estimation 
of the situation.

In the qualitative interview study reported in this 
paper we found indications for both of these theo-
retically derived aspects of mental model changes. 
These indications were illustrated and discussed 
along the frog task, which was exemplarily present-
ed in this paper. The analyses of students’ responses 
and actions concerning this task’s statistical situation 
yielded two change types: from a deterministic dom-
inated interpretation of the situation to a stochastic 
dominated one (this was the intended one) and vice 
versa. Beyond the reason for getting deeper insights 
in young students’ statistically mental modelling we 
conducted this qualitative interview study to generate 
hypotheses for the following research steps. In this 
point of view we assume based on our findings that 
the impact of the human-factor should be reduced 
in the statistical situations, with which the students 
are confronted when introduced to statistics. At the 
moment we investigate this assumption in more de-
tail by changing the context of the frog task to a (in 
sense of the statistical situation) structural equivalent 
task using toy cars. The results of this current study 
will also be reported on the 9th Congress of European 
Research in Mathematics.
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Comparing groups is a fundamental skill preservice 
teachers are supposed to gain after attending a statis-
tics course at university level. Preferably these activi-
ties are embedded in the well-known PPDAC-Cycle and 
contain the exploration of real and motivating data. 
Adequate software such as TinkerPlots may support 
learners when exploring data and carving out differ-
ences between distributions of numerical variables. In 
this article we want to present first results of a study on 
statistical reasoning of preservice teachers while doing 
group comparisons with TinkerPlots.

Keywords: Preservice teacher education, statistical 

education, group comparisons, software use, tinkerplots. 

INTRODUCTION

Comparing distributions of numerical variables lies 
in “the heart of statistics” (Konold & Higgins, 2003, p. 
206). A question which may motivate a group com-
parison is for example “In which respect do men and 
women differ regarding their income?”. This could 
be also posed in the daily-life media, so we see the im-
portance of such an activity, not only for students but 
also for upcoming teachers. Preferably questions and 
activities are embedded in a cycle (like PPDAC, Wild & 
Pfannkuch, 1999) where students are enabled to gener-
ate their own statistical questions and hypotheses, to 
design a questionnaire for collecting data, to analyse 
their data and to draw conclusions from it. When ana-
lyzing large datasets, the use of adequate statistical 
software becomes inevitable. TinkerPlots (Konold & 
Miller, 2011) yields many requirements for statistical 
software for use at school and university level. At the 
one hand TinkerPlots can be seen as educational soft-
ware supporting learners to learn data analysis, on 
the other hand it can be seen as a tool for exploring 
multivariate data. Additionally, the teacher can also 
use it as demonstration medium in the classroom. 

From our research point of view, we are primarily 
interested how preservice teachers compare groups 
with TinkerPlots. In this article we want to introduce 
a framework to rate preservice teachers´ skills when 
comparing groups in large datasets with TinkerPlots. 
Therefore we designed a course to deepen preser-
vice teachers´ statistical knowledge and conducted 
an interview-video-study to evaluate in which way 
the participants are able to compare distributions 
with TinkerPlots in large datasets. First results of this 
study will be reported at the end of this article.

LITERATURE REVIEW

Comparing groups is an important domain in statis-
tics education research: There are several empirical 
studies which concentrate on rating learners’ sta-
tistical reasoning when comparing groups. We can 
differentiate between at least five different ideas in 
these studies (not in order). 

A first idea is set by Watson and Moritz (1999) who 
investigated Australian 3–8 graders when comparing 
two data sets. The participants were given two data 
sets with test scores of two classes and were asked 
which class has done better in the test? The distri-
butions of the variable test score was displayed as a 
stacked dot plot and the interview protocol offered 
different types of group comparisons, e.g. distribu-
tions which differed in the number of cases, in vari-
ation or in skew (Watson & Moritz, 1999, p. 151). The 
learners responses were rated via SOLO taxonomy 
where the responses where rated “unistructural”, 

“multistructural” and “relational” and distinguished 
between the comparison of equal and unequal sizes. 
One major result of their study was, that students in 
higher grades tend to reason proportionally rather 
than younger students (for further details see Watson 
& Moritz, 1999, p. 153). A second main idea is displayed 
by Makar & Confrey (2002). They conducted a one 
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semester professional course for preservice teach-
ers including group comparison tasks with Fathom 
and developed a “taxonomy for classifying levels of 
reasoning when comparing two groups” to evalu-
ate their participants reasoning from an interview 
task (concluding the course regarding to comparing 
groups). The participants were asked to compare two 
distributions of test scores of two schools given as a 
stacked dot plot in Fathom (with no use of software 
itself ). A crucial point in their analysis was in which 
way inferential terms (like “evidence” and “signifi-
cance”) were used in the comparison process of the 
participants and in which way the participants draw 
conclusions from samples. A third idea of research 
on comparing groups is given by the work of Biehler 
(2001) and (2007). Biehler gives a normative view on 
comparing groups and expresses which elements 
shall be included in a “good” group comparison. He 
mentions that p-based [1] and q-based [2] comparisons 
(Biehler, 2001, p. 110) might offer intuitive strategies 
for students and he also emphasizes an interpretation 
of the difference in the skewness of distributions as 
a possible comparison element (Biehler, 2001, p. 101). 
There is also an idea (fourth) which covers the use of 
software when comparing groups. Biehler (1997, p. 175) 
has set up a cycle and gives an overview on four phas-
es “statistical problem”, “problem for the software”, 

“results of software use” and “interpretation of results 
in statistics” which are run when doing data analysis 
with software. Maxara (2009) designed a framework 
for evaluating learner´s software competencies when 
simulating chance experiments with Fathom. This is 
not directly related to group comparisons but none-
theless adaptable for evaluating leaner´s competences 
when using software (such as TinkerPlots) when com-
paring groups. Overarching for the fifth idea might 
be the work of Pfannkuch and colleagues (2004; 2006; 
2007). In these research papers a framework for eval-
uating learner’s competencies when comparing two 
distributions was developed. Since Pfannkuch (2007) 
is a succeeding study of Pfannkuch and colleagues 
(2004) and Pfannkuch (2006), we want to refer to 
Pfannkuch (2007) only. In this empirical study she 
gave a boxplot comparison task (see Pfannkuch, 2007, 
p. 157) to “Year 10”- students. They were given two 
boxplots, asked to compare them in the sense of mak-
ing three statements to explain differences or simi-
larities between the distributions. Pfannkuch (2007, 
p. 159) had a look on different statistical aspects that 
were used by the participants and set up categories 
for the evaluation of statistical reasoning elements 

when comparing two distributions by boxplots. On 
a structural level she distinguished between “sum-
mary”, “spread”, “shift” and “signal”. Then she rated 
each statement regarding to its quality: “point decod-
er” (level 0), “Shape comparison describer” (level 1), 

“shape comparison decoder” (level 2) and “shape com-
parison assessor” (level 3). Main results of this study 
were that the students mostly refer to summary and 
spread elements, but neglected elements on shift and 
signal. Furthermore they tended to stay mostly on 
the describing and decoding but not on the assessing 
level when pointing out differences and similarities 
between both distributions. 

All in all, we can derive three dimensions having an 
influence on the group comparison process from 
the literature review: Software cycle when compar-
ing groups (Biehler, 1997), competence of using soft-
ware (TinkerPlots) when comparing groups (Maxara, 
2009) and “statistical reasoning” when comparing 
groups (Watson & Moritz, 1999; Biehler, 2001; Makar 
& Confrey, 2002; Pfannkuch et al., 2004; Pfannkuch, 
2006; Biehler, 2007 and Pfannkuch, 2007). In this study 
the work of Pfannkuch seems to be the most interest-
ing aspect: Watson and Moritz (1999) deal with given 
data and given distributions (but in datasets with a 
small amount of cases) and a focus on counting strat-
egies and proportional reasoning. Makar & Confrey 
(2002) have had their crucial research point of interest 
on how learners draw conclusions from samples to 
a population while comparing samples. Pfannkuch 
offers an open framework which firstly structures 
learners’ outcome in regard to the statistical element 
used and secondly rates this in form of quality. Since 
working with software offers a broad spectrum of sta-
tistical elements (e.g. center, spread, shift, etc.) which 
can be used in group comparisons even in large data-
sets, the framework of Pfannkuch with enrichment of 
Biehler´s (2001) suggestions (skewness, p- and q-based 
comparisons) seems to offer possible and adequate 
comparison elements when comparing groups and 
a solid basis for evaluating the outcomes of learners 
when comparing groups. These ideas and aspects mo-
tivated us to design a course for the education of pre-
service teachers in statistics in which we want to teach 
the comparison of groups (with TinkerPlots) with the 
elements (such as center, spread, etc.) described above.  
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COURSE “DEVELOPING STATISTICAL 
REASONING WITH TP”

The authors of this article have designed a course 
for preservice teachers called “Developing statisti-
cal reasoning with using the software TinkerPlots” 
(Frischemeier & Biehler, 2012) in the sense of the 
design based research paradigm (Cobb et al., 2003). 
In this course, which goal is the development of sta-
tistical content (but not pedagogical) knowledge, 
the participants go through the whole PPDAC-cycle 
(Wild & Pfannkuch, 1999) which includes analysing 
self-collected data with TinkerPlots and writing down 
findings in statistical reports.  In the analysing section 
the participants got to know about how they could 
compare distributions via different aspects (such as 
center, spread, shift (see Pfannkuch, 2007) and skew-
ness, p-based- and q-based-comparisons (see Biehler, 
2001)) with TinkerPlots. At first they were taught to 
identify differences between distributions (regarding 
to center, spread, etc.), then they were told to interpret 
these differences. A norm set by us was to work out 
as many differences regarding to center, spread, etc. 
between both distributions as possible. At this stage 
we firstly want our participants to work out as many 
differences as possible and to interpret them. In a next 
step, not reported in this paper, the participants are 
asked to synthesize their findings (e.g., in form of 
writing a statistical report). For further details see 
(Frischemeier & Biehler, 2012).

RESEACH QUESTIONS

Since the ability of handling a large set of real and 
multivariate data is important for upcoming teachers 
in statistics, we want to investigate how preservice 
teachers explore large datasets and compare distri-
butions with TinkerPlots. In this article we want to 
concentrate on the “statistical reasoning” component 
of preservice teachers when comparing groups with 
TinkerPlots only, so two research questions arise: 
Which group comparison elements (which were 
taught in our course - such as center, spread, shift, 
etc.) are used by the participants when comparing 
groups? How is the quality level of these group com-
parison elements used by the preservice teachers?

DESIGN OF THE STUDY 

As part of the Ph.D. study of the first author, an in-
terview-video study was designed in which the par-

ticipants were asked to compare two distributions 
with TinkerPlots in pairs of two. For the selection of 
task we chose a task which deals with the exploration 
of the income distributions of male and female em-
ployees, which has got a lot of publicity in Germany 
with regard to gender biases in monthly incomes. The 
dataset taken from the German Bureau of Statistics 
was imported in TinkerPlots and contains 861 cases 
and more than 20 variables (such as gender, monthly 
income, region, kind of employment, etc.). This was 
drawn as a random sample out of 60,552 which itself 
was sampled at random (stratified) from the popula-
tion of all German employees. Furthermore we hand-
ed out a TinkerPlots file containing the dataset and an 
exercise sheet where the participants were asked to 
make notes on it. After motivating the problem of a 

“gender difference income” with a newspaper article, 
the task for the participants was: “In which way do the 
men and women differ regarding their income? Carve 
out differences in both distributions!” Some impulses 
which differences can be carved out between the dis-
tributions can be found in (Biehler & Frischemeier, 
2015). The video study was two-phased adapted from 
the design of Busse & Borreomeo-Ferri (2003). In 
phase 1, the “working phase”, the participants work 
on the task in pairs and were forced to communicate 
to each other while doing the task. Figure 1 shows 
a TinkerPlots graph which displays the differences 
between both distributions using boxplots (and the 
mean) produced in TinkerPlots by participants dur-
ing the working phase.

In this phase there was no intervention by the inter-
viewer (first author of this article). In phase 2 cog-
nitive processes of the pairs should be revealed via 

“stimulated recall”.

Figure 1: TinkerPlots Graph with boxplots and mean
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DATA, PARTICIPANTS AND METHODOLOGY

All in all 14 participants (7 pairs) took part in the study. 
All of them were preservice teachers for mathematics 
for primary and secondary school at the University 
of Paderborn and all of the participants attended 
the course “Developing statistical reasoning with 
TinkerPlots”. The interviews were done 4–6 weeks 
after the last session of the course “Developing sta-
tistical reasoning with TinkerPlots”. The participants 
were asked to work on the task in teams of two while 
they and their screen activities were video recorded. 
TinkerPlots files, exercise sheets and video record-
ings were also collected. The communication and 
action with TinkerPlots was transcribed. Our goal is 
to evaluate the whole communication of the partici-
pants regarding to their statistical reasoning elements 
when working on the task. So a large amount of data 
is to handle and there is also a need for an evaluation 
procedure which is comprehensible. The qualitative 
content analysis in the sense of Mayring (2010) “can 
be well applied in the case of having the intention 
to analyse a huge amount of transcribed data” and 
follows the “reduction of the huge amount of data in 
form of an analysis via category systems” (Kohlbacher, 
2006). One main goal of this procedure is “to filter out 
a particular structure from the material” (Kohlbacher, 
2006). Mayring (2010, p. 63) has pointed out different 
streams of the qualitative content analysis, such as 

“structural”, “explicating” or “summarising”. We want 
to structure the group comparison elements of the 
participants first and then scale (evaluate) them. The 
sequence of a structured-scaled qualitative content 
analysis (Mayring, 2010, p. 101) starts with choosing 
the analysis units (Step 1). In this case the analysis 
units are the transcribed data from the communica-

tion of the pairs when the participants were working 
on the task. As a second step the dimension of analysis 
is set up (step 2) – in our case this is statistical reason-
ing when comparing groups. In a further and third 
step we determine the characteristics of “dimensions 
of analysis” (Step 3) in form of setting up a catego-
ry system, which is seen as the basis of this method 
where coding rules and key examples are given for 
an exact assignment between coding and data mate-
rial and therefore define categories for evaluating 
the transcribed communication of the participants 
(Step 4). These categories can be defined deductively, 
inductively or mixed (Kuckartz, 2012, p. 62). 

FRAMEWORK FOR COMPARING GROUPS

We used this construction of categories in the sense 
of Kuckartz (2012, p. 62) for our purpose. The aim was 
firstly to structure the transcribed data regarding the 
statistical elements used for group comparison and 
secondly to evaluate the quality of each element. So we 
took into account the elements “summary”, “spread”, 

“signal” and “shift” of the framework of Pfannkuch 
(2007) in the sense of a deductive approach. Since our 
participants were asked to find differences between 
both distributions and since they have had the possi-
bility of a free data exploration with TinkerPlots, we 
have had to modify the categories of Pfannkuch (2007) 
for our purpose. Having a look on Biehler’s (2001) nor-
mative point about group comparisons, where the 
comparison of skewness and p/q-based-comparisons 
also plays a huge part in the comparison process, we 
decide to add the elements “skewness”, “p-based” and 

“q-based”  to our framework. The further step sees an 
inductive refinement of the categories (Step 5) in the 
sense of Kuckartz (2012, p. 69). In this step 5 we have 

Figure 2: Definitions of codings
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gone through the data with our deductively devel-
oped categories and refined them inductively. After 
this process, we added the elements “center” instead 
of “summary” because we wanted to concentrate on 
the comparison of mean and median and not on the 
comparison of all summary statistics and we have 
left out the category “signal” which is a special ele-
ment for boxplot comparisons but not necessarily for 
group comparisons in general. We did not focus on 
the construction of plots in TinkerPlots, we just focus 
on working out as many differences with TinkerPlots 
as possible. Mostly standard displays, also primarily 
used in our course, like stacked dot plots, histograms 
and boxplots were used. All in all we finally have the 
following elements for our analysis: “center”, “spread”, 

“shift”, “skewness”, “p-based” and “q-based”. We see 
these elements as our categories (see Figure 2).

As we see in Figure 2 we also generated for each of 
these categories the ratings “high quality”, “medium 
quality” and “low quality” to evaluate the quality of 
the use of the elements in the comparison process. 
Generally we coded a group comparison element used 
by our participants with a “high” quality, if the differ-
ence of the distributions was worked out quantitative-
ly and was also interpreted (in the idea of Pfannkuch’s 
category “assessor”). An element is coded in the sense 
of a “medium” quality, if the difference is at least 
worked out on a qualitative level (“X is higher than 
Y”) but not interpreted. Finally a “low”-quality code 
is given if the difference is worked out in a wrong or 

in an inadequate way. For illustrating the definition 
of codings we want to give examples (see Figure 3) 
arisen from our data.

When having set up the category system, we chose 
(in a sixth step) a word as minimal coding unit and a 
phrase as maximal coding unit. With this agenda we 
have coded the transcripts of four of the seven pairs 
so far. In this paper we refer only to codings belonging 
to the working phase, the codings of the transcripts 
of the stimulated recall phase are not reported here. 
If codings of passages were unclear, we had a look in 
the video to clarify the situation. A further step (step 
7: Revision of codings) included the discussion of the 
codings with an independent researcher and in the 
following the revision of categories and definitions 
of categories. Finally a frequency analysis of the oc-
currence of the several categories was made (step 8: 
frequency-analysis of occurrence of steps).

RESULTS

Let us have a look which group comparison elements 
were used by the teams and how well they did in using 
them when working on the task with TinkerPlots. 

At first we can say that we have 23 codings in total. 
The codings of the elements center, spread, skew and 
shift are at least at a medium quality level. All p-based 
comparions were rated with medium quality. There 
has been no team using q-based comparisons. All in all 

Figure 3: Key examples of codings of the group comparison elements

Figure 4: Overwiew of all codings related to group comparison elements
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we can say that all of the statements and conclusions 
which were done by the pairs are at a high (35% of the 
codings) or medium (65% of the codings) quality level. 
Let us now have a look on the codings distinguished 
by pairs.

Hilde & Iris use amongst others center and spread 
elements - both of their statements using the group 
comparison element center were on a medium quality, 
one of their two elements regarding spread are on 
a high, the other on a medium quality. The conclu-
sions regarding the comparison of shift of the both 
distributions are all on “high” quality. They also offer 
a medium quality p-based comparison, but they do not 
use a comparison of skewness or a q-based compar-
ison. Conrad & Maria do not show any high quality 
statements in the whole solving process of the task. 
They offer at least three statements at medium quality. 
Conrad & Maria only use spread and shift elements 
but no center elements. They also do not use any skew-
ness element neither do they use a p-based or a q-based 
comparison. Having a look on the codings of Laura & 
Ricarda we can say that they use every comparison 
element except q-based comparisons. They use cen-
ter and spread (both in high quality) to compare the 
distributions and also shift and p-based comparisons 
(all in medium quality). Sandra & Luzie do not use 
center, spread or shift elements at all and work out 
differences from both distributions using skewness 
elements (one in high quality, one in medium quality) 
and p-based comparisons (all (3) in medium quality). 

CONCLUSIONS

The statements of the pairs offer a broad variety of 
the use of comparison elements and none of the teams 
show low quality group comparison elements when 
working on the task. Most of the statements relating 
to the codings of “medium” quality could have been 
improved with the addition of an interpretation 
of the differences. Nevertheless we have to report 
some shortcomings which occurred: The amount of 
codings (overall: 23) is low. That means that all four 
teams made 23 comparison statements in total. On a 
first view this aspect is not necessarily negative, but 
in the course we have set up the norm that a group 
comparison should include as many investigations 
as possible. In this task there could have been found 
several differences along all aspects (center, spread, 
skewness, shift, p-based and q-based), so we finally 
expected some more codings relating to the compar-
ison of both distributions.  Whereas Hilde & Iris and 
Laura & Ricarda made eight respectively seven group 
comparison statements, Conrad & Maria only made 
three of them. Q-based comparisons were not used at 
all by the teams, although they played a big role when 
e.g. comparing boxplots in our course. Comparisons 
of skewness of both distributions were only done by 
two teams and apart from Hilde and Iris, the shift 
between both distributions was not worked out ade-
quately. P-based comparisons were all done without 
interpreting the differences and are therefore all rat-
ed on a medium quality. As a further step in research 
we will take into account our findings from all three 
dimensions and search for relations between them. 
With these findings and the re-design of the course 

Figure 5: Codings (group comparison elements) distinguished by pairs
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in mind we might conclude that our norm “to work 
out as many differences between two distributions 
as possible” should be made more explicit. A data 
analysis scheme, which structures the data analy-
sis process and gives hints of possible comparison 
elements, might support learners when comparing 
groups. Furthermore we might conclude that there 
should be a closer focus on interpreting differences 
between the distributions regarding center, spread, 
shift, etc. This may be done with contrasting adequate 
and non-adequate examples in regard to comparisons 
via center, spread, etc. Additionally we might reem-
phasize comparing groups with q-based comparisons 
in an upcoming course.
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ENDNOTES

1. Comparisons of two distributions of numerical 
variables are called p-based, if for x the relative fre-
quencies h(V≤x) are h(W≤x)compared. So in p-based 
comparisons a specific argument can be given (for 
example: 10 hours) und the proportion of cases which 
are equal or larger than 10 hours is compared in both 
groups. (see Biehler, 2001, p. 110)
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2. Comparisons of two distributions of numerical 
variables are called q-based, if for a proportion p be-
tween 0 and 1 the matching quantiles of the variables 
V und W, qV(p) with qW(p), are compared. With q(p) 
we mean the quantile regarding to p. For p = 0.5 this 
is a comparison of medians. (Since the comparisons 
of medians is also included in the category “center” 
we do not want to include this special case for p = 0.5 
here). (see Biehler, 2001, p. 110)
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Understanding to what extent preservice teachers are 
capable of conceptual and procedural knowledge of data 
displays is the aim of this study through analyzing a part 
of data collected during an independent study course. 
Change in the middle school curriculum in Turkey ne-
cessitates the study of examination of understanding 
of PEMT about statistics. Therefore, this study is signif-
icant in supporting the needs of teacher educators as 
well as it contributes to the consequences of curriculum 
efforts. In order to possess an understanding of statisti-
cal concepts for preservice mathematics teachers, they 
must have both conceptual and procedural knowledge 
(Hiebert & Lefevre, 1986), which is the main concern of 
this study. 

Keywords: PEMT, data displays, conceptual knowledge, 

procedural knowledge.

INTRODUCTION

In our revised curriculum, which started to be 
instructed in middle-level schools in Turkey in 
September 2013, statistics has been the most empha-
sized subject. It was considered as a separate learning 
area named as data handling and it was included in 
all grades from the 5th grade through the 8th grade. 
However, the content of probability was reduced com-
pared to previous curriculum, and it is placed into 
the 8th grade level only with a basic understanding 
of probability. These changes in the new curriculum 
could be identified as reflection of Moore’s (1997, as 
cited in Biehler, Ben-Zvi, Bakker, & Makar, 2012) rec-
ommendation emphasizing that curriculum needs 
more statistics and less probability while leaving the 
deeper conceptual knowledge to the high-school level. 

The earlier studies showed that PEMT have less com-
prehension of statistics and probability compared 
with the other learning areas of curriculum, that I,; 
they found probability and statistics subjects difficult 
to teach especially because of their lack of content 
knowledge in probability and statistics (Quinn, 1997; 
Stohl, 2005). Contemporary efforts are addressing the 
same issue as well, so that teacher education should 
be enhanced through giving an attention to statistics 
and probability teaching for mathematics teachers 
(Stohl, 2005; Jones & Thornton, 2005). 

Change in the elementary school curriculum neces-
sitates the study of examination of understanding of 
PEMT about probability and statistics. It should be 
understood whether preservice elementary teachers 
have both conceptual and procedural levels of under-
standing of probability and statistics in order to teach 
them (Star, 2005). Thus, this study is significant in the 
above needs of the Turkish mathematics education 
literature as well as it contributes to the consequences 
of curriculum efforts and will be a light for future 
considerations of this issue. This study is part of a 
relatively larger study which was conducted by the 
researcher in spring semester in 2014. The research 
questions examined here are as follows: (a) to what 
extent are PEMT capable of conceptual and procedur-
al knowledge of data displays? (b) what are the main 
strengths and weaknesses of PEMT in data displays?

REVIEW OF RELATED LITERATURE

Statistical knowledge for teaching can be interpret-
ed under the framework of mathematical knowledge 
for teaching. This framework has two main dimen-
sions for mathematical knowledge for teaching: 
first, subject matter knowledge which includes com-
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mon content knowledge (CCK), specialized content 
knowledge (SCK) and knowledge at the mathemati-
cal horizon; second, pedagogical content knowledge 
which includes knowledge of content and students 
(KCS), knowledge of content and teaching (KCT) and 
knowledge of curriculum (Hill, Ball, & Schilling, 2008). 
From the statistics point of view, CCK is considered as 
computing and interpreting the most frequent meas-
ures of central tendency; SCK is considered as spe-
cial for teaching as which is best for which statistics 
term; horizon knowledge is considered as working 
on populations will eventually emerge the working 
on samples, for example. For the second dimension, 
KCS can help teachers to catch the common strategies 
which students use in developing students’ statistical 
reasoning; KCT deals with the content-specific strat-
egies like knowing how to explain arithmetic mean 
as a fair share or as a balance point; and knowledge 
of curriculum can help teachers about structural 
properties that a curriculum possess (Groth, 2012).  
Therefore, Groth (2012) has developed a framework 
for combining above terminology and suggested the 
figure in his paper.

Based on the efforts in conducting the course which 
Groth (2012) was teaching, namely as Statistical 
Knowledge for Teaching (SKT), he has developed the 
framework for SKT, while adding two new constructs 
to the statistical knowledge for teaching framework, 
one of which is key developmental understandings 
and the second one is pedagogically powerful ideas. 
Key developmental understandings were defined as 

“cognitive landmarks in the learning of fundamental 
ideas needed to understand content” (Simon, 2006, 
as cited in Groth, 2013). Pedagogically powerful ide-
as can be defined as ideas that occur as the result of 
transforming key developmental understandings 
into ideas that facilitate students’ learning of the key 
developmental understandings. Groth (2013) in his hy-
pothesized framework relates these two dimensions 
with the other existing dimensions of mathematical 
knowledge of teaching.

According to above framework, subject matter knowl-
edge needed for statistics and probability teaching 
is the concern of this study and its sub-dimensions 
such as conceptual and procedural knowledge types 
should be integrated to it as well. The terms were in-
troduced by Scheffler (1965), but expanded by Hiebert 
and Lefevre (1986) and Star (2005), where “conceptual 
knowledge is characterized most clearly as knowledge 

that is rich in relationships, like a connected web of 
knowledge, a network in which the linking relation-
ships are as prominent as the discrete pieces of infor-
mation” (p. 3). They also categorize the conceptual 
knowledge as primary and reflective. The primary 
level of conceptual knowledge is formed as in “the re-
lationship connecting the information is constructed 
at the same level of abstractness (or at a less abstract 
level) than that at which the information itself is rep-
resented” (Hiebert & Lefevre, 1986, p. 5). The reflec-
tive level of conceptual knowledge is constructed in 

‘a relationship which requires a higher, more abstract 
level than the pieces of information they connect’ (p. 5). 
Apart from conceptual knowledge, Hiebert & Lefevre 
(1986) also explains the procedural knowledge in two 
types: “one kind of procedural knowledge is a famil-
iarity with the individual symbols of the system and 
with the syntactic conventions for acceptable config-
urations of symbols; the second kind of procedural 
knowledge consists of rules or procedures for solving 
mathematical problems” (p. 7). In order to develop an 
understanding of statistical concepts for PEMT, they 
must have both conceptual and procedural knowledge 
(Hiebert & Lefevre, 1986). Ball (1988) described the 
subject matter knowledge similar to above; she names 
the procedural knowledge as substantive knowledge, 
which refers to “understanding of particular topics, 
procedures, concepts and relations among them” (p. 
4), and secondarily, knowledge about mathematics is 
named in place of conceptual knowledge. Hence, this 
type of categorization fits with the above expressions 
and summarizes our theoretical framework.

METHODOLOGY

This study has a phenomenological approach which 
is categorized by one of the qualitative research de-
signs (Creswell, 2007) since researcher tries to un-
derstand the shared experiences and understandings 
of a group of participants on data displays and their 
weaknesses/strengths as a phenomena. 

In order to investigate its research questions, data 
were collected through face-to-face interviews (later 
transcribed verbatim). 23 participants from PEMT 
were interviewed voluntarily, 12 of whom are 4th year 
students and the rest are in their 3rd year of elementa-
ry mathematics teacher education. They have already 
attended to a statistics and probability course (which 
is a must course in their undergraduate education) in 
their second year and it includes the probability and 
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statistics subjects in a very advanced and a theoretical 
form. Apart from that, six participants had taken the 

“methods for statistics teaching” (which is a fourth 
year must course in one of the universities studied) 
before the instrument and they specified especially 
that they learned statistics through that course. 

In order to investigate the understanding of PEMT’s 
knowledge of statistics and probability subjects 
framed by elementary school curriculum, an instru-
ment was used. It involves open-ended questions as 
well as multiple-choice items which measure both 
procedural and conceptual types of knowledge re-
quired for understanding of statistics and probability. 
Specifically, it involves statistics questions related 
to measures of central tendency (mean, median and 
mode), measures of variation (range) and data dis-
plays; and probability questions related to probability 
of a basic event, certain, impossible and equally-like-
ly events, theoretical and experimental probability. 
Some items are presented at the end of the paper as 
Appendix. The instrument is organized as most of 
the questions were taken from two tests written by 
Diagnostic Teacher Assessments in Mathematics 
and Science developed at the University of Louisville 
(CRiMSTeD- Center for research in Mathematics and 
Science Teacher Development) with their permission 
to use. There is also one question taken from Jacobbe’s 
(2007) dissertation. These assessments have estab-
lished high levels of reliability and validity (Bush et 
al, under review, as cited in Jacobbe, 2007). Since the 
instrument was implemented to the participants as 
face-to-face interviews, it is necessary to mention 
about the interviews summarized below.

Each interview is composed of three sections. In the 
first section, participants were asked questions relat-
ed with their choice of being elementary mathemat-
ics teacher, interest of mathematics and mathematics 
teaching, subjects which they know as best and least 
covered in middle school mathematics curriculum, 
comments on change on curriculum regarding the 
statistics and probability subjects, interest of learn-
ing/using technological tools/materials needed for 
teaching and comments on test items at the end of the 
interview. In the second section, participants were 
directed to questions related with the measures of 
central tendency, measures of variation and prob-
ability, such as ‘how do you define mean?’ or ‘what 
does mode of a group of data tell you?’ in procedural 
and conceptual knowledge levels. Thus, the findings 

of this part were the results of test items according to 
the subjects. In the last part, participants were given 
the test and they were expected to solve open-ended 
questions as orally. Implementing the instrument as 
in this way provides us in order to learn how preser-
vice mathematics teachers understood probability 
and statistics, more specifically their conceptual and 
procedural way of understanding on these subjects. 

The last two sections consider the content knowledge 
of participants while taking its different types as pro-
cedural and conceptual into consideration compar-
atively. That is, these sections compensate for each 
other in order to investigate the understanding of 
participants on the subjects which analyzed.

The analysis of the data gathered from first and second 
part of the interviews was done according to themes 
and codes specified before the implementation. The 
evaluation of the data gathered from the instrument 
was performed according to a rubric which was pre-
pared for only open-ended items. The evaluation of 
open-ended items was done in only three categories: 
full response, incomplete response and wrong re-
sponse. A full response addresses that participant 
gives the best explanation using the right terminology 
and expected logical foundations in order to ratio-
nalize the subject whereas an incomplete response 
addresses that participant does not give a fully sat-
isfying response or s/he cannot rationalize his/her 
response. A wrong response means that participant 
gives a completely wrong response without making 
any logical explanation or rationalization by using 
his/her understanding of the subject.

FINDINGS

Although the methodology part mentions about the 
parent study of the study framed here, only the find-
ings for data displays will be presented in order to 
answer the research questions outlined above. The 
instrument included 22 items and 11 items were as-
sociated with data displays. The responses given to 
each item and the subject related with the item are 
given below in the table: 

Most of the participants did not know about most 
of the graphical representations which directed as 
questions through the instrument. For example, all 
of the participants do not seem to have any idea about 
box-and-whiskers plot and they couldn’t catch the me-
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dian and percentiles from the representation given in 
the item 4 (in Appendix). Most of the participants do 
not know of stem-and-leaf display, either, as realized 
from the findings of item 1 (in Appendix) in the test. 
The item 2 is another item which has only 2 correct 
responses. Item 2 was asking the best description of 
the distribution of achievement test scores for all 4th 
graders in a school while choosing among scatter plot, 
box-and-whiskers plot, line graph and circle graph. 
This finding is expected since box-and-whiskers plot 
is not known by the participants so as in item 4. 

The scatter-plot question (item 3) has a half success 
by the participants. Most of the participants cannot 
relate each dot with two axes onto the graph, many 
of the correct responses were given with an unclear 
explanation. Although, all of the participants could re-
alize the difference between two different graphs with 
the same data, they couldn’t explain its consequences 
correctly and their responses show a misunderstand-
ing or inadequate knowledge of biased graphical data 
displays. Item 6 asks for reasons of mistakes made by 
a student who draws a circle graph of a given set of 
data and how to overcome those mistake. Most of the 

participants could easily found the mistake, however, 
nearly half of them could present ways to overcome it. 

Item 7 (in Appendix) is having one of the most wrong 
respondents which is also an unexpected result com-
pared with the result of other line graph question, item 
8. Item 8 asks the true alternative for the difference 
of average salaries taken by university or high school 
graduated workers and it includes two line graphs on 
the same display. Item 9 presents the frequencies of 
data as a rotated bar graph and asks the true alterna-
tive among the other 3 false alternatives like in the 
previous item. The responses for this item are mostly 
correct and we can say that the most achieved items 
which the participants responded with a higher rate 
than others were the 8th and 9th items. Another item 
which nearly half of the participants responded cor-
rectly is the item 10 (in Appendix) since they could re-
alize the importance of having a categorical variable 
(like in this item) for a bar graph in this item. The item 
11, which was taken from the Jacobbe’s (2007) disserta-
tion, is the longest question in the instrument. Nearly 
two-thirds of the participants responded as full, the 

Question Type Related Subject Ratio of Achievement

Item 1 Multiple Choice Stem-and-leaf display 2 correct, 1 wrong, 20 of 23 have no infor-
mation about topic.

Item 2 Multiple Choice Graphical representations of 
data

2 correct, 5 have no information about the 
subject, 16 of 23 are wrong.

Item 3 Multiple Choice Scatter-plot 13 of 23 are correct.

Item 4 Open-ended Box-and-whiskers plot All of them have no information about 
topic, and they analyzed graphic with their 
own understanding, and sometimes come 
up with correct answer. Hence, they an-
swered incomplete.

Item 5 Open-ended Biased graphic displays 2 of 23 responded full, 1 of 23 responded 
false, and 20 of them responded incom-
plete.

Item 6 Open-ended Circle graph 13 of 23 responded full, 2 of them respond-
ed wrong, 8 of 23 responded incomplete.

Item 7 Multiple Choice Line graph 10 of 23 are correct.

Item 8 Multiple Choice Line graph 22 of 23 are correct.

Item 9 Multiple Choice Frequency table 21 of 23 are correct.

Item 10 Open-ended Line graph, bar graph, categor-
ical variable

10 of 23 responded wrong, 10 of 23 respond-
ed full, 3 of 23 responded incomplete.

Item 11 Open-ended Frequency distribution, mean, 
median, mode, range, normal 
distribution, data displays

8 of 23 responded incomplete, 15 of 23 re-
sponded full.

Table 1: Findings per item with respect to the subject and type
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rest of them could neither grasp the dot plot display 
nor explain their choice with a satisfying rationale.  

DISCUSSION

The findings of this study show some aspects men-
tioned in the theoretical framework for preservice 
mathematics teachers’ understandings described by 
Groth (2013), Hiebert & Lefevre (1986) and Ball (1988). 
It can be said that the questions directed to partici-
pants during the interview, they could not show their 
conceptual knowledge about data displays since their 
answers were mostly in procedural knowledge base. 
In general, PEMT has a high achievement in proce-
dural level of knowledge for data displays. 

It is also worth to mention that the responses given to 
the items in the instrument shows also resemblance 
to the findings through interviews which investigates 
the understanding of the statistical concepts, specif-
ically measures of central tendency and measures of 
variation. For definitions of mean, median and mode, 
participants seem to not know the difference between 
calculations and meanings of them, as emphasized 
before (McGatha, Cobb, & McClain, 1998, as cited in 
Jacobbe, 2007). This can be discussed that they don’t 
know the foundations under mean, median and mode 
and can be explained as there is a difference between 
knowing how something is calculated and knowing 
why it is (Hiebert & Lefevre, 1986). 

Moreover, based on the findings of the interviews, it 
can be claimed that participants has a high achieve-
ment in procedural level of knowledge for measures 
of central tendency. They mostly know concepts; but, 
most of the participants have difficulty in answer-
ing questions necessitating conceptual knowledge, 
which are connected with the subjects of meanings 
of measures of central tendency as related with data 
displays, difference or relation between those. It can 
be argued that participants have not enough ability 
to connect what they know about measures of central 
tendency and the associated data displays; besides, 
they have not a higher-order comprehension needed 
for knowledge answering to the questions (Ball, 1988; 
Hiebert & Lefevre, 1986; Groth, 2013).

When we consider the possible reasons of why con-
ceptual knowledge of PEMT have been less-developed 
compared with procedural knowledge, the courses 
offered for teacher candidates during their university 

education are like ‘recipe-type’ or ‘rule-bound’ cours-
es which only deals with the calculations and lead 
preservice teachers to memorize the subjects while 
underestimating the logic behind it, as Shaughnessy 
(1992) stressed out previously. He claims also that pre-
service teachers lack of opportunity to develop their 
stochastic reasoning in university courses due to 
their misunderstandings about statistics. Nearly half 
of the participants have stressed during interviews 
that they feel themselves not knowing very well about 
statistics although they have taken a course namely as 

“statistics and probability” which they took in their 2nd 
year. The other half of the students have mentioned 
that they have a course about “teaching probability 
and statistics in elementary level”. However, unless 
they learned about statistics very well, they do not feel 
to be able to teach it. Hence, they first need to know it, 
as they expressed and eventually corresponds with 
the arguments of Shaughnessy (1992). Although it 
was not one of the interview questions, most of the 
participants mentioned about their complaints about 

“statistics and probability” course. They emphasized 
that the course have not included any practical im-
plementation to a real-life example, but was mostly 
theory-based and proof-based. Therefore, most of 
them specified that they could not learn much about 
statistics or probability subjects in this course, for 
example, they did not meet even with a boxplot display 
during the course.

In brief, this study discussed the understanding of 
PEMT for statistics, specifically the issue of data 
displays. Findings implied that content knowledge 
assessed by the items in the instrument have two 
dimensions, procedural and conceptual knowledge, 
as discussed clearly by the researcher previously in 
the review of related literature part above (Hiebert & 
Lefevre, 1986; Ball, 1988; Groth; 2013) and corresponds 
to the framework which was bounded.

The implications of this study will be enlightening to 
the future research for the understanding of PEMT in 
Turkey. The discussion of the findings can have an im-
pact on teacher education programs in the universi-
ties. While some universities have currently specific 
courses related with pedagogical content knowledge 
for statistics and probability including content knowl-
edge needed for those subjects as well, some of them 
have not. As specified before, PEMT are not ready 
for teaching statistics because of lack of statistical 
knowledge (Greer & Ritson, 1994). Therefore, as the 
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participants of this study stressed out that they should 
learn statistics very well while learning methods of 
teaching statistics. Having such consequences, this 
study can have positive influences on the develop-
ment of elementary mathematics education programs, 
and might affect the perspectives of teacher educators, 
who are responsible for educating the teachers, as 
well.
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APPENDIX: SAMPLE ITEMS FROM THE INSTRUMENT

Item 7: Which of the following best describes a line graph? 
a. A graph that visually represents the median, the quartiles, and the smallest and largest values of a data set. 
b. A graph consisting of a horizontal number line with data points represented by X’s. 
c. A graph consisting of points, one for each item being measured. The two coordinates of a point represent the 
measures of two attributes of each item. 
d. A graph with a vertical and horizontal axis that is primarily used to show changes over time. 

Item 10: A student collected data from 90 fourth grade students about how each student traveled to and from 
school. The student created the following graph. How would you respond to this student?

Item 1: The students in a sixth-grade class were timed to the nearest second for a run around the school’s gym-
nasium. The times for the class are listed below in a stem-and-leaf plot. Which of the following is true? 

a. The lowest time was 28 seconds          b. Half of the students had times above 41 seconds 
c. The highest times was 60 seconds       d. 50% of the students had times below 38 seconds 

Item 4: The box-and-whiskers plot below represents the test scores of three classes on the same test. 
a. Which class performed the best and which class performed the worst. 
b. Provide justifications for your choices with data from the box-and-whiskers plots. 



658CERME9 (2015) – TWG05

Regression in high school: An empirical 
analysis of Spanish textbooks

María M. Gea, Carmen Batanero, Pedro Arteaga, J. Miguel Contreras and Gustavo R. Cañadas

University of Granada, Faculty of Education, Granada, Spain, mmgea@ugr.es 

The aim of this study was to analyze the presentation of 
regression in Spanish school textbooks aimed at Social 
Sciences students. In a sample of eight textbooks we 
analyzed the problem-fields and suggested procedures, 
as well as the associated concepts, which are classified 
according to the way they are introduced and the proper-
ties associated with them. Our results suggest that these 
textbooks mostly reduce regression to lineal regression, 
present many properties at an operational level without 
deep discussion of their meaning, and there is a great 
variety between the textbooks. Some suggestions to im-
prove the presentation of this topic are included.

Keywords: Regression, textbooks, high school, 

mathematical objects. 

INTRODUCTION

Correlation and regression are fundamental statisti-
cal ideas, due to their usefulness to model phenomena 
in different fields (Engel & Sedlmeier, 2011). Previous 
research is mainly focused on students understand-
ing of correlation and describes several misconcep-
tions (Estepa & Batanero 1995; Estepa, 2008; Zieffler 
& Garfield, 2009). There has not been, however, much 
interest in the way the topic is taught or presented in 
the textbooks, even although textbooks are impor-
tant educational tools. From the official curricular 
guidelines to the teaching implemented in the class-
room, an important step is the written curriculum 
reflected in textbooks (Herbel, 2007). The selected 
textbook is an important part of teaching and learn-
ing mathematics at secondary and high school level, 
since the presentation of the topics and the problems 
proposed provide the main basis of why the topic is 
taught (Shield & Dole, 2013). Moreover, in other mathe-
matical topics, textbooks receive increasing attention 
from the international community; see for example 
Fan, and Zhu (2007).

The aim of this research was to analyze the presenta-
tion of regression in high school Spanish textbooks 
aimed at Social Sciences students. It is part of a wider 
project where we compare the way in which correla-
tion and regression are presented in the textbooks in 
Spain. Due to length limitation we only present here 
a part of our analysis; complementary results were 
published in (Gea, Batanero, Cañadas, & Contreras, 
2013), and (Gea et al., 2014).

THEORETICAL BACKGROUND

According to Rittle-Johnson, Siegler and Alibali (2001) 
conceptual and procedural knowledge are the two 
extremes in a continuous; conceptual knowledge is 
more flexible and includes the implicit or explicit un-
derstanding of a domain and its interrelationships. 
Sfard (1991) suggests that a concept is a construct 
which corresponds to the mathematical universe 
and distinguishes two types of definitions of the 
same: structural (where concepts are introduced by 
describing their essential conditions or properties) 
and operational (when it is described by a formula) 
definitions. In our analysis we will take into account 
both types of definitions and will also describe in de-
tail the properties associated with regression. 

The division between conceptual and procedural 
knowledge is analyzed in the onto-semiotic approach 
to mathematics education (Godino & Batanero, 1998; 
Godino, 2002) where mathematical activity plays a 
central role. Knowledge in this framework is modelled 
in terms of systems of practices, in which different 
types of objects intervene when a subject faces the 
solution of a given problem. “Object” is understood 
in a broad sense for any entity which is involved in 
mathematical practice and can be identified separate-
ly. More specifically in our analysis we will consider 
the following types of mathematical objects: prob-
lem-situations; procedures; concepts and properties.
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Previous research
In spite of the relevance of the topic, previous research 
suggests poor results in people’s understanding of 
correlation. For example, Chapman and Chapman 
(1967) described illusory correlation where people 
are often guided by their theories rather than by data 
when estimating correlation. Estepa (1994) defined 
several misconceptions including the deterministic 
conception, where the student only considers whether 
functional dependence exists. Sánchez Cobo (1999) 
described students’ failures in ordering correlation 
coefficients and in interpreting the relationship be-
tween the correlation coefficient and the slope of the 
regression line. As regards research on textbooks, 
Sánchez Cobo (1999) classified the definitions of con-
cepts presented in 11 textbooks published in the peri-
od 1977–1990 as procedural, structural or a mixture of 
both. Lavalle, Micheli and Rubio (2006) analyzed the 
concepts and procedures included in 7 high school 
textbooks from Argentina. 

As stated in the introduction, this paper is part of a 
more comprehensive project. In (Gea et al., 2013) we 
analyze the problem-situations used to contextualize 
correlation and regression in eight Spanish textbooks 
and in (Gea et al., 2014) the symbolic, verbal and graph-
ical language used in this topic. The current paper 
complements these publications with the analysis of 
concepts, properties and procedures included in the 
study of regression in the same textbooks, which were 
not included in these papers. In each of these types of 
objects we analyzed all the categories that are relevant 
for the teaching of the topic.

METHOD

The sample consisted of eight mathematics high 
school textbooks aimed at Social Sciences students 
and that were published just after the current curric-
ular guidelines were introduced (MEC, 2007). These 
particular textbooks have a wide diffusion in Spain 
due to the publishers’ prestige and are still used in 
the schools (See Appendix). We performed a content 
analysis (Neuendorf, 2002) of the chapters devoted to 
correlation and regression with the following steps: a) 
following an inductive and cyclic procedure we first 
categorized all the different mathematical objects 
explicitly or implicitly included in the chapter (the 
different types of problems, concepts, properties and 
procedures); b) For each of them we analyzed the way 
in which they are described or used in the textbooks. 

In this paper we only describe the mathematical ob-
jects linked to regression; as the remaining results 
have been published elsewhere (Gea et al., 2013; 2014).

PROBLEMS AND PROCEDURES

Anthony and Walshaw (2009) reported on the differ-
ent types of tasks that have been analysed in math-
ematics education research, that include problems 
focused on specific mathematical content; problems 
that promote mathematical modelling; others that re-
quire discussion of aspects that vary; those that ask 
students to interpret and criticise data and those that 
prompt sense making and justification of thinking. 
Gea and colleagues (2013) identified two main types 
of problems in the study of regression in which one of 
several of the above type of tasks may be combined: a) 
Fitting a model to the data requires sense making and 
criticism of data; mathematical modelling, discussion 
of variation and justification of thinking, b) Using the 
model to predict a value of the dependent variable is 
a more computational type of task; however, much of 
the time judgement of the goodness of fit involves crit-
icism, decision making and justification. Both types of 
problems appear with different frequency in all the 
books; each of these types of problems range from 
20% of all the problems posed in the chapter in [H4] 
to 35% in [H6] 1. To solve these two types of problems, 
the books introduce the following procedures:

P1. Fitting the least squares line. Lineal regression by 
the least squares method is included in all the books, 
with two different procedures to compute the line 
of best fit: a) Equation of the line which includes the 
gravity centre (point whose coordinates are the mean 
for the two variables); and b) General expression for 
the lineal function:

Regression line Y = f(X) 
a) y − y = byx ⋅ (x − x) b) y = a + byx ⋅ x

Regression line X = f(Y) 
a) x − x = bxy ⋅ (y − y) b) x = a’ + bxy ⋅ y

 

1  All the books also introduced the analysis of the sign and 

strength of correlation between the variables as a previous 

problem as well as problems related to graphical representation 

of bivariate data. We are not including here these problems that 

were analyzed in (Gea et al., 2013).
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P2. Fitting other regression models. Only [H8] includes 
the regression towards the median developed by 
Tukey, which is a robust method in the presence of 
outliers as well as variable transformation to fit ex-
ponential and polynomial models.

P3. Computing the determination coefficient and inter-
preting the goodness of fit. Only a few textbooks intro-
duce the determination coefficient r2 as a measure 
of the goodness of fit; in all of them the coefficient is 
previously defined.

P4. Prediction with the line of best fit and interpreting 
the goodness of prediction. All the books propose some 
tasks where the students have to estimate the response 
variable Y given a value for the explanatory variable X. 
Some of them ([H1], [H2]) suggest that when the corre-
lation coefficient is strong it is possible to use the same 
line to predict X from a value of Y. Since this property 
is not general (as there are two different regression 
lines) students could make an incorrect generaliza-
tion. Some books qualitatively evaluate the goodness 
of fit by comparing the estimated and observed values 
for isolated data. This informal method is not reliable, 
as the reliability of estimation depends on the good-
ness of fit (given by the determination coefficient) as 
well as on the closeness of the estimated value to the 
centre of the distribution of the explanatory variable.

In Table 1 we observe that all the books include the 
least square line, as well as its use for prediction, while 
only one includes the Tukey line and a few the evalu-
ation of the goodness of fit. A missing point is the use 
of informal “eye fitting” methods that are useful to 
build the students’ intuitions and can be implemented 
with applets (e.g., //docentes.educacion.navarra.es/
msadaall/geogebra/figuras/e3regresion.htm). Results 
are better than those by Lavalle, Micheli and Rubio 
(2006); where only half the books include the line of 
best fit and 60% of the books include prediction ac-
tivities.

CONCEPTS AND PROPERTIES

In our analysis we found the following concepts 
linked to regression:

C1. Dependent (response) and independent (explanato-
ry) variable: While correlation is symmetric, regres-
sion is asymmetric; for this reason we should discrim-
inate the response and explanatory variables (Estepa, 
1994). Only a few books make the distinction explicit 
although in other books it is implicit when they intro-
duce two different regression lines. 

C2. Model of fit. The idea that the regression line is only 
a model (and therefore does not exactly coincide with 
all the data) is only implicitly introduced; a couple of 
books make this idea explicit: “When there is strong 
correlation between X and Y the analysis of regression 
helps to find a mathematical function as a model to fit 
the data. This function can be a straight line, a parabola, 
exponential...“ ([H4], p.226).

C3. Line of best fit (linear model). All the textbooks in-
clude the definition and explanation of the minimum 
squares method (in an informal way); however, only 
a few of them justify the utility of the model to esti-
mate values of Y in situations where the variable is 
difficult to measure. Moreover, as in Sánchez Cobo 
(1999), few texts highlight the predictive utility of the 
regression line. 

C4. Regression coefficients. Since there are two possible 
lines of best fit (depending on which is the explana-
tory and response variable) there are two different 
regression coefficients, but only a few books make 
this explicit. They also include the interpretation of 
these coefficients: “The line that minimizes the sum 
of residuals  Σd2i  is given by the following expression:  
y = y + σxy (x - x)/σ2x. The slope σxy/σ2x, is the regression 
coefficient” ([H1], p. 230).

Procedures H1 H2 H3 H4 H5 H6 H7 H8

P1. Fitting the least squares line x x x x x x x X

P2. Fitting other regression models X

P3.Computing the determination coefficient and interpreting 
the goodness of fit

x x

P4. Prediction and interpretation (line of best fit)  x x x x x x x X

Table 1: Regression analysis procedures included in the books 
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C5. Goodness of fit. Coefficient of determination. These 
concepts help the student understand the meaning of 
regression; however they are only included in [H5] 
and [H6], where the accuracy of the model is identified 
with the accuracy in the prediction for any particular 
point. This is not true, as the accuracy is higher when 
the point approaches the centre of the distribution of 
the explanatory variable.

C6. Non lineal models of fit. Regression is a general 
method for understanding relationships between var-
iables (Moore, 2005), and therefore it is necessary to 
introduce different models of fit; however, only a few 
textbooks implicitly define non lineal models, where 
[H5] and [H6] define them explicitly. 

We summarize the definition of concepts in Table 2, 
where we observe the predominance of adding ex-
amples to the definitions; usually the texts include 
scatter plots with the line of best fit added to show the 
residuals. The line of best fit is introduced in all the 
books and is generally defined both in a structural 
and operational way (Sfard, 1991). The presentation 
is very similar to that in Sánchez Cobo (1999). Other 
definitions (regression coefficients, dependent and 
independent variable, goodness of fit and non linear 
models) are missing in some textbooks or are only 
defined in an operational way. The definitions are 
introduced in different orders; sometimes the exam-
ples are followed by the definition and vice-versa. In 
the same way the order to introduce operational or 
structural definitions also varies.

Properties
The textbooks add different properties to the defini-
tion of the concepts or to relate different concepts, as 
described below:

P1. Least squares property. Most textbooks explain 
that the regression lines make the sum of residuals 

from the points to the line minimum. Usually the ex-
planation is only visual (a formal deductive proof is 
avoided).

P2. Two different regression lines.  Most of the books im-
plicitly remark that there are two different regression 
lines and part of them warns the students of the dan-
ger of using an inadequate line to make a prediction. 
Two books ([H2] y [H8]) do not remark on this prop-
erty. This omission may reinforce the deterministic 
conception of some students (Estepa, 1994), since in 
deterministic dependence there is only one algebraic 
expression (function) to express the dependence.

P3. Percentage of variance explained (r2). The determi-
nation coefficient measures the goodness of fit. Some 
textbooks also analyze its interpretation as the per-
centage of variance explained by the regression line: 

“(r2x100)% is the percentage of variance of Y explained 
by the value of X”([H6], p.185). 

P4. Estimation using the regression line. The regression 
line serves to predict the value of response (Y) given 
a value of the explanatory variable (X). The books 
implicitly indicate that these estimates are only ap-
proximations. They insist that, contrary to functional 
dependence, there are several values of Y for a given 
value of X, and the regression line provides the aver-
age of all these values: “These estimates are approxima-
tions and involve a probability; it is probable that when 
x = x0 the value of y is approximately y(x0). ([H1], p.230). 

P5. The regression line crosses the distribution centre of 
gravity, a property only included in half the books in 
the study by Sánchez Cobo (1999). 

P6. Estimates are more accurate for values closer to the 
centre of gravity. However some books only judge the 
reliability of estimates by the value of the correlation 
coefficient. 

Concepts H1 H2 H3 H4 H5 H6 H7 H8

C1. Dependent and independent variable O O

C2. Model of fit ES SE

C3. Line of best fit (linear models) ESO EOS SO SOE SOE SOE SOE SO

C4. Regression coefficients O SO O

C5. Goodness of fit. SOE OE

C6.Non linear models SOE SOE

E = Examples; O = Operational definition; S =Structural definition

Table 2: Concepts linked to regression and type of definition
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P7. Reliability of estimates and sample size. It is in-
cluded only in a few books: “The estimate accuracy 
increases with the number of data; the regression line 
computed with few data has little reliability even if r is 
high” ([H5], p. 260).

P8. Strength of correlation and angle of regression lines: 
This angle varies from perpendicular lines (independ-
ence) to only one line (perfect linear dependence).

P9. Regression line, covariance, correlation. Covariance 
and correlation are interpreted as regards the close-
ness of the points to the regression line. Their sign is 
related to the slope in the regression line: “Depending 
on the position of (xi, yi) as regards (x, y), the product 
(xi − x) ⋅ (yi − y) will be positive or negative. If many points 
are close to a line with a positive slope, most of these prod-
ucts are positive and the covariance and correlation 
are positive” ([H1], p. 228). These properties were not 
found in the books analyzed by Sánchez Cobo (1999).

P10. Product of regression coefficients. Some books 
suggest that the product of regression coefficients is 
equal to the square of the correlation coefficient: r2. 
This property was found in most books in Sánchez 
Cobo’s research (1999) but is found in only two books 
in our study.

PP11. Correlation and reliability of estimates. Most text-
books relate both concepts: “The higher the correlation 
coefficient r, the higher the reliability of estimates: when 
r is close to zero, there is not much sense in doing an 
estimation; as r approaches to 1 or -1, the real values will 
approach our estimates; when r = 1 or r = -1, real values 
and estimates coincide” ([H4], p. 226).

In Table 3 we summarize the properties of regression 
included in the books. There are great differences be-
tween textbooks, because while some of them ([H4], 
[H8]) hardly describe any of the properties analyzed, 
others ([H3]) include almost all of them. The most fre-
quent property is the least squares, the existence of 
two different regression lines, estimation with the 
line, centre of gravity crossing the line, and relation-
ship of reliability in the estimate, centre of gravity and 
correlation coefficient. Globally the books introduce 
a rich set of properties of regression. We remark that 
some textbooks do not include the properties P8 and 
P9; this omission may reinforce the students’ failures 
in interpreting the relationship between the corre-
lation coefficient and the slope of the regression line 
described by Sánchez Cobo (1999). 

DISCUSSION AND IMPLICATIONS 
FOR TEACHING

Our results suggest little changes in the presentation 
of regression in the high school textbooks, as regards 
the analysis by Sánchez Cobo (1999), although the 
books studied by this author were published between 
1977 and 1990. Our analysis complement that research 
and that by Lavalle, Micheli, & Rubio (2006), because 
neither of these previous studies analyzed the proper-
ties linked to regression, in spite of the fact that Sfard 
(1991) considered that the properties are an essential 
part of the concepts. This study also complements our 
previous studies: (Gea et al., 2013), where we analyzed 
with more detail the problem-situations used to con-
textualize correlation and regression, and (Gea et al., 
2014) where we described the symbolic, verbal and 
graphical language used in this theme.

H1 H2 H3 H4 H5 H6 H7 H8

P1. Least squares property x x x x x x x

P2.Two different regression lines x x x x x x

P3. Percentage of variance explained (r2) x x

P4. Estimation using the regression line x x x x x x x

P5. Regression line and centre of gravity x x x x x x x

P6. Reliability of estimates and centre of gravity x x x x x x x

P7. Reliability of estimates and sample size x x

P8. Strength of correlation- angle of regression lines x x x x

P9. Regression line, correlation, covariance x x x x x

P10. Product of regression coefficients x x

P11. Correlation coefficient – reliability of prediction x x x x x x x

Table 3: Properties of regression
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Although all the textbooks introduce linear regres-
sion and propose methods to compute the line of 
best fit and make predictions with the same, only a 
few of them introduce procedures to compute the 
determination coefficient and its interpretation as 
a percentage of explained variance; however these 
properties are introduced theoretically with no prac-
tical applications or procedures related to the same. 
Similar to the study of Lavalle, Micheli, & Rubio (2006), 
only a few textbooks introduce examples of non line-
ar regression, even when a few propose tasks where 
different models would be preferable. This coincides 
with Sánchez Cobo’s research (1999) where some text-
books introduced examples of non linear regression 
without discussing these models.

We found few definitions of the concepts linked to 
regression, apart from the definition of the line of best 
fit. This fact could be explained because these text-
books use most of the available space for this theme 
in the study of correlation (computing correlation 
coefficients and interpreting its sign and strength), as 
we are shown in (Gea et al., 2013). Although correla-
tion is no doubt an important concept, it doesn´t make 
much sense that the books devote so much space to 
its study if this study is not completed with the study 
of regression; the need to fit a model to the data is the 
reason to study correlation between variables; the 
isolated study of correlation is useless. We therefore 
recommend reinforcing the study of other concepts 
linked to regression, such as model, centre of gravity, 
regression coefficients, and parameters of the line of 
best fit (slope; coordinate at the origin).

In general, these textbooks cover many important 
properties of regression; the variety of concepts 
linked through these properties suggests the high 
semiotic complexity of the topic, due to the richness 
of the associated epistemic configuration. However 
these properties are mostly introduced at an opera-
tional level (Sfard, 1991), that is, present the property 
by a formula or procedure, with too excessive em-
phasis on computation and giving little relevance to 
the meaning and interpretations of these properties, 
which are scarcely introduced at a structural level. For 
example, the textbooks introduce the computation 
needed to determine the regression lines (formula); 
but there is no deep discussion of the meaning of the 
parameters in the lines (slope, ordinate in the origin). 
The relation of the regression line with the correlation 
coefficient is only established in an operational way 

to study the reliability of prediction, with no connec-
tion, for example of the sign of correlation and the 
slope of the regression line. In the same way there is 
no discussion of examples where a low correlation 
coefficient may be associated to a strong non linear de-
pendence; for example a parabola. It is also important 
to emphasize explicitly the existence of two different 
regression lines; that may sometimes be very close 
when r is close to +1 or -1, but may be very different 
in the general case. Many times the difference is only 
implicit.

When comparing the different books, [H5] and [H6] 
are far more complete than the other books, as they 
present all the procedures for the linear model; they 
are the only books that define the goodness and non 
linear models (although they do not include the pro-
cedures for these models) and introduce the majority 
of properties analyzed.
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The role of informed decision-making in today’s society 
is very important at personal, professional, societal, and 
even educational levels. Thus, mathematics teachers are 
required, now more than ever, to provide students with 
appropriate tasks having the potential to promote deci-
sion-making skills. This article reports on the features 
and competence demands of tasks that are thought to 
promote decision-making skills by a purposeful sample 
of twelve Japanese secondary school mathematics teach-
ers. A qualitative analysis on the collected data revealed 
some commonalities between the answers, as well as 
correspondences and discrepancies between what the 
participants and statistics educators think a task with 
the potential to promote decision-making is.

Keywords: Decision-making, teachers’ conceptions of 

decision-making, statistical tasks, Japanese secondary 

school mathematics teachers, statistics education.

INTRODUCTION

Statistics has become very important at all levels of 
citizenry in today’s society, in which large amounts 
of data are available to almost everyone. Thus, to be 
part of modern society in a competent and critical 
way, citizens need to be able to interpret such data 
in a broad sense, and understand the variability, dis-
persion, and heterogeneity which cause uncertainty 
in interpreting information, in facing risks, and in 
making decisions. In the particular case of the latter, 
many statistics educators, curriculum developers 
and international agencies around the world agree 
on the increasing importance for students to gain 
competence in using, handling and interpreting data 

to inform decision-making at personal, professional, 
and societal levels (Garfield & Ben-Zvi, 2008). 

The last reform to the Japanese Course of Study echoes 
these ideas. In fact, the “difficulty … in description-type 
problems that require thinking, decision-making, and 
representation”, reported in the 2006 Programme 
for International Student Assessment (PISA) study 
report about Japanese students by the Organization 
for Economic Cooperation and Development (OECD), 
is the first motivation to that reform (MEXT, 2008, 
p. 1; MEXT, 2009, p. 1). As a result, in the particular 
case of secondary school level, the latest Japanese 
Course of Study emphasizes – in the mathematical 
domains “Practical Use of Data” at junior high school, 
and “Analysis of Data” at senior high school – nur-
turing the attitude and ability to purposely process 
daily-life data, capture its trends and features, and 
make decisions based on such analysis (MEXT, 2008, 
2009). Thus, on account of the significant place held 
by fostering decision-making skills in the Japanese 
secondary school mathematics curricula, teachers 
must be able to carry out themselves data-based de-
cision-making, as well as to design instruction aimed 
to develop students’ decision-making skills. 

Despite the attention given to students’ development 
of decision-making skills and attitude in the latest 
Japanese Courses of Study, teaching guides, and 
even the 2007 amendment to the School Education 
Law, what decision-making is, and how to promote the 
skills related to it, are not explained in any of those 
official documents. Therefore, teachers are left to de-
termine by themselves how decision-making could be 
promoted in their students, which raises particular 
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concern, due to the reported need for appropriate 
training in statistics education in the preparation 
of mathematics teachers in Japan (Isoda & González, 
2012; González, 2014).

Then, in order to shed light on how Japanese mathe-
matics teachers conceptualize decision-making and 
its promotion, the following research questions are 
addressed:

(1) What kind of tasks do Japanese secondary 
school mathematics teachers regard as hav-
ing the potential to promote decision-making?

(2) What knowledge and skills do Japanese sec-
ondary school mathematics teachers believe 
to be associated with the promotion of deci-
sion-making?

THEORETICAL BACKGROUND

Decision – What is it?
A decision is defined as “the broader process within 
which a choice among specific options will be made” 
(Brown, 2005, p. 1). Through this process, the deci-
sion-maker is ultimately able to determine what ac-
tion to take, by identifying a choice – i.e., selecting 
among previously-identified options (Brown, 2005, 
pp. 1, 236–237).

Decision-making situations demand from the deci-
sion-maker to determine a course of action, typically 
while considering uncertainty and data variability 
(Gal, 2004). In fact, a decision-maker operates, at 
once, in all the four dimensions of statistical thinking 
identified by Wild and Pfannkuch (1999).

Before choosing a particular course of action, a deci-
sion-maker has to engage in the many phases of the 
decision-making process, which are identified below 
(Wild & Pfannkuch, 1999; Gal, 2004, p. 43; Arvai, 
Campbell, Baird, & Rivers, 2004; Edelson, Tarnoff, 
Schwille, Bruozas, & Switzer, 2006):

Definition: here decision-makers define the spe-
cific decision that has to be made, as well as a 
broad set of end objectives in the context of the 
impending decision. This phase is the equivalent 
to the “Problem” step of Wild and Pfannkuch’s 
(1999) statistical investigative cycle, known as 
the PPDAC cycle.

Planning: during this phase, the identification, 
design, and choice of optimal ways to use resourc-
es – i.e., means to achieve end-objectives – are de-
termined. The choices must be a set of appealing 
and purposeful alternatives from the objectives 
previously defined. Here, the identification of 
constraints and considerations as basic criteria 
for the decision is also fundamental, since some 
choices might be eliminated based on failure to 
meet constraints, while others may be ranked 
based on how they fare on considerations. This 
phase is not only connected to the “Plan” step of 
the PPDAC cycle, but also with strategic type of 
thinking, and the “Generate” step of Wild and 
Pfannkuch’s (1999) statistical interrogative cycle.

Data: the “Planning” phase tends to be followed 
by a recalling and seeking of information, as 
well as by collecting statistical data relevant to 
the achievement of end-objectives. This phase is 
connected to the “Data” step of the PPDAC cycle, 
to the “Seek” step of the statistical interrogative 
cycle, and to the recognition of need for data 
(Wild & Pfannkuch, 1999).

Evaluation: here, decision-makers must assess 
the implications of different choices for the 
decision, as well as the impact on the different 
stakeholders involved in the decision on hand. 
This phase is connected to the “Criticize” step of 
the statistical interrogative cycle, as well as to 
the strategic type of thinking, and being logical.

Weighing impact: during this phase, decision-mak-
ers weigh the impacts of the different options on 
stakeholders based on their own values. Thus, in 
this phase decision-makers bring in their values 
and see how different values can lead to differ-
ent decisions. This phase is connected to both the 

“Analysis” and “Criticize” steps of the PPDAC and 
statistical interrogative cycles, respectively.

Making and justifying a decision: during this 
phase, decision-makers finally select the course 
of action that better addresses their objectives, 
in the light of the decision-makers’ constraints, 
considerations, assumptions, value systems, 
judgment of probabilities, stakeholder impact, 
etc., and provide an informed justification for 
such a decision. This phase is connected to both 
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the “Conclusions” and “Judge” steps of the PPDAC 
and statistical interrogative cycles, respectively.

Decisions – What types are there?
In the present study, decisions will be classified in 
four types: three of them – i.e., personal, professional 
and civic – were identified by Brown (2005, pp. 5–7), 
while the last type – i.e., object-related – is proposed 
by the author.

Personal decisions: those that decision-makers 
make on their own behalf; for example, about a 
career path or going on a date.

Professional decisions: those that decision-mak-
ers, as professional individuals and specialist 
decision aiders, make on behalf of others in a 
work capacity, such as in business management 
or medical practice. 

Civic decisions: these are decisions made on a pub-
lic – i.e., not personal – issue, such as when deci-
sion-makers, as citizens, take a private position 
on someone else’s – e.g., government’s – choice, 
for which they have no direct responsibility.

Object-related decisions: those that decision-mak-
ers make about parameters or particular features 
of the statistical objects – i.e., decisions regard-
ing language situations, concepts, propositions, 
procedures and arguments (Godino, Ortiz, Roa, 
& Wilhelmi, 2011, p. 277) – involved in a given sta-
tistical problem. An example could be a decision 
about what measure it would be appropriate to 
employ to decide what the best design for a paper 
plane is – e.g., decide whether to use the distance 
travelled, accuracy, or time spent airborne to de-
termine which design is the best.

Decision-making while studying 
statistics – How to do it?
According to Godino and colleagues (2011, p. 274), a 
basic statistical problem concerning decision-mak-
ing is contextualized in a real situation; is driven 
by uncertainty; involves specific statistical practic-
es – such as randomization, collecting sample data, 
transnumeration, data reduction, and using statisti-
cal models – ; and leads to the emergence of specific 
representations, concepts, procedures, properties and 
arguments. Several statistics educators – e.g., Makar & 
Fielding-Wells, 2011 – recommend to engage students 

in decision-making through making them experience 
the complete statistical investigation cycle. This makes 
absolute sense, because it is possible to match every 
phase of the decision-making process to steps of the 
PPDAC cycle.

METHODOLOGY

Data-collection instrument and participants
In order to address the research questions of this em-
pirical study, an assignment-like survey was designed, 
asking respondents the following open questions: 

1) From a textbook, teacher’s guide, student work-
book, internet, academic journal, or other type 
of source, choose a task or activity that, in your 
opinion, would promote decision-making skills 
in your students in secondary school mathemat-
ics when you teach contents in the mathematical 
domains “Practical Use of Data” or “Analysis of 
Data”. You may also develop a task or activity by 
yourself.

2) Attach a copied or printed version of the chosen 
task or activity, and write down its source.

3) Briefly explain why, in your opinion, the chosen 
task or activity has the potential to promote de-
cision-making skills.

At the time of writing this article (September 2014), 
the data-collection process – which began in mid-July 
2014 – was ongoing. Thus, in this paper it is reported 
a preliminary analysis of the data gathered from the 
first twelve teachers who voluntarily and anonymous-
ly responded and mailed back the survey booklets. 
The respondents are part of a purposeful sample of 25 
Japanese secondary school mathematics teachers who 
participated in a national academic meeting on math-
ematics education in Japan. Five of the respondents 
were working at junior high school, while the remain-
ing seven were working at senior high school. The 
respondents were between 24 and 63 years old, and 
they had between two and forty-one years of teaching 
experience – with seven of them with at least 13. 

Data analysis
During the initial phase, all the questionnaire an-
swers were translated from Japanese into English by 
the author of this paper. Also, they were read repeat-
edly in order to gain an overall impression, as well 
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as to identify commonalities among the participants. 
A “bottom up” approach to coding was initially used 
to analyze the tasks’ features and the participant’s 
reasons for choosing such tasks. This grounded form 
of analysis ensures that the themes or categories ex-
tracted were, in fact, grounded in the data and hence 
reflected the participants’ own knowledge base and 
conceptions regarding decision-making. The author 
reviewed all the given answers to the three questions 
and identified answers that occurred frequently in 
the data. Such answers appearing to contain similar 
content were initially given the same code, and each 
code was further analyzed to find true meanings with-
in their text. A process of reduction and clustering of 
categories, which were refitted and refined, followed, 
resulting in summary groupings (or “clusters”) of 
themes sharing common meaning.

RESULTS

Tasks’ features – What kinds of tasks are 
thought to promote decision-making?
The participants used a variety of sources to select 
their tasks. The most commonly used source was the 

Internet, used by four teachers – i.e., by T2, T7, T11 and 
T12. Three teachers – i.e., T3, T5 and T6 – referred to 
research reports or academic journals; used activity 
books, mathematics textbooks or exercise books – 
i.e., T4, T7 and T11 – ; and developed the chosen task 
by themselves – i.e., T1, T9 and T11. Two teachers – 
i.e., T1 and T8 – chose problems from the National 
Assessment of Academic Ability and Learning 
Situation, conducted yearly by the National Institute 
for Educational Policy Research of Japan. Finally, one 
teacher – i.e., T10 – selected a task he learnt at the 
prefectural training program.

From the qualitative analysis performed on the col-
lected data, several task features were identified, in-
cluding the number of solution strategies, number 
and kind of representations displayed, or if the task 
was set in a real-life context. The result of sorting and 
clustering such task-based features is shown in Table 1. 

From Table 1, it seems the all the participants agree 
that a task intended to promote decision-making 
should engage students in statistical investigations, 
connect different statistical concepts, be set in a re-

TEACHER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

FE
A

TU
R

ES

Number of choices offered by the task 2 0 0 0 0 2 0 0 2 0 0, 2 2

The task explicitly requests students to 
think of several possible solutions / to solve 
the problem in different ways

Y Y N N N Y Y N Y Y N N

The task invites students to engage in open 
inquiry and investigation

Y Y Y Y Y Y Y Y Y Y Y&N Y

The task required to connect different sta-
tistical concepts

Y Y Y Y Y Y Y Y Y Y Y Y

The task is a multi-step one, comprised of 
several mini-tasks

Y N N N N Y Y Y N Y Y N

The task explicitly asks students to commu-
nicate / justify their procedures

Y N Y N Y Y Y Y Y Y Y N

Different types of statistical representa-
tions in the task

1 0 1 1 1 0 1 1 2 1 4 0

The task includes the use of manipulatives N N N N N Y N N N Y N Y

The task is set in a real-life context Y Y Y Y Y Y Y Y Y Y Y&N Y

The task can be solved in several ways Y Y Y Y Y Y Y Y Y Y Y&N Y

Type of decision requested by the task (Pe = 
personal; Pr = professional;             C = civic; O 
= object-related)

O C C Pe C Pe O O Pe O O Pe

Environment in which the task is supposed 
to take place (I = indoors, O = outdoors)

I I&O I I I I I I I I I I

Table 1: Features of a task with potential to promote decision-making, according to the information provided by the participants on the 

questionnaire
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al-life context, and have multiple ways to be solved. 
This is in line with many previous studies on the 
instruction of decision-making at school level – e.g., 
Arvai et al., 2004; Edelson et al., 2006; Edwards & 
Chelst, 2007; Garfield & Ben-Zvi, 2008; Godino et al., 
2011; Pfannkuch & Ben-Zvi, 2011.

Since 11 out of 12 teachers chose a task to be carried out 
completely inside the classroom, it seems that the 
majority of participants consider that promot-
ing decision-making should be done within the limits 
of the mathematics classroom. By doing so, students 
might miss the opportunity to extend their knowledge 
beyond the limits of the classroom, into the real world, 
which is needed to be statistically literate – cf. Garfield 
& Ben-Zvi, 2008.

Nine participants shared the idea that a task with the 
potential to promote decision-making must explicitly 
ask students to provide arguments justifying their 
decisions. In fact, this feature is the ultimate phase 
of the decision-making process. Many researchers – 
e.g., Edelson et al., 2006; Edwards & Chelst, 2007 – rec-
ommend teachers to give substantial guidance when 
introducing the decision-making process to students, 
in order to provide scaffolding for them to learn how 
to do well-informed and justified decisions by them-
selves.

Half of the respondents seem to consider that a task 
intended to promote decision-making should be a mul-
ti-step problem, or should explicitly request finding 
multiple solving strategies. Thus, regarding these pair 
of task features, this sample of respondents did not 
lead toward a particular one. In relation to being a 
multi-step problem, some teachers added questions 
to the original tasks in order to assure students of 
considering multiple solving strategies. For example, 
after challenging students with a problem from the 
2012 National Assessment of Academic Ability and 
Learning Situation for Grade 9, T1 added the following 
step: “Listen to your friends’ ideas. At the end, whose 
idea do you agree with? (Do not mind if it is your own 
idea.) Please, also write down the reason.” In this way, 
T1 is not only handling classroom communication, but 
also facilitating discussion and negotiation, which is 
fundamental in any statistical investigation (cf. Makar 
& Fielding-Wells, 2011).

Also, it is also noticeable from Table 1 the lack of an 
overwhelming consensus about which type of deci-

sions should be requested in a problem intended to 
promote decision-making. Five teachers chose tasks 
requiring an object-related decision; personal deci-
sions were required in the tasks selected by four teach-
ers; and three respondents demanded civic decisions 
in their problems. In this regard, specialists say that, 
although decision-making skills are not specific to 
any particular type of decision, developing such skills 
has been done mainly in the context of personal and 
civic ones, to which students can most immediately 
relate (cf. Brown, 2005, p. 155; Edelson et al., 2006). 
Moreover, by just requesting object-related decisions, 
the completion of the task seems to depend more on 
students’ statistical content knowledge, and hence it 
is missed an opportunity to create and strengthen a 
link between the learning of statistics and students’ 
actions in real situations.

Reasons for choice – What competence 
aspects are associated to decision-making?
From a grounded analysis of the reasons given by 
teachers about why their chosen tasks have the po-
tential to promote decision-making, six category clus-
ters of competence aspects that participants seem to 
associate with decision-making were identified. Such 
results are shown in Table 2.

Many trends in teachers’ answers were noted from 
the results in Table 2. For example, 10 out of 12 partic-
ipants associated decision-making with skills related 
to mathematical and statistical literacy, by using ex-
pressions such as “mathematical grounds”, “handling 
of information and data”, “knowledge about statistical 
ideas”, “ability to read data properly”, “ability to grasp 
data trends”, and “practical use of multiple statisti-
cal representations”. This is in agreement with what 
many statistics educators have previously reported 
on this matter: that decision-making heavily depends 
on skills related to statistical literacy such as under-
standing, explaining and quantifying the variability 
in the data (e.g., Gal, 2004; Pfannkuch & Ben-Zvi, 2011).

Only 3 out of 12 participants expressed that deci-
sion-making requires the enactment of personal or 
societal values, such as social fairness. In this respect, 
it is important to highlight that two of these teach-
ers – i.e., T5 and T9 – selected tasks requesting either a 
personal or a civic decision. This is in agreement with 
previous studies on decision-making – e.g., Arvai et 
al., 2004; Edelson et al., 2006 – , which point out that 
creating a set of appealing and purposeful alterna-
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tives, as well as making thoughtful and high-quality 
decisions, needs the application of decision-maker’s 
values and technical information.

Just 3 out of 12 of the respondents highlighted that de-
cision-making involves an opportunity for students to 
build their own criteria or rules for decision, which is 
emphasized in the literature as one of the main char-
acteristics of the decision-making process (cf. Brown, 
2005; Edelson et al., 2006; Garfield & Ben-Zvi, 2008, 
p. 277).

The fact that decision-making involves engagement 
with a familiar real problem was pointed out by only 
two teachers. This could be a likely reason for having 
five teachers selecting tasks requesting object-relat-
ed questions to students. According to many authors 
(e.g., Brown, 2005, p. 155; Edelson et al., 2006), students 
relate more easily to realistic decision-making sce-
narios, particularly those in which they are asked for 
personal or civic decisions.

Nine out of the 12 participants pointed out that de-
cision-making involves engagement with different 
steps of the open-ended approach. These teachers 
mentioned aspects such as “coming up with a diver-
sity of ways of thinking”, “generating alternative de-
signs”, “dealing with problems related to uncertain 
events”, “opportunity to decide about parameters and 
methodologies”, and “opportunity to determine what 

properties would be good to examine”. The number of 
teachers falling into this category is not surprising at 
all, because in Japan the lessons usually involve math-
ematical activities using ill-defined questions, which 
are often solved by engaging with the open-ended ap-
proach method. In fact, “dealing with the openness” 
during the decision-making process is a main feature 
of it (cf. Edelson et al., 2006; Edwards & Chelst, 2007; 
Makar & Fielding-Wells, 2011).

Finally, only 2 out of the 12 respondents explicitly 
related the decision-making

process to social and inter-personal processes such 
as discussion, communication, argumentation, per-
suasion and negotiation to build consensus and com-
mon understanding. This result was quite unexpected, 
since a typical Japanese mathematics lesson has the 

“takuto” and “neriage” phases, in which students pres-
ent their solutions or ideas to the whole class, and 
discuss the validity and pertinence of the proposed 
ideas, respectively. Many researchers (e.g., Arvai et 
al., 2004; Edwards & Chelst, 2007) are of the idea that 
the decision-making process is much stronger with 
discussion and feedback, and therefore recommend 
that students should at first brainstorm on their own 
a list of objectives related to the decision, and then 
convene to discuss them in groups and with the rest 
of their class, in order to overcome particular biases 
related to individual and group thinking, and then to 

TEACHER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

A
SP

EC
TS

Decision-making involves opportunity to 
build students’ own decision criteria

✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Decision-making involves personal or soci-
etal values

✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘

Decision-making demands from students 
to make use of their own mathematical and 
statistical literacy skills

✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘

Decision-making involves engagement 
with different steps of the open-ended ap-
proach

✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔

Decision-making involves engagement 
with a familiar real problem

✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Decision-making requires inter- personal 
processes such as discussion, communi-
cation, argumentation, negotiation, and 
collaboration

✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Table 2: Competence aspects associated with decision-making, according to the information provided by the participants on the 

questionnaire
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effectively undertake the decision-making process in 
the classroom.

CONCLUSIONS

In general, this study found how the surveyed 
Japanese mathematics teachers conceptualize deci-
sion-making and the tasks intended to promote it. A 
majority of the respondents selected tasks embedded 
in a real-life context, having multiple ways of solving, 
requiring the connection of different statistical and 
mathematical ideas, meant to be carried out entirely 
inside the classroom, involving a partial or complete 
engagement with the statistical investigation cycle, 
and requiring to communicate and justify procedures 
and solutions. All these features are, indeed, char-
acteristics of tasks able to promote decision-making 
skills indicated by previous researches.

The information about how the participants concep-
tualize decision-making was obtained from the differ-
ent cognitive aspects identified in teachers’ explana-
tions of why they chose their tasks. The majority of 
participants related to decision-making aspects such 
as engagement with steps of the open-ended approach, 
and practical use of mathematical and statistical lit-
eracy skills. These features of the decision-making 
process are in line with those identified in the spe-
cialized literature. However, other main character-
istics of decision-making – e.g., engagement with a 
familiar real problem, formulation of personal deci-
sion criteria, and engagement with particular social 
processes – were not explicitly noted by most of the 
surveyed teachers. Also, just two teachers explicitly 
considered affective aspects of decision-making, such 
as the enactment of personal and societal values. Due 
to the relevant place promoting decision-making in 
students has in the Japanese mathematics curriculum, 
it seems that secondary school mathematics teachers 
need to improve their professional knowledge about 
what decision-making is and how to promote it, in 
order to make them appreciate decision-making as a 
statistical rather than a mathematical work.

Realization of the potential of any task to promote de-
cision-making heavily depends on teachers’ statistical 
knowledge for teaching (González, 2014). Thus, exam-
ining how teachers may implement their chosen tasks 
seems a natural next step for this study.
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This study aims to identify what students in the 5th and 
9th grades from Secondary Education (10 to 14) under-
stand of sampling. Semi-structured, person-to-person 
audiotaped interviews were carried out with 40 students 
(20 from each grade), to whom questions were asked con-
cerning some different skills related to sampling. It was 
noted that, besides the differences between the years of 
schooling, there was no significant difference in associ-
ation with the students’ performance. This study shows 
that, albeit all difficulties, students in the 5th grade are 
able to answer the sampling aspects.

Keywords: Sampling, sample, population, statistics 

education.

STATISTICS EDUCATION

Statistics data have been present in various different 
social situations, thus becoming increasingly essen-
tial to understand them so that we can consciously 
exert our role in society. Due to this fact, statistical 
literacy has been important to Basic Education, since 
it enables students to develop their critical, investi-
gative, and reflexive attitude. This posture is greatly 
necessary for the current society characterized by 
data dissemination (Campos, Jacobini, Wodewotzki, 
& Ferreira, 2011).

In the Brazilian curriculum, the National Curriculum 
Parameters (NCP) have outscored that, in the early 
years (9 to 10 years old), statistical content should be 
looked upon in the classroom to enable students “to 
analyze relevant data regarding knowledge and es-
tablish the highest number of relation among them 
by using mathematical knowledge to interpret them 
and critically assess them”. (Brasil, 1997, p. 48).  By the 
3rd cycle (11 and 12 years old), abilities will need to be 
developed by students to build sample space and show 

success possibility of an event by using reasoning 
(Brasil, 1998, p. 75).

After analyzing Probability and Statistics teaching 
in the Mathematical Curriculum for Secondary 
Education, Lopes (1998) took into account the impor-
tance of these themes for students’ formation as they 
provide for interdisciplinary approach, experiments, 
and exploration of random events, which lead to a 
change of the deterministic model characterized in 
mathematics.

Among the several statistical concepts that must be 
worked with students, sampling should not be over-
looked. It is part of the investigative cycle of a research 
and helps to elaborate teaching systematic situations.

For data collection, it is essential to figure out who 
and how many individuals should be investigated, and 
how to approach them and put the questions to them 
in such an efficient way as to gather the most possible 
representative data. At the moment of data analysis 
and interpretation in statistical research, research-
ers must take into consideration the way the data are 
selected, the methods are applied, the variables ana-
lyzed, so that they can understand what is being in-
vestigated in context and then compare them to other 
situations. Sampling is noted implicitly and explicitly 
through all of these steps. Therefore, an approach us-
ing these steps along with mathematical teaching may 
contribute to important reflections upon the use and 
the importance of this concept for statistical activities.

It’s important to show that this article doesn’t pro-
vide a discussion of the various types of samples, but 
investigates the importance of working the concept 
of sampling from the early years of schooling so that 
students understand the relationship between the 
variability of the sample and the generalizability of 
the data for the entire population.
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SAMPLING

The sampling concept is one of several statistical con-
cepts to be developed with students, as part of the in-
vestigative cycle research. According to Stevenson 
(1981), sampling is the part of the group being ex-
amined, and the entire group is called population 
or universe. To him, “the purpose of sampling is to 
make general assumptions about the whole group, 
without examining every and each of its elements” 
(Idem, p. 158). 

Some authors as Rubin, Bruce and Tenny (1990), 
Garfield (2003) and Innabi (2006) have mentioned 
difficulties students and lay people alike face when 
tackling statistics to understand the basic concepts 
of sampling. Besides, when pondering on the rigor 
of the samples, these people may be neglecting the 
quintessential factors of their representativeness, 
namely, size and variability.

Ben-Zvi, Makar, Bakker and Aridor (2011) noticed that 
by using a sequence of activities with 11-year-old stu-
dents, in which an increase of the size of the samples 
had been identified, they got stimulated to think about 
the relations population-sample. The analysis of the 
individuals’ inferential reasoning showed a develop-
ment in points of view on what may be concluded from 
a small sample (contradictory and full of uncertain 
inferences) and with large ones, which favor the use 
of informal inferences.

The same way, during a didactic sequence applied to 
12-year-old children, Gil and Ben-Zvi (2010) noticed 
that the students’ first explanations, after being ques-
tioned about the rigor of the information based on the 
sample, reflect a conflict between random sample per-
ception and reliability in their inferences. However, 
along with the activities and discussions, Gil and 
Ben-Zvi undertook the development of conceptions 
about sample and sampling, as students tried to infer 
from a random sample on population. Ideas at random 
and random sampling were partially understood and 
used by students at that age group. They were able to 
understand the implications in sampling representa-
tiveness and their variability. However, they were not 
able to understand their relations.

Pfannkuch (2008) also noticed that, when carrying out 
a study aiming to identify conceptual growth on stu-
dents from New Zealand about sampling variability, 

14-year-old students started to build some relations 
about sample variability upon studying samples of 
different sizes. It was concluded that the comprehen-
sion of sampling concepts became even more complex 
due to limited knowledge of other concepts, such as 
distribution and variability. Nevertheless, by involv-
ing students in contexts composed of discussions over 
sampling, students were able to show development 
regarding ideas of sampling variability and to relate 
population and sample.

The study of Pfannkuch (2008) ratifies the idea that 
the aspects approach linked to sample and popula-
tion concepts, such as representativeness, sampling 
variability, inference, and distribution, when carried 
out with interrelation, facilitates understanding and 
building of sampling.

Given the importance and the needs to develop skills 
related to statistical reasoning, a research realized by 
Gomes (2013) was carried out to verify what students 
in the 5th and 9th grades of schooling understood of 
sampling. This article show some questions about this 
study emphasizing the definition of the sampling con-
cept, an example of sampling, selection, size, purpose 
and representativeness of the sample, and population 
definition. 

METHODOLOGY

Our aim is what students of 5th and 9th grades under-
stand about sampling? Forty students in the 5th grade 
(10 years old) and 9th grade (14 years old) of Secondary 
Education took part in this study, 20 of each group. 
These groups belong to the final grade of each level 
of the Brazilian curriculum. Semi-structured, per-
son-to-person audiotaped interviews composed of 10 
questions on sampling were carried out as follows by 
one of the research. Based on the answers given by the 
students categories were created observing and val-
orizing the diversity of responses on each question: 
not respond, incorrect, partially correct and correct. 
A comparison of these grades allows observing the 
teaching of these concepts in school has provided a 
meaningful learning.

RESULTS

Regarding sample concept, students were encouraged 
to answer two questions: “What do you think sample 
means?” and “To find out which candidate running for 
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mayor of Recife has a greater chance to win the elections, 
researchers interviewed a sample of one thousand vot-
ers. What does this sample mean in this case?” Most 
of the students did not answer or answered incor-
rectly these two questions about sample definition 
(33 individuals). It was noticed that the word “sample” 
was mostly associated with the verb to show (they are 
homographic in Portuguese). This association shows 
the influence of regional linguistic characteristics in 
the formulation of concepts, provided that this word is 
many times applied as synonym of ‘to show’ by people 
that live in Pernambuco, as shown in the following 
example:

Student 1: Amostrar alguma coisa, um objeto (To 
show something, an object.)

Student 2: Quando a pessoa pode mostrar al-
guma coisa.(When someone can show 
something.)

A great number of appropriate answers for the first 
question from students in the 9th grade were observed. 
The difference in the years of schooling is really mean-
ingful (X2 = 4.329, gl 1, p< 0.037). It was also common 
among the appropriate answers examples to be given 
in lieu of defining the concept of sample, as seen in the 
following example:

Student 37:Uma amostra de sangue que as pessoas 
tiram.(A sample of blood people collect.)

Student 40: Eu acho que é uma pequena par-
te de tudo. (I guess it is a small part of 
everything.)

In the second question, the students who gave appro-
priate definition for sample were those who defined 
sample as a part of all voters in Recife.

Student 34: Eu acho que essa tá significando uma 
parte dos eleitores pra saber o que eles 
preferem. (I guess it means a part of the 
voters to know what they prefer.)

At this question, although the 9th graders had shown 
a greater number of appropriate answers, unlike the 
previous question, there was no significant difference 
in the years of schooling (X2 1.558, gl 1, p < 0.212). These 
data imply that the same concept has different ways of 
tackling its definition, that is, by approaching directly 
or by a context.

When students were once again asked to give an ex-
ample of sample, most of them (30 individuals) did 
not exemplify nor presented incorrect examples. A 
great deal of the given examples did not show any as-
sociation with statistics. In fact, they were linked to 
the concept of sample defined by the students at the 
first question.

Student 01: Eu quero lhe amostrar (mostrar) 
meu caderno, aí eu amostro à senhora. 
(I want to show you my notebook, then I 
show to you.)

Student 14: Eu pegar esse lápis e lhe amostrar 
(mostrar). (I take this pencil and show 
you (to show).

Students in the 9th grade gave significantly better 
answers than students in the 5th grade (X2 4.800, gl 
1, p < 0.028). In studies carried out by Rubin, Bruce 
and Tenny (1990), it was shown that several answers 
from the students had been grounded on their own 
personal experiences. Because of that, we believed 
this question would have been quite easy for them to 
respond. We found daily situations in which sample 
was used, such as: free sample of products, or else 
blood or saliva sample for DNA test. Yet, it was clear 
the participants did not relate these examples to the 
applied question.

Nevertheless, the appropriate answers presented by 
the students in the 5th grade show that it is possible for 
the students at this age to learn this concept. Those 
who defined this concept partially or totally correct 
proved to understand sample as part of a whole.

Student 10: Por exemplo, um suco, uma amostra 
de suco. (For instance, some juice, a sam-
ple of juice.)

Student 32: Aqueles vidrinhos de perfumes ou 
aqueles papeizinhos com perfume quan-
do a gente passa e entregam pra gente. 
(Those little bottles of perfume or those 
pieces of paper sprayed with perfume 
given to us when we pass by the stores.)

Concerning the sample selection, two questions were 
asked chiefly to understand whether students were 
able to list important criteria in order to select a sam-
ple. During the first activity, students were encour-
aged to come up with a strategy to select a sample, as 
being the most possible representative of the studied 
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population. Thus, the following situations were in-
troduced: “A researcher wanted to know the students’ 
favorite snack in the public schools of Recife. As he could 
not interview all students, he decided to interview only 
two hundred of them. How should he choose these stu-
dents in order to have a better scope on their preference”?

The performance of most participants, once again, 
was below the expected. The number of appropriate 
answers was higher among participants in the 9th 
grade. However, there was again no significant differ-
ence in the years of schooling (X2 0.476, gl 1, p < 0.490). 
By suggesting the way of sample selection, these stu-
dents showed similar answers to those found in Rubin, 
Bruce and Tenny’s (1990) studies, with students in 
High School (14 to 17 years old). The participants pre-
sented variable models in association with sample 
selection so that it could represent the expected pop-
ulation, as long as their answers were grounded on 
personal intuition. 

Answers with at least one aspect referring to probabil-
ity sample were taken as correct; in other words, those 
that may be used with the entire population. In this 
kind of answer, it was common for the participants 
to suggest that the sample be chosen by drawing the 
lots, characteristic of random sampling, as described 
below:

Student 28: Ele dividia pelas escolas que tem no 
Recife e sorteava. (He divided by schools 
in Recife and drew the lots.)

The second question about the sample selection 
showed a hypothetical context: “Five friends wanted 
to know approximately how many books the people who 
live in their neighborhood read a year. As the district 
had about 10.000 residents, they couldn’t to interview 
every one”. Participants were asked to indicate the 
most appropriate sample among five options:  100 
residents who frequent de local library (large and 
biased); 100 residents of the district (large and un-
biased); 10 residents who frequent de local library 
(small and biased); 10 residents of the district (small 
and unbiased); men, women, boys and girls (without 
information about size and sample selection criteri-
on). Thirty-one students gave inappropriate answers, 
supporting their answers without taking into account 
whether the sample had characteristics of the studied 
population or a bias of selection. Once again, there 

was no statistical difference between grades analyzed 
(X2 1.290, gl 1, p < 0.256).

In the same question, answers were analyzed taking 
into consideration, this turn, size in association with 
sample selection. Although there has been a difference 
between grades, it was not shown to be significant (X2 
3.750, gl 3, p< 0.053). The results achieved revealed a 
more appropriate performance of the participants, 
since twenty-three participants had their answers 
classified as partially correct, and only one as correct.

Answers were considered partially correct when 
students took into account the larger number of res-
idents, disassociating population with the number of 
individuals of the sample as well as one of the criteria 
for their representativeness.

Student 1: Porque a opção um tem mais mora-
dores. (Because option one has more 
residents.)

Student 13: […] A opção 2. Porque tem mais pes-
soas. [...] (Option 2. Because it has more 
people.)

The single participant with a correct answer was a 
student in the 9th grade, who emphasized the size of 
the sample as one of the important factors for its rep-
resentativeness. Likewise, although a smaller sample 
could also represent the population of the mentioned 
example, a larger number of individuals would be 
more appropriate. 

Student 34: […] porque o três pegou só 10. Vai 
dar, mas vai dar muito pouco para saber 
do bairro todo. ([...] because the number 
three had only 10.  It will do, but it will 
not be sufficient to learn about the entire 
neighborhood.)

Regarding the purpose of using samples, partici-
pants had to answer the following question: “To find 
out which candidate running for mayor of Recife has a 
greater chance to win the elections, researchers inter-
viewed a sample of one thousand voters. Why do you 
think they used a sample and not all voters in Recife”?

It should be pointed out that, despite the fact that 
a large number of participants could not produce 
a definition, nor provide a correct exemplification, 
when led to a situation of research by using samples 
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and asked to explain why using them, almost half of 
the students (16 individuals) answered appropriately. 
Among these participants, 8 (eight) were students of 
the 5th grade, who explained their answers based on 
the convenience of using samples, as well as declared 
to have skills to broaden their knowledge on the pur-
pose of using samples, as answered the student 34:

Student 34: Se tiver 2 milhões de habitantes no 
Recife e ele pegou mil já dá pra ter pelo 
menos uma ideia. (If there are 2 million 
inhabitants in Recife and he got a thou-
sand, it is enough, at least, to have an 
idea.)

There was no significant difference between the levels 
of schooling (X2 0.000, gl 1, p < 1.000). Results achieved 
by this question highlighted the importance of activi-
ties with different contexts, involving sample concept 
to enable learning.

Still, another aspect verified has to do with sample rep-
resentativeness. It is important to remember that it 
had been assessed indirectly in other questions; how-
ever, being representativeness the main purpose of 
sampling, it had already been used directly in specific 
questions. A situation was presented to the students, 
in which a research would be carried out in a school 
assigned beforehand. They were asked whether to 
select individuals for a research in order to represent 
the school, it would be more appropriate to draw stu-
dents of all years of schooling or rather only a class 
would be enough. More than half of participants re-
sponded incorrectly (22 individuals). When answers 
were classified as appropriate or inappropriate, it was 
clearly proved that the difference in the performance 
of 5th and 9th graders was not significant (X2 2.558, gl 
1, p < 0.110). Some students chose the sample without 
justifying the reason for the option; others present-
ed justifications unrelated to the sample representa-
tiveness; and there were those who inappropriately 
used aspects associated with sampling, as Student 25 
explains: 

Student 25: Melhor (só de uma turma). (It is better 
(only one classromm).

Researcher:  Por que melhor? (Why is it better?)
Student 25:  Porque vai ser mais rápido para en-

trevistar eles. (Because it is going to be 
quicker to interview them.)

Better posed answers indicate that, if encouraged, 
students of different ages would be able to develop 
the skills needed to list eligible criteria of a sample. 
For justifications partially correct or correct, the rel-
evance of sample variability was implicit.

Student 27: Pegar de uma sala só é pior, professo-
ra. Não é melhor escolher da escola toda 
que tem mais variedade?! Da mesma sala 
vai mostrar só daquela. (Collecting from 
only one classroom is worse, teacher. Isn’t 
it better to choose form the entire school 
that has more variability?! From the same 
classroom it will show only from that one.)

This comes to show that, although students could elab-
orate a more formal and complete answer, they noted 
that, to validate a sample, it must have some specific 
features of the population.

To investigate the understanding of population, two 
questions were asked. The first question raised the 
idea of population as a group of people. Thus, it was 
included in the previous situation about the candidate 
running for mayor of Recife, the following question: 

“What would the analyzed population be?” More than 
half of participants (25 individuals) responded ap-
propriately; however, more students in the 9th grade 
responded in an appropriate and significant fashion 
(X2 5.227, gl 1, p < 0.022). The correct answers narrowed 
the population as to target variable, in other words, 
those who could vote.

Student 29: Os eleitores. Do Recife. (The voters. 
From Recife.)

The second question took population as a group of 
objects: “If a research intending to find out how long 
computers of a specific brand last were carried out; 
what type of population would be analyzed in this 
research?” In this situation, most of them responded 
incorrectly (35individuals) without any significant 
statistical difference within the grades studied (X2 
5.227, gl 1, p < 0.022). Five students, three in the 5th 
grade, answered correctly, proving to understand that 
population not always are people, but the whole being 
researched, as it is clear in the answer of student 06:

Student 06: Os computadores da marca. 
(Computers of a brand.)
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This understanding shows that even more complex 
definitions could be more simply worked in the early 
years of schooling.

Thus, it is important that these students’ performance 
differences be discussed during activities that involve 
the same definition. As Ben-Zvi, Makar, Bakker and 
Aridor (2011) state that a variety of situations encour-
age students to think about the population-sample 
relations. 

CONSIDERATIONS

Investigating different skills with the same students 
enabled us to identify what skills are more easily un-
derstood by them. Similarly, when we verify partial 
understanding of these different skills, we have some 
suggestions to put into use during the teaching-learn-
ing process, starting with the situations understood 
by the students in order to build more structured and 
complex knowledge.

This research showed that despite the great difficulty 
of the students to understand concepts related to sam-
pling, students from the 5th grade already show to un-
derstand concepts associated with sampling in some 
situations. The identification of this students’ apti-
tude make us to ratify that it is necessary to rethink 
of what schools can and should offer to the students. 
The learning ability of these contents from the early 
years, as shown by the individuals of this research, 
outscores the idea that studies on sampling should not 
be limited to the last years of schooling; rather, it must 
seek strategies to improve these skills in order to find 
positive changes since the initials levels of education.
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This paper focuses on a probability project and shows 
how primary school students develop probabilistic 
thinking according to different approaches to proba-
bility. In the project students explore the rolling of “odd 
dice” and compare the winning chances of these dice. By 
experimenting with the odd dice and comparing their 
structure to achieve insight into winning strategies 
the students have to deal with different approaches to 
probability, especially the subjective and frequency in-
terpretations. A specific work-flow for processing such 
projects is presented.

Keywords: Probability, frequentist approach, subjective 

approach, learning environment, classroom project.

INTRODUCTION

This study wants to make a contribution on how teach-
ing of probability in primary school could be laid out, 
by introducing a mathematical project on “odd dice”, 
which is open for an experimental approach and rich 
discoveries on probabilities beyond the standard ma-
terial in stochastics. Furthermore a specific project 
work-flow for the design of the classroom interaction 
and for the analysis of the learning process as a diag-
nostic tool is presented. 

THEORETICAL FRAMEWORK: 
APPROACHES TO PROBABILITY

There are mainly three different approaches to the 
concept of probability which are crucial for teach-
ing probability at primary schools and aiming at a 
broad and reasonable understanding of probability 
for students. Since you only have limited access to 
an axiomatic interpretation of probability in school 
mathematics it is important to show alternative in-
terpretations which connect to students’ previous 
knowledge and everyday experiences, even appre-

ciating subjective ideas and conceptions and relate 
them to mathematical views on probability.

Subjective approach
The subjective approach to probability is the one 
you will encounter first when teaching probability 
in school mathematics. “We identify probabilities 
with degrees of confidence, or credences, or ‘partial’ 
beliefs of suitable agents” (Hájek, 2012). Almost all 
children gathered experiences with statements on 
probability in the context of chances in games e.g. 
rolling six dots with dice in the game “Ludo”. The 
subjective approach is fully loaded with individual 
experiences, naïve ideas and with personal prefer-
ences to the point of superstitious beliefs like lucky 
numbers (see Büchter et al., 2005). Children hold cer-
tain ideas and conceptions and that is what teachers 
have to deal with for successfully teaching stochastics. 
By setting up activating learning environments such 
pre-experiences of students could be made explicit 
for the learning process. The teaching problem is that 
some of the students’ conceptions do not match with 
the mathematical concepts. To overcome this gap it is 
necessary to get students into a reflection on concepts.

Frequentist approach
The frequentist approach to probability will help 
to develop a broader understanding of probabilis-
tic processes.  It defines a probability of an event as 
the limit of its relative frequency in a large number 
of trials, according to the law of large numbers. In 
primary schools one often deals just with counting 
absolute frequency in relation to a fixed number of 
trials, e.g., rolling the dice 100 times and then count-
ing the number of occurrences of the pips. This em-
pirical approach suits well with activating learning 
environments in which students are able to determine 
probabilities by random experiments. Students will 
evaluate their experiments with tally tables.
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Classic approach
At last the classic approach to probability will be con-
sidered as a mathematical sophisticated approach 
which has a profound theoretical meaning but is only 
accessible in a limited way in primary schools. The 
probability of an event is given by its ratio of the num-
ber of cases favorable to it, to the number of all cases 
possible. This requires that none of the cases occur 
more than any other i.e. all cases are equally possible. 
This approach goes back to a definition by Laplace 
from 1814 in his Philosophical Essay on Probabilities. 
Since fractions and rational numbers are only avail-
able in a very limited way in primary school it will not 
be possible to apply this approach in-depth. But the 
basic idea could be used to count the favorable cases 
and compare them to a fixed number of possible cases. 
A special case of the classic approach is the geometric 
interpretation of probability, e.g. looking at the faces 
of the dice and – assuming that all faces are the same 
size – the probability for each face will be the same.

“ODD DICE” – A PROBABILITY PROJECT

The teaching material “Spürnasen Mathematik” 
[mathematics sleuths] consists of a box with mathe-
matical projects on arithmetic, geometry and stochas-
tics aiming at an open, activity-oriented learning pro-
cess, accompanied with working books for a system-
atical training and learning process. To ensure rich 
experiences with mathematics and linking-up with 
situations of everyday life the projects are starting 
always with a hands-on activity for children, followed 
up by a step by step systematization and formalization 
with mathematical tools and mathematical language. 
This specific approach is chosen to increase the mo-
tivation to deal with mathematical contents and tools, 
and to see the potential of mathematics to describe ev-
eryday life situations, to solve real life problems and 
to provide a language to communicate and compare 
information and data. The mathematical tasks and 
the project work are open according to Peschel (2007) 
in the classroom format and social form in which the 
children will work on the projects (e.g. most project 
tasks could be carried out individually, pair or group 
work), the organization of the learning process (e.g. 
the children can choose from different materials to 
work with), and the conceptual opening (e.g. the chil-
dren are encouraged to solve the problems on their 
competence level and in their way of mathematical 
thinking). Therefore the projects have a high potential 
for differentiation in the learning process and the 

resulting products. This classroom research report 
will focus on the project named “Only by Chance” clas-
sified as a stochastics project. This projects aims for an 
exploration of dealing with chances and probabilities 
in different contexts.

One part of the project looks at “odd dice” and the odds 
to win by playing dice and the corresponding proba-
bilities. The odd dice are given by their cube nets (see 
Figure  1). These four coloured dice are an adaption 
of the “Miwin dice” (Winkelmann, 2012) and do not 
show the usual dots of a dice and equally probable 
occurrence of each side of the dice, but a special ar-
rangement of the numbers 0 to 6 as shown in Figure 1.

In the following I will outline the project tasks for the 
students, some of the learning outcome objectives and 
possible solutions of the problems. (Remark: In the 
teaching material “Spürnasen Mathematik” all the 
tasks are gathered on a task instruction card. Since the 
material is in German the original card is not shown.)

Task 1
The first task of the proj-
ect asks the students to 
explore with prepared 
odd dice, which numbers 
on the dice will occur 
most frequently. After 
making a guess, the stu-
dents roll the dice and 
take track of the occur-
rences with a tally sheet (see Figure 2). This will help 
students to get started with the project and become 
more familiar with the odd dice, since they probably 
haven’t been working with such dice beforehand. The 
students learn to estimate the possible outcomes of 
throwing the dice, and are encouraged to experiment 
and set up a series of dice rolling. By documenting 
their results in tally sheets they will learn a specific 
technique of data representation.

Figure 1: Cube nets of the odd dice for the probability project

Figure 2: Suggestion for 

documenting the occurrences
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Task 2
The second task is to roll the dice in a little game of 
dice for two students using the red and green dice. 
The student throwing the higher number will win 
and gets one point. The game will stop when one stu-
dent has gained 10 points. Again the students should 
make an assumption first and then use a tally list to 
write down the gaming results, and observe which 
dice is winning the game. It is necessary to give the 
students enough time to explore the different dice 
and to analyze which dice is better. The game and a 
systematic representation of the game result will lead 
to a reasonable good assumption of the better dice. 

Task 3
In the following task the students should play the dice 
game over and over again with two different dice in 
order to find “the best” dice, using one of the various 
suggested documentation styles for their assump-
tions and their results. With a systematic approach for 
testing all combinations of dice – this is encouraged 
by the proposed documentation forms – the students 
have to explore, communicate and argue to find the 
best dice of all. A demonstrative and helpful tool for 
comparing the dice are the tables showing for each 
pair of dice the possible events and marking the win-
ning dice (see Figure 3).

These tables give insight into the winning probability 
of each pair of odd dice. For example have a look at the 

top left corner of Figure  3. There you can see dice C 
(red) and dice D (green) with all possible cases of roll-
ing dice results. Each table cell states (by colour and 
letter) which dice is the winning dice for a certain case. 
You can clearly see, that the red dice will win in more 
cases than the green dice (to be precise in 24 out of 36 
cases), thus making the red dice the better choice for 
the game. Evaluating all tables you will end up with 
a diagram shown in Figure 4. There is no dice with 
exclusively outgoing or incoming arrows in the dia-
gram, therefore none of the dice could be considered 

‘the best’, but you always find one dice which is – on the 
long run – better than (or at least as good as) a certain 
chosen dice. This will not imply you are winning in 
every turn of the game, but if you as second player 
in the game choose the “right” dice according to the 
diagram you will enlarge your winning odds and on 
the long run with many follow-ups of the game win 
the game more often.

Task 4
By using proposed forms of documentation the stu-
dents will result in a good overview of the winning 
odds of the dice and be able to answer the last task. In 
the final task the students are requested to discuss a 
given statement of student Jonas (illustrated in the 
teaching material), that you will always win the game 
if you take the second turn to pick one dice, and to 
argue on the question, why these dice are called “odd”. 
Here the students are trained to take a close look at 

Figure 3: Comparison of the odd dice
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the situation: Jonas’ remark just states that there will 
be a reasonable choice for a dice in response to a cho-
sen dice in the first draw. But there is no “best” dice at 
all. This finding is an explanation for the naming of 
the odd dice and linking these odd dice to the widely 
known “rock, paper, scissors” game with an analogous 
relation between the three possible events (there is 
always one beating another, but no move to win in 
every case).

RESEARCH QUESTIONS AND DESIGN OF STUDY

The following empirical findings will describe which 
approaches to probability are used by students work-
ing on the project “odd dice” and how their under-
standing of probability could be developed to a broad-

er approach by working on the tasks concerned with 
odd dice.

The probability project learning environment was 
applied in a primary school at Eitorf near Siegen 
(Germany) in a third grade class with 23 kids (11 girls, 
12 boys, age ranging from 8 to 10 years old, 5 with spe-
cial needs). The students were chosen because they 
were used to work on open projects since it is the usu-
al learning environment in this school. This was an 
important criterion to observe if and to what extent 
it is possible to make students understand a specific 
mathematical content like probability in such a learn-
ing environment setting. The project “odd dice” was 
processed by two groups with each four students and 
a third group with two students in about 2 hours. The 
student’s documents and observations of a trainee 
teacher (Nelia Kasemir who documented the students’ 
results in her final thesis, see Kasemir, 2013), are the 
basis for an interpretative approach for the in-depth 
data analysis. The trainee teacher was very familiar 
with this class and basically played the role of manag-
ing the working and learning process according to the 
work flow presented below (see Figure 5). Only in the 
first plateau phase some examples for probabilities of 
events were presented and in the later plateau phases, 
students were encouraged to share their intermediate 
results.

For evaluating these project products and learning 
and teaching processes, a work flow for mathemat-
ical projects of the teaching material “Spürnasen 
Mathematik” (see Helmerich & Lengnink, 2013, and 
Lengnink, 2012) could be used, following the “Think, 

Figure 4: Diagram showing the relation between the odd dice

Figure 5: Work flow for mathematical projects in classroom interaction
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Pair, Share” method (for example, presented in Barzel 
et al., 2007, p. 118).

The children are introduced to learning objectives 
and possible tasks in the project, before starting off 
with individual and group work. The students of 
third grade already acquired competence in dealing 
with probability in the sense of assigning several 
everyday-life situations to a probability continuum 
chart reaching from “impossible”,  over “unlikely” 
and “rather probable” to “certain”.  Before the odd 
dice project they worked on probabilities of usual, 
regular dice and the urn model and projects on prob-
ability of drawing a certain colour out of a package 
of chocolate beans, and the probability of letters in 
words and de-coding strategies in Caesar code appli-
cations. Within a sharing circle the pre-knowledge 
was re-activated. The recurrence of plateau phases, 
where children share their ideas and preliminarily 
results marks the important issue of reflecting the 
process and give teachers the opportunity to adjust 
the children’s work for the next working phase.

ANALYSIS OF THE WORKING PROCESS 
AND RESULTS OF THE STUDENTS

This phase model will be used to analyze the learning 
process and to show different approaches to probabili-
ty as seen in the students’ documents. In the first phase 
the students’ previous knowledge on and experiences 
with probabilities are activated by collecting situa-
tions in everyday life in which the term ‘probability’ 
appear. The students are asked to find a definition 
for probability and state some events which in their 
opinion are probable, impossible definite. The most 
common paraphrase for a “probable event” used, was 
something “that could happen, but doesn’t have to.” 
With this preparation the students start with their 
group work on different probability projects.

In the second phase the students started off with their 
work on the project tasks. The students mainly worked 
together in pairs of two, which were formed at ran-
dom. With the first task of the “odd dice” project two 
approaches to probability are activated: the students 
are supposed to estimate the number of occurrences of 
the dice faces which activates subjective views. Some 
students decided to analyze the dice of their favorite 
colour or the dice with their lucky number on it. The 
only notion before starting the rolling experiment 
was on dice C (red) with exclusively threes on each 

face. It was obvious for the children that this dice will 
produce the event ‘3’ all the time. Other estimations 
were not made. With rolling the dice the frequentist 
approach came into action. It seemed clear that rolling 
the dice several times will show, which results one can 
get with each dice. However, some students restricted 
their tally sheet only to some numbers on the dice, so 
the actual distribution of the events is not represented 
but could be extracted from the notes. For example 
Simon (see Figure 6) rolled all the dice ten times, so 
you can calculate the number of occurrences of the 
other dice rolling results. Final remarks on the prob-
abilities or a location in the probability continuum 
were not made at this stage.

The students stepped on to task 2 and the comparison 
of dice. Interestingly some students started the game 
using both the same coloured dice (see Figure 7). This 
could be explained by the need to become more famil-
iar with these odd dice and to set up a situation ensur-
ing a level playing field. In these cases the students 
achieved as expected narrow outcomes in their game.

To overcome this strategy and to get to the actual task 
it was necessary to compare the first results in a pla-
teau phase. Thereby Jule and Laura were encouraged 
to proceed with the comparison of dice. In Figure 8 
the results of the comparison of the blue and the yel-
low as well as the red and green dice are shown in a 
conjoint table.

In this task the difficulty occurred that the results 
of the game did not represent the expected insight 
into the relation of the dice since the game stopped 

Figure 6: Simon’s tally sheet on task 1 (marking the results for the 

red (“rot”), green (“green”), yellow (“gelb”) and blue (“blau”) dice)

Figure 7: The table of Jule and Laura (“Würfel” means dice)
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with one student gaining ten points. To get over this 
problem, it might have been helpful to have a system-
atic look at the dice and their faces and draw tables as 
shown in Figure 3. Due to the limited time for the proj-
ect during class this was not worked out in detail. But 
the students nevertheless tried to figure out whether 
there is always a dice for winning the game like Jonas 
suggested. In this process it is interesting to state that 
the students did not carry out the systematic compar-
ison according to the classic approach to probability 
but fall back on subjective views. Looking at Simon’s 
documentation of task 4 (see Figure 9) reveals that 
Simon (in the table abbreviated to “Sim”) plays the 
game with Saheb (short “Sah”) by choosing a pair of 
dice, roll them, record the result and play again with 
a new pair of dice. This approach to focus on the sin-
gle outcome of the game could be characterized as a 
uni-structural thinking (Shaughnessy, 2007; Watson 
& Kelly, 2004). Thinking in relations and an under-
standing enriched by relational conceptions was not 
achieved of Simon. This emphasizes the challenge of 
teaching probability, to master the mental step from 
a subjective approach to the more elaborated classic 
approach of probability.

DISCUSSION AND CONCLUSION

Such mathematical projects like the one on odd dice 
make it possible to let students explore different ap-

proaches to probability in an activating, experimental 
way. The project even shows the potential not only to 
stick to the subjective and frequency interpretations 
of probability but to merge these aspects to the classic 
approach. The broader view on probability is espe-
cially inherent in the plateau phases when students 
have the opportunity to share their work achieved so 
far and could be enriched with some new ideas and 
strategies, also from the teacher, for further project 
work. In higher grades this project on odd dice could 
be unfold to a broader mathematical analysis of the 
odd dice using the classic approach to probability and 
calculating and comparing the probability for each 
number on the dice. This might be an approach to an 
extension of the probability concept to non-Laplacian 
experiments and the law of large numbers, since in 
the game situation with a limited number of dice rolls 
the experiment does not always lead to the theoreti-
cally expected outcomes. The project is a contribution 
to the fundamental mathematical idea of “data and 
chance” as it is stated in the national standards for 
mathematics teaching in Germany (e.g., KMK, 2004). 
It combines the idea of data collection by rolling the 
dice with the ides of chance by investigating the prob-
abilities of the dice. This study was the starting point 
for a broader investigation of mathematical ideas in 
stochastics in primary school teaching. It just gives 
some insight on the thinking and reasoning of prima-
ry school students, but shows the potential of such 
projects for diagnostic approaches in research of 
learning processes.
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This paper reports on preliminary results of a study aim-
ing to identify informal inference aspects that emerge 
when grade 8 students explore a statistical investiga-
tion using the software TinkerPlots for data handling. 
Examples from students’ work on one task in a sequence, 
designed to engage students in posing statistical ques-
tions about meaningful phenomena, in collecting and 
representing data and finally in making data-based in-
ferences, illustrate how informal statistical inferences 
emerge. The results provide suggestions for further re-
search and some educational implications are drawn.

Keywords: Informal statistical inference, statistical 

reasoning, statistical investigation, tasks, TinkerPlots.

INTRODUCTION

Students’ ability to reason about data and to use 
them effective and critically for prediction and deci-
sion-making is now a priority in statistics education, 
meeting the call for having statistically literate and in-
formed citizens in our data-driven society (Batanero, 
Burrill, & Reading, 2011). Informal statistical infer-
ence (ISI) is widely recognized as an important foun-
dation for statistical reasoning, given its potential to 
deepen students’ understanding of the purpose and 
utility of data in meaning making of the real-world, 
aspect that has been neglected in statistics education 
(Makar, Bakker, & Ben-Zvi, 2011; McPhee & Makar, 
2014). Hence, it is important to rethink the nature of 
students’ statistical school experiences in order to 
consider how to best develop their informal ideas of 
inference. Reflecting these concerns, this paper re-
ports on preliminary results of a study that aims to 
identify informal inference aspects that emerge when 
grade 8 students explore a statistical investigation 
using the software TinkerPlots (Konold & Miller, 2005) 
for data handling.

INFORMAL STATISTICAL INFERENCE

Informal statistical inference is described as a rea-
soned but informal process of “making probabilis-
tic generalizations from (evidenced with) data that 
extend beyond the data collected” (Makar & Rubin, 
2009, p. 83). For these authors, three key principles 
are fundamental to ISI, wherein the first is particu-
lar to the process of inference and the latter two are 
specific to statistics: (i) generalization (predictions, 
parameter estimates, conclusions) that extends be-
yond describing the given data; (ii) the use of data as 
evidence for generalizations; and (iii) the use of prob-
abilistic language for describing the generalization, 
including reference to levels of certainty about the 
drawn conclusions. Moreover, deriving conclusions 
that apply to a universe beyond the data leads natu-
rally to the need of providing persuasive arguments 
based on data analysis. Accordingly, Ben-Zvi (2006) 
argues in favour of an integration of both informal 
inference and informal argumentation when aiming 
to develop students’ statistical reasoning in rich learn-
ing contexts.

References to ISI appear in curriculum documents 
(e.g., Common Core State Standards Initiative, 2010; 
Franklin et al., 2005; National Council of Teachers of 
Mathematics [NCTM], 2000), as well as in recent re-
search in statistics education. The research advocates 
the development of students’ informal ideas of statis-
tical inference from the earliest years of schooling as 
it is a known area of difficulty for older students when 
formal ideas are later introduced (Ben-Zvi, Makar, 
Bakker, & Aridor, 2012; Makar, Bakker, & Ben-Zvi, 
2011). However, ISI should not be taught to students 
as an entity in itself but rather it would be preferable 
to focus the instruction on reasoning processes that 
lead to inference (Makar & Rubin, 2009). Thus, one 
possible approach to foster the emergence of students’ 
inferential practices is to embed those processes in a 
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data analysis cycle, like the PPDAC (Wild & Pfannkuch, 
1999). Presenting statistics as an investigative process 
to solve real-world problems may be quite motivating 
for students. They can engage in posing their own 
statistical questions (hypothesis) about a meaning-
ful phenomenon, designing and employing a plan to 
collect appropriate data, selecting adequate graphical 
or numerical methods to analyse the data, and finally 
drawing data-based conclusions and inferences that 
relate the results interpretation to the original ques-
tions (Franklin et al., 2005; McPhee & Makar, 2014). 
Due to their nature, statistical investigations often 
provide a distinctive context for observing students’ 
conceptual ideas about statistical reasoning, namely 
fundamental processes like variation, transnumera-
tion, evaluating statistical models and integrating con-
textual and statistical features of the problem (Wild & 
Pfannkuch, 1999). At the same time, they may involve 
students (even the younger ones) in fundamental 
components of informal inference, such as decision 
making and prediction (Makar & Rubin, 2009; Watson, 
2008). For teachers, the use of investigations also pro-
vide knowledge that can be used in the design, imple-
mentation, and assessment of instruction in statistics 
and data exploration (Henriques & Oliveira, 2013), 
since they incorporate domain-specific knowledge 
of students’ statistical reasoning. Accordingly, Pratt 
and Ainley (2008) argue that inferential reasoning 
and statistical investigations cannot be separated.

Additionally, the huge development of technology 
has provided teachers and students with new tools 
to explore the ISI in rich and meaningful contexts, 
including through the broader process of statistical 
investigation (Ben-Zvi et al., 2012). The educational 
community has been leading a number of studies on 
the affordances provided by dynamic statistics learn-
ing environments, such as the TinkerPlots (Konold & 
Miller, 2005), for making inferential reasoning acces-
sible to (even young) students, with very encouraging 
results (Ben-Zvi et al., 2012). These studies illustrate 
how the use of such software, in combination with 
appropriate curricula and instructional settings in-
troducing ISI, may help  students to develop a strong 
conceptual base on which to build later a more formal 
teaching of inferential statistics. 

RESEARCH QUESTION

While the referred perspectives and studies have 
begun to shed some light on important aspects of ISI, 

research results are still insufficient to guide an ef-
fective implementation of instructional settings that 
support students’ informal notions of statistical in-
ference. This paper addresses the following research 
question which has been used to structure the study 
and the analysis of the collected data: What aspects 
of informal inference do grade 8 students reveal when 
exploring a statistical investigation using the dynamic 
statistics software TinkerPlots for data handling?

THE STUDY

Background
This study arose in the context of a developmental 
research project (DRP), conducted by the two authors, 
aiming to provide opportunities for professional de-
velopment in statistics for basic education mathemat-
ics teachers in Portugal. The DRP is part of a larger re-
search project – Developing statistical literacy: Student 
learning and teacher education (Oliveira, Henriques, 
& Ponte, 2012) and strives to understand of how se-
quences of instructional activities, based on the use of 
the software TinkerPlots, promote students’ statistical 
reasoning. In Portugal, formal statistical inference is 
reserved for high school courses and, traditionally, 
grade 8 (13–14 years old) students are not exposed to 
ISI methods. The eleven basic education mathematics 
teachers, who accepted the invitation to participate 
in the DRP, are effective and innovative teachers, in 
the sense of including inquiry in their mathematics 
classes and became interested in learning how to use 
an instructional approach aligned with the recent 
curricular trends in school statistics (Franklin et al., 
2005; NCTM, 2000). 

Participants and methods
Research studies involving teaching experiments are 
especially powerful because they enable researchers 
and teachers to trace students’ individual and collec-
tive development in statistical reasoning during in-
struction. The study followed a teaching experiment 
design (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003) where a sequence of tasks and classroom im-
plementation conditions are improved through it-
erative cycles. The results reported here come from 
the study’s first cycle which was carried out during 
the second term of the school year of 2013/2014 in 
one class of thirty grade 8 students (20 boys and 10 
girls, which are referenced by their first names’ initial 
letter). The class teacher was one of the participants 
in the above referred DRP. Data collection included 
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students’ written work, screen records of their work 
with TinkerPlots (using AutoScreenRecorder 3.1 Pro) 
and audio and video records across the lessons. A 
qualitative and interpretative analysis of the data, 
using Makar and Rubin’s framework (Makar & Rubin, 
2009), provided insights about the characteristics of 
ISI that emerged in students’ work on a statistical in-
vestigation. 

Lessons context and tasks
A classroom culture which promotes inferential rea-
soning requires students addressing problems in an 
environment that encourages collaborative norms, 
statistical concepts (formal or informal) and one 
complex problem context where they face conflicts 
with their knowledge and beliefs about the world 
(Makar, Bakker, & Ben-Zvi, 2011). In all lessons, stu-
dents worked both autonomously in pairs and partic-
ipated in whole class discussions, in order to create 
a classroom culture that supported questioning and 
the use of evidence.

Participant teachers in DRP and the authors jointly 
selected and adapted or produced tasks and materials 
for a sequence of lessons aligned with the Statistics 
Reasoning Learning Environment principles defined 
by Garfield and Ben-Zvi (2008). Since in Portugal, in-
ference is not included in mathematics syllabus for 
this age group, the sequence of tasks was not explicitly 
designed to focus on inference. However, these tasks, 
using meaningful contexts and real data, provided 
opportunities to engage and simultaneously support 
students in several aspects of informal inferential 
practice. TinkerPlots software (Konold & Miller, 2005) 
was used in all tasks, as a tool for data handling, since 
it is easy to use and provides a dynamic learning en-
vironment to support the development of students’ 
statistical reasoning. Students can create and explore, 
in ways that they choose, the potential of different 
graphical representations and statistical measures, 
by using the drag-and-drop facility or a set of infor-
mal operators (e.g. separate, stack, and order). Taking 
advantage of the software’s tools the students can also 
engage in goal-directed activities that may lead to fur-
ther insights in their data examinations.

Two preliminary tasks (tasks 1 and 2) were applied 
to build students’ skills that they would need for con-
ducting a statistical investigation and for making in-
ferences, since they were not familiar with this kind 
of activity. Tasks 1 and 2 engaged students in explor-

ing real data using TinkerPlots, while developing key 
statistical concepts of syllabus as well as their reason-
ing. Since this was the students’ first contact with the 
software, task 1 was structured and oriented by a set 
of questions leading them to interpreting contexts, 
exploring data (available from TinkerPlots database) 
in several ways and using various representations 
(which were discussed regarding their adequacy to 
give evidence). Finally they used their knowledge of 
the data to answer one initial question and to make 
predictions. Task 2 involved students in comparison 
of distributions using simulations provided by the 
TinkerPlots tools.

This study focus on task 3 – The human body: a study 
in school. Following the previous activity, this task 
engaged students in a statistical investigation (Wild & 
Pfannkuch, 1999) to discover more about the students 
in their school. Students were required to use their 
previous knowledge about the context and statistical 
concepts and processes (e.g., understanding the need 
of data, graphical representations, distribution, var-
iability and sampling) to make informal judgments 
and predictions about the school population, based 
on data collected in their class. Finally, students were 
asked to explain their reasoning, integrating persua-
sive data-based arguments in their conclusions.

RESULTS: THE EMERGENCE OF 
STUDENTS’ INFORMAL INFERENCE

In this section, a description of students’ work in the 
context of a statistical investigation provides an op-
portunity to envision the role of this activity in the 
emergence of students’ informal inferential practices.

Making generalizations beyond the data
This component of informal inferential reasoning 
emerged in students’ work in different moments of 
the task. The teacher introduced the task in the whole 
class with an initial question aimed at having students 
collecting data and using them to make predictions 
and draw conclusions about a population beyond the 
collected data: “How would you characterize middle 
school students [grades 7, 8 and 9] of your school re-
garding some of Vitruvius’ measures such as height, 
foot size and arm span?”. In the subsequent whole class 
discussion, it was clear that students understood the 
utility of the samples in the inferential process, to 
draw conclusions, because they showed no intention 
to survey the entire school population to get the infor-
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mation they needed to answer the question. They said: 
“It is best to conduct a survey” (E) and “To randomly 
select [students] from grade 7 to grade 9” (R). Although 
they were not unanimous about how the sample could 
be collected and used to find out the characteristics of 
all school students, they stressed randomness as an 
important condition to ensure the representativeness 
of the sample. Due to time limitations, students agreed 
to collect data from their own class, although recog-
nizing the lack of representativeness of the sample.

After data collection, the teacher also asked them to 
formulate possible interesting questions (hypoth-
esis) about the phenomena in study and to predict 
how their questions might be answered, first without 
providing them with data. This was proposed to later 
confront students’ anecdotal answers with data-based 
evidences, pushing them to understand the need of 
data. Some students reveal inability to think about 
the data as an aggregate and to full make sense of the 
questions’ intention to help them to answer the ini-
tial question in the task. Some of the emerging ques-
tions/hypothesis such as “What is the biggest value 
for the arm span?” (W&F), “What is the percentage of 
students with more than 160 cm?” (B&R) or “Does the 
highest student has the bigger shoe?” (B&R) reveal a 
deterministic nature and did not prompt students to 
think beyond their data. As expected, some of these 
students justified their predictions based on guessing 
and simple observation: “Based on [the observation 
of ] my colleagues, I think that the average height of 
the students [boys] is 165cm” (M&S). Although these 
findings were consistent with the difficulties ob-
served in other studies (e.g., Meletiou-Mavrotheris 
& Paparistodemou, 2014), students had just collected 
their own data and this activity might have divert-
ed their attention from using inferentially the data. 
However, the majority of students seemed to accept 
the existence of variability and formulated general 
questions/hypothesis such as “Boys tend to be bigger 
than girls” (T&D), “Do boys and girls have similar arm 
spans?” (D&B) or “I think that maybe the arm span has 
a higher value for boys” (B&B). These statements show 
students’ attempts to find one global description that 
accounts for variability between the groups. These 
claims could be considered a progress if compared to 
the ones in the previous questions, which are mostly 
local. However, they still focus on describing the class. 
These predictions also contained elements of uncer-
tainty, which reveal that students were beginning to 
adopt a statistical perspective of trend. 

After the exploration of the collected data (from the 
class), using the TinkerPlots, each group wrote a re-
port predicting what they might find about the height, 
foot and arm span, more generally, for the whole 
school, and explaining what evidences they had to 
support their conclusions. These reports aimed at 
pushing further the students to see their own data as 
evidence for making inferences about whole school, 
building their ability to think “beyond the data”. As 
occurred with young students (Watson, 2008), their 
initial focus on describing their own class data did 
not restrict them from creating more global interpre-
tations of data. In fact, students’ responses suggest 
that many of them did see the data collected in their 
class as useful evidence for their predictions. The 
excerpts below show that some students assumed that 
data collected in the class would have very similar 
properties to the data from the whole school, and gen-
eralized the results: “Considering the whole school 
students, the boys’ height and arm span are bigger 
when compared with the girls, based on our class” 
(A&E) and “Boys tend to be bigger than girls, based 
on our class data” (A&N). It is interesting to notice that 
in their predictions students used probabilistic lan-
guage and were attentive to the distribution and not 
to specific measures as they were in the formulation 
of the initial questions. This finding may suggest that 
students associated the generalization to uncertainty 
and that previous work in organizing and describing 
their own data supported them to go further in the in-
ferential reasoning by helping them to improve their 
thinking of the data as an aggregate and to consider 
variability. Even though they have found the average 
height for their class, their predictions went beyond 
that to include uncertainty, adopting the statistical 
perspective of trends that are generally true but still 
have exceptions: “On average, boys are higher. But we 
also observe boys with 1,4 [m] who are shorter than 
girls (…)” (W&F). On contrary, a noteworthy number 
of students predicted that there would be some dif-
ferences, as observed in the following claims: “The 
average height of the school students probably will in-
crease due to students’ natural growth” (M&S), “Boys 
will be higher than girls, so the average will move 
towards the boys’ value because, probably, there are 
more boys than girls in school” (T&D) or “Although 
some differences in the height may occur, the average 
height will be higher, depending on the grade” (J&D). 
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Using data as evidence for generalizations
Making predictions about the whole school from 
their data was evident across the groups of students. 
Initially, students explored the data collected in their 
class, based on graphical displays created as they use 
the TinkerPlots. Given that students have not been 
oriented toward a specific graph, it was interesting 
to observe that they created a variety of graphical dis-
plays and adequately used them to represent and in-
terpret their own data to get evidence for their claims, 
which shows their meta-representational competence 
(English, 2014). Dot plots were the most popular rep-
resentations to gather evidence for answering deter-
ministic questions focused on individual features, 
but most students also created boxplots to compare 
the two genres regarding the variables in study, as 
the ones shown in figure 1. These students’ graphical 
displays were accompanied, respectively, by claims 
such “Students’ average height is 162,7” (S&P), “The 
percentage of students with more than 160 cm is 55%” 
(B&R) and “Boys are higher than girls. Boys’ average 
is 163 and girls’ average is 160 cm” (E&S).

Students started comparing groups by noticing spe-
cial values within distributions (such as the average 
or the maximum) and then moved to think about 
between-group variability. The comparison activity, 
based on their representations, also supported their 
claims about the whole school, as they said: “Boys 
tend to be bigger than girls, based on our class data” 
(A&N) or “We have based on our class which has more 
boys than girls and they are higher” (D&B). Moreover, 
their claims are not based only on data but also on 
their knowledge about the context which is familiar 
to them. For example, one group states “I think that 
for the whole school we will find something similar 
because our class is the 8th grade and that is the “me-
dian” of the middle school [it includes grades 7, 8 and 
9]” (R&R). The exploration of a sample (data collected 
in the class), guided by the initial questions and fa-
cilitated by the visualization provided by graphical 
representations created in TinkerPlots, supported 
the students’ involvement in the subsequent gener-
alization of the observed characteristics and the use 
of such data as evidence.

Using probabilistic language to 
describe generalizations
Students’ responses, presented in previous sections, 
suggest that they recognized that their predictions 
were tentative since they included, in their claims, 

several elements of uncertainty expressed by the 
terms “probably”, “maybe” or “something similar” 
instead of equal. They also used the term “tend to be” 
showing that they started to adopt a statistical per-
spective of trend. In all these cases, the uncertainty 
was expressed qualitatively, without confidence levels 
or margins of error (Dierdorp, Bakker, van Maanen, 
& Eijkelhof, 2012), as expected taking into account the 
students’ statistical experience. Nevertheless, this 
component of ISI was the less evident in students’ 
work, suggesting the need of specific work regarding 
probabilistic language.

DISCUSSION

In this paper, we described some examples of students’ 
ISI that emerged through an informal data-based ap-
proach, rooted in the statistical investigation cycle 
(Wild & Pfannkuch, 1999). Despite the reported find-
ings are limited to one task in one class, those exam-
ples give us some insight into the students’ capabili-

Collection 1 Options

M

F

14
6,

0

14
8,

0

15
0,

0

15
2,

0

15
4,

0

15
6,

0

15
8,

0

16
0,

0

16
2,

0

16
4,

0

16
6,

0

16
8,

0

17
0,

0

17
2,

0

17
4,

0

17
6,

0

17
8,

0

18
0,

0

18
2,

0163,7

160,6 69%

31%

Box Plot of altura
172,0

gé
ne

ro
M

F

altura

Circle Icon

Collection 1 Options

14
6,

0

14
8,

0

15
0,

0

15
2,

0

15
4,

0

15
6,

0

15
8,

0

16
0,

0

16
2,

0

16
4,

0

16
6,

0

16
8,

0

17
0,

0

17
2,

0

17
4,

0

17
6,

0

17
8,

0

18
0,

0

18
2,

0

0

5

162,7

co
un

t

altura

Image Icon

Figure 1: Students’ graphical displays



Students’ informal inference when exploring a statistical investigation (Ana Henriques and Hélia Oliveira)

690

ties and the challenges they faced in making informal 
statistical inferences when experiencing statistics as 
an investigative process.

All students, even in the less successful groups, were 
able to demonstrate some aspect of informal statisti-
cal inference during the lessons. Students drew their 
conclusions based on the data they had collected from 
their class and often used the data to make inferences 
about an unknown population (whole school). Few 
students used probabilistic language for describing 
their generalizations but even those who made it had 
difficulties in including references to levels of uncer-
tainty. These results highlight the need of working 
on probabilistic language issues, helping students to 
evolve from a deterministic perspective of inference 
to include uncertainty in their statements.

There are also some evidences from the study that 
the software TinkerPlots was used by the students as 
a reasoning tool (Ben-Zvi, 2006) providing opportuni-
ties for structuring and displaying data in ways they 
choose and understand. However, this was not the 
focus of this study, and although students’ interaction 
with the software in the previous tasks seems to have 
contributed to their meta-representational compe-
tence (English, 2014) the complex role of technology 
in supporting ISI deserves further discussion. These 
encouraging findings do suggest that the adoption of 
a statistical investigation approach in a technological 
environment has the potential to make ISI accessible 
to students, as observed in other studies (Ben-Zvi et 
al, 2012).

Finally, many studies show that several skills are re-
quired for the emergence of students’ practices of ISI, 
such as: articulating or predicting from observations, 
recording and organizing data using invented meth-
ods and working with aggregates and variability (e.g., 
McPhee & Makar, 2014). The proposed sequence of 
tasks in this DRP appeared to have supported students’ 
development of such skills but they still need to be 
re-examined before they are used in a new teaching 
experiment. Further analysis of students’ interaction 
within the groups, which were not considered in this 
study due to time and space limitations, may convey 
new and deeper insights on their reasoning, as well 
as to contribute for the reformulation of the tasks and 
their implementation conditions.
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The research reported here uses common items to assess 
statistical reasoning of teachers enrolled in a gradu-
ate-level education course to evaluate their reasoning 
about sampling variability. In particular, we discuss key 
aspects of a purposeful course design aimed at improv-
ing teachers’ learning and teaching of statistics, and the 
resulting different ways of reasoning about sampling 
variability that teachers exhibited before and after the 
course.
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assessment.

Given the strong attention to statistics in the sec-
ondary curriculum in many countries (e.g., England 
Department of Education, 2014; CCSSI, 2010), many 
teacher professional development efforts and gradu-
ate courses include more opportunities for secondary 
teachers to develop their statistical reasoning and to 
learn pedagogical strategies for teaching statistics. 
Researchers have investigated the statistical knowl-
edge needed for teaching using various frameworks 
(e.g., Burgess, 2011; Noll, 2011). Each of these frame-
works has identified teachers’ own statistical reason-
ing as a foundational aspect of their ability to teach 
statistics.  

Our research is situated within the collaborative de-
sign and implementation of a graduate course across 
two institutions focused on teaching and learning 
statistics. Our design work is largely influenced by 
Pfannkuch and Ben-Zvi’s (2011) recommendations for 
designing experiences to develop teachers’ statisti-
cal reasoning. Though our courses aim to develop 
teachers’ understanding for teaching statistics, in 
this paper we report on teachers’ reasoning related 
to sampling variability, without regard to their under-

standing of how to teach others about sampling varia-
bility. To help assess the impact of the experiences we 
designed in our courses, we used both qualitative and 
quantitative data sources. The focus in this paper is 
to examine how teachers’ reasoning about sampling 
variability changed. 

Understanding sampling variability has been estab-
lished as difficult, but key, in one’s overall statistical 
reasoning (e.g., Shaughnessy, 2007). Two aspects of 
sampling variability are reported in this paper: rep-
resentations of sampling variability and the effect of 
sample size on variability. Researchers have found 
that the understanding of variability from expected 
values among samples improves with experience and 
age (e.g., Watson & Kelly, 2004). The role of sample size 
in variation from expected values has also been the 
focus of much research. Concerning the effects of sam-
ple size, researchers have reported that students, and 
teachers, use equiprobable reasoning in determin-
ing the likelihood of two events without considering 
differences in the sample size of the two events. (e.g., 
Watson & Callingham, 2013). In a meta-analysis, Noll 
and Sharma (2014) discussed the Hospital Task, one 
of the four items reported here, which has been used 
to assess reasoning about the effect of sample size 
on parameter estimation. Since the original version 
presented by Kahneman and Tversky (1972), it has 
been revised and implemented with students from 
approximately 10 years of age through college with 
the predominant response being the equiprobable 
response. In 2013, Lee, Doerr, Arleback, and Pulis re-
ported that after experiencing an earlier version of 
our graduate course, teachers still exhibited difficul-
ties with sampling variability, including a tendency to 
apply equiprobable reasoning by ignoring the effect 
of sample size on variability. Our reflections on those 
findings led to the current work.
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COURSE AND PARTICIPANTS

Following from the results of Lee and colleagues (2013), 
a team of four instructors from two institutions began 
conceptualizing ways to improve a graduate course 
focused on teaching and learning statistics. Related 
to sampling variability, suggested improvements 
included readings and discussions targeted to draw 
attention to students’ tendency for equiprobable rea-
soning. These suggestions also included purposeful 
task design using technology tools for data explora-
tion. The team met weekly via videoconference for an 
academic year (2013–14) to design a 15-week course, 
and to discuss issues and alter plans as the course was 
taught in Spring 2014. The course consisted of oppor-
tunities for teachers to engage in statistical investi-
gations with real data and tasks designed to develop 
their understandings of distribution, samples and 
sampling distributions, and inferential statistics, es-
pecially using randomization approaches. The course 
used the dynamic software Fathom (Finzer, 2005) and 
TinkerPlots (Konold & Miller, 2011), as well as online 
applets and resources such as StatKey (lock5stat.com/
statkey). The course included readings and discus-
sions about (a) the nature of statistical reasoning, and 
(b) students’ learning and reasoning related to the 
aforementioned topics. Software tools were used to 
support teachers’ learning by allowing them to flex-
ibly explore graphical representations, easily com-
pare data sets, and make changes to data in displays 
to explore conjectures. The software provided the 
simulation tools necessary to create representations 
of a population, a sample, and an empirical sampling 
distribution. Given the research on students’ struggle 
to understand sampling distributions (e.g., Saldanha 
& Thompson, 2014), we saw these representations as 
critical for developing teachers’ knowledge of sam-
pling variability.

Across institutions, the course served a variety 
of graduate students (n = 27, 8 in Course1 and 19 in 
Course2). Participants consisted of one pre-service 
teacher (5th year senior), six pre-service and 11 in-ser-
vice teachers in masters programs, one full-time mas-
ters student in mathematics education, seven doctoral 
students in Mathematics or Mathematics Education 
(three currently teaching in post-secondary contexts), 
and one doctoral student with interests in statistics 
education. Twenty-one participants were female and 
six were male, with six participants for whom English 
was a second language. Most participants had com-

pleted the equivalent of an undergraduate major in 
mathematics, with all but two having had at least one 
course in statistics. Henceforth we refer to course 
participants as teachers.

DATA SOURCES AND ANALYSIS

One source of data was participants’ responses to 
a statistical concept inventory constructed to align 
with our course goals, content, and experiences. On 
the first day of class and during the final week of the 
course, all participants completed a 20-item multiple 
choice test with items in five categories: distributions 
(5 items), comparing distributions (3 items), probabil-
ity (2 items), sampling variability (7 items), and formal 
inference (3 items). Eleven items were drawn from 
validated instruments (delMas, et al., 2007; Garfield, 
2003), with seven selected from the ARTIST database 
(apps3.cehd.umn.edu/artist), and two items adapted 
from research (e.g., Watson & Kelly, 2004; Zieffler et 
al., 2008). The 20-item test was agreed upon by instruc-
tors during the planning phase to ensure items had 
content validity to measure concepts to be addressed 
in the course. For two of the four sampling variability 
items we highlight in this paper, teachers were asked 
to justify their choices.

After the course, semi-structured interviews were 
conducted with selected teachers (n = 14) across in-
stitutions to understand changes in their reasoning 
and perceptions of what might have influenced those 
changes. Interviews (45–90 minutes) were audio or 
video taped. Interviewees were purposely selected 
because of trends in their responses to items on the 
test. For example, some were selected because they 
had improved from an incorrect response to a correct 
response on several items, while maintaining incor-
rect responses on other items.  During the interview, 
participants were shown an item, given time to reread, 
told which choice (A, B, C, etc.) they had selected on 
the pre and post-test, and then asked about their rea-
soning. Based on responses, the interviewer asked 
questions prompting them to elaborate about their 
reasoning. 

Descriptive statistics and t-tests were used for the 20-
item assessment to document the change in teachers’ 
performance on the pre and post-test, both overall and 
on individual subscales. Teachers’ responses to the 
two open-ended items and responses of the 14 teach-
ers interviewed were open coded to identify emerging 
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themes to gain insight into the teachers’ reasoning 
about the changes in their responses.

RESULTS

Analysis of the pre and post-test showed significant 
improvement in teachers’ overall scores (out of 20), 
with a mean increase of 1.84 points (s.d.=1.98). Strong 
gains were found in the items related to sampling var-
iability, with a mean increase in scores (out of 7) of 
1.3055 (s.d.=1.19). In this paper, we report on changes 
in teachers’ reasoning for two key categories: (1) the 
effect of sample size on the likelihood of outcomes, 
and (2) representations of sampling variability.

Two items, Brown Candies and Two Hospitals, per-
tained to the effects of sample size on the likelihood 
of outcomes from a sample. At the beginning of the 
course, about half of the teachers correctly answered 
each of these items. Two additional items, Sample 
Means and Sample Proportions, asked teachers to 
reason about expected variability in a distribution 
of sample statistics when sampling from a given 
population distribution. For both of these items, a 
larger proportion of teachers were able to correctly 
respond at the beginning of the course, 78% and 70% 
respectively.

Effect of sample size on the 
likelihood of outcomes
Table 1 illustrates the distribution of responses for the 
Brown Candies item. There was a major shift to 83.2% 
responding correctly on the post-test. Most notable 
was the decrease in the number of teachers choosing 
the equiprobable response (E). 

By the end of the course, the teachers gained a clearer 
understanding that smaller sample sizes have greater 
variability than larger sample sizes, thus resulting 
in small samples being more likely to have larger de-
viations from the expected percentage of 50% brown 
candies. The following is representative of teachers’ 
responses when asked to explain their reasoning 
about the Brown Candies item.

The large [bag] is more like 50%, the small [bag] is 
more unlikely because of smaller sample size. For 
example you flip a coin, you have more chance to 
have 8 and 2 whereas you flip 200, you are more 
likely to get 50%. (Teacher 27)

The single teacher to choose ‘B’, the larger bag having 
more variability, on the post-test, chose the equiprob-
able response ‘E’ on the pre-test. However, during the 
interview, she realized she had chosen in error and 
stated her reasoning: 

Maybe at first when I answered it, at first I think 
I didn’t have any idea about sample size. But af-
ter we learned something about sample size in 
class and how it will affect, you know, like the 
variability... [reading the problem] So Sam is the 
one having a larger, a large family sized bag? 
So that implies that large family sized bag will 
have a large sample size? And that implies that we 
should have less variability? I think I was wrong. 
So it should be ‘C’. (Teacher 1)

This teacher appeared to have difficulty with the com-
plex terminology in the item rather than a misunder-
standing of the underlying concept. Three teachers 

Brown Candies: A certain manufacturer claims that they produce 50% brown candies. Sam plans to buy a large fam-
ily size bag of these candies and Kerry plans to buy a small fun size bag. Which bag is more likely to have more than 
70% brown candies?

Pre-Test Post-Test

Sam, because there are more candies, so his bag can have more brown can-
dies.

0.0% (0) 0.0% (0)

Sam, because there is more variability in the proportion of browns among 
large samples.

3.7% (1) 3.7% (1)

Kerry, because there is more variability in the proportion of browns 
among smaller samples.

51.9% (14) 83.2% (23)

Kerry, because most small bags will have more than 50% brown candies. 3.7% (1) 0.0% (0)

Both have the same chance because they are both random samples. 40.7% (11) 11.1% (3)

Table 1: Results of the Brown Candies Item
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chose ‘E’, the equiprobable response, on both the pre 
and post-test. One teacher explains:

I was thinking about this idea of flipping a coin... 
flipping it head, the next time you flip, it is 1 over 
2. So ... making an analogy to this it says that a 
certain manufacturer claims that they produce 
50% brown candies... So it doesn’t really matter 
whether the bag has ten candies or a thousand 
candies... there is 50% chance I mean 50% of them... 
would be brown. So long as the bag contains can-
dies from this manufacturer. (Teacher 7)

This teacher is equating samples in the large and small 
bags of candies to tossing a single coin rather than a 
series of coin flips in the long or short run.

For the related Two Hospitals item, teachers needed 
to reverse their thinking by choosing the hospital that 
was less likely to record a high percentage of female 
births. Teachers were also asked to write about their 
reasoning for this item on the test. Table 2 shows re-
sults for the Two Hospitals item in which gains were 
made in teachers’ correct responses. Again, we saw 
a decrease in the number of teachers choosing the 
equiprobable response (C) and an increase in the cor-
rect choice (A).

Of the 22 teachers answering this correctly on the 
post-test, the responses below are representative of 
their thoughts about sample size and variability.

So Hospital B is more likely to have 80% or more. 
And then I also thought about the numbers, if 
you’re doing 50 births a day, 40 girls out of 50 
seems like a lot compared to 8 out of 10. (Teacher 3)

The larger hospital will have less variability 
from the expected value of 50% boys and 50% 
girls. (Teacher 17)

These teachers illustrated an understanding of the re-
lationship between sample size and variability. In the 
open-ended responses, four teachers also referred to 
the actual number of births, stating 8 out of 10 female 
births was a likely outcome for the smaller hospital 
but 40 out of 50 female births was unlikely for the 
larger hospital. During interviews, six teachers noted 
the conceptual similarity between the Brown Candies 
and Two Hospitals items and that they had to “reverse” 
their thinking for the latter.

Of the five teachers choosing incorrectly on the post-
test, three of them indicated the smaller hospital was 
less likely to record a high percentage of female births 
(B). During interviews with two of these teachers, they 
indicated they had misread the problem on the post-
test. “Yeah ‘A’, the big one. The reason is because there 
is more variability... [laughs]. The answer is wrong but 
my explanation is correct. There is more variability 
in the small sample.” (Teacher 6) Both teachers had 
responded instead to which hospital would be more 
likely to record 80% female births. 

The remaining two teachers responding incorrectly 
on the post-test chose the equiprobable response. One 
of them chose the equiprobable response on the pre 
and post-test, as he had done for the Brown Candies 
problem. His open-ended response on the post-test 
revealed his reasoning, “Each birth is independent of 
the other births and there is a 0.5 probability that each 
birth (independent) of others would result in a boy or 
a girl.” (Teacher 7) Both teachers demonstrated the 
difficulty of dispelling the notion of equiprobability 
of events with small and large samples.

Representations of sampling variability
The Sample Means and Sample Proportions items as-
sess teachers’ understanding about sampling distri-
bution by asking teachers to predict variability from 
expected outcomes, using different representations. 

Two Hospitals: Suppose about half of all newborns are girls and half are boys. Hospital A, a large city hospital, re-
cords an average of 50 births a day. Hospital B, a small, rural hospital, records an average of 10 births a day. On a par-
ticular day, which hospital is less likely to record 80% or more female births?

Pre-Test Post-Test

Hospital A (with 50 births a day) 51.9% (14) 81.5% (22)

Hospital B (with 10 births a day) 14.8% (4) 11.1% (3)

The two hospitals are equally likely to record such an event 18.5% (5) 7.4% (2)

Not able to determine based on given information. 14.8% (4) 0% (0)

Table 2: Results of the Two Hospitals Item
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The Sample Means item provides a graphical display 
of the population distribution with the mean and 
standard deviation, and asks teachers to choose the 
most likely dotplot of five sample means of size 10. 
The Sample Proportions item gives the population 
proportion numerically and asks which set of five 
proportions from random samples of size 20 is most 
likely. 

Table 3 shows the distribution of teachers’ responses 
on the pre and post-test for the Sample Means item. 
Initially 78% of the teachers were able to identify 
reasonable variation from expected. This number 
increased by 11% after the course. Further examining 
the open responses and interviews gave insight into 
their reasoning. 

Seven of the 14 teachers interviewed were able to elim-
inate too little variation (response a), and too much 
variation (response b), indicating a strong sense for 
reasonable expectations in variation. For example, 
Teacher 15 stated, “Here with only five samples, I 
think ‘a’ would be too perfect. I would throw out ‘b’ 
because the chance you have 10 values with the mean 
of 8.5 would be very slim, if even ever [pointing to dot 
above 8.5 on dotplot]”. Four of the teachers were able 
to distinguish between the population, samples and 
sample means, and the sampling distribution. “I try to 

grasp my head around five students with 10 values, so 
that this dot represents the mean of 10 values, not just 
one value I picked out” (Teacher 15). In addition, they 
could incorporate the sample size into the expected 
variability of the sampling distribution. As an exam-
ple, Teacher 11 replied: 

Sample 10 seems to me not a large sample size 
set of data so I am certainly expecting… if I take 
1000 values, I am convinced that the sample mean 
should be put together. With 10 values I am sus-
picious. That’s possible but less probable. And 
by exactly the opposite reasoning, 10 seems big 
enough that I see so much variation that I see. No 
way I can quantify... that is too much variation 
of sample 10. That dot [pointing to right dot in 

‘b’] I should have many values over here [point-
ing to right tail of the population distribution] 
that’s simply outrageous; I believe if it is 1 sample 
[pointing to ‘b’].

When reasoning about the population, samples, and 
the distribution of sample means, the teachers either 
went back to the graph of the population to estimate 
the means, or used the numerical statistics given to 
evaluate the possibility of the sample means.

Sample Means: The distribution for a population of measurements is presented 
at the right. The mean is 3.2 and the standard deviation is 2. Suppose that five stu-
dents each take a sample of ten values from the population and each student calcu-
lates the sample mean for his or her ten data values. The students draw a dotplot of 
their five sample means on the classroom board so that they can compare them.
Which of the following dotplots do you think is the most plausible for the one they 
drew on the board?

Pre-Test Post-Test

14.8% (4) 3.7% (1)

7.4% (2) 7.4% (2)

77.8% (21) 88.9% (24)

Table 3: Results of the Sample Means Item
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I think the new SD should be between 1/2 and 1. I 
don’t know if 10 is large enough, but with large 
number of sample, the sampling distribution is 
approximate a normal distribution so I think if 
the mean is here [point to about 3.2 in ‘c’] so other 
will be 1/2 SD from the mean and other is about 
1 SD within the mean. (Teacher 18)

It is about 76%, then 2SD of 95%... I am looking 
for most of the things within that. This is like 8.5, 
it is way out of range. This [pointing to ‘a’] does 
not have enough of deviation within 1 SD, they 
cramp together. ‘C’ seems more within the 2SD. 
(Teacher 30)

These responses reveal teachers’ reasoning about 
sample means using the sampling distribution and 
the Central Limit Theorem.

Three teachers who got this item wrong on the post-test 
did not show a robust understanding of population, 
sample, and sampling distribution. For example, one 
teacher seemed to believe the distribution of sample 
means should resemble the population distribution 

“I think ‘b’ is making the most sense because I can see 
the skewness to the right.” The sampling distribution 
remained complicated for her even though the course 
focused extensively on that construct.

Table 4 shows the distribution of teachers’ respons-
es on the Sample Proportions item. While teachers 
(70.4%) began our course with a good intuition about 
variation from expected, almost all correctly respond-
ed to this item after taking the course. 

Teachers’ interview comments indicated they were 
able to eliminate wrong options based on their sense 
of variability from expected. For example:

I eliminate ‘C’ because of the 5% and 95%. If I know 
35% of the candies are yellow, I know it is not im-
possible but, I just don’t see someone picks 20 
candies all but one being yellow and I know there 
are enough candies in there just 35% of 1000, it 
could happen. I just, 20 candies is not enough to 
see the perfect 35% every time. One kid might see 
it; not every kid might see it. (Teacher 13) 

For the teachers who chose an incorrect response, 
they seemed to be using either equiprobable reason-
ing or the thinking that anything can happen. 

Reasoning across Items
At the beginning of the course, only 10 of 27 teach-
ers (37%) answered both the Brown Candies and 
Two Hospitals items correctly.  Of the 13 teachers 
choosing incorrectly on the Brown Candies item, the 
predominant response chosen by 11 of them was ‘E’, 
the equiprobable response (Both have same chance 
because both are random samples). Of these 11, only 
four teachers chose the equiprobable response for 
the Hospital item as well. Another common miscon-
ception that larger sample sizes have greater varia-
bility was demonstrated by one teacher for the Brown 
Candies item and four teachers for the Hospital 
Problem. 

After the course, 20 out of 27 teachers (74%) correctly 
responded to both items; a marked increase from the 
pre-test. Of the remaining seven teachers, three chose 
an equiprobable response to one of the items, repeat-
ing their error from the pre-test. There was only one 
teacher who exhibited an equiprobable misconcep-
tion for both items on the pre-test and the post-test.

For the Sample Mean and Sample Proportion items, 
before the course 16 out of 27 (59%) teachers correctly 
answered both items. By item, 21 judged the variation 

Sample Proportions: Imagine you have a barrel that contains thousands of candies with several different colors. We 
know that the manufacturer produces 35% yellow candies. Five students each take a random sample of 20 candies, 
one at a time, and record the percentage of yellow candies in their sample. Which sequence below is the most plausi-
ble for the percent of yellow candies obtained in these five samples?

Pre-Test Post-Test

30%, 35%, 15%, 40%, 50%. 70.4% (19) 92.6% (25)

35%, 35%, 35%, 35%, 35%. 14.8%  (4) 3.7% (1)

5%, 60%, 10%, 50%, 95%. 3.7% (1) 0% (0)

Any of the above. 11.1% (3) 3.7% (1)

Table 4: Results of the Sample Proportions Item
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in a graphical format correctly whereas 19 selected a 
correct response for the question concerning varia-
tion in a numerical format. By the end of the course, 
almost all teachers correctly answered both items 
(24/27, 88.8%). 

DISCUSSION AND CONCLUSIONS

Overall, the teachers improved their understanding 
about sampling variability, in particular the relation-
ship between sample size and variability, and varia-
bility from expected. This could be attributed to the 
extensive focus on statistical investigation and many 
experiences with simulations in which attention was 
drawn to expectations from a population distribu-
tion, collecting samples and sample measures, and 
discussing the distribution of sample measures. A few 
teachers still had difficulty on these items, corrobo-
rating prior findings that sampling distribution and 
sampling variability is complicated to understand 
(e.g., Saldanha & Thompson, 2014). 

The results of this study also confirm that equiprob-
able reasoning can be misapplied in reasoning about 
samples of different sizes, and that this reasoning may 
become more stable for some teachers (e.g., Watson 
& Callingham, 2013). We observed that for two of the 
teachers, even with intensive experiences with vari-
ability, they still held a deterministic understanding 
of probability. This might be rooted in their early ex-
posure to theoretical probability that they need to 
revisit and re-evaluate in order to build up a robust 
understanding. 

We also observed that teachers could develop a sound 
understanding about sampling variability and reason 
correctly about an item, yet still choose a wrong an-
swer. This resulted from a misreading of a problem 
or a misunderstanding of a particular word. Also, for 
the Sample Means item, teachers could give a correct 
answer, reasoning with a sense of variability from 
expected without necessarily understanding the re-
lationship between a population, samples, and the 
sampling distribution. Thus, we are concerned that 
this item may be more useful for measuring under-
standing of variation from expected values rather 
than sampling distributions.

This study adds to the sparse literature related to 
teachers’ reasoning about statistics, focusing on their 
understanding of sampling variability. It illustrates 

how a carefully designed graduate-level course in 
teaching and learning statistics improves teachers’ 
understanding of important statistical concepts. In 
particular, the focus on statistical investigation and 
reasoning experiences, and the emphasis on a sim-
ulation approach for inference, seems to improve 
teachers’ knowledge about sampling variability. 
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This paper focuses on a task design that is aimed at elic-
iting young students’ reasoning about uncertainty as it 
relates to their personal degree of confidence through a 
Bayesian inspired informal inferential reasoning about 
chance games. This Bayesian inspired approach is de-
scribed and discussed based on preliminary analyses 
of data from a teaching experiment in a designed-based 
research study. With this approach, beginning by a hy-
pothesis (or prediction) about the fairness of a game and 
revising it based on new information appear to come 
natural to the students. The change in strength of their 
personal level of confidence seems to vary by the conflict-
ing results obtained by playing the game, the size of the 
data collected, and the multiple computer simulations 
conducted using TinkerPlots software.

Keywords: Uncertainty, probability, inferential reasoning, 

task design.

INTRODUCTION 

Making decisions and inferences based on data is 
part of everyday life. In statistics, statistical inference 
deals with “drawing conclusions about populations 
or processes based on sample data” (Zieffler, Garfield, 
delMas, & Reading, 2008, p. 40) by means of certain 
techniques, such as confidence intervals and hypoth-
esis testing. As argued by Engel and Erickson (2013) it 
is yet hard to grasp the logic behind statistical infer-
ence for students. In order to develop the foundation 
for the formal ideas involved in statistical inference 
early on, informal statistical inference has become 
the focus of the statistics education research (Rubin, 
Hammerman, & Konold, 2006; Makar & Rubin, 2009). 
As a relatively recent concept, informal statistical in-
ference refers to a way of making conclusions about 
a population or process from which the data come 
by using statistical processes (Pfannkuch, 2006). In 
addition, the underlying reasoning process leading 

to informal statistical inference is called informal 
inferential reasoning (Makar, Bakker, & Ben-Zvi, 2011).

In recent research studies, there has been a great em-
phasis particularly on informal inferential reasoning 
to help students develop deeper understanding of sta-
tistical concepts, ideas, and processes (Ben-Zvi, Aridor, 
Makar, & Bakker, 2012; Jacob & Doerr, 2013; Makar, 
2014; Paparistodemou & Meletiou-Mavrotheris, 2008). 
One of these ideas at the heart of informal statistical 
inference is uncertainty because drawing conclusions 
beyond the data about a wider population requires an 
articulation of uncertainty (Makar & Rubin, 2009) and 
probabilistic justifications (Rossman, 2008). When 
it comes to teaching probability as part of statistics, 
a current debated topic is to introduce Bayesian 
thinking at school level because of its applications 
in realistic situations and its closeness to how people 
actually reason about uncertainty (Chernoff, 2014; 
Nilsson, Blomberg, & Ärlebäck, 2014; Martignon & 
Erickson, 2014). Therefore more research into sup-
porting young students’ development of Bayesian 
thinking is needed.

The aim of this paper is to describe a Bayesian in-
spired approach in a task design for eliciting students’ 
reasoning about uncertainty as it relates to personal 
degree of confidence. First, I outline the ideas behind 
this approach for task design, which is followed by 
a brief description of the study and the task. Then 
I focus on how these ideas are explored during the 
task as a way to articulate students’ reasoning about 
uncertainty with some preliminary analyses of stu-
dents’ reasoning. 
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THEORETICAL BACKGROUND

Informal statistical inference 
and inferential reasoning
In an informal statistical inference, a common un-
derlying reasoning process involves “assessing the 
strength of evidence against a claim” (Rossman, 2008, 
p. 7) based on observed data. This type of informal in-
ferential reasoning known as Fisherian approach can 
be described as follows (Rossman, 2008): formulating 
an initial hypothesis (or null hypothesis); evaluating 
that if the hypothesis were true, observed data would 
have been very unlikely (i.e., intuitively computing 
a p-value); and rejecting the initial hypothesis based 
on the very small p-value. According to Rossman, stu-
dents yet do not appear to use this common reasoning 
naturally when making statistical inference.

Alternatively, another approach to statistical infer-
ence involves a Bayesian perspective based on the 
subjectivist interpretation of probability. A main dis-
tinction between Bayesian inference and Fisherian 
approach is drawing conclusions based on a subjec-
tive or personal assessment of uncertainty. So the 
reasoning process from a Bayesian approach includes 
starting with a priori probabilities associated with a 
hypothesis based on a personal belief and updating 
these probabilities in the light of new information 
or data (Rossman, 2008). Albert (2002) argues that 
the Bayesian reasoning is more intuitive than the 
Fisherian perspective in statistical inference and 
better reflects the commonsense thinking about un-
certainty in everyday life. 

Reasoning about uncertainty
Both in school mathematics curricula and research on 
students’ understandings of uncertain events, games 
and experiments involving chance devices, such as 
coin, dice, and spinners, are quite widely used.  Games 
of chance provide a rich context for children to ex-
plore random situations, to notice the unpredictabil-
ity of outcomes and to see the need for probability 
(Cañizares, Batanero, Serrano, & Ortiz, 2003) while 
making decisions under uncertainty. The notion of 
fairness in game situations has also been recognized 
as a motivating and productive area of inquiry for stu-
dents investigating probability and uncertainty (Pratt, 
2000; Watson & Moritz, 2003; Stohl & Tarr, 2002). For 
example students can build on their intuitive ideas 
of fairness to evaluate whether each player has an 
equal chance of winning or whether each possible 

outcome is equally likely in different games involving 
coins and dice.

These studies on fairness in chance games mainly fo-
cus on the concept of probability from classical and 
frequentist approaches. There is a lack of research on 
young students’ conceptions of subjective probabili-
ty, which is closely related to the Bayesian reasoning 
mentioned above. One of the earlier studies both rel-
evant to games of chance and subjective perspective 
to probability (Huber & Huber, 1987) suggests that 
young children are able to use personal knowledge 
or beliefs when comparing the likelihoods of chance 
events in the contexts of sports and gambling. It is also 
noted that children’s subjective probability evalua-
tions tend to be more stable in the gambling context 
because the objective probabilities could be assessed 
also through the sections in the spinner device used 
in the task (Huber & Huber, 1987). 

OVERVIEW OF TASK DESIGN

The purpose of the task design was to elicit students’ 
reasoning about uncertainty in the context of infor-
mal statistical inference about the fairness of chance 
games. A previous study using an earlier version of 
this task suggested that students’ reasoning about 
uncertainty was inherent both in the chance games 
and in personal degree of confidence (Kazak, Fujita, 
& Wegerif, 2013). The task then was revised to closely 
look at students’ reasoning about uncertainty as it 
relates to personal degree of confidence, which is the 
focus of this paper. To build on students’ intuitive 
and informal inferential reasoning, a Bayesian in-
spired approach was adopted to design the Matching 
Tokens Game task in which students were asked to 
make probability assessments and state their level 
of confidence in judging the fairness of a game. This 
approach enabled students to articulate uncertain-
ty while evaluating the fairness of different chance 
games by making an initial hypothesis and express-
ing their confidence in the likelihood of a particular 
game actually being fair or not, and then by revising 
both their hypothesis and level of confidence with new 
information obtained from the data through physical 
experiments and computer simulations. The underly-
ing process is usually viewed consistent with people’s 
way of developing intuitions based on learning from 
their experiences and revising their beliefs as new 
information is acquired (Falk & Konold, 1992).
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Study background
The task design is part of a design-based research 
study. As described by Cobb, Confrey, diSessa, Lehrer, 
and Shauble (2002), this study involved an iterative 
design through planning, testing, and revising con-
jectures about students’ learning and ways of sup-
porting their learning of domain specific content, i.e. 
probability and statistics. The research cycle involved 
designing instructional materials and a learning en-
vironment that supports the desired learning goals, 
conducting teaching sessions, and retrospective anal-
ysis. Three iterations in local schools in Exeter, UK 
were conducted as part of the larger research study. 
In these teaching experiments, students worked in 
groups of two or three on a joint activity. Each group 
was given worksheets and videotaped while work-
ing around a computer. The task described here was 
tested and revised based on the earlier iterations. The 
empirical data used to explain a Bayesian inspired 
approach in this paper are from the last iteration with 
eleven 10 –11-year-old students: group A (Justin, Owen, 
Matt), group B (Taylor and Sam), group C (Meg, Julie, 
and Jailyn), and group D (Maya, Eleanor, and Jena). 

Task and tools
The Matching Tokens Games involve randomly draw-
ing a token from each bag shown in Figure 1. For exam-
ple, in Game 1 one bag has 3 red tokens and 1 blue token 
and the other has 1 red token and 3 blue tokens. To play 
the game, a token will be randomly drawn from each 
bag. If both tokens are the same color, students win. 
If they are different (mixed) color, teacher wins. The 
question posed to students before playing the game 
is whether the game is fair or not. These four games 

were chosen and sequenced based on the students’ 
responses on the previous two iterations of the task. 
Students investigated each game one after another 
in the given order.

Through adapting a Bayesian inspired approach this 
game context was introduced to students in a specific 
structure involving three phases and ten questions. 
As seen in Figure 2, in the prediction phase students 
began by formulating a hypothesis about the fairness 
of Game 1 based on their personal knowledge/belief. 
Then on a scale (0 –10) they evaluated how confident 
they were about the un/fairness of the game initially 
based on the explanation they were asked to give in 
question 1. In the game-playing phase, students work-
ing in groups collected as many data as they wanted by 
playing the game with the given bags and recording 
their results and used the results to update their ini-
tial hypothesis as well as their level of confidence if 
needed. In the modeling phase, they built a computer 
model to simulate the game results and to collect more 
data, and again revised their previous hypothesis and 
level of confidence in the light of new information.

TinkerPlots software (Konold & Miller, 2011) was used 
as a modeling tool in this study. The Sampler tool 
in TinkerPlots allowed students to build their own 
chance models using a variety of devices (i.e., mix-
er, spinner, bars, stacks, curve, counter) that can be 
filled with different elements to sample from. It also 
enabled students to collect outcomes and carry out a 
large number of trials quite quickly. For instance, to 
build a model of Game 1 in TinkerPlots (see Figure 3) 
group B used two connected mixer devices, one with 

Game 1 

Bag one: 3 red tokens, 1 blue token
Bag two: 1 red token, 3 blue tokens

Game 2

Bag one: 2 red tokens, 2 blue tokens 
Bag two: 2 red tokens, 2 blue tokens

Game 3 

Bag one: 4 red tokens 
Bag two: 2 red tokens, 2 blue tokens

Game 4 

Bag one: 3 red tokens, 1 blue token 
Bag two: 2 red tokens, 2 blue tokens

Figure 1: Games given on each worksheet
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three red (R) and one blue (B) balls and the other with 
one red and three blue balls, representing the number 
of red and blue tokens in each bag. Repeat number is 
set to 1000. After randomly being selected from each 
mixer, the outcomes of each trial are displayed in the 
results table for 1000 repetitions. In the graph, the 
individual outcomes, ‘B,B’ and ‘R,R’ then ‘B,R’ and ‘R,B’, 
are combined into a bin by dragging one into the other 
to display the percentage of “the same color” and “the 
mixed color” outcomes respectively.

CHARACTERISTICS OF A BAYESIAN 
INSPIRED APPROACH TO REASONING 
ABOUT UNCERTAINY 

In order to develop students’ reasoning about uncer-
tainty through informal inferential reasoning, the 
task design involved a Bayesian inspired approach 
to informal inference in the context of chance games. 
Each game investigation starts by having students 
state their initial hypothesis about the fairness of the 
game with an explanation and then rate their level 
of confidence about the un/fairness of the game on a 
scale from 0 to 10. In order to test their initial predic-
tions students play the game to collect some data and 
record their results on the worksheet (questions 3 
and 4 in Figure 2). Judging the fairness of these games, 

Figure 2: Student worksheet for Game 1

Figure 3: Computer model of Game 1
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except Game 2, were found to be highly counter-intui-
tive based on the students’ initial responses in the pre-
vious iterations of the task (Kazak, Wegerif, & Fujita, 
2014). So, students are expected to update their initial 
hypothesis and level of confidence based on new evi-
dence from the game results. Subsequently students 
build a model of the game in TinkerPlots to collect 
more data to reevaluate their previous hypothesis 
and confidence level through computer simulations. 
Next I describe the phases of the student investiga-
tions characterized by the adopted Bayesian inspired 
approach with some analyses of students’ responses 
on the worksheets.

Forming a hypothesis with a level of confidence
Based on their current understanding of probabili-
ty students began by stating their initial hypothesis 
about fairness of each game and explanation for it. 
These students had previous experience with simple 
events, but the ones described in the games required 
an understanding of combined outcomes. Thus they 
relied primarily on their intuitive ideas, which gen-
erally led them to an incorrect judgement. The ex-
planations given for their predictions indicated that 
they seemed to focus either on the symmetry in the 
total number of red and blue tokens in the bags with 
an additive reasoning in Game 1 or on the likelihood 
of simple events in each bag, i.e., the chance of getting 
a red token from a bag in Game 3 and Game 4. Unlike 
these counter-intuitive games (1, 3 and 4), Game 2 was 
consistent with the students’ intuitions. Although 
their predictions about Game 2 were correct, their 
reasoning was problematic. They expected that the 
symmetry in the combined bags (equal number of red 
and blue tokens) would generalize to the combined 
outcomes.

Starting with students’ initial predictions about the 
fairness of the games was an essential part of the 
Bayesian inspired approach used in the task. When 
dealing with uncertainty, we often draw upon a va-
riety of evidence, but particularly personal knowl-
edge or belief or past experience in the absence of 
empirical results or theoretical knowledge. From the 
Bayesian perspective this is the basis for subjective 
probability. Since these beliefs can change based on 
new evidence, it is important to assess personal de-
gree of confidence in the initial hypothesis or pre-
diction and look at how it changes over the course of 
gathering new relevant information. Each group’s 
responses on the worksheets showed that students 

were likely to be more confident about their initial 
hypothesis in Game 2 that was more intuitive. The 
initial confidence level in Game 2 was on average 9.4 
(out of 10) for all groups while the average level of 
confidence in Game 1, Game 3, and Game 4 was 8.9, 
8.4, 8.8 respectively. These values can be argued as 
indications for how much students are willing to rely 
on their personal beliefs or knowledge without addi-
tional evidence. Since the fairness judgment for the 
games 1, 3, and 4 were less intuitive to them, none of 
the groups correctly identified whether the game was 
fair or not initially. 

Using information based on experiment 
data to update level of confidence
To test their initial predictions, each group played the 
game as many times as they wanted. The number of 
times that the games were played, i.e. the number of 
trials, tended to be small and varied among groups, 
from 5 to 30. Students mostly did not incline to revise 
their initial beliefs based on the game results unless 
they believed that they had contradicting results. For 
example, group A changed their first predictions in 
Game 1 (based on “same wins=11”, “mixed wins=19”) 
and Game 3 (based on “same wins=2”, “mixed wins=3”), 
and group B modified theirs in Game 1 (based on “same 
wins=5”, “mixed wins=15”) and Game 4 (based on 

“same wins=5”, “mixed wins=5”) after playing the game. 
These changes in predictions involved switching to 
‘unfair’ in Game 1 and to ‘fair’ in Game 3 and Game 
4. The changes in the level of confidence seemed to 
vary depending on how much they were convinced by 
the actual game results. While the level of confidence 
dropped for Game 3 and Game 4 by -4.5 and -1 points 
respectively, there was no adjustment for Game 1 in 
both groups. 

Using information based on simulated 
data to update level of confidence 
To further test their initial or current updated hy-
potheses, each group built a model of the games using 
TinkerPlots to quickly collect more data. Naturally the 
number of trials in computer simulations became 
higher, ranging from 100 to 100000. However, stu-
dents mostly seemed to find 100 trials large enough 
to base their decisions. The simulated data results 
generally seemed to help students update their cur-
rent hypotheses. When asked what would make them 
more certain in questions 6 and 10 (Figure 2), some 
groups tended to suggest conducting ‘more tests’, i.e., 
running the simulation again with the same number 
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of trial. Indeed group A and group C carried out a 
few more simulations with the same number of trials 
using TinkerPlots and recorded the results. At the end 
of the task, the groups arrived at the correct judgment 
about the fairness in the majority of the games after 
running multiple tests using computer simulations. 
Moreover, there was a positive increase in the level 
of confidence overall during the simulations. While 
the average change in confidence level in the case of 
switching to a right judgment was +0.6, this was dou-
bled (i.e., +1.2) when students already had the right 
judgment from the game results. This result can be an 
indication of the effectiveness of additional evidence 
to support current hypothesis and personal belief. 

CONCLUSIONS

The main premise of a Bayesian inspired approach 
to reasoning about uncertainty is that students’ in-
formal inferential reasoning about the fairness of 
the chance games is closely associated with their 
personal degree of confidence. Starting with a hy-
pothesis about whether the game is fair or not and 
revising it based on new information come natural 
to students. The task design described in this paper 
is intended to help this process be more systematic by 
scaffolding students’ reasoning step by step in each 
of the three phases (Figure 2). This way students do 
not only change their predictions about the fairness 
of the game based on data they collect but also update 
the level of their confidence which is linked to their 
certainty level.

The preliminary analysis offered in this paper sug-
gested that students’ first ‘intuition-based’ hypotheses 
about the fairness of the games mainly led them to 
wrong judgments initially particularly in the count-
er-intuitive games. However, both their conjectures 
and level of confidence on them tended to improve as 
they collected more data. More specifically, conduct-
ing a large number of trials and multiple tests using 
TinkerPlots modeling tool allowed students to change 
their beliefs about the fairness of the games and the 
strength of their confidence. Moreover, obtaining 

‘surprising’ results in the game playing phase gener-
ally helped students revise their initial predictions 
while their level of confidence seemed to decrease to 
some extend. Students however tended to show more 
confidence in their personal belief about the fairness 
of the game when it was confirmed by 100 or more 

data collected during the modeling and simulation 
phase of the task. 

Overall, the study shows the importance of integrat-
ing the personal beliefs, level of confidence, and em-
pirical results from experiments and simulations in 
reasoning about uncertainty when making inferences 
about the fairness of chance games. The approached 
used in this task suggests a way to bring Bayesian 
thinking to the school level and makes it accessible 
to young students as well. Further research on this ap-
proach using clinical interviews with more individual 
groups might be useful to deepen our understanding 
of how students’ experiences based on game results 
and simulation results affect their beliefs about the 
fairness of the games, personal degree of confidence, 
and strategies in the long run.
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Simulation approaches to inference have gained promi-
nence in statistics education. In this paper we combine 
a theoretical analysis of the ways researchers and cur-
riculum developers have represented models of simu-
lation processes with an empirical analysis of the ways 
teachers represent models of the process they believe 
would be helpful to students. Our results cumulate in 
suggestions for a more explicit framework for using a 
simulation approach to inference.

Keywords: Teachers, modelling, technology, informal 

inference.

INTRODUCTION 

The meat of doing statistics is making inferences 
about data. Researchers suggest introducing infer-
ence informally first and then transitioning to the 
procedures of formal inference (e.g., Zieffler et al., 
2008). In building up informal inferential reasoning, a 
simulation approach can be an important tool to help 
students build a deep understanding of the abstract 
statistical concepts involved (Burrill, 2002; Maxara & 
Biehler, 2006). Indeed, Cobb (2007) suggests that ed-
ucators can help students develop an understanding 
of inference through the “three R’s: randomize data, 
repeat by simulation, and reject any model that puts 
your data in its tail” (p.12). Incorporating hands on ex-
periences and dynamic statistical software can allow 
students to visualize the statistical process in order 
to develop an understanding of the inference process 
(Budgett, Pfannkuch, Regan, & Wild, 2013). Simulation 
approaches have been used in several curricula ef-
forts in the US at the collegiate level, and new national 
standards in the US suggest such an approach for high 
school students. Researchers have reported modest 
results in improvement of students’ understandings 
of inference through collegiate curriculum that use a 

simulation approach (e.g., Garfield, delMas, & Zieffler, 
2012; Tintle et al., 2012). 

A simulation approach seems to be an appropriate 
way to help students develop statistical inference con-
ceptually. However, while the “three R’s” process may 
seem simple, understanding all parts of a simulation 
is conceptually complicated. In fact, even students 
who know how to conduct a simulation, may not have 
a robust understanding of why they are conducting a 
simulation, what is being simulated, and how to make 
appropriate conclusions based on a simulation. Thus, 
our research aims to consider, from a theoretical and 
empirical perspective, how teachers could and should 
represent the processes involved in using a simulation 
approach that could assist students in better under-
standing the general usefulness of such an approach 
in inference contexts.

Our work is situated in a models and modelling per-
spective on teaching and learning mathematics as ar-
ticulated by Lesh and Doerr (2003). In this perspective, 
models are systems of elements, relationships, opera-
tions, and rules that can be used to describe, explain or 
predict the behaviour of some other familiar system. 
Thus, we are very interested in how models (and mod-
elling) can be used to improve teachers and students’ 
understanding of a simulation approach to inference. 

MODELS USED BY OTHERS

Many have engaged in research and curriculum devel-
opment over the past 15 years, focused particularly on 
understanding inference and simulation approach-
es. For the purposes of our paper, we will highlight 
the work of several researchers whose models seem 
to build from one another. In 2002, Saldanha and 
Thompson reported that, when students can visual-
ize a simulation process through a three-tier scheme, 
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they develop a deeper understanding of the process 
and logic of inference. This scheme is centered around 

“the images of repeatedly sampling from a population, 
recording a statistic, and tracking the accumulation of 
statistics as they distribute themselves along a range 
of possibilities” (p. 261). The diagram in Figure 1 is 
meant to explicitly draw attention to the multiplica-
tive relationship between a population, sample(s), and 
a distribution of sample statistics. Thus, the diagram 
can serve as a model for the process of repeated sam-
pling. Their work also had students experience and 
attend to three levels in the sampling process: 1) ran-
domly draw items to form a sample of a given size and 
record a statistic of interest, 2) repeat Level 1 process a 
large number of times and accumulate a collection of 
statistics, and 3) partition the collection of statistics to 
determine what proportion lies beyond a given value.

Several researchers have built from Saldanha and 
Thompson’s multi-tier scheme and the models and 
modelling work of Lesh and Doerr (2003) for creating 
models that can assist students when using simulation 
approaches, or resampling techniques, for inference 
(Garfield et al., 2012; Lane-Getaz, 2006). Lane-Getaz 
(2006) offered the Simulation Process Model (SPM). 
This process includes three tiers: population parame-
ters, random samples, and distribution of sample sta-
tistics. The SPM resembles Saldanha and Thompson’s 
(2002) model and verbal description of three levels, 
but uses more explicit language in the diagram itself. 
The first tier is to describe the population distribution 
as the beginning of the simulation process, then, ran-
dom samples are drawn from the 
population, and a sample statistic 
is selected related to the simula-
tion process for Tier 2. In the last 
and third tier, the distribution of 
the sample statistics is formulated, 
and used to evaluate the likelihood 
of the event happened in the origi-
nal problem (Figure 2). Lane-Getaz 
described how she used the SPM 
as an organizer to help students 
understand the general process 
of inference. She then adapted the 
SPM to specific examples used in 
her course so that students can see 
how the model frames the simu-
lation process used in different 
contexts.

In line with Lane-Getaz’s suggestion, Garfield and col-
leagues (2012) used a models and modeling approach 
in the design and research of the CATALYST curricu-
lum (Catalyst for Change, 2012). Figure 3 shows their 
three-level framework including specifying a model, 
samples and numerical summary measures, and dis-
tribution of the numerical summary measures ap-
plied to one task (Cereal Boxes). They, too, advocated 
using a general structured diagram with students to 
organize their thinking about the general simulation 
process and for specific problems. 

Figure 1: Model for sampling conception (Saldanha &Thompson, 

2002, p. 267)

Figure 2: Simulation Process Model (Lane-Getaz, 2006, p. 280)
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All the models shown in Figures 1, 2, and 3 include 
three tiers/levels for the simulation process, includ-
ing population, samples, and sampling distribution, 
even though these terms are either implicitly or ex-
plicitly used. However, there are some differences. For 
example, Saldanha and Thompson (2002) implicitly 
allude to a statistic of interest in their diagram but 
explicitly refer to it in their verbal description of the 
three-level process. The statistic of interest is explic-
itly referred to in the other two diagrams (Figures 2 
and 3). 

Our understandings of the literature on simulation 
approaches to inference and the representations 
used by others, informed our design of tasks to use 
with teachers in a graduate course on teaching and 
learning statistics. What follows is a description of 
the course, participants, and several tasks that took 
a simulation approach to inference. The set of tasks 
served as a model development sequence (Lesh et al., 
2003) that enabled us to support the development of 
teachers’ understanding of a simulation approach 
to inference while also revealing and eliciting their 
thinking. As teachers (and students) are learning 
about simulation techniques, we cannot assume that 
they fully understand the computer representations 
of that process and the underlying randomization 
and sampling that is occurring.  Hence, this paper 

focuses on a task presented to teachers to elicit how 
they would help students understand the simulation 
process. Specifically, we wondered: What can we learn 
from teachers’ visualizations of the components of a 
simulation process for drawing an inference to suggest 
a general framework (model) that could assist learners?

COURSE AND DATA COLLECTION

A team of four instructors from two institutions met 
weekly via videoconference for an academic year to 
design a 15-week course offered at each institution, 
and to discuss issues and alter plans as the course 
was taught. The course consisted of opportunities for 
teachers to engage in statistical investigations with 
real data and tasks designed to develop understand-
ings of distribution, samples and sampling distribu-
tions, and inferential statistics, especially using ran-
domization approaches. The course used the software 
TinkerPlots (Konold & Miller, 2011) and applets (e.g., 
http://lock5stat.com/statkey). The software provided 
simulation tools needed to represent a population, a 
sample, and a distribution of sample statistics.

The simulation tasks used in the course were adapt-
ed from typical ones used by popular introductory 
statistics materials that use modeling and random-
ization approaches (e.g., Paul the Octopus task, Lock et 

Figure 3: CATALYST modeling and simulation process (Garfield et al., 2012, p. 890)
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al., 2013; Dolphin Therapy task, Catalysts for Change, 
2012). Teachers had also been assigned two articles 
(Lane-Getaz, 2006; Lee, Starling, & Gonzalez, 2014) 
to read in which authors used diagrams (Figure 2, 
and another similar to Figure 1) to illustrate the sim-
ulation approach used in the tasks discussed in the 
articles.    

After two simulation tasks (Paul the Octopus and 
Dolphin Therapy), the instructor summarized the 
models that were designed and the resulting simu-
lation process used. The intent of this summary was 
to help make connections across the two simulation 
tasks and generalize the processes used to develop 
an overall conception of the modeling and simula-
tion process. After this summary, and before the as-
signed readings had been discussed, the instructor 
used the following task to allow teachers an oppor-
tunity to express their developing conceptions of the 
simulation process in terms of how they would help 
their students to understand the process. Teachers 
formed nine groups of 2–3 to create diagrams on a 
large poster. The exact wording of the task posed to 
teachers was: 

Suppose you were going to use a randomization ap-
proach with your students to help them use a simu-
lation (with physical objects or computer models) to 
investigate if an observed statistic is likely to occur, or 
not unlikely to occur. Draw a diagram you could use 
to help students understand the general process used 
for applying randomization techniques for solving 
these types of tasks.

Across institutions, the course served a variety of 
graduate students. This paper focuses on the 19 par-
ticipants from one institution, since this diagramming 
task was not completed at the other institution. The 
19 participants consisted of one advanced standing 
preservice teacher (5th year senior), three preservice 
teachers enrolled in an M.A.T. program; 10 teachers 
in a masters program while currently teaching stu-
dents in secondary or tertiary contexts; and five PhD 
students in Mathematics or Mathematics Education, 
three of whom were currently teaching in tertiary 
contexts. Fifteen teachers were female and four were 
male, with two teachers for whom English was a sec-
ond language. All but one teacher had completed at 
least a first level course in statistics. Henceforth we 
refer to course participants as teachers.

ANALYSIS OF TEACHERS’ DIAGRAMS

Five of the nine diagrams, created by teachers in our 
course are shown in Figure 4 (4a, 4b, 4c, 4d, 4e). These 
diagrams are representative of the collection of dia-
grams and were selected to illustrate points made in 
this section. Though we began our open coding in-
formed by literature and the ways others had repre-
sented sampling and simulation approaches (Figures 
1, 2, 3), we will explicate how our analysis of teachers’ 
self-created diagrams led us to identify aspects that 
may be more or less salient for teachers, and perhaps 
other learners. What follows is a description of the 
major themes we identified in the representations/
descriptions in the diagrams that indicated to us that 
teachers’ had a strong (or incomplete) understanding 
of the simulation process. It is these themes that are 
shaping our vision for ways to be more explicit in 
our modeling processes when using a simulation ap-
proach to inference. 

Representations in Level/Tier 1 
(Population/Problem)
Lane-Getaz (2006) presented the process of using sim-
ulation to develop the logic of inference starting with 
a question in mind, “what if ”, to investigate a problem 
(see Figure 2). In this step, students need to specify a 

“theory, assumption, or parameter” for further sam-
pling. In the Model level of Garfield and colleagues 
(2012, Figure 3), there are more explicit unpacking 
of the real world cereal box into statistical terms (six 
equally likely prizes). We consider this step as cru-
cial in creating a model of the real-world problem. 
The purpose in the modeling process is to express 
the problem of interest in mathematical/statistical 
terms that include a set of assumptions (e.g., likeli-
hood of an event occurring). Six teachers make this 
aspect of the modeling explicit in their diagrams. For 
example, the top row of “steps” in Figures 4a and 4e 
rudimentarily addresses the importance of creating 
a model of the real world problem. Figure 4c shows 
that the group of teachers decides to use a coin flip as 
a model of mom’s reaction (yes or no) to whether we 
can have a party. Implicitly, this coin flip model makes 
the assumption that probability of a head/tail (likely 
assumed to be 0.5) is congruent to the probability of 
mom’s response of yes/no.  In Figure 4d, teachers also 
elaborate steps needed to model a real world problem 
by stating, “determine parameter of interest, deter-
mine assumptions for proportion(s), and simulation 
model (based on assumptions)”.  
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Figure 4b

Figure 4a

Figure 4e

Figure 4d

Figure 4c

Figure 4: Five diagrams created by teachers



Simulation approaches for informal inference: Models to develop understanding  (Hollylynne S. Lee, Dung Tran, Jennifer Nickell and Helen Doerr)

712

Emerging from our teachers’ diagrams, we noticed 
that they often attended to identifying the statistic of 
interest in the original problem that would be later 
used in the simulation process and for decision mak-
ing. For example, the posters in Figures 4a, 4b, and 
4e explicitly mark or indicate a quantity of interest 
form the original problem and refer to it later in the 
simulation process as the statistics to collect and that 
one needs to locate that statistics in the distribution of 
sample statistics for decision making. Thus, we found 
that six diagrams emphasized the process of creating 
a model for the real world problem and attended to 
the importance of the original statistics of interest 
in the problem. This level of detail does not appear 
explicitly in the models shown in Figures 1, 2, and 3.

After the model of the real-world problem is formu-
lated, one needs to develop a model for the simula-
tion process. In this modeling step, one decides which 
types of random-generating devices (physical or tech-
nological tools) can be used to accurately represent 
the random selection or assignment in the problem. 
When conducting the simulation, it is important to 
consider the assumptions behind the use of the tools 
to align with those made in the questions of interest. 
For example, when using a coin to model the chance of 
success in Mom saying yes to a party (Figure 4c), an as-
sumption inherently made is that the coin is fair or the 
probabilities of a head and a tail are equal and equal 
to 0.5. Similarly, if one decides to use a simulator tool, 
it is important to specify the probability distribution 
and how it matches the assumptions in the problem 
(See Figure 4d “Simulation Model”). We also see in 
Figure 4b that teachers represented the process of 
combining all participants together and reassigning 
to groups for the Dolphin Therapy example. 

Representations in Level/Tier 2 
(Randomize and Repeat)
Teachers had very different ways of representing the 
process of generating a random sample of size n and 
computing a statistic, repeating this process k times, 
and collecting and displaying statistics from all k sam-
ples. To begin with, the notion of a random sample 
(or randomization process) was not always explicit. 
While posters in Figures 4b and 4e indicated random 
sampling, the poster in Figure 4c may have implied 
the random process by noting the “coin flip”. The 
notion of a single sample of size n, repeated k times 
was also not always well represented. For the posters 
using a specific example (Figures 4b and 4c), the n 

that was noted in the pictures matched the problem 
context (n=15 in each group, and n= 5 responses from 
Mom). However, the teachers that drew or described 
a general process did not explicitly state the need for 
k samples of size n, though phrases such as “many 
samples” “high number” and the pictorial diagrams 
in Figures 4c and 4d implied a repeated process. As 
deliberately pointed out in the Lane-Getaz’s (2006) 
diagram (Figure 2), “the samples of size n” are im-
portant to distinguish from k samples (often many) 
in sampling. Both n and k are critical parameters in 
designing and running a simulation, especially since 
they are often inputs required in software such as 
TinkerPlots. 

All teachers explicitly or implicitly indicated that the 
simulation process including recording, collecting, 
and graphing a statistic of interest from each sample. 
However, the level of detail or pictorial representa-
tion of this process varied greatly. Since these diagram 
were meant for teacher to express a representation 
they could use to help their students understand this 
process, we were certainly left wondering whether 
they really understood the randomize, repeat and 
collect phase. 

Representations from Level/Tier 3 
(Empirical Sampling Distribution)
Seven diagrams included an image of an empirical 
sampling distribution in their diagram, with an excep-
tion shown in Figure 4d. Many also explicitly drew or 
indicated that the original statistic from the problem 
context should be located in the distribution (Figures 
4a, 4d, 4e) and used to assess likelihood that the orig-
inal statistics would occur under the assumed model 
of random selection or assignment. Only six diagrams 
explicitly indicated where to look in the empirical 
sampling distribution and how to estimate a prob-
ability (proportion) of the actual observed event by 
examining the tail(s) of the distribution (Figures 4a, 
4b, 4e). 

SUMMARY AND SUGGESTIONS

As we reflected on the diagrams constructed by our 
teachers and compared these with the diagrams for 
simulation processes discussed in research literature, 
we saw the need to propose aspects of a simulation 
approach that should be made much more explicit 
for learners and teachers. One major distinction we 
suggest is that more attention needs to be given to 
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the modelling process. We feel that there is a two part 
modelling process that should be made explicit. This 
modelling process is similar to the emergent models 
that Gravemeijer (1999) purports can assist in tran-
sitioning from a real context to formal mathematics. 
The first is to create a local specific model of the real 
world context in statistical terms. The second is cre-
ating a model for the simulation process that can be 
used to generate random samples. The second model 
for the simulation process is more general because 
it can be applied to many problems. Most previous 
works have combined these two aspects into a single 

“model” or population level. We also suggest being 
more explicit concerning building a distribution of 
sample statistics, using the distribution to reason 
about the observed statistic, and making a claim about 
the chance of that observed statistic occurring. We 
encourage others to consider making explicit the 
following aspects:

Level 1. Population: Create a MODEL OF the re-
al-world problem 

 ― Make assumptions to build a mathematical/
statistical model of the problem – determine 
a null hypothesis

 ― Specify the observed statistic and the statistic 
of interest

Level 2: Simulation Model: Create a MODEL FOR 
simulation process

 ― Choose appropriate tool(s) (physical/techno-
logical) for the problem that aligns with the 
assumptions made in creating the model of 
the real problem

Level 3. Samples and Statistics: Randomize and 
repeat

 ― Draw a random sample of same size n and 
record relevant statistic

 ― Repeat random sample k times (large number) 
and collect statistics from each sample

Level 4. Empirical Sampling Distribution: 
Examine how statistics vary

 ― Build a distribution for the recorded statistics

 ― Locate the original observed statistic in the 
sampling distribution

Level 5. Final Decision: Making inferences from 
models

 ― Use proportional reasoning to evaluate the 
likelihood of the event happened.

 ― Decide if the observed statistic and those more 
extreme are explainable by chance.

We maintain that a simulation approach framework 
could help support scaffolding, and eventually ab-
straction, for how a simulation approach can be used 
for inference. It is also important for students to expe-
rience various models in specific situations. Such ped-
agogical approaches have been advocated for by many, 
and used successfully in work such as Garfield and 
colleagues (2012) and Podworny and Biehler (2014).
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The conceptualization of sampling is crucial to under-
stand statistical data. However, the teaching about sam-
pling is not generally emphasised in school curriculum. 
This study investigated how teachers understand about 
size and representativeness of samples using TinkerPlots 
2.0 software. The study was comprised of two sessions. A 
semi-structured interview and a familiarization about 
the basic use of TinkerPlots were developed during the 
first session, and participants engaged in three tasks on 
sampling using TinkerPlots during the second session. 
As a result, the teachers began to consider aspects of 
the variation of data to determine when representative 
samples were involved in TinkerPlots. The ability to se-
lect samples and analyse them seemed to contribute to 
improve their understanding about sample size and 
representativeness.

Keywords: Statistics education, primary school teachers, 

TinkerPlots.

INTRODUTION

The recognition of the influence of statistical data 
in the current society demanded the inclusion of 
this topic in national curriculum of many countries 
(Monteiro & Ainley, 2004). Several studies suggested 
that statistics education can provide bases to students 
develop abilities to argue and counter-argue informa-
tion, understand the generation of statistical data and 
make informed decisions based on their analysis (Gal, 
2002). Therefore, statistical knowledge is essential 
for critical reflective and participatory citizenship 
(Carvalho & Solomon, 2012).

An important knowledge that enables citizens to un-
derstand critically statistical data is related to con-
ceptualization of sample and sampling. Bolfarine and 
Bussab (2005) conceptualize sample as any subset of 

a given population, and sampling as a technique of 
selection of such subsets. Innabi (2006) argues that 
in order to analyse the representativeness of a sam-
ple is necessary to know whether the sample is large 
enough and has the variety present in the population. 
It is recommended to increase the sample to ensure 
the variety of the population can be better visualized. 
However, sample sizes from a homogeneous popu-
lation tend to be smaller, because such samples will 
have less variability.

To understand the conceptualization of sampling 
is crucial consider how the data were chosen, what 
methods are employed for the selection of these cases, 
what features and prioritized variables, so we can 
understand other contexts in which the information 
can be applied (Saldanha & Thompson, 2002; 2007). 
Therefore, the understanding about sampling seems 
to be essential as curriculum school content, therefore 
it is very relevant for teachers who teach statistics. 

Although, the teaching about samples and sampling 
is fundamental to base the practices of statistics, it 
needs to be more emphasised in school curriculum 
(Watson, 2004). Recently, several studies investigated 
the conceptualization of sample and sampling among 
students from different levels. However, it is also im-
portant to investigate such situations among teachers 
who are going to approach such curriculum content 
(Martins, Monteiro, & Queiroz, 2013). 

Several studies investigated the developing of under-
standing about sample and sampling using computer 
based tasks. For example, Manor, Ben-Zvi, & Aridor 
(2013) conducted a study that engaged students in 
designed instructional  activities using computer 
modelling and simulations of drawing many samples. 
According to those authors, the research tasks ena-
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bled the students to think about sampling as a process 
when analyses are associated with samples.

Baker, Derry and Konold (2006) involved young stu-
dents in two experiments about center and variation. 
In one of situations they used TinkerPlots (Konold & 
Miller, 2011) to develop a task in which students can 
get engaged in an inferential game. According to these 
authors “the inferential approach acknowledges that 
students with their teachers have to take part in the 
social practice of reasoning (p. 2)”. When the students 
were comparing two distributions, they should re-
alize that they needed of certain concepts to reach a 
conclusion on the distributions were different or not. 
The students could come to the conclusion that the 
concept of average was important to identify these 
differences. Therefore, the uses of certain concepts 
involved in a game of give and ask for explanations.

These studies suggest that it seems to be important the 
selection of several samples. The TinkerPlots offers 
the possibility to explore the relationships between 
data and chance (Konold & Kazak, 2008), since it is 
possible to perform simulations of samples and pop-
ulations.

Delmas and colleagues (1999) used a computer en-
vironment in which the students could simulate 
several samples of different sizes and visualize the 
distribution of the values of a statistic. The results 
suggested that students indicated that larger samples 
should produce a statistical distribution similar to 
their population of origin. According to those authors 
it is possible that the students had the intuition that 
the average is a point within the population, and that 
gather more averages it will have a distribution very 
similar to the population.

In this paper we discuss some aspects of a study that 
investigated teachers’ knowledge about sample size 
and representativeness. The aim of this study was 
to explore possible computer based tasks which can 
help teachers to understand those important aspects 
about the sample and sampling. 

METHODOLOGY

This was a qualitative exploratory study that followed 
an interpretative approach. The research was con-
ducted in a rural public school located of a munici-
pality of Metropolitan Region of Recife (RMR), Brazil. 

The choice for this school was based on a survey con-
ducted by GPEME - Research Group on Mathematics 
and Statistics Education (Carvalho & Monteiro, 2012), 
which identified 85 public schools in the RMR which 
had computer labs, and investigated how those labs 
were used. 

There were two research sessions to collect the data. 
The first session was comprised of an individual 
semi-structured interview in order to have informa-
tion about teaching experiences, as well as to identify 
their levels of understanding about the concept of 
sampling. The interview questions were based on a 
sample questionnaire used in the studies of Watson, 
Collis and Moritz (1995), Watson and Moritz (2000) 
and Watson (2004). These studies developed tasks 
associated with questions about sample, represent-
ativeness of small and large samples, sampling, and 
media news about sample surveys with inadequate 
statistical basis. 

At the first research session, we also develop a famil-
iarization with the TinkerPlots2.0. The researcher 
presented different functions of TinkerPlots to the 
teachers, including those to handle the database and 
produce graphs. This familiarization was carried 
out because the participants did not know about the 
software, and it was expected that they had certain au-
tonomy to use the TinkerPlots during other research 
sessions. 

The second session was comprised of three tasks using 
TinkerPlots. These tasks were about representative-
ness, size and type of sample. Therefore, in this paper 
due lack of space, we report examples taken only from 
analysis of task 1 and 2. 

The study was developed with four female teachers. 
Due to lack of space in this paper, we report aspects 
of research data from one participant. For this report, 
her name was changed. Suzy was 30 years old, and 
she had 5 years of experience as a teacher. She uses 
the computer every day to search contents related to 
her teaching activities and to access emails. Suzy has 
university degree in Education. However, she said that 
never had any specific learning on sampling, and she 
did not know about TinkerPlots or other educational 
software for teaching Statistics. In this paper we do 
not discuss the data collected from the semi-struc-
tured interview. 
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Task 1
The aim of this task was to know if the participants 
understood that increasing a sample, could have 
better accuracy of inferences about the population, 
since the variability of the population would be better 
visualized. 

Figure 1 shows a copy of screen with 625 cases (fish) 
of a TinkerPlots database called Fish Population. Each 
case had a numerical code, and information about the 
type and size of fish.

We asked the participant to read the following situa-
tion, which was based on the TinkerPlots resources:

A certain fish farmer bought some genetically 
modified fish of a company with the promise that 
they would grow more than the non GM fish. In 
order to check whether GM fish grow more, the 
fish farmer joined GM fish with other fish that 
he used to have in a tank in which totalized 625 
fish. After the total growth time of fish, the fish 
farmer gradually withdrew each fish from tank, 
and measured each one. From the data analysis in 

TinkerPlots, indicate which type of fish had great-
er length. Did the fish farmer make good deal? 

During participants’ analyses of task 1, we took ini-
tially samples from 10 cases, and then it was increased 
based on their indications. The participants should 
infer which population had bigger fish interpreting 
a graph similar to the Figure 2.

For each new inclusion of cases in the sample, we 
asked the participant to informally rate her confi-
dence level in a scale from 0 to 10. Therefore, rate 10 
should be teacher’s maximum confidence. This pro-
cedure aimed to make explicit their understanding 
about changes on their own analyses (Prodromou, 
2011). 

Task 2
The second task was based two TinkerPlots databas-
es: MysteryMixer1 and MyisteryMixer2, which were 
comprised of only one variable that is number. The 
Figure 3 presents a database used in this task.

The database had 500 cases disposed in the simula-
tor ranging from 0 to 100. This second task aimed to 
identify whether the teachers could reach a conclu-
sion on a small sample. Therefore, the participants 
should identify clusters of samples and infer them to 
the population, using the smallest possible sample. To 
ensure this, we engaged the participants in a fictional 
situation about costs of sample survey:

You have a limited amount of money to conduct 
survey on numbers. Each selection of five cases 
of this survey you should pay R$1,00. Your task is 
to identify a range in which all numerical values   
are repeated. You need to spend the least amount 

Figure 1: TinkerPlots Screen with 625 cases of Fish Population 

database

Figure 2: TinkerPlots Screen with fish population database, n = 10

Figure 3: TinkerPlots Screen with MysteryMixer1 database N = 500
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of money possible, but you need to be quite sure 
about your answer.

In each task, the first author, acted as research-
er asking questions to make more explicit the 
teachers’ considerations about the data, and as-
sisting them in the selection and manipulation 
of TinkerPlots tools. 

The Camtasia Studio 7.1 software was used to record 
on video the participants’ speeches, their gestures 
and manipulations developed in the computer screen 
while solved Tasks 1 and 2. The transcriptions of audio 
records generated protocols which were base to the 
data analysis. 

RESULTS 

The analyses of participants’ response suggested as-
pects of their understandings about the relationship 
between size and representativeness of samples.

Task 1
During the development of task 1, when we increased 
sample size the participants informally rated their 
level of confidence about their inferences. Table 1 
shows the Suzy´s rates during this task.

Suzy gave a low confidence rate in their conclusions 
about small samples at the beginning of this task. The 
following extracts exemplify their arguments, when 
interpreting a graph similar to Figure 4.

Suzy:  For me, this amount is not significant. 
It’s because... well, the first time we 
had (a sample with) just over 2% (of the 
population) and now we have just over 
3% (of the population). I think 3% is not 
significant value to buy something to 
put in a bowl and make a test. If so .. I 
would find significant 6% ... 10% ... just 
great! But to do a test ... to say ... (3%) I 
think very little. 

Researcher:  Right. But then, you see ... looking 
over here, can you observe who is show-
ing a larger size?

Suzy:  The GM. 
Researcher:  But, you are saying that perhaps this 

may not be significant for the rest?
Suzy:  Exactly!  

This fragment of Suzy’s speech suggests that the 
teacher relates sample size to population size, and 
expressing that she considered the sample too small 
to make an inference. Suzy was unsure to make an 
inference, although that she identified a trend of ge-
netically modified fish were larger.

Another extract from Suzy’s protocol indicates that 
she was analysing the sample, and questioning the 
data variation in the samples, because she did not 
know the exact amount of fish for each population, 
since task 1 does not give this information.

Suzy:  Does it [TinkerPlots] say the amount that 
it puts [in the sample]?

Researcher:  No. It does not say the amount of one 
and another... whether it has more GM 
fish or normal ones. But, do you are ab-
solutely sure that these here [GM] will 
continue growing?!

Suzy:  It´s because, look... 12 and 8 [amount of 
fish for each type]. We do not know the 
amount per type of fish that he put here 
[in the population].

Researcher:  What does that mean?
Suzy:  That these results may change here be-

cause these data can be very different 
from there [population]. Figure 4: TinkerPlots Screen with fish population database, n = 20

Teacher S1 Confidence S2 Confidence S3 Confidence S4 Confidence

Suzy 10 0 20 0 100 8 150 10

Table 1: Informal levels of confidence about the increasing of sample sizes



Analysing teachers’ knowledge about sampling using TinkerPlots 2.0 (Maria Niedja Martins, Carlos Monteiro and Carolina Carvalho)

719

Suzy seemed to be concerned about possible errors 
due to small samples. We can infer that she was con-
cerned about the variation, because only taking cases 
at random from the population would not ensure that 
the values of sample were identical to those of the 
population of origin.  

In addition, Suzy developed the strategy of seeking 
patterns by analyzing the distribution of data and 
trends in the samples. This was reflected in her as-
signed increasing levels of confidence to her inferenc-
es, since Suzy could confirm in each sample a tendency 
on genetically modified fish to be larger. The need to 
use the concept of average also emerged, according to 
view in Figure 5. Suzy’s response seemed to be influ-
enced by the average value in the different samples:

Researcher:  The average showed something to 
you?

Suzy:  It shows that I’m correct! Because like 
this, it did not have changes. If the av-
erage had very fluctuated, there would 
be worrying. However, it remained con-
stant to the extent that we have been get-
ting more information.

Researcher:  So it helped?
Suzy:  It is. Now I have a 100% certainty.

Task 2
Suzy reached her answer with a smaller sample, and 
justify the response based on the idea of homogeneity 
of sample.  

Researcher:  Why did you find easy to say a re-
sponse with lower number of cases?

Suzy:  I think was because that issue of the 
group that I told you... because it was 

concentred in the group ... and ... don’t 
know more.

Researcher:  Concentred in the group? What do 
you mean?

Suzy:  So... lets I say... don’t know. I thought 
so... to the extent that we were taking... 
I thought, should not have 50%, then I 
was dropping, 25%. And with this there, 
I did far less than the percentage that I 
thought at first. And, to the extent that 
I was taking (cases from the simulator), 
and that I was doing, the concentration 
kept constant. Then, I did not need to 
take all this data, I had focused on to 
analyze a bigger percentage... I believe 
this happens because the information 
is contained like that, in that group. It 
is not one thing mixed. I think that’s it. 
I just do not know to explain, but I un-
derstand.

Suzy’s strategy to be able to generalize the results of 
the sample to the population focused on the analysis 
of the trend of data in successive samples. She quickly 
realized that the curve where was concentrated most 
of the data remained constant even when the sample 
grew and relied on it to provide a final inference.

Another strategy that also seemed important for Suzy 
to choose a representative sample was associated with 
hypothetical costs of sample. The following extract 
from Suzy’s interview exemplifies how this aspect 
was relevant to her analyses.

Researcher: [after show the graph with all cases 
according to Figure 6] Was close to what 
you said?

Suzy:  I said 50 and 63. It was close!

Figure 5: TinkerPlots Screen with fish population database, n = 150

Figure 6: Graph produced by Suzy using MysteryMixer1 database
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Researcher:  Were you pleased with your survey? 
With the amount you spent to give this 
approximate answer?

Suzy:  Bargain, right?! [Laughing] So... Do you 
know one thing that I am worry about? 
In taking the part [sample], the bigger 
amount possible. And then, with the re-
sult, I can see that perhaps with smaller 
percentage, I could already tell you the 
answer. I could have been spending less 
because the sample was already con-
firming where it was [the cluster].

Suzy made inferences from 15 cases sample when she 
was interpreting the MysteryMixer2 database. The 
analyses of interview protocols suggested that this 
reduction was due to the fact that the teachers identify 
that the data of the samples were homogeneous. 

CONCLUSIONS 

The results of this study suggested that the teachers 
presented different ideas about sample when they 
analysed heterogeneous samples. This result corrob-
orates the idea that the sampling involves different 
statistical concepts and ideas, and that inconsistencies 
of these notions can influence how a person perceives 
the representative samples. 

In task 1, the analysis of variance of cases of homo-
geneous samples and the hypothetical cost to the 
sampling seemed to be the main influences on de-
termining the appropriate sample size to make a fi-
nal inference. One explanation for this result is the 
possibility that the teachers had to see the increasing 
of the samples and to compare the trends showed in 
TinkerPlots representations.

Therefore, the situations in which teachers can com-
pare distributions may be potentially important to 
understand the tasks with the sampling; as seen in 
the study (Ben-Zvi et al., 2011) who found that the use 
of increasing samples can easily identify and recog-
nize patterns representative established through 
comparison. 

From the results of this study, further research is nec-
essary to explore the autonomy of teachers to use soft-
ware like TinkerPlots in order to build understandings 
of statistical concepts and also because teacher edu-
cation in statistics software seems to have a gearing 

effect on eventual student learning of statistical ideas 
(Pratt, Davies, & Connor, 2011). In addition, it is crucial 
to investigate how this knowledge constructed from 
their interaction with software can motivate reflec-
tive situations to explore new ways to teach statistics.
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The paper deals with initial development of stochastic 
reasoning in children. After short overview of the the-
ories of development of stochastic reasoning, we focus 
our attention on intuition about probability. In the 
second part of the paper we report results of an empir-
ical research on intuition about the concept of chance 
across grades 4th to 7th. The analysis of findings provides 
evidence of preconceptions about probability of undeter-
mined events. These preconceptions are in conflict with 
formal theory but support Siegler’s rule based model. We 
argue that we should take into account pupils’ intuition 
about the concept of chance as well as other prerequisite 
mathematics concepts (fractions, proportions, etc.). 

Keywords: Chance, intuition, Siegler’s rules, stochastic 

reasoning, misconceptions.

INTRODUCTION

Probability is an area of mathematics contrary to math 
logic, paradoxical and counterintuitive (Kapadia & 
Borovcnik, 1991). How do we gain our initial under-
standing of events with uncertain result?  How do 
we transform our initial conception of chance? Can 
we expect development of concept of chance despite 
of lacking opportunities to learn?  We endeavoured 
to address these questions in order to find when the 
right moment is to introduce these topics in school 
curriculum.  The early years of schooling in Serbian 
school system are considered as preliminary for em-
pirical introduction of fundamental (and essentially 
abstract) concepts in mathematics such as relations, 
functions, equivalence, probability, and the like. The 
decision when we start to deal with a new class of con-
cepts is associated with the decision on how we want 
to deal with them. 

Our knowledge begins with experience.  Experience 
provides basis for intuitive knowledge.  Generally, in-

tuition is expected to support (formal) learning.  Kant 
notices that “... even our empirical knowledge is made 
up of what we receive through impressions and what 
our faculty of knowledge…supplies for itself (1929, 
pp. 41–42).  Fishbein (1975) defines intuition as an au-
tonomous cognitive activity based on individual ex-
perience.  Intuition is general and immediate, which 
allows direct impact on the reasoning about situation.  
We can speak about two natures of intuitive reasoning 
in mathematics learning: the intuitive acceptability 
and intuitive anticipation. Intuition eligibility gives a 
sense of the sufficiency of the evidence of an assertion 
or obvious truth of certain facts. 

The main aspects of intuitive knowledge about the 
probability of events are belief in the regularity of 
occurrence in the environment and (consequently) 
their predictability. Intuition is developed naturally 
as a consequence of experiencing the stochastic na-
ture of the environment.  Fischbein (1975) points out 
that humans need to rationalize and to predict leads 
us to search for regularities in phenomena.  He noted 
that acceptance of intuition as a subjective conviction 
carries the conviction of self-proved (obviousness) 
and inner coherency.  Chernoff (2008) discusses the 
dual classification of probabilities “belief-type” and 

“frequency-type”.  We may say that probability esti-
mates are an expression of intuition about the relative 
frequency.  In the case of intuition about the frequency 
of events, people tend to make judgments on the basis 
of time-limited past experience, which they estimate 
to be adequate.

Key theories about development of stochastic rea-
soning give us clues about appropriate time to start 
dealing with the concept of uncertainty. To begin 
with, Piaget and Inhelder (1951) claimed that at the 
operational level child finally becomes able to detect 
causal relationships that lead to the differentiation of 
unpredictable events. They recognize two sources of 
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reasoning about probability: previous experience and 
mathematical constructions.  Fischbein, on the other 
hand, believed that without formal education children 
cannot reach the operating concept of probability.  He 
believed that intuition about probability is formed 
by the age of 14 or 15.  Fischbein and his associates’ 
study (Fischbein, Pampa, & Manzato, 1970) indicated 
a developmental leap of sixth grade pupils, but also 
the possibility of achieving a similar level of skills in 
younger trained pupils.  Finally, Shaughnessy (1992) 
identifies four levels of conceptual development of 
stochastic reasoning linked to levels of formal mathe-
matics education: (1) non-statistical level, (2) naive sta-
tistical level, (3) “on the horizon” statistical reasoning, 
and (4) pragmatic level. On the first level, reasoning 
is based on beliefs, deterministic understanding of 
phenomena, on causal inference or generalizations 
based of one case.  The second level is characterized 
by conclusions using various heuristics such as repre-
sentativeness, availability as well as by shifts in think-
ing about randomness and chance. The next level of 
reasoning is achieved when person has ability to apply 
normative models on simple problems, identify differ-
ences between reasoning based on intuition and on 
the basis of a mathematical model as well as knowl-
edge of different mathematical representations of the 
concept of chance. Finally, the pragmatic level implies 
deep understanding of the mathematical model, the 
possibility of comparing different representations, 
the ability to apply a normative model and knowledge 
of the limitations of individual stochastic models.

Along the line of Piaget’s theory comes Siegler’s 
“rule-assessment approach” to cognitive develop-
ment. His research encompasses the development of 
stochastic reasoning. (Yet, unlike Piaget, he does not 
advocate across domains cognitive developmental 
levels.)  Siegler claims that cognitive development 
may be described as “acquisition of increasingly 
powerful rules for solving problems” (Siegler, 1981, 
p. 3).  According to him, children first generate a series 
of alternative rules based on rational task analysis, 
previous empirical work and similar activities.  Next, 
a set of problem types yields to patterns of correct 
answers and errors for children following each of the 
rules.  Finally, if there is a theoretical prediction for a 
certain type of comparable problems, the asynchro-
ny may be identified and cause changes in reasoning.  
Scholz (1996, pp. 301–302) reflects on Siegler’s study 
which included variants of card games and drawing 
an object from the urn.  He reports on Siegler’s de-

scription of the pathway of cognitive development 
through process of decision making primarily based 
on implementation of (new) rules.  There were four 
rules: 1) always choose urn with a larger number of 
favourable outcomes, 2) if the number of favourable 
and unfavourable outcomes are the same, elect the 
urn with fewer unfavourable outcomes, 3) the dif-
ference between the number of favourable and un-
favourable outcome is calculated for each urn and 
the one with the greater difference is selected, and 4) 
the ratio of favourable and unfavourable outcomes is 
the election criteria (Scholz, 1991, p. 246).  The rules 
were determined in relation to the dominant dimen-
sion of a favourable outcome and subordinate dimen-
sion of adverse outcomes.  The researchers noticed 
that pre-schoolers only applied the first rule while 
the children in the lower grades applied the fourth 
rule and less the third rule while completely ignor-
ing the second rule. Generally, the predictions of the 
respondents from 3 to 20 years, agreed with the first 
and fourth rule.

Initial research in the area of development of prob-
abilistic reasoning dealt mainly with intuition, in-
cluding misconceptions that we have about uncertain 
events as a result of growing up (not education).  Here, 
we mention the research of Piaget and Inhalder (1951), 
Tversky and Kahneman (1982), Fishbein (1983), Green 
(1982), Hawkins and Kapadia (1984), and Nisbet and 
Williams (2009).  Unlike, Kazak and Confrey (2006) 
for example, who claim that the results of their study 
conducted among 9 year old children supports the 
idea that confronted with various tasks with  “chance 
settings” children could develop a quantitative per-
ception of probability.  In recent review of the re-
search in probabilistic reasoning Schlottmann and 
Wilkening conclude that the contemporary research 
move boundaries for understanding concept of proba-
bility for earlier ages prior to instruction but does not 
provide understanding of the implications of these 
preconceptions (Schlottmann & Wilkening, 2011).   
Our paper offers a small contribution in this matter.

METHODOLOGY AND RESEARCH FINDINGS

The study was conducted among pupils in Serbia, 
where no probability and statistics topics has been a 
part of the state curriculum for elementary schools.  
Our research sample consisted of 392 children, Grade 
4 to 7 (11 to 14 year old). We have observed lessons in 
16 classes in 3 different school.  All three schools are 
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located in the centre of a large city (with about 2 mil-
lion inhabitants) and a short distance away.  Schools 
were selected based on the principle of similarity of 
children population, to eliminate factors of education 
or lifestyle that may have an effect on the intuitive 
understanding of statistical concepts of interest to 
us. The fact is that this population may be described 
as prone to reading the daily newspapers or watching 
shows on TV (which often use statistical data). The 
study was performed in regular classes and respect-
ed regular composition of classes. The teachers used 
lesson plans developed by researcher.  The researcher 
made field notes during the lessons. The researcher 
and the teacher had meetings to discuss what was 
happening in the classroom.  

Students observed and analysed through class discus-
sion different situations that might provoke think-
ing about the concept of chance.  Here, children were 
prompted to express their beliefs about simple game 
like situation with undetermined result. In the activi-
ty which is in focus of this paper, pupils discussed how 
likely is to get a red cube out of the boxes containing 
red and white cubes. 

The teachers were expected to probe pupils’ intuitive 
reasoning about chance. Their role were of a mod-
erator. The teachers were not supposed to provide 
theoretical background, give correct answers or lead-
ing clues.  They asked pupils either to conduct an ex-
periment and analyse the data or to study a scenario 
describing results of this experiment.  

There were three boxes with different numbers of 
white and red cubes. In the first one, there was 1 white 
and 1 red cube. In the second box, there were 9 white 
and 1 red cubes, and in the third, 2 white and 2 red 
cubes (Fig 1).

We quote and analyse pupils’ logic during class dis-
cussion.  The discussion started with the experiment 
of pulling a cube from the first box containing 1 red 
and 1 white cube.

Teacher:   What do you think, which colour you are 
going to get out of the first box? 

Milos: I’ll get red because that colour is in 
charge.

Olga: I’ll get red because I have to get it. 
Angela: Red, it’s a beautiful colour. 
Goran: I think I’ll randomly draw a white. 
Jovan: We’re sure to a draw some. 
Zoran: I think I’ll pull the red one, although the 

chances are fifty-fifty.

Milos, Olga and Angela considered that red was 
supposed to happen because of their desire to get a 
red cube.  It could be discerned that those children 
believed that they somehow could affect the result 
of the pull.  We could identify non-statistical level 
of reasoning among substantial number of children. 
Zoran and Goran apparently were aware of concepts 
such as “randomness” and “(equal) chance” but it did 
not prevent them from having “non-statistical” judg-
ments. Significantly, we could observe confusion 
between what they believed and what they thought 
they were supposed to say.  Successively, the same 
question was posed regarding the second and the third 
boxes.  Children’s judgments about the second box 
with 9 white and 1 red cube showed more sophisticated 
statistical views of children. 

Ksenia: White, because there are more whites. 
Luka: I’ll get white. There are many more 

(white cubes), and they are more likely.
Obrad:  I will pull both colours. Maybe I’ll draw 

some more, but you never know that.
Danko: If we pull a cube for fifty times from the 

first box we could get, for example, 3 red 
and 47 white cubes, because anything is 
possible.

Ksenia and Luke ground their expectations in the 
principle of “the more favourable outcomes, the bet-
ter chance.” (Siegler’s Rule 1). Unlike them, Obrad 
reasoned that the result of next drawing could not 
be predicted.  Even more, he stretched his conclusion 
as he stated that “we cannot talk about any predictions 
what so ever.”  He was not the only one who believed 
in that.  Danko, had similar thoughts about impossi-
bility to predict results. Pupils who conducted the 
experiment, by the time of dealing with the third box, 
have already begun to change their opinion about the 
predictability of the outcomes on the basis of their 
experience with two prior cases.  Some pupils simply 

Box Content

First box □■
Second box □□□□□□□□□■
Third box □□■■

Figure 1: Three boxes 
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concluded that they could not predict what they were 
going to get in the next trial. 

Finally, teacher asked pupils to compare the chanc-
es to draw a white cube out of different boxes.  Most 
children thought that the chance to get out red cube 
from the first box is bigger than from the second box 
(as if using Siegler’s rule 2, comparing the number of 
unfavourable outcomes).  But, then came the challenge 
of comparing chances to pull a red cube from the first 
box and the third boxes.

Marina: It’s the same thing. 
Mitar: Fifty, fifty. (No explanation what this 

means). 
Goca: It is the same as 1 to 1 and 2 to 2. 
Janko: Similar. 
Jovan: They are approximate (numbers).
Milan: It is more likely if there is two plus two 

cubes.
Uros: The number of cubes in the box is im-

portant.

Note that pupils learned about equivalent fractions 
and about proportions in the 5th Grade, prior to this 
study.  Goca was a 7th grade pupil (age 14).  Similarly 
to Marina and Mitar, half of 7th grade class agreed 
with Goca that 1:1 and 2:2 are the same.  But, the rest 
of children have not been convinced that the chances 
were the same. Milan’s and Uros’s answers prompted 
us to continue discussion.  Younger pupils, from the 
4th grade, were prone to offer incorrect answers. The 
teacher was provoked by these answers to test pupils’ 
belief. 

Teacher: Suppose you are offered a reward if you 
pull a red cube. Which box would you 
like to be given, the first one or the third 
one? 

Janko: It is easier to draw a red cube from the 
third box because it had two cubes. And 
to me it would be easier.

Igor:  I would like (to pull out of ) the third 
one. Chances are bigger in the third.       
Because, there are twice more. 

Dragana: The chance to win as well to lose are dou-
bled when pulling from the third box. 

Janko: It is easier to pull out a red cube from 
the first box because there are only two 
cubes in the box.

Only a small number of pupils thought that it does not 
matter whether it is drawn from the first box or from 
the third box.  In the process of making judgment, the 
most common way of reasoning was similar to Igor’s 
response, favouring the box with more favourable 
outcomes which is in accordance with Siegler’s rule 1. 
But Janko used modified Siegler’s rule 2 to pick a case 
with smaller number of unfavorable outcomes. We 
should mention that the teacher extended discussion 
to better understand pupils’ perception.  Somewhat 
surprisingly, pupils did not change initially opinion 
after prolonged discussion.  For example, after Igor’s 
response, the teacher inquired delicate questions. 

Teacher: But there are also two white cubes in the 
third box. Does it matter to you?

Igor: No.
Teacher: Ok.  If you are promised to get a reward 

if you pull a white cube, would you like 
to pull a cube from the first or from the 
third box?

Igor:   From the third one. There are more 
whites in it, too. 

When comparing the first and third case, most pupils 
agreed with Igor.  Again, they followed up the Siegler’s 
rule 1, comparing the number of favourable outcomes. 

CONCLUSION

We have acknowledged in this study the existence 
of intuition about concept of chance in elementary 
school children. The episodes we have chosen to 
present demonstrated that pupils from age 11 to 14, 
have had formed certain preconceptions (and mis-
conceptions) about chance, prior to any instruction. 
We remarked that pupil’s answers indicated different 
levels of primary intuition of phenomena with an un-
certain outcome. Our study provides evidence that 
such intuition develops regardless of lacking content 
matter in formal learning.  The preconceptions about 
chance are in conflict with formal theory but partially 
support the Siegler’s model of intuitive reasoning 
about chance. Our analysis unveiled that most of the 
time children displayed non-statistical level of rea-
soning or tended to rely only on Siegler’s rules 1 and  
2.  Their preconceptions led them toward the simplest 
and naïve analysis of the “chance situations”.   The 
findings allow us to conjecture that grasping other 
mathematics concepts (such as fractions, proportions, 
etc.) are considerably important for understanding 
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probability. The mastery of these concepts could in-
fluence children’s advancements in formal stochas-
tic reasoning and therefore should happen before 
learning about stochastic reasoning. The design of 
our study did not provide conditions for deeper anal-
ysis of pupil’s preconceptions (as would e.g. one-to-
one interview with a particular child). But we believe 
that pupils’ preconceptions should be accounted for 
when planning initial formal learning of the concept 
of chance.  Our proposal should be examined further.

REFERENCES

Chernoff, E. J. (2008). The state of probability measurement in 

mathematics education: a first approximation. Philosophy 

of Mathematics Education Journal, 23. Online. http://peo-

ple.exeter.ac.uk/PErnest/pome23/.

Fischbein, E., Pampu, I., & Mânzat, I. (1970): Comparison 

of Ratios and the Chance Concept in Children. Child 

Development, 41, 377 − 389.  

Fischbein, E. (1975): The Intuitive Sources of Probabilistic 

Thinking in Children.  Dordrecht, Holland: Reidel Publishing 

Company.

Kant, I. (1929). Immanuel Kant’s Critique of Pure Reason. 

Hampshire: Macmillan Press.

Kapadia, R., & M. Borovcnik (Eds.) (1991). Chance Encounters: 

Probability in Education. Dordrecht, Netherlands: Kluwer 

Academic Publishers. 

Kazak, S., & Confrey, J. (2006). Elementary school students; in-

formal and intuitive conceptions of probability and distribu-

tion.  In A. Rossman & B. Chance (Eds.).  Proceedings of the 

Seventh International Conference on Teaching Statistics. 

Salvador, Brazil: International Statistical Institute and 

International Association for Statistical Education. http://

www.stat.auckland.ac.nz/~iase.

Nisbet, S., & Williams, A. (2009). Improving students attitudes to 

chance with games and activities. Australian mathemat-

ics teaching, 65(3), 25–37. http://files.eric.ed.gov/fulltext/

EJ859754.pdf.

Tversky, A., & Kahneman, D. (1974). Judgment under 

Uncertainty: Heuristics and Biases. Science, New Series, 

185(4157), 1124–1131.

Piaget, J., & Inhalder, B. (1951). The Origin of the Idea of Chance. 

London, UK: Routledge & Kegan Paul.

Schlottmann, A., & Wilkening, F. (2011). Judgement and 

Decision Making in Young Children. In M. K. Dhami, A. 

Schlottmann, & M. Waldmann (Eds.), Judgement and de-

cision making as a skill: Learning, development, and evo-

lution. Cambridge, UK: Cambridge University Press. http://

www.ucl.ac.uk/cogdev/documents/16_10

Siegler, R. (1977). Emerging minds, the process of change in 

children’s thinking. Oxford, UK: University Press.

Siegler, R. S. (1981). Developmental sequences within and 

between concepts, with Commentary by S. Strauss and I. 

Levin; with Reply by the author. Monographs of the Society 

for Research in Child Development, 46 (2, Serial No. 189).

Scholz, R. W. (1991).  Psychоlogical Research in Probabilistic 

Understanding.  In R. Kapadia & M. Borovcnik (Eds.) 

Chance Encounters: Probability in Education (pp. 213–254). 

Dordrecht, Netherlands: Kluwer Academic Publishers. 

Shaughnessy, J. M., (1992): Research in Probability and 

Statistics: Reflections and Directions.  In D. A. Grouws 

(Ed.) Handbook on Research in Mathematics Teaching and 

Learning, A Project of the National Council of Teachers 

of Mathematics (pp. 465−494).  New York, NY: Macmillan 

Publishing Company.



727CERME9 (2015) – TWG05
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teachers’ critical thinking processes
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This study aimed to investigate the critical thinking pro-
cesses that pre-service middle school mathematics teach-
ers utilize when they intensely engaged with the media 
text based on statistical and probabilistic information. 
Data were collected through in-depth interviews with 
four pre-service middle school mathematics teachers 
in a public university. The findings of the study pointed 
out that pre-service middle school mathematics teach-
ers progressed through different critical thinking pro-
cesses, including comprehending, making connections, 
inferring ideas, critiquing, and self-reflecting about the 
information given in the newspaper article. 

Keywords: Critical thinking, statistical literacy, media texts.

INTRODUCTION

Probability and statistics are regarded as the domains 
interrelated with critical thinking, which has a cru-
cial role in scientific and social contexts, especially 
in newspaper articles.  Newspaper articles present 
statistical results about various social and scientific 
issues such as health, finance, education, and culture 
and address these results by using numbers, probabi-
listic statements, or representing them with graphs 
or tables. Journalists or researchers, however, may 
release misleading information or use vague lan-
guage of probability and statistics. To cope with such 
misleading information, people should make sense of 
probability and statistics in these contexts and think 
critically about them (Gal, 2004; Watson, 2006). 

In the school context, most of the students do not have 
enough knowledge of statistical concepts to interpret 
media texts and blindly adopt one’s one-sided ideas 
or information without questioning, which could pre-
vent them to make efficient decisions about their life 

(Watson, 2006). To help students in this sense, teach-
ers themselves need be able to think critically about 
such information. However, teachers’ lack of knowl-
edge, as well as lack of critical perspectives could 
be an obstacle in providing such a help to students 
(Watson, Callingham, & Nathan, 2009). In mathemat-
ics teacher education programs, pre-service teachers 
complete statistics and probability courses. However, 
such courses do not usually stress critical use of sta-
tistical and probabilistic information in the contexts 
beyond the school.  In this sense, this paper reports 
an investigation of pre-service mathematics teachers’ 
uses of critical thinking processes to make sense of 
statistical and probabilistic information when they 
intensely engaged with a media text.

Critical thinking was conceptualized by various re-
searchers (Ennis, 1985; Facione, 1990). Ennis (1985) 
defined critical thinking as “reflective and reasonable 
thinking that is focused on deciding what to believe or 
do” (p. 45) and conceptualized as a combination of cer-
tain cognitive skills (e.g., judging the credibility, ana-
lyzing arguments, drawing conclusions, or clarifying 
ideas) and dispositions toward critical thinking (e.g., 
being disposed to open different alternatives, to be 
informed, or to search for alternatives). In a further 
study, Facione (1990) worked on the conceptualization 
of critical thinking by forty experts in this subject. 
These experts had a consensus on two dimensions 
of critical thinking; cognitive skills (interpretation, 
analysis, evaluation, self-regulation, inference, and 
explanation) and affective dispositions (truth-seeking, 
open-minded, analytical, systematic, confident in rea-
soning, inquisitive, judicious). In the project of Jones 
and colleagues (1995), the framework proposed by 
Facione (1990) was reviewed by faculty, employers 
and policy makers to decide which aspects of critical 
thinking are more important for college students. The 
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conceptual frameworks of critical thinking proposed 
by Facione (1990) and Jones and colleagues (1995) could 
be applicable to various subject matter domains and 
contexts (Ten Dam & Volman, 2004). In the current 
study we made use of their frameworks as a starting 
point and a baseline in order to identify indicators of 
critical thinking processes in the data obtained from 
in-depth interviews through which the participants 
were intensely working on a media text that involve 
statistical and probabilistic information. It is import-
ant to note that we focused on the cognitive dimension 
of critical thinking rather than affective dimension in 
this study. Previous studies pointed out that critical 
thinking is transferable to different subject matters 
or contexts. On the other hand, it is a challenge for 
teachers to enable their students to transfer such 
critical thinking processes to the contexts beyond 
school. To provide transferability of critical think-
ing, newspapers or other media texts could be used 
in teacher education programs (Halpern, 1998). In the 
context of statistics, recent research suggested to use 
tasks that require thinking about complicated edu-
cational issues (Osana & Seymour, 2004), newspaper 
articles (Watson, 2011); tasks that require statistical 
literacy based on infusion approach (Aizikovitsh-Udi 
& Kuntze, 2014). In line with these studies, the current 
study investigated pre-service mathematics teachers’ 
uses of critical thinking processes while intensely 
working on a media text that involved statistical and 
probabilistic information. 

METHOD

Participants
The study was conducted with four pre-service mid-
dle school mathematics teachers in the fourth year of 
Elementary Mathematics Education Program (EME) 
of a public university in Ankara, Turkey. The EME 

program is a four year undergraduate program in 
which the enrolled students are trained to be mathe-
matics teachers of grade levels 5 to 8 in middle schools. 
In this program, courses named “Introduction to 
Probability and Statistics” and “Research Methods” 
are required for all students. Participants were select-
ed among 38 pre-service middle school mathematics 
teachers in the fourth year. Participants were selected 
on the basis of their potential to provide rich data. To 
select the participants, all of the fourth year students 
were given a newspaper article that was not used in 
the main study and were asked to write down a crit-
ical reflection about the statistical information in it. 
The participants were selected randomly among the 
ones who could produce significant reflections, had 
tendency to use valid quantitative procedures and 
mathematical language, as well as could detect points 
to criticize in the article. 

Data collection
The major data source of the study was in-depth in-
terviews. Participants were asked to read the newspa-
per article about cheating partners, claiming men are 
better at detecting a cheating partner than females. It 
was published in the Mercury newspaper in Tasmania 
(“Cheat radar better tuned in men, study finds”, 2008) 
and proposed by Watson (2011) to be used in educa-
tional settings. The newspaper article includes some 
probabilistic and statistical statements that partici-
pants may pay attention while trying to make sense 
of the given results (Table 1). During the interviews 
participants were asked to think and reflect about 
the following main questions: What is the main idea 
of the newspaper article? What conclusions did re-
searchers reach? What conclusions could you draw 
from the text? How could the researcher conduct the 
study reported in the newspaper article? (e. g. how to 
select sample, how to collect and analyze the data, how 

Statement 1: The results, published in New Scientist, show 29 per cent of men admitted they had cheated compared 
with 18.5 per cent of women.

Statement 2: Researcher Paul Andrews said men were better at judging fidelity than women. ‘Eighty per cent of wom-
en’s inferences about fidelity or infidelity were correct, but men were even better, accurate 94 percent 
of the time’ Dr. Andrews said.

Statement 3: Men were more likely to catch out a cheating partner, picking up on 75 per cent of the reported infidelities 
compared with 41 per cent discovered by women.

Statement 4: Men are better at detecting a cheating partner than females, and they are more likely to suspect infidelities 
that do not exist.

Table 1: Some of the probabilistic and statistical statements in the newspaper article
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to reach reported findings) How would you evaluate 
reported findings? What do you think about gener-
alizability of the reported statistics in the newspa-
per article? In addition, they were asked what they 
understand from four probabilistic statements in 
the newspaper article (Table 1). The duration of each 
interview was approximately forty five minutes and 
interviews were audio and video-recorded. Data were 
collected in the 2011–2012 spring semester.

Data analysis
The data were coded in order to identify expressions 
of the participants that indicate their critical thinking 
process.  To determine possible indicators of critical 
thinking, we made use of the frameworks of Facione 
(1990) and Jones and colleagues (1995) as a starting 
point and a baseline in order to identify indicators of 
critical thinking processes in the interview data. To be 
precise, data were analyzed and searched for instanc-
es and processes in their thinking by making use of the 
frameworks suggested by Facione and Jones et al. as a 
base line. In some cases, certain dimensions of these 
frameworks could not be completely matched with 
any part of the data in this study. Thus, to make the di-
mensions of these frameworks more suitable with our 
data, we adapted and restated them as the data codes 
and categories of the current study, without making 
major alterations in their conceptual meaning. For 

example, the critical dimension of “explanation” in 
the original framework of Facione was excluded in 
the current study, since it was not observed in the 
data. On the other hand, other dimensions of critical 
thinking such as interpretation, analysis, evaluation, 
and self-regulation were included, but revised and 
their explanations were restated to make them more 
suitable with our context. As a result of data analysis, 
five interrelated processes of critical thinking were 
identified (Table 2). 

FINDINGS 

Critical thinking about the bases of reported 
findings in the newspaper article
Bases of reported findings refer to the background of 
the study in the newspaper article, some of which are 
not explicitly given in the article such as selection of 
sample, data collection, data analysis, or reporting of 
the findings. Such information about the article was 
one of the dimensions that the participants reflect-
ed critically.  They mostly attempted to use critical 
thinking processes of comprehending, critiquing, and 
self-reflecting. Regarding sampling, one participant 
(Ali) recognized the essential role of the sample and 
the need for sample to be representative in critiquing 
credibility of the study. He interrogated the extent to 
which sample size of the study is enough to make accu-

Comprehending
Identification of the main idea of the text (e.g. identifying extraneous ideas in the text)
Organization of the contextual information (e.g. making use of graph, diagram, or table to organize the contex-
tual information)
Clarification of the information (e.g. defining the ambiguous or vague terms)

Making Connections
Examining link between ideas (e.g. identifying closely related statements)
Identification of claims or arguments in the newspaper article (e.g. determining whether author states reason 
for supporting his claim)

Inferring 
Examining evidence (e.g. seeking the background information or issue that  needs to be addressed)
Proposing alternatives (e.g. suggesting plans with the consideration of their pros and cons)
Drawing conclusions (e.g. figuring out new meaning by making use of clues)

Critiquing
Detecting misleading information (e.g. detecting inconsistencies or author’s exaggerated generalization)
Recognizing factors of credibility (e.g. appreciating sufficiency of information such as sample, data collection, 
or analysis processes) 

Self-Reflecting
Expressing one’s own strengths and weaknesses of own thinking process (e.g. rereading sources to make sure 
that one has not overlooked important information; ask themselves questions about their beliefs or attitudes )
Making corrections or revisions when they realized their mistakes or misunderstandings 

Table 2: Indicators used to code critical thinking processes of the participants
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rate inferences about the study. He tried to support his 
evaluation by considering possible effect of extreme 
values in the data of a study with small sample size 
on drawing accurate conclusions from the data. On 
the other hand, the other participants just restated 
sample size of the reported study. 

Regarding data collection, all participants focused 
on the issue of what was measured and how it was 
measured by clarifying the questions that were asked 
to the subjects of reported study. Meltem, for exam-
ple, attempted to clarify question of “whether they 
[subjects in the study] had ever strayed” reported in 
the newspaper article, stating “…I mean, thinking of 
cheating in the past, [I thought that it was] a question 
such as ‘Have you ever cheated?’ The article could 
have just said like this: the young couple could have 
been informed that this study was about their cur-
rent relationship.” She stipulated the condition of 

“current relationship”, which makes the meaning of 
question narrower and removing the ambiguity of 
the question that might lead readers to think about 
subjects’ current relationship or relationships in the 
past. It was only Ali, who reflected a different critical 
thinking process by critiquing misleading statement 
in the newspaper article, stating “Are men better con-
fessors or do men deceive [their partners] more, it 
is unclear, some might deceive [their partners] and 
say they didn’t; that’s why, I think this may not give 
an idea about who deceives more.” He thought about 
the validity of the argument of  “29 per cent of men  
admitted  that they had  cheated  compared  with  18.5  
per  cent  of  women” in the newspaper article with 
the consideration of the possible bias in measurement 
in which subjects might give misleading information 
about cheating of their partners.  

Another finding was that all participants were in the 
process of comprehending by rethinking the catego-
ries in the article while considering about data anal-
ysis procedure of the study in the newspaper article. 
İrem was thinking about one of the statements in the 
newspaper article; that is “Eighty per cent of women’s 
inferences about fidelity or infidelity were correct, 
but men were even better, accurate 94 per cent of the 
time.”(Figure 1). By this table she analyzed women’s 
incorrect inferences about their partners’ fidelity. In 
this process, she organized the possible conditions to 
comprehend how the researchers could reach to the 
conclusions reported in the newspaper article and re-
lated raw data to percentages as a summary statistics.

Another finding was related to participants’ thoughts 
about results or conclusions reported in the newspa-
per article. While thinking about the main idea of ar-
ticle, they did not raised any concern about the results 
in the article that presents only correct inferences 
of men and women. They restated the statements in 
the newspaper article as the main idea of the text and 
did not consider men or women’s wrong inferences 
about their partners, which do not exist in the article. 
Moreover, while thinking about the results of the ar-
ticle, all of the participants attempted to critique the 
results in the article. However, their judgments were 
mostly subjective. Melek, for example, recognized the 
difference between the results given in the newspaper 
article to determine the reliability of the results or 
conclusions: 

If numerical data are compared, it was found that 
80 of women’s inferences were correct but 94% of 
men were right in these inferences. There is 14% 
difference; below [pointing the last paragraph 
of the article] there is much higher difference. It 
can have a difference of 75%; in the other one it 
can detect 41%, so that’s why I thought the test is 
really reliable.

She assumed observed differences in the results are 
large enough, especially in the case of numerical 
values of 75% and 41%, which are given in the state-
ment of “Men were more likely to catch out a cheating 
partner, picking up on 75 per cent of the reported 
infidelities compared with 41 per cent discovered 
by women.” in the newspaper article. However, her 
judgment was subjective, indicating she might not be 
aware of statistical and practical significance of the 
results reported in the article. Supportively, in the 
process of critiquing of results and conclusions, two 
of the participants made self-reflection by reflecting 
their own thinking processes. Melek, for example, ex-
plained her subjective assessment in deciding if the 
study is reliable or not in the following:

 

 
Figure 1: İrem’s organization process regarding data analysis
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[…]when assessing the test, I think I’m adding 
my own opinions a little too; but, for instance, 
when considering its reliability, I’m looking at 
the claims made at the beginning and the num-
bers below, I’m comparing them. So even if I am 
not doing calculations, may be because it fits my 
line of thought a little, I mean I believe in it more.

In summary, regarding the background of the study 
in the newspaper article, participants were mostly 
in the processes of comprehending, critiquing, and 
self-reflecting. During these processes, they mostly 
focused on the existing information (e.g. sample size 
and questions asked to subjects in the study) in the 
article. Only few of them attempted to interrogate 
information about the background of the study, which 
does not exist in the newspaper article.

Critical thinking about the reported statistics
This part includes participants’ critical thinking 
processes about descriptive or summary statistics 
(percentages and probabilistic statements), which 
already exist in the newspaper article. Participants 
reflected different critical thinking processes such 
as comprehending, making connections, inferring, 
and self-reflecting. One of the main findings was that 
participants dealt with clarifying the meanings of 
Statement 2 and Statement 3 (see in the data collection 
part of this study). For example, İrem had confusion 
with the meaning of “fidelity” concept and tried to 
define the terms of fidelity and infidelity:

I think I don’t know the meaning of the concept 
‘fidelity’. I can’t distinguish these two conditions 
[Statement 2 and Statement 3]. I think predicting 
[fidelity] correctly means when they say that they 
don’t think their partner cheated on them and 
actually they  [their partner] hadn’t; and predict-
ing infidelity correctly means when they say that 
their partner definitely must have cheated on 
them and their partner had done so.

After developing an idea about these terms, she rea-
soned through proportionality and calculated the 
number of female and male who made correct infer-
ences about her/his partner’s fidelity or infidelity, 
stating “162 women predicted correctly whether or 
not their partner cheated on them. And I understood 
that 190 men accurately predicted whether their 
partner cheated on them.” Although she expressed 
her difficulty understanding the difference between 

Statement 2 and Statement 3, she did not make clear 
the difference between them.  When asked what she 
understood from the Statement 3, she stated “41  per  
cent  of  203  couples;  so,  83  women detected  that  their  
partner  cheated  on  them.”, which  can be considered 
as an evidence that she did not recognise the condi-
tion of cheating immediately. After that, she realized 
Statement 1 in the newspaper article, which gives in-
formation about the number of people cheating their 
partners. She made connections between two related 
statements (Statement 1 and Statement 3). In this pro-
cess, she overviewed the newspaper article and read 
statements again if she overlooked anything, which 
can show us her self-monitoring process. Then, he 
corrected her mistake, stating “men noticed 75% of the 
cheatings done by their partner. I mean, it seems that 
75% of cheating partners were noticed”. Surprisingly, 
Ali and Melek have such a recursive process of think-
ing in a similar way.In addition, during this process 
Ali and İrem constructed a table or diagram to orga-
nize the findings of the study reported in the news-
paper, which also shows their making connections 
among reported statistics in the newspaper article. 
On the other hand, Melek and Meltem could not go 
further, which could be due to the fact that they could 
not make explicit the differences between the state-
ments in the newspaper article, especially Statement 
2 and Statement 3 whereas Ali and İrem advanced 
their categorization of the reported findings by ex-
amining closely related statements and drawing new 
conclusions from the newspaper article (see Figure 2).

Another finding of the study was that they had difficul-
ty in detecting misleading statements in the newspa-
per article, especially regarding Statement 4, which 
require understanding of the conditional probability. 
For example, İrem tried to critique the Statement 4, 
which is “Men are better at detecting a cheating part-
ner than females, and they are more likely to suspect 
infidelities that do not exist”. In this critiquing process, 
İrem dealt with the clarification of the Statement 4. 
She proposed two alternative meanings for the con-
cept of “being suspicious”: Male/Female says that 
his/her partner is cheating, Male/Female says that 
his/her partner is cheating when his/her partner 
is not cheating in real world. The ambiguity about 
the meaning of this concept and having difficulty in 
conditional probability might have prevented her to 
draw an improper conclusion about Statement 4 and 
partially critiquing it, stating as “I think it [Statement 
4] is wrong…1.4% [3/203] and for women, 2.8% [6/203]. 
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I think this is the opposite of [Statement 4]. If we con-
sider the first meaning [Male/Female says that his/
her partner is cheating], it becomes true…it depends 
on the meaning of “being suspicious”. If we think the 
second meaning that I believe in, women are more 
suspicious, that is, anyway women are suspicious 
unnecessarily.” 

Critical thinking about the generalizability 
of the reported findings
During interviewing, participants were encouraged 
to think about the generalizability of the reported 
findings. While thinking about this issue, all partici-
pants attempted to critique the arguments reported 
in the newspaper article with recognition of relevant 
factors to determine if it was generalizable to popu-
lation or other similar contexts. In this process, they 
differ from each other by focusing on different factors 
such as sample size, sampling method, and cultural 
factors. Two participants (Ali and İrem) also reflect-
ed the process of inferring (examining evidence) re-
garding what background information about sample 
characteristics needs to be addressed to critique gen-
eralizability of the reported findings. For example, 
İrem discussed generalizability as following:

Well, I don’t know if 203 couples are enough. I 
don’t think it can be generalized. My usual opin-
ion, you can’t imagine something big from a small 
sample. If I ask each of the 203 men or if I get 58 
men, in this case, will only 23 of 58 of all their 
wives predict correctly? It seems that this will 
not be correct all the time…You know, different 
results will be obtained from different samples; 
well, here the 203 couples don’t have any char-
acteristic features anyway.  I  mean,  where  do  

they live, in which  country,  I don’t know how 
long they  have been married;  maybe there  are  
many  influential  factors.  It has only mentioned 
that they are young couples […]

İrem was not sure about to what extent sample size 
is sufficient for generalizability from deterministic 
point of view, stating “you can’t imagine something big 
from a small sample.” Conversely, Meltem made some-
what immediate comments regarding generalizability 
and did not provide enough evidence to support his 
evaluation. She considered factor of the sample size 
of the study enough to generalize the conclusions and 
tended to relate the generalizability of the study to the 
clear presentation of the findings in the newspaper 
in the following quote:

203 is actually a good number; in statistics when 
we, for example, carry out a study, we say it’s a 
good  result  when  it  is  over  30,  or  100,  for  
instance.  Well,  203,  compared  with that,  is  
good,  that’s  why…it  can  be  generalized because  
everything  is clear […]

In summary, all participants attempted to critique 
findings in the article when they were asked to think 
about the generalizability. However, they did not re-
flect comprehensible reasoning to make sound assess-
ment about the generalizability.

FINAL REMARKS

One of the main conclusions arising from this study 
is that pre-service mathematics teachers mostly fo-
cused on the existing information rather than on the 
missing or misleading information in the newspaper 

 İrem Melek Ali

Figure 2:  Three participants’ thinking processes about the reported findings 
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article, which might have prevented them to detect 
one-sided arguments (Watson, 2006). Moreover, they 
mostly attempted to comprehend the statements in the 
newspaper article by clarifying their meanings and 
make immediate comments or overgeneralizations 
like “it is good” or “the results of the study is gener-
alizable” without enough evidence to support their 
ideas, which contradicts with the nature of critical 
thinking that requires skeptical thinking, and inqui-
ry on the basis of evidence (Facione, 1990). Another 
important conclusion is that they had difficulty in 
comprehending conditional probability statements, 
which might prevented them to make appropriate 
inferences and critique the reported findings in the 
newspaper article. These results are consistent with 
the findings of Ozen and Cakiroglu (2013). This indi-
cates their lack uses of critical thinking processes 
regarding conditional probability in the media texts 
even though they have already studied about this con-
cept in their statistics courses. This study contrib-
utes to our understanding pre-service mathematics 
teachers’ engagement in the media contexts, which 
might lead us to reconsider the content of statistics 
courses in the teacher education programs regarding 
how these courses really address the issue of uses of 
critical thinking processes regarding the statistical 
and probabilistic information in real life contexts. 
Media texts could be used as a mediator to contribute 
their critical thinking process in designing of statis-
tics courses in which they could be encouraged to 
think about both proper and improper examples of 
newspaper articles about diverse topics, rather than 
just focusing on the computational procedures.
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In an interdisciplinary research project of mathematics 
and biology it is focussed on how graphs, charts and 
diagrams are used in biology classes. The aim of this 
research approach is to get a better understanding of 
how students read statistical representations used in 
biology schoolbooks. Therefore, an interview study was 
conducted. In this paper the theoretical background and 
some empirical findings of this study will be presented. 
The results refer to the reading activities of students 
and yield a concept of reading comprehension which 
contains influencing factors that were identified. The 
paper concludes with a discussion of the results and a 
short outlook on following steps of the research project.

Keywords: Reading statistical representation, interview 

study, statistic education in biology. 

INTRODUCTION

Graphs, charts and diagrams are omnipresent in 
everyday life, but also in classrooms a main tool 
to illustrate relations and structures. Reading and 
creating graphs is an essential part of mathematics 
education and it demands semantic and syntactic 
requirements, for encoding the information given 
in the representation and to engage the context of 
it. Students have to focus on syntactic requirements 
and necessaries like: What are the necessary parts 
of graph or diagram? How to read the data points? 
Which conclusions can you draw from it? But  not only 
in mathematical lessons this kind of representation 
are used and you can also focus more on semantic 
aspects than concerning about the syntactic elements. 
For example biology uses diagrams as an instrument 
to visualize data and context specific correlations of 
biology (Kattmann, 2006). Therefore, there are cur-
ricular requirements to illustrate data on measurable 
parameters with linguistic, mathematical or visual 
design elements (e.g., KMK, 2005).

The project “Statistische Representationen im fach-
übergreifenden Unterrichtskontext von Mathematik 
und Biologis” (engl. “statistical representations in 
an interdisciplinary approach of mathematic and 
biology in school”) at the University of Education in 
Heidelberg aims to explore the use of statistical rep-
resentations at the interface between mathematic and 
biology. The interview study that is described and 
discussed in this paper is one of three steps to the anal-
ysis of reading comprehension of graphs, charts and 
diagrams being used in biology education in schools. 
Preliminary there was an inquiry on statistical rep-
resentations in schoolbooks resulting in a classifica-
tion on charts, graphs diagrams. A summary will be 
presented before the paper focuses on the interview 
study. Afterwards there is a short outlook on the last 
step of the project, which focuses more on examine 
reading comprehension of representation in actual 
biology classes. 

THEORETICAL BACKGROUND

Charts, graphs and diagrams imply syntax and seman-
tic information. In addition to information you get by 
dealing with data points, there is other information 
representing the background of the data. To access 
this information you have to relate it to its inner con-
text (Friel, Curcio, & Bright, 2001). Therefore, read-
ing and interpreting data is a process consisting of 
various components. Curcio (1987) differentiated a 
level model (“Reading the Data”-Model) with different 
degrees of requests: Two levels, reading the data and 
reading between the data are mostly related to syntax 
features and focus on reading and comparing data 
points to identify trends and turning points. In con-
trast, another level, reading beyond the data, considers 
more the context to employ further predictions. This 
model is complemented with a fourth level, reading 
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behind the data (Shaughnessy, 2007). In this level in-
formation is taken with account to the specific dataset 
context, such as the collecting of the data or existing 
comparable data, to explain variation of the data.

Other relevant work about diagrams with biologi-
cal content proposes a structural model of diagram 
competences for diagnosing the ability to construct 
diagrams (Lachmayer, 2007). Furthermore, there are 
studies about mistakes by science students when con-
structing diagrams (Kotzebue, 2014). The integrated 
model of text and picture comprehension by Schnotz 
and colleagues (2002, p. 390) focus more on how “de-
scriptive” and “depictive” representations are pro-
ceeded and based on this how knowledge is gained 
from representations in general.   

Charts, graphs and diagrams represent relations, have 
an iconic character (Bakker & Hoffmann, 2005) and 
are constituted as part of a depictive system that fol-
lows rules (Hoffmann, 2005). In the present research, 
charts, graphs and diagrams are defined as statistical 
representations visualizing data and in particular, data 
from biological settings. This definition serves the 
purpose to investigate representations in a biological 
setting and is framed in appropriate width to allow 
for applications in a learning environment of this 
research approach.

A CLASSIFICATION OF DIAGRAMS AS 
(CONCEPUTAL) BASIS FOR FURTHER WORK

The first step to gather information about reading 
comprehension of statistical representation in biolo-
gy courses requires investigating the representations 
individually. For a systematic and qualitative analysis 
of graphs, charts and diagrams in biology schoolbooks, 
we did a classification to get an idea which representa-
tions are being used at all and to make assumptions 
about influencing factors for reading them (Plicht, 
2013). This classification is also used for a conceptual 
distinction in the further research, differentiating 
the graphs, charts and diagrams when using them as 
research objects.

The diagrams used in a biological context can be di-
vided into those which

a) focus mostly on structure and data

b) focus mostly on context and biological back-
ground. 

A second high-level classifying characteristic is the di-
agram design. There are several levels how graphical 
elements are an integrative part of the representation. 
For an example see Figure 1: the cows and the milk 
cans are graphical element in a chart. They are part of 
the representation, but not necessary needed for ac-
cessing information from the chart. After the inspec-
tion of over seventy representations in school books 
an assumption arose concerning the use of graphical 
elements: an increased number of included graphic 
elements affects how a diagram or graph is read, be-
cause it can change the semantic interpretation or 
change the syntactic proportions of scale and size. In 
Figure 1 it is obviously that the size milk cans do not 
fit to the numeric value of the data.

RESEARCH QUESTIONS

Only little research focuses on the connections be-
tween mathematics and biology with their specific 
requirements in education - especially in reading 
comprehension of graphs, charts and diagrams in-
cluding the involvement of a specific context with 
its semantic extent. Based on the result of the devel-
oped classification, in the next step the reader and the 
reading process of different kinds of diagrams, charts 
and graphs were included in the investigation. With 
these considerations, it was necessary to formulate 
research questions that capture the dimensionality 
of reading statistical representations in context of 
the connection between mathematical and biological 
education.

The following research question emerged from these 
requirements:

 ― How do children read statistical representation 
with biological content?

 ― What are the influencing factors when they read 
charts, graphs and diagrams?

These research questions were investigated with 
a qualitative research design that leaves room for 
open-ended analysis with an explorative character. 
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METHODOLOGICAL APPROACH 

The interview study that emerged from these ques-
tions with an insight into the methodological ap-
proach and the analyzing process will be described 
here before the results are presented and discussed.    

Sample and data collection
Twelve interviews were conducted with students 
(aged 10–12 years; from secondary school). To get a 
pleasant atmosphere and make it easier for the stu-
dents to answer they were interviewed in pairs for 
about thirty minutes (Selter & Spiegel, 2001, p. 106). 
The interviewer questioned the students about three 
to four statistical representations; the interviews 
were videotaped and transcribed afterwards. We se-
lected the test samples (graph, charts and diagrams), 
varying in design and material content based on the 
developed classification, from common German biolo-
gy textbooks. An interview guideline for the half-hour 
conversation with open-ended questions served as a 
dialogue support and further questions regarding the 
four levels of reading the data (Shaughnessy, 2008) 
were used to help the students read the graphs. The 
interviews were to be conducted as openly as possi-
ble to capture the original ideas and interpretations 
of the children. It was important for the researchers 
to hear the children’s spontaneous interpretations 
and to leave room for what else they had to say on 
the subject. For example these questions were used 
to start and carry on the interview: 

 ― What is the diagram about?

 ― What do you see there?

 ― Is there anything else you notice?

Data analysis
The analysis was based on the Grounded Theory 
Methodology (GTM; Strauss & Corbin, 1990) with an 
open inductive approach to find categories to gener-
ate hypotheses about reading statistical representa-
tions.

In the GTM there are three steps of coding before 
finding a general theory (Strauss & Corbin, 1990). The 
coding process in this project was performed on a 
computer with MAXQDA 10. The first step, the open 
coding was supplemented with memos and working 
hypotheses. To become aware of the reading process 
and starting to describe the phenomena, sentenc-
es and words of the transcript became codes. After 
generating several codes they were linked and set in 
relation in a circular work process during the axial 
coding. There the main categories were formed and 
the subcategories arranged to them.  As a result of the 
last step, the selective coding,  two different category 
systems and a concept of reading comprehension 
(Figure 2) that combined them was developed and 
will be presented in the following chapter.

TWO DIFFERENT CATEGORY SYSTEMS 

Analysing the transcripts with the GTM revealed two 
viewing directions, which have been studied in detail. 
On the one hand, the analysis specified what children 
do while reading diagrams. Four main categories 
were explored that describe the activity of reading 
and interpreting statistical representations. On the 
other hand, categories were formed and identified 
as influencing factors to the reading comprehension 
related to the abilities of the child.

Areas of reading activities
1) READING
2) REASONING
3) APPLYING
4) JUDGING

READING1: Children READ, when they refer to or ex-
press information directly from the diagram. This 
includes reading single and multiple data points, the 
reading of labels or mentioning the general topic of 

1 Note that the main category READING is different and more 

restricted than the competence in reading or reading com-

prehension in general.

Figure 1: Chart about milk production (Source: Erlebnis Natur & Co 

3, Schroedel) that was used in the interviews
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the diagram. Describing the content or the graphic 
elements is also a subcategory of READING.

Cw4,  12y.2:  It is about, how it, so, there is a wild 
cow and it has, so, it brings 600kg milk 
per year and you see here in 1400, 1860 
and then so on and goes on higher. 

REASONING: Children REASON, when they justi-
fy their interpretation of correlation or data of the 
graphs, charts and diagrams. Their interpretation 
can be supported by the representation itself or 
from their prior knowledge ideas about the content. 
Children also REASON about the background or caus-
es of the data collection.

Aw1, 10y.:  Yeah, because I think, because they [the 
cows] have always been more and more 
cultured, so they should give more milk.  

APPLYING: Children apply the graph or diagram when 
they consider the meaning of it for themselves person-
ally or in general. They draw conclusions from the 
graph like projecting the data in the future and conse-
quences of that. These statements usually come from 
referencing to (their own) life and the environment. 

Aw1, 10y:  The cow has become pretty old. 

JUDGING: This category includes positive or nega-
tive statements of children that JUDGE the diagram 
itself or the data behind it. Beside the presentation 
they also valuate and discuss the date collection. They 
even doubt the correctness of the data. These judg-
ments are mainly justified by reference to their own 
experiences.

Bm5, 11y.: It is obvious that here is somehow a huge 
distance between the year 1400 and 1860. 
I don’t quite understand why there is 
such a huge distance.

Individual differences as underlying 
factors driving reading comprehension
During the analysis the question arose what factors 
driving reading comprehension might be. There were 
several codes that did not describe the activity of read-
ing but seemed to describe how the students read and 

2 All quotes were original in German, the authors translated them 

for this paper and refer to Figure 1. 

what they need to understand it. This included codes 
about skills children used to read the charts and dia-
grams. These skills could be, for example, mathemati-
cal and biological abilities and experience from their 
own world. These codes do not describe individual 
actions, but rather the abilities or tools children used 
to read. They were labelled during the process with 
the title “individual abilities of the children”. These 
are possible influencing factors who affect reading 
graphs, charts and diagrams.

These codes and categories contain the interdiscipli-
nary competences students apply when working with 
a diagram. We differentiated between mathematical 
skills for reading the syntax of the diagram, and biolog-
ical skills to assess the content. Moreover, the specific 
domain knowledge could further influence how stu-
dents read and understood diagrams. Other concepts 
students used were everyday ideas or naive concepts 
to explain the data. They tried to fit their experiences 
or imagination and the data together even if that was 
contradictory to the presented data. These categories 
can be summarized as influencing factors stemming 
from the subject, the reader of the diagram, and affect 
how the diagram is read.

CONCEPT OF READING COMPREHENSION 
AND OTHER INFLUENCING FACTORS

The results of the analysis with the GTM revealed 
two different category systems: The activities fields 
of reading and the influencing factors stemming from 
the subject. 

There is a clear connection between these two catego-
ry systems: The statements depend on the background 
of the student. For example, they JUDGE the diagram 
by using their everyday ideas or own experiences. 

CW4, 12y3.:  No, that’s not quite right, because the/

CW5, 11y.: Yes, that’s too much…

CW4, 12y.:  … for a person for a daily water use. 
Because my laundry is not washed every 
day. 

3 The quote is from an interview about a chart concerning the 

daily water consumption. 
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Considering the previous work - the analysis of the 
graphs, charts and diagram in school books - it ap-
pears that the influencing factors concerning the 
readers might not be the only factors that affect read-
ing comprehension. There are features of the object 
that also determine the reading comprehension. The 
classification showed relevant criteria to divide the 
objects and we concluded that the design containing 
the use of graphical elements and the content define 
the diagram itself. The content determines whether 
students can REASON when drawing conclusions; 
the design and syntax can help to READ data points. 
Therefore, the content, the graphic elements and the 
type of diagrams may also be influencing factors stem-
ming from the object for the activity fields. Combining 
these results yields a concept of reading comprehen-
sion (Figure 2) with two kinds of influencing factors 
(subject and object) that affect the areas of reading 
activities.

DISCUSSION

In the analysis an open and unprejudiced access gen-
erated the results concerning a deeper understand-
ing of how children read statistical representation 
with biological content. Nevertheless, there are other 
known concepts (e.g., Shaughnessy, 2007; Shah, 2002) 
how to read data and good scientific practice especial-

ly in a qualitative research design demands a sceptical 
glance on theories that were developed in a differ-
ent context with different research questions. The 

“Reading the Data”-Model was introduced earlier and 
it has to be discussed, with this model as an example, 
how we coped with other concepts concerning the 
developed one.

It was not the goal to use or confirm the “Reading the 
Data”- model of Curcio/Shaughnessy in this study. 
Therefore, in this study, previous concepts were not 
used as a basis for coding. Rather, we employed an 
inductive procedure to find concepts. A post-hoc 
comparison of our results with existing theories such 
as “Reading the Data”-model indicate overlaps. The 

“Reading the Data”-model aims to consider the context 
of the representation, but it does not specify how the 
context might affect the reading comprehension and 
it is not very explicit how the context is involved in 
the whole reading process. However, there is a close 
connection between our work and this model. It pro-
vides a basis that could be considered in the present 
research and the similarities of the two models are 
therefore not surprising. It is even possible to find the 
levels of data reading in the concept of reading activi-
ties. Obviously, the levels reading and reading between 
data are included in the category READING. The other 
levels can be found in phases where students REASON, 
APPLY or JUDGE (with) the diagram. When reader 
check with their own experience or make a strong 
reference their world to REASON the data, that’s in 
the level reading behind the data.

In contrast to the “Reading the Data”- model the con-
cept of “the areas of reading activity” is not build on 
levels, but rather application-oriented. It is possible 
to describe the main categories of the reading activity 
as either object or context focused. READING is more 
focused on the object, JUDGE, APPLY and JUSTIFY is 
more focused on the context of the representation.

In this study the reading comprehension was not 
examined in an authentic education environment. 
Statistical representations are used in schools in a 
situational context where teachers control the setting. 
As teachers choose the representation and the content 
of the diagram and prepare the classroom setting in 
which the graphs, charts and diagrams are used they 
determine the domain knowledge and the profes-
sional skill of the children that affect the activities of 
reading. So in an authentic educational environment 

Figure 2: Concept of reading comprehension
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teachers can control the influencing factors stemming 
the students and the representation. 

FURTHER RESEARCH

Our aim is to get more information about how statis-
tical representation could be used in a learning envi-
ronment effectively and to get further information 
how to apply them in biology classes constructively. 
Therefore, we must understand how students read 
diagrams with a biological content and especially 
schoolbook diagrams that are used authentically. 
After investigating diagrams in a non-school setting 
to get a conceptual basis and used as distinction for 
the discussed interview study in this paper, the next 
step is to investigate the use of graphs, charts and di-
agrams in actual classroom situations. Our results 
from this study and the classification, indicating 
factors influencing diagram reading will be used to 
design a classroom study to get further information 
on how students actually learn from statistical rep-
resentations.

REFERENCES

Bakker, A., & Hoffmann, M. (2005). Diagrammatic Reasoning as 

the Basis for Developing Concepts: A Semiotic Analysis 

of Students’ Learning about Statistical Distribution. 

Educational Studies in Mathematics, 60(3), 333–358.  

Curcio, F. (1987). Comprehension of mathematical relationships 

expressed in graphs. Journal for Research in Mathematics 

Education, 18(5), 382–393. 

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making Sense 

of Graphs: Critical Factors Influencing Comprehension 

and Instructional Implications. Journal for Research in 

Mathematics Education, 32(2), 124–158.  

Hoffmann, M. H. G. (2005). Erkenntnisentwicklung. Frankfurt am 

Main: Klostermann.  

Kattmann, U. (2008). Diagramme. In Gropengießer, H. (Ed.), 

Fachdidaktik Biologie. Köln: Aulis-Verlag Deubner.  

Lachmayer, S. (2008). Entwicklung und Überprüfung eines 

Strukturmodells der Diagrammkompetenz für den 

Biologieunterricht. Universitätsbibliothek.  Retrieved 

from: http://eldiss.uni-kiel.de/macau/receive/dissertation_

diss_00003041

Plicht, C. (2013). Diagrams, graphs and charts in biologi-

cal courses. In B. Ubuz, C. Haser, & M.A. Mariotti (Eds.), 

Proceedings of CERME8 (pp. 924–925). Ankara: Middle 

East Technical University.

Schnotz, W., Bannert, M., & Seufert, T. (2002). Toward an integra-

tive view of text and picture comprehension: visualization 

effects on the construction of mental models. In J. Otero, J. 

A. León, & A. C. Graesser (Eds.), The psychology of science 

text comprehension (pp. 385–416). Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Selter, C., & Spiegel, H. (2001). Wie Kinder rechnen. Leipzig: 

Klett-Grundschulverlag.

Shah, P. (2002). Graph comprehension: The role of format, con-

tent and individual differences. In M. Anderson, B. Meyer, & 

P. Olivier (Eds.), Diagrammatic representation and reason-

ing (pp. 173–185). London: Springer. 

Shaughnessy, J. M. (2007). Research on statistics learning 

and reasoning. In F. K. Lester (Ed.), Second handbook 

of research on mathematics teaching and learning (pp. 

958–1010). Reston, VA: National Council of Teachers of 

Mathematics (NCTM). 

Strauss, A. L., & Corbin, J. M. (1996). Grounded theory: 

Grundlagen qualitativer Sozialforschung. Weinheim: 

Psychologie-Verl.-Union.  



740CERME9 (2015) – TWG05

Interest in statistics: Examining the effects 
of individual and situational characteristics

Maria Anna Donati1, Caterina Primi1, Francesca Chiesi1 and Kinga Morsanyi2

1 University of Florence, Department NEUROFARBA, Florence, Italy, caterina.primi@unifi.it

2 Queen’s University, Belfast, United Kingdom

Statistic lessons are often considered difficult and un-
pleasant. One reason for this is that many learners 
do not find statistics intrinsically interesting and en-
gaging. Nevertheless, interest in a particular teaching 
session does not only depend on the characteristics of 
learners, but also on the characteristics of the session 
itself. The aim of the present study was to investigate 
the relationship between learner’s characteristics (i.e., 
individual interest and intrinsic motivation) and situ-
ational interest. Participants were university students 
who participated in a tutorial activity. The results pro-
vided support for a moderated mediation model which 
showed that the relationship between individul and 
situational interest was dependent both on students’ 
intrinsic motivation and the perceived appeal of the 
activity. The discussion underlines the importance of 
the interaction between individual and situational 
factors in the process of teaching statistics. 

Keywords: Learning statistics, individual interest, intrinsic 

motivation, situational interest, moderated mediation 

model.

INTRODUCTION

Statistics is commonly viewed as a difficult and un-
pleasant topic and students often perceive statistics 
courses as a burden, they sometimes fail to pass the 
exams and, as a result, some of them might even 
abandon their academic and professional aspirations. 
Indeed, individuals are not always interested in what 
is being taught as part of their course (see Matarazzo, 
Durik, & Delaney, 2010), and this is especially true for 
domains that are unappealing or feared by students 
(e.g., Middleton & Spanias, 1999; Zeidner, Roberts, & 
Matthews, 2008). Low interest in a learning activi-

ty might also undermine students’ persistence and 
performance (e.g., Durik & Harackiewicz, 2007). As a 
consequence, it is desirable that research focused on 
improving statistical education identifies variables 
that can promote or undermine statistical interest.

THEORETICAL FRAMEWORK

In the educational literature, several studies have 
focused on the concept of interest in college subjects 

. Recent reviews (see Linnenbrik-Garcia, Durik, 
Conley, Barron, Tauer, Karabenick, & Harackiewicz, 
2010; Matarazzo et al., 2010), described two different 
types of interest: individual interest and situational 
interest. Individual interest is an enduring predispo-
sition to engage in certain content domains, and it 
is accompanied by concentration and positive feel-
ings (Hidi & Renninger, 2006). Once developed, in-
dividual interest is relatively stable across time and 
situations. High individual interest involves high 
levels of knowledge, experience, and the attribu-
tion of high value to the domain of interest (Hidi & 
Renninger, 2006; Renninger, 2000). In contrast with 
individual interest, situational interest is a short-term 
state of focused attention and affective engagement 
(Matarazzo et al., 2010), which might be triggered by 
the characteristics of the learning situation (Hidi & 
Harackiewicz, 2000). 

In the domain of mathematics, Durik and 
Harackiewicz (2007) found that situational interest 
was positively influenced by individual interest in 
mathematics. Moreover, these authors found that an 
important process which was related to both individ-
ual and situational interest was intrinsic motivation, 
i.e. the desire to engage in an activity for the value 
inherent in doing it (Deci & Ryan, 1985). According to 
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Harackiewicz and Sansone (1991), the experience of 
intrinsic motivation during task engagement reflects 
the importance that a person places on competent 
performance, refers to the extent to which an indi-
vidual feels focused on and absorbed in an activity 
during task engagement, and concerns an individu-
al’s self-assessment of competence while performing 
an activity. 

Interest (individual and situational) and intrinsic 
motivation are closely related (see e.g., Deci, 1992; 
Ryan & Deci, 2000). Thus, it is important to under-
stand the underlying mechanisms of how students 
become involved and interested in their courses. To 
the best of our knowledge, until now no study has 
investigated individual interest in statistics and its 
relationship with intrinsic motivation and situation-
al interest in the context of a statistics class . The aim 
of this study was to fill this gap by investigating how 
individual interest and intrinsic motivation were 
associated with situational interest in the domain of 
statistics. Specifically, our research questions were 
the following. 

First, we wanted to investigate the relationships be-
tween individual interest, situational interest, and 
intrinsic motivation in statistics. We hypothesized 
that there would be strong, positive correlations be-
tween these characteristics. Additionally,

we wanted to test a mediation model explaining the 
underlying mechanisms by which these individu-
al characteristics are related to each other. We hy-
pothesized that the relationship between individual 
interest and situational interest would be partially 
mediated by intrinsic motivation; that is, that high-
er individual interest would be directly related to 
both greater intrinsic motivation and greater situ-
ational interest in the learning situation (Durik & 
Harackiewicz, 2007), but there would also be an indi-
rect link between individual interest and situational 
interest through intrinsic motivation. 

Second, we wanted to test a model explaining the 
underlying mechanisms by which a characteristic 
linked to situational factors, i.e. the perception of the 
appeal of the activity or, in other terms, the extent to 
which participants like the activity, interacts with 
the other variables in the mediation model explain-
ing the relationships between individual interest in 
statistics, intrinsic motivation, and situational in-

terest in statistics. Specifically, given that Durik and 
Harackiewicz (2007) found that making the teaching 
materials appealing by using nice and colourful pic-
tures had a positive effect on situational interest in 
mathematics, we hypothesized that the perception 
of the appeal of the activity, which was elicited by 
making the teaching materials as appealing as pos-
sible through the inclusion of pictures, images and 
colours, would have a significant positive effect on 
situational interest in the activity. We also predicted 
an interaction between intrinsic motivation and the 
appeal of the activity. In particular, we aimed to verify 
that the relationship between intrinsic motivation 
and situational interest was moderated by students’ 
perception of the appeal of the activity. To provide 
evidence for these hypotheses, we tested a moder-
ated mediation model in which individual interest 
in statistics affects situational interest in a statistic 
learning activity through intrinsic motivation, and 
this mediation effect is moderated by students’ per-
ception of the appeal of the activity. 

METHOD

Participants
The participants were 127 psychology students at-
tending the University of Florence in Italy, who en-
rolled in an undergraduate introductory statistics  
course. The participants’ age ranged from 19 to 44 
(Mean=20.44, SD=3.19). Most of the participants were 
females (79%). Students participated on a voluntary 
basis and they received  course credit for their par-
ticipation.

Materials and procedure
Participants were invited to engage in a statistics 
tutorial activity during one of the lectures of their 
introductory statistics course. The activity, which 
was introduced in the academic year 2013–2014 (and 
took place in November 2013), was conducted by a 
trainer who was different from the course lecturer. 
The activity started with the explanation of the phe-
nomenon of collective statistical illiteracy, defined 
as a widespread lack of understanding of health 
statistics in society, and, ultimately, the tendency to 
draw invalid conclusions regarding the meaning of 
statistical information without noticing (Gigerenzer, 
Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 
2008). To illustrate this phenomenon, a real-world 
example of collective statistical illiteracy regarding 
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birth control was presented1.Then, the activity was or-
ganized in explanation of specific critical arguments 
particularly biased in health statistics, i.e. absolute 
and relative risk in medical fields and conjunctive 
and conditional probability of epidemiological data 
presented in contingency tables. The explanation was 
conducted using power point slides with imagines, 
animations and graphical examples. It was followed 
by demonstration of some exercises regarding re-
al-life situations about the medical field. Each student 
received an individual workbook which contained, 
along with the exercises, a series of scales developed 
for the purpose of this research. 

The following scales were developed for the purpose 
of this research.

At the beginning of the session, individual interest 
in statistics (IIS) was measured using a seven-item 
scale that tapped into the general evaluation of sta-
tistics (e.g., “I find statistics enjoyable”). Participants 
indicated from 1 (strongly disagree) to 7 (strongly agree) 
the extent to which they agreed with each statement. 
A total score on the scale was calculated so that high 
scores corresponded to high levels of IIS. The internal 
consistency of this scale was good (Cronbach’s α = .89).

During the activity, when students were presented 
with practice exercises, they were invited to assess 
their intrinsic motivation (IM) in solving them. IM 
was measured using a twelve-item scale measuring 
self-reported competence valuation (e.g., “It is impor-
tant to me that I perform well”); task involvement (e.g., 

“I got caught up in doing this exercise”) and  perceived 
competence (e.g., “I think I did well in the exercise”). 
The scale had a 7-point Likert response scale (from 1 

= strongly disagree to 7 = strongly agree). Cronbach’s α 
was .86 indicating good internal consistency. A total 
score on the scale was calculated so that high scores 
corresponded to high levels of IM.

1 “In October 1995, the U.K. Committee on Safety of Medicines 

issued a warning that third-generation oral contraceptive pills 

increased the risk of potentially life-threatening blood clots in 

the legs or lungs twofold—that is, by 100%. This information 

was passed on in ‘‘Dear Doctor’’ letters to 190,000 general 

practitioners, pharmacists, and directors of public health and 

was presented in an emergency announcement to the media. 

The news caused great anxiety, and distressed women stopped 

taking the pill, which led to unwanted pregnancies and abor-

tions (Furedi, 1999).” (Gigerenzer et al., 2008, p. 54).

Finally, after the activity, situational interest (SI) and 
perceived appeal (PA) of the activity were assessed. SI 
was measured through an eight-item scale (Cronbach’s 
α = .91) referring to the student’s specific interest in 
the ongoing learning activity (e.g., “I have found this 
activity very interesting”). PA was measured by a 
four-item scale (e.g., “I liked the slides very much”) 
(Cronbach’s α = .93). For both scales, participants in-
dicated from 1 (strongly disagree) to 7 (strongly agree) 
the extent to which they agreed with each statement. 
A total score on the scales was calculated so that high 
scores corresponded to high levels of SI and PA. 

In line with the usual course lessons, the total dura-
tion of the activity was two hours.

RESULTS

Relationships between individual interest in statistics, 
situational interest in statistics, and intrinsic motiva-
tion: To analyze the relationships between individual 
interest in statistics, situational interest in statistics, 
and intrinsic motivation, correlations between the 
variables were calculated (Table 1). Situational inter-
est was significantly and positively correlated with in-
dividual interest in statistics and intrinsic motivation. 
Moreover, there was a significant positive correlation 
between individual interest in statistics and intrinsic 
motivation. 

To evaluate the adequacy of the hypothesized media-
tion model explaining the underlying relationships 
between individual interest in statistics, intrinsic 
motivation, and situational interest in statistics, we 
tested the extent to which the relationship between 
individual interest in statistics and situational inter-
est was mediated by intrinsic motivation. Specifically, 
we verified whether individual interest in statistics 
had both a direct and an indirect effect on situation-
al interest in the statistics tutorial activity through 

                1 2 3

1. Individual interest -

2. Situational interest .40** -

3. Intrinsic motivation .34**  .58** -

M 38.88 43.19 125.38

SD 9.50 8.75 18.25

Table 1: Summary of Intercorrelations, Means, and Standard 

Deviations for Scores of the individual interest, situational interest, 

and intrinsic motivation
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intrinsic motivation. We used the INDIRECT macro 
for SPSS (Hayes, 2013), which tested the hypothesized 
mediation model using the bootstrapping procedure 
(with 5000 bootstrap samples) to estimate the 95% 
confidence interval (95% CI; for more details, see 
Preacher & Hayes, 2008). The bootstrapping proce-
dure is considered to represent the most reliable test 
for assessing the effects of mediation models (Hayes & 
Scharkow, 2013). As shown in Figure 1, the mediation 
model was estimated to derive the total, direct, and 
indirect effects of individual interest in statistics on 
situational interest in the activity through intrinsic 
motivation. We estimated the indirect effect of indi-
vidual interest in statistics on situational interest in 
the activity, quantified as the product of the ordinary 
least squares (OLS) regression coefficient estimating 
intrinsic motivation from individual interest in sta-
tistics (i.e., Path a in Figure 1) and the OLS regression 
coefficient estimating situational interest in the ac-
tivity from intrinsic motivation controlling for in-
dividual interest in statistics (i.e., Path b in Figure 1). 
A bias-corrected bootstrap 95% CI for the product of 
these paths that does not include zero provides ev-
idence of a significant indirect effect (Hayes, 2009; 
Preacher & Hayes, 2008). Results showed a significant 
positive direct effect of individual interest in statistics 
on situational interest in the activity (point estimate = 

.19, 95% CI = [.02, .35]). Moreover, results showed a sig-
nificant positive indirect effect of individual interest 
in statistics on situational interest through intrinsic 
motivation (point estimate = 0.16, 95% CI = [0.06, 0.31]).

To evaluate the adequacy of the hypothesized moder-
ated mediation model explaining the role of the per-
ceived appeal of the activity in the above described 
mediation model, we tested the extent to which per-
ceived appeal had a positive main effect on situational 
interest and whether the mediation of intrinsic mo-
tivation between individual interest in statistics and 

situational interest in the statistics activity was mod-
erated by the perception of the appeal of the activity. 
In order to verify this model, we conducted a mod-
erated mediation analysis as suggested by Preacher, 
Rucker, and Hayes (2007). Similarly to the mediation 
analysis, this analysis tested the hypothesized model 
using the bootstrapping procedure (with 5000 boot-
strap samples) to estimate the 95% confidence interval. 
As shown in Figure 2, the results confirmed a signif-
icant positive direct effect of individual interest in 
statistics on situational interest (point estimate = 0.16, 
95% CI = [0.04, 0.28]). The results also showed a sig-
nificant main effect of the perception of the appeal 
of the activity on situational interest in the statistics 
activity (OLS coefficient=2.35; SE=.65, p<.001) as well 
as a significant interaction between intrinsic motiva-
tion and the perception of the appeal of the activity 
on situational interest in the statistics activity (OLS 
coefficient=-.01; SE=.01, p<.05). Given the evidence for 
this interaction, we estimated the conditional indi-
rect effect of individual interest in statistics through 
intrinsic motivation on situational interest at vari-
ous levels of the perceived appeal of the activity. We 
found that the indirect effect of intrinsic motivation 
on situational interest was significant only for low 
(point estimate = - 0.11, 95% CI = [0.03, 0.23]) and medi-
um (point estimate = 0.08, 95% CI = [0.03, 0.16]) levels 
of perceived appeal of the activity. The effect was not  
significant for high levels of perceived appeal of the 
activity (point estimate = 0.04, 95% CI = [-0.01, 0.12]). 

Thus, the results suggested that the positive indirect 
effect on situational interest through intrinsic moti-
vation (controlling for individual interest in statis-
tistics) was significant for low and medium levels of 
perceived appeal of the activity but not for high levels 
of perceived appeal. In other words, among students 
who perceived the activity as poorly or averagely 
appealing, results showed significant differences in 

Figure 1: Path coefficients for mediation analysis on situational interest in the statistics activity. Dotted line denotes the effect of 

individual interest on situational rest in the statistics activity when intrinsic motivation is not included as a mediator. a, b, c, and c’ are 

unstandardized ordinary least squares (OLS) regression coefficients. *p < .01 **p < .001 ***p<.001



Interest in statistics: Examining the effects of individual and situational characteristics (Maria Anna Donati, Caterina Primi, Francesca Chiesi, and Kinga Morsanyi)

744

situational interest between those with low, medium, 
and high motivation. By contrast, among students who 
perceived the activity as highly appealing, there was 
no significant difference on situational interest be-
tween those with low, medium, and high motivation. 
This meant that if a statistics activity is perceived as 
highly appealing by the students, it is likely that they 
will perceive the activity also as highly interesting, 
regardless of their motivation. 

DISCUSSION AND CONCLUSION

Given the relative lack of studies on interest in the 
statistics domain, the present work was aimed at 
investigating the relationship between individual 
interest and situational interest in the statistics do-
main. Specifically, our aim was to develop and test a 
model explaining how specific features of the teaching 
session, as perceived by students, act in concert with 
some individual differences in individual interest, 
intrinsic motivation, and situational interest. Overall, 
three important findings emerged from this study.

First, individual interest was found to have a direct 
effect on both situational interest and motivation 
in the statistics domain. This result is in line with 
Durik and Harackiewicz’s (2007) earlier findings in 
the mathematics domain. Second, our study is the 
first to provide evidence that intrinsic motivation 
mediates the relationship between individual inter-
est in statistics and situational interest in a statistics 
activity. More specifically, greater individual interest 
in statistics appears to be related to greater intrin-
sic motivation, which, in turn, is related to a greater 
likelihood to show interest in the activity. Third, our 
results suggest that the indirect effects of individual 
interest in statistics on situational interest through 
intrinsic motivation is moderated by the perceived 

appeal of the activity. In other words, the extent to 
which intrinsic motivation mediates the relationship 
between individual and situational interest, interacts 
with how the student perceives the appeal of the ac-
tivity. Specifically, if a student perceives a statistics 
activity as highly appealing, even if he/she was poorly 
motivated to participate in the lesson, he/she is likely 
to be very interested in the statistics activity. 

These results have important implications. First, 
these results indicate that intrinsic motivation plays 
an important role in the relationship between individ-
ual interest and situational interest in statistics, Thus, 
interventions aimed at increasing students’ interest 
in statistics activities could be focused on improving 
intrinsic motivation, for example by highlighting the 
importance of statistics in everyday life and in the pro-
fession of a psychologist. Second, as our study shows 
that students’ perception of the aesthetical appeal of 
teaching materials moderates the effect of intrinsic 
motivation on situational interest, educators who 
are interested in finding ways to involve the highest 
possible number of students (including the less moti-
vated ones) in statistics learning, could aim to prepare 
teaching materials with the highest possible level of 
esthetical appeal. 
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In recent years, research on the processes of teaching and 
learning of Statistics emphasises that the interpretation 
of data is a complex process that involves cognitive and 
technical aspects. However, the interpretation of statis-
tical data is a human activity that also involves affective 
aspects. However these aspects were not sufficiently in-
vestigated. This paper discusses some elements from an 
empirical pilot study that explores the idea of affective 
expression during the interpretation of statistical data 
by undergraduate students of statistics and pedagogy. 
Although the participants had different academic back-
ground their interpretations of media statistics data did 
not follow patterns that were influenced by the univer-
sity courses they attended.

Keywords: Affective exhibition, interpretation of statistical 

data, statistics education.  

INTRODUCTION 

Several studies on statistics education have given 
evidence that the interpretation of data is a complex 
activity which is associated with several aspects. Gal 
(2002) argues that statistical literacy consists of two 
types of components: cognitive and dispositional. The 
cognitive components, such as mathematical and sta-
tistical knowledge, are related to reasoning aspects 
that enable readers to technically interpret data. The 
dispositional components refer to more subjective 
elements related, for example, to beliefs, attitudes and 
emotional aspects of the individual that is reading the 
data. Based on Gal´s perspective, readers can discuss 
and communicate their conclusions about statistical 
data using their expertise on specific area, as well as 
their personal and social experiences.

Arcavi (2003) emphasises that the interpretation of 
(statistical) data is not the result of a simple decod-

ing of graph components. Although Arcavi is mainly 
working on mathematics learning he also refers to 
allied disciplines (e.g., data handling or statistics) and 
the way of data representations and date graphing 
(Arcavi, 2003, p. 217).

Since “we live in a world where information is trans-
mitted mostly in visual wrappings, and technologies 
support and encourage communication which is es-
sentially visual” (Arcavi, 2003, p. 215) human being 
is encouraged to interpret visual representations. 
He emphasises the complexity of the phenomenon 
of interpreting visual representation, e.g. graphical 
display. It is not only related to what comes “within 
sight”, but we are also encouraged and aspire to ‘see’ 
what we are unable to see. Referring to Goethe he ex-
plains the quote “We don’t know what we see, we see 
what we know” (Arcavi, 2003, p. 230) stressing the 
last part of the expression “We see what we know”. 
Arcavi argues that the same visual objects may have 
different meanings in different contexts. He therefore 
proposes to classify three types of ‘difficulties’, see 
cognitive, sociological and cultural.

Lima (1998) and Monteiro (1998) suggest that during 
the interpretation of data, the way readers use their 
mathematical and/or statistical knowledge is a com-
plex aspect which is not the result from only one 
aspect, such as their academic background. Lima 
(1998) analyses the interpretation of data developed 
by designers and mathematics teachers. The author 
concluded that the interpretations of the participants 
were different in the way they read the data, however 
both groups were similar in the use of mathemati-
cal knowledge during the interpretations. Monteiro 
(1998) investigates the processes of interpreting 
graphs of printed media by a group of businessmen 
with different academic backgrounds and a group 
of economists. The author did not identified differ-



Affective exhibition during the interpretation of statistical data (Tamires Queiroz, Carlos Monteiro, Liliane Carvalho and Karen François)

747

ences in relation to the strategies of problem solving, 
although the group of economists tended to produce 
more estimates in their interpretations.

Monteiro (2005) develops the idea of critical sense dur-
ing the process of interpretation of statistics media 
graphs that is related to mobilisations and balance of 
several elements. The term mobilisation (Monteiro & 
Ainley, 2003) is related to the possibility of re-using 
or re-sourcing (Adler, 2000) previous knowledge and 
experiences during the process of interpretations of 
media graphs. This mobilisation seems to be a process 
in which readers explore the data, confronting it with 
their own perspective, and their previous experienc-
es related to the data interpreted. However, the pro-
cess of mobilisation in interpretation of media graphs 
does not ‘naturally’ happen. In order to mobilise their 
previous knowledge and experiences to interpret a 
media graph, readers need to establish a certain level 
of engagement in the task, which then leads to the 
articulation in which they make a recontextualis-
ation of the knowledge and experiences mobilised, 
comparing them to the data. The reader also needs 
to balance different elements. Therefore, there is no 
direct application of knowledge and experiences for 
the process of interpretation. This complex process 
of mobilise and balance different elements during 
the interpretation of statistical data displayed in the 
graph is called critical sense.

McLeod (1992) did an extensive review of the liter-
ature in mathematics education that addresses the 
affective domain. The author states that, among other 
factors, most of these studies did not impact mathe-
matics education because they were focused only on 
stable aspects of affectivity. In other words, these stud-
ies were more concerned with the products and not 
with the processes involved. Most studies reviewed 
by McLeod seem to conceive narrowly affectivity, 
merely investigate more specific concepts such as 
beliefs and attitudes. In addition, the studies did not 
make a link between affective and cognitive factors. 
Therefore, similar to those studies that investigated 
only cognitive aspects, the studies that addressed only 
affective aspects seem to have no impact on the learn-
ing and teaching of mathematics curriculum content. 
McLeod suggests that beyond a deepening of theoret-
ical questions about the definition of affectivity and 
their relation to cognition, studies need to be based 
on research approaches that combine quantitative 
and qualitative methods.

Based on this literature review we can conclude that 
Gal (2002) provided statistical literacy principles 
comprised of cognitive and dispositional elements. 
Arcavi (2003) emphasised the importance of people’s 
social and cultural background in the interpretation 
of data, which is also exemplified by Lima (1998) and 
Monteiro (1998). Finally, Monteiro (2005) added the 
notion of ‘critical sense’ based on statistical literacy 
principles, however emphasising the complex inter-
relation between components and processes involved. 
Research on the specific affective influences in statis-
tics interpretation is still lacking. Looking at the field 
of mathematical literacy, affectivity has the rather 
narrow meaning of attitudes and beliefs. With the 
concept of affectivity we will include the dispositional 
elements that are take part at the interpretation of 
statistical data.

In the field of statistics education, it is necessary to 
develop a similar literature review that investigates 
the number of studies focused on the affective aspects, 
and how they can make impact on the teaching and 
learning of school statistics. Besides we need empir-
ical evidence based on quantitative and qualitative 
approaches to better understand the interpretation 
of statistical data.

RESEARCH QUESTION

The research question in this exploratory study is 
if the affective expressions of students in situations 
of interpretation of statistical data are related to the 
students’ background in the teaching and learning of 
statistics. Therefore we investigated the interpreta-
tions of students from two different backgrounds in 
the teaching and learning of statistics, viz. (i) bachelor 
in statistics and (ii) degree in pedagogy. We expected 
that the differences related to the type of course in 
which the participants were enrolled might influence 
their affective expressions on their interpretations.

METHODOLOGY

This pilot study was a qualitative investigation based 
on standardized open-ended interviews. In order to 
investigate aspects about the affective expression 
and statistics literacy, we invited first year students 
from two different university courses from the same 
Brazilian Federal University: two undergraduate stu-
dents from an education course (P1 and P2) and two 
students from a statistics bachelor course (S1 and S2).
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We chose a group of students from education because 
they are pre-service primary school teachers, and 
also because in this course has disciplines, such as 
Psychology which addresses affective aspects. The 
first year education students already attended those 
disciplines. The choice for students from bachelor 
in statistics was because this course has a curricu-
lum focused on disciplines such as probability, data 
analysis, and stochastic phenomena. The first year 
students already had such disciplines and they will 
not have any discipline that approaches the affective 
aspects as part of their course. The first author con-
tacted the students in their classroom and explained 
the research. The students interviewed were volun-
teers. Data collection was conducted in November and 
December 2013. The Pedagogy students P1 (57 years 
old, female) and P2 (33 years old, male) completed two 
disciplines that approaches affective aspects associat-
ed with teaching and learning. They did not attend any 
statistics course during their first year. The statistics 
students S1 (17 years old, female) and S2 (18 years old, 
female) completed five specific disciplines related to 
statistics.

DATA COLLECTION

The data collection was developed from individual 
standardized open-ended interviews which were 
composed by four tasks related to statistics data from 
different publications. Statistical data had the follow-
ing topics: (1) on mammography examination, (2) on 
traffic accidents, (3) on life and health insurance, and 
(4) on high school students´ handguns. (Due to lack of 

space in this paper, we report on 2 and 4).The main 
reason to choose these cases was that the topics had a 
certain level of polemic. We expected that this type of 
data would motivate participants to make comments 
related to technical aspects as well as to their emotion-
al reaction to the data. During the interviews, each 
task was presented to the student on a printed sheet. 
The researcher read the specific questions for each 
task. Interviews were recorded, and transcribed. The 
protocols were originally in Portuguese, fragments 
for this paper were translated by the authors.

Task 2 was comprised of questions about a line graph 
(Figure 1) that shows the percentages of deaths among 
Brazilian youth population caused by traffic accidents 
between 1998 and 2008. This graph was originally 
published in a report from the Brazilian ministry of 
justice (Waiselfisz, 2011).

Interview questions related to task 2 (Figure 1) were: 

1) What can you conclude from the results present-
ed in this graph?

2) If you could ask a question to whoever built this 
graph, would you do? Which one(s)? 

3) What would you say? What elements which 
would you emphasise? 

4) What do you think these data are between 2008 
and 2013? Why do you think that?

Figure 1: The percentages of deaths among youth Brazilian from 1998 until 2008
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Task 4 was used by Watson (2005). It is a fragment of 
media news about the use of handguns by high school 
students:

About 6 in 10 United States high school students 
say they could get a handgun if they wanted one, 
a third of them within an hour, a survey shows. 
The poll of 2,508 junior and senior high school 
students in Chicago also found 15% had actually 
carried a handgun within the past 30 days, with 
4% taking one to school.

Interview questions related to task 4 were

1) What can you conclude about this research?

2) What do you think about the data collected in this 
research?

3) Do you have any questions or comments about 
this research? Which one(s)?

THE ANALYSES OF PARTICIPANTS’ RESPONSES

The transcriptions of audio records were organized 
in protocols which were base to the data analyses. The 
participants’ responses were analysed by a categori-
sation which emerged from a qualitative approach. 
Initially, we categorised their responses for each task 
and item. In order to discuss aspects from the data 
collected in the following sections we exemplify with 
some extracts from the interviews.

TASK 2 – DEATHS AMONG BRAZILIAN 
YOUTH POPULATION

In order to answer the first item of this task (What 
can you conclude from the results presented in this 
graph?) all participants made initially general com-
ments related to the graph itself. However, they also 
made some observation which could make explicit 
their personal reaction to the data displayed. The ex-
tract from the interview with P1 can exemplify this:

S1: Here, the person [who reads the graph] 
realizes that motorcyclists [figures] rose 
so much. The pedestrians, I think, they 
became more conscious in relation to 
that, before used to be something that 
nobody cared. Nowadays have foot-
path, have road sign, have zebra cross-

ing, have more... much care. While, 
the motorcyclists [figures]... is getting 
worst day by day. While the cars has a 
decrease but it is not much. While the 
ones [figures] of pedestrians remain all 
in one pattern, a little less.

The second question (If you could ask a question 
to whoever built this graph, would you do? Which 
one(s)?) motivated P2, S1 and S2 to ask questions relat-
ed to the survey itself. They asked questions about the 
data collection, sampling and where the survey was 
conducted. Those questions indicated concern about 
the reliability of the research, e.g. S2 asked how the 
data were collected, as illustrated below:

Researcher: If you could ask a question to whoever 
built this graph, would you do?

S2: I would do... How the data was collected 
... Only.

Researcher: What do mean?
S2: Kind of... If it was a street survey... 

Asking how many accidents you have 
in one year or if it was a survey... For 
example... Within the IML [Institute of 
Legal Medicine] which is the agency re-
sponsible for deaths.

The questions formulated by participants suggested 
that they were mainly concerned about technical as-
pects related to the data. Maybe they needed this type 
of information to be more comfortable to make other 
comments about the data. In some way, we could say 
that their questions were also expressions of their 
feelings about the data, because they made explicit 
some scepticism about the data displayed on the graph.

The responses to question 3 (What would you say? 
What elements which would you emphasize?) were 
complementary to those of question 2. The questions 
motivated the students to make more observations 
related to the data displayed. Generally, the partic-
ipants now responded as a rereading of the graph. 
They pointed to specific figures (as they did when 
answering question 1). The most frequent responses 
were related to the increase in deaths of motorcyclists, 
followed by references to the decrease in pedestrians’ 
deaths. P1 developed a more extensive response, ques-
tioning more explicitly, as illustrated in the following 
extract of her interview:
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Researcher: Ok. It is... if you were going to com-
ment to someone about this graph, 
which points would you think that 
should be important to discuss about 
it? What are the points that you would 
emphasise, that you would discuss more 
about?

P1: I think that it would be really to make 
relations between these categories... of 
pedestrians, motorcyclists and drivers. 
Why these categories are most affect-
ed in the traffic? Look at the difference 
of others, of the trucks, of the cyclists... 
Cyclists also do not have an incentive, 
don’t they?... for the use of cycleway. But, 
it would be to make relation between 
these categories.

We can observe that P1 emphasises the importance 
of analysing the graph as a whole, as P1 attributes im-
portance to the relationships between the categories. 
P1was interpreting beyond the data displayed when 
she was referring to specific issues which are part of 
her daily experiences and observations (e.g. when she 
talked about the situation of cyclists). P1 seems to be 
preoccupied with the effects on people rather than 
the performance effect of the figures.

From the analyses of protocols we identified more 
variety of participants’ responses to the fourth ques-
tion (What do you think these data are between 2008 
and 2013? Why do you think that?). All participants 
justified their answers based on contextual reference 
(Monteiro, 2005), that is when they contextualise the 
data displayed on the graph making references which 
are related to their formal knowledge in different ar-
eas and their opinion.

On the one hand, P2 and S2justified their answers 
talking about a possible increase in numbers of acci-
dents based on information that they had from two 
media reports.

Researcher: In the case, these results were 
from1998 until 2008, right? What do 
you think these data are between 2008 
and 2013? 

S2: I think that tends to increase the num-
ber of deaths of cyclists [but really re-
ferring to motorcyclists], well... for my 

knowledge of the world, right? Because... 
kind... the rates of IPVA [Brazilian tax on 
the ownership of motor vehicles], these 
things have decreased and more people 
are buying cars and... by this graph, it 
tends to increase even [the number of 
accidents].

On the other hand, P1 and S1 were more positive, they 
referred to the effectiveness of dry law that prohibit 
people to drive after drink any amount of alcoholic. 
The following extract gives an example of this type 
of approach:

Researcher: In this case, this... This report was 
made from 1998 to 2008. What do you 
think these data are between 2008 and 
2013?

S1: Guy, I think it must have dropped. Slowly, 
but it is dropping. Our conscience is 
more... we have the dry law then we are 
taking more care, aren´t we? I believe 
that is a little bit better than two years 
ago.

From our analysis of the question 4 responses, we 
can infer that these participants also expressed dif-
ferent feelings about the same data displayed. These 
different affective expressions certainly are related to 
individual aspects from those who interpret the data. 
Hence there is also evidence that the interpretation 
of statistical data is composed of affective elements 
which need to be considered.

TASK 4 – THE USE OF HANDGUNS 
BY HIGH SCHOOL STUDENTS

Most of participants’ responses to the first question 
(What can you conclude about this research?) tended 
to express feelings about the survey. The following 
extract from P1 interview is an example:

P1: I was shocked with the facility of arma-
ments and weapons that the American 
population has. Because it is not just at 
school, no, any citizen, isn’t it? Have in 
their home one or two weapons. ...The 
poll of 2,508 junior and senior high 
school students of the first and the last 
year of high school students... ...said that 
15% of them had a gun in the last 30 days, 
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with 4% having taken to school... [read-
ing the task]. From these 15%, 4 [%] led 
to the school, didn’t they?  Other day I 
was commenting on that... so... some of 
them have their jets, their imported cars, 
their helicopter; others live picking up 
litter, don’t they? And, for the world to 
arm itself is also very fast. It’s just you 
do your atomic bomb, to make intimi-
dations with each other. It’s shocking. I 
find shocking.

P1 tended to interpret the news report basing on an 
emotional reaction to the theme, although she consid-
ered the statistical figures related to the poll. S1 and 
S2 interpretations were quite similar to P1 when they 
responded this question. We can infer that the theme 
related to this task was more explicitly polemic, and 
may have influenced these participants’ interpreta-
tions. Only P2 had a more descriptive reading of the 
data which did not seem to have had any personal reac-
tion about the news report. As we can see the excerpt 
from his interview:

P2: I conclude that... it was done a piece 
of research, a poll... that from 2.508 
high school students from the United 
States... it was detected that 60% of these 
students say they could get a gun if they 
wanted. Then, moreover, this 60%... it 
is... a third of these students could get a 
gun within an hour, and moreover, it... 
yet... students from first and last year 
of high school [rereading the task]... 
that means… it has here… at first, the 
research was done with high school stu-
dents. Making a correction! And… this 
research has reached that percentage of 
6 out of 10 could have access. After that, 
it was done a research investigating this 
number of students 2.508, of the final 
years of high school and among these 

... it is... it was found that 15[%]  of them 
carried a handgun…  carried a handgun 
in the last 30 days and 4% of them had 
already led gun to school.

In this part of the interview, P2 was trying to under-
stand the details about the procedures related to the 
data collection, and other details of the news data. His 

concerns to specific aspect of the news did not allow 
him to question or expose his point of view.

The second question of task 4 intended to explore 
more specifically the participants’ interpretation 
about statistical data involved (What do you think 
about the data collected in this research?). The par-
ticipants’ responses seemed to be complementary 
to their comments on the first question. Therefore, 
P1, S1 and S2 who did not make observations about 
the figures, responded here by making observations 
concerning quantitative data as well as expressing 
the personal point of view, e.g. the following extract 
form the interview:

Researcher: What do you think about the data 
collected in this research?

S1: I found it very serious. Because if 
among… 2,500 students, 15% of them 
have revolver, that is too many... if 4% 
can take it to school, imagine how many 
people within that school have a re-
volver. Any time something happens... 
Nowadays, in the ways those things are... 
any... “step on somebody’s toes”, you are 
already assaulting somebody... this is a 
very dangerous thing and has to have 
drastic measures. 

On the other hand, the interpretation of P2 was more 
explicitly related to his personal opinion about the 
data.

P2: These data here, it shows and proves 
about the reality of a country that has 
a policy of well open access to weapons, 
right? And at the same time, there is no 
much control and no much oversight, 
right?

Finally, the third question was an opportunity to the 
participants to make final remarks about the data 
(Do you have any questions or comments about this 
research? Which one?).

P2 and S1 questioned about the survey sampling, 
the sites where the poll was taken and how the re-
search was done, pointing out some possible biases. 
According to them, the information provided about 
the survey was insufficient to answer their questions, 
however, none of them expressed they didn’t trust 
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the research. The comments of P1 and S2 were based 
on their opinions about the situation, taking into ac-
count their knowledge about social, economic and 
political aspects which might be related to the theme, 
and which could eventually influence the interpre-
tation of the data. These two participants did not ask 
for further information.

FINAL CONSIDERATIONS

This study explored aspects of the exhibition of affec-
tive components in the interpretation of statistical 
data. Specifically, the empirical research data was 
generated from situations in which the participants 
interpreted statistical data. The participants were stu-
dents engaged in different processes of teaching and 
learning related to affectivity and statistics. Students 
of Pedagogy attended courses only related to affectiv-
ity, and students of statistics had approached various 
contents related to data analysis, and they did not at-
tend courses that comprise the theme of affectivity as 
curriculum content.

The research tasks were associated with statistical 
data of controversial themes. Our expectation was to 
propose research situations that could provide possi-
bilities for the participants to present more personal 
expressions during their interpretation of the data. 
We also expected that participants’ academic back-
ground could influence how they would interpret and 
to express their affectivity in relation to the data.

The analyses of protocols suggest that the interpre-
tation of statistical data is a dynamic process, which 
do not follow predictable patterns. Participants re-
sponded in different ways during their processes of 
interpretation to most of the questions. They mostly 
expressed their opinions and feelings in responding 
to the questions, or at some moments they mixed their 
objective analysis related to the statistical knowledge 
with the subjectivity of their impressions about the 
data. Even more technical oriented questions (see task 
2 question 2 and task 4 question 2) can be interpreted 
as expressions of feelings (e.g. scepticism) or expres-
sions of a personal point of view.

In line with the theoretical investigations on inter-
preting statistical data, these preliminary data gave 
evidence that the process of interpretation is a com-
plex process consisting of cognitive and dispositional 
components. Based on the preliminary research find-

ings, we have no clear evidence that these components 
were determined by the curriculum background of 
the students (pedagogical versus statistical). However 
our findings make clear that a broader discussion 
about the processes of data handling and the interrela-
tion with affective aspects is an important issue in the 
further development of teachers’ understanding of 
statistical literacy. Further investigations have to re-
veal possible differences between first year students 
and students in a final stage of the courses.
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While distributions were long understood as “funda-
mental given of statistical reasoning” (Wild 2006, 10), 
recent research uncovered students’ difficulties in ac-
quiring the underlying conceptual structure and mak-
ing statistically sustainable inferences when comparing 
distributions. Research so far describes informal strate-
gies such as using ‘clumps’ as productive when learning 
to compare distributions. However, more insights are 
needed regarding why some of these strategies are cho-
sen in certain situations in order to fully relate students’ 
informal strategies to statistical concepts and measures 
in task design. This paper aims at clarifying the students’ 
reasoning behind what to focus on for comparisons. We 
will present empirical snapshots from students in grade 
8 (13–15 years old) who focus almost exclusively on ab-
solute frequencies of dots and specifically determined 
intervals for comparing distributions. 

Keywords: Statistical reasoning, comparing distributions, 

design research.

INTRODUCTION 

Comparing empirical distributions has a high value 
for statistics education: “Concepts and judgments in-
volved in comparing groups have been found to be a 
productive vehicle for motivating learners to reason 
statistically and are critical for building the intuitive 
foundation for inferential reasoning” (Ben-Zvi, 2003, 
p. 1; also Bakker & Gravemeijer, 2004). A combination 
of descriptive and inferential reasoning is needed in 
order to make sense of differences and commonalities 
of two (or more) distributions and go beyond the data 
at hand. Thus, this activity is an important part of 
data analysis. The necessary concepts and insights 
are “multifaceted” (Ben-Zvi, 2003) as properties of 
and between distributions have to be considered. The 
aim of this paper is to explore students underlying 
informal resources and rationales as well as concep-

tual difficulties as starting points for establishing a 
suitable learning environment. 

PROPERTIES OF AND BETWEEN 
DISTRIBUTIONS 

From a normative perspective, comparing distribu-
tions statistically requires students to perceive a dis-
tribution as an “organizing conceptual structure with 
which they can conceive the aggregate instead of just 
the individual values” (Bakker & Gravemeijer, 2004, p. 
148). Wild (1999) calls a distribution a lens, through 
which variation is looked at by “set[ting] aside case 
labels” (p. 11). This short descriptions already points 
out that a distributions is in fact a net of different 
intertwined concepts: Centre, spread, density and 
skewedness are properties of a distribution and con-
stitute its shape (ibid., Ben-Zvi, 2003). “The concept of 
distribution has a complex structure, but this concept 
is also part of a larger structure consisting of big ideas 
such as variation and sampling (…). [One can] deal 
informally and coherently with all these big ideas at 
the same time with distribution in a central position.” 
(Bakker & Gravemeijer, 2004, p. 149). 

These properties can be approached formally (e.g. 
calculating arithmetic mean, mode and median as 
measures for the centre), but also in more phenome-
nological and visual ways (e.g., determining intervals 
with high density, gaps and clusters; cf. Pfannkuch et 
al. 2010 for the visual approach). For clarification, this 
paper uses ‘properties’ to refer to statistical concepts 
and ‘features’ to more visual aspects of a distribution. 

Inherent in the statistical concept of distribution is 
the necessity to not only focus on single data points or 
small groups (so-called local view; Ben-Zvi & Arcavi, 
2001), but to perceive a distribution as a whole, allow-
ing to “search for, recognize, describe and explain 
general patterns in a set of data” (so-called global view; 



Individual concepts of students comparing distributions (Susanne Schnell and Christian Büscher)

755

Ben-Zvi & Arcavi, 2001, p. 38). Especially the latter is 
fundamental to statistical reasoning, but also chal-
lenging for students to acquire (ibid.).

When comparing two or more distributions, prop-
erties have to be put in relation between the distribu-
tion, adding further relative insights such as overlap, 
shift and unusual features (e.g. outliers; Pfannkuch 
et al., 2010; cf. Ben-Zvi, 2003 for comparing measures 
of variation within and between groups). The com-
parison can then also allow for new insights into the 
peculiarities of the initial distribution: For instance, 
looking at a set of temperatures from July 2014 on the 
mountain Zugspitze could become an indicator for 
the effects of global warming when put in relation to 
the distributions of the 1900s.

INDIVIDUAL APPROACHES TO 
COMPARING DISTRIBUTIONS 

It is not surprising that this complex interplay of 
concepts is challenging for students: Recent research 
points out that taking a global view on distributions 
rather than focussing on single data points or groups 
is especially challenging (Ben-Zvi & Arcavi, 2001; 
Bakker & Gravemeijer, 2004). Problems persist even 
after instruction in statistics (Ben-Zvi, 2003; Konold 
et al., 1997): students who are familiar with formal 
measures such as mean and median for single dis-
tributions do not make use of them when comparing 
distributions (e.g., Watson & Moritz, 1999; Konold et 
al., 1997). As Konold and colleagues (1997) argue, this 
might indicate a lacking understanding of averages 
as properties that represent a distribution. 

However, some informal strategies were repeatedly 
shown, which offer productive starting points for 
structuring learning pathways: Focussing on visually 
remarkable aspects of distributions (e.g., represent-
ed as dot plots), learners make use of informal con-
cepts such as ‘clumps’, ‘hills’ or ‘chunks’ to describe 
and compare distributions (Bakker & Gravemeijer, 
2004; Konold, 2002; Cobb, 1999). Konold (2002) for 
instance describes how students use ranges of data in 
the heart of the distribution (“modal clumps”), which 
he interprets as vehicles for describing the centre 
(average) and at the same time the variation of data 
points. Bakker & Gravemeijer (2004) show that stu-
dents divide given distributions in three groups (low, 
middle and high), which are then interpreted in the 

given context and compared. They understand this 
as steps from a local to a more global view. 

While many studies reproduced the use of informal 
descriptors such as ‘bumps’, it remains open what 
underlying rationale guides students in choosing 
or dismissing features such as modal clumps in sit-
uations involving the comparison of distributions. 
Understanding why certain foci are chosen to com-
pare might provide further insights into how task 
design has to be structured to promote development 
of statistical reasoning. These questions call for re-
search on the micro-level and reconstructing step by 
step the individual concepts activated by students 
and the foci they take on the distribution.

METHODOLOGY AND DESIGN 
OF THE CASE STUDY 

The presented study is part of a larger design re-
search project using the methodological framework 
of topic-specific Didactical Design Research (Prediger 
& Schnell, 2014; Prediger et al., 2012), which has two 
intertwined aims: (1) designing a teaching-learning ar-
rangement to facilitate the acquisition of the concept 
of distribution by comparing distributions and (2) 
deepening the understanding of the processes of con-
ceptual development on an epistemological level. The 
design research is conducted by iterative cycles of de-
sign experiments, consisting of closely related phases 
of (re-)structuring learning goals, (re-)constructing 
the teaching-learning arrangement, conducting and 
analysing the design experiments and developing lo-
cal theories. By combining process-oriented analysis 
and construction of teaching-learning arrangement, 
this framework provides for the need of research on 
the micro-level outlined above. Situated early in the 
research process, this first design experiment cycle 
aimed to explore how students in German middle 
schools (informally) compare frequency distributions 
(represented as stacked dot plots) and identify indi-
vidual approaches as starting points for task design. 
Specifically, the research aimed at finding answers to 
the following questions:

(RQ1) Which individual concepts do students 
use to compare distributions? 

(RQ2) Which rationales guide students in 
choosing certain foci for comparing 
distributions?
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Data collection
To investigate the complex processes of comparing 
distributions, we conducted and videotaped design 
experiments (45 to 60 minutes) in a laboratory setting 
(cf. Cobb et al., 2003) with three pairs of students, aged 
13 to 15. To make sure that students were familiar with 
distributions as a prerequisite for the activities, we 
chose students who had learnt about box plots in class 
a few weeks before the experiments. With statistics 
playing only a small role in German mathematics ed-
ucation, the students learned to construct boxplots 
and interpret them in a course over six lessons. The 
focus was on formal methods, e.g., for determining 
the five parameters. There was only limited attention 
given to informally examining variation in terms of 
centre and spread. The students were not familiar 
with stacked dot plots. Guiding the experiments was 
the July climate task, comparing stacked dot plots of 
temperature on a mountain in July in different years 
(Figure 1).

Students were tasked with comparing the tempera-
tures in July on the top of the Zugspitze in the years 
2002, 2004 and later 2007 in order to determine the 
warmest month. Although the graphs were created in 
Tinkerplots, the students at this point had only access 
to the plots printed on paper to encourage informal 
statistical reasoning without focussing on pre-giv-
en measurement and tools. Later in the experiment, 
the students were also given boxplots that had to be 
matched with the according dot plots. 

Data analysis
The fine-grained analysis is conducted under an 
interpretative paradigm using the framework of 
Vergnaud’s Theory of Conceptual Fields (Vergnaud, 
1996). To give insight into students’ individual con-

cepts, we adapted the theoretical construct ‘con-
cept-in-action’, which is defined as “categories (objects, 
properties, relationships, transformations, process-
es, etc.) that enable the subject to cut the world into 
distinct elements and aspects, and pick up the most 
adequate selection of information” (Vergnaud, 1996, 
p. 225). The reconstructed concepts-in-action are sym-
bolised as ||…|| and can provide for different func-
tions: They can be the guiding category in how to com-
pare distributions such as the ||absolute frequency|| of 
dots under zero (see episode 1 below). Furthermore, we 
found concepts-in-action which guide the students in 
why they choose certain aspects to compare, such as 
an ||individual representativity of chosen intervals for 
the specific properties of a distribution|| (see episode 
2 below). 

Concepts-in-action are not necessarily in line with 
normative mathematical ideas but guide the students’ 
individual process of making sense of the situation. 
They are shown through action (ibid.) and can be 
uncovered through interpretation of the students’ 
behaviour. 

The in-depth analysis is so far limited to the case of 
Annika and Bastian; preliminary analysis showed that 
the other pairs are comparable in terms of focussing 
on visual features of the dot plots and determining 
absolute frequencies, but were less able to explain 
their reasoning behind certain actions and communi-
cate their ideas and strategies. In the first step of the 
analysis of our data, we reconstructed the nature of 
this case from video, identifying crucial episodes of 
the students’ reasoning process. These scenes were 
transcribed verbatim and annotated by both re-
searchers separately. The goal of the analysis was to 
infer a) students’ individual concepts-in-action when 

Figure 1: The stacked dot plots of the July climate task (July 2002 and 2004)
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comparing the given distributions and b) students’ 
underlying reasons for choosing specific foci on the 
distribution(s). The results of the analysis were then 
compared and discussed until a consensus on the in-
terpretations was reached. 

EMPIRICAL RESULTS

Annika and Bastian finished a lesson on statistics us-
ing box plots, but are unfamiliar with the representa-
tion of stacked dot plots. In line with other studies, 
they use exclusively informal methods to compare 
the presented distributions of temperatures. While 
they mention that it would be convenient to “have 
the arithmetic mean” or “use box plots” for “a better 
comparison”, they are not making an effort to gener-
ate them. When presented with boxplots in the end 
of the interview, they have no trouble interpreting 
and matching them with the dot plots. This activity 
is rather superficial though and stays on a level of 
formal procedures rather than connecting insights 
acquired in the informal analysis of the dot plots. As 
mentioned above, this is in line with recent research. 
We will thus focus exclusively on the comparing ac-
tivities concerning the dot plots.

Throughout the interview Annika und Bastian make 
use of various concepts-in-action guiding for com-
paring the distributions, which we present in Table 1 
(RQ1). The concepts-in-action of ||density||, ||value||, 
and ||spread|| only appear rarely, as Annika and 
Bastian mostly focus on the ||absolute frequency|| and 
||position|| of groups of dots. For this, they create so-
called “sections” (intervals with groups of dots) within 
the distribution; this activity is mostly guided by the 
visually perceived ‘hills’ (a modal interval), which 
the students call “agglomeration area” (a geograph-
ical term, which might indicate that they also take 

the density into account). In Figure 2, we marked the 
sections, which the students address verbally or by 
gestures1: They first focus on the visual hill in 2002 
(see Figure 2, section 12002). The number of dots in this 
interval is then compared with the number of dots 
in the same interval in 2004 (Figure 2, section 12004; 

episode 1 below gives more details on this comparison 
activity). Section 2 is defined by the agglomeration 
area in 2004; section 3 consists of the ‘most right dots’ 
(also right of the border of section 2) and section 4 is 
defined as left of the agglomeration area of 2002. In 
other situations in the interview, the students also 
make use of the scale and the context by looking at dots 
under or around 0°C or “dots in the colder interval”.

The students focus almost exclusively on such groups 
of data points in a local view. However, the in-depth 
analysis uncovers that the students have features of 
the whole distribution in mind when comparing sec-
tions, as we will show in the next segment. 

Episode 1: Comparing and equalising 
sections of distributions
25 minutes into the experiment, Annika is summariz-
ing previous arguments of her and Bastian in favour 
of calling July 2002 the warmer.

 1 Annika: If these were 11 dots in the ag-
glomeration area [circle in section 12002], and 
here are 8, then [points to section 12004]. Then 
that’s a difference of 3 […]

2  Annika: But .. Bastian says here [points to 
section 2] is also a difference of 3.  So here in 
the agglomeration area [in section 22002] are 3 

1  Dotted lines, circles and section numbers added by authors for 

clarification; circled are the previously identified ‘agglomeration 

areas’; numbers indicate the order in which the sections are 

addressed by the students.

Concept-in-action Activity

||Absolute frequencies of dots in certain 
intervals||

Comparing the (difference of ) the amount of data 
points in chosen intervals 

||Density in certain intervals|| Comparing the number of dots in relation to the width 
of the interval

||Position of certain (intervals of ) dots|| Comparing the relative position of data points  
by ‘left of ’/‘right of ’ or ‘higher’/‘lower than’

||Value of certain (intervals of ) dots|| Comparing the temperature values of data points

||Spread of dots in certain intervals|| Comparing how spread out the data points are

Table 1: Concepts-in-action activated in comparing activities 



Individual concepts of students comparing distributions (Susanne Schnell and Christian Büscher)

758

fewer and here in this agglomeration area [in 
section 12004] are also 3 fewer, so to say. Thus, 
it is even again, Bastian said. 

In line 1, Annika compares the ||differences of absolute 
frequencies|| starting with the visual hills (circled in 
Figure 2): Each distribution’s agglomeration area 
has three dots more than the corresponding section 
of the other distribution. Not activating a concept of 
||values||, Bastian’s reasoning as repeated by Annika 
seems to be that the differences between the distri-
butions thus even out for these two sections (line 2). 
Therefore, the agglomeration areas alone might not 
be suitable to determine the warmer month and – ac-
cording to Annika – other features have to be taken 
into account:

3a Annika: Thus I argued that  – up here 
[points to section 32002] has one dot more; they 
are higher, too. 

3b [cont’d] And all these dots [points to 
section 42002] are much more spread down-
wards [points to section 42004]. That is why in 
my opinion 2002 is warmer. 

Annika now compares the distributions by the ||abso-
lute frequency|| and ||position|| of dots with highest val-
ue (maxima; section 3, line 3a). In line 3b, her gesture 
pointing at the dots in section 4 of 2002 and saying 

“all these dots are much more spread downwards [in 
2004]” seems to indicate that she assumes the same 
absolute frequency for the sections. Thus, it is the 
||spread|| in combination with the ||position|| of the 
dots which makes the difference and lets her back up 
her argument that 2002 is warmer. 

We call Annika’s strategy ‘equalising’: When agglom-
eration areas are not useful for comparison as they 

are ‘equal’ in terms of absolute frequency, the other 
intervals have to be taken into account. In regard to 
RQ1, this episode highlights how the students use dif-
ferent concepts-in-action to compare distributions. 
Concerning RQ2 and the question of underlying ra-
tionales, we uncover how Annika seems to choose the 
outer intervals of the distribution and concepts-in-ac-
tion other than ||absolute frequencies|| because  she 
perceives the agglomeration areas – in this case of 

‘equal absolute frequencies’ – as not helpful for the 
comparison. 

Episode 2: Discussing the width 
of intervals for comparing 
The determination of sections plays a crucial role 
throughout the students’ comparative actions. At 
first, Annika and Bastian choose them spontaneous-
ly according to the perceived visual features of the 
distributions. When after 36 minutes the third distri-
bution is discussed, they are asked to give a general 
rule for comparing distributions. Annika explains 
her strategy as “count how many dots are in the lower 
section and how many are in the higher section and 
compare them”, stating that it is not useful to look only 
at the agglomeration areas as was established in epi-
sode 1. The interviewer then prompts the students to 
consider the choice of sections explicitly: 

4  Researcher:  And these sections you pick 
out, where do they come from? […]

5 Bastian:  What you just said about count-
ing the dots [points at Annika]; I would defi-
nitely use the same distances. That means 
always 5, so to say: minus 5 to 0, 5 to 8.5 or 
10 [draws imaginary vertical lines through all 
distributions, indicated with dotted lines in 
Figure 3] […] because you always need equal 
sections […]

Figure 2: Annika & Bastian’s sections when comparing the distributions



Individual concepts of students comparing distributions (Susanne Schnell and Christian Büscher)

759

6a Annika: Yes... [5 sec] I have to think about 
that again. [looks at distributions, 27 sec] 

6b [cont’d] Well, I’m kind of undecided. On 
the one hand, I think that it makes sense. On 
the other hand I think why not take sections 
of different size? But then I think, then you 
can’t compare it that well with the other 
sections, but can compare it still with the 
sections of the other years [moves hand ver-
tically over the three distributions]. […]

6c [cont’d] Well here, from minus 5 to 0, we 
simply use the step of 5 now. [The step] to 
[plus] 5 is not fitting though, because these 
dots [points to dots just above 5° in 2007, cir-
cled in Figure 3] are close to those under 5. 
[…] and that is why it is sometimes better to 
use different sections, because then points 
still just belong to it and are not already in 
another section.

In line 5, Bastian proposes an approach of choosing 
sections within a distribution due to a fixed width of 
the interval of 5. Annika however seems torn between 
the ideas of fixed and dynamic interval width (line 
6b). To her, there seem to be instances where interval 
width can be chosen arbitrarily (from -5 to 0, line 6c), 
and where interval borders have to respect features of 
the distribution (from 0 not to 5, line 6c). Her reason 

“these dots are close to those under 5” might refer to 
the visual impression of 2007: the group of five dots 
around 5° (circled in Figure 3) are separated from oth-
ers by gaps and thus form a visual unit.  We interpret 
this as an indication of an underlying concepts-in-ac-
tion: To compare different distributions, one has to 
take the gaps and groups into account. Thus, sections 
have to represent the specific visual features of a dis-

tribution, which we call an individual concept-in-ac-
tion of || representativity of a distribution’s features||. 

In line 6b, Annika utters the underlying reason for 
her conflict: Annika seems to explicitly differentiate 
between comparing sections within a distribution and 
comparing sections between distributions: Sections 
of different widths (as in Figure 2) are worse for com-
paring them within a distribution, but due to their 
||individual representativity|| better for comparing 
them with other distributions. This indicates a global 
view on the distribution which is Annika is dealing 
with by the informal approach of determining abso-
lute frequencies in sections of different width. 

CONCLUSION AND OUTLOOK

Consistent with literature (e.g., Bakker & Gravemeijer, 
2004), the students organised the data through visual 
features such as modal clumps. The partition of the 
data however did not necessarily follow the struc-
ture of low-middle-high, but was informed by complex 
interplay of various concepts-in-action. The empir-
ical snapshots show that these students are mostly 
focusing on the ||absolute frequency|| instead of the 
position of certain features in relation to each other 
and values of data points. Elaborate strategies such as 

‘equalising’ combine different concepts-in-action and 
create individual rules of which features to compare 
in certain situation. The choice of sections in which 
absolute frequencies are determined are guided by 
an individual concept-in-action of ||representativity|| 
which does allow seeing the characteristic properties 
of one distribution but might be an obstacle to put 
different distributions in relation with each other. 

The episodes shown in this paper are not intended 
to highlight deficits of the lessons students had for 

Figure 3: Bastian’s proposed sections
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acquiring underlying concepts underlying box plots. 
Rather, the intention is to give insights into students’ 
hidden individual concepts and reasons in order to 
understand the rationality of their activities. The pre-
sented reasoning processes have a lot of potential for 
a deep understanding and statistical reasoning, as a 
rich repertory of (in itself mathematically sustain-
able) concepts is activated and consciously combined.

Even though this phenomenon was so far discov-
ered in the design experiment with only one pair 
of students, we take its possible impact on learning 
pathways seriously: In the next design experiment 
cycle, we will make room for students to explicitly 
address the question if and in how far it is necessary 
to represent a distribution’s features for comparisons. 
We will carefully consider tasks to guide students 
in the shift from focusing on absolute frequencies 
to ordinal views of the relative position of features. 
Furthermore, our further research aims at uncov-
ering other concepts-in-action guiding students in 
comparing distributions. 
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In this day and age, statistically-based information is 
nearly omnipresent in daily media like newspapers or 
TV. Therefore, people need skills to read and interpret 
such information adequately. Due to the fact that pre-
vious research shows that sometimes statistical knowl-
edge was improved without seeing the usefulness of 
this knowledge, we focus on improving both statistical 
knowledge and beliefs about the benefit of statistical 
knowledge. We examine whether a short-term (two 
hours) intervention has measurable influence on knowl-
edge and beliefs of students at school and university, 
who have different mathematical foci. In this paper we 
discuss the design of our study and mainly focus on the 
intervention.

Keywords: Statistics, beliefs, attitudes, intervention study. 

INTRODUCTION

The ability to read, to understand and to judge statis-
tical information adequately has become increasingly 
important in our information society for everyone. 
The National Council of Teachers of Mathematics 
[NCTM] (2000, p. 48) highlights this significance in 
its ‘Principles and Standards for School Mathematics’: 

“The amount of data available to help make decisions in 
business, politics, research, and everyday life is stag-
gering.“ Accordingly, the NCTM emphasizes that sta-
tistics skills are necessary for students “to becoming 
informed citizens and intelligent consumers” (ibid.). 

There is a wide consensus that the ability to proper-
ly interpret quantitative data and, thus, to proper-
ly interpret statistical data in daily life is based on 
knowledge elements, but also on beliefs about the im-
portance of statistics for society or the own life. For 
example, Wallman (1993) describes the term statisti-
cal literacy as “the ability to understand and critically 

evaluate statistical results that permeate daily life, 
coupled with the ability to appreciate the contribu-
tions that statistical thinking can make in public and 
private, professional and personal decisions” (p. 1). 
Emphasizing knowledge elements as part of statisti-
cal literacy seems to be self-explaining. Further, Gal 
(2004, p. 69) suggests dispositional elements includ-
ing “the willingness to invest mental effort” to be a 
second part of statistical literacy. It can be assumed 
that beliefs and attitudes have consequences on us-
ing knowledge learned before: Schau and Emmioglu 
(2012, p. 86) suggest “that students who leave their 
statistics courses with negative attitudes are unlikely 
ever to use what they have learned. That is, they will 
not intelligently and literately use statistics in their 
professional and personal lives or in any educational 
venture”.

Accordingly, an educational goal all over the world 
is developing statistical literacy including both 
knowledge elements and dispositional elements 
(Shaughnessy, 2007). But research shows that stu-
dents being schooled in statistics before could have 
improved knowledge, but not improved beliefs (Schau 
& Emmioglou, 2012; Eichler, 2011). Therefore, a pos-
sible assumption is that statistical literacy is only 
sustainably developed if both parts, i.e. knowledge 
elements and dispositional elements, are developed 
appropriately. 

As a consequence of the discussion above and taken 
into account that research shows that even adults are 
predominantly in a struggle with handling statistical 
information (Gal, 2004), our research project aims to 
investigate the relation of knowledge elements and 
dispositional elements when developing statistical 
literacy. For this reason, we developed an interven-
tion aiming to improve both knowledge elements 
and dispositional elements. Students’ beliefs, their 
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perception referring the significance and benefit of 
statistics for both society and their own life, are a 
main focus of our research. We investigate students’ 
perception referring to different samples. Firstly, we 
investigate students at university that use mathemat-
ics in a different way: Students of mathematics educa-
tion, students of health education that have to apply 
mathematics and students of pedagogy that do not use 
mathematics in their university studies. Each subsa-
mple will comprise at least 60 participants. Further, 
we will investigate students at school (grade 11, age 
17) in a second step of our study.

In the first part of this report, we outline the main 
constructs of our research by describing a model of 
statistical literacy and by specifying the construct 
of beliefs. Subsequently, we present a specific statis-
tical topic which we address, i.e. theorem of Bayes, 
and partly the problems of the area of ‘risk commu-
nication’ respectively ‘health literacy’ used in our 
intervention. Afterwards, we outline such a statis-
tically-laden situation and its visualization before 
discussing methods aiming to investigate knowledge 
and beliefs as a part of statistical literacy. Finally, we 
present first results of the intervention with 118 stu-
dents of health education.

A MODEL OF STATISTICAL LITERACY

We use the construct of statistical literacy to describe 
students’ ability to cope with statistical-laden situa-
tions. For describing statistical literacy, we primar-
ily refer to the model of Gal (2004, p. 51; cf. Table 1). 
Gal’s model describes both knowledge elements and 
dispositional elements as constituent parts of statis-
tical literacy, similar to Wallman (1993). The left side 
of the model comprises five components which are 
briefly presented in the following, starting with the 
three non-mathematical and non-statistical aspects. 
Literacy skills are necessary to perceive information 
through an oral or written text, whereas context skills 
are necessary to perceive a certain context in which 

data are produced. Critical questions include the 
ability to be aware of possible manipulations in re-
ports that are based on statistics. Further, Gal (2004) 
distinguishes between mathematical and statistical 
knowledge. We avoid this distinction in our research 
approach and subsume mathematical knowledge to 
statistical knowledge, although it’s possible to differ-
entiate these components by defining certain math-
ematical procedures as parts of a specific statistical 
knowledge (Gal, 2004).

Since we focus especially on the dispositional ele-
ments of statistical literacy, beliefs and attitudes, we 
will briefly outline our understanding of these con-
structs to discuss the right side of Gal’s model.

BELIEFS AND ATTITUDES AS ELEMENTS 
OF STATISTICAL LITERACY

Following Hannula (2012), beliefs and attitudes are 
parts of mathematics-related affect. We understand 
the term belief as an individual’s personal convic-
tion concerning a specific subject, which shapes an 
individual’s way of both receiving information about 
a subject and acting in a specific situation (Pajares, 
1992). Although sometimes beliefs are understood as 
stable, we are aware that stability is no inherent and 
definable characteristic of beliefs (Liljedahl, Oesterle, 
& Berèche, 2012). In contrast to rather cognitive beliefs, 
attitudes embrace the more affective part of mathe-
matics-related affect (cf. Hannula, 2012). According 
to McLeod (1992, p. 581), attitudes could be defined as 

“affective responses that involve positive or negative 
feelings of moderate intensity and reasonable stabili-
ty”. For example, beliefs about the benefit of statistical 
knowledge can be measured by items as ”statistics is 
necessary to understand decision making in society”, 
because it’s an indicator of an individual conviction 
and, thus, a belief. By contrast, agreeing “I like statis-
tics” indicates a favor towards an object, statistics, and, 
thus, an attitude (cf. Eagly & Chaiken, 1998). 

Knowledge elements of statistical literacy Dispositional elements of statistical literacy

Literacy skills Beliefs and Attitudes

Statistical knowledge Critical stance

Mathematical knowledge

Context knowledge

Critical questions

Table 1: Aspects of statistical literacy
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Concerning beliefs, which are our main focus in com-
parison to attitudes, we further distinguish between 
beliefs towards the world and beliefs towards the self. 
For example, it is possible that a student believes that 
statistics provides a benefit for the society in a global 
sense on the one hand, and evaluates further his abil-
ity to use statistics in his own life on the other. 

Research referring to stability of beliefs in mathe-
matics education shows that positive influences on 
beliefs are partly very rare (Eichler, 2011; Maaß, 2010). 
Therefore we discuss in the following ideas which we 
used in our intervention to address positive beliefs 
towards statistics.

PROMOTING KNOWLEDGE AND 
DISPOSITIONAL ELEMENTS

Principles of the intervention
Principles for the design of our intervention are 
based on possible reasons why students’ do not ap-
preciate the benefit of statistics for society or their 
own life. Firstly, it is possible that statistics is not part 
of the curriculum (cf. Burrill, 2011). A second possible 
reason is that statistics is part of the curriculum, but 
teachers do not teach it, because of a self-estimated 
lack of time or feeling uncomfortable with statistics 
(Eichler, 2011). Another possible reason is that statis-
tics is taught, but in an inappropriate way of teaching: 
using not-application-oriented contexts and problems 
(we point out an example in Figure 2).

In our intervention, we try to meet requirements for 
application-oriented contexts that potentially high-
light the relevance of statistics for students sustain-
ably. Further, we formulated three requirements for 
an appropriate subject matter that  

1. emphasizes the benefit of statistics for both 
society and, in particular,  individual’s life;

2. focuses on an issue that is not common for 
students;

3. focuses on an issue for that exist elaborated 
strategies for designing a potentially effec-
tive short-term intervention.

In our opinion, the Bayes’ theorem fulfills all these 
requirements. 

Firstly, the Bayes’ theorem is existent in daily media 
(cf. Figure 3) which is in our opinion an indicator for 
emphasizing the benefit of statistics for the society 
and an individual.

Further, concerning the second requirement, the 
Bayes’ theorem or rather Bayesian thinking is not 
commonplace (Sedlmeier & Gigerenzer, 2001) and it 
is taught at school rarely. Thus, this subject potentially 
gives evidence about the benefit of statistics in a field 
in which adults without training in Bayesian thinking 
mostly fail to give correct estimations of probabilities 
(Sedlmeier & Gigerenzer, 2001). 

Finally, as a consequence of findings in educational 
research, there are different strategies to improve 
understanding referring Bayesian problems. E.g., 
Sedlmeier and Gigerenzer (2001) found that repre-
senting the statistical information in a problem as 
natural frequencies increases the rate of correct esti-
mations. Further there is evidence for the efficiency of 
two visualization-forms in short-term interventions: 
The tree with natural frequencies (ibid.; Wassner, 
2004) and the unit square (Bea, 1995).

The intervention
As mentioned above, we laid emphasis on an authen-
tic and application-oriented context. An analysis 
of textbooks showed a considerable amount of less 
authentic contexts. For example, the question in the 
task referring Bayes formula shown in Figure 2 seems 

Figure 2: A task with a context that is not authentic
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to be irrelevant, since the car dealer could know the 
answer of this question without using Bayes’ formula.

By using actual newspaper articles and leaflets 
(Figure 3), we tried to present the students an authen-
tic situation, i.e. a situation that could potentially be a 
real problem for the student in their future life. 

This material should also contribute to recognize and 
emphasize the significance of the content. Based on 
the appropriate examples of Boer (1993), Wassner 
(2004), Pinkernell (2006) and Beckmann (2013), the in-
tervention involves three main-contents: HIV-Testing, 
breast-cancer-screening and prenatal screenings. 

A second characteristic of the intervention should 
be its comprehensibility. For this, we use natural fre-
quencies additional to relative frequencies or rather 
probabilities for the representation of quantitative 
information in the tasks. Natural frequencies sim-
plify the Bayes’ theorem for students, who have only 
to relate numbers to each other instead of calculat-
ing a complex formula that entails three multiplica-
tions. The research of Gigerenzer and Hoffrage (1995) 
shows that representing statistical information as 
natural frequencies increases the ability to solve 
Bayesian problems. A possible reason for this effect 
is that the nested sets structure becomes more salient. 
Nonetheless, in newspaper articles, TV and other ev-
eryday situations probabilities are often used, so that 
we didn’t want to drop probabilities. 

We further use the tree diagram (Wassner, 2004) and 
the unit square (Bea, 1995) with natural and relative 
frequencies that we illustrate in Figure 4 for a fictive 
situation of a disease-test. 

Both diagrams are helpful to apply and understand 
the Bayes’ theorem (Sedlmeier & Gigerenzer, 2001). 
While the advantage of the tree diagram is visualizing 
the chronological sequence of the given information, 
the advantage of the unit square is visualizing the 

proportions. This aspect seems to be especially help-
ful in cases when parameter were changed (Eichler & 
Vogel, 2010). Furthermore, we avoided using formal 
Bayes’ theorem and difficult terms like sensitivity or 
specificity to support the comprehensibility.

As mentioned above, the three main-contents of our 
intervention mainly refer to a diagnosis of a disease 
(HIV-Testing, breast-cancer-screening and prenatal 
screenings) and the problems could be solved by us-

Figure 3: Headline in a German online-newspaper (translated)

Figure 4: Tree diagram and unit square with natural frequencies
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ing Bayes’ theorem. In each problem, a base rate of a 
disease or an infection and conditional probabilities 
representing the right-positive rate (probability of a 
positive test result given a disease) and representing 
the false-positive rate (probability of a positive test 
result given no disease) have to be arranged accord-
ing to Bayes’ theorem to compute the probability of 
disease given a positive test. We think that a further 
interesting content are doping-tests. They have a high 
significance in sports and provide a great basis for 
modeling, because the base rate is unknown (estimat-
ed 20–35 %, cf. Pitsch, 2009) and the sensitivity- and 
specificity-values of used doping-tests are not pub-
lished by WADA (World Anti-Doping Agency), so they 
must also be estimated (Pitsch, 2009). But in respect 
on this complexity it’s not appropriate for our short-
term intervention.

The tasks potentially promote a critical stance as a 
crucial part of statistical literacy. For example, pos-
sible critical questions could refer to the following 
issues:

 ― What happens, if the sensitivity of the test would 
be better (the probability to get a positive test 
result given the HIV infection)? 

 ― What happens, if the test is used in another coun-
try like Germany (the base rate for HIV is 0.4% in 
US, but 0.1% in Germany)?

 ― What happens if the specificity of the test is not as 
good as the producer of the test indicates (the pro-
ducer indicates that a person that is not infected 
gets in 99.98% of the cases a negative test result).

Other questions that integrate context in a broader 
sense could be: “Why could a confirmatory test be 
necessary?” or “Should the German administration 
permit the approval of HIV-rapid-tests for home us-
age? Which reasons are arguments against it, which 
do support the approval?”

As the context like disease could be potentially signif-
icant for students, we hypothesise that particularly 
critical questions could improve the students’ beliefs 
referring the relevance of statistics for both society 
and the students’ own life. 

First results of the ongoing study
In November 2014, 118 students of health education 
(age: mean=21.72, sd=2.9) were assessed pre- and 
post-intervention and after two week follow-up. 
Their beliefs and attitudes were measured by a ques-
tionnaire which comprised e.g. two components of 
the Survey of Attitudes Towards Statistics (SATS-
36©): value and interest of statistics (Schau, 2005). 
The range of coefficient alpha values for the inter-
est-component varies from .868 to .879 for the dif-
ferent measurement times. The scale shows thereby 
a high internal consistency. The mathematical and 
statistical knowledge elements of statistical literacy 
were assessed by Bayesian-situation-tasks. Students 
were asked to estimate the right percentages of those 
people who are infected given a positive test result. As 
expected, students showed a low performance before 
the intervention and a high performance after the 
intervention for these tasks.

DISCUSSION AND CONCLUSION

There seems to be a discrepancy between the enor-
mous relevance of statistics in our society and the 
poor relevance of statistics often assigned by students 
and adults. It is on the one side possible that these 
students (or adults) have little statistical knowledge 
and, hence, do not appreciate the benefit of statistics 
for both, society and own life. However, research 
shows that even students with considerable statis-
tical knowledge assign statistics little or rather no 
relevance outside school mathematics (Eichler, 2008). 

As a consequence to these findings the main aim of our 
research is to investigate the relation of developing 
knowledge elements and developing dispositional 
elements of statistical literacy. For this reason a main 
challenge of our research is to develop an intervention 
that potentially improves both elements of statistical 
literacy, i.e. knowledge elements and dispositional el-
ements. We provided the example of the HIV-test that 
potentially fulfills three requirements of the interven-
tion that we defined. Firstly the HIV-test represents 
an authentic context that is controversially discussed 
in daily newspapers and official statements. Further 
the context of Bayesian problems is not common for 
most of the students or adults and, thus, could serve 
as a new example showing the significance of statis-
tics. Finally, there exist elaborated and empirically 
proved ways to teach Bayesian thinking that facilitate 
an intervention that is not linked to a regular statistics 
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course at school. In this paper we provided the tree di-
agram and the unit square connected with natural and 
relative frequencies as possible strategy to represent 
the information in a Bayesian problem appropriately.

To investigate the mentioned connection of the de-
velopment of knowledge elements and dispositional 
elements we vary the population in different samples. 
Since we regard students at school as possible future 
audience for our intervention, we regard also stu-
dents at university that show different characteristics 
that are, from a theoretical perspective, important 
referring the status of statistical literacy: The first 
sample consists of prospective mathematics teach-
ers who potentially have a considerable amount of 
mathematical knowledge as part of statistical litera-
cy. The second sample consists of students of health 
education who potentially hold context knowledge 
referring to the HIV-test and who potentially need 
this knowledge in their professional careers. Students 
of both samples could either show positive beliefs or 
negative beliefs about the relevance of mathematics 
or statistics. However, first results show that it seems 
to be possible to influence the statistical literacy re-
ferring to his dispositional elements in a short term 
intervention as our investigation referring the stu-
dents of health education imply. We expect to pres-
ent further results of the impact of our intervention 
described in this paper at the conference.
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This research examines the knowledge demands placed 
on 73 pre-service teachers who are observed as they plan, 
teach and re-teach data lessons in classrooms. Problems 
of practice are identified and categorized using the Ball, 
Thames and Phelps (2008) subdomains of common con-
tent knowledge (CCK), specialised content knowledge 
(SCK), knowledge of content and students (KCS) and 
knowledge of content and teaching (KCT). The results 
provide insights into the specific knowledge demands 
placed on early career teachers when teaching data 
and statistics and identifies the ways in which these 
knowledge demands are revealed as pre-service teachers 
engage in Japanese Lesson Study. The results illustrate 
that development of understandings in one knowledge 
subdomain can motivate and impact learning in anoth-
er subdomain. These interrelationships were found to 
exist both within and between the domains of content 
and pedagogical content knowledge.

Keywords: Teacher knowledge, statistics, teacher 

education, lesson study.

BACKGROUND

The publication presents the research findings on the 
knowledge demands of teaching elementary school 
data lessons and illustrates how particular stages of 
the research process (Lesson Study) provides insights 
into specific subdomains of knowledge required to 
teach statistics. 

THEORETICAL PERSPECTIVE

This research uses the Ball and colleagues’ (2008) 
practice-based theory of content knowledge for teach-
ing to identify the mathematical knowledge needed 
for teaching primary level statistics. These insights 

into the knowledge components of statistics teaching 
were generated from looking at teaching in action in 
classrooms and are motivated by the belief that the 
knowledge teachers need to teach well is embedded 
in practice (what Cochran-Smith and Lytle (1999) 
term ‘knowledge-in-practice’). Hence the study uses 
the classroom as the unit of analysis. It is through us-
ing the mathematics lesson, and its enactment, as the 
focus of pedagogical and mathematical inquiry, that 
insights into particular knowledge demands placed 
on teachers when teaching statistics are revealed. 

METHODOLOGY

The use of lesson study (Lewis & Tsuchida, 1998) pro-
vides an avenue to reveal knowledge demands as they 
arise in the context of planning and teaching primary 
level data handling lessons. This paper reports on 
the findings from three years of research carried out 
with 73 Irish pre-service primary teachers , detailed 
findings can be sourced from the original publications 
(Leavy, 2015; Leavy, 2010). 

SUMMARY FINDINGS

 ― The research revealed was the complexities 
of teaching statistics for early career teachers 
in particular in terms of the wide and varying 
knowledge demands placed on them.

 ― The knowledge needed for teaching primary 
level data needed to be more flexible, robust and 
interconnected. Evidence of knowledge needs 
arose in the pedagogical knowledge subdomains 
of knowledge of content and students and knowl-
edge of content and teaching.
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 ― Addressing knowledge demands as they arose 
in one knowledge domain lead to development 
of understandings in the other. Attention to 
pedagogical knowledge (in this case knowledge 
of content and teaching) lead to knowledge devel-
opments in ‘pure’ content knowledge (in this case 
specialized content knowledge).

 ― Tackling the questions and misconceptions pos-
ited by the children, and reconsidering teaching 
activities and representations in light of these 
questions, precipitated pre-service teachers in 
really tackling and unpacking (Ma 1999) their 
own content knowledge understanding of sta-
tistical concepts. 

 ― Lesson study as a valuable site for examination 
of the knowledge demands of teaching statistics.  
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The poster identifies the dimensions of graph explora-
tion and analysis of 18 pre-service primary teachers 
using Tinkerplots. Although some students use the 
software to explore different graphs and reveal some 
creativity, the majority seems not to “understand data”, 
nor to “think about data”. 

Keywords: Statistical literacy, dimensions of graph 

exploration/analysis, TinkerPlots.

FOCUS AND RELEVANCE

This study focuses on the statistical literacy of pre-ser-
vice primary teachers, namely in what concerns their 
use of statistical graphs for interpretation of real life 
situations. It is our purpose to analyse the graphs they 
create and use when they are asked to represent and 
to give meaning to particular situations based on nu-
merical data and to identify the dimensions they re-
veal in what concerns the exploratory data analysis in 
the context of the graphing environment TinkerPlots: 
Dynamic Data Exploration. Statistics technologies 
offer extended possibilities to statistics education of 
all persons of the society. It is very important that 
future teachers learn how to use statistics software 
not only to draw graphs but also to improve their sta-
tistical literacy, in which data and graph sense are 
essential aspects.

BRIEF THEORETICAL FRAMEWORK

Statistical literacy is a key issue in the orientations 
of the current mathematics curricula. It comprises 
the capacity of interpreting, critically evaluate and 
make judgments concerning statistical information 
and messages based in data or chance phenomenon 
(Gal, 2003). Research shows that both students and 
teachers experience many difficulties with statistical 
literacy, namely when the situations in study appeal 

to a more sophisticated use of statistical knowledge, 
associated with the interpretation and attribution 
of meaning to statistical information, expressed as 
numbers or graphs. These difficulties also arise when 
the situations require assessment and critical judg-
ment of conclusions derived from statistical studies 
(Shaugnessy, 2007). 

The use of software that allows exploratory data anal-
ysis can help to further extend the analysis of a given 
situation. Fitzallen (2013) developed a framework for 
analysing the way in which the students worked with-
in learning environments like TinkerPlots to create 
and interpret graphical representations, based on 
previous studies by Friel, Curcio, and Bright (2001), 
Moritz (2004), Pfannkuch and Wild (2004), and 
Shaughnessy (2007) in relation to graphing and graph 
sense-making. She proposes four interrelated dimen-
sions for analysing the graph exploration of the stu-
dents when using Tinkerplots: “Generic knowledge”, 

“being creative with data”, “understanding data”, and 
“thinking about data” (Fitzallen, 2013).

METHOD

We adopted the design of a case study of pre-service 
primary teachers. Data were collected in the context of 
their classes of Didactics of Mathematics, where these 
students were asked to produce written responses 
concerning the analysis of different situations involv-
ing data exploration and analysis. One example is the 
study of the weight of backpacks of children. Data 
analysis was based on Fitzallen’s framework.

PRESENTATION OF RESULTS

In the poster we include some written responses of the 
pre-service teachers, showing the diversity of graphs 
they produced to represent the situations of the tasks.
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CONCLUSIONS AND IMPLICATIONS

Although some pre-service teachers used Tinkerplots 
to explore different graphs and revealed some crea-
tivity, the majority seems not to understand data, nor 
to think about data. This stresses the importance of 
including technology in teacher training.
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This study examined the understanding of 48 Brazilians 
students of 2nd and 5th grades (seven and ten years old) 
of statistical variability of data in bar charts. A Piaget’s 
clinical interview was conducted involving four activ-
ities of variability: description or explanation of the 
variability; representation of variability; prediction 
results from the variability of the data; comparison be-
tween data sets. Students showed ease in recognizing 
endpoints, but did not make predictions based on what 
they had observed. The representation of the variability 
was shown to be an important factor in data interpreta-
tion. Make comparison between data sets was complex 
for most students. Therefore, it is necessary to promote 
interrelationship among different aspects in order to 
make students reflect on the data and predictions.

Keywords: Data variability, teaching of primary school, 

graphs.

CONCEPT OF STATISTICAL VARIABILITY

The variability concept is essential to statistics, since 
there would be no need to do statistics if the data does 
not vary. Despite the centrality of the concept, few 
studies systematically investigated conceptions of 
students from primary schools, with activities in-
volving different aspects of variability with the same 
students. According to Garfield and Ben-Zvi (2005), 
a deep understanding of the concept of variability 
requires the exploration of its components since the 
early years, which justifies the need of the present 
study. Aspects of such components were selected and 
explored in four activities with students of public 
schools in Recife - Brazil. These activities were adapt-
ed from previous studies of Watson & Kelly (2002), 
Watson (2009) and Kader & Perry (2007).

The first activity consist of a bar chart about children’s 
arrival at the school and explored the explanation 

of variability, mode, prediction from the mode and 
comparison of categories. In the second activity, ma-
nipulated cards were offered to the students. These 
cards represented a number of books read by the chil-
dren. They were asked to explain variability and make 
predictions. The third activity was asked to compare 
quantitative data sets presented in bar graphs and in 
the fourth activity was asked to compare qualitative 
data.

A description or explanation of the variability shown 
in graphic was possible for most individuals in the 
5th grade, but not for individuals in the 2nd grade 
(t (46) = 3.93, p < 0.001). When the activity discussed 
representation of data explanation, both groups were 
able good performance.

The representation of the data variability was also 
significantly easier for students in the 5th grade 
(t (46) = 2.75, p = 0.009). It was noted that only individ-
uals in the 5th grade were able to organize cards by 
drawing a bar graph.

Although students in the 5th grade had shown a sig-
nificantly superior performance compared to individ-
uals in the 2nd grade when asked to identify the mode 
on the graph (t (46) = 2.75, p = 0.009), at the moment of 
the prediction from the mode, the performance was as 
low as it was for the group in the 2nd grade. Regarding 
the prediction of results in situation of representation 
of variability (from the highest point), half of students 
in the 5th grade were able to prove them appropriately, 
with a significant difference to the 2nd grade (t (46) = 
2.17, p = 0.035).

Finally, there is the aspect related to comparison 
between data sets. For both groups, these activities 
were complex, regardless the type of data presented 
to be qualitative or quantitative. Kader & Perry (2007) 
argued that the comparison of qualitative data (cate-
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gorical) would be something intuitive. Thus, a better 
performance from students in the 5th grade could be 
expected in the comparison between these sets, but 
that was not confirmed. Hence, this may suggest that 
even in the case of qualitative data, comparisons be-
tween sets are not as intuitive as they could imagine. 

This study has as main contribution the analysis of 
different aspects related to variability investigated 
with the same students, showing degrees of difficul-
ties within the aspects observed. We emphasize the 
need to lead students to establish the relationship 
between different aspects of variability so that they 
are able to make prediction results from what they 
observe.
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The poster presents the main difficulties of 2nd grade 
students in an experiment which involves tasks of col-
lecting, organization and analysis of data. The results 
show that the main difficulties of these students are 
related to representing the data using charts and their 
interpretation. Using real contexts may facilitate the 
interpretation of data but may provide the existence 
of misinterpretations, derived from the students’ own 
experience.

Keywords: Statistics, learning, first grades, charts.

LEARNING STATISTICS IN THE FIRST GRADES

The teaching of statistics in the early years must take 
into account that the collection of data should be mean-
ingful to the children and a set of decisions must be 
taken, by the children, to represent the data and to be 
able to interpret it (Pereira-Mendoza, 1986). Gil & Ben-
Zvi (2011) claim that knowing and understanding the 
real contexts of a statistical task plays an important 
role in students’ performance. Also, Langrall, Nisbet, 
& Mooney (2006) say that this knowledge is impor-
tant to engage students in statistical tasks. The same 
authors, on the other hand, report that in some situ-
ations conflicts exist between the knowledge about 
the real context and statistical data. 

Several studies investigated difficulties in graphing 
and interpreting graphs. Curcio (1987) presented 
three levels of students’ comprehension, namely, read-
ing the data, reading between the data and reading 
beyond the data. Additionally Friel, Curcio, & Bright 
(2001) identify critical factors that appear to influence 
the graphs comprehension. Moreover, these authors 
mentioned the importance of context in graph com-
prehension.

METHOD

This poster presents one experiment of collecting, 
organization and analysis of data performed in a 2nd 
grade class. The goal was to understand what were the 
main difficulties of the students during this experi-
ment, from the initial question: Will we weigh more 
than last year? And understand to what extent the real 
context may or may not be a facilitator in this process. 

The main instruments of data collection consisted of 
two lessons that involved Collecting, Organizing and 
Data Analysis (CODA), observation, video recording 
and documents produced by students.

RESULTS

The experiment, began with the contextualization 
of the initial question. It was the first time that these 
students worked with CODA. Several difficulties were 
identified in these experiments: 1) data collection:  re-
cording of current weight rounded to one decimal 
place; confusion on how to register the data when 
faced with more than one answer; 2) data organiza-
tion: were unable to choose a proper scale for the 
bar graph; 3) data analysis: when discussing the data 
represented several questions arose – confusion re-
garding the number of answers when compared with 
the number of participants.

DISCUSSION

It was found that using a real context with which the 
participants identified and sometimes resorting to 
their own experience ended up making the formula-
tion of the problem and the planning of data collection 
easy to understand. On the other hand, misinterpre-
tations were introduced due to the real context/expe-
riences that were not explicit in the data, for example 



Difficulties in learning statistics: An experiment with young children (Susana Colaço)

776

confusion between height and weight. These “con-
flicts” between the data and real context are similar 
to what is described in Langrall and colleagues (2006) 
and Ben-Zvi, Aridor, Makar and Bakker (2012).
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The teaching of hypothesis testing is an important part 
of business statistics curricula but it is most of the time 
reduced to its operational dimension. We claim that 
other historical and systematic dimensions should be 
better taken into account. We have focused our research 
on exploring the teaching and learning of hypothesis 
tests for the difference between two means. In our poster, 
we present the results of the first stage of our research: 
we have studied how this test was introduced in busi-
ness statistics books and how it was integrated into the 
structure of each book.

Keywords: Hypothesis testing, business statistics, variable

For the past few years in France the teaching of sta-
tistics has been reduced in many areas of higher ed-
ucation, particularly in management sciences. It is 
often replaced by learning to use technological “black 
boxes”, reducing the teaching of statistics to learning 
a set of techniques and emphasizing what Fabre (2010) 
calls the operational dimension of knowledge. We 
claim that it is important to take into account the other 
two dimensions, historical and systematic, as well.

THE NOTION OF HYPOTHESIS TESTING 

We have focused our research on statistical hypothe-
sis testing. We have known for a long time that it is a 
difficult notion (for an extensive review see Batanero, 
2000). Some authors have recommended abandoning 
it in favor of confidence interval (Cumming & Finch, 
2005). Misconceptions by students and professionals 
or statisticians, have been widely studied (see for ex-
ample Batanero, 2000, Falk & Greenbaum, 1995, Sotos 
et al, 2009). It seems to us that most of these miscon-
ceptions can be explained by the primacy given to 

the operational dimension. History tells us that the 
commonly taught hybrid form incorporates elements 
of Fisher’s theory and elements of Neyman-Pearson’s. 
This dual epistemology, rejected by some elsewhere 
as impossible to combine, is rarely made   explicit and 
leads to confusion between pvalue and significance 
level (see Hubbard et al, 2003, Lehman, 1993).

SYSTEMATIC DIMENSION

Beyond this extensively documented error, it seemed 
that the systematic dimension, i.e. the entry into a 
structured corpus of knowledge, also posed problems 
given the different statuses that some concepts can 
take in descriptive statistics and inferential statistics. 
Some authors challenge the very notion of the exis-
tence of two different areas within statistics (Konold 
and Pollatsek, 2002). We feel that to not identify de-
scriptive statistics leads to deny the complex episte-
mology of the discipline. Standard deviation can be 
viewed either as an indicator of the intensity of noise 
(inferential statistics) or as an indicator of the amount 
of information (descriptive statistics). The question 
is how we link the two conceptions.

THE RESEARCH 

We have focused our research on exploring the teach-
ing and learning of hypothesis tests for the difference 
between two means. In our poster, we present the re-
sults of the first stage of our research: we have studied 
how this test was introduced in 8 business statistics 
books and how it was integrated into the structure of 
each book. A central element seems to be the way the 
author “gives meaning to the letters,” in the words of 
Malisani and Spagnolo (2009), and incorporates the 
concept of variable in its different forms. To perform 
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the structure analysis, we relied on the typology pro-
posed by these authors and have adapted it to the field 
of statistics.
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The poster summarises and presents findings, in part, of 
my classroom study on students’ beliefs about statistics. 
Specifically, the poster presents some statistical evidence 
of the existence of students’ beliefs about statistics and 
how these changed over the study period towards greater 
disagreement with the belief that statistics was just a 

‘subject’ forced on students studying for a diploma in 
journalism. The students became more appreciative of 
statistics in journalism by the end of the study period.

Keywords: Statistics, beliefs, journalism.

INTRODUCTION

The application of statistics in the society today is 
common and obvious. In particular journalists use 
statistics for handling, interpreting data and decision 
making. Unfortunately, most diploma in journalism 
students at the Polytechnic seem unaware of the ob-
vious role of statistics in their profession. This can be 
attributed to several factors such as teaching methods, 
beliefs and attitudes, modes of assessment and stu-
dents’ background. For students, beliefs and attitudes 
shape their cognitive developmental processes and 
their ability to learn statistics (Bartsch, 2006; Ramirez, 
Schau, & Emmioğlu, 2012; Schau & Emmioğlu, 2012). 
Griffith, Adams, Gu, Hart and Whitehead (2012) ob-
serve that learning and success in statistics are influ-
enced by not only cognitive, demographic and peda-
gogical factors, but also by “affective and attitudinal 
factors among students” themselves (p. 46). As argued 
by Ramirez, Schau and Emmioğlu, positive attitudes 
help learners use what they have learnt hence jour-
nalism students’ attitudes and beliefs are significant 
in their learning of statistic. Furthermore, Kesici and 
Erdogan (2009), and Torner (2002) suggest that when 
students hold and use motivational beliefs, their level 
of success increases. While considerable research 
has been carried out on students’ beliefs in Malawi, 

the focus has mostly been on primary and secondary 
school mathematics.

THE STUDY

The study involved 102 diploma in journalism stu-
dents in three cohorts who took an introductory statis-
tics module. A questionnaire was constructed based 
on theoretical considerations and previous studies 
(Bond et al., 2012; Ramirez, Schau, & Emmioğlu, 2012). 
The questionnaire had 18 items covering students’ 
beliefs about the nature of statistics, teaching and 
learning methods, students’ statistical competency, 
the role of lecturer, and importance of statistics. All 
the students completed the ‘statistics beliefs’ ques-
tionnaire twice; at the begging and end of the semes-
ter. Component analysis, correlation and reliability 
tests were performed. Results from the analysis are 
presented as factors to be retained, loading for each 
factor, correlation between factors and internal con-
sistency of reliability. 

RESULTS AND DISCUSSION

The analysis showed that there were four factors that 
could be extracted; Lecture and learning statistics, 
usefulness of statistics, statistical competency, and 
statistical excellence. Furthermore, the analysis of 
loading on each item strongly converged on the first 
and second factors. However, there was an imbalance 
of items among the factors. This suggests a need for 
improving the questionnaire. The first factor com-
prised of seven items that formed a cluster of two 
components of beliefs about how statistics is learnt 
and the role of lecturer. The observation is in line with 
Schau and Emmioğlu (2012) classification of students’ 
attitudes towards statistics. Item weighting showed 
that the role of the lecturer in the learning processes is 
seen as very supreme. The students strongly believed 
that ‘drilling’ is a very significant.
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In conclusion, data analyses suggest that the ques-
tionnaire was fairly good in describing students’ be-
liefs from which lessons can be drawn about how to 
approach statistics classes for journalism students 
at the Polytechnic. However, more work is needed 
so that the questionnaire comprehensively accounts 
for its theoretical underpinnings. Further rigorous 
analysis and improvement of the questionnaire are 
required to make it a more reliable and comprehen-
sive instrument.
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This study aims to investigate the attitudes towards 
statistics and affective expressions in use of graphs de-
veloped by primary school teachers. The study partici-
pants will be 206 primary school teacher of Pernambuco 

- Brazil. The approach of this investigation is based on 
a mixed methodology of data collection and analysis, 
composed of three complementary datasets: question-
naires, attitude scale and interviews. For the quantita-
tive analysis, we will use one-dimensional parametric 
and non-parametric methods and factorial analysis. 
To do the analysis of the teachers’ interpretation will 
be used the content analysis. 

Keywords: Attitudes towards statistics, affective 

expressions, primary school teachers.

INTRODUTION

The conceptualization of attitude is investigated by 
increasingly number of studies in education field 
(Gleitman, Fridlund, & Reisberg, 2011). For example, 
in mathematics education and statistics education, 
studies investigate the close relationship between 
negative attitudes and low academic performance. 
According to Gal, Ginsburg, and Shau (1997), the main 
concerned is to analyse the relationships between 
affectivity and learning in these two areas from the 
study of students’ attitudes. However, attitude to-
wards statistics scales usually disregard affective 
expressions that may emerge during the interpreta-
tion of statistical data. 

Evans (2000) argues that when people interpret 
graphs, they can express pleasurable and/or painful 
feelings related to previous experiences of their lives. 
Authors such as Monteiro and Ainley (2010) suggest 
that statistical literacy is comprised of these affec-

tive elements. Others authors argue that the previous 
experiences and feelings about the topics related to 
the data can also be a negative influence during the 
process of interpretation (Cooper & Dunne, 2000).

The aim of this study is to investigate the relationships 
between attitudes, statistical knowledge of primary 
school teacher and their interpretation of graphs. 
We also intend to investigate which elements might 
influence the mobilization of teachers’ affective ex-
pressions during their selection of graphs to work 
in classrooms.

METHODOLOGY

The study will be conducted with teachers of mu-
nicipal schools in the Metropolitan Region of Recife 

- Pernambuco, Brazil, with a sample of 209 teachers. 
The methodological approach is mixed, with ques-
tionnaires, Likert Attitude scale and interviews. The 
study will be composed of three complementary da-
tasets: questionnaires, attitude scale and interviews. 
The questionnaire items will be related to individual 
information’s’ and graphical knowledge. The attitude 
scale will have a 4-point Likert format scale, with 10 
positive statements and 10 negative, developed and 
validated by Cazorla and colleagues (1999).

Based on the results, we will select 20 teachers who 
have more negative attitude towards statistics; and 20 
teachers who have more positive attitudes towards 
statistics. In the third stage, semi-structured indi-
vidual interviews will be held with those 40 select-
ed teachers. They will discuss data represented by 
graphs which present data about relevant topics as 
well as usual and unusual representations published 
in the media.
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For data analysis, we will use SPSS and NVivo. The 
statistical analyses with SPSS will be useful to iden-
tify possible differences and similarities between 
the situations presented in order to emerge affective 
expressions from participants’ interpretations. The 
NVivo will be utilised in the analysis of qualitative 
data from interviews with participants.
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Changes within teaching of statistics in elementary edu-
cation in Portugal, lead to this research on the attitudes 
of teachers towards statistics. This study focuses on the 
measurement and characterization of attitudes towards 
statistics of Portuguese teachers from the 1st and 2nd 
cycles of basic education (ages 6 to 11). With this work we 
hope that paths may be devised to introduce an attitudes’ 
pedagogy and the interventions to prevent negative atti-
tudes and/or correct them, thus positively contributing 
to the professional development of teachers as well as to 
students’ success in statistics education.

Keywords: Attitudes, statistics, teachers, basic education.

INTRODUCTION

Nowadays statistics is recognized as a key knowledge 
area with gradually integration in the mathematics 
curriculum, and in particular in Portuguese basic 
and secondary school levels. Nevertheless, despite 
the curriculum guidelines, there are factors that may 
endanger its implementation. On the other hand, in 
Portugal, research of attitudes towards statistics 
has not being done, and there was no research about 
Portuguese teachers’ attitudes towards statistics. So, 
the main objective in this study was to do a 1st assess-
ment and characterization of Portuguese teachers’ at-
titudes towards statistics, of basic education. The spe-
cific objectives are: Studying this attitudes as a global 
measure, as well as in their components; Determine 
if there are significant differences between these atti-
tudes in the two cycles; Inquire about the existence of 
significant relationships between teachers’ attitudes 
and the demographic and school training variables. 

METHODOLOGY AND RESULTS

The research method was a mixed study, with a strong-
er quantitative component, and a concurrent analysis 

for the countries comparisons. The instrument used 
is the Estrada’s Scale of attitudes towards statistics, 
EAEE (Estrada, 2002; with a fully English presenta-
tion in Martins, Nascimento, & Estrada, 2012). It is 
an attitudes five-point Likert scale with 25 items that 
was specially design for teachers and presents good 
psychometric properties. In a cluster sampling from 
3 Portuguese regions, 1135 teachers were surveyed 
resulting in 1098 valid questionnaires. The sample 
has a variety of cases relevant for the study. For the 
quantitative analysis the descriptive statistics were 
computed as well as one-dimensional parametric and 
non-parametric methods, multidimensional clusters 
analysis and factorial analysis. To do the analysis of 
the teachers’ explanations the content analysis was 
used (Martins et al., 2012). This study confirmed the 
high internal consistency of the instrument with a 
Cronbach alpha of 0,869. The multidimensional as-
pects of the EAEE emerged. Teachers’ attitudes to-
wards statistics were positive. This study highlighted 
in a positive way the cognitive and social components 
and in a less positive way the behavioural and instru-
mental components. The comparison with others 
studies reinforced the admissibility of these results 
(Estrada, Bazán, & Aparicio, 2010). Attitudes towards 
statistics of these teachers: were not significantly re-
lated with their gender and were significantly related 
with the cycle of teaching, the teaching experience, 
their training area, the training in statistics and the 
teaching of statistics.

CONCLUSION

In conclusion, teachers have a clear conception that 
statistics is useful and they value its role in the citi-
zens’ daily life and they also have a clear sense of the 
importance of including it in current curricula. At 
the same time they did not emphasize collaborative 
work and didn’t refer sharing statistics difficulties 
with other teachers. Outside the school, teachers do 
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not see statistics as a tool in their own daily life and 
they express a feeling of disbelieve towards the use of 
statistics and the information in television. As actions 
to improve attitudes toward statistics we mention the 
improvement in training (initial and in-service) at 
several levels and the promotion of the collaborative 
work amongst teachers. It is also important to guar-
antee the reinforcement of statistical education in 
schools, from the early years, as well as in the train-
ing of future teachers and of in-service training in 
statistics for teachers.
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This study focuses on the development of secondary 
and tertiary students’ informal inferential reasoning 
while engaging in data driven sampling and resampling 
activities. Through the use of hands-on manipulatives 
and simulations with technology, the participants will 
construct empirical sampling distributions in order to 
investigate the inferences that can be drawn from the 
data. Data collection and analysis will begin during the 
fall of 2014. Results and initial analyses will be presented 
in this poster.

Keywords: Statistics education, resampling, modelling.

RESEARCH TOPIC

A trend in statistics education is the shift from a focus 
on theoretical distributions and numerical approxi-
mations into an emphasis on data (Cobb, 2007). Cobb 
asserted that many statistics curricula are outdated 
and based on how statistics could be learned prior to 
the computing power of modern times. Technology 
is now capable of collecting many samples nearly in-
stantaneously and this advance in technology should 
have an impact on the statistics curriculum. New cur-
ricula for introductory statistics courses, such as the 
CATALST (Change Agents for Teaching and Learning 
Statistics) curriculum at the tertiary level (Garfield, 
delMas, & Zieffler, 2012), emphasize the ideas of data 
creation, exploration and simulation with methods of 
sampling and resampling. This study aims to contin-
ue in the direction of such curricula and investigate 
how students develop their reasoning of resampling 
methods, the reasoning that develops as students 
move from using sampling methods to resampling 
methods, and the reasoning that is revealed and sup-
ported by moving from use of hands-on manipula-
tives to computer simulations during sampling and 
resampling activities.

THEORETICAL FRAMEWORK

The focus of analysis for this study will be the models 
of sampling and resampling that the students will cre-
ate while engaging in a model development sequence 
(Lesh, Cramer, Doerr, Post, & Zawojewski, 2003). This 
study defines models as “conceptual systems … that 
are expressed using external notation systems, and 
that are used to construct, describe, or explain the 
behaviors of other system(s)” (Lesh & Doerr, 2003, p. 
10). Teaching and learning from a modeling approach 
shifts the focus of an activity from finding an answer 
to one particular problem to constructing a system of 
relationships that is generalized and can be extended 
to other situations (Doerr & English, 2003). Students’ 
mathematical models are useful for research since 
they provide a means for investigating students’ de-
veloping knowledge. 

DESIGN AND METHODOLOGY

This study is a mixed methods case study with an in-
tervention and a pretest, post-test, and delayed post-
test. I will collaborate with two introductory statistics 
instructors (one each at the secondary and tertiary 
levels) to create an instructional unit that will consist 
of two model development sequences. During the unit, 
I will videotape four focus groups of students, collect 
student work from all participants, and videotape 
whole class discussions and presentations. Select stu-
dents from the focus groups will participate in inter-
views to discuss their thinking while participating in 
the instructional unit. I will analyze the pretest, post-
test, and delayed post-test quantitatively to investigate 
changes in students’ understandings. The develop-
ment of participants’ reasoning collected from the 
videos, student work, and interviews will be analyzed 
with qualitative methods in order to construct the 
development of models of inferential reasoning used 
by participants.



The development of informal inferential reasoning via resampling (Jeffrey A. McLean and Helen M. Doerr)

786

POSTER PRESENTATION

The poster will discuss details of the two model de-
velopment sequences, including how the hands-on 
manipulatives and simulations with technology were 
used. Student work and the initial analyses of their 
models of inferential reasoning will also be presented.   
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The main purpose of this paper consists in determining 
the competencies for the professional use ofstatistics, 
highly appreciated to obtain a job in the field of Business 
Administration. A second objective is to propose a short 
activity in an Applied statistics class to identify the lev-
el of the students’ top-rated skills and promote them. 
Applied statistics is understood as an instrumental sub-
ject of statistics taught in numerous degrees that do not 
seek to train professional statisticians. As a consequence, 
it may not be separated from the context of its degree. 

Keywords: Competencies, applied statistics, business 

administration.

Batanero (2002) highlighted the important role that 
statistics carried out in the development of modern 
society and the need to introduce statistics at school 
arose. In accordance with the European Space for 
Higher Education (ESHE) and the market itself, it is 
necessary to train the future users of this discipline in 
competencies as well as instructing them in the usu-
al contents. In order to achieve this, it is essential to 
determine which competencies are the most relevant 
in the professional environment.

The model proposed by Serrano, Puig & González-
Sabaté (2010), consisting of 27 competencies, has 
been taken as the starting point. In order to simplify 
this model a validation technique through triangula-
tion (Ghrayeb, Damodaran, & Vohra, 2011) was used 
together with an adaptation of the Delphi method 
in two rounds in three groups of experts: Business 
Administration graduates with professional expe-
rience, Statistic’s teachers and Human Resources 
(HR) specialists. According to Astigarraga (2010), 
the Delphi method is based on the systematic use of 
intuitive judgment issued by a group of experts. The 

method would thus consist in asking experts ques-
tions by successive questionnaires in order to high-
light convergences of opinions and deduce possible 
agreements. After this, the initial model was sim-
plified to a new one composed by 12 competencies. 
Later, a final classification was elaborated using the 
opinions of a new group of 66 HR professionals who 
were contacted thanks to the IQS Business Alumni. 
In result, the skill that seems to be most important is 
how to “Interpret the results”, defined as the ability to 
interpret the results obtained in a study in order to 
use them in their context. The next two competencies 
are “Decision-making” and “Critical thinking”. 

In the learning process based on competencies, activi-
ties reflecting the conditions in which they will be put 
into practice are necessary (Villardón Gallego, 2006). 
Nevertheless, due to the limited amount of time the 
subject of statistics usually has at its disposal, a short 
activity has been proposed for the proper develop-
ment of the top-rated skill. In this case, the students 
were invited by the teacher to write a short report that 
summarized the information contained in a box-plot 
graph related to the income of a company. A sample 
of students of the degree in Business Administration 
carried out this activity during the academic year 
2013/14. The results obtained were compared with 
those proposed by the teacher, thus highlighting the 
fact that both the students and the teacher develop 
the skill through the activity. The ideas that arose 
from the exercise were classified in four typologies: 
description, calculation, errors and interpretations. 
Students were informed of the main ideas drawn in 
order to improve their ability to interpret results in 
future activities. Most of the students explained the 
graph in statistical terms but decontextualized from 
the situation described. However, just a small number 
of them tried to interpret the results observed within 
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the framework of the statement. Very few students 
made calculations to give consistency to their expla-
nations. Lastly, only one student identified an error in 
the graph shown; this is related also with the “Critical 
thinking” skill. In addition, some errors appeared in 
students’ reports. The teacher concluded that was 
necessary proposing new activities to improve the 
skill “Interpret the results”. 
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THE OVERARCHING THEMES OF 
TWG06 PRESENTATIONS

The contributions that formed the working basis of 
the Thematic Working Group on Applications and 
modelling were characterized by a strong diversity in 
the topics and issues that were addressed. The group’s 
research field has thus shown to be both active and 
fruitful whilst maintaining its distinctive facet of 
being inclusive in terms of the different theoretical, 
methodological and philosophical perspectives taken 
by its researchers.

One of the overarching themes illustrates just how im-
portant it is to debate and theorize the very notion of 
mathematical modelling and the concept of mathemat-
ical application, namely the question of perspectives 
and conceptualisations on modelling as an important 
issue addressed by the group. Although it may be use-
ful to emphasise differences and distinguish between 
modelling problems and mathematical application 
situations, there are also proposals to blend modelling 
and applications. The concept of model becomes in 
both cases a keyword and in general the distinction 
refers to the need to create a model not available at the 
outset as opposed to using a model that is previously 
known. However, there are perspectives for which 
a common conceptualisation of modelling requires 
assuming that there are no completely independent 
mathematical models nor totally disconnected mod-
els and that modelling means not only create models, 
but also integrate and coordinate models somehow 
contradicting the idea that applications are simply a 
limited portion of the modelling cycle.

Another emphasis in the discussion refers to areas 
that might be considered as neighbouring mathemat-
ical modelling and potential connections that eventu-
ally can be found between mathematical modelling, 
problem solving, project work and Ethnomathematics. 
One way to link these different areas can be found in 
the fact that all these fields are associated to certain 
types of teaching practices with common character-
istics, namely, discovery teaching, inquiry based 
learning and generally views that put the individual 
learner actively involved in seeking solutions to real 
world situations based on mathematics.

One open question stemming from the work that was 
presented in the group’s discussions is whether it will 
be possible to move towards a comprehensive theo-
ry about the teaching and learning of modelling and 
applications and if such an aim is desirable. Indeed, 
one other important issue that has much impact in 
relation to this argument is the growing emphasis on 
mathematical modelling in the implicit and explicit 
rhetoric across countries, as portrayed by the most 
recent frameworks from the OECD’s PISA study. Some 
reluctance towards a pseudo-modelling reflected in 
certain problems and the need to account for the cy-
clical nature of the modelling process as a distinctive 
characteristic, stress the importance of keeping in 
mind the contrast between mathematical modelling as 
a pedagogic activity and its professional counterpart.

This topic leads to another overarching theme con-
cerning the nature of modelling tasks for school mathe-
matics. The need to converge in a vision on what to con-
sider as good modelling tasks has often been raised. A 
seemingly relevant item is directly associated with the 
degree of difficulty of modelling tasks and problems. 
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Results of research studies indicate that much rests 
on the students’ previous experience, background 
and pre-knowledge when it comes to modelling tasks; 
however, it is considered important that modelling 
tasks reflect authenticity and bring the opportunity 
to seek, investigate and explore. It is also relatively 
clear that modelling tasks are still rare in daily school 
lessons, in part due to the fact that teachers have a 
restrained attitude towards implementing modelling 
tasks, sometimes based on the perception that they 
are too difficult for many students. One of the sug-
gested and analysed difficulties lies on the student’s 
need to picture or imagine a particular real situation, 
which can be described as creating a situation model. 
Ideas on the wording of the problems and on how this 
variable may be of significance were offered and may 
induce further thinking on the study of task variables 
in modelling problems.

Modelling contexts and environments was also a devel-
oped theme in the working group. On the one hand, 
the importance of using specially tailored problems 
for specific areas of knowledge was advocated, as in 
the case of engineering studies. Emphasis was given 
to the fact that students often value the specificity of 
the problems addressed and their relevance to other 
disciplines in a particular field. On the other hand, 
it was endorsed the educational wealth of multidis-
ciplinary approaches in allowing integrating tools 
from different disciplines and subjects, namely math-
ematical modelling, especially when developed within 
inquiry teams that are more able to generate questions 
of real interest.

On the theme didactic issues in mathematical model-
ling, one of the queries was the transposition of the 
concept of mathematical modelling, as it is usually 
described in academic literature, to textbooks. This 
transposition seems to be marked by a poor rep-
resentation of a holistic view on the modelling process 
and by leaving aside the critical sense that is inherent 
to the modelling process. Fragmentation of the model 
development into a step-by-step model construction 
tends to prevail and there seems to be a tendency to 
divide the model into mathematical and non-mathe-
matical parts. Apparently, the widely disseminated 
design of the modelling process largely supported 
by studies and research contributions suffers con-
siderable distortions on the route to the textbook and 
ultimately to the teacher.

Along with this question, the role of mathematical 
knowledge followed the examination of the differenc-
es between experts’ and novices’ modelling approach-
es. For some presenters, the differences can be traced 
by the kind of representations and strategies used by 
each of them, in close liaison with the mathematical 
knowledge that they differently dominate. But for oth-
ers, those differences in fact set the need to clearly 
understand how mathematical modelling is related 
to mathematics as a science, and to the many mathe-
matical practices appearing in society outside school. 
And this implies considering variable features of the 
modelling activities for the class, namely the design 
of the activity, its goals, organization, autonomy of 
the students and adaptation to the local constraints.

One of the more prevalent themes within the partici-
pants’ contributions – students’ modelling activity – 
was investigated in several directions and with dif-
ferent foci. Although a review of this diversity is not 
easy, it is possible to highlight the importance given 
to the idea of mathematisation in several papers. For 
example, this strand appeared with respect to the 
importance of making assumptions when tackling 
a mathematical modelling problem. This interpre-
tive flavour of the mathematical modelling activity 
is also linked to the need for interpretation of the 
mathematical model back into the original real con-
text. Students’ contextual approaches to mathematical 
notions, concepts and results were widely illustrated 
at various times, including situations involving ex-
perimentation with daily objects and artefacts. To a 
large extent, the viewpoint of contextual modelling 
came up strongly represented in a number of studies 
conducted with students of lower secondary school. 
In what concerns studies involving upper secondary 
and tertiary levels, the students’ modelling activity 
was mainly analysed in terms of its relationship to 
cognitive structures and competing models, formal 
and non-formal concepts, understanding of scientific 
concepts and everyday interpretations, and more gen-
erally to the mathematical framing of the real world 
situation. 

In the sphere of teacher education and professional 
development, two themes were discussed: issues in 
learning to teach modelling and teaching practices and 
beliefs. For these themes, investigations have emerged 
based on different training models, such as the ‘lesson 
study’ and the ‘study and research path for teacher 
education’. In both cases, a particular attention has 
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been placed on the planning of the lesson and on the 
design of the modelling tasks. The planning of the 
activities to be carried out in classes of mathematical 
modelling seems to be a central factor in the shaping 
of teaching and learning and has a great influence 
on questioning the usual ways of teaching, namely 
content-centred practices, and the official curriculum. 
On the other hand, teaching mathematical modelling 
in school requires the teacher to realise that many of 
the steps of the modelling process, such as the simpli-
fication of the real situation, are not simple matters 
and cannot be undervalued.

In regard to teachers’ beliefs on mathematical mod-
elling, methodological approaches to obtain data in 
international comparison studies were presented 
and examined. As for the teachers’ practices, it was 
stressed the strong influence that beliefs have on prac-
tices but it was also highlighted the dilemmas that can 
be quite evident in mathematical modelling lessons. 
For example, the demands the teacher faces when get-
ting substantially different models from students and 
also the need to find appropriate ways of dealing with 
possibly inadequate models that may emerge during 
the course of a class.

CONCLUDING IDEAS

The conclusions that emerge from the group’s work 
point to three broad categories: various signs of di-
versity and plurality of views; some elements of uni-
formity; and major elicited questions.

The diversity
The diversity is easily detectable in the foci and re-
search questions pursued by the group members 
in their studies. For example, a quick list illustrates 
this variety of interests and research aims: to deepen 
and clarify the meaning of modelling and model; to 
learn more about the design of modelling tasks; to 
scrutinize the pedagogical resources in the teaching 
of mathematical modelling; to see how modelling is 
translated to learning and to competencies develop-
ment; to analyse forms of teachers’ professional de-
velopment around the implementation of modelling 
tasks and to better realise the teachers’ beliefs about 
modelling in teaching practices across countries.

There is much diversity in the theoretical frameworks 
used by researchers in the field: the range covers many 
theories and perspectives from the more cognitive 

oriented to the more epistemological/anthropological 
approaches.

With regard to the school levels represented in empiri-
cal studies, there was also some diversity, although 
it should be noted an absence of studies in primary 
school.

Finally, it is evident that there is plurality in the vi-
sions and arguments of researchers from different 
countries about the purposes of including modelling 
in the mathematics curriculum and in regular class-
room activities.

The uniformity 
In contrast with the above mentioned tendency of 
diversity there are also several signs of uniformity 
through the studies presented in TWG06. In terms 
of methodological approaches, for example, there are 
predominantly qualitative and small-scale studies. 
It further appears that the modelling cycle and the 
modelling phases represent the most common con-
ceptual tools in informing the research. There are also 
shared concerns related to the contexts of mathemat-
ical modelling problems and the authenticity of the 
tasks. Finally, there are prevailing references towards 
the assessment of mathematical modelling activity, 
particularly the external and internal assessment of 
performance, competence, effectiveness, student’s 
involvement, etc.

Major questions
Given the collection of papers and the discussions 
developed in the working group, we identified a set of 
big questions that may help us to put in perspective 
the future development of the TWG and of this area 
of research.

Some of these big questions immediately capture the 
diversity of theoretical perspectives represented in 
the research of the TWG. This diversity, as already 
pointed out, ensures an enriched agenda and extends 
the scope of the research but it also has consequences 
for impact because of diversity in the likely resulting 
studies and results. Therefore, the following ques-
tions and sub-questions point to the importance of 
reflecting on this particular factor:

1) How to cope with diversity within the research 
community and how is such diversity enabling/
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disabling the growth of research on mathematical 
modelling in education?

2) How to induct young researchers into the com-
plexity of the field (theories, terminology, con-
texts of tasks,…)?

3) What is the influence and the tension between the 
theoretical approach and the nature of the model-
ling tasks in mathematics teaching and learning?

 ― At the level of design/selection;

 ― At the level of implementation;

 ― At the level of analysis of empirical data.

To conclude, another question emerges from the 
awareness of the importance of broader and larger 
scale studies that may systematize or add confidence 
to the more localized studies grounded on small ex-
periments or particular cases:

4) How to facilitate the transformation of local 
practices with mathematical modelling into large 
scale integration of modelling at all school levels?

To this respect, ideas were suggested in the contribu-
tions offered, namely concerning efforts to be invested 
in the initial and continuing training of teachers, re-
newed attention to resources to support teachers and 
strengthening the interaction between researchers 
and practitioners.
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The manifold factors involved in mathematical model-
ling render this activity a complex process. The teaching 
of mathematical modelling assumes, at least in part, 
such complexity, though adding some elements inher-
ent to a didactic environment. This paper presents two 
proposals for the classroom which have led to interesting 
conclusions, both from the point of view of the construc-
tion of mathematical knowledge (in this case focused on 
the content of the curricular topic of functions) and from 
the process itself of drafting the models, as well as sug-
gesting some reflections on our own teaching practice.

Keywords: Modelling, functions, GeoGebra, physical 

phenomena, upper secondary. 

INTRODUCTION

In a synthetic way, Blum and Niss (1991, p. 39) charac-
terize a mathematical model as a triple:

To be a bit more precise, a mathematical model 
can be viewed as a triple (S, M, R), consisting of 
some real problem situation S, some collection 
M of mathematical entities and some relation R 
by which objects and relations of S are related to 
objects and relations of M.

Likewise, they make a distinction between mathema-
tization and modelling: 

While mathematization is the process from the 
real model into mathematics, we use modelling or 
model building to mean the entire process lead-
ing from the original real problem situation to a 
mathematical model.

Thus, mathematical modelling presents a situation in 
which the real world (identified with the extra-math-

ematical) relates to something that is mathematical 
(identified with the intra-mathematical). Hence, work 
takes place at the heart of mathematics that is closely 
connected to the initial extra-mathematical situation 
or problem, where all such elements are intensely 
interrelated by means of complex processes. 

In line with the degree of importance attributed to 
each one of the present elements (the processes that 
take place and the aims intended and assigned to such 
processes), different approaches and perspectives 
appear in the way that modelling is taught and learnt 
(Borromeo, 2006; Kaiser & Sriraman, 2006; Kaiser, 
Sriraman, Blomhøj et al., 2007). A broad variety of 
schemes result from here (e.g., Perrenet & Zwaneveld, 
2012), which describe the elements present in mod-
elling and the relationships established among them, 
sometimes distinguishing between which elements 
are most appropriate for researchers, teachers, and 
students (see, e.g., Blum & Borromeo, 2009). Such 
schemes undertake the characteristics of a model-
ling cycle.

We use the cycle of Blum and Leiss (2007) which is 
divided in seven steps: 1 Constructing; 2 Simplifying/
Structuring; 3 Mathematising; 4 Working mathemat-
ically; 5 Interpreting; 6 Validating; and 7 Exposing. 

The aim of this paper is to illustrate the complexity 
of the relations established by the students between 
the extra-mathematical and the intra-mathematical 
worlds, and between the mathematical model itself 
and the mathematical model interpreted in the con-
text of the situation from which the model issued 
(Blum & Leiss, 2007).

Our work shows an example of modelling that 
prompts students to obtain data that is subsequently 
processed with a computer, enabling to obtain the 
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model, which take the form of a function in one varia-
ble (see, e.g., Lingefjärd, 2011). Once such a function is 
obtained, the aim will focus on analysing the students’ 
answers to questions about the interpretation of the 
mathematical model against the original real context, 
the relevant concepts, notions and basic knowledge 
on functions, and about knowledge that is not directly 
related to functions. 

METHODOLOGY AND DESCRIPTION 
OF THE ACTIVITIES

The two activities we describe below were pro-
posed during two consecutive years (academic 
years 2010–2011 and 2011–2012) to students of the 
course Mathematics I in the 1st year of Science and 
Technology Baccalaureate (aged 16–17 years), as a 
voluntary practice to be performed after the regular 
class hours. Participating students of the first year are 
designated as A1,…, A13, and participating students of 
the second year as B1,…, B12 (total of 25 students). The 
activities were performed one after the other, with a 
two-week interval in between. Students were distrib-
uted into working groups G1, G2, etc., (3–4 students 
per group) and their work was recorded in audio and 
video.

As a previous step to the proposed activities (two weeks 
before), the students learnt how to use GeoGebra to 
obtain the analytical expression of an adjustment 
function starting by dumping the data from a table 
as points in a Cartesian plane (adjustment of a func-
tion from a set of points on the plane using sliders).

We divide the development of both activities (herein 
after Spring and Oil and water) in three different phas-
es: (Phase 1) data collection at the laboratory, (Phase 
2) data dumping and obtaining the adjustment func-
tion using a computer and (Phase 3) asking questions 
about the obtained model. At the end, the students 
answered two questions about their opinions on the 
activities and the phases into which these had been 
divided.

In the following, we describe the different phases.

Phase 1. The first phase of the activities was proposed 
with the following statements:

Spring: “Let’s study how a spring stretches when 
we hang a weight from it. Take all the data you con-
sider necessary, and do it the way you think is best.”

Oil and water: “Let’s study how the diameter of an 
oil slick on water varies when we add more oil. 
Take all the data you consider necessary, and do 
it the way you think is best.”

Each group had their own materials to collect the data: 
weights, weight stand, spring (different in each work-
ing group), tub, detergent, oil, 2-ml, 5-ml and 10-ml sy-
ringes, rulers, tape measure. They had to decide how 
many data should be collected and the way to do that.

Phase 2. The second phase was proposed in the fol-
lowing manner in both activities:

“Dump the data you have obtained at the laboratory 
into the computer and try to obtain a function by 
adjusting the data using the GeoGebra program.”

Each group was provided with a computer and a pho-
tocopy containing the graphs for the fundamental 
functions: affine, quadratic, inverse proportionality, 
square root (f(x)= k ⋅ √x, k ∊ R), exponential with bases 
greater than and less than 1, logarithmic with bases 
greater than and less than 1, sine, cosine and tangent. 
As in the precedent phase, students did their work in 
an autonomous and open way. The adequate function 
for the case of Spring is the linear function f(x)=ax or 
affine function f(x)=ax+b, a,b ∊ R+, depending on wheth-
er only the length of the stretched spring is measured 
or the full length. In the case of Oil and water, the ad-
equate function is f(x)= k ⋅ √x, k ∊ R+. 

Phase 3. In the third phase, the questions asked about 
both models were proposed so that each student would 
reply individually and in writing, except for the last 
three questions about the model Oil and water. These 
three questions represented the previous necessary 
step to apply the model to a hypothetical real situation, 
i.e. the last phase of modelling the behaviour of oil 
on water. Below we reproduce the questions asked 
to students. When analysing their answers, we will 
only refer to some of them. 

Spring
1) What type of function have you obtained? Interpret 
the result. 2) Which variable is dependent and which 
is independent in the function? 3) In the function you 
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have deduced, is there any parameter? If the answer 
is yes, what does it mean in the experiment you are 
conducting? 4) How much does the spring stretch with 
370 g of weight? 5) Which weight corresponds to a 
length of 21 cm of the spring? 6) What length of the 
spring do you obtain from the function if you do not 
put any weight on the stand? Interpret your result. 
7) According to the function you have obtained, is it 
possible to stretch the spring indefinitely? Interpret 
this result, though taking into account the specific 
experiment you have conducted. 8) Try to deduce how 
to calculate the weight applied if you know the length 
of the spring. 9) Do you think the function you have 
obtained describes well the behaviour of a spring to 
which a weight has been attached? 10) The obtained 
functions are different. What do you think the reason 
for this is?

Oil and water
1) The function describing the data is always expressed 
as f(x)= k ⋅ √x, k being a constant, x the amount of oil 
in ml, and f(x) the diameter in mm. k is different de-
pending on each case. In this respect, k varies. Would 
it be appropriate to call it a ‘variable’? Why? Would 
you use another name? Why do you think k varies in 
each case studied? 2) One data is the diameter. How 
would the function change if we had used the radius 
instead of the diameter? 3) One data is the diameter. 
How would the function change if we had used the 
area of oil on water instead of the diameter? 4) What 
function would we obtain if we represent the diameter 
on the x-axis and the amount of oil on the y-axis? (Or 
the area and the amount of oil).

Application of the Oil and water model to a hypothet-
ical real situation:

The photograph below is a satellite view of an oil spill 
off the coast of Cambados.

1) Determine the scale of the photograph. 2) Determine 
the area of the polluted surface. Use any instruments 
and knowledge that you consider necessary or suit-
able. 3) Apply the model you have obtained to deter-
mine the amount of fuel in the spill.

In order to determine the scale of the photograph, the 
students were provided with a photocopy of a nau-
tical chart on a scale of 1:30,000 of the same coastal 
area, and with material for technical drawing (ruler, 
compass, set-square, etc.).

ANALYSIS OF STUDENTS’ ANSWERS

Here we highlight some general considerations about 
the development of the activities:

The working environment was relaxed in all the phas-
es, the available time was enough and there were no 
delays. During the phase of data collection and obtain-
ing the adjustment function all the students partici-
pated actively, deciding the distribution of tasks by 
consensus and assuming the relevance of performing 
correct measurements and adjustments. The students 
called the teacher on very few occasions, and most of 
the questions were related to mere technical issues, 
which led us to assume that they were committed to 
perform the work autonomously.

The time employed is one of the obstacles mentioned 
about the introduction of modelling either in school or 
university (see, e.g., Blum & Niss, 1991). Regarding this 
issue, no time limit was fixed to perform the succes-
sive phases. The time used by each group to obtain the 
data table was in no case longer than 18 minutes, in the 
case of Spring. In the case of Oil and water it varied to 
a greater extent, ranging from 30 to 55 minutes. Some 
groups took longer due to the difficulty of pouring 
oil on water using a syringe. The time employed for 
adjusting the function using the computer did not 
exceed 15 minutes in any group. Most of the time was 
consumed entering the data from their tables into 
the computer. The time used to answer the questions 
posed about the obtained model was approximately 
the same: 35 minutes in the case of the spring, 40 min-
utes in the case of the first question and the discussion 
about Oil and water, and 70 minutes in the case of the 
application of the oil and water model.

Figure 1: Hypothetical image of an oil spill (its original size has 

been reduced)
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Data table and adjustment function
The number of data and the titles of columns each 
group assigned in their data table varied consider-
ably: in the case of Spring the number of data varied 
from 9 to 32; in the case of Oil and water they obtained 
between 9 and 23 data pairs. The groups referred the 
measurements they made in the first row of the table 
as Weight and Length (groups G1, G2, G3 and G6) or 
x and y (group G5). Group G4 did not write anything 
to describe the columns. So, students identified the 
real-life variables (Weight, Length, etc.) with math-
ematical variables (x and y) because they wrote data 
using the usual representation of a data table of a func-
tion. So, we may consider that this phase includes the 
steps 1 Constructing, 2 Simplifying/Structuring and 
3 Mathematising (Blum & Leiss, 2007). 

In the case of Spring, group G1 (Figure 2) obtained the 
equation of a straight line determined from two data 
from their table, and another group (G5) modified the 
parameters a and b in the equation of a straight line on 
the plane, y=ax+b. The remaining groups performed a 
similar procedure using the functional expression f(x-
)=ax+b. In the case of Oil and water all the groups pro-
vided a function of the kind f(x)= k ⋅ √x as the solution, 
with different values for k in each group. So, we could 

say that, when each group inserted the appropriate 
function, they had previously decided the functional 
variables x and y (identified with weight and length 
and volume and diameter, respectively) and the neces-
sary parameters they had to use. Therefore, this sec-
ond phase should include the steps of 3 Mathematising 
and 4 Working mathematically (Blum & Leiss, 2007). 
Since they had previously identified real-life varia-
bles with mathematical variables, the mathematical 
model and result (the obtained function) should be 
interpreted as a real model and result (5 Interpreting). 

Answers to the questions about 
the obtained model 
63.6% of the students did not identify the variables 
correctly (question 2 about Spring; Figure 3a). Also, 
95.5% of the students did not recognise the parameters 
(question 3 about Spring).

In the first question about the model for Oil and water, 
52.2% of the students characterized k as a variable 
(Figure 3b) and 34.8% as a constant. 16% of the students 
initially asserted it was a variable and subsequently 
contradicted themselves and sustained it was a con-
stant.

Figure 2: Data and functions obtained by group G1 [y=0.02x+9.7; f(x) = 2.3 √x]

Translation:
Dependent variable is 0’11x  the inde-
pendent one is 10’8.

Figure 3a: Variables and parameters

Translation:
k is a variable, so I would call it x

Figure 3b: Variables and parameters
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So, regarding the variables and parameters, students 
did not identify the variables correctly and made con-
fusion between the dependent and independent var-
iables and the parameters.

In Spring they had obtained a function that enabled 
to obtain the length given the weight (mass); how-
ever, surprisingly, in questions 4 and 5 half of the 
students used the rule of three in one or both ques-
tions (Figure 4). Only 27.3% of the students used the 
function in both questions and another one used a 
rule of three and the function, without questioning 
themselves why the obtained results were different. 
Therefore, they associated the graph of the function 
(straight line) with direct proportionality, and direct 
proportionality with the constant rate of change. 

Sometimes, students designated the function as an 
equation and the variables as unknowns (Fig 5).

In questions 5 and 8 for Spring, the students did not 
mention the inverse function in their answers, and 
they performed the calculations with the function 
expression as if it were an equation which they 
must solve to obtain the unknown. In the discussion 
about oil, the first-year students almost immediately 
reached the conclusion that the function requested in 
the fourth question was the inverse function. One of 
the second-year students, after a few minutes, provid-
ed the way to calculate this function without realis-
ing it was the inverse function. Another student (B8) 
reached the conclusion that it was the algorithm they 
learnt to obtain the inverse function:

Student B8: It’s the inverse of the function. That 
is the inverse. When we look at the com-
position. Change x for y and solve for y.

Regarding the discussion about the adequate expres-
sion for the radius, there are differences from one 

academic year to the other. For example, the first-year 
students discussed for six minutes whether the ad-
equate expression is f(x)

2  and about the consequenc-
es of dividing only one member of an equality by a 
number. The second-year students discussed for 10 
minutes whether the expression of the radius should 
be 2.1

2  ⋅ √x, 2.1⋅  √x
2

 
or 2.1⋅√x

2 . Neither the first-year nor 
the second-year students denoted the new functions 
they obtained in the discussion about Oil and water 
in a different way, and they always designated the 
results as f(x).

Regarding the application of the Oil and water model 
to a hypothetical case of a pollution spill, we highlight 
the following results:

 ― One fourth of the students determined a value 
close to the right one for the scale. The remainder 
either used an inadequate system (55%), or failed 
to determine the scale (20%). 

 ― Only two students achieved a correct calculation 
method to estimate the value of the spill area on 
the photograph. 55% of the students drew a circle 
on the picture and measured the radius or the 
diameter, in a clear relation to their observations 
of the behaviour of oil during the first phase.

 ― The students had many difficulties in the appli-
cation of the model: they did not remember basic 
formulae to calculate areas, they confused the 
names of geometric figures, they misused the 
units of area or volume, etc. 

 ― In no case they interpreted both images (map and 
photograph) as a similarity, so they failed to use 
the relationship between areas and volumes of 
similar figures.

 ― From all the students, only two achieved to pro-
vide a volume for the spill following a calculation 
system that may be considered acceptable.

Figure 4: Use of the rule of three

Translation:
A function of one unknown f(x)=ax+b. The re-
sult is a straight line

Figure 5: Function equality as an equation and identifying the expression with its graph
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Opinions and valuations of the students
From the analysis of the opinions and valuations by 
the students, we highlight below the aspects that we 
consider as the most relevant.

83.3% of students stated that the modelling for Oil and 
water was the one they liked most or found most in-
teresting, often mentioning the discussion as a very 
positive way to learn from their peers and exchange 
ideas among themselves (41.7%). 

Regarding the phases, the students considered all of 
them important, with special mention to the data col-
lection at the laboratory (62.5%) because this makes 
the model becomes their model. One third of the stu-
dents highlighted the application of the Oil and water 
model as interesting and enabling to apply the model 
to a real, socially problematic situation, and so they 
valued the model obtained as being useful.

Overall, they considered it very important to perform 
this kind of activities (that they sometimes referred 
to as experiments), however, at the same time, they 
thought that this kind of activities had nothing to do 
with mathematics teaching. They acknowledged that 
the kind of teaching they receive is based on learning 
algorithms. 

In order to illustrate the comments above, we present 
a sample of the interviews made to the students: 

Student B6: (…) I didn’t know how to measure an 
oil slick or spill on water and, for exam-
ple, that was one of the things I enjoyed 
most, wasn’t it? Because you ask your-
self: how is it possible to measure that 
on water? And then, you even see how 
the shape is formed and everything.

Student B3: (…) working on a problem is find-
ing the solution and the same goes for 
equations. But here it’s all about finding 
the data and then you have to find out 
something else; it’s different, these are 
different steps you have to take with 
your own observations and collecting 
data. In class they give them to you, you 
don’t have to do it for yourself.

Student A1: (…) You can’t spend all the time doing 
experiments, you must have class.

Student B3: Well, in maths, when you have class 
it’s basically doing exercises and learn-
ing what you have to know. This is some-
thing on the side that helps but it has 
nothing to do with the class, at least for 
me it has nothing to do with maths, with 
the class, I mean, because it’s something 
different.

Student A1: (…) Because the problem with maths 
is that some people see it as something 
they’re never going to use in their lives. 
A lot of people say: why would I want to 
know how to solve an equation? Why do 
I want to know about what a function 
is? I don’t know, if you actually see it in 
real life then at least it should stir your 
curiosity.

CONCLUSIONS AND ELEMENTS 
FOR DISCUSSION 

The issue that we consider essential is that the stu-
dents succeeded in obtaining a model (a function) at 
the end of the second phase. However, their answers 
to the questions in subsequent phases lead us to think 
that the mathematising process (step 3, modelling cy-
cle, Blum & Leiss, 2007) has been performed in a very 
limited manner. Consequently, it could be questioned 
whether the obtained function actually represents a 
mathematical model and result (Blum & Leiss, 2007). 
However, if we see only the mathematical result ob-
tained by the students, it is possible to think they 
completed at least four of the seven steps of the mod-
elling cycle. Therefore, when we propose to students 
to develop a mathematical model in an autonomous 
and open way, it is necessary to set questions related 
to important mathematical concepts and notions dur-
ing the modelling process and not just at the end of it.

Moreover, for this result to become a solution to the 
originally proposed problem, students should inter-
pret the mathematical result they obtained as a real re-
sult (step 5, Blum & Leiss, 2007). In fact, two functions 
coexist in both modelling processes with different 
domains and paths (the mathematical function and 
the function that relates mass to length and volume 
to diameter). 

We must also add to the above the differences between 
both academic years regarding the development of 
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the discussion as well as the problems that arose in 
the application of the Oil and water model. Modelling 
introduces some elements of uncertainty about what 
the teacher may expect to encounter in the classroom, 
such as the students’ answers. The difficulties that 
arise during the process are not entirely predictable 
and consequently teaching becomes more open (see, 
e.g., Blum & Borromeo, 2009). Moreover, both models 
start from extra-mathematical situations inherently 
linked to physical laws and magnitudes of certain 
relevance (difference between mass and weight, 
Hooke’s Law, behaviour of fluids of different den-
sities, Archimedes’ Principle, surface tension, etc.). 
Therefore, a series of questions arise that the teacher 
has to consider; the answers to those will determine a 
different kind of modelling and, consequently, a dif-
ferent modelling cycle. To give just a few examples: 
one could opt for omitting the data collection phase 
(by considering it to pertain to experimental science) 
and focus the modelling on such aspects perceived as 
more appropriate to mathematics, or we could also 
opt for using the obtained model to introduce some 
magnitudes and laws of physics; the degree of diffi-
culty of obtaining the adjustment function could be 
increased by not providing a photocopy of the graphs 
for the fundamental functions; the square root may 
be presented on the photocopy as √x or as  k √x, etc. 
Likewise, answers to the questions raised to the stu-
dents could be approached in a joint discussion; or by 
distributing the students into smaller, independent 
discussion groups; or individually in writing. 

Finally, if we focus on more general objectives, mod-
elling can be proposed as a means to introduce key 
concepts and notions about functions, or also to detect 
difficulties and obstacles in students who have already 
studied such content previously. 

Therefore, modelling introduces some elements that 
force teachers to make previously meditated and re-
flected decisions about their teaching methods (see, 
e.g., Doerr, 2006). Such decisions will affect the kind of 
modelling proposed, the ways in which it is developed, 
the answers of students and the steps of the modelling 
process. 
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This theoretical paper introduces the notions of connect-
ing, coordinating and integrating models to analyse and 
reflect on how models are created and developed. We 
define, discuss and apply these constructs to some the-
oretical perspectives in the present modelling discourse. 
We draw on an example from a model application activ-
ity within a model development sequence to illustrate 
these constructs. Our hope is to spark a discussion that 
will enhance our understanding about the nature of 
mathematical modelling and the teaching and learning 
of, and through, modelling.
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There are many different perspectives on modelling 
that researchers can adapt when studying the teach-
ing and learning of mathematics (Kaiser & Sriraman, 
2006). One commonly made distinction in the liter-
ature is the one between modelling and application. 
Often this characterisation is based on a philosophical 
stance about the nature and relation between ‘math-
ematical knowledge’ (mathematics) and ‘knowledge 
about the rest of the experienced world’ (reality) 
(Blum, Galbraith, & Niss, 2007). Stillman (2012, p. 903) 
describes this distinction as follows:

With applications the direction (mathematics à 
reality) is the focus. “Where can I use this particu-
lar piece of mathematical knowledge?” The model 
is already learnt and built. With mathematical 
modelling the reverse direction (realityàmath-
ematics) becomes the focus. “Where can I find 
some mathematics to help me with this problem?” 
The model has to be built through idealising, 
specifying and mathematising the real world 
situation. Both types of task have their place in 
school classrooms.

Research on modelling perceived in the latter char-
acterisation often uses, or is based on, an idealized 
conceptualization of modelling as a cyclic process (e.g., 
Blum & Leiβ, 2007; Borromeo Ferri, 2006).

The role and function of applications and modelling 
in the teaching and learning of mathematics is also 
an important dimension in the on-going discussion – 
is teaching modelling a goal in itself, or is modelling 
a vehicle for teaching and learning mathematics? 
Both modelling as described by Stillman as well as 
most modelling perspectives represented by a cycle 
diagram of the modelling process include, or at least 
point out, the potential driver in modelling for teach-
ing and learning mathematics. 

Another perspective on modelling is the models and 
modelling perspective (Lesh & Doerr, 2003b), which 
provides a coherent framework to think about mul-
titude aspects involved in teaching and learning. 
Central in the models and modelling perspective 
(MMP) are the students’ previous experiences and 
knowledge, and how contexts are chosen and used 
in modelling tasks. Whereas perspectives aligning 
with the cyclic view on modelling (c.f. Blum & Leiβ 
(2007) and others) clearly are modelling according 
to Stillman’s distinction, it is not in our view possible 
to situate the MMP in this dichotomy. Rather, MMP 
blends applications and modelling to form a model-
ling-based pedagogy, and through this use of model-
ling and applications students arguably learn both 
mathematics and mathematical modelling. 

Although our overall research interest aims to better 
understand the teaching of mathematical modelling, 
and the teaching of mathematics through modelling, 
in this paper we ask more fundamental questions 
about the nature of modelling. We also wish to ini-
tiate a discussion about the nature of mathematical 
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modelling, as well as teaching and learning mathemat-
ics through modelling, by examining the constructs 
of connecting, coordinating, and integrating models.

Before addressing the notions of connecting, coordi-
nating and integrating models, we will discuss some 
of the central ideas in the models and modelling per-
spective. Our initial thinking is based on our work 
within this perspective, and the examples used for 
illustrational purposes are from this context. 

THEORETICAL FRAMEWORK

In the models and modelling perspective, “[m]odels 
are conceptual systems (consisting of elements, rela-
tions, operations, and rules governing interactions) 
that are expressed using external notation systems, 
and that are used to construct, describe, or explain 
the behaviours of other system(s) – perhaps so that 
the other system can be manipulated or predicted 
intelligently. A mathematical model focuses on struc-
tural characteristics … of the relevant systems” (Lesh 
& Doerr, 2003a, p. 10, italics in original). It is by engag-
ing in learning activities that students’ models are 
developed, modified, extended and revised through 

“multiple cycles of interpretations, descriptions, con-
jectures, explanations and justifications that are it-
eratively refined and reconstructed by the learner” 
(Doerr & English, 2003, p. 112).

A well-established line of research within this per-
spective has focused on model eliciting activities 
(MEAs) in multiple contexts with learners from pri-
mary school through university (see references in 
Ärlebäck, Doerr, and O’Neil (2013)). MEAs are activ-
ities where students are confronted with a problem 
situation in which they need to construct a model in 
order to make sense of the situation. There are six 
well-established principles for designing MEAs. The 
six design principles are: the reality (or sense-making) 
principle; the construction principle; the self-eval-
uation principle; the documentation principle; the 
simple prototype; the generalization principle (Lesh 
& Doerr, 2003a; Lesh, Hoover, Hole, Kelly, & Post, 2000). 
However, isolated MEAs can fall short of supporting 
students developing a generalized model that can 
be used and re-used in a range of contexts (Doerr & 
English, 2003). What is needed are multiple struc-
turally related modelling activities offering multiple 
opportunities for the students to explore, apply and 
test relevant mathematical constructs in different sit-

uations and contexts. This is the idea and function 
of model development sequences (Doerr & English, 
2003; Lesh, Cramer, Doerr, Post, & Zawojewski, 2003).

Model development sequences begin with a MEA 
to confront the student with the need to construct a 
model to make sense of a problem situation. The MEA 
is then followed by one or more model exploration 
activities and model application activities (see Figure 
1). Model exploration activities (MXA) focus on the 
underlying structure of the elicited model in the MEA 
with special attention to the use and function of differ-
ent ways to represent the elicited model. The initially 
elicited model is further developed by examining the 
strengths of various representations and ways of us-
ing representations productively. Model application 
activities (MAA) engage students in applying their 
model to new situations and contexts, thereby refin-
ing their language for interpreting and describing 
the context.

When students work through the model development 
sequence, they engage in multiple cycles of descrip-
tions, interpretations, conjectures and explanations, 
resulting in iteratively refining and developing their 
models. In this process, interacting with other stu-
dents and participating in teacher-led class discus-
sions are key practices for facilitating this develop-
ment. 

A model development sequence focusing 
on the average rate of change
We now turn to briefly describe a model develop-
ment sequence focusing on average rate of change 
consisting of one MEA, two MXAs, and two MAAs 
(see Figure 2). For a more detailed description see 
Ärlebäck, Doerr and O’Neil (2013). From this point 
an onwards, references to the particular activities 

Figure 1: The general structure of a model development sequence
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in this sequence will be indicated with an asterisk (*). 
In the MEA* of this sequence, students analysed their 
own bodily motion along a straight line. They exper-
imented with motion detectors attached to graphing 
calculators generating position vs. time graphs, cre-
ated linear graphs based on written specifications, 
replicated the motion behind given position vs. time 
graphs, and generated written descriptions of how 
they moved. Within this context, students’ initial 
thinking and models about function values (position), 
average rate of change (average velocity), sequences of 
differing values of average rate of change (sequences 
of differing average velocities) and the relationship 
between these quantitates were elicited.

In the two MXA*s the students explored various rep-
resentations to describe and interpret changing phe-
nomena using their emerging model of average rate of 
change. Using two different computer environments, 
the students generated motion of animated characters 
by creating velocity vs. time graphs, created position 
graphs from velocity information, investigated how 
the average rate of change of a function is represented 
as table values, graphs, and equations, and explored 
representations of exponential growth and decay. 

In the two MAA*s that followed, the students used 
their models to make explicit interpretations, de-
scriptions and predictions about the behaviour of, 
first, the intensity of light with respect to the distance 
from a light source, and second, the voltage drop over 
a fully charged discharging capacitor in an simple 
resistor-capacitor circuit. The MAA*s gave the stu-
dents opportunities to use their models in different 
contexts (one having distance rather than time as the 
independent variable), and to work with phenomena 
with negative rates of change.

A model application activity – the light lab
In this section, we will briefly describe the Light Lab 
model application activity (MAA). The overall struc-
ture of the six tasks in this MAA is shown in Figure 2.

The first pre-lab task focused on the students’ intu-
itive and initial models about how intensity varies 
depending on the distance from a point light source. 
In a one-dimensional scenario of an approaching car 
the students sketched graphs of how the intensity of 
the car’s headlights varied depending on the distance 
to the car, and described how light disperses from a 
point source in terms of light rays.

In the second task, students used a point source of 
light to collect 15 measurements of light intensity data 
at one cm intervals from the source. In part one of 
the lab, students made scatter plots of their data and 
wrote descriptions of how the intensity of the light 
changed with respect to distance from the light source, 
and compared this relationship to their predictions 
from the first pre-lab. The students also calculated, 
described and plotted the average rate of change of 
the data in one cm intervals, and created rate graphs 
of the calculated average rates of change.

The second pre-lab introduced an inverse square mod-
el for how the light intensity varies with distance from 
a light source. Using four images representing light 
intensity indicated by number of dots per square inch 
at different distances, students determined the inten-
sity at given distances from the light source.

In the second part of the lab, students determined a 
function fitting their collected data, explained their 
work, and analyzed the average rates of change of 
their function using the difference quotient; they cal-
culated and graphed the average rates of change of the 
function, and described and interpreted the graphs of 
the average rates of change values. We will use these 
tasks from within this model application activity to 
examine our notions of connecting, coordinating and 
integrating models.

Figure 2: The model development sequence (top) and the six Light Lab tasks (bottom)
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CONNECTING, COORDINATING 
AND INTEGRATING MODELS

We take connecting models to mean the establishing 
of a relationship between two or more previously un-
related models. As used here, connecting models cap-
tures the realization that previously isolated and unat-
tached models, potentially from different disciplines 
or subject matters, partially overlap or have points of 
interest in common that in a given problem solving 
situation seem productive to explore. Connecting 
models also means taking the initial steps in identi-
fying and delimiting the models being connected in 
the first place. Connecting models can thus be thought 
of as a united set of models together with some ini-
tial ideas and rationale for why these models might 
productively be considered together (see Figure 3). 
The reasons and rationale for connecting the models 
can be intuitive, tentative or speculative in nature, 
and to a large extent will depend on the modeller’s 
previous experiences and knowledge. An example 
of an activity connecting models is the first pre-lab 
in the Light lab MAA*. Here, students’ intuitive and 
initial models about how intensity varies depending 
on the distance from a point source of light in terms 
of previous experiences of car’s headlights and how 
light disperses from a point source in terms of light 
rays (knowledge from previous courses in physics) 
are elicited. The juxtaposition of these questions im-
plicitly suggests that it might be productive to con-
sider these conceptual systems (or models) together. 
Another example of an activity connecting models 
from the Light lab MAA* comes from the second pre-
lab which introduces a new representation (density 
of dots at varying distances) to be examined and con-
sidered along with the set of models the students are 
currently working with.

When a set of models has been connected, the coor-
dinating of the models is the successively more sys-
tematic exploration and pursuit of the overlaps and 

points of interest in common across the models. The 
coordination of the models transforms the set contain-
ing the previously disjoint models into a set of more 
aligned models. This is a process entailing gradually 
mapping out where, and becoming clearer about how, 
the models partially overlap. The goal for moving be-
yond having a connected set of models and striving 
towards a coordinated sets of models is to facilitate 
the latter set of coordinated models as a whole to func-
tion in a more intertwined and concerted way when 
put into action and applied to the problem solving 
situation at hand. This is achieved by creating one or 
multiple bonds between the models, and successively 
making these clearer and stronger (see Figure 3). The 
coordinating of models is a multi-dialectic process 
where the specifics of all of the models in the set are 
important. The process of coordination results in the 
set of models becoming more aligned or (perhaps) 
more alienated. We note that the process of iterative 
refinement in a models and modelling perspective 
includes the sorting out and filtering of ideas, where 
some constructs (or models) are rejected as others 
become more aligned and subsequently integrated. 
A consequence of an unsuccessful coordination can 
give rise to the possible exclusion of the alienated 
model(s) or the rejection of the whole set altogether. 
An example of an activity facilitating students to co-
ordinate models is the first part of the Light lab MAA* 
(Lab, part 1). Here the students are urged to keep think-
ing about their initial ideas and models elicited in the 
first pre-lab alongside representations (scatter plots, 
descriptions, rate graphs) of their collected real data 
and calculated values of the average rate of change 
over one centimeter intervals.

Integrating models means merging the models so that 
the set now is conceived as one model in its own right 
(see Figure 3). Coordinated models are said to be inte-
grated when the level of coordination is so high that 
further coordinating of the models in principle does 
not change the understanding and function of the 
newly merged models. A central feature of an inte-
grated model is that it is self-contained. In the Light 
Lab MAA*, the students write a final lab report. The 
goal for the student is to present an integrated model 
of how intensity varies depending on the distance 
from a point light source. The purpose of the report 
is to reflect the students’ integrated understanding 
of light dispersion on a qualitative and quantitative 
level using their collected data, average rate of change, Figure 3: A conceptualization of connecting (A), coordinating (B), 

and integrating (C) models 
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rate of change graphs, the difference quotient, and a 
spherical light emission model.

Having introduced and exemplified the notions of con-
necting, coordinating and integrating models, we now 
turn to discuss how these constructs might be used 
and applied to current discussions about the nature 
of mathematical modelling, as well as the teaching of, 
and through, modelling. 

MEAs, MXAs, and MAAs
Generally within a model development sequence, an 
MEA elicits the students’ initial thinking about a prob-
lem situation, as that thinking is externally represent-
ed. This means that the students start to structure 
the problem solving situation by trying to identify 
and connect models that can work productively in the 
specific situation. An example of an MEA function-
ing to connect models is the MEA* where the students 
are working with motion detectors to make sense of 
bodily motion along a straight path. In this activity, 
the students are placed in a situation that exposes 
them to multiple representations through which to 
make sense of the situation. Centred on their own 
bodily motion, students are offered an opportunity 
to form and connect an initial set of models, consisting 
of their previous ideas and models together with the 
representations introduced in the MEA*, which then 
can be furthered explored and applied.

Generally within a model development sequence, the 
MXAs focus on supporting the students in developing 
the models elicited in the MEA by examining differ-
ent representations: graphs, symbols and algebraic 
representations, tables, everyday language, manip-
ulatives, embodied and animated motions as well as 
students’ self-constructed representations. Regarding 
representations as models in their own right (Lesh, 
Post, & Behr, 1987), MXAs can then primarily be seen 
to be about the coordination of models with occasion-
al elements of connecting models if new representa-
tions or models are introduced during the activity.  
Typically, this is done by either exploring commu-
nalities of the models connected in the MEA, but the 
emphasis of a MXA is really on connecting, coordi-
nating and using representations. The two MXA*s in 
the model development sequence on average rate of 
change are good illustrations of this. In these two ac-
tivities students use computer programs that provide 
access to digital environments and work on tasks that 

explore different representations of key ideas in their 
own right as well as the relationships among these.

The main purpose of MAAs is to provide students 
with new contexts and situations where they can ap-
ply their developing or previously developed models. 
However, to do this some sort of connection has to be 
established mapping the models of the students to 
the context of the problem situation at hand. In other 
words, the context of the problem situation and the 
models of the students first have to be connected. Then, 
in order to ensure the adequacy, legitimacy and the 
proficiency of this connection, it has to be coordinat-
ed, integrating the specifics of the new situation and 
context with the model being applied.

Applications, modelling, and 
the modelling cycle
Returning to Stillman’s (2012) distinction between 
applications and modelling, it is now possible to ar-
gue analogously that connecting, coordinating and 
integrating models are necessary and fundamental 
processes both for applying models “already built 
and learned” (p. 903) and when “model has to be built 
through idealising, specifying and mathematising the 
real world situation (p. 903). The important difference 
between applications and modelling is not the point of 
departure (the mathematics vs. the real world) per se; 
rather, the difference manifests itself in the amount 
of effort and time spent on coordinating the context 
of problem situation and the models of the modeller 
before one ends up with an integrated model for ade-
quately make sense of, and use for, the situation.

Regarding modelling ideally conceived as a cyclic 
process (e.g., Blum & Leiβ, 2007,  and others), connect-
ing, coordinating and integrating models provides a 
more dialectic and dynamic conceptualisation of the 
processes involved. For example, each of the transi-
tions in cyclic perspectives on modelling, such as the 
modelling cycle used by Blum and Leiβ (2007) and 
Borromeo Ferri (2006), e.g., transitions between real 
situation – mental representations of the situation – 
real model – mathematical model, have to be subject-
ed to sequential connecting, coordinating and finally 
developed into an integrated model to tackle the pre-
vailing situation. In addition, the different transitions 
in terms of connecting, coordinating and integration 
should not be thought of as carried out sequential-
ly, but rather as processes fundamentally evolving 
simultaneously, nested and organically. From this 
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perspective, the typically one-way pointing arrows 
indicating the transitions in cyclic conceptualizations 
of modelling (e.g., Blum & Leiβ, 2007, and others) are 
misleading when trying to understand the complex-
ity of, first, the modelling process in its own right, 
and second, and more importantly, the teaching and 
learning of modelling as well as teaching and learning 
mathematics through modelling.

THE SELF-SIMILAR NATURE OF TEACHING 
MATHEMATICS THROUGH MODELLING 

Lesh and Doerr (2003b) discuss the connection be-
tween MMP and complexity theoretical ideas. One 
foundational idea of complexity theory is the prin-
ciple of self-similarity, that structure and pattern re-
peat itself at different scales (Davis & Simmt, 2006). 
We wish to argue that this is also the case for the 
structure of model development sequences and the 
activities therein (at least for the MXAs and MAAs). 
The structure of the model development sequence at 
large and the activities that constitutes the sequence 
naturally varies from design to design, but using the 
notions of connecting, coordinating and integrating, 
the self-similarity of the two levels starts to stand out. 
In this paper we have tried to illustrate this point by 
providing examples from the model development se-
quence on average rate of change and the tasks in the 
Light Lab MAA*. We have argued that the two pre-labs 
in the Light Lab MAA* are activities connecting models, 
a characteristic of an MEA.  In other words, Pre-lab 
1, focusing on the students’ initial ideas in the Light 
Lab MAA* (see Figure 3), has the function of an MEA. 
The elicited models and ideas are then subsequently 
coordinated in part one and part two of the lab un-
der the support of an activity of data collection and 
a connecting activity (Pre-lab 2). However, the two 
parts of the lab (Lab, part 1&2) both function as MXAs 
with the primary goal of supporting the students in 
developing their model based on work on representa-
tions. The last task of the Lab, when students write 
a report, really aims at pulling the whole Light Lab 
MAA* together in an integrating sense. Looking at any 
MXA in a model development sequence, a similar ar-
gument applies: models need to be connected to set up 
the activity before the coordinating of the models can 
start. This self-similar aspect of model development 
sequences and the activities within occurs because 
when teaching mathematics through modelling, it is 
a necessity (by definition!) to bring in extra-mathe-
matical contexts and situations.

DISCUSSION

One of the main points we have tried to emphasis in 
this paper is that regardless what theoretical stance 
on modelling is adapted, the three processes of con-
necting models, coordinating models, and integrating 
models are fundamental in all types of modelling situ-
ations. In our opinion, these three constructs capture 
and acknowledge the dialectic and complex nature of 
creating and developing models. Constructs like this 
might be the first steps towards a common conceptu-
alization of modelling that bridges the research field 
so that we might better understand, coordinate and 
summarize research findings from different research 
traditions based on different perspectives.

By applying the three notions of connecting, coordi-
nating and integrating models to the model develop-
ment sequences, MXAs and MAA respectively, the 
self-similarity between the sequence and the MXAs 
and MAAs within the sequence came to the fore. The 
implication of this structural finding for teaching and 
the design of tasks might be profitably considered in 
future research.

While thinking about how models really develop and 
are formed in terms of connecting, coordinating and 
integrating models, we also found strong similarities 
to the principles of variation theory. The four types 
of variation within variation theory discussed by 
Marton, Runesson and Tsui (2004), contrast, gener-
alization, separation, and fusion especially seems to 
resonate with the notions put forward in this paper: 
connecting models – contrast variation; coordinating 
models – generalization and variation of separation; 
integrating – fusion. To further investigate this, and 
what more variation theory has to offer, seems a prom-
ising way to continue the research initiated in this 
paper.
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Considering the general problem of integrating math-
ematical modelling into current educational systems, 
this paper focuses on the ineluctable step of the profes-
sional development of teachers. Within the framework 
of the Anthropological Theory of the Didactic, the use of 
study and research paths for teacher education (SRP-TE) 
was recently proposed as a means to combine a constant 
practical and theoretical questioning of mathematical 
modelling school activities. After presenting the ration-
ale of our proposal, we will illustrate the phases of the 
SRP-TE design and some preliminary results with the 
implementation of an on-line course for in-service sec-
ondary school teachers in CICATA-IPN (Mexico).
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INTRODUCTION

There exists an extended agreement about the neces-
sity to foster the teaching of mathematics as a model-
ling tool and to enrich the study of contents at school 
through the development of inquiry processes. At 
the same time, many investigations highlight impor-
tant objective difficulties that hinder any proposal of 
implementing modelling and inquiry as normalised 
activities in current educational systems (Burkhardt, 
2008; Kaiser & Maaß, 2007; Doerr, 2007; among oth-
ers). Many of these constraints are related to what 
has recently been called the ‘monumentalistic’ para-
digm (Chevallard, 2012), which rules in many of our 
teaching systems, where mathematical contents tend 
to appear as ‘works to visit’ more than tools to provide 
answers to questions. To approach this far-reaching 
problem and help move towards the new paradigm of 

‘questioning the world’, recent research carried out in 

the framework of the Anthropological Theory of the 
Didactic (ATD) proposes a new teaching device called 
study and research paths (SRP) based on the long-
term inquiry of generating problematic questions 
(Barquero et al., 2008, 2013). However, designing and 
locally implementing new devices is not enough to 
ensure their long-term viability. Among many chal-
lenges, an important one is related to teachers’ profes-
sional knowledge and competences, and furthermore 
to the mathematical and didactic infrastructures that 
need to be at their disposal to face this change.

The research project we are presenting starts from 
some particular cases of SRP that have been de-
signed, locally implemented and analysed in previ-
ous research at preschool, primary, secondary and 
tertiary educational levels. Our purpose is to explore 
how these SRP could be used in professional develop-
ment programmes for teachers. The aim is twofold: 
on the one hand, to identify teachers’ professional 
problems in their day-to-day activities, and establish 
possible ways of approaching them; on the other hand, 
to enrich teachers’ mathematical and didactic expe-
riences with inquiry and modelling processes which 
will later be used as a source to introduce the didactic 
tools for the analysis and the questioning of any kind 
of teaching and learning processes. In this paper we 
will present the framework, principles and phases for 
the design of what we call SRP for Teachers Education 
(SRP-TE), together with some preliminary results of 
one of its first implementations.

STUDY AND RESEARCH PATHS 
FOR TEACHER EDUCATION

Previous research on the ATD concerning the problem 
of teacher education (Cirade, 2006) has made the fol-
lowing contributions (Bosch & Gascón, 2009). First of 
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all, it is assumed that teacher education programmes 
should consider the difficulties and quandaries affect-
ing the development of the professional activities of 
teachers and locate them at the core of the educational 
proposals. It is clear that the different tasks teach-
ers should carry out are more or less specific to the 
content to be taught. However, an empirical study on 
more than 7000 questions posed by in-service teach-
er-students (Cirade, 2006) shows that many of these 
questions have an essential mathematical dimension. 
In other words, many of the problems teachers face 
are related to mathematics and, particularly, to the 
didactic transposition process and the specific math-
ematical knowledge to be taught (Chevallard, 1985). 
This issue has a clear connection with research on 
Pedagogical Mathematical Content (Ball & Bass, 2000), 
which we will not take into consideration here. 

Secondly, starting from teachers’ professional prob-
lems may help introduce didactic knowledge as a tool 
to approach them in a motivated way. Didactics of 
mathematics thus appears as a tool to solve problems 
instead of a set of (more or less dogmatic) theoretical 
developments to be known. At the same time, didactic 
knowledge should also appear as a tool to pose new 
problems and particularly to question the prevailing 
teaching proposals, including the curriculum and the 
pedagogical organisations. 

Last but not least, it is important to note that many of 
the problems teachers face are still open problems for 
the mathematics education research community. Said 
problems need an important process of reformulation 
before they can be approached from a founded per-
spective. In fact, the more general question of what 
kind of knowledge has to be made available to teachers 
and how to help teachers develop it still is (and will 
always, to a certain extend, remain) an open question.

In order to take these considerations in teachers’ de-
velopment programmes into account, we propose to 
implement what we call ‘study and research paths 
for teachers’ education’ (SRP-TE) as a way to provide 
teachers with pertinent (theoretical and practical) 
tools to nourish and sustain their professional de-
velopment. They consist of the following five stages:

1) The starting point is an open question that comes 
from the teaching profession itself and is related 
to a given piece of knowledge to be taught: how 
to teach proportionality, algebra, integers, lin-

ear regression, etc.? This question is initially ap-
proached searching information and documen-
tation available, including results from research, 
official curriculum guidelines and innovation 
proposals. 

2) The second stage consists in presenting a study 
and research path (SRP) similar to what could ex-
ist in an ordinary classroom and is related to the 
professional question approached. The SRP can 
actually have been implemented in previous in-
vestigations or may simply have been designed by 
researchers for this purpose. Teacher-students 
have to follow the SRP as if they were students, 
under the supervision of educators.

3) The third stage is devoted to the analysis of the 
teaching process just followed. Three main 
phases are distinguished: (a) the mathematical 
analysis of the work done, including the elabo-
ration of a reference epistemological model de-
scribing the modelling process involved (Bosch 
& Gascón, 2006); (b) a didactic analysis of the pro-
cess, including a description of the differences 
between the contract established during the SRP 
to manage the modelling process, compared to 
the usual school didactic contract centred on the 
transmission of contents; (c) a more general study 
of the viability of SRP, including the identification 
of the institutional conditions and constraints 
affecting the development of modelling practices 
in school settings.

4) The fourth stage consists in designing a SRP based 
on the one previously followed and analysed, 
adapted to a given group of students. This design 
should be based on the analyses of the previous 
stage: sequence of mathematical questions to be 
posed to the students; sharing of responsibilities 
between teacher and students to pursue the ques-
tions; teaching devices to ensure the viability of 
the SRP.

5) The final stage of the SRP-TE, if possible, corre-
sponds to the implementation and a posteriori 
analysis of the SRP designed. The same didactic 
tools made available at stages 3 and 4 are again 
supposed to play an important role: not only to 
provide some provisional answers to the ques-
tion that was at the origin of the whole process 
(‘How to teach …?’), but also as a means to anal-
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yse other possible alternative answers, as those 
found in stage 1.

The hypothesis of our research is that SRP-TE may 
contribute to the considerations previously present-
ed in the following sense:

 ― A tool to question mathematical contents to be 
taught. The carrying out of a SRP (stage 2) pro-
vides a specific form of epistemological analysis 
of the content at stake (what we call a reference 
epistemological model) that helps approach the 
problematic mathematical dimension of the 
problem: what ‘modelling’ is, how the inquiry 
process can be described in terms of sequences 
of questions approached instead of contents used, 
how this sequence provides possible rationales to 
the contents at stake, etc. This reference episte-
mological model is a crucial tool to get rid of the 
transparency of school mathematical contents 
and to start questioning it. 

 ― Release teachers from the usual way of doing and 
teaching mathematics at school. The mathematical 
activity developed in stage 2 is clearly different 
from (even if partially compatible with) current 
school activities and does not assume all the con-
straints of traditional teaching. This raises new 
questions during stages 3 and 4 to describe the 
mathematical and didactic activities carried out 
and to adapt them to real school settings. SRP-TE 
thus appears to be a good tool for detecting the 
institutional constraints hindering inquiry and 
modelling activities at school. 

 ― A fair contract between teachers and teacher ed-
ucators. Since in a SRP the teacher assumes the 
role of supervisor, there is no problem if the 
professional question taken as the starting point 
of the SRP-TE is an open question in research: 
teacher educators are not supposed to provide 
definitive answers (which do not exist) but help 
student-teachers approach the question by crit-
ically accessing the materials available. 

Our research project wishes to explore to what extent 
these hypotheses can be confirmed and what changes 
or adaptations are suggested, using different imple-
mentations of SRP-TE as empirical basis. We are here 
presenting a single case of a SRP-TE for in-service 
secondary school mathematical teachers.

A SRP-TE ON SALES FORECASTING 
FOR IN-SERVICE TEACHERS

In Autumn 2013, a SRP-TE was experimented in an 
on-line course for in-service secondary school teach-
ers coordinated by the CICATA-IPN centre (Legaria, 
Mexico) as part of a postgraduate programme in 
Mathematics Education. The course was led by a team 
of six teachers, three from CICATA-IPN and three 
from Spain, all of them researchers in mathematics 
education. The authors of this paper were all part of 
the team. In this case, the SRP-TE took the problem of 
teaching mathematical modelling at secondary school 
as the initial question. It was initially formulated as 
follows:

Q0: How to analyse, adapt, develop and in-
tegrate a learning process related to 
mathematical modelling in our teaching 
practice? How to institutionally sustain 
a long-term learning processes based 
on modelling? What difficulties should 
be overcome? What teaching tools are 
needed? What new questions arise?

For four weeks, these issues were approached 
through a SRP on sales forecasting, considering four 
activities corresponding to the last four SRP-TE stag-
es introduced in the previous section. There were 15 
participants, all of them in-service secondary school 
teachers. They were supposed to spend 80 hours on 
the SRP-TE for five weeks: one week for each activity 
and one week for the final report. 

The SRP on sales forecasts that was at the basis of the 
SRP-TE had previously been designed and implement-
ed at university level and also at upper-secondary 
level (Serrano et al., 2010). In other words, we took an 
already experimented SRP, with a previous mathemat-
ical and didactic a priori design and some material 
concerning its implementation and a posteriori anal-
ysis. Students were informed of it and were invited to 
review some published works in the third phase of the 
SRP-TE. More concretely, the first activity (Activity 1) 
proposed the Resolution and analysis of ‘Forecast sales 
of Desigual’ with the main aim of letting participants 
experiment a SRP similar to the one experimented. 
Participants were asked to ‘live’ it like mathematical 
learners or apprentices. They had to act like a team 
of mathematical consultants and had to provide an 
answer to a request from Desigual (a Spanish fash-
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ion brand), which wanted to have an in-depth study 
on ‘how to predict the evolution of several variables 
(see Figure 1): weekly sales in several of their shops, 
evolution of their benefits or of new national and in-
ternational shop openings, etc.’

Participants were organised in five teams of three con-
sultants each, combining individual work with group 
work (using the on-line forums of the CICATA virtual 
campus and Skype). They first had to act individually 
and propose their own answer to the question (phase 
1). They later had to share and contrast their proposals 
with their partners (phase 2). Finally, in phase 3, they 
were asked to prepare and present a final report to-
gether, providing some answers to Desigual’s request 
and defending it as the best proposal for the project. 
The final answer had to be accompanied by an analy-
sis of the process followed by the team, including the 
difficulties encountered. 

In Activity 2, the participants were asked to prepare 
a ‘lesson plan’ based on the mathematical work pre-
viously carried out in Activity 1. The situation pro-
posed was that they were supposed secondary school 
teachers that had planned to implement the activity 
of ‘Forecasting Desigual sales’ in their classroom. Due 
to a cultural trip with other students, they had to ask 
another teacher to replace them. They were asked to 
write a brief and easy to read lesson plan including 
all the necessary elements for the substitute teacher 
to carry out the lesson/s. Like in the previous activity, 
participants first had to prepare and individual pro-
posal, then share their proposal with the rest of their 
team and agree on a final common lesson plan. This 
activity was supposed to provide a first spontaneous 
answer of the teacher to the question: ‘How to teach 
a modelling activity based on Activity 1?’ in terms of 
a teaching proposal designed.

Activity 3 consisted in the experimentation of the 
participants’ own design of the activity with a group 

of students. The participants had to individually as-
sume the role of the teacher and implement the initial 
phases of the lesson plan proposed in Activity 2. With 
this purpose in mind, they had to elaborate a more de-
tailed design, a more in-depth a priori analysis (phase 
1), experiment their proposal (phase 2), finish with 
the a posteriori analysis (phase 3) and prepare a brief 

‘experimentation report’ (phase 4).

Finally, Activity 4 was devoted to a joint analysis and 
final revision of the lesson plan with the aim of propos-
ing a new version taking into account both their own 
experience and the experience of their teammates. In 
particular, the difficulties found in the implementa-
tion of the modelling activity (a posteriori analysis) 
were supposed to highlight the constraints related to 
the normal implementation of this kind of teaching 
proposals and the possible ways to overcome them.

The supervision of the teacher educators during the 
SRP-TE consisted of the following. By way of feedback 
to the team discussions in the forum and to the activi-
ties (reports, lesson plans, etc.) submitted, the course 
staff progressively introduced some didactic tools to 
support the mathematical analysis of activity 1: no-
tions of model and system, criteria and ways to charac-
terise the models provided, ways of comparing them, 
etc. At the end of activity 2, as a means to carry out 
the didactic analysis of the spontaneous teaching pro-
posals, some publications about SRP were provided: 
Serrano and colleagues (2010) and Chevallard (2012). 
Between activities 3 and 4, the educators prepared 
a guideline with the main sections of the a posterio-
ri analysis of a SRP, including some examples of its 
mathematical description, some criteria to describe 
the didactic organisation and some elements of the 
conditions produced, the constraints faced and the 
global evaluation of the teaching process. They also 
provided an assessment grid for the final report and 
a questionnaire about the development of the course 
to be answered individually at the very end of the 

Figure 1: Initial worksheet of Desigual’s request to the consultants
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course. All the material produced by the students was 
gathered during the course, especially the students’ 
discussions in the forums (including the teacher edu-
cators’ interventions), the students’ questions raised 
(in the forums or by mail), the partial and final reports 
and their answers to the questionnaire.

THE ‘LESSON PLAN’ AS A CRUCIAL TOOL
Given the fact that this was the first on-line course 
based on SRP-TE, the results found are mainly related 
to the organisation of the course, the weaknesses en-
countered and the possible way to overcome them in 
further implementations. We will only present those 
concerning the function of the ‘lesson plan’, which 
appears to be a central element of the SRP-TE.

According to the design of this SRP-TE, activities 1, 
2 and 3 were mainly based on the teachers’ mathe-
matical and professional knowledge. The function 
of the lesson plan is to provide shared teaching ma-
terials to support the analysis in a triple dimension: 
(1) as a description of the initial modelling-based ac-
tivity on forecasting sales; (2) as a teaching proposal 
spontaneously designed by the teachers according 
to their professional knowledge and adapted to the 
usual institutional school conditions; (3) as the sup-
port of a real (partial) teaching and learning process. 
It is mainly in activity 4 where new types of didactic 
knowledge are needed to provide a critical analysis 
of the mathematical and teaching processes followed. 
In this section, we present how the lesson plan was 
used in the SRP-TE, its productivity and limitations. 

In spite of some initial difficulties, the teacher-stu-
dents quite easily dealt with activity 1 and experienced 
a specific mathematical ‘unguided’ work based on 
modelling and the inquiry of an open question close 
to the paradigm of questioning the world. In activity 
2 (lesson plan), many teachers fell back on the usual 
didactic contract based on the learning of contents (as 
opposed to the study of open questions) and searched 

a school mathematical subject related to sales forecast-
ing (such as ‘linear regression’ or ‘function graphs’) 
to teach it. They then prepared a list of mathematical 
techniques needed to answer the question previously 
provided to the students. For example in the lesson 
plan of teacher A, the teaching proposal was based 
on the presentation of different time-series forecast 
techniques, such as Gompertz (S-shape) curves.

In this lesson plan, the teacher is supposed to play 
the traditional role of teaching a repertoire of math-
ematical techniques the students should learn before 
proposing a forecast, as if the students could do noth-
ing without it. However, other teachers respected the 
open character of the study process. For example, in 
the lesson plan proposed by teacher B, the students 
were asked to find an answer to the forecast question 
without any previously established strategy: 

In the next classes you will be employed by the 
company to make a short and long term forecast 
for each of the variables of the file ‘Problem of 
Sales Desigual.pdf ’.

Two tasks were proposed to guide the students 
through this new kind of work:

Activity: Read the information provided by 
Desigual: 

1) Which are the variables on which Desigual 
provided information? What types of vari-
ables are they? How does variation can be 
described for each of these variables?

2) Search for the following information: What 
articles do Desigual shops sell? Where in 
Spain are Desigual shops located? And out-
side Spain?

Figure 2: Mathematical models proposed by teacher A
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Teachers A and B worked in the same team when pre-
paring the first version of the joint lesson plan. In this 
case, the team ended up with a proposal similar to 
the proposal of teacher B (paradigm of questioning 
the world), but it could also have been the other way 
round. In any case, the reasons put forward and the 
discussions carried out in the forum appeared to be 
highly interesting material for the teachers’ initial 
professional knowledge to be changed (especially the 
assumptions, reasons and criteria used to support 
their decisions). This knowledge was related to the 
school institutional constraints and was enriched 
with new didactic tools that enabled it to evolve. The 
a priori elements, progressively made accessible by 
the educators, consider the lesson plans as an initial 
empirical basis that was enriched during the teaching 
implementation in activity 3. 

All this work eventually turned into a revision of 
the initial lesson plan now including the results of 
the experimentation. At this point, the supervisors 
proposed a guideline to organise the didactic tools 
provided in relation with the three previous activities. 
The mathematical analysis corresponded to activity 
1. At this stage, the epistemological elements used 
to describe the modelling activity were completed 
with some examples of SRP descriptions in terms of 
sequences of questions and answers (see Figure 3).

This description starts with an open question (Q0) and 
leads to different ways to formulate new sub-ques-
tions (Qi) and obtain partial answers (Ai) until arriving 
at an acceptable final answer (AFinal) (also partial but 
provisionally considered as definitive). For instance, 
the team of teachers A and B proposed a description 
starting with the following sequence (the questions 
in italics being added by the authors):

Q1: How to forecast the sales of the company, 
given some time-series real data?

A1: Fit different functions to the real data, 
choose the best function and evaluate it 
in the future periods considered using 
appropriate software. 

Q1.1: What software to use: Excel, Geogebra, 
R?

A1.1: Geogebra and Excel, which are the ones 
the participants know well.

Q1.1.1: Do both tools provide the same results?
A1.1.1:  In the first calculations, the results ob-

tained were different.
Q1.1.2: How to explain the differences? [unap-

proached question]
Q1.2: Which theoretical tools can be used? 

Where can they be found?
A1.2: Document “Time-series. Least squares 

fit” provided by a participant.
Q1.2.1: Should we use this sophisticated ma-

terial to forecast the sales of an item that 
has increased from 100 to 500 units in 
ten weeks’ time?

A1.3: Elementary functions, ‘trend line’ op-
tion using Excel, ‘fit line’ using Geogebra.

Q1.3.1: Which model fits the data best?
A1.3.1:  The best model is the one with the fewest 

errors.
Q1.3.1.1: What types of errors are there? Do they 

lead to the same results?
A1.3.2: The best model is the one with the high-

est R2.
Q1.3.2.1: What is R2 and how is it related to the 

errors?

This schema of questions and answers, called the 
‘mathematical skeleton’ by the educators, help the par-
ticipants describe the elements of the teaching pro-
posal designed, both those which effectively appeared 
in the process implemented and those left out. Based 
on this epistemological analysis, the guideline elab-
orated by the educators proposed certain elements 
to carry out a didactic analysis of the teaching and 
learning process (activities 2 and 3) experimented, 
using the notion of didactic organisation and focusing 
on the sharing of responsibilities between teacher 
and students during the development of the modelling 
process. We will not describe the SRP-TE any further. 
To this short description, we will simply add that the 
documents given to the participants as complemen-
tary reading were of crucial importance.  

Figure 3: Sequence of questions and answers to describe a study 

and research path 
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CONCLUSIONS

To sum up, let us stress what we consider at this very 
initial moment of our research, to be the main contri-
butions of the theoretical framework used, ATD. An 
important characteristic of a SRP-TE is to locate the 
questioning of the mathematics content to be taught 
(here, a modelling activity) and of the traditional di-
dactic organisations prevailing in our current schools 
at the heart of the teachers education programme. In 
the case here presented, the first stage of the SRP-TE 
(searching information and documentation available) 
was not developed. This clearly appears as a weakness, 
since it would most certainly give rise to interesting 
discussions about different ways of interpreting mod-
elling as a school content, the ambiguity of the official 
guidelines regarding this matter and the variety of 
proposals existing in different countries and even 
within the same country. Another characteristic of 
a SRP-TE is to nourish the questioning of the math-
ematical content to be taught through the ‘in vivo’ 
performance of a mathematical activity based on a 
previously designed SRP. The role-playing technique 
used was a good choice and it worked well, in spite 
of some logical difficulties at the beginning for the 
participants to enter the new contract: they all initial-
ly hesitated between acting as secondary school stu-
dents or as real mathematicians, but ended up playing 
their role. Of course, another main contribution of 
the ATD is the kind of methodological tools provided 
by the educators to help participants describe the 
content to be taught and the didactic organisation of 
the teaching and learning process, an aspect of our 
research that has just been outlined here, especial-
ly with respect to what concerns the description of 
the knowledge to be taught, the new responsibilities 
assumed by both teachers and students, and the insti-
tutional constraints found.
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This paper presents a documental study about the con-
fluent points among mathematical modelling, problem 
solving, project and ethnomathematics as methods of 
research and mathematics teaching. As a result, the 
study has shown that there are elements that bind these 
methods structurally together as research methods. 
Starting from the fact that education should promote 
knowledge this study provides evidence for these meth-
ods. Thus in each one of them, it is required knowledge 
from the student about the topic of the problem-situ-
ation; method to delineate the phases to go through; tech-
nological instruments to support the solution; aesthetics 
for the expression; and ethics in the communication of 
the resulting ideas.

Keywords: Mathematical modelling, problem solving, 

project, ethnomathematics.

INTRODUCTION

The concepts of modelling, problem solving and pro-
ject permeate the most varied contexts. It is known 
that concepts arise from the human mind and are de-
veloped by necessity. According to Boutinet (1990), 
this ability to model the ‘imagined thing’ is what 
drives people to conceive projects. As concepts 
guide people’s daily actions, they have been at the 
core of educational curriculum reforms in mathe-
matics and have nourished several thematic devel-
opments, among them three topics that are conflu-
ent with Mathematical Modelling (MM): Problem 
Solving, Project and Ethnomathematics. Despite be-
ing independent topics, they instigate us to identify 
confluent procedures in research and teaching. Two 
questions steered this study: (1) what are the conflu-
ences among Modelling, Problem Solving, Project and 
Ethnomathematics? and (2) in what circumstances can 
the involved phases be integrated into pedagogical 
practices of MM in Education?

METHODOLOGICAL PROCEDURES

In order to answer the research questions, I collect-
ed data in the literature about Modelling, Problem 
Solving, Project & Ethnomathematics. I sought to 
gather a deep understanding of the authors’ prop-
ositions as well as attempted to identify the com-
monalities among the topics. I also subdivided the 
expression about each topic into two parts: scientific 
research method and teaching method. This study 
may be considered documental, since the data comes 
from publications of authors who are referenced in 
academic literature. In this context, it is essential to 
highlight that in the process of identifying conflu-
ences among the topics, different identifications may 
coexist. Additionally, it is crucial to bear in mind that 
the expression in this article is not neutral, since it 
carries along the conceptions implicit in the works 
analyzed. 

MODELLING, PROBLEM SOLVING, 
PROJECT AND ETHNOMATHEMATICS

Most of the problem situations people experience re-
quire them to make use of representations to solve 
them. These situations are inserted in a sociocultur-
al context and sometimes exceed the needs of sub-
sistence. As a result, such situations prompt people 
to design ways to solve problems and to learn new 
knowledge in order to solve them. When one of such 
designs involves the ‘desire to know’ about something, 
a research method is required to accomplish the goal. 
If this ‘knowledge’ aims to solve a problem situation 
for which the available data are not sufficient for the 
person to use an existing model, there is the need for 
Modelling. However, if this ‘knowledge’ aims at con-
structing knowledge, at explaining how a person or a 
group from a social culture elaborates a mathematical 
model or makes use of this model in their activities, 
the method is called Ethnomathematics.
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Mathematical modelling
Modelling is the process involved in the development 
of a model in any field of knowledge. The essence of 
this process emerges in a person’s mind when a gen-
uine doubt/circumstance instigates her to find the 
best way to solve, understand, create or improve 
something. The route of scientific research is delin-
eated when someone models a problem situation us-
ing mathematical concepts. According to Biembengut 
(2014), this research happens through three connect-
ed phases: (F1) understand and grasp – recognize and 
become familiar with the subject; (F2) understand and 
explain – formulate the model and solve the problem 
situation; (F3) articulate meaning – interpret the solu-
tion, validate, explain the process and results. 

As MM is in essence a research process, it has been 
advocated as a process for mathematics teaching. 
The goal of MM in Education is to teach students the 
contents of the curriculum departing from a topic, 
formulating a project with a proper design and guid-
ing students to conduct research within the limits 
of the school structure. The teacher organizes the 
project following the modelling steps by promoting 
(E1) understanding and grasping (topic presentation, 
provoking questions, selection of adequate issues to 
develop the content); (E2) understanding and explain-
ing (presentation of the data, suggestion of hypothe-
ses, presentation of the content and examples); (E3) 
expressing meaning (model formulation, requiring 
students to solve the problem, result evaluation). The 
purpose consists in providing students with opportu-
nities to research about topics of their interest while 
they learn the curricular contents.

Problem solving 
A problem emerges when the person realizes that 
there is a gap between the situation she does not know 
how to solve and her desire to solve it. The solution 
may come from an idea, in a heuristic approach: a 
set of rules and methods that leads users to solutions 
and discoveries. A person may solve problems using 
different heuristics, and each heuristic may be more 
appropriate or less for each kind of problem. Authors 
such as Wallas (1921), Dewey (1922) and Polya (1981) 
are recurrently cited as references in heuristics for 
Mathematical Education.

Dewey (1922) proposed five phases: identification, 
definition, plan, execution and survey; Wallas (1921), 
four stages: preparation, incubation, illumination 

and verification; Polya (1981), four: understanding, 
plan, execution and retrospection. As these heuristics 
are related, four non-linear phases may be proposed: 
(F1) identify the problem situation: become familiar, 
collect data, identify relationships – preparation; (F2) 
establish procedures: look for similar problem situ-
ations, map, identify the knowledge required; (F3) 
solve the problem: implement strategies for a plau-
sible solution – illumination; (F4) evaluate results 
and validate them: check the validity of the result – 
retrospection. 

As these procedures are requirements for any type 
of activity, they are part of the pedagogical propos-
als in Mathematical Education. Researchers such 
as Schoenfeld (1985), Gage and Berliner (1992) con-
sider that helping students to solve problem situa-
tions is the reason why we should teach Mathematics. 
Problem situations should require students to review 
basic facts, identify unknowns, look for meanings in 
the unknowns, (re)learn math operations, understand 
relationships between operations and their implica-
tions, formulate, solve and argue whether solutions 
are compatible.

In light of the exposed, it is possible to prescribe a 
three-step method for Problem Solving in pedagogi-
cal practices: (E1) proposition – proposing a problem 
situation to students that require them to decompose 
the data, identify the unknowns; (E2) ideation – guid-
ing them to perceive mathematical relationships and 
formulate a plan; (E3) synthesis – guiding them to ap-
ply and evaluate the resulting data. These steps allow 
students to combine their ideas to the extent that they 
are encouraged to learn about issues of their interest.

Project
A large number of people have needs that exceed the 
solution of practical problems. Anything may inspire 
people to know, do or have something, an impulse that 
leads one to design ways to achieve solutions. People 
may delineate a project to solve a problem related to 
physical survival as well as when they are interest-
ed in learning about something. Boutinet (1990) sug-
gested essential steps in this process: (F1) diagnosis – 
setting the purpose and learning about the available 
resources; (F2) outline – describing means to obtain 
data and evaluating; (F3) strategy – identifying how 
to organize and classify the data; (F4) execution – per-
forming actions and evaluations; (F5) analysis – judg-
ing the results and evaluating the situation.
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Similarly, the project heuristics is a proposal for 
Education. Izard (1997) states that school projects 
encourage active participation from students; pro-
vide them with motivation and challenges; encourage 
them to ask questions, to learn about some topic, to 
observe their context. Projects also reveal students’ 
interests in the formulation and description of the 
data as well as their skills in interpreting and evalu-
ating the results. Three steps are proposed as a meth-
od to include projects in pedagogical practices: (E1) 
preparation – instigating students to know about a 
topic/issue, look for data and learn about the topic; 
(E2) development – guiding students to ask questions 
about the topic/issue, describe the data encountered, 
identify concepts, formulate and understand the 
circumstances; (E3) projection – guiding students 
to interpret results, analyze them and identify other 
facts. I believe that one of the purposes of education 
is achieved when students are offered with projects 
that enable them to expand their knowledge, to learn 
about their surroundings, making them feel valued. 

Ethnomathematics
D’Ambrosio (2001) sustains that all social cultures 
have a legacy of knowledge, behavior and rules that 
they seek to convey to generations, making it possi-
ble to perpetuate cultures. Many social cultures have 
created and developed instruments to explain, under-
stand, and learn about things. Each culture has devel-
oped unique mathematical techniques arising from 
their needs. D’Ambrosio calls Ethnomathematics the 
art or technique to explain, know or understand how 
a person or a group generates mathematical knowl-
edge, makes use of it in their business, and organizes 
and transmits knowledge to others. It is the study of 
concepts, traditions and mathematical practices of a 
person or a sociocultural group. The researcher goes 
deep into the person/community’s culture by observ-
ing, asking questions, among other means. 

Research on Ethnomathematics, for D’Ambrosio 
(2001), consists of three phases: (1) develop meth-
ods from practices and solutions; (2) develop the-
ories from methods; (3) innovate from theories. 
Ethnomathematics procedures involve the need to: 
(F1) explicit the fact – recognize the fact, become fa-
miliar with the practices and the solutions present-
ed by a person/group; (F2) present the explanatory 
assumption – analyze facts, methods, practices and 
solutions, establish conceptual principles and formu-
late explanations; (F3) indicate other facts – interpret, 

validate the pragmatic model from the perspective of 
the person/group, describe and check whether theory 
resulted from the method; (F4) complement the fact – 
identify whether innovation resulted from theory ↔  
method ↔ practices and solutions.

In Ethnomathematics, the focus lies on recognizing 
the mathematical actions and knowledge of people, 
resultant from the needs and experiences these peo-
ple have. Using people’s activities and knowledge in 
pedagogical practices may best contribute to the stu-
dents’ learning process, since they may interact with 
problems and solutions, and experience the culture. 
The Ethnomathematics method for pedagogical prac-
tices consists of three stages: (E1) interaction – help 
students to get acquainted with the facts from the 
activities, to interact with the person/group and to 
recognize practices and solutions; (E2) explanation – 
encourage students to understand practices and solu-
tions, to identify mathematical concepts, to stipulate 
phases, to learn and make explanatory assumptions; 
(E3) indication – guide students to interpret the as-
sumptions, to describe or verify whether the method 
or theory used resulted in innovation.

Ethnomathematics has as its source the activities that 
a person/group performs and the knowledge they 
have resulting from the needs of their daily lives. It 
assumes dynamic sharing between activities and 
knowledge; values popular knowledge as a means of 
contributing to knowledge production; and proposes 
education as a process in which knowledge is trans-
mitted across generations.

CONFLUENT POINTS

Modelling has elements that converge with Problem 
Solving, Project and Ethnomathematics, depending 
on the desire to know. As Education should promote 
knowledge, instigate the desire to know, I believe one 
of these methods should relate to the desire to teach. 

Confluent points in the ‘desire to 
know’ as a research method
Modelling is used when we need to solve a problem sit-
uation for which the available data are not sufficient 
to apply an existing model to obtain the solution, or 
when we need to (re)create, improve something. To 
confront the MM procedures with those of Problem 
Solving, Project and Ethnomathematics, for research 
purposes, the similar points consist of: delimitation 
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of the problem situation, theoretical framework, hy-
potheses/assumptions, development, implementation, 
interpretation and evaluation of the solution.

MM is the area of research for the development/cre-
ation of a model for the solution of a particular prob-
lem situation or to support other applications and 
theories. Ethnomathematics is the area of research 
that seeks to understand a person/group’s knowledge 
related to their activities. When someone intends to 
conduct research, a project with a proper design is 
required to accomplish such a goal. In light of these 
definitions about the desire to know, I may conclude 
that in all these areas, the researcher is guided by the 
scientific methodology following common steps to 
produce knowledge; be it something original, be it a 
complement to what already exists.

It can be stated that a research design, be it in Modelling 
or Ethnomathematics, has as its source a problem sit-
uation, a desire to know. To solve a problem, we direct 
our steps through other areas of knowledge, fact that 
allows the researcher to expose events, enunciate 
models of relationships between things and facts. As 
they are part of the scientific research pathway, they 
cannot be denied in the school context as methods 
of teaching and research, since they give students 
the chance to design projects, be them in Modelling, 
Problem Solving or Ethnomathematics. 

Confluent points in the ‘desire to 
teach’ – teaching method
Modelling in Education is a method for teaching re-
search in Basic Education. To confront the procedures 
of Modelling with those of Problem Solving, Project 
and Ethnomathematics, for teaching purposes, the 

‘desire to teach’ point is similar: proposition of a topic 
or problem situation, review or presentation of data, 
procedures for resolution and evaluation of results. 
For instance, the teacher may use the context of an 
apple plantation to teach modelling. She may begin 
the class by talking about the context in the Brazilian 
state of Santa Catarina. She may present some data, 
such as the fact that apple trees are planted in line 
and that for that reason, there is a particular spacing 
among them. She may ask students: what is the ideal 
distance between one tree and the next one if we aim 
at producing more apples? To help them answer the 
question, the teacher models the data by teaching 
the students the required mathematical contents. At 
the same time, the students study the ethno-mathe-

matic aspect of the problem and start a project. They 
seek to understand how the producer uses farming 

“models” (his knowledge might possibly have been 
acquired through experience, or inherited from his 
ancestors). Students can research about the topic by 
talking directly to the producer and observing his 
work. Drawing on the data collected, students can at-
tempt to verify whether or not the producer received 
technical orientation (help from specialists), whether 
he modified his practice, and hence, his mathematical 
conceptions.

I conclude that the essence of the four themes resides 
primarily in involving each student in the interaction 
among real elements present in the environment in 
relation to the topic in question. Be it in Modelling for 
Education, be it in Ethnomathematics, students will 
have a problem situation as a starting point, and to 
solve the problem they will delineate a project to guide 
them. Moreover, to outline a project, they ought to 
have knowledge beyond the traditional school topics. 
I believe that when students feel themselves capable 
of solving a problem situation that requires going 
through the steps of Modeling or Ethnomathematics 
they learn the curricular contents along the process, 
and teachers will feel encouraged in their desire to 
teach. 

FINAL REMARKS

As a researcher, I hope I have not committed any kind 
of improbity by articulating the principles of each 
of the themes. I hope this work can be improved and 
contribute to teaching and research in education. This 
study had as its main guiding question the confluent 
points among Modelling, Problem Solving, Project, 
Ethnomathematics and the desire to know research 
method and the desire to teach teaching method. The 
art of these themes lies in guiding students to under-
stand the environment in which they live as well as 
in the potential to put these topics into practice: by 
translating results into suitable language for general 
comprehension. The procedures, even when imple-
mented as extracurricular activity and only by a few 
group of teachers and students, can contribute to 
improve the knowledge of those who are involved in 
the process. Taking the real value of Education into ac-
count, it is worth considering one of the themes, or all 
combined in the classroom, since they offer students 
the opportunity to ask questions, identify and learn 
about facts, accumulate experiences, become more 
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attentive to events, become enchanted with solutions 
to problems, and feel free to express their knowledge.
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When teaching mathematical modelling it becomes es-
sential to be able to construct modelling tasks of a similar 
difficulty for projects and exams. In order to be able to 
compare these tasks, an evaluation scheme concerning 
the difficulty becomes necessary. In this paper, we in-
troduce an extension of a model developed by Bock, W., 
Bracke, M., Götz, T. & Siller, H.-S. (2014) which is based 
on a model from Eyerer & Krause (2012) for comparing 
difficulties of projects between industry and school. This 
is used to evaluate the difficulty of a modelling task. The 
theoretical model of Bock and colleagues (2014) is made 
applicable by means of a software tool: Taking into ac-
count all relevant dimensions of modelling, a measure of 
difficulty is calculated based on the normalized covered 
area in the constructed multi-dimensional model. This 
allows a comparison of the difficulty of several model-
ling tasks.

Keywords: Taxonomy, authentic problem, modelling.

THEORETICAL BACKGROUND

Mathematical modelling is part of the educational 
standards in many different countries; moreover it is 
named by the German Education minister Conference 
(KMK, 2012) as one of the general mathematical com-
petencies that need to be taught and learnt. “By math-
ematical modelling competence we mean being able 
to autonomously and insightfully carry through all 
aspects of a mathematical modelling process in a cer-
tain context” (Blomhøj & Jensen, 2003). A modelling 
process can be described as a modelling cycle, see, 
for example, (Blum & Leiß, 2007) or (Kaiser, 1995); 
compare also (Ackoff, Arnoff, & Churchman, 1957) 
for similar cycles in Operations Research. In order 
to teach mathematical modelling, both concepts as 
well as good modelling tasks need to be developed. 
Following a definition of Blomhøj & Kjeldsen (2006), 
a good modelling task must fulfill the following seven 
criteria. A good modelling task should

… be understandable and reasonable,

… give an appropriate challenge for an independent 
work,

… be authentic and include authentic data,

… be open for interesting modelling results,

… be open for critics to the model,

… lead to representative modelling activities and

… challenge the students appropriately to work with 
concepts and methods that are relevant for their math-
ematical learning.

In most cases mathematical modelling in school, at 
university or in industry is group work. To be able 
to compare student results regarding different mod-
elling tasks during class or in exams, an evaluation 
scheme for their level of difficulty becomes necessary. 

Cohors-Fresenborg, Sjuts, and Sommer (2004) have 
developed a model to determine the level of difficul-
ty of PISA-tasks. The focus of their model lay on the 
cognitive processes necessary when solving the tasks. 
The four criteria linguistic complexity, cognitive com-
plexity, formalization of knowledge and the handling 
of formulas were defined to be the criteria affecting 
the difficulty of tasks. Each criterion was divided into 
three levels of difficulty 0, 1 and 2. The complexity of a 
task was then defined to be the sum over those levels 
achieved in the four criteria.

The difficulty of modelling tasks is much harder to 
determine as many different dimensions play a de-
cisive role. Reit (2014) has developed a model deter-
mining the difficulty of modelling tasks based on 
thought structures of different solution approaches. 
The model is based on the assumption that different 
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mathematical models and solutions to the same task 
require different knowledge and mental activities. 
Based on cognitive load theory, the approach acts on 
the assumption that parallel thought structures are 
more difficult than sequential thoughts. The level of 
difficulty is then described as the sum of the factorial 
of the single levels.

The problem of the above model is that student solu-
tions have to be available a priori. In many problem 
settings this is not the case. Especially for authentic 
or real world problems (see, e.g., Bock & Bracke, 2013) 
possible student solutions are hardly predictable. 
These problems are classified by a client structure 
and are of full generality. 

Definition: An authentic problem is a problem posed by 
a client, who wants to obtain a solution, which is appli-
cable in the issues of the client. The problem is not fil-
tered or reduced and has the full generality without any 
manipulations, i.e. it is posed as it is seen. A real-world 
or realistic problem, is an authentic problem, which 
involves ingredients, which can be accessed by the stu-
dents in real life.

With these problem settings another aspect makes a 
taxonomy of the tasks hard. The problem can be posed 
to students from primary school as well as to students 
from university, since every learning group is using 
their individual methods. This makes a general classi-
fication dependent on competences and the respective 
pre-knowledge. Since general industrial projects for 
mathematical modelling are of a high dimensionali-
ty concerning the use of competencies, Eyerer and 
Krause (2012) developed the spider web method to 
illustrate difficulty of tasks in the TheoPrax method. 
TheoPrax is a method which focusses on project teach-
ing with real industrial projects. Here, industrial part-

ners give tasks to students who then have to write an 
offer to the industry to obtain the job. The project is 
then worked out by the students. The industrial part-
ner is obliged to cover the costs and also to finance 
workshops for the students if the offer of the project 
is acceptable for them. The financing part also has to 
be planned by the students.  

The idea of the Eyerer model is to use a spider web 
diagram, comparable to Figure 1, to grade a project. 
This model was adapted by Bock, Bracke, Götz, & Siller 
(2014) to measure how teachers rate the difficulty of 
certain modelling tasks. For this purpose eight di-
mensions and corresponding levels of complexity for 
each of the dimensions were chosen. Using this sys-
tem teachers and supervisors rated several modelling 
problems and their ratings were illustrated by spider 
web diagrams. If we want to compare the difficulty of 
two modelling tasks we have to compare two spider 
web diagrams: Let us assume that we get diagrams A 
and B as in Figure 1 (the diagrams are for the modi-
fied nine-dimensional spider webs introduced later 
in this paper).

We would now like to compare the two tasks A and B 
regarding their difficulty – of course relative to our 
special situation (time frame, learning group, …) and 
needs. This seems to be nontrivial because of the mul-
tidimensional nature of the data and different weights 
we may have for each of the dimensions. In the follow-
ing paragraph we first extend the model developed by 
Bock and colleagues (2014) by one dimension which is 
relevant when dealing with authentic modelling tasks. 
In order to compare the difficulty of modelling tasks 
we propose a measure of difficulty which can be easily 
calculated using a software tool. Moreover, the rating 
of modelling tasks as well as the computation of the 

Figure 1: Comparison of two star diagrams for modelling tasks A and B
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new measure are made easily applicable by a newly 
implemented tool.

THE MODEL

The aim of the following model is to describe and com-
pare the difficulty of modelling tasks from the view-
point of one individual teacher or supervisor. Note 
that the measure of difficulty for different teachers 
using the model to evaluate the difficulty may vary. 
This is due to the different background and experi-
ence teachers have. Also with growing experience and 
competencies the value may vary in time. However on 
a small time scale, in the opinion of the authors, the 
score value is stable. 

Assume that the difficulty of a modelling task depends 
on many different dimensions.  These dimensions 
also could be adapted, extended or reduced according 
to which aspects the score will focus on. To be able 
to apply the model it is essential that the person using 
it can account for practical experiences with mathe-
matical modelling tasks. This is at first necessary to 
be able to estimate the different scales of the dimen-
sions and secondly to obtain an intuition for their 
interplay. In a small pilot study a group of teachers 
participating in a modelling week was asked to rate 
different modelling tasks using the following model. 
For some teachers this turned out to be quiet difficult 
as they were missing some essential knowledge and 
experience concerning modelling. 

Bock, Bracke, Götz, and Siller (2014) identified the 
following eight dimensions affecting the complexity 
of modelling tasks:

1) Project organization
2) Learning target
3) Complexity
4) Assistance
5) Demand
6) Mathematical knowledge
7) Closeness to reality
8) Applied knowledge

Each of these dimensions was divided into six levels 
of complexity, where 1 describes the easiest and 6 the 
most difficult level. For each dimension the possible 
answers are categorized, where the numbers are as-
signed to the respective competence levels. An exam-
ple is given for the dimension complexity:

1) solution approach is clear
2) one-sided methods (e.g. only programming, ge-

ometry…)
3) alternative solution approaches possible
4) data set is too big or insufficient
5) solution requires variety of methods
6) alternative solution approaches in combination 

with many methods necessary

All eight dimensions, each consisting of six complexi-
ty levels, are illustrated in a diagram in the shape of a 
star (compare Figure 2). Each dimension is pictured 
as a ray emitted from the centre of the star. The length 
of each ray is divided into six equal parts. The first 
ring defines the easiest complexity level 1, the most 
complex level 6 is reached at the end of each ray. 

Considering a given modelling task, its complexity 
is rated for each dimension separately and marked 
on the correspondent ray. The marks of all rays can 
then be connected and the enclosed area calculated 
(compare Figure 3). The size of the enclosed area sym-
bolizes the difficulty of the task and therefore gives 
a possibility to compare the difficulty of modelling 
tasks. The larger the area, the more difficult the task. 
Note that the diagram shows also the directional 
weights of the individual dimensions, which can be 
used to test the tasks according to the pre-knowledge 
and competencies of the students. 

Due to the authors experiences the model has been 
developed further by incorporating the dimension 

“materials” to the model with the following score levels:

1) Computer/Laptops with internet connection are 
available for research the whole time

Figure 2: Extended model: nine-dimensional star
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2) Computer/Laptops with internet connection are 
available for research temporarily only

3) A subject-specific library is available for research
4) Selected books and journals are available for 

research
5) Some information selected by the teacher is avail-

able for research
6) There is no possibility for research

This dimension takes into account that the complexity 
of a modelling task does also depend on the amount of 
research that is possible during the process of finding 
a solution. An extra ray for the dimension materials 
was added to the model (see Figure 2). The model was 
then implemented in a new software tool such that 
ratings of modelling tasks can easily be evaluated 
and compared. Of course, rating a modelling task ac-
cording to the named dimensions always depends on 
the specific target group and the individual project 
settings.

With the help of the implemented tool the area which 
is formed by connecting the neighboring score levels 
is computed and normalized by the maximal area, i.e., 
if all dimensions have maximal score. Thus the out-
put can be interpreted as the percentage of the task 
compared to a task of maximal difficulty and delivers 
a number between 0 and 1 indicating the difficulty of 
the investigated task. We will call this number the 
measure of difficulty (MOD). The closer MOD is to 1, 
the more difficult the task.

Definition: (i) Let M be the area of the convex hull 
spanned by the complexity ranking of 6 in each dimen-
sion. Let I be the measured area of the enclosed area of 
a rated modelling task. The measure of difficulty (MOD) 
of the modelling task is then equal to: MOD = I/M and 
takes values in the interval (0,1].

(ii) Two modelling tasks T1 and T2 are said to be of equal 
complexity of fineness e if 

|MOD(T1)-MOD(T2)|<e. 

A difficulty that arises when calculating the MOD 
is the fact, that the area differs for the same rating 
with different arrangements in the sequence of the 
dimensions. This problem was solved by calculating 
not only the area but the mean value of the areas over 
all permutations of arrangements.

EXAMPLE

As an example consider the following setting: A group 
of students from 11th grade of a German secondary 
school is supposed to work in small groups on the 
authentic Airline Problem. During the time of the 
modelling activity (4 h) the students have access to 
computers and internet. 

Airline Problem: The time a plane is on the ground is 
time in which the airline is making no money! Therefore 
the airline is interested in a system for the boarding of 
a plane such that the time the plane is on the ground is 
minimized.   

The authors would rate this problem according to the 
model as in Figure 3. This rating was developed by 
taking the average value of the individual ratings of 
the authors. The precise categories apart from the 
material dimension can be found in Bock and col-
leagues (2014). For the Airline Problem the MOD is 
calculated to be 0.3688. This rating can be retraced 
in the following way. 

The dimension materials is rated depending on the 
individual setting set for the project work planned. In 
our example, level 1“computers/laptops with internet 
connection are available for research the whole time” 
describes the situation planned by the teacher.

Project organization is rated with complexity level 4 
“with great difficulties, risk to fail is controllable.” This 
is justified by the fact, that the Airline Problem has a 
very open formulation which leaves several decisions 
and estimations to the students. Still, these difficulties 

Figure 3: Example: Rating a modelling task to calculate the MOD
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can be overcome and a solution can be obtained by a 
simple simulation with chairs and a stopwatch.

The learning target is described in level 5, “new combi-
nations of different techniques”, which is set as the de-
sired outcome while working on the problem. Hence, 
the dimension complexity is rated with 5,“solution 
requires variety of methods”. 

The assistance given in the above setting can be de-
scribed within the meaning of level 4 “teacher or ex-
ternal tutor supporting in wide steps”. The rating of 
this dimension is depended on the individual support 
teachers are planning to give their students and can 
be varied for each realization of a modelling project.

The demand on the Airline Problem can be rated by 
level 3, saying that the “demand (is) alternatingly in-
creasing”. This marks a medium level of difficulty to 
the task. The mathematical knowledge in this example 
is based on the “recognizing (of) missing knowledge in 
detail” (level 3) while the applied knowledge requires 
the “researching and arranging (of)  missing informa-
tion and correlations” (level 4).

Finally, the Airline Problem has a “high correspon-
dence to reality” which leads to complexity level 4 in 
dimension closeness to reality.

POSSIBLE EXTENSIONS

If one wants to lay more focus to certain dimensions, 
the model can be extended to a weighted model. This 
can be dependent on the background and formula-
tion of an individual task. Depending on the situation, 
some of the nine dimensions carry a greater weight 
than others and therefore influence the complexity 
of a modelling task more than others. 

For example, in the described setting of the Airline 
Problem computers and internet are accessible but 
play a minor role for the finding of a good solution. 
In practice, the authors noted that students for ex-
ample simulated themselves the time to sit down on a 
seat while blocked with the help of chairs in the room. 
With a very limited time horizon there is no gain of 
having access to computers or internet. Therefore, 
the dimension of material can be weighted less than 
the other dimensions in this case.

Of course, also the model of maximal difficulty has to 
be adapted. This can be implemented by modifying 
the length of the individual rays. A dimension which 
is considered to be less important in its effect on the 
difficulty of a modelling task is assigned a shorter ray 
than more important dimensions. For this, an exact 
assignment of weights and the proportional change 
in the length of the corresponding rays still needs to 
be formulated.

Possible modifications are also the adding and delet-
ing of certain dimensions from the diagram. But this 
has to be done carefully since too few dimensions are 
not reflecting the whole difficulty of the modelling 
task while also too many dimensions make the tool 
inconvenient and unclear.

SUMMARY AND OUTLOOK

In this paper, we presented the extension of a model 
developed by Bock, Bracke, Götz, & Siller (2014) based 
on (Eyerer & Krause, 2012) evaluating the difficulty 
of modelling tasks. The extended model considers 
nine dimensions with six complexity levels each af-
fecting the difficulty and is illustrated as a star with 
nine rays (see Figure 2). To calculate the newly defined 
measure of difficulty (MOD) of a modelling task, the 
task is rated with respect to its complexity level in 
each of the nine dimensions. The ratings are marked 
in the nine-dimensional star and connected to cal-
culate the enclosed surface area which leads to the 
definition of the MOD (see Figure 3). A new tool was 
implemented such that ratings of various modelling 
tasks can easily be compared by their value of MOD. 
The closer the value of MOD is to 1, the more difficult 
the modelling task. In further research the validity of 
the model should be analyzed and an exact ranking 
for the values of MOD defined. This could be done by 
comparing the MOD values with student solutions 
and the correlation between those. Up to now, this 
model represents a subjective rating. It is therefore 
necessary to undertake an empirical study to validate 
the model by comparing theoretical ratings with the 
feedback given by students working on the respective 
modelling projects.

The model of a multi-dimensional star with rays of 
equal or weighted length can also be used to evaluate 
self-assessments of participating students or to assess 
the expectations of students regarding modelling or 
other activities. For this, different dimensions and 
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items need to be defined. Bock and colleagues (2014) 
developed a questionnaire to investigate the self-as-
sessment of students. In the context of modelling 
days at the University of Kaiserslautern, Germany, 
Kreckler developed item formulations to compare 
expectations and conclusions of students concerning 
the project days. A small sample of students was tested 
and evaluated. The answers for expectations and con-
clusions were marked on the rays and compared for 
each student. With this an evaluation regarding the 
categories exceeded expectations, fulfilled expectations 
and expectations not fulfilled for the single dimensions 
was made possible. 

Of course, it may not be correct to assume that ev-
ery dimension is of equal weight. To overcome this, 
practical empirical studies are planned, in which the 
weights of the individual dimensions are obtained via 
a fitting. For this, also a survey for the students is in 
preparation. The aim is to find a benchmark model 
for the measure of difficulty. 
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From ongoing research, we present the design of in-
terviews on conceptions about modelling in order to 
better know the relations between students, teachers, 
researchers, authors of resources and decision makers 
in the field of mathematical education in France. The 
theoretical framework combines theories on concep-
tions, on modelling and on anthropological approach. 
The methodology uses bibliography, exploratory data 
analysis, comparative approach and interviews. We 
describe how a review of the literature, an exploratory 
data analysis of existing questionnaires and interviews 
are used to design these semi-structured interviews.

Keywords: Modelling, interview, France, teacher, 

conception.

DESIGN OF INTERVIEWS ON 
CONCEPTION ABOUT MODELLING

Philipp (2007) points that teachers’ conceptions play 
a key role in the teaching and learning of mathemat-
ics. Kaiser (2006) remarks that German “teachers 
and their beliefs concerning mathematics must be 
regarded as essential reasons for the low realisation of 
applications and modelling in mathematics teaching”. 
CERME has reported several research on teachers’ 
conceptions about modelling as we will show later 
in the review of the literature. We found only one 
research, (Cabassut & Villette, 2011), dealing with 
French teachers’ conceptions: it was limited to French 
primary school teachers attending a teacher training 
course on modelling. The problematic of our ongoing 
research is the following: What are conceptions about 
modelling in France? What are their relations with the 
practice of modelling? The answers to these questions 
will help to understand differences and similarities 

with conceptions in other countries and to produce 
resources taking into account French conceptions: for 
example to produce resources considering difficulties 
or obstacles expressed in French conceptions. The 
focus of this paper is at the beginning of the explora-
tory phase of this ongoing research. We describe the 
design of interviews and we expose how Chevallard’s 
levels of didactic codetermination will help us to ana-
lyse the French conceptions. Hypotheses and results 
about French conceptions are not the focus of this 
present paper and will be produced in another paper. 
The results of this exploratory phase proposed in this 
paper are the theoretical framework, the review of 
literature and the design of interviews. Let us now 
describe our theoretical framework.

CONCEPTIONS ABOUT MODELLING

In many researches, different terms such as beliefs, 
emotions, attitude… are used to refer to similar con-
cepts. We will adopt the definitions given by Philipp 
(2007), particularly: “Knowledge – beliefs held with 
certainty or justified true belief […]. Conception – a 
general notion or mental structure encompassing be-
liefs, meanings, concepts, propositions, rules, mental 
images, and preferences”. The general term “concep-
tion” allows us to avoid the debate on the differences 
between “beliefs” and “knowledge” and to concentrate 
on the interaction between teachers’ conceptions and 
teachers’ practice.

Maaβ (2006, p. 115) expresses: “Modelling problems 
are authentic, complex and open problems which re-
late to reality. Problem-solving and divergent think-
ing is required in solving them”. This conception and 
other ones collected in the review of the literature 
are considered in the questionnaire but it is not the 
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focus of this paper to discuss them. The extract of the 
interviews in part 6 shows how these conceptions are 
taken into account and how the future answers could 
express them.

ANTHROPOLOGICAL APPROACH

To help analysing these conceptions, we use 
Chevallard’s levels of didactic codetermination as 
suggested in Barquero, Bosch & Gascón (2011, p. 1938). 
At the level of mathematic discipline, we ask questions 
about mathematic conceptions and practices in order 
to observe relations with modelling conceptions and 
practices, and to point what is specific to modelling 
and what is general to mathematics. For example in 
the interview, some open questions are: “What are 
mathematics for you? What is mathematic teaching 
for you? How do you teach mathematics? How easy 
is it?” Examples of question with Likert scale: “from 
my point of view, in my mathematic lessons, school 
mathematics is the memorizing and application of 
definitions, formulas, mathematical facts and pro-
cedures.” About practice with a Likert scale: “In my 
mathematic practice it is important to do open prob-
lem solving”. At the level of domain, we can consider 
modelling as a transversal domain, covering different 
mathematical domains. We ask questions about mod-
elling conceptions (already mentioned in part 2) and 
its practice. At the level of pedagogy for example we ask 

“In my mathematic teaching practice is it important to 
do small group work?” At the level of school, in the biog-
raphy part, we ask in what type of teaching institution 
(primary school, general, technical or vocational sec-
ondary school, tertiary education) the teacher works. 
To consider the level of society the semi-structured 
interviews will be adapted to different types of mem-
bers of French mathematical educational sphere, in 
order to conjecture how teaching, training, resource 
and decision making contribute to the conceptions 
and practices of modelling. The French mathematical 
educational sphere gathers students to become math-
ematics teachers from different types of school, re-
searchers, authors of resources and decision makers 
(mathematical supervisor, curriculum adviser, etc.) 
in the field of mathematical education. At the level of 
civilization, Cabassut and Ferrando (2013) show how 
PISA and European parliament recommendations 
are explicitly mentioned in French common base of 
knowledge and skills that encourage modelling. We 
adopt a comparative approach involving others coun-

tries (Switzerland, Spain and Germany) to conjecture 
variations between different cultures. 

The role of the different levels of didactic codetermi-
nation resulting of the semi-structured interviews 
will be interpreted with help of other studies on mod-
elling. At this point of our research we just prepare 
the way to collect all the interviews and are waiting 
for their results to be analysed through the grid of 
levels of determination. 

METHODOLOGY OF EXPLORATORY RESEARCH

We will describe now the four components of our 
exploratory methodology, method of interviewing, 
review of literature, exploratory analysis of existing 
data and comparative approach, which will all help us 
to design the interviews.

Semi-structured interview 
Among the different ways of collecting conceptions 
about modelling, we choose semi-structured inter-
views proposed by Bernard (2006, p. 212). For every 
topic within the interview, we ask at first some open 
questions without directive contents to enable the 
interviewed person to express freely his or her mind 
without direction given by interviewer. The topics 
are selected from a review of modelling research lit-
erature. In a second part, the answers are completed 
with directive closed questions in order to cover en-
tirely the topics. This second part will be the base of 
a future written questionnaire that will be produced 
for confirmatory research. The questions are select-
ed from a review of modelling research literature: 
LEMA project (Maaβ & Gurlith, 2009), Schmidt (2011), 
Borromeo and Blum (2013). Some questions are adapt-
ed from inquiry based research: Dorier and Garcia 
(2013), Engeln and colleagues (2013). They often use 
the 5 levels Likert scale.

The semi-structured interviews are particularly 
adapted to researchers, authors of resource and de-
cision makers because they are not so numerous in 
comparison with students or teachers, sometimes it 
is difficult to contact, and they have often time con-
straints that make harder to get a written answer 
to a questionnaire from them. Finally, after the ex-
ploratory research, we will produce a questionnaire 
to test the hypotheses. A cluster analysis of people 
answering the questionnaires could be produced, de-
livering for every cluster a representative paragon of 
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the cluster. An additional clarifying semi-structured 
interviews could be made with clusters paragons in 
order to make the results of the analysis of the ques-
tionnaires answers clearer. This shows how interest-
ing semi-structured interviews are.

Review of literature
The review of literature concerns the two last CERME 
proceedings, the last three years of Educational 
Studies in Mathematics review, and of Zentralblatt 
für Didaktik der Mathematik, the proceedings of 
ICTMA 14 and other papers found on the internet 
or known by the authors. These review deals with 
research papers on conceptions about modelling in 
the mathematical educational sphere. We would like 
to remind the reader that we did not find research on 
conceptions of modelling specific to France, and that 
every collected research studied a specific population 
(for example primary school teacher or prospective 
secondary teacher) and none studied the conceptions 
of researchers, authors of resources and decision 
makers.

Exploratory analysis of existing data
The LEMA project described in Cabassut and 
Mousoulides (2009) has developed a teacher training 
course on modelling. During the project, two different 
kinds of data were produced. First, 83 teachers attend-
ed a LEMA pilot training course and have answered a 
questionnaire before and after the training in order 
to evaluate the training course. The questionnaire is 
well described in Maaß and Gurlitt (2009). Secondly, 
3 French teachers have been interviewed after the 
LEMA training course to evaluate the impact of the 
training course. We propose an exploratory analysis 
of these data to explore these teachers’ conception 
about modelling in the way suggested by Tukey (1977): 
we use descriptive statistic to observe existing data 
without preconceptions and without formulating hy-
potheses in advance. We do not use inferential statis-
tics to test, in a deductive way, hypotheses formulated 
in advance on data to be collected for the research: that 
will be the job of confirmatory analysis.

For the 83 teachers, the questionnaire is composed of 
questions (variables) with multiple-choice qualitative 
answers and questions with quantitative answers. We 
split the variables in two parts: the biographical var-
iables (country, age, gender, type of school...) and the 
active variables on conceptions about mathematical 
modelling. We will process a cluster analysis (as de-

scribed in Cabassut & Villette, 2011). For every clus-
ter we will consider the splitting active variables. A 
splitting active variable is an answer for which the 
percentage of the answer in the cluster is very differ-
ent than in the whole population. Every cluster will 
be described through these splitting variables. The 
biographical variables are also split by clusters. Some 
of them are split variables when the percentage of the 
answer to this question in the cluster is very different 
than in the whole population. The splitting and split 
variables are essential because they enable to explain 
heterogeneity and differences that are not shown by 
aggregated statistic indicators. 

From the previous cluster analysis, three French pri-
mary school teachers belonging to different clusters 
were interviewed at the time of the LEMA project. 
This interview will be mentioned in this paper as 
LEMA interview. The LEMA interview is analysed as 
suggested in Creswell (2007, pp. 156–157) for ground-
ed theory approach: transcription and reading, re-
duction to different categories and development of 
relations between categories.

It is not the focus of this paper to explain how the an-
swers to the questionnaire will be analysed. But we 
can mention that a cluster analysis similar to the pre-
vious one will enable the description of every cluster 
with biographical variables (country, age, experience, 
job and education), mathematic conception variables, 
modelling conception variables, and variables about 
difficulties by modelling teaching. Interpretation of 
these clusters through levels of determination and 
additional clarifying interviews with clusters para-
gons will complete this analysis.

Comparative approach 
We will also adopt a comparative approach as sug-
gested in Cabassut (2007) to observe the levels of de-
termination of modelling conceptions in different 
countries. The levels of determination can appear 
explicitly (in the questions or in the interview) and 
implicitly in the possibility to compare the answers 
between countries. The interview guide has to be 
formulated clearly for each country of the project: 
we will be aware about countries cultural references 
and translation issues. For example the expression 

“inquiry based approach” is not translated word by 
word: we use “démarche d’investigation” in French 
and “problema de investigación” in Spanish.
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In the chronology of designing the semi-structured 
interview, we started from an existing questionnaire 
of LEMA project that was modified in a dialectic 
process with every new review of papers, results of 
exploratory analysis of existing answers to LEMA 
questionnaire, results of LEMA interview, and dis-
cussions between the two authors of this paper. As re-
sulting process, the different parts of semi-structured 
interviews are defined. Then, the general questions 
introducing each part for the non-directive part of the 
interview are formulated and completed. Thus, for 
the directive part, the corresponding questionnaire is 
completed. The guide is adapted for every category of 
mathematical educational sphere. We choose to pres-
ent now every part by illustrating it with questions 
and their justifications from literature and existing 
analysis. 

DESIGN OF SEMI-STRUCTURED INTERVIEW

Research shows that biographical questions, within 
the first part of interview, play an important role 
in the teaching of modelling. Cabassut and Villette 
(2011) show that country, age and type of school are 
split variables. Borromeo and Blum (2013) show dif-
ferences between teachers who studied mathematics 
as a subject or not; Borromeo and Blum (2013) and 
Kuntze (2011) identify the influence of experience in 
teaching mathematical modelling, what Cabassut and 
Villette (2011) identify as split variable. Dorier and 
Garcia (2013) point the importance of initial training.

The second part deals with the conceptions and prac-
tice about mathematics and can be introduced by the 
following questions “What are mathematics for you? 
What is mathematic teaching for you? How do you 
teach mathematics? How easy is it?”. As pointed by 
Maaβ and Gurlitt (2009) “teacher’s knowledge and 
beliefs about the nature of mathematics […] influence 
how they design or select tasks, plan, implement and 
evaluate their lessons”. Also Lee (2012) pointed “the 
significant impact of teachers’ knowledge and beliefs 
on their interpretation and implementation of curric-
ula and daily teaching practices”. We keep the splitting 
questions of LEMA dealing with mathematical beliefs 
(Cabassut & Villette, 2011). 

An interviewee from LEMA interview mentions that 
the difficulty related to heterogeneity is not specific to 
modelling problem but general to every mathematical 
problem. Another interviewee asserts that there are 

no more difficulties in modelling situations than in 
ordinary ones. Another one mentions group man-
agement difficulties. For this reason we ask questions 
about difficulties in mathematic, to be compared with 
the difficulties about modelling.

The third part of the interview deals with conceptions 
and practice about modelling. If the interviewed per-
son does not understand the word “modelling” and 
to enable him to go on with the interview, we suggest 
a possible definition based on Maaβ definition men-
tioned on previous part on modelling conception. 
Borromeo and Blum (2013) are also defining model-
ling and LEMA questionnaire suggests an example of 
modelling task. About practice, Borromeo and Blum 
(2013) show the influence of experiences in teaching 
mathematical modelling concerning barriers and mo-
tivations. They point also the importance of training 
on modelling, which can only be learned effectively 
if there are teachers that have competencies in this 
field. An interviewee from LEMA interview expresses 
needs to create a lot of modelling situations to be used 
during teaching. In following part 6, the extract of 
interview guide is related to conceptions and practice 
about modelling.

The last part deals with difficulties about modelling 
collected from international research to observe how 
these are perceived in the French educational sphere. 
We selected six topics: time, assessment, lesson organ-
isation, context, students’ involvement and resources. 
This selection is explained by the following reasons. 
Schmidt (2011) and Borromeo and Blum (2013) find time, 
assessment and resources as the three main difficulties 
by German teachers. An interviewee from LEMA inter-
view mentions he needs time to keep the modelling pro-
cess in class. Additionally, Borromeo and Blum show 
that “for 50% of the teachers, “time” is seen as a barrier”. 
But when it is a barrier for inexperienced teachers, it 
is not the case for experienced teachers; they observe 
the same difference about material. From the question-
naire of Engeln and colleagues (2013) on inquiry-based 
learning, we adapted some items to modelling: for ex-
ample “to find modelling problems for the class I use 
textbook?”. Concerning assessments, Borromeo and 
Blum point that “teachers who did not study mathe-
matics see here a barrier to teach modelling and for 
the other teachers “assessment” is a strong motivator”. 
About lesson organisation, Borromeo and Blum show 
that lesson-planning is relevant for the teacher but it is 
not necessarily seen as an obstacle; for several teachers 
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it is a motivation. Cabassut and Villette (2011) find split-
ting variables about lesson organisation (for example, 
to design the lesson or to help student). An interviewee 
needs to prepare a lot for a modelling lesson. About the 
context, Borromeo and Blum point “systemic obstacles 
(such as expectations of parents, scientific associations 
and other pressure groups, regulation examinations)”. 
An interviewee from LEMA interview mentions that 
the syllabus is not an obstacle and can be interpreted 
in his mind. Sometimes “the resistance does not only 
come from teachers but also from students or may-
be even parents or the society as a whole” (Dorier & 
García, 2013). The topic about students’ involvement 
is based on Borromeo and Blum’s questionnaire. This 
part about difficulties is illustrated in the following 
extract of the interview guide.

EXTRACT OF THE INTERVIEW GUIDE

This extract is from parts 3 and 4 of the interview 
guide for teachers.

Part 3 Conceptions on modelling 
Do you know what means “modelling problem”? (Yes/
No)

If yes go on. If no go to item « A possible definition of 
a modelling problem » 

Open question
For you what is a modelling problem at school?

Complementary questions
For each of the following statements mark how much 
you agree (agree, rather agree, neutral, rather disa-
gree, disagree):

 ― a modelling problem at school is related to real 
world

 ― a modelling problem at school deals with authen-
tic data

 ― for a modelling problem at school, there is only 
one solution

 ― a modelling problem at school is an open problem
 ― a modelling problem at school requires an inqui-

ry based approach
 ― pupils have to be familiar with the context of the 

modelling problem

A possible definition of modelling problem
We consider a possible definition of modelling 
problem and other terms.
A modelling problem is:

 ― a problem (no immediate answer),
 ― open (it could be necessary to make some parts 

clearer: questions, data, hypotheses, mathemat-
ical solution, way to find a solution...)

 ― complex (many steps to solve the problem, some 
data have to be searched, discovery of a new type 
of solution...)

 ― related to real world (the context of the problem is 
related to reality on the contrary of some abstract 
mathematical problems)

 ― using mathematics and inquiry based approach 
to find a solution. How much do you agree this 
definition? (agree, rather agree, neutral, rather 
disagree, disagree)

Modelling practice
Open question
Do you use, in your teaching, problems that are open, 
complex, related to real world, and solved with math-
ematics and inquiry based approach? How? What re-
sources do you use?

Complementary questions
How often do you use the following types of problems 
in class? (often, rather often, rather not often, often)

 ― Modelling problems
 ― Problems to be solved with inquiry based ap-

proach
 ― Authentic problems from reality.
 ― Problems with data interpretation
 ― Open problems
 ― Complex problems
 ― Problems with more than one solution

Resources
To find modelling problems for the class I use: (often, 
rather often, rather not often, not applicable because 
I don’t use modelling)”

 ― textbooks
 ― internet 
 ― exchanges with colleagues
 ― exchanges with pupils or students
 ― other resources
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Mention the other resources

Part 4 Facilities and difficulties of modelling
Open question
Is teaching of modelling easy or difficult? Why?

Complementary questions
How much do you agree (agree, rather agree, neutral, 
rather disagree, disagree)?

Time
It takes too much time to prepare modelling task for 
teaching.
The work on modelling tasks in the classroom is 
very time consuming.
It takes too much time to assess modelling tasks.
When I teach modelling, I have not enough time left 
for other learning content.
It is difficult to estimate how long it takes to solve a 
modelling task.

PERSPECTIVE OF CONFIRMATORY RESEARCH

With the interview guide, several interviews will 
be addressed to different members of educational 
sphere. In a next step of research, the results of these 
interviews will help to formulate research hypoth-
eses and to adjust the final questionnaire. Then, a 
large-scale questionnaire will be processed to con-
firm hypotheses. It is difficult to get answers to a 
questionnaire from some members of mathematical 
education sphere. In this case the questionnaire will 
be replaced by an interview. “Finally, the question of 
how culture-dependent task-specific convictions of 
mathematics teachers related to modelling are mer-
its attention in corresponding comparative research” 
(Kuntze, 2011). It is why all this research includes a 
comparative component to study the role of the differ-
ent levels of determination when the context varies. 
This confirmatory research and its analysis will be 
the last step of our study.
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In this study, we look at the use of experimental activi-
ties for developing mathematical modelling, consider-
ing those as consistent with the Models and Modelling 
Perspective and Realistic Mathematics Education. The 
experimentation with several staircases elicited a cen-
tral model based on linearization. Such model stems 
from the key idea of average step and constant slope 
and allows mathematical generalization.

Keywords: Mathematical models, realistic mathematics 

education, models and modelling perspective, 

experimental activities.

INTRODUCTION

The use of experimental activities in mathematics is 
a way of providing students a practical approach to 
real world problems with a particular emphasis on 
mathematical modelling. It encourages students to 
collect data, to interpret them and to develop reason-
ing and mathematical communication through discus-
sion and presentation of findings. Experimentation 
with real and material daily objects in mathematics 
learning puts the real phenomenon as a central part 
of students’ work, pushing them to understand how 
it works, to address it from a mathematical point of 
view, and to look for ways in which it can be “driven” 
mathematically, while incorporating real experience 
and everyday-life knowledge.

Unlike what happens in experimental sciences, it is 
far from common the inclusion of activities in mathe-
matics classes where students are invited to examine 
and study material objects and artefacts from the real 
world in search for mathematical ways of interpret-
ing the surrounding everyday reality. However, this 

may represent an interesting possibility to address 
mathematical modelling from a distinctive perspec-
tive, namely by representing an opportunity to inves-
tigate the role of experimentation in the development 
of mathematical models in school learning (Bonotto, 
2003; Halverscheid, 2008).

It is possible to explore the mathematics involved in 
everyday life by asking about the appropriate size of 
the steps of a staircase. In the image beside (Figure 1), 
one can see a diagram of a staircase profile retrieved 
from a website on housing and accessibility where the 

‘step geometry’ for best preventing falls, especially 
from elderly people, is suggested.

The activity of studying a number of different stair-
cases in the surrounding environment was seen a 
good context to engage 9th graders in significant math-
ematical modelling, namely entailing mathematical 
ideas such as gradient, slope, similarity of triangles, 
trigonometric ratios and others. Our research aim is 
to understand the effects of experimental work with 
artefacts on students’ development of mathematical 
ideas and concepts through modelling tasks. In par-
ticular, we intend to see how the idea of slope is con-

Figure 1: Suggested dimensions for the steps 

(Source: http://www.cmhc-schl.gc.ca/en/co/acho/acho_012.cfm)
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ceptualised throughout the activity of examining and 
assessing staircases. 

THEORETICAL FRAMEWORK

The theoretical framework draws on both the theory 
of Realistic Mathematics Education and the Models 
and Modelling Perspective, by taking experimenta-
tion with real artefacts as a hinge which connects 
and articulates the two theories. This is carried out 
under the perspective of networking theories that 
bear significant intersecting concepts in spite of their 
different roots and foundations: in particular, both 
theories conceptualize learning in mathematics in 
terms of constructing and developing mathematical 
models of the real world.

The model development perspective
In the Models and Modelling Perspective (MMP), the 
term model is the key to explain students’ learning 
of mathematics. A model is conceived as a system of 
elements, relationships between elements, and op-
erations that describe or explain how the elements 
interact (Lesh & Doerr, 2003; Lesh & Harel, 2003; Lesh 
& Zawojewski, 2007). To become a model, the system 
has to be useful for describing, representing, inter-
preting, explaining or making predictions about a 
phenomenon and its behaviour. 

In this perspective, modelling activities are important 
for students to reveal their various modes of reason-
ing, as well as for the development of conceptual sys-
tems and for creating efficient ways of representing 
structural aspects of the situation. 

The focus of model exploration activities is on 
the underlying structure of the elicited model 
and especially on the strengths of various rep-
resentations as well as on how to productively 
use these different representations (Ärlebäck, 
Doerr, & O’Neil, 2013, p. 941).

An essential aspect of MMP is the recognition that 
solutions to problems usually involve several model-
ling cycles where the descriptions, explanations and 
predictions are gradually refined while solutions are 
being revised or rejected based on their interpreta-
tion in the real context. 

Model eliciting activities are the kind of activities that 
provide students with real-life situations where math-

ematical thinking is necessary for successfully deal-
ing with problems and achieving solutions (Lesh & 
Lehrer, 2003). The kind of problems proposed is meant 
to engage students in bringing forth their personal 
experience and informal knowledge. It is expected 
that more than one adequate solution is proposed 
and the use of tools, resources and collaboration are 
highly endorsed.  

Students are presented a real situation from which 
a problem is originated. For solving it, they usually 
start to simulate the real situation through experi-
mentation, then they have to model the situation 
(mathematizing it through diagrams, tables, sym-
bols, relationships between variables, equations...), 
and finally they generate mathematical results and 
obtain one or more solutions to the initial problem. 
Throughout this process students perform micro-cy-
cles of mathematization, i.e., within the modelling cy-
cle, the steps are not all sequentially performed but 
rather there are forward and backward movements 
within the cycle itself. 

The problem of finding a real model of a convenient 
staircase seems to comply with this perspective. The 
real situation of going up and down a ladder is some-
thing very common in daily life and it incorporates 
empirical knowledge and personal experience. There 
are staircases in many places, both indoors and out-
doors, which makes experimentation, simulation, 
and actual experience with the artefact easy to ac-
complish. In addition, there is a clear purpose in elect-
ing a convenient staircase: everyone has felt, at some 
point, that there are stairs which aren’t easy to climb 
or descend. Finally, a staircase is an object intended 
to join by successive steps different levels of a site 
and the mathematical concept of slope is immediately 
present in the relationship between the run and the 
rise of a step. Deciding on the best staircase involves 
forms of representing and expressing the real world 
situation, it comprises problem solving (or decision 
making), brings a specific purpose to modelling, and 
the resulting model can be developed, modified, and 
generalised.

The realistic mathematics education theory
Two main ideas that are central to the theory of 
Realistic Mathematics Education are mathematiza-
tion and guided reinvention. Contextualized situations 
aim to generate meaningful experiences for students 
that will bring forth the implicit mathematics through 
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a mathematization process. By working on contextu-
alized situations to achieve contextualized solutions, 
students gradually develop mathematical tools that 
progressively lead to higher levels of mathematical 
thinking.

The principle of guided reinvention requires con-
textualized problems to be well chosen, in order to 
engage students in the development of strategies that 
generate informal solutions. The informal way to get 
solutions is a starting point for formalization and 
generalization, which is referred to as progressive 
mathematization (Gravemeijer, 1994; 1999). The pro-
cess of reinvention is set in motion when students 
use everyday language (informal description of phe-
nomena) to develop informal or formal mathematical 
ways of conceptualizing solutions to real problems. 

In RME, the starting point of mathematics teaching 
should be experientially real to the student. The math-
ematization process will lead to: explore the situation; 
locate and identify relevant mathematical elements; 
schematize and visualize patterns, and develop a 
model that integrates mathematical concepts. It is 
expected that students subsequently apply these to 
other realistic situations, and in doing so, reinforce 
and strengthen their mathematical knowledge.

The models allow students to work at different levels 
of abstraction, making possible that even those who 
have difficulty with more formal notions make pro-
gresses and create strategies for solving problems 
(Gravemeijer & Stephan, 2002). The term model refers 
to models of situations and to mathematical models 
that are developed by the students at different abstrac-
tion levels. 

Four levels of models are described in the design of ex-
periences based on the RME theory. At the situation-
al level, domain-specific knowledge and situational 
strategies are used within the context of the situation, 
taking into account the knowledge and experience 
often obtained out of school; at the referential level or 
in the production of models of, the models are closely 
related to the situation described in the problem; at 
the general level or in the production of models for, 
mathematical strategies dominate over the reference 
to the context; and at the formal level, one works with 
conventional procedures and notations (formal math-
ematical language) without the support of the context 
of the situation (initial model).

One of the features that stands out from activities 
grounded on the RME theory is the mathematical con-
cept(s) that the student is expected to develop. This 
is usually apparent when reading and interpreting 
the situations presented, which sometimes include a 
request to find a generalization. This generalization 
is not the only goal but it is surely a goal to be reached 
throughout continued work on this type of activities.

From the point of view of RME, the situation of de-
ciding on a convenient staircase motivates students 
to work actively on the context. The mathematization 
process is expected to start with realistically consid-
ering the actual situation of climbing and descend-
ing staircases. A referential model would probably 
start to grow from sketches of different staircases, 
leading to the idea of step as a covariation between 
horizontal and vertical distance. A model of the covar-
iation might be developed in close relationship with 
the particular features of a staircase and in terms of 
how it fits human body (the size of the foot and the 
range of a person’s step). Ultimately a general model 
of a staircase may be developed in terms of relevant 
dimensions and this entails a mathematical model for 
the slope of a straight line.

Experimentation and artefacts 
use in mathematics
In this study, we have in mind the rationale offered by 
Bonotto (2003, 2010, 2013) and by other researchers 
(e.g., Alsina, 2007; Halverscheid, 2008) for the use of 
experiments in school mathematics. The main idea is 
that handling and manipulating objects and cultural 
artefacts existing in students’ daily lives is an impor-
tant way to connect mathematics with reality.

… an extensive use of suitable artifacts could be a 
useful instrument in creating a new link between 
school mathematics and everyday-life with its 
incorporated mathematics, by bringing students’ 
everyday-life experiences and reasoning into 
play (Bonotto, 2010, p. 21).

It can be argued that mathematical modelling involves 
a comprehensive cycle that stands on its own as a math-
ematical approach to solving real problems. However, 
both MMP and RME are theories that seek to connect 
modelling and mathematizing with the learning of 
mathematical ideas and the development of mathe-
matical meaning. They both promote activities where 
realistic situations require some kind of informal 
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knowledge and the unfolding of some mathematics 
by acting upon and representing real phenomena. 
They both place mathematics as the ultimate target 
of the modelling activity but they both acknowledge 
that models have to be evaluated as to their agreement 
with the real world and revised if needed.

Experiences with cultural artefacts are more than a 
context for the formulation of problems; they are the 
realistic contexts in which data, informal construc-
tions, conjectures and testing occurs, that is, they 
become the real world.

Experiments related to mathematics find their 
natural place in the framework of mathematical 
modelling because they represent the ‘rest of the 
world’ for which mathematical models are built 
(Halverscheid, 2008, p. 226).

Experimental activities with real objects as the ba-
sis for mathematical modelling are grounded on the 
following facts: (1) students have the opportunity to 

“learn by doing” as they manipulate and experiment, 
conjecture and validate; (2) working with concrete 
materials is a form of questioning mathematically the 
properties of objects; and (3) inquiry through experi-
mentation is reflected in thinking and mental models 
and becomes a means to develop an understanding of 
mathematical models. 

Quite often the argument that manipulatives are only 
useful in elementary schooling is set forth. In contrast, 
we claim that mathematical modelling with experi-
ments and artefacts may synthesize the connection 
between two relevant theories – RME and MMP – for 
the inclusion of mathematical modelling in mathe-
matics learning.

METHODOLOGY 

Our study concerns a classroom activity implemented 
in two classes of 9th grade students (14–15 year-olds), 

one with 20 students and the other with 23 students. 
Throughout the teaching intervention several other 
activities that involved experimentation with cultural 
and everyday objects were proposed. The activities 
were performed in groups of 4 to 5 students in each 
class, totalling ten groups. The groups were video-re-
corded during the classes; the transcribed dialogues 
and the written reports of the groups were collected 
and analysed.

Qualitative content analysis of the data was devel-
oped and episodes were selected to document students’ 
models and the conceptual structures underlying 
such models.

The task 
The real problem consists of establishing the conven-
ient dimensions of a staircase for a house building. To 
initiate the activity, the examination of particular cas-
es was proposed as a means to define the convenience 
criteria; measuring, recording and sketching were 
also conducted, which entailed the identification of 
variables and relationships between them (Figure 2). 
Therefore, students went out of the school and walked 
in the city to experience many of the stairs that are 
part of the outdoor architecture, from the oldest to 
the newest ones.

The activity was divided into four parts. The first is 
the introduction to the topic under study. The second, 
called “From experience...” is a hands-on experimen-
tal phase performed with everyday objects (staircases) 
aiming at developing informal models and collecting 
data. The third, called “... to the model” consists of a 
mathematical study of the data obtained in the exper-
imental stage, and one of its goals is the creation of a 
local mathematical model and possibly a more gen-
eral model that can apply to wide-ranging situations. 
Finally, a written report is required to document the 
experimental situation, the assumptions made, the 
strategy used, the results obtained, and the evaluation 
of the proposed solution.

Figure 2: Staircases in the city and students collecting data
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DATA AND RESULTS

The model of the average step 
and constant slope
During the fieldwork, all students experienced up and 
down five staircases with different characteristics, in 
order to classify them from 1 to 5, corresponding to a 
scale from less convenient (1) to more convenient (5). 
They also measured the run and the rise of several 
steps in each of the staircases and recorded them on 
their worksheets. The five staircases were proposed 
by the teacher within a relatively limited area around 
the school and fitting the time available for working 
on the outside.

One observation made by several groups was that the 
steps in certain staircases did not maintain the same 
dimensions, with variations of a few centimetres on 
the treads and on the mirrors. The subsequent dis-
cussion was on the possibility of standardizing the 
sizes of the steps on each staircase considered. The 
idea of taking the average of the lengths of the treads 
and the lengths of the mirrors was one of the sugges-
tions. One group realised that the sum of the treads 
corresponded to the total run the same way as the 
sum of the mirrors was equal to the total rise. Then, 
dividing by the number of steps they got the average 
step dimensions and started to analyse the ratio be-
tween them. Another group preferred to measure the 
pitch line (the hypotenuse) for a sequence of k steps 
and found the total rise by adding up the mirrors of 
the k steps. Then using Pythagoras obtained the total 
run and finally divided the run and the rise by k to get 
the average step dimensions.

Therefore the model used by most of the groups for 
the staircase was a model of constant slope regardless 
the variability of the steps. By considering homoge-

nous steps, students were making the assumption 
that each step corresponds to a unit of change. No 
matter the steps were irregular, the inclination was 
consistent in every step. Based on the ideas that stu-
dents proposed, which evolved around the steepness 
of the staircase, the notion of constant slope was being 
developed as schematized in Figure 3.  Even though 
they have not mentioned this ratio as the slope of the 
pitch line, their reasoning involved the idea of incli-
nation of a straight line. 

In their reports, students showed their representa-
tions of the staircases and their evaluations in terms 
of convenience for climbing and descending. To their 
qualitative evaluation they associated the ratio of the 
vertical change (mirror) to the horizontal change 
(tread), even though they did not define this ratio 
as the slope of the pitch line. In their discussions it 
became consensual that there was a distinctive ratio 
for the most convenient stairs, as in the following 
dialogue:

(After reviewing the classification made and the 
relations found) 

Student M:  So the conclusion is that the tread 
should be twice the mirror so that the 
stairs are convenient! 

Teacher:  But can the tread be of any length as long 
as it’s twice the mirror? 

Student D:  A bit larger than the size of the foot.

Student M:  About 30 cm.

An extract of this group’s report shows how they as-
sessed a few staircases (Figure 4). 

Figure 3: The variation of the steps doesn’t change the slope of the staircase 
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Another piece of the report shows the idea of using 
the mean of the dimensions of a sample of steps to find 
out the dimensions of the average step by assuming a 
constant slope for the staircase (Figure 5). This was a 
common strategy in other groups, as a way of dealing 
with the irregular steps. 

The conclusion of this particular group about a con-
venient staircase was summarised as follows: “We 
have found that the tread should be approximately 
twice the mirror so that the stairs are convenient, and 
the tread would have the approximate length of the 
foot of most people, therefore measuring between 30 
and 40 cm, depending on being indoors or outdoors 
stairs. As to the mirror, it should measure between 
15 and 25 cm”.

DISCUSSION AND CONCLUSIONS

The mathematics curriculum for grades 7–9 cov-
ers the study of the linear function and stresses the 
meaning of the parameters in the equation y = ax + b, in 
particular through its graphical representation. The 
meaning of the parameter a is handled qualitatively 
in terms of the slope of the line. The linear function 
is also related to the idea of constant rate of change. 
However, this conceptual model brings the difficulty 

of associating a rate between quantities to a geometric 
notion. 

The task of finding a convenient staircase led to the 
observation that real stairs in the existing surround-
ings are not perfectly regular stairs. It also showed 
several facts clearly important to the concept of lin-
ear variation and to its translation into a geometric 
model. In fact, a plausible real model of a staircase is 
coherent with the notion of regularity, that is, all the 
steps having the same dimensions. However, it is not 
necessarily so in real life. Yet, the idea of   a constant 
slope is a good initial model of a staircase. In other 
words, the average slope of the steps corresponds to 
the slope of the staircase, and both are consistent with 
the rate between the rise and the run. 

From the point of view of the MMP, the activity of 
choosing a convenient staircase elicited a relevant 
mathematical model. The profile of a staircase is con-
sistent with the constant ratio between the length of 
the tread and the length of the mirror thus suggesting 
how steep the staircase is. It is a robust and mathema-
tizable idea which makes the basis of the mathematical 
model of linear variation (or slope):

(∆y)1
(∆y)1  = (∆y)2

(∆y)2  = … = (∆y)i
(∆y)i

  

for any number of steps i, and

 
∑(∆y)i

∑(∆y)i

i

i

 = (∆y)i
(∆y)i

Its translation into the geometric constant rate of 
change is well represented by the variable but pro-
portional dimensions of the steps as in the following 
graphs, showing different changes in run and rise 
(Figure 6).

Regarding the theory of RME, the mathematization 
of the idea of   a regular staircase matches an infor-
mal model of linearization, leading to calculating the 
mean of the dimensions of the different steps. Then, 

Figure 4: Excerpt of a report with the slope as a criterion for convenience

Figure 5: Model of the stairs of the Castle Doors (level 3) and the 

average step
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the relationship between the average rise and the av-
erage run develops into a gradient: the constant rate 
at which the value of the rise changes with respect to 
the change of the run, or the ‘slope of the staircase’. 
Therefore the slope has a connection to the steepness 
of the stairs as expressed by the ratio of the mirror 
to the tread. A model of a convenient staircase (ref-
erential model) was characterized by the students as 
having a ratio of 2:1 for tread to mirror. This is a model 
of a convenient staircase but it is also a model that can 
be easily transformed into a model for any staircase 
and likewise for the formal constant rate of change.

Both theories allow seeing mathematical modelling as 
a process that simultaneously creates a simplification 
of reality, introduces a mathematical point of view and 
leads to interpreting reality through mathematics and 
interpreting mathematics through reality. 

The experimental, practical and direct way to address 
the problem through examination of several outdoors 
real stairs proved to be of vital importance. In the real 
world stairs are uneven and linearization emerged as 
a sensible mathematization tool.
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Research on mathematical thinking often focuses on 
pointing out or classifying student misconceptions. 
Fewer studies have examined how an individual 
makes sense of the problem context, though the stu-
dent’s interpretation may differ from what the task 
writer intends (Stillman, 2000). Sense making in 
modelling tasks is worth examining explicitly because 
student work leading to errors or incorrect models 
may be attributed to mathematical misconceptions 
rather than to the student’s interpretation of the task.

It is unclear how an individual’s framing of a mod-
elling task is tied to the generation of a conventional 
mathematical representation, especially in a case 
where there are multiple possible framings. Each 
framing comes with its own set of assumptions, varia-
bles, parameters, and even constraints against which 
the model and its predictions must be checked. In a 
group work setting, Lesh & Doerr (2003) identified the 
production and resolution of “competing conceptual 
systems” as part of model creation and Lesh, Doerr, 
Carmona, & Hjalmarson (2003) classified the cognitive 
conflicts that accompany competing conceptual sys-
tems. But what is the interplay between mathematical 
framing and conceptual systems?

Drawing on a models and modelling perspective, 
this paper closely examines instances of competing 

conceptual systems for a problem situation within a 
single individual in order to explore how the math-
ematical framing impacts the creation of the math-
ematical model. I argue that model construction is 
influenced by the mathematical framing adapted 
or derived from the individual’s interactions with 
the problem context and that additional sources of 
knowledge, beyond mathematical and contextual, are 
necessary for resolving the conflicts that arise from 
competing conceptual systems.

THEORETICAL PERSPECTIVE AND DEFINITIONS

The theoretical perspective adopted here draws on the 
models and modelling perspective (MMP) (Lesh et al., 
2003) and a characterization of modelling as a process 
(the mathematical modelling cycle or MMC) (Blum & 
Leiß, 2007). The theories are taken together in order to 
operationalize mathematical framing (defined below) 
and examine its connection to the conventional math-
ematical representation constructed to represent the 
real life situation being modelled.

In the most general terms, a model is a simplified 
representation of a system. A mathematical model 
has three components: a situation in the real world, a 
mathematical representation, and an invertible rela-
tionship between the two constructed by the modeller 
(Blum & Niss, 1991) that preserves structural char-
acteristics as mathematical properties. A key com-
ponent is identifying appropriate structural char-
acteristics that can be put into correspondence with 
appropriate mathematical structures and concepts.

The MMP emphasizes the usefulness of mathemati-
cal concepts, that models (and not solutions) are the 
important products of modelling tasks, and that an 
individual approaches a task with an initial inter-
pretation of the task. The process of formulating a 
well-posed mathematical problem can be summarized 
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as framing – how an individual renders a problem 
setting, giving it context, determining which facts and 
relationships are relevant, and which rules are usa-
ble for reasoning (Schwarzkopf, 2007).  The framing 
process can be operationalized in terms of the MMC, 
which is briefly introduced below. 

Blum & Leiß (2007) decomposed the mathematical 
modelling process into six stages of modelling con-
struction supported by six transitional activities. 
The first three stages of model construction are: the 
situation model (an understanding of the problem; 
a conceptual model of the problem), the real model 
(an idealized version of the problem with simplifica-
tions and assumptions), and the mathematical rep-
resentation (in conventional mathematical terms). 
The stages are connected by activities. The situation 
model is brought about by an individual forming an 
understanding of the problem. During simplifying/
structuring the modeller identifies assumptions, var-
iables, parameters, and conditions that reduce the 
potentially messy problem to an idealized real model. 
For example, an object falling from a height might 
be thought of as an object in free fall and a freebody 
diagram could be drawn where the relevant forces 
from Newtonian mechanics are identified. Next, math-
ematizing occurs where the individual represents the 
real model (in essence, a collection of assumptions 
and constraints) in conventional mathematical terms. 
This is the mathematical representation from Blum & 
Niss’s (1991) definition.

Cognitive conflicts, in the Piagetian sense, often arise 
as the modeller attempts to frame the problem. Lesh, 
Doerr, Carmona, & Hjalmarson (2003) described three 
kinds of cognitive conflicts that arise as conceptual 
models develop: within-model mismatches (incongru-
ence among aspects of representational media), mod-
el-reality mismatches (when predictions do not match 
reality), and between-model mismatches (incongru-
ence between ways of thinking about a problem). For 
example an object falling from a great height could 
be modelled using the algebraically based kinematics 
equations. We know from mechanics that these equa-
tions hold only when air resistance is negligible. In a 
situation where an extended body is falling a great 
distance the effect of air resistance is not negligible. 
If we used kinematics equations to predict the veloc-
ity of the body at time , the prediction might differ 
significantly from an actual measurement. This is 
an example of a model-reality mismatch. Debating 

whether to use kinematics equations or more accurate 
differential equations to model the situation would be 
an example of a between-model mismatch.  

The three mismatches are not mutually exclusive 
but are evidence of competing conceptual systems 
and highlight where the individual is considering 
alternative framings of the task. In this paper, I refer 
to the mismatches with regard to local mathematical 
model construction rather than global mathematical 
knowledge construction. The results are presented as 
a set of illustrative vignettes purposefully selected for 
their ability to demonstrate and explain the impact of 
framing on model construction.

METHODOLOGY

This study followed a case study logic found in social 
sciences (Walton, 1992) where the guiding principle 
was to provide evidence that challenged dominant 
ideas about the modelling process. Specifically, the 
goal was to provide insight into how competing 
conceptual models in order to argue that framing is 
idiosyncratically tied to the modeller’s experiences. 
The phenomenon to be illustrated, competing concep-
tual systems “coalesced in the course of the research 
through a systematic dialogue of ideas and evidence” 
(Ragin, 2004, p. 127). The case is presented through a 
set of illustrative vignettes purposefully selected for 
their ability to demonstrate and explain the impact of 
framing on model construction. 

Data were collected from a series of seven task-based 
interviews with four undergraduate engineering stu-
dents enrolled in differential equations. Tasks were 
designed in order to evoke the mathematical mod-
elling cycle (Blum & Leiß, 2007) and in accordance 
with guiding principles on openness of the problem 
statements (Lesh & Zawojewski, 2007; Maaß, 2010). 
The participants were selected in order to maximize 
variety in their approaches to modelling tasks and 
so they had a range of mathematical strength. The 
participant whose work is reported in this paper, 
Trystane, did not score top marks in his mathemat-
ics or engineering classes. His work on the Falling 
Body Problem (described below) was selected to share 
because within one task he exhibited all three kinds 
of cognitive conflict.

The interviews were video recorded and transcribed. 
Cognitive conflicts were identified in two ways. First, 
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the transcripts were coded according to the transi-
tions in the MMC and the occurrences of the first three 
transitions were examined to be sure that framing was 
taking place. Second, transcripts were summarized as 
thick descriptions (Geertz, 1973) of the mathematics 
used by each student during each task. Introduction, 
changes, or adjustments in mathematical framings 
were tracked. Throughout the reduction, my focus 
was on the student’s mathematics and on its struc-
tural ties to the real world situation presented by the 
problem statement. This analysis through writing 
produced a second-order model (Steffe, 2013) of the 
student’s mathematics during modelling.  Instances 
were interpreted as competing conceptual frame-
works when the student was debating among mathe-
matical framings or among assumptions that would 
simplify the problem but would require different 
mathematical framings.

The Falling Body Problem, for which Trystane’s work 
is presented below, is a first-year physics or calculus 
problem solvable by kinematics if one assumes that 
there is no wind resistance. Otherwise, a differen-
tial equation is necessary to model the falling body’s 
velocity.

On November 20, 2011, Willie Harris, 42, a man living on 
the west side of Austin, TX died from injuries sustained 
after jumping from a second floor window to escape a 
fire at his home. What was his impact speed?

ANALYSIS AND RESULTS

The vignettes presented below are based on the thick 
descriptions but reference the transcripts from a 
problem common to a first year kinematics course, 
The Falling Body Problem. Trystane’s work on this task 
was selected to illustrate cognitive conflict and com-
peting conceptual models within a single individual 
because it offers a sense of tension as he debated the 
merits of each. The ongoing tension is not conveyed 
when examining model revision among multiple in-
dividuals.

Trystane explicitly considers three different math-
ematical framings of the task that eventually lead 
to model revision. The framings were identified be-
cause he returned to understanding and simplifying/
structuring the problem, according to the MMC. He 
first considers using algebraic kinematics equations, 
which wouldn’t account for air resistance. He then 

considers algebraic energy equations, until he realiz-
es he doesn’t have information about the man’s weight. 
He then tries to derive a differential equation in order 
to account for air resistance. These distinct framings 
account for different variables, require different sets 
of assumptions, and rely on different mathematical 
concepts and structures. 

Within-model mismatch
Trystane began by reading the task silently to himself 
and then stated that he would need to know how big 
the man was in order to account for air resistance. He 
indicated that mass was not an important factor and 
that his approach would be to use a “bunch of kine-
matics formulas.” The kinematics formulas would not 
account for air resistance. He then indicated that he 
would like to use energy equations but that he’d need 
to know the man’s weight. Since that information was 
unavailable, he’d have to “do it a different way and 
[he’d] have to know how high he fell from.” Trystane’s 
conflict arose due to a between-model mismatch. He 
was considering the merits of adopting different 
mathematical framings. Note that this is distinct from 
adopting different mathematical representations be-
cause both framings would be expressed in terms of 
an algebraic formula. There was a mismatch between 
the information perceived as available (note that he 
could have used m for mass) and his preferred math-
ematical framing (energy equations) leading him to 
adopt the kinematics equations. This framing subse-
quently influenced the variables and assumptions 
that could be made, prompting him to seek the height 
the body fell from. 

Model-reality mismatch
Next, Trystane estimated that the window was 16 feet 
above ground. He attempted to use kinematics equa-
tions to calculate the impact velocity but encountered 
difficulty since “it’s [the equation] got time in it and 
I don’t know how long he fell.” He resolved this issue 
and obtained an impact velocity of 32 ft/sec. He vali-
dated his answer: “At 32 feet, is actually the height of 
my house, is how I would think of it. He would fall, he 
would go that distance in 1 second. I’d say that’s rea-
sonably fast for a human to go.” The interviewer then 
asked whether the size of the man mattered. Trystane 
responded, “Technically, yeah. If he’s a really big guy, 
he’s gonna have more wind resistance falling down. 
Other than that it wouldn’t.” Trystane indicated that 
he wanted to take wind resistance into account, but 
didn’t know how to. This suggests a model-reality mis-
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match because he knows that the extended body will 
experience air resistance but his model does not ac-
count for it.. The competing conceptual systems were 
acknowledged (desire to include wind resistance and 
the fact that the kinematics equations did not incor-
porate it) and led to Trystane rejecting the kinematics 
equations and seeking to use a differential equation 
to describe the body’s velocity throughout the fall.

Trystane began speaking about changing rate-of-de-
scent and the interviewer responded by challenging 
his choice of model.

Trystane: Air resistance is more the faster you 
go, rather than the slower you go. So in 
[the man’s] case, the higher up he fell 
from, the more wind resistance until he 
reached his terminal velocity. Which is 
when wind resistance is pushing up as 
much as gravity is pulling down.

Interviewer: What I’m hearing you say is that in 
very few cases wind resistance is actu-
ally negligible. You have to have a very 
short fall or be in a vacuum. Does it both-
er you at all that you don’t learn how to 
take that into account or that the models 
you use all assume no air resistance?

Trystane responded that he felt that including air 
resistance in the models early in his physics studies 
would have been “needlessly complicated.” He ex-
plained that wind resistance is negligible for most 
applications and offered an empirical demonstration 
by dropping a pencil and stated that “the pencil falling 
this high [placed pencil lower, near the desk surface] 
and this high [placed pencil higher, further from the 
desk surface] is so close to the same that it’s not worth 
taking the effort to figure out what it is.” This expla-
nation demonstrates that negligibility of wind resist-

ance has to do with height rather than other factors he 
had mentioned previously such as mass or the value 
or change in value of the force due to wind, or size of 
the object. In general, negligibility of a variable is an 
assumption that is related to the estimated sensitivity 
of predictions to that variable and also to available 
information.

Between-model mismatch
Trystane’s treatment of wind resistance demonstrates 
that he weighed expended effort against improvement 
of results when determining which variables to in-
clude and therefore which mathematical model to 
adopt. Though not in competition, Trystane enter-
tained two conceptual models of the problem situa-
tion, one with wind resistance and one without. The 
source of the dispute was a between-model mismatch. 
The resolution was to choose the less-complex model 
because the extra effort necessary to build a more 
accurate model was not worthwhile.

Later, the interviewer suggested that Trystane use 
a differential equation to model the velocity of the 
falling body. He concurred and then began by inden-
tifying the man’s movement rate as a function of time 
as an important variable. He then wrote the equation  
(in Figure 1), which is a first-order, linear, homoge-
neous equation in standard form. He then wrote the 
generic solution where Q represents position and dQ/
dt represents velocity.  He wrote the solution  with 
the intention of determining the value of .  Assuming 
the initial positions and velocity were both zero, he 
substituted the general solution into the equation and 
obtained the expression  and thus the result 

Within-model mismatch
Trystane pondered the correctness of the model:

I‘m not sure that that’s right because I’m not sure 
if there should be some sort of constant increase 

Figure 1: First order linear differential equation with initial conditions
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as you get faster, um, I guess that just stems from 
fluid mechanics. For instance, I don’t know if it’s 
a linear graph [draws left graph in Figure 2] or 
if as you’re going faster it gets [traces figure on 
the right].

The graphs represented force due to wind vs veloci-
ty. Trystane knew that there should be an increasing 
relationship between the two quantities, but didn’t 
know what the relationship would look like and he 
was debating which representation best matched the 
situation. He concluded that the model was incorrect 
because velocity should not increase exponentially 
with position as but that it was the best he could do 
without a fluid dynamics book. 

Here, Trystane struggled to validate the model he 
selected because his conceptual model of the rate of 
change of the body’s velocity was not well defined. The 
within-model mismatch surfaced as he tried to use the 
two distinct graphical representations of force versus 
velocity. The consequence was that he rejected the dif-
ferential equations model because it was incompatible 
with his conceptual interpretation of ever-increasing 
velocity described by an exponential solution.

Next, Trystane noted that wind resistance was 

sort of like friction where it’s an opposing force. 
Actually, that kinda sparks an idea. If the wind is 
always just an opposing force, it could be treat-
ed like the force of friction. I dunno. Maybe in 
a certain density wind you would multiply the 
coefficient of wind friction or air friction times 
the surface area of the body moving. 

Here Trystane reintroduced the size of the man as an 
important variable and spent the remainder of the ses-
sion attempting to include it in his differential equa-
tions representation. His final mathematical model 
(after he “waive[d] the white flag”) is the nonlinear 
differential equation shown in Figure 3. 

Between-model mismatch
The transition from a first order linear equation with 
an incorrect solution to the final version of Trystane’s 
model was provoked by competing conceptual sys-
tems that had been acknowledged at the start of the 
modelling task. One conceptualization of the physical 
system included wind resistance, which depended on 
the man’s size, as a variable. The other conceptualiza-
tions ignored wind resistance in favour of algebraic 
equations with either known or easily-estimated pa-
rameters. This ongoing conflict, which was set aside 
while Trystane explored other possible models, was 
a between-model mismatch. Trystane’s insistence 
on including wind resistance is a testament to how 
competing conceptual systems can provoke model 
development. Moreover, this look at competing con-
ceptual systems suggests that the conceptual system 
determined the framing of the problem. That is, his 
selection of which mathematics to use was interactive-
ly determined by the data he had available.

DISCUSSION AND CONCLUSIONS

Analysis illustrated three kinds of mismatches that 
arise as cognitive conflict during mathematical mod-
el construction. The mismatches were symptoms of 
competing conceptual systems each of which came 
with their own sets of assumptions, variables, and 
expectations. The conflicts were identified during val-
idating activity when the modeller noted mismatches 
between expectations of how the mathematical model 
should be constructed and its congruence with his 
idealized conceptualization of the situation to be 
modelled. Thus, expectations were based on both 
real world experiences, such as Trystane’s claim that 

Figure 2: Exponential and linear relationships between air 

resistance and velocity Figure 3: Nonlinear differential equation including wind resistance 

and surface area
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mass does not affect the velocity of a falling body, and 
the mathematical structure selected underlying the 
model, such as when Trystane rejected an exponential 
growth model for velocity.

Both mathematical and nonmathematical knowl-
edge have been identified as important to model con-
struction. Indeed, modelling is often characterized 
as bringing together both bodies of knowledge. In 
the vignettes above, Trystane generated and referred 
to ideas not explicitly in the problem statement. He 
relied on additional resources beyond mathemat-
ical and contextual knowledge. His spontaneous 
demonstration with the falling pencils and his res-
olution of the within-model mismatch between the 
two graphs of force against velocity suggest that he 
appeals to common sense and to thought experiments 
as resources for generating missing information. At 
times, Trystane had to abandon a particular framing 
because of a conflict where he did not have the rele-
vant information to use the framing. In another case 
he was able to generate the missing information via 
a thought experiment. For example, the task did not 
give the height the body fell from but he was able to 
validate his answer (32 feet per second) by using the 
corresponding length of time it would take to fall 32 
feet. In such a case, Trystane used a thought experi-
ment to obtain and validate an appropriate estimate 
of the height. 

Conflict resolution may depend certainly depends 
on student knowledge about the context and student 
characteristics (such as persistence). It may also de-
pend on the modeler’s values in model construction, 
and these values may be discipline specific. For exam-
ple, Trystane demonstrated that he valued economy 
of effort. He valued avoiding “needlessly complicated” 
problem idealizations. He also valued avoiding revi-
sions that made the model overly complex for only a 
marginal gain in accuracy or predictive power.

Trystane used knowledge both of plausible alterna-
tive mathematical representations and structures as 
well as sufficient knowledge of the problem context 
in order to resolve the conflict product productively. 
Trystane demonstrated reasoning based on a blend of 
mathematical and nonmathematical knowledge: his 
value judgments about effort and worthwhileness and 
his ability to willingness missing information.  This 
suggests that mathematical and contextual knowl-
edge alone do not account for how the conceptual 

model or subsequent mathematical model are revised. 
Future research should investigate criteria or factors 
students use to decide how to resolve competing con-
ceptual systems.

Two related aspects that merit further examination 
are how the conflict resolution is executed and how 
conflict recognition can be promoted. When cognitive 
conflicts arose, at times Trystane rejected the initial 
model (such as his rejection of the energy equations) 
or to the revision of a model (such as his decision to in-
clude air resistance in the differential equation). One 
resolution required an additional assumption (ne-
glect air resistance) while another required a change 
in mathematical structure (regarding net force as a 
function of time). 

Mismatches between the individual’s expectations 
and the model produce the cognitive conflict and the 
mismatches point to the presence of competing con-
ceptual systems.  When conflict is absent, the task 
may be too easy or familiar or the student may not 
recognize a particular kind of incongruence that is 
noticeable to the teacher or researcher. It should be 
noted that Trystane, as an engineering student was 
trained to look for such mismatches.

The conflicts arose when Trystane tried to fit available 
data to selected framings, such as setting initial veloc-
ity to zero in the differential equation. He changed 
representation and structure as information became 
available rather than undertaking derivations. He 
made progress when he had a mathematical frame 
that fit his personal (or scientific) experiences. This 
suggests that at least in some cases, framing precedes 
(or even determines) the relevant assumptions and 
variables sets.

Aside from theoretical consequences to perceptions 
of mathematical modelling as a cyclic, linear process, 
these observations have practical consequences. First, 
tasks should be selected that are amenable to multiple 
possible framings. Second, if a goal of using modelling 
tasks is to help students learn to make simplifying 
assumptions, it may be beneficial to use modelling 
tasks where potential framings are not obvious. 

Mathematical modelling cycles have been long of-
fered as descriptions of the mathematical modelling 
process, but the community still does not have an ad-
equate explanation for how mathematical and non-
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mathematical knowledge are blended to render a real 
world problem as a mathematical one. The models 
and modelling perspective adopted here, along with 
the cognitive conflict framework (Lesh et al., 2003) 
revealed  that competing conceptual systems play an 
important role in the selection of appropriate mathe-
matical structure, mathematical representation and 
the subsequent fitting of available data into the se-
lected model. The cognitive conflicts framework is 
a promising avenue to reveal how validation of the 
mathematical model leads to resolution (or lack of 
resolution) of the competing conceptual systems.
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Making assumptions is a key activity in modelling. The 
present study aims to explore the variety of assumptions 
that lower secondary students make in this process. As 
theoretical basis for the data analysis, we used the mod-
elling cycle by Blum and Leiss (2007) and framed a defi-
nition of assumptions. The study was carried out with 
grade 9 students. The results show three categories of as-
sumptions: (1) parameter assumptions, (2) assumptions 
for the choice of the mathematical model, and (3) as-
sumptions about task expectations. Assumptions from 
the first two categories assist students to use extra-math-
ematical knowledge to construct a mathematical model, 
while the third category of assumptions can assist but 
also hinder them. Our study shows, that students were 
well aware of their assumption making.

Keywords: Assumption making, task expectations, 

modelling, mathematizing, lower secondary students.

INTRODUCTION 

In mathematics education there is an increasing 
emphasis on applications and mathematical mod-
elling (Vorhölter, Kaiser, & Borromeo Ferri, 2014). 
This international development is also reflected in 
the intended curriculum of Albania, the country in 
which the current study is based. In the curriculum 
framework for primary and lower secondary schools 
(grades 1−9), the Ministry of Education and Sports 
highlights that students need to understand the role 
of mathematics in everyday life and use mathematics 
adequately to solve problems from everyday life (IED, 
2013). 

However, Albanian students have displayed a rather 
poor performance on modelling problems as used in 
the Programme for International Student Assessment 
(PISA), in which Albania now has participated three 
times (Harizaj, 2011; OECD, 2014). The Albanian re-

sults on PISA urge for a closer investigation of the 
process when students deal with modelling problems. 
Therefore, we have started a study on the first phases 
of this process, when students are facing a problem 
situation and have to make a translation to a math-
ematical model in order to reach a solution of the 
problem. In particular, we aim to explore the various 
assumptions that students make in this start-up phase 
of the modelling process. 

THEORETICAL FRAMEWORK 

Blum and Leiss (2007) have framed mathematical 
modelling as a process, which consists of subse-
quent activities. See Figure 1. The process begins 
with understanding ‘the real situation’ given in the 
task, which leads to the construction of a ‘situation 
model’ (e.g., a rough drawing of the problem situation). 
Then, this ‘situation model’ is idealised into a ‘real 
model’ through relevant structuring, and by making 
assumptions and simplifications (e.g., the drawing is 
made more specific). 

In the next step this ‘real model’ is translated into a 
‘mathematical model’ (e.g., an algebraic formula). The 
‘mathematical model’ is then used to obtain ‘mathemat-
ical results’. These results are interpreted into ‘real 
results’ and then validated in light of the given prob-
lem. In the case the results are considered inadequate 
for the real situation the entire modelling process is 
run through again.

The above description of the mathematical modelling 
process is an idealized one, because in practice the 
modelling process is more complex and often non-lin-
ear (Borromeo Ferri, 2006; Galbraith & Stillman, 2001). 
Moreover, Borromeo Ferri (2006) empirically showed 
that some phases in the modelling process can overlap 
and that the problem structure affects the process.
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An important term in the modelling process is math-
ematizing. Blum and Leiss (2007) use this term to de-
scribe the translation activity from the ‘real model’ to 
the ‘mathematical model’. However, Borromeo Ferri 
(2006) has argued that it can be difficult to distinguish 
between ‘situation model’, ‘real model’, and ‘mathemat-
ical model’, because these differ between students and 
tasks. For example, many tasks with problems from 
the real world are already structured and de-authenti-
cated by the task authors, to communicate the problem 
situation unambiguously to the students (Vos, 2011). 
Therefore, in the present paper the term mathematiz-
ing will be used to describe holistically all activities 
from ‘problem situation’ to ‘mathematical model’. In 
this frame, mathematizing comprises all activities 
before a student starts on the purely mathematical 
work, such as: understanding; simplifying; scouting 
the problem (Schaap, Vos, & Goedhart, 2011); assum-
ing; structuring; idealising; and finally translating 
into mathematics. Results of several studies in the 
field of mathematical modelling (Schaap et al., 2011; 
Stillman & Brown, 2012; Stillman, Brown, & Galbraith, 
2010) display that the mathematization process is com-
plex and that students face various obstacles within 
this process.

Making assumptions is one of the activities in the 
mathematization process (Edwards, 1989; Galbraith 
& Stillman, 2001). Maaß (2006) empirically showed 
that inadequate assumptions (unrealistic or over-
simplified) lead to an inadequate real model, which 
further leads to an inadequate mathematical model 
for the problem situation. 

Goldin (2002) defines assumptions as being:

[…] often propositionally encoded, taken as a ba-
sis for exploration or discussion but (at least tem-
porarily or provisionally) without attribution of 
truth, validity or applicability. (p. 65)

This definition converges with the definition in the 
Oxford English dictionary (www.oed.com), which says 
that an assumption is: 

The taking of anything for granted as the basis 
of argument or action.

An assumption can be formulated as “let’s take <state-
ment A>”, proposing statement A to temporally be 
true without further argumentation, but statement 
A offers a productive opening towards subsequent 
activities. Assumptions made during the mathemati-
zation process “provide building materials from the 
real world to bridge the divide between a descriptive 
problem statement and its representation in math-
ematical terms” (Galbraith & Stillman, 2001, p. 304). 
Assumptions are practical, enabling students to con-
tinue their work; assumptions may even assist in 
overcoming cognitive blockages. The present study 
aims to explore the variation of assumptions during 
the mathematization process. The research question 
is: what assumptions do students at lower secondary 
school level make while mathematizing? 

Figure 1: Modelling cycle from Blum and Leiss (2007)
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METHODS

The study was operationalized by studying Albanian 
students while working on modelling items. The par-
ticipants in the study were four grade 9 students from 
a lower secondary school in Albania. The four stu-
dents were average achievers in mathematics and they 
were selected by their teacher. They had no particular 
experience in modelling. The students participated 
voluntarily and they will be identified by pseudonyms.

A three step design was used to capture a holistic view 
about students’ mathematization process, consisting 
of (1) observation, (2) stimulated recall and (3) inter-
view (Busse & Borromeo Ferri, 2003). The combination 
of these three methods draws on strengths of each and 
makes it possible to capture the connection between 
internal and external processes which occurred when 
mathematizing. The first author was the interviewer, 
being able to communicate with the students in their 
language. The present paper will report only on the 
data associated with the assumptions that students 
made while mathematizing. 

In the first phase (observation), students worked in 
pairs on solving three modelling items collaboratively. 
To enhance their thinking aloud, just one pen was 
made available to both students. In this way they could 
not write both at the same time. The second and third 
phases (stimulated recall and interview) took place in 
another session (later on the same day or on the next 
day), whereby each student was individually invited 
to watch excerpts of the video recordings from the 
first session. The students were asked to comment 
and reflect on their activities in the video. In this way 
stimulated recall helped students to be “close to the 
process of working on the task without interfering 
[with] the process itself ” (Busse & Borromeo Ferri, 
2003, p. 257). In the third phase (interview), the in-
terviewer cited some statements made during the 
solution process and asked them to comment on these 
statements. By using statements of the students, the 
risk of making students speak with the interviewer’s 
words was avoided.

All the three phases of data collection were video 
recorded and then transcribed. First, transcriptions 
were used to identify all assumptions students made 
in the complete modelling process. Then, based on 
Blum and Leiss (2007) modelling cycle, we identified 
assumptions that the students made in the mathe-

matization process. Assumptions associated with 
the mathematization process were investigated for 
their purpose (why), their emergence (when), and the 
awareness that the students displayed on the making 
of these assumptions. 

The modelling items for the present study were taken 
from PISA. The PISA items for mathematics are de-
signed as problems with a real world origin and they 
have been designed in a careful process (OECD, 2013). 
Moreover, their globally widespread use should en-
able us to compare, validate and generalize research 
results internationally. We selected PISA items on 
several criteria: (1) they should require students 
to integrate the offered task information with ex-
tra-mathematical knowledge in order to construct a 
mathematical model; (2) the cognitive demand should 
match with students’ abilities and therefore the math-
ematical content was taken from the curriculum of at 
least one year below the students’ level; (3) the real-life 
situations presented in the tasks should align with 
Albanian students preferences on the relevance of 
mathematics, as studied by Kacerja (2012).

FINDINGS

Because of the page limitations of this paper, we re-
port only on the data from one pair of students, the 
girls Joni and Megi, on two of the PISA items used in 
the study. The first item is named Rock Concert. 

For a rock concert, a rectangular field of size 100 
m by 50 m was reserved for the audience. The 
concert was completely sold out and the field was 
full with all the fans standing. Which one of the 
following is likely to be the best estimate of the 
total number of people attending the concert?

a) 2000
b) 5000

c) 20000 
d) 50000

e) 100000

Joni and Megi started to calculate the area of the 
field (100x50) and then started a discussion on how 
to connect this to the other information in the prob-
lem statement. 

Megi:  Since the concert was completely sold 
out then there will be 5000 fans because 
the field was full.

Joni: But one fan per one square meter will 
be…here it says that all fans are stand-
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ing, therefore they are more than 5000… 
there will not stand one fan per square 
meter because it has no meaning for a 
concert…how many fans can stand in 
one square meter?

Megi: But since nothing else is given, it will 
be 5000 fans… Just option b) has to do 
with it. Because we have the numbers 50 
and 100 in the problem statement, we do 
not have any other numbers… The total 
number of fans according to me is 5000 
because we cannot solve a problem by 
supposing.

In the above episode Megi equals the area with the 
number of fans, and then Joni translates this into the 
assumption: one fan per m2. However, she thinks that 
this is not realistic for a rock concert, considering 
the information that all the fans are standing, so she 
implies the assumption that there are more than one 
fan per m2, and she asks explicitly the clarifying ques-
tion on the density of fans standing in a concert: “how 
many fans can stand in one square meter?”

Her partner, Megi hesitates to connect the problem 
statement to the real world. She bases her argumen-
tation on two other assumptions that we reformulate 
as: only given numbers should be used to build a math-
ematical model and one cannot make assumptions in 
these kinds of tasks. However, these assumptions are 
not accepted and they continue the discussion on the 
density of fans. This leads to another assumption: 

Megi: The rock concert is attended only by 
adults, because rock concerts cannot 
be attended by children… It is attend-
ed only by adults and adults use more 
space.

Here, Megi has changed her perception of what the 
task is asking her, namely that she can use extra-math-
ematical knowledge. So, she makes the assumption 
only adults attend rock concerts, which is relevant to 
define the density of fans. 

Thereafter, Joni and Megi are carried away by the 
context of the task, talking about whether the rock 
players are popular, or not and there may not be too 
many fans coming. They also talk about whether there 
can be chairs in the field. In these discussions we did 
not identify assumptions, until the next utterance:

Megi: It depends on how fans stand…but we can 
divide the field in rows and columns… it 
depends on how fans stand because in 
a rock concert the audience tries to be 
as near as possible to the stage, but we 
can consider the same everywhere.

This utterance shows that Megi recognizes the com-
plexity of defining the density of fans, and that one 
needs the assumption: fans are uniformly distributed 
in the field.

The above findings from the students’ work on the 
Rock Concert item show that they made different 
assumptions in the mathematization process. Some 
of these assumptions can help students to incorpo-
rate new information into the mathematical model 
that is missing in the problem statement, while other 
assumptions are about their perception of task ex-
pectations. Also, we observe that students display an 
awareness of their assumption making.

The other PISA item, on which we report here, is the 
Pizza item: 

A pizzeria serves two round pizzas of the same 
thickness in different sizes. The small one has a 
diameter of 30 cm and costs 300 ALL. The larger 
one has a diameter of 40 cm and costs 400 ALL. 
Which pizza is better value for money? Show 
your reasoning.

After reading the problem, Joni and Megi make a 
straightforward mathematization of the situation by 
taking the ratio between the diameter of the circle and 
the price. Implicitly, they take for granted that the 
size of the pizza is linear to its diameter, which fits the 
definition of an assumption. After calculating these 
ratios they conclude: “both pizzas have the same value 
for money”. However, they do not find this result satis-
fying – they validate the obtained answer. To do this, 
they return to the mathematization process and start 
to ask clarifying questions on the meaning of “better 
value for money”:

Megi: In this case, it means which one is bigger, 
which one makes you full.

Joni: But it also can be: which one is cheaper, 
which makes you save money…or which 
one is smaller, which helps to keep your 
body in a nice shape.
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In this short episode the students make both a dietary 
assumption (“makes you full” and “keep your body in a 
nice shape”) and a financial assumption (“makes you 
save money”), which both give a basis for further cal-
culations. After some discussion, the students select 
one assumption: better value for money means it makes 
you full, because, according to Megi, “this is what we 
do in our everyday life”. Then she uses this assumption 
to carry on: 

Megi: Since they have same ratio, the same 
thickness, but different size, it is the big 
pizza because it is bigger…therefore it 
has more calories …offers more oppor-
tunities to make you full.

So, the mathematical model consists of selecting the 
maximum. However, Joni is uncertain about this ap-
proach/choice:

Joni: It is a mathematical problem and we 
cannot solve it supposing what we do 
in our everyday life… We involved our 
individual opinions from our life into 
the solution and the solution was not a 
fixed one, we got it by supposing, while 
in the problems of our mathematical 
textbook…there are given more num-
bers and information and the solutions 
are fixed.

In this utterance Joni expresses uncertainty about 
the use of familiar, everyday assumptions into the 
mathematization process. This ‘assumption on the 
making of assumptions’ was also expressed in the 
Rock Concert item: one cannot make assumptions in 
these kinds of tasks. Interestingly, in that case it was 
expressed by the other student, Megi.

The above findings from the students’ work on the 
Pizzas item show again that they purposefully made 
different kinds of assumptions. With this Pizza item 
the assumptions are made either during the mathe-
matizing or the validating process. Some assumptions 
are made by using extra-mathematical knowledge to 
choose a mathematical model. Other assumptions lim-
it the students to focus only on the given information 
in the task. 

To summarize, we have categorised the assumptions 
identified in the above episodes into three broad cat-
egories:

Parameter assumptions 
Parameter assumptions are assumptions that stu-
dents make to refine a mathematical model, such as 
refining the formula in the Rock Concert item: densi-
ty of fans x area. These assumptions incorporate ex-
tra-mathematical knowledge into a parameter of the 
mathematical model, such as in density of fans. These 
assumptions emerge when students understand that 
the given information in the problem statement is not 
enough for mathematizing. 

Assumption for the choice of 
the mathematical model
Assumptions for the choice of the mathematical model 
are assumptions made to select a mathematical model, 
such as taking either the ratio of diameter and price, 
or taking the maximum of the size. These assumptions 
are made in the mathematizing process (for creating a 
model) or validating process (for critiquing the model 
and refining it). 

Assumptions about task expectations 

Assumptions about task expectations emerge from 
the learning environment of mathematics education, 
for example when students have been trained on so-
called word problems. These word problems consist 
of short texts, generally describing inauthentic situ-
ations and irrelevant questions, and students have to 
deduct some numbers and an operation from the text 
to find a number answer. Word problems are part of 
a school culture with unwritten rules, also known as 

‘didactical contract’ (Brousseau, 1997). Assumptions 
such as only given numbers should be used and mak-
ing assumptions is not allowed make students hesi-
tate to consider the situation context and to gener-
ate assumptions based on their extra mathematical 
knowledge. When students’ perceptions do not align 
with the task, their assumptions about task expecta-
tions may hinder them. However, not all assumptions 
about task expectations will be counter-productive. 
For example, an assumption such as we should use our 
extra-mathematical knowledge is also about task expec-
tations, but it is a productive opening in modelling. 

Assumptions about task expectations can be state-
ments on whether or not extra-mathematical knowl-
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edge can be used, and these assumptions can assist 
or hinder students to make modelling assumptions. 
Assumptions about task expectations emerge in the 
mathematizing or validating process.  

CONCLUSION AND DISCUSSION

In the present study, we explored the various assump-
tions that grade 9 Albanian students make while math-
ematizing, that is while constructing a mathematical 
model from a problem situation. From the data anal-
ysis we identified three categories of assumptions: 

 ― parameter assumptions, 

 ― assumptions for the choice of the mathematical 
model, and 

 ― assumptions about task expectations. 

The first category, parameter assumptions are as-
sumptions made to refine a mathematical model by 
using an additional parameter. The second category, 
assumptions for the choice of the mathematical model 
are assumptions made to choose, or even justify the 
mathematical model. These two types of assumptions 
emerged in different phases of the modelling process, 
such as during mathematizing or validating activities. 
Their need arose, when the students were construct-
ing or criticising the mathematical model and they 
used extra-mathematical knowledge for choosing op-
erations, and as such they used these assumptions for 
creating or refining the mathematical model. 

We observed that the students were well aware of their 
assumptions. This is evident in the words they used: 

“we can consider”, “we can suppose”. Moreover, stu-
dents were explicitly commenting on whether it was 
allowed to make assumptions based on extra-math-
ematical knowledge. This lead to the third category 
of assumptions: assumptions about task expectations, 
such as only given numbers should be used and making 
assumptions is not allowed. These are assumptions 
made by students to deal with the norms and values 
of a mathematical culture. These assumptions derive 
from students’ beliefs on how they should work, in 
particular in relation to work on inauthentic word 
problems. Beliefs “are abstracted from one’s experi-
ences and from the culture in which one is embed-
ded” (Schoenfeld, 1992, p. 74). Other researchers have 
termed the educational culture, in which students 

behave according to certain norms as a ‘didactical 
contract’ (Brousseau, 1997).

The above three categories also were observed in 
other episodes of our study, but space does not al-
low us to report this here. We do not claim that the 
three above named assumption categories are the 
only assumptions that students make while mathe-
matizing. Our study was a pilot study done with only 
a few participants (sample of convenience) and a lim-
ited number of problems. Empirical findings from 
other studies (e.g., see Borromeo Ferri, 2006) show 
that mathematization activities differ between tasks. 
Therefore, further research with the same focus on 
assumptions is recommended. If items are used that 
require students to define variables or constants, it 
is possible that they will make assumptions on those 
variables and constants.

Our study revealed that assumptions about task expec-
tations increased students’ insecurity in the mathema-
tization process. Therefore, we suggest as teaching 
implication, that assumption making should receive 
emphasis in mathematics lessons, as also said by Seino 
(2005). By discussing assumptions on the parameters 
or on the choice of the model, both teachers and stu-
dents can learn about their assumptions about task 
expectations. They can then better understand the role 
of extra-mathematical knowledge in the mathemati-
zation process and in the entire modelling process. 
Moreover, such a focus can advance their awareness 
on validating their assumptions.

Our study displays that students make assumptions, 
which can assist in the mathematizing process. Some 
authors have described assumptions as “building ma-
terials” (Galbraith & Stillman, 2001, p. 304) or “the 
cement” (Edwards, 1989, p. 95). We support these 
metaphors, but at the same time we observed some 
assumption being made, which held back students 
from the situation context. Thus, some assumptions 
can be metaphorically described as “blocked doors”. 
Our study shows that if students can open these doors, 
they can make meaningful assumptions in mathema-
tizing, which will then lead to successful modelling. 
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Over the last twenty years, research on the teaching of 
mathematical modelling has recognized the difficulties 
that students encounter in becoming independent mod-
ellers. In this paper, we put forward the notion that sup-
porting and preserving student independence should be 
a central principle in guiding teaching practices that 
support students’ modelling activities. This potentially 
provides new ways to address the tensions, dilemmas 
and in the moment decision making that occurs when 
teaching mathematical modelling. We provide empir-
ical evidence of teaching practices that encourage stu-
dents’ self-evaluation of their modelling activities in 
ways that foster their independence as learners and 
modellers. 
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If we want students to be productive independent 
individuals and problem solvers with the abilities to 
apply mathematical reasoning in various situations, 
they need to have a range of possibilities for acting 
mathematically readily available when faced with a 
problem. Mason and Davis (2013) argue that this read-
iness is not fostered by pedagogies that keep students 
dependent on their teachers. Rather, teachers need 
to support students to act in ways that can become 
part of their own repertoire of mathematical ways 
of thinking. Students’ mathematical learning needs 
include developing productive dispositions, flexible 
strategies, persistence and independent thinking 
(National Research Council, 2001). Mathematical mod-
elling problems would appear to be a particularly rich 
site for developing these dispositions while learning 
mathematics in realistic problem situations. However, 
this poses many challenges for the teacher, especial-
ly how to: tackle classroom discussions, structure 
group interactions, and provide effective feedback 

to students (Brodie, 2011; Lobato, Clarke, & Ellis, 2005; 
Magiera & Zawojewski, 2011). In this paper, we provide 
empirical evidence of teaching practices that appear 
to support and encourage students’ independence in 
their modelling activities and we identify dilemmas 
that present challenges for teachers in their pedagog-
ical decision making.

THEORETICAL BACKGROUND

Adequately describing and theorizing about what 
teachers actually do in and around their classrooms 
is a complex task – one in which research has been 
slow and sometimes elusive in providing a holistic and 
comprehensive picture of teaching practices (Even & 
Ball, 2009). One important strand of research has em-
phasized and seriously acknowledged the important 
role of giving voice to and using students’ own work 
and ideas in the teaching and learning of mathematics. 
Recently, Stein and colleagues (2008) proposed a mod-
el of five practices (anticipating, monitoring, selecting, 
sequencing, and making connections between student 
responses) that can be taken up by novice K-12 teach-
ers, as they learn to orchestrate productive mathe-
matical discussions by simultaneously building on 
students’ ideas and important mathematics. Stein 
et al. argue that this model gives guidance to teach-
ers so that “the teacher remains in control of which 
students will present their strategies, and therefore 
what the mathematical content of the discussion will 
likely be” (p. 328). However, by centering the control 
of the mathematical discussion with the teacher, these 
novice teaching strategies may not help students be-
come more independent learners and, as such, offer 
little guidance for experienced teachers in managing 
more complex learning situations, such as modelling 
tasks. Such situations occur when the teacher has to 
respond to unanticipated student ideas and manage 
the emergence of student interactions that cannot 
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be fully anticipated ahead of time. Mason and Davis 
(2013) refer to these situations as requiring teach-
ers to make “in the moment” pedagogical decisions, 
something that presents a dilemma and tension for 
experienced teachers. 

A common response to this dilemma is for the teach-
er to engage in telling or explaining to the students 
the intended content. Lobato, Clark and Ellis (2005) 
suggest a reconceptualization of the telling or not-tell-
ing dilemma by distinguishing between the teacher 
action of telling as initiating and the action of eliciting. 
According to Lobato et al., telling as initiating refers to 
teacher actions “that serve the function of stimulating 
students’ mathematical constructions via the intro-
duction of new mathematical ideas into a classroom 
conversation” (p. 110). The teacher’s intention is to pro-
mote student sense making and is often followed by 
eliciting students’ ideas. Brodie (2010; 2011) elaborates 
the dilemmas faced by experienced teachers when, 
having elicited students’ ideas, they must make in the 
moment decisions about when and how long to press 
individual students for making meaning and giving 
justifications. As teachers engage with model eliciting 
activities (Lesh & Doerr, 2003), they are faced with 
pedagogical dilemmas and in the moment decision 
making about how to move students’ mathematical 
learning forward. In this paper, we want to put for-
ward the notion that student independence should 
be one of the most central principles in teaching 
practices, guiding both planning and in the moment 
pedagogical decisions and actions. The focus of this 
paper is on elaborating teaching practices that foster 
student independence.

Our research is situated in the models and modelling 
perspective on teaching and learning mathematics 
(Lesh & Doerr, 2003). Within this framework the no-
tions of eliciting student thinking and developing 
their emerging models are central to learning math-
ematics. In this work, we take models to be externally 
represented conceptual systems that consist of ob-
jects, operations, relations, and interaction-governing 
rules used to predict, explain, describe, or understand 
some other system (Lesh & Doerr, 2003). By engaging 
in a sequence of model development activities, stu-
dents’ models are repeatedly developed, modified, 
extended and revised through “multiple cycles of 
interpretations, descriptions, conjectures, explana-
tions and justifications that are iteratively refined and 
reconstructed by the learner” (Doerr & English, 2003, 

p. 112). From this perspective, learning is equated with 
model development. The ability to develop, apply, and 
adapt a generalized model to be used in a range of 
contexts is the essence of what it means for students 
to be independent learners and problem solvers.

METHODOLOGY AND SETTING

This study took place in a six week summer mathe-
matics course for beginning engineering students, de-
signed around a model development sequence centred 
on the concept of average rate of change (Ärlebäck, 
Doerr, & O’Neil, 2013). Model development sequences 
are sequences of structurally related activities that 
are intended to engage students in multiple oppor-
tunities to describe, interpret, make conjectures, 
explain, develop and iteratively refine their models 
while interacting with other students (Lesh, Cramer, 
Doerr, Post, & Zawojewski, 2003). A model develop-
ment sequence begins with a model eliciting activity 
where students’ ideas about a problem situation are 
elicited and made explicit in forms that can be tested, 
revised and refined. Following the model eliciting 
activity are one or more model exploration activ-
ities and model application activities. In the model 
exploration activities, the underlying mathematical 
structure and representations (such as tables, interac-
tive graphics, diagrams, or animations) of the elicited 
model are further investigated and developed. In the 
model application activities, the students apply and 
adapt their previously elicited and explored models 
in new contexts and situations. 

The model development sequence in this study con-
sisted of a model eliciting activity (MEA) using the 
context of bodily motion along a straight path; a model 
exploration activity (MXA) using a computer simulat-
ed walking-world (cf., Kaput & Roschelle, 1996); and, 
two model application activities (MAA). In the first 
model application activity the students developed a 
model for how light intensity varies with the distance 
from a light source, and in the second model applica-
tion activity, the students modelled how the voltage 
changes over a fully charged discharging capacitor 
in a simple circuit (Ärlebäck et al., 2013). In this pa-
per, we report on our analysis of the video record-
ings of the lessons focusing on the teacher moves (or 
actions) identified in the data as either independence 
preserving or neutral or non-independence preserving 
moves. We also analysed debriefing interviews with 
the teachers to understand her intentions.  The data 
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presented in this paper are from the MEA and the 
first MAA. 

An independence preserving move, is a teacher move 
whose intention and consequence is that it preserves 
students’ independent on-going work. A teacher 
move that provides students with a tool or strategy 
to facilitate the students’ independence in a future 
activity/situation would be considered independence 
preserving. Encouraging student persistence (“keep 
thinking”, “keep talking”, “keep working”) and collab-
orative work (“talk to your partner”) is considered to 
be independence preserving. As well as being inde-
pendence preserving, a teacher move can be neutral 
or non-independence preserving. A non-independence 
preserving move typically implicitly suggests that 
meeting external expectations (“label your columns”) 
is valued rather than independent thinking and work. 
A neutral teacher move would be the teacher’s obser-
vations as the students are working on a task.

We identified one particular sub-category of inde-
pendence preserving moves that occurred regularly 
within our data set: encouraging self-evaluation moves. 
Teacher moves that either implicitly or explicitly en-
couraged students to be evaluators of the correctness, 
appropriateness, usefulness or goodness of their 
work are called encouraging self-evaluation moves. 
Examples of encouraging self-evaluation include 
moves that support students in having confidence in 
their solutions, in validating solutions with a partner, 
and in giving reasons or justifications about why their 
solution has to be correct. Encouraging self-evalua-
tion also occurs when the teacher simply responds 
to the student “think more” about a particular result, 
representation, relationship, object or idea. We take 
encouraging self-evaluation to be a particular catego-
ry within the more general category of independence 
preserving moves.

RESULTS

We give examples that occurred in two parts of the 
model development sequence: during the model elic-
iting activity and during a model application activity. 
In these examples, the teacher encouraged students’ 
self-evaluation within the larger goal of fostering 
students’ independence in their modelling activities. 
In the first example, over three days of the MEA, the 
teacher engaged in a range of moves (described below) 
that fostered aspects of student independence at the 

individual, small group and whole class level. In the 
second example, the teacher engaged students in an 
extended argument among the students and led by 
the students about the rate at which light intensity 
changes with respect to distance. Rather than resolve 
the argument for the students, the teacher preserved 
student independence by engaging them in collect-
ing empirical data that they could use to resolve the 
question.

Examples from a model eliciting activity
The MEA was designed to elicit students’ ideas about 
constant rates, about the distinction between velocity 
and speed, and about position graphs for which the 
motion was not physically possible. The students be-
gan the task by working in small groups to create a line 
with negative slope, using their graphing calculators, 
motions detectors and graphing software on a com-
puter. The design of the task required them to transfer 
data from their calculators to other group members’ 
calculators and to a computer. Thus, this MEA was 
comprised of a mathematical task (using bodily mo-
tion to create a line with negative slope) and the learn-
ing of technology skills. The teacher assumed that 
many of the students had limited background with 
the technology from high school and knew that their 
fluency with the technology would be needed through-
out the model development sequence. Throughout the 
MEA, the teacher made numerous moves that were 
intended to set expectations for student independent 
work at both the individual and the group level and ex-
pectations for students to self-evaluate the goodness 
of their work and that of their peers. We will briefly 
illustrate five teacher moves: establishing the utility 
of a reference tool; turning back questions; gathering 
data; encouraging persistence; establishing criteria 
for self-evaluation.

At the beginning of the MEA, the teacher distributed 
a “data management reference sheet.” Since one goal 
of this particular MEA included developing fluency 
with technology that would be needed throughout the 
model development sequence, the teacher had creat-
ed a reference sheet that contained technical details 
for using the technology. Nearly all of the teacher’s 
interactions with the students were brief as she an-
swered their technology related questions with “do 
you have your data management reference sheet?” or 

“look at the data management reference sheet.” She 
consistently referred to the need for each individual 
to acquire the necessary technology skills. In refer-
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ring to the computer data transfer, she commented, 
“your whole group should go because everyone should 
know how to do that.” We take this as the teacher’s in-
tentional moves to support the independence of each 
individual in gaining fluency with the technology that 
would be needed throughout the modelling activities. 

In a segment that occurred after the students had 
worked on finding and interpreting equations for a 
linear position versus time graph with negative slope, 
the students initially incorrectly referred to speed as 
the slope of the line. As a discussion of this was about 
to conclude, a student asked, “what does the motion 
detector measure?” Rather than answer this question 
directly, the teacher turned this question back to the 
students. We take this as a move to engage students in 
self-evaluation, that is, in answering other students’ 
questions. Eventually, there was an answer from the 
students that what the detector measured was dis-
tance in feet, recorded every tenth of a second. The 
segment ended with the teacher inserting the units 
for speed as feet/second. 

One part of this modelling task focused students’ at-
tention on the possibility of creating a U-shaped graph 
with the motion detector by walking at the same speed 
the whole time. The students were sharply divided 
on this issue. The segment ended as one student sug-
gested “why don’t we just try it?” We take this as an 
example of students suggesting self-evaluation and of 
the students taking up the teacher’s encouragement 
of their independence by gathering data and evidence 
to support their claims.

One aspect of student independence would seem to 
be persistence in working on tasks and solving prob-
lems. An example of this occurred at the end of the 
first lesson where one student had worked on finding 
an equation for the line with negative slope that the 
group had created. The student asked the teacher if 
his solution was correct and the teacher responded by 
asking him how he could evaluate the correctness of 
his answer for himself (“how do you check it?” “figure 
it out”). Later, when he determined that there was an 
error in his work, the student again approached the 
teacher, who responded with “find your mistake. I’m 
sure you can find it.” Finally, at the end of class, when 
the student came to her again, she again reassured 
him that he can find his mistake. We take this as both 
encouraging student persistence and as a form of en-
couraging student self evaluation. 

In the third lesson, the teacher displayed examples of 
students’ descriptions of motion from work done in 
an earlier lesson. The teacher asked the students to 
choose a good description and provide a reason why 
the description was good. The students worked on this 
individually. We take this as an example of students 
evaluating descriptions created by other students. 
However, it was unclear what criteria the students 
had for deciding what constitutes a “good” or “best” 
description? This dilemma became clearer as the 
teacher asked the students to discuss in groups which 
description was the best. The students had difficulty 
in coming to consensus in their groups. The teach-
er had a whole class discussion where students gave 
their reasons for choosing various alternatives. The 
teacher shifted the goal of the task when she suggest-
ed that they consider how to improve a description 
as some students claimed “none of them are really 
good.” As this task ended, the teacher asked the stu-
dents, “could you create the graph if you were given 
this description?” This final statement by the teacher 
appears to be a form of establishing the criteria by 
which one could decide if a description were “good” 
enough. However, this criteria was not clear to the 
students from the beginning of the task. 

Examples from a model application activity
This example is from a model application activity, 
where students investigate how the rate at which light 
intensity changes with the distance to a light source. 
At the beginning of the activity, the students are asked 
the following question as part of their homework pri-
or to the lesson to elicit their thinking about changing 
light intensity: 

Imagine the tail light of a car moving at a constant 
speed away from you. Is the light intensity: 

1) fading at a constant rate 
2) fading slowly at first then quickly
3) fading quickly at first and then slowly 
4) unsure

Although all of the students had taken a prior course 
in physics in secondary school, where the relation-
ship between light intensity and distance is studied, 
only one of the students correctly identified the rate 
at which the light intensity fades: quickly at first and 
then slowly. The majority of students concluded that 
either the light faded at a constant rate (60% of the 
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responses) or slowly at first and then quickly (27% of 
the responses). One student was unsure. 

These responses were displayed for the students via 
a student response system. The teacher commented 
that there was “lots and lots to talk about” and that she 
wanted to know from them “why did you choose the 
answer you chose?” To accomplish this, she arranged 
the students in groups and asked them to discuss their 
answers. After a few minutes, while the teacher was 
walking around listening to students’ reasoning, the 
teacher pulled the class together for discussion. Each 
of these teacher moves -- eliciting their ideas with the 
initial question, asking them to engage in peer discus-
sion, and listening to their reasoning -- served to en-
courage the students to self-evaluate their responses 
to the question on changing light intensity. 

The ensuing whole class discussion began as the 
teacher asked S1, a member of one group, to start the 
discussion: 

S1:  My other group members, they voted 
for number two, but I voted for num-
ber one because I explained that the 
car is going away at constant speed, so 
I thought like the light would go away 
at a constant speed too. But then I don’t 
know if that’s the same thing. It would 
be like how you see the light and the in-
tensity of the light, if they drop in the 
same way.

The teacher re-stated S1’s comment and invited stu-
dents to consider S1’s argument or offer their own:

Teacher: Are you guys thinking similarly to S1 
or why did you think it was at a con-
stant rate? [several students mumble] 
S2, what did you say?

S2: The car is moving away at a constant 
speed so I think the intensity decreases 
at a constant speed.

Teacher: S3
S3: The light travels at a different speed…
S4: …than the car…
S3: …than the car…
S4: So, it would actually be different.
S5: Isn’t the speed of light constant?
S6: If the speed of light is constant, why…

S4: …why is the car moving? – because it 
creates a variable!

All: [Laughter and many students talking at 
the same time]

S7: But yeah [inaudible] the speed of light 
and speed of…

S3: …S7, what do you think the answer is?

The students were actively engaged in arguing wheth-
er or not the light was fading at a constant rate. Many 
of those who thought the rate was constant were ar-
guing that it had to be constant because the speed of 
light was constant. However, the intensity of light with 
respect to distance is not related to the speed of light 
with respect to time, as S1 had suggested in her initial 
argument. What is striking about the conversation 
above is that the teacher is not mediating, restating, 
or directing the discussion. She is listening, off to the 
side. The argument takes a turn in a new direction as 
S3 asked S7 what she thought:

S7: Me?
S3: Yeah!
S7: I put two [slowly then quickly], but I’m 

not sure that, but I don’t know what the 
ratio is between light intensity and [S7 
starts gesturing]…

S2: I mean for instance, if the speed of light’s 
constant, and the cars’ constant…

S7: …Yes, but the speed of light is the trav-
elling speed of light. We’re talking light 
intensity which is what you see

S2:  Right…

In this segment, S7 has made the critical distinction 
(which was foreshadowed in S1’s initial argument) 
between the speed of light and the intensity of the 
light. S2 seemed to acknowledge this, with his com-
ment “right.” But it is not entirely clear what he meant 
by this. But the next response to S7 is from S3, who had 
asked S7 for her answer in the first place. S3 claimed 
to have an example, which was then immediately 
followed by another student’s (S4) example. From 
the teacher’s perspective, it was not possible to fully 
anticipate what these examples might be, what they 
would mean, and how they would relate to the central 
question about the rate of change of intensity of light. 

S3: Yes, so in 7th grade we were studying the 
change of motion and stuff and whatev-
er. And so, we found out, like if you’re 
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in, okay, I’m from New York City, we’re 
doing that, like, if you’re walking in a 
train, like running inside of a train, at, 
you know let’s say your running like, 20 
feet per second or whatever, whatever, 
that’s unrealistic, but just say you’re do-
ing that, right. And the train is going at, 
like 100 feet per second, then the total 
would be 120 feet per second. That’s how 
fast it would seem you’re running, be-
cause the train is like moving, and then 
you’re moving…

S4: …I think I have a better example, of how 
you know that light is not travelling at 
a constant rate. Why do they put the 
eenie-teenie-tiny [very tiny] lights on 
the top of buildings that planes aren’t 
gonna be able to see from 50 yards away? 
[inaudible] explain that to me – why are 
runway lights so small, you see the guy 
[starts gesturing as if he was taxiing a 
plane to its gate]

All: [many students talking at the same time]

The discussion was ended by the teacher, but not by 
drawing a conclusion for the students. Instead, the 
teacher continued to engage the students in evaluat-
ing their emerging models of light intensity by initi-
ating the next task of collecting real data that would 
enable them to resolve the question based on empir-
ical evidence.

The results elicited from the initial question showed 
that 60% of the students thought that the relationship 
between light intensity and distance from the car was 
linear. To address this, the teacher encouraged the 
students to self-evaluate their emerging models of 
rates of change and of light intensity. As the episode 
unfolded, the students unpacked their models by 
themselves, first in small group discussion and then 
in a student-led and student-driven whole class dis-
cussion. S1 raised the core question about the relation-
ship between the constant speed of the car and the rate 
of change of the light intensity. The discussion then 
revolved around the speed of light and its constancy, 
prompting many students to express their ideas on 
this matter. When S7 tried to focus the discussion back 
on S1’s core question, S3 and S4 both drew on personal 
experience in trying to understand the situation. S3 
remained focused on the role of the constancy of the 
speed of light, whereas S4 argued about the rate of 

change of the light intensity. The teacher functioned 
as a listener throughout the discussion. The teacher 
ended the discussion by initiating the next activity 
where students were to collect real data to resolve the 
issue. This shift was a key move in encouraging fur-
ther student self-evaluation of their emerging models 
for how the light intensity varies with the distance 
from the light source and in preserving student in-
dependence.

DISCUSSION AND CONCLUSION

In this paper, we wanted to further the research on 
using students’ thinking in mathematics lessons 
and the dilemmas connected with this practice, as 
reported in the literature, to forefront an argument 
and empirical evidence of teaching practices that en-
courage students’ self-evaluation of their modelling 
activities in ways that preserve their independence 
as learners and problem solvers. This focus presents 
a shift in emphasis on students’ and teachers’ roles 
and responsibilities. For example, the essence of se-
quencing in the Stein and colleagues’ (2008) model is 
for the teacher to be in control of the form and content 
in a whole class discussion. An independence pre-
serving stance would instead advocate sharing with 
students the responsibility for the sequencing of con-
tributions in the discussion in order to engage them in 
the self-evaluation of their ideas and their emerging 
models. The first example illustrates the role of the 
teacher in setting expectations for students to use 
tools such as a data management reference sheet to 
solve technology related problems, to answer ques-
tions from peers, to gather data to support arguments, 
to persist in finding mistakes, and to collectively es-
tablish criteria for evaluating the goodness of writ-
ten descriptions. Taken together, these moves by the 
teacher appear to support the students in becoming 
more independent learners and problem solvers. The 
second example suggests the benefits of engaging stu-
dents in peer-discussion and encouraging students’ 
self-evaluation by having them collect data that can be 
used to self-evaluate the goodness of their emerging 
models. This practice seemingly resolved the teaching 
dilemma that would otherwise have confronted the 
teacher as to how to resolve students’ conflicting ideas 
about changes in light intensity, while at the same 
time providing the students with peer-discussion as 
a self-evaluation tool for them to use in modelling 
activities. We offer these examples as ways of thinking 
about the notions of students’ independence and stu-
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dents’ self-evaluation, with the hopes of contributing to 
the on going discussion of effective teaching practices.
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We present the results of an exploratory and descrip-
tive study performed with Spanish students in Non-
Compulsory Secondary Education focusing on how they 
explain the meaning of both one-sided limits within 
a temporal phenomenon (drug metabolism) given by 
a graphical non-authentic model. We organised the 
given explanations according to the following options: 
Only calculation; interpretation in a neighbourhood 
(locally); meaning of the value (pointwise); direction of 
approaching in time with regard to right-sided limit. We 
also highlight a particular attention to other elements 
of the model apart from limiting notions and some dif-
ficulty to give sense to right-sided limit, possibly because 
the direction of approximation is contrary to the natural 
progression of time.

Keywords: Partial modelling activity, one-sided limits, non-

authentic drug metabolism model, spontaneous extension 

of a model, graphics.

PROBLEM

Mathematical modelling has been integrated in in-
ternational programmes of students’ assessment 
(e.g., PISA) and it has been a fundamental part of the 
mathematics education curricula for students aged 
6–15 years old for several years (OECD, 2013). In some 
countries, such as Spain, mathematics teaching in 
Non-Compulsory Secondary Education (16–17 years 
old) is intended as a preparation for tertiary studies. 
However it seems not to keep this trend but rather 
emphasizes abstract concepts and procedures from 
advanced mathematical activity (Crouch & Haines, 
2004). Successful teachers’ training programmes in 
design and assessment of modelling classroom pro-
posals (Ortiz, Rico, & Castro, 2006) make possible to 
transfer such proposals to pre-university education. 

Mathematical modelling is a field of mathematics ed-
ucation widely explored (Fischbein, 1987; De Lange, 
1987; Niss, Blum, & Galbraith, 2007; Swetz, 1991).

This study aimed to explore how students perform a 
pre-modelled task related to the concept of limit of a 
function at a point. Concretely, we choose a task con-
textualised in how a human body removes a drug in 
two days period, focusing on both one-sided limits 
of the amount of drug at the moment at which a new 
dose of drug is introduced. 

Since we had previously characterised a misconcep-
tion about the limit of a function related to the conti-
nuity (Fernández-Plaza, Rico, & Ruiz-Hidalgo, 2013a, 
2013b), we considered for this study a function with 
a discontinuity at the limit point. 

The outcomes of this study provide a better under-
standing of students’ learning of the concept of finite 
limit of a function at a point, specifically jump discon-
tinuities where there is an instantaneous change to 
the function at a point in the domain. We examined 
students’ learning of advanced mathematical content, 
but also their understanding of continuity as a tool to 
model real phenomena. 

The specific aim we propose for this study is:

“To describe student meanings of one-sided limits of 
a function at a point as they explore a given graphi-
cal model describing a temporal phenomena, and the 
possible influence of variable time on left-sided and 
right-sided limits interpretations.”



One-sided Limits of a Function at a Point in a Drug Metabolism Context (José Antonio Fernández-Plaza, Luis Rico and Juan Francisco Ruiz-Hidalgo)

863

THEORETICAL FRAMEWORK

We provide a brief description of what we understand 
by a model and how to model. We then establish a rel-
evant distinction between modelling and application, 
with particular reference to the concept of limit of a 
function at a point. 

Notion of model, applications 
and modelling procedure
We consider a mathematical model as a mathemat-
ical structure that approaches or describes certain 
relationships within a phenomenon in order to ex-
plore, understand, explain and eventually control 
it (Swetz, 1989). As Fischbein (1987, p. 21) notes, not 
only physical facts can be modelled but also concepts 
can be associated with a model and properties of the 
abstract concept may be better understood from the 
corresponding model.

Niss and colleagues (2007, pp. 10–11) stress a signifi-
cant distinction between an application and a mod-
elization. Modelling focuses on finding mathematical 
knowledge from a certain part of the real world, for 
example, the cycloid is the model related to the mo-
tion of a point in a wheel as it rolls along a straight 
line without slippage. In contrast, application fo-
cuses on the opposite direction.  Given a model the 
problem is finding what parts of the real world are 
susceptible of being modelled by such a model. For 
example, the inverted cycloid provides a solution to 
the Brachistochrone and Tautochrone Problems.

The modelling ability as considered by PISA 2015 draft 
framework (OECD, 2013) (called mathematising) in-
volves capabilities such as: 

To structure the field or situation to be modelled, 

To make assumptions

To translate the reality into a mathematical struc-
ture

To work on the mathematical model to obtain 
findings 

To reinterpret these findings in terms of the real 
situation, and 

To establish limited or generalized conditions to 
validate or modify the model.

Greefrath and Riess (2013) summarise the modelling 
procedure into five steps, Understanding of the prob-
lem; approach selection; performing; explanation of 
results; checking results, calculations and approach. 
They developed and implemented a solution plan (it 
consists of these five steps with questions and clarify-
ing points) with 6th grade students. In spite of some 
students engaged appropriately with this aid, other 
of them had some difficulties.

We pay special attention to the last two aforemen-
tioned capabilities: Interpreting, criticizing and 
modifying a given model. To sum up, modelling is 
the process to find a mathematical structure which 
approaches relationships within a phenomenon, 
which consists of an understanding of the problem, 
approach selection (assumptions), performing (trans-
lation of the reality to the mathematical structure and 
work on it to obtain findings), explanation of results 
(to reinterpret the findings in terms of the real situa-
tion) and checking results (to establish limited or gen-
eralized conditions to validate or modify the model).

Applications and Modelling related to the 
concept of limit of a function at a point
Classical problems, which were modelled using the 
concept of the limit of a function at a point, dealt with 
movement of an object and variations in magnitudes 
with respect to time.

According to the distinction between application and 
modelling, other phenomena may involve relation-
ships between variables and time and the limit con-
cept could be applied. The basic question to which the 
concept of limit of a function at a point tries to give 
an answer is the following:

Given a flow of amount of a magnitude along an 
interval of time, y = f(t) and an instant t = t0, ob-
tain the best approximation L of the amount of 
magnitude near t = t0, providing that t = t0 is an 
accumulation point of the interval of time. If it 
does not exist, explore the reasons why not. L is 
the best approximation of f(t) near t = t0, if for 
any K approximation, there exists an instant tK, 
such that |t − t0| < |t0 − tK| implies |f(t) − L| < |f(t) − K|.
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This question leads us to four different models related 
to the concept of finite limit of a function at a point 
depending on the properties of the function:

Instantaneous invariance model, related to the exist-
ence of limit. If the image of the point is the same as 
the limit, we referred to a continuous model, otherwise, 
it is a hole model.

The non-existence of the limit leads to the other mod-
els: 

Jump or instantaneous change, when there are both 
one-sided best approximations, but they are different, 
so there is not a best approximation of the function 
at any neighbourhood centered at t = t0.

Asymptotic change model, when one or both of the 
one-sided best approximations do not exist but there 
is a tendency to plus or minus infinity.

Oscillating change model, when none of one-sided best 
approximations exist, either finite or infinite. 

For this study we are going to consider students’ work 
on a jump model, because the asymptotic one involves 
infinity and oscillating one is not usually taught at 
their educational level.

METHOD

This is an exploratory and descriptive study based 
on a survey method. We designed and implemented a 
questionnaire including open-ended and closed-end-
ed questions. This paper is focused on the following 
one:

A patient is given a 0.05 mg injection of a drug 
daily, and each day 40% of the drug in the body 
is eliminated. The following graph (Figure 1) 
corresponds to the function y = f(t) that relates 
time to the amount of the drug in the body during 
the first two days of treatment. Interpret lim f(t) 
(from now on Lim_Left) and lim f(t) 

 
(Lim_Right)

The sample was composed of 36 Spanish students 
in the first year of Non-Compulsory Secondary 
Education (grade 11th), 16–17 years of age, who were 
taking Mathematics for the Science and Technology 
track. The students were chosen deliberately based 
on their availability. 

The survey was administered to the sample described 
above in the middle of the academic year 2010/2011 
during a regular session of the math class (1 hour) 
counting on the collaboration of the teacher. Subjects 
had received prior instruction on the concept of limit 
by their teacher.

The analysis of students’ answers (interpretations 
of left-sided limit and right-sided limit) is based on 
a content analysis methodology. Firstly, characteriza-
tion of students’ interpretation of left and right-sided 
limits. Secondly, detection of different approaches 
used to the interpretations of one-sided limits. Finally, 
detection of spontaneous attempts related to a further 
analysis of the model.

According to limit models framework, the task de-
scribes a phenomenon with a jump instantaneous 
change. However, the real phenomenon is continuous. 
According to Andresen (2007, p. 2044) is a non-authen-
tic model. We discarded the time taken to inject the 
drug which is very small in comparison with the unit 
of the variable t (days), otherwise the function would 
seem to have a vertical line at t = 1.

It is important to note that the task does not consider 
the whole modelling procedure, because a model is 
given beforehand and students only have to interpret 
the value of the one-sided limits according to the pro-
vided model. However, our results show that some stu-
dents spontaneously focused on other aspects of the 
model and tried to develop or modify it. So we argue 
that in part they were doing modelling activity and 
therefore bringing into play the two last capabilities 
according to PISA 2015 framework.

RESULTS

We describe the interpretations provided by the stu-
dents of left-sided and right-sided limits, also different 

t→1−
t→1+

Figure 1: Graphical model of the situation described on the text
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approaches to conceive them, as well as the modelling 
actions of students apart from the requirements of 
the task.

Students’ interpretations of left-
sided limit from the model 
The different interpretations of the left-sided limit 
can be organised into these main categories, de-
veloped from answers, considering two dimen-
sions: Information included from the graph and 
Contextualization. Answers in “Other Category” re-
lated to each dimension are incomplete or vague.

Dimension 1. How much information from the graph 
is included

Only the value of the left-sided limit. Some answers 
only provide the specific value of the left-sided lim-
it (Example 1).

Example 1. “ = 60% of 0.05 which is 0.03”

Local / pointwise interpretation. Some answers de-
scribe the behaviour of the function around the 
point t=1 (locally) (Example 2), particularly using 
specific terms such as, “to approach,” “to tend,” or 

“to get closer and closer,” or focusing on the possi-
bility of the limit to be reached, while other ones 
focus exclusively on the “left side” of the point t=1 
making explicit the meaning of the left-sided limit 
value (pointwise) (Example 3).

Example 2. “The limit as t tends to 1 from the left 
represents how the amount of drug is decreasing 
along the day and at the end of the day increases 
by 0.05 mg due to the injection”

Example 3. “To know the remaining amount of 
drug in the body after the first dose”

Dimension 2. Contextualization 

Contextualized. Students interpret the meaning of 
left-sided limit in terms of the real situation. The 
clearest interpretations used infinitesimal expres-
sions such as “just before” or “before” (Example 
4), or “at the moment drug has been removed” 
(Example 5).

Example 4. “To know amount of drug that patient 
has before 40% is removed”

Example 5. “As time goes on, body is removing 
drug until the moment in which a 40% has already 
been removed”

Decontextualized. Students interpret the meaning 
of left-sided limit in a purely mathematical context, 
not in the real situation (Example 1).

Table 1 shows the frequencies of each interpretation 
category. These categories are mutually exclusive.

Table 2 shows the frequencies of contextualized and 
decontextualized interpretations of left-sided limit. 

Students’ interpretations of right-
sided limit from the model
The different interpretations of the right-sided limit 
can be organised into the aforementioned categories, 
but there is a new singular category:

To relate the tendency of t to 1 from the right to stepping 
back in time. Some students become aware that tend-
ing to 1 from the right implies “counting” backwards 
in time (Example 4). However, we note the contrary 
fact in the example 5.

Example 4. “As we get close to 1 from the right, we 
see that the drug has just been injected and the 
patient has not eliminated any amount of drug”

Example 5.  “If we take limit from the right, the 
approximate amount of drug will tend to 0 mg”

Dimension 1 Frequencies (N=36)

Only value 2

Local 19

Pointwise 10

No answer/Other 5

Table 1: Frequencies of interpretations of Lim_left related to 

Dimension 1

Dimension 2 Frequencies (N=36)

Contextualized 29

Decontextualized 4

No answer/Other 3

Table 2: Frequencies of interpretations of Lim_left related to 

Dimension 2
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Table 3 shows the frequencies of each interpretation 
category. These categories also are mutually exclu-
sive:

An example of contextualized interpretation of 
right-sided limit is Example 6.

Example 6. “As t approaches 1 from the right we 
see drug has just been injected and the patient 
has not removed any amount of drug”

Table 4 shows the frequencies of contextualized and 
decontextualized interpretations of right-sided limit. 

Different approaches of left-sided and 
right-sided limit interpretations
Even though students clearly identified the value of 
the left-sided limit, we consider that there are two 
different approaches when the right-sided limit is 
interpreted: (a) formal, according to the formal notion 
of right-sided limit, and (b) contextual, according to 

the natural development of the phenomenon along the 
time, as expressed in Figure 2 and Example 5.

Table 5 shows the frequencies of formal and contextu-
al approaches related to students’ pairs of interpreta-
tions (N= number of formal left-sided limit direction 
of approximation).

Unexpected students’ attempts of 
further analysis of the model
Students spontaneously focused on other aspects of 
the provided model (8 out of 36), such as:

To set an absolute start-end of the day. 2 out 8 students 
arbitrarily do not consider the day as a measure of 
time between two instants of time, but like a day in 
the calendar (from 00:00 a.m. today to 00:00 a.m. next 
day) (Example 8).

To consider that the total amount eliminated during 
a day is constant for every day. 2 out of 8 students do 
not consider that the 40% is taken out of the current 
amount of drug in the body, but of 0.05 mg dose, so 
the eliminated amount of drug is constant just like 
the length of the jump (Example 9 and Figure 3).

To extend the model to other days. 7 out of 8 students 
generalised the model to next days (inductive reason-
ing, Example 9). Some of them (3 out of 7) consider 
as well that the velocity of elimination is increasing 
day to day, because the amount of drug to remove in 
the same interval of time (1 day) is higher (Example 
10), but in fact the phenomenon reaches a stationary 
behaviour around 0.05 mg of drug eliminated per day.

Discussion on the arbitrary setting of the hole in the 
graph. Only one student discussed the arbitrary place 
of the hole in the graph, i.e., the image of the func-
tion at t =1, because the limit is independent of what 
happens at the point t =1. He stressed the finite jump 
(Example 11).

Example 8. “ [Lim_Left] For example, let us sup-
pose that the injection is administered at 0:00 
a.m. As the time goes the amount of drug in the 

Dimension 1 Frequencies (N=36)

Only value 1

Local / Tendency as step-
ping back in time

7

Pointwise 11

Tendency as stepping for-
ward in time

13

No answer/Other 4

Table 3: Frequencies of interpretations of Lim_Right related to 

Dimension 1

Dimension 2 Frequencies (N=36)

Contextualized 28

Decontextualized 6

No answer/Other 2

Table 4: Frequencies of interpretations of Lim_Right related to 

Dimension 2

Figure 2: Formal (left) and contextual (right) direction of 

approximation

Approach Frequencies (N=30)

Formal 19

Contextual 11

Table 5: Frequencies of formal or contextual pairs of interpretations
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body is decreasing. 24 hours later the amount 
has reached 0.03 mg…”

Example 9. “[Lim_Left] The patient eliminates 
0.02 mg per day. [Figure 3 provided]”

Example 10. “[Lim_Right] After 24 hours on the 
next day amount has increased by 0.05 from the 
remaining 0.03, that is 0.08. So, each day 1, 2, 3… 
there would be a jump and step by step the patient 
will have a higher amount of drug in his body”

Example 11. “[Lim_Right]…it has been set the 
hole at the end of the first day and the image at 
the beginning of the second one, but it could be 
done anyway. There is a finite jump because the 
one-sided limits are different”

Finally, given the similarity between right-sided limit 
at t = 2 (0.048 mg) and the amount of drug at t = 0 (0.05 
mg), Example 12 could be interpreted as establish-
ing by the student the equality between both values 
graphically rather than by calculation.

Example 12.  “We observe that the patient takes 
the drug and so the amount in the body increas-
es, along the day, the amount of drug is reducing 
until the same level when the first dose was ad-
ministered.”

DISCUSSION AND CONCLUSIONS

According to the aim we draw the following conclu-
sions:

The pointwise interpretations of both one-sided 
limits have been slightly frequent (10 and 11 out of 
36), so we can tell that some students have a routine 
procedural conception of both one-sided limits. On 
the other hand, the local interpretations are more 
frequent for the limit from the left (19 out of 36) than 
are those from the right (7 out of 36), possibly due to 
the natural progression of time that produced some 

conflicts of interpretations as is shown by the answers 
(11 out of 36). Such a kind of conflicts was reported by 
other studies, such as Blázquez (2000). For further 
research, new examples with independent variable 
different from time could be chosen.

It is important to mention the spontaneous references 
to other aspects of the model (8 out of 36), such as the 
invariance of the daily-eliminated amount, the grad-
ual increment of the amount of drug in the body in 
the future as well as the velocity of elimination. Only 
one student suggested that the image of t = 1 could be 
either 0.03 or 0.08. These actions are characteristic 
of modelling activity (OECD, 2013).

Surprisingly, no student discussed about the necessi-
ty of taking into account the time employed to inject 
the drug in order to check the continuity of the real 
phenomenon. For further research, no model would 
be provided in order to elicit students’ own proposals 
and specific classroom proposals could be planned 
according to PISA recommendations.
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This study analyses the results obtained from compar-
ing the paths shown by expert mathematicians on the 
one hand and mathematics teachers on the other, when 
addressing a hypothetical problem that requires the 
construction of a mathematical model. The research 
was conducted with a qualitative approach, applying 
a case study which involved a group of mathematics 
teachers and three experts from different mathematical 
areas. The results show that the process of constructing 
a mathematical model differs between these two groups 
mainly by the type of cognitive processes developed. It 
was observed that the modelling routes depended on 
the graphical representations used by the individuals 
to address the problem. The mental model related to the 
situation plays an important role in the externalisations 
of the participants.

Keywords: Modelling, representations, mathematics 

teachers, paths of modelling. 

INTRODUCTION 

In the context of mathematical modelling (MM), there 
are two approaches: applications and modelling for 
mathematics learning, and learning mathematics to 
develop skills in the construction of mathematical 
models. The first considers the use of modelling activ-
ities as a vehicle for the construction of mathematical 
concepts; the second involves the application of math-
ematics to build models (Niss, Blum, & Galbraith, 2007). 
These two approaches may occur simultaneously or 
in isolation, and involve a difference in the emphasis 
put in the development of teaching strategies.

Speaking of teaching activities necessarily brings 
to mind the teacher-student-task triad, where it is 
unarguable that the mathematics teacher has great 

importance, both fulfilling the role of modeller and 
participating in the preparation and/or selection of 
tasks in order to support the students to understand 
the mathematical concepts involved in the activity. 
Hence, this study focuses on the observation of mod-
elling strategies developed by the teachers when they 
model a hypothetical situation. Our initial hypothesis 
is that mathematicians and mathematics teachers de-
velop different ways of modelling. Therefore, we dis-
cuss some modelling strategies implemented by our 
two study groups: mathematicians responsible for 
the training of mathematics teachers, and in-service 
mathematics teachers receiving training.

In the literature related to strategies activated by ex-
pert and novice modellers when solving a problem, it 
has been observed that novice modellers do not take 
enough time to understand the situation in question, 
thus experiencing difficulties in selecting the rele-
vant information and using it in the construction 
of a suitable mathematical model (Crouch & Haines, 
2004; Crouch & Haines, 2007, Bransford et al., 2000). 
Therefore, it becomes clear that some of the obstacles 
in the construction and interpretation of mathemat-
ical models are related to difficulties in accessing ap-
propriate mathematical concepts and procedures in 
order to find a solution.

The modelling process of novices shows a trend to-
ward the use of linear rather than cyclical modelling 
strategies, while the validation of the obtained models 
is not a relevant element to them. As a result, they 
have difficulties recognising the model associated to 
a given situation and fail to relate their results to the 
situation that gives rise to it. On the other hand, expert 
modellers access relevant knowledge more efficient-
ly. Moreover, some authors estimate that it is likely 
that many years of practical experience are needed 
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to become to be an expert modeller (Haines & Crouch, 
2010; Crouch & Haines, 2007). However, there is little 
research that focuses on the processes and strategies 
that novices and experts develop when involved in 
modelling activities. Therefore, we aim to contribute 
to previous research by showing some aspects of the 
construction of a model that both groups (experts and 
novices) use. We identify some elements that permit 
them to move more effectively through the various 
stages or nodes of modelling.

In the context of modelling as a vehicle for learning 
mathematics, a general question arises: Are teachers 
able to convey to their students the strategies that they 
themselves develop to model a situation? This is under 
the assumption that some of the steps that comprise 
a modelling path take place in the mind. Therefore, 
if the teachers are not aware of what they are doing 
mentally when modelling a situation, they will be 
incapable of conveying their thought process to the 
students. Therefore, the objective of this research is 
to identify some of the processes that mathematicians 
and mathematics teachers in training develop in order 
to help them to reflect on their own process.

Our research was conducted with two groups. One 
was a group of expert mathematicians who conduct 
research in pure mathematics and also participate in 
in-service teacher training. They are not necessarily 
involved in modelling activities as part of their re-
search. The other group consisted of mathematics 
teachers who work at secondary or college level, they 
received a solid background in mathematics as part 
of their undergraduate training, but have little expe-
rience in the development of modelling tasks in the 
classroom. The intention of the study is not to make 
comparisons of the modelling competence between 
the two groups; rather, we aimed to identify the tools 
and representations that the members of each group 
use. This knowledge may serve as a guide to identify-
ing those aspects that would be appropriate to develop 
both in in-service teachers and in pedagogy students. 
We argue that one way to address the problems related 
to the transition of students through the modelling 
cycle is to identify the strategies used by mathema-
ticians (experts) and try to have students (novices) 
develop the same tools and skills. This becomes es-
pecially relevant since so many mathematicians are 
involved in training future mathematics teachers. It 
is clear that knowledge generated in the interaction 
between these two groups is what is ultimately passed 

on to students; so it is desirable to identify and ana-
lyse the strategies developed in each of our groups. 
Therefore, the question that drives our research is: 
What differences are there between the strategies 
mobilized by mathematicians to model a situation and 
those mobilized by mathematics teachers? 

We present the results of analysing the modelling 
paths (Borromeo-Ferri, 2007) developed by the par-
ticipant groups, taking into account the strategies 
and mathematical tools they rely on. 

CONCEPTUAL FRAMEWORK

The main challenges that arise when modelling a sit-
uation are related to the transition from reality to the 
world of mathematics and to the reinterpretation of 
a Mathematical Model (MM) in terms of reality. For 
an expert, reinterpretation may be trivial, but not so 
for novices (Crouch & Haines, 2004). In connection 
with the transition from reality to the mathematical 
model, Borromeo-Ferri (2006) identified some stages 
in a modelling process, focusing mainly on the anal-
ysis of the cognitive processes involved, where she 
distinguishes four phases: Real Situation (RS), Mental 
Representation of the Situation (MRS), Real Model 
(RM) and Mathematical Model (MM).

The Real Situation (RS) represents the situation de-
scribed in the problem; it can be an image or a text. 
When going from the RS to the Mental Representation 
of the Situation (MRS) the individual somehow un-
derstands the problem more, and she or he mentally 
reconstructs the situation; even if they do not fully 
understand the problem, they can start working on it.

MRS may be different in each individual, depending 
on his or her mathematical thinking style1. It can be 
visual in relation to the experience, or attention can 
focus on numerical data and relationships given in 
the problem, depending on the associations that the 
individual chooses while understanding the task. In 
addition, the MRS can differ depending on the role 

1 Mathematical thinking style is defined as: “The way through 

which an individual prefers to present, understand and think 

mathematical facts and make connections between certain 

internal imaginations and/or outsourced representations” 

(Borromeo-Ferri, 2012). In individuals aged between 15 and 

16 years three different thinking styles have been identified: 

visual, analytical and integrated thinking.
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mathematical activity has for the individual profes-
sionally speaking. Borromeo-Ferri (2006) identifies 
two aspects that mark the difference between RS and 
MRS: 1) unconscious simplifications of the task, and 
2) personal choice on how to deal with the problem. 

In the passage from the MRS to the real model (RM), 
more conscious simplifications and idealisations take 
place in the individual, since in MRS phase the indi-
vidual has already made decisions that influence the 
filtering of information. The transition process may 
require extra-mathematical knowledge, depending 
on the type of task.

The RM phase is related to MRS, as RM is practically 
built internally and external representations are the 
Real Model depending on the statements that the in-
dividual makes when externalising the model. When 
in transit from RM to the Mathematical Model (MM), 
an individual’s mathematisation progress appears, in 
which, according to the task in hand, it may be neces-
sary to also use extra-mathematical knowledge.

The MM phase consists of external representations in 
mathematical expressions or drawings. The expres-
sions of the individual are more related to mathemat-
ical facts and to a lesser degree to reality.  

The transitions that occur between these phases are 
crucial since the externalisation that the individual 
expresses through images, mathematical language 
and statements are representations of mental activi-
ties, which also depend on previous experience and 
knowledge.

In the transition from MM to the mathematical re-
sults (labelled 4 in Figure 1), an individual’s mathe-
matics skills are put into play, such as mathematical 
resources and strategies to analyse and explore the 
model and to obtain results or conclusions. The math-
ematical results consist of writing the results of the 
model. The transition (labelled 5) from mathematical 
results to real results is given by the reinterpretation 
of the solution in terms of the problem. Borromeo-
Ferri (2006) notes that individuals often make this 
transition unconsciously.

In the Real Results phase, the mathematical results 
are discussed concerning their correspondence to 
the situation. During the validation of the results, the 
individual seeks relationships between his or her re-
sults and MRS, depending on what kind of validation 
he or she chooses, either intuitive validation or knowl-
edge-based validation.

The items described play a fundamental role in 
the constitution of our conceptual framework. 
Mathematicians and mathematics teachers do not 
follow the same modelling route, since this is deter-
mined by their experience and expertise in the subject 
area and their thinking style, among others things. 
Blum and Borromeo-Ferri (2009) have shown how the 
individuals pass through different phases focusing on 
some phases and ignoring others. We add that visual 
imagery (Aspinwall, Kenneth, & Presmeg, 1997) also 
influences the way in which the individual moves 
through the modelling cycle, this is because some im-
ages may persist in the mind limiting other ways of 
thinking. Our interest is to document the mathemat-

Figure 1: Modelling circle (Borromeo-Ferri, 2006)
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ical processes that take place when our observation 
groups address the modelling of a situation.

METHODOLOGY 

This is a qualitative research study (Miles & Huberman, 
1994), aimed to analyse the behaviour of participants 
when they model a hypothetical situation. The data 
analysis is based on observation, interviews and writ-
ten material of the individual work of the participants 
and their arguments while solving the proposed task. 

Due to fact that cognitive processes are generally not 
directly expressed by the individuals, efforts were 
made to document the mental processes of the par-
ticipants by analysing individual modelling routes 
(Borromeo-Ferri, 2010, p. 112). We analysed verbal 
expressions and representations externalised by the 
participants when building a mathematical model 
by asking questions such as: What are you thinking? 
Why did you do this? How can the situation be related 
to the representation?

Participants: Three expert mathematicians (Roger, 
Hugo and Evan) and 20 teachers in training on a 
Masters’ program in Mathematics Education. All 
were given the same mathematical task. The math-
ematicians solved the task individually. They were 
asked to verbally express their thought processes and 
were interviewed regarding procedures that were 
unclear to the researchers. The teachers solved the 
task individually and expressed their reasoning and 
solving processes to their classmates.

The task was an adapted version of a Vasilyev and 
Gutenmájer’s (1980) task, which can be solved by us-
ing knowledge of synthetic geometry and/or analytic 
Cartesian geometry:

A ladder rests against a wall; on the ladder, there is a cat. 
The ladder begins to slide on the ground, always touch-
ing the wall. What is the path that the cat describes? 
What would the path be if the cat were not sitting in the 
middle of the ladder?

DISCUSSION OF RESULTS 

The analysis is organised into 4 sections: 1) 
Understanding the problem, which includes first 
ideas and impressions, 2) Searching for strategies to 
address the problem, 3) Model building, 4) Obtaining 

results and conclusions. The structure of the analysis 
is consistent with the phases of the cycle of modelling. 
The first block groups the transition from RS to RM. 
Block two analyses the externalisations made by the 
individuals, derived from the transition from MRS to 
RM. The third block considers the process of mathe-
matisation. The fourth block includes transitions 4, 
5 and 6 (Figure 1).

1. Understanding the problem – first 
ideas and impressions
This task conditions the solution process through 
the use of pictorial diagrams to explain the situation 
or to represent the problem, the pictures drawn by 
individuals bring to life their visual imagery related 
to the locus plotted by the dynamics of the situation. 
The mathematicians almost immediately moved the 
problem to a mathematical representation (Figure 2a) 
and focused on finding the mathematical formalism. 
All the teachers supported their solution processes 
with the use of diagrams to get an idea of the move-
ment described in the situation and remained in this 
phase for an extended period of time (Figure 2b). 

The transcriptions provide evidence of the simplifi-
cation and idealisation that the teachers carried out. 
For example, they indicate that the cat is considered as 
a point, which has no weight, that there is no friction 
between the ladder and the floor, etc. These aspects 
show the transition between MRS and MR, highlight-
ing the simplifications that the individual consciously 
performs. The mathematicians do not offer explana-
tions of the characteristics of the phenomena or the 
elements that are idealised to build the model. They 
only allow us to observe the transition between the 
phases of the Real Model (RM) and the Mathematical 
Model (MM); this may be because the mathematicians 
immediately look at this situation as a mathematical 
problem. It appears that the teachers make more con-

Figure 2a: Diagram made by 

Roger (mathematician)

Figure 2b: Diagram made by 

one of the teachers
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nections with reality while mathematicians quickly 
dissociate themselves from it.

2. Searching for strategies to 
address the problem
It is difficult to identify the exact moment when the 
participants begin to search for solution strategies 
because in many cases this process is determined by 
the understanding of the situation and the simplifi-
cations applied to it. These strategies can be mental 
operations that cannot be observed until the individ-
ual externalises them verbally or in written form. For 
example, Roger represented the problem geometrical-
ly (Figure 2a) and showed some aspects of his strategy 
only in the interview:

Researcher: What did you think first? 

Roger:          Of looking at whether the distance of this 
point [d] to the point that I drew [d and e] 
remained constant; for example, to see if 
that was a constant [segment cd],... then 
I tried to complete this figure like this, 
to see if the symmetry helped.

On the other hand, after the teachers analysed the 
problem and got a sense of the trajectory of the mid-
point, they expressed different strategies for solving 
the situation. For example, one of them addressed 
the problem by placing it in a coordinate system and 
solved it with the use of tools of analytic geometry 
(Figure 3a). Another teacher turned to synthetic ge-
ometry by observing congruence between triangles 
(Figure 3b).

In this block teachers already knew the path of the 
cat so they focused on finding different strategies to 
determine the algebraic model. Many of their strate-
gies did not help them build the algebraic model and 

they had to redefine how they achieved the solution. 
Conversely, we note that two mathematicians appar-
ently reconstructed the locus while they were reading 
the problem.

3. Model building
The search for solution strategies and model build-
ing are closely related. When an individual follows a 
solution strategy and does not find a model that she/
he considers relevant, he/ she tends to propose a new 
strategy, thus creating a cyclical process between un-
derstanding the problem, finding solution strategies 
and building the algebraic model. This transition was 
easier to observe in teachers, as the mathematicians 
went directly to the mathematical representation of 
the problem.

The teachers initially identified qualitative proper-
ties of the situation, and then they used geometric 
tools and located the problem in a coordinate system, 
seeking to obtain algebraic expressions that are tradi-
tionally associated with a locus (equation of the ellipse 
and circle); an example of this is seen in Figure 3a.

Two of the mathematicians offered a solution closer 
to the representation built in grasping the situation. 
Later they mobilized their mathematical resources for 
the construction of a mathematical model, showing 
preference for the use of concepts related to synthetic 
geometry. Only as a last resource they used analytic 
geometry tools. 

Two moments in the construction of the mathematical 
model were identified: one related to the visual iden-
tification of the locus, and the other after the visuali-
zation and related to the construction of the algebraic 
model. Both moments are manifested in the transition 
from the mental representation of the situation (MRS) 
to the Mathematical Model (MM). 

Figure 3a: Solution strategy show by a teacher using analytic geometry Figure 3b: Solution strategy using 

congruence between triangles
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4. Getting results and conclusions
Finally all participants identified the path of the 
object. Different strategies were observed. Roger, al-
though he knew the locus, did not refer to it, until he 
translated the situation to a geometric representation. 
Hugo did this during the construction of the geomet-
ric model. The teachers were aware of the fact that it 
was the locus of a semi-circle or an ellipse only after 
plotting different graphic representations and obtain-
ing a mathematical model to represent it.

We summarize our main results in the next table.

CONCLUSIONS 

The mathematicians and teachers use diagrams as a 
strategy to solve the problem. While Hugo and Roger 
mentally built the path generated by the movement 
based on its geometric properties and Evan found the 
locus by using additional geometric and dynamic con-
struction, the teachers were not able to imagine the 
locus without the support of pictorial representation. 
For teachers the idea of a   locus was also constituted 
by writing an analytical expression. 

We found evidence of some differences in the men-
tal representation of the situation (MRS) and the real 
model (RM) constructed by each individual. In the 
case of some of our participants, it can be wrong and 
largely mediated by their intuition of the behaviour of 
the situation, sometimes the erroneous visual image-

ry is persistent which leads to difficulties in obtaining 
the algebraic model. The fact that the mathematicians 
and teachers show different approaches to the model-
ling process can be associated with their experience 
and their domain of mathematical knowledge, but it 
can also be related to the way in which everyone is 
able to abstract the mathematics relationships in a 
problem. These aspects are links that determine the 
transitions of the participants in the modelling cycle 
in an efficient way.

Different strategies were identified when observing 
how the participants validate their results. For Hugo 
and Roger validation is associated with their prior 
knowledge of the locus and to a lesser degree with the 
verification of the mathematical procedure. For the 
teachers validation was based on the association of 
the algebraic model with its graphical representation.

We have shown some differences in the routes fol-
lowed by mathematicians and mathematics teachers 
when solving a simple hypothetical problem, of course 
given a more complicated problem the differences 
would become more pronounced. In the educational 
context, we believe it is necessary to make teachers 
aware of the ability of abstraction possessed by some 
individuals (as characterised by the corresponding 
transition between the RS and MM phases), in order 
that they can make a rational effort to show their stu-
dents the internal thought processes that occur when 
modelling   a particular situation.

Mathematicians Math teachers

1. Understanding the 
problem -first ideas and 
impressions

They immediately visualise and construct a 
mathematical representation. They do not 
express the simplifications of the situation. 
It is only possible to observe the transition 
from RM and MM.

They use pictorial representations to help 
their understanding of the situation. 
They externalise the simplifications made 
to build the model. It is possible to observe 
the transition between MRS to RM. 

2. Searching for strate-
gies to address the prob-
lem

The strategies are related to the analysis of 
the mathematical properties of the situa-
tion. 

The strategies are directed toward the alge-
braic solution of the problem. 

3. Model building Use of the Pythagoras and Thales theorem. 
They showed a preference for concepts 
associated to synthetic geometry and, as a 
last resort they used tools from analytical 
geometry. 

The majority of the models were construct-
ed using tools from analytical geometry.

4. Getting results and 
conclusions

Two of the participants reconstructed the 
geometric locus parallel to the construc-
tion of the MM. 

They were aware of the geometric locus af-
ter drawing various scenarios. In some oc-
casions they drew it until they determined 
the corresponding equation.

Table 1: Summary of results
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Mathematical Competence Theory and the 
Anthropological Theory of the Didactic each offer dif-
ferent frameworks for the analysis and design of “mod-
elling” as a central component of mathematics teaching. 
Based on two comparable cases from each research pro-
gramme, we investigate how these differences appear 
in concrete design work, and what their practical con-
sequences may be.
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WHAT IS MODELLING AND DOES IT MATTER?

The fact that primary and secondary school students 
all over the world study a subject called “mathemat-
ics”, with relatively similar contents and methods, is 
intrinsically linked to certain assumptions about the 
relevance if not necessity of this subject for every cit-
izen in modern society. The formulation of these as-
sumptions change over time and they are of course the 
object of constant debates, but an invariant common 
contention seems to be the utility of what is taught in 
the actual or future lives of students, or at least its roles 
outside of school mathematics.

One formulation, which has gained importance in the 
mathematics education community over the past 30 
years, is based on the notion of mathematical model-
ling, defined roughly as “translations between reali-
ty and mathematics” (Blum & Borromeo-Ferri, 2009, 
p. 45). More complex descriptions of the modelling 
process, usually in the form of a modelling cycle (e.g., 
ibid, p. 46) have become commonly known and used in 
research into the ways in which these translations can 
appear in the school subject. It is a common assump-
tion among researchers within this line of research 
that students’ experience with all steps of the mod-
elling cycle is essential to the justification of school 
mathematics in society (ibid, p. 46). In particular, Niss 

and colleagues (2002) proposed to consider modelling 
competence – the students’ capacity to carry out math-
ematical modelling – as one of eight universal compe-
tence goals for the teaching of mathematics, linked to 
other goals equally defined in terms of competences. 
Their mathematical competence theory (MCT) thus 
integrates and develops earlier work on mathemat-
ical modelling, as an educational activity and goal, 
in a comprehensive framework for the analysis and 
design of school mathematics in a broad sense.

Another perspective on modelling stems from inquir-
ies into the nature of mathematics as a school subject: 
how it is related to the science called mathematics, and 
more generally to “mathematical practices” appearing 
in society outside school? The anthropological theory 
of the didactical (ATD) emerged from the notion of 
didactic transposition (Chevallard, 1985) according to 
which school mathematics is a cultural set of practices 
and knowings which are inseparable from the insti-
tutions (schools) in which they are taught and learnt. 
In this theoretical framework, “mathematics” and 

“reality” are not a priori defined or distinguished; all 
human activity and knowledge is described in terms 
of praxeologies (Chevallard, 1999). Modelling has a 
wider meaning in this framework, as the elaboration 
of praxeologies in one domain in view of studying one 
or more questions in another domain. The school insti-
tution refers to this as “intra-mathematical modelling” 
when both domains are recognized as belonging to 
school mathematics, e.g. if school algebraic praxeol-
ogies are elaborated to study a question from school 
geometry (García, Gascón, Ruíz-Higueras, & Bosch, 
2006). In ATD, modelling thus serves to create mean-
ingful links between otherwise separate praxeologi-
cal domains, whether or not these are considered as 
belonging to school mathematics or not. 

The two theories are related to specific design formats 
which are often used for the design of teaching that 
involves modelling (cf. Miyakawa & Winsløw, 2009, 
for the distinction of theory and design format). In 
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MCT, it is problem oriented project work (PPW), in 
which students are to develop their competences 
while experiencing some or all steps in a modelling 
cycle (Blomhøj & Kjeldsen, 2006). In ATD, it is study 
and research paths (SRP), departing from one or more 
questions; the further development is sometimes 
represented with a tree like “map” of derived ques-
tions and praxeologies which students did construct 
while working with the questions (Barquero, Bosch, 
& Gascón, 2008; Jessen, 2014). 

At this point, we have only hinted at some of the differ-
ences between two perspectives on modelling. The re-
search question which interests us is a theoretical, but 
also quite practical, one: What differences, if any, does 
it make for the design of new teaching practices, whether 
the theoretical control apparatus comes from MCT or 
ATD? In particular, are there differences between uses 
of the design formats PPW and SRP which can be related 
directly to the different theoretical notions of modelling 
found within MCT and ATD? 

We shall take an inductive approach to this question: 
we first present two cases of design of modelling activ-
ities for students in Danish upper secondary school, 
constructed from each of the two perspectives but 
otherwise similar in contents. Then we analyse the 
differences in view of providing tentative answers 
to the research question. To prepare that analysis, 
the presentations of the cases focus on the following 
variable features of modelling activities: 

(V1) Practical meaning of “modelling” in the activity, 
as described by the authors

(V2) Goals for the activity (e.g. for student learning) 
and their assessment 

(V3) Organisation in time of the activity 

(V4) Distribution of roles among students and teacher(s), 
in particular the way in which student autonomy is 
controlled (limited, furthered, differentiated, etc.)

(V5) Adaptation to local conditions and constraints 
(features of the activity which result from these ad-
aptations, including choices made for (2)–(4)).

The case presentations given below are based on more 
extensive studies (Jessen, 2014; Blomhøj & Kjeldsen, 
2006). V5 is further treated in these papers.

CASE 1: A STUDY AND RESEARCH PATH

The first case we will present comes from an exper-
iment with study and research paths (SRP) in the 
context of Danish high school students’ study line 
reports written in the second year of high school (a 
study line report is a bidisciplinary report students 
write in the second year as a preparation for the bi-
disciplinary ”study line project”, which is a high stake 
final exam in upper secondary school in Denmark, 
cf. Jessen, 2014, p. 2). The reports are about 15 pages 
long accounts of an autonomous work done by one or 
two students, within 6 weeks and with very limited 
access to help from teachers (V3). The study line of 
the students determines what disciplines are to be 
involved in the report. Before the 6 week period, the 
teachers formulate a set of questions for the students 
to work on (V4). For the study line of the experiment, 
the theme should combine the disciplines mathemat-
ics and biology with equal weight. These circumstances 
are constraints (V5) which affect the concrete design 
and in particular the variables V1-V4. 

The aim for the study and research path (V2) was for 
students to develop new praxeologies in the domains 
of nervous physiology and differential equations by 
working with a certain generating question, given by 
the teacher together with some supplementary ques-
tions to ensure the involvement of both disciplines:

Q0: How can a patient be relieved from his pain by 
painkillers like paracetamol  – how does deposit 
medication work and how can we model this mathe-
matically? Q1: Explain the biological functioning and 
consequences of taking paracetamol orally versus tak-
ing it intravenously. Q2: Create a mathematical model 
using differential equations that illustrates the two 
processes and solve the equations in the general case. 
Q3: Give a concrete example, where the patient is re-
lieved from pain and estimate from your own model 
how often paracetamol has to be dosed – which param-
eters (absorption, elimination factor, bioavailability) 
are important to be aware of? Q3,1: Does it make any 
difference whether the dose is given oral or intrave-
nously? Use your models while giving your answer. 
(Translation of the original questions in Danish)

Notice that in ATD, modelling means the elaboration 
of praxeologies in the two domains – done by students 
in view of answering the generating question (V1). 
However, in the assignment, “mathematical model” 
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refers to a more restricted sense, which is closer to the 
notion of model found in MCT and, at least in outline, 
is the one found in official documents and text books 
for Danish high school.

The above assignment is based on a generating 
question Q0 which the students can immediately un-
derstand, but not answer. In general, a generating 
question should be so strong, that it is necessary for 
the student to formulate derived questions Qi, each 
representing a branch of inquiry, in order to answer 
Q0. The answers Ri to the derived questions adds up 
to a final answer of Q0 (Chevallard, 2012, p. 6). At the 
same time it is purposed that the generating question 
must be “alive” in the sense that students should be 
able to relate the question to things they perceive as 
interesting and real. These aims were deliberately 
pursued by the teaching design, knowing that sever-
al students in the class wanted to study medicine or 
similar after graduating. 

The derived questions formulated by the teachers 
serve as supports for the students’ study process (V4). 
In general, it is crucial that the students are not left 
with “big questions” that are unrelated to their praxeo-
logical equipment (Chevallard, 2012, p. 11); the relation 
to praxeologies from specific disciplines must be en-
sured. This was even more crucial in our context since 
no teaching activity was accompanying the SRP work 
of the students. Some students met after classes and 
formed their own working groups discussing strate-
gies for answering the questions. The teachers were 
allowed to answer questions during the six weeks, 
and in order to keep track of the students working 
progress, the exchange of questions and answers was 
only permitted in writing (V4). For the same reason, 
students were asked to provide their immediate an-
swer to the generating question Q0 when it was handed 
out (without the derived questions Q1–Q3,1). After that, 
the entire assignment was given to them. After two 
weeks, and again two weeks later, the students were 
asked to answer the following questions in writing:

What is your answer to the generating question 
right now? What have you done to answer the 
question? What are you planning to do next in 
order to come up with more fulfilled answers? 

We cannot go into all the details of the analysis of this 
SRP, neither before nor after the experience (the latter 
being analyses of students’ reports, cf. Jessen, 2014). 

However we notice that to construct the “mathemat-
ical model” asked for in Q0, students must somehow 
examine the relationship between the amount of drug 
given, and the distribution of the drug in the body. 
How the pain is cured and how the drug is eliminated 
must be answered by praxeologies from the domain of 
physiology. The latter leads to consider that the pain 
is relieved in relation to how often the drug is given, 
the size of the body and the pain perception. Thus, 
the progressive development of a mathematical prax-
eology (involving tasks, which can be solved using 
techniques available to the students, e.g., CAS-based 
solution methods for differential equations) is closely 
articulated to the development of a biological praxe-
ology. The modelling process in terms of ATD is not a 
question of following certain steps, it is an individual 
process where the students uses their praxeological 
equipment to investigate domains, form new ques-
tions, answer them with existing or new praxeologies 
unfolding the disciplinary organisation at stake (V1). 

The intermediate answers from the students showed 
a variety in their working progress, which reflected 
different praxeological equipment among the stu-
dents. Some students responded the first time, that 
they needed to know the half-life of the painkillers 
this indicates, that the students suspect, that there is 
a time dependence in the model, and that the model 
includes an exponential function. During mathematic 
classes they have seen that exponential equations are 
part of the solution to many differential equations. 
This implied, that they were trying to relate the gen-
erating question to the newly developed praxeologies 
in mathematics. Also they studied relevant medias 
since they were able to formulate relevant search top-
ics. The students formulated derived questions such 
as the following: Q1: How is pain registered? Q2: How 
does paracetamol relieve pain (pharmaco dynamic)? 
Q4: How can the dosing be modelled mathematically 
based on the biological knowledge? (Jessen, 2014, p. 11). 
The entire analysis shows that the students are con-
stantly narrowing down their inquiry, by alternately 
studying the questions through physiology and dif-
ferential equations.

The teacher involved was sure that for some students 
the generating question would not suffice to develop 
a reasonable model. It was for this reason that a part 
of the derived questions was handed out before the 
independent work of the students. Some of the stu-
dents would otherwise not have been able to develop 
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new praxeologies in the intended domains. With these 
more precise questions, they were able to identify rel-
evant media (web-pages etc.) and although some of 
them uncritically adopted models constructed by oth-
ers, they were all able to make use of them for simple 
calculations (e.g. of the amount of drug in the vein of 
a patient) (Jessen, 2014). Thus their modelling of the 
intended praxeologies was not as richly developed as 
in the previous case. 

CASE 2: A PROBLEM ORIENTED 
PROJECT ON ASTHMA MEDICINE

Our second case presents a PPW on mathematical 
modelling related to the administration of asthma 
medicine. In MCT modelling competency is defined 
(V1) as 

A person’s insightful readiness to autonomously 
carry through all aspects of a mathematical mod-
elling process in a certain context and to reflect 
on the modelling process and the use of the model 
(Blomhøj & Jensen, 2003, p. 127).

The key words are autonomy, modelling process, re-
flections. PPW is particularly well suited to foster 
students’ autonomous participation in the model-
ling process (Blomhøj & Kjeldsen, 2011). The goal for 
students’ learning (V2) in MCT is to develop and/or 
enhance their competency.

A mathematical modelling process can be depicted 
analytically as a cycle consisting of six sub-process-
es (ibid., p. 387). Concrete modelling activities, like 
the case presented here, may have a variety of more 
specific goals for students’ learning (V2) in order to 
adapt to local conditions and constraints (V5).

In a PPW, students work in teams with a problem for 
a longer period of time to produce a product repre-
senting the team’s solution (V2+V3). The central idea 
is that the problem should function as the “guiding 
star” for all decisions made by the students in the 

sense, that all decisions should be justified by their 
contribution to the solution of the problem. This pro-
vides the students with (parts of ) the responsibility 
of directing the project. It is crucial that the students 
are involved in (most of ) the decisions taken in the 
modelling process and become involved in reflections 
upon the different steps in the modelling cycle. PPW 
opens for a distribution of roles among students and 
teacher(s) that makes it possible to direct the students’ 
autonomy e.g. through specific requirements to the 
product of the project (V2+V4). PPW has the potential 
to foster in the students all the key elements in devel-
oping modelling competency which makes this format 
an obvious pedagogical choice in MCT. 

The asthma project was designed by two teachers for 
first year students in mathematics in high school. The 
students were to: 1) work more independently than 
usually over a longer period (ten mathematics lessons 
of 1.5 hour each and a similar amount of homework); 
2) develop new theory by working with modelling 
within a subject area (exponential growth) they hadn’t 
worked with before; 3) work with a more complex and 
authentic problem for which they did not possess a 
standard method or technique such that the modelling, 
the mathematization, the interpretation of the results 
and the reflections about the modelling process and 
the use of the model became part of the project; 4) an-
alyse a set of data in order to build a mathematical 
model; 5) use familiar concepts such as graphs and 
equations for functions in a concrete context; 6) de-
velop their mathematical communication skills; 7) use 
ICT throughout the project. (V2) 

These aims were achieved through a strict organi-
zation of time (V3) and a setup that allowed for and 
supported the students’ autonomy (V4). The teachers 
divided the project into four phases (Figure 1). The 
teachers controlled phase 1–3, and the students con-
trolled phase 4. The aim of the first three phases was 
to prepare the students for their independent work 
in phase 4. In phase 4, the teachers took on the role of 

Figure 1: The four phases of the design. 1 module corresponds to a 90-minute lesson (Blomhøj & Kjeldsen, 2006)
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consultants (V4) that the students could ask for advice 
on specific problems. 

In phase 1, the teachers introduced the students to a 
cyclic representation of the modelling process. The 
teachers used the process to inform the students about 
the various elements in mathematical modelling with-
in MCT, and they asked the students to be aware of and 
to explain where in the modelling process they were 
at any given stage in their work. Hereby, the teachers 
made sure that the students became engaged in pos-
ing the modelling problem, constructing the model, 
solving the mathematical system and suggesting solu-
tions to the problem (V2, V3 & V4/V5). In phase 2, the 
teachers trained the students’ competence in posing 
mathematical modelling problems through discus-
sions in the class room guided by the teachers (V1/V5).

The problem from phase 2 was given to all students 
with some data (Figure 2). The exercises in phase 3 
were not included in the students’ independent work. 
They served as inspiration and illustrated the level of 
mathematics, communication and documentation ex-
pected in phase 4. The product of the project work was 
a report, handed in by each group after phase 4 (V4/
V5). The teachers formulated a set of requirements for 
the report to direct the students’ autonomy in phase 4. 

ANALYTIC COMPARISON OF THE CASES

A synthetic presentation and comparison of the two 
cases can be achieved using the five variables identi-

fied in the first section and indicated as they are “filled” 
by the above presentations (see Figure 3).

Despite evident similarities between Q0 in case 1, and 
the problem (Figure 2) underlying case 2, the contexts 
and constraints are quite different: in case 1, the stu-
dents must work independently most of the time, and 
have to combine the two major disciplines (mathemat-
ics and biology) of their study line; while in case 2, the 
work is done as part of the regular teaching of one 
discipline (mathematics). In the Danish regulations 
for high school, mathematical modelling more or less 
understood as in MCT forms part of the competency 
goals for mathematics as a discipline (Niss et al., 2002); 
the bidisciplinarity required for study line projects 
is a more diffuse and general principle for the study 
line projects while in the case of mathematics, it is 
also often associated with the same notion of mathe-
matical modelling. Despite these differences coming 
from the contexts, some more principal differences 
arising from the theoretical background of the two 
cases can also be identified.

Differences coming from the design formats
The variables V2–V4 are clearly shaped by the design 
formats. In PPW, everything begins with a problem 
defined in more or less commonly accessible terms, 
which should then be sharpened and translated into 
mathematical terms, in order to allow for applications 
of relevant mathematical machinery, either known in 
advance or developed through the project work. The 
PPW in itself does not suggest explicit structuring 

Figure 2: The problem and the data (Blomhøj & Kjeldsen, 2006)
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and requirements regarding the students’ work be-
sides the fact that the problem should be formulated 
in such a way that it can function as a guide. The for-
mulation of the problem is part of PPW. Hence, it is 
left to the teacher to set the “scene” for the students’ 
work within the given context, depending on his 
or her learning goals. A SRP begins with a question 
which, like the problem in PPW, is too open to allow 
for immediate, complete answers. In order to proceed, 
students need to work with subquestions arising from 
supplementary assumptions, suggested by the orig-
inal question or by some first, intuitive hypotheses 
or answers. Both design formats leave the teachers 
with tools for directing the students work: in PPW, the 
structuring can allow students more or less autonomy 
depending on how the teacher choose to structure 
the work, and through specific requirements for the 
product – in this case a report - the students should 
deliver (Blomhøj & Kjeldsen, 2006, p. 168), while in 
SRP, the teacher may supply students with some de-
rived questions to start with, some specific media to 
study, etc. (Winsløw, Matheron, & Mercier, 2013, pp. 
271–282). In both cases, an initial planning may be 
adjusted to the work of the students, with the tree 
diagram of the SRP and the learning goals and (parts 
of ) the modelling cycle as the main tools for control 
of these adjustments of the initial design.

Differences coming from the theories
MCT assumes a clear and evident boundary between 
mathematical and extra-mathematical phenomena, 
which implies (through the processes of problem for-
mulation, demarcation of a domain of inquiry, and 

systematization), the construction of an object to be 
modelled. This object is then translated into a math-
ematical representation, which in daily work is also 
often referred to as the model. The preparation and 
conduct of the PPW can thus be structured accord-
ing to the movements from the problem to the math-
ematical domain, and back – with an explicit notion 
of being “outside” and “inside” mathematics. ATD, on 
the other hand, is based on a general theory of human 
practice and knowledge, in which the organisation 
of praxeologies into disciplines is merely an institu-
tional construction; the boundaries of what is called 

“mathematical” are not universal but contingent. 

In MCT, it is part and parcel of mathematics teach-
ing to develop students’ explicit knowledge and ex-
perience of how mathematics (as a universal entity) 
applies to problems outside of that domain. In ATD, 
praxeologies are simply answers to questions which 
have been developed sufficiently to allow students to 
find culturally established answers through media 
or through research based on praxeologies they are 
familiar with; the main feature of modelling to expe-
rience is the development of praxeologies through 
this dynamics of study and research, independently 
of institutional classifications into disciplines of the 
praxeologies.

These theoretical differences have an impact on prac-
tice. In PPW based on MCT the disciplinary contents 
are in principle subordinate to the problem. The chief 
purpose is to reach a satisfactory solution to the prob-
lem through realisation of (specific features of ) the 

Case 1: study and research path Case 2: problem oriented project work

V1 Starting from a big question Q0, develop derived ques-
tions and praxeologies which can answer these and 
in the end, at least partially, Q0. Didactic theory is not 
taught.

Starting from a problem P outside mathematics, refor-
mulate it as a mathematical problem, treat this, and 
evaluate solution relative to P. The modelling process 
is explicitly taught.

V2 Develop specific bidisciplinary praxeologies as an-
swers to Q0.

Modelling competency through phases of modelling 
of data and problem.

V3 Six weeks of independent work (individually or in 
pairs) based on Q0 and some derived questions, with 
encouragement to search for media.

Project team work for ten 90-minute modules and 
similar amount of homework, structured by phases of 
modelling as shown in Figure 1.

V4 Teachers deliver Q0 and some derived questions; 
students do study and research on these, with very 
limited access to teachers, to prepare their study line 
reports.

Teachers structure the work of teams according to 
the phases, with most autonomy required in the last 
phase (once mathematical formulation and expecta-
tions are established).

V5 Regulations of study line reports (combining math 
and biology)

Aims for regular mathematics lessons, which include 
mathematical modelling.

Figure 3: Syntheses of didactic variables as set by the two cases
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mathematical modelling process including choosing 
disciplinary theory relevant for solving the problem. 
The mathematical content brought into play will de-
pend on the mathematical competencies and knowl-
edge of the modellers and their abilities to expand 
these.  In the ATD approach to modelling, a more or 
less strongly directed SRP can be planned based on 
a priori analysis of its potential to realise certain 
institutionally defined disciplinary praxeologies as 
answers to the initial question. This could make the 
ATD approach to modelling implemented through 
SRP more attractive in institutional contexts where 
the disciplinary focus is strongly constrained. On the 
other hand, as we have argued and illustrated, the 
choice of design has theoretically determined conse-
quences for the kinds and qualities of mathematical 
modelling activity, which students get to engage in. 
For further investigation one might analyse the ac-
tivity students carry out in the classroom (how are 
answered produced and validated, etc.) and to what 
extend are the students able to solve other modelling 
problems in the future.
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The purpose of this study is to investigate the problem 
solving episodes that a group of post-primary students 
in Ireland engaged with during the problem solving 
process and to determine an effective assessment tech-
nique for measuring their problem solving abilities. A 
framework developed by Artzt and Armour-Thomas 
was implemented and evaluated within the classroom 
over a nine week period to assist students in develop-
ing their problem solving skills. Testing was conducted 
on the students to be able to differentiate between their 
abilities prior to the introduction of the framework. It 
was found that when students utilised the framework 
the number of episodes engaged with by the students 
increased and the number of correct answers to the 
problems also increased.

Keywords: Problem solving, episodes, implementation, 

assessment.  

INTRODUCTION

With the introduction of a new post-primary math-
ematics syllabus in Ireland in 2008, named Project 
Maths, increased emphasis has been placed on de-
veloping students’ problem solving abilities. Around 
this time worrying findings from reports such as 
the Statement on Raising National Mathematical 
Achievement (Expert Group on Future Skills Needs 
[EGFSN], 2008) highlighted concerns about students’ 
capacity to engage with problem solving. When 
designing Project Maths the National Council for 
Curriculum and Assessment (NCCA, 2012) identified 
five key skills that they saw as being central to effec-
tive teaching and learning across the new curriculum. 
These are information processing, being personally ef-
fective, communicating, critical and creative thinking 
and working with others. The new syllabus has placed 

increased emphasis on teaching “through” problem 
solving as it affords students the opportunities to 
develop these key skills although there have been 
concerns raised about what exactly teaching through 
problem solving means (Lubienski, 2011). Regardless 
of this confusion an aim of the new syllabus is to allow 
students more time to explore mathematics and to 
move away from an over-reliance on drill and practice 
techniques as had been evident in the old syllabus 
(Lyons, Lynch, Close, Sheerin, & Boland, 2003).

Even though problem solving is seen as a means 
by which “students deepen their understanding of 
mathematical concepts by analyzing and synthe-
sizing their knowledge” (Erbas & Okur, 2012, p. 89) 
this is not always the case. Posamentier and Krulik 
(1998, p. 15) pointed out that “a substantial portion 
of problem solving is done by rote. Students strug-
gle through one problem in the section, the teacher 
reveals a model solution and the remainder of the 
problems in the section are solved in the same man-
ner”. Mimicking a teacher’s solution strategy will 
work for some problems but when presented with 
unfamiliar or non-standard problems students still 
struggle (Harskamp & Suhre, 2007). Having a solid 
knowledge base, good past experience and knowledge 
of strategies are considered to be important in suc-
cessful problem solving (Erbas & Okur, 2012). Now that 
problem solving has been officially cited as a learning 
outcome on the post-primary mathematics syllabus 
in Ireland it is imperative that teachers are aware of 
effective frameworks for teaching and assessing prob-
lem solving to guarantee the successful integration of 
problem solving into the classroom.

The purpose of this study was to implement an ex-
isting problem solving framework in a mathematics 
classroom and to then attempt to use this framework 
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as a guide for assessing students’ problem solving 
competence. The following research questions guided 
this study: 

 ― Do teachers feel that this framework could assist 
in the implementation and assessment of prob-
lem solving in the classroom?

 ― Which problem solving episodes can be observed 
while students solve mathematical problems?

SELECTION OF A SUITABLE FRAMEWORK 

With the increased emphasis placed on problem solv-
ing in the new syllabus the Project Maths Development 
Team [1] set about designing a modular course with 
the aim of providing teachers with practical advice on 
how to approach problem solving in the classroom as 
well as providing them with a holistic rubric for the 
marking of solutions. The rubric presented by the 
Project Maths Development Team primarily focuses 
on three activities of problem solving – choosing a 
correct strategy; explaining your choice of strategy 
and getting the correct answer. Unfortunately this 
rubric makes no attempt to measure all the remaining, 
and often important, tasks that individuals engage 
with during the problem-solving process. To this end a 
more detailed framework for implementing problem 
solving was sought by the authors with the addition-
al requirement that a rubric for the assessment of 
problem solving activities could be easily developed 
around this implementation framework.

Schoenfeld (1985) developed a framework that sepa-
rated the problem-solving process into a number of 

“episodes”. He defined an episode to be “a period of 
time during which an individual or a problem-solving 
group is engaged in one large task” (p. 292). The initial 
episodes according to Schoenfeld (1985) were read, 
analyse, explore, plan, implement, and verify. Using 
Schoenfeld’s framework as a foundation, Artzt and 
Armour-Thomas (1992) adjusted the framework to 

“delineate explicitly the type and level of cognitive 
processes individuals use” (p. 141). To this end modi-
fications of the original episodes within Schoenfeld’s 
framework were needed. For example, the original 
episode of read was separated into the episodes of 
read and understand. Artzt and Armour-Thomas 
(1992) finally settled on eight episodes when looking 
at problem solving in small groups – read, understand, 
analyse, plan, explore, implement, verify, and watch 

and listen. This framework, with the exception of the 
8th episode as this is specific to small groups and our 
study focused on students working individually, was 
adopted by the authors for the purpose of this study as 
it was deemed to address all the major “stages” of the 
problem-solving process and it was felt that it could 
be easily implemented in a classroom scenario. 

Additionally each of the episodes within the Artzt and 
Armour-Thomas (1992) framework is sub-divided de-
pending on whether it involves predominantly cogni-
tive or metacognitive processes. This is important as 
several researchers (e.g., Goos, Galbraith, & Renshaw, 
2000; Teong, 2003) have confirmed the importance of 
the relationship between cognitive and metacognitive 
processes where in the words of Artzt and Armour-
Thomas (1992) “an appropriate interplay between the 
two is necessary for successful problem solving to 
occur” (p. 162). 

Due to the structure of this framework it was relative-
ly straightforward to develop an assessment rubric 
where the focus is placed on each of the individual 
episodes. In this way no single episode would be over-
looked and additionally no individual episode would 
be deemed more “important” within the problem-solv-
ing process than any other. Erbas and Okur (2012, p. 
97) have correctly noted that “all episodes don’t need 
to occur to find a correct answer” but since this study 
is more focused on the process of problem-solving 
rather than the answer the focus remained on the in-
clusion or omission of the problem-solving episodes 
from the student solutions. Additionally it should be 
noted that the students being assessed in this study 
could be termed as “novice” in terms of their problem 
solving abilities and so the authors felt it would be 
more beneficial to the students if they fully engaged 
with all the episodes of the framework at this stage of 
their mathematical development.

METHODOLOGY

Participants for this study were selected from a school 
in the mid-west region of Ireland. A second year (typi-
cal student aged 14 years) higher level [2] mathematics 
class was selected as the study group for the duration 
of the nine week study. The selected class was a mixed 
class of 21 students consisting of 12 boys and 9 girls. 
Seven of the students volunteered to participate in the 
study (4 boys and 3 girls). Four teachers also agreed to 
participate in the study by reviewing the frameworks 
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presented by the authors and taking part in a focus 
group to garner their opinions on the suitability of the 
frameworks for implementing and assessing problem 
solving in the classroom.

Quantitative data was gathered from the study via 
testing. Students were tested on their problem solving 
ability prior to being introduced to the framework 
within their class structure. During the nine-week 
intervention one of the authors replaced the regular 
teacher in the classroom and taught the topics out-
lined by the regular teacher. Additionally the problem 
solving framework was introduced during this time-
frame and then regularly revisited to consolidate this 
new problem solving approach among the students. 
Testing was conducted at intermittent stages through-
out the nine-week intervention to gain a more com-
prehensive view on whether or not the students were 
integrating the framework into their daily problem 
solving routine. A total of five tests were carried out 
during the nine-week intervention – one pre-test and 
four tests during the actual intervention.

Each test consisted of one mathematical problem that 
students had to solve. The new Project Maths syllabus 
in Ireland places increased emphasis on the develop-
ment of students’ literacy skills and to that end the 
questions selected were not just purely mathematical 
but instead were what has typically in Irish circles 
been described as “word problems”. Word problems, 
according to Verschaffel, Greer, and De Corte (2000), 
is the term often used to refer to any mathematical 
task where significant background information on 
the problem is presented as text rather than in math-
ematical notation. 

The question utilised in each test was carefully select-
ed in an attempt to maintain the validity and reliabil-
ity of the study. In the end it was decided that the best 
way to select questions of a similar standard and diffi-
cult, that were relevant to the new syllabus, would be 
to utilise past examination papers and sample papers 
from the Junior Cycle [3] examinations. Each ques-
tion was selected to be slightly more challenging than 
the questions that the students encountered during 
class. This was the case as it was hoped that students 
would need to employ the problem solving framework 
shown to them during the lessons rather than being 
able to solve the question immediately upon reading it.

To assist with the assessment of the test in terms of 
being able to measure students’ success at each of 
the different problem-solving episodes a template 
was designed around which each question was 
structured. When designing the template it was nec-
essary to ensure that each episode of the Artzt and 
Armour-Thomas (1992) framework was addressed. 
Unfortunately it was not possible to assess each of the 
episodes in the framework e.g. Read. Since certain ep-
isodes could not be assessed independently they were 
instead combined with other episodes, e.g., Read was 
combined with Understand as if students demonstrat-
ed an understanding of the problem then we assumed 
that they had successfully read the problem. For this 
reason some of the tasks in the assessment template 
are deemed to assess two of the problem solving ep-
isodes as outlined in the Artzt and Armour-Thomas 
(1992) framework. 

The six tasks, along with the episode(s) (in brackets) 
which each task measured, that students were asked to 
engage with as part of the assessment template were:

1) Underline or highlight the important infor-
mation/facts given in the question (Read and 
Understand)

2) What is the question asking you to do? 
(Understand and Analyse)

3) Is there a process or method involved in solving 
this question? (i.e., What methods have you used 
to solve similar questions like this before?) (Plan)

4) What is the first step in attempting to solve this 
question? (Plan and Explore)

5) Complete the question and display all your work-
ings in the space provided. (Implement)

6) Does your answer satisfy what is being asked in 
the question? (Verify)

The scoring of the assessment rubric is rather straight-
forward. If a student displays evident of completing a 
particular episode then they are given a score of 1. If 
no evidence is found of a certain episode then a score 
of 0 is awarded. Therefore in each test a student could 
score a total of 7 marks depending on whether evi-
dence of all 7 problem solving episodes was present 
or not. As previously stated it is not always necessary 
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to carry out every episode when problem solving but 
since we are dealing with novice problem solvers an 
absence of evidence of an episode will be viewed as 
an omission on the part of the student.

To ascertain whether or not teachers of the new 
Project Maths syllabus felt that this was a suitable 
framework for implementing and assessing problem 
solving in the classroom a focus group was conducted 
with four teachers towards the end of the nine week 
intervention. A total of twelve questions were put to 
the teachers such as “Do you think this framework is 
relevant to the aims of the Project Maths syllabus?”, 

“What strategies do you currently use to implement 
problem solving?” and “Do you think this framework 
would be easy to implement in your classroom?” and 
their responses and feedback were recorded and then 
analysed.

FINDINGS

Episode engagement
From the analysis of the results it is clear that overall 
there was an increase in the total number of episodes 
that each student engaged with as part of their prob-
lem solving process. Table 1 presents a breakdown of 
the episodes that students successfully completed in 
the test that they completed prior to being introduced 
to the Artzt and Armour-Thomas (1992) framework.

From Table 1 we can see that all students showed ev-
idence of reading the problem with a similarly high 
number showing evidence of understanding the 
problem. Unfortunately these positive results do not 
continue as none of the students showed evidence 
of analysing the problem (episode 3) or even verify-
ing their solution (episode 7). The lack of analysis by 
the students is worrying as the analysis episode is 
important as it is at this stage that students examine 
the relationships between the information provided 
in the question and what they are required to show. 
Similarly to the Analyse episode zero students showed 
evidence of completing the Verify episode. An addi-
tional goal of Project Maths is that students develop 
the skills to justify/explain/verify their answers. It 
is clear from these results that these students have 

had very little exposure to this methodology so far 
in their mathematical careers.

The results from the four tests conducted after the 
introduction of the Artzt and Armour-Thomas (1992) 
framework are more promising. Immediately upon 
introduction to the framework all students showed 
evidence of engaging with the Analyse episode of the 
problem solving process. The number of students 
completing the Plan, Explore and Implement episode 
all show improvement from the pre-intervention test 
although there is some minor fluctuation between 
tests regarding the number of students engaging with 
each episode. Regarding the Verify episode it can be 
seen in Figure 1 that it took longer for student to habit-
uate this episode into their problem solving process 
but promisingly by the end of the nine week inter-
vention all seven students were displaying evidence 
of evaluating the outcome of their work. Overall the 
trend appears to be positive with regards to student 
engagement with the problem solving episodes. 

Correct solutions to problems
Irrespective of the number of episodes that students 
engage with during their problem solving process it 
is still necessary to consider the number of correct an-
swers in the tests. Even if a student completed all the 
episodes it is still possible for them to arrive at an in-
correct answer. You would hope that upon reviewing 
their answer at the Verify episode and realising they 
are incorrect students would persevere and return 
to earlier episodes and attempt to determine where 

Figure 1: Results of episode inclusion during the intervention

Read Understand Analyse Plan Explore Implement Verify

No. of students who complet-
ed each episode

7 6 0 4 3 3 0

Table 1: Results of episode inclusion in pre-intervention test
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they have made a mistake along the way e.g. misun-
derstood the question in the Understand episode or 
overlooked a vital piece of information at the Analyse 
episode stage.

Figure 2 highlights the trend regarding the number of 
correct answers across all 5 tests. The trend is positive, 
in general, showing that more students answered the 
questions correctly once the intervention commenced. 
There is a minor dip in the number of correct answers 
in the final two tests but even with this dip the num-
ber of correct answers is still higher than the results 
from test 1. The results regarding the total number of 
correct answers across the 5 tests offer additional jus-
tification regarding the effectiveness of the problem 
solving framework implemented but also highlight 
the need, in general, to introduce novice problem 
solvers to a structured approach to problem solving.  

Feedback from teachers
Overall the teachers expressed satisfaction with the 
framework utilised by the authors to implement prob-
lem solving in the classroom. The teachers expressed 
their views that a framework like this would prove 
beneficial when attempting to familiarise students 
with the problem solving process. When asked if they 
had previously received or utilised any frameworks 
designed to assist in the teaching of problem solving 
the teachers stated:

Teacher2: Well I would say I haven’t. Have you?
Teacher4: Yes I have, but I ignored it! Well we 

were given something like that (refer-
ring to Project Maths problem solving 
strategies poster)  

Teacher2: Yes that’s the only thing, but I wouldn’t 
say there was any time given in terms 

of training for teachers with the new 
Project Maths. In my opinion anyway, 
maybe it went over my head.

One teacher did go on to state that although she didn’t 
utilise a “structured” framework she felt that within 
her class, and the classes of her colleagues, they em-
bedded some of the problem solving episodes outlined 
in the framework.

Teacher3: But I think to some extent that we do 
a lot of this. I mean I don’t feel like this 
is something I’ve never seen before. We 
do say, well how would you solve this? 
What do we do now? What are you being 
asked? What are we looking for? Let’s 
see, what are we missing? Do we have 
this? I think I do this, I’m sure everyone 
else does too. But I think that a structure 
where the kids know to put their infor-
mation down, I think that this would 
help me.

This final comment about the students having a struc-
ture where they know to put their information down 
is referring to the assessment template structure 
outlined by the authors. This structure was also com-
mented on by a fellow teacher who felt that it would be 
beneficial to students to have a structure, especially 
in an exam situation.

Teacher1: But I think it would be useful maybe 
in an exam situation where all they see 
is a jumble of words and they just don’t 
know where to start. At least they have 
a framework.

On a negative note one teacher commented that she 
felt it would take significant time to implement a 
framework of this type. Additionally she comment-
ed that trying to get students to focus on a problem 
for a long period of time might be an issue and that 
this could lead to discipline problems within the class-
room.

Interviewer: Just in terms of what you see there 
(Framework and Sample Question) do 
you think it would be worthwhile maybe 
trying to implement or trying to use this 
in a lesson? 

Figure 2: Results of Correct Solutions from Tests
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Teacher4: I do think it would be, but what I do see 
this as is very time consuming. And in 
a classroom situation having each stu-
dent reading and going through all of 
this a discipline issue probably would 
arise.

CONCLUSIONS

The results of this study showed that when teaching 
novice problem solvers it is important to offer appro-
priate instruction on problem solving so that these 
students can properly develop their problem solv-
ing abilities. This finding confirms Hembree (1992) 
and Higgins (1997) who observed similar results in 
their classroom studies. Once students engaged with 
the episodes of the problem solving framework the 
overall number of correct solutions to the attempted 
problems increased. 

The result from the first test conducted as part of this 
study highlighted that very few students engaged 
with the Verify episode once they have reached a solu-
tion although almost every problem solving frame-
work highlights the importance of this episode (Polya, 
1973). This finding is also consistent with what other 
researchers such as Erbas and Okur (2012) have found. 
Encouragingly as the students became more familiar 
with the framework their results show that more and 
more of them conducted this episode and made some 
attempt to check their solutions with regards to the 
original problem statement.

Overall the teachers interviewed were positive re-
garding the structure and layout of the framework. 
Some issues around the time needed to problem solve 
within a class scenario were mentioned and other 
issues regarding students going off task when com-
pleting certain episodes were raised but neither of 
these concerns detracted from the overall positive 
comments from the teachers. The benefit of the frame-
work as a resource within examinations was high-
lighted by the teachers as once students are familiar 
with the framework it should help them by scaffolding 
their problem solving efforts.

Finally it is worth mentioning as a discussion point 
the “age” of the original Artzt and Armour-Thomas 
framework upon which this work, and the work of 
Erbas and Okur (2012), was based. Does a more mod-
ern framework exist which would be more suitable 

for this purpose or is there a more up-to-date/adapted 
version of this Artzt and Armour-Thomas framework 
which might better aid teachers to implement prob-
lem solving in the classroom? 
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ENDNOTES

1. The Project Maths Development Team is a team of 
experienced teachers of mathematics who have been 
recruited to provide professional development sup-
port to post-primary teachers of mathematics. 

2. All subjects studied at post-primary level in Ireland 
can be studied at either ordinary or higher level with 
higher level being the more challenging.

3. The Junior Cycle is the first three years of post-pri-
mary education in Ireland. A state-wide examination 
takes place at the end of the Junior Cycle. Students 
normally sit for the examination at the age of 14 or 15.
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Humans perceive and interpret graphical representa-
tions of models daily. Student’s ability to do accurate 
interpretations of graphical and symbolical represented 
information is an important goal for the educational 
system. A study on 17 student’s interpretations of graph-
ical and symbolical representations of linear motion 
is reported. The collected material consists of about 10 
hours video recording divided into 20 sequences about 
15–50 minutes each. The tasks used to approach stu-
dent’s interpretation of graphical representation of lin-
ear motion where related to distance-time graph and 
analytical representations of distance function. The 
theoretical framework used is the theory of conceptual 
change for learning developed by Chi together with Tall 
and Vinner’s framework on concept image and concept 
definition. 

Keywords: Representations, iconic, every-day and 

scientific discourse, lateral categories of conceptual 

allocations.

The research reported here is not aimed at only iden-
tifying or describing students’ alternative concep-
tions but instead provide possible explanation of why 
some students interpret graphical representation 
differently than other students. Mathematical rep-
resentations such as diagrams, histograms, functions, 
graphs, tables and symbols normally makes it easier 
for us to understand abstract mathematical concepts 
or phenomenon described in mathematical terms. 
Representations are, according to Wittmann (2005), 
usually structured systems with strong connections 
to theories and may be seen as constructions that links 
abstract and concrete mathematics together.

Humans of today are facing a world that is shaped by 
increasingly complex, dynamic, and powerful sys-
tems of information that we meet through various 
different media. Being able to interpret, understand, 
and work with complex systems involves important 

mathematical processes that humans need to under-
stand and be able to address when facing interpreta-
tion challenges. 

Mathematical representations, structures and con-
structions are also usual when you study other sub-
jects, such as physics. We wanted to investigate upper 
secondary school student’s understanding and inter-
pretations of mathematical representations of linear 
motion. Our research question is therefore:

 ― How do upper secondary school student inter-
pret graphical and symbolic representations of 
linear motion?

THEORETICAL FRAMEWORK

We humans develop alternative reference systems in 
order to explain and understand the physical world 
we meet. We do this through daily life experiences. 
Several thousands of studies has described students 
alternative and resistant opinions about mathematics 
and natural science (Duit, 2004; Pfundt & Duit, 1993), 
together with reports on how teaching could be al-
tered and developed in order to counter act on stu-
dents alternative opinions (Slotta & Chi, 2006, p. 262). 

Research has also shown that alternative ideas some-
times can be incompatible with scientific models and 
theories (Hammer, 2000; Shaffer & McDermott, 2005). 
There are several different labels on individually al-
ternative opinions concerning daily life phenomena 
such as children’s science, alternative ideas, intuitive 
ideas, and common sense beliefs. 

The source of our daily life conceptions is shaped, 
according to diSessa (1993), by a row of well-de-
veloped intuitive ideas which diSessa defines as 

“Phenomenological primitives” or p-primes. P-primes 
are generalizable and different than our memories 
from events we have experienced. P-primes are also 
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different than learning of scientific theories which 
generally are studied with a specific purpose, while 
p-prime are constructed and built rather unconscious-
ly, less formal, intuitively and without a specific aim. 

A p-prime can be either right or wrong, it may be 
compatible with scientific theories or not. To run a 
bike in hard upwind is more strenuous (p-prime: one 
has to work harder when the resistance is greater), 
motion with constant speed demands constant force 
(p-prime: there is always a force in an objects direc-
tion) or gravitation only applies to objects in move-
ment (p-prime: no movement no force). A p-prime is 
generalizable since it may be used by the individual in 
different contexts. Even if we never had been closed to 
an earthquake, we still could determine we would run 
in a different direction (p-prime: the closer we come 
to a source, the stronger impact). A p-prime could be 
correct but used in the wrong context. The fact that 
the weather (on the northern hemisphere) becomes 
warmer in the summer is not because we are getting 
closer to the sun.

A collection of p-primes form the first and most ele-
mentary educational system, something diSessa calls 
the intuitive physical sense of mechanism.  The way 
we humans interpret our surrounding world is the 
foundation for our learning of basic physics. 

The intuitive sense of mechanism contributes 
substantially to understanding school physics.  
(diSessa, 1993, p. 105).

diSessa claims that all p-primes are valuable and nec-
essary and not misconceptions that we need to erase. 
diSessa also uses knowledge in pieces, intuitive con-
ceptions or persistent false intuitions when he talks 
about p-primes. It seems that a p-prime sometimes 
needs to be modified, enhanced, or to be generalized.  

GRAPHICAL REPRESENTATIONS
Representations, according to Wittmann (2005), are 
normally from a structured system with clear rela-
tions to theories and may be seen as constructions that 
connects abstract and concrete mathematics. A rep-
resentation is something that stands for something 
else (Duval, 2006, p. 103). An object’s speed or accel-
eration described through a speed-time-graph may 
be determined from the graphs slope, something not 
explicit obvious from the graphical representation. 

Elby (2000) argues for a specific form of p-prim which 
activates with interaction with graphical artefacts. 
Elby calls this “What-you-see-is-what-you-get”, or 
WYSIWYG: 

In my view, that’s because the hill mistake and 
similar iconic interpretations spring, in part, 
from the activation of a cognitive structure, 
specifically, an intuitive knowledge element I 
call What-you-see-is-what-you-get. (Elby, 2000, 
p. 483) 

Elby (2000) refers to a study where the students are 
asked to interpret a speed – time graph describing a 
bicycle path. See Figure 1.

Some students interpret this as evidence that the bicy-
cle path goes over a hill. Some representations include 
special attributes which quickly catch our attention. 
Elby call this Compelling visual attributes. It may be 
all visual qualities and shades that are imbedded in 
the graphical representation, such as vertex, edges, 
contours, etcetera. 

My claim is that, even though what-you-see-is-
what-you-get is not cued strongly in all contexts, 
it is cued strongly with respect to the compelling 
visual attribute of a representation. (Elby, 2000, 
p. 484)

Which one of these visual properties we notice first 
is strongly context dependent. We need to know what 
a bicycle is before we can connect its path to a graph. 

The over-literal readings call to mind the ”what 
you see is what you get” (WYSIWYG) knowledge 
element proposed by Elby (2000), where students 
interpret a representation in the simplest, most 
literal way possible (a bump on a graph corre-

Figure 1: A bicycle path (Elby, 2000, p. 487)
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sponds to a hill). This WYSIWYG element is a 
representational analog of the phenomenological 
primitives (or p-prim) described by diSessa (1993) 
which include such basic reasoning elements.  
(Kohl, 2001, p. 107)

CONCEPTUAL CHANGE 
In order to understand information presented in a 
graph, we need to understand the underlying con-
cepts of the phenomena presented. Conceptual un-
derstanding springs from the idea that knowledge is 
constructed actively by the individual for instance by 
testing alternative ideas. All concepts relate to other 
concepts and most concepts have both definition and 
image in our mind. Tall and Vinner (1981) said: 

We shall use the term concept image to describe 
the total cognitive structure that is associated 
with the concept, which includes all the mental 
pictures and associated properties and processes. 
It is built up over the years through experiences 
of all kinds, changing as the individual meets new 
stimuli and matures. 

On the other hand:

The concept definition [is] a form of words used 
to specify that concept. (p. 152)

Gray and Tall suggest three mathematical worlds to 
explain development of mathematical understanding. 
This involves a parallel development of conceptual 
embodiment, as the complementary use of human 

perception and action and proceptual symbolism, 
involving manipulation of symbols that arise from 
operations. The term ‘procept’ address something that 
can be used flexibly as process or concept, including 
numbers, fractions, algebraic expressions, deriva-
tives, integrals, and so on (Gray & Tall, 1994).

A key challenge to research in conceptual develop-
ment and learning is to understand how individual 
constitute aspects of a scientific understanding of a 
concept. Knowledge acquisition is viewed as a process 
that involves actively generating and testing alterna-
tive propositions. Conceptual change refers to any 
change in conceptual understanding.

Three main perspectives on conceptual development 
are: the epistemological, the metaphysical and the cog-
nitive perspective. The epistemological perspective 
on conceptions is based on criteria for difference. Our 
understanding regarding the world around us and 
how it is constructed relates to three ontologically 

“lateral” categories; mental state, entities and process-
es (Chi et. al., 2012). See Figure 2.

When we humans learn concepts, we also learn where 
the concept belongs in an ontological sense. What is 
the weight of the world series in soccer sounds like 
a strange question since the weight of something be-
longs to ”Entities”, while the world series in soccer 
is categorized as an ”Event”. Since the two concepts 
belong to different categories they cannot create an 
understandable context.

Figure 2: Conceptual change in an ontological structure (Chi et al., 2012)
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Even close sub categories under the same branch 
might be ontological different lateral categories. Most 
young children know the difference between artefacts 
and living beings. Conceptual change occurs when we 
address concepts to different ontological categories. 
This constantly ongoing process happens inside us 
and strives for interpretations of new situations and 
to make them understandable. 

Sometimes our interpretation of the world place 
concepts in the wrong place. One such well known 
phenomenon is the fact that students might view 
light or electrical current as material substances. 
Scientifically theories describe electrical current and 
light as sequential processes (Chi et. al., 2012, p. 57).  

Conceptual understanding from the metaphysical 
standpoint is described as a restructuring of concepts 
over ontological lateral (not hierarchical) categories. 
Sometimes learning of scientific concepts is difficult 
since the process requires concept has to be re-as-
signed to an ontologically distinct category (across 
trees). The cognitive perspective on conceptual un-
derstanding is based on nature of misconceptions. 
Sometimes there are clear qualitative differences be-
tween the individual’s (alternative interpretations, 
p-primes) and scientific models or expert’s descrip-
tions of a phenomenon. 

Conceptual understanding based on a cognitivist’s 
perspective can be seen as a process that tends to ob-
tain a gradual increase in the correlation between al-
ternative ideas (knowledge into pieces) and scientific 
theories (diSessa, 1993; Elby, 2002, & Hammer, 2000). 
The cognitive perspective on conceptual change starts 
in identifiable qualitative differences between an in-
dividual’s (alternative interpretations, p-prime, and 
knowledge system) and scientific models 
or expert’s description of systems. 

METHODOLOGY
Our cohort consisted of 17 upper second-
ary school students (9 girls and 8 boys) at 
the natural science program, all enrolled 
in year 2. All students’ volunteered to 
take part in the study. The students were 
grouped in small groups with 2 or 3 stu-
dents in each group; a video camera was 
mounted to record the discussion. No 
observer was present to help the stu-
dents to be natural in their comments 

and attitudes. Students written solutions and notes 
were collected.

Our intention was to record the individual students 
responses but we considered that this was easiest 
done by encouraging group discussions. The students 
responded to 13 questions all together, this article will 
present the dialogue in relation to a distance – time 
graph. The students took note and did some calcu-
lations on paper, which we collected. We will only 
present some short results here, depending on page 
limitations.

Problem
The graph in Figure 4 illustrates a train that moves 
during 4 hours. The distance s is in kilometer and the 
time t is in hours 

1a) When do the train run at the highest speed? 
1b) How do you know that? 
1c) Are there more than one occasion when the train 
has this high speed?
2a) When do the train run at the lowest speed?
2b) How do you know that?
2c) Are there more than one occasion when the train 
has this low speed?
3) What could be said about the train’s direction by 
interpretation of the graph? 
4) Sketch a graph to describe the trains speed during 
these 4 hours.

RESULTS

Student group Arman, Alexander and Gideon – writ-
ten answers

Figure 3: A moving train
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Student: 1a. The train has the largest speed at 2 
hours.

Student: 1b. Because that is the highest point in 
the graph.

Student: 1c. Yes, at 1.48 and 2.12. That speed last 
for 24 minutes.

Student group Arman, Alexander and Gideon – video 
recording

Student1: The train is fastest up here or …
Student2: Write when it has the largest speed at 2 

hours.
Student1: Here it goes down a hill; here it goes up 

a hill, up and down…
Student2: I think we should be careful writing 

about hills…
Student3: I do not think I never have seen a train 

go up a hill like that
Student1: Well, maybe when it is going up or 

around a mountain or something… 
Student3: Like a rollercoaster? In an amusement 

park?
Student2: In San Francisco they have cable cars 

where you can hang outside…

Arman claims that the largest speed occur after 2 
hours. His interpretation of the graph is built on the 
opinion that the graph is illustrating a train going “up 
a hill” and “down a hill”. Arman interpret the graph as 
a “true image” which is called an iconic interpretation. 

Alexander Shares the opinion that the speed is highest 
“at the top point up here” and that the train is going up 
and down. Alexander also connects the graph to the 
streets of San Francisco. Gideon, after some doubts, 

associates the graph to a rollercoaster in an amuse-
ment park. 

Students’ alternative iconic interpretations of graph-
ical representations are well known from research 
and also obvious in this study. Arman’s, Alexander’s 
and Gideon’s interpretation of the distance – time 
graph could be seen as an alternative descriptive 
model. The students talk about different places, refer 
to different events, and gives examples in different 
ways. Nevertheless, one thing they do have in common. 
Their interpretations seem to be iconic and they are 
all focusing on the wrong attribute.

Alexander’s description that “In San Francisco they 
have cable cars where you can hang outside …”, or as 
Arman express it “Here it goes down a hill; here it 
goes up a hill, up and down…”, are example of intuitive 
ideas and daily life concepts That seems to be deeply 
imbedded in the imagination world of these students. 
In reality it is probably impossible for a train to go 
up such a steep hill. The interpretation process to-
gether with the need to create a context for the train 
seems to be more important for the students than to 
think about the models validity and reliability. This in 
turn keeps their alternative ideas safe and resistant 
towards change.

Student group Jakob, Maria and Linnea – written 
answers

Student: 1a. When the curve has the steepest 
slope.

Student: 1b. Longest length on shortest time.
Student3: No, once.

Student group Jakob, Maria and Linnea – video re-
cording

Student1: One box up in the graph paper is a fifth 
equal to 20 km, so the train is moving 
20 km in short time while over here the 
train is going 20 km in a long time.

Student2: Yes, it is faster there.
Student3: It is fastest where the slope is steepest 

since the graph is showing us the real 
speed, the moment speed, so we have 
the answer to 1a.

One qualitative aspect of students understanding of 
a distance – time graph is found in Jakob’s reasoning. 

Figure 4: Alexander’s response to task 4



Student’s interpretations of visual models (Thomas Lingefjärd and Djamshid Farahani)

895

Jakob illustrates a good technique for determination 
of the slope of the graph. The discussion also reveals 
that the group manages to separate the meaning of 
distance and speed. 

Written answers to question 2a-2c
Student: 2a. When the curve’s slope is zero.
Student: 2b. Distance is not changing although 

the time is running.
Student3: Yes, at three occasions.

Quotations from transcribed video 
material related to 2a-2c

Student1: When the slope is zero, the train is stand-
ing still.

Student2: The train goes to one point and the back 
again and then it is standing still for 
some time.

Student3: Positive direction upwards and nega-
tive direction downwards means that 
the train is going back but not the whole 
way.

Through this conversation, the students are validat-
ing and develop their reasoning concerning the mean-
ing of the graphs slope. The student’s responses show 
that they are not confused by the graph, instead they 
are arguing for the relation between the slope of the 
graph and the movement of the train. The fact that they 
are not doing any iconic interpretation of the graph, 
allows them to give a full description of the meaning of 
the graph. As a result, they arrive to a quite different 
graph of the speed – time graph asked for in task 4.

CONCLUSIONS

Sometimes may daily life experiences be too strong 
and to overwhelming when students try to make in-
terpretations of graphical representations. This is 
obviously the case of Arman, Alexander and Gideon. 
We have shown you the results of two groups here, 
results that may be seen as the two extremes in our 
collection of results. 

When students relate to iconic interpretations as ca-
ble cars in San Francisco, they do this because such 
interpretations have some advantages. They are easy 
to remember, seemingly realistic, easy to identify in 
a daily life language, easy to compare, and sounds 
convincing. 

Our results indicate that the more a student build on 
iconic ideas as model for explanation, the more de-
mand he or she will also need for daily life concepts 
in the arguments.

It is important for us to underline that we do not see 
the results as misconception, more as misplaced con-
cepts. When Arman, Alexander and Gideon and prob-
ably many other students with similar iconic interpre-
tations, are trying to explain the distance – time graph, 
they seem to relate the meaning to an event. This is 
important, since a distance – time graph should be 
seen and interpret as a representation of a sequential 
process. Event and sequential process are two close 
sub categories in Figure 2 (Chi, 2013). The fact that 
the students we studied are so called specialists in 
mathematics and science indicate that it is perhaps 
harder to make this restructuring than researcher 
have thought so far.

As researchers we might marvel over how much mate-
rial that was derived from these students discussions 
regarding a situation with a train. But this article is 
also something teachers in general could read and 
discuss. The fact that humans in general may misin-
terpret some of all the graphic information we meet 
on a daily basis is nothing strange. How could we do 
otherwise? This article might help teachers to sup-
port student’s learning and understanding of both 
mathematical entities and mathematical processes 
in a more successful way. 

In the discussions between students regarding the 
train’s movement we could identify occasions when Figure 5: Maria’s response to question 4
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students learned from each other. Even though this 
was a research study, it is beneficial when students 
learn from the organization of the study.
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The present study addresses the differences in the con-
struction of ninth graders’ situation models, when they 
were confronted with an application problem that is 
found in middle-school mathematics textbooks in 
Mexico. This study focuses on the reading-comprehen-
sion phase, better known as the situation model, which 
is considered a prerequisite for the mathematical mod-
el construction of word problems. Four versions of the 
problem “The broken tree by the wind” were given to a 
total of 192 ninth- grade students. Students’ drawings 
were analyzed in order to identify any possible causes by 
which few of the students were able to build an adequate 
situation model. The results suggest a potential influ-
ence of problem wording on students’ visualizations and 
ways of interpreting mathematical problems during the 
situation model construction.

Keywords: Situation model, word problems, mathematics 

textbook.

INTRODUCTION

Text comprehension in mathematical word prob-
lems has been investigated in order to improve 
problem-solving processes (Cummins, Kintsch, 
Reusser, & Weimer, 1988; Mayer & Heagarty, 1996). 
Researchers have been trying for some time to get 
an insight into the causes that affect such perfor-
mance in order to improve it (Kintsch & Greeno, 
1985). Students’ difficulties increase when problems 
imply a mathematical modelling process (Galbraith 
& Stillman, 2006).

It is already well established, both theoretically and 
experimentally, that the modelling process compris-

es several phases (Borromeo-Ferri, 2006). The first 
one consists of the situation model (SM) construction 
that the problem refers to, and it is necessary for the 
understanding of the mathematical problemand its 
further resolution, which is considered as  “…a men-
tal representation of the situation described by the 
text…” (Kintsch, 1986, p. 88).

Some results in a recent exploratory investigation 
(Juárez & Slisko, 2013) show that middle-school stu-
dents have great difficulties to build the situation 
model of a problem named “The fallen tree”. The men-
tal images or models of the situation were studied 
through the requested drawings. The statement of 
the problem is the following:

The wind has broken a tree trunk in such a way 
that two of its parts form a right triangle with 
the ground. The upper part forms a 35° angle 
with the ground, and the distance, measured on 
the floor, from the trunk to the fallen top of the 
tree is 5m. Find the height of the tree (Mancera, 
2008, p. 333).

Juárez and Slisko (2013) found that after thirty mid-
dle-school students had been given “The broken tree” 
problem, only ten of them were able to depict the 
actual situation described in the text. However, these 
ten students interpreted it in different ways. 

This problem and its various formulations appear in 
several middle-school textbooks published in Mexico 
authorized by the Ministry of Education. In some 
of them, it is just an application problem (Briseño, 
Carrasco, Martínez, Palmas, Struck, & Verdugo, 2007, 
p. 223; Waldegg, Villaseñor, García, & Montes, 2008, 
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p. 205; Farfán, Cantoral, Montiel, Lezama, Cabañas, 
Castañeda, Martínez, & Ferrari, 2008, p. 202). In cer-
tain books, its historical origin is mentioned (Pérez 
& Pérez, 2008, pp. 227–228; Arteaga & Sánchez, 2008, 
p. 75; Sánchez, 2008, p. 216).

The results mentioned above motivated us to con-
duct a more comprehensive study, where the fac-
tors and processes involved in the situation model 
construction as a prior step leading to a resolution 
of the problem could be investigated. In particular, 
we were interested in analyzing the possible effects 
of changing certain elements from the text of the 
problem, i.e. the title and the object of the problem, 
on students’ text-comprehension process and their 
corresponding situation models. 

Results of previous studies based on students’ draw-
ings have shown that students find it difficult to im-
agine the situation. What makes it hard for most 
of them, is the mental image of a “tree” (the trunk’s 
thickness and the treetop formed by branches and 
leaves), because it is hard for them to “get rid” of the 
treetop. This study central assumption is that if stu-
dents get a version of the problem, where the tree is 
changed for a simpler “tree” plant, like a “bamboo” (it 
has a straight shape and it does not have any branch-
es that hamper the floor support), they will perform 
better in the development of the situation model than 
the students who get “the broken tree” version. 

So, our research question is the following: Do chang-
es in the problem’s title, as well as in the object used 
in the text have an effect on middle-grade students’ 
situation model construction?

THE CONSTRUCTION OF THE SITUATION 
MODEL AND MATHEMATICAL 
WORD PROBLEM SOLVING

Polya’s model for problem solving has played a sig-
nificant role in Mathematics Education since it has 
clarified many of the cognitive processes involved in 
it (Polya, 1976). In the first stage, the understanding 
of the problem, strategies can be found that help with 
the representation of the situation and the compre-
hension of the problem’s conditions. The importance 
of using some heuristics is also emphasized here, like 

‘draw a picture or a diagram’.

Nathan, Kintsch and Young (1992) propose a theoret-
ical model, where students have to read and under-
stand the statement first, and then the information 
obtained is “organized into a (qualitative) situation 
model and mapped into a (quantitative) problem 
model that captures the algebraic structure” (p. 332). 

According to Diezmann (2000), to make a drawing of 
the problem situation may be crucial for a person 
trying to solve it. In this way, many word problems 
describing a real situation are presented to the stu-
dent as if its mental representation was an immedi-
ate process. However, it is a translation process that 
involves linguistic information decoding and visual 
information encoding. In this sense, Heagarty and 
Kozhevnikov (1999) investigated the relationship 
between mathematical visualization and mathemat-
ical problem-solving, being the first one understood 
as an individual’s ability to use images or diagrams. 
They classified visual-spatial representations as 
schematic or pictorial and, in their study, schemat-
ic representations, which encode spatial relations 
described in the problem, were positively correlated 
with success in mathematical problem solving. On 
the other hand, pictorial representations, which are 
related to the visual appearance of the objects de-
scribed in the problem, were negatively correlated.

In the same line, Edens and Potter (2007) examined 
the relationship between student performance on 
particular drawing tasks and their achievement in 
mathematical problem solving. They provided ev-
idence that teaching strategies based on drawings 
can help teachers in obtaining useful information 
about their students’ level of spatial understanding.

From a cognitive perspective, several studies have fo-
cused on the complex process of reading comprehen-
sion during word problem-solving, both in algebra 
and realistic problems, as well as in arithmetic prob-
lems (Vicente & Orrantia, 2007). These researchers 
acknowledge the need to create a model of the prob-
lem situation, by applying the real-world knowledge 
possessed by the student. Meanwhile, Reusser (1988) 
suggests that it is necessary to produce what he calls 
an “episodic model of the situation” between the text 
base and the problem’s mathematical model.

One of the consequences that the lack of an appro-
priate situation model construction would have, for 
example, is the student’s behavior strongly linked 
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to practices, as mentioned by Reusser and Stebler 
(1997):  

As a result of schooling, students’ behavior 
is pragmatically functional if they take into 
account any information they can draw from 
both problem texts and contexts. That is, their 
mathematical sense-making is functional if they 
actively and continuously construct a mental 
representation not only of the specific task 
(problem model…), but also of the socio-contex-
tual situation which they are in (construction of 
a social context model)… (pp. 325–326).

Despite the amount of research indicating the im-
portance of the situation model for understanding 
the text of the problem, some researchers such as 
Voyer (2010) argue that the question of the influence 
of the model constructionon student performance 
in solving word problems remains open. This con-
clusion might be correct for some arithmetical prob-
lems used in Voyer’s research. Nevertheless, it seems 
that in trigonometric problems, the situation mod-
el construction influences significantly posterior 
students’ problem-solving performance. It is easy to 
agree with van Dijk and Kintsch (1983), who empha-
size that “... we know very little about the conditions 
that promote or inhibit the construction of situation 
models from texts ...” (p. 346).

METHODOLOGY

The participants were 192 students in 9th grade at a 
public middle school in central Mexico, all divided 
into four different groups. In terms of the curricu-
lum, the ninth graders had already been exposed to 
the Pythagoras Theorem and trigonometric ratios.  

Each student was given a worksheet containing one 
of the four versions of “the broken tree” problem and 
they were asked, after reading the text of the problem, 
to draw the described situation. There was no time 
limit, and they were not asked to solve the problem.  

Each version of the problem was applied to a differ-
ent group. Two central objects were used, i.e. the tree 
and the bamboo, resulting in two distinct texts. In 
addition, two titles for each one of them were drafted, 
yielding four versions of the problem that are shown 
in Table 1.

The data collected for this study included only stu-
dents’ drawings, since the focus of the study was on 
the situation models built by the students. In order 
to describe them, the collected drawings were cate-
gorized via our definition of situation model men-
tioned above. Students’ responses were grouped by 
identifying those drawings that had common char-
acteristics in their situation models, in the sense 
that they were leading to the mathematical model 
construction. 

RESULTS AND ANALYSIS

From the analysis of the drawings, four categories 
were obtained: Situation Model with a Right Triangle 
(SM-RT), Situation Model with an Arbitrary Triangle 
Related to the Situation (SM-AT-RS), Situation Model 
with an Arbitrary Triangle Not Related to the 
Situation (SM-AT-NRS) and Situation Model Without 
Triangle (SM-WT).

Version 1 Version 2 Version 3 Version 4

Problem’s title The broken tree 
that forms a tri-

angle

The broken tree The broken bam-
boo that forms a 

triangle

The broken bam-
boo

Problem’s 
statement

The wind has broken a tree in such 
a way that two of its parts form a 
right triangle with the ground. The 
upper part forms a 35° angle with the 
ground, and the distance, measured 
on the floor, from the trunk to the 
fallen top of the tree is 5m. Find the 
height of the tree.

The wind has broken a bamboo in 
such a way that two of its parts form 
a right triangle with the ground. The 
upper part forms a 35° angle with the 
ground, and the distance, measured 
on the floor, from the bamboo’s base to 
the fallen top is 5m. Find the height of 
the bamboo.

Table 1: Four different versions of the “the fallen tree” problem
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Version 1: The broken tree

The number of students that constructed a particular 
type of SM for the first version of the problem “The 
broken tree” is shown in Table 2.

The above table shows that almost 30 percent of the 
students produced the SM considering a right tri-
angle, but only one of them drew up the situation 
model correctly. This finding is consistent with what 
Diezmann (2000) reported with primary school chil-
dren, that although ‘drawing a diagram’ is advocated 
as a useful strategy for solving problems, to gener-
ate an appropriate diagram is problematic for many 
students. 

On the other hand, the same number of students 
built their SM with an arbitrary triangle related 
to the situation described in the problem. Figure 1 
shows the SM of one of these students, Victor, where 
its construction could have been affected by the in-
terference of his real-life knowledge evoked while 
imagining the situation.

Version 2: The broken tree 
that forms a triangle
The number of students that constructed a particular 
type of SM for the second version of the problem 

“The broken tree that forms a triangle” is shown in 
Table 3.

In most of the situation models, a high number of re-
alistic elements related to the scenario were included, 
such as wind, tree branches, and leaves, as well as 
clouds and rain. When compared to the first version 
of the problem, the same percentage of students did 
not include any triangle in their situation models, 
even though the expression “…that forms a triangle” 
was present in the title of the second activity. It seems 
not to have influenced the understanding of the sit-
uation or the corresponding situation model. These 
results suggest that the change in the problem’s title 
had no effect on the construction of the SM.

However, the percentage of students that included 
an arbitrary triangle not related to the situation in-
creased when compared to the first version. Figure 2 
shows a situation model, for example, where Daniel 
drew an arbitrary triangle that has nothing to do 
with the situation described in the text. It seems that 
the explicit reference to a triangle in the activity’s 
title forced the students to draw a triangle, without 
taking into account the rest of the information in-
cluded in the text. 

This behavior can be explained according to what 
Borromeo-Ferri (2006) claims: 

Different SM for the version “The broken tree”

SM-RT SM-AT-RS SM-AT-NRS SM-WT

29.5%
13/44

29.5%
13/44

9%
4/44

32%
14/44

Table 2: SM classification for the first version of the problem 

Figure 1: SM drawn by Victor (arbitrary triangle related to the 

situation)

Different SM for the version: “The broken tree that forms a triangle” 

SM-RT SM-AT-RS SM-AT-NRS SM-WT

20%
(10/50)

32%
(16/50)  

18%
(9/50)

30%
(15/50)

Table 3: SM classification for the second version of the problem

Figure 2: SM drawn by Daniel (arbitrary triangle not related to the 

situation)
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The individual has a mental representation of 
the situation, which is given in the problem. This 
MRS can be very different, for example depend-
ing on the mathematical thinking style of the 
individual: visual imaginations in connection 
with strong associations to own experiences; or 
the focus lies more in the numbers and facts giv-
en in the problem, which the individual wants 
to combine or relate. (p. 92) 

Version 3: The broken bamboo
The “broken bamboo” version was given to 48 stu-
dents. Table 4 shows the percentages for each SM. 
Only 12 of them (25%) included a right triangle in 
their model. In the second column it can be observed 
that 40% of the students constructed a SM with an 
arbitrary triangle related to the situation. This could 
mean that, changing the tree for the bamboo could 
have been the cause for more students to include 
a triangle in their situation model. In Figure 3 one 
example of this type of situation model is shown. 

Version 4: The broken bamboo 
that forms a triangle
For the problem’s version “The broken bamboo that 
forms a triangle”, 26 students out of the 50 (52%) that 
were given this version of the problem, were able to 

draw the right triangle required in the statement. 
This percentage is significantly higher when com-
pared with versions 1, 2 and 3, thus confirming our 
hypothesis about the positive effect of including 
the “bamboo” instead of the “tree” in the statement 
of theproblemand “…that forms a triangle” in the title. 
Figure 4 shows an example of such drawings. Also, 
26% of the students included an arbitrary triangle 
related to the situation in their SM. 

The number and percentage of students’ types of sit-
uation models for the problem’s version “The broken 
bamboo that forms a triangle” is shown in Table 5. 

FINAL COMMENTS

After analyzing the drawings made by students when 
confronted with a mathematical word problem, we 
note that the construct ‘situation model’ as concep-
tualized in the literature, was effective to account for 
the various productions and elements that hamper 
reading comprehension, and therefore the construc-
tion of mental representations corresponding to the 
situation described in the problem. 

One of the first interesting findings in this study is 
the fact that a very low percentage of students creat-
ed the situation model so as to enable them to solve 

Different SM for the version “The broken bamboo”

SM-RT SM-AT-RS SM-AT-NRS SM-WT

25%
12/48

39.6%
19/48

4.2%
2/48

31.2%
15/48

Table 4: SM classification for the third version of the problem

Figure 3: SM drawn by Monica (arbitrary triangle related to the 

situation)

Different SM for the version “The broken bamboo that forms a triangle”

SM-RT SM-AT-RS SM-AT-NRS SM-WT

52%
26/50

26%
13/50

8%
4/50

14%
7/50

Table 5: SM classification for the fourth version of the problem

Figure 4: SM drawn by Giselle (right triangle)
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the problem in any of the four versions presented 
to them. This shows, once again, the importance of 
the proper construction of the situation model as 
part of the text comprehension process and as a step 
towards the development of the mathematical model. 

Students’ productions in this study included a vari-
ety of triangles, and although they do not represent 
the real situation, we realized that in the problem’s 
version “The broken bamboo that forms a triangle”, 
it was more natural and easier for them to imagine 
a situation where a triangle is formed than in “The 
broken tree that forms a triangle” version. One pos-
sible explanation is that for students it is more likely 
to imagine how the wind can break the vertical and 
thin bamboo structure than the one of the tree, pos-
sibly because in the latter case it might be thought 
that its root is stronger and its trunk is thicker, and 
therefore more difficult to bend.

It has been observed that in many mathematics 
textbooks, the text comprehension phase in word 
problems is presented as if the coherent situation 
model construction was a trivial process. This phe-
nomenon could be one of the reasons students do 
not distinguish and are not able to sense its main 
characteristics. We believe that the findings of this 
study can be used to conduct further research to help 
clarify the entire understanding process and to serve 
as a reference in textbooks design and development, 
specifically related to word-problem solving. 
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In this paper, applications and modelling problems for 
chemistry and or biochemistry courses are analysed. 
They obtain better results than others, in order to moti-
vate students of chemical careers towards mathemati-
cal problem solving, since these problems are specially 
tailored for their needs. A teaching experience, carried 
out during two decades is analysed and a particular 
example is exposed with   further details. The results 
of this experience led us to several conclusions that are 
included in the last section of the article.

Keywords: Nonlinear models, chemical careers, students’ 

motivation.

INTRODUCTION

In chemical careers mathematical courses like nu-
merical methods, differential equations and statistics 
are widely used to solve problems concerned with 
modelling real problems relevant for chemistry and/
or biochemistry. 

Nevertheless, most mathematical texts include only 
physical problems more relevant for other disciplines, 
like mechanics or electromagnetism. The need for 
relevance was highlighted by many writers as be-
ing important in motivating students when learn-
ing mathematics. For example, Bajpai, Mustoe and 
Walker (1975) suggested a range of improvements 
including a modelling approach and providing more 
relevant examples. In the same direction, according 
to McAlevey and Sullivan (2001), there is a need for 
using real-life problems since ‘Students are best mo-
tivated by exposure to real applications, problems, 
cases and projects’. 

For this reason, several previous articles (Martinez-
Luaces, 2003, 2006, 2009a) have focused on how mod-
elling may be used to motivate students in those ca-

reers. In particular, ordinary differential equations 
(O.D.E.) linear systems appear regularly in Chemical 
Engineering, Food Technology Engineering and 
Environmental Engineering courses. This is due 
to the usefulness in modelling chemical kinetics 
(Martinez-Luaces, 2012a), or water solutions, mix-
tures and reactors problems (Martinez-Luaces, 2005). 

The introduction of chemical and/or biochemical 
problems help to motivate students and can be widely 
used for modelling and applications examples, par-
ticularly in differential equations (Martinez-Luaces, 
2006), probability and statistics (Martinez-Luaces, 
Velazquez, & Dee, 2009) and numerical methods 
(Guineo Cobs & Martinez-Luaces, 2003).

In previous papers and in a pair of books (Martinez-
Luaces, 2009b, 2012b), problems involving chemical 
kinetics, mixing problems, reactors, etc. have been 
exposed and analysed from its educative potential 
viewpoint. In this paper, more simple models will be 
considered and a concrete example will be discussed 
in the third section. Despite the simplicity of these 
models, they appear regularly in several branches of 
chemistry and biochemistry; they allow teachers to 
pose interesting questions and even project work to 
be carried out by the students in small groups.

Conclusions based on the results of the teaching meth-
ods used, will be drawn for differential equations, sta-
tistics and numerical methods courses for chemical 
careers. Several of these conclusions can be easily 
extrapolated to other mathematical service courses.

A PARTICULAR EXPERIENCE IN URUGUAY

In the late 90’s, a small group of teachers and re-
searchers was formed in the Chemistry Faculty at 
the University of the Republic of Uruguay (UdelaR), 
having their members an applied profile. For sever-
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al years, this team included chemists, engineers and 
applied mathematicians. This group – in addition to 
other tasks as mathematical and engineering con-
sultants – was appointed to be in charge of a course 
called Mathematics III, created in 1996 especially for 
Food Engineering students. The original syllabus in-
cluded Ordinary Differential Equations (ODE), Partial 
Differential Equations (PDE) and an introduction to 
Laplace Transform, with emphasis towards applica-
tions and other disciplines. After the change of plans 
in year 2000, this course was replaced by another two 

– Mathematics 005 for Food Technology Engineering 
and Mathematics 105 for Chemical Engineering – with 
more class hours per week and a greater presence of 
modelling activities and applications.

Since the beginning of this course, direct and inverse 
modelling problems were proposed to the students 
(Martinez-Luaces, 2009a). Three thematic areas 
were especially suitable for this purpose: Chemical 
Kinetics (Martinez-Luaces, 2012a), mixing prob-
lems (Martinez-Luaces, 2009b) and Mass Transfer 
(Martinez-Luaces, 2003).

  Chemical Kinetics is an important source for inter-
esting problems. In our research work, the most re-
fined versions of those problems were published in 
books, papers and proceedings, such as: Guineo Cobs 
and Martinez-Luaces (2002), Martinez-Luaces (2005, 
2009b, 2012a, 2012b). Examples of these problems are: 
mutarotation of glucose, mechanisms with two or 
three reactions in series, carbon dioxide adsorption 
on platinum surfaces, etc.

Mixing problems have been another important source 
for modelling problems, such as: interconnected 
tanks system, tank divided into several compartments, 
stirred tank with recirculation, etc. These problems 
and many others have been included in papers pub-
lished in international journals (Martinez-Luaces, 
2005, 2009a), in books (Martinez-Luaces, 2009b, 
2012b) and conference proceedings (Martinez-Luaces 
& Alfonso, 2000; Martinez-Luaces, 2007).

Finally, with regard to the problems involving par-
abolic PDE applied to Mass Transfer real situations, 
there are many examples that can be mentioned. For 
instance: drying a vegetable through its faces, sugar 
diffusion in a cherry, chives drying process, dissolved 
oxygen electrode, packed bed chemical reactor, dif-
fusion of pollutants in the Chernobyl accident and 

pollution in the Rio Uruguay. These problems were 
presented briefly – with its analytical and/or numeri-
cal solution discussed – in an article published in New 
Zealand Journal of Mathematics (Martinez-Luaces, 
2003), but there are also full versions of the model-
ling process with further details of the resolution in 
a book published a few years later (Martinez-Luaces, 
2009b). Partial preliminary versions of those prob-
lems were presented in mathematical education con-
ferences like Martinez-Luaces and colleagues (2000, 
2001), Guineo Cobs and Martinez-Luaces (2003) and 
Martinez-Luaces and Guineo Cobs (2005), among 
others.

A NONLINEAR MODEL USEFUL 
FOR CHEMICAL CAREERS

The nonlinear mathematical formula y = ax
x + b

 
(Eq. 1)   is 

widely used in chemistry and biochemistry for dif-
ferent purposes. For instance, the Michaelis-Menten 
kinetics is a well-known model in biochemistry of the 
form v0 = vmax [S]

Km + [S]  (Eq. 2) where v0 and vmax are the initial 
and the maximum velocity of the enzymatic reaction, 
[S] is the substrate concentration and Km is a constant 
(called Michaelis constant), which depends on the en-
zymatic reaction considered (Nelson & Cox, 2008).

Irving Langmuir, a Nobel Prize winner in chemistry, 
developed an equation that relates the coverage or 
adsorption of molecules on a solid surface to gas pres-
sure or concentration of a medium above the solid sur-
face at fixed temperature (Masel, 1996). The equation 
is Ѳ = αP

1 + αP    (Eq. 3)    where Ѳ is the fractional coverage 
of the surface, P is the gas pressure (or concentration 
in the case of liquids) and α is a constant. A very simple 
algebraic manipulation gives Ѳ = P

1/α + P   (Eq. 4)    which 
is just a particular case of (Eq. 1).

The last example is a mathematical model for the 
growth of microorganisms proposed by Jacques 
Monod (1949). The mathematical formula is μ =  μmax S

KS + S       
(Eq. 5),  where  μ is the specific growth rate of micro-
organisms and  μmax represents its maximum value, S 
is the concentration of limiting substrate for growth 
and  KS is called the “half-velocity constant” (Martinez-
Luaces, 2009b), since it corresponds to the value of S  
when μ

μmax
 = 1

2  as well as the constant Km in (Eq. 2).

The Monod equation has the same form as the 
Michaelis-Menten equation, but it was developed 
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empirically whereas the Michaelis-Menten model is 
based on theoretical considerations.

A typical problem that arises in the treatment of data 
corresponding to these equations is the parameters 
determination since all of them are nonlinear mod-
els. In order to solve this problem, several methods 
were proposed to linearize these equations, being 
Lineweaver-Burk, Hanes-Woolf, Eadie-Hofstee, 
Scatchard, and Eisenthal-Cornish-Bowden the most 
important ones (Nelson & Cox, 2008).

For instance, the Lineaweaver-Burk (or double 
reciprocal plot method), proposes a graphical rep-
resentation of 1

V0
 vs 1

S . It is easy to observe that the 
reciprocal of (Eq. 2) gives 1

V0
 = KM

VM
 1

S  + 1
VM

 (Eq. 6), so 
the  x–intercept of the graph represents  − 1

KM
 and 

the y–intercept is equivalent to the inverse of VM. An 
alternative way is to obtain the coefficients of a linear 
regression (i.e. KM

VM
 and 1

VM
) and finally get KM  and VM 

from these coefficients. 

Other methods propose a different linearization or 
another mathematical procedure for recovering KM 
and VM from experimental data.

All these methods can be compared in terms of exact-
itude and precision (Martinez-Luaces & Silva, 2014), 
using simulated data perturbed with Gaussian noise 
with different amplitudes. This comparison is particu-
larly significant when the relation between trend and 
noise tends to increase.

Since equations (2), (3) and (4) represent the same 
mathematical model (Eq. 1), one of them (the Michaelis-
Menten equation) may be chosen as an example in 
order to show the methodology to be followed. 

In the selected equation, the parameters are KM  and    
Vmax  and variables are [S] and v0. In a previous paper 
(Op. cit., 2014), typical values of these parameters and 
variables were chosen and theoretical curves were 
obtained. A Gaussian noise with different amplitudes 
was superimposed to the theoretical data obtained 
from (Eq. 2) with typical values of VM, KM  and [S]. 

The graphics in Figure 1 show the simulated curves 
for the Michaelis-Menten equation (initial velocity 
vs substrate concentration) with the Gaussian noise 
multiplied by coefficients 1, 2, and 3, respectively.

Figure 1: Simulated data for the Michaelis-Menten equation
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These simulated data took the place of the real exper-
imental data and were used to determine the parame-
ters KM  and VM, which real values were known, so the 
different methods were easily compared in terms of 
exactitude and precision. Table 1 shows the minimum 
absolute and relative errors in KM  and VM and which 
methodology was the best in each case, depending on 
the noise amplitude.

The method due to Eisenthal and Cornish-Bowden 
(CBE in Table 1) was the best one in all the cases, ex-
cept when the Gaussian noise had double amplitude 
and KM  is the considered parameter. In this last case, 
Eadie and Hofstee’s method (H in Table 1) obtained the 
minimum absolute and relative error in the parame-
ter KM , but not  in VM where once again Eisenthal and 
Cornish-Bowden gave the best estimate.

A similar methodology was followed in another ar-
ticle devoted to Electrochemical Noise studies (M. 
Martinez-Luaces, V. Martinez-Luaces, & Ohanian, 
2006).

RESULTS

Modelling was introduced in UdelaR Statistics 
and Differential Equations courses for Chemical 
Engineering and related careers in 1996. Since then, 
modelling and application problems regularly ap-
peared in final examinations and other forms of 
assessment. A similar situation took place in other 
subjects like Design of Experiments and Numerical 
Methods, as it was analysed in previous papers 
(Martinez-Luaces, 2005, 2009a; Martinez-Luaces et 
al., 2009).

Throughout this teaching experience, as it was al-
ready remarked, modelling problems and applica-
tions were not just discussed in class, but they also 
played an important role in the assessment. This is a 
very important issue, for example Smith and Wood 

said that “…appropriate assessment methods are of 
major importance in encouraging students to adopt 
successful approaches to their learning. Changing 
teaching without due attention to assessment is not 
sufficient” (Smith & Wood, 2000).

In this experience with students of Chemical 
Engineering and Food Technology Engineering, 
several surveys of student opinions were conducted 
through anonymous questionnaires. The transcribed 
below are some of the students´ responses to those 
semi-open questionnaires; they reflect a very posi-
tive attitude towards the courses themselves and the 
problems proposed during those courses:

Now I find that mathematics can be useful.

A really super course, I got a great deal out of it.

An interesting course, with quite a lot of appli-
cations in real life. 

Specifically, about tasks related to modelling and ap-
plications, they had this to say:

If these topics were omitted, the course would 
just be another standard maths course, a ‘hard’ 
subject filled only with methods, calculations 
and numbers.

Once the new study plan was started, the course known 
as Mathematics III was replaced with Mathematics 
005 and 105. After these changes, the students were 
again consulted by means of semi-open question-
naires. These are some of their views:

Very directly applicable to my undergraduate 
professional career; it renewed a taste for math-
ematics and it was well taught, guiding the solu-
tions to the exercises and not working them all 
out.

Table 1: Comparison of the results for the different methods
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I thought the course was very useful and dynamic, 
and I think it will have very useful applications 
in coming years.

As for the modelling, applications, and the problems 
set, these were some of their comments:

The problems were motivational because you can 
see the usefulness of mathematics in daily life, 
and they clearly show the interaction that exists 
with other subjects.

I have taken courses in which the applications 
dealt with here were relevant.

Very useful examples for future years of under-
graduate study.

As can be seen, the students reacted very positive-
ly not only to the course they were taught (before 
and after the initiation of a new study plan), but also 
in particular, within the course, they appreciated 
everything to do with the problems, involving mod-
elling and applications.

The statistical results of these surveys – published in 
Martinez-Luaces (2009a) – confirm those views cor-
responding to several selected opinions.

CONCLUSIONS

The main goals of the activities described in the pre-
vious sections are both technical and educative. From 
the technical viewpoint the results obtained with sim-
ulated data showed that the method most widely used 
(Lineweaver-Burk) it is not the most accurate and this 
fact constitutes a surprising result for the majority of 
the students. From the mathematical education view-
point students’ positive reactions can be explained in 
terms of the following characteristics of the studied 
problems:

a) relevance 
b) applicability
c) specificity
d) authenticity
e) low pre-requisites

The need for relevance was specially remarked in 
the discussion at CERME9, TWG06. The example 
considered above is especially relevant for students 

of several careers such as Chemistry, Biochemistry, 
Chemical Engineering, Food Technology Engineering 
and Environmental Engineering. The problem rel-
evance – at least in this case – is linked with the 
problem applicability and its specificity. The results 
showed that students usually react more positively 
to these problems than to other application problems 
which are not so specific (like problems about circuits 
or mechanics, etc.).

Other issue that was widely discussed in the TWG06 
was the need of authenticity for the modelling activ-
ities. In this case not only the models are real models, 
even more, the methods for recovering parameters 
are the “real ones”, in the sense that these are the meth-
ods that the students will use in other subjects like 
Biochemistry, Microbiology and Physical Chemistry.

Last but not least, pre-requisites are an important 
constraint when choosing modelling and applica-
tion activities. The problem described above and the 
corresponding linearization methods have very low 
pre-requisites and they only need some algebraic 
manipulations to be understood. For the proposed 
activities (i.e., the data simulation and the recovery 
of the parameters) the students only need a previous 
course in Probability and Statistics and some basic 
skills when using MATLAB® or any other software.

It is important to remark that very simple mathemati-
cal models, like the one discussed above, are excellent 
sources for this kind of problems. Moreover, there 
exists an important set of real-life problems from 
these areas, which remain almost unexplored from 
the point of view of their mathematical education 
richness.

Searching for new real-life problems to be used for 
project-work in chemical and biochemical careers 
represents an interesting challenge for mathematical 
education researchers. At the same time, it provides a 
good opportunity for an interdisciplinary work with 
teachers and researchers from other disciplines with 
the resulting benefits.
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In this paper, I will examine mathematical modelling 
as a pedagogic activity. I will contrast this activity with 
mathematical modelling in other professional settings 
and with mathematics in a school and professional set-
ting. Mathematical modelling is commonly drawn on in 
the literature as a resource for supporting the learning 
of mathematics in schools, often as a motivating or con-
textualising mechanism. I will argue, however, that the 
activity of modelling is mythologised in these instances, 
since the recognition rules for the practice of modelling 
per se are frequently not deployed. Instead, I will argue, 
illustrated by a school activity, that school mathematical 
modelling may be distinguished from its professional 
counterpart as a distinct pedagogic activity.

Keywords: Modelling, school, activity.

MATHEMATICAL MODELLING: 
WHAT IT IS AND IS NOT

Mathematical modelling is a tool used by engineers, 
financiers, in medicine and so on.  From a  brief 
review of papers describing mathematical mod-
els (e.g., Mendoza-Arriaga, Carr, & Linetsky, 2010; 
Gunzelmann, Gross, Gluck, & Dinges, 2009; Stolz, 
2002), it is clear that when modelling is deployed to 
engage with issues where the issue itself is the pur-
pose of the deployment,  the level of complexity is far 
beyond the scope of a school course in mathematics.  
In each case an issue is raised in a setting which is not 
itself mathematical, for example; sleep deprivation 
and performance (Gunzelmann et al., 2009), regrowth 
of tissue cells (Whittaker et al., 2009), equity deriva-
tives and pricing derivatives (Mendoza-Arriaga et al., 
2010). A mathematical model is created in which key 
indicators are specified and measures constructed to 
generate the variables in the model. A mathematical 
structure is then presented which generates an in-
terrelationship between the measures similar to that 

which exists with the indicators. This structure is the 
model itself.  The model is validated by measuring the 
extent to which the output it produces is sufficiently 
accurate for the specification of the issue. The cyclical 
nature of the modelling process in which a model is 
suggested, critiqued and refined is a central feature 
which will necessarily have been a key component 
of the work in reaching the stage of publication, al-
though in the examples cited, this is not made explicit 
in the final work.

Blum, Galbraith, Henn and Niss (2007) provide a com-
prehensive overview to the modelling process, viewed 
from the perspective of educational practices: 

The modelling perspective begins with the 
conceptualisation of some problem situation … 
Through a process of mathematization, the rel-
evant objects, data, relations, conditions and as-
sumptions from the extra-mathematical domain 
are then translated into mathematics … mathe-
matical methods are used to derive mathematical 
results … [which] must then be translated back 
into the extra-mathematical domain …The prob-
lem solver then validates the model … the model 
is evaluated … when one of these ‘tests’ is deemed 
unsatisfactory, the whole process needs to be re-
peated …(Blum et al., 2007, p. 9).

In modelling there is little interest in a specific solu-
tion, but instead a solution which is good enough. This 
aspect is particularly alien to school mathematics. In 
the educational setting mathematical modelling is 
presented in different ways. Most commonly it is rep-
resented by the contexts that authors of school materi-
als use for their examples and exercises.  Burke (2013) 
presents examples from leading English school teach-
ing text books. In a text designed for middle achieving 
students, the path of a rugby ball being kicked over 
the posts is to be matched against graphs of its speed 
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against time. Firstly, this is an example of what Paul 
Dowling (1998) refers to as the myth of reference. 
Clearly, the kicker cannot be credibly perceived as 
constructing the graph as a purposeful aid to the kick 
and moreover none of the graphs given is a particular-
ly reasonable representation of the change of speed 
and time of the ball. As Burke suggests; “the activity is 
reading a graph and the apparent non-mathematical 
context is a way in, a ‘selling’ point, for the problem” 
Burke (2013).  This is not an example of mathematical 
modelling, in that it does not present any of the fea-
tures of the modelling process suggested above. The 
problem is posed such that validation would need to 
reside with the rugby player, whereas the solution can 
only be validated as school mathematics. Nonetheless, 
it has the appearance of an example of modelling with 
a ‘real-world’ problem solving context with a mathe-
matical model, yet is of a very common type in school 
text books. The learner is apprenticed into an appar-
ent version of mathematical modelling which does not 
contain its essential features. 

Sometimes the credibility of the problem leads math-
ematics educators to validate solutions without refer-
ence to the setting being used. Galbraith (2011) reports 
a question from the PISA project which provides a 
multiple choice set of answers to the question of how 
many fans could stand in a field at a concert 100m by 
50m. The correct answer is given as C. 20,000. However, 
there is also an answer B. 5,000 which must be taken as 
incorrect. Galbraith says; “This sample item involves 
spatial insight, as students need to decide on a suitable 
model to quantify the amount of space occupied by 
a human, then perform an appropriate calculation 
to estimate how many people would fit into a given 
space. Only about 26% of the multinational sample of 
students answered the item correctly (C), illustrative 
of the depressed performance associated with contex-
tualised problems” Galbraith (2011, p. 9). The field is 
5000 square metres and the correct answer suggests 
that 4 people per square metre could reasonably fit. 
Naturally, this would need to be an average, since 
it would be hard to conceive of every square metre 
being completely full especially around the edges, 
hence some of the square metres would need to fit 
rather more than 4 people. The UK Health and Safety 
Executive publishes it’s Purple Guide (HSE, 1999, p. 
17) which says; “Generally, 0.5 m2 of available floor 
space per person is used for outdoor music events.” 
Here, the mathematics educator engages with a par-
ticular mathematisation of a problem from a given 

(non-mathematical) practice, which at least is open 
to critique within that practice, but nonetheless is 
taken as the ‘correct’ model, where, at least in the UK, 
a different answer would be more correct.  One sig-
nificant feature of mathematical modelling is that the 
model is critiqued by the owners of the problem who 
will be expert in their field, and not the owners of the 
mathematics.

MODELLING IN SCHOOL MATHEMATICS; 
MODELLING TASKS OR MATHEMATICS TASKS?

Dowling (2009; 2013) suggests a structuring of the 
domains of pedagogic action. This contrasts the eso-
teric domain of a practice with its public domain in 
terms of the strength of institutionalisation found in 
the expression and content of the text (Dowling, 2007). 
He represents this schematically:

I have presented a characterisation of the esoteric 
domain of mathematical modelling with strongly in-
stitutionalised expression and content (the modelling 
cycle, the indicator/measure relationship, validation, 
etc.). This constructs a public domain of mathematical 
modelling characterised by low levels of institution-
alised expression and content. Here, problems are 
solved by the deployment of mathematics without 
reference to the modelling process. So, rugby players 
can improve their kicking without a critical engage-
ment with the relationship between the indicators and 
measures or indeed any requirement for validation 
of the outcomes.

Realistic Mathematics Education is a theoretical 
and curriculum development strand in mathemat-
ics education in which the term model is used in a 
mathematical context. It is presented here as a rich 
example within mathematics education where the 
idea of mathematical modelling is presented as an 
important feature. Gravemeijer (1999) gives a descrip-
tion of the central methodology thus; “what is aimed 

Content

Expression I+ I-

I+
Esoteric domain

Descriptive 
domain

I-

Expressive 
domain

Public domain

Figure 1: Domains of Action (after Dowling, 2009)
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for is a process of gradual growth in which formal 
mathematics comes to the fore as a natural extension 
of the student’s experiential reality” (Gravemeijer, 
1999, p. 156). This is seen as a modelling activity, in 
which students construct increasingly formal (eso-
teric domain) mathematical statements developed 
from their public domain discourse in mathemati-
cal settings. The modelling process starts from the 
practical setting; “… RME models are not derived from 
the intended mathematics. These models are seen as 
student generated ways of organising their mathe-
matically grounded activity” (Gravemeijer, Bowers, & 
Stephan, 2003, p. 53). It is apparent that the purpose 
remains rooted within school mathematics practice.  
Issues of validation are entirely within mathematics 
practice and directed at an induction into the esoteric 
domain of mathematics.  For example, describing a 
sequence of teaching for students on co-variance, the 
setting of T-cell counts in AIDS patients is used as the 
data. However, when the students’ work is analysed, 
a series of issues are suggested as being the key de-
velopment points for the next stage in this topic. All 
three of these are clearly framed in terms of esoteric 
domain mathematics: to better describe the shapes 
of the datasets, to structure the datasets in terms of 
patterns and multiplicative reasoning (Cobb, McClain, 
& Gravemeijer, 2003). Despite the potency of the data, 
there is no discussion of the engagement with it in 
the extra-mathematical setting.  Again, this does not 
contain any of the esoteric domain of mathematical 
modelling and hence, can only be seen as a practice 
in school mathematics.

Cyril Julie (Julie, 2002) set a group of teachers a series 
of tasks rooted in issues of potential concern to them 
or their communities.  Two contrasting examples 
were firstly, to find a model for pay scales in school, 
on the basis of equal pay for equal work. Secondly, a 
model of the accumulation of plastic shopping bags 
on school fences (a current environmental concern to 
that community).  Julie notes that different teachers 
were more or less engaged with these tasks differ-
entially according to the immediacy of the outcome 
to their professional position or political interest. 
It is clear here that where teachers engaged enthu-
siastically, the outcomes were potentially interest-
ing models. The contrast I wish to make, is that the 
teachers were engaged in the practice of mathematical 
modelling. They used only the resources they already 
had, to engage with the central modelling issues of 
the construction of the model and the validation of 

the outcomes. Effectively, they looked for a formula 
which fitted well enough to appear workable.  When 
prompted to improve their model they made minor 
changes to the formula rather than engage with what 
might count as an effective model. 

SCHOOL MATHEMATICAL MODELLING 
AS A DISTINCT PRACTICE

I will describe as school mathematical modelling a 
practice where the explicit intention would be to ap-
prentice learners into the esoteric domain of math-
ematical modelling. I have argued above that this 
includes a critical engagement with the relationship 
between problem and model, together with issues of 
the relationship between measure and indicator and 
issues of accuracy and validation.

In this sense, although Julie’s teachers are engaging 
in a mathematical modelling practice, they are doing 
this in a ‘common sense’ way. So, there is no esoteric 
domain engagement in the practice of school math-
ematical modelling. That is not to say that the prac-
tice is neither valid, nor useful. It is clear that they 
have found models which they have found useful in 
their professional lives, beyond the pedagogic set-
ting. Indeed the informal judgements of validity could 
be seen as esoteric domain practice in professional 
modelling, because here the realisation principle 
would include an effective solution, which there was. 
However, in school mathematical modelling practice, 
the esoteric domain would require an elaboration of 
the mechanisms for validation of the model, not just 
a statement of it. Here, the central modelling features 
would be engaged with directly, rather than being 
deployed as they would in mathematical modelling 
practices. For example, how the model is constructed, 
what counts as acceptable validation, how measures 
are constructed for the indicators.

For the teacher to be able to communicate the mathe-
matics, they can constitute their conception as a ‘map’ 
of the practice (see Burke & Papadimitriou, 2002). This 
may be entirely implicit or as a teacher development 
strategy; explicit, external and structured in detail. 
Necessarily, the map will have elements which are 
personal and rooted in the subject and pedagogical 
knowledge of the teacher, nonetheless often with a 
closeness of fit to a presumed pre-existing definition 
of the practice.
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This map can be constructed which structures school 
mathematical modelling as the cyclical creation of 
critique and refinement of a mathematical structure, 
finding good enough measures for the key indicators 
which generate outcomes, validated as sufficiently 
accurate with reference to the problem posed. The 
recontextualisation from originating practice to 
mathematical practice is the central phase, generally 
referred to as generating the ‘model’. The validation 
of the acceptability of the model can only be tested 
ultimately by the project commissioner, who has ex-
pertise in the originating context. Hence, we construct 
a teaching narrative which will seek to make these 
issues explicit and engage overtly with the location 
and basis of judgements of validity. This is school 
mathematical modelling, a pedagogic practice, with 
the aim being to apprentice the modeller into the prac-
tice of modelling. 

Gabriele Kaiser gives a detailed overview of the pa-
rameters proscribing the reported practice of math-
ematical modelling in a pedagogic setting (Kaiser, 
2013). She suggests that the role of the teacher has 
been insufficiently researched. Indeed the centrality 
of the nature of the modelling process and of possible 
models themselves form the main part of the overview. 
Our aim here is to focus on the role of the teacher in 
creating and negotiating the apprenticing relation-
ship, through explicit planning of school mathemat-
ical modelling practices. Presenting school mathe-
matical modelling as distinct from school mathemat-
ics appears to be suggesting a separation approach 
(Kaiser, 2013, italics in original) where mathematical 
modelling is taught as a separate course. However, 

“The most advanced approach, the interdisciplinary 
integrated approach” would require each participant 
to generate their own map and narrative of the aspects 
of which they were the key expert; problem owner, 
mathematical modeller, mathematician. This poten-
tially presents an opportunity for apprenticeship in 
the totality of the mathematical modelling, certainly 
a school mathematical modelling practice.

PIZZA DELIVERY: SCHOOL MATHEMATICAL 
MODELLING IN PRACTICE

I wish to contrast the preceding examples with an ac-
tivity expressly designed to induct learners into the 
esoteric domain of mathematical modelling, hence 
operating in the esoteric domain of school mathemat-
ical modelling. Here, a project sets out a narrative 

based on a story problem about the delivery of pizzas. 
This is a pedagogic activity located in the practice of 
school mathematical modelling. It was originally de-
veloped for the Bowland Trust by Burke, Hodgen and 
Olley (Burke, Hodgen, & Olley, 2007). The activity is 
presented for a teacher audience in Olley (2011). The 
description is a compilation of experiences from two 
London schools; one selective and suburban, the oth-
er non-selective and inner city and from groups of 
mathematics and science teachers.

The initial phase of the narrative aims to imbue a 
sense of purpose. The problem is placed in the con-
text of the owner of a new pizza outlet, who wishes to 
recruit a consultant to advise on the range of issues to 
consider in determining the profitability of the new 
enterprise.  Mathematics educators are generally ex-
pert in neither running a pizza shop, nor business 
management, so it is important that their expertise 
is made clear. So, the activity begins with a public 
domain discourse on pizza shop management. This 
always throws up one central issue (amongst many 
others):  you can reach more customers if you can keep 
your pizza hot for longer. The students have experi-
ence in pizza purchasing and hence are aware of the 
variety of packaging that pizza shops use to keep their 
delivery products fresh and the means by which they 
deliver them. Up to this point, there has been engage-
ment in a marketing relationship. The educator has an 
activity to sell: mathematical modelling, and the mar-
keting strategy is through the use of a compelling and 
apparently engaging setting. Pizza shop ownership 
has been mythologised; the educator has no means 
to credibly validate the outcomes in the practice of 
pizza shop ownership.

Measures for the key indicators need to be found. 
‘Sufficiently fresh’ is indicated by a minimum topping 
temperature of 48°C (which was found initially with 
a ‘taste’ test in which a pizza cooled and was tasted 
until the taster considered it unacceptable). ‘Reach 
more customers’ is indicated by the time taken for the 
pizza to cool to 48° (given that we can find the average 
speed that the scooters delivering them travel at, and 
hence a circular route of that now calculable distance 
seems credible as a deliverable zone). The relationship 
between measure and indicator is a very important 
site for critique, although at this stage the first itera-
tion of the modelling process progressed with these 
face value acceptable measures.
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An experiment in which a pizza was heated, then al-
lowed to cool, plotting its cooling against time, was 
then set up. The educator again must be clear to stress 
the limit of their expertise in issues of experimental 
design. Collaborating with the science department 
who can focus on this aspect would be better. The nar-
rative then reached the point where participants need-
ed to reflect on the rate of change. Hence, a data sheet 
was given out which asks participants to say what they 
thought the ‘just cooked’ temperature would be and 
give a reason. The experiment was then started and 
participants estimated the temperature after one min-
ute, giving a reason. At the one minute point the tem-
perature was announced and participants estimated 
for the end of the second minute and so on up to 10 
minutes. As the experiment progressed, they were 
encouraged to refine their ‘reason’ and increasingly 
express it as a calculation, increasingly with more 
than one element. Finally, they were estimated the 
long term temperatures (30 mins, 2 hrs, 24 hrs). 

As the pizza cooled, participants watched a graph 
of the cooling against time being generated by data 
logging apparatus connected to a temperature probe. 
Over the 10 minute period of the experiment, the 
cooling graph looked very linear indeed. Asked to 
describe the basis on which they estimated successive 
temperatures, a common response would be; “it’s go-
ing down by roughly 2.4°C per minute”. Some partici-
pants said that the rate of decrease was changing from 
around 2.6°C per minute to about 2.2°C per minute. 
Amongst groups of teachers discussion of first and 
second differentials frequently emerged at this point. 
Participants were asked to hold the thought of the 
changing rate and see the effect of the initial model. 
This led to the generation of a model; the starting tem-
perature minus the rate of decrease times the number 
of minutes, i.e. something like 92 − t × 2.4. At this point 
participants could solve the pizza shop owner’s prob-
lem. Here, pizza is still just acceptable at time t where 
92 − (t/60)2.4 = 48.

One complete iteration of the modelling process had 
been completed. So the results needed validation: 
where they good enough? The graph looked very lin-
ear over the range of the experiment and the solution 
was commonly only a small multiple of the experimen-
tal range. It quite probably would be good enough for 
the pizza shop owner. Again, the owner is a fiction, we 
are simply keeping up the marketing ploy. However, 
the narrative set up some unease, notably the expec-

tation that in the medium term the temperature of 
the pizza would plateau at the temperature of the 
room. Using the functional model and values of t for 
30 mins, 2 hrs and 24 hrs, generated absurd values for 
the temperature. When the graph was rescaled with 
the maximum value of t changed to these value s the 
gradient appeared extremely steep. However, the con-
text provided a clear basis for critique. Participants 
knew that pizzas, left to themselves do not freeze of 
their own accord. That the rate of change was slow-
ing was then incorporated to generate an improved 
model. This suggests a quadratic, but again the context 
provides a critique; unattended pizzas do not heat up 
again. This left two possible functions which meet 
both conditions; a reciprocal function and an expo-
nential function. These provide extremely good fits to 
the data and meet both criteria (plateau at room tem-
perature and a diminishing rate of change) and hence 
appear validated in the context of the problem. The 
next iteration of critique demands validation beyond 
the scope of the mathematician. Why Newton’s law of 
cooling is exponential requires an explanation rooted 
in chemistry and physics. Again, the mathematician 
must be clear about the limits of their expertise.

MODELLING ACTIVITIES FOR SCHOOLS AND 
THEIR MATHEMATISATION STRATEGIES

The narrative is designed to preserve the focus of 
the learner on the construction of the model. In an 
earlier paper we refer to this as the mathematisation 
strategy (Burke, et al., 2014, p. 33). We set out an an-
alytic framework describing the different strategies 
according to two axes: the first concerns the extent to 
which there is a rationale for deriving the relation-
ships in the model (A Quantification rule) and the 
second concerns the rationale for the rule itself (A 
Mapping rule). The strength of these is determined by 
its discursive saturation (DS+/DS-), being the extent 
to which the principles of evaluation are contained 
within the practice (Dowling, 2013). This generates 
four mathematisation strategies (Burke et al., 2014, 
p. 33) (Figure 2).

The use of modelling in RME is as the construction of 
a relationship between the originating context and 
the model. This is beyond the reach of the student 
(and indeed the teacher) as it is generated at the lev-
el of author/researcher. So, it operates as a derived 
mathematisation. A mapping whose principles can 
be evaluated (DS+ Mapping), but with no access to 
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the means of construction (DS- Quantification). By 
contrast, Julie’s teachers constructed their models 
with clear relationships between problem and model 
(DS+ Quantification) but do not provide a theoretical 
basis for their models (DS- Mapping), an ad-hoc math-
ematisation. In both cases, throughout the pedagogic 
practice, the mathematisation strategy is fixed. There 
is no possibility to engage with the practice of mathe-
matical modelling per se and hence this is unrealised 
as a pedagogic practice. There is no school mathemat-
ical modelling.

For the pizza narrative, we describe “a move from 
originative through ad-hoc mathematisation that re-
sults in a definitive mathematisation”. (Burke et al., 
2014) This provides the apprenticeship, the mecha-
nism by which the student is exposed to the processes 
of mathematical modelling. The relationship between 
teacher and student remains central as the narrative 
unfolds with the teacher having planned the inclusion 
and suppression of elements of the dialogue, to pre-
serve the focus on the process of creating the model.

The detailed presentation of the pizza delivery nar-
rative is intended to argue the case that the outcomes 
of the activity would be recognised as mathematical 
modelling by a professional, but the practice inducts 
the participant into the esoteric domain of math-
ematical modelling, by strategically emphasising 
key elements of the modelling process. It is clearly 
a pedagogic activity. The narrative is structured to 
selectively expose and suppress the elements of the 
modelling process in strategic ways, because we are 
in fact not solving a real problem, which allows us to 
extend the remit of the original problem to see the 
effects of requiring a higher level of validation. I make 
no claims for this as a school mathematics activity. 
It may be the case that students have learned some 
mathematics in doing this, but that would need to be 
tested empirically. What I do wish to claim is that the 
activity is constructed as a school mathematical mod-

elling practice, created from a reflection on a map of 
that practice. This provides a structure from which 
a principled narrative is constructed, through which 
the participant comes to operate in the esoteric do-
main of school mathematical modelling. 

IMPLICATIONS FOR RESEARCH 
AND FOR EDUCATION

This paper has set out an argument to clarify a distinc-
tion between the practice of mathematical modelling 
and pedagogic activity aimed at developing skills in 
mathematical modelling. I have used examples from 
the literature in which mathematical modelling is 
presented in an educational context but there is no 
intention in the activity to develop modelling skills. I 
would suggest further work within this research area 
to identify and potentially develop further instances 
where the activity can be identified as the pedagogic 
activity; school mathematical modelling. Here, the 
specific intention is to focus on the development of 
aspects of the modelling process and how this can be 
achieved as in the pizza delivery example I have giv-
en. Other elements of the modelling cycle would be 
amenable to this way of thinking and notably I would 
see the issue of validation as central to the modelling 
process and a potential next step for focussed peda-
gogic activity.

In educational policy, there is an increasing empha-
sis on solving problems in mathematics and framing 
these problems in a real world context. In the new UK 
National Curriculum (DfE, 2014), problem solving is 
one of the 3 foregrounded components (the others 
being reasoning and fluency). Students are required 
to; “begin to model situations mathematically”. As I 
have argued, they will not be able to develop skills in 
this unless there is an explicit focus on mathematical 
modelling. Here, the elements of the modelling pro-
cess need to be developed through explicit pedagogic 
activity. This is an issue for curriculum planning and 

Mapping rule (internal syntax)

Quantification rule 
(external syntax)

DS+ DS-

DS+ Definitive Mathematisation Ad-hoc Mathematisation

DS- Derived Mathematisation Originative Mathematisation

Figure 2
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materials design. The pizza delivery example pro-
vides one activity with a focus on one specific aspect 
of the mathematical modelling process. It could poten-
tially fit in to a more systematic collection providing 
a more complete curriculum in school mathematical 
modelling.
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Although efforts have been made to integrate the concept 
of mathematical modelling in school, studies show that 
it has not arrived yet in everyday school classes. From 
a teacher’s point of view, multiple solution approaches 
and a varying task difficulty complicate especially the 
development and assessment of modelling tasks. Taking 
up this issue, this study aims at developing a method to 
determine the degree of difficulty of solution approach-
es of modelling tasks based on so called thought struc-
tures of student solutions. Thought structures of student 
solutions provide information about the task difficulty 
and can be taken as a basis for a well-founded rating 
scheme. We want to consider the question of whether 
the method used to describe the degree of difficulty can 
be reproduced by empirical results. 

Keywords: Mathematical modelling, assessment, degree 

of difficulty, task space.

INTRODUCTION 

Within the community of mathematics education 
there is a broad consensus that the integration of 
mathematical modelling and applications must be 
promoted and increased. Of course this awareness 
is not new and efforts have been made during the last 
decade. However, several studies provide evidence 
that modelling is far away from playing an integral 
role in daily school teaching in Germany and also else-
where (Blum, 2007). The proportion of modelling in 
daily school routine is rather low (Jordan et al., 2006). 
When researching into that problem it is worthwhile 
to have a closer look on the teachers’ point of view. 
What prevents teachers from teaching modelling 
tasks? Schmidt (2010) found out that teachers often 
mention complexity and lack of predictability as mo-
tives for waving modelling tasks. A look in textbooks 

shows that modelling tasks are still rare, especially 
those which can be used in a normal school class set-
ting in contrast to modelling tasks used within larger 
projects encompassing several lessons. The develop-
ment of modelling tasks leads, more than ordinary 
task formats, to difficulties concerning the estimation 
of the task space, the task difficulty and finally also 
concerning the assessment.

The study presented here takes up the issues from a 
teacher’s perspective and aims at a better structuring 
of modelling tasks in terms of a better manageabili-
ty for teachers. In detail we developed a method to 
determine the degree of difficulty of modelling tasks 
and an assessment scheme, both, building on solution 
approaches with its particular thought structures. 
Empirical results will show whether the theoretical-
ly determined degree of difficulty is verifiable and 
certifies a good applicability.

THEORETICAL FRAMEWORK AND METHOD

A common instrument to determine the degree of 
difficulty is the solution rate by applying a dichoto-
mous rating. Since the answer format of modelling 
tasks is open and compared to others rather exten-
sive, this procedure seems not adequate to reflect 
the full scope which is provided by modelling tasks. 
Cohors-Fresenborg, Sjuts and  Sommer (2004) applied 
a method analysing the text of the task. They identi-
fied task specific indicators for the difficulty of tasks 
by investigating PISA-2000 items. The task format of 
the investigated items was not restricted to modelling 
tasks. Since the task space of modelling tasks is, com-
pared to other task formats, rather large, this aspect 
would get lost by focusing on the text of the task. In 
our study this specificity of modelling tasks is taken 
into account since the method for determining the 
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degree of difficulty comes directly out of the solution 
approaches of the student solutions. 

In a first step we analysed the student solutions of 
every modelling task to identify main solution ap-
proaches. On the one hand, this classification was 
based on the mathematical model used and, on the 
other hand, on the solution process, which can be 
different although the same mathematical model is 
used. Each solution approach has a specific structure 
which can be revealed by dismantling the solution 
approach into its single thought steps, which provide 
the opportunity to consider solution steps from cog-
nitive aspects. This idea builds on structural consid-
erations in the field of word problems. In this context 
Breidenbach implemented the term “Simplex” as a task 
consisting of three items and every item can be deter-
mined by the two others (Breidenbach, 1963, p. 200). By 
visualizing the logical structure of the mathematical 
operations to be done in terms of such Simplexes he 
built up a kind of arithmetic tree or flow chart. These 
flowcharts have been refined by Winter and Ziegler 
(1969) and serve as a basis for the so called thought 
structure analysis of the study described here. For 
the present study we refined Breidenbach’s definition 
by identifying the single cognitive steps, here called 
thought operations, which have to be carried out in 
order to arrive at a solution. We define thought op-
erations as follows:

A thought operation is a necessary (intermediate) result 
which is obtained directly (without intermediate calcu-
lations) from one or several (initial) data. 

These thought operations can then be arranged as a 
kind of flow chart which illustrates the incremental 
proceeding and in addition, also the complexity of the 
solution process (see Figure 1).

A natural but empirically not yet validated conclusion 
is that the complexity of a mathematics task is depend-
ent on the number of simplexes and the nesting of 
them (Graumann, 2002, p. 93). Cohors-Fresenborg and 
colleagues (2004) emphasize in this context the simul-
taneity and nesting of thought steps. With the help of 
theories within the field of cognitive psychology, we 
can operationalize the effects of nesting and simulta-
neity on complexity. Fletcher and Bloom (1998) found 
in their study about text comprehension, where they 
assumed text comprehension to be a kind of problem 
solving process, that information being the direct pre-

decessor of another information must be kept actively 
in the working memory. Under the assumption of a 
working memory with limited capacity (Sweller, 1988) 
these findings indicate that several aspects in a task 
which are related to each other and have to be consid-
ered and understood at the same time, may load the 
working memory. Thought operations are considered 
to be parallel if they either originate from the same 
thought operation or determine the same thought 
operation of the subsequent solution level.

By applying the findings from above to the thought 
structure considerations, especially the amount of 
parallel thought operations (as it is the case in level 
two of Figure 1) of a solution approach appears to be 
a difficulty generating aspect. Thus, during the pro-
cess of determining the degree of difficulty, parallel 
thought operations complicate the solution approach 
to a greater extent than those being processed consec-
utively. To describe this circumstance we developed a 
model which gives more weight to parallel than con-
secutive thought operations. Each level in the thought 
structure contributes to the overall degree of difficul-
ty according to its number of parallel thought opera-
tions. From the number of parallel thought operations 
per solution level we calculate the factorial and then 
finally all levels are added up. In the following we want 
to reconstruct this procedure by taking modelling 
task “Potato” (Figure 2) as an example.

One solution approach, which we could identify, is 
called “Layer” (Figure 3, left). Based on the given 
length of the potato the student assumes a height and 
a diameter or depth of the potato. Together with an 
assumption about the measures of a potato stick the 
student is then able to calculate the number of sticks 

Figure 1: Exemplary thought structure of a solution approach 

together with the number of thought operations per level
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per layer in height and depth. Multiplication of these 
two numbers leads to the total number of potato sticks. 
The corresponding thought structure has been de-
veloped which arranges these thought operations as 
sort of arithmetic tree (Figure 3, right). Besides the 
chronological order of the calculations to be made, the 
thought structure also provides information about 
the difficulty of the solution approach. The numbers 
right next to each solution level indicate the number 
of parallel thought operations to be completed per 
thought structure level. As explained above summing 
up the factorial per level yields the degree of difficul-
ty of the solution approach.Thus, in case of solution 
approach “Layer”, the degree of difficlty is 1!+2!+1!+1!=5 
(see grey Figure 3, right).

Based on these considerations an assessment scheme 
has been developed to utilize the full scope of the 
promising method on the one hand and to verify the 
theoretically determined degree of difficulty on the 
other hand. When observing the assessment routine 
of mathematics teachers it becomes clear, that assess-
ment of tasks is based on a sample solution and its 

important partial aspects. The teacher compares each 
solution with a sample solution and awards impor-
tant intermediate results. Our assessment scheme 
is based on this everyday school routine procedure. 
Intermediate results are represented here by thought 
operations and are assessed according to whether they 
have been conducted correctly or wrong. For partly 
right thought operations half points can be award-
ed. That means that thought operations are scored 
0, 0.5 or 1 dependent on their completion. Thus, the 
maximum score per solution approach is defined by 
the number of thought operations. In case of solution 
approach “layer” the maximum score is 5 (number of 
thought operations (grey boxes) in Figure 3, right).

Before being able to solve the task, one has to identify 
the relevant information of the presented linguistic 
context. According to Cohors-Fresenborg & Sjuts 
(2001) difficulties are especially evoked by linguistic 
constructions concerning the logical structure and 
formulations conditioned by the authenticity of the 
situation. The textual differences of the tasks are 
integrated in the process of determining the level of 

Figure 2: Modelling task “potato”

Figure 3: Solution of solution approach “Layer” and corresponding thought structure 
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difficulty by adding zero, one or two single thought 
operations according to the linguistic requirement 
of the task text.

0 Picture and/or text contain all relevant data. 
Only simple main clauses are used.

1 Missing data has to be estimated and there 
are several main and subordinate clauses due 
to a larger text, containing explanatory but 
mathematically irrelevant text passages.

2 Picture and/or text do not explicitly clarify 
the dimension of the object of the task, e.g. the 
two dimensional picture of a potato is out of 
keeping with the three dimensional reality 
leading to not include a third dimension in 
the calculations.

Modelling task potato has been assigned to linguistic 
level two according to its requirements coming from 
the text. Therefore we additionally add two single 
thought operations to the solution approach based 
degree of difficulty. Thus the total degree of difficulty 
of the solution approach “Layer” consists of linguis-
tic requirements (2) and solution approach specific 
thought operations (5) and finally adds up to 2+5=7.

STUDY DESIGN

Five modelling tasks have been developed according 
to predefined criteria (see Reit & Ludwig, 2013):

 ― Authentic context (Maaß, 2007)

 ― Realistic numeric values (Müller et al., 2007)

 ― Problem solving character (Maaß, 2007)

 ― Naturalistic format for questions

 ― Openness relating to the task space

Authenticity and relation to reality are core elements 
of modelling tasks. We want to avoid ostensible re-
lations to reality like they are often used in word 
problems in textbooks. There is no a priori known 
solution algorithm for the task which can be directly 
applied by the students. That means that the solution 
makes itself out to be a problem on students’ level. 
The questioning is supposed to either be close to the 

living environment of the students or take up a real-
istic question which could arises in reality. Openness 
of tasks is reflected by the task space. There has to 
be more than one solution approach which leads 
to a solution. The solution approaches distinguish 
themselves by their mathematical model. Thereby the 
students are able to have more options to arrive at 
a solution. Openness should rather be based on the 
alternatives of mathematical models to solve the tasks 
than on approximating sizes. Demanding this we do 
not deny that making assumptions is an important 
part of mathematical modelling but we want it to be 
limited to a degree which ensures an assessable solu-
tion interval. 

The study splits up into pilot study and main study. 
The pilot study encompassed

 ― an a-priori definition of the task space of the tasks,

 ― the identification of the thought structure for 
each solution approach

 ― and the establishment of a rating scheme for each 
solution approach.

The implementation into a normal 45-minute lesson 
also required a time limitation of approximately 
10–12 minutes per task. During the main study from 
December 2013 until April 2014 approximately 1800 
students of grade 9 (15/16 years of age) of German 
grammar schools took part and solved three model-
ling tasks each. 

To validate the thought structure method it must be 
investigated in how far the theoretically determined 
degree of difficulty is empirically reproducible. In oth-
er words, will tasks, which have been rated as difficult, 
be solved worse than those rated as rather simple? To 
do so the student solution together with its assessment 
is associated with the predetermined degree of diffi-
culty of the respective solution approach.

VALIDITY OF THE THOUGHT 
STRUCTURE ANALYSIS

The modelling tasks, which have been developed es-
pecially for the purposes of the study, show a good 
variability of applied solution approaches. Although 
this was an important criteria during the process of 
development it could not be stated with certainty how 
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the students solve the task. At least three target aimed 
solution approaches could be identified per modelling 
task (Figure 4). Hence, from the viewpoint of open-
ness in the sense of an adequate task space the devel-
oped modelling tasks seem to meet the requirements.

The main objective of the study is the validation of the 
thought structure method to determine the degree of 
difficulty by comparing the student performance with 
the statement of the theoretical model. Hereafter we 
consider the question of whether the method makes 
a valid statement about the degree of difficulty of the 
modelling tasks.

Within a modelling task the student performance ver-
ifies the degree of difficulty in terms of scoring higher 
using solution approaches determined as easier and 
vice versa. This situation is illustrated in Figure 5. 
Taking three of the five modelling tasks into account 
(modelling task “Cola” and “Bridge” are not yet ana-
lysed completely) we can see a distinct decrease of the 
average score when using a solution approach being 
determined as more difficult. The value of the pow-
er of the regression function is in case of modelling 
task “Tennis” and “Taj Mahal” nearly similar what 
indicates that the coherence of score and degree of 
difficulty reacts almost in the same way. The degree 
of difficulty of modelling task “Potato” seems to have 
a firmer influence on the average score than it is the 
case with the two other modelling tasks. An increase 
in difficulty results in a steeper deterioration. In gen-
eral a comparability of solution approaches within 
a modelling task, based on the theoretical degree of 
difficulty is reasonable.

Another interesting question is to what extent the de-
termination of the degree of difficulty can be used in 
a cross-task context. What statements can be made by 
comparing different modelling tasks? To answer this 
question we compared the average score of a model-
ling task dependent on its average degree of difficulty. 
The decreasing tendency of the average score with in-
creasing degree of difficulty is in evidence (Figure 6). 
In detail the power of the regression function suggest 
that if the degree of difficulty doubles, then the score 
will half.

SUMMARY AND OUTLOOK

Especially when considering modelling tasks it is 
challenging to estimate the degree of difficulty and 
to assess their solutions reasonably and satisfying 
for students. On the part of teachers this brings along 
uncertainty and might contribute to a restrained at-
titude towards modelling tasks in everyday teaching. 
The presented study considers that problem and de-

Figure 4: Distribution of solution approaches per modelling task (target aimed solutions in greyscale, others white)

Figure 5: Coherence of score and degree of difficulty concerning 

the solution approaches per task
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veloped a promising method to firstly determine the 
degree of difficulty and secondly to form the basis 
for a reasonable and conclusively substantiated as-
sessment scheme. The analysis so far encourages the 
assumption of a good applicability. The results up 
to now show that using the thought structure based 
method to determine the degree of difficulty is in line 
with the empirical results. Students show better re-
sults when using those solution approaches with a 
rather low degree of difficulty and vice versa. Similar 
results could be obtained considering the modelling 
tasks as a whole. The average student performance is 
better at easier tasks and worse at tasks being rated 
as more difficult. Additional analysis especially to 
modelling tasks “Potato” and “Bridge” will show how 
reliable and convincing the method is. Besides these 
affirmative outcomes modelling task “Potato” gives 
rise to questions concerning the limits of the method. 
The divergent results of this task may be due to the 
fact that their solution approaches are somehow in-
tertwined in the sense of being difficult to distinguish. 
This sometimes leads to the problem of false solution 
approach classification, thus to a falsification of re-
sults. This may support the conclusion that a distinct 
discriminability is a necessary requirement for the 
thought structure method. Further reflection and the 
complete analysis of the two remaining modelling task 
may give deeper insights to that aspect.
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This paper focuses on the problem of integrating a multi-
disciplinary approach to the study of extra-mathemati-
cal questions where mathematical modelling appears as 
a central tool in the teaching and learning processes. We 
present here the design, implementation and analysis 
of a sequence based upon a historical context, the war 
of Spanish Succession in Catalonia during 1714, which 
was implemented in two courses with 12–14-years-old 
students. We also show to what extent these implementa-
tions help to integrate an interdisciplinary study where 
history and mathematics will have to work together.

Keywords: Mathematical modelling, inquiry, 

multidisciplinary approach, historical and cultural context.

INTRODUCTION

The main aim of our research is to find complex situ-
ations of real life that can give rise to the design of a 
sequence of tasks that can promote inquiry and mod-
elling students’ competences. These real situations 
will be the origin of the design of a sequence of ques-
tions and tasks, integrating the necessary didactic 
devices enhancing students to mobilize the necessary 
cognitive processes to face them. More concretely: (1) 
to integrate diversity of tools coming from different 
disciplines and subjects and (2) to integrate mathe-
matical modelling as an essential tool to facilitate a 
multidisciplinary approach to face such situations. 

It is in this context of fostering the inquiry and mod-
elling in which the selection of initial situations that 
will originate the process of design of tasks’ sequences 
takes real importance. This situation leads to the for-
mulation of the following specific research question 
that will be at the core of our research:

Given the classical description of contents of dif-
ferent subjects (Mathematics, History, Languages, 
etc.) at Secondary school level, and given the 
traditional isolation between these disciplines, 
how can we design didactic devices which locate 
problematic questions at the starting point of the 
study process where: (1) mathematics (and math-
ematical modelling) appear as fundamental tools 
to provide answers to them, and (2) can the math-
ematical study inhabit and interact with other 
disciplines (or subjects) to validate and enlarge 
the study?

Here we consider the particular case of Secondary 
school level. The sequence described in this paper 
was named ‘Understanding the incidents of 1714’ 
(‘Valorant els fets de 1714’). The main purpose for 
students (and also the final task) was to participate 
in a literary contest about the consequences of the war 
of Spanish Succession in Catalonia, which happened 
300 years ago. Students were asked to face  quite an 
open starting historical problem about this war. They 
had to begin by looking for real data in some historic 
resources, and to use mathematical tools for the anal-
ysis, understanding and looking for answers to some 
initial historical problems. Finally, they were asked 
to individually write a short story as means to share 
and officialise their final responses and conclusions 
about the consequences of the war. This short story 
was sent to a literary contest announced by a Catalan 
publisher1 opened to all secondary schools.

In this paper we describe some of the main traits of 
the didactic sequence’s design that was finally imple-
mented. We also analyse how it contributes to the de-
velopment of students’ inquiry and modelling compe-
tences by using the talks’ registers, productions from 
students and their answers to a final questionnaire, 
but also by describing the a priori mathematical and 
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didactic designs in which researchers and teachers 
work together. 

THEORETICAL APPROACH

In the design of the sequence of tasks different ap-
proaches interact. On the one hand, the mathematical 
and didactic design quality is justified based on the 
three criteria of didactic ‘suitability’ proposed by the 
Ontosemiotic Approach, EOS (Godino, Batanero, & 
Font, 2007): 1) the emotional suitability, 2) the epis-
temic suitability and 3) the ecological suitability. 
The aim is to design a sequence of tasks in which dif-
ferent suitabilities were included. For instance, its 

‘emotional suitability’ can be justified by the fact that 
students were asked to participate in a literary contest 
from which some winners were selected (as it finally 
happened); its ‘mathematical quality’ (the epistem-
ic suitability) can be justified based on the view that 
implementation allows students to trigger relevant 
processes of mathematical activity, in particular of 
mathematical modelling processes. In its turn, the 

‘ecological suitability’ is justified by the fact that the 
curricula of these secondary-school students have a 
competency-based approach, where the teaching and 
learning processes provided by the curricula should 
promote competences to deal with complex and var-
ied real-life situations.

These curricula guidelines are on the same directions 
of recommendations from other countries and inter-
national organizations like the National Research 
Council (NRC, 1996). For instance, according to the 
NRC, teachers should support the development of 
abilities of inquiry. These inquiry abilities are hardly 
related to modelling perspectives, and sometimes it 
is difficult to find the differences between both pro-
cesses (Artigue & Blomhoj, 2013). A recent discourse 
of inquiry in mathematics education focuses on the 
use of methods and mathematisation processes, pro-
moting the construction of mathematical hypothe-
sis and models, and the need for arguing, valuing 
and controlling in an appropriate way to solve the 
contextual problem (Elbers, 2003). From our view-
point, placing mathematical modelling processes at 
the core of activities involves promoting other kind 
of processes important in a rich and functional and 
mathematical activity (understood as mathematical 
richness of quality processes).

On the other hand, a way to get a high epistemic suit-
ability is to design the sequence of tasks using the no-
tion of study and research paths (SRP) (Chevallard, 
2006; 2012) as a didactic device to facilitate the in-
clusion of mathematical modelling in educational 
systems, and more importantly, to explicitly situate 
mathematical modelling problems in the centre of 
teaching and learning processes (Barquero, Bosch, & 
Gascón, 2008). We assume and use the structure of 
SRP (Barquero, Serrano, & Serrano, 2014) as the main 
theoretical construct to design the didactic sequence 
we will present in this paper: (a) The starting point of 
a SRP will be a ‘lively’ generating question with real 
interest for the community of study (students, teach-
ers and researchers); (b) During a SRP, the study of the 
generating question will evolve and open many others 

‘derived questions’. The study of all these questions 
will lead to successive temporary responses, which 
would be tracing out the possible ‘routes’ to be fol-
lowed in the effective experimentation of the SRP; 
(c) The teacher will thus have to assume a new role of 
acting as the leader of the study process, instead of 
lecturing the students; (d) An important dialectic that 
will be integrated in the SRP is the task of posing ques-
tions and that of the continuous search for answers; 
(e) Against the temptation of imposing some answers 
that are acceptable within the educational institution, 
the group of students needs to be invited to defend 
the successive answers they provide; and finally (f ) 
The dialectics between the media and ‘milieu’ will be 
also essential to control what exiting resources and 
answers are available ‘outside’ the classroom (in the 
media), but also what tools will help us to validate and 
integrate them in our study. 

The proposal presented in this paper uses some his-
torical contexts to develop inquiry and modelling 
competences in the same line as some previous works, 
for instance: Vilatzara Group (2003) used historical 
questions context questions to introduce mathemat-
ical modelling processes or Sala, Giménez, & Font 
(2013) proposed a selection of tasks in historical and 
cultural context to promote inquiry.

CONDITIONS OF THE DESIGN 
AND IMPLEMENTATION 

The starting question that opened the teaching se-
quence was placed in the context of Barcelona’s siege 
during the war of the Spanish Succession. 
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Si: Which were the consequences of the incidents 
of 1714 for the society, culture and political organ-
ization of Catalonia?

Students were asked from the beginning to write a 
short story about the war’ consequences for Catalonia 
with their own conclusions from their study devel-
oped in the classroom work. It was important this 
story was rigorous enough, based on contrastable 
historical data and involving a robust study about 
some related phenomena, like: Barcelona’s demogra-
phy evolution, economical changes for the society or 
for some guilds of the city, etc.

The teaching sequence was implemented during 
the course 2013/14 with two experimental groups at 
Secondary school level (12–14 years old) of 29 and 30 
students respectively, in a high school in Badalona 
(Catalonia, Spain). Its experimentation was carried 
out during two weeks for each group, with a total of 
7–8 weekly hours. One exceptional condition was that 
the subjects of History, Mathematics and Catalan lit-
erature were linked along this experimentation. They 
acted together in what was called the ‘Mathematical-
Historical workshop’. Along the workshop, the teach-
ers of these subjects were all involved in the exper-
imentation, with the help of the first author of the 
paper, who acted as observer and guide of the imple-
mentation. For their part, the students were organ-
ized in ‘inquiry teams’ that changed along the different 
stages of the workshop.

The study began describing the general initial situa-
tion Si that was broken into some more concrete ques-
tions (some of them explained below) to better distrib-
ute and coordinate the inquiry-teams’ work. They all 
began with the analysis of some real data (concerning 
each topic) in order to quantify and value the conse-
quences of the incidents occurred in 1714 in Barcelona. 
Through the study of the initial question, together 
with the need of getting historical knowledge, evolved 
towards some other derived questions. The students 
had to search information outside the classroom in 
all available media (webpages, historical resources 
with real data, etc.). These teams had to build up and 
use different mathematical models to study some of 
these derived questions and to contrast the validity 
of their proposals by using tools from mathematics 
and also from history.

Most of the information related to the mathemat-
ical-historical workshop (initial worksheets, top-
ics and questions to study, phases followed along 
the workshop, etc.), and also some of the results 
from its implementation, are available in the blog 
called ‘Understanding the incidents of 1714’: http://
valorar1714.blogspot.com.es/. This blog was basi-
cally structured in four parts: a central part, where 
students could read teacher’s posts with the aim of 
encouraging students to keep on working and tem-
porizing each of the phases and tasks; on the right 
part, there were some materials and resources that 
students could use to do the first tasks of the workshop 
(historical frame contextualization). The left part con-
tained the blog archive, the search bar, some links of 
interest and other resources 2.0 related to Si; on the 
top, four different boxes contained the worksheets 
grouped by topics and other documents concerning 
each of the topics. The didactic sequence was organ-
ised in the following stages:

First stage: The historical frame contextualization. 
Cooperative work teams (the so-called ‘inquiry teams’) 
were formed and each student assumed different roles 
and some concrete tasks. Students were also asked to 
individually sign a contract about the compliance of 
certain working rules. Each team prepared, exposed 
and defended a poster board) where they had to ex-
plain a part of the historical frame since the begin-
ning of the war. The rest of the students had to listen 
to, question and assess the rest of the poster boards 
and presentations. After that, new couple-teams were 
responsible for carrying out a time line with the free 
software ‘Timetoast’ to ensure they had a clear idea 
of the chronology of the historical events.

Second stage: Inquiry teams facing different topic related 
to Si. The students, organized in the inquiry teams of 
two or three members, focused on the study of some 
phenomena (proposed by the teacher) related to Si. 
Some real information was also provided to allow stu-
dents to initiate an accurate study. To begin, all the 
teams had a general introduction about data’s origin, 
historical resources and some other information to 
contextualize the inquiry. Si was broken into differ-
ent lines of research that were grouped in three main 
topics: A, B and C. After the general introduction, the 
teachers, who acted as supervisors of the inquiry, as-
signed each topic to each of the inquiry team.
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Topic A focused on the demographic dynamics of 
Barcelona’ population before and after 1714. It was 
composed by four worksheets (one for each inquiry 
team):

QA.1: Evolution of the population between 1600 
and 1720; QA.2: Evolution of the births in Catalonia 
between 1600 and 1715; QA.3: Evolution of the ille-
gitimate births between 1600 and 1715; and QA.4: 
Comparative study of the salaries and prices be-
tween 1680 and 1800.

Topic B focused on the study of Barcelona’s guilds be-
fore and after 1714, composed by seven dossiers that 
introduced the question of describing and fostering 
the evolution of the following guilds before and after 
1714: 

QB.1: The fishermen and sailors’ guild; QB.2: The 
weavers’ guild; QB.3: The wool crafters’ guild; QB.4: 
The shoemakers’ guild; QB.5: The tanners’ guild; 
QB.6: The tailors’ guild; QB.6: The ‘blanquers’ (an-
other type of tanners) guild.

Topic C focused on the study about the changes in the 
configuration of the city before and after 1714, com-
posed by two worksheets:

QC.1: The construction of ‘Ciutadella’ (a citadel) 
and its consequences for the city; QC.2: Changes 
on the configuration of the city (Barcelona).

Each of these inquiry lines, starts with the contex-
tualization of the particular topic included in the 
worksheet, which was structured in different parts 
(two at least) including questions from less to more 
complexity (all of these questions are available in the 
worksheets published in the blog). Students were al-
ways asked to add new questions to follow with their 
study, but some feasible questions were included in 
the worksheets to help teachers to guide the study. For 
instance, if we focus on the topic A – QA.2 about the 
births’ evolution in Catalonia between 1601 and 1700, it 
was introduced with the analysis of real data collected 
by Sant Just parish church (Barcelona) (Figure 1 – data 
provided by Ferrer, 2007). We began with the follow-
ing general question:

Given the data of the number of births in Catalonia 
during some years before 1714, how can we de-
scribe the evolution of the number of births? Can 

we identify any change? How can we make fore-
casts about the future number of births? How can 
we contrast prediction and reality?

The first part focused on facing questions concern-
ing the description of real data about the number 
of births between 1600 and 1714, with some other 
questions about how to predict the births’ evolution 
around to 1714. Most of the students began using the 
graphical representation of real data (see Figure 1b) 
to complement the numerical analysis and to describe, 
for instance: the year intervals when births increase 
or decrease, linking the growth description to some 
historical events, etc. Despite all the rich description 
most of the teams provided, mathematical tools were 
not rigorous enough to provide forecasts about the 
short- and long-term births’ evolution. At the end of 

Figure 1a: Number of births per every period of five years

Figure 1b: Part of the partial report of an inquiry team working 

with QA.2
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the first part, students began to propose the use of 
discrete models (recurrent sequences models) or some 
basic continuous functions (constant or linear) to fit 
real data and also to predict birth’s evolution. The sec-
ond part expanded the previous answers and results. 
It was focused on creating tools to compare and con-
trast forecasts provided by the mathematical models 
with real data (more data about real births from 1714 
were given to the inquiry teams). Furthermore, be-
tween the first and the second phase, each group had 
to prepare the ‘interaction report’ with which differ-
ent teams working with similar topics (A, in this case) 
had to interact. From this interaction some common 
questions arise that could need some help from the 
teacher to follow with the activity (comparing propos-
als, introducing some unclear mathematical concept, 
formalising mathematical tools, etc.). At the end, each 
inquiry team was asked to complete, describe and re-
port their work by writing their ‘final report’ about 
this line of research.

Third phase: Sharing the conclusions from the inquiry 
teams. In this final phase, each inquiry team had 
to prepare a presentation to share their study and 
conclusions. Some more ‘interaction’ moments were 
planned, depending on the conclusions they had 
found. For instance, it was necessary that some teams 
dealing with QC.1. about the construction of ‘Ciutadella’ 
interacted with teams on QB.i. about the changes on the 
guilds in the city. To better understand and explain 
why some changes in the city cause some movements 
in where guilds were placed. 

Another example of the interlinked and necessary 
interaction between different lines of inquiry was 
shown by the work within QC.1 (see Figure 2) and QC.2 
(topic C, Figure 3) about the creative proposals about 
the construction of the trenches (Torras & Sobrequés, 
2005). In the first phase of the study, each team focused 
on its own topic: 

QC.1: The ‘Ciutadella’ was built a few years after 
the defeat of September 11th, 1714 with a special 
architectural structure (Figure 2). What role do 
you think it had? What benefits could its archi-
tectural structure provide to the city (in military 
terms, protection of inhabitants, etc.)? 

QC.2: It’s been documented that the structure 
of the trenches (Figure 3) during the War of 
Succession introduced some innovative changes. 

What kind of novelties did this system include? 
What elements allow us to compare the shape 
of the trenches with the advantages in number 
of deaths?

After each team developed its own study of their par-
ticular lines, some new questions were asked to link 
both lines. They mainly focused on studying the rela-
tionship between the structure of the ‘Ciutadella’ and 
the defensive strategy and the resistance capacity of 
the trenches structure to bear the continuous attacks 
during the siege.

At the end of this phase (as forth stage), student had 
to individually draft a short story, based on the work 
done by all the groups working in the class, following 
the rules of the literature contest. After a process of 
co-evaluation of their writings, their writings were 
sent to the contest. The good news were that one of our 
students won the second prize of the contest (named 

‘Catalan memories’!)  

Figure 2: Part of the plan of the citadel (1715). 

Available in http://ves.cat/l9_P

Figure 3: Trenches to the walls of Barcelona during the siege of 

the War of Succession in 1714. Available from http://gallica.bnf.fr/

ark:/12148/btv1b7100421p/f1.zoom
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RESULTS AND DISCUSSION

In all the work developed around the initial situation 
Si (what were the consequences of the war of Spanish 
Succession in 1714 to Catalonia) and derivative ques-
tions that characterize each topic, it was essential 
that the students assumed many responsibilities, 
traditionally assigned exclusively to the teacher. For 
example: work in a inquiry team; schedule their own 
study; discuss the proposals and results in the class-
room; question the historical validity according to 
their answers; analyse real data and look for patterns 
to build models and make predictions; contrast their 
conclusions with the most appropriate experimental 
milieu (looking for data in external resources, trying 
with other models, etc.); summarize results and de-
fend them orally and in writing; check the validity of 
the mathematical tools that are being used; raise new 
questions to continue with the study, etc. Moreover, 
students had to compare, search agreement with team 
members and also with other teams based on their 
own productions and results.

This way of working helped students to place them-
selves in a critical perspective towards the reality 
around them and gave them tools to come up with 
their own decisions and ways to analyse situations in 
our society (Vanegas & Giménez, 2010), like the initial 
situation we have presented in this didactic sequence. 
That is, despite the path of tasks planned and followed 
by the students in this implementation, the teaching 
sequence promoted autonomy and a critical thinking 
thanks to the openness of the questions.

Among other devices that were available to students 
and teachers, we emphasize the importance of the 

‘inquiry guide’, and some documents that each inquiry 
group had to write so that the teachers could follow 
the progress of the study. These documents are: two 
partial reports (Inquiry teams had to fill them at the 
end of the first and second research phase respectively, 
presenting a synthesis of the issues treated, and ex-
plaining their responses and the mathematical tools 
used); an ‘interaction report’ between groups (it had to 
be completed to guide the interaction between inquiry 
teams); and a ‘final report’ that they had to write at the 
end of the study. This final report helped the students 
to individually write the short story to send to the 
literature contest.

However, we want to emphasize the importance of 
planning some sessions to share all teams’ work and 
approaches with the rest of the teams. Students an-
swered a questionnaire that allowed us to know their 
perception on various aspects of their learning. They 
said that they had had a lot of difficulties on: under-
standing in the beginning what it was being asked 
and why, integrating their contributions and results 
in their research, generalizing their results, synthe-
sising their work and writing the team’s reports, etc. 
However, in general, their opinions were positive. It 
was in these ‘sharing sessions’ where the teacher had 
to act as guide or as mediator, helping students with 
all these new tasks that they had assigned. 

Finally, we think that the final task of submitting an 
essay to a literary contest was a key element to engage 
students in the research project. Moreover, the inte-
gration and use of new didactic devices, as the ones 
described, that are not usually integrated in school 
reality help students to assume many responsibilities 
that are traditionally assigned only to teachers. 

FINAL REFLECTIONS

The research we have presented in this paper de-
scribes some of the characteristics of the teaching 
sequence of ‘Understanding the incidents of 1714’, 
which was designed giving an especial role to inquiry, 
modelling and the interdisciplinary approach. The 
design gives special importance to this interdiscipli-
nary approach in order to allow students to consider 
mathematics, and specifically mathematical model-
ling, as a tool for finding answers to questions (in this 
case, from History). Besides the first resistances of 
students to use and mix tools and information from 
different subjects (history and mathematics, in our 
case), mainly doubting that teachers were ‘asking’ 
for this combined used, they could finally go into 
the ‘dialogue’ and interaction of such traditionally 
isolated disciplines. History was not only providing 
the initial context where the initial questions where 
posed, its tools were constantly integrated along the 
study to validate their responses. And in the same way, 
models and mathematical tools were at the disposal 
of the research activity, they had to help us to follow 
with our inquiry activity and all proposals had to be 
persistently checked with the appropriate histori-
cal-mathematical milieu.
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Along the SRP students were asked to build up their 
own ‘piece of history’ through: the formulation of hy-
potheses based on the analysis of real data and histor-
ical information, looking for mathematical tools to en-
large the answers to historical problematic questions, 
contrasting the validity of mathematical tools with 
historical resources, posing new questions to follow 
with, etc. That is, as Dean (1995) describes, learning 
by ‘doing history’, approaching History as a scientific 
discipline but also, learning by ‘using mathematics’ as 
a fundamental tool to provide answers.

Finally, considering all resistances manifested by the 
students and also by the teachers facing this imple-
mentation, we plan to continue searching on what 
kind of new design and didactic devices are necessary 
to integrate this kind of studies in which a ‘real study’ 
of questions will require to combine and ‘make’ inter-
act tools emerging from several disciplines, where, in 
particular, mathematics and mathematical modelling 
will have an essential role.

ACKNOWLEDGMENT

This work was carried out in the framework of R & 
D: And EDU2012-32644 EDU2012-39312-C03-01 from 
Spanish Government. 

REFERENCES

Artigue, M., & Blomhoj, M. (2013). Conceptualizing inquiry-based 

education in mathematics. ZDM Mathematics Education, 

45, 797–810.

Barquero, B., Bosch, M., & Gascón, J. (2008). Using Research 

and Study Courses for Teaching Mathematical Modelling 

at University Level. In D. Pitta-Pantazi & G. Pilippou (Eds.), 

Proceedings of the Fifth Congress of the European Society 

for Research in Mathematics Education (pp. 2050–2059). 

Larnaca: University of Cyprus.

Barquero, B., Serrano, L., & Serrano, V. (2014). ‘Creating nec-

essary conditions for mathematical modelling at univer-

sity level. In Proceedings of the Eighth Congress of the 

European Society for Research in Mathematics Education 

(CERME 8), (pp. 950-959). Antalya, Turkey: ERME.

Chevallard, Y. (2006). Steps towards a new epistemology in 

mathematics education. In M. Bosch (Ed.), Proceedings 

of the 4th Conference of the European Society for 

Research in Mathematics Education (CERME 4) (pp. 21–30). 

Barcelona: FUNDEMI-IQS.

Chevallard, Y. (2012). Teaching mathematics in tomorrow’s so-

ciety: A case for an oncoming counterparadigm. Regular 

lecture presented in the 12th International Congress on 

Mathematical Education (ICME-12). July 2012, 8–15, COEX, 

Seoul, Korea.

Dean, J. (1995). Teaching History at Key Stage Two (Teaching & 

Learning). Cambridge: Chris Kington Publishing (UK).

Elbers, E. (2003). Classroom interaction as reflection: Learning 

and teaching mathematics in a community of inquiry. 

Educational Studies in Mathematics, 54, 77–99.

Ferrer, L. (2007). Una revisió del creixement demogràfic de 

Catalunya en el segle XVII a partir dels registres parro-

quials. Estudis d’Història Agrària, 20, 17–68.

Godino, J. D. Batanero, C., & Font, V. (2007). The onto-semiotic 

approach to research in mathematics education.  ZDM. The 

International Journal on Mathematics Education, 39(1–2), 

127–135.

National Research Council. (1996) National science education 

standards. Washington DC: National Academy Press. 

Sala, G., Giménez, G, J., & Font, V. (2013) Tareas matemáticas de 

contexto histórico-cultural para el desarrollo de la compe-

tencia de indagación en Primaria. In Actas del VII CIBEM. 

Montevideo, Septiembre 2013.

Torras, J.M., & Sobrequés S, J. (2005). Felip V contra Catalunya: 

testimonis d’una repressió sistemàtica (1713–1715). 

Barcelona: Rafael Dalmau editor.

Vanegas, Y.M., & Giménez, J. (2010). Aprender a enseñar ma-

temáticas  y educar en ciudadanía. En: M.L. Callejo, J.M. 

GoJ. (coords.), Educación, matemática  y ciudadanía (pp. 

147–166). Barcelona: Graó. 

Vilatzara Group (2003). Real mathematics situations to over-

come differences: From archeological iberic algebra to 

modernist geometry. In J. Giménez, E. Gail, & C. Hahn 

(Eds.), A challenge for mathematics education: To reconcile 

commonalities and differences. CIEAMEN 54 (pp.431- 432). 

Barcelona: Graó.

ENDNOTE

The rules to participate in the literature contest were 
available in the Bromera Publishers web: http://www.
bromera.com/tl_files/pdfs/altres/basesconcurs_cica-
trius1714_doblepag.pdf



930CERME9 (2015) – TWG06

The link between the cognitive structure and 
modelling to improve mathematics education 

Laura van de Weerd and Nellie Verhoef 

University of Twente, Institute for Teacher Training and Professional Development, Enschede, Netherlands,  

lauravandeweerd@gmail.com

This study focuses on the aspects in the cognitive struc-
ture that should be trained to develop Dutch students 
modelling without actual modelling lessons. The 
research used 16 fifth-grade beta coursed students to 
study the development of the cognitive structure and its 
relation to modelling. The methodology is based on the 
Conceptual Content Cognitive Map Method of Kearney 
and Kaplan (1997), while Tall’s (2013) theory is the theo-
retical framework. Data are collected by a cognitive test 
and a modelling test. The results show that students with 
a rich cognitive structure develop compression. Thus, 
teachers should focus on the connections between math-
ematical concepts as a solution for this problem.

Keywords: Modelling, cognitive structure, student learning, 

cognitive map.

INTRODUCTION 

Modelling is an important discipline in beta scienc-
es. However, it does not belong to the curriculum of 
Dutch secondary schools, which results in a gap be-
tween secondary school and university (Renkl, 1997; 
Savelsbergh, 2008). This problem has been studied 
from different points of view. Barquero, Bosch, and 
Gascón (2008) investigated a new didactic device to 
teach mathematical modelling at university. Verhoef, 
Zwarteveen-Roosenbrand, Joolingen, and Pieters 
(2013) studied the themes for mathematical modelling 
that interest Dutch students in secondary school. Lots 
of studies searched the cognitive structure, but only a 
small amount used quantitative analyses for measure-
ment. Therefore this research focuses on the relation 
between the cognitive structure and modelling in a 
quantitative way, by use of cognitive maps. To quanti-
fy this, the study was well-delineated to trigonometry. 
This leads to the following main question:

Which aspects of the cognitive structure of second-
ary school students are determining factors in their 
development of modelling? 

To answer this question the theoretical framework 
contains theory of the cognitive units, the cognitive 
structure and modelling. The method is formulated 
by means of the Conceptual Content Cognitive Map 
method of Kearney and Kaplan (1997), because of the 
quantitative analyses. 

THEORETICAL FRAMEWORK 

Cognitive units and structure 
The human brain is a complex biological structure 
that forms a multi-processing system. It is able to 
make decisions and focuses on important informa-
tion as a result of the electrical communication among 
nerve cells, also called neurons. Signals are sent from 
a neuron’s axon and will be received by another neu-
ron’s dendrite. The signal frequency of the neurons 
produces neurological activity. Increasing activity 
results in stronger connections, as decreasing activ-
ity results in weaker connections. The more often a 
connection is used, the thicker the connection will 
be. This is a result of long-term potentiation, which 
is a long-term increase of the spiking frequency of 
the neurons. This is very important in the formation 
of brain structures. It is directly related to the mem-
ory (Purves, 2008) and makes subconscious actions 
possible (Barnard & Tall, 1997; Starzyk, Li, & Vogel, 
2005). The plasticity of neuron connections makes 
change of thoughts possible by opening and closing 
the connections. The working memory, that can be 
used to solve problems, is a result of this plasticity 
in closely connected neurons (Barnard & Tall, 1997; 
Crowley & Tall, 1999; Starzyk et al., 2005; Vogel, 2005; 
Widrow & Aragon, 2013). Such densely packed neu-
rons form interneurons. Activation of a neuron in 
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such interneuron group, activates all connected neu-
rons if the connections are strong, called compression 
(Barnard & Tall, 1997; Purves, 2008).

In this study a schematic representation of the brain 
is used to simplify this theory. Terms as cognitive unit 
and cognitive structure are used. A cognitive unit is 
a small piece of information that the brain can focus 
on. As Tall (2001) says: “A cognitive unit consists of a 
cognitive item that can be held in the focus of attention 
of an individual at one time, together with other ideas 
that can immediately be linked to it.” (Tall & Barnard, 
2001, p. 2). We define a rich cognitive unit, when the 
cognitive unit contains a great amount of connections 
between small pieces of information (Vogel, 2005). 
The cognitive structure can be described in different 
ways. According to Hiebert and Carpenter (1992) it 
can be described by the two metaphors; vertical hi-
erarchies or webs. Tall and Barnard (2001) combine 
both and define the cognitive units as the nodes of the 
cognitive structure. The related cognitive units are 
connected by the threads of the web. In a rich cogni-
tive structure there are many connections.

Compression is also an important schematic term in 
mathematical thinking. It describes the way in which 
small, rich cognitive units are formed within a cogni-
tive structure. The junctions in the spider’s web are 
so close that they touch each other (Tall & Barnard, 
2001). This process is important because all cognitive 
units will be activated if one part of the information 
have been evoked, which is important in the thinking 
process. According to Tuminaro and Redish (2007), 
secondary schools focus too much on the students’ 
results, while the connections and the learning pro-
cess are more important.

Modelling 
Modelling activates learning processes and confronts 
the scientist with the effects of his theories. Blum stud-
ied the difficulties with modelling and tried to explain 
these difficulties by the students’ cognitive demands of 
these tasks. He emphasised that mathematical model-
ling has to be learnt specifically by students, and that 
modelling can indeed be learned if teaching obeys 
certain quality criteria, in particular maintaining a 
permanent balance between teacher’s guidance and 
students’ independence (Blum & Ferri, 2009).

In our study we focus on the cognitive aspects that 
are required for the development of modelling. By 

understanding the differences in the cognitive struc-
ture between students that are bad in modelling and 
good in modelling, we try to find the key aspect that 
is necessary in teaching modelling. For this study a 
mathematical model will be used which should com-
ply with the conditions of modelling. According to 
Blum (2002), a modelling process contains five steps: 
a) Simplifying the real problem into a real model; b) 
Mathematizing the real model into a mathematical 
model; c) Searching for a solution for the mathemat-
ical model; d) Interpreting the solution of the mathe-
matical model and; e) Validating the solution within 
the context of the real-life problem the real model into 
a mathematical model. 

The Conceptual Content Cognitive Map Method 
Lots of studies investigated the cognitive structure, 
but only some used quantitative analyses for meas-
urement. Because this study also requests a quanti-
tative measurement of the cognitive structure, the 
methodology is mainly based on the Conceptual 
Content Cognitive Map (3CM) Method1 of Kearney 
and Kaplan (1997). Not only does their research show 
to be reliable and valid, their method is also a good 
basis for this study (Kearney & Kaplan, 1997; Somers, 
Passerini, Parhankangas, & Casal, 2014). 

RESEARCH METHOD

Participants
Sixteen 16–17 aged students were subjected to the tests. 
They all had a beta programmed curriculum (physics 
and chemistry) with mathematics education.

Research instruments 
This study used four instruments: a) the cognitive 
test; b) its evaluation, c) the modelling test and d) the 
grade list. Cognitive structures and modelling are 
respectively measured by the cognitive test and the 
modelling test. The study started with a cognitive test 
as a benchmark. One week later the modelling test 
followed, testing the students’ modelling and their 
increasing insight in trigonometry and the ability to 
make connections between concepts. A week later, 
the second cognitive test studied the development 
in modelling concerning trigonometry. This second 
test was the same as the first cognitive test, so the 
differences in the results could be used to study the 

1  For a detailed description of the 3CM Method, read http://eab.

sagepub.com/content/29/5/579.full.pdf+html 
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cognitive development. After each cognitive test the 
students were asked to fill in the evaluation form and 
to note their grades for mathematics, physics, chemis-
try and if such is the case, informatics. Figure 1 shows 
an overview of the research method. 

a) For the construction of the cognitive tests (used 
for the first and second cognitive test) mathematics 
concepts were collected. Therefore new participants 
were selected by their expertise, experiences, field 
of study and/or age. This results in a list with the fol-
lowing participants: a professional mathematician (f ), 
ten master students (m/f ) and one secondary school 
student (f ). The participants made mind maps as a 
spider’s web, which resulted in 68 concepts. 

To test the cognitive test two of above-mentioned par-
ticipants were used. They were chosen by their result 
of the mind map, because they had respectively the 
widest and deepest order. On basis of this pilot study 
the instructions were improved. This was tested by 
two secondary school students, which showed no fur-
ther additions were necessary.

  For the implementation of the cognitive test 
all participants (fifth-grade students) got an envelope 
filled with 68 concepts, one instruction form and one 
A2 paper with in the middle the term trigonometry. 
The instruction form explained the participants to 
make a mind map around the word trigonometry in 
15 minutes time. They could only use the concepts 
on the cards and a pen to connect them. Not all con-
cepts had to be used. After 15 minutes the result was 
photographed and later analysed. The cognitive test 
measures the cognitive structure by constructing a 
mind map, called a cognitive map. 

b) After each cognitive test the participants filled in 
an evaluation form. The answers to these questions 

were an underpinning of the results of the cognitive 
tests. The form contained the questions:

 ― What was the assignment according to you?

 ― Did you know all used concepts?

 ― Would your cognitive map be different if you had 
more time? If so, what would be the differences? 

c) The modelling test was based on the theoretical 
framework of model conditions. The participants for 
this test’s pilot were five master students (m/f ) and 
two secondary school students (f ). The pilot study 
showed that an illustration of a schematic representa-
tion had to be added to the test instruction. The mod-
elling test was a trigonometry based problem, so the 
students should find connections between the right 
triangle, unit circle and sine as signal as function in 
time. The problem was a riddle that had to be solved 
to crack a safe. This riddle had to be decoded in go-
niometric steps. The students were asked to answer 
this problem by constructing a mathematical model. 
The problem mainly focused on the first two steps of a 
mathematical model (Blum, 2002), but could be solved 
with all modelling steps.  The results were analysed by 
the following scale: insufficient, sufficient, good and 
very good. If the results didn’t satisfy the first steps of 
a mathematical model it was graded insufficient. Any 
further step in the model resulted in a better grade. 

d) The student’s grades were collected during the cog-
nitive tests. The students wrote their grades of math-
ematics, physics, chemistry and informatics (only if 
such is the case) on the envelopes, which were collect-
ed at the end of the tests and the grades were listed. 

Figure 1: Overview of the research method
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Data analysis
The four research instruments were each individual-
ly analysed and gathered in the overview table, which 
relates the data. 

a) Cognitive test

The results of each participant were categorised by 
the depth of the cognitive map. As Figure 2 shows, 
the depth was determined by the amount of concepts 
counted from the main concept ‘trigonometry’. For 
instance, if the maximum depth of a cognitive map was 
two concepts, the participant was placed in class 1. The 
class division was counted up to 5, as the pilot showed 
that a maximum of class 5 was enough. The pilot also 
showed that students who have a depth further than 
five can be placed in class 5.

There are some conditions in the classification of the 
cognitive maps. If students create ‘trains’ or ‘suns’ 
(Figure 3) in their maps it shows lack of depth. As 
‘sun’ has no depth and a ‘train’ can be divided in more 
branches. That’s why ‘trains’ longer than three con-
cepts will be counted as three. Every deeper concept 
won’t be counted, because it is always possible to fur-
ther connect a concept this deep. This could mean that 
a cognitive map with depth 4 will be classified in class 
3. The results of each participant were translated to a 
matrix, irrespective of classes. 

The results were processed in three different kinds 
of matrices.  Each a 68x68 matrix, constructed of 
concept x concept. Matrix type I was formed for each 
participant. The matrix cells were filled with ‘1’ if the 
concerning concepts were connected. If the concepts 
were not connected the cell was filled with ‘0’. In ma-
trix type II each [ij] element states the percentage of 
participants that connected the concept i with concept 
j. So, if 80% of the participants connected concept i 
with concept j, element ij was filled with 0.8. Matrix 
type III is a deviate of matrix type II. Each percentage 
smaller than 0.5 was equalled to 0. Percentages of 0.5 
or larger than 0.5 were equalled to 1.

The correlation between matrix type I and matrix 
type III was calculated. This was done per participant 
per class. That means that the results of each partici-
pant was compared with the results of the other par-
ticipants in the same class. The results were listed in 
the overview table (Table 3).

b) Modelling test 

The results of this test were graded by the scale shown 
in Table 2. 

c) Grade list

The school grades of mathematics, physics, chemistry 
and informatics (if such is the case) of each participant 
were listed. They are scaled from 1 to the upper val-

Figure 2: Examples cognitive map classification

Figure 3: Cognitive maps containing ‘trains’ or ‘suns’

Result Grade Abbreviation 

No form of a model and clearly no attempt to Insufficient I

Attempt to model, contains some elements of a model Sufficient S

Model, but result misses some model elements Good G

Model, clear and strong structure Very good VG

Table 2: Explanation for the evaluation of the modelling test
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ue 10. The results were collected by forms that were 
handed out during the cognitive test. 

d) Overview table

The results of each participant were collected in Table 
3. The results of the cognitive test were expressed in 
the correlation between the students’ test and the class 
average. This correlation represents the degree of 
connected concepts in the student’s cognitive test 
compared to the class average. Students with a correla-
tion smaller than 0.25 were selected. Based on the 3CM 
method, the results of these students deviate from 
the average results. This means that a student makes 
more or less connections than the average student. 

RESULTS

Table 3 shows an overview of the collected results, 
sorted per student. It is noticeable that most students 
rose in classes and that more than half passed the mod-
elling test. Also most students show sufficient results 
for the school grades.

Students 3, 4, 6, 7, 9, 12, 14 and 16 show correlations 
smaller than 0.25, but Table 3 shows no mutual con-
nections. That means every cognitive map had to be 
analysed individually. Starting with the students that 
have a correlation smaller than 0.25, three students 
are insufficient graded for their modelling test. As 

students 3, 6 and 14 have different cognitive maps, all 
show little connections between the used concepts. 
The students with a correlation smaller than 0.25 and 
with a “very good” for the modelling test are students 
12 and 16. Both seem to use many connections between 
their concepts. The results of the three other students 
that are graded with a “very good”, 5, 10 and 13, show 
the same. In general, most striking cognitive maps 
are those of student 5 and 12. Both students use many 
concepts that are linked in many ways. Figure 4 shows 
the cognitive map of student 12. The student makes 
many connections, that even form loops which is not 
by all students. In fact, the opposite can be found in 
the results of  student 2, 8 and 11.

CONCLUSION AND DISCUSSION

The results show some noticeable students that should 
be discussed, like students 3, 4 and 16. As the grades 
of student 3 were very high, the modelling test was 
graded insufficient. So it seemed that this student is 
highly talented. Student 4 showed a huge increase in 
classes. According to his cognitive maps, this seems 
to result from the amount of used concepts and the 
development in the used connections. This student 
seemed to give a clear result regarding the influence 
of the modelling test and the repetition of the cogni-
tive test. The same applies for student 16. This stu-
dent showed no progress in classes and used a small 
amount of concepts. Though he increased the used 

Table 3: All collected data listed for each student*

* None of the participants had informatics, so this is not present. The evaluation results of the cognitive test are represented as an ‘x’ 

for positive answers.  
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connections in the last cognitive test. Only, it is not 
clear what influenced this development, was it the 
modelling test or the repetition of the cognitive test? 
This effect should be studied in further research. The 
results of this study prove to be a good indication for a 
large scale study. Although, it would be better for the 
analysis of the modelling test to use a more detailed 
checklist for evaluation. This would make it more 
reliable and valid.

It follows from the results that Dutch students are 
better in modelling if they have many connections 
between the concepts in their cognitive maps. This 
can be interpreted as the connections in the students’ 
cognitive structure. It also follows from the results 
that the amount of the used concepts defines the cat-
egory of the cognitive map. This represents the cog-
nitive unit. Evident examples for this conclusion are 
the result of student 3, 4, 8, 12, 13, 14 and 16. So it can 
be stated that:

Students that are good in modelling have a rich cog-
nitive structure. Students that are placed in a high 
class have a rich cognitive unit. When a student is 
good in modelling and is placed in a high class, there 
is compression. These students have a rich cognitive 
unit as well as a rich cognitive structure. 

The cognitive structure can be developed to a rich 
cognitive structure by repetition. This seems to 
emerge from the connection between the results of 
the first and the second cognitive test. Repetition is 
definitely of indirect significance in the development 
of modelling 

RECOMMENDATIONS 

As this study shows good and useful results, it can be 
recommend to repeat this study with a larger group 
of participants. Further research should be focussed 
on the influences of the repetition, regarding the 
modelling test on the development of the cognitive 
structure. This study focussed on the mathematical 
subject trigonometry, but it can be useful to focus on 
different mathematical items.  
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This paper challenges the conceptualisation of the 
OECD’s PISA model for assessment of mathematical pro-
cesses and questions common approaches to modelling 
in the classroom. Drawing on evidence from research 
using a lesson study model, we argue that the crucial for-
mulation phase of modelling, in which bridging between 
context and mathematics takes place, is undervalued. 
Consequently, we conclude that teaching towards assess-
ment such as, or modelled on, PISA items could provide 
students with an impoverished experience of modelling 
and leave them inadequately prepared to engage in this 
important mathematical practice.

Keywords: Modelling, problem solving processes, lesson 

study, PISA.

INTRODUCTION

“The formulation of a problem is often more essen-
tial than its solution” 

(Einstein & Infeld, 1938, p. 92)

Cai and Howson (2013) argue that there is evidence of 
some convergence of mathematics curricula around 
the world due to the TIMSS and PISA series of interna-
tional comparative studies. In particular, as a result of 
the PISA series, there has been a noticeable increase 
in interest in mathematical modelling and problem 
solving. In this article, therefore, we focus on these 
important aspects of mathematics in schools. We con-
sider this a particularly pertinent time to raise issues 
in relation to the PISA conceptualisation of problem 
solving and the validity of the framework that is used 
to define the domain of mathematics and the test items 
that result. 

At the heart of our concern, and research, has been 
developing greater understanding of how, in class-

room learning, students might develop a mathemati-
cal literacy that will better prepare them to be able to 
apply mathematics effectively in modelling problems 
so that they are able to make sense of situations that 
arise from a range of different contexts. There has 
been considerable theorising and research in areas 
that might inform our concerns. For example, in re-
lation to mathematical literacy see Steen (2001), for 
mathematical modelling see the 14th ICMI Study (Blum, 
Galbraith, Henn, & Niss, 2007) and for problem solv-
ing see Schoenfeld (1992). However, as a mathematics 
education community, our detailed understanding of 
teachers’ classroom practices and students’ actions 
in problem solving and mathematical modelling is 
much less well developed than our understanding of 
conceptual development. We report here results from 
the first year of our ongoing research in relation to 
the teaching of problem solving and modelling.

CONCEPTUALISATIONS OF PROBLEM SOLVING, 
MODELLING AND MATHEMATICAL PROCESSES

Acknowledging the important influence that the PISA 
series of international assessments play in inform-
ing the development of curricula, and by implication 
teaching and learning, around the world, we consid-
er the PISA definition of mathematical literacy as an 
important starting point in understanding acknowl-
edged conceptualisations of the field:

Mathematical literacy is an individual’s capacity 
to formulate, employ, and interpret mathemat-
ics in a variety of contexts. It includes reasoning 
mathematically and using mathematical concepts, 
procedures, facts and tools to describe, explain 
and predict phenomena. It assists individuals to 
recognise the role that mathematics plays in the 
world and to make the well-founded judgments 
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and decisions needed by constructive, engaged 
and reflective citizens. (OECD, 2013, p. 25)

Fundamental to the goal of PISA is a quest to measure 
the ability of students to be able to use mathematics to 
make sense of different contexts that have relevance 
and authenticity. This has implications for the age 
appropriateness of problems/tasks used. In devel-
oping a framework or vision of mathematical liter-
acy in practice PISA has at its core a modelling cycle 
(Figure 1). Such cycles are well known (for example, 
see Blum & Leiβ, 2007; Kaiser & Sriraman, 2006; Maaß, 
2006; etc.). Although there are many variations both 
in the detail of the conceptualisation of the practice 
and its diagrammatic representation, the main the 
PISA diagram captures the essence of all. 

Here the important processes as one moves from a 
contextual to a mathematical world and back again 
are:

 ― formulating – in which relevant mathematics 
that can lead to a solution, or sense-making, of 
the problem is identified. An appropriate math-
ematical structure and representation(s) are de-
veloped by making simplifying assumptions and 
identifying variables.

 ― employing – involves mathematical reasoning 
that draws on a range of concepts, procedures, 
facts and tools to provide a mathematical solution.

 ― interpreting and evaluating – involves making 
sense, and considering the validity, of the math-
ematical results/solution obtained in terms of 
the context in which the problem situation arises.

The cyclical representation of this overall process 
provides for the expectation that a refinement, or 
complete rethink, of the mathematical structure rep-
resenting the real world situation may be desired, or 
even necessary. It is also important to bear in mind 
that progression around the cycle is not necessarily 
entirely one way, as there may be the need to refine 
thinking at any stage as the potential effects of deci-
sions being taken become apparent and need modifi-
cation as one proceeds.

The PISA framework, as in Figure 1, draws our atten-
tion to how problems may arise in a range of different 
contexts that can be classified as being personal, soci-
etal, occupational or scientific. Also of major impor-
tance are the mathematical content domains that in 
problem solving and modelling interact in symbiot-
ic relationship with the problem-solving/modelling 
processes: PISA identifies these as being quantity, 
uncertainty and data, change and relationships and 
shape and space.

Figure 1: “A model of mathematical literacy in practice” (OECD, 2013)
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In developing assessment items, it is acknowledged 
that it is not necessary that students engage with the 
whole modelling cycle: particular items may focus 
on only parts of modelling as a mathematical prac-
tice. This reflects the way in which adults engage with 
mathematics in practice, for example, in the work-
place (Wake, 2014), where it is more usual to work 
with, or develop further, the mathematical models of 
others rather than start from scratch.

METHODOLOGY

Fundamental to the research project that informs this 
paper is a concept of professional learning that is fo-
cused on practitioner enquiry into teaching, learning 
and classroom practice. The project aims, therefore, 
to develop and research professional learning com-
munities in which teachers work together and learn 
from each other, informed by ‘knowledgeable others’, 
who have a role of stimulating the community by 
drawing on a range of expertise that is research-in-
formed. An adaptation of the Japanese lesson-study 
model (Fernandez & Yoshida, 2004) has been used 
and continues to evolve. This involves a communi-
ty of teachers and a ‘knowledgeable other’ collabo-
rating in a cyclical process that involves planning a 

‘research lesson’, joint observation of the lesson and 
critical reflection in a detailed post-lesson discussion 
(Wake, Foster, & Swan, 2013). Lesson Study is perhaps 
particularly attractive, as it has the potential to meet 
the requirements that we know facilitate effective 
professional learning (Joubert & Sutherland, 2009); 
namely, that it is:

 ― sustained over substantial periods of time;

 ― collaborative within mathematics departments/
teams;

 ― informed by outside expertise;

 ― evidence-based/research-informed;

 ― attentive to the development of the mathematics 
itself. 

Here we draw on our research which has involved 
3–4 teachers at each of nine schools organised in two 
geographically located clusters (of 5 and 4 schools), 
with teachers collaborating and involved in research 
lessons across their cluster. We adopted a case-study 
methodology in order to obtain rich, contextual data. 
This data consists of video recordings of the planning 
meetings, research lessons and post-lesson discus-
sions, researcher records of students’ working in re-
search lessons, and audio recordings of interviews 
with teachers and other participants.

In this paper we present, as indicative of the outcomes 
we observed across the 30 research lessons that have 
been carried out within the project to date, examples 
from the work of two students that encapsulate their 
mathematical activity and learning in relation to 
mathematical modelling.

CASE STUDY

The task and lesson
The research lesson was with a class of 13 to 14 year-
olds with little, but some, experience of working on 
problem-solving/modelling tasks. The students had 
worked on the task in the lesson prior to the research 
lesson, providing the teacher with insight into the 

110 years on
This photograph was taken about 110 years ago.
The girl on the left was about the same age as you. As she got older, she had children, grand-
children, great grandchildren and so on. 
Now, 110 years later, all this girl’s descendants are meeting for a family party.
How many descendants would you expect there to be altogether?

Twentieth Century facts
At the beginning of the 20th century the average number of 
children per family was 3.5.
By the end of the century this number had fallen to 1.7

In 1900, life expectancy of new born children was 45 
years for boys and 49 years for girls. 
By the end of the century it was 75 years for boys and 80 
years for girls. 

Figure 2: Task ‘110 years on’. (Source: Bowland Maths Assessment tasks: http://www.bowlandmaths.org.uk/)
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different ways in which they were beginning to under-
stand the context and problem and the ways in which 
they were formulating a mathematical model of the 
problem. The inquiry focus of the lesson-study group 
in this particular research lesson was to better under-
stand how mathematical representations may assist 
structuring and supporting mathematical thinking.

The chosen task is one from a collection of assessment 
tasks to be found at http://www.bowlandmaths.org.
uk/. These differ from PISA tasks in that they are 
open-ended modelling tasks; albeit with guidance 
for teachers about how they might observe progres-
sion in each of the process skills such as formulating, 
employing and so on. In this way they are much less 
structured than PISA tasks leaving students with con-
siderably more scope to explore the context. Due to 
restrictions of space here, we illustrate student out-
comes by reference to the work of only two students, 
these being chosen to provide some evidence of the 
diversity in student thinking in this particular lesson. 

Student A
Student A presented a list of key information that he 
considered relevant to the problem and also a list of 
assumptions which included the quantified factors 
presented in the formulation of the task. He also listed 
other factors that are not quantified in any way but 
are factors that could affect his solution. None of this 
is illustrated here due to space limitations. Student 
A’s visualisation (Figure 3) of the situation effective-

ly includes a timeline showing key years following 
the taking of the photograph. For example, 1903 is 
taken as the year in which the girl in the photograph 
is 13 years old. He assumed that after 3 years, in 1906, 
the girl married and after another 4 years, at age 20 
she gave birth to 4 children. Throughout the period 
Student A assumed that people marry at age 16 and 
have children at age 20. He attempted to take account 
of the information that the average number of chil-
dren per family was initially 3.5 by rounding to give 
4 children in the first generation and then allocating a 
total of 14 children in the next generation (that is, that 
each of the girl’s four children have 3.5 children). A 
similar logic underpinned his calculations to give the 
number of children in the next generation, although it 
is unclear how subsequent values in his diagram were 
calculated. Finally the student made some decisions 
about who from the early generations would have 
died in advance of the party.

Student B
Student B’s representation of the situation (Figure 4) 
appears to show fewer descendants in each subsequent 
generation, which is contrary to what we would ex-
pect. On closer inspection of the diagram other fea-
tures appear equally strange: for example, Student B 
distinguishes between males and females in the dia-
gram, using a different marker for each. This leads to 
brothers and sisters, as well as sisters and sisters or 
brothers and brothers, being the parents of offspring. 
The calculations presented by Student B (not illus-

Figure 3: Extract from the response to the task ‘110 years on’ by Student A
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trated) provide insight into some of the thinking that 
underpins his diagram. It appears that Student B fell 
into the trap of selecting values given in the posing of 
the task and operating with these to calculate values 
he believed he needed to make progress. For example, 
he divided the information that there is a total time 
of 110 years between the photograph and the party 
by the average number of children per family (3.5) to 
calculate that altogether there should be 32 children. 
He also calculated that the girl in the photograph had 
9 children by dividing 110 by 13 (the girl’s age at the 
time of the photograph). 

ANALYSIS AND DISCUSSION

As can be seen from the examples of the work of the 
two students illustrated here, the students not only 
arrived at very different solutions, they have very 
different understandings of the context/situation. 
Indeed, it appears that student B did not have an ap-
propriate understanding of the situation at all. This 
was also true of some of the other students in the class, 
as evidenced by their representations and calcula-
tions. Of course we would expect varied approaches 
by students working on a modelling task, but here 
it is clear that some of the models being formulated 
were invalid.

Our experience across, and analysis of data from, les-
sons confirms that this is a common occurrence and 
leads us to contend that there are essential aspects 

of both problem solving and modelling that are un-
der-emphasised in school practices when compared 
to similar practices in out-of-school settings. Crucially, 
in the process of formulating, the difficulty associated 
with understanding a complex context, and how this 
needs to be simplified so that it can be represented 
mathematically, is underestimated. This process re-
quires an understanding of how a range of mathemat-
ics (concepts, procedures, facts and tools) might best 
be marshalled to provide a mathematical structure 
to represent the problem context/situation. Such 
understanding is important and needs to inform the 
simplification of the context/situation. Pollack (1969), 
Borromeo Ferri (2006) and Treilibs (1979), among oth-
ers, draw attention to this important aspect of math-
ematical modelling. Across our case studies we note 
that students have particular difficulties with this 
crucial first step in modelling.

This leads us to emphasise that the mathematical mod-
el being developed to provide a mathematical struc-
ture that maps to a simplified structure of the reality it 
represents.  In the initial phase of developing a mathe-
matical model, this simplification of reality to provide 
what is in effect a model of reality or ‘real model’ is not 
necessarily a simple matter. The structure that is pro-
posed has to be a realistic representation, capturing 
essential elements of what might in fact be a complex 
situation, and it has to be such that the modeller can 
use mathematics that they know and are comfortable 
to work with. Borromeo Ferri (2006) discusses how 

Figure 4: Response to the task ‘110 years on’ by Student B
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different researchers have attempted to characterise 
this early stage in the modelling cycle and identifies 
the terms ‘situation model’, ‘mental representation of 
the situation’ and ‘real model’ as being of significance 
here. Integral to this stage of mathematical modelling 
is the development of an understanding of the task: 
this should not necessarily be assumed as unprob-
lematic. Blomhøj and Højgaard Jensen (2003) in their 
description of the modelling process and associated 
schema identify early processes as involving ‘formu-
lation of task’ and ‘systematisation’, with the latter 
relating to making sense of the reality of the problem 
situation. Treilibs (1979) breaks down the formulation 
phase into subtasks, such as: modelling the situation 
by making simplifying assumptions, identifying rel-
evant variables, generating relationships, and so on. 
Whatever terms we use to describe these initial steps 
towards being able to work mathematically, we have 
found that for many students the formulating stage 
can prove problematic and generate a lot of questions 
and discussions before a mathematical model can be 
developed. 

Our consideration of this issue and how we might 
present tasks that involve students in effective math-
ematical modelling practices has raised the question 
of distinguishing between problem solving and mod-
elling. We consider that mathematical models are 
mathematical structures that map to, or represent, a 
simplification of a real context, and as such they are 
useful when they have repeated use so as to consider 
variation of (a) factor(s) in the reality. For example, in 
the students’ response to the task illustrated in this 
article assumptions made about the age at which peo-
ple have children could be varied and the impact on 
results considered. In relation to this aspect of a math-
ematical model, we recognise that there are canonical 
models, such as exponential functions, inverse square 
laws, etc. that can, with adaptation, be used across 
numerous contexts and situations. In such cases, 
features of the mathematical model relate to factors 
and structure of the reality. For example, the growth 
of a population can be considered exponential when 
the rate of growth is proportional to the size, P, of the 
population, with the value of k in the equation P=P0ekt 
being related to the time it takes the population to dou-
ble in size. In mathematics teaching we are concerned 
with such adaptations as well as with models that are 
bespoke to particular contexts and situations, such as 
in the task presented in this article.

In either a canonical model or a bespoke model, 
change of an identified factor in the reality results 
in change of a variable in the mathematical structure 
(model), and vice versa: that is, varying factors in the 
mathematical model has implications for the reality 
it represents. This, we use to distinguish between 
solving a problem using mathematics (which also 
has a mathematical structure that maps to a simpli-
fied reality) and modelling. In the case of problem 
solving, there is a single solution, albeit dependent 
on decisions taken to simplify the reality (which may 
eventually be modified/refined); on the other hand, 
in the case of modelling, the expectation is that there 
will be variation of important factors and repeated 
use of the model. We consider drawing attention to 
this characteristic of a mathematical model as having 
importance as a potential pedagogical vehicle that can 
be used to focus students’ attention on the aspects of 
modelling that we identify as being under-empha-
sised in school mathematics. These aspects are (i) the 
simplification of reality and (ii) the development of 
a mathematical structure that represents, or maps 
onto, the simplified reality, with each of these need-
ing to be informed by detailed understanding of the 
implications and potential of each other.

In the examples of student working that we present 
here we note that it is clear that the students’ rep-
resentations, and by implication their simplification 
of reality, do not adequately capture the essence of 
the situation in order to allow them to successfully 
arrive at a valid solution. In this particular lesson the 
variation in student approach to the problem and con-
sequently their understanding was perhaps the most 
significant and immediate observation made by the 
observers of the lesson. Although developing a fam-
ily tree was the most typical approach each student’s 
manifestation of this suggested at least minor differ-
ences in their understanding of the context leading to 
significant differences in the assumptions being made, 
and consequently variables and fixed values decided 
upon. Some students took very different approaches 
with at least one student providing an entirely textual 
solution with no apparent diagrammatic visualisation 
or calculations evident. This variation in understand-
ing resulted in solutions that were also very different 
with the number of descendants varying from values 
that were less than fifty to values greater than 1000. 
The focus for the students appears to have been on 
arriving at a single solution rather than developing 
an appropriate mathematical structure for the situa-
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tion. This is particularly starkly visible in the work of 
Student B. It seems likely that a pedagogical approach 
that focused on developing a model that could have 
repeated application, allowing for variation of a key 
factor, such as the time between generations, has 
the potential to force this issue in the classroom. In 
considering the design of tasks that might be appro-
priate to bring to the surface the important aspects 
of modelling that we have identified, we have found 
that introducing the requirement for students to 
work towards a product, such as an explanation to 
a particular audience about the effects of varying a 
particular factor in the reality, is potentially helpful 
in generating awareness of this aspect of modelling/
using models. For example, in the case of ‘110 years on’ 
we suggest that students might be required to write 
advice and explain to a caterer possible maximum and 
minimum numbers of guests at the party.

We suggest that greater emphasis should be given 
to model development in mathematics lessons; this 
seems crucial if we are to support student learning 
of effective modelling. We note that this appears un-
der-emphasised in the PISA organising framework 
for the mathematics domain and, as a consequence, 
and importantly, in their assessment items (OECD, 
2013). We therefore urge that there needs to be careful 
thought about how best to support students’ learning 
in curricula based on PISA’s conceptualisation of the 
mathematics domain. As it currently stands, we view 
that teaching towards a PISA notion of problem-solv-
ing/modelling may not support the mathematically 
literate students we seek. We also recommend further 
research in this area of modelling as a classroom prac-
tice in mathematics so that we are better informed 
about student learning, and what it means to make 
progress in learning, in this important area.

REFERENCES

Blum, W., & Leiß, D. (2007). How do students and teachers deal 

with modelling problems? In C. Haines, P. Galbraith, W. 

Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): 

Education, engineering and economics: Proceedings from 

the Twelfth International Conference on the Teaching of 

Mathematical Modelling and Applications (pp. 222–231). 

Chichester: Horwood.

Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.) (2007). 

Modelling and applications in mathematics education, The 

14th ICMI-study 14. New York: Springer-Verlag. 

Borromeo Ferri, R. (2006). Theoretical and empirical differen-

tiations of phases in the modelling process. ZDM, 38(2), 

86–95.

Cai, J., & Howson, G. (2013). Toward and International 

Mathematics Curriculum. In K. Clements et al. (Eds.), Third 

International Handbook of Mathematics Education (pp. 

949–974). New York: Springer.

Einstein, A., & Infeld, L. (1938). The Evolution of Physics. New 

York: Simon & Schuster.

Fernandez, C., & Yoshida, M. (2004). Lesson Study: A Japanese 

approach to improving mathematics teaching and learning. 

Mahwah, NJ: Lawrence Erlbaum Associates.

Joubert, M., & Sutherland, R. (2009). A perspective on the litera-

ture: CPD for teachers of mathematics. Sheffield: NCETM.

Kaiser, G., & Sriraman, B. (2006). A global survey of international 

perspectives on modelling in mathematics education. ZDM, 

38(3), 302–310.

Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 

113–142.

OECD (2013). PISA 2012 Assessment and Analytical 

Framework: Mathematics, Reading, Science, Problem 

Solving and Financial Literacy. Paris: OECD.

Pollak, H. (1969). How can we teach applications of mathemat-

ics? Educational Studies in Mathematics, 2, 393–404. 

Schoenfeld, A. (1992). Learning to think mathematically: 

Problem solving, metacognition and sense making in 

mathematics. In D. A. Grouws (Ed.), Handbook of research 

on mathematics teaching and learning (pp. 334–370). New 

York: Macmillan. 

Steen, L.A. (Ed.) (2001). Mathematics and democracy: The case 

for quantitative literacy. Washington, D.C.: National Council 

on Education and the Disciplines.

Treilibs, V. (1979). Formulation Processes in Mathematical 

Modelling. (MPhil), University of Nottingham, Nottingham.

Wake, G. (2014). Making sense of and with mathematics: The 

interface between academic mathematics and mathemat-

ics in practice. Educational Studies in Mathematics, 86(2), 

271–290.

Wake, G., Foster, C., & Swan, M. (2013). A theoretical lens on les-

son study: Professional learning across boundaries. In In 

A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th 

Conference of the International Group for the Psychology 

of Mathematics Education (Vol. 4, pp. 369–376). Kiel, 

Germany: PME.



944CERME9 (2015) – TWG06

Identifying ways to improve student 
performance on context-based 
mathematics tasks

Ariyadi Wijaya1, Marja van den Heuvel-Panhuizen2,3 and Michiel Doorman2

1 Yogyakarta State University, Mathematics Education Department, Yogyakarta, Indonesia, a.wijaya@staff.uny.ac.id

2 Utrecht University, Freudenthal Institute for Science and Mathematics Education (FIsme), Utrecht, Netherlands,  

m.vandenheuvel-panhuizen@uu.nl, m.doorman@uu.nl

3 Faculty of Social and Behavioural Sciences, Utrecht, Netherlands

This paper reports the Context-based Mathematics 
Tasks Indonesia (CoMTI) project that was aimed at 
getting a better insight into Indonesian students’ low 
performance on context-based tasks and identifying 
ways to improve it. The project addressed three main 
issues: (1) Indonesian students’ difficulties when solving 
context-based tasks; (2) possible reasons for students’ dif-
ficulties; and (3) offering students opportunity-to-learn 
and testing its effect on student performance. These is-
sues were investigated in four consecutive studies. The 
studies revealed that the students’ difficulties are related 
to students’ opportunity-to-learn.
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BACKGROUND OF THE STUDY

The ability to apply mathematics is considered as a 
core goal of mathematics education around the world 
(see, e.g., Eurydice, 2011; NCTM, 2000). This goal is 
similar to what in the Programme for International 
Student Assessment (PISA) is called mathematical 
literacy, which refers to students’ ability “to identify, 
and understand, the role that mathematics plays in 
the world, to make well-founded judgments and to 
use and engage with mathematics in ways that meet 
the needs of that individual’s life as a constructive, 
concerned, and reflective citizen” (OECD, 2003, p. 24). 
To develop students’ ability to apply mathematics, it 
is recommended to offer students mathematics prob-
lems situated in real-world contexts (De Lange, 2003; 
NCTM, 2000). In PISA study problems with real-world 

contexts are used to assess mathematical literacy 
(OECD, 2003).In this paper such problems are called 
context-based tasks and defined as tasks that are sit-
uated in real-world settings and provide elements or 
information that need to be organized and modelled 
mathematically.

Similar to many other countries, Indonesia also places 
a premium on applying mathematics as a core goal 
of mathematics education and pays attention to the 
use of context-based tasks (Pusat Kurikulum, 2003). 
Nevertheless, there is an apparent discrepancy be-
tween this goal and student achievement. The PISA 
results showed that Indonesian students perform 
low on context-based tasks. More than three quar-
ters of Indonesian students did not reach the baseline 
Level 2, which means they could only answer tasks 
that have familiar contexts and present all relevant 
information (OECD, 2010). The low performance of 
Indonesian students on context-based tasks prompted 
an establishment of a project called “Context-based 
Mathematics Tasks Indonesia” (CoMTI), which was 
aimed at getting a better insight into Indonesian stu-
dents’ low performance on context-based tasks and 
identifying ways to improve student performance.

KEY IDEAS FROM LITERATURE

Solving context-based mathematics tasks
Solving mathematics problem situated in real-world 
contexts, which in this paper are called context-based 
tasks, requires interplay between the real world and 
mathematics, which is often described as a modelling 
process. According to Blum and Leiss (2007) the pro-
cess of modelling is considered to be carried out in 
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seven steps. The first step is establishing a ‘situation 
model’ to understand the real-world problem. Second, 
developing the situation model into a ‘real model’ 
through the process of simplifying and structuring. 
Third, constructing a ‘mathematical model’ by math-
ematizing the real model. The fourth step is carrying 
out mathematical procedure to get a mathematical 
solution. In the fifth and sixth steps, the mathematical 
solution is interpreted and, then, validated in terms 
of the real-world problem. The final step is communi-
cating the real-world solution. This modelling process 
is similar to what is called ‘mathematization’ in PISA 
studies (OECD, 2003). Mathematization involves: un-
derstanding the problem situated in reality; organiz-
ing the real-world problem according to mathematical 
concepts and identifying the relevant mathematics; 
transforming the real-world problem into a mathe-
matical problem which represents the situation; solv-
ing the mathematical problem; and interpreting the 
mathematical solution in terms of the real situation.

Opportunity-to-learn
A so called ‘opportunity-to-learn’ is often used to find 
an explanation for students’ mathematics perfor-
mance. In the First International Mathematics Study 
opportunity-to-learn was defined as “whether or not 
[…] students have had the opportunity to study a par-
ticular topic or learn how to solve a particular type of 
problem” (Husén, 1967, pp. 162–163). This definition 
was further specified by Brewer and Stasz (1996) who 
distinguished three aspects for measuring opportu-
nity-to-learn. First, curriculum content, which refers 
to the scope of the topics offered to students. Second, 
teaching strategies that are used by teachers to pres-
ent the topics and to engage students. Third, learning 
materials, such as textbooks, which are used to teach 
the students.

THE COMTI PROJECT

Although there are different ways used in different 
countries to improve educational achievement, im-
proving Indonesian students’ performance cannot 
be simply done by applying an educational practice 
that is used in other countries because, according to 
Pearson (2014), what works in one particular country 
will not necessarily give the same result in other coun-
tries. Careful thought about what is missing in current 
educational practices and what might be needed by 
students is necessary. Therefore, in order to iden-
tify possible ways to improve Indonesian students’ 

performance the CoMTI project focused on three 
interrelated issues regarding context-based tasks in 
Indonesia. First, what difficulties are experienced by 
students when solving context-based tasks. Second, 
why students have difficulties, for which we inves-
tigated opportunity-to-learn to solve context-based 
tasks offered in Indonesian textbooks and in teach-
ers’ teaching practices. Lastly, to study how student 
performance can be improved, we offered students 
opportunity-to-learn to solve context-based tasks and 
test its effects on students’ performance. These three 
issues were investigated in four studies, which are 
described in the following sub-sections.

Indonesian students’ difficulties in 
solving context-based tasks [Study 1]
The first study of the CoMTI project was aimed at 
getting a better insight into the low performance of 
Indonesian students on context-based tasks. In this 
study the difficulties experienced by Indonesian 
students when solving context-based tasks were 
examined through an analysis of students’ errors. 
This approach was chosen because students’ errors 
provide access to students’ reasoning and are con-
sidered as a powerful source to diagnose learning 
difficulties (Borasi, 1987). With respect to analysing 
students’ difficulties in solving mathematical word 
problems, Newman (1977) developed a model that is 
known as Newman Error Analysis. Newman pro-
posed five categories of errors, i.e. reading (error in 
simple recognition of words), comprehension (error 
in understanding the meaning of a problem), transfor-
mation (error in transforming a word problem into 
an appropriate mathematical problem), process skills 
(error in performing mathematical procedures), and 
encoding (error in representing the mathematical 
solution into written form).

Method
A total of 362 students from 11 schools in the Province 
of Yogyakarta, Indonesia participated in a so called 
CoMTI test. The test items were selected from the 
released PISA mathematics tasks. After the CoMTI 
test, an error analysis was carried out on the basis 
of students’ incorrect responses to investigate the 
difficulties experienced by students. For this pur-
pose, an analysis framework was developed based on 
Newman’s error categories that were associated with 
the stages of modelling process and PISA mathemati-
zation. The analysis framework comprised four types 
of errors: comprehension, transformation, mathe-



Identifying ways to improve student performance on context-based mathematics tasks (Geoff Wake, Colin Foster, and Malcolm Swan)

946

matical processing, and encoding. Newman’s reading 
error was not used in our framework because this 
error category refers to a technical aspect and does 
not match to modelling process or PISA’s mathema-
tization. 

Results and discussion
The error analysis revealed that of 1718 errors made 
by the students 38% were comprehension errors, 42% 
were transformation errors, 17% were mathematical 
processing errors, and 3% were encoding errors 

[1]. A closer examination of the comprehension and 
transformation errors disclosed that a half of the 
comprehension errors were errors in selecting rel-
evant information. We also found that two thirds of 
the transformation errors were errors in selecting 
mathematical procedures required to solve the tasks. 

The results of the error analysis indicate that 
Indonesian students mostly experienced difficul-
ties in comprehending a context-based task and in 
transforming it into a mathematical problem. In 
addition to these specific results, this study showed 
how analysing students’ difficulties can be a crucial 
preliminary step in the process of improving student 
performance because it sheds light on key aspects of 
solving context-based tasks that need to be developed. 
The findings of this study suggest that improving the 
task comprehension of Indonesian students requires 
a focus not only on students’ language competence, 
but also on the ability to select relevant information. 
Furthermore, the ability to identify the required 
procedure or concept was found to be another key 
competence that needs to be improved.

Opportunity-to-learn to solve context-
based tasks offered in Indonesian 
mathematics textbooks [Study 2]
The next step in the CoMTI project was identify-
ing possible explanations for students’ difficulties. 
Several studies have shown that student performance 
is often influenced by textbooks. Tornroos (2005) 
found a relation between student achievement on a 
test and the amount of textbook content related to 
the test items. The method used in a textbook to help 
students understand the content is also an important 
aspect influencing student performance. As found 
by Xin (2007), students tend to solve word problems 
by using the solution strategies suggested in the 
textbooks. Another aspect of a textbook that has an 
influence on student performance is the cognitive 

demands of the tasks. What competences students 
will master depends on the cognitive demands of 
mathematics tasks they are engage in.

Considering the important influence of textbooks 
on student performance, in the second study of 
the CoMTI project we investigated the opportuni-
ty-to-learn context-based tasks offered in Indonesian 
textbooks. Three issues were addressed in this study: 
(1) the amount of exposure to context-based tasks in 
Indonesian textbooks, (2) the characteristics of the 
context-based tasks in the textbooks, and (3) the re-
lation between the characteristics of textbook tasks 
and students’ errors.

Method
Three mathematics textbooks that were used in the 
schools participating in the first study of the CoMTI 
project were analysed. For this purpose, we devel-
oped an analysis framework that focused on three task 
characteristics. First, the type of context for which 
we used three types of context: relevant and essential 
context, camouflage context, and no context. Second, 
the type of information provided in a task: matching 
information, missing information, and superfluous 
information. Third, the cognitive demands of a task: 
reproduction, connection, and reflection tasks.

Results and discussion
The textbook analysis revealed insufficient number of 
context-based tasks in Indonesian mathematics text-
books [2]. Only 10% of tasks in the textbooks were tasks 
that used either camouflage or relevant and essential 
context. Of these tasks, three quarters used camou-
flage context, i.e. the context can be ignored in the 
solving process, and explicitly implied the required 
mathematical procedures. This finding indicates that 
Indonesian textbooks do not offer students enough 
opportunity-to-learn to identify mathematical pro-
cedure that is required to solve a context-based task, 
which might explain the high number of transforma-
tion errors made by students. An in-depth analysis 
of the task characteristics revealed that of 276 con-
text-based tasks in the three textbooks 88% provided 
only the information that is needed to solve the tasks 
(matching information). This result signifies a lack of 
opportunities for students to learn to select relevant 
information, which might contribute to students’ com-
prehension errors, in particular errors in selecting 
information. Lastly, regarding the cognitive demands, 
of all context-based tasks in the textbooks almost no 
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reflection tasks, i.e. tasks that require complex rea-
soning and a construction of original mathematical 
approaches. 

Opportunity-to-learn to solve context-
based tasks offered by Indonesian 
teachers’ teaching practices [Study 3]
Several studies (e.g., Eurydice, 2011; Grouws & Cebulla, 
2000) showed that student performance is affected by 
the teaching strategies used by teachers. How teach-
ers teach mathematics and engage their students 
influences how well students learn. With respect to 
the teaching of context-based tasks, Antonius, Haines, 
Jensen, Niss, and Burkhardt (2007) argued that it re-
quires more than an ‘explanation-example-exercise’ 
ritual because such directive approach does not of-
fer students opportunity to develop strategic compe-
tences that are necessary to solve context-based tasks. 
Instead of using direct teaching, teachers should use 
a teaching approach in which they take a consultative 
role and give students opportunities to actively build 
new knowledge and reflect on their learning process 
(Antonius et al., 2007; Blum, 2011).

The purpose of this third study was to investigate the 
opportunity-to-learn (OTL) to solve context-based 
tasks offered in teachers’ teaching practices. For 
this purpose, we investigated the teaching approach 
that was used by teachers to help students learn to 
solve context-based tasks. Teachers’ beliefs were also 
investigated because they often influence teachers’ 
teaching practices (see, e.g. Wilkins, 2008). Lastly, we 
investigate whether there was a relationship between 
the OTL to solve context-based tasks offered by teach-
ers and the errors made by students when solving 
such tasks.

Method
A teacher survey and a series of classroom observa-
tions were used in this study. The survey was aimed 
at investigating teachers’ beliefs and teachers’ re-
ported practices regarding the characteristics of 
context-based tasks offered to students. The class-
room observations were carried out to investigate 
the teaching approaches used by teachers to help their 
students learn to solve context-based tasks.

Twenty-seven teachers from the schools involved in 
the first study of the CoMTI project participated in 
the teacher survey and four of them participated in 
the classroom observations.

Results and discussion
The survey data showed that the teachers tended to 
perceive context-based tasks merely as plain word 
problems. They believed that the mathematical pro-
cedure required to solve a context-based task should 
be given explicitly. Furthermore, the teachers also 
did not consider missing and superfluous informa-
tion as an important characteristic of a context-based 
task. In agreement with these beliefs, the teachers 
reported that they frequently offered their students 
context-based tasks that have explicit procedures, but 
rarely gave context-based tasks that provide superflu-
ous or missing information. Such practice might ex-
plain students’ difficulties in identifying the required 
procedures and in selecting relevant information. 

The classroom observations revealed that the teach-
ers mainly used directive teaching approach in which 
they tell the students what a context-based task is 
about, translate the task into a mathematical prob-
lem, and explain what mathematical procedure to be 
carried out. In such teaching students were not en-
couraged to actively carry out and reflect on the stages 
of solving context-based tasks. This directive teach-
ing approach was mostly used in the comprehension 
and transformation stages. Consultative teaching in 
which students were actively engaged in the process 
of solving context-based tasks was barely used by the 
teachers. Moreover, this teaching approach was most-
ly observed in the mathematical processing stage; a 
stage in which students do not have to deal with the 
context of a task.

Correspondences were indicated between teachers’ 
teaching practices and students’ difficulties. A lack 
of opportunities for students to paraphrase a con-
text-based task might be related to students’ difficulty 
in comprehending the task because, as pointed out 
by Kletzien (2009), paraphrasing helps students un-
derstand the text of a task. Moreover, teachers’ direct 
advice regarding the procedures to be carried out 
might correspond to students’ transformation errors 
because it might discourage students from thinking 
about the mathematics concepts addressed in the task.

Effects of opportunity-to-learn on 
Indonesian students’ performance 
in context-based tasks [Study 4]
For teaching context-based tasks it is recommended 
to use teaching practice that emphasizes on guiding 
students to construct new knowledge actively and 
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independently by using their prior knowledge and 
experiences (Antonius et al., 2007; Blum, 2011), which 
in the CoMTI project is called ‘consultative teaching’. 
Blum (2011) found that students who learned through 
such teaching approach made a better progress re-
garding their modeling competence in comparison to 
students who were taught with directive teaching. In 
addition to teaching practices, it is also important to 
give students tasks that have superfluous and missing 
information and do not provide explicit suggestions 
about the required procedures (Maass, 2007).

The second and the third studies of the CoMTI pro-
ject revealed a lack of opportunity-to-learn offered 
in Indonesian textbooks and in teachers’ teaching 
practices. Therefore, in the final study of the pro-
ject an intervention that offers students opportuni-
ty-to-learn to solve context-based tasks was developed. 
The effects of opportunity-to-learn on students’ per-
formance in solving context-based tasks were exam-
ined from the perspectives of students’ score gains 
and students’ errors.

Method
A field experiment with a pretest-posttest con-
trol-group design was used in this study, which in-
volved a total of 299 students (144 students were in the 
experimental group and 155 students in the control 
group) from six schools.

An intervention program comprising a set of con-
text-based tasks and a consultative teaching ap-
proach was used in the experimental group. The con-
text-based tasks used in the intervention had three im-
portant characteristics: relevant and essential context, 
superfluous or missing information, and not explicit 
suggestion about the required mathematical proce-
dures. The consultative teaching used metacognitive 
prompts, which included self-addressed questions 
and verbal prompts or instructions to help students 
focus attention on particular aspects of the solving 
process such as asking students to paraphrase a task 
and to underline relevant information.

Results [3] and discussion
A univariate ANOVA with the gain score (posttest 
score minus pretest score) as dependent variable and 
intervention as a fixed factor was carried out to inves-
tigate the effect of the intervention. Contrary to our 
expectations, the difference in gain scores between the 
students in the experimental group (Mexperimental = 0.11, 

SDexperimental = 0.99) and the students in the control group 
(Mcontrol = -0.09, SDcontrol = 0.95) was only marginally sig-
nificant and the effect of the intervention was small 
(p = .068; ηp

2 = .011). Nevertheless, a closer examination 
of the effect of the intervention on students’ errors 
revealed a significant difference between the experi-
mental group and the control group for the decrease 
in the total number of errors (χ2 (1, n = 4127) = 4.149, 
p = .042). This finding reflects a positive influence of 
the opportunity-to-learn on reducing students’ errors. 
Students who received the opportunity-to-learn could 
better understand the instruction for a context-based 
task and had improved performance in selecting rel-
evant information. With respect to transforming a 
real-world problem into a mathematical problem in 
general no influence of the opportunity-to-learn was 
found.  However, a positive influence was found for 
context-based tasks addressing graphs – i.e. the topic 
taught during the intervention period – in which stu-
dents who got the opportunity-to-learn were better 
able to give a mathematical interpretation of a graph. 
Reflecting upon this finding and referring to Howson 
(2010), it can be learned that to improve students’ abil-
ity to identify the required procedure it is essential to 
provide not only context-based tasks that are related 
to the topic being taught, but also context-based tasks 
that address other topics.

FINAL REMARKS

In general, the results of the CoMTI study suggest two 
important ways to identify and to improve student 
performance; i.e. diagnosing students’ difficulties and 
identifying opportunity-to-learn offered to students. 
By connecting students’ difficulties with opportuni-
ty-to-learn, we could identify what was missing in the 
educational process. Our results show that textbooks 
and teaching practices are key aspects to improve stu-
dents’ performance on context-based tasks. 

In the appendix we provide the summary of the find-
ings of the four studies in the CoMTI project and show 
how the results of the four studies are interrelated.
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ENDNOTES

1. Examples of students’ errors can be found in (Wijaya 
et al., 2014) on pages 569–573.

2. Examples of tasks in Indonesian mathematics text-
books can be found in (Wijaya et al., 2015) on pages 
14–17.

3. We would like to thank Michiel Veldhuis for his 
contribution to the statistical analysis of the data.
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APPENDIX: THE RESULTS OF 
THE COMTI PROJECT

 

A
n investigation into Indonesian m

athem
atics teachers’ teaching practices 

  Teachers’ report about the characteristics of context-based tasks offered to students:  
- m

ost of the teachers frequently give tasks w
ith explicit procedures 

- m
ost of the teachers frequently give tasks w

ith m
atching inform

ation 
- a half of the teachers never or rarely give tasks w

ith superfluous inform
ation 

- a half of the teachers never or rarely tasks w
ith m

issing inform
ation. 

  Teachers’ teaching approach: 
O

ver all stages of solving context-based tasks: 
- N

o instruction w
as given in 42%

 of all questions discussed in the lessons. 
- D

irective teaching w
as applied in 47%

 of all questions discussed in the lessons. 
- C

onsultative teaching w
as applied in only 12%

 of all questions discussed in the lessons. 
  Specified for the stages of solving context-based tasks: 

- D
irective teaching w

as m
ost frequently applied in the com

prehension and the transform
ation stages. 

- C
onsultative teaching w

as m
ostly applied in the m

athem
atical processing stage. 

- A
lm

ost no attention w
as paid to the encoding stage. 

A
nalysis of Indonesian m

athem
atics textbooks 

E
xposure of the context-based tasks: 

- O
nly about 10%

 of all tasks w
ere context-based. 

C
haracteristics of the context-based tasks: 

- m
ost of the tasks used cam

ouflage contexts and provide explicit 
indications about the required m

athem
atical procedures. 

- m
ost of the tasks provide m

atching inform
ation, i.e. only the 

inform
ation that is needed to solve the tasks. 

- alm
ost no reflection tasks, i.e. tasks w

ith highest cognitive 
dem

ands w
hich require constructing original m

athem
atical 

approaches and com
m

unicating com
plex argum

ents and 
com

plex reasoning. 
  

POSSIBLE REASONS 
FOR STUDENTS’ DIFFICULTIES: 

OTLS AS A KEY CONCEPT 
(Study 2 and Study 3) 

 

OTL AND STUDENT 
PERFORMANCE 

(Study 4) 

STUDENTS’ 
DIFFICULTIES 

(Study 1) 
 

A
nalysis of Indonesian students’ errors w

hen solving context-based tasks 
The m

ost dom
inant error types: 

- com
prehension errors; in particular, errors in selecting relevant inform

ation. 
- transform

ation errors; in particular, errors identifying the required m
athem

atical procedures. 

  A
 positive effect of the O

TL on students’ task com
prehension w

as found: 
- Students could understand better the instruction of the task 
-  Students’ ability to select relevant inform

ation im
proved 

  -  In general no effect of the O
TL on students’ ability to transform

 a real-w
orld problem

 into a 
m

athem
atical problem

. H
ow

ever, a positive effect w
as found for tasks addressing an 

interpretation of a graph, w
hich in fact w

as related to the topic taught during the intervention. 
-  This finding leads to a recom

m
endation to offer students ‘m

ixed exercises’, i.e. a set of 
context-based tasks that address various topics. 

C
onsultative teaching approach w

ith 
m

etacognitive prom
pts: 

- Paraphrasing: 
asking 

students 
to 

form
ulate a task in their ow

n w
ords. 

-  U
nderlining all inform

ation and circling 
only the relevant inform

ation 
-  Self- questioning; e.g. “D

o we have 
enough inform

ation to solve the task?” 

-  Self-questioning; e.g. “W
hat are 

possible strategies to solve the task?” 

C
ontext-based tasks: 

 - C
ontext-based tasks w

ith m
issing or 

superfluous inform
ation. 

    - C
ontext-based tasks w

ith a relevant 
context that requires m

odeling 
- C

ontext-based 
tasks 

w
ith 

non-
explicit procedure O

ffering students opportunity-to-learn (O
T

L
) 

 
E

ffects of the O
TL

 on students’ perform
ance 
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‘Literature’ on mathematical modelling from 
a teacher perspective: A textbook’s portrayal
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In this paper, it is proposed to reformulate the question 
of whether modelling as depicted in academic litera-
ture is insufficiently implemented in school. Rather, the 
question proposed is: what form of modelling is actually 
portrayed in textbooks and curricula – understood as 
teachers’ ‘literature’ on mathematical modelling?

For illustration, a case is offered wherein perspectives on 
modelling are traced from academic literature, through 
curriculum, and an upper secondary textbook, all taken 
from a Danish context. It is discussed how the textbook’s 
portrayal of mathematical modelling deviates from that 
in academic literature. Further, it is suggested that this 
deviation – this gap – may be closed by fitting the version 
of modelling to be implemented better to the institution-
al structure of upper secondary school.

Keywords: Mathematical modelling, textbook portrayal, 

connecting research to practice. 

INTRODUCTION AND DISPOSITION

Large scale implementation of mathematical model-
ling (hereinafter modelling) activities in mathematics 
education is a visionary project that has been under 
way for the past several decades. According to many 
researchers it is still present in mathematics class-
rooms to a degree far from satisfactory (Barquero, 
Bosch, & Gascón, 2010).

The aim of this paper is to understand better the caus-
es and consequences of the apparent gap between 
research on modelling, and modelling as taught in 
practice.

One may take the position that researchers have a par-
ticular ‘vision’ of a subject to implement in practice – 
their version of modelling. Observing that it is not 
satisfactorily implemented, one is led to the question: 

‘what are the obstacles hindering its implementation?’ 
This paper proposes a change of perspective.

Instead, the viewpoint taken is that a subject known 
as mathematical modelling exists in the upper second-
ary school institution, one that is different from the 
subject conceived of in academic research. Hence, it is 
integral to find out what this subject is, how it relates 
to academic perspectives, and why it takes the form it 
does. This might guide the way in conceiving of a ver-
sion of modelling that is better fit to be implemented 
in teaching-in-practice in school classrooms.

A case is presented wherein a particular notion of 
mathematical modelling is traced from academic 
literature, throughout curriculum documents to a 
textbook’s portrayal. All three samples constituting 
the case are taken from a Danish context. 

The case is taken as point of departure for a discussion 
of the differences between two versions of modelling: 
that which is portrayed in academic literature, and 
that portrayed in textbooks and curricula – ‘literature’ 
implemented in secondary school.

DIDACTIC TRANSPOSITION

Theory of Didactic Transposition (TDT) is a theoret-
ical framework developed by Yves Chevallard. TDT 
describes the transition of scholastic knowledge 
produced in universities throughout the education-
al system, e.g., curriculum and textbooks, to teaching 
situations. The mathematics being taught is not the 
same as that being produced in research institutions. 
Indeed, academic knowledge naturally undergoes 
changes when transposed through curriculum into 
textbooks (Winsløw, 2011).

The external transposition process takes place in what 
is called the ‘noosphere’ where ‘scholarly knowledge’ 



‘Literature’ on mathematical modelling from a teacher perspective: A textbook’s portrayal (Anders Wolfsberg)

952

is transformed into ‘knowledge to be taught’, to be 
found in, e.g., curriculum and textbooks. 

The first step [the external transposition] corre-
sponds to the study of the formation of the ‘teach-
ing text’ (…) and highlights the conditions and 
constraints under which the ‘knowledge to be 
taught’ is constituted (…) (Bosch & Gascón, 2006, 
p. 56)

The internal transposition describes how teachers 
adapt and implement the knowledge into the very 
teaching situation (Winsløw, 2011). 

Didactic knowledge such as that on teaching math-
ematical modelling and promoting modelling compe-
tency is produced in communities of mathematics 
and educational science researchers. However, the 
knowledge emerges in curriculum and textbooks (of-
ten by the work of others) in a transposed form more 
or less dissimilar to that envisioned by educational 
researchers. 

Thus, in a TDT view, incoherencies between knowl-
edge of (some) researchers, and that portrayed in text-
books, and applied by teachers, is a naturally occur-
ring phenomenon. Indeed, constructing a so-called 
epistemological reference model (hereinafter reference 
model) of knowledge on a given topic in all levels of 
the didactic transposition allows for analysing these 
incoherencies (Winsløw, 2011).

METHOD OF ANALYSIS

The case study consists of three samples of ‘knowl-
edge on mathematical modelling’: one from academ-
ic literature, one from curriculum, and one from a 
textbook. The contents of these samples are analysed 
qualitatively. In view of TDT this method corresponds 
to constructing a three-level reference model for 

‘knowledge on modelling’ – a view of modelling in 
three different ‘spheres’ of the educational system. 
Hence, only the external transposition is analysed 
in this case.

All three samples are taken from a Danish context but 
are of international relevance. Thus, the scope on lit-
erature focuses on Danish researchers who work with 
mathematical modelling and the concept of modelling 
competency as used and developed by Mogens Niss. 
Niss has had significant influence on the wording of 

Danish mathematics curriculum via the KOM project 
on mathematical competencies (Blomhøj & Kjeldsen, 
2010). Furthermore, interpretations of the modelling 
subject such as that of Niss are widely used in inter-
national literature on modelling (see, e.g., Niss, Blum, 
& Galbraith, 2007). The textbook is one of the most 
widely used in Danish upper secondary mathematics 
teaching. 

In the following three sections, views on mathemat-
ical modelling as portrayed in academic literature, 
curriculum, and textbook are extracted.

Inspiration has been drawn from Julie and Mudaly 
(2007), who identify two categories for tendencies in 
didactical research on teaching modelling: ‘modelling 
as vehicle’ and ‘modelling as content’. In a modelling 
as vehicle perspective, modelling is conceived of as 
providing motivation and support for learning of 
other mathematical subjects. As content, modelling 
is conceived of as a topic in itself. 

In the following analysis and extraction of academic 
views, and curriculum and textbook descriptions, the 
focus is set on the category of modelling as content. 
Thus, content is sampled that describes modelling as 
educational content, not as a way of teaching. What is 
excluded are views on how modelling could or should 
be taught.

ACADEMIC VIEW ON MODELLING 

Models and modelling
Niss (1989) defines a mathematical model as a triplet 
(A,f,M) of three domains denoting an extra-mathemat-
ical domain, A, a mathematical domain, M, and then 
a mapping, f, between the two. The domains must be 
understood abstractly as ”collections of relationships, 
phenomena, questions (and possible answers) and 
such-like” (Niss, 1989, p. 28).

Niss identifies modelling with model construction, 
and in defining the concept, he characterises the 
process that signifies general model construction 
processes. We find an equivalent characterisation of 
the modelling process in Blomhøj & Kjeldsen (2010, 
pp. 3–5), illustrated in Figure 1 – the modelling cycle.

The process is illustrated cyclically since the object to 
be modelled often is redefined progressively. Between 
the sub-processes are double-headed arrows to indi-
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cate that activity in any one sub-process influences 
the entire model in either direction simultaneously. 
The sources of information for the model are shown 
in the three ellipses.

Niss (1989) points out, on the nature of models, that 
”Models are designed to model something – not to be 
confused with something unique.” (p. 31).

Modelling competency
The modelling competency is one of eight mathe-
matical competencies identified by Niss in the KOM 
Project which are characteristic to mathematical 
activity. Mathematical competency is described as 

“someone’s insightful readiness to act in response to 
the challenges of a given situation” (Blomhøj & Jensen, 
2007, p. 47). Specifically, the modelling competency is 
characterised as:

A person’s insightful readiness to autonomously 
carrying through all aspects of a mathematical 
modelling process in a certain context and to re-
flect on the modelling process and the use of the 
model (Blomhøj & Kjeldsen, 2010, p. 3)

Thus, “insightful” and “reflect on” indicates that, for 
teaching purposes, abilities beyond mere mechani-
cal skills are sought in students. The student must be 
able to construct models, and “autonomously” at that. 
Furthermore, it is emphasised that the student in this 
regard be able to consider a model and the process 
of constructing it holistically, not simply as separate 
algorithmic steps. Finally, the student must be capable 
of reflecting on “the use of the model”, which can be 
understood as having capabilities for both internal 
and external reflections: 

Internal reflections add meaning and quality to 
the sub-processes involved in a mathematical 
modelling process, (…) the external reflections 
address the role and function of the model in actu-
al or potential applications. (Blomhøj & Kjeldsen, 
2011, p. 1)

Purposes
In (Blomhøj, 2009, p. 6) the main purposes for teaching 
and learning mathematical modelling, as given by the 
above definitions, are divided into three categories. 
Below these are described in a shortened, partly re-
formulated, but content preserving form:

 ― Proficiency: To learn modelling, it being a subject 
of the mathematical discipline and to provide mo-
tivation and support for learning of other math-
ematical topics. 

 ― Applications: To apply mathematics in dealing 
with the challenges of private and professional 
life. 

 ― Cultivation: To strengthen students’ competences 
as critical and insightful participants of a highly 
technologically developed democratic society.

MODELLING AS PORTRAYED IN CURRICULUM

In this section references to modelling and models 
in Danish curriculum for mathematics Stx A, B and 
C levels are explained (Danish Ministry of Education 
[DME], 2013, Bilag 35–37). The levels A, B, and C refer 
to upper secondary mathematics education. A level 
is the highest.

Figure 1: Left: the modelling cycle/process. Right: the six sub-processes (Blomhøj & Kjeldsen, 2010, p. 4)
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Under “disciplinary goals” (DME, 2013, Bilag 35, 2.1) 
models and modelling are mentioned several times. 
Exact quotes are not given here, but are presented in 
synthesised form in Table 1 illustrating the results of 
the analysis. 

The curriculum subsection “Supplementary material” 
proposes teaching modelling on B level, and differen-
tial equation models on A level. This supplementary 
material must “provide perspective and depth to the 
central material” (DME, 2013, Bilag 35, 2.3). 

Under “Interaction with other disciplines” it is point-
ed out that material must be included so that the stu-
dent can understand “the significance of considering 
and discussing the preconditions for any mathemat-
ical description of reality, and the validity of results 
obtained hereby” (DME, 2013, Bilag 35, 3.4).

MODELLING IN THE TEXTBOOK

The B level mathematics textbook ”Gyldendals 
Gymnasiematematik Grundbog 2B” (Clausen, 
Schomacker, & Tolnø, 2007b) contains the chapter 

“Models” (Danish: “Modeller”) of 37 pages, wherein 
modelling and models are treated. 

The entire textbook series, this book included, intro-
duces models when treating a diversity of other sub-
jects (variable correlations, functions, etc.). Many of 
the examples given there are revisited in the analysed 
section, focusing now on their specific qualities as 
models and the construction of these by modelling. 
In the following, Clausen and colleagues (2007b) is 
referenced whenever only page numbers are stated 
in parenthesis.

The textbook chapter commences with a motivation-
al text giving a number of examples of models (nine 
pages). Thereafter follows the theory on modelling 
(two pages). It is emphasised that “The mathematical 
model describes a real-world situation” (p. 91) that 

“may have limited range” (p. 91), and that it can “give 
insight into, and overview of, the real-world situation 
that is described” (p. 91).

A simplified version of the modelling cycle is shown 
illustrating the sub-processes “Translation to math-
ematics”, “mathematical treatment” and “translation 
to reality”. These steps are presented in a non-cyclic, 

algorithmic manner, connected by single-headed ar-
rows (p. 91). 

Throughout the succeeding two pages, examples 
and exercises – by references to the exercise book 
(Clausen, Schomacker, & Tolnø, 2007a, pp. 27–33) – are 
given on model analysis. In particular, emphasis is put 
on identifying variables and parameters, respectively, 
and on their range: “Consequently, (...), x must take 
values between 200 and 1200” (p. 92). 

The succeeding 21 pages contain more examples and 
exercises, now with emphasis on constructing mod-
els – modelling. All six sub-processes from Figure 1 
are visited in linear succession in nearly every exam-
ple. With several examples it is clarified that a model 
can be generalised: “Considering an alternative thick-
ness for the paper sheet (...)” (p. 92), and “It is easy 
to generalise the model to considering alternative 
widths of the canal (...)” (p. 98). However, no exam-
ples or exercises are given wherein a point is made 
of progressively redefining real-world situations to 
be modelled. The approach is algorithmic rather than 
holistic.  

The exercises focus on the student activity of extract-
ing and interpreting information from a model, as 
well as constructing models. As with the examples, no 
exercises are given wherein the student must assess 
or reflect on the quality or validity of a model.

The remaining three pages of the chapter consist of a 
text considering existing “professional” models, and 
how their construction and use depend on applicants’ 
interests. For example: “An oil company and an envi-
ronmental organisation will hardly construct and 
interpret a model in the same way.” (p. 116).

WHAT IS MODELLING? THREE 
POINTS OF REFERENCE

In this section the content extracted in the above three 
sections is organised and illustrated in Table 1. The 
table is organised so that distinct aspects of model-
ling may be viewed comparatively in terms of their 
depiction in each of the three levels of the educational 
system analysed. 

Firstly, extracts from the analysis have been sorted 
under either purposes of applications and proficien-
cy, or, under the purpose cultivation (see “Academic 
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view on modelling” above). Secondly, four colours; 
purple, red, green, and blue highlight the four main 
comparable aspects of modelling that I wish to em-
phasise. These four points focus on portrayals of the 
modelling cycle (purple), the modelling process (blue), 
internal critical reflections (red), and external critical 
reflections (green).

DISCUSSION

This discussion sets out first to explore what versions 
of modelling are portrayed in the specific case elabo-
rated above. This is done relative to the scope on aca-
demic literature on modelling that the case presents. 
Subsequently, possible causes for the gap between 
modelling in academic literature and textbooks are 
discussed. Lastly, it is suggested that a version of 
modelling better fit for implementation might be con-
ceived of by considering the institutional structure 
of secondary school.

Lack of holistic and critical perspectives
In the textbook only examples and exercises are given 
where models are considered as results of following 
certain mathematical calculations in linear order 
(see blue and purple coloured text in Table 1). This 
approach is predominantly algorithmic as it never 
invites students (and teacher) to consider the mod-
el holistically: perspective is in every example and 
exercise confined to sub-processes of the modelling 
process. 

Note that a holistic understanding of the modelling 
process was emphasised in literature (as presented 
in the case) for being essential in developing auton-
omous competencies. This is so since autonomy is 
understood as deriving from seeing both what is to 
be done to solve a problem, and why. An algorithmic 
viewpoint hence confines students and teacher to 
considering what step to do next, not what it means 
for the model in its entirety. As a consequence, the 
form of modelling portrayed in the textbook does not 
promote well autonomous competences.

Also, critical competences are underemphasised (see 
red and green coloured text in Table 1). In the textbook, 
assessment of a model’s validity and range amounts 
merely to examining ranges of variables and param-
eters. This is a devaluing interpretation of the cur-
riculum statement on understanding the “range of 
models”. Indeed, consider the notion of critical reflec-
tions in the scope of the case on academic literature. In 
this view, “range of models” is understood as what the 
model in its entirety explains, its descriptive power 
and its limitations, not simply the range of variables 
used in it.

A text example is offered in the textbook describing 
how an oil company and an environmental organisa-
tion might interpret a model differently. Assessing 
others’ use of models, which academic literature em-
phasises as part of modelling competency, is therefore 
somewhat an element of the modelling subject por-

 Literature Curriculum Textbook

Purpose dec-
larations 

-Applications 
- Proficiency

- Knowledge of math’s usability 
in formulating and treating 
problems from other disciplines

No indication

Specific 
points of 
note

- Complex modelling cycle with 
double-headed arrows
- Holistic perspective on model-
ling process
- Internal critical reflections on
models and model construction

- Skills in constructing and us-
ing models (geometrical, statis-
tical, simulations)
- Knowledge of basic properties 
of models and modelling
- Reflection on idealisations and 
range of models

- Linear modelling cycle with 
single-headed arrows
- Iterative modelling process. No 
examples or exercises display-
ing a holistic perspective
- Examples and exercises on 
range of variables in models 

Purpose dec-
larations

- Cultivation - Knowledge of mathematics’ in-
teraction with culture, science, 
technology

No indication

Specific 
points of 
note

- External critical reflections - Reflection on assumptions and 
validity of mathematical de-
scriptions (under “interaction 
with other disciplines”) 

- Text example of an oil company 
and an environmental organisa-
tions’ different interpretations 
of a model

Table 1: A case of ‘mathematical modelling’ in three levels of the educational system
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trayed in the textbook. Yet, no techniques to making 
these critical model assessments are offered.

Hereby, model criticism seems but a matter of exam-
ining ranges of functions and variables, not assessing 
its significance for the real-world situation it is sup-
posed to describe. Thus, the cultivation purposes of 
academic literature, and the corresponding purpose 
declarations of the curriculum are underemphasised, 
if present at all, in the textbook. That is, the use and 
role of models in decision making is hardly part of the 
modelling subject portrayed in the textbook. 

A fragmented version of modelling 
The lack of holistic and critical perspectives in the 
textbooks indicate an overall conception of modelling 
as a mathematical technique to solve mathematically 
stated problems, not real-world problems. This may 
seem natural as it is a topic presented in a mathemat-
ics textbook. Yet, it is worthwhile to ponder the con-
sequences of portraying this mathematics-centred 
version of modelling. 

In the scope on academic literature presented in the 
case, holistic and critical perspectives are integral as-
pects of the modelling process and competency. These 
aspects, however, necessitate an approach to model-
ling that goes beyond mathematical algorithms and 
concepts. When transposing the subject into teaching 
material for mathematics class proper, we might sus-
pect that the subject that results becomes centred on 
the mathematics. That is, aspects that go beyond that 
discipline become underrepresented. We saw in the 
above that this suspicion seems justified in the case 
studied. 

Under which subject, then, do the holistic and criti-
cal aspects of modelling sort, if not under the subject 
known as modelling in mathematics textbooks? 

The curriculum phrasing indicates a hint. Note that 
it is stated in Table 1 (in green) that reflections on as-
sumptions and validity of mathematical descriptions 
sort under ‘interaction with other disciplines’. Thus, 
it seems reasonable to assume that these aspects of 
modelling are considered content to be taught in in-
terdisciplinary work.

Hence, it is reasonable to suggest that modelling in 
upper secondary are in fact two subjects: a mainly 
mathematical one found in mathematics textbooks, 

and one pertaining to extra-mathematical aspects 
found in interdisciplinary teaching material. This 
might seem reasonable as the teacher can use differ-
ent material – different literature – when teaching 
modelling.

Yet, assuming that modelling should be a subject that 
in its very nature aims to connect the mathematical 
and the extra-mathematical, this fragmentation is 
problematic. Indeed, reflecting on the extra-mathe-
matical situation that one aims to model, construct-
ing a suitable model, and then assessing its validity 
is a process of connecting mathematical and the ex-
tra-mathematical domains. 

However, this situation is only problematic when 
seen relative to academic perspectives on modelling. 
Modelling as a subject seems to find its own form in 
practice, one that fits the institutional structure, e.g., 
with subjects divided in disciplines and activities 
considered to be either mathematical or interdisci-
plinary. Understanding better this version of model-
ling-in-practice, and the processes that determine the 
form it takes is what this paper has aimed at. 

CONCLUSION AND PERSPECTIVES

This study set out to investigate the gap between re-
search on modelling and its degree of implementation 
in school. Rather than viewing the gap as an issue, it 
was considered a condition of connecting research 
to practice.

From this viewpoint, the question was not which ob-
stacles lay in the way of implementing modelling in 
practice, and how they may be overcome. Rather, it 
was to understand how, and why, the subject of mod-
elling takes the form it does in textbooks and curric-
ulum.

Departing from a specific case, it was discussed how 
modelling as portrayed in textbooks and curricula 
differs from modelling as envisioned by researchers. 
In particular, it was indicated that this subject, model-
ling-in-practice, is fragmented into two subjects. One 
to be taught in mathematics class proper focusing on 
the mathematical work in modelling activities, and 
one aimed at interdisciplinary work focusing on crit-
ical reflections and holistic aspects of the modelling 
process.
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It was argued that this fragmentation is a natural 
consequence of the division of activities common in 
secondary school, between mathematical and inter-
disciplinary activities. Taking this situation to be a 
condition rather than an issue (a viewpoint that must 
also be taken!), it is reasonable to ask whether the ver-
sion of modelling to be implemented must be reshaped 
into a form more fit to the common secondary school 
structure. Indeed, could research provide a version 
of modelling that in distinct ways targets mathemat-
ics class proper, interdisciplinary work, as well as 
activities that bridge the two?

To be sure, researchers must attempt to implement 
the version of modelling that they see fit, and ensure 
that the teaching institution is changed accordingly to 
accommodate this subject. Yet, the point made in this 
paper is that investigating the version of modelling 
that actually occurs in teaching materials, one might 
see that the particular vision of modelling one has 
could be fitted better to the institutional structure 
of school.

REFERENCES

Barquero, B., Bosch, M., & Gascón, J. (2010). The ‘ecology’ of 

mathematical modelling: constraints to its teaching at uni-

versity level. In V. Durand-Guerrier, S. Soury-Lavergne, & F. 

Arzarello (Eds.), Proceedings of the Sixth Congress of the 

European Society for Research in Mathematics Education 

(pp. 2146–2155). Lyon: Institut National de Recherche 

Pédagogique.

Blomhøj, M. (2009). Different perspectives in research on 

the teaching and learning mathematical modelling – 

Categorising the TSG21 papers. In M. Blomhøj & S. Carreira 

(Eds.), Mathematical applications and modelling in the 

teaching and learning of mathematics (pp. 1–17). Roskilde: 

Roskilde University.

Blomhøj, M., & Kjeldsen, T. H. (2010). Mathematical modelling 

as goal in mathematics education – developing of model-

ling competency through project work. In B. Sriraman, C. 

Bergsten, S. Goodchild, G. Palsdottir, B. D. Søndergaard, 

& L. Haapasalo (Eds.), The First Sourcebook on Nordic 

Research in Mathematics Education (pp. 555–568). 

Charlotte, NC: Information Age Publishing, Inc.

Blomhøj, M., & Kjeldsen, T. H. (2011). Students’ reflections in 

mathematical modelling projects. In G. Kaiser, W. Blum, R. 

Borromeo-Ferri, & G. Stillman (Eds.), Trends in teaching 

and learning of mathematical modeling (pp. 385–396). New 

York: Springer. 

Bosch, M., & Gascón, J. (2006). Twenty-Five Years of the 

Didactic Transposition. In B. R. Hodgson (Ed.), ICMI Bulletin, 

58, 51–65.

Clausen, F., Schomacker, G., & Tolnø, J. (2007a). Gyldendals 

Gymnasiematematik Arbejdsbog B2 (2nd ed.). 

Copenhagen: Gyldendal, Nordisk forlag A/S.

Clausen, F., Schomacker, G., & Tolnø, J. (2007b). Gyldendals 

Gymnasiematematik Grundbog B2 (1st ed.). Copenhagen: 

Gyldendal, Nordisk forlag A/S.

Danish Ministry of Education [DME]. Bekendtgørelse om uddan-

nelsen til studentereksamen (2013). Retrieved December 

15, 2014 from https://www.retsinformation.dk/Forms/

R0710.aspx?id=152507&exp=1

Julie, C., & Mudaly, V. (2007). Mathematical modelling of social 

issues in school mathematics in South Africa. In W. Blum, 

P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and 

Applications in Mathematics Education (pp. 503–510). New 

York: Springer.  

Niss, M. (1989). Aims and scope of applications and modeling in 

mathematics curricula. In W. Blum, J. S. Berry, R. Biehler, I. D. 

Huntley, G. Kaiser-Messmer, & L. Profke (Eds.), Applications 

and modelling in learning and teaching mathematics (pp. 

22–31). Chichester: Ellis Horwood.

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, 

P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and 

Applications in Mathematics Education (pp. 3–32). New 

York: Springer.

Winsløw, C. (2011). Anthropological theory of didactic phenom-

ena: some examples and principles of its use in the study 

of mathematics education. In M. Bosch, J. Gascón, A. R. 

Ollaría, M. Artaud, A. Bronner, Y. Chevallard, G. Cirade, C. 

Ladage, & M. Larguier (Eds.), Un panorama de la TAD (pp. 

117–138). Barcelona: Centre de Recerca Matemática.



958CERME9 (2015) – TWG06

TWG06

Posters



959CERME9 (2015) – TWG06

The Fraunhofer MINT-EC Math 
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Fraunhofer MINT-EC Talents supports talented, selected 
students from ages 16 to 18 and encourages them to de-
velop their own scientific research interests and projects. 
Those projects are suggested and designed by the stu-
dents as part of their independent work. It is important, 
that each project contains theoretical mathematical 
work alongside technical aspects like the control and 
construction of electric devices. Members of KOMMS 
support them by providing mathematical and technical 
expert knowledge and soft skill training during several 
workshops and by offering infrastructure for commu-
nication and computing.

Keywords: STEM, talent, secondary education, workshops.

SETUP

The programme is a cooperation between KOMMS 
(Competence Centre for Mathematical Modelling 
in STEM Projects at Schools, http://komms.uni-kl.
de), the ITWM (Fraunhofer Institute for Industrial 
Mathematics, http://www.itwm.fraunhofer.de), and 
MINT-EC (Association of Mathematical and Technical 
Excellence Centres at Schools, http://www.mint-ec.
de). MINT-EC certifies secondary schools (Gymnasia), 
which exhibit a distinctive profile in STEM disciplines. 
Talented students at ages 16 are selected from these 
schools, and get the opportunity to work on mathe-
matical-technical projects together during several 
workshops, parallel to  their standard secondary ed-
ucation. The project does not have to end with their 
final exam; given the quality of the developments 
made in the two-year course, participation at com-
petitions like “Jugend forscht” (“Youth researches” – 
a German youth science competition, http://www.
jugend-forscht.de) is possible and desired. The num-
ber of project groups and their participants is deter-
mined in an initial workshop. We make sure, that 
the challenges of each topic include the necessity of 

mathematical modelling as well as the actual imple-
mentation of software and construction of devices. It 
is important, that the students themselves decide how 
to approach their projects and which resources are 
needed to proceed. The supervisors, who are KOMMS 
personnel, can then offer support from their experi-
ence with modelling and solution of real-world prob-
lems. Fraunhofer ITWM provides financial support 
to purchase necessary hardware components, offers 
infrastructure for communication via the myTalent 
portal and also pays for accommodation and trans-
port during workshops. Due to a sponsoring agree-
ment with MathWorks, the students in the current 
programme have the opportunity to work with the 
Matlab and Simulink Student Suite. This tool provides 
enough abstraction from the hardware layer, so the 
students can focus more on mathematical challeng-
es and have to deal with less implementation issues. 
During the workshops, the supervisors or external 
experts offer compact courses for skills in several 
programming languages or for different types of 
hardware, if needed. The poster includes a graphi-
cal representation of the activities belonging to the 
MINT Talents programme and displays the involved 
parties and their tasks.

PROJECT EXAMPLES

Some project examples are explained with concise 
statements and pictures.

Playing billiards with electronic assistance
A computer software shall help a billiard player to 
decide which ball is the easiest to play next. A camera 
is used to capture the development of the game, hence 
it is necessary to get acquainted with basic methods 
of image processing. A mathematical model has to 
be established to rank different possible moves. As 
an extension, the software should be able to screen 
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the players’ skills in order to generate a profile and 
to give personalised suggestions.

Automatic steering of model quadcopters
A quadcopter model aircraft is supposed to navigate 
autonomously in a specified region and to recognise 
certain objects. Mathematical methods for image pro-
cessing and strategies for autonomous navigation 
have to be developed. A swarm model can also include 
more than one aircraft.

GOALS

Students should emerge from the programme as 
self-confident young individuals, who will be able 
to do excellent research in the future. Acquiring ex-
pertise in project-oriented work is also the basis for 
putting their own ideas into market some day. But 
most importantly, the students learn to work with 
applied mathematics intuitively and produce visible 
results from a science, which is often considered to 
be of an abstract and not application-oriented type. 
This experience is in general not achieved by means 
of classic school teaching. The workshop character of 
the programme additionally teaches a variety of soft 
skills, which can come in handy in the future academic 
or job-related lives of the students.
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differential calculus and functional modelling
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This work is part of a PhD thesis in the field of the 
Anthropological Theory of the Didactic: “Se propone un 
modelo epistemológico de referencia (MER) del cálculo 
diferencial elemental (CDE) alternativo al modelo dom-
inante en el sistema escolar.” It proposes an alternative 
reference epistemological model to the dominant model 
of elementary differential calculus (EDC) for Secondary 
school systems. We assume that its rationale arises in 
the context of functional modelling (FM).

Keywords: Calculus, modeling, anthropological theory of 

the didactic, dimensions of a didactical problem.

The didactic problem approached will be here charac-
terized by three fundamental dimensions: epistemo-
logical, economic and ecological (Gascón, 2011):

EPISTEMOLOGICAL DIMENSION

What is the rationale of EDC in the transition second-
ary school-university? 

How to interpret and describe EDC linked to FM?

The Activity Diagram of the FM constitutes the basis 
for answering these questions (Figure 1).

ECONOMIC DIMENSION

How is EDC organized and managed in the Portuguese 
educational system? What is the rationale currently 
assigned to it? Which were the transpositives chang-
es (Chevallard, 1985) suffered by its role in the FM 
activity to pass from the scientific community to the 
education system? 

Some answers to these questions emerged from an 
historical evolution analysis of the EDC role in the 

Portuguese curriculum and the potential relation-
ship FM-EDC. So, we characterized the EDC ‘official’ 
rationale in secondary-university as a way to study 
isolated functions with a weak connection to FM. 

ECOLOGICAL DIMENSION

What conditions are needed to develop functional 
modelling in the transition secondary-university? 
Dimensión ecológica:What role could play the EDC to 
establish these conditions?  What restrictions could 
hinder its development?

To partially answer these issues a study and research 
path (Chevallard, 2009) was designed and experiment-
ed, on the basis of a part of the proposed reference 
epistemological model. 
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Figure 1: Activity diagram of functional modelling
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In this study, we present a teaching situation to work on 
the modelling process using real data taken in classroom 
with tablets. The situation allowed us to work on the 
concept of the quadratic function with a group of 11th 
grade students and take into account the hypothesis 
that the qualitative analysis of the phenomenon, the 
knowledge of the qualitative properties of the families of 
functions and the meaning of the parameters are crucial 
elements for the management and control of the model-
ling process. We observed they are key elements to choose 
the function used as a model and to check its adequacy 
throughout the modelling process. Some student’s con-
ceptions on height and time were found and analysed.

Keywords: Modelling process, functions, real data, tablet, 

problem solving.

INTRODUCTION

We present the design and some results of a pilot study 
on the teaching of the concept of family of functions 
through a modelling process. In the teaching situation, 
real data are taken in classroom using the possibili-
ties given by apps for iPads®, and data are processed 
using free apps. In particular, the situation studied 
is the bounce of a ball dropped from a certain height, 
restricting the model to a single bounce, i. e., since the 
moment it touches the ground for the first time until 
it touches it again. 

The teaching situation takes also into account the 
hypothesis that the qualitative analysis of the phe-
nomenon, the knowledge of the qualitative properties 
of the families of functions and the meaning of the 
parameters are crucial elements for the management 
and control of the modelling process, and includes 
this metacognitive element in the design of the ma-
terials, as we have done in a previous study (Puig & 
Monzó, 2013).

This teaching model was explored with a group of 11th 
grade students with the following aims: (a) Check the 
influence of the qualitative analysis in the manage-
ment and control of the process and (b) Explore the 
behaviour and the previous ideas of the students.

MATERIALS AND METHODS

Our study is globally organised by the theoretical and 
methodological framework of the Local Theoretical 
Models (Filloy, Rojano, & Puig, 2008).

The pilot study was made in a natural group of 11th 
grade science students in València, Spain. They hadn’t 
worked on the modelling process before, but they have 
been taught with a problem solving methodology.

The teaching experiment was carried on in two ses-
sions and a set of interviews. In the first session, the 
students were given a worksheet with a set of ques-
tions that begins by asking to draw a sketch of the 
graph they expected to find when making the exper-
iment, in order to explicitly include in the teaching 
the control of the modelling process by the qualitative 
analysis. After that, they represented and recorded 
the phenomenon studied using Video Physics®. In the 
second session, they introduced the data obtained 
from this app in Data Analysis® to choose the func-
tion which fits better, and they answered some other 
questions related to the phenomenon represented 
using Free GraCalc®, which is a graphing calculator. In 
the interviews they were asked about their answers 
recorded in the worksheets, and were given some 
hints to get over the difficulties observed.

The results of the research were obtained from two 
sources. On the one hand, the data from the two work-
sheets and from the tablets were analysed by doing a 
rational reconstruction of the problem solving pro-
cess. On the other hand, the data from the interviews 
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were analysed in detail to get more information about 
the answers’ origin and the students’ conceptions.

SOME RESULTS AND CONCLUSIONS

Our study supports the hypothesis that the qualitative 
analysis of the phenomenon, the knowledge about 
the meaning of the parameters and the qualitative 
properties of the families are decisive elements in 
the control and management of the modelling process. 
Specially, they are key elements to choose the function 
used as a model and to check its adequacy throughout 
the modelling process.

Regarding students’ conceptions, we have found a 
deeply rooted idea that the height can’t take negative 
values, and the idea that time is absolute.
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This was the third CERME at which Thematic Working 
Group (TWG) “Mathematical potential, creativity 
and talent” took place. One of the central goals of 
this TWG was to raise attention of the mathematics 
education community to the field of mathematical 
potential, creativity and talent, and to promote em-
pirical and theoretical research that will contribute 
to the development of our understanding in the field. 
In 2011, 25 participants from 14 countries discussed 15 
contributions. This time (2015), 35 participants took 
part in the TWG discussions about 24 contributions 
by researchers and practitioners from 15 countries 
from different parts of the world. The TWG facilitat-
ed communication between educational researchers, 
mathematics educators and research mathematicians 
focusing on the nature and nurture of mathematical 
creativity in all students and high mathematical abil-
ity in particular individuals. 

Following the debates at TWG07 at CERME7 and 
CERME8, we continued an international exchange of 
ideas related to the research into the identification of 
mathematical talent, the didactics of teaching highly 
able students as well as the promotion of creativity 
in all students. 

Four main topics framed the TWG discussion: Topic 1: 
Creativity – definitions, identification, development; 
Topic 2: Mathematical tasks for different levels of 
abilities and expertise; Topic 3: High mathematical 
abilities: Characteristics and components; Topic 4: 
Teacher preparation: teaching for creativity, teach-
ing the gifted. In order to disseminate the ideas of dif-
ferent participants, each session started with small 
group work followed by a whole group discussion. 
Thus, the TWG concentrated on the exchange of the 
ideas rather than on individual presentations.

Topic 1: Creativity – definitions, 
identification, development
During two sessions devoted to Topic 1, the discus-
sion focused on the relationship between general 
creativity and mathematical creativity following the 
study of  Kattou, Christou and Pitta-Pantazi. The re-
searchers demonstrated that mathematical creativity 
exists as a distinct type of creativity and concluded 
that no predictions can be made on general creativ-
ity based on mathematical creativity and vice versa. 
Bronislaw Czarnocha suggested that “bisociation 
and simultaneity of attention” could serve a useful 
theoretical framework (based on Arthur Koestler’s 
ideas expressed in his monograph  “Act of creation”) 
for the analysis of creativity and argued that mental 
flexibility is not related at all to creative processing. 
In contrast to this study, Rott analysed heuristics and 
mental flexibility in the problem solving processes of 
regular and gifted fifth and sixth graders. The study of 
Desli and Zioga directed the attention of the group’s 
participants to the creativity embedded in primary 
school mathematical tasks which are useful for ed-
ucating teachers in the management of creativity in 
their classes. The authors argued that prospective 
teachers mostly connect mathematical creativity to 
arousing student interest whereas in-service teachers 
connect it to book-oriented problem posing indicating 
their narrow and blurred perceptions. 

While Winkler and Brandl suggested process-based 
analysis of mathematically gifted pupils in a regular 
class at the primary school level, Karakok, Savic, Tang 
and El Turkey suggested a model for the analysis of 
mathematicians’ views on undergraduate students’ 
creativity that addresses flexibility as one of the cen-
tral characteristics of creativity. They suggested the 
following rubric for mathematical creativity: Creative 
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thinking, risk-taking, innovating thinking, connect-
ing and transforming, originality and aesthetics of the 
solutions. Based on the work of Monstad, participants 
discussed mathematical practices involved in math-
ematical creativity. Émin, Essonnier, Filho, Mercat 
and Trgalova analysed didactical contract negotiation 
and technology assigned to creativity. They suggested 
additional ways of fostering mathematical creativity 
through the implementation of electronic books. 

Obviously the studies varied in their definitions of 
creativity, research methodologies, target popula-
tions and the ways in which creativity was evaluat-
ed and the proportion between cognitive and social 
characteristics addressed. No agreement among the 
researchers was achieved on the definitions of crea-
tivity and the relationships between creativity and 
ability grouping. This variety of views stressed the 
importance of further research in the field.

Topic 2: Mathematical tasks for different 
levels of abilities and expertise
Task design and use is a core issue in research in 
mathematics education. In the context of the TWG 

“Mathematical potential, creativity and talent” the de-
sign of mathematical tasks for the identification and 
development of mathematical potential and creativity 
attracted the attention of all participants. Leikin and 
Elgrably analysed integrative investigation geometry 
tasks as a tool for the development and evaluation 
of creativity for pre-service mathematics teachers. 
They argue that problem solving expertise influences 
mental flexibility which is reflected in the richness of 
discovered properties as well as investigation strate-
gies. Pitta-Pantazi, Christou, Kattou, Sophocleous and 
Pittalis suggest a system of mathematical competences 
for the evaluation of the mathematical challenge em-
bedded in the mathematical tasks: Digital, social, com-
munication in mother tongue, learning to learn and 
sense of initiative. Study participants found “digital 
competence” and “learning to learn the most difficult 
aspects to incorporate in their mathematical tasks”. 
Palha, Schuitema, van Boxtel and Peetsma discussed 
the effect of high versus low guidance structured 
tasks on mathematical creativity. The study extended 
the previous research on mathematical creativity by 
accounting for the relationship between the learning 
environment and creativity and by providing a way 
to operationalize fluency and flexibility in concep-
tual mathematical terms. Safuanov, Atanasyan and 
Ovsyannikova argued that open-ended exploratory 

learning in the mathematics classroom is an effective 
tool for the development of knowledge and creativity, 
while Schindler and Joklitschke suggested criteria for 
designing tasks according to students’ capabilities 
with special attention to mathematically talented stu-
dents. Singer, Pelczer and Voica explored behaviours 
of 10 to 16 year old high achievers during a problem 
modification process. The researchers studied the 
relationship between students’ creative approach-
es and the quality of the mathematics problems they 
generated, and concluded that these children either 
show low amplitude driven creativity, or, when they 
try to be more creative, they fail to pose consistent 
problems that make use of deep structures of mathe-
matical concepts and strategies. Mellroth presented 
the Kangaroo Mathematical Competition as a very 
effective tool for the popularisation of mathematics 
among students with a wide range of mathematical 
abilities. In turn, Bureš and Nováková explored de-
veloping students’ culture of problem solving via heu-
ristic solving strategies. The participants discussed 
the construct of heuristic strategies.

Mathematical investigations, challenging problem 
solving and problem posing were the most common 
tasks considered by the TWG07 participants. The tasks 
were considered in different contexts: Development of 
creativity in students and teachers, assessing creativ-
ity, and teacher education. The participants raised the 
following questions for further investigation: What 
is done in teacher education internationally in order 
to assist prospective teachers to develop creativity? 
What are textbooks doing to develop creativity in dif-
ferent countries? Can “problems from the scientific 
studies” be used in regular classes?

Topic 3: High mathematical abilities: 
Characteristics and components
High abilities in mathematics is an ill-defined concept. 
There was no agreement between the group partic-
ipants on who are the students with high ability in 
mathematics. Baruch-Paz, Leikin and Leikin analysed 
cognitive characteristics (with a focus on Speed of 
Information Processing) among students with superi-
or mathematical performance. This research involved 
190 students from four groups of 16–18 years old par-
ticipants varying in levels of general giftedness and 
excellence in mathematics. The researchers demon-
strated that the differences between the groups are 
task dependent; that is, between-group differences 
vary among different cognitive skills. They argued 
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that excellence in school mathematics differs from 
mathematical giftedness. In contrast to the previous 
study that focused on the basic cognitive traits as 
related to mathematical abilities, Benölken’s study 
explored emotional factors, namely, he investigated 
the impact of interest in Mathematics on the identifi-
cation of girls’ mathematical talent. In this study, the 
impact of mathematical interest and attitudes were 
used in order to identify girls’ mathematical talent. 
Boys showed a stronger interest in mathematics com-
pared to girls among those who were not identified as 
mathematically talented. Motivational factors were 
shown to be critical for the identification of mathe-
matical talent. 

Nordheimer and Brandl presented challenges fac-
ing the identification of mathematical giftedness in 
students with hearing impairment. The research-
ers claimed that for teachers, it is vital to recognise 
their pupils’ diverging abilities effectively in order 
to meet their respective learning requirements. They 
compared empirically the possibilities of identifying 
mathematical giftedness of 3rd/4th graders by com-
bining written tests and by process-based analyses of 
lessons. Szabo examined the interaction of mathemat-
ical abilities and the role of mathematical memory in 
students with high achievements in mathematics. The 
study demonstrated that mathematical memory has a 
critical role in the choice of problem-solving methods. 
The study showed that if the initially selected methods 
do not lead to the desired outcome, the students find it 
very difficult to modify them. The study confirms some 
qualitative differences in problem solving between 
high-achievers who are not essentially mathematically 
gifted and mathematically gifted students. However, 
the inflexibility of the participants could also be ex-
plained by two main functions of the cerebral cortex, 
where working memory operates. Winkler and Brandl 
argued that with heterogeneity at schools growing, 
individualisation of education has become more im-
portant than ever. For teachers, it is vital to recognise 
their pupils’ diverging abilities effectively in order 
to meet the pupils’ respective learning requirements. 
The researchers presented a project aiming at show-
ing ways to identify and characterise mathematically 
gifted pupils during regular lessons. 

An interesting discussion developed during this ses-
sion. Just as at the first two sessions devoted to the stud-
ying nature and nurture of mathematical creativity, 
the researchers did not agree on who the mathemati-

cally gifted are, or what are the indicators of high math-
ematical abilities. Moreover, one of the participants in 
the group argued that “such a thing as giftedness does 
not exist”. After the discussion, it was clear that more 
attention should be paid, through systematic research 
to the following questions: Can giftedness be devel-
oped or is it an innate trait? How can mathematical 
giftedness be determined? Are school achievements 
predictors of mathematical giftedness? Is mathemat-
ical creativity a part of mathematical giftedness?

Topic 4: Teacher preparation: Teaching 
for creativity, teaching the gifted
It is clear to every mathematics educator that teach-
ers’ expertise, knowledge and skills determine the 
quality of mathematics teaching. This is equally true 
when teaching the gifted or when goals of teaching 
mathematics include the development of creativity 
in all students. Karp and Busev devoted their study 
to people who taught highly gifted schoolchildren 
and developed educational materials for them. They 
claimed that teaching the highly gifted requires the 
teachers’ creativity the development of which can be 
provoked and supported by the social environment. 
To exemplify their ideas, researchers discussed two 
prominent Russian figures in the advanced course of 
mathematics. In contrast, Birkeland analysed mathe-
matical reasoning of pre-service teachers through the 
distinction between imitative and creative reasoning. 
This study reveals variety of the types of students’ 
mathematical reasoning and indicates that if their 
reasoning is not imitative it is perhaps not creative 
either. Safuanov’s work is devoted to different ways of 
teaching students in pedagogical universities to solve 
various types of non-routine mathematical problems, 
while Sinitsky’s work aimed to highlight the differ-
ent aspects of promoting creativity from the point 
of view of an educator involved in the professional 
development of pre-service teachers. Challenging the 
prospective teachers with open-ended mathematical 
problems provided data on their beliefs and behav-
iour concerning creativity and creativity encourage-
ment in the classroom. 

Overall, participants agreed that the development of 
teachers’ understanding of the special characteristics 
of gifted students is essential for teaching the gifted, 
and that the development of teachers’ creativity in 
mathematics teaching is essential for the development 
of teachers’ overall creativity.
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In proportion, girls often are decidedly underrepresent-
ed in support programs that aim at mathematically tal-
ented primary school children. Thus, it is of interest to 
ascertain aspects that might make possible a more dif-
ferentiated identification and support. In the following 
article, a questionnaire study will be presented which 
can clarify the significance of mathematics interest 
and attitudes as determinants for the identification of 
mathematical talent: Boys and girls who were identified 
to be mathematically talented, and boys who were not 
showed a stronger mathematics interest (in and beyond 
the classroom) and more advantageous mathematics 
attitudes compared to girls who were not identified to 
be mathematically talented.

Keywords: Mathematical talent, mathematical giftedness, 

interest, attitudes, gender.

INTRODUCTION AND RATIONALE

In Germany just like in other western European 
countries, girls are in proportion decidedly under-
represented in programs that foster mathematical 
talent (Benölken, 2011). This phenomenon contradicts 
the consensus on the fact that both sexes have equal 
potentials across all academic domains (Endepohls-
Ulpe, 2012). When it comes to primary school children, 
aspects such as gender stereotyping of mathematical 
occupational fields cannot really act as possible expla-
nations, especially because there cannot be found any 
gender-specific differences in mathematical compe-
tencies at this age (Lindberg, Hyde, Petersen, & Linn, 
2010). In addition, studies have indicated a decline of 
such differences at subsequent ages for many years 
(Hyde, Lindberg, Linn, Ellis, & Williams, 2008). This 
is why it is of interest to look for aspects that improve 
the identification of girls’ mathematical talent (see 

[1]). With a holistic approach, diagnostics should be 
organized as a process considering both cognitive and 
co-cognitive, e.g. motivational, parameters as deter-
minants in order to identify talents. For instance, girls 
and boys who were identified to be mathematically 
talented (“imt”) as well as boys who were not (“n-imt”), 
often show more advantageous self-concepts and at-
tributions in mathematics than n-imt girls (Benölken, 
2014). Findings like these raise the question how other 
motivational factors can be characterized in view of 
these groups. In this article, the significance of both 
mathematics interest and attitudes as determinants 
for the identification of mathematical talent at pri-
mary school age will be examined by a questionnaire 
study. Its aim is to investigate boys’ and girls’ frequent 
characteristics as to these factors by a comparison of 
the four groups mentioned above. Based on literature 
reviews, hypotheses on the characteristics in question 
will be deduced that correspond to the questions of 
the study. Afterwards, the design and the results of 
the study will be reported. 

BACKGROUND

Theoretical frameworks
Mathematics interest: The conception of interest 
applied in the study refers to Prenzel, Krapp and 
Schiefele (1986): Interest is seen as a result of an in-
teraction between a person and an object that – along 
with adjuvant conditions – might cause to focus on 
a long-term preoccupation with this specific object. 
This relation is characterized by (1) value-related, (2) 
affective and (3) cognitive aspects. Additionally, in 
accordance with current approaches on a multidimen-
sional structure of interests, a distinction between 
subject-, context- and topic-related interest was con-
sidered (Krapp, 2010). The first two dimensions were 
summarized in the term of “mathematics interest in 
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the classroom” because it cannot be expected that 
primary school children differ between activities 
and contexts applied in classrooms (Hellmich, 2006). 
The third one is referred to by the term “mathematics 
interest beyond the classroom”.

Mathematics attitudes: The construct of “attitudes” 
focuses on an evaluation of objects which an individ-
ual imagines or perceives in his or her environment. 
Attitudes can be explicitly and consciously accessed, 
or they can emerge implicitly and spontaneously – 
in both cases influencing an individual’s behavior 
(Bohner, 2003). The conception of attitudes applied 
in the study refers to the classical operationalization 
consisting of (1) cognitive, (2) affective and value-re-
lated as well as (3) behavior-related components 
(Aronson, Wilson, & Akert, 2004).  

Brief literature reviews
Preliminary notes: Research on both mathematics in-
terest and attitudes mostly focuses either on children 
at middle school age or on gender-specific differences 
without regarding specific aspects of giftedness or 
talent. Studies which investigated mathematics inter-
est or attitudes in the context of exceeding abilities 
mostly refer to “giftedness” as a “g-factor-concept” im-
plying standardized diagnostics. Thus, their results 
cannot be transferred automatically to “mathemat-
ical talents” regarding domain-specific criteria and 
implying long-term process diagnostics (see [1]). The 
findings collectively show, however, the significance 
of both factors as determinants for the identification 
of girls’ mathematical potentials. Therefore, they are 
suited to provide a basis for the intended deduction 
of hypotheses.

Mathematics interest: Primary school children of-
ten have a lot of interests like sports, TV, computer 
games or reading (Pruisken, 2005). Furthermore, 
gender-specific differences can already be found at 
this early age (Hoberg & Rost, 2000): horseback riding, 
animals or reading seem to be “typical” interests of 
girls; football, technics or computer “typical” inter-
ests of boys (Fölling-Albers, 1995). Boys more often 
show stronger mathematics interest – even at prima-
ry school age and both in and beyond the classroom; 
girls interest in language or literature (Hellmich, 
2006; Pruisken, 2005). Though gifted children show 
the same differences, they do not have any extraor-
dinary interests compared to non-gifted children. 
However, gifted children generally seem to be more 

interested in both mathematics and languages or liter-
ature (Pruisken, 2005). In contrast to non-gifted girls, 
gifted girls have more interests which are supposed to 
be “typical” interests of boys, and they have a larger 
spectrum of interests than gifted boys (Kerr, 2000). 
Regarding specific mathematical talents (in the sense 
of [1]), girls (irrespective of the identification of talent) 
more often show a larger spectrum of interests than 
boys (Benölken, 2014). The majority of primary school 
children does not differ between mathematics interest 
in the classroom and beyond the classroom (Hellmich, 
2006). However, current studies do not focus on gen-
der- or giftedness- respectively talent-specific aspects 
in this context. Furthermore, there are only very few 
studies with a focus on ability-related mathematics 
interest. Their findings indicate, that the mathematics 
interest of students with lower achievements exceeds 
that one of higher achievers (Frenzel, Goetz, Pekrun, 
& Watt, 2010), but these studies do not focus on gifted 
or talented students. Finally, an often reported phe-
nomenon is a decline in mathematics interest in the 
years of adolescence (Fredricks & Eccles, 2002), which 
is of little importance when conducting studies with 
primary school children.

Mathematics attitudes: Boys show advantageous 
mathematics attitudes more often than girls (Hyde, 
Fennema, Ryan, Frost, & Hopp, 1990). As to the cog-
nitive aspect, studies primarily focus on individuals’ 
assessments of usefulness and difficulty of mathe-
matics. There seem to be no gender- or talent-specific 
differences between imt and n-imt children regard-
ing usefulness (Benölken, 2011), but some studies 
indicate that mathematically gifted boys and girls as 
well as non-gifted boys ascribe mathematics a low-
er level of difficulty compared to non-gifted girls 
(Wieczerkowski & Jansen, 1990). Finally, there are 
findings on gender stereotypes: The older girls are 
the more they ascribe mathematics to males (Newton 
& Newton, 1998), which seems to be less important at 
primary school age, since such differences mostly 
appear from an age of ten onwards. Concerning the 
affective aspect, results on gender- or giftedness-spe-
cific differences of individuals’ intrinsic values (such 
as enjoying mathematical task solving) seem to play 
the most important role: Similar to characteristics of 
the assessment of mathematics’ difficulty, some stud-
ies show that mathematically gifted boys and girls as 
well as non-gifted boys show a higher intrinsic val-
ue doing mathematics compared to non-gifted girls 
(Wieczerkowski & Jansen, 1990). On the other hand, 
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studies indicate that boys in general ascribe a higher 
intrinsic value to mathematics than girls (Bos, Wendt, 
Köller, & Selter, 2012). As to the behavior-related as-
pect, boys seem to engage in mathematics beyond 
mathematical school lessons more often than girls 
(Schiepe-Tiska & Schmidtner, 2013).

THE STUDY

Questions
The study was designed to answer the question how 
mathematics interest and attitudes can be character-
ized with the regarded groups. The following hypoth-
eses were deduced from the theoretical findings: (1a) 
Imt girls and boys as well as n-imt boys show a stron-
ger mathematics interest in the classroom than n-imt 
girls. (1b) Imt girls and boys as well as n-imt boys show 
a stronger mathematics interest beyond the classroom 
than n-imt girls. (2) Imt girls and boys as well as n-imt 
boys show more advantageous mathematics attitudes 
than n-imt girls.

Design
The study adds to previous research on the signif-
icance of motivational factors as determinants for 
the identification of mathematical talent using ques-
tionnaires that are appropriate to primary school 
children, and that can be completed within a short 
time (e.g., Benölken, 2011; 2014). Operationalizations 
of mathematics interest in and beyond the classroom 
as well as of attitudes were tested within pilot studies. 

Sample and procedure
The sample contains N=162 children of the third and 
fourth grade (71 girls, 91 boys). The subsample of imt 
children is n=83 (32 girls, 51 boys). Children who are 
assessed as “imt” take part in a project that fosters 
mathematical talent at the University of Münster 
called “math for small pundits”. They were chosen 
by long-term process-diagnostics that are a synthesis 
of standardized and non-standardized tools (see [1]; 
Benölken, 2014). The sample contains n=79 n-imt pri-
mary school children (39 girls, 40 boys) from common 
classes. The probands were questioned during the 
school year of 2014/2015. All procedures of question-
ing were consistent: The children were told how to fill 
in the questionnaire. In this context, possible differ-
ences between mathematics interest in and beyond 
the classroom were emphasized (see [2]). The children 
completed the questionnaire on their own without 

any time limit (no one took more than ten minutes and 
no one refused to fill in the questionnaire). 

Method
Apart from declaring sex, the questionnaire was an-
onymized. The phrasing of all items (following styles 
of common operationalizations in each case) was for-
mulated in German. In order to measure mathematics 
interest in the classroom by a value-related, an affec-
tive and a cognitive aspect, the following instruction 
was given: “This is about mathematics in the class-
room. Mark with a cross a statement that you think 
fits best to you: (1) Mathematics in the classroom is 
really important to me. (2) I always look forward to 
mathematics in the classroom. (3) I am interested in 
mathematics in the classroom.” An analog instruction 
was composed to collect data about mathematics inter-
est beyond the classroom: “This is about mathematics 
beyond the classroom. Mark with a cross a statement 
that you think fits best to you: (1) Mathematics is really 
important to me. (2) I always look forward to doing 
mathematics. (3) I am interested in mathematics.” In 
order to measure attitudes by cognitive, affective and 
behavior-related aspects, the following instruction 
was given: “Mark with a cross a statement that you 
think fits best to you: (1) Mathematical tasks are some-
times too difficult. (2) I enjoy doing mathematics. (3) I 
engage in mathematics beyond mathematical school 
lessons.” To evaluate the items, in each case a four-step 
Likert-scale was offered (“that’s not correct”, “that’s 
almost not correct”, “that’s almost correct”, “that’s 
correct”; instead, the children could choose “I don’t 
know”).

Evaluation
Statements about all items except the one relating 
to cognitive attitudes were translated into numbers 
from 1 (“that’s not correct”) to 4 (“that’s correct”). As 
to the cognitive attitude-item, the assignment was 
turned around: “that’s not correct”, e.g., was translated 
into 4 and “that’s correct” into 1, because statements 
that focus on a low level of difficulty reflect advan-
tageous characteristics of attitudes. Regarding the 
mathematics-interest-in-the-classroom-scale, the co-
efficient of correlation as defined by Pearson between 
the included items moves in a range from .366 to .475 
(with p<.01 in each case) and the internal consistency 
is only just acceptable (Cronbachs α=.680). As to the 
mathematics-interest-beyond-the-classroom-scale the 
coefficient of correlation as defined by Pearson be-
tween the included items is in a range from .378 to .576 
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(with p<.01 in each case) and the internal consistency 
is between acceptable and good (Cronbachs α=.731). 
Finally, the coefficient of correlation as defined by 
Pearson between the included attitudes items moves 
in a range from .334 to .617 (with p<.01 in each case) 
and the internal consistency is between acceptable 
and good, too (Cronbachs α=.710). In all cases, the items 
have been combined to one scale with mean values. 
Data have been evaluated by an analysis of variance 
with two factors (“talent” and “sex”) to find significant 
differences between the four groups. In addition to 
that, η2-values have been calculated to see the possible 
importance of both the factors and their interaction 
by their effect size. The requirements of the statisti-
cal procedure need the independence of subsamples 
and a normal distribution of the regarded trait within 
the groups amongst homogeneity of variance: The 
subsamples are obviously independent because of 
the distinction between sex and talent-identification. 
As a consequence of a graphical analysis of the dis-
tributions-histograms and the corresponding quan-
tile-quantile-plots, the data are leptokurtic, but suffi-
ciently similar to normal distributions (Hatzinger & 
Nagel, 2009). The requirement of homogeneity of vari-
ance is statistically firm as a result of Levene-testings. 

RESULTS

Mathematics interest
Regarding mathematics interest in the classroom, the 
averages of imt boys and girls are relatively similar, 
while the value of n-imt boys is slightly larger and the 
value of n-imt girls is slightly lower (Table 1). There 
is no significant main effect on talent (F(1,158)<.001, 
p=.990, η2<.001), but there can be found a significant 
main effect on sex (F(1,158)=12.795, p<.001, η2=.075) as 
well as a significant effect of interaction (F(1,158)=4.139, 
p=.044, η2=.026). As indicated by η2-values, sex (medi-
um effect of 7,5%) plays a bigger part to explain vari-
ance than the interaction (medium effect of 2.6%). 

Thus, the boys’ groups, especially the n-imt boys, 
show a stronger mathematics interest in the class-
room compared to the girls’ groups, but as indicated 
by the significant effect of interaction, imt girls are 
more similar to the boys’ groups than to the n-imt 
girls, who show a lower mathematics interest in the 
classroom on average compared to all other groups. 
Therefore, the statistical evaluation confirms hypoth-
esis 1a in principle.

As to mathematics interest beyond the classroom, the 
averages of imt children and n-imt boys are very simi-
lar and exceed the value of n-imt girls (Table 1). There 
are significant main effects on talent (F(1,157)=10.579, 
p=.001, η2=.063) and sex (F(1,157)=8.435, p=.004, 
η2=.051) just as there is a significant effect of inter-
action (F(1,157)=7.579, p=.007, η2=.046). As indicated 
by η2-values, talent (medium effect of 6,3%) and sex 
(medium effect of 5.1%) play a similar role to explain 
variance. Thus, imt children and n-imt boys show sim-
ilar characteristics of mathematics interest beyond 
the classroom which is stronger compared to n-imt 
girls, i.e. hypothesis 1b is confirmed. In addition, a 
descriptive data analysis of all groups’ mean values 
regarding both mathematics interest in and beyond 
the classroom indicates that only imt children seem 
to differ between these dimensions, since the values 
of n-imt boys and girls are quite similar in each case, 
while imt children’s mathematics interest beyond the 
classroom is stronger than in the classroom. 

Mathematics attitudes 
As to mathematics attitudes, the mean values of imt 
boys, imt girls and n-imt boys are relatively similar, 
even though the value of imt boys is slightly larger 
than the values of imt girls and n-imt boys. The value 
of n-imt girls is clearly lower in comparison to all oth-
er groups (Table 2). There are significant main effects 
on both talent (F(1,158)=29.023, p<.001, η2=.155) and 
sex (F(1,158)=21.550, p<.001, η2=.120). Finally, there is a 

mathematics interest in the classroom mathematics interest beyond the classroom

boys girls boys girls

imt children 3.07 (.83) 2.89 (.51) 3.39 (.70) 3.37 (.48)

n=51 n=32 n=51 n=32

n-imt children 3.30 (.76) 2.65 (.72) 3.33 (.79) 2.74 (.55)

n=40 n=39 n=40 n=38

Table 1: Averages (standard deviations) of mathematics interest-statements 
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significant effect of interaction (F(1,158)=7.597, p=.007, 
η2=.046). As indicated by η2-values, talent (strong ef-
fect of 15,5%) and sex (medium effect of 12.0%) play a 
similar role to explain variance, even though the tal-
ent effect is stronger. Thus, attitudes of imt children 
are more advantageous compared to n-imt children, 
but n-imt boys merely differ a little from the imt chil-
dren. The statistical evaluation confirms hypothesis 2.

DISCUSSION

Synopsis: In this article, the significance of both math-
ematics interest – by a distinction between in and be-
yond the classroom – and attitudes as determinants 
for the identification of mathematical talent at pri-
mary school age was investigated by a comparison of 
frequent characteristics with boys and girls who were 
identified to be mathematically talented (imt) as well 
as with boys and girls who were not (n-imt). Based on 
a review of existing empirical evidence, hypotheses 
on the mentioned characteristics were deduced: It 
has to be expected that imt children and n-imt boys 
show a stronger mathematics interest and more ad-
vantageous attitudes than n-imt girls. The hypotheses 
were investigated by a questionnaire study. The sta-
tistical results confirm the assumptions in principle: 
First, the boys’ groups, especially n-imt boys, show 
a stronger mathematics interest in the classroom 
compared to the girls’ groups, while imt girls are 
more similar to the boys’ groups than to n-imt girls, 
who show a lower mathematics interest regarding 
this aspect than all other groups (similar to Pruisken, 
2005). Second, imt children and n-imt boys show a 
stronger mathematics interest beyond the classroom 
than n-imt girls. In addition, only imt children seem 
to differ between mathematics interest in and beyond 
the classroom showing stronger interest beyond the 
classroom, while n-imt children on average took sim-
ilar stances in both cases (which could explain the 
results of Hellmich, 2006). Finally, attitudes of imt 
children are more advantageous compared to n-imt 

children, but n-imt boys merely differ a little (similar 
to Wieczerkowski & Jansen, 1990). 

A deeper interpretation of the results indicates that all 
groups show a relatively strong mathematics interest 
and advantageous attitudes, even though the values of 
n-imt girls are lower compared to the other groups in 
each case. Regarding the significance of mathematics 
interest and attitudes for the identification of talent, 
the results insinuate that both a particularly strong 
mathematics interest (in and beyond the classroom) 
and advantageous attitudes can be found – indepen-
dent of the identification of talent – more often with 
boys, while girls who have been identified to be mathe-
matically talented are very similar to these groups. An 
observable stronger mathematics interest, especially 
in the classroom, and more advantageous attitudes 
might cause more efficient diagnostics of boys’ talents, 
because they might tend to a strong preoccupation 
with mathematics, or teachers might perceive their 
potentials primarily. By contrast, both lower mathe-
matics interest, especially in the classroom, and dis-
advantageous attitudes might lead to the fact that chil-
dren do not develop a stronger preoccupation with 
mathematics and, e.g., turn to different interests. This 
might also apply to children who have a high potential 
that might be more difficult to identify. Though the 
findings are not suitable to predict how mathematics 
interest and attitudes can be characterized with math-
ematically talented but not identified girls, they imply 
the following thesis: Disadvantageous characteristics 
of mathematics interest and attitudes are important 
aspects effecting a more infrequent identification of 
high potentials with girls. In addition, interest and 
attitudes have to be seen in a strong interdependence 
with other motivational factors as well as with influ-
ences of socialization or gender-specific preferences 
in solving tasks (Benölken, 2011, 2014). 

As to limitations of the study and directions for future 
research, within the imt group the underrepresenta-
tion of girls has to be discussed: Because of the rare 

boys girls

imt children 3.32 (.58) 3.11 (.60)

n=51 n=32

n-imt children 3.03 (.78) 2.23 (.76)

n=40 n=39

Table 2: Averages (standard deviations) of mathematics attitudes-statements
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identification of mathematical talent with girls, it 
takes a long time to compose suitable subsamples 
(in particular, by process diagnostics). Nevertheless, 
despite the relative imbalance within the imt group, 
the size of all subsamples is sufficient in principle, 
even though follow-up studies should enlarge all 
subsamples and ensure a balance. The diagnostics 
procedures of talent identification that are used to 
compose the imt subsample have been established for 
many years. Thus, “imt” children most probably are 
rightly assessed in that way. In addition, there might 
be motivational effects caused by their participation 
in “math for small pundits” that cannot be found with 
children who have high potentials, but who are not 
taking part in such a program. Finally, the subsample 
of n-imt children is nothing more than an insufficient 
image of population. Thus, the sample’s representa-
tiveness has to be seen as limited. The questionnaire 
was adequate to the aims of the study in principle. It 
is suited for a pragmatic use in classrooms because 
its design is appropriate to children, and it can be 
completed in a short time. However, mathematics 
interest and attitudes are strongly reduced in their 
conceptions, and the evaluation depends on very 
simple measurements. The external validity of the 
findings cannot be judged because tools that eviden-
tially regard criteria of quality were not applied (in 
favor of the appropriateness to young children) and 
because the imt sample is very specifically composed. 
In sum, the study has obvious limitations, and it rather 
has an explorative character. Despite the significant 
results, subsequent studies might focus on a deeper 
clarification using established tools.

As to a survey of exemplary practical consequences, 
first, any gender stereotyping of mathematics should 
be avoided. Second, the development of mathematics 
interest and advantageous attitudes seems to play an 
important role for girls in order to support their po-
tentials to emerge. In this context, e.g., task-fields that 
are composed to foster girls especially – without ste-
reotyping – might be useful (Benölken, 2013). The dis-
tinction between mathematics interest in and beyond 
the classroom that was observed with imt children 
indicates the significance of a challenging education, 
e.g., by using enrichment tasks in common classes 
(Fuchs & Käpnick, 2009). 

REFERENCES

Aronson, E., Wilson, T. D., & Akert, R. M. (2004). 

Sozialpsychologie (4th ed.). München: Pearson Studium.

Benölken, R. (2011). Mathematisch begabte Mädchen. Münster: 

WTM.

Benölken, R. (2013). Begabte Mädchen finden und fördern. 

Grundschule, 11, 20–22.

Benölken, R. (2014). Begabung, Geschlecht und Motivation. 

Journal für Mathematik-Didaktik, 35, 129–158.

Bohner, G. (2003). Einstellungen. In W. Stroebe, K. Jonas, & M. 

Hewstone (Eds.), Sozialpsychologie. Eine Einführung (4th 

ed., pp. 265–315). Berlin: Springer. 

Bos, W., Wendt, H., Köller, O., & Selter, C. (2012). TIMSS 2011. 

Mathematische und naturwissenschaftliche Kompetenzen 

von Grundschulkindern in Deutschland im internationalen 

Vergleich. Münster: Waxmann.

Endepohls-Ulpe, M. (2012). Begabte Mädchen und Frauen. In 

H. Stöger, A. Ziegler, & M. Heilemann (Eds.), Mädchen und 

Frauen in MINT (pp. 103–132). Berlin: Lit.

Fölling-Albers, M. (1995). Interessen von Grundschulkindern. Ein 

Überblick über Schwerpunkte und Auslöser. Grundschule, 

27, 24–26.

Fredriks, J. A., & Eccles, J. (2002). Children’s competence and 

value beliefs from childhood to adolescence: Growth tra-

jectories in two male-sex-typed domains. Developmental 

Psychology, 38, 519–533.

Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. G. (2010). 

Development of mathematics interest in adolescence: 

Influences of gender, family, and school context. Journal of 

Research on Adolescence, 20, 507–537. 

Fuchs, M., & Käpnick, F. (2009). Mathe für kleine Asse. 

Empfehlungen zur Förderung mathematisch interessierter 

und begabter Kinder im 3. und 4. Schuljahr (Vol. 2). Berlin: 

Cornelsen.

Hatzinger, R., & Nagel, H. (2009). PASW Statistics. Statistische 

Methoden und Fallbeispiele. München: Pearson Studium.

Hellmich, F. (2006). Interessen, Selbstkonzepte und 

Kompetenzen. Untersuchungen zum Lernen von 

Mathematik bei Grundschulkindern. Oldenburg: 

Didaktisches Zentrum Carl von Ossietzky Universität 

Oldenburg.

Hoberg, K., & Rost, D. H. (2000). Interessen. In D. H. Rost (Ed.), 

Hochbegabte und hochleistende Jugendliche. Neue 

Ergebnisse aus dem Marburger Hochbegabtenprojekt (pp. 

339–365). Münster: Waxmann.

Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). 

Gender comparison of mathematics attitudes and effect. 

Psychology of Woman Quarterly, 14, 299–324.



The impact of mathematics interest and attitudes as determinants in order to identify girls’ mathematical talent (Ralf Benölken)

976

Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. 

(2008). Gender similarities characterize math performance. 

Science, 321, 494–495.

Käpnick, F. (1998). Mathematisch begabte Kinder. Frankfurt a. 

M.: Peter Lang.

Kerr, B. (2000). Guiding gifted girls and young women. In K. A. 

Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (Eds.), 

International handbook of giftedness and talent (2nd ed., 

pp. 649–657). Amsterdam: Elsevier.

Krapp, A. (2010). Interesse. In D. H. Rost (Ed.), Handwörterbuch 

Pädagogische Psychologie (4th ed., pp. 311–323). 

Weinheim and Basel: Beltz. 

Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). 

New trends in gender and mathematics performance: A 

meta-analysis. Psychological Bulletin, 136, 1123–1135.

Newton, L. D., & Newton, D. P. (1998). Primary children’s con-

ceptions of science and the scientists: Is the impact of 

a National Curriculum breaking down the stereotype? 

International Journal of Science Education, 20, 1137–1149. 

Prenzel, M., Krapp, A., & Schiefele, H. (1986). Grundzüge 

einer pädagogischen Interessentheorie. Zeitschrift für 

Pädagogik, 32, 163–173.

Pruisken, C. (2005). Interessen und Hobbys hochbegabter 

Grundschulkinder. Münster: Waxmann.

Schiepe-Tiska, A., & Schmidtner, S. (2013). 

Mathematikbezogene emotionale und motivationale 

Orientierungen. Einstellungen und Verhaltensweisen 

von Jugendlichen in PISA 2012. In M. Prenzel, C. Sälzer, 

E. Klieme, & O. Köller (Eds.), PISA 2012. Fortschritte und 

Herausforderungen in Deutschland (pp. 99–122). Münster: 

Waxmann.

Wieczerkowski, W., & Jansen, J. (1990). Mädchen und 

Mathematik: Geschlechtsunterschiede in Leistung und 

Wahlverhalten. In W. Wieczerkowski & T. M. Prado (Eds.), 

Hochbegabte Mädchen (pp. 134–151). Bad Honnef: Bock.

ENDNOTES

1. According to Fuchs and Käpnick (2009), “mathe-
matical talent” is seen as an above-average potential 
regarding the criteria of Käpnick (1998), i.e., remem-
bering mathematical facts, sensitivity and fantasy, 
structuring and transferring structures or revers-
ing thoughts. This potential is characterized by in-
dividual determinants and a dynamic development 
depending on inter- and intrapersonal influences in 
interdependence with personality traits supporting 
the talent.

2. As to the distinction between the interest dimen-
sions, the questionnaire instructions contained the 

following elucidation (translated from German): “I 
would like to know how you like mathematics in and 
beyond the classroom. ‘Mathematics in the classroom’ 
focuses on everything you do in mathematical school 
lessons. ‘Mathematics beyond the classroom’ focuses 
on, e.g., mathematical activities or themes in your life 
beyond mathematical school lessons or even outside 
the school.”
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The focus of this study is the mathematical reasoning 
of pre-service teachers. One class of pre-service teachers 
preparing to teach from grade 5 to 10 was organized in 
small groups where they worked on certain mathemat-
ical exercises. While working on these exercises the stu-
dents were video and audio recorded. The dialogues of 
each group constitute the unit of analysis. The research 
framework used in this study distinguishes between im-
itative and creative reasoning. This distinction is based 
on the idea that rote learning is imitative, while the op-
posite kind of reasoning is creative. However, this study 
reveals some of the variety of the students’ mathematical 
reasoning and indicates that if their reasoning is not 
imitative it is perhaps not creative either.

Keywords: Pre-service teachers, imitative reasoning, 

non-imitative reasoning, creative mathematical reasoning, 

creativity.

INTRODUCTION

To foster creativity among students in general, it 
would probably be useful to have teachers that could 
engage students in creative mathematical work. 
Therefore it might be of interest to study the mathe-
matical work of pre-service teachers. Thus knowledge 
about pre-service teachers’ mathematical reasoning 
would be useful. To know if some of their reasoning 
could be characterized as creative or not would be 
valuable. Such knowledge would perhaps make it 
possible to prepare pre-service teachers better for 
their future work. This is what motivates this study. 

Skovsmose (2001) distinguishes between the exercise 
paradigm and landscapes of investigations. Within 
the exercise paradigm the textbook is central for class-
room practice. The relevance of the exercises is not 
part of the mathematics lesson, and there is one and 
only one correct answer to each exercise. In contrast 
to the exercise paradigm, landscapes of investigations 
is an investigative approach where students are in-

volved in processes of exploration and explanation. 
Skovsmose makes the point that traditional mathe-
matics education often falls within the exercise par-
adigm. If students’ work with mathematical exercises 
falls within the exercise paradigm and essentially in-
volves copying the solutions they find in the textbook, 
their reasoning can hardly be characterized as crea-
tive. To copy or imitate solutions from the textbook 
would be what Lithner (2008) labels as imitative rea-
soning. He denotes the opposite kind of reasoning as 
creative reasoning. Haylock (1987) is concerned with 
creativity in school mathematics and makes the point 
that overcoming certain kinds of fixations is essential. 
He calls overcoming fixations “flexibility”. Sriraman 
(2009) has investigated the work of research mathema-
ticians and defines creativity to be the ability to pro-
duce novel or original work. The novelty of students 
would normally be at a personal level only, which is 
called relative creativity by Leikin and Pitta-Pantazi 
(2013). To copy the solutions in the textbook might be a 
normal procedure for students of mathematics except 
perhaps for students at an advanced or graduate level 
(Lithner, 2004). An undergraduate textbook giving 
several examples of solutions to the mathematical 
exercises in the book, is perhaps asking the students 
to reason imitatively (Lithner, 2008) rather than to 
engage them in an investigative approach (Skovsmose, 
2001). However if the students cannot find a solution 
in the textbook to copy, the situation is different. To 
find a solution to an exercise would then probably re-
quire relative creativity (Leikin & Pitta-Pantazi, 2013). 

One class of pre-service teachers, preparing to teach 
students from grade 5 to 10, participated in a study of 
creative mathematical reasoning. The participating 
students were not selected for any kind of mathemat-
ical giftedness or excellence. The class was organized 
in small groups and given some mathematical exercis-
es to work on. The number of students in each group 
varied from two to four. The topic was basically num-
ber theory and the exercises were part of a course. 
The students were recorded on video and audio, and 
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transcripts of the students’ dialogues were prepared 
and analyzed.  It was hoped that the dialogues of the 
students would reflect the actual mathematical rea-
soning of the students, and perhaps reveal more than 
what their written works only would have done. This 
led to the following research question: 

Is Lithner’s (2008) distinction between imitative and 
creative reasoning sufficient to analyze pre-service 
teachers’ mathematical reasoning, or can some of 
their reasoning be neither imitative nor creative?

REVIEW OF THE LITERATURE

In a review of the literature mainly from English 
speaking countries, Haylock (1987) is concerned 
with creative thinking in school mathematics. The 
review indicates that both overcoming fixations and 
the ability for divergent production are essential 
components in any assessment of mathematical cre-
ativity. One aspect of creative reasoning that would 
be relevant for mathematical work would thus be to 
overcome fixations or rigidity. Haylock suggests two 
key aspects of fixations or rigidity in mathematical 
reasoning. One is called content-universe fixation 
where the reasoning is unnecessarily restricted to 
an insufficient range of elements that may be used or 
related to the mathematical situation. The other kind 
of fixation is called algorithmic fixation, where the 
reasoning continually adheres to an initially success-
ful algorithm even when this becomes less than opti-
mal. The counterpart of fixation or rigidity is called 
flexibility. In divergent production tests the common 
element is that the subject is given a mathematical 
situation with many responses. The creativity of the 
responses in such tests is conventionally assessed by 
evaluating them in terms of the number of responses 
(fluency), the number of categories of responses (flex-
ibility) and originality (the statistical infrequency of 
the responses). The opposite of divergent thinking is 
convergent thinking where the subject is supposed to 
find a single solution to a given problem.

Sriraman (2009) investigated the work of five creative 
mathematicians. The study indicated that in general, 
the mathematicians’ creative process followed the 
four stage Gestalt model of preparation-incubation-il-
lumination-verification (Wallas, 1926) as indicated by 
Hadamard (1954). According to this model the creative 
process starts with a period of preparation where in 
spite of hard work over a period of time apparently 

no results are achieved. In a period of incubation the 
problem is left aside and partly forgotten. However, 
even though the problem is put aside for some time, 
it is not completely forgotten and it is thought that 
the mind is occupied with the problem, but in a sub-
conscious way. Later in a moment of illumination an 
idea comes up which possibly solves the problem. This 
idea may seem to come more or less out of the blue. 
Therefore the moment of illumination is also seen as 
a result of the work of the subconscious mind. Finally, 
it is necessary to verify the solution. Incubation and 
illumination may be the work of the subconscious 
mind. However, both preparation and verification 
obviously take place in a fully conscious way.

Leikin and Pitta-Pantazi (2013) reveal that the rela-
tionship between creativity and giftedness is complex. 
Some researchers claim that creativity is one form of 
giftedness, whereas others feel that creativity is an es-
sential part of giftedness, and still other researchers 
suggest that creativity and giftedness are two inde-
pendent characteristics of human beings. A distinc-
tion is made between relative and absolute creativity. 
Creativity is relative if the creativity is at a personal 
level only, as opposed to absolute creativity where 
creativity is regarded as novel to the professional com-
munity. Students’ ability to produce solutions to math-
ematical exercises that are new to the students only 
would typically be relative creativity, whereas new 
mathematical discoveries such as those awarded the 
Abel Prize would be seen as the result of absolute cre-
ativity. Researchers have different focuses on where 
the creativity lies. The focus is either on the creative 
person, the creative process, the creative product or 
the creative environment. Research studies that focus 
on the creative person deal with individuals’ cognitive 
and personality traits. Other research studies focus 
on the way creative work is produced such as the four 
stage Gestalt model of Wallas (1926). Research studies 
that focus on product concentrate on ideas translated 
into tangible forms. Researchers that focus on envi-
ronment concentrate on where the creative person 
acts. In educational settings this could be the educa-
tional environment where the creative activity takes 
place and where the creativity is studied. 

Lithner (2004) gives a detailed description of how 
exercises in undergraduate calculus textbooks may 
be solved by mathematically superficial strategies. 
A distinction is made between intrinsic and surface 
mathematical properties of the components involved 
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in the reasoning. An intrinsic mathematical property 
is central to the problem as opposed to a surface prop-
erty which has little or no relevance to the problem 
(Haavold, 2013). When considering surface mathe-
matical properties it is not necessary to understand 
the central mathematical ideas and analyze the con-
sequences of their properties. Bergqvist (2007) has 
classified tasks and task solutions from all introduc-
tory calculus courses at four Swedish universities 
during the academic year of 2003/2004. The analysis 
shows that about 70% of the tasks do not require cre-
ative reasoning. All exams except one were possible 
to pass without the use of creative reasoning of any 
kind. In one quarter of the cases it was possible to 
pass exams with distinction without using creative 
reasoning of any kind. Lithner (2008) has introduced 
a research framework for creative and imitative rea-
soning. The basic idea behind this framework is that 
rote learning reasoning is imitative while the oppo-
site type of reasoning is creative. The characteristic 
for imitative reasoning is that the reasoning individ-
ual is copying solutions e.g. by looking at a textbook 
example or remembering a textbook algorithm. The 
opposite kind of reasoning is called creative mathe-
matically-founded reasoning. This kind of reasoning 
is characterized by novelty, plausibility and that the 
reasoning is mathematically founded.

The research framework introduced by Lithner based 
on empirical data is applied in this study. This frame-
work identifies two types of mathematical reasoning 
called imitative reasoning (IR) and creative mathe-
matically-founded reasoning (CMR). More precisely 
imitative reasoning is based on imitating or copying 
a line of reasoning laid out step by step for the stu-
dent. On the other hand, the characteristics of creative 
mathematically-founded reasoning are (Lithner, 2008, 
p. 266):  

1) Novelty. A new (to the reasoner) reasoning se-
quence is created, or a forgotten one is re-created. 

2) Plausibility. There are arguments supporting 
the strategy choice and/or strategy implemen-
tation motivating why the conclusions are true 
or plausible. 

3) Mathematical foundation. The arguments are 
anchored in intrinsic mathematical properties 
of the components involved in the reasoning.

The components involved in the reasoning could be 
objects such as numbers, functions and matrices, 
(Haavold, 2013). According to Haavold the notion of 
plausibility in this framework is inspired by Polya 
(1954). Polya makes the point that there are two 
kinds of mathematical reasoning. There is demon-
strative reasoning and there is plausible reasoning. 
Demonstrative reasoning is what mathematical 
proofs are made of, whereas the reasoning used to 
solve a mathematical problem or find a proof is plau-
sible. According to Polya, the result of the mathema-
tician’s creative work is demonstrative reasoning. 
However, to find a solution to a mathematical problem 
plausible reasoning is used.

METHODOLOGY

The design of this study was to divide one class of 
pre-service teachers into small groups and give them 
some mathematical exercises. The video and audio 
recordings of the work of each group constitute the 
data of the study. The exercises were selected from the 
course. Thus the mathematical work of the teaching 
experiment would also be relevant for the students. 
The students were in fact preparing for their exam 
doing the exercises. It was not expected that the stu-
dents would solve the exercises using imitative rea-
soning only. The reason for this was that although 
the students were given an idea on how to get started, 
they were not given a complete solution. The episode 
from the video recording was chosen because it in-
dicates that when pre-service teachers’ reasoning is 
not imitative, it is perhaps not creative either. Similar 
mathematical reasoning was found in many of the 
groups involved in the study. However, one example 
was chosen for this paper to show what was found.   

The term commognition has been coined by Sfard 
(2008) meaning a combination of communication and 
cognition. This means that interpersonal communi-
cation and individual thinking are two facets of the 
same phenomenon. Thinking is defined by Sfard as 
the individualized version of interpersonal commu-
nication. In this paper we view reasoning as a form 
of thinking. Thus we study the mathematical reason-
ing of each individual by studying the interpersonal 
communication of each group. Therefore the unit of 
analysis is the dialogue of each group. The idea behind 
this approach is that the dialogue of each group would 
perhaps reveal more mathematical reasoning than 
the written works only would have done. 
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The analysis was based on the research framework of 
Lithner (2008), which makes the distinction between 
imitative and creative reasoning. However, the anal-
ysis of the dialogues indicated that some of the stu-
dents’ reasoning was not compatible with Lithner’s 
distinction. The analysis indicated that if the students’ 
reasoning was not imitative it was perhaps not crea-
tive either. Therefore it became interesting to analyze 
the students’ reasoning if it was neither imitative nor 
creative and find a way to characterize it. Hence, in 
order to analyze pre-service teachers’ mathematical 
reasoning a new distinction of reasoning was intro-
duced. In addition, new categories were introduced.

ANALYSIS

One of the problems the students worked on was the 
sequence (an) starting with the terms 0,4,10,18,28,40… 
The students were asked to find an expression for an. 
Let us start by looking at the dialogue of one of the 
groups with three students. The instructor made the 
students familiar with the idea that they could write 
down the differences between consecutive terms of 
the sequence to get a set of equations that could be add-
ed. The video shows that when the dialogue begins the 
students have written down the following equations:

a2 − a1 = 4 = 2 × 2
a3 − a2 = 6 = 2 × 6
a4 − a3 = 8 = 2 × 4

…
an − an − 1 = 2n

Adding these equations, the students arrived at the 
equation:

an − a1 = 2 × 2 + 2 × 3 + 2 × 4 + … + 2n

Thus the students did what one would expect if they 
were to follow the line of reasoning given to them by 
the instructor. Therefore their reasoning was prob-
ably imitative so far (Lithner, 2008). We enter the 
dialogue with the following episode from the video. 
The numbered transcription of the episode is given 
with some comments.

Episode:

1. Katherine: And then we can write 2 outside,
2. Elizabeth: And a1 is zero, we don’t need it, 

we can simply skip it.

Following this dialogue the students have written 
down the equation:

an = 2(2 + 3 + 4 + … + n)

In lines 1 and 2 Katherine and Elizabeth use formu-
lations such as “we can write 2 outside” or “we can 
simply skip it” as opposed to formulations such as 

“what do we have to do here?” or “what are we sup-
posed to do here?” This could mean that the students 
make their own choices about what to do, rather than 
asking themselves what they are supposed to do which 
would be characteristic for imitative reasoning. If the 
students make their own choices then their reasoning 
would not be imitative. The dialogue of the episode 
continues as follows:

3. Jennifer: We are now looking for the tri-
angular numbers.

4. Elizabeth: Hm.
5. Katherine: No, plus n, the sum of the n first 

positive integers, so it is really the triangular 
numbers we are looking for, but can we…?

6. Jennifer: We are missing 1.
7. Katherine: We are missing 1, yes if we add…
8. Elizabeth: Add 1 to each side.
9. Katherine: We have to add 2…2…2 times 1…

to both sides, because we have the number 
2…Yes, if we try that, add 2 times 1, then you 
get an plus 2 times 1 equals 2, and then we get 
1 plus 2 plus 3 plus 4…plus n.

10. Elizabeth: Yes, we do.
11. Katherine: Yes.
12. Jennifer: Can we just add like that?
13. Katherine: Yes we may add to both sides.
14. Jennifer: Yes, and then we just have to…

Finally, the video recording shows that the students 
arrive at the following equation:

an + 2 × 1 = 2(1 + 2 + 3 + … + n) 

As the students are familiar with triangular numbers, 
the exercise is now resolved. 

Jennifer continues the dialogue in line 3 by making 
the point that they are looking for the triangular 
numbers. After having agreed that they should look 
for the triangular numbers, Jennifer begins a line of 
reasoning in line 6 by observing that they are missing 
the number 1. She is obviously referring to the fact 
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that the sum within the brackets should have started 
with the number 1. Katherine suggests in line 7 that 
they should add something. This is followed up in line 
8 by Elizabeth saying that they should add 1 to each 
side of the equation. However, in line 9 Katherine 
introduces a different idea saying that they should 
add 2 times 1 to each side of the equation. Thus the 
students change their point of view while reasoning, 
which would not be typical for imitative reasoning. 
Instead, changing point of view characterizes flexible 
reasoning (Haylock, 1997). The formulation “Yes, if we 
try that” used by Katherine in line 9 further indicates 
that the students are trying out their own ideas rather 
than following step by step a given line of reasoning, 
and thus that their reasoning is not imitative (Lithner, 
2008). Hence, their reasoning should not be character-
ized as imitative but, rather, as flexible. 

When Katherine introduces her idea in line 9 she 
shows little uncertainty. In fact she says: “Yes, if we 
try that, add 2 times 1, then (…)” thus perhaps showing 
some confidence. Elizabeth easily accepts the idea of 
Katherine in line 10. Only Jennifer hesitates a little in 
line 12 (Birkeland, 2013) but accepts the idea in line 14. 
Thus the idea they use is introduced rather smoothly. 
This would hardly be the case if the idea was new to 
the group. Therefore nothing indicates that the idea 
has novelty to the group. If the students’ reasoning is 
based on a relational understanding (Skemp, 1978) of 
the components involved, then it is reasonable to as-
sume that it is mathematically founded (Lithner, 2008). 
This would indicate that the reasoning of the group 
is mathematically founded, has flexibility (Haylock, 
1987) but no novelty or originality. 

DISCUSSION

The first part of the students’ reasoning was to write 
down the differences between consecutive terms of 
the given sequence to get a set of equations that could 
be added. The students were made familiar with this 
idea by the instructor. Therefore the first part of their 
reasoning was probably imitative (Lithner, 2008). 

The second part of the students’ reasoning was not 
laid out step by step for them. The instructor did 
not give them any hints. The students tried out cer-
tain ideas they had and finally chose their own line 
of reasoning. If their reasoning was based on their 
own choices then it should not be characterized as 
imitative. Assuming that their reasoning was based 

on relational understanding (Skemp, 1978) it was 
probably both plausible and mathematically found-
ed. Further, nothing indicated that their reasoning 
had novelty. However, their reasoning was found to 
have flexibility. Probably the students were working 
flexibly with familiar lines of reasoning. 

One may argue that flexible reasoning is part of cre-
ative reasoning. However, if creativity is the ability 
to produce novel or original work (Sriraman, 2009), 
then flexibility alone is not sufficient for the reason-
ing to be creative. Therefore the students’ reasoning 
should perhaps not be characterized as novel or cre-
ative. Consequently the first part of the students’ rea-
soning could be said to be imitative, however the last 
part of their reasoning would be neither imitative nor 
creative as defined by Lithner (2008). 

The episode chosen for this paper was quite typical 
for the mathematical reasoning of most of the groups 
involved in the study. It appears that they all followed 
the line of reasoning given to them by the instructor 
on how to get started. Therefore, for all groups the 
first part should be characterized as imitative rea-
soning. However, having started each group followed 
their own line of mathematical reasoning, varying 
slightly from one group to another. The reasoning of 
all the groups except for one should not be character-
ized as imitative. Their reasoning had flexibility but 
nothing indicated novelty. Only one group continued 
with imitative reasoning. The video shows that this 
group found an earlier example to compare with. The 
group appears to have found similarities between the 
two examples. However, the similarities should be 
characterized as surface similarities. Therefore their 
mathematical reasoning should be characterized as 
superficial reasoning.

Hence, according to this study, an analysis of the math-
ematical reasoning of pre-service teachers should be 
based on a distinction between imitative reasoning 
(IR) and non-imitative reasoning (NIR). Imitative rea-
soning is defined by Lithner (2008) as the kind of rea-
soning where each element of the reasoning is laid out 
step by step for the reasoning subject. Non-imitative 
reasoning is introduced in this paper as the kind of 
mathematical reasoning which is not imitative. 

It is quite possible that the imitative reasoning of the 
first part was based on a relational understanding 
(Skemp, 1978). However, if the reasoning is based on 
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surface property considerations (Lithner, 2008) only, 
it should be characterized as superficial reasoning (SR).  

This study indicates that imitative reasoning may be 
mathematically founded or plausible (IMR). However, 
imitative reasoning may also be based on surface 
property considerations only (SR). Hence, imitative 
mathematical reasoning may or may not be mathe-
matically founded or plausible. 

Non-imitative reasoning (NIR) can hardly be based 
on surface property considerations only because that 
kind of reasoning would always involve some elements 
of copying. If plausible reasoning (Polya, 1954) is about 
supporting conjectures, then plausible reasoning 
would not be imitative reasoning. Therefore plausi-
ble reasoning could be an example of non-imitative 
reasoning (NIR). The kind of non-imitative reasoning 
found in this study is characterized by the fact that 
it is plausible and mathematically founded (Lithner, 
2008), has flexibility (Haylock, 1987) but no novelty. 
This kind of non-imitative reasoning is called flexible 
mathematically founded reasoning (FMR) in this study. 

FINAL REMARKS

This study shows that to analyze the mathematical 
reasoning of pre-service teachers, it might be useful 
to base the analysis on a distinction between imita-
tive and non-imitative mathematical reasoning (NIR) 
rather than imitative and creative reasoning (Lithner, 
2008). Imitative reasoning includes both superficial 
reasoning and imitative mathematically-founded rea-
soning (IMR). Non-imitative reasoning (NIR) includes 
both flexible reasoning (FMR) and creative mathemat-
ically-founded reasoning (CMR). Thus non-imitative 
reasoning may or may not involve novelty. If novelty 
is essential to the concept of creativity as defined by 
Sriraman (2009) then non-imitative reasoning would 
include mathematical reasoning that is neither im-
itative nor creative. Hence, to analyze pre-service 
teachers’ mathematical reasoning, Lithner’s (2008) 
distinction between imitative and creative reasoning 
might not be sufficient. Some of the students’ reason-
ing might be neither imitative nor creative.          
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The goal of our long-term project presented in this 
paper is to develop students’ culture of problem 
solving based on using heuristic solving strate-
gies. In this paper, we describe the method of im-
plementation of the strategies in class preceded by 
a detailed a priori analysis and followed by an a poste-
riori analysis and a comparison between the teacher’s 
expectations and the reality in the class. We focus on the 
variables of a problem to be treated in class that may 
influence the role and use of the problem in developing 
students’ creativity and their culture of problem solving. 

Keywords: Problem solving, word problems, heuristic 

solving strategies, creativity, a priori analysis. 

INTRODUCTION

Problem solving is generally acknowledged as one 
of the key features of mathematical education. The 
role and the use of problem solving tasks vary with 
different learning situation. Our observations and 
some studies (Novotná, 2000) show that, in secondary 
schools in the Czech Republic, problem solving is gen-
erally used as a tool for applying basic mathematical 
concepts, such as linear equations or systems of linear 
equations. Teachers often show an algorithmic way to 
solve a class of problems and students are lead to iden-
tify and to use this method to solve other problems. 
This approach to problem solving in school mathemat-
ics can create an illusion of students’ good abilities to 
solve various problems; however, it does not fulfil the 
potential of word problems to promote creativity and 
ability to solve non-standard or real-world problems.

The research presented in this paper is focused on the 
culture of word problem solving based on a different 
perspective and way of using word problems and solv-
ing strategies in school mathematics. One of the main 
goals of the research is to investigate heuristic solving 

strategies and problem types that support students’ 
ability to apply the acquired knowledge and skills in 
various situations to work creatively in mathematics.  
According to Silver (1997) or Kopka (2010, Foreword), 
we believe that solving carefully selected problems 
may help to develop and cultivate students’ creativi-
ty. By students’ creativity in problem solving, we un-
derstand the ability of finding non-standard ways of 
solution as well as the ability to find more than one 
method of solving a problem. 

The key concept of our research is the culture of solv-
ing mathematical problems, which is understood as a 
structure of internal factors that influence a pupil’s 
performance and success in problem solving. Based 
on the four categories of skills needed to have suc-
cess in mathematics (Schoenfeld, 1985), the culture 
consists of four components: intelligence, creativity, 
ability to use existing knowledge and reading compre-
hension skills (Eisenmann, Novotná, & Přibyl, 2014).

The main research activities were: designing problem 
solving situations based on problems encouraging 
the students to use non-standard solving strategies, a 
detailed a priori analysis of these problems and using 
these problems and strategies in different classes. The 
implementation of the situations in class was preced-
ed and followed by psychological screening, by testing 
the ability to use existing knowledge and by evalua-
tion by the teacher of mathematics (see, for example, 
Eisenmann, Novotná, & Přibyl, 2014). The psychologi-
cal screening consisted of a test of intelligence for the 
category of age 12–18, the test of ability of reading with 
comprehension and the Christensen-Guilford test of 
creativity measuring fluency, flexibility, originality 
and elaboration.

In this paper, we focus on the method of designing 
a problem-solving situation based on a detailed 
a priori analysis used in the research. The real-
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ization of a problem-solving situation in class is 
preceded by the a priori analysis and followed by the 
a posteriori analysis. The objective of the a priori 
analysis is to give, in advance, a detailed description 
of a teaching unit and to predict as accurately as pos-
sible the course of this unit, students’ and teacher’s 
attitudes and reactions, solving strategies and knowl-
edge prerequisite for the use of the solving strategies 
(Brousseau, 1998; Novotná, Nováková, 2014). In the a 
posteriori analysis, the a priori analysis is compared 
with the experience of the realization of the situation 
in the class. The comparison is based on the observa-
tion of a video sequence from the lesson and on the 
discussion with the teacher. Recommended changes 
arise from this comparison.

The problem solving situation described in the paper 
is one of many situations during the period where the 
teacher teaches the students to use various solving 
strategies. In order to promote creativity in problem 
solving, four heuristic solving strategies were treat-
ed in the class in this situation. Two strategies were 
presented by the students (Direct method – graphical 
representation – solution drawing and Direct method 
without graphical representation) for Problem 1 and 
the second strategy was generalized and used to solve 
Problem 2. After solving both problems, the use of the 
strategy of analogy for solving a general problem was 
discussed in the classroom.

We used the following problems in the situation:

Problem 1. We have to dispose 24 stakes around a 
square ground. How many stakes at most can we dis-
pose on each side of the ground if there has to be the 
same number of stakes on all sides?

Problem 2. We have to dispose c stakes around a 
square ground (c is a number divisible by 4). How 
many stakes at most can we dispose on each side of the 
ground if there has to be the same number of stakes 
on all sides?

Problem 2 represents in fact a set of problems created 
from Problem 1 by changing the variable of the number 
of stakes. The set of problems issued from changing 
a variable of the given problem is called a cluster of 
problems and represents a possibility to motivate the 
students to use various solving strategies.

A PRIORI ANALYSIS OF PROBLEM 1

The main purpose of this paragraph is to describe 
in detail the a priori analysis of Problem 1. Most of 
the characteristics of Problem 2 are similar, with 
the exception of the solving strategies. Since the 
problems are given to the students together as 
a cluster of problems, we believe that the solution of 
Problem 1 will precede the solution of Problem 2. If 
Problem 2 is posed to the students separately, the solv-
ing strategies will probably start with a specification 
of the number of stakes if the student is not able to 
solve the general problem. 

The a priori analysis of Problem 1 is described below.

Nature of the assignment
Knowledge prerequisite to grasping the problem: 
general expressions (stake, around a ground, side of 
a ground), mathematical expressions (square, at most, 
the same)

Potential problems in comprehension of the assign-
ment: We think that younger students might have a 
problem with the expression “at most” in the formula-
tion of the question. It would be better to use the word 

“maximally”. We also think that the formulation “How 
many stakes at most can we dispose on each side of the 
ground” is not exact and we propose to reformulate 
it as “How many stakes can one see...”

Thematic unit
Word problems (possible resolution with a linear 
equation or without an equation)

Goal of the problem
Goal for the students: to find the maximal number 
of stakes that one can see on one side of the garden

Didactical goal for the teacher: to find out if the stu-
dents are able to represent the situation in a picture, 
to identify their solving strategies and to make a gen-
eralization of the problem with the students

Time needed for the solution of the problem
We estimate 10 minutes for the solution of the prob-
lem. 

Class management
Individual work or work in pairs or groups. Homework 
or work in class.
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Aids
paper, pen, squared paper

Cognitive didactic variables
(squares) The ground might have another form (tri-
angle, irregular ground etc.).

(24) The choice of the number is crucial for choosing 
a solving strategy. With a small number like 4, the 
problem can be presented to young students; howev-
er, with a big number like for example 444, students 
cannot use graphical representation and the difficulty 
of the problem rises significantly.

(same) We can modify the problem by giving a given 
difference of the number of stakes on each side of the 
ground.

Formulation variables
There are the following formulation variables: (dis-
pose), (stakes), (on each side), (number), (how many).

Students’ reactions and attitudes
We suppose that the problem may be interesting for 
the students because of its real-life context. We think 
that they might have some problems with understand-
ing the formulation of the problem.

Teacher’s reactions
We suppose that the problem may be interesting for 
teachers because of its real-life context and its poten-
tial of modification and generalization.

Correct solving strategies
1) Systematic experimentation

Systematic experimentation leads us to a graphical 
representation of the situation. It leads to the fact that 
there must be a stake in each corner to get the maxi-
mum number of stakes on each side. Since we dispose 
of 24 stakes, there are 7 stakes on each side.

Knowledge needed: square and its properties, addi-
tion of natural numbers

Possible difficulties: lack of system in the experi-
mentation, clarity of the drawing, idea of placement 
of stakes in the corners

2) Direct method – graphical representation – solu-
tion drawing

There are 7 stakes on each side.

Knowledge needed: square and its properties, addi-
tion of natural numbers

Possible difficulties: lack of system in the experi-
mentation, clarity of the drawing, idea of placement 
of the stakes in the corners

3) Analogy 

We simplify the solution of the problem by choos-
ing a smaller number of stakes (for example 4 or 8 
stakes) and we solve the analogical problem. The 
choice of 4 stakes or 8 stakes leads to the idea of 
placing the stakes in the corners of the ground. 
A stake placed in the corner counts for two sides. By 
increasing the number of stakes to 24, we find the 
solution – 7 stakes on each side. 

Knowledge needed: square and its properties, addi-
tion of natural numbers

Figure 1: Systematic experimentation

Figure 2: Direct method – graphical 

representation – solution drawing
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Possible difficulties: choice of numbers creating an 
insolvable problem, clarity of the drawing, idea of 
placement of stakes in the corners

4) Direct method without graphical representation

A direct way of solving the problem is based on the 
idea that placing a stake in the corner makes it be-
ing counted for two sides. When we place 4 stakes 
in four corners, we have 20 stakes left. Since 20 can 
be divided by 4, we can dispose 5 stakes on each 
side, which gives totally 7 stakes on each side.

Knowledge needed: square and its properties, addi-
tion of natural numbers

Possible difficulties: idea of placement of stakes in 
the corners, numerical error

Incorrect solving strategies
1) Arithmetical way

There are 24 stakes to place on 4 sides of a square, 
so there are 6 stakes on each side.

2) Solution drawing

The pupil places 6 stakes on each side of the ground 
and leaves the corners free.

The a priori analysis of Problem 2 is based on the anal-
ysis of Problem 1. In our opinion, students will first 
use the same solving strategies based on a concrete 
number of stakes and then they will generalize the 
results. We suppose that the time needed for solving 
the problem might be longer.

REALIZATION OF THE SITUATION IN THE CLASS

In this part we describe a problem-solving situation 
from June 2013 in the class of students aged 15 or 16 
in a grammar school in Prague, Czech Republic. The 
class is composed of students selected during the en-
trance exams. There are some very gifted students, 
but there is also a big difference among the students 
in their performance in Mathematics. In the years 
2012–2014, this class participated on the long-term 
research mentioned in the introduction. The students 
dealt regularly with problems using different heuris-
tic problem solving strategies. 

The situation was based on the problems described 
in the previous section and its goal was to learn how 
to grasp a general problem by solving a simplified 
problem with specified variables. The description of 
the situation is based on a video sequence and on the 
observations of the teacher. There were 18 students in 
the class. First, they were given 10 minutes to prepare 
the solution of the problems. They could work indi-
vidually or in pairs and they could use only paper and 
pen or pencil to solve the problems. Then, some volun-
teers presented their way of solving the problems to 
the others. The presentation was always followed by a 
whole class discussion about the methods and results.

Student 1 presented her way of solving the problem 
based on a graphical representation of the square and 
the stakes. She found the correct solution and pre-
sented also the idea of dividing 24 by four as a wrong 
idea, without explanation. The correct argument (the 
expression “at most” from the assignment) appeared 
in the following whole class discussion. Most of the 
students used the same solving strategy based on a 
graphical representation.

Student 2 presented her solution based on the idea 
of placing a stake in each corner of the ground and 
the same number of stakes on each side. Since there 
are 2 stakes at the corners and 5 on the side, the total 
number of stakes on a side is 7. Only three students 
used the same solving strategy.

16 students found the correct answer, 2 students an-
swered 6 stakes. Since there were not any other solv-
ing strategies used for the Problem 1, the next students 
presented their solution to Problem 2. 

Student 3 showed the following method: The number 
of stakes is divisible by 4, so we divide it by 4 and then, 
we add 1 to the result because of the stake at the corner 
that counts two times. The general formula is n : 4 + 1. 

Student 4 showed another formula: (n – 4):4 + 2 with 
a commentary that the result is the same as for the 
formula of Student 3.

There were 13 students who found the first or the 
second formula and 5 students who did not find any 
general formula. Student 5 showed that both formulas 
are equivalent by rewriting the second formula as 
the first one. 
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A POSTERIORI ANALYSIS AND COMPARISON

The a posteriori analysis and comparison will focus 
on some characteristics of the situation that appear 
to us as the most important.

Nature of the assignment
The students did not have problems understanding 
the assignment. Nevertheless, there appeared a dif-
ference among students in realizing the importance 
of the expression “at most” at the moment when they 
had to explain why 6 is not a correct solution. During 
the discussion, they used both expressions “at most” 
and “maximally”. In our opinion, younger students 
might have more problems with these expressions.

Goal of the problems
Goal for the students: The students were mostly able 
to find the maximal number of stakes in Problem 1; 
however, the generalization of the formula presented 
a difficulty for some students.

Didactical goal for the teacher: The students were able 
to represent the situation by a picture. For some of 
them, the graphical representation was not necessary 
to find the solution and it was probably replaced by a 
mental representation. The teacher could also identi-
fy students’ solving strategies. The generalization of 
the problem appeared only in the number of stakes. 
Due to lack of time, the teacher did not deal with the 
other possible generalizations of the problem, as for 
example a change of the form of the ground or a given 
difference between the number of stakes on each side.

Time needed for the solution, 
class management, aids
We supposed 10 minutes for the Problem 1 would be 
needed. Most students were able to solve both prob-
lems in less than 10 minutes. Some of them worked 
individually but most of them worked in pairs using 
a paper and a pen.

Cognitive didactical and formulation variables
(24) The choice of the number 24 for the stakes per-
mitted the students to use graphical representation as 
a solving strategy. As most of the students found the 
solution very quickly and then considered the problem 
an easy one, we believe that the choice of a higher num-
ber (72, for example) could provoke more reflection 
than the given number, in particular for students aged 
15 or 16. Problem 1 was suitable for showing different 

solving strategies; however, it was not a challenge for 
the more gifted students or for all the students having 
the idea of placing the stakes at the corners. Problem 
2 was more challenging for the students.

As the assignment was understood by all students, we 
did not identify any importance of the formulation 
variables in the solution of Problem 1. However, we 
believe that omitting the information „c is a number 
divisible by 4“ in the assignment of Problem 2 could 
provoke more reflection and also more errors in solu-
tion of the problem.

Students’ reactions and attitudes
Problem 1 was interesting for students with av-
erage results in Mathematics because it was easy 
for them. Problem 2 was more interesting for the 
more gifted students. Nevertheless, some students 
with average results were satisfied with finding 
a solution to both problems, which could improve 
their self-confidence and attitude to problem solving.

Correct solving strategies
15 students used the Direct method – graphical rep-
resentation – solution drawing. Some students drew 
the complete solution, some of them only the corners 
and one side of the ground. 3 students used the Direct 
method without graphical representation. We did not 
notice any solution using systematic experimentation, 
but a non-systematic experimentation appeared in 
most of the solutions using graphical representation.

Incorrect solving strategies
Incorrect solving strategies appeared only in two cas-
es. These students did not realize the fact that a stake 
placed at the corner of the ground counts for both sides.

The comparison between the a priori and the a poste-
riori analysis shows that most of characteristics of the 
situation described in the a priori analysis appeared in 
the class. In our opinion, there could be more reflection 
on the choice of didactical variable (number of stakes) 
with respect to the age of the students. The a posteriori 
analysis shows that the number 24 was suitable for 
promoting the use of both principal solving strategies, 
the reflection upon the generalization of the problem 
might be provoked by giving a number of stakes that 
did not allow a graphical representation. For this rea-
son, we suggest replacing the number 24 by another 
number, for example 72, and we believe that the stu-
dents will be lead to use the graphical representation 
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for a smaller number of stakes by the constraints of the 
milieu and not by the fact that it is easy to represent. 

One of the goals of the situation was to make a general-
ization of the problem with the students. Even though 
there was enough time to solve both problems, there 
was not any time and enough support for the teacher. 
In our opinion, the cluster of problems suitable for 
generalization should contain also problems dealing 
with other variables, for example:

Problem 3. We have to dispose c stakes around a pen-
tagonal ground. How many stakes at most can we dis-
pose on each side of the ground if there has to be the 
same number of stakes on all sides?

CONCLUSION 

The methodology described in the paper was used for 
various word problems and solving strategies (see, for 
example, Břehovský et al., 2013; Eisenmann, Novotná, 
& Přibyl, 2014).  The results of the research show that 
number of using of two solving strategies, Systematic 
experimentation and Adding of an auxiliary element, 
increased significantly. The analysis of the psycholog-
ical screening show that the indicators of creativity 
increased in an important way, in particular the flu-
ency and the flexibility. The didactical situation based 
on the use of various solving strategies seems to be 
a suitable environment to enhance the development of 
these key features of creativity. A question about the way 
how the problems-solving activities can promote also 
the originality and the elaboration arises immediately 
from these results. The role of the key features of a prob-
lem solving situation in development of fluency and 
flexibility gives also an implication for future research.

The most important changes appeared in the attitudes 
of the students towards problem solving. We could ob-
serve half of them make an increasing effort to solve 
a problem despite the fact that they didn’t know how 
to solve it at the beginning. The participating teachers 
became more tolerant to different students’ solving 
strategies. Furthermore, there is a list of problems 
and solving strategies prepared to use by teachers 
promoting students’ creativity in problem solving.  
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The purpose of this study is to explore the features that 
primary school teachers consider appropriate when 
choosing tasks intended to promote mathematical 
creativity. 26 prospective and 48 in-service teachers 
completed a questionnaire whereby they were asked 
to choose a mathematical task and explain why it 
fosters mathematical creativity. Interviews were also 
conducted with 2 prospective and 2 in-service teachers 
to further investigate their perceptions of creativity in 
mathematics as well as issues related to teaching math-
ematics using creative problems. Disparate views were 
revealed between the two groups: prospective teachers 
mostly connect mathematical creativity to arousing stu-
dent interest whereas in-service teachers connect it to 
book-oriented problem posing indicating their narrow 
and blurred perceptions. Outcomes highlight the need 
for educating teachers about creativity in mathematics.

Keywords: Mathematical creativity, teachers, primary 

school.

INTRODUCTION

Creativity, traditionally linked to art and literature, 
has been characterized as an individual activity in-
tended to produce something new (Bolden, Harries, & 
Newton, 2010). Creativity has also recently been asso-
ciated with mathematics, it being the ability to create 
new mathematical insights and ideas (Sriraman, 2009). 
Similar to this idea, the ability to combine previously 
known concepts or discover unknown relations be-
tween mathematical facts and employ non-algorith-
mic decision-making can be considered as a creative 
act of doing mathematics (Ervynck, 1991). Divergent 
thinking in problem solving is also associated with 
mathematical creativity (Haylock, 1997; Chamberlin & 
Moon, 2005). It allows one to analyze a problem from 
different perspectives without applying one fixed an-
swer, identify patterns, differences and similarities 

and choose an appropriate method for tackling it. 
Although there are many definitions of mathematical 
creativity, in general, two common trends describe 
it - the generation of new mathematical knowledge 
and flexible problem solving abilities (Kwon, Park, & 
Park, 2006).    

Even though the importance of facilitating mathemat-
ical creativity in educational settings has been well 
established, there is a clear need to study the choices 
teachers make in terms of tasks that could develop 
children’s creativity in mathematics. The present 
study focuses on the features they consider neces-
sary for mathematical creativity and the reasons for 
these choices.

RESEARCH BACKGROUND

Mathematical creativity is often assessed on the basis 
of the four indices of creativity proposed by Torrance 
(as cited in Silver, 1997) and Guilford (as cited in Klavir 
& Hershkovitz, 2008). These indices include: a) fluency, 
referring to the number of correct responses that the 
student produces, b) flexibility, referring to the num-
ber of different mathematical concepts and ideas that 
the student discovers, usually breaking away from 
stereotypes, c) elaboration, indicating the complexity 
of mathematical thinking, as the student integrates 
different pieces of mathematical knowledge, and d) 
originality, illuminating the extent that the student’s 
ideas are insightful, new and lead to unexpected and 
unconventional solutions. 

Studies of mathematical creativity have revealed that 
students’ creative mathematical thinking and indi-
ces of mathematical creativity could be encouraged 
by providing divergent product tasks. Klavir and 
Hershkovitz (2008), for example, suggested tools for 
teachers to analyze and evaluate the work of fifth-
grade students when dealing with an open-ended 
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problem. These tools referred to indices of mathe-
matical creativity as well as levels of complexity in 
mathematical knowledge. Their results led them to 
suggest that open-ended problems tend to distance 
us from the stereotype that there is only one solution 
to any given problem and recognized their value as 
an assessment tool for both teachers and students. 
Kwon and colleagues (2006) also found that diver-
gent thinking in mathematics could be cultivated 
through an open-ended approach: in their study with 
seventh-grade students, open-ended problems were 
found more cognitively challenging, because they al-
lowed for multiple interpretations and solutions and 
offered students the opportunity to solve problems 
using their actual skills. As Mann (2006) suggests, 
solving these types of problems let the students take 
the first steps towards mathematical creativity.  

The encouragement for promoting children’s math-
ematical creativity in the classroom is advocated 
in mathematics curricula worldwide that regard it 
as a desirable outcome of mathematical education. 
Given the fact that mathematical creativity is also con-
sidered as a dynamic faculty that can be improved 
and enriched or, conversely, decline (Leikin, 2009), 
great attention has recently been paid to how teach-
ers perceive creativity in mathematics. Bolden and 
colleagues (2010) found that pre-service teachers in 
UK hold narrow conceptions regarding creativity in 
mathematics: these conceptions are mainly associ-
ated with the use of resources and technology and, 
while attempting to create a ‘fun’ environment, they 
‘teach creatively’ rather than ‘teach for creativity’. 
Their great difficulty in recognizing creativity in 
teaching mathematics and also in identifying ways 
of encouraging it in the classroom was also observed. 
More positive results were revealed in Chiu’s study 
(2009), which found that in-service teachers profess a 
greater preference for creative problems, compared 
to non-creative problems for teaching fractions: a lib-
eral approach was proposed as the most appropriate 
method for teaching creative problems with emphasis 
on the children’s imaginative and diverse solutions. 
Secondary classroom teachers, however, identified 
both opportunities and constraints in posing more 
challenging mathematical tasks, especially those re-
lated to changes to their pedagogies and assessment 
of student work (Sullivan & Mornane, 2014).    

However, a key component of mathematical creativity 
is how teachers select and use appropriate tasks which 

enhance children’s creativity in terms of school math-
ematics. In her study, Levenson (2013) investigated 
general trends that prospective and in-service teach-
ers attribute to tasks that may occasion mathematical 
creativity. Of these trends, the most common one was 
the implication that creativity pertains to being differ-
ent and unusual. The responses of participants also 
focused on the cognitive demands of the chosen tasks, 
as well as their affective aspect. Interestingly, with 
regards to the latter, teachers took into consideration 
possible feelings which a task may elicit from students.

These studies suggest that excluding the teachers as 
important factors in determining the use of creative 
mathematics problems in the classroom could lead to 
an incomplete understanding of the situation. Thus, 
investigating teachers’ perspectives of creativity in 
primary mathematics, by asking them to choose such 
tasks is important, in order to understand the knowl-
edge they hold that could influence their interpreta-
tion of creativity in the curriculum and what they do 
in their teaching. Specifically, this study attempted 
to examine the following questions: a) Which task 
characteristics do prospective and in-service prima-
ry school teachers associate with the promotion of 
mathematical creativity?, b) Are there any discrep-
ancies between the task characteristics identified by 
prospective teachers and in-service teachers?, and 
c) How they envision creativity being taught in the 
mathematics classroom?       

METHOD     

Participants. Twenty-six prospective teachers and 
forty-eight in-service teachers participated in the 
study. At the time of the study, prospective teachers, 
who were in their last year of an elementary teaching 
education programme at a large-sized university in 
Thessaloniki, participated in a course on teaching 
mathematics that was mainly focused on observing, 
planning and teaching mathematics in local primary 
schools. They were predominantly women (92%) with 
a mean age of 22 years and 2 months. In-service teach-
ers, most of which were women (83%) with a mean 
teaching experience of 18 years, worked at several 
grades of state primary schools from various geo-
graphical regions of Northern Greece and their ages 
ranged from 26 to 58 years old. A small percentage of 
in-service teachers (15%) who took part in the study 
had completed postgraduate studies, but did not men-
tion that they have attended specific training courses 
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on creativity. All participants’ selection was random 
and their participation was voluntary.

Instrument. Data were collected via a questionnaire 
and semi-structured interviews. The questionnaire 
used was based on Levenson’s (2013) research tool and 
asked participants to: a) choose a task that they consid-
er appropriate for promoting mathematical creativity. 
This task could be from either the state mathematics 
textbooks or any mathematics book or even one pro-
posed by themselves., b) indicate their source, c) state 
the grade to which the task is targeted and whether 
it is intended for individual or group work, and d) 
describe why they consider the task they had chosen 
suitable for promoting mathematical creativity. All 
questions in the questionnaire were open-ended and 
no possible answers were provided. Additionally, no 
instruction about the term ‘task’ was given to partici-
pants who were free in their interpretation. However, 
the present study relies on Stein and Smith (1998), who 
clarified the multiple roles of tasks: these may be set 
up by teachers during their instruction as learning 
tasks, review tasks, practice and assessment tasks 
with the main purpose of developing a particular 
mathematical idea. 

Follow-up interviews were conducted on the basis 
of the questions developed from the completed ques-
tionnaires. Thus, supplementary data were gathered, 
in order to verify that questionnaire responses were 
being interpreted as they were initially intended. 
Interview questions explored the participants’ envi-
sion of creativity in mathematics and the use of cre-
ative problems in teaching mathematics in primary 
schools. In the present study the results of only two 
prospective and two in-service -randomly chosen- 
teachers are presented as these were the first inter-
viewed and became part of a larger sample for the 
purposes of a later relevant study.      

Procedure. The questionnaires were administered 
to prospective and in-service teachers during their 
classes, at the University and the schools, respec-
tively, and they were collected after two weeks. The 
majority of those contacted returned the completed 
questionnaires, reaching 93% and 89% participation 
response rates for prospective and in-service teach-
ers, respectively.  

Interviews were conducted individually at a place 
convenient to interviewees, two weeks after they had 

completed the questionnaires, and lasted approxi-
mately 20 min.

RESULTS

The results are presented in two main sections. It is 
not possible to present all the tasks proposed by the 
participants in this paper, therefore only three are 
presented in the first section. In the second section we 
describe common trends in the responses of partici-
pants, drawn from answers to the questionnaire and 
the interviews, regarding the teaching of mathematics 
and learning with creative problems.  

a. Tasks proposed by the participants. The majority 
of the tasks the participants chose were taken from 
the mathematics textbooks that are given to all stu-
dents in the nation (85% and 83% for prospective and 
in-service teachers, respectively). Only one in-service 
teacher seized the opportunity to propose a task her-
self and handed in a task that was her own devising. 
Prospective teachers proposed about 40% of the tasks 
for individual work, whereas the rest of the chosen 
tasks were divided equally for either group work or 
both individual and group work. Great preference for 
tasks carried out individually (42%) – rather than for 
all students (38%) – was also observed by in-service 
teachers.  

Katerina, a prospective teacher, chose the task shown 
in Figure 1, taken from a Grade 2 mathematics student 
book, and proposed that children could work on it 
individually. The task in question is special because 
it does not provide students with a familiar meth-
odology for solving it. Katerina mentioned it in her 
response and explained why this task promoted math-
ematical creativity: ‘it is a task that cannot be easily 
solved in the usual way. It doesn’t use typical formulas …
children will experience the struggles of finding explana-
tions and solutions… it leads to creative thinking’. Even 
the opportunity to use a trial-and-error strategy when 
solving the problem was seen as conducive to math-
ematical creativity. For her, mathematical creativity 
was associated with breaking away from well-trodden 
paths. However, she did not mention the fact that there 
are several ways of solving this problem, a characteris-
tic that raises flexibility as involved in creativity. Last, 
she put great emphasis on the story involved (toy cars) 
and believed that anything that motivates students 
to work – indicating mainly the problem story – can 
promote creativity.
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The task in Figure 2 was proposed by Anna, an in-ser-
vice teacher. It was taken from a Grade 1 mathematics 
workbook and it was meant for all students to solve. 
Anna mentioned three components she believes are 
promoted by the task. First, every child may phrase 
and create her own problem and, thus, may take an 
active part in solving it. In this sense, ‘every child 
may bring her interests into mathematics and feel 
involved’. Although this feature calls mostly on the 

emotional impact that a task may have on children, 
Anna raises the issue of the mathematical content in-
volved. According to her, ‘children may see addition 
or subtraction involved, insert numbers and perform 
calculations’. This feature, though, is more reminis-
cent of a conventional problem that requires certain 
ordered steps to reach algorithmic answers. Third, 
she acknowledges that the fact that children can pose 
different problems leads them to different solutions 
that may encourage debates and contribute to a pro-
ductive classroom discussion. 

Figure 3 shows a prospective teacher’s choice of a cre-
ative mathematical task, taken from a Grade 6 mathe-
matics workbook. Maria’s activity includes four mini 
questions -each of which is meant to have one and 
only one algorithmic solution- that do not require new 
ideas. It may be conducted in the classroom using pen 
and paper and by following steps in a specific order. 
However, this fact did not deter Maria from consider-
ing this task as one promoting creativity. Instead, she 
considered the fact that children are asked to act (e.g. 
by moving the cards), are presented with the mathe-
matical knowledge and communicate their findings 
as important. The fact that some features are overes-
timated or others are ignored is often the case, as it 
happens with Maria’s choice.

b. Participants’ reasons for choosing tasks. Participants 
listed various reasons for choosing their task. Because 
they provided more than one reasons, these are ana-
lyzed on the basis of the number of participants (see 
Table 1). Attractive and entertaining stories (30,8%) 
involved in the task that may arouse children’s inter-
est and inquiry was one of the two most important 
elements for fostering mathematical creativity, ac-
cording to prospective teachers. Creative mathemat-

Figure 1: Katerina’s task

Figure 2: Anna’s task

 Figure 3: Maria’s task
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ical tasks were also those that allow children to make 
their own constructions (30,8%), placing emphasis 
on the children’s active engagement in mathematical 
activities, as well as those that invite work between 
students and encourage cooperative learning (23%). 

In-service teachers seem to relate creativity to the 
activity of problem-posing on the part of the children 
(37,5%) and the placement of the task in a real-life con-
text (16,7%) that may offer opportunities for the flex-
ible use and application of mathematics in everyday 
life. However, many in-service teachers insisted on 
more ‘traditional’ ideas: these tied creativity to solu-
tion methods provided from the start and presented in 
multiple steps following an hierarchical order (29,1%) 
and focused on algorithmic thinking and techniques 
(20,8%).              

Both groups of participants mentioned creativity in 
terms of searching for new ways to cope with mathe-
matical problems on the basis of their previous math-
ematical knowledge (23% and 8,4% for prospective 
and in-service teachers, respectively). Presenting chil-
dren with unusual questions (quizzes were the most 
frequently mentioned) was connected to motivation 
for imagination and creativity (23% and 20,8% for the 
two groups). Interestingly, prospective teachers only 
seem to regard that difficult technical calculations are 
not necessarily required; they view mathematical cre-
ativity as not being constrained by precise methods 
or anticipated outcomes and support non-algorithmic 

thinking and computational estimation (8,5%). Last, 
seeing the same problem offering several different 
solutions as well as connections with other, less (or 
non-) mathematical, school subjects were also con-
sidered to elicit mathematical creativity.

DISCUSSION

The characteristics participants associated with 
mathematical creativity, as shown in the aspects they 
considered in choosing tasks, demonstrated predom-
inantly that both prospective and in-service teachers 
identify creativity in primary mathematics class-
rooms. Based on the mathematical tasks they chose, 
however, it was revealed that identifying mathemat-
ical creativity was not an easy thing to do. Interviews 
further confirmed the participants’ difficulties in be-
ing clear about planning and encouraging creativity 
in the classroom. Although they seem to believe that 
mathematics can be a subject that is offered for the 
promotion of creativity in children, however, they 
acknowledge constraints in the classroom, mainly 
related to the role of the teacher and the mathematical 
content.

There were some common ideas between the two par-
ticipant groups, but the issue of mathematical creativ-
ity and how this can be fostered drew disparate views, 
which were probably influenced by their academic 
training. Prospective teachers mostly related mathe-
matical creativity to arousing children’s interest and 

Elements of tasks that promote mathematical creativity Prospective In-service

Teachers

Story that arouses children’s interest and inquiry 30,8% 8,4%

Problem-posing by children 37,5%

Children construct (e.g., draw, combine shapes) 30,8% 8,4%

The solution method is provided in multiple steps 15,4% 29,1%

Presenting with unusual questions 23% 20,8%

Connections between mathematical topics and everyday life 23% 16,7%

Use of manipulatives 23% 12,6%

Use and extension of previous knowledge 23% 8,4%

Children work together – Cooperative learning 23%

Focus on algorithmic thinking and techniques 7,7% 20,8%

Large number of possible solutions to a problem 15,4% 8,4%

Focus on computational estimation 8,5%

Connections with other school subjects 7,7% 4,2%

Other 3% 4,2%

Table 1: Characteristics identified for tasks that promote mathematical creativity by prospective and in-service teachers
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motivation, mainly with the use of attractive stories or 
puzzles that keep them engaged in mathematics. This 
finding is in agreement with Bolden and colleagues’ 
(2010) results that, for prospective teachers, creativ-
ity was bound up with the use of resources in order 
to create a ‘fun’ environment for children. Although 
this might be a desirable outcome, care is needed to 
avoid underestimating children’s access to mathemat-
ical ideas. Prospective teachers also gave emphasis 
on children’s own constructions when doing mathe-
matics, use of materials and non-algorithmic thinking. 
It is encouraging to see prospective teachers moving 
away from a conservative view of mathematics with 
algorithmic calculations. This orientation that brings 
flexibility to the front was also observed in Bolden 
and colleagues’ (2010) study. In general, prospective 
teachers recognize some of the aspects of creativity as 
do researchers (Klavir & Hershkovitz, 2008; Levenson, 
2013; Kwon et al., 2006). Last, cooperative work was of-
ten considered necessary for the promotion of math-
ematical creativity; children working on a task may 
contribute insights, experiences and ideas building 
eventually to a solution brought forth by more than 
one student. The issue of collective mathematical cre-
ativity was originally raised by Levenson (2011) who 
deems it equally important as individual mathemat-
ical creativity.

In-service teachers, on the other hand, related mathe-
matical creativity to children’s problem posing. They 
explain that asking children to make up a problem 
provides them with the opportunity to feel involved 
and take an active role in solving their own problem. 
Other elements they considered as important re-
ferred to applying some algorithm learned in class 
and following strictly-defined steps towards a solution 
method. These were limited to rule-based applications 
and were relatively different from what researchers 
consider as mathematical creativity. Their choices of 
tasks, in general, were less imaginative without rec-
ognizing the essence of the problem to be solved, and 
indicated their narrow and blurred perceptions. Thus 
we wonder how easily a teacher may overestimate the 
more conservative aspects of teaching and discard 
the opportunities for mathematical creativity that a 
task might provide. Searching for the new in math-
ematics and expressing the unusual have also been 
considered by a few participants who highlighted nov-
elty and placed emphasis on creativity in mathemat-
ics. These participants raised issues such as real-life 
connections to mathematics, connections with other 

school subjects and extension of previous knowledge. 
Unusualness as an element for creativity was strongly 
supported by the use of non-routine problems (e.g., 
quizzes), non-standard problems that involved unex-
pected and unfamiliar solutions (Yeo, 2009).

An additional finding of the study showed that al-
though participants identified characteristics of 
mathematical creativity in general, these charac-
teristics were not always revealed in the tasks they 
had chosen or did not fit well with their choices of 
tasks. For example, a few participants regarded mul-
tiple solution methods as a key element to creativity. 
Although searching for different solutions can defi-
nitely be seen as an aspect of both flexible thinking 
and fluency, its value is mediated, if an explicit direc-
tion to consider several different ways of solving the 
problem is given at the end of the task. The demand 
to solve a task using different methods may have the 
opposite effect on creativity. Similarly, in the search 
for a task that may foster children’s mathematical cre-
ativity, the vast majority of the participants searched 
for tasks taken from standard classroom textbooks. 
This may be interpreted in two ways: participants are 
unwilling to look for tasks other than those provided, 
or, less pessimistically, participants may transform 
any task to a creative one, depending on how they 
themselves implement it in the classroom. Although 
attention to the nature of mathematical tasks that fos-
ter mathematical creativity is important, an equal 
level of it in the classroom processes associated with 
mathematical creativity is needed. We are aware that 
analyzing only the tasks chosen by the participants 
is an inadequate method for predicting if the lessons 
would run for the purpose of teaching for creativity. 
Further investigation of this topic is needed.    

The findings from this study suggested that the aware-
ness of prospective and in-service teachers in terms of 
choosing tasks that promote mathematical creativity 
was apparent, at least at its manifested level; however, 
encouraging creativity in primary mathematics class-
rooms can generally be an elusive accomplishment. 
There is a need for clarification on how the idea of 
mathematical creativity is implemented and referred 
to in a mathematics lesson. This leads to the need for 
providing teachers with opportunities to be educated 
in mathematics teaching for creativity. 
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The mcSquared European project aims at studying 
Social Creativity among pedagogical resources design-
ers and Creative Mathematical Thinking in their users, 
through technology, namely a creative e-book software 
infrastructure and resources called “c-book units”. This 
article focuses on a study carried out in the framework of 
this project in France experimenting such a c-book unit 
and highlights a particular obstacle created by a didac-
tical contract effect related to creativity in the French 
mathematics classroom: high achieving students per-
form well on content related to an official assignment but 
have difficulties engaging in unusual creative problems. 
The article concludes on possible ways to circumvent it 
in order to foster the unleashing of mathematical crea-
tivity in all students.

Keywords: C-book technology, creative mathematical 

thinking, didactical contract.

INTRODUCTION

Mathematicians profess that performing mathemat-
ics is a creative activity (Hadamard, 1954). While “cap-
ital C” creativity is clearly of the essence, can “small c” 
creativity (Csikszentmihalyi, 1996) be implemented 
in the classroom in a way to transpose professional 
activity as a learning tool? Technology supported in-
quiry based learning is a possible way to put students 
in situations where their creativity is needed and can 
be expressed (Blumenfeld et al., 1991). Yet, many obsta-
cles pave its way (Edelson et al., 1999). Despite these 
obstacles, inquiry based learning is rather put in prac-
tice and somehow familiar to students in sciences; 
but it might not be so in mathematics. This article 
focuses on didactical contract effects that may deter 
its adoption, in a manner similar to (Brandl, 2011) in 
the realm of giftedness. 

In this article, we first introduce the mcSquared 
European project [2] and its structure in Communities 
of Interest (CoI) (Fischer, 2001) aiming at designing 
electronic books for teaching mathematics enhanc-
ing Creative Mathematical Thinking (CMT). We then 
present the educational resource under considera-
tion in the reported experiment, the “Velocity” c-book, 
designed by the French CoI. Then we describe and 
analyze the experimentation carried out in two Grade 
9 classrooms, where 14–15 years old students were 
invited to work on the Velocity c-book math activities. 
This lead to a didactical contract clash that we describe, 
followed by an outline of possible remediation. We 
then conclude on possible ways to improve accepta-
bility and devolution of activities aiming at promoting 
creativity in mathematics classroom.

THE MC SQUARED EUROPEAN PROJECT

The mcSquared project aims at designing and develop-
ing an intelligent computational environment, a new 
genre of authorable e-book, which we call ‘the c-book’ 
(c for creative), extending e-book technologies to in-
clude diverse dynamic widgets, an authorable data 
analytics engine and a tool supporting asynchronous 
collaborative design of pedagogical resources, which 
we call ‘c-book units’. The c-book environment aims at 
stimulating and enhancing creative designs for fos-
tering mathematical creativity in mathematics classes. 

Creativity is studied in two complementary ways: 
Creative Mathematical Thinking (CMT) in students 
using technology and Social Creativity (SC) in the de-
sign of c-book units intended to enhance CMT in the 
users. The c-book units are produced by four different 
Communities of Interest (CoI), organised by consor-
tium partners’ countries (France, Greece, Spain and 
UK), bringing together stakeholders from different 
professional domains, such as publishers, game devel-
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opers, math education researchers, school educators... 
The French CoI is composed of representatives of sev-
eral Communities of Practice (CoP) (Wenger, 1998), 
mainly gathered around the IREM [3] in Lyon and in 
Grenoble, and a few individuals (Figure 1).

In this paper we only consider the creative mathemat-
ical thinking part of the project.

Creative mathematical thinking 
Based on the existing literature review on creativity 
(Guilford, 1950; Kaufman & Sternberg, 2010), mathe-
matical creativity (Sriraman, 2004, 2005; Leikin & Lev, 
2007) and mathematical thinking (Tall, 2002; Blinder, 
2013), we understand CMT as the combination of di-
vergent and convergent thinking in mathematics. 

Divergent thinking in mathematics is characterized 
by: 

 ― fluency: number of solutions; 

 ― flexibility: number of categories (representa-
tions and settings) of solutions; 

 ― originality: statistical frequency of solutions; 

 ― elaboration: depth and detail of solutions. 

Convergent thinking is characterized by:

 ― mathematical correctness or conventional an-
swers,

 ― use of cognitive processes to produce one or very 
few possible solutions.

Besides, CMT can be fostered by adequate feedback 
regarding its different dimensions: fluency, flexibility, 
originality/novelty, appropriateness and usefulness, 
provided by the c-book unit, teachers, fellow students… 

CMT is associated with an individual and relative to a 
given community, a given context, in which the pro-
cess is envisioned to be used. 

We can also integrate the social aspect of creativity 
in CMT dealing with motivation of participants, the 
issue of informal norms that promote cooperation 
and assistance, the social recognition of one’s work 
value. The present article treats specifically this point 
and some obstacles that hinder creativity, namely di-
dactical contract effects.

THE VELOCITY C-BOOK UNIT

First, a c-book unit is a digital pedagogical resource 
developed in a specific environment of the project, 
the c-book technology, viewable and editable in any 
modern Internet browser, organised in a set of pag-
es which bundle together texts and communicating 
widgets from different origins enabling a great varie-
ty of affordances. They can be movie or sound players, 
2D and 3D object viewers, but also constructionist 
bricks of software such as dynamic geometry soft-
ware (Geogebra, Cinderella...), dynamic algebra soft-
ware (epsilonwriter), programming environments 
(eSlate Logo TurtleWorlds, javaScript, cindyScript, 
GeogebraScript...), specialized visualization con-
structs (“widget factories”, spreadsheets, graph of a 
function, algebraic expression editor, calculator...). 
These widgets can be saved and shared in a particu-
lar state, ranging from an empty canvas to a finished 
full-fledged “press and play” interactive resource, as 
well as half-baked micro-worlds (Kynigos, 2007) to 
be appropriated and worked upon by the students.

The idea of the Velocity c-book unit stems from the 
Community of Practice called TraAM (Mutualised 
Academic Works [4]) group in IREM Lyon, mainly 
composed of secondary mathematics teachers, fo-
cusing on the design of open-ended problems and 
problem-solving with technology. Their aim is to 
develop a shared repertoire of resources based on 
interesting use of ICT in the tackling of interdisci-
plinary open-ended problems in everyday life situ-
ations. They collaboratively design resources that 
they cross-experiment in their own classes. This CoP 
production takes place into a national framework co-
ordinated by the ministry of education.

After a presentation and a quick a priori analysis of 
the c-book unit, we present the results of the experi-

Figure 1: Several CoPs around a CoI
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mentation carried out in two classes, with different 
average achievement levels in mathematics.

Learning goal
The Velocity c-book unit, aimed for Grade 9 students, 
has as the main learning goal  the notion of speed as 
distance divided by time leading to the notion of der-
ivation as a faraway objective.

The main targeted competency is modelling real 
world situations, but a series of sub-competences 
useful in this context and promoting creativity are 
also at stake: Understand a problem, engage in a re-
search, show initiatives, be original; suggest answers, 
propose hypotheses or conjectures, formulate ques-
tions; prove that something is true or that it is false; 
communicate, orally or in a written form.

The idea behind this c-book unit is to let students 
gather information from the real world in order to 
analyse what they see with a “scientific eye”, including 
the need to “be true to the data”, reflecting the fact 
that real life does not provide you with polished data 
that makes sense at once: real data is full of glitches 
and does not follow exactly the model that you want 
to force on it. Specifically for this c-book unit, speed 
is the topical notion at work. Therefore an important 
goal is to make the students realize that position and 
time can be defined exactly only in theory but nev-
ertheless, that a crude approximation is enough to 
be able to make science and take decisions based on 
it. We know from the start that this is a real change 
in didactical contract (Brousseau, 1988) for most of 
the students, used to be fed artificial exercises with a 
unique well defined answer to a question they know 
they can answer with readily available tools. This ex-
periment focuses on the study of the devolution phase.

Description of the learning situation
The c-book unit comprises a series of four activities 
organized in 11 c-book pages (Table 1).

Each activity presents raw data of some sort and a 
very simple question that should engage the students 
in making sense of the data in order to answer these 
questions (see Table 1). Initiatives, which are mani-
fold, have to be taken in order to overcome the limi-
tations inherent to real world phenomena and reach 
definitive conclusions despite uncertainty. Being able 
to validate hypotheses such as “the car was driving 
too fast”, or “the truck drove for more than 500 km”, 
without knowing everything precisely is a goal that is 
attainable but requires mathematical creativity from 
the students. In what follows, we present in more de-
tails the Tunnel activity and its brief a priori analysis. 

In this activity, students have to analyse videos taken 
from within a car while driving through a tunnel and 
try to figure out whether the speed limit is reached or 
not. They have to look for clues, such as the trails of 
lights or chevrons in order to estimate the car speed, 
by tabulating the timing and positions of these events, 
computing the average speed, dealing with impreci-
sion and confidence intervals. Three different videos 
are provided (Figure 2), with computer adjusted speed 
profiles falling in three different scenarios showing 
two types of speed camera: a fixed speed camera and 
an average speed measuring camera, requiring the 
notions of instantaneous and average speed. In the 
first scenario, the car is not caught by any of the two 
speed cameras, in the second one it is caught only by 
the fixed speed camera, and in the third scenario it is 
caught only by the average speed measuring camera.

The total length of the tunnel is 1757 m. The students 
can identify chevrons and lights that are evenly spaced, 

Activities “widgets” used Questions asked to students

Tunnel
(3 pages)

Three videos taken from a car driving through a 
tunnel, Cinderella chronometer, GeoGebra

According to the video, will the car driver re-
ceive a fine for exceeding the speed limit in the 
tunnel?

Particles
(4 pages)

Simulation of a particle in Cinderella, Graph2, 
GeoGebra, Microsoft Kinect

Dance your way as a function: graph the move-
ment of a particle, and move  to replicate a given 
graph.

Control
(3 pages)

Picture of a paper disk used in trucks to monitor 
their speed along the day, Geogebra

According to the tachograph, what is the total 
distance driven by the truck driver that day?

Average speed 
(1 p)

GeoGebra Give the average speed of a car in a given condi-
tion.

Table 1: Velocity c-book unit activities
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with a space prescribed in some official documents 
that can be found on the internet, or estimated with 
the number of such events and the total length. The 
position of the fixed speed camera should be found as 
well. Then a chronometer available on the c-book page 
can be used to record some events like the moment a 
chevron or a light disappear from the screen.

The expected students’ behaviour is to search for 
the total length of the tunnel, to view the video and 
to measure with the embedded chronometer the total 
time from the beginning to the end and finally to infer 
the average speed for the first question. 

Several issues are expected to be encountered. 
What about the format Hours : Minutes : Seconds . 
Milliseconds, how to work with this data in order to 
make some math? The students are supposed to paste 
the minutes and seconds in two columns and elabo-
rate a formula that gives the total amount in seconds. 
Another issue is the accuracy of the data. When two 
students record the same events, the data can vary. 
How can they account for it? Shall they take the mean 
of the different values between students? Before that 
they have to agree on a starting time and a translation 
in time might be in order. Once this is done, they can 
begin to do some calculations, but they were already 
involved in mathematics: modelling a phenomenon, 
transforming it to observations which can be quanti-
fied, is part of mathematics. A more difficult problem 
is the comparison of data recording different events: 
especially the ones that record timings of chevrons 
and timings of lights: it is only after the plotting of 
both position graphs overtime that the comparison 
can be performed, because the discrete set of data for 
both events do not mingle that easily on the tables of 
numerical values. Only the graphical plot of position 

with respect to time (and not the rank of item!), which 
are both discrete sequences of the same integer rank, 
can show similarities. This is a difficult issue because 
plotting position against the item rank (the line num-
ber in the spreadsheet) is the obvious way to plot a se-
quence. And the item ranks of the chevrons and lights 
are related to the associated positions through a linear 
transformation (the respective distances between two 
occurrences). This requires a deep understanding of 
the notion of function of one variable: the position is 
a function of time but given as values in a sequence 
with given ranks and time itself is a function of the 
same rank. Therefore we can infer values of the po-
sition as a function of time and forget about the rank 
as an intermediate variable, artefact of our modelling.

Starting with the raw data, we produced different 
elaborate constructions and each page in the c-book 
unit unravels some possible new features, including 
widgets of many different kinds. We count on the or-
chestration of a teacher, knowing a good portion of 
what is feasible given the available technology and 
examples of implementations that are proposed in 
the c-book, to help the students leapfrog from one 
instrumented situation to another. But it is our hope 
that some students will eventually go beyond the pro-
posed implementations, or in totally new unexpected 
directions to answer the first question.

THE EXPERIMENTATION

Although our objective was to design learning situ-
ations in which the use of the c-book unit could be 
autonomous by groups of students, the pilot study 
reported in this section is regulated by a teacher, 
in order not to “spoil the fun” and yet see progress. 
Moreover, mastering all the aspects of the powerful 

Figure 2: The tunnel activity
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tools afforded by the c-book technology is not obvious. 
For the time being the transition from one page to a 
next one is not automatic and should be controlled by 
a teacher orchestrating the activity. The pedagogical 
context in which we conducted the experimentation 
was provided by a teacher with her students. Two 
Grade 9 classes (secondary 3rd in French school system, 
called therefore 3C and 3D in what follows) with 14–15 
years old students participated in the study, work-
ing in groups of 3–4, equipped with computers and a 
beamer that could project the work of a given group. 
The two classes are very different, the first one is com-
posed of students which perform well in mathematics 
and the second one of students that have difficulties 
coping with the core of the curriculum and who cir-
cumvent frontal confrontation with mathematics.

We report only on the “Tunnel” activity. Investigation 
on the average speed, different speed controls and 
some research on the tunnel was given as homework 
before the classroom session during which the stu-
dents worked together on the activity. 

3D class – lower achieving students
The students were relating the scenario to their own 
experience and discussed about the issue, it really 
meant something for them. After a few viewings of the 
video, they understood how to compute the average 
speed by measuring the time and the distance, having 
learnt how to do it themselves in similar situations. 
They addressed, discussed and solved the issues, dif-
ficult for them, of converting the ratio of a distance by 
a time from m/s to km/h, using proportionality and 
dealing with decimal representation of time instead 
of the usual hexadecimal HHMMSS representation. 
They showed progress in the direction of defining a 
protocol suitable to estimate the instantaneous speed 
(lights, marks on the road) but nobody came to a defi-
nite answer, only the average speed was computed and 
related to their own estimates based on their experi-
ence. The session was nevertheless felt as successful 
by all parties.

3C class – higher achieving students
When comparing the assigned videos between groups, 
the class, in a very homogeneous fashion, realized that 
it was the same one, tuned to fit special purposes. They 
answered at once without doing computations, sort-
ing correctly the three videos into three different sce-
narios regarding the fine. They gave the answer they 
thought the teacher was expecting, minimizing their 

effort and failing to engage into the activity. When 
pressed, they correctly explained the measurements 
and computations that had to be done, both for the av-
erage and instantaneous speeds but nobody actually 
did them. What refrained them from doing anything 
is the obvious fact that only crude estimates were pos-
sible and that the answer had to be somehow unique, 
giving that an approximation would have been wrong 
and was not in order. The issue of giving error mar-
gins was debated. Incited once again to make measure-
ments, they were forced to reluctantly take decisions, 
measure events, and give answers. They had to admit 
that, whereas their actual numbers were indeed dif-
ferent, the final conclusions were the same for each 
group on a given video. The expressed feeling was that 
of an abuse of power and a lousy work ethic on the part 
of the teacher who went beyond her right in asking 
such questions, that this was not mathematics and that 
nothing of that sort was ever asked at the junior high 
school final national exam “brevet des collèges”. This 
students’ behaviour can be interpreted as a reaction 
to the didactical contract break-up (Brousseau, 1988).

Remediation
A possible way out of this didactical contract clash 
was found by making explicit a list of competencies 
taken from the national curriculum. This list of com-
petencies, one of the results of the EvaCoDICE pro-
ject [5], is now introducing the c-book, in order to be 
self-evaluated throughout the activity. For example, 
students have to choose, for the competency labelled 

“Understand the problem, do some research, take initi-
atives, be original” an item in the following list:

 ― “I don’t understand what we are looking for, I can-
not begin”, 

 ― “I understand what we are looking for but I don’t 
know how to begin, I don’t have any good idea”, 

 ― “I understand what we are looking for, I am trying 
but I make mistakes in my research, I have some 
ideas”,

 ― “I understand what we are looking for, I make 
some experiments, I have ideas”.

Showing the students a table with the list of compe-
tencies reassured them in the fact that, whereas these 
are indeed never assessed at a national exam, they are 
nevertheless officially expected from them. But on the 



Assigned to creativity: Didactical contract negotiation and technology (Valérie Émin, Nataly Essonnier, Pedro Lealdino Filho, Christian Mercat and Jana Trgalová)

1001

other hand, this remediation leads to a reinforcement 
of the didactical contract that only what is explicitly 
and officially required is to be used in the classroom. 
In a system where national assessments explicit the 
expectations for all partners of the educational sys-
tem (students, teachers, parents...), and which sticks 
to technical and standardized tasks, promoting CMT 
is a real challenge when the achievement measured by 
these assessments does not correlate easily with CMT.

CONCLUSION

Fostering Creative Mathematical Thinking in the 
classroom needs a tailored “ecology” (Barquero, 
Serrano, & Serrano, 2010), a trained teacher, a rich 
milieu and a special didactical contract (Chevallard, 
2012; Wozniak, 2012) to be negotiated: it’s alright to 
think! Make some guess! Explore! Such competencies 
are seldom valued in the curriculum. 

In the agenda for progress in math education, 
Schoenfeld (2011) states that “assessments that are 
consistent with [mathematically rich content and 
sense making activities]” is one of the conditions to 
achieve the goal of a “meaningful engagement with 
powerful mathematics for all children”. This condi-
tion might be the most taxing in the didactical contract 
effect that was observed here: high achieving students 
tend to minimize their effort and see no direct interest 
in engaging into what they see as exceeding their job 
as a student. Teacher training has as well to address 
the evaluation of competencies.

It is all the more true with technology enhanced learn-
ing especially in unsupervised situations: in order 
to earn student’s interest, we might have to put our 
activities in the cyber-space perspective in which 
they live and which is so engaging for them. Adding 
social-networking and timing might turn a dull set 
of marks and assessments into a friendly competi-
tion; the 21st century didactic engineer should iden-
tify, alongside the didactical variables, the playful 
appealing ones, which can turn a mathematical task 
into a game where devolution of the task means not 
trying to please the teacher but to have fun, where 
fellow students cooperate online, turn upside down 
their assignments and boast their achievements on 
social networks. Recent works (Pelay, 2011) and po-
litical stands (Vallaud-Belkacem, 2014) tend to point 
in the right direction!
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There are studies investigating mathematical creativity 
in the primary and secondary levels, but there is still 
a need to explore creativity in the tertiary level. Our 
effort of expanding research to this level started with 
investigating mathematicians’ views on creativity and 
its role in teaching and student learning of mathemat-
ics. One 60-minute interview was conducted with six 
mathematicians who teach courses at the tertiary lev-
el and are active in research. Two themes, Originality 
and Aesthetics, were observed capturing participants’ 
views of creativity in their work, aligning with existing 
process and product views. In addition, all participants 
believed creativity could be encouraged in undergradu-
ate courses and provided suggestions on how to cultivate 
and value creativity in courses focusing on proving and 
problem solving. 

Keywords: Creativity rubric, proof process, undergraduate 

mathematics education.

INTRODUCTION

Creativity is one of the important aspects of profes-
sional mathematicians’ work. It has been documented 
that many mathematicians describe creativity in their 
work as an enlightenment that is somewhat unexpect-
ed (Hadamard, 1945; Poincare, 1958). Furthermore, 
creativity helps in the development of mathematics 
as a whole (Sriraman, 2009). However, creativity is an 
intricate research construct to explore, made appar-
ent by the myriad of definitions (over 100 as reported 
by Mann, 2005). In fact, Borwein, Liljedahl, and Zhai 
(2014) demonstrated that many brilliant mathema-
ticians had differing views about mathematical cre-
ativity. 

Some conceptualizations of creativity focus on em-
phasizing whether the end-product is original and 
useful (Runco & Jaeger, 2012), while others describe 
it as a process that involves different modes of think-
ing, some of an unusual nature (Balka, 1974). Liljedahl 
and Sriraman (2006) suggested a definition in which 
creativity was viewed as a personal trait of a mathe-
matician; “the ability to produce original work that 
significantly extends the body of knowledge (which 
could include significant syntheses and extensions 
of known ideas)” (p. 18). In addition, Sriraman (2005) 
argued that creativity in K-12 classrooms is different 
than the kind employed by mathematicians and that 
students’ creativity needs to be evaluated according 
to their prior experiences. This particular point 
highlights the difference between absolute and rel-
ative creativity; the former one refers to historical 
inventions or discoveries at a global level and the 
latter one is defined as, “the discoveries by a specific 
person within a specific reference group, to human 
imagination that creates something new” (Vygotsky, 
1982, 1984; as cited by Leikin, 2009, p. 131). Using a 
relativistic perspective, Sriraman and Liljedahl (2006) 
define mathematical creativity at the school level as a 
process of offering new solutions or insights that are 
unexpected for the student, with respect to his/her 
mathematics background or the problems s/he has 
seen before. This particular definition acknowledges 
that students “have moments of creativity that may, 
or may not, result in the creation of a product that 
may, or may not, be either useful or novel” (Liljedahl, 
2013, p. 256). 

Despite the acknowledgment of differences in crea-
tivity between professional mathematicians and K-12 
students and studies in K-12 level, the mathematical 
creativity research in undergraduate mathematics 
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education has been sparse. The purpose of our re-
search project is to explore creativity in undergrad-
uate level teaching and learning by first focusing on 
mathematicians’ views on creativity. Researchers 
have investigated mathematicians’ views on crea-
tivity (e.g., Hadamard, 1945; Sriraman, 2005), but we 
contribute to the existing literature by focusing on 
mathematicians’ views on the role of creativity in 
teaching and students’ learning, especially in the case 
of proving and problem solving. More precisely, our 
research addresses the following research questions: 
(1) How do mathematicians define creativity? (2) How 
do mathematicians view creativity in undergraduate 
mathematics courses, especially the ones that focus 
on proving and/or problem solving? (3) Can we (or 
should we) value and/or assess undergraduate stu-
dents’ creativity in proving (and/or problem solving)? 

Prior to sharing findings of our analysis, we brief-
ly summarize some studies that explored creativity 
from mathematicians’ views and in K-12 levels.

LITERATURE REVIEW

Exploring mathematical creativity is an ongoing quest 
of researchers, with the earliest known attempt by 
two psychologists Claparède and Flournoy in 1902 
(as cited in Borwein et al., 2014, and Sriraman, 2009). 
Following this survey-focused attempt, which elic-
ited voluntary responses from mathematicians of 
that time, Hadamard (1945) resumed the exploration 
of mathematical creativity with surveys of his own 
sent to prominent mathematicians across the world. 
Using a psychological framework created by Wallas 
(1926), Hadamard theorized four stages in the process 
of creativity: preparation (thoroughly understanding 
the problem), incubation (when the mind goes about 
solving a problem subconsciously and automatically), 
illumination (internally generating an idea after the 
incubation process), and verification (determining 
whether that idea is correct). Sriraman (2005) found 
that Hadamard’s four stages are still applicable to 
modern day mathematicians by interviewing five 
research mathematicians. Furthermore, his study 
provided more detail of the stages by considering the 
roles of personal and social attributes such as imagery, 
intuition, and interaction with others. Guilford (1950), 
however, found Hadamard’s stages “superficial from 
the psychological point of view” (p. 451). His concerns 
were that these stages were not informing us on the 
mental processes that occur and the stages were not 

testable. He suggested some testable factors such as 
fluency, flexibility, production of novel ideas, synthe-
sizing and analysing ability, and evaluation ability. 
His list was refined to fluency, flexibility, originality, 
and elaboration, which were expanded and used in 
forthcoming creativity research by others (e.g., Balka, 
1974; Leikin, 2009; Torrance, 1966; Silver, 1997). 

Fluency in general refers to the quantity of outputs. 
Silver (1997) defined it in the problem-solving setting 
as the “number of ideas generated in response to a 
prompt” (p. 76). Flexibility is “shifts of approaches tak-
en when generating responses to a prompt” (Silver, 
1997, p. 76). This could mean that a student approached 
a certain task, was not successful with finding a solu-
tion or did not feel the approach was going to be fruit-
ful, and changes to a new approach. Originality (or 
novelty) is described as a unique production or an 
unusual thinking (Torrance, 1966). Elaboration refers 
to the ability of producing detailed plan and generaliz-
ing ideas (Torrance, ibid). These factors of creativity 
have been used in K-12 levels to determine students’ 
creativity. For example, Leikin (2009) focused on flu-
ency, flexibility and originality to create a creativity 
rubric (using a point system) that evaluated how cre-
ative a student was when s/he produced solutions 
of certain tasks. Similarly, Yuan and Sriraman (2011) 
integrated the same three aspects to measure partic-
ipants’ creativity in mathematical problem posing. 
Recently, Chamberlin and Mann (2014) proposed a 
fifth aspect of creativity, iconoclasm, which “entails 
the penchant of mathematically creative individuals 
to dissent from commonly accepted principles and 
solutions” (p. 35). They suggest the possibility of ob-
serving iconoclastic behaviour in individuals who are 
considered to have a high degree of creativity.

Even though exploring students’ creativity in K-12 
level is a common practice, such efforts are sparsely 
expanded to undergraduate mathematics level. There 
have been on-going efforts of implementing new ped-
agogical strategies (such as inquiry-based learning or 
problem-based learning) to improve undergraduate 
students’ skills that are related to creativity (such 
as investigating ideas, providing multiple solutions, 
analysing others’ strategies). However, we know little 
about how to explicitly value or assess undergraduate 
students’ creativity in courses involving proving, or 
in more traditional teaching settings. To expand our 
understanding of how creativity can be cultivated 
while learning mathematics, we conducted a quali-
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tative research study investigating mathematicians’ 
views of creativity and their perspectives on its role 
in teaching and learning of mathematics. 

METHODOLOGY

Participants 
Participants of this study were six mathematicians 
who are active researchers in their mathematical are-
as and teach undergraduate and graduate level math-
ematics courses. Two of the participants are from a 
mid-size Ph.D. granting, but predominantly teaching 
mid-western university, and four participants are 
from a large Ph.D. granting and research dominant 
mid-western university. Two are tenured associate 
professors and four are tenured full professors, and 
one of whom is female. Participants had 8 to 30 years 
of teaching and research experience. Research fields 
vary from algebraic geometry, nonstandard analysis, 
geometry and topology, representation theory, signal 
analysis, and number theory.

Data collection
We conducted one 1-hour interview with each partici-
pant in his/her office. Interviews were audio- and vid-
eo-taped and transcribed. The semi-structured inter-
view had three parts. Participants were asked to talk 
about their views of creativity in their mathematics 
work in part one. In the second part, participants were 
asked to comment on a given a set of creativity defi-
nitions from different theoretical perspectives. The 
third part of the interview focused on participants’ 
views on teaching and learning. To elicit their initial 
thoughts, participants were first asked to talk about 
their perspectives of teaching creativity and its po-
tential role in students’ learning. After, we gave three 
proofs constructed by three students (Birky, Campbell, 
Raman, Sandefur, & Somers, 2011), one at a time, and 
asked them to comment on creativeness of these 
proofs (See Appendix). All participants were then 
given a Creative Thinking Value Rubric (Rhodes, 2010) 
to evaluate the same proofs. This rubric was chosen by 
the authors because it claims to assess undergraduate 
students’ creative thinking across disciplines. 

Analysis
We employed grounded-theory methodology (Strauss 
& Corbin, 1998). Researchers independently read the 
transcripts several times to select passages “that ex-
press a distinct idea related to [our] research ideas” 
(Auerbach & Sliverstein, 2003, p. 46). After identify-

ing these relevant texts, we searched for repeating ide-
as that could be combined into themes. The emergent 
themes describing mathematicians’ views of creativ-
ity were Originality and Aesthetics. These two themes 
match with the process view and the end-product view 
in the creativity literature, respectively. Quotes that 
highlight the characteristic of each theme are shared 
with brief discussions in the next section. We also 
present our analyses of the mathematicians’ views on 
teaching and student learning in relation to creativity. 
More precisely, we describe our participants’ views 
on how to cultivate students’ creativity in proof and 
problem solving courses, and how to identify, evalu-
ate and value student creativity in such courses.

RESULTS

Views on creativity
Though participants were asked for their definitions 
during the first part of the interview, they stated dif-
ferent aspects of creativity as they responded to ques-
tions in other parts. For example, some participants 
would refer back to their definitions of creativity as 
they explored given students’ proofs or as they dis-
cussed given definitions. We also noticed that some 
participants would contradict their definitions when 
discussing the students’ proofs, so we asked, “How 
does this particular idea you mentioned align with 
your previously mentioned view of creativity?” For 
these reasons, we analysed each participant’s entire 
interview to uncover his/her views of creativity, 
thereby generating a more holistic view of his/her 
perspective.

Overall, we observed two main themes in our partic-
ipants’ views of creativity: Originality and Aesthetics. 
Since the first theme shared some similar aspect with 
the originality (novelty) described in the previous 
literature, we used the same word. All of our par-
ticipants mentioned creating a “new way”, “new ap-
proach/strategy” or “new trick” when they described 
creativity in mathematics, generally or in their own 
work. 

Dr. B So for me the creative aspect is you intro-
duce a new way to look at the problem.

Dr. C [While talking about his creative mo-
ment] So, it wasn’t that creative in the 
sense that there was already stuff out 
there that I didn’t have to think about it 
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myself, but in the process of applying it 
I think I created something new.

Dr. E I think the definition of creativity is ap-
proaching a problem from a different 
perspective or with different tools.

Within the theme of Originality, we noticed some 
sub-themes that the participants referred to as 
they described the process of creativity: (i) Making 
Connections,  (ii) Attempts, and  (iii) Insight. 

All of our participants highlighted the importance 
of making some sort of connection. For example, Dr. 
A mentioned seeing connections between the task at 
hand and other theorems, whereas Dr. D mentioned 
making connections between various topics of math-
ematics to approach a task from a new way. Similarly, 
Dr. F stated,

Dr. F For example, notic[ing] that some equa-
tions result in geometry, with some ge-
ometry connects to some algebra, doing 
something unusual. 

Participants also emphasized that in the process of 
creating something original, having several attempts, 
even incorrect ones played an important role. 

Dr. A If it did happen [an incorrect attempt], 
then it is creative in some sense because 
exploring a wrong answer helps. 

Dr. D Well, let’s see the most recent example I 
can think of is when my creativity took 
us in a wrong or took us in a negative 
direction.

Further in the interview when Dr. D was asked about 
the role of creativity it was observed that s/he again 
mentioned the importance of making attempts by say-
ing, “You have to be willing to try something.”

We observed that some of our participants mentioned 
the role of intuition or insight in the process of cre-
ativity. This particular sub-theme, Insight, was not 
shared by all of our participants. The quotes below 
demonstrate ideas from these participants. 

Dr. A But having the idea [of a proof in his re-
search] was the spark…It’s that initial 
moment that is the creative part, not the 
actual carrying out the thing.

Dr. D I think […] there are people that have 
more and less or different types of cre-
ativity. There are mathematicians who 
are very intuitive, […] who can see a 
broad result.

We also noticed that some of our participants stated 
the importance in making conjectures. For example, 

Dr. A So, I was writing a paper with a col-
league just last week. So I was working 
on that and there was an implication 
that the colleague had proved, A⇒B. 
And it occurred to me…is the converse 
true? Does B also imply A?

Even though this idea was not repeated by other par-
ticipants, this quote from Dr. A provides a valuable 
insight for encouraging students’ to make conjectures 
in courses.

The first theme of Originality and its sub-themes thus 
far speak to the process of proving rather than the 
end-product proof. The latter view is encompassed in 
the second theme: Aesthetics. Almost all of our partici-
pants mentioned some aspect of creativity that relates 
to the look of the final proof. In the following quotes, 
we underlined some code words that helped us create 
this particular theme.

Dr. B [when talking about a “creative proof ”] 
But there is a notion…there is a notion of 
economy, of something surprising that 
you would not expect in that proof, and 
something lovely.

Dr. C There’s kind of an element of aesthetics 
involved, or beauty, and so when I think 
of creativity in mathematics I think of 
people that are able to pull that out of 
themselves and come up with nice prob-
lems to solve that are attractive, some-
how. Or follow a line of thought that is 
attractive.

Dr. E [when evaluating a student proof ] Wow! 
Yeah, that does seem more creative, that 
is cute. That is really cute!

Dr. F [when discussing creativity in teaching] 
When I’m teaching classes for example, 
sometimes I find a cute way of doing the 
proof, or I find an elegant way of doing 
computation.
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Role of creativity in teaching and learning
To understand our participants’ perspectives on the 
role of creativity in teaching and learning undergrad-
uate mathematics, we focused on the responses that 
were given during the third part of the interview. In 
this part, participants were first asked to talk about 
their ideas on how to cultivate students’ creativity 
when teaching and then were given three student-con-
structed proofs to assess the creativity. The analysis 
of summaries from each participant yielded similar 
ideas.

All of our participants believed that creativity could 
be encouraged in undergraduate courses. They 
provided similar teaching ideas, which could foster 
creativity. For example, providing problems and let-
ting students “play” with them and discuss different 
solution techniques would be one way to cultivate 
creativity. Another example was to show students 
different proofs of the same theorem and discussing 
the ones that are more creative and why they would 
be considered more creative. 

Participants also discussed possible ways of eval-
uating creativity in proofs. They were given three 
student-constructed proofs (See Appendix) to the 
theorem “If n is an integer such that n ≥ 3, then n3 ≥ 
(n+1)2.” All of our participants determined that the first 
student’s proof was not creative due to the fact that the 
induction proof technique was an expected method to 
implement in this particular question. They thought 
the second and third proofs were more creative, and 
some participants discussed the importance of using 
prior knowledge and making connections between 
the tasks and the student’s existing knowledge as they 
talked about these two proofs.

Dr. E [referring to the second proof ] It is pos-
sible that they had a course where this 
kind of trick was really looked at.  

Furthermore, participants acknowledged the mistake 
in the third proof, which started a conversation about 
the role of correctness in creativity. All participants 
thought incorrect attempts could play an important 
role during the process of creativity. However, some 
of our participants thought that such incorrect ideas 
should be fixed in the final product.

Dr. F I will risk it and say that [a proof ] doesn’t 
have to be correct to be creative. But at 

least it should be fixable. It can happen 
that you have an original idea and you 
mess up details, which is not surprising 
because if it is an original idea then it 
means that you haven’t practiced that, 
you would make mistakes.

Some participants stated that they do give “higher” 
points to students’ proofs or solutions to problems 
if they thought that the approach was original or un-
expected. Other participants were hesitant to give 
extra points to “creative” proofs or solutions but said 
they would provide written encouraging comments 
to students’ work. 

When participants viewed and tried to implement 
the Creative Thinking Value Rubric (Rhodes, 2010) to 
evaluate three proofs, they designated applicable and 
inapplicable categories to mathematics. For example, 
all participants agreed that Taking Risks, Innovative 
Thinking, and Connecting, Synthesizing, Transforming 
categories would be applicable. They believed that 
the Solving Problems category by itself was what they 
expect their students to do in mathematics so it would 
not be applicable. Some participants thought that 
there were too many levels provided in this rubric 
(Capstone, Milestones, and Benchmarks). 

DISCUSSION AND CONCLUSION

The purpose of this particular study was to explore 
participating mathematicians’ views of creativity and 
its role in teaching and student learning at tertiary 
level. The first question relating to participating math-
ematicians’ definitions of creativity is described by 
two observed themes: Originality and Aesthetics. All 
six mathematicians’ views of creativity highlighted 
the notion of Originality. That is, we noticed that our 
participants discussed the process of creating ideas 
and mentioned the importance of making connections, 
trying or attempting different solutions, and having 
an insight or “spark,” which Wallas (1926) called the 

“illumination” stage of creativity. In the process of cre-
ating ideas, connections between different mathemat-
ical knowledge require the individual to understand 
and absorb many previous definitions and theorems, 
which Wallas (1926) called the “preparation” stage of 
creativity. 

With our second research question, we investigat-
ed the actions and thoughts of mathematicians with 
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regard to the teaching and learning of mathematical 
creativity. We found an emphasis on the process of 
proving when participants were asked to evaluate 
students’ proofs based on creativity. They thought in 
order to evaluate a final product or final proof, they 
either judged them against one another, or, similar to 
Sriraman and Liljedahl (2006), they needed to know 
the student’s prior knowledge and thought process. 
Some mathematicians thought that the proving pro-
cess might reveal mathematical creativity aspects of 
a student or a mathematician not revealed in the final 
proof. For example, the student that created proof 1 
may have tried proofs that resemble proofs 2 or 3 
and realized that they may not be as fruitful as the 
technique for proof 1. Also, having courage to take 
a risk and create an attempt or multiple attempts 
was determined to be an aspect of mathematical cre-
ativity. Therefore, valuing multiple attempts might 
encourage students to be creative in their proving 
process (Leikin, in press). But, as Dr. E stated, there 
is some caution in how to value those attempts; a stu-
dent might make multiple attempts that have “zero 
chance of working.”

Finally, we attempted to answer the third research 
question by utilizing the interviews and previous cre-
ativity rubrics (Leikin, 2009; Rhodes, 2010) to create 
the Creativity-in-Progress Rubric (CPR) on proving 
(see Savic et al., 2015, and Tang et al., 2015, for more 
details.) This rubric is a formative assessment to 
explicitly value undergraduate students’ creativity 
during the proving process in proof-based courses 
at the tertiary level. Given the heavy emphasis the 
mathematicians placed on the process of construction, 
the CPR focuses on assessing the process of proving 
(Originality) rather than the final product of the proof 
itself (Aesthetics). As a formative assessment tool, the 
rubric has three major categories Making Connections, 
Taking Risks and Creating Ideas. These categories align 
with our participants’ views of creativity and its role 
in undergraduate mathematics. In addition, the use of 
the rubric as a formative tool has merged from par-
ticipants’ suggestions to encourage creativity in the 
classroom. The greatest use of the CPR on proving, we 
believe, is that it can start the discussion of creativity 
and the proving process in the classroom. Mann (2005) 
states that avoiding the acknowledgment of creativity 
could “drive the creatively talented underground or, 
worse yet, cause them to give up the study of mathe-
matics altogether” (p. 239). Since there is an increased 
need for students to have research-like experienc-

es (e.g., Research Experiences for Undergraduates 
[REUs] (Garcia & Wyels, 2014)), valuing mathematical 
creativity may bridge the gap between undergraduate 
mathematics and research mathematics. In particular, 
using formative assessment tools, such as the CPR on 
proving would help in such efforts.
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APPENDIX - THREE STUDENTS’ PROOFS 
FROM (BIRKY ET AL., 2011)

Proof 1: If n=3, then n3=27 and (n+1)2=16, so n3 >(n+1)2=16. 
Now assume that k3 >(k + 1)2, for some integer k≥3. On 
the left-hand side, we add (3k2+3k+1) and get k3 +3k2 
+3k+1=(k+1)3. On the right-hand side, we add the same 
thing to get (k+1)2 +(3k22+3k+1)=(4k2+5k+2). We see that 
(4k2+5k+2)>(k2+4k+4) because 4k2 >k2 and, since k > 2,  
5k+2>4k+2+2=4k+4. Thus we see that (4k2+5k+2)>(k+2)2 
and so we have (k+1)3 >(4k2+5k+2)>(k+2)2. Therefore, by 
the principle of mathematical induction, n3 >(n+1)2 for 
all integers n≥3. QED

Proof 2: Assume n≥3. Then n>2, so 1>2/n, and n2 >1, so 
1>1/n2 also. This means that n≥3=1+1+1>1+2/n+1/n2. So 

n>1+  2/n+  1/n2 . If we multiply each side of this last in-
equality by n2, we get n3 >n2 +2n+1. Thus  n3 >(n+1)2. QED.

Proof 3: Assume  n≥3. Then, since n-2 is a positive 
integer, (n+1)2 <(n+1)2(n-2). Thus, (n+1)2 <n3-3n-2=n3 

-(3n+2)<n3. Therefore, n3>(n+1)2. QED.
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This article is devoted to people who taught highly gifted 
schoolchildren and developed educational materials for 
them. Teaching the highly gifted involves changing the 
contents of education and, possibly more importantly, 
changing its form and style. Consequently, mathematics 
educators who are involved in such teaching face new 
problems, and in fact such teaching often means the 
appearance of a special new type of teacher at a school. 
In this paper, we will discuss two prominent Russian 
figures in the advanced course of study in mathematics. 
An analysis of their biographies will facilitate a better 
understanding of both the methodological and the peda-
gogical history of the advanced course of study in  math-
ematics, as well as the social-political circumstances 
under which such study took place in the Soviet Union.
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INTRODUCTION 

Highly gifted children need highly gifted teachers. 
This fact was recognized quite long ago and quite 
widely (Stanley, 1987; Thornton and Peel, 1997), yet the 
study of the biographies and preparation of teachers 
of the highly gifted is only just beginning (see Even, 
Karsenty, & Friedlander, 2009; Evered & Karp, 2000; 
Karp, 2010; Leikin, 2011). Below, we will discuss two 
Russian figures in mathematics education, Vladimir 
Ashkinuze and Semyon Shvartsburd, who played im-
portant roles in the formation of the advanced course 
of study in mathematics and, first and foremost, in 
the formation of Russian schools with an advanced 
course of study in mathematics. Each of them is the au-
thor of dozens of important works. However, far less 
is known about their own biographies (see the obit-
uary of S. I. Shvartsburd in the journal Matematika 

v shkole), and these will be the main focus of what 
follows, since the analysis of their biographies, we 
would argue, is useful for understanding where 
teachers for the advanced course of study in mathe-
matics come from—an understanding that this study 
severely needs. The present article is based first and 
foremost on archival materials related to these two 
figures, which have been discovered by Vasily Busev.

ON SCHOOLS WITH AN ADVANCED 
COURSE OF STUDY IN MATHEMATICS 

Russian schools with an advanced course of study in 
mathematics began attracting international atten-
tion practically from the moment of their inception 
(Vogeli, 1968); nonetheless, it will be useful to review 
certain key moments in their development.

The first Russian classes with an advanced course 
of study in mathematics appeared in 1959 under the 
supervision of Semyon Shvartsburd in Moscow under 
the banner of the “polytechnization” campaign that 
was taking place at that time, which sought to combine 
school-based education with production-based educa-
tion (Karp, 2011). Subsequently, a number of leading 
Soviet mathematicians became involved in the cre-
ation and development of a system of schools with an 
advanced course of study in mathematics, including 
A. N. Kolmogorov, I. M. Gelfand, M. A. Lavrentyev, V. I. 
Smirnov, D. K. Faddeev, and many others. As a result, 
fundamentally new educational institutions were 
formed, in which gifted schoolchildren were offered 
the opportunity not only to learn mathematics more 
and better than usual, but also to become involved 
in genuine mathematical creativity. The unfolding 
methodological formation of the new system was 
evidenced by publications in the series Problems of 
Mathematics Schools, the first of which, Teaching in 
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Mathematics Schools, was edited by S.I. Shvartsburd, 
V.M. Monakhov and V.G. Ashkinuze (1965). 

The first mathematics schools were established 
during the period of the so-called thaw, after the 
death of Stalin, when there were hopes that the Soviet 
regime would become more liberal. When after the 
resignation of Khrushchev and especially after the 
invasion of Czechoslovakia by Soviet troops in 1968, 
these hopes had to be abandoned, the position of these 
schools began to change. The authorities did not dare 
to shut them down completely, since they saw in them 
a most valuable source of trained workers for the mil-
itary-technological struggle with the West. However, 
every effort was made to restrain the spirit of freedom 
that inevitably sprung up in schools which awakened 
and nurtured the striving for independent research. 
Naturally, the position of teachers in these schools 
changed as well (Karp, 2011). 

At the same time, a certain development of the math-
ematics schools continued, despite the rigidification 
of the political regime. In particular, textbooks for 
such schools became popular during this period, for 
example, Algebra by N. Ya. Vilenkin, R. S. Guter, S. I. 
Shvartsburd, B. L. Ovchinsky, & V. G. Ashkinuze (1968), 
and Mathematical Analysis by N. Ya. Vilenkin & S. I. 
Shvartsburd (1969). 

Gorbachev’s Perestroika made mathematics schools 
popular and brought them government support. 
Their numbers grew rapidly (which was probably not 
especially good for their quality—Karp, 2011). One of 
the textbooks that enjoyed greatest popularity at this 
time was written by M. L. Galitsky, M. M. Moshkovich, 
& S. I. Shvartsburd (1986). S. I. Shvartsburd died in 
1996 in Haifa, and V. G. Ashkinuze yet in 1970s, so we 
will not address mathematics schools during later 
periods in any detail. We will merely state that, de-
spite the difficulties that they have encountered, they 
continue to exist and successfully to prepare future 
mathematicians, physicists, and engineers.

ON THE ARCHIVAL FILES OF V. G. 
ASHKINUZE AND S. I. SHVARTSBURD

All three files—two relating to V. G. Ashkinuze 
(Ashkinuze, 1963, 1967)  and one relating to S. I. 
Shvartsburd (Shvartsburd, 1974) —were discovered 
in the archives of the Russian Academy of Education 
(RAO). The RAO is a continuation of the Academy of 

the Pedagogical Sciences (APN), which was estab-
lished in 1943 in order to oversee and coordinate 
the work of scientific organizations of a psychologi-
cal-pedagogical profile. Such organizations (scientific 
institutes and laboratories) were many, and they em-
ployed many famous scientists, for example, most of 
the Russian scholarly works on psychology that are 
known in the West were written by employees of the 
institutes of the Academy of the Pedagogical Sciences.

One can only speculate about the nature of the cir-
cumstances under which the files analyzed below 
began to be kept. Vladimir Ashkinuze worked for a 
certain time at the Academic Institute of General and 
Polytechnic Education (which until 1960 was called 
the Institute of Methods of Instruction), and therefore 
the existence of a file on him during this period was to 
be expected. And indeed this file mainly contains ma-
terials documenting his hiring and discharge from the 
institute, including his personal history statement, 
official forms (the so-called personal form for per-
sonnel records), character references, and his reports 
(this file was ended in 1963). When at a later date V. G. 
Ashkinuze, now employed elsewhere, returned to the 
APN system as a part-time employee, a new file on him 
was begun (and ended in 1967).

S. I. Shvartsburd likewise worked in the APN system 
from 1962 on, initially at the Institute of General and 
Polytechnic Education, and then at the Institute of 
the Contents and Methods of Instruction. By all ap-
pearances, however, the file on Shvartsburd began to 
be kept for a special reason, namely, because he was 
nominated as a candidate for full membership in the 
APN (he had been elected as a corresponding mem-
ber in 1968). The cover of the file bears the following 
heading: “application for full member status in the 
APN.” The file contains biographical details, including 
Shvartsburd’s personal history statement, reviews of 
his work, lists of his publications, and so on (this file 
was ended in 1974).

TOWARD A BIOGRAPHY OF V. G. ASHKINUZE

V. G. Ashkinuze was born in Moscow in 1927, as he 
writes in his 1958 personal history statement, into a 

“family of Communist public servants.” He goes on to 
state that “at the present time my parents are special 
pensioners” (Ashkinuze, 1963, sheet 5). A “special 
pension” was a pension assigned by special warrant, 
rather than in accordance with general rules; in a later 
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personal history statement from 1966, he writes more 
clearly that his parents had been Communist Party 
functionaries (Ashkinuze, 1967, sheet 5), who had, 
however, already lost their positions by 1958, when 
he wrote his first personal history statement. In 1944 
Ashkinuze enrolled in the Mathematics-Mechanics 
Department and in 1949 he graduated from it. As can 
be seen from the list of published works in his file 
(Ashkinuze, 1963, sheet 8), in 1951 he published an ar-
ticle in the Ukrainian Mathematics Journal: “Theorem 
on the Splitability of J-Algebras.” Taking into account 
the fact that publication in a journal does not happen 
overnight, one can assume that the article contained 
Ashkinuze’s scientific findings from his last years 
of study at the university (possibly his thesis). The 
promising young mathematician, however, began his 
professional career as a mere teacher, and the institu-
tions at which he taught included the so-called School 
for Working Youth, by no means the most prestigious 
educational establishment. It should be borne in mind 
that the end of the 1940s and beginning of the 1950s 
were the years of the anti-Semitic, anti-cosmopolitan 
campaign, so it was probably difficult for Ashkinuze to 
find any better employment. In January 1954 (in other 
words, less than a year after Stalin’s death), Ashkinuze 
was accepted to the graduate school of the Institute 
of Methods of Instruction, and moreover he enrolled 
at once in the second year of the program. In August 
1955, Ashkinuze finished his graduate education and 
began to work at the Shakhty Pedagogical Institute 
(in the city of Shakhty) as teacher and department 
chairman. After working there for the required three 
years, Ashkinuze returned to Moscow, becoming in 
June 1958 a junior research employee of the Institute 
of Methods of Instruction (later called the Institute of 
General and Polytechnic Education). The papers that 
he published after his 1951 article were devoted to 
methodological issues, with the exception of an article 
published in the anthology Matematicheskoye prosves-
cheniye in 1957: “On the Number of Semiregular 
Polyhedra.” Ashkinuze himself, listing his achieve-
ments for 1958–1959 (Ashkinuze, 1963, sheet 16), noted 
his participation in developing programs in mathe-
matics for eight-year and three-year courses (in other 
words, for the upper grades); articles discussing these 
programs; testing out lessons on “The Derivative and 
Its Application in the Investigation of Functions” in 
classroom conditions, a topic that had not been stud-
ied in schools previously; delivering lectures on the 
methodology of teaching elementary mathematical 

analysis in secondary schools for teachers; working to 
develop a textbook for a course in algebra; and others. 

Subsequently, these studies were continued, and new 
ones were added. A character reference from 1963 in-
dicates that Ashkinuze was supervising two planned 
projects—the writing of a textbook in algebra and the 
writing of a study on the methodology of teaching 
algebra—in addition to heading a laboratory devot-
ed to schools specializing in mathematics, which had 
been formed on his suggestion, and in connection 
with which he spent four months studying mathemat-
ical machines at another institute (Ashkinuze, 1963, 
sheets 48–49).

This character reference was written in connection 
with Ashkinuze’s transfer to a different place of em-
ployment (the Moscow State Pedagogical Institute—
MGPI). It is noteworthy that the purpose of the char-
acter reference was to smear Ashkinuze, to the extent 
possible, by describing him as an individual who was 
leaving a job and thus interrupting his planned proj-
ects, which “have already cost the Soviet state over 10 
thousand rubles” (Ashkinuze, 1963, sheet 49). The di-
rector of the institute felt so strongly about the need to 
besmirch Ashkinuze’s reputation that did not hesitate 
to add a personal attack, pointing out that Ashkinuze 
did not exhibit sufficient moral purity, taking work-re-
lated trips with his female laboratory assistant.

Nonetheless, in 1966 Ashkinuze returned to the APN 
system, while continuing to conduct his main work 
as a docent (associate professor) of the MGPI. He was 
accepted as a part-time employee at the newly found-
ed Institute of School Equipment and Technological 
Means of Instructions (Levitas, 2010). However, he did 
not work there for long—only until 1967 (Ashkinuze, 
1967, sheet 7). At this point, his files end. 

TOWARD A BIOGRAPHY OF S. I. SHVARTSBURD

S. I. Shvartsburd was born in 1918 in a small town in 
Moldavia. His father, as he states in his personal his-
tory statement from 1974 (Shvartsburd, 1974, sheet 4), 
worked as a grain receiver before the Revolution and 
was killed in 1941. After graduating from a ten-year 
school in 1935, Shvartsburd enrolled in the Physics-
Mathematics Department of Odessa University, 
from which he graduated in 1940, staying on at the 
same university as an assistant at the Department of 
Theoretical Mechanics. Having contracted polio in his 
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childhood, he remained handicapped, and therefore 
was not drafted into the army. After the war began, in 
July 1941, together with the university, he relocated 
to the city of Jalalabad, where from 1941 until 1944 he 
worked as a mathematics teacher. In 1942, he joined 
the Communist Party (having become a candidate for 
membership already in 1939) and in 1943–44 he was 
bureau head and deputy head of the department of 
agitation and propaganda of the Jalalabad Municipal 
Committee of the CPSU. In August 1944, Shvartsburd 
returned to Moscow, where he worked as a teacher 
of mathematics until 1962, when he became a se-
nior research fellow at the Institute of General and 
Polytechnic Education. He defended his candidate’s 
dissertation in 1961 and his doctoral dissertation in 
1973 (Russia has two advanced degrees: the degree of a 
candidate of sciences corresponds to a Ph.D., while the 
so-called doctoral degree is higher—roughly speaking, 
one can say that this degree corresponds to the rank 
of full professor). In 1968, he was elected as a corre-
sponding member of the APN. Shvartsburd received 
various awards and honorary titles; he served as head 
of a number of influential organization: as chairman 
of the mathematics section of Academic Council of 
the State Committee on Professional Education of 
the USSR, as deputy head of the Academic Council 
on the Problem of the Advanced Study of Individual 
Subjects; as head of a seminar for the mathematics 
teachers of Moscow, etc. Shvartsburd developed nu-
merous curricula, including—in collaboration of V. G. 
Ashkinuze, in 1963—curricula for secondary schools 
with on-the-job education for the “computer operator” 
track, which were important for the subsequent de-
velopment of mathematics schools.

From the late 1950s on, Shvartsburd began closely 
collaborating with Professor Naum Vilenkin, a well-
known mathematician and mathematics educator 
(their first joint publication, “On Certain Applications 
of Exponential and Logarithmic Functions,” appeared 
in the journal Matematika v shkole in 1959). This col-
laboration continued in the field of the advanced study 
of mathematics, and in the development of curricula 
for grades 4–5 (the general supervisor of this work 
was A. I. Markushevich).

Shvartsburd’s file contains reviews of his work by a 
number of leading figures in mathematics and math-
ematics education. Thus, Andrey Kolmogorov wrote:

In the person of S. I. Shvartsburd, we have an 
outstanding representative of our mathemat-
ics education. In his field of organizing student 
preparation in applied mathematics in secondary 
schools and secondary educational institutions, 
he is a central figure. (Shvartsburd, 1974, sheet 24)

Elsewhere, A. N. Kolmogorov emphasizes 
Shvartsburd’s contribution to the construction of “a 
system of advanced mathematical preparation with 
a focus on numerical analysis in the upper grades of 
secondary schools” (sheet 23), which he distinguish-
es from working with schools with an advanced 
course of study in mathematics (which he also cred-
its Shvartsburd with doing, listing the textbooks that 
Shvartsburd wrote for such schools). 

A. A. Lyapunov, a corresponding member of the 
USSR Academy of Sciences, mentions the fact that S. 
I. Shvartsburd has done a great deal

for various types of intensive, specialized sec-
ondary mathematics education. These include 
different forms of elective work (such as mathe-
matics circles, Olympiads, etc.), specialized phys-
ics-mathematics schools, classes in computer 
programming, and also mathematical technical 
colleges preparing mid-ranking professional 
mathematicians. (Shvartsburd, 1974, sheet 25)

The file also contains a long letter signed by a number 
of figures in mathematics, pedagogy, and technology, 
supporting S. I. Shvartsburd’s promotion to the rank 
of doctor. The signatories of this letter include such 
well-known mathematicians as V. A. Uspensky.

 I. Shvartsburd was not elected to full membership in 
the APN. His file, however, contains no information 
about this.

DISCUSSION AND CONCLUSION

The files examined above are interesting for several 
reasons. First, they offer examples of Soviet clerical 
practices in the scientific and scientific-methodologi-
cal sphere. Today, millions of people are still alive who 
took part in that life, but even so, although a great deal 
has remained unchanged since Soviet times, many 
details have disappeared and are becoming forgotten, 
for which reason it is important to record them (for ex-
ample, the fact that in order for Ashkinuze to be hired 
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as a part-time worker, permission had to be obtained 
from the Deputy Minister of Higher and Secondary 
Education of the USSR).

Second, the files pertain to individuals whose roles 
in the creation of mathematics schools and of inten-
sive, specialized education in general—to use A. A. 
Lyapunov’s terminology—was extraordinarily im-
portant. A. N. Kolmogorov does not name Shvartsburd 
as the founder of the advanced study of mathematics 
in Russia, drawing a subtle distinction between ap-
plied advanced study, in which he clearly acknowledg-
es Shvartsburd’s preeminence, and advanced study in 
general, in which Shvartsburd is allotted an import-
ant, but not a leading role. In reality, the advanced 
study of mathematics as a whole, as has already been 
noted, grew out of applied advanced study, although, 
of course, in this process the role of, say, Kolmogorov 
himself was undoubtedly unparalleled. The names of 
the creators of a new system that exerted an influence 
over the entire world should not be forgotten, and 
consequently, the collection of details about their bi-
ographies is valuable in itself. 

But perhaps even more important is the question 
posed at the beginning of this article: where do lead-
ers in the education of the mathematically gifted come 
from? In an earlier work (Karp, 2010), we discussed 
teachers, famous ones, but nonetheless specifically 
teachers, who continued working in schools. Both 
Ashkinuze and Shvartsburd left schools and became 
involved in secondary mathematics education at a 
different level. Nonetheless, in this case, too, it may 
be said that the biographies of future leaders in the 
advanced study of mathematics can be very varied. It 
would be inaccurate, for example, based on the fact 
that mathematics schools were often perceived as 
hotbeds of liberalism (which they indeed were), to 
draw the conclusion that the individuals involved in 
organizing the advanced study of mathematics were 
inevitably opposed to the Soviet regime. Such indi-
viduals could well wish to serve the regime in good 
faith, occupying high-ranking positions if this was 
possible. To be sure, the regime did not always agree to 
offer them such positions, and could even refuse their 
service altogether (in the still-liberal year of 1968, S. I. 
Shvartsburd got elected to the APN as a correspond-
ing member, while in 1974, as a Jew who moreover did 
not occupy any high administrative position, he was 
not elected to the same organization as a full member). 

Both Ashkinuze and Shvartsburd evidently had excel-
lent preparation in mathematics, and this is probably 
the only characteristic shared by all prominent fig-
ures in the advanced study of mathematics. Another 
characteristic that is typical of the biographies of 
many of them, although naturally far from all, is a 
relative lack of access to the usual career paths, at 
least at the early stages of their careers. There is lit-
tle use in speculating what might have happened if V. 
G. Ashkinuze had been admitted to graduate school 
in mathematics immediately upon graduating from 
university. We have no information concerning the 
circumstances that caused S. I. Shvartsburd to break 
off his party-member career and to remain a school 
teacher for almost twenty years (even while main-
taining ties with academic circles, see Sector of math-
ematics, 1948).

Analyzing the life of her father, Aron Maizelis, who 
was an outstanding teacher in mathematics schools, 
Yelena Platonova (2007) objects to the explanation 
that Maizelis went to work in schools because he had 
been unable to find employment elsewhere, showing 
that even as a student Maizelis had been passionately 
interested in questions of teaching and instruction 
(which, however, does not seem to us to rule out the 
possibility that, if he had been given the opportunity 
to teach at a higher educational institution, he would 
not have done so). In any case, given the absence of 
precise biographical information, one can only spec-
ulate. It may be argued, however, that both Ashkinuze 
and Shvartsburd were in situations in which, in or-
der to achieve success, they had to turn their lives 
around somehow, to find something new, which had 
not been envisioned previously. Thornton and Peel 
(1999) wrote about the importance of the teacher’s 
creativity for cultivating creativity in the students. 
In certain cases, life itself impelled the teachers to 
be creative.

In conclusion, we should say that the aforementioned 
shortage of information poses new problems for re-
searchers. It would be extremely interesting to con-
tinue gathering information both about those figures 
in mathematics education who are the focus of this 
article, and about others. One would like to hope that 
personal and state archives still exist in which docu-
ments have survived that are capable of shedding a 
light on the history of mathematics schools and their 
creators. Such research must be continued.
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The present study aims to investigate whether creativity 
is domain general or domain specific, by relating stu-
dents’ performance on two tests: the Creative Thinking 
Test and the Mathematical Creativity Test. Four hundred 
and seventy six students (Grades 4–6) participated in 
the study. Through confirmatory factor analysis we pur-
ported to compare the fitness of two a-priori theoretical 
models, representing creativity either as domain general 
or domain specific. Correlation and crosstabs analysis 
were also conducted in order to examine whether the 
data obtained from the two creativity instruments were 
related and/or were in agreement, respectively. Data 
analysis converged that creativity is domain specific. 

Keywords: Domain general, domain specific creativity.

INTRODUCTION

The generality-specificity issue of creativity “goes 
to the heart of the question of what it means to be 
creative” (Baer & Kaufman, 2005, p. 158). Indeed, the-
oretical and practical issues are related to the way 
that creativity is approached. For instance, some of 
the proposed definitions embrace context, assuming 
that the creative ability is specialized in one or more 
cognitive fields, whereas others do not make any 
reference to specific areas (Baer & Kaufman, 2005). 
Moreover, the adopted identification procedures are 
either based on a general creativity test, in order to 
predict individual’s creative potential in every field, 
or use domain specific instruments. Similarly, the 
educational practices and material for the enhance-
ment of students’ creative ability either focus on the 
development of general abilities that are applicable 
across domains or they are differentiated amongst 
various domains.

Taking into consideration the previous discussion, 
the necessity for conducting research that will shed 
light on this controversial issue of generality-spec-
ificity seems warranted (Silvia, Kaufman, & Pretz, 

2009). Indeed, such research is prerequisite of any 
other research in the domain due to its fundamental 
position to direct the appropriate adopted theoretical 
definition as well as the methodology employed and 
data analysis conducted. Hence, the present study 
purports to contribute in this direction by examin-
ing whether creativity is domain general or domain 
specific. 

What is following is a review on the existing liter-
ature about defining and approaching creativity as 
domain general or as domain specific. Afterwards 
the methodology used in the study will be presented. 
Finally we will present the results obtained from the 
data analysis and discuss them. 

THEORETICAL CONSIDERATIONS

Creativity as domain general 
Domain general perspective views creativity as a 
universal ability which contributes to all creative 
achievements (Plucker, 1999), assuming that this abili-
ty is transferable and applicable in any cognitive area 
(Plucker & Zabelina, 2009). According to Beghetto and 
Kaufman (2009), the creative expression is similar in 
all cognitive areas and therefore, a person who has 
demonstrated a high level of creativity in a field is 
anticipated to show correspondingly high level of 
creativity in various fields.

Domain general view of creativity has been support-
ed by empirical findings which either verified the 
predictive power of domain general instruments on 
creative achievements in several fields or concluded 
with similarities by comparing the creative ability in 
different fields (Beghetto & Kaufman, 2009). In par-
ticular, Charyton and Merill’s study (2009) found high 
consistency between a general creativity instrument 
and a domain specific instrument, concluding that the 
creative behavior is independent of the field under 
investigation. Kaufman and Baer (2005) described the 
creative process and the creative product in various 
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disciplines (e.g., poetry, psychology, mathematics), 
concluding that creative individuals exhibit similar 
characteristics and skills in a wide range of disciplines. 
Similarly, Root-Bernstein and Root-Bernstein (2004) 
examined the background of creative scientists and 
artists and found that many scientists were artistic 
and vice versa. Thus, they proposed that the distinc-
tion between different types of creativity might be 
artificial. 

Creativity as domain specific 
Domain-specific creativity emerged as a major theo-
retical position in the 1980s  , assuming that creativity 
cannot be understood if there is no reference in the 
domain in which it takes place (Plucker & Zabelina, 
2009). In this context, the skills, the traits and knowl-
edge that underlie creative ability are differentiated 
between cognitive areas (Beghetto & Kaufman, 2009). 
Several studies presented evidence to support do-
main specificity of creativity (e.g., Baer & Kaufman, 
2005; Plucker, 1999). 

In these studies researchers concluded with low cor-
relations between creative results in different fields of 
knowledge indicating that there is not a general crea-
tive ability that contributes to creative performance 
in different disciplines (e.g., Plucker & Zabelina, 2009). 
In particular, Hocevar (1976, in Baer, 1998) found that 
the correlations among various self-report indices of 
creativity in different domains were low to moderate. 
In the same line, Baer (1991) found low or non-statis-
tically significant correlations between verbal and 
mathematical creative tasks. In a systematic work 
conducted by Baer (1993) with students from child-
hood to adulthood, he concluded that independently 
of age groups and content the correlations were con-
sistently low. 

Furthermore, using more advanced statistical anal-
ysis researchers reached multiple-factors models to 
describe the structure of creativity, verifying that 
there are distinct domains that differentiate creative 
ability (Silvia, Kaufman, & Pretz, 2009). For instance, 
Kaufman and colleagues (e.g., Kaufman, Cole, & Baer, 
2009) suggested a multi-factors model to describe 
creativity. 

PURPOSE OF THE STUDY

By considering the abovementioned discussion, it is 
obvious that both the domain general and domain 

specific perspectives of creativity are supported by 
strong arguments leading to a polarization of the de-
bate (Silvia, Kaufman, & Pretz, 2009). The field is still 
blurred and the question whether creativity is domain 
general or specific remains unanswered. Hence, this 
study aims to examine this issue. 

Moreover, Silvia, Kaufman and Pretz (2009) claimed 
that the methodology and statistical analyses followed 
by researchers may affect their conclusion regarding 
generality and specificity. For instance, the majority 
of research studies which used correlation analyses 
concluded to creative generality while research stud-
ies which used advanced statistical methods found 
evidences for the domain specificity of creativity. In 
order to eliminate these limitations, in the present 
study we will use a combination of statistical analyses, 
in order to investigate whether different statistical ap-
proaches offer affirmative evidences for one direction.

This study has two purposes: (a) to investigate wheth-
er creativity is domain general or domain specific; 
(b) to examine whether the exploitation of different 
statistical approaches leads to similar conclusions 
concerning the generality-specificity issue. 

METHODOLOGY

Four hundred and seventy six students attending 
Grades 4 (N=202), 5 (N=165) and 6 (N=109) in public 
schools in Cyprus participated in the present study. 
Aiming to investigate whether creativity is domain 
general or domain specific, two tests were adminis-
tered: the Mathematical Creativity Test (MCT) and the 
Creative Thinking Test (CTT). The tests were admin-
istered in paper and pencil form and one hour was 
allocated to students for completing them (MCT: 40 
minutes, CTT: 20 minutes). 

Mathematical Creativity Test (MCT)
The MCT consisted of four multiple-solutions tasks 
with problem solving and problem posing situations 
(see Fig1), taking into consideration relevant research 
studies on mathematical creativity (e.g., Kattou, 
Kontoyianni, Pitta-Pantazi, & Christou, 2013). The 
selection of the four tasks included in the MCT was 
based on the results of a task analysis that took place 
at a previous phase of the study. For each task students 
were asked to provide multiple solutions, solutions 
that were distinct from each other and solutions that 
none of their peers could provide. This was done 
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in an effort to capture students’ fluency, flexibility 
and originality. These three abilities constituted the 
assessment criteria. In particular, the assessment 
was based on the number of correct mathematical 
solutions students’ proposed (fluency), the number 
of different mathematical ideas included in students’ 
answers (flexibility) and the scarcity of answers (orig-
inality) (Kattou, et al., 2013). 

Specifically, we employed the assessment method pro-
posed by Kattou and colleagues (2013): (a) Fluency 
score: we calculated the ratio between the number 
of correct mathematical solutions that the student 
provided, to the maximum number of correct math-
ematical solutions provided by a student in the pop-
ulation under investigation. (b) Flexibility score: we 
calculated the ratio between the number of different 
types of correct solutions that the student provided, 
to the maximum number of different types of solu-
tions provided by a student in the population under 
investigation. (c) Originality score: it was calculated 
according to the frequency of a student’s solutions in 
relation to the solutions provided by all the students 
(score 1 was given to students whom one or more of 
their solutions appeared in less than 2% of the sam-
ple’s solutions, score 0.8 was given to students whom 
one or more of their solutions appeared between 2% 
and 5%, score 0.6 was given to students whom one or 
more of their solutions appeared between 6% and 10%, 
score 0.4 was given to students whom one or more of 
their solutions appeared between 11% and 20%, score 
0.2 was given to students whom one or more of their 
solutions appeared in more than 20% of the sample’s 
answers). Therefore, three different scores yielded for 
each student in each task. The final score of the test 
was obtained by adding the respective scores of flu-
ency, flexibility and originality in the four tasks and 
then by converging them to a scale ranging from 0 to 1.

Creative Thinking Test (CTT)
The CTT included two tasks, one verbal and one 
figural, taken from the respective subtests of the 

Torrance Tests of Creative Thinking (Torrance, 1974). 
Concretely, the first task required students to provide 
unusual uses of a common everyday object, while 
the second one asked students to complete simple 
repeated figures to make a picture. Students were 
asked to provide as many answers as they could in a 
specific time interval. Their answers were assessed 
according to their fluency, flexibility and originality 
as described above.

Data analysis
The data were quantitatively analysed with the mode-
ling program Mplus (Muthén & Muthén, 1998) in com-
bination with the statistical package SPSS. Specifically, 
correlation analyses took place aiming to examine the 
correlation between participants’ performances in 
the two tests. Moreover, crosstabs analysis allowed 
us to examine whether the two tests provided similar 
or different results regarding the identification of 
creative individuals. Confirmatory Factor Analysis 
(CFA) was employed, to test the validity of alternative 
theoretical models that present creativity as domain 
specific and domain general. The alternative models 
that were compared are discussed below.

Model 1 regards creativity as domain general. In this 
model creativity is defined across fluency, flexibility 
and originality, independently of the instruments 
used. Model 2 regards creativity as domain specific, 
implying that distinct creative abilities exist. Thus 
domain specific creativity in mathematics is differ-
entiated from the creative ability that was measured 
with a test not targeted in mathematics. Each of the 
domain specific creativities is comprised by the abil-
ities of fluency, flexibility and originality. 

RESULTS

Correlation analysis
Aiming to investigate the existence of correlations be-
tween the creative abilities (fluency, flexibility, origi-
nality) of the same test or/and between the same crea-

Make as many groups of numbers as you can, using the numbers given below. Label each group with its charac-
teristic.

2, 3, 7, 9, 13, 15, 17, 25, 36, 39, 49, 51, 60, 64, 91, 119, 121, 125, 136, 143, 150

Warnings:  You can use each number in more than one group. 
Each group should contain more than two numbers.

Figure 1: Example of tasks from the Mathematical Creativity Test
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tive ability between the two tests, correlation analysis 
was conducted, as presented in Table 1. From the cor-
relation analysis it can be deduced that all variables 
were significantly correlated with each other (p<.01). 
However, the correlations exist between the abilities 
of the same test were higher (ranging between r=.579 
and r=.812), as they are compared to the correlations of 
the same ability across the two tests (ranging between 
r=.208 and r=.421). 

To examine whether the two tests used in the pres-
ent study identify the same participants as creative, 
crosstabs analysis was conducted. It is important to 
mention that the participants were primarily split 
in categories according to their performance in each 
test. Specifically, four groups emerged based on stu-
dents’ performance on the MCT and four other groups 
emerged based on their performance on the CTT as 
follow: Group 1 included students whose performance 
belonged to the lowest 15% of performances on the cor-
responding test, whereas Groups 2 and 3 included stu-
dents whose performance belonged between 15%-50% 
and 50%-85% of performances, respectively. Group 4 
included students whose performance belonged to 

the highest 15% of the performances (max score was 3 – 
the score was obtained by adding fluency, flexibility 
and originality scores). The descriptive statistics of 
each group of students are presented in Table 2.

Crosstabs analysis was also conducted aiming to in-
vestigate whether students who were classified as 
creative using the MCT were also creative according 
to the CTT and vice versa. The results of the analysis 
are presented in Table 3.

Data analysis showed that 4.20% of the participants 
were identified as creative with both instruments. 
However, among the students who were regarded as 
high mathematical creative (Group 4) only the 28.99% 
(20 out of 69) were also regarded as creative accord-
ing to the CTT. Similarly, only 27.78% (20 out of 72) of 
the students who were highly creative using the CTT 
for their assessment (Group 4) were mathematically 
creative as well. Based on the abovementioned per-
centages, a student who is creative using as indica-
tor his/her performance in one of the instruments 
is not necessarily identified as creative by the other 
instrument. 

CTT MCT

Fluency Flexibility Originality Fluency Flexibility Originality

Fluency CTT 1 .615 .579 .421 .237 .166

Flexibility CTT .615 1 .595 .301 .208 .198

Originality CTT .579 .595 1 .314 .225 .214

Fluency MCT .421 .301 .314 1 .719 .621

Flexibility MCT .237 .208 .225 .719 1 .812

Originality MCT .166 .198 .214 .621 .812 1

Table 1: Correlations between fluency, flexibility, originality in MCT and CTT

Groups according to CTT Groups according to MCT 

Ν (%) Mean (SD) Ν (%) Mean (SD)

Group 1 72 (15.13) .99 (.23) 71 (14.92) .56 (.12)

Group 2 164 (34.45) 1.54 (.14) 168 (35.29) .91 (.10)

Group 3 168 (35.29) 1.93 (.10) 168 (35.29) 1.24 (.11)

Group 4 72 (15.13) 2.26 (.14) 69 (14.50) 1.66 (.16)

Total 476 (100) 1.70 (.41) 476 (100) 1.08 (.35)

Table 2: Descriptive statistics of the groups of students
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Confirmatory factor analysis 
Confirmatory factor analysis allowed us to compare 
the validity of the structure of two alternative models 
for creativity. For the evaluation of model fitness, three 
indices were taken into consideration: The chi-square 
to its degree of freedom ratio (χ2/df ), the comparative 
fit index (CFI), and the root mean-square error of ap-
proximation (RMSEA) (Marcoulides & Schumacker, 
1996). An acceptable model should have the value of 
CFI higher than .90, the value of χ2/df lower than 2 
and the value of RMSEA lower than .08 (Marcoulides 
& Schumacker, 1996). During the comparison of al-
ternative models, apart from the appropriate values 
of indices, we choose the model with the highest CFI 
index and the lowest AIC and BIC indices (Marcoulides 
& Schumacker, 1996). What follows is a description of 
the structure of the two alternative models, however, 
only the model with the best “fitness” on the data of 
the present study will be presented diagrammatically, 
due to space limitation.

In Model 1 creativity is a second order factor which 
consists of the general abilities of fluency, flexibility 
and originality. Each of these three abilities constitute 
first order factors that are constructed by students 
corresponding performance in the two tests. This 
model implies that independently of the measure or 
the domain, fluency, flexibility and originality form 
a general factor, that of domain general creativity. 
Data analysis indicated that the Model 1 does not have 
good indicators of adjustment to the research data 
(CFI=.961, χ2=276.614, df=115, χ2/df=2.405, RMSEA=.063, 
AIC=-7515.508, BIC=-7282.245), due to the fact that the 
χ2/df is higher than 2.

Model 2 (see Figure 2 in Appendix) suggests that dif-
ferent types of creativity exist which form different 

factors: creativity measured using the MCT and cre-
ativity measured with the CTT. Each domain specific 
type of creativity is comprised of fluency, flexibility 
and originality. Confirmatory factor analysis showed 
that Model 2 has very good “fitness” on the data of 
the present study (CFI=.990, χ2=152.926, df=111, χ2/
df=1.378, RMSEA=.039, AIC=-7631.196, BIC=-7381.703). 
In particular, the analysis suggested that two inde-
pendent second order factors exist. Each of these con-
text-dependent creative abilities is formed by fluency 
(MCT: r=.96, p<.05, CTT: r=.87, p<.05), flexibility (MCT: 
r=.99, p<.05, CTT: r=.98, p<.05), and originality (MCT: 
r=.95, p<.05, CTT: r=.86, p<.05), implying that fluency, 
flexibility and originality in the two instruments do 
not constitute a common factor but they are distin-
guished according to the stimuli. Indeed, each of the 
three components of content-dependent creativity is 
comprised by the corresponding performances on the 
specific measurement. For instance, the second order 
factor “Fluency” in the MCT is comprised by “Fluency 
1”- “Fluency 4”, that is the measured fluency ability in 
the four tasks of the MCT. 

Comparing the two models, the second model has a 
better fit to the data; firstly the CFI index has higher 
value in Model 2 as compared to Model 1 (CFIModel1=.961, 
CFIModel2=.990,); secondly Model 2 has the lowest 
value of AIC and BIC indices (AICModel1=-7515.508, 
AICModel2=-7631.196, BICModel1=-7282.245, BICModel2=                  
-7381.703,), thirdly Model 1 has an inappropriate value 
for one of the indices that are taking into account for 
the evaluation of model fitness (χ2/df=2.405>2). 

DISCUSSION

Is creativity domain specific or domain general? 
Although both opposing views have been examined 

CTT
MCT

Group 1
N (%)

Group 2
N (%)

Group 3
N (%)

Group 4
N (%)

Total
N (%)

Group 1 25 (5.25) 27 (5.67) 16 (3.36) 4 (0.84) 72 (15.13)

Group 2 19 (3.99) 69 (14.50) 60 (12.61) 16 (3.36) 164 (34.45)

Group 3 23 (4.83) 57 (11.97) 59 (12.40) 29 (6.09) 168 (35.29)

Group 4 4 (0.84) 15 (3.15) 33 (6.93) 20 (4.20) 72 (15.13)

Total 71 (14.92) 168 (35.29) 168 (35.29) 69 (14.50) 476 (100)

Table 3: Results of the crosstabs analysis
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and empirically supported by several researchers, is 
still one of the enduring controversies of the creativ-
ity research. According to Baer and colleagues (Baer, 
1998; Baer & Kaufman, 2005) the importance in an-
swering that question goes to the heart of the field and 
consequently influences the educational practices. 
Due to the importance of the domain generality-speci-
ficity issue both in educational and research domains 
(Baer, 1998; Kaufman & Baer,   2005), the present study 
attempted to investigate this controversial issue. 

The result obtained through data analyses converged 
to the domain specificity of creativity. Specifically 
through the comparison of two alternative theoretical 
models which define creativity as specific or general, 
confirmatory factor analysis confirmed the appropri-
ateness of the domain specific model. By employing 
similar statistical analysis other researchers found 
multiple-factors models to describe the structure of 
creativity, verifying that there are distinct domains 
of creative ability (Kaufman, Cole, & Baer, 2009). 
Therefore, psychologists and educators should no 
longer characterise individuals as creative, but in-
stead, as creative in specific domains. Consequently, 
research work on creativity is anticipated to be spe-
cialized in different fields in order to develop an inte-
grated picture of the concept, rather than considering 
creativity as a general aspect.

This result was also supported by the correlation anal-
yses which aimed at investigating the relationships 
between creative abilities (fluency, flexibility, orig-
inality) on two different dimensions: correlations of 
the same creative ability between the two instruments 
and correlations of the three creative abilities within 
the same instrument. Negligible correlations were 
found between the same creative ability across the 
two measurements (e.g. MCT fluency- CTT fluency), 
whereas high correlations were observed between 
the three abilities (fluency, flexibility, originality) 
that were measured within the same instrument. 
Low correlations between creative results in different 
domains were identified by numerous researchers 
(Baer, 1991; Kaufman & Baer, 2005; Plucker & Zabelina, 
2009). By interpreting this result, one may assume 
that there are not identical and systematic creative 
abilities which may arise to stimuli of different do-
mains; hence the existence of “a universal creativity” 
which is transferrable from one cognitive field to an-
other is rejected (Kaufman & Baer, 2005).

Finally, the results of the crosstabs analysis illustrated 
that students’ performance on the two creative instru-
ments were not in agreement. In particular, a high 
percentage of participants who were considered as 
creative using one of the instruments were not con-
sistently found as creative using the other instrument, 
whereas only a low percentage of participants were 
identified as creative by both instruments. Based on 
these results we can conclude the inadequacy of gener-
al creativity instruments to identify creative thinking 
in specific domains. Hence, the necessity for develop-
ing domain specific instruments to measure creative 
ability is obvious (Hong & Milgram, 2010). Extending 
the above conclusion, by identifying a student who is 
creative in mathematics does not necessary imply that 
she/he is also creative in art or literature, and vice 
versa. Additionally, a student who has shown high cre-
ative ability in one field is not automatically excluded 
from being creative in the subject of mathematics. 
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APPENDIX

Figure 2: Model of domain specific creativity
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The relationship between mathematical creativity, 
knowledge and expertise is a phenomenon which can 
be seen as a “creativity-knowledge dilemma”: Having 
knowledge is a necessary condition for a person to be 
creative; on the other hand, creativity is an important 
condition for knowledge construction. In this paper, we 
analyze mathematical activity that is directed at both 
the development of problem solving expertise and crea-
tivity in geometry. Creativity in this study is connected to 
the discovery of new properties of the given geometrical 
objects through investigation in DGE. We introduce a 
framework for the analysis of the complexity of a dis-
covered property. Based on the analysis performed, we 
hypothesize that (1) discovery skills can be developed 
in people with different levels of problem solving exper-
tise while the range of this development depends on the 
expertise; (2) the discovery process is rooted in the prob-
lem-solving expertise of a person.

Keywords: Mathematical creativity, problem-solving 

expertise, geometry investigations, complexity of 

discovery.

BACKGROUND

In his arguments about the importance of creativ-
ity for child development, Vygotsky (“Imagination 
and creativity in childhood,” 1930, and “Imagination 
and creativity in Adolescents,” 1931) maintains that 
imagination is goal-directed, culturally mediated, 
and emerges from the interweaving of fantasy and 
conceptual thinking. In his view, the development of 
creativity is one of the essential elements of the child’s 
mental and social development. The educational sys-
tem should pay attention to this construct. 

Vygotsky (1982/1930) argues that imagination (crea-
tivity in our terms) is the central mechanism in the de-
velopment of children’s knowledge, since imagination 
allows them to construct connections between their 
existing knowledge and the new pieces that they study. 
Going a step further, we argue that creative activities 
in mathematics allow students to design mathematical 
connections and use their mathematical knowledge 
in an unlearned fashion. In this sense, creativity is 
a necessary condition for knowledge construction. 
To the contrary, creative processes in mathematics 
presume discovery of new mathematical constructs, 
properties and regularities to expand mathematical 
knowledge to new territory. This requires previous 
knowledge and the ability to critically evaluate that 
the discovered facts are new. In this sense, knowledge 
is a necessary condition for a creative process. Thus 
we consider the knowledge-creativity dilemma an 
intriguing phenomenon and try to explore it. 

Relative and absolute creativity
The rationale for investigating creativity in school 
children lies in the shift from a static view on math-
ematical creativity to a dynamic characterization of 
personal development (Leikin, 2013). Rather than 
looking at creativity as a personal characteristic giv-
en at birth (“a gift”), we consider it a personal creative 
potential that can be developed if appropriate oppor-
tunities are provided for the learner. This position 
requires a distinction between absolute creativity as 
associated with discovery or invention at a univer-
sal level and relative creativity which is considered 
with respect to a specific person acting in a creative 
way within a specific reference group (cf., objective vs. 
subjective creativity in Lytton (1971), and that of Big C 
vs. Little C creativity in Csikszentmihalyi (1988)). For 
example, the distinction between absolute and rela-
tive creativity is obvious in Yerushalmy (2009) who 
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provided analysis of curricular design, mainly based 
on mathematical investigations, which implies the de-
velopment of mathematical creativity in all students. 

Our study explores connections between relative 
creativity and expertise associated with geometry 
investigations. We compare their creative activity by 
prospective mathematics teachers (PMTs) with the 
creative activity of an expert in mathematical prob-
lem solving (Sharon – pseudonym).

Problem solving expertise
An expert in mathematics has been described as hav-
ing a more robust mental imagery, more numerous 
images, the ability to switch efficiently and effec-
tively between different images, the ability to focus 
attention on appropriate features of problems, and 
having more cognizance of their thought and of how 
others may think (Carlson & Bloom, 2005; Hiebert 
& Carpenter, 1992; Lester, 1994). Individuals with a 
coherent understanding of a particular mathemati-
cal topic have a complex system of internal and ex-
ternal representations that are joined together by 
numerous strong connections to form a network of 
knowledge. In contrast to experts, a student’s system 
of representations of a mathematical concept may be 
deficient in number and deficient in connections to 
form an adequate network of knowledge (Hiebert & 
Carpenter, 1992; Lester 1994). 

Whereas a novice uses a conventional means-ends 
analysis to solve problems, an expert categorizes 
problems according to solution principles and applies 
those principles in a forward-working manner to the 
givens of the problem. The expert’s knowledge-based 
strategy is dominated by previous experience. He or 
she “knows into which category the problem should 
be placed and knows which moves are most appropri-
ate, given that particular type of problem” (Sweller, 
Mawer, & Ward, 1983, p. 640).

Expert knowledge is also likely to be organised as 
hierarchical schemas (Chi, Feltovich, & Glaser, 1981). 
Problem-solving schemas are knowledge structures 
that consist of prototypical aspects of the problem 
type including declarative information about the fea-
tures, facts, principles, and strategies associated with 
the problem. Experts have been shown to spend more 
time on features designated as critical to the problem 
(Morrow et al., 2009; Shanteau, 1992) and to rapidly 
encode features of problems based on goal-relevant 
representations. In the study on which this paper is 
based we were interested in examining how the inves-
tigation procedures performed by novice and expert 
problem solvers differ.

Mathematical investigations
We believe that mathematical investigations should be-
come an core component of any mathematical course 
whether the participants in the course are teachers 
or students. While mathematical investigations are 
central to the activity of any research mathematician 
who is ultimately creative in the field of mathematics, 
mathematical discovery is always accompanied by 
enjoyment, it raises self-esteem and leads to curiosity 
and courage to make a new discovery. And as such it is 
necessary and should be in curricula for all learners.

Leikin (2014) analysed interplay between 
Mathematical Investigations (MIs) and Multiple 
Solution Tasks (MSTs). She argues that MSTs and MIs 
are effective instructional tools for balancing the level 
of mathematical challenge in the mathematics class-
room and, thus, for realizing students’ mathematical 
potential at different levels. Particular emphasis is 
placed on varying levels of mathematical challenge in 
school mathematical classroom by employing MSTs 
and MIs.

In this paper we provide an additional view on MIs 
with DGE used as a basic element of a teacher educa-
tion course. In this context, MI is an integrative math-
ematical activity that includes experimenting, discov-

Figure 1: Problem 1



Creativity and expertise: The chicken or the egg? Discovering properties of geometry figures in DGE (Roza Leikin and Haim Elgrabli)

1026

ering, conjecturing, verifying and proving. Problem 
1 illustrates an investigation problem in our study.

THE PROPOSED FRAMEWORK FOR THE EVALU-
ATION OF INVESTIGATIONS

The goal of the study presented in this paper was to 
design the criteria for the evaluation of MIs from the 
point of view of investigation processes and investi-
gation products.

We analyse MIs using the construct of spaces of 
discovered properties as analogous to the notions 
of example spaces (Watson & Mason, 2001) and solu-
tion spaces (Leikin, 2007). We distinguish between 
individual spaces of discovered properties which are 
collections of properties discovered by an individual 
based on a particular problem and collective spaces 
of discovered properties which are a combination of 
the properties discovered by a group of individuals.

The analysis presented in this paper is based on two 
case studies (CS): 

Case study-1 (CS-1) is focused on the collective space 
of properties discovered by Prospective Mathematics 
Teachers (PMTs) who are considered (in this study) as 
non-experts in geometry problem solving. The PMTs 
participated in the 56 hours courses directed at the 
development of their problem-solving expertise and 
the ability to create new geometry problems through 
investigations in DGE (see also Leikin, in press). The 
sessions with PMTs were videotaped and artefacts 
of their works were collected. Additionally the PMTs 

presented their investigations to the whole group of  
PMTs and these presentations were also video-re-
corded.

Case study-2 (CS-2) is focused on Sharon’s (expert’s) 
individual space of discovered properties. The inves-
tigation in this case was performed in the form of a 
thought experiment. Sharon was interviewed after 
the thought experiment to better understand the ways 
in which he arrived at the discoveries.

SPACES OF DISCOVERED PROPERTIES

In this section, Figure 2 depicts the non-expert col-
lective space of discovered properties for Problem 1 
which was achieved at the end of the 56 hours courses 
(CS-1). Note that the investigation activities were new 
for the PMTs at the beginning of the courses and the 
discovery skills were developed through the course. 
Figure 3 presents Sharon’s expert space of discovered 
properties for Problem 1 (CS-2).

THE FRAMEWORK FOR THE ANALYSIS 
OF DISCOVERED PROPERTIES 

The framework for the analysis of discovered prop-
erties is based on the analysis of the expert spaces of 
the discovered properties in CS-1. The distinctions 
between the discovered properties was defined as a 
complex function of 

-- the newness of the property discovered in the courses 
of investigation, 

Figure 2: The PMTs non-expert collective space of discovered properties
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Figure 3: The expert individual space of discovered properties
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-- the complexity of the auxiliary construction per-
formed for the investigation and 

-- the complexity of the proof of the new property. 

Newness of the discovered property
The newness of the discovered property is relative to 
the educational history of the participant. This crite-
rion reflects participants’ critical reasoning and the 
ability to evaluate the property as either discovered 
in the process of investigation or one that was known 
previously. As such, we distinguish between three 
levels of newness of the discovered property: 0-trivial, 
1-less trivial, 2-nontrivial.

For example, in Figure 3, properties 1a, b, c, d, g, are 
categorised as trivial, properties 1e, 1f, 1l, 1m are less 
trivial, whereas properties 1h, 1i, 1j, 1k, 1o. 1p, 1q, 1r, 
1s, 1t, 1*,  1u, 1v, 1w, 1y, 1z are categorised as not trivial 
since they require complex proofs. Property 1* is a 
special one since through search for the proof of the 
property, Sharon discovered additionally several new 
properties

Complexity of the auxiliary construction 
We distinguish between three levels of complexity 
of the auxiliary constructions (Table 1) according to 
two criteria:

Criterion 1: The location of the auxiliary construction. 
The property is discovered based on the auxiliary 
construction “within the given figure” vs. auxiliary 
construction “outside the given figure” (e.g., proper-
ties 1x, 1y, 1z Figure 3). Constructions “within/in the 
given figure” include (but are not restricted to) mark-
ing points on the border or in the interior part of the 

figure, construction of segments within the figure by 
connecting existing points or the new ones, construc-
tion of special lines (medians, bisectors, altitudes, in-
scribed circles) and more. Constructions “outside” the 
figure are more complex than those “within” the figure.

Criterion 2: The number of the auxiliary constructions. 
The property can be discovered without any auxilia-
ry construction while the conjecture is raised on the 
basis of the measurement of segments, angles, areas 
and perimeters of the existing elements in the given 
figure and the comparison of these measurements. 
The number of the auxiliary constructions required 
for the discovery of a property determines the level 
of complexity of the property.

Through a combination of Criteria 1 and 2, we deter-
mine the complexity of the auxiliary construction as 
presented in Table 1.

For example, in Figure 3, the levels of complexity of 
the auxiliary constructions are 1 for properties 1l and 
1m; 2 for properties 1e and 1f, 3 for properties 1o, 1r.

Complexity of the proof of a 
discovered property
Complexity of a proof of the discovered property is de-
termined by the length of the logical chain of the proof 
and its conceptual density (Silver & Zawodjewsky 
1997). Table 2 presents the levels of proof difficulty 
as determined in this study.

The complexity of a discovery is determined accord-
ing to the combination of the complexity of auxiliary 
construction and the complexity of proof (see  Table 3).

The number of 
constructions

Location

0 1 2 3 and more

Within N/A Easy (1) Medium (2) Difficult (3)

Outside N/A Medium (2) Difficult (3) Difficult (3)

Table 1: The complexity of the auxiliary construction

Proof length
Conceptual density (number of concepts and 
properties used during the proof )

1–3 steps
easy

4–6 steps
medium

 7 and more
difficult

1–2 concepts/properties – easy Easy (1) Medium (2) Difficult (3)

3–4 concepts/properties – medium Medium (2) Medium (2) Difficult (3)

5 and more concepts/properties – difficult Difficult (3) Difficult (3) Difficult (3)

Table 2: The complexity of a proof
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DISCOVERY STRATEGIES

Within the space constrains of this paper we pres-
ent shortly the discovery strategies identified in this 
study (CS-2). We identified eight types of discovery as 
associated with the process of discovery:

1) Immediate discovery 

2) Discovery by chance (through wondering drag-
ging in DGE) 

3) Discovery through association with another 
problem 

4) Discovery in the search for a proof 

5) Discovery based on the previous knowledge of 
related properties 

6) Discovery in the course of proof 

7) Discovery by symmetry considerations 

8) Intuitive discovery

COMPARING EXPERT AND NON-EXPERT 
SPACES OF DISCOVERED PROPERTIES FOR 

Table 3 shows the investigation process performed 
by the non-experts (properties 1.1.-1.7) and the expert 
(properties 1.a-1z) in problem solving. It also includes 
the analysis of the complexity of the discovered prop-
erties and describes the type of discovery.

Property  
(in Tables 1 and 
2)

Complexity of the discov-
ery 
(A, B, C)
A-newness of discovery
B-complexity of auxiliary 
construction
C-complexity of proof 

Type of discovery

CS-1:   Non-
Expert space  
of discovered 
properties

1.1 (0, 0, 1) By chance (in DGE)

1.2 (1, 2, 1) By chance (in DGE)

1.3 (1, 2, 2) By chance (in DGE)

1.4 (0, 0, 2) By chance (in DGE)

1.5, 1.6, 1.7 (2, 3, 3) By chance (in DGE)

CS-2:   Expert 
space  of dis-
covered prop-
erties

1a, 1b, 1c, 1d  (0, 0, 1) Immediate

1n (0, 0, 2) Immediate

1g (0, 0, 1) By knowledge of properties

1e (1, 2, 1) Through association with other problem

1f (1, 2, 2) By knowledge of properties

1l (1, 1, 2) By knowledge of properties

1m (1, 1, 3) By knowledge of properties

1o (2, 3, 1) Through search of proof

1r (2, 3, 2) By knowledge of properties

1h, 1t (2, 3, 2) Through association with other problem

1i, 1j, 1k (2, 3, 3) Through search of proof

1*, 1p, 1v, 1y (2, 3, 3) By chance (in DGE)

1s, 1u (2, 3, 3) Immediate

1z (2, 3, 3) Intuitively

1q, 1w (2, 3, 3) Symmetry considerations

Table 3: Complexity and the type of discovery
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DISCUSSION

Based on the framework for the analysis of geome-
try investigations and the findings presented in this 
paper, we argue that creativity can be developed in 
people with different levels of problem solving ex-
pertise, but the range of the development depends 
on the expertise. The differences in such a range are 
reflected in the amount and the complexity of discov-
eries depicted in Figure 2 and Figure 3 and Table 3. 

While surprisingly both expert and non-expert 
spaces of discovered properties include trivial and 
non-trivial discoveries, obviously, the expert space 
of the discovered properties is richer. Interestingly, 
non-experts discovered properties that were not dis-
covered by the expert (properties1.5, 1.6, 1.7) and thus 
we do not consider any expert space of discovered 
properties as a complete one.

The major difference between expert and non-expert 
investigations is in the investigation strategies ap-
plied. Most of the discoveries by non-experts in prob-
lem solving are discovered “by chance” by observation 
of regularities which are immune to dragging. On the 
contrary, the discoveries by the expert were based 
on his mathematical knowledge and problem-solv-
ing expertise. Moreover, many of the discoveries “by 
chance” were based on the experts’ attempt to search 
for a proof with the help of DGE.

Based on the findings presented in this short paper, 
we argue that problem solving expertise is a core 
element in the development of investigation skill in 
geometry that is a development of creativity. This de-
velopment in PMTs is a rather “painful” process which 
requires them to overcome multiple difficulties relat-
ed to geometry construction, grasping the meaning of 
dragging, proving and refuting multiple conjectures. 
Through the development of investigation skills, we 
also develop problem-solving expertise in PMTs and 
thus hope that creativity will be further developed. 
The process of this development is an objective of our 
current new study.
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Usually a mixture of student’s interest, qualitative teach-
er’s observation and quantitative tests is used in order to 
identify mathematical giftedness. However, for children 
with hearing impairment, traditional ways of identi-
fication and diagnosis need to be adjusted, especially 
when it comes to quantitative aspects. The challenges 
of this process are illustrated by a case study and con-
clusions (like less time limits in tests, more visual helps) 
are drawn.

Keywords: Mathematical giftedness, hearing impairment, 

identification, inclusion.

INTRODUCTION

In 2008, the UN Convention on the Rights of Persons 
with Disabilities was ratified in consequence of The 
Salamanca Statement and Framework for Action on 
Special Needs Education in the context of the UNESCO 
World Conference of Special Needs Education: Access 
and Quality in 1994. The Convention aims at ensur-
ing „an inclusive education system at all levels“ (UNO, 
2008, Article 24) which satisfies the needs of „all chil-
dren regardless of their physical, intellectual, social, 
emotional, linguistic or other conditions. This should 
include disabled and gifted children“ (UNESCO, 1994, 
6). And therefore, the question of how to recognize 
and foster children that bring together two different 
specifics, i.e., hearing impairment and mathematical 
giftedness, is massively challenging and important.

The purpose of the study is to present a first explora-
tion of the field and start the development of appro-
priate research questions with regard to the identifi-
cation of mathematically gifted students with hearing 
disabilities. Further, we outline several complexities 

in the identification of gifted children with special 
needs that require future systematic research.

THEORETICAL BACKGROUND

The following paragraphs shortly summarise some 
facts from literature on the identification of mathe-
matical giftedness, children with hearing impairment 
(hi) and the mathematical development of hi-children.

Identification of mathematical giftedness
According to Renzulli (1978), giftedness is character-
ised by above average ability, high levels of task com-
mitment, and high levels of creativity. These aspects 
are acknowledged to be important for giftedness in 
mathematics education as well (Leikin, 2011). As al-
ready discussed in Brandl (2014), there are different 
ways of identifying and selecting promising students 
for reasons of fostering (in mathematics). One option 
is to rely on the students’ own interest in mathematics 
as the main motivational force and most important 
factor for mathematical giftedness (see amongst many 
others Kruteskii, 1976). A second way is to trust in 
teachers’ choices, adding a qualitative external selec-
tion component to the students’ interest (see Linke & 
Steinhöfel, 1986, for example). A third option would 
focus on quantitative methods and result in testing 
the students (see Nolte, 2012; Kontoyianni et al., 2011, 
amongst many others). In general, identification pro-
cesses often are designed as a combination of these 
three ways (see Wagner & Zimmermann, 1986, for 
example).

Children with hearing impairment (hi-children)
The term ‘hearing impairment’ comprises several 
cases: dysfunctions of the auditory system, hardness 
of hearing, deafness. It may be caused by genetic rea-
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sons, trauma or disease. However, the terms “deaf ” 
(d) or “hard of hearing” (hh) which are accepted in 
their community of people, not only imply the de-
gree, type or configuration of hearing impairment, 
but also the way of communication the person uses. 
Most of hh-people rely on residual hearing and com-
municate through speaking and lip-reading. In noisy 
environments, however, it can be very hard for them 
to communicate verbally. Thus, they are likely to face 
various difficulties at school and differ in their edu-
cational and psycho-social development from their 
hearing (h) classmates. An hh-person may use a hear-
ing aid to perceive what is spoken around him or her. 
In case of severe impairment, the person may not be 
able to distinguish any sounds or spoken language, 
even with a hearing aid. The majority of d-people use 
sign language to communicate. The majority of the 
h-people neither use sign language, nor do they have 
an understanding of the special needs of hi-children. 
This is why hi-children often find themselves facing 
great challenges with regard to their language skills, 
potentially carrying away gaps in vocabulary and 
difficulties in articulation, for example. This is likely 
to have an impact on their cognitive and social-emo-
tional development (Leonhard 2002, pp. 71ff.). 

Mathematical development and 
giftedness of hi-children
Pagliaro and Kritzer (2012, p. 139) summarise the re-
sults of current studies and conclude: “Consistently, 
over decades and across grade levels, deaf/hard-of-
hearing (d/hh) students in various countries have 
scored poorly on mathematics assessments.” The au-
thors try to explain this “math gap” of d- and hh-chil-
dren by the limited experiences and lack of ability to 
learn mathematical concepts, e. g. numbers by inci-
dence, because of the language barriers separating 
them from their natural environment. Gregory (1998, 
p. 122) names two other possible reasons for the diffi-
culties especially of d-children to cope with mathemat-
ical tests and assessments: the nature of specialized 
mathematical language and the suppression of sign 
language in mathematical education. Because of this 
reduction, mathematical signs cannot be developed 
in an appropriate way.

Further reasons for the differences in the develop-
ment of mathematical thinking can be found in the 
specifics and obstacles within communication pro-
cesses between hi- and h-people. Solving mathemati-
cal word (and modelling) problems usually starts with 

reading and understanding written texts. These texts 
often contain short words (e.g., prepositions), which 
are underemphasized in spoken language and can 
easily be overheard (or overseen by hi-students, when 
relying on lip-reading or sign-language). Moreover, 
there are specific mathematical terms like “product” 
or “root” which have different meanings in the com-
mon spoken language. This proves to be difficult to 
express in sign-language or figure out by lip-reading. 

Engel (2000, p. 17) reports that many hi-children de-
velop strategies in order to solve word problems with-
out entirely understanding the text. These children 
try to simplify and restructure the text. This process 
can be compared with the reading of fill-in-the-blank 
texts. In some cases, these strategies are successful, 
in many others they are not. Cohors-Fresenborg 
(1988, pp. 102ff.) claims that hi-children excelled in 
solving problems, which had been represented vis-
ually or haptically without using written or spoken 
language. These children achieved particularly high 
scores, when it came to problems which demanded 
high modelling competences (reconstruction and 
reorganization). Biographies of famous deaf mathe-
maticians and scientists also show that hi-people can 
be brilliant problem solvers or gifted mathematicians 
(confer Lang & Meath-Lang, 1995, p. 407). Obviously, 
not every hi-person is a mathematical genius, and the 
same applies to h-people. There are, however, hi-stu-
dents who are very interested and gifted in mathemat-
ics, and eager to solve mathematical problems. As for 
the discussed language difficulties of hi-students, it is 
not easy to recognise their mathematical giftedness, 
because most diagnostic instruments use spoken or 
written language to represent mathematical prob-
lems.

Giftedness of children with special needs can be 
masked by their disability. Gifted children with disa-
bilities also often use their intelligence to compensate 
for their impairment. That is why it could be very 
difficult to recognise special needs of gifted children 
(Krochak, 2007; Nielson, 2002). Children whose hear-
ing is impaired cannot respond to oral directions in 
the same way hearing children do, and they may also 
lack the vocabulary expressing the complexity of their 
ideas. They sometimes cannot respond to tests requir-
ing verbal responses (Whitmore & Maker, 1985). Since 
the population of gifted students with special needs 
is difficult to locate, they are seldom represented in 
standardised test norming groups. This makes every 
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comparison highly problematic. Pedagogical litera-
ture related to gifted hi-students lists criteria which 
should help to recognise giftedness, i.e., Excellent 
memory, Rapid grasp of ideas, High reasoning ability, 
Superior performance in school, Wide range of inter-
ests, Nontraditional ways of getting information, Use of 
problem-solving skills in everyday situations, Delays in 
concept attainment, Self-motivation, Ingenuity in solv-
ing problems, Symbolic language abilities like different 
symbol system (Cline & Schwarz, 1999; Whitmore & 
Maker, 1985).

METHOD

In order to illustrate aspects of the diagnostic chal-
lenge, a single case study was done.

Description of the student
The study deals with Leon1, who is now visiting a 5th 
grade at the special school for hi-children in Berlin, 
where pupils are grouped in small classes of ten. The 
classrooms are equipped with technical aids and 
visual materials in order to support spatial thinking, 
and, compared to conventional schools for h-children, 
students get more time to work on their assessments. 
At the beginning of the study in August 2012, Leon was 
still a 3rd grader. According to the pupil’s record, Leon 
suffers from bilateral2 sensorineural3 severe hearing 
loss of 60 to 70 dB. Leon is hard of hearing since he was 
born. Since his first year he has been using hearing 
aids, but it is still difficult for Leon to perceive spoken 
language without being able to watch the lips of his 
communication partners. Leon’s parents and all his 
siblings are hearing and use oral language to com-
municate. It was not until he started school, that Leon 
was confronted with sign language. After one year, 
his parents decided to invest in one-to-one-language 
therapy. Because of Leon’s special needs with regard 
to language, his parents finally sent him to the special 
school for hi-children.

At the beginning of 3rd grade, Leon had difficulties 
to express himself and to articulate his thoughts. 
Misunderstandings and conflicts with his classmates 
or even teachers were frequent and usually ended up 
in tears. Probably in order to avoid these situations, 
Leon very often waived explanations of his needs and 
feelings. Still, even more remarkable than Leon’s com-
municational obstacles was and is his tremendous 
motivation to do mathematics. According to an in-
terview done with his former mathematics teacher, 

he attracted her attention during the mathematics 
lessons through his eagerness to solve mathematical 
problems and his endurance when working on diffi-
cult and new tasks. According to his educational file, 
Leon discovered multiplication on his own by work-
ing with Montessori materials for preschoolers in 
kindergarten, when he was four years old.

At school, he works in mathematics classes with con-
centration, listens to the teacher and his classmates 
very carefully and examines what they said mathe-
matically. He always manages to complete more math-
ematical tasks and problems than his classmates and 
sometimes poses his own questions and problems to 
the teacher as well. The tasks Leon tried to avoid in 
3rd grade were word problems. Usually, his mood 
changed as soon as he was presented with a word 
problem. He often did not even start working on it, 
unless his teacher encouraged him strongly. Then 
he asked for the meaning of some words and tried to 
solve the problem, but he was not always successful, 
mainly because of textual misunderstandings and 
mismatches between the world of mathematics and 
the world of written German language.

Despite his difficulties, the mathematics teacher who 
taught him in 1st and 2nd grade recommended Leon 
for “Mathe-Treff ” at Humboldt University in Berlin. 
This is a program for gifted students from primary 
schools from all over the city. The “little mathema-
ticians” meet once a week for one and a half hour 
to solve mathematical puzzles and problems. They 
are assisted and observed by students of the educa-
tional department and the leader of the project, Prof. 
Marianne Grassmann. The biggest part of mathemat-
ical puzzles and problems is verbalized in written 
German language, so this represented a real big chal-
lenge for Leon. For this reason, two students from the 
department for special education were supporting 
Leon. They adapted mathematical word problems to 
his communication level and offered their help. Not 
all children managed to participate till the very end of 
the course, because it was not easy to stay motivated to 
do mathematics after a long school day. However, Leon 
was among those who completed the whole one-semes-
ter course successfully.

Identification method for 
mathematical giftedness
In Leon’s case the decisive factor for the identification 
of mathematical giftedness was the teacher’s recom-
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mendation. As mentioned earlier, the careful obser-
vation of the child during class can be a successful 
qualitative method. A very important part of this ob-
servation method was the study of the child’s written 
products. We examined number tasks and word prob-
lems, both done within regular mathematics lessons. 
These observations were accompanied by a quanti-
tative extracurricular assessment, intelligence and 
development test: In order to compare Leon with his 
hearing peers and to see his mathematical giftedness 
within the context of his general development, the 
IDS (Intelligence and Development Scales) for five- to 
ten-year-old children was used as a further diagnos-
tic instrument (Grob et al., 2009). IDS was invented 
to provide differentiated insight into intelligence 
and general development in areas like Cognition, 
Psycho-Motorics, Social-emotional Competence, 
Mathematics, Language and Achievement Motivation 
at the beginning of the school career. It focuses on 
the dynamics of so-called individual “strengths” and 

“weaknesses” and puts them in relation to the child’s 
development profile and to his corresponding peer-
group. The test consists of different modules4 and can 
be used as a whole or in parts. Except for the mod-
ules Phonological Memory and Auditive Long-Term 
Memory, it is possible to pose and solve the test tasks 
without spoken language. More language instruction 
is necessary when it comes to the modules describing 
General Development.

IDS was chosen as a diagnostic instrument, because it 
allows for comparison of Leon’s intellectual abilities 
with the average population. It provides for precise 
and distinctive insights into different areas of the 
intellectual and social development and shows the 
interaction of talents and special needs. It could help 
to avoid that intellectual abilities and language needs 
collide. In this sense it could provide insights into the 
ability to compensate for hearing and language prob-
lems. Besides, the part Achievement Motivation of the 
IDS allows for conclusions about task commitment, 
which according to Renzulli (1978) can serve as an 
important characteristic of mathematical giftedness. 
It is difficult to make conclusions about mathemati-
cal creativity using IDS as a quantitative instrument, 
since the answers are standardised. That is why Leon 
was asked to talk about IDS-items and to explain his 
solutions, which were written down and then used as 
questions for qualitative interviews. 

Since time was very limited, Leon was not exposed 
to the whole test. Instead, a selection of Intelligence, 
Social-emotional Competence, Mathematical 
Competence, Expressive Language Competence and 
Achievement Motivation was chosen. When taking 
the test Leon was 9 years and 7 months old. The test 
was completed in a one-on-one situation.

RESULTS

We illustrate how written products can indicate math-
ematical giftedness by describing and analysing some 
chosen cuttings from Leon’s booklet and items of the 
IDS test.

Number tasks (regular lessons)
Leon’s answer to the question: “Draw your favourite 
number.” was the number 201031 which has six dig-
its. Leon also knows that 200000 + 1000 + 31 = 201031. 
At this moment most children in the classroom were 
expected to deal with numbers under 1000. Some of 
them painted numbers above 2000 but not above 3000. 

When it came to the figurative representation of num-
bers with three digits, Leon invented his own notation. 
The task for “Zahlenbild” was to find a symbolizing 
picture for numbers. (Example: the number is 300. 
Intended and trained solution: □□□). In contrast to 
other children he did not draw three squares in order 
to represent for example three hundred as a sum, but 
he used a multiplication sign to shorten the notation 
(□x3). So, Leon’s solution does not confine itself to 
non-mathematical (purely additive) pictograms but 
extends it by bringing in abbreviating mathematical 
symbols.

Some months later the students learned how to add 
numbers under 1000 via an algorithm. Leon did not 
only use this algorithm to solve several given prob-
lems without a single mistake, but invented his own 
problems with bigger numbers and looked for new 
regularities.

Word problems (regular lessons)
Compared to a regular school, at the special school for 
hi-children mathematical word-problems are usual-
ly verbalized clearer and the numbers in it are kept 
small in order to make it easier for the students to 
solve them. Further, text problems have been trans-
lated into visual representations or supported by 
other special tools like small blocks and Montessori-
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materials. Students could use stamps to solve the 
problems or to control their results. The problems 
were offered at three difficulty levels. Leon chose the 
easiest problem first and controlled his result with 
stamps. In a second step he applied his solution to a 
more difficult problem dealing with spiders. Since he 
had understood the structure of the first problem, he 
was now able to transfer it onto the text structure of 
the spider-problem without using stamps as visual 
aids. Remarkably, Leon found it important to notice 
the commutativity of the multiplication.

Assessment, Intelligence and Development 
test IDS 5–10 (extracurricular)
Leon’s intellectual performance with IQ = 109 lies 
according to the IDS in the upper average area in re-
lation to his hearing peers. In the sub-test Selective 
Attention Leon achieved the highest possible score 
[Value Points (VP) = 19]. The scores in the sub-tests 
Auditive Long-Term Memory and Conceptual 
Thinking are above the average [VP = 14]. The other 
scores lay within the standard norm of his peers [VP 

= 9, 11, 12, 12]. It is remarkable, that Leon could manage 
all tasks of the sub-tests in Figural Thinking almost 
within the standardized time limits.5 Leon’s answers 
in the sub-test Social-emotional Development show 
that he can perceive and recognize other people’s emo-
tions within average norm [VP = 9]. Likewise, Leon 
is able to regulate his emotions [VP = 14] and under-
stand social situations [VP = 13] better than most of 
his peers. However, he showed heavy deficits with 
regard to the aspect Social Acting [VP = 6]. In the sub-
test Achievement Motivation Leon again reached the 
highest possible score. Leon’s score in the sub-test 
Expressive Language lay way below the average norm 
[VP = 2]. He was able to express his thoughts, but he 
could hardly do it in the grammatically correct way 
as it was expected in the standard test. Some of his 
sentences are difficult to understand. However, if the 
sentences containing semantic and grammatical er-
rors counted as correct, Leon would have reached VP 

= 12, which corresponds to the average. Within limited 
time he attained VP = 14 in the sub-test Mathematics, 
which is above the average. Without time-limitation 
Leon managed to solve all mathematical problems 
except one word problem and reached VP = 19, which 
is far above the average compared to children of his 
age. In order to gain deeper insight into Leon’s math-
ematical thinking we will discuss some items of the 
test closer.

There were two very similar word problems which 
were read out loud to the children. The respective 
tested child was given toys (small doll, cat, dog and 
cups) to illustrate the solution and was expected to 
explain it. Leon managed to solve one problem and 
was not successful with the other. The reason was 
that the chosen vocabulary and the text structure of 
the unsolved problem were more complicated than in 
the problem Leon could solve. Other problems were 
verbalized as well, but they could be solved almost 
without understanding the text. The information 
needed was also represented by visuals or symbols. 
Leon soon ignored the text and solved them only by 
using mathematical symbols. In the second task he had 
to deal with numbers which, by that time, were no sub-
ject matter of the mathematics curriculum: „A counter 
is counting people, who are coming into the stadium. 
The counter shows this number. What would the 
counter show, if 201 more people would come to the 
stadium? Write the numbers into the nearby blanks“ 
(Figure 1 left). Leon solved the problem and even put 
a point into the number. This demonstrates, that he 
understood the meaning of the written symbols. The 
next two problems referred to Geometry: “How many 
cubes are in this figure? Fill in” (Figure 1 bottom). In 
these tasks Leon showed his good abilities in figural 
and spatial thinking.

The final problems checked his orientation in the 
range of numbers 0 to 100000. Since Leon had until 
then only learned numbers under 10000, he found 
himself working with new numbers and still man-
aged to find the correct solutions in the given time. 
He could not solve the very last problem in the given 
time, but he found out the right numbers after the 
time was over. This appears even more remarkable, 
since he transferred his knowledge about numbers 
under 10000 to numbers over 10000 (Figure 2 bottom).

Figure 1: IDS/Items 14 to 16
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CONCLUSION

Language barriers essentially complicate the identifi-
cation of mathematically gifted hi-children. However, 
the documents presented in the results section clearly 
show that a hi-child like Leon can also develop the 
ability to analyse the structure of numbers, to play 
with them, to invent an own notation, to work with dif-
ferent modes of representation and to compensate for 
his language difficulties by visual help (for example 
stamps) or mathematical signs (multiplication sign). 
Although these results were achieved in the setting 
of a special school, the case study of Leon can inspire 
appropriate combinations of qualitative and quantita-
tive methods that can work out successfully in regular 
(inclusive) schools, too: documents and products from 
student observations combined with standardised 
tests (perhaps including less time limits and more 
visual helps) may overcome language barriers and 
lead to differentiated insights into the child’s possi-
bilities. In the end, this could be of great help not only 
in order to predict a hi-student’s success in programs 
for gifted children, but also in order to provide him 
with the individual support needed.

The results of the study correspond with criteria for 
mathematically gifted hi-children and the study leads 
to the following future research questions: What 
kind of information about mathematical giftedness 
of children with hearing difficulties allows for a quan-
titative comparison with children without hearing 
difficulties? Does it mean that hi-students with the 
same score as hearing students have greater compe-
tence, given the knowledge that they compensate for 
their disadvantages? In what way need criteria for 
mathematically giftedness to be altered in order to 
address students with hearing problems? How can 
this information help to predict hi-students’ success 
in programmes for fostering mathematical giftedness 
that are usually designed for hearing students?
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ENDNOTES

1. “Leon” is a pseudonym because of protection of pri-
vacy. The child’s real name is known to the authors.

2. in both ears

3. caused because of dysfunction of the inner ear

4. Visual Perception, Selective Attention, Phonological 
Working Memory, Spatial Working Memory, Auditive 
Long-Term Memory, Conceptual Thinking and 
Figural Thinking build General Intelligence.

5. Results which were scored without time limitation 
were not considered by the calculation of the IQ, but 

they still show that Leon could achieve more if he has 
more time and that he is able to concentrate as long as 
it takes him to get the correct solution.
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To engage in challenging tasks, students need to feel 
some autonomy and competence. Providing structure 
within the task can help to meet these needs. This study 
investigates the influence of structure within a mod-
elling task on mathematical creativity among 79 elev-
enth-grade groups of students. Two versions of the task 
were developed and the groups were randomly assigned 
within their classroom to one of these. The analysis ex-
plored: (i) the level of mathematical creativity in groups 
solutions and (ii) if they were dependent on the amount 
of structure. The results were not statistically significant 
and, therefore, the question remains open. Additional 
results and implication of this study to mathematics 
education are further discussed. 

Keywords: Integral calculus, creativity, modelling, 

collaborative learning, structure.

INTRODUCTION

Researchers express different views with regard to 
creativity and its connection with the learning en-
vironment. Some claim that creativity can be seen 
as a disposition towards mathematical activity and 
therefore it can be fostered through specific instruc-
tion, such as problem-solving (Silver, 1997). Others see 
creativity as characteristic of extraordinary individu-
als (Weisberg, 1988) and thus, not likely to be strongly 
influenced by the learning environment. Also, sev-
eral researchers connect creativity to self-regulated 
learning (Feldhusen & Goh, 1995) and psychological 
characteristics such as task commitment and moti-
vation (Renzulli, 1978). In our research we share the 
view that mathematical creativity can be fostered by 
adequate instruction and we study the relationship 
between aspects of the learning environment (e.g., 
task characteristics) and mathematical creativity. 

This study is part of a longitudinal intervention re-
search in which we investigate how aspects of the 
learning environment influences students’ motiva-
tion, self-regulation and academic performance in 
mathematics. We developed a learning arrangement 
in which we used differentiated tasks with a deeper 
and broader content and method to create a more au-
thentic and challenging learning context. The partic-
ipants are 16/17 years old students in pre-university 
education in The Netherlands. Part of our research is 
to investigate which amount of structure is optimal 
for the students. We developed two versions of the 
same learning arrangement. One version consists 
of low-structured (LS) tasks and provides more open 
tasks, more choice and initiative for students. The oth-
er version contains more high-structured (HS) tasks, 
which still provide some choice but also hints, more 
sub-questions and guidance.  

In this paper we discuss our findings with regard to a 
modelling-task: the parachute jump (Figure 1), which 
was used within the topic Introduction to Integral 
Calculus. Modelling-tasks as problem-posing tasks 
have been seen by several researchers as excellent 
opportunities for mathematical creativity (Kim & 
Kim, 2010; Chamberlin & Moon, 2005). The research 
questions that guided our study were: 

 ― What can we say about the mathematical creativ-
ity of students’ productions with regard to the 
parachute jump task?

 ― In which way does variation in the amount of 
structure in the parachute jump task influences 
students’ mathematical creativity?
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THEORETICAL FRAMEWORK

Mathematical reasoning and creativity
Mathematical creativity can be seen as the ability of 
students to create useful and original solutions in 
authentic problem-solving situations (Chamberlin & 
Moon, 2005). The core activity of the parachute task is 
to build a model that can be applied in the particular 
example and other situations. The students’ products 
can then be evaluated in terms of mathematical cre-
ativity. In the literature, mathematical creativity is 
often defined in terms of three components: flexibility, 
fluency and originality (Silver, 1997; Yuan & Sriraman, 
2001). Flexibility can be seen as the ability to generate 
multiple solutions to a given problem. Fluency can be 
seen as the ability to use several relevant ideas to solve 
the task and, in problem-situation tasks it is connected 
to many interpretations, methods, or answers Silver 
(1997).  Originality concerns different solutions or 
innovative ways to approach a problem. 

Measurement of mathematical creativity remains 
critical. One reason is the absence of a universal defini-
tion applicable in different academic domains (Leikin 
& Lev, 2013; Kattou, Christou, & Pitta-Pantazi, 2015). 
Another reason is that one person’s creativity can only 
be assessed indirectly (Piffer, 2012). The ability of pos-
ing problems given one mathematical scenario have 
been linked by several researchers to mathematical 
creativity (Silver, 1997; Yuan & Sriraman, 2001). Also, 
over the past years, researchers (Leikin & Lev, 2013) 
developed an analytical framework that can be used 
to evaluate creativity in students’ productions using 
the components fluency, flexibility and originality. 
Mathematical creativity with regard to modelling ac-
tivities often includes a fourth component: usefulness, 
which concerns the degree of relevance, adaptability 
and generality of solutions with regard to real world 
situations (Chamberlin & Moon, 2005). The criterion 
of usefulness has been contested by some authors. 
Sriraman (as cited in Yuan & Sriraman, 2001) argues 
that mathematics creative work might not be useful in 
terms of its applicability in the real world. Chamberlin 
and Moon (2005) propose the Quality Assurance Guide 
as a reliable instrument to evaluate creativity in stu-
dents’ products on modelling tasks. Each solution is 
scored within one of five levels. Level 1- requires redi-
rection- the product is on the wrong track and work-
ing harder or longer will not improve it. At level 2, the 
product requires major extensions or refinements, 
the product is a good start towards meeting the goal 

of the task. At level 3, the product is nearly ready to 
be used; it is useful for the specific data or sharable 
or reusable. At level 4, no changes are needed and at 
level 5, others can use it as tool in similar situations. 

High- and Low-structured 
tasks (HS and LS- tasks)
According to Silver (1997) problem-oriented instruc-
tion can assist students to develop more creative ap-
proaches to mathematics by increasing their capacity 
with respect to the core dimensions of creativity: flu-
ency, flexibility, and originality. For instance, ill-struc-
tured problems require problem posing and conjec-
turing, which can foster the generation of novel con-
jectures. Silver (1997) stated: “It is in this interplay of 
formulating, attempting to solve, reformulating, and 
eventually solving a problem that one sees creative ac-
tivity” (p. 76). However, engaging in problem-solving 
activity also requires certain ability and disposition 
to deal with uncertainty and challenge. Aspects of 
the learning environment that have been found to 
support the development of such disposition are au-
tonomy support and structure provision (Deci & Ryan, 
2000). According to these authors, in autonomy sup-
portive environments students are allowed to make 
own decisions and are encouraged to solve problems. 
This can be achieved by providing authentic tasks and 
opportunities for taking initiative and minimize the 
use of controlling behaviour. Also, the provisions of 
structure contributes for students’ feeling of com-
petence and therefore is important for motivation. 
Providing structure involves communicating clear 
expectations, set limits to students’ behaviour and 
provide help.

Task arrangement 
We investigate the relationship between structure 
provision and mathematical creativity in a prob-
lem-oriented arrangement that consisted of the ‘par-
achute jump’ task (Figure 1) and small group work. 
Working together may enhance feelings of related-
ness and a sense of autonomy (Schuitema, Peetsma, 
& Van der Veen, 2011). And, during students’ collab-
oration there is an unpredictable flow of ideas and 
actions that emerge from the elements of the group 
while responding to each other. Levenson (2011) states: 

“Together, the group tries out various strategies and 
possibly produces solutions based on different math-
ematical properties or different representations” (p. 
230). This is tied to mathematical creativity in the 
sense that participants must be flexible, establish 
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mathematical relations and approach the task in dis-
tinct or novel ways.

The ‘parachute jump’ task was entailed to provide 
challenge and authentic experiences, as these are 

important elements of autonomy supportive tasks. It 
was designed according to the following four criteria. 

Appealing and accessible to all students. The context 
of a parachute jump and the YouTube video make the 
task interesting to the students. And, the task becomes 

Figure 1: Parachute jump task
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more accessible by providing an initial example with 
concrete values and asking to compare it with the 
one in the video. The pre-knowledge needed to start 
working on the task was known from previous year 
(functions, graphs and derivatives). 

Authentic. By providing students with an authentic 
task, and enough freedom of choice we expect that 
students will be willing to spend thinking effort on it.

Foster mathematical reasoning and creativity. The ac-
complishment of the task requires the use of mathe-
matical understanding and high-level reasoning. The 
students must produce at least one representation of 
the integral function (table, formula, graph, words) 
and describe its variation at the different instances 
of the jump. This involves high-level reasoning, as 
the students must imagine the total accumulating 
distance varying over time (Thompson & Silverman, 
2008).

Suitable for collaborative learning. The task is complex 
and it can be approached at several levels of under-
standing.  Moreover, the students were encouraged 
to discuss their ideas and communicate their findings 
within the group.  

Solving the task takes about two lessons of 50 minutes 
each and some homework time. We agreed with the 
teachers that the students would work in small groups 
during one lesson on the task and that they should 
finish it in their own time (not more than one week). 
The final product would have the format of a Power 
Point or a short video-film and would be delivered to 
the teacher, who would send it to us.

METHOD

Participants and data collection
Seventy-nine groups of 3 students (16/17 years old) 
from 10 classrooms in 5 schools participated in the 
study. The data was collected in the spring 2014 and 
consists of delivered groups products and lesson ob-
servations. The groups were formed based on a cog-
nitive ability test. The 40 groups in the LS condition 
and the 39 groups at the HS condition were, in each 
classroom, random assigned to one of the conditions. 

Instrument used for the evaluation 
of mathematical creativity
The instrument that we used to evaluate the students’ 
solutions to the parachute jump is based on three of 
the four components discussed in the theoretical sec-
tion (we excluded originality because of the difficulty 
on assessing it in our data).

Usefulness regards the creation of a model that is use-
ful to describe a parachute jump. For each written 
solution, we decided whether the model was incor-
rect (level 1), was in the good way but needed major 
improvements (level 2) or it was ready to be used but 
needed editing (level 3). Levels 4 and 5 were not ob-
served in our data.

Fluency was seen as the ability to use several mathe-
matical relevant ideas to solve the task. In the context 
of the parachute task it should be connected to the 
mathematical concept of the integral function, which 
is here treated as the total accumulating distance. 
Based on our theoretical framework, we define mathe-
matical fluency as the ability to (i) link integration and 
differentiation as inverse processes; (ii) represent the 
total accumulated distance as a process (operational 
concept) and as an object (object oriented concept) 
within at least one functional representation (analyt-
ical, graphical, by words or numerical in a table); (iii) 
Indicate parameters that influence the model and to 
explain choices made.

Flexibility refers to the ability to set up a model and to 
use values that go beyond the information provided 
in the examples.  

Analysis
To investigate the first research question we oper-
ationalized mathematical creativity in terms of the 
three components and explored the frequencies 
found in the students solutions. To investigate the 
second research question we gave scores to the 3 com-
ponents and sub-components. Each student solution 
was then scored within 1–3 for usefulness, 0–2 for 
each subcategories of fluency, 0–2 for flexibility. We 
used the  Mann-Whitney test, which is indicated 
for data at ordinal level of measurement, to explore 
whether the products of the two conditions differed 
from each other.
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RESULTS

Fifty-two of the 79 groups that worked on the task in 
classroom handed in their final product to the teach-
er. In the following of this section we report on these 
products. 

Students’ creativity in terms of 
usefulness, fluency and flexibility
The first research question concerned the mathemat-
ical creativity of student productions. Table 1 shows 
that the majority of the groups solutions (36) were 
at level 1 and therefore, not useful to model the par-
achute jump. Only 16 groups produced models that 
could be used.

The results on fluency are shown in Table 2. Almost 
half of the groups (22) explicitly established the link 
between integration and differentiation. For instance, 
one group draw both graphs, with the text differenti-
ation and integration and two arrows pointing oppo-
site directions. Most of the solutions (37) presented 
traces of an operational- oriented conception of total 
distance. This means that students can draw a total 

distance graph, use formulas to calculate single values 
but have difficulty to conceptualize the total distance 
as a mathematical object on which operations can be 
performed (Sfard, 1991). Very few groups (7) showed 
to have an object-oriented conception of total distance. 
An example of a student explanation that we consider 
exemplary of object-oriented conception is: “The dis-
tance increases at the beginning very fast, during the 
free fall. After 36 second, when the parachute opens 
the velocity becomes more or less constant and the 
distance increases linearly (…)”. In contrast, students 
who would have no functional concept would not re-
fer to distance in their explanations but describe the 
changes along the jump in terms of velocity, slope of 
line graphs (the line goes up or down) or in phenom-
enological terms. Most of the groups (34) did not con-
sider parameters or provided choices. 

The results on flexibility are summarized in Table 3. 
The majority of the groups (35) used only the values 
from the example. Few groups (14) refer to the values 
of the video and only 3 groups went beyond the in-
formation given in the task setting. Figure 2 contrast 
one of these solutions (right column) with a solution 
of the major group.

Influence of HS and LS task on 
mathematical creativity
The second research question investigates wheth-
er the amount of structure in the task has effect on 

Usefulness Groups solutions (N=52)

Level 1
Level 2
Level 3

36              (45,6%)
15                 (19%)
1                  (1,3%)

Table 1: Results on usefulness

Fluency Criteria Groups solutions (N=52)

link between integration and 
differentiation

Not visible
Unclear
Explicit

24               (30,4%)
6                   (7,6%)
22               (27,8%)

Conceptions of accumulating 
distance function

No functional concept
Operational concept
Object oriented concept

8                 (10,1%)
37               (46,8%)
7                   (8,9%)

Parameters and choices No parameters nor choices
Parameters or choices
Both

34                 (43%)
11              (13,9%)
7                  (8,9%)

Table 2: Results on fluency

Flexibility Groups solutions (N=52)

Confined to example or undefined
Beyond example and confined to film
Beyond video and example

35                  (44,3%)
14                  (17,7%)
3                      (3,8%)

Table 3: Results on flexibility
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student’s mathematical creativity. Table 4 shows the 
results on usefulness, fluency, and flexibility in both 
conditions. A Mann-Whitney test indicated that there 
was no statistically significant difference between 
the two conditions for all components and sub-com-
ponents of mathematical creativity.  

DISCUSSION

In this paper we explored the influence of task struc-
ture on the mathematical creativity in students’ pro-
ductions in the context of a modelling task. Next we 
discuss our results in the light of the two research 
questions. 

What can we say about the mathematical creativity 
of students’ productions with regard to the parachute 
jump task? Overall the student solutions attained low 
scores with regard to the three components of math-
ematical creativity. Only 52 out 79 groups delivered 
their final product, none of the groups created a gen-
eral and reusable solution (levels 4 and 5) and only 
16 out of 52 groups have created a model with level 
2 or 3. Most students’ use of mathematical functions 
involved thinking in operational views rather than 
object-oriented. Also, most groups failed in consider-
ing relevant side conditions (wind, gravity, etc.) and 
parameters that are necessary to present a realistic 
model for the parachute jump. These difficulties sug-
gest that the task as we presented to the students was 
too challenging for most of them. Several researchers 
(Silver, 1997; Lithner, 2008) suggest that relationships 

between creativity and problem solving might be the 
product of previous instructional patterns. Therefore 
it is possible that students’ previous experiences 
with mathematical tasks (note that the students are 
not used to problem-oriented instruction) may have 
limited their searching process. For instance, only few 
students tried to go beyond the given examples, as it 
can be seen by the low levels of usefulness and flexi-
bility. Or, they have tried to explain their choices and 
present different parameters, as most of the students 
scored very low on these subcomponents of fluency. 
Therefore, one suggestion to improve the task is to 
provide additional information on side conditions 
that are not part of the mandatory curriculum or pro-
vide explicitly directions to look for them. Other sug-
gestion involve the improvement of students’ prob-
lem-solving activity. The teacher should encourage 
more the students during the solving process, e.g., to 
explore different paths, to look for other examples 
and not to give up too easily.  Other aspects that we 
did not discuss here but also should be taken into con-
sideration are the amount of time available to solve 
the task in the classroom, the specific directions to be 
provided by the teachers and assessment practices. 

In which way does variation in the amount of struc-
ture in the parachute jump task influences students’ 
mathematical creativity? The products created by 
the groups of students in the two conditions are not 
statistically significant different with regard to math-
ematical creativity. Therefore, the question whether 
providing more/less guidance in the mathematical 

Confined to the example Beyond the example and the film
“Imagine that you want to make a parachute jump. You want 
to make a free fall of 7 seconds. After opening the parachute 
you have a constant velocity of 3 m/s. Opening the parachute 
takes 4 seconds. After opening it you want to stay 3 minutes 
in the sky . How high must be the jump?”

Figure 2: Examples of two levels of flexibility

HS-task 
Median 

(N=27)
Range

LS-task 
Median 

(N=25)
Range

Mann-Whitney U test
(two tailed)

Usefulness (scores 1–3) 1 2 1 1 U=257.000, p=.066

Fluency (scores 0–2)
integration-differentiation
concept accumulating distance
parameters and choices

1
1
0

2
2
2

1
1
0

2
2
2

U=308.500, p=.559
U=304.000, p=.441
U=333.000, p=.992

Flexibility (scores 0–2) 0 2 0 1 U=272.000, p=.144

Table 4: Results on mathematical creativity within high- and low-structured tasks
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tasks have impact on students’ mathematical creativi-
ty remains open. In this paper we studied the effect of 
task structure on the groups products without refer 
to the solution process. However the way students ap-
proach the tasks and reasoning processes might reveal 
mathematical creativity aspects of the students not 
revealed in the final product (Karakok, Milos, Tang, 
& El Turkey, 2015). This is one question that deserves 
further investigation. Another interesting question 
to be further investigated regards the collective cre-
ativity process. In our research the students work in 
small groups, thus the intrapersonal creativity of one 
student produces a creative product which is then 
appropriated by others. In this case it is difficult to 
determine to what extend the final creative ideas and 
solutions are the product of particular students or 
from the collective (Levenson, 2011). An interesting 
question therefore is: in what extend this collective 
process is mediated by the amount of structure pro-
vision in the task?  

Concluding, although our study could not provide 
a conclusive answer to the question whether the 
amount of structure in the task influences students’ 
mathematical creativity, it contributes to the field of 
research and teacher education in two ways. It ex-
tends previous research on mathematical creativity 
by accounting the relationship between the learning 
environment and creativity and, by providing a way 
to operationalize fluency and flexibility in concep-
tual mathematical terms. And it provides a practical 
example (the parachute task) with potential to engage 
students in problem-solving and concrete suggestions 
for its implementation. The use of this kind of tasks 
in the classroom and in teacher education can help 
teachers to recognize mathematical creativity in their 
lessons and therefore to better support it. 
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The present study examined the visual perception and 
attention abilities associated with general giftedness 
(G) and excellence in mathematics (EM). The research 
involved four groups of 16–18 years old participants var-
ying in levels of G and EM. 190 participants were tested 
on a battery of visual processing tasks: visual-spatial 
memory (VSM), visual speed of information process-
ing (SVIP),Visual-perception (VP) and Visual attention 
(VA). The results support the notion that the differenc-
es between the groups are task depended. On the VSM 
(Backward visual-spatial memory span) test, differences 
in performance were associated only with EM factor, 
while on the visual-perception (Pattern-recognition test) 
and attention (D2-CP score) tests only the G factor had 
a main performance effect. SVIP was associated with 
both G and EM factors. 

Keywords: Visual processing, attention, visual speed of 

information  processing, visual-spatial memory, giftedness, 

excellence in mathematics.

INTRODUCTION

The literature regarding visual processing and atten-
tion, in relation to both general G and EM, is limited. 
Up to now, most studies have examined G and EM fac-
tors separately, while leaving out EM students who 
are not gifted (Benbow & Minor, 1990) or G students 
who are not EM (e.g., Johnson et al., 2003; Zhang, et 
al., 2006). This study is part of a larger investigation 
aimed at defining mathematical-giftedness in math-
ematics. In a previous study (Leikin, Paz-Baruch, & 
Leikin, 2013; Paz-Baruch, Leikin, Aharon-Peretz, & 
Leikin, 2014) we compared relations between G and 
EM factors and other cognitive abilities such as: mem-
ory and speed of processing abilities. In this study, we 

examine these same relations with regard to visual 
processing and visual attention abilities.

BACKGROUND

Visual processing, giftedness and 
excellence in mathematics
Generally, visual processing ability is defined as the 
ability to generate, store, retrieve and transform 
visual images and sensations; visual processing is 
also related with the ability to recall the location of 
stimuli or to recall, identify or reproduce a design 
(McGrew, 2009). 

Several studies suggest that visual speed of informa-
tion processing (SVIP) abilities are related to intellec-
tual giftedness (Dark & Benbow, 1991; Jensen, Cohn, & 
Cohn, 1989; Kranzler et al., 1994). Research has also 
demonstrated that visual-spatial ability is associated 
with general intelligence and academic achievement 
(Johnson & Bouchard, 2005). Gifted children have 
been found to respond more quickly than those with 
average IQ on a variety of SVIP (Deary, 2000; Duan, 
Dan, & Shi, 2013; Johnson et al., 2003) and visual-spa-
tial tasks (Rizza, McIntosh, & McCunn, 2001). 

Studies also showed a connection between SVIP and 
mathematical performing. Taub and colleagues (2008) 
demonstrated that visual processing speed is signifi-
cantly related to quantitative knowledge for children. 
Moreover, Fuchs and colleagues (2006) found that 
in a group of third grade children, processing speed 
was a predictor of arithmetic ability when assessed by 
crossing-out tasks, and perceptual motor speed tasks. 
Geary (2011) revealed that processing speed, predicted 
achievement in mathematics, especially in numerical 
operations. 
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The ability to understand visual representations 
is considered by researchers as an important tool 
for mathematical learning and problem solving 
(Deliyianni, Monoyiou, Elia, Georgiou, & Zannettou, 
2009). Excelling in mathematics students understand 
the problem by constructing and employing a diagram 
or a picture to help obtain a solution (Bishop, 1989).  

Visual attention, giftedness and 
excellence in mathematics

The relationship between measures of attention 
and intelligence has been investigated repeatedly 
(e.g., Crawford, 1991; Rockstroh & Schweizer 2001; 
Schweizer, Zimmermann, & Koch, 2000; Schweizer 
& Moosbrugger, 2004). Few studies examined connec-
tion between sustained attention or divided attention 
and intelligence and showed that they are correlated 
with intelligence (Scheweizer et al., 2000; Schweizer 
& Moosbrugger, 2004). Being able to maintain at-
tention for a long time at a high level is important 
whenever complex mental activities are to be per-
formed, like problem solving and reasoning, which 
are closely associated with intelligence (Schweizer & 
Moosbrugger, 2004). Gifted individuals have swifter 
access to relevant knowledge due to faster automation 
of thought processes. As a result of which, they retain 
available attention capacity to tackle additional tasks 
(Memmert, 2008). Correlation between intelligence 
and divided attention depends on the tasks to be per-
formed. Higher demanding tasks seem to yield high-
er correlations between measures of attention and 
intelligence than less demanding tasks (Scheweizer 
et al., 2000). 

Most of the literature about mathematical ability and 
attention focus on children with learning disabilities 
and on the inhibition of irrelevant stimuli. Children 
who are less proficient in math have difficulties to sup-
press irrelevant information under high processing 
demand conditions (e.g., De Beni et al., 1998; Swanson, 

2006). Anobile, Stievano, and Burr (2013) showed that 
attention and numerosity perception predict math 
scores. Individuals with higher math ability have less 
difficulty than average achievers in reducing accessi-
bility of less relevant information that could overload 
and interfere during processing (Agostino, Johnson, 
& Pascual-Leone, 2010). 

Accordingly, the goal of this study was to examine the 
connection between visual processing, attention and 
G and EM factors. We examined the hypothesis that 
G and EM factors are related differently to different 
visual processing abilities. 

METHOD 

Participants
We report herein our findings on 186 10th–12th grade 
students (16–18 years old) right-handed male and fe-
male students who were recruited for the study (see 
Table 1). The participants were subdivided in four 
experimental groups, determining the research 
population by a combination of EM and G factors: 
G-EM group: students who are identified as general-
ly gifted and excelling in mathematics; G-NEM group: 
students who are identified as generally gifted but 
do not excel in mathematics; NG-EM group: students 
excelling in mathematics who are not identified as 
generally gifted; NG-NEM group: students who are 
neither identified as generally gifted nor excelling 
in mathematics.

Tasks and materials
Visio-Spatial Working Memory test (Corsi, 1972)

This block recall task consists of ten blocks arranged 
randomly on a wooden board. The test involves two 
parts: during the first part the researcher points at a 
sequence of blocks at a rate of one per second. After 
the researcher completes indicating the sequence, the 
participant is asked to replicate the sequence. If the 

Gifted (G)
Raven > 27

Non-Gifted (NG)
Raven < 26

Total

Excelling in mathematics (EM)
SAT-M >26 or HL in mathematics with math score > 90

41 40 81

Non-excelling in mathematics (NEM) 
SAT-M <22 and RL in mathematics with math score > 
90 or HL in mathematics with math score < 80.

53 56 109

Total 94 96 190

Table 1:  Description of study groups



Visual processing and attention abilities of general gifted and excelling in mathematics students (Nurit Paz-Baruch, Mark Leikin and Roza Leikin)

1048

participant recalls the sequence of blocks correctly, 
another trial is administered. Successive trials are 
administered adding one more block each time and 
so forth until the participant fails two successive 
attempts. The maximum possible span is ten blocks.

During the second part, the researcher points at a 
sequence of blocks at a rate of one per second. After 
the researcher completes indicating the sequence, the 
participant is asked to replicate the sequence back-
wards. If the participant recalls the sequence of blocks 
correctly, another trial is administered. Successive 
trials are administered adding one more block each 
time and so forth until the participant fails two suc-
cessive attempts. The maximum possible span is ten 
blocks. The measure of both test parts was a standard 
score according to the accepted Israeli scale (from 
Hebrew version of Visio-Spatial Working Memory 
test).

Visual- matching test (Woodcock-Johnson Tests of 
Cognitive Ability, 2001)

The test consists of rows that include one target sym-
bol and 19 additional symbols. The participant has to 
circle all the symbols that are identical to the target 
symbol. The time limit for the assignment is 120 sec-
onds. 

Digit-symbol test (WISC III, 1997)

The test consists of a code table displaying pairs of 
digits and symbols, and rows of double boxes with a 
digit on the top box and nothing on the bottom box. 
The participant has to use the code table to determine 
the symbol associated with each digit (the test consists 
133 digits), and to write as many symbols as possible 
in the empty boxes below each digit. The time limit 
for the assignment is 120 seconds.  

Symbol-search (WISC III, 1997)

The test consists of rows marked by one target sym-
bol and five additional symbols. The participant has 
to decide if the target symbols appear in the row of 
symbols and to mark YES or NO accordingly. The test 
consists of 60 items and the participant has to mark 
as many items as possible within 120 second.

Pattern recognition test (Thorndike, Hagen & Sattler, 
1986) 

The test consists of two columns of cross patterns: 
Pattern A is hidden in the larger pattern B. The partic-
ipant has to draw a line around the crosses in B which 
make the same pattern as those in A. The test consists 
of 18 patterns and the time limit is nine minutes. The 
measure was accuracy (in %) of correct answers. 

D2 Test of attention (Brickenkamp, 1994) 

The D2 is a timed test for selective attention. The items 
are composed of the letters “d” and “p” with one, two, 
three or four dashes arranged either individually or 
in pairs above and below the letter. The participant 
is given 20 seconds to scan each line and mark all “d’s” 
with two dashes. There are 14 lines of 47 characters 
each for a total of 658 items. Measures of performance 
include total number of items processed (TN), Total 
number of items correctly processed (TN-E) number 
of errors (E), an index of concentration performance 
(CP), and fluctuation rate (FR) across trials.

Data analysis 
To investigate the questions addressed in this study, 
multivariate analysis of variance tests (MANOVA) 
were used to compare the scores of participants in 
each test. The between-subjects factors were: G and 
EM factors and the within-subjects factors were the 
scores on each visual processing and attention tests. 

Figure 1: Significant main effect of G factor on VP and VA tests 
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RESULTS

Between groups differences on 
visual processing tests 
MANOVA revealed an overall significant main effect 
for G factor (F(12,167)= 2.31, p< .01). Following univari-
ate ANOVA tests showed that the sources of differenc-
es between the groups are the Pattern-recognition test 
(F(1,178)= 5.15, p<.05), D2-CP (F(1,178)= 9.63, p<.05). G stu-
dent’s accuracy on Pattern-recognition test (M= 87.04, 
SD= 9.33) and their D2-CP scores (M= 191.80, SD= 35.80) 
were significantly higher than NG students (Pattern-
recognition M= 83.74, SD=11.62; D2-CP M=177.64, SD= 
21.10) (Figure 1). 

In addition, Univariate ANOVA tests revealed a sig-
nificant main effect for EM factor in Symbol-search 
(F(1,178)= 4.64, p<.05) and Backward Corsi-span 
(F(1,178)= 3.96, p<.05) tasks. As shown in Figure 2, EM 
students outperformed NEM students on Symbol-
search (EM: M= 73.62, SD= 10.22; NEM: M= 70.64, SD= 
11.22) and Backward Corsi-span (EM: M= 6.29, SD= 1.04; 
NEM: M= 6.04, SD= 0.98).

CONCLUSIONS 

The present study evaluated visual processing abili-
ties linked to G (general giftedness), EM (excelling in 
mathematics). Between-group differences in visual 

processing were found to be task-dependent. On the 
VSM (Backward visual-span) test, differences in per-
formance were associated only with EM factor, while 
on the visual-perception (Pattern-recognition test) 
and visual attention (D2-CP scores) tests only the G 
factor had a main performance effect. Visual SIP tasks 
were associated with both G and EM factors. 

The results regarding visual-perception revealed that 
G students performed significantly better on this task 
regardless of their abilities in mathematics. These 
findings are in line with results of other studies which 
suggested that a superior visualizing ability charac-
terizes highly gifted individuals (Silverman, 1995).  
The results regarding visual SIP revealed that G-EM 
students outperformed on two of the visual SIP tests 
(Symbol-search and Digit-symbol) compared to the 
other three groups. These findings are in line with 
previous studies which reported that processing 
speed is significantly related both to quantitative 
knowledge (Berg, 2008; Johnson et al., 2003; Swanson 
& Beebe-Frankenberger, 2004) and general giftedness 
(Dark & Benbow, 1991; Johnson et al., 2003; Kranzler et 
al., 1994), and are also partly reported in our previous 
study (Paz-Baruch et al., 2014). 

Our study also demonstrates that the performance 
of G students on visual attention task, as regards con-
centration performance (D2-CP score) was better than 

Main effect of EM factor

Interactions G×EM

Figure 2: Significant main effects and interactions of G & EM factors on VP tests
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that of NG students. It appears that gifted students 
are able to stay focussed on an assignment for a long 
time (elements of sustained attention) and are able to 
selectively attend to relevant stimuli while filtering 
out irrelevant stimuli in a rapid manner. 

In summary, the present study generated data on the 
visual-processing abilities of adolescents, divided into 
four groups according to giftedness and excelling in 
mathematics. The study reveals that G and EM factors 
are different yet related mechanisms. 
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The aim of this article was twofold. First, to propose a 
model for assessing mathematical challenging prob-
lems and second, to investigate the abilities of a group 
of in-service teachers to propose mathematically chal-
lenging problems based on the model suggested. The 
results indicated that mathematical challenging tasks 
may be characterised as those that are cognitively de-
manding and also require from students to develop oth-
er key competences: digital, social, communication in 
mother tongue, learning to learn and sense of initiative. 
About half of the participants of this study were able to 
provide mathematically cognitively demanding tasks 
which encompassed at least three of the other key com-
petences. Participants appeared to find most difficult 
to incorporate in their mathematical tasks the “digital 
competence” and “learning to learn”. 

Keywords: Challenging tasks, key competences.

INTRODUCTION

Mathematical tasks are considered to be in the core of 
student mathematics learning because they “convey 
messages about what mathematics is and what doing 
mathematics entails” (NCTM, 1991, p. 24). Different 
types of tasks may potentially influence students 
learning, thinking and understanding of mathe-
matics in a different way (Henningsen & Stein, 1997; 
Kilpatrick, Swafford, & Findell, 2001). For low cogni-
tive demand mathematics tasks, the emphasis is on 
practicing and repetition of known facts and proce-
dures. In contrast, high cognitive/ challenging math-
ematics tasks require understanding and extending 
concepts (Hsu, 2013). In recent years the emphasis of 
mathematics education has turned towards teaching 
challenging cognitive demanding tasks, given that 

“Challenge is not only an important component of the 
learning process but also a vital skill for life” (Taylor, 
2006, p. 2). International organizations stressed the 
importance of empowering students with key com-

petences in order to be able to confront future chal-
lenges (e.g., European Parliament and Council, 2006).

The Professional Standards for Teaching Mathematics 
(NCTM, 1991) claimed that students’ learning depends 
to a great extent on the way that teachers develop and 
implement mathematical tasks in their instruction. 
Therefore, it is important for teachers to gain a co-
herent understanding of the importance of mathe-
matical challenge in teaching and learning mathe-
matics, and moreover to be able to choose, design and 
implement such tasks in their teaching (Applebaum 
& Leikin, 2014). The purpose of the present study is 
twofold; first, to propose a mathematically challeng-
ing problem assessment tool, and second, to exam-
ine in-service teachers’ ability to design challenging 
mathematical problems. 

THEORETICAL CONSIDERATIONS

Defining mathematical challenging tasks
The main characteristic of mathematical challeng-
ing tasks is the fact that the solver is not immediate-
ly aware of the procedures or algorithms that are 
critical for its solution (Applebaum & Leikin, 2014; 
Powell, Borge, Fioriti, Kondratieva, Koublanova, & 
Sukthankar, 2009). Therefore, solvers are required 
to attempt to find a solution based on their knowl-
edge and understanding (Applebaum & Leikin, 2014; 
Powell et al., 2009). Moreover, Guberman and Leikin 
(2013) added other characteristics in the definition of 
mathematical challenge: the tasks should be neither 
too easy nor too difficult, and should engage students 
in meaningful scenarios that develop mathematical 
curiosity and motivate students to persevere with 
task completion.

The characteristics of challenging mathematical tasks 
make them suitable to cover a range of audiences and 
didactical situations (Powell et al., 2009). In particu-
lar, challenging mathematical tasks can be attempt-
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ed successfully by students of various mathematical 
backgrounds for diagnostic purposes, for learning 
new concepts and procedures, for developing math-
ematical understanding, for formative and final as-
sessment (Powell et al., 2009). Recent studies verified 
the importance of challenging mathematics tasks in 
teaching and learning mathematics. A number of re-
searchers (Hiebert et al., 2005; Hsu, 2013; Powell et al., 
2009; Silver, Mesa, Morris, Star, & Benken, 2009; Stein 
& Lane, 1996) underlined their potential to maintain 
curiosity, stimulate creativity, promote flexible think-
ing, encourage collaboration and exploration, allow 
communication, increase students’ understanding, 
promote conceptual understanding of mathematics, 
develop problem solving and reasoning abilities. 

Mathematical challenging tasks 
and key competences
The abovementioned characteristics are essential in 
a society that requires citizens to be flexible at work-
place, to adapt quickly to constant changes in an in-
creasingly interconnected world and to be innovative, 
productive and competitive (European Parliament 
and Council, 2006; Halász & Michel, 2011). Taking 
into consideration the declaration of the European 
Parliament and Council (2006) for adapting the edu-
cational systems to the demands of todays’ society by 
empowering citizens with lifelong learning abilities, 
it could be supported that the design of challenging 
problems that develop these abilities are of great im-
portance. 

Contemporary documents made use of the term “key 
competences” to determine the cognitive elements, 
the functional aspects (involving technical skills) as 
well as the interpersonal attributes (social or organi-
zational skills) and ethical values  that are important 
for personal fulfillment, active citizenship and em-
ployability (Halász & Michel, 2011). In this framework 
the European Parliament and Council proposed six 
key competences (KC), which are of equally impor-
tance and also are interrelated, as they are defined be-
low (European Parliament and Council, 2006; Halász & 
Michel, 2011). (a) Communication in the mother tongue 
and communication in foreign languages: The ability to 
understand, express and interpret procedures, con-
cepts, ideas, thoughts, and feelings, in both written 
and oral form is fundamental to human interaction, 
(b) Mathematical competences: The ability to devel-
op and apply mathematical thinking in an attempt to 
understand situations, to find explanations and to 

solve a range of problems in everyday situations, (c) 
Digital competences: The confident and critical use of 
information and communication technologies for the 
execution of educational, vocational and everyday 
work as well as for leisure and communication, (d) 
Learning to learn: The ability to pursue and organ-
ize the learning procedure of an individual or group, 
taking into account their needs and difficulties, the 
available time and information and the given oppor-
tunities and restrictions, (e) Social, civic and cultural 
competences: These competences embrace personal, 
interpersonal and intercultural aspects which equip 
individuals to engage in active and democratic partic-
ipation in social and working life, (f ) Sense of initia-
tive and entrepreneurship: Creativity, innovation and 
risk-taking are among the characteristics that assist 
individuals to materialize their objectives.

These competences are anticipated to be acquired 
both by students at the end of compulsory education, 
as well as by adults through a process of developing 
and updating their skills (European Parliament and 
Council, 2006). Thus initial education should offer all 
students the opportunities to develop key competenc-
es in a sufficient level that will equip them for adult 
and working life (European Parliament and Council, 
2006). 

Designing mathematical challenging tasks
Despite the importance of mathematical challenging 
tasks, research has shown that it is not easy for teach-
ers to design and implement such tasks in mathemat-
ics classrooms (Henningsen & Stein, 1997; Silver et al., 
2009). The first barrier lies on teachers’ pedagogical 
and content knowledge to design challenging tasks 
(Applebaum & Leikin, 2014). Teachers’ content knowl-
edge determines their understanding of the essence of 
mathematical challenge, their knowledge of challeng-
ing mathematics and their ability to approach chal-
lenging tasks (Applebaum & Leikin, 2014). As for the 
pedagogical knowledge, teachers’ knowledge of the 
way that students cope with challenging mathematics, 
as well as different approaches and learning setting 
to teaching challenging mathematics are included 
(Applebaum & Leikin, 2014). Secondly, teachers find 
it difficult to design tasks that have a rich mathe-
matical content, either by incorporating different 
mathematics topics and ideas or by demanding high 
cognitive effort (Silver et al., 2009; Stigler & Hiebert, 
1999). In particular, in a study conducted by Silver 
and colleagues (2009) 84% of the activities designed 
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by teachers focused on a single mathematics topic 
area rather than on multiple topics. Only 1 out of 3 
activities was classified as a high-demand task, since 
teachers had difficulties to incorporate requirements 
for inquiry or explanations. 

An important dimension of teachers’ work is to find 
and/or adapt tasks. Additionally, it is extremely im-
portant to evaluate whether a task is appropriate for 
a particular student, from various perspectives (level 
of difficulty, interest, prior knowledge) (Guberman & 
Leikin, 2013). Moreover during employing the tasks 
in their instruction, teachers have to decide what they 
want students to achieve, what they need to emphasize, 
how to sequence the various activities and in what 
way to support students without reducing the chal-
lenge (NCTM, 1991; Vale & Pimentel, 2011). Hence, it is 
apparent that by providing teachers with ready-to-use 
challenging mathematical tasks is not sufficient for 
their implementation. Teachers need to be convinced 
about the importance of mathematical challenge and 
develop abilities to deal with such kind of mathemat-
ics (Applebaum & Leikin, 2014).

Another issue that appears to be surfacing is the defi-
nition of a “mathematical challenging task” in today’s 
society. Is it simply a task that offers a certain level 
of mathematical, cognitive challenge to students or 
should it encompass other competences? Thus, the 
aim of the study was twofold: first, to suggest a model 
for assessing mathematically challenging problems, 
and secondly, to investigate whether in-service teach-
ers who participated in a post-graduate problem solv-
ing course could develop mathematical challenging 
problems that promote key competences.

METHODOLOGY

Participants, procedure and data collection
The research was conducted at the University of 
Cyprus with 29 post-graduate students (PGs), who 
were studying for an MA in Mathematics Education, 
during their Problem Solving Course. In this course, 
ideas arising from the Research Project KeyCoMath 
were utilized. Twenty three of the PGs had a BA in 
Primary Education, and six had a BSc in Mathematics. 

The postgraduate course on Problem Solving was 
organized in 13 three-hour seminars (a seminar per 
week). During the course students worked on the fol-
lowing topics: (a) Mathematical problems and problem 

solving: Definitions, stages and strategies in problem 
solving, different types of problems, factors that af-
fect problem solving abilities, (b) Modeling problems: 
description, modeling principles, modeling perspec-
tive vs problem solving perspective, assessment of 
modeling, (c) Problems in international competitions 
(PISA and TIMSS), (d) Problem posing, (e) Teaching 
approaches for the development of problem solving 
skills, (f ) Inquiry-based learning and problem-based 
learning, (g) Teachers role during problem solving, 
and (h) Key competences in mathematics education.

One of the assignments that the students had to do, 
for the fulfillment of the requirements of the course, 
was to work either individually or in groups (of 2 or 
3 people) and develop four challenging mathematical 
problems which would also promote key competences. 
Moreover students had to identify how key compe-
tences can be developed through these challenging 
problems. 

Data analysis
In the present study we propose a methodological tool 
to examine the extent to which a problem could be 
considered as a challenging one. To do so, we synthe-
size different theoretical approaches. For instance, 
Silver and his colleagues (2009) adopted frameworks 
that were used to distinguish levels of demands in 
mathematical tasks (see Kilpatrick, Swafford, & Findel, 
2001) and proposed criteria for coding activities as 
high or low demand. In addition, a number of organi-
zations (see European Parliament and Council, 2006) 
assert that students should develop key competences 
to meet contemporary society needs. Table 1, presents 
thoroughly the set of criteria that compose our pro-
posed assessment tool. Based on the adopted frame-
works, we propose that a problem could be classified 
as a challenging one if it required high mathematical 
cognitive demand and involved at least three out of 
the five examined key competences. 

The first assessment criterion is concerned with the 
problem’s potential to develop student’s mathemat-
ical competence. Taking into consideration Silver’s 
framework (2009), it was decided that a problem could 
be characterized as a “mathematical high cognitive 
demand”, if it explicitly required students to explain, 
describe, justify, compare, make decisions, plan, for-
mulate questions or be creative in some way (Silver 
et al., 2009). On the contrary, a “mathematical low 
cognitive demand” problem requires merely routine 
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applications of known procedures, extremely guided 
structure or challenging on non-mathematical issues. 

The second criterion of our framework relates to the 
extent to which a problem provides opportunities 
to develop student’s digital competence. A problem 
would be classified as a high digital competence task 
if it explicitly required the use of a digital device to 
search, collect or analyze data, support critical think-
ing, creativity or innovation. No-use, unclear men-
tion to the use of digital media or use of technology 
solely for executing computations were classified as 
low digital competence. The third key competence 
criterion involves social competence. A problem 
would be classified as high social competence task 
if required students’ involvement in communicat-
ing with others, to work collaboratively, to under-
stand, share and reinforce other’s ideas. Problems 
that did not require group working or peer interac-
tion were classified as low social competence tasks. 
Communication in mother tongue was interpreted 
as the ability to express and interpret concepts and 
present with clarity and accuracy their mathematical 
ideas. Thus, a problem would be classified as high in 
communicating in mother/mathematical tongue, if it 
asked students to present, justify or convince regard-
ing their solution or explain the way in which they 
used mathematical language to interpret the problem. 
The key competence learning to learn was defined as 
student’s awareness of his/her learning process and 
the ability to build on previous learning experienc-

es to transfer knowledge in a new context. Thus, a 
high demand learning to learn task required the use 
of reflective tools, such as explicit description of the 
solution plan, or the extension of the proposed solu-
tion to a different context. Finally, the key competence 
initiative was conceptualized as student’s initiative 
to take decisions, propose creative ideas, risk-taking 
in planning and managing steps in the solving proce-
dure. In this sense, the assessment criterion for high 
initiative key competence included the engagement 
of students in taking decision, planning or evaluating 
situation, the existence of multiple solutions or solv-
ing plans. This would require students to turn their 
ideas into actions by judging the risk of each solution 
plan or by applying creative ideas. On the contrary, an 
ill-define problem or extremely guided one would be 
classified as low initiative. 

Two researchers were independently assigned to rate 
each task using the abovementioned criteria. There 
was near unanimity in this coding, and wherever 
there was any disagreement this was discussed until 
consensus was reached.

RESULTS

Table 2, presents the classification of the problems 
proposed by the students based on the assessment 
model described above. In particular, 37 out of 57 
problems were classified as high demand mathemat-
ical cognitive competence. They required students 

Mathematical 
competence

Digital compe-
tence

Social compe-
tence

Communication in 
mother tongue

Learning to 
learn

Initiative

Low

Routine applica-
tions, extremely 
guided, imposed 
solution

No-use, un-
clear mention

Absence of effec-
tive interaction, 
no tolerance to 
other ideas 

No use of mathemat-
ical language, poor 
expression of ideas, in-
sufficient data or with-
out different forms of 
data (verbal, graphical, 
symbolic) 

No use of reflec-
tive questions 
or potential of 
transferring 
knowledge

Ill-structure 
problems or ex-
tremely guided

High

Explain, describe, 
justify, make deci-
sions, plan, anal-
ysis, investigate, 
explore

Explicit and 
effective use of 
digital device to 
search or ana-
lyze data

Constructive 
communication, 
group working, 
respect to other 
ideas

Express and interpret 
concepts, thoughts and 
facts in oral and writ-
ten form, proper use 
of mathematical lan-
guage, flexible use of 
different representa-
tions

Reflective tools 
and questions, 
transfer of 
knowledge to 
new contexts

Initiative to 
take decisions, 
creativity, 
risk-taking, 
plan and man-
age solution 

Table 1: Description of assessment criteria
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to investigate real life situations, use and connect 
different mathematical concepts, processes and re-
lationships. The majority of them were decision-mak-
ing problems. Four problems required from students 
to decide which the best monthly payment plan was, 
based on the advertisement of four communication 
companies. To do so, it was required to mathematize 
the problem by (i) suggesting a mathematical model 
for evaluating the monthly cost based on the offers 
of the companies, (ii) proposing the cheaper package 
that meets specific needs or (iii) proposing the best 
package for a person based on the statements of his 
account. Another problem required from students 
to propose the cheaper heating option, by taking 
into consideration the dimensions of a flat. Another 
interesting problem involved finding the best wine 
list for a cellar shop based on real costs, promotion 
costs, sale costs, delivery costs and people preferences. 
Two groups of teachers used football scenarios. They 
asked students to predict the winner of World Cup 
2014 in Brazil, by proposing a mathematical model 
that takes into consideration several parameters. 
A second group of high cognitive demand mathemat-
ical problems required the analysis of a situation and 
the design of a system for a specific goal. For instance, 
students were asked to design a camping place and 
a car park.

Twenty out of the 57 problems were classified as low 
cognitive demand because they simply asked students 
to apply known procedures. A number of low demand 
problems asked students to solve open problems, with-
out providing adequate data or their questions did not 
involve mathematical procedures or calculation (e.g., 
to describe the recipe for a birthday cake). 

The results of the study showed that only 11 mathe-
matical problems gave opportunities to develop stu-
dents’ digital competence. In particular, eight of these 
problems asked students to analyse, find connections 
and evaluate data given in spreadsheets or in specific 
links. For example, a problem required students to 
use the data provided in a spreadsheet regarding the 
population of Cyprus and Japan and use the tools of 

the software to find which of the two countries has the 
greater aging population problem. Another problem 
asked students to search on internet about the data 
of runners participated in the Olympic Games in 
London and the World Championship Athletics 2014 
and to propose the four best runners of the last years. 
The rest of the high digital competence problems re-
quired students to find the solution to the problem 
by using software. For instance, a problem asked stu-
dents to use a dynamic geometry software to design 
the floor plan of a library, by taking into consideration 
the dimensions of furniture that were provided in a 
spreadsheet. 

The majority of the proposed problems provided op-
portunities to develop students’ social competence. 
In particular, 53 out of the 57 problems required stu-
dents to work in groups, collaborate and communicate 
for the solution of the problems. Some problems re-
quired job assignment, so that all members could work 
constructively. Problems also included instructions 
regarding tolerance and respect to everybody’s ide-
as. The four low social competence problems did not 
make any reference on group work or communication 
among group members.

Almost half of the problems (28) provided opportu-
nities to develop communication in mother tongue. 
They required students to use accurate and concrete 
mathematical language, to express and explain their 
ideas both in written and oral form and to utilise dif-
ferent representations. For instance, a problem asked 
students to design a poster for presenting their solu-
tion to their peers. Other problems asked students 
to use graphs and convincing arguments to support 
their suggestion. The remaining 29 problems were 
classified as low social competence because they did 
not involve accurate use of mathematical language or 
utilisation of different representations.  

Only 20 out of the 57 problems could promote “learn-
ing to learn”. In these problems participants included 
reflection tools (see Figure 1) or they required to ex-
tend the solution method in a new situation (e.g., after 

Math. com-
petence

Digital com-
petence

Social com-
petence

Communication in 
mother tongue

Learning 
to learn

Initiative Challenging 
Problems

Low 20 46 4 29 37 22 30

High 37 11 53 28 20 35 27

Table 2: Classification of problems
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developing a model to select the most effective lights 
for University lecture theatre students were asked to 
extend their model to adapt in any room’s light). On 
the contrary, the rest of the problems did not include 
reflection tools or any extension questions. 

About half of the problems (35 out of the 57) provided 
opportunities to develop students’ sense of initiative. 
In particular, these problems required the construc-
tion of a mathematical model and the assignment of 
weights to the various criteria used in this model. For 
instance, a problem asked students to select the best 
three Universities for a prospective student based on 
specific criteria. To do so, it was required to assign 
weight to a set of criteria, such as the ranking of the 
university, the distance from home, the number of 
amenities, the distance from the airport and availa-
bility of free wi-fi. Twenty two problems were rated as 
low initiative, due to the fact that they were extremely 
structured or they were too open and ill-defined. 

Summing up, we concluded that only 27 out of the 
57 problems could be classified as challenging (high 
mathematical cognitive demand and three out of the 
five key competences). It should be noted that ten 
problems met the criterion for high cognitive math-
ematical demand, but not the criterion of developing 
three out of the five key competences. Figure 1, pres-
ents a decision-making problem provided by one of 
the participants, which fulfilled all the criteria of our 
suggested model. 

CONCLUSIONS

In this paper we proposed a model for assessing chal-
lenging mathematical problems based on mathemat-
ical features as well as other key competences. We 
suggested that a mathematical challenging problem 
should encompass high cognitive demand and at the 
same time enhance at least three out of the follow-
ing key competences: digital, social, communica-
tion in mother tongue, learning to learn and sense 
of initiative. This proposed model is in line with the 
definitions and characteristics of challenging math-
ematical problems suggested by other researchers 
(e.g., Hiebert et al., 2005; Hsu, 2013; Powell et al., 2009; 
Silver et al., 2009; Stein & Lane, 1996).

The postgraduate problem solving course allowed 
a group of in-service teachers to develop abilities to 
design challenging tasks up to a certain extent. Almost 
half of the proposed problems appeared to be able to 
develop highly mathematically cognitive tasks which 
incorporated at least three other key competences. 
However, it seemed that the in-service teachers of the 
study had a greater difficulty to develop mathemati-
cal challenging problems that promote “digital com-
petence” and “learning to learn”. Therefore, future 
studies should aim to investigate the way in which 
we may empower teachers to develop challenging 
mathematical problems which enhance students’ key 
competences.  
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This study reports on a mixed-methods design analyzing 
the problem solving processes of gifted and regular fifth 
and sixth graders (age 10–12). The analysis focuses on 
heuristic techniques, indicating that the regular pupils 
need more heuristics to be equally successful as the gifted 
ones. This finding is explained by the theory that heuris-
tics can be used by the regular students to compensate 
a lack of mental flexibility.
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intellectual flexibility.

INTRODUCTION

Within problem solving, which is a very important 
part of mathematics, heuristics play an integral role. 
It is generally assumed that the use of heuristics is 
related to problem solving with successful problem 
solvers using a greater number and variety of heu-
ristics than less successful ones. But there are still 
some issues unresolved as these results have mostly 
been obtained with regular students. The number and 
appearance of heuristics in the processes of gifted or 
creative problem solvers might differ from those of 
regular problem solvers. In this article, the problem 
solving processes of two groups of fifth and sixth grad-
ers are analyzed and compared: one group consists of 
pupils from regular lower secondary schools while 
the other group consists of pupils that have been very 
successful at mathematical competitions.

THEORETICAL BACKGROUND

The theoretical framework of this article focuses on 
an integral aspect of mathematics that is important 
for gifted as well as for regular students: on mathe-
matical problem solving and particularly on the use 

of heuristics in problem solving. After justifying the 
classification of gifted students by their participation 
in competitions, different aspects of problem solving 
are discussed. This implies the use of heuristics, their 
function of compensating a lack of intellectual flexi-
bility, as well as reports on their trainability.

Mathematical competitions provide the opportuni-
ty for students to actively engage in mathematical 
problem solving and to compete with other problem 
solvers. Successful participants of such competitions 
are mostly mathematically gifted and talented stu-
dents (Bicknell & Riley, 2012); a fact which should be 
true especially for younger students as they have less 
opportunity (only regarding their age) to compensate 
missing talent by training. Classifying the successful 
participants as gifted also fits Renzulli’s (1978) clas-
sical definition of giftedness as these students show 
above-average abilities as well as task commitment 
and creativity by solving the problems posed at math-
ematical competitions.

The term “problem solving” has different meanings 
ranging from solving routine tasks to working in per-
plexing or difficult situations (e.g., Schoenfeld, 1992). 
This article refers to the latter interpretation, prob-
lem solving as working on non-routine tasks. This 
implies that the attribute “problem” depends on the 
solver, not on the task. A task is a problem for a per-
son that does not know any procedures or algorithms 
to solve it. Instead of algorithms that just have to be 
followed step by step, heuristics can help solving prob-
lems by ordering or reducing the search space and by 
helping to generate new ideas (Rott, 2014). In this arti-
cle, heuristics are considered as methods, mental tools, 
or mental operations such as “working backwards” or 

“drawing a figure”. The use of heuristics is thoroughly 
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discussed by Schoenfeld (1992) in general and by Engel 
(1998) who focuses on mathematical competitions.

Bruder (2003) and Bruder and Collet (2011) – draw-
ing on the work of the psychologists Lompscher and 
Hasdorf – describe the qualities of creative and in-
tuitive problem solvers: One main characteristic of 
these problem solvers is their intellectual flexibility 
that allows them (amongst others) to easily consid-
er different aspects and to focus on important parts 
of problems. Bruder then divides intellectual flexi-
bility into five groups of actions, namely Reduction, 
Reversibility, Consideration of Aspects, Change of 
Aspects, and Transferring. For the actions of each 
group of intellectual flexibility, she presents heuristic 
actions that are able to help less flexible problem solv-
ers overcome their lack of intuitive problem solving 
skills. For example, the intuitive skill of structuring 
facts can be compensated by creating a table; the intui-
tive skill of reversing relationships can be substituted 
by working backwards.

Research results regarding the trainability and use 
of heuristics can be summarized as follows: In the 
1960ies and 70ies there have been several studies in 
America showing (often weak) positive correlations 
between the use of heuristic strategies and perfor-
mance on ability tests as well as on specially construct-
ed problem solving tests (Schoenfeld, 1992). Newer 
studies support this supposed relationship between 
the use of heuristics and success in problem solving 
(e.g., Komorek et al., 2007; Rott, 2012). Most of these 
studies did not only measure the number of heuristics 
used and the participants’ success in problem solving, 
but also conducted some sort of training. The results 
show consensually that usage of heuristics can be 
accomplished by training. However, these trainings 
have often been limited to small groups of problems 
with unknown transferability of strategies to other 
problems (cf. Schoenfeld, 1992); additionally, these 
trainings have been limited to regular (school and 
university) students without specifically addressing 
gifted students. The findings of these studies seem to 
support the claim of Bruder that learning heuristics 
can (at least partly) compensate the abilities of intui-
tive problem solvers in regular students. But we do not 
know enough about the abilities of creative or gifted 
problem solvers to really draw such conclusions.

The research intention of this article is to further ex-
plore the problem solving abilities of gifted students 

and to compare them to those of regular students. Can 
these two groups be distinguished by the number and 
appearance of the heuristics in their processes? In the 
short run, such a comparison can help us to better un-
derstand the way in which heuristics work. In the long 
run, this research can help us to better teach problem 
solving in schools (for gifted and regular students).

DESIGN OF THE STUDY

The aim of the research presented in this paper is to 
explore the problem solving behavior of fifth and sixth 
graders (aged 10 to 12) by analyzing and comparing 
the processes of two groups of pupils: novices and 
experts1. 

“Novices”: The so-called novices were regular pupils 
from secondary schools in Hanover, Germany that 
took part in the first four terms of the support and 
research program MALU2 for fifth graders, which 
lasted from November 2008 to June 2010 (with 10 – 15 
pupils each term). These pupils came to the University 
of Hanover once a week for 1.5 hours and worked on 
problems for about half of this time. Ability tests and 
a consideration of school grades as selection criteria 
ensured a mixture of pupils that can be classified as 

“non-gifted”.

“Experts”: The so-called pupil experts were successful 
participants of mathematical competitions, namely 
of the final round of the German Mathematical 
Olympiad3 in 2009/10 (8 pupils of grade 5 and 6) and 
price winners of the Mathematical Kangaroo4 in 2009 
(2 pupils of grade 6). As very successful problem solv-
ers at a young age, these pupils are considered to be 

1  The use of the terms „non-gifted” and “gifted” is mostly avoided 

in this context because of possible negative connotations of 

“non-gifted” and because there was no official test to ensure the 

“gifted” status of the pupil experts – however, the second group 

meets the criterion of “reproducible superior performance” for 

expertise.

2 Mathematik AG an der Leibniz Universität which means 

Mathematics Working Group at Leibniz University 

3 The German Mathematical Olympiad consists of four rounds: 

(1) tasks to be solved at home to qualify for (2) a written tests 

at schools (180 minutes for grades 5 and 6). The best 200 stu-

dents of all grades qualify for (3) the final round of the federal 

state which takes place at a central place. And the 12 winners 

of those state finals are invited to the final round of all German 

states – but this round is only for students of grade 8 and higher.

4 An international competition which consists of 30 tasks (75 

min); 5 to 6 % of the German participants receive prices.
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“gifted”. They were asked to take part in this study at the 
venue of the Olympiad and the school of the Kangaroo 
winners; the pupils did so voluntarily and have not 
worked with their video-partners beforehand.

To explore the pupils’ problem solving behavior, their 
processes were videotaped. To ensure uninfluenced 
problem solving attempts, the pupils worked with-
out interruptions or hints from the researchers. 
For the same reason the pupils were not trained to 
think-aloud or interrupted by interview questions; 
instead, they were asked to work in pairs to enable 
an insight into their thoughts through their natural 
communication. Three problems were selected for 
the comparison (see Figure 1).

METHODOLOGY

To analyze the problem solving processes as well as 
the products (everything that had been written down 
or sketched during those processes) of both groups of 
pupils, a mixed methods design has been chosen. This 
allows for detailed analyses of singular processes as 
well as an overview of all the data.

Product Coding: The pupils’ products were graded 
in four categories of success: (1) No access, when they 
showed no signs of understanding the task properly 
or did not work on it meaningfully. (2) Basic access, 
when the pupils mainly understood the problem and 
showed basic approach. (3) Advanced access, when 
they understood the problem properly and solved it 
for the most part. And (4) full access, when the pupils 

solved the task properly and presented appropriate 
reasons, if necessary. 

This grading system was customized for each task 
with examples for each category. Then, all the prod-
ucts were rated independently by the author and 
research assistants. After calculating Cohen’s kappa 
(k > 0.85 for each task), the few products with differing 
ratings were discussed and recoded, reaching consen-
sus every time.

Process Coding – Heuristics: Occurrences of heu-
ristic techniques (like drawing a figure or examining 
special cases) were coded using a manual that was de-
veloped for analyzing videotaped problem solving 
processes (see Table 1); that development was based 
on empirical processes as well as on related research 
literature (Koichu et al., 2007, being the most notewor-
thy influence; see Rott, 2012, for details). The coding 
procedure is a sort of qualitative content analysis (cf. 
Mayring, 2000) which helps ensuring its reliability 
and objectivity and makes it suitable for qualitative 
as well as quantitative analyses.

All videos were coded independently by several re-
searchers, who first identified points of time in the 
processes where heuristics were used and then char-
acterized the heuristics afterwards. In accordance 
with the TIMSS 1999 video study (cf. Jacobs et al., 2003, 
p. 103 f.), the “percentage of agreement” approach 

Figure 1: The three problems selected for the study
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(Bakeman & Gottman, 1997, p. 59)5 was used to com-
pute the interrater-reliability of randomly chosen 
videos (40 % of the processes). More than PA = 0.7 for 
identifying points of time in the videos with heuristics 
and more than PA = 0.85 for characterizing the heuris-
tics was achieved. After calculating the reliability, all 
differing codes were analyzed and recoding consen-
sually (100 % of the processes).

Pupils’ products were coded individually with the 
result that in 6 of the 55 processes discussed here the 
two members of a pair obtained results with differing 
product ratings. To manage the data, for each pair the 
better result was chosen to further work with. The 
heuristics in the pupils’ processes have also been cod-
ed individually. The numbers given here represent 
the number of different heuristics noticed for each 
pair; for example, when one member of a pair drew a 
figure while the other one didn’t do so, this heuristic 
was counted for the pair.6

RESULTS

Quantitative results
The evaluation presented here starts quantitatively 
by comparing some statistical results regarding the 
product and process codings of both groups. Looking 
at the novice group (i.e., the regular, non-gifted pu-

5 Chance-corrected measures like Cohen’s kappa are not suit-

able for this calculation, as there is no model to calculate the 

agreement by chance for a random number of heuristics dis-

tributed randomly over the course of the process.

6  Please note that in previous publications from the MALU data 

pool (e.g., Rott, 2012), the individually coded results have been 

reported. This time, the pair data is reported, therefore the 

numbers do not match those from previous articles.

pils), the results are distributed widely among the four 
product categories in all three problems indicating 
no ground or ceiling effects. As expected, the pupil 
experts are significantly more successful (c2 = 14.54; 
p < 0.001), scoring exclusively in categories 3 or 4.

For the novices, the number of coded heuristics is 
related to the success in solving the problems with 
mean scores of 1–3 heuristics in less and 3–5 heu-
ristics in more successful processes (see Table 2 for 
details). There are significant Spearman rank-order 
correlations7 for the Coasters (rs = 0.69; p < 0.01), the 
Number Series (rs = 0.78; p < 0.001), and the Chessboard 
(rs = 0.99; p < 0.05) problems as well as for all three 
problems (rs = 0.72; p < 0.001) combined. This finding 
is in accordance with research on the topic and the 
values mostly match the correlations reported by 
Komorek and colleagues (2007); this result meets the 
expectations as the use of heuristics should be helpful 
in solving problems.

However, there are successful processes with only one 
or two heuristics as there are unsuccessful ones with 
three or more. Some pairs picked a heuristic and used 
it to solve the problem outright; on the other hand, 
heuristics did not help every time. As expected, there 
is no straight “the-more-the-better” rule for the use 
of heuristics.

For the pupil experts, there is no such correlation 
between the number of heuristic techniques and suc-

7 As the product categories yield only ordinally scaled data, no 

Pearson correlation coefficient was calculated. The web-tool 

by R. Lowry (http://vassarstats.net/corr_rank.html) also pro-

vides a way to calculate the significance level for n < 10. 

Code Description Examples

Drawing a 
figure

Drawing a figure, a graph, or a diagram. Coasters: a drawing of possible positions of the two squares. 
Number Series: drawing a diagram of numbers with possi-
ble neighbors.

Auxili ary 
elements

Introducing auxiliary elements like aux-
iliary lines or additional variables.

Coasters: drawing auxiliary lines to indicate area. 
Chessboard: drawing borders of squares to illustrate their 
size or count them.

Special 
cases

Assigning special values (like 0 or 1) to 
algebraic problems or examining special 
positions in geometric problems.

Coasters: positions of the two squares which make it evident 
that the marked area amounts to one fourth of a square.

Mental 
flexi bility

“Thinking outside the box”; special ideas 
and activities that are not captured by 
other heuristic categories

Coasters: (mental) rotation of the squares. Number Series: 
flexible way of adding numbers to both sides of the series. 
Chessboard: easily identifying the possible overlap of 
squares bigger than 1x1.

Table 1: An extract of the heuristics coding manual
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cess (rs = -0.06; p = 0.84), but this can be explained by 
ceiling effects. Surprisingly, opposed to the vague 

“the-more-the-better” rule, the experts use significant-
ly less heuristics compared to equally successful nov-
ices (i.e., pairs that reached product categories 3 or 4) 
(t = 2.73; p = 0.01).

Table 2 summarizes some statistical data of both 
groups. Column “count (%)” shows the number of 
pairs for each of the four product categories. Column 

“heu” shows the mean numbers of heuristics coded in 
the processes for each product category. The experts 
use less heuristics for each problem in the 
product categories 3 and 4.

Qualitative results
To further explore this surprising result – 
better problem solvers use less heuristics – 
the processes are analyzed qualitatively in 
the following paragraphs. Coded heuristic 
actions are indicated with italics.

The first (abbreviated and smoothed) exam-
ple deals with the Coasters problem. After reading the 
problem formulation, the novices Hannelore and Lucy 
start to measure the length of the sides of the squares 
to somehow calculate the requested area; Hannelore 
also introduces notations to points in the given figure. 
They soon notice that their first approach does not 
work and start to question whether the squares could 
be arranged in another way. Lucy then draws figures, 
among them a special case in which the size of the area 
is easily identified (see Figure 2). They return to the 
given figure and start adding auxiliary lines to indi-
cate a decomposition (see Figure 2). Lucy notices that 

she could “cut off ” a triangle and add it at the other 
side to regain the special case. She concludes that the 
area is always as big as in the special case. They then 
do not write down “a fourth of a square” but calculate 
the size of the requested area. Overall, they worked 
nearly 12 minutes on this problem.

Bernd and Tobi, two of the pupil experts, worked 
on this problem for 2 minutes. After reading, Bernd 
says: “Wait, this is exactly one fourth. Because you 
can push it over there, so that you get exactly four 
parts.” (mental flexibility) Tobi quickly agrees and they 

request the next problem without further justifying 
their solution. Bernd’s recognition can be interpreted 
as Consideration of Aspects within the framework of 
intellectual flexibility, because he “recognize[s] the 
correlation of facts and [is] easily able to vary them.” 
(Bruder, 2003, p. 17)

The second comparison of novice and expert process-
es deals with Marco’s Number Series. It takes the nov-
ices Birk and Janus more than 30 minutes to solve this 
problem. They start with “1, 3, 6, 10, 15” and are stuck, 
because there is no number left to add to 15 (they try 

Table 2: Results of the heuristic coding for the pupil novices and experts

Figure 2: Lucy’s figures working on the Coasters problem
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21 but reject this idea quickly). They start new rows 
with different numbers, always adding numbers to 
the right end until they get stuck and start anew. To 
keep track of the numbers they had already used, they 
keep a list of all numbers from 1 to 15 to cross out (tool 
of systematization). In this period, they occasionally 
use backtracking, i.e. deleting the last number(s) to 
continue with a different number instead of starting 
a new row. After more than 20 minutes, Birk intro-
duces a new idea; he creates a table with all possible 
combinations of two numbers smaller than 16 adding 
up to a square number. This way, he realizes that the 
numbers 8 and 9 only have one possible neighbor each 
and have to start and end the row (looking for patterns). 
Shortly after this realization, they solve the problem.

It took the experts Robert and Lasse about 5 minutes 
to solve this problem. They immediately start with a 
list of numbers to cross out (tool of systematization) 
and begin their first row with the given example, “3, 6, 
10”. Instead of only adding numbers to the right, they 
work on both sides of the row (mental flexibility). To 
the right, they add “15, 1, 8”. Finding no neighbor for 
the “8”, they do not restart, but complete the row on 
the left side: “13”, “12”, “4”, “5”, “11”, “14”, “2”, “7” and “9”. 
Within the framework of intellectual flexibility, this 
idea can be interpreted as Change of Aspects, because 

“[b]y intuition they consider different aspects of the 
problem which avoids or overcomes getting stuck.” 
(Bruder, 2003, p. 17)

Of course, these two examples are more obvious than 
the majority of the processes; they have been selected 
to illustrate an argument. However, the appearance 
of mental flexibility seems to be a distinguishing fac-
tor between novice and expert processes as this code 
appears significantly more often in the experts’ pro-
cesses: overall, mental flexibility appears in 15 of 43 
novice processes compared to 10 of 14 expert process-
es (c2 = 5.73; p = 0.017); this trend continues at the level 
of individual problems (Coasters: 8/16 compared to 
3/5; Number Series: 6/16 compared to 4/5; Chessboard: 
1/9 compared to 3/4).

The experts need less heuristics because of their men-
tal flexibility. In other words, the novices that are not 
that flexible need more heuristics (and more time) 
to get similar ideas. This finding supports the claim 
of Bruder and Collet (2011) that a lack of intellectual 
flexibility can be compensated by the use of heuristics. 
For example, not being able to imaginary rotate the 

squares in the Coasters problem, most of the novices 
draw figures of squares in different positions.

DISCUSSION

The quantitative analysis of the regular pupils’ prob-
lem solving processes showed a significant moderate 
to high correlation between the number of heuristics 
in those processes and the pupils’ success. This result 
is in accordance with the literature as a vague “the-
more-the-better” rule according to the number of heu-
ristics has been reported many times. Surprisingly, 
this result does not apply to the group of gifted pupils 
(successful participants of mathematical competi-
tions, i.e., “experts”) whose processes have also been 
analyzed. These pupils have been more successful 
than the regular ones (as expected) but used signifi-
cantly less heuristics than equally successful pupils 
of the first group. A qualitative comparison of the 
processes of both groups revealed an explanation for 
this finding: the experts’ processes contained a signif-
icantly higher number of actions coded as “mental 
flexibility” than those of the novices (regular pupils). 
This finding can be explained by the theory of Bruder 
and Collet (2011). The lack of intellectual flexibility of 
the regular students (compared to the experts) can at 
least partly be compensated by the use of heuristics.

This has implications for practicing and teaching 
problem solving. Of course, intuitive problem solvers 
have an advantage working on problems as “the active 
intuition might be the most important device for dis-
coveries, e.g. the sudden realization of analogies can 
only be thought of as an intuitive event.” (Winter, 1989, 
p. 177, translated by the author) But not-so-intuitive 
problem solvers might overcome their disadvantage 
by learning and practicing heuristic techniques.

Of course, there are limitations to this study: Firstly, 
the group sizes are quite small; especially the group of 
the pupil experts consists of only ten pupils. A bigger 
number of both regular and gifted pupils would be 
desirable to see if the observed patterns can be con-
firmed. Secondly, the pupils have worked in pairs to 
enable access to their thoughts through their natu-
ral communication. This might have influenced their 
problem solving behavior and it might be problematic 
to generalize the findings of this study to individual 
problem solving behavior of regular and gifted pupils. 
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Further studies need to evaluate whether the actions 
of “mental flexibility” are a genuine part of gifted 
pupils’ problem solving behavior or whether being 

“mentally flexible is a learned (and thus learnable) 
ability these pupils picked up when participating in 
and training for mathematical competitions. It might 
be that the actions coded as “mental flexibility” are a 
combination of heuristics which are performed most-
ly cognitive and so elaborate that they are unidenti-
fiable for the raters observing the problem solving 
processes of the pupil experts.

It would be interesting to see whether a follow up 
study with older students might provide a clearer 
distinction between regular and gifted students and 
similar results.
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For the Design Research project presented, a learning 
environment for mathematically talented and interest-
ed 7th-grade students was investigated. The results show 
that the subject matter of graph theory offers both oppor-
tunities and means for students to develop their abilities. 
The data analysis showed likewise how the tasks might 
be modified in order to impose on their potential and 
thereby foster students’ abilities of a formalized percep-
tion and pervasion of mathematical information and 
of generalization.
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INTRODUCTION

Mathematical potential and talent is one of the top-
ics in mathematics education research increasingly 
attracting attention (Leikin, Karp, Novotna, & Singe, 
2013) – with good reason. Not only since PISA and 
TIMSS – which have impressively revealed the het-
erogeneity of students within countries and even 
within single school types  – the huge variety of 
students’ abilities is well-known. However, there is 
only a small number of investigations that show how 
high-achievers can be supported in order to develop 
their potential (cf., e.g., Kießwetter & Rehlich, 2005). In 
the context of mathematics education research, there 
are certain findings regarding the abilities and char-
acteristics of mathematically talented students (e.g., 
Krutetskii, 1976). These constitute a stepping stone for 
the investigation at hand: On the basis of the existing 
results, a Design Research project (cf. Gravemeijer & 
Bakker, 2006, p. 1) was conducted in order to devel-
op and refine a learning arrangement for a group of 
mathematically talented and interested students and 
to assess, for a concrete subject matter – namely graph 
coloring –, how mathematically talented students can 

be challenged and, at the same time, supported in their 
specific abilities. Therefore it was one main goal to get 
insights into the abilities and possible difficulties of 
the students, which are being focused in this paper.

THEORETICAL BACKGROUND

Mathematically talented students 
and their abilities
One of the most important investigations in the field 
of abilities of mathematically talented students was 
conducted by Krutetskii (1976). He found four com-
ponents being constitutive for mathematical abilities 
during school age: Obtaining mathematical informa-
tion, i.e. “the ability for formalized perception of math-
ematical material, for grasping the formal structure 
of a problem” (Krutetskii, 1976, p. 350); Processing 
mathematical information, which comprises, among 
others, “the ability for rapid and broad generalization 
of mathematical objects, relations, and operations” 
(Krutetskii, 1976, p. 350); Retaining mathematical in-
formation, meaning memorizing mathematical ap-
proaches etc.; and a General synthetic component, con-
necting and interrelating all other components and 
forming a mathematical cast of mind. Mathematically 
talented students can be characterized by possessing 
these abilities to a great extent. Therefore Krutetskii’s 
categories should be considered when learning en-
vironments and tasks for these students are being 
designed. 

In the investigation presented, the focus was – on the 
one hand – on the students’ ability to mathematize 
situations and – on the other hand – on their ability 
to generalize, which means being able to (a) recognize 
similar situations and (b) handle the generalized solu-
tion in these situations (Krutetskii, 1976, p. 237). It 
was investigated in how far the students were able to 
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mathematize and generalize when handling the tasks 
of the developed learning environment.

Task design and realistic 
mathematics education
For refining and (re-)designing our learning environ-
ment, we focused especially on students’ abilities to 
mathematize and generalize (see above). In our proj-
ect, research was not supposed to be separated from 
a practical perspective, on the contrary: research 
and design were closely interwoven (Gravemeijer 
& Bakker, 2006). The Design Research alignment 
meant a focus on task design, which is of significant 
importance in mathematics education (Drijvers, Boon, 
Doorman, Bokhove, & Tacoma, 2013). However, the 
terms task and task design vary widely (Watson et al., 
2013). The aim of our investigation was to develop and 
refine tasks in their meaning of being “what students 
are asked to do. Then ‘activity’ means the subsequent 
mathematical (and other) motives that emerge from 
interaction between student, teacher, resources, en-
vironment, and so on around the task” (Watson et al., 
2013, p. 11). In our case, task design means the design 
of tasks for the above-mentioned purpose as well as 
possible oral impulses of the teacher and correspond-
ing material. 

The design of the learning environment within our 
investigation is being guided by the domain-specific 
instruction theory of Realistic Mathematics Education 
(RME). RME “itself is the result of a long history of 
design research in the Netherlands” (Gravemeijer & 
Bakker, 2006, p. 2). 

According to RME, mathematics should be seen as an 
activity (Freudenthal, 1973), and students, rather than 
being receivers of ready-made mathematics, should 
be active participants in the educational process, in 
which they develop mathematical tools and insights 
by themselves (Drijvers et al., 2013, p. 56). 

Mathematical learning should – according to RME – 
originate from problem situations in realistic con-
texts, which do not necessarily need to be from the real 
world (Van den Heuvel-Panhuizen, 2005, p. 2). Based 
on their activity within these situations, students use 
their individual concepts in order to handle situations 
and therefore extend them. In our project, students 
were supposed to handle the presented tasks and 
hence the mathematical information (cf. Krutetskii, 
1976, see above), and thereby apply their mathematical 

concepts, develop them and generalize them for being 
able to apply them in different situations (Krutetskii, 
1976).

Graph theory as subject matter for 
mathematically talented students
The application of graph theory as a subject matter for 
talented students offers different advantages. Most 
of these are connected to the large applicability and 
therefore its huge potential for fostering students’ 
creativity (cf. Leuders, 2007). 

In graph theory, the notion of graph is fundamental: 
“A graph G consists of a finite set V, whose members 
are called vertices, and a set E of 2-subsets of V, whose 
members are called edges” (Biggs, 1985, p. 158; par-
tially highlighted in the original). As graphs repre-
sent networking structures, they can be visualized 
by points and connecting lines between two points. 
Especially graph coloring is a central scope of appli-
cation in the focus of our study. “A vertex-colouring 
of a graph G = (V, E) is a function c: V → ℕ with the 
property that c(x) ≠ c(y) whenever {x, y} ∈ E. The chro-
matic number χ (G) is defined to be the least integer 
k for which there is a vertex-colouring of G using k 
colours” (Biggs, 1985, p. 172). Due to graph coloring, we 
can distinguish adjacent vertices and, thereby, create 
disjoint partitions of vertex-sets.

Research questions 
In this Design Research project, the following ques-
tions were at the core of the research interests (based 
on Krutetskii, 1976). These are: 

1) To what extent are the talented students able to 
mathematize the realistic problem situations in 
the given tasks? 

2) In how far are they able to recognize the simi-
larity of different situations and generalize their 
solutions? 

On the basis of these questions, it is considered how 
the task design can be refined in order to optimize the 
learning processes.

DESIGN OF THE INVESTIGATION

Designing the tasks 
We developed tasks, according to two kinds of prob-
lem situations (cf. Joklitschke, 2014). The first kind of 
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problem situations is rather abstract. Here, a concrete 
problem situation may be the assignment of persons 
to different groups. Persons can be represented by 
vertices – and the do-not-like-relation by edges. If 
the vertices are being colored, the colors signify the 
emerging groups. The number of colors then rep-
resents the number of groups. A second field of ap-
plication addresses problem situations with rather 
geometrical visualizations, for instance the color-
ing of maps. Here, the dual graph is needed, which 
includes the information about adjacent areas: every 
area is represented by a vertex, and adjacent areas 
are visualized by an edge (cf. Leuders, 2007, p. 141). By 
finding the chromatic number, we get to know how 
many colors are needed.

Our tasks comprised certain subtasks and were sup-
posed to serve for a 90 minutes lesson. Two of them 
are being focused in this paper. As we assumed prob-
lem situations with a geometrical representation to 
be easier to grasp for the students (see Bronner, 2014), 
the first task was a map task. Students were supposed 
to find the minimum number of colors for coloring 
the 16 federal states of Germany (see Leuders, 2007, 
pp. 132ff, Figure 1). The second task, then, comprised a 
problem situation without geometrical visualization 
(cf. Leuders, 2007, pp. 133f ). We chose the context of 
the soccer world championship with national sup-
porters who are – due to rivalries – supposed to be 
accommodated in different places (Figure 1). 

Implementation and data collection at school
The developed tasks were investigated in a group of 
eleven 7th-graders – aged twelve or 13 – at a German 

secondary school. This group had already been active 
for two years and was supposed to give mathematical 
talented and interested students the opportunity to 
enhance their abilities. The selection of the students 
for this course depended on their performance in 
mathematics (according to the teachers’ assessment) 
and their motivation to participate. Since this course 
was already well-established, all students had experi-
ence in the field of graph theory: They had worked on 
realistic problem situations (shortest path problems, 
spanning trees and Euler graphs, developing algo-
rithms) beforehand. The students were used to work 
in small groups on open problems and to generate the 
mathematical contents by themselves.

In this investigation, the students worked in groups of 
four (or three) as they were used to. The group work 
took 90 minutes. The group work of all groups was 
videotaped. The analysis focused on one “focus group” 
because here, the students communicated a lot so that 
the analysis could be undertaken on a profound em-
pirical base. The videos were transcribed.

The four students of this focus group were additional-
ly interviewed in semi-structured partner post inter-
views. Here, every group got the same tasks and ques-
tions. The students were interviewed in pairs of two as 
this was expected to foster their communication and 
give them safety. The interviews took place two weeks 
after the group work. The interview guide comprised 
questions on the approaches that the students had 
worked on before as well as two new, but analogous 
problem situations (one problem regarding map col-
oring and one problem regarding partitioning). The 

Figure 1: “Map coloring task” and “Soccer world championship task”

Task 1: Color selection
GeoPaint Inc. wants to include a colored map of 
Germany with its federal states in their assortment.

a) What should the company consider? Note the nec-
essary criteria and try to color the map. 

b) As the company has to order each color separately, 
the map gets cheaper when they use as few colors 
as possible. How many colors are needed? 

c) In order to develop a computer program that helps 
designing the colored map, GeoPaint has to create 
an illustration that represents the neighborhood of 
the federal states. How could such an illustration 
look like?

Task 2: A Peaceful World Championship
At the soccer world championship 2014, many 
European teams compete. But the national sup-
porters partly do not stand well with each other. 
Therefore, fans with a special rivalry shall be accom-
modated in different locations. Now, the organizing 
committee has to find a suitable allocation of the na-
tional supporters. These are the conditions:

 ― German supporters do not stand well with fans 
from the Netherlands and England. 

 ― ...

How many locations do the organizers need to en-
sure a peaceful meeting? How can you represent the 
problem adequately?
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semi-structured interviews – which allowed not only 
to inquire their approaches to the same tasks, but also 
to go into detail to see certain differences between 
the pairs, especially in their inferential reasoning – 
took 30 minutes each. The students were supposed 
to comment on their approaches by thinking aloud. 
The interviews were videotaped and transcribed af-
terwards. For the data analysis, both, the transcripts 
of the group work and of the interviews, were taken 
into account. 

ANALYTICAL FRAMEWORK 

For investigating students’ individual approaches, 
we used a framework that arises from a philosoph-
ical perspective, founding on ideas of Kant, Frege, 
Wittgenstein, Heidegger, and Brandom’s (1994) 
theory of semantic Inferentialism. Based on these 
philosophical notions, a theoretical and analytical 
framework was developed for mathematics education 
(e.g., Schindler, 2014), whose applicability has been 
shown for different subject matters (e.g., Schindler 
& Hußmann, 2013). The philosophical background 
signifies that individual approaches and students’ 
concepts can only be understood in their use, i.e. in 
reasoning processes. Therefore, the data analysis is 
being conducted on the basis of three crucial analyt-
ical elements, which are: individual commitments, 
inferences and focuses (see below).

The concept of language game plays an important 
part in the theoretical background. For our analysis 
it is important to analyze the use of concepts in these 
language games, since concepts and their meaning 
can – in this holistic perspective – only be understood 
by means of the role that they play here: “grasping a 
concept involves mastering the properties of infer-
ential moves that connect it to many other concepts” 
(Brandom, 1994, p. 89). The basic elements in this 
framework are propositions that individuals hold to 
be true and explicate, like for example “Four colors 
are enough to color the map”. These individual com-
mitments constitute the building blocks in our data 
analysis, which is carried out turn-by-turn on the 
basis of the transcripts at hand. 

Furthermore, the reasoning process itself is being 
analyzed, as it is crucial for reconstructing students’ 
understanding. Inferences embody the reasoning pro-
cess, as they constitute the relation between commit-
ments if a student entitles a commitment with another 

commitment, like e.g. “Five colors are one too many, 
thus four colors are enough to color a planar graph”. 
For our data analysis, it is important that these in-
ferences, as well as the commitments, do not have to 
be formally correct but to be held as true by the indi-
vidual student. Besides commitments and inferences, 
focuses – as individual categories that are used to pick 
up, select and handle the information at hand – are be-
ing reconstructed in our data analysis. Students can – 
consciously or not – utilize e.g. concepts, properties, 
or other entities as categories, such as the number of 
colors and partitions. Via the analysis of these three 
elements (students’ focuses, the commitments and 
inferences), we analyzed how students mathematize 
the realistic situations and in how far they are able to 
generalize (see results).

RESULTS 

An insight into students’ 
mathematization process
In general, the analysis revealed that students showed 
an enormous performance handling the maps task 
and mathematize the information at hand. First, they 
focused on painting the map with colored pencils. 
While doing so, they did not yet gain access to the 
formal structure of the problem and some stuck to 
the real-world conditions of the problem situation. 
For example, they committed to “The company can 
blend colors, then they do not have to buy so many of 
them”. During their work, their focus became more 
and more structure-oriented. It was only when they 
started with the task to support a computer program 
(see task 1c, Figure 1), that they focused on graphs for 
the first time. 

Sasha: Well, we have to do this with a graph, 
right?

Tim: Yes. I already worked on two or three 
graphs, but they do not yet work out.

Klara: (reading the task out loud) The neigh-
bors of federal states…

Sasha: Yes, let’s see.
Klara: So, simply a graph?
Sasha: Yes.

In this excerpt, Sasha at once commits that they can 
focus on a graph. Tim agrees and therefore acknowl-
edges Sasha’s commitment. Klara seems to be in doubt 
if this focus is adequate, as she asks “Simply a graph?”. 
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But after Sasha’s conclusive confirmation, everyone 
of them starts drawing a graph (focus: graph). 

In this dialogue, it is interesting that all students im-
mediately focused on an edge representing a neigh-
borhood, which is adequate from a mathematical 
perspective, as it implies constructing the dual graph 
(Figure 2). As Leuders (2007, p. 140) shows, it is also 
possible to choose the borders to represent the edges 
and the vertices to represent the “corners” of three 
countries bordering. But the students seemed to im-
mediately realize that “it is not of interest to know 
the exact shape of country’s frontiers […], but only to 
know who is adjacent to whom” (Leuders, 2007, p. 138, 
translated by M.S./J.J.). During their prolonged activ-
ity, in which they constructed the dual graph, they fo-
cused on the numbering of the countries, i.e. vertices, 
in order to keep track of the neighborhoods and to 
communicate about them more easily. The focuses on 
(dual) graphs, on numbering, on edges representing 
the neighborhood reveals that the mathematization 
process was successful in the first task.

Similarity recognition and generalization
The second task on the soccer world championship 
and national supporters represented more of a chal-
lenge for the students. Here, they had much more trou-
ble to capture the formal structure of the problem 
situation and to recognize the similarity to the first 
task. When dealing with the task, students proceed-
ed intuitively and tried splitting the supporters into 
distinct groups.

Alex: Well, we can definitely put Russia, 
Greece and Switzerland together.

Tim: I suggested the same.
Alex: Because they do not oppose each other.
Tim: With whom does Germany not get on 

well? Germany does not get on well 
with the Netherlands and England, but 
they get on well with Spain and France, 
don’t they? Yes, Germany does not get 
along with the Netherlands. Therefore, I 
would put Germany together with Spain 
and France.

In this heuristic approach, the students’ common fo-
cus is on dividing the sets of supporters into groups. 
In mathematical terms, it is the concept of partition, 
and the idea is to find an optimal (i.e. smallest possible) 

partition. The students justify their partitioning via 
harmonies or compatibilities. 

In this excerpt of the group work, the students focused 
on splitting the sets of supporters (i.e. building par-
titions) and on the number of locations needed. They 
did not mention that the formal structure of this 
problem is similar to the first one; that the sets of sup-
porters can be depicted – just like the countries – as 
vertices and the rivalries as edges – just like the bor-
ders. They did not seem to realize that both problem 
situations are about objects and their (binary) rela-
tions to each other and that the mathematization is 
obvious (cf. Leuders, 2007, p. 138). On the contrary, the 
focuses of the students in our investigation remained 
in the real-world situation in the second task. When 
the teacher tried to help students focusing on graphs, 
they disliked this focus and committed for instance to 

“But that would only be the same that we did with the 
other approach” or “That only brings the same result 
that we can find otherwise”. They did not see a reason 
for focusing on graphs.

Then, in an additional, further task, students were 
confronted with a problem situation that dealt with 
four groups of national supporters, which each have a 
rivalry against each other. Here, students were again 
explicitly asked if it is possible to depict this with a 
graph and if there are edges, which necessarily have 
to cross over each other.

Tim: Well, I have drawn one without cross-
ings. Where one can see that everyone 
hates everyone. (…) 

Sasha: Huh? How do you want to draw that with 
a graph?

Tim: Four points and connect them one to 
each other. (…)

Figure 2: Students’ drawings
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Sasha: But how do you want to draw rivalry 
with a graph?

Tim: Well, because if they are connected then 
they do not like each other. And here, ev-
eryone is connected to everyone.

Sasha: But this is actually the other way round!
Alex: Yes, I would also say that…
Tim: Yes, okay. So, simply four points. That 

also works. (…)
Sasha: (while writing, talking to himself ) Mhm, 

but that’s right.

Here, we see that the students acknowledge the focus 
on graphs. Tim directly seems to generalize – probably 
unconsciously – the idea of dissociation represented as 
edges from the first task (boundaries as edges) to the 
second task (rivalry as edges). Sasha and Alexander, 
however, are obviously not convinced: Sasha asks for 
reasons and explanations, but Tim’s reasoning is not 
convincing for them. Instead, the group focuses on 
compatibility as edges – and not on the similarities 
between the two kinds of dissociation and of the two 
problem situations. When writing his findings down, 
Sasha then acknowledges Tim’s focus: Afterwards, 
he continues drawing dissociation as edges  – but 
this does not become subject of discussion anymore. 
Sasha’s final commitment as well as his drawing might 
indicate a generalization process. 

In the post interview, however, neither Tim nor Sasha 
saw the similarities between the geometrical and the 
abstract problem situation. The frequent changes of 
focuses as well as the low level of inferential reason-
ing during the lecture series go hand in hand with 
the lacking generalization. However, an impulse of 
the interviewer encouraged the similarity recog-
nition in one case (Sasha). This was initiated by the 
interviewer’s explicit focus on similarities between 
the maps problem and the problems with the football 
supporters.

Interviewer: Are there any similarities between 
the two problem situations?

Sasha: (Looking straight ahead, then looking 
out of the window, beginning to smile 
and looking back to the interviewer) Yes. 
Because here (pointing onto the map), 
adjacent countries were supposed to 
have different colors. And here, it is ef-
fectively the same. Because, then the col-

ors are the locations, and the locations 
just differ from each other.

The interviewer’s question seems to foster the stu-
dent’s similarity recognition: After thinking about the 
question, he affirms the similarity. The inferences that 
he makes underpin that he understands the reason: 
He is able to see the functional similarity of countries 
and locations and commits to “The colors are then 
the locations”. This indicates that students are able to 
focus on graphs and on coloring in problem situations 
without geometrical visualization, but this needs spe-
cific support.

Consequences for the task design
Task 1: One of the prominent results revealing from 
the above-mentioned data analysis is that the math-
ematization process was fostered by the sub-task to 
think of an illustration for a computer program. Here, 
students were able to focus on graphs easily. This was 
very useful for systematic approaches in which the 
students focused more structurally and systemati-
cally and thus fostered the mathematization process. 
This indicated that this task does not need modifica-
tions in this regard.

Task 2: It was not easy for the talented students in our 
investigation to grasp the formal structure of a graph 
in problem situations, which do not have a geometri-
cal visualization. On the one hand, this indicates that 
these tasks have a huge potential for talented students 
to exert themselves, because it was shown that these 
students can gather the mathematical structure when 
having the right focuses. On the other hand, the analy-
sis reveals that the tasks and even the impulses of the 
teacher did not prompt the students to perceive the 
structure and to generalize their focuses and com-
mitments from the geometrical problem situations. 
In order to foster these abilities in this context even 
more, the task has to be modified: There have to be 
more reflective aspects that make the students think of 
similarities. Possible impulses would be e.g. “Look for 
similarities of both problem situations. Is it possible 
to solve the second task with the same strategy that 
you used in task 1?”. For generalization purposes, it 
seems to be important for the students to recognize 
the focus on dissociation in both kinds of problem situ-
ations. But without a profound inferential reasoning, 
even the right focus is not sufficient for students’ sim-
ilarity recognition and especially their generalization. 
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CONCLUSION

The overall aim of the empirical investigation at hand 
was to explore the students’ approaches and abilities 
(esp. mathematization and generalization) for refin-
ing the design of a learning environment.

The results indicate that the students were able to 
perceive mathematical information and the struc-
ture of problem situations formally (cf. Krutetskii, 
1976). But this ability strongly depended on the tasks 
presented. It was manifested as highly-developed in 
problem situations which had a geometrical visualiza-
tion, whereas in problem situations without a direct 
geometrical visualization, students were less able to 
see the mathematical structure. In the consequence, 
it was not easy for the students to generalize their 
focuses from a problem situation with a geometrical 
visualization to one without the latter. Our findings 
indicate that Krutetskii’s framework constitutes a 
profound basis for developing tasks for talented 
students: On the one hand, the students showed the 
abilities to a certain extent, on the other hand, it was 
shown how these abilities can be fostered even more.

The results of the investigation revealed many aspects 
which can be used for optimizing the tasks and sup-
port students in their specific abilities: for instance, 
giving adequate impulses that lead students to focus 
on graphs; and fostering a purposeful and conscious 
reflection about similarities of problem situations 
much more explicitly. 
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We explore behaviors of high achievers 10 to 16 years old 
during a problem modification process by looking at 
the ways students vary the constraints of a given prob-
lem. We found that these children swing between low 
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INTRODUCTION

We exposed students from grades 4 to 10 to a problem 
posing context. We were interested in this case to see 
how mathematical creativity manifests in students 
and what is (if any) the relationship between their cre-
ative approaches and the quality of the mathematics 
problems they generate.

In general, in problem-posing contexts, students are 
stimulated to make observations, experiment through 
varying some parameters, and devise their own new 
problems (Singer, Ellerton, Cai, & Leung, 2013). In 
this paper, we accept that problem posing refers to 
the generation of (completely) new problems, and to 
the re-formulation/ modification of given problems 
(Silver, 1994). We specifically address here the context 
of problem modification.

Previous studies have shown that, in problem pos-
ing situations, mathematically able students tend to 
vary a single parameter in order to ensure the con-
trol over the relationships among all the elements of 
a posed problem, even when they make interesting 

generalizations. This tendency of small-step varia-
tions was interpreted as a student’s need to keep as 
coherent and consistent as possible his/her propos-
als by controlling (sometimes unintentionally) the 
consequences of the proposed changes (Singer, 2012a; 
Voica & Singer, 2013). In a problem-modification study, 
Singer, Pelczer and Voica have shown that the capacity 
of a student to pose coherent and consistent changes 
of a problem and to understand the (mathematical) 
consequences of these changes proves student’s capa-
bility for deep transfer creative approaches (Singer, 
Pelczer, & Voica, 2011). Therefore, this capability could 
predict mathematical creativity, which has been char-
acterized as being different from general creativity 
(e.g., Piirto, 1999). 

In describing mathematical creativity, we use a frame-
work based on cognitive flexibility, which is charac-
terized by: cognitive novelty, cognitive variety, and 
changes in cognitive framing (e.g., Voica & Singer, 
2013). In a problem-modification context, we consider 
that a student proves cognitive flexibility when she or 
he poses different new problems starting from a given 
input (i.e. cognitive variety), generates new propos-
als that are far from the starting item (i.e. cognitive 
novelty), and is able to change his/her mental frame 
in solving problems or identifying/discovering new 
ones (i.e., change in cognitive framing).

In addition, these studies have shown that the more 
the student advances in the abstract dimension of a 
given problem, the more mathematically relevant are 
his/her newly obtained versions. It seems that the 
students who are cautious and minimally change the 
problem are in fact mathematically advanced students 
who show proper insights on some mathematical con-
cepts that exceed their age level. Actually, they pay 
careful attention to controlling the values of the vari-
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ables, as mathematicians usually do. These studies 
conclude that a feature of mathematical creativity, at 
least for the students involved in the research (10–16 
years old), is a type of cognitive flexibility charac-
terized not so much by novelty, but by incremental 
representational changes in cognitive frames (Singer, 
2012b; Voica & Singer, 2013).

In the present study, we start from the assumption, 
suggested by previous experimental research (e.g., 
Voica & Singer, 2014), that problem posing (and its 
particular case – problem modification) is a useful 
context for identifying mathematical creativity, and 
we try to go further in determining correlations 
between students’ mathematical creativity and the 
quality of their posed problems. Thus, we are trying 
to answer the question: What are the gains and the 
losses from the view of creativity, when students do 
mathematical problem posing?

METHODOLOGY

The sample of this study consists of students from 
grades 4 to 10 (10–16 years old), participants in a 
summer camp organized for the winners of a large-
scale two-round competition (Kangaroo). The camp 
participants, representing the top 0.2% from a total 
of about 150 000 participants at the competition, are 
considered high achievers in mathematics. During 
this summer camp we launched a call for problems. 
The participants had to choose a problem from a list 
of three problems (given as reference points) and, 
after solving it, to pose three problems based on the 
starting reference problem: one simpler, one similar, 
and one more difficult. In addition, the students were 
supposed to write down the solutions of their posed 
problems and to explain how their proposals fit the 
requested criterion (simpler, similar, etc.). We used 
therefore a structured problem-posing situation (in 
the terminology of Stoyanova and Ellerton, 1996). 
Students had 3 days to formulate their answers. In 
all, 57 students submitted problems. 

Each of the posed problems was evaluated by two in-
dependent evaluators who assessed it based on a set of 
criteria: correctness and completeness of the problem 
formulation and the proposed solution, originality 
of the text, and clarity of explanations. Based on this 
primary evaluation, we invited a few participants for 
interview. Among the selected students were those 
whose problems were highly ranked by the evalua-

tors. We also invited for interview two students who 
posed problems considered with potential for further 
development. In all, 20 students were interviewed. 
The interviews were based on a general protocol con-
cerning issues such as: What are the similarities/dif-
ferences between the posed problem and the starting 
one? What other problems are possible to pose? What 
make you think to such approach? 

The interviews were carried out with two students 
at a time, thus creating a context for interactions be-
tween the children. This helped us to reveal students’ 
ideas through discussions with their peers (Vygotsky, 
1978) and to get consistent feedback on their problem 
posing strategies and their level of mathematical un-
derstanding. The interviews were video recorded. 

We focus the present paper on the problems generated 
by the students who have chosen the first problem in 
the given list (problem 1 below). Consequently, our 
sample consists of those 19 students (out of which 6 
have participated in the interview sessions). The anal-
ysis that we do is a qualitative one, mainly based on 
students’ written submissions. Because of the reduced 
dimension of this paper, we just present a holistic view 
on students’ comments during the interviews to high-
light our main conclusions.

CONTEXT

The starting problem
The following problem was initially given to students 
as a reference point: we will identify it as the starting 
problem.

Problem 1. The 10 × 10 grid 
is formed out of squares of 
1dm. We glue a ribbon as 
shown in the image. What 
is the length of the ribbon? 

A. 99 dm;   B. 99.5 dm;   C. 100 
dm;   D. 100.5 dm;   E. 20 dm

We have chosen this problem from the Kangaroo 
contest to have statistical information on its degree 
of difficulty. In the competition, this problem was ad-
ministered to a group of 5659 students from the 5th 
and the 6th grades. The Kangaroo contest takes place 
in two rounds and the participants have to answer 30 
multiple-choice questions in 75 minutes; therefore, 
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optimizing solution strategies is essential in obtain-
ing a good score. 

Statistical data about the performance of students 
participating in the Kangaroo contest show that they 
perceived the starting problem as difficult: this con-
clusion follows from the relatively low percentage 
of correct responses to this problem (see Table 1), the 
percentage of students that preferred not to answer 
this question, and the percentage of correct answers 
obtained by this cohort to other problems (around 
75%). Even if we take together answers B and C (con-
cluding that about half of the students had an insight 
concerning a strategy to optimize the solution to this 
problem), we can still conclude that the problem was 
perceived as difficult.

Components of a problem
To better understand the discussion that follows, we 
detail the components of the starting problem based 
on the methodology introduced by Singer and Voica 
(2013). In general, the text of a problem contains: a 
background theme, (numerical) data, operators (or 
operating schemes), constraints over the data and 
the operators, and constraints that involve at least 
one unknown value of a parameter (Singer & Voica, 
2013). The background theme represents, briefly said, 
what is about in the problem. In our case, the back-
ground theme is represented by a grid and a trajectory 
marked on it. The background theme is characterized 
by one or more parameters: in our case, the parameter 
is the shape of the trajectory (of the ribbon). The data 
are (numerical or literal) values associated to these pa-
rameters: in the above problem, these are represented 
by the number of squares and their dimensions. The 
operating schemes are actions suggested by the text: 
here, these are the way of crossing, and the measure-
ment of the trajectory. The constraints imposed on the 
data and the operators are restrictions that state the 
relations of the background theme with the data and 
the operating schemes. In the starting problem, some 
of the constraints are of local nature: for example, 

“the trajectory” unites the centers of the squares and 
crosses a square in one of the two modalities shown 
in Figure 1 (eventually rotated). 

Other constraints are global, such as the filling con-
dition – i.e. that the ribbon goes across each cell of 
the square. These constraints, in combination, allow 
a quick identification of the answer, since 99 out of 
100 squares are crossed and the last one is only half 
marked (therefore, the correct result is 99.5). We be-
lieve that the difficulty of the problem comes from 
the fact that the solvers did not totally understand 
the local and the global constraints; usually, they try 
to perform sequential additions of the ribbon length, 
which can lead to miscalculations or to abandoning 
the problem because of the time limit crisis. 

The starting problem contains two kinds of con-
straints: essential in-depth constraints that give the 
core-structure of the problem, and superficial con-
straints. The essential constraints manifest at both 
local and global levels: the global constraint refers 
to the grid coverage, which combined with the local 
algorithm (the trajectory crosses the squares in the 
midpoints of their sides following two different pat-
terns, and there are no self-crossings) allows an opti-
mal solution (as time is concerned). Superficial con-
straints refer to the dimension of the grid, the shape of 
the grid (including the base element of the grid), and 
to the particular path chosen within the grid.

Transformations 
We classified the modifications made by the students 
when they developed a new problem in two catego-
ries: exogenous and endogenous transformations. The 
terms originate from the system theory, where endog-
enous transformations are transformations between 
models expressed in the same language, and exoge-
nous ones are transformations between models ex-
pressed using different languages (Mens & Van Gorp, 
2006). In problem modification (PM) situations, we 
consider that a student makes endogenous transfor-
mations when he/she uses the same types of operating 

A B C D E NA

Grade 5 (3278 participants) 10.2 18.5 37.2 8.9 7.7 17.5

Grade 6 (2381 participants) 10.4 25.1 33.9 7.7 7.0 15.8

Table 1: Frequencies of answers to the starting problem in the Kangaroo competition (Correct answer is B. NA stands for no-answer)

Figure 1: Local constraints for building the trajectory in problem 1
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schemes and constraints as in the starting problem (i.e. 
makes a new mathematical problem using the same 
language - the same mathematical concepts as those of 
the starting problem); otherwise, we consider that the 
student makes an exogenous transformation. In other 
words: the endogenous transformation acts only on 
already present components in the starting problem, 
while an exogenous transformation will bring new 
components into the generated problem. 

RESULTS
We present our analysis based on some illustrative 
examples. 

Example 1. Victor (grade 4) proposed three problems 
based on the drawings contained in Figure 2. In all 
these problems, Victor formulated the same question: 
What is the length of the ribbon?

One can observe that Victor varies the dimensions 
and the shape of the trajectory. For the last problem 
(most difficult), Victor avoids two of the squares – 
therefore, he renounces to the complete coverage of 
the grid, but he keeps the same type of optimal strat-
egy of solving. The transformations performed by 
Victor are endogenous: he poses a new problem using 
elements that exist in the starting problem. 

Example 2. Doina (grade 8) based her posed problems 
on the patterns presented in Figure 3. She put the 
same requirements for all her problems: finding the 
length of the drawn broken line. Doina specifies in her 
problem texts the geometrical properties of the base 
cell (rhombus, in the first case; regular hexagon in the 
second; and equilateral triangle in the third). She is 
very careful in characterizing the local constraints; 
for example, in the last posed problem, she clarifies 
the fact that the ribbon crosses the centers of gravity 
of some of the triangles.

Overall, Doina kept both the local and global defining 
characteristics unchanged and modified only the lay-
out and the basic element in the tessellation. The mod-
ifications took into account the unique association be-
tween each cell(s) and measure unit, the nature of the 
trajectory (no crossings) and the complete coverage 
of the grid, conditions that allow the optimal solution. 

We can observe in this case cognitive flexibility in 
changing elements without changing the deep struc-
ture of the initial problem (solution). This case also 
illustrates endogenous transformations – since only 
the elements already present in the initial problem 
are manipulated.

Figure 2: The drawings made by Victor (grade 4) in posing new problems

Figure 3: The drawings made by Doina (grade 8) in posing new problems
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Example 3. The following problems were proposed by 
Silviu, a grade 9 student. 

Simpler: Dan wants to cut out a shuttle from a 
textile covered by a square grid (Figure 4a). If 
the side of a square is 2, what is the remaining 
surface after the shuttle was cut out? 

Similar: An ant crossed a piece of cake of an equi-
lateral triangle shape with the side of 5cm. What 
is the length of the trajectory marked in the image 
(Figure 4b)?

More difficult (simplified phrasing): There are 
four animals competing on square-grid paths 
(Figure 4c); their speed is given in terms of rela-
tions between them. The question is on the order 
of arrival of the animals.

The “similar” problem has an exogenous modification 
on the global constraint. Although the student con-
sidered this proposal similar to the given problem, 
this is actually very different when its nature is con-
sidered: the only available strategy for solving is the 
counting of the line segments (two different kinds). 
Consequently, the student failed to use an optimized 
algorithm to solve this problem. 

Silviu’s simpler and more difficult problems suppose 
also exogenous transformations. By adding new ele-
ments, the requirements changed, and the difficulty 
remains to be judged based on the amount of calcu-
lations to perform. By an exogenous transformation, 
the new problems are much farther from the given 
one, but they become procedural, as global solving 
is not possible.

Example 4. The following problems were proposed by 
three students (Mircea, Andrei, and Nguyen, grade 5), 
who decided to work as a group. 

Simpler: A monkey wants to reach bananas. In 
the 7 x 9 square below the route is indicated 
(Figure 5a). Knowing that the side of a square 
is 5m and the monkey crosses 19m in 5 minutes, 
find how long does it takes the monkey to reach 
the bananas.

Similar: Ballerina lost her ribbon in the maze. 
The ribbon is represented in the square grid 
(Figure  5b). Knowing that the side of a small 
square is 3m, find the length of the ribbon.

More difficult: A maze is between the houses A 
and B. Jack wants to go from A to B, so he takes 
a string to indicate his way to go. On the 11 × 11 
square grid below the Jack’s travel is drawn 
(Figure 5c). Knowing that a square has a side 
of 1.2m, find the properties of the number that 
shows the length of the road.

In their proposals, the three students renounced to 
the local constraints (the similar and more difficult 
problems have cross-overs), but also to the global 
constraints (the trajectory doesn’t fill in the grid). In 
addition, the problems contain a series of external 
elements meant to increase the degree of difficulty. For 
example, they requested to calculate the time needed 
for crossing the given path (simpler problem) or the 
fact that problem 3 contains a reference to an 11 × 11 
grid, although the given image contains a 11 × 12 grid 
(consequently, the last column should be ignored).

DISCUSSION 

The data reported above highlight two situations. 
Some of the students vary superficial constraints by 
making endogenous transformations. For example, 
Victor (example 1) modifies the size of the grid and 
the shape of the trajectory, while Doina (example 2) 
modifies the generator element of the grid. In these 
cases, the students strictly follow the starting prob-

Figure 4: The drawings made by Silviu for his posed problems
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lem’s structure and pose coherent and consistent 
problems that respect the nature of the given problem. 

Some other students use their knowledge of advanced 
mathematical procedures and techniques to pose 
problems based on exogenous transformations.  In 
these cases, the proposals are farther from the start-
ing model, but at the expense of a lesser level of gen-
eralization. This is visible in the situations where stu-
dents vary global constraints, as in the case of Silviu 
(example 3), or in the case of Mircea, Andrei, and 
Nguyen (example 4). In these cases, students intro-
duce independent variables – that is, they perform 
exogenous transformations on the starting problem. 
In spite of their efforts to make their problems more 
difficult, they just increase the amount of procedural 
computations, but not the mathematical quality of the 
problem, measured by its mathematical consistency. 
Their interviews also revealed that they actually have 
limited understanding of the starting problem: this 
fact had an effect on their posed problems, which they 
were not able to solve using an optimal solution, but 
just making step-by-step procedural calculations.

Before getting to a final conclusion, we may consider 
that other factors could be at play in our analysis. The 
problems were posed for a problem-posing competi-
tion, and the students knew that the “value” of their 
problems would be judged. It might be that some stu-
dents preferred to keep the structure of the starting 
problem, because it was already considered as being 

“valuable” (as it was a problem included into a real 
contest). Consequently, in appreciating the problems 
posed by students we need to consider their personal 
beliefs about what makes a good problem, as well as 
their ability to identify the problem structure and the 
mechanisms available for a controlled change of the 
problem elements. Thus, it is interesting to consider 
the nature of modifications at one-more finer detail. 

Victor (example 1) has posed problems of identical 
nature to the given one, just by varying the size of 

the net. Even though in his solutions we saw that 
he was aware of the constraint allowing an optimal 
solution, attending only to the modification of the 
grid suggests that he has not yet developed efficient 
mechanisms for changing more elements. Such situ-
ation is understandable if we take into account that 
Victor is a 4 grader, therefore his experience with 
different shapes and grid structures may be very lim-
ited. In contrast, Doina (example 2) seems to master 
such mechanisms, while keeping close to the problem 
type might be a personal preference. Somehow, Doina 
simplifies the starting problem because the pattern 
she has chosen for the “broken line” in each of her 
three proposals allows immediate identification of 
the grid-filling property. This simplification allows 
variations in the cognitive frame generated by the 
initial problem while keeping intact the analogy with 
the deep features of the starting problem. These vari-
ations in cognitive framing give an indication of her 
mathematical creativity.

Silviu (example 3), and Mircea, Andrei, and Nguyen 
(example 4) change many more elements of the start-
ing problem. Furthermore, we found during the in-
terviews that these students participated in inten-
sive training programs (with their school teachers 
and with their parents). Their experience from such 
training might suggest that good problems are those 
with many data, which require breaking the problem 
into several pieces, and, in overall, ask for more fluid 
procedural work. 

These cases reveal an essential fact: the extent of 
which the new proposal reflects an understanding 
of the hard core of the given problem drives the qual-
ity of the newly posed issues. We further analyze 
the students’ posed problems from this perspective. 
Beyond the students’ beliefs about problems and com-
petitions, a dilemma still stands. On the one hand, we 
have more creative approaches but at the expense of 
mathematical quality, on the other hand, the newly 

Figure 5: The drawings made by Mircea, Andrei, and Nguyen for the posed problems
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posed problems that reflect in-depth understanding 
are apparently less creative. 

Some of the students who suggested changes of an 
exogenous type placed in their texts new mathemat-
ical concepts and usually provided traps to solvers. 
Although they seem to be more creative – when judged 
on the novelty dimension – they depart from a deep 
understanding of the starting problem structure. The 
problems they posed have a low degree of generality, 
and their difficulty is given by the solving procedure 
(overcoming traps intentionally included in the text 
and performing step-by-step calculations). The prob-
lems arising in our sample in this way proved weaker 
in terms of the mathematics involved. We interpret 
this result as a (mathematical) failure in posing prob-
lems that preserve significant aspects of the deep 
structure of the original problem, yet confirming a 
distinction between being creative and being mathe-
matically creative.   

What are the underlying factors that ensure for a new 
posed problem to be mathematically consistent? We 
found that, among the students who used endogenous 
transformations, those who kept the global way of 
solving of the starting problem made mathematical-
ly qualitative new problems. But, as they identified 
the optimal way of solving, the resulted problem re-
mained close to the initial one, therefore in this case 
the student proved a low level of cognitive novelty, 
and the changes in cognitive framing were minimal. 
Their creativity was driven by the solution space, and 
inevitably, it had low amplitude.

Concluding, the evidence we got from problem modi-
fication tasks in our sample show that high achieving 
children swing between low amplitude driven cre-
ativity and failure to pose consistent problems when 
it comes about understanding the deep structure of 
mathematical concepts and strategies. Are these the 
only alternatives? Further research is needed to find 
a more definite answer.
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This paper aims to highlight the different aspects of a dis-
cussion on creativity promotion from the point of view 
of an educator involved in professional development of 
pre-service teachers. Challenging the prospective teach-
ers with open mathematical problems provides data 
on their beliefs and behaviour concerning creativity 
and creativity encouragement in the classroom. We 
emphasize a certain manner of revealing elements of 
relative creativity during students’ activities. The final 
remarks suggest relevant agenda for further discussion 
and research.
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INTRODUCTION AND BACKGROUND

The promotion of creativity seems to be the central 
issue of mathematical education at all levels. As 
mathematics teacher educator, I believe in a crucial 
role of the teacher in promoting students’ creativity, 
therefore, the development of creativity-inviting en-
vironment (Sinitsky, 2008) and analysis of students’ 
activity in this environment are the issues of my pri-
mary attention. 

During my long-term pedagogical practice, I have 
collected a vast amount of scattered empirical data 
on different approaches utilized by prospective and 
in-service teachers for treating open mathemat-
ical situations. The course called “Development of 
Mathematical Thinking” is a subject of my explicit 
interest, as its attendance consists of prospective ele-
mentary school teachers.  This paper refers to various 
aspects of behaviour and the activities of future teach-
ers themselves as the students of the course. With 
almost two hundred prospective elementary school 

mathematics teachers involved in different stages of 
a study, it may be regarded as fairly wide albeit not a 
very systematic one. Obviously, some aspects of the 
study have been related to creativity promotion, and 
provide an empirical basis for the discussion below.

Despite widespread declarations on cultivation of cre-
ativity as the core of mathematical education, there 
is no single accepted definition of creativity (Mann, 
2006; Sriraman, Yaftian, & Lee, 2011). Since creativi-
ty is related to the process of problem solving, some 
research papers focus on in-depth investigations of 
several, mainly intermediate, stages of cognitive and 
mental processes - in the spirit of a four-component 
model of preparation, incubation, illumination and 
verification proposed by Wallas (Dodds, Ward, & 
Smith, 2003). Following this paradigm, researchers 
pay major attention to the structure of an ‘Aha!’ mo-
ment (Liljedahl, 2009; Prabhu & Czarnocha, 2014). At 
the same time, Leikin (2009) has enriched the model 
of creativity as a specific combination of fluency, flex-
ibility and originality of Torrance, making it possible 
to measure various components of creativity. In the 
frame of this paper, we refer to this description of cre-
ativity that enables us to analyse the creative elements 
in mathematical behaviour of prospective mathemat-
ics teachers for elementary and secondary schools. 

Recent researches on teachers’ component of crea-
tivity have been carried out both on macro- (Leikin, 
Subotnik, Pitta-Pantazi, Singer, & Pelczer, 2013) and 
micro-levels (Pitta-Pantazi, Sophocleous, & Christou, 
2013). Up to now, however, teachers’ conceptions and 
practice in relation to creativity has not been studied 
systematically (Lev-Zamir & Leikin, 2013). 

The aim of the paper is to propose additional issues 
for further research agenda in the field from the point 
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of view of teachers’ educator. The discussion refers 
to the empirical data concerning the following ques-
tions:

 ― What do prospective and in-service teachers 
think about the possibilities of promoting cre-
ativity through everyday learning of mathemat-
ics in elementary school? 

 ― How would they deal with various creativity 
stimulating activities?

 ― Which features of creativity could be associated 
with the process of solving multi-step mathemat-
ical tasks by prospective mathematics teachers? 

BELIEFS VS. DECLARATIONS: 
POSSIBLE REASONS OF THE GAP 

Studying teachers’ beliefs regarding the encourage-
ment of students’ creativity was not our primary goal. 
Yet, the issue has arisen when pre-service teachers 
were asked to list the reasons for the importance of 
the course “development of mathematical thinking”. 

“We need to encourage creativity in framework of 
mathematics lesson in school; and the competence 
of mathematics teacher in aspect of creativity pro-
motion is a key factor in this process,” – they stated. 
This composite proposition has almost become an 
axiom in the last decade, and pre-service teachers 
are broadly familiar with both components of it. In 
the open-form questionnaire, almost 80% of them 
declared that teachers are required to develop math-
ematical thinking through learning mathematics rath-
er than focusing solely on standard algorithms and 
procedures. Significant part of prospective teachers 
also delivered interesting thoughts on the necessity 
of involving all the students in the learning process 
by using suitable pedagogical tools. Nevertheless, it 
is known (Lev-Zamir & Leikin, 2013), that the likeness 
of declarative conceptions concerning creativity does 
not provide the similarity of pedagogical practice re-
lated to promoting creativity.   

Let us examine the ‘real value’ of these claims. The 
same group of students discussed the well-known 
problem: divisibility of sum of consequent addends:

Assignment 1. Construct different sums of three 
consequent addends. What is the common prop-

erty of these sums concerning divisibility? Try 
to prove your assumption. 

Check the situation with another quantity of con-
sequent addends. Try to generalize.

Following a multi-stage process of problem solving, 
discussing the results and summarizing the conclu-
sions, students have been asked about possible ways 
of introducing this activity (partially or as a whole) 
in elementary school mathematics lessons. Only 20% 
of respondents have described more or less suitable 
arithmetic situations or problems. 

The reasoning of the remaining 80% of students as to 
why they could not use such a task in a regular math-
ematics lesson in an elementary school classroom can 
be summarized as follows:

 ― This activity is a difficult one; it is suitable for 
advanced students only.

 ― I have no idea how to fit this activity to the needs 
and the abilities of elementary school students.

 ― The activity does not belong to any school cur-
riculum.  

We observed similar replies when a group of in-ser-
vice teachers had been discussing analogous tasks 
during a professional training course. Moreover, 
many of them have added that “it seems to be a waste 
of time“.    

Let me put here two notes and to propose some related 
questions. 

The first remark concerns the current elementary 
school curriculum.  Is it possible that the extensive 
familiarity of teachers with textbooks and other 
teaching resources rules out the option of creativi-
ty-stimulating activities? In other words, does the ac-
tual content of (elementary) school mathematics invite 
those activities and learning styles or at least provide a 
suitable environment for introducing them? A survey 
by Sheffield (2013) contains some significant remarks 
on this topic, but the problem, indeed, requires a sepa-
rate discussion concerning both evaluation standards 
and curricula issues.
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Another comment is on the structure of pedagogical 
content knowledge (PCK). In terms of mathematical 
knowledge for teaching (Ball, Thames, & Phelps, 2008), 
we can easily conclude that pre-service teachers do 
not have enough PCK in the field of creativity promo-
tion. However, which specific component of pedagogical 
knowledge can be associated with tools that a prospec-
tive (or current) teacher might use in a classroom to 
encourage creativity? It certainly does not fit into the 

‘knowledge of content and teaching’ and cannot be 
included into the ‘knowledge of content and students’ 
category that deals with strategies of learning about 
specific issues. Since the ability of problem solving is 
both a principal component of mathematical reason-
ing and its main measure (Borasi, 1994; Silver, 1997), 
non-routine activities that stimulate creativity have 
to appear throughout all the content of subject matter. 
It seems that awareness on components of creative 
thinking lies beyond the topics of school mathematics 
and needs to be built as a core and cross-subject ped-
agogical mathematical knowledge. By analogy with 
horizon knowledge (HK) of subject matter content 
knowledge, it can be determined as HK component 
of PCK.         

Let us turn now to the practice. How do prospective 
teachers deal with mathematically challenging situ-
ations? It is accepted that pre-service teachers need 
to construct their pedagogical knowledge about en-
couraging creativity by using their own experience 
of ‘mathematical challenge and discovery’ accompa-
nied by further practice in the elaboration of creativ-
ity-stimulating activities for students (Shriki, 2010). 

“WHAT DO I NEED TO DO?” 

For years, students have started the course 
“Development of mathematical thinking” by filling in 
a closed-type questionnaire on the nature of problem 
solving in elementary mathematics. I have observed 
throughout the years that about 70% of prospective 
teachers have accepted the following description of 
mathematics problems and the ways of solving them:

 ― Each problem belongs to a specific mathematical 
topic, and there are explicit tools that are suitable 
for solving the problem within given mathematic 
areas only;  

 ― To solve the problem, one needs to execute a se-
ries of operations (in the right order), similar to 
a sample, typically known to a student.

These data correlate with the findings of Zazkis and 
Liljedahl (2002) on perceiving school mathematics as 
a collection of isolated propositions and the tenden-
cy of forthcoming teachers to focus on formulas and 
algorithmic procedures. 

All students had enough knowledge in elementary 
mathematics to progress with proposed assignments 
through the research. Nevertheless, the title of a sec-
tion is, not surprisingly, a citation of central theme 
and a leitmotif observed in students’ replies once 
they had faced a mathematical situation without 
an immediate solution algorithm. The pre-service 
teachers were real newcomers to the field: only 2% 
of respondents have acknowledged having practice 
with non-standard mathematical situations and/or 
open problems.  

During a six-month course students were typically 
challenged with 7–9 assignments of open type (Silver, 
1997). Certain assignments were multiple-solution 
tasks (Leikin, 2009) while others included the search 
of multiple solutions as an essential stage of the over-
all inquiry. Each assignment was presented as a mul-
ti-stage problem with auxiliary questions acting as 
a natural way to generalize results derived from the 
earlier stages. The set of assignments was designed 
according to a criteria elaborated by author (Sinitsky, 
2008). I present here two of these assignments along-
side the analysis of students’ solving strategies. The 
first activity and a subsequent extensive discussion 
on the nature of open-problems has in fact served as 
a ‘pedagogical preparation’ for the following assign-
ments. 

Assignment 2. Student has solved the following 
task: “For a given chain of natural numbers 1, 2, 
3, insert signs of arithmetic operations between 
numbers in order to obtain arithmetic expres-
sion which equals zero.”  He has produced the 
solution as follows: 1 + 2 – 3 = 0. 

Try to solve the similar problem for 
longer chains of natural numbers that 
start with 1, i.e. find suitable arithmetic 
operation signs to obtain the equality for 
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1   2   3   4 = 0;  1   2   3   4   5 = 0;  1   2   3   4   5   6= 0; …   etc. 
For each chain, find as many solutions as you can. 

Try to find solutions with addition and subtrac-
tion only. What can you say about the number of 
those solutions?   

Come back to the same chains with a number 1 
as a target result. Explore each of the previously 
solved chains (for instance, 1   2   3   4 = 1). 

When dealing with the first part of Assignment 
2, the students have used two principal strategies, 
i.e. ‘balancing’ of added and subtracted operands  
(as 1  – 2  – 3 + 4 = 0), and multiplying by an arbi-
trary factor of an algebraic sum that equals to 0 (as 
(1 + 2 – 3) × (4 + 5) = 0). Each strategy provides a signif-
icant amount of relevant solutions, thus we suppose 
that the fluency in this problem is a function of the 
number of proposed solutions of a given type and of 
time the student spent on finding them. After a couple 
of preliminary stages, many students have worked 
more or less in an algorithmic manner in compliance 
to the scheme mentioned by Ervynck (1991). Yet, some 
students have ‘rediscovered’ the leading principle for 
each solution without using any routine procedures.  

In contrast to fluency, the flexibility of solutions in 
this assignment is associated with a shift to another 
type of solution (for example, switch from expression  
1 – (2 + 3) + 4 = 0 to (1 + 2 – 3) × 4 = 0). We also regard 
the ability to adjust previously constructed solution 
to another situation as a feature of flexibility. Thus, 
we interpret the transition from ‘balanced’ equality 
[(1 + 2) × 3] – (4 + 5) = 0 to the equality with unity as a 
quotient of two equal numbers, [(1 + 2) × 3] : (4 + 5) = 1 
as flexibility as well.

Typically, for different groups of students, about 
80% of future teachers have shown several degrees 
of fluency and almost 40% revealed some flexibility in 
their solutions for Assignment 2. Additionally, small 
portions of students (about 8–10%) have construct-
ed a handful of surprising and non-trivial solutions 
that will no doubt belong to unconventional solu-
tion space (Leikin, 2007).   I would like to present two 
notable expressions as an example: ((1 + 2) : 3 + 4) : 5 
and (1 – 2) × (3 – 4). Remarkably, these solutions have 
served as a starting point for further fluency, as in  
(1 + 2) : 3 = ((1 + 2) : 3 + 4) : 5 = (((1 + 2) : 3 + 4) : 5 + 6) : 7 = …, 
and flexibility as in (1 – 2) × (3 – 4) = 1 × (2 – 3) × (4 – 5) 

, with a relevant search for limits of possible gener-
alization. In terms of Koestler (1964), progress in 
understanding provides the basis for the exercise of 
understanding, and can even lead on to the “next level” 
of understanding.

According to the accumulated data, Assignment 2 
had served as a reasonable tool to evaluate the com-
ponents of creativity through constructed solutions. 
This assignment also invites a discussion in classroom 
about introducing some creativity-related concepts to 
the reference group. After reaching such a promising 
conclusion let us turn to the next assignment and an-
alyse the student’s activities within the framework of 
the following example:    

Assignment 3. We assigned the label ‘exceptional’ 
to number 11 because it can be expressed as a dif-
ference of two square numbers: 11 = 62 – 52. Is this 
the only ‘exceptional’ number? How can we find 
other ‘exceptional’ numbers? For a given natural 
number, is there a way to write it as a difference 
of two perfect squares? Can we state that each 
natural number is an ‘exceptional’ one?

At the first stage of the solution, pre-service teachers 
have demonstrated a very limited repertoire of tools 
and ideas. Almost half of them claimed they ‘can do 
nothing’ with a problem and the following dialogue 
was a typical stimulating tool to start some progress 
towards a solution:

Tutor: Do you really believe that 11 is the only 
“exceptional” number?

Student: No, I think it is not the only example.
Tutor: How can you calculate an additional “ex-

ceptional” number?
Student: Aha! I can take any pair of perfect 

squares and subtract one from another. 
For example, 102 – 92, therefore 19 is also 
an “exceptional” number.

Despite the fact that various pairs of squares give 
numerous “exceptional” numbers, the ability to re-
cord a series of technical results hardly seems to be 
associated with a fluency of thinking. Alternatively or 
additionally, some students have shown a fluency in 
their search for solutions, constructing chains of dif-
ferences with some regularity. For example, students 
have constructed a series of differences of squares 
of consequent numbers or a series of differences of 
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squares with a constant difference between bases, but 
in all their suggestions students did not use algebraic 
expressions. As a result, those students have derived 
a distinctive series of desirable representations of 
natural numbers as “exceptional” ones.  

Since representation of any odd number as a dif-
ference of two (adjacent) square numbers was the 
ultimate outcome of the above scheme, a number of 
students have changed the pattern to produce solu-
tions of diverse types. Following this route, they have 
discovered “multi-exceptional” numbers – those that 
have more than one representation as a difference of 
square numbers. Flexibility may certainly be attrib-
uted to this step of the solution.

Can we find any elements of originality among the 
routines explored by the students? Which mathemat-
ical tool did they use in order to complete the solu-
tion? Notably, the factorization of squares’ differences 
alone almost immediately leads both to a list of pos-
sible wanted decompositions and a discrimination of 
criterion as an opportunity of such a representation 
for each natural number. Since a suitable formula has 
been applied, one may continue with a simple rou-
tine. In this context, the breakthrough is connected 
to a switch towards simple algebra, and not a single 
prospective elementary school mathematics teacher 
succeeded in making this switch.                    

Discussing this disappointing result of the last assign-
ment is especially interesting given the fact that the 
situation was fairly similar to other assignments, but 
it is not the scope of this paper. Instead, let us come 
back to the main goal of our case: assignments as a 
room to explore creativity. Did we really construct 
the set of assignments in order to identify gifted stu-
dents (those with extraordinary creativity) in a pop-
ulation of pre-service teachers? Note that I did not 
present any numerical data on measuring fluency 
and flexibility of students’ solutions, and I did that 
for a reason. We want prospective teachers to deal 
with creativity-promoting assignments in order to 
make them familiar with the field and to equip them 
with principal notions and components of ‘everyday’ 
creativity (Kaufman & Beghetto, 2009). It is a matter 
of fact, that through such an experience prospective 
teachers have meet “global” mathematical ideas and 
concepts (Safuanov, 2015).

On the other hand, pre-service teachers’ own expe-
rience may serve, to some extent, as a reasonable 
model of mathematical behaviour of students faced 
with challenging activities. Analysing the collected 
data, we can suggest some specific features for the 
characteristics of creativity-connected activity of 
non-experienced students in non-standard mathe-
matical situations. 

Most of these students need certain guiding hint or 
solution as a starting point to go further and explore 
the problem. This hint may simply be a minor reformu-
lation of a problem in the terms of possible answers (as 
one can see from the presented Assignments). In the 
absence of this ‘push’, students typically come back to 
the above-mentioned question “What do I need to do?” 
in full compliance with the statement of Sternberg 
(2009) on the role of a supportive environment as a 
condition for demonstrating creativity.  

Furthermore, we can attribute a number of particular 
features to the dimensions of creativity that have been 
developed by pre-service elementary school mathe-
matics teachers when exploring multi-step problems. 
As we have seen, fluency is associated with a series of 
solutions produced on the basis of a discovered sam-
ple or pattern. Contrary to this, flexibility reflects the 
ability to switch to a completely different pattern or 
to take the search to another direction. It seems that 
the discussion on originality is not relevant in this 
case, since some straightforward algorithmic solu-
tions have to be accepted as “original” ones: they do 
not belong to the set of solutions produced by similar 
groups. 

INTEGRATION OF PROBLEM POSING 
AND PROBLEM SOLVING

The multi-stage and open character of proposed as-
signments invited and stimulated the students to pose 
specific and general questions on mathematical situ-
ations and also on the results of the preceding steps 
of their inquiry. 

Since problem posing is a central component of crea-
tive processes (Silver, 1997), we have constructed and 
researched the situation of ‘pure’ problem posing in 
the frame of above-mentioned course for prospective 
teachers. A group of 21 pre-service teachers learned 
the course “Development of mathematical thinking” 
in self-regulated learning (SRL) format. Following 
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exemplification with several assignments, students 
were requested to construct their own open-type math-
ematical problem and to explore it. With accordance 
to ‘pure’ SRL approach (Goodwin, 2010), students have 
been asked to design their study, including the choice 
of a relevant mathematical situation itself as well as 
the tools and rate to explore it. In this approach of 

‘absolute free problem posing’, the mission proved to 
be impossible to complete: only 30% of students were 
able to even formulate a task, and all the tasks submit-
ted had a form of enrichment questions concerning 
curriculum items of different levels. This result is not 
a surprise: prospective teachers needed to ‘work like 
real mathematicians’ (Shriki, 2010) through generat-
ing and solving new problems. Nonetheless, after the 
tutor’s intervention and intensive group discussions, 
75% of respondents were able to construct open math-
ematical situations of different grades of complexity 
and relevance. 

Another item concerning mathematical creativity 
awareness of teachers is their ability to construct chal-
lenging activities for students. As a pilot test, we asked 
four prospective teachers to adjust their successfully 
constructed assignments for students of an elementa-
ry school. One of the results is presented below. 

Assignment 4 (original version). I have a set of 
40 items that look identical but have different 
weights. The weight is a whole number in kilo-
grams, from 1 to 40. In order to find the weight 
of each item, I can use a scale in one of the two 
manners: to balance an item on one side with 
one or more weights on another side; to balance 
an item and weights (if necessary) with a set of 
weights on another side. For each manner, what 
is the number and the value of required weights?

 Assignment 4 (adapted version). Represent arbi-
trary natural number from 1 to 40 with numbers 
1, 3, 9, 27 and using operations of addition and 
subtraction (each number may be not be used 
more than once). 

Unfortunately, the result is somewhat of a profana-
tion of the initial assignment, and a total loss of the 
creativity component can be observed.  This means 
that even when prospective teachers try to adapt their 
own problems to a “real-world” classroom, they are 
expected to meet some crucial difficulties. Recent re-
search that was focused on the ways teachers posed 

problems for their students (Pitta-Pantazi, Christou, 
Kattou, Sophocleous, & Pittalis, 2015) proves that we 
still need to consider a wide range of cognitive, psy-
chological and social factors.

FINAL REMARKS

Let me emphasize below the major questions dealing 
with encouraging creativity that, in my opinion, re-
quire further clarification.

 ― Part of pre-service teachers believe that the con-
tent of elementary school mathematics is not suit-
able for activities that promote creativity. Does 
(and to what extent) the current curricula allow, 
invite and encourage mathematically challeng-
ing activities?

 ― Pedagogical content knowledge emphasizes the 
importance of issue-dependant ways of teach-
ing and learning. What is the place of awareness 
on creative thinking and which are the ways to 
promote it in the structure of pedagogical math-
ematical knowledge?  

 ― According to our findings, external support at 
the initial stage has a crucial role for launching 
the process of creative thinking. Additionally, 
the elements of fluency, flexibility and originality 
appear: utilizing patterns and samples are two 
examples of that. Do those peculiarities depend 
on reference groups and/or on the nature of the 
proposed assignments? 

 ― Posing of mathematically challenging problems 
must be a part of teacher’s repertoire. How does 
this ability relate to the experience of problem 
posing through prospective teachers’ own han-
dling open mathematical situations?  
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The present study deals with the interaction of math-
ematical abilities and the role of the mathematical 
memory in the problem-solving process. To examine 
those phenomena, the study investigates the behaviour 
of high-achieving students from secondary school when 
solving new and challenging problems. Although the 
mathematical memory accounts for a small part of 
the problem-solving process, it has a critical role in the 
choice of problem-solving methods. The study shows 
that if the initially selected methods do not lead to the 
desired outcome, the students find it very difficult to 
modify them. The study also shows that students who 
use algebraic problem-solving methods perform better 
than those who use numerical methods.

Keywords: High-achievers, mathematical memory, abilities, 

problem solving.

INTRODUCTION

Despite increasing emphasis on the education of gift-
ed and high-achieving students, we still have limited 
empirical data about their mathematical abilities and 
use of memory functions during mathematical prob-
lem-solving. So far, much of the research on mathe-
matical abilities has been conducted on low-achievers 
(e.g., Swanson & Jerman, 2006). Only a few studies 
are focusing the mathematical abilities of gifted and 
high-achieving students (e.g., Brandl, 2011; Vilkomir 
& O´Donoghue, 2009) or the connection between 
those students’ memory functions and their mathe-
matical performance (Leikin, Paz-Baruch, & Leikin, 
2013; Raghubar, Barnes, & Hecht, 2010). Yet no study 
since Krutetskii (1976) has examined the role of the 
mathematical memory in the context of able students’ 
problem-solving activities.

BACKGROUND

Mathematical abilities
We are not born with abilities that are explicitly 
mathematical, but an active contact with the subject 
may, under favourable circumstances, generate com-
plex mathematical abilities (Krutetskii, 1976). When 
discussing the subject, we should remind ourselves 
that mathematics is not a topic defined by sufficient 
and necessary components and there is no uniform 
terminology for the abilities that we tend to define 
as mathematical (Csíkos & Dobi, 2001). Thus, it is not 
possible to define a structured system of mathemat-
ical thinking in which the units are satisfactory to 
understand the system. A historical review shows 
that Calkins (1894) concluded – based on replies from 
Harvard students – that mathematicians have con-
crete rather than verbal memories, that there are no 
differences in ease in memorising between mathema-
ticians and other students and that, when doing math-
ematics, there is no significant difference between 
men and women. In the early 1900s, mainly because 
of the dominance of psychometric approaches, the 
research community’s efforts to define mathemati-
cal abilities were unsatisfactory. Nevertheless, Binet, 
Piaget and Vygotsky made relevant contributions to 
the subject by replacing psychometric approaches 
with socio-cultural attitudes and thereby showing that 
abilities are nor static or innate, but qualities that 
can be assimilated and developed by the individual 
(Vilkomir & O´Donoghue, 2009).

An essential contribution to the subject was made 
by Krutetskii (1976) who observed around 200 pu-
pils in a longitudinal study (1955–1966). Krutetskii’s 
analysis of the pupils’ problem-solving activities lead 
to a model of mathematical ability as a dynamic and 
complex phenomenon, consisting of: a) the ability to 
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obtain and formalize mathematical information (e.g., 
formalized perception of mathematic material), b) the 
ability to process mathematical information (e.g., log-
ical thought, flexibility in mental processes, striving 
for clarity and simplicity of solutions), c) the ability 
to retain mathematical information or mathematical 
memory (i.e., a generalized memory for mathematical 
relationships) and d) a general synthetic component, 
named a “mathematical cast of mind” (Krutetskii, 1976, 
pp. 350–351).

Although the above model is often used to identify 
mathematical giftedness – and studies (e.g., Brandl, 
2011; Krutetskii, 1976; Öystein, 2011) show that 
high-achievers are not necessarily mathematically 
gifted – Krutetskii indicates that even students per-
forming very well in the learning of the subject, e.g. 
high-achievers, manifest abilities that can be regarded 
as proper mathematical abilities (ibid, pp. 67–70).

Mathematical memory
Memory is thought to be critical to both learning and 
doing mathematics (e.g., Leikin et al., 2013; Raghubar 
et al., 2010). Research that deals with memory func-
tions was conducted for more than 120 years, but 
during the first eight decades the topic was almost 
exclusively examined by quantitative measures 
(Byers & Erlwanger, 1985). However, in the 1940s, the 
research shifted focus toward more qualitative terms. 
Thus, Katona (1940) stated that information related 
to a method and based on understanding is easier to 
remember than arbitrary numbers. Later, Bruner 
(1962) noted that detailed knowledge can be recalled 
from memory with the use of simple interrelated rep-
resentations. Although numbers are fundamental 
tools in mathematics, Krutetskii (1976) underlines 
that recalling numbers or multiplication tables can-
not be equated with mathematical memory; highly 
able students memorise contextual information of a 
problem only during the problem-solving process and 
forget it mostly afterwards. Yet, they can still several 
months later recall the general method which solved 
the problem. In contrast, low-achievers often remem-
ber the context and exact figures related to a problem, 
but rarely the general problem-solving method. Thus, 
mathematical memory is a generalized memory for 
mathematical relationships, schemes of arguments 
and methods of problem-solving (ibid, p. 300).

Studies (e.g., Squire, 2004) show significant distinc-
tions between different types of memory systems. 

Relating mathematical problem-solving to the cog-
nitive model – by using a simplification – one can 
say that information is processed (e.g. the problem 
is solved) in the working memory and is stored (e.g. 
the problem-solving method) in the long term memory. 
Long term memory has two subcategories: explicit and 
implicit memory, depending on the type of informa-
tion stored in the respective system. The implicit mem-
ory stores information about procedures, algorithms 
and patterns of movement that can be activated when 
certain events occur; in mathematical context, the 
procedural memory is a relevant part of this system 
(Olson et al., 2009; Squire, 2004). The explicit memory 
stores information about experiences and facts which 
can be consciously recalled and explained; thus, it is 
associated with the ability to create mental schemas 
for problem-solving (Davis, Hill, & Smith, 2000). Thus, 
we can assume that mathematical memory, as defined 
by Krutetskii, belongs to the explicit (hence not to the 
implicit) memory system.

Krutetskii (1976, p. 339) and Davis and colleagues 
(2000) suggest that proper manifestations of math-
ematical memory are not observable in the prima-
ry grades, because at that age able pupils usually 
remember relationships and concrete data equally 
well. Krutetskii indicates that mathematical memory 
is formed at later stages, most probably on the basis of 
the initial ability to generalize mathematical material 
(ibid, p. 341).

Accordingly, the present study (Szabo, 2013) examined 
the dynamics between mathematical abilities, as de-
fined by Krutetskii, from the following perspectives:

1) The evidence and the interaction of mathematical 
abilities when high-achieving students are solv-
ing new and challenging mathematical problems.

2) The role of the mathematical memory in the pro-
cess of solving new and challenging mathemat-
ical problems.

METHOD

Participants
According to Krutetskii: a) the mathematical memory 
cannot be observed properly in young pupils or in 
low-achievers and b) mathematical abilities are man-
ifested by high-achievers. Consequently, the present 
study focused remarkably high-achieving, 16–17 
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years old students from Swedish secondary school. 
The participants attended an advanced mathematics 
programme and achieved the highest grade in math-
ematics. The participation was optional; after four 
months of classroom observations and consultations 
with their mathematics teacher, three boys and three 
girls were selected to attend the study.

Tasks
The analysis of a given problem, regardless of the 
mathematical field it belongs to, indicates the struc-
ture of the mathematical thinking needed to solve the 
problem (Halmos, 1980). Several studies confirm that 
the most effective way to discern mathematical abil-
ities is to analyse the behaviour of individuals in the 
context of problem-solving activities (e.g., Gyarmathy, 
2002; Krutetskii, 1976). Other results (e.g., Krutetskii, 
1976; Öystein, 2011) indicate that individual experi-
ence influences students’ ways of solving problems. 
The aim of the present study was to investigate the 
participants’ mathematical abilities, not their knowl-
edge of the subject; thus, to avoid as far as possible the 
influence of prior experiences, new problems were 
proposed that were not of a standard nature. After 
examining the participants’ textbooks and consult-
ing their math teacher, the following problems were 
selected:

Problem 1: In a semicircle we draw two additional 
semicircles, according to the figure. Is the length of the 
large semicircle longer, shorter or equal to the sum 
of the lengths of the two smaller semicircles? Justify 
your answer.

Problem 2: Mary and Peter want to buy a CD. At the 
store, they realise that Mary has 24 SEK less and Peter 
has 2 SEK less than the price of the CD. Even when 
they put their money together, they couldn’t afford to 
buy the CD. What is the price of the CD and how much 
money has Mary and Peter respectively?

Observations and materials
Classroom interaction affects student’s thought pro-
cess and that interaction is not limited to verbal com-

munication; even gestures or other minor events are 
affecting the process (Norris, 2002). Krutetskii also 
underlines that it is difficult to map individual mathe-
matical abilities if pupils are observed in a classroom 
situation. To avoid these confounding factors, the 
students were observed individually and, in order 
to avoid stress, they had unlimited time for complet-
ing the tasks. They were asked to write down every 
step in the process and to “think out loud” whenever 
it was possible. If a student neither wrote, nor drew 
or spoke for a while, some of the following questions 
were posed: What is bothering you? Why do you do 
that? What do you want to do and why? What are you 
thinking about? All observations were carried out 
during a single day and recorded by using a technol-
ogy which enables to digitalize handwritten notes 
and related verbal utterances (www.livescribe.com).

Pupils are not used to communicate their thoughts 
while solving problems (Krutetskii, 1976). To avoid 
the risk that significant parts of their cognitive actions 
would not be documented during the process, every 
problem-solving activity was followed by a contex-
tual interview. The recordings of the interviews and 
problem-solving activities were transcribed verbatim. 
Although the unlimited time for solving the problems, 
no participant needed more than 14 minutes to solve 
a single problem and the average duration of the suc-
ceeding contextual interviews was four minutes.

Data analysis
The general synthetic component in Krutetskii’s 
model, i.e., the “mathematical cast of mind”, is diffi-
cult to observe during occasional problem-solving 
and is typical for mathematically gifted students 
(ibid, pp. 350–351). The participants were certainly 
high-achievers, but not tested for mathematical gift-
edness and besides that, only two tasks were proposed 
to them during the present study. Thus, the general 
synthetic component was not focused in the study. 
Conversely, the ability to generalize is frequently used 
when pupils establish mathematical memories (ibid, p. 
341); thus, the study examined the presence of the abil-
ity to generalize mathematical information during 
the students’ activities. A rigorous a-priori analysis 
of the proposed tasks led to an identification-model 
for the present study, which focused the following 
abilities from Krutetskii’s framework: obtaining and 
formalizing mathematical information (O), processing 
mathematical information (P), generalizing mathemat-

Figure 1
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ical relations and operations (G) and mathematical 
memory (M).

The digital recording of the problem-solving activities 
resulted in an exact linear reproduction of the pupils’ 
written solutions, drawings and verbal utterances. 
This was very useful when performing qualitative 
content analysis of the empirical material, inspired 
by Graneheim and Lundman (2004) and van Leeuwen 
(2005). The students’ solutions were analysed by iden-
tifying, coding and categorising the basic patterns in 
the empirical content. At first, the method highlighted 
those abilities that were directly expressed in the em-
pirical material, i.e. the manifest content. After that, 
the latent content was analysed, by combining data 
from observations and contextual interviews. I exem-
plify this with data from Linda, who – when solving 
Problem 1 – looked at the task, drew some semicircles 
and whispered for herself:

Linda:  Thus, eh... Oh, and here we are after all 
just using what radius they have and 
such. One would...

After this device, which occurred after 30 seconds 
from start, she solved the problem by not saying that 
much and it was not possible to decide if mathematical 
memory was present at the time or if she only used 
her ability to obtain and formalize mathematical in-
formation. Later, when analysing the latent content, 
the following sequence from the contextual interview 
referred to the above mentioned episode:

Linda:  And then you express it simply as that, 
well, expressing their different diame-
ters as something of each other.

Interviewer: Yes.
Linda:  It is similar to another task that I like 

very much...
...
Linda:  Like there, when solving that, the first 

thing to do… it is making formulas... 
How different triangles and squares... 
how the inside of it looks.

Interviewer: Yes... hum.
Linda: Just like there, if you express different 

sides through... and take one side minus 
the other, just like in that problem...

The statement “It is similar to another task that I like 
very much” and the following explanation, relating 

the actual problem to an apparently different task – 
with a context of triangles and squares – show the 
evidence of an (explicit) memory for a generalization, 
i.e. mathematical memory in the actual device. The 
combined analysis resulted in a matrix there every 
device which lasted at least one second during the 
observed activities, and the time period for its oc-
currence, was related to the mathematical abilities 
focused in the present study. The matrix displayed 
both the interaction between the focused abilities and 
the occurrence of the abilities, measured in seconds, 
during every particular problem-solving activity. The 
matrix also indicated that some devices were actually 
related to two interconnected abilities.

RESULTS

The interaction of the mathematical abilities
Every student confirmed that the problems were new 
and challenging, which was a key issue in the design 
of the study. The analysis displays that the students’ 
problem-solving activities contain three main phases. 
All activities start with an initial phase which enclos-
es both the ability to obtain and formalize the mathe-
matical information and mathematical memory; these 
abilities are intimately connected and it is difficult to 
differentiate them. Directly after the initial phase, fol-
lows a phase where the ability to process mathematical 
information is prominent. Nevertheless, every activi-
ty ends with a different phase of processing mathemati-
cal information, where the students are checking their 
results. Beyond these three main phases, the observed 
mathematical abilities interact in irregular and un-
structured configurations.

The analysis also shows that if the chosen method 
does not lead to a direct solution of the problem, stu-
dents become stressful and discontinue processing 
the mathematical information; they return to the in-
itial phase, which is once again followed by a phase 
of information processing. Some participants went 
through this shifting of phases three times. The stress 
was most evident at Problem 2, where three of those 
four students who used similar methods made the 
same error when solving the inequality 2x – 26 < x. 
All three activities include the incorrect sequence 

“2x – 26 < x gives x – 13 < x”, before returning to the 
initial phase. All participants were familiar with 
inequalities; thus, one may naturally wonder why 
high-achievers make seemingly simple errors. The 
interviews reveal that the stress occurred when the 
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formalization led to inequalities instead of the ex-
pected equations: 

Earl:  That´s I was a little surprised when it 
was… on the inequality you solved it. 

Erin:  It is always difficult to start thinking 
outside the box... It feels like your mind 
goes blank. 

Linda:  Because I get so… When I start with 
equations ... then I really want to solve 
it with equations. 

Sebastian:  This kind of tasks usually requires 
an equation.

Thus, it seems that the stress was due to the selected 
method, i.e. equation-solving, lacked those proce-
dures that are necessary when solving inequalities.

The problem-solving methods 
used by the students
The problem-solving methods could be divided into 
two categories, as identified during the a-priori 
analysis of the proposed tasks: algebraic respective-
ly numerical methods. Consequently, it was possible 
to distinguish 7 algebraic and 5 numerical methods 
among the 12 processes. All of the algebraic methods – 
despite different approaches – led to correct solutions. 
In contrast, when applying numerical methods, the 
problems were not solved in a proper way.

The general structure of the 
students’ mathematical abilities
The analysis emerged in a matrix there every device 
in the problem-solving activities was related to at 
least one mathematical ability. On the other hand, 
the analysis revealed that at some devices there were 
two interrelated abilities present at the time – thus 
the methods of observation and analysis used in this 
study were not sufficient to differentiate those inter-
related abilities. Accordingly, the ability to process 
mathematical information (P) is present at 52 % of the 
total time of the students’ activities (see also Table 1). 
Obtaining and formalizing mathematical information 
(O) – solitary or in combination with other abilities – 

is present at 45 % and mathematical memory (M) at 17 
% of the total time (Table 1).

According to the a-priori analysis of the tasks, the 
ability to generalize mathematical information (G) 
could be detected when numerical solutions were de-
veloped into general solutions. Consequently, when 
numerical solutions were presented by the students, 
they were asked if they were able to generalize the 
obtained results. The analysis shows that none of the 
participants has been able to generalize the obtained 
numerical solutions; thus, the ability to generalize 
mathematical information could not be observed in 
this study.

The role of the mathematical memory 
in the problem-solving process
The analysis demonstrates that the mathematical 
memory is present predominantly at the initial phase 
of the process, at a relatively small proportion. In iso-
lated form – at 5 % of the process – the ability is present 
in the manifest content and it is mainly used for recall-
ing mathematical relationships and problem-solving 
methods. In the latent content, the ability is present 
during 12 % of the process, mainly in combination with 
the ability to obtain and formalize mathematical in-
formation (O with M) (Table 1).

Despite of its minor proportion, the mathematical 
memory is essential to students’ achievement in the 
problem-solving process, because: a) the students se-
lected their methods in the initial phase of the process 
and b) the students found it very difficult to modify 
the selected methods. Although they started over the 
process by returning to the initial phase, none of them 
abandoned the initially selected method.

DISCUSSION

One of the study’s main objectives was to map the in-
teraction of high-achieving students’ mathematical 
abilities during problem-solving. Three main phases 
of the problem-solving activities were identified: the 
initial phase, the subsequent phase of processing the 

O O with P O with M P P with M G M

33 % 2 % 10 % 48 % 2 % 0 % 5 %

Note: O = the ability to obtain and formalize mathematical information; P = the ability to process information; G = 
the ability to generalize mathematical information; M = mathematical memory

Table 1: Average time for mathematical abilities, according to the total time of the problem-solving process



Mathematical problem-solving by high-achieving students: Interaction of mathematical abilities and the role of the mathematical memory (Attila Szabo)

1092

information and the ending phase, where results are 
checked by once again processing the information. 
Despite the limitations of the study, the chronological 
order of the mentioned phases emphasize to some 
extent Polya’s (1957) model for problem-solving, which 
consist of four phases: a) understanding the problem, 
b) devising a plan in order to solve the problem, c) car-
rying out the plan and d) looking back. Thus, the study 
indicates that high-achievers solve new and challeng-
ing mathematical problems according to the ground 
stones in Polya’s model.

According to the results, the role of the mathematical 
memory – despite its relatively small presence in the 
process – is critical, since the participants selected 
their methods at the start of the process and did not 
change them later, e.g. when the formalization led to 
inequalities instead of the expected equations, the par-
ticipants returned to the initial phase but did not aban-
don the selected method. A selection of an improper 
method caused stress, time delay and errors during 
problem-solving. Thus, it seems that the participants 
experience a close and rigid interrelation between 
problem-solving methods and included procedures, 
i.e. they are not acting flexibly when solving new and 
challenging problems. By confirming the findings 
of other studies (e.g., Brandl, 2011) – where typical 
high-achievers are characterised by being dutiful, 
nonflexible and conformist – the results indicate that 
these participants were high-achievers but probably 
not mathematically gifted. In contrast, mathematical-
ly gifted students are described as flexible, high-lev-
el problem-solvers and out-of-the-box-thinkers (e.g., 
Brandl, 2011; Krutetskii, 1976; Leikin, 2014). Hence, 
the study confirms some qualitative differences in 
problem-solving between high-achievers who are not 
essentially mathematically gifted and mathematically 
gifted students.

However, the inflexibility of the participants can also 
be explained by two main functions of the cerebral 
cortex, where working memory operates. One func-
tion is to assemble all new information in relation to 
previous experiences (Olson et al., 2009). Thus, we 
can assume that at the initial phase, when obtaining 
and formalizing the information, the students are in-
fluenced by previous experiences (e.g. mathematical 
memory) and act as they are used to, e.g. by starting 
problem-solving with equations. Another main func-
tion of the cerebral cortex is to automate all knowl-
edge (Olson et al., 2009). Yet, automated processes are 

rigid and extremely hard to modify during an on-go-
ing activity. Therefore, it seems that equation-solving 
is an automated process for typical high-achievers 
and that the interpretation of new information in the 
light of past experiences affects their possibility to 
think flexibly in unusual situations.

Finally, it has to be mentioned that the present study 
confirms Krutetskii’s (1976) observation that during 
the initial phase it is extremely difficult to distinguish 
the ability to obtain mathematical information from 
the mathematical memory. Since information-units 
stored in the long term memory systems are retrieved 
at extremely high speed to the working memory (Olson 
et al., 2009), the methods used in this study were not 
sufficient to differentiate the information-units relat-
ed to respective abilities. For a better understanding 
of the interaction of the mathematical abilities there 
is a need of further studies. One possible access is to 
design studies where the structure of the mathemati-
cal ability is examined with approaches from several 
research fields, e.g. by combining qualitative research 
methods with practices from cognitive neuroscience. 
In that way, we would possibly be able to answer the 
questions that were not possible to be answered in 
the present study.
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The goal of the study was to investigate differences in 
how two groups of students activated mathematical 
competencies in the mathematical kangaroo (MK). 
The two groups, group 1 and 2, were identified from a 
sample of 264 students (grade 7, age 13) through high 
achievement (top 20 %) in only one of the tests: the MK 
or a curriculum bounded test (CT). Analysis of mathe-
matical competencies showed that the high achievers in 
the MK activated the problem solving competency to a 
greater extent than the high achievers in the CT, when 
doing the MK. The results indicate the importance of 
using non-traditional tests in the assessment process of 
students to be able to find students that might possess 
good mathematical competencies although they do not 
show it on curriculum bounded tests.

Keywords: Problem solving, mathematical competency, 

alternative assessment.

RESEARCH QUESTION

How can differences in students’ strength in the prob-
lem solving competency be visualised through the 
mathematical kangaroo (MK)?

THEORETICAL BACKGROUND

Teachers in Sweden have observed that some stu-
dents achieve highly in the international competi-
tion, the MK, although they have trouble with the 
national courses in mathematics. Some teachers 
suspect that those students are highly able in mathe-
matics (Mattsson, 2013). To investigate if differences 
in achievement between groups of students on the 
MK can be explained by mathematical competencies, 
Mathematical Competencies: a Research Framework 
(MCRF) (Lithner et al., 2010) is used as framework. The 
framework describes six mathematical competen-
cies: applying procedures, representation, connec-

tion, communication, reasoning and problem solving 
(Lithner et al., 2010).

METHOD

Empirical data is test results of same students’ (n = 
264) from the national test (CT) given in grade 6 and 
from the MK given in grade 7. Two groups of students 
were identified: Group 1, top 20 % achievers in the MK 
but not in the CT, i.e. among the bottom 80% in the CT. 
Group2, top 20% achievers in the CT but not in the MK. 
The two groups’ activation of mathematical competen-
cies on the MK was compared after eliminating the 
achievement factor. Competencies are therefore acti-
vated within an individual by showing the individuals’ 
strengths and weaknesses. Each identified individual 
belonged to one of the two disjunctive groups, and 
differences between the groups were analysed.

RESULTS AND DISCUSSION

This study verifies teachers’ observation, that there 
are students who achieve among the top in the MK 
but not in the CT. It is shown that on the MK, Group 1 
activates the problem solving competency to a great-
er extent than Group 2. Some tasks (6 out of 21), in 
the MK differ more than others in response rate be-
tween the two groups. Those tasks have in common 
that they all give opportunity to activate either the 
problem solving (n = 5) or the reasoning (n = 5) com-
petencies. The reasoning competency is in the MCRF 
closely related to the problem solving competency, it 
is its juridical counterpart (Lithner et al., 2010). This 
study shows that the MK consists of a relatively high 
number of problem solving tasks, the MK also aims to 
offer interesting challenges. The use of challenging 
problems are important when working with mathe-
matically highly able students (Nolte, 2012), The MK 
has inspired part of a model used to identify students 
highly able in mathematics (Pitta-Pantazi, Christou, 
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Kontoyianni, & Kattou, 2011), maybe the students in 
Group1 actually are mathematically highly able and 
given challenging mathematical problems makes 
them achieve. This study indicates that through the 
MK some students show good mathematical compe-
tencies that they not are able to show on the national 
test. It is therefore important to use both curriculum 
bounded test as well as non-curriculum bounded in 
assessment, so that students get more and varying 
possibilities to show their strength.
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This paper explores the possibilities of the organisation 
of research projects by pupils in the Secondary school 
when the open-ended approach is utilized.
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RATIONALE AND BACKGROUND

Exploratory learning has been often used in the math-
ematics teaching practice in Russia, typically, using 
the form of project (Shatskiy, 1989). As a result of the 
preliminary research, our interest focused on the 
open-ended approach to mathematics teaching that 
appeared in Japan in the 1970-s and was developed 
in the next decades (see, e.g., Becker & Shimada, 1997; 
Nohda, 1991). Essentially, this method was based on the 
use of problems with multiple solutions. After stud-
ying the philosophy of this approach, as well as its 
didactic opportunities and similar Russian practices, 
we developed a methodical system of using open-end-
ed problem approach for lessons of mathematics in 
the secondary school. The goal of this study is to check 
the effectiveness of the exploratory learning based 
on the open-ended approach in the mathematical 
classroom.

SETTING AND METHODOLOGY

We created a toolkit consisting of two blocks: a me-
thodical manual for teachers and a booklet for pupils. 
The methodical manual contains practical guidelines 
for using open-ended tasks in classes, a set of tasks 
for pupils of different age, examples of assessment 
systems, and instructions for composing open-ended 
tasks. The booklet for pupils is intended to assist in 
developing their metacognitive awareness. 

Some of the important stages in the lesson prepara-
tion coming from the experience of schools using ex-

ploratory learning approach in their practice should 
be mentioned:, 1) solving open-ended tasks cannot 
be used more often than once a week, 2) at the same 
time such an activity will not be of any use if research 
assignments are not used at least once a month. 

Also, it is necessary to decide if the exploration is to 
be done by the entire class acting as one group or the 
class is to be divided into groups. 

The experiment has been carried out during three 
years. The first phase of research included the design 
of the format of classroom work, and the identifica-
tion of the indicators to be controlled, as well as the 
development of teaching materials. The second (main) 
phase of the experiment began in the fall of 2012 in a 
secondary school in Moscow, in three grade 5 (12 years 
old pupils) classes, and was continued in those classes 
up to grade 7. One class (N=28) formed an experimen-
tal group, and two others (N=45) a control group. The 
objectives of the research project were: 

1) to clarify possibilities and ways for using 
open-ended approach;

2) to examine how pupils’ problem solving ability 
develops in response to the changes of teaching 
methods; 

3) to reduce pupils’ mathematical anxiety.

Before the beginning and at the end of the experi-
ment, teachers’ and pupils’ opinions about methods 
of teaching mathematics have been collected using 
questionnaires and interviews (that are presented 
on the poster). At the second stage of the experiment, 
about 20% of lessons in the experimental group (a les-
son once a week) were devoted to open-ended tasks.
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FINDINGS AND DISCUSSION.

Summarizing the results of the study, we observed 
the following changes indicated by the responses to 
the questionnaires before and after the main stage 
of the study:

 ― increase of students’ engagement in the class-
room;

 ― progress in acquiring the experience of applying 
mathematics to real life; 

 ― stable positive dynamics of improvement of re-
search competences;

 ― improvement of the psychological climate in a 
classroom; 

 ― changes in the role of a teacher as a participant 
of the educational process in a classroom; 

 ― acquisition of skills of team work. 

Some important questions still require further re-
search. In particular, our further research will focus 
on the development of detailed recommendations for 
teachers for using open-ended tasks in their practice, 
and for preparing worksheets with opened-ended 
tasks for pupils of different ages. Changes in teachers’ 
beliefs and practices seem to be crucial.
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This paper explores different ways of teaching peda-
gogical universities’ students to solve various types of 
non-routine mathematical problems.
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RATIONALE AND BACKGROUND

The rationale of this paper is to describe a new exper-
imental course in solving non-routine mathematical 
problems developed for prospective mathematics 
teachers. The course was based on the genetic ap-
proach combined with G. Polya’s principle of consec-
utive phases and also with principles and rules devel-
oped by Soviet tradition of fostering problem-solving 
abilities. The creation of the course as well as the study 
of its results was guided by the following questions:

1) How new course will improve problem-solving 
skills of students?  

2) How students’ views of mathematical problem solv-
ing will change?

George Polya (1981, I, p. xii) emphasized that prospec-
tive mathematics teachers should be specially taught 
to solve mathematical problems. “…The solution of a 
non-routine mathematical problem is genuine crea-
tive work”. Moreover, he indicated the importance 
of the discussing methods of solving problems in the 
classroom. However, as Abramovich & Brown (1996, 
p. 323) rightly mentioned, “traditional teacher train-
ing courses have offered little if any engagement in 
exploratory mathematics”. Furthermore, non-routine 
mathematical problems now constitute the essential 
part of the Uniform State Examination in Mathematics 
for secondary school graduates (tasks C1-C6). The aim 
of this paper is to describe the experience of teach-
ing prospective secondary mathematics teachers to 

solve non-routine mathematical problems including 
Olympiad problems and problems C1-C6 of the Unified 
State Examination in Mathematics. The new experi-
mental course in solving non-routine mathematical 
problems for prospective mathematics teachers con-
ducted with a group of 4-th year mathematics major 
students at the Moscow City Pedagogical University 
will be discussed. 

SETTING AND METHODOLOGY

In our course, we used genetic approach (Safuanov, 
2004). In particular, having solved a problem, we grad-
ually establish its connection to some fundamental 
mathematical theories. For example, considering 
naturally arising problem of Konigsberg bridges, 
we arrive to the important mathematical theory of 
Eulerian graphs. G. Polya (1981, II, p. 133) wrote that 

“the genetic principle may suggest the principle of 
consecutive phases”. 

The principle of concentrated teaching (Safuanov, 
1999) manifests itself in our course in several direc-
tions. Knowledge of some mathematical topics was 
deepened. Some simple problems serve for the antic-
ipation of more complex problems and mathematical 
theories. Many problems serve not only for the rais-
ing of the interest to studies (due to their entertaining 
character) but also promote the acquisition of new 
theoretical knowledge because they are connected to 
modern mathematical theories – one can say that he 
combination of pedagogical functions was achieved. 
Finally, the “linkage” and “connections” were system-
atically used: one interesting problem led to other, in 
some way connected with the former; thus the chains 
of problems were considered. For example, we offer 
chains of problems on weighing coins, chains of prob-
lems on quad paper etc. It is important to tell student 
teachers about more general approaches, using the 
psychological characteristic of the process of problem 
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solving. The new course was implemented within an 
undergraduate curriculum for a group (N=18) of 4-th 
year mathematics major students. Before the begin-
ning and at the end of the course, students’ skills of 
solving non-routine problems have been tested and 
their views of problem solving have been identified 
using questionnaires and interviews. The classroom 
work has been organized as a collective solving of 
some key problems and mostly as a work in small 
groups solving problems.

FINDINGS AND DISCUSSION

First outcomes of the implementation of our course 
demonstrated the positive changes in prospective 
mathematics teachers’ skills in solving non-routine 
problems as well as in their beliefs about the problem 
solving.
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With heterogeneity at schools growing, individualis-
ation of education has become more important than ever. 
For teachers it is vital to recognise their pupils’ diverging 
abilities effectively in order to meet the pupils’ respective 
learning requirements. The following project, which is 
based on a regular education setting at primary school 
(3rd/4th graders, German Primary School), aims at show-
ing ways to identify and characterise mathematically 
gifted pupils during regular lessons. 

Keywords: Mathematical giftedness, mathematical 

thinking, inquiry-based learning, process-based analysis.

MATHEMATICAL GIFTEDNESS 
IN PRIMARY SCHOOL

With respect to the development of mathematical 
skills and interests at primary school, two relevant 
projects have been influencing effective teaching at 
German Primary Schools: F.W. Käpnick, who picked 
out children according to their own motivation or 
teachers’ reference and let them take part in extra 
mathematics lessons where their methods of working 
mathematically could be monitored (Käpnick, 1998, 
pp. 36–38). M. Nolte initiated extra meetings for inter-

Figure 1: Empirical framework for a process-based analysis of mathematical gifted pupils in primary school
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ested pupils, and implemented tests and challenging 
exercises (Nolte, 2004, pp. 17–20). Both stated that it 
is quite difficult to define or even categorise an exact 
level of mathematical giftedness, if pupils are chosen 
only according to teachers’ references, parents’ sug-
gestion or their performance in standardised tests 
(Käpnick et al., 2005, pp. 18–28). We assume that 

“mathematical giftedness is the individual potential 
to think mathematically. (…) High mathematical gift-
edness is characterised by an above-average potential 
in several aspects of mathematically thinking.” (Ulm, 
2011, p. 7) Content-, process- and information-based 
thinking as well as environmental and individual 
features influence the pupils’ ideas, results and per-
formances (Ulm, 2011, pp. 6–9). 

Empirical project and analysis
This project focusses on the research question wheth-
er there are significant differences between the men-
tioned ways of identifying mathematical giftedness, 
and what a simple identification tool for teachers’ ob-
servation in everyday classroom situations must look 
like in order to allow for a successful identification of 
gifted pupils. With regard to research methodology, 
the development of different tasks which correlate 
with varying aspects of mathematical thinking builds 
the starting point when it comes to encouraging pu-
pils during lesson to work on a topic independently 
and cooperatively (cf. upper half of Figure 1). In ad-
dition, various didactical settings and methods offer 
a detailed, qualitative view on the pupils’ individual 
mathematical abilities (cf. Figure 1 below). Afterwards, 
observations are interpreted by a qualitative content 
analysis. The latter considers different aspects of 
mathematically thinking corresponding to four levels 
of mathematical ability. In a final step, the results are 
compared to the results of standardized tests. 
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INTRODUCTION

The quantitative data about the participation to 
TWG08 at CERME9 highlights the growing interest 
toward affective issues in the field of Mathematics 
Education. 40 manuscripts were submitted to the 
group, 34 were accepted for the discussion, and fi-
nally in these proceedings 29 papers and 4 posters 
are included. 

Although we have seen a general upward trend in the 
number of countries represented within this TWG, 
CERME9 set a new record in this regard with 16 coun-
tries present, representing four different continents. 
This meant that we had more papers both submitted 
and presented than ever before. 40 manuscripts were 
submitted to the group, 34 were accepted for the dis-
cussion, and finally in these proceedings 29 papers 
and 4 posters are included.

Due to the high number of papers and in order to 
have adequate time for a deep discussion of all the 
contributions, we organized five of the seven working 
group sessions splitting the group in two subgroups, 
maintaining the whole group for the first and the last 
session. Moreover, in order to avoid the split of the 
group into two fixed subgroups A and B, we collect-
ed participants’ interests before the conference and 
organized different subgroups for each split session. 
During the five sessions, each participant had the 
opportunity to attain either group A or group B ac-
cording to their preferences and in this way to meet 
all participants of the TWG08.  

All submitted documents (paper or poster) were 
discussed: presenters had 10 minutes (5 minutes for 
posters) to introduce the key-ideas of their papers, 
then an assigned reactor had 5 minutes to underline 
issues or pose questions to the whole audience and fi-
nally there were 15 minutes for discussion (5 minutes 
for posters). In this way, discussions were generally 
centred and engaging. The final versions of the papers 
and posters have benefited and developed from the in-
spiring and motivating discussions conducted during 
the Conference, that have also involved 5 researchers 
without submitted papers.

THE STATE OF THE ART

Boero and Szendrei (1998) stress the cumulative and 
universal characters of the research in mathematics 
education: this universal character appears to be par-
ticularly important in the field of affect, characterized 
by several constructs derived by other domains of 
research. For this reason and due to participation 
of many newcomers in the TWG08, we used part of 
the first session to report the results emerged in the 
TWG08 in previous CERMEs conferences. 

Marilena Pantziara (who chaired the previous two 
TWG08) developed and presented a very interesting 
overview, significantly titled “CERME TWG08: The 
past-The present-The future”.  

Starting with the past, i.e. the first studies in math-
ematics education where affect emerges as a field 
of research (McLeod, 1992), Pantziara retraced the 
reasons that induced many researchers to go beyond 
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the cognitive for better understanding the complex 
process of learning and teaching mathematics. Then 
Pantziara introduced the main affective constructs – 
from the more “classic” (emotions, beliefs, motivation 
and attitudes) to other constructs introduced in the 
more recent editions of CERME (identity, mathemat-
ical security, uncertainty orientation). The presenta-
tion included the evolution of definitions, methods 
and questions in our field, as emerged by discussions 
in previous Affect TWGs, and the model for the struc-
ture of the affective domain introduced by Hannula 
in CERME7 (2011). 

In the description of the progress of the research in 
the field of affect (corresponding largely to the evolu-
tion of the papers presented in the overview of Affect 
TWG), the presentation stressed: 

 ― the growing attention to the clarification of 
concepts (despite that, the problem of different 
meanings given to the same words is even now 
not overcome) and to the mutual relationship 
between concepts; 

 ― the trend towards the use of mixed methods 
(quantitative and qualitative) in the research on 
affect, overcoming the initial preponderance of 
quantitative methods. The interesting aspect is 
that this trend is related to the shift from the de-
scription of a phenomenon to the interpretation 
of the same phenomenon; 

 ― the growing attention to the interpretation of the 
collected data (this aspect is clearly linked to the 
previous one, and in particular to the shift on 
affect from a normative approach to an interpre-
tivist one).

Within this frame, the presentation highlighted some 
important possible directions for future research on 
affect. Some of these directions were exactly discussed 
during the sessions of TWG08 in CERME9.

THE PAPERS PRESENTED IN TWG08 AT CERME9 

The analysis of research questions of the papers dis-
cussed reflects the current diversity of interests and 
approaches inherent in the field of affect research. 
The only commonality across these diverse perspec-
tives is that the papers all deal, for the most part, with 
disaffection. We are still, as a field, working towards 

precision in terminology and the papers reflect this 
effort. Finally, as in previous meetings, the papers 
continue to take into consideration the cultural con-
texts (language, traditions, and history) within which 
the research is set. 

However, these similarities aside, CERME9 also saw a 
significant evolution from past affect TWG’s. 

In this CERME9, in continuation with a long tradi-
tion in the field of affect, a spread topic concerns the 
study of (pre-service or in-service) teachers’ beliefs: 
Arslan and Bulut study middle grades mathematics 
teachers’ teaching efficacy beliefs and their sourc-
es; Schmitz and Eichler investigate teachers’ beliefs 
about the roles of visualization; Yurekli and Isiksal 
discuss the origin of pre-service teachers’ self effica-
cy beliefs; Haser, Arlsan and Kübra explore primary 
pre-service mathematics teachers’ beliefs about math-
ematics teachers through asking them about their 
metaphors for mathematics teachers; Bräunling and 
Eichler exhibit a case study to reconstruct the whole 
belief system of a single teacher about the teaching 
and learning of arithmetic; Skilling and Stylianides 
investigate secondary teacher beliefs and practice 
that the teachers report using to promote cognitive 
engagement in their classes. Charalampous deals with 
students’ beliefs and particularly with the question: 

“does mathematics pre-exist and hence is discovered 
or is it invented and owes its being to humans?”.

Two papers are related to the development of instru-
ments to analyse students’ beliefs: Kibrislioglu and 
Haser develop mathematıcs-related belıefs question-
naires while Andrà, Brunetto, Parolini and Verani 
propose a codifying system for inferring the students’ 

“I can” and “you can” during a groupwork activity.

Another issue of interest concerns the role of moti-
vation/engagement in mathematics learning and the 
way to improve perseverance in students’ mathemat-
ical activities: Lewis studies and describes patterns of 
motivation in mathematics classrooms; Pantziara and 
Philippou discuss the role of multiple goal in students’ 
motivation and achievement; Barnes discusses how 
to improve children’s perseverance in mathematical 
reasoning; Kazima investigates students’ reasons 
for preferences of contexts in learning mathemat-
ics; Beumann analyses the impact of mathematical 
activities on motivation and interest (these last two 
papers are not included in the proceedings).    
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Several papers deal with the issue of affect in problem 
solving – Viitala discusses a case study of a grade 9 girl; 
Antognazza, Di Martino, Pellandini and Sbaragli and 
Daher, Swidan and Shahbari study the intertwining of 
affective and cognitive factors in problem solving in 
two different school levels (respectively kindergarten 
and grade 7 students); Müller-Hill and Spies analyse 
the role of aesthetic experiences in problem solving 
processes; Tuohilampi, Näveri and Laine present a 
three-year intervention designed to improve prima-
ry school pupils’ problem solving skills, and mathe-
matics-related affect; Morselli and Sabena present a 
study about primary pre-service teachers’ affective 
pathways in problem solving – and, more in general, 
with emotions. Helmane describes basic emotions 
of primary students during mathematics lessons; 
Martínez-Sierra describes students’ emotional ex-
periences in high school mathematics, Schukajlow 
analyses a connection between boredom and students’ 
performance; Fyhn deals with the original theme of 
the consideration of affective aspects of knowing 
mathematics in oral examinations in Norway. 

De Simone and Lake discuss in their papers the emo-
tional experience of teaching mathematics at the sec-
ondary school level. 

Regarding the posters, Grothérus describes a method 
for teaching, evaluation and assessment in mathe-
matics finalized to reduce students’ math anxiety; 
Hansson investigates how students explain their 
selected failure in mathematics; Andrà, Brunetto, 
Parolini and Verani study teachers’ interpretations 
of students’ mathematical competencies; García 
González and Farfán Márquez analyse students’ at-
titudes towards mathematics.

As usual in our group, there are papers that examine 
in depth theoretical aspects: Liljedahl uses the theory 
by Leont’ev to interpret pre-service teachers’ changes 
after an intensely negative emotional experience and 
introduces the idea of hierarchy of teachers’ motives; 
Moscucci and Bibbò describe relationship in the affect 
domain using theory by neuroscience; Pieronkiewicz 
introduces the notion of affective transgression in or-
der to interpret students’ negative emotions towards 
mathematics; Branchetti & Morselli study the relation 
between identity and rational behavior. 

The discussion of theoretical aspects was particular-
ly stimulating because it highlighted new trends. In 

particular, in CERME9 for the first time we had papers 
looking at affect from the participationist (social) per-
spective overcoming a pure aquisitionist (individual) 
perspective. Moreover, the discussion about identity 
(a construct that has a growing attention in the field 
of affect) has underlined the possible contributions 
for the study of this construct from a socio-psycho-
logical and interactionist approach emphasizing the 
construction of identity processes and conceiving 
identities as strategies.

The importance of considering the dynamic dimen-
sion of culture has been also underlined. In particular, 
it has been highlighted the need to unpack “cultures”, 
considering how they have been enculturated into a 
set of pedagogical assumptions (that is, beliefs and 
orientation).

Summarizing this brief panning shot at a more qual-
itative level, the papers presented are focused much 
more on teacher affect (as opposed to student affect) 
than we have seen in the past. 

Trait and state (Hannula, 2011) research has long been 
presented in the papers at past CERMEs. However, 
unlike previous years, the research at CERME9 was 
much more focused on the state side of this dichoto-
my. CERME9 also saw an increase in the number of 
different affective frameworks being used to analyse 
phenomena and more qualitative papers. This stands 
in stark contrast to, for example, CERME5, where al-
most all of the papers were quantitative. 

We also saw several papers dealing with emotions, 
which is a significant change from past CERMEs. 
Likewise, there was an increased presence of research 
into meta-affective aspects, the role of interests, crea-
tivity, and self-regulation – topics that had previously 
received little attention at CERME. 

Finally, for the first time we had two papers looking 
at affect from the participationist perspective. 

Despite all this evolution the participants felt that 
more changes are still needed. In particular, there 
was a call for further work in improving our defini-
tions. In addition, there was a feeling that more work 
was needed on the emergent topics of emotions, and 
meta-affect. 
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Although we continue to consider cultural contexts 
it may also be time to consider micro-cultures, such 
as the classroom or student-teacher relationships. 
More longitudinal research is needed and, with the 
shift from quantitative to qualitative research meth-
ods, it is now time to consider mixed methods. The 
introduction of participationist perspectives signals 
a need to pay more attention to theorizing and net-
working of theories as well as more comparative and 
cross-domain research. And, of course, more work 
on the implications of research on the constructs for 
curriculum development, teacher education, assess-
ment, and intervention is warranted. 

REFERENCES 

Boero, P., & Szendrei, J. (1998). Research and results in math-

ematics education: Some contradictory aspects. In J. 

Kilpatrick & A. Sierpinska (Eds.), Mathematics education 

as a research domain: A search for identity (pp. 197–212). 

Dordrecht: Kluwer.

Hannula, M. (2011). Structure and dynamics of affect in mathe-

matical thinking and learning. In M. Pytlak, E. Swoboda, & 

T. Rowland (Eds.), Proceedings of the Seventh Congress 

of the European Society for Research in Mathematics 

Education (pp. 34–60). Rzeszów, Poland: ERME.

McLeod, D. (1992). Research on affect in mathematics educa-

tion: a reconceptualization. In D. A. Grouws (Ed.), Handbook 

of research on mathematics teaching and learning (pp. 

575–596). New York, NY: Macmillan.



1108CERME9 (2015) – TWG08

TWG08

Research papers



1109CERME9 (2015) – TWG08

‘I can – you can’: Cooperation in group activities

Chiara Andrà, Domenico Brunetto, Nicola Parolini and Marco Verani

Polytechnic of Milan, Department of Mathematics, MOX, Milan, Italy, chiara.andra@polimi.it 

We stem from phenomenological stances that each 
thought originates from a perceived competence (“I 
can”), which has a strong affective nature. In groupwork 
activities the “you can”, namely the competence that a 
student recognizes in the classmates, is also important. 
We propose a codifying system for inferring the students’ 

“I can” and “you can” during a groupwork activity. The 
results are 2D-diagrams that capture the main moments 
of the activity and help us identifying the leader(s) of the 
activity and the different roles the students play.

Keywords: Group interaction, perceived competence, 

cooperation.

INTRODUCTION AND FRAMEWORK

Learning in mathematics occurs in and through inter-
action with others, the learner becomes conversant 
with new concepts emerging in the activity, as Sfard 
(2001) points out: “communication may be defined as 
a person’s attempt to make an interlocutor act, think 
or feel according to her intentions” (p.13). Activity 
allows the growth of mutual understanding and co-
ordination between the individual and the rest of the 
community (Sfard, 2001). Cooperation is one of the 
main focuses. Different kinds of cooperation have 
been depicted (Gooding & Stacey, 1993), with respect 
to the objective of the activity. Also, conditions that 
foster cooperation have been highlighted: operation-
al, computational requests of the activity enhance 
cooperation, whilst reflexive ones may impede it 
(Hertz-Lazarowitz, 1989). But, are there conditions 
that shape cooperation which can be traced back to 
the relationships among the students, rather than to 
the features of the task?

We stem from Merleau-Ponty (2002) claim that every 
thought originates from an “I can” rather than from 
an “I think of ”. Di Martino and Zan (2011) have identi-
fied the students’ “I can” in the narrative accounts of 
their relationship with mathematics during the school 

years: they call it perceived competence. “I can” may 
prompt the student to intervene in a conversation, 
proposing a strategy, rephrasing another student’s 
utterance, adding a detail, fostering her thinking. “I 
can’t” may push a student to ask questions, seek for 
clarification, stay silent and listen to her mates (see 
Andrà & Liljedahl, 2014). Since each student may (or 
not) recognize a competence to each one of his class-
mates, there is another dimension that counts: “you 
can”. Andrà and Liljedahl (2014) have shown that, 
during a group activity, a student may care of a cer-
tain classmate’s attention and, at the same time, be 
annoyed by another student’s reaction to his proposal. 

“I can” and “you can” are seen as interior states, whilst 
utterances, postures, glances, gestures are the exter-
nal expressions of such internal states that determine 
each student’s will to propose, to react, to stay silent.

METHOD OF ANALYSIS

We exploit an idea introduced by Sfard and Kieran 
(2001) to capture “two types of speaker’s meta-discur-
sive intentions: the wish to react to a previous contri-
bution of a partner or the wish to evoke a response 
in another interlocutor” (p.58): reactive and proac-
tive utterances, respectively. Proactive and reactive 
statements are, in our view, indicators for inferring 
a sense of “I can”, a sense of likelihood of success that 
provides the basis for thought and communication. A 
sense of “I can’t”, conversely, can be inferred from a 
student’s silence, but also from his/her questioning 
the strategies/results proposed by his/her classmates. 
Postures, glances, tone of voice can sustain our infer-
ences about a student’s sense of “I can” versus “I can’t”. 
A sense of “you can’t” is, as well, inferred from absence 
of reactions to other students’ utterances. A student 
who does not glance at a classmate, but looks at the 
paper, or elsewhere, may not recognize a competence 
to her (see also Andrà & Liljedahl, 2014). Conversely, 
a student who care about a classmate’s attention, a 
student who gives her way, who reacts to her, may 
feel a sense of “you can”.



‘I can – you can’: Cooperation in group activities (Chiara Andrà, Domenico Brunetto, Nicola Parolini and Marco Verani)

1110

We analyze two video excerpts. We codify the ex-
cerpts as follows. Each example is divided into moves, 
lasting few seconds each and being identified by the 
placement of the students into a 2D-diagram, rep-
resenting the internal states: “I can” versus “I can’t”, 

“you can” versus “you can’t”. If a student change his/
her placement in the 2D-diagram, a new move starts. 
Even if there can be various degrees of “I can” and “you 
can”, in our first analysis we decided to depict only 
two possible, dichotomous states. The result of the 
analysis is a series of 2D-diagrams (4 possible “states”) 
that capture the subsequent moves of the activity. We 
added arrows to denote changes (if any) for a student 
with respect to the previous move. The first episode 
has no arrows. 

The diagrams are the result of: (i) extensive observa-
tion made by each author, (ii) intense discussion about 
possible interpretations of data. After hours of joint 
work in team, it is not possible to provide indices for 
inter-rater agreement within us, given that each inter-
pretation is strictly intertwined with each other’s one. 
This can be seen as a weakness of this work. Hence, in 
a poster (Andrà, Brunetto, Parolini, & Verani, 2015), 
we report on several secondary school teachers’ com-
ments, and we specifically seek for agreement/disa-
greement with respect to our interpretations.

DATA

We present two excerpts taken from a course in prob-
ability aimed at preventing gambling abuse. These 
excerpts come from 22 hours of video recording in 13 
different schools of different types in Northern Italy. 

These two excerpts have been selected because they 
capture some interesting dynamics. True, the small 
sample is a limitation of this study. Another limita-
tion is the focus only on the perceived competence: 
Di Martino and Zan (2011) identify another important 
dimension, ‘I like’. Motivation is third dimension that 
plays a crucial role in framing students’ interaction. 
As a first step, we decided to focus only on the ‘I can’-
‘you can’. 

The first excerpt comes from a group activity en-
gaging 4 grade-12 (17 years old) students: Enrico (E), 
Federico (F), Giovanni (G), and Michele (M). They are 
attending a technical high school program and are 
asked to invent a fair game using two dices (possi-
ble outcomes are all the sums from 2 to 12). In a fair 
game, the expected winning equals the ticket price. 
They have computed the probability of each sum, re-
porting it on the paper (Figure 1A). They now have to 
assign the prize to each sum from 2 to 12: G wants to 
start from 7, and F from 12. The excerpt lasts almost 1 
minute. Out-of-school knowledge emerge, as well as 
school mathematics.

The second excerpt comes from a group activity en-
gaging 4 grade-10 (15 years old) students: Alice (A), 
Barbara (B), Carola (C), and Dora (D). They are attend-
ing a scientific high school program and are analyzing 
a slot machine, which has three rolls with 9 different 
symbols each. The number of different sequences is 
93=729. There is only one winning symbol: the gold bar. 
The students have computed the probabilities of one, 
two and three gold bars, and reported them on the 
paper (Figure 1B). They now compute the expected 

(A) 

(B) 

Figure 1: Parts of tasks completed before the first (A) and second (B) excerpts begin
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winning. To do so, they have to report the probabili-
ties in the table, to multiply each of them by the corre-
sponding prize, and to sum up the results (weighted 
prizes). The excerpt lasts 8 minutes.

DATA ANALYSIS

Excerpt 1—move 1. We now present the excerpts, in-
ferring the students’ “I can” and “you can” from their 
utterances, their postures, their gazes and the tone 
of their voice. Data analysis begins with the first 13 
seconds of the first excerpt.

1   G:  We should start with 7, which has the 
highest prize. …No, the lowest prize.

2   F: No, let’s do, let’s bet 1 euro.
3   M: Easy.
4   F: If e.g. you bet on 12, it comes out, you 

win…
5  M: But bet 2 euros.
6  F: …you win 36 euros. Let’s do 36 to 1.

Both G and F make proactive statements. G looks at the 
paper but addresses F. F, in fact, reacts immediately to 
G (“No”), and makes a proactive statement (“let’s do, 
let’s bet 1 euro”), which involves everyone: in fact, M 
reacts to it in 3 (“Easy”), and in 5 (“bet 2 euros”), and 
E will react later, in 13 (“Else, bet 50 cents”). G opens 
the conversation, proposing to start with the prize to 
be assigned to 7. A proactive statement is an indicator 
for G to have a sense of “I can”. We claim that such an 

“I can” is grounded on the intuition that 7 should be 
assigned the lowest prize, and this intuition comes 
from his experience with betting games: the higher 
the probability to win, the lower the prize. F makes 
three proactive statements, showing a clear sense of 

“I can”: in 2, 4 and 6. In his proactive statement in 4 
F proposes to start from the prize to assign to 12. At 
6 he intuits that one should win 36 euros, and this 
intuition comes from his vivid experience with sport 
betting practice. The language he uses is the language 
of sport betters. In the first two proactive statements, 
F looks at the paper, in the last one he looks at G. To 
look at the paper is an indicator of “you can’t”, and in 
fact F speaks over his classmates both in 2 and 5. In 
2 F contradicts G with a “No”, without providing any 
justification to the group concerning why should them 
do differently from what G has proposed. In 5 M reacts 
to F, but F does not react to M. F discards M’s proposal 
to bet 2 euros instead of 1.

In 1, indeed, G feels a sense of “you can”, using the first 
plural person (“we”). He makes his proposal, but he 
remains silent to listen to the others, without trying to 
impose his standpoint. As well, also M shows a sense 
of both “I can” and “you can”: the adjective “Easy” he 
uses at 3 to comment on F’s proposal, clearly refers 
to his perceived competence, and his proposal in 5 
to bet 2 euros is both involving and bearing a sense 
of competence with respect to the activity. E is silent 
in this move of the activity and we conjecture that E 
is listening (“you can”), but he is still making sense 
of the activity and hence his perceived competence 
is low (“I can’t”). We infer this by looking also at his 
posture: from 1 to 5 he stares at F, but in 6 he takes the 
paper and brings it closer to him, starting reading 
the task silently.

Excerpt 1—move 2. Also this move starts with a state-
ment from G, who reacts to F.

7 G:  Wait: 7, how much is it? We should com-
pute the average prize and…

8 F: It’s enough to do this (points to 36, the 
denominator) divided by this (points to 6, the 
numerator of the probability to get a sum of 
7). If you do 36 divided by 7, what do you get? 
(makes computations with the calculator) 5. 
If you bet 1 euro on 7, you win 5 euros. 

In 7 G reacts to F, recalling his will to start with 7 and 
the mathematical activity on the mean prize during 
previous lessons at school. In this moment, G feels a 
sense of “I can’t” and asks for F’s help in computing 
such a mean. F reacts to G, showing a sense of “I can” 
and “you can’t”. The sense of “I can” can be inferred 
from his prompt, procedural reaction, and “you can’t” 
can be inferred from his proposal that differs from the 
one recalled by G. In fact, F again refers back to sport 
betting practice rather than the mathematical activity. 
A conflict starts to emerge, the conflict between the 
experience at school (the average) personified by G, 
and the betting experience personified by F. Since 
E and M are silent, but they are listening to F and G, 
we conjecture that they feel a sense of “I can’t” that 
hinders their will to speak, and a sense of “you can” 
since they give F and G their way. We further observe 
that F and G occupy two mirroring positions: F is the 

“I can”-“you can’t” area, whilst G is in the “I can’t”-“you 
can” area (Table 1, column 2). This area is occupied also 
by E and M and it seems that the group has reached a 
sort of frozen situation: there is F, who has a strong 
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sense of “I can” and “you can’t”, whilst his mates feel 
that they “can’t”. How can the group sort this situation 
out? A possibility is that E, G or M start to question 
the sense of “you can” with respect to F. If also F “can’t”, 
the group activity can go on as a group activity. This 
is happening in Excerpt 1—move 3.

9  G:  Hence, the minimum you can win is 5 
euros.

10  E: (inaudible) 
11  G:  It’s too much.
12  F: The highest prize is 36 euros.
13  E:  Else, let’s bet 50 cents.
14  F: It’s the same, finally. If we bet 1 euro at 

least we have (inaudible)
15  M: (inaudible)

In 9 G reacts to F’s result and tries to give sense to it. 
This confirms that, even if he has a low sense of per-
ceived competence in the second move of the activity 
(“I can’t”), he trusts F and he listens to him (“you can”). 
In 11 G adds: “it’s too much”. His emotions provide G 
with a sense of unlikelihood of success, a sense of both 

“I can’t” (as in the previous phase of the group activ-
ity), and “you can’t”: F now can’t solve the problem, 
the solution he is proposing is “too much”. G looks at 
the paper, but E and F, conversely, look at him. F, spe-
cifically, recognizes his role (“you can”). Even if they 
are almost inaudible, also E and M contribute to the 
activity in its third move: their perceived competence 
has increased (“I can”), and—as we have already com-
mented—we infer a sense of “you can” towards G and F. 

In 12 F makes his fourth proactive statement to the 
whole group, and this is taken as an indicator of “I 
can”. In 13 E reacts to F’s proactive statement, and F 
in 14 makes his first (and only one) reactive statement, 
reacting to E. F looks at E, differently from his usual 
practice. Hence, F not only recognizes G’s role (“you 
can”), but also sees E as an interlocutor (again, “you 
can”).

G’s move towards “you can’t” is mirrored by F’s move 
towards “you can”: F has recognizes to G a role, F is 
recognizing G as an interlocutor (Table 1, column 3). 
Furthermore, E and M have moved from “I can’t” to “I 
can”, since they feel they can follow G’s argument and 
contribute to the group activity. This is mirrored in 
the next move of the activity, where E nods at F and F 
stares at E. Excerpt 1 – move 4.

16   F:  E.g. 12 is given … like the SNAI[1] (all the 
students laugh)

17   F: 12 is given 36 to 1. If I bet 1 euro I win 36 
euros.

18  E: (nods)
19   G: mmm it’s too much, because, then, the 

7…? 

In 16–17 F makes another proactive statement: “12 is 
given 36 to 1. If I bet 1 euro, I win 36 euros”. F looks 
at the paper in 16, and at E in 17. We read a sense of “I 
can” for F, but a sense of “you can’t”, since he looks at 
the paper and he does not involve his mates, he does 
not invite them to react to him. G reacts to F, and this 
reaction speaks to his sense of both “I can’t” (in fact, 
he is asking again how to deal with the case of 7) and 

“you can’t” (in fact, he feels that the result got by F “it’s 
too much”). E has moved towards “I can”, continuing 
to feel a sense of “you can” with respect to both F and 
G. Since M does not intervene, we infer that he moves 
again to “I can’t”.

We observe that the situation at this point is very bal-
anced (Table 1, column 4). There is a leader, F, who 
feels a sense of “I can” as well as a sense of “you can’t”, 
but there is another student, E, who has been almost 
silent during the activity, who attracts F’s gazes at 
this point, since he has a sense of “I can” and “you can”. 
Also M feels a “you can”, while G feels both an “I can’t” 
and a “you can’t”. At this point, something really in-
teresting happens (Excerpt 1 – move 5): F ignores G’s 
doubt (“the 7?”), and he goes on with the prize to be 
assigned to 11. Then, he feels a sense of “I can’t” saying 

Table 1: The five subsequent moves of the activity involving E, F, G and M
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“Eh, no, because…”. His emotions provide F with a sense 
of unlikelihood of success, a sense of “I can’t”, which 
freezes him. Also M and E, despite their sense of “you 
can”, feel a sense of “I can’t”. Table 1 summarizes the 
five subsequent moves that have been analyzed.

Excerpt 2 – move 1. In the first 15 seconds B reads the 
task, then

5   B:  We should use combinatorial mathemat-
ics.

6   D: No, we have computed that the proba-
bility of finding one gold bar and two other 
symbols (she takes the sheet of paper to be 
able to read it) was...

7   B: …was it 192?
8   D: No. No. This one maybe (she points to 

the probability of getting the sequence ‘gold 
bar–other–other’)

9   B: (reads) ‘probability of gold bar-oth-
er-other’ (nods). 9%

10   D: 9%

The students look mostly at the paper, only B in 5 
looks at D. B in 5 makes a proactive statement, but D 
reacts proposing to use the probabilities they have 
already computed. In 8 B reacts to D’s proposal and 
she reads on the sheet of paper the correct answer: 
the probability of getting one gold bar is 192 (over 
729), but D contradicts B and leads the group to use 
the probability of getting “gold bar–other–other”, 
that is 9%. Both B and D feel a sense of “I can”, whilst 
A and C––being silent—yields us thinking that they 
are feeling a sense of “I can’t” and “you can”, giving 
B and D their way. Also B feels a sense of “you can”, 
but D feels a “you can’t”: in 6 and 8 she contradicts B 
(“no”), proposing something different from what B 
has proposed. There is a conflict that is emerging, a 
conflict between two strategies: B would like to resort 
to the formulas learned in previous lessons, while D 
would like to use the computations already made. The 
group follows D’s proposal, as we will see in the next 
move, but both B and D are right: B (as well as the rest 
of the group) is not aware that they have already used 
combinatory. We add a local comment to this segment 
of data analysis: this lack of awareness is quite usual 
when the students deal with strategies and concepts 
that are “new” for them, since they are still not con-
versant with them. Learning is, in fact, a progressive 
becoming aware of mathematical meanings.

In the subsequent 2 minutes, the students make com-
putations and report the results on the paper, then 
they ask the teacher if their work is correct, and the 
teacher confirms their doubt: it is wrong. Excerpt 2 – 
move 2. B recalls her first proposal: 

42   B: That is why we should use combinatori-
al mathematics. Otherwise, they would not 
have given it to us.

43   C: Let’s use our ingenuity!
44   B: For sure it’s with combinatory, then let’s 

invent something. Well, in combinatory one 
needs to multiply many numbers, so let’s 
have a look…

D is silent, we infer that she is feeling a sense of “I 
can’t”, but C intervenes and say “let’s use our inge-
nuity” looking at A, the classmate that has remained 
silent until now. We see a sense of “I can” in C, who 
looks at the student that has been silent like her, in a 
sense encouraging her to intervene. B is proactive 
(“I can”). A does not intervene for the present. The 
teacher provides a feedback about the mistake the 
group has made: the probability of getting one gold 
bar is not 9%. A takes the floor:

67   A:  This one (she points to 192/729) is the 
probability to get one gold bar.

68   B: Hence, I have said it correctly at the be-
ginning! It is 192 divided by 729.

69   C: (speaks over B) 192 divided by 729.
70   B: (addressing D, pleased) Ah! Ah!

B and D look at each other in this sequence, and B 
expresses a sense of revenge with respect to D: we 
read it in terms of “I can” and “you can’t” on B’s side. 
Moreover, the conflict between B and D is solved: D 
was right in having proposed to use their own com-
putations, and B was right in using 192/729.

Excerpt 2 – move 3. The students copy the probabilities 
on the sheet, then they stop.

110   C:  (looks at B) But what should we compute?
111  B: The total average prize. The… mm… 

namely…
112   D:  All those prizes times the probability 

that you win them, namely that you win the 
prizes, divided by… all the cases?

113   C: Eh?
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114   D: 729? Because there are many cases in 
which you win nothing.

115   A: Exactly. There are many cases where you 
get nothing, where you get ‘other’.

116   B: Hence we should do the prize..? No, the 
cases in which you win, divided…

117   D: The cases in which you win, the total 
prize divided by all.

118 B: Why divided by all?

D makes two proactive statements in 112 and 117, and 
all her classmates look at her. A, B and C react to her 
proactive statements: C (“Eh?”) at 113, A echoes D’s 
comment at 114, and B at 116 makes sure she has under-
stood, but at 118 asks for explanation. D feels a sense 
of “I can” and “you can”: she is proactive, but she also 
reacts to her classmates. Also A intervenes, showing 
a sense of “I can” and “you can”. B and C, instead, feel 
a sense of “you can” with respect to D, but they are 
not understanding D’s proposal, and ask for clarifica-
tions: we infer a sense of “I can”. Excerpt 2 – move 4. The 
group remains silent for a while, then A (the student 
that feels “I can”), tries to reformulate D’s proposal:

119   A:  You are saying: to sum all the average 
prizes. Is it what you’re saying? 

120   D: I do not know (smiles).
121   C: Eh, (echoing D) ‘I don’t know what I am 

doing’! (smiles)

We see a sense of “I can’t” in D’s utterance “I do not 
know”, and of “you can’t”. Excerpt 2 – move 5. C, after 
having echoed D, addresses B and asks:

122   C:   Wait. Is it asked (A pulls the paper close 
to her) the mean of the prizes?

123   B: But, but I would have done this: I would 
have multiplied the mean prizes for the prob-
ability, then summing the probabilities, di-
vided for all the cases.

124   C: Like the last time!
125   B: Yes, it is the weighted average.

D remains silent and stares at the paper, but C in 122, 
even if she is addressing B, looks at D, and also B looks 
at D in 123. D’s silence leads us inferring a feeling of 

“I can’t” and “you can”: she is listening to her mates. A 
shares the same state of D, being silent. B and C, in-
deed, share a sense of “you can”, accompanied by a 
sense of “I can”. They have found the correct strategy, 
and they are confirming it to each other trying to in-
volve the rest of the group (looking at D, for example). 
They are recognizing the distinguishing features of a 
procedure they have already used, and their positive 
emotions provide them with a sense of likelihood of 
success. They are intuiting the analogy with respect 
to a procedure previously used, that can work.

DISCUSSION 

Answering to the research question (are there condi-
tions that shape cooperation which can be traced back 
to the relationships among the students?), we can see 
that: (a) proactive utterances and vertical arrows allow 
us to identify the leader(s); (b) horizontal arrows allow 
us to identify collaboration. In excerpt 1, F provides the 
majority of proactive utterances, whilst G is proactive 
only at the beginning, then he reacts to F’s proposals. 
In excerpt 2, B and D are proactive throughout the 
excerpt; B and D are the leaders, but also A and C make 
2 and 3 proactive utterances, respectively. B and D are 
collaborative leaders. 

E and M show only vertical movements: they occupy 
always the “you can” area, and they oscillate between 
the “I can” – “I can’t” positions. 

We may also notice that vertical arrows characterize 
the moves of students who are not leaders: E and M 
are clearly not leaders in excerpt 1, like A and C in 
excerpt 2. But, there are downward arrows also for 
F (Table 1, last move) and D (Table 2, move 2). These 
two downward arrows, indeed, depict two different 
situations. In F’s case, it is F alone that stops speaking 
and starts to doubt about his strategy: his emotions 

Table 2: The six subsequent moves of the activity involving A, B, C and D
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provide him with a sense of unlikelihood of success. F, 
in fact, is a leader that is not collaborative. In D’s case, 
D goes down because it is B that is leading in that move. 
Hence, the leaders’ “I can” can be diminished either 
by his/her emotional sense of likelihood of success, 
or by the feedback of the classmates. This may open 
the possibility for the others to intervene (Andrà & 
Liljedahl, 2014). Negative feedback determine a de-
creasing of “I can”. The other way around, to increase 
one’s “I can” by providing positive feedbacks, does not 
work likewise: in excerpt 2, D receives the glances of 
her mates (that is to say “you can” to D), but her “I can” 
does not improve.

We have also seen that conflicts emerge: between G 
and F, between B and D. Conflicts can be read as con-
trasting views that can impede true dialogue between 
students. Each student’s view of mathematics shape 
cooperation in groupwork activities, but cooperation 
is driven also by “you can”, the competence recog-
nized by the others. Horizontal arrows correspond 
to movements on the “you can”-“you can’t” axis. In 
Table 1, we see that F shows only movements of this 
sort, and moreover he is quite stable in the “I can”-“you 
can’t” position. F is a leader, which does not recognize 
an ability to his mates. In excerpt 2, also B and D oc-
cupy the “I can”-“you can’t” area, but for few seconds. 
We sense that such a position is (or can be) necessary 
for the development of the activity, it is when a stu-
dent occupies it for the most of time that cooperation 
between the students may be hindered. 

One can question whether there are configurations, 
in the 2D-diagram, identifying situations where the 
group activity gets. We observe that each excerpt ends 
with either all the students in the “I can’t” area (ex-
cerpt 1), or all of them in the “you can” one (excerpt 2). 
Interestingly, these two configurations are followed 
by an intervention from the teacher. This issue needs 
further reflection, however.

This paper reports a qualitative study aimed at defin-
ing a descriptive schema to analyze group activities, 
and the focus of this work is mainly methodological: 
stronger theoretical foundations are needed in future 
works. 
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Research into if, and how, students’ emotions change 
during problem-solving, the factors behind the change, 
and the potential impact of a certain emotional change 
on mathematical activity, may provide significant indi-
cations regarding students’ problem-solving difficulties, 
and regarding the link between affective and cognitive 
factors “in context”. In this paper, we describe the results 
of a pilot study conducted at primary school level, while 
also emphasising the methodological choices made in 
relation to the young ages of the students involved.

 Keywords: Emotions, problem solving, affect, primary 

school, mathematics.

INTRODUCTION AND THEORETICAL 
FRAMEWORK

The role played by the affective factors in the study 
of the mathematics teaching and learning process has 
been little explored for a long time. The success of be-
haviourism in psychology, the clear division between 
emotions and rational thinking, and the conviction 
that this latter sphere is particularly predominant 
in mathematics marginalised research into affective 
factors in mathematical education until the 1980s. As 
emphasized by Zan, Brown, Evans and Hannula (2006, 
p. 113): “affect has generally been seen as ‘other’ than 
mathematical thinking, as just not part of it.”

In the 1980s, the gradual affirmation of the interpreta-
tive paradigm in the social sciences, related to a great-
er attention to aspects regarding the complexity of 
human behavior, has led researchers to abandon the 
attempt to explain behavior through measurements 
or general rules based on a cause-effect scheme, and 
to search instead for interpretative tools. Within 
this approach, the scientific community in M.E. has 
recognized the need to go beyond purely cognitive 

interpretations of failure in mathematics, in particu-
lar to interpret the failure of individuals apparently 
possessing the necessary cognitive resources in math-
ematical problem solving (Silver, 1985).

In 1989, the book Affect and mathematical problem 
solving by McLeod and Adams opened up a new era 
in research into emotions in mathematics educa-
tion. As a matter of fact, the book includes several 
contributions that, following the theoretical model 
for the cognitive origin of emotions proposed by the 
psychologist George Mandler, underline the role of 
emotion in one of the most important mathematical 
activities (problem solving). According to Mandler 
(1989), complex emotions are the result of the cogni-
tive evaluation of a visceral arousal provoked by a 
discrepancy between the individual’s expectations 
and the demands of ongoing activity. 

In the meantime, evidence of the strong interaction 
between cognitive and affective factors – in particular, 
of the influence of emotions on decision-making pro-
cesses – also emerges from studies from other fields of 
research such as neuroscience (Damasio, 1996) and psy-
chology (Salovey & Mayer, 1990). The study by Salovey 
and Mayer, introducing the concept of emotional in-
telligence, completely changed the way of looking at 
the affective component of human personality and its 
relationship with the cognitive field. Emotions are no 
longer regarded as a disturbance to correct thinking, 
but as a potential for effective thinking, particularly 
when our (and those of other people) affective expe-
riences are recognised and managed appropriately.

On the other hand, according to Mandler (1989, p. 16): 
“Affectless learning is not a possible goal for a theory 
or for the praxis of instruction. Common sense tells 
us that emotions and affective reactions are with us 
now and forever.” 
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This all leads to the conviction that it is important to 
teach emotion management in learning, a conviction 
that is also gaining ground in the mathematics edu-
cation research field, which confirms how emotions 
on the one hand affect cognitive processing, biasing 
attention and memory and activating action tenden-
cies, and on the other have a key role in human coping 
and adaptation (Evans, 2000; Hannula, 2002). In par-
ticular, Op ‘T Eynde, De Corte and Verschaffel (2006, 
p. 194) claim: “from a socio-constructivist perspective, 
students’ emotions and other affective processes are 
conceived as an integral part of problem solving and 
learning.” 

An important objective of mathematics education 
should therefore be that of teaching how to manage 
emotional involvement, particularly that which in-
volves negative emotions (Op ‘T Eynde, De Corte, & 
Verschaffel, 2006, p. 204).

Teaching students how to solve mathematical prob-
lems then implies that we have to teach them also 
how to cope effectively with feelings of frustration 
or sometimes anger. In other words, when teaching 
and learning mathematical problem solving, the al-
lowing of space for negative emotions might be an 
educational goal from a cognitive, as well as motiva-
tional, point of view. Indeed, only when experiencing 
negative emotions will students have the opportunity 
of learning how to deal with them.

The very features of problem solving mean that the 
process is typified by frequent interruptions to pre-es-
tablished plans and by local failures, which, according 
to Mandler’s model, initiate the emotional experience 
process. In his overview of the research on emotions 
in problem solving, Hannula (2012) concludes: “The 
main lesson to learn from the research on emotions 
in problem solving is that emotions are an essential 
part of problem solving.” 

Mathematical problem solving is therefore often 
marked by a strong emotional component, which can 
very rapidly evolve from positive to negative, pleasant 
to unpleasant, or vice versa, and emotion manage-
ment profoundly affects students’ performances. So, 
as emphasised by Op’T Eynde and colleagues (ibidem, 
p. 204) it is very important to conduct further study 
into these emotions, in order to “become aware of dy-
namics underlying the succession of several emotions 
over a short period of time”.

The aim of our research was to study these dynamics 
at primary school level, investigating students’ emo-
tions when faced with a mathematical problem, how 
these emotions change, and the factors that the stu-
dents recognise as being responsible for the emotions 
and for the changes. 

METHODOLOGY 

Population
The study involved five primary school classes in 
Canton Ticino (Switzerland): one 3rd grade class (18 
students), three 4th grade classes (53 students) and 
one mixed 3rd- 4th grade class (20 students), making a 
total of 91 students.

Rationale
It is very difficult to study emotions: all instruments 
are limited in capturing emotional reactions that are 
not conscious (Schlögmann, 2002) and, as Ortony, 
Clore and Collins claim (1988, p. 9): “There is as yet 
no known objective measures that can conclusively 
establish that a person is experiencing some partic-
ular emotion.” These same authors emphasise how 
emotions are nevertheless not linguistic things, but 
the most readily available non-phenomenal access we 
have to them is through language and we are willing 
to treat people’s reports of their emotions as valid.

In the context of mathematics education it has been 
shown that it is important to adopt a multiple ap-
proach to data collection in the research on emotions 
(Evans, 2004), and how: “mathematical activity should 
be studied in context, and that researchers should 
take an actor’s perspective [emphasis in the original] 
that allows the meaning structure underlying students’ 
behaviours and emotions to become explicit.” (Evans, 
2006, p. 241)

In order to “take an actor’s perspective”, we believe 
that it is important to choose instruments that con-
template open answers, where the respondent is free 
to express his emotions using his own words; as Cohen 
and colleagues (2007) underline: 

It is open-ended responses that might contain 
the ‘germs’ of information that otherwise might 
not have been caught in the questionnaire (…) An 
open-ended question can catch the authenticity, 
richness, depth of response, honesty and candor 
which are the hallmarks of qualitative data.



The flow of emotions in primary school problem solving (Davide Antognazza, Pietro Di Martino, Aline Pellandini and Silvia Sbaragli)

1118

On the other hand, the low number of mathematics ed-
ucation studies on the emotions of “young” students 
(primary school) is probably due to the difficulties 
experienced by the students in terms of possessing 
and managing the “language of emotions”. This is pre-
cisely why an important item of our research was an 
emotional literacy course conducted by Antognazza 
and Sciaroni (2010) in the classes participating in the 
research project, aimed at the allowing students to 
acquire an understanding of their emotions, and also 
to learn a specific vocabulary for clearly expressing 
which emotions they are experiencing at a specific 
time.

Procedure
There were three phases to our study:

1) A pre-test conducted on some pilot classes in order 
to assess, on the one hand, if the mathematics prob-
lems tested were calibrated, and to what extent (i.e. 
the average level of difficulty for the students), and, 
on the other hand, to identify a codification protocol 
for analysing the open-answer questions. 

The questionnaire used in the research, and the codi-
fication protocol, were defined at the end of this phase, 
and six problems were identified as appropriate to the 
research objectives. The texts of the problems were 
shown to the class teachers, who were asked to choose 
one that they considered to have the correct level of 
difficulty for their students: neither too easy nor too 
difficult. One example was: “Giulio and Andrea play 
together with their toy cars. They have a total of 48 
cars to play with. At the end of the game, they each take 
back their own cars. Andrea has three time as many 
cars as Giulio. How many cars does Andrea have at the 
end of the game? How many cars does Giulio have at 
the end of the game?”

2) An activity phase. The students were asked to read 
the selected problem on their own, to answer the ques-
tionnaire tested in phase 1, and, subsequently, to try to 
solve the problem. No time limit was given. This phase 
was conducted individually in school workplaces in 
which the students felt comfortable (class, creative 
activity laboratory or support class). 

The questionnaire given to the students consisted of 
three questions investigating three aspects:

a) assessment of the difficulty of the problem. 
Closed-answer question “how do you evaluate 
the problem?” with the following possible al-
ternative answers: easy, quite easy, medium, 
quite difficult, difficult;

b) expression of the emotion perceived when 
having to solve the problem. Open-answer 
question: “how do you feel about having to 
solve this problem?”;

c) identification of the reasons underlying the 
perception of the emotion expressed: Open-
answer question: “Why do you think you feel 
like this?”.

3) Semi-structured individual interview (tran-
scribed), focussing on the emotional states experi-
enced when solving the problem, any changes from 
the emotion initially expressed (“On the paper you 
wrote that you were [emotion written down]. Did you 
feel any other emotions when you were solving the prob-
lem?”), and the reasons for these changes (“Why did 
your emotion change? What happened?”).

The students were observed while they were solving 
the problem, in order to analyse their behaviour and 
their facial expressions. This observation took place 
under conditions of experimenter blindness (the 
experimenter did not know how the students had 
answered the questionnaire), and was also useful in 
terms of allowing specific questions to emerge in the 
course of the individual interviews. 

RESULTS AND DISCUSSION

A priori assessment of the difficulty 
of the problem
An analysis of the questionnaire showed how, after 
having read the text, most students effectively classi-
fied the set problem as “quite easy” or “medium” (see 
Table 1 below).

A priori assessment of the difficulty 
of the problem 

Easy Quite easy Medium Quite 
Hard

Hard

Percentage 12% 43% 31% 12% 2%

Table 1: A priori assessment of the difficulty of the problem 
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Emotion perceived from reading the text
Analysis of the answers to the second question –
open-ended and fluid responses – is more complex. 
On the one hand the positive/negative emotion di-
chotomy must be defined, while on the other hand it 
is necessary to identify the “representatives” in order 
to categorise various labels that appear to take inspi-
ration from similar emotions.

According to Ortony and colleagues (1988), emotions 
are considered as “valenced reactions” to consequenc-
es of events, action of agents, or aspects of objects, and 
then it is possible to classify the reactions to events as 
being pleased or displeased, the reactions to agents as 
approving or disapproving, and those to objects as lik-
ing or disliking. These dichotomies permitted a first 
classification of emotions into positive and negative.

In terms of identifying the representatives, the cod-
ification protocol developed following the pre-test 
phase was utilised, making it possible to identify 6 
categories consisting of 3 dichotomous pairs: confi-
dent, worried, nervous, calm, happy, sad, to which, a 
posteriori, was added the category bored, not found 
in the answers obtained in the pre-test. We empha-
sise that the answer was open, without any kind of 
restriction and with the possibility for the students 
to specify more than one emotion.   

Table 2 summarises the quantitative results obtained.

Some interesting observations: the emotions initially 
stated, and supported by the subsequent interviews, 
are essentially perfectly divided into “positive” and 

“negative”, but although this equilibrium is also found 
in the specific nervous/calm dichotomy (22% vs 20%), 

“worried” appears to predominate over “confident” in 
terms of the possibility of solving the problem, and 

“happy” appears to predominate over “sad” in terms 
of having to tackle the problem. 

Another significant aspect consists of the fact that 
the balance between positive and negative emotions 
obtained from the sample of the five classes is less 
strong when analysing the individual classes involved 
in the study. For example, the 3rd grade class is typi-

fied by positive emotions selected by 17 out of 18 stu-
dents (10 students express happiness, and 7 students 
express calmness), while in other classes negative 
emotions predominate. For example, in one of the 4th 
grade classes, consisting of 17 students, the following 
emotions were expressed: worry (6 students), nerv-
ousness (3 students) and sadness (2 students). This 
may depend partly on cognitive aspects such as supe-
rior competence, but also on affective aspects, such 
as conviction in one’s own understanding regarding 
the specific problem, and on other aspects (emotions, 
convictions, attitudes and values) depending on the 
specific social context of the class: “students’ inter-
pretation and appraisals processes that initiate the 
emotional process are grounded in a specific context” 
(Op ‘T Eynde & et al., 2006, p. 196).

As a qualitative note to the analysis of the second 
question of the questionnaire, we emphasise that in 
three cases the students’ answers testify contrasting 
emotions. In one of these cases, Enea states testifies 
between the fear of not knowing how to solve the 
problem (“a little scared”) and his confidence in his 
own abilities, or, in any case, the desire to muster his 
courage (“but I’m sure that I can do it”). In the other 
two cases, the contrasting emotions are associated 
with various aspects: intrinsic, in the sense of being 
related to the specific problem, and, extrinsic, in the 
sense of being extraneous to the specific problem. 
Martina appears worried about having to solve the 
problem of the toy cars (“I am in a little bit of difficulty 
because I can’t find the calculation”), but at the same 
time she notes that she feels fine as she always does 
in class (“I feel good, like in class”). On the other hand, 
Mattia feels nervous because, as he later explains in 
the interview, he always feels nervous when he has 
to solve problems, but he feels relatively calm about 
the toy cars problem.

Correlation between the perception 
of the difficulty of the problem and 
the emotion stated
Most of the students who state that they think that 
the problem is easy/quite easy feel calm or happy; on 
the other hand, those who think that the problem is 
quite difficult/difficult feel worried or nervous. Out 

Emotion Confident Worried Nervous Calm Happy Sad Bored Other

Percentage 7% 18% 22% 20% 22% 2% 8% 1%

Table 2: Emotions associated with the problem 
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of 91 students, only 13 do not assign positive emotions 
to presumed ease, or negative emotions to presumed 
difficulty. 

Analysing the answers to the third question (the rea-
sons for the emotions), these 13 students are seen to di-
vide into two “categories”. The first category consists 
of those who, in a certain sense, show that they appre-
ciate the “intellectual challenge” of the mathematics 
problem (usually good-achievers) and for whom the 
easy problem is boring (Chiara: “I feel bored because 
it’s boring when problems are easy”), and the difficult 
problem a real challenge (Irene, who thinks that the 
problem is difficult, writes: “The emotion that I feel 
is joy because the problem is nice”). The second cate-
gory consists of those who, like Mattia cited above, 
say that they feel nervous when they have to solve 
mathematics problems, and although they think that 
the toy cars problem is easy, are overcome by what we 
might call a worry consistently associated with hav-
ing to tackle mathematics. This is a very interesting 
phenomenon, in terms of both research on affect in 
mathematics education, and in terms of didactics. In 
fact, it is precisely when aversion, worry and fear are 
experienced regardless of the intrinsic aspects that a 
negative attitude of fatalism toward mathematics can 
develop, an attitude which is very difficult to modify 
(Zan & Di Martino, 2009).

Causes of the declared emotions
More generally, when analysing the causes of the 
declared emotions (question 3 of the questionnaire), 
the aspect we found most interesting was that of dis-
tinguishing between reasons referring to the specific 
problem (intrinsic) and reasons not referring to the 
specific problem (extrinsic). 

If we consider only the explicit references to intrinsic 
or extrinsic aspects – not classifying in either sense 
statements difficult to interpret, such as “I feel nerv-
ous because I am afraid of making a mistake”: the fear 
of making a mistake might be associated with doing 
mathematics (extrinsic) and unrelated to the specific 
problem, or, on the other hand, it might be associated 
with the assessment of the level of difficulty of the 
problem to tackle (intrinsic) – what emerges from the 
positive/negative emotions dichotomy appears to be 
rather significant. In fact, the positive emotions are 
motivated mainly by intrinsic aspects (for example 

“because it’s easy”): 56% of those who said they felt hap-
py, 62% of those who said they felt calm, and as much 

as 86% of those who said that they felt confident. The 
negative emotions are motivated mainly by extrinsic 
aspects (for example “because I don’t like doing prob-
lems”, “because I don’t like mathematics”, “because I 
don’t like school”): 58% of those who said that they felt 
worried, 67% of those who said that they felt  nervous, 
and more than 86% of those who said that they felt 
bored.

It should also be noted that the 54% of the students who 
said that they felt nervous, and the 45% of those who 
said that they felt worried, highlight the fear of mak-
ing a mistake or the desire to do everything correctly 
(for example: “because I worry about making mistakes”; 

“I don’t like them. And if I get them wrong, how will I 
manage when I’m big”; “because I don’t know if I do it 
all correctly”; “I think that it’s because I don’t know if 
the problem is right or wrong”). This phenomenon is 
particularly significant because fear of making errors 
often becomes fear of math, a phenomenon that has 
serious consequences on mathematics learning (Di 
Martino & Zan, 2013).

Change in emotions perceived while solving 
the problem
One particularly interesting feature from what has 
been observed until now emerges from the inter-
views: most of the sample (52%) reports emotional 
changes from the initial state. Those who say that 
they did not experience any emotional changes are 
mainly those who started with a positive emotion that 
was confirmed in the course of the problem-solving 
process, or else those who started with a negative emo-
tion, associated with extrinsic aspects, an emotion 
that affected their perseverance in trying to solve the 
problem. This confirms the link between negative 
emotions associated with extrinsic aspects and poor 
perseverance (Hannula, 2012).

The following observations emerge from an analysis 
of the interviews conducted with those who stated that 
they experienced emotional changes: 

i) changes in ‘intensity’ (8%, only one case with posi-
tive emotions and 6 starting from negative emotions), 
like that reported by Chiara, who initially said that she 
felt worried because after having read the problem 
she thought she would not manage to finish it, but who 
in the interview explained that at a certain point she 
stopped feeling worried and became “almost desperate, 
because already I didn’t manage to finish it, and then, 
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seeing all these calculations …”, or like Martino, who 
said that he felt happy during the solving process “be-
cause I realised that the calculation wasn’t so difficult”; 

ii) changes in ‘direction’: from positive to negative 
emotion (25%) (like Samuele, who initially said that 
he felt happy, but who in the interview explained 
that he felt worried “because I was trying to do the 
calculation but I didn’t manage”), and from negative 
to positive emotion (14%) (like Selene, who said that 
she felt worried because she felt alone, but who at 
the end said that she felt happy because she hoped 
to have solved it correctly and because “I feel I did it 
correctly”). Moreover, 5% of the students expressed a 
double change in “emotional direction” while solving 
the problem: for example, Sofia said at first that she 
felt calm, then nervous “because I was afraid of making 
a mistake”, then calm again because “it seemed easy to 
do”. Sofia’s account demonstrates a repeated assess-
ment of the situation and of any progress made, and, 
in particular, this testifies the fact that her emotions 
are (also) associated with intrinsic aspects.

In both cases (changes in intensity and in direction) it 
is seen how, except in very rare cases, when explaining 
the emotional change reference is virtually always 
made to intrinsic aspects, to the perception of making, 
or not making, progress in solving the problem. This 
confirms the close link between affective and cogni-
tive aspects: in fact, a fundamental role is played by 
convictions about making (or not making) progress 
toward solving the problem, about having solved the 
problem correctly or not, convictions that are pro-
foundly linked to the mathematical knowledge of the 
students. In relation to this, and as an important com-
ment, it is interesting to observe how many of those 
who changed from a negative to a positive emotion 
because they were sure that they had solved the prob-
lem correctly, in fact handed in a wrong solution to 
this problem. It would be interesting to investigate 
the emotion triggered off by discovering that the 
solution handed in, and believed to be correct, was 
in fact wrong.

CONCLUSION

In the analysis of the results we have focussed par-
ticularly on what we feel is the most interesting aspect 
of our study, in terms of both research and didactic 
practice. That is, the distinction between positive or 
negative emotions perceived in a specific mathemat-

ics problem solving activity and deriving from an 
assessment of the difficulty of the activity proposed 
(intrinsic aspects), or from more general aspects (for 
example, the stance of those who think “I don’t like 
mathematics, you are asking me to do maths and I 
therefore have a negative emotion”). 

What clearly emerges is that most of those who ex-
press a positive emotion on finding out that they have 
to solve the problem in fact refer to intrinsic aspects, 
and the issue is therefore one of problem assessment. 
Conversely, most of those who express a negative emo-
tion refer to aspects unrelated to the problem, or, in 
other words, to extrinsic aspects (except for the fact 
that it is recognised as a mathematics problem). 

On the one hand this confirms how, already at primary 
school level, there is a generalised type of “a-priori” 
hostility towards all things mathematical, hostility 
that is very often typical of an unquestionable nega-
tive attitude toward mathematics (Di Martino & Zan, 
2011). On the other hand it suggests the importance 
of working with students so that any negative atti-
tudes of this type do not compromise the a-priori 
cognitive assessment of the mathematical activities 
to be tackled, and the resulting performance. In fact, 
the negative effects of this kind of phenomenon are 
clear: negative emotions associated with any mathe-
matics-related activities, deciding against investing 
the cognitive resources required in order to tackle 
the activity.

However, the results of our study tell us something 
more: emotional changes (intensity and direction) 
during the problem solving activity occur almost ex-
clusively as a result of considerations related to in-
trinsic aspects. These emotional changes appear to be 
fundamental in problem solving activities: both those 

“in the positive direction” (they play an important role 
in problem-solving perseverance), and those “in the 
negative direction” (they have an important function 
in terms of cognitive control stimulation).

Further investigation into the link between emotional 
change during problem solving, and aspects as per-
severance and the activation of cognitive controls 
would certainly constitute an interesting research 
direction. It definitely appears that it may be impor-
tant to promote emotional literacy and emotional 
awareness, also in order to develop problem solving 
skills already at primary school level. Our research 
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also shows how, at the same time, it is fundamental to 
develop the “proper mathematical understanding”: 
in our experiment we have shown how many of the 
positive direction emotional changes were related to 
the erroneous conviction of having solved the prob-
lem correctly. 
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In this study, 187 prospective mathematics teachers’ 
teaching efficacy beliefs and sources of their beliefs were 
investigated through the administration of Teachers’ 
Sense of Efficacy Scale (TSES) and The Sources of Self 
Efficacy Inventory (SOSI) scales. Furthermore, this study 
explored how well hypothesized sources (mastery ex-
periences, vicarious experiences, verbal persuasions, 
physiological and affective states) predict participants’ 
teaching efficacy beliefs. The calculated mean scores (out 
of 9) for dimensions of TSES were: 6,35 for Efficacy for 
Student Engagement, 6,57 for Efficacy for Instructional 
Strategies, 6,35 for Efficacy for Classroom Management. 
Multiple regression analysis results showed that combi-
nation of hypothesized sources significantly predicted 
overall teaching efficacy beliefs and all dimensions of 
TSES. 

Keywords: Teaching efficacy beliefs and sources, 

prospective mathematics teachers.

INTRODUCTION

The term of self-efficacy was introduced first in Social 
Cognitive Theory and defined as one’s personal judg-
ments about doing a particular behavior and these 
beliefs have a great effect on the future behavior 
(Bandura, 1997). Its effect on the future behavior leads 
to an interest on this construct and there has been sev-
eral research related with self-efficacy beliefs in the 
literature so far. It has also been an important topic 
in the field of education and much research has been 
done on the efficacy beliefs of students and teach-
ers. In line with Bandura’s definition of self-efficacy, 
Tschannen-Moran and Woolfolk Hoy (2001) intro-
duced the term teaching efficacy as “...judgment of his 
or her capabilities to bring about desired outcomes of 

student engagement, and learning, even among those 
students who may be difficult or unmotivated” (p. 783). 

Studies have revealed that teaching efficacy beliefs 
have effects on teachers’ teaching related decisions 
and student learning outcomes (Işıksal & Çakıroğlu, 
2006; Poulou, 2007). Teachers with high teaching ef-
ficacy beliefs keep their efforts in the classroom even 
if there are problems in the class (Tschannen-Moran 
& Woolfolk Hoy, 2001), behave more positively to 
students who fail in the class (Ashton & Webb, 1986), 
and have more effective teaching strategies when 
compared with the teachers who have a low teaching 
efficacy (Işıksal & Çakıroğlu, 2006). Such research 
may enable not only to predict prospective teachers’ 
possible teaching behaviors but also to interpret the 
effectiveness of teacher education programs (Poulou, 
2007). Therefore, the focus of the current study is to 
investigate prospective mathematics teachers’ teach-
ing efficacy beliefs. 

The significance of teaching efficacy beliefs also lead 
to an interest on how these beliefs are constructed. 
Therefore, the sources of teaching efficacy beliefs be-
gan to take attention in the literature (Morris, 2010; 
Usher & Pajares, 2008). When the issue is the sources 
of teaching efficacy beliefs, the main interest in the 
literature is the sources of self-efficacy beliefs hypoth-
esized by Bandura (1997) in Social Cognitive Theory. 
Bandura hypothesized four main sources of self-effi-
cacy beliefs which are mastery experience, vicarious 
experience, verbal persuasion, physiological and affec-
tive states. Mastery experiences refer to the results of 
one’s personal experiences in the past and based on 
these experiences, one knows in which conditions 
s/he would succeed or fail (Bandura, 1997). In other 
words, one feels more efficacious if s/he succeeded at 
doing that behavior before and feels less efficacious 
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if s/he failed before. Bandura (1997) claimed that 
mastery experiences are the most powerful source 
of self-efficacy beliefs among the four sources. One 
not only gains self-efficacy beliefs through personal 
experiences, s/he also gains efficacy beliefs through 
observing the experiences of others, and this source 
is named as vicarious experience (Bandura, 1997). One 
might judge his/her capabilities on a particular be-
havior based on his/her model’s accomplishment on 
that behavior, which functions as a standard for him/
her (Tschannen-Moran & McMaster, 2009). Another 
source of self-efficacy beliefs is verbal persuasions 
received from others (Bandura, 1997). Verbal per-
suasions refer to judgments about one on his/her 
capability on doing a particular behavior and these 
judgments might come from different sources such 
as colleagues, parents, teachers or administrators 
(Tschannen-Moran & McMaster, 2009; Usher, 2009). 
As a last source, Bandura (1997) mentioned one’s judg-
ment of personal capabilities is affected from his/her 
physiological and affective states at that moment. 
For instance, one might feel less efficacious when s/
he is under stress or anxiety (Tschannen-Moran & 
McMaster, 2009) or when s/he is exhausted (Usher, 
2009). 

When we consider these hypothesized sources in 
terms of teaching efficacy, theoretically it is possible 
to claim that prospective teachers’ previous teaching 
experiences, their observations of peers’ and previ-
ous teachers’ practice, judgments about their own 
teaching performances, and their feelings such as ex-
citement, tension, fear during teaching have an effect 
on the development of their teaching efficacy beliefs. 
However, the effect of these hypothesized sources 
on teaching efficacy beliefs are not consistent in all 

contexts and domains (Morris, 2010; Usher & Pajares, 
2008). Therefore, investigating how the hypothesized 
sources contributed to teaching efficacy beliefs would 
provide insight on understanding the development 
of prospective teachers’ teaching efficacy beliefs and 
teacher education programs might benefit from such 
studies. 

In brief, the current study aims to investigate a group 
of Turkish prospective middle grades mathematics 
teachers’ teaching efficacy beliefs and how well hy-
pothesized sources predicts their teaching efficacy 
beliefs. In line with these purposes, the following 
research questions were sought in the current study: 

1) How efficacious do Turkish prospective middle 
grades mathematics teachers feel themselves as a 
teacher? In which dimension(s) do they feel them-
selves mostly efficacious?

2) How well hypothesized sources of self-efficacy 
beliefs predict prospective middle grades math-
ematics teachers’ teaching efficacy beliefs?

METHOD

Contexts and participants 
The participants of the current study were con-
veniently selected 187 prospective middle grades 
mathematics teachers from two public universities 
in Ankara, Turkey. Middle grades Mathematics 
Education Programs are four-year programs designed 
to train prospective teachers for teaching middle 
grades (grades 5 to 8) mathematics in Turkish mid-
dle schools. The first two years of the program focus 
on mathematics courses and the last two years focus 

Descriptive Information Number of Prospective Teachers (N) Percent (%)

Gender
Male 29 16

Female 158 84

Methods 1 course
Yes 182 97

No 5 3

Methods 2 course
Yes 85 46

No 102 54

School Experience course
Yes 89 48

No 98 52

Practice Teaching course
Yes 10 5

No 177 95

Table 1: Information about participants
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on pedagogical content knowledge and pedagogical 
knowledge courses. Two-semester methods (Methods 
1 and Methods 2) of teaching mathematics courses are 
offered in the third year, and School Experience and 
Practice Teaching courses are offered in the fourth 
year of the program with very little actual teaching 
experience opportunities. Descriptive information 
about participants can be seen in Table 1.

Prospective teachers were also asked about their 
teaching experience. An important number of them 
(74%) indicated that they have a teaching experience 
mostly in the form of private tutoring. These teaching 
experiences are being a private tutor, being a math 
teacher in private teaching institutions, being a teach-
er in voluntary organizations/institutions or being 
an intern teacher in Practice Teaching course. 

Data collection procedure and instruments
Data for the current study was collected in the final 
week of the fall semester of the 2013–2014 academ-
ic year. Prospective teachers were informed about 
the purpose of the study and only voluntary partici-
pants participated in the study. There were two data 
collection instruments called as “Teachers’ Sense of 
Efficacy Scale” (TSES) and “The Sources of Self Efficacy 
Inventory” (SOSI). These two scales were widely used 
in the teaching efficacy related literature and both of 
the scales were translated into Turkish before and 
validated. Therefore, the cultural bias is eliminated.

The first scale was TSES which was developed by 
Tschanen-Moran and Woolfolk Hoy (2001) and adapt-
ed into Turkish by Çapa, Çakıroğlu and Sarıkaya 
(2005). The scale was in 9 point Likert format and 
consisted of three dimensions. Sample items for these 
dimensions are given in Table 2.

In order to get validity evidence for the obtained 
data through TSES, confirmatory factor analysis was 
applied. According to analysis results, Root Mean 
Square Error of Approximation (RMSEA) value was 

calculated as 0.080, Normed Fit Index (NFI) was found 
as 0.94, and Comparative Fit Index (CFI) was found 
as 0.97. Finding RMSEA value lower than 0.10, and 
CFI and NFI values close to 1 could be accepted as an 
indicator of good fit (Kelloway, 1998). Cronbach Alpha 
values were also calculated in order to interpret the 
reliability of the obtained data. For each TSES dimen-
sion and whole scale, it ranged from 0.74 to 0.93, which 
indicated satisfactory internal consistency (Pallant, 
2007).

SOSI, which was developed in line with the sources of 
the self-efficacy in Social Cognitive Theory by Kieffer 
and Henson (2000), was used as the second data col-
lection instrument. Therefore, these four hypothe-
sized sources constituted the four dimensions of SOSI. 
This scale was adapted into Turkish by Çapa-Aydın, 
Uzuntiryaki-Kondakçı, Temli and Tarkın (2013). The 
scale is in 7 point Likert format and consisted of 27 
items in four dimensions which are explained above. 
In order to have a better understanding of the scale, 
looking at the sample items from each dimension in 
Table 3 might be beneficial.

Confirmatory factor analysis was conducted in order 
to present a validity evidence for the data obtained 
through SOSI. Calculating RMSEA value lower than 
0.10 (RMSEA = 0.085), NFI (0.86) and CFI (0.91) fit in-
dices close to 1 was interpreted as satisfactory for 
the data fit (Kelloway, 1998). Furthermore, calculated 
Cronbach Alpha values for each SOSI dimension and 
whole scale ranged from 0.77 to 0.86, which indicated 
satisfactory reliability evidence (Pallant, 2007).

Data analysis procedure 
In order to answer the first research question, data 
obtained through the administration of TSES were 
analyzed with descriptive statistics techniques and 
ANOVA. To investigate second research question, mul-
tiple regression analysis was conducted. Independent 
variables of the analysis were each dimension of SOSI. 
Dependent variable in multiple regression analysis 

Dimension Sample Item

Efficacy for Instructional Strategies
To what extent can you provide an alternative explanation or example 
when students are confused?

Efficacy for Classroom Management How much can you do to control disruptive behavior in the classroom?

Efficacy for Student Engagement
How much can you do to get students to believe they can do well in school 
work?

Table 2: Sample of items of TSES 
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was all dimensions of TSES and overall teaching effi-
cacy belief which was the total mean score obtained 
from TSES.

FINDINGS 

Teaching efficacy beliefs
Descriptive analysis was conducted to explore the 
prospective mathematics teachers’ teaching efficacy 
beliefs. Table 4 indicates mean values and standard 
deviations for participants’ teaching efficacy beliefs 
scores for each dimension.

In TSES instrument, a rating of 7 out of 9 refers to the 
quite a bit efficiency on the given item, and 5 out of 9 
refers to the some efficiency on the given item. Table 3 
shows that mean values in the dimensions of teaching 
efficacy beliefs ranged from 6.3 to 6.6 out of 9. It might 
be inferred that participants felt efficacious them-
selves as a teacher. In order to understand whether 
there was a significant difference among dimensions 
of TSES, ANOVA was conducted. Before starting the 
analysis, all of the assumptions were checked and 
confirmed.  

Findings of ANOVA indicated that there was a statis-
tically significant difference among TSES dimensions 
(Wilks’ Lambda = .88, F (2, 185) = 13.24, p < .05). As a 

follow up test, paired sample t tests were conducted 
and results were evaluated using Holm’s Sequential 
Bonferroni Procedure.

According to Bonferroni Procedure, “Efficacy for 
Instructional Strategies” (M = 6.57, SD = .071) was 
significantly different from “Efficacy for Student 
Engagement” (M = 6.35, SD = .073) and “Efficacy for 
Classroom Management” (M = 6.35, SD = .074). The 
magnitude of the mean differences among dimen-
sions were respectively .10 and .09, which indicated 
moderate effect size. It means that prospective mathe-
matics teachers felt mostly efficacious in “Efficacy for 
Instructional Strategies” dimension. 

Prediction of teaching efficacy beliefs 
by hypothesized sources
In order to explore the how well hypothesized sources 
of self-efficacy beliefs predict participants’ teaching 
efficacy beliefs, multiple regression analysis was con-
ducted. Before starting the analysis, eleven assump-
tions addressed by Tabachnick and Fidell (2007) had 
been checked, and one outlier was eliminated from 
the data since it highly exceeds the critical value of 
Mahalanobis Distance. After assuring the assump-
tions, the analysis was conducted with .05 alpha level 
and pairwise deletion method.

Dimension Sample Item

Mastery Experiences I became successful when trying to teach something to students.

Vicarious Experiences I had chances to observe other teachers in class environment.

Verbal Persuasion I often get feedback from experienced people about my teaching skills.

Physiological and Affective States I get worried when I teach something wrong.

Table 3: Sample of items of SOSI

Mean SD Skewness Kurtosis

Efficacy for Student Engagement 6.35 .073 -.49 .61

Efficacy for Instructional Strategies 6.57 .071 -.23 -.04

Efficacy for Classroom Management 6.35 .074 -.47 .86

Table 4: Descriptive analysis for teaching efficacy beliefs dimensions

Pairs t df Sig.

Student engagement – Instructional strategies - 4.55 186 .00

Classroom management – Instructional strategies - 4.40 186 .00

Student engagement – Classroom management .05 186 .96

Table 5: Paired sample t-tests
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The examination of multiple regression analysis val-
ues from Table 6 indicated that the combination of 
hypothesized sources of teaching efficacy beliefs sig-
nificantly predicted all dimensions of TSES and overall 
teaching efficacy beliefs. Moreover, explained variance 
in dependent variables ranged from 31.8% to 43.3%.

As shown in Table 7, mastery experiences and phys-
iological and affective states significantly predicted 
all dimensions of TSES and overall teaching efficacy 
beliefs. To consider the Beta scores, mastery experi-
ences made the strongest contribution to explaining 
the overall teaching efficacy and TSES dimensions. In 
addition, physiological and affective states made more 
contribution than verbal persuasion and vicarious 
experiences to explaining them. On the other hand, 
verbal persuasion and vicarious experiences did not 
significantly predict teaching efficacy beliefs.

DISCUSSION

The present study aimed to examine one group of 
Turkish prospective middle grades mathematics 

teachers’ teaching efficacy beliefs and how the hypoth-
esized sources predict these teaching efficacy beliefs. 
The descriptive statistics results for TSES indicated 
that participants feel themselves efficacious in mathe-
matics teaching. Relevant studies in the national con-
text supported this finding. For instance, Işıksal and 
Çakıroğlu (2006) mentioned that prospective middle 
grade mathematics teachers’ teaching efficacy level 
could be interpreted as high. In another study, Koç 
(2011) reported that prospective middle grades math-
ematics teachers had significantly higher teaching 
efficacy beliefs than prospective secondary mathe-
matics teachers. 

The current study also indicated that prospective 
mathematics teachers’ teaching efficacy beliefs for 
instructional strategies were significantly higher 
than teaching efficacy for classroom management and 
student engagement. This might address that prospec-
tive mathematics teachers felt more competent and 
sophisticated in employing instructional strategies. 
Participants might have benefited from courses in 
teacher education program, especially from methods 

R R Square
Std. Error of the 

Estimate
Durbin-
Watson

F Sig.

Student Eng. .63 .395 .79 1.87 29.59 .00

Instructional Str. .63 .392 .76 1.81 29.21 .00

Class. Management .56 .318 .84 1.92 21.10 .00

Total TSES .66 .433 .70 1.84 34.58 .00

Table 6: Regression analysis

Student Eng. Inst. Str. Class. Management Total TSES

Mastery Experiences
(M = 5.09, SD = .78)

Beta .60 .55 .47 .59

T 6.53 6.04 4.80 6.62

Sig. .00 .00 .00 .00

Vicarious Experiences
(M = 5.25, SD = .84)

Beta .08 .08 .08 .09

T .77 .80 .79 .91

Sig. .44 .42 .43 .37

Verbal Persuasion
(M = 5.39, SD = .94)

Beta -.06 -.01 .03 -.02

T -.74 -.13 .31 -.21

Sig. .46 .89 .76 .84

Physiological and Affective 
States (M = 4.66, SD = 1.05)

Beta -.14 -.18 -.16 -.17

T -2.42 -3.02 -2.54 -3.04

Sig. .02 .00 .01 .00

Table 7: Coefficients
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of teaching mathematics courses, in which they learnt 
using different instructional strategies for teaching 
mathematics. On the other hand, mean scores of effi-
cacy for classroom management and student engage-
ment dimensions were relatively lower than efficacy 
for instructional strategies. It might be the case that 
the lack of participants’ experience in real classroom 
environment resulted in relatively lower scores in 
these dimensions. Although a considerable part of 
participants (74%) had a teaching experience, most 
of these experiences were private tutoring in a one-
to-one context, not in a classroom. Offering teaching 
experience courses not only in the last year, but also 
in the previous years might be beneficial for prospec-
tive teachers to improve their teaching efficacy for 
classroom management and student engagement.

Multiple regression analysis indicated that combina-
tion of hypothesized sources significantly predicted 
overall teaching efficacy belief and all dimensions of 
TSES. Therefore, it could be stated that the analysis 
results were in line with the theory. However, apart 
from the hypothesized sources, there might be other 
sources for teaching efficacy beliefs. To give an exam-
ple, content knowledge (Can, 2015), invitations send 
and received by the individuals (Usher & Pajares, 
2008), and personal characteristics and motivation for 
teaching (Poulou, 2007) might be additional sources 
which are mentioned in some of the related studies. 
Hypothesized sources might be supported with such 
additional sources in the further studies. 

When the individual contribution of hypothesized 
sources are investigated, it was seen that mastery ex-
periences and physiological and affective states signif-
icantly predicted teaching efficacy beliefs in all dimen-
sions of TSES and in overall teaching efficacy beliefs. 
As hypothesized by Bandura (1997), mastery experi-
ences are the most influential source for self-effica-
cy beliefs. Studies in the literature also consistently 
show that mastery experiences are the best predictor 
of teaching efficacy beliefs (Morris, 2010). Therefore, 
the results of the current study could be interpreted 
as in consistency with the theory and practical studies 
in the literature and highlights the importance of mas-
tery experience for teaching efficacy beliefs. In line 
with this finding, it is possible to claim that there is a 
need to create environments which provide mastery 
experiences for prospective teachers during their 
training. The teaching experience courses can be en-
hanced for prospective teachers to include more actu-

al teaching experience, and new courses in which they 
will have opportunities to improve their teaching ex-
periences can be designed. However, when designing 
these courses, it should be beneficial to bear in mind 
that prospective teachers should be in a supportive 
environment during these experiences (Knoblauch & 
Woolfolk Hoy, 2008). When they do not have support 
from their mentors and instructors from the univer-
sity, and when they do not have enough resources to 
improve their practices, mastery experiences do not 
become an improving source for prospective teachers’ 
teaching efficacy beliefs as seen in Knoblauch and 
Woolfolk Hoy’s study (2008). 

Although mastery experiences consistently predict 
teaching efficacy beliefs in the related literature, 
there is not a consistent result for the other three 
hypothesized sources (Usher & Pajares, 2008). In the 
current study, it was seen that physiological and af-
fective states significantly predicted teaching efficacy 
beliefs of prospective teachers unlike some findings 
in the related literature. For instance, in their study 
Mulholland and Wallace (2001) stated that physio-
logical and affective states contributed to a novice 
teachers’ efficacy beliefs less than the other three 
hypothesized sources. Similarly, Poulou (2007) men-
tioned that physiological and affective states are the 
least influential source among other sources. Such 
findings cause to neglect the possible contribution 
of physiological and affective states on teaching ef-
ficacy beliefs. However, such results might derive 
from the difficulty of measuring physiological and 
affective states source and some measurement errors 
rather than the nonsexist contribution of this source 
on teaching efficacy beliefs (Usher & Pajares, 2008). 
The findings of current study and the study of Morris 
(2010) support this claim and show that physiological 
and affective source should be taken into considera-
tion while investigating teaching efficacy beliefs.   

While investigating physiological and affective state 
source, feelings of anxiety and/or stress are generally 
interpreted as negative for the development of teach-
ing efficacy beliefs. However, Bandura (1997) stated 
that some degree of such feelings might positively 
contribute to teaching efficacy beliefs. The study of 
Morris and Usher (2011) also supported this claim and 
showed that even award winning professors feel some 
anxiety and stress before their lessons, but they are 
able to overcome this feelings during lessons which 
in turn enhance their teaching efficacy beliefs. In this 
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study, the calculated mean score for the physiological 
and affective state source indicates that participants 
occasionally feel anxiety, stress and tension while 
teaching. However, whether these feelings affected 
their teaching efficacy beliefs in a positive way or in 
a negative way remained unclear. Therefore, qual-
itative follow up studies might be beneficial while 
investigating how physiological and affective states af-
fected teaching efficacy beliefs (Usher & Pajares, 2008).  

According to multiple regression analysis results, vi-
carious experience and verbal persuasions did not 
significantly predict teaching efficacy beliefs of pro-
spective teachers. However, Bandura (1997) stated that 
hypothesized sources are highly related with each 
other. In such situations, independent contribution 
of verbal persuasion and vicarious experiences in 
multiple regression might be over shaded by mastery 
experience (Usher & Pajares, 2008), which might be 
the case in the current study. Therefore, there is a 
need for the further study in order to clarify how 
the vicarious experiences and verbal persuasions 
are internalized by prospective teachers in terms of 
teaching efficacy. 

Limited number of participants and non-random 
sampling method limits the generalizability of the 
observed results in the present study. Therefore, it is 
suggested to replicate the study with different samples 
in order to improve the generalizability. Furthermore, 
when the issue is how the hypothesized sources con-
tributed to teaching efficacy beliefs, supporting quan-
titative analyses with qualitative analyses would be 
beneficial to undermine the limitations of quantita-
tive measurement on hypothesized sources (Usher & 
Pajares, 2008). Therefore, mixed method studies are 
suggested as a further study. Future research studies 
may also focus on possible teacher education program 
experiences in which prospective teachers’ teaching 
efficacy beliefs are likely to improve and how these 
beliefs and their sources change during the teacher 
education program. 
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This paper reports on a small-scale intervention that 
explored perseverance in mathematical reasoning in 
children aged 10–11 in an English primary school. The 
intervention facilitated children’s provisional use of 
representations during mathematical reasoning ac-
tivities. The findings suggest improved perseverance 
because of the effect the intervention seemed to have on 
the bidirectional interplay between affect and cognition. 
This initially created affectively enabling conditions 
that impacted on cognition and then created cognitively 
enabling conditions that impacted on affect. A tentative 
framework describing this interaction is proposed.

Keywords: Perseverance, mathematical reasoning, affect, 

cognition, provisional.

INTRODUCTION AND THEORETICAL 
BACKGROUND

The development of mathematical reasoning is not 
straightforward; reasoning processes can trace a “zig-
zag” route (Lakatos, 1976, p. 42) which necessitates 
perseverance to navigate cognitive and affective dif-
ficulties. The cognitive processes relating to mathe-
matical reasoning have been well documented over 
the last seventy years (for example, Polya, 1945) and 
in more recent decades there have been significant 
theoretical developments in the interpretation of the 
affective domain in relation to learning mathematics 
(for example, Hannula, 2011). However, pedagogies to 
develop children’s mathematical perseverance are not 
yet articulated in the literature. This study sought to 
develop a practical intervention to improve children’s 
perseverance in mathematical reasoning. The signif-
icant interplay between cognitive and affective do-

mains during mathematical learning has been noted 
at previous CERMEs (Di Martino & Zan, 2013; Hannula, 
2011) and this interplay provided the framework for 
analysing and interpreting the findings in this study. 

The importance of reasoning
The central importance of reasoning in mathemat-
ics education has been widely argued. For example, 
Yankelewitz and colleagues (2010) assert that reason-
ing is crucial in the formulation and justification of 
convincing mathematical argument. Ball and Bass 
(2003, p. 28) make a connection between reasoning 
and the development of mathematical understanding, 
arguing that in the absence of reasoning, “mathemat-
ical understanding is meaningless”. They further ar-
gue that reasoning has a significant role in the recall 
of procedures and facts as it is the ability to reason, 
and not memory that enables a child to reconstruct 
knowledge when needed. The capacity to reason is 
therefore a significant factor in children’s learning 
of mathematics and there is value in framing a study 
with reasoning as its focus.

Mathematical reasoning can be considered to include 
deductive approaches that lead to formal mathemati-
cal proofs and inductive approaches that facilitate the 
development of knowledge; Polya (1959) broadly inter-
prets these two types of reasoning  as demonstrative 
and plausible reasoning respectively. In this study, my 
interpretation of mathematical reasoning was based 
on Polya’s (1959, p. 7–9) “plausible reasoning” and in-
cludes the use of processes detailed by Mason et al 
(2010) such as: random or systematic specialising by 
creating examples; noticing patterns to formulate and 
test conjectures; generalising and convincing. 
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Perseverance in reasoning
In this study, I have interpreted perseverance in 
accordance with common dictionary definitions 
to mean “persistence in [mathematical reasoning] 
despite difficulty or delay in achieving success” 
(OxfordDictionaries, 2014). Lee and Johnston-Wilder 
(2011, p. 1190) identify perseverance as one aspect of 
the construct mathematical resilience and argue that 
it is needed to overcome “mathematical difficulties”. 
Such difficulties arise from the “zig-zag” route that 
mathematical reasoning typically traces (Lakatos, 
1976, p. 42) and can be cognitive or affective in nature.

Overcoming cognitive difficulties necessitates the 
use of meta-cognitive self-regulatory approaches. For 
Mason, Burton and Stacey (2010), this is characterised 
by developing internal monitoring to facilitate de-
liberate reflection on reasoning processes and their 
outcomes. Such monitoring might result, for example, 
in changes in approach or use of representation, or 
rejection of ideas. This fosters a fallibilistic approach 
(Charalampous & Rowland, 2013; Lakatos, 1976) to en-
gaging with mathematics and mathematical uncer-
tainty. Mason, Burton and Stacey (2010) emphasise 
the value of considering three phases of work when 
engaged in activities involving mathematical reason-
ing: entry, attack and review.  The entry phase, charac-
terised by the making of random trials, and the back 
and forth movement between phases, exemplifies and 
facilitates a fallibilistic, self-regulatory approach to 
mathematical engagement.

Navigating Lakatos’ (1976, p. 42) zig-zag path also 
has affective impact and this necessitates affective 
self-regulatory responses. Goldin (2000) proposes 
that affective pathways, comprising rapidly changing 
emotional states, arise during mathematical problem 
solving.  Malmivuori (2006, p. 152) argues that these 
emotion responses “direct or disturb” mathemati-
cal thinking and activate either active or automatic 
self-regulatory processes. During active regulation 
of affective responses, an individual consciously 
monitors affective responses to inform cognitive de-
cision making. By contrast, automatic affective reg-
ulation describes self-regulatory processes that act 
at a sub-conscious level in which negative emotions 
can act to impede the higher order cognition involved 
in reasoning. 

Successful engagement with mathematical reason-
ing can be rewarding and impact on an individual’s 

sense of self-worth. Debellis and Goldin (2006, p. 132) 
describe mathematical intimacy as an affective struc-
ture which portrays an individual’s potential “deep 
emotional engagement” with mathematics. They ar-
gue that intimate mathematical experiences can give 
rise to emotions such as deep satisfaction that impact 
on self-worth. However, positive mathematical inti-
macy could be jeopardised by experiencing failure. 
Debellis and Goldin (2006, p. 138) reason that coping 
with swings in mathematical intimacy is a “meta-af-
fective capability”, the development of which charac-
terises successful problem solvers; this is a further 
presentation of the perseverance needed to be able 
to reason mathematically.

THE STUDY

In this study, I sought to improve children’s persever-
ance in mathematical reasoning by applying an inter-
vention that provided children with opportunities to 
use mathematical representations in a provisional 
way. 

The importance of representation in mathematics 
learning has been extensively documented and this 
study draws significantly on Bruner’s (1966) modes of 
representation and Dienes’ (1964) Dynamic Principle. 
However, the notion of provisionality is less widely 
interpreted within mathematics education. 

Provisionality is an idea that is drawn on in infor-
mation technology (IT) education (Leask & Meadows, 
2000). The provisional nature of many software appli-
cations enables users to evaluate and refine a product 
as it is being created. Papert (1980) utilised the provi-
sional nature of programming in designing the LOGO 
environment. LOGO enables a child to create instruc-
tions to move a turtle dynamically on the screen. It 
facilitates children to conjecture, make trials and use 
the resulting data to make improvements. Hence, this 
software enables children to construct understand-
ing through a trial and improvement, conjectural ap-
proach to mathematics; the intervention in this study 
sought to impact on children’s cognitive responses 
by applying a similarly provisional approach to chil-
dren’s use of mathematical representations.

Papert (1980) also notes how the provisional nature 
of programming impacts on the affective domain. It 
fosters an attitude that mathematical thinking is falli-
ble (Charalampous & Rowland, 2013), that it concerns 
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trial and improvement and conjecturing rather than 
the singular pursuit of right or wrong answers. Such 
an approach, he argues, makes children “less intim-
idated by a fear of being wrong” (Papert, 1980, p. 23). 
Hence, by constructing an intervention that enabled 
children to work provisionally, this study also sought 
to impact on children’s affective responses.

This research took place in an English primary school 
using an action research approach. The study com-
prised one Baseline Lesson in which the intervention 
was not applied, and two Research Lessons in which 
the teacher applied the intervention to her teaching 
approach. The teacher selected four children to form 
the study group based on her assessment that their 
perseverance in mathematical reasoning was limited 
and would benefit from improvement. Prior to each of 
the lessons, the teacher and I selected a mathematical 
activity that presented opportunities for mathemati-
cal reasoning. For the Research Lessons, we discussed 
how the children could use representations in a pro-
visional way and the teaching strategies that might 
facilitate this. The teacher then created the detailed 
plans and taught the lessons. 

The fieldwork comprised collecting data from the 
three lessons, post-lesson interviews with children 
and an evaluation meeting with the teacher. During 
the Baseline and Research Lessons, I collected data on 
the four children relating to the cognitive and affec-
tive domains through non-participant observation 
and by taking photographs of the representations that 
they made. Audio recordings were made of the chil-
dren’s dialogue during the lessons and I used these 
to augment the observation notes post-hoc. During 
observations, I used an approach similar to that 
used by Schorr and Goldin (2008) in their analysis of 
filmed lessons to gather data relating to key affective 
events. For example, I noted the children’s manner of 
engagement, their body position and the speed of their 

speech. I interviewed the study children immediately 
after each observation. The focus of the interview was 
threefold: to check my understanding of what I had 
observed; to gain the children’s interpretation of what 
had happened and why, and to explore the extent of 
the children’s mathematical reasoning.

This paper reports on the thick data arising from the 
second Research Lesson pertaining to two of the study 
group, Lucy and Emily.

FINDINGS AND DISCUSSION

Bidirectional interplay between cognition and affect 
(Di Martino & Zan, 2013) was evident during Lucy 
and Emily’s mathematical engagement in Research 
Lesson 2. However, it seemed to operate in different 
directions at different stages of their thinking. Hence, 
I have used  Mason, Burton and Stacey’s (2010) entry 
and attack phases of problem solving as a temporal 
framework for the presentation and discussion of 
findings.

During Research Lesson 2, Lucy and Emily engaged 
as a pair with the problem:

A square pond is surrounded by a path that is 
1 unit wide. Explore what happens to the path 
length for different sizes of pond.

Resources available: Cuisenaire rods, pencils, A3 
plain paper.

The impact the intervention during 
the entry phase
During the entry phase (Mason, Burton, & Stacey, 
2010), Lucy and Emily used Cuisenaire rods in a provi-
sional way to get a feel for the problem; they explored 
how the criteria given in the activity could be repre-
sented and began to explore how the path size related 

Figure 1: Entry phase trials
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to the pond size. In their first three trials (Figure 1a-c) 
they focused on what it meant for the path to surround 
the pond. They used the information from the first two 
partially successful trials (Figure 1a-b) to inform their 
third trial (Figure 1c). This is similar way to in which 
Papert (1980) described children using the outcomes 
from their programming in LOGO to fix bugs in code.

The girls’ provisional use of representation during 
the entry phase seemed to impact on their capacity to 
work with mathematical uncertainty and to adopt a 
fallibilist approach. Any trials that resulted in failure 
to meet the criteria set out in the activity, for example 
those depicted in Figure 1a and 1b did not appear to 
decrease their engagement or persistence with the 
activity. Their capacity to work with mathematical 
uncertainty facilitated their self-regulation and the 
application of their learning from apparently unsuc-
cessful trials. Emily and Lucy showed no indications 
of fear, anxiety, bewilderment or reticence that can 
accompany the beginning of mathematical explora-
tion, when least is known and understood about the 
problem. Conversely, they seemed highly engaged; 
they were leaning forwards, constantly exploring 
the parameters of the problem through their manip-
ulation of the Cuisenaire rods and they alternated 
between quiet individual construction of examples 
and paired dialogue to share and develop thinking. 
The girls portrayed a relaxed appearance during the 
entry phase; their approach had a sense of playfulness 
and exploration that could be likened to the unstruc-
tured play that Dienes (1964) describes in his Dynamic 
Principle and this seemed to enable them to experi-
ence mathematical uncertainty in a positive way. 

During the construction of their third trial, the pair 
created an ordered arrangement of all ten Cuisenaire 
rods to serve as a reference of relative lengths and 
support selection (top right of Figure 1c). In so doing, 
they noticed that they had selected consecutive rods to 
create the 62 pond and its path. This led them to form 
the conjecture that began to articulate the relation-
ship between the two dependent variables:

Lucy: I think it will be if you use 1 [for the 
pond] then it will be 2 [for the path], if 

you use 2 then it’s going to be 3, so it’s 
[the path] going to be 1 higher than your 
square number

By the end of the entry phase they had constructed 
and ordered four examples (Figure 1d). They ap-
peared to create each example by randomly selecting 
a Cuisenaire rod and using this as the basis to create 
one example; this use of random specialisation typ-
ifies the entry phase trials (Mason, Burton, & Stacey, 
2010).  This facilitated cognitive developments that 
enabled the girls to notice and formulate conjectures 
about the emerging patterns between the width of the 
pond and side length of path and to begin to articulate 
this relationship.

Hence, during the entry phase, the provisional way in 
which the girls used representations seemed to foster 
the emergence of affectively enabling responses and 
this enabled cognitive developments in mathematical 
reasoning. The impact of the girls’ provisional use of 
representation during the entry phase is depicted in 
Figure 2.

The impact of the intervention in the 
attack phase
The transition to the attack phase was indicated by the 
girls’ use of systematic specialisation (Mason, Burton, 
& Stacey, 2010). Having organised the data generat-
ed through random specialisation into an ordered 
sequence (Figure 1d), the girls then used the provi-
sional nature of their representations to create gaps 
between the examples, apparently to identify and ac-
commodate missing data. They then represented all 
the ponds in an ordered sequence from 12 to 92 using 
Cuisenaire rods (Figure 3).

The girls then switched to a more permanent rep-
resentation in the form of a table (Figure 4). This rep-
resentation does not simply illustrate total amounts 
relating to pond size and path lengths. Rather, it in-
cludes significant detail relating to the mathematical 
structures that underpin the relationship between 
the dependent variables of pond size and path length. 
Each example of the pond described its width squared, 
its total value and the odd/even property of this to-

Figure 2: Impact of the intervention during the entry phase
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tal. Each example of the path is similarly described 
by side length multiplied by 4, the total value of the 
path length and the even nature of these totals. The 
girls also noted that each total was a multiple of 4. 
Interestingly, they realised that their recording had 
not been totally consistent in representing the x4 as-
pect of the path side length and this led them to under-
line the x4 component. Whilst there was no evidence 
in this lesson that the girls became overtly stuck, and 
hence no necessity to overcome this, they did perse-
vere in formulating and articulating the reasoning for 
the patterns they observed. Emily’s original response 
to the challenge of explaining the patterns they had 
identified resulted in a sentence that she was initially 
unable to complete: 

Emily: All the paths are in the four times table. 
They have to be in the four times table 
because… 

The girls persisted and utilised their understanding 
of the structures they had identified to formulate 
their reasoning for the observable patterns. This is 
captured on the right of Figure 4. In the post-lesson 
interview, the girls re-visited this: 

13 Emily: We noticed about the path, be-
cause there’s 4 sides to the path, we need 4 
sides of the path, so you need to times it by 
whatever number the length of the path is. 
So then it’s the 4 times table because there 

Figure 3: Systematic representation of ponds with widths 1–9

Figure 4: Lucy and Emily’s table of findings
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are 4 sides and all of them, the numbers are 
even because they are all in the 4 times table

69 Lucy: Because it expands so you need 
to add 4 each time you go up

The diagram on the right of Figure 4 supports the 
reasoning expressed in line 69. In the interview, the 
girls re-created this image using Cuisenaire rods; 
Figure 5 shows how the path surrounding the 12 pond 
is positioned on top of the path surrounding the 22 
pond with the gaps at each corner filled by four rods, 
each of length 1. There are similarities between the 
representations drawn in Figure 4 and constructed 
in Figure 5 and the girls’ second trial (Figure 1b); the 
initial provisional explorations using the Cuisenaire 
rods, and in particular the example in Figure 1b seems 
to have helped the girls to understand the structures 
underpinning the growth of the path size. This under-
standing enabled Lucy to articulate the reasoning in 
line 69. The depth of understanding and the extent 
of the reasoning that the girls achieved resulted in 
positive affective responses. As in the entry phase, 
both girls remained highly engaged in the activity 
throughout the attack phase and took every oppor-
tunity presented to talk with the teacher about their 
findings and seemed eager to share the reasoning that 
they were constructing. 

In the evaluation meeting following the Research 
Lesson, the teacher reported the impact of the girls’ 
provisional use of representations during the attack 
phase on their cognitive and affective domains: 

18 Teacher: I think [the provisional use of 
representation] helped them explain their 
reasoning more and therefore that helped 
them sustain their interest because they 
could explain more, because they had some-
thing to work from, to explain with. Their 
level of reasoning was amazing.

96 Teacher: [Lucy’s] very proud of the work 
she’s done [in the project]. I only have to men-
tion it and a smile spreads across her face.

108 Teacher: I have seen some improvement 
in [Emily’s] perseverance and resilience […] 
in the past she would very much continue to 
follow a path even though it was wrong […]. 
She’s been able to stop mid way and realise 
it’s wrong and have to go back to the begin-
ning.

In line 18, the teacher exclaims about the level of the 
girls reasoning. In the baseline lesson, the girls were 
able to notice and articulate patterns, but not reason 
about why these occurred, hence there was a signif-
icant contrast with the extent and depth of their rea-
soning between the baseline lesson and the second 
research lesson. 

The teacher also makes two connections in line 18. 
First, she makes a link between the girls’ provisional 
use of representation and their articulation of math-
ematical reasoning. Second, she perceives that the 
positive cognitive developments contributed to the 
girls’ sustained engagement and curiosity. The im-
pact on Lucy’s affective domain appeared to continue 
beyond the Research Lesson. Lucy’s apparent sense 
of pride (line 96), suggests that she may have experi-
enced developments in mathematical intimacy; that 
she was emotionally engaged and achieved a sense 
of satisfaction and self-worth through her cognitive 
mathematical activity (DeBellis & Goldin, 2006). Line 
108 suggests that Emily may have increased her capac-
ity to actively self-regulate (Malmivuori, 2006); this 
perhaps arises from developments in her capacity to 
work with mathematical uncertainty which may have 
arisen through working in a provisional way.

It appears that the provisional use of representations 
in the attack phase impacts first on the cognitive do-
main and second on the affective domain; a reversal 

Figure 5: Representations created to support reasoning in line 69
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of the processes emerging in the entry phase. This 
relationship is depicted in Figure 6.

CONCLUSION AND NEXT STEPS

This study sought to develop a practical intervention 
to improve children’s perseverance in mathematical 
reasoning. The girls’ provisional use of Cuisenaire 
rods appeared to have an enabling affective impact 
during the entry phase. This facilitated cognitive 
developments in reasoning as it supported them to 
behave in an exploratory way, to make and learn from 
trials, work with mathematical uncertainty and begin 
to formulate conjectures. In the attack phase, their 
provisional use of representation seemed to enable 
the girls to develop systematic approaches to their 
creation and organisation of trials. This led to their 
noticing patterns, understanding the underpinning 
mathematical structures, and using this to persevere 
in formulating reasoning. It seems that positive bidi-
rectional interplay (Di Martino & Zan, 2013) between 
affect and cognition, facilitated by the intervention, 
resulted in improved perseverance in mathematical 
reasoning. A tentative analytic framework detailing 
these interactions and synthesising Figures 2 and 6, 
is depicted in Figure 7. 

In the next phase of this research, I plan to work with 
two classes of children aged 10–11 in different schools 
to further test the impact of the intervention on chil-
dren’s perseverance in mathematical reasoning.
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In this paper, we want to discuss the structure of teachers’ 
belief systems. Firstly, we discuss teachers’ belief systems 
from a theoretical perspective including characteristics 
of beliefs systems like its cluster structure, the central-
ity of beliefs or the hierarchy of beliefs. Afterwards, we 
analyse the beliefs of one primary teacher emphasis-
ing particularly the structural aspects of this teacher’s 
system of beliefs concerning the teaching and learning 
of arithmetic. Finally, we discuss potential benefits of 
investigating a belief system in detail. We conclude the 
paper with a brief summary and suggestions for further 
research.

Keywords: Arithmetic, belief system, central and 

peripheral, primary and derivative.

INTRODUCTION

Teachers individually define their way of teaching. 
Thus teachers decide what mathematical content they 
bring to the classroom and they decide how they teach 
a specific content. A teacher’s individual reasoning 
why he/she selects specific content and why he/she 
prefers a specific teaching style could be understood 
as a notion of  a teacher’s system of beliefs (Eichler 
& Erens, 2015), in which beliefs represent the inter-
section of the cognitive and motivational aspects of a 
teacher’s mathematics related affect (Hannula, 2012). 
Lerman (2015, p. viii) states that, “exploring teachers’ 
beliefs and their development are important topics 
in themselves”. However, the importance of gaining 
knowledge towards mathematics teachers’ beliefs 
has also been emphasised by many researchers since 
teachers’ beliefs about mathematics and the teaching 
and learning of mathematics potentially have a high 
impact on the teachers’ classroom practice (Philipp, 
2007). 

As a prerequisite of analysing both, the development 
of teachers’ beliefs and the enactment of teachers’ 
beliefs, there is a demand to investigate the complex 
structure of teachers’ beliefs in detail. For example, 
referring to the change of teachers’ beliefs,  Liljedahl, 
Rolka and Rösken (2007, p. 280) state that a “deeper 
analysis of beliefs in the context of mathematics teach-
ers’ professional growth is needed to penetrate the 
surface stories of the data and reveal the nuanced and 
situated belief structures that are often hidden”. The 
mentioned belief structures are also understood to 
potentially unfold the relation between teachers’ pro-
fessed beliefs and the teachers’ enacted beliefs; this 
relation is not completely explained yet (Furinghetti 
& Morselli 2011). For example, Wilson & Cooney (2002) 
suggested that only those professed beliefs would be 
enacted that are central for a teacher and, thus, they 
suggested that unfolding the structure of a teacher’s 
belief system could explain inconsistencies. As an im-
portant aspect of an in-depth analysis of mathematics 
teachers’ beliefs, research results imply to consider 
the discipline-specifity of teachers’ beliefs (Franke et 
al., 2007). Consistently, our own research yield consid-
erable differences of teachers’ beliefs about different 
disciplines like e.g. arithmetic (Eichler & Erens, 2015). 

Two aims of this project are to analyse the develop-
ment of mathematics teachers’ beliefs and the extent 
in which these beliefs are enacted in the teachers’ 
classroom practice. For this reason, following the 
considerations outlined above, we firstly tried to 

“penetrate the surface stories” (Liljedahl, 2007, p. 280), 
i.e., to analyse the structure of the teachers’ beliefs 
in depth. After outlining our theoretical framework, 
we discuss the method of analysing teachers’ belief 
structures or rather teachers’ belief systems in depth. 
This analysis is the main focus of our paper. We fur-
ther outline the results of our analysis for one teacher. 
This teacher is part of a sample of 20 mathematics 
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teachers of primary schools involved in our research 
project. We conclude this report summarising our 
findings and suggestions for further research.

THEORETICAL FRAMEWORK

Following Pajares (1992) the term beliefs represents 
an individual’s personal conviction concerning a 
specific subject, which shapes an individual’s way of 
both receiving information about a subject and act-
ing in a specific situation. The specific subject in our 
research is the teaching and learning of arithmetic. 
We decided to focus on this specific subject due to 
two reasons: Firstly, arithmetic is the main subject 
for the primary teachers of our sample. Secondly, a 
focus on a specific mathematical discipline is in our 
research an important aspect for facilitating an in-
depth analysis of mathematics teachers’ beliefs. As 
a specific form of beliefs we regard the teachers’ be-
liefs about content, beliefs about ways of teaching or 
beliefs that represent a teacher’s teaching goals (c.f. 
Eichler & Erens, 2015).

The internal organisation of the mentioned beliefs is 
called a teacher’s belief system (Green, 1971). A belief 
system is mainly characterised by three aspects:

1) “Beliefs can be either central, which means strong-
ly held, or peripheral, which means less strongly 
held” (Philipp, 2007, p. 260).

2) A belief system could consist of different clus-
ters that are connected in at least  quasi-logical 
ways. This means that different clusters of beliefs 
could be isolated, but different clusters of beliefs 
could also be contradictory (ibid.). For example, 
central beliefs are not necessarily connected to 
peripheral beliefs. Further beliefs referring a 
mathematical discipline like arithmetic could be 
contradictory to beliefs referring another math-
ematical discipline (Eichler & Erens, 2015)

3) Beliefs systems could be organised hierarchical-
ly including primary beliefs and derivative be-
liefs (Green, 1971). If teaching goals are regarded 
(see above) a primary goal could be to prepare 
students to solve problems in their future life. 
A derivative goal could be to follow a cognitive 
guided instruction (Franke et al., 2007). A re-
lation between primary and derivative goals 
must not be necessarily logical in an objective 

sense (quasi-logicalness, see above). Further, it 
is noteworthy that “primary beliefs might not 
necessarily be more central than the associated 
derivative beliefs” (Philipp, 2007, p. 260).

Research in mathematics education has reported spe-
cific clusters of beliefs that refer to different features 
of the perception of mathematics in general (Dionne, 
1984). Based on these two reports Grigutsch, Raatz and 
Törner (1998) distinct four views that could describe 
teachers’ beliefs about mathematics in general but 
also teachers’ beliefs about the teaching and learning 
of arithmetic:

 ― A formalist view stresses that arithmetic is 
characterised by a logical and formal approach. 
Accuracy and precision are most important.

 ― A process-oriented view is represented by state-
ments about arithmetic being experienced as a 
heuristic and creative activity that allows solving 
problems using different and individual ways.

 ― An instrumentalist view places emphasis on the 
“tool box”- aspect which means that arithmetic is 
seen as a collection of calculation rules and pro-
cedures to be memorized and applied according 
to the given situation.

 ― An application oriented view accentuates the 
utility of arithmetic for the real world and the at-
tempts to include real-world problems into class.

Further we refer to a global distinction of two differ-
ent ways of teaching mathematics or arithmetic, i.e., 
a “cognitive constructivist orientation”, and a “direct 
transmission view” (Staub & Stern, 2002, p. 344). We 
assume that these two different orientations are two 
ends of a continuum with three points of orientation: 
constructivism, co-constructivism and transmission 
(Strohmer et al., 2012).

METHOD

The sample consists of 20 primary teachers. However, 
in this paper we restrict the discussion to one teacher, 
i.e. Mrs. A (a young teacher from south of Germany), 
and her beliefs referring the teaching and learning 
of arithmetic. This restriction is not based on specific 
characteristics of Mrs. A, but is based on the main aim 
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of this paper, i.e. to discuss an in-depth analysis of the 
structure of teachers’ belief systems. 

We collected data in two different ways: Firstly, we 
used a semi-structured interview including clusters 
of questions referring to arithmetic content and goals 
of teaching arithmetic as well as goals of teaching 
mathematics, students’ learning of arithmetic or ma-
terials used, e.g. textbooks. In addition, the interviews 
incorporated prompts to evaluate given arithmetic 
tasks or fictitious statements of teachers or students 
that represent one of the views mentioned above.

Secondly we used a questionnaire referring to 
teachers’ views (Grigutsch, Raatz, & Törner, 1998). 
Participants were asked to rate every item (e.g., item 
5: Everyone is able to invent mathematics or rather to 
re-invent mathematics) using a 4-point Likert-scale. 
We adapted this questionnaire by changing the focus 
to beliefs referring arithmetic (new item 5: Everyone 
is able to invent arithmetic or rather to re-invent arith-
metic), but also used Likert scale. Finally, we used the 
existing scale of Strohmer and colleagues (2012) to 
measure the teachers’ teaching orientation that we 
also adapted for teaching arithmetic. We conducted 
the following three steps for analysing the data. 

First step of data analysis
We used a qualitative coding method (Kuckartz, 2012) 
that is close to grounded theory (Glaser & Strauss, 
1967) to analyse the data of the verbatim transcribed 
interviews. We used deductive codes derived from 
a theoretical perspective like ‘application oriented’ 
belief and inductive codes for those beliefs we did 
not deduce from existing research (Kuckartz, 2012). 
We will describe different inductive codes later in 
the result section.

Second step of data analysis
We weighted the deductive codes with 1, 2, -1 or -2 due 
to the following rules:

 ― If a teacher mentions a goal without a precision 
we weighted the code with 1.

 ― If a teacher explains a belief more deeply we 
weighted the code with 2. 

 ― If a teacher refused a belief without explanation, 
we weighted the code with -1.

 ― If a teacher refused a belief with explanation, we 
weighted the code with -2.

One aim of this step of the data analysis was to develop 
quantitative evidence for the results that we gained 
through interpretation of the interview transcripts. 
For example, if the weighted sum of codes referring to 
a specific view is much higher than for another view, 
this could serve as evidence for a different grade of 
centrality of these two views. Further the sum of the 
weighted codes facilitates the comparison of the anal-
ysis of the interview and the analysis of the question-
naires. The deductive codings as well as the inductive 
codings were conducted by at least two persons and 
we found the inter-rater reliability to show an appro-
priate value. 

Third step of data analysis
The four subscales of the adapted questionnaire of 
Grigutsch, Raatz and Törner (1998) yielded four sums 
of ratings referring to the application oriented view, 
the process oriented view, the instrumentalism view 
and the formalism view. We compared the distribu-
tion of these four subscales to the sum of weighted 
codes referring the same views. To facilitate the 
comparison we used standardised distribution of the 
rating sums and the sums of the weighted codes. To 
compare both standardised distributions we used a 
correlation coefficient and other measures on associ-
ation (e.g., Kendalls Tau-b) in an exploratory way and, 
further, used a U-test for proving differences between 
the two distributions.   

RESULTS

As mentioned before, we restrict the focus to one 
teacher, Mrs. A, and her belief system to give a com-
prehensive picture of the structure of one belief sys-
tem. 

Process orientation as a central belief of Mrs. A
Mrs. A expressed coherently a process oriented view. 
For example, to the question of her favourite style of 
teaching arithmetic and her preferred methods she 
answered: 

“Truly, it is important that they are able to find 
the solutions on their own, that they can work 
individually (…) that they can solve problems, that 
they can work on open tasks, that they can find 
their own strategies.”
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Later, nearly the same answer ensued when she was 
asked about pupils and their way of learning arith-
metic:  

“It is always important for me, that it comes from 
the pupils themselves, that it includes a problem, 
I like giving pupils problem statements.”

Again, being asked to the question, which goals she 
would like to reach with her arithmetic lesson, she 
answered:  

“And then there are strategies, i.e. to be flexible, to 
adapt oneself to something new. Therefore, you 
need the right attitude that you have the confi-
dence to try something you don`t know and to 
put effort into it.”

The three quoted episodes referring to different 
topics of teaching arithmetic, i.e. the teaching style, 
students’ learning and teaching goals give evidence 
that beliefs representing the process oriented view 
are central in the belief system of Mrs. A.

Further, the prompts given during the interview 
contain a process orientation. For example, Mrs. A 
was asked to arrange eight given teaching goals into 
a hierarchy. Figure 1 shows her arrangement of these 
goals for arithmetic lessons, where Mrs. A valued 
problem solving and process orientation as the most 
important goals.

In Figure 2 we show a further prompt consisting of 
students’ statements representing the four views 
towards mathematics. The teachers were asked to 
arrange the statements from most desired (1) to least 
desired (4) if the statements represent arithmetic.  
Mrs. A preferred the second statement representing 
the process orientation.

Just as the professed beliefs the responds to the 
prompts referring teaching arithmetic give strong 
evidence that process orientation is central for Mrs. A. 

The results of the second and third step of analysis 
(sum of weighted codes; questionnaire) are shown in 
Figure 3 where both distributions are standardised.

Looking at the figure it is obvious that application 
and process are more accepted than the other two ori-
entations. The interview results as well as the ques-
tionnaire results imply this assertion. In conclusion 
application and process are central in Mrs. A’s belief 
system.  The high degree of coherence in different 
parts of the interview, the sum of weighted codes and, 
finally the questionnaire underline that the different 
instruments all measure the same. 

Figure 1: Arrangement of goals for arithmetic lessons by Mrs. A

Figure 2: Prompt: What would you  like for pupils to answer?

Figure 3: Weighted sum of codes and questionnaire scores
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Application as a derivative belief
Although application oriented beliefs are central for 
Mrs. A, however, her answers concerning the appli-
cation oriented view gave evidence that application 
oriented beliefs are derivative beliefs. Thus they 
seem to be subordinated to process oriented beliefs. 
That means that application is in some sense a central 
teaching goal but rather a means to an end for another 
primary belief:

“The relation to reality is important too, as I said 
before referring to money and time, but it doesn´t 
has to be highlighted all the time. Today, for ex-
ample, I just gave them a mathematical problem…”

Application oriented goals seem not to be derived 
from process oriented goals in a logical way. However, 
both (clusters of ) beliefs are central and application 
oriented beliefs are subordinated to process oriented 
beliefs.

Formalism and instrumentalism 
as peripheral beliefs
Although formalism is mentioned in some parts of 
the interview, it just has a peripheral meaning in the 
belief system of Mrs A. She names the importance 
of mathematical correctness once. Further, she em-
phasises that students should understand what they 
do in mathematics and why they do things. However, 
formalism seems to be a peripheral belief of Mrs. A 
and in some sense a desirable but peripheral result 
of process orientation as the following quotation il-
lustrates:

“Apart from that the process oriented training 
is more useful, because there is a little bit more 
reflection and control, so you can see what you 
are doing and why you are doing it!”

While Mrs. A talks positive about process, applica-
tion and formalism when she regards her teaching 
of arithmetic, she often refuses instrumentalism. It 
is mentioned and it is denoted as important, but in-
strumentalism often receives a negative connotation, 
e.g. when Mrs. A talks about “mindless practicing” or 
when she says “you just have to do it this way”:

“I realize this drill is just mindless practicing, but 
in some ways it makes sense, for example when 
you want to establish an algorithm, yes, then you 
just have to do it this way.”

The critical comments referring the instrumetalism 
view of Mrs. A show that this aspect is peripheral in 
her belief system. Referring to instrumentalism, we 
did not find evidence for a clear relation to another 
view. 

Concluding the analysis of the belief system of Mrs. 
A the process orientation is central. Also application 
orientation is central in her belief system but, how-
ever, subordinated. Thus, application oriented goals 
could be understood as a means to an end to reach 
process orientation. Formalism is a positive connoted 
peripheral belief that represents a desired but periph-
eral result of process-orientation. Instrumentalism is 
also a peripheral but isolated belief with a negative 
connotation (Figure 4).

The belief cluster of process orientation
Mrs. A’s central belief, i.e. process orientation, is 
closely connected to a set of further beliefs and, thus, 
could be understood as a belief cluster consisting of 
several defining beliefs. These defining beliefs are a 
result of inductive codes which were formed during 
the analysis of the interview transcript. We illustrate 
only two beliefs that constitute the belief cluster of 
process orientation. The first belief concerns com-
prehension that Mrs. A explains the benefit of open 
word problems - so called Fermi tasks - that are based 
on individual models: 

“Comprehension must stand on the top and you 
can reach it while giving tasks with a problem 
solving context. This has not to be a big Fermi 
task but also you can just confront the pupils with 
something and then see what they do.

The second quotation represents the belief flexibility. 
Here, the word strategies illustrate the closeness to 
process orientation:

“…they [the children] should not be afraid of num-
bers. They should be flexible and fit in their head. 
And this brings us back to the strategies, they can 
learn with the help of the “half-written” calcu-
lation.”

As well as process orientation also application, for-
malism and instrumentalism are belief clusters. In 
Figure 4 we show some of the beliefs that for Mrs. A 
define the four belief clusters.
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(Co-)Constructivism as a central belief
In the same way as it was shown above, we investi-
gated beliefs that concern more general the process 
of teaching and learning. Referring these beliefs, a 
(co-)constructivist orientation is central for Mrs. A: 

“Well, it should be oriented on the pupils, the 
teacher should abstain himself, so that there 
exists a high amount of work the pupils do, it 
should not only be training but also the teach-
er should give them credit so that they can work 
independently…”

The centrality of this orientation is also shown in the 
following prompt referring to learning arithmetic. 
Here Mrs. A should rate three different statements of 
pupils. The figure illustrates that it is important for 
her that the pupils work independently. 

As discussed to the results referring the arithmetic 
related beliefs, the qualitative interpretation, the sum 
of weigthed codes and, finally, the results of the ques-
tionnaire yield very similar results also referring to 
the different ways of teaching (Figure 6).

Direct transmission view as a peripheral belief
As Figure 6 illustrates for Mrs. A, a direct transmis-
sion view only appears peripheral. This is also shown 

in her statements to her experience in sitting in on 
classes:

“… and I have seen this in secondary school, […] but 
it is so different and boring. The older teacher 
stand in front of the class, they lead the way and 
the pupils replicate and practise. And we learned 
quiet different things, for example at the univer-
sity – much more pupil activity, much more prob-
lem solving and open lessons.”

Most of the time Mrs. A emphasises that she wants 
the pupils to make their own experiences and that 
she does not want to stand in front of the class and 
tell the pupils how things work. Still there exist a few 
episodes where she talks about the relevance of teach-
er-centred teaching:

Figure 4: The belief system of Mrs. A

Figure 5: Prompt “wish of teacher”

Figure 6: Weighted sum of codes and questionnaire scores
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“…so teaching should be effectively and therefore 
it also is important to teach the pupils sometimes 
in teacher-centred teaching.” 

These examples show that a direct transmission view 
is not rejected but peripheral in the belief system of 
Mrs. A. 

DISCUSSION

Looking at the results we can approve some of the 
aspects which characterise a belief system referring 
to Green (1971). Thus the structure of a mathematics 
teacher’s belief system referring to the mathematical 
subdomain arithmetic contains beliefs with different 
centrality. The beliefs can be central (here: application 
and process orientation) or peripheral (here: instru-
mentalism and formalism). Further, the beliefs are 
hierarchically arranged as primary beliefs and de-
rivative beliefs. In the case of Mrs. A the application 
orientation is a means to an end to facilitate process 
orientation. Finally, we identified different belief 
clusters, e.g. the cluster process orientation which 
contains for example comprehension or flexibility 
(cf. Figure 4). The theoretical statement that central 
beliefs are not necessarily connected to peripheral be-
liefs (Philipp, 2007) was pointed out in the connection 
between the central and peripheral beliefs of Mrs. A. 
Formalism could be understood as a peripheral result 
of process orientation, instrumentalism however has 
no connection to this belief. 

Our results can be used to compare teachers from dif-
ferent type of schools and with different background 
concerning their professional career. However, the 
main reason of the in-depth analysis of a teachers’ 
belief system that we discussed in this paper is to 
provide a basis that facilitate further research, i.e. 
investigating both the relation between professed 
beliefs and enacted beliefs and the development of 
teachers’ beliefs.
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In this contribution we study group work in mathemat-
ics adopting a socio-cultural perspective and combining 
two theoretical lenses: the construct of identity and that 
of rational behavior. More specifically, we show how 
individual identity and dimensions of rationality in 
interaction may influence conceptual change. Data 
analysis is performed on excerpts from a group work 
(age of the students: 12) on negative numbers.
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INTRODUCTION

Group work as a methodology is often advocated 
in mathematics education, and its value is often 
taken as obvious by researchers and also teachers. 
Nevertheless, working in group does not immediately 
turn into a search for a common solution. What hap-
pens to the students when they see the others doing 
something different from them? Does every student 
care about the agreement with classmates? Research 
may help figuring out the possible causes of failure of 
group activities. Conversely, research may also show 
to those teachers, who ask their students to provide 
a common solution for group activities, how difficult 
is for students to reach on their own an agreement 
and how far is a solution from being “common” and 
accepted by all the members of the group. In this 
contribution we study group discussion adopting a 
socio-cultural perspective and combining two the-
oretical lenses: the construct of identity and that of 
rational behavior. By means of a networked analysis, 
we aim at better understanding what happens during 
group interaction, in particular what makes a group 
interaction efficient or not for students involved in a 
task-based activity designed with the aim of stimulat-
ing a conceptual change. 

LITERATURE REVIEW AND THEORETICAL 
FRAMEWORK

Group work and sociocultural perspective
The pioneering analysis carried out but Vygotskij 
(1978) concerning the crucial role of social activities 
mediated by signs and language in the development of 
mathematical thinking traced a path in which a whole 
thread of researchers placed their roots. The effects 
of students’ interactions in classroom activities have 
been studied, described and interpreted in mathe-
matics education since its origins, see Radford (2011) 
for an overview. We rely on a sociocultural perspec-
tive, according to which the learning of mathematics 
takes place in a social context through interactions 
and is deeply affected by culture (Radford, 2006; 2011). 
Radford (2006, p. 58) affirms: 

Certainly, the students were actively engaged in 
what has been termed a “negotiation of mean-
ing”. But this term can be terribly misleading in 
that it may lead us to believe that the attainment 
of the concept is a mere consensual question 
of classroom interaction. [...] meaning also has 
a cultural-historical dimension […]. It is in fact 
this cultural object that shapes and explains the 
teacher’s intervention [...] classroom interaction 
and the students’ subjective meaning are pushed 
towards specific directions of conceptual devel-
opment. Cultural conceptual objects are like 
lighthouses that orient navigators’ sailing boats. 
They impress classroom interaction with a spe-
cific teleology.  

Students are involved in a double-faced problem: they 
meet at the same time the culture and the others and 
have to find a place in both the cultural and the class-
room discourses, that are related but not necessarily 
equal. In particular we will focus on the classroom 
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discourse side. Even if the attainment of a concept 
is not a mere consensual question, the agreement 
between students is very important in mathematics 
group activities, as we will show. We refer to Radford’s 
interpretation of cultural-historical activity theory 
(Roth, Radford, & Lacroix, 2012). This theory is rooted 
in Leont’ev and Vygotskij’s dialectical psychological 
theories. The keyword activity is defined as a com-
mon place in which cognition and consciousness 
arise; through activity individuals relate not only 
to the world of objects but also to other individuals. 
Learning is the result of a shared common practice 
that involves students’ subjectivities and in which 
subjectivities moves towards others and culture to 
find and transform themselves. In Radford (2008) it 
is pointed out that students’ interaction in a small 
group is a complex process in which students are in-
volved at many levels, not only at the cognitive one. 
The processes of objectification (students align their 
thoughts with culture) and subjectification (a thinking 
and becoming process of being-with-others mediated 
by alterity) that take place in the teamwork are  me-
diated by culture.   

Conceptual change
In our perspective, learning is a thinking and becom-
ing process in which students are involved not only 
at the cognitive level, and a continuous negotiation 
of meanings between one individual and another me-
diated by culture (Radford, 2008). We conjecture that 
conceptual change, as part of mathematics learning, 
cannot be seen just as “change of concept” at cognitive 
level:  it is a social act deeply related to the subjectiv-
ities of students involved in group activity. Drawing 
from the definition of concept as an emergent object 
that condenses or generalizes the previous practices 
(Sfard, 1991), we speak of group concept as an object 
emerging from the individual or shared activities, 
whose validity is recognized and accepted by all the 
students. 

Identifying and subjectifying
In the thread of Leont’ev and Vygotskij’s dialectical 
psychological theories presented before, we analyze 
group activity by means of one analytical tool that was 
introduced by Heyd-Metzuyanim (2009). The author 
presents a useful tool to distinguish the different ways 
of interacting of each student in terms of individual-
ity, in particular in a mathematics group work. The 
tool “allows to point out how identity and emotion-
al processes influence the effectiveness of learning. 

Subjectifying may help in mathematizing or obstruct 
it” (Heyd-Metzuyanim, 2009, p. 2). The subjectification 
process is linked both theoretically and operationally 
to the identity construction process and to the mathe-
matizing activity in group work. The starting point is 
the definition of identity (Sfard & Prusak, 2005, p. 1): 

“Identity is a set of reifying, significant, endorsable sto-
ries about a person.” This definition is deeply related 
to the commognitive perspective (Sfard, 2008), whose 
cores are the notion of thinking and communicating. 
Since thinking is a form of human doing, it can only 
develop as a collective patterned activity: “Thinking 
is an individualized version of (interpersonal) com-
municating.” (Sfard, 2008, p. 81). Heyd-Metzuyanim 
frames mathematizing and subjectifying in the com-
mognitive perspective: mathematizing is communi-
cating about mathematical objects, subjectifying is 
communicating about participants of the discourse. 
In this perspective the construction of identity takes 
place as an internalization of collective discourses 
that make stories about the self arising. These stories 
can talk about the way in which a person relates to the 
mathematics and so can influence the participation 
in the teamwork, the engagement, and definitively, 
success or failure in mathematics activities. In her 
work, Heyd-Metzuyanim (2009) looks at verbal and 
non-verbal acts of subjectification, distinguishing 
participation and membership. She operationalizes 
the notion of resistance to participation, seen as a type 
of subjectifying action always interpreted according 
to context, especially to the reactions of other par-
ticipants, especially the teacher. Then she analyzes 
these acts, deciding if they are identifying processes 
or not. Identifying utterances (verbal or non-verbal) 
are “those that signal that the identifier considers a 
given feature of the identified person as permanent 
and significant.” (Heyd-Metzuyanim, 2009, p. 2). The 
prototypical cases of different aspects of the relation 
between subjectifying, mathematizing and identify-
ing are exemplified in Table 1.

Rationality
The construct of rationality was presented by 
Habermas (1998) in reference to discoursive prac-
tice and later adapted to mathematical activity (see 
Morselli & Boero, 2009 for the special case of math-
ematical proving). According to Habermas, rational 
behaviour may be seen as three interrelated dimen-
sions: epistemic dimension (related to the control 
of the propositions and their chaining), teleological 
dimension (related to the conscious choice of tools to 
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achieve the goal of the activity) and communicative 
one (related to the conscious choice of suitable means 
of communication within a given community). 

Identity, rationality and conceptual change
We hypothesize that the conceptual change is a social 
act and that acceptance of this change may depend on 
a group-coherence, i.e., a sort of agreement reached 
using cultural tools provided by the teachers or per-
sonal tools. Subjectification and participation can be 
considered at the same time stimulus for engaging in 
a group conceptual change process and an obstacle in 
the individual conceptual change process. In order to 
describe individual contributions within the group 
work, we add the construct of rational behavior. Since 
we will deal with peer interaction, the communicative 
dimension will have a relevant role. Moreover the 
epistemic rationality, encompassing the possibility of 
changing opinion, seems to be linked to group work 
and conceptual change: 

Someone is irrational if she puts forward her beliefs 
dogmatically, clinging to them although she sees that 
she cannot justify them. In order to qualify a belief as 
rational, it is sufficient that it can be held to be true 
on the basis of good reasons in the relevant context of 
justification - that is, that it can be accepted rationally. 
The rationality of a judgment does not imply its truth 
but merely its justified acceptability in a given context. 
(Habermas, 1998, p. 310)

RESEARCH QUESTIONS

We wonder whether identity and rationality may 
have a role in influencing (positively or negatively) 
the conceptual change that may occur during group 
problem solving activity. The initial research focus on 
group work can be turned into the following research 
questions: 1) Is it possible to describe group interac-
tions in terms of identity and subjectification? 2) Are 
there cases of resistance to participation? 3) Is group 
conceptual change an act of social agreement, and 
this necessity of agreement influence the individual 
conceptual change? 4) What is added by the analytical 
tool of rationality? 

METHODOLOGY 

The task
We present and analyze data from a teaching exper-
iment carried out in grade 6 (age of the students: 12). 

The teaching experiment concerned the concept of 
negative numbers. At first, students were asked to 
answer individually these questions: 1) What is a 
number? 2) What is it possible to do with numbers? 
Afterwards, they worked in group on a task to be 
solved on the Cartesian axes. The negative part of the 
axes was used by the students and such a solution was 
after institutionalized by the teacher. Finally, the stu-
dents were asked to answer in group to the following 
questions: 3) You said that numbers are [reference to 
their former individual answers]… and with numbers 
you can do [reference to their former individual an-
swers]… Do you confirm your opinions now? 4) Negative 
numbers are numbers in the sense you intended before? 

The aim is to analyze the conceptual change that oc-
curs when moving from natural numbers to negative 
numbers to whole numbers, that is to say a wider set 
that contains both positive and negative numbers. 
Here we confine to one episode referring to the group 
work on questions 3 and 4. 

Using the analytical tools
We perform a networked analysis, combining differ-
ent theoretical tools with the aim of reaching a fuller 
understanding of the episode at issue. The lens of 
conceptual change allows to characterize the acts of 
mathematizing analyzed in our research. The first 
analysis aims at detecting verbal and non-verbal acts 
that are signal of participation or resistance to partic-
ipation, membership or non-membership, mathema-
tizing, identifying. The lens of rationality can provide 
information about the rationality dimension of these 
sentences. The joint analysis addresses the topic of 
relating mathematizing and subjectifying acts to ra-
tionality. 

At first we analyze the episode in terms of identity, 
subjectification and conceptual change, as derived 
from Heyd-Metzuyanim’s paper (2009). Some sentenc-
es from the transcript are interpreted following the 
criteria proposed by the author in Table 1 and labeled 
with the codes: identity (I), subjectification (S) and 
conceptual change (C). Also the specific codes for sub-
jectification used by Heyd-Metzuyanim will be used. 
Afterwards, we add the analytical tool of rational be-
havior. We refer to the epistemic dimension when 
one sentence is linked to a mathematical fact, and we 
speak of lack at epistemic level if some assumption is 
taken per se, without the need for a justification. For 
instance, in the very first part of the working group 
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one student says that negative numbers are to be con-
sidered numbers (“Because she (the teacher) spoke us 
of negative and positive”): she is just relying on the 
authority of the teacher, without paying any effort 
towards a real understanding. We may say that her 
statement lacks in terms of epistemic rationality. We 
refer to the teleological dimension when the action is 
clearly linked to a goal (and we report a lack in teleo-
logical rationality when the reference to the final goal 
is missing). We refer to communicative rationality 
when a special care is paid to the organization of the 
discourse, so as to make the listener to understand. 
For instance, one student’s wide use of drawings and 
diagrams may be linked to her effort in making her 
positions understandable to others, thus to a commu-
nicative dimension.

DATA ANALYSIS

At the beginning of the group work, students discuss 
to decide whether it is possible to deal with negative 
number as numbers. The selected episode refers to 
a connected crucial issue: whether it is possible to 
perform operations with negative numbers. 

Analysis in terms of  identity (I), 
subjectification (S) and conceptual change (C)
In the subsequent part, we present an example of anal-
ysis of one episode in terms of identity (I), subjectifica-
tion (S) and conceptual change (C), with more specific 

codes used by Heyd-Metzuyanim (2009). Some labels 
are assigned even if in the transcript the utterances 
are not recurrent, because they are repeated many 
times in the whole transcript.

Other isolated episodes allow to characterize students’ 
behaviors in terms of identifying and subjectifying 
acts and to link students’ way to attend the group work 
and conceptual development. Nor always works on 
her own, never speaks, even if the teacher asks to do 
it. Every non-verbal act performed by Nor may be read 
in terms of resistance to participation. 6 on 8 students 
look for agreement but with different aims: some of 
them to convince the classmates, some to make the 
work of others coherent to their personal discourse, 
other to be accepted from the classmates rather than 
thinking at mathematical contents (as student Ari). 
From the analysis we grasp different ways to par-
ticipate in the group, that affect personal concept 
development: Mar and Nor, working on their own, 
develop personal concepts; Ari and Luc abandon their 
conceptual change to find an agreement; Bea and Er 
follow the group conceptual development and only 
ask for clarifications; Giu imposes her point of view 
on all the group affirming her personal opposition to 
conceptual change. She identifies clearly herself as 
good in math and influences the whole process, even 
when she’s not right. The agreement is not reached 
and the group conceptual change doesn’t occur. This 
failure drives all the students but Giu to abandon 

Type Example Identifying?

Mathematizing Mth No

Subjectifying Pe: participation 
evaluating

Sp: related to a specific per-
formance

Saying “I don’t under-
stand”

No

Ge: generalizing Saying “I hate doing this” If consistent 
with other data

Me: membership 
evaluating

Vb: verbal Di: direct Saying “I am a math per-
son”

Yes 

Id: indirect Changing the subject of 
discourse, which can be 
interpreted as “I don’t 
want to talk about this”

Depends on the 
nature and fre-
quency of the 
utterance

Nv: non ver-
bal

Di: direct Raising one’s hand, 
which may interpreted 
as “I wish to speak about 
this”

Only if recur-
rent

Id: indirect Groaning at a given task, 
which may be interpret-
ed as “I don’t’ like this”

Only if recur-
rent

Table 1: Prototypical cases and labels (Heyd-Metzuyanim, 2009)
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their personal path to conceptual change because of 
group disagreement. So neither the group conceptual 
change nor the individuals occur and the first event 
seems to be cause of the second.

ANALYSIS IN TERMS OF RATIONALITY

The theoretical lens of rationality is used to gain un-
derstanding of interactions. Here we confine our anal-
ysis of Giu and Luc’s excerpts, with a special focus on 
the part of discussion on the possibility of performing 
operations with negative numbers. A first result is 
the crucial role of teleological rationality. Giu’s initial 
position is that negative numbers are not numbers as 
positive ones and she does not want to modify her po-
sition. According to this goal (teleological rationality), 
she challenges the propositions of her groupmates. 
Her interventions are mainly on the epistemic level: 

she suggests that, in order to have negative numbers 
a numbers, it must be possible to perform operations, 
and she asks for justification and meaning for such 
operations (interventions 15, 19). Giu’s requests to the 
groupmates are at epistemic level, she pretends justi-
fication and meaning. Luc’s initial position is that neg-
ative numbers are not numbers like positive ones (she 
sees the number and the minus as separate objects). 
Nevertheless, she is keen to change her opinion: her 
priority is to gain a group solution. According to this 
aim (teleological rationality) she puts great effort in 
sharing her ideas with the mates, for instance using 
diagrams (communicative rationality) (intervention 
26). When challenged by Giu, she is ready to find 
solutions (e.g. how to perform operations; see inter-
vention 23) and she is rapidly satisfied. She does not 
put much effort in justifying or giving meaning to 
the methods. In her exchanges with Giu the commu-

11 Giu: it must be for all the operations, and then -3 times 
-2 is equal to?

Giu is mathematizing but also identifying as good in 
math. (I) [Me Nv Di]
Giu provokes a change in the discourse generality: “If it’s 
true, it has to be always true, for every kind of operation” 
(C)

12 Ari: just a minute, I wrote: This means that it is nega-
tive number, but anyway you can do -2+-3 [in column] you 
get -5.

13 Teacher: and how do you get it?

14 Ari: the sign means that it is a negative number, then I 
can do… that sign does not mean anything! It just means 
that it is a negative number, so…

Ari is mathematizing and suggesting a path for a concep-
tual change from numbers as natural to numbers as posi-
tive and negative (C). 

15 Giu: no, A, what you are saying is meaningless. Giu introduces the question of the sense of the operations 
with negative numbers. This change the status of the fol-
lowing statements (C). She also talks about Ari (S) [Pe Sp] 
and confirms Ari’s identity as person not good in math, 
as she did for the whole discussion saying that as usually 
she doesn’t understand (Is) [Me V Di]

16 Ari: yes.

17 Giu: -16:-4? [laughing] Giu laughs when she doesn’t agree with Ari’s proposals, 
showing self-confidence in math (I) [Me Nv Di]

18 Ari: -16? You must do 16 -4 [after, she adds the minus 
before the numbers, in column].

19 Giu: try and do the division. 
         The division.

Giu is mathematizing but also identifying as good in math 
and saying to Ari what she has to do (I). [Me Nv Di]

20 Ari: ok. Ari interrupts her activity accepting Giu’s request (S). [Pe 
Nv Sp]

21 Luc: wait a minute! [she takes the pen]. Luc wants to find a place in the discussion (S) [Me Nv Di] 

22 Giu: let me speak! Giu wants to participate (S) [Me Nv Di]

23 Luc [she does -4 divided by -2, and she writes -2]. Here 
you are! -4 divided by -2 is -2.

Luc tries to answer to Giu’s provoking question but 
doesn’t satisfy Giu’s request (C).

24 [Ari does again 16:4].

Table 2: Transcript and analysis



Identity and rationality in group discussion: An exploratory study (Laura Branchetti and Francesca Morselli)

1151

nicative dimension is prevailing; she does not move 
to the epistemic level, then she does not come to an 
agreement with Giu. 

DISCUSSION AND PRELIMINARY CONCLUSIONS

The first part of the analysis shows that the students 
participate in the group work in different ways. There 
are even two cases of resistance to participation. We 
argue that different participation sometimes affects 
personal concept development and, of course, hinders 
conceptual change as a group. At the end of the session, 
there is not a general agreement. We wonder why it 
was not possible, in spite of individual good ideas, to 
reach an agreement and why some students abandon 
their attempt if groupmates don’t agree. We turn then 
to the theoretical lens of rationality. The analysis in 
terms of rationality shows that teleological rational-
ity may refer to different goals and that some inter-
ventions are clearly on communicative or epistemic 
level. Combining the two analysis, we can state that 
individual participation or resistance to participation 
and also membership or non-membership may be de-
scribed in terms of dimensions of rationality: if indi-
vidual interventions are on different levels (epistemic 
vs communicative), it seems very difficult to reach an 
agreement. If a dimension prevails, some students 
can avoid to participate. Moreover, individuals may 
have different aims and act accordingly (teleological 
rationality), may consider the epistemic dimension 
or not, and this may affect individual/collective con-
ceptual change. We hypothesize that group work, in 
order to be efficient, should take into account the three 
dimensions (in particular, the epistemic dimension 
can not be neglected); moreover, group interactions 
are not fruitful if the groupmates focus on different 
dimensions. 

The preliminary results of this study suggest further 
research. From one side, we plan to analyze other data 
(including long-term observations of the students), in 
order to test our working hypothesis concerning the 
link between identity, conceptual change and ration-
ality. Moreover, we see other issues that need further 
exploration: 

1) The link between identity and teleological ratio-
nality brings to the fore the relationship between 
identity and goals. This could also be linked to the 
work of Gómez-Chacón (2011), who draws from 
Camilleri and colleagues (1990) the idea of identi-

ty strategies as “processes or procedures set into 
action (consciously or unconsciously) by an agent 
(individual or group) to reach one or more goals 
(explicitly stated or situated at an unconscious 
level); procedures elaborated in function of the 
interaction situation, that is in function of the dif-
ferent determinations (socio-historical, cultural, 
psychological) of this situation” (p. 24). 

2) The role of the teacher is crucial in helping stu-
dents to interact at the same level; furthermore, 
we hypothesize that other kind of tasks, for in-
stance aimed at comparing individual solutions 
rather than providing immediately a group solu-
tion, could be more efficient. 

3) Finally, we wonder whether there is a link be-
tween identity and rationality: more specifically, 
we wonder whether the resistance to participa-
tion depends on the dimension of rationality that 
most characterizes the identity. 
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Does mathematics pre-exist and hence is discovered or 
is it invented and owes its being to humans? What do 
students believe and how does this interact with their 
beliefs about the production and the meaningfulness of 
mathematical knowledge? This paper presents results 
based on 18 Greek students’ interviews about their rela-
tionship with mathematics through an epistemological 
lens. The findings diverge from what the literature sug-
gests especially with respect to whether mathematics is 
perceived as a meaningful human activity and to what 
extent it produces certain and fixed conclusions. Ideally 
educators could foster beliefs which promote students’ 
engagement and understanding of mathematics.

Keywords: Mathematics ontology, epistemology, 

existence.

INTRODUCTION

The ontology of mathematics is a hot debate in the phi-
losophy of mathematics. The key question is wheth-
er mathematics pre-exists or comes into existence 
through human activity. Does mathematics transcend 
humans or is it simply yet another sector of human 
knowledge. The question is complicated with respect 
to mathematics because it is entangled with its epis-
temology. Although mathematical concepts may not 
appear to be materially substantiated – at least not in 
the same sense that a table is – mathematical conclu-
sions have long been endowed with a certainty that 
would be strange to assume for any creation of the 
human mind (Hersh, 1999).

Moreover, it seems that mathematicians and math-
ematics educators do not share the same views on 
this issue. Most mathematicians tend to embrace the 
belief that mathematics is independent of the human 
mind. On the contrary, most educators advocate the 
belief that mathematics is constructed by humans 
(Sfard, 1998). Research has generally associated the 
belief that mathematics pre-exists with traditional 

teaching practices. Teachers who view mathematics 
as an independent entity would present mathemati-
cal knowledge as fixed. Consequently, their role is to 
transmit it to the students while the latter’s role is to 
passively absorb it. Educators, of course, opt for an 
active engagement of the students (Lerman, 2002). 
However, there have been great mathematicians (e.g., 
Hardy, Gödel) who have been actively engaged with 
mathematics and who have done wonders holding the 
belief that educators dread.

Consequently it is contestable what we would like stu-
dents to believe about mathematics’ ontology. Should 
they follow the steps of great mathematicians or will 
this render them passive learners? Nevertheless, 
before aiming at such a question, we need to know 
more about students’ beliefs on this issue and how 
they affect the student’s relationship with mathemat-
ics?  Although there has been abundant research in 
students’ beliefs about mathematics (e.g., Schoenfeld, 
1992) the issue of ontology seems to have been neglect-
ed. This paper focuses on it, investigating the second 
of the above mentioned questions in the traditional 
teaching context of Greece. 

THEORETICAL FRAMEWORK

The distinction between finding something that al-
ready exists and something that is novel is captured 
by the verbs ‘discover’ and ‘invent’. We discover some-
thing that already exists the same way that Columbus 
discovered America. To the contrary when we invent 
something it owes its existence to this very process 
of invention1.

The predominant opinion in the history of the phi-
losophy of mathematics speaks of discovery. This 
tradition may be traced back to Plato and has been 
called Platonism2 after the philosopher. Platonism is 
nicely captured in the words of the mathematician G. 
H. Hardy who maintains that 
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mathematical reality lies outside us, that our 
function is to discover or observe it and that the 
theorems which we prove . . . are simply our notes 
of our observations. (1967, pp. 123–124).

This is an ontological assertion related to the ‘mode 
of existence’ of mathematics. However, it has been 
this ontological assertion that underlain the predom-
inant epistemological conviction about the certainty 
of mathematical knowledge. Mathematical truth is 
absolute and objective since the truth of any mathe-
matical statement is judged against an extra-human 
mathematical reality.

Nevertheless, many modern philosophers reject 
Platonism as an absurd idea; we can see and touch 
the physical reality, but where is this purported 
mathematical reality (Hersh, 1999)? If Platonism is 
rejected, then mathematics can no longer be discov-
ered. Mathematics is now claimed to be invented, and 
again an ontological conviction is coupled with an 
epistemological claim. Mathematics does not exist and 
mathematical knowledge becomes fallible. Lakatos 
(1976) argues that no proof guarantees the truth of the 
theorem it proves; there is always the possibility of a 
hitherto unknown counterexample which will refute 
the theorem’s generality. Moreover, Paul Ernest (1991) 
presents mathematics as a socially constructed field 
of knowledge; there is no longer a need to assume an 
external mathematical reality and no longer a need 
for this craving for certainty. 

Paul Ernest also relates this to mathematics educa-
tion. If mathematics is invented it acquires a human 
face. It is not a timeless, unerring entity which im-
poses itself on students. It is only a human creation 
and students can re-invent it through the process of 
learning. Consequently, mathematics could become 
meaningful for students as a product of a human ac-
tivity. Nevertheless, mathematics seems to retain this 
potential even if it is discovered. According to Galileo 

‘the book of nature is written in the language of math-
ematics’ and understanding the world around us has 
always been meaningful to humans.

In any case, philosophy of mathematics suggests that 
it is hard to disentangle ontological from epistemo-
logical beliefs about mathematics. Therefore, in the 
following I also discuss epistemological beliefs of the 
students, but only in relation to the main question of 
ontology.

METHODS

This article reports some preliminary results of a 
study investigating epistemic beliefs of Greek stu-
dents at the last grade of upper secondary school 
(17–18 years old). The study follows a qualitative in-
terpretivist paradigm. Twenty eight students were 
interviewed twice. The interviews investigated their 
relationship with mathematics through an episte-
mological lens touching upon subjects such as truth, 
certainty, logic, rules and usefulness and comparing 
mathematics to other courses or to life in general. 

Before the second interview was conducted, the 
first one was transcribed and used as a stimulus for 
a further and more detailed discussion. Effectively, 
generating questions for the second interview with 
a particular student was influenced both from that 
student’s first interview and earlier first interviews; 
while later first interviews were also affected by this 
process. The duration between the two interviews 
varied between 10 days to one month and on average 
each interview lasted 70 minutes.

All students come from the same middle-class school 
of Athens. Practical reasons limited the research to 
this school where access was easily granted. However, 
the interviews revealed such a variety of beliefs that 
including other schools in the sample was not judged 
necessary.

The analysis is still in progress. All interviews have 
been transcribed and the two interviews of each 
student have been paired. The second interview is 
regarded as a continuation of the first one and each 
pair is analysed as a whole. So far I have worked with 
the paired interviews of 18 students in a chronological 
order. As a first step each of them was read as a story 
trying to identify the main factor or factors which 
marked the student’s relationship with mathematics. 
This initial reading revealed that the main points of 
each interview could be organised as a cohesive nar-
rative around these factors. The factors were very 
diverse (e.g. doubt, theory, mistakes, fiction). However 
there were broad themes which appeared repeatedly 
in most of the narratives. The factors may be seen as 
different ways to colour such themes.

One of the themes is the ontological status of math-
ematics. This paper focuses on it in connection to 
epistemological issues of mathematical truth and 
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certainty, and to meaningfulness of mathematics for 
the students. The results that follow are organised 
around the concepts of discovery and invention. They 
are based on the interviews of eighteen students, who 
here have been given pseudonyms.

FINDINGS

Discovery
Some students maintained that mathematics exists. 
For example, Platonas, maintained

When in the past, they tried to interpret a phe-
nomenon . . . they needed mathematics, in a sense 
they, not created it, in a sense mathematics was 
there, but they, that is, they discovered it, yes.

Of course, most students had a difficulty explaining 
how mathematics exists. Nonetheless, their belief was 
usually not shaken and even when it was, they still 
found it hard to coordinate this with their experience.   

Yes, mathematics isn’t something ordinary that 
you can say you discover, it is a way of reasoning. . 

. . It’s invented, now that you mention it, but it isn’t 
that we came up with mathematics, now you’ll ask 
me who did? (Aspasia)

A dubious concept was imaginary numbers. However, 
although most of them admitted that they are invented, 
they retained their Platonistic beliefs.

Yes, imaginary numbers are called imaginary 
exactly because we invented them. However, in 
general mathematics is discovered. (Xenofontas)

But mathematics hasn’t been created. It’s been 
discovered in the sense that, okay apart from 
some things which we have made in order to help 
us, in general mathematics is something that ex-
ists. (Foivos)

Mathematics was perceived to exist around us. It start-
ed from observing objects around us and it ends in 
explaining phenomena around us.

It’s just that based on . . . numbers, humans de-
fined that a certain object, this is the 1, this is the 
2, and so slowly they discovered that around them 
there are groups of identical objects. So then they 
started doing operations, and this led after many 

years in the invention3 of theorems in order to 
justify phenomena that occurred around them. 
(Filia)

The paradox is that although discovery implies that 
mathematics is independent of human beings it also 
brings mathematics close to human beings. If math-
ematics is out there in the physical world then it is 
something quite intimate and not just some weird 
figment of imagination.

I know that it isn’t impersonal and that everything 
is based on it. . . I’ve thought about it. In order 
to construct something the mathematics which 
made it is needed . . . so I’m grateful to mathe-
matics. (Foivos)

None of the Platonists doubted that mathematics has 
applications in our lives. 

the exercises, for example, they have applications 
on things that we want to find. . . for example, we 
have an, an equation and we want to know the 
result . . . for something that will help in our daily 
lives.  (Filia)

Mathematics was important exactly because it ex-
plains our world and otherwise it wouldn’t have been 
so developed.

No, [mathematics] would exist, but . . . we wouldn’t 
have discovered it to the extent that we have dis-
covered it now. (Ermis)

In all, mathematics was meaningful. Moreover, hu-
man agency was not absent with respect to mathemat-
ical discovery. After all, it is people, mathematicians, 
who produce mathematics. This could justify why stu-
dents, who generally endorsed Platonism, sometimes 
utilised phrases which would hint at invention while 
describing mathematics as a human activity. Further 
justification is provided by the fact that invention suc-
ceeds anyway in penetrating mathematical activity. 
At least we did not find symbols in the world; we only 
agreed to use them in order to denote what we did 
find in the world.

As you go backwards you’ll eventually reach the 
basis, an axiom of the kind 1+1=2. . . This is so be-
cause you have defined it so. (Foivos)
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I believe that it was an initiative and an inspira-
tion of those who started all this. (Patonas)

Other common beliefs were that mathematics may 
change, but the change is incremental. Essentially, 
change is better perceived as development, an en-
largement of mathematics when new data are dis-
covered.

Yes I believe that if some needs lead to an exten-
sion of mathematics, then new rules will be dis-
covered . . . on the basis of the old ones, of course. 
(Platonas) 

No, this is a development . . . and complex num-
bers, which they didn’t know, they discovered 
them. And it emerged through, now I remember. . 

. I think through physics, the issue of light. (Ermis)

New propositions complement the old ones. All of 
them believed that mathematics essentially comprises 
one system.

I don’t know [if we could have defined things dif-
ferently] because whatever we have defined we 
have defined it based on our universe, based on 
some things that we observe. (Foivos).

No, [it can’t be different]. Mathematics is in a way 
the explanation of what we see. It’s something 
natural, that is, you have one apple and another 
apple, so you have two apples, it can’t be some-
thing else. (Xenofontas)

Different sub-systems may exist but they do not cancel 
each other; they co-exist as different models of the 
same reality. The old models suffice for certain cases, 
while the new ones explain new data which cannot 
fit the old model.

No, [Euclid] wasn’t wrong. It’s just that when they 
examined it deeper and with more cases . . . they 
suggested that other things may also happen. 
(Platonas)

The belief in one system and incremental change of 
mathematics is also reflected in their belief that there 
is a unique absolute truth which we may not be able 
to find, but which we slowly approach. Mathematical 
conclusions are part of this truth.

Truth is one-sided. . . I believe that new things 
are continually discovered. That is, soon we’ll 
have learned much more; now we’re still in the 
darkness. (Aspasia)

[The proof ] is essentially the tangible evidence 
that a proposition that you have assumed is true. 
(Platonas)

Interestingly though, Platonism did not exclude 
verification of mathematics through fallible social 
processes.

Somebody says an idea, 500 people agree, 600 dis-
agree and in the end one of the 600 finds some-
thing else or they simply agree because one of the 
500 proves that it holds for additional reasons 
which the first one had not found. (Foivos)

This is reminiscent of Lakatos’ Proofs and Refutations 
rather than Plato. However, it is not in opposition 
with Platonism per se. If mathematics is external to 
humans it can remain infallible even though their 
attempts to discover it are not. So, Platonism allows 
for certainty in mathematics even if people are not 
entirely certain about it. 

When I think about mathematics and somebody 
shows me something, that this must be done, 
[then] I’ll think why it mustn’t, I will examine it. 

. . Therefore, so far: yes, I’ll accept the results of 
mathematics, but always having also in mind the 
doubt that something else may hold. (Ermis)

Invention
Most students suggested that mathematics is invented. 

[Mathematical conclusions] are unshakable be-
cause they are stable, that is, they don’t change. 
You’ll tell me that some of them change, but they 
have been checked, as I mentioned before. It has 
been supported that they are unchangeable, that 
is, their value is permanent. (Platonas)

Generally, I don’t believe that mathematics ex-
ists as a material idea, that is, you can’t touch it. 
(Diomidis)

In mathematics there is ‘if this holds then it’s 
done so’. That’s all there is. Or ‘let’, ‘let this be’. . .  
Assumptions of the mind. (Evyenia).
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It’s a human creation. . . I think that when you 
prove something, you essentially make the rule. 
(Pelopidas)

The paradox in this case is that although invention 
implies that mathematics is part of the human intellect 
it may also create a gap between mathematics and the 
individual. This depends on whether the invention of 
mathematics is meaningful to the student. There were 
students for whom mathematics was deeply mean-
ingful, students for whom mathematics had some 
worthwhile meaning and students who struggled to 
find any meaning in mathematics. 

Yes [mathematics] is standardised . . . but this has 
another beauty. (Loukianos)

Yes, I belong to the couples who though separated 
I still love [mathematics]. (Litha)

Mathematics is completely theoretical, that is, the 
logic that it has, it won’t produce . . . something 
crazy, that is, it won’t be something that I can use 
in my everyday life, that’s why I don’t hold math-
ematics in great estimation. (Kosmas)

In the first case students had at least a feeble idea of 
axioms and perceived mathematics as something that 
humans have invented based on initial assumptions 
in order to suit their needs.

It doesn’t mean that they hold necessarily, we just 
have created things so that they . . . improve our 
everyday life. (Lysimahos)

the world of mathematics is as we define it, that’s 
why there are different geometries . . . And geom-
etries, all that exist, they were created with the 
intention of solving some problems. (Kleomenis)

In the second case mathematical invention was per-
ceived as some sort of experimentation. Mathematics 
was invented as applications corroborated some as-
sumptions.

basically everything has an experiment. Because 
in order to find something new, for example, you 
must try it out. This is called experiment. (Lida)

I think that they solved many times an exercise 
or type of exercise . . . that they were reaching at 

the same conclusion repeatedly, so . . . then they 
said to make it a rule . . . Not that they deliberately 
tried to make a rule, I believe that it just appeared. 
(Diomidis)

Finally, in the third case invention appeared to be the 
result of the lack of meaning. 

I’d say pre-existed, pre-existed? It didn’t pre-exist, 
it’s all human investigation, I believe. (Kosmas)

That is, someone would have imagined all these, 
to someone all these came; it can’t be just like this. 
(Evyenia)

Some students in the third group seemed to perceive 
mathematics as some people’s personal views. These 
were students who held a highly relativistic view 
about life.

They should ask Pythagoras. . . [Me having an 
opinion on his theorem], essentially it’s like me 
going and saying something with respect to a 
view of Socrates. (Klio)

Okay now, it would be somehow [strange], if we 
said for each [person] that they don’t think cor-
rectly (Evyenia)

In all, only two students who chose invention believed 
in a unique truth, and even these did not believe that 
we had access to it. Moreover, they were both students 
who did not find mathematics meaningful.

we are just people, each of us is just a unit, If we 
could see the world from above then we would be 
able to judge that this is a definite truth, this is a 
definite lie. (Kosmas)

Certainty was much more moderate among stu-
dents who maintained that mathematics is invented. 
However, it was present especially in the cases when 
mathematics was also meaningful – even moderately – 
to them. Some of them found certainty in the exact 
process of invention, but almost all of them grounded 
it on social reasons too. Nevertheless, the process of 
invention itself was excluded from certainty.

Because it’s theory . . . basically there’s no chance. 
. . in life, something may hold or may not hold . . . 
Well, no [it isn’t strange that you don’t find this in 
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mathematics] because mathematics is theoretical. 
(Kleomenis)

 [We accept the first assumptions] because we get 
used to them . . . I think that there haven’t been 
attempts to change . . . the foundations. . . So since 
they have results and validity in everyday life 
[we] continue using them. (Lysimahos)

[What’s proven] usually doesn’t change . . . all the 
mathematicians have seen them, and they have 
been considered. . . but I think that within the uni-
versity context . . . I think that there is more room 
to doubt them and to be demolished by someone. 
(Diomidis)

Certainty was absent only in cases when mathematics 
was not meaningful to the students. This could simply 
be due to under-confidence, but sometimes was inher-
ent of a subjective view of mathematics. If certainty 
persists in this group then it is genuinely social.

I wouldn’t say that something said by mathemat-
ics is always true. . .  you take cases and you as-
sume, essentially, as we said before, ‘let this be’ 
or ‘if that’. (Evyenia)

I haven’t seen anything different, only what I have 
been taught . . . they haven’t shown to me some-
thing else in order to believe that it may not be 
this way. (Pelopidas)

What is special about social certainty is that it can 
remain intact even in the face of change because 
each time it includes exactly these truths which are 
believed to be certain.

So until someone demolishes it, it’s right, it’s true. 
If it’s demolished, then it’s wrong. . . because it’s 
truth, we accept the truth, but truth may many 
times be reversed with the presentation of new 
evidence. (Kosmas)

Nevertheless, certainty was not absolute, but the 
result of the scarcity of change or of the lack for ne-
cessity of change. Moreover, although past content 
was generally viewed as stable, it was not entirely 
safeguard against invention. 

Okay, there is a chance of mistakes, but I believe 
that most of them won’t change. (Diomidis)

If it changes then all the rest should change too . . 
.  I’m not absolute about this not happening. I just 
don’t think that it’s possible to happen. (Danai)

Therefore, change is not necessarily incremental. 
Nevertheless, mathematics remained a unified sys-
tem apart from the cases of utter subjectivity and of 
one student whose knowledge of axioms was more 
developed. Otherwise the system was one: what they 
have been taught in school.

The most typical example is geometry. Euclid or-
ganised it anyway, but afterwards Riemann? Who 
was it? He didn’t like it; he wanted to use, to show 
other things, and so he changed it. (Kleomenis)

[Definitions may] not have the exact same words, 
they simply have the same sense. . . It can’t be [that 
they don’t have the same sense]. (Diomidis)

CONCLUSION

Although the students had learned mathematics with-
in a traditional setting, most of them believed that 
mathematics was invented. However, it was within 
the context of invention that mathematics could ap-
pear meaningless to students. Contrary to what would 
be expected according to the literature (e.g. Simon et 
al., 2000), students who believed that mathematics is 
discovered also viewed it as a human activity. Their 
account of the discovery was given in social terms and 
echoed Proofs and Refutations (1976). Most important-
ly, the fact that mathematics existed was coupled with 
mathematics’ ability to explain the natural world and 
it made mathematics meaningful. On the other hand, 
some of the students who saw mathematics as a hu-
man invention failed to find meaning in it. Moreover, 
it seemed that this failure almost forced the idea of 
mathematics as an invention; it was just somebody 
else’s invention and they could not see themselves in it.

Furthermore, Platonism is also associated with the 
belief that mathematics is a static body of knowledge 
(Charalambous et al., 2009). Nevertheless, all students 
regarded mathematics as something that evolves. A 
static element appeared indeed among Platonists, but 
referred to past knowledge and it did not prevent new 
data amending this knowledge. Additionally, this be-
lief was not restricted to students who believed in 
discovery of mathematics. It was generally endorsed 
by most students though it was socially tinged when 
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mathematics was seen as an invention. Mathematics 
brings results so there is no reason to change it; old 
claims have been already checked by myriads of math-
ematicians and so on. Doubt, when present, seemed to 
be a general trait of the student’s personality and the 
greatest doubter among my sample was a Platonist.

This picture of discovery or invention of mathematics 
as painted of the students of this study is quite differ-
ent from the one usually forwarded by mathematics 
education. However, what seems more important is 
not what students believe about the being of mathe-
matics, but whether they find meaning in it. If they do, 
then they will be willing to engage with it. It seems that 
Platonism may help towards this goal. It would also 
be interesting though to find the reasons which lie be-
hind the divergent views of invention of mathematics. 
Some students do not find the invention meaningful. 
However, invention appeared to allow for a clearer 
view of the organisation of mathematical knowledge 
into axiomatic systems and thus a better understand-
ing of mathematical epistemology. 
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ENDNOTES

1. Invention and discovery do not represent a strict 
dichotomy neither in the literature (e.g. Livio, 2011) 
nor in my interviews. However, for issues of space I 
will focus on the two extremes and on the predomi-
nant view in each student’s interview.

2. I use ‘Platonism’ as an umbrella term for all theories 
which postulate that mathematics somehow exists.

3. Filia used invention meaning ‘we were aware of it, 
that we wanted to find something’.
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This research examines the discursive positionings and 
emotions related to them of a group of three seventh class 
students. We videoed the group of students’ discussions 
regarding the definition of terms associated with the 
circle topic and interviewed them regarding their emo-
tions during the process of defining the geometric terms. 
We used the discursive analysis of Evans, Morgan and 
Tsatsaroni to analyze the participants’ positionings and 
emotions. The research results indicate that the learn-
ing atmosphere in the group was positive due to type of 
leadership that prevailed, as well as to the collaborative 
working with a technological tool. This atmosphere re-
sulted in the students having positive emotions about 
their learning. 

Keywords: Discursive affect, positionings, emotions, 

geometry, small group.

INTRODUCTION

Students’ emotions have become a growing research 
area in educational psychology (Knollmann & Wild, 
2007). Ingleton (1999) describes emotions as a pow-
erful factor which encourages or inhibits effective 
learning. Furthermore, the affective aspect of stu-
dents’ mathematical learning (including beliefs, atti-
tudes, and emotions) has a mutual relationship with 
the cognitive aspect of this learning (Sriraman, 2003). 
This puts studying the affective aspect of students’ 
learning on the agenda of mathematics education 
research. Here we study students’ positionings and 
emotions when learning geometry.  To do that, we use 
the discursive positionings and emotions framework 
(Evans, Morgan, & Tsatsaroni, 2006; Morgan, Evans, 
& Tsatsaroni, 2002). The use of this framework ena-
bles us to analyse two aspects of students’ learning 

that affect other aspects of this learning, namely the 
social and the emotions aspects. Moreover, using the 
framework, we can examine how emotions are related 
to positionings, an issue that has not been attended to 
widely. More specifically, the social aspect is studied 
through looking at students’ positionings and their ex-
pressions in language, as the use of pronouns, which 
indicates whether the group member feels insider 
or outsider to the learning taking place. This feeling 
could also affect the member’s emotions. For example, 
the insider probably feels content and satisfied by the 
learning taking place.  

The discursive positionings and emotions framework 
draws on social semiotics, pedagogic discourse theory 
and psychoanalysis, and studies emotion as discur-
sive positioning. The analysis of learners’ mathemati-
cal positioning and emotions, according to this frame-
work, takes into consideration positionings available 
to the mathematics learners through their learning 
practices, where those positionings enable and con-
strain the learners’ emotions, and where emotions are 
considered as shaped by power relations. Few studies 
used this framework that takes care of two primary 
aspects of students’ mathematical learning (the social 
and the emotional) to analyze students’ positioning 
and emotions in geometric situations. We will attempt 
to do that, specifically, when a group of seventh grade 
students works with Geogebra to discuss geometric 
terms associated with the circle’s topic. The discursive 
analysis, its basis and its phases are described in more 
detail below. 

A discourse is a system of signs that provides resourc-
es for participants to construct social meanings and 
identities, experience emotions, and account for ac-
tions. Evans (2006) names the following functions 
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of discourse: First, it defines how certain things are 
represented, thought about, and practiced; second, it 
provides resources for constructing meanings, and 
accounting for actions; and third, it helps construct 
identities and subjectivities that include affective 
characteristics and processes. 

The discursive analysis of students’ emotions and 
positioning has two phases: the structural and the 
textual. In the structural phase, learners’ position-
ings are analyzed. Evans (2006) defines positioning 
as a process where a participant takes up and/or is 
put into one of the positionings made available by the 
discourse(s) at a specific context. This explains the mu-
tual influence of the social and the individual, where 
the social setting makes available specific practices 
and thus positionings, and individuals retain a degree 
of agency that enables them to position themselves in 
available or created positionings. According to this 
framework, a person’s identity, which includes more 
durable components of affect such as attitudes and 
beliefs, comes from repetitions of positionings, as 
well as their related emotional experiences that occur 
in the history of the participant (Evans, ibid). Evans, 
Morgan and Tsatsaroni, in their writings about dis-
cursive analysis describe the positionings taken care 
of in the structural analysis: Helper and seeker of help 
(helper positioned more powerfully), collaborator 
and solitary worker, director of activity and follower 
of directions (the latter less powerful), evaluator and 
evaluated, insider and outsider. 

There is more than one available positioning for a 
participant, if in one discourse or in several discours-
es. Moreover, positioning is not permanent, not com-
pletely determined, nor freely chosen, where partici-
pants are constrained and enabled by their personal 
histories and the discursive resources available to 
them (ibid). Furthermore, in the ‘progressive class-
room’, the positionings of the collaborator and insider 
are encouraged because they help advance students’ 
learning of mathematics. 

The second phase of discursive analysis (the textual 
analysis) has two functions (Evans, 2006): (a) showing 
how positionings in social interactions are actually 
taken up by the participants, and (b) providing in-
dicators of emotional experience. Furthermore, in 
the textual analysis, indicators of interpersonal re-
lationship and emotional experience are considered 
(Tsatsaroni, Evans, & Morgan, 2007). This analysis has 

two stages. In the first stage, the focus is to identify 
the interpersonal aspects of the text that establish 
the positions of the participants. Indicators at this 
stage include reference to self and others, reference 
to valued statuses (e.g. claiming understanding or 
correctness), modality (indicating degrees of un/cer-
tainty), hidden agency (e.g., passive voice) or repeti-
tion. The second stage of the textual analysis attends 
to (a) indicators of emotional experience generally 
understood/used within the (sub) culture: direct ver-
bal expression (e.g., ‘I feel anxious‘), use of particular 
metaphors (e.g. claiming to be ‘coasting’ ), emphasis by 
words, gesture, intonation, or repetition (indicating 
strong feelings), body language (e.g., facial expression 
or blushing); (b) indicators suggested by psychoana-
lytic theory, as indicators of defenses against strong 
emotions like anxiety, or conflicts between position-
ings (as ‘Freudian slips’), surprising error in problem 
solving, behaving strangely (as laughing nervously), 
denial (e.g., of anxiety).

Using the two phases of the discursive framework, we 
analyzed the positionings taken by seventh grade stu-
dents and their related emotions when developing col-
laboratively, with the help of GeoGebra, the definition 
of geometric terms associated with the circle topic. 

Research questions
1) How are positionings taken up by middle school 

students, working in a group to define geometric 
concepts in the presence of technology?

2) How are students’ emotions associated with the 
positionings that they take up when they define 
geometric concepts with technology?

3) How does technology affect students’ position-
ings and related emotions?

METHODOLOGY

Research setting and participants
We analysed in the present research the affective 
aspect of the learning of a group of three grade 7 stu-
dents. Following is a description of this group, where 
the description is based on the evaluation of the stu-
dents’ mathematics teacher. 

The group consisted of Haya (A high achieving stu-
dent in mathematics with strong personality), Janan 
(A high achieving student in mathematics with a so-
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ciable and friendly personality), and Rana (A middle 
achieving student in mathematics, who encountered 
learning difficulties due to family circumstances). 

The three participating students did not work with 
GeoGebra before, and they were introduced to it 
in two hours’ time. Furthermore, the students had 
learned the topic of the circle in the sixth grade, but 
they learned it then without GeoGebra.

 Our analysis of one group’s learning of geometric defi-
nitions attempts to shed light at students’ positionings 
and related emotions, when they learn geometry with 
a technological tool. This analysis of just one group 
learning is consistent with previous studies that an-
alysed different aspects of students learning (See for 
example Yerushalmy & Swidan, 2012). Nevertheless, 
we are aware that further research is needed to verify 
the results we arrive at. 

Data collecting and analysing tools
We collected our data using observations of the 
group learning and interviews with its members. The 
group’s learning was videoed and at the end of each 
lesson, the three students were interviewed individu-
ally regarding their positionings and emotions during 
learning. We analysed the two types of collected data 
using the discursive analysis framework presented 
above. Moreover, we combined the analyses of the 
data collected by the two tools. 

Learning material
The group of seventh grade students worked with dif-
ferent activities, where they discussed the definitions 
of geometric concepts associated with the circle’s top-
ic. It was expected that performing the activities, the 
participants would deepen their knowledge regarding 
the concept of circle and its related concepts: circle’s 
center, chord, radius, diameter, circle tangent, circle 
circumference and area. The activities were written 
keeping the explorative and discursive learning in 
mind. Below is an example on a question in the unit.

(a) We want to draw a circle using Geogebra.

(b) We want to draw a diameter in the circle.

(c) Manipulating the diameter, how can we define 
it?

(d) How many diameters are there in a circle?

(e) What is the relation of the diameter and the 
chord?

FINDINGS AND ANALYSIS

We describe here the different learning events of the 
geometric concepts associated with the circle topic, 
together with students’ positionings and related emo-
tions that prevailed in these learning events. We start 
from the learning events as we consider students’ po-
sitionings and emotions associated with these events. 

Difficulty in defining the circle’s center in spite 
of the group members being collaborators 
The first requirement of the activity was to define the 
circle’s center. Haya initiated the exploration of the 
group (1), by telling the group’s members (she and two 
other members) that they should follow the directions 
of the activity (1 and 5), and by using GeoGebra to drag 
the circle. Then she addressed Janan and Rana (the oth-
er two members of the group), and started to discuss 
the circle’s center, but soon the conversation turned 
to be about the chord (6–11), the diameter (6–11), the 
secant (12–17) and the tangent (12–17). 

Note: When describing the learning events, silence 
for m moments will be denoted by [..m..].

1 Haya: The circle’s center is ….
2 Janan: it is the point lying in the middle 

of the circle. 
3 Haya: the middle …
4 Janan: It is the center.
5 Haya (again): The circle’s center is ….
6 Janan: every chord that passes through 

it becomes a diameter.
7 Haya: a diameter? [..15..]  What is a di-

ameter?
8 Janan: it is this that passes through the 

circle. 
9 Haya: it is this that passes through the 

center and the circle.
10 Janan: it is a line that passes through 

any part of the circle. 
11 Haya: if it passes through the center it 

becomes a diameter [Haya uses the mouse to 
drag the circle and watch how the diameter 
and radius change] … the secant is like … it 
intersects the circle in two points.
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12 Rana: the tangent surrounds the en-
tire circle [Rana and Janan were looking at 
GeoGebra interface).  

13 Janan (vehemently): Yeh [Haya dragged 
the tangent again and again].

14 Rana: the tangent is this that touches 
the circle. 

15 Janan (again vehemently): it does not 
intersect the circle. It touches the outer line.  
[Haya continues to drag the tangent].

16 Janan (looking at GeoGebra interface with 
interest): when the secant touches the cir-
cle it becomes a tangent.

17 Haya: the secant is like … it intersects 
the circle in two points.

Haya played the role of the group director, though 
the whole conversation and actions seemed to be of 
collaborators more than of a director and two follow-
ers of directions. The collaboration occurred through 
asking questions and answering them, and through 
frequent attempts to agree on the definitions of the 
circle’s center and other concepts associated with the 
circle. Haya seemed to be directing the activity, by two 
means: her persistence to ask questions and her use 
of GeoGebra to get new examples of the circle and 
its components. Haya’s questions and actions led the 
group to improve their definitions of the concepts 
associated with the circle. 

The facial expressions of the group members showed 
that they were enjoying their learning with GeoGebra 
as a group. This learning enabled them to improve, as 
a group (collaboratively) and on their own account 
(independently), their knowledge of the circle topic, 
which was represented in better statements about 
the diameter, the secant ant the tangent [interview]. 
Furthermore, the improvement in the group knowl-
edge empowered them, which made them content and 
happy [interview]. 

The group turned again to discuss the concept of the 
circle center, as the following learning event shows.

The group’s director effort to come 
back to the original activity 
Haya continued acting as the group leader. She de-
clared they need to write the answer of the first ques-
tion (18). She repeated the center’s definition given 
earlier by Janan (19), and advanced the discussion fur-
ther by asking another question to make that defini-

tion clearer (20). As a response to the question, Janan 
once again tried to describe the center (21).  Haya tried 
to overcome the group difficulty in defining the center 
by investigating further the issue through dragging 
the center of the circle using GeoGebra (22). She an-
nounced again the mission of the group. So, Janan 
added another property to her definition of the center 
(23). Rana, contributed to the discussion by repeating 
Janan’s first description of the center (24).

18 Haya: We have not answered the first 
question yet. What is the circle center?

19 Rana: a point. [..15..] [Haya wrote: 
a point lying in the middle of the circle].

20 Haya: how can we assign a point in the 
middle of the circle?

21 Janan: what? [..15..] before the radius. 
22 [Haya dragged the circle center and the 

group described what happened to the cir-
cle and its components] Haya: We want to 
define the center of the circle.

23 Janan: it is the base of the circle.
24 Rana: It is a point lying in the middle. 

Janan’s behavior indicates her interim positioning as 
a follower of directions (21, 23).The silence indicates 
the group difficulty in defining the circle’s center. In 
the interview, the group members said that their si-
lence hid their frustration and uncomfortability due 
to feeling powerless because of their difficulty, as a 
group, in defining the center of the circle. Haya’s work 
with the applet emphasizes her leadership. Her use 
of the pronoun ‘we’ (18, 20, 22), indicates she was an 
insider, and Janan’s immediate answer (21, 23) indi-
cates that she too was such. Rana’s participation (24) 
also indicates her interim positioning as a collabora-
tor. It seems that Rana, being not a strong student in 
mathematics, lessened her collaboration in the group 
discussion and mathematical work, which made her 
at the beginning less of an insider than the other two 
girls. This also made her feel neither content nor 
comfortable [interview]. Nevertheless, this did not 
prevent her from interfering and correcting the other 
members of the group when needed, as the following 
learning event shows.

Trying to be an insider and get involved 
in discussing the circle’s radius 
Once again Haya moved the mathematical talk away 
from its focus - the circle center (25), this time to an-
swer the next question in the activity about the radius 
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of the circle. Probably she did that to change the nega-
tive mood of the group, becoming uncomfortable and 
frustrated because of their feeling powerless due to 
their difficulty to arrive at an accepted definition of 
the circle center. Janan tried, as before, to participate 
in the group’s discussion (26, 29, 31), indicating she 
continued to look at herself as an insider.

25 Haya: How can we set the radius of the 
circle?

26 Janan:  we extend a line from the center.
27 Rana: No, the radius.
28 Haya: the radius. How can we set the 

radius?
29 Janan: we extend a line from the center 

to the line of the circle.
30 Haya (pointing at the circumference in 

GeoGebra interface): to the circumference. 
31 Janan: to the circumference, Yeh.
32 Rana: according to the diameter length. 

[The facial expressions of the group mem-
bers showed frustration]

33 Haya: what is the radius of the circle?

Rana seems here trying to get power in the group, cor-
recting Janan (27), and participating in the answering 
of the question about the setting of the radius (27, 32). 
Rana’s contribution was not evaluated highly by the 
director of the group who again asked about the ra-
dius (33). This little acceptance of Rana’s answer by 
the director of the group made her frustrated of her 
positioning in the group [interview]. Nevertheless, 
she tried to contribute again to the discussion, as can 
be seen from the following event. 

Collaborating to define the diameter 
and discuss its relation with the chord: 
The power of knowledge
Haya tried to define the radius (34). She stated her 
definition hesitantly, as if not confident of it. In spite 
of her hesitation, the two other members accepted 
her claim by repeating it (35–36). Haya then turned 
to read the next question in the activity (37). The three 
girls collaborated to define the diameter and describe 
its relation with the chord (38–43).

34 Haya (pointing at the circle in GeoGebra in-
terface and saying in a hesitant voice): we 
write like this: “the radius is a line that starts 
at the center and extends to the circumfer-
ence”.

35 Janan: the radius is a line that goes from 
the center to the circumference.

36 Rana repeats: From the center to the cir-
cumference. 

37 Haya read the next question: what is the di-
ameter of the circle? [The group members 
looked at the diameter that they drew].

38 Janan: It is a straight line that passes 
through the circle’s center.

39 Haya read the next question: what is the re-
lation between the chord and the diameter? 
She answered: the diameter is in origin a 
chord passing through the circle’s center.

40 Janan: If it does not pass through the 
center it will be a chord, but if it passes 
through the center it will be a diameter. 

41 Haya: the diameter is a straight line 
that starts at the circle’s circumference and 
passes through the circle’s center. 

42 Rana: it ends at the second side of the 
circle. 

43 Haya wrote: the diameter is a straight line 
that starts at the circle’s circumference, pass-
es through the center and continues to the 
other side of the circle.

Again we see that the three students worked as collab-
orators, which led to their agreement on one of the 
definitions of the circle’s diameter. Here, Haya main-
tained her firstness through reading the question 
and writing its answer. The two other students also 
contributed to the common knowledge of the group, 
which gave them more power. This power resulted in 
the two girls’ satisfaction, as their facial expressions 
showed, which encouraged them to keep participating 
in the group discussions. 

DISCUSSION AND CONCLUSIONS

In this paper, we analysed the positionings and re-
lated emotions of a group of students when defining 
geometric concepts associated with the circle’s topic. 
Doing so, we used the discursive emotions framework 
suggested by Evans, Morgan and Tsatsaroni. This 
framework is a promising one since it is appropriate 
for complex context. This is so though it is difficult 
to incorporate some important constructs in it like 
previous students’ experience and current learning 
beliefs. 
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The research results indicate that the director of the 
group’s learning claimed her positioning by means of 
different behaviors: initiating the exploration work of 
the group, telling the group members what should be 
done to answer the activity questions, demonstrating 
persistence in asking questions that investigate the 
geometric topic, and in manipulating the geometric 
objects in GeoGebra. At the same time, the director 
of the group claimed her positioning by regulating 
the group members’ emotions to avoid their negative 
emotions associated with their difficulties to define 
geometric concepts and to facilitate their engagement 
with their learning (Fried, 2011). As a result of this 
emotion regulation strategy of the group director, 
the interpersonal functioning of the group improved 
(Gross & John, 2003). It can be said that the actions of 
the group director, in the frame of her positioning as 
such, are related not only to the emotional aspect, but 
also to the different aspects of the group learning: the 
cognitive (asking questions related to the circle topic), 
the meta-cognitive (regulating the group’s advance-
ment through changing the discussed topic), the social 
(advancing the discussion of the group), the behavio-
ral (manipulating GeoGebra), and the meta-affective 
(regulating the group’s emotions) aspects. So, the 
group director claimed her positioning by means of 
administrative means more than by means of knowl-
edge, though she asked and answered questions, and 
tried her most to contribute to the group process of 
defining the circle concepts. Thus discursive power 
could be claimed by administrative means, in addi-
tion to other means described in (Evans, Morgan, & 
Tsatsaroni, 2006), as knowledge and giving help. 

To direct the group learning, the group director gen-
erally used the pronoun ‘we’ to initiate a journey with 
the group (Dafouz, 2007) regarding the learning of 
one of the concepts associated with the circle topic. 
This use of the plural personal pronoun indicates that 
the group director was an insider (Evans, Morgan, 
& Tsatsaroni, 2006) who took the lead in making the 
group succeeds in investigating the geometric topic. 

Overall, the group members worked as collaborators. 
The collaboration of the group was facilitated by the 
group conversation, so it could be said that the lead-
ership in this group was conversational leadership, 
where this conversation was seen by the group mem-
bers, especially the director of the group, as a core 
process for effecting positive change (Hurley & Brown, 
2010), in our case learning change. 

Being collaborators, the group members worked 
with GeoGebra to further their study, were curious 
to move forward with their geometric investigations 
and were content and satisfied due to the power they 
acquired as a result of their collaborative knowledge 
advancement with the help of GeoGebra. Thus the 
technological tool facilitated their collaborative inves-
tigations of geometric concepts, empowering them as 
mathematics learners, and, as a result, causing them 
to have positive emotions about their learning of ge-
ometry. Moreover, in spite of these positive emotions, 
the group members had negative emotions when 
they had hard time defining the geometric concepts 
associated with the circle. These negative emotions 
were caused due to their feeling powerless not able to 
agree on the definition of the geometric concepts. The 
group members overcame their negative emotions by 
manipulating the geometric objects in GeoGebra and 
thus arriving at agreed definitions of the geometric 
concepts. Thus the technological tool empowered the 
group members, changing their negative emotions 
to positive ones. Furthermore, the technological tool 
not only empowered the group as a whole, but also 
empowered members who controlled the work with 
it, like Haya.   

The group members’ level in mathematics influ-
enced the acceptance of the member to be an insider 
or outsider. Thus the two relatively strong members 
in mathematics accepted being insiders, while the 
middle achieving member did not accept at the be-
ginning of the activity to be an insider regarding the 
learning happenings of the group, which made her 
frustrated from her positioning in the group. This 
situation changed as she tried to participate in the 
group’s discussions and contributed to the knowledge 
development of the group about concepts related to 
the circle’s topic. This change in her involvement with 
the group’s work could be related to the group’s per-
ceived atmosphere, for the “members of a group will 
tend to behave according to the way they perceive the 
prevailing atmosphere” (Douglas, 1978; as in Gunn, 
2007).  This perceived atmosphere was characterized 
by being a positive learning atmosphere maintained 
by the group director. Moreover, this positive atmos-
phere gave power and freedom to the group members, 
enabling them to express themselves freely, and, as a 
result, causing them to have positive emotions: con-
tent, satisfaction and being happy. 
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Starting from the “theory of rational behaviour”, in-
troduced by Habermas in 1998, I attempt to demon-
strate how affective factors are entwined with those of 
rationality in in the decision-making processes of the 
mathematics teacher. This type of analysis has been 
carried out by developing an adaptation of the concept 
of “emotional orientation”, offered by Brown and Reid in 
2006. In particular, I will present the case of one teacher 
with her grade 9 class, involved in the explanation of 
linear equations.

Key-words: Rationality, emotional orientation, expectation, 

mathematics teaching, beliefs.

INTRODUCTION

In this paper, I focus the attention on the discursive 
activity of the teacher when she is introducing lin-
ear equations. At the end of the twentieth century, 
the philosopher Habermas developed the “theory of 
rational behaviour”, where he discusses how people 
discursive activities show their rational behaviour. 
In the last years, this philosophical and sociological 
framework has been re-elaborated and adjusted to 
mathematics education by a working group consti-
tuted by many researchers from Italian, French and 
Spanish universities. This collaboration has produced 
two different research forums, presented during the 
PME Conferences in 2010 (Boero, Douek, Morselli, & 
Pedemonte, 2010) and in 2014 (Boero & Planas, 2014). 
This paper is an expansion of the research presented 
within the last RF by F. Ferrara and myself and that I 
developed for my PhD dissertation. 

Many of the educational studies about rationality ac-
cording to the Habermas framework, were centred 
on the students in the mathematics classroom (e.g., 
Morselli & Boero, 2011). However, if, from the one side, 
this theoretical framework seems to be suitable to ex-

amine decision-making processes of a ‘rational being’, 
from the other side, also the study of the discursive 
activity of the teacher seems to be crucial examining 
the interactions which happen in the classroom. It 
is important to consider the decision-making of the 
teacher, because one peculiarity of the teacher is mak-
ing decisions within the classroom. Several authors 
have recognized an essential role to the decision-mak-
ing of the mathematics teacher. For example, Bishop 
considers it as the activity “... at the heart of the teach-
ing process” (Bishop, 1976, p.42).

THEORETICAL FRAMEWORK

Habermas defines a rational being as a human being 
who “can give account for his orientation toward 
validity claims” (Habermas, 1998, p. 310). He speaks 
about the concept of discursive rationality of the 
subject, explaining that it is not only referred to the 
discourse – as it could seem from the term at a first 
glance – but it has three different roots: the knowl-
edge, the action and the speech, or, said in a different 
way:  knowing, acting and speaking. Then, starting 
from the Habermas’ assumption that for a rational 
being the discourse and the reflection on it (not nec-
essarily explicit) are entwined, “the three rationality 
components - knowing, acting, and speaking - com-
bine, that is, form a syndrome” (Habermas, 1998, p. 311) 
at a holistic level where reflection and discourse live 
together. Knowledge, action and speech constitute 
what he calls the epistemic, the teleological and the 
communicative components of rationality. They are 
inseparable, since a rational being acts in a specific 
manner to achieve a goal, on the basis of a specific 
knowledge, communicating in a precise way with the 
aim of being understood by the community. Hence, 
within the discursive activity, they are always present 
at the same time. According to Habermas, the epistem-
ic rationality is connected to the justification of the 
knowledge at play: “We know facts and have a knowl-
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edge of them at our disposal only when we simulta-
neously know why the corresponding judgments are 
true” (Habermas, 1998, p. 312). Concerning the teleo-
logical rationality, Habermas states that “all action is 
intentional”, that is, every action is originated from 
an intention of the subject with the aim of the realiza-
tion of a result. He speaks of teleological rationality 
when “the actor has achieved this result on the basis 
of the deliberately selected and implemented means” 
(Habermas, 1998, p. 313). Finally, Habermas states that 
the communicative rationality “is expressed in the 
unifying force of speech oriented toward reaching 
understanding” (Habermas, 1998, p. 315). 

In his speculation about rational behaviour, Habermas 
seems to lack any reference to emotion or passion. 
He seems to avoid any emotion by claiming that the 
force of a good argument should be free of emotion-
al tags. Several philosophers and social theorists 
complained that, in the development of his theory, 
Habermas doesn’t take in account the emotional side 
of human beings. For example, Rienstra and Hook, 
quoting the philosopher Heller, posed the question 
that “Habermas leaves no room for “sensuous expe-
riences of hope and despair, of venture and humilia-
tion”, accusing him of completely avoiding the “crea-
ture-like” aspects of human beings” (Rienstra & Hook, 
2006, p. 13). Therefore, basing on the assumption that 
rationality is deeply linked with the emotional sphere, 
I looked for researches that confirmed this hypothesis 
in particular in mathematics education and human 
neuropsychology. 

In the last years, research in mathematics education 
has progressively perceived the existence of a mutual 
interaction between the affective sphere and cogni-
tion in mathematics learning (Zan, Brown, Evans, & 
Hannula, 2006). As highlighted by Hannula (2012), 
many research studies, focused on mathematics-re-
lated affect, have been dated from the eighties. An 
important grow in the theory on mathematics-related 
affect was due to McLeod (McLeod, 1992), whose main 
goal was to build “an overall framework of mathe-
matics-related affect that would be consistent with re-
search that is cognitively oriented” (Hannula, 2012, p. 
138). In McLeod’s framework (McLeod, 1992), which is 
considered a cornerstone for the literature on mathe-
matics-related affect, emotions occupy a fundamental 
place, because of their unstable or less stable nature 
than that of beliefs and attitudes. Unfortunately, the 
aim of constructing a general theoretical framework 

that embrace all the research on mathematics-related 
affect has not yet been achieved. The most relevant 
problem is related to the terminology used in this field, 
because it is not universal. For example, as Di Martino 
and Zan discussed deeply (Di Martino & Zan, 2010), 

“some define attitude as positive or negative degree of 
affect, others identify emotions and beliefs as two com-
ponents of attitude, while yet others define attitude as 
consisting of cognitive (beliefs), affective (emotions), 
and conative (behaviour) dimensions” (Hannula, 2012, 
p. 140). The recent research in mathematics-related af-
fect has considered different affective concepts from 
those of the McLeod’s (1992) framework such as values, 
identity, motivation, and norms. Zan and colleagues 
(Zan, Brown, Evans, & Hannula, 2006) have recognised 
the limited use of emotion in mathematics education 
research, even if it should be one the essential concept. 
They pointed out “how repeated experience of emo-
tion may be seen as the basis for more ‘stable’ attitudes 
and beliefs” (Zan, Brown, Evans, & Hannula, 2006, p. 
116). For Schoenfeld, emotional aspects are included 
in the wider category of beliefs, while goals is a mo-
tivational concept (Schoenfeld, 2010). 

Human neuropsychology is another important field 
of research that studies the relationship between the 
affective and the rational sphere from a neurologi-
cal point of view (Damasio, 1994, 1999). Specifically, 
Immordino-Yang and Damasio have shown the con-
nection among emotion, social functioning and de-
cision-making as a turning point for understanding 
the role of emotion in decision-making, the relation-
ship between learning and emotion, and how cul-
ture shapes learning (Immordino-Yang & Damasio, 
2007). While educational research often considered 
decision-making, reasoning and processes related 
to reading, language and mathematics as detached 
from emotion and body, these authors have shown that 

“learning, in the complex sense in which it happens in 
schools or the real world, is not a rational or disem-
bodied process; neither is it a lonely one” (Immordino-
Yang & Damasio, 2007, p. 4). For them, emotion is “a 
basic form of decision making, a repertoire of know-
how and actions that allows people to respond appro-
priately in different situations” (Immordino-Yang & 
Damasio, 2007, p. 7).

This neurological research is becoming applicable 
also in the field of mathematics education. For exam-
ple, Brown and Reid have developed and adapted the 
hypothesis of somatic markers (Damasio in 1994) for 
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studying the decision-making processes (Brown & 
Reid, 2006).

EMOTIONAL ORIENTATION

Brown and Reid (Brown & Reid, 2006) analysing the 
processes of teachers and students’ decision-making, 
have considered the notion of “emotional orientation” 
(Maturana, 1988). In particular, they have focussed 
on the “decision-making that happens before con-
scious awareness of the decision to be made occurs.” 
(Brown & Reid, 2006, p. 179). Maturana (1988a, 1988b) 
referred the notion of “emotional orientation” to the 
criteria for acceptance of an explanation by members 
of a community, and considered emotions as being 
the foundation of such criteria. Reid adapted the 
concept of emotional orientation to the mathemat-
ics field, defining the “mathematical emotional ori-
entation”. The criteria for accepting an explanation 
in the particular case of the mathematical emotional 
orientation involve “the use of deductive reasoning, 
a basis in agreed upon premises, and a formal style 
of presentation” (Reid, 1999, p. 1). Moreover, there are 
many shared experiences and assumptions in mathe-
matics, like the language used to talk about it. In the 
end, there are also many “actions” when someone 
does mathematics, like “drawing diagrams, gener-
alizing statements, making conjectures” (Reid, 1999, 
p. 1). Emotions are still at the basis of these criteria. 
The concept of “emotional orientation” allows me to 
speak of the interconnection between rationality and 
emotion. In fact, as the words themselves suggest, the 

“orientation” of a subject oriented towards validity 
claims is “emotional”, that is, affected by the emotions 
in a certain way. But there is still a methodological 
problem of how, practically, this entanglement can be 
analysed. Hence, I sketchily present an adaptation of 
the theoretical framework of the emotional orienta-
tion in order to speak practically about these two sides 
of the same coin. I define the “emotional orientation” 
of a subject (e.g. a teacher) in terms of “the set of her 
expectations”: the term “expectation” is connected to 
her “emotions of being right” when she uses specific 
criteria for accepting an explanation by a commu-
nity (e.g. a class) rather than other ones (Ferrara & 
De Simone, 2014). The most difficulty encountered in 
studying emotions is their “visibility” and, then, their 

“certain” identification. In this context, when I speak of 
emotion of the teacher I will refer to her emotionality, 
namely the set of “behaviours that are observable and 

theoretically linked to the (hypothetical) underlying 
emotion” (Reber & Reber, 2001).

METHODOLOGY

The study presented in this paper is part of the re-
search for my PhD thesis whose focus is on aspects 
related to rationality of the teacher in the teaching 
of linear equations at secondary school. The partici-
pants were 3 teachers and their grade 9 classes, in a 
scientifically oriented secondary school in Western 
Italy. The teachers were selected assuming that ra-
tionality and emotions are proper of human beings 
and with the purpose of having different emotional 
orientations. Each teacher was first interviewed and 
asked about her personal beliefs on the topic of lin-
ear equations, on algebra in general and on how she 
uses the didactical materials. Each interview lasted 
roughly twenty minutes and was videotaped with one 
camera facing the interviewer and the subject. Then, 
the whole class activities conducted by the teacher 
and the students’ working group activities were also 
videotaped. All voice and bodily movement during 
the interviews and the classroom activities were re-
corded. The videos were transcribed for data analysis. 
For the identification of the emotional orientation of 
the teachers I paid attention also to some indicators 
that allow me to say something about the emotions 
of the teacher. In particular, I considered as indica-
tors the tone of voice, the words, the repetitions, the 
emphasis and the body language (facial expressions, 
gazes, gestures…). So, I identified the expectations of 
the teacher – that constitute her emotional orienta-
tion – starting from what she explicitly declared in 
an a-priori interview. Then, I tried to find them again, 
reflected in the class activities, through the indicators 
I listed above. At last, I analysed the transcriptions 
from both the emotional and the rational point of view, 
at the same time, because they are naturally entwined. 
Due to space constraints, I present the case of one of 
the three teachers involved in the whole research, 
whom I call Lorenza.

AN EXAMPLE: THE EMOTIONAL ORIENTATION 
OF LORENZA

I identified different expectations that constitute the 
emotional orientation of Lorenza, but for the limited 
space, I show just one of them. From the interview, 
I identified her expectation about the validity of the 
previous knowledge of the students that can be used for 
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constructing the new one. With “previous knowledge”, 
I mean what students have learnt both in the middle 
school and with her. In order to highlight this expec-
tation, I collected the moments of her interview from 
which this expectation could be detected. Lorenza 
explicitly declared: “Usually, I begin to treat linear 
equations starting from their previous knowledge 
in order to see whether it is valid, or whether the stu-
dents have misinterpreted the various procedures that 
they have been taught in the previous years. Anyway, I 
begin a new topic starting from the knowledge that the 
students already have”. During the interview, I asked 
Lorenza when she introduces for the first time the 
letters in algebra. She answered that she usually uses 
letters for the first time in physics, but she comment-
ed: “they are already able a little bit to manage it” and, 
then, she repeated the same concept: “even if when we 
speak of sets, the letter represents already something for 
them or also in the logic language the logic variable, then 
there is already a formalization from this point of view, 
we say”. In another passage, it was asked to Lorenza 
when she speaks for the first time of equations and if 
she links the concept of linear equation with that of 
function. She stated that she makes this link for the 
first time in physics: “in physics we have already said 
something about the equations, but just basics because 
I wanted to put them to work on inverse formula, then 
I said: “What do you know?” they know already some-
thing and they know to deduce or, in theory, they should 
be able to deduce an inverse formula given a formula”. 
An interesting thing is that, during the interview, she 
explicitly made just the same question that she asks 
to her students, perhaps, because she is used to make 
it to her students for testing what is their knowledge 
and if it’s valid. Lorenza added that students have 
already known something about equation, but “in a 
very naïve way”, so they have to go in depth with her 
become aware of the link between the equations and 
the straight line.

From these pieces of the interview, it becomes quite 
clear that Lorenza believes that it is important to re-
call the previous knowledge of the students during 
all the lessons, not just when a new mathematical 
topic is introduced.

After detecting Lorenza’s expectations, I analysed 
the transcriptions of her lessons in which they are 
actually reflected. I will show how her “orientation” 
towards validity claims is “emotional”, that is affected 
by emotions. Using a metaphor, rationality and emo-

tions of the teacher can be seen as the weave and the 
warp of the fabric. As the weave and warp entwined 
constitute the fabric, the rationality and the emotions 
entwined shape the teacher as she actually is.

The first example I propose is taken from the first les-
son after Easter holidays, during which the teacher 
was recalling the concept of identity – explained in the 
last lesson before Easter – with the aim of introducing, 
formally, the concept of equation. 

1 T: before holidays, I hope that 
someone remembers just something, we 
have spoken about [pronouncing] identities, 
then, is there anyone who wants to give, for 
now, [tone of voice of a statement not of a 
question] the definition of identity and to 
do only an example of identity? Don’t be 
shy! [smiling] (Figure 1) [lifting up her chin 
and biting her lips] (Figure 2). Please [she 
addresses to S1 who is raising up his hand]

2 S1: it is an equality that is verified 
for each value that it is replaced to the letter

3 T: fine, it is an equality between 
two expressions, that contain letters, that 
is verified for each value we go to ascribe to 

Figure 1

Figure 2
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the unknown. One example, we have done an 
example within the classical ones [smiling]

4 S1: (a+b)2=a2+b2+2ab
5 T: for example, the development of 

a special product is an equality between two 
expressions that contain letters and then it 
can be considered an identity and each val-
ue we go to give to the unknown a or to the 
unknown b, the result on the left and on the 
right of the equality sign must be the same 
and, conversely, what can be considered as 
an equation, do you remember? [speeding 
up] you have already seen them in the middle 
school, partly, no? yes [she is answering her-
self ], we have already reviewed in physics 
since at the beginning of the year they serve 
us for working with formula etcetera, so we 
have already given indications. In the light 
of this path that we have done, any of you 
would like to hazard a definition of equation 
[tone of voice proper of a statement not of a 
question and, then, she lifts up her chin]? Try 
to hazard, Andrea!

The action of Lorenza of asking something that stu-
dents already know (the definition of identity and an 
example of it) is aimed at constructing the concept of 
equation (# 5). This action comes along with a particu-
lar tone of voice not proper of a question, but rather of 
a statement (# 1). The affirmative tone of voice of the 
question and that facial expression (# 1: she lifts up 
her chin after speaking) could show her expectation 
that someone remembers the concept of identity and 
will answer to her, because the class has already seen 
it a short time before. Waiting an answer, she laughs 
(Figure 1) and she bites her lips (Figure 2), probably, 
because she wants a feedback from the class. The 
action of asking something that the students should 
know is full of emotional hues linked to her expec-
tation about the validity of the previous knowledge. 
This passage of the transcript highlights an emotion-
al teleological rationality of Lorenza. It is not just a 
matter of what she is doing, but rather of how and 
why she is acting in that way. From the beginning, her 
speech seems to be charged by emotions (#1: “I hope”, 

“just something”, “Don’t be shy!”). These emotions are 
related to her expectation (“I hope”) that students re-
member the concept of identity, even “just something” 
(she can be easily satisfied, as long as, they are able to 
say something). She seems quite confident about their 
knowledge, thinking that her students don’t answer 

because they are shy, indeed, she incites them into 
doing, using the imperative phrase “Don’t be shy!”. 
This “emotion-soaked” speech highlights an emotional 
communicative rationality related to her expectation 
about classroom culture. There is not only what she is 
communicating, but also how and why she is doing it 
that way. Requiring again the example of an identity 
(#3), after the answer of S1, could be interpret as a way 
of involving more students in the discussion and to 
evoke the classroom culture as much as possible (#3: 

“One example, we have done an example within the 
classical ones”). Another time the teacher’s speech 
comes along with an emotional element (she smiles), 
because she seems to feel that students need to be com-
fortable for answering, even if they already should 
know the example.

Lorenza recalls just the term of identity to shift easily 
to that of equation: the former is an equality true for 
every value of the unknown, while the latter is an 
equality that may not be satisfied or, in the case it is 
satisfied, it can be undetermined or determined. This 
epistemic shifting comes along with an insistence of 
Lorenza on the fact that they already learn first degree 
equations both in the lower secondary school (grade 
8) and with her in grade 9 (#5: “you have already seen 
them in the middle school, partly, no?”, “yes [she is an-
swering herself ], we have already reviewed in physics 
since at the beginning of the year they serve us for 
working with formula etcetera, so we have already 
given indications”, “In the light of this path that we 
have done any of you would like to hazard a definition 
of equation”). In addition, she asked her students “to 
hazard” a definition of equation, but with the tone of 
voice proper of a statement and not of a question (#5), 
probably because she is expecting that students con-
struct new knowledge starting from the previous one. 
The insistence in the speech, the facial expression, the 
tone of voice linked to the knowledge into play could 
inform us about an emotional epistemic rationality. 

Then, the discussion goes on as follows:

6 S2: it is an equality between two 
literal expressions in which the value of x 
is replaced by a unique value to make it true

7 T: we say that it is satisfied just f(or) 
8 S2: for a single value of x
9 T: always?! (Figure 3), do we always 

find it?!for you this value or (Figure 4), let’s 
try to think a little bit
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 10 S2: sometimes it’s impossible
 11 T: It could be, right.

After the answer of S2 (#6), Lorenza clarified his defi-
nition of an equation. This action is aimed at a first 
introduction of the different types of equation (de-
termined, undetermined, impossible), which she will 
develop in the next lesson. The rhetorical questions 
(#9: “always?!”, “do we always find it?!”), the facial ex-
pressions in Figure 3 and Figure 4 and the general 
involvement in the discussion (#9: “let’s try to think 
a little bit”) accompany the actions she made on the 
basis of a certain knowledge into play, communicat-
ing in a specific manner. Particularly, in Figure 4, she 
seems to “catch” with her hands what they are in mind 
about the concept of equation. This frame brings out 
an emotional teleological, epistemic and communica-
tive rationality of Lorenza. 

DISCUSSION

I presented an emblematic example of the coexist-
ence of the emotional rational aspects in mathemat-
ics teaching. In particular, I showed how this merger 
outlines the decision-making processes of the teach-
er. As I highlighted in the analysis of the example, all 
the teachers’ decisions – about knowing, acting and 
speaking – are “visible” in language, but, mostly, in 
her emotional aspects. This doesn’t mean that emo-

tions explain the decisions, but, rather, that decisions 
are very often “visible” through emotions. I tried to 
study this complexity through an adaptation of the 
concept of “emotional orientation”, used by Brown 
and Reid in 2006, drawing on the work of Maturana 
(1988). 

Referring to the transcript, from one side, the emo-
tions of Lorenza are linked to her expectation about 
the class culture she developed from her own beliefs. 
These emotions can become clear from her tone of 
voice, her way of speaking, her body language. From 
the other side, the choices of Lorenza (starting from 
the identities to introduce equations, recalling ex-
plicitly with insistence the previous knowledge of 
the students…) are connected to this expectation of 
constructing new knowledge, basing on the validity 
of the previous one. Then, the emotions are strictly 
related to the choices and this gives the meaning of 
how the “orientation” of Lorenza can be “emotional”.

Hence, the analysis of the discursive activity of the 
teacher has naturally led to propose an enlargement 
of the Habermas components of rationality. As shown 
in the analysis of the excerpt, I tried to highlight the 
emotional epistemic rationality, the emotional teleo-
logical rationality and the emotional communicative 
rationality of Lorenza. In this context, I consider the 
emotional epistemic rationality as related to why the 
teacher uses that specific justification of the knowl-
edge at play; the  emotional  teleological rationality 
as related to why the teacher makes that actions to 
achieve a goal and the emotional communicative ra-
tionality as related to why the teacher uses that speech 
oriented towards validity claims. These three adapt-
ed components of rationality are always present in 
the discursive activity of the teacher. Obviously, as 
testified by the example, during specific moments of 
the classroom activity, one component could emerge 
more than the others.

The role of the a-priori interview results particularly 
significant for this kind of analysis since it enabled to 
scrutinize the teacher’s beliefs and orientations for 
the teaching of the concept at stake. 
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To measure whether and to what extent pupils know 
mathematics is complicated. The test situation will 
influence the pupils’ work and in addition there are 
aspects of knowing mathematics that are difficult for a 
written test to assess. Since the early 1990s, Norwegian 
pupils undergo a local oral examination at the end of 
the ten-year compulsory school. Rules and guidelines 
for this examination has developed over time in accord-
ance with curriculum changes. According to the 1992 
national guidelines, the examination has to be based 
on the pupils’ project work or similar. In addition, pu-
pils’ creativity and imagination is highlighted. The 2014 
national rules are different, the only thing here that a 
written test cannot reveal, is skills in mental calculation.

Keywords: Assessment, motivation, attitudes, beliefs, 

creativity.

INTRODUCTION

 “Different groups of people can have very different 
views of what “counts”, or should count, in mathe-
matics” (Schoenfeld, 2007a, p. 3), so what it means to 
know mathematics is far from a simple question. The 
question of how to assess what pupils know, is even 
more complicated. Tests or examinations constitute 
one form of assessment; other forms are for example 
feedback on daily work. One aim of an examination 
is to assess what the pupils know; another aim is to 
assess whether the teaching is successful. Morgan 
(1999) identified two main strands in research related 
to assessment in mathematics education. One strand 
focuses on the design of the tests. The other focuses 
on critiquing traditional forms of assessment, and 
often proposes new forms of assessment that are bet-
ter aligned with the curriculum aims. Norway intro-
duced a local oral examination in 1990 (Ministry of 
Education, Research and Church Affairs, 1992). This 
examination highlighted local curricula and pupils’ 

project work; this was a new form of assessment 
aligned with curriculum aims. The national guide-
lines for the local oral examination have evolved 
since the first written guidelines appeared in 1992. 
The research question is: How do the 1992 national 
guidelines and 2014 national rules for the local oral 
mathematics examination consider affective aspects 
of knowing mathematics?

Because the rules and guidelines reflect the curric-
ulum, an analysis of the curriculum development is 
presented as an introduction to the further analysis. 
This paper focuses on the rules and guidelines for 
the local oral examinations from two perspectives: a) 
how to facilitate opportunities for the pupils to show 
what they know, and b) what is assessed. A common 
problem with tests and surveys is that there are as-
pects of knowing mathematics that are difficult to 
reveal in a written test. Affective aspects are among 
these. The paper first discusses motivation, attitudes, 
beliefs, and creativity, elements that reflect affec-
tive aspects of knowing mathematics and which are 
found in central documents for Norwegian mathe-
matics education. The following section reveals how 
Norwegian curricula consider affective aspects of 
knowing mathematics. Then assessment in mathe-
matics is presented, before the analysis of the 1992 
national guidelines (Ministry of Education, Research 
and Church Affairs, 1992) and the 2014 national rules 
(Norwegian Directorate for Education and Training, 
2014) for the local oral examination.

ATTITUDES, BELIEFS, CREATIVITY 
AND MOTIVATION 

The Ministry of Education, Research and Church 
Affairs carried out a large project, Quality in 
Mathematics Education (Brekke, 2002/1995), between 
1995 and 2002. The aims were to develop test materi-
als, conduct a survey of pupils’ attitudes and beliefs 
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towards mathematics and mathematics teaching, 
and describe the spectrum of pupils’ performances 
in different subject areas. During the 1990s, pupils’ 
attitudes and beliefs were accordingly considered 
important in Norway.

When individuals are doing mathematics, the affec-
tive system is not just supporting cognition, but it is 
playing a central role. Affect as a representational 
system is intertwined with cognitive representation 
(Goldin, 2002). Goldin divides affective representa-
tions into four sub-domains: a) emotions: rapidly 
changing and usually local or connected to context; b) 
attitudes: moderately stable predispositions towards 
certain sets of classes of situations; c) beliefs: often 
highly stable, involving the attribution of some sort 
of external truth or validity; and d) values, including 
ethics and morals, and which refers to deep “personal 
truths”. This paper pays less attention to emotions and 
values because the Quality in Mathematics Education 
project highlights pupils’ attitudes and beliefs.

Sriraman (2009/2004) identifies creativity as part of 
mathematicians’ work. He points out that creating 
original mathematics requires a very high level of 
motivation, persistence and reflection, all of which 
are considered indicators of creativity. For example, 
one could be in an environment that is non-support-
ive of creative efforts, but a high level of motivation 
may possibly overcome this and pursue creative en-
deavours. According to Sternberg and Lubart (1999), 
creativity may not only require motivation, but also 
generate it. Thus, given the chance to be creative, 
pupils who might otherwise lose interest in school 
instruction might find that it instead captures their 
interest. According to Liljedahl (2013), creativity has 
more affective aspects than just motivation, because 
illumination is important in the creativity process. 
Illumination occurs in the context of trying to work 
something out.

Self-determination theory proposes that all human 
beings have fundamental psychological needs for 
being competent, autonomous and related to others. 
People are assumed to proactively initiate engage-
ment with their environments. The basis for this 
activity is intrinsic motivation (Deci & Ryan, 2012). 
The foundations of self-determination theory reside 
in a dialectical view, which concerns the interaction 
between an active, integrating human nature, and 
social contexts that either nurture or impede the 

organism’s active nature. Relatedness concerns the 
psychological sense of being with others in a secure 
communion or unity. Autonomy refers to being the 
perceived origin or source of one’s own behaviour; it 
concerns acting from interest and integrated values. 
Autonomy enables individuals to deal with novelty 
and generate creative products (Diezmann & Watters, 
2000), so autonomy is part of creativity. According 
to Hannula (2006), motivation is observable only as 
it manifests itself in affect, cognition and behaviour, 
for example as beliefs, values and emotional reactions. 
Pupil-centred classrooms with much teamwork going 
on may rely on pupils’ exhibiting their autonomy and 
social interactions. According to DeBellis and Goldin 
(2006), each person constructs complex networks of 
affective pathways and competencies. These networks 
have more or less mathematical problem-solving pow-
er and their meanings are context-dependent for the 
individual. 

THE THREE LATEST MATHEMATICS 
CURRICULA IN NORWAY 

Three different curricula have been in effect in the 
Norwegian School during the period from 1990 to 
2015. These curricula provide different perspectives 
on pupils’ affect. The 1987 curriculum (Ministry of 
Church and Education, 1987) focuses on pupils’ project 
work and the schools’ development of local curricula. 
This is interpreted to mean that the curriculum high-
lights the pupils’ autonomy and relatedness, so it is 
in line with Deci and Ryan (2012). The overarching 
aims for the subject mathematics in this curriculum, 
claim that the teaching shall take care of and develop 
the pupils’ logical thought, responsible decisions, im-
agination and creative enthusiasm. In addition, prob-
lem solving is introduced as a separate domain. The 
curriculum is thus in line with DeBellis and Goldin’s 
(2006, p. 133) point: “The meanings of our emotional 
feelings are highly context dependent; far more, even, 
than the meaning of words and phrases.” The focus on 
imagination and creative enthusiasm, shows that the 
curriculum considers affective aspects of creativity. 

The 1997 mathematics curriculum (Ministry of 
Education, Research and Church Affairs, 1996a) in-
troduces mathematics in everyday life as a separate 
domain. This is interpreted as an explicit focus on 
context and autonomy. The curriculum points out 
six main aims for the subject mathematics. One aim 
is that pupils should develop positive relations with 
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mathematics, experience the subject as meaningful, 
build self-respect and have self-confidence. This is 
in line with self-determination theory (Deci & Ryan, 
2012). Another aim is that pupils are stimulated to 
use their imagination, resources and knowledge to 
find solution methods and alternatives through in-
vestigative and problem-solving activities, as well as 
conscious choices of tools and instruments. This is 
interpreted as meaning that the curriculum focuses 
on the pupils’ autonomy, creativity and motivation.  

The Danish project Competencies and Learning of 
Mathematics, (Niss & Højgaard Jensen, 2002) consti-
tutes the basis for the interpretation of mathematical 
competence in the recent mathematics curriculum 
(Norwegian Centre for Mathematics Education, 2014). 
Competence is someone’s insightful readiness to act 
in response to the challenges of a given situation. 
The Danish project describes a set of eight delimit-
ed dimensions that together generate mathematical 
competence: Mathematical-thinking competence, 
problem-tackling competence, modelling competence, 
reasoning competence, aids-and-tools competence, 
communicating competence, symbol-and-formal-
ism competence, and representing competence. No 
affective aspects of competence are explicitly listed, 
but Niss and Højgaard Jensen (2002) point out that 
mathematics-teaching competence includes the abil-
ity to motivate and inspire pupils. The overarching 
aims of the 2006 mathematics curriculum (Norwegian 
Directorate for Education and Training, 2013) empha-
size that both girls and boys must get opportunities 
to gain experiences that create positive attitudes to-
wards the subject. 

Table 1 shows how the perspective on affect has devel-
oped according to the overarching aims of the latest 
three mathematics curricula. The 1997 curriculum’s 
(Ministry of Education, Research and Church Affairs, 
1996a) aims, explicitly include the pupils’ attitudes and 

their affective aspects of creativity. “Meaningfulness” 
is left out in the 2006 curriculum. This is interpreted 
as suggesting that the pupils’ autonomy and self-deter-
mination are less important. The greatest difference 
between the three curricula is that while the two pre-
vious curricula present a pupil-centred perspective 
on the teaching, the 2006 curriculum presents a teach-
er-centred perspective; the 2006 curriculum has no 
teaching aim regarding the pupils’ affects. 

The Core Curriculum (Ministry of Education, 
Research and Church Affairs, 1996b) states the over-
arching aims for the education. This part of the cur-
riculum elaborates on the preamble to the Education 
Act, and it is continued in the 2006 curriculum. The 
Core Curriculum focuses on creativity, autonomy and 
relatedness. However, the word “motivation” occurs 
only once, successful learning depends on the teacher 
as well as on the pupil. The Core Curriculum high-
lights the pupils’ attitudes by claiming that knowledge, 
skills and attitudes develop in the interplay between 
old notions and new impressions. The 1997 mathemat-
ics curriculum is in line with the Core Curriculum’s 
perspectives on creativity, autonomy and relatedness, 
while the 2006 mathematics curriculum is not. 

ASSESSMENT 

Schoenfeld (2007a) claims that assessments can serve 
useful purposes for the pupils, but the challenge is 
to make them do so. According to Wiliam (2007), the 
use of assessment should support learning in any 
assessment regime; classroom assessment must first 
be designed to support learning. Schoenfeld (2007b) 
discusses how to assess mathematical proficiency: 
what a pupil knows, can do, and is disposed to do math-
ematically. He describes four aspects of mathemati-
cal proficiency: Knowledge base (what does it mean to 
know a content), strategies (ability to formulate, rep-
resent, and solve mathematical problems), metacog-

1987 curriculum 1997 curriculum 2006 curriculum

Aims for the 
pupils

Experience mathemat-
ics as meaningful

Develop positive relations with math-
ematics
Experience mathematics as meaning-
ful

Get opportunities to gain 
experiences that create 
positive attitudes towards 
mathematics

Aims for the 
teaching

Take care of and devel-
op pupils’ imagination 
and creative enthusi-
asm

Contribute to the pupils’ building of 
self confidence 
Make the pupils experience belonging

Include playful and crea-
tive activities

Table 1: How pupils’ affects are considered in the curricula’s overarching aims
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nition (using what you know effectively), beliefs and 
dispositions. Pupils who experience skill-based in-
struction tend to succeed on tests of skills, but they 
do not succeed well when tested in problem solving 
and conceptual understanding. On the other hand, “⦋s⦌
tudents who study more broad-based curricula tend 
to do reasonably well on tests of skills” (p. 63), while 
on tests of conceptual understanding and problem 
solving, these pupils succeed much better than those 
who just exercise on skills. Beliefs are important, be-
cause if you believe that mathematics is not supposed 
to make sense, your work will reflect this. The pupils 
pick up their beliefs about the nature of mathematics 
from their experiences in the mathematics classroom. 
That mathematical problems have one and only one 
answer and that mathematics is done by individuals 
in isolation are typical pupil beliefs.

Boesen, Lithner and Palm (2010) investigated relations 
between task characteristics and the mathematical 
reasoning pupils use when solving tasks in a test sit-
uation. Their results show that when solving tasks 
similar to those in their textbooks, the pupils were 
mostly trying to recall facts or algorithms. The pupils 
did not have to construct new reasoning or consider 
any intrinsic mathematical properties. By contrast, 
the tasks that were not similar to those encountered 
in the textbook were mostly approached with creative 
mathematical reasoning.

THE LOCAL ORAL MATHEMATIC EXAMINATION

As a result of the 1987 curriculum’s (Ministry of 
Church and Education, 1987) focus on local curric-
ula, project work and problem solving, Norway in-
troduced a local oral examination that encompassed 
these three fields. Pupils may hence undergo two dif-
ferent examinations in mathematics at the end of the 
compulsory school: A national written mathematics 
examination and a local oral mathematics examina-
tion. Only some pupils undergo each examination. 

According to the national guidelines, the 1992 oral 
mathematics examination aimed to: “… assess aspects 
of the teaching aims, which may be difficult to show in 
a written test” (Ministry of Education, Research and 
Church Affairs, 1992, p. 14, author’s translation). The 
examiner (most commonly the mathematics teach-
er) leads the talk/discussion with the pupil, while the 
external examiner determines the grade afterwards. 
The Ministry designed and published booklets with 

guidelines and guiding materials for teachers. These 
guidelines are difficult to access, so they are listed 
here: 

 ― The test has to include tasks from at least three of 
the ten main subject areas in the syllabus.

 ― The test has to give room for use of different 
methods, creativity and imagination. 

 ― The test has to include tasks where the pupil may 
explain procedures and rules that she/he uses in 
solving the tasks. It might be satisfactory that the 
pupil just sketch how she/he will solve the task. 

 ― The test has to include tasks involving mental 
calculation and approximation. 

 ― The test might include tasks where the pupils are 
free to use technical artefacts such as calculators 
and computers.

 ― If there is information about project work or sim-
ilar, then the test has to include questions related 
to this work (p. 14, author’s translation).

In 2014, the responsibility for the local (oral) exami-
nation guidelines belongs to the school owners. The 
Education Act (Lovdata, 2013) regulates the oral exam-
ination, and the Norwegian Directorate for Education 
and Training (2014) has elaborated regulations for the 
national rules. There is a 24-hour mandatory prepara-
tion time, which starts with one day at school with all 
kinds of aids permitted. In the beginning of the prepa-
ration time, the pupil gets a theme or a problem. What 
goes on in the preparation time is not included in the 
assessment. Each pupil has a right to pedagogical aid 
during the preparation day at school. The pupils pres-
ent their theme or problem during the examination. 
The examiners then use this presentation as a basis 
for a mathematical discussion, for which the teacher 
has prepared questions for the pupil. The examin-
ers cannot ask questions just from a narrow part of 
the subject. The discussion has to cover at least 2/3 
of the examination time. The examination has to be 
organized so that the pupil can show to what extent 
the competence aims in the curriculum have been 
reached. The mathematics curriculum clarifies the 
meaning of “oral skills”:
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Oral skills in mathematics involve creating 
meaning by … participating in discussions, com-
municating ideas and elaborating on problems, 
solutions and strategies with other pupils … this 
development starts with a basic mathematics vo-
cabulary that leads to precise professional termi-
nology … (Norwegian Directorate for Education 
and Training, 2013, pp. 4–5)

The schools can make local guidelines for how to carry 
out this examination. Two examiners assess the pupil, 
and one of them needs to be a teacher from another 
school.

ANALYSIS OF NATIONAL 
GUIDELINES AND RULES 

Schoenfeld (2007a) points out that there is more to 
mathematical proficiency than being able to repro-
duce standard content on demand. He warns against 
what he calls “the illusion of competence” by asking: 

“Have you learned the underlying ideas, or are you 
only competent at things that are precisely like the 
ones you’ve practiced on?” The local oral examination 
has developed from 1990–1992 and into the 2014 exam-
ination form. In order to investigate how the rules and 
guidelines for these examinations consider affective 
aspects of knowing mathematics, a framework is built 
on theories from Deci and Ryan (2012), Hannula (2006), 
Sriraman (2009/2004), Liljedahl (2013), DeBellis and 
Goldin (2006) and Goldin (2002). This generates four 
affective aspects of knowing mathematics: motivation, 
creativity, attitudes and beliefs. The data in this study 
consist of the 1992 national guidelines for the local 
oral examination (Ministry of Education, Research 
and Church Affairs, 1992) and the 2014 national rules 
for the local oral examination (Norwegian Directorate 
for Education and Training, 2014).

The framework leads to three points in the 1992 guide-
lines: the conversation form, the use of creativity and 
imagination, and the inclusion of local curricula and 
pupils’ project work. The guidelines explicitly empha-
size that the examination shall aim at having a conver-
sational format. This opens up for the teacher to focus 
on each of the framework’s four categories. The use of 
creativity and imagination directly points at creativ-
ity and indirectly points at motivation. The inclusion 
of pupils’ project work is an important aspect of the 
oral examination; according to the national guidelines 
(Ministry of Education, Research and Church Affairs, 

1992), project work is based on the pupil’s interests, 
ideas or experiences with social practice. Interests are 
part of the pupil’s intrinsic motivation (Deci & Ryan, 
2012). Our emotional feelings are highly context-de-
pendent (DeBellis & Goldin, 2006) and thus related to 
social practice. According to the 2014 national rules 
(Norwegian Directorate for Education and Training, 
2014), the most main point is that the pupils can show 
their competencies. The examination conversation 
may consider all the framework categories, but it is 
explicitly stated that the teacher and the external ex-
aminer choose the context for the examination. So the 
pupil’s autonomy is not considered important. The ex-
amination aims to assess how the pupils have achieved 
the competence aims for grade ten in the national 
mathematics curriculum (Norwegian Directorate 
for Education and Training, 2013). It turns out to be 
one single competence aim that a written test cannot 
assess: to develop, use and elaborate on methods for 
mental calculations. Based on the competence aims, 
the teacher can provide each pupil with problems so 
that the four categories in the framework are covered, 
but the national rules leave it to the schools to make 
this choice. Creativity and the pupils’ project work are 
not explicit issues for assessment in the 2014 examina-
tion. The teacher may hence provide the pupils with 
problems that concern the pupils’ attitudes, beliefs, 
motivation and creativity, but the 2014 national rules 
have no explicit requirement for this, unlike the 1992 
National guidelines. 

CLOSING WORDS

The overarching aims in the mathematics curriculum 
have changed since the local oral curriculum for all 
was introduced. The overarching aims in the mathe-
matics curricula from 1987 (Ministry of Church and 
Education, 1987) and 1997 (Ministry of Education, 
Research and Church Affairs, 1996a) present a pu-
pil-oriented perspective, which highlights that the 
teaching shall provide the pupils with opportunities 
to show what they know. The overarching aims in the 
2006 mathematics curriculum present a teacher-cen-
tred perspective with no teaching aims concerning 
the pupils’ affects.  

The 1992 national guidelines for the local oral exami-
nation (Ministry of Education, Research and Church 
Affairs, 1992) emphasize that the test has to assess 
aspects of the subject that are difficult to reveal in 
a written test. The 2014 national rules (Norwegian 
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Directorate for Education and Training, 2014) have no 
similar requirement. In 1992, the pupils’ project work 
was the basis for the examination; in addition, the 
pupils’ creativity and imagination were highlighted. 
This means that affective aspects of knowing math-
ematics were considered important. The guidelines 
point out that the test has to provide the pupils with 
opportunities to show what they know. In 2014, the 
teacher provides the pupils a problem or a task, and 
they get one school day to prepare a presentation of 
this task. At the examination the pupils discuss this 
presentation with the teacher and the external exam-
iner. The pupils’ social practice is hence not highlight-
ed the way it was in 1992. The 1992 national guidelines 
explicitly points out that the test has to provide oppor-
tunities for the pupils to use creativity, and “to show 
creativity” was one requirement for achieving the 
highest grade. The 2014 national rules do not consider 
creativity; nor do they focus explicitly on affective 
aspects of knowing mathematics. However, the main 
point in these rules, is that the pupils can show their 
competencies. Further research is necessary to pro-
vide a more thorough analysis of this issue. 
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The aim of this qualitative research is to identify 
Mexican high school students’ emotional experiences 
in the mathematics classroom. In order to obtain data, 
focus group interviews were carried out with 53 students. 
Data analysis is based on the theory of cognitive struc-
ture of emotions (Ortony, Clore, & Collins, 1988), which 
specifies eliciting conditions for each type of emotion 
and the variables that affect intensity. The participants’ 
emotional experiences are: satisfaction, disappoint-
ment, hope, fear, joy, distress, boredom, interest, pride, 
reproach, self-reproach, like and dislike with different 
eliciting conditions. These results show that all students’ 
emotional experiences are based on their appraisal in 
terms of a goal structure present in the mathematics 
classroom and in the school setting.

Keywords: Emotions in mathematics education, students’ 

emotions, emotions in mathematics classroom, appraisal 

structures, theory of cognitive structure of emotions.

INTRODUCTION 

In the field of mathematics education, most of the re-
search on students’ emotions focuses on their role in 
mathematical problem-solving (e.g., Goldin, 2000; Op’ 
T Eynde, De Corte, & Verschaffel, 2007). Among other 
results, these studies have confirmed that people tend 
to experience similar emotions in the process of prob-
lem-solving. By example Op’ T Eynde and colleagues 
(2007) found that students experience different emo-
tions while solving a problem. They can be annoyed, 
frustrated, angry, worried, anxious, relieved, happy or 
nervous. First, for instance, a student can be worried 
during the process of finding a strategy to solve a prob-
lem (this is evidenced by students’ use of descriptions 
such as “brow lowering” and “not feeling well”). The 
student becomes frustrated if the solution to the prob-
lem does not seem to appear after 10 seconds (“I don’t 

want to use the calculator”, “it does not help me”, “but 
I still want to reach the goal”). Later, panic appears 
and finally anger (“come on, what is this all about”). 

Research on emotions in mathematics education high-
lights the necessity to move beyond the view of distin-
guishing between positive and negative emotions.  It 
is also suggested to go beyond analysing emotions in 
problem solving and investigating emotions routine 
activity (Hannula, Pantziara, Wæge, & Schlöglmann, 
2010). So we have assumed the task to identify emo-
tional experiences in routine activities in mathemat-
ics classes. In order to go beyond a consideration of 
positive and negative emotions we use the cognitive 
structure of emotions theory (Ortony et al., 1988). This 
is the main reason to focus on the following research 
question: What are the students’ emotional experiences 
in high school mathematics classroom?

We are aware that the analysis of narratives of emo-
tional experiences is quite different from the direct 
analysis of emotions but, like Ortony and colleagues 
(1988, p. 8), we are willing “to treat people’s reports 
of their emotions as valid, also because emotions are 
not themselves linguistic things, but the most readily 
available non-phenomenal access we have to them is 
through language”. 

THE THEORY OF THE COGNITIVE STRUCTURE 
OF EMOTIONS

We have chosen the theory of the cognitive structure 
of emotions (by the initials of the surnames of the au-
thors OCC theory from now) to identify the students’ 
emotional experiences. For Ortony and colleagues 
(1988) emotions arise as a result of interpretations of 
situations by those who experienced them: “[Emotions 
can be taken as] valenced reactions to events, agents 
or objects, with their particular nature being deter-
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mined by the way in which the eliciting situations is 
construed” (Ortony et al., 1988, p. 13). Thus a particular 
emotion experienced by a person on a specific occa-
sion is determined by his interpretation of the chang-
es in the world: “When one focuses on events one does 
so because one is interested in their consequences, 
when one focuses on agents, one does so because of 
their actions, and when one focuses on objects, one is 
interested in certain aspects or imputed properties of 
them qua objects” (Ortony et al., 1988, p. 18).

Different types of situations that elicit emotions are 
labeled in classes according to a word or phrase corre-
sponding to a relatively neutral example that fits the 
type of emotion (Ortony et al., 1988). For example, to 
refer to the emotion type “pleased about the confirma-
tion of the prospect of a desirable event” they choose 
the emotion word satisfaction because it represents 
an emotion of relatively neutral valence among all 
those that express that you are happy about the con-
firmation of something expected. 

The characterizations of emotions in the OCC theory 
are independent of the words that refer to emotions, 
as it is a theory about the things that concern denota-
tive words of emotions and not a theory of the words 
themselves. From the distinction between reactions 
to events, agents, and objects, we have that there are 
three basic classes of emotions: “Being pleased vs. 
displeased (reaction to events), approving vs. disap-
proving (reactions to agents) and liking vs. disliking 
(reactions to objects)” (Ortony et al., 1988, p. 33).

Reactions to events breaks into three groups: one, the 
Fortunes-of-others group, focuses on the consequenc-
es for oneself of events that affect other people. The 
other two, the Prospect-based and Well-being groups, 
focus only on the consequences for oneself. Reactions 
to agents are differentiated into four emotions com-
prising the Attribution group. Reactions to objects 
lead to an undifferentiated group called the Attraction 
group. There is also a compound group of emotions, 
the Well-being/Attribution compounds, involving re-
actions to both the event and the agent simultaneously. 
It seems to be a general progression that operates the 
different groups of emotions in order: first reactions 
to events, then to agents, and finally to objects. From 
the previous considerations, the OCC theory specifies 
3 classes, 5 groups and 22 emotion types. To illustrate 
in Table 1, we present the corresponding emotions to 
the Prospect-based group.

To interpret emotional experiences in mathemat-
ics classes we have added two types of emotions in 
the Well-being group of emotions to the OCC theory 
(Martínez-Sierra & García González, 2014). We call 
them boredom and interest. These emotional experi-
ences are elicited by the appraisal that the students 
made of their own cognitive state: 1) states of alertness 
and concentration that produce understanding and 
learning in the case of interest, and 2) states of distrac-
tion and deconcentration that prevent understanding 
and learning in the case of boredom. Thus, we consider 
boredom emotions like “Displeased about an undesir-
able cognitive state of distraction” and interest like 

“Pleased about a desirable cognitive state of attention”. 

Class Group Types (sample name)

Reactions to 
events

PROSPECT-
BASED

Pleased about the prospect of a desira-
ble event (hope)
Pleased about the confirmation of the 
prospected of a desirable event (satis-
faction)
Pleased about the disconfirmation of 
the prospect of an undesirable event 
(relief )
Displeased about the disconfirmation 
of the prospect of a desirable event (dis-
appointment)
Displeased about the prospect of an 
undesirable event (fear)
Displeased about the confirmation of 
the prospect of an undesirable event 
(fears-confirmed)

Table 1: Emotion types according to the OCC theory (an extract)
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OCC theory specifies three global variables that affect 
the intensity of different emotions types, three central 
variables and nine local variables. They are briefly 
laid out in Table 2.

OCC theory defines goals as what one wants to achieve. 
There are three kinds of goals: active-pursuit goals 
(A-goals), interest goals (I-goals), and replenishment 
goals (R-goals). A-goals represent the kinds of things 
one wants to get done, like passing a course or finish-
ing university. I-goals are more routine goals and are 
necessary to achieve A-goals or support them, like 
passing a test. R-goals are those that should be satisfied 
from time to time in a cyclical nature, like attending a 
class. Furthermore, it is important to distinguish be-
tween all-or-nothing goals, like passing a test, and par-
tially attainable goals, like solving a problem. These 
distinctions allow oneself to determine the intensity 
of the different experienced emotions.

METHODOLOGY

Context 
The high school where the study was carried out lies to 
the west of Mexico City. Most of the students live in mu-
nicipalities bordering the metropolitan area of Mexico 
City located in the State of Mexico, they come from 
low economic extraction and most of their parents did 
not attend college-level. Most students’ mothers are 
housewives. Due to the inflexibility of the curriculum, 
all students have the same mathematics schooling path 
composed of six courses (one per semester) with five 
hours each class per week: 1) Algebra, 2) Geometry and 

Trigonometry, 3) Analytical Geometry, 4) Differential 
Calculus, 5) Integral Calculus and 6) Probability and 
Statistics. Generally, there is a traditional process of 
teaching and learning mathematics because mathe-
matics classes focus primarily on the teacher’s expla-
nation and the subsequent resolution of exercises by 
the students. 

Participants
We selected 53 regular students for the study (aged 
between 16 and 18 years, 29 men and 24 women). They 
were in their fourth semester. Participation was vol-
untary. We chose this type of participants because 
given his age we believe they would be able to verbal-
ize their emotional experiences. And since they have 
completed more than one year in high school, they 
would be able to inform us their experiences in math 
class in high school.The participants were officially 
registered in their fourth semester in the Differential 
Calculus course, which focuses on developing alge-
braic skills to study elementary Differential Calculus. 
The topics of this course are: (1) functions, limits and 
continuity, (2) algebraic functions derivatives and (3) 
transcendental functions derivatives. 

Data gathering procedure
Methodologically, we decided to access to the students’ 
emotions from their reports of experienced emotions 
because the focus of the research is on the students’ 
subjective experiences of emotions. Thus, we carried 
out nine focus group interviews of approximately 
one and a half hours during the mathematics classes 
in a regular classroom. We decided to use it because 

Class of emo-
tions

Group of emo-
tions

Local
variables

Central variables
Global 
variables

Reactions
 to events

Fortunes-of- oth-
ers

Desirability-
for-other
Liking
Deservingness

Desirability
(evaluated in terms of 
goals) Sense of reality

Proximity

Unexpectedness

Arousal

Prospect-based
Likelihood
Effort
Realization

Well-being

Reactions
 to agents

Attribution

Strength of cognitive 
unit
Expectation-deviation

Praiseworthiness
(evaluated in terms of 
standards)

Reactions to 
objects

Attraction Familiarity
Appealingness
(evaluated in terms of 
attitudes)

Table 2: Variables affecting the intensity of emotions according to the OCC
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we observed during previous research at the same 
school that students feel confident and comfortable to 
express their thoughts, feelings and emotions about 
various topics in focus group interview. 

For some researchers, individual interviews are more 
appropriate because emotions are personal. For oth-
ers, focus group interviews are better because the 
interaction with others, who potentially feel the same, 
allows more free expression (Krueger, 1994). In this 
regard Krueger (1994, p. 20) mentions that “the focus 
group presents a more natural environment than that 
of an individual interview because participants are 
influencing and influenced by others just as they are 
in real life”. Thus we consider that, in our research, 
the conducted focus group interviews are the correct 
choice. This is because our research goal is to identify 
whole participants’ emotional experiences; it is not 
our goal to identify the emotional experiences sepa-
rately for each of the participants.

The questions asked in the focus groups were: 1) 
What feelings or emotions do you experience about 
mathematics? Why do you feel this? 2) What feelings 
or emotions do you experience in the mathematics 
classroom? Why do you feel this? 3) What feelings or 
emotions do you experience just before a mathemat-
ics class? And later? Why do you feel this? 4) What 
feelings or emotions do you experience when you 
learn mathematics? And when do you do not learn? 
Why do you feel this? 5) What feelings or emotions 
do you experience when you solve a mathematical 
problem? And when you cannot? Why do you feel this? 
6) What feelings or emotions do you experience in a 
good mathematics class? And in a bad class? Why do 
you feel this? 7) What feelings or emotions do you ex-
perience when a mathematics teacher is explaining? 
Why do you feel this, 8) What feelings or emotions 
do you experience for a good mathematics teacher? 
And for a teacher that is not good? 9) What feelings 
or emotions do you experience in a mathematics as-
sessment? Why do you feel this?  10) What feelings or 
emotions do you experience in a mathematics test? 
Why do you feel this?

Two collaborators of the author conducted inter-
views. One is a PhD student in the field of mathemat-
ics education with experience in data analysis using 
the OCC theory (she is coauthor of the research of 
Martínez-Sierra & García González (2014)). The other 
interviewer is a research assistant with experience 

in conducting individual interviews and focus group 
interviews. Both interviewers are outside the every-
day context of students. The analysis was conducted 
by the author and discussed with the PhD student. 
Considering that triangulation the author wrote this 
version of the analysis.

Data analysis 
The videotaped interviews were fully transcribed. In 
the transcript, students were identified as Mn-Gk or 
Fn-Gk: M and F indicate that the participant is male or 
female; n (1 to 5 or 6) is the participant identification 
number; Gk (1 to 9) indicates the focus group num-
ber. We included explanations in square brackets in 
order to clarify some of the students’ expressions. 
According to OCC theory to identify a type of emotion 
we consider three specifications: 

1) Concise phrases that express all the eliciting con-
ditions of the emotional experiences. We high-
light with italic bold letters the concise phrases 
that shows the eliciting conditions of an emotion 
in the evidence. 

2) Emotion words that express emotional experi-
ence. We highlight with italic letters the concise 
phrases that show the emotions in the evidence.

3) Variables that affect the intensity of emotions. 
We underlined phrases that express intensity of 
the variables in the evidence. 

RESULTS 

Table 3 shows the students’ emotional experiences in 
the mathematics classroom.

To illustrate in the following we show in detail the 
evidence related disappointment emotions.

DISAPPOINTMENT EMOTIONS
Not being able to solve problems
Disappointment emotions are triggered when the in-
terest goal of solving problems is not attained.

M4-G8: I get angry, stress and with a headache if I 
am not able to solve a problem, because I cannot 
reach a solution.

There are two local variables that affect intensity of 
disappointment emotions: effort and probability. 
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The effort variable reflects the number of re-
sources that the student uses to solve a prob-
lem. These resources depend on the kind of 
problem; for example, the student can ask 
their teacher or classmates for help during 
classwork, but this is not possible in a test.

F2-G8: When I am not able to solve a prob-
lem then I ask myself what to do because I 
didn´t understand anything, so I ask for 
help from my teacher or a classmate.

A student can choose whether or not to solve 
a problem in a test. The student who chooses 
to solve it spends more time on it in order to 
reach a solution. This effort is linked to the 
interest goal of passing the test. If this goal 
is attained then it could trigger future active 
goal attainments like passing the course.

M1-G8: If the problem is in a test, then I 
will go to the extraordinary test.

The probability variable reflects the degree of 
a student’s belief that they will pass a test due 
to the solution of a problem. Disappointment 
emotions are more intense when the student 
believes that not passing the test is a conse-
quence of not being able to solve a problem.

M1-G4: I feel bad when I cannot solve a 
problem in a test, and I am constantly 
thinking of it until I get my grade. I get 
angry and depressed.

DISCUSION AND CONCLUSIONS 

We found statements about 12 of the 24 
types of emotions in our extended OCC the-
ory. Except for fears confirmed emotions, we 
confirmed the presence of all emotions in 
the prospect-based group (satisfaction, relief, 
disappointment and fear), well-being group 
(joy, distress, boredom and interest), attribu-
tion (pride, self-reproach and reproach) and 
attraction group (liking and disliking). 

There are three variables that intensify the 
prospect-based emotions triggered by the 
confirmation (satisfaction) or refutation of 
prospective situations (displeasure, hope and 

Group Type of 
emotion

Triggering situa-
tions

Variables 
that affect 
intensity

PROSPECT-
BASED

Satisfaction Being able to solve 
a problem

Hope Not being able to 
solve a problem

Fear Not understanding
Fearing mathemat-
ics class
Not passing a test

Desirability

Joy End of class
Being able to solve 
a problem at the 
blackboard

Desirability

WELL-BEING Distress Not being able to 
solve a problem in 
class
Not being able to 
solve a problem in 
a test
Going to the black-
board

Desirability

Boring Not understanding 
the teacher’s expla-
nation
Being in a non-dy-
namic class

Interest Being able to un-
derstand teachers’ 
explanations
Having a positive 
attitude towards 
the teacher
Being motivated to 
pay attention

Desirability

Pride Passing a course
Being able to solve 
a problem

ATTRIBUTION Reproach Reproaching the 
teacher

Self-
reproach

Not being able to 
solve a problem

Expectation-
deviation

Liking Understanding 
mathematics
Being able to solve 
a problem

ATTRACTION Disliking Not being able to 
solve a problem

Table 3: Students’ emotional experiences in a mathematics classroom
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fear): (1) the desirability of a situation based on the 
attachment of a goal (such as solving problems), (2) 
the degree of belief that a prospective situation will 
actually occur (such as passing a test) and (3) the num-
ber of resources used to obtain or avoid a prospective 
situation (such as solving a problem in a test).

Well-being emotions are intensified by the desirabil-
ity of the achievement of goals. Each goal is valued 
according to the goal structure of the student. The 
degree of this desirability is related to the degree to 
which the person expects positive consequences from 
the event. So, intensity of joy and interest emotions 
increases with desirability. On the other hand, inten-
sity of distress and boredom emotions increases as 
desirability decreases.

In attribution emotions, pride is intensified in the 
event that the student follows the rules in their con-
text. For example, a student will feel proud for the 
effort put into solving a problem or passing a course 
if this effort is worthy by itself. Intensity of reproach 
and self-reproach emotions increases depending on 
the deviation of the expected roles of students and 
teachers, as in the case of failing a course due to the 
teacher’s actions. 

Attraction emotions are intensified by the amount 
of time students have been attend-
ing mathematics courses. The num-
ber of courses attended affects stu-
dents’ emotional response: some of 
them consider mathematics to be a 
difficult but nice course and others 
simply don´t like it. This is not a tran-
sitory appraisal; it is the consequence 
of their academic life, which is still in 
formation and which influences their 
beliefs about mathematics.

We only found three types of goals 
that trigger all students’ emotions in 
this context, even when OCC theory 
states different appraisal structures 
for each type of emotion. These goals 
are: active-pursuit goals (A-goals), 
interest goals (I-goals), and replen-
ishment goals (R-goals). Their final 
structure is shown in Diagram 1. So, 
each situation has an implicit or ex-
plicit goal that triggers an emotion. 

This emotion will be positive or negative depending 
on whether the goal is achieved or not.

In Diagram 1 we express the different relationships 
between goals with arrows. An arrow from one goal 
to another means that the first goal may directly af-
fect the achievement of the second goal. For exam-
ple, passing a test is a goal that affects both passing 
a course and finishing high school. The diagram also 
expresses different ways to achieve a goal. For exam-
ple, understanding teacher’s explanations, paying 
attention in class or attending classes can help with 
the achievement of solving problems. Furthermore, 
the letter N above an arrow denotes that the first goal 
is necessary to achieve the second goal; the letter F 
denotes that the first goal facilitates the achievement 
of the second goal. For example, passing high school 
is a necessary goal to study at university and it facil-
itates getting a job.

Altogether the goal structure is an inherent part of the 
students’ high school tradition. Goals can be explicit 
or implicit. The goal structure can be taken as part of 
the “didactic contract” (understood as “the set of spe-
cific behaviours of the teacher which are expected by 
the student and the set of behaviours of the students 
which are expected”, Brousseau, 1997, p. 31), because 
it influences, along with the emotional reactions, the 

Diagram 1: Students’ structure of goals
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expected behavior of students and teachers in class. 
So, students direct their emotions in order to stimu-
late and guide their conduct to achieve goals that are 
implicitly or explicitly established in the mathemat-
ics class. This is consistent with the perspectives that 
highlight the complementary relationship between 
emotion and motivation in learning and performance 
(e.g., Kim & Hodges, 2011).

Finally, we consider that it is necessary to keep inves-
tigating students’ emotions (and teachers’) in differ-
ent academic settings and at different school levels. 
Appraisal theories could help to identify the specific 
appraisal structure for each academic setting and 
school level. In this sense, we consider that people 
experience the same emotions but with quite different 
appraisal structures even if each individual values 
an event depending on their own appraisal structure. 
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This study explored preservice mathematics teachers’ 
beliefs about mathematics teachers through asking 
them about their metaphors for mathematics teachers. 
Preservice teachers’ (N=249) metaphors and explana-
tions for mathematics teacher were analysed consid-
ering the categorizations developed for the NorBa-TM 
project based on the extended framework of Beijaard 
and colleagues (2000). Most of the preservice teachers 
described mathematics teachers as didactics expert and 
through their personalities. The findings are discussed 
and implications for field of mathematics teacher edu-
cation are presented.    

Keywords: Preservice teachers, metaphors, beliefs.

INTRODUCTION 

Teachers’ beliefs can provide us an insight on how 
and/or why they teach in a certain way (Cross, 2009). 
Beliefs about the mathematics teacher are likely to 
provide information about the roles teachers might 
assume in the mathematics classroom and how they 
might enact these roles. Despite the constructivist re-
form in mathematics education in Turkey since 2005, 
many teachers continued to conduct more traditional 
teaching (Avcu, 2014) and many preservice teachers 
come to teacher education programs with beliefs de-
veloped in these classrooms. However, teacher educa-
tion programs focus on more constructivist roles for 
preservice teachers and try to initiate related beliefs 
(Haser & Doğan, 2012). Understanding the image of 
teacher in preservice teachers’ minds might provide 
clues about the effectiveness of teacher education pro-
grams in helping preservice teachers develop beliefs 
which will help them in their future career. 

One way to understand preservice teachers’ beliefs 
about mathematics teachers is to analyse their meta-

phors for mathematics teachers. The word “metaphor” 
derives from Greek term “metapherein” which means 

“to carry over” (Green, 1971). Basically, when describ-
ing something with a metaphor we somehow trans-
fer the characteristics and experiences of one thing 
to another by considering the similarities between 
these two things (Lakoff & Johnson, 1980). Metaphors 
could be interpreted as blueprints of people’s thought 
(Martinez, Sauleda & Huber, 2001) and they work as 
creative instruments to deeply understand a complex 
phenomenon when it is rather difficult to describe it 
(Oksanen & Hannula, 2013). Therefore, metaphors are 
used by researchers in order to investigate preservice 
and in-service teachers’ beliefs about teaching and 
teaching environments which could be interpreted 
as complex constructs (Massengil-Shaw & Mahlios, 
2008). Teacher identity frameworks could be helpful 
in analysing metaphors for teachers. 

Beijaard, Verloop and Vermunt (2000) identified three 
distinct knowledge bases of teacher knowledge re-
flecting teacher’s professional identity. Accordingly, 
teacher identity could be expressed in terms of teach-
er as a subject matter expert, a didactic expert, and a 
pedagogical expert. Teachers as subject matter experts 
have deep knowledge in their discipline and transmit 
information to their students. Teachers as didactic 
experts have knowledge on planning, implementa-
tion, and evaluation of teaching and learning process 
to facilitate understanding for students. Teachers as 
pedagogical experts focus on caring and nurturing 
students’ holistic development (Beijaard et al., 2000). 
These three aspects of the model are connected with 
Shulman’s (1986) ideas of teacher’s content knowl-
edge, pedagogical content knowledge and pedagogical 
knowledge respectively. However, teacher identity is 
beyond what teachers should know; rather it focuses 
on what teachers consider as important in their pro-
fessional work (Beijaard, Meijer, & Verloop, 2004). 
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Löfström, Anspal, Hannula and Poom-Valickis (2010) 
have investigated and categorised preservice teachers’ 
metaphors for teachers by using this model of teacher 
identity. They further added self-referential metaphors 
to address teachers’ personality and suggested that 
metaphors could be labelled as contextual when they 
described characteristics of the environment teach-
ers worked in. Metaphors including more than one 
characterisation in equal emphasis were considered 
as hybrid. 

The above categorizations were investigated in pre-
service and inservice teachers’ metaphors in Finland. 
Findings suggested that the most frequent metaphor 
category referred by inservice mathematics teach-
ers was didactics experts (Oksanen & Hannula, 2013; 
Oksanen, Portaankorva-Koivisto, & Hannula, 2014), 
whereas preservice teachers mostly preferred self-ref-
erential metaphors (Oksanen et al., 2014). This differ-
ence might be due to the way participants were asked 
about their metaphors; inservice teachers were asked 
to complete “teacher is like…” statement and preser-
vice teachers were asked to complete “as a mathemat-
ics teacher I am…. ” (Oksanen et al., 2014). 

The purpose of this study was to explore preservice 
mathematics teachers’ beliefs about mathematics 
teachers by asking them about their metaphors of 
mathematics teachers. Another aim of the study was 
to pilot categorization of teachers’ metaphors sug-
gested by Löfström and colleagues (2010) based on 
Beijaard and colleagues’ (2000) model.

METHODOLOGY

Context and participants
The study was conducted at Elementary Mathematics 
Education (EME) Programs at four Universities in 
Ankara, Turkey. These four-year programs train 
teachers for teaching middle school mathematics 
(grades 5 to 8) and courses are determined by the 
Higher Education Council (YÖK), the governing body 
of all universities in Turkey. Although the courses are 
distributed differently in programs, two-semester 
methods of teaching mathematics courses are offered 
in the third year and practice teaching courses are 
offered in the fourth year of the program across the 
universities (YÖK, 2007). 

A total of 249 preservice teachers were accessed 
at the end of the spring 2014 and 226 of them (33 

male, 193 female) were the participants of this study. 
Participants were 3rd year (123) and 4th year (103) pre-
service teachers because they were the participant 
group relatively close to the mathematics teaching 
profession. Differences in metaphors due to year level 
in the programs were not the focus of the study. 

Data collection and instruments
The study was a part of a more comprehensive inter-
national comparative study NorBaTM (New Open 
Research: Beliefs about Teaching Mathematics, for-
merly known as NorBa) conducted in over 15 coun-
tries in order to investigate mathematics teachers’ 
beliefs. The questionnaire used for the present study 
was elaborated from the more comprehensive scale 
used in NorBaTM study. 

The metaphor questionnaire was composed of three 
parts. In the first part, participants’ age, gender, and 
year level in the EME programs were asked. Then, a 
brief description of the word “metaphor” was provid-
ed as a way of describing a concept by using similar-
ities to another concept. This description was given 
because the participants might not be familiar with 
the term “metaphor” or what it actually meant. A simi-
lar word used in Turkish language was also reminded. 
In the second and third parts, participants were asked 
to describe mathematics teacher and mathematics 
teaching respectively through metaphors and explain 
their metaphors. In this paper, their responses to 
the following statement are reported: “Mathematics 
teacher is like ………….. Because, ……………..” 

Researchers contacted the EME Programs at partic-
ipating Universities, after necessary ethics permis-
sions were granted. They were allowed to collect data 
towards the end of classes. Pre-service teachers who 
were at the provided place of data collection (classes) 
at the time of data collection were surveyed by the 
questionnaire. They were informed about the study 
by the researchers and given 20 minutes to complete 
the questionnaire. 

Data analysis was performed by employing the cate-
gorization explained below through a manual devel-
oped for the NorBa project (Löfström, Poom-Valickis, 
& Hannula, 2011). First, all three researchers carefully 
read and discussed about the metaphor categoriza-
tion. Then, a randomly selected 20% sample of data was 
coded by the researchers individually. Researchers 
compared their codes and discussed about the mi-
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nor differences in coding. This process helped the 
researchers to make more sense of the categorization 
and the possible examples in data for these catego-
ries. This pilot coding was completed with almost 100% 
agreement. Then, all data were coded by the research-
ers individually through the specified categorization. 
Three researchers compared their coding of data case-
by-case. A total of 23 cases including 5 no-response, 9 
invalid (cases which researchers could not code), and 
9 undecided (cases which researchers could not agree 
on the final categories) cases were removed from the 
data. Remaining 226 cases were considered as the data 
of the study. The disagreements that appeared during 
the comparison of researchers’ coding were discussed 
to avoid over-interpretation of the explanations.

RESULTS

Distribution of metaphors used by preservice mathe-
matics teachers is presented in Figure 1 below. While 
the didactics (29.6%) and self-referential (26.5%) cat-
egories were seen as the highest categories, only a 
small portion of the participants preferred to use 
contextual metaphors (2.2%). 

Teacher as didactics expert (29.6%) 
Teacher as didactics expert was the most frequent 
metaphor in the current study. Preservice teachers in 
this group mostly described mathematics teacher as 
a guide who assisted students to discover and under-

stand the world of mathematics, and helped students 
when they had difficulty in mathematics, with meta-
phors such as guide (3 times), light (2 times), candle, 
star, and map. Participants also mentioned that math-
ematics teacher used different ways and methods to 
facilitate mathematical learning of students. For 
instance, one participant considered a mathematics 
teacher like an enzyme: 

Mathematics teacher supports students to dis-
cover mathematical ideas through questioning, 
making inferences and evaluations. Like an en-
zyme in chemical reactions, a good mathematics 
teacher can facilitate the mathematical learning 
of students, whereas a bad mathematics teacher 
might cause to slow down this learning process. 

Some of the preservice teachers who emphasized 
the importance of using different methods also de-
scribed mathematics teacher as a creative artist who 
performed different roles in a mathematics lesson 
in order to gain attention of students and implement 
non-routine mathematics instruction.

Another common characteristic for mathematics 
teachers was providing a basis for students’ mathe-
matical knowledge. Preservice teachers who stressed 
this issue generally associated mathematics teaching 
with constructing a building:

Figure 1: Distribution of metaphors used by the preservice mathematics teachers
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Mathematics teacher is like a contractor. If a 
contractor uses high quality material and prop-
erly constructs the base, the building becomes 
strong. Similarly, if a teacher teaches the topics 
by enabling meaningful learning instead of rote 
learning, students’ mathematical knowledge be-
comes strong.

Self-referential metaphors (26.5%) 
In self-referential metaphors, there was an emphasis 
on mathematics teachers’ characteristics which were 
not related with teaching or mathematics teaching 
profession. Some of these metaphors were used to 
appreciate mathematics teachers, whereas some to 
criticize them. Common positive characteristics of 
mathematics teachers were stated as being smart, 
hardworking and practical. Some metaphors describ-
ing these positive characteristics were an ant (often 
used to describe hard working people in Turkish 
culture), small house appliances, and human brain. 
Participants appreciated mathematics teachers by 
stating that mathematics was difficult and only smart 
people could do mathematics.

Surprisingly, some preservice teachers mentioned 
mathematics teachers’ negative characteristics by 
portraying them as insensitive machines such as 
robots or computers. Often, they were not friendly 
with students:

Mathematics teacher is like a gravestone. They 
get tough with the class and do not ever smile. 

Some other negative characteristics attributed to 
mathematics teachers were being arrogant and scary. 
These negative characteristics were rather stated as 
how mathematics and mathematics teachers were 
perceived by students:

Mathematics teacher is like a doctor. A child who 
is afraid of getting a shot does not like the doctor. 
[Similarly,] when a student does not like mathe-
matics, s/he does not like mathematics teacher. 
When s/he is afraid of mathematics, s/he is also 
afraid of mathematics teacher.

Participants also frequently stressed that mathemat-
ics teacher should be patient while teaching math-
ematics, which was a difficult job. Patience stone 
(a phrase used to describe a very patient person in 

Turkish culture, 3 times) and gardener (2 times) met-
aphors were used to emphasize this characteristic.    

Hybrids (15.5 %) 
Hybrids were metaphors including more than one 
category. The most common category in hybrids was 
didactical expert (27 times). Didactical expert cate-
gory was generally expressed together with subject 
expert (11 times), pedagogical expert (10 times) and 
self-referential (9 times) categories. The following 
metaphor included both didactics and subject expert 
aspects:

Mathematics teacher is like a chess player. For a 
chess player, it is not enough to know how each 
chessman moves. The player also needs to know 
how to develop tactics to win the game. Similarly, 
mathematics teacher needs to know all of the de-
tails of the topics and apply this knowledge to 
the lesson considering the students’ needs and 
backgrounds. 

Another observable issue about hybrids was that the 
number of hybrids including contextual elements 
(7/35) was more than the uniformed contextual met-
aphors (5/191). It seemed that preservice teachers 
preferred to use contextual elements by considering 
other characteristics of a teacher. 

Teacher as pedagogical expert (15%) 
Preservice teachers who stated metaphors in this cat-
egory generally mentioned the guiding mission of 
mathematics teachers in students’ lives. Mathematics 
teachers should support the development of students 
as human beings and thus, they should enlighten stu-
dents’ lives such as the sun (3 times), light, lighthouse, 
and pole star. For instance, one participant portrayed 
the mathematics teacher as the sun and the moon:

Mathematics teacher enlightens his/her students. 
S/he tries to guide them and helps students to re-
alize the things around them. Then, s/he observes 
what they can do by themselves. This is the time 
when mathematics teacher is like a moon. S/he 
does not leave them alone, s/he supports them 
like how moon looks after the night. 

Another common issue was the caring and nurturing 
characteristics of mathematics teachers where they 
were described as merciful and helpful. Metaphors 
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for the caring characteristics were mother (3 times) 
and father.   

Teacher as the subject matter expert (11.1%)
Preservice teachers who described mathematics 
teachers as subject matter experts generally focused 
on two characteristics of mathematics teachers: (i) 
being knowledgeable and (ii) performing operations 
without making mistakes. 

In the first group, there was a clear emphasis on the 
knowledge of mathematics teachers as indicated by 
metaphors such as book, journal, and encyclopaedia. 
In these metaphors, mathematics teachers were char-
acterized as having accurate knowledge of mathemat-
ics similar to a book. Some participants indicated that 
a mathematics teacher was not only knowledgeable 
in mathematics, but also knowledgeable in the other 
content. 

In the second group of metaphors, there was an em-
phasis on the calculation skills of mathematics teach-
ers. Mathematics teachers could successfully perform 
operations and solve problems in a short time without 
making mistakes. Metaphors such as smart phone, 
calculator, and computer were stated:

Mathematics teacher is like a calculator. A math-
ematics teacher should perform operations very 
efficiently otherwise, s/he might be interpreted 
as weak. S/he is expected to answer questions 
immediately. 

Contextual metaphors (2.2%) 
In the current study, only five preservice teachers 
uniformly mentioned the contextual factors while de-
scribing mathematics teachers with metaphors. Two 
of these preservice teachers focused on what it meant 
to be a mathematics teacher in Turkey. They indicated 
that it was difficult to be a teacher and a mathematics 
teacher in Turkey, and it was not appreciated enough:

Mathematics teacher is like a slave. Because, a 
teacher has no value in this country. Furthermore, 
it is not a well-paid profession and thus, I just con-
sider him/her as a slave. 

Another stressed issue was related with how mathe-
matics was seen in the society. Negative bias and fear 
of mathematics were the main foci:

Mathematics teacher is like a bogy. In our coun-
try, teachers shout and get mad at students. 
According to my observations, students are es-
pecially scared of the mathematics teacher. 

DISCUSSION AND CONCLUSIONS

What do these metaphors tell us? They seem to address 
that preservice middle school mathematics teachers 
prioritize didactics knowledge and skills when they 
consider a mathematics teacher as evidenced in 
their didactics expert and hybrid metaphors. For the 
Turkish context, the frequent reference to didactics 
expert might be a reflection of the courses on mathe-
matics teaching and learning offered in the 3rd and 4th 
year where the guiding characteristic of mathematics 
teachers for students’ learning was emphasized. EME 
programs had a major change in 2006 and the num-
ber of pedagogical content knowledge courses were 
increased without decreasing the number of mathe-
matics content knowledge courses. A study conducted 
in the previous version of the EME program with less 
number of pedagogical content knowledge revealed 
that preservice teachers mostly believed that a math-
ematics teacher should have mathematics content 
knowledge, then pedagogical content knowledge, and 
then pedagogical knowledge (Haser & Doğan, 2012) 
in Shulman’s (1986) terms. This corresponds to being 
subject expert, then didactics expert, and then peda-
gogical expert in the current study. Considering these 
findings, we cautiously speculate that the emphasis on 
pedagogical content knowledge courses in the last two 
years of the EME programs might affect preservice 
mathematics teachers’ metaphors towards didactics 
expert. However, since we did not collect data from 
1st and 2nd year students, we do not have information 
about preservice teachers’ metaphors in the first two 
years of the program and this interpretation is very 
limited. On the other hand, Finnish preservice teach-
ers described teachers mostly by their personality 
(self-referential metaphors) when they were asked in 
a rather personalized or subjective way (Oksanen et 
al., 2014), which could be the case in Turkish context 
if we had asked in a personalized way.

Preservice mathematics teachers who described a 
subject matter expert mostly emphasized procedural 
knowledge of mathematics rather than conceptu-
al knowledge. Preservice mathematics teachers in 
EME programs have been reported to have both con-
structivist and traditional beliefs about the nature of 
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mathematics (Kayan, Haser, & Işıksal, 2013). It seems 
that metaphors provided a different window for us 
to gain more knowledge about beliefs that preservice 
teachers might have carried from their precollege 
education. 

Self-referential metaphors were stated mostly in re-
lation to mathematics. Being a mathematics teacher 
was valued by emphasizing that teaching mathemat-
ics required being hardworking, smart, and patient. 
Surprisingly, some participants criticized mathemat-
ics teachers for being rather unfriendly and scary. 
It was not clear whether participants described the 
mathematics teachers in the eyes of the students or so-
ciety, or what a mathematics teacher meant for them in 
their explanations. Therefore, what these metaphors 
communicated in terms of preservice teachers’ beliefs 
about mathematics teachers remained inconclusive.

Oksanen and colleagues (2014) state that hybrid met-
aphors might reflect the complexity of the teaching 
profession. Hybrid metaphors might provide infor-
mation about how different sides of the mathematics 
teaching profession are internalized and integrated. 
We argue that the effectiveness of teacher education 
programs might be traced by the hybrid metaphors 
that preservice teachers could develop. If preservice 
teachers would be able to explain their metaphors by 
referring to different types of teacher characteristics, 
could this be a reflection that they have developed a 
more comprehensive image of a mathematics teacher 
in their minds? This might be an issue for a further 
discussion and research in which preservice teach-
ers’ metaphors could be investigated through their 
studies in the teacher education programs and also 
based on the nature of the programs.

Contextual metaphors were the least mentioned met-
aphors in this study. This could be a reflection of the 
insufficient school experience in teacher education 
programs. Preservice middle school mathematics 
teachers spend 4 hours per week in the first semes-
ter and 6 hours in the second in their senior year in 
the program. This experience focuses on observing 
and generally includes 1 or 2 hours of teaching for 
the whole year. Therefore, they might not be experi-
encing the contextual elements about being a teacher 
as inservice teachers do. However, Finnish inservice 
teachers also did not state contextual metaphors 
much (Oksanen & Hannula, 2013). Yet, it might be the 
case that crowded classrooms and lack of sufficient 

instructional materials in Turkish schools (OECD, 
2009) could result in more contextual metaphors if 
the study had been conducted with inservice teachers, 
compared to the Finnish case.

Using metaphors to gain insight about preservice 
teachers’ certain beliefs also revealed evidences 
about other beliefs. Preservice teachers stated beliefs 
about the nature of mathematics in their explanations. 
Many explanations referred to society’s views about 
the nature of, teaching, and learning mathematics. 
It seemed that asking metaphors might offer more 
or other than what was intended in the beginning. 
Asking specific experiences, significant person, or 
events that have caused to state their metaphors could 
provide more windows into participants’ mathemat-
ics related beliefs.  

The metaphor framework based on Beijard and 
colleagues (2000) model was effective in analysing 
Turkish metaphor data in this study. The eliminated 
data were difficult to conclude on a category due to the 
content they included. It should be noted that Turkish 
data for metaphors do not reveal participants’ gender 
preferences (unless asked) in referring to a teacher 
because Turkish language does not have gender dif-
ference in referring to a person. 

Certain limitations should be considered in making 
sense of the findings of this study. First, written data 
might not be as detailed as verbal data. Interviews 
conducted on these metaphors could have provided 
more insight into preservice teachers’ beliefs about 
mathematics teacher. Participants might have written 
more about their explanations if they had been given 
more time. 
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The article describes and analyses theoretical and em-
pirical materials the experienced emotions by pupils 
when learning mathematics in primary school and 
highlight the factors arousing emotions in learning 
mathematics in primary school. The article analyses 
the data obtained in empirical research on the emotions 
experienced by pupils during mathematics lessons in 
primary school. In questionnaires and semi-structured 
interviews pupils reveal what gave them positive emo-
tions in mathematics lessons, as well as what made them 
experience negative emotions. According to the analysis 
of empirical data we highlighted the factors of learning 
mathematics in primary school which caused positive 
emotions.

Keywords: Basic emotions, pupils, mathematics, primary 

school.

INTRODUCTION 

The great pace of life in the contemporary society de-
mands emotionally powerful people, able to maintain 
a positive attitude towards life, overcome the fast in-
creasing tension and stress, sustaining appropriate 
self-esteem, healthy self-confidence (Helmane, 2010). 
One of the meaningful components creating a har-
monious individual is emotions. Emotions mobilize 
each individual’s psychic and physical strength for 
the further activity to reach the goal, or prevent and 
hinder the individual’s activities, participation in the 
diverse life- activity processes (Izard, 1991; Thompson 
& Meyer, 2007). Therefore, it is necessary to be aware 
of the factors which evoked positive emotions in pu-
pils when learning mathematics at school. The aim of 
the research is to investigate the experienced basic 
emotions by pupils when learning mathematics in 
primary school and highlight the factors arousing 
emotions in learning mathematics in primary school. 

MATERIALS AND METHODS 

The essence of basic emotions
Basic emotions appear already in the first years of 
life through all cultures and with slight or without 
variations (Izard, 1991; Miezitis, 1992), they are based 
on the demonstration of a person’s movements and ex-
pressions (Carlson, 1990). All basic emotions possess 
the following characteristic features: they attract a 
clear, strong feeling which a person is aware of; they 
develop as a result of evolution - biological process-
es; they have an organizing and motivating affect on 
the person, serve for his adaptation (Izard, 1991) and 
manifest themselves in expressive and specific config-
uration of the movements of facial muscles - mimics 
(Izard, 1991; LeDoux, 1998). 

The physiological base of such positive basic emotions 
as joy, interest, surprise (Kagan & Havermann, 1980; 
Ekman, 1984; Carlson, 1990; Izard, 1991; Miezitis, 1992) 
is mainly excitation process. Positive emotions tone 
up the body’s activities and activate the person, gen-
erate strength and energy as well as enhance the per-
son’s capability of mental work, increase energy, pro-
mote heuristic or creative processing (Carlson, 1990; 
Ambady & Gray, 2002; Fredrickson, 2004). However, 
negative basic emotions: anger, hatred, disgust, fear, 
shame, fault, sorrow (Kagan & Havermann, 1980; 
Ekman, 1984; Carlson, 1990; Izard, 1991) are based on 
retention process. Negative emotions usually depress, 
even paralyse a person as well as decrease a person’s 
activity and also reduce energetic resources (Carlson, 
1990; Selighran, 1995). Negative emotions are associ-
ate with reduced accuracy on tasks that tap memory, 
intelligence, and executive functioning (Hartlage et 
al., 1993; Veiel, 1997). Therefore, emotions may have a 
positive or negative affect on a person’s life processes, 
becoming a determining force of a person’s action in 
crucial moments of life.
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Emotions in teaching-learning process
Emotions are involved in almost every aspect of the 
teaching and learning process (Schutz & Lanehart, 
2002). Pupils’ emotions are formed at the interface of 
personal, contextual, and social aspects of learning 
(Volet & Järvelä, 2001; Ainley & Hidi, 2002; Schutz & 
Pekrun, 2007). The teaching/learning process based 
on positive emotions proceeds more successfully. 
If we do something with pleasure, we will try to do 
the same in future (Frenzel, Perkun, & Goetz, 2007). 
Within positive emotions a more profound approach 
to the acquisition of various skills and knowledge 
develops which facilitates openness to new things, 
creativity and energy to be productive (Olsonm & 
Torrance, 1996; Gorman, 2001). The positive emotions 
become a strong motivating, suggestive factor for fu-
ture actions (LeDoux, 1998; Linnenbrink & Pintrich, 
2000; Fredrickson, 2001). If successful, emotions 
positively motivate and reinforce several extremely 
successful activities, guesses and ideas which came 
up during the completion of tasks. 

However, negative emotions direct attention and cog-
nitive processing in a negative way (Power & Dalgleish, 
1997; Linnenbrink & Pintrich, 2004), reduce the effec-
tiveness of learning, the working memory, the ability 
to acquire various types of knowledge, skills as well 
as creativity (Olsonm & Torrance, 1996; Linnenbrink 
& Pintrich, 2000). If pupil is doing something with 
negative emotions, he/she will try to stop doing it in 
all possible ways in future (Frenzel, Perkun, & Goetz, 
2007). Also monotonous, boring learning process and 
failures cause negative emotions (Selighran, 1995).

Learning mathematics is connected with the pupil’s 
individual experience in mathematics and applying 
it in everyday life, the perspective of his individual 
learning where emotional factors are as significant 
and important as cognitive factors in learning pro-
cess (Tosse, Falkencrone, Puurula, & Bergstedt, 1998). 
Emotions also include and sustain pupils interest in 
learning material (Ainley, Corrigan, & Richardson, 
2005; Krapp, 2005), in teaching/learning content. 
Paris and Ayers (1994) underline the value of emotions 
in learning process - nobody can develop mathematics 
or intellectual values without emotions, especially in 
mathematics. The positive learning experience can 
help to change negative thoughts and feelings and 
raise pupils’ motivation in learning process (Paris 
& Ayers, 1994). Pupils who experience more positive 
emotions may generate more ideas and strategies. In 

addition, emotions can have an impact on different 
cognitive, regulatory and thinking strategies (Pekrun, 
1992), affect categorising, thinking and problem solv-
ing (Sutton & Wheatley, 2003). In contrast negative 
emotions may trigger the use of more rigid strategies, 
such as simple rehearsal and reliance on algorithmic 
procedures, thus leading to reduced attention and 
more superficial processing of information (Pekrun 
et al., 2002). If a pupil feels sad, she/he may be preoc-
cupied with thoughts about negative emotions and 
unable to refocus her/his attention on educational 
information. This would have implications for chil-
dren’s academic performance (Davis & Levine, 2013). 
Negative emotions also commonly disrupt mathemat-
ics learning. Some children have a condition termed 
math anxiety that is characterised by fear of math-
ematics (Ashcraft, 2002; Hinton & Miyamoto, 2008). 
This emotional state disrupts cognitive strategies and 
working memory (Ashcraft & Kirk, 2001). 

Research of pupils’ basic emotions 
in mathematics lessons
The research of emotions experienced by pupils in 
mathematics lessons in primary school was carried 
out in Grade 3 in four Riga schools, total of 107 pu-
pils (age 8–9). The selection of the schools involved 
into the research was done by intentional assessing 
of the school environment descriptions, based on the 
similarities of the following qualities: school social 
economic environment, ethnic environment, school’s 
physical environment, time-table, the number of pu-
pils in the school, as well as the length of the teachers’ 
pedagogical experience. The selection of the classes 
involved into the research was done by intentional 
assessing of the mathematics lessons descriptions, 
based on the similarities of the following qualities: 
National Basic Education Standard (2006), math-
ematics text books according to List of Confirmed and 
Published text books (2009), 4 mathematics lessons 
per week. The research was done within the academic 
year over the period from 2012 to 2013 in which pupils 
self-evaluate experienced basic emotions while learn-
ing mathematics in primary school were explored. 

The data were obtained applying such empiric re-
search methods as questionnaires with open ques-
tions, semi-structured interviews and test as Dembo’s 
methodology for self-assessment of basic emotions 
(Helmane, 2010). The aim of empirical research meth-
ods was to select and to specify the experienced basic 
emotions by pupils in mathematics lessons in primary 
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school and the factors evoking emotions in general 
learning mathematics situations in primary school. 

The pupils were asked to fill in a questionnaire about 
the experienced basic emotions while learning math-
ematics. The pupils of Form 3 involved in the research 
marked individually on Likert-type scale positive 
emotions (joy, interest, surprise) and negative emo-
tions (anger, disgust, fear, shame, fault, sorrow) ex-
perienced while learning mathematics in primary 
school. When marking every basic emotion, the pu-
pils took into consideration Likert- type scale where 1 
point corresponds to the answer – never experienced 
the given emotion, 3 points correspond to the answer – 
the emotion has often been experienced, but 5 points 
meant that the emotion has always been experienced.

During the further survey the pupils individually 
reflected and pointed out at least 3 factors, stimuli, 
situations which evoked positive basic emotions at 
school as well as pointed out at least 3 factors, stimu-
li, situations when they felt negative basic emotions. 
The data obtained from questionnaires were speci-
fied in semi-structured interview where the pupils 
supplemented the answers to the questions about the 
factors evoking basic emotions. The peculiarity of 
this semi-structured interview was that the questions 
previously were not formulated precisely, and also 
their succession was not strictly determined, however, 
during the interview it was clarified to what extent, on 
what conditions, in which situations the pupils expe-
rienced positive or negative emotions while learning 
mathematics in primary school as well as specified 
the factors evoking these emotions, their exposure 
according to the criteria set out for the research. Each 
individual interview was about 15 minutes long, it was 
recorded, transcribed and coded. 

RESULTS 

The data obtained according to Likert-type scale as a 
result of questionnaires by 107 pupils testify that dur-
ing school time pupils’ experienced positive and nega-
tive basic emotions at similar intensity. The situations 
when the pupils experienced or not experienced dis-
tinct positive emotions during learning mathematics 
are not in majority. In contrast, when evaluating basic 
negative emotions, the pupils indicate that they did 
not feel disgust or were ashamed in math lessons (see 
Picture 1). 

It is characteristic that the pupils often experienced 
such positive basic emotions as joy and interest in 
mathematics lessons. In most cases, the pupils’ inter-
est and joy were aroused by the opportunity to use 
visual aids, play didactic games and the teacher’s 
positive attitude in mathematics lessons. However, a 
positive evaluation of the given tasks and activities in 
mathematics has been a precondition which aroused 
joy, interest and surprise in pupils. In most cases, the 
pupils experienced such negative basic emotions as 
fear, shame and sorrow in mathematics lessons. These 
negative emotions caused the situations related to a 
pupil’s incompetence, failure in doing a certain math-
ematics task as well as the cases when pupils encoun-
tered with a negative assessment of their work and the 
comparison of their work with that of the other pupils.

The majority of pupils (86%) confirmed in semi-struc-
tured interview and questionnaires that in math-
ematics lessons, it was interesting to work with 
small countable material. Joy, interest and surprise 
in pupils were aroused by the opportunity to do math-
ematics tasks with the help of sticks, fingers, coins and 
banknotes. As a result of manipulation, the experi-

0

10

20

30

40

50

60

Joy Interest Surprise Anger Fear Shame Fault Sorrow Disgust

Number of 
respondents

No
Sometimes
Often
Very often
Always

Figure 1: Pupils experienced basic emotions in mathematics lessons
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enced positive emotions by pupils are related to the 
opportunity to get acquainted with mathematics skills 
more successfully, solve problems. Frequently, pupils 
mention varied didactic games with small countable 
material as a factor which generates positive emo-
tions. It is testified by pupils’ comments on the same 
question: 

Interviewer:  What is interesting in maths les-
sons?

Pupil: For me... to count with sticks and money 
banknotes.

Interviewer:  What surprises you in mathemat-
ics?

Pupil: The teacher allowed me to count with 
fingers.

Interviewer:  Count with fingers?
Pupil: Yes, it is cool, I can count everything...

but mum does not allow to do it at home...

According to pupils’ (92%) answers a factor evoking 
positive basic emotions is drawings, pictures in math-
ematics textbooks which attract pupils’ attention, as 
well as facilitate the perception of the essence and 
conditions of the task. Pupils are happy about the ob-
jects seen in the pictures of the tasks, their reinforcing 
function in perception of the conditions and essence 
of the mathematics task. The pupils have interest in 
the tasks which are visualized in textbooks with the 
help of pictures and drawings, for example:

Interviewer:  What surprises you in maths les-
sons?

Pupil: I have a colourful and beautiful maths 
textbook.

Interviewer: What is colourful and beautiful 
in it?

Pupil: A lot of pictures, I like that.
Interviewer:  What do you do with pictures?
Pupil: I look at them, then I understand and...

do correctly.

The teacher’s personality as a factor evoking emotions 
can initiate both basic positive and negative emotions. 
The majority of pupils (44%) comment that positive ba-
sic emotions have been evoked by a sensitive, creative 
teacher, who has a positive attitude towards the pupil, 
interest in mathematics as a subject. The pupils expe-
rienced positive basic emotions in such mathematics 
lessons which were exciting, interesting, not boring. 
In these lessons, the pupils had joy about varied or-

ganizational forms of the teaching process (group 
work, games, research, manipulative activities), when 
the pupils were provided with the opportunity to be 
active participants of the study process. The interest 
in pupils was aroused by the explanation of theoret-
ical concepts and the essence of mathematics skills 
with the help of real objects, thus the study content 
to be obtained was explained visually, for instance: 

Interviewer: What is interesting in your maths 
lessons?

Pupil: I have the best teacher; it is so cool to 
learn together with her, she shows 
everything.

Interviewer: How does she show everything?
Pupil: With money notes, drawings...we also 

play games...and she smiles all the time, 
she does not yell.

In the cases, when pupils (36%) experienced negative 
basic emotions during school years, the teacher of 
mathematics had not listened to pupils’ thoughts, had 
not allowed them to be active participants of the study 
process, sometimes the teacher’s working style had 
been authoritarian. Pupils experienced fear of the 
teacher’s reaction about the incorrectly solved prob-
lem, anger about the teacher’s intolerant attitude to 
the pupil’s incompetence and failure in mathematics 
lessons. Negative emotions anger and disgust in pu-
pils were also initiated by monotonous, uniform 
mathematics lessons where pupils were passive per-
formers of the teacher’s instructions. For instance:

Pupil: I hate to go to the lesson, where it is bor-
ing and not interesting.

Interviewer: How is it – boring?
Pupil: Every day the same – sit and do tasks.

Very often in questionnaires pupils (88%) mention 
their personal achievements and success in math-
ematics lessons as a prerequisite initiating positive 
emotions when each success allowed to experience 
positive emotions. Also, the recognition of the 
achieved (69%) has often evoked positive emotions. 
Pupils experienced joy and surprise if they could 
solve a mathematics task correctly and received a 
positive assessment for their work according to each 
pupil’s individual contribution and growth. Joy was 
also aroused by such situations where pupils were 
able to solve different problems of higher difficulty 
level. Failures in most of the cases caused negative 
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emotions in pupils (74%). The pupil’s mistakes were 
not perceived as an opportunity to develop correct 
mistakes and master the skill. In mathematics lessons, 
pupils felt angry about the inability to do a task or 
could not successfully solve the problems given to 
them in mathematics test. Fear and shame are evoked 
in pupils in such situations when they are made to 
demonstrate their inability in front of other pupils, 
for instance, when solving a problem unsuccessfully 
at the blackboard. Pupils feel ashamed when they do 
not understand a mathematics task, if it is compared 
to the positive achievement of other pupils in math-
ematics. For instance: 

Interviewer: What are you afraid of in maths 
lessons?

Pupil: I am afraid to solve problems because 
I can solve them incorrectly.

Interviewer: Do you need to be afraid of that?
Pupil: If there is a mistake, it will be bad... oth-

ers will get to know.

When characterizing mathematics content, pupils 
in most of the cases mention the acquisition of word 
problem (78%) and multiplication within the table 
(72%) as a factor which evoked negative emotions 
while learning mathematics. In a questionnaires and 
semi-structured interview pupils clarify the experi-
enced negative emotions as incomprehension about 
the necessary activities for doing the task, an insuffi-
cient skill to read a word problem. Most of the pupils 
emphasize that negative emotions anger, sorrow and 
fear while solving word problems were experienced 
also because the word problems did not arouse their 
interest and did not have connection with real life 
and the surrounding processes. When mastering 
multiplication within the table, pupils name the main 
reason for having negative emotions shame and fault 
i.e. learning multiplication table by heart without the 
comprehension about relationships in the multipli-
cation table: 

Interviewer: What do you feel ashamed of?
Pupil: That I have to memorize multiplication 

table.
Interviewer: Is it difficult to memorize?
Pupil: I cannot remember so much by heart... 

I cannot count as fast as it is necessary, 
I want to think a little...Multiplication 
is terrible, why must I memorize it?

Pupils (73%) experienced positive emotions most of-
ten while mastering addition and subtraction skills at 
school. Pupils point out that they willingly did arith-
metic operations, it was easy and understandable. The 
joy experienced by pupils is mainly characterized as 
a qualitative application of mathematics skills during 
the solution of mathematics problems, for instance: 

Interviewer: What are you most of all pleased 
in mathematics?

Pupil: About numbers and their addition. It is 
terrific because I have to add numbers 
and I can make it because I can do it eas-
ily. 

Partly experienced negative emotions sorrow, anger 
are in the acquisition of the following mathematics 
content: mastering fractions (64%), mathematical 
variables and measures (57%), pupils consider boring 
such tasks where they mechanically have to perform 
mathematical transformations and express relation-
ships between variables and measures, and it is not 
shown in which life situations and how these acquir-
able skills could be applied. 

CONCLUSION 

The mathematics learning process needed to include 
and use that sort of positive emotion-causing stimuli: 
the manipulation activities with objects, based on the 
practical independent activity with diverse visual 
aids, rational work modes acquiring by manipula-
tion with objects; the purposeful system of exercis-
ing, where the pupils clearly recognize the exercise 
aim, understand the execution of the exercise, the 
exercises are arranged in a well-considered system, 
disseminated in time, the exercises also include the 
revision of the mathematical skill and they are mis-
cellaneous; the use of the skills in diverse life-activity 
situations where the diverse work forms, methods 
and approaches are applied, integration possibility 
into other subjects, miscellaneous exercises accord-
ing to their contents, forms (Helmane, 2010). 

As a result of the research, it is possible to select the 
factors facilitating positive emotions while teaching 
mathematics in primary school: curriculum which 
is easy for a pupil to understand and perceive, which 
is encouraging, in good arrangement, intensity and 
appropriate difficulty level; efficient techniques of 
work and visual aids are used in the acquisition of 



Basic emotions of primary school pupils in mathematics lessons  (Ineta Helmane)

1200

skills; also the pupils’ activities are practical and in-
dependent; diverse forms of work, methods, especial-
ly the method of play are used in the acquisition of 
skills which encourage a pupil’s active participation 
and mobilization of potential in order to achieve the 
desired objective; communication with peers and the 
teacher; evaluation of a pupil’s progress and achieve-
ments by the teacher, peers, also self-esteem.
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The aim of this study was to develop a valid and reliable 
scale for 5th grade students in Turkey to investigate their 
mathematics-related beliefs. For this purpose, a math-
ematics-related belief scale was constructed by the re-
searchers based on Op’t Eynde, De Corte and Verschaffel 
(2003) framework and piloted by 390 5th grade students 
from 2 middle schools in Ankara, Turkey. Data were 
analysed by descriptive and inferential statistics. Factor 
analysis revealed three factors: beliefs about mathemat-
ics and mathematics learning, self-efficacy beliefs, and 
beliefs about the role of the teacher. The overall reliability 
of the scale was .77, indicating a good reliability. The 
mathematics-related belief scale will be used in a future 
study where 5th grade students’ mathematics related 
beliefs will be identified. 

Keywords: Scale development, mathematics-related 

beliefs, 5th grade students.

INTRODUCTION 

Beliefs are important components of mathematics 
teaching and learning process (Kloosterman, 1996; 
Philipp, 2007). Students’ beliefs about mathematics 
influence the effort they will spend for the tasks, their 
interest in mathematics, and enjoyment with the task 
(Kloosterman, 2003), and they have the potential to 
determine how students connect real life activities 
and school mathematics (Lester Jr., 2002). Their be-
liefs about achievement have a considerable influence 
on their success at school (Wittrock, 1986). Students’ 
learning experiences affect their beliefs and their be-
liefs about learning influence their approach to the 
new learning experiences (Spangler, 1992). Therefore, 
there seems to be a reciprocal relationship between 
mathematics learning and mathematics related be-
liefs (Schommer-Aikins, Duell, & Hutter, 2005). 

Beliefs are formed by students’ direct or indirect ex-
periences (Lester Jr., 2003), which makes their class-
room experiences important. However, in order to 
help students form beliefs which will enhance their 
mathematics learning, it is substantial to identify 
their existing beliefs. Identifying younger students’ 
beliefs is specifically important because they are more 
open to be influenced by classroom experiences. 

As a result of the recent change in school system in 
Turkey 5th grade is included in middle schools with 
some revision in mathematics curriculum. This revi-
sion did not change the emphasis on problem solving 
and building relationships in middle school mathe-
matics and teachers’ facilitating and guiding role 
for students’ learning (MEB, 2013) that the previous 
curriculum stated. However, to what extent these em-
phases have influenced students’ beliefs at this level 
has not been investigated yet. Investigating 5th grade 
students’ beliefs when they start middle school will 
enable us to (i) understand the effectiveness of the 
elementary school mathematics instruction on stu-
dents’ mathematics related beliefs and (ii) determine 
the possible mathematical experiences in middle 
school grades which will help them learn meaningful 
mathematics. Therefore, the current study aimed to 
construct a valid and reliable instrument to investi-
gate 5th grade students’ mathematics-related beliefs.

There are several scales addressing students’ math-
ematics-related beliefs. However, the psychometric 
properties of these scales, including some popular 
scales, are problematic (Walker-Wheeler, 2007) and 
their Turkish versions either lack validity evidences 
or target older students’ beliefs. Therefore, there is a 
need to for a valid and reliable scale addressing young-
er students’ mathematics related beliefs.  
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LITERATURE REVIEW

Several researchers have defined beliefs. For exam-
ple, Fishbern and Ajzen (1975) define beliefs as in-
formation that a person has about an object or idea. 
According to Richardson (1996), beliefs are “psycho-
logically held understandings, premises, or propo-
sitions about the world that are felt to be true” (p. 2). 
Kloosterman, Raymond and Emenaker (1996, p. 39) 
refer beliefs as “the personal assumptions from which 
individuals make decisions about the actions they will 
undertake.” Schoenfeld (1998) indicates that “beliefs 
are mental constructs that represents the codification 
of people’s experiences and understandings” (p. 21). 
These definitions address that we have beliefs about 
the world around us and we also use these beliefs to 
make sense of the world. 

As beliefs are subject specific (Philipp, 2007), there 
is also a need to define mathematics-related beliefs. 
There are several definitions of mathematics-relat-
ed beliefs and there hasn’t been an agreement on a 
common definition (Furinghetti & Pehkonen, 2002). 
This study employed the definition proposed by Op’t 
Eynde, De Corte and Verschaffel (2003) which ad-
dresses mathematics-related beliefs as “the implicit-
ly or explicitly held subjective conceptions students 
hold to be true, that influence their mathematical 
learning and problem solving” (p. 28) because it fo-
cuses more on students’ mathematical learning and 
problem solving. 

Theoretical framework
Different approaches to mathematics-related beliefs 
have been discussed in the field and several researc-
hers have introduced different categorizations, with 
common and distinct aspects (Philipp, 2007). A com-
prehensive framework given by Op’t Eynde and col-
leagues(2003) is mainly based on Schoenfeld’s (1983) 
view that cognitive actions are determined by the 
nature of the task, social environment, and the per-

ception of the individual. Hence, beliefs reflect the 
effects of self, belief object and the context (Schoenfeld, 
1983). Op’t Eynde and colleagues (2003) proposed that 
mathematics-related beliefs were determined by the 
context, personal needs, and mathematics education. 
Their framework had three main categories of beliefs 
about: (i) mathematics education, (ii) the self, and (iii) 
social context. This framework was employed for the 
current study.

Beliefs about mathematics consisted categories of 
beliefs about mathematics as a subject, mathemat-
ics learning and problem solving, and mathematics 
teaching. Beliefs about mathematics were about the 
answer of the question “What is mathematics?” in 
students’ minds. Beliefs about self included students’ 
motivational beliefs such as self-efficacy, control, task 
value, and goal orientation beliefs. Beliefs about so-
cial context consisted of beliefs about social norms 
in students’ classrooms including role and the func-
tioning of the teacher and student; and beliefs about 
socio-mathematical norms such as beliefs about what 
is accepted as mathematical justification in the class 
(Cobb & Yackel, 2014). Table 1 summarizes the frame-
work.

This framework is more comprehensive and it con-
tains other classifications which provide a wider per-
spective for investigating students’ beliefs. Therefore, 
it was employed as the theoretical framework in this 
study. However, its comprehensive nature makes it 
difficult to investigate these beliefs a single study with 
5th grade students. Therefore, beliefs about nature 
of mathematics, learning mathematics, role of the 
teacher, and self-efficacy beliefs were investigated 
in this study. 

SCALE DEVELOPMENT PROCESS

The scale was developed in three main steps. First, the 
related literature was reviewed in detail and items 

Beliefs about mathematics educa-
tion

Beliefs about self Beliefs about the social context

-Beliefs about mathematics as a 
subjects
-Beliefs about mathematical learn-
ing and problem solving
-Beliefs about mathematics teach-
ing in general

-Self-efficacy beliefs
-Control beliefs
-Task value beliefs
-Goal-orientation beliefs

-Beliefs about social norms in their own class
     The role and functioning of the teacher
      The role and functioning of the students
-Beliefs about socio-mathematical norms in their 
own class

Table 1: The framework of students’ mathematic related beliefs
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were written. Then, experts’ opinions were gathered 
and items were revised. Last, five students were in-
terviewed in order to ensure the clarity of the items 
for the students.

Literature review
An extensive literature review of belief frameworks 
in the literature were conducted and a comprehen-
sive belief structure framework suggested by Op’t 
Eynde and colleagues (2003) was employed for the 
study. A detailed examination of this framework, 
previous studies, and the characteristics of the age 
group resulted in four sub-domains (factors) to be 
considered for the study: beliefs about mathematics 
as subject, beliefs about learning and problem solving, 
mathematics self-efficacy beliefs, and beliefs about 
teacher role and functioning. Then, an extensive lit-
erature review was conducted for each factor. In gen-
eral, these factors were studied individually in many 
studies through several scales in order to understand 
the types of items which explained the specific belief 
domain. An examination of these items showed that 
there were both common and different aspects, and 
these aspects were taken into consideration to get a 
more comprehensive instrument. After these studies, 
the first version of the instrument was developed with 
68 items. 

Experts’ opinion 
The first version of the scale was shared by two re-
searchers working on beliefs in the field of mathe-
matics education to examine the content and com-
prehensibility of the items. They were asked whether 
the items and factors were coherent, statements were 
clear, and expressions were appropriate for the 5th 
grade students. After they reviewed and suggested 
changes in the items, revised items were shared by 
two specialists in the field of educational measure-
ment to ensure the properness of the scale in terms 
of measurement principles. Then, two middle school 
mathematics teachers reviewed the items with respect 
to clarity for students as they had more interaction 
with the students and they suggested certain changes 
about wording of the items. At the end of the experts’ 
revision, scale consisted of 32 items.

Student interviews
After the revision of the scale, five 5th grade students 
from a public school in Ankara were interviewed 
about clarity of the statements. They were asked about 
what they understood of each item and whether there 

were any words that they did not know about their 
meanings. Students had difficulties in three items. It 
appeared that they considered “lecturing” and “guid-
ing” the same. Therefore, the item “Our teachers guide 
us when we are learning” was deleted. Students also 
struggled with the item related to the relationship 
construction between old and new knowledge. While 
some students were able to understand the meaning 
of building relationship, others couldn’t understand 
the item and preferred to respond as undecided. This 
item was revised as “I remember previous knowledge 
when I am learning new things” in order to make the 
statement clear. 

In order to ensure that one class hour will be sufficient 
to complete the scale for students, the time students 
spent in answering items was observed. Students 
finished responding 32 items in approximately 20 
minutes during the interviews. After the items were 
reviewed once more with respect to the interview 
results, the fourth version of the questionnaire was 
constructed which consisted of 34 items with 3 point 
Likert scale as agree (3 points), undecided (2 points), 
and disagree (1 points). Negative items were scored 
reverse. The maximum score one can get from the 
scale was 102 and the minimum score was 34. Three-
point scale was preferred because 4th and 5th grade 
students might have difficulty in understanding “par-
tially agree” or “partially disagree” phrases. 

DATA COLLECTION AND ANALYSIS 

Data for this pilot study were collected from two con-
veniently selected public middle schools in Ankara. 
Although there are different suggestions about the 
sample size for getting proper factor analysis results, 
it is indicated that larger sample sizes produce more 
proper results. Tabachnick and Fidell (2007) argue 
that sample size should be 10 times of the item num-
ber or at least 300 for proper factor analysis. These 
suggestions were taken into consideration and data 
were collected from 390 students (201 male, 182 fe-
male) from fifteen 5th grade (ages 9–10) classrooms. 

The implementation was conducted by the first re-
searcher. Before distributing the scale, she explained 
students that there were no correct answers for the 
items and their thoughts were important for the re-
search. Students were also informed that no infor-
mation would be shared with their teachers, their 
answers would not affect their grades, and there was 



Development of mathematics-related beliefs scale for the 5th grade students in Turkey (Nermin Kıbrıslıoğlu and Çiğdem Haser)

1205

no need for writing their names. Data were collected 
in courses other than mathematics in order to reduce 
the teacher effect.

Principal Component Analysis (PCA) was conducted 
in order to determine subscales and validity of the 
scale. As the sample size was ensured during the data 
collection, other preparations were performed before 
conducting PCA. First, negative items were scored 
reverse. Second, Bartlett Sphericity Test and Kaiser-
Meyer-Olkin (KMO) were checked to ensure that data 
set was factorable which means that some correla-
tions should exist (Tabachnick & Fidell, 2007). In order 
data set to be appropriate for factor analysis, Bartlett 
Sphericity Test should be significant, which means p 
value smaller than 0.05 and KMO value should be at 
least 0.6 (Tabachnick & Fidell, 2007). The analysis indi-
cated that data set was appropriate for factor analysis 
(F=0.80, p < 0.05).

Certain principles suggested by Tabachnick and 
Fidell (2007) guided the PCA: Items should have fac-
tor loadings 0.3 or above to fit the factor structure 
in the selection process. If items which are loaded in 
more than one factor have difference between factor 
loadings smaller than 0.1, then it is better to exclude 
them from the scale. When deciding the number of 
factors, the factors with eigenvalues more than 1 are 
initially taken into consideration. However, only ei-
genvalues may not be sufficient for the final decision. 
Another estimate can be made by interpreting scree 
plot but there is still need for more operations for 
proper factor solution. Based on these criteria, the 

factor analysis was repeated until reaching a proper 
factor solution. 

RESULTS 

The results of the first analysis showed that there 
were 11 factors whose eigenvalues were more than 1. 
However, the scree plot seemed very complicated to 
reduce the factors and factor loadings were not ap-
propriate. In order to get a more appropriate factor 
solution, items with communalities less than 0.2 were 
removed because small communalities indicated that 
the variable was not related to the other variables in 
the data set (Tabachnick & Fidell, 2007). Therefore, 
11 items were removed from the analysis. In order to 
reach the best factor solution, the Promax rotation 
method, an oblique rotation, was employed because 
gives better results in identifying the correlating and 
noncorrelating factors (Tabachnick & Fidell, 2007). 
After this reduction, the analysis was conducted once 
more and the most appropriate factor solution ap-
peared as 3 factors solution. The scree plot in Figure 1 
also supported 3 factors solution. Then, items which 
were loaded on unrelated factor, items whose factor 
loadings were smaller than 0.3, and items which were 
loaded almost equally to more than one factor were 
removed from the scale. 

After deciding the factor structure, 5 items which 
were indicated as important in the literature were 
added one by one as they didn’t conflict with the fac-
tor structure. Two items whose factor loadings were 
smaller than 0.3 were also added to the scale with the 
same reason. Wordings of two items were changed 

Figure 1: Scree plots of eigenvalues of pilot version of the scale
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because they might be confusing for the 5th grade 
students. 

According to the results of the analysis, 6 items were 
loaded under the first component (beliefs about teach-
er’s role), 7 were loaded under the second component 
(self-efficacy beliefs), and 10 were loaded under the 
third component (beliefs about mathematics and learn-
ing mathematics). This structure explained the 35% of 
the total variance in the dependent variable, the total 
score gained from the scale. The mean and standard 
deviation of each item are given in Table 2. 

Cronbach Alfa coefficient, was computed for the relia-
bility measure and the pilot study of the scale resulted 
in 0.77 Cronbach Alpha reliability coefficient, which 
indicated a satisfactory reliable measure (Tabachnick 
& Fidell, 2007). The Cronbach Alpha value for compo-
nents of teacher’s role was 0.48, self-efficacy was 0.73, 
and mathematics and mathematics learning was 0.6. 

Students’ mathematics-related beliefs were examined 
for each component and item by item. 

The mean score for beliefs about teacher’s role compo-
nent was 14.3 (out of 18). This factor was about how stu-
dents perceived the role of their mathematics teacher 
in the class. They rather portrayed their mathematics 
teachers as the authority for knowledge in the class 
showing them how to solve problems step-by-step and 
transferring knowledge to them. On the other hand, 
they believed that their teachers listened to them 
carefully and made mathematics lessons fun. Their 
teachers also seemed somewhat to encourage them 
to discuss mathematics problems.

Students’ mean score in self-efficacy component was 
somewhere between undecided and agree (x=16.7 out 
of 21). They seemed to believe that they had ability 
in mathematics. They felt confident while studying 
mathematics and mathematics was not a difficult 

Items Mean SD

Teacher is the one who transfers knowledge to us.* 1.07 .340

Teacher shows us how to solve mathematics problems step by step.* 1.10 .376

Our teacher enables us to discuss mathematics problems with our classmates. 2.32 .806

Our teacher behaves us friendly. 2.77 .559

Our teacher teaches mathematics lessons in fun way. 2.68 .630

When we ask questions, our teacher listens to us carefully. 2.85 .450

When we don’t understand a mathematics concept for the first time, we cannot understand it later.* 2.18 .885

Mathematics is a difficult subject for me.* 2.39 .778

I think I don’t have ability in mathematics.* 2.46 .740

I can make mathematics homework easily. 2.70 .536

While studying mathematics, I feel that my self-confidence is decreasing.* 2.53 .747

Mathematics is easy for me to understand. 2.48 .690

I panic when I come across a different mathematics problem.* 2.05 .865

Mathematics concepts are related to each other. 2.58 .666

We use school mathematics concepts in our daily life. 2.86 .417

Knowing mathematics makes our life easier. 2.86 .449

Mathematics homework helps me understand mathematics better. 2.78 .536

Studying mathematics increases our mathematics ability. 2.82 .467

Making mistakes in mathematics helps in learning. 2.16 .856

Understanding is important while learning mathematics. 2.90 .383

There may be more than one solution path for mathematics problems. 2.86 .430

While learning mathematics, I need to remember my previous knowledge. 2.71 .604

Mathematics problems can be solved correctly only by our teachers’ solution methods.*+ 1.99 .887

It is important to develop different solutions while solving a mathematics problem. 2.74 .537

* indicates negative items. All items are translated by the authors.

+ This item was added to the final scale although it did not appear in this factor.

Table 2: Descriptive statistics of each item
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subject for them. However, students were undecided 
about whether they could understand a concept which 
they couldn’t understand in the first time later and 
that they would panic when they see a mathematics 
problem for the first time.

Students’ mean score in mathematics and mathemat-
ics learning component was 27.3 (out of 33). Students 
agreed that knowing mathematics will ease their 
life and school mathematics could be used in real 
life. Their responses indicated that they considered 
mathematical concepts as related to each other, rather 
than unrelated facts. They agreed that there might be 
more than one solution for a mathematics problem 
and it was important to develop these solutions, but 
they were undecided for whether problems could 
be solved only by their teachers’ method. Students 
believed that studying mathematics and working on 
homework enhanced their mathematics learning but 
they were undecided about the role of making mis-
takes in their learning. 

DISCUSSION

The main purpose of this study was to develop a valid 
and reliable scale. The results showed that although 
the scale was constructed in four sub-domains, the 
items related to beliefs about nature of mathematics 
and beliefs about mathematics learning were load-
ed under the same factor. It might be the case that 
students’ beliefs about learning mathematics are 
closely related to what they believe mathematics is 
about. Self-efficacy items and items related to teacher 
role appeared in separate factors as designed. The 
overall reliability of the scale was high, but teacher’s 
role factor had lower reliability measure. The reason 
might be related to the number of items. Cronbach’s 
Alpha value is very sensitive to number of items and 
when it is fewer than ten, it may take lower values 
(Tabachnick & Fidell, 2007).   

Students’ responses indicated that they agreed with 
rather authoritarian teacher roles in the classroom, 
but their classroom experiences seemed to help them 
develop beliefs about the connected nature of mathe-
matical knowledge and existence of multiple solutions 
for mathematical problems. They also believed in the 
usefulness of mathematics, a belief that elementary 
school students tended to develop as they progressed 
towards higher grades (Kloosterman, Raymond, & 
Emenaker, 1996). Students’ responses indicated that 

their teachers might be supporting discussion in the 
mathematics classroom, although the nature of the 
discussion was unknown. When students believed 
that they could learn mathematics through discussion, 
they engaged in discussion in the mathematics class 
(Jansen, 2008). These findings addressed that guiding 
mathematics teachers for effective discussion in the 
classroom could be considered in order to help stu-
dents develop beliefs about and practice effective dis-
cussion in the middle school mathematics classrooms. 

Students seemed to believe that spending effort in 
mathematics resulted in learning. Fifth grade stu-
dents might not have developed beliefs about quick 
learning which relates learning quickly to ability 
rather than hard work. This might have resulted in 
their beliefs about the usefulness of mathematics, 
as observed in 7th and 8th grades students in other 
contexts (Schommer-Aikins, Duell, & Hutter, 2005). 

Fifth grade students in this study had considerably 
higher self-efficacy beliefs and mathematics was not 
a difficult subject for them. These findings addressed 
that there might be a promising cumulative influence 
of elementary school and 5th grade experiences the 
mathematics class on students’ beliefs. Understanding 
the nature of these experiences could provide middle 
and high school mathematics teachers with ideas for 
their practices resulting in higher efficacy beliefs in 
students. 
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mathematics teaching

Elizabeth Lake

University of East Anglia, Norwich, UK, e.lake@uea.ac.uk 

What motivates mathematics teachers to remain in the 
profession when disengagement from mathematics is 
common? I would suggest one of the reasons is deriving 
pleasure from engaging in teaching mathematics. As 
part of research into how teachers communicate their 
enjoyment of mathematics, eight experienced teachers 
were interviewed, observed during teaching and then 
engaged in discussion of lesson extracts. This paper 
takes interview samples to illustrate intellectual pleas-
ures, with a thematic analysis of the narrative generat-
ed from the interviews. The analysis suggests that the 
deeper pleasures experienced by mathematics teachers 
derive from experiences of dependability, deviation or 
success, whilst underlying pleasures in teaching math-
ematics is a living of self, motivated by service to others. 

Keywords: Affect, pleasure, ethical hedonism, teachers, 

mathematics.

INTRODUCTION

Any interaction inevitably has an affective dimension. 
In this paper, affect is defined from a social perspec-
tive as a stable trait as opposed to a more transitory 
emotional state (Hannula, 2012). In the teaching of 
secondary school mathematics, emotions play a cen-
tral role in forming an affective orientation (Drodge 
& Reid, 2000). If an experienced mathematics teacher 
has a strong positive affective orientation towards 
mathematics, then this orientation guides their prac-
tice, satisfies desires, and gives pleasure. Frenzel and 
colleagues (2009) suggest that not only is affect im-
portant within the learning of mathematics but that 
enjoyment supports effective student engagement. 

This paper is part of a larger study exploring affective 
responses to mathematics for experienced teachers 

of mathematics and how these responses are commu-
nicated to students in the classroom. Currently there 
is little research on how experienced mathematics 
teachers communicate in mathematics teaching. This 
paper uses ethical hedonism (Onfray, 2007) as a frame 
to focus on what makes the teaching of mathematics 
pleasurable for a teacher. The assumption is that, to 
teach effectively, teachers must gain some affective 
reward from their teaching. 

After defining pleasure in the mathematics classroom 
context, I review some relevant literature that pro-
vides insight into the pleasures of teaching mathemat-
ics. Acknowledging the inaccessibility of subjective 
experiences is important, so the data is teacher stories, 
and the analysis uses examples of teachers express-
ing pleasure. Conjectures are constructed from the 
literature and compared with selected data, enabling 
a presentation of espoused pleasures via themes with 
illustrative examples. I summarise, framing with the 
components of ethical hedonism, the elements that 
give teachers the greatest pleasure in their teaching 
of mathematics. The paper concludes with a brief 
discussion of implications of these interpretations 
of teacher pleasure.

PLEASURE AND ETHICAL HEDONISM

Pleasure is often defined as a feeling of satisfaction 
and enjoyment. Yet pleasure is also a subjective men-
tal state experienced as enjoyable or worth seeking, a 
state that is satisfying more than basic needs or bio-
logical drives; on the contrary, experiencing pleasure 
is a psychological feedback mechanism that forms 
a potentially addictive feeling of positive anticipa-
tion. Pleasure generates a desire to recreate an ex-
perience found to be entertaining or aesthetically 
pleasing, which then impels seeking of similar sen-
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sations (Damasio, 2006). This process may then, by 
repetition, lead to fixed beliefs since even apparent-
ly unemotional everyday logic is conditioned by un-
derlying impressions left by formerly intense affects 
(Schlöglmann, 2006).

In this paper, and this research, the term pleasure is 
used in an aesthetic and ethical sense, unlike, say, the 
French term ‘jouissance’ that has stronger physical 
connotations. Damasio (2006) discusses the inter-
linking of pain and pleasure, suggesting two parts: a 
bodily experience and the attached emotional expe-
rience. Both parts inform subsequent reaction and 
or action, subconsciously and consciously. Litman 
(2005) suggests pleasure links mathematics with an 
appetite for food or sex, where satiation or reward 
comes from positive feeding of social identity and 
community recognition. This social reward is asso-
ciated with recognition and service.

Onfray (2007) defined ethical hedonism as an intro-
spective attitude to life based on taking pleasure your-
self and pleasing others, without harming yourself 
or anyone else. In other words, ethical hedonism is a 
joyful utilitarianism that gives moral pleasure. This 
perspective may be useful in exploring pleasure as 
it divides pleasure into self, others and an ethical 
yet purposeful context, where stronger, memorable 
pleasure is experienced when all three elements are 
addressed. Yet there is a temporal element to pleasure, 
unlike happiness which is more stable. Whilst one can 
again experience pleasure on recall, a person cannot 
always be in this state. Yet this very temporality may 
effectively aid the re-creation desire and compen-
sate for any associated unpleasantness. Similarly to 
Utilitarianism, the ‘greatest good’ of ethical hedonism 
engages cognitively and viscerally whilst aligning 
one’s own pleasure with that of others. The pleasure 
then has personal and social value as the greatest good, 
is relatively damage free and hence is ethically ac-
ceptable. This is this multi-levelled view that accords 
to pleasure the dimensions of self, others and ethical.

To summarise, pleasure is taken as having emotional, 
psychological, physiological and social dimensions. 
Exploring whether there is evidence for ethical he-
donism within the teacher narratives, whilst identify-
ing what the teachers suggest as giving them pleasure 
in their roles, is also necessary. The next section lo-
cates pleasures for teachers within relevant research, 
and seeks themes to support data analysis.

STRUCTURING PLEASURES FOR 
MATHEMATICS TEACHERS

Research into affect specifically for experienced sec-
ondary mathematics teachers is limited, although 
there has been more mathematics student orientated 
research (McLeod, 1992). Given the interactive nature 
of teaching, this research is relevant to teachers as 
well. Smith (2010) examines pleasure in the form of 
happiness in learning mathematics, including the 
role of success and the dependability of mathemat-
ics within social and mathematical identities for 
students. Research on the role of the teacher, power 
relationships in the classroom (Walkerdine, 1988) and 
pleasures from deviation (Drodge & Reid, 2000) can 
also inform understanding of pleasure. 

One of the more stable traits associated with pleas-
ure is happiness. Smith (2010) found for mathematics 
students that happiness, especially subject pleasure, 
came from the dependability of mathematics. This 
pleasure from dependability may also prove to apply 
to teachers. Happiness as an affective trait requires 
constant high self-efficacy which combines confident 
knowing, doing and feeling. Smith (2010) suggests that, 
by choosing mathematics, people express something 
about themselves which is viewed as positive. By using 
and reproducing a mathematical identity they derive 
pleasure and hence happiness. Smith’s research ex-
plores finding pleasure in your own work, pleasure 
which includes working for and with other people. 
Smith suggests that pleasure is often equated with 
success and that work and happiness can coexist in 
contemporary society where happiness is the sole 
purpose of life, and society promises to provide con-
ditions for you to obtain this happiness. This balance 
of work and happiness can exist for teachers too, but 
with additional complexity from the role of a mathe-
matics teacher in regards to vulnerability and risk. 

Between freedom and compliance, within the au-
tonomy of a mathematics classroom, lie experienc-
es of deviations from ‘norms’ that can give pleasure. 
Vulnerability, in the context of teaching (Davies, 2006), 
derives from conflict of mastery and submission. In 
this model, the risk or vulnerability comes from, for 
example, exposure to judgement, whilst pleasure de-
rives from a sense of connectedness. The degree of 
emotion a teacher is comfortable showing may come 
from balancing these two limits. This perspective is 
important, as it may be that the exercise of freedom, 
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self-regulated within constraints, is what gives pleas-
ure. Yet simultaneously, social recognition from being 
seen as compliant can also give pleasure. 

If a teacher’s own learning was empowering, and 
pleasure derives from successful teacher and stu-
dent interactions, then revisiting an environment, 
such as a classroom where success was experienced 
may trigger re-creation desires. If pleasure deriving 
from repeated experiences of success is significant, 
then it is reasonable to expect that teacher interviews 
would have frequent examples of positive education-
al experiences. We can also assume that teachers of 
mathematics would be good at mathematics and hence 
experienced more pleasure than pain in transition 
from learner to teacher. This positive imbalance may 
have led to investment because of feeling pleasure, 
with subsequent development of trust in the depend-
ability mathematics. 

Mathematicians also obtain a sense of pleasure from 
mathematical discovery which may also apply to a 
teaching context. Similarly, ‘ah-ha’ moments, for ex-
ample when a method or solution becomes suddenly 
clear, are known to be pleasurable for learners and 
bring power along with the experience (Liljedahl, 
2005). The same pleasure for teachers could be the 
revelation of a student misconception, or through 
being a witness to student pleasure from their ‘ah-ha’ 
moments. If pleasure is associated with deviations 
from the norm, either a discrepancy (Drodge & Reid, 
2000) or ‘ah-ha’ moments, then deviations can elicit 
emotional reactions and hence are likely to be recalled 
in interview, but also may elicit strong identifying 
statements that are directed at the deviator, for ex-
ample a student. Robert and Wilbanks (2012) suggest 
that “we experience pleasure if the sudden resolution 
involves an unexpected connection. Making that con-
nection has been likened to cognitive ‘play’ and to the 
feeling associated with solving a puzzle” (p. 1073). An 
enticement to engage in more similarly rewarding 
activities. Deviation may appear come in many forms; 
difference from routine, deviation from ‘normal’ be-
haviour, as in the unexpected, or from the pleasure 
of making unexpected mathematical or social con-
nections.

To summarise, the data will be considered through the 
lenses of the themes of pleasure in success, pleasure 
arising from deviations and from dependability of 
mathematics as described above. The social context 
is important, as is the role and experiences of the 
teacher, especially pleasures which help form positive 
emotional disposition or attitude (Di Martino, 2011) 
associated with a mathematics teacher. 

DATA COLLECTION AND ANALYSIS METHOD

The data used in this paper is from two audio-record-
ed unstructured interviews with eight UK secondary 
teachers (A-H, Adam to Helen) who have been teaching 
in school from three to nearly thirty years. There are 
equal numbers of male and female teachers, all but 
two trained at the same university at different times. 
Six teach in rural schools and two are from a larger 
urban school. In the first interview the teacher relates 
their life history, talking about their mathematics and 
their teaching. The second interview, closely follow-
ing observation of the teacher in action, is a stimu-
lated recall of an extract from the lesson using video 
extracts from their teaching. The extract selection is 
guided by the use of a galvanic skin response (GSR) 
sensor worn by the teacher in observed lessons. The 
sensor measures visceral response to intense emo-
tions such as excitement or anxiety. In the stimulated 
recall the teacher evaluates and explains their think-
ing and how they felt during the observed lesson. Both 
interviews are audio-recorded and the transcripts 
analysed for examples of pleasure. The research de-
sign has been approved by an ethics committee and 
the participants have consented for the data to be re-
corded and used for research.

This paper draws on the articulated pleasures for each 
teacher. Analysis of the interview data is influenced 
by the first two parts of ethical hedonism, a division 
of self and others (social interaction).

These divisions provide structure for examining 
teacher pleasures. These categories (Table 1), for the 
teacher comments that relate to pleasure, are then 
subdivided into two further categories. The teacher 
comments are themed by pleasure for self; as their re-

Pleasure for self Relationship with mathematics Self-identifying stories

Social interaction Role of a teacher as professional Significant others

Table 1: Analysis categories for examples of pleasure
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lationship with mathematics, and secondly self-identi-
fying stories. The ‘others’ category, (social interaction), 
is divided into the role of a teacher as the professional 
self and then significant others. These are selected 
as all the teachers speak about these four categories. 
Once classified, each category is illustrated and in-
terpreted before being discussed in the final section. 
The intention in the next section is to reveal through 
examples any similarities or differences within the 
pleasures of these mathematics teachers and to fur-
ther explore their sensory and intellectual pleasures.

EXAMPLES AND INTERPRETATION 
OF TEACHER PLEASURES

The analysis presented here explores what gives 
pleasure to teachers of high school mathematics struc-
tured by the categories in Table 1, but discussed in 
deviation, success and dependability terms, followed 
a discussion of other pleasure examples.

In all the interviews, teachers talk about their rela-
tionship with mathematics, for example, ‘....my re-
lationship with the subject, it’s stronger than ever’ 
(Edward). The relationship is presented as positive, 
and comments relate to personal success in the subject, 

‘...just absolute joy. Nobody ever told me maths was 
hard...maths was just like breathing... I thought maths 
wasn’t important because it was easy’ (Gus), but also 
the dependability and certainty that mathematics rep-
resents for them, ‘I realised that I quite like maths, cos 
it’s nice, you can have a... there’s always a right answer, 
or most of the time...I really liked that...’ (Debbie) or 

‘maths was something that was really important to me, 
and I enjoyed it’ (Freddie).

From these examples, I would suggest teaching mathe-
matics is perceived as safe and dependable, the partic-
ipants experiencing personal success in mathematics 
as their identities were forming. The intensity and fre-
quency of the comments, as illustrated above reflects 
the importance of subject within the teacher’s identity. 
Re-living such an experience within a mathematics 
classroom allows constant recall of a positive expe-
rience. The pleasure in teaching a subject where they 
have experienced personal success, which effectively 
pleases the self, combined with actively sharing such 
pleasure with others in a morally good way, meets the 
criteria of ethical hedonism. 

Similarly, all participants tell self-identifying stories 
of their self as student, ‘I have just always excelled at 
maths I could always do everything in maths lessons 
and I found other lessons quite hard’ (Adam). These 
comments show how important and pleasurable 
mathematics was to each teacher, ‘Maths has always 
been my favourite subject when I was at school, and I 
enjoyed it, and was fairly good at it, and found it inter-
esting and I kind of...I liked being able to solve prob-
lems and I don’t know really, I enjoyed algebra’(Helen). 
But many stories report change during higher edu-
cation, with examples showing critical points where 
their pleasure in the dependability of mathematics 
was shaken, ‘...by the end I kind of like lost the love a 
bit for maths...’ (Adam). ‘I enjoy my maths but I didn’t 
enjoy my degree’ (Carol). ‘...started and just, just hat-
ed it’ [laughs] (Edward). Yet, all of these participants 
are now teachers and have a professionally successful 
outcome. 

It is common for the teachers to speak about their pos-
itive and successful school experiences in terms of 
mathematics. They talk about themselves as individu-
al students, or embed subject comments in the social of 
school experience. All mention transition, especially 
negatives associated with transition into university, 
mainly assigning the difficulty of mathematics as the 
reason. All but one, who took a combined teaching and 
mathematics university course, speak very positively 
about this experience. One difference is illustrated by 
Debbie. She was ill during school and talks of mathe-
matics as reliably accessible during her illness, unlike 
other subjects; her ‘horrid’ transition occurred ear-
lier than university. However, all comments suggest 
that these teachers experienced positive emotions 
through success in school mathematics. Carol used 
mixed tenses in the interview, often bringing the past 
comments into links to her present role, suggesting 
reflection, but also that her wider identity aligns with 
her current role. The comment on mathematics and 
chocolate in the title comes from Carol whilst discuss-
ing a significant event in her school life, providing an 
example of aligning sensory and intellectual pleas-
ures. The pleasure that social recognition can give is 
strong in the stories of this teacher, suggesting that 
for her, teaching offers a continuation of pleasure as 
socially recognised success.

Pleasure from the role of a teacher as professional, 
combined with the social dimension of teaching, is 
mentioned in association with deviation. Pleasure 
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seems to come from changes to daily practice, ‘Maths 
can become incredibly boring... bore you to death by 
making you practice it forever, and that’s not what I 
do. Cos maths has got to be exciting, it’s got to have 
something in it other than sheer boredom’ (Gus). Or 
pleasure from surprises, or being creative and mak-
ing change or challenges, a motivator for several 
of the teachers. ‘...they couldn’t do it... I sort of then 
showed them, and they clapped me...I didn’t expect 
it... it was just sort of “Oh well done miss”...’ (Carol). or, 
similarly to a famous line in the film Forrest Gump’s, 

‘Life was like a box of chocolates, you never know what 
you are going to get,’ Debbie comments that ‘...teaching 
is different every day, it’s a challenge, different chal-
lenges every single day...never dull, its lots of things 
but it is never boring...’

But deviation through challenge seems to be impor-
tant, as without it boredom emerges, and excitement 
is lost,

‘...I was saying on Friday to my husband that I 
didn’t really feel excited about maths, we were 
talking about the emotion of it... and perhaps I’m 
not conveying it because a lot of it is the day to 
day of it, I’ve done it 20 times, 50 times, 100 times...’ 
(Carol). 

However pleasure from deviation through challenge 
or creativity can be viewed as a lure into mathematics 
for students, 

‘... I go with the philosophy of fun. If I’m not hav-
ing fun in the lesson, if I’m not enjoying myself, 
then the kids aren’t either...there’s no hook...so it’s 
trying to make it fun, trying to let my personal-
ity come through a bit, have a bit of a laugh with 
them...’ (Debbie).

In general, the teachers use many terms to describe 
their teaching, from interesting, pleasurable (in-
cluding social pleasure), creative or transformative, 
through to labour, challenge, routine, or a part of life. 
The descriptions illustrate the complexity of pleasure 
within a teaching context, and that pleasure is indi-
vidual and social. Yet their comments do not neces-
sarily distinguish between sensory and intellectual 
pleasures. Often there is a strong experiential aspect 
to what gives the teachers pleasure. I would suggest 
that pleasure emerges from aligning a socially located 

identity with their individual view on the purpose of 
being a mathematics teacher.

Yet simply identifying with the mathematics teach-
ing role can give pleasure, ‘...other stuff that kind of 
takes you away from teaching...teaching’s the fun bit...’ 
(Adam), or personal pleasure in mathematics, ‘...and 
I sort of enjoy that freedom to explore my subject... 
and take students along with that...’ (Edward), or in 
comparison with other life pleasures, ‘... I was playing 
teaching... I was teaching and it was more fun than 
playing rugby and therefore I didn’t need the rugby 
anymore...’ (Gus).

All the teachers mentioned one or more significant 
others, such as a teacher, ‘My maths teacher for my 
GCSE, O level years was brilliant’(Bertha), ‘I got on 
very well with him... someone I am still in contact 
with...’ (Carol), ‘I just really clicked with him and 
that style suited me and could just practice, practice’ 
(Adam) ‘...and I had this wonderful nun who was my 
mentor and tutor, and she was magic’ (Gus). A friend 
or a family member as a significant other, ‘...my dad...
used maths a lot... I can remember him sitting down 
and helping me with maths....’ (Carol). A stronger de-
gree of pleasure from engagement with others as well 
as self is evident here. Especially as, in addition to all 
the teachers mentioning at least one significant other, 
all positively mention their mathematics teachers in 
high school. 

Pleasure for others appears in interviews as indi-
rect pleasure in the success of students, suggesting 
that pleasing others is perhaps a stronger driver for 
these teachers rather than balanced by pleasure for 
self. One of the strongest examples of pleasure com-
bines sensual and intellectual pleasure, ‘...at the end 
of primary school there was a competition...we [dad 
and I] won a bar of chocolate [laughs], two things I 
like, maths and chocolate’ [laughs] (Carol). Not only 
is eating chocolate a sensual pleasure, Carol uses 
chocolate to recall a story that illustrates the reward 
of early social recognition as someone who could do 
mathematics, an intellectual pleasure. Significantly, 
the story also relates success in relation to a signifi-
cant other. I would suggest this pleasurably recalled 
experience supports establishment of her belief that 
mathematics gives pleasure; as does chocolate. The 
combination has all the characteristics of ethical he-
donism, harmless pleasure for self, others, as well as 
social recognition and acceptance. The importance of 
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the social within pleasure is emphasised by several of 
the teachers, such as the pleasure of helping others,

 ‘I remember somebody saying to me in the first 
lesson, where is the fraction key on the calculator. 
I think that was a bit of a “oh, maybe I do know a 
bit more than you, I can help you. That’s good.”’ 
(Helen). 

And Carol reports ‘[I was] more comfortable talking 
to that group...cos they are weaker, so I feel I can help 
them more. They engage better’. There are examples 
of social pleasure from a common love of mathematics, 

‘...there’s a little group and they’re like, yeh, I really 
like maths [laughs]...students I teach get that enthusi-
asm from me, and they like the subject... they like me 
as well’(Adam). Or social pleasure from interaction 
with a class, ‘But actually, that’s how I teach. Complete, 
complete enjoyment. And that class is an absolute joy 
to teach’ (Gus). Social pleasure by proxy appears in a 
number of interviews, including teachers articulating 
as if they were students. Such as ‘...I teach quite a lot 
of lower sets and somebody in the class might say, “oh 
right yeah I get that now”, and actually properly get 
it, and that will change... change their lives...’ (Bertha). 
Bertha is also describing her experiences of student 

‘ah-ha’ moments by proxy as discussed above.

Overall, the stronger of the articulated pleasures ap-
pear when pleasure is experienced by teacher, stu-
dents and further, is associated with satisfaction in 
fulfilling the role of a mathematics teacher. There is 
an individual, social and moral dimension to pleasure 
from fulfilling a role. For example, 

‘...you can get the kind of challenge from that as 
well. I like the way that you can sort of relate it to 
real life. I like the fact that kids value it’ (Helen). 

‘That’s me, the more you laugh the more you learn’ 
(Gus).

To summarise the selected data examples and inter-
pretation, examples from teachers illustrate how 
pleasure is located within success, dependability and 
deviation. The categories of self and others enable the 
importance of social as a thread to emerge in differ-
ent forms, such as indirect success, and how deviation 
appears to change between the role of student and 
teacher. 

DISCUSSION AND CONCLUSIONS

In this section the categories are briefly discussed in 
terms of the themes of dependability, success and devi-
ation in context, before considering intensity of pleas-
ures in relation to ethical hedonism. Teachers find 
pleasure within their roles, something evident when 
talking about their professional lives, sharing their 
emotional relationship with mathematics, invariably 
in an open, cheerful manner. This paper focusses on 
the pleasurable aspects of teaching, although there 
are few negative examples. Just talking about their 
professional lives appears to be a pleasurable expe-
rience, and I was honoured to hear and engage, albeit 
briefly, in their stories.

As Smith (2010) found for mathematics students, sub-
ject pleasure and happiness, often in the context of 
success, comes from the dependability of mathematics. 
The data here suggests the same for teachers, where 
mathematics is, for example, ‘analogous to breathing’ 
(Gus). But most of the teachers report that their trust 
in the dependability of mathematics was shaken in 
their transition through university mathematics and 
the evidence from these teachers infers that dependa-
bility is less important when discussing teaching roles. 
I would suggest that deviation is especially associated 
with pleasure through power, that a teacher can de-
cide to deviate from norms of their classroom, to be 
creative, accept the associated risk and use deviation 
as a teaching strategy; one which draws and engages 
their students and hence gives reward, a form of pleas-
ure in teaching through intellectual play, as suggested 
by Robert and Wilbanks (2012). This idea of play or 
fun is used by Adam, Edward and Gus when talking 
about gaining pleasure from their teaching role.

Experiences of joint completion of hard work or over-
coming difficulties may conjoin success, deviation and 
dependability, all in a pleasurable memorable experi-
ence for the teacher. The interview excerpts highlight 
the importance of the social aspects of teaching math-
ematics, including pleasing significant others. The 

‘brilliant’ or ‘magic’ person described by these teachers. 
Research suggests significant others is important in a 
professional career (Zeldin & Pajares, 2000). Pleasing 
others as well as self is important, but the intense, 
memorable pleasures align different forms of pleasure 
and combine self, others and some form of value as in 
ethical hedonism. Yet additionally, pleasure can be by 
proxy, recall or from social interaction in a purposeful 
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context. Pleasure in teaching derives through mastery 
shared (where learning occurs), and where mirroring 
or synchronisation of values occurs, and reciprocity 
of pleasure in the subject induces stronger pleasure. 
This reciprocity is particularly evident for Carol, tell-
ing her story of the pleasure of maths and chocolate.

Defined as pleasure at a deeper level, meta-satisfac-
tion occurs at a personal, social and ethical level, a 
resolution through ethical practice (Hobbs, 2012), 
that shapes future action. This shaping develops the 
emotional orientation of a teacher, and the degree 
of investment, or risk they are able to take in a class-
room, acting as a limit for positive emotional exchang-
es. Pleasure comes in many forms, especially from 
interaction that revisits an arena where the teachers 
themselves, as learners, were successful. Teachers 
would, from experience, anticipate and plan for such 
reward pleasure by proxy. Teachers seek and recog-
nise revisiting as something that will give emotional 
reward. Gratification comes when repetition contin-
ues to give pleasure, strengthening their emotional 
relationship to mathematics in a teaching context.

Knowing more about contextual pleasures in mathe-
matics, for teachers as well as students, may support 
countering any circumstances of displeasure within 
a mathematics classroom. Although this paper is fo-
cussed on what teachers say, the fuller research also 
explores observed classroom practices, especially 
how observed pleasure links to the pleasures iden-
tified in this paper. One intention is to explore how 
teachers share their emotional relationship with 
mathematics in a classroom and what limits positive 
emotional exchanges. This may have implications for 
teacher training.
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A case is made that the study of state, as opposed to trait, 
is necessary to give a more rounded picture of affective 
aspects of students’ experience of learning mathematics. 
This paper is based on a study of disaffection with school 
mathematics. The study was a primarily qualitative 
study conducted from a constructivist and interpre-
tivist perspective, using Reversal Theory as the main 
design and interpretive framework. The paper reports 
findings of some patterns in the students’ experience of 
motivation and emotion in mathematics classrooms. 
Sequences of motivation and emotion are described, and 
the notion of dominant narrative is introduced. Two 
common motivational pathways are described: ‘mastery 
for a reason versus what’s the point’, and ‘engagement 
and pleasure through interest versus I can’t be bothered.’

Keywords: Motivational state, emotion, motivational 

pathways.

INTRODUCTION

Research in affect in mathematics education has been 
dominated by attention to stable and semi-stable con-
structs such as attitude, and as such these are often 
treated as trait. Twenty years ago McLeod (1994) point-
ed out that the predominant paradigm in mathematics 
education research is taken from psychometrics.  He 
pointed out further, that:

complicated statistical analyses of questionable 
questionnaire data were not necessarily reflect-
ing accurately what students were thinking and 
feeling. (McLeod, 1994, p. 640)

Students’ experience of learning mathematics in-
volves a dynamic shifting of motivation, emotion and 
other affective constructs. Nonetheless, emotion has 
not been studied in great depth in mathematics edu-
cation, as has been pointed out by Evans (2000) and 

others. Hannula and colleagues (2009) talk about ‘a 
need to move beyond simplistic positive/negative 
view of emotions and distinguish different types of 
negative emotions.’ 

The equivalent importance of state, as opposed to 
trait has been pointed out by Hannula (2012). In that 
paper Hannula sets out a metatheoretic structure of 
affect, and one of his three key dimensions, seen as 
important, is the distinction between state and trait. 
He notes the long history of attention to this distinc-
tion, and traces important sources of research into 
issues of state. Goldin and colleagues (e.g., Goldin, et 
al. 2011) make a similar distinction to state and trait 
between what they term local and global affect, and 
point out the importance of research into local affect. 
What is important for the present paper is Hannula’s 
statement:

There is a clear imbalance in favour of studies 
that focus on traits over studies that focus on 
states… (Hannula, 2012)

He goes on to say:

In particular, studies that focus on the dynamics 
of emotional or motivational states in a classroom 
or other learning community are still rare. (ibid)

This is not to claim, of course, that no such studies ex-
ist, and indeed, Hannula, in his paper, cites a number 
of examples, including his own work with Peter Op’t 
Eynde.  Goldin and colleagues have developed the no-
tion of engagement structures, which are constructs 
related to state (Goldin, 2011), and more recently, col-
leagues have studied and reported on the dynamic of 
the movement of experience through the lens of such 
structures (Sanchez-Leal, 2014).
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The study reported here focusses on the state rather 
than trait aspects of experience, and, further, empha-
sises aspects of experience related to motivation and 
emotion.

THE STUDY

The data reported here derives from a study of dis-
affection with school mathematics which seeks to 
understand more deeply the subjective experience 
of disaffection beyond the notion of positive or nega-
tive attitude and other trait-like constructs. The study 
centres the focus on motivation and emotion, and was 
conducted from a constructivist and interpretative 
perspective of the learning of mathematics. In this 
way, it was primarily qualitative. Reversal Theory 
(Apter, 2001) was used as the main design and inter-
pretive framework. The theory is a comprehensive 
account of personality, motivation and emotion and as 
such affords a basis for understanding affect centred 
on the subjective experience of the individual.

The theory proposes that there are eight such motiva-
tional states, organised into four oppositional pairs, 
which each represent quite different ways of experi-
encing the world. The eight states are:

 ― Serious (telic) versus playful (paratelic)

 ― Conforming versus rebellious (negativistic)

 ― Mastery versus sympathy

 ― Self versus other-oriented

Reversal Theory also gives an account of 16 prima-
ry emotions, that are related to motivational states 
and our experience of the world. The theory further 
proposes that we are in one of each pair of states at 
any one moment, but that one (or sometimes a combi-
nation of two) states is focal in our phenomenal field, 
in that it (they) dominate our experience at that mo-
ment. The theory also introduces a new construct to 
psychology – that of reversal itself. This says that we 
switch or reverse between states frequently. 

The primary method for data collection in the study 
was the individual interview, although a number of 
instruments and procedures were adopted in and 
around the interviews to aid the elicitation of data. 

One instrument, called TESI-ME, adapted from the 
Tension and Effort Scale (Svebak, 1993), was used to 
survey 150 pupils and students on their experience 
of negative emotions. Individual responses were 
available for discussion at interview. The methods 
and instruments, together with some preliminary 
results, are described in more detail in Lewis (2013a). 
Forty nine young people (aged 14 to 18 years) were 
interviewed from two further education colleges and 
one school in the UK. The data from 15 of these young 
people has been analysed and presented as a series of 
case studies and also as an aggregate analysis.

Among the findings of the larger study were:

 ― The volatility of young people’s relationship with 
school mathematics – affect is not trait

 ― It also shows the complexity and ambiguities 
within students relationship to school mathe-
matics – balancing positive with negative aspects

 ― Evidence of the whole range of motivations and 
emotions being operative in mathematics class-
room

 ― Disaffection ≠ unmotivated. Helen, for instance, 
is clearly disaffected, but she is highly motivat-
ed – a paradox explored very little in current 
literature

 ― However, negative affect does disable or de-limit 
learning

 ― Unexpected but significant evidence of self-reg-
ulatory and metacognitive skills in disaffected 
low achievers

PATTERNS OF MOTIVATION AND EMOTION

As indicated above, the results of the main study have 
been reported elsewhere, including to the working 
group at CERME 8. Here, and below, I will draw atten-
tion to a number of theoretically-based and empiri-
cally grounded notions and propositions that have 
emerged from the research, which can be collective-
ly thought of as patterns of motivation and emotion. 
Focussing on state, as this study does, demonstrates 
that students’ subjective experience of learning math-
ematics is highly volatile (at all levels of temporal 
granularity), dynamic and complex. However, like 
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all complex systems, evidence of pattern does emerge, 
and it is the intention here to indicate a number of 
aspects of those emerging patterns.

Evidence of sequences and shifts in motivational 
state, including reversals, are found throughout the 
accounts, and these come with the associated and 
expected shifts in emotion. And although there is 
extensive evidence of all 16 primary emotions being 
active in the experience of these young people, in-
cluding evidence of positive emotions such as pride, 
excitement, the evidence from the TESI-ME suggest 
that the negative emotions of anxiety, boredom and 
anger are more prevalent than any other emotions. 
This is interesting in that, whilst anxiety has been 
widely studied, boredom and anger have not. 

Shifts in motivational state and emotion are in evi-
dence in all of the accounts in this study, and these se-
quences can be quite individual. A ‘typical’ sequence 
(although there are many such sequences, and varia-
tions on them), often starts with the need to succeed at 
a task, coupled with a strong need to understand the 
context or correct procedure. A subsequent lack of 
progress can lead to frustration, which in turn leads to 
anger brought about by a reversal from the conform-
ing to rebellious state. Typically, the performative and 
the affective aspects operate in parallel in this way.

Dominant narrative
The flavour of such sequences can be illustrated by the 
case of Liam, who is a disaffected year 9 pupil.

I panic quite a lot when I don’t get it.

By his own account, the sequence sometimes also ends 
in anger.

L - if I don’t get it…if people are getting ahead…I’m 
always behind….and it gets quite annoying…I just 
wanna..be where everyone else is

Gl – why is it annoying?

L – cos everyone else can get on and I just don’t un-
derstand…but some people get quite annoyed as 
well

Perceiving oneself to be behind the others is a strong 
source of negative affect. In Liam’s case it leads to an-

ger. There is a sense that ‘this is not right – it’s not the 
way it’s supposed to be.’

In motivational terms, his desire to be ‘keeping up 
with the others’ is an expression of competitive 
self-mastery. To serve this need he has to be able to 
perform the tasks set as well (and as quickly) as the 
others, and so he approaches tasks in a serious-con-
forming frame of mind. When the goal is threatened, 
because he doesn’t understand or can’t do it, the arous-
al increases and he feels anxiety or panic. Not being 
able to ‘do it’ disrupts his sense of conformity, and he 
reverses into rebelliousness, and this switches the 
emotion from anxiety to anger. Sometimes he asks 
for help, but being able to ‘do it’ appears to result in 
little pleasure in itself. The benefit appears to be that 
he is able to keep up with the others. At one stage he 
says “I’m always behind (the others).” Even if it is not 
literally true, it reveals how he often feels about the 
situation in his mathematics classes.

Liam’s guiding motivational statement is:

I just wanna be where everyone else is.

Since the notion of ‘keeping up with the others’ recurs 
time and again in Liam’s account, it can be considered 
as a dominant narrative. The dominant narrative itself 
is located within the motivation-emotion nexus of the 
experience of the individual. In Liam’s case the notion 
of ‘keeping up with the others’ is based on the motiva-
tional state combination of competitive self-mastery, 
and in the ‘losing’ mode, the associated emotion is 
anger leading to humiliation.

A number of subjects have demonstrated strong re-
course to such a recurrent theme, which represents 
something of a behavioural attractor to which they 
return again and again in their narrative, which sug-
gests that this theme has some strong significance in 
their subjective experience of school mathematics. 
Examples would include Anna’s apparently ever-pres-
ent need to redefine herself from a  ‘D’ to a ‘B’ (see 
Lewis, 2013b) ; Scott’s inescapable characterisation 
of his relationship to mathematics as ‘struggle’ (a 
word he mentions 17 times in a half-hour interview), 
and so on. Such dominant narratives seem to touch 
every aspect of affect, from emotion to attitudes, be-
liefs and even their identity as mathematical learners, 
thus demonstrating the complex and intimate rela-
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tionships between affective constructs within their 
subjective experience.  

Not all of the sequences in the data relate to perform-
ative-focussed states and emotions such as anxiety 
and anger. Helping others is seen by many students 
as a motivationally rich activity, which often provides 
some of the rare positive experiences for disaffected 
students.

For instance, here is Anna:

‘it makes you feel good…because you get it and 
someone else doesn’t…so you feel a bit proud…but 
if you’re helping them…you feel a bit nice about 
it…does that make sense?’

When asked about the possible contradiction about 
feeling good when someone else is struggling, she 
replies:

‘It’s not like I can do it and they can’t…..it’s like I 
can (my emphasis) do it…and they can’t…it’s not 
like they’re bad…not like ohmigod  I got better 
than her.’

From her account, the progression of states appears 
to be:

 ― Self-mastery – competitiveness, and an attempt 
to do better than the others, leading to a sense of 
pride (if successful)

 ― She then notices the lack of progress in others 
(other-sympathy), which may trigger a sense of 
guilt

 ― This causes her to help her classmates (oth-
er-mastery), which in turn results in her feeling 

‘nice’ (self-sympathy).

In this way, helping others can be seen to be a moti-
vationally rich activity for Anna, since it satisfies a 
range of motivational needs – even though some of 
them are contradictory.

MOTIVATIONAL PATHWAYS

Motivational states, or combinations of states repre-
sent qualitatively different ways of experiencing and 
engaging with activities in a mathematics classroom. 
There appear to be a number of identifiable motiva-
tional pathways which, whilst they play out in highly 
individual ways, have some features in common. 

A number of contexts have emerged that seem to char-
acterise much activity and learning in mathematics 
classrooms, and each of these involves a typical or 
predominant motivational pathway. I describe two 
of these here in more detail.

The serious-conforming pathway
The first of these can be described as the serious-con-
forming pathway. It is characterised in the Table 1 be-
low. 

Nature of ac-
tivity

Mathematical 
context

Motivational 
state

Motivational re-
quirements

Positive affective 
correlates – if suc-
cessful

Negative affec-
tive correlates – 
if unsuccessful

Procedural 
tasks

Procedure to be 
learnt and per-
formed correctly.
Speed and right 
answers rewarded

Telic
Conforming
Self- Mastery

Telic – that mean-
ing, purpose or 
utility are estab-
lished.
Conforming – 
sense of duty. 
‘Correct’ proce-
dure to be fol-
lowed
Mastery – I un-
derstand, so I can 
do

Need to apply effort 
to overcome nega-
tive feeling in order 
to learn.
Performing correct-
ly results in a sense 
of relaxation/relief.
 A sense of achieve-
ment (if it is per-
ceived to be impor-
tant, or if it took 
effort to learn).
A sense of pride at 
overcoming and 
winning

Anxiety, fear 
or panic when 
faced with chal-
lenge. 
Possible switch 
to anger if effort 
is unsuccessful.
Sense of detach-
ment or being 
excluded in 
case of failure, 
resulting in 
mastery-losing 
and sense of 
humiliation

Table 1: Mastery for a reason versus ‘what’s the point?’
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Since this pathway is dominated by the serious (telic) 
state, it is the outcome, and not the doing of the task 
itself that is the source of satisfaction, and as such suc-
cessful engagement and performance is maintained 
by metacognitive skills such as effort and persistence. 
Students engage in this mode because they perceive 
the outcome to be valuable and worthwhile as well as 
achievable. Developing a narrative of significance will 
enhance motivation in this mode.

This mode of engagement is by far the most usual 
mode referenced in classes in this study, and report-
ed by subjects. For some, it appears there seems to be 
little variation. Where it becomes institutionalised, it 
can become the dull ‘textbook and worksheet diet’ of 
drill and exercises described so vividly by many of 
the subjects of this study. 

It is also worth pointing out that any possible pleasure 
and satisfaction here is deferred. In the serious (telic) 
state, this is only likely to be available on successful 
completion of a task. The satisfaction (e.g. relaxation/
relief ) is a low arousal emotion, and thus is unlikely 
to be experienced intensely. 

The playful-rebellious pathway
The second pathway or mode is the playful-rebellious 
route.

The notions of fun and excitement appear often in 
many of these young peoples’ accounts, it seems 

clear that it is an important motivational need that 
can provide a source of motivational satisfaction. 
The evidence here is that it is not trivial, and not an 
add-on to make difficult tasks more palatable. Yet the 
mathematical education community has rarely had 
the language or the theoretical frameworks to discuss 
its importance. It has thus been trivialised and so rele-
gated in importance. In many classrooms described in 
this study, it is shut off as a motivational opportunity. 
At the same time, there is substantial evidence in the 
data that students will often be in the playful state. 

Here is Adnan:

when I’m not just listening to a teacher going 
on and on… I’d rather have a teacher involved in 
some sort of humour… or not just doing maths 
but for example using maths in everyday life…. 
so it would make you think... do you know… the 
next time I come across the situation I can do it 
like this… and that’s where excitement comes in 
and curiosity… like it’s a real life situation and 
they’re making it exciting by giving you this real 
life situation… (Adnan)

The mention of humour, excitement and curiosity are 
all characteristic of the experience of the playful state. 
In fact, humour can trigger the playful state, and it is 
interesting to note that real contexts can create the 
excitement that is so enjoyable in this state.

Nature of ac-
tivity

Mathematical 
context

Motivational 
state

Motivational 
requirements

Positive affec-
tive correlates – 
if successful

Negative affec-
tive correlates – 
if unsuccessful

Open-ended task 
or problem to 
solve or investi-
gate

Mathematical 
thinking and 
heuristic skills 
required. No 
necessary single 
right answer. 
Methods are 
undetermined 
and in control of 
student. 
Possibility of 
group working.
Making connec-
tions, reasoning 
and understand-
ing are privi-
leged.

Paratelic
Rebellious
Mastery

Curiosity, re-
al-world inter-
est, challenge, 
game, unfamili-
arity or novelty. 
Activation of 
exploration and 
discovery.
Need to share 
within the group

Fun, excitement, 
enjoyment and 
immersion in 
the task at hand.
Sympathetic 
satisfaction 
from working in 
a group.

Boredom if the 
challenge is too 
easy.
If too hard, a 
reversal to telic 
could induce 
anxiety, or 
shift of focus to 
mastery-losing 
resulting in hu-
miliation

Table 2: Engagement and pleasure through interest versus ‘I can’t be bothered’
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Here are other examples that emphasise the point:

‘at some point I felt a bit of curiosity because… I 
wanted to know… because there was so much im-
portant stuff...like dealing with money obviously… 
and then... I knew that would help me at some 
point in my life... I knew… I’d get a job… or if I’d 
get in a career like dealing with maths or... so I 
did get curious... and some of the lessons were 
interesting as well.....depending on the teacher 
in the classroom  (Nadia)

Miss B… she taught it as a game… for different 
people she put it in different contexts… like for 
me it was always football… like angles… and stuff… 
she used football to help me understand it… but 
for different people it was different things… she 
knew a lot about us… what interested us… some 
people who liked to have questions… then work 
it out… but other  people want to do it a different 
way… she taught us all a different way… how we 
liked  (Harry)

When people are in the playful (paratelic) state, goals 
and outcomes are not in the phenomenal frame. 
People engage in activity for the momentary pleas-
ure it affords them, and thus they are more likely to 
be creative and spontaneous, and to be unmindful of 
risk. This is a highly desirable state in which to engage 
with mathematical contexts. There needs to be peda-
gogically sound and justified ways of incorporating 
this into the life of the classroom.

It enables creativity and pattern-spotting, particular-
ly in a problem solving context. It is precisely where 
the ‘rich learning’ described in ACME (2012) comes 
from. Indeed it is possible to go further and to say 
that to be paratelically engaged with mathematics is 
a sign of affection for mathematics, since our interest 
and curiosity will enable us to engage without fear. 
The inability to do so is a litmus test of disaffection. 
Further, the poverty of mathematics curricula and 
pedagogy reported by these young people means that 
paratelic activity and engagement is not encouraged 
and enabled in so many mathematics classrooms. 

That there is more evidence in this study of boredom 
than of any other negative feeling or emotion relat-
ed to school mathematics, suggests that these young 
people spend a lot of time in the playful state, but are 
unable often to find legitimate outlet or expression of 

it in the context of the activities of the mathematics 
classrooms. It seems that many teachers don’t appear 
to understand that they could harness this playful-
ness into productive activity by introducing elements 
of curiosity, gaming, unfamiliarity, something out 
of the ordinary, to increase the arousal in a positive 
way, thus prompting the interest and engagement of 
the students. 

In the context of teaching practice, it is interesting to 
note that there is a paradox at the heart of the experi-
ence of playfulness. As Apter puts it:

in order to experience excitement, then, we need 
both the possibility of danger and something we 
believe will protect us from it. (Apter, 2007, p. 31)

This sense of danger or threat is psychological and 
can be brought about by uncertainty and ambiguity. 
The sense of safety, which Apter labels the ‘Protective 
Frame’, can be created by a classroom climate which 
reduces the focus on right answers, and a humane 
and supportive environment, among other means.

SUMMARY

The study shows that a deep account of the experi-
ence of learning (or not learning) mathematics can be 
provided by focussing on motivational state, and the 
associated emotions. Although the data is qualitative, 
and although stability as used in the notion of trait has 
been disregarded here, it is still possible to discern 
pattern in the accounts of these young people. In this 
paper, I have focussed on three theoretically-based 
but empirically grounded notions. Dominant narra-
tive is exhibited by a number (but not all) of the partic-
ipants in this study. It is an interesting phenomenon 
which deserves further study, and which may have 
implications beyond mathematics education. The two 
motivational pathways described here can be thought 
of as qualitatively different modes of engagement 
with learning mathematics. The serious-conforming 
pathway describes an emphasis on the development of 
competence (mastery), and outcome-focussed disposi-
tion which is consistent with much current research. 
On the other hand, the distinctive playful-rebellious 
pathway not only represents a qualitatively different 
mode of engagement, but at the same time is much less 
recognised or studied. This is not to claim that it is 
new. It is possible to recognise the ideas of Dienes in 
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the notion1, and, more recently, Goldin and colleagues 
(2011) have described a phenomenon with some sim-
ilar characteristics in his engagement structure ‘I’m 
really into this’. It would be interesting to examine 
further the presence and efficacy of this pathway in 
learning mathematics.
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In this article, I first introduce data collected from 38 pro-
spective elementary teachers after an intensely negative 
emotional experience preparing to play a game called 
Around the World. From these data emerges a picture of 
these prospective teachers being deeply affected by this 
experience. To try to understand these changes I present 
a theory by Leont’ev. This theory, based on Vygotsky’s 
cultural historical theory, looks at the relationship be-
tween motives, activity, and emotions. Using this theory, 
I argue both theoretically and empirically that what 
has actually changed for these prospective teachers are 
their motives. More specifically, the hierarchy of their 
motives. The results contribute to work in mathemat-
ics education that anchors emotions in a theoretical 
framework and links them to other constructs in the 
affective domain. 

Keywords: Emotions, participationist, motives.

INTRODUCTION

In the spring of 2010, Kim Beswick visited my EDUC 
475 class for a day. EDUC 475 is the mathematics meth-
od course for prospective elementary school teachers. 
Each section of the course usually has 30–35 students, 
90%-95% of whom are female. On the particular day 
that Kim visited we were discussing basic operations 
on single digit numbers – addition, subtraction, mul-
tiplication, and division. The goal of the lesson was to 
get the students to experience methods of teaching 
these operations other than memorization and rapid 
recall, which is the only method familiar to many of 
them. 

Although the lesson has this goal, this only defined the 
general direction I wanted to go in. During the actual 
lesson I draw on a large repertoire of activities and 
discussion points that tumble out in a, more or less, 
improvised order. This allows me to more effectively 
respond to my perceived needs of the specific group 
of students at that specific time. 

As it was, many of prospective teachers I was teaching 
the day Kim visited, although seeing the merit to the 
many alternative methods I was modelling, were still 
not ready to abandon the ‘drill’ method of teaching 
fluency of the basic facts. Many had mentioned at the 
beginning of this lesson, as well as in the previous 
lesson, that they had regularly used The Mad Minute 
during their practicum. This was problematic to me. 
The Mad Minute is a test, usually given once a week, 
where students are challenged to answer 30 questions 
in on minute. Their scores on these tests are often 
recorded in some public fashion and the top achieving 
students are rewarded for their achievements. The 
possible negative consequences of this method are 
many, yet it continues to be practiced for its efficiency, 
simplicity, and tradition … and parents like it. 

To emphasize the potentially negative consequences 
of this method I did something I had never done before. 
After the pre-service teachers returned from a break 
I gathered them around me. I told them that we were 
going to do a basic facts activity. The way this activity 
would work is that I would point at one of them and 
ask them a basic multiplication question (3 × 4, 6 × 8, 
etc.) and they would have two seconds to respond. If 
they responded correctly in that time they would be 
allowed to sit down. If they failed to give response, 
or their response was incorrect, they would remain 
standing and I would come back to them after I had 
gone all the way around the class. This would continue 
until all the students were sitting. 

This game, as it is referred to by practicing teachers, 
is called Around the World, and is often used, in con-
junction with The Mad Minute, as a way for students 
to practice their basic facts. Unfortunately, it has the 
same sort of public shaming qualities that the Mad 
Minute does. 

The pre-service teachers gathered around me were, as 
a group, visibly uneasy. There were a few who seemed 
excited at the prospect of playing a ‘game’ and the thrill 
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of competition. But the vast majority were horrified 
at what was about to happen. When the tension had 
built to a crescendo I pointed at the first prospective 
teacher and, instead of asking a basic multiplication 
question, asked, “How are you feeling right now?” And 
then, to the whole group, “How are all of you feeling 
right now?” 

The relief in the room was tremendous, and the ensu-
ing conversation was beyond anything I had expected. 
The experience of almost having to play Around the 
World was transformative for these soon-to-be teach-
ers who talked about how they NOW understood how 
negative this game—and The Mad Minute—could be. 
For over an hour they talked about their past expe-
riences, sharing the negative impact these types of 

‘games’ had on them as learners. A few of them shared 
their positive experiences with these types of acti-
vates, but even then quickly acknowledged that their 
enjoyment was not worth the price of misery that the 
rest of the students had to pay. We discussed why par-
ents liked these ‘games’ and ways, as future teachers, 
to deal with that. In the end they vowed, individually 
and as a group, that they would never do this to their 
future students.  

After the class, in debriefing the activity with Kim, we 
both concluded the obvious – the prospective teachers 
had had a powerful emotional experience and that 
that experience had caused wide sweeping changes 
in their intended practice (Liljedahl, 2008). But, we 
also concluded that we currently had no theoretical 
framework to make sense of this experience. 

In mathematics education research in general, and 
in affective research in particular, emotions remain 
a largely unresearched and not-well-understood con-
struct. The little research that exists are “sidelights 
rather than highlights of the studies” (McLeod, 1992, 
p. 582).

As such, we decided that we needed to recreate the 
phenomenon and to gather data on it. 

METHODOLOGY

So, in the spring of 2012, working with a new group of 
38 (35 female and 3 male) EDUC 475 students, I recreat-
ed the Around the World activity. As mentioned, EDUC 
475 is an elementary mathematics methods of teaching 
course. It runs for 13 weeks and is comprised of 13 

lessons – one each week. Each lesson is four hours 
long and is typically designed around a number of 
activities and resultant discussions. Between lessons, 
students are assigned readings and prompts to be re-
sponded to in a reflective journal. As with the pre-
vious class, many of the prospective teachers in the 
current class had acknowledged that they had used 
The Mad Minute or the Around the World activities 
during their practicum, either on their own initiative 
or at the urging of their sponsor teacher. 

As such, in the fourth week of classes I once again 
ran the Around the World activity. This time, howev-
er, instead of immediately going into a discussion 
I did something different. As the tension built to a 
crescendo I pointed at a student and asked her how 
she felt, and then I immediately asked her, and all her 
classmates, to sit down and write in their journal how 
they felt at that moment. The students wrote for 10–15 
minutes. We then had a whole class discussion much 
as I had led for the class two years prior. 

At the end of the class they were assigned a further 
journal prompt:

Discuss your experience in today’s class around 
the issue of multiplication. What did you feel 
when I sprung the “stand up and get ready to an-
swer multiplication facts” activity? What sort of 
self-reflection did you go through? How do you 
feel now after we debriefed it? 

Towards the end of the course, the students were giv-
en a further writing prompt potentially related to the 
Around the World activity and discussion. 

Now that this course is almost over what is some-
thing that you will NEVER do in the teaching of 
mathematics? Why? What is something that you 
will ALWAYS do? Why?

Taken together, data consists of the relevant entries 
from the written journals of these 38 prospective 
teachers. These data were analysed using a constant 
comparative method (Glaser and Strauss, 1967) to 
emerge themes pertaining to their emotions and the 
effect of those emotions, both short term and long 
term. 
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RESULTS

For the most part, the game of Around the World cre-
ated a very negative emotional experience for these 
prospective teachers. 

Fear
Fear, in one of its many forms, was one of the most 
commonly expressed emotions immediately after the 
activity.

Misha Terrified! I can’t do mental math very 
quickly and I don’t like being the centre 
of attention when under scrutiny. The 
only thing I could think was “I’m going 
to be the last one standing”. I don’t want 
to look slow in front of my peers and 
teacher. Through my education career 
I sit in my seat praying not to be called 
on. 

Allison  Mortified. I don’t like to be wrong or feel 
embarrassed in front of my peers. It can 
be extremely difficult to get the answer 
right as I’m too busy thinking about me, 
or what they are saying to care about the 
problem. Eventually I feel I’d just guess 
to get it over with. 

Anxiety
The other emotion frequently expressed is anxiety.

Beth  Heart racing anxiety! The thought of be-
ing picked on and not knowing gives me 
the heebie jeebies, especially in a subject 
that is probably my weakest. Being that 
it is multiplication and is something that 
I probably would get right doesn’t really 
help shake the feeling you get when you 
know that there is pressure to perform. 
[..] If I feel like this at 23 how would a kid 
feel?

Jocelyn I am feeling really anxious and nervous. 
I am worried about being embarrassed 
about not being able to answer the mul-
tiplication question in front of the class 
and I am also really worried about being 
the last person standing. 

Nervousness
Nalah I felt nervous because I might not know 

the answer to the multiplication ques-
tion he might ask. [..] While we were 
standing there waiting for Peter to 
ask, I was thinking back to grade two 
and three and how we played the game 
Around the World, and how nerve rack-
ing it was. 

Defeated
Anne It also reminded me of a time when my 

grade three teacher called me to the 
front of the class to answer a question. 
She knew I wouldn’t know it, but I had 
to do the walk of shame to the board 
only to admit to the whole class that I 
didn’t know the answer. I dreaded going 
to class. I just remember being in class 
and feeling defeated by math. 

TEACHER CHANGE

These very negative emotions were not fleeting. 
Despite the fact that during the course we engaged 
in over 50 activities and discussions, and read over 
400 pages mathematics education literature, six 
weeks after the Around the World activity, 24 of the 
38 prospective teachers in the course chose to discuss 
this specific activity, and the emotions it triggered, 
when responding to the prompt about something they 
would never do in their teaching. 

Misha Something that I will NEVER do in the 
teaching of mathematics is put students 
on the spot and force them to answer 
questions. Like many other people, I 
have experienced embarrassment from 
being put on the spot and answering in-
correctly. I understand how low it can 
make; a student feel and I don’t want to 
be the one to make my class feel that way. 

Sofia In teaching math I will never use the 
Mad Minute to drill students on their 
multiplication tables. The costs to many 
students outweigh any benefits to a mi-
nority of students.

Jocelyn Now that the course is over, I have discov-
ered that I will never make my students 
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do any sort of drill or mad minute that 
may deflate their confidence and cause 
them to want to avoid mathematics. I re-
alize what effect ‘mad minute’ exercises 
had on me as a math student and when 
Peter simulated a mad minute situation, 
I felt terrified and extremely anxious. I 
would never want my students to feel 
that kind of panic and fear. As a teach-
er, I hope to foster a love for learning 
mathematics and want to create an en-
vironment whereby my students feel 
confident and safe.

Even those who were originally excited by the game 
talked about the negative emotions they say their 
classmates experience. 

Alison To be honest, I was excited to play 
the game. But I can see how an activi-
ty like this could bring high levels of 
anxiety for students in a class that are 
insecure about their amount of knowl-
edge or skills with respect to what is 
being quizzed on the spot. I did not 
feel panicked because I am confident 
that my multiplication skills are fine. 
[..]Something I will NEVER do when I 
teach math will be multiplication drills. 
It traumatizes children that are not find-
ing this activity successful, and it could 
give them a bad taste for math for the 
rest of their life.

Of the 14 who did not speak of the Around the World 
activity explicitly in their response, 12 made commit-
ments that were tangential to some of the ides that cas-
caded from subsequent discussions on the learning 
of basic facts in general, and assessment in particular. 

Anne I will NEVER use assessment as a way 
to rank students. 

Khaly I’m not afraid of mathematics any more, 
to learn or to teach. I also think that 
mathematics can actually be fun. I am 
excited to teach my new students (when 
I get my first class). Show them that math 
is not as scary as it seems.

Taken together, 36 out of the 38 prospective teachers, 
despite many having used it in their practicum, vowed 
to never use Around the World (or the Mad Minute) in 
their future practice as teachers. For them, their own 
experience with this activity had triggered very neg-
ative emotions, sometimes reminding them of similar 
activities and emotions from when they, themselves, 
were children. These emotions were not only endur-
ing, but also instrumental in changing things in the 
prospective teachers’ practice. 

But what exactly is it that has changed for these teach-
ers? This is my research question. Given that they 
don’t actually have a classroom in which to enact these 
changes we cannot say that it is their practice that has 
changed. Perhaps it is their intended practice that has 
changed? But what is backstopping this intention? 
Intentionality is a reification of deeper constructs. 
The question is, what is the construct that grounds 
these intentions, that was deeply affected by the 
emotional experience that these teachers had when 
being placed in a position of having to play Around 
the World? To answer these questions we need to look 
more closely at emotions.

EMOTIONS 

Emotions, as theoretical construct in mathematics 
education, are seen as the fleeting and unstable cous-
ins of beliefs and attitudes (McLeod, 1992). They are 
either a reaction to an experience (McLeod, 1992) 
or a reaction to an interpretation of an experience 
(Mandler, 1984). Regardless, emotions are acknowl-
edged to affect learning in general (Zan, Brown, Evans, 
& Hannula, 2006) and cognitive processing in particu-
lar (Hannula, 2002). Over time, negative emotions can 
reify into more stable and disassociated manifesta-
tions of fear, phobia, and hatred (DiMartino & Zan, 
2012; Tobias, 2009), each of which will have an effect 
on actions (Hannula, 2002; Tobias, 2009). 

That emotions exist, and that they simultaneously 
emerge from, and shape experience, is clear. That 
these emotions then regulate future actions is also 
clear. What is not clear, however, is how this happens. 
What psychological mechanisms link emotions to ac-
tions? The answer to this lies not in the abstract. 

The variety of emotional phenomena and the 
complexity of their inter-relations and sources 
is well enough understood subjectively. However, 
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as soon as psychology leaves the plane of phe-
nomenology, then it seems that it is allowed to in-
vestigate only the most obvious states. (Leont’ev, 
2009, p. 168)

That is, emotions must always be considered in the 
context of the phenomena in which it occurred. 

EMOTIONS AND ACTIVITY

Consider a wolf in the wild. This wolf has a vital need 
to eat, and this need to eat drives him to hunt. These 
hunts result in him catching mice, rats, and rabbits. 
This then shifts the abstract need to eat into a concrete 
need to eat mice, rats, and rabbits. Then one day, he 
catches, for the first time, a duck. This, in turn, chang-
es his need to include ducks in his menu of things he 
eats. And so on. Each time the wolf, through his hunt, 
encounters a new animal that he can eat, his needs 
change. 

For Leont’ev (2009), such is the relationship between 
needs and activity. As humans, our vital needs, ab-
stract and unrefined, drive our activity to satisfy these 
needs. These activities, grounded in phenomena, in 
turn gives an object to the needs. 

The fact is that in the subject’s needy condition, 
the object that is capable of satisfying the need is 
not sharply delineated. Up to the time of its first 
satisfaction the need “does not know” its object; 
it must still be disclosed. (Leont’ev, 2009, p. 161)

This recursive relationship between needs and activ-
ity, each driving the other, expands and refines both 
the object of need, and the need itself, forming what 
Leont’ev (2009) refers to as concrete-objective needs. 
This, in turn, changes the subsequent action. 

[..] it is understood that changing the concrete-ob-
jective contents of needs leads to a change in 
methods of their satisfaction as well. (Leont’ev, 
2009, p. 162)

Sometimes, however, this recursive cycle shifts the 
need from the object to the activity itself, forming 
what Leont’ev (2009) calls an objective-functional need. 
These needs, such as the need to work, to be produc-
tive, or to be creative, for example, do not displace the 
original needs that spawned them, but come alongside 
them as additional new needs. It is important to note, 

however, that not all objective-functional needs come 
from a newly acquired focus on activity. Likewise, not 
all vital needs are based on objects. In a cultural his-
torical framework, action oriented needs can be part 
of the milieu. For example, the need to be subservient, 
to strive for physical perfection, or to always clean, 
can be a priori embedded needs within a person’s spe-
cific cultural upbringing. Regardless, activity and “the 
satisfaction of the need” helps to delineate it. 

For Leont’ev (2009), these delineated concrete-objec-
tive and objective-functional needs, in their ideal and 
reflected forms, are what he calls motives. And despite 
the fact that the language on needs and activity are 
shot through with willfulness and implied conscious-
ness, our motives are not always known to us. Further, 
our activities are multi-motivational.

Such breaking down is the result of the fact that 
activity necessarily becomes multi-motivational, 
that is, it responds simultaneously to two or more 
motives. (Leont’ev, 2009, p. 169) 

They organize themselves in hierarchies, and these 
hierarchies define, to a great extent, an individual’s 
personality. 

A division of the function of sense formation and 
simple stimulation between motives of one and 
the same activity makes it possible to under-stand 
[sic] the principal relationships characterizing 
the motivational sphere of personality: the rela-
tionships of the hierarchy of motives. This hier-
archy is not in the least constructed on a scale of 
their proximity to the vital (biological) needs in 
a way similar to that which Maslow, for example, 
imagines: The necessity for maintaining physio-
logical homeostasis is the basis for the hierarchy; 
the motives for self-preservation are higher, next, 
confidence and prestige; finally, at the top of the 
hierarchy, motives of cognition and aesthetics. 
(Leont’ev, 2009, p. 170)

Finally, for Leont’ev (2009), emotions act as an internal 
signal within this relationship between our motives 
and the actions that work satisfy them. That is, despite 
the fact that motives could be unknown to an indi-
vidual, when they are realized there is an emotional 
response that signals that success has been achieved. 
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Here we are speaking not about the reflection of 
those relationships but about a direct sensory 
reflection of them, about experiencing. Thus they 
appear as a result of actualization of a motive 
(need), and before a rational evaluation by the 
subject of his activity. (Leont’ev, 2009, p. 166–167) 

These emotions have the potential, then, to reorganize 
the hierarchical order of these motives. 

For example, a businessman has a goal to earn more 
than $100,000 in his job as a sales manager. One day, 
his boss calls him into his office and tells him that he 
is receiving a raise and will now be earning $110,000 
per year. The man is elated. Later on that same day 
he overhears that his colleague has also been given 
a raise and will now be earning $120,000. Suddenly, 
a feeling of dread comes over him. Reflecting on this 
negative emotional response the man comes to see 
that what he really wanted was to be the best sales 
manager in the company. Earning over $100,000 a year 
was not the primary goal. The primary goal was to be 
the best sales manager in the company. But that goal 
was hidden from the man. 

In this example, the man’s surprising emotional 
reaction to hearing that his colleague was making 
more than him left him with an “emotional residue” 
(Leont’ev, 2009, p. 172) that moved him to engage with 
his hierarchical structure of motives, and to try to 
figure out what it is that is really driving him. In so 
doing, a motive that he was not previously aware of 
revealed itself. This results in a re-orientation of mo-
tives, which is tantamount to a re-orientation of his 
personality – all of which is  triggered by his emotion-
al response to an experience. 

As such, in Leont’ev’s (2009) framework, emotions 
serve as the orienting mediator between action and 
motives, and between motives and personality. In 
short, an emotional response to a specific experience 
draws the attention of the individual to their motives 
and allows them to begin the cognitive process of 
re-orienting their motives hierarchy. 

EMOTIONS AROUND THE WORLD

Leont’ev’s theory of emotions, motives, and personal-
ity, situated within the cultural-historical paradigm 
of individualized activity theory allowed me to look 

anew at the data from the prospective teachers play-
ing Around the World. 

All of these teachers wanted to be good teachers. This 
was one of their many motives. But they also wanted 
to please parents, have their students be good at basic 
multiplication facts, and to not make their students 
anxious or fearful, to name a few. These many goals 
were organized into hierarchies, unique to each pro-
spective teacher. For the most part, these prospective 
teachers were not aware of many of their motives. 
Instead, they were fixated on their current goals of 
learning how to teach mathematics, getting good 
grades, and/or having their knowledge experience 
acknowledge. The “emotional residue” left from their 
experience playing Around the World helped them 
to see some of these motives. And it helped them to 
re-orient them. 

In what follows I provide a brief case study on one 
of the prospective teachers—Tara—selected for her 
clear articulation of motives in her writings. Tara’s 
case is analysed through the lens of Leont’ev’s theory 
on motives, emotions, and personality (2009). 

Tara
Immediately after the Around the World activity Tara 
wrote that she was feeling a little anxious.

Tara I’m feeling a little anxiety, because [she] 
did not want to look stupid if [she] got it 
wrong. 

However, she also saw merit in this activity. 

Tara As a teacher I see the value in this ac-
tivity. Students must be ‘switched-on’ 
and engaged. It forces them to use their 
brains and everyone must participate. 
The likelihood of everyone getting the 
correct answer is unlikely so no one will 
feel bad if they don’t get to sit down. It 
also creates a competitive environment 
and opportunity for kids to shine. 

The hierarchy of motives from Tara’s post-activity 
journal indicates that students being ‘switched-on’ 
is one of the primary motive for her as a teacher (see 
Figure 1). 
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Later that night, when responding to the journal 
prompt her motivations had changed somewhat. 

Tara Today when Peter sprung the “stand up 
and get ready to answer multiplication 
facts” activity, my first feeling was fear 
and anxiety. I was worried I’d get the 
answer wrong and look stupid in front 
of the class. [..] This exercise made me 
think about my own classroom, how or 
whether I would use an activity like this. 
I think I would, that being said, would 
my students feel the same anxiety I did? 
Most likely they would, but I think after 
getting into the game they would enjoy 
the competition. The environment I 
plan to create in my class would assure 
them that I was not having them do this 
activity to humiliate them but to use 
mental calculation and practice their 
skills.

Tara’s new hierarchy of motives (see Figure 2) can now 
be seen as having concern for her student’s anxiety 
at the top and the motive to ‘switch-on’ students has 
dropped away. The few hours that she had to reflect 
on her experience with the activity and the emotional 

residue it left has seemingly caused her to re-orient 
her motives. 

And this residue endures. At the end of the course 
Tara continues to talk about her motive to not let stu-
dents become anxious, although not quite as explicitly. 

Tara I will never just stand at the front of a 
class and ‘teach’. [..] Basically, I won’t be 
afraid to teach outside the box ... the tra-
ditional box that I learned in and that we 
all know so well. I want to inspire my 
students. [..] I now know math doesn’t 
have to suck ... the way it did for me in 
grade school.

CONCLUSION

So, what is it that changed for Tara and for the rest 
of the prospective teachers who ‘played the game’ of 
Around the World? One possible explanation is that 
it was their motives. More specifically, their hierar-
chies of motives were re-oriented – re-oriented by 
the emotional residue left after the intensely negative 
experience of being told that they would be playing 
Around the World. For 36 out of 38 of these prospective 
teachers, such a re-orientation resulted in a motive to 
not cause their students anxiety took its place as the 
primary motive at the peak of the hierarchy. This was 
not a new motive, but rather a motive that promoted 
up the ranks as a result of their emotional experience. 
And even after six weeks, and after 50 activities and 
400 pages of literature, the concern for student anxi-
ety remained as the primary motive. Leont’ev’s (2009) 
theory allowed us to view emotions, not as fleeting 
abstract notions, but as robust and powerful contrib-
utors to the motives and future action cycle. 
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The paper focuses on the intertwining between affect 
and cognition in pre-service primary teachers, with the 
twofold goal of studying teachers’ affect when facing 
problem-solving activities and of exploring paths for 
teacher professional development. 81 future teachers 
were proposed problem solving activities with specific 

“affective documentation” requests. We present here the 
first results of data analysis, and describe the main af-
fective pathways emerged. Results are then discussed 
also with respect to methodological issues and to impli-
cations for teacher education activities that include the 
affective factors as relevant variables. 

Keywords: Emotions, affective pathways, problem-solving, 

teacher education. 

INTRODUCTION AND THEORETICAL 
BACKGROUND 

This paper originates from our double interest as re-
searchers in mathematics education and as teacher 
educators and investigates the intertwining between 
affect and cognition in problem solving processes car-
ried out by future primary teachers. 

Starting from the seminal work of Polya (1945), prob-
lem solving is a crucial issue in mathematics educa-
tion (Schoenfeld, 1992), and constitutes also a fertile 
ground for studying the influence of affective factors 
in mathematical thinking processes (McLeod & Adams, 
1989; Gómez-Chacón, 2000; Furinghetti & Morselli, 
2009; Pesonen & Hannula, 2014). In fact, the solving 
process encompasses cycles, deviations and stops, and 
is influenced by resources, control, methods, heuris-
tics, and affect (Carlson & Bloom, 2005). In particu-
lar, DeBellis and Goldin (2006) speak of the affective 
pathways as “established sequences of (local) states 
of feeling that interact with cognitive configurations” 

(ibid, p. 134). They underline also the importance of 
meta-affect, defined as “affect about affect, affect about 
and within cognition about affect, and the individu-
al’s monitoring of affect through cognition” (ibid., p. 
136). From a methodological standpoint, studying the 
interplay between affect and cognition is quite a com-
plex issue. Pesonen and Hannula (2014) use screen re-
cordings and emotional states automatic recognition, 
to study upper secondary students problem solving 
with dynamic geometry software. Other approaches 
are based on self reports or self study. Gómez-Chacón 
(2000), for instance, proposed the Problem Mood Map 

“for the diagnosis of emotional reactions and the sub-
ject’s self-evaluation” (p. 152). In her study, local affect 
is self evaluated and registered by students during 
and at the end of the mathematical activity, by means 
of a special iconic code. The aim of such an instrument 
is to provide teachers information on students’ affect 
during problem solving, but also to “foster in the pupil 
an awareness of his own emotional reactions” (p. 153). 

The affective dimension plays a crucial role in future 
mathematics teachers, because it can endanger the 
success of their professional education processes and 
their future teaching processes (Hannula et al., 2007). 
Many studies have been arguing that what teach-
ers believe and feel have a clear influence on what 
students believe and feel (e.g., see Hodgen & Askew, 
2011). This issue is especially crucial for teachers 
at the primary school level, since in most countries 
they are not specialist in mathematics, and may have 
developed negative experiences with the discipline 
in their past experiences as students (Di Martino & 
Sabena, 2011; Lutovac & Kaasila, 2014). Coppola and 
colleagues (2013) have focused on future teachers’ at-
titude towards mathematics and its teaching, stressing 
the importance of considering emotional disposition, 
view, and perceived competence—components of atti-
tude, following Di Martino and Zan (2010)—both with 
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respect to mathematics and to its future teaching. In 
this research, great attention is given to the link be-
tween the past experiences of pre-service teachers as 
students and their future perspectives of becoming 
mathematics teachers: also pre-service teachers with 
negative past experiences may show positive attitude 
towards its teaching (Coppola et al., 2013).

In our view, it is crucial promoting in future teachers 
the reflection on the intertwining between affect and 
cognition, and to work on the meta-affective dimen-
sion, as important steps in their professional develop-
ment path. In this paper we present the first analysis 
of one activity conceived within this perspective, i.e. 
the problem-solving with “affective documentation” 
requests.

METHODOLOGY

The context
The study was carried out on the university stu-
dents attending to the first year of the master degree 
to become kindergarten and primary teachers of 
the University of Turin (academic year 2013–14), in 
which the authors are in charge of the Mathematics 
Education courses. Throughout the math education 
course, pre-service teachers were asked to engage in 
various kinds of activities (problem posing, problem 
solving, analysis of children’s solutions, classroom 
discussion transcripts analysis, and school textbooks 
analysis), individually or in group-work, as well as 
in collective discussions mediated by the teacher ed-
ucator. 

A preliminary study on prospective teachers’ affect, 
performed according the model of the attitude to-
wards mathematics and its teaching, suggested that 
pre-service teachers education should act in two ways: 
in continuity with respect to the need for a personal 
reconstruction with the discipline (“math redemption” 
in Coppola et al., 2013) and with the beliefs about the 
importance of affect in the teaching and learning pro-
cesses, but also in discontinuity with the widespread 
procedural view of mathematics (Morselli & Sabena, 
2014). On the base of these results, we set up a series of 
three problem-solving activities, coupled with specific 

“affective documentation” requests.

The affective documentation requests 
We set up problem-solving tasks with specific addi-
tional questions about the description of the solving 

process and the description of the emotional states (af-
fective documentation request) perceived in three 
different moments: at the reading of the text, during 
the solution phase, and reconstructed at the end of 
the activity. To this aim, specific open questions were 
inserted on the working sheet. The first question was 
immediately after the text of the problem: “Describe 
how you feel when reading the text”. Then, the solvers 
were asked to report their solving process and emo-
tional state: “Now try and solve the problem… Don’t use 
another sheet, try to write down here all your attempts, 
thoughts and FEELINGS when solving the problem 
(your reasoning, emotions, blockages…)”. Finally, once 
reached a solution, they were asked to write down 
the story of the solving process: “Now, tell the story of 
your solving process, describing as much as possible the 
emotions you felt during the process”.

This methodology has some common points with 
Gomez Chacon (2000)’s instrument, since the final aim 
is to gather information on local affect and also to pro-
mote meta-affect during and after the solving process. 
Also, our approach has some links with the teacher ed-
ucation interventions performed by Chapman (2008), 
where self-study has a key role. One way of fostering 
self-study is asking students to narrate stories of their 
solving process. Affective documentation can be con-
sidered also as a special case of story. 

Our approach has the double aim of studying the in-
tertwining between affect and cognition, and of mak-
ing pre-service teachers more and more aware of the 
influence of affect during mathematical activities, in 
order to increase their ability to fruitfully manage it. 
Thus, asking solvers to document their own thoughts 
and emotions, although a demanding and non-neutral 
requirement, was valued also for its meta-affective 
outcome. It is important to underline that prospective 
teachers were not used to such a kind of request. 

The 1089 task 
During the course we presented three problems with 
an increasing complexity as regards the expected solv-
ing processes; also the requests of affective report 
are made more and more explicit. Here we focus on 
individual reports to the 1089 problem, the third pre-
sented to the future teachers (text inspired by Coles, 
2013): 

Pick any three digit number (e.g. 752) with 1st 
digit bigger than 3rd. Reverse the number (in 
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the example, 257) and subtract (in the example, 
752-257=495). Reverse the answer and add (in the 
example 495+594). [the example is also written in 
column; the final result, 1089, is written]

a) Now, try with another three-digit number (with 
the first digit greater than the third one) and do 
the same procedure: what result do you get?

b) Can you find a result that’s is NOT 1089? Why? 

To answer question a) it is sufficient to carry out the 
same procedure as in the worked example. Question b) 
is the real challenge. A first exploration on numerical 
examples may lead to a counterexample (for instance, 
starting form 423 one gets 198 as final result). Once 
found the counterexample, the problem is solved; 
nevertheless, expert solvers could go on with the 
reflection, in order to see whether it is a sort of “iso-
lated” counterexample or there is a regularity in the 
set of counterexamples. Indeed, all 3-digits numbers 
where the first digit is equal to the third digit plus 1 
are counterexamples. Moreover, for all the counter-
examples the result is 198. One could even come to a 
general conjecture: if the starting number of the type 

“first digit is equal to the third digit plus 1” the result is 
always 198, otherwise the result is always 1089. In the 
case in which the solver finds all numerical examples 
that end up always with 1098, she/he is expected to 
move from an explorative phase to the formulation of 
a conjecture, and the search for a justification on the 
general plane. This passage from numerical examples 
to mathematical argumentation was crucial to the 
aims and contents of the teacher education course. 

Research questions
We explore the potentialities offered by the “affec-
tive documentation” requests to research affect in 
mathematical problem-solving. At the same time, we 
investigate whether such kind of tasks for pre-service 
teachers may have professional development value. 

The research questions guiding the study are: 1) What 
affective pathways emerge? How do they intervene 
in the solving process? 2) Is it possible to establish 
some link between attitude towards mathematics and 
affective pathway? 3) What indications for teacher 
education come from the intertwining of solving and 
affective pathways?

In this paper, we will face the first question, and try to 
get some insight on how to direct future research in 
order to tackle the other (more ambitious) questions. 

ANALYSIS

The 1089 task was faced by 81 students (all those who 
were attending the specific lesson). As usual in the 
lessons, students were allowed to collaborate in small 
groups: actually most of them chose the group-work; 
however, they had to fill the sheet individually and 
to write down the names of the groupmates. The 
subsequent qualitative analysis is performed on the 
individual reports. 

The first approach to the problem
Considering the emotional reactions at the reading 
of the text, 48 future teachers (59%) declare only pos-
itive emotions, while 13 (16%) declare only negative 
emotions. The most quoted emotion is curiosity, men-
tioned in explicit way by 35 students (43%). Curiosity 
(but also incredulity) comes often along with the cog-
nitive needs of understanding and discovering, which 
push towards undertaking with trust the resolution 
of the problem. An example is Schirry: “I feel curiosity 
and desire of discovering, which push me to engage in 
solving the problem as a challenge”. 

Among positive emotions we remark also astonish-
ment, indicated by 11 students. In some cases, astonish-
ment is due not so much to the content of the problem, 
but to the novelty given by the typology of the prob-
lem (Betty: “I feel astonished because I never focused 
on these types of problems”). Among the students that 
signal mixed emotions (i.e. both positive and negative) 
we find mostly curiosity and interest combined with 
puzzlement (FedePeri: “At the first reading I feel a bit 
of puzzlement, curiosity about the outcome and desire 
of trying with other numbers to discover if the results 
is always the same”). In these cases, puzzlement, if ac-
companied with positive emotions such as curiosity, 
can constitute an important engine for the solving 
process, pushing towards the exploration phase. Some 
students welcome the activity even with enthusiasm, 
underlying its disruptive character with respect to 
the mathematical activities of their past experience 
(Amy: “Let’s play! Let’s try with numbers! No proof for 
which it is needed to have studied so much!”). Though 
rare (3 cases out of 81), this kind of enthusiastic wel-
come to a complex problem out of classical schemas 
can be considered as another sign encouraging us in 
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continuing in this direction, on an intervention plan. 
On the other hand, also the few students who indicate 
only negative emotions do undertake the solving pro-
cess, with some success (possibly due to the collabora-
tion with their mates during the group-work).

Finally, some students, rather than indicating an emo-
tional aspect, underline their cognitive needs when 
facing the problem. In particular, some of them ex-
press the necessity of reading the text several times. 
Sometimes we can trace the reference to interiorized 
schemas, which guide the solving process (Lia: “I had 
to read the text several times, because during the first 
reading I try essentially to seize the general sense of the 
problem”), and even the description of the kind of per-
formed reading, as G.C.: “I had to read the text several 
times lingering especially on the key-words and on the 
example. Once understood the text, I thought how to 
solve the problem”. Students who quote the necessity of 
reading carefully and several times the text, typically 
show also strong elements of meta-cognitive control 
over the solution.

All the aforementioned examples refer to an inter-
twining between text reading (as a first step in the 
problem solving process) and emotional disposition 
(one component of the construct of attitude). Other 
examples refer to the role of perceived competence (an-
other dimension of attitude) in text reading: a sense of 
tranquillity is juxtaposed to the awareness of knowing 
how to face what is requested (perceived competence), 
while restlessness and discouragement are quoted 
when the students foresee, by the first reading, not 
to be able to solve the problem. Some students make 
an analytical separation between the two requests of 
the problem, declaring opposite feelings in relation 
with opposite competences perceived to face them; an 
example is Chi: “For what concerns the first part (the 
first question) I can say I am quite tranquil, because the 
request is clear and manageable. The problems come out 
with the second request, because I do not feel I am able 
to give a valid argument for that”.

The solving process
The specific formulation of the task, providing a pre-
cise indication on how to start the solving process, 
appears to prevent “initial blocks”. The first solving 
steps engage the students a lot, on the one hand thanks 
to their procedural nature (a kind of mathematical ac-
tivity in which the students feel at easy, as it emerged 
from the questionnaires); on the other hand, the task 

allows for a certain freedom for the exploration. This 
latter aspect is underlined as a positive factor by some 
students, as Lavixx94: “It is a problem which allows us 
initially a certain freedom in our choices and this can be 
a positive factor that does not create anxiety in solving 
it, providing already given numbers to solve. One can 
so get to solve the passages in a quiet way”. The second 
request (Can you find out a number…) is the actual core 
of the task. Some students start the exploration with-
out any well-defined goal; some others are instead 
oriented since the beginning towards finding out a 
counter-example. As concerns the emotional aspects, 
we remark that outcomes that are analogous from the 
mathematical point of view are accompanied by very 
different emotional reactions, ranging from tranquil-
lity to frustration, as we detail below. 

Let us consider first those who obtain always 1089 
(32 out of 81). Some of them are comforted from the 
regularity of the result, and as a consequence pushed 
to exploring and understanding. Others are satisfied 
with finding out other examples giving 1089, but feel 
stuck in proving it. In few cases (5) the reference to the 
need of a proving phase is completely missing, while 
a sense of amazement is the final step of the process. 
It is the case of Elis94, who checks only one example 
and comments “Amazement, we did not think that it 
turned indeed into 1089!”, but also of Estestest, who 
explores with six numerical examples. A third cate-
gory is formed by those who feel sad, frustrated, or 
even angry for not finding out any counter-example 
(Martitea93: “I remain astonished because I cannot 
realize of not being able of finding out a starting number 
that does not give 1089. I felt so to say also some anger”). 
In the last two categories we can signal a lack of knowl-
edge at a meta-level on the mathematical activity, which 
would lead to recognize a regularity in the absence 
of the counter-example, and hence to searching for a 
general explanation. Probably those who feel frustrat-
ed are too much focused on the question “Can you find 
out…”, as if it were a rhetoric question (“Surely I have 
to find it out!”). In this case, the emotional reaction 
would be strictly related to the problem formulation 
or to the problem interpretation: this appears to us a 
viable route to work on with the students, in an inter-
vention perspective.

The majority of the students (59 out of 81) found out 
one or more counter-examples (leading to 198). An 
analogous range of emotional reactions, from sur-
prise to puzzlement, can be detected. In other terms, 
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we want to stress that it is not the result per se to pro-
voke a certain emotional reaction, rather its inter-
pretation within the mathematical activity, which in 
particular is determined by one’s own expectations on 
the problem and meta-mathematical knowledge. 

Dually, the same emotion may be linked to very dif-
ferent behaviours in the solving process. The most 
meaningful case relates to astonishment: it is some-
times indicated as final emotion, not stimulating fur-
ther reflections (especially in students who obtain 
always 1089), whereas in other cases it is the engine for 
questioning and continuing the mathematical work 
(DadiLuca: “With this example I don’t find 1089 and I 
feel a sense of astonishment. Will it maybe be because 
the 3rd digit is less than the 1st only of 1?”).

Generally, we can observe that the positive emotions, 
when are the only mentioned emotions, are not neces-
sarily associated with a good solving process or high 
quality mathematical activities. In our data we can 
trace a serious dark side of positive emotions as the only 
emotions: students indulge on their positive feelings, 
do not receive boosts to further verify their results, 
to question their process, to check it. Their solving 
process burns out early, with little control at meta-cog-
nitive level. Furthermore, it often happens that the 
negative emotion is felt later, when the students talk 
with their mates or the teacher, and realize their low 
performances. 

On the contrary, those who indicate only negative 
emotions during the solving process do not always 
carry out poor or uncorrected mathematical activities. 
In many cases, an initial negative reaction is followed 
by a positive reaction associated with a discovery. For 
instance, Kika narrates in this way the story of her 
solution: “At first we took numbers at random, seeing 
that it always came out 1089, hence we were resigning 
ourselves to the fact that it always came 1089. Then we 
tried to take numbers in sequences (e.g., 421-422-423) 
and we noticed that the results changed with 423, where 
the last digit was smaller than the first of 1 only. Hence 
we chose other two numbers with this structure (e.g. 524 
and 726) and we transformed the hypothesis in a theory! 
What a satisfaction!”).

The cases with more complete and effective solving 
processes are also those that document quick up-and-
downs of emotions linked to the different solving mo-
ments (e.g. quick sequences of discomfort-new ex-

ploration-discomfort- astonishment). An example is 
given by Giuly who writes down three examples, find-
ing 1089 in all cases and commenting “Astonishment, 
wow, happy”, then finds an example with 198 (“Ops I 
did something wrong”), finds another case of 198 and 
writes “OK, maybe I understood the rule, we feel yet 
more accomplished”.

This emotional swing ends up sometimes with a nega-
tive emotion, especially frustration or dissatisfaction, 
which may be linked to three different reasons: 

1) feeling unable to communicate properly a cer-
tain conjecture, explanation, or argument, as 
Rubinorosso: “curiosity-get lost-illumination-frus-
tration in not being able to express well our discov-
eries”; 

2) feeling unable to understand why there is a cer-
tain result, as Vios:“But we cannot understand 
why it is always 198”; 

3) feeling unable to prove a certain result, as Chi: 
“The discomfort is due to the fact that I am not able, 

in logical-mathematical terms, to prove the reason 
why, considering a number with the first digit great-
er than the third one, and the second and third the 
same, I got a number different from 1089”

Generally, the final dissatisfaction is indeed related to 
greater mathematical and meta-mathematical compe-
tences. The typical cases are given by those pre-ser-
vice teachers that express a global sense of success 
(for being able to find out examples) but also regret, 
delusion and resignation for not finding a general 
rule to distinguish the two sets of cases 1089 and 198. 
Asking where the counter-example comes from, and 
why only with some classes of numbers you find 198 is 
a typically mathematical curiosity: as future teachers 
educators we interpret in a very positive way these 
final students’ dissatisfactions.

DISCUSSION AND CONCLUSIONS

A preliminary reflection concerns our method for 
studying the affective pathways in problem solving, 
i.e. the series of affective documentation requests. 
Even if prospective teachers were asked to report 
their emotions after text reading, during the solving 
process, and once solved the problem, many of them 
did not report emotions during the solving process, 
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they rather commented immediately after having 
accomplished the task, or wrote twice the same com-
ments. As a consequence, we organized our analysis 
in two sections (emotions after text reading and af-
fective pathways in problem solving), without distin-
guishing between documentation within and after the 
process. Actually, writing down emotions and feeling 
when solving the problem is a demanding task, since 
the solver should stop the process in order to comment 
it. In light of these findings, in future interventions we 
would skip the request of documentation during the 
process and just ask for a report after the solution: in 
terms of meta-affect, this should be a valuable request 
as well. Also, we did not focus on the possible effect 
of group work on the affective and solving pathways. 
Future research could be organized so to distinguish 
between the two levels of “individual emotions” (re-
ported when working individually) and “group emo-
tions” (reported when working in group).

Concerning the results of the study, data analysis con-
firms the deep intertwining of affective and cognitive 
factors in problem solving, and reveals some patterns 
in the affective pathways (first research question): 
rich and complex problem solving processes are char-
acterized by emotional pathways with a “continuous 
swinging” of emotions. Such emotional states are 
both cause and effect of the exploration, conjecture 
and proving steps. On the contrary, “fixed” emotional 
pathways, with a more stable (positive or negative) 
emotional state that persists throughout all the pro-
cess, occur when solving processes are poor and non 
efficient. In order to interpret the different affective 
behaviours, we need more research on the possible 
link between awareness of the emotional pathway, 
meta-affect and attitude towards mathematics and 
its teaching.

As a provisional answer to the third research question, 
we discuss some possible routes for teacher educa-
tion. A first result concerns the generally positive 
emotional disposition at the first reading of the text. 
It confirms the opportunity of engaging prospective 
teachers in such a kind of activity, which may be seen 
also as an occasion to experience new ways of doing 
mathematics. Another reflection comes from the 
reported emotions at the end of the solving process. 
We highlighted that different solvers report the same 
emotions in different situations and that, finally, it is 
not matter of positive or negative states. For instance, 
dissatisfaction and frustration may be linked to the 

need of better understanding or to the awareness of 
difficulties at epistemic and/or communicative level. 
Thus, negative emotional states may be read in terms 
of competence at meta-mathematical or mathematical 
level. Conversely, positive emotions such as satisfac-
tion may be linked to a lack in meta-mathematical 
competence. The 1089 problem is a highly demanding 
task for pre-service primary teachers, also because 
of its theoretical nature: the core is constituted by 
conjecturing and proving, which we value as funda-
mental mathematical activities. However, pre-service 
teachers with low competencies at mathematical and 
meta-mathematical level happened to live the expe-
rience of solving the 1089 problem—with correlated 
positive emotions—and to discover their failure only 
later through the confrontation with more expert 
mates or the teacher educator: in this case, a negative 
emotion is likely experienced, risking to be the most 
persistent result of the overall activity. The crucial 
point, for us as teacher educators, is to find out effi-
cient ways to intervene on the latter cases. This also 
opens the discussion on what kind of mathematical 
activities are worth to be proposed, and how to push 
the reflection at meta-level. We need more research 
on the design of suitable tasks for promoting prospec-
tive teachers’ awareness of their emotional pathways 
during problem solving. 
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During the last decade, learning/teaching environment 
has assumed an important role in affect research due 
to the socio-constructivist account of learning/teaching 
mathematics. Despite this, the concept of interperson-
al relationship, which is an important variable of the 
environment, has not yet been considered explicitly in 
affect research. The first aim of this paper is to show 
the importance of studying explicitly this concept in 
affect. The second aim is to underline a first character-
istic of the interpersonal relationships. In the light of 
neuroscience results about mirror neurons, the authors 
observe that a relationship is characterized not only 
by the perceptible senses communication, but also by a 
hidden communication that takes place through mirror 
neurons sets and perhaps through other means not yet 
been discovered.

Keywords:  Affect, relationships, neuroscience, mirror 

neurons, theoretical framework.

INTRODUCTION

Until the ‘90s, researches about affect in mathematics 
education have always been rooted in the historical 
constructs, beliefs, emotions, attitudes (McLeod, 1992) 
and values (DeBellis & Goldin, 1999). However, during 
the last decade, many scholars underlined the need 
of expanding and reorganizing the field, which ap-
peared to be not sufficiently complete (Hannula, 2002; 
Hannula, Evans, Philippou, & Zan, 2004) and clear 
about the correlations among the constructs (Hannula, 
2011; Hannula et al., 2004; Leder & Grootenboer, 2005). 
During the same period, other constructs, such as 
motivation, self-esteem, anxiety, were studied in af-
fect domain. At the same time, some researchers (e.g., 
Goldin & DeBellis, 2006) switched from the consid-
eration of an individual itself to an individual in his 
environment, analyzing both beliefs, emotions and 
attitudes of a person, student or teacher, (intro-af-
fect), and the external/interpersonal ones of others 

belonging to the same environment (inter-affect). In 
conclusion, during the last decade, affect researchers 
have highlighted two requirements: the extension of 
the theoretical framework and the necessity of taking 
into consideration the environment of growing and 
learning/teaching of people holding emotions, beliefs, 
attitudes, values etc.   

TOWARDS RELATIONSHIPS STARTING 
FROM AFFECT LITERATURE

Affect constructs’ social component has been stud-
ied by many researchers (e.g., De Corte, Op’t Eynde, 
& Verschaffel, 2002; Evans, 2000; Goldin & DeBellis, 
1997) who argued that context matters. Already at the 
beginning of the 90s, some researchers (e.g., Bishop, 
1988; Halliday & Hasan, 1989; Henriques, Holloway, 
Urwin, Venn, & Walkerdine, 1984) were aware of the 
fact that affect variables are socially constructed in 
the educational environment. However, only years 
later, it was claimed the importance of context in af-
fect research. Op’T Eynde, De Corte, and Verschaffel 
(e.g., 2006) and Evans, Morgan, and Tsatsaroni (e.g., 
2006) analyzed in depth affect in the complex envi-
ronmental system. This means that thanks to affect 
literature we realize that social context has a key 
role in the quality of emotions, beliefs, attitudes, val-
ues of people. But now, we would highlight that the 
characterizing element of an environment are the 
interpersonal relationships that all individuals, of the 
considered context, establish among each other, and 
with all components of that social environment. The 
relationships guide the ability of regulating emotions 
and developing beliefs about ourselves, others and 
the environment itself. Creating, renovating, mod-
ifying beliefs and regulating emotions depends on 
relationships. The aim of this paper is to underline 
that in affect there is a hidden key element that has 
never been explicitly recognized: the interperson-
al relationships and relationships, in general (in the 
following, named only relationships). This ‘new’ per-
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spective could gain clarification of the notion of belief, 
emotion and attitude toward mathematics. We believe 
that relationships could be studied both as what links 
together affect constructs in a single framework, and 
what adds new meaning to all constructs. However, 
as we will see, there is much more. The relevance of 
relationships comes out not only from the affect lit-
erature, but also from the neuroscience one. 

ORIGIN OF THE IDEA 

The embryonic idea arose a long time ago. In the ‘80s 
Moscucci noticed a strange circumstance regarding a 
primary school teacher, who we will call Rose. Despite 
not having relevant professional skills, Rose was get-
ting surprising results with her students. Rose’s stu-
dents were generally quite wealthy, but not always of 
high cultural caliber. Rose, as it used in Italian schools, 
was the only class teacher of all subjects and taught 
her students from the age of 6 years old up to age of 
11, for 5 consecutive school years, in a small Italian 
city. Moscucci was astonished by the fact that Rose’s 
students were almost all good students when they 
went to the high school. This statement does not de-
rive from a statistical survey, but only from Rose’s 
recognized reputation in the city. Moscucci began to 
look at the case of Rose after a first cycle of Rose’s stu-
dents. Moscucci was struck by the fact that, right at 
the beginning of the following cycle of teaching, Rose 
expressed her satisfaction to Moscucci for the skill of 
her students in the new cycle: children of 6 years only 
and that Rose had met only a few months before but 
had already defined as talented and very gifted kids. 
At the same time Moscucci knew that Rose’s students 
from the first cycle, who were also defined by Rose as 
exceptional students, were very good in high school. 
EvenE Moscucci did not study Rose’s case, it remained 
in her mind, as a researcher in mathematics education, 
the curiosity to formulate a hypothesis to explain a 
fact so strange. 

Another story. During the last fifteen years Moscucci 
has conceived and directed many school projects, in 
Italian schools, aimed at overcoming students’ dif-
ficulties in mathematics, as, for example, those de-
scribed in Moscucci, Piccione, Rinaldi, Simoni, and 
Marchini (2005). In the first part of their realization, 
the projects were conducted according to a particular 
educational path, called MBSA, Meta Beliefs Systems 
Activity (Moscucci, 2007), which aims to rebuild stu-
dents’ relationship with math. Here it is not impor-

tant what the whole structure of MBSA is, but only 
the activity “My story with math” planned in MBSA, 
when the participants are asked to tell their story with 
math, with the explicit request to focus their attention 
above all on emotions experienced during math ac-
tivities. This activity is widespread in research (e.g., 
Di Martino & Zan, 2010). So, in those circumstances, 
Moscucci gathered many significant sentences spoken 
or written by students with difficulties in mathemat-
ics and reflected on them. Beside every sentence, there 
are questions that arose spontaneously.

“Even if the teacher told me I was good at math, she 
seemed to think the opposite” (Ada, 15 years old). 

“In what sense “she seemed”? What did Ada mean?”

“I know that my teacher believes I am not good at 
math” (Lisa, 15 years old). “How did Lisa know 
what her teacher believed?” 

“Even if my teacher always smiles at me, I never feel 
sure and relaxed about what I’m doing” (Lea, 16 
years old). “Why didn’t Lea feel sure and relaxed, 
if her teacher was so nice to her?”

“When I do math homework together with my broth-
er, I feel like he thinks I am slow” (Sara, 14 years old). 

“How did Sara realize that her brother thought 
that she was slow? What did Sara mean when she 
said “I feel”?”

“When my father is in the kitchen, I am not able to 
do math homework” (Giulia, 14 years old). (From 
the whole interview we knew that usually Giulia 
did her homework in the kitchen and that Giulia 
thought of her father believing she was not good 
at school). “What is it that stopped Giulia?”

“Even if the teacher told me I was good in math 
she seemed to think the contrary!” (Amy, 16 years 
old). “Did Amy really believe that her teacher 
was thinking the opposite of what she told her?”, 

“Why?”

 “When my teacher gave me the report card, I heard 
her voice in my mind saying ‘You will never really 
understand mathematics!’” (Deb, 15 years old). 
We have reached the pinnacle! This girl not only 
made assumptions about the thoughts of others, 
but even claimed ‘to hear a voice in her mind’, her 
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teacher expressing an opinion. Was it just a way 
of saying or did she really hear a voice?  

We want to point out that the reported sentences were 
said by students during a school project organized on 
a vocational school to overcome difficulties in math. 
So, all the involved students were not good students 
in math. 

NEUROBIOLOGICAL BASIS TO SUPPORTING 
RELATIONSHIPS

The importance of context in learning processes 
concerns, of course, any discipline, not just math. 
However, regarding affect, such importance is justi-
fied not only as a sector of mathematics education, but 
it is amplified by the choice of its constructs, emotions, 
beliefs, attitudes and values  . They are just the product 
of the interaction between the person with his/her 
environment. Hence, in our opinion, the necessity 
of including relationships in affect research studies. 
Relationships are widely studied and investigated by 
neuroscience. However, we intend to bring to the at-
tention of affect researchers that is not enough to use 
the neuroscience results, since it appears to be par-
ticularly relevant in this context. Science considers 
human beings as in continuous interaction with their 
environment, and neuroscience has already stated 
the essential role of human interpersonal relation-
ships in the construction of any kind of thought and 
knowledge. The brain is a ‘social organ’ of the body, it 
is exquisitely social, and emotions are its fundamental 
language (Siegel, e.g., 1999, 2000, 2001). Learning is a 
relational process that encloses regulation of emo-
tions, that is fundamental in the development of all 
knowledge. So, what are exactly relationships from 
a neuroscientific point of view? Neuroscience, at 
this time, does not give a definition of relationship. 
However, affect researchers must not retrace the beat-
en track for decades in search of a definition of beliefs. 
We may see relationships as a primitive concept and 
settle for partially characterizing the relationships 
and study their characteristic elements even if not 
fully characterizing. We mean, maybe, in the future, 
other characteristics of relationships might be discov-
ered and studied and we might arrive at a completely 
satisfactory characterization. The neuroscience re-
sult that, in our opinion, is a matter of great interest 
for affect research, concerns mirror neurons, that are 
a specific type of neurons. They are involved in a kind 
of communication unknown until now, at least from 

a scientific point of view. Mirror neurons, discovered 
by Gallese and Rizzolatti (University of Parma, I) in 
1995, are one of the most important relatively recent 
discoveries in neuroscience. Mirror neurons “appear 
to play a fundamental role in both imitation and action 
understanding” (Rizzolatti & Craighero, 2004, p. 169). 
The activation of mirror neurons is, indeed, able to 
generate an internal motor representation (potential 
act) of the act observed, from which learning ability 
through imitation depends (Rizzolatti & Sinigaglia, 
2006). In particular, these neurons should seem to 
play an important role in imitation learning. They 
are activated subconsciously, allowing people to 
trigger processes of imitation and communication 
without awareness. The human brain has many and 
many mirror neurons that specialize in carrying out 
and understanding not just the actions of others but 
also their intentions, behavior and emotion, through 
direct feeling (e.g., Gallese, Keysers, & Rizzolatti, 2004). 
According to researchers, in social relationships, the 
functions of mirror neurons allow an immediate un-
derstanding of what others are doing, without any 
kind of mediation or interpretive reasoning. Mirror 
neurons constitute a scientific proof of the existence 
of a sort of not perceived communication. So, we may 
claim that communication has visible (or at least sen-
sitive perceived) and conscious components, such as 
body languages and other sensitive human expres-
sions, but also unconscious and invisible components. 
We will refer to the last type of communication, with 
the diction hidden communication. The discovery of 
hidden communication between two people influenc-
es the view of the quality of relationships, and it is 
clear how the consideration of this element of inter-
action between people intervenes in studies about 
human relationships. Let’s say even more explicitly. 
Communication through the mirror neurons sets 
shows that a relationship between two persons is not 
constituted only by the set of the interactions between 
them, perceptible by senses, as, for instance, verbal 
communication. There is much more. We mean that, 
at the moment, a relationship between two people is 
an entity which has to be described fully. In fact, we 
have said: “Communication through mirror neurons 
sets”, but, despite us not being neurobiologists, we be-
lieve we can say, as a highly probable hypothesis, that 
almost certainly mirror neurons are nothing more 
than a kind of transmitting and  receiving antenna. 
As a matter of fact, knowledge of the functioning of 
mirror neurons determines a new vision of inter-
personal relationships and an absolutely innovative 
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approach to the study of the nature of the relation-
ships. In addition to this, recent evidences suggest 
that mirror neurons are involved in what is usually 
called empathy, which is the capacity of feeling the 
same emotions that others feel. Indeed, we can say that 
this gives a scientific link to something that, up to now, 
was guessed, imagined, perceived too, but had not a 
scientific root. “Empathy, or the ability to share feeling 
states with other individuals, is an important aspect of 
affiliative, prosocial behavior in modern-day humans” 
(Nelson, 2012, p. 179). Empathy is thus a form of hidden 
communication. “At a neurobiological level, empathic 
responding is thought to reflect activity within dis-
tinct neural circuits subserving other social processes 
such as understanding person-specific experiences 
(theory of mind) and reflexive activation of observed 
experiences in others (mirror neurons)” (ibid, p. 1). 
Mirror neurons allow us to feel the mind-state of an-
other person. They automatically and spontaneously 
pick up information about intentions and feelings 
of those around, creating emotional resonance and 
behavioral imitation as they connect the internal state 
with those around, even without the participation of a 
conscious mind. All these means that mirror neurons 
enable us to connect with each other. They dissolve 
the wall between one and the others. These results 
have a significant impact on the study of beliefs and 
emotions in general. In fact, through mirror neurons, 
we continuously receive information from all those 
who take part to our environment. This information, 
of which we are unaware, greatly contribute to the 
construction of beliefs or patterns of interpretation of 
the reality, and therefore the quality of our emotions. 
Then beliefs, emotions, attitudes and values depend 
on the relationships that a person has structured over 
the time, in every context of life, family and school in 
the first place. Therefore, the consideration of these 
findings in neuroscience is, in our opinion, a start-
ing point for collaboration between neuroscientists 
and education researchers, and particularly between 
neuroscientists and affect researchers. Indeed, there 
is much more from the point of view of affect research. 
Indeed, all this not only means that there is an inter-
connection among emotions and beliefs of people, 
but also that there is a link rooted in neurocerebral 
mechanisms. All this stresses the importance of the 
analysis of the relationships of the person, student or 
teacher of mathematics, in order to understand deeply 
the quality of his/her emotions, beliefs, attitudes and 
values. And, all this is not only due to the importance, 
for affect, of the context from a social constructivist 

point of view, as it has been highlighted above, but on 
the basis of new scientific results from related fields 
of research. 

A last observation about the case of Rose. When 
Moscucci first met Rose she was particularly in-
trigued by some Rose’s personal characteristics: her 
enthusiasm for her students, her firm belief that all 
her students were good at learning and very intelli-
gent, and her joy about working with children. The 
results about mirror neurons allow to hypothesize 
that Rose transmitted to her pupils her enthusiasm 
that affected positively their self-esteem and their 
confidence whose role on learning is well known. 

ABOUT RELATIONSHIPS

The discovery of mirror neurons states that there are 
hidden information shared between people, which 
are absolutely independent from people will. We 
must take in account that when we work with the re-
lationships we are working with the brain structure. 
Scientific results about mirror neurons constitute the 
first step to characterize the concept of relationship 
also from a neuroscientific point of view. They allow 
us to talk about interaction between individuals not 
only as communication, in the usual sense of the word. 
In particular, communication is an exchange of infor-
mation based on sensory perception. But researches 
show that the interaction between two individuals is 
not just communication. A relationship is something 
much more complex than the set of information of 
interpersonal communication, even if we look at it 
in all its forms: verbal, gestural, mimics, tactile, pos-
tural, kinesthetic, etc. Then we might refer to these 
types of communication such as characteristics of the 
rapport between two people, while the relationship 
is characterized by the hidden communication, due 
to mirror neurons, and, perhaps, due to other things 
yet to be discovered, but, without doubt, due to the 
hidden communication, that is proved existing. We 
might say that sensory communication gives rise to a 
rapport, while the hidden interaction, or hidden com-
munication, gives rise to a relationship. The relation 
between rapport and relationship deserves to be in-
vestigated scientifically. For the moment, we can make 
some considerations based on observation of what 
happens in the usual social contexts. For example, the 
experience leads us to believe that there may be a rap-
port, maybe for many years, between two people be-
tween whom there is a weak relationship, while there 
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may be a strong relationship between two people who 
have just met, and between whom there is a very weak 
rapport. This may be one reason for distinguishing 
rapport from relationship. We may say that usually, 
a relationship and a rapport are co-present, but now 
we cannot exclude any relation between relationship 
and rapport. In fact, it is well known that particularly 
linked people can communicate with each other some 
moods that are affecting them emotionally, even at 
a distance. In the literature (e.g., Segal, 2000) there 
are reports about identical twins, who never met, so 
without having any rapport, one could perceive fear, 
for example, experienced by the other. However, al-
though we cannot exclude that there are people be-
tween whom there is a relationship, but not a rapport, 
we must admit that these are really limit cases. Hence, 
when we talk about relationship we mean the set of 
rapport and hidden communication. To sum up, the 
study of relationships must take into account their 
dual nature of communication: explicit and hidden, 
and the hidden communication will be the component 
that, henceforth, will contribute more to the advance-
ment of research. The hidden communication that 
occurs through mirror neurons and on which, at least 
in part, is based empathy, affects beliefs, emotions, 
attitudes, values. The consideration and inquiry of the 
relationships in their entirety can really help affect 
researchers to progress about their studies. 

RELATIONSHIPS IN THE AFFECT DOMAIN

Affect researches identify beliefs and emotions as es-
sential elements to understand how students build 
their mathematical knowledge. Learning processes 
have their origin in the experience, and experience 
depends on the relationships established between a 
person and every single other person in his/her envi-
ronment, and the environment itself. In fact, through 
relationships, a human being, but surely even animals, 
begins, early in his/her childhood, to interpret his/her 
experiences and, in turn, through these experiences 
of interpretation, s/he builds models of interpreta-
tion. These models constitute the basic references to 
interpret his/her next experiences and, in particular, 
his/her emotions, along all his/her life. So, emotions 
are a result of the use of models built through the rela-
tionships. In addition, beliefs are shaped through rela-
tionships and they are involved in the interpretation 
of experiences. Then, emotions and beliefs are close-
ly linked and influence each other, because of their 
nature and their construction which occur through 

the relationships. As a consequence, affect constructs 
have their roots in relationships, and should be seen 
in absolute dynamicity and synergy. It is really diffi-
cult to deal with one of them independently from the 
others. These are the main aspects which have led 
us to consider relationships as a key element in the 
affect domain and, in our opinion, just these argu-
ments are absolutely compelling for considering the 
relationships in the affect domain. However, we claim 
that there is another reason, perhaps even stronger, 
requiring researchers to extend their studies about 
the relationships and, at the same time, strengthening 
them. The study of the principles of quantum physics 
supported again the ideas that have allowed this work 
to take shape. As we said, many affect researchers 
have emphasized the importance of the correlation 
between the constructs. We believe it is useful for the 
research climate in affect domain, to borrow a princi-
ple of quantum physics. Quantum physics shows that 
the properties of objects manifest themselves as such, 
only when the objects interact with each other. Then, 
it is important, in affect, to study not only what are the 
constructs themselves, but also the relations between 
them, just to understand their nature. In fact, con-
structs’ nature may emerge completely from the study 
of the relationships which contributed or contribute 
to the construction of a certain belief or value, to the 
manifestation of a certain emotion, to the structuring 
of a given attitude, or motivation etc.

CONCLUSIONS

The findings of neuroscientists about mirror neurons 
will certainly have many repercussions in the edu-
cational research. The suggestions that we deducted 
from the research on mirror neurons, convinced that 
much more come out from research in neuroscience. 
For example, studies on the contagion of yawning in 
primates, may allow to make the assumption that the 
importance of the hidden communication between 
teachers and students is a possible research hypothe-
sis, and we will make it explicit and deal with in future 
papers. Studies about the “hidden communication” 
might really give great impetus to the research in 
the field of human communication and in all fields in 
which communication plays an important role, such 
as education, and, particularly for us, affect. And we 
absolutely intend to face this issue in the near future. 
For the development of affect research we support 
the importance of bringing to light relationships as 
a real construct and studying it explicitly. The pro-
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cesses of teaching/learning are about people and how 
people interact. The relationships among people, stu-
dents and teachers, are involved in these processes. 
Relationships intervene substantially in these pro-
cesses and, therefore, must be considered a variable 
to evaluate the processes of teaching/learning. So 
far we have studied the relations between emotions, 
beliefs and attitudes of the student and, to a minor 
extent, of the teacher. Now affect researchers have to 
study emotions, beliefs and attitudes of the student 
closely connected with emotions, beliefs and attitudes 
of the teacher, namely as a result of the quality of the 
interpersonal relationship between student and 
teacher! Which kind of teacher’s beliefs, emotions and 
attitudes could be inhibitory to the student learning 
process? And which ones could affect positively? How 
could we act on teacher’s inhibitory beliefs, emotions 
and attitudes? This is just to give some examples of 
research questions that could really be addressed in 
affect research, in mathematics education and, more 
in general, in education. Investigating the profound 
influence on us of those around us, or what Siegel 
(e.g., 1999) calls “the neurobiology of we”, it will rep-
resent another step forward in the development of a 
comprehensive view of human learning processes, 
even if these further investigations could not meet 
our original expectations. At this stage, we may say 
that the way in which we perceive students regarding 
the development of their potentialities and abilities 
in mathematics, could likely affect their success in 
mathematics and the development of their general 
potentialities. Within the realm of affect, taking into 
account relationships means considering not only be-
lief systems and emotions of students, but also those 
of their teachers, and not only that. It means to con-
sider these belief systems and emotions as a complex 
structure, not as static, but dynamic and continuously 
evolving. 

This paper aims just to gain the attention of affect 
researchers regarding the possible implications that 
a deeper investigation about relationships could have 
in the understanding of affective variables in math-
ematics education.
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Sense making is one important goal of learning process-
es in school mathematics. Empirical studies on genu-
ine sense constructions of mathematics students show 
the importance of sense construction categories with 
a subjective and an inner-mathematical orientation 
at the same time. From a theoretical point of view, we 
investigate two ways of fostering such sense construc-
tions within school mathematics, by means of aesthetic 
experiences on the one hand and through reflection of 
problem solving processes on the other. In both cases, 
affective aspects play an important role. We also discuss 
the merits of intertwining aesthetic experiences and 
problem solving processes regarding sense construction. 
We finish with some remarks on possible ways of em-
ploying our theoretical results practically.

Keywords: Sense making, mathematical beauty, problem 

solving, beliefs, affect.

INTRODUCTION – THE ROLE OF SENSE 
MAKING IN LEARNING MATHEMATICS

Sense making is a general, and at least from the view-
point of constructivism of course quite natural goal 
for the learning of mathematics. Nevertheless, the 
meaning of “sense” within the educational debate is 
underdetermined, sometimes vague. A great vari-
ety of different aspects of sense have been brought 
up in this debate, sometimes explicitly articulated, 
sometimes more implicitly. Such aspects are, e.g., pur-
pose, benefit, intention, or merit. From an analytic 
point of view, most of these aspects have at least two 
dimensions: an objective-subjective and an inner-ex-
tra-mathematical dimension. With regard to these 
dimensions, a large part of the discussion in mathe-
matics education focusses on rather objective, inner- 

and extra-mathematical issues of “sense making” (e.g., 
what is or what should be the “sense” of negative num-
bers, which lifeworld contexts are adequate to teach 
them). Subjective issues of sense making oriented to 
the learning subject, on the other hand, are usually 
discussed with regard to rather extra-mathematical 
themes, like incentives, personal relation to teacher, 
beliefs about the subject’s own abilities in learning 
mathematics etc. However, there are also popular po-
sitions emphasizing subjective inner-mathematical 
aspects of sense making as of great importance for the 
learning of mathematics, as the work of Skovsmose 
(e.g., Skovsmose, 2005), or Ruf and Gallin’s work on 

“core ideas” (e.g., Ruf & Gallin, 1998). 

The guiding question of the following considerations 
is: How can subjective, inner-mathematical aspects of 
sense making in learning mathematics be addressed, 
and triggered within learning processes, and what 
role does affect play in this regard? To our mind, this 
question is less a question about methods of teach-
ing. It is rather meant as a question about contents 
of teaching mathematics, on two different levels: In 
second order, it addresses the object level of mathe-
matics itself (negative numbers, triangles, functions 
and graphs, variables etc.). In first order, it shall deal 
with “meta-units” of doing mathematics (problem 
solving, proving, discovering new connections, re-
constructing solution processes and so on) which can 
be a basis for subjective inner-mathematical sense 
making in a learning process.

Our approach is to take inert sense making catego-
ries of learning subjects as a starting point. Vollstedt 
(2011) investigates such inert categories of sense mak-
ing, “sense constructions” in her terminology, for the 
case of students of the lower secondary level (15 till 16 
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years old) in a qualitative, comparative empirical in-
terview study (34 participants, 17 from Hongkong and 
17 from Germany).[1] In a first step, she classifies sense 
constructions into some 3 times 3 matrix (Table 1).

The category “high individual orientation–high in-
ner-mathematical orientation” (cell 3) corresponds 
to our “subjective inner-mathematical” dimension:

High intensity of inner-mathematical orienta-
tion: The sense construction is in immediate re-
lation to mathematical contents [and not to other 
aspects of learning processes in school, as, e.g., 
social interactions].

High intensity of individual orientation: The 
individual itself is the focus of the sense construc-
tion, intra-individual relations dominate [and not 
social institutions or demands]. (ibid, pp. 130f., 
German in original, added brackets give short 
descriptions of value “low”)

Vollstedt found that this category is empirically con-
tentful, that is, sense constructions could be recon-
structed from the interview data that fall into that 
category. In the following, we will concentrate on two 
of these sense constructions: “experience of autono-
my” and “mathematical purism” (ibid, pp. 142–148). 
Vollstedt defines these two categories with reference 
to a “criterion of personal relevance” (ibid, p. 129, 
German in the original):

Mathematical purism: Doing or learning mathe-
matics is personally relevant to the individual if 
it appreciates the purism of mathematics stem-
ming from its formality and logical composition 
and benefits from this appreciation regarding its 
understanding of mathematics.

Experience of autonomy: Doing or learning math-
ematics is personally relevant to the individual if 
it experiences self-reliance in doing or learning 
mathematics, e.g., in terms of learning autonomy 

and original development of solutions to mathe-
matical problems.

Answers coded as “mathematical purism” deal with a 
special fascination of pure mathematics, and describe 
a positive affective relationship to a special mathemat-
ical discipline (e.g., geometry or algebra) or express 
personal relevance of clear and logical mathematical 
structure (ibid, p. 146). Answers belonging to the cat-
egory “experience of autonomy” describe positive 
experiences by, e.g., choosing exercises autonomously 
or finding individual ways of solving problems (ibid, 
pp. 142–144). 

In the following sections, we discuss two kinds of “me-
ta-units” of doing mathematics in relation to these 
two sense constructions. Both have a certain affective 
potential, and therefore specific merits regarding the 
initiation of sense making in learning mathematics. 
First, we argue that aesthetic mathematical experi-
ences provide good opportunities for the learning 
subject to appreciate mathematical purism. For the 
case of autonomy, aesthetic judgments are distinctly 
different from right-or-wrong-judgments.  Aesthetic 
mathematical experiences are often closely related to 
so called AHA! experiences, a highly affective type of 
individual understanding processes. Second, we look 
at mathematical problem solving processes, and, in par-
ticular, the affective components of those, in relation 
to the sense constructions “mathematical purism” and 

“experience of autonomy”, and then turn to discussing 
the value of intertwining both perspectives to arrive 
at a particularly fruitful basis for sense construction 
within learning processes at school. 

AESTETHIC EXPERIENCES AND PROBLEM 
SOLVING PROCESSES AS SOURCES OF SENSE 
CONSTRUCTION IN LEARNING MATHEMATICS

Sense construction and mathematical beauty
Relying on Spies (2013), we adopt the premise that 
though mathematical beauty isn’t definable entirely, 
a concept of beautiful pieces of mathematics, cover-

Intensity of inner-mathematical ori-
entation of sense construction

Intensity of individual orientation of sense construction

Low medium high

High 1 2 3

Medium 4 5 6

Low 7 8 9

Table 1: “Typology of sense construction” (ibid, p. 133, German in original)
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ing for instance theorems, proofs, argumentation 
schemes, and heuristic strategies, can be explicated. 
Informed by mathematics as a scientific discipline it 
is also fruitfully employable within discussions of 
mathematics and beauty in mathematics education. 
The concept of mathematical beauty developed in 
(Spies, 2013) is explicated by four relevant attributes: 
range, economy, epistemic transparency, and emotional 
effectiveness. At least three of these attributes, range, 
epistemic transparency, and economy, are directly 
related to the sense constructions “mathematical pur-
ism” and “experience of autonomy” investigated by 
Vollstedt. Regarding the sense construction “mathe-
matical purism” in detail, the following relations hold:

Range: There are two aspects of range often referred 
to when it comes to aesthetic value judgments in 
mathematics. On the one hand, a beautiful piece of 
mathematics connects different parts or branches of 
mathematics, for example the use of algebraic tools 
to solve a geometrical problem.

A beautiful proof often makes unexpected con-
nections between seemingly disparate parts of 
mathematics. A proof which suggests further 
development in the subject will be more pleas-
ing than one which closes off the subject. (Stout, 
1999, p. 10)

On the other hand, an argumentation owns a certain 
kind of beauty if the idea at the core of the argument 
is applicable to a variety of other cases, if the chosen 
heuristic is paradigmatic in some sense. Becoming 
aware of the range of an argument or a result may 
deliver insight in the system of mathematics itself. The 
awareness of broad connectivity of an argumentation 
or of the paradigmatic character of a heuristic may 
help to establish an appreciation of mathematics also 
as a self-contained system besides its applicability in 
extra-mathematical contexts.  

Epistemic transparency: This attribute of beautiful 
mathematics underlines the subjective character of 
aesthetic experiences within mathematics. It explicit-
ly stresses the importance of a subjective understand-
ing of mathematical structures in connection with 
an aesthetic mathematical experience: A beautiful 
proof offers a special kind of deep understanding of 
why the result is true. Often, this is described as an 
illumination, as a spontaneous grasping of the whole 

argument from one moment to the other, as an AHA! 
experience, together with strong positive emotions. 

The mathematician’s “aesthetic buzz” comes not 
only from simply contemplating a beautiful piece 
of mathematics, but, additionally, from achieving 
insight. (Borwein, 2006, p. 25)

Accordingly, an aesthetic mathematical experience is 
not only a product of positive feelings, but also linked 
to a special kind of deep individual understanding 
why. 

Economy: Under the sense construction “mathemati-
cal purism”, Vollstedt subsumes statements concern-
ing the shortness of mathematical arguments, or the 
number of formulas you have to remember to solve 
a certain range of mathematical problems (Vollstedt, 
2011, p. 147). The properties expressed by these state-
ments correspond to economy as an attribute of beau-
tiful mathematics, and link the attributes of range and 
epistemic transparency. As G.H. Hardy points out in 
his famous Apology: 

In both theorems [mentioned as examples for 
great mathematical beauty; author’s remark] 
there is a very high degree of unexpectedness, 
combined with inevitability and economy. The 
arguments take so odd and surprising a form; 
the weapons used seem so childishly simple when 
compared with the far-reaching results; but there 
is no escape from the conclusions. There are no 
complications of detail–one line of attack is 
enough in each case. (Hardy, 1940, p. 113)

Hence, it is not shortness of an argument as an extrin-
sic property that releases an aesthetic value judgment. 
It is the impression of economy, that is, shortness of ar-
gumentation in relation to its range and with regard to 
epistemic transparency for the judging subject. There 
is a necessary connection between individually ori-
ented and inner-mathematically oriented aspects to 
trigger aesthetic judgments, and thus, possible sense 
constructions.

Regarding the sense construction “experiencing 
autonomy”, we take into account that aesthetic ex-
periences of beauty undergone by an individual, by 
becoming aware of them, lead to conscious judge-
ments of beauty, stated or not. These aesthetic val-
ue judgements are in a specific way opposed to the 
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prominent excluded middle character of mathematics, 
and the focus on formal mathematical correctness 
(Müller-Hill & Spies, 2011). While the latter are rather 
related to experiences of special conformity and au-
thority of mathematics, aesthetic value judgements 
transcend formal correctness and are, at least in part, 
subjectively justified. Nevertheless, they can usually 
be explained on the basis of inter-subjectively grasp-
able criteria by the judging individual. In this sense, 
aesthetic mathematical experiences give room for 
autonomous, but negotiable judgements of beauty, 
and as a consequence, for responsible, self-relying 
decisions and actions based on these judgements.

The fourth attribute of mathematical beauty accord-
ing to (Spies, 2013), emotional effectiveness, explicates 
the affective character of aesthetic mathematical expe-
riences. When mathematicians talk about the aesthet-
ic pieces of mathematics, they use a highly emotional 
and affective language. Leone Burton reports from 
an interview study with practicing mathematicians:

The mathematicians discussed aesthetics […] in 
terms that were emotive, full of expressed feel-
ings. (Burton, 2004, p. 63)

Often, the expressed emotions are used to qualify 
one of the other attributes of mathematical beauty 
described above.[2] Terms of special relevance accord-
ing to aesthetic value judgement seem to be unexpect-
edness and surprise. A beautiful argument may evoke 
the feeling of surprise about its (economical) form, 
of a “surprising twist” in the argumentation, or of 
unexpectedness regarding the heuristics employed 
in the argumentation. The feeling of inevitability of 
an argumentation seems to be another aspect of the 
emotional effectiveness of beautiful proofs (see also 
the above quote from Hardy, 1940, p. 113), as the math-
ematician Gregory Chaitin states vividly:

After the initial surprise it [a beautiful proof ] 
has to seem inevitable. You have to say, of course, 
how come I didn’t see this! (Chaitin, 2002, p. 61)

Sense construction and central types 
of problem solving processes
Of course, problem solving is a widely discussed is-
sue in mathematics education, and in turn there are 
a number of different conceptions of problem solving 
and ways or conceptual tools to describe and investi-
gate problem solving processes. In the following, we 

discuss problem solving processes as a basis for sense 
construction in learning mathematics, and ask for the 
role of affect regarding this relation.[3] To this end, 
we lean on the synopsis given in (Schoenfeld, 1992), 
which explicitly embraces and explicates “beliefs and 
affects” as an important (cognitively effective) aspect 
of problem solving processes (see ibid, p. 348). The 
aspect “beliefs and affects” contains students beliefs, 
teachers beliefs, and also “general societal beliefs” 
about the nature of mathematics and doing mathemat-
ics. We will focus on the “belief system” (Schoenfeld, 
1985) of the problem solver, encompassing beliefs, at-
titudes and opinions about mathematics itself (about 

„formal mathematics“, his „sense of the discipline“; 
Schoenfeld, 1992, p. 359), about mathematics as a 
subject matter, and about doing and learning math-
ematics. Schoenfeld emphasizes the extraordinary 
powerful impact of the belief system on mathematical 
problem solving.

In the following, we distinguish two ways in which 
problem solving processes can generally be connected 
to sense construction in the above sense, that is, in 
which they can be meaningful and personally rele-
vant to the problem solver. The first way refers to the 
decisions that are made throughout the process by the 
problem solver, and the motivations behind them. The 
second way considers changes in the belief system as re-
sponsible for subjective sense making. Such changes 
may be initiated by actual performance of, or by later 
reflection on, problem solving processes. 

Decisions guiding the course of action throughout a 
problem solving process are potentially meaningful 
components of these processes. At least to a certain 
degree, they allow to infer something about what is 
personally relevant to the problem solver in terms 
of guiding motives and reasons for these decisions. 
Potentially subjectively meaningful decisions, and 
actions in turn, have to be autonomous at least to a 
certain degree, intentional, and goal oriented. Usually, 
decisions are also affectively driven, which strength-
ens their subjective relevance and, in the case of sever-
al alternatives, can even be the last instance to decide. 
Undergoing a process of problem solving also induces 
an interaction with the individual belief system of the 
problem solver. The belief system, being the network 
of conceptions, opinions, attitudes and beliefs related 
to mathematics, is per definition the basis of all subjec-
tive sense making in learning mathematics. Sense con-
structions on the basis of problem solving processes 
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will therefore necessarily incorporate changes in the 
belief system, in the form of expansion, overwriting, 
or readjustment. 

Regarding both decisions and changes in the belief 
system, it is not sufficient for fostering sense mak-
ing just to get learning subjects involved in concrete 
problem solving processes. Sense construction in 
the way described above will usually not take place 
automatically. We suggest that explicit reflection of 
problem solving processes including decisions, action 
guiding motives, and affective aspects like emotions 
felt during the process or conscious changes of cer-
tain beliefs is necessary.

Reflecting on decisions as part of a problem solving 
process obviously encourages sense constructions 
of the type “experience of autonomy”. But problem 
solving processes also have a specific sense making 
potential with regard to „mathematical purism“, by 
focusing on recognizing structural types of mathemat-
ical problem solving processes. Reflections on char-
acteristic elements of problem solving processes of 
a certain type can both lead to an appreciation of the 
formal structure of mathematics (regarding corre-
sponding changes in the belief system), and lead to a 
better subjective understanding, as it may promote 
the ability to transfer problem solving approaches 
and strategies (regarding the orientation on a certain 
type of problem solving processes as a guiding motive 
for decisions in a concrete process). The latter also 
provides the opportunity for experiences of autono-
my. The inner-mathematical focus can be increased by 
highlighting central structural types of mathematical 
problem solving processes. Mathematical problem 
solving processes of a central type employ certain, 
structural elements that are characteristic for work-
ing with central concepts of (branches of ) mathemat-
ics like “function”, “gauge”, “number”, or “area”. [4]

Now in turn, we will argue that there are at least 
two ways in which a combination of problem solving 
processes and experiences of mathematical beauty 
can be particularly fruitful with regard to sense con-
struction in learning mathematics, exploiting their 
affective elements in a specific way.

AN INTERTWINED PERSPECTIVE

As stated above, the decisions made during a problem 
solving process can be meaningful and relevant to the 

problem solver in terms of ideas, reasons or motives 
guiding them and the corresponding actions. These 
guiding ideas, reasons or motives are usually not 
merely rational, but decisions and actions are also 
guided by affect. Goldin (2000), e.g., investigates the 
relation between affective states (including aesthetic 
experiences) and chosen heuristics in problem solv-
ing processes. Though criticizing Goldin’s subsump-
tion of aesthetics under what he conceives as affective 
states, Sinclair in her (2008) also stresses the impor-
tance of aesthetics as coupled both with affective and 
cognitive aspects of mathematical problem solving. 
However, she emphasizes that

the aesthetic and the affective domains each func-
tion differently in the problem-solving process: 
the aesthetic draws the attention of the perceiver 
to a phenomenon, while the affective can bring 
these perceptions to the conscious attention  (ibid, 
p. 55, our emphasis).

In this sense, we consider decisions and actions driven 
by experiences of mathematical beauty as important, 
potentially sense-constitutive affective elements of 
mathematical problem solving processes. This is ad-
ditionally underpinned and emphasized by a number 
of famous practicing mathematicians. For example, 
in his famous essay The psychology of invention in the 
mathematical field, Jacques Hadamard reaches the 
following “double conclusion” after reviewing psy-
chological and philosophical literature on general 
and mathematical invention:

That invention is choice. That this choice is im-
peratively governed by the sense of scientific 
beauty. (Hadamard, 1954, p. 31)

This observation from scientific mathematics can at 
least partly be adapted for problem solving processes 
in school mathematics: Choice is a meaningful ele-
ment of problem solving processes. Choices are i.a. 
governed by subjective motives like perceptions of 
mathematical beauty.[5] To foster sense construction 
sustainably, the conscious attention of such aesthetic 
perceptions should be supplemented by explicit re-
flection on their role for the course of concrete prob-
lem solving processes.

With regard to the second form of sense making in 
problem solving processes, on the other hand, aes-
thetic experiences can help to initiate changes in the 



On the role of affect for sense making in learning mathematics – aesthetic experiences in problem solving processes (Manuela Moscucci and Cecilia Bibbò)

1250

inner-mathematical component of the belief system 
due to their specific affective character as described 
above. This might be necessary when students fail 
in completing a problem solving process on their 
own because of holding certain constraining beliefs. 
Even if they succeed to finish the problem solving 
process with some help, the constraining beliefs 
might be abstracted from years of classroom experi-
ence (Schoenfeld, 1985). Hence, rational reflections 
of such single problem solving processes will usual-
ly have only little effect on their belief system, and 
therefore hardly trigger new sense making. Aesthetic 
experiences might catalyze the reflective impact in 
this regard. In particular, aesthetic mathematical ex-
periences are often conceived as AHA! experiences. 
Empirical studies as (Liljedahl, 2005) show that there 
is a strong relation between the reflection of AHA! 
experiences and (even drastic) changes of student‘s 
beliefs about their learning of mathematics because 
of the affective, especially the emotional potential of 
AHAs (ibid., 231). AHA! experiences of mathematical 
beauty work in a quite similar way regarding unex-
pectedness, surprise, sudden inevitability (compare 
ibid., 226), and emotional effectiveness, but they are 
directed to attributes and relations of mathematical 
argumentations, formulas, diagrams, theorems, etc. 
The four attributes of mathematical beauty described 
above, range, economy, epistemic transparency, and 
emotional effectiveness, can be experienced jointly 
or in different combinations as aesthetic aspects of 
a certain piece of mathematics dealt with in a con-
crete problem solving process. Therefore, it seems 
promising to assume a similar impact of reflecting 
on aesthetic AHA! experiences in problem solving 
processes on student’s beliefs on mathematics itself.

SHORT OUTLOOK ON DESIGN ISSUES

When we now direct the focus to designing issues in 
a short outlook, we rather have in mind developmen-
tal questions and the design of supporting learning 
material, not measurement issues. Our contribution 
must obviously be conceived as rather theoretical 
with regard to the design of concrete learning envi-
ronments or teaching material. One reason for this 
is that from our point of view, sense construction is 
strongly tied to individual parameters of learners 
and learning groups. This makes it difficult to argue 
in favor of concrete designs in detail. Nevertheless, 
we think that we have generally identified good 
candidates to direct concrete designing attempts to. 

Problem solving is standard to school mathematics 
today. What might not be standard is guided reflection 
of concretely undergone processes with an explicit 
focus on action guiding motives, decisions, beliefs, 
or affects. Also still non-standard is the upgrading of 
aesthetic experiences as admissible and negotiable 
justifying reasons for choosing between alternative 
courses of action within problem solving processes. 
Future work will expand the view onto the scope of 
content didactics, aiming at a specification, e.g., of 
mathematical concepts, appropriate mathematical 
problems, and (types of ) corresponding problem solv-
ing processes and beautiful pieces of mathematics as 
the subject matter of possible learning environments 
to foster subjective inner-mathematical sense con-
struction. A point of practical interest in the design of 
learning environments will be the degree of guidance 
and instruction accompanying the problem solving 
activities of learners. Through a theoretical lense, this 
will link the perspective opened up here to questions 
about the role of creativity.
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ENDNOTES

1. Vollstedt uses grounded theory methodology, not 
operationally defined items or coding categories. Due 
to space, we refer to the original source for more de-
tails on Vollstedts shaping of the categories based on 
her data. 

2. Similarly, “emotional relation to mathematics” is 
described as part of “purism” (Vollstedt, 2011, p. 146).

3. See also (Presmeg, 2014) for another most recent, 
programmatic emphasis.

4. “Central types of problem solving processes” corre-
sponds to “fundamental mathematical ideas” famous-
ly introduced by Bruner in the 1960s and discussed 
under a variety of readings. We will not enter this 
discussion here, because the explication of „central” 
is not necessary for the general arguments discussed. 
Further qualification of “central” will be necessary 
for future work, esp. from a content didactical point 
of view. 

5. According to Hadamard, this assumption is quite 
obvious: “Between the work of the student who tries 
to solve a problem in geometry or algebra and a work 
of invention, one can say that there is only a difference 
of degree, a difference of level, both works being of a 
similar nature.” (Hadamard, 1954, p. 104) 
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Studies in the area of achievement motivation have 
made a distinction between mastery and performance 
goals. Many studies investigated the positive and nega-
tive outcomes from the adoption of each goal in students’ 
behaviour and achievement. Recently, there is an ongo-
ing discussion concerning the role of multiple goals in 
understanding students’ behaviour and achievement. 
This paper addresses the role of mastery goals, perfor-
mance goals and multiple goals, in students’ mathemat-
ics achievement and motivation. Data were collected 
from 620 6th graders (study A, N=299 and study B, N=321). 
The results of both studies were consistent regarding the 
effect of the different multiple goals profiles on students’ 
achievement and motivation. 

Keywords: Multiple goals, motivation, achievement.

INTRODUCTION

In everyday school one can realize that some students 
perform better than others, tend to work harder, ask 
for help, are eager to participate in school activities 
and use more sophisticated learning strategies than 
other students. Researchers, mainly in the Educational 
Psychology domain, examine the role of motivation 
in the learning and teaching context in an attempt to 
interpret students’ behavior and learning outcomes 
(Pintrich, 2003). Motivation has been found to play 
a key role in students’ current and future academic 
success (Pintrich, 2003; Pantziara & Philippou, 2014).

In this respect a number of socio-cognitive frame-
works have been developed and used in research on 
students’ motivation in the school context (Pintrich, 
2003; Elliot 1999). One of the most applicable and 
predominant frameworks is achievement goal the-
ory (Elliot, 1999). Achievement goal theory focuses 
on goals, as the reasons and purposes for engaging 

in achievement tasks (Elliot, 1999). While there is 
a great amount of studies that examine the role of 
each of these goals in students’ cognition, affect and 
behavior, as opposite constructs, few of them refer 
to students holding simultaneously multiple goals. 
Multiple goals and their interactions have been inves-
tigated mostly in secondary and college level (Mattern, 
2005; Pintrich, 2000). The current study investigates 
the role of multiple goals and their interaction with 
elementary students’ motivation and achievement.

BACKGROUND AND AIMS

Achievement goal theory
Over the past three decades, achievement goal theo-
ry has emerged as an important theoretical prospect 
on students’ motivation in school settings, as it pro-
vides a satisfactory framework that emphasizes the 
importance of how students think about themselves, 
their tasks and their performance (Midgley, Kaplan, 
& Middleton, 2001). Rather than considering individu-
als’ with low or high level of motivation, achievement 
goal theory focuses on why individuals are motivated. 
The theory posits that individuals engage in academic 
activities to accomplish different goals. Achievement 
goals are defined as the competence-relevant objec-
tives that individuals attempt to achieve and these dif-
ferent objectives are associated with different quality 
of engagement in schoolwork and different cognitive, 
affective, and behaviour consequences (Elliot et al., 
2005; Kaplan, Middleton, Urdan, & Midgely, 2002).

Within this framework, two achievement goals are 
described, mastery and performance goals. Mastery 
goals refer to an individual’s objective of developing 
personal competence and growth (Kaplan & Maehr, 
2007), while performance goals refer to demonstrat-
ing ability, focusing on attempts to create an im-
pression often through the comparison with others 
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(Kaplan & Maehr, 2007). There has been noteworthy 
consistency over a large number of studies about 
the relation between mastery goal orientation and 
adaptive patterns of cognition, affect and behaviour. 
Indicatively, mastery goals were found to evoke pos-
itive processes like effort, expenditure, persistence 
self efficacy, self-regulated learning, positive affect 
and well-being (Elliot et al., 2005; Kaplan & Maehr, 
2007). On the other side, research findings concerning 
performance goals were found to be inconsistent. A 
number of studies found that performance goals are 
associated with positive processes like positive af-
fect, effort, persistence and graded performance (e.g., 
Elliot, 1999; Zusho et al., 2005). Other studies, however, 
reveal that performance goals are less adaptive and 
are related to negative affect, strategy use, and perfor-
mance (Elliot & Church, 1997; Kaplan & Maehr, 2007).

In a revised goal theory perspective, researchers have 
distinguished between performance approach and 
performance avoidance goals. While performance 
approach goals focus on doing better than others, per-
formance avoidance goals focus on the possibility of 
failure and on the attempt to avoid it (Kaplan & Maehr, 
2007). Studies investigating mastery, performance 
approach and performance avoidance goals have con-
sistently found that performance avoidance goals are 
related to maladaptive patterns of motivation, affect 
and performance (Pintrich, 2000).

Achievement goal theory and multiple goals
In an attempt to explain inconsistent effects of perfor-
mance goals, research investigates whether students 
pursue these goals while at the same time pursuing 
mastery goals. It may be that in the classroom con-
text, students can endorse both mastery and perfor-
mance goals in different levels of each of these goals. 
Research so far examining mastery and performance 
goals, has often distinguished the effects of these two 
goal orientations without exploring how these two 
goals may jointly influence students’ behaviour and 
performance. Qualitative studies revealed that stu-

dents expressed multiple goals for engaging in school 
activities (Kaplan et al., 2002). 

According to Pintrich (2000), there are two views as 
to how these two goals can be combined to give the 
best outcomes concerning students’ behaviour and 
achievement. The first view, under the revised goal 
theory perspective, argues that having high levels of 
both of these goals could be the most adaptive. If there 
are positive effects for mastery and for performance 
goals, then a focus on mastery and a focus on trying to 
be better that classmates at the same time would result 
in positive consequences. The second view, under the 
normative goal theory, suggests that holding perfor-
mance goals could have negative effects due to the 
distractions fostered by students’ attempts to be com-
pared with each other or to their negative judgments 
concerning themselves. In this perspective students’ 
involvement fostered by mastery goals would be di-
minished and lead to less positive outcomes. Under 
this view the most adaptive pattern would be high 
mastery goals and low performance goals.

The effects of multiple goals have been examined 
using different methodologies like cluster analysis, 
median splits (examining individuals with different 
patterns of high and low goals) or by using regres-
sion analysis to investigate interactions between goal 
variables. Research examining the effects of different 
profiles of mastery and performance goals presents 
evidence that the low level of mastery goals in com-
bination with the low level of performance goals is 
almost always associated with negative outcomes. In 
addition the combination of low mastery goals and 
high performance goals has also been shown to lead 
to negative outcomes, although less negative than the 
combination low mastery and low performance goals 
(Kaplan et al., 2002). 

Concerning the profiles high mastery/high perfor-
mance goals and high mastery/low performance 
goals, earlier studies have produced mixed results. 
Particularly, Meece and Holt (1993) investigated ele-

Intensity of inner-mathematical ori-
entation of sense construction

Intensity of individual orientation of sense construction

Low medium high

High 1 2 3

Medium 4 5 6

Low 7 8 9

Table 1: “Typology of sense construction” (ibid, p. 133, German in original)
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mentary students’ (5th and 6th grade) different profiles 
of multiple goal orientation in science and revealed 
that the group of high mastery/low performance 
goals showed the most positive achievement profile. 
Pintrich and Garcia (1991) also found in their study 
with college students that the specific profile of mul-
tiple goals had the most adaptive profile. Similarly, 
Mattern (2005) found in her study within a founda-
tional teacher education course, that students hold-
ing simultaneously high mastery/low performance 
goals had the highest achievement, followed by the 
high mastery/high performance group. In contrast 
Bouffard, Boisvert, Vezeau and Larouche (1995) in 
their study with college students, found that the group 
of students with high mastery/high performance 
goals had the highest level of motivation, cognitive 
strategy use, self-regulation and achievement, fol-
lowed by the group with high mastery/low perfor-
mance goals. 

In one of the very few longitudinal studies, Pintrich 
(2000) examined the changes in the behaviour, affect 
and achievement of four groups of junior high school 
students (based on the combination of high and low 
mastery and performance goals) in their math class-
room following them from the 8th to the 9th grade. The 
study revealed that the two groups (high mastery/
high performance and high mastery/low perfor-
mance group) did not differ significantly regarding 
changes in motivational beliefs, self-efficacy, task val-
ue and test anxiety in the 8th and later in the 9th grade. 
In terms of task value, the high mastery/high perfor-
mance group reported higher levels of task value than 
did the high mastery/low performance group. Yet, 
both groups ended in the same level of achievement.

In addition some researchers have suggested that 
holding both high mastery and high performance 
goals could be more adaptive that holding only high 
mastery goals (e.g., Harackiewicz, Barron, & Elliot, 
1998). They argue that students holding high levels of 
both goals may be able to motivate themselves to suc-
ceed in various achievement contexts. The mixed re-
sults of the investigation of multiple goals suggest that 
more research is needed in this direction. Specifically, 
more research might be needed taking into account 
students’ age, context and task domain. In this respect, 
the purpose of the current study was to investigate 
6th grade students’ multiple goals in the mathematics 
classroom. Specifically, the study aimed: 

 ― To examine the relation between the four pro-
files of multiple goals (high mastery/high per-
formance, high mastery/low performance, low 
mastery/high performance and low mastery/
low performance) and student’s achievement 
and motivation.

 ― To investigate if there is consistency in the results 
of two studies regarding the outcomes from the 
adoption of different multiple goals profiles. 

METHOD 

Participants and instruments used
Data were collected from two studies in Cyprus. In 
the first study (Study A) the participants were 299 
students (164 females and 135male) and in the second 
study (Study B) the participants were 321 students 
(185 females and 136 males). All students came from 
the 6th grade (average age, 11.5 years old).

In both studies the participants completed a question-
naire measuring their motivation in mathematics 
and a mathematics test assessing their performance 
in the concept of fractions.  In both studies the data 
were collected in the mid of the second semester of the 
school year so as to allow for the evolution of certain 
motivational constructs and goals with the specific 
classroom context and the mathematics teacher. 

The questionnaire measuring students’ motivation 
was constructed for the needs of these studies and it 
comprised of 35 Likert-type five-point items (1-strong-
ly disagree, 5-strongly agree). The questionnaire com-
prised of six subscales measuring: (a) mastery goals 
(e.g. It is important to me that I improve my mathemat-
ics skills this year), (b) performance approach goals 
(One of my goals is to show others that I’m good at my 
mathematics work), (c) performance avoidance goals 
(It’s important to me that I don’t look stupid in mathe-
matics class), (d) self-efficacy (I’ m certain I can figure 
out how to do the most difficult mathematics work), 
(e) interest (I am enjoying mathematics lessons very 
much), and (f ) fear of failure (When I am tackling a 
challenging task, I find that I am reminded of my pre-
vious failures). The first four subscales were adopted 
from the Patterns of Adaptive Learning strategies 
(PALS) (Midgley et al., 2000). Students’ fear of failure 
was assessed using nine items from the Herman’s fear 
of failure scale (Thrash & Elliot, 2003). Interest was de-
fined in terms of intrinsic motivation, the enjoyment 
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of and interest in an activity for its own sake (Elliot & 
Church, 1997). Students’ interest was measured using 
seven items from the Elliot and Church’s study (1997).

The mathematics test measuring students under-
standing of the fraction concept in both studies com-
prised of fraction items from published research and 
they assessed students’ understanding of fraction as 
part of a whole, as measurement, fraction equivalence, 
fraction comparison and fraction addition. More in-
formation about the tests can be found in Pantziara 
and Philippou (2012). Students’ achievement was 
based on their total score in the fraction test; each 
of the tasks was graded with 0 (wrong) or 1(correct).

Data analysis
In study A we conducted exploratory factor analysis 
for the six motivational variables using the software 
SPSS and in study B we conducted a confirmatory fac-
tor analysis for the six factors using EQS software. 
Performance goals used in this study reflected on ap-
proach performance orientation to classroom work. 

To examine the interactions between mastery and per-
formance goals we dichotomized the two scales using 
median splits. For the mastery goals, students scoring 
below 4.6 in Study A and students scoring below 5 in 

Study B belonged to the low mastery group while the 
rest of the students to the high mastery group. For the 
performance goals, students scoring below 3 in both 
studies were classified to the low performance group 
and the rest of the students to the high performance 
group. The results of the procedure are presented in 
Tables 1 and 2.

Then an ANOVA analysis with multiple dependent 
variables was contacted in each study (A and B) to 
investigate for differences in groups with multiple 
goals concerning their motivation and achievement 
in mathematics.

RESULTS 

A detailed description of the extraction of factors 
concerning the achievement goals and the motiva-
tional variables (fear of failure, self-efficacy beliefs 
and interest) can be found in Pantziara and Philippou 
(2014). Students’ achievement in the fraction test was 
calculated regarding their total score on the tests. 
Specifically for Study A, the total score was 23 and for 
Study B the total score was 21. Tables 3 and 4 present 
the Mean, Standard Deviation and Cronbach’s alphas 
for all affective variables for Study A and Study B re-
spectively. 

Low mastery
N=122 (40.8%)

High mastery
177 (59.2%)

Low performance 
N=130 (43.5%)

High performance
169 (56.5%)

Table 1: Groups of Study A

Low mastery
N=159 (49.5%)

High mastery
162 (50.5%)

Low performance 
N=150 (46.7%)

High performance
171 (53.3%)

Table 2: Groups of Study B

Factors for Study A Mean  (1–5) SD Cronbach’s a

Mastery goals 4.52 .46 .71

Performance (approach) goals 3.08 .93 .80

Self-Efficacy 4.09 .62 .71

Interest 3.85 .89 .89

Fear of failure 2.20 .78 .66

Table 3: Means, Standard Deviations and Cronbach’s alpha for each of the five  factors-Study A 

Factors for Study B Mean  (1–5) SD Cronbach’s a

Mastery goals 4.62 .56 .68

Performance (approach) goals 3.02 1.08 .81

Self-Efficacy 4.03 .69 .66

Interest 3.84 .97 .84

Fear of failure 2.43 .80 .73

Table 4: Means, Standard Deviations and Cronbach’s alpha for each of the five factors–Study B
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As tables 3 and 4 present, both samples seem to have 
a positive view of mathematics. In both studies the 
mean for mastery goals is above 4.50, self efficacy 
above 4, interest above 3.5 and fear of failure below 
2.5. Students in primary school in the specific edu-
cational setting seem to get involved in mathematics 
more for mastery reasons and not so for performance 
approach goals.

Regarding the specific objectives of the study, a one-
way between groups analysis of variance was con-
ducted to explore the impact of the different multiple 
goals profile on students’ mathematics achievement 
and motivation (self-efficacy, interest and fear of 
failure). For study A, the results show a statistically 
significant difference at the p<0.5 level in scores for 
the four groups regarding achievement F(3, 295) = 3.5, 
p=0.015, for self-efficacy F(3, 295) = 15.93, p<0.001 and 
for interest F(3, 295) = 18.36, p<0.001. No statistically 
significant difference was found in scores for the four 
groups regarding fear of failure. Table 5 presents the 
scores for each group (mean and standard deviation) 
in each affective factor and achievement. Means with-
in a row with the same subscript are significantly dif-
ferent from one another.

Post-hoc comparisons using the Tukey HSD test in-
dicated that students in high mastery/low perfor-
mance group had the highest achievement from all 

other groups. This difference was statistically sig-
nificant only for the low mastery/high performance 
group. This group had a higher mean achievement 
than the group of students with high mastery goals 
(Mean=13.65). Students in high mastery/high perfor-
mance group declared the highest interest following 
by the high mastery/low performance groups. These 
two groups had statistically significant difference 
from the low mastery/low performance group con-
cerning interest. Students’ in the low mastery/low 
performance group had the lowest self-efficacy from 
the students in the other three groups, and this differ-
ence was statistically significant.

For study B, the results show a statistically signifi-
cant difference at the p<0.5 level in scores for the four 
groups regarding achievement F(3, 317) = 6.35, p<0.001, 
for self- efficacy F(3, 317) = 19.06, p<0.001, for interest 
F(3, 313) = 23.32, p<0.001 and for fear of failure F(3, 311) 

= 10.77, p<0.001. Table 6 presents the scores for each 
group (mean and standard deviation) in each affective 
factor and achievement. Means within a row with the 
same subscript are significantly different from one 
another.

Post-hoc comparisons using the Tukey HSD test indi-
cated that students in high mastery/low performance 
group had the highest achievement from the students 
in the other three groups even though the difference 

Dependent 
Variables

High mastery/low 
performance

High mastery/high per-
formance

Low mastery/high per-
formance

Low mastery/Low 
performance

M SD M SD M SD M SD

Achievement 14.32a 4.11 13.17 4.61 12.03a 4.12 12.70 4.17

Interest 4.06b 0.75 4.20c 0.82 3.52 0.94 3.35b, c 0.80

Self efficacy 4.19e 0.54 4.33d 0.56 3.90f 0.62 3.74d, e, f 0.60

Fear of failure 3.21 0.85 3.22 0.88 3.29 0.71 3.37 0.89

a= p<0. 05, b=p<0.001, c= p<0.001, d= p<0.001, e= p<0.001, f= p<0.05

Table 5: Scores for each group (mean, standard deviation)-Study A

Dependent 
Variables

High mastery/low 
performance

High mastery/high per-
formance

Low mastery/high 
performance

Low mastery/Low per-
formance

M SD M SD M SD M SD

Achievement 12.88a 4.20 11.64 3.90 10.14a 4.00 11.39 3.81

Interest 4.00d, e 0.92 4.33b, c 0.69 3.63c, e 0.94 3.33b, d 1.02

Self efficacy 4.06f, g 0.68 4.47f 0.45 3.84 f 0.67 3.70f, g 0.70

Fear of failure 2.06h, i 0.63 2.33j 0.89 2.69i, j 0.75 2.63h 0.75

a= p<0.001, b=p<0.001, c= p<0.001, d= p<0.001, e= p<0.05, f= p<0.001, g= p<0.05, h= p<0.001, i= p<0.001, j= p<0.05

Table 6: Scores for each group (mean, standard deviation)-Study B
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in students’ achievement was statistically significant 
only from the group of low mastery/high perfor-
mance goals. This group had a higher achievement 
than the group of students with high mastery goals 
(Mean=12.21). Students in high mastery/high perfor-
mance group had the highest interest from all the stu-
dents in the other three groups and the difference in 
scores was statistically significant for students in low 
mastery/high performance and low mastery/low per-
formance group. Concerning self-efficacy, students in 
low mastery/low performance group had the lowest 
self-efficacy and this difference was statistically sig-
nificant from the groups with the highest self-efficacy 
(high mastery/high performance, high mastery/low 
performance). As fear of failure is concerned, stu-
dents in low mastery/high performance group had 
the highest fear of failure and this difference was sta-
tistically significant from the groups with the lowest 
fear of failure (high mastery/low performance, high 
mastery/high performance).

With respect to the second aim of the study, as it can 
be seen from tables 5 and 6 the two studies show re-
markable consistency in the characteristics of the 
specific four groups regarding their motivation and 
achievement. Specifically, and concerning the groups 
with the most positive outcomes, the group with the 
highest achievement is the high mastery/low perfor-
mance goals even though the mean difference was not 
statistically significant from the group high mastery/
high performance goals. The group high mastery/
high performance goals had the highest interest 
from all the other groups in both studies. Again the 
mean difference was not statistically significant for 
the group high mastery/low performance goals. The 
same group had the highest self-efficacy in both stud-
ies from all the other groups. In contrast, the group 
with the most negative outcomes related to achieve-
ment is the low mastery/high performance group and 
the group with the most negative outcomes related to 
motivation (self-efficacy and interest) in both studies 
is the group low mastery/low performance goals.

DISCUSSION

The aim of this study was to investigate the role of 
multiple goals and their interaction with elementary 
students’ motivation and achievement. A general con-
clusion of the study is that both views - the one under 
the revised goal theory perspective and the normative 
goal theory - concerning multiple goals, are found 

in this study to be applicable to the development of 
elementary students’ achievement and motivation. 
Specifically, in line with the first view that holding 
high levels of both, mastery and performance goals 
could be the most adaptive, in both studies (Study A 
and Study B), students in the group of high mastery/
high performance goals had the highest interest and 
the highest level of self-efficacy beliefs. These findings 
are in line with the results of Bouffard and colleagues 
(1995) study with college students, who found that this 
group of students had the highest level of motivation. 

In line with the normative goal theory, that the most 
adaptive pattern would be high mastery goals and low 
performance goals, results of both studies (Study A 
and Study B) indicated that students in the group with 
high mastery/low performance goals had the highest 
achievement from all other groups even though the 
mean differences from the group high mastery/high 
performance group was not statistically significant, a 
result similar to Pintrich’s study (2000). An important 
finding is that in both studies (Study A and Study B) 
this group had higher achievement that the groups of 
students with single high mastery goals. From these 
findings it can be concluded that performance goals 
when combined with mastery goals does not diminish 
the positive effect of mastery goals. Students who are 
concerned at the same time about their mastery and 
about their performance in comparison with others 
seem to have an adaptive pattern of achievement and 
motivation.

In line with the normative goal theory and parallel to 
other studies (Pintrich 2000; Kaplan et al., 2002) both 
studies (Study A, Study B) showed that the groups low 
in mastery goals both in combination with low or high 
level of performance goals are associated with nega-
tive results. Students in both of these groups reported 
low levels of achievement, interest, self efficacy and 
the highest levels of fear of failure. 

The results of our studies may lead to the conclusion 
that mastery goals lead to the most adaptive patterns. 
Even though the results could inform teachers to work 
for the development of mastery goals in the mathe-
matics classroom, the combination of high mastery 
goals with high performance approach goals may also 
lead to adaptive patterns regarding students’ achieve-
ment and motivation. It was found that performance 
approach goals alone usually do not have a positive 
effect on students’ interest (Zusho et al., 2005), a key 
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factor in students’ life-long learning. In this study’s re-
sults, the group with high mastery/high performance 
declared the highest interest.

In conclusion, we suggest that more research is need-
ed in the domain of multiple goals in relation to stu-
dents’ age, different learning contexts, and different 
measures of students’ achievement. 
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Mathematics as a school subject raises a lot of negative 
emotions within students. It is seen as a difficult, de-
tached from reality, full of useless in everyday life defini-
tions and theorems field of knowledge. Not surprisingly, 
it causes a lot of anxiety, emotional tension and internal 
discord. Nowadays, many students declare their human-
ities preferences in purpose to justify the lack of involve-
ment in learning mathematics. This article looks at this 
state of affairs through the lens of psychological concept 
of transgression. The first and foremost cornerstone of 
this paper is the  notion of “affective transgression”. It 
is introduced after a brief exposition of transgressive 
concept of a man.  This theoretical approach sheds some  
new light on teaching and  learning mathematics. 

Keywords: Transgressive concept of a man, affective 

transgression in learning mathematics, beliefs, meta – 

affect.

INTRODUCTION

A lot of attention has been paid to students’ achieve-
ment in mathematics so far. Although researchers 
and teachers’ efforts seek to improve the quality and 
efficiency of mathematics education, there are still 
many students who – for several reasons – achieve 
low scores in this school subject. What is more un-
settling, is that many students declare humanities 
preferences in order to explain and legitimize their 
lack of engagement for learning mathematics and 
even among those who reveal their potential, there 
might be a significant number of underachievers 
(Rimm, 2008).There is a general agreement amongst 
mathematics educators that, regarding students’ 
achievement, neither affect nor cognition should be 
underestimated (e.g., McLeod, 1992; Vinner, 2013). In 
that sense, many researchers have been examining 
how affect influences the field of mathematics educa-
tion (e.g.,  DeBellis & Goldin, 1997, 2006; Schlöglmann, 
2005). Fortus (2014) goes even further, stating that all 
science educators ought to pay more attention to af-

fect. He claims there is a great urgency to lift students 
from boredom and indifference, because “without 
engagement, learning is partial, at best”. 

It is thus, of fundamental importance to focus re-
search on understanding the role that students’ beliefs 
about the egalitarian nature of mathematics and the 
importance of mathematics education in their lives, 
in the process of learning mathematics. Considering 
the transgressive concept of a man within mathemat-
ics education, brings new ideas that address these is-
sues.   The last part of  this paper, attempts to compress 
(Thurston, 1990) efforts and considerations made by 
affect researchers so far, into a thinkable concept (Tall, 
2004) of affective transgression. 

MATHEMATICS FOR ALL OR FOR 
MATHEMATICALLY GIFTED 

Many students hold the belief that to be good at mathe-
matics, one needs to have some innate predispositions 
to grasp it, and that ordinary students cannot be ex-
pected to understand this school subject (Schoenfeld, 
1992).  In contrast, some psychologists or educators 
try to convince the broad audience to the egalitarian 
nature of mathematics. Already in 1973, Piaget men-
tioned that fact:

Any normal student is capable of correct mathe-
matical reasoning, if attention is directed to ac-
tivities of his interest, and if by this method the 
emotional inhibitions, that too often give him a 
feeling of inferiority in lessons in this area are 
removed. (...) There is no field where the  “full 
development of the human personality” and the 
mastery of the tools of logic and reason which 
insure full intellectual independence are more 
capable of realization.  (Piaget, 1973, pp. 98–99, 
105)

Aligned with those thoughts, also Krygowska referred 
to the nature of mathematics:
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There are different levels of mathematical activi-
ty and with the exception of extreme cases, we can 
find an appropriate level of activity to any normal 
student. (...) When it comes to the development 
of mathematical thinking, we must not write any 
student off. (...) The student has to take a fancy 
to mathematics, find pleasure in solving mathe-
matical tasks, even though it requires effort and 
difficult concentration. (Krygowska, 1975, p. 243) 

Although these statements were given in purpose to 
emphasize that mathematical skills can be developed 
by any student, they also refer to affect and explicitly 
ascertain that it impinges on learning mathematics. It 
is reasonable to expect that students who are afraid to 
expose their emotional or intellectual shortcomings 
will tend to avoid doing mathematics (and consider 
that they are not able to learn it). Many students tend 
to have a distracting behaviour in classrooms in order 
to try to deviate their colleagues and teacher attention 
from their own mathematics difficulties. As part of 
my research, I have interviewed a high school stu-
dent having low scores in mathematics. According to 
the information given by his teacher, the boy usually 
had side conversations, made sniping remarks and 
was playing around on every lesson. In an individual 
talk we had, the student confessed that he was show-
ing off to get the rest of the class laughing.  The real 
reason why he was doing that, was that he wanted to 
divert his colleagues’ attention from his mathematical 
misunderstanding. He said that it seemed easier to 
hold on when they were all laughing with him, un-
der his control, on the jokes he made, than to hear the 
laughter on his failure.  Thus if we want to convince 
young people, especially reluctant and disobedient 
low-achievers, that they may become ‘good at math’, 
we need to take into account students’ vulnerability 
to affective stimulation coming from mathematics. 
Among many features this discipline has, one of the 
most remarkable is that mathematics, like no other 
field of knowledge, evokes human’s affective respon-
siveness. For example, in the scope of the theoretical 
review one can find many references to math anxiety, 
and only very few references to anxiety outside math-
ematics (e.g., “chemistry anxiety” or “biology anxie-
ty”). Nobody likes to experience negative frustration, 
fear or helplessness, being, in this context, the teach-
ers’ responsibility to develop their work allowing 
students to overcome such experiences.  That’s why 
some students prefer to avoid mathematics, rather 
than take the challenge and confront the constraints. 

Paradoxically, all of these negative experiences re-
lated to mathematics, could be seen as a positive phe-
nomenon.  Intentional reversing negative affective 
patterns (Rimm, 2008) may be recognized as much 
more than just about the achievement in mathemat-
ics, being linked with the reinforcement of a widely 
understood personal development and fulfilled life. 

(GOOD) REASONS FOR LEARNING MATHEMATICS

In light of the above remarks, it is no surprise that one 
of the most frequently encountered questions that stu-
dent pose to their teachers is “Why do we have to learn 
mathematics?”. Every teacher should have the answer 
well considered in advance. This problem opens up 
a long list of questions collected by Posamentier and 
colleagues (2013), who recognize this question as a 
symptom indicating that students do not appreciate 
mathematics. They deem convincing answers like, for 
instance, mathematics is useful in everyday life, it pro-
vides a wide range of career opportunities. However, 
the most important reason they give, refers to the re-
markable nature of the discipline: 

Mathematics is a huge, logically and deductively 
organized system of thought, created by count-
less individuals in a continuous collective effort 
that has lasted for several thousand years and still 
continues at breathtaking pace. As such, mathe-
matics is the most significant cultural achieve-
ment of humankind. It should be a natural and 
essential part of everyone’s general education. 
(Posamentier et al., 2013, p. 3)

The reasons one can present for learning mathemat-
ics are wide different and can inclusively be contro-
versial. Some of the possible reasons could be by the 
fact that mathematics is “beautiful”, and it’s worth 
learning this subject for its own sake (e.g., Davis, 1993; 
Lockhart, 2009).  From another point of view, learn-
ing mathematics can be seen as a stepping-stone to 
further education at all levels of the academic studies 
(e.g., Vinner, 2013). Some authors emphasize the as-
sumption that mathematics trains the mind, and pro-
vides universal mental tools that enable us to reason 
correctly (e.g. Dudley, 2011). Others pay attention to 
the role that mathematics plays in our daily life or in 
STEM-related professions (e.g., Fortus, 2014). Several 
publications consider mathematics as a source of so-
cial empowerment, a central element of culture, art 
and life, and the driving force for the development of 
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civilizations (e.g., Ernest, 2010). Some of the reasons 
given above are controversial. For example, there is 
no consensus neither within the case of usefulness 
of mathematics in everyday life (e.g., Lockhart, 2009; 
Wu, 1997) nor the demand for mathematical skills in 
the workplace (e.g., Dudley, 2011; Vinner, 2013). As 
part of my research, involving high school mathemat-
ics teachers, participants were asked for reasons for 
learning mathematics. Most of the given answers, 
akin to taglines, were related to mathematics useful-
ness and importance for daily situations (e.g. counting 
money, shopping) and shaping logical reasoning. But 
there were also answers as:

I tell my students they should learn mathematics 
today, so they could teach others mathematics in 
the future.

I tell my students, there is no escape from math-
ematics! Mathematics is everywhere!

Look at lawyers for example. Do you think they 
could do the same work as a simple worker does? 
[The answer was “Yes”]. And now, look at the 
worker. Do you think that he could do the same 
things as the lawyer does? [“No.”] Hence, you see, 
it’s worth learning more because it gives you a 
wider range of possibilities.

What are possible responses a student could give to 
refute these arguments? They are easy to figure out: 

“I’m not going to teach mathematics to anybody”, “Oh, 
it sounds scaring! Though you say there is no escape 
from math, ... I will try the best I can”. A friend of mine 
told me an authentic story about a woman who was 
trying to encourage her son to doing mathematics, so 
he could have better life opportunities than she ever 
had. The boy said: “There is no sense in learning. Dad 
is a scavenger, you are a cleaner. What future do I 
have? I’m sure I will be doing exactly the same”. 

However, there is one undisputed answer, that no stu-
dent could ever debunk. The transgressive concept of 
a man, discussed further, provides a new reason jus-
tifying the value of learning mathematics. Moreover, 
the concept yields a new perspective on students as 
both learners and humans concerned about their 
growth.  Finally, the idea of affective transgression in 
learning mathematics emerging from this psycho-
logical concept, may be successfully implemented in 

school practice and result in improving “weak” stu-
dents’ achievement. 

TRANSGRESSIVE CONCEPT OF A MAN

The term transgression is defined in different contexts 
(e.g. geology and genetics). In geology transgression 
is the spreading of the sea over land as evidenced by 
the deposition of marine strata over terrestrial strata; 
in genetics it means a peculiar case of heterosis - the 
increase in growth, size, fecundity, function or other 
characters in hybrids over those of the parents.   In its 
transposition into psychological ground, Kozielecki 
(1987) uses terms of an intentional and deliberate 
overcoming of physical, social or symbolic bounda-
ries. The concept of psychological transgression is de-
voted to the importance of the role that crossing over 
personal boundaries and subverting limitations play 
in everyone’s life.  From this standpoint, a man is a 
self-directed, expansive creature who intentionally 
crosses the boundaries understood as demarcation 
lines separating what he is and what he owns, from 
what he may become. 

Kozielecki (1987, 1997) has outlined four worlds of 
transgression wherein the exceeding boundaries 
can be taken towards: 1) material objects - territorial 
expansion in the physical world, 2) other people - ex-
panding the control over other people but also altru-
ism and extension of individual freedom, 3) symbols 

- intellectual expansion; going beyond the information 
given, development of knowledge about the world and 
4) oneself  - self-creation, self- development, unlock-
ing one’s potential, coping with one’s weaknesses. In 
that sense, transgressions may be of different kinds: 
psychological or historical, individual or collective, 
constructive or destructive, but also, in other level, 
it can be creative or inventive and expansions (e.g., 
material, interpersonal, intellectual). 

The human being is assumed to be able to carry both 
the telic (goal-oriented) and autotelic (intrinsically 
rewarded) actions. In the former, he acts in pursuit 
of a variety of goals and creates new values that sat-
isfy his needs. In the latter kind of actions, the goal 
is less important than the satisfaction and pleasure 
simply coming from carrying out activities. Moreover, 
regarding autotelic actions indicated by high level 
of involvement, Kozielecki states that goals emerge 
from activity not conversely, because goals in this 
case have no distinguished status. The author notices 
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that goal-oriented activities become exhausting and 
boring in a short time, hence when the motivational 
tension relieves and the goal is achieved, a person 
ends up the task and refuses further actions. On the 
contrary, those who are totally committed to any kind 
of activity, do not feel tired. They forget about the 
lapse of time and even experience the state of flow 
(Csikszentmihalyi, 1991). Kozielecki (1997) emphasiz-
es that thanks to the commitment we become more 
self-governing instead of being just human – robots. 

However, from the viewpoint of transgressionism, an-
other distinction is of higher importance. Kozielecki 
(1987, 1997) focuses on two kinds of actions that entities 
undertake: protective - designed for the maintenance 
of the status quo and transgressive ones – exceeding the 
boundaries and enabling the development of person-
ality. The juxtaposition of these two types of human 
activity is presented in the table below.

Kozielecki puts forward the view that personality is 
equipped with a kind of internal comparator (a part 
of human’s will), which allows comparing plans with 
achieved state of affairs. It is also the comparator that 
decides whether to stop the action or continue. The 
salient feature of the protective actions is that they 
are directed by the principle of negative feedback – 
reaching the goal (namely restoring or maintaining 
the status quo) ends up the activity taken by a man. On 
the contrary, transgression is directed by the principle 
of positive feedback which works reversely: not only 

isn’t the motivation reduced, but also it is sustained 
or even increases during the activity. The notion of 
affective reallocation is introduced to name the pos-
itive correlation between adaptation and negative 
emotions on the one hand, and between transgression 
and positive affective experiences on the other. Hope 
may serve as a good example of such a positive expe-
rience. It is defined as a multidimensional cognitive 
structure, in which the central factor is the belief that 
in the future one will be offered the good (achieve an 
important objective), and the degree of certainty, or 
probability, is stated (Kozielecki, 2006).

These two kinds of behavior exposed briefly above, 
differ also in terms of the motivation involved. Two 
kinds of human’s motivation are distinguished by 
Kozielecki (1987): homeostatic – a typical motivation 
for protective actions, (however, sometimes trans-
gressions could also be stimulated by this kind of 
motivation)   and heterostatic – a specific motivation 
for transgressive actions. The former arises if and 
only if in human’s brain there are two independent 
information at one time: one concerning the desired 
state of affairs (S) and the second one, involving the 
actual state (A). When the comparator ascertains the 
existence of discrepancy D(S,A), the organism engag-
es in behaviors designed to reduce the psychological 
imbalance. To get back to homeostasis, considered as 
a preferable state, a man undertakes actions intended 
either to dismantle the deficits or to remove the excess. 
This process leads to satisfaction and relief. 

Protective actions Transgressive actions

play key role in adaptation and survival satisfy higher needs of a human being

regulated by the needs of deficit regulated by the needs of growth 

undertaken to maintain 
the status-quo

orientated toward 
a meaningful change

other-directed;
depend more on the changing external environment

inner-directed;
 depend on the components of personality, for instance, 
creativity, knowledge, motivation, courage, persever-
ance

necessary Possible

“I know I have to” “I know I am able to”

repeatable non-recurring

planned Spontaneous

often predictable harder to predict

accompanied by negative emotions, especially fear
accompanied by positive affective experiences, espe-
cially hope

performed similarly to following an algorithm inherently heuristic, fallible, underspecified

Table  1: Protective actions vs. transgressive actions
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Homeostatic theory focuses on the maintenance of 
the internal physiological environment. However 
this theory doesn’t describe all human’s behaviors 
adequately. For example: it is not sufficient to explain 
why people sometimes explore their environment and 
intentionally seek for arousal disrupting the equi-
librium.  What underlies human’s motivation in this 
case is the driving force of growth. The discrepancy 
D(L,A)  between the level of aspiration (L) and the actu-
al state (A) raises internal tension that leads to actions 
oriented on growth and satisfaction. However, a man 
seen as an insatiable creature can never reduce D(L,A) 
completely. This discrepancy exists permanently. The 
role of  the comparator is then twofold: it detects the 
existence of D(S,A) and evaluates the extent and the 
content of  persisting D(L,A). Overall, then, we can 
state that homeostatic motivation serves to minimize 
annoyance, whereas the role of heterostatic motiva-
tion is to maximize the pleasure.

There are two specific types of the heterostatic motiva-
tion that lead to transgression. The first one, which has 
been coined by Kozielecki, is the hubristic motivation, 

“conceived as a cluster of motives that make people 
assert and enhance their self-worth” (Kozielecki, 1987, 
p. 177). It is the major driving force of transgression. 
Hubris (also: hybris) is a term derived from Greek 
literature and philosophy. In the past it meant pride, 
insolence and arrogance, but here it is deprived of 
pejorative meanings. Transgressive concept of man 
takes into account that every human being has the 
desire, at some point, to be distinct from others, to 
be important, to shine the spotlight on others. The 
hubristic motivation manifests itself as striving for 
superiority or striving towards perfection. It is in-
satiable, very affective, sated with egocentric and 
hedonistic drives. 

The second type of the driving force specific for 
transgression, is cognitive motivation. It is nonegois-
tic, instinct to master and competence, governed by 
the principle of growth. It can be stimulated by the 
novelty or complexity of the subject, uncertainty or 
lack of information, as well as by the cognitive conflict 
raised when two or more contradictory beliefs, ideas, 
or values are held at the same time, or when existing 
beliefs etc. are confronted by some new directly con-
tradicting information.

AFFECTIVE TRANSGRESSION IN LEARNING 
MATHEMATICS 

In this section the focus is on providing a clear link 
between transgression and mathematics education.

A wide range of affect literature from around the 
world provides a considerable number of research 
reports exploring, in its depth and breadth, affective 
conditions of learning mathematics. The common 
reason why all these efforts are taken, is the more or 
less implicit assumption that identifying obstacles 
for effective learning, will contribute to a meaningful 
change in the quality and effectiveness of teaching. 
Paraphrasing Thurston, we can say that mathematics 
education is amazingly compressible, and “once you 
really understand it and have the mental perspec-
tive to see it as a whole, there is often a tremendous 
mental compression” (Thurston, 1990). Attempting to 
compress previous considerations made within the 
affect domain,  into a thinkable concept (Tall, 2004), I 
herby introduce the notion of affective transgression in 
learning mathematics (short: affective transgression). 

By affective transgression I mean an intentional pro-
cess of overcoming personal affective barriers that 
preclude one’s mathematical growth and develop-
ment. The process is a psychological, individual and 
constructive transgression toward oneself. It is, by 
definition, highly recommended for low- and under-
achievers. Affective transgression might occur if and 
only if a person a) has insight into emotions (s)he ex-
periences, b) is aware of the belief systems (s)he holds 
and c) has the will to make changes, believing they 
are good and possible. Meta-affect, considered to be 
the most important component of affect (DeBellis & 
Goldin, 2006), is inevitably required here. It should 
be developed to make all emotional experiences pro-
ductive for learning and accomplishment. 

Learning mathematics, seen through the lens of trans-
gressive concept of a man, becomes an activity leading 
to inner growth and personal development. This ar-
gument seems to be a good and irrefutable reason that 
provides powerful meaning to the learning of mathe-
matics. From the concept of hubristic motivation, we 
can deduce that even if students reject mathematics 
(as a school subject or as a domain where they are ex-
pected to be active), they will never write themselves 
off. Hence, until students (especially low- and undera-
chievers) don’t see doing mathematics as an autotelic 
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activity enhancing their self-worth, they might refuse 
commitment. What is of the utmost importance, trans-
gression accompanied by positive affective experienc-
es (i.e. hope, faith), has a great impact on the language 
being used to describe students’ relationship with 
mathematics. Every problem becomes a challenge now, 
impossible turns out to be achievable, or not easy to 
achieve and the harder to achieve, the more wanted. 
Protective actions that students take (Vinner, 1997), 
are replaced by transgressive ones, they are encour-
aged to. Thanks to this approach, external goals (like 
passing exam or having good grades) are eclipsed by 
the pleasure and satisfaction coming from student’s 
endeavour. 

Teachers have to meet two general prerequisites to 
make the affective transgression possible:

1) establishing growth-promoting climate in the 
classroom  – which requires genuineness, un-
conditional positive regard and empathetic un-
derstanding. What counts most in effective treat-
ment (Rogers, 1995) seems to be not a particular 
technique, but the personal relationship between 
teacher and his student, 

2) transgression – oriented teaching, comprising 
both (meta)cognition and (meta)affect (DeBellis 
& Goldin, 2006).

Meta-belief systems activity (Moscucci, 2007) and diag-
nostic teaching (Schoenfeld, 2011) enriched with affect 
and meta-affect, may serve as transparent examples 
of practices that might evoke student’s affective trans-
gression.

As belief systems constitute the weak element of affect 
structure (Moscucci, 2007), they need to be identified 
first. This may come through observation or indi-
vidual interviews. There are also scales, construct-
ed and validated in purpose to measure beliefs (i.e., 
Kloosterman & Stage, 1992). It is the role of a teacher 
to recognize students’ beliefs and bring them to their 
attention. If beliefs turn out to be a hindrance for one’s 
growth and achievement in mathematics, they need to 
be restructured. Counterexamples as well as class or 
small group discussions of beliefs can be effective for 
reflecting on negative beliefs (Kloosterman & Stage, 
1992). This is already a stepping-stone towards over-
coming them. 

FINAL REMARKS

This paper has offered an explanation of what trans-
gressive concept of a man is. It is my attempt to bring 
closer and describe the phenomenon of affective trans-
gression, I have observed many times in my teaching 
practice. The notion of affective transgression, intro-
duced in this paper, is hoped for to be powerful inspi-
ration for researchers in the affect domain. 

Given the paper length restrictions, I shall conclude 
by few brief personal comments. First of all, it is very 
hard to reach out to low- or underachievers. Whoever 
remains just a mere teacher instead of being a whole 
person, will surely fail. And the second remark (last 
but not least) is that teaching to transgress stands in 
relation to ordinary teaching mathematics, much as 
giving a fishing rod stands in relation to giving a fish. 
A student who has experienced his personal “math-
ematical transgression”, will never stop hungering 
for more. Just like once turned into a beautiful swan, 
the ugly duckling felt neither ugly, nor the duckling.   
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This paper investigates mathematics teachers’ beliefs re-
garding the roles of visualization for teaching fractions 
and algebra. The paper discusses the construct of beliefs 
and theoretical roles of visualization. We further give 
rationale for the qualitative approach of our study. In 
the results we compare two teachers’ beliefs from a larger 
sample. We work out that, although both teachers use 
visual re pre sen tations in a similar way, they assign dif-
ferent roles to their respective use. Their beliefs appear to 
be stable across subdomains. We discuss our impression 
that the teachers emphasize other roles of visualization 
than educational research implies.

Keywords: Teachers’ beliefs, visualization, domain-specific, 

fractions, algebra.

INTRODUCTION

The use of visualization is regarded as important for 
the teaching and learning of mathematics. Possible roles 
of visualization are for example to promote students’ 
understanding (Presmeg, 2006; Duval, 2006), to ena-
ble problem solving (Heinze, Star, & Verschaffel, 2009; 
Duval, 2014; Arcavi, 2003), to discover, to describe, and 
to explain (Rivera, Steinbring, & Arcavi, 2014). 

The demands on teachers to appropriately teach using 
visualization are high, e.g. to use visual representa-
tions in a conscious and active way (cf. David & Tomaz, 
2012; Presmeg, 2014). Accordingly, nowadays it is em-
phasized to incorporate strategies on how to use visual 
representation into teachers’ education (e.g., Presmeg, 
2014). Thus, on the one side, we gained a lot of knowl-
edge about a theoretical framework of visualization 
and a framework for teaching with visualization. On 
the other side, teachers seem to have complex attitudes 
regarding visualization (e.g., Gómez-Chacón, 2015). Yet 
we gained scarce results regarding the question of how 

mathematics teachers define the role of visualization 
for their classroom practice, or why they define the 
role of visualization in an individual way. However 
the teachers’ thinking or rather their beliefs are un-
derstood to crucially impact on both these teachers’ 
classroom practice (Calderhead, 1996) and their will-
ingness to receive new information about teaching 
and learning with visualization (Chapman, 1999).

For this reason, our study aims to investigate teachers’ 
beliefs about visualization in more detail. We seek 
to identify individual perspectives and reasons as to 
how and why teachers do or do not use visualization 
in classroom and which roles the teachers assign to 
visualization. In this report we try to give first an-
swers to the following research questions, by means 
of a comparison of two teachers’ beliefs: 

(1) What are secondary teachers’ beliefs about the 
roles of visualization in fractions and algebra? (2) To 
what extent do these roles differ in specific domains?

For this, we first outline our theoretical framework, 
including definitions of the constructs of beliefs and 
visualization and including an overview of the roles 
of visualization. Afterwards we discuss our method. 
The main part of this paper refers to results relating to 
the beliefs of two mathematics teachers from a larger 
sample. These teachers point out their understand-
ings of visualization and their beliefs regarding the 
role of visualization. The results represent an empir-
ical counterpart to our theoretical knowledge about 
teaching with visualization.

THEORETICAL FRAMEWORK

Definition of beliefs
In order to answer our research questions the mul-
tifaceted term “beliefs” has to be clarified. We chose 
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a description given by Philipp (2007) who combines 
many similarities of existing definitions in the context 
of teaching and learning: 

Beliefs - psychologically held understandings, 
premises, or propositions about the world that 
are thought to be true. Beliefs are more cognitive, 
are felt less intensely, and are harder to change 
than attitudes. Beliefs might be thought of as 
lenses that affect one’s view of some aspect of the 
world or as dispositions toward action. Beliefs, 
unlike knowledge, may be held with varying 
degrees of conviction and are not consensual. 
Beliefs are more cognitive than emotions and 
attitudes. (p. 259) 

For this study, several aspects are important:

 ― As individual judgments about the validity of 
statements beliefs differ from knowledge, but 
they contain a cognitive component (Baumert & 
Kunter, 2006). 

 ― Beliefs can be understood as lenses in the way 
that they form a specific world view. They are 
assigned to influence perception and action 
(Philipp, 2007).

 ― Being gradual incorporates that a belief regard-
ing a specific role of visualization can individual-
ly be more or less important for a person (cf. the 
term of central beliefs; Thompson, 1992).

 ― Beliefs are classified as rather stable (cf. also 
Hannula, 2012) and refer to specific content 
(Eichler & Erens, 2015). Regarding visualization, 
we look for the specificity of beliefs referring to 
a mathematical domain, but also for similarities 
if different domains are regarded. 

Calderhead (1996, p. 719) identifies “five main areas 
in which teachers have been found hold significant 
beliefs”. Of these, “beliefs about learners and learning” 
as “assumptions teachers make about their students 
and how their students learn”, “beliefs about teaching” 
as “beliefs about the nature and purposes of teaching”, 
and “beliefs about the subject” as “epistemological 
issues - what the subject is about” are of interest when 
investigating beliefs about visualization (ibid.). 

Definition of visualization
This study uses a broad definition given by Arcavi 
(2003, p. 217):

Visualization is the ability, the process and the 
product of creation, interpretation, use of and 
reflection upon pictures, images, diagrams, in 
our minds, on paper or with technological tools, 
with the purpose of depicting and communicat-
ing information, thinking about and developing 
previously unknown ideas and advancing un-
derstandings.

The definition integrates many facets of visualization. 
The following are especially relevant for this study:

 ― It integrates process and product. In everyday 
language, which is likely to be used by teachers, 
both terms are often used synonymously. 

 ― It integrates different ways of how to handle vi-
sualization, especially the meaning of making 
something visual for oneself (often: to visualize) 
as well as to make something visual for somebody 
else (often: to use a visual representation). Both 
aspects are important in classroom.

 ― It mentions diverse kinds of pictures. Thus, ev-
erything not being completely symbolic could be 
considered as visualization.

 ― It defines visualization as goal-oriented and enu-
merates purposes like advancing understand-
ing. Yet the purposes are not considered to be 
exhaustive.

Roles of visualization in theory
The purposes of visualization lead to the different 
roles of visualization: Quoting different researchers 
in the introduction, we mentioned a list of possible 
roles of visualization, i.e. promoting understanding, 
enabling problem solving, facilitating discovery and 
explaining. Partially overlapping, Arcavi (2003) enu-
merates in his definition the purposes “depicting and 
communicating information, thinking about and de-
veloping previously unknown ideas and advancing 
understandings”. From an epistemic point of view 
the roles which Giaquinto (2008) mentions are also 
specific for mathematics: proving, discovering, heu-
ristic aid, augmenting understanding, and enabling 
calculation.
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A comparison of the different definitions of visuali-
zation yields that it might be common to these roles 
that they could be grouped in (1) understanding, ex-
plaining (2) discovery, problem solving, heuristic aid, 
and developing ideas, (3) describing, de picting, and 
com muni cating information, (4) enabling calculation, 
(5) proving.

Empirical studies on teachers’ beliefs 
regarding the role of visualization
However, there are few studies about teachers’ beliefs 
regarding the role of visualization. For this report we 
chose three studies. Stylianou & Silver (2004, p. 353) 
report in a study about problem solving that “experts 
and novices perceive visual representation use as a 
viable strategy. However, the two groups judge visual 
representations likely to be useful with different sets 
of problems.”

Biza, Nardi, & Theodossios (2009) investigate how 
teachers use visual arguments in proving in the do-
main of functions. Teachers who at first glance ap-
preciate visual arguments reveal differences in the 
acceptance in follow-up interviews. 

Research results from text-picture-integration sug-
gest that teachers for different domains have differ-
ent views on the use of visualization (McElvany et 
al., 2012).

These studies suggest that the role of visualization 
from a teachers’ point of view might be related to a 
specific content. They also support the idea of a quali-
tative approach, as all of them show that it is important 
to investigate the teachers’ thinking in detail.

METHOD

The research questions are part of a qualitative 
study about how teachers want to use visualization 
in classroom. The study is carried out with twelve 
secondary teachers. Further, the study covers the 
domains fractions, algebra, functions, and calculus, 
since these domains cover secondary mathematics 
of all ages, and visualization can be used in different 
ways, e.g., as a typical means of illustration (like the 
pizza in fractions), as a mathe ma tical object (e.g. the 
graph of a function), or with a rather structural focus 
(e.g., drawings in algebra). The teachers are chosen 
by a “theoretical sampling” (Glaser & Strauss, 1967) 

which aims at contrasting cases (e.g., regarding type 
of school, age).

In semi-structured interviews lasting three-hours 
the teachers talk about how and why they use visu-
alization in classroom. The interviews address the 
same questions for each domain, e.g. regarding the 
teachers’ use of visual representations, their aims, 
their perspective on students’ learning and their use 
of technology. It is completed by general questions 
about mathematics and mathematics teaching. 

The interview transcripts are analyzed according to 
Grounded Theory (Glaser & Strauss, 1967). In open 
and axial coding we developed categories concerning 
the function and the relevance of visualization for 
the teachers. The objective is to generate theoretical 
concepts. In part, the concept aims at a consistent per-
spective on teachers’ beliefs regarding the role of vis-
ualization in classroom. The roles might be different 
from existing theoretical frameworks.

The study does not investigate how teachers act in 
classroom. To explain teachers’ practices, many oth-
er factors, e.g. pedagogical orientation and context 
(Philipp, 2007, p. 275), are to be considered. However, 
the study is based on the assumption that teachers’ 
beliefs im pact their classroom practice. 

RESULTS

In this paper, we compare the roles of visualization 
in classroom for two mathema tics teachers. Alan is 
a teacher at a comprehensive school with about ten 
years of teaching experience. Claire has been teaching 
at an upper secondary school for about twenty years. 
We develop the roles of visualization regarding frac-
tions and algebra (quest. 1), and we analyze in how far 
their beliefs regarding these roles are domain-specific 
(quest. 2). First, we analyze Alan. The part regarding 
frac tions is rather detailed in order to provide also an 
insight into the development of the codes. Accor ding 
to grounded theory the resulting hypotheses influ-
ence the analy sis of Alan’s statements about algebra. 
Then we analyze Claire in the same way, but more 
briefly.

Alan: Fractions
For Alan it is very important that his students first 
develop a conception of a fraction as a “part of the 
whole”. From his point of view it is paramount that 
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they can relate fractions with images, see for instance 
the following quotation: 

Alan:  There [in fractional arithmetic] it is 
very important that, at the beginning, 
students have an idea of what a fraction 
is in the first place. [...] And this is some-
thing which they always have to keep in 
mind. […] They really have to have this 
image in their heads. 

He stresses that students develop his intended concep-
tion of fractions if they can use many different geomet-
ric forms. Also as regarding calculation in fractions, 
Alan considers visualization helpful. Expressions like 

“see”, “have pictures of something”, and “understand” 
are used synonymously, as he did already for the con-
ception of a fraction. Alan believes that visualization 
supports students’ understanding:

Alan:  For many, this [addition of fractions with 
a common denominator] is not clear at 
first. If you just draw it, they see it im-
mediately.

At the same time, visualization is for him a methodical 
aid for explanation. Alan appreciates good reasons. 
Visual means can support him with this:

Alan:  Visualization also helps with improper 
fractions and mixed numbers […] This 
you can somehow also do well with piec-
es of pizza […]. 

Alan:  Reducing and expanding with rectan-
gles, [...] this can be done perfectly with 
horizontal and vertical lines, like here. 
And then, once they have figured it out, I 
move on quickly to the purely algebraic. 

In addition, the preceding quotation, and also the fol-
lowing, highlights his objective of withdrawing from 
visualization and his orientation towards algebraic 
objectives, for example the mastering of calculation 
techniques:

Alan:  You see, when calculating with fractions, 
we do not always think of anything 
graphic, either. And that is where I want 
to guide the students, too, of course. 

At first glance, a contradiction seems to arise: Alan 
regards it as very important that his students have a 
visual image of a fraction. He also uses visualization 
for explaining calculation. However, at the end, for 
Alan calculation is a symbolic manipulation. Taking 
into account the above quotes, for Alan it might be 
sufficient to show the deduction of constructs or meth-
ods with the aid of visualization. This hypothesis vis-
ualization supports justification is supported by the 
following quote:

Alan:  In this case, it is really a lot easier to have 
remembered that you divide by a frac-
tion by multiplying by the reciprocal, 
and so on. Nevertheless, it is important 
for them, of course, to have first under-
stood the principle why this is so. And 
this just works well with easy visualiza-
tions. But then they quickly have to get 
past this. 

Alan expresses the value of using visualization when 
introducing a subject as a basis for the following:

Alan:  That is why this introduction phase with 
the drawings always takes quite a long 
time. As far as this is concerned, I’m 
of the opinion that this is the basis for 
everything else which comes later. 

But he only gives justification for an operation if he 
thinks that this is feasible with drawings that are easy 
to use (cf. reducing and expanding fractions). On the 
other hand, when he does not know an easy visuali-
zation he does not give a justification:

Alan:  This [division by a fraction] is difficult, 
because this is about how often one frac-
tion fits into another fraction. You can 
visualize that wonderfully if the result 
is a natural number. But if a fraction fits 
four seventh times into another fraction 
that becomes difficult to visualize. 

Concluding this paragraph we can say that Alan val-
ues visualization for understanding, for explaining 
and as justification. He only uses drawings which he 
finds easy to understand. Mathematics seems to have 
a deductive character for him: New things have to be 
logically derived from the well-known. As soon as 



Teachers’ individual beliefs about the roles of visualization in classroom (Angela Schmitz and Andreas Eichler)

1270

they are justified they can be used without knowing 
the reason or the visualization.

Alan: Algebra
Alan’s beliefs regarding visualization regarding alge-
bra are very close to his beliefs expressed regarding 
fractions. For example, for solving linear equations 
Alan uses a drawn beam balance to support students’ 
understanding: 

Alan:  None of them know a beam balance any 
more, but intuitively they grasp it imme-
diately. 

The aim of using visualization is that the students get a 
plausible reason for the later procedure (justification): 

Alan:  This will enable them to see what the 
effect of what we are illustrating is in 
algebra. And this is intended as a first 
explanation as to why or how equiva-
lence transformations work. 

He further consistently expresses the belief that for 
him the deduction is very important. If a plausible de-
duction is easier with other means than visualization, 
he uses other means. Visualization is not automati-
cally related to deduction, but when he uses it, then 
often for deduction.

Interim summary 1 
Alan regards the role of visualization as an aid to un-
derstanding, explaining, and justifying (quest. 1). These 
beliefs can be identified in two domains. This could 
be an indication for a belief that is similar in different 
(mathematical) domains (quest. 2).

Claire: Fractions
We compare the results regarding Alan with Claire’s 
beliefs. She also uses visuali zation intensively when 
introducing a subject. Afterwards her aim is to es-
tablish schematic calculation. We would like to know 
if she assigns the same roles to visualization. Claire, 
too, develops the conception of fractions using many 
drawings:

Claire: That is very important, so that they just 
get this idea of a fraction. Divide some-
thing in five equal parts, take three of 
these parts. That you also just visualize 
it. 

Similarly she uses visualization for the illustration 
of most calculation operations. But she is not as 
convinced as Alan that visualization is helpful for 
understanding: 

Claire:  Four fifth divided by three, however [...] 
How does it suddenly get into the de-
nominator? Thus, I again made a draw-
ing. […] But this is one which is difficult 
to draw. I doubt that this really helps the 
students. I rather did it because of the 
requirement that I once learned that 
you always have to visualize, and how 
important this is. 

She rather uses visualization because she learned it in 
that way. To visualize seems to be a norm: “Teachers 
use visualization when they introduce a new theme.” 
On the other hand, Claire sees a high benefit for her 
students in the fact that they can remember the con-
tents later because of the visualization:

Claire:  I always try to select something that still 
is easy to remember. 

Although Claire shows quantities and development of 
the use of visualization in fractions similar to Alan, 
she associates different roles with it. She rather uses 
it as a mnemonic aid. Even if she is not convinced, she 
uses visualization for explana tion. She rather seems 
to conform to an educational norm she learned at uni-
versity.

Claire: Algebra
In algebra, too, Claire - like Alan - uses a balance for 
solving equations. She appreciates the possibility to 
reactivate knowledge once the subject is manifested:

Claire:  That is also something you can well re-
member later; once this has been under-
stood, you can always come back to the 
balance […], standing there with your 
hands on the left and right side. 

She does not claim to present every subject in a visual 
way, as algebra seems to be a rather abstract domain, 
not related to visual elements:

Claire:  Algebra is something which is incredibly 
abstract, actually. […] To get somewhere 
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in algebra, it is not always visualizations 
that does the trick. 

Interim summary 2 
One important reason why Claire uses visualization 
is a mnemonic aid. In fractions, she additionally asso-
ciates visualization with a norm, in algebra she does 
not (quest. 1). The role of a mnemonic aid seems to be 
similar in different domains. Also her orientation on 
perceived norms, which might influence her beliefs 
about the role of visualization, seems to be similar in 
different domains (quest. 2).

DISCUSSION 

This paper identified and compared beliefs regarding 
the role of visualization when teaching fractions and 
algebra, analyzing two secondary teachers, Alan and 
Claire. Both intensively use visualization as part of 
the introduction of a new subject, and both teachers 
tend to emphasize schematic calculation. However, in 
a deeper analysis, they show different beliefs about 
the roles of visualization. This result is in accord with 
Biza and colleagues (2009) who found teachers’ beliefs 
about visualization to be similar at first glance, but 
to be considerably different upon closer inspection.

The identified beliefs about the roles of visualization 
are about learning (understanding aid, mnemonic aid), 
about teaching (explaining aid, norm), and about the 
subject mathematics (justify). The investigated beliefs 
appear to be rather stable across domains.

In comparison to existing frameworks, we find un-
derstanding as a role for both teachers, with high in-
tensity for Alan. Both teachers use understanding “in 
the sense of one’s grasp of a definition […]” (Giaquinto, 
2008, p. 36). Alan also uses it “not only [for] grasping 
the correctness […], but also [for] appreciating why it 
is correct” (ibid.), which is related to the role of justifi-
cation. Both teachers do not express much conscious-
ness about the “conversion of representations” (Duval, 
2006, p. 121) as a source of understanding. Explaining 
and justifying could be beliefs that are in a cluster 
(Thompson, 1992) with understanding. 

From a teaching point of view the aspect of classroom 
practice as learned in teacher education, the norm, is 
important for Claire. This could be related to socio-
logical and cultural aspects of using visualization in 
mathematics teaching (cf. Arcavi, 2003). 

Finally, the mnemonic aid is a role which does not 
seem to be very important in the literature about 
teaching and learning of mathematics, but possibly 
in practice. 

For these two teachers we found only a few indications 
related to discovery and problem solving (Heinze et al., 
2009; Duval, 2014; Arcavi, 2003), especially when mak-
ing a sketch related to an application-oriented task. 
There are also indications that visualization can serve 
to “enable calculation” (Giaquinto, 2008, p.  39); both 
teachers recognize the “visio-spacial nature” (ibid) of 
some algorithms they teach.

In our study, we did not prove that the teachers enact 
their professed beliefs. However, “under specific con-
ditions the teachers’ espoused beliefs could explain 
the teachers’ enacted beliefs” (Eichler & Erens, 2015, 
p. 197).

Prospectively, we will compare our results to more 
domains, e.g. also functions and calculus, to see if the 
teachers’ beliefs are stable across other domains. We 
further expect to find other beliefs regarding the role 
of visualization like using visualization as a method 
for overcoming students’ fears, seem to be relevant. 
We hope to develop a theory of beliefs regarding the 
role of visualization for teachers.
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This experimental study of 192 ninth and tenth graders 
was conducted to investigate a connection between per-
formance on different types of problems and boredom 
using task-unspecific and task-specific questionnaires. 
Students were randomly assigned to one of two groups 
and were asked about their boredom either before (Group 
1) or after (Group 2) task processing. In Group 1, the rela-
tion between performance and boredom was different 
for different types of problems. In Group 2, students who 
achieved higher scores reported lower boredom across 
different types of problems. The connection between per-
formance and task-unspecific and task-specific boredom 
did not differ significantly and ranged from 0 to -.36.

Keywords: Emotions, performance, boredom, modelling.

INTRODUCTION

In the current study, I focused on students’ boredom 
and on the connection between boredom and perfor-
mance as students solved different types of problems. 
The problems that were selected as content for the 
current study either had or did not have a connection 
to reality and could be solved by applying linear func-
tions or Pythagoras’ theorem. The research questions 
pertained to (1) the connection between performance 
and boredom, (2) the correlation between students’ 
performance and task-unspecific boredom in compar-
ison with the correlation between performance and 
task-specific boredom, and (3) the relation between 
performance and boredom compared across three 
types of problems.

THEORETICAL FRAMEWORK 
AND RESEARCH QUESTIONS

Boredom as a negative emotion
In educational research, emotions are defined as 
complex phenomena that include affective, cogni-
tive, physiological, motivational, and expressive 
parts (Pekrun & Linnenbrink-Garcia, 2014). One 

important dimension of emotions is their valence. 
Researchers have often distinguished between posi-
tive and negative emotion/affect without specifying 
the kind of emotion they were interested in. Hannula 
and colleagues (2009) underlined the importance of 
overcoming such a simplistic view on emotions and 
suggested that researchers should identify which 
positive or negative emotions they are focusing on. 
For example, anxiety, frustration, and boredom have 
a negative valence and enjoyment and happiness 
have a positive valence. Another dimension that il-
lustrates the importance of specifying emotions is the 
degree of activation or deactivation. This dimension 
describes the psychological states (activating excite-
ment vs. deactivating relaxation) that humans report 
about emotions (Pekrun & Linnenbrink-Garcia, 2014). 
Negative activating emotions include anger, anxiety, 
and frustration. Hopelessness, and boredom are typ-
ical negative deactivating emotions. 

Students’ emotions influence their career aspirations 
and thus also their current and future lives. Self-
perceived levels of boredom depend to a large extent 
on students’ general experience at school and in par-
ticular on their experiences in specific school subjects 
(Jablonka, 2013). A control-value theory of achieve-
ment emotions assumes that the value of learning 
materials and the controllability of learning activities 
are important for students’ emotions (Pekrun, 2006). 

Boredom is one of the most frequently reported neg-
ative emotions in the classroom, and some research-
ers see boredom as a key problem of modern society 
(Klapp, 1986). For several decades, research efforts in 
education were focused on the negative emotion of 
anxiety, whereas the role of other negative emotions 
(e.g., boredom) in educational contexts and their rela-
tions to other emotions, learning goals, motivational 
variables, and performance were not yet well under-
stood. However, in the last 20 years, theoretical mod-
els of emotions have been improved considerably. As 
boredom is a deactivating emotion that decreases hu-
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man activity, a negative connection between boredom 
and performance or academic achievements can be 
expected. The few studies on the connection between 
boredom and performance often used students’ final 
grades as an indicator of performance. These studies 
identified negative correlations between boredom 
and grades at school and at university (-.24 and -.64, 
respectively) (Goetz, Frenzel, Pekrun, Hall, & Lüdtke, 
2007). Similar results were also found for the relation 
between boredom and grades or performance in ele-
mentary school (Sparfeldt, Buch, Schwarz, Jachmann, 
& Rost, 2009). However, as far as I am ware, in the 
only study conducted on students in early secondary 
school to investigate the connection between boredom 
and performance, no significant correlations between 
boredom and ninth-graders’ argumentation, reason-
ing, or proof were found (Heinze, Reiss, & Rudolph, 
2005). These contradictory results indicate the impor-
tance of enhancing research on the relation between 
boredom and performance using different approaches 
to the conceptualization of boredom in order to clarify 
the value and valence of this relation.

Measurement of emotions
The most commonly used measures of students’ emo-
tions are questionnaires, but analyses of self-reports 
given in interviews and analyses of students emotions 
during problem solving are also widely used in mathe-
matics education (Jablonka, 2013; Pesonen & Hannula, 
2014). Questionnaires used to assess students’ emo-
tions have shown high reliability and validity in pre-
vious research (Pekrun, Goetz, Frenzel, Barchfeld, & 
Perry, 2011; Sparfeldt et al., 2009). Questionnaires 
allow researchers to access data from large samples 
and to distinguish between different emotions such 
as hope, enjoyment, pride, anger, anxiety, boredom, 
and others (Pekrun et al., 2011). However, because of 
the complexity of emotional reactions, a multi-method 
approach can be helpful for accessing affect (Hannula 
et al., 2009; Schukajlow et al., 2012; Zan, Brown, Evans, 
& Hannula, 2006). One way to increase the coverage of 
questionnaires may be to take object-specific aspects 
of affect into account. Following this idea, two types of 
questionnaires for the measurement of boredom were 
applied in the current study (c.f. for enjoyment and 

interest Schukajlow & Krug, 2014a): task-unspecific 
affective scales, which were validated in other studies 
(Pekrun et al., 2011), and a new task-specific question-
naire applied in recent studies (Schukajlow & Krug, 
2014a; Schukajlow et al., 2012). Another important 
factor that may influence students’ boredom is task 
processing. Thus, we measured students’ boredom 
before and after they solved problems in two rand-
omized groups in order to compare the stability of the 
relation between performance and boredom.

The development of task-specific questionnaires is 
based on distinguishing different objects (or sub-
jects) of students’ affect. Similar approaches can be 
found in educational psychology, where achievement, 
epistemic, social, and topic emotions are separated ac-
cording to their object focus (Pekrun & Linnenbrink-
Garcia, 2014) or in mathematics education in the be-
liefs area, where the question of the subject-specific 
structuring of beliefs was suggested by Törner (2002). 
Object-specificity varies from very general such as 

“learning” or “mathematics” to specific ones such as 
“mathematical topic” or even “mathematical problem” 
(cf. Figure 1).

Sample statements for boredom illustrating the differ-
ent levels of object-specificity are: “I get bored in class-
es”, “I get bored in mathematics classes”, “I get bored 
solving equations”, and “I get bored solving the equa-
tion 3 + 2x = -4x”, respectively. Measurements for which 
statements with a high level of object-specificity are 
used (1) provide exact information about the kind of 
mathematics the researcher is interested in, (2) allow 
the investigation of new research questions that focus 
on the comparison of affective measures regarding 
different mathematical topics or kinds of problems, 
and (3) reveal high sensitivity to the changes in stu-
dents’ affect that can emerge from interventional pro-
grams. Empirical research has shown the importance 
of the differentiation between different domains and 
thus indicates the importance of object-specificity in 
measuring emotions (e.g., differentiating between 
boredom in mathematics and physics classes) (Goetz 
et al., 2007). As task-unspecific and task-specific ques-
tionnaires assess the same construct, I did not expect 

Figure 1: Objects and levels of object-specificity for affect
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performance to be more or less strongly correlated 
with task-specific measures than with task-unspecific 
measures. This supposition was confirmed for inter-
est and enjoyment (Schukajlow & Krug, 2014a), but it 
is an open question for boredom.

It is essential to distinguish between prospective af-
fect (measured before task processing), current affect 
(measured during task processing), and retrospective 
affect (measured after task processing) (Ainley, 2006; 
Efklides, 2006; Schukajlow & Krug, 2014a). Each point 
of measurement reveals information about affect with 
regard to problem solving, and it can be important for 
past or future achievements. 

Problems with and without a connection 
to the real world 
To measure students’ task-specific boredom, three 
types of problems that differ in their strength of con-
nection to reality and are typically distinguished in re-
search in modelling and application (Blum, Galbraith, 
Henn, & Niss, 2007) were selected. The types of prob-
lems were modelling, “dressed up” word, and in-
tra-mathematical problems. All problems could be 
solved using the Pythagorean theorem or linear func-
tions as mathematical procedures. To solve modelling 
problems, students need to understand the situation 
described in the task and must be able to construct a 
situation model of the task. Then they simplify the 
situation model by structuring and mathematizing, 
and they generate a mathematical model. The math-
ematical model can be transformed using mathemati-
cal procedures to create mathematical results, which 
have to be interpreted and validated. In the “dressed 
up” word problems, a mathematical model is “dressed 
up” by the situation; thus, students need to “undress” 
the problem, mathematize it, and use mathematics 
to solve it. Therefore, the problem solving process 
is not as complicated for this type of problem. As 
intra-mathematical problems are not connected to 

reality, students begin their problem solving process 
directly by using a mathematical model.

On the basis of the results of our previous study 
(Schukajlow & Krug, 2014a), we expected that there 
would be no significant differences in correlations 
between different measures of performance and bore-
dom. Students with higher scores on performance 
tests were expected to be less bored when solving the 
problems.

Research questions 
The research questions we addressed were: 

1) Is students’ performance connected to task-un-
specific and task-specific boredom in mathematics 
measured before and after problem solving? 

2) Is students’ performance connected more strongly 
to task-specific than to task-unspecific boredom? 

3) Are correlations between performance measures 
and task-specific boredom different for different 
types of problems (modelling problems, “dressed up” 
word problems, and intra-mathematical problems)?

METHOD

One hundred ninety-two German ninth and tenth 
graders from 4 middle-track and 4 grammar school 
classes (53.6% female; mean age=16.1 years, SD=0.86) 
participated on the present study. Students in each 
class were randomly assigned to two groups. In Group 
1, the participants solved the problems first and af-
terwards reported on their task-unspecific boredom 
and on their boredom with regard to each problem. 
Students in Group 2 were asked about their task-unspe-
cific and task-specific boredom and then worked on the 
performance test. The same tasks and questionnaires 
were administered to both groups (see Figure 2), and 
the students in these groups were given the same 

Figure 2: Design of the study
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amount of time to solve the problems and to fill out 
the questionnaires.

Sample problems 
Eight modelling, eight word, and seven intra-mathe-
matical problems were selected for this study. Sample 
tasks with and without a connection to the real world 
that could be solved using Pythagoras’ theorem are 
presented in Figures 3 and 4. The maypole, football 
pitch, and side c were classified as modelling, “dressed 
up” word, and intra-mathematical problems, respec-
tively (for more sample tasks and detailed analy-
sis of classification see Krug & Schukajlow, 2013; 
Schukajlow et al., 2012).

Performance tests
A performance test was developed for each type of 
problem. All tasks were examined within the frame-
work of other projects. The Cronbach’s alpha relia-
bilities were .59, .67, and .52 for the modelling, word, 
and intra-mathematical tests, respectively, and were 
acceptable for the small number of items and their 
diversity (across different contexts and/or different 
mathematical procedures).

Task-unspecific and task-specific boredom
Task-unspecific boredom was examined with a scale 
used in other studies (Goetz et al., 2007) and consisted 

of 4 statements that were answered on 5-point Likert 
scales ranging from (1=strongly disagree) to (5=strong-
ly agree). A sample statement is “I am bored in math-
ematics classes”. Cronbach’s alpha was .85.

On the task-specific questionnaire, each of the 23 prob-
lems was followed by a statement about students’ bore-
dom. Both groups (cf. Figure 2) were instructed: “Read 
each problem carefully and then answer some ques-
tions.” Group 2 was then told: “You do not have to solve 
the problems” because they were going to solve the 
problems after the boredom ratings, whereas Group 
1 had already solved the problems, so they were told: 

“You do not have to solve the problems (again)!” After 
task processing, students in Group 1 were asked to 
rate the extent to which they agreed or disagreed with 
the statements “It was boring to work on this problem.” 
Students in Group 2 were asked before task process-
ing to rate the statements “It would be boring to work 
on this problem.” A 5-point Likert scale was used to 
record their answers (1=not at all true, 5=completely 
true). 3 scales that measured task-specific boredom 
were formed across eight modelling problems, eight 

“dressed up” word problems, and seven intra-mathe-
matical problems. The Cronbach’s alpha reliabilities 
were .91 for boredom with the modelling and word 
problems and .85 for boredom with the intra-mathe-
matical problems. 

Figure 3: Modelling problem “Maypole”

Figure 4: “Dressed up” word and intra-mathematical tasks “Football Pitch” and “Side c” 
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Treatment fidelity
To examine the differences in the implementation 
of the treatment in Groups 1 and 2, a 5-point Likert 
item: “Before I agreed or disagreed with the state-
ments (about task-specific boredom), I solved the 
problems” (1=not at all true, 5=completely true) was 
administered. Means and standard deviations were 
4.3(1.17) for Group 1 and 2.19(1.01) for Group 2. The 
comparison of students’ responses using an unpaired 
t test showed a significant mean difference between 
the two groups (t(179)=13.07, p<.0001, Cohen’s d=1.93). 
This result shows that the students in Group 1 solved 
the tasks significantly more often than students in 
Group 2 before they reported their task-specific in-
terest or enjoyment.

RESULTS

First, the connection between students’ performance 
and boredom was analysed (correlations for Groups 1 
and 2 are presented in Tables 1 and 2). As expected, stu-
dents who solved the word problems better reported 
lower boredom on this type of problem. A similar re-
sult was also found for the relation between modelling 
and task-unspecific boredom. However, correlations 
of zero were observed for intra-mathematical prob-
lems and a weak and nonsignificant relation for the 
connection between performance and task-specific 
boredom on modelling problems. 

In Group 2, in which students reported their boredom 
before solving the problems, negative correlations 
that ranged from -.24 to -.36 were found for all types 

of problems. Thus, students who felt low task-specific 
and task-unspecific boredom showed better results 
on the performance tests.

In order to answer the second and third research 
questions, Fisher’s z transformation was applied, and 
then the z-scores were compared using a statistical 
procedure from Cohen & Cohen (1983, p. 54). This 
procedure provides information about the statistical 
significance of the difference between two correla-
tions. The analysis of correlations for different types 
of problems presented in Table 1 and Table 2 showed 
that the largest difference between correlations was 
for the modelling problems in Group 1 (-.13 vs. -.33). 
However, the difference between correlations was 
not significant (z-score = 1.45, p = .14). Thus, students’ 
performance was comparably related to task-specific 
and task-unspecific boredom. 

The third research question addressed a comparison 
of correlations across different types of problems. The 
analyses of the values presented in Table 1 showed 
valuable differences between correlations for in-
tra-mathematical and for “dressed up” word problems 
(0 vs. -.25) for task-specific boredom and between cor-
relations for intra-mathematical and modelling prob-
lems (-.09 vs. -.33) for task-unspecific boredom. Both 
differences were significant at the 10% level (z-score = 
1.74, p = .08; z-score = 1.72, p = .08, for task-specific and 
task-unspecific boredom, respectively). Thus, the 
correlation between performance and boredom with 
regard to the intra-mathematical problems tended to 
be weaker than the correlation between performance 

boredom

ma w mod task-unspecific

performance ma 0 -.09

w -.25* -.29*

mod -.13 -.33*

Note: *p<.05; ma intra-mathematical, w word, mod modelling problems; sample size N=100

Table 1: Pearson correlations between performance and task-specific and task-unspecific boredom in Group 1

boredom

ma w mod task-unspecific

performance ma -.36* -.34*

w -.30* -.28*

mod -.24* .-28*
Note: *p<.05; ma intra-mathematical, w word, mod modelling problems; sample size N=92

Table 2: Pearson correlations between performance and task-specific and task-unspecific boredom in Group 2
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and boredom with regard to the word problems for 
students who solved the problems before reporting 
on their boredom. Similar differences were also 
found for the correlation between performance on 
the intra-mathematical problems and task-unspecific 
boredom and the correlation between performance 
on the modelling problems and task-unspecific bore-
dom. However, another pattern of correlations was 
revealed for Group 2. Higher levels of boredom were 
connected with lower levels of performance across all 
types of problems for Group 2.

DISCUSSION

In this paper, the relation between performance and 
boredom was analysed using task-unspecific and 
task-specific scales. The results were not univocal. 
When students reported on their boredom before 
they solved the problems, their level of boredom was 
negatively connected to their performance (see sim-
ilar results by Goetz et al., 2007). Somewhat differ-
ent results were found for students who estimated 
their boredom after task processing. Students who 
achieved low scores on the intra-mathematical prob-
lems reported about the same value for boredom as 
students who achieved high scores. Similar results 
were found for the connection between performance 
on argumentation tasks and boredom (c.f. Heinze et 
al., 2005). 

The correlations between performance and boredom 
were comparable between task-specific and task-un-
specific boredom. The analysis of this question with 
regard to interest and enjoyment in the previous 
study showed the same result for enjoyment and in-
terest (Schukajlow & Krug, 2014a). However, the cor-
relations for task-specific boredom deviated across 
the different types of problems more than they did 
for enjoyment and interest. This result confirms the 
importance of differentiating between different affec-
tive measures as called for by Hannula and colleagues  
(2009).

The comparison of correlations across different types 
of problems showed that the correlations tended to be 
lower for intra-mathematical problems than for word 
or modelling problems in Group 1. Thus, the type of 
problems may be an important factor that has to be 
taken into account in future studies. According to our 
findings, teachers should put more effort into decreas-
ing their students’ boredom when presenting word or 

modelling problems because boredom on these tasks 
is negatively connected with students’ performance. 

One important future research question is about the 
direction of connection between performance and 
boredom. Longitudinal and interventional studies 
need to be conducted to answer this question. More 
research has to be done for the development and vali-
dation of research instruments for the measurement 
of boredom. An interesting approach may involve us-
ing software to identify students’ emotions (Pesonen 
& Hannula, 2014). Research on developmental models 
of emotions is another future area of research. Such 
research should examine whether general affective 
changers emerges from changes in task- and situa-
tion-specific affect. Finaly, we need more research 
on instructional elements which could deacrease 
boredom. A promicing teaching approach could be 
prompting students to find multiple solution for 
problems with missing information, which found to 
affect students’ expirience of competence and interest 
(Schukajlow & Krug, 2014b).
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Cognitive engagement (including self-regulation) is 
crucial for promoting student learning, but research 
suggests that teacher beliefs about cognitive engagement 
are less refined than their beliefs about other kinds of 
engagement. We used surveys and interviews from 
40 teachers across 8 secondary schools to investigate 
teacher beliefs and practice that the teachers report 
using to promote cognitive engagement in their classes. 
Participants responded to questions about two fictitious 
teacher scenarios. About half of them identified with 
Teacher A, believing in the importance of completing 
practice questions and providing students with a list 
of revision topics. Those who identified with Teacher B 
favoured encouraging students to self-assess their com-
petency, monitor their progress, and develop individual 
revision plans. 

Keywords: Cognitive engagement, self-regulation, 

mathematics.

LITERATURE REVIEW

Promoting student engagement, interest, and par-
ticipation in mathematics is considered important 
for students’ learning and subsequent study in math-
ematics. In educational research high levels of stu-
dent engagement are consistently linked to academic 
success (Wang & Holcombe, 2010) and are a predictor 
of students’ achievement (Gettinger & Walter, 2012). 
There is a general agreement that engagement com-
prises three types—behavioural, emotional and cog-
nitive—operating together (Fredricks, Blumenfeld, 
& Paris, 2004). Although engagement is considered 
a multidimensional construct with different types of 
engagement operating at varying levels of intensity, 
this research is concerned with the role of cognitive 
engagement in mathematics teaching and how teach-

ers report promoting students’ self-regulated learn-
ing in their classes.

Cognitive engagement 
Cognitive engagement refers to students’ approach-
es to academic tasks as well as their psychological 
investment in, and willingness to, master complex 
concepts (Fredricks et al., 2004). Conceptions of 
cognitive engagement draw on goal orientation 
and cognitive strategy use, whereas self-regulation 
theories that have historically been connected with 
motivational processes and academic functioning 
(Cleary & Zimmerman, 2012; Wolters & Taylor, 2012). 
Cognitive engagement includes thinking deeply and 
broadly about concepts while using strategies such 
as organisation, rehearsal, and elaboration as well 
as regulating and managing the learning process. 
Students’ level of cognitive engagement is influenced 
by their goal orientations, the range of strategies 
students use, and students’ underlying motivational 
factors. Components of self-regulated learning are 
considered particularly relevant to student cognitive 
engagement as they are both concerned with and are 

“used to understand students’ functioning and perfor-
mance with regard to academic contexts” (Wolters 
& Taylor, 2012, p. 635). For this study, frameworks 
for engagement and self-regulation are considered 
to be complementary, with the processes of self-reg-
ulation being considered important for cognitive 
engagement and involving a range of motivational 
factors as depicted in Figure 1. Although the focus of 
this study is on cognitive engagement and self-reg-
ulation frameworks, Figure 1 depicts how cognitive 
engagement is “dynamically interrelated” (Fredricks 
et al., 2004, p. 60) with behavioural and emotional 
engagement, while also acknowledging the influence 
of motivational and contextual factors on all types of 
engagement.
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Self-regulation
Self-regulation involves several important processes 
or phases for promoting deep learning. The phases 
include: forethought (goal setting and planning), 
monitoring and control, and reflecting on learning 
(Pintrich, 2004; Zimmerman, 2002). Self-regulation 
is centrally concerned with student agency and the 
degree to which students are active participants in 
their own learning.  Therefore, while engagement 
frameworks tend to be more concerned about what 
students do, self-regulation frameworks focus on the 
processes students use to support their cognitive and 
behavioural functioning for managing their learning 
(Wolters & Taylor, 2014). 

Self-regulated learners tend to be more aware of their 
knowledge, beliefs, motivations, and cognitive pro-
cesses and, this awareness, allows these students to 
judge how successful or effective they are in their 
learning (Butler & Winne, 1995). The extent to which 
students are engaged in academic work and use 
self-regulatory processes is likely to be influenced 
by their goal orientation (Anderman & Patrick, 2012). 
Goal orientation is often determined by the student 
and influences the amount of time students spend 
prior to and during tasks on activities such as plan-
ning, organising, studying, monitoring, and reflect-
ing. Students with high mastery goal orientations not 
only tend to use a variety of self-regulatory processes 
but also display a number of adaptive motivational 
factors such as self-efficacy, value, and persistence. 
Additionally, students’ emotions play a central role 
in cognitive processing and engagement and should 
be considered together in learning settings; this is 
because student thinking and emotions are intrinsi-
cally linked to underlying motivational factors that 
influence cognitive processing (Hannula, 20006).

However, not all students have high mastery goal 
orientations or hold adaptive motivational factors. 
In any classroom the goal orientations of students 
are likely to be varied, and it is expected that not all 
students will use (effectively) self-regulative process-
es. Accordingly, students’ ability to plan, organise, 
monitor, and reflect on their learning will also differ. 
Apart from individual goal orientations, in school 
settings sustained engagement in academic work 
is mediated and influenced by classroom contexts. 
Classroom contexts that can shape student engage-
ment include the classroom environment and goal 
structures which are established through explicit 
and implicit teacher practices and teacher-student 
interactions (Anderman & Patrick, 2012; Reschly & 
Christenson, 2012). This means that what teachers 
do and say in their classrooms can influence students 
and mediate the use of self-regulatory processes, such 
as promoting forethought, considering prior knowl-
edge, directing attention to key components, making 
effective strategy choices and reflecting on achieve-
ment to foster student cognitive engagement (Cleary 
& Zimmerman, 2012). 

Teacher beliefs about and practices they 
use to promote cognitive engagement
In an earlier investigation, Skilling (2013) found 
that mathematics teachers’ beliefs about cognitive 
engagement were less extensive and detailed than 
their perceptions about behavioural and emotional 
engagement. This may be in part because it is more 
difficult to identify signs of cognitive engagement (e.g., 
they are less observable than student behaviours) or 
because mathematics teachers feel less confident 
about assessing indicators of cognitive engagement. 
In addition, Skilling (2013) found that teachers report-
ed practices for promoting cognitive engagement that 
were restricted to completing homework and study 
strategies focusing on behavioural aspects, such as 
time management; little did the teachers report about 
planning, monitoring, and evaluating student learn-
ing during lessons. Moreover, similar to a finding by 
Hardré (2011), the majority of teachers reported using 
practices that met students’ immediate motivational 
needs such as explaining relevance, future use and 
application of mathematics concepts compared to 
few teachers who used practices that met students 
internal motivational needs, supported autonomous 
learning and mastery of concepts. 

Figure 1: Types of engagement and self-regulation processes
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The focus of this study
The study we report in this paper builds on the re-
search we described above by exploring teachers’ 
beliefs about cognitive engagement and how these 
relate to the practices that the teachers report using to 
promote cognitive engagement in their mathematics 
classrooms. For this research, beliefs are defined as 

“psychologically held understandings, premises, or 
propositions about the world that are felt to be true” 
(Richardson, 1996, p.103). Teacher beliefs, therefore, 
vary according to their bearer and fundamentally 
reflect the relationship between what the teacher is 
considering when planning and executing instruction 
(Mason, 2008). 

To conclude, this study focuses on the following re-
search questions:

1) What are teachers’ beliefs about cognitive en-
gagement in early secondary mathematics class-
rooms?

2) What practices do teachers report using to pro-
mote student cognitive engagement?

METHODOLOGY

Data were collected from 40 teachers across eight 
secondary schools in England. The schools included 
five mixed ability comprehensive schools and three 
selective schools. There were two phases to this in-
vestigation: a teacher survey phase and a teacher 
interview phase. The designs of the survey and in-
terview questions were guided by the components 
of cognitive engagement and self-regulation phases 
described earlier. 

The teacher survey phase asked participants to re-
spond to questions about two fictitious teacher sce-
narios (see Appendix). The scenarios outlined how 
Teacher A and Teacher B prepared the Year 7 students 
(11 years olds) in their classrooms for a mathematics 
test. Each scenario drew on literature from cognitive 
engagement and self-regulation to embed particular 
phrases as ‘markers’ to emphasise the different strat-
egies and processes used by Teacher A and B. 

The scenarios differed by the degree to which Teacher 
A and B promoted student involvement and used 
particular strategies and processes when preparing 
their students for a class test. For example, Teacher A 

handed students a list of topics for revision and told 
them to revise at home by looking over their note-
books, whereas Teacher B asked students to reflect on 
how competent they felt about particular concepts, to 
contribute to a ‘class revision list’ and to develop an 
individual revision plan. Teacher A told students it 
was important to get a high grade in the test, to ask for 
help if needed, and offered a small number of practice 
questions in class for those who may not have been re-
vising at home. In contrast, Teacher B told students to 
focus on mastering concepts they did not understand, 
checked their revision plans and asked them how they 
felt about their test preparations. There were limited 
expectations by Teacher A about the range and depth 
of self-regulatory processes the students would use 
and there was an emphasis on performance rather 
than mastery goals. Teacher B, however, displayed ex-
pectations that students would use a range of self-reg-
ulation strategies and asked students to set their own 
goals based on their self-assessment, to make plans 
for mastering concepts, and to monitor and reflect 
on their revision preparation. 

In the surveys, the participants were asked to respond 
to eight open-ended questions about the fictitious sce-
narios by referring to relevant line numbers provid-
ed for each scenario that they felt provided evidence 
for their responses. For example, participants were 
asked to compare their practices with those used by 
the teachers in the scenarios, to identify perceived 
similarities and differences between Teacher A and 
Teacher B, to list practices in the scenarios that they 
considered important or not important for student 
test preparation, to consider if their practices change 
with different groups of students (e.g., grade level, 
gender, achievement), and to indicate with which of 
the two teachers in the scenarios they identified more. 

The second phase used semi-structured interviews 
with 17 participants who completed the first phase. 
The interview questions were guided by the survey 
questions and asked the participants to elaborate on 
selected survey responses. This included questions 
about their beliefs and the practices they report us-
ing to promote cognitive engagement in their class-
rooms. Questions probed participants’ approaches 
toward setting goals and planning revision for assess-
ments, and about monitoring and regulating learn-
ing processes during revision and when completing 
tasks in their classroom. The participants were also 
asked about ways they encouraged their students 
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to self-monitor their progress. Finally, participants 
were asked to describe ways they provided feedback 
to their students about achievement, setting goals, 
regulating and reflecting on learning. The interviews 
were recorded and transcribed.

The analysis of the surveys and interviews drew on 
the cognitive engagement (Fredricks et al., 2004) and 
self-regulation frameworks (Pintrich, 2004; Wolters & 
Taylor, 2012), as components of these were reflected in 
the design of the two teacher scenarios. The respons-
es to each survey question were listed and coded in 
association with the phrases or ‘markers’ that were 
embedded in the two teacher scenarios. The catego-
ries were then enriched with any additional practices 
that were reported by the teachers, providing data 
for addressing the research questions (Constas, 1992). 
This paper reports on key findings from the surveys 
supplemented by interview data.

FINDINGS

Of the 40 participants surveyed (coded T1-T40), 17 
identified with Teacher A and 14 identified with 
Teacher B. From the remaining participants, six iden-
tified with both teachers and the other three identi-
fied with neither. This paper reports the participants’ 
responses from three selected survey questions. The 
three questions were chosen because together they 
revealed participants’ beliefs about (a) which teach-
er they identified with and why and (b) the practices 
of each teacher in the scenario that the participants 
believed to be (not) important in the context of the 
scenarios. Specifically, Question 1 asked participants: 

“Overall, which teacher do you identify with the most 
and why?” Questions 2 and 3 asked, respectively, par-
ticipants to list up to two things that each teacher in 
the scenario did that they believed were important / 
not important for supporting the students’ test prepa-
ration.

Participants who identified with Teacher A
The 17 participants who identified with Teacher A pro-
vided a total of 25 responses explaining their reasons 
for why they identified with Teacher A. The main rea-
son given was that Teacher A was seen to have greater 
teacher control/structure/leadership (36%), with a 
strong “teacher led focus” (T9), and “a more struc-
tured approach and more control” (T4). The second 
most frequent reason was that Teacher A practiced 
concepts in class (16%) for example, stressing the “im-

portance of practising the concepts” and holding a 
“revision lesson before a test to support [students]” 
(T7). The next most frequent reason was attending to 
student needs (12%), as several participants comment-
ed on the students being “needy” (T8) and that Teacher 
A “gave the students the most information about the 
test...to highlight individual weaknesses” (T2). The 
fourth most frequent reason was that Teacher A made 
better use of time in class (12%). See T6’s response, for 
example:

I tend to like to direct my students towards their prob-
lem areas rather than let them take time to find them 
for themselves. Time always seem to be too much of 
a factor.

In response to Question 2, the participants who iden-
tified with Teacher A made a total of 33 responses to 
describe teacher practices in the scenarios that they 
believed were important for test preparation. The fol-
lowing practices were noted as being particularly im-
portant: setting practice questions in class (30%), for 
example slotting “tests in lessons leading to the main 
test” (T4); supporting students seeking help (24%), for 
example “making time to help students both in and 
out of lessons” (T8); and providing a list of topics for 
revision (21%), such as “handing out a sheet with key 
concepts (T9).

In response to Question 3, participants who identi-
fied with Teacher A provided 14 responses about the 
practices of Teacher B that were not important for 
supporting the students’ test preparation (several 
participants did not provide a response). The three 
main practices believed to not be important were: 
developing individual revision plans (29%), asking 
students to self-assess their competency (21%), and 
contributing toward creating a class list (21%). Some 
participants questioned the value of asking students 
to develop their own revision plans because they felt 
that students “may not assess themselves accurately” 
(T2) or that students might “identify only what they 
think may be included” (T5) in the test. Creating a class 
list was believed by three of the teachers to be a waste 
of time wasting, such as for T6:

It takes time to develop a topic list as a class, which 
could have been spent more usefully completing ac-
tual questions. Would all students be able to manage 
their time to successfully draw up a revision plan and 
fulfil it?
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Participants who identified with Teacher B
The 14 participants who identified with Teacher B pro-
vided a total of 20 responses explaining their reasons 
for aligning with this teacher. The main reason was 
the emphasis Teacher B placed on student self-assess-
ment (40%). For example, these participants believed 
that students should be “reflecting as much as possible” 
(T27) on their work and should be “actively engaged 
in their own learning” (T26). Participants believed 
that an important feature of Teacher B’s approach 
was that:

More emphasis is placed on students assessing what 
they can do and what they need to improve on and then 
going and working on those topics (T30)

The second reason was that Teacher B encouraged 
independence and student responsibility (30%). For 
example, several participants believed in encourag-
ing student independence, noting that Teacher B used 

“strategies to encourage the students to engage with 
all aspects of their revision independently” (T23) and 
also handed “over ownership of revision to students” 
(T31). The third reason was the use of revision skills 
to plan improvements (25%). One participant believed 
that the purpose of revision was for “trying to get the 
students to understand which areas they need to im-
prove on” (T28).  Another participant noted:

Allowing students to identify their own areas to im-
prove and implement their own plan is a step towards 
them improving because they want to, not because I 
am telling them they need to (T24)

In response to Question 2, the participants who iden-
tified with Teacher B made a total of 28 responses to 
describe teacher practices in the scenarios that they 
believed were important for test preparation. The 
most important practice included student self-assess-
ment (32%), such as asking students “to assess their 
competency in each area” (T21) and encouraging stu-
dents “to think about what might be in the assessment 
and self assess their confidence in these areas” (T24). 
The next most important practice was developing in-
dividual revision plans (29%), with one participant 
reporting that encouraging the “creation of revision 
lists and individual preparation gives the students’ re-
sponsibility for their learning” (T24). The third most 
important practice was monitoring revision plans 
(18%) with several participants noting that the value of 

checking “revision plans to make them [the students] 
self-aware and in control of their revision” (T22).

In response to Question 3, the participants who iden-
tified with Teacher B provided 22 responses about the 
practices of Teacher A that were not important for 
supporting the students’ test preparation. The main 
practice viewed as not important was “telling students 
it was important to achieve a high grade” (T20) (32%), 
as this was seen as “controlling and vague” (T23). It 
was also reported that “telling students to study more” 
(T24) was not important (27%) or that students should 
revise everything for a test (14%), as they “may not 
need to revise each concept” (T21). 

CONCLUSION 

Overall, participants who identified with Teacher A 
felt that this teacher tended to “be more structured” 
rather than giving students “freedom to think”. 
Students were perceived as “needy” and Teacher A 
was believed to provide students with the “most infor-
mation about the test”. Additionally, participants who 
identified with Teacher A did not believe that making 
individual revision plans, asking students to self-as-
sess, or contributing to a class list were important for 
supporting student test preparation.

In contrast, those who identified with Teacher B be-
lieved that practices such as student self-assessment, 
making individual revision plans, and monitoring 
revision progress were important. Participants who 
identified with Teacher B believed that this teacher’s 
strategies encouraged “students to engage with all 
aspects of their revision independently”. These par-
ticipants also explicitly referred to specific process-
es of self-regulation such as planning, monitoring, 
checking and reflecting when responding to the sur-
vey questions (Cleary & Zimmerman, 2012; Wolters 
& Taylor, 2012), with the majority referring to at 
least two self-regulatory processes in their respons-
es. Furthermore, participants who identified with 
Teacher B made comments about the importance of 
students being actively cognitively engaged in their 
learning by “allowing students to identify areas for 
improvement and implement their own plans”; they 
also emphasised student autonomy and responsibility 
for learning. The findings also suggest that the partic-
ipants who identified with Teacher B believed in the 
importance of fostering student autonomy, independ-
ence and strategies for learning by using pedagogical 
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practices that are associated with classroom mastery 
goal structures (Anderman & Patrick, 2012) and with 
promoting cognitive engagement and self-regulatory 
skills in their mathematics classrooms. 

In this study just over half the participants identified 
with Teacher A and just under half identified with 
Teacher B, indicating that teacher beliefs about ways 
to promote cognitive engagement are potentially 
diverse. The results revealed that participants who 
identified with each teacher had strong beliefs about 
the practices they believed were and were not impor-
tant for using in mathematics classes. Subsequently, 
one may hypothesize that participants who identified 
with Teacher A – and did not seem to believe in the 
importance of students developing individual revi-
sion plans, self-assessing their competency, or con-
tributing to class revision lists – may be less likely 
than participants who identified with Teacher B to 
promote cognitive engagement and self-regulatory 
practices in their classes.  

For this study the participants responded to scenarios 
that specifically asked about teacher practices for test 
preparation with Year 7 students. It is possible that 
different responses would be made for other situa-
tions, such as a ‘typical’ lesson covering a new topic 
or lessons with students of a different age. Future 
research can build on the findings of this study to 
investigate teachers’ beliefs and self-reports about 
cognitive engagement and teachers’ use of specific 
self-regulatory processes in their classrooms. For 
example, do teachers promote goal setting but not 
specific planning processes? In what ways do teachers 
promote students’ self-monitoring of their learning? 
Do teachers ask students to reflect on their thinking 
and feelings as they work through and master difficult 
concepts?  
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APPENDIX: TEACHER SCENARIOS

Context: Two Year 7 mathematics classes at one school 
will complete a topic test during second term. The 
teachers of each class provided students with infor-

mation a week before the test about ways they could 
prepare. Below are suggestions by Teacher A and 
Teacher B. Please read each scenario and respond to 
the questions at the end. The line numbers for each 
scenario can help to make references to the text. 

Scenario involving Teacher A
1. Teacher A reminded students about the upcoming topic test and handed out
2. a sheet with an outline of the key concepts that would likely be covered in
3. the test. The teacher suggested that the students set aside time for revision
4. and to make sure they practised each concept, by looking over their notebooks
5. as it was important for them to achieve a high grade on the test. The teacher
6. also mentioned that the students should ask questions in class if they were
7. unsure of the steps to solve questions. Alternatively, they could come and see
8. the teacher during break time to clarify any questions before the assessment.
9.  In each lesson before the test the teacher set five practice questions in case 
10. students had not been revising at home and students who got three or less
11.  correct were advised they needed to study more.

Scenario involving Teacher B
12. Teacher B also reminded students about their upcoming topic test. The
13. students were asked to look through their mathematics notebooks and
14. textbooks during the lesson and recall specific topic concepts that they
15. thought would likely to be included in the test. Based on their class
16. work, the students were then asked to record how competent they felt about
17. each concept. During the lesson, the teacher also asked the students to draw
18. on their self-assessment notes and contribute to the creation of a ‘class’
19. revision list, from which examples could be revised during lessons before the
20. test. The teacher also told the class that it was expected that each student
21. would develop individual revision plans. Students would work on their
22. individual plans at home, making time to focus on mastering the concepts
23. they believed they needed to improve on. Throughout the week the teacher
24. checked the revision plans of each student and asked how they felt about their
25. preparations.
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The restricted yet crucial impact of an intervention 
on pupils’ mathematics-related affect
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Past research clearly indicates that students’ mathemat-
ics-related affect develops destructively during school 
years. However, not many efficient interventions have 
been done. The efficiency of the interventions may be-
come minor if other factors dominate the development 
of affect structures. Also the methods in order to measure 
the impact might be insufficient. However, the negative 
development of affect must be taken seriously. Especially 
the most harmful consequences, such as girls’ unnec-
essarily poor self-efficacy, needs to be tackled. Here, we 
present a three-year intervention designed to improve 
primary school pupils’ problem solving skills, and con-
sequently mathematics-related affect. The impact was 
restricted but crucial:  girls’ affect regarding mathemat-
ics decreased less in the intervention group.   

Keywords: Mathematics-related affect, gender differences, 

development of affect, intervention. 

BACKGROUND

Numbers of studies show that students end up having 
an unnecessary negative affect towards mathematics 
when they leave school (international results, e.g., in 
Lee, 2009; Sjøberg & Schreiner, 2010; national results, 
e.g., in Tuohilampi & Hannula, 2013; Hirvonen, 2012). 
In addition, affect develops destructively: children 
tend to have very positive affect (e.g., they view the 
learning subjects enjoyable, and see themselves 
very capable) when they come to school (Tuohilampi, 
Hannula, & Varas, 2014; Harter, 1999), but during the 
school years the affect turns negative (the enjoyment 
turns into dislike, the feelings of capability decreas-
es) and harmful for learning (Tuohilampi, Hannula, 
Laine, & Metsämuuronen, 2014). Especially girls suf-
fer from having negative emotions towards math-
ematics already after first three years of schooling. 
Also girls’ self-efficacy has been noticed to be unnec-
essary low: even when performing well, a girl might 

feel incapable in mathematics (Tuohilampi, Hannula, 
Laine, & Metsämuuronen, 2014). The presented de-
velopment is to some extent natural, as it is indeed 
necessary for children to get social responses, in-
cluding negative ones, in order to be able to modify 
their self-concept. After an almost omnipotent view 
of the self in the childhood (Harter, 1999), a certain 
number of negative, significant responses contribute 
to a more realistic self-view. When it comes to mathe-
matics, the worrying thing is that the students do not 
become only realistic, but also remarkably negative. 
Unfortunately, having negative affect towards mathe-
matics makes people avoid such future choices where 
mathematics is included (Tuohilampi & Hannula, 
2013). Further, there is some evidence that negative 
affect connects with poor participation with other 
students and learning activities (Kirshner, 2014). In 
addition, students’ poor wellbeing, such as a negative 
self-concept in mathematics or disaffection (see Lewis, 
2014), should be significant per se.   

Tuohilampi, Hannula, Laine and Metsämuuronen 
(2014) noticed in their recent study of Finnish stu-
dents that the deterioration of mathematics-related 
affect begins very early, already after 3rd school year. 
It is particularly interesting that this happens in 
Finland that has a reputation of a remarkable per-
formance level acknowledged by national studies 
(e.g., Metsämuuronen, 2013), and by international 
studies (PISA-studies, see e.g. OECD 2010): this makes 
Finnish primary school pupils an interesting popu-
lation when it comes to examine how to prevent the 
deterioration. Letting the affect become negative in 
the first place is particularly problematic, as repairing 
it has noticed to be hard work (Hannula, 2006). Also, 
cumulative disappointments can lead to the cycles 
of failure, fear, the expectancies of failure and test 
anxiety (Pekrun, 2006). This is why it would be wise 
to concentrate on maintaining the affect as positive as 
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possible throughout the school years, with a special 
focus on the early school years. 

Most mathematics-related interventions seem to con-
centrate on performance or cognitive problems, such 
as dyscalculia (see a review of mathematics-related 
interventions in Dowker, 2009). Fewer interventions 
have been done to improve affect. These interven-
tions have had a focus on students’ self-control, and 
social interaction. For example, in an intervention 
by Rimm-Kaufman and colleagues (2014) there was 
a Responsive Classroom approach (RC) in use, aimed 
to foster relationships in the classroom and support 
students’ self-control to enhance student achievement. 
This goes in line with the studies of Pekrun (2006), 
who has introduced control to be one of the defining 
elements of optimal affect structure and its develop-
ment. For example, Pekrun (ibid) argues that when the 
learning demands exceed pupil’s individual capaci-
ties, she/he loses her/his control over the activity. This 
may lead the pupil to reduce the value of the activity 
in question, and make the experience boring. Finally, 
boredom may reduce the pupil’s engagement with the 
activity by decreasing the effort one puts in an activity, 
consequently reducing future success.

Having control over the action (action-control expec-
tancies) and trusting that the action will lead to the 
expected outcome (action-outcome expectancies) are 
the key elements in Pekrun’s (e.g., 2006) control-value 
theory of achievement emotions. When it comes to 
mathematics, one cannot always see the path to the 
outcome at the beginning. Thus, in mathematics a cer-
tain degree of resilience and tolerance towards mis-
takes might be necessary. However, the pupils should 
experience their actions effective. This can be done 
by allowing the pupils to proceed through small and 
various steps. Pupils should have the expectation that 
their efforts are worth to be done. If the tasks would 
allow different strategies in order to find the solution, 
many of the pupils’ efforts would be beneficial. That 
is how they can have action control expectancies. On 
the contrary, there are less action-control expectan-
cies if the pupils just either know or do not know the 
only possible solution. The expectancies the pupils 
have also connect with the amount and quality of re-
sponses the pupils get from their significant others. 
If it is a clear cut that a pupil either knows or does not 
know the solution, the evaluation the pupils make 
about themselves may become very polarized. Some 
pupils can make it, some pupils cannot. If, on the oth-

er hand, there are plenty of possibilities to proceed 
within the tasks, and the steps are small enough, it 
should be more likely that every once in a while even 
the weakest pupils succeed, and the strongest pupils 
make an incorrect effort. In such circumstances, the 
peer evaluation becomes versatile, and the responses 
the pupils get from their efforts diverse. That in turn 
plays a role on pupils’ affect structure construction. 

In addition to control and social interaction, improv-
ing mathematical understanding may be one path to 
achieve more positive affect: in a longitudinal study 
of Tuohilampi and Hannula (2013), high performance 
was the biggest cause of positive affect in future. 
These three elements connected with the optimal 
affect structure development suggest that an inter-
vention could, or even should include the following 
goals: 1) minimize negative responses that are un-
constructive, 2) give students possibilities to control 
their actions and 3) support students’ understanding 
about the content of learning. However, even a good 
intervention faces a challenge of affect structure’s 
resilience, as the dispositions of the students are no-
ticed to be fairly robust. Chapman (2002) for example 
has shown that there is a need for open conflict that is 
meaningful to the holder before a change in the affect 
structure is likely.

One way to reach the presented three intervention 
goals is to use open ended problems. In such prob-
lems, more than one solution can be possible, and to 
find a solution, pupils need a linear or a cycling prob-
lem solving process where they use their resources, 
heuristics, beliefs, and abilities of monitoring and 
self-regulation (Schoenfeld, 2012). Because of the na-
ture of the open ended problems, there are usually 
many opportunities where to start and how to proceed. 
Following that, there is typically at least something a 
pupil can initiate and perform. In addition, because 
of the several options of how to find an answer (or 
answers), the pupils’ own actions ought to produce a 
positive outcome in most cases. Thus, using open end-
ed problems should lead to high action-control expec-
tancies, as well as high action-outcome expectancies 
(Pekrun, 2006), and consequently, the possibilities to 
control actions and learning is guaranteed to the pu-
pils (the intervention goal number 2). These elements, 
on the other hand, widen the strategy options and thus 
decrease the number of ”wrong choices”. Following 
that, the negative responses from significant others 
regarding pupils’ actions could be minimized (the 
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intervention goal number 1). Open ended problems 
may also enhance pupils’ understanding as they al-
low connections to several or untypical contexts. A 
traditional instruction, wherein specific learning 
content is mostly connected with the same, isolated 
context makes pupils’ knowledge structures frag-
mented, and does not help pupils to generalize their 
thinking. In their study about students’ conceptions 
Saglam, Karaaslan, and Ayas (2010) show that frag-
mented, isolated knowledge structures, produced 
by restricted contexts, cause students to fall short 
in solving problems across contexts. Thus, the use 
of open ended problems having less limited contexts 
may help pupils to create deeper and more applicable 
understanding (the intervention goal number 3). In 
this study, we report how an intervention that is built 
around open ended problems, guaranteeing the three 
intervention goals presented above impacts primary 
school pupils’ affect structure development.

INTERVENTION

Here, we examine a three-year intervention from 
3rd to 5th grade which included a monthly activity 
with a mathematical problem. The problem was in 
most cases an open ended and they were selected or 
developed by the research group. The teachers were 
allowed and instructed to execute the problem solving 
sessions according to their preferences. In most cases, 
the teachers used collective activities wherein pupils 
were allowed to discuss the problems, to move, and to 
work collaboratively. 

We will introduce two of the problems that were used 
during the intervention. The first one to be presented 
is ”Divide a square: Make such a division to a square 
that makes the two parts of the square totally equal. 
How many different solutions can you find?” This 
problem was implemented in the 3rd grade and it 
was the second problem in the project. In the pupils’ 
solutions, five levels of thinking were present: level 0 

= no solution; level 1 = the two most obvious solutions 
(two triangles and two rectangles); level 2 = division 
by a straight line that is not diagonal, nor passes the 
middle points of the sidelines of the square; level 3 = 
the thinking of level 2, replacing the straight line with 
a curve; and level 4 = clearly understanding the cen-
tral symmetry of the task (Laine, Näveri, Pehkonen, 
Ahtee, Heinilä, & Hannula, 2012). Because of the five 
levels of understanding, the active nature of the task 
(a pupil could easily just use a pen to figure out the 

solutions), and the collaboration the pupils were al-
lowed to have during the task, the intervention goals 
presented above were fulfilled. The second problem 
to be presented here is ”Etana-Elli (= a snail called Elli): 
Etana-Elli climbs up a wall very slowly. During some of 
the days she gets up 10 cm, during some of the days 20 cm, 
during some days she sleeps and does not move, and dur-
ing some days she is in a very deep sleep and descends 10 
cm. The wall is 100 cm high. After ten days of climbing, 
Etana-Elli is on a halfway of the wall (which means that 
she has mounted 50 cm).What could have happened 
during the first 10 days? Describe as many scenarios 
that are possible.” This problem was implemented in 
4th grade being the 7th problem in the project. Also 
in Etana-Elli -problem the pupils could easily initiate 
actions, and several solutions were possible. Thus the 
intervention goals got fulfilled within the problem.

METHOD

The data used in this study was gathered within a 
research project that aimed to develop mathematics 
learning and affect structure among pupils in Finland 
and Chile (see further description of the project in 
Laine, Näveri, Pehkonen, Ahtee, Heinilä, & Hannula, 
2012). Here, we focus on Finnish pupils’ data, where-
in the number of pupils that participated either the 
pre-test, the post-test or both tests was 320. The pre-
test data was collected in regions near to Helsinki at 
the beginning of the academic year 2010–2011 during 
September-October 2010. The post-test data was col-
lected within the same classes at the end of the aca-
demic year 2013–2014 during April-May. The schools 
are fairly uniform in Finland (see OECD, 2010, p. 87), 
so the data can be considered representative to ur-
ban pupils in Finland. In the pre-test, there were 25 
classes involved. 10 out of these classes were inter-
vention groups, the rest of them being control groups. 
In the post-test, six control groups were not reached 
and three intervention groups had left the project 
(they quit doing the tasks, but yet participated in the 
post-test). Among the three classes that quit, one had 
participated in the project for two years whereas the 
other two had participated only one year. We decid-
ed to include the class that had participated for two 
years (i.e. more than 50 % of the intervention tasks) but 
exclude the classes that had been participating just 
one year (i.e., less than 50 % of the tasks). Moreover, 
there was a teacher change in two of the included in-
tervention groups, and some movement regarding 
the pupils had happened, as there were pupils in the 
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pre-test but not in a post-test and vice versa: those 
pupils’ data were excluded from the analysis. In sum, 
we included in the data pupils who had participated 
in all the intervention tasks or at least 2/3 of them, and 
that had participated both of the measurements, but 
might have had a new teacher during the intervention. 

The following factors of affect were measured in the 
questionnaire: self-competence, (spice item: “I have 
made it well in mathematics”), self-confidence (“I am 
sure that I can learn math”), the difficulty of mathe-
matics, referred to as DoM (“Mathematics is difficult”) 
representing cognitive dimension; the enjoyment of 
mathematics, referred to as EoM (“I have enjoyed pon-
dering mathematical exercises”) representing emo-
tional dimension; mastery goal orientation, referred 
to as MGO (“On every lesson, I try to learn as much as 
possible”) representing motivational dimension; and 
effort (“I always prepare myself carefully for exams”) 
representing behavior. The purpose of the instrument 
was to catch the trait aspect of affect (see discussion on 
the cognitive, emotional and motivational dimensions, 
and the state - the trait aspects of affect in Hannula, 
2011). The instrument was a shortened and simplified 
version of the instrument used by Hannula & Laakso 
(2011) to measure 4th grade Finnish pupils. The in-
strument worked well in that context and seemed 
suitable for measuring mathematics-related affect 
within Finnish population. In the instrument there 
was a 3-point Likert scale in use (“true”, “partly true”, 

“not true”). Bearing in mind that the pupils were just 
9-year old in the pre-test it was justified to use only 
three points, as this makes the instrument simpler. 
The scale is an ordinal scale, as the middle option, 

“partly true”, may situate differently between the two 
ends depending on the examinee. In the questionnaire 
some of the items were direct (e.g., “I have made it well 
in mathematics”), while some were indirect (e.g., “I 
am not very good in mathematics”). For the analysis, 

the items that had an inverse content were recoded 
to share the same direction with directly stated items. 

Before starting the analysis, we constructed a sum 
variable of all the questionnaire items regarding 
both measurements. The reliabilities (measured by 
Cronbach alpha’s) were satisfactory: α = .895 in the 
pre-test and α = .858 in the post-test. To find out the 
answer to our research problem, we calculated the dis-
tributions of pupils’ affect within both measurements. 
A paired sample t-test was used to compare the means 
of the distributions regarding the two measurements 
and an independent sample t-test was used to compare 
the means of the distributions regarding intervention 
and control groups and genders. 

RESULTS

In Table 1, there are the distributions of all items’ sum 
variable regarding all pupils, intervention group, and 
control group.

The mean of all items for all pupils in the pre-test was 
1,37 (1 = positive, 3 = negative), and the standard devi-
ation was 0,30. In the post-test, the mean of all items 
for all pupils was 1,64, the standard deviation being 
0,29.  In a paired samples' t-test there was a statistically 
significant difference between the pre-test and post-
test regarding all the pupils (t(193) = -11.88; p < .000), 
the intervention group (t(108) = -9.72; p < .000), and 
the control group (t(84) = -6.98; p < .000).  The results 
indicate that there is a remarkable decline in pupils’ 
affect regarding mathematics from the beginning of 
the 3rd to the end of the 5th grade in both the inter-
vention group and control group.

When it comes to the differences between the inter-
vention and the control group, no statistically signif-
icant difference was found with respect to all items 

Group Positive In between Negative N

Pre-test, all items All pupils 168 (75,3%) 54 (24,2%) 1(0,4%) 223 (100%)

Post-test, all items All pupils 90 (32,4%) 186 (66,9%) 2(0,7%) 278 (100%)

Intervention 
group

41 (33,9%) 80 (66,1%) 0 (0%) 121 (100%)

Control group 49 (31,2%) 106 (67,5%) 2 (0,4%) 157 (100%)

Table 1: Distributions regarding all pupils, intervention group, and control group
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in post-test (t(276) = -.67; p = .505). Looking further at 
the differences between the groups factor by factor 
in post-test did not change the picture: t(287) = -.06, 
p = .954 regarding self-competence; t(294) = -.79, p = 

.433 regarding self-confidence;  t(290) = -1.50, p = .134 
regarding the difficulty of mathematics;  t(290) = 0.62, 
p = .533 regarding the enjoyment of mathematics; 
t(294) = -.57, p = .571 regarding mastery goal orienta-
tion; and t(290) = .62, p = .536 regarding effort. Besides 
the non-significance between the groups, no trend 
was found regarding the minor differences regarding 
the different variables, as with respect to one variable 
the mean could be lower for the control group, but 
with respect in another the mean could be lower for 
the intervention group.

When it comes to the gender differences, we still did 
not find any significant differences in either of the 
tests (gender difference in pre-test: t(122) = 1.05, p = 

.295; gender difference in post-test: t(140) = 1.57, p = 

.118). However, when testing the control group’s and 
intervention group’s difference in the post-test sepa-
rately to genders, a statistically significant difference 
was found regarding girls’ development (girls: t(67) 

= 2.08, p < .05; boys: t(87) = .42, p = .634). The mean of 
the control group girls in the post-test was 1.82, and 
for the intervention group girls 1.65. This means that 
the girls had benefitted from the intervention, but 
not boys. The significance in the development came 
through two factors: self-confidence (t(729 = 2.39, p < 

.05), and EoM (t(72) = 2.47, p < .05). 

DISCUSSION 

We have reported the impacts of a three-year inter-
vention aimed to improve primary school pupils' 
mathematics-related affect through focusing on 
pupils’ control on their learning, social interaction, 
and mathematical understanding. According to our 
results, the impact was not as strong and widespread 
as one would have hoped. For the sake of future in-
terventions sharing the same goal, it is necessary to 
gain knowledge about why it had such a minor im-
pact. Even the effects of a well-designed intervention 
may become disguised by other features in school, 
more significant to the pupils. As Chapman (2002) has 
shown, a significant conflict is needed to allow affect 
structure to become reorganized. The pupils in an 
intervention may get positive experiences, yet those 
experiences might be less significant than school ex-

pectancies, peers’ perceptions, or teacher’s actions 
effect. 

The other perspective is the method used here. 
Perhaps a questionnaire based quantitative data does 
not reveal all the possible nuances that might have 
been affected during an intervention. Qualitative 
analysis could perhaps better show less visible chang-
es and thus reveal a stronger result. A mixed method 
approach could be advisable. However, as there was 
no significant difference between the whole interven-
tion and control groups, it seems likely that a stronger 
change in the practices is needed. In our intervention, 
there was a monthly problem solving class for three 
years. Maybe the amount of doing was too little for 
the pupils, or maybe such classes would need differ-
ent school culture to be more effective. For example, 
pupils in Finland do not rate their learning environ-
ment as positive as their mates in other cultures do 
(Tuohilampi, Laine, Hannula, & Varas, submitted). 
Thus, pupils in Finnish classes might need support to 
become effective with working socially among prob-
lem solving. The intervention presented here would 
possibly have become more efficient if there had been 
more support for pupils to become socially active.

The benefit for girls in the intervention related to 
their self-confidence and enjoyment of mathemat-
ics. This is extremely critical, as girls suffer poor 
and unrealistic mathematical self-confidence world-
wide (Syzmanowics & Furham, 2011) and in Finland 
(Tuohilampi & Hannula, 2013). This makes girls avoid 
mathematics in future (ibid.), so even the impact was 
restricted on girls, it was extremely welcome. Girls’ 
emotions towards mathematics have also been critical 
(ibid.), and it is delighting that the intervention could 
help girls to maintain their emotions more positive. 
Hannula, Kupari, Pehkonen, Räsänen, & Soro (2004) 
have presented that collaborative atmosphere and 
learning methods connect with increasing self-con-
fidence and mathematical performance especially 
regarding girls. This seems natural, as while girls 
feel less confident with mathematics in general, they 
might find it helpful to work in co-operation with 
others. Thus the benefit for girls might have come 
through the increase in collaboration. Girls also differ 
from boys in their interests, as boys are more oriented 
towards technical aspects of science whereas girls 
tend to show more interest in human issues (Sjøberg & 
Schreiner, 2010). It is possible that there are different 
cognitive styles between genders, and the non-com-
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petitive context affected more to girls’ style. To give 
some critique, one has to be reminded that making 
several t-tests may lead to misleading statistical sig-
nificances raised just by a coincidence. However, what 
the girls benefit is in line with their needs, and the 
p-values were very near to p < .01.

This study has given us the insights of the possibilities 
and the restrictions an intervention may have. We 
continue to work with the rich data collected during 
the research project to contribute our knowledge of 
the development of mathematics-related affect in even 
more nuanced ways.
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This paper aims to understand one pupil’s mathemati-
cal thinking through problem solving and mathematics 
related affect. The results reveal a successful, though 
quite unsure, problem solver whose affective state (con-
nected to problem solving) seems to tell the same story as 
her affective trait (view of mathematics). The differences 
between results on affective state and trait seem to be 
connected mostly to emotions.

Keywords: Mathematical thinking, problem solving, affect.

THEORETICAL FRAMEWORK 
AND RESEARCH QUESTION

Developing mathematical thinking is one of the three 
tasks of instruction listed in the Finnish National Core 
Curriculum for Basic Education (Finnish National 
Board of Education [FNBE], 2004, p. 158). Some as-
pects of mathematical thinking are evaluated through 
tests at school, at the national (e.g., Rautopuro, 2013; 
Hirvonen, 2012) and international (e.g., OECD, 2014; 
Mullis, Martin, Foy, & Arora, 2012) levels. However, 
we lack a deeper understanding of the mathematical 
thinking pupils’ take into their lives and possible fur-
ther studies after comprehensive school.

Mathematical thinking is not defined in the curricu-
lum, but a list of thinking and working skills is provid-
ed as evaluation criteria for every age group. These 
lists include learning objectives such as pupils’ use 
of logical elements in their speech, judging truth of 
simple propositions and noticing parallels and reg-
ularities between different events (FNBE, 2004, p. 
166). For sixth to ninth graders, ‘thinking skills and 
methods’ is also introduced as its own entity in the 
learning objectives parallel to core contents such as 
algebra and geometry (Mathematics curriculum, ibid, 
pp. 158–167).

When thinking skills and methods are listed in the 
curriculum, problem solving is repeatedly referred 
to. The term ‘problem solving’ is not defined. However, 
in final-assessment criteria for ninth graders, four 
problem-solving phases are introduced. These phases 
are similar to Polya’s (1957) problem-solving phas-
es. The process view on problem solving also guides 
this study where (in line with the curriculum) pupils’ 
activities, actions and explanations during problem 
solving are interpreted as visible signs or expressions 
of their mathematical thinking.

In this study, thinking is considered mathematical 
when it relies on operations that are mathematical 
(Burton, 1984). Furthermore, a mathematical task is 
called a problem if the solver has to combine previ-
ously known data in a new way to her to solve the task 
(e.g., Kantowski, 1980).

When mathematical thinking is described, in addition 
to cognitive aspects, we should also explore affective 
factors (e.g., DeBellis & Golding, 2006; Vinner, 2004) 
and seek to understand the interrelationship between 
affect and cognition (e.g., Hannula, 2011; Zan, Brown, 
Evans, & Hannula, 2006). Instead of categorizing affec-
tive factors for instance as beliefs, attitudes or values, 
affect is seen as a mixture of cognitive, motivational 
and emotional processes:

Cognition deals with information (self and the en-
vironment), while motivation directs behaviour 
(goals and choices). Success or failure in goal-di-
rected behaviour is reflected in emotions (e.g., 
shame). These emotions, in turn, act as a feedback 
system to cognitive and motivational processes. 
(Hannula, 2012, p. 144)

Affect is seen as a psychological domain with its state 
and trait aspects (Hannula, 2011). In connection to 
problem solving, we focus on rapidly changing af-
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fective states. The more stable affective traits follow 
the categorization of pupil’s view of mathematics in-
troduced by Pehkonen (1995; discussed also in Op’t 
Eynde, de Corte &, Verschaffel, 2002). These catego-
ries are mathematics, oneself as a learner and user 
of mathematics, learning mathematics, and teaching 
mathematics.

In an aim to understand the interrelationship be-
tween cognition and affect in mathematical thinking, 
we look at one pupil’s, Emma’s, problem solving and 
explanations on affect related to mathematics. The 
information from this exemplary case can later be 
combined with other cases to form a more informative 
view on mathematical thinking at the end of Finnish 
comprehensive school. So, with the question ‘What 
characterizes Emma’s mathematical thinking?’ we try 
to understand the mathematical thinking Emma takes 
from comprehensive school into her life and further 
studies (cf. mission for basic education in FNBE, 2004, 
p. 12).

METHODS

The data was collected in three cycles. Emma’s results 
from the first cycle are discussed in Viitala (2015). This 
paper adds both problem solving and affective results 
and reports on findings from all three cycles of data 
collection.

Participant
Emma is a high achieving girl (mathematics grade 9 on 
a whole number scale of 4 to 10) who was selected for 
this paper based on a previous report (Viitala, 2015). 
The data collection was organized in the first semester 
of 9th grade when Emma was 15 years old.

Data collection
The data was collected from mathematics lessons and 
interviews over the course of three months. In each 

of the three cycles, one mathematical task was solved 
in an ordinary classroom situation as a ‘main task’. In 
Emma’s case this meant that the pupils solved the tasks 
individually but they were allowed to talk about the 
tasks with a friend or ask for help from the teacher. 
In each of the three cycles, Emma was video recorded 
while she solved the task(s) in class and her solution 
on paper was collected.

The interviews took place either on the same day, or 
on the next day after solving the task in the classroom. 
The interviews contained two parts. The first part con-
centrated on affective traits and treated the following 
themes: pupil’s background, mathematical thinking, 
and pupil’s view of mathematics (following the cate-
gorization of Pehkonen, 1995; see example questions 
in Table 1). This part of the interview was semi-struc-
tured and focused (Kvale & Brinkmann, 2009).

The second part of the interview was about prob-
lem solving. The classroom data was used as stimuli 
when Emma’s problem solving was discussed. Emma 
explained her actions and thinking and responded 
to questions such as, ‘What are you thinking now?’ 
and ‘Why are you doing so?’ Also, some affective and 
metacognitive questions were asked, for instance, 

‘What did you feel when you read the task?’ and ‘Did 
you think about your own thinking when solving the 
task?’

Finally, Emma was asked to assess her confidence 
before, during and after solving the problem(s), as 
well as her confidence in school mathematics using 
a 10 cm line segment (scale from ‘I couldn’t do it at all’ 
to ‘I could do it perfectly’; cf. estimation of certainty, 
e.g., in Merenluoto, 2001). All interviews were video 
recorded.

The tasks used in this paper are released PISA items. 
PISA tasks are well tested and based on real-life situ-

Theme Example questions
Background Tell me about your family.

Mathematical thinking
Mathematics

What does mathematical thinking mean? / How do you recognise it?
What is mathematics as a science? / Does it exist outside of school? (How? Where?)

Oneself and mathemat-
ics

Is mathematics important to you? / Does it help you think logically? (How?)

Learning mathematics How do you learn mathematics? / Is it most important to get a correct answer?

Teaching mathematics Does teaching matter to your learning? (How?) / What is good teaching?

Table 1: Interview themes and example questions
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ations (e.g., OECD, 2006, p. 108). The ‘main’ PISA tasks, 
Holiday, School Excursion and Indonesia (ibid, pp. 77–
78, 87, 111, respectively), were solved in the classroom. 
These tasks are open with respect to solution strategy 
(see task examples in Table 2). Indonesia also included 
two additional questions in which Emma’s skill to read 
a table was tested (referred to as Indonesia Q1 and Q2).

In class, Emma also started to solve Carpenter (OECD, 
2009, p. 111) which was added in case of extra time. In 
the interviews, Emma answered questions from the 
tasks Distance (OECD, 2006, p. 102; modified to 3 and 5 
km), Growing up (OECD, 2009, p. 106; Q’s 3 and 1) and 
Braking (ibid., pp. 128–129; also Q49 from a Web page 
of the Finnish Institute for Educational Research).

Analysis
The analysis was divided into two sections: Problem 
solving, and Affect related to mathematics. In problem 
solving, the main focus is on the cognitive problem 
solving process written in the curriculum for grades 
6–9 as core content or final assessment criteria of 
thinking skills and methods. These phases follow the 
problem solving principles described by Polya (1957) 
and will be reported accordingly.

In connection to problem solving, pupil’s thinking 
about their own thinking as well as control and 
self-regulation (e.g. keeping track of what is being 
done during problem solving) will be discussed as a 
part of metacognition (Schoenfeld, 1987). The pupil’s 
motivation to solve the tasks as well as confidence and 
feelings during problem solving is reported as part 
of the psychological affective state.

In affect related to mathematics, pupil’s view on math-
ematics is reported (see Table 1). These results can 
be referred to as affective traits. The discussion on 
metacognition concentrates on the aspects listed as 

learning objectives in the curriculum (e.g., trusting 
oneself; FNBE, 2004). 

The results are descriptive. More information related 
to methods and methodology can be found in earlier 
publications (Viitala, 2013, 2015).

RESULTS

Problem solving
Understanding the problem. Emma uses much of her 
time for understanding problems and the given infor-
mation (in class 2–5 minutes which is some 30–55 % 
of total solution time). She seems very thorough and 
she says that she wants to understand every aspect 
of a task before starting to plan and solve it. On one 
hand, this seems to be a key element in her success as 
a problem solver. On the other hand, this might hin-
der her to solve a problem (not understanding all the 
mathematical expressions in Braking Q49) or to give 
a correct answer (she was prone to give an answer 
which she can completely understand in Braking Q49).

Emma uses graphs (maps and diagrams from the tasks) 
to assist her thinking when putting the given infor-
mation together (e.g., marking routes and distances 
to the map in Holiday), understanding a problem (e.g., 
the graph in Braking for Q49) making a plan to solve a 
problem (e.g., routes in Holiday) and reflecting on the 
task when solving it (e.g., connecting the question to 
the graph in Growing up). The use of tools and draw-
ings that assist thinking is part of mathematics learn-
ing objectives.

Making a plan. After taking the time to understand a 
problem and given information, Emma does not need 
much time to make a plan. Making a plan seems to 
happen on the third reading of the question, after 
reading the question quickly through on the first 

Task Given information Why chosen?

Holiday, 
Q1

Calculate the shortest distance by road between 
Nuben and Kado.

Map of the area, Table of dis-
tances, Answer given in kilo-
metres.

Complex situation,
Combining different 
data

School 
excursion

Which (bus) company should the class choose, if 
the excursion involves a total travel distance of 
somewhere between 400 and 600 km?

Written explanation of the 
situation and rates that the bus 
companies charge.

Uncertainty, 
Decision making

Indonesia, 
Q3

Design a graph (or graphs) that shows the une-
ven distribution of the Indonesian population.

Table of the population of 
Indonesia and its distribution 
over the islands.

Open task

Table 2: Descriptions of some of the tasks used in the project
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reading and putting together the given information 
on second reading (according to her explanations, e.g., 
for Holiday Q2 and School excursion).

If a task feels hard, Emma says she thinks of alterna-
tive ways to solve it (in Holiday she calculated a second 
route to confirm her result). Additionally, if the task 
feels too simple, she might try to calculate the task 
further after getting the answer (Indonesia Q2, this 
calculation was later erased because ‘it felt stupid’).

Carrying out a plan. Emma seems careful and thorough 
in solving mathematical tasks. After understanding 
the task, Emma is fluent in transforming a text to a 
mathematical form (mathematical expressions e.g. 
in Holiday and School Excursion). She says she can 
return to the task description as a confirmation also in 
the middle of solving a task (e.g. in School excursion). 
She proceeds step-by-step with the tasks.

If Emma has different options to solve a task, she says 
that she chooses the one that feels more ‘probable’ (e.g., 
routes in Holiday) or has less doubt (e.g., choosing 
a point where to calculate School excursion). For a 
task that had more than one answer (Distance), she 
spontaneously found two answers and a third one 
after being probed. In most cases Emma was able to 
justify her actions and conclusions.

Looking back. Emma says she checks tasks only in tests. 
In the research project, the first class situation felt like 
a test situation for Emma and it was the only time she 
checked her answers (Holiday). Other answers to PISA 
tasks she checked from a friend (Holiday and School 
excursion) or left it until the interview. In addition, 
Emma feels that she does not need to check her cal-
culations when a calculator is used.

If Emma is not sure whether she has understood the 
task or given information correctly, she chooses the 
interpretation that feels most reasonable and pro-
ceeds with that (e.g. table in Holiday, and Q1 and Q2 

in Indonesia). This aspect of ‘looking back’ is done 
during the process of solving the task.

Affect related to problem solving. Emma feels unsure 
when faced a word problem. She might ‘panic’ if 
the task has a lot of text (Holiday Q2) or numbers 
(Indonesia), or she cannot understand all the given 
information (e.g. table in Holiday and mathematical 
expressions in Braking Q49). When she gets stuck 
with the task description, she seems to lack efficient 
tools to overcome the situation (Holiday Q2, Braking 
Q49, also visible in Emma’s explanations about do-
ing homework and learning mathematics; on getting 
stuck, see, e.g., Mason, 2015). In these cases, asking 
questions helps her to overcome the difficulties and 
proceed with the task.

Getting help (Holiday Q2, before solving the task) or 
asking the correct answer from a friend after solving 
the task (Holiday and School excursion) seems to have 
a direct influence on Emma’s confidence. Similarly, 
not checking her answer (Indonesia) seems to make 
her feel very uncertain and anxious even in the in-
terview (until the results were given). See Emma’s 
confidence related to problem solving in Table 3.

Emma might experience many different feelings 
when facing, planning and solving a problem (e.g., in 
School excursion: nervous, unsure, doubtful, ‘nor-
mal’ and relieved chronologically, cf. Table 3) but she 
agrees that her feelings do not necessarily affect her 
more stable feeling of confidence. The main motiva-
tion for Emma to solve the given tasks was the video 
camera. However, when a mathematical obstacle was 
encountered, Emma was motivated to learn from it 
(e.g., not understanding some mathematical part of 
the discussion in an interview, such as graphs for 
companies in School excursion, or percentages when 
discussing Indonesia or Braking).

Confidence after reading 
the task

Confidence while solving 
the task

Confidence after solving the 
task

Holiday, Q1 5.5 5 7.25

Holiday, Q2 3.75 6.25 7

School excursion 5 6.25 7.25

Indonesia, Q1-Q3 3.25 4 4

Table 3: Emma’s confidence (0–10, ±0.25 mm) for the tasks solved in the classroom
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Affect related to mathematics
Mathematics. Emma’s view on mathematics is very 
much tied to a school subject. For her, mathematics is 
calculating, both as a school subject and as a science. 
Mathematical knowledge is gained by calculating and 
correctness of mathematical knowledge can be veri-
fied by asking the teacher. Emma thinks mathemat-
ics is useful and needed for instance in other school 
subjects (e.g. civics, physics and chemistry). When 
asked, it is hard for her to see connections between 
mathematics and real life. Emma uses mathematics 
outside of school when she is shopping.

Oneself and mathematics. Emma is motivated to learn 
mathematics. The feeling of success drives her for-
ward and succeeding with a difficult task makes her 
feel proud of herself (intrinsic motivation). She values 
the opportunity to show her skills to her teacher and 
classmates by going to the black board to calculate 
tasks. It feels rewarding and it motivates her to learn 

‘the next thing’ (extrinsic motivation).

Emma likes mathematics and thinks it is ‘quite fun’ 
and interesting. However, in her own words, she does 
not feel ‘very confident’ in mathematics (cf. Table 4). 
However, she thinks that this might be a good thing: 
If you are too confident, you might not use that much 
time for thinking or check the calculations of a task. 
Emma thinks that confidence and mathematics grades 
are two separate things. Her grade (9) is the best she 
thinks she can achieve.

Learning mathematics. Emma, together with her 
friends and family, values learning mathematics and 
thinks that mathematics is useful. She also agrees that 
the atmosphere with regards to mathematics in her 
class is positive. Emma seems to trust that if she stud-
ies mathematics she can succeed and get better in it. 
The feeling of success, the belief that mathematics is 
worthwhile and useful, and future studies motivate 
her to learn mathematics.

For Emma, learning mathematics is ‘understand-
ing’, in addition to ‘memorizing’ and ‘reasoning’. 
Understanding means you are ‘able to use a method’. 
Learning as well as understanding takes time for 

Emma. Understanding comes from calculating, asking 
questions, and proceeding little-by-little from easier 
tasks to more difficult ones. Rote learning is impor-
tant. Emma learns new things as independent issues 
and does not actively seek for connections to previous 
knowledge. She ‘forgets things quite quickly’ and an 
indication of this was seen also in the interviews (cal-
culations with percentages).

Emma’s feelings in learning mathematics are also 
closely connected to understanding. Learning math-
ematics is fun when she understands or succeeds in 
mathematics. Not being able to understand is irritat-
ing. Sometimes learning mathematics is also tiring. 
Mathematics is easy for her ‘but only a little’ (cf. Table 
4). Emma seems to take the responsibility of her own 
mathematics learning. She says that if she succeeds 
with a test, it is because she has studied for it and 
learned in class. Failure, on the other hand, means 
that she has not done enough work.

Teaching mathematics. Mathematics teaching meth-
ods and the mathematics teacher play a great role in 
Emma’s learning of mathematics. She believes that 
without teaching she could not learn mathematics. A 
good mathematics teacher offers opportunities to ask 
questions, gives time for (rote) learning, does not pro-
ceed too quickly to the next thing, and proceeds from 
easier tasks to more difficult ones. These all are fea-
tures that Emma’s current mathematics teacher seems 
to possess (according to Emma’s explanations and the 
researcher’s observations from the classroom).

In some respect, Emma seems to connect her feelings 
and success in mathematics to her teacher. In elemen-
tary school she did not get along with her teacher. She 
was an average pupil (grade 7–8) who was not interest-
ed in mathematics, did not succeed in it and mathemat-
ics felt like torment for her. In lower secondary school 
Emma got a new mathematics teacher who she liked, 
and whose teaching she liked. Since then, Emma says 
she has liked mathematics and been a high achiever.

SUMMARY AND DISCUSSION

Results from Emma’s problem solving and affect re-
lated to mathematics seem to give a well-matching 
picture of Emma’s mathematical thinking. Emma is a 
reflective learner and problem solver who needs time 
for understanding. Her thoroughness and tendency 
to ask questions (both from friends and the teacher) 

Interview 1 Interview 2 Interview 3

6.25 5.5 5.5

Table 4: Emma’s confidence (0–10, ±0.25 mm) in mathematics



Emma’s mathematical thinking, problem solving and affect (Hanna Viitala)

1299

seem to be the key to her success in both respects. 
Emma is not very confident in mathematics or prob-
lem solving (though slightly positive, cf. Hirvonen, 
2012) but, as a consequence, she seems to be very 
careful with her thinking and working. Moreover, 
her uncertainty might be a reason for her success 
both in problem solving and mathematics.

The results showing differences between problem 
solving and affect related to mathematics seem to be 
connected to less stable affective traits. As an exam-
ple, Emma’s confidence has more variance in problem 
solving than in mathematics and her feelings experi-
enced during problem solving have more tendencies 
to negative feelings (e.g. unsureness) than her feelings 
in learning mathematics. What is notable regarding 
Emma’s affect in mathematics is that, contrary to 
previous research results (e.g., Tuohilampi, Hannula, 
Laine, & Metsämuuronen, 2014), Emma’s feelings to-
wards mathematics have become more positive since 
elementary school.

Throughout the study, Emma worked in a sustained 
and focused manner with the problems. Even though 
she is not very confident in mathematics, she seems 
to trust herself as a mathematics learner (e.g., aiming 
to learn more mathematics so she can succeed in ad-
vanced mathematics in upper secondary school). She 
also seems to take responsibility for her own learning 
(e.g. reasons for succeeding or failing in tests). All 
these aspects (listed in the curriculum; FNBE, 2004) 
together with her problem solving skills seem to offer 
her a solid foundation for future studies.

In addition to preparing pupils for further studies, 
basic education must also provide opportunities to 
obtain the knowledge and skills pupils need in life 
(FNBE, 2004, p. 12) and mathematics teaching should 
help pupils to see the connection between mathemat-
ics and real life (ibid, p. 158). Nonetheless, even though 
the PISA tasks that were used were situated in the 
real world, Emma saw them purely as mathematics 
tasks. Additionally, she struggled to see where she 
uses mathematics in her own life outside of school 
(homework, shopping). After analysing all the cases 
in the project, we can see if this might be a possible 
trend among Finnish pupils.

The upcoming curriculum (FNBE, 2014; will be im-
plemented in 2016) draws more attention to math-
ematical thinking and real-life connections. For 

instance noticing connections between learned 
concepts and applying mathematics in other school 
subjects and surrounding society are written as in-
dividual learning objectives and as final-assessment 
criteria (ibid, p. 433–434). It is hoped that this will 
direct pupils’ attention more towards their thinking 
and connections between mathematics and real life, 
at the same time making mathematics more worth-
while and enjoyable.
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The goal of this study was to understand pre-service 
teachers’ self-efficacy beliefs for preparing and imple-
menting mathematical tasks and to explore which sourc-
es of self-efficacy they wighted and interpreted when 
judging their capabilities as a result of attending a math-
ematics teaching methods course designed with a focus 
on mathematics teaching through tasks. Nine pre-ser-
vice teachers participated in this study and they were 
interviewed at the end of the methods course. Findings 
revealed that methods course provided opportunities for 
mostly vicarious experiences and physiological states 
sources, and participants were feeling highly efficacious 
to prepare mathematical tasks, but they had doubts 
about their capabilities to implement tasks effectively.

Keywords: Mathematical tasks, pre-service teachers, self-

efficacy, sources of self-efficacy.

INTRODUCTION

Learning mathematics with understanding requires 
active student involvement in the process of learning 
through problem solving where students solve 
problems, evaluate and explain their solutions, 
make connections among concepts, create and use 
different representations of mathematical ideas, and 
communicate their mathematical thinking (National 
Council of Teachers of Mathematics [NCTM], 2000). 
Because problem solving is the center of this learning 
process, the problems (i.e., mathematical tasks) that 
are presented to students mainly determine the 
quality of learning environment in classroom and 
the level of students’ understanding (Stein, Smith, 
Henningsen, & Silver, 2009). A mathematical task 
is a problem (or a set of problems) “the purpose of 
which is to focus students’ attention on a particular 

mathematical idea” (Stein, Grover, & Henningsen, 
1996, p. 460). As research showed, to prepare and 
implement challenging tasks which promote students’ 
higher-order thinking skills, teachers should have 
the required knowledge (Sullivan, Clarke, & Clarke, 
2009). However, having necessary knowledge not 
always guarantee successful performance because 
self-efficacy is a strong determinant of performance 
(Bandura, 1997).

Researchers have reported that teachers’ self-efficacy 
beliefs, or teachers’ beliefs in their capabilities to 
bring about students’ learning and achievement 
(Tschannen-Moran & Woolfolk Hoy, 2001), have the 
power to influence their instructional behaviors, 
attitudes toward teaching, their classroom 
management, as well as their students’ motivation, 
achievement, and self-efficacy (Caprara, Barbaranelli, 
Steca, & Malone, 2006; Pajares, 1992; Woolfolk, Rosoff, 
& Hoy, 1990). When teachers hold strong efficacy 
beliefs, they spend more time with students who 
have difficulty in learning and try to improve their 
teaching; teachers with doubts in their capabilities, 
on the contrary, tend to experience burnout, job 
dissatisfaction, and leave the profession (Caprara, 
Barbaranelli, Steca, & Malone, 2006; Klassen, & Chiu, 
2010). Thus, it is essential that teachers have strong 
beliefs in their capabilities to prepare mathematical 
tasks and enact them effectively with students.

Because of its crucial role in effective teaching, 
teachers’ self-efficacy beliefs were studied in various 
domains, such as science and mathematics. However, 
studies were mostly focused on inservice teachers’ 
self-efficacy (Klassen, Tze, Betts, & Gordon, 2011). Since 
efficacy beliefs are most likely to change during skill 
development (Bandura, 1997), it is important to study 
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pre-service teachers’ self-efficacy and find ways to 
help them develop strong beliefs in their capabilities 
through teacher education programs. According to 
Bandura (1997), self-efficacy is developed through four 
different sources: Mastery experiences, vicarious 
experiences, social persuasions, and physiological 
states. Mastery experience, also the most powerful 
source of self-efficacy, is the information gained 
from personal performances where success boosts 
self-efficacy and failures undermine it. Vicarious 
experience refers to the information gained from 
observing or comparing oneself with model’s 
performances. Model similarity determines the effect 
of this source on self-efficacy, the greater the assumed 
similarity is, the more persuasive the model’s success 
or failures are. Social persuasion is the feedback 
received from others about personal capabilities. 
Finally, physiological states such as stress, anxiety, 
and mood during performances provide information 
for self-efficacy development (Bandura, 1997).

In order to help pre-service teachers build strong 
efficacy beliefs, it is necessary to understand 
factors that serve as sources for their self-efficacy. 
However, there is a lack of research on these sources 
because researchers have often been interested in 
exploring correlates and outcomes of teachers’ self-
efficacy (Klassen, Tze, Betts, & Gordon, 2011). Based 
on hypothesized sources of self-efficacy (Bandura, 
1997), there were a few quantitative attempts (e.g., 
Poulou, 2007) which failed to examine the predictive 
power of each of the four self-efficacy sources. The 
quantitative nature of these studies did not allow for 
the exploration of which sources could be provided 
by teacher education programs, either. A qualitative 
approach, on the other hand, can contribute more 
to our knowledge of how factors related to teacher 
education program operate through sources for 
pre-service teachers’ self-efficacy. This way, teacher 
educators can also be provided with a clear guideline 
for improving their programs to support self-efficacy 
of future teachers.

Concerned with the gap in the literature on sources 
of pre-service teachers’ efficacy beliefs, this study 
was designed as an attempt to explore sources of 
pre-service elementary mathematics teachers’ self-
efficacy in the context of a mathematics teaching 
methods course. The focus of this study was on pre-
service teachers’ self-efficacy beliefs for preparing and 
implementing mathematical tasks, which was defined 

as their beliefs in their capabilities to prepare (select, 
adapt, modify, or create) challenging mathematical 
tasks and enact these tasks in classrooms effectively.

METHOD

The present study was aimed at exploring sources of 
pre-service teachers’ self-efficacy for preparing and 
implementing mathematical task after completing 
a mathematics teaching methods course. In order 
to reveal the insights of pre-service teachers upon 
enrolling in the methods course, qualitative case study 
method was employed. The context of this case study 
was Elementary Mathematics Education Program, 
more specifically, the methods course offered by 
this program at a large public university1 in Ankara, 
Turkey. Nine out of 46 junior pre-service teachers 
studying in this program constituted the cases.

The methods course
As a part of Elementary Mathematics Education 
Program, pre-service teachers were required to enroll 
in the mathematics teaching methods course in their 
third year. This two-semester-long methods course 
was designed to help pre-service teachers learn to 
teach mathematics through challenging mathematical 
tasks, as well as to use and prepare manipulatives 
and integrate technology in mathematics education. 
The focus of this course was on both the Elementary 
Mathematics Curriculum (Ministry of National 
Education, 2013) covered in Turkey and NCTM 
Principles and Standards (NCTM, 2000). Methods 
course was taught by an associate professor for 14 
weeks per semester and took place twice a week. On 
every Monday, there was a meeting for lectures on a 
chapter from the textbook, Elementary and Middle 
School Mathematics: Teaching Developmentally (Van 
de Walle, Karp, & Bay-Williams, 2010). Pre-service 
teachers were expected to read assigned chapters 
every week before attending lecture meetings. 
There were also several unannounced quizzes prior 
to these meetings. Two to three questions related to 
the weekly subject were asked in each quiz. After this 
two hours of theoretical study (i.e. lectures), on every 
Wednesday, there was a lab meeting for pre-service 
teachers’ presentations of tasks they prepared about 
that week’s topic. They worked in groups of 5–6 to 
create tasks and enact their tasks in the lab with their 
classmates. The instructor was giving feedback on 

1 At this university, English was used as the medium of instruction.
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each group’s work, following their implementations. 
Pre-service teachers were expected to provide 
feedback to their peers as well. There were also a 
midterm and a final exam.

Participants
Nine junior pre-service teachers accepted to 
participate in this study. Eight of the participants 
were women and one was man. Required courses 
pre-service teachers had to complete throughout 
the program included mathematics content courses 
(e.g., calculus, analytic geometry), courses related to 
educational sciences such as educational psychology 
and classroom management, as well as Turkish, 
English, and basic physics courses. Elective courses 
on mathematics education were also offered by both 
Elementary and Secondary Mathematics Education 
programs. Participants were going to enroll in field 
experience courses in their last year as senior pre-
service teachers.

Data collection and analysis
Data were collected through semi-structured 
interviews which were mainly guided by a list of 
questions prepared for pre-service teachers to gain 
an understanding of their perceived efficacy beliefs 
(e.g., How confident are you in your capabilities to 
prepare challenging mathematical tasks effectively?) 
and to provide deep information about the sources of 
their self-efficacy (e.g., Which components of methods 
course made you feel confident about your capabilities 
to prepare challenging mathematical tasks effectively?). 
The first author joined class meetings throughout the 
methods course to build trust with participants and 
interviewed participants at the end of the second 
semester of methods course. Each interview lasted 
around 30 minutes. Interviews were first audio-
recorded and then transcribed by the first author as 
well.

Data were coded through constant comparative 
analysis method (Merriam, 2009), and data analysis 
process was two-fold. First, data related to participants’ 
efficacy judgments for preparing and implementing 
tasks were coded. Self-efficacy for preparing tasks 
and for implementing tasks were the two categories 
used in this part of analysis because participants 
regarded their efficacy beliefs for preparing and 
using tasks separately. Then, data related to the 
efficacy-relevant information which participants 
referred to when judging their capabilities were 

coded using hypothesized sources of self-efficacy 
(Bandura, 1997). That is, mastery experiences (when 
participants talked about the efficacy-relevant 
information gained through their own performances, 
like in group work), vicarious experiences (when 
vicarious learning occurred, like through observing 
peers’ presentations), social persuasion (when 
participants mentioned the effects of feedback, like 
the feedback they received from the instructor on 
group work), and physiological states (when emotions 
and mood of participants were perceived as sources 
of self-efficacy, like having fun while creating tasks) 
were the categories used for coding the sources of 
participants’ self-efficacy beliefs. Subcategories were 
created regarding components of methods course (i.e. 
lectures, group work, peers’ presentations, feedback 
on group work, textbook, unannounced quizzes). A 
mathematics education researcher participated in 
coding process. A coding sheet was generated and 
both researchers (the first author and the coder) coded 
a randomly selected interview transcript. When 
results of each researcher’s codes were compared, a 
92% coder agreement was reached.

FINDINGS

Findings revealed that participants completed the 
methods course mostly with high sense of efficacy 
for preparing and implementing mathematical tasks. 
More specifically, 8 of the participants expressed 
strong self-efficacy for preparing tasks (e.g., “At this 
point, I feel really really efficacious because, like I said, 
we have activities about almost every subject in the 
curriculum, we prepared all of them,” Participant 8 
[P8]) and one expressed moderate self-efficacy (“I feel 
so-so [confident], I cannot claim that I can prepare 
real good activities,” P5). Five participants were 
feeling strongly efficacious for implementing tasks, 
whereas 4 of them had doubts about their capabilities 
to implement tasks effectively (e.g. „I wish we had 
more chance to implement [tasks], so, like I said, I 
have doubts about putting [tasks] into practice,” P1). 
Participants who were concerned about possible 
classroom management issues and felt the need for 
real classroom practices expressed less confidence 
in their capabilities to implement tasks than their 
counterparts.

Findings regarding the sources of pre-service 
teachers’ self-efficacy showed that participants used 
efficacy-relevant information provided by all four 
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hypothesized sources of self-efficacy as a result of 
their enrollments in the methods course.

Mastery experiences
The methods course was found to support 
participants’ efficacy development by providing 
mastery experiences through lectures, group work, 
and unannounced quizzes. Participants expressed 
two ways of mastery experiences that lecture hours 
provided. First, the instructor used questioning 
method where questions were aimed at promoting 
participants to explain how they would enact tasks 
from the textbook with their future students and to 
generate ideas for (accommodation or modification 
of ) those tasks. This method nurtured participants’ 
thinking to enhance and master their knowledge for 
preparing and implementing mathematical tasks, and 
participants’ successful performances boosted their 
self-efficacy. Second, the expectations of the instructor 
from participants affected the level of effort they put 
forth, and the amount of effort participants expended 
influenced their self-efficacy.

As a source of mastery experience, participants 
expressed positive effects of working as a group to 
design mathematical tasks and implement those tasks 
in class during lab hours. However, one participant 
had problems with her group members and she didn’t 
believe that group work contributed to her efficacy 
development.

When judging their capabilities, participants referred 
to their performances in unannounced quizzes they 
had to take before lectures. Findings showed that 
these quizzes operated through mastery experience 
source for participants’ efficacy beliefs.

Vicarious experiences
Vicarious experiences as another source for self-
efficacy of participants were provided by lectures, 
group work, peers’ presentations, and the textbook. 
The effect lectures created on participants’ self-
efficacy was perceived as vicarious experience source, 
where the instructor was transmitting her knowledge 
and skills. The instructor’s lecturing with an emphasis 
on the features of challenging mathematical tasks and 

“tips” to use such tasks effectively in classroom context 
were believed to positively affect participants’ efficacy 
development.

Group work was regarded as a different vicarious 
experience source. Working as a group was perceived 
as a more positive influence than working on a task 
alone, for it gave participants the chance to learn from 
each other vicariously.

As findings revealed, participants viewed their 
peers’ presentations in the lab as a learning source 
which contributed to their self-efficacy vicariously. 
Their peers were also models to whom participants 
referred when judging their own capabilities. Thus, 
peers created the opportunity for social comparison. 
When participants compared themselves with their 
counterparts, they mainly focused on competent ones. 
Such successful examples motivated participants to 
do better.

Additionally, the textbook was perceived as a symbolic 
model for learning and operated through vicarious 
experience source. Reading prior to lecture hours 
also increased participants’ understanding from 
lectures. Participants stated that they could benefit 
more from lectures, since they were prepared for the 
class. Participants appreciated the quality of the book, 
too; yet they experienced trouble with reading it. First, 
the book was written in English and it required extra 
time to finish reading a chapter than reading any text 
written in Turkish. Second, participants thought the 
second semester’s readings were longer and more 
complicated, which took more time to complete 
reading assigned chapters and caused them struggle 
to understand. Thus, participants sometimes did not 
even finish reading before attending lectures.

Social persuasions
Feedback on group work which participants received 
during methods course operated through social 
persuasion source for participants’ self-efficacy. 
At the end of each group’s presentation in the lab, 
pre-service teachers and the instructor provided 
feedback about each group’s work. These feedback 
(i.e. evaluative feedback) contained information 
about their capabilities and were perceived as a way of 
self-assessment. Among the three sources of feedback 
(i.e. the instructor, group members during group 
work, and peers during lab hours), the instructor 
was found to be the most effective because, with her 
knowledge and experiences, she was more credible. 
However, participants thought the instructor was 
being judgmental from time to time.
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In addition to feedback provided during lab hours, 
participants regarded lectures as a social persuasion 
source. Recall that participants uttered the difficulty 
of reading long and complicated chapters. Thus, 
they believed that readings should be supported by 
lectures, since they sometimes misinterpreted the 
information in the textbook or sometimes “didn’t 
even understand what the book was saying” (P3). This 
way, lectures worked as corrective feedback, a social 
persuasion source for self-efficacy which helped 
participants learn from their mistakes and improve 
their knowledge.

Physiological states
Findings showed that the methods course provided 
physiological states source for participants’ efficacy 
beliefs through group work, peers’ presentations, 
feedback on group work, textbook, and unannounced 
quizzes. First, group work operated through 
physiological states source, and participants 
interpreted their emotions and mood during 
preparing and implementing tasks when judging 
their capabilities. Participants mostly enjoyed 
working together in a group to create and present 
tasks. On the contrary, one participant uttered that 
she felt anxious when presenting tasks in the lab, but 
she was still confident that she would enact tasks with 
her future students effectively because she believed 
she would feel more comfortable with students.

Participants expressed positive affective states like 
having fun when working on peers’ tasks, too, but they 
got bored and showed reluctance to participate when 
they were assigned to low quality tasks. According to 
Bandura (1997), positive moods enhance self-efficacy 
and negative emotions lower it. Since participants 
did not experience negative emotional arousal (e.g. 
getting sad, angry, or stressed), it could be asserted 
that peers’ presentations mostly contributed to 
participants’ self-efficacy.

The feedback received from the instructor were 
perceived as a negative influence for some 
participants. Like mentioned earlier, there were 
participants who thought that the instructor could 
be judging and criticizing. Therefore, when preparing 
tasks, some participants were affected negatively 
from the instructor’s criticism and either doubted 
their capabilities or experienced negative arousal 
(e.g. anxiety).

As a physiological states source, reading the textbook 
caused boredom for one participant. She explained 
that she was bored with reading in English.

Even though unannounced quizzes were viewed as a 
“push” for studying for lectures and in turn actively 
participating on Mondays, they also caused stress 
and anxiety. When participants didn’t have time to 
complete reading assigned chapters or when they 
failed to understand ideas presented in the textbook, 
they felt distressed because these quizzes were added 
up to overall grades.

DISCUSSION

In this study, the aim was to investigate sources 
of pre-service elementary mathematics teachers’ 
efficacy beliefs for preparing and implementing 
mathematical tasks. In addition to detecting which 
sources pre-service teachers relied on to construct 
their efficacy beliefs, this study was an attempt to 
define components of methods course which predicted 
pre-service teachers’ self-efficacy. Findings revealed 
that methods course provided all four sources for 
self-efficacy beliefs of pre-service teachers. That is, 
various components (i.e., lectures, group work, peers’ 
presentations, feedback on group work, textbook, and 
unannounced quizzes) of the course operated through 
different sources and contributed to the development 
of pre-service teachers’ efficacy beliefs. When 
compared to other sources of self-efficacy, components 
of methods course mostly operated through vicarious 
experiences and physiological states sources for 
self-efficacy. It could be that participants weighted 
these two sources of self-efficacy more than mastery 
experiences, since their mastery experiences were 
limited to group work, involvement in lectures, and 
unannounced quizzes.

An important finding was that lectures had the 
power to operate through mastery experiences for 
pre-service teachers’ efficacy judgments, when the 
instructor used questioning method in her lectures. 
Participants of this study mainly perceived lecture 
hours as a vicarious experience source, like one 
would expect because lecturing is the transmission 
of knowledge and skills (Bandura, 1997) from the 
instructor to pre-service teachers, but the instructor 
was able to take this further by using questioning 
method. Questioning promoted participants’ 
thinking and generating ideas about preparing and 
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using mathematical tasks, and participants relied on 
experiences gained through cognitively enacting and 
verbally sharing their ideas. Teacher educators then 
should design courses where pre-service teachers 
are encouraged to actively participate in lectures and 
share their thoughts on preparing and implementing 
tasks.

Modeling is a strong influence on self-efficacy 
(Bandura, 1997), and findings showed that participants 
gained vicarious experiences through models 
similar to them (i.e. peers), the instructor as a 
competent model, and the textbook as a symbolic 
model. Therefore, teacher educators should promote 
vicarious learning of pre-service teachers from each 
other, which might be achieved by letting them work 
in groups or asking them to evaluate peers’ tasks 
and give feedback. Classroom discussions might also 
create the environment for pre-service teachers to 
contribute to peers’ learning. Teacher educators 
should also share either their own experiences 
or other teachers’ experiences on preparing and 
implementing tasks, by using video recordings for 
example, to provide pre-service teachers with various 
vicarious learning opportunities. The quality of 
textbook used is also found to be an important issue 
that teacher educators should take into account. 
Task samples in the textbook and clear and detailed 
information proposed there can help pre-service 
teachers gain experiences vicariously and contribute 
to their efficacy development. Reading chapters as a 
requirement of methods course, as findings showed, 
might enable pre-service teachers to benefit more 
from the lectures. Thus, it is important to motivate 
them do the readings prior to lectures. One way of 
providing such motivation could be unannounced 
quizzes, like findings showed. Yet, quizzes might 
cause stress and anxiety, if pre-service teachers 
have difficulty in completing reading assignments. 
Choosing a textbook easy to read and understand 
might prevent pre-service teachers from experiencing 
negative affective states.

Findings also revealed the crucial role of physiological 
states in the development of pre-service teachers’ 
efficacy beliefs. Even though participants talked 
about mainly positive emotions and moods, when 
faced with criticism, they experienced negative affect. 
Bandura (1997) stated that “moderate levels of arousal 
heighten attentiveness and facilitate deployment of 
skills” (p. 108). Teacher educators, therefore, should 

be cautious in controlling the level of arousal pre-
service teachers’ experience. Creating a classroom 
environment in which pre-service teachers will feel 
comfortable and voice their thoughts without being 
criticized can boost their self-efficacy.

Upon completing methods course, almost all of the 
participants (8 out of 9) regarded themselves strongly 
efficacious for preparing tasks, whereas only 5 of them 
expressed high level of efficacy for implementing 
tasks. Participants stated that they had doubts about 
classroom management and in turn they didn’t 
express strong efficacy for implementing tasks. From 
this aspect, the lack of mastery experiences in actual 
classroom contexts might have caused lower level of 
development in pre-service teachers’ self-efficacy. As 
Bandura (1997) asserted, mastery experience is the 
most powerful source of self-efficacy. Thus, offering 
fieldwork experiences as a part of methods course 
might help pre-service teachers to benefit more from 
this course.

The importance of this study is its attempt to describe 
how methods course provided sources for pre-service 
teachers’ self-efficacy than simply defining which 
sources pre-service teachers used to develop their 
efficacy beliefs, as in previous research (e.g., Poulou, 
2007). However, because this study is limited with 
9 pre-service teachers, examining sources of pre-
service teachers’ self-efficacy with a larger sample 
can reveal how different elements of methods course 
support pre-service teachers’ efficacy development. 
One way of achieving this can be using open-ended 
questions, and findings of this study might help 
researchers with the design of such questions. 

Longitudinal studies can also show how pre-service 
teachers construct their efficacy beliefs over the time 
of methods course and the ways sources for their self-
efficacy interact. Such an approach can also disclose 
the influence of other courses and experiences pre-
service teachers engage in outside of methods class.

Considering the power of physiological states on self-
efficacy, a broader approach to the investigation of 
pre-service teachers’ efficacy beliefs as perceptions 
of competence (e.g., Coppola, Di Martino, Pacelli, 
& Sabena, 2012) and the role of emotions on the 
construction of self-efficacy can illuminate the 
pathways to support future teachers’ beliefs through 
teacher education programs.
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In groupwork activities, interaction plays a crucial role. 
We focus on two affective variables that frame interac-
tion: one’s own perceived competence (“I can”) and the 
competence that one recognize to the others (“you can”). 
In this poster, we show different interpretations of math-
ematics secondary school teachers about students’ “I 
can” and “you can” from observations of video excerpts 
of students working in groups. We discuss agreement/
disagreement among teachers’ interpretations.   

Keywords: Group interaction, teacher noticing, perceived 

competence.

Interactionist research acknowledges that learning 
in mathematics occurs in and through interaction, 
which is framed by the students’ “I sense” and “I can” 
(Andrà & Liljedahl, 2014). “I can” may prompt the stu-
dent to intervene in a conversation. “I can’t” may push 
a student to stay silent (see Andrà & Liljedahl, 2014). 
Each student may (or not) recognize a competence to 
each one of her classmates. Therefore, there is another 
dimension: “you can”. “I can” and “you can” are seen 
as interior states, whilst utterances, postures, etc... 
are the external expressions of such internal states.

The teacher also plays an important role, interven-
ing and driving the activity (Radford, 2014). Since 
emotions take a significant part in determining the 
outcome of the activity, it is crucial for the teacher to 
detect them and to react accordingly. Specifically, we 
aim at examining teachers’ noticing (Sherin, Jacobs, 
& Philipp, 2011) with respect to the “I can”-“you can” 
frame. Our hypothesis is that becoming conversant 
with this frame allows the teacher to better ground 
her meaningful actions/interactions within the com-
plexity of group activities. For example, in the case of 
a non-cooperating leader, it would be necessary to 
provide feedbacks that temporarily decrease her “I 
can” and increase her “you can”; indeed, in the case of 
a student with low “I can”, it is important to provide 

feedbacks that increase her self-confidence, but also 
increase her mates’ sense of  “you can” towards her.

Andrà, Brunetto, Parolini, & Verani (this volume) an-
alyse a video excerpts (from a probability course to 
prevent gambling abuse), codified as follows: a point 
corresponding to the student under analysis is placed 
on the one of the four cells of the 2x2 table represent-
ing the internal states “I can” – “I can’t”, “you can” – 

“you can’t”. Dwelling time is represented by a circle: 
the longer the time, the bigger the circle. Transitions 
are represented by oriented arrows. The result is a 
trajectory.

The excerpt comes from a group of 4 grade-10 (15 
years old) students: Alice (A), Barbara (B), Carola (C), 
and Dora (D). They are analysing a slot machine (3 
rolls, 9 symbols), and have to compute the expected 
winning. B starts as cooperative-leader (“I can”–“You 
Can”), then she becomes leader, suddenly she is not 
able to come up but she trusts her classmates, eventu-
ally she comes back to collaborate with her classmates 
on the task.

We firstly observe a group of teachers interpreting 
the same data presented in Andrà and colleagues (this 
volume) and asking them to fill in a 2x2 table like the 
one presented in Figure 1. We collected also teachers’ 

Figure 1: B’s trajectory
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extended comments. We seek for agreement/disagree-
ment with respect to our interpretations, focusing 
only on one student per group as an initial step.

There is a certain degree of agreement among teach-
ers, and between teachers’ interpretations and ours. 
In the poster we show some data that allow us to claim 
that collecting the teachers’ views according to the “I 
can” – “you can” frame goes beyond the purpose of 
validating a methodology: it is a way of observing, 
collecting and giving sense to affective moves that 
may drive the teachers’ decisions and behaviour in 
classroom. There are emotional issues that emerge 
with respect to the teachers’ perceived expectations in 
the “management” of group activities, as well as their 
specialised knowledge of group dynamics.
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The purpose of this paper is to characterize the attitudes 
of Mexican secondary school students (12–15 years old) 
when carrying out mathematical activities. In order 
to study attitude, the tripartite model of attitude was 
adopted and a methodological design was organized 
based on the adapted model. So far a learning situa-
tion focused on the subject of proportionality has been 
applied, in which we have been able to identify two at-
titudes: Acceptance and collaboration.

Keywords: Attitude, secondary school, characterization.

INTRODUCTION

Over the years, research regarding attitudes towards 
mathematics has grown and has studied students 
ranging from basic level to higher education students 
and teachers from the same levels. Acknowledging, 
the relevant role that attitude plays in the teaching of 
mathematics (Di Martino & Zan, 2010; Gómez-Chacón, 
2000; Hannula, 2012; McLeod, 1992), our aim was to 
characterize the attitudes of a group of secondary 
school students in relation to proportionality. We con-
sidered attitude to be like the assessment carried out 
by a student of the resolved mathematical activity. We 
adopted the tripartite model (Rosenberg & Rovland, 

1960), which considers attitude to be composed of 
emotions, beliefs and behaviors.

PROCEDURE FOR DATA COLLECTION

The learning situation regarding proportionality 
was carried out during a first year secondary school 
mathematics class. 28 students participated, working 
in teams. The students’ activity was filmed. In order to 
carry out individual interviews regarding the work 
carried out and some aspects of a personal and aca-
demic nature, 3 teams were selected: a) 2 men, b) 3 
women and c) 1 man and 3 women. 

RESULTS

We identified a system of attitudes formed of two atti-
tudes: 1) Acceptance of the activity and 2) Collaboration 
between classmates. Both formed a collaborative work 
system and were coherent with and related to each 
other. They were linked to emotions, beliefs, behavior 
and factors shown in Table 1.

The extent to which attitudes identified throughout 
the activity were manifested, increased and decreased. 
There were cases in which, at the beginning of the 
activity, the level of collaboration was very low, but 

Emotional 
reactions

Beliefs Behaviors Attitudes
Associated 
factors

Associated 
agents

Shock

Confusion

Happiness

Problems containing few 
operations are easy.

Division problems 
require information 
regarding what is being 
divided and between how 
many people it is being 
divided.

Empathy 
between class-
mates

Willingness to 
work as a team

Acceptance

Collaboration

Learning con-
tract

Goals of the 
student

Interests of the 
student

Parents

Classmates

Teacher

Table 1: System of identified attitudes
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thanks to interaction between classmates, the level in-
creased, students managed to get involved in the work 
and to resolve the activity. By carrying out interviews, 
we discovered that there were agents that indirectly 
influenced the attitudes of students including class-
mates who helped to solve problems, the teacher who 
assessed them and parents for whom mathematics 
was important and who demanded that their children 
obtain good grades, even better than for other curric-
ulum subjects.
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I present the Formative scaffolding approach, a method 
for teaching, evaluation and assessment in mathemat-
ics, describing a study, where 22 upper-secondary social 
science students’ perceptions and experiences of using 
formative scaffolding with respect to a test in mathe-
matics are explored. Results indicated that formative 
scaffolding might reduce mathematics anxiety and 
enhance mathematical proficiency. Students empha-
sise the opportunity for a second chance and that the 
learning process is visualised.

Keywords: Formative assessment, scaffolding, 

mathematics anxiety, proficiency.

In this poster a method for teaching, evaluation and 
assessment in mathematics is presented. The method 

is referred to as the formative scaffolding approach, 
see Figure 1, in which the concepts of scaffolding 
(Wood, Bruner, & Ross, 1976), formative assessment 
(Black & Wiliam, 2009) and writing to learn (Kågesten 
& Engelbrecht, 2006) are intertwined with each other 
(Shepard, 2005). Learning comprises cognitive, social, 
emotional and cultural embedded processes and in-
volves construction of knowledge (Bransford, Brown, 
& Cocking, 1999; Shepard, 2005). Allowing learners 
to actively participate in constructing knowledge 
may provide them with a deeper understanding, 
more self-confidence and motivation in using their 
knowledge (Smith, Maclin, Houghton, & Hennessey, 
2000). Enabling learners to actively participate in con-
structing their knowledge and visualize their learn-
ing is a fundamental core in formative scaffolding. 
The overall objective of this study is to present and 

Figure 1: Overview of the formative scaffolding approach process
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describe the teaching, assessment and evaluation 
method – formative scaffolding, see Figure 1 – and 
explore twenty-two social science students (age 17–18 
years) experiences of the method with respect to math-
ematical proficiency and anxiety in mathematics. The 
participants constituted one class in upper secondary 
school.  Through an exploratory action research study 
we investigated: experiences of formative scaffolding 
in relation to ordinary test in mathematics; effects 
of formative scaffolding in relation to mathematical 
proficiency and mathematics anxiety. Possible limita-
tions in the design of the study was that the class it self 
was acting as a control group. The present study is to 
be viewed as a pilot study providing important infor-
mation about the method as such and how to design a 
larger future study. Data were collected through short 
written narratives and one Likert type structured 
question. Students written responses and indica-
tion on the structured question were analysed using 
thematic coding analysis (Boyatzis, 1998). Emerging 
themes and illustrative quotes of the students’ expe-
riences is going to be presented. Results indicated 
that formative scaffolding might reduce mathemat-
ics anxiety and enhance mathematical proficiency. 
Students emphasise the opportunity for a second 
chance and that the learning process is visualised. 
We suggest that the proposed formative scaffolding 
approach may be added to the list of other potential 
tools for learning, and, this approach can be used to 
make summative tests in mathematics to an additional 
opportunity for learning.
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BACKGROUND

This study is concerned with students on an introduc-
tory programme where they are supposed to compen-
sate for earlier failure in mathematics in compulsory 
school. Having worked for several years with students 
in this category, I have noticed that some of them have 
passed in other subjects where mathematics is used 
as a tool. The question then becomes: Why mathemat-
ics? Thus, the focus is on students who have passed in 
other subjects, including physics and chemistry, in 
compulsory school, but not in mathematics.

According to official statistics, 8.6 % of all students 
who finished the Swedish compulsory school in 2011 
failed to pass in mathematics (Skolverket, 2012). The 
Swedish compulsory school consists of nine years 
of schooling. Students who have received a pass in 
Swedish, English and Mathematics in addition to cer-
tain other subjects are eligible for a three-year upper 
secondary school education. For students who are 
not eligible, there are five introductory programmes, 
which lead either to further study or to work.

Generally, the frequency of low achievement in math-
ematics increases during compulsory school age 
(Magne, 2006), which makes it interesting explore 
what goes wrong in those years. As Magne (2006) 
points out, there is not much research on students 
with low achievement in mathematics.

In order to research low achievement in mathematics, 
it seems relevant to consider students’ perceptions 
of mathematics teaching. According to Samuelsson 
(2007) students’ feelings range from satisfaction to 
anxiety and fear. Gierl and Bisanz (1995) describe 
mathematics anxiety as a lack of enjoyment in math-
ematics. When a student with mathematics anxiety is 
faced with the requirement to work with mathematics, 
a chain of reactions like panic, frustration, paralysis 

and mental disorganization could appear (Foire, 1999; 
Bandalos, Yates, & Thorndike-Christ, 1995). According 
to Nyroos, Bagger, Silfer and Sjöberg (2012), the pres-
ence of test anxiety is significantly present as early as 
in the Third Grade.

Reasons for students’ mathematics anxiety could be 
the activities that they are supposed to do (Greenwood, 
1984) or the teacher’s ability to create a positive learn-
ing climate (Samuelsson, 2008) or boredom (Ingram, 
2009). The study seeks to contribute to research by 
focusing on school mathematics as the single subject 
where the student has not passed, and implications of 
the study could be a better understanding of students’ 
emotional states like affect or anxiety in relation to 
school mathematics.

PURPOSE AND RESEARCH QUESTION

The aim of the study is to develop an understanding of 
what may affect students in such a way that passing in 
mathematics turns out to be impossible. The study is 
based on students’ narratives and the research ques-
tion is:

 ― How do students explain why they have failed 
in mathematics while they have passed all other 
subjects in compulsory school?

My poster shows students’ utterances and visual con-
nections (arrows) to some aspects like affect, anxiety, 
motivation etc. Background, research question and 
methodology are presented in text blocks.
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We begin by briefly examining the relevance of the study 
of language in mathematics education research, as well 
as some of the collaborative forms in which TWG09 is 
moving the study of language forward in the field. To pro-
vide reasons for the recent contributions by TWG09, we 
summarise lines of concern and tendencies that come 
from our reading of the set of papers and posters present-
ed at CERME9. We build on the review work by Morgan 
(2013) to argue for the consolidation of such a diversity 
of lines of concern and tendencies in the contemporary 
agenda of the domain. The discussion of accomplished 
goals of the agenda points to a number of challenges and 
priorities in the context of TWG09 – its participants, 
their interaction and their activity. 

Keywords: Language, mathematics education, 

mathematics education research, understanding, 

challenges.

OVERVIEW 

The study of language in mathematics education 
research is a relatively young domain, however, 
with well-organised academic initiatives on an in-
ternational level. One of the activities promoted by 
the European Society for Research in Mathematics 
Education (ERME) is the Thematic Working Group 

‘Mathematics and Language’ (see Rønning & Planas, 
2013, for a brief historical overview of the group 
since its origin). The Thematic Working Group 

‘Mathematics and Language’ at CERME9 (TWG09) has 
brought together a collection of papers and posters 
that analyse a wide spectrum of topics, theoretical 
traditions and analytic approaches in this domain. 

The fact that the study of language is at the core of 
intersections between many topics and theories in-
evitably has an effect on the nature, composition and 
evolution of our group. In 2015, for instance, some 
senior researchers in the field (i.e., researchers who 
have been active in the study of mathematics educa-
tion for many years, although not necessarily keeping 
a regular focus on the study of language) have come 
to our group to discuss aspects of their work. They 
have shared expertise with, on the one hand, senior 
researchers in the group (i.e., researchers who have 
been active in the ‘Mathematics and Language’ do-
main within ERME for many years) and, on the other 
hand, with a large number of early researchers in the 
field (i.e., researchers who are new to both the study 
of mathematics education and the study of language 
issues with relation to mathematics education). 

The purpose of this introductory text is to provide a 
conceptual and scholarly context for the papers and 
posters presented at CERME9. The rest of the text is 
organised into three sections. The first section deals 
with arguments for the relevance of the study of 
language in the field. The second section provides a 
description of how our domain is being constituted 
in ways that include a number of perspectives on lan-
guage; following this, we trace a diversity of lines of 
concern and tendencies which come from our reading 
of the set of papers and posters. The third section con-
cludes with reflections on how to mould the future ac-
tivity of participants in TWG09. Collaboration among 
researchers from different countries, social realities 
and theoretical traditions are crucial aspects of what 
is needed to push boundaries further and explore 
new horizons in the study of language with relation 
to mathematics teaching, learning and education. One 
of the problems to be addressed is, in view of what is 
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needed, what can be done and how it can be done in 
the years to come.

THE STUDY OF LANGUAGE IN 
MATHEMATICS EDUCATION

While questions addressing the relationship between 
language and mathematics have been a focus of study 
for over 30 years (see, e.g., Pimm, 1987), we still under-
stand little about how and why language develops in 
interaction with mathematics teaching and learning 
development. Despite the fact that much remains to 
be researched, substantial knowledge in this regard 
is being produced inside and outside of ERME. We 
have arrived at the present destination – in which our 
domain is well recognized, established and differen-
tiated in the field – after a long journey. 

In 1974, an international symposium on “Interactions 
between Linguistics and Mathematical Education” 
was held in Nairobi, Kenya, sponsored by UNESCO in 
cooperation with ICMI and the Centre for Educational 
Development Overseas. Up to that moment, there had 
been no international events focusing on the relation-
ship between mathematics and language. The final 
report of that symposium (UNESCO, 1974) revealed 
the lack of studies and research experience in this 
domain; moreover, it urged the international scien-
tific community to adopt an agenda by identifying 
key issues, questions and needs at the intersection of 
mathematics education and language. Five years later, 
a review paper, with potential for founding an early 
agenda, was published by Austin and Howson (1979) 
in Educational Studies in Mathematics. A total of 240 
references on language and mathematics education 
were compiled to indicate possible areas for investi-
gation as well as areas in which research activity had 
already commenced. 

In 2015, more than four decades after the Nairobi sym-
posium, the examination of key issues, questions and 
needs at the intersection of mathematics education 
and language continues. Some of the newest issues 
and questions reveal, for instance, the increasing 
interest in a range of language uses in school mathe-
matics contexts. Such uses may vary from one class-
room to another, and more generally among school 
cultures, histories and pedagogies of teaching, but 
overall they may be dependent on who the involved 
users are (Planas, 2014). A large amount of evidence 
for the complexity of language use can be found in 

Mathematics Education and Language Diversity, the 
abbreviated title for the volume of the New ICMI Study 
Series edited by Barwelland colleagues (2015), which 
is one of the latest milestones of the long journey in 
the consolidation of the study of language in mathe-
matics education. 

Another step in the journey toward the maturity of 
the domain has been undertaken by Barwell (2014) 
and Morgan (2014), in their respective synthesis of 
reasons for the relevance of the study of language in 
mathematics education in two of the entries in the 
Encyclopedia of Mathematics Education: 

The teaching and learning of mathematics de-
pend fundamentally on language. Mathematics 
classrooms, for example, may feature discussion 
among students, lectures by the teacher, printed 
curriculum materials or textbooks, and writing 
on a blackboard or on a screen. (Barwell, 2014, 
p. 331)

While some aspects of mathematical language, 
such as its high degree of abstraction, may be an 
obstacle to participation for some people, doing 
mathematics is highly dependent on using its 
specialized forms of language, not only to com-
municate with others but even to generate new 
mathematics. In making this claim, we need to 
be clearer about what mathematical language is. 
(Morgan, 2014, p. 388)

During recent years, many new studies, journal 
articles and conference papers have contributed to 
reporting empirical findings and accurate theoret-
ical developments in the domain. The creation and 
revision of knowledge in these works is being guided, 
either implicitly or explicitly, by common basic ques-
tions, whose origins can be traced back to the early 
work on language and teaching dilemmas by Adler 
(1998): Where is language in this? Why does it matter? 
How can it be researched in ways that are idiosyncratic 
to mathematics education? All in all, the existing vari-
ety of contemporary lines of concern in the domain 
can be thought of as different epistemological and 
analytical strategies of approaching these questions. 
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COMMON QUESTIONS, DIFFERENT 
LINES OF CONCERN 

In her CERME8 plenary, Morgan (2013) offered a 
range of possibilities around what language enables 
mathematics education researchers to study, and how 
much the study of language challenges the ways in 
which we carry out research in the field. Moreover, 
she provided a thorough literature review concerning 
the work presented in the Thematic Working Group 

‘Mathematics and Language’ over recent decades. In 
that plenary, Morgan claimed that the quality of re-
search on language in mathematics education is influ-
enced by a number of studies whose ideas have been 
at some time presented and discussed in ERME. We 
interpret the range of possibilities posed by Morgan 
(2013) in terms of potential lines of concern which 
map the contemporary domain and whose research 
has been initiated, inside and outside of ERME, with 
different levels of intensity. We refer to research con-
cerning: 

1) Communication and interaction in mathematics 
teaching and learning.

2) The representational systems in creating/struc-
turing mathematical knowledge.

3) The role and use of languages in mathematics 
education practices.

4) The features of codes/registers in the construc-
tion of mathematical language.

5) The intervention of discourses in knowing and 
thinking in/about mathematics. 

These five lines of concern illustrate how the agenda 
regarding the study of language in mathematics edu-
cation has introduced new complexities and, thus, has 
evolved toward building a domain much wider than 
that imagined in the 1970s. In this respect, it is not sur-
prising that the lines of concern suggested by Morgan 
to show the range of possibilities already opened for 
research in 2013, have emerged from our reading of 
the papers and posters presented in TWG09 during 
CERME9. While the limited collection of papers at 
CERME9 cannot totally reflect the scope and wideness 
of the contemporary domain, it confirms that some 
work is being done in each of these five directions. For 
the purpose of organising the discussion around the 

set of papers and posters accepted for presentation 
at the time of the conference, we used five abbrevi-
ated descriptors, respectively aligned with specific 
dimensions of the indicated lines of concern. These 
descriptors are:

1) Communication, interaction and gestures.

2) Epistemic, cognitive and structural aspects.

3) Multilingualism and sociocultural aspects.

4) Mathematical language and language use.

5) Discourse, practices and positioning.

In what follows, we summarise some of the lines of 
concern and tendencies which can be traced in the 
collection of papers and posters. As a whole, the 
process of grouping papers and posters has provid-
ed a straightforward picture of how and how much 
language is approached as a bundle of notions that 
other notions (gestures, registers, diagrams, talk, 
multilingual, mathematical objects, etc.) transverse, 
all of them with a diversity of attributed meanings 
and understandings. This is why the location of con-
tributions is not univocally determined. It reflects 
our interpretation of the knowledge privileged by 
the authors in their texts. We may have overlooked 
ideas that some of the authors consider essential. 
Nevertheless, as the intention is to map the work in 
TWG09 and not to give a detailed account of each sin-
gle paper or poster, we hope that all authors will see 
their work represented. 

Communication, interaction and gestures
Six papers by Reinhardtsen, Carlsen and Säljö; Nordin 
and Björklund-Boistrup; Boukafri, Ferrer and Planas; 
Vogler; Farsani; and García Moreno-Esteva and 
Hannula, along with one poster by Roubicek, con-
stitute the works in the direction of Communication, 
interaction and gestures. All these authors understand 
verbal (oral and written) and non-verbal (gestures, fa-
cial expression and visual contact) forms of language 
as communication strategies in classroom interaction. 
Language, in its verbal and non-verbal forms, is con-
ceived as an instrument of communication, also in 
its various forms: individual, collective, peer-based, 
etc. In this way, diverse language use is tantamount 
to communication, learning and teaching. 
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In the presented works, we see two major tendencies 
or emphases that can be found at the intersection of 
several interrelated lines of concern. One is the ten-
dency of the study of interaction through the study of 
gestures in classroom contexts of mathematics teach-
ing and learning. In Farsani, for instance, gestures 
are proven to provide direct data for researchers 
to examine communication between teachers and 
learners. Here, a joint finding with the work by García 
Moreno-Esteva and Hannula is the role of gestures in 
the production of successful instances of mathemati-
cal communication, with a number of opportunities 
for mathematics teaching and learning. Closely re-
lated to the analysis of gestures, the production of 
intertextuality and multimodal texts to represent 
classroom data is also examined by these authors. 

Another tendency in some of these works is the study 
of communication through and with digital media as 
part of the language environment for mathematics 
teaching and learning. The shift from text-based pa-
per-and-pencil communication to multimodal digital 
communication is viewed as a qualitative change in 
the practice of mathematics teaching. It is generally 
noted that multimodal dynamic texts produced by 
teachers and students should be reproduced by re-
searchers in different kinds of multimodal dynamic 
transcripts. Here, the potential interplay between 
multimodal resources, digital technologies and 
mathematical modes of communication is discussed 
by Reinhardtsen, Carlsen and Säljö, at a methodolog-
ical level, through the development, application and 
evaluation of analytic tools created ad hoc. 

Epistemic, cognitive and structural aspects
Six papers by Ruthven and Hofmann; Erath and 
Prediger; Krause; Fetzer and Tiedemann; Meyer; 
and Mellone and Tortora, together with a poster by 
Zwetzschler, constitute the collection of works in the 
direction of Epistemic, cognitive and structural aspects. 
All these papers address the study of ways in which 
mathematics classroom discourse develops grounds 
for and access to (school) knowledge and (school) 
knowledge claims. In this respect, an elusive area of 
concern regarding epistemic issues in school mathe-
matics has been present in TWG09.

One identifiable tendency in this direction is the con-
ducting of classroom studies. Ruthven and Hofmann 
introduce the term epistemic order, which refers to a 
system used to describe how ideas are developed and 

evaluated in the classroom. Their work expands the 
classical Initiation-Reply-Evaluation and Initiation-
Response-Follow-up patterns of interaction (e.g., 
Sinclair & Coulthard, 1992) by including codes to ex-
plain who is responsible for what, and who takes the 
initiative. The work by Erath and Prediger also deals 
with how students participate in the configuration 
of the mathematics classroom discourse. These au-
thors are interested in understanding how students’ 
learning opportunities relate to forms of participa-
tion in the discussion of epistemic issues concerning 
knowledge about the construction and justification of 
school mathematics knowledge. The paper by Krause 
investigates the epistemic function of gestures. In a 
study of tenth graders, she looks for evidence that 
gestures may support reasoning actions when math-
ematical knowledge is constructed. 

The other papers are oriented toward how language 
use relates to what is knowable, which indicates an-
other tendency in this direction of papers. Fetzer and 
Tiedemann look at the interplay between language 
and manipulatives. They show how a fairly simple 
language can become mathematically more complete 
when it operates in connection with both human and 
non-human objects. Meyer is concerned with trans-
formations of algebraic expressions, and with how 
learners convey the structure of an algebraic expres-
sion to other learners with the use of language. The 
paper by Mellone and Tortora is of a more theoretical 
nature, although based on experience from working 
with learners. These authors discuss how an idea of 
ambiguity, often implicit in school mathematics, can 
be explicitly used in the teaching activity.

Multilingualism and sociocultural aspects
Five papers by Barwell; Poisard, Ní Ríordáin and 
Le Pipec; Ní Ríordáin and McCluskey; Chronaki, 
Mountzouri, Zaharaki and Planas; and Klose, togeth-
er with one poster by Šteflíčková, constitute the col-
lection of works in the direction of Multilingualism 
and sociocultural aspects. All these papers share the 
basic conceptualisation of the students’ languages as 
pedagogic resources and entries to learning identi-
ties, though they may take different perspectives on 
how language(s) and speakers relate to mathematics 
teaching and learning. 

In these works we see two tendencies. One is the ten-
dency of putting together design experiments and 
case studies. Chronaki and colleagues examine the 
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case of a learner whose dominant language is not the 
language of instruction in a way that leads to the de-
sign, implementation and assessment of strategies for 
language use in mathematics classroom interaction. 
This approach is also taken by Barwell in his research 
with bilingual students in Canada. Barwell relates 
language use and its outcomes to the distinct language 
identity of certain groups of students in the multicul-
tural mathematics classroom. In particular, he sug-
gests that the construction of mathematical learning 
in multilingual settings is often guided by views of 
languages other than the languages of instruction 
and their speakers, rather than views of mathematical 
competence, performance and achievement.

A second tendency comes when examining the num-
ber of considerations at a political level made by the 
authors in their papers. All the presented papers in 
this direction focus on the perspective of languages 
as resources while considering the dilemmas involved 
in the choice and use of languages. These dilemmas 
indicate the extent to which the deficit perspective, in 
the study of language and language diversity, is more 
and more contested nowadays, particularly due to the 
impact in the domain of studies recurrently cited by 
some of the participants in TWG09 (e.g., Moschkovich, 
2002). Poisard, Ní Ríordáin and Le Pipec, for instance, 
reflect in their paper on some of the enduring com-
pensatory responses in the interpretation of the needs 
of students whose home languages are different from 
the language of instruction or the lingua franca.

Mathematical language and language use
Six papers by Edmonds-Wathen; Segerby; Tiedemann; 
Söbbeke; Albano, Coppola and Pacelli; and Engvall, 
Samuelsson and Forslund, along with one poster by 
Arce, Conejo and Ortega,  comprise the collection 
of works in the direction of Mathematical language 
and language use. Most of the research focuses on the 
learning of mathematics at primary, secondary and 
university levels, while there is also a study in an in-
digenous population. It is shared an understanding 
of language use and language development for math-
ematical development through writing, reading and 
talking. 

We identify a tendency around the analytical distinc-
tion of writing, reading and talking. Segerby focuses 
on the kinds of writing of young children in mathe-
matics lessons. She finds that children write more in 
calculations as they progress through primary school, 

at the expense of transactional and poetic modes. Arce, 
Conejo and Ortega focus on the diverse uses of writ-
ten notebooks by students at school secondary level. 
Albano, Coppola and Pacelli cover writing and reading 
since the pupils in their study are asked to develop 
written arguments from reading graphs. They find 
evidence of the complexity of switching between col-
loquial and literate registers. In a paper related to 
talking, Engvall, Samuelsson and Forslund draw con-
clusions about the relationship between communica-
tive teaching strategies and students’ development of 
procedural and conceptual language. On the other 
hand, Tiedemann addresses the notion of linguistic 
norms to examine classroom talking.

All papers in this direction show the extent to which 
the use of language in mathematical situations is de-
termined by the mathematics, and by the situations 
and the people interacting within them. The abstract-
ness of mathematics is highlighted, which often influ-
ences mathematical language by making visualisation 
impossible, along with the cultural situatedness of 
this mathematical language, in which for example 
the centrality of spatial prepositions is not necessar-
ily true. Taken together, the papers show that there 
is no common, fixed mathematics constituting the 
language we use in mathematical situations. From 
a primary classroom in Germany, where students 
have to negotiate the linguistic norms of mathemat-
ics lessons, to the negotiating of concepts of motion 
in an Australian indigenous language, language is 
constituted by specific mathematical situations and 
by the participants in them. The construction of math-
ematical meanings as a basis for learning mathemat-
ics is therefore in constant interplay with the use of 
mathematical language. 

Discourse, practices and positioning
Six papers by Nachlieli and Tabach; Ingram and Pitt; 
Wagner, Dicks and Kristmanson; Jung and Schütte; 
Dooley; and Hess-Green, Heyd-Metzuyanim and 
Hazzan constitute the collection of work in the direc-
tion of Discourse, practices and positioning. All these 
papers address the study of classroom discourse for 
the identification, production and analysis of inter-
connected teaching, learning, positioning and iden-
tity-work practices. Across papers there is a common 
tendency concerning theoretical integration and the-
ories networking. 
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Nachieli and Tabach, along with Hess-Green, Heyd-
Metzuyanim and Hazzan, address discourse in math-
ematics classrooms through a variety of theoretical 
perspectives such as commognition (Sfard, 2008), 
discursive psychology and theories of identity, while 
Wagner, Dicks and Kristmanson develop connections 
between socio-linguistics, pragmatics and theories of 
positioning for the purpose of their research. More 
generally, different authors base their notion of dis-
course on different theoretical approaches. Some of 
the papers are focused on socio-cultural approach-
es where discourse is not seen merely as individual 
word meaning or as linguistic utterances located in a 
classroom; here, the authors embrace theories of lan-
guage where the subject is seen as a social, historical 
and political interlocutor. Mathematical discourse is 
related to varied ways of talking, reading, represent-
ing, interacting, moving, silencing, believing, valuing, 
identifying, performing and acting. 

The tendency in these papers appears at the inter-
section of a diversity of lines of concern, whose col-
lective reading provides opportunities to unpack the 
discourse(s), diversity, ethics and epistemologies of 
learning mathematics. In Nachieli and Tabach, and 
also in Ingram and Pitt, we find the study of the con-
struction of competency and success in the course of 
classroom interactions where different representa-
tions of ‘competent’ and ‘successful’ students are at 
play. Moreover, we find the study of the role of vague 
language and politeness in mathematical conversa-
tions in Dooley, of notions of uncertainty in students’ 
discourses related to prediction and conjecturing in 
Wagner, Dicks and Kristmanson, of young children’s 
participation in decontextualised mathematical dis-
course in Jung and Schütte, and of emotions in expe-
riences of discourses on achievement and learning in 
Hess-Green, Heyd-Metzuyanim and Hazzan, amongst 
other lines of concern. 

WHERE TO GO FROM HERE

In this final section, we build on our discussion of the 
contemporary research agenda of our domain inside 
and outside of ERME, to shortly reflect on the poten-
tial of TWG09 –its participants, their interaction and 
their activity– in the further refinement and devel-
opment of this agenda. We see TWG09 not only as a 
space for researchers who share interests concerning 
language issues in mathematics education, but more 
importantly as a space for researchers who may have 

an influence on each other through their interactions 
at the time of the conferences and during the in-be-
tween periods. This second perspective represents a 
mature stage in the process of constructing a group 
with a strong scientific identity, capable of quality 
group work.  

By the end of CERME9, the team of co-leaders asked 
participants of TWG09 to suggest reflections on how 
to mould the future activity in the group. An e-mail 
communication sent by one of the participants, who 
was attending her first CERME, revealed her vision of 
TWG09 as a rich space though still in an early stage 
of group work maturity. This is an instance of what 
this participant shared with us: 

It is important to get to see, as a group, the enor-
mous challenges waiting for us to work on them. 
What I have missed though, is explicit considera-
tion of how we are going to organize the near fu-
ture so that we face these challenges by building 
on each other. (Participant of TWG09 at CERME9, 
e-mail communication) 

This participant critically raised the issue of build-
ing on each other as a group. This is an insightful 
comment on the importance of building seriously 
on relevant work and ideas by other participants in 
order to strengthen the domain and our potential as 
contributors to its progress. The view by this partic-
ipant may not be unique. We must continue to learn 
how academic collaboration within TWG09 can be 
reinforced in order to jointly face the many challenges 
posed at present and in the years to come in the study 
of language in mathematics education, both inside 
and outside of ERME.

Collaboration and regular work within the context 
of our group can contribute to moving the interna-
tional agenda forward in directions that address, for 
example, the role and use of gestures in the bilingual 
mathematics classroom, the anticipation of forms of 
interaction for dialogic-based class discussion, the 
development of cross-linguistic analysis of mathe-
matical cognition, the evaluation of content- and 
language-integrated approaches to learning, or the 
introduction of multimodal resources for the benefit 
of mathematics thinking. All in all, TWG09 – its par-
ticipants, their interaction and their activity – can 
contribute to expanding our knowledge of a number 
of issues, questions and needs, with implications for 
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the achievement of quality mathematics instruction 
and equitable learning environments. By building 
on each other, we can learn more about how talk and 
interaction develop throughout mathematical activity. 
We can particularly learn how preferences for explor-
atory talk and inquiry-based lessons are validated 
by rigorous empirical work, and how variations of 
these preferences have an effect at different stages 
of mathematical learning. Insights from research in 
this domain can assist in developing interventions to 
improve mathematics teaching and learning practices. 
Thus, one of the challenges is to conduct and promote 
research that increases our understanding of how 
mathematics teaching and learning develops, but that 
also allows us to identify effective strategies and ways 
of improvement in practice. 

It is our hope that the following set of papers and 
posters will stimulate interest in and appreciation 
of work across a wide number of language aspects. 
Regardless of the aspects that we decide to highlight 
in our work, the centrality of language must always 
be kept in mind. We invite our colleagues in the field, 
as well as teachers, teacher educators, curriculum 
developers, policy makers, etc., to think along with us. 
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The work described in this paper is framed in a larger 
study focused on written argumentations produced by 
university students in tasks regarding graphs, conver-
sions between graphs and their analytic properties and 
relations among different graphs. Using the functional 
linguistics framework, we analyse difficulties related to 
an examination task on functions and their derivatives. 
The use of colloquial and literate registers in mathe-
matics problem solving is the lens through which we 
analyse and discuss the errors. We draw attention to 
the difficulties concerning the use of literate registers 
and how these difficulties influence the errors in the 
interpretations of texts and figures. 

Keywords: Language, colloquial and literate registers, 

written argumentations.

INTRODUCTION 

In this paper we focus on the analysis of written ar-
gumentations, produced by undergraduates to justify 
their answers in problems concerning graphs, rela-
tions among various graphs and their coordination 
with analytic properties. 

The study was born in a first year University con-
text, and, in particular, concerns Biology freshman 
students attending a basic mathematics course. 
According to the goals of mathematics instruction 
in applicative domains, such as Biology, the course 
primarily is aimed at allowing students to interpret 
and compare graphs of elementary functions. The 
need for argumentation comes from the need for 
preventing them from answering at random and for 
promoting a more-in-depth understanding.

Our research is framed in the context of the language 
as the key point in learning processes (Sfard, 2001) and 

of the importance of writing to learn (Morgan, 1998). 
In this framework, languages are seen as constructors 
of the meanings themselves. From this viewpoint, the 
quality of language influences the quality of thinking 
and this requires educational attention to the corre-
spondence between semiotic activities and linguis-
tic competency of the participants (Ferrari, 2004). In 
fact, evidence shows how some learning difficulties in 
mathematics can be ascribed to poor linguistic com-
petence (Ferrari, 2004).   

In the following we are going to investigate the pro-
tocols produced by a sample of students that were 
required to compare graphs and to produce an argu-
mentation to justify their choices. A lot of difficulties 
emerged at different levels, in particular, in data read-
ing, even with visual data. 

We interpret these difficulties, which are linguistic 
or semiotic in nature, using the functional linguistic 
framework. In particular, we focus on the use of col-
loquial and literate registers in mathematics problem 
solving. 

Our research question is the following: How the level 
of linguistic competence, particularly the difficulties 
concerning the use of literate registers, influences the 
way of interpreting texts and figures. More in general, 
in a Vygostkian framework (Vygotskij, 1934), we are 
interested in investigating how the language does (or 
does not) support thinking in the interpretations of 
texts and figures.

THEORETICAL BACKGROUND

Language is growing as one of the most relevant is-
sues for research in mathematics education. Several 
authors have studied the interactions among the 
different semiotic systems in mathematics learning. 

mailto:ccoppola@unisa.it
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From the cognitive point of view, Duval’s (2006) in-
vestigations have highlighted how the coordination 
of various semiotic representations is the key to com-
prehension in mathematics.

According to O’Halloran (2005) three main groups 
of semiotic systems can be devised: verbal language, 
symbolic notations and figural representations, 
which are strongly interwoven in doing mathematics. 

Sfard (2001) interprets thinking as communication 
and regard languages not just as carriers of pre-exist-
ing meanings, but as builders of the meanings them-
selves. So, under this perspective, language should 
heavily influence thinking.

As already said, there is evidence that a good share 
of students’ troubles in mathematics can be ascribed 
to improper uses of verbal language (Ferrari, 2004). 
More precisely, students often produce or interpret 
mathematical texts according to linguistic patterns 
appropriate to everyday-life contexts rather than to 
mathematical ones. The difference is not just a matter 
of vocabulary, grammar or symbols, but it heavily 
involves the organization of verbal texts, their func-
tions and relationships with the context they are 
produced within. This is why Ferrari has assumed a 

pragmatic approach to interpret students’ behaviours. 

This means focusing on the language use and on the 
different functions it plays rather than just on gram-
mar. In this respect, a further characteristic of verbal 
language has to be taken into account, the multivari-
ety, that is the use of language in various registers 
(intending register as a linguistic variety based on 
use) (Leckie-Tarry, 1995). 

According to Ferrari (2013), in mathematics we need 
both the colloquial registers, to construct the concepts 
without paying much attention to the form of their 
representation, and the literate registers, including 
symbolic representations, which can be considered 
as extreme forms of literate registers. The latter ones 
are essential to express relations among concepts, to 
elaborate generalisations and to explain solving pro-
cedures. Ferrari (2004, 2013) has shown how many of 
the students’ errors can be traced back to the use of 
typical styles of colloquial registers whereas more 
advanced styles would be necessary.  

METHODOLOGY

The sample taken into account for our research con-
sists of 64 students attending the first year of a 3-year 
BSc degree in Biology and taking part in a 48-hour 

Indicate three graphs, among the graphs A, B, C, D 
reproduced below, that do not correspond, in the 
displayed interval, to the derivative of the function 
g represented on the right side. Justify your answer. 

g

−10 −5 5 10

2

4

6

x

y

A) 

−10 −5 5 10

−2

2

4

x

y

B)

−10 −5 5 10

−2

−1

1
x

y

C) 

−10 −5 5 10

2

4

6

x

y

D)

−10 −5 5 10

−4

−2

2

4

6

x

y

Figure 1: The task in the study
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module in mathematics. According to the aims of the 
course, the lectures and the tutoring sessions were 
not based on a deductive approach (that is, definitions, 
theorems and applications), but they aimed at involv-
ing students in activity of coordination of various 
semiotic systems (Duval, 2006) concerning functions 
(formulas, graphs, tables, verbal texts).

In accordance with the lectures, in the exams the stu-
dents were required to master graphical representa-
tions of functions and to be able to coordinate graph-
ical and analytic properties of functions and their 
derivatives. Moreover, argumentation abilities were 
required to justify their answer. 

In the examination task the question was posed in 
“negative” mode: given a function graph, the students 
had to indicate three out of four graphs “not” corre-
sponding to the derivative of the given function, jus-
tifying their answer (Figure 1).

Our analysis was focused on the argumentations giv-
en by the students, even if the answer was correct (i.e., 
A, C, D), and we looked at them through the lens of the 
distinction between colloquial and literate registers. 

We point out that 23 students answered correctly. The 
errors that emerged have been classified according 
to typical linguistic categories (Leckie-Tarry, 1995), 
as listed in Table 2. 

ANALYSIS OF PROTOCOLS

We report some protocols of special representa-
tiveness, and explain part of our analysis, using 
the described categories in Table 1. We present the 
pictures of the original protocols in Italian and our 
corresponding English translations.

A09: In y =1 the function is increasing, so its 
derivative has to be increasing, this 
rules out the graph B. We rule out C 
because it has x = 0 and at the point 0 is 
increasing. We rule out D because for 
y = 2 the function is increasing, and not 
passing through 0, for this reason we 
rule out D. The right graph could be A.

In protocol A09 (Figure 2), there is a quite inaccurate 
and “careless” language and confusion in the reading 
of graphs. The student refers to a context of situa-

Literate register Colloquial register

Context of culture: links with other texts and 
knowledge are activated.

Context of situation: the text is linked to the specific 
situation in which it is interpreted or produced (the 
exam situation). In this case, students face the problem 
starting from the text and the images in the task without 
referring to other knowledge, on the basis of general 
heuristics (an example is “if f is increasing, then f’ is in-
creasing”) or looking for analogies (in the graph itself or 
in other tasks previously carried out).

Lexicalization: words are used according to well-
known and shared definitions or descriptions.

Lack of lexicalization: everyday meaning of words (that 
is vaguer) prevails over the one based on definitions 
(think, for example, of such words as “increasing”, “in-
flexion point”, “concavity”).

Propositions’ explicit structure: subject, comple-
ment, conjunctions. Text organization is ruled 
by grammar and is based on subordination 
relationships (causative, consecutive, temporal 
propositions).

Propositions’ implicit structure: subject or complements 
are often missing. Text organization is realized by 
means of spatial nearness of the sentences, or by means 
of graphical artifices (such as arrows, colours) or textual 
markers that are vague (for example “and”) or randomly 
(as an example, “therefore” wrongly used).

Stability: text interpretation and production is 
quite stable, thanks to the explanation and use of 
verifiable definitions.

Instability: text interpretation and production result 
from factors out of control, e.g. how the students use 
words, the mental images they activate instead of defini-
tions, previously carried out tasks that they remind of. 

Metaphoric-symbolic organization: the link be-
tween representations and their content is not 
natural but conventional or metaphorical.

Congruent-iconic organization:  organization and form 
of the representation are not arbitrary but they natural-
ly correspond to organization and form of the meaning. 

Table 1: Categories of errors
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tion using the interpretation that identifies a func-
tion’s properties with the properties of its derivative. 
Moreover the structure of propositions is implicit and 
there are repetitions. Language appears quite vague 
in “We rule out C because it has x=0 and at the point 0 is 
increasing”. Maybe it is meant to say that the function 
represented in C assumes 0 as the value for x = 0. But 
being increasing in 0, how can this exclude graph C?

Besides, he/she writes “In y=1 the function is increas-
ing”, where 1 is the y-coordinate of the intersection of 
the graph of the function with the y-axis: an iconic or-
ganization seems to prevail. The same happens when 
the student writes “for y=2 the function is increasing 
and not intersecting 0”, reading 2 on the y-axis and 
meaning the point in which the function assumes a 
value equal to 2. 

Students, like the one in protocol A09, do not consist-
ently apply some convention to name the points on the 
graph (e.g. indicating the x-coordinate only, or both 
the x and the y-coordinates) but they seem to choose 
the label that is nearer to the point. In other words, the 
spatial relationship between signs prevails on their 
defined meanings as well as on the conventions that 
regulate their use.  As shown in Table 1, iconicity is 
typical of colloquial registers, whereas in literate ones 
conventions or metaphors are the standard ways of 
conveying meaning.

A07: I ruled out the graphs A, B, C. Let’s notice 
that the graph of the function g has got 
horizontal tangent, so g’(x) = 0 and I rule 
out A because it does not pass for the 
origin; g displays an upward concavity 
so g’(x) is increasing. Therefore I rule 
out B and C that are decreasing.

Also in protocol A07 (Figure 3) the language is quite 
inaccurate and there is a strong presence of the char-
acteristics of colloquial register categories (Table 1). 
The student writes: “the graph of the function g has 
got horizontal tangent, so g’(x)=0”, without specifying 
where there is a horizontal tangent in the graph of 
function g. By writing g’(x)=0, does he/she mean that 
the derivative is identically vanishing? Maybe, in a 
context of spoken communication, the sentence would 
be followed by a negotiation with the interlocutor, to 
explain the exact meaning.

Moreover he/she writes “g displays an upward concav-
ity”, showing a lack of conceptual control of the image 
and a lack of lexicalization: maybe the everyday mean-
ing of the word “concavity” influences the answer (it 
could be that the student is reminded of a “standard” 
image of parabola). Also in the expression “I rule out 
B and C that are decreasing” a poor conceptual control 
of the image seems to emerge.

Figure 2: Protocol A09 – Answer: B, C, D

Figure 3: Protocol A07 - Answer: A, B, C

Figure 4: Protocol A21 – Answer: A, B, C
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A21:  B vanishes because it is positive while 
it should be negative.

Together with the lack in the conceptual control of 
the image (“B…is positive”), we found the protocol A21 
(Figure 4) interesting for the use of the verb “vanish” 
instead of “rule out”. The student here uses a word 
belonging, in some sense, to the mathematical register 
instead of using a word of everyday language, maybe 
because the task he/she is carrying out is a “mathe-
matical” task. 

A55:  In the interval between -10 and 2, the 
function decreases, so its derivative 
has to be negative; for this reason the 
C is ruled out, for in this interval it is 
positive. In the interval between 2 and 
about +10 the function increases and, so, 
its derivative has to be positive; A and D 
are ruled out, because in a part of this 
interval they are below the x-axis and so 

they are negative. The derivative of the 
given function is B.

The argumentation used in protocol A55 (Figure 5) is 
quite accurate, but there is a strong presence of iconic-
ity. The student writes “In the interval between -10 and 
2, the function decreases” reading -10 on the x-axis and 
2 on the y-axis which are explicitly written in the di-
agram (while 0 on the origin is not written). Maybe 
he/she chooses the most evident label, or the label 
nearest to the point he/she wants to indicate. He/she 
writes again: “In the interval between 2 and about +10 
the function increases”, showing once more an iconic 
interpretation of the diagram. 

In ruling out graph D (“A and D are ruled out, because 
in a part of this interval they are below the x axis”), the 
student shows not only a lack of conceptual control 
on the image, but, maybe, again iconicity: it seems that 
the student considers the interval between -2 and +10, 
instead of the interval +2 and + 10; he/she refers to the 

Figure 5: Protocol A55 – Answer: A, C, D

Figure 6: Protocol A06 – Correct answer: A, C, D
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label -2 or to the label 2, indifferently, as if both the 
labels indicate the same point.

A06: Graph A can be ruled out because the 
graph of function g is increasing in the 
interval going from 0 to about +9, so the 
values of its derivative have to be posi-
tive, whereas in graph A in the interval 
from 0 to 3 it assumes negative values. 
Graph C can be ruled out too because 
function g from 0 to 10 is decreasing, so 
the derivative in that interval should 
assume negative values, and this does 
not happen in graph C. Graph D can be 
ruled out too because function g from 
point 5 on begins displaying a down-
ward concavity so its derivative in that 
point has to be decreasing, and this does 
not happen. Graph B could be the only 
one satisfying in some way function g.

The student of protocol A06 (Figure 6) gives the cor-
rect answer (he/she rules out graphs A, C and D), pro-
duces a detailed conversational argumentation and 
shows a good capability of reading of graphs and link-
ing data to conclusions. Nevertheless also in his/her 
protocol, we can find an expression such as: “function 
g from 0 to 10 is decreasing”. He/she expresses like one 
looking at the graph from the origin to the left and 
from the origin to the right. 

Indeed this behaviour emerges from several proto-
cols: a lot of students privilege their own point of view 
with respect to definitions and to the shared and well-
known rules of using representations. 

DISCUSSION AND CONCLUSIONS

From the protocols’ analysis three macro-groups of 
students’ behaviours seem to emerge. These mac-
ro-groups are based on the categories of errors (in 
Table 1), categories that in students’ behaviours are 
continuously interwoven.

The first macro-group is represented by the protocols 
of those students that do not apply the usual conven-
tions (the “grammar”) of the Cartesian plane but use 
the image they see. Students belonging to this group 
do not refer to the context of culture evoked by the rep-
resentations but to the context of situation.

In some protocols, as an example, we can observe that, 
in order to designate the points of the Cartesian plane, 
the students tend to label the points only by their or-
dinate value. Probably, they choose this value just be-
cause it is the label nearest to the point. Conversely 
some students use a point of the plane in order to in-
dicate the starting point of an interval on the x-axis 
(see Protocol A55 in Figure 5).

In this macro-group we can find also other students’ 
behaviours: for example students exploring the graph 
starting from the origin of the Cartesian axis and con-
sidering as “positive” the direction from 0 to −∞; other 
students take into consideration in different graphs 
points that look the same (as an example, points that 
are  minimum) instead of comparing points that have 
the same x-coordinate. These students remain in an 
iconic interpretation of the diagram and privilege their 
own point of view (related to the context of situation, 
i.e. the diagram drawn on the paper as a material ob-
ject), instead of the recognized rules or conventions 
for using representations (which are obviously relat-
ed to the context of culture).

A second macro-group is represented by the protocols 
of students having some difficulty in the use of the 
vocabulary. For these students some words, such as 

“positive”, “increasing”, etc., have a vague and unstable 
meaning. As a consequence they make errors also 
in reading the graphs. In such a situation students 
write sentences such as “I rule out B because it should 
be positive for x > 0”, probably having in mind the con-
cept “increasing”. 

Another behaviour related to this macro-group is mix-
ing up the subjects in sentences like “the derivative 
vanishes ↔ the function vanishes”.

All these behaviours are typical of the use of colloquial 
registers. 

The last macro-group is represented by the protocols 
of students having some problems in the organization 
of the text, i.e. the meaning of the words related to their 
position in the text.

As an example we can observe some protocols in 
which the students use the expressions “increasing”, 

“positive”, “upward concavity” for describing proper-
ties related to an interval even if these expressions 
are true only in a part of the interval. 
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This behaviour is linked both to that one, above de-
scribed, characterized by taking into consideration 
the first image or the first concept that seems to work 
well without making further inferences, and to how 
the students tend to organize the text in the colloquial 
registers. In the last case they are not used to specify 
the complements because in a context of spoken com-
munication the meanings could be negotiated later. 
In this way the meanings become unstable and vague 
and as a consequence it is hard reading the images and 
making further argumentations.

The outcomes of the analysis seem to suggest the need 
for a stronger educational attention to linguistic is-
sues in mathematics. It is fundamental the capability 
of using both literate registers, which support scien-
tific thinking, and colloquial ones, which are indispen-
sable too in the construction of mathematical concepts. 
Thus switching back and forth between colloquial and 
literate registers is a crucial process in mathematics 
learning. These skills are not natural but have to be 
developed and fostered, by specifically planned teach-
ing activities, from primary school onwards.
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There has been a good deal of research on interaction 
in multilingual mathematics classrooms, with an in-
creasing emphasis on the socio-political dimension of 
language in shaping students’ and teachers’ language 
choices. I argue that this approach remains under-the-
orised and offers a limited perspective on the politics of 
language in mathematics classroom interaction, largely 
focused on language choice. To deal with this problem, I 
draw on ideas from the contemporary sociolinguistics of 
multilingualism, including the notions of heteroglossia 
and orders of indexicality. To illustrate these ideas and 
their utility, I present an analysis of an episode observed 
in a sheltered elementary school second language math-
ematics classroom in Canada. My analysis shows how 
the two students are marginalised by the interaction.

Keywords: Multilingual mathematics classrooms, second 

language learners, heteroglossia, linguistic stratification.

INTERACTION IN MULTILINGUAL 
MATHEMATICS CLASSROOMS

Research on interaction in multilingual classrooms 
has increasingly emphasised the socio-political di-
mension of language and language use (Setati, 2005; 
Planas & Civil, 2013). I refer to any classroom in which 
any of the participants uses more than one language 
in their daily life as multilingual. This definition in-
cludes classrooms commonly referred to as bilingual 
or second language classrooms, as well as those in 
which the languages of some students are not used 
and not recognised. This is consistent with sociolin-
guistic perspectives that challenge rigid separations 
between languages or language situations (Makoni & 
Pennycook, 2007). In such classrooms (indeed, in any 
classroom), language is not simply a means of com-
munication or a tool for thought; the way language is 
used means that some participants may be privileged 
in different ways, while others may be marginalised. 

Such influences are sometimes systemic and reflect 
wider social forces, such as those of racism or class. 
I refer to these influences as the socio-political dimen-
sion of language.

While research has identified the significance of the 
socio-political dimension of language, its effects on 
mathematics classroom interaction are poorly un-
derstood. Research on mathematics classroom in-
teraction in multilingual settings dates back at least 
to the 1990s. Much of this work has adopted a view 
of language as a ‘resource’. Research on teaching 
practices includes Adler’s (2001) identification of 
dilemmas that arose for several teachers in differ-
ent multilingual mathematics classrooms in South 
Africa; Khisty’s (1995) comparison of three teachers in 
Spanish-English bilingual classrooms in the USA and 
Moschkovich’s (1999) study of a Spanish-English bilin-
gual mathematic class also in the USA. These studies 
highlight the challenges many teachers face in work-
ing with students who draw on multiple languages in 
the mathematics classroom. In all three studies the 
dilemma, to use Adler’s term, of whether or not to 
give explicit attention to mathematical language or 
focus on the mathematical ideas emerged a challenge. 
Research on students’ participation, meanwhile has 
identified several resources on which students may 
draw in mathematical discussion. These resources 
include code-switching (Setati, 2005; Planas & Setati, 
2009); genre and narrative (Barwell, 2003, 2005); and 
gestures, writing and diagrams (Moschkovich, 2009). 

While the majority of these studies show some aware-
ness of the socio-political dimension of language, this 
awareness is not always apparent in the design and 
conceptualisation of the research. In recent years, 
research has emerged that gives more explicit atten-
tion to this dimension. Setati’s (e.g., 2008) work, in 
particular, has highlighted how learners’ and teach-
ers’ language choices are influenced by the broader 
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politics of language in South Africa. By choosing to 
study mathematics in English, for example, students 
hope to get access to better opportunities in higher 
education or employment. The value of these “social 
goods” outweighs the challenges that such students 
may face in studying mathematics in a language that 
they may only use at school. Similarly Planas and Civil 
(2013), drawing on data from Catalonia and Arizona, 
show how the choices of the students and teachers in 
their study about language use in their mathematics 
classrooms are politically mediated. In particular, and 
rather like Setati, they argue that the pedagogical val-
ue of students’ home languages may be overridden by 
broader political considerations.

It is clear, then, that the socio-political dimension of 
language influences what happens in mathematics 
classroom interaction. The research I have discussed, 
while making a contribution to the field, has, how-
ever, generally avoided a theorisation of this aspect 
of language use. This work has tended to focus on 
one single aspect of language use: the choice (if it is a 
choice) of language. Thus, in Setati’s (2008) work, the 
choice is between English and an African language 
or languages; in Planas and Civil’s (2013) study, the 
choice is between Spanish and English, or Catalan and 
Spanish. The socio-political dimension of language is, 
however, likely to influence mathematics classroom 
interaction in many other ways than participants’ 
choice of language. To investigate these influences, 
additional theoretical ideas are needed.

I propose to address this problem by drawing on the-
oretical ideas from the contemporary sociolinguis-
tics of multilingualism. These ideas are illustrated 
through analysis of data collected in a second lan-
guage mathematics classroom in Quebec, Canada. My 
aim is to demonstrate that these theoretical tools make 
it possible to develop a more nuanced understanding 
of how language is implicated in the stratification of 
students’ participation in mathematics and hence 
how it has an impact on their opportunities to learn 
mathematics.   

HETEROGLOSSIA AND ORDERS 
OF INDEXICALITY

There have been some significant shifts in how mul-
tilingualism (and language itself ) is conceptualised 
and understood in recent years. Many of these shifts 
can be traced, in part, to the work of Bakhtin (1981) 

who developed a view of language as situated, dialogic 
and tension-filled. Bakhtin’s ideas have led to a view 
of multilingualism that, rather than focusing on dis-
crete, clearly defined languages and associated clearly 
defined groups of speakers, looks at language as so-
cial practice situated in social and political contexts 
(Blackledge & Creese, 2010, p. 25). More specifically, 
Bakhtin defines the key concept of heteroglossia as 

“the social diversity of speech types” (Bakhtin, 1981, p. 
263). He describes this diversity as follows:

At any given moment of its evolution, language 
is stratified not only into linguistic dialects in 
the strict sense of the word […] but also […] into 
languages that are socio-ideological: languages of 
social groups, “professional” and “generic” lan-
guages, languages of generations and so forth. 
(pp. 271–272)

Heteroglossia, then, refers to the many patterns that 
arise within language and which can be associated 
with some group of people, situation, activity or oth-
er social formation. There are two important points 
to note about this account. First, the many different 
patterns within the diversity of language overlap and 
intersect. The language of teachers, the language of 
mathematics and the language of a region may all 
be present in the same utterance. Moreover, the dis-
tinctions between the speech types to which Bakhtin 
refers are produced by these practices; they are not 
pre-given. Thus, what counts as an accent, as ‘teacher 
talk’ or even as a language, is locally produced (Bailey, 
2007). The way that language practices can ‘point to’ 
such associations, allowing as to recognise particular 
activities, group memberships or situations, is called 
indexicality. This aspect of language is important in 
framing particular utterances, so making them inter-
pretable. In previous work, I have examined the role of 
heteroglossia in the language tensions that have been 
reported in multilingual mathematics classrooms 
around the world (Barwell, 2012, 2014).

Second, these ideas make a link between moments of 
language use and broader social patterns and forces:

Linguists have increasingly turned to the works 
of Bakhtin and his collaborator Volosinov be-
cause their theories of language enable connec-
tions to be made between the voices of social ac-
tors in their everyday, here-and-now lives and the 
political, historical, and ideological contexts they 
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inhabit. In familiar terms, Bakhtin’s philosophy 
of language contributes to the means by which 
we may understand the structural in the agentic 
and the agentic in the structural; the ideological 
in the interactional and the interactional in the 
ideological; the “micro” in the “macro” and the 

“macro” in the “micro.” (Blackledge & Creese, 2009, 
pp. 237–238)

Ways of talking both reflect the socio-historical di-
mension of language and create this dimension for 
the future. 

Third, these different ways of talking are stratified; 
some ways of talking are considered more valuable 
than others. To explain how this stratification arises 
in the context of multilingualism, Blommaert (2010) 
focuses on indexicality:

Ordered indexicalities operate within large strat-
ified complexes in which some forms of semiosis 
are systemically perceived as valuable, others as 
less valuable and some are not taken into account 
at all, while all are subject to rules of access and 
regulations as to circulation. That means that 
such systemic patterns of indexicality are also 
systemic patterns of authority, of control and 
evaluation, and hence of inclusion and exclusion 
by real or perceived others. (p. 38)

This kind of stratification typically maps onto scalar 
differences in practices, so that local, idiosyncratic 
practices are perceived as less valuable than more 
widely used, standardised practices (Blommaert, 2010, 
p. 35). 

Blommaert discusses several examples to illustrate 
these ideas. For one, he refers to a price list for cold 
drinks found in London’s Chinatown (p. 31). The price 
list is written in Chinese characters and in English. 
The English includes “quite spectacular typos” (p. 
31), such as “Lced” for “Iced” and “Coffce” for “Coffee”. 
Blommaert points out that for many customers in 
London, the Chinese characters are “a meaningless 
design”, but which index “Chineseness” and a link 
with wider Chinatown. He also imagines the sign be-
ing printed somewhere in China, where the English 
would be equally meaningless, simply symbols to be 
reproduced in printed form. To customers in London, 
the spelling mistakes might be a source of amusement, 
but might also index less favoured or less valuable 

forms of English literacy. Hence, indexicality is itself 
situated, dependent on who is producing or interpret-
ing language or text, as well as where they are and 
what they are doing. Blommaert (2010) illustrates this 
point as follows: “the English spoken by a middle-class 
person in Nairobi may not be (and is unlikely to be) 
perceived as a middle-class attribute in London or 
New York” (p. 38).

RESEARCH SETTING: A SECOND 
LANGUAGE MATHEMATICS CLASS

From 2008–2012, I conducted an ethnographic study 
of mathematics learning in different second language 
settings in Canada, a country with two official languag-
es, English and French. In this paper, I refer to data 
from one of these settings, located in an Anglophone 
school in the French-majority province of Quebec. 
The data come from interactions with a Grade 5–6 
sheltered class for students identified by the school as 
falling behind in both English and mathematics. The 
students therefore studied these two subjects in a sep-
arate class from their regular classmates. I visited the 
class regularly throughout the 2009–2010 academic 
year. During that time, enrolment in the class varied 
quite a bit but never went over 9 students.

For most of the year, all of the students in the class 
were Cree, one of the original peoples of Canada. 
The children’s families originated in communities 
in northern Quebec. The students spoke Cree as a 
first language. They also spoke English, though with 
a range of proficiency levels. In the move from James 
Bay to the city, the students went from being part of 
the majority in small Cree-speaking communities, to 
part of a minority in a city dominated by French and 
English. 

During my visits to the class, I acted as a participant 
observer, making field notes during teacher-led ac-
tivities, and interacting with the students during 
small-group work. The teacher often asked me to 
work with small groups of students. I made numer-
ous audio recordings of whole-class interaction and 
some small-group work, including my own work with 
groups of students. I collected samples of students’ 
work and photographs of other artefacts, such as post-
ers, work written on the blackboard and anything else 
that seemed relevant. After each visit, I wrote a brief 
report summarising my observations. 
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In the next part of the paper, I present and analyse an 
episode that I observed during the study. I have de-
scribed aspects of this episode elsewhere (see Barwell, 
2014) but have not previously examined the stratifica-
tion that arose in the students’ interaction.

THE TULIP FESTIVAL PROBLEM

The episode occurred in February 2010, during a part 
of a class in which the students were working at activ-
ity stations. I worked with two students, Curtis and 
Ben, at a station in which they had to solve the problem 
reproduced in Figure 1.

Every year Ottawa holds a world-renowned tulip 
festival in the month of May. There are different 
gardens in various locations, one of which is on 
Parliament Hill. The Canadian Tulip Festival 
was established to honour Queen Juliana of the 
Netherlands, in 1953. […] You are a gardener 
hired to plant tulip bulbs for the Canadian Tulip 
Festival in May. You decided to arrange the flow-
ers in a V for Victory format. You decide to use a 
pattern to make your design. Here is the design 
you started. 

The problem text has a number of indexical features 
relevant to the students’ subsequent work. First, the 
text is in English. The first part indexes factual regis-
ters typical of textbooks or informational texts, such 
as tourist brochures. Second, the text is an elaborate 
form of word problem, with a scenario, some infor-
mation and a mathematical calculation to be carried 
out. The presentation and structure of the text thus 
indexes the genre of mathematical word problems. 
This genre is widespread in Canadian mathemat-
ics classrooms and this particular form, known in 
Quebec as a situational problem, is a common form 
of assessment item in the province. Third, the text 
indexes a particular place, Ottawa, and a particular 

event, the Tulip Festival, with which people in the 
region might be expected to have some familiarity. 
More specifically, and crucially for this episode, the 
text assumes a familiarity with tulips, a flower that 
is very common in the spring in this region. These 
associations, combined with the register used in the 
first part of the problem (e.g. Ottawa as the national 
capital, “world-renowned”), perhaps also index a form 
of ‘Canadian-ness’. Fourth, the text indexes certain 
mathematical forms, particularly geometric patterns 
indicated by the diagram. Thus the text indexes a na-
tion, a region, an event, speakers of a language, a reg-
ister, a genre and finally, some mathematics.

I began by asking Curtis and Ben to read the problem 
to themselves and then initiated a discussion about 
the content [2]:

RB: okay (.)  so what’s it about?
Curtis: its about (.) world’s biggest flower=I 

don’t know
RB: ottawa’s biggest
Curtis: tu (.) lip festival
RB: tulip festival (.) do you know any of 

those? (.) do you know what a tulip is? 
[hm

Curtis: [flower
RB: flower right (.) have you ever seen a 

tulip?
 […]
Ben: (…) it’s white
RB: they are lots of different colours white 

ones red ones
Curtis: like a rose?
RB: yellow ones say again
Curtis: rose
RB: no it’s a bit different from a rose (.) 

roses yeah (.) tulips just come up in 
the spring and have a nice flower for 
about two weeks (.) then they are fin-

Figure 1: The Tulip Problem [1]



Linguistic stratification in a multilingual mathematics classroom (Richard Barwell)

1337

ished (.) there we go (.) let me see your 
picture

Ben, Curtis: [laughter]
RB: have you seen flowers like that 
Ben: ^no^
Curtis: yeah (.) in a store

It is apparent from this exchange that the two students 
have some trouble interpreting the text in the way it 
was presumably intended. For them, “tulip” initially 
indexes something rather vague: a kind of flower – 
they mention roses and, at another point, poppies. 
And while the text might be designed to index a 
place and an event, and by extension, some aspects 
of Canadian-ness, the two students do not make this 
connection. In this way, the text serves to alienate the 
students. 

Our discussion, which continues in similar vein to 
clarify what ‘bulbs’ are and what ‘a gardener’ does, 
can be read as an encounter between different “speech 
types”: those of the text, the students and me. Over 
the next few minutes, the students work at the prob-
lem, interacting with the diagram, as I recorded in 
my notes: 

Ben moved first, drawing in rows of tulip bulbs in 
the boxes shown in the diagram. He did 5x5 in the 
first empty box and then moved on to the next box. 
Curtis looked at what he was doing and then did 
something similar. At some point, Curtis came up 
with a solution, fairly quickly. He just wrote three 
numbers at the bottom of the answer box. I didn’t 
understand his solution but explained that he 
needed to explain how he worked it out. He wrote 
a sentence along the lines of ‘I added the tulips’ – 
something quite general. So I said he needed to 
be more precise, to explain what calculation he 
did. At this point he explained to me verbally and 
I invited him to write it down. What struck me 
was that he had little trouble solving the problem, 
and that most of the time was spent on writing it 
down in an ‘acceptable’ way.

My account suggests that the students do relate to the 
mathematical pattern indexed by the diagram and are 
able to interact with it and, in particular, to extend it. 
At some level, then, there is some alignment at this 
point in the forms of language (including graphic el-
ements) used in this part of the text, and the students’ 
own linguistic repertoires. Their expression of their 

work, however, remains ‘local’; that is, it makes sense 
to them but does not index more widespread forms of 
mathematical language (for which, in the interaction, 
I am positioned as the arbiter): 

RB: you have to explain now that you’ve 
got these totals okay otherwise if 
somebody comes along and reads it 
they will wonder where the number 
comes from in these kinds of situa-
tional problems its quite important 
that you explain some how how you 
worked it out

My remarks make it explicit that the goal is to write 
in a way that is interpretable to some kind of gener-
alised ‘somebody’ and a generalised situation “these 
kinds of situational problems” (which are typically 
used as assessment items). This is an example of what 
Blommaert (2010) calls ‘scale jumping’. The students’ 
linguistic productions index their own locally devel-
oped forms; my intervention indexes language forms 
and communicational requirements associated with 
people (e.g., teachers) and situations (e.g. assessment) 
that are more widespread and more valued.

The two students spend a relatively long time working 
on showing “all their work”. Their interactions with 
me, including the following extract, indicate that this 
part of their work was quite challenging:

RB: so (.) that’s a good beginning (.) but you 
need to explain like the calculations that 
you did (.) you need to say what kind of 
calculations you did

Curtis: times
RB: yup but precisely what did you times 

what did you add
Curtis: I timesed seven (.) times seven (.) six 

times (.) 
RB: right right
Curtis: seven plus that’s it
RB: so like when you worked out for purple
Curtis: I did five times five
RB: uhum
Curtis: plus one
RB: right so I would write purple and then 

exactly what you just said 

The interaction between different speech types is 
particularly clear in this extract. My use of the word 
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‘need’, twice, again indexes expected mathemati-
cal ways of talking or writing and, indeed, implies 
they are a requirement. Through the interaction be-
tween Curtis and I, an account of his calculations is 
pieced together and to some extent endorsed by me. 
Nevertheless, Curtis’s account makes use of relatively 
local forms of mathematical expression, particularly 
‘times’, rendered as a participle ‘timesed’. Throughout 
this extract, including in my own reflections shown 
in my notes, my utterances index acceptable ways of 
talking and writing about mathematics. Through the 
episode, there is some convergence in the students’ 
utterances towards more conventional mathematical 
language. Needless to say, these conventions, indexed 
by the problem text and by me, do not make any re-
ciprocal convergence towards the students’ forms of 
mathematical expression.

DISCUSSION AND CONCLUSIONS

For the students and I, this episode involves an en-
counter with otherness, with difference, with what 
Bakhtin calls the alien word (see Barwell, 2014). The 
point I want to highlight in this paper, however, is 
that the speech types involved in this encounter re-
flect prevailing orders of indexicality. The students 
bring speech types from the periphery: those of Cree-
speakers from James Bay for whom English is a second 
language. Their speech types also include local forms 
of mathematical language that make sense to the stu-
dents, either individually or among themselves. The 
word problem text and I both deploy more authorita-
tive speech types, where this authority comes from 
an indexing of assessment, of the requirements of 
the genre and of communicating one’s work to a gen-
eralised other (“someone”). The encounter between 
the students, the word problem and me is filled with 
indexical complexity, but this complexity is ordered; 
the language of the encounter is stratified, with a hier-
archy apparent in which local and peripheral speech 
types are less valued than more widely standardised 
forms of mathematical language. 

The theoretical sociolinguistic ideas I have drawn on 
in this paper make it possible to see how the interac-
tion in this second language mathematics classroom 
episode marginalises the two students. The concept 
of heteroglossia highlights the way specific utteranc-
es in the class are linked to broader, stratified, social 
patterns and the notion of indexicality facilitates a 
detailed analysis of this stratification as it plays out 

in the classroom. This is not to say that the students 
should not learn ‘standard’ forms of mathematical lan-
guage in English; the indexicality of language is part 
of what makes communication possible. Blommaert, 
however, distinguishes between the indexical order, 
which refers to the patterns of language that allow 
us to recognise references to groups, activities or 
situations, and orders of indexicality, which refers 
to the stratification of language and which is impli-
cated in processes of marginalisation. It is through 
the indexical order that the students recognise the 
geometric pattern and are able to work on it and find 
a solution. It is the ordering of indexicalities, however, 
that marginalises much of the students’ repertoire of 
language practices. Unfortunately, there is no neat 
way to decouple these processes. This analysis sheds 
some light on how the socio-political dimension of 
language influences these students’ participation in 
a mathematics classroom activity.
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ENDNOTES

1. To save space, I have not preserved the layout and 
abbreviated the problem, omitting additional infor-
mation about the festival. The diagram is my repro-
duction of the slightly more elaborate version given 
to the students.

2. Transcript conventions: short pauses are shown 
by (.), overlaps are shown by [, rising intonation is 
shown by ?, emphasis is shown by bold type, whis-
pered speech is enclosed by ^ ^.
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In this report, we examine the interacting use of whole 
class discussion and concrete manipulatives in the 
learning of geometry in a secondary mathematics class-
room. We draw on our prior works on the generation 
and exploitation of learning opportunities in order to 
elaborate an example of opportunity for further reflec-
tion. In the analysis, two basic aspects are considered: 
(i) actions of collective argumentation and (ii) types of 
orchestration involved in the production of the students’ 
learning. We illustrate the analysis through a moment 
of classroom talk in which a student is the initiator of 
an opportunity that leads to a situation of mathematics 
learning. We argue that the teaching activity is decisive 
in the joint exploitation of the opportunity.

Keywords: Whole class discussion, students’ mathematics 

learning, problem solving, collective argumentation, 

concrete materials.  

CONTEXT, QUESTION AND GOALS

The reported work needs to be situated in the con-
text of a project strategy that includes the study of 
various mathematics lessons with different mathe-
matical contents in use. All the work in the project 
is expected to contribute to the knowledge of math-
ematics learning by broadening the understanding 
of how mathematics learning opportunities may be 
created and exploited in classroom talk. Within this 
context, we address results from a research guided 
by the following question: 

What are the actions involved in the creation of mathe-
matics learning opportunities in whole class discussion 
with problem solving and manipulatives? 

In the classroom for the conduction of the experiment, 
concrete manipulatives that could be physically han-
dled by students were offered to explore and investi-

gate mathematical concepts and processes for find-
ing solutions to geometry problems. The potential 
role of whole class discussion and problem solving 
with manipulatives in the generation of mathematics 
knowledge was a key assumption in the design of the 
three-lesson intervention. In particular, a concern 
to this work was that by examining the role of ma-
nipulatives as mediating artefacts in classroom talk, 
certain learning opportunities in mathematics might 
be better examined and characterised. 

For the time devoted to whole class discussion in each 
lesson, the same procedure for the analysis was con-
sidered. We searched for moments of classroom talk 
where an approach to the resolution of the problem 
was being discussed. For each moment and when 
possible, we identified mathematics learning oppor-
tunities and related them to particular mathematical 
contents. What we present in this report is the anal-
ysis applied to one of the identified learning oppor-
tunities. Elsewhere (Ferrer, Morera, & Fortuny, 2014) 
we have detailed our procedure for the detection of 
learning opportunities and we have examined the role 
of the teaching activity. In what follows we outline 
our theoretical orientation, describe the experiment, 
provide our methods, and discuss our data, findings, 
and future directions.  

THEORETICAL PERSPECTIVES AND NOTIONS

A major problem in mathematics education research 
has to do with understanding and framing learning. 
Nevertheless, researchers in the field have reached 
important agreement on the fact that evidence of 
learning cannot be gathered in isolation, neither 
at the level of individuals nor at the level of groups 
(Sfard, 2001). Without denying the importance of the 
individual, social theories take the system of actions 
and practices as the starting and explanatory main 
component of learning. 

mailto:kaouthar.boukafri@uab.cat
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In the line of social theories of mathematics learning 
(Goos, 2004), our work is placed within the tradition 
of design experiments in mathematics education re-
search. As said by Cobb, Confrey, diSessa, Lehrer and 
Schauble (2003), this type of experiment aims at iden-
tifying and explaining successive patterns emerging 
from the study of connections between the students’ 
learning and the classroom circumstances in which 
it is developed. For the conduction of an experiment, 
the phases are planning, implementation, evaluation 
and iteration. In this report, we refer to data coming 
from the first round of implementation of the planned 
teaching sessions.  

As part of our project strategy, design experiments 
are supported to develop knowledge on mathemat-
ics learning, and in particular around mathematics 
learning opportunities. The notion of mathematics 
learning opportunities is central to our research as 
a way to link the social aspects of classroom activity 
to the students’ development of mathematical ideas 
(Planas, 2014). In our analysis of practices that poten-
tially foster learning opportunities during classroom 
talk, we give priority to actions of collective argumen-
tation and types of orchestration, which actually are 
specific types of sequenced actions. To this respect, 
we plan design experiments in which conceptual and 
procedural forms of mathematics learning are expect-
ed to be facilitated by means of an interacting system 
involving inquiry-oriented tasks and pedagogical re-
sources such as physical artefacts.  

As claimed by Miranda and Adler (2010), there is little 
literature on the role and use of concrete manipula-
tives in the teaching and learning of mathematics. 
From the perspective of the teaching activity, it is 
argued by these authors that the presence of manip-

ulatives in the development of a task needs explicit 
and reasoned justification so that students are told the 
importance of using those resources. This is why we 
collaborated with the teacher to foster responsibility 
for a form of teaching activity that privileged the use 
of manipulatives not only during the time for group 
work but also during the presentation of the task and 
its discussion in whole-class talk. 

THE CLASSROOM EXPERIMENT 

The experiment consisted of three lessons in a 
classroom of 12 years-old in a school of Barcelona, 
Catalonia-Spain. What was first selected was the 
teacher, on the basis of her expertise in teaching math-
ematics for several years and her active involvement 
in our research team. She was given in advance the 
sequence of three geometry problems and she made 
relevant contributions in order to adapt the wording 
and content to the particular group of students. The 
lesson dynamics was also negotiated with the teacher. 
The students were first asked to read the problem, to 
work in small groups, and finally to participate in a 
whole class discussion. During group work, the stu-
dents were provided with problem-based concrete 
materials and had to produce written individual 
responses; after thirty minutes of group work, the 
teacher took the materials away in order to encourage 
finishing the responses. The teacher had the materials 
for manipulation in her guiding of the interaction 
with the students during whole class discussion. It 
was possible, and in fact it was promoted, to complete, 
revise or modify responses up to the end of the lesson. 
The students in this classroom were used to similar 
dynamics but the work with manipulatives was new 
to them.

Packing glasses

We have 12 glasses, each of them measuring 92mm (height) and 74mm (diameter of the major circle). We want to 
find the cheapest box for all glasses, that is, the box requiring the least material. In addition we want: 
– The base of the box to be rectangular.
– All glasses to be facing up in the box.
– No glasses inside each other. 
Under these conditions:
What are the minimum dimensions for the box to contain all the glasses? 
Which data will you give the shop owner to order the box? 

Figure 1: The problem of the second lesson
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‘Packing glasses’ (see Figure 1) was the problem for 
the second lesson. It was adapted from a problem cre-
ated by the Millennium Mathematics Project at the 
University of Cambridge (for the original wording 
see http://nrich.maths.org/880). The problem was 
thought of as useful for dealing with early geometri-
cal modelling and optimization of area and perimeter. 
Several approaches and resolutions are possible, as 
well as follow-up questions depending on the evo-
lution of the students’ talk. The teacher was asked 
to first introduce the problem and the material, and 
then to handle the final class discussion with attention 
given to the mathematical talk of the students. There 
were two main objects: glasses and boxes. All small 
groups were given 12 plastic glasses. In the facilitation 
of whole class discussion, the teacher had three scaled 
boxes that represented the three possible solutions 
(with glasses being aligned in one row of twelve, two 
rows of six, and three rows of four) and the box that 
represented the case for one glass (one row of one). 
It was assumed that the manipulation of glasses and 
boxes would help better understand the problem and 
the required optimization processes to solve it.  

METHODS OF A TWO-SIDED ANALYSIS

Lessons were video-taped and whole class discussions 
were transcribed. Each transcript was organized into 
shorter transcripts around moments of class discus-
sion with students exploring an approach to the res-
olution of the problem. The difficulty of determining 
the exact turn on which the discussion of an approach 
started and finished, was addressed by including the 
turns that were dubious for some reason. On the other 
hand, participants commented on the same approach 
at different stages of the discussion; this is why the 
transcript of a moment did not necessarily consist of 
consecutive turns. In fact, the moment for illustration 
in this report is an example of non consecutive turns 
having been grouped together on the basis of the reso-
lution strategy being under discussion. Its transcript 
stands for the explicit talk around the required quan-
tity of material for any of the solution boxes. 

The construction of transcripts was followed by the 
search for learning opportunities arising from the 
interaction among participants in classroom talk. 
Drawing on the notion of learning opportunity, spe-
cial attention was paid to reactions of students that 
serve for clarification, exemplification, generation 
of new questions..., and which might be explained as 

provoked by prior interventions of other participants 
in that lesson. In case of differing interpretations 
within the team, we went back to the videos until we 
agreed on a decision. Actions and reactions were in-
itially associated with opportunities to participate 
and interact in classroom talk, and only when math-
ematical content was at focus, they were regarded as 
mathematics learning opportunities. It was during 
the observations and analyses conducted in other 
school settings (Ferrer, Morera, & Fortuny, 2014), that 
the relationship between opportunities to interact 
in classroom talk and opportunities of mathematics 
learning was decided as an effective way to approach 
the detection of mathematics learning opportunities. 

Actions of collective argumentation 
and types of orchestration
After having linked the transcript of a moment to a 
mathematics learning opportunity by reflecting on 
the mathematical contents in use, we split the analysis 
into two parts according to the characterisation of 
actions of collective argumentation, on the one hand, 
and types of orchestration, on the other. The selection 
of this two-sided analysis responds to the idea that the 
kinds of talk in the mathematics classroom can be in-
terpreted in terms of the quality of the collective argu-
mentation (Krummheuer, 2007) and the variety in the 
orchestration (Ferrer et al., 2014). Elsewhere (Planas 
& Morera, 2011) we have commented on collective ar-
gumentation among students in the construction of 
mathematics knowledge in two secondary classrooms. 

The distinction of actions of argumentation was car-
ried out at the micro-level ‘within-the-moment’. All 
turns of talk were studied in order to decide whether 
mathematical reasons for particular statements were 
being provided. Further, we observed how the differ-
ent contributions were taken up, either individually 
or collectively in public classroom talk. There may be 
a wide range of mathematical reasons depending on 
the complexity of the inquiry activity (Goos, 2004): 
from the mere description of an answer, a proper-
ty or a fact, to the thoughtful proof of a conjecture. 
Mathematically wrong reasons in the context of the 
considered statement were not excluded as they 
helped to understand the coherence in the progres-
sion of mathematical talk. We drew on the idea that 
mathematics learning occurs in the coordinates of 
the combined potential movements between math-
ematically wrong and correct actions of collective 
argumentation in classroom interaction. 
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The distinction of types of orchestration was also 
carried out at the micro-level ‘within-the-moment’. 
We used the following six types: exploring the arte-
fact, explaining through the artefact, connecting ar-
tefacts, discussing the artefact, discovering through 
the artefact and experimenting the instrument; and 
we added the type ‘replacing the artefact’ to refer to 
situations in which participants pointed to different 
artefacts (blackboard, boxes, applets, glasses...), but 
did not establish connections among them. The im-
portance given to the use of artefacts in the broader 
project (for findings about mathematics learning in 
whole-class discussion with dynamic geometry soft-
ware, see Ferrer et al., 2014) comes from our interpre-
tation of who the relevant others in the interaction 
are. Classroom talk is developed in interaction with 
subjects and objects, and consequently the others are 
not always individuals, students or teachers, but may 
be represented by sorts of artefacts.

The two-sided analysis applied to moments in which 
learning opportunities had been identified became a 
powerful tool for the detection of mathematics learn-
ing. It allowed us to conclude that certain opportuni-
ties had been exploited into mathematics learning. To 
this respect, convincing evidence was found, either 
in classroom talk or in students’ written responses, 
of changes in the understanding of mathematical 
contents that had been involved in actions of argu-
mentation in interaction with the orchestration of 
specific artefacts. Exhaustiveness in the identifica-
tion of learning opportunities and learning was not 
attempted through the application of our two-sided 
analysis, and in fact it was in some cases deliberately 
avoided, since the extent to which mathematical talk 
had evolved in some turns was difficult to interpret. 

EXAMPLE OF LEARNING OPPORTUNITY 

We have selected an example of mathematics learning 
opportunity where it can be acknowledged the role of 
a student, Aloma, in the introduction in classroom talk 
of ideas that lead to cohesive reasoning and progress 
in the resolution of the problem (see Figure 1). It is an 
example in which a diversity of actions of argumen-
tation and types of orchestration are involved with 
respect to three main artefacts: blackboard, glasses 
and cardboard. We draw on the analysis of this ex-
ample as evidence in support of the potential of the 
teaching activity in interaction with classroom talk, 
collective argumentation, and problem solving with 

manipulatives. We begin by reproducing most of the 
transcript of the moment related to the opportunity 
(Roman numerals are included for organization of 
cross-referenced contents in Table 1):

1 Teacher: Come on, Aloma.
2 Aloma: A way for knowing it would be, 

for instance, to take into account that each 
glass, it touches up and down...

3 Teacher: That is, if we put each glass in an 
individual box [working on the blackboard], 
it would touch all four [pointing to the drawn 
lateral] walls; but in this one [indicating the 
drawn one row of twelve], the second glass 
would touch here and here [pointing to two 
drawn lateral walls] and those in the corner 
would touch three [pointing to three drawn 
lateral] walls.

4 Aloma: I This way we use plenty of card-
board, II but with the box of three per four 
we need less cardboard for the glasses in the 
corners.   

5 Teacher: I This glass, for instance, it only 
touches one wall, while this one does not 
touch any [pointing to the box with three 
rows of four]. II Here we have built a model 
for the individual box with the real meas-
ures as said by Aloma. (...) Aloma’s reasoning 
is great! III She is trying to reduce all these 
walls as much as possible. Thus, if I want to 
build a box for the twelve glasses and place 
the individual small boxes within the three 
per four, then when two walls get in contact, 
we can eliminate them because we only want 
those that are external [in the video Figure 
2]. IV That is, the glasses in the four corners 
contribute with two pieces, the others with 
only one piece, and those in the middle with 
none. (…)

6 Teacher:  What Aloma explained, is it 
clear? What she said about saving walls, 
eh? Here [showing the box with three rows 
of four] we need a total of fourteen walls. But 
with this [showing the box with two rows of 
six] we need sixteen walls, and finally, this 
[showing the box with one row of twelve] 
needs a total of twenty-six walls. Yes, every-
one? Clàudia?

7 Clàudia:  The less glasses touching the 
walls, the best.
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8 Teacher:  The less glasses touching the 
walls, the less quantity of cardboard. 

The eight turns that constitute the moment in this 
transcript were analysed according to the detection of 
actions of argumentation and types of orchestration. 
Table 1 situates the turns in relation to actions and 
types, and summarises some of the curricular mathe-
matical contents involved in the explicit talk. The joint 
analysis of the transcript and Table 1, along with the 

video of the lesson indicates the creation of at least a 
learning opportunity around the optimization of the 
geometric variable corresponding to the surface of a 
rectangular volume. Aloma is the student who acts on 
the glasses and the cardboard to justify the need for 
establishing the individual box for only one glass as 
the surface and volume unit of measurement (i.e., the 
small box is presented as a box of capacity one glass), 
and simultaneously as the unit of counting on the 
basis of how many individual boxes can be placed in 
the considered solutions and how they can be placed. 
Through talk, manipulation and interaction with the 
teacher, Aloma grounds her reasoning on the quantity 
of cardboard for the different considered boxes by 
comparison with the unit box. 

The talk initiated by Clàudia provides evidence of ex-
ploitation of the identified opportunity into learning. 
The teacher also provides further evidence of ex-
ploitation of the reasoning introduced by Aloma and 
expanded by Clàudia. This happens, however, later 
in whole class discussion, when the teacher modifies 

Figure 2: Teacher explaining through cardboard

Turns  Action of argumentation Type of orchestration  Curricular content

1
Teacher

Communication                               of empiri-
cal evidence

Experimenting the instrument 
(glass)

Bidimensional rep-
resentation of a rec-
tangular prism  

                               
Optimization of the 
perimeter of the prism 
base given its surface

2
Aloma 

Communication                               of empiri-
cal evidence

Experimenting the instrument 
(glass)

3
Teacher

Particularization and study                 of a 
possible solution

Explaining through the artefact 
(blackboard)

4
Aloma

I Affirmation                                  with empiri-
cal support

Replacing the artefact (black-
board → cardboard)

II Comparison                               among possi-
ble solutions

Discovering through the artefact 
(cardboard)

5
Teacher

I Particularisation and study             of an 
alternative solution

Explaining through the artefact 
(cardboard)

II Establishment                                                 of 
unit of measurement and counting

Exploring the artefact (card-
board)

Units of measurement 
and counting

III Validation and inference                 of rea-
sons grounded on the unit 

Linking artefacts
(blackboard & cardboard)

Relative positions of 
a unit 

Optimisation of the 
lateral surface of a rec-
tangular prism 

IV Classification                                     of space 
positions relative to the unit

Explaining through the artefact 
(cardboard)

6
Teacher

Emphasis and conclusion              on a 
solution from all options 

Explaining through the artefact 
(cardboard)

7
Clàudia

Affirmation                                 with empiri-
cal support

Discovering through the artefact 
(cardboard)

8
Teacher

Formalisation                                  of an infor-
mal reasoning

Explaining through the artefact 
(cardboard)

Table 1: Actions, types and contents in a moment of the second lesson
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the condition of a rectangular base for the box. It is 
a modification that leads to different options for the 
solution boxes, but still keeps valid the conjecture, 

“The less glasses touching the walls, the best.” From 
there the mathematical discussion moves toward the 
problem of isoperimetric space figures and the visu-
alization of cylinders. 

By examining how mathematics learning opportuni-
ties can be promoted through whole class discussion 
with problem solving and manipulatives, we have 
detected opportunities for our conceptual under-
standing of mathematics learning and the classroom 
environments in which it may occur. Our research 
shows that certain actions of argumentation in inter-
action with certain types of orchestration are positive-
ly related to the creation and exploitation of learning 
opportunities around mathematical contents that are 
not strictly procedural (see Table 1). We are striving 
to understand, however, features of the teacher’s 
teaching activity that are decisive in the process that 
goes from classroom talk to learning opportunities, 
and from there to mathematics learning. Although 
important, we have not started looking at whether 
differences in teaching activity explain differences 
in learning moves.

FINAL CONSIDERATIONS

We have examined the relationships between actions 
of argumentation and types of orchestration in the 
generation of mathematics learning opportunities. 
We still know little about why and how mathematics 
learning occurs. Nevertheless, our study provides 
some light on lessons with problem solving and ma-
nipulatives in which learning relates to the devel-
opment of collective argumentation in interaction 
with the orchestration of particular materials. The 
progressive sophistication of argumentation is prob-
ably fostered by the role and use of materials, but in 
the empirical context of our study it is too early to 
conclude on this. What we already know is that these 
issues, actions of argumentation and types of orches-
tration are clearly important for the understanding 
of the dynamics of learning. First, the notion of col-
lective argumentation has been used to illustrate the 
importance of interaction among participants –sub-
jects. Second, the notion of orchestration has been 
used to illustrate the importance of interaction with 
materials –objects. Other two-sided analyses would 
be possible under the same idea of keeping balanced 

the interaction with subjects and that with objects in 
the mathematics classroom.

Researchers interested in the role and use of arte-
facts may focus their questions on processes and 
tools through which students elaborate their think-
ing strategies in interaction with dynamic geometry 
software, physical manipulatives, virtual manipula-
tives, etc. Other researchers concerned with the role 
and use of talk may focus their questions on outcomes 
of pair work, small group, whole class discussion, etc. 
Similarly to Fetzer and Tiedemann (2015), our concep-
tualization of learning as learning-by-talking-and-
doing seeks for integrated approaches. We are aware 
of the risks of misrepresenting any approach, and 
more generally, of the few empirical studies in the 
field taking a balanced subject-and-object perspective. 
By means of the example in this report, we have at-
tempted to explain that the integration of subjects and 
objects, instead of its distinction, is at the root of our 
social view of mathematics learning. Manipulation 
of objects (either Platonic mathematical objects or 
concrete manipulatives) and talk with subjects (either 
one self or others in the class) are expressions of the 
same basic realization called mathematics learning.
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The present paper, based on a small scale critical eth-
nographic study, explores the process of experimenting 
collaboratively with multiple language use for number 
words as part of young children’s mathematical learn-
ing activity. Data from a teaching experiment called 

‘Number words in ‘other’ languages’ is utilized to illus-
trate the creation of a culturally responsive context 
with children aged 4 to 6, their parents, the classroom 
teacher and the researchers. The focus is on the case 
of little Marram, a Pakistani girl who lives in Greece 
and who experiences participation by sharing number 
knowledge in her dominant home language, Urdu. It is 
highlighted how discourses on gender and language 
determine Marram’s learner identity-work in the mul-
tilingual preschool classroom.

Keywords: Early mathematics, language use, gender, 

discourses, classroom practice, identity-work.

INTRODUCTION

In a number of previous studies we have denoted the 
benefits of diverse language use in the mathematics 
classroom as a matter of resourcing learning (Planas, 
2014), creating dialogicality (Chronaki, 2009) and, 
also, troubling essentialist identities embedded in 
school mathematics discursive practices (Chronaki, 
2011). We now focus on an experimental collabora-
tive project, Number in ‘other’ languages, where the 
design of learning for number and number word is or-
chestrated around the utilization of the participants’ 
languages in a Greek classroom. Multiple language 
use can be interpreted as a resource for engaging 
children from ethnic minority groups, and as a space 
for reconfiguring subject positions in processes of 
learner identity-work. Taking into account that ethnic 
minority learners experience marginalized subject 
positions in school, the shifting relations encouraged 

via opening the learning of numbers in multiple lan-
guages may create conditions for breaking the cer-
tainty of hegemonic discourses and provide space 
for accessing dialogicality. As a Bakhtinian concept, 
dialogicality weaves a way to critique language for-
mation in literary texts. Bakhtin in a series of texts 
(1929/1981) negates language as an abstract system 
and emphasizes its intersubjective consciousness. 
By perceiving language use as social in nature he 
conceives language, communication and identity as 
interactive multi-voiced phenomena rooted is spe-
cific localities. As such, the idea of teaching number 
words in multiple languages becomes a gesture of how 
mathematical knowledge can be approached as cultur-
ally and politically situated. In this way, mathematics 
becomes a space for providing access to children’s 
own trajectories as part of their own identity-work 
and subjectivity configuration (Chronaki, 2009, 2011).

During the development of the present collaborative 
project, the first two authors observed, depicted and 
interpreted the complexity of the teaching activity as 
experienced by children coming from socially mar-
ginalized groups. The experiment was designed to 
serve goals of counter education (Gur-Ze’ev, 2005), 
in ways that challenge stereotypes and affective 
positions toward dialogical participation. For the 
case of little Marram, a Pakistani girl aged 5 years, 
we analyze how the chance she is given to express 
out in her mother-tongue the number words, offers 
a chance to explore her position in the class. It helps 
us understand complexity throughout actions in the 
classroom, the family and the school community. Our 
analysis searches for opportunities to access mathe-
matical knowledge, identity-work and subjectivity 
that place learners into positions of participation in 
the classroom. Some opportunities, from Marram’s 
position as a Pakistani girl in a mathematics lesson, 
are examined.

http://www.ece.uth.gr/main/
mailto:chronaki@uth.gr
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Educators and researchers who are, like us, interested 
in focusing on the complexity of the social, cultural 
and political contexts of mathematics classrooms face 
the challenge to develop tools and interventions in 
order to analyze, discuss and re-configure issues 
connected to relationships amongst authority, knowl-
edge, identity-work and subjectivity. In our research 
contexts, we draw on critical approaches for mathe-
matics teaching and learning in multilingual class-
rooms where children are taught the norm of school 
knowledge while they co-configure mathematical sub-
jectivities as part of broader social requirements for 
identity-work as learners of mathematics (Chronaki, 
2009, 2011; Planas, 2011). Below, the methodology of the 
study is outlined and the data analysis is organized 
around three sections.

METHODOLOGY: CRITICAL, COLLABORATIVE 
AND EXPERIMENTAL ETHNOGRAPHY

The reported work is situated in the qualitative tradi-
tion of educational research, and more specifically in 
the context of critical, collaborative and experimental 
ethnography. This study is critical in the sense that 
it intends to critique what is taken as ‘reality’ in the 
mathematics classroom, to disrupt taken for granted 

‘truths’ about who is the competent learner and what 
is valuable mathematics, to trouble discourses that 
tend to support the construction of hegemonic in-
terpretations and, also, to imagine how things could 
have differently happened (Thomas, 1993; Skovsmose, 
2014). It is a collaborative study in that it emerges from 
the need of dialogue amongst participants. The pro-
ject was held in close collaboration with children and 
their parents who contributed with information con-
cerning their own ways of using language for num-
ber words and counting (Lassiter, 2005). It was, also, 
organized as a teaching experiment in collaboration 
with the classroom teacher as it aimed to expand the 
formal mathematics curriculum on counting and to 
provide links with children’s funds of knowledge. 
Children coming from different ethnic minorities 
could perform early number activity (e.g. counting, 
related number word and number symbol in both 
oral and written genres) in their mother tongue and 
share number knowledge amongst them. Multiple 
perspectives of an issue were discussed, debates were 
constructed and all these helped data interpretation 
and inference of conclusions.

The methodology is experimental in the sense that 
the research process was organized as a series of in-
teractive events in a teaching experiment on num-
ber that took place for two weeks during the school 
year 2011–2012 in a class of a public nursery school 
in Athens. The experiment encountered the urge to 
teach number in relation to opportunities for inter-
cultural education as has been required by reforms 
of the Greek curriculum (Department of Education, 
2011). The successive arrangement of the teaching ex-
periment covers the sections on which the Greek cur-
riculum focuses on number and aims to investigate 
its conduction in a multilingual classroom in order to 
achieve intercultural contact, mathematical partici-
pation and the subversion of stereotypes concerning 
curricular contents and who is capable of expressing 
opinions about mathematics and of arrogating math-
ematics as a cultural or symbolic commodity. Specific 
material was devised as seen in Table 3, but also Tables 
1 and 2. During the implementation phase, the teach-
er was allowed to modify parts of the interventions, 
while one of the researchers in the team was integrat-
ed as an active participant and internal observer in 
the classroom.

Participants were the twenty children of the class, 
seven of whom had not Greek nationality at the time 
of the study, their parents and the classroom teacher. 
The home languages of these children were Albanian, 
Russian, Armenian, Filipino, Turkish and Urdu. Many 
of them had been born in Greece and their parents 
are either economic immigrants or political refugees. 
Marram came from Pakistan and her first language is 
Urdu although her mother uses English as a means of 
communication as well. In what follows, we will focus 
on an event when little Marram is encouraged to speak 
out loud the number words in Urdu. This event points 
to a number of difficulties, dilemmas, challenges and 
achievements of Marram, in a situation of struggle 
amongst local and globalized discourses about school 
mathematics, girls, and ordinary languages. Pereen 
(2007) based on Brandist (2002, p. 179) explains that 
for Bakhtin ‘personal identity’ transforms into ‘an 
intersubjective dynamic’ that is continually renew-
ing itself. Subjectivity, instead of personal identity, 
is captured in terms of ‘being-as-event’ in Bakhtin’s 
words and as such it needs to be conceived as situated 
in the ongoing eventness of everyday practices in the 
school classroom.
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DIVERSITY OF NUMBER WORDS: 
GETTING TO KNOW THE ‘OTHER’

The project Number words in ‘other’ languages is part 
of our attempts during the last years to approach 
mother-tongue use in classroom mathematical activ-
ity as interlinked with learning, identity-work and 
dialogicality. In Chronaki (2009, 2011), and Chronaki 
and Mountzouri (2009) we have discussed this per-
spective first as part of project work in a primary 
classroom with Roma and non-Roma students (Table 1) 
and then as playful outdoor activity based on the ex-
plorative use of the languages of Greek, Romany and 
Arabic (Table 2).

The experiment presented here expands into seven 
languages so that to include all children in the lesson 
whilst focusing on number counting through number 
words. A board with number words in all languages 
was prepared (Table 3). 

Children were asked to read words on the board in 
collaboration with the teacher in whatever manner 
was feasible for them providing their competence. 
Although children were familiar with reading, read-
ing and interpreting numbers was a collaborative 
process with all children involved with teacher’s help. 
Children recognized number digits from 0 to 10 in 
the vertical axis and country names in the horizontal 
axis. It was aimed to have all children watching the 
number words in each of the spoken languages and 
making comparisons based on both oral sounds and 
visual stimuli. In parallel, children had the chance to 
spot specific countries on a given world map. Later, 
children were asked to refer to the board (Table 3) 
and speak out the numbers in their mother-tongue. 
After some discussion they arrived at questions and 
conclusions like: Which number words are common 
in languages other than Greek? (0 was linked to all 
three languages) Which ones have a similar sound? 
(tre-tree-treea and u-do) Which ones do we use today 
in Greek? (dort, dortia as used in the dice).

Table 1: Romany and Greek number words (Chronaki, 2009, 2011)

Table 2: A playful outdoor activity on number (Chronaki & Mountzouri, 2009)

Table 3: Reference material for ‘number words in ‘other’ languages’
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NUMBERS IN MY LANGUAGE?! 
INTEREST AND EMBARRASSMENT

Most children experienced both interest and embar-
rassment when they were asked to rehearse counting 
in their mother tongue. Children from ethnic minor-
ities had experienced ‘mother tongue’ as forbidden 
in the monolingual school context where Greek is 
the only language of instruction. In the case of little 
Marram, although shyness predominates, the co-pres-
ence of interest and embarrassment was evident, as 
can be seen in the event below, and provided the op-
portunity to discuss parts of how her mathematical 
subjectivity evolves (Episodes 1 and 2).

Episode 1. First steps into oral counting in Urdu
Researcher: Which child in our classroom is 

from Pakistan?
Christina: (raises her hand smiling) Marram!
Researcher: Marram, come here! Marram, I 

would like you to tell us numbers in 
Pakistani (invites her to stand in the 
centre of the circle; she uses the word 
Pakistani because children know that 
Marram comes from Pakistan). I am 
asking her in English because possibly 
she cannot understand in Greek. (to 
Marram) I want you to tell us the num-
bers in Urdu (Marram smiles, touches 
her cheeks with her hands, twirls a lock 
of her hair but does not answer). Let’s do 
this, sifr, ek… sifr, ek… I’m gonna help 
you, sifr, ek, do, let’s go!

Episode 2. Marram’s oral counting in Urdu
Researcher: She has told us before. Do you re-

member it? Come on! Come on, Marram! 
Sifr…

Marram: Sifr, ek, do, tin, char, panch, che, saat, 
at, no, das… (counting fast; when she fin-
ishes she covers her eyes with her hands 
[Figure 1])

Researcher: Well done! But I want you to do it 
slower. Slowly, okay? Let’s do this! You 
will do this as so: sifr, ek, do…

Arian: Sifr. (Arian from Albania reminds her the 
word for zero)

Researcher: Let’s do this! Sifr…
Marram: Sifr, ek, do, tin, char, panch, che, saat, 

at, no, das. (slowly)
Researcher: Well done! Please, applaud her! Well 

done Marram, thank you!

Attempting to interpret Marram’s position in the 
above two episodes, we denoted at least two significant 
issues that determine how her subjectivity becomes 
reconfigured  as part of this specific activity and medi-
ate her efforts towards performing counting; shyness 
and the use of English language. Both of these issues 
are discussed below.

Being shy: A gendered position for Marram?
Marram showed shyness and intense embarrass-
ment when asked to express loudly the numbers in 
Urdu -her mother tongue. Embarrassment or shy-
ness are, often, embodied through a variety of facial 
expressions and awkward body (especially hand) 
movement. They are also linked to reluctance of tak-
ing an initiative attributing thus a weak, passive or 
idle subjectivity. However, in the words of Marram’s 
mother, shyness needs to be also considered as a ‘fe-
male’ feature of virtue in Pakistan and its expression 
is something not only normal but highly desirable 
for young girls. During an interview with Marram’s 
mother and whilst discussing the significance of the 
above episodes, she explains:

“Women in Pakistan, we are shy, it’s our nature, 
in our culture. Even here, most people do not 
know the meaning of shyness… Many children 
in countries like ours feel shy and do not often 
participate in every single activity of the class-
room. I want my children to make it not only in 

Figure 1: Facial expressions by Marram whilst counting
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mathematics but also in all fields.” (Interview 
with Marram’s mother)

Shyness from the mother’s perspective is a female 
attribute in Pakistan denoting that young girls grow 
into women and they become sensible of their femi-
ninity. It is performed by women, especially young 
or non-married. In Pakistan shyness is considered an 
ethically proper behavior and is linked to virtues like 
rationality and modesty. Marram’s mother, however, 
was worried during this part of the interview and 
asked the interviewer if her daughter was behaving 
too shy in the classroom. Her concern was based on 
her fear that Marram’s shyness might not be suita-
ble or compatible with modern cultural norms such 
as competition, assertion and reclaim. She showed 
awareness on how Marram’s reluctance could create 
difficulties for negotiating her position and presence 
in the public place and believed that her daughter 
needed to grow confident, assertive and participatory. 
In Civil, Planas and Quintos (2012) the relevance of 
considering the family contexts of the learners to bet-
ter understand some of the classroom events and its 
participants has been argued. For the case of Marram, 
the conversations with her mother became crucial for 
making sense of the girl as participant in the nursery 
classroom and, specifically, on how she experiences 
learner subjectivity as she is being caught among 
various cultures and maybe in the margins of all of 
them. Civil et al. write about identity issues that immi-
grant children confront in feeling caught amongst the 
parents’ culture and the culture in their new country. 
From this perspective the theme of shyness needs to 
be interpreted in the case of Marram as a matter of 
both culture and gender.

English language mediation: What is 
the status of ‘mother’ tongue?
One can argue how Marram is growing up bilingual 
as she speaks Urdu at home and understands Greek 
at school. Talking with her mother, we realized that 
she needs to be considered as trilingual since she also 
uses English, mainly with her mother. According to 
Skourtou (2001), bilingualism refers to the “alter-
native use of two or more languages from a single 
person” (p. 199) - a definition that can be expanded to 
trilingualism. The use of English by the researcher in 
the class was made to accommodate Marram’s needs 
and competences. It was a subtle wish by Marram, ex-
pressed during initial interviews where she asked 
the researcher to speak in English. Marram often 

switched codes not from Urdu to Greek but from 
Greek to English and vice-versa. By code switching we 
mean “the practice of using two or more languages in 
the same communicative act” (Tsokalidou, 2000, cited 
in Skourtou, 2001, p. 184). When Marram could not 
describe something she wanted in Greek, she sponta-
neously used English in the interviews, but she did not 
do so in the class where her peers and teacher were 
present. She might think English was not proper in 
the lesson with other children who could not under-
stand English.

With respect to this second theme, the family context 
also plays an important role. For Marram, the use of 
English is symbolically reinforced by the fact that 
her mother used to work as an English teacher and 
was head of an English-learning centre in Pakistan 
(country in which English is still considered an offi-
cial language for instruction based on the national 
curriculum); when she came to Greece, however, she 
began to work at a wax factory. Her mother values 
English as ‘international’ language, acknowledging its 
colonialist influence in Pakistani educational system 
and its globalized hegemony. She wants Marram to 
reach better access to English language in order to 
upgrade socially through her studies and future pro-
fession. An important point for the mother is the issue 
of English language learning in the school context. 
She stated that the fact that the other teachers of her 
daughter could not speak English caused her difficul-
ties in the communication with them and was a main 
reason why she did not often visit them at school. Also, 
in her words it was an ‘insane’ educational choice, as 
she argued in one of the interviews:

“English should be spoken at school apart from 
Greek. But here, at schools there is not an English 
system. This is bad due to the fact that English 
is an international language.” (Interview with 
Marram’s mother)

In the described event, the use of English by the re-
searcher played a significant role in the process of 
code switching between Greek and Urdu and empow-
ered Marram to participate more fully in the public 
space of the classroom. More generally and during 
several classroom events, it was seen that the use of 
a third language (here, English), which Marram had 
learnt (and valued highly) from her mother, played an 
intensively mediating role in this learner’s mathemat-
ical participation. Despite Marram knew the number 
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words in her dominant language, for instance, she 
needed encouragement in a third language which she 
could easily use, and with which she feels familiar to 
express them out loud. Thus, English appears to act 
as a tool facilitating her public presence in the class. 
It was not only constant encouragement but particu-
larly the language selected by the researcher at dif-
ferent times that acted positively in her occasional 
overcoming of shyness to mathematically participate 
by counting numbers in Urdu.

CONCLUDING REMARKS

In this report, the case of little Marram rehearsing 
numbers in her mother-tongue has served as an 
event that exemplifies how mathematics teaching 
and learning in the school classroom is mediated by 
participation issues that are not directly concerned 
with curricular content or with didactic methods. 
According to our research data (teaching experiment 
observation and interviews) as well as our interpre-
tation of Marram’s case as a whole, it seems necessary 
to draw on a broader perspective of mathematical 
subjectivity as related to the complexity of children’s 
participatory experiences, identity-work and learn-
ing that is, simultaneously, personally, culturally and 
socially shaped. 

Our study has identified the important role of using 
multiple languages (Greek, Urdu and English) related 
to a child’s worlds in forming the background of the 
mathematical experience of a single learner (Marram) 
through exploring her classroom interaction with an 
adult who acted as a teacher and who was particularly 
concerned with the fact of language issues interven-
ing in mathematics teaching and learning. Taking into 
account that the mediation of English is fundamental 
in the Pakistani school system, as reported by an in-
formed adult and, in this case, a relative of the child 
(Marram’s mother) secures and increases awareness. 
The adult’s attention to this very fact comes to facil-
itate the orchestration of English as a tool for the ex-
pression of ideas but also for the realization of strate-
gic movements of code switching between languages 
other than English (Greek and Urdu). 

The project Numbers in ‘other’ languages discussed 
here has forwarded the launching of mathematical 
ideas of others to all children in a classroom. Such an 
activity facilitates and bridges the connection of in-
formal knowledge that children acquire through their 

family environment or home languages and formal 
knowledge that is being taught in the school context. 
In this way, all children’s self-confidence is boosted as 
they are bestowed with the chance to perform their 
learning abilities, skills or competences as part of 
their own sociocultural experiences. The above are 
consistent with a broader perspective of mathematics 
as a cultural, social and political asset that teachers 
are willing to accept through various interpretations 
and ways of expression from children.

A similar project can be potentially implemented us-
ing not only language but also artifacts, objects or 
materials related to mathematics and emanated from 

‘other’ cultures and social practices. Presmeg (1999) 
mentions that the use of objects originated from the 
specific cultural positions they come from, facilitates 
the connection amongst mathematics in school and 
society. Although the perils of exoticization, mysti-
cism and idolization of mathematical knowledge still 
lurk, and dilemmas, challenges regarding learning 
process are many, their inclusion in pedagogical 
design continues to be necessary and important to 
explore further. The present team of researchers 
shares a mutual understanding of these emerging 
themes being fundamental for interpreting Marram’s 
experience and accounting the complexity and multi-
plicity of mathematical subjectivity in modern times. 
The first theme –being shy– deals with the emotional 
and affective dimension of the learner and reveals 
how far she has progressed throughout the discursive 
practices of school mathematics in order to speak out 
the numerical sequence in Urdu. The second theme 

–mediation of English in code switching– deals with 
the communicative dimension of the participants in 
the lessons and reveals the role and use of language 
diversity and language hierarchies in mathematics 
teaching and learning.

REFERENCES

Bakhtin, M. M. (1981). The dialogic imagination: four essays. 

(Ed., M. Holquist; Trans, C. Emerson, & M. Holquist). Austin: 

University of Texas Press.

Chronaki, A. (2011). Troubling essentialist identities: perfor-

mative mathematics and the politics of possibility. In M. 

Kontopodis, C. Wulf, & B. Fitcher (Eds.), Children develop-

ment and education: cultural, historical and anthropolog-

ical perspectives (pp. 207–227). Dordrecht, Netherlands: 

Springer.



Number words in ‘other’ languages: The case of little Marram (Anna Chronaki, Georgia Mountzouri, Maria Zaharaki and Núria Planas)

1353

Chronaki, A. (2009). An entry to dialogicality in the maths class-

room: encouraging hybrid learning identities. In M. César 

& K. Kumpulainen (Eds.), Social interactions in multilingual 

settings (pp. 117–143). Rotterdam, Netherlands: Sense 

Publishers.

Chronaki, A., & Mountzouri, G. (2012). Playing with numbers in 

cultures: beginning to trouble essentialist views of math-

ematical knowledge reproduction and use. Quaderni di 

Ricerca in Didattica (Mathematics), 22(1), 90–94.

Chronaki, A., & Mountzouri, G. (2009). Narrative, numbers and 

symbolic action. In F. Kalavasis et al. (Eds.), Proceedings of 

the 3rd Hellenic Conference on Mathematics Education (pp. 

425–435). Rhodes, Greece: University of the Aegean.

Civil, M., Planas, N., & Quintos, B. (2012). (Preface to) “Immigrant 

parents’ perspectives on their children’s mathematics ed-

ucation”. In H. Forgasz & F. Rivera (Eds.), Advances in math-

ematics education. Toward equity: gender, culture, and 

diversity (pp. 261–282). New York: Springer.

Department of Education (2011). National curriculum for nurs-

ery school. Athens: Greek Government Documents.

Gur-Ze’ev, I. (2005). Critical theory and critical pedagogy to-

day: toward a new critical language in education. Haifa: 

University of Haifa Press.

Lassiter, L. E. (2005). The Chicago Guide to Collaborative 

Ethnography. Chicago: The University of Chicago Press.

Planas, N. (2014). One speaker, two languages: learning oppor-

tunities in the mathematics classroom. Educational Studies 

in Mathematics, 87, 51–66.

Planas, N. (2011). Language identities in students’ writings 

about group work in their mathematics classroom. 

Language and Education, 25(2), 129–146.

Presmeg, N. (1999). Ethnomathematics in teacher education. 

Journal of Mathematics Teacher Education, 1, 317–339.

Skourtou, E. (2001). Bilingualism and teaching second language. 

In T. Dragona, E. Skourtou, & A. Fragoudaki (Eds.), Social 

identities /diversity, social inequality, bilingualism and 

school (Book A, pp. 167–274). Patras, Greece: Hellenic 

Open University.

Skovsmose, O. (2014). Critique as uncertainty. Montana: IAP 

Press.

Thomas, J. (1993). Doing critical ethnography: qualitative re-

search methods Series. Vol. 26. London: Sage Publications.

Tsokalidou, P. (2000). Code switching: A dynamic and multidi-

mensional bilingual practice. Activity books of Naxos, issue 

Bilingualism. Rhodes: University of the Aegean. EPEAEK 

Program.



1354CERME9 (2015) – TWG09

Vague language and politeness in 
whole-class mathematical conversation

Thérèse Dooley

St. Patrick’s College, Dublin, Ireland

Dublin City University, Dublin, Ireland, therese.dooley@dcu.ie 

Politeness theory is based on the notion that individuals 
in a conversation are endowed with face – positive face is 
concerned with a desire for social approval and negative 
face is concerned with a desire to be unimpeded. The 
theory is relevant in the context of whole-class discus-
sion of mathematics where a teacher has to facilitate 
development of students’ disciplinary understanding 
and, at the same time, reduce their threats to face as 
they make contributions in public. In this paper, it will 
be shown that a teacher’s use of vague language can play 
a role in protecting threats to student face and thereby 
facilitate participation in argumentation and reason-
ing. It will also be shown that the competing claims on 
a teacher’s attention in this context render his/her role 
highly complex.

Keywords: Politeness, face, vague language, whole-class 

discussion, primary mathematics.

INTRODUCTION

At a time when there is an emphasis in mathematics 
teaching and learning on the co-construction of mean-
ing by teacher and students, it can be challenging for a 
teacher to take a supportive role in the classroom and, 
at the same time, steer students towards increasingly 
sophisticated understandings of mathematics. This 
challenge is exacerbated in the context of whole-class 
discussion where the teacher has to take account of 
the vulnerability that students might feel when they 
make a contribution in the public forum of a class-
room. The strategies that he/she often employs to 
meet both of these demands are generally indirect, 
e.g., the use of questions, or revoicing (Brodie, 2010). 
The use of such indirect strategies relates to polite-
ness theory – a theory that was constructed by Brown 
and Levinson (1987) to describe pervasive features of 
social interaction. Politeness theory has been used as 

an analytical framework in a range of contexts, includ-
ing the teaching and learning of mathematics (Bills, 
2000; Rowland, 2000; Weingrad, 1998). Rowland (2000) 
has focused on the role that vague language plays in 
supporting politeness in mathematical conversations 
between teachers and individual (or small groups of ) 
students. In this paper, the role of vague language is 
extended to politeness in whole-class mathematical 
discussion. It will be shown that a teacher can use it as 
a means of developing a learning environment where 
children take intellectual risks and develop a view of 
mathematics as a subject that is a human activity and 
a social phenomenon (Hersh, 1997).

POLITENESS THEORY

One of the ideas upon which politeness theory is built 
is that each participant in a conversation is endowed 
with face (Brown & Levinson, 1987). Face, a term used 
metaphorically to represent respect, esteem and 
sense of self, takes two forms: positive face, a desire 
to be appreciated and valued by others, a desire for 
approval; and negative face, a concern for freedom 
of action, a desire to be unimpeded. 

However, certain acts threaten face. Such face-threat-
ening acts (FTAs) can be directed towards positive 
or negative face. For example, criticism and disa-
greement threaten positive face whereas orders and 
requests threaten negative face. Moreover, the seri-
ousness of FTAs is influenced by factors such as the 
power relation or social distance1 between speaker 
and hearer.

Threat to face can be mitigated by use of redressive 
actions which include positive politeness (oriented to 
positive face), negative politeness (oriented to nega-
tive face) and use of hints and metaphors. It is in the 
mutual interest of persons involved in a conversa-

mailto:therese.dooley@dcu.ie
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tion to maintain each other’s face, as part of a strategy 
for maintaining their own face. Brown and Levinson 
present a range of strategies that are available to a 
speaker in order to protect, or not, the face of a hearer. 
For example, if an individual solves a mathematical 
problem incorrectly, a colleague might deal with it in 
one of the following ways (see Rowland, 2000, p. 86):

1) Don’t do the FTA – simply agree or keep quiet. 
2) Do the FTA by 

a) going ‘off record’, that is implicating the FTA 
rather than doing it directly (e.g., ‘I wonder 
if we have done a problem like this before…’)

b) going ‘on record’ either
i) baldly – making no attempt to respect 

face (‘That is not correct’)
ii) positive politeness (‘You have come up 

with a really interesting way of solving 
that problem but I thought that …’)

iii) negative politeness (‘Would you mind 
showing me how you applied this for-
mula here…’) 

While there is a variety of ways in which teachers 
endeavour to protect the face of students in small-
group conversation (Bills, 2000) or in whole-class 
discussion (Weingrad, 1998), of particular interest 
to this paper is the way in which vague language used 
in mathematical (and other) contexts – in particular, 
(a) the pronoun we and (b) linguistic hedges – can be 
exploited by a teacher to serve this purpose. 

VAGUE LANGUAGE

Rowland (2000), amongst others, maintains that com-
ing to know mathematics is imbued with uncertain-
ty and that the use of vague language – for example, 
hedges and pronouns - points to these uncertainties.   

Hedges
Linguistic vagueness is encoded by hedges which are 
words “whose meaning implicitly involves fuzziness 

- … whose job is to make things fuzzier or less fuzzy” 
(Rowland, 2000, p. 471). Rowland (2000) developed a 
taxonomy of hedges with reference to the discourse 
of mathematical conjecture. The first major type of 
hedge, a shield indicates some uncertainty in the mind 
of the speaker in relation to a proposition. There are 
two types of shield: (a) a plausibility shield and (b) an 
attribution shield. A plausibility shield (e.g., “I think”, 

“probably”, “maybe”) can suggest some doubt on the 

part of the contributor that the statement will with-
stand scrutiny. For example, in the statement, “I think 
that the sum is twenty”, the speaker injects a level of 
vagueness into his mathematical assertion and thus 
implicitly invites feedback on his solution. The attri-
bution shield implicates some degree or quality of 
knowledge to a third party (e.g., “Ann got an answer 
of twenty”). The second major category of hedges are 
termed approximators. The effect of the approxima-
tor is to modify the proposition rather than to invite 
comment on it. One subcategory of the approximator 
is the rounder which comprises adverbs of estimation 
such as “about”, “around” and “approximately” (e.g., 

“The answer is around twenty.”) The second type of 
approximator is the adaptor – it indicates vagueness 
concerning class membership such as “somewhat”, 

“sort of ”, “pretty much”, e.g., “I am pretty sure that 
twenty is an even number.”

In the interviews conducted with individual (and 
small groups of ) students, Rowland (2000) found 
that teachers used shields and adaptors in recogni-
tion of the face wants of students, whereas students 
used rounders and plausibility shields to serve their 
own face wants. He found that, in general, young stu-
dents seemed to be less sensitive to the face wants of 
a teacher than to their own. This could be explained 
by a perceived power difference between a young 
student and his/her teacher. In the context of whole-
class conversation where argumentation is encour-
aged, a teacher might have competing demands on 
his/her attention in terms of addressing face wants 
of different students. Moreover, students might well 
decide to protect or not the face of their peers. In the 
excerpt that follows, consideration is given to how 
vague language is used by a teacher to deal with such 
complexities. 

The pronoun “we”
Bills (2000) says that one of the strategies for positive 
politeness used by teachers is the use of “we” or “us” 
to infer inclusion, e.g., “Let’s try starting with this 
one”. Rowland (2000) expands on the uses of pronouns 
(particularly, “it”, “you” and “we”) in mathematical 
learning contexts. He suggests that while the pronoun 

“we” can often be used to indicate a teacher’s solidarity 
with a student (or group of students), the term can also 
be used to convey distance – “to associate the speaker 
with a select and powerful group … to urge acquisition 
of the ‘proper way’ of doing [mathematics]” (p. 98). In 
a classroom situation it can also serve to assuage a 
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command, thereby mitigating threat to negative face 
(e.g., “We add the units and then the tens…”). 

METHODOLOGY

In order to investigate the construction of new math-
ematical ideas by pupils in the context of whole-class 
discussion, I conducted a classroom design experi-
ment in three different primary schools in Ireland 
(that is, a series of lessons in each school consecu-
tively). This approach has its roots in the teaching 
experiment, the central elements of which include 
instructional design and planning, ongoing analysis 
of classroom events, and the retrospective analysis 
of all data generated (Cobb, 2000). Because of its fo-
cus on theory development, the teaching experiment 
has been subsumed into design-based research and, 
more recently, has been termed a “classroom design 
experiment” (Cobb, Gresalfi, & Hodge, 2009). I taught 
32 lessons (some of which extended over more than 
one class period) in all to pupils aged 9 – 11 years. I, 
as researcher-teacher, taught the lessons but the class 
teacher assisted in planning, teaching and post-lesson 
analysis. The main data collected were audiotapes of 
whole-class and group interactions – video recordings 
were not used due to ethical constraints. Data collec-
tion and data analysis were interwoven. Retrospective 
analysis was conducted on micro- (between lessons) 
and macro- (between and after cycles of research in 
the three classrooms) levels. The analytical approach 
I adopted was microethnography (Erickson, 1992) in 
which I first considered whole events such as lessons 
and gradually filtered them to explore the construc-
tion activities of individuals, focusing particularly 
on the sequential emergence of talk and action. This 
construction sometimes happened within a short pe-
riod – at other times, it occurred in a zig-zag fashion 
over the course of a lesson or indeed a few lessons. 
The use of vague language by children was a crucial 
element of construction activity in mathematics les-
sons (e.g., Dooley, 2011). In particular, such language 
allowed them to engage in the conjecturing activi-
ty that is central to the development of novel ideas. 
Furthermore the follow-up actions by me, the teacher, 
to their contributions was salient, e.g., revoicing or 
press moves allowed for pupils to build on each oth-
ers’ thinking (e.g., Dooley, 2009). Re-analysis of the 
data to explore my use of vague language revealed 
that I and, to a lesser extent, the pupils used vague 
language as a means of being polite. In this paper, I 
examine the issue of politeness in whole-class con-

versation – in particular, how my utilization of vague 
language within follow-up moves was another core 
dimension to children’s mathematical constructions. I 
draw on data derived from lessons that I taught in the 
first and third schools. I chose these lessons because 
they exemplify how vague language on the part of the 
teacher can be used to support contributions by those 
traditionally excluded from mathematics while, at the 
same time, move the group towards mathematically 
correct ideas. Such vagueness encouraged peers to 
be the arbiter of correctness in the lessons concerned. 

EXCERPTS FROM TWO LESSONS

The Grasshopper Lesson
This lesson was one of eleven lessons that I taught in 
the first school. The school was of middle socio-eco-
nomic status. There were 30 pupils, 17 girls and 13 
boys, aged 10 - 11 years in this class and Mr. Allen was 
the class teacher2. The problem reads as follows:

A grasshopper is journeying across a mat that 
is 1 meter long. He starts at the top of the mat, 
jumps half-way across and takes a short rest. He 
then jumps half-way across the remaining bit 
and takes a short rest. He then jumps half-way 
across the next bit and so on. What are his land-
ing points? Will he ever get to the end?3

I drew a line on the blackboard, the initial point of 
which was marked 0 and the end point was marked 
1m. I asked the group to name his first landing-point 
and then I drew an overarching loop from 0 to ½. I 
explained that the grasshopper would next jump 
half-way across the remaining section. I invited a 
pupil to mark the second landing-point and again 
asked the group to name this point (¾). The lesson 
continued thus. As expected, identification of the 
fourth landing-point (15/16) challenged some pupils 
because they had not yet been formally exposed to 
sixteenths. While some agreed with Jack (a pupil of 

“average” mathematical attainment on the basis of 
standardised test scores) that it was fifteen sixteenths, 
others aligned with an idea proposed by Kate (a pupil 
of “below average” mathematical attainment) that it 
was seven and a half eighths. The transcript that fol-
lows centres around this episode4:

104 TD:  What do you think is going to 
happen next?

105 Chn:  It’s going to half it//half it//half…
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106 Jack:  It’s half of seven eighths (whis-
per) [  ]

125 Jack:  He’s on fifteen sixteenths.
126 //Ch :  Seven and a half eighths.
127 Chn:  No.
128 TD:  He’s on fifteen sixteenths, seven 

and a half eighths or fifteen …
  //Ch talking … So you think he’s 

on fifteen sixteenths. Where are you getting 
fifteen sixteenths from?

129 Jack:  Cos I think, I think em … I think 
a half an eighth is sixteen …

130 TD:  Right.
131 Jack:  and eh …
132 //Ch:  I know …
133 Jack:  when …
134 //Chn:  Seven and a half!
135 Jack:  and then another sixteenth … if 

she went another sixteenth (other children 
talking in background), she’d be there but 
she didn’t go another sixteenth, so she went 
fifteen sixteenths.

136 Ch:  Three quarters …(in background) 
137 TD:  Fifteen sixteenths … and who 

said seven and a half eighths, who said that?
138 Paula:  Me.
139 TD:  It was yourself, what is your 

name?
141 Chn:  No, it was Kate//it was Kate.
142 TD:  I thought it was this girl down 

here, was it? Yes, Kate …well maybe both peo-
ple said it … that’s fine, I thought it was Kate.

143 Kate:  It was seven eighths and if he 
went eight eighths, he would be at the end, so 
if you go half of it, then it’s seven and a half.

144 Mr. Allen:  Good girl!
145 TD:  Seven and a half eighths and do 

you think … Dan? [ ]
159 TD:  The jumps … oh, I know what you 

mean. So what do we call … will we call it sev-
en and a half eighths or fifteen sixteenths?

160 Chn:  Seven and a half //Fifteenth six-
teenths//Seven and a half is easier to man-
age// No, it’s not//Cos you are going two, four, 
eight//Seven and a half is easier.

161 TD:  I think … you could call it seven 
and a half eighths but we normally these 
things … normally they are brought up to 
full numbers. But seven and a half eighths 
would be ok but … normally it’s brought up 

to something like fifteen sixteenths. (I write 
both on blackboard.)

When Jack proposes fifteen-sixteenths, I ask him to 
explain his thinking. Although he initially hedges by 
using a plausibility shield, “I think,” in line 129 (l.129) – 
possibly due to his uncertainty about the fractional 
name for half an eighth, his reasoning in l.135 is co-
gently expressed, reflecting his conviction around the 
argument that he is making. It is interesting that I do 
not evaluate his contribution in l.137 which, at this 
juncture, might have had the effect of closing off other 
contributions (O’Connor & Michaels, 1996). I respond 
by maintaining his input (“fifteen sixteenths”) and 
then following up on the “seven and a half eighths” 
contribution. The question that I pose in l.137 (“[W]
ho said seven and a half eighths?”) may well be due to 
the fact that I genuinely do not know who has made 
the input. However, my remark in l.142 (“I thought it 
was Kate”) could be a redressive action in anticipation 
of an FTA - that is, by not asking Paula directly if she 
has said it, there is no need for her to admit that she 
has not done so. In this instance, Paula replies that it 
is she who volunteered the contribution and immedi-
ately other pupils in the class claim it to be Kate’s idea. 
By redressing the threat to Kate’s positive face, they 
make no effort to respect Paula’s positive face. In l.142, 
I make some effort to redress what might be perceived 
as a combative situation (Kate versus Paula):

142 TD:  I thought it was this girl down 
here, was it? Yes, Kate … well. maybe both 
people said it … that’s fine, I thought it was 
Kate.

I indicate that I believe the contributor to be Kate 
rather than Paula but distance myself from the as-
sertion by use of the plausibility shield, “I thought.” 
In this way I am effecting a double save, that is, with 
regard to Paula’s face (protecting her from possible 
embarrassment) and to Kate’s (if she had not been the 
originator of the comment). While I give Kate cred-
it for the idea, my “[W]ell, maybe both people said 
it” represents a further effort on my part to redress 
Paula’s face. Rowland suggests that the particle, Well, 
delays a reply on the part of a speaker (thus inferring 
refusal or disagreement) – as such, it is one of the ways 
that threat to positive face can be lessened. In this in-
stance, my use of the term suggests doubt on my part 
that both people did in fact make the contribution. My 
subsequent action (giving Kate the floor) suggests that 
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my main motive here is to save Paula’s positive face. 
My gamble – for that is what it is – seems to pay off as, 
like Jack, Kate justifies her argument ably, indicating 
that she has indeed constructed a way of naming this 
point.

In my question in l.159, “Will we call it seven and a 
half eighths or fifteen sixteenths?,” I am probably hop-
ing that the children will resolve the issue. My use of 
the pronoun “we” in this instance infers solidarity. 
Failure to agree will offend my positive and negative 
face wants (as I am the teacher and they are the pupils). 
On an individual level the children do as required but 
take different positions on the issue. While this may 
be due to mathematical preferences, it could also be 
that the children themselves are engaging in face-sav-
ing acts with respect to Kate or Jack (but, not in this 
instance, both). My discomfort in l.161 is palpable. I am 
aware that this is a critical event for Kate who does 
not often make contributions in mathematics classes. 
I first hesitate – “I think – you could…” referring to the 
mathematical correctness of her idea. However, I also 
seem to feel some duty to conventional correctness 
when I suggest that “we normally … normally they 
are brought up to full numbers.” In this instance the 

“we” refers to the general mathematical community – 
I am suggesting that, while seven and a half eighths 
is acceptable, the convention is to round up denomi-
nator and numerator. The “seven and a half eighths 
would be ok” is a positive redressive action (directed 
towards Kate). Interestingly, I use the adaptor “some-
thing like” with Jack’s “fifteen sixteenths” (although I 
know this to be conventionally correct). In fact, most 
of my politeness is directed towards Kate rather than 
to Jack and this may be because I perceive Jack – at 
this juncture – to have less face want than Kate. My 
ultimate resolution is to write both suggestions on 
the blackboard. In the next part of the lesson, other 
pupils built on Kate’s idea to justify their naming of 
further landing points on the line. 

The Gauss Lesson
The Gauss lesson concerned the sum of numbers from 
1 - 100 and was a lesson that I taught in the third school. 
In a previous CERME paper (Dooley, 2009) I report-
ed how one pupil, Anne, used linearity inappropri-
ately to determine the sum. She had suggested that 
the solution could be found by multiplying 30 (what 
she thought was the sum of 1- 10) by ten. After some 
disagreement by others in the class, she revaluated 

her method. She then made a new estimate and there 
follows an excerpt of the conversation that followed: 

166 Anne:  I think the answer would be a 
thousand.

167 TD:  You think it’s going to be a thou-
sand. Do you agree with Anne that it’s about 
a thousand? Brenda?

168 Brenda:  Eh, no, cos when I em added up 
forty for it and, em, I got more than a thou-
sand.

169 TD:  Oh, wait till we see now, so 
Brenda is thinking of the problem we were 
doing yesterday. Brenda yesterday added 
one plus two plus three plus four plus five 
all the way up to forty. And what did you get 
when you added, do you remember when you 
added up to forty?

170 Brenda:  Eh a thousand and something.
171 TD:  I think, do you know something, 

I think it was … I am not completely sure … I 
think it might have been seven hundred and 
eighty, but I am not sure about that.

172 Brenda:  I know it was a thousand.
173 TD:  You think it was a thousand … 

Anyway Brenda added up, yes Fiona?
174 Fiona:  Well, yesterday, forty was seven 

hundred and eighty.

On the previous day, Brenda had used a calculator to 
sum numbers from 1 to 39 in order to find a solution 
for a different mathematical task. When Anne conjec-
tured that the sum to 100 was a thousand (l.166 above), 
Brenda intimated that this could not be the case by 
making an implicit reference to the result of this sum. 
Her recall is inaccurate as she had found the solution 
to be 780. However, I am interested in drawing pupils’ 
attention to her contribution, as it is a means of mov-
ing the lesson forward, that is, of making an accurate 
estimate for the sum, 1- 100. I use the pronoun “we” 
(l.169) to do so – “Oh, wait till we see now…”. I broadcast 
her input (“Brenda is thinking of the problem we were 
doing yesterday”) although I am inferring this since 
she has not mentioned the problem of the previous day 
explicitly. I also rebroadcast the contribution that she 
made in the previous lesson (“Brenda yesterday added 
one plus two plus three plus four plus five all the way 
up to forty…”). I made an error in this rebroadcast by 
suggesting that Brenda “added up to forty” when she 
in fact added up to 39. My evaluation of her estimate 
(“a thousand and something”) is marked by vagueness:
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171 TD: I think do you know something 
I think it was … I am not completely sure … I 
think it might have been seven hundred and 
eighty, but I am not sure about that.

My recourse to the plausibility shield is interesting – I 
am quite sure that the solution found by Brenda was 
780 and want to indicate this to the rest of the pupils 
in a way that respects her positive face. I obviously do 
not wish to engage in the FTA baldly (by telling Brenda 
that she is incorrect) and thus distance myself from 
giving the correct solution (“I am not completely sure”, 

“I think it might have been…”). In l.174, Fiona provided 
the correct solution. She prefaced her input with 

“Well” to infer disagreement in a way that lessened 
the threat to both my and Brenda’s positive face. This 
excerpt, though brief, marked a turning point in find-
ing a solution to the problem concerned - most notably 
because Brenda drew attention to the lesson that had 
taken place the previous day where pupils found a 
formula for adding consecutive whole numbers.

CONCLUDING REMARKS

In a classroom where argumentation and negotiation 
of mathematical meaning are encouraged, a teacher 
has to take several factors into account in her mo-
ment-to-moment decisions. The excerpts above are 
interesting not because they are models of exempla-
ry teaching but because they offer an insight into 
the complexity of teaching in an ‘adventurous way’ 
(Weingrad, 1998). Rowland (2000, p. 173) says that: 

Quasi-empirical teaching, inviting conjectures 
and the associated intellectual risks, is unimag-
inable if the teacher is not aware of the FTAs that 
are likely to be woven into her/his questions and 

‘invitations’ to active participation. Redressive 
action dulls the sharp edge of the interactive de-
mands that the style places on the learner.

In whole-class discussion, there is even more onus on 
the teacher to ‘dull the sharp edges’. In the Grasshopper 
lesson, children tended to use vague language only to 
defend their own face. It is true that they did engage in 
FTAs and some redressive action and this is probably 
due to their sense of an equitable relationship with 
their peers. However, they generally engaged in FTAs 
baldly (e.g., making no attempt to respect Paula’s face) 
in an effort to protect overtly the face of others (e.g., 

Kate’s). There was more politeness in the exchange 
between Fiona and Brenda – probably because of the 
task involved. In both instances, my redressive actions 
were directed towards pupils who would not have 
been overly confident about their mathematical com-
petence. I, as teacher, had to encourage their participa-
tion and, at the same time, focus on the development of 
mathematical thinking by the whole class, that is, I had 
to be attendant to the ethical dimensions of teaching 
mathematics (see Davis, 1997). The use of vague lan-
guage – because it lessened threat to pupils’ positive 
face and because it seemed to instigate mathematical 
argument by other pupils – was a means of doing this. 
The question of how it can best be exploited so that 
pupils do not develop incorrect mathematical ideas 
remains to be explored.
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ENDNOTES

1. Social distance is culturally determined and can re-
late to phenomena such as social class, occupation, re-
ligion, sex, age, race etc. (Parrillo & Donoghue, 2005).

2. Gender-preserving pseudonyms are used through-
out the paper.

3. The Grasshopper problem is loosely based on Zeno’s 
(490 B.C.) ‘racetrack’ or ‘dichotomy’ paradox although 
Zeno referred to a continuous journey.

4. Transcript conventions are: TD: the researcher/
teacher (myself ); Ch: a child whose name I was una-
ble to identify in recordings; Chn: two or more pupils 
making utterance simultaneously; … : a short pause; 
[   ]: lines omitted from transcript because they are 
extraneous to the substantive content of the lesson; 
//encloses utterances overlapping that of next or pre-
vious speaker; (word): transcriber’s comments.
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Different languages have different ways of using spa-
tial language, grammatically and conceptually. This 
paper reports on aspects of the language of motion in 
Iwaidja, an indigenous Australian language. The way 
that Iwaidja groups and separates spatial concepts such 
as direction, height and movement in relation to anoth-
er object are briefly described using examples from a 
route description task. The implications are discussed 
in terms of how understanding these grammatical fea-
tures can help teachers of Indigenous students, as well 
as providing keys to cross-linguistic investigations of 
mathematical cognition.

Keywords: Spatial language, motion, grammatical 

structures, Indigenous, cognition.

INTRODUCTION

The language we use for mathematics, the mathemat-
ical register, can have words and grammatical struc-
tures that are specific or specialised for their purpos-
es in the register, but it is built on or out of everyday 
language. The linguistic structures of individual 
languages affect how the languages can be used and 
developed for mathematical thinking. Grammatical 
structures can constrain what is possible but they 
can also offer opportunities. Improving mathematical 
learning outcomes for Indigenous language speaking 
students in Australia requires a better understanding 
by non-Indigenous teachers of how their students 
think and talk mathematically. Describing the vari-
ety of mathematical expression can also assist other 
teachers who are teaching in multilingual classrooms, 
as well as enrich researchers’ appreciation of the 
scope of variations in mathematical conceptualis-
ation in different languages. 

This paper considers the expression of motion in 
Iwaidja, an indigenous Australian language spoken 
in Northwest Arnhem Land, Northern Territory, and 
how this expression might affect mathematical think-
ing. Spatial language is an area of everyday language 
with mathematical impact. This impact is direct in 
relation to those parts of mathematics that are overtly 
spatial, such as the description of position and move-
ment in the early years that progresses into the lan-
guages of mapping and of coordinate systems. Spatial 
language is also used in areas of mathematics that at 
first thought may not be appreciated as spatial, such 
as the manipulation of numbers. In particular this 
can involve the use of spatial metaphors (Edmonds-
Wathen, 2012). 

Iwaidja is an Australian language spoken predom-
inantly at Minjilang, a community of approximate-
ly 300 people on Croker Island, Northwest Arnhem 
Land in Australia’s Northern Territory. There are also 
speakers in other nearby communities. Investigating 
mathematical features of Iwaidja provides insights 
into mathematical ways of thinking and speaking 
that are shared by speakers of nearby and related 
languages such as Mawng and Kunwinjku, as well as 
contributing to broader knowledge and understand-
ing about the breadth of how languages can express 
mathematical concepts.

RESPONSES TO DIVERSITY IN 
MATHEMATICAL LANGUAGE

Some grammatical features of mathematical language 
have been described; one is that mathematical lan-
guage tends to nominalise processes (Halliday, 2004). 
Barton (2009) notes that the English language copes 
particularly well with the nominalisation processes 
of mathematics compared with some other languages. 
Some languages are less conducive to nominalisation 
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than others because they begin with stronger roles 
for their verbs than other languages. Lunney Borden 
(2011) has described dynamic verb-based features of 
the Mi’kmaw language. She advocates the use of a verb 
based discourse pattern for teaching mathematics to 
Mi’kmaw children, for example focusing on the active 
properties of geometric objects, rather than identi-
fying and naming their parts. It does not necessarily 
mean using the first language of the students, but of 
responding to some of the ways meaning is made in 
their languages. Lunney Borden talks about teach-
ing Mi’kmaw children in English, but targeting her 
English in a manner that used more verbs to describe 
things and processes and fewer nouns.

In the Navajo language, shapes are also verbs: there 
is no circle, there is circling. Pinxten, van Dooren and 
Harvey (1983) describe the worldview of the Navajo 
as premised on the dynamic nature of the world. 
Inspired this description, and working with John 
Mason, Barton (2009) explored mathematical impli-
cations of treating shapes as verbs, as actions, calling 
it Action Geometry. For example, the static view of a 
circle is all the points that are equidistant from a cen-
tre point, forming a planar shape. In a dynamic view 
a circle is movement with a constant speed and with 
a constant rate or turn: “circling is actually a special 
case of spiralling” (p. 31). Barton stresses that Action 
Geometry is not an actual practice of the Navajo, but 
was invented by mathematicians.

Responses to diversity in spatial language thus can 
include teaching about and within the cultural world-
view (Pinxten et al., 1987), developing new mathemat-
ics (Barton, 2009) and responding to discourse pat-
terns to bridge to the Western mathematics (Lunney 
Borden, 2011). The example of Action Geometry shows 
how investigating linguistic diversity can enrich 
mathematics and stimulate mathematical innovation.

FRAMING PATH AND MANNER

Languages also differ in how they package meaning-
ful components, in what they put together at a word 
level and what they put together at a sentence level. 
An example of this is Talmy’s (1985) widely used dis-
tinction between verb-framed and satellite-framed 
languages. Verb framed languages present the path 
of motion on the verb, with manner as a subordinate 
addition, as in the Spanish La botella entró en la cuerva 
(flotando) ‘The bottle moved-in to the cave (floating)’. 

In satellite-framed languages such as English, the 
manner is contained in the main verb, as in The bottle 
floated into the cave, where the preposition into indi-
cates the path (examples from Talmy, 1985, p. 69). As 
Talmy notes, while English also has the verb-framed 
pattern, it is not characteristic, and the verbs that 
can be used with it are almost all borrowings from 
Romance languages.

Possible cognitive effects of this distinction are most 
likely to involve the differences in these expressions 
in which parts are compulsory to make a full utter-
ance and which are optional extras. Slobin (2006) 
found differences in the mental imagery of Spanish 
speakers from English speakers related to this dis-
tinction. Similarly, an investigation of language and 
event perception using eye movements found while 
the language used does not affect event perception, 
it does affect their memory of events (Papafragou, 
Hulbert, & Trueswell, 2008).

The ways in which different languages express motion 
events is relevant to mathematics education because 
of the importance of spatial language in mathemat-
ics, both directly and metaphorically. Mathematics 
educators may have a tendency to interpret the way 
that their own language uses spatial language for 
mathematics as necessarily linked to the mathematics. 
Jorgensen (2010) declares that “coming to learn math-
ematics is heavily associated with the use of prepo-
sitions” (p. 29). One example in English might be the 
phrase “Two goes into six three times”. Note that “goes 
into” is being used in a metaphorical sense; it would 
be erroneous to say that two enters six. The extensive 
use of spatial prepositions, of course, is a feature of 
satellite-framed languages such as English. Jorgensen 
makes her statement in the context of comparing 
English and Pitjantjatjara, an indigenous Australian 
language with far fewer prepositions than English. 
However, it might be useful to ask what mathematical 
functions Are performed by these prepositions, and 
then ask what other ways do other languages express 
those functions.

Furthermore, not all languages fit within one of 
Talmy’s two groups. Some languages favour a serial 
verb construction, in which both path and manner can 
occur in verbs used sequentially, and these verbs can 
have equal status within an utterance (Slobin, 2006). 
Serial verb constructions have been noted in various 
languages such as Ewe, spoken in Ghana (Ameka & 
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Essegbey, 2006) and Kilivila, spoken in Papua New 
Guinea (Senft, 2006). Serial verb construction is 
common in Iwaidja, and the actions themselves can 
be sequential or simultaneous (Pym, 1985). The re-
mainder of this paper will present some examples of 
the language of motion in Iwaidja in terms that could 
enrich our thinking for mathematics education. 

THE MAP TASK 

This paper reports on some of the results from a Map 
task designed to elicit route descriptions. It was a bar-
rier task for two participants, derived from the HCRC 
Map Task (Anderson et al., 1991). One participant, the 
Director, was given a map with a route marked on it. 
The other participant, the Matcher, had the same or 
similar map but without the route. The Director de-
scribed the route to the Matcher and the Matcher drew 
the route on their map. I designed the maps to contain 
items that would be familiar to all participants. An 
example of a Director’s map is shown in Figure 1. The 
maps differed from those used in the HCRC Map Task 
by having a coastline and other landscape features 
such as a creek and beaches. The items on the maps 
were shown as drawings rather than symbols, as some 
of the participants would not have been familiar with 
map conventions.

This task was conducted six times with adult Iwaidja 
language consultants, with three pairs of participants 
who each had a turn at directing. The sessions were 
videoed with an external microphone. The first pair 
used matching maps where the only difference was 
that one had a route marked and the other did not. 
The other two pairs were given different maps, so that 
some of the items on one map either did not appear on 
the other or were in different locations. The Director’s 
map still had a route marked on it. The intention was 
that more complex language would be generated as 
the participants encountered the differences in their 
maps. Participants in the sessions where the maps dif-
fered were informed that the maps might be different. 
The task allowed participants to choose what types of 
spatial language they used to solve it.

The task elicited a rich variety of route descriptions 
using motion verbs. The current paper focuses on 
only a few features of Iwaidja that were used in the 
task – the serial verb construction, the directional 
distinction and a set of specific motion verbs to de-
scribe ways of passing. These features are of interest 
because of the ways in which they combine or separate 
mathematically meaningful components as compared 
to more well-known languages such as English. Other 
features such as the use of verbs to describe circling, 

Figure 1: Example of a Director’s map showing route
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as in Mi’kmaq, are described in Edmonds-Wathen 
(2013).

Like some North American languages such as Navajo 
and Mi’kmaq, Iwaidja is a verb-rich language. Many 
aspects of life are described as processes rather than 
things. Kin relations, for example, may be expressed 
using inflected verbs, so that one says “she sisters me” 
or “he uncles you” (Evans & Birch, 2007). Verbs often 
take coverbs or adverbs, many adjectives inflect for 
number, and it is not always immediately clear wheth-
er words are verbs, adjectives or adverbs. Iwaidja is a 

‘head-marking’ language, in which affixes, both prefix-
es and suffixes, provide information including subject, 
object, direction and tense with regard to a stem. 

In general, spatial verbs consist of a stem with a prefix 
indicating either the subject (in the case of intransi-
tive verbs) or both subject and object (in the case of 
transitive verbs). Past tense is indicated by suffixes. 
Future tense is indicated via a separate prefix. In ad-
dition, there is an optional prefix indicating direction-
ality, either away from a deictic centre or towards 
it (glossed to). Without this prefix the directionality 
can be considered neutral. These directions are with 
respect to the deictic location, which may or may not 
be the speaker’s location. This prefix sometimes com-
bines with subject and object prefixes as well as the 
future tense prefix to form a single morpheme (Pym 
& Larrimore, 1979). Examples include jan-ara, glossed 
away.I.fut-go, ‘I will go’, and nyan-ara, glossed to.I.
fut-go, ‘I will come’. An example of a prefix which com-
bines subject and object is r-, glossed he.to.it, which 
means ‘he (third person singular masculine subject) 
acts upon it (third person singular object)’. 

Examples in Iwaidja are shown in four lines. The 
first line shows the sentence or phrase in the stand-
ard orthography. The second line shows each word. 
The Iwaidja words have hyphens separating mor-
phemes (meaningful word parts).The third line shows 
an aligned morpheme by morpheme English gloss. 
Where the Iwaidja word is translated by more than 
one English word, but these cannot be separated mor-
phemically in the original, the English words are sepa-
rated by a period. For example, artirran ‘he came back’ 
can be separated into art- ‘towards; he/she/it’, irra 

‘come back’ and –n, which marks the past tense. The 
third person singular pronoun and the towards direc-
tion marker cannot be separated in the morpheme art-, 
nor can the ‘come’ and ‘back’ in irra. Hence, art-irra-n 

is glossed ‘to.he-come.back-pst’. The final line shows 
a free English translation of the sentence or phrase. 
Translations and transcriptions were done with the 
assistance of a fluent native speaker.  

The predominant approach of the six participants 
was to use specific verbs of motion. Example (1) illus-
trates many typical characteristics of Iwaidja motion 
description.

(1) Artirran ararlarrngbung abulakuny awaran. 
Yabulakuny wardad ba ajbud. Yartirran yarnuk-
bun jumung murrhala ari. Yartirran yarnukbun 
wuka jumung narrhardi bani. Yartirran barak-
barda yariman ba alan ba yawaran, barakbarda 
jumung birtbani, arrarnarn lda arrayi.

art-irra-n   a-rarlarrngbu-ng
to.he-come.back-pst to.he.to.it-turn-pst

a-bulaku-ny  aw-ara-n
to.he-come.down-pst to.he-come-pst

ya-bulaku-ny wardad ba ajbud
away.he-come.down-pst one the beach

yart-irra-n   y-arnukbun
away.he-come.back-pst away.he-turn.off

jumung
rel

murrhala ari yart-irra-n
pandanus it.stands away.he-come.back-pst

y-arnukbun
away.he-turn.off

wuka jumung narrhardi bani
loc rel goose it.sits

yart-irra-n
away.he-come.back-pst

barakbarda yari-ma-n
that.one  away.he.to.it-take-pst

ba  alan  ba yaw-ara-n
the  track  the away.he-come-pst

barakbarda jumung  birt-bani
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that.one  rel  they-sit

arrarnarn  lda arrayi
 milky.oyster and black.lip.oyster

‘He came back, he turned, he came down, he came. 
He went down to one beach. He turned back to 
where the pandanus tree is. He turned back to 
where the goose was sitting. He went back there 
and he took that road, he went along where that 
thing is, milky oysters and black lip oysters.’ 

This example includes several uses of the TOWARDS 
and AWAY prefixes. The basic movement verb ara 
which means ‘go’ or ‘come’ depending on the context 
is seen in the past third person singular forms awaran 
‘he came’ and yawaran ‘he went’. We also see the verb 
irra which means ‘go back’ or ‘come back’ depending 
on the direction, in the forms artirran ‘he came back’ 
and yartirran ‘he went back’. Irra thus refers to a 
change of direction. The example also contains both 
TOWARDS and AWAY forms of wulaku ‘go down’, in 
abulakuny ‘he came down’ and yabulakuny ‘he went 
down’. Hence the use of the directional contrast en-
riches the semantic scope of the verbs to which it is 
applied.

We can also see the serial verb construction which 
is frequent in Iwaidja. The first sentence consists 
only of four verbs, all taking the TOWARDS pre-
fix: Artirran ararlarrngbung abulakuny awaran ‘He 
came back, he turned, he came down, he came.’ A col-
loquial English translation might be something along 
the lines of ‘he turned and came straight back down’. 
The use of a series of verbs in this context does not 
necessarily represent a series of actions that follow 
each other. Rather, the protagonist’s single, if com-
plex, act of turning, returning and descending are 
conceptually packaged together despite each being 
expressed as independent verbs which could each 
stand as a sentence themselves in Iwaidja. 

In any language, you would expect the language of 
motion to involve the use of verbs. However, in ‘verb-
framed’ languages, according to Talmy’s (1985) classi-
fication, manner of motion is expressed outside the 
verb, for example as an adverb. In ‘satellite-framed’ 
languages the path is expressed outside the verb, for 
example with a prepositional phrase, as in English. 
The serial verb construction of Iwaidja frequently 

combines both manner and path in a series of verbs, 
as was seen in example (1).

Iwaidja encodes specific spatial information into 
distinct, although related verbs. The range of verbs 
elicited to refer to passing objects on the map is a good 
example of this. The most general of these is marray-
wung ‘pass.’ It is a transitive verb, requiring the spec-
ification of what is passed, but does not provide any 
more detailed information about how the object is 
passed. Its use is shown in example (2).

(2) Rimarraywung yawarang mangawala ajbud 
jumung kabala ari.

ri-marraywung  yaw-ara-ng
he.to.it.pass  away.he-go-npst

mangawala ajbud  jumung
fast  beach  rel

kabala  ari
boat  it.stand

‘He goes past them and runs along the beach 
where boat is.’ 

There are also verbs derived from marraywung for 
passing in front, behind or to the side of objects. Their 
use depends upon those objects having an intrinsic 
front, back or side. The verbs are marlmarraywung 

‘pass behind’ (example 3), wudbarraywung ‘pass in 
front’ (example 4), and ngunyunmarraywung ‘pass 
beside’ (example 5).

(3) Artirran ararnukbung rimarlmarraywung 
wuka jumung mudika wulurr.

art-irra-n   ar-arnukbu-ng
to.he-come.back-pst to.he-turn.off-pst

ri-marlmarraywung  wuka
he.to.it-pass.behind  loc

jumung mudika  wulurr
rel  car  back

‘He came back, turned off and passed behind the 
back of the car.’

(4) Kirrimul warrkarrk aju riwudbarraywung.
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kirrimul warrkarrk  aju
like  goanna it.lies  he.to.it-pass.

ri-wudbarraywung
in.front

‘He passes in front of where the goanna is.’ 

(5) Kabanangunyunmarraywun baraka dinghy.

kabana-ngunyunmarraywu-n baraka
you.to.it.fut-pass.beside-npst dem 

dinghy
dinghy

‘You will pass beside the dinghy.’

Ngunyunmarraywung ‘pass beside’ contains the body 
part stem ngunyuni ‘waist’ which also occurs in words 
such as mangunyuni ‘beside’ and angunyulunmin 

‘side by side’. The derivational origins of marlmar-
raywung ‘pass behind’ and wudbarraywung ‘pass in 
front’ are not so transparent. 

In addition to the adverb mangunyuni ‘beside’, Iwaidja 
has warrwak ‘behind’ (an adverb) and wurdaka ‘in 
front’ (a verb). Warrwak and wurdaka are common 
words and were used by the Iwaidja speakers fre-
quently in activities involving description of static 
location (Edmonds-Wathen, 2014). The examples 
here of the various verbs of passing indicate more 
than just choices in the expression of ‘beside’, ‘behind’ 
and ‘in front’. Rather, there are differences in their 
expression depending on whether one is talking about 
static location or about motion. Similarly, Iwaidja has 
adverbs yurrngud ‘on top, above’ and wurrrwud ‘be-
low’, which are often used to describe static locations. 
However, the verbs bulaku ‘go down, descend’ and the 
opposite wurti ‘go up, ascend’ are used to describe 
motion up or down.

DISCUSSION AND CONCLUSIONS

Most Australian Indigenous language speaking chil-
dren are taught mathematics in English by English-
speaking teachers. Their mathematics learning is 
assessed in English. When English speaking teach-
ers talk and think about how to teach the language 
of mathematics, they tend to package concepts such 
as spatial concepts in the way that English packages 

them. They are likely to think of a concept of “down-
ness” which applies in the same way to being down 
and going down, as this is how the English grammar 
of “down-ness” works. However, it is far from certain 
that speakers of languages such as Iwaidja link the lo-
cation of wurrrwud ‘below’ with the motion of bulaku 

‘go down, descend’. Similarly, an English speaker may 
conflate the “behind-ness” and “in front-ness” concep-
tualised in the verbs marlmarraywung ‘pass behind’ 
and wudbarraywung ‘pass in front’, with that in warr-
wak ‘behind’ and wurdaka ‘in front’ to a greater extent 
than an Iwaidja speaker. Kriol, a creole language with 
an English lexicon spoken by over 4000 Indigenous 
Australian people, and learnt by many Indigenous 
children as their first language, also expresses path 
in basic motion verbs. Examples include guwap ‘go 
up, ascend’ and gudan ‘go down, descend’.

Educationally, a possible response to this would be for 
teachers of Indigenous language speaking students 
to try to use the discourse patterns of their students 
in teaching the language of location and motion in 
English (Lunney Borden, 2011). While the spatial prep-
ositions may be emphasised in describing static loca-
tion, when describing motion the path should not be 
separated or emphasised: rather than “down, down, 
go down”, the whole verb phrase “go down, go down, 
go down” could be repeated.

Grammatical structures provide clues to how speak-
ers of different languages structure their understand-
ing of events and to what they are likely to pay atten-
tion. Finding out about these grammatical structures 
can help mathematics education researchers to design 
investigations cognitive differences between speak-
ers of different languages. The cognitive effects of 
using a serial verb construction as in Iwaidja could be 
investigated to add to comparisons between path- and 
satellite-framed languages. These types of structures 
are relevant when considering the design of mathe-
matics questions in different languages. Questions 
that focus attention to one part of the information in 
one language and to another part of the information 
in another language may promote different problem 
solving strategies.

Finally, investigations such as that reported in this 
paper, into the grammar of basic mathematical con-
cepts, can also provide us with the opportunity to 
look more deeply into our assumptions about these 
concepts. This in turn may inspire mathematicians to 
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think creatively beyond the grammatical constraints 
of their own languages.
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The overall interest in this study is actions of the diverse 
participants in the mathematics primary classroom. 
More specifically, attention is put on typical commu-
nication strategies that teachers and students, in our 
research context, use during mathematics lessons. We 
present some examples with classroom data to illustrate 
how the strategies are used and what opportunities to 
learn mathematics are offered as an outcome from the 
implemented actions by teachers and students.

Keywords: Mathematics education, communication 

strategies, primary classroom.

INTRODUCTION

The language and how it is used is of significant im-
portance for what is possible to learn in all education 
(Säljö, 2000). The way the teacher manages to direct 
the communication in the classroom and how stu-
dents and the teacher talk to each other is crucial for 
students’ learning in terms of mathematical content 
as well as how they view themselves as mathemati-
cal performers (Franke, Kazemi, & Battey, 2007). The 
main interest in this study is communicative teaching 
strategies that are used in the mathematics classroom 
and what these strategies can offer in terms of stu-
dents’ opportunity to learn mathematics.

The findings in this paper extend the results of a larg-
er study by Engvall (2013), to which Samuelsson and 
Forslund Frykedal contributed importantly. That 
study discusses teachers’ and students’ actions in 
the mathematics classroom in primary school when 
written calculation methods are in focus. The theoret-
ical framework is built on activity theory (AT), which 
here refers to Engeström’s (1987) model of the activity 
system. According to Rezat and Sträßer (2012) this 
theory is one among other socio-cultural or semiotic 
theories that has been shown to be successful in math-

ematics education research. In AT, the theory about 
tool mediation is a mainstay (Cole & Engeström, 1993). 
It is pointed out that any meeting with mathematics is 
mediated through either material tools as for example 
textbooks and rulers or non-physical tools such as lan-
guage, visual representations and gestures (Rezat & 
Sträßer, 2012). A major feature in Engeström’s model 
is that the context has been extended with some ad-
ditional mediating factors such as rules, community 
and division of labour in order to allow better analysis 
(Engeström; 1987; Goodchild, 2001; Rezat & Sträßer, 
2012). Yet, in this paper, we focus on verbal language 
as it is used by teachers and students in some classes 
during mathematics lessons in primary school, or in 
other words communication strategies. There are two 
main questions to be elaborated here: 

(1) What kind of communication strategies do 
teachers and students use in the mathematics 
classroom? 

(2) What do different communicative teaching 
strategies have to offer the students in terms of 
opportunity to learn mathematics?

Communicative teaching strategies 
in the mathematics classroom
In this paragraph some characteristic communicative 
teaching strategies in mathematics classrooms will be 
presented. In particular, we pay attention to the lan-
guage used for teaching, i.e. the kind of language used 
to demonstrate, explain and exemplify mathematical 
connections, drawing from Löwing’s (2000) instru-
ment for analysis of communication in the mathemat-
ics classroom. Löwing makes a distinction between 
formal and informal language for teaching, where the 
latter is used e.g. together with manipulatives or when 
an everyday situation is taken as a starting point for 
explaining a calculation. In this presentation we focus 
on the formal language since, according to Setati and 
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Adler (2000), one of the challenges in mathematics 
education is to get the students to gradually change 
from informal to the formal language, which is char-
acteristic for mathematical activities. 

According to Löwing (2000), two main categories of 
spoken language strategies can be distinguished with-
in the formal teaching language, namely descriptive 
language and conceptual language. By using descrip-
tive language, teacher and students put attention 
on procedures, as e.g. when teacher and students 
together are performing calculations like 53+25 on 
the board and somebody describes adding the tens by 
saying “five plus two”, which means that the tens are 
treated verbally as if they were ones. In this case the 
language is representing the calculation procedure. 
Conceptual language, on the other hand, is visible 
when mathematical words with a specific meaning, e.g. 

“five tens plus two tens” are used in order to explain 
and not only describe a step of a calculation like this. 

The following strategies, presented in the community 
of international researchers in mathematics educa-
tion (Mercer, 1995; O’Connor & Michaels, 1993), can be 
associated with the category of conceptual language. 
Our first strategy to be presented here is key ques-
tions. Researchers have demonstrated that teachers 
use key questions or certain phrases to create struc-
tures for supporting students’ learning (e.g., Mercer, 
1995). Some students pick up these questions or other 
common phrases from the teacher’s spoken language 
and use them as a kind of support when performing 
his or her tasks.

Another distinctive strategy connected to the second 
category is revoicing, since revoicing directs the atten-
tion towards thinking and conceptual understanding 
(O’Connor & Michaels, 1993). Revoicing can actually 
be defined as at least three communicative teaching 
strategies: (a) repeating, (b) rephrasing and (c) recasting.  

With reference to Mercer (1995), repeating can be 
used for directing the students’ attention towards 
something specific in a student’s answer/expression/
utterance so this can support the students’ learning. 
When a teacher instead rephrases a student’s utter-
ance the class will get another chance to grip what just 
has been said but in a version that is more consistent 
with what the teacher wants to point out. Finally, if a 
student has expressed something almost non under-
standable in class, this can be further developed by 

the teacher’s recasting so the meaning thereby can be 
explained for the students (Mercer, 1995; O’Connor & 
Michaels, 1993). 

The content in this section is interwoven with our first 
research question regarding the use of communica-
tion strategies in the mathematics classroom. Our sec-
ond question is aimed at paying attention to the idea 
of possible learning, which therefore will be followed 
up in the next section. This theoretical overview will 
be concluded by a short presentation concerning dif-
ferent aspects of mathematical knowledge.

Opportunities to learn and 
mathematical knowledge 
One of the most firmly established links between 
teaching and learning is the idea of “opportunity to 
learn” (Hiebert & Grouws, 2007). This means that “the 
students learn best what they have the most oppor-
tunity to learn” (p. 378). Although it is impossible to 
predict learning outcomes in mathematics based on 
the use of a specific teaching strategy it is still likely to 
reason about students’ opportunity to learn with re-
gard to teachers’ and students’ strategies during math-
ematics lessons (Hiebert & Grouws, 2007). Further, 
this means that it is possible to discuss what teachers’ 
and students’ verbal action can offer when it comes 
to opportunity to learn during mathematics lessons. 
This is a core message in this paper.

In various frameworks (Kilpatrick et al., 2001; Niss, 
2003) mathematical knowledge is presented as some-
thing multifaceted which comprises different types of 

“tightly interwoven” competences. Procedural knowl-
edge, conceptual understanding, communication, rea-
soning and strategic competence are some examples. 
In Sweden, as in other countries, this approach has 
influenced the curriculum in mathematics education. 
This means that students during mathematics lessons 
will get more opportunities to be involved in activities 
of communicating together with thinking and under-
standing instead of putting big efforts into skill prac-
tice and remembering procedures (Anghileri, 2001; 
Clarke, 2006). For more than 20 years, this approach 
has also given rise to a common trend for the teaching 
of arithmetic, which is an essential part of the mathe-
matics content in primary school. Before the students 
get any instructions on traditional algorithms they 
will focus on strategies for mental calculation. From a 
Swedish point of view this means that traditional algo-
rithms gradually have been replaced in the textbooks 
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by other written calculation methods. For example 
the addition 56 + 28 can be calculated as follows, 56 + 
28 = 70 + 14 = 84. The “intermediate” 70 + 14 is written 
down in order to facilitate the mental work.

In this paper, we focus on teachers’ and students’ 
communication strategies with respect to procedural 
knowledge and conceptual understanding when the 
content is written calculation methods for addition 
and subtraction. 

METHOD

The collected data in this observation study consisted 
of video-recorded mathematics lessons in five differ-
ent classrooms. Besides, an audio recorder has been 
used together with the video camera in order to get 
a more complete sound reproduction. In addition to 
the recorded material there were also field notes. The 
participating classes belonged to four schools with 
students from areas with comparable socioeconomic 
status. The number of students in each class was 24–
25. Every teacher had the primary responsibility for 
the mathematics education in her/his class. Most of 
the teachers did also teach all lessons in almost every 
subject in the class. Collection of data started during 
the spring when the students were in second grade 
and continued during the autumn, when the students 
were in third grade. The video-recorded material com-
prises a total of 24 lessons. In all the lessons one and 
the same content has been in focus, i.e. written cal-
culating methods for addition and subtraction with 
numbers exceeding 20.

The collected research material has been analysed in 
two steps. The first step, with inspiration from Braun 
and Clarke (2006), can be described as empirically 
oriented and thematic. This part of the analysis has 
been carried out in order to discern phenomena that 
form patterns in the material and thus point to the 
characteristic actions in mathematics classrooms. The 
result derived from the first step of the analysis has 
then been used as the basis for the second step, where 
the analysing tool, inspired by Engeström (1987), has 
guided the analysing process. Engeström’s model for 
activity system gives the researcher opportunity to 
analyse not only actions mediated by tools, but also by 
other mediating factors such as rules, community and 
division of labour. Yet, the focus in this paper is on the 
outcome of the analysis regarding a non-physical tool, 

spoken language, or more generally, communicative 
teaching strategies in the mathematics classroom.

ANALYSIS AND FINDINGS

In the following presentation we will report some 
typical communicative teaching strategies that have 
appeared in the empirical material. These will be 
presented in relation to descriptive and conceptu-
al language. Thus, here we put attention to just two 
aspects of mathematical knowledge, procedural and 
conceptual knowledge. 

The content taught in the classrooms in the study is, 
as already mentioned, written calculation strategies 
for subtraction. In the first example below, initially, 
the teacher invites a student to tell how to calculate 
the subtraction 55–21. Almost at the same moment the 
teacher clarifies that the goal is to tell how to write 
the intermediate but the outcome of the subtraction 
is not going to be emphasized. 

Transcript 1
Teacher  [WRITES 55-21= ON THE BOARD] I don’t 

want to hear the outcome. I want to hear 
the intermediate…Peter! 

Peter (stud.) Fifty minus twenty makes thirty.
Teacher [WRITES 30 AFTER  =] 
Peter And the plus.
Teacher [WRITES +]
Peter And then it is five minus ten…four …

four…forty… [ADDRESSING THE 
TEACHER WHO WAITS A MOMENT 
BEFORE WRITING THE NEXT DIGIT], 
a four.

Teacher [WRITES 4 =] And that makes??
Peter Err, thirty-four.
Teacher [WRITES 34] Thirty-four. Exactly! Yes, 

it’s important to keep track of whether 
you have to use the tens or the ones.

From this sequence we notice that the dialogue is 
dominated by the number words together with some 
words which are representing other symbols. Thus, 
the student’s communication strategy can be defined 
as descriptive language, since it is mainly used for 
representing the different steps in the calculation 
which is performed by the student while the teacher 
is writing on the board. The student’s third reply indi-
cates some uncertainty regarding the value of the digit 
one in 21. The teacher’s comments are very limited. 
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However, in the last lines the teacher mentions some 
fundamental concepts concerning number value 
but this does not seem to be aimed at clarifying the 
meaning of these concepts, rather to give the student 
an advice. Accordingly, in this example attention is 
directed towards the procedure.

The next transcript illustrates the first steps of a 
teacher’s instruction to the whole class on how to 
calculate the subtraction 58–34. Together with the 
written subtraction on the board, the teacher uses 
manipulatives, especially adapted for putting on the 
board, representing the number of tens and ones.

Transcript 2
Teacher  /…/ If we are going to calculate fifty-eight 

minus thirty-four, which numbers are 
we going to begin with? ... Jenny!

Jenny (stud.) The tens.
Teacher  We begin with the tens. In fifty-eight 

there are five tens [MAKES A RED 
MARK RIGHT BELOW THE DIGIT 5], In 
thirty-four there are three tens [MAKES 
A RED MARK BELOW THE DIGIT 3]. 
Five tens minus three tens [POINTS 
AT THE DIGIT 5 AND THE DIGIT 3]…
yes, here we have five [POINTS AT THE 
FIVE MANIPULATIVE TENS ON THE 
BOARD] and then we take away one, 
two, three [TAKES AWAY THREE TENS]. 
How many tens do we have left? …Mika!

Mika (stud.) Twenty.
Teacher We have twenty left. Two tens or twenty. 

It’s the same thing just different ways 
to say it. [WRITES 20 AFTER =]….Mm. 
Which numbers are we going to contin-
ue with now? 

We can observe that the teacher clarifies the number 
of tens in each term, e.g. “in fifty-eight there are five 
tens”. By that, the ten’s names and the number names 
synonymous with each other appear at the same time, 
e.g. two tens and twenty. Here, the strategy of concep-
tual language is prominent.

In both sequences above there are examples illus-
trating how teachers use revoicing although they do 
it differently. This is particularly evident in the last 
teacher sentence in each transcript.

Excerpt from Transcript 1
Teacher [WRITES 4 =] And that makes??
Peter Err, thirty-four.
Teacher [WRITES 34] Thirty-four. Exactly! Yes, 

it’s important to keep track of whether 
you have to use the tens or the ones.

Excerpt from Transcript 2
Teacher /…/ How many tens do we have left? …

Mika!

Mika (stud.) Twenty.

Teacher We have twenty left. Two tens or twenty. 
It’s the same thing just different ways 
to say it. [WRITES 20 AFTER =]….Mm. 
Which numbers are we going to contin-
ue with now?

What these last teacher sentences have in common 
is that the teacher is repeating the student’s reply. On 
the other hand, a clear distinction is visible when we 
compare the teachers’ actions in the two examples. In 
the first example, besides repeating the student’s re-
ply, the teacher makes a comment without any further 
explanation while the teacher in the second example 
makes a typical rephrasing. This rephrasing, “Two 
tens or twenty. It’s the same thing just different ways 
to say it”, offers the possibility for the class to take part 
in what has been said, but in a version that is more in 
harmony with what the teacher wants to point out. In 
this situation attention is put on the meaning of tens 
and ones and what the digits are representing in terms 
of place value. Thus, in the second example conceptual 
knowledge is focused while that is not really the case 
in the first one.

In transcript 2 it is also illustrated that the teacher 
puts attention to the tens and ones, each in turn, by 
asking questions like “Which numbers are we going 
to begin with?” and “Which numbers are we going to 
continue with now?” We recognize this from research 
as key questions. These are typified by a seemingly 
procedural course of action. However, depending on 
how these questions are formulated, the repeating 
character offers opportunity to develop not only pro-
cedural but also conceptual knowledge. We can notice 
that the student in this example uses a place value 
word to reply on a key question. Therefore, this kind 
of questions has an important function in that they 
can help the students to make structures. It is not un-



How communicative teaching strategies create opportunities for mathematics learning (Margareta Engvall, Joakim Samuelsson and Karin Forslund Frykedal)

1372

usual that the students pick up the teacher’s phrases 
and use them later on when performing similar tasks.

Finally, the following transcript represents the final 
part of a session when a class is performing the sub-
traction 45–22 together with their teacher. They have 
already jointly agreed that the result of the performed 
subtraction of the tens is twenty. 45–22 = 20 is now 
written on the board and when students are invited 
to perform the subtraction by the ones, the teacher 
gets two different suggestions from students about 
what to write next, either plus five or minus three. 
The teacher then repeats the question about how 
many ones there are left, which is the opening sen-
tence in the transcript below. The way this question 
is formulated together with the teacher’s illustrating 
the calculation by fingers, makes it almost impossible 
for the students to give anything else than a correct 
reply. The teacher’s utterance in line four “Now you 
said minus three” is a comment to the student who 
just recently suggested that the teacher should write 
minus three to complete the intermediate.

Transcript 3
Teacher  How many ones have you left then? … If 

you have five [SHOWS FIVE FINGERS], 
and you are going to take away two? 

Student  Three.
Teacher You have three ones left. Now you said 

minus three, but if you have something 
left, what sign do you think you should 
use, when you have something left?

Student Plus.
Teacher Plus [WRITES + TO THE RIGHT OF 20]. 

It sounds like plus is a very suitable 
word when you have something left, 
doesn’t it? ...If something was missing 
you shouldn’t use it, should you?

This transcript makes visible how the teacher uses 
a specific expression “have left” in order to put the 
students on the right track about which sign they 
are supposed to use when writing the intermediate 
in performing written subtraction calculations. In 
the bottom line we can also notice that the teacher 
makes a contrast by using the word “missing” in order 
to demonstrate an association with the minus sign. 
This strategy we call key words. This strategy resem-
bles other strategies where focus is on remembering 
rules, which makes it closely related to descriptive 

language and consequently, attention is put on pro-
cedural knowledge.

CONCLUSION

Even if mathematical knowledge is multifaceted, our 
concern in this paper has been concerned with op-
portunities to learn in terms of conceptual and pro-
cedural knowledge. We have presented a number of 
communicative teaching strategies that teachers and 
students use in the mathematics classroom. The two 
categories, descriptive and conceptual language, are 
represented to various extents in the five classrooms 
in the study. Depending on which verbal strategies 
teachers and students are using, different opportu-
nities to learn are offered to students.

With this paper we want to illustrate teachers’ and 
students’ actions when they use these communication 
strategies. The result indicates that strategies that 
direct attention to procedures are also focusing on 
conceptual knowledge and vice versa. As an example, 
when the teacher repeats a student’s reply more or 
less attention can be directed to concepts depending 
on what type of formal language the students used. In 
a classroom where descriptive language is frequent, 
it is more likely that the strategy repeating a student’s 
reply will put emphasis on procedures. However, this 
is in conflict with O’Connor & Michaels (1993) who 
claim that revoicing directs the attention towards 
concepts and thinking. Furthermore, using another 
strategy such as key words can be characterized as 
procedural. On the other hand, the key words carry 
some meaning and thereby this strategy might offer 
opportunities to develop conceptual understanding.

What has been presented above can also be illustrated 
in the following figure. The horizontal line expresses 
the communicative teaching strategies and the ver-
tical line symbolizes opportunities for developing 
either procedural or conceptual language. The two 
bigger crosses illustrate that descriptive language 
offers possibilities to develop procedural knowledge 
while a similar relationship can be described regard-
ing conceptual language and conceptual knowledge. 
Also, conceptual language strategies offer possibili-
ties to develop procedural knowledge but to a lesser 
degree than from descriptive language strategies. A 
similar reasoning can be applied to the relationship 
between descriptive language and conceptual knowl-
edge.
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This paper illuminates how teachers’ and students’ 
use of communication strategies influence opportu-
nities to learn with respect to procedural and con-
ceptual language in the mathematics classroom. It 
can be used for further discussions on pedagogical 
implications in teacher training programmes as well 
as in in-service teacher training.
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Same classroom, same learning opportunity? Although 
learning to explain takes place while participating in 
the classroom micro culture’s practices of explaining, 
this interactionist conceptualization must be widened 
in order to account for students’ diversity. For analysing 
not only quantitative, but also qualitative differences 
between students’ participation in explaining practices, 
we present the construct ‘epistemic participation profile’ 
and illustrate how it allows to account for the diversity 
within a classroom.

Keywords: Explaining practices, interaction, epistemic 

participation profiles.

DIVERSITY IN PARTICIPATION IN 
CLASSROOM PRACTICES 

Many researchers with social, socio-cultural or so-
cio-constructivist perspectives describe mathematics 
learning as an increasing participation in interactively 
constituted classroom practices. We join this view by 
adopting an interactionist perspective and account for 
students’ learning processes in explaining practices 
of classroom microcultures (Prediger & Erath, 2014). 
These practices are regulated by shared sociomath-
ematical and social norms (Cobb, Stephan, McClain, 
& Gravemeijer, 2001). Whereas early interactionist 
approaches assumed the class to be a coherent body in 
which the mentioned aspects can be “taken-as-shared” 
by all members (cf. critique in Cobb et al., 2001), later 
approaches acknowledged diversity among students: 
students usually participate in diverse ways, and the 
individual participation shapes the individual learn-
ing opportunities which are preconditions for learn-
ing achievement (Greeno & Gresalfi, 2008). Learning 
was then described as increasing from the “legitimate 
peripheral participation” (Lave & Wenger, 1991) to 
more acknowledged central participation, hence lim-

ited participation was seen as an intermediate state. 
However, many (especially underprivileged) students 
seem to stay in a peripheral position (DIME, 2007). In 
order to deepen this idea of diverse individual learning 
opportunities depending on students’ ways of participa-
tion, these ways must be described quantitatively, but 
also with respect to their quality. Greeno and Gresalfi 
(2008) give hints for this qualification by describing 
conceptual practices as crucial for mathematics 
learning in contrast to purely procedural ones. We 
present a framework for qualifying students’ diverse 
profiles of participation as one key to understand the 
reproduction of inequality in classroom interaction 
where all students have the same formal and curric-
ular learning opportunities (DIME, 2007). This paper 
deals with three research questions from which the 
first one had to be solved by developing an analysing 
tool: (Q1) How can we distinguish between students’ 
diverse ways of participating in classroom explaining 
practices with respect to the epistemic processes of 
knowledge construction? (Q2) Are there patterns of 
ways of participating which allow speaking about a 
consistent participation profile? (Q3) How does stu-
dents’ participation develop over half a year? 

We address two points relevant to the TWG as raised 
by Morgan (2013): First, bilingual learners in mathe-
matics and second, the question what linguistic com-
petences and knowledge are required for participa-
tion in mathematical practices.

EXPLAINING PRACTICES IN 
MATHEMATICS CLASSROOMS

Our case study is embedded in our large research 
project INTERPASS in which we investigate whole 
class interactions with joint explaining activities and 
different research questions. For investigating the 
mathematical core of explanations and their func-

mailto:kirstin.erath@math.uni-dortmund.de
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tions in the process of knowledge constitution, we 
combine the interactionist perspective on explaining 
with an epistemic perspective. In the epistemic per-
spective, explaining is defined as aiming at building 
and connecting knowledge in a systematic, structured 
way by linking an explanandum (the issue that needs 
to be explained) to an explanans (by which the issue 
is explained). This distinction structured the tool 
developed for analysing contributions with respect 
to their epistemic character, the so-called epistemic 
matrix (Prediger & Erath, 2014), which led to observe 
the phenomenon presented below.

In the rows of the epistemic matrix (in Figure 1), 
contributions to a joint explaining activity are dis-
tinguished with respect to the explanandum. For 
this, we refine the conceptual/procedural distinc-
tion (raised as relevant for participation profiles by 
Greeno & Gresalfi, 2008) into seven logical levels: The 
four conceptual levels comprise concepts (categories 
such as maximum), semiotic representations (e.g., a 
diagram itself ), mathematical models (addressing 
relations between reality and mathematical ob jects/
statements), and propositions (mathematical patterns, 
statements, or theorems); the three procedural levels 
comprise procedures (e.g. a general way of drawing 
a diagram), con ven tional rules (e.g., “frequencies al-
ways on vertical axis”), and concrete solu tions (e.g., 
individual solutions of a mathematical task). In the 
columns of the epistemic matrix, the explanans is 
distinguished in six epistemic modes: ||labelling & 
naming|| is the only mode that can be addressed by 
a single word (e.g., “maximum”). The mode ||explicit 
formulation|| includes definitions and theorems and 
is a linguistically elaborate way to treat an ex pla n-
andum, it is usually also epistemically more elaborate 
than the mode ||exemplification|| which addresses 
examples and counterexamples. The mode ||mean-

ing & con nection|| comprises all semantic aspects 
of an explanandum and those that bridge to an other 
level or mode, for example pre-existing knowledge 
(e.g., meanings, arguments, reasons), it can have dif-
ferent epistemic degrees of elaboration. The mode 
||purpose|| belongs to a pragmatic approach (e.g., “in 
diagrams, we see pattern more clearly”). The mode 
||evaluation|| often appears in context of evaluating 
solutions. 

In our empirical approach, each (complete or partial) 
explanation that is de manded and given in a classroom 
interaction is characterized by the navigation through 
the addressed epis temic fields (=the combination of 
addressed logical level and epistemic mode). Figure 1 
contains an exemplary navigation pathway of Episode 
1 (signs as ‘#17’ refer to the lines in the transcript, cir-
cles stand for the teacher, rectangles for the students). 
In this navigation pathway, the teacher addresses the 
fields --concrete solutions / models-- ||meaning & con-
nection|| by asking if anybody has a cat at home and 
knows its weight. Afterwards, he navigates to --mod-
els-- ||explicit formulation|| by asking for a complete 
modelling, thus he navigates from children’s concrete 
experiences to explicit formulations and hence, to 
consolidated mathematical knowledge.

Whereas two preceding papers investigated by the 
epistemic matrix the epistemic core of common inter-
active practices (Prediger & Erath, 2014) and a teach-
ers’ profiles setting different implemented curricula 
(Erath & Prediger, 2014), this paper applies the ana-
lysing tool to specifying diverse students’ epistemic 
participation profiles. By focusing on the students, 
we investigate how different individual students 
contribute on their own ways within an interactively 
established social practice. 

Figure 1: Epistemic matrix for distinguishing explanans and explanandum
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We construct a student’s epistemic participation profile 
by analysing all her/his contributions in oral class-
room explaining practices. The epistemic participa-
tion profile is characterized by taking into account (1) 
the quantity of the student’s contributions, (2) their 
epistemic character, and (3) their epistemic potential 
for consolidating mathematical knowledge which is 
determined (3a) by the required level of the epistemic 
field demanded by the teacher and (3b) by the level of 
compliance by the individual students. This definition 
builds upon two assumptions: the epistemic fields 
play different roles in the collective and individual 
process of knowledge construction (Vollrath, 2001, 
pp. 52f ), and the individual opportunities to learn 
also depend on the individual’s compliance for con-
tributing to consolidating the knowledge (Greeno & 
Gresalfi, 2008). 

METHODOLOGY OF THE STUDY

Larger data corpus. In the larger project InterPass 
video data was gathered in 10 times 12 math and lan-
guage les sons (each 45–60 min.) in five different grade 
5 classes (age 10–11 years). The data corpus also com-
prises all class materials and written products. 

Sampling for the case study of this paper. The small 
comparative case study focuses on 12 math lessons 
in one higher tracked class (German “Gymnasium”, 
German as language of instruction) in which we com-
pare three students’ participation profiles. The stu-
dents Nahema, Monir, and Thasin were selected due 
to their similar social and language background (all 
boys of 10–11 years, second language German learn-
ers, living in an underprivileged urban quarter), but 
contrasting participation profiles. The video corpus 
for this case study is formed by all episodes of whole 
class interactions in which one of the three boys was 
involved in joint explaining activities.

Data analysis. First, the selected video data were 
transcribed and analysed by means of the epistemic 
matrix. Second, in order to reconstruct the boys’ epis-
temic participation profiles over time, (1) all contribu-
tions above the sentence level of the three boys during 
classroom interactions of joint explaining were col-
lected, and the quantity was determined by counting, 
(2) their epistemic character was operationalized by 
locating them in the epistemic matrix, and (3) the epis-
temic potential of the contributions (consisting of the 
required level and the level of students’ complying) 

was identified by an analysis of teachers’ navigation 
pathway and the criterion how the utterance contrib-
uted to consolidating mathematical knowledge in the 
classroom interaction. (For example, explaining algo-
rithms and describing mathematical ways of acting 
or connecting procedures and concepts demands a 
high required linguistic and epistemic level of con-
solidation, whereas naming result or stating everyday 
experience without connecting it to mathematics is of 
lower difficulty.) And third, considering the course of 
the participation during the 12 lessons allowed ana-
lysing their stability. The fact that we conceptualize 

“participation profile” not as dynamic is justified by 
the empirical outcome that each of the three students’ 
individual way of participation is quite stable over 
time. 

THREE STUDENTS’ EPISTEMIC 
PARTICIPATION PROFILES

The participation of the three boys differs in quantity: 
Monir and Nahema have 8 and 7 contributions above 
sentence level (i.e. longer than one sentence) to joint 
explaining activities in whole class interaction within 
the 12 lessons (and of course many shorter contri-
butions of one to three words not considered here). 
Thasin shows a more active participation with 12 
contributions above sentence level. The relations are 
similar for the cases in which the boys raise their hand 
but are not selected to contribute (Monir 15, Nahema 
13, Thasin 32). However, this quantitative information 
cannot account for un equal learning opportunities 
in active participation. Only the qualitative analysis 
of transcripts allows to categorize the differences in 
the epistemic character and to reconstruct their epis-
temic potential. We illustrate our analysis procedure 
by two episodes before describing the results of all 
analysed episodes. 

Episode 1: The meaning of 
rounded zero in the dot plot
Episode 1 is extracted from a discussion in the class 
about interpretations for the dot plot in Figure 2, after 
two students have given opposed interpretations for 
the 0 kg for cats in Figure 2 (‘nothing written’ versus 

‘under ten kilogram, maybe one and a half or two’). 
The transcript starts when the teacher collects several 
weights of cats in #14 in order to evaluate the solu-
tions (the translated transcripts use […] for missing 
parts, (.), (-) and (--) for breaks of increasing length, 
CAPITALS for emphasized words): 
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14 Teacher […] Does anybody have a cat at 
HOME, […] Can you tell how much it WEIGHS, 
[…]

15 Kathrine um (.) I have now um (.) a little 
KITTEN at home, well it‘s weighing (.) nearly 
two KILO;

16 Teacher HM_hm, um (--) TILBE;
... 
21 Eric I have a (.) at my grandma’s I have 

a CAT, I once weighed it, (.) it was very THIN, 
it think its weight was (--) two KILO, and a (.) 
bigger tomcat I think even SIX kilo;

22 Elif WOW;  
23 Teacher HM_hm; NAHEMA;
24 Nahema from my friend who is called 

KEVIN, (.) the ca (.) um the the cat is like THIS, 
((shows the size with his hands)) this weighs 
NINE kilo; 

25 Elif NINE; ((many students expressing 
scepticism about cats of nine kilo))

Kathrine (#15), Tilbe and Kevin (in unprinted #17 and 
#19), Eric (#21) and Nahema (#24) are stating their 
experiences with the weight of cats, hence they are 
staying in the epistemic fields for which the teacher 
asked (#14): the epistemic mode ||meaning & connec-
tion|| on the logical levels --concrete solution-- and 

--models--. After Eric’s six kilos were already comment-
ed by ‘WOW’ (#22), Nahema’s suggestion of nine kilo 
(#24) is rejected by other students Nahema’s contri-
bution is linguistically correct, but not concise due 
to superfluous information. 

Having collected these concrete values for cats’ 
weights, the teacher moves back to the mathematical 
core with the next question (#28/30). As the naviga-
tion pathway in Figure 1 shows, he navigates into the 
epistemic field --models-- ||explicit formulation||. He 
takes on the weight stated by Nahema and calls on 
Monir and Thasin for giving their suggestions how 
to model the situation:

30 Teacher one WEIGHT symbolizes about 
ten ki (.) well symbolizes ten kilo; Now, if a 
cat REGULARLY, right, (.) well if cats would 
weigh regularly around nine kilo; would one 
DRAW a weight symbol there, (.) or rather 
NOT; […]

31 class ((murmuring))

32 Teacher MONIR, (.) THASIN, (.) what do 
YOU think;

33 Monir well um (-) the um (.) these (.) 
SCALES of um how much they weigh, is al-
ways only (.) after the TENS (.) so (.) always 
10, 10 20 30 40; 

…
35 Monir but the cat weighs UNDER ten; so 

(--) um (-) the (.) it does not weigh like (-) um; 
(--) well it has (-) it has no um (-) it two-digit- 
((indicates digits in the air with his fingers))

36 Teacher HM_hm; a two-digit NUMBER; 
or no two-digit WEIGHT;

37 Monir YES;
38 Teacher HM_hm, (.) THASIN;
39 Thasin If a cat would weigh nine KILO 

on average, one would round it up on TEN; 
...
42  Teacher BOTH can be correct by the way; 

(.) THASIN Monir; […] 

Monir (#33) first refers to the meaning of the weight 
symbols in the dot plot and hence addresses the epis-
temic field --models-- ||meaning & connection||. Then 
he shifts the mode to ||explicit formulation|| in #35 by 
stating that since the weight of a cat has not two digits 
one would not print a weight symbol (see navigation 
pathway in Figure 1). Monir is struggling linguisti-
cally; the multiple breaks indicate how he is search-
ing for suitable words. In #36, the teacher supports 
him in closing his utterance by translating Monir’s 
gestures into words. Thasin directly addresses the 
epistemic field to which the teacher referred in his 
initiating question and models by using the concept 
of rounding on tens (#39/41). He uses an if-then-clause 
which is not trivial for second language learners of 
this age. The teacher evaluates both utterances (#42) 
by reformulating them and stating that both ways are 
plausible and not decidable from the dot plot alone.  

All three focus boys, Nahema, Monir and Thasin, par-
ticipate in the whole class explaining activity for the 
dot plot with a similar length of utterances (Nahema’s 
being slightly shorter). All three contributions are 
valued in the interaction since the teacher (who is 
concerned of including everybody) builds upon them 
in the further interaction. However, we identify a typ-
ical difference between Nahema on the one hand and 
Monir and Thasin on the other hand: Nahema (as all 
five students in the beginning) only contributes some 
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facts from his everyday knowledge. Although the 
compliance level is very good, the required epistemic 
mode of ||meaning & connection|| in this case had only 
a minor epistemic potential, here reduced to being 
sensitized for plausible weights. The epistemically 
deeper work on consolidating students’ more general 
mathematical knowledge comes later in the naviga-
tion pathway. In this step, Thasin and Monir are in-
volved (by explicitly formulating how to translate the 
real life situation of 9 kilo into a diagram). This later 
step in the pathway has a higher required epistemic 
level. As Monir’s compliance level is not ideal in the 
beginning, he gets a scaffold with more opportunities 
to develop his thoughts than Nahema. We will show 
that the distribution of students on different steps of 
the navigation pathway has persistent pattern, e.g. the 
epistemic mode of ||explicit formulation|| seems to be 
addressed only by some of the (non-focus) students 
whereas others consistently take more peripheral 
roles. The epistemic matrix allows describing the 
peripheral parts of a whole class explaining activity 
with respect to the epistemic potential for knowledge 
construction and consolidation. 

Episode 2: Multiplication of decimal numbers
Episode 2 took place half a year later in the same class. 
At the beginning of a lesson, the teacher initiates a 
recapitulation of the last lesson one week ago. After 
the girl Tasnim (#10) does not succeed in reporting 
properly, she calls on Monir to support her.

1 Teacher […] I would like to know from 
you, […] WHAT did we do an eternity ago, 

…
10  Tasnim well (.) well three KIDS (.) I 

believe, were, have (--) on the blackboard  
(--) well have calculated TASKS? […] Oh, I can’t 
EXPLAIN it […]

…
20 Monir […] so (.) we calculated with (.) 

DECIMAL numbers, (.) calculated DIVIDING, 
(.) so um we have (.) at the moment (.) the 
TOPIC so to speak; (-) um DIVISION and mul-
tiplication, (--) with DECIMAL numbers, (-) 
and we did um (--) um CALCULATIONS, um 
when to INSERT um the (.) point when divid-
ing (.) um at the result; for EXAMPLE- (.) if 
you (.) HAVE a number with point, like (-) um 
((2.5 sec break)) twelve (-) po- um (.) twelve 
point ((1.5 sec break)) seventy-EIGHT, (.) then 
um you mus- (.) and you have to divide it by 

(-) um FOUR, (--) um (.) then (.) um (.) it is that 
are THREE; ((1.9 sec break)) um three times 
four equals TWELVE, (.) then you are cal-
culating twelve MINUS twelve; that equals 
ZERO; (.) and then you are immediately with 
the POINT, (--) and um (--) you have this three 
(--) written DOWN at the result, (-) then you 
must insert the POINT immediately next to 
it; because you are (.) NEXT to, (.) um well 
because you are UNDER the point; with the 
NUMBER;

21 Teacher HM_hm;
22 Monir you immediately have to put a 

POINT into (.) the result;
...
25 Teacher THAT was already a bit more 

DETAILED; right, […]

After some stumbling, Monir (#20) names the mathe-
matical topic ‘division and multiplication of decimal 
num bers’ (i.e. complies the demanded field of --proce-
dures-- ||labelling & na ming||), a task of low required 
level. He immediately continues with a shift to the 
epistemic mode ||exemp li  fication|| with a potential 
for later ||explicit formulation|| and explains by an ex-
ample how the division algorithm works (even though 
some facts are missing, the idea becomes clear). The 
teacher evaluates this extensive contribution posi-
tively.

Later in the same lesson, after working on tasks in 
individual seatwork, the second part of Episode 2 
starts after discussing the calculation of 19.8 · 0.708 = 
14.0184. Thasin mentions his confusion because his 
rough estimation 19 · 0 = 0 does not fit to the result. The 
class helps him by offering the handier estimation 20 

· 1 = 20. Afterwards the teacher shortly repeats how 
to put the decimal point at the right place in the re-
sult. But Thasin is still troubled and after a classmate 
points the teacher’s attention to Thasin’s confusion 
the conversation starts with him stating what seems 
strange to him:

2 Thasin um (.) because (.) now if you (.) 
um (.) MULTIPLY a number, apart from ZERO, 
(-) the number gets BIGGER (-) ((silently)) ac-
tually; fourteen is SMALLER than the nine-
teen; 

3 Sina oh yes;
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4 Teacher yes (.) to REVEAL that once 
more; (-) THASIN says; MAN, usually, mul-
tiplication means I make something BIGGER 
[…] EXCELLENTLY seen Thasin; (---) take on 
(-) one two people who should search an 
EXPLANATION for that;

Thasin (#2) states his problem by connecting the re-
sult of the task to his conceptual understanding of 
multiplication as an operation that always increases 
the original numbers. He connects several logical lev-
els in the epistemic mode ||meaning & connection||, 
namely --concrete solutions / procedures / concepts--. 
The teacher marks this observation as important by 
reformulating and positively evaluating it. Several 
students are asked for an explanation in order to help. 

6 Tilbe so (.) um (.) I GUESS so; (--) be-
cause it is zero point seven (.) HUNDRED; and 
if you (.) MULTIPLY the seven hundred times 
nineteen - so approximately MULTIPLY 
times twenty, then (.) it becomes FOURTEEN; 

…
15 Larissa ((walks to the blackboard)) so 

HERE there are; (-) here there are only three 
NUMBERS; ((points to 0.708)) and here sud-
denly FOUR ((points to 14.0184))

16 Teacher (---) this makes the NUMBER; (--) 
thereby thus AFTER the point (.) after the 
point bigger, (.) and in FRONT of smaller; 
right, (--) does anybody have ANOTHER ex-
planation […] (---) Thasin, you yourSELF

Tilbe (#6) addresses the epistemic field --concrete solu-
tions-- ||meaning & connection||, here by estimated 
calculation. Larissa (#15) describes an observation 
without offering an explanation. The teacher (#16) 
asks for further different explanations which can 
be interpreted as implicit mismatch for both. Thasin 
wants to explain himself:

19 Thasin (--) so- ((2.6 sec break, walks to 
blackboard)) ZERO times nineteen equals 
zero; (-) but we do have a POINT here, (-) and 
that makes the zero BIGGER; (.) and AFTER 
it there is also something written; ((2.0 sec 
break)) and (-) ZERO is always that it gets 
smaller, (-) and because it’s not times ONE, 
(.) but LESS; ((1.3 sec break)) it is SMALLER 
than nineteen; (--) 

20 Tom I didn’t understand anything;

21 Teacher try it AGAIN; (-) but one 
MOMENT; (.) before Thasin (.) starts the 
EXPLANATION again, (-) I’m putting THIS 
here; ((changes 20 · 1 = 20 to 19 · 1=19 at the black-
board)) maybe you can use THIS Thasin;

22 Thasin Okay; (-) NINETEEN times zero 
(-) equals zero; (-) and NINETEEN, (.) nineteen 
times ONE equals nineteen; ((1.2 sec break)) 
and here we got (.) zero point seven hundred 
and eight ; (-) this is LOCATED (.) um- (-) it’s 
not times ONE, but also not times ZERO; (.) 
that’s why it must be located between the 
NINETEEN and the zero; (--) it’s SMALLER 
than nineteen, but bigger than ZERO; (.) 
that’s kind of ABOUT,

23 Tom I UNDERSTAND;
24 Teacher YES;

Thasin (#19 and #22) needs two trials to formulate 
his explanation so that others understand him. The 
teacher supports him by giving useful referent cal-
culations on the backboard. Thasin takes on this help 
and explains by connecting logical levels: If 19 · 0 = 0 
and 19 · 1 = 19 and 0 < 0 .708 < 1, then 0 < result < 19. This 
explanation is marked as understandable by the peers 
(#23) and positively evaluated by the teacher. 

Again, both students, Thasin and Monir, contribute 
with epistemic potential to the interactive process 
of mathematical knowledge consolidation. However, 
we see differences: Whereas Monir stays on the pro-
cedural level, Thasin even initiates the connection 
of the learnt procedure with the prior conceptual 
knowledge and connects different levels. 

Three students’ epistemic participation profiles
As Table 1 shows, Episodes 1 and 2 are prototypic for 
the three students’ epistemic profiles that could be 
reconstructed from the complete material, lessons 1.1 
to 1.8 from the beginning of year 5, and from lessons 
2.1 to 2.4 six months later (the last number in ‘1.2.4’ 
indicates a running number for the students’ con-
tribution above sentence level). Within the limits of 
taking only 12 lessons over six months, Table 1 allows 
first answers to Q3: Students’ epistemic participation 
profiles show certain stability over the time of half a 
year, visible tendencies in the first episodes can be 
detectedas persistent pattern. 
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Thasin comparatively often refers to conceptual lev-
els, the mode ||meaning & connection|| and within 
it the connection across levels. In the second period, 
he gives conceptual explanations as in Episode 2. As 
reconstructed for Prediger and Erath (2014), these ex-
plaining practices are highly valued in this classroom 
microculture. The classification of their epistemic 
potential (Table 1) detected nearly 9 out of 12 contri-
butions as productive for consolidating knowledge 
since raising meanings is crucial for consolidation. 

Monir with limited linguistic resources is specialised 
on the procedural levels and on the mode ||exempli-
fication|| and the combination of several modes on 
one logical level. This specialisation allows his con-
tributions to be mostly classified as having epistem-
ic potential for consolidating (mainly procedural) 
knowledge. Hence, both boys significantly contribute 
to the individuals’ opportunity to learn mathematics 
according to the microculture’s sociomathematical 
norms. Nahema’s seven contributions are mainly pro-
cedural and focus on the mode ||purpose|| in which 
he refers to mostly initial and concrete issues in the 
teacher’s navigation pathways. This concreteness 
allows activating deictic means and compensating 
limited linguistic resources. However, in later steps 
of the classroom’s navigation pathways when it comes 
to knowledge consolidation on epistemically higher 
levels, he usually keeps silent. This does not mean 
that he does not profit from passive participation, 
but he does not contribute actively to consolidating 
knowledge. Instead of the often assumed participa-
tion trajectory of increasing participation, Nahema’s 
participation decreases to one explanation six months 
later (he raises his hand four times but is not selected 
to speak). Hence, Nahema’s restricted linguistic re-

sources in the language of instruction limit his active 
participation and due to the limited epistemic poten-
tial, seem to strengthen the inequality of his learning 
opportunities.

DISCUSSION AND OUTLOOK 

From our case study for three second language learn-
ers with unequal German linguistic resources, we 
conclude: Students show different ways of participa-
tion which can be grasped by means of the epistem-
ic matrix. The location in the fields of the epistemic 
matrix and within the steps of a navigation pathway 
makes the unequal individual epistemic potential for 
consolidating the mathematical knowledge visible.

The developed framework enables us to observe a 
new phenomenon: The reconstructed patterns show 
certain stability over time. Rather than talking about 
naturally increasing participation, we must therefore 
talk about participation profiles being connected to 
unequal German resources and learning opportu-
nities within the same class. The relation between 
the visibly unequal linguistic resources of the three 
boys and their participation profiles will be the issue 
for further research since this seems to be one key 
for understanding the reproduction of inequality in 
classroom interaction. 
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This paper investigates communication (verbal and 
nonverbal) in the bilingual (Farsi-English) mathematics 
classroom. The study examines the communicative rep-
ertoire that interlocutors employed in lessons enabling 
them to construct meaning and mediate understanding. 
That is, the ways in which language and gesture can be 
seen as resources in supporting and conveying mathe-
matical ideas is described. It appeared that the pointing 
gestures that were produced by the classroom teachers 
served as a mnemonic device to help remembering the 
key mathematics register.

Keywords: Mathematics register, code-switching, multi-

modality, gestures, pointing. 

THE ROLE OF POINTING GESTURES 
IN MATHEMATICAL DISCOURSE

This paper focuses on the communicative functions of 
gestures in a bilingual mathematical discourse. The 
term ‘gesture’ is used in a wide sense, as a physical 
movement of a part of the body (e.g., hands, arms, eyes 
and face) (Kendon, 1983; Maschietto & Bartolini-Bussi, 
2005) in communicative situations (Streeck, 1988). 
McNeill (1992, p. 11) used the term gesture to mean 

“movements of the arm and hands … closely synchro-
nized with the flow of speech”. In this paper, I refer to 
gestures to denote the movements of hands or arms 
that are synchronously produced in the act of speak-
ing. Along similar lines, Sfard (2009, p. 194) defines 
gesture as a “body movement fulfilling communica-
tional function” that is co-produced with speech. 

Gestures have been categorised into four different 
groups (see McNeill, 1992). Each gesture category 
has a different form and function in communication. 
There are ‘deictic’, ‘beat’, ‘iconic’ and ‘metaphorical’ 
gestures. McNeill’s (1992) gesture category takes an 
account of gestures that are dependently produced 

with their corresponding speech units. Of course, in-
dividual gestures can incorporate elements of multi-
ple categories. For example, often pointing gestures 
trace the outline of the shape that is being pointed at. 
Therefore in this example, there are indexical and 
iconic components of a single gesture. In this paper, 
I will primarily focus on pointing gestures (or deictic 
gestures). Deictic gestures mostly occur in synchrony 
with speech. They are employed when interlocutors 
connect from verbal to visual, in order to index ob-
jects, locations, inscriptions that are either present 
or non-present in the environment. Due to the fact 
that pointing gestures are so ubiquitous and we inter-
pret them with such ease, pointing can come into view 
as a trivial phenomenon (Kita, 2003). Pointing often 
draws on different modalities; for example, a speaker 
can connect from auditory to visual representation 
as they point to objects or inscription. Similarly in 
a classroom when a teacher can point to objects or 
inscriptions as s/he speaks, those pointing gestures 
link his/her verbal stream to its physical referents in 
the environment (Alibali & Nathan, 2012). 

Index-finger pointing is the most common deictic ges-
ture but it is interesting to note that there are different 
variations in index-finger pointing that are correlated 
with certain discourse factors. For example, the de-
gree of finger closure or openness among the little 
finger, ring finger and mid-finger while pointing with 
the index finger is correlated with certain discourse 
factors. It has been observed that emphatic or first 
mentions of events tend to be regularly accompanied 
by the canonical (tightly bunched) index-finger point. 
In follow-up anaphoric mentions, once the location 
and the identity of the object have been established, 
a looser hand is used and the action is executed more 
quickly (Wilkins, 2003). The forms and functions of 
index pointing with a looser/tighter degree of closure 
and its corresponding pedagogical implications with-
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in a mathematics lesson have also been explored (see 
Farsani, 2015). 

THE RESEARCH SITE 

For part of my PhD research, I carried out an ethno-
graphic-style approach to examine communication 
in a bilingual British-Iranian mathematics classroom.  
The students in this study were first and second gen-
erations of bilingual (Farsi-English) speakers from 
a Persian heritage. In this school, the medium of in-
struction was bilingual and learners were encour-
aged to value both languages equally. What seemed 
to be at the heart of the school was creating multilin-
gual spaces (Creese et al., 2006), about using languag-
es flexibly (Blackledge & Creese, 2010), and using a 
full range of young learners’ linguistic repertoires 
(Creese & Blackledge, 2010). This bilingual school wel-
comed strategies that supported learning both the 
content and language simultaneously. I conducted 
audio-visual recordings of a number of mathematics 
lessons in order to capture verbal, vocal and visual 
elements of language to investigate how these modes 
of communication play a role in making mathematical 
meaning. 

DATA ANALYSIS AND DISCUSSION

This particular interactional recording emerged from 
a lesson where the classroom teacher (T2) engaged in 
solving an unknown angle in a regular pentagon. T2 
was explaining the solution to how he finds an angle 
of x which lies inside of a regular pentagon. T2 has 
divided the regular pentagon into five equal isosceles 
triangles as a starting point (see Figure 1). 

I find this extract particularly interesting because 
T2’s instructional talk, gesture and speech convey 
overlapping information in lines 15–19. 

In this transcription, the left-hand  – throughout 
column illustrates the verbal interactions only. The 
middle and the right-hand - throughout columns 
signify the multi-modal nature of the classroom and 
add richness to the verbal discourse. For example, 
the middle and right column include mathematical 
notations, Algebraic notations and diagrammatical 
representations. Based on the idea of what is ‘Given’ 
and what is ‘New’, Kress and van Leeuwen (1996, p. 
187) believe that “[t]he elements placed on the left are 
presented as Given, the elements placed on the right 

as New. What is given is what the viewers are already 
familiar with and agree upon but what is New, on the 
other hand, is not yet known and viewers must pay 
special attention to it”. Therefore unlike many of the 
ordinary transcripts, the middle and right hand col-
umn are ‘new’, in that they add clarity and complement 
the left hand column by bringing visual elements into 
the verbal transcription.

The multi-modal transcript convention I have used 
is as follows:

T Teacher 
B Boy
[  ] Non-verbal communication
{  } My translation
Italics Farsi transliterated into English 
Normal font English language
Dots  Each dot represents one second of 

silence
Change in font size  

Change in volume of an utterance: 
the bigger the font is, the louder 
the pronunciation. The smaller 
the font is, the quieter the pronun-
ciation of the term.

Transcript number 1 
1 T2: khob, baraye iinke iino  

peida bekonim, {In order  
to solve this} that’s  
a regular pentagon 

5 obviously, and 
 each side is four ok. 

[T2 writes 4 on each side of the drawing of a regular 
pentagon. He has already connected the centre of the 
pentagon to every vertex in the pentagon]

Figure 1: Drawing of pentagon
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 Chon regular pentagon-e centre-esh age maa 
be behesh vasl bekonim 

10 mitoonim hamash 
 {Because this is a regular  

pentagon, if we connect  
the vertices to the centre,  
it will all become}

[T2 writes O in the middle of the pentagon which rep-
resents the centre.]

15 isosceles triangle peida 
 bekonim, dorost  

bekonim, khob {we will  
find isosceles triangles,  
ok}

[T2 employs a gesture that incorporates deictic infor-
mation. He appears to point to his eyes with his index 
and mid finger as he utters isosceles in his speech]

20 B1: motasavi-al-saghain   
{isosceles triangles}

 T2: motasavi-al-saghain  
{isosceles triangles} 
khob, iino ke peida 

25 mikonim, {ok, when we  
find this angle} angle of x  
is equal to angle of x  

equal to angle of x and so  
on.

30 Khob, how many angle of   
x darim? {So, how many  
angles of x do we have?} 

 Bs: five/panj
 T2: five-ta. Khob, {five, 
35 ok} three hundred and 

 sixty which is xxx the full  
thing

 [xxx is inaudible] 
 B1: divided by five
 T2: divided by five

I find this extract of particular interest firstly because 
of the geometrical transformation that has been made 
into the regular pentagon; it has been converted into 
five equal isosceles triangles as a way to proceed. It em-
phasises the fact that a particular geometrical shape 
with a specific property can be turned into a number 
of shapes with a different identity (see Pimm, 1995). 

There are different modalities that play a role in this 
short transcription of a video recording. T2 conveys 
his instructional message not only in speech but also 
in the gestures and a number of different modes that 
he uses as resources in teaching. For example, notice 
the way in which T2 directs attention by drawing 
and tapping (see lines 24–29) on the whiteboard. He 
taps twice on the angle x and moves on pointing to 
the other remaining four inner angles as he utters 
his statement “is equal to angle of x equal to angle 
of x and so on”. Furthermore, code-switching is ev-
ident within the technical forms of register. In lines 
20–23, both B1 and T2 emphasised key terminology 
‘motasavi-al-saghain’ in Farsi. In these lines, not only 
did they showed awareness of other languages (Farsi) 
in the class but they drew upon their full range of lin-

Figure 2: Marks on the drawn pentagon

Figure 3: Identified deictic gestures

Figure 4: Elements of the drawn pentagon
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guistic repertoire ensuring that the equivalent Farsi 
mathematics register is known and recognised by all 
students. By doing so, T2 provided an opportunity 
that acknowledges the linguistic resources that bilin-
gual learners have at their disposal by demonstrating 
their knowledge and understanding of mathematics 
in Farsi. It appears that T2 ensures that bilingualism is 
foregrounded and is at the centre of the teaching and 
learning that takes place as he develops awareness of 
the Farsi mathematics register. 

What I am more interested to examine in this particu-
lar transcript lies on 15–19 where T2 incorporated a 
form of deictic gesture (with his index and mid finger) 
indexing his eyes as he uttered ‘isosceles’ in his speech 
(see Figure 5). At this stage there could be two possible 
interpretations of T2’s gesticulation; depending on 
whether the focus of attention is on his fingers or to 
the eyes which I will now discuss. It is possible that 
T2’s gesticulation could be read as a visual similarity 
of the two fingers representing two equal sides. Even 
where the index and the mid finger are not exactly 
the same size in length, the gesture could serve as a 
primitive tool to convey the idea of two equal sides of 
an isosceles triangle. Hence T2’s gesticulation repre-
sents not only the geometric representation but also 
conveys its mathematical definition visually. 

Alternatively, if T2’s gesticulation was indicating his 
eyes, then the gesture and the accompanying speech 
(isosceles) did not appear to have/convey any shared 
semantic meaning. Semantically there is no overlap-
ping information but phonologically there is a strong 
connection. The relation between T2’s verbal message 
and his deictic gesture is of homophony. Homophonous 
words are terms that have the same pronunciation as 
another but different in meaning, origin or spelling1. 

The way isosceles is pronounced is very similar to 
what can be thought of as ‘eyesosceles’. The pronun-
ciation of the term ‘eyesosceles’ possibly explains the 
reason as to why T2’s gestural representation was di-
rected at his eyes. Isosceles generated a deictic gesture, 
by means of indexing an object that was phonologically 
similar to the accompanying speech. 

I find it interesting to see how a mathematics regis-
ter activated a particular gestural representation 
in teacher’s instructional talk. An interpretation of 
T2’s gestural representation of the term ‘eyesosceles’ 
in conveying the instructional information reveals 
that there was no mathematical understanding or 
meaning assigned to property of isoscelesness. At 
the same time, T2’s gestural enactment shows a great 
linguistic awareness that helps the remembrance and 
recollection of an English mathematics register. The 
enactment of such gesture also increases the emphasis 
of its verbal counterpart. 

Figure 5: “Eyesosceles” I

Figure 6: “Eyesosceles” II Figure 7: “Eyesosceles” III
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The gesticulation for ‘eyesosceles’ is also evident by 
another mathematics teacher (see Figures 6 and 7). I 
would only present a snapshot for each of these gestur-
al representations enacted by mathematics teachers.

In these examples, mathematics teachers’ gestural rep-
resentation for ‘isosceles’ was beyond deictic because 
their gestures served more than just indexing as there 
were also phonological connections to their gestural 
enactment. There are issues of phonetic and prosodic 
aspects of language involved in gestural enactment. 
Both teachers’ deictic gestures served to emphasise the 
verbal language by indexing a visual object that car-
ried a similar sound. Therefore their gestures served 
as a pedagogic tool to help memorising/remember-
ing ‘technical’ mathematical words. In other words, 
teachers’ nonverbal message served as a mnemonic 
device to help remember the terminology and the con-
cept. Therefore, the employment of deictic gestures 
in instructional talk not only added clarification and 
richness to the spoken discourse but promoted the 
remembrance of an English mathematics register. 

CONCLUDING THOUGHTS

This paper gave an account of the symbiotic nature 
of deictic gestures and their accompanying speech, 
as well as how these two modalities were temporally 
and phonologically coordinated. I offered examples 
supporting this symbiotic and the embodied nature 
of mathematical communication as speakers were en-
gaged in speaking mathematically. The teachers’ deic-
tic gestures served beyond ‘pointing’ as they were not 
merely used for indexing but played a pertinent role in 
communication and facilitated phonological purposes. 

A question might arise as to what extent deictic ges-
tures facilitate language production in a mathemat-
ics classroom. Also, other questions emerge from 
the bilingual situation of mathematics teaching and 
learning in my study. Similarly to what was found 
for the case of homonymy and homophony and their 
potential confusion in a bilingual mathematics les-
son (see Zagorianakos & Farsani, 2012), the reported 
data points to the relevance of having more than one 
language of reference.
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Language appears to be a crucial aspect in mathemat-
ical learning processes. At the same time, objects like 
artefacts or other didactical tools play an important 
role in those processes. For that reason, we are interested 
in the interplay of both: We focus on the association of 
mathematical language and objects in classroom inter-
action. How does mathematical language vary in rela-
tion to objects and their participating in mathematical 
learning processes? Based on empirical examples, three 
different forms of interplay are presented. 

Keywords: Objects, association, orality, literality.

INTRODUCTION

There is no doubt that mathematics teaching and 
learning are closely connected to aspects of language. 
Language is a central learning medium in every class 
and a content of learning, too. In some cases, it turns 
out to be a barrier to learning. Empirical research 
in mathematics education is familiar with research 
projects about language and mathematics learning 
(see TWG “Mathematics and language” at CERME over 
the past years). However, our picture of interactions 
in mathematics classrooms will be incomplete if we 
solely focus on oral or written language and, thereby, 
solely on human beings. There are not only students 
and teachers who contribute to classroom interac-
tion. Material objects like manipulatives, rulers or 
diagrams influence the course of action as well. They 
make a difference in mathematical learning processes. 
Meanwhile, a sociological perspective that accepts ob-
jects as actors in the course of classroom interaction 
is only on the rise (see Fetzer, 2013, 2015; Kalthoff & 
Röhl, 2011). Latour introduces a sociology of objects 
that accepts objects as well as human beings as actors 
and participants in the emergence of social reality. His 
actor network theory offers us a new perspective on 

the interplay of language and objects in the mathe-
matics classrooms (Latour, 2005).  

LANGUAGE BETWEEN ORALITY 
AND LITERALITY

When talking about language in classrooms, research-
ers often need to specify what kind of language they 
actually mean. In this regard, Koch and Oesterreicher 
(1985) offer a helpful distinction that focuses on two 
fundamental aspects of language: on the form of lan-
guage and on its function. Firstly, they differentiate 
the medium of language. Thus, an utterance can be 
phonic or graphic. For the context of this paper, we 
only focus on phonic language on face-to-face inter-
actions in mathematics classrooms. Secondly, they 
identify two different conceptions that an utterance 
can have. It can be conceptually oral or conceptually 
written. This affects the question of communication 
strategies used. More precisely, conceptually oral 
language is often used when interlocutors are direct-
ly related and can refer to a given situation. This is 
what, consequently, gives a specific form to the lan-
guage. For example, at any time, the interlocutors 
can ask questions of understanding, show emotions 
and influence the course of the interaction. For that 
reason, sentences may be short and even incomplete. 
Referring to the given situation, the speakers use de-
ictic expressions and gestures. Thus, orality is charac-
terized by interlocutors who spontaneously negotiate 
their roles and the course of their interaction. Koch 
and Oesterreicher call this a language of nearness. 
Examples are a conversation in the family (medially 
oral) or a chat among friends (medially written). In 
contrast, conceptually written language is used when 
the interlocutors are not necessarily in direct relation 
and the processes of speech production and speech 
reception might be separated from each other. Thus, 
aspects of the situational and cultural context have to 
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be made explicit. As a consequence, sentences are lon-
ger and more complex. For example, the writer forms 
main clauses, but also subordinate clauses to express 
the relations he wants to inform about. Moreover, he 
uses more specific terms, e.g. mathematical terms, to 
be precise and explicit. Koch and Oesterreicher call 
this a language of distance. Examples are a text of 
law (medially written) or a scientific lecture (medi-
ally oral). 

Against this background, one can classify the regis-
ters of everyday language and academic or technical 
language (see Cummins, 2008; Duarte, 2011; Gogolin 
2009). Halliday (1985, p. 29) describes a register as 

“a variety of language, corresponding to a variety of 
situation”. According to Halliday, the use of the term 

‘register’ points to the assumption that individuals 
usually adapt their use of language to a given situa-
tion. Thus, the register of everyday language is rath-
er conceptually oral, irrespective of its medium. It 
has to fulfil the function of a fast and unproblematic 
communication in our everyday life. As such, the oral 
language may be, at any time, supported by gestures 
or by reference to a context. Words do not have to 
be clearly defined, sentences may be short or even 
incomplete. In contrast, the register of academic lan-
guage is conceptually written, again irrespective of 
its medium. In academic contexts, language should 
be as explicit and precise as possible and intelligible 
without any reference to a specific situation. For that 
reason, words have to be well defined; sentences might 
be complex in order to reflect the relations that the 
author wants to talk about. 

REASSEMBLING THE SOCIAL

Latour goes beyond the traditional understanding of 
the social. His Actor Network Theory (ANT) is a rad-
ical change of perspectives proposing a sociology of 
objects (Latour, 2005). Latour extends the list of actors 
assembled as participants fundamentally. He does not 
only accept humans as participants in the course of 
action. Instead, he integrates and gathers all sorts of 
actors. “Any thing that does modify a state of affairs by 
making a difference is an actor” (2005, p. 71). Following 
Latour, objects participate in the emergence of so-
cial reality. Consequentially, Latour recommends a 
broader understanding of agency. “Objects too have 
agency” (2005, p. 63), and appear associable with one 
another, but only momentarily. They “assemble” (2005, 
p. 12) as actor entities one moment and combine in 

new associations the next minute. Accepting objects 
as participants in the course of action, Latour gives 
up the idea of stable and pre-defined associations and 
actor-entities. He reassembles the social.

Looking through Latour’s sociological lenses, not 
only the traditional understanding of agency has to 
be re-defined, but also the notion of action. Objects 
participate in the course of action and take effect. 
However, it can be noticed that their mode of action 
is different from the way human participants contrib-
ute to the social interaction. 

Mathematics education has to deal with all sorts 
of (material) objects, didactical tools, artefacts and 
manipulatives, diagrams and signs. All those objects 
leave their traces in the emergence of mathematical 
learning processes and take part in the course of 
action. Mathematical learning appears to be close-
ly connected to objects and non-human things. Even 
if Latour himself does not suggest any methods of 
empirical analysis, Latour’s approach proves to be 
a fruitful background theory for empirical research 
in mathematics education (see Fetzer, 2013, 2014). 
Accepting objects as participants in the course of ac-
tion and following the idea of objects having agency 
helps us to get a better understanding of mathematical 
learning processes. 

METHODOLOGICAL BASES

The goal of our research is to analyse the relation-
ship between language and objects in everyday math-
ematics lessons. Probably in every classroom, you 
can gain insights referring to that topic. To start, we 
have focused on primary classrooms. However, it was 
not important to us to observe specific lessons, but 
rather a wide range of occurring mathematics les-
sons. Therefore, we observed several mathematics 
lessons in three different German primary schools. 
On the bases of videos of the whole lessons, we filtered 
out those scenes in which humans as well as objects 
participated. Those scenes were transcribed and be-
came objects of analysis. In order to include a wide 
spectrum of scenes, we distinguished episodes with 
and without a teacher.  

To get access to interaction processes in mathemat-
ics classrooms, our analyses are of a reconstructive 
manner. They are analyses of interaction (see Cobb 
& Bauersfeld, 1995). This method refers to the inter-
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actional theory of learning and is based on the eth-
nomethodological conversation analysis (see Sacks, 
1996). This method was devised by a working group 
directed by Bauersfeld. In contrast to conversation 
analysis, it focuses on the thematic development of a 
given face-to-face interaction rather than on its struc-
tural development. For that reason, it is especially 
suitable for our research because it allows us to an-
alyse the relationship between language and objects 
while teachers and students negotiate mathematical 
meaning. However, reconstructing empirically the 
way objects participate in learning processes remains 
unaccustomed. Objects’ contributions to classroom 
interaction become accountable in the process of 
interweaving. As soon as object-actors become as-
sociated with other actors they enter the course of 
action. Their traces render perceivable and can be 
captured by a turn by turn analysis (see Fetzer, 2013; 
Sacks, 1996). 

To illustrate our results, we selected four strongly 
contrasting scenes. ‘Diagonal’ is a teacher-orientated 
scene. In contrast, both ‘1000 dots’ scenes are group 
work situations without a teacher and show an inter-
esting change in the relationship between language 
and objects. In addition, we chose the very short ex-
ample ‘party hat’ in which the object is not present at 
all, but still a point of reference. 

EMPIRICAL EXAMPLE I: ‘Diagonal’
The following scene is taken from a lesson about the 
hundred field. The teacher and the students start by 
repeating what they already know about the hundred 
field. Thus, a student says that a column „goes from 
top to bottom or from bottom to top“. This utterance 
is confirmed by the teacher. Then, another student 
(Danis) puts up his hand and is asked, but the teacher 
does not pay attention to him. The scene starts when 
the teacher turns back to Danis. On the mentioned 
hundred field, no numbers can be seen. They are all 
covered by coloured squares, the upper half is red, 
the lower one is blue. In the transcript, the squares 
are named by the corresponding numbers in order 
to facilitate the reading.

26 Teacher: […] How does the diagonal run?
27 Danis  and 100 field: [going to the black-

board:] Well, like this.
 [on the 100-field from the 60 to the 96] Here 

for example. Then, I move like this.

28 Teacher: Can you also explain that with 
words? Now, you have already shown that 
to us.

29 Danis: [sits down again] Well, that 
works for example like this. .. that I am atthe 
ten and the 91. I can because the corner and 
the diagogal runs simply [moving his finger 
in front of himself from top right to bottom left] 
like this. .. Dialogal. .. But it can’t go up and it 
can’t go down or right or left.

 [Comment: In German, Danis says “diagogal” 
and “dialogal” which are, like in English, not 
the correct words.]

In this scene, Danis and the teacher pick out the diago-
nal as a central theme. As the teacher is talking about 

“the” diagonal, one could think that there is only one. In 
contrast, Danis shows two different diagonals, one from 
60 to 96 and another one from 10 to 91. One can only 
guess what his definition of a diagonal might be, but 
one can see that he identifies more than one diagonal 
on the hundred field. His two references to a diagonal 
show a difference concerning our research question. In 
the first one, Danis points at the hundred field with his 
finger and, thereby, integrates it into the discourse as a 
participant. In connection with the object, Danis’ utter-
ance gets intelligible. Thus, one can say that the object 
changes its status and becomes an active participant 
in the discourse. Danis and the hundred field get in-
terwoven. With the object completing Danis’ utterance, 
the boy’s language gets reduced and deictic (“like this”, 

“here”, 27). Taking over the turn, the hundred field al-
lows Danis to use an easier, more oral language. He only 
forms main clauses that are not clear without reference 
to the concrete situation including the hundred field. 

In the second part of the scene, we can reconstruct the 
opposite. The teacher explicitly asks Danis to give his 
description in words. Thus, he is confronted with the 
task to describe the same mathematical phenomenon, 
but without any direct reference to the object (and 

Figure 1: Material of the hundred field
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maybe even without gestures which do not belong 
to the category of words either). This interpretation 
is confirmed when Danis goes back to his chair, sits 
down again and, thereby, distances himself from 
the hundred field. Now, the object is no longer a par-
ticipant of the discourse. Instead, Danis develops a 
second description of a diagonal solely by the use of 
words and a gesture. One can see that excluding the 
object from the course of action means to exclude its 
actions. Now, Danis has to take over again: He has to 
compensate the missing object by being more specific 
in his language. For example, he now names the two 

“corners” of the figure whose diagonal he is talking 
about. Furthermore, he starts forming more complex 
sentences (“because the corner…”, “… and…”, 29). In 
summary, one can state that the language is more 
orientated towards written language. 

EMPIRICAL EXAMPLE II: ‘1000 dots’ 
In contrast to the first scene, there is no teacher par-
ticipating in the scene ‘1000 dots’. Two girls, Martina 
and Sonja, are sitting at a table. On the table, there is 
a sheet with the task ‘Share 1000 dots fair-mindedly 
between three children’, a pair of scissors and a box 
containing 100-dots-cards (small cards with each 
showing 100 dots arranged in lines of ten). First, the 
two girls try to figure out the task on their own. Once 
they get a leftover of ten dots they get stuck. This is 
when the selected scene starts. 

167 Martina and cards: [reaches with her left 
hand for the box with the 100-dots-cards] Shall 
we make use of them?

168 Sonja: [looking at the cards in Martina’s 
hand] Yes.

169 Martina, box, cards: [takes the pile of cards 
out of the box and pushes the box away]

170 Sonja: Cause it’s difficult, isn’t it?
171 Martina and cards: OK.  [puts cards from 

her hand down on the table like sharing out a 
deck of cards] One, two, three.

As soon as the girls get stuck in their solving process, 
they invite the 100-dots-cards to participate (‘cause 
it’s difficult’ <170>). These object participants breathe 
new life into the solving process. Assembling with 
the girls and the table, the cards embody (at least) one 
fundamental intermediate step in the solving process: 
instead of just representing the situation, they are 
the 1000 dots that have to be shared between three 
children. Their lasting quality contributes to a better 
orientation within the social solving process. Being 
arranged in a pile of ten cards they take over the part 
of a reliable basis. Thus, one can see that objects are 
not only useful for expressing one’s own ideas, but 
also for developing new ideas that can push the solu-
tion process forward. The girls’ language changes 
once the object-actors enter the stage as participants. 
The association of cards and girls can be reconstruct-
ed in the reduced character of the chosen language: 
short utterances like “of them” <167> or “one, two three” 
<171> intertwine with the objects and their manifest 
and structuring message. 

Some minutes later, the girls approach a mathemati-
cal result: 999 dots lie there separated on three piles. 
While Martina is cutting the last dot in pieces, Sonja 
is worrying about the correct result.   

917 Sonja Yes, but how much do the little 
ones count? How much?

918 Martina, pieces, scissors [laying a little 
piece of her last cutting action on the middle 
pile] A fourth, half of a fourth. [laying anoth-
er little piece on the right pile]

Figure 2: Material of dots-cards

Figure 3: Box with the dots-cards

Figure 4: Student in interaction with the material
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While the solving process is coming to an end on the 
level of objects, Sonja is worrying about an appropri-
ate language for what the girls can see in front of them 
(917). The non-human participant was irreplaceable 
in the solving process. But, subsequently, in order to 
fix the result and present it to others, mathematical 
language gets relevant. The girls obviously do not re-
gard the task as completed until they can express their 
result by means of language, too. Thus, mathematics 
as a social practice needs a precise language to fix, 
to communicate and to discuss its results. While the 
language was relieved during the intensive search 
for a solution by means of the available object-partic-
ipants, it now gets more demanding again. Martina 
forms a description of what the “little ones” count 
which is comprehensible regardless of the concrete 
objects. Her language develops from conceptually 
oral to conceptually written forms. She expresses 
a mathematically new idea, the idea of fraction. By 
this step in their work, the girls facilitate a precise 
mathematical communication with others, e.g. their 
classmates. 

Considering both succeeding scenes, they illustrate 
the development from an orally orientated language 
in the first scene and the beginning of scene two to-
wards a rather written conception of language includ-
ing mathematical terms (“a fourth, half of a fourth”). 
In both examples the object-actors can be reconstruct-
ed to be participants. However, their mode of action 
varies within the emergence of the solving process. 
At the beginning, they contribute their structuring 
and lasting quality to the course of interaction. They 
invite the girls to share the dots out right to the end. 
Thus, the cards and dots prompt Sonja and Martina to 
cut the last dot into bits and pieces. Later lying on the 
table, the mini-objects release the strong requirement 
for a precise term to label them. They call for language, 
they demand for mathematical description on a rather 
written level. 

EMPIRICAL EXAMPLE III: ‘Party hat’
In the last scene, there is actually no object participat-
ing at all. It is only present in the mind of the human 
participants. In the lesson, the students have worked 
on their own around the following task:

Which of the two flatplans fits the three-dimen-
sional figure? 
Why does one of the flatplans match and the other 
one does not? 

Later the students compare their results in the whole 
class. In the selected scene, it is Dominik’s turn to pres-
ent his findings.

1 Dominik: K works because the gap is small-
er. Cause I have already made myself a party 
hat of that, you know.

2 Some pupils [whisper and nod] 

Dominik puts forward an empirical argument that 
relies on (his own) experience. He creates the context 
for his argument exclusively on a phonic level with 
spoken words. By talking about the party hat, Dominik 
includes the hat as an actor within the course of ac-
tion. As such the party hat seems to have the power to 
convince the other children of the verbally presented 
decision ‘K works’. The party hat is not present at all, 
but it is replaced by language. In other words, the par-
ty hat solely takes part in the interaction in form of 
its linguistic representative.   

EMPIRICAL RESULTS AND CONCLUSION

Objects do play an important role in mathematical 
learning processes. They may become participants in 
the course of action and contribute to the emergence 
of social classroom reality. In our research, we basi-
cally differ between two learning situations: Those 
situations, when objects are to be seen as participants 
in the course of classroom interaction, and those, 
when human participants act without reference to 
objects. In the context of our study the first case might 
be called ‘Language and objects’ and the second case 
can be characterised as ‘Language without objects’. 

Concerning situations we call ‘Language and objects’, 
there are two cases to be observed. Sometimes, object 
participants and human actors assemble in their ac-
tions. In these cases, objects take over part of the turn. 
Action is no longer attributed to one single actor but 
to actor entities, actions are experienced as combined 
actions. If objects and students assemble in their ac-
tions and humans have to take over only part of the 
turn, language proves to be rather conceptually oral 
(compare the scene ‘Diagonal’). However, the assem-

Figure 5: Two flatplans and a three-dimensional figure
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bled action appears to be ‘complete’. Other partici-
pants can reconstruct the meaning that emerges. This 
is the crucial point. If objects participate in the course 
of mathematical action and take over part of the turn, 
they thus relieve students on the level of language. 
This might be an initial opportunity for children with 
poor language performance to act mathematically. 

In other situations, human actors and objects interact 
in turns. In these cases, objects take over whole turns, 
and students react to those turns. If human actors 
invite the objects to be a part of the discourse, objects 
can challenge the students to find a new language 
(compare the second part of the scene ‘1000 dots’). 
We could observe that in these situations language 
tends to be rather conceptually written. This aspect 
is of special interest from a didactical point of view. 
Objects cannot only relieve students on the language 
level, but also challenge them. They can be ‘supporters’ 
in the development of mathematical thinking and of 
a precise mathematical language. 

When looking at situations that we call ‘Language 
without objects’, we observe that associations between 
objects and humans dissolve. Students are obliged to 
take over each turn on their own. Accordingly, they 
become responsible for the idea and for the formula-
tion of the intended utterance (see the second part of 
the scene ‘Diagonal’). For that reason, students have to 
be as explicit as possible in their language. They might 
use well-defined mathematical terms and rather com-
plex sentences. They might give many explanations 
about the context of culture and of content in order 
to be clear about the given topic. Language turns out 
to be conceptually written. 

Summing up, we see conceptually oral language 
when students and objects assemble in their actions. 
In contrast, we find conceptually written language, 
when associations between human and non-human 
actors dissolve. Finally, we observe a development of 
language from conceptually oral to rather conceptu-
ally written forms, when human actors and objects 
interact in turns. These situations of language devel-
opment can be seen as the situations of mathematical 
learning. Maybe, further research can show how the 
interplay of language and objects depends on the kind 
of material that is part of the discourse. 
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We present some initial findings obtained from a study 
on student attention in class using mobile gaze tracking 
technology. In this descriptive case study, we use a teach-
er’s verbal, gaze, and gestural cues to identify the area 
on the board she wants her students to focus on, and 
analyse how one student’s gaze location is shifting in re-
lation to this. We found out that the student was actively 
following the cues during most of the time. However, we 
also observed moments when the student’s gaze location 
was not in synchrony with the teacher’s cues. The gaze 
tracking methodology seems to be a promising tool for 
a fine grained analysis of classroom communication 
and student attention.

Keywords: Mobile gaze tracking, student attention in 

mathematics classes, teacher gestures and indications.

INTRODUCTION 

An important aspect of teaching is the multimodal 
communication (Radford, 2009; Arzarello, Paola, 
Robutti, & Sabena, 2009) between teachers and their 
students. Using mobile gaze tracking technology we 
will take a close look at the way a student’s visual at-
tention responds to cues from the teacher when the 
teacher is presenting new content on the board.

The teaching act is twofold. There is a pre-planned 
element of what the teacher does, which may be well 
planned and rehearsed several times over the years. 
There is also an improvisational element, reaction to 
unexpected student questions or comments, which 
requires the teacher to think ‘on her feet’. Both of these 
modes of action include consciously chosen words, 
prosody, gestures, and facial expressions. However, 
some of the visible and audible messages are not con-

sciously chosen, but are enacted more or less automat-
ically, or even unconsciously.

Roth (2012) gives an example of a university profes-
sor whose dis-fluency he sees as an indication of the 
communicative act not being completed ‘in mind’ be-
forehand. Rather, it is “an unfolding event of commu-
nicating and thinking, which are not ready-made but 
develop in real time” (p. 237). Radford (2009) claims 
that “thinking […] does not occur solely in the head 
but in and through language, body and tools” (p. 114).

The student side of classroom interaction is more 
complex than the simple receiving of messages from 
the teacher. Student behaviour in class is based on 
the student’s personal agency, which is determined 
by his or her needs, goals, and identity. At the same 
time, student behaviour is largely reactive to chang-
es in the environment, especially to what the teach-
er and the student’s peers do. There is no research 
method that can provide a full account of meanings 
of this behaviour and reasons for it. Clinical inter-
views and think-aloud protocols distort the social 
interaction in class and thus lack ecological validity. 
Interviews done afterwards (including stimulated 
recall) can only have access to the student’s post hoc 
reconstructions. Moreover, all self-reports are subject 
to be biased towards socially acceptable responses. 
Observations of facial expressions, brain imaging, 
and other physiological measures fail to capture the 
meanings students associate with their behaviour. 
Yet, each new methodology has shed light on some 
new aspects of the complexity of student cognition.

In this research report we shall present results from 
a pilot study using a mobile gaze tracking device to 
record students’ visual attention during mathematics 
lessons. Gaze tracking is an established method for the 
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study of attention at the automatic level of processing, 
in which the person is not consciously aware of fixa-
tions and shifts of attention. However, until recently, 
the technology had only been applicable in labora-
tory settings. Only now is it becoming available for 
use in ecologically valid situations such as outdoors 
(Baschnagel, 2013; Foulsham, Walker, & Kingstone, 
2011) or in classes (Yang, Chang, Chien, Chien, & Tseng, 
2013; Rosengrant, 2013).

THEORETICAL FRAMEWORK

Human communication consists of more than just 
words and diagrams; gestures, glances, body move-
ment, prosody are also important aspects of it. Roth 
(2012) and Radford (2009) claim that there is a debate 
on the relationship between different communicative 
modalities. Some contend that both speech and ges-
ture originate from the same psychological structure, 
while others claim that speech and gesture originate 
from different psychological structures. Still others 
claim that speech and gesture are different commu-
nicative channels, and that gesture serves a subordi-
nate function. 

Goldin-Meadow (1999) points out that the importance 
of non-verbal aspects of communication such as ges-
tures has been recognized for a long time, at least 
two thousand years, in theatre, rhetoric, philosophy, 
and language. She identifies two different types of 
gesturing: gestures that substitute speech (e.g., sign 
language) and gestures that accompany speech, of-
ten unconsciously. She also points out that gesture 
enriches communication by providing a different 
representational format. For a speaker, gesture re-
duces cognitive burden, helps retrieval from memory, 
and is a tool for thinking. Gestures have also been 
observed to be important in the process of forming 
new concepts (Goldin-Meadow, 1999; Arzarello et al., 
2009; Radford, 2009) 

In gesture studies, McNeill’s (1992) categorisation 
has been used frequently. He identified four different 
types of gestures: 1) beats, that do not have content 
information, but give rhythm and emphasis for talk, 
focus attention, and coordinate taking turns; 2) deictic 
gestures (pointing), that point to something concrete 
or abstract and typically have a verbal counterpart 
such as ‘here’, ‘there’, ‘that’, ‘me’, etc.; 3) iconic gestures 
that pictorially represent the target, for example, by 
drawing in the air; and 4) metaphoric gestures, that 

also create an image, but such that the image refers 
to an abstract concept metaphorically.

When teachers teach mathematical concepts, gestur-
ing – and especially pointing – is common (Alibali & 
Nathan, 2012). Pointing gestures reflect the grounding 
of cognition in the physical environment, and point-
ing can be used to highlight connections between re-
lated representations. This exemplifies the need to 
interpret communication in context, which considers 
the material and graphical structure of the interaction 
(Goodwin, 2003; Arzarello et al., 2009).

Sweller and his colleagues have studied the influence 
of split attention on cognitive load (Yeung, Jin, & 
Sweller, 1997). Their studies show that when attention 
is split between two sources of information, a high-
er cognitive load may impede learning. This effect 
can be ameliorated when the sources of information 
are physically integrated. However, the effect is de-
pendent on the student expertise. For more advanced 
learners additional information may be nonessential 
and impede learning.

Our research project will study student attention 
to mathematical diagrams and script on the board 
during mathematics lessons. Our focus in this paper 
is how well teacher talk and gestures direct student 
attention. In our study, we are specifically interested 
in student navigation when information is present-
ed in two distinct areas, and in how effective is the 
teacher use of gesturing to help students integrate 
two sources of information. To our knowledge, no pre-
vious study has analysed students’ visual attention in 
classroom situations using gaze tracking.

METHODOLOGY

In order for the researchers to monitor a student’s 
attention in class, the student wears a gaze tracking 
device, which consists of a glass frame equipped with 
miniature cameras which produce a video scene and 
keep track of the direction that the eyes are pointing 
at. This device allows the software calculation of the 
direction of the gaze in class, producing a video scene 
with a dot indicating the locus of visual attention of 
the person wearing the glass frame (see Figure 3). 
The gaze tracking glasses are connected to a laptop 
with two cords, which prevents the student from get-
ting up, but does not restrict movement while seat-
ed.  The device was developed at the Finnish Institute 
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of Occupational Health in collaboration with Aalto 
University (Lukander, Jagadeesan, Chi, & Müller, 
2013). The prototype of this device is used in this study 
(see Figure 1). In addition to gaze tracking, there is 
another video recording of the class from behind, fo-
cusing on the teacher and the board, and there is a 
third video focussed on the subject student wearing 
the glass frame.

The data is obtained from a Finnish eighth grade class-
room in a school where the language of instruction 
is English and where our subject student is a native 
English speaker (in this school, the students are bi-
lingual). The subject wearing the glass frame was 
chosen on a voluntary basis. Informed consent has 
been obtained from the teacher, the focus student, all 
other students seen in any of the pictures, and their 
legal guardians.

The video recording we analyse shows a teacher ex-
plaining the topic of linear equations and relating 

them to the geometry of the lines using GeoGebra on 
a Smartboard. The dynamic functions of GeoGebra 
are not used, but the teacher draws additional lines 
and symbols on the Smartboard as shown in Figure 2. 
Specifically, throughout the approximately five-min-
ute clip, a couple of lines appear on a Cartesian coor-
dinate system. The lines intersect at a point (point P1 
in Figure 2). Then the following sequence of events 
ensues. The teacher explains how to find the y-inter-
cept of the first line (line L1, point P2, equation E2), 
and then, how to find the gradient of the same line by 
locating a second point (in this case P1) on the line and 
identifying the rise (segment S1) and its length (N1) 
and the run (S2) and its length (N2) from the lower 
point to the higher point. The gradient is calculated 
(E1). She then identifies the y-intercept and the gradi-
ent of the line in the equation of the line (in region Q ). 
The same procedure is repeated for the second line 
(L2). The y-intercept (P3) is located and its value noted 
(E3), and a second point (P4) chosen in order to find 
the rise (S3) and its value (N3) and the run (S4) and its 
value (N4). The value of the gradient is calculated (E4). 
Finally, these values are identified in the equation 
corresponding to the line in region Q. In Figure 2, we 
identify all the areas of interest to which the teacher 
makes reference.

We made two segmentations of the video clip in the 
following way. First, we segmented the clip according 
to what we think are the areas of the board to which 
the teacher wants to bring attention, as indicated by 
the teacher’s verbal cues, hand movements, and gaze. 
We then segmented the clip according to the student’s Figure 1: The gaze tracking device

Figure 2: The board with the various regions of attention
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gaze location – gaze is typically located for a short 
period of time at a certain position on the board before 
moving on to another location. Occasionally, there are 
glances which move away from a position and back to 
the original position, or somewhat rapid, but not too 
rapid shifts back and forth between two spots. We 
interpret these to indicate that the student attention 
is split between two areas and in these cases we cod-
ed both locations for the gaze. We then analysed the 
segments in order to find regions where gaze location 
follows the teacher’s cues that direct attention dis-
tinctly, and regions where this is not the case.

DESCRIPTION AND ANALYSIS OF DATA

For most of the time during the teacher’s presenta-
tion, the student gaze location follows teacher’s cues 
quite well. However, there are also moments when 
this is not the case. We present a detailed analysis of 
two sections of the clip. Specifically, we shall analyse 
moments when the student’s attention is not matching 
the intended area of attention. These sections occur 
after the teacher has finished explaining how to cal-
culate the y-intercept and the gradient, and proceeds 
to link this information to the equations of the lines. 

In the first instance (for line 1) the student follows the 
teacher’s indications closely. In the second instance, 
the student gaze does not follow the pattern indicated 
by the teacher. The transcriptions follow. We have 
provided the graphic in Figure 4 to facilitate visualiza-
tion of the ongoing processes. In the graphic we show 
how the area of intended attention (AIA) segments 
interlace in time with the gaze location (GL) segments 
for each of the two lines discussed by the teacher, line 1 
(Line 1) and line 2 (Line 2). The bars representing each 
segment have been colour-coded according to the area 
of intended attention or the area where gaze is located: 
red is the code for the Q area, blue for the teacher’s 
face or hands (T), white for unspecified locations, and 
other colours for other areas.

For the discussion pertaining to each line we provide 
the following information. First, we provide the be-
ginning time of the segment and the transcript of 
what the teacher is saying. We then indicate if there 
are verbal, hand, or gaze cues that might be used to 
focus the student’s attention onto an intended area 
of attention and what we perceive to be the intended 
area of attention. To the right of the transcript of the 
teacher intervention, we give the same information 

Teacher Student

Time (ms) Utterances [actions and non-verbal cues that indi-
cate the area of attention]

Intended 
area of atten-
tion

Time of gaze 
shift (ms)

Gaze location

742006 and as you can see [glances briefly at equations in 
area Q ]

Not specified 742014 Teacher face

742966 actually [takes another pen] Not specified 743341 Q

743611 the equation of this line is here [draws an ar-
row pointing at the equation; gaze and gesture] 
(Figure 3c)

Q Q
Teacher face
Teacher hands
Q

748697 you can see that yes, [gaze and gesture] P2, E2 
749137

P2, E2
Q

the y-intercept [gaze and gesture] E2, Q 750496
751959

Teacher face
Q

752007 is the number that stands alone [gesture, glance] Q 753940 Teacher face

754704 and the gradient [gaze and gesture] E1 755372 E1

756229 is the number [gaze and gesture] Q 756602 Q

757503 that is the coefficient of x [gesture only] Q 757743
759268

Teacher face
Q

760510 End of sequence 764774

Table 1: Teacher behaviour and student gaze when the teacher explains the connection between gradient and y-intercept values and 

the equation for line 1
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for the gaze location, except for a transcript. Notice 
that in some instances, there might be more than one 
intended area of attention, and in some instances the 
gaze location information might include two regions 
if there is a sequence of rapid shifts of gaze location 
between two spots. First we provide the data that con-
cerns the discussion of line 1.

In the beginning of the segment we see the student 
focusing on the equation of the line before the teacher 
gives any explicit indication. Upon closer analysis, 
we see that when the teacher has finished the previ-
ous stage and before she picks a new pen, she casts 
a brief glance towards the equations. This was very 
difficult to observe and we noticed it only as we were 
carefully trying to find the reason why the student 
moved his gaze into the area where the teacher would 
move a fraction of a second later. We believe that the 
student observed the brief glance of the teacher as 
he was looking at the teacher’s face, and therefore 
was able to react to the teacher’s utterance, “as you 
can see” with a foresight as to where the teacher was 
likely to focus next.

Next, the teacher is trying to connect the explanation 
of the y-intercept and gradient to the equation of line 
1, and the student’s gaze location follows the teacher’s 
indications to attend to area Q very distinctly (Figure 
3c), and indeed to other areas as well, as can be seen 
from the top two bars in Figure 4 (in Figure 4, red 
codes the Q area, and blue codes the teacher’s face 

or hands). What we see in this segment is how the 
student’s gaze shift to the area of intended attention is 
in slight delay with respect to the teacher’s cues. Also 
note how attention in this section is split between the 
equations of the line on the left (Q ) and the values of 
y-intercept (E2) and gradient (E1) on the left. The teach-
er uses pointing gestures to successfully guide the 
student’s attention across these two areas of interest.

Now we provide the data that pertains to the discus-
sion of line 2. The student again anticipates the teach-
er movement to discuss the equations, but he does so 
substantially earlier (Figure 3a, first red bars in the 
upper and lower tiers of Line 2 in Figure 4). Moreover, 
he dismisses the teacher’s direction to attend area Q at 
the end of the intervention (Figure 3b). We speculate 
as to whether this is partially due to the fact that she 
moves and turns around and is no longer facing the 
student; it would seem as if the student wants to see 
what he thinks the teacher is looking at. In any case, 
the teacher’s pointing gestures are well visible in the 
student gaze video, but he does not direct his gaze as 
a reaction to the teacher’s actions. This could be an 
example of self-initiated shifts of attention based on 
the student’s active construction of his own under-
standing. Also, this might indicate a lack of attention, 
a blank stare. 

Figure 3: Pictures showing the situations described in the data analysis (Due to calibration error for this distance, the red dot indicating 

the student gaze location is systematically about 20 cm too much to the right)
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DISCUSSION OF RESULTS

In previous research, the reliability of coding for 
gestures, speech, and their relationship has typically 
been high (85%-94%) (Goldin-Meadow, 1999). It seems 
likely that observing explicit gestures is very natu-
ral for human observers, which allows high accuracy. 
However, when we first watched the video, we did not 
notice the teacher’s glances which, nevertheless, were 
used as cues by our focus student. This highlights the 
importance of paying close attention to the teacher’s 
glances in future analysis on student visual attention.

The sections analysed are examples of a well pre-
planned teacher explanation. Yet, it includes uncon-
scious cues (gaze cues such as glances). The student 
can follow the explicit cues very well, but is also ob-
serving subtle cues. Throughout the whole five min-
ute sequence, the student splits his attention between 
the board and the teacher’s face. In the sequences of 

closer analysis, there was additional split attention 
when the teacher connected inscriptions on two sepa-
rate areas of the board. In both cases of split attention, 
the student seemed to have no problem following the 
teacher’s cues. In summary, the student seems to be 
following the teacher’s explicit gestural cues and sub-
tle gaze cues quite closely. 

However, when the teacher repeats the process for 
the second line, the student’s gaze does not follow the 
teacher’s cues. There are several hypotheses for why 
this happens. One option is that the student is process-
ing the situation independently and is able to move 
ahead of the teacher, as indicated by his movement 
to the equations for the second line well before the 
teacher’s. Another explanation is that the teacher’s 
gaze is such an important cue for the student that 
when he loses it, his attention begins to drift. There 
is also the possibility that the student loses interest, 
due to the repetitive nature of the activity. Although 

Teacher Student

Time (ms) Utterances [actions and non-verbal cues that indi-
cate the area of attention]

Intended 
area of atten-
tion

Time of gaze 
shift (ms)

Gaze location

817115 pause, changes pen [no gaze, no gesture] (Figure 3a) not specified 817105
818231

Q
teacher hands

818733 this one uses approximate values [gaze, gesture] Q 819104
819657

teacher face
Q

821333 the correct answer there would be one over three 
(mumble) 

Q 821621
822716

teacher face
E4

826416 and the same thing again, can I find the [gaze, ges-
ture]

E3 E4

829920 y-intercept [gaze, gesture] P3 830243 P3

830920 here, the constant [gaze, gesture, teacher turns her 
back to the student] (Figure 3b)

Q 834352 Not Q, L2

835021 the eeh [gaze, gesture] E3 Not Q, L2

837102 coefficient of x Q 837078 S2, N2

838424 is the gradient Q, E4 S2, N2

840141 End of section 840601

Table 2: Teacher behaviour and student gaze when the teacher explains the connection between gradient and y-intercept values and 

the equation for line 2

Figure 4: Segment interlacing for the transcripts above
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the student’s gaze continues to be on the board, it is 
possible that he is not attending to what he is looking 
at. We note that just observing the student does not 
provide information which we gather from gaze track-
ing data. We see from our data that when the teacher is 
explaining the first of two examples on the board, the 
student follows closely, but when she explains the sec-
ond example, the student is looking towards the board, 
but is no longer following her explanations closely, 
lending credence to the usefulness of our technique.
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The study of emotional aspects of interaction may tell us 
much about the social norms and the meta-mathemat-
ical rules according to which participants act during 
their mathematical activity. To illustrate this idea, we 
present the case of Jasmine, a 16-year-old student par-
ticipating in a summer camp intended for exception-
ally high achieving students in mathematics. Through 
a commognitive analysis of the interaction between 
Jasmine and her instructor (the first author), we exam-
ine the implicit meta-rules of discourse according to 
which the two participants acted and that, at a certain 
point, led to Jasmine’s frustrated disengagement from 
the discussion. Adding the concept of “framing” shows 
that this episode could be characterized by the student 
and instructor’s “misaligned frames”. 

Keywords: Emotion, interaction, students, mathematical 

argumentation.

INTRODUCTION

In past decades, a growing amount of research has 
been dedicated to the examination of student affect 
and emotions in mathematical learning (Hannula, 
2012). However, most of this research has been concen-
trated on students’ subjective experience, as elicited 
by self-reports.  More recently, researchers have start-
ed looking at the effects of emotion on student-student 
and student-teacher interactions (Heyd-Metzuyanim 
& Sfard, 2012). These studies have been inspired by 
a sociocultural lens that sees learning as a form of 
participation in a discourse. Emotional expressions 
are an important part of any human communication 
and thus make up an important and indispensable 
piece of the puzzle when one wishes to understand 
how learning takes place in real-life situations. 

The socio-cultural view has been used in research that 
attempts to show the marginalization of students who 
get disengaged from mathematics (Boaler & Greeno, 
2000; Heyd-Metzuyanim, 2013). However, rarely has 
this lens been turned to the learning of students iden-
tified as ‘mathematically gifted’. In the present study, 
we employ such a lens to examine the ways in which 
emotions, social interactions, and mathematical cog-
nition interact in the activity of high-level mathemat-
ical problem solving practiced in a summer camp for 
mathematically gifted students. We do so by using 
the communicational (commognitive) method for 
examining mathematical discourse as it intertwines 
with identity construction in mathematical learning 
(Heyd-Metzuyanim & Sfard, 2012; Sfard, 2008). Our 
goal is to explore the analytical tools that may shed 
light on the affective side of teaching-learning inter-
actions in settings where students engage in high level 
mathematical argumentation. 

IDENTITY, GIFTEDNESS, AND 
MATHEMATICAL ARGUMENTATION

Studies about mathematical giftedness have main-
ly examined cognitive aspects of learning (Leikin, 
Berman, & Koichu, 2009). Whenever studies about 
giftedness examine affective aspects of learning, they 
do so from an individual perspective, using concepts 
like self-concept and self-esteem (Zeidner & Schleyer, 
1999). Despite the fact that emotions and self-percep-
tions have been acknowledged as important for un-
derstanding gifted students’ learning, rarely have 
they been studied as they take place in these students’ 
mathematical learning. Similarly, the literature about 
mathematical argumentation rarely deals with the 
emotional side of argumentation. 

mailto:rachely.hg@gmail.com
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In the present study, we focus on communication, 
including its emotional and non-verbal aspects, to 
integrate the study of mathematical cognition, social 
interaction and emotions in the activity of mathemat-
ical argumentation. We do this by using the commu-
nicational (commognitive) framework (Sfard, 2008), 
whose main tenet is that thinking can be viewed as 
an intra-personal type of communication, not qual-
itatively different from inter-personal communica-
tion. Within this sociocultural framework, learning 
is conceptualized as participation in a specific type 
of discourse (here, the mathematical discourse). 
Discourses, claims Sfard, are defined by four char-
acteristics: word use, routines, visual mediators and 
endorsed narratives. In mathematics, all these are 
used to create discursive objects such as “2”, or “prime 
numbers”. Sfard (ibid) defines learning as a change 
in discourse and differentiates between two types of 
such change: object-level learning, where students 
learn new routines for dealing with familiar objects, 
and meta-level learning, in which the meta-rules of 
the discourse change. Meta-rules define patterns in 
the activity of the discursants trying to produce and 
substantiate object-level narratives. 

Heyd-Metzuyanim and Sfard (2012) pointed to the 
fact that while learning mathematics, students do 
not just participate in the mathematical discourse 
(or mathematize), they also participate in an identi-
fying discourse whose main goal is to produce narra-
tives about oneself and others. In line with Sfard and 
Prusak (2005) they defined identity as a collection 
of stories that are reifying and significant, told by a 
person about herself (1st person identity) or by others 
about her (3rd person identity). Identifying discourse, 
or discourse that constructs identities, is made up of 
subjectifying utterances, whose object is people (rather 
than mathematical objects). However, not all subjec-
tifying utterances can be categorized as identifying. 
Only those utterances that relate to stable, signifi-
cant attributes of the person (such as “she is math-
ematically gifted”) are considered to be identifying. 
Subjectifying (and to certain degrees identifying too) 
can be, and often is, communicated via non-verbal or 
indirect means. For instance, emotional expressions 
almost always communicate some sort of subjectify-
ing message (such as “this is embarrassing for me”).
Heyd-Metzuyanim (2013) has shown that focusing on 
the disruption of routines can provide useful insights 
into the meta-discursive rules that often go unnoticed 
in teaching-learning situations, in particular to the 

meta-rules of identification. These are implicit rules 
governing who is supposed to refer to certain ac-
tions (e.g. a student giving a correct answer, a teacher 
challenging a student’s claim), what certain actions 
convey about participants, and what emotional re-
sponses are appropriate for certain situations. We 
incorporate the concept of “framing” to better artic-
ulate the discrepancy that can occur between sets of 
meta-discursive rules (Goffman, 1974; Tannen, 1993). 
Tannen (1993) explains framing as the participants’ 
sense of “what is going on” in the interaction. Within 
a communicational framework, we conceptualize 
this as participants’ sense of the meta-rules that are 
governing the discourse in which they participate. 
Disruption in routines, and the emotional reactions 
that accompany such disruptions (Giddens, 1984) may 
point to misaligned frames (Sande & Greeno, 2012) of 
the interlocutors. In the present study, we ask: what 
may emotional reactions of participants in a mathe-
matical discussion tell us about misaligned frames, or 
different meta-discursive rules according to which 
the interlocutors are acting?

THE STUDY: SETTING AND METHODS

The research was conducted in a mathematical camp 
for “mathematically gifted” youth (20 participants 
aged 15–18) that took place during the summer va-
cation where the first researcher acted both as a re-
searcher and an instructor. It lasted two weeks and 
included both mathematical and social activities. 
Throughout the course of the camp, participants en-
gaged in both group and individual study sessions. 
The group sessions took place with the guidance of 
an instructor who is a mathematician (holding at least 
an M.A. in mathematics). The first author was one of 
these instructors. Every day the students were given 
a worksheet of problems that progressively increased 
in their difficulty. Twice a week students were given 
the opportunity to present problems on the board 
that they had previously solved and get their solution 

‘peer reviewed’ by their fellow students. 

Lessons and social activities were videotaped, in ad-
dition to interviews with students during the camp 
and recordings of episodic happenings such as casual 
conversations that took place after the study sessions. 
The first author held a research diary in which she 
documented the events taking place during the day 
including her feelings about these events. Based on 
this diary, we chose for close examination several 
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events, in which it was clear that some emotional 
interaction was taking place, along with a rich math-
ematical discussion. These events were transcribed, 
including interviews and casual conversations that 
were relevant for understanding the event. The ex-
cerpts presented in this report were translated from 
Hebrew by the authors. 

In this report we focus on one event that happened 
during a “peer-review” session. In it, one of the most 
active students in the group, Jasmine, volunteered to 
present her solution to an advanced problem that was 
given the previous day. The data for this analysis con-
sisted of the recording and transcription of the lesson, 
as well as recordings of spontaneous conversations 
about the incident that took place after the lesson and 
a semi-structured interview with Jasmine at the end 
of the camp. 

The analysis was based on the communicational 
framework, as presented above. In particular, we fo-
cused on three aspects of the communication between 
participants: a. the mathematical objects being talked 
about b. the subjectifying/identifying messages of 
the interlocutors about themselves and about each 
other; and c. the meta-discursive rules, or framing 
implied by these subjectifying messages. For instance, 
Jasmine’s expressions of embarrassment or dismay 
were interpreted as indicative of an incident in which 
the happenings were misaligned with what she expect-
ed to happen or thought should have been appropriate 
for the situation. The interpretation of emotional ex-
pressions was based on the first and second author’s 
view of the videos, in addition to Jasmine’s description 
of the episode later in a casual conversation with other 
students. In particular, the interpretation of emotion-
al signals and implicit identifying messages was based 
on our familiarity with the culture where this incident 
was taking place. Moreover, though we use Jasmine’s 
report as a source of information, we should clarify 
that our method for analyzing emotional expressions 
does not necessitate 1st person reports of their emo-
tions (or feelings). Rather, our method focuses on the 
communicational work that is done by emotional ex-
pressions, that is, how they are interpreted by others 
(see Heyd-Metzuyanim & Sfard, 2012).  

FINDINGS – AN EPISODE OF 
ARGUMENTATION THAT WENT ASTRAY

The given problem was: Prove that for each number  
n! + 2, n! + 3, …, n! + n there is a prime divisor that does not 
divide any other number from this set. None of the other 
students had solved this problem before. Jasmine was 
the only one who claimed to have solved it. Whilst 
starting to write her proof on the board, she noticed 
one of her peers starting to copy it. Alerted, she said 

“wait, why are you copying it?… what if I do something 
wrong?”

One of her peers responded “no worries, it happens”. 
This instance of subjectifying already indicated that 
Jasmine was somewhat concerned with her identity 
as told by the other participants when walking to the 
board. Yet right after that she went straight to mathe-
matizing. She began her proof by drawing the diagram 
seen in Figure 1 explaining it by: “So there is a number 
N! and then one takes it and adds to it all sorts of things, 
that’s my famous diagram” [13–14]. Again, this rather 
casual remark about her “famous diagram” indicated 
that Jasmine was thinking about the way her solution 
is perceived by others. However, this indirect identi-
fying remark went unnoticed within the rest of the 
proof, the main argument of which was as follows:

Jasmine’s proof
“So that… I added 2, so the number won’t be divisible by 
any number that is smaller than N except 2. OK? Good. 
And then if I added 3, then it (points to N!+3) won’t be 

Figure 1: One of the drawn diagrams

 Figure 2: Another drawn diagram
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divisible by any number smaller than N except 3. And 
then, once we reach four, that’s a multiple of two, then 
this number (points to N!+4) can also be divided by 
two. Then, wait, but it must be divided also by another 
prime factor that is greater than N” [19–25]. 

As she was talking, Jasmine was accompanying her 
explanation by drawing a diagram of N!+2 and N!+4, 
visually mediating their divisibility by 2 and another 
prime factor p or q as seen in Figure 2. At that point, 
the instructor interrupted, asking “why did you say 
that?”[27]. Here occurred the first failure in commu-
nication. While the instructor referred with the “that” 
to the claim that there are only two primary divisors 
of N!+4, Jasmine understood it as referring to the sig-
nification of the second prime number with q (and 
not p). She explained “’cause otherwise it would be 
the same number” [28]. However, since the misunder-
standing of the teacher seemed to be related (at least 
in Jasmine’s eyes) to mere signification of numbers by 
different letters, this interruption did not produce 
much stress and Jasmine went on in explaining her 
solution to the group. At this point, other students 
started getting involved and asking questions. Some 
asked only clarifying questions. Others’ were more 
challenging, such as the instance below: 

52 Yoav: Why do you say that this is prime 
(Points to p)?

53 Instructor: Wait, are you saying that it (N!+2) 
is divisible by 2? OK, but why is the other fac-
tor a prime?

54 Jasmine: There must be another prime 
factor

In the above interchange we see more evidence of a 
communicational breach. While the instructor and 
Yoav talked about “the other factor” being “a prime”, 
Jasmine talked about the mere existence of “another 
prime”. Therefore, it is not clear that she saw the ne-
cessity of the other factor being itself a prime, it might 
be that she was content with the factor being made up 
of several primes. 

The instructor, together with some of the students, 
tried to find counter examples to Jasmine’s claim that 
N!+2 is divisible by 2 and another prime. However, 
the first few numbers that were used for substitution 
actually confirmed Jasmine’s conjecture. Thus, N=4 
produced (24+2)/2=13 and N=5 produced (120+2)/2 =61, 
both prime numbers. The students and instructor did 

not get to the next N=6 which would have produced a 
counter-example ((720+2)/2 = 361, 361 is not a prime). 
Instead, the following interchange occurred:

The instructor’s challenge
84 Instructor: So you say that it’s always like 

that
85 Jasmine: I proved it! (Smiling, in a high, 

anxious voice). I just don’t want to start with 
all the... (mumbles in a high voice, seems em-
barrassed)

86 Instructor: Are you sure?
87 Jasmine: Yes! I think so.. (tone of voice 

moves from assertion to a hint of doubt) I 
proved it. I just don’t remember how.

88 Instructor: No, ‘cause it’s very interesting. 
‘Cause if you say this, then you are saying 
it’s very easy to find prime numbers. That 
means I’ll take something factorial, I’ll di-
vide it by 2, add 2, um.. no, add 2 divide by 2 
and then I get a prime number. That means I 
found an algorithm for finding a prime num-
ber. That’s why it seems strange to me.

Several points are worth mentioning in this short in-
terchange. The first regards [85–86]. The instructor 
started by making a claim that combined subjectifying 
and mathematizing (“you say that it always turns out 
that way”) (subjectifying, mathematizing). While she 
expected Jasmine to respond to the mathematical part 
(for instance by “yes, it always turns out that way”) 
possibly with another justification, Jasmine respond-
ed to the subjectifying part. She referred to her actions 
(“I proved it”) rather than to her mathematical claims. 
This divergence from mathematizing to subjectifying 
could also be seen in her emotional expressions at this 
point. Giggling and raising her voice were not going to 
help Jasmine justify her mathematical claims. Rather, 
they communicated she was mainly interested at this 
point in her identity (or the 3rd P identity of hers’ as 
told by her classmates). 

Another point regarding the above interaction refers 
to the meta-mathematical rules according to which 
the two interlocutors were acting, specifically, what 

“proving” entails and what may be considered as suf-
ficient justification. For Jasmine, the fact that she did 
something in the past (“proved” the claim or solved the 
problem) was relevant and even sufficient for putting 
forward a mathematical claim [85].  Obviously, the 
instructor, who was an experienced participant in 
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the mathematical community, did not abide by this 
meta-rule. However, she did give some credit for 
Jasmine’s hypothetical proof by asserting it is “very 
interesting” and communicating genuine doubt with 
regard to her own understanding (see also later in 
[122]).

Another important point in the above excerpt regards 
the counter argument that the instructor uses [88]. 
While up to this point, the counter arguments con-
centrated on finding a numerical counter example 
that would disprove Jasmine’s claim, this counter 
argument was of a different sort. It drew on some 
common knowledge of the mathematical communi-
ty about the feasibility (or unfeasibility) of finding 
any prime number. However, this knowledge was not 
necessarily shared by the students. Jasmine showed 
she did not share it by replying “It’s possible to find 
prime numbers in this way, it’s just that for a calcula-
tor it’s really difficult to do factorials even with small 
numbers” [98]. The type of meta-mathematical rule for 
proving that the instructor was following here is a dis-
tinct, rather intuitive meta-rule of the mathematical 
community, not a formal logical routine. According 
to it, in order to refute a claim, one can draw on the 
implications of this claim to other problems known 
to be difficult or unsolved in the history of the math-
ematical community. Any claim that would imply a 
simple solution for such a difficult problem (such as 
providing an algorithm for finding prime numbers) 
would be regarded with high suspicion. Jasmine did 
not seem to be familiar with this meta-rule. Rather, 
she concentrated on checking “very big numbers” (or 
factorials) on her calculator thus resorting to a famil-
iar routine -proving by giving examples.

At this point in the lesson, the instructor moved to 
explaining the disagreement between Jasmine and 
herself to the other students. Once the instructor 
clarified her suspicion about (N!+2)/2 being a prime, 
Jasmine started backing off:

Jasmine’s retreat
117 Jasmine No, no. It can be 2 times many 

things but at the end there’s a prime number 
there.

118 Instructor Of course at the end you have 
prime factors, but why are they 2, that’s 
what’s bothering me.

119 Jasmine No, you don’t have only 2.

120 Instructor But this is what you drew here... 
(points to Figure 2) ...OK, but if you have 
more (than 2) then you do have a problem.

121 Jasmine Why?
122 Instructor Because you assumed you have 

2 divisors and then you said that because 
there are 2, then that’s exactly N! + 2 divided 
by 2, if I understood what you said... (Jasmine 
looks puzzled). If you get to here (implying 
N! +N) you’ll get to (that fact that) the divi-
sor of this is necessarily different than this 
denominator (pointing to N!+2). That’s how 
I understood your proof, and maybe I didn’t 
understand anything and that’s alright.

123 Jasmine I didn’t understand what you 
understood from my proof (smiles).

The excerpt above marks a transition in the argu-
mentation of Jasmine and the instructor. Instead of 
checking Jasmine’s claims, the instructor moved to 
an elaborate explanation of the “holes” or gaps in 
Jasmine’s proof. One should notice that Jasmine’s dif-
ficulty to follow the instructor [123] is understanda-
ble. Despite the fact that the instructor claimed to be 
revoicing Jasmine’s proof, she used quite a different 
language for its expression. Jasmine talked about 
N!+2, N!+3,… being divisible into a number (2, 3) and 
a P (where P referred to a prime factor or simply a 
factor interchangeably). The instructor talked about 
P and (N!+2)/2 as interchangeable. In Sfard’s (2008) 
words, she “samed” these two realizations into one 
object. It is probable that Jasmine did not go through 
the same “saming” process and therefore had diffi-
culty in following the instructor’s argument. Indeed, 
she remained puzzled, giving her fellow classmates 
an opportunity to voice their opinions. Reuven com-
mented, with a bit of a humorous tone: “so what you 
proved here is that every number has a prime divisor”. 
Jasmine retorted, quite excited “No! That’s not what 
I proved here. That’s totally not what I proved here! I 
was relying on it” [144]. 

At this point, it seems that Jasmine was quite frus-
trated. She was still convinced her proof was correct, 
but was not able to follow the instructor’s counter 
arguments. The instructor tried explicating a math-
ematical meta-rule “so look… like, every claim you 
make here requires clarification”. Yet Jasmine did not 
understand this simply as a meta-rule of mathemat-
ical proving. Rather, she interpreted it as a comment 
undermining her identity as a successful student, as 
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could be seen in her short, high laugh and her retort 
“you said I think weirdly, so this is my weird thinking” 
[154].

From this point on, most of the communication in the 
class revolved around identity issues. The instructor, 
trying to alleviate Jasmine apparent distress, said “No, 
I don’t have any problem (with it), it could be true and 
it’s possible you’ll find a new claim and write a pa-
per about it” [156]. Jasmine replied cynically “yeah, 
sure… physics maybe, math no” [159]. Other class-
mates started giggling and immediately Jasmine’s 
attention turned to them (though they claimed not 
to have laughed at her). The only mathematical claim 
that Jasmine still tried to make was that 1,814,401 (by 
using N=10 in (N!+2)/2) is a prime number. She said so 
quite excitedly, sticking her calculator in the face of 
her classmates. Here, not only was she not acting ac-
cording to mathematical meta-rules of proof, Jasmine 
was also making a wrong assertion about the mathe-
matical object (1,814,401 is not a prime). 

There was no resolution to this argument. The in-
structor tried to encourage Jasmine to re-enter the 
mathematical discussion and re-state her proof but 
Jasmine gave up stating that “she’s tired” and that she 
got “totally confused”.

Aftermath
After the session was over, during a casual conver-
sation with the instructor and other fellow students, 
Jasmine remarked: “I think you embarrassed me in 
front of the whole class, I stood helpless”. To explain 
her discontent with the instructor’s conduct she said 
to another student “I’m standing at the board, proving 
a problem, and every second she’s interfering with it.... 
But it was true too. I proved it. I proved it completely 
and you (instructor) didn’t believe (it)!” [9]. It is clear 
from this description that Jasmine’s framing of the sit-
uation was very different than that of her instructor 
or of any experienced participant in the mathematical 
community. While Jasmine saw counter-arguments 
as “interferences” that unnecessarily “confused” and 
embarrassed her, such counter-arguments and rig-
orous search for the veracity of every claim are the 
hallmark of mathematical argumentation. Expecting 
the instructor “to believe” her simply because she said 
she proved it was another signal that Jasmine’s fram-
ing was misaligned with that of her instructor.     

DISCUSSION AND CONCLUSIONS 

In this report we took a close look at an episode of 
high level mathematical argumentation coupled 
with intense emotional expressions. Our goal was 
to examine what may be learned from participants’ 
emotional reactions about their framing of the situ-
ation, or the meta-rules of mathematical discussion 
they were following. The analysis revealed that the 
interaction included three types of communication 
failures. One was mathematical, at an object level. 
Jasmine and her instructor talked differently about 

“prime numbers” and about the objects signified by a 
“P”. Communicational failures resulting from inter-
locutors referring to different mathematical objects 
despite using similar visual mediators or words, are a 
common cause for ineffective teaching-learning inter-
actions (Heyd-Metzuyanim & Sfard, 2012), yet they do 
not necessarily involve frustration or embarrassment.

Another failure of communication was at the me-
ta-level of mathematical discourse and related to 
what “proving” was all about. Jasmine saw “proof ” as 
a process where one outlines her reasoning, not nec-
essarily justifies every step. Her instructor followed 
the mathematical community’s meta-rules according 
to which every claim has to be examined by searching 
for counter-examples and by following its’ implica-
tions. Jasmine’s difficulties with proof are not unique. 
Much literature shows that students often do not un-
derstand the role of examples and counterexamples 
in the process of proving. Such misalignments of me-
ta-mathematical rules have a much stronger potential 
of producing frustration and heightened emotional 
expressions, if only for the reason that participants 
usually are not aware of them and therefore do not 
have access to the reasons that their communication 
fails.

Finally, we saw here conflict at the level of meta-rules 
of identification, or what certain actions and re-ac-
tions say about the identity of interlocutors. While 
Jasmine saw any disclaiming of her proof as a cause 
for embarrassment, and disruptions as mistrust in 
her ability, the instructor saw the process of mak-
ing arguments and counter-arguments as a purely 
mathematical activity without any identifying con-
tent attached to it. Such discrepancy with regard to 
the identity stories that should be constructed as a 
result of a certain activity is, we conjecture, the most 
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potent fuel for intense emotional agitation that may 
lead to failure in communication. 

Yet, despite the distress this particular episode caused 
for Jasmine, it was probably an important and useful 
step towards the ultimate goal of initiating her and her 
fellow classmates into the mathematical community. 
In this summer camp, such interactions (though usu-
ally not so emotionally intense) were quite common. 
As could be seen here, the instruction in the summer 
camp was quite different than in school settings and 
resembled much more the process of apprenticeship 
(Barab & Hay, 2001). One of the main indications for 
this could be seen in the role that the instructor took, 
that of an equal (though somewhat more experienced) 
participant in the problem solving process. The im-
portance of such a non-authoritative stance has been 
noted by many. However, in this setting it seems this 
role was truly authentic, probably because the prob-
lems dealt with were far from being trivial even for 
the instructor. 

Finally, we wish to point to the need, which receives 
only a partial and very preliminary response in our 
study, to study gifted or extremely high achieving 
students’ learning from a socio-cultural perspective.  
Such studies might be able to point to the processes 
that accelerate these students’ learning, thus weaken-
ing prevalent notions about mathematical giftedness 
being a purely biological, permanent and individual 
trait. Furthermore, they can deepen our understand-
ing about how to enhance instruction in schools with 
normally achieving students.
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Interactions in the mathematics classroom affect both 
the mathematical learning and the identities of those 
involved.  In this paper, we draw upon Discursive 
Psychology to examine how identities can be devel-
oped and altered in whole class interactions. In this 
sense, identity is not an attribute of a person but is 
something that is co-constructed through and in inter-
action. We demonstrate how these identities can shift 
moment-to-moment within an interaction. Importantly, 
these identities shift within the same interaction. These 
changes in identity development have important con-
sequences for mathematical learning and continuing 
participation and contribute to our understanding of 
the variance in identities that students self-report.

Keywords: Identity, discourse, classroom interaction, 

positioning theory.

INTRODUCTION

Identity has become increasingly prominent in math-
ematics education research and in this paper we build 
on recent research that focuses on the discursive con-
struction of identity through classroom interaction. 
We consider understanding and learning mathemat-
ics to be an aspect of participating in discourse prac-
tices. Furthermore, participating in discourse prac-
tices influences, and is influenced by, participants’ 
identities (Esmonde, 2009). In other words, students’ 
mathematical identities are discursively constructed 
through their interactions and experiences in math-
ematics classrooms (Grootenboer, Smith, & Lowrie, 
2006).

Research has revealed important relationships be-
tween students’ mathematical identities and their 
experiences of mathematical practices.  For instance, 
early work by Boaler (1997) showed that students had 

qualitatively different forms of mathematical knowl-
edge and beliefs about mathematics and the learning 
of mathematics depending upon the teaching methods 
they experienced. Her later research then examined 
how these different teaching methods influenced stu-
dents developing mathematical identities and their 
decisions about continuing to study mathematics 
(Boaler & Greeno, 2000). Cobb, Gresalfi and Hodge 
(2009) developed this research further by developing 
an interpretive scheme to explore the relationships 
between particular classroom norms and sociomath-
ematical norms and the developing identities of the 
students in those classrooms.

Different conceptions of identity in mathematics ed-
ucation research have arisen since then such as Sfard 
and Prusak’s (2005) narrative work, Solomon’s work 
with figured worlds (2007) and work by Cobb and col-
leagues (2009) with normative and personal identi-
ties.  All of these approaches have largely drawn upon 
data from interviews with students describing their 
experiences with mathematics. Heyd-Metzuyanim 
and Sfard (2012) and Wood (2013) have focused on the 
construction of identity in the moment-to-moment 
interactions in classrooms. This paper contributes 
to this body of work.  

METHODOLOGY

The conception of identity developed in this paper 
arises from discursive psychology (DP) (Edwards & 
Potter, 1992).  Discursive psychology is based on the 
principles of Ethnomethodology (Garfinkel, 1967) and 
Conversation Analysis (Sacks, 1992). It examines the 
practical ways in which identity is managed in inter-
action, which may differ from the narratives or stories 
individuals may offer in interview situations.  The fo-
cus here is on how teachers and students discursively 
co-construct what it means to be a learner of mathe-
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matics. From this perspective, identity is something 
that we ‘do’, rather than something we ‘are’. This is a 
micro view of identity where identity is conceived as 
dynamic, complex and situated in the context of the 
interaction itself. Identities are constructed through 
these interactions by how the participants orient to 
each other. Teachers and students construct identities 
for themselves and for each other through participa-
tion in interaction, and also for all the participants 
and observers of the interactions that occur in the 
mathematics classroom. This micro approach com-
plements the approaches taken by researchers such 
as Boaler and Cobb, and those developed from posi-
tioning theory (Wood, 2013) which themselves draw 
from discursive psychology, by giving us a glimpse 
of how these identities are constructed as well as how 
they shift and change in interaction. 

Studies taking this micro approach have illustrated 
how interactions with different participants with-
in the classroom result in different identities being 
adopted as the consequences of some of these different 
identities. For example, Wood (2013) demonstrates 
how one student’s mathematical identity shifts in dif-
ferent classroom interactions with his teacher and 
his peers within one lesson. Two of the identities 
constructed, one in interaction with the teacher and 
one in interaction with a peer, relate to mathematic 
competence whilst a third, constructed in interaction 
with another peer, is one of a menial worker needing 
to be told each step. Yoon’s (2008) study also showed 
that teachers’ discursive positioning of non-native 
speakers affected their participation in lessons but 
also affected how their peers treated them in the 
classroom and Turner, Dominguez, Maldonado and 
Empson’s work (2013) offers insight into how teachers 
can position non-native speakers as mathematically 
and interactionally competent in a way that supports 
their peers in positioning them in a similar way. Yet 
each of these studies examines patterns over time 
and consistencies in how the different participants 
orient to each other.  In contrast, this study examines 
moment-to-moment differences in the way identities 
are constructed in order to contribute to our under-
standing of the variety of identities that students de-
velop in the mathematics classroom.

The analysis below focuses on three aspects of the 
talk: the structure of the turns taken by the teacher 
and his students; and the authorship and ownership 
of the mathematics (also referred to as the epistemic 

agency (Ruthven & Hofmann, 2015)).  One key feature 
of talk that is used by teachers related to ownership 
is revoicing (O’Connor & Michaels, 1993). Revoicing 
involves repeating students’ contributions in a way 
that attributes the ideas involved to the student. The 
student is the owner of the ideas involved and capable 
of offering these ideas. Enyedy and colleagues (2008) 
emphasise the importance of this attribution in class-
room interaction as it “shares the intellectual author-
ity with the students and helps establish their role as 
one of contributing to the construction of knowledge” 
(p. 137). 

The data discussed in this paper comes from a larger 
study involving eight mathematics teachers from sev-
en schools in the UK, all working with students aged 
between 11 and 14 years. Some of the schools serve 
areas with high levels of social deprivation, whilst 
others are fee paying independent schools. The teach-
ers all volunteered to be video recorded and the data 
collected is naturally occurring in that no instruc-
tions were given to the teachers about what or how to 
teach. The transcripts included in this paper are from 
one of these teachers’ lesson with an all-attainment 
class of 12–13 year old students. The two extracts have 
been chosen to illustrate how the discursive construc-
tion of identity can change within one topic segment 
within a single lesson. The extracts come from one 
particular whole class interaction towards the begin-
ning of the lesson where the students are reporting 
on work they have completed in a previous lesson and 
at home. The students are preparing for end of year 
exams and have been working on a worksheet with 
problems designed by the teacher to support them 
in their revision. Whilst the majority of studies have 
focused on small group work in mathematics lessons, 
whole class interactions are being considered here be-
cause the interaction not only positions the students 
who contribute but also the rest of the class observing 
and listening to the interaction. Whilst students are 
generally more agentic in small group discussions 
than in large whole-class discussions (Turner et al., 
2013), the first extract below illustrates an example 
of where students can be agentic in teacher-led whole 
class discussions.

IS A MICROCENTURY LONGER THAN 
A MATHEMATICS LESSON?

In the first extract the students are reporting their 
work on the question of whether a microcentury is 
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longer than a mathematics lesson.  Immediately be-
fore this extract there has been some discussion on the 
meaning of microcentury and the notation associated 
with the prefix micro.

27 George: well (.) erm (.) I (.) worked it out (.) 
on erm the calculator and (0.3) it came up as 
one times (.) ten (1.6) to the power four. and er 
um (0.9) I times’d it by three hundred and six-
ty five, to simpl- to make it simpler (.) and um 
(1.1) and um it still wasn’t (0.5) what I wanted 
so (0.4) I times’d it by twenty four which (0.4) 
um (1.2) um gave me that nought point eight 
seven six so it times’d it again by sixty (.) um 
minutes and it came as fifty two minutes and 
(1.3) so that’s longer than forty minutes so 
(the answer is it’s longer than the lesson) 
((teacher is writing down the calculation 
while it is being said on the whiteboard))

28 Teacher: oh wonderful answer? thank you 
very much indeed. um you’ve said it all really 
haven’t you. um this first bit comes up a bit 
funny on some of the calculators depends 
what sort of calculator you’ve got. sometimes 
when there are numbers that (.) don’t fit eas-
ily on the display or have lots of noughts in. 
we represent them in a different way which 
we’ll look at in year nine but um (.) it’s ba-
sically (.) a ten thousandth. if you um (0.7) 
press the right button on your calculator 
and you get ten thousandth. and then with 
all these timesing what was what was George 
doing with all this? what was she doing here  
(1.7) ((turns round to point at a specific 
part of the calculation on the whiteboard))  
yes Lauren

29 Lauren: um she was trying to (re do it ) 
into minutes?

30 Teacher: she was making it into minutes 
eventually wasn’t she I should have written 
that. (2.8) ((teacher is changing the colour of 
his whiteboard pen)) she was. so what where- 
what where the stages she went through. 
why was she- (0.5) why was she doing each 
of these steps. Hannah?

31 Hannah: because times three hundred 
and sixty five is like (.) three hundred and 
sixty five days in the year, times twenty four 
because there’s twenty four hours in a day, 
times sixty because there’s sixty minutes in 
an hour,

32 Teacher: but why do you think she stopped 
when she got to minutes. um I mean she said 
she got the answer here didn’t she but (.) then 
she carried on and times by sixty Sam?

33 Sam: because it’s the same units as 
what you’re comparing it to

34 Teacher: perhaps yes. if you know the les-
son is (.) thirty five or forty minutes, then 
that’s what you compare it to…

The extract begins with George explaining her an-
swer to a problem on the worksheet the class had been 
working on. Her explanation contains multiple paus-
es and hesitations but she completes her explanation 
without the teacher or any other student speaking. 
The teacher, by writing down her explanation on the 
whiteboard, makes the explanation available to the 
rest of the class in another representation and also 
gives weight to the validity of the explanation. This 
is reinforced further by the teacher’s positive evalu-
ation in the next turn.

Several of the pauses in George’s turn are longer than 
the ‘standard maximum tolerance’ (Jefferson, 1988). 
Long pauses are often interpreted by the other partic-
ipants as indicating that there is some trouble in the 
turn, such as difficulties with the mathematics or diffi-
culties in expressing what the speaker wants to say.  It 
is rare to see pauses of this length in students’ turns in 
teacher-led discussions as the teacher will often step 
in to speak (Ingram & Elliott, 2014). By the teacher not 
speaking during these pauses, the student completes 
the explanation and as such both demonstrates their 
competence in producing this explanation and their 
competence in communicating this explanation. This 
competence is co-constructed with the teacher who 
neither adds to, rephrases, repeats or revoices the 
explanation in the following turn. The student is dis-
playing their mathematical knowledge which is struc-
tured through the original task and the interaction.

Near the beginning of turn 28 the teacher makes ref-
erence to George’s comment that the calculator said 

“one times ten to the power four”, which he describes 
as “a bit funny”. He then refers to the different displays 
produced by different calculators.  Whilst George in-
terpreted the calculator display without difficulty, the 
teacher’s comment identifies this as a possible source 
of difficulty for the other students. This pre-emptive 
assessment by the teacher constructs the students as 
not knowing standard form or how calculators deal 



Constructing mathematical competence in interaction: Whose mathematics is it? (Jenni Ingram and Andrea Pitt)

1410

with large numbers (Barwell, 2013). The difficulty 
is initially attributed to the way calculators display 
numbers. The teacher then offers an account for why 
calculators might do that.  The teacher uses ‘we’ here 
twice. This emphasises that it’s a representation that is 
used by the general mathematical community (Dooley, 
2015) but also accounts for the students not being able 
to interpret the representation by referring to this 
idea as something that the students have not yet met, 
rather than as a deficit in the students themselves. He 
then minimises the importance of the issue using ‘ba-
sically’ and talking about it as just needing to “press 
the right button on the calculator”. Whilst on the one 
hand the teacher is constructing the class as lacking 
the knowledge to work with this representation, the 
teacher is also treating the difficulty as being outside 
the responsibility of the students themselves.

The teacher then shifts the focus to the calculation 
that George was describing in the previous turn.  This 
calculation is attributed to George both by the teacher 
and by the student that takes the next turn. Lauren 
phrases her turn hesitantly and answers the question 
of what George was doing with the calculation as a 
whole. The teacher partially repeats her response, 
thereby accepting it, but the addition of the word 

“eventually” indicates that there was a problem with 
the response and this is followed by a question that 
focuses on the stages of the calculation rather than the 
calculation as a whole. Hannah’s subsequent response 
includes an explanation of what each of the numbers 
in George’s calculation represent. The teacher makes 
no explicit evaluation or assessment of this explana-
tion but follows Hannah’s turn with ‘but why’ and a 
reformulation of the question which is answered by 
Sam. This is then positively evaluated by the teacher, 
but not in strong terms. “Perhaps yes”  indicates that 
whilst Sam’s answer is correct, it is not the answer 
that the teacher was looking for and the teacher adds 
additional information in his turn.

In this extract the authority for the mathematics is 
often given to the students, and they are invited to 
supply thinking about their peer’s strategy for an-
swering the question on the research. The teacher di-
rects each turn to a new student, each of which builds 
on the explanation offered before and focuses on the 
calculation initially offered by George. The students 
are co-constructed as being both mathematically capa-
ble and capable of making sense of others’ ideas. This 
also treats the contributions and explanations from 

the students as important and worthy of considera-
tion. Maintaining the authorship of the explanation 
with George also implies that she has a mathematical 
justification for her solution, and therefore evaluates 
her explanation as valid and treats her as a competent 
problem solver.

DIVIDING 3.05 BY 2.5

The second extract follows the question 3.05 divided 
by 2.5 (written as 3.05 as the numerator of a fraction 
and 2.5 as the denominator) which occurs later on 
the same worksheet as the earlier question. A student 
has suggested multiplying the numerator and the de-
nominator by a hundred and the teacher has written 
305 over 250 on the board, but the student reported 
that they had not yet got further with the calculation.

40 Teacher: … I think there’s probably an eas-
ier number maybe can you see anything to 
do there Sarah?

41 Sarah: um
42 Teacher: could you use the idea of [a hun-

dred]
43 Sarah: [times by four] yeah
44 Teacher: times by four yep so (0.6) what-

ever that makes times by four (.) you could 
probably do that. and then (.) how would you 
get it finally as a decimal

45 Sarah: um
46  (1.9)
47 Teacher: any ideas. (1.4) if you’ve got this 

number here Bella (.) if you got that num-
ber d- do you see what’s happened here to 
go from this fraction to this fraction. (1.8) 
can you see what: (.) um (.) what I’ve done to 
convert this into this. what have I done (1.3) 
I’ve put a hundred on the bottom and I had 
twenty five a moment ago

48 Bella: you times’d it by fou[r]
49 Teacher: [ye]s I times’d that by four so 

I’d have to times the top by 
four as well and I can do 
that I just don’t know what 
it is. But whatever it is, how 
would I get my final answer 
(0.5) if I wanted it as a deci-
mal. (0.8) this is quite hard 
actually isn’t it. We haven’t 
done much of this …
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In this extract the authorship of the calculation shifts 
and the student contributions are considerably short-
er than in the previous extract and often overlap with 
the teacher’s turns. It is a student who first suggests 
multiplying the denominator by four, though this 
does follow hints from the teacher in turn 42 and in 
the turn immediately preceding the extract. The orig-
inal question invites a range of possible strategies 
but the hints narrow this range down, so whilst the 
student has given an appropriate answer of “times by 
four” (as indicated by the teacher’s acceptance of this 
answer in turn 44) this may not have been a strategy 
that the student used themselves or would think of 
themselves without the prompt of “a hundred”.  

There are several noticeable pauses in this extract in 
turns 46 and 47. The first two of these pauses offer 
Sarah the opportunity to answer the teacher’s ques-
tion in turn 44.  When no answer is forthcoming, the 
teacher adapts that questioning towards the calcula-
tion that has already been performed. These first two 
pauses treat Sarah as being able to offer an explana-
tion.  However, when these opportunities are not tak-
en up by Sarah, the trouble is treated by the teacher as 
being with the calculation that has already occurred. 
The teacher then checks that another student in the 
class has understood this calculation in turn 47.

The authorship shifts in turn 47 where initially the 
teacher refers to the numbers involved as belonging 
to the students, “you’ve got this number” but then the 
teacher begins to use ‘I’ to talk about the calculation 
that has been performed. The ‘you’ is used when talk-
ing about the strategies that could be used next, the 
strategies that could be used on the fraction with a de-
nominator of 100. ‘I’ is used to refer to the calculation 
that has already been performed when converting 
between equivalent fractions. This shift from you to 
I is a further indication that the teacher is treating 
this calculation as a source of trouble. The teacher 
is now responsible for the calculation that has been 
performed and this treats the students as needing to 
follow his reasoning. The question asked in turn 47 
asks a student to explain how the teacher converted 
the denominator of twenty five to a denominator of 
a hundred. In Bella’s response she also positions the 
calculation as being the teacher’s. In the final turn of 
the extract, there is another shift in who is doing the 
calculation that comes next. In turn 44 the teacher 
asks the students how they would get the final answer 

and it shifts in turn 49 to how the teacher could get 
the final answer. 

The emphasis in this extract and in the turns that 
came immediately before has been on the strategies 
that students can use rather than the final result of 
the calculation.  The teacher is asking for what the 
students did in turn 40, not what answer they got.  
In turn 44, the teacher does not perform the calcu-
lation involved in changing the numerator once the 
denominator has been multiplied by four, reducing 
the importance of the answer to the calculation by 
referring to it as “whatever this makes”. The teacher 
also positions the students as capable of performing 
this calculation in this turn before asking for strate-
gies for what could be done next.  In turn 49 again the 
teacher places the emphasis on the strategy but as a 
response from the students is not forthcoming he then 
states that “this is quite hard actually” to account for 
difficulties the students are having in responding to 
his question.  This is then followed by an explanation 
of “we haven’t done much of this” which also accounts 
for the difficulty by a lack of experiences of working 
with calculations like this, which locates the issue as 
outside of the students’ competencies.

DISCUSSION

In both extracts the interactional roles of teacher and 
students are clear.  It is the teacher who controls the 
topic, asks the questions, and decides who can speak 
when.  It is also clear that the teacher has control over 
assessing the appropriateness of the students’ turns.  
In both extracts the students are treated as capable of 
explaining and communicating their ideas.  They are 
given opportunities to do so

In this classroom there is a clear focus on the process 
of doing mathematics.  The extracts presented here 
both focus on calculations but the attention is on the 
choices made in order to solve the problems and the 
justification for these choices.  Difficulties with the 
mathematics are also treated in similar ways in both 
extracts, with the problem being located in the teach-
ing rather than as a deficit in the students.  In the first 
extract the difficulty is attributed to a representation 
that the students have not yet met and in the second 
extract the difficulty is attributed to the students not 
having had enough experience of this type of calcu-
lation and to the teacher posing a difficult problem 
in the first place.
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The differences in the treatment of the students in 
the two extracts arise from the differences in the stu-
dents’ contributions to the discussions. In the first 
extract the students’ responses do not always match 
what the teacher is looking for but they are accepted 
as answers to his questions, whilst in the second ex-
tract the students’ responses are limited in terms of 
content, length and frequency. 

The ownership of the mathematics shifts during the 
interactions in reaction to the students’ contributions. 
In the first extract the mathematics is attributed to 
George throughout and this is indicated by both the 
teacher and the other students.  In the second extract 
the ownership shifts progressively from the students 
to the teacher.  The students position themselves in the 
first extract as mathematically capable and as capable 
of inferring George’s mathematical reasoning. The 
teacher could have easily clarified George’s answer 
himself and could also have stepped in when George 
was hesitating in her turn. By not doing so he ena-
bles the students to maintain a position of capability, 
which is supported further by the teacher in his turns. 
In the second extract, the students are more hesitant 
and do not take up the position of being able to suggest 
a strategy. The teacher initially continues to position 
the students as capable of suggesting a strategy but as 
the students do not take up this position the teacher 
shifts both the ownership of the mathematics and also 
positions the students as needing to understand the 
mathematics he is doing rather than as capable of do-
ing it themselves. These different positionings could 
have consequence for how students come to see them-
selves as mathematical thinkers (Cobb et al., 2009).

As is evident from the extracts this is a classroom 
where students are given opportunities to engage in 
mathematical communication.  They are frequently 
invited to contribute ideas and explanations and to 
build on other students’ contributions.  The students 
also work collaboratively throughout the lessons and 
for this teacher the majority of time in lessons is spent 
with the students working in small groups on a varie-
ty of tasks. We know from previous research (Boaler & 
Greeno, 2000; Cobb et al., 2009) that students in class-
rooms ‘like’ this are more likely to develop identities 
associated with mathematical capability and are more 
likely to continue with their study of mathematics. 
However, this research does not explain how these 
identities are developed and also it does not explain 
the variation in students’ identities who have similar 

experiences in their mathematics lessons. The micro 
approach such as the one taken in this paper and by 
Wood (2013) begins to give some insight into these 
two aspects of identity construction. Students are 
not either positioned as mathematically competent 
or not according to which teacher they have, but these 
positionings change and develop moment-to-moment 
in interaction with all teachers. Students consequent-
ly experience different mathematical positionings 
within each lesson, some of which may be positive 
but some of which may not.  Whilst Wood focuses on 
the different identities co-constructed in interactions 
with different participants, teacher and peer, in this 
paper we have examined extracts from the same topic 
segment and between the teacher and the whole class.

This paper provides evidence for, and analysis of, the 
identities enacted by the students and developed by 
a teacher. The students enact positions where they 
are mathematically capable and the teacher ratifies 
and supports these positions.  It also demonstrates 
that identities and positions can change across a short 
interaction.  Paying attention to the influence of minor 
changes in context may help explain why students 
may take up different identities within mathematics.
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Abilities in using decontextualised linguistic forms seem 
to be of great importance for subject-specific learning in 
school, including the learning of mathematics. However, 
the basic elements for mastery of these competences are 
usually not taught in school, but are assumed. Where 
can young learners gain these abilities? Based on Cloran 
and Hasan’s investigation of mother-child discourses, 
the ongoing study presented in this paper analyses pre-
school learning in kindergarten and compares this with 
mathematical learning in primary school Year 4. The 
goal is to investigate to what extent the linguistic dis-
course in kindergarten and primary school gives chil-
dren the opportunity to achieve mathematics-specific 
discursive competences that allow them to participate 
successfully in the discourse of the mathematics class-
room. 

Keywords: Academic language, kindergarten, 

decontextualised discourse, early mathematics learning.

INTRODUCTION

The results of international comparison studies, such 
as the various PISA studies and the PIRLS (Progress 
in International Reading Literacy Study), a primary 
school study, show that in Germany there are signif-
icant differences in achievement levels and educa-
tional opportunities among children with different 
linguistic-cultural or socio-economic backgrounds 
(Bos et al., 2003; OECD, 2006). It is assumed that there 
is great potential for changing this situation if pu-
pils can master the German language, particularly 
pupils with a multilingual background. According 
to this view, a strong connection exists between the 
linguistic abilities of children and their achievements 
in school, not only in German lessons but also in other 
subjects – including mathematics (Schütte, 2009). It is 

important to emphasise here that the current study 
does not focus only on children with a background 
of immigration or those who live and learn in several 
languages; rather, it concentrates on the influence of 
linguistic abilities on the learning of mathematics 
for all children. 

Studies in migration research and educational science 
(Gogolin, 2006), as well as recent studies in mathemat-
ics education (Schütte, 2009; Schütte & Kaiser, 2011) 
have consequently concluded that it is not the mas-
tering of general linguistic competences that is sig-
nificant for successful (mathematical) subject learn-
ing, but competences in a subject-specific academic 
language. With her concept of “academic language” 
(“Bildungssprache”) Gogolin (2006, p. 82) draws 
on Cummins’s (2000, p. 57) concept of “Cognitive 
Academic Language Proficiency”. Cummins makes a 
distinction between “academic language proficiency” 
and “conversational language proficiency”, on the ba-
sis that children quickly gain abilities in their second 
language which they are able to use in everyday situa-
tions. They need significantly longer to achieve com-
petences in the academic language of the classroom. 
This academic language, following Gogolin (2006), is 
characterised by its conceptually written form, which 
allows it to have high density of information and in-
dependence from situations; this means there are 
fundamental characteristics that do not correspond 
to children’s everyday oral communication. However, 
the question is how to support children in building 
up sufficient (academic) linguistic competences to 
enable them to achieve academic success in (German) 
schools? Furthermore, in what ways should a school, 
and the teaching staff working there, seek to adapt to 
a pupil population entering the school system with 
extremely diverse abilities? 

mailto:judith.jung1@tu-dresden.de
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Both international and domestic research in mathe-
matics education has recently begun to include ap-
proaches that have taken up this concept of academic 
language (Gellert, 2011; Schütte, 2009) and applied it to 
subject-specific learning, in particular to the learning 
of mathematics. This study aims to make a further 
contribution to these subject-specific modifications 
of the concept of academic language for the learning 
of mathematics. Section 2 will describe the effects of 
adopting an academic-language-based perspective 
on the learning of mathematics. The concept of ac-
ademic language is discussed in the context of aca-
demic discourses, mainly on the basis of theories by 
Moschkovich (2002) and Krummheuer (1992). The 
fundamental idea is that children need to learn sub-
ject-specific discursive practices in order to be aca-
demically successful in their future school careers. 
The third section outlines the studies on decontextu-
alised language use carried out by Hasan (2001) and 
Cloran (1994), who were able to reconstruct discur-
sive practices of the socialisation of children in the 
family in early childhood. These forms of discourse 
used in the family also seem to be fundamental for 
the development of mathematical abilities. In section 
4 the methodological procedure of the investigation 
is outlined. Section 5 shows the preliminary results.

SIGNIFICANCE FOR THE LANGUAGE-
RELATED LEARNING OF MATHEMATICS

Some studies, particularly in the international liter-
ature, have begun to improve the concept of a math-
ematical academic language and move beyond the 
deficit-oriented approach. Moschkovich (2002), for 
example, emphasises the discursive element of the 
learning of mathematics. She links her situated-soci-
ocultural perspective on the learning of mathematics 
to a paradigm change away from a view of deficits as 
preventing learners from mastering the academic lan-
guage of school to focus on the resources and compe-
tences of a diverse pupil population. According to this 
perspective, the learning of mathematics takes place 
in a social context in which the participants bring with 
them different ways of looking at situations, which 
are negotiated interactively. Approaches centred on 
academic language, which understand the learning 
of mathematics as “constructing multiple meanings 
of words” (Moschkovich, 2002, p. 193) and which re-
late to Halliday’s (1975) concept of “register”, often 
focus on the differences between children’s abilities 
to linguistically act in or with different registers. This 

deficit-oriented approach leads to the idea of a ‘target 
register’ –the academic language– and a register of 
everyday oral communication, which is of less impor-
tance in academic discourses. With this perspective 
only the mastery of the academic language is seen as 
sufficient for success in school and the achieving of 
mathematical understanding. In contrast to these ap-
proaches, we suggests that the learning of mathemat-
ics always takes place in a public, social and cultural 
context and represents a discursive activity. There 
is no single correct mathematical discourse that can 
be achieved. Learners participate in mathematical 
discourses in different communities and use diverse 
resources in different registers in order to success-
fully communicate mathematically.

Interactional and non-language aspects assume a cen-
tral role in this perspective on the learning of mathe-
matics. Following this idea we can look at various stud-
ies of interactionistic approaches of interpretative 
classroom research in mathematics education. For 
example, Krummheuer (1992) shows how children are 
involved in collective argumentation in the learning 
of mathematics in primary school and that mathemat-
ical learning stems from increasingly autonomous 
participation in mathematics (Krummheuer & Brandt, 
2001). Although, according to Moschkovich (2002), 
there is no single correct discourse, even while mov-
ing away from deficit-oriented approaches we must 
acknowledge that children will still enter school with 
different conditions for participation in the collective 
argumentation on account of their extremely differ-
entiated socialisation in the family. Here we can refer 
to the studies by Cloran (1994, 1999) and Hasan (2001), 
who investigated the different discursive practices in 
familial socialisation in mother-child discourses. The 
central aspect of these studies is the ontogenesis of 
decontextualised language as a fundamental factor 
for successful participation in educational discourse 
in school. 

CHARACTERISTICS OF THE DISCOURSE OF 
SCHOOL EDUCATION: DECONTEXTUALISATION 

Diverse authors have seen decontextualisation as 
an important characteristic of the pedagogical dis-
course (Bernstein, 1996; Cloran, 1999). However, what 
exactly are we to understand by this term? What is 
the difference between context-dependent and con-
text-independent language? In the last 40 years much 
has been written about decontextualised language 
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use, for example relating to the difference between 
oral and written language and the question of lan-
guage development (cf. among others Olson, 1977), 
the cognitive development of children (cf. among 
others Donaldson, 1987), and the concept of academic 
language and the conditions for a successful educa-
tional pathway (Cloran, 1994; Hasan, 2001). However, 
existing approaches offer no clear definition or de-
scription of decontextualised language. The concept 
is given different emphases according to the frame 
of reference. This can be seen for example in the use 
of different but basically synonymous terms such 
as “context-independent”, “situation-independent”, 

“autonomous” and “disembedded” (Cloran, 1999, p. 33). 
The present paper will engage with the sociolinguistic 
theories and studies of Hasan (1973, 2001) and Cloran 
(1994, 1999), based on the ideas of Bernstein. These 
authors seek to forge a link between the language 
that is learnt in the family in early childhood and the 
form of language that is prevalent in school. A funda-
mental definition of decontextualised language use 
can be found in Hasan (1973, p. 284): “The term ‘con-
text dependent’ [...] may be paraphrased as follows: 
language that does not encapsulate explicitly all the 
features of the relevant immediate situation in which 
the verbal interaction is embedded”. She emphasises 
the difference between “material immediate situation” 
and “relevant immediate situation”, and notes that 
the correct decoding of the linguistic message is de-
pendent on knowledge about the relevant immediate 
situation, although this knowledge is not linguistic 
in origin. In contrast, context-independent language 
is language that “encapsulates explicitly all the rele-
vant features of the immediate situation in which the 
verbal interaction is embedded” (Hasan, 1973, p. 284). 

Cloran (1994) makes use of Hasan’s (1973) definition 
and identifies ten different types of rhetorical unit 
in the conversations between mothers and their pre-
school-age children, which she places in an order ac-
cording to the level of decontextualisation. The ten 
degrees of decontextualised language use move from 
the least decontextualised, which is based in the ma-
terial present moment, to the most decontextualised, 
based in the relations created by language itself. In 
order, the rhetorical units are: action, commentary, 
observation, reflection, report, account, plan, conjec-
ture, recount, and generalisation (Cloran, 1999, p. 37). 
The rhetorical units of generalisation and conjecture 
play an important role in the learning of decontextu-
alised linguistic abilities.

The idea of revealing a continuum between con-
text-dependent and context-independent is present 
in Hasan (2001, p. 53). She uses the concepts “actual” 
and “virtual” for her investigation of mother-child 
discourses and the ontogenesis of decontextualised 
language, which refer to the context of the linguistic 
expression: 

A context is actual if it can be actually, that is phys-
ically sensed by the interactants. [...] A context is 
virtual if no possibility exists for experiencing it 
physically: the phenomena are, in fact, not avail-
able to the senses. (Hasan, 2001, p. 53)

From this she concludes: 

A discourse is decontextualised/disembedded, 
not because what it refers to is not physically 
present to the senses here and now, but because 
it refers to something that is by its very nature 
incapable of being present in any spatio-tempo-
ral location whatever. It is simply not sensible. 
(Hasan, 2001, p. 53)

Hasan (2001) also draws a distinction between consti-
tutive and ancillary verbal actions: an action is con-
stitutive when it recreates an actual context that is 
now spatio-temporally displaced. Constitutive verbal 
action can also bring into existence virtual contexts, 
which are entirely text-based. An ancillary action 
seeks to negotiate some physical action that is ongoing 
within an actual context. This leads to three different 
classifications for contexts of discourses: immediate 
(ancillary and actual), displaced (constitutive and ac-
tual), and virtual (constitutive and virtual) (Hasan, 
2001, p. 54). Hasan concludes from her observations 
of mother-child discourses that the best learning 
environments for the use of decontextualised lan-
guage are situations where continuity is established 
between actual and virtual contexts. Children thus 
have the opportunity to gradually move from speak-
ing about concrete things and experiences to speak-
ing about abstract generalisations. Hasan goes on to 
suggest that school is not an appropriate place for the 
learning of decontextualised language use because 
of the structures of discourse that dominate there; 
however, these abilities are to a great extent made a 
precondition for later academic success, as they be-
come a factor for selection. Both actual and virtual 
contexts can certainly be observed in the classroom, 
but an individual child barely has any opportunity to 
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autonomously change between them. If we agree that 
the ability to use decontextualised language forms 
is assumed rather than taught in schools, this ability 
must then be learnt in pre-school places of learning, 
or places outside the school environment. 

In her investigation of everyday mother-child dis-
courses, Cloran (1994, 1999) discovered that frequency 
of use of rhetorical units with a high level of decontex-
tualisation in the interaction was dependent on the 
social class of the respective family. Cloran defines 
this by the level of autonomy in the occupations of the 
child’s parents. Parents who have jobs that involve a 
high level of autonomy, for example teacher, doctor, 
lawyer and so on, usually have a higher level of pro-
fessional education, and their families too may have 
a higher level of education. Cloran found that with 
mothers and pre-school children belonging to this 
class of family, the rhetorical units generalisation and 
conjecture appeared significantly more frequently 
in the interaction than with subjects from families 
where the parents had a low level of autonomy in their 
occupation. Cloran speculates that this could be one 
reason for the differentiated success in school of chil-
dren with different family backgrounds. 

If we focus specifically on mathematics teaching, and 
the demands placed on children in the mathematics 
classroom, we can see that the ability to distance one-
self from concrete contexts and to express this linguis-
tically assumes a special importance. Particularly in 
the primary school environment we can conclude that 
the successful participation in collective argumenta-
tion is made easier for children if they have the ability 
to make assumptions about the contexts of mathemat-
ical discoveries, and to take that extra step to gener-
alise these contexts. According to Donaldson (1987), 
this linguistic distancing from contexts represents 
an important aspect of the cognitive development of 
the individual, enabling abstract thought processes 
and conclusions. 

Gellert (2011) also points to the special importance 
of linguistic decontextualisation for mathematics 
teaching in primary school. Mathematics in primary 
school is characterised by the establishing of distance 
from concrete everyday experiences while moving 
towards abstract expressions that are applicable in 
a general sense (i.e. generalisation). Wagner, Dicks 
and Kristmanson (2015) examine children’s language 
repertoires relating to conjecture. It can therefore be as-

sumed that the gaining of decontextualised linguistic 
discursive abilities –particularly the use of rhetorical 
units, which, according to Cloran and Hasan, shows a 
high level of decontextualisation (e.g. conjecture and 
generalisation) –before entering school will be help-
ful for mathematical learning in the classroom. With 
reference to Moschkovich (2002), before abilities in 
decontextualisation are demanded of children in the 
mathematical discourse of primary school, it would 
be helpful if they could be prepared for these demands 
through discourses in the family or in kindergarten. 
In the following we will focus on kindergarten, as 
educational processes are initiated in this environ-
ment by professional teachers. From these points, our 
research questions are: 

1) What is pupils’ relationship to generalisations in 
mathematics lessons in primary school?

2) Can we reconstruct in early discourses with peda-
gogical experts learning situations that promote 
children’s abilities to change between actual and 
virtual contexts in the interaction?

METHODOLOGICAL PROCEDURE 
AND CONTEXT

The study presented here is qualitatively oriented and 
can be categorised under interactionistic approaches 
of interpretative (classroom) research in mathematics 
education (Krummheuer & Brandt, 2001). The empir-
ical basis for the study is provided by video record-
ings of everyday play and discovery situations, each 
involving a kindergarten teacher and two children 
(4,7–5,5 years old). The play and discovery situations 
can be categorised under the mathematical area of 
space and form, for example classic situations with 
building-block constructions that follow a model, or 
situations that principally engage spatial perception. 
We contrast this with video recordings of whole-class 
discussion during mathematics lessons in Year 4. 
Here the focus is on situations where the teacher in-
troduces new mathematical concepts.

Interactions between the participating children and 
between the children and the attendant adults are 
analysed. For the investigation of discourse the tran-
scribed video sequences are examined with the help of 
interactional analysis and an analysis of the used rhe-
torical units based on Cloran (1994) and Hasan (2001). 
The analyses presented by Cloran (1994) were carried 
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out on the basis of linguistic categories. Messages of 
the chosen transcribed scenarios were identified as 
belonging to one of the ten classes of rhetorical units: 
action, commentary, observation, reflection, report, 
account, plan, conjecture, recount, and generalisation. 
The study focuses here on the units Cloran highlights 
in relation to decontextualised language, i.e. general-
isation. In examining the subject-specific negotiation 
of meaning within the interactions, Cloran’s method 
of analysis is linked to the interactional analysis.

RESULTS

In the Year 4 mathematics classroom we find multi-
ple situations where children are asked to generalise 
content linguistically, shifting out of the here and now 
onto a more general level. The linguistic forms of the 
expressions the children use seem on multiple occa-
sions not to satisfy teachers’ requirements; however, 
teachers usually offer no explicit linguistic help. The 
following example illustrates this. 

Birkan: I know what the “cross-sum” (German: 
Quersumme, “sum of digits”) means.

Teacher: That’s oh. Prick up your ears.
Student: Cross-sum is plus, you know.
Birkan: Erm the cross-sum means a erm broken 

line.
Students: No, oh I know.
Teacher: That means you make everything erm 

total.
Students: No, not total.
Teacher: No, I don’t know if you weren’t onto 

something. You’ve, maybe you’ve ex-
pressed it a bit wrong.

Birkan: Yes erm, if you add everything up.
Teacher:  That’s there’s. Well you’re really onto 

something there. I think I know what 
you mean. So now I don’t want to tor-
ture you any longer.   
  [The teacher writes an addition task on 
the board.]

The teacher makes clear that Birkan’s answer points 
in the right direction but that he has incorrectly 
formulated it linguistically (“maybe you have ex-
pressed it a bit wrong”). After this response Birkan 
attempts a linguistic improvement of his answer, but 
this, too, seems to fall short of the teacher’s expecta-
tions. Without explaining this, however, and without 
helping Birkan to arrive at a correct formulation, the 

teacher continues with the lesson and writes an addi-
tion task on the board.

The analysis of Year 4 mathematics teaching moreo-
ver puts into focus that even in primary school cer-
tain mathematical concepts, e.g. a straight line, can 
only be detached from the immediate context and de-
scribed linguistically in a virtual context, while visual 
representations neglect their inherent characteris-
tics. Switching between virtual and actual contexts 
seems barely possible. Here we can refer to Söbbeke 
(2015), who investigates the dilemma that mathemat-
ical knowledge is abstract in most cases, while using 
means of visualisation is indispensable for speaking 
with children about these abstract concepts.

In kindergarten we find above all diverse situations 
where the participants negotiate meanings in relation 
to immediate contexts and the teacher seldom gener-
ates opportunities for switching from immediate to 
virtual contexts within the conversation. On the one 
hand this seems determined by the selection of situ-
ations in the area of space and form, and on the other 
hand hardly surprising, given the age of the children. 
Only at certain points in the situations with a focus on 
spatial perception do we see potential for switching 
from an actual to a virtual discourse. However, this 
is mostly not on the level of mathematical discussion. 
One example of this can be seen in the following sce-
nario: 

Jacob: She sees the elephant.
Teacher: Which elephant?
Jacob: This one. [Jacob taps on the big elephant.]
Heike: [Heike taps first on the small, then on the 

big elephant.] The big one because the 
small one is too small.

Teacher: Why doesn’t she see it?
Jacob: Because it’s too small. Because it’s a baby 

elephant.
Teacher: But you can see baby elephants, too. Why 

doesn’t she see it now?
Jacob: Because there’s a wall here.

At this point the adult confirms Jacob’s answer and 
asks a new question, whose content has no connection 
to his argument. However, from our point of view 
this situation shows potential. After Jacob’s utterance 
about the wall, the accompanying adult could lead the 
discussion in a direction where the children are asked 
to think about the fact that other small animals, plants 
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or objects could not be seen behind the wall either, and, 
ultimately, that nothing behind a wall that is shorter 
than the wall can be seen. This could be a first step 
towards the use of generalisation and switching from 
an actual to a virtual context.

SUMMARY AND FUTURE PERSPECTIVES 
Our results let us assume that conversational situa-
tions that contain various individual possibilities for 
switching between immediate and virtual contexts ap-
pear only rarely, and that children are expected to be 
able to use decontextualised language without receiv-
ing help. In addition we might assume that discourses 
in kindergarten similarly offer only limited points 
of access for learning such linguistic competences, 
and that at least play situations in the area of space 
and form offer limited potential for introduction to 
decontextualised language use. This could be because 
this area is introduced above all through immediate, 
enactive, and visual means, especially in early learn-
ing processes. It may therefore be unnecessary for 
participants to switch into virtual contexts, because 
the mathematical area provides very good points of 
access to immediate contexts. Through looking at oth-
er context areas that might evoke a greater need for 
the use of decontextualized language nuance could be 
added to this hypothesis and the theoretical construct 
of the typification of contact with decontextualised 
language in early education could be extended to dif-
ferent kinds of mathematical content. Furthermore, 
the question needs to be addressed of whether exam-
ples can be found of initiation of switching between 
contextualised and decontextualised forms of lan-
guage, and of help offered to children to master de-
contextualised forms of language, at any earlier point 
in primary education. 

REFERENCES

Bernstein, B. (1996). Pedagogy, symbolic control and identity. 

London: Taylor & Francis.

Bos, W., Lankes, E.-M., Prenzel, M., Schwippert, K., Walther, 

G., & Valtin, R. (Eds.) (2003). Erste Ergebnisse aus IGLU. 

Schülerleistungen am Ende der vierten Jahrgangsstufe 

im internationalen Vergleich. [First results from IGLU. Pupil 

achievement at the end of Year 4 in international compari-

son] Münster, Germany: Waxmann.

Cloran, C. (1994). Rhetorical units and decontextualisation: an 

enquiry into some relations of context, meaning and gram-

mar. Monograph 6 in Systemic Linguistics. Nottingham: 

University of Nottingham.

Cloran, C. (1999). Contexts for learning. In F. Christie (Ed.), 

Pedagogy and the shaping of consciousness: linguistic 

and social processes (pp. 31–65). London: Casell.

Cummins, J. (2000). Language, power and pedagogy: bilingual 

children in the crossfire. Clevedon, UK: Multilingual Matters.

Donaldson, M. (1987). The origins of inference. In J. Bruner & 

H. Haste (Eds.), Making sense. The child’s construction of 

the world (pp. 97–107). London: Methuen. 

Gellert, U. (2011). Mediale Mündlichkeit und Dekontextualisierung. 

In S. Prediger & E. Özdil (Eds.), Mathematiklernen un-

ter Bedingungen der Mehrsprachigkeit – Stand und 

Perspektiven der Forschung und Entwicklung in 

Deutschland [The learning of mathematics under multilin-

gual conditions – current situation and future perspectives 

for research and development in Germany] (pp. 97–116). 

Münster, Germany: Waxmann.

Gogolin, I. (2006). Bilingualität und die Bildungssprache der 

Schule. In P. Mecheril & T. Quehl (Eds.), Die Macht der 

Sprachen. Englische Perspektiven auf die mehrsprachige 

Schule [The power of languages. English-speaking per-

spectives on the multilingual school] (pp. 79–85). Münster, 

Germany: Waxmann.

Halliday, M. A. K. (1975). Some aspects of sociolinguistics. In 

UNESCO (Ed.), Interactions between linguistics and mathe-

matical education (pp. 64–73). Copenhagen: UNESCO.

Hasan, R. (1973). Code, register and social dialect. In Bernstein, 

B. (Ed.), Class, code and control (Vol. 2, pp. 253–292). 

London: Routledge & Kegan Paul.

Hasan, R. (2001). The ontogenesis of decontextualised lan-

guage: some achievements of classification and fram-

ing. In A. Morais, I. Neves, B. Davies, & H. Daniels (Eds.), 

Towards a sociology of pedagogy: the contribution of Basil 

Bernstein to research (pp. 47–79). New York: Peter Lang.

Krummheuer, G. (1992). Lernen mit „Format“. Elemente einer in-

teraktionistischen Lerntheorie. Diskutiert an Beispielen ma-

thematischen Unterrichts. [Learning with ‘format’. Elements 

of an interactional theory of learning. Discussed with 

examples from the teaching of mathematics] Weinheim, 

Germany: Deutscher Studien Verlag.

Krummheuer, G., & Brandt, B. (2001). Paraphrase und 

Traduktion. Partizipationstheoretische Elemente ei-

ner Interaktionstheorie des Mathematiklernens in der 

Grundschule. [Paraphrase and traduction. Participation-

theoretical elements of an interactional theory of the learn-

ing of mathematics in primary school] Weinheim, Germany: 

Beltz Verlag.

Moschkovich, J. (2002). A situated and socialcultural perspec-

tive on bilingual mathematics learners. Mathematical 

Thinking and Learning, 4(2–3), 189–212.



Discourses in kindergarten and how they prepare for future decontextualised learning of mathematics  (Judith Jung and Marcus Schütte)

1420

OECD (2006). Where immigrant students succeed: a compara-

tive review of performance and engagement in PISA 2003. 

Paris: Author.

Olson, D. (1977). From utterance to text: the bias of speech and 

writing. Harward Educational Review, 47(4), 257–281.

Schütte, M. (2009). Sprache und Interaktion im 

Mathematikunterricht der Grundschule. Zur Problematik ei-

ner Impliziten Pädagogik für schulisches Lernen im Kontext 

sprachlich-kultureller Pluralität. [Language and interaction 

in mathematics in primary school. On the problem of an 

Implicit Pedagogy for school learning in the context of lin-

guistic-cultural plurality] Münster, Germany: Waxmann.

Schütte, M., & Kaiser, G. (2011). Equity and the quality of the 

language used in mathematics education. In B. Atweh, 

M. Graven, W. Secada, & P. Valero (Eds.), Mapping equity 

and quality in mathematics education (pp. 237–251). New 

York: Springer. 

Söbbeke, E. (2015). Language use in process of interpretation 

of mathematical visualizations. In K. Krainer & N. Vondrová 

(Eds.), Proceedings of CERME9 (this volume). 

Wagner, D., Dicks, J., & Kristmanson, P. (2015). Students’ lan-

guage repertoires for prediction. In K. Krainer & N. Vondrová 

(Eds.), Proceedings of CERME9 (this volume). 



1421CERME9 (2015) – TWG09

Use and development of mathematical 
language in bilingual learning settings 

Rebecca Klose

Justus Liebig University Gießen, Gießen, Germany, rebecca.klose@math.uni-giessen.de 

Bilingual forms of teaching and learning have become 
common practice in Germany. However, the idea of 
teaching mathematics bilingually has not been total-
ly accepted yet. The on-going study aims to investigate 
how young learners taught bilingually use and develop 
mathematical language in both of their target languages, 
with a focus on the usefulness of the communication 
tool PriMaPodcast. Parts of the research project and the 
interactive process of producing mathematical audio 
podcasts are presented.
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LEARNING MATHEMATICS IN 
BILINGUAL SETTINGS

Content Language Integrated Learning (CLIL) stands 
for a concept related to teaching and learning in two 
languages. As such, a combination of subject content 
learning and foreign language acquisition takes place. 
The extent to which it puts more emphasis on the sub-
ject-based components or the language dimension 
of learning, may vary from one country to another 
(European Commission, 2006). Bilingual teaching and 
learning settings have meanwhile become common 
practice in Germany, yet they are seen far more in 
secondary than primary education (Elsner & Keßler, 
2013). Internationally, there seems to be no clear 
preference of any particular subject. Besides the 
social sciences, Geography, History and Economics, 
Mathematics is included in official recommendations 
on CLIL provision (European Commission, 2006). 

In Germany however, the idea of teaching Mathematics 
bilingually has not been greatly accepted (KMK, 2006; 
Viebrock, 2013), neither in secondary school nor in 
primary education. Pertaining to primary educa-
tion, concepts and materials required to facilitate 

mathematical learning in two languages have not 
been extensively developed nor become available 
(Küppers, 2013). As said by Rolka (2004) the exclusion 
of Mathematics depends on certain attitudes of math-
ematics teachers in Germany who appear to believe 
that language use has been reduced in this school sub-
ject. Yet the German syllabus of teaching mathemat-
ics demands the development and implementation of 
process and language oriented competences such as 
reasoning, communication and representation. Many 
show concern for having to learn a technical language 
for Mathematics, which other subjects do not require. 

All these considerations raise the question whether it 
is really effective to learn mathematical language in 
two different languages. If so, how would bilingual 
learners use and develop mathematical language in 
order to explain mathematical content in both lan-
guages of instruction? In the next section some char-
acteristics of mathematical language will be explained 
further.

CHARACTERISTICS OF 
MATHEMATICAL LANGUAGE 

The acquisition of mathematical language goes be-
yond the learning of terms and vocabulary (Maier 
& Schweiger, 1999; Pimm, 1987). Based on Halliday’s 
(1978) idea of mathematics register, Schleppegrell 
(2007) outlines some characteristics of mathematical 
language. First, there are multiple semiotic systems 
such as symbols, oral and written language and visual 
representations. These systems combined are neces-
sary for the learner to construct meaning. Moreover, 
there are linguistic features of mathematical language, 
which include technical vocabulary as well as gram-
matical patterns. Technical vocabulary does not only 
consist of mathematical words (e.g., sum), but also 
of words that are not solely mathematical. The latter 
refers to words of multiple meanings depending on 
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the context (e.g., product). As mathematics uses many 
words that are part of a child’s everyday language, 
technical vocabulary needs to be used in meaningful 
grammatical patterns in order to be acquired. It typi-
cally comes along with ‘dense noun phrases’ (e.g., the 
length of…) as well as ‘being and having verbs’, which 
construct different kinds of relational processes (at-
tribution and identification). While attributive claus-
es are non-reversible and refer to objects and events 
(e.g., a sphere is a solid shape), identifying clauses de-
fine technical terms and are reversible. Schleppegrell 
lists ‘conjunctions with precise, technical meaning’ 
(e.g., if, when, therefore) and points out the differences 
of their use in mathematical and ordinary everyday 
language. Moreover, the notion of academic language 
becomes increasingly more important for teaching 
and learning mathematics. Interdisciplinary lan-
guage is characterized by precise and elaborated vo-
cabulary and complex sentence structure, but in a 
more functional manner: It is this academic language, 
which affords the participation in teaching activities 
(Cummins, 1984; Schleppegrell, 2012). 

There are multiple discourse practices in a mathe-
matics classroom as learners and teachers bring 
various perspectives to a situation during interac-
tion. Academic mathematical Discourse practices aim 
for learners to become mathematically literate and 
refer to practices that generalize, abstract or make 
claims (Moschkovich, 2007). Different language ac-
tivities such as discussing and hypothesising are in 
accordance with the acquisition of a mathematical 
language, which is “more broadly conceptualised” 
(Morgan, 2005, p. 103). A communication tool, which 
implements different discourse practices, will be pre-
sented in the following section. 

PRODUCING AUDIO PODCASTS 
FOR MATHEMATICS

In order to investigate how young learners use math-
ematical language to express meaning, they get to 
produce audio podcasts (Klose & Schreiber, 2014). 
Audio podcasts have been a popular medium for sev-
eral years now. They can also be used for educational 
purposes such as in teaching Mathematics. Schreiber 
(2013) calls mathematical audio podcasts produced by 
primary school children “PriMaPodcasts”. By creating 
audio podcasts for mathematics, the focus is on oral 
communication and representation, which means that 
the learners are not able to use visual aids or gestures 

to bring their message across. To express meaning 
accurately to an audience, the speakers need to re-
flect thoroughly on their topic and speech first. On 
the one hand, the learners have to discuss, research 
and accumulate mathematical content in a precise and 
orderly manner. This may foster their mathematics 
skills. On the other hand, they have to use language 
consciously in order to transmit their messages. This 
might support their communicative competence and 
skills. By producing PriMaPodcasts the students un-
dergo an interactive process.    

The production steps, as summarised in Table 1, are 
the following: 

1) Unexpected Recording. The students split into 
groups of three and answer a mathematical ques-
tion unexpectedly, e.g., ‘What is symmetry?’ or 

‘What is so special about a square in comparison 
to other quadrilaterals?’ A voice recorder records 
their response. It is interesting to observe the 
kind of mathematical concepts and mathemat-
ical language the learners are able to verbalise 
in this way.   

2) Script 1. To plan an audio podcast, the students 
need to create a script. They are free to decide 
the format, structure and amount of detail they 
want to include. At this point, they can gather 
more information through resources such as the 
Internet, textbooks and given worksheets.

3) Podcast- First Version. Based on their script, 
the children record their first podcast version. 

Table 1: Production Steps
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The procedure, material and media used by the 
groups are of importance as they have an influ-
ence on the quality of the first recording.

4) Editorial Meeting. Upon presenting the first pod-
cast version to another group and their instruc-
tor, the creators receive feedback. After reflect-
ing on it, they can make amendments to improve 
the quality in terms of content, style, language 
and performance. The editorial meeting does not 
only provide others an insight into the learners’ 
thought process but also enables the instructor 
to clarify misconceptions.  

5) Script II. The children revise their script of step 
1 and enhance it. Despite receiving feedback and 
suggestions to improve the podcast in terms of 
content, language and style, the students them-
selves decide on the changes they wish to adopt 
in order to produce the final version that gets 
presented and published.

6) PriMaPodcast. Finally, the students produce the 
PriMaPodcast based on the second script. It will 
be published on a blog on the Internet. The ad-
vantage of publishing the PriMaPodcast in a blog 
is the ability to categorize all submitted podcasts 
into main-topics and sub-topics respectively to 
provide a clear overview. PriMaPodcasts have 
been produced in various languages: German, 

English, Spanish and Turkish. PriMaPodcasts 
recorded in bilingual learning settings are avail-
able in this blog: www.inst.uni-giessen.de/idm/
primapodcast-bili

In order to investigate the mathematical conceptu-
alizations of young bilingual learners in Germany, 
we expect them to produce PriMaPodcasts in both 
languages of instruction (English and German). The 
overall research questions of the PhD, which have not 
been fully addressed up to this point in time, are:

1) How do bilingually taught young learners use 
mathematical language in both target languages 
(English and German) if asked to present mathe-
matical content?

2) To what extent does their mathematical language 
develop throughout the entire procedure of pro-
ducing PriMaPodcasts?

METHODOLOGY

The following research design (see Table 2) was 
created to investigate the use and development of 
mathematical language of young German bilingual 
learners. Before the study, the communication tool 
PriMaPodcast and its different steps of production 
emerged during a pilot study at a bilingual school in 
Frankfurt a. M. Up to now, two rounds of data collec-

Table 2: Research Design and method of data collection

http://www.inst.uni-giessen.de/idm/primapodcast-bili
http://www.inst.uni-giessen.de/idm/primapodcast-bili
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tion have been carried out. Each time, twelve bilin-
gually taught students of grade 4 were grouped in 
fours. The groups produced two PriMaPodcasts about 
two different topics, one in German and one in English. 
All in all, a total of eight PriMaPodcasts with four dif-
ferent topics in two different languages were devel-
oped. In order to capture the different procedures of 
each team, the entire organisation process was video 
recorded. The mathematics teachers of both classes 
did a survey with regards to their personal models of 
bilingual teaching and learning. The learners’ ways of 
interaction will be examined by the ‘interaction analy-
sis’ (Krummheuer & Naujok, 1999), which is explained 
for simplicity by the following English empirical ex-
ample that depicts the production process. 

EMPIRICAL EXAMPLE

The example of the pilot study presented here deals 
with the question of ‘What is symmetry?’ Three 
4th graders (aged 9 to 10) produced the following 
PriMaPodcast in a bilingual mathematics classroom 
in Frankfurt. The transcripts below refer to the fol-
lowing recordings: the unexpected recording, the first 
podcast version and the final version. All citations of 
the transcripts are marked in squared brackets <like 
this>. The following analysis is based on the principles 
in Schleppegrell (2007) as outlined before. Some of the 
applied transcription rules are:

. .. … Pause: . 1 sec .. 2 sec … 3 sec
(4sec.) Pause with given duration from 4 sec-

onds onwards
Text written in (italics) Describes actions for ex-

ample (whispering) or (incomprehensi-
ble expressions), ended up with %

Bold Emphasis
b l o c k e d Stretched pronunciation
/ Pitch inclination

- Pitch stays constant
\ Pitch declination
# One utterance is followed immediately 

by another

Unexpected Recording
01 Student 1: Explain what is symmetry … 

uhm symmetry is w h e n . things are . mh 
l i k e . mh the same looks like the same on 
both sides

02 Student 2: Symmetry is uhm  l i k e  w h e n 
. it’s uh  s o m e  when it’s both the same (he 

is mumbling) be that’s what . Kilian said it’s 
. the same

03 Student 3: (is speaking low) I don’t know 
what symmetry is\ (is breathing out)%

04 Student 2: Yes a symmetry is would be like 
uhm . a  h o u s e  and the neighbour has also 
a house that looks . the same . just the same .. 
b u t  uhm not everything can be symmetry…

05 Student 1: When you draw a picture and 
. and you wa and you m have a .. mirror it 
looks symmetric

06 Student 2: Yes like u h m .. m h h  how I can 
say that . symmetry is symmetry (Student 3 
is laughing)% . like u h like this . like uh a blue 
order from the same market uhm . yes#

07 Student 3: #the same colour

Student 1 reads out the task and continues giving an 
answer in <01>. By using an identifying clause com-
bined with the conjunction ‘when’, he tries to define 
the technical term ‘symmetry’. He talks about things 
that are the same and emphasizes this fact in the fol-
lowing. Then he reformulates this statement, by say-
ing that something is “the same on both sides”. It is 
difficult to analyse the concept of symmetry he has got 
in mind because his explanations remain unspecific; 
technical terms are not used. Moreover, he seems to 
be uncertain about the topic, which is signalized by 
having used fillers (mh, l i k e) and pauses. In <02> stu-
dent 2 alludes “both” to the two things being the same. 
In doing so, he adopts the grammatical pattern of stu-
dent 1 and also refers to his answer. In between, his 
mumbling of words indicates that he has no specific 
idea yet. Student 3 in <03> answers with a complete 
sentence and admits to not knowing what symmetry 
was. Then student 2 makes another attempt by giving 
an everyday example in <04>. The unknown things 
are replaced by two houses. He emphasises again that 
both houses look “the same”. Therefore, he begins his 
statement with an attributive clause. Then he makes 
a restriction, claiming that “not everything can be 
symmetry”. Being a second language learner he used 
the noun ‘symmetry’ instead of ‘symmetric’. Student 1 
in <05> seems to think of an approach to connect sym-
metry to mirroring. By using the conjunction ‘when’ 
instead of ‘if ’, he tries to describe this procedure. 
However, he only names two parts of construction, 

‘drawing a picture’ and ‘having a mirror’. By having 
both components, he suggests it would look symmet-
ric. Even though one could understand what he meant, 
this explanation remains incomplete. Student 2 in <06> 
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continues with a statement that causes student 3 to 
laugh. While pondering on an explanation, he sim-
ply states “symmetry is symmetry”. This attributive 
clause defines symmetry by itself, which expresses his 
inability to find a better explanation. Next, he refers 
to something blue that comes from the same market. 
This aspect might indicate a translation movement. 
Student 3 in <07> seems to know what his peer means 
and puts emphasis on the same colour. At this point 
the recording ends. The boys seem to have reached 
a conclusion despite having incomplete statements. 
They use some grammatical patterns of the mathe-
matical register but they do not use much technical 
vocabulary and precise explanations. The pupils re-
search their topic and create a script. This serves as 
basis for their first podcast version. 

Podcast – First Version
01 Student 1: Symmetry are things l that look 

same
02 Student 3: Symmetry means you have a line 

in the middle and both sides need to are the 
same like/

03 Student 2: A star has a symmetry . the flag 
of Great Britain has a symmetry a plane has 
symmetry - a pentagon a hexagon the White 
House has symmetry a flower a triangle a 
guitar a butterfly . uhm . symmetry has also 
a strawberry a ball . uhm . then underwears 
has symmetry and p a n t s and the f a c e #

04 Student 3: #and scarfs
05 Student 2: Yes . scarfs and glasses has sym-

metry .. (is speaking low) that’s it%

In this version student 1 starts off with a general state-
ment about symmetry by using an attributive clause 
in <01>. This statement is comparable to the first ut-
terance of the unexpected recording. The emphasis 
again is on the sameness of things. Student 3 seizes 
the idea of having “a line in the middle” in <02> which 
generates two equal sides. This idea, described by a 
common expression, seems to relate to the line sym-
metry. In order to express meaning, an identifying 
clause is used. However, the exact aspect of symmetry 
and the objects referred to have not been explicitly 
conveyed yet. Only in statements <03>, student 2 pre-
sents some examples concerning line symmetry by 
using common words as well as technical terms, e.g. 

“hexagon” and “triangle”. It appears that he forgets to 
mention one example, which student 3 adds in <04>. 
Student 2 repeats the suggested word and names an-

other example in <05>. In contrast to the unexpected 
recording, the statements are now better conceived 
and more structured, except for the rather informal 
beginning and end. In the editorial meeting the peers 
praise the chosen examples. The boys receive con-
structive criticism to improve their script in terms 
of content, style and language.

PriMaPodcast
01 Student 3: What is symmetry
02 Student 1: Symmetry are things that look 

same on both sides . when you have a mirror 
and put it in the middle . of a symmetric thing 
and it looks same . on both sides it is symmet-
ric ... A mirror is like a line o of symmetry

03 Student 3: These . there are lots of things 
. that are symmetric\ but not all things are 
symmetric\ these things are not symmetric\ 
a radio a door a piano a crane an ocean a sea 
a river\ these things are symmetric

04 Student 2: Clothes a tie glasses pants and 
underwears shapes a star the flag of Great 
Britain a triangle a hexagon a pentagon . 
nature for example butterflies flowers and 
strawberries\ . music a guitar/ a violin\ . elec-
tricity a plane even words can be symmetric 
otto

Student 3 reads out the question in <01>. Student 1 
gives a definition by using an identifying clause, 
similar to the beginnings of the other recordings: he 
equals symmetry with “things that look same on both 
sides” in <02>. Then he returns to the idea of mirror-
ing which was originally uttered in the unexpected 
recording. The instruction on how to mirror is more 
detailed than before. Moreover, the technical term 

“line of symmetry” is used for the first time. In his 
explanations student 1 relates to general ‘symmetric 
things’. Before these things are further explained by 
giving lots of examples in <04>, student 3 emphasizes 
in <03> that “not all things are symmetric”. Having tak-
en up the idea of the unexpected recording, he names 
seven things, which are not symmetric. He leads over 
to student 2 who reads out the examples of symmetry 
in <04>. Some of them, which are presented in the first 
podcast version, are not mentioned here any more (e.g. 
the ‘White House’ or ‘a scarf ’). Another difference is 
that the examples are classified into categories like 

‘clothes’, ‘shapes’ or ‘music’. Thus, they are more struc-
tured. A new example of symmetry is highlighted in 
the end: words like ‘OTTO’ can be symmetric, too. 
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CONCLUSIONS

As presented in the empirical example, the produc-
tion of PriMaPodcasts makes it possible to investigate 
the bilingual learners’ use of mathematical language. 
Each stage of production allows the mathematical 
language of the group to develop and become more 
specific as seen in the transcripts. The implementa-
tion of mathematical discourse practices, such as ex-
plaining and defining, enable the learners to express 
and discuss their mathematical thought processes. 
Moreover, the reflection on certain content deepens 
the students’ mathematical understanding. The in-
teractive procedure corresponds with the require-
ment of a mathematical conceptualization, by going 
beyond the stringent learning of technical terms and 
vocabulary. Thus, learners are groomed to become 
mathematically literate. 

In the context of my PhD project, the presented re-
search framework has been implemented twice so 
far. The analysis of the single stages (audio and video 
taped) will open up various possibilities to retrack the 
learners’ progress by producing PriMaPodcasts in 
German and in English. Hoping to get further insights 
into the learners’ understanding of mathematical con-
cepts, the project will continue. As this is an on-going 
PhD project, further results cannot be disclosed as 
of yet.
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In this paper, I present how gestures can contribute 
to reasoning actions in social epistemic processes. In 
an empirical study, I investigated possible benefits of 
students’ use of gestures in social learning processes. 
Integrating an analysis of students’ gestures in a recon-
struction of epistemic processes led to the identification 
of epistemic functions of gestures as ways in which ges-
tures contribute to the accomplishment of epistemic 
actions. Two of these epistemic functions appear to be 
of special interest when students carry out reasoning in 
social interaction. Therefore, they will be presented in 
this paper by means of illustrative examples.

Keywords: Gestures, epistemic processes, social 

reasoning actions, embodiment.

INTRODUCTION

During the last 15 years, the study of gestures as part 
of the discourse in the mathematics classroom has in-
creasingly gained attention (see Arzarello & Edwards, 
2005). Gestures are considered to be a core resource in 
mathematical learning processes, a resource that can 
fulfill both a representational as well as an epistemic 
function in collaborative working processes (Dreyfus, 
Sabena, Kidron, & Arzarello, 2014; Krause, in press). 
Gestures have been identified to simplify the commu-
nication of ideas that are not yet fully elaborated (e.g. 
Reynolds & Reeve, 2002), reducing the cognitive effort 
needed for finding suitable mathematical words. Other 
studies point out benefits of collaboratively making 
use of the shared gesture space as mathematical ex-
perimental space in social interaction (Yoon, Thomas, 
& Dreyfus, 2011). Nevertheless, research investigat-
ing the use of gestures in mathematical reasoning is 
still scarce, although reasoning and argumentation 

are considered an important mathematical activity 
(Krummheuer, 2007). 

This study is related to my PhD-project on the role of 
gestures in social processes of mathematical knowl-
edge construction (Krause, in press). Although rea-
soning situations have not been in the focus of the 
study, they consituted a particular part of these pro-
cesses. The investigation of gestures’ contribution to 
epistemic processes within an embodied and multi-
modal framework led to the suggestion that gestures 
may support reasoning actions in different ways when 
mathematical knowledge is constructed. Evidence of 
this hypothsis will be presented more in detail in this 
paper. 

THEORETICAL FRAMEWORK

Gestures are considered “idiosyncratic spontaneous 
movement[s] of the hands and arms accompanying 
speech” (McNeill, 1992, p. 37), “being done for the pur-
poses of expression rather than in the service of some 
practical aim” (Kendon, 2004, p. 15). Underlying all the 
research on gestures is the assumption that gesture 
and speech are co-expressive, that is, they refer to the 
same idea: McNeill sees “gesture and the spoken utter-
ances as different sides of a single underlying mental 
process” (McNeill, 1992, p. 1) and claims that “speech 
and gesture must cooperate to express the person’s 
meaning” (p. 11), “each can include something that the 
other leaves out” (p. 79). According to the Information 
Packaging Hypothesis (IPH) (Kita, 2000, p. 163), ges-
tures can help speakers to “package” spatial informa-
tion into units appropriate for verbalization (Alibali, 
Kita, & Young, 2000, p. 593). By the use of gestures, 
information is parsed into entities more convenient 
to put into words, “consequently, the collaboration 
between the two modes [gesture and speech] provides 

mailto:christina.krause@uni-due.de
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speakers with wider possibilities to organize thought 
in ways suitable for linguistic expression” (Kita, 2000, 
p. 180).

Mathematical knowledge is considered to be con-
structed by individuals in social interaction, not ar-
bitrarily but constrained by our bodily experience 
as humans in the world (Núñez, Edwards, & Matos, 
1999, p. 53). While social-constructivism concerns the 
social-communicative aspects of learning, embodied 
cognition adds how individual aspects are shared as 
being based on bodily experience. It grounds the as-
sumption that in social interaction, not only explicit 
and conventionalized modes of expression like speech 
are considered for the interpretation of an utterance, 
but also implicit ones such as gestures. It is due to our 
shared bodily experience as humans in the physical 
world that these implicit embodied modes of expres-
sion can be processed similarly by distinct individu-
als. Hence, the social-constructivist and the embodied 
approach do not oppose each other: While gestures 
may embody knowledge that is not consciously acces-
sible, they may contribute to the social interaction 
implicitly. Reconstructing the epistemic processes 
within social interaction thus requires considering 
both implicit and explicit modes of expression.

Furthermore, embodied cognition theory states 
that bodily behaviour influences the way we think, 
grounding fundamental mathematical concepts in 
everyday experience through metaphorical thinking 
(Lakoff & Núñez, 2000). By expressing something in 
terms of something else, an entire conceptual envi-
ronment can be understood via a more accessible or 
more illustrative domain. The domain referred to is 
called source domain and conveys how the relation-
ships in the target domain shall be understood. 

The social epistemic process was described by an 
epistemic action model that has been developed by 
Bikner-Ahsbahs (2006) based on the interpretation of 
speech acts. It encompasses the three social epistemic 
actions of (a) gathering single mathematical entities 
like examples or associations, (b) connecting a finite 
number of them, and (c) seeing structures such as gen-
eralities or patterns (GCSt-model). The latter takes 
place when a new entity is built or a known entity is 
re-built in a new context. 

A semiotic perspective has been integrated by un-
derstanding gestures as signs in a Peircean sense as 

“something that stand to somebody in some respect or 
capacity” (Peirce, CP 2.228) and an analysis within the 
semiotic bundle. The semiotic bundle is a dynamic 
structure that consists of different semiotic sets (e.g. 
speech, inscription and gestures) and relationships 
between them (Arzarello, 2006, pp. 280–282), both 
evolving in time. Some synchronous relationships can 
be described by two features of gestures; one concern-
ing gestures’ relation to speech, the other concerning 
its relation to inscription (Krause, in press). Each is 
considered to frame the interpretation of the utter-
ance as it is shaped by speech, gesture, and inscription 
in social interaction:

 ― Gestures can specify aspects of the mathematical 
object referred to and by this, enrich the verbal 
utterance. They can specify the where, the what, 
the how, or relational aspects of the mathematical 
object. ‘Where’ refers to spatial aspects such as 
location or direction, ‘what’ gives information of 
the kind of the object, ‘how’ concerns the style of 
a mathematical object or activity, relations are 
specified when the gesture represents relations 
within an object or between objects in addition 
to what is explicated in speech. The specification 
reflects a potential non-verbal influence on the 
interpretation of an utterance within social in-
teraction.

 ― Gestures are performed on three referential lev-
els: Level 1 is considered the level of the concrete, 
when the gesture refers directly to something 
that is already fixed. On this level, the gesture 
functions as an index in that its meaning sole-
ly derives from the meaning of what it refers 
to. On level 2, the level of the potential, gestures 
are embedded into an existing inscription. That 
is, something that is not fixed that way is made 
visible within an existing representation. The 
interpretation of gestures on level 2 demands 
for the material and/or contextual background of 
an inscription. The gestures in the gesture space, 
which is the space in the air roughly between the 
shoulders and the hips (McNeill, 1992, p. 86), are 
performed on level 3. They are free in the sense 
that they are detached from any inscription. 
Their disengagement from the concrete reveals a 
state of conceptualization of a mathematical idea.

Adding a semiotic perspective showed that gestures 
do not only affect which information may be provided 
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by an utterance, but also that gestures can have direct 
impact on the accomplishment of epistemic actions. 
They can prepare, support, and also realize epistemic 
actions in different ways which I call epistemic func-
tions. This paper deals with two epistemic functions 
that I consider to support reasoning actions.

Within the frame of the GCSt-model (Bikner-Ahsbahs, 
2006), reasoning actions are a specific kind of connect-
ing actions: Two or more aspects of a mathematical 
object or idea are linked in order to justify or explain 
a hypothesis, or the rejection of a hypothesis. This 
paper focuses on these kinds of connecting actions, 
providing first suggestions on how gestures may take 
part in supporting students’ reasoning as epistemic 
connecting action. 

METHODS

Three pairs of high-achieving students of grade 10 
solve three tasks each. The tasks have been construct-
ed to prompt fruitful epistemic processes by initiating 
epistemic actions. The three tasks deal with different 
mathematical topics and each provides a different 
variety of representations to work with in the course 
of solving the task. The epistemic functions presented 
in this paper concern a geometric-algebraic task and a 
task on logical reasoning using the idea of mathemat-
ical induction. This choice has been made due to the 
diversity of mathematical topics and representations 
provided by the tasks.

The Geometric-Algebraic Task deals with the parab-
ola as geometrical locus. In the course of the task, 
three different representations are provided to the 
students: First, they have to construct a folding di-
agram according to the following instructions. On a 
given sheet, a point M is marked. They are now asked 
to (i) mark any point on the lower edge of the sheet, 
(ii) fold the paper such that the chosen point comes 

to lie upon the point M, (iii) draw a perpendicular to 
the lower edge of the sheet running through the point 
chosen on it, (iv) mark the intersection point of this 
perpendicular and the folding line with a red cross, (v) 
keep on proceeding like this by choosing new points 
on the lower border until they recognize a curve. This 
process leads to a folding diagram of the envelope 
curve of a parabola, the folding lines being tangents 
to the curve and the intersection points being points 
on the parabola. Figure 1a shows a possible outcome 
of this process. 

Then, a GeoGebra file is introduced that represents 
a similar situation within a coordinate system. Here, 
the point corresponding to the one chosen on the 
lower border is called “P” and can be dragged to the 
left and to the right. Through dragging, a trace is pro-
duced by the points on the curve (Figure 1b). Finally, 
a printout capturing one possible situation from 
the GeoGebra environment is given to the students 
(Figure 1c). A first subtask consists of making conjec-
tures about what can be seen in the folding diagram. 
Thereupon the folding diagram shall be compared 
to the GeoGebra diagram before a conjecture about 
the type of the function shall be stated and justified.

The Task on Logical Reasoning was formulated as a 
word problem: 

An undefined number of persons sit in a circle. Everybody 
wears a hat. Everybody sees every hat except one’s own. 
Everybody knows that at least one hat is marked. Every 
five minutes, a bell rings. Everybody who knows that his 
own hat is marked shall raise his hand with the ring of 
the bell as soon as he knows. The challenge consists in 
concluding from the number of hats one sees whether 
one’s own hat is marked or not. 

No further representations of the situation have been 
provided. For the base case of seeing zero marked hats 

Figure. 1a-c (from left to right): (a) Possible outcome of the folding process, (b) static cut-out of the GeoGebra representation, (c) printout 

given to the student, representing one possible situation of the GeoGebra environment
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it follows immediately that one’s own hat is marked 
from the condition of knowing that there is at least one 
marked hat. The induction step can be induced from 
the reaction of the other persons by reconstructing 
how many marked hats they see, and then concluding 
on whether one’s own hat is marked from the behav-
iour of the other’s at the nth ring of the bell. Solving 
the task thus makes use of the idea of mathematical 
induction and distinguishing cases concerning the 
reactions of the other consultants at the nth ring of 
the bell.

The two tasks differ not only in the mathematical topic 
they deal with but also in the role of representations 
provided to the students. The rich semiotic variety of 
the geometric-algebraic environment is suggested to 
prompt the students to use gestures when reasoning 
on the kind of function. However, the more important 
question is how gestures may support the reasoning 
actions when solving this task. The lack of such rep-
resentations in the task on logical reasoning raises 
the question whether gestures are used at all, and if 
so, what these gestures refer to and whether and in 
which ways they support reasoning as the main math-
ematical activity of the task. 

Data and analysis
The learning processes have been videotaped from 
three perspectives: One camera filmed from the 
front to capture the gestures of the students. A sec-
ond camera was directed to the inscriptions in front 
of the table. A third perspective was used to record 
the student’s use of GeoGebra visible on a computer 

screen. Based on these video recordings, transcripts 
have been written, considering verbal utterances as 
well as non-verbal actions (see Figure 2 for the tran-
scription key). 

For answering the research question stated in this 
paper, those connecting actions become relevant in 
which the students justify or explain their conjec-
tures. To reconstruct the role of gestures therein, the 
gestures are analysed within the semiotic bundle, tak-
ing into account also possible metaphorical meaning, 
grounded in the bodily experience with the physical 
world.

HOW GESTURES CAN TAKE PART 
IN REASONING SITUATIONS

In the following section, two examples will be recon-
structed. These present the two epistemic functions 
contrasting and giving visual access to the structure 
of a reasoning action as ways in which gestures can 
support reasoning actions. 

Supporting counter argumentation by 
contrasting to another representation
The two students Mike and Tim work on the task in 
which the parabola is explored and experienced as 
geometrical locus. They have already constructed the 
folding diagram and traced the curve in the GeoGebra 
environment. Preceding the following scene, Mike 
and Tim have identified the curve to be an exponen-
tial function “with some factor in front of it” (235). 
Prompted by an interviewer, the students are asked 

exact. 
exact
e-x-a-c-t
/S

dropping the voice
emphasized
prolonged
interrupts the previous speaker

exact’
,exact
(.), (..), (…)
(4sec)

raising the voice
with a new onset
1, 2 or 3 seconds pause
4 seconds pause (for more than 3 seconds)

[squared brackets] indicate beginning and end of a gesture movement

Figure 2: Transcription key

Figure 3: GeoGebra diagram as visible on the screen (trace thickened to optimize visibility) and 

gesture accomplished by Mike in line 288
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to make statements about the values of the function 
represented by the curve for x = 0 and x = −1. This is 
when they realise that “it can’t be that it is an expo-
nential function’ ” (284; See Figure 2 for the GeoGebra 
diagram as visible on the screen at that moment.), ex-
plicating the reason in speech and gesture (Figure 1 
for transcription key):

284 /Mike: it can’t be that it is an exponential 
function’ (looks at Tim)

285 Tim: right.
286 Mike: because ,uhm
287 /Tim: then it [would be] (points towards 

the screen) smaller there
288   /Mike: [elsewise the number would be 

smaller and smaller (points at the screen from 
right up to left down) (.)] the left side normally  

Mike’s reasoning of the refutation of the curve rep-
resenting an exponential function consists of three 
utterances: In line 284, he refutes the conjecture about 
the type of the function. At this point, the basis of the 
conclusion he draws after considering the concrete 
values does not become explicit. In lines 286 and 288 
he justifies his conclusion. Although Tim already 
confirms Mike’s statement in line 285, Mike gives 
an explanation using a counterargument. He starts 
with “because” (286) but hesitates. This makes Tim 
start an approach, imprecisely referring to that “it 
would be smaller there” (287). This mentioning ‘some-
thing being smaller’ in combination with the pointing 
towards the screen suggests that he has in mind the 
same reason that in turn is expressed by Mike (288). 
From Mike’s verbal utterance alone, the reasoning is 
not complete: He uses an undefined reference (“the 
number”) and leaves out aspects that are specified 
in gesture: The iconic reference to the shape of the 
curve of an exponential function is combined with 
the indexical reference to the screen. Through this, 
two main functions are fulfilled: The gesture allows 

“the number” to be interpreted as a y-value and the 
direction of decrease to be from right to left, adding 
an aspect that is needed to interpret the argument to 
its full account. Shaping the interpretation frame of 
the entire utterance, the gesture specifies the where, 
the what, and the how as style of the shape of the curve 
potentially embedded into the GeoGebra diagram on 
level 2 in front of the screen. The performance on 
level 2 superimposes the actual case visible on the 
screen with the one to exclude as ephemerally shaped 
in gesture. This depiction of the hypothetical case to 
be refuted, the shape of the curve of an exponential 
function, makes apparent the difference in the styles 
of the two shapes. The curve has been traced in its 
full extent before and its symmetry is knowledge that 
is shared between the students. The depiction of the 
gesture thus represents only that part in which both 
representations do not fit together, hinting at a dif-
ference that is specified and with that, illustrates the 
counter argument given in speech.

Giving visual access to the structure 
of the reasoning action
Rosa and Lisa resolve the task on logical reasoning. 
They already hypothesized how to behave after the 
nth ring of the bell, depending on the number of hats 
they see and the behaviour of the other consultants. 
They checked their strategy for some concrete cases 
and in conclusion, decided it to be valid. In the fol-
lowing excerpt, they investigate whether there may 
exist another strategy by assuming the case that all 
consultants wear a marked hat, considering the ge-
neric example of five consultants sitting in the circle 
and consequently seeing n=4 marked hats:

297 Rosa: the at the fourth ring they still 
see- (writes: “4th ring: no”) (4sec) none ,oh- 
(scratches out “no”) ,there I have always writ-
ten nobody (writes “nobody”) (…) (writes “⇒”) 

,that means there have to ,be- (briefly raises 

Figure 4: Rosa’s gesture depicting the path from condition to conclusion, simultaneous to “more than four”
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her hand and turns it forward in one fast 
movement) [more than four] because they 
are only five everybody has one. (writes: “all”)

Rosa concludes on the number of marked hats in the 
game (“that means there have to ,be [more than four]”), 
based on the fact that nobody signals at the fourth ring 
of the bell (“at the fourth ring they still see none”). 
While this is interpreted as a connecting reasoning 
action that can be reconstructed from the verbal ut-
terance, Rosa’s accompanying gesture metaphorically 
represents the connection of premise and conclusion 
as tracing a path from the back forth in an upwards 
arc by turning the wrist forward once. In this ges-
ture-speech interplay, components of a metaphorical 
mapping based on the image schema of source-path-
goal (Edwards, 2010, pp. 233–234) can be identified: 
Within this mapping, the “goal” corresponds to the 
conclusion. The movement of the hand on level 3 met-
aphorically represents the “path” within the gesture 
space and embodies what could verbally be expressed 
by the word “then”. The gesture summarizes that the 
conclusion “there have to ,be- [more than four]” is de-
rived from the condition that nobody signals. It helps 
understanding how Rosa ‘packaged’ her utterance 
into source, path and goal. The metaphorical meaning 
does not develop within the social interaction such 
that the gesture is not considered to explicate situated 
meaning by specifying aspects of a mathematical ob-
ject. Moreover, it is deeply embodied in the everyday 
concept of deducing a conclusion from a given prem-
ise, not necessarily related to a mathematical topic. 
The gesture itself implicitly realizes a connection of 
premise and conclusion and with this, supports the 
verbal connecting action of logical inference by illus-
trating it in a more general way. The visual access it 
provides does not refer to a mathematical object but 
to the structure of reasoning on a meta-level. This way, 
it may help to keep the discourse on track by sharing 
the organization of thought underlying the argument. 

SUMMARY AND DISCUSSION

The two epistemic functions of gestures presented in 
this paper show how gestures may support reasoning 
as specific kind of connecting action in different ways:

Contrasting-gestures shape a representation of a math-
ematical object which is reasoned about in compari-
son to another representation. In this way, the gesture 
can specify aspects to exclude one of the two possibil-

ities. The contrasting-gesture complements speech 
and inscription in an explicit manner. Without the 
gesture, it would be left unclear why the verbal ut-
terance justifies the conclusion. Using a gesture this 
way to support a counter argument becomes possible 
by the graphical representation of the mathematical 
object on which is reasoned and the knowledge about 
it as has been developed within the social interaction. 

Gestures can also embody the action of connecting 
premise and conclusion within an act of reasoning and 
thereby give visual access to the structure of a reason-
ing action. In this case, the metaphorical character of 
the gesture is completely detached from the concrete 
content of the task. The structuring-gesture provides 
an implicit support by not enriching the utterance 
semantically, but on a meta-level. Using a gesture this 
way may support the collective act of reasoning as it 
indicates the logical structure within an argument 
and may help to keep track. It makes traceable how 
the argument was organized as logical inference. 

Being characterized by a depictive use of gesture and 
a close and direct relationship to speech and current 
inscription, contrasting can be considered a situated 
function. On the other side, the metaphorical use of 
gesture while structuring the verbal discourse has an 
implicit meta-relation to speech such that the function 
may be rather a universal one.

This raises the question whether there may be typi-
cal ways of using gestures with respect to different 
types of reasoning actions and about the role of these 
gestures in learning and in teaching. With regard to 
the mathematics classroom, Arzarello and Sabena 
suggest that gestures may foster students’ argumen-
tation skills by structuring mathematical arguments 
(Arzarello & Sabena, 2014, pp. 99–100), similar to what 
I have presented in this paper. While they adopt an 
individual approach, the examples presented here 
indicate how it may also benefit reasoning actions 
from a social perspective: Adding gestural expression 
provides visual access to the argument such that it be-
comes received and processed also in a visual modal-
ity, making the understanding of the utterance (and 
so also of an argument given) more comprehensive. 

To test and refine this hypothesis, further individual 
research on the role of gestures in social reasoning 
actions is needed, conducted against a more elabo-
rated theoretical background. The epistemic func-
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tions of gestures presented in this paper can provide 
a basis for such an investigation due to their diverse 
groundings in graphical aspects of reasoning on the 
one hand, and the logical structure of discourse as 
metaphorically embodied aspect on the other hand. 
Furthermore, the presented findings suggest to be 
aware of the potential of gestures for and in social 
processes of argumentation.
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Mathematics is often perceived and described as a do-
main of perfection, where polysemy is seen as dangerous 
and ambiguity is banned. But if that is true for the “final” 
dressing of official mathematics, in doing mathemat-
ics and, as we claim, in understanding it, things run 
the opposite way. Contrasting usual didactic practices, 
suitable forms of ambiguity can be seen and used as 
powerful cognitive resources. We present reflections on 
a long lasting didactic activity with students of differ-
ent grades (from primary to university level), and show 
how to exploit some ambiguities (in particular linguistic 
ones) related to the notion of consecutive numbers.

Keywords: Language, ambiguity, polysemy, consecutive 

numbers.

INTRODUCTION 

What is the meaning of ambiguity? The 2013 online 
version of the Webster Dictionary states: “Ambiguity: 
doubtfulness or uncertainty, particularly as to the 
signification of language, arising from its admitting 
of more than one meaning; an equivocal word or 
expression.” In these words we perceive something 
wrong in any occurrence of an ambiguity. According 
to common sense, ambiguity is a sort of imperfection 
or a kind of error; and errors should be avoided. This 
is particularly true within mathematics. One of the 
main features of mathematicians’ activity is the ability 
to expunge any inconsistency and every uncertain-
ty from their arguments. However, although there 
is no doubt that the final aspiration of mathematics 
(and, for that, of all science and knowledge), is total 
freedom from errors, it is also true that, in the long 
path towards this goal, errors often play an invaluable 
role and make a strong contribution. Many authors 
have stressed this view, in different philosophical and 
theoretical domains, from gnoseology to epistemol-
ogy. In the works by Popper, Kuhn or Lakatos, just to 
mention a few, errors and ambiguities are viewed as 
powerful stimuli for scientific development.

In the educational domain, the impact of errors as 
a didactic resource has also been recognized, albe-
it more recently. For this we essentially refer to the 
monograph by Borasi (1996) and to the extensive bib-
liography therein. 

Less widely explored, as far as we know, is a possible 
positive influence on teaching activities of ambigui-
ty and in particular of polysemy, here considered as 
a form of linguistic ambiguity. Many authors have 
noticed how and why the confusion that often arises 
between a naïve and a technical meaning of the same 
word (angle, continuous, square, limit, increasing, and 
so on and so forth) is the source of many students’ dif-
ficulties (Tall & Vinner, 1981; Ferrari, 2004; Bardelle, 
2010). The usual approach to ambiguities is to iden-
tify them in order to avoid, as far as possible, their 
disturbing consequences. 

Our approach is quite the opposite. According to the 
general view by Borasi (1996), we will try to show 
how ambiguities, in particular linguistic ones, can 
play a useful role in the development of mathematics 
learning. To this purpose, we present an example of 
an educational activity proposed over several years 
to students of different grades (from primary to uni-
versity students). Then we will discuss some real and 
potential developments of the activity and will make 
comments on its effectiveness. Finally some reflec-
tions will be made on the role of the teacher within a 
general vision of the educational process.

THEORETICAL FRAMEWORK

One cannot assign a positive value to errors and in-
accuracies of students if one has a vision of teaching 
as transmission. Indeed, our claims on ambiguity and 
its important role in mathematics learning processes 
require an active role of learners as conceived in the 
inquiry approach (Borasi, 1992, 1996):  

mailto:rtortora@unina.it
http://www.webster-dictionary.org/definition/doubtfulness
http://www.webster-dictionary.org/definition/uncertainty
http://www.webster-dictionary.org/definition/particularly
http://www.webster-dictionary.org/definition/signification
http://www.webster-dictionary.org/definition/language
http://www.webster-dictionary.org/definition/arising
http://www.webster-dictionary.org/definition/admitting
http://www.webster-dictionary.org/definition/meaning
http://www.webster-dictionary.org/definition/equivocal
http://www.webster-dictionary.org/definition/word
http://www.webster-dictionary.org/definition/expression
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Whereas in traditional mathematics classes am-
biguity, anomalies, and contradictions are care-
fully eliminated so as to avoid a potential source 
of confusion, in an inquiry classroom these ele-
ments would be highlighted and capitalized on as 
a motivating force (Borasi, 1996, p. 25)

Starting from this main premise, the research work we 
are going to present finds its roots in the Vygotskian 
sociocultural vision of learning. In particular in our 
work, the language plays a central role: if errors are of 
several types, ambiguity is a typical linguistic affair. 
It is therefore necessary to frame our proposal in the 
context of studies on the importance of language for 
mathematics and mathematics education. For this, 
we refer to general studies of functional linguistics 
(Halliday, 1985) and to the elaboration of these ideas 
in the domain of mathematics education, especially 
(Ferrari, 2004). From there we draw some essential 
constructs, described below.

The pivotal notion connecting texts to contexts is that 
of register, that is, a variety of language depending on 
usage. Whenever an individual uses the language 
for a particular purpose, he selects a register which 
is suitable for that purpose. Of course, the choice is 
also bounded by the resources that are available for 
the individual. For further details on this meaning 
of register (Ferrari, 2004), where the sense is also 
contrasted with the same term used differently by 
Duval (2006). In this framework the key distinction 
is between literate and colloquial registers. The differ-
ence is functional, in the sense that the same people 
can use a literate register in a context and a colloquial 
register in a different one. The literate registers are 
typically used in communications belonging to scien-
tific, legal, political, literary, etc. domains, in most of 
the narrative and often in speeches among educated 
people. The colloquial register is typically used in 
more or less informal speeches. A fully satisfying defi-
nition is impossible. For mathematics educators, what 
is important is to compare or to contrast the literate 
registers used within formal mathematics with the 
colloquial ones used in life and also in the everyday 
discourses in teaching-learning environments. This 
comparison represents a tool by means of which it is 
possible to interpret some students’ difficulties. In 
Bardelle (2010) it is used to analyse the behaviour of a 
sample of university students involved in the study of 
the monotonicity of a function and of the properties 
of its graph.

The ambiguity coming from two different uses of 
the same word or locution in the colloquial and in 
the literate (mathematical) register is shown as an 
obstacle for the acquisition of some mathematical 
notions. This is true, but at the same time, in many 
mathematical contexts, ambiguity can be viewed and 
exploited as a resource, acting as a stimulus for a deep-
er and more critical advancement of knowledge. More 
generally, we are convinced that it is quite illusory to 
try to expunge any ambiguity from the mathematical 
discourse; or, as it may be, from mathematics itself, 
according with Sfard’s (2008) radical identification 
of mathematics as discourse. 

In the history of mathematics, such intricate paths 
are frequent (see the analysis of Lakatos (1976) of the 
Euler’s theorem for polyhedra). We do not think that 
the individual cognitive development reproduces 
faithfully cultural evolution but want to observe 
that whenever an epistemologically difficult notion 
is encountered, both in the history and in a learning 
environment, many attempts have to be made before 
the notion can be assimilated. Many of these attempts 
include shifts from a linguistic register to another and 
changes in the meaning of some key word. 

According to a sociocultural vision of learning and 
teaching, our way of working with students is based 
on a continuous interplay between the linguistic 
components of knowledge and an epistemological 
analysis of the disciplinary concepts involved. For 
this kind of analysis, we refer mainly to the theoret-
ical construct CAC (Cultural Analysis of the Content) 
by Boero and Guala (2008). Mathematics is seen as 
an evolving discipline “with different levels of rigor 
both at a specific moment in history (according to the 
cultural environment and specific needs), and across 
history, and as a domain of culture as a set of interre-
lated cultural tools and social practices, which can be 
inherited over generations” (ibid, p. 223). This vision 
of mathematics forces a conception of mathematics 
education activities that leads teachers and educa-
tors “to radically question their beliefs concerning 
mathematics in general and specific subject matter 
in particular” (ibid, p. 223). 

A CULTURAL-LINGUISTIC ANALYSIS 
OF CONSECUTIVE(NESS)

In this study we take into account the notion of consec-
utiveness, in particular its occurrence in the locution 
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consecutive numbers. We deeply analyse this notion 
within the solution and discussion of the following 
arithmetic word problem, submitted, with some var-
iants, to students of different grades. 

Take four consecutive numbers. Multiply the two 
middle numbers by each other, then multiply the 
first one by the last one and calculate the differ-
ence between the two results obtained. Repeat the 
exercise several times, using different numbers. 
Do you observe any regularity?

The consecutiveness notion is not encountered here 
for the first time as an argument of discussion within 
mathematics education research (see Boero, Chiappini, 
Garuti, & Sibilla, 1995). This notion is suitable to trig-
ger various arithmetic explorations, or to develop 
argumentation and proof activities in arithmetic, 
guided by careful teaching mediations. Here, we fo-
cus on some subtle ambiguity inherent to the notion 
of “consecutiveness”, trying to show how, if handled 
with care, it can represent a powerful resource for 
education and knowledge purposes. With this aim, 
in this section we analyse some cultural and episte-
mological aspects of that notion, starting from the 
above problem, and according to the CAC perspective. 

First of all the text refers to consecutive numbers 
without specifying the number domain. That is not 
a problem. From one side the use of the word “con-
secutive” in a literate register, like the text of a word 
problem, should suggest that the correct domain is the 
set of natural numbers or perhaps of integers; from 
the other side the common use in a colloquial register 
of the word ‘number’ without specifications, always 
refers to natural numbers. But what is the meaning of 
consecutive natural numbers? Even in the scientific 
register we can recognize (at least) two meanings as-
signed to these words: i) the first one is framed within 
the order relation; ii) and the second one comes from 
the additive structure (one might even distinguish 
this meaning from the one embodied in Peano’s suc-
cessor operator). Let us give a closer look at these two 
meanings, and at their formal renderings:

i) Probably the most natural meaning of the term 
“consecutive” corresponds to the idea “to be im-
mediately subsequent to”, like, for example, in 

“Monday and Tuesday are consecutive days”. In 
mathematical words this requires the presence of 
an order relation (better, a total and discrete one). 

So to say in a (partially) formalized language that 
two elements a and b are consecutive, we have to 
say that “a < b and there is no element c such that 
a < c < b”. From the logical point of view, we have 
the conjunction of two statements, an atomic one 
and the negation of the existential of a conjunc-
tion (there does not exist any c such that a < c and 
c < b). So, we see that the formal translation of a 
(relatively) simple notion has a logical structure 
far from simple. Worse, we could even argue that 
the notion of consecutive is ‘symmetric’ (that is, 
if 2 and 3 are consecutive, also 3 and 2 are consec-
utive), and so its algebraic translation becomes 
even more complicated. 

ii) The other meaning of consecutive can be ex-
pressed as: “Two numbers are consecutive if 
the second one is obtained adding one unity to 
the first one”, which in algebraic language is 
written as “a and b are consecutive if b = a + 1”. 
Unfortunately, this definition is good for natural 
numbers (and for integers too), but not for other 
numerical domains, for example the sets of even 
or of odd numbers. But one can generalize the 
above notion of consecutiveness by taking into 
account the more general ‘additive’ relationship 
existing between two closest terms of any arith-
metical progression, i.e., with obvious meaning 
of the variables, an+1 = an + d. 

What happens is that the two above meanings of the 
word consecutive coincide for natural numbers, but 
they do not for other kind of numbers: either in the 
sense that the first meaning disappears (for rational 
numbers a and b it is meaningless to say that they are 
consecutive while it makes sense to say that b = a + 1); or 
in the sense that the second possibility vanishes (two 
even numbers a and b can be consecutive but it can 
never happen that b = a + 1); or in the sense that both 
conditions are acceptable but bear different meanings 
(e.g., the case of rational numbers truncated to the 
second decimal place). The two properties keep their 
own importance.

We focus on how ambiguity can represent an oppor-
tunity for mathematics teaching and learning. In the 
next section we will show and analyse some students’ 
behaviours and the development of their mathemati-
cal knowledge coming out in the attempts to manage 
the situation produced by the ambiguity of the notion 
of consecutiveness in the problem presented. 
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SOME EXPERIMENTAL EVIDENCE 

We present some critical points of the experiences 
that we have been living during these years, working 
with the problem presented in the previous section. 
We have submitted the above problem or some var-
iants of it for several years to students of different 
grades (from elementary school up to prospective ele-
mentary and secondary school teachers) with slightly 
different goals, according to the context and to the age 
of students (Iannece & Romano, 2009; Mellone, 2011). 

According with our inquiry approach, as outlined by 
Borasi (1992), in the management of mathematical ac-
tivities, rather than packing ready-made solutions 
and imposing them to students, we prefer to spend 
most of the time in mathematical discussions, believ-
ing that this increases students’ opportunities to build 
a flexible and critical mathematical knowledge. For 
this reason we often use open tasks, without posing 
limits to their developments and, most of all, taking 
seriously all students’ reasoning and feedback. This 
way of working, besides the outcomes concerning 
students, allows us to grow in our awareness as ed-
ucators. 

We have collected data regarding students’ behav-
iour when dealing with problems of the type above 
described. Despite their different ages and experienc-
es, we have observed many common points in their 
answers and reasoning. Here we report some nota-
ble behaviours of about 40 students of a mathematics 
class of prospective elementary school teachers. We 
comment on students’ typical reactions to a specific 
articulation of the problem that we have proposed 
several times. 

Most students, after the first arithmetic explorations 
and the discovery/recognition of regularities, are led 
to express the notion of consecutiveness in a general 
form. In their attempts to translate the relationship 
among the four numbers into the algebraic language, 
the students often propose to use four letters, typical-
ly four “consecutive” letters in alphabetic order, like 
a, b, c, d, for denoting the four consecutive numbers. 
Such a choice can be labelled as unproductive, since 
the letters of the alphabet do not support an algebra-
ic structure, and therefore the circumstance that b 
follows immediately a does not express adequately 
the analogous relationship between the two numbers. 
One could be tempted to push directly towards the 

more effective algebraic translation a, a + 1, a + 2, a + 
3, which is, of course, completely faithful and, above 
all, suitable for the usual algebraic manipulations, 
including those required in the problem. We too have 
done this many times, before becoming aware of the 
fact that by doing so we were losing a great oppor-
tunity. Now, we prefer to recognize the value of this 
choice, where a sort of isomorphism between two 
order structures (numbers and alphabet) is clearly 
glimpsed and exploited. After all, the fact that this 
attempt is not effective is akin to what normally hap-
pens to mathematicians when they reach their results 
by trial and error. 

Giving time and confidence to students who choose 
the four letters a, b, c, d, for representing the four 
numbers, allows most of them to implement an inter-
esting bridge behaviour between the initial idea of the 
four consecutive letters and the final four expressions 
a, a + 1, a + 2, a + 3: they prefer to maintain the four dif-
ferent letters, but accompanying them with the three 
conditions b = a + 1, c = b + 1, d = c + 1. This behaviour 
testifies that often a system of equations is easier to 
be conceived in comparison to the more concise and 
effective solution a, a + 1, a + 2, a + 3, that requires the 
quite sophisticated ability to conceive four numbers 
and simultaneously their relationship. In other words 
a, a + 1, a + 2, a + 3 appear as the mental result of a 
transformation applied to the three above equations 
[1]. The practice of discussion guarantees that the best 
representation (a, a + 1, a + 2, a + 3) emerges in any case. 
But the possibility for the students to discuss about 
the benefits or the disadvantages of using different 
algebraic translations represents an invaluable way 
to converge with full awareness towards the best one. 

The typical step that follows in our activity is to ask 
students to consider the problem for four consecu-
tive even numbers. We have experienced that many 
students propose without hesitation an algebraic 
representation like a, a + 2, a + 4, a + 6, and this is true 
especially for those students who had represented 
the four consecutive natural numbers as a, a + 1, a + 2, 
a + 3. Of course the use of the additive representation 
for natural numbers fosters a similar form also in the 
case of even numbers. The fact that the students do not 
manifest any hesitation in shifting from the operator 

“+1” to the operator “+2”, shows that the meaning of con-
secutiveness associated with the order relation pre-
vails over its additive interpretation in the students’ 
perception of this notion. Indeed they have no prob-
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lem in abandoning the transcription of “consecutive of 
n” as “n + 1”. However, their favourite representation 
is a, a + 2, a + 4, a + 6, in contrast with 2n, 2n + 2, 2n + 4, 
2n + 6, selected by relatively few students, although the 
second representation is of course the only one that 
correctly expresses the evenness of the four numbers. 
This inaccuracy turns out to be useful. It reveals that 
students prefer to focus on the arithmetic progression 
as the real nature of the problem, rather than on the 
kind of numbers involved (in this case, even). When 
asked, in the next step, to represent four consecutive 
odd numbers, the students who had represented the 
even numbers as a, a + 2, a + 3, a + 4 easily realize that 
their representation also works with odd numbers, 
while among the students who proposed 2n, 2n + 2, 
2n + 4, 2n + 6 only a few of them succeed in finding 
the correct representation 2n + 1, 2n + 3, 2n + 5, 2n + 
7 [2]. The discovery that in both cases (even and odd 
numbers) the searched difference is always 8, moves 
the mathematical discourse towards the arithmetic 
progressions with common difference 2.

The last step of our typical way of managing the prob-
lem has the goal of addressing the concept of density 
of the rational numbers. We request to consider four 
consecutive decimal numbers. The persistence of the 
concept image, in the sense of Tall and Vinner (1981), of 
the “discrete” order relation as unique prototype of all 
the possible order relationships, is the trigger element 
at the base of our proposal. We have experienced that 
this condition of cognitive break represents a fertile 
tool to face the epistemological knot of the density of 
rational numbers. We have observed that the students 
often propose to consider decimal numbers truncated 
at the first decimal digit (for example 2.1; 2.2; 2.3; 2.4), 
or, less frequently, at the second digit. 

This answer is a mistake but this error offers to stu-
dents the opportunity to start new explorations on 
arithmetic progressions. They easily discover that for 
decimal numbers truncated as above the difference in 
the problem is 0.02, and after that, moving to consider 
decimal numbers cut at the second digit, they realize 
that the difference is 0.0002. These are good prem-
ises to explore and discover the more general rule 
according to which, given four consecutive numbers 
a, a + d, a + 2d, a + 3d of an arithmetic progression, the 
difference (a + d)(a + 2d) – a(a + 3d) is 2d2. 

The path shown is an example of how successive 
generalizations can be exploited to make evident to 

students the usefulness of the algebraic language for 
doing manipulations and seeing relationships. We 
claim that here we have more, namely the possibility 
of exploiting the ambiguity of a term like “consecu-
tive” for didactic purposes. Two meanings associated 
to the term coincide in the case of natural numbers, 
but they split when passing to other domains of num-
bers. When moving the problem towards the field of 
rational numbers, the students have the opportunity 
to become aware of this double meaning, realizing 
that, according with the first meaning, there cannot 
be consecutive rational numbers, while according 
with the second meaning, but enlarging it to sequenc-
es of numbers separated to each other by a constant 
difference, new fascinating arithmetic structures 
can be glimpsed and explored. The interesting lin-
guistic-epistemological phenomenon of the splitting 
of a notion into two different ones, when switching 
from a source domain to new enlarged environments, 
already studied from several points of view (Lakatos, 
1976, and many others) appears here in a new guise 
as a learning resource. 

EDUCATIONAL OUTCOMES AND 
CONCLUSIVE REMARKS

Several studies in mathematics education have shown 
that many students’ difficulties in mathematics come 
from their inability to juggle between the daily life 
use of a word and the formal use of the same word in 
mathematics (Bardelle, 2010). On the other hand to 
have a word with different meanings and different 
uses depending on the needs of the communication 
is an advantage for people who are in possession of 
this variety. In this direction, we are convinced that 
the ambiguity of words used in mathematics rather 
than to be hidden, as most education practices usually 
do, should be exploited as resources for mathematics 
education. At the same time we are convinced that in 
order to do this in an effective way, it is necessary to 
develop deep reflections about the epistemological 
and linguistic features concerning the use of words 
in mathematics (and not only). A useful framework 
for this analysis is the CAC construct by Boero and 
Guala (2008). 

The case of the word “consecutive” examined above 
offers a particularly rich context, but it is just an ex-
ample (for an analogous investigation on the word 

“triangle”, see Castagnola & Tortora, 2009). In our 
research we have understood how the polysemy of 
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such a simple word like “consecutive” is something 
to explore with our students. This also amounts to 
doing interdisciplinary work between mathematics 
and language and to including mathematics fully in 
human sciences. 

During these years, our way of organizing mathemati-
cal activities has allowed teachers get involved to grow 
their awareness as educators, but also to gain deeper 
competence about the mathematical topics explored 
with students. The inquiry approach that inspires our 
work requires from teachers a strong ability to give 
space and attention to every proposal and idea that 
students might have and to carefully guide them. It 
also entails that the teachers be involved in the math-
ematical work in an atmosphere genuinely oriented 
to discovery, where even the possible lack of a prompt 
response to students’ questions does not appear as a 
diminution of their authority. As written by Radford 
(2014, p. 19): “Teachers and students are in the same 
boat, producing knowledge and learning together. In 
their joint labour, they sweat, suffer, and find gratifi-
cation and fulfilment with each other.” 
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ENDNOTES

1. This cognitive behaviour suggests that the usual 
curricular hierarchy, according to which equations 
are treated rigorously before systems should perhaps 
be partly revised. 

2. While in 2n, 2n + 2, 2n + 4, 2n + 6, the term 2n is used 
as a standard way of representing an even number, 
and +2, +4 and +6 are standard ways of adding two units 
at a time, in 2n + 1, 2n + 3, 2n + 5, 2n + 7, the term 2n + 1 
is a common representation of a generic odd number 
but 2n + 3 (and 2n + 5 and 2n + 7) has to be obtained 
from (2n + 1) + 2, where the two +’s play different syn-
tactic-semantic roles.
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Collaborating in the transformation of algebraic expres-
sions results in a need to share the structures of algebraic 
expressions with the help of language. However, little is 
known about how such structures are conveyed through 
language – and adopted by the other participants of 
the discourse. This paper uses a functional-pragmat-
ic frame work to reconstruct the patterns behind such 
discourses in which structures are shared. With this 
framework, a transformation gap between conveying 
and adopting structures is identified: Where the first 
speaker can only refer to the original expression to pro-
pose a transformation, the other partici pants are able 
to refer to both the original and to a transformed expres-
sion for seeing structures. 

Keywords: Structure sense; language; discourse; algebra. 

INTRODUCTION

Algebraic expressions can be flexibly interpreted. 
Arcavi (2005) shows the different ways for students 
to make sense of symbols and symbolic expressions. 
Drouhard and Teppo (2004) argue that an algebraic 
expression, especially one with a distributive struc-
ture, can be interpreted in many different ways ac-
cording to a specific context that can be flexibly ac-
tivated, e.g. as a function. Accordingly, the students’ 
transformation of an algebraic expression is not a 
mechanical activity that is aimed at a predefined 
result, but an activity that is guided by the students’ 
individual interpretations of the structures of expres-
sions. Furthermore, these structures in an algebra-
ic expression do not solely exist „on their own“, but 
come into existence in the activity of transforming an 
expression (Rüede, 2012). For example, when trans-
forming the expression 5ab + a – 5b – 1, there are dif-
ferent ways to apply the distributive law; students 
may either relate 5ab to a or to – 5b. Each relation 
gives way to a different notion of the structure of the 

expression and, through this, a different application 
of the distributive law. 

In a collaborative task of transforming an algebraic ex-
pression, students coordinate their joint activity to a 
large part with the help of language. More specifically, 
they explicate their interpretations of the structures 
of the expression in the discourse with the help of 
language to other students. Being able to use language 
to describe structures in algebraic ex pressions helps 
students to see structures, as language provides the 
means to share perceived structures with the teacher 
and with others. However, little is known about how 
students convey a structure in an algebraic expres-
sion to other participants of a discourse through lan-
guage - and how language affects how the latter ones 
can adopt these structures. 

STRUCTURE SEEING AND ITS 
CONNECTION TO LANGUAGE

In order to conceptualize the transformation of alge-
braic expressions not as a mechanical activity, but as 
activity that is guided by the interpretations of struc-
tures in algebraic expressions, the model of structure 
sense was introduced (Linchevski & Livneh, 1999) and 
used and refined in various studies (Novotná & Hoch, 
2008). As structures of algebraic expressions emerge 
in the activities with the expressions, structure sense 
is here regarded as structure seeing, that is, as an in-
terpretative activity of relating identified parts of an 
expression to each other and to the whole expression 
in order to decide for a transformation of this expres-
sion (Meyer, 2014). 

When translating a text into an algebraic expression, 
students link the structure of the text with the algebra-
ic expression they are constructing. There is evidence 
that the translation of a task into an algebraic expres-
sion is linked to the understanding of language (Duru 
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& Koklu, 2011). A sequential translation of the words 
of a text from left to right might be a way for students 
to structure an expression also in a sequential way 
(e.g. Clement, 1982). However, other evidence suggests 
that students do not usually translate this way, but 
rather first look into the meanings of the words before 
translating (Capraro & Joffrion, 2006).

The link between the structure of the text and the 
algebraic expression, however, is not direct, but me-
diated by meta-linguistic awareness, that is, by the 
ability of a student to “reflect on and analyze spoken 
or written language” (MacGregor & Price, 1999, p. 
451). Based on their empirical results, MacGregor 
and Price conclude that “this conscious awareness 
of language structures and the ability to manipulate 
those structures may be a manifestation of deeper cog-
nitive processes that also underlie the understanding 
of algebraic notation” (1999, p. 462). 

Caspi and Sfard (2012) give insight into the elements 
of language that can be used for expressing struc-
tures in algebraic expressions, like compound noun 
phrases and objectified processes. While they do not 
look into students’ seeing of structure, they conceptu-
alize different levels of how elements of an algebraic 
expression can be expressed with language and what 
level of generality this language indicates. The first 
level is that of processes, where language is used to 
express a calculation. The calculation is presented 
in the order in which it is executed. The second is the 
granular level around the description of a calculation; 
it still describes a process but also contains compound 
clauses that make procedural elements into an object, 
like “the sum of…is”. The third is the objectified level 
where complex calculations and processes can be 
substituted with objects or objectified descriptions, 
e.g. “A product of a sum of two numbers”. Caspi and 
Sfard find out that 7th graders are, under certain cir-
cumstances, capable of talking about algebraic expres-
sions on the third level. Their argument suggests that 
when students, at a higher level, can express complex 
structures in a more condensed way with language, 
then more complex structures are available to par-
ticipants. 

My study is focused on the language that students use 
to express the structures of algebraic expressions in 
order to share them with others, and how this affects 
which structures are adopted by others or put to the 
fore in an algebraic expression - and which are dis-

regarded. In order to look into this question, I use a 
functional-pragmatic framework which is based upon 
an activity-theoretical notion of linguistics. Within 
a functional-pragmatic analysis, the genesis and 
transformation of the propositional content in the 
discourse can be traced back to the linguistic actions 
and ‘linguistic reality’ of participants.

METHODOLOGY: A FUNCTIONAL-
PRAGMATIC ANALYSIS

The aim of a functional-pragmatics analysis has been 
formulated by one of its main representatives as fol-
lows: 

In short, the fundamental aim of Functional 
Pragmatics is to analyze language as a sociohis-
torically developed action form that mediates 
between a speaker (S) and a hearer (H), and 
achieves – with respect to constellations in the 
actants’ action space […] - a transformation of defi-
ciency into sufficiency with respect to a system of 
societally elaborated needs. (Redder, 2008, p. 136)

Functional Pragmatics regards a communicative act 
as driven by a purpose. Speaker and hearer equally 
participate through speaker-actions and hearer-ac-
tions in this ‘purpose-guided’ activity. The inner 
structure of the speech acts of both speaker and hear-
er are synchronized with respect to „topics, focus of 
attention, previous (speech-)actions, etc (p. 138)“ be-
tween an extralinguistic reality (depicted by P), the 
mental reality of speaker (∏s) and hearer (∏h) and the 
linguistic reality (p) (Redder, 2008). 

In this study, the extralinguistic reality (P) is the struc-
tures of algebraic expressions, while the aim of the 
functional-pragmatic analysis is to reconstruct the 
linguistic reality (p), in this case, the structures that 
are actually shared in the discourse. The students’ 
joint action of transforming an algebraic expression 
is a „trans for mation of deficiency into sufficiency“ in 
relation to the „extralinguistic reality“ of algebraic 
ex pres sions - it is about the speaker transmitting 
identified structures of algebraic ex pres sions (∏h) to 
the hearer (∏h), so that speaker and hearer arrive at 
a mathe matically acceptable transformation („suffi-
ciency“). 

Functional pragmatics provides a tool to analyze 
how structures of algebraic expressions are made 
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available and are picked up in a com municative act 
for the purpose of finding a mathematically adequate 
transformation. This reconstruction involves two 
steps. The first step is the reconstruction of the sur-
face progression of the discourse. The second step is 
the reconstruction of the pattern behind this surface 
progression. In Functional Pragmatics, the pattern is 
what guides the participants’ actions without them 
being explicitly aware of it.  

Reconstruction of the surface 
progression of the discourse
The linguistic actions of the speaker and hearer are 
continually influencing each other; at a given time, 
both participants’ actions have an equal potential to 
influence the other’s actions. There are three qualita-
tively different categories to distinguish these struc-
tures of linguistic actions:

 ― the organization of the discourse (Ehlich, 2007, p. 
71), that is, how linguistic actions coordinate each 
others actions;

 ― the action potential, that is, the potential of the 
speakers action to bring something about in 
the hearer or vice versa, e.g. bringing about a 
deeper understanding (Ehlich, 2007, p. 71), this 
is connected with the purpose behind a speaker’s 
actions;

 ― the propositional content of the linguistic actions.

A functional-pragmatic analysis starts with separat-
ing the parts of the transcript in line with these three 
categories. First, the organization of the discourse 
is in focus. It is reconstructed by looking into those 
parts of the transcripts where speaker and hearer 
coordinate each other’s actions (e.g. by expressing 
interpersonal relations like „I’m writing, you dic-
tate“. This is driven mainly by linguistic categories.). 
Second, action potentials that are realized in a dis-
course are carved out. In the activity of transforming 
an algebraic expression, one can think of a situation 
where only procedural action potentials are realized. 
Accordingly, the activity would be about a calculation 
and about arriving at a result - this would relate to 
Caspi and Sfard’s (2012) processual level. In the anal-
ysis of action potentials, both linguistic and didactic 
categories can be put to use. Third, building upon 
the previous steps, the pro positional structure of the 
discourse is reconstructed. This includes the recon-

struction of the linguistic realities of speaker and 
hearer (∏s and ∏h). For this, didactic categories have 
to be used, as this is on the plane of the mathematical 
knowledge that is in focus in the discourse. In this step 
of the analysis, relations, dependencies, references to 
previous linguistic actions etc. are in focus. 

Reconstruction of the pattern that guides 
the students’ linguistic actions
The reconstruction of the surface progression of the 
discourse is the starting point for analyzing the ele-
mentary propositional basis. The elementary propo-
sitional basis is the reconstruction of the knowledge 
that is independent of the speakers and hearers ac-
tions. The reconstruction of this knowledge leads to 
a notion of the linguistic reality of p. In this case, the 
linguistic reality p encompasses the structures of an 
algebraic expression that are shared. The relations 
between p, P, ∏s and ∏h constitute a pattern in the dis-
course, in this case, the pattern of sharing structures 
of algebraic expressions in a discourse. 

In generalizing such a pattern, an apparatus can be 
reconstructed. An apparatus describes general pat-
terns in discourses; it is assumed that patterns are 
generalizable to other discourses of the same kind. 
In this study, the analysis aims at reconstructing dis-
cursive patterns of structure seen in regard to the 
question how structures are conveyed and adopted in 
a discourse. The pattern presented here, however, can 
only be regarded as a first approximation of a general 
pattern. The pattern has to be tested for its generality 
in other qualitative and quantitative studies. 

Background for the study 
The case study of Max and Tim presented here is part 
of a larger design research study. The larger study 
aims at promoting the students’ structure seeing by 
providing scaffolds and requiring the students to ne-
gotiate structural elements of algebraic expressions 
(Meyer, 2014). Tim and Max are 8th graders from a 
German middle school; they were chosen for the teach-
ing inter vention based on a previous assessment that 
showed that they possessed a basic understanding of 
the transformation of algebraic expressions, but a 
lack of understanding of the under lying structures 
of algebraic expressions. The teaching intervention 
consisted of three tasks with subtasks. It took 1.5h and 
was supervised by trained interviewers. 
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In the episode presented here, Tim and Max worked 
on the second task that required them to transform 
a sequence of algebraic expressions by applying the 
distributive law. The episode represents the third ex-
pression in this sequence; the students thus already 
applied the distributive law to the two previous  – 
structurally simpler – algebraic expressions. With 
each expression, the students are given the original 
formulation of the distributive law ab + ac = a(b + c) as 
a structural reference. The students already acquired 
marking strategies and were able to use them to mark 
structures and to better communicate about struc-
tural elements. In the here presented episode, the 
students start to work on the expression ab + ac + bd.

EMPIRICAL RESULTS: SHARING 
STRUCTURES THROUGH LANGUAGE

As a first step of a functional-pragmatic analysis, a 
transcript is divided into segments (letters) and sec-
tions (numbers); these segments and sections are 
heuristically refined during the analysis. The already 
refined segmented transcript is given here; the later 
analyses refer back to this transcript. 

1 Tim: 1a[writes down expression 
ab+ac+bd that is given in the task] 1bHm, 1cdo 
you want to do this? 

2 Max: 1dMhm [confirming]
3 Tim: 1eAh, wait, |2a[starts to write 

down the transformed expression a(b+c)+bd], 
2bI would do it this way, 2csimply for the rea-
son, 2dbecause of course a is there two times 
[points at the a’s in the original expression], 
2ethus ab and c [points at a, b and c in the trans-
formed expression]

4 Interviewer: 2fMhm [confirming]
5 Tim: 2gJust taken times [german for 

multiplicating]. 2hAnd there [points at bd] 
just only the b times d is taken. |

6 Interviewer: 3Ok
7 Max: |4aYes, 4bI believe that too, 5abec-

ause only there is a [points at ab and ac], 5band 
there is no a in front [points at bd] 

8 Interviewer: 5cMhm
9 Max: 5dThis is why one just has to put 

this in brackets [points at b+d] 5eand this other 
one [points at bd] comes behind the brackets. 
| 

The action potential and the 
organization of the discourse
The organization of the discourse that is established 
by Tim is oriented at Max and at the Interviewer. At 
first, Tim organizes his actions in relation to Max. In 
1a, he writes down the task while at the same time 
addressing Max: “Do you want to do this?” (1c). On 
the one hand, Tim wants Max to participate in the 
solution of the task. On the other hand, he is delay-
ing the discourse, so that he ‘squeezes out’ some time 
to think about the algebraic expression at hand. The 
invitation to participate is held up in 2b, where Tim 
explains: “I would do it this way” - this discursive ac-
tion implies that there might be another way and that 
Max is expected to propose one. Later on, Max directly 
relates to Tim’s transformation of the expression in 
2a, confirming it (4a). With this he indicates, that the 
propositional core of his speaker actions are related 
to Tim’s reasoning. In addition Max organizes his 
speaker actions in relation to Tim’s actions (2b), by 
suggesting that he “believes that too” (4b). 

The action potential revolves around transforming 
the expression in a way that is acceptable to the in-
terviewer/teacher, while making themselves under-
standable to each other. As Tim’s actions are directed 
at the interviewer, who is regarded as a knowledge-
able teacher, he likely wants to give correct reasons 
and to use “mathematical” language (the literate reg-
ister). Furthermore, Tim needs Max to understand 
and approve of his transformation, so that they to-
gether can arrive at a common solution. Thus, he has 
to make himself understandable to Max. On the other 
hand, the purpose of Max’ actions is to confirm Tim’s 
transformation of the expression. As shown above, 
the discourse is organized in a way that requires Max 
to give an individual perspective. Accordingly, Max 
has to relate to Tim’s actions but also has to give his 
own perspec tive on the transformation.

The propositional content of 
Tim’s linguistic actions 
The basis of the propositional content is the written 
expression a(b + c) + bd that Tim writes down in 2a. The 
following speaker actions all relate to this expression 
(depicted in Figure 1; relation diagrams are an element 
of a functional-pragmatic analysis). In his first actions, 
Tim explains the first part of the expression, namely   
a(b + c) , by saying “because of course a is there two 
times” (2d). The following speaker actions depend 
on this latter speaker action with “thus” and “just”. 
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“Thus” refers to the propositional content “a is there 
two times”, while “just” is connected to the proposi-
tional content “ab and c” (2g). Tim gives two reasons 
for the expression a(b + c) that build upon each other. 
In his later speaker actions, Tim also explains “bd”. He 
is connecting this action with “and” to his previous ac-
tions, while at the same time he uses deictic gestures/
words (“there”) to connect his action to the algebraic 
expression (2h). The expression “just only” stands 
in contrast to “two times”. In this way, Tim expresses 
that in case of bd, there are no two variables. This is 
further indicated by using the phrase “taken times” 
(multiplication) for explaining both a(b + c) and bd. 

The algebraic expression in Tim’s linguistic reality 
has two corner stones. The first cornerstone is how 
often a certain variable is there. This is expressed 
by “a is there two times” and “only the b times d”. The 
second cornerstone is the multiplication; on the one 
hand, “ab and c […][are] just taken times”, on the other, 

“b times d is taken”. Both the first and the second part 
of the expression rest on this cornerstone. This way 
it connects the first and second part of the expression. 

The relations of the cornerstones show how Tim struc-
tures the algebraic expression. “ab and c” is dependent 
on “two times”. In other words, leaving out one a is a 
result of a being there two times, where leaving out 
a is explained by the multiplication.  These relations 
are expressed by Tim as causal relations through “be-
cause”, “thus” and “just”. The second part of the ex-
pression bd is structured in the same way as the first 
part. This time, there is only a single variable b. The 
multiplication is not based on leaving out a variable. 
In summary, Tim structures the expression accord-
ing to how many times a variable occurs, and how 
this results in a certain form of multiplication - one 
time by leaving out a variable (transformation of the 
first part) and one time by not changing the variables 
(transformation of the second part).

The propositional content of 
Max’s linguistic actions
The basis of the propositional content of Max’ linguis-
tic actions is both the ori ginal expression and its trans-
formation. In 5a, Max relates deictically to the original 
expression, pointing at the expressions ab and ac and 
referring to them with “there” (5a“because only there is 
a [points at ab and ac]”); in 5b, he refers the same way 
to bd. In both 5a and 5b, he argues for the existence/
absence of a in the subex pressions of the original ex-
pression. In 5d and 5e, Max deictically relates to the 
trans formed expression, but at the same time builds 
an argument upon the perceived pro perties of the 
original expression (indicated by the arrow that en-
compasses both 5a and 5b in Figure 1), saying “this is 
why one just has to put this [points at (b+d)] in brack-
ets” (5d). Max uses the same relations in structuring 
the second part of the ex pression (5e). Both parts of 
the expression, (b + c) and bd are connected with “and” 
and by stating the position of bd in relation to (b + d) 
(“behind the brackets”). 

The structure of the algebraic expression in Max’ 
linguistic reality has only one cornerstone. This cor-
nerstone is the (non-)existence of  in the subex-
pressions of the original ex pression. However, Max’ 
conclusions that are based on the original ex pression 
are, additionally, supported by features of the trans-
formed expression. Thus, his conclusions are cir-
cular: Max’ justification why one has to transform 
the original expression into (b + d) requires that (b + 
d) is already given as a transformation. In this way, 
Max’ justification dissolves the logic of the process of 
transformation. In summary, in Max’ notion of the 
distributive law ab + ac = a(b + c) the two a’s on the left 
side directly result in the bracketed expression (b + d). 

Pattern of sharing algebraic 
structures in a discourse
At first sight, it seems that the linguistic realities of 
Tim and Max have one element in common, namely 
the existence of the variable a. However, on closer in-
spection, Max’ reasoning is based upon the existence 

Figure 1: Reconstructed surface progressions of sections 2 and 5 
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and non-existence of a in the sub expressions, while 
Tim’s reasoning is based on how often a (or b) exists 
in the original expression. Thus, in the course of this 
short episode, Max has ‘only’ picked up one aspect of 
Tim’s structuring of the expression. 

At second sight, the linguistic realities of Max and Tim 
are both based on the original and the transformed 
expression. However, when comparing the proposi-
tional content of Tim’s and Max’ discursive actions, it 
becomes apparent that Tim’s speaker actions depict a 
process, in the sense that they relate to his steps of the 
trans formation: Each step relates the transformations 
to features of the original expression. In other words, 
the mathematical objects, on which he builds, are lo-
cated in the original expression, while his deductions 
are about properties of the trans formed expression. 

In contrast, Max’ speaker actions are abstracted from 
the process of transformation. While his arguments 
are based upon objects in the original expression, they 
require at the same time the existence of the trans-
formed expression. Thus, Max’ reasoning is based 
upon the equation as a whole, that was established 
by Tim and that links the original ex pression and the 
transformed expression. Max’ structuring may be a 
result of the or ganization of the discourse. As shown 
above, the discourse requires Max to relate his struc-
turing of the expression to Tim’s transformation and 
reasoning behind this trans formation. Perhaps, in the 
logic of the discourse, Max has no other option as to in-
clude the transformed expression into his reasoning. 

In a broader perspective, the pattern behind Tim’s 
and Max’ negotiation of the structure of the expres-
sion can be described as a transformation gap. This 
trans formation gap describes that the one discursive 
participant who comes up with a first transformation 
has different means to justify his structuring than 
the hearer, who can work with both the original ex-
pression and the proposed transformed expression. 
Accordingly, while the speaker needs to connect the 
original expression with the transformed expression 
in order to give reasons for his transformation, the 
hearer can base his reasoning on the original expres-
sion together with the transformed expression. As a 
result, at a given point in a discourse about algebraic 
structures there may exist two different structures of 
an algebraic expression: One structure that follows 
the logic of the transformation, and one that discon-
nects from this logic and focuses on the transformed 

expression together with the original expression. To 
the participants, these structures may seem compat-
ible or even equal, while in reality these structures 
are very different. 

DISCUSSION

Although just one case has been discussed in this 
paper, the reconstructed pattern of conveying and 
adopting the structures of algebraic expressions in 
a discourse may yield significant consequences. For 
example, teaching interventions that focus on pro-
moting students’ structure seen by implementing ac-
tivities of negotiating different structures of algebraic 
expressions have to account for the transformation 
gap. One way to do this could be to connect algebra-
ic expressions more strongly to other mathematical 
objects like functions, so that the different ways of 
structuring an expression come into light in refer-
ence to this object. The possibility of translating the 
algebraic expression into another representation may 
further act as a scaffold. 

The functional-pragmatic analysis has proven its 
potential to look into the foundations of the stu-
dents’ ways of conveying and adopting structures 
in algebraic expressions. The reconstruction of the 
surface process, resulting in the reconstructed lin-
guistic realities of speaker and hearer, as well as the 
reconstruction of the pattern behind this, may also 
be suitable for addressing other research questions, 
where “deficiency [is transformed] into sufficiency” 
in students’ discourses.  

In further studies, the generality of the here present-
ed pattern has to be addressed. It has to be addressed, 
if it is part of a larger structure-sharing-pattern that 
is typical for discourses about algebraic expressions. 
A more systematic view on different discourses of 
sharing structures may show, if such a pattern is com-
mon to discourses about algebraic structures. This 
might also lead to a deeper understanding of students’ 
resources in regard to structure seeing and of coor-
dinating transformations. 
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This paper focuses on teaching processes in the mathe-
matics classroom. We adopt Sfard’s communicational 
framework to address the question: What were the teach-
ing actions that seem to promote learning? To address 
the question, we analyzed four lessons taken from two 
courses about functions which were studied by elementa-
ry-school prospective mathematics teachers. We identi-
fied a teaching mechanism that seems to relate teaching 
to students’ learning. This mechanism includes flexible 
and dynamic transition between mathematizing (talk 
about mathematical objects), subjectifying (talk about 
the participants) and personifying (talk about human 
participants acting upon mathematical objects). We 
also identified several types of personifying talk. 

Keywords: Classroom communication, personifying, 

teaching routine.

INTRODUCTION

This paper focuses on teaching processes in a math-
ematics classroom. Teaching and learning processes 
are interwoven, both enacted concurrently by dif-
ferent participants. Studying both under a similar 
lens could provide holistic insights about classroom 
processes. This study is a part of a larger study about 
teaching and learning, however, here we mainly focus 
on teaching. Let us look at the following two turns, 
uttered by an instructor:

Please look at the board. Ok, here we have a graph 
that describes a connection between two vari-
ables. The question is, what type of questions we 
could answer using this graph and which ques-
tions we cannot answer by this graph.

The y, yes, it is always y that changes according 
to x, ok? We have y that changes depending on, or 
according to, x, ok?

It is obvious that both excerpts are from a mathemat-
ics lesson. This certainty stems from the words used 
(graph, variables), and the articulation (y changes 
according to x). However look at the board is a gener-
al classroom saying about participants‘ actions, not 
specifically related to mathematics. 

Indeed, during mathematics lessons we could expect 
the participants to talk about the participants of the 
discourse (about the students and teacher, as in: 
take out your books, or could you please write it on the 
board?), or about mathematical objects (this is a graph 
of a constant function).  Looking back at the above ex-
cerpts, we find that some parts are compatible with 
this division: Please look at the board is about human 
participants; whereas it is always y that changes ac-
cording to x is about mathematical objects. However, 
we have other sayings that do not fall under those 
two categories. Rather, they are at the intersection 
between the two sets, and relate to both –human par-
ticipants and mathematical objects: here we have a 
graph that describes…  We suggest that this type of 
teacher‘s interwoven talk about both - participants 
and the mathematics is important for students‘ learn-
ing. 

To learn more about this phenomenon, we closely 
examined 4 lessons out of two cohorts of data: tran-
scribed video-recordings of two courses about func-
tions that were studied by elementary-school prospec-
tive mathematics teachers. The question we asked: 
What were the teaching actions that seem to promote 
students’ learning?

mailto:talli.nachlieli@gmail.com
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TEACHING PRACTICES AND ROUTINES

Sfard (2008) has defined the teaching-learning agree-
ment, which is:

a situation that arises when the discursants are 
unanimous, if only tacitly, about at least three 
basic aspects of the communicational process: 
about which is the leading discourse, about the 
discursants’ own respective roles as those who 
learn or those who teach, and about the nature of 
the expected change. (Sfard, 2008, p. 299). 

From this we (Heyd-Metzuyanim, Tabach, & Nachlieli, 
submitted) derive that a pedagogue (teacher or in-
structor) is a person who assumes the role of the lead-
ing participant in the discourse while the student is 
a person who assumes the position of the follower in 
the discourse. Indeed, these definitions fit the Greek 
etymology of pedagogy which is a person who leads 
the child. 

In that sense, pedagogy is a particular form of com-
munication, and communication, in turn, is a particu-
lar type of activity (Sfard, 2008, p. 296). Combining 
this view with Cultural Historical Activity Theory 
(Engeström, 1987; Roth & Lee, 2007), one realizes that 
the main distinction that can characterize a particular 
activity as pedagogical is its motive. Leont’ev, Roth 
and Radford (2011) write: “The chief difference in ac-
tivities is to be found in the difference of their objects 
or motives. An object/motive (fishing, for instance) is 
what endows the activity with a particular intent. But 
activities involve also actions and specific contextu-
al methods and means to carry out these operations” 
(p. 6).

Combining activity theory with the communicational 
definitions, we arrive at the conclusion that pedagogy 
can be defined as the communicational activity which 
motive is to bring a change in the learners’ discourse 
towards a leading discourse. Such a definition of ped-
agogy includes all communicational actions (verbal, 
non-verbal, emotional, etc.). 

Contrary to the common division between content 
and pedagogy (see Leinhardt & Steele, 2005) we offer 
an alternative lens – that of dividing pedagogical ac-
tivity into subjectifying (talking about human partic-
ipants) and mathematizing (talking about mathemat-
ics). Subjectifying is thus a communicational activity 

which motive is to produce narratives about people 
while mathematizing is a communicational activity 
which motive is to produce mathematical narratives. 
Since pedagogy includes both mathematizing and 
subjectifying, it becomes obvious that different (and 
something conflicting) motives can be enacted within 
the same activity. 

In this paper, the instructors of the course are the 
pedagogues and the teaching actions are the pedagogy. 
We focus on specific teaching-routines (exchange rou-
tines, Leinhardt & Steele, 2005), that seem to promote 
students‘ learning. For that purpose we focus on the 
instructor‘s talk during whole-class discussions.

RESEARCH QUESTION AND PARTICIPANTS

The research question of the study reported in this 
paper is the following: What were the teaching actions 
that seem to promote students’ learning?

The data for this paper are taken from a project that 
focuses on identifying learning and teaching process-
es. The data for the project include transcribed video 
recordings of two mandatory first-year courses about 
functions for elementary-school prospective teachers 
studying at a college of education in Israel. The two 
courses were similar in their content and goals, and 
were taught in consecutive years, by two different in-
structors. Each course included 18 students. All of the 
students have already learned functions and graphs 
in high school algebra. The students were all older 
than 19. They vary in age and background, as well as 
in the level of mathematics that they studied in high 
school. The two course instructors (Ellice and Talli), 
hold a PhD in mathematics education and have been 
teaching at the college for over ten years.

All lessons had a similar structure: opened by a whole-
class discussion, followed by group-work (of 3–4 stu-
dents). The students then reconvened for a summariz-
ing whole-class discussion. The groups were formed 
by the students and remained stable throughout the 
course. All 12 lessons of each of the course were video-
taped and transcribed. During the lessons, field notes 
were taken and students‘ written work was collected. 
During group-work, the work of two specific groups, 
chosen randomly, was recorded and transcribed. 

For the study reported in this paper we chose to close-
ly examine 4 lessons out of the 24, 90 minutes lessons, 
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the first and last in each course (We chose lesson 2 
rather than lesson 1, as during the 1st lesson consent 
forms were distributed, and the study was explained.) 
The choice to focus on two different courses did not 
originate in intent to compare the courses, but to al-
low us to examine whether a certain identified rou-
tine is teacher-specific or could be a part of common 
teaching routines. 

OVERVIEW OF ELLICE’S LESSONS
In the 2nd lesson, the students were asked to solve an 

algebraic task (see Figure 1).

While working in small groups, the students were 
given small cubes to build the structures and answer 
a sequence of sub-questions aimed at guiding them 
towards the generalization of the pattern. They then 
reconvened to discuss the task.

As early as this 2nd lesson, students talked about var-
ious representations of the mathematical task: draw-
ing, relation, formula, reversed formula and pattern. 
These words, although relating to representations of 
mathematical objects are not the common terms used. 
A formula and reversed formula were suggested in 
the form of algebraic expressions (; ). 

The task given in Ellice‘s 12th lesson was taken from 
Friedlander and Tabach (2001). This task included 4 
situations each described by a different representa-
tion (story, table, graph and algebraic expression). The 
task included a set of sub-questions that guided the 
students to first relate to each of the representations 
alone and then connect between them. 

The task given in the 12th lesson was more complex 
in two aspects: (1) the number of situations described, 
and (2) the number and type of representations pro-

vided. The task in the 2nd lesson included a drawing 
and tangible representations of one sequence only, 
whereas that in the 12th lesson included 4 situations 
described by 4 different representations (story, table, 
graph and algebraic expression). The students were 
asked to compare the phenomena. That is, there was 
a development in terms of the complexity of the given 
task. The tasks chosen by Ellice in both lessons includ-
ed various sub-questions that helped students focus 
on specific representations and relations amongst 
them.

OVERVIEW OF TALLI’S LESSONS

The task provided in Talli‘s 2nd lesson included 5 dif-
ferent graphs and 5 verbal situations (e.g. The amount 
of fuel in the tank changes according to the distance that 
the car rides.) The students were asked to connect be-
tween them and support or refute claims by relating 
to data provided by the graphs. 

The task given in Talli‘s 12th lesson was: 

In your summer job as a salesman, you could 
choose one of three earning methods: (1) 100 NIS 
for each working day and 35 NIS for each sale, (2) 
80 NIS for each working day and 40 NIS for each 
sale, (3) 250 NIS for each working day and 5 NIS 
for each sale. Which would you choose? Explain 
your choice.

This task includes a verbal description of 3 situations 
that could be modeled by a function. The students 
were asked to compare between them. The task did 
not include reference to any representations. Also, 
it did not include sub-questions that could guide the 
students in their attempts to solve the task. This is in 
contrast with the task given in the 2nd lesson which 
included a graphic mediator and guiding questions. 
Also, the task given in lesson 12 asked for comparing 
alternatives whereas the task in the 2nd lesson asked 
for describing a situation provided by a graph. 

METHOD OF ANALYSIS 
To address the research question, we analyzed the en-
tire whole-class discussion in each of the lessons. We 
focused on the instructors‘ talk in these discussions. 
We segmented the instructor‘s turns into clauses 
which were then analyzed. Thoroughly examining 
all the clauses uttered by the instructors, we noticed 
that they talked either about mathematical objects 

The following is a sequence of the three first structures 
in a series of structures. How many cubes are needed to 
build the nth structure?

Figure 1: The sequence discussed in class during Ellice’s 2nd 

lesson
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(mathematizing – y changes according to x) or about 
the classroom participants (subjectifying – look at the 
board). However, we identified a third type of commu-
nication that is a sub-type of both mathematizing (be-
cause it speaks about math objects) and of subjectify-
ing (because it speaks about persons). We call this last 
type – personifying, and define it as non-alienated talk 
about mathematical objects. Therefore, to analyze the 
data we categorized the clauses of the instructors‘ talk 
according to three categories: mathematize, subjectify 
and personify. Chi square test was used to determine 
whether differences are significant. 

We further identify types of personification accord-
ing to what we call the distance between the human 
actor and the mathematical object: one could act upon 
an object directly (e.g. what can you say about the in-
terception point?), could describe her actions upon 
the object (e.g. how do we know that the claim is true?) 
or talk about how others would or should act upon 
the objects (e. g. how do you think a 7th grade student 
would solve this problem?). We name these categories 
as distance 0, 1 or 2. 

FINDINGS

In this section we characterize instructors‘ talk to 
learn about how the instructor‘s choice of words pro-
moted students‘ learning. We refer to three categories, 
(1) mathematizing, (2) subjectifying, and (3) personi-
fying. Table 1 presents the number of clauses used by 
each instructor during the whole class discussions 
which were analyzed, and the (number) and percent-
ages of clauses in each category. This table includes all 
the analyzed data that is discussed next. From Table 
1 we see that both instructors used all three types of 
talk in each lesson. However, the distribution amongst 
the three types is significantly different (chi-square 
test, p<0.002). 

Moreover, as can be seen from Table 2, in both of 
Ellice‘s lessons, the number of personifying clauses 

(cls.) is significantly higher than that of mathematiz-
ing or subjectifying, while there is no significant dif-
ference between the number of mathematizing cls. or 
subjectifying cls. In Talli‘s 2nd lesson, subjectifying 
was significantly lower than personifying or mathe-
matizing, while there was no significant difference be-
tween mathematizing and personifying. In Talli‘s 12th 
lesson, personifying was significantly higher than 
mathematizing and subjectifying, and mathematizing 
was significantly higher than subjectifying. In each of 
Talli‘s lessons there was significantly more talk about 
mathematics objects than about participants.

Next, we refer to changes between the two lessons for 
each instructor. Table 3 presents whether the changes 
in instructor‘s talk between her two lessons are sig-
nificant (chi-square). We find that in Ellice‘s lessons, 
mathematizing is significantly higher in lesson 12 
than in lesson 2 (p<0.001) and personifying is signifi-
cantly lower (p<0.001). In Talli‘s lessons, subjectifying 
and mathematizing are significantly lower in lesson 
12 than in lesson 2 (p<0.001). At the same time, person-
ifying is significantly higher (p<0.001). 

There is no clear tendency between the two instruc-
tors as for the differences in the three types of talk. 
This will be referred to in the discussion. 

N Math Subject Person

Ellice lesson 2
316 (53) 17% (69) 22%

(194) 61%

Ellice lesson 12 157 (48) 31% (37) 23% (72) 46%

Talli lesson 2 219 (96) 44% (28) 13% (95) 43%

Talli lesson 12 220 (52) 24% (8) 4% (160) 73%

Table 1: Categorizing teachers’ talk: mathematizing, subjectifying 

and personifying

Inst. Lesson Personifying cls.,  
Mathematizing cls., Chi-
square value 

Personifying cls. ,  
Subjectifying cls., Chi-square 
value

Mathematizing cls., 
Subjectifying cls., Chi-square 
value

Ellice 2 194, 53, 80.8*** 194, 69, 59.2*** 53, 69, 2.1

12 72, 48, 4.8* 72, 37, 11.1*** 48, 37, 1.42

Talli 2 95, 96, 0.005 95, 28, 41.7*** 96, 28, 41.7***

12 160, 52, 55.0*** 160, 8, 138.0*** 52, 8, 32.3***

Chi square test with df=2.  *p<0.05 **p<0.01 ***p<0.001

Table 2: Chi-square test for comparing the type of talk within each lesson
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INSTRUCTORS’ PERSONIFYING TALK 

We identify three types of personifying talk accord-
ing to the distance between the human actor and the 
mathematical object. Table 4 presents the number of 
personifying clauses uttered by each instructor dur-
ing the whole class discussion and the (number) and 
percentages of clauses in each category. From Table 
4 we see that both instructors used all three types of 
personifying talk in each lesson. However, the distri-
bution amongst the three types is significantly differ-
ent (chi-square test, p<0.001). Moreover, as can be seen 
from Table 5, in both of Ellice‘s lessons, distance-0 
personifying is significantly higher than distance-1 or 
distance-2, while there is no significant difference 
between distance-1 and distance-2. In Talli‘s 2nd 
lesson, distance-2 personifying was significantly 
lower than the other distances. In Talli‘s 12th lesson, 
distance-0 personifying was significantly higher 
than distance-1. 

Next, we refer to changes between the two lessons 
for each instructor. Table 6 presents whether the 

changes in the number of the instructor‘s personify-
ing cls. between her two lessons are significant (chi-
square). We find that in Ellice‘s lessons, distance 0 
personifying is significantly higher in lesson 12 than 
in lesson 2 (p<0.001), while distances 1 and 2 are signif-
icantly lower (p<0.05). In Talli‘s lessons, the person-
ifying talk remains unchanged related to the three 
distances. 

DISCUSSION  

This study is a part of a large-scale study in which 
teaching and learning processes were analyzed. Here 
we only refer to the teaching actions and specifically – 

Inst. Mathematizing cls.   Subjectifying cls. Personifying cls.

Les. 2, Les. 12, Chi-square value Les. 2, Les. 12, Chi-square value Les. 2, Les. 12, Chi-square value 

Ellice 53, 48, 11.9*** 69, 37, 0.181 194, 72, 10.3***

Talli 96, 52, 20.0*** 28, 8, 12.2*** 95, 160, 38.8***

Chi square test with df=1.  *p<0.05 **p<0.01 ***p<0.001

Table 3: Chi-square test for comparing lesson 2 and lesson 12 for the same teacher

Inst. Lesson N Distance-0 Distance-1 Distance-2

Ellice 2 194 (91) 47% (56) 29% (47) 24%

Ellice 12 72 (52) 72% (12) 17% (8) 11%

Talli 2 95 (55) 58% (40) 42% (1) 1%

Talli 12 160 (94) 59% (64) 40% (2) 1%

Table 4: Categorizing teachers’ personifying cls. according to the 

distance between the human actor and the mathematical object

Inst.

Les. Dist. 0, Dist. 1, Chi-square value Dist. 0, Dist. 2, Chi-square 
value

Dist. 1, Dist. 2, Chi-square value

Ellice 2 91, 56, 8.33** 91, 47, 14.0*** 56, 47, 0.876

Ellice 12 52, 12, 25.0*** 52, 8, 32.3*** 12, 8, 0.8

Talli 2 55, 40, 0.124 55, 1, 52.1*** 40, 1, 37.1***

Talli 12 94, 64, 5.7* 94, 2, 88.2*** 64, 2, 58.2***

Chi square test with df=2.  *p<0.05 **p<0.01 ***p<0.001

Table 5: Chi-square test for comparing the type of personifying cls. within each lesson

Inst. Distance 0 Distance 1 Distance 2

Lesson 2, Lesson 12, Chi-square 
value

Lesson 2, Lesson 12, Chi-square 
value

Lesson 2, Lesson 12, Chi-square 
value

Ellice 91, 52, 13.5*** 56, 12, 4.11* 47, 8, 5.51*

Talli 55, 94, 0.018 40, 64, 0.109 1, 2, 0.02

Chi square test with df=2  *p<0.05 **p<0.01 ***p<0.001

Table 6: Chi-square test for comparing lesson 2 and lesson 12 for the same instructor
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to teachers’ talk due to space limitations. Findings 
from this study point to phenomena that suggest dis-
cursive mechanisms that could connect teaching and 
learning processes in general.

It seems reasonable to expect that during a lesson in 
mathematics an instructor would talk either about 
the participants (e.g., open your books, work in groups) 
or about the mathematical objects (e.g., the function is 
positive for x<4). However, from this study it is appar-
ent that there is a third type of talk – about human par-
ticipants acting upon mathematical objects (e.g., when 
we move on the graph), and that this talk is prevalent. 
Figure 2 presents personifying as the overlapping 
between mathematizing and subjectifying. 

We did not find a similar pattern in the two courses re-
garding personifying. In Ellice‘s lessons, personifica-
tion was used vastly in lesson 2 whereas in Talli‘s – in 
lesson 12.  To make sense of this finding, we examined 
each of the lessons. 

In Ellice‘s 2nd lesson there were several students‘ 
sayings that we could relate to Ellice‘s choice to per-
sonify. One is a student‘s publicly uttered saying of I 
got lost. Several other students joined this statement. 
Another, is the fact that while working on the task 
in small groups, at least 2 groups could not find the 
expression that mediated the given sequence, and 
therefore felt that they cannot solve the task. That 
is, the instructor faced a situation in which she had 
to make the mathematics accessible to her students. 
The way of doing it included personifying, in gener-
al and using distance-2 personifying, in particular. 
Personifying has the potential to make the mathe-
matics more accessible to the learner as it includes 
talk about human who acts on mathematical objects. 
The distance-2 personifying includes others‘ actions 
on objects. This could protect the learner as it places 
someone else in the front, facing the mathematical 
objects. With that, it provides the learner with a role 
of judging someone else‘s actions on the mathematical 
objects. That is, it has the potential to both empower 
the student and protect her. Such expressions from 

the students were not uttered in Ellice‘s 12th lesson. 
This is coherent with our finding that Ellice‘s math-
ematizing was significantly higher in lesson 12, and 
her personifying was significantly lower. Likewise, 
distance-2 personifying was significantly lower in 
lesson 12. 

In Talli‘s 12th lesson, in which personifying talk was 
significantly higher, we could not find explicit sayings 
of students‘ frustration. However, the students‘ initial 
responses to the task given in lesson 12 were local and 
surprised the instructor at this late stage of the course. 
Therefore, the instructor had to find a way to help 
students identify a reasonable strategy with which 
they could address the task. Thus, make the relevant 
mathematics accessible to them. 

That is, we suggest that the personifying routine en-
acted by the instructor is strongly related to students‘ 
talk, and aims at enabling them to participate in the 
mathematics discourse by making this discourse 
more accessible to them.

Earlier, we stated that subjectifying is a communica-
tional activity which motive is to produce narratives 
about people while mathematizing is a communica-
tional activity which motive is to produce mathemat-
ical narratives. What, then, is the motive for personi-
fying talk as a communicational activity? It seems that 
the motive is related to the activity of participation. 
That is, it seems that this is a communicational action 
whose motive is to produce mathematical narratives 
by first promoting students’ participation and engage-
ment in the mathematical discourse.

To substantiate conclusions from this work, larg-
er-scale studies are needed, which will focus on rela-
tions between teaching and learning in general, seek-
ing teaching-routines that promote learning. Also, 
they will focus on the specific discursive-routine of 
personifying aiming to define the when and the how 
of this routine.   

Figure 2: Distribution of mathematizing, personifying (in grey) and subjectifying talk
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The significant role of language in mathematics teaching 
and learning is not a new phenomenon. Investigating 
bilingual mathematics learners is complex and research 
has demonstrated that language switching practices 
are also complex and involve not only social and cul-
tural aspects, but also cognitive aspects. However, little 
investigation has been undertaken into the specific 
role of languages and their influences on conceptual 
activity at undergraduate level. The framework, and 
future research directions, presented in this paper aim 
to investigate further the cognitive aspects of bilingual 
learners and their use of their languages, when engaged 
in conceptual mathematical activity. 

Keywords: Language, conceptual mathematical activity, 

bilingualism, framework. 

INTRODUCTION

In this paper we will present a theoretical framework 
to support empirical research investigating bilingual 
students’ use of their two languages as they engage in 
conceptual mathematical activity at undergraduate 
level. The need for such a framework has arisen from 
the authors’ previous research findings and develop-
ment of new research directions within the area of 
language and mathematics education. Comparisons 
of the Irish and English languages demonstrates that 
there are differences between the languages in terms 
of syntax and semantics and that this may impact on 
the processing of mathematical text, and advantage 
those learning through the medium of Irish. However, 
what is difficult to conclude, without further investi-
gation, is whether differences between the languages, 
and when/how they are used, have a differential im-
pact upon cognitive processing (Ní Ríordáin, 2013). 

Previous studies in the Irish context demonstrate that 
a significant relationship exists between performance 
on mathematical word problems and language profi-
ciency, with bilingual students with high proficiency 
in both languages performing better mathematical-
ly (Ní Ríordáin & O’Donoghue 2009). In particular, 
high proficiency in Irish had a strong correlation with 
performance in mathematics (through the medium 
of English) for students in the transition from Irish-
medium primary to English-medium second level 
mathematics education. National testing in mathemat-
ics and English at primary level reveals that students 
in Irish-medium primary education perform the 
same or better than students in all-English medium 
education in both mathematics and English (Gilleece, 
Shiel, Clerkin, & Millar, 2011). Similarly, at third level 
education, when examining high-ability bilingual stu-
dents, it was found that some students found it easier 
to undertake operations and to process ideas in Irish 
(as opposed to English) and displayed greater com-
prehension of the mathematics problems, an ability 
to self-correct, to select appropriate features in the 
problem and displayed knowledge of their strategies 
(Ní Ríordáin & McCluskey, 2012). 

The significant role of language in mathematics teach-
ing and learning is not a new phenomenon. Given 
the marked growth of cultural migration, the focus 
on education for economic development and the em-
phasis on English as a language for learning, we have 
become acutely aware of the importance of recognis-
ing the significance of language in learning mathe-
matics (Barwell, Barton, & Setati, 2007). However, 
little investigation has been undertaken in relation 
to the specific role of learners’ different languages 
when engaged in mathematical learning. There has 
been a focus more on the social, rather than cognitive 
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functions of code switching/use of languages. In 
particular, there is a need for the development of a 
coherent and integrated interpretive framework for 
investigating whether differences in languages, and 
their use, by bilingual mathematical learners have 
a differential impact upon cognitive mathematical 
processing, while recognising the social aspects of 
learning. Fundamental to this is the commognitive 
approach for the study of mathematical learning by 
Sfard (2008, 2012).

SFARD’S COMMOGNITIVE APPROACH 

Sfard’s (2008) interpretive framework for examining 
learning is founded on the premise that thinking is 
a form of (interpersonal) communication, and that 
learning mathematics entails extending one’s dis-
course. If assuming the premise that mathematical 
learning involves initiation into the discourses of 
mathematics, then learning mathematics involves 
substantive discursive changes for learners (Sfard, 
2008). Accordingly, mathematics teaching involves 
facilitating such changes. Sfard also emphasises that 
communication, and being part of a community, is 
central to facilitating such teaching and learning 
activities. A discourse is distinctive in terms of a 
community’s practices in relation to word use, visual 
mediators, endorsed narratives and routines (Sfard, 
2008, pp. 133–135). Sfard (2012, p. 3) distinguishes be-
tween two types of mathematical learning (change in 
discourse): object-level learning (expansion of what is 
known already, mainly accumulative) and meta-level 
learning (change of meta-discursive rules, more rad-
ical and complex kind of change). 

Overall, the commognitive framework ‘provides a uni-
fied set of conceptual tools with which to investigate 
cognitive, affective and social aspects of mathematics 
learning.’ (Sfard, 2012, p. 1). A key purpose is to help 
make sense of classroom processes, while being re-
sponsive to the intricate nature of complex data gen-
erated in a teaching and learning setting. What we aim 
to do in this paper is to build on this approach within 
a bilingual university mathematics education context 
and to potentially assist towards the reification of the 
framework into tools that can help analyses within 
such a context.

A FRAMEWORK FOR THE STUDY 
OF BILINGUAL LEARNERS

The following sections firstly provide an overview 
of key perspectives and aspects of consideration in-
forming the proposed framework. Key principles 
of the framework are then presented, taking a com-
mognitive standpoint (Sfard, 2008). The approach, 
proposed in this paper, is the result of a number of 
research studies undertaken in the Irish context to 
comprehend the intricacies of bilingual mathematical 
learning.

Perspective on discourse
Given the central aspect of discourse to the commog-
nitive approach it is important that we outline our 
perspective of discourse. We see mathematics as a 
discourse and a type of communication (Sfard, 2012). 
Discourse is more than just language. As defined by 
Gee (1996, p. 131):

A Discourse is a socially accepted association 
among ways of using language, other symbolic 
expressions, and ‘artifacts,’ of thinking, feeling, 
believing, valuing and acting that can be used to 
identify oneself as a member of a socially mean-
ingful group or ‘social network,’ or to signal (that 
one is playing) a socially meaningful role.

By employing this definition, Discourses are more 
than verbal and written language and the use of tech-
nical language; Discourses also involve communities, 
points of view, beliefs and values, and pieces of work. 
Moschkovich (2012, p. 95) utilises the phrase ‘mathe-
matics Discourse practices’ to draw attention to the 
fact that Discourses are embedded in sociocultural 
practices as they evolve from and involve partici-
pation in communities, while also cognitive as they 
involve thinking, signs, tools and meanings. This 
concept of Discourse will inform the examination of 
conceptual mathematical development of bilingual 
learners, linking both the cognitive and social aspects 
of use of languages. 

Perspective on bilingualism
Our work is with bilingual (Irish and English) mathe-
matics learners and it is essential to incorporate this 
concept into the proposed framework. Defining bilin-
gualism is difficult, in particular defining whether a 
person is bilingual or not. Definitions vary between 
political, social and cognitive perspectives. Grosjean 
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and Moser-Mercer (1997) developed the notion of a 
“complementarity principle” in which they emphasise 
that bilinguals use their languages for different pur-
poses and in different domains of life. Dominance in 
one language over the other is common among bilin-
guals depending on the use and function of each lan-
guage. Also, studies involving bilinguals tend to focus 
on only one language, but due to the complex nature 
of the issue of bilingualism, aspects of both languages 
need to be taken into account. For the purpose of the 
development of a framework for the investigation of 
bilingual mathematical learners, we utilise Grosjean’s 
(1999) concept of a continuum of modes with mono-
lingual and bilingual at each endpoint. Therefore, by 
utilising the concept of a continuum of modes (mono-
lingual to bilingual), it facilitates an understanding 
of bilinguals using their languages independently 
and together depending on the context/purpose. This 
is further supported by Cummins’ (1980) Common 
Underlying Proficiency (CUP) model of bilingualism, 
which is a more apt description of language construc-
tion within the mind. Outwardly both languages are 
different in conversation. However, internally, both 
languages are merged so that they do not function in-
dependently of one another, with a central processing 
unit that both languages contribute to, access and use. 
We support a non-deficit view of bilingual learners 
and view language(s) as a resource and a support for 
learning.

Language and mathematics
In our research we are primarily concerned with the 
role of bilingual students’ languages in mathemat-
ics teaching and learning. We consider mathemati-
cal language as a distinct ‘register’ within a natural 
language, e.g., Irish or English or French, which is 
described as “a set of meanings that is appropriate 
to a particular function of language, together with 
the words and structures which express these mean-
ings” (Halliday, 1975, p. 65). One aspect of the math-
ematics register consists of the special vocabulary 
used in mathematics and it is the language specific 
to a particular situation type (Gibbs & Orton, 1994). 
However, the mathematics register is more than 
just vocabulary and technical terms. It also contains 
words, phrases and methods of arguing within a given 
situation, conveyed through the use of natural lan-
guage (Pimm, 1987). The grammar and vocabulary 
of the specialist language are not a matter of style 
but rather methods for expressing very diverse 
things. Therefore, each language will have its own 

distinct mathematics register, encompassing ways 
in which mathematical meaning is expressed in that 
language. The process of learning mathematics inevi-
tably involves the mastery of the mathematics register 
(Setati, 2005). Developing a learner’s mathematical 
register provides them with analytical, descriptive 
and problem solving skills within a language and the 
communicative competence necessary for successful 
participation in mathematical discourses.  

Conceptual mathematical activity
Given that our research is concerned with undergrad-
uate bilingual students, it is essential to examine the 
mathematics register and discourse development at 
this level. The nature of cognitive growth in the devel-
opment of university-level mathematical thinking has 
borne considerable scrutiny over the past half-centu-
ry (Thurston, 1990; Asiala et al., 1997).  The associated 
literature presents a strong case that the maturing 
over time of the mathematical thinking of profession-
al mathematicians is such that mathematical concepts 
become distilled and perfectly understood - by them.  
As a result of such sustained processing, all forms 
of former struggle or lack of understanding are po-
tentially removed from memory. Thurston (1990) 
captures eloquently the power and satisfaction of 
arriving at deep understanding after struggle. In the 
process, he suggests that “once you really understand 
it and have the mental perspective to see it as a whole...
You can file it away, recall it quickly and completely 
when you need it, and use it as just one step in some 
other mental process” (Thurston, 1990, p. 847). At its 
core, these authors refer to what has been identified 
and named by Tall and Vinner (1981) as concept image 
for any given mathematical concept such as, for ex-
ample, function or limit. 

It proposes a genetic decomposition for a given math-
ematical concept. This encompasses knowing what 
it means to understand such a concept and knowing 
how such an understanding can be constructed by a 
student, thus providing a model of cognition for the 
concept. Such a model plays a key role also in alterna-
tive cognitive theories for mathematical thinking and 
learning such as those due to Tall and Vinner (1981) 
where it is referred to as concept image. A genetic de-
composition attempts to identify the layers of mean-
ing, robustness and accuracy that arise as a particular 
concept is revisited in a variety of contexts. Thus, for 
example, a student may initially recognize a function 
only when given a specific (single) formula to compute 
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values.  The student restricted to this level will have a 
narrow range of comprehension. A deeper level will 
allow the student to appreciate and manipulate the 
notion that a function can receive inputs, operate on 
them and return outputs, thus giving greater flexi-
bility. Encapsulation into an object occurs when the 
student recognizes the process as a whole, namely 
that a function is a rule between two sets of values 
with certain properties. Once constructed, objects 
and processes can be interconnected in various ways. 
Given that language influences thought and thinking, 
and that each language will have its way of construct-
ing the concept, insight into the role and effect of bi-
lingualism/languages on conceptual mathematical 
learning is critical.

Language and learning
Developing a student’s mathematics register and par-
ticipation in discourse is facilitated by language(s). 
Language is an essential instrument of thought and 
is necessary for understanding and combining ex-
periences, and is required for organising concepts. 
The general consensus in cognitive science is to pre-
sume that thinking is occurring in some language 
(Sierpinska, 1994). Vygotsky was one of the earliest 
theorists to begin researching the area of learning 
and its association with language. He concluded that 
language is inextricably linked with thought – “the 
concept does not attain to individual and independent 
life until it had found a distinct linguistic embodiment” 
(Vygotsky, 1962, p. 4). Although a thought comes to life 
in external speech, in inner speech energy is focused 
on words to facilitate the generation of a thought. If 
this is the case, it raises an important question – does 
the nature of the language used affect the nature of the 
thought processes themselves? The transition from 
thought to language is complex as thought has its 
own structure. Thought is mediated both externally 
by signs and internally by word meanings (Vygotsky, 
1962). It is the use of language as an instrument of 
thinking that is of importance, as well as its effect on 
cognitive processing. Therefore, thought is intimately 
linked with language and ultimately conforms to it. 
The linguistic relativity hypothesis proposes that the 
vocabulary and phraseology of a particular language 
influences the perceptions and thinking of speakers 
of that language (Whorf, 1956). Accordingly, each 
language (e.g. Irish or English) will have a different 
cognitive system that will influence concept forma-
tion and development. We support the premise that a 
language influences our mathematical thinking, but 

not necessarily to a degree that it determines our 
entire mathematical thinking (Sternberg, 2003). We 
propose that there are differences ‘between linguis-
tically distinct versions of “the same discourse”.’ (Kim, 
Ferrini-Mundy, & Sfard, 2012, p. 2) which correspond-
ingly impact on mathematical learning. 

Learning mathematics
Mathematics and learning is arbitrated through 
mathematical discourse practices, spoken and writ-
ten language, symbols, gestures, etc. (Forman, 1996). 
Learning is situated within and involves participa-
tion in a community. Within a mathematics classroom, 
learning involves participation in the discipline of 
mathematics, in conjunction with the specific type of 
mathematics associated with the context (e.g. school 
mathematics, undergraduate mathematics, etc.) 
(Forman, 1996). When examining bilingual mathe-
matics learners, it is important to address the social 
use of language within the context, not just its role 
in cognition. Moschkovich (2012) emphasises the 
importance of learning being illustrated within the 
sociocultural practices of a given setting. Importance 
is placed on describing learners and communities, 
and seeing culture as a set of practices and actively 
involving participants (Gutiérrez & Rogoff, 2003). 
Accordingly, bilingualism is described in terms of 
participation and use of language(s) by learners for 
different purposes and particularly in the context of 
mathematical discourse. 

Effective teaching and learning is a complex endeav-
our. In correlation with a teacher’s strategies, the 
teacher’s own philosophical beliefs of instruction 
are harbored and governed by the student’s back-
ground knowledge and experience, situation, and 
environment, as well as the learning goals set by the 
student and teacher. Moschkovich (2012) emphasises 
the importance of discerning between the conditions 
of learning and the processes for learning, and the 
importance of describing the curriculum, courses/
programmes and teaching and learning approaches 
utilised that yield successful outcomes for different 
groups of learners. Therefore, it is important to exam-
ine and report on the characteristics of the learning 
environment such as whether there are opportuni-
ties for: speaking, listening, reading and writing; con-
structing meaning and knowledge; high expectations 
for all students; rejection of a deficit view of learners 
(AERA, 2006; García & González, 1995). In particular, 
we adopt a non-deficit perspective of bilingual learn-



Bilingual mathematics learners, conceptual mathematical activity and the role of their languages (Máire Ní Ríordáin and Aisling McCluskey)

1458

ers and focus on the strategies that teachers use in 
developing conceptual mathematical learning.

Key principles of the proposed framework
Adopting a commognitive approach to research, com-
bined with key concepts discussed in the previous 
sections, give rise to several key principles and meth-
odological considerations for investigating under-
graduate bilingual mathematics learners and their 
use of their languages. Primarily, the authors’ frame-
work is underpinned by a non-deficit view of bilingual 
learners where languages are viewed as a resource 
and essential for thinking. Within the framework, 
thinking can be defined as the activity of communi-
cating with oneself (Sfard, 2012). Accordingly, mathe-
matical thinking can be viewed as a Discourse, which 
in turn is a form of communication and involves being 
part of a mathematical community. Taking this view, 
the language or language(s) in which mathematics is 
being learned becomes an important issue for consid-
eration. Within the framework, development refers 
to a change in Discourses (Sfard, 2012). Accordingly, 
we refer to the development of a student’s mathemat-
ical Discourse as opposed to the development of the 
student themselves. Development of Discourses is a 
product of collective human actions and the context 
acknowledged. Given that the authors are primarily 
concerned with conceptual mathematical learning/
activity, we are concerned with meta-level develop-
ments in Discourses. Since our focus is on bilingual 
mathematics learners, it is important that an analysis 
of the language(s) in which the discourse is taking 
place is conducted. The successive meta-discourses 
relating to topics of interest, for example functions, 
need to be documented and compared between lan-
guages. 

By adopting a commognitive approach (Sfard, 2012), 
there are a number of key principles that need to be 
adhered to and which have been adapted to reflect 
our framework. Firstly, Operationality: the purpose 
of the research is to share useful stories. Therefore, it 
is important that the researcher’s articulation avoids 
misunderstandings and is unambiguous and clear 
(p. 9). Second is Completeness: the researcher must 
choose the entire discourse related to the topic as the 
unit of analysis (p.9). Here, we add to the principle in 
that when examining bilinguals, we must document 
this discourse (plausible developmental trajectories) 
in both languages e.g. the discourse relating to ‘lim-
its’ or ‘functions’ in both English and Irish. It should 

involve an analysis of successive meta-discourses in 
each language. Third is Contextuality: any kind of in-
teraction is an event of learning (p. 9). It is essential 
that the researcher documents the interactions as 
fully as possible and analyses utterances within the 
context of the conversation. We extend this, in the 
given context, to the need to examine when and how 
bilingual students/researchers use their language(s). 
The next principle is that of Alternating Perspectives: 
when analysing data, the researcher alternates be-
tween being an insider and an outsider of their own 
ways of using words (p. 9). This is heightened within 
a bilingual context in that consideration must be giv-
en to both languages, their use in the given context 
and possibility of significant differences between 
researcher and participant discourses. Finally, the 
principle of Directness: when describing their study, 
the researcher presents things said (and done) by the 
participant first, not their own interpretation of the 
data (p. 9). It is hoped that these over-arching concepts 
and principles will foster insights into bilingual math-
ematics learning and contribute to the development 
of research.

CONCLUSION AND FUTURE RESEARCH

At the National University of Ireland (NUI) Galway, 
students have an option to study Mathematics through 
a bilingual approach (Irish and English) during their 
first year of undergraduate education. This provides 
an opportunity to investigate language choices made 
by undergraduate students and to identify how these 
choices impact on conceptual mathematical activity. 
We propose to address the following research 
questions via an investigation that is supported by 
the proposed framework.

 ― In what ways do formal discourses in English 
and Irish on, for example ‘limits’, follow different 
developmental trajectories in undergraduate 
mathematics education? ‘Limits’ are chosen as an 
example given its ubiquitous nature; for example, 
limits of sequences, of functions at points and 
at infinity, summation of series, derivatives and 
integrals. Developmental trajectories refer to 
identifying all of the discourses related to ‘lim-
its’ that an Irish-speaking and English-speaking 
person is likely to encounter (Sfard, 2012). This 
can be in everyday life or specifically related to 
a teaching and learning context (e.g. second and 
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third level in this case) – all potential trajectories 
need to be listed.  

 ― What is the nature of and reasons for meta-level 
developments of mathematical discourses in bi-
lingual students? Meta-level development refers 
to a change in the discourse that results in ex-
pansion of the discourse relating to a particular 
topic(s) and is a complex type of change, rather 
than an ‘object-level’ change that is more accu-
mulative in nature (Sfard, 2012, p. 3). Therefore, 
meta-level development is primarily concerned 
with conceptual mathematical activity.

 ― How are languages (Irish and English) utilised in, 
and how do they impact on, meta-level develop-
ments in mathematical discourses of, for example 

‘limits’, in undergraduate mathematics education? 
By detailing the developmental trajectories in 
each language it is expected to demonstrate how 
learning can be affected by the characteristics of 
a language, while also examining when and how 
bilingual students utilise their languages. 

Investigating bilingual mathematics learners is com-
plex and research has demonstrated that language 
switching practices are also complex and involve not 
only social and cultural aspects, but also cognitive as-
pects. The framework, and future research directions 
presented in this paper, aim to investigate further 
the cognitive aspects of bilingual learners and their 
use of their languages, when engaged in conceptual 
mathematical activity.
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Mathematical reasoning through a broad 
range of communicational resources 
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Mathematical reasoning is examined in this paper that 
investigates student – teacher communication at the 
front of the classroom where students gave account of 
their solutions to a mathematical problem. Adopting 
a multimodal approach we have discerned how stu-
dents communicate reasoning through a broad range 
of communicational resources, such as speech, drawing, 
hand gestures and the like. We adopted Toulmin’s (2003) 
model of argumentation as means to capture different 
elements of the reasoning given account for in the com-
munication. 

Keywords: Reasoning, argument, multimodality, 

communication. 

INTRODUCTION 

The importance for students to participate in math-
ematical reasoning has been highlighted in interna-
tional frameworks (e.g., Niss & Jensen, 2002). In the 
ongoing PhD study, of which this paper is a part, the 
interest of exploring and understanding reasoning 
concerns reasoning in public, as a communicative 
act, not as a thinking process. Specifically, we, in this 
paper, investigate reasoning when students explain 
solutions to problems while positioned at the front 
of the classroom. The teacher takes part in the com-
munication as well.  

Reasoning is a collective and human transaction, 
in which we present ideas or claims to particu-
lar sets of people within particular situations or 
contexts and offer the appropriate “reasons” in 
their support. (Toulmin, Rieke, & Janik, 1979, p. 9) 

An argument is described by Toulmin and colleagues 
(1979) as a “train” of reasoning. Various works have 
studied observable reasoning or argumentation in 
mathematics education, some focusing on collective 

or collaborative argumentation/reasoning with a 
focus on peer interaction (e.g., Bjuland, Cestari, & 
Borgersen, 2008; Mueller, 2009). When analysing 
students’ collaborative reasoning, Bjuland, Cestari 
and Borgersen (2008) highlighted the need for paying 
attention to more than writing and speech when ana-
lysing arguments. Another example is Meaney (2007), 
who considered the role of gestures in strengthening 
arguments when analysing levels of mathematical 
literacy demonstrated by students. 

Within research on mathematical communication, 
there is a trend to recognise the multimodal nature of 
communication even though it continues to privilege 
language as the primary mode (Morgan & Alshwaikh, 
2012). In order to analyse and understand communi-
cation in mathematics education, a multimodal ap-
proach has been adopted (e.g., Björklund Boistrup, 
2015; Morgan & Alswaikh, 2009). While taking on a 
multimodal approach, Morgan and Alswaikh (2009) 
drew attention to the duality of a mode, the drawing 
mode: as the process of drawing and as the outcome, 
the picture itself. By using a multimodal approach 
when analysing reasoning expressed in student  – 
teacher communications we hope to contribute to 
the understanding of reasoning as a sequence of 
communicative acts. In this study we investigate how 
students display reasoning in student – teacher com-
munications through a variety of communicational 
resources when giving account of solutions at the 
front of the classroom. 

ANALYTICAL FRAMEWORK 

Drawing on Toulmin and colleagues (1979), we view 
an argumentation as consisting of ways of giving rea-
sons and hence we understand argumentation and 
reasoning as strongly connected (Krummheuer, 1995). 
In order to examine reasoning we adopt Toulmin’s 
model of argumentation (2003). When analysing com-
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munication, as constituted through a wide range of 
resources (such as speech, symbols, pictures and the 
like), we added to the framework a multimodal social 
semiotic perspective.  

TOULMIN’S MODEL OF ARGUMENTATION 

In mathematics education, Toulmin’s model of argu-
mentation has been used, sometimes in a reduced 
form (e.g., Krummheuer, 1995, 2007; Meaney, 2007), 
consisting of four of the six original elements of the 
model, where three of them represent the “core” of 
an argument. The elements are the data/ground, the 
warrant and the claim/conclusion, as well as the forth 
element, backing. The model that serves as the basis 
for our analysis of reasoning is presented in Figure 1.

In a mathematical argument, a conclusion (Figure 1 
top right), is presented, often in the form of a solution 
of a solved problem. In order to support a conclusion, 
some underlying foundation for the conclusion needs 
to be produced, which is to be seen as the grounds 
(Figure 1 top left), often consisting of facts or infor-
mation. In order to justify the step between the pre-
sented grounds and the asserted conclusion, the war-
rant, can be provided (Figure 1, middle). The warrant 
is provided to show that starting from the grounds, 
the step to the given conclusion is appropriate and 
legitimate. The backing (Figure 1, bottom), gives au-
thority to the warrant and can, like the grounds, of-
ten be expressed in the form of facts. Toulmin (2003) 
described the process of argumentation as G because 
W so C. Participants in a communication do not nec-
essarily structure their contribution clearly accord-
ing to the elements of the model but they may still be 
identified through a detailed analysis of interaction 
(Krummheuer, 1995). We adopted this model as an 
analytical tool in order to reconstruct reasoning in a 

situation where students presented solutions to prob-
lems while positioned at the front of the class and with 
the teacher participating in the communication.   

Multimodal social semiotics 
Focusing on communication, we adopted a multimod-
al social semiotic perspective (Kress, 2010) in order to 
describe and understand the mathematical reasoning 
in classroom communication. Kress (2010) stressed 
that resources for communication are to be under-
stood as more than writing and speech. They include 
images, facial expressions, gestures, and the like. The 
various communicational resources form multimodal 
ensembles which constitute the communication. In 
our study we focused on the semiotic resources that 
communicated mathematical reasoning identified 
in classroom interaction. Through this perspective 
we have analysed how the participants used various 
semiotic resources in their interaction to present 
reasons in support of a conclusion, which is regard-
ed as the central activity of reasoning when forming 
an argument (Toulmin, et al., 1979). The multimodal 
approach affected transcripts as well as analysis and 
findings, which will be described further on. 

METHODOLOGY 

The context of this paper is a case study (in the sense 
of Hammersley & Gomm, 2009) including four classes 
from grade three to five. In this particular paper we 
draw on data from two episodes from a grade four 
class. The episodes are from two presentations at the 
front of the classroom about solutions to a problem. 
In order to identify potential reasoning in the pres-
entations we structured and analysed data from the 
two videorecorded episodes in the following way. The 
episodes were transcribed taking on a multimodal ap-
proach by using the software Videograph. Videograph 
made it possible to note the semiotic resources the 
participants were using in terms of our interest in 
communicated reasoning. With a focus on elements of 
an argument, the following semiotic resources were 
identified as being relevant for this study: speech, 
written text (including symbolic notions), drawings, 
and hand gestures including the use of manipulatives 
(physical resources). This provided an overview of the 
communication (see Excerpt 1 as an example), making 
it possible to identify different elements of an argu-
ment according to Toulmin’s model and a multimodal 
approach.  

Figure 1: Toulmin’s reduced model of argumentation 

warrant

backing

conclusionground
So

Since

On account of
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ANALYSIS 

The teacher’s aim with the lesson which we give ac-
count for in this paper, was to involve the students in 
a problem solving activity, in pairs or small groups, as 
well as a whole class activity where selected solutions 
were presented. These presentations incorporated 
students explaining and justifying their reasoning. 
The mathematical content of the lesson was fractions 
and the task was formulated as follows: 

It is a sport/field day and it is sunny and warm. 
The school will provide food and drinks. Each stu-
dent is given ¼ of a liter of juice to drink. There 
are 16 students. How much juice will be needed? 

At the end of the lesson the teacher asked some of the 
groups to present their solutions to the class. We pres-
ent two episodes from the presentations, including 
analysis and findings. We chose these episodes since 
they represent two different solution strategies and, 
as will be shown, different aspects of student reason-
ing. 

Description of Episode 1: Stina 
starts with the bottles  
In this first episode, Stina and her friend are standing 
in front of the class in order to present their solution. 
The teacher asks Stina, who is doing the presentation 
of her group’s work, how she initially was “thinking”. 
Stina tells the teacher that she drew four bottles and 
then she starts to draw one bottle on the board. Being 
asked by the teacher regarding the number of bottles, 
Stina clarifies that they started off with drawing one 
bottle. Stina continues to talk but is interrupted by 

the teacher who wants to know what they did with the 
bottle. Stina starts to explain that they counted (inau-
dible continuation) and is prompted by the teacher to 
do that with the bottle on the board. Stina divides the 
bottle into four parts and clarifies in words what she 
did. Asked for a clarification as to why they divided the 
bottle into four parts, Stina responds verbally “For it 
to be...since everybody could drink one quarter”. The 
follow up by the teacher to Stina’s response is yet an-
other question, concerning the meaning of a quarter. 

In Excerpt 1 (see Table 1) we give account for the con-
tinuation of the interaction. Actions taking places at 
the same time are beside each other horizontally. 

Stina continues to draw a third and a fourth bottle, 
each time dividing each bottle into four parts, while 
explaining verbally how many they were enough for, 
ending up with “and then they were enough for six-
teen” with a picture of four bottles each divided into 
four parts. The student – teacher interaction contin-
ues for a while and includes another student as well, 
ending with a verbal clarification that there are four 
liters needed for sixteen students. 

Analysis of the first part of Episode 1 
In Episode 1 we could identify in the analysis the 
elements of Toulmin’s model. Here we give account 
of our analysis of the first part of Episode 1. Stina’s 
argumentation here is made in relation to the teach-
er’s question regarding how many can drink from the 
first bottle. The image of the four parts of the bottle 
visualized how many that could drink from one bot-
tle (Excerpt 1, row 5) and this was also expressed by 
speech, “four” (row 6). This utterance (picture+speech) 

Speech Writing/Drawing Hand gestures

1 Teacher (T): How many 
parts should one divide it 
into then?

T takes a magnetic circle di-
vided into four quarters and 
puts it on the white board.

Stina (S) points at the 
parts in the bottle

2 S: Four

3 T: Four. Ok T points at the circle

4 S: It was not enough. We 
had to do one more

S starts to draw one more 
bottle next to the first one.

5 T: How many could drink 
from the first bottle?

S divides the second bottle 
into four parts.

6 S: Four

7 T: Four. Ok

Table 1: A multimodal transcript from Episode 1 
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has been identified as the first conclusion. In Figure 
2 we summarise our analysis according to Toulmin’s 
model.

As we wrote earlier, we could identify a conclusion 
from Stina’s picture of bottle divided into four (row 
5) and speech, “four” (row 6). This utterance from 
Stina was seen as claiming that four students could 
drink from one bottle. The fact Stina appealed to as the 
foundation for claiming that four students can drink 
from one bottle was categorised as the grounds and 
was identified from her verbal response to why the 
bottle was divided into four parts “because everybody 
can drink a quarter”.  

The warrant in this specific situation has been iden-
tified in this argument by taking into account the use 
of different semiotic resources. The warrant in this 
case should answer to why one can claim a bottle to 
be enough to four students (the conclusion) if each 
person is given a quarter (the grounds). The warrant, 
which we construed here, was: a whole can be divided 
as four quarters, which was communicated by Stina 
through drawing, speech, and hand gesture. More 
specifically, we construed that she communicated that 
a whole can be divided into four in her drawing where 
she divided the bottle (as a whole) into four parts to-
gether with her saying “we divided it into four parts”. 
That each part is to be seen as a quarter was stated 
in her answer to the teacher’s question on why they 
divided the bottle into four parts. Stina also indicated, 
according to our analysis, that one of the drawn parts 
of the bottle was to be considered as a quarter when 
pointing (row 1), a bit vaguely, towards the parts of 
the bottle when asked by the teacher what a quarter 

means. The teacher also contributed to the argument 
by stating, “Four” (row 3) as a verbal reinforcement 
to Stina’s verbal response “Four” (row 2) to her own 
question regarding how many parts it (the bottle as 
a whole) can be divided into. 

Further evidence, authorizing the warrant, was cate-
gorised as backing: a whole equals four quarters, and 
in this episode was identified in the image of the mag-
netic circle consisting of four quarters of a circle put 
at the white board by the teacher (row 1). 

Description of Episode 2: Frida 
starts with the mugs 
After two groups had presented their solution, it was 
time for Frida to present her and her friend’s solu-
tion. With both Frida and the teacher standing at the 
whiteboard, the teacher asks Frida to start with how 
she began to solve the problem. Frida begins to explain 
how she started off solving the problem by stating “I 
started to draw each student’s mug”. While express-
ing this Frida starts to draw a rectangle on the white 
board, emphasizing it by also pointing at it. While be-
ginning to draw a second rectangle/mug (from now on 
referred to as “mug”) the teacher asks her how much 
each mug contains. Frida completes drawing the sec-
ond mug and writes ¼ in the first mug saying, “There 
was”… without continuation. The teacher expresses 
the content in each mug verbally “There was a quarter 
in each mug” and puts a quarter of a magnetic circle 
over the first mug drawn by Frida. Frida writes ¼ in 
the second mug and continues to draw six more mugs 
on the same row and eight mugs on a row below end-
ing up having drawn sixteen mugs in total (Figure 4)   

A bottle can be divided as four 
quarters

W

One bottle is enough for four 
students

C

Everybody is given a quarter  
(of a litre)

G

Four quarters equals a whole

B

So

Since

On account of

Figure 2: Elements of Stina’s argument in Episode 1 
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The teacher asks Frida how many quarters she had 
but Frida does not respond to that question and con-
tinues “I did like this” and shows on her picture of the 
sixteen mugs how she divided the sixteen mugs into 
four groups with four mugs in each group by drawing 
a line after four mugs and after eight mugs in the first 
row, and after four mugs in the second row and partly 
after eight mugs in the second row (Figure 5). 

Here Frida is interrupted by the teacher who wants to 
return to her question regarding the number of quar-
ters. After some elaboration by the teacher regarding 
the number of quarters, she asks another student how 
many litres there are and receives the answer “Four 
litres”. As a final contribution in this presentation the 
teacher is stating. “We do know that in one litre there 
are four quarters” at the same time as she is putting 
the four quarters of the magnetic circle into a full 
circle on the white board. 

Analysis of Episode 2 
Also in Episode 2 we could, in the analyses, identify 
the elements of Toulmin’s model. We summarise our 
analysis in Figure 6.  

The presentation in Episode 2 ended up with the con-
clusion that four liters were needed. The conclusion 
was identified in Frida’s final image reflecting the 
outcome as the four groups of four mugs/quarters 
in each liter (Figure 5) and was identified in the other 
student’s verbal answer “Four liters” towards the end 
of the presentation. 

In these episodes two grounds, supporting the con-
clusion that four liters were needed, were identified. 
These grounds were identified as 1) there are sixteen 
students, and 2) each student is given a quarter each. 
The use of the first ground was identified in Frida’s 
drawing of the sixteen rectangles. Each rectangle was 
explained to illustrate a mug for each student, which 
is clear in Fridas speech “I draw all students’ mugs” 
when she started to draw the mugs. The number of the 
mugs/students, sixteen, was expressed in the draw-
ing and the picture of sixteen mugs (as well as by the 
teacher when elaborating verbally on what Frida was 
drawing). The second ground – each student is given a 
quarter– was identified when Frida wrote ¼ in two of 
the mugs as a response to a question from the teacher 
regarding how much the mug contained. After Frida 
had written ¼ in one of the mugs the teacher made 
this clearer by saying “It was a quarter in each mug”. 
A visual representation of the content was seen in the 
form of the magnetic quarter of a circle placed over 
the first mug by the teacher. 

Figure 4: A picture of the way Frida drew the mugs 

Figure 5: A picture of how Frida divided the mugs

Sixteen quarters can be divided 
into groups of four

W

Four liters are needed

C

There are sixteen students. Each 
student is given a quarter

G

Four quarters equals a whole

B

So

Since

On account of

Figure 6: Elements of Frida’s argument in Episode 2
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Our understanding is that Frida’s method, to divide 
the sixteen quarters into groups of four, leading to 
the conclusion of four litres, indicates the warrant, 
justifying the step from grounds to conclusion. We 
construed the warrant to be: sixteen quarters can be 
divided into groups of four. The grouping of quarters 
was indicated by the process of drawing a line after the 
fourth mug in the first row, after the eighth mug in the 
first row and after the fourth mug in the second row.  

In our analysis we identified that the teacher provided 
the backing by putting the four quarters of a circle, 
into a whole circle, showing: four quarters equals a 
whole. This was also identified in the teacher’s, less 
formal, verbal expression “We do know that in one 
liter there are four quarters”.  

CONCLUDING DISCUSSION  

The aim of the study was to identify reasoning in stu-
dent – teacher communication, interpreted by us as 
presenting support, (that is, reasons) for a conclu-
sion, showing how these reasons can be seen as giving 
strength to the claim (Krummheuer, 1995; Toulmin, 
2003). By using Toulmin’s model as an analytical tool 
together with a multimodal approach we have been 
able to discern aspects of reasoning. 

We investigated how students display reasoning 
through a variety of communicational resources 
when giving account of solutions at the front of the 
classroom. In our findings we discerned how both 
students in the episodes presented here displayed 
reasoning through several communicational resourc-
es but in different ways. An example of this is how 
the girls displayed a ground they both referred their 
argument to: each student is given a quarter. In the 
first episode we could see Stina displaying the use of 
this ground by picture and speech whereas in Frida’s 
case we could see how three different resources were 
identified as being used, interplaying with each other. 
In the second episode Frida displayed the ground by 
writing ¼ in a drawn rectangle (she had previously in 
speech communicated it to represent a mug to one of 
the students). Another example was when they were 
justifying the step from ground to conclusion, the 
warrant in Toulmin’s model. Stina communicated 
this both through drawing, speech and gesture and 
Frida only through drawing. This illuminates how 
essential it is for teachers, as well as researchers, to 
pay attention to what is displayed in various commu-

nicative resources in order to capture and illuminate 
the reasons, mathematical justifications, and to make 
them accessible for all students in classroom commu-
nication.  

By taking a broad range of communicative resources 
into account, this study opened up for capturing stu-
dents’ silent and non-symbolic display of reasoning 
which would have passed unnoticed if we had only 
been looking for verbal or written expressions. One 
example was our identification of Frida’s process of 
drawing lines, which we construed as her justifica-
tion, providing warrant for the conclusion consid-
ering the grounds she provided. Expressed verbally, 
such as in “A number of quarters can be divided into 
groups of four in order to get the number of wholes”, 
it would be likely to receive a response from a teacher 
as a “proper” justification. If it was only expressed in 
drawing it might go unnoticed. If the warrants, such 
as Frida’s in this case, are not noticed and elaborated 
upon, they might pass as unnoticed by other students 
in the classroom as well. Hence, an opportunity for 
the teacher to highlight and generalize mathematical 
ideas may be lost. 

We want to clarify that as researchers adopting a mul-
timodal approach, we always need to make choices of 
what resources to pay attention to in the analysis. In 
this paper we focused on reasoning and the resources 
identified as being relevant to this. If we had chosen 
to focus more broadly on the interaction itself, for 
example on feedback, other resources, such as voice, 
facial expression etcetera, would have been part of 
the transcripts and analysis as well.  
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Irish and Breton are both Celtic languages but unity 
has vanished resulting in deep linguistic differences. 
But the common heritage is still at hand when one 
considers the lexicon, grammatical peculiarities and 
number. The concept of the structure of a language im-
pacting on thought processes is referred to as the lin-
guistic-relativity hypothesis, which proposes that the 
vocabulary and phraseology of a particular language 
influences the thinking and perception of speakers of 
this language, and that each language will have a dif-
ferent cognitive system. This paper examines the Irish 
and Breton languages in their bilingual context, their 
linguistic characteristics and impact on mathematics 
learning in comparison to English and French, while 
identifying future research requirements.

Keywords: Bilingual contexts, Irish-English, Breton-French, 

linguistic differences.

INTRODUCTION

Irish and Breton are both Celtic languages, spoken in 
the western ends of Europe, namely in Ireland and 
in the western half of Brittany (France). The Celtic 
languages are divided into two branches: the gaelic 
one (the native languages of Ireland, Scotland and 
the Isle of Man) and the brythonic one (comprising 
Welsh, Cornish and Breton). Accordingly, these lan-
guages might have once been the same language or at 
least, two dialects of the same language. Nevertheless, 
centuries have passed by and unity has vanished, re-
sulting in deep linguistic differences. However, the 
common heritage is still at hand when one consid-
ers the lexicon (roughly 5 000 shared words, those 
expressing very old notions such as a house: teach/
ti; weather: aimsir/amzer; good: maith/mat, etc.) and 
grammatical peculiarities (mutations of initial conso-
nants to distinguish word gender; mutations in syn-

tactical context; ‘declined’ prepositions; word order, 
etc.). Numbers are also a domain where a very old con-
tinuity can be traced, as will be shown in this paper. 
These two languages are spoken in a bilingual context, 
involving either a Germanic language: English, or a 
Romance one: French. This is the first investigation 
of its nature into the Irish and Breton languages and 
given the rise in Irish-and Breton-medium education 
it is timely and can contribute to the development of 
policy in this area.  

In this paper we present a preliminary study which 
builds on two previous research studies in the two 
commented contexts (Ní Ríordáin, 2013; Poisard et al., 
2014), with the aim of identifying future comparative 
studies. We focus here on languages features and the 
potential of language as a resource for teaching (Adler, 
2001), while examining fundamental questions about 
relationships between mathematics and language 
(Barton, 2008). Taking into account that language 
reflects the way we see the world and that mathemat-
ics is a modelisation of the world, our questions are: 
What are the features of languages that may be of 
importance for mathematics teaching and learning? 
How can language be a potential resource for teach-
ing? How to identify mathematical particularities in 
linguistic expression? 

LANGUAGE CONTEXTS

The history of Irish and Breton is marred by stories 
of decline and persecution. However, both languages 
have experienced parallel revivals at various times. 
Since the 90’s on, there is more and more concern in 
both populations to revitalize their languages and 
avoid complete extinction (Le Pipec, 2013). Strategies 
have been and are being designed at state or near-state 
level to revitalize them, primarily by supporting them 
as medium of education. Table 1 provides a summary 
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of the number of students learning through the me-
dium of Breton and Irish.

Breton schools are part of the centralised educational 
system of France and the teaching of Breton is option-
al. There are over 15,000 pupils learning through the 
medium of Breton (with an average growth of 4 to 5% 
per year), ranging from pre-school to secondary level 
(OPLB, 2014). There are three types of Breton-medium 
schools that pupils can attend, distinguishable by two 
ways of utilising the languages. The ‘bilingual schools’ 
(Public or Catholic) devote the same amount of time 
to each language. On the other hand, Diwan schools 
claim to be ‘immersive’ schools since Breton is only 
in use during the first four years of schooling. French 
is then introduced by the age of 7 to 8 and takes up to 
half of school time by age 11. 

Irish-medium education is the norm for those grow-
ing up in the Gaeltacht regions in Ireland (mainte-
nance heritage language education). The rise in 
popularity of primary (Gaelscoileanna) and second 
level (Gaelcholáistí) immersion education (Irish-
medium education outside of Gaeltacht regions) is 
significant and has seen an increase in excess of 60% 
over the past decade. Currently, approximately 8% 
of the primary level population and 4% of the second 
level population are learning through the medium 
of Irish (Gaelscoileanna Teo, 2014).  In Ireland, there 
is an adequate supply of suitably qualified teachers 
at the primary level due to incentives and a strong 
history of native speakers pursuing a career in pri-
mary teaching. However, at second level education 
there is a shortage of suitably qualified teachers to 
deliver the specific subject areas of mathematics, sci-
ence and foreign languages through the medium of 
Irish. Similar problems arise in Brittany. However, at 
primary level a shortage of skilled speakers willing 
to become teachers can be observed. Moreover, no 
specific qualification is required for teaching through 
the medium of Irish/Breton at primary or second level 
education, although some specific teacher education 

programmes exist. Accordingly, teachers in Irish- and 
Breton- medium schools may not have high standard 
of Irish/Breton themselves, nor have an understand-
ing of the complexities of teaching and learning math-
ematics in a bilingual context. Therefore, it is not sur-
prising that teachers report difficulty in supporting 
the language development element of mathematics 
teaching and learning and a lack of suitable resources 
and textbooks to support their work (Poisard et al., 
2014).

THEORETICAL FRAMEWORK 

Bilingual education research shows that using two 
or more languages to learn and teach is not a simple 
addition of languages that enable someone to use 
one language or another (Cummins, 1984). Indeed, 
linguistic competencies and learning strategies are 
involved simultaneously and bi-/multilingualism is 
seen as a “language-sensitive approach of content” 
(Bernaus et al., 2012). In our work we see bilingualism 
as a particular form of multilingualism. 

The concept of the structure of a language impacting 
on thought processes is referred to as the linguistic-rel-
ativity hypothesis (Whorf, 1956). The basic premise of 
this hypothesis is that the vocabulary and phraseol-
ogy of a particular language influences the thinking 
and perception of speakers of this language, and that 
conceptions not encoded in their language will not be 
available to them. Hence, they are proposing that each 
language will have a different cognitive system and 
that this cognitive system will influence the speaker’s 
perception of concepts (Whorf, 1956). Whorf empha-
sises also that we act according to how we describe 
things, and accordingly different languages may clas-
sify experience in different ways. Therefore, in the-
ory, an Irish speaker/learner should have a different 
cognitive system to that of an English speaker/learner, 
influence our actions and accordingly may influence 
mathematical understanding. For example, Miura 
and colleagues (1994, p. 410) contend that ‘numerical 

Type of schools
Number of primary and second-
ary students

Total of students

Breton-medium 
education

Bilingual public schools 6 662
15 338Bilingual catholic schools 4 971

Diwan schools 3 705
Irish-medium 
education 

Maintenance heritage language 15 546
56 974

Immersion 41 428

Table 1: A comparison between Irish and Breton educational contexts 
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language characteristics (East-Asian languages) may 
have a significant effect on cognitive representation of 
number’. However, other researchers have questioned 
argued for the difficulty in applying the linguistic-rel-
ativity hypothesis and the difficulty in testing such 
claims in relation to mathematical thinking (Towse 
& Saxton, 1997). We acknowledge that this may be too 
strong of a way of viewing the influence of language 
on the mathematical thinking and less severe forms of 
this hypothesis have been proposed. We support the 
premise that language may not shape and determine 
our entire mathematical thinking, but that it may in-
fluence it to a certain degree and facilitates our think-
ing and perception (Sternberg, 2003).  Moreover, we 
are acutely aware of the importance of other factors 
such as exposure to mathematics, teaching strategies 
employed and culture as influencing attainment in 
mathematics, not just language (Towse & Saxton, 1997). 

Some research shows the positive effect of teaching 
and learning mathematics in bilingual and multi-
lingual classrooms. In particular, Adler (2001) con-
siders linguistic plurality as a possible resource 
for mathematics teaching. Three types of resources 
are distinguished: material, cultural (including lan-
guage) and human resources. Adler’s work is set in the 
post-apartheid context in South Africa where multi-
lingual classrooms and lack of material resources are 
common. She shows how linguistic diversity can grad-
ually constitute a resource for mathematics teachers. 
At primary level, Setati (2005) explored the language 
practices in primary multilingual mathematics class-
room in South Africa where the complex relationships 
between English language and home language and 
mathematics education is confirmed. 

In Australia, Edmonds-Wathen (2015) has studied the 
grammar and conceptualisation of motion in Iwaidja, 
an Indigenous language. In her paper she discuss-
es how understanding grammatical features to ex-
press spatial concepts in Iwaidja can help teachers 
of Indigenous students in their activity of teaching 
mathematics. 

Moschkovich’s (2002) research in the United States 
demonstrates that language can be a resource if a 
teacher’s focus is not only on acquiring mathemat-
ical vocabulary, but also on constructing multiple 
meanings across registers and on developing partici-
pation in mathematical practices. This is possible only 

if teachers are aware of cultural and mathematical 
needs to teach mathematics. 

The example of New Zealand is also of interest to 
us (Barton, Fairhall, & Trinick, 1998). In the 1980’s 
mathematical vocabulary was developed in Maori. 
Several general principles were adopted in making 
vocabulary decisions and “metaphors were a common 
method of vocabulary development in both formal 
and informal settings. […] An example was the devel-
opment of rere and arawhata as early translations of 
continuous and discrete as applied to statistical data, 
the methaphor being that of a flowing stream or one 
proceeding in a sequence of waterfalls” (Barton, 
Fairhall, & Trinick, 1998, p. 5). 

In the Welsh context, Jones (1993) concluded that 
there are benefits to studying mathematics in a mi-
nority language due to it being developed relatively 
recently as a language of learning and accordingly the 
terminology established tends to avoid linguistic com-
plexity and employs a more self-explanatory mode. 
Furthermore, Dowker (2005) found an advantage for 
students learning through the medium of Welsh, in 
comparison to English, in terms of how numbers and 
arithmetical relationships are expressed in Welsh. 

Our work in the Breton context (Poisard et al., 2014) 
shows that the particularities of the Breton language 
can be a resource for the teaching of mathematics, for 
example in the teaching of geometrical concepts and 
oral numeration. Teachers in this study also identified 
a lack of suitable resources as a significant issue. In 
particular, many of the material resources used in 
class are a direct translation from French to Breton, 
with no consideration of linguistic and cultural spe-
cificities. Mathematical and linguistic competencies 
are interrelated and these competencies need to be 
jointly developed by students and teachers. 

Research in the Irish context demonstrates that 
students with high ability in Irish and English perform 
better mathematically (Ní Ríordáin & O’ Donoghue, 
2009) and that a significant relationship exists 
between their performance on English mathematical 
word problems and their Irish language proficiency at 
the primary to second level education transition (Ní 
Ríordáin, 2011). A comparison of the English and Irish 
languages demonstrates that there are differences 
between the two languages in relation syntax, 
semantics and access to meaning. However, what is 
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difficult to conclude, without further investigation, 
is whether differences between the languages have 
a differential impact upon cognitive processing (Ní 
Ríordáin, 2013). 

In this paper we discuss such questions in Irish and 
Breton mathematical vocabulary and the structure 
of the languages, while demonstrating how bilin-
gual students’ languages can be a resource for them 
in mathematics learning. We examine fundamental 
questions about relationships between mathematics 
and language. 

LANGUAGES: A RESOURCE TO 
TEACH MATHEMATICS

Some linguistic peculiarities of Breton and Irish may 
influence the teaching of mathematics. The facilitat-
ing aspects and combinations of key features of Breton 
and Irish are presented here, and where appropriate 
comparisons are made with English and French. The 
findings presented here are hypothesis and further 
investigation (class observations, interviews, ques-
tionnaires, etc.) would be helpful to give some more 
precise conclusions of the influence of the use of these 
languages on bilingual learners of mathematics. We 
will not discuss dialects in this section, but Breton 
and Irish codification as united languages leave much 
space for dialect variation. In many places, it may hap-
pen that the language of books differs from oral use. 
General features of the languages (sentence length, 
topic prominence, mutations) are presented initially, 
followed by a focus on mathematical aspects (trans-
parent lexicons, oral numerations and numbers). The 
six aspects we develop here are linked to our previous 
individual research (Ní Ríordáin, 2013; Poisard et al., 
2014) and demonstrate commonalities between both 
languages. 

Sentence length
Short sentences are generally more common in Breton 
and Irish than in French and English, which demands 
less concentration for pupils and short-time memo-
ry is devoted to side-information. Shorter sentences 
lend to an easier understanding of mathematical text 
and are a desirable feature (Austin & Howson, 1979). 
English and French readers may have a greater cog-
nitive processing load, and this suggests a difference 
in mathematical processing. 

Topic prominence
Breton and Irish are strongly oriented topic-promi-
nence languages, in comparison to French and English. 
In Irish, the first word is usually the verb, while in 
Breton, it may be any word (rarely the verb). Indeed, 
in Breton, words expressing new information should 
come first in a sentence, no matter of their grammat-
ical status or function. In problem solving, this gives 
pupils clues about relevant mathematic information, 
emphasised by their position in texts (Galligan, 2001) 
in comparison to English and French. Topic promi-
nence may alter the complexity of semantic structures 
and have an effect on mathematical processing.

Mutations
They are an important feature of Celtic languages, 
either to indicate word gender or in syntactical con-
structions. As an example, in Breton after the word tri 
(three), any p- standing at the beginning of a word goes 
to f-. When combined with poent (point), three points is 
thus expressed as tri foent. The permanence of words 
through surface changes may help to understand the 
permanence of mathematical relations. Although mu-
tations would cause difficulties for pupils with good 
language skills, recognising mutated words (especial-
ly when there are many of them) may be problematic 
for those insufficiently familiar with the language. 
Such mutations are not evident in English and French. 

Transparent lexicon
A large part of the mathematical vocabulary is coined 
out of autochthonous word-roots. The meanings of 
many words have become easier to understand. For 
example, to say parallel in Breton is kenstur (same di-
rection) and in Irish is comhthreomhar (equal direc-
tionality). Many of the Breton/Irish words describe 
concepts/objects as opposed to just labelling them. 
Given that the more easily and quickly the mean-
ing of words is activated, the simpler it is to process 
mathematical text. It may help to retrieve all the 
words associated with the concept thus enhancing 
the total cognitive structure (Galligan, 2001). However, 
Celtic-made vocabulary has been criticised for vari-
ous reasons: some words might have been coined too 
quickly by amateur linguists; often these words are 
not encountered outside of the classroom; in some 
cases, they were promoted not in an effort to facili-
tate understanding, but to wash brains of a foreign 
language; concern lies with if pupils must leave and 
should adapt to a dominant-language school. This is 
why an international mathematical lexicon has also 
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been developed in Breton (Kergoat, 2012). Instead of 
kenstur, the teaching authority now recommends to 
express parallel as parallelenn. Further investigation 
is needed in terms of student learning and access-
ing meaning in more common languages/lexicon of 
English/French.

Oral numerations and counting
In this area Guitel (1975) gives an historical view of 
written numeration. One of the particularities of 
Celtic languages is the use of vigesimal system (base 
20) to say numbers. Some groupings by 20 are evident 
in French also. In old Irish, we find traces of 20 group-
ings in all tens: 30, 40, 50, 60, 70, 80, and 90. For exam-
ple 90 is ceithre fhichead a deich (four-twenty and ten, 
4×20+10). We find traces in French for 80 (quatre-vingts 
four-twenty, 4×20+10) and 90 (quatre-vingt-dix, four-
twenty-and-ten, 4×20+10) where it is literally the same 
expression as old Irish. Breton refers also to 20 for 40, 
60, 70, 80, and 90. Indeed 40 is daou-ugent (two-twenty, 
2×20), 60 is tri-ugent (three-twenty, 3×20)… 90 is dek 
ha pevar-ugent (ten-and-four-twenty, 10+4×20), etc. 
In Breton the word order is not the same: +10 is men-
tioned before and not after as in French and English. 
We have the equality (the model) 90=4×20+10= 10+4×20 
that is shown in a comparison of languages. If we make 
a link with topic prominence (above), we could argue 
that old Irish emphasises the grouping by 20 (com-
ing first) and Breton the addition on this grouping 
(+10 coming first). These characteristics are clearly 
different from the numerations/counting systems of 
English and French (base 10). We think that the com-
parison of number names could be a rich resource for 
teaching oral numeration, written numeration and 
the associated mathematical meaning. Oral numer-
ations have been studied concerning other contexts. 
For example, number words in “other” languages is 
explored by Chronaki, Mountzouri, Zahakari and 
Planas (2015) in the Greek context to experiment a 
mathematical learning activity with young children, 
and shows that the creation of a culturally responsive 
context. 

Word order to say numbers
In Breton, 32 pupils is said daou skoliad ha tregont 
(two pupil and thirty, 2 pupil and 30). The common 
name expressed by the number is in-between tens 
and units. One can notice that the name is here in sin-
gular form (skoliad) and not plural (skolidi). Indeed 
plurality is not attached to nouns but it is expressed 
by the adjunction of a number. For large numbers, 

the word order refers also to this rule. For example, 
32 000 pupils (daou vil skoliad ha tregont, 2 thousand 
pupil and 30 (thousands not mentioned), coming from 
2 000+30 000) and 3 020 pupils is (tri mil ugent skoli-
ad, 3 thousand 20 pupil, 3 000+20).  Irish is similar to 
Breton when using ordinal numbers in that the com-
mon name is positioned in-between tens and units. 
For example, 53 pens is trí pheann is caoga (three pens 
and fifty, 3 pens and 50). Large numbers generally 
preserve this order also. This can be seen as a difficul-
ty for students, but we also argue that this is a good 
opportunity to work on number sense and the place 
of each digit in a number. In Irish, different words 
are used for counting people: two, three, four etc. is 
expressed by beirt, triúr, ceathrar, to signify that the 
numbers relates specifically to counting people. The 
comparison between the languages is a good resource 
to understand the grouping by three of large numbers. 

DISCUSSION AND CONCLUSION 

This paper explored specific aspects of language con-
cerned with mathematics teaching and learning in 
relation to the bilingual contexts of Irish-English and 
Breton-French. But why does this matter? The impor-
tance of language for the teaching, learning, under-
standing and communication of mathematics cannot 
be ignored. Features of the Irish and Breton languages 
presented in this paper demonstrate the importance 
of investigating languages and their potential im-
pact on mathematical learning. For example, some 
Breton and Irish words assist in conveying meaning 
and/or permit the concept to be formed more readily. 
Similarly the sentence structure allows access to key 
information. Some promising insights are emerging, 
suggesting that students who learn through the me-
dium of Irish or Breton may experience advantages 
in terms of mathematical learning. Further investi-
gation is needed into how a particular language and 
its syntactical structure may impact on mathematical 
activity and reasoning. 

When investigating the Irish and Breton languages 
we are cognisant of the fact that we are investigating 
bilingual learners (Irish-English, Breton-French). 
The relationship between mathematics learning 
and a student’s language is complex, and further 
complicated when working with bilingual learners. 
Moreover, we need to consider mathematics as a dis-
course and that this is not a singular or homogenous 
discourse (Adler, 2001). Accordingly, mathematical 
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learners use multiple resources and languages from 
their experiences (both in and outside of the learn-
ing context) and we need to be cognisant of multiple 
registers co-existing in the learning environment. 
Bilingual learners should not be viewed in a deficit 
mode, but rather view their language(s) as a resource 
for learning mathematics. However, as demonstrated 
in this research paper, this area is under-researched 
and under-theorised. Research practices/findings 
generated from participants from a dominant group 
(e.g., monolingual speakers) assumes these to be the 
norm for all learners. We endorse a call for more 
research in relation to the role of bilingual learners’ 
different languages when engaged in mathematical 
learning (Barwell, Barton, & Setati, 2007). There has 
been a focus more on the social, rather than cognitive 
functions of code switching (Ní Ríordáin, 2013). The 
authors of this paper purpose that there is a need for 
a coherent and integrated framework to investigate 
whether differences in languages, and their use, by 
bilingual mathematical learners, have a differential 
impact upon cognitive mathematical processing. The 
authors also stress the importance of recognising 
and integrating the social aspect of learning into the 
framework and seeing language as a resource for 
mathematics teaching and learning. 
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This paper discusses issues of how to transcribe and 
analyze video-recordings when studying learning in 
small group work in mathematics. Since bodily features 
of interaction and the use of artefacts play important 
roles in mathematical reasoning, a multimodal ap-
proach to transcribing is necessary. Thus, the theoretical 
grounding for transcriptions has to be in accord with the 
perspective on learning adopted in the analysis. In the 
paper, the principles for studying what Radford (2000) 
refers to as knowledge objectification processes when 
learning mathematics will be discussed.

Keywords: Analytical approaches, knowledge 

objectification, multimodality.

INTRODUCTION

This paper discusses ways of doing video analyses that 
are relevant for understanding mathematics learning. 
Thus, this is a methodological paper. Our particular 
focus is on multimodality as a resource for learning 
but also as a methodological challenge for research. 
Analytical approaches, selection of episodes and a 
multimodal transcription will be discussed in light 
of recent developments in the field.

The background of this study is an international, com-
parative project called VIDEOMAT (Kilhamn & Röj-
Lindberg, 2013), which studies teaching and learning 
of introductory algebra in four countries: Finland, 
Norway, Sweden and the USA. Students are between 11 
and 13 years old. Data include video-recordings of les-
sons, written materials from student activity, teacher 
interviews etc. Five consecutive lessons when algebra 
was introduced1 in classrooms in the four countries 
were documented. A group work session with a pat-
tern task with matchsticks was selected for further 
investigation. This task resulted in a multitude of 
problem-solving strategies among students, all the 

way from counting to sophisticated forms of mathe-
matical reasoning (multiplicative/generalizing). 

In the literature there are many attempts to make 
use of multimodal analyses to understand learning 
processes in the context of mathematics. We will com-
ment on some of these below. Considering that we are 
at an early stage of advancing knowledge through the 
use of multimodal approaches, we have formulated 
the following question for this paper: In what ways 
can video recordings be transcribed and analyzed in 
order to study student’s learning processes?

BACKGROUND

The methodical reflections in this paper focus on 
classroom interaction in a problem-solving, small-
group setting. A particular aim is to understand the 
knowledge objectification process (Radford, 2000, 
2002). The object of activity in the classroom, as the 
students work with the matchstick task, is to develop 
algebraic thinking; more specifically to perceive the 
general nature of a pattern, and to use this insight 
when solving a problem. The ability to generalize is 
viewed as one of the most important developments 
in mathematical thinking. 

Our analysis will follow a socio-cultural, Vygotskian 
view on learning and development. A central idea is 
that learning results from participation in social and 
interactional processes. Equally important is that this 
perspective stresses that learning and knowing are 
cultural phenomena.

Approaching group work in mathematics classrooms 
with an interest in the contributions of multimodal-
ity, the cultural-semiotic theory of learning, devel-
oped by Radford (2000), provides a promising route 
ahead. Radford (2002) suggests that knowledge ob-
jectification happens through semiotic activity, that 
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is through “objects, artifacts, linguistic devices and 
signs that are intentionally used by individuals in 
social processes of meaning production, in order to 
achieve a stable form of awareness, to make apparent 
their intentions and to carry out their actions” (p. 14). 
The process of knowledge objectification is under-
stood as the process of placing something at the center 
of someone’s attention. In this study, knowledge ob-
jectification thus refers to the process of perceiving 
generality; the knowledge of the general nature of the 
pattern having a genesis and a development, and, as a 
further step, knowing how to express the generality 
mathematically and to solve the problem. 

METHODOLOGICAL DEVELOPMENT 
IN THE STUDY OF LEARNING

The methodological deliberations by different re-
searchers have been scrutinized. The studies ana-
lyzed all rely on naturalistic data and interpretive 
approaches to method, and they represent different 
choices in terms of data collection and analysis.

Bjuland (2002) focused on small group problem-solv-
ing in mathematics by student teachers. Data were 
collected by audio recordings, and the theoretical 
perspective utilized was dialogical, situated and so-
cio-cognitive. The unit of analysis, referred to as an 
episode, was “conceived as a sequence of verbaliza-
tions focused on a special mathematical topic or idea” 
(p. 64), relevant to the research questions. These were 
then categorized according to five features of prob-
lem solving processes: sense-making, conjecturing, 
convincing, reflecting and generalizing.

Carlsen (2009), working in a sociocultural tradition, 
analyzed the appropriation of mathematical tools 
by students attending the final year of high school. 
Video recordings were used. The aim was to trace de-
velopment of the student’s mathematical reasoning. 
Relevant parts of the entire audio recorded material 
were transcribed in detail and subjected to in-depth 
analysis. The transcripts included multimodal ele-
ments in order to investigate the role of inscriptions 
in the appropriation process.

Radford (2000, 2002, 2012) reported on longitudinal 
studies involving students’ group work with algebra 
and more specifically with patterns. This work in-
volves methodological and theoretical developments 
that are interesting. Radford’s research is based in a 

semiotic-cultural perspective on learning building 
on Vygotsky’s view of signs as linked to and affect-
ing our cognition. In Radford (2012), researchers took 
part in the process of designing the lesson material 
and students were organized in small groups. These 
sections were video recorded and student works were 
collected.

In his early work, Radford (2000) uses concepts from 
discourse analysis. He follows a three-step analysis of 
transcripts, a) valuing each utterance as equally im-
portant, b) contextualizing utterances, and c) includ-
ing pauses and hesitations. This approach Radford 
(2000, p. 244) terms situated discourse analysis. The 
unit of analysis was conceived through a process of 
refining salient episodes through data managing by 
indexing and theorizing. Radford emphasizes the im-
portance of natural language in the development of 
algebraic thinking and the use of algebraic symbols.

Radford, Demers, Guzmán, and Cerulli (2003) intro-
duce the concept of semiotic node. This was a response 
to findings in many studies on the importance of ges-
tures and artifacts in the production of graphs and 
algebraic expressions. Semiotic nodes are “pieces of 
the students’ semiotic activity where action, gesture, 
and words work together to achieve knowledge objec-
tification” (p. 56). The transcripts include description 
of gestures and the analytical tool of semiotic nodes 
was applied in the analysis. In Radford, Bardini, and 
Sabena (2007), the analysis was done in greater detail. 
A slow-motion, frame-by-frame, fine-grained video 
micro-analysis was carried out and complemented 
with a voice-analysis. The same kind of micro-anal-
ysis was carried out in Radford (2012), except for 
the voice analysis, where a multi-semiotic analysis 
(spoken words, written text, gestures, drawing, and 
symbols) was done. 

Arzarello (2006) outlines a theoretical frame empha-
sizing the role of multimodality and embodiment in 
cognition. He argues for a multi-semiotic analysis 
of objectification processes and claims that the pres-
ent semiotic frameworks cannot capture didactical 
processes in a satisfactory manner. Therefore, he 
introduced the idea of the semiotic bundle. In the se-
miotic bundle, which includes semiotic sets such as 
gestures, speech, written representations, as well as 
more formal systems, the distinctions between the 
sets are only made for analytical purposes while 
interpreted as a unitary system. The semiotic bun-
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dle is dynamic and can shift to include more or less 
semiotic sets as the event unfolds. The meaning of 
the mathematical object may not be the same in the 
different sets. Moreover, even if the transformation 
from one set to another is accomplished, the meaning 
the object had in the prior set may linger, and so it can 
take time before the concept is formalized. By look-
ing at the data synchronically and diachronically, the 
genesis and evolution of the semiotic objectification 
process can be traced. The semiotic node introduced 
by Radford (2003) is similar to looking at the semiotic 
bundle synchronically. 

Arzarello (2006) used the semiotic bundle to analyze 
the work of one group of five fifth-graders. Video re-
cordings and student work were collected as part of a 
longitudinal research design. However, the episodes 
presented were chosen from a 30 minute session on 
problem solving. The selection process was not com-
mented on, except by saying that four main episodes 
were chosen. The episodes were subjected to different 
analytical methods; (episode 1) synchronic analysis; 
(episode 2) diachronic analysis; (episode 3) synchron-
ic + diachronic analysis; and (episode 4) diachronic 
analysis. The transcriptions include descriptions of 
gestures and pictures are presented in the analysis. 

Roth and Thom (2009) looked at multimodality and 
learning from a phenomenological perspective. The 
aim of the study was to propose a new way of under-
standing mathematical concepts grounded in a case 
study. Data were collected in a second grade class-
room during group work sessions in geometry. In 
addition, artifacts used and all work by the teacher 
and the students were photographed. One episode 
from a whole class session, lasting 69 seconds, which 
is called exemplary, was chosen for analysis. The ep-
isode is presented in the context of what happened 
before. The transcript includes details (length of paus-
es, pitch etc.). The episode is presented over 6 pages 
and several drawings depicting movements are part 
of the description. The authors argue that “concep-
tions can be understood as networks of experiences 
that indeterminately emerge from lived (rather than 
intellectual) reorganizations of embodied bodily ex-
periences” (op. cit., p. 188).

The studies presented above are all conducted within 
the paradigm of interpretivism. They are ethnograph-
ic and researchers spend time observing, making field 
notes, and collecting students’ work; the researchers 

are concerned with the context in which the events 
take place.  The video and/or audio recordings are 
done in classrooms and are naturalistic in the sense 
that students are in their everyday environment en-
gaging with mathematical activities. The studies also 
share a common focus on the multimodal aspects of 
learning, except Bjuland (2002) and Radford (2000). 

METHODOLOGICAL CONSIDERATIONS

In spite of the commonalities of the studies presented, 
the transcripts look very different and include dif-
ferent features of interaction. Bezemer and Mavers 
(2011), investigating multimodal transcripts in re-
search, point out that “transcripts should be judged 
in terms of the ‘gains and losses’ involved in remaking 
video data” (p. 204). The focus should not be on at-
tempting to achieve representational accuracy, rather 
the approach should be transparent.

The studies use different analytical approaches to 
dialogue. Bjuland and Carlsen use the dialogical ap-
proach elaborated by Linell (1998), while Radford uses 
situated discourse analysis. Consequently, the process 
of analysis is different. Radford’s first step is to look 
at each utterance in its own right and categorize it. 
As a second step, he contextualizes them. In contrast, 
sequentiality is central to the dialogical approach as 
each contribution in a dialogue gets its meaning from 
both prior and subsequent turns. Arzarello (2006) 
and Roth and Thom (2009) do not fully reveal their 
approach for analyzing dialogue. 

An important aspect is the selection of salient epi-
sodes. Bjuland (2002) transcribed all verbalizations 
and then identified relevant episodes according to the 
analytical interest. Carlsen (2009) worked with video 
recordings. After several viewings, he chose 14 ses-
sions which were roughly transcribed. Following this, 
relevant episodes were identified and transcribed in 
detail. From this sample salient episodes were chosen. 
Radford (2000) used situated discourse analyses as a 
first approach to the data set, which was transcribed 
in its entirety. The studies by Arzarello (2006) and 
Roth and Thom (2009) do not fully comment on the 
selection process.

These studies show that multimodality is an essential 
part of understanding how students learn mathemat-
ics. Thus, it becomes important for this branch of re-
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search to enter into a discussion on how to advance 
the use of multimodal methods of analysis.

CAPTURING LEARNING: SUGGESTED METHODS

The aim of this paper is to describe ways of doing vid-
eo analysis that focus specifically on learning process-
es and which include attention to multimodality. The 
approach will be discussed in three sections: video 
analysis; multimodal transcription; learning processes 
and video analysis. Our discussion will be twofold as it 
a) provides arguments for the methodological choic-
es and b) is practically oriented in that an excerpt of 
a multimodal transcript is included and analytical 
approaches are briefly exemplified.  

Video analysis
The video analysis follows an interpretivist paradigm. 
The aim is to understand learning processes by closely 
following how participants engage in meaning mak-
ing. Applying the notion of knowledge objectification 
through semiotic activity implies analyzing multi-
modal aspects of interaction. According to Knoblauch 
(2012), one has to apply two types of interpretation in 
order to preserve the essence of multimodal elements 
of interaction. The first is to interpret what is seen and 
heard as it appears from an everyday understanding 
and from the actors’ point of view. The second level 
is the professional interpretation of the interaction. 

The ethnographical aspect of this research is im-
portant in terms of the validity of interpretations. 
Observation of lessons, interviews with the teachers 
and the written materials collected improve the abili-
ty to interpret the situation. The validity of the inter-
pretations will depend on the assumption that “people 
are existent and, that they have been conducting (act-
ing) in ways that are open for reconstruction (capture) 
by video data” (Knoblauch, 2012, p. 73). This allows 
subjective adequacy, which means that there is a corre-
spondence between what the researchers say and the 
statements by the participants. Psychological studies 
have shown that people often “see events similarly in 
terms of causal, behavioral, and thematic structures” 
(Derry et al., 2010, p. 7), which supports the validity 
of an everyday interpretation of interaction. 

The empirical material in this study is considered to 
be naturally occurring data. We recognize that the 
presence of three cameras, two professionals oper-
ating them, and one to three researchers observing 

exert some influence on the situation. However, stu-
dents today are familiar with cameras, and in consul-
tations with the teachers after lessons they expressed 
that students behaved as usual.

In order to approach the complexity of the interaction 
in the groups, the discourse is separated into two main 
parts: dialogue and multimodal elements. However 
the two parts are interpreted as belonging to a uni-
fied system of communication and therefore seen as 
integral parts of meaning making. Two methodolog-
ical concepts will be considered when analyzing the 
multimodal elements (Knoblauch, 2012, pp. 74–75): 
sequentiality, considering any action as motivated by 
prior actions and motivating future actions; reflexiv-
ity, actors do not only act but also indicate, frame or 
contextualize how their action is to be understood 
and how they have interpreted a prior action to which 
they are responding. These concepts correspond well 
with the dialogical approach which also emphasizes 
sequentiality. 

The issue of multimodal transcription
In attempting to transcribe visual data of video re-
cordings there is a challenge in doing adequate data 
reduction. The focus of our research is the interaction 
in the groups. Luckmann (2012, p. 32) argues that “the 
elements of the interaction which the analyst, based 
on his knowledge of social life, must assume were 
relevant to the participants in the original interaction, 
must be noted in the transcript”. Knoblauch (2012, p. 
75) argues that video analysis is a hermeneutic activ-
ity. “[T]he task set is not to only describe and explain 
non-verbal behavior”. As a researcher one has to de-
cide what knowledge is needed to make sense of a situ-
ation and to identify visible conducts constituting the 
situation. Therefore, multimodal transcribing is not 
only a preliminary stage to the analysis; the activity 
forms an essential part of the analysis.

The video material and the written works of stu-
dents have been examined in order to understand 
the problem solving process through the dialogue and 
the semiotic actions that appear both by each individ-
ual student and as part of the joint group activities. 
Several multimodal elements of the interaction have 
been identified. These fall into three categories of use 
of mediating resources: inscriptions such as drawings, 
tables, texts, numbers, arithmetic, algebraic (includ-
ing variable/s); concretes i.e. matchsticks; gestures 
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such as pointing, tracing in air/figure/table, glance, 
rhythmic hand movement, raising hand. 

The learning processes and video analysis
Derry and colleagues (2010) stress the importance 
of being systematic when selecting salient episodes. 
Schoenfeld (1985) parceled the dialogue according to 
the mode of reasoning (i.e. planning, exploration) as 
he expected strategic decisions to be located at the 
junctures between such episodes. In this study, the 
dialogue will also be parceled according to the math-
ematical strategy the students are working with. This 
is done in order to explore how the students’ discourse 
on the problem evolves during the problem solving 
process and to reveal mechanisms which drives it. 
In light of these explorations, fragments of the text 
which show the first traceable step and its successors 
in the objectification process will be identified.

An excerpt from a multimodal transcription of a 
Norwegian group is presented below. A group of 8th 
grade students, Ben (A), Ann (B), Trish (C) and Sam 
(D), are given an algebra task (adapted from TIMSS 
2007) involving matchsticks and patterns. The teacher 
hands out toothpicks as a material to use in order to 
solve the problem. Only Ann writes on the task paper. 
Marks indicating if the students are in the process of 
conjecturing (Cj) or convincing (Co) and also specify-
ing the mathematical strategy used such as additive 
(A) or multiplicative (M) have been inserted into the 
transcript in order to show the analytical approaches 
to the text.

8 Trish: We can make them [squares] on 
the table. But should we just use these or? 
[Trish shakes the can of toothpicks she is hold-
ing in her hand].

9 Ann: But see, we get 7.1 [Ann points 
to the division, 73 divided by 13, she has been 
working on], then if you have taken (  ) then 
you get 7.1 squares. 1, 2, 3, 4, 5, 6, 7 [Ann points 
at the squares in the task paper as she counts 
them and continues by pointing at imaginary 
squares until she reaches 7]. So then you get 
less than sev...then we get, if we make 7 
squares. Ok, 4.

The girls try to add a square to the figure using the 
toothpicks. They give it up quickly as they notice that 
the dimensions are different. 

10 Trish: Ha..ha
11 Ann: You, this didn’t work
12 Trish: We’ll draw it.
13 Ann: [She adds a square to the figure by 

drawing three sides in one motion, she then 
points at each square as she counts them] 
1, 2, 3, 4...[adds another square in the same 
manner], 5. [starts counting the matchsticks 
making up the squares] 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14... 17, 18. Ok, but see...ah...I got 
a good idea...look [Now she only counts the 
horizontal matchsticks] 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12...[adds more squares using the same 
motion] 13, 14...15, 16...17, 18...19, 20 [There are 
now 10 squares altogether]. So if we take [She 
now counts the squares] 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10. When we have 20 rows we have [writes 
20 and then counts the vertical matchsticks 
silently]...((then we have…then we have)) =

14 Sam: ((But what are we going to do 
with them...Ann?)). 

15 Ann: = When we have 20 we have 50 
pieces [writes 50]. Or, when we have 20, when 

Figure 1: Representation of part of the multimodal transcription
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we have 20 such things… [she points or taps 
repeatedly at the figure].

16 Sam: It is those [Sam holds up a tooth-
pick].

17 Ann: Yes, matchsticks, then we have 
50 altogether [points to the number written], 
used 50 such matchsticks [points back at the 
figure] and we are going to use 73, right? =

18 Sam: Just make…
19 Ann: = So then... 
20 Trish: ((really one more will be 53 and 

then 56)) 
21 Ben: ((We are going to use…))
22 Ann: No, if we have one more with 10 

in it, then it becomes... =
23 Sam: ((Yes because it is four in one)). 
24 Ann: = So, then we get 20 more and it 

becomes 70 [writes 70]. ((It is 1, 2, 3...so then 
we get 70… No, now there is too much here)) = 

25 Ben: [looks at Sam and responds to 
his comment] ((No, it is 3, it is 4 in one and 
3...1, 2, 3, 4, 5, 6, 7, 8, 9)) 

26 Ann: = I think I sort of lost count of it.
27 Trish: No, 70, and then you should have 

1 thing more and then it becomes exactly 73.
28 Ann: Ah, but see, oh yes because 20...
29 Trish: It is really only three in each, it is 

only the first there is four in, and then there 
is only three in each the whole time [points 
at the figure while she explains]. 

30 Ann: But see...
31 Trish: If you do like that then...4 [she 

holds her finger over the first square] 
32 Ann: 1, 2, 3. [counts three matchsticks 

in the first square, then pushes away Trish’s 
finger and starts counting in the pattern she 
has developed, horizontal matchsticks first 
and then the vertical ones] Ok, 1, 2, 3, 4, 5, 6, 7, 
8, 9 (  ) 18, 19. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 20. 20. 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11. 11. 

While Ann is counting, Ben and Sam start paying at-
tention to something that is going on in the classroom 
which is not relevant for the mathematical discussion. 
When the teacher approaches the group, the boys at-
tend to solving the task again.

33 Trish: [traces the matchsticks in the 
squares using the same motion as Ann used 
earlier when drawing new squares] Oh, you! 

73 divided by 3 and then just add 1! [she picks 
up her calculator]

34 Ann: There you said one. [While Trish 
is working on the calculator, Ann traces first 
the four matchsticks in the first square and 
then the 3 matchsticks in each of the follow-
ing squares. She is using the same motion as 
earlier when drawing the squares]. 

35 Trish: No. [The teacher comes over to the 
group, but Trish only looks at the calculator 
while she speaks] 73 divided ((by 3, plus 1, 25)).

36 Ann: [Ann looks at the teacher] ((divid-
ed by...3. Is that right?))

In turn (9) Ann suggests a solution to the task based 
on a multiplicative strategy. In order to make sense 
of the answer she found, she turns back to the task 
paper and applies an additive strategy. 

The marks in the text indicate important events in 
the problem solving process. If we focus the attention 
on the objectification process, we see in (20) the first 
verbalization of the 3+3 pattern, which is discussed 
and developed by Sam (23), Ben (25) and Trish (29), 
and finally expressed as 4+3+3. However, in (33) we 
see that Trish traces the matchsticks with the same 
motion used by Ann that appears early in the text (13), 
immediately before she expresses a new conjecture 
for how to solve the task (33). Ann is not taking part in 
the discussion of the 4+3+3 pattern but seems to drive 
it with the gestures and the drawing she is making.

CONCLUSION

The video recordings available of 16 groups work-
ing with the same task offer an opportunity to study 
the role of features of thinking in the objectification 
process. These features, as elaborated through the 
empirical materials and the theoretical perspec-
tive, have been identified as: elements of reasoning 
(sense-making, conjecturing, convincing, reflecting, 
generalizing), mathematical strategies (additive, mul-
tiplicative, equations, functional), semiotic resources 
(use of language, inscriptions, concretes, gestures) 
and indicators of the culture of collaboration.

The analytical methods described are developed in 
order to understand how these different features of 
thinking are incorporated in learning processes. The 
ambition is to shed light on a) what role mediating 
tools play as students decide on mathematical strate-
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gies, b) what features of the knowledge objectification 
process that can be discerned, and c) what are the dif-
ferences, if any, between classrooms and cultures of 
work in the different countries. 
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This exploratory study analyses the discursive frames 
through which ideas are developed and evaluated dur-
ing one section of an early secondary lesson. The study 
employs a refined version of the classic IRF framework 
to analyse the interaction structure of classroom dia-
logue, linking this to semantic analysis of the ideological 
stance conveyed by participants’ utterances and actions. 
The epistemic order which emerges emphasises the eval-
uation of ideas primarily in terms of whether they are 
understandable and make sense. The predominant 
discourse pattern is one in which the teacher exercises 
epistemic initiative but offers little overt epistemic ap-
praisal. Occasionally, however, the teacher passes the 
epistemic initiative to a pupil and provides some form 
of supporting or concluding epistemic appraisal.
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MOTIVATION FOR THE STUDY 
AND THEORETICAL FRAME

In this paper we report an analysis of how classroom 
dialogue functions to create what we will term an 
epistemic order. By this term we refer to the system 
of discursive frames within which ideas are developed 
and evaluated in the classroom. Recent theorisation 
of classroom discourse has distinguished two cru-
cial dimensions, one concerned with discourse struc-
ture – the forms of talk and patterns of interaction 
in play – and the other concerned with ideological 
stance – the degree to which knowledge and ideas are 
taken as fixed and given as opposed to fluid and open 
(O’Connor & Michaels, 2007). Such theorisation has 
also challenged the assumption that these aspects are 
necessarily aligned; as fostered by the archetypical 
Initiation-Reply-Evaluation (IRE) structure of class-
room recitation in which the opening Initiation move 
accords the teacher the epistemic initiative in posing 

the question, just as the closing Evaluation move 
makes the teacher the agent of epistemic appraisal.

However, within linguistic research, the limitations of 
the IRE template – even in representing the structure 
of conventional classroom dialogue – have long been 
known, and a broader and more flexible Initiation-
Response-FollowUp (IRF) model has been preferred 
(Sinclair & Coulthard, 1992). Linguistic scholarship 
has also suggested modifications to the original IRF 
framework to better model the nuances of classroom 
dialogue (Coulthard & Brazil, 1992). In particular, the 
modified version of the IRF framework that we em-
ploy is designed to acknowledge the uncoupling of 
two aspects of the teacher’s management of classroom 
dialogue which typically takes place as that dialogue 
moves away from an IRE pattern: management of the 
taking of turns by speakers in interaction slots, and 
of the substantive exchange of ideas through commu-
nicative acts. Thus, our adapted IRF approach intro-
duces a distinction between the interactional initiative 
of launching an exchange, and the epistemic initiative 
of introducing the idea on which an exchange focuses. 
While one move often combines both types of initia-
tive – as in the classic teacher I within IRE – this is not 
always so. In the transcript analysis which follows, for 
example, see E4 where the teacher simply initiates 
interaction by inviting a pupil to speak, followed by 
E5 where, by making a substantive contribution in 
response, that pupil initiates the idea to be discussed.

More recently, pedagogically motivated research on 
classroom dialogue has shown that triadic IRF interac-
tion patterns continue to play an important part even 
in more enquiry-oriented classrooms, but fulfil a wid-
er range of functions (Nassaji & Wells, 2000; Truxaw & 
DeFranco, 2008). This literature has identified mark-
ers of what is termed ‘dialogic activity’ in which class-
room talk is more varied in its forms of interaction 
and more open to exploring differing perspectives. 

mailto:kr18@cam.ac.uk
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Such markers include the extent to which questions 
are posed by pupils, the types of question posed by the 
teacher, and the kinds of teacher follow-up to pupil 
responses, including the extent to which responses 
are not explicitly evaluated and/or are taken up in 
further exchanges.      

DESIGN OF THE STUDY AND 
ANALYTIC METHODS

In this paper we analyse one section of a video-record-
ed lesson. Our purpose is to employ an IRF system, 
adapted for analysis of epistemic order, to establish 
a baseline against which a later section of the same 
lesson will (in future) be compared. This later section 
is of particular interest because it appears to offer a 
strong example of ‘dialogic activity’ displaying a dis-
tinctive epistemic order. Our adapted system aims to 
underpin deeper analysis to provide a more rigorous 
basis for such judgements. 

Coding in particular, and analysis more generally, 
were undertaken against a transcript of the classroom 
dialogue but involved referring also to the original 
video-recording. We employed an approach to tran-
scription in which the emphasis was on capturing 
both the taking of speech turns and the development 
of substantive ideas (so, for example, excluding ex-
changes only concerned with classroom management, 
and omitting repetitions, stumbles or repairs in spo-
ken expression which proved to have no analytic 
significance). This produces more accessible tran-
scripts while ensuring that all analytic judgements 
are backed by the source video-record.

One of the reasons that we chose to update the clas-
sic IRF system is that it is very rigorously specified. 
Here, however, space permits us only to set out the 
essentials of the modifications we made to the original 
IRF analytic framework. First, a prefix is added to the 
coding of each move to indicate whether it was under-
taken by teacher or pupil. Second, recognising the 
way in which interaction slots are sometimes linked 
in practice, the familiar repertoire of I, R and F slots 
was extended through the addition of two composite 
types: the R/I type (in which a Response consists of, 
or develops into, a further Initiation) and the F/I type 
(in which a Follow-up consists of, or develops into, a 
fresh Initiation). All moves are given a speaker prefix 
and slot code. 

Next, to distinguish the interaction slot that a move 
occupies from the communicative acts that it accom-
plishes, a further code string indicates the character 
of such acts. Moves which convey some substantive 
idea about the operative topic (typically I or R moves) 
are coded either as a solicitation (s) or as a contribu-
tion (c), depending on whether they explicitly seek 
to elicit a response or not. Equally moves (typically 
F moves) receive a code if they provide an explicit 
evaluation indicating approval (a) or disapproval (d) 
of a prior contribution; and if they repeat, restate or 
revoice (all or a salient part of ) a prior contribution 
(v). Thus in an archetypical IRE exchange the initi-
ating teacher question would be coded tIs, the pupil 
reply pRc, and the teacher evaluation something like 
tFav or tFd. The purpose of refinement, however, is 
not just to enhance the information carried in the 
code string but to better model moves in dialogue. So, 
for example, a teacher move which simply nominates 
a pupil to speak would be coded tI; and the ensuing 
move in which the pupil poses a question pR/Is. 

When italics are used this indicates a part of the code 
that has had to be inferred.

Finally, as well as recognising the basic interactional 
unit of the IRF exchange, we acknowledge two larger 
units. A transaction is a higher level unit consisting 
of one or more exchanges, grouped because there is 
linkage between these exchanges through uptake of 
ideas (often signalled by the presence of F/I moves). 
We refer to one particular type of transaction as a du-
ologue: where interaction extends over more than one 
exchange and is restricted to the teacher and a single 
pupil. An episode is a still higher level unit consisting 
of one or more transactions forming a recognisable 
structural component of the lesson as marked out by 
participants and/or resources.

The lesson involved an experienced teacher with a 
class (aged 11/12) in their first year of secondary edu-
cation in England. The lesson material came from a 
module on probability, making connections between 
mathematics and science (Ruthven & Hofmann, 2013). 
For reasons of space, we confine ourselves to five epi-
sodes making up a lesson section in which the whole 
class addressed a series of related questions. These 
questions appeared on two slides about the genetic 
model of the inheritance of the characteristic of at-
tached/detached earlobes which had also supported a 
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shorter introductory exposition by the teacher. These 
two slides are shown in Figure 1.

PRESENTATION AND ANALYSIS OF 
THE INDIVIDUAL EPISODES

Episode A
The first episode takes place when the teacher brings 
the whole class together after they have independent-
ly tackled the first question posed on Slide 30. 

A1 T: Dan, what pairings have 
you got, because I think you look 
like you’ve finished? So for de-
tached earlobes.  
 tIs

A2 P: Two large ees. pRc
A3 T: Two large ees. [Records on 

board]   tFv
A4 Ps: A big ee and a little ee. pRc
A5 T: A big ee and a little ee. 

[Records on board]  tFv
A6 P: A small ee and a big ee. pRc
A7 T:  A little ee and a big ee. 

[Records on board]  tFv

Rather than repeating the scientific question about 
pairings posed on the slide, the teacher invokes it at 
one remove, asking a pupil to report the pairings that 
he had found (A1). The teacher follow-up (A3, A5, A7) 
to the pupil responses (A2, A4, A6) (which adequate-
ly answer the scientific question) repeats them in a 
neutral tone and records them on the board without 
offering any explicit evaluation. 

A8 T: Everybody happy so far? tIs

A9 P [Hal]: No I don’t get it. pRc
A10 T: What don’t you under-

stand, Hal?  
 tF/Is

A11 P [Hal]: The big ees and the little 
ees.   pRc

A12 T: What about the big ee and 
little ee don’t you understand? tF/Is

A13 P [Hal]: How that represents any-
thing.   pRc

The transition to a new transaction is marked by 
the teacher’s next solicitation (A8). She asks pupils 
whether they are “happy” with what has been pre-
sented (A8) (rather than, for example, whether it is 
correct). In response, Hal expresses unhappiness (A9) 
in terms of his “not getting it”. This framing is taken 
up by the teacher in her subsequent solicitations (A10, 
A12) about what he “doesn’t understand”. This co-con-
struction of the situation underpins the reflexive and 
diagnostic duologue which takes place, in which the 
teacher’s probes serve to elicit Hal’s thinking.

A14 T: Can anybody help him? 
Hal says he doesn’t understand                  
about the big ee and the little ee, 
and he doesn’t understand            what 
they represent. Can anybody help him? tIs

A15 Ps: [Inaudible. Many pupils 
speaking over each other.] pRc

A16 T: Not necessarily. No. No no 
no no. No no. Forget about X and 
Y. Forget about boys and girls. Just 
think earlobes                please. 
 tFd/Ic

Figure 1: The slides supporting the section of the lesson under analysis
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A17 P: A little ee and a big ee are 
detached, and a big ee and a little ee 
are detached, so [inaudible].  pRc

A18 Ps: [Inaudible. Many pupils 
speaking over each other.]  pRc

A19 T: All right. I’m not sure that 
Hal’s getting the answer to his ques-
tion. Hal, are you?  tFd/Is

A20 P [Hal]: Yeah.  pRa

Opening the final transaction, the teacher invites pu-
pils to help Hal (A14). However, this solicitation (A14) 
elicits a tangential line of thinking in response (A15; 
inferred from A16) which the teacher follows up with 
strong disapproval and a steer back towards the issue 
at hand (A16). This elicits further pupil responses (A17, 
A18). It is ambiguous whether the follow-up to these 
(A19) alludes to the breakdown of orderly talk or to 
the substance of the help being offered. The teacher 
solicits Hal’s evaluation (A19), positioning him as the 
arbiter of whether his difficulties have been resolved. 
His positive response (A20) is allowed to conclude 
the episode.

In this episode, then, all solicitations are made by the 
teacher, and so epistemic initiative remains firmly 
with the teacher. However she exercises little overt 
epistemic appraisal. In this epistemic order, the 
teacher directs the unfolding of ideas which are to 
be evaluated by pupils according to whether they 
make sense to them. To this end, the teacher employs 
discursive strategies such as eliciting pupils’ ideas 
and self-assessments, as well as avoiding evaluative 
follow-up to their responses. Where such follow-up 
does become evaluative, it relates to redirecting pupil 
contributions to the matter at hand or establishing 
their helpfulness to other pupils. 

Episode B
B1 T: Bet, you had a question. tI
B2 P [Bet]: Oh yeah. [Referring to ques-

tion on slide] Like what is             dom-
inant about the ee then? pR/Is

B3 T: [Reading question from 
slide] What is dominant about                      
the ee form? So if you’ve got a big 
ee, what is dominant? What are you 
going to see?  tR/Is

B4 P [Bet]: If you, the little ee, you 
have to have two of them to have         
attached, but you only need one 

big ee and one small ee to have de-
tached, so there’s more ways you 
can have big ee than little ee. pRc

B5 T: Yes.  tFa

The next episode begins with the teacher inviting a 
pupil to speak (B1). Bet draws attention to the second 
question on Slide 30 by restating it (B2). Rather than 
responding by answering this question, the teacher 
restates it to create a fresh solicitation (B3). Through 
this discursive manoeuvre the teacher leads Bet to 
answer the question that she herself raised. When 
Bet responds with a broadly well conceived answer 
(B4) the teacher approves it (B5). 

B6 P [Tia]: Surely if you have a big ee 
then you’re going to have detached 
earlobes.  pIs

B7 T: Yes. Yes. So if you’ve got at 
least one big ee, then you are going 
to have detached earlobes. tRav

The final exchange starts with a solicitation from 
another pupil seeking validation of a variant of the 
same answer (B6). The teacher approves and slightly 
refines it (B7). 

In this episode, then, the opening solicitation for each 
transaction comes from a pupil. In both, the pupil puts 
forward her answer to the question under considera-
tion in a rhetorical form which invites endorsement. 
The answer is duly approved (and in one case restated) 
by the teacher. Here, the discursive frame is one in 
which the teacher cedes epistemic initiative to the 
pupil but becomes the agent of epistemic appraisal.

Episode C

The next episode relates to the first question on Slide 
31. 

C1 T: [Reading question on 
slide] If a father to be has a mixed               
pairing of ees, so a little ee and a 
big ee, what is the probability that 
the child will inherit the little ee. Tia? tIs

C2 P [Tia]: Surely it’s quite low, be-
cause like  pR/Is

C3 T: Can we put a figure on it? tR/Is
C4 P [Tia]: Zero.  pRc
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C5 T: So he’s got one of each. He’s 
got a big ee and a little ee.                What 
is the probability that the baby will 
have a little ee, from their dad? tF/Is

C6 P [Tia]: Zero. I think it is. pRc
C7 T: Zero. You think it’s impos-

sible?   tFv/Is
C8 P [Tia]: Surely if you have a big ee, 

somewhere… you’re going to have 
detached?  pR/Is

C9 T: Yes, but this question isn’t 
about what sort of earlobes the 
child will have. It’s about which of 
those two alleles the child will in-
herit.   tRc

The first transaction in the episode consists of a duo-
logue between the teacher and Tia. It opens with the 
teacher reading the scientific question posed on the 
slide, restating some elements of it, and then nominat-
ing Tia to respond (C1). Tia’s emergent answer to the 
question is ill conceived (C2, C4, C6) and is taken up by 
the teacher through a series of follow-up and solicita-
tion moves which successively press for greater preci-
sion (C3), restate the question (C5), and draw attention 
to an implication (which would be incompatible with 
the question situation) (C7). In response to this last 
probe, Tia finally articulates the reasoning behind 
her answer (C8), allowing the teacher to pinpoint the 
misinterpretation of the question that underlies Tia’s 
responses (C9). While the teacher makes no explicit 
evaluation of these responses, the direction and per-
sistence of her questioning does imply dissatisfaction 
with them. This duologue, then, has a more dialectic 
quality. 

C10 T: So he’s got one big ee 
and one little ee, the father. What                      
is the probability that any baby he 
makes will inherit the little ee. Lea? tIs

C11 P [Lea]: [Inaudible] make it a half. 
[Pause] Yeah fifty per cent. pRc

C12 T: Lea says it is a half. Tia, 
you’re now saying that makes                  
sense.   tF/Is

C13 P [Tia]: Yeah.  pRa
C14 T: Could somebody just 

confirm why. Why does that make                
sense? Kit?  tF/Is

C15 P [Kit]: It says up on the board, if 
a parent has both alleles, whatever, 

then there is equal chance, and if it 
goes up to one there’s a half chance. pRc

C16 T: So it does indeed. [Reading 
from slide] Equally likely to be 
passed on. So that makes sense 
doesn’t it. So the probability of a 
little ee is going to be a half. tFva

The teacher then restates the question and nominates 
another pupil to answer (C10). Lea does so (C11). The 
teacher does not evaluate but, acknowledging a signal 
from Tia, refers Lea’s answer to her (C12), eliciting 
Tia’s agreement that it “makes sense” (C13). The teach-
er then solicits explanation of “why” from another 
pupil (C14). Kit’s response refers to the key piece of 
information on the slide and pinpoints how it leads to 
the answer (C15). The teacher’s concluding follow-up 
endorses this contribution, and reiterates the key 
point as the basis for the answer “making sense” (C16).

In the opening duologue of this episode, epistemic 
initiative remains firmly with the teacher, exercised 
through a series of questions probing the pupil’s ideas. 
While the pupil also makes solicitations, these are 
by way of response, and in a rhetorical form which 
insists on a point and appeals for its endorsement. It 
is the absence of such endorsement from the teacher, 
accompanied by her probing of the point, that tacit-
ly implies epistemic appraisal. This probing by the 
teacher leading to the diagnosis which concludes the 
transaction could, however, be viewed as compatible 
with the epistemic order enunciated in the ensuing 
transaction: that ideas should be appraised in terms 
of whether they make sense and are consistent with 
the institutionally approved knowledge available. In 
this transaction, while the teacher retains the epis-
temic initiative through a series of solicitations, she 
designates pupils as the primary agents of appraisal, 
only exercising such a role herself in the final move.

Episode D

The fourth episode comprises a short duologue on 
the second question on Slide 31. 

D1 T: [Reading from slide] If the 
mother to be has attached                    ear-
lobes, so the mummy has attached 
earlobes, how likely is she to pass 
on a little ee? Tom.  tIs

D2 P [Tom]: Certain.  pRc
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D3 T: Certain. Hundred per cent. 
Why is that?  tFv/tIs

D4 P [Tom]: Because if she’s got at-
tached earlobes, then she’s got ee ee. pRc

D5 T: She’s got two little ees. tFv

The opening teacher solicitation restates the question 
and nominates a pupil to respond (D1). Tom does so 
succinctly and correctly (D2). The teacher follows up 
by repeating and elaborating Tom’s answer, and then 
solicits an explanation of it (D3). Tom highlights the 
key idea (D4) which the teacher follows up by refining 
it (D5).

Here, the teacher takes the initiative in posing ques-
tions but offers no explicit evaluation of pupil an-
swers. Unlike previous episodes, the notion of ap-
praisal by other pupils in terms of whether an idea 
makes sense is neither articulated nor enacted here. 
Indeed, by not subjecting the ideas put forward to 
such scrutiny, the teacher might be taken to be sig-
nalling her own approval of them, so employing a 
tacit form of appraisal within a more conventionally 
authoritative epistemic order.

Episode E

The final episode develops from public exploratory 
talk by two pupils which raises the question of wheth-
er both questions on the projected slide are intended 
to refer to the same situation (E1, E2), a suggestion 
rebuffed at this stage by the teacher (E3).

E1 P: But, if the mother to be 
and the father to be, like, are the                   
same mother and father, and they 
both make, like  pIs

E2 P: Yeah, does it matter? Is 
it like the same child, like, that                 
they’re talking about, or not? pR/Is

E3 T: I don’t think it’s a particu-
lar child. [Pause]  tRc

However, after a short period during which the teach-
er consults teaching notes and pupils talk amongst 
themselves, the teacher gives Bet the floor (E4). 

E4 T [In response to indication 
from Bet] Yes.  tI

E5 P [Bet]: About the question that 
we’ve just said. The baby might                     

not definitely have attached ear-
lobes but it would definitely have 
a little ee because she has two little 
ees so she you’ll definitely have one 
of them. But depending on what the 
father might have, detached ears he 
might have.  pRc

E6 T: [Intervening] So if we 
actually join this mother and this                
father together to make a child. 
[Gestures to Bet to speak] tF/Is

E7 P [Bet]: It could have two little ees 
or one big ee and one little ee. So 
he’s got one big ee. It’s definitely 
going to have a little ee.  pRc

E8 T: Definitely going to have a 
little ee.   tFv

E9 P [Bet]: But it could get a big 
ee from the father, it could get a                       
little ee.   pIc

Bet starts to put forward her ideas (E5). The teacher 
intervenes by commencing a statement that explicit-
ly restates the hybrid situation, inviting Bet to com-
plete it (E6). Bet does so (E7), the teacher repeats a key 
phrase (E8), and Bet expands further (E9). 

E10 T: [Turning away from Bet 
towards class] So which sort of 
earlobes is it more likely to have? 
[Pause] If these two parents get 
together which sort of earlobes is 
it more likely to have? Hyp, any 
thoughts?  tIs

E11 P [Hyp]: Detached.  pRc
E12 T: Bet was just saying that 

it’s guaranteed to have one little                    
ee but it could get a big ee, and I’m 
saying, what sort of earlobes is it 
most likely to have. Yes Jay. tF/Is

E13 P [Jay]: Half and half because, be-
cause of the father, because if you 
then get a big ee then it will be dom-
inant, and so it’ll be detached. pRc

E14 P: Yeah.  pFa

In the final transaction of this episode, the teacher 
puts a new question to the class and nominates a pupil 
(E10). Hyp gives an incorrect answer (E11) which the 
teacher follows up without evaluation. Rather, she 
recapitulates part of Bet’s earlier exposition, restates 
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her own question, and accepts another pupil’s bid to 
speak (E12). Jay’s response provides both correct an-
swer and supporting reasoning (E13), which appears 
to be approved by another pupil (E14). Again, by allow-
ing the transaction to conclude in this way, the teacher 
might be taken to be tacitly signalling approval. 

The teacher’s rebuff to the idea proposed in the open-
ing transaction, serves to reclaim the epistemic ini-
tiative in the face of an apparent digression. But, in 
the second transaction, she passes the initiative to an-
other pupil who productively develops the idea. The 
teacher now changes her position, lending support 
to the idea, and eventually appropriating it in formu-
lating the question to be pursued in the final transac-
tion. The duologue is launched by Bet, punctuated by 
shorter contributions from the teacher which extend 
and revoice key points. In the final transaction, the 
teacher reclaims the initiative, and dialogue returns 
to interaction around teacher questions. The teacher 
makes no explicit evaluation of responses, but she fol-
lows up the incorrect answer to her first solicitation 
by restating the question. She then allows the episode 
to conclude without following up the sound answer 
to this second solicitation (or an apparent pupil en-
dorsement of it). This pattern could be interpreted as 
one of tacit appraisal within a more conventionally 
authoritative epistemic order.

SYNTHESIS AND DISCUSSION

The epistemic order which emerges from these epi-
sodes is one in which initiative is generally exercised 
by the teacher. The predominant discourse structure 
involves a tIs>pRc>tF move sequence, where the tF 
component takes a tFv or tF/Is or tFv/Is form. It is 
notable that in such an interaction pattern, the teacher 
does not exercise any overt epistemic appraisal, at 
least not in the form of an explicit evaluation. Rather 
she probes the pupil response (C3, C5, C7, D3) or refers 
it to other pupils for approval and/or explanation (A8, 
C12, C14). The ideological stance guiding this approach 
is conveyed by the teacher’s references to evaluating 
ideas in terms of whether they are understandable 
and make sense (A10, C10), and also whether they are 
consistent with institutionally accepted knowledge 
(C16). In particular, in the opening episode, this stance 
is articulated and enacted through the reflexive du-
ologue concerning Hal’s understanding (A8–13) and 
the ensuing transaction in which the teacher moder-
ates the provision of help by other pupils (A14–21); 

although when she doubts whether the lines of expla-
nation being put forward by pupils are appropriate, 
she does make an explicit evaluation (A16 and possibly 
A19). However, in later episodes (D, E) the referral of 
responses to other pupils falls away, leading to their 
ending as soon as a pupil has enunciated an institu-
tionally accepted resolution of the issue of the matter 
under discussion. This could be interpreted in terms 
of the teacher exercising – and conveying to those 
alert to this scheme – tacit epistemic appraisal within 
a more conventionally authoritative epistemic order.

Beyond this predominant pattern are two occasions 
when the teacher passes epistemic initiative to a pu-
pil (B1–7, E1–9). With few examples, all that be confi-
dently said is that substantive development of ideas 
originates from a pI move. On the first occasion, the 
teacher exercises epistemic appraisal by concluding 
her exchange with each pupil with an explicit eval-
uation (B5, B7). On the second occasion, the teacher 
exercises a supportive, if tacit, epistemic appraisal 
through expanding on (E6) and echoing (E8) the ideas 
put forward by a pupil over a series of moves.  

Both these discursive frames, then, grant pupils a de-
gree of epistemic agency: over appraisal in the first 
type, and initiative in the second. In maintaining 
such frames, of course, the teacher exercises a more 
fundamental epistemic authority. Indeed, all five of 
the episodes conform to a pattern in which, once an 
institutionally accepted resolution of the topic has 
been enunciated, the teacher directs any further dis-
cussion towards elucidating that resolution. Such au-
thority is apparent too on those occasions where the 
teacher judges it necessary to explicitly evaluate and 
steer pupils’ exercise of agency. Such interventions 
show devolution of agency to pupils as conditional.
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Previous research has shown benefits for both the stu-
dents and the teachers in letting students write in differ-
ent ways in mathematics. Consequently, communicat-
ing their understanding is emphasised in the current 
Swedish curriculum. In this paper, Swedish students’ 
perceptions are examined of their writing during mathe-
matics lessons and their assumptions about the purpose 
of keeping notes. The results come from a questionnaire 
answered by 136 randomly selected students in Years 3, 
4 and 5 and show that writing is not extensively used 
during mathematics lessons with calculations being the 
dominant kind of writing. As well, half of the students 
considered their notes to be worthless. 

Keywords: Mathematics education, primary school, 

communication, writing. 

INTRODUCTION

Research has previously shown advantages from 
having students write more than numbers and symbols 
during mathematics lessons. This is because writing 
helps clarify and organize students’ ideas, which 
then contributes to making sense of mathematics; 
in this way, students’ thoughts become visible and 
provide opportunities for reflection (Freitag, 1997). 
In contrast to orally communicating ideas, writing 
allows students to develop a deeper understanding 
of concepts (Johanning, 2000). Consequently, writing 
contributes to documenting students’ knowledge and 
experiences to others. Writing can also be an effective 
communicative tool as both students and teachers 
become aware of the student´s understanding, 
feelings and misconceptions about the content being 
learnt (Meaney, Trinick, & Fairhall, 2012). 

There has been some research which has documented 
the kind of notes the students write during their 
mathematics education. Britton, Burgess, Martin, 
McLeod and Rosen (1975) examined the writing in 
mathematics of students between the ages of 11 to 

18 years and found three categories: transactional, 
expressive and poetic. Transactional writing focuses 
on the final product as its purpose is to inform, advice, 
persuade and/or instruct. These authors found this 
to be the most common writing. Expressive writing 
is more personal and has been called “thinking aloud 
on paper”, like a diary. Less than ten percent of the 
writing collected in Britton and colleagues (1975) 
research was of this kind. The last category, poetic 
writing, encourages imagination such as constructing 
your own exercises, drama and poetry and was about 
twenty percent of the collected writing. 

Meaney, Trinick, & Fairhall (2012) examined the 
writing in mathematics lessons of students in Years 
1 to 11. They divided what Britton and colleagues 
(1975) categorised as transactional writing into 
three different genres: description, explanation and 
justification. Descriptions were of mathematical 
situations or objects, such as definitions. Explanations 
showed how mathematical phenomena and events 
came to be, often through a series of steps showing 
the working out of a problem. Justifications involved 
providing information about why something is done 
and included reflections. In their study, Meaney and 
colleagues found that calculations were the students´ 
privileged of writing.

The current Swedish curriculum (Skolverket, 2011) 
emphasises developing students’ communication 
skills in mathematics to support their understanding. 
However, there is limited research on the kinds of 
students’ notes used in mathematics lessons and it 
cannot be found previous research in Sweden on 
students’ opinion about their writing in mathematics.

The aim of this paper is to examine students’ 
perceptions of the writing they do in Year 3 (when 
they are about nine years old), 4 (when they are about 
ten years old) and 5 (when they are about eleven years 
old) during their mathematical lessons. The research 
questions for the study reported in this paper are: 

mailto:cecilia.segerby@mah.se
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 ― What kinds of writing do Year 3, 4 and 5 students 
perceive that they write down during their math-
ematics lessons? 

 ― What do these students consider to be the func-
tions of that writing? 

A questionnaire study was conducted with 136 
students. The result of this study will be the baseline 
for an intervention study. Before discussing the 
methodology, next section discusses research 
connected to writing in mathematics education.

WRITING IN MATHEMATICS IN YEARS 3, 4 AND 5

Writing in mathematics is often considered as useful 
for developing students’ vocabulary knowledge. For 
example, Lundberg and Sterner (2006) stress the fact 
that students should have possibilities to build up 
a dictionary in mathematics. These authors consid-
ered some vocabulary to be difficult to comprehend 
as there are terms (concepts and words) that only can 
be found in mathematics. Some words, such as odd, 
can have a different mathematical meaning to their 
meaning in natural language (Lee, 2006). Having dif-
ferent meanings for the same word can be confusing 
for students. This may be the case in Year 4 in Sweden 
as it is at this point that mathematical textbooks are 
considered to become more challenging with many 
new concepts and the quantity and complexity of the 
text increasing, thus putting higher demands on stu-
dents’ reading skills (Myndigheten för skolutveckling, 
2008). 

The importance of understanding the vocabulary 
in mathematics is also shown in Vilenius-Touhimaa, 
Aunola and Nurmi´s (2008) study with students in 
Year 4 and in Möllehed’s (2001) study in Years 4 to 
9 where a relationship appeared between students’ 
mathematics problem solving performance and un-
derstanding the mathematical vocabulary in the ex-
ercises. Yet, according to Misono and Takeda’s (2012) 
study in a fifth-grade class in Japan many of the stu-
dents did not use mathematical terms and they found 
it difficult to write descriptions about mathematical 
operations. As a consequence these authors suggested 
that teachers need to train the students to describe 
each step using mathematical terms and not only let 
the students write down why they were able to get the 
correct answer by only using numbers.

In Sweden, Ebbelind and Segerby (2015) and Segerby 
(2014) found that few of the exercises in the textbook 
require the students to describe, explain and 
evaluate their understanding, so there are limited 
opportunities to develop this skill in the textbook. 
This is problematic since working in the textbook 
is the dominant practice in mathematics in Sweden 
(Johansson, 2006; Myndigheten för skolutveckling, 
2008). 

It has also been suggested that teachers should provide 
students with instructions about how to structure 
mathematical arguments, such as justifications and 
explanations, and to construct narratives, which 
support mathematical thinking (Meaney et al., 2012). 
In the research by Hensberry and Jacobbe (2012) with 
seven students, aged between 5 and 11, a problem 
solving model was used to structure students´ writing, 
which led to improvements in problem solving 
achievement.

Another positive aspect of keeping notes in mathemat-
ics was found in Johanning´s (2000) research about 
problem solving in groups. It indicated that writing 
helped students to find their mistakes and understand, 
remember and solve the problem better, when they 
first wrote in isolation before they met and discussed 
the problem in groups. However, this study was con-
ducted among Years 7 and 8 students and it is not clear 
how relevant the results are for younger students.

There are several benefits of letting students write 
different kinds of texts in mathematics, but it is also 
essential that teachers explain the aim for the writ-
ing and for whom they write so they understand the 
purpose of doing that (Meaney et al., 2012; Morgan, 
1998). In next section, the method for the reported 
study is described.

METHOD

To examine students’ perceptions of their writing in 
mathematics, a quantitative study was conducted with 
300 randomly selected students from Years 3, 4 and 5 
(100 in each Year) throughout Sweden during spring 
2012. A total of 136 students responded; 50 students 
from Year 3, 40 students from Year 4 and 46 from Year 
5. When randomly selected samples are used, every 
unit in the target population has the same possibility 
to participate and it is reasonable to generalize the 
result. In this study, the selection of the students was 
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done by the Swedish Tax Agency, who has informa-
tion on all Swedish residents. By using this approach 
136 different classroom contexts from across Sweden 
could be examined to reveal the context of culture 
involving writing in mathematics. Context of cul-
ture refers to what occurs outside language, such as 
the events and conditions of the world (Halliday & 
Matthiessen, 2004). For example, context of culture 
can involve how the mathematic education is designed 
in Sweden such as the reliance on the textbook and 
how that affects the teacher´s and the student´s roles. 

As mentioned earlier, it is considered that mathemat-
ics becomes more difficult in Year 4 with texts becom-
ing longer and many new concepts being introduced 
(Myndigheten för skolverket, 2008). This is why it was 
decided to investigate the writing in Years 3, 4 and 5 
to see if there were differences in the writing. 

Pre-testing the questions in the questionnaire is 
crucial to its success. Therefore, a pilot study was 
conducted involving 15 students in Year 3 to exam-
ine how the youngest students were likely to reply to 
the questions. The students answered the question-
naire individually before talking in groups of three 
or four students. This led to that question four was 
reformulated from “How does your understanding 
in mathematics being accessed?” to “How does your 
mathematics teacher find out about your understand-
ing in mathematics?” With other questions, the num-
bers of alternative responses were expanded.

The questionnaire contains four questions and all of 
them, except for question 2, contain closed-response 
answers where the students could choose one or more 
alternatives. In question 2 the students could only 
choose one alternative since it involves students mak-
ing decision of how often they write down mathemat-
ical exercises (stories) of their own. The alternatives 
in the questions contain limited amounts of texts in 
respect to the youngest students´ reading ability in 
this study.  

Questions 1 and 2 of the questionnaire examine the 
first research question concerning what the students 
perceive that they write down during their mathe-
matics lessons, while questions 3 and 4 examine the 
second research question involving what the students 
consider to be the functions of keeping these notes in 
mathematics.

In order to answer the research questions the cat-
egories by Britton and colleagues (1975),  transac-
tional, expressive and poetic, are used to structure 
the questions in the questionnaire to visualize the 
students´ different kinds of writing (see Table 1).

However, what differs between previous studies 
(Britton et al., 1975; Meaney et al., 2012) and this study 
is that is does not examine examples of students´ texts. 
Instead it focuses on students´ opinions and feelings 
about what they write down during mathematics 
lessons and what the purpose of keeping those notes 
are. This approach has previously not been used in 
Swedish mathematics education research. 

In the next section each of the questions responses 
are presented and discussed.

RESULTS AND ANALYSIS

Question 1: “What do you write down 
during mathematics lessons?” 
The results are presented in Table 2 and in the text that 
follows they are interpreted regarding the categories 
of transactional and expressive writing.

Transactional writing: The most common kind of 
writing, which the students perceived that they did, 
was writing calculations. This is a similar result 
to that of Britton and colleagues (1975) which was 
conducted 40 years ago in USA and suggests that 
writing in mathematics may have not developed 
much since then, at least from the perspective of how 
students refer to it.

Britton et al.´s categories Questions in the questionnaire

Transactional involving informing, such as 
calculations 1a, 1b, 1c, 1e, 1g, 3a, 3b, 3c, 3e, 3f, 4a, 4b, 4c, 4e

Expressive, such as evaluation 1d, 1f, 3d and 3e, 4d

Poetics, such as original mathematical 
exercises (stories) 2

Table 1: Categories connected to the questions in the questionnaire



Writing in mathematics lessons in Sweden (Cecilia Segerby)

1493

The second most common kind of writing was keeping 
notes on different strategies connected to problem 
solving. Although this kind of mathematical writing 
has been connected to improve problem solving 
(Hensberry & Jacobbe, 2012; Johanning, 2000), only 
29 percent of the students considered that they had 
been involved in producing this kind of writing. 

Less than 20 percent of students had written 
definitions of mathematical words. In Year 4, only 
5 percent of the students considered that they had 
written definitions in their mathematics lessons. 
Given that previous research has suggested that this 
is important for students in making sense of what they 
are learning (Lee, 2006; Lundberg & Sterner, 2006), 
there is some concern that so few students recognise 
this as part of the writing that they do in mathematics. 
As a correlation has been found between Year 4 
students’ knowledge of mathematical vocabulary 
and the problem solving performance (Möllehed, 
2001; Vilenius-Touhimaa et al., 2008), this result 
suggests that an intervention study would be most 
beneficial for students in this Year level. The students, 
independently of the Year, considered that they rarely 
wrote about the knowledge goals that they were to 
achieve in different areas. 

Expressive writing: Research has also shown benefits 
by letting the students write down thoughts as 
preparation for group exercises (Johanning, 2000), 
but very few students had done this in this study. 
Evaluation is another kind of expressive writing 
and as discussed in the part about the responses 
to question 4, evaluation in mathematics was said 
to be done by teachers. This would explain why 
students rarely wrote their own evaluations of their 
mathematics learning.

Question 2: “I create own exercises 
(stories) in mathematics”
This question is the only one in the questionnaire that 
examines the poetic writing. There is a summary of 
results in Table 3. 

This table shows that in Year 3 approximately 70 
percent of the students consider that they sometimes 
or often create exercises of their own but that number 
decreases to approximately 30 percent in both Years 
4 and 5. The poetic writing seems to occur rather 
often in Year 3 but is barely used in Year 4 and 5. 
This kind of writing can contribute to reveal the 
students´ understanding and misconceptions about 
the content being taught (Meaney et al., 2012) so this 

What do you write down during mathematics 
lessons? Year 3 Year 4 Year 5 Total

a) My operations (calculation) 100% 100% 100% 100%

b) Knowledge goals for the different areas in 
mathematics 10% 5% 4% 7%

c) Mathematical words with explanations 22% 5% 26% 18%

d) Thoughts about what I think is easy and/or 
difficult in mathematics (evaluation) 10% 2% 2% 5%

e) How to solve mathematical problems 30% 18% 37% 29%

f ) Thoughts as preparation for group exercises 
in mathematics, such as problem solving 
exercises 12% 4% 9% 9%

g) Results from practical exercises 12% 11% 11% 12%

Table 2: Summary of results from question 1

I create exercises (stories) in 
mathematics by myself 

Never Rarely Sometimes Often

Year 3 8% 26% 56% 10%

Year 4 29% 42% 22% 7%

Year 5 33% 33% 27% 7%

Total 23% 33% 36% 8%

Table 3: Summary of results from question 2
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kind of exercises seems to be relevant regardless the 
students´ age.   

Question 3: “What do you use your 
notes in mathematics for?”
Table 4 shows the results in relation to the students’ 
responses to question 3 in the questionnaire. It is 
argued that the reported writing can be divided into 
transactional and expressive writing.

Transactional writing: The results show that 
approximately 30 percent of the students’ used their 
notes in mathematics to correct their calculations. 
Notes as a help to solve different exercises were used 
by approximately 25 percent of them. Less than 20 
percent used notes as a preparation before tests. In 
question 4 (see Table 5) students considered that 
tests were the most common method that teachers 
used to determine their understanding. Therefore to 
find that very few students considered their notes as 
helpful to study for these tests suggest that students 
are not seeing writing in mathematics valuable for 
their learning. As well, very few students considered 
that they used their notes to communicate with the 
teacher. Given that it has been found that writing as 
a communication tool between the teacher and the 
students can contribute to exposing the students 
misconceptions, feelings and understanding (Meaney 
et al., 2012), and both the transactional and the 

expressive writing are involved. This seems to be an 
area to focus on in an intervention study.

Expressive writing: It is also interesting to note that 
older students considered that they used their notes 
less for following their own development. This is 
related to responses to question 1 about determining 
whether what they were learning was difficult or 
easy. A higher percentage of students in Year 3 
considered that they wrote about this in mathematics 
in comparison to students in Years 4 and 5. 

Almost half of the students considered that their notes 
in mathematics lessons were not important for their 
understanding in mathematics. This suggests that 
the students are unclear about the aim of writing 
in mathematics. If students are unclear about the 
purpose of their writing, it may be that they do 
not perceive that they engage in different kinds of 
writing. The same might concern the use of explaining 
mathematical words. In question 1 approximately 20 
percent considered that they wrote down explanation 
of mathematical words but according to the result of 
this question very few of the students used their notes 
as a dictionary. This might show that they know the 
words but it can also refer to students understanding 
of the usefulness in this kind of writing. Therefor it 
is essential that the aim for the writing is explicit 

What do you use your notes in mathematics for? Year 3 Year 4 Year 5 Totally

a) To correct my calculations 28% 38% 24% 29%

b) To practice and look at before tests 8% 15% 28% 17%

c) To look up explanations for different  mathematical words  4%  7%  4%  5%

d) To follow my development in mathematics 20% 13% 9% 14%

e) To communicate with the teacher 4% 0% 2% 2%

f ) As a help when I solve different exercises 24% 30% 19% 24%

g) Nothing (for my learning in mathematics) 48% 40% 52% 47%

Table 4: Summary of results from question 3

How does your mathematics teacher find out about your 
understanding in mathematics? Year 3 Year 4 Year 5 Totally

a) Test and diagnoses 86% 90% 100% 90%

b) By the number of exercises I have done 28% 20%  17% 23%

c) Through the operations in my counting book/textbook  50%  38%  54%  48%

d) Through what I have written in my evaluation what I think 
is easy and difficult in mathematics 20% 18%  11% 16%

e) Other ways, such as homework  4%  5%   2%  4%

Table 5: Summary of results from question 4
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articulated by the teacher (Meaney et al., 2012; 
Morgan, 1998).

Question 4: “How does your 
mathematics teacher find out about 
your understanding in mathematics?”
Transactional writing: The main sources for the 
teachers to evaluate the students’ understandings are 
tests and diagnoses (90%). About 20% of the students 
also indicated that the teacher could work out how 
much they understood by counting the number of 
exercises they had done. Approximately 50% of 
students considered that the teachers looked at the 
calculations that they had done in their notebooks. 
The students’ perceptions that the teachers focused on 
their calculations may contribute to them considering 
that writing mostly concerns doing calculations. 

Expressive writing: Less than 20 percent of the students 
thought that their teachers used what they had written 
in their evaluations. This indicates that evaluation 
is not important for the students´ development in 
mathematics. However, letting the students evaluate 
their learning visualize their thoughts (Freitag, 
1997) and thereby provide opportunities to make 
the teacher aware of the students´ understanding, 
misconceptions and feelings about the content being 
taught (Meaney et al., 2012).

CONCLUSION

According to the results of this study, it can be inferred 
that few classes in Years 3, 4 and 5 in Sweden use 
writing in mathematics extensively. Calculations 
are the dominant type of writing that appears, 
independently of the Year, and these notes are the main 
source for the teachers to evaluate understanding in 
mathematics. 

However, in Year 3 it is more common for the 
students to use different kinds of writing connected 
to transactional, expressive and poetic functions, but 
that progressively decreases in Years 4 and 5. With 
older students the production and use of notes is less 
thought of as a way to follow their development in 
mathematics and to communicate with the teacher to 
expose misconceptions, feelings and understanding in 
mathematics. This is critical since Year 4 mathematics 
is considered to be more complex than in earlier 
Years and correlation between students’ knowledge 

of mathematical vocabulary and problem solving 
performance has been found. 

Further research is suggested where different 
kinds of writing activities are implemented into a 
Year 4 class in mathematics to examine how these 
can contribute to developing communication skills 
and thereby support the students’ mathematical 
understanding. The purpose for the writing then 
needs to be explicitly explained for the students so 
the notes can become valuable for them and not, as 
approximately half of the students in the reported 
study say to think, worthless for their understanding 
in mathematics.
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This article presents a first approach and theoretical 
foundation for a new research project. It focuses on 
the role of language in the process of communication 
about structures and relations in mathematical visual-
izations. Mathematical knowledge is abstract in most 
cases. Using means of visualization is indispensable for 
speaking with children about the abstract mathematical 
concepts. Against this background language is seen as 
an important tool in the construction of knowledge. But 
this raises the question, which features of language in 
children with specific language impairments (SLI) pose 
a challenge for verbalizing abstract structures. The in-
terest in research relates to the question how students 
with SLI manage to communicate about the embodied 
structures in mathematical means of visualization. 

Keywords: Means of visualization, communication, 

structures, language impairments.

EPISTEMOLOGICAL VIEW ON 
MATHEMATICAL KNOWLEDGE 

For a better understanding of the focus on means of 
visualization in this paper, it is useful to think at first 
about the special character of mathematical knowl-
edge and the special epistemological conditions in-
volved in processes of learning mathematics. 

Mathematics as a science of pattern, structures and 
relations deals with essentially abstract concepts. 
From the beginning of the learning of mathematics 
the young child is confronted with this challenge: 
Even dealing with elementary mathematical objects 
like numbers, operations and later the concept of the 
place value system the child is confronted in a first 
way with the abstract ideas of mathematical knowl-
edge. Therefore the child has to develop awareness 
that mathematical concepts are not empirical objects. 
For example the child has to learn that numbers rep-

resent more than only an amount of objects. Rather, it 
is the theoretical relation between these objects that 
constitutes the mathematical concept of number. 

In the `world of objects`, `0`(zero or null) means 
`no object`: and in this world there is no princi-
pal difference between the removal of `5 apples 
and 5 pears` or of ̀ 5 black and red chips`. If, in the 
model with black and red chips, the same num-
ber of black and red chips is given to mean `0`, 
this theoretical relation has to be established `by 
one’s own and independent activities of thinking` 
and, only in this way, a difference is constructed 
between the chips configurations, which symbol-
izes a number aspect, and the pears and apples, 
which belong to the world of things. (Steinbring, 
2005, p. 20). 

This example points out, that an amount of ten chips 
(five black ones and five grey ones) - that could be seen, 
counted and manipulated by the child - can also repre-
sent the number zero (see Figure 1). But this interpreta-
tion is only possible if the learning child does not only 
focus on the real objects, the concrete properties of 
the objects (the colour for example) but focuses on the 
relations that are represented by the different coloured 
objects. This particularity is an important basis of the 
understanding of numbers in general.

In his reflection about the character of numbers, 
Benacerraf (1983) points out: 

Figure 1: Number ‘zero’ as a relation between two amounts of five
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Therefore, numbers are not objects at all, because 
in giving the properties (that is, necessary and 
sufficient) of numbers you merely characterize 
an abstract structure - and the distinction lies in 
the fact that the elements of the structure have 
no properties other than those relating them to 
other elements of the same structure. (…) To be 
the number 3 is no more and no less than to be 
preceded by 2, 1, and possibly 0, and to be followed 
by 4, 5, and so forth. And to be the number 4 is 
no more and no less than to be preceded by 3, 2, 
1, and possibly 0, and to be followed by (....). Any 
object can play the role of 3; that is, any object can 
be the third element in some progression. What 
is peculiar to 3 is that it defines that role - not by 
being a paradigm of any object which plays it, 
but by representing the relation that any third 
member of a progression bears to the rest of the 
progression. (Benacerraf, 1983, p. 291) 

This means that even the numbers which often seem to 
be understood in everyday experience as an amount 
of concrete objects, or as objects with concrete prop-
erties have to be understood in the progression and 
relation to the preceding and following objects. More 
generally: 

So what matters, really, is not any condition on 
the objects (...) but rather in the relation under 
which they form a progression. To put the point 
differently - and that is the crux of the matter - 
that any recursive sequence whatever would 
do suggests that what is important is in not the 
individuality of each element but the structure 
which they jointly exhibit. This is an extremely 
striking feature. (Benacerraf, 1983, p. 290)

Mathematics is thus as shown above a science, whose 
concepts are used to describe and analyse abstract 
patterns and structures. But in contrast to this, in 

„non-mathematical“ everyday experiences mathemat-
ics is often understood as a collection of rules, proce-
dures and algorithms. Against this background, the 
mathematical signs and symbols are often used and 
(mis-)understood as important „anchor points“, which 
have to be memorized and which are often confused 
with the underlying mathematical concept. However, 
the peculiarity about mathematics is - which Duval 
(2000, p. 61) describes as the “paradoxical character 
of mathematical knowledge” - that just these signs and 
symbols are not the mathematical concept in itself, 

they only refer to it, they represent it. Presmeg (2008) 
describes signs as interpreted relationships between a 
representative and an object.

I shall take a sign to be the interpreted relation-
ship between some representamen or signifier 
called the sign vehicle and an object that it repre-
sents or stands for in some way. In mathematics, 
the objects we talk about cannot be apprehended 
directly through the senses: for instance, “point”, 

“line”, and “plane” in Euclidean geometry refer to 
abstract entities that we can never see, strictly 
speaking, as in Sfard’s (2000) virtual reality. We 
apprehend these objects, “see” them, and com-
municate with others about them, in a mediated 
way through their sign vehicles, which may be 
drawn or written by hand or through dynamic 
geometry software, labeled in conventional ways, 
moved and manipulated for multiple purposes. 
We work with these sign vehicles as though we 
were working with their objects. (…) It is this 
interpreted relationship between a sign vehicle 
and its object that constitutes the sign. (Presmeg, 
2008, p. 3)

The result is a particular challenge for the develop-
ment and insight of mathematical concepts: If math-
ematical signs are not the mathematical concept, but 
only a symbol of a relationship, and if mathematical 
concepts have to be understood as abstract relations, 
how is it possible to speak and to reflect about them 
at all - especially with young children in elementary 
school? 

EPISTEMOLOGICAL VIEW ON 
MEANS OF VISUALIZATION 

For these processes of thinking about abstract struc-
tures and teaching mathematics, the use of means 
of visualization is an important foundation to help 
young students in building adequate internal rep-
resentations of mathematical ideas. The mathematical 
ideas, as 

theoretical ideas, are not things which could be 
conveyed as completed products. The mathemat-
ical subjects consist of relations between things 
and not in the objects and properties. Therefore, 
mathematical thinking (…) has to be visualized, in 
order to represent such relations. (Otte, 1983, p. 
190, translated by author) 
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Goldin and Shteingold describe “the development 
of efficient (internal) systems of representation in 
students, that correspond coherently to, and interact 
well with, the (external) conventionally established 
systems of mathematics” as a fundamental aim for the 
process of mathematics teaching (Goldin & Shteingold, 
2001, p. 3). But this aim implies a difficult and chal-
lenging task for the teacher: As different studies in 
mathematics education have shown, the intended 
way from external to internal representations is not 
straight, easy or clear (Söbbeke, 2005a, 2005b). 

For a better understanding of this difficult require-
ment, it is helpful to consider the elementary learn-
ing processes in mathematics education in a more 
detailed way. For this purpose we will look at the use 
of means of visualization from different perspectives. 
In German mathematics lessons chips are a common 
means of visualization. In the following, the example 
chips illustrates in which way the interpretation of 
the material must be differentiated: an interpretation 
of the chips as concrete to an interpretation of the 
chips in a first systemic and relational way.

First Perspective: Especially in teaching processes with 
young learners the counting of concrete objects is an 
essential activity to develop a first concept of num-
bers. With this background, objects like “chips” have 
to be understood as an explanatory background for 
the understanding of the new number symbols and 
number words. The concrete materials seem to deliver 
an explanation for the new mathematical symbols 
(Steinbring, 2014). The material-based and concrete 
interpretation of each single object („one chip means 
‘1’“) is helpful and important.

2nd Perspective: The interpretation of the ten chips 
undergoes a first conversion / change if they are sort-
ed in the place value system. A new interpretation of 
the material is necessary (see Figure 3). 

The 10 coloured chips should be seen in their struc-
tural relationship to each other and to the whole sys-
tem: Sorted in the place value table, each single chip 
is given a new meaning: It  no longer represents „one“, 
but also „10“ and „100“ (Söbbeke, 2005).

3rd Perspective: We continue the consideration of the 
10 chips a bit further. The 10 chips are arranged now 
in a rectangular shape (Steinbring, 2014). The rela-
tionship of each single element to the overall struc-
ture is important. The learning child has to be aware 
of the “new” structure(-units): e.g. “twos” and “fives”. 
This is an important modification and at the same 
time a more sophisticated approach to the material: 
for mathematics learning, the child has to see that 
the collection of these 10 chips does not only stand 
for the amount of ten, but also represents essential 
arithmetical ideas: e.g. “two times five” (2×5) or “five 
times two” (5×2). This view has to become even more 
differentiated, for example to see the possibility of a 
distributive decomposition of the “chips field” like 

“1×5+1×5=2×5” (see Figure 4). 

These examples show that the first perspective on the 
material, using it to count objects (“one chip means 

‘1’ ”), successively undergoes a major evolution. By 
putting the chips into the place value table or in the 
shape of the rectangle, the children can be encouraged 
to think about the first systemic aspects of the mean 
of visualization. 

Figure 2: Counting ten chips to develop a first concept of numbers

Figure 3: Ten chips in the place value table

Figure 4: Ten chips structured in a rectangular shape
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Against this background, it becomes clear that the 
children have to learn a new approach to the use and 
interpretation of means of visualizations (Söbbeke, 
2005a): To build new mathematical knowledge it is 
necessary to disregard the concrete properties of the 
objects and to understand these objects as elements of 
the overall system. Therefore the child has to learn to 
examine the relations, structures and the theoretical 
ambivalence, which the means of visualization con-
tain. The author’s main interest in research belongs 
to this difficult and challenging requirement for the 
learning child (Söbbeke, 2005a, 2005b). For further 
research, it seems relevant to investigate, in how far it 
is possible for elementary learners not only to devel-
op this systemic view on mathematical visualizations, 
but also to communicate about it.

THE ROLE OF LANGUAGE IN EXPLORING 
STRUCTURES IN MEANS OF  VISUALIZATION 

Language and the learning of mathematics
Language is important for the learning of mathemat-
ics in two ways: on the one hand language has a com-
municative function that serves the exchange among 
the children and with the teacher. On the other hand, 
it has a cognitive function that advances an increase 
of new mathematical knowledge (Maier & Schweiger, 
1999). 

The communicative function of language
The importance of language is highlighted in 
German mathematics curricula and the German 

“Bildungsstandards” (educational standards) by em-
phasizing the activities and processes of “commu-
nication” and “reasoning” as prominent skills for 
mathematics learning. The guiding principle on “pat-
terns & structures” requests the children to describe 
mathematical relations and structures in general to 
all mathematical topics. Against this background the 
communicative exchange can be seen as a necessary 
component of a stimulating and challenging teaching 
and learning culture.

The cognitive function of language 
Regarding different research traditions, today the 
learning of mathematics is no longer seen as a purely 
individual, mental process of the single child, but as a 
learning process in which the social interaction and 
communication with others is an essential basis for 
the development of new mathematical concepts. In 
this context, the sociologist Miller (2006, p. 200) dis-

tinguishes different types of knowledge (cumulative 
knowledge versus structural or fundamental knowl-
edge) and justifies the importance of social discourse 
as an important factor for learning.

While cumulative knowledge can be developed quite 
individually on the basis of experiences by a subject 
on its own (e.g. a poem or foreign language vocabu-
lary), structural or fundamental knowledge can only 
increase in the social debate and reasoning of learn-
ers with others (Miller, 2006, p. 200). As shown above, 
mathematical concepts are assigned to the structural 
knowledge. They arose historically and therefore they 
require cultural processes -processes of communi-
cation and interaction - to be developed and learned. 
Miller also highlights that new knowledge cannot be 
completely derived from existing knowledge, because 
new knowledge exceeds the acquired knowledge. That 
is, in processes of collective argumentation new find-
ings, beliefs and concepts can be developed.

But children in elementary school are still on their 
way to become mathematically communicating peo-
ple and thus „autonomous learners“ of new structur-
al knowledge. They still have to learn to derive new 
structural knowledge from their empirical experi-
ences or activities with concrete materials or means 
of visualization (Steinbring, 2014). Finally it becomes 
clear, that the communicative function of language 
strongly supports and requires the cognitive func-
tion. This point shows the reference for the present-
ed interest in research: The teacher has to reveal an 
(seemingly) empirical world to the children, in which 
they have to make theoretically significant experiences 
and in which they learn to verbalize them. 

Mathematical communication with 
children with language impairments
At least in the German discussion about mathematics 
and language, it is quite popular to discuss primari-
ly the influence of language impairments on perfor-
mance in mathematics or to develop concrete actions 
(or aids) to support the learners (e.g., Donlan, 2007; 
Fazio, 1999; Jordan, Levine, & Huttenlocher, 1995). In 
contrast to that, the aim of the author’s research inter-
est is to better understand the theoretical and episte-
mological conditions of language use, and analyse the 
special features of language in the context of the inter-
pretation of means of visualization. As shown above 
means of visualization deliver an important access to 
the theoretical and abstract “world” of mathematics. 
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The language plays a fundamental role to this access: 
Children learn to derive the theoretical and systemic 
aspects from their empirical experiences with the 
concrete materials only by a special communication 
about the structures and relations in these means of vi-
sualization. This aspect fits the author’s main interest 
in research: Which kind of linguistic particularities 
affect the communication about mathematical means 
of visualization, especially the conceptual and system-
ic interpretation of the means of visualization? In the 
following, two essential aspects are described which 
seem to be relevant for a deeper understanding of the 
described research interest.

Symbol competence
Studies in cognitive sciences emphasize the im-
portance of an „image and symbol competence“ 
(DeLoache & Burns, 1994) for the cognitive develop-
ment and learning of young children. They also show 
that this competence is a challenging skill, which has 
to be developed: “There are several reasons to suspect 
that recognition of a depicted object is not equivalent 
to understanding the nature of pictures or the rela-
tion between a picture and its referent” (DeLoache & 
Burns, 1994, p. 85). 

Other studies point out that images are iconic symbols 
that are associated with a specific content. This “asso-
ciation” is based on structural similarities either on a 
concrete or abstract level (Elia, Gagatsis, & Demetriou, 
2007). In processes of mathematical communication 
the children have to develop this understanding of 
symbols, and furthermore the competence to verbal-
ize this. Several observations indicate that children 
with SLI show a delayed development of such a sym-
bol understanding competence: Understanding signs 
which establish a relationship between signifier and 
signified is delayed. This delay can have an effect on 
the symbol competence in the context of interpreta-
tion and verbalisation of means of visualization in 
primary school education (Lorenz, 2005, p. 4). 

Linguistic means to describe 
relations and generality
In the German discussion about language impair-
ments and learning mathematics, different technical 
terms have been described, that affect the communi-
cation about mathematics: For example problems of 
seriality include difficulties to verbalize linguistic 
sequences, to differentiate and interpret them. An 
example is the major effects that arise in number 

words by interchanging the individual positions of 
the digits: 163, 631, 316, etc. (Lorenz, 2005). It is clear 
that difficulties in the context of seriality not only ex-
change the names of the numbers (factual knowledge) 
but can lead to problems for the structural concept of 
numbers. 

It is important to understand the spatial relations in 
diagrams. The use of prepositions, which describe 
such spatial relationships, are important linguistic 
means for the development of a concept. In addition, 
the children have to verbalize relational concepts 
which combine different objects in a comparative 
sense and be aware of causal constructions (Nolte, 
2000). These linguistic expressions are a key basis to 
describe first ideas of generalization; they are tech-
nical terms that need to be learned. 

However, taking into account the epistemological per-
spective shown in the previous sections, more seems 
to be important than to examine the use of these tech-
nical terms. My current research aim is to develop a 
first theoretical framework to analyze the children’s 
linguistic means to express relations and generality. The 
epistemological framework clarifies the special con-
tent of communication. But it does not clarify in which 
way the language use of children with SLI should be 
theoretically described. It is necessary to integrate 
certain theoretical concepts into the epistemological 
framework in order to describe the linguistic means 
of children with SLI adequately. A first approach to 
this could be the distinction of different levels and 
linguistic means by Akinwunmi (2012). 

Mathematicians use algebraic expressions such as 
variables, terms or equations to express generality. 
But primary learners have no knowledge about varia-
bles to describe mathematical patterns and something 
universal. Akinwunmi (2012) examined processes 
of generalization. Through the analysis of clinical 
interviews with fourth graders, she reconstructed 
different types of verbal means, which the children 
(in this context without SLI) used to discover and de-
scribe mathematical patterns. Akinwunmi worked 
out five categories for generalization that could deliv-
er a first access to the presented interest and further 
work: use of a representative example; use of several 
examples, development of quasi-variables, condition-
als and variables. These categories embrace a range 
of linguistic expressions from relating to concrete 
objects and examples to describing generality.
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CONCLUSION FOR RESEARCH

This paper is a first theoretical foundation of a re-
search project. Based on an epistemologically orient-
ed view of mathematical knowledge and the role of 
means of visualisation, the importance of communi-
cation about structures in mathematical representa-
tions had been worked out. In the following process 
of research a solid framework has to be developed. 
This work includes to integrate certain theoretical 
concepts (in the field of communication and language) 
into the epistemological framework in order to de-
scribe the linguistic means of children with SLI.

The communication with children with SLI about 
means of visualisation is of current interest. For 
mathematics teaching in Germany this requirement 
constitutes currently a special challenge. Because of 
a new law on inclusion, children with and without 
SLI have to be taught together. In order to develop for 
this kind of teaching not merely superficial recipes, it 
is important to investigate processes of challenging 
communication. 
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The present paper reports on a qualitative study that 
focuses on linguistic norms in everyday mathematics 
lessons. The central question is what kind of norms stu-
dents and teachers establish for their language use when 
talking about mathematics. The underlying data con-
tains videos from two second grade classes. Two short 
examples from that corpus illustrate the empirical re-
sults and show two fundamentally different kinds of 
linguistic norms.

Keywords: Norm, form of language, function of language. 

INTRODUCTION

In Germany, approximately one fifth of all students 
has a migration background. As a consequence, rep-
resentatives from politics and science focus more and 
more on this special group. But international compar-
ative studies like PISA 2000 or IGLU 2001, to mention 
the earliest, show that learners with a migration back-
ground are less successful in the German education 
system than other students of the same age. Another 
important result from those studies is that also the 
group of learners coming from families with a low 
socioeconomic status performs below average. What 
these students might have in common with those from 
migration families is that their language skills tend to 
be below average. Thus, with regard to both of these 
student groups, it is important to note that the pro-
ficiency in German academic language turned out to 
be more relevant than other background factors, such 
as multilinguism, socioeconomic status or immigrant 
status (see Prediger, Renk, Büchter, Gürsoy, & Benholz, 
2013). For that reason, German mathematics educa-
tors pay increasing attention to the topic of language 
in mathematics classrooms. 

Language is often seen from a normative point of view. 
Researchers use categories, such as those of every-
day language and academic language (see Gogolin, 
2009), and try to assess to what extent the language 

used in classrooms meets these categories. Having a 
slightly different focus, some other researchers use 
this helpful differentiation in order to describe ev-
eryday discourses in mathematics classrooms (see 
Riesbeck, 2010). Thus, although these categories 
can help us to describe the language which is used, 
they do not explain which rules or norms the inter-
locutors themselves establish when they talk about 
mathematics. One might expect that each learning 
group establishes its own norms for using language. 
But which norm could that be? What might be their 
point of orientation?

To answer these questions, my empirical analyses 
are focused on the negotiation of linguistic norms 
in everyday mathematics lessons. These norms are 
relevant in regard to mathematics learning because 
they can create or constrain learning opportunities 
for students. For that reason, the linguistic norms 
seem to be a good starting point for changes in math-
ematics classrooms. 

LINGUISTIC NORMS
If a student talks about mathematics with the teach-
er or with other students in class, he will have to co-
ordinate two levels in one utterance: First, there is 
the content level and, second, there is the language 
level. The student has to find an accepted and under-
standable way of expressing his mathematical idea. 
According to these two levels of an utterance, Sfard 
(2008) distinguishes between object-level rules and 
metadiscursive rules. Object-level rules are narra-
tives about “regularities in the behavior of objects of 
the discourse” (p. 201). Sfard provides the example of 
the sum of angles in a polygon: “The sum of the angles 
in a polygon with n sides equals (n-2)×180°”. One can 
imagine that this narrative guides the content level of 
an utterance in a mathematics lesson. But, by that rule, 
nothing is said about when and how to say something 
about the sum of angles. This metadiscursive level is 
governed by another kind of rules: the metadiscursive 
rules. They offer orientation concerning the question 
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of “when to do what and how do to it” (Bauersfeld, 1993, 
quoted in Sfard, 2000, p. 167). Sfard (2008, p. 201) clar-
ifies that these rules “define patterns in the activity of 
the discursants trying to produce and substantiate 
object-level narratives.” 

Yackel, Cobb and Wood (1991), Yackel and Cobb (1996), 
and Voigt (1994) give further examples of metadiscur-
sive rules which they name as norms. One of these 
examples is that of social norms. They are related to 
classroom interactions in general and are not nec-
essarily unique to mathematics, e.g. teachers do not 
only expect their students to give answers, but also 
to explain and to justify them (Yackel & Cobb, 1996, p. 
178). In contrast, sociomathematical norms are not 
object-level rules in Sfard’s sense, but they have a com-
ponent that focuses on the content level. For example, 
a sociomathematical norm guides the understanding 
of what counts as an acceptable mathematical expla-
nation in a specific learning group (see Yackel & Cobb, 
1996, p. 461). On closer inspection, one can see that 
these sociomathematical norms combine the content 
level and the language level. For example, in order to 
produce a good explanation you have to meet the es-
tablished object level rules, but your utterance has to 
be appropriate to the recipient as well. To meet the lat-
ter requirement, you have to use a specific language. 
For the moment, I would like to push the focus even 
more on the language level than it has been done in 
the work of Yackel and Cobb or Voigt. As it is known 
the language is for some students a barrier to learn-
ing, it is necessary to understand the language use in 
detail. That is what my focus is on. One might expect 
that, similar to social or sociomathematical norms, 
teachers and students also negotiate norms for their 
use of language. This is what I refer to as linguistic 
norms in the following. Thereby, we have to keep in 
mind that these linguistic norms affect the content 
level and the development of mathematical learning 
processes because they determine the medium of 
learning, the language. 

To supplement the preceding ideas, I would like to 
clarify the difference between rules and norms. Both 
terms refer to regularities that one can reconstruct 
in a given interaction. But, according to Sfard (2008, p. 
204), not every rule is a norm. But to be a norm, a rule 
has to fulfill two conditions. First, it must be “widely 
enacted within that community.” Second, it must be 

“endorsed by almost everybody.” The first condition 
might be regarded as fulfilled if a norm is enacted in 

a situation where almost all the students are listening. 
We can think of an interaction between one student 
and the teacher in front of the board with everyone 
else listening and looking in their direction. Then, we 
can say that this norm is enacted in that specific learn-
ing group. In contrast, it is often impossible to decide 
whether the students really endorse the established 
rule, thus, to decide whether the second condition is 
fulfilled. But, as Sfard (2008) remarks, a norm does 
not necessarily have to be accepted by really all the 
members of a community to be considered as such. 
She stresses that in order to be a norm the rule has to 
be endorsed especially by those within the community 
who count as experts. Similarly Tatsis (2013) shows 
that a student might violate a norm to protect her or 
his face. Nevertheless, the considered rule might be 
a norm. To put it methodologically, the violation of a 
norm does not automatically mean that this rule was 
not a norm. What can help us in this regard is Sfard’s 
(2008, p. 204) clue that a norm becomes explicit and 
most visible when it is violated. Then, this violation 
evokes “spontaneous attempts at correction”. To sum 
up, a norm distinguishes itself from a rule by its ob-
ligation. While rules guide an interaction towards 
observable regularities, norms do the same, but are 
treated as a requirement by most of the interlocutors, 
in particular by the teacher. 

LANGUAGE BETWEEN NEARNESS 
AND DISTANCE
Koch and Oesterreicher (1985) offer a distinction that 
has proved to be helpful in the context of linguistic 
norms. These authors differentiate the medium of 
language. Thus, an utterance can be phonic (oral) or 
graphic (written). For the context of this paper, I fo-
cus on phonic language in face-to-face interactions 
in everyday mathematics classrooms. Secondly, Koch 
and Osterreicher identify two conceptions that an 
utterance may have. It can be conceptually oral or 
conceptually written. This affects the question of 
communication strategies used. As an example, it is 
easy to recognize that we use different communica-
tion strategies when talking informally to our moth-
er compared to when we are giving a lecture at the 
university. Conceptually oral language is often used 
when interlocutors are directly related and can re-
fer to a given situation, e.g. an informal conversation 
with one’s mother. This is what, consequently, gives a 
specific form to the language. For example, at any time, 
the interlocutors can ask questions of understand-
ing, show emotions and influence the course of the 
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interaction. For that reason, sentences may be short 
and even incomplete. Referring to the given situation, 
the speakers use deictic expressions and gestures. 
Thus, orality is characterized by interlocutors who 
spontaneously negotiate their roles and the course 
of their interaction. Koch and Oesterreicher call this 
a language of nearness. Examples are a conversation 
in the family (medially oral) or a chat among friends 
(medially written). In contrast, conceptually written 
language is used when the interlocutors are not nec-
essarily in direct relation and processes of language 
production and language reception might be separat-
ed from each other. Thus, aspects of the situational 
and cultural context have to be made explicit. As a 
consequence, sentences are longer and more complex. 
The writer forms main clauses, but also subordinate 
clauses in order to express the relations he wants to 
inform about. And s/he uses more specific terms, e.g. 
mathematical terms, to be precise and explicit. Koch 
and Oesterreicher call this a language of distance. 
Examples are a text of law (medially written) or a 
scientific lecture (medially oral).

What we can learn from Koch and Oesterreicher’s 
concept is that the language we use is not only char-
acterized by its form, but also by its function. We 
have different purposes when talking to our mother 
or when giving a lecture at the university. The form 
of language changes according to these functions. To 
say it with Halliday (1994), we use different language 
registers in different situations. In the concept of 
registers, Halliday combines the aspects of form and 
function. 

METHODOLOGICAL BASES

The goal of my research is to describe which kind of 
linguistic norms teachers and students establish for 
their language use in mathematics lessons. I have fo-
cused on primary classrooms and on conversations 
in which both students and teachers are involved. 
The reason for the latter decision is that the teacher 
plays a special role in the negotiation of (linguistic) 
norms. Because of his position in the social situation 
of a classroom, his norms might be accepted as such 
in almost every case. Thus, if the teacher introduces 
a norm and no student disagrees explicitly, we might 
assume that the rule is enacted in that learning group. 
By reconstructing linguistic norms in this way, we 
should keep in mind two issues. First, there might be 
other norms which are enacted only by a few students 

and which do not come to light in a class conversation 
at all. In this regard, Tatsis (2013, p. 1632) talks about 

“’minor’ norms”. But, for an individual, these norms 
can be as important as those confirmed by the teacher. 
Second, not all linguistic norms that are established in 
the classroom have to be desirable ones, some might 
even hinder mathematics learning (see Tatsis, 2013, p. 
1629). My research goal is to describe types of linguis-
tic norms which are established in the mathematics 
lessons and which are an important (although not the 
only and maybe not even the best) part of the learners’ 
linguistic environment. 

I filmed everyday mathematics lessons in two German 
classes of second grade for several weeks. The data 
contains both one unit about arithmetic (orientation 
on the hundred field) and one unit about geometry 
(characteristics of geometrical bodies). In all cases, 
I filmed the whole lesson and decided afterwards 
which scenes might be interesting with regard to my 
research aim. Those scenes were transcribed and be-
came objects of analyses. In the process of selecting 
scenes, analysing them and describing the results, I 
revised the selection of scenes several times.   

To get access to occurring negotiation processes in 
mathematics classrooms my analyses have to be of 
a reconstructive manner. Thus, they are analyses of 
interaction (see Cobb & Bauersfeld, 1995). This meth-
od refers to the interactional theory of learning, is 
based on ethnomethodological conversation analysis 
(see Sacks, 1996), and was devised by a working group 
directed by Bauersfeld. This method is especially suit-
able for my research focus because it is aimed at the 
thematic development of a given face-to-face inter-
action and allows to integrate both perspectives: the 
mathematical and the linguistic one. 

EMPIRICAL EXAMPLES

To illustrate my results, I have selected two short 
scenes from the different learning groups. These ex-
amples allow reconstruct different types of linguistic 
norms, although they are very similar concerning 
the content. In both cases, the teacher and the stu-
dents deal with the hundred field. According to the 
teachers who usually plan their mathematics lessons 
together, the goal of those lessons is the orientation on 
the hundred field. The students should find numbers 
quickly and describe their positions exactly. From 
other lessons, the students know already what rows 
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and columns are. For that reason, both teachers start 
their lessons with a repetition.

Example I: Ozan’s number puzzle
At the beginning, the teacher, Ms. Kunz, and the stu-
dents talk about rows and columns on the hundred 
field. They repeat that rows “go from left to right” and 
that columns “go from top to bottom”. After that, Ms. 
Kunz starts to give number puzzles of the following 
form: “The number is in the third row and in the fifth 
column.” When having given a puzzle, Ms. Kunz al-
ways asks one child to solve it. The following scene 
starts when the course of action changes. Now, one 
student is allowed to give a number puzzle on his/her 
own. It is Ozan, a young boy with a Turkish migration 
background.   

47 Ozan: The number is in the fourth col-
umn and… in the third r-

48 Ms. Kunz: No, first the row.
49 Ozan Err… The number is in the third 

row and in the fourth column.
50 Ms. Kunz: Okay. Choose a child, Ozan. 

If we assume that Ozan would have finished his num-
ber puzzle by saying “row”, we can state that he has 
given a correct number puzzle (47). With respect to 
the content and the language, he has formed an ap-
propriate sentence. However, he deviates from those 
examples that Ms. Kunz has given before. The differ-
ence is that he refers to the column first and then to the 
row, not vice versa. Ms. Kunz insists on her order and 
therefore on a specific sentence structure (48). The 
structure that she demands cannot be derived from 

general object-level rules or general meta-discursive 
rules. Instead, she starts to establish a new norm that 
only applies for this specific learning group. In his 
following turn, Ozan accepts the proposed norm. 
He restructures his number puzzle according to Ms. 
Kunz’ example without change of content (49). He 
describes the position of the 24 again. Thus, in this 
example, it is evident that the linguistic norm which 
Ozan and Ms. Kunz establish does not focus on the 
mathematical content at all, but on the grammar. The 
interlocutors develop their own grammar for number 
puzzles which can be described as follows: When giv-
ing a number puzzle with regard to the hundred field, 
you have to refer to the row first and to the column 
thereafter. Ms. Kunz confirms that norm explicitly in 
the end: “Okay.” (50) Finally, by asking Ozan to choose 
a child that may solve his puzzle, she leads back to 
the course of the discourse. The negotiation of the 
linguistic norm has come to an end. 

In this process of negotiation, we can see that the teach-
er’s language use is conceptually oral. Thus, Ms. Kunz 
forms an incomplete sentence in order to ask Ozan for 
a correction (48). That makes her utterance short and 
allows a rapid progression of the discourse. This kind 
of language use is typical for face-to-face interactions 
in our everyday life (see Koch & Oesterreicher, 1985). 
When looking at Ozan’s language use in comparison, 
we can note that his utterances are rather conceptu-
ally written. He is asked to form a complete sentence 
with a given subject (“the number”) and with two in-
dications of location that should be linked by an “and”. 
Thus, his sentence is rather complex and more explicit.   

An interesting point about the reconstructed norm is 
its potential influence on the content level. On closer 
inspection, Ozan and Ms. Kunz establish a linguistic 
norm that might be relevant to mathematical learn-
ing processes. When you always name the row first, 
you allow an early and quick estimation of the size of 
the specified number. Thus, the row indicates the ten, 
the columns indicates the one. So when you know in 
which row the number is, you know approximately 
how big the number is. From that example, we can see 
that linguistic norms can create (or constrain) math-
ematical learning opportunities.  

Example II: Zeynep’s number puzzle
The second scene is taken from the corresponding les-
son in the other learning group. The initial situation is 
quite similar. Ms. Yilmaz and her students talk about 

Figure 1: Diagram of the hundred field
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rows and columns and repeat that rows “go from left to 
right or from right to left” and that columns “go from 
top to bottom or from bottom to top”. Thus, there is a 
small difference in defining the row and the column 
compared to Ms. Kunz’ class. While Ms. Kunz and 
her students only mention one direction, Ms. Yilmaz 
draws attention to two possible directions in each case. 
After that, Ms. Yilmaz also starts to give number puz-
zles: “My number is in the sixth row and in the second 
column.” Then, she always asks one child to solve the 
puzzle. In the following scene, Zeynep, a young girl 
with a Turkish migration background, is the first stu-
dent who is allowed to give her own number puzzle.   

16 Zeynep: In the ninth colow- 
 [In German, Zeynep says “Speile” which is 

a mixture of the two words “Spalte” (col-
umn) and “Zeile” (row). Accordingly, “colow” 
should be a mixture of the two words “colums” 
and “row”.]

17 Ms. Yilmaz: Err, either column or row. 
18 Zeynep: Row. Row nine and column four. 
19 Ms. Yilmaz: Yes, good. We can also say it like 

that, like Zeynep has done it. Who
20 can say to Zeynep now, which number is in 

the fourth column and in
21 the ninth row? 

While giving a number puzzle to her class, Zeynep 
uses a word that does not exist in German (16). But it is 
easy to recognize its components. It is a hybrid of the 
German words for column and row. For that reason, 
one cannot decide whether Zeynep is talking about 
the ninth column or about the ninth row. Ms. Yilmaz 
interrupts her, shows a little bit of irritation by hesi-
tating (“err”) and asks Zeynep for a decision: column 
or row (17). In the following, Zeynep seems to be quite 
clear about that point and stresses her answer: “Row.” 
(18) Then, she gives her number puzzle in a new form: 

“Row nine and column four.” In contrast to her first try 
(16), she does not use ordinal numbers any longer to 
appoint a specific column or row. Instead, she uses 
the numerals like names which do not necessarily 
have a mathematical meaning. Ms. Yilmaz accepts and 
values this new way of formulating a number puzzle 
and leads back to the course of interaction. She asks 
the class who can solve Zeynep’s puzzle (19–21). In this 
short scene, Zeynep and Ms. Yilmaz establish a norm 
for the formulation of a number puzzle. From now on, 
it seems to be allowed to waive ordinal numbers and 
to choose from different linguistic possibilities. What 

remains the same through these different linguistic 
forms is the content. Zeynep and Ms. Yilmaz describe 
exactly the same position on the hundred field by their 
different sentences; they are both talking about the 
number 84. Thus, we can see that the linguistic norm 
which Zeynep and Ms. Yilmaz establish rather focus-
es on the function of language. They do not seem to 
be interested in a specific form of language, but in a 
precise description of a position. 

In that process of negotiation, Zeynep’s language is 
essentially characterized by orality. She uses mathe-
matical terms (row, column), but does not form any 
complete sentence. Instead, her utterances are rather 
short and understandable in the context of that spe-
cific situation. In contrast, Ms. Yilmaz uses different 
registers. Parts of her language are conceptually oral, 
too. When pointing to Zeynep’s word mistake, she 
forms an incomplete sentence, reduced to the nec-
essary (17). Like in the scene before, that makes the 
utterance short and allows a rapid progression. But 
in the end, when Zeynep has given a correct number 
puzzle, Ms. Yilmaz offers a grammatically complete 
sentence (19–21). That way, Zeynep and all the other 
students who listen to the discourse can learn two 
different versions of number puzzles, one is concep-
tually oral (Zeynep) and the other one is conceptually 
written (Ms. Yilmaz). As both versions are valued, the 
learners are obviously free to choose one of them. 

By negotiating the reconstructed norm, Zeynep and 
Ms. Yilmaz do not only touch a matter of language, but 
a matter of content, too. When a student who listens to 
the discourse recognizes that there are different ways 
of formulating a number puzzle, he may ask himself 
what the invariant through the different forms of rep-
resentation might be and, thereby, he gets to a math-
ematically interesting question: What is necessary 
to describe a position on the hundred field clearly? 
Thus, one can see again that linguistic norms refer to 
the content level and cannot be separated from them.  

CONCLUSION

The two examples do not only allow me to reconstruct 
two different linguistic norms, but two different types 
of such norms as well. Thus, they focus on different 
aspects of language. In both cases the interlocutors ne-
gotiate how one might talk about mathematics, in this 
specific case about a position on the hundred field. In 
the first example, the focus is on the form of language. 



Linguistic norms in mathematics lessons (Kerstin Tiedemann)

1508

Thus, everyone is asked to always refer to the row 
first and to the column second. One could say that the 
interlocutors establish their own kind of grammar for 
number puzzles. In the second example, the focus is 
on the function of language. While the interlocutors 
obviously accept different linguistic forms of giving 
a number puzzle, they check whether an utterance 
fulfills its function: “We can also say it like that.” (19)

When reconstructing these different types of linguis-
tic norms, one can note that the belonging processes of 
negotiation are linked to different language registers. 
Thus, the negotiation of linguistic norms which are 
orientated to the structure or form of language rather 
need a conceptually written language (Example I). 
This assumption seems plausible because it is neces-
sary that someone produces the whole linguistic form 
when you want to talk about it. Only then, it is clear 
what the topic of the discourse is. In situations like 
that, short clues or incomplete sentences might not 
be enough. In contrast, the negotiation of linguistic 
norms which are orientated to the function of lan-
guage does not necessarily need a specific register 
(Example II). According to the situation, both a con-
ceptually oral and a conceptually written language 
obviously might meet the given requirements. One 
can assume that the use of a certain register depends 
on the mathematical content. Thus, difficult mathe-
matical contents possibly require a more written 
conception of language so that complex relations and 
processes can be described accurately, whereas rather 
simple contents might be expressed in a conceptually 
oral language, too. 

Embedding the two empirical examples in the wid-
er field of my data, it can be stated that it is not pos-
sible to assign one linguistic norm to one learning 
group. Instead, both types of norms can be observed 
in both classes from time to time. But when students 
and teachers negotiate how to speak about mathe-
matics, there is a clear emphasis on one of the two 
types of norms. Obviously, it is not helpful or even 
possible to negotiate the form and the function of 
language at the same time. Furthermore, the dif-
ferentiation between these two types of linguistic 
norms in mathematics classrooms can help us to be 
clear about the learning goals that we have as teach-
ers and also to be clear about the perspective that we 
have as researchers. First, as a mathematics teacher, 
we cannot support the language development of our 
students in all respects at any time. Instead, we can 

decide where to put the focus on, so that we can offer 
situationally suitable exercises and materials to our 
students. While we work on some kind of grammar 
in one lesson, it might be more important to work on 
the function of language (e.g., a precise description, a 
convincing argumentation) in another lesson. And of 
course, there are lessons where our focus is not on the 
language at all. Second, as researchers, we possibly 
like to know more about the language development 
of learners in mathematics classrooms, about good 
materials and learning arrangements that help teach-
ers to support their students’ language development, 
but we should distinguish what the main focus is in 
each case. Depending on the linguistic norms which 
are established in a certain mathematics lesson at a 
certain time, the interlocutors have different needs 
of support and we might see fundamentally different 
ways of using language. 

The two examples show that linguistic norms are re-
lated to the content level. By defining norms for their 
language use, interlocutors define their medium for 
teaching and learning. Thereby, they create or con-
strain learning opportunities. We can conclude that 
Sfard’s (2008) distinction between object-level rules 
and meta-discursive rules is an analytic one. We can 
distinguish between the content and the language 
when we look at everyday interactions as research-
ers, but in the classroom, these levels always belong 
together and might interact with each other. 
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Participation in classroom interactions gives students 
the opportunity to learn subject-specific topics and to 
acquire discourse competences. Hence, there is a mul-
titude of research concerning arrangements which 
enable learners to successfully participate. But what 
counts as an adequate contribution, enabling students 
to successfully participate in mathematical classroom 
interactions and, especially, what counts from the teach-
ers’ perspective? Based on the fact that the teachers’ per-
spective on adequacy of considerations in interactions 
highly influences the teachers’ acting and support in 
the classroom, the study INTERPASS investigates the 
teachers’ perspective within video stimulated group dis-
cussions. One of the identified motives of the teachers’ 
perspectives is presented in detail in the following.

Keywords: Group discussion, professional vision, 

participation in classroom interactions, documentary 

method.

INTRODUCTION

Acquisition of mathematical knowledge takes place in 
classroom interactions and through the opportunity 
to participate in the process of negotiation of meaning 
involved (Cobb & Yackel, 1998; Sfard, 2008). To be able 
to participate, content-specific comprehension and 
linguistic abilities of students as well as the teachers’ 
efficiency in producing interactive scopes for partic-
ipation are important. 

On the one hand, based on a constructivist interac-
tionist view, a lot of research has been done to em-
pirically examine different aspects of influence on 
opportunities to participate by analysing classroom 
interactions. On the other hand, teacher education 

programmes have been created to establish eligible 
acting repertoires of teachers to foster interactive 
support. The so-called ‘mistake-handling’ concerning 
students’ contributions thereby plays an important 
role in creating these programmes (Heinze, 2005). 
Two examples of professional demands on teachers 
on the basis of these acting repertoires are (1) to pro-
vide explicit feedback on the adequacy of students’ 
contributions and (2) to form discursive competences. 
But, also ideas of students should be embedded in the 
interactive process in the mathematics classroom to 
foster participation. More or less successful teaching 
experiments often serve as examples of the imple-
mentation of professional demands into classroom 
interactions. This form of training is mostly based on 
the idea that one prototypical conceptual situation 
can be established in the classroom situation. Hence, 
most of the time the perspective of protagonists on 
such more or less supportive interactions was not 
conceptually considered in detail and realisation 
in every day classroom failed (Prediger, Quasthoff, 
Vogler, & Heller, 2015).

Furthermore, Sherin (2007) describes that the teach-
ers’ perspective and especially their conceptions and 
perceptions concerning linguistic and content-spe-
cific aspects of classroom interactions are strongly 
related to the way they give support. Thus, the teach-
ers’ expectations of students’ contributions provide 
an insight into the teacher’s supportive behaviour 
and their way of establishing opportunities to partici-
pate. But what counts as an adequate contribution for 
teachers in mathematics? What do teachers define as 
aspects of successful classroom interactions? 

To answer these questions I will draw upon the con-
structs ‘selective intention’ and ‘knowledge-based 
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reasoning’ developed by Sherin (2007) to investigate 
conceptions and perceptions of teachers empirically. 

In this paper, I therefore analyse thematic motives of 
negotiation processes within video-stimulated group 
discussions of teachers. Here, Sherin’s approach al-
lows me to focus on recurrent motives of teachers 
concerning supportive or non-supportive interac-
tions shown in the videos. What kind of linguistic, 
content-specific and interactive aspects of the shown 
classroom situations do they partake? Pursuant to the 
analysis, possible insights into the teachers’ perspec-
tive on what counts as a successful interaction are de-
livered. Furthermore, corresponding to the presented 
empirical data I present one of the major negotiation 
themes and pick up the question, whether there are 
differences amongst the eligible repertoires of action 
between interactionally relieved or stressed teachers.

PARTICIPATION IN CLASSROOM 
INTERACTIONS

The theoretical principle for the following explana-
tion is a constructivist view on learning as consid-
ered in cultural historical elaborations by Sfard (2008) 
and interactionist articles referring to approaches of 
Cobb and Bauersfeld (1995). 

Participation in mathematics classroom interaction 
gives students the opportunity to learn linguistic, 
content-specific and interactive aspects of the dis-
course. However, to participate in these interactions 
puts great demands on students, because negotia-
tion processes of mathematical meaning have their 
own alternating dynamic (Krummheuer 2011). To 
participate in classroom interaction, students have 
to interpret what topic is negotiated as well as how 
and when an adequate contribution can be present-
ed. Thereby, mathematical meanings and linguistic 
demands of the discourse can be perceived and in-
terpreted differently by all participants, students 
and teachers, depending on their definitions of the 
situation. Students’ ability to comprehend the ongo-
ing interactive process and its demands as well as 
the competence to produce matching contributions 
within the classroom interplay are important for par-
ticipating and thus for learning. If students are not 
able to produce these matches, they can be excluded 
from the classroom discussion over time (Jablonka 
& Gellert, 2011). But who decides and controls what 
counts as an adequate contribution? Different stud-

ies have shown that in most classroom interactions 
the teacher is central to this controlling process (Lee, 
2007). “Teachers’ verbal utterances trigger, encourage, 
discourage, ‘delete’ students’ verbal contributions and 
allocate evaluations accordingly” (Prediger et al., in 
press). These evaluations and feedbacks give accesso-
ry advice for expectations concerning content-related 
conceptions and conventions that are substantial for 
the specific discourse (O’Connor & Michaels, 1993). 
However, research on classroom interaction shows 
that mostly the ‘rescuing’ of an interactive fluency or a 
communicative order is more relevant than progress 
in the development of content-related aspects of the 
communication (for description of the characteristic 
funnel pattern: Bauersfeld, 1995). The phenomenon is 
justified by the assumption that teachers, stressed by 
the pressure to act in time in classroom interaction 
(henceforth: ‘interactionally stressed teachers’), have 
to react on students’ considerations in time and have 
to spontaneously manage the negotiation of meaning 
towards the content-related goals of learning and the 
communicative order within the polyadic interaction. 
The way in which teachers take up learners’ contribu-
tions is crucial for their opportunity to participate in 
classroom interaction and to learn both mathematical 
and discursive competences. 

TEACHERS’ PROFESSIONAL VISIONS

A lot of classroom studies have described how the 
support of teachers enables students to participate, 
and what kind of support is particularly conducive 
for learning and participation. Some of the studies 
also give advice on how to fulfil certain conditions to 
help students to participate. Nevertheless, teachers’ 
enacted strategies often do not match these demands 
in spite of different professional development pro-
grammes. An explanation of the mismatch between 
requested acting repertoires of teachers and everyday 
classroom interactions (of course) could be the pres-
sure affecting teachers to act in time. Anyhow, there is 
a lack of comprehensive teachers’ perspective regard-
ing considerations about the improvement of class-
room support. Relating to this, Sherin (2007) pointed 
out that every teacher has a professional vision, mean-
ing the way she or he makes sense of issues happening 
in the classroom and that is shared in the professional 
community of teachers. This professional vision in-
fluences the way teacher act and also support in the 
classroom. For teacher training programmes it is nec-
essary to conceptually comprise these perspectives 
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of teachers and to improve the teacher trainings. But 
how can the teachers’ professional visions towards 
the support in classroom interactions be observed?

To this end Sherin (2007) reconstructed the teachers’ 
professional visions on classroom interactions in so-
called ‘video clubs’ over time. She proposes to distin-
guish analytically between the process of ‘selective at-
tention’ (of aspects from classroom interactions) and 

‘knowledge-based reasoning’ wherein teachers link 
their perceptions with own experiences and knowl-
edge. Especially the selective attention is taken into 
account in this paper to reconstruct recurrent mo-
tives of teachers in such discussions. These motives 
represent specific pattern of perception, evaluation, 
and interpretation. Hence, through these motives it 
should be possible to draw conclusions from the teach-
ers’ active repertoires of acting that are characteristic 
for them. Concerning the selective attention, Sherin 
(2007) observes that in the first meetings of the video 
clubs, when all participants were stimulated by vide-
os for the first time, teachers exclusively focused on 
pedagogical aspects of the contributions of the other 
teacher. The students’ acting was for the first time 
mentioned in the third meeting. Therefore, I will also 
pick up in details the process of knowledge-based rea-
soning in the exemplary analysis. 

RESEARCH DESIGN AND EMPIRICAL DATA 

The study presented in this paper is part of the larg-
er project INTERPASS, an interdisciplinary study of 
linguists and mathematics educators, being led by 
Uta Quasthoff and Susanne Prediger at TU Dortmund 
University. The study combines a classroom video 
study and group discussions of mathematics and 
German teachers while they are relieved from any 
pressure of classroom action. Within the classroom 
video study 10x12 mathematics and language lessons 
(each 45–60 min.) in five grade five classes were re-
corded during the first inquiry. By means of com-
prehensive sequential analysis five sequences were 
selected for the group discussions.

The following three comparative categories were se-
lected: ‘lessons of mathematics and German’, ‘match-
es and divergences in micro-cultural practice’ and 

‘German native speakers and speakers of German as a 
second language’. Also, only sequences showing emer-
gences of subject-specific matches and divergences, 
i.e. sequences containing the formerly introduced 

structure and are therefore particularly substantial 
for the process of socialization in the discourse, were 
selected. The group discussions are based on video 
presentations of different sequences of interaction 
lasting an average of two minutes. To create the pos-
sibility of a detailed discussion based on the video 
data, the sequences were additionally transliterated 
and shown at the end of each unit of interaction via 
beamer. This paper focuses on group discussions with 
teachers. Four discussions with five to ten teachers, 
each lasting 1.5–2.5 hours, were recorded. The group 
discussions, based on this paradigmatic analysis, 
were held with German and mathematics teachers 
at different German secondary schools (Gymnasien). 
Each group only met once. After a short introductory 
round, the teachers were asked to observe a video of 
a short interactive sequence and to comment on it. 
This was the only impulse for the group discussions. 

METHODICAL APPROACH FOR DATA ANALYSIS

The focus of analysis is exclusively limited to video 
clips from mathematics classrooms. In order to ana-
lyse the teachers’ selective attention, parts of coherent 
negotiation processes concerning thematic motives of 
the teachers within the group discussion were iden-
tified. According to this, there is a short overview 
over all relevant categories of motives the teachers 
mentioned in their discussion. To select these parts of 
the group discussion, the methodical approach of the 
documentary method of Bohnsack (2009) is applied. 
The first step of this analysis is to organise the tran-
scribed video material in interactional units, which 
are interpretatively described in categories. These 
categories are developed with respect to the content 
interpreted from the ongoing process of negotiation 
within the group discussion. Based on the sequential 
interpretation of ‘turns’ within these interactional 
units the negotiation of meaning, respectively the 
thematic development, is reconstructed. Therefore, 
(1) the categories describe the topics of all negotiated 
taken-as-shared themes, respectively all motives of 
the teachers. After the development of these descrip-
tive (sub-) categories they are (2) summed up to the 
following seven main categories from the discussion 
of the teachers: participation aspects, acting and turn 
aspects, classroom management, teaching aspects, 
social aspects, aspects of professional identity, and 
subject specific aspects. 



Reconstruction of teachers’ professional vision concerning important aspects of classroom interaction (Anna-Marietha Vogler)

1513

In the following sections, I will summarise aspects 
from the categorisation and present a detailed inter-
pretation of a scene that is exemplary for two topics 
discussed, delivering first insight into teachers’ mo-
tives. 

ANALYSES OF TEACHERS’ 
PROFESSIONAL VISIONS

A discussion between five teachers is analysed: two 
German teachers (Mrs. Nachbar, Mrs. Fuchs-Focke) 
and three mathematics teachers (Mr. Neumann, 
Mrs. Jacobi, and Mr. Klein) from different German 
Gymnasiums in urban areas. Background for the dis-
cussion in the following scene is the video “Explaining 
the procedure of rounding” from a mathematics 
classroom interaction on how to round 63 to 60 (see 
Prediger & Erath, 2014, for a more extensive tran-
script and analysis of the episode), wherein one teach-
er (Mr. Maler), a male student (Kostas) and a female 
student (Katja) in grade five interact. After the teacher 
had asked for a solution of rounding 63 to the nearest 
tens, the boy Kostas answered: “And then … when you 

… take away three and write down a zero, well … you 
could do it now but actually it is wrong, you have to 
round down and wr ... write down the number closer 
to zero”. Kostas describes the rounding rule based on 
the basic concept of geometrical representation of 
proximity and distance for a particular tenner on the 
number line by his answer. Thereby he marked that 
rounding is not only changing the last number to zero, 
but even more: one has to identify whether the last 
number is closer to the previous or subsequent ten-
ner. But also Katja gives a solution: “You round down 
with zero, one, two, three, four and with five, six, sev-
en, eight, nine, you, … you round up”. She termed the 
mathematical concept. While the teacher Mr. Maler 
does not evaluate Kostas’ utterances positively, he 
comments on Katja’s considerations with the phrase 

“Did everybody get that?” 

In the group discussion presented below, the two 
mathematics teachers Mr. Neumann and Mr. Klein 
discuss the explanation of Kostas. Flashpoint for the 
discussion was the difference between the reaction of 
the teacher to Kostas’ and Katja’s contributions. Mr. 
Klein pointed out that Katja gave a “perfectly clear” 
answer. 

1 Mr. Klein: Well, he did not1 name the rule. 
She has defined exactly…

2 What happens with each digit? When? This 
actually is the criterion.

3 When to round up or down he said eventu-
ally in the last sentence?

4  Closer number to zero. Well, he 
probably meant… 

5 Because sixty-three is closer to sixty? Could 
you now…

6 This is highly interpreted. But…
7 Mr. Neumann: Yes sixty. Or seventy. Right?
8 Mr. Klein: Yes sixty or… 
9 Mr. Neumann: The question is…
10 Why does he always have the same seventy… 
11 Because sixty is the closer number.
12 Mr. Klein: That is a bit the… What is be-

hind? Without being just the dull rule? 
13 But that is difficult already! Also, to under-

stand something at this
14 sound level. What he meant and…it was not 

really phrased clearly.
15 But…
16 Mr. Neumann: Now it is too… Because the 

five solution is not there.
17 That is important.
18 Mr. Klein: Well, anyways it was not clear. 

 
19 Because he was not even counting the digits…
20 Mr. Neumann: Yes. Closer number to zero.
21 Mr. Klein: Logically… You can say…
22 Mr Neumann: It is certainly more general 

now he has to well count the  
23 numbers, right?
24 Mr. Klein: Yes, exactly.
25 Mr. Neumann: That is already…
26 There is already an achievement.
27 Mr. Klein: Well, probably he tried to think 

it through!
28 Without possible understanding… Maybe …
29 Mr. Neumann: But he has not phrased it by 

a rule, right? 
30 Well, that is what is missing… and that is…
31 Mr. Klein: Exactly!
32 Mr. Neumann: But basically they hear….
33 And Kostas has not given it to him.
34 Mrs.  Now it is named…
35 Fuchs-Focke: Wonderful.
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ASPECTS OF THE RECONSTRUCTION 
OF THE INTERACTION PROCESS

Acting and turn aspects (with 
emphasis on students’ concepts)
After 30 minutes of discussion, the teachers explicitly 
deal with the content of Kostas’ solution for the first 
time. At this point of time, the presented sequence 
starts. Mr. Klein describes the central idea of the ge-
ometrical representation (proximity and distance on 
the mental number line) on which Kostas’ answer is 
based for the first time (line 4–5). Mr. Klein and Mr. 
Neumann both highlight several positive aspects of 
Kostas’ solution concerning his mental number line. 
These aspects are: creativity (“without being just the 
dull rule” – line 12), universal validity (“it is certain-
ly general“ – line 22) and cognitive performance of 
finding a solution (“There is already an achievement. 
Well, probably he tried to think it through!” – line 
26–27). But also Katja’s answer to the teacher’s ques-
tion is regarded to be sophisticated. Mrs. Fuchs-Focke 
gives a particularly positive evaluation of Katja’s 
contribution in the last sentence (line 34–35), when 
she refers to Katja terming the rule discussed in the 
previous scene. Also Mr. Klein refers to this answer 
as “defined exactly” in his first sentence (line 1). The 
descriptive (sub-)category in this interactional unit 
can be summed up as ‘rating of students’ contribu-
tions within classroom discussion’. Thus, the category 
for the analysed sequence is marked as ‘acting and 
turn aspects’.

Teaching aspects 
Already in previous scenes, not being covered in this 
paper, the aspects of the teacher’s acting concerning 
the didactical goal of the lesson are very prominent. 
The five teachers broadly discuss Mr. Maler’s goal of 
the lesson and his methods to reach this goal. During 
the presented interaction several aspects of the stu-
dents’ utterances are named. The teacher Mr. Klein 
refers to the missing match between initiation of the 
teacher and Kostas’ answer: Kostas does not phrase a 
rule (which is demanded by the teacher) (line 29–30). 
Also Mr. Neumann agrees with this negative evalu-
ation of Kostas’ answer (line 31). He names the high 
degree of the implicitness of Kostas’ solution as reason 
for the teacher’s evaluation (line 13–14). Although the 
student’s contribution is evaluated positively towards 
aspects of subject-specific content, both teachers put 
the quality of the contents of the students’ statements 
in another perspective as it is not matching the inter-

preted goals of Mr. Maler. In this case, the loudness 
within the classroom (as a additional context caused 
problem) (line 14), the absence of a solving strategy in 
case of the five (as a content regarding problem) (line 
16) and the lack of comprehension are identified as a 
communicative problem of the student’s statement, 
letting the rejection of Kostas’ statement seem to be 
‘reasonable’. The subcategory that is found here is 
described by the phrase: ‘description and rating of 
teachers’ acting concerning didactical goals of the les-
son’. Concerning the utterances of Kostas, the teachers 
share the opinion that it is legitimate to reject the solu-
tion because of a mismatch regarding the didactical 
goals of the teacher Mr. Maler.  They agree that a rule 
is required to complete the lesson’s goal Therefore, 
the category ‘teaching aspects” can be summed up. 

Acting and turn aspects (with emphasis on 
comparison of students’ contributions) 
Mr. Neumann’s contributions at the end of the scene 
completed the process of comparing both students’ 
utterances and the teacher’s reaction to them (line 
29–30 and 33). All three teachers agree on the crucial 
reason for Mr. Maler to reject Kostas’ statement in 
the process of classroom interaction. The absence of 
a rule description is more important than the high 
quality of Kostas’ described concept. They argue for 
the rejection of Kostas’ contribution with his lack of 
linguistic standard. Mr. Klein, for example, points out 
that Kostas’ solution is not phrased clearly (line 14). 
The teachers discuss that Katja’s rule is the appropri-
ate answer to the given task of justifying the solution 
60. Furthermore, the way she presents it can be seen 
as a socially accepted practice of the rounding rule. In 
line with that, Kostas’ solution is not accepted because 
his answer does not fit into the interactive fluency to 
reach the goal of the lesson. Therefore, the rejection 
of Kostas’ solution is legitimated several times by 
the teachers referring to Mr. Maler’s need to reach 
educational goals. The high degree of implicitness 
of the rejection Mr. Maler shows in the video is not 
mentioned within this short discussion. But while Mr. 
Neumann interprets Mr. Maler’s rejection another 
time, he positively remarks that the teacher avoids 
face-threatening reactions towards Kostas. Besides 
the negotiation about the contributions of the stu-
dents Katja and Kostas, also the comparison of both 
students’ considerations result in the category for the 
analysed sequence as “acting and turning aspects”. 
The interactive process is not mentioned in the pre-
sented sequence.  
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Reconstructed professional visions 
The reconstructed aspects of the discussion process 
show that two major motives of teachers’ selective 
attention can be identified: namely (1) keeping track of 
teachers’ goals (Prediger et al., in press) and (2) rating 
of students’ considerations. Concerning the first mo-
tive, the group-discussion teachers interpret easily 
that the favoured reaction of Mr. Maler is to give just 
positive evaluation on contributions that match les-
son goals (for details, see Prediger & Erath, 2014). For 
these teachers the alignment of feedback with goals 
of lessons is a natural process of classroom interac-
tion as well as legitimation for reaching educational 
goals. In comparison to the reactions given by the dis-
cussion group towards the different contributions of 
Katja and Kostas, it can be assumed that the saving of 
the fluency of the interactional process in classroom 
interplay is one of the major demands. Both Katja’s 
and Kostas’ utterances could be the starting point 
to develop a description for the rule for rounding. 
Nevertheless, the teacher only pays little attention to 
Kostas’ solution, even though it is possible to evolve 
the rounding rule by his geometrical approach. The 
problem for students to achieve a high degree of dis-
course competence to manage the demands of an ac-
cepted participation in mathematical classroom is not 
mentioned within the discussion. These findings are 
confirmed by other scenes and through the clusters 
of recurrent combinations of (sub-) categories. Hence, 
aspects of legitimation are mostly motives that are 
mentioned while teachers discuss methodical aspects. 

CONCLUSION 

With this short insight into a complex group discus-
sion it becomes evident that some non-supportive 
findings from classroom studies, like the implicitness 
of demands for presentation and content, are also 
judged as adequate from the teachers’ perspective. 
However, there is a gap between the normative pro-
fessional demands, which result from research on 
classroom interactions, and the professional visions 
of teachers (for details, see Prediger et al., in press). 
Especially motive (1) is of particular importance for 
teachers. While the teachers discuss pedagogical 
motives in detail, the content specific quality of stu-
dents’ utterances is picked up for the first time after 
30 minutes of the discussion. This phenomenon could 
also be confirmed (with few exceptions) in other re-
constructions of interaction units in different group 
discussions. These findings confirm results from 

Sherin (2007). Participants from Sherin’s research 
as well as the teachers in our first video-stimulated 
group discussion of classroom interaction focus on 
the pedagogical behaviour of the videotaped teacher. 
In future, these qualitative findings shall be triangu-
lated by quantitative analyses of the categories of the 
interaction units.

Despite the presented motives of the discussion group, 
it is remarkable that there is no stress on the inter-
active process and the negotiation of mathematical 
meaning. Considerations of the students’ statements 
are only given in form of their matching with regard 
to the didactic ambitions of the teacher. From that 
perspective, the interactionist demand for support, 
enabling students to participate in classroom inter-
actions, can be seen as contrary to the motives recon-
structed here. Therefore, the process of negotiation 
of meaning, giving particular attention to learners’ 
ideas, is opposed to the focus of keeping track of the 
teachers’ goals. Also, the lack of Mr. Maler’s acting 
to not provide explicit feedback on the adequacy of 
the contribution is not mentioned in our discussion 
group. Although the feedback is an important turn 
within the structure of the process of the negotiation 
of meaning, it seems to be adequate to the teachers 
that this turn is absent in the case of the interaction 
between Kostas and Mr. Maler.

Comparing the results from this illustrated analysis 
with reconstructions from research in classroom in-
teractions, one can assume that also interactionally 
relieved teachers prioritise actions that are contra-
dictory to normative professional demands. This is 
an unexpected result for research on group discus-
sions. One consequence of this finding is to adjust ap-
proaches of teacher training programmes. Hence, the 
teachers’ perspective on classroom interactions and 
supportive situations should be integrated into the 
process of forming professional demands and eligible 
acting repertoires. The inclusion of empirically based 
approaches concerning teachers’ motives makes it 
thus possible to mention also meaningful motives 
of teachers instead of substituting them through the 
idea of one prototypical conceptual situation or new 
techniques.
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ENDNOTE

1. In the transcribed sequence stressed words or ap-
pointments are coded in bold letters. All specialities 
of the spoken language (mistakes, grammar, etc.) are 
mentioned in the translation of the transcribed se-
quence. 
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For communication about prediction (both relating to 
probability and to conjecture), language is by nature 
recursive – language is an indicator of meaning as well 
as a force that shapes meaning. We describe how this 
recursive nature of language impacted the choices we 
made in a cross-sectional longitudinal study aimed at 
gaining insight into children’s language repertoires re-
lating to conjecture. We then use some of the data from 
the project to identify issues relating to interpreting data 
in such a context. Finally, we raise questions about im-
plications for educators.

Keywords: Language, mathematics education, prediction, 

conjecture.

INTRODUCTION

The understanding of possibility, risk, and certainty, 
like the understanding of any mathematics, is medi-
ated by language. Certain language repertoires are 
necessary to convey the ideas. At the same time, the 
language used to describe risk shapes the way people 
conceptualize it. This recursive nature of language 
compelled us to develop a research project to inves-
tigate children’s language repertoires in relation to 
conjecture. Having noted similarities in the language 
of conjecture and of prediction, we structured class-
room and interview prompts to encourage students 
to make predictions and we talked with them about 
the meaning of the things they said. In this paper, we 
focus on research choices in relation to this endeavour. 
First, we describe choices we made to gain insight into 
children’s language repertoires. Second, we use some 
data from the project to identify issues relating to in-
terpreting data in the characteristically mathematical 
contexts of conjecture and prediction.

Moving beyond our academic interest in mathematics 
education, we will argue that the issues we identify 
may be significant for understanding everyday expe-
rience. In particular, we will raise questions about the 

impact of mathematics class experiences with uncer-
tainty. We will also raise questions about the impact 
of intertextuality between uniquely mathematical 
ways of communicating about conjecture and every-
day ways of interacting about authority.

COMMUNICATING ABOUT UNCERTAINTY

The investigation of conjectures (hypotheses) is one 
of the most important mathematical processes. Much 
mathematics teaching focuses on enabling students 
to perform particular mathematical procedures, such 
as adding fractions, factoring polynomials, and cal-
culating probability. These skills appear as stand-
ards in curriculum documents and frameworks (e.g., 
CCSSO, 2010) that are used by curriculum planners 
and teachers. Research and professional literature, in-
cluding curricula (e.g., New Brunswick Department of 
Education, 2010) and curriculum frameworks, point 
to the necessity of students learning these intended 
outcomes through the exploration of mathematical 
problems. 

When people explore a mathematical problem togeth-
er, as with mathematical investigations in classrooms, 
it is necessary to have a way of suggesting an idea be-
fore knowing it is true. Rowland (2000) noted the cen-
trality of such conjecture to mathematics, and coined 
this “space between what we believe and what we are 
willing to assert” (p. 142) as the Zone of Conjectural 
Neutrality (ZCN). Because of the recursive relation-
ship between language and experience, the language 
resources available affect the possibilities for making 
conjectures.

Our theoretical perspective for this research draws on 
the work of Vygotsky and Wertsch related to the con-
nections between thought and language, and, in par-
ticular, the central role that language as social inter-
action plays in the process of learning. Nevertheless, 
we have found it a challenge to avoid deficit framing 
because of the shaping force of one’s language rep-

mailto:dwagner@unb.ca
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ertoire. Deficit framing suggests that one’s own way 
of speaking or thinking is superior by evaluating 
whether or not others have acquired the same skills. 
In the study of linguistic variation for numbers, the 
one area of mathematics register variation that has 
been documented significantly, Swetz (2009) point-
ed out how cultures have been rated on the extent of 
their number systems. In our research we are more 
interested in the potential for linguistic variation to 
open up opportunities to understand mathematics 
differently – for example, how does thinking of num-
bers as verbs (e.g., Lunney Borden, 2010) change one’s 
conception of counting and arithmetic operations? In 
our case, how does linguistic variation express itself 
in relation to understanding probability? Because lin-
guistic variation in mathematics (besides the area of 
number) has not been researched significantly, the 
discussion requires careful research to move forward.

Our focus in the article is on participants’ repertoires 
for expressing modality. Modality refers to linguistic 
tools for expressing degrees of certainty, for example 
the use of modal verbs like must and could. “It must be 
six” is stronger, and thus has higher modality than “It 
could be six.” Some modal verbs—e.g., ‘can’—are am-
biguous. “You can be excused from the table” indicates 
a degree of obligation; “You can finish the race” indi-
cates ability; “I can help you” indicates inclination; and 

“It can be a six (because one of the remaining cards in 
the deck is a six)” indicates probability. When stu-
dents hear the word can, what does it mean to them? 

In an example of research that may appear deficit 
framed, Shaffer (2006) explained how deaf children 
with hearing parents did not develop what she called 

“The Theory of Mind” because of the absence of mo-
dality in their vocabulary. Theory of Mind relates to 
the understanding that different points of view are 
possible. Linguists Martin and Rose (2005) described 
the effects of modality (sometimes called ‘modulation’) 
this way: “it opens up a space for negotiation, in which 
different points of view can circulate around an issue” 
(p. 50) – a description that bears close resemblance to 
Rowland’s ZCN. Shaffer reported that once the chil-
dren developed vocabulary for modality (in American 
Sign Language) it became clear that these tools facili-
tated their quick development of this Theory of Mind. 

We are especially interested in the way children use 
language to express modality in mathematics contexts 
(and beyond) because modality is important in conjec-

ture (Rowland, 2000), to describe uncertainty, and to 
understand other points of view (Shaffer, 2006). In our 
research, we did not aim to look for holes in children’s 
language repertoires. Rather, we focused on attending 
to the ways they talked about their understanding, to 
help us see a range of ways to talk about and under-
stand conjecture and uncertainty.

METHODOLOGICAL CHOICES

The data for our cross-sectional longitudinal study 
comprise audio- and video-recordings from English-
medium and French Immersion instructional con-
texts in an Anglophone region in Canada. Students 
worked in groups in class and were subsequently in-
terviewed, extending the group work. At the end of 
the interviews we asked students about the meaning 
of words they used to describe degrees of certainty.

For each mathematical context we tried to avoid us-
ing specialized mathematical language ourselves. We 
know from second language acquisition literature 
that learners are generally good at noticing and, sub-
sequently, using the language used in interactions 
with more able speakers (Long, 1996). We wanted 
to hear what language skills the children in our re-
search used to communicate their ideas without set-
ting them up with the specialist language to build on. 
As we struggled to construct problems without use 
of specialist language, we found that larger narra-
tive contexts made this possible. Other strategies we 
considered became grammatically awkward. These 
narratives also made the problems accessible to very 
young children, perhaps partially because of the lack 
of specialty language, but mostly, we think, because 
they connect to children’s experience. In addition to 
embedding our questions in a narrative context, we 
attempted to avoid specialized uncertainty language 
when we interviewed participants about their pre-
dictions in contexts based on uncertainty. We agreed 
it would be acceptable to use a language strategy af-
ter the participant did, but not before. This proved 
very difficult; indeed, in the interviews we often used 
words we intended to avoid, and sometimes used in-
correct or awkward structures in attempts to avoid 
this. After completing most of the first year’s class-
room and interview interactions, we agreed amongst 
our team that we should be less paranoid about avoid-
ing specialty language, but knew that this issue would 
plague interpretation of the data (from before and 
after our decision to loosen up.)
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The first year’s participants were in Grades 3, 6, and 9. 
We had them play a modified version of skunk, which 
is a game often used in the teaching of probability (e.g., 
Brutlag, 1994; Neller & Presser, 2004). We had them 
play in pairs so that they would be more likely to talk 
with each other about their ideas and strategies. We 
introduced the game with a narrative like this, var-
ying slightly between contexts because we did not 
script the narrative: “I was picking strawberries in the 
forest. After a while, when my basket was quite full, a 
skunk wandered into the berry patch. I ran away so 
the skunk would not spray me. I lost the berries in my 
basket when I ran off.” (This narrative also gave a rea-
son for calling the game skunk.) Participants had a pile 
of beans (representing the berries), a cup (the basket), 
and a bowl (home). When the researcher rolled the 
die and called out the number, participants put that 
number of berries in their basket. A six represented 
the skunk. When it was rolled, everyone would lose 
the berries in their baskets. On the other hand, if they 

“went home” (dumping their beans into their bowl) be-
fore the appearance of the skunk, their berries were 
safe. We played seven rounds – one berry-picking 
expedition for each day of the week. We played the 
game with participants in their classrooms first. The 
following day we interviewed groups of students and 
played again but with six cards bearing the numbers 
one to six instead of the die. The interviewer would 
not replace the cards into the deck until the deck 
was completely played out, at which time it would 
be reshuffled. Thus the participants experienced 
the difference between independent and mutually 
exclusive events in probabilistic situations. During 
the game, the interviewer would ask the participants 
to say why they made their choices about when to “go 
home.” After the game, the interviewer would ask par-
ticipants about specific things they said, asking for 
clarification on meaning. The camera operator was 
helpful in this regard, acting as a second interviewer. 
She or he could make notes on what participants said, 
which was relatively difficult for the primary inter-
viewer who was busy with the cards and interaction.

In the second year, participants from Grades 4, 7, and 
10 (catching some of the same students as the previous 
year, one grade earlier) predicted the 50th car on dif-
ferent trains based on the first seven cars. The narra-
tive context of this situation had the researcher tell a 
story about waiting with a friend for a train at a level 
crossing, and deciding to predict what kind of car the 
fiftieth car would be. Trains were then shown using 

presentation software, with an engine and the first six 
or seven cars, each labelled with their number. After 
students made their predictions about the 50th car, we 
had the train accelerate and then decelerate to settle 
on the 50th car. As with the game of skunk, we had 
students work in groups to draw out communication.

The sequences presented to students varied consider-
ably to defy expectations of certain kinds of patterns. 
The cars were distinguishable by colour and shape – 
Yellow (Y) cars were rectangular boxcars, green (G) 
cars were tankers, and blue (B) cars were flatbeds 
carrying big triangles. Train 1 showed Y,G,B,Y,G,B,Y 
and continued with a pattern of threes (YGB). Train 
2 showed Y,G,Y,Y,G,Y and continued with a pattern 
that increased the number of Ys before each G – i.e.,  
Y,G,Y,Y,G,Y,Y,Y,G, etc. Of course, the initial seven cars 
could have suggested a pattern of threes (YGY) similar 
to the previous train – i.e., Y,G,Y,Y,G,Y,Y,G,Y, etc. For this 
train, we stopped the train at around the 25th car to let 
students reconsider their predictions. Of course, we 
invited students to tell us their reasoning whenever 
possible. Train 3 showed B,G,B,B,G,G, etc. and contin-
ued with B, B, B, G, G, G, etc. with increasing groups of 
B and G.  The interviews on the following day started 
with Train 4 showing Y,B,G,Y,Y,B,G. It continued with 
groups of four (YBGY) – i.e., Y,B,G,Y,Y,B,G,Y etc. Train 
5 started with Y,B,G,B,P,B,Y and continued with a ran-
dom collection of cars, in which the colours started to 
misalign with the shapes and new kinds of cars ap-
peared. As with Train 2, we stopped train 5 at around 
the 25th car so we could hear the students reconsider 
their predictions. In addition to the confounding ran-
domness of the fifth train, there was no 50th car – it 
had only had 42 cars. As with skunk, we ended these 
interviews with questions about distinctions among 
various language choices we heard the students use.

For this paper, we focus on one interview with four 
Grade 6 students playing the game of skunk. However, 
we make some references to other data within the 
project to illuminate certain findings through com-
parison. This group of students was not identified by 
their teacher as exceptional in any way. The school 
is in an area that has relatively low socio-economic 
indicators. As noted above, these four students played 
skunk in class the day before, and subsequently one 
of our research team interviewed them – first playing 
skunk with cards instead of a die, and then asking 
them about some language meanings. We asked them 
to play skunk in pairs, and they somehow came to an 
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implied agreement that the pairs were competing 
against each other.

LANGUAGE USED TO EXPRESS UNCERTAINTY

These four 11- and 12-year olds show considerable 
language repertoires, which we found to be the case 
for even the most mathematically and linguistically 
novice students in this project. We were the most care-
ful about and attentive to modal verbs because of our 
earlier research and teaching work.

The modal verb have expresses high modality because 
it refers to events that must occur. The interviewer 
used it first (though trying to avoid doing so) in turn 
111 and it was used again in turn 229 when Chris talked 
about the difference between playing skunk with 
cards and with the die: “It’s easier this way because 
when the skunk first came you just don’t have to wor-
ry.” It wasn’t used again until the interviewer asked 
questions about its meaning. Here is a short version 
of that discussion. 

319 Interviewer: [Yesterday] I heard Terry say 
when you’re working in your groups, “Do we 
both have to write this down?” So what’s the 
difference between “it has to be the skunk” 
and “she has to write this down”? Is the “has 
to” the same? “This has to be the skunk.”  “She 
has to write it down.” Do you notice a differ-
ence between them? …

346 Terry: Do we both need to, like, do we 
both need to write it down?

347 Interviewer: No, but it’s a proper use of 
the word. But is it the same as “this has to be 
the skunk”?

348 Terry: No.
349 Interviewer: No? Why not?
350 Terry: Because you know it has to be.
351 Dale: It absolutely has to be.
352 Interviewer: It absolutely has to be.
353 Terry: Yeah
354 Interviewer: But when asking “do you have 

to” it’s not absolutely
355 Terry: No, yeah
356 Interviewer: Okay
357 Dale: Because the fire bell or some-

thing could ring or something and you all go 
outside and you don’t have to write it down.

358 Interviewer: Don’t have to write it down 
but if the fire bell rung this would still be 
the skunk.

359 Dale: It would still be the skunk.

We note that, to clarify meaning, the students intro-
duce new vocabulary that was not part of the interview 
up to this point. Terry used the modal verb structure 

“need to” to emphasize the necessity of “have to.” Dale 
introduced the adverb absolutely to further empha-
size this sense. The students distinguished between 
instances of ‘have to’ depending on context.

We had a similar conversation about the modal verb 
can which had been used in its various forms, includ-
ing can’t, by the students in the interview. We started 
this part of the conversation by referencing Dale’s 
writing in class earlier. When asked what is the most 
number of berries they could get in a day, Dale wrote, 

“You can get any number because it could just keep 
going.” (This was with playing skunk with a die) The 
researcher referred to Dale saying in the interview 
that it is different with the cards because “we can’t 
keep going.” What follows is again a short version.

391 Interviewer: That can’t – If you’re want-
ing to go visit your friend, and your mother 
or father says that you can’t go over to your 
friend’s house, is it the same kind of can’t?

392 Terry: No, that means you’re not al-
lowed. …

395 Interviewer: You’re not allowed to
396 Terry: Yeah.
397 Interviewer: Or how do you know it’s not 

the kind of can’t that Dale said? Where it just 
can’t possibly happen? How can you tell the 
difference?

398 Terry: By the way she says it.
399 Chris: Yeah. …
418 Interviewer: When you said earlier “you 

can’t win”, which one is that closest to? 
Remember, when you looked at your basket 
and you said, “Oh, we can’t win.” Is that like 
the “you’re not allowed” or is it

419 Terry: It would be you can’t
420 Leslie: You don’t
421 Terry: Like you, it’s impossible, like
422 Leslie: Yeah, it’s impossible.
423 Terry: Well, it was because if you added 

it all up, the skunk
424 Dale: You’d only get, like, fifteen.
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425 Terry: The skunk would have come.
426 Chris: Yeah, you’d only get fifteen so if 

the skunk is that…
430 Terry:  Because the skunk was gone.
431 Interviewer: It would have been impossi-

ble.
432 Terry: Yeah, yeah
433 Interviewer: So if someone says can’t, … if 

I told you that you can’t divide by zero in a 
lesson on dividing would you think that that 
means that you’re not allowed to or that it is 
impossible to do?

434 Chris: That it is impossible.
435 Interviewer: Why would you think that?
436 Terry: Because you can’t divide by zero.
437 Interviewer: Why can’t you?
438 Terry: Because it is impossible.
439 Interviewer: How do you know?
440 Chris: Because you can’t
441 Terry: Because you can’t
442 Chris: If it is zero, you can’t put it in any 

groups.

In this case, Terry introduced the adjective impossible, 
to clarify the meaning of can’t. No one had used the 
word before this in the interview. As with “have to”, 
the students distinguished among instances of can 
and can’t based on context. During and after this in-
terview, we wondered how students could make this 
distinction for instances in which they do not know a 
convincing logical argument for the assertion. With 
the example of division by zero, the students now 
knew that it is impossible, but how might they have 
thought about it the first time they heard their teacher 
say “you can’t divide by zero”?

The students introduced three adverbs/adjectives that 
indicate degrees of probability into the interview. The 
word probably was first used by Leslie and not used 
again by others. When Leslie and Terry were consid-
ering whether or not to make the same choice about 
going home as the other group, Terry remarked, “One 
of [our groups] won’t lose everything and the other 
would” (turn 204), and Leslie replied, “It is probably 
going to be us” (turn 205). The adverbs absolutely 
and impossible came up in the conversations about 
language choices when the students were trying to 
explain what the modal expressions meant, as noted 
above. 

Other modal verbs used included would, which was 
first used (accidently) by the interviewer and used 
liberally later by the students, and may as in “you may 
be able to win” (Dale, turn 263).  Another specialized 
linguistic form used by a student was the if-then state-
ment, first used by Chris: “If it was two numbers then 
it would make a difference” (turn 39). This was in the 
discussion about the playing skunk with a die.

In addition to the relatively specialist terminology 
for modality (the modal verbs and adverbs), students 
expressed degrees of certainty in other ways. Terry 
introduced the expression “I think” in a conversation 
about playing skunk with the die. The researcher had 
asked if the number of berries they got would be dif-
ferent if the skunk came on a one instead of a six, to 
which Terry replied, “I think it would because we roll 
the one a lot” (turn 45). Terry introduced another ex-
pression to describe the differences between playing 
skunk with cards and with the die. In turn 236 Terry 
said, “You never know what is going to happen” (with 
the die). Terry also said “the odds are harder” (line 
273) when the probability of success became lower. 
Dale was inventive too, and used the expression “I 
had a feeling” (turn 126) after “going home” to stay 
safe. This was in reply to the researcher asking, “Did 
you know that this was the skunk?”

Finally, the absence of any modal expressions is sig-
nificant in the consideration of modality as well. The 
use of bald assertions can replace strong modal verbs 
or adverbs. Dale said, “the skunk is right there” (line 
74) while pointing at the skunk card, as yet unrevealed 
but evidently the skunk by deduction. We might ex-
pect “the next one has to be the skunk” or “I am certain 
that the next one is the skunk” but the bald assertion 
serves the same function. Chris did the same on line 82 
saying “it’s there.” In this interview (and others), there 
were many instances of this method for expressing 
certainty.

DISCUSSION

The four students in the interview described above 
demonstrated a wide repertoire of language for ex-
pressing degrees of certainty. Each of them used a 
range of expressions, and each of them introduced ex-
pressions that no one else had used before. Terry was 
the most talkative in the discussions about language 
meaning, but we caution that it would be unwarranted 
to make conclusions in comparison to the others on 
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this basis. Many of the expressions introduced by the 
students came late in the interview, which tells us 
that if the interview had been shorter, we would not 
have known whether or not the students had these 
expressions in their repertoires. This serves as an 
exemplary caution against deficit-based assessments. 
Similarly, when one student said something, there was 
no need for the others to say it again or even speak 
about it unless they disagreed. Also, if students use 
an expression that has just been used by the teacher 
or tester, it may not be fully “acquired.”  We cannot 
assume someone does not possess certain language 
simply because they do not use it. However, we can 
claim that a student has an expression in their lan-
guage repertoire if they introduce it. This is why we 
went to the lengths that we did for structuring our 
prompts carefully.  

In addition to using (and introducing) specialist lan-
guage, the students in the interview at times demon-
strated ability to convey their meaning using very 
limited technical language. In particular, they could 
make their ideas clear when talking about the ex-
tremes of certainty – when events were impossible 
or certain. The more specialised language seemed to 
be relied upon either for describing events that were 
somewhere between impossible and certain, and for 
clarifying meaning on the extremes when pressed to 
do so. As noted above, Rowland (2000) introduced the 
idea of the zone of conjectural neutrality to describe 
language that specifies degrees of certainty, which 
is “in defiance of the cultural norm that the pupil is 
judged to be ‘right’ or ‘wrong’” (p. 211). He claimed it 
to be helpful for a conjecturing atmosphere. We note 
that the same terminology is used to describe proba-
bility, and thus specialised modality language can defy 
situations in which predicted results may be between 
impossibility and certainty. We have only begun to 
consider the implications for pedagogy considering 
that the language is shared for both conjecture and 
probability spaces.

This brings us to discussion of the second research 
context, which was set up to be similar to but distinct 
from the game of skunk – a twist on the context. In both 
contexts, students were making predictions. What is 
the difference between a train and a pile of cards, both 
of which are sequences of physical objects? One differ-
ence is that the cards are shuffled and train cars are 
sequenced with some sort of intention. Nevertheless, 
our experience of real trains is that the sequence of 

cars seems to be quite random, or in groups (e.g., the 
boxcars first, followed by a bunch of tankers, followed 
by a few flatbeds, and finally the rest of the tankers). 
We have never seen trains with patterns similar to the 
ones introduced in our research – patterns like yel-
low boxcar, green tanker, blue flatbed, yellow boxcar, 
green tanker, blue flatbed, etc. A Grade 4 student in 
the second year of research involving the trains be-
came increasingly frustrated with the rest of the class 
identifying what the 50th car would be. This student 
kept saying that it is impossible to know, while the 
class continued to ignore him. This student refused 
to make predictions.

This tension points to the presence of some sort of 
pedagogical contract in which students generally ex-
pect intention from their teachers. Even in the game 
of skunk, when the interviewers showed all the cards 
to the students and shuffled the cards directly in front 
of them, the students sometimes expected some kind 
of lesson – the appearance of a second skunk card, for 
instance. With the trains the phenomenon was more 
obvious; the students (with some exceptions, most 
notably the Grade 4 student noted above) assumed 
that the patterns would continue even though the 
researcher and teacher never said that these were 
patterns and the described context was one of a re-
al-life train. The anger displayed by participants when 
they saw the fifth train (the random train) made clear 
to us the students’ expectations for pattern. There 
is something about the transposition of a narrative 
into a mathematics classroom that changes it to a sce-
nario in which everything should be predictable (and 
known by the teacher, or researcher).

In our research project, student predictions were 
based on both the probabilities inherent in the giv-
en scenarios and the students’ second-guessing of 
teacher/research choices in constructing scenarios 
for pedagogic or other reasons. This raises questions 
about how students experience probability learn-
ing. Uncertainty in the mathematics classroom is 
experienced differently than outside the classroom. 
Furthermore we note that the language of conjecture 
shares language with probability, and so we wonder 
whether this ought to confound similarly our under-
standing of the way students experience proof and 
reasoning.

Finally, we turn our attention to implications beyond 
the classroom. Increasingly significant social phe-
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nomena, such as climate change, involve both calcu-
lations of risk, which are based on assumptions, and 
conjectures (hypotheses). The fact that risk calcula-
tion and conjecture share terminology may compli-
cate communication about such social phenomena. 
Furthermore, both risk calculation and conjecture 
language about certainty is also used to express au-
thority, as demonstrated in the above conversation 
about authority. When people in the public sphere 
who appear scientific make claims that sound authori-
tative, how are listeners to know whether these claims 
are warranted? It is incumbent upon mathematics 
teachers to be aware of these shades of meaning and 
the risk of ambiguity on such important social issues.
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The mathematics notebook of the student is a very usu-
al tool in Spain, but, at secondary level, students are 
usually free to develop and use it as they want. Here, we 
put our attention on a particular aspect: the kinds of 
comments the students add in their notebooks when they 
are writing in them. As a first step, we have carried out 
a case study in which we compare the notebooks of two 
high school students with high grades. There are some 
similarities, like the large amount of comments, which 
link different concepts, but, also, important contrasts 
related to the role of the notebook. 

Keywords: Notebooks, writing, comments, case study, 

high school. 

RESEARCH QUESTIONS, 
FRAMEWORK AND METHOD 

The mathematics notebook (MN), understood as the 
place in which students take their class notes, carry 
out and correct tasks and collect their mathematical 
work, is a very common tool in Spain. At secondary 
level, teachers usually do not indicate to their stu-
dents how to develop it. We could see the MN as a tool 
with various use schemes among the students, but 
there is little research on this (e.g., Fried & Amit, 2003). 
In our research, we are looking for different profiles 
of elaboration and use of MN in students, in which 
writing plays an important role. Students usually 
transcribe in their MN the theoretical development 
of a topic (definitions, examples, theorems) and the 
solving of exercises. But students can add other writ-
ten elements such as memories of previous concepts, 
clarifications or study aids. We call them comments 
and here we present an exploratory study focusing 
on them, with two research questions: What types of 
comments can we find in a student’s MN? What are 
the relationships between them and how the students 
use their MN to study? 

In the 80s and 90s a lot of studies about writing and its 
role in the learning of mathematics were developed. 
Some of them propose different classifications of stu-
dents’ writing in particular given tasks, according to 
the understanding and learning they reflect: in math-
ematics journals (Waywood, 1992) or in explanations 
of concepts (Shield & Galbraith, 1998). In our study, we 
do not have any particular task but we adopt these 
classifications as a basis to study what kinds of com-
ments they add in their MN.  

Four classes of high school students, chosen by avail-
ability, have participated in our research. The four 
have mathematics teachers with “traditional” method-
ology (theoretical exposition of contents, posing and 
solving of exercises). To start the study of the writ-
ten comments, we have done a case study selecting 
two students of different classes with high grades in 
mathematics: a girl (S1) and a boy (S2). We have done 
photocopies of their MN to analyse the comments 
found in them (with the aid of the previous research) 
and an interview with each student about her/his use 
of the MN. 

ANALYSIS AND FIRST RESULTS 

In the poster we present and illustrate the similarities 
and differences between the kinds of comments we 
have found in the MN of these two students. Besides, 
we link them with the role of the MN and the way they 
use this tool to study mathematics, in order to extract 
the first results. Regarding the similarities, there are a 
high number of comments linking different concepts 
(or new concepts with prior knowledge) and justifi-
cations about the need to introduce some concepts 
or techniques or why they can apply a procedure. 
Comments of these types seem to be an indicator of 
good achievement in mathematics; they show that the 
students are beginning to understand the relational 
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and logical nature of mathematics (Shield & Galbraith, 
1998).  

But there are key differences. The memories and clar-
ifications about processes are more common in the 
MN of S1, and only in it can we find some recommen-
dations about the resolution of exercises (“recipes” or 
good practices). We have found in S1’s MN some signs 
(smiles or question marks) about her understanding 
(or not) of concepts and processes. In the interview, 
she says to base her study of the subject on the revision 
of theory and on the review and repetition of exercis-
es made in her MN. These kinds of comments act as 
study aids for her, reinforcing an algorithmic aspect 
of mathematics (Shield & Galbraith, 1998) and a util-
itarian stance towards knowledge (Waywood, 1992). 
In addition to these aids, she says she needs the visible 
correction of mistakes (using colours, marks or signs) 
and the order and cleanliness in her MN. It seems that 
S1 constructs her MN as a personal “textbook”, em-
phasizing some clarifications and her difficulties to 
conduct her study throughout the reading of it.  

There are almost no comments of those types in S2’s 
MN, probably due to the different role of the MNs for 
him and his vision about mathematics. To prepare the 
test, instead of reviewing the exercises of his MN, S2 
solves other exercises in which he has the solution to 
check. He seems to see mathematics as a constructive 
activity more than a gathering of contents submitted 
(Waywood, 1992). In the next steps, we have to extend 
the study to more students to learn more about the 
different types of comments and their functionality, 
in order to develop a classification of them. 
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The poster deals with the talk in the mathematics class-
room which is focused on looking for relationships in a 
pattern. The communication of students is observed in 
the environment of geometrical patterns in a triangle 
grid and their transformation into arithmetic patterns 
or algebraic functions. It shows how pupils/students 
reason about relationships in these patterns and among 
these patterns, how they describe and express their gen-
eralizations in words or symbols.  

Keywords: Talk, discourse, mathematics classroom, 

patterns.

DISCOURSE ON MATHEMATICAL TOPICS 

The mathematical discourse among students is an 
attribute of thought-provoking classroom. Discourses 
are defined as different types of communication (and 
thus commognition) that draw some individuals to-
gether while excluding some others (Sfard, 2008). 
The classroom based on discourse approach brings 
a lot of situations of communication among students 
and among them with their teacher. They describe 
procedures of calculation or construction, verifying, 
justifying, deducing, generalizing, etc. Their talk re-
flects their mathematical experience, knowledge and 
thoughts. Under this perspective, the analysis of the 
students’ talk is expected to enable to diagnose part 
of their mathematical understanding. 

PATTERNS IN MATHEMATICS 

Patterns represent the type of interesting and 
challenging tasks for students and the suitable en-
vironment to develop their mathematical thinking. 

“Generally, if we see a pattern in mathematics, we look 
for the relationship which will describe the pattern. 
Patterns are found in all aspects of mathematics, arith-
metic, algebra, statistics and games.” (Littler & Benson, 
2005, p. 203) In the described case the environment of 
geometrical patterns in a triangle grid is transformed 
into arithmetic patterns or algebraic functions.  

Talk among students is observed on the basis of mod-
elling of geometrical patterns which are assembled 
from toothpicks in a regular triangular grid (geomet-
rical figures are made of identical equilateral trian-
gles). Series of these figures (see Figure 1) can be con-
structed by lengthening (the figure type is preserved 
but its shape is not) or by enlarging (the shape of the 
figure is preserved – similar figures). Elongation is 
characterized by a different quantitative change than 
construction of a sequence of similar figures.

At first students construct figures made of identical 
equilateral three-toothpick triangles. Then they state 
how many toothpicks the figures are made of, describe 
the arithmetical regularity in the sequence of figures 
and express the number of toothpicks needed for fig-
ure of length n. 

Teacher:   How many toothpicks are these paral-
lelograms made of? 

Figure 1: Two types of a geometrical pattern in the triangular grid 
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Student A: She counts the number of toothpicks 
in the figure one by one. The first one is 
made of five… the second out of nine... 

Student B: … and the third out of thirteen. 
Teacher:  How many toothpicks will you need to 

construct the next            parallelogram?  
Student A:  I will add one, two, three, four… well, 

the next one will be made of seventeen. 
Teacher:    So, how will this go on? 
Student B: Always plus 4… 21, 25, 29, 33… 

The poster describes how students communicate their 
mathematical thoughts while looking for relation-
ships in a pattern and express them through arith-
metic rules or algebraic functions. 
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Testing and diagnostics of students’ 
difficulties in CLIL teaching

Alena Šteflíčková
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The poster deals with CLIL and assessment and eval-
uation in CLIL. It summarises main positive and neg-
ative aspects of CLIL with regards to a Czech teacher 
and it concentrates on ways of diagnosing if a student 
has problems with language (English) or content sub-
ject (mathematics) while writing different types of tests. 
There are two main principles used – analyzing on the 
basis of the combining solutions in different tasks in set 
of tasks (alternative test) and analyzing of the procedure 
of a student. The poster introduces examples of several 
works of research and different alternative tests and it 
shows some possible ways how the test CLIL students. It 
also shows examples of diagnosing student’s difficulties, 
mainly in language. 

Keywords: CLIL, testing, assessment, alternative tests.

THEORETICAL FRAMEWORK

The current globalised world requires modern meth-
ods of teaching and learning. CLIL (Content and 
Language Integrated Learning) is one of these meth-
ods; it integrates learning of content subject and a lan-
guage other than the language of instruction. Both of 
these subjects are taught at the same time and via each 
other. The method is in the spotlight of researchers 
and scholars who see it as one tool for better language 
education, also in mathematics education research.

CLIL has some positive aspects and also some prob-
lematic ones. One of these is assessment and evalu-
ation. A key question is what should CLIL teachers 
assess and evaluate  – content only (according to 
Hofmannová, Novotná, & Pípalová, 2004, this is the 
most common way in CLIL teaching), language only, 
both content and language separately or both content 
and language at the same time. Assessing and evalu-
ating of both content and language at the same time 
can be difficult because sometimes it is not easy to 

distinguish if the difficulties of a student originated 
in language or content. Then there is one important 
question emerging: “How to integrate both parts?” 
(Novotná, 2011). A connected question is: If a student 
did not answer a question or answered the question 
incorrectly, what does it mean? Does it mean he/she 
did not understand the question or did not know the 
answer or was not able to produce it? A plain fact is 
that it is usually not possible to separate these items.  

The poster aims at integrating math and English and 
the main objective of the poster is to introduce several 
types of alternative tests or tasks which were created 
and used in ongoing research regarding diagnosing 
where the difficulty of a student was. 

METHODS

Assessment and evaluation is a part of CLIL which is 
not very often discussed. The ways of written assess-
ment in CLIL are tests aimed at content or vocabulary, 
alternative tests, performance tests (students per-
form what they are asked for), portfolios and “can do” 
tables (there is a list of skills students should learn 
and the teacher ticks the ones the student has already 
learnt). 

The examples of tests and tasks in my study are based 
on two basic principles. The first principle is inspired 
by Novotná (2011) who introduces an alternative test, 
which is a set of gradated tasks –some tasks are gradu-
ated in English and some are graduated in mathemat-
ics (gradated in difficulty). By comparing results in 
different tasks it is possible to make an educated guess 
where the student’s difficulties are. The second princi-
ple is analyzing the procedure of a student’s solution 
in order to understand his/her train of through. 
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CONCLUSION

Dealing with assessment and evaluation, if we choose 
to assess and evaluate content subject only, the tasks 
and tests would need to be in native language, because 
as my units of research showed the assignment in 
second or foreign language (L2) is one factor which 
influences the understanding. If we assess and eval-
uate in L2 then there is a question how to diagnose 
if the student’s difficulty is in language or content 
subject. One possibility is to use an alternative test 
or to study the procedure of a student solution. To 
understand the procedure and train of through of a 
student is important for a teacher, so he/she is able to 
analyze knowledge of a student or a whole class and 
can use the information for other teaching. Further 
research could deal with other tests, comparing one 
test in different languages, as well as studying stu-
dent’s difficulties in oral testing or different school 
mathematical domains. 
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Scaffolding is a mean to support students’ ability of 
expressing ideas in written language and to foster con-
ceptual understanding. It is well known that scaffolds in 
words and chunks must be topic specific and adaptive to 
the individuals’ steps of proximal development, but not 
what that means in detail, for example for percentages. 
The case study reported in this poster investigates which 
topic specific scaffolds are needed and reconstructs stu-
dents’ challenges with topic specific scaffolding as well 
as effects on their conceptions.

Keywords: Language, scaffolding, writing, percentages, 

adaptivity challenges.

THEORETICAL BACKGROUND 

Scaffolding consists of chunks or parts of sentences, 
which students can use for their written texts (Smit, 
van Eerde, & Bakker 2012). Thereby the ability to ex-
press something in written language shall be devel-
oped. But students write texts topic specific challeng-
es in percentages must also kept in mind. Parker and 
Leinhard (1995) resume backgrounds why percentag-
es are so hard to learn; one reason is that connections 
between different elements (like part and whole) are 
often invisible in the language. These connections are 
part of a relational understanding that Skemp (1976) 

Figure 1: Adaptivity challenges for relational scaffolding
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opposes to instrumental understanding. They are 
therefore chosen to be a core of a developed teaching 
learning arrangement in which students are asked to 
explain an error in a false advertisement (false rate). 
Their writing and understanding process is support-
ed by scaffolding and percentage bars. 

DATA GATHERING, ANALYSIS AND 
FIRST EMPIRICAL RESULTS

The learning arrangement was investigated by vide-
otaped design experiments in laboratory settings (18 
students of grades 7–8) and in 8 design experiments 
in classroom settings (with similar students), each 
lasting 35 to 50 minutes. Vergnaud’s analytical model 
of concepts- and theorems-in-action is used for the 
data analysis, as “a fruitful and comprehensive frame-
work for studying complex cognitive competences 
and activities and their development” (Vergnaud, 
1996, p. 219).

The data analysis shows students difficulties to use 
relational scaffolds like ‘because the base is... and of 
this the discount is reduced’, if they had an instru-
mental understanding. A student says in those sit-
uations, that the scaffolding isn’t helpful: “Because 
there, I – can’t make the beginning of the sentences”. 
Figure 1 shows the analysed interplay between an 
instrumental or relational understanding of the sit-
uation and the percentage bar, a matching of both and 
the consequences for instrumental or relational scaf-
folding. To sum up, relational scaffolding is needed 
to understand and express matching in percentages, 
but students can hardly make use of it when relying 
on an instrumental understanding.
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SCOPE AND FOCUS

Thematic working group 10 is interested in discuss-
ing diversity and mathematics education within the 
realms of the societal, the cultural, and the political. 
The working group was established at CERME7 in 
Rzeszów, Poland, in 2011 (Valero, Crafter, Gellert, & 
Gorgorió, 2011; see also Pais, Crafter, Straehler-Pohl, & 
Mesquita, 2013), but was an extension of the language 
diversity group which had been part of CERME since 
the first conference.

In the work of the group, mathematics education is 
assumed to refer to more than the encounter between 
an individual and a mathematical object and to wider 
contexts than exclusively classroom settings. 

The group is specifically interested in discussing 
research that addresses how diversity affects possi-
bilities in mathematics education. Diversity might 
be expressed in terms of gender, ethnicity, language, 
socio-economic status, disability, qualification, life 
opportunities, aspirations and career possibilities, 
etc. Contexts are diverse in terms of the variety of sites 
where mathematics education takes place, and the 
differences in the organization and structure of prac-
tice in such contexts—schools, homes, workplaces, 
after-school organisations etc. Contexts also include 
the political structures where policies are formed that 
draw on, make use of, or ignore mathematics educa-
tion research. Diversity also occurs in relationship to 
who is doing the research and who is being researched, 
posing methodological issues of an ethical nature. 
These multiple diversities intersect, and in so doing 

pose challenges to intended and actual learning and 
teaching practices in their multiple forms.

ORGANISATION OF TWG10’S WORK

In the seminars during CERME9, papers were present-
ed in a similar way to what had occurred in CERME7 
and CERME8 in that the authors did not present their 
own paper. Instead each paper was presented by an-
other author giving a neutral description of the main 
ideas from the perspectives adopted in the paper. The 
author(s) then had a few minutes to add to or comment 
on the presentation, with the possibility of pointing 
out or emphasising important aspects. The present-
er prepared one question/comment for the author, 
which was discussed in connection to the presenta-
tion. In the end of each session, there was time for 
discussing the presented papers. These discussions 
firstly occurred in pairs or small groups and then 
were shared in the whole group. This was done to fa-
cilitate the contributions from as many participants 
as possible to the work of TWG10. 

Although the papers in each session were grouped 
to facilitate discussions about similarities and con-
nections between papers as well as tensions and con-
tradictions, each session was not labelled as such in 
advance. One consequence of this procedure was that 
the efforts to thematize the contents of the research 
presented became a joint process within the group. 

A poster session with 6 posters was held in which 
all presentors had 2 minutes to describe the content 
of their poster. The poster authors then positioned 
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themselves next to their respective posters to engage 
in discussions with group members. 

THE PAPERS DISCUSSED

In this section, we briefly describe the papers from 
TWG10 following the schedule from CERME9. We ad-
dress some (dis)connections between each paper and 
the subsequent paper as examples of the diversity of 
papers in the group. 

In the paper by Albanese, ethnomathematical dimen-
sions are adopted as tools for analysing observations 
of teachers participating in workshops aiming at 
influencing their conceptions about the nature of 
mathematics. Parra-Sánchez similarly has an inter-
est in ethnomathematics, but not as a tool adopted 
in empirical research in school, but as a broad focus 
of the study itself through a literature review. Parra-
Sánchez problematizes the relationship between re-
searchers and researched communities in the ethno-
mathematical field and proposes a more symmetrical 
approach. While this paper has an interest in power 
relations between the researcher and the researched, 
the next paper by Hauge and colleagues applies an ap-
proach where the gap between the researched (master 
students) and researcher (Hauge as main author) is 
closer than in much empirical research in a study on 
how mathematics related classroom discussions may 
enhance critical citizenship (drawing on Skovsmose). 

Similar to Hauge and colleagues, the paper by Kitchen 
and colleagues critically scrutinises quantifications 
taking place in society, but with another topic in fo-
cus. Kitchen and colleagues focus on how teachers’ 
assessment practices were largely influenced by the 
pressures to prepare students for success on the US 
state’s standardized test. Bagger similarly presents 
research where assessment in mathematics was crit-
ically investigated. While Kitchen and colleagues pay 
attention to how official assessments affected teachers’ 
practices, Bagger’s interest is in effects on students, 
in terms of student positions which were construed 
drawing on Foucault. Turvill, similarly to Bagger, 
has an interest in mathematics education in relation 
to young students but with a theoretical object of a 
study on inequalities. Turvill examines number sense 
from the perspectives of cognitive psychology, situ-
ated cognition and Bourdieusian social psychology. 
In the paper by Lembrer, the children referred to are 
younger than in the case of Turvill, while also drawing 

on sociology, in a study on the relationship between 
socialisation and mathematics education in Swedish 
preschools.

Montecino and Valero present a theoretical analysis on 
texts, as does Lembrer. While Lembrer analysed offi-
cial documents, Montecino and Valero adopt Foucault 
and Deleuze to explore how discourses in research 
literature are operating as part of the fabrication of 
the mathematics teacher as a subject and in the pro-
duction of truths about them. Pansell and Björklund 
Boistrup also have an interest in the mathematics 
teacher but with data from communications within 
a collaborative teacher meeting where one teacher’s 
justification of her professional decision making as 
part of a socio-political context is analysed and dis-
cussed. The teacher’s decision making concerned, 
for example, calculations and this was an interest in 
the theoretical paper by Kollosche. Here, the focus 
is on connections between calculation and bureau-
cracy. Adopting a methodology following Nietzsche 
and Foucault Kollosche points out implications for 
mathematics education. Similar to Kollosche, the pa-
per by Dahl is theoretical, although Dahl takes on a 
more structural perspective when adopting concepts 
from Bernstein suggesting how problem solving can 
be viewed in three different ways: as an ideology, a 
competence and an activity.

Dahl presents a foundation for a methodology for 
investigations of problem solving in mathematics 
education. Norén and colleagues also pay attention 
to methodological matters when revisiting their own 
research with a focus on methodologies for perform-
ing research while paying attention to diversity and 
equity issues, in this case in relation to newly arrived 
students. In Radovic and colleagues as well as in Norén 
and colleagues there is an engagement in the perspec-
tive of the students. Radovic and colleagues report 
on the intersection between mathematics identity 
and the peer positioning of high attainment girls in 
a particular mathematics’ classroom in Chile. Also 
Marks has an interest in students’ perspectives and 
this paper examines questionnaire and interview data 
to identify pupils’ prevailing mindsets in primary 
mathematics. The findings, where a fixed-trait belief is 
dominating, are discussed in relation to mathematics 
education policy and practice in England.

Although having an interest in mathematics edu-
cation in school, the paper by Andrade-Molina and 
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Valero takes on a more historical perspective than 
Marks when adopting cultural historical strategies 
(Foucault) to research the functioning of the school 
geometry curriculum, arguing that school geometry 
fabricates the scientific minds of the future. Similar to 
Andrade-Molina and Valero, Helenius and colleagues 
present a theoretically driven analysis. Drawing on 
Bernstein’s ideas about vertical and horizontal dis-
course their paper raises issues about how the connec-
tion to the everyday in problem solving could reduce 
children’s opportunities to learn mathematics.

Similar to Helenius and colleagues, the paper by 
Albersmann and Rolka concerns problem solving. 
Albersmann and Rolka do not critically examine the 
everyday context, but use problems with every day 
contexts when investigating parent-child coopera-
tion in the course of a workshop. A quite different 
scope has the paper by Black and colleagues where 
the data derive from a mathematician. In this paper, 
the role of ‘others’ is explored in one woman’s mathe-
matical identity with the role of ‘caring’ as a cultural 
resource to identify as a mathematician. While Black 
and colleagues examine data related to the discipline 
of mathematics, Mukhopadhyay and Greer argue for 
the necessity of maintaining diversity in all its hu-
man forms, including mathematics and mathematics 
education. Central to this position is respect of the 
conception of mathematics and mathematics educa-
tion as human activities, inextricably embedded in 
forms of life.

AN ELABORATION AND PROBLEMATISATION 
OF INCLUSIVENESS AND QUALITY 
IN MATHEMATICS EDUCATION 

In TWG10, we agreed that matters discussed within 
the group were essential, not only for this group but 
for research in mathematics education in general. In 
relation to an interest in inclusiveness and quality in 
mathematics education research, discussions in the 
papers from TWG10 would be productive for elabo-
rating and problematizing the research of the field, 
for example, concerning the development of research 
ethics, or finding productive ways of addressing the 
situatedness of any research process in mathematics 
education. 

For TWG10, this concerns respect for diversity in a 
variety of ways, which also is constantly changing. 
Different demands for ethical responsibility were 

discussed, for example, a virtue of respect for par-
ticipants/collaborators in research, such as teachers 
and students, when performing research with an em-
phasis on recognizing knowledge where it is situated; 
or, going further, the establishment of deepened con-
nections between the researcher and the researched 
through allowing the researched a true stake in the 
collaborative development of the research project, 
thus sounding out political common ground. While 
TWG10 obviates a fixation of general demands for eth-
ical responsibility, it formulates reflexive controversy 
as a requirement for mathematics education research 
that seeks to locate itself within the realms of the so-
cietal, the cultural, and the political. A consequence 
from such a view is an awareness of how the actions 
by any researcher within the field of mathematics 
education have political consequences. 

In the work of TWG10, labels were discussed as “need-
ing” not to being taken for granted, such as challeng-
ing the meaning of “success in mathematics educa-
tion” or how a student “in need” may be construed. 
In discussions as well as in papers, the importance 
of investigating what lies between and behind labels 
was addressed.

Another theme within TWG10 was an interest to 
problematize and challenge mathematics education 
research done with the aim of identifying the teach-
ing and learning practices that “work best”. In the 
discussions within TWG10, the focus shifted from 

“what works” towards the question of rather „how what 
works looks like – and for whom“. Furthermore, re-
search within TWG10 addressed how the enforcement 
of accountability measures within many societies of 
today is not likely to promote any “deep” mathematical 
competence. 

One such aspect was a discussion in which many of 
the issues within mathematics education were taken 
as not only being problems of scenarios of learning 
mathematics, but issues within the broader political 
context that still concern mathematics education. 
Consequently, while some of the papers explicitly es-
tablished the relation between the local context, for ex-
ample, a classroom, and the broader political context, 
discussions steadily established such relations where 
it was not an explicit focus of the respective papers. 

In TWG10, we also identified tensions where per-
spectives within the group were not coherent. One 
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such tension was a research interest in the subject 
of mathematics where mathematics education could 
be viewed as a gatekeeper where social order should 
be maintained. In other works from the group, the 
emphasis in the research rather was on how to invite 
all students into the discipline of mathematics. This 
included a discussion about mathematics itself in 
terms of how useful it may be for the individual, but 
also for societies as a whole. Different kinds of use-
fulness, at times not compatible, were discussed, such 
as mathematics as a problem-solving tool in life, or as 
a selection device (for example, to higher education). 

Closely connected to this tension was a discussion 
in the group about whether change at all was possi-
ble, and in that case how. In some discussions, (math-
ematics) education was emphasized as a facilitator 
for changing the world we live in, whereas other dis-
cussions had a stronger emphasis on (mathematics) 
education as being structured by the world, with lim-
ited power to be a departure for a change in society. 
The dynamics of the discussions suggest a reflexive 
approach towards the relation between mathematics 
education and the societal structures in which it is 
embedded.

Similar tensions were discussed at CERME8 (Pais et al., 
2013) and during CERME9 more topics were includ-
ed in the discussions. The diversity of TWG10 is also 
possible to experience through a sound installation 
made by the group, the “cacophony” on link: https://
www.dropbox.com/s/id10kp598jkc872/TWG10%20
cacophony.m4a?dl=0

REFERENCES

Pais, A., Crafter, S., Straehler-Pohl, H., & Mesquita, M. (2013). 

Introduction to the papers and posters of WG10: Cultural 

diversity and mathematics education. In B. Ubuz, Ç. Haser, 

& M. A. Mariotti (Eds.), Proceedings of the Eighth Congress 

of the European society for Research in Mathematics 

Education (pp. 1820–1824). Antalya, Turkey: Middle East 

Technical University, Ankara.

Valero, P., Crafter, S., Gellert, U., & Gorgorió, N. (2011). 

Introduction to the papers of WG 10: Discussing diversity 

in mathematics education from social, cultural and polit-

ical perspectives. In M. Pytlak, T. Rowland, & E. Swoboda 

(Eds.), Proceedings of the Seventh Congress of the 

European Society for Research in Mathematics Education 

(pp. 1386–1388). Rzeszów, Poland: University of Rzeszów.

https://www.dropbox.com/s/id10kp598jkc872/TWG10%20cacophony.m4a?dl=0
https://www.dropbox.com/s/id10kp598jkc872/TWG10%20cacophony.m4a?dl=0
https://www.dropbox.com/s/id10kp598jkc872/TWG10%20cacophony.m4a?dl=0


1538CERME9 (2015) – TWG10

TWG10

Research papers



1539CERME9 (2015) – TWG10
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As Ethnomathematics involves deep epistemological 
implications about the nature of mathematics, we de-
cided to hold a workshop for pre-service and in-service 
teachers, in order to influence their conceptions about 
the nature of mathematics. The aim of the research is to 
analyse the observations of these teachers related with 
the conceptions of the nature of mathematics after the 
proposed workshop. In this paper, we present different di-
mensions for analysing the teachers’ conceptions about 
mathematics from the perspective of Ethnomathematics.

Keywords: Ethnomathematics, conceptions, teacher 

education, sociocultural perspective.

INTRODUCTION

Ethnomathematics is grounded in the anthropolog-
ical studies on mathematics of indigenous peoples 
and aims to recognize and describe the ideas and 
practices of different cultural groups, indigenous 
communities as well as labour guilds (D’Ambrosio, 
1985; Barton, 1996). Later, in the attempt to make 
sense of the confrontation of different perspectives 
of Ethnomathematics, its purpose was extended to 
address a broad view of mathematical knowledge 
in relation to its development in different cultures 
(D’Ambrosio, 2012). Ethnomathematics seeks to ex-
plain what and how different individuals show differ-
ent interests, talents, skills and strategies to generate, 
organize, and share that knowledge. This sociocultur-
al perspective is supported by the contributions of 
various disciplines which share a relativist position.

As the perspective of Ethnomathematics involves 
deep epistemological changes to move away from a 
positivist posture, many researchers propose semi-
nars, courses and Ethnomathematics workshops for 
teacher education, with the common goal of raising 
awareness about the nature of mathematics as a social 

and cultural product and hence, directly or indirectly, 
influencing the participating teachers’ epistemolog-
ical conceptions.

In the United States of America, Presmeg (1998) or-
ganized courses where pre-service teachers became 
aware that mathematics is a cultural product, start-
ing to affirm value and leverage in their future pro-
fessional life concerning issues related to cultural 
diversity.

In Costa Rica, Gavarrete (2012) organized a course 
for training teachers who work in indigenous envi-
ronments. She promoted relativistic conceptions of 
mathematics that integrated academic knowledge 
with traditional indigenous cultural knowledge and 
that was applied to various activities of the daily life 
of these communities.

Building on the work of Presmeg (1998) and Gavarrete 
(2012), we held a workshop for a group of pre-service 
and in-service teachers of the University of Buenos 
Aires. One of the workshop’s objectives was to influ-
ence the teachers’ conceptions about the nature of 
mathematics.

The aim of the present research is to illustrate the 
potential of different ethnomathematical dimensions 
for analysing the development of the participating 
teachers’ conceptions concerning the nature of mathe-
matics after the workshop. This allows us to point out 
the changes that the work-shop made. The dimensions 
themselves were defined from the point of view of 
the ethnomathematics program. We show how these 
dimensions were useful in order to systematize par-
ticipants’ conceptions.

We decided to work in Buenos Aires because the 
workshop was about the mathematics involved in an 
Argentinian craft and because the legislative docu-
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ments of the educational reform of 2006 promote a 
model of teaching and learning where knowledge 
is conceived in relation to its development in cul-
tures and its use in daily life (Albanese, Santillán, & 
Oliveras, 2014). 

THEORETICAL BASES

The ethnomathematical dimensions
Based on a literature review, we propose three dimen-
sions that we consider crucial for systematizing the 
perspective of Ethnomathematics.

The first dimension is the practical dimension: mathe-
matics is a tool that man develops to relate, understand, 
manage and eventually change his environment. This 
dimension comes from the definition of D’Ambrosio 
(2008) of Ethnomathematics as a way (tics) of knowing 
(mathema) in the environment (ethno); in other words, 
mathematics is considered as a tool for the systemati-
zation and interpretation of reality such as identify-
ing patterns that govern environmental elements and 
the relationship between them. Thus, mathematics 
is a way of knowing how to perform daily activities, 
acting in and controlling the surrounding context and 
eventually modifying it.

Secondly, we consider the social dimension: mathe-
matics is a consensual construction of a set of rules and 
norms within a group of people that decide to share it. 
This dimension comes from Barton’s (2008) propos-
al of interpreting mathematics as a system of mean-
ings through which a group of people gives a sense 
of quantity, space and relationships (QRS-systems). 
These systems are built by communities that share 
the same vision of reality and agree on some common 
codes to communicate.

The third and last dimension is the cultural dimen-
sion: different forms of mathematics exist in different 
cultures. Ethnomathematics establishes a profound 
relationship between mathematics and culture. From 
a philosophical point of view, many of the researchers, 
like Barton (2012) and Knijnik (2012), insist on the 
importance of a relativistic perspective that allows 
the coexistence of different mathematics.

Teachers’ conceptions
To delineate the notion of conception we consider 
the contributions of Ponte and Chapman (2006) and 
Pajares (1992). However, different to these authors, 

we decided not to distinguish between conception 
and belief, as we considered this distinction not clear 
enough, and as our interest was actually focussed on 
what the participants believe that mathematics is, i.e. 
their conceptions about mathematics. We understand 
conceptions as the underlying organizational struc-
ture, or conceptual substrate, of a knowledge; they 
are idiosyncratic, derived from experience or fanta-
sy with a strong affective and evaluative component. 
They do not have an internal consistency, they are 
more inflexible and less dynamic than knowledge [1], 
they tend to be perpetuated despite contradictions; 
they are usually acquired through the process of cul-
tural transmission.

METHODOLOGICAL ISSUES

The workshop
The workshop was about the mathematics and math-
ematical thinking involved in an Argentinian braid 
craft that we studied in some previous research 
(Albanese, Oliveras, & Perales, 2014; Albanese & 
Perales, 2014; Oliveras & Albanese, 2012). The aim 
of the workshop was to present mathematics from a 
different point of view and therefore to influence the 
participants’ conceptions about mathematics.

The workshop was held by the main researcher as 
a part of a course of mathematical modelling of the 
degree of mathematics for secondary school teacher 
of the University of Buenos Aires. The participants 
in the workshop were twelve pre-service teachers, 
students of the course, and their two teachers. 

The workshop employed a methodology based on di-
rect experience where we showed and asked them to 
make braids, working in small groups as well as on the 
content that focused on a specific manual task.

The idea of the workshop was that the participants 
investigated, constructed and agreed on a creative 
representation of the making of a braid. Then the par-
ticipants shared the different representations they 
made in small groups and we pointed out the differ-
ence and similarities between them and a craftsman’s 
representation of the practice.

At the end of the workshop we invited the participants 
to answer five open questions about final observa-
tions on the work and its epistemological and educa-
tional implications. These questions are listed below.
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1) What mathematical thought did you put into ef-
fect to make, represent and invent braids?

2) What implications about the nature of mathemat-
ics are involved in this activity?

3) Which aspects of Ethnomathematics have you 
experienced?

4) What aspects of the experience do you consider 
relevant in relation to the methodology of work?

5) What potential educational purposes can you see 
in this type of work?

The research
The research can be considered as an educational eth-
nography, that is, ethnography of small work groups 
or classes (Goetz & LeCompte, 1988). Ethnography 
was chosen for its affinity with the perspective of 
Ethnomathematics, as well as for the interest of the 
attitudes, opinions and beliefs of the people who we 
were researching.

We considered the oral and written observations 
of the participants as evidence of their conceptions 
about the nature of mathematics. We performed a 
qualitative analysis of the data based on content 
analysis with the help of the computer programme 
MAXQDA7 to systematize the information and to as-
sign codes and categories. 

The descriptive codes were obtained in a process 
combining both inductive and deductive procedures. 
The original idea for a drafted grid of categories came 
from a pre-analysis phase, in which we were first 
drafting and working with preliminary codes. Then 

we went back to the theory of Ethnomathematics and 
refined the original idea against the backdrop of to the 
theoretical bases described above. Thus, we finally 
obtained the three dimensions of Ethnomathematics 
in a deductive manner. These dimensions were then 
combined with the five items from the questions, that 
we posed to the participants. These questions were 
discussed according to their scientific relevance and 
validity for our research objectives by a group of ex-
pert ethnomathematics researchers. Fifteen potential 
categories resulted from the combination of the three 
dimensions and the five items. Finally, we inductively 
obtained the descriptive codes to fill these categories 
in confrontation with the empirical data. The devel-
opment of the descriptive codes therefore follows an 
inductive-deductive cyclical process that produced 
eighteen descriptive codes, leaving one of the fifteen 
potential categories empty and allowing for a further 
differentiation of four of the categories within the 
practical dimension.

SOME RESULTS

Here we present the descriptive codes for the writ-
ten observations, evidencing the empirical relation 
of teachers’ conceptions about mathematics with 
the practical, social and cultural dimensions of 
Ethnomathematics. In Table 1 we summarize the de-
scriptive codes obtained in the analysis, organized 
by item and category.

We will illustrate the descriptive power of the codes, 
by describing in detail the codes that came from the 
answers of the participants to the second item: what 
implications about the nature of mathematics are in-
volved in this activity? These are summarized in the 
second column of the Table 1.

Items

Dimensions

1. 
Mathematics 
thinking

2. 
Nature of 
mathematics

3. 
Ethno-
mathematics 
aspects

4. 
Methodology

5. 
Potentiality

Practical 
dimension

→Model real 
situation 

→Model of daily 
life
→Patterns

→Experience, 
research
→Mathematics  of 
the practice

→Concrete 
experience
→Motivator

→Daily life in 
school
→Mathematics of 
reality

Social 
dimension

→Agreement →Social 
construction

→Collective, 
consensus

→Group →Social 
interactions 

Cultural 
dimension

→Other 
mathematics

→Different 
mathematics

→Different point 
of view

→Thinking 
differently

Table 1: Table of the codes distributed by item and by category
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JO: This activity clearly shows the poten-
tial of mathematics as a modeler of daily 
events.

MAR: Mathematics arises as a need to system-
atize a concrete practice, while it allows 
people to imagine other possible braids. 

These two participants underline the role of mathe-
matics in creating models of daily life, these models 
give us the possibility to manage and control reality 
(like inventing new braids). We assigned them the 
code “model daily life” and we categorized them in 
the practical dimension.

VAN: Through this activity we could make 
a case analysis and generate patterns 
for modeling and generalization about 
braid weaves.

JE: Mathematics is (in part) to create rep-
resentations of a part of reality and of 
its internal relations (or some of them), 
and from that model, to generate new 
knowledge on that portion of reality. 

These two participants go a little further, they both 
recognize that mathematics is a tool to model reality 
but they also insist on identifying the internal rela-
tions and the patterns. So we coded these as “patterns” 
and again we considered these observations as refer-
ring to the practical dimension.

KA: Mathematics is a socially constructed 
science.

This participant makes explicit that mathematic is 
a social construction so this observation clearly be-
longed to the social dimension.

DI: Wondering: what is mathematics? 
Reflecting on transformations through-
out history and open to new transforma-
tions.

This participant made evident his reflection about 
the nature of mathematics, and reflects in a historical 
way, seeing the transformation that mathematics has 
made over time. We associate this observation with 
the idea that, as mathematics is a historical product, 
it is a social product, so we considered it in the social 
dimension.

MAT:  Mathematics is more than school math-
ematics or academic mathematics.

VE:  The arbitrariness of the notations, the 
coexistence of some representations 
(over others) the relationship of that co-
existence with the particular “reading” 
of each one using such representation.

These last two answers show respectively the exist-
ence of a different kind of mathematics with respect to 
the academic one, and the existence of different points 
of view of the same problem (with the consequent 
elaboration of different notation) and the different 
interpretation of the same representation depending 
on the viewer. Both these observations are related to 
the existence of different mathematics, that’s why we 
categorize them in the cultural dimension.

The classification of conceptions according to the 
three dimensions allows us to summarize the results 
of the whole group of participants. Ten of the 13 par-
ticipants who answered the question “What implica-
tions about the nature of mathematics are involved in 
this activity?” observed that the activity showed the 
importance of mathematics to model everyday situa-
tions, to represent reality and to recognize and control 
relationships and patterns to handle general cases 
(Practical category). Four participants manifested 
ideas related to the social category: mathematics is a 
socially constructed science, it is intrinsic to human 
activity, it is transformed throughout history and 
they recognized the role of institutions in indicating 
where there is mathematics. Finally, three referred 
to evidence of the cultural category: two of them sug-
gested considering something else other than formal 
and classical mathematics and one insisted on the 
coexistence of different representations valuing the 
way of thinking of each one. 

CONCLUSIONS

Our findings suggest that, in general, the codes of the 
social and cultural categories are much less present 
than the practical category, and we perceived that the 
social and cultural dimensions were always manifest-
ed in the participants’ observations indirectly, the 
ideas were delineated but not fully developed while 
the ideas related to the practical dimension were rich-
er and more developed in the teachers’ conceptions 
about mathematics after the workshop.
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The definition of three ethnomathematical dimen-
sions, the practical, social and cultural dimensions 
was fundamental for carrying out the analysis. The 
definition of these dimensions provided the tools to 
interpret the teachers’ observations. We think that 
the description of these dimensions is an important 
achievement of the work and its usefulness has been 
confirmed during the analysis of our data, as we could 
recognize almost all the participants’ observations by 
assigning a category of conceptions.

The explanatory potential of similar operation-
alizations of dimensions of mathematics, could 
also be demonstrated by other studies, e.g. that of 
Albersmann (2015) about parents’ utility-oriented 
beliefs about mathematics. Albersmann’s study con-
siders three dimensions that are related to the ones 
presented in this paper, which are conceptualized as 
1) pragmatic relevance, 2) methodological relevance, 
and 3) cultural relevance.

In the studies of Presmeg (1998) and Gavarrete (2012), 
changes in teachers’ conception have been recognized, 
but our work goes a little further because indicates 
the multiple directions of these changes. 

Finally, this demonstrates how fruitful it was 
to link different philosophical contributions to 
Ethnomathematics by different authors, identify-
ing and giving voice to their different positions. 
D’Ambrosio (1985, 2008) insists on the practical and 
moreover social dimensions, as he is a mathematical 
historian. Barton (1996, 2012) starts from the social 
dimension but he ends up focusing on the cultural 
dimension, because of its work with indigenous tribes. 
Our findings highlight the importance for ethnomath-
ematical research to take into account both points of 
view.
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Considering the fact that the influence parents have on 
their children’s mathematical development is unavoida-
ble, it should be less the question whether parents should 
participate in their children’s mathematical education, 
but more how their participation could be incorporated 
more consciously. This issue becomes even more crucial 
with regard to secondary school mathematics. In this 
paper, one approach is presented, namely a family math 
in which parents and their children get the opportunity 
to deal with mathematics in problem-based discovery 
learning environments together as a team. The focus 
of this paper lies in the investigation and characteri-
sation of parent-child cooperation in the course of the 
first workshop of the project, as well as factors promoting 
such cooperation or hindering it. 

Keywords: Parental involvement, secondary school, 

cooperation, problem-solving. 

INTRODUCTION

The critical role that parents play in their children’s 
educational development in general and specifically 
in mathematics is undeniable (Desforges & Abouchaar, 
2003). Parental beliefs about mathematics, its teach-
ing and learning, emotions regarding mathematics 
or parents’ mathematical competencies, to name just 
a few factors, come together to diverse influences 
on their children’s mathematical education. What is 
more, parental participation in mathematical learn-
ing activities seems to decrease with their children 
getting older. In this context, Eccles and Harold (1993) 
mention, among other reasons, a change in parents’ 
views of their competences to help their children 
with schoolwork as they enter higher school grades. 
In particular, with the switch from primary into sec-
ondary school, in Germany at the beginning of the 
5th grade, mathematical contents start to become 
more and more unfamiliar for parents. Whereas 

they could rely on being an omniscient answerer or 
the conveyer of knowledge in earlier school years, 
parents ultimately need to shift roles in order to fur-
ther support their children regarding mathematics. 
Besides mathematical contents, parents may also feel 
that current methods of teaching mathematics may 
differ a lot from those they experienced in their school 
years (Eccles & Harold, 1993).

All in all, the conditions for parental support in their 
children’s mathematical education change funda-
mentally in the course of secondary school years. 
Therewith, new challenges but at the same time new 
possibilities for parental involvement in their chil-
dren´s mathematical learning emerge.

INVOLVING PARENTS IN 
MATHEMATICAL EDUCATION

Initiatives for parental integration in their children’s 
mathematical education often consist of one-way 
transmissions of information and materials from 
schools or other educational institutions. However, 
drawing on the social constructivist view, learning is 
not a simple process of transferring information, but 
involves an active social interaction. The emphasis 
thereby lies on learning as an ongoing process in ac-
tivity-based learning situations with meaningful pur-
pose (Vygotsky, 1978). In this context, findings from 
a project called MAPPS (Math for Parent Partners) 
indicate that giving parents opportunities to actively 
construct their own understanding of mathematical 
concepts provides an indisputable foundation for 
their work with their children. Moreover, research 
results of this project imply that the nature of interac-
tions that parents developed with their children might 
be even more relevant than their ability to help them 
with specific content (Civil, Guevara, & Allexsaht-
Snider, 2002). These findings emphasise that it is not 
only necessary to introduce parents to current math-
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ematical concepts in an active way, but also to foster 
parent-child interactions in mathematical contexts. 

Since in secondary school mathematics parents’ 
knowledge advantages decline, the foundation for 
parent-child interactions in context of mathematical 
problems change.  Following the idea of a “communi-
ty of learners”, one goal is that parents and children 
work together with everyone serving as resources to 
the others, with varying roles according to their un-
derstanding of the problem at hand (Rogoff, Matusov, 
& White, 1996). This concept goes hand in hand with 
a cooperative learning approach that constitutes a 
foundation from which parent-child interactions can 
be fostered in the context of secondary school mathe-
matics. In this sense, we understand parent-child co-
operation as one main feature to describe the nature 
of parent-child interactions in mathematical learning 
situations. 

Guided by the concept of dialogic learning, conver-
sations in a cooperative learning approach should 
follow an egalitarian dialogue where different con-
tributions are taken into consideration according to 
the validity of their reasoning instead of the position 
of power held by those who make the contributions 
(Flecha, 2000). Thus, in order to foster parent-child 
cooperation, it is essential to create a learning situa-
tion in which parents will not automatically act as the 
conveyer of knowledge, but rather become a learn-
ing partner for their children. This speaks for a con-
cept with open-ended and problem-based discovery 
learning situations (Bruner, 1961) in which parents 
and their children get involved with a mathematical 
problem in a self-directed way (Hmelo-Silver, 2004).  

Considering the demand to integrate parents more 
actively in their children’s mathematical secondary 
school education, the questions arise: How does the co-
operation of parents and their children in the context 
of a discovery learning situation work out? Which 
facets promote a parent-child-cooperation, which not? 

METHODOLOGY

The project and its participants 
One possibility to investigate forms and conditions of 
parent-child cooperation in an open-ended and prob-
lem based discovery learning situation is provided by 
a family math project, called maths-experience-days. 
This project started as a pilot project in the school 

year 2012/13 with parents and their children from a 
5th grade (10–11 years old) of a German higher-level 
secondary school, a so-called gymnasium. The project 
workshops lasted three to four hours and took place 
in the school building on Saturdays, hence outside 
of schooldays. The participation was on a voluntary 
basis. 

In the first workshop, which builds the basis of the 
results presented and discussed, twenty-two families 
participated with both parents appearing in five cases. 
Hence, a total number of twenty-seven parents attend-
ed the first workshop, among these seventeen mothers 
and ten fathers. The parents’ ages varied between 36 
to 52 years old. Due to incomplete data sources only 
the data of twenty-five could be taken into account in 
the research presented. 

The families participating in the project live in rath-
er high socio-economic conditions. With respect to 
parental educational backgrounds, it can be noted 
that every parent has a school leaving-qualification. 
All in all, seventeen parents achieved the general 
qualification for university entrance, of which fif-
teen of those parents obtain a university degree and 
two did an apprenticeship. Moreover, seven parents 
achieved a subject-related entrance qualification. Two 
of those parents finished a polytechnic degree and 
five an apprenticeship. Only one parent achieved an 
intermediate school-leaving certificate who did an 
apprenticeship as well. The occupational fields are 
diverse and range, for example, from business man-
agement, law to medicine, natural sciences or social 
professions. Each and every parent has a job at the 
time of the survey. 

The first station of the discovery 
journey – content and structure 
According to the above-mentioned general conditions 
for the learning environment, a didactical reduction 
of the mathematical content seems to be reasonable. 
This concerns the complexity of the problem present-
ed to the parents and their children at the beginning 
of the workshop (see Figure 1).

„A friend of mine, let’s call him Harry, used to be a 
paper boy when we were a bit younger. His job was 
to deliver a free regional newspaper once a week. 
He loved working in the fresh air and meeting all the 
people living in his delivery district. However, there 
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was one thing, he struggled with. His tour took far 
too much time.“

Due to the requirements for autonomous learning and 
performance of the parent-child teams, the role of the 
workshop coordinator rather consists in encouraging 
cooperation by scaffolding strategies like recruitment, 
direction maintenance and frustration control than 
providing scaffolding methods with stronger con-
tent-related guidance (Wood, Bruner, & Ross, 1976). In 
the need of content-wise support, parent-child teams 
can draw on different hint cards according to their 
progress in problem-solving. Those hint cards are 
constructed on the basis of scaffolding methods like 
reducing degrees of freedom by simplifying the task 
as well as accentuating critical and relevant features 
or, at last, demonstrate the solution itself. 

The phase of the problem investigation is structured 
through the cooperative learning method “think-
pair-share” (Sharan, 1994), which particularly shall 
subserve parent-child cooperation. First, parents and 
children think about possible approaches to solve the 
paperboy’s problem for themselves and, then in pairs 
(parents and children) exchange their idea is, carrying 
them forward together. At last, the ideas are collected 
and discussed in the whole group. 

Data sources
We have several data sources at our disposal that play 
a role for the analysis and hence the presentation of 
the results. While considering multiple data sources, 
we draw on an approach that is characterized by tri-
angulation of data (Schoenfeld, 2008). 

Before the first workshop, and again after the last 
workshop, parents are asked to answer a question-
naire containing both open and closed items. Besides 
personal information like age, gender, school educa-

tion, vocational training, and occupation, the ques-
tionnaire consists of parental beliefs about mathemat-
ics considering both cognitive and affective aspects 
as well as their personal reasons for participation. 

Likewise, data concerning the process of working 
on the problem in the course of each workshop is 
collected. Here, reflective journals are used which 
have become an accepted method for qualitative 
researchers to gain insights into their participants’ 
thinking (Mewborn, 2013). On the one hand, parents 
and children document their mathematical consider-
ations during the problem investigation. On the oth-
er hand, the reflective journals are used by parents 
and children at the end of each workshop. In order 
to encourage reflection, guiding questions are dis-
played which address their experiences, difficulties 
that occurred as well as strategies to overcome them 
and new insights that parents and children gained 
during the workshop. 

Besides parents’ and children’s journal entries after 
the first workshop, the results presented in this paper 
are based on field notes taken during and immediately 
after the workshop by the coordinator.

Analysis
The experiences of parents and children during the 
first workshop indicate diverse aspects for an analy-
sis, all of which cannot be taken into account. In this 
paper the focus lies on the analysis of data referring 
to parent-child cooperation during the problem-solv-
ing process. 

On the one hand, parents explicitly referred to forms 
of parent-child interactions throughout the entire 
reflective journal from which the nature of their co-
operation could directly be derived. On the other hand, 
some parents did not mention their children or the 

Figure 1: Problem and Harry’s delivery district – working material 
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work with their children at all. Thus, cooperation pat-
terns were implicit. In order to interpret those jour-
nal entries and moreover validate interpretations, 
they were matched with other data sources like the 
corresponding journal entries of their children and 
field notes taken by the coordinator of the workshop. 

The analytical framework for the open data sources 
is informed by the principles of qualitative content 
analysis (Mayring, 2010). First, hints on parent-child 
cooperation were independently selected from the re-
flective journals by the authors and significant themes 
identified with the goal to induce a categorisation of 
parents’ cooperative behavior. Second, interpreta-
tions were compared between the authors and dis-
crepancies were discussed. A category formulation 
was determined and checked in a final sifting through 
reflective journals. Finally, in due consideration of 
all data sources, parents were assigned to one of the 
inductively developed categories. 

RESULTS AND DISCUSSION

To understand the whole picture, some facts need to be 
pointed out before the discussion of results. First, the 
sample consists of parents with a high socio-economic 
status and therefor is of limited representativeness. 
Second, they participated in the family math project 
voluntarily. Consequently, the sample is selective by 
its nature. However, taking into account all of the 
conditions, the data still allows some interesting 
insights. 

The findings show that parents can be assigned to one 
of two categories: parents as learning partners and 
parents as learners. The two notions of parental roles 
are similar to those used by (Civil, 2001), although the 
conditions of parental integration are different from 
the MAPPS project with regard to the direct involve-
ment of children in our project. While the first cate-
gory parents as learning partners could be observed 
for thirteen parents, six parents were assigned to the 
category parents as learners. Another six parents do 
not give any information about the parent-child co-
operation and could not be coded. 

In the following, we first briefly describe the meaning 
of the two categories and use excerpts from parents’ 
and children’s journals to exemplify our shared un-
derstanding of the categories. In the course of exem-
plifying the categorisation, some aspects with a posi-

tive effect on parent-child cooperation, but also some 
with a negative effect are pointed out. We indicate the 
authors of the answers by M for mother, F for father, 
and C for child, combined with a respective number. 

Parents as learning partners
In the category – parents as learning partners, the 
parents are open to cooperation with their children 
and accept the children as “equal partners” (M20) in 
the discussion, like it is intended by the above-men-
tioned dialogic learning approach. Here, parents often 
emphasise the positive experience of this cooperation. 
In what follows, we give an example of a statement on 
the parent-child cooperation experienced as positive: 

[The process of solving the problem was] construc-
tive, through cooperation with my child. […] and we 
perfectly complemented each other. […] My child 
approached the problem with more enthusiasm and 
curiosity than me. That made me happy. (M8) 

Additionally, field notes give a closer insight in 
the kind of cooperation between mother and child. 
During the problem-solving process the mother took a 
step back, gave her daughter room and let her explain 
her approaches and insights first. Here and there, the 
mother summarised partial results and asked some 
crucial questions. Thereby the mother-child team 
got further in their problem-solving process and at 
the end reached an overall solution. It moreover is 
interesting that the daughter shares this positive ex-
perience of working together with her mother, as she 
expresses: 

We solved it [the problem] in teamwork. That was 
cool. (C8)

In this context, one identifiable factor for the positive 
experiences regarding parent-child cooperation is 
that the mathematical problem is not only unknown 
for the children but the parents as well. Moreover, 
since the problem is open-ended, both, parents and 
their children could contribute to the problem solu-
tion in their own ways. They could even approach it 
on an equal footing. However that was not the case for 
every parent-child team. In a few cases the fact that 
the problem was an unknown riddle for both, parents 
and children, did not work in favor of parent-child 
cooperation, but against it. Those cases are discussed 
below in the part of parents as learners.



Parent-child cooperation in mathematics learning: Insights into maths-experience days (Natascha Albersmann and Katrin Rolka)

1548

Other parents emphasise the good parent-child co-
operation during the workshop while confirming 
the stressful relationship to mathematics learning 
situations in context of school mathematics at home, 
like for example:

[…]. I especially do find the cooperation between child 
and parents very refreshing. Away from the mathe-
matics-homework-problems to a “voluntary” learn-
ing and approach to mathematics. […] There was no 

“school pressure” as probably usual. It simply was fun 
and had a good result. (F11)

The child as well remarks the positive parent-child-co-
operation but furthermore values the mathematical 
context away from numbers and calculations like it 
is excessively stressed in school. 

I liked it because it was something new and in maths 
with Miss H we always do calculations. (C11)

Indeed, arithmetic commonly builds a focal point in 
school mathematics. With that, this comment points 
out that an open-ended and problem-based discov-
ery learning environment is a fruitful opportunity 
to gain positive new experiences with and diverse 
insights into mathematics, which are often missed 
out in school contexts.

Other parental journal entries clearly show that a 
cooperation does work, when parents do not take over 
a dominating role, a role of being master of knowl-
edge, but become a learning partner for their children, 
sometimes on an equal footing. This aspect is for ex-
ample reflected by the following parental expression: 

At times the cooperation was good, when we came 
closer to the solution and respected each other as 
equal “providers of ideas / partners”. There also 
were moments when my child lost interest […] when 
the solution of the problem at times receded into the 
distance.  (M20)

One main problem becomes apparent with this quote. 
Sometimes children get set back by occurring difficul-
ties in the mathematical problem-solving. In this case 
parents should support their children more actively 
in order to overcome the difficulties together and re-
focus. Such situations in the workshops constitute 
an opportunity to impart methods and techniques 

to parents for supporting their children in a critical 
mathematical learning situation. 

Parents as learners
In the category – parents as learners, it becomes ob-
vious that parents are keen to learn mathematics for 
themselves. They are fascinated by the mathematical 
problem at hand and take the opportunity of getting 
fully absorbed in the task. Being completely engaged 
in their own problem-solving process, they lose sight 
of their children and do not enter into cooperation 
with them.

One mother describes in detail her work on the math-
ematical problem, exclusively using the first person. 
For example, she comments on her thinking process, 
occurring difficulties while working on the problem, 
and finally concludes with the following statement:

I would have liked to cooperate more closely with 
my daughter. (M7) 

Not only the field notes point in a similar direction, 
but also the child comments on the workshop exclu-
sively using the first person. This further strengthens 
the impression that no cooperation took place.

Other responses give a closer look into forms of co-
operation between parents and children. One father 
points out, that he would have liked to accomplish the 
problem solution on his own and hence is not content 
with his work. He solely refers to his child in one line 
with the coordinator and the other participants when 
asking for exchange as he got stuck in his own prob-
lem-solving process:

Thinking into an impasse, solved it via exchange 
(with child, coordinator other participants). (F22)

However, the field notes confirm the impression of 
the father deepened into his own problem-solving 
process and completely forgot his child over it. The 
child himself tried to get some glimpses at his father’s 
problem-solving process, asking for insights, but was 
on his own for the rest of the problem-solving process. 
This impression is again strengthened by the child 
using only the first person in his journal entries, not 
referring to his father at all. 

The following example, where the child together 
with father and mother took part in the workshop, 
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is another illustration for the category of parents 
as learners where a competitive thought is decisive 
for a lack in parent-child cooperation. While the fa-
ther describes his point of view in a concise way, the 
mother is more detailed and discusses her despair 
in the problem-solving process, but also her ambi-
tion to overcome her difficulties on her own. The 
problem-solving process of this family can be best 
described as competitive, which can be confirmed by 
the following mother’ statement. 

What my husband is able to accomplish, I need to 
accomplish as well. (M24)

Nevertheless, she clearly expresses her wish for more 
cooperation in her further remarks.

[I would have liked] that we cooperated more 
closely – instead of everyone for himself. (M24) 

The child strengthens the impression of competition 
and the lack of cooperation by writing the following:

Nasty that dad always was the first one to find out 
everything. (C24)

Taking the competitive nature of some parent-child 
teams into account a different approach is needed in 
order to strengthen parent-child cooperation. One 
promising approach could be to let parents and chil-
dren work on a mathematical problem that directs 
them to work together as a team in order to compete 
against other parent-child teams. Such a context 
could fuel the competitive nature of some parents 
and children, but at the same time strengthen their 
team building. 

CONCLUSION AND OUTLOOK 

The discovery learning situation of the paperboy’s 
problem, presented here, offers parents and their 
children a possibility to investigate a mathematical 
problem on an equal footing. They have the oppor-
tunity to experience mathematics in an open, assess-
ment-free setting together as a team and therewith 
could gain positive feelings of social relatedness, as 
well as mathematical competence. Sometimes such 
experiences between parents and their children were 
more intense, sometimes less. 

Searching for parental attributes that may be linked 
to the form of parents working with their children in 
context of the math-experience-days, namely parents 
as learners or parents as learning partners, no direct 
relation to parental gender, age, educational qualifi-
cation or the occupational field could be found. That 
does not mean that there is not any connection to those 
attributes, but that they are not explicitly related to 
the parent-child-cooperation, rather multifaceted in 
its nature or interwoven with other factors. Those 
factors could for example be parents´ emotional 
dispositions towards mathematics or parental mo-
tivations to do mathematics. In some cases it already 
became obvious that parents´ desire to investigate a 
mathematical problem on their own, their ambition 
to solve the problem for themselves is so dominant 
that the risk exists that they forget to cooperate with 
their children. Such factors influencing parents’ ways 
to work with their children need to be investigated 
further in future research on the family math project.

Furthermore, it would be interesting to investigate 
more closely the impact of such a family math pro-
ject on mathematical learning situations at home. As 
it seems, general mathematical learning situations 
at home, mostly in context of homework, are often 
accompanied by tension and stress. Several parents 
mention this issue in their answers being completely 
aware of the project’s special status. In this context, 
the here presented results first and foremost indi-
cate that an open-ended, problem-based discovery 
learning situation represents a fruitful context for 
children working together with their parents on a 
mathematical problem. In any case, the risk that par-
ents overtake the role of the conveyer of knowledge 
is minimised by the nature of the presented learn-
ing environment. When, moreover, the task for par-
ent-child cooperation is explicitly defined by activities 
like investigating the problem, comparing approaches 
and therewith generating ideas or strategies with-
out pointing to an existing solution, the pressure to 
find an overall solution could be reduced even more. 
Hence, one promising approach, in order to foster 
parental involvement in their children’s mathemat-
ical learning, could be to integrate such open-ended, 
problem-based discovery learning situations as spe-
cial parent-child homework. 

However, the nature of parent-child cooperation in 
those problem-solving contexts needs to be investi-
gated further. It is clearly not enough to examine only 
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the course of one workshop, with one type of math-
ematical problem at hand, in order to get a holistic 
picture of parent-child cooperation and promoting 
or hindering factors. Consequently, it needs more and 
diverse family math workshops to investigate the con-
ditions and dynamics of parent-child cooperation in 
open-ended, problem-based discovery learning envi-
ronments. That will follow in the main survey.
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There is a gap between the aims of school geometry in 
terms of the teaching of spatial abilities to young chil-
dren, and the dominance of a school geometry rooted in 
Euclid’s axioms and abstractions. Such gap is not to be 
explained in terms of a “misimplementation” of the cur-
ricular intentions. Rather, the gap evidences elements 
of the power effects of school geometry on children’s 
subjectivities. We problematize both the truths circu-
lating in school geometry discourses and the effects on 
children’s subjectivities, by adopting cultural historical 
strategies to research the functioning of school geometry 
curriculum. We argue that school geometry fabricates 
the scientific minds of the future by educating students 
to see not with the eyes of their bodies, but with the eyes 
of reason and logic.

Keywords: Objectivity, subjectivity, school geometry, 

power effects.

INTRODUCTION

Nowadays it is argued that spatial visualization ability 
plays a key role in shaping the successful scientific 
minds of the future, probably as important as verbal 
and mathematical thinking (Newcombe, 2010). This 
ability becomes critical when developing expertise 
in STEM domains (science, technology, engineering, 
and mathematics). It is believed that including spatial 
ability as a criterion for identifying talented youth 
would help recruiting many adolescents with poten-
tial for studying STEM fields, but who are currently 
being missed (Wai, Lubinski, & Benbow, 2009). There 
is a research trend claiming the importance of pro-
viding spatial education for young children because 

“increasing access to a preschool “spatial education” 
constitutes a safe bet for fuelling school readiness 
and igniting long-term performance gains in STEM-
related fields” (Verdine, Golinkoff, Hirsh-Pasek, & 
Newcombe, 2014, p. 20).

But why has spatial visualization become so impor-
tant? One possible reason is how research has found 
that visualization is central in the conceptualiza-
tion processes of scientific discoveries. For example, 
the use of spatial reasoning is implicated in several 
physics discoveries such as Galileo’s laws of motion, 
Faraday’s electromagnetic field theory, and even 
Einstein’s theory of relativity (Kozhevnikov, Motes, 
& Hegarty, 2007). Furthermore, the discovery of 
the structure of DNA was “centrally about fitting a 
three-dimensional spatial model to existing flat im-
ages of the molecule” (Newcombe, 2010, p. 29).

It is postulated that “spatial thinking can be taught; […
and that] it is possible with appropriately structured 
programs and curricula” (National Research Council 
[NRC], 2006, p. 109). Several studies on school geom-
etry deal with the development of spatial abilities in 
students, from introducing diverse activities with 
building blocks to changing the entire school geom-
etry curriculum. Despite the recognition that spatial 
ability is a key element to science and that it can be 
taught, it is also highlighted that the teaching of this 
ability is largely ignored in formal school settings 
(Clements & Sarama, 2011).

It is the contention of this paper that there is a gap 
between the aims of school geometry in terms of the 
teaching of spatial abilities to young children, and the 
dominance of a school geometry rooted in Euclid’s 
axioms and abstractions, which prompts to a flat and 
abstract world. Our assumption is that such a gap is 
not to be explained in terms of a “misimplementation” 
of the curricular intentions. Rather, the gap evidences 
elements of the power effects of school geometry on 
children’s subjectivities. Adopting cultural historical 
strategies to investigate this contention in the consti-
tution of school geometry, the paper deploys an argu-
ment in three movements. Firstly, we examine how 
notions of space move between discussions of per-
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ception and formalization. The formalization of the 
language of Euclidean geometry, through scientific 
objectivism, provides ways of building a scientific self. 
Secondly, we explore how such objectivation entails 
the subjectivation that takes place through the dis-
courses of school geometry. By examining the curric-
ular materials of Chile, we exemplify the existing gap 
between such discourses and the expressions of the 
ideal student. Finally, we problematize both the truths, 
in terms of Foucault, circulating in school geometry 
discourse and the effects on children’s subjectivities. 
We evidence how the school practice of knowing ge-
ometry has effects on how students understand and 
train themselves to see space. 

ANALYTICAL STRATEGY

There are many truths that circulate in mathemat-
ics education research, and such truths constitute 
unproblematized understandings of the practices 
of mathematics education. The type of research de-
ployed in this paper assumes that mathematics ed-
ucation practices are political because they govern 
subjectivities in both productive and constraining 
ways (Valero & García, 2014). Evidencing the subject 
effects of a series of practices and discourses, such as 
school geometry, is a contribution in understanding 
how the school mathematics curriculum fabricates 
the subjectivities of children through educational pro-
cesses. This is important since mathematics education 
is not only a process of knowledge objectivation, but 
also a process of subjectivation or of becoming within 
culture. 

More concretely, this approximation is inspired by 
the work of Michel Foucault. Our strategy is com-
posed by some concept-tools we borrow from Michel 
Foucault (subjectivity, discourse, truths). We bring 
this concept-tools to help us reasoning about the prob-
lem of the apparent gap between the aims of school 
geometry in terms of the teaching of spatial abilities 
and the dominance of a school geometry rooted in 
Euclid’s axioms and postulates. Our empirical mate-
rials consist of students’ textbooks, curricular guide-
lines for teachers and geometry maps of learning pro-
gress, all of them produced by the Chilean Ministry 
of Education (MINEDUC). 

Since discourses are produced by the interaction 
of different spheres of social life and are shaped by 
statements and their related truths (Foucault, 1972), 

to understand how school geometry is operating it is 
also necessary to study how geometrical knowledge 
has been shaped. Here we delineate elements of such 
study connecting geometry with cultural historical 
studies of science (e.g., Daston & Galison, 2007). The 
discussion of objectivation/subjectivation in science 
and geometry invites us to approach the school ge-
ometry curriculum as practices that govern subjec-
tivities through the enunciation of the ideal student. 
Hence, problematizing the naturalised truths that 
circulate in school geometry discourse and the state-
ments about the aims of school geometry will help 
us to elucidate the effects of geometrical knowledge 
objectification on the self.

THE OBJECTIVATION OF SPACE

Mathematics lives in a world of abstractions, axioms 
and formulas. There is a perfect and ideal world with-
in mathematics, every calculation applied correctly 
should work impeccably, even if is not about a real 
object. For de Freitas (2013), mathematical objects are 
taken to be entirely free from spatio-temporal condi-
tions. Hence, if mathematics is universal and has no 
context it is possible to understand it as a blind sight, 
without inference, interpretation or intelligence 
(Daston & Galison, 2007).

However, it is believed that mathematics can describe 
the world we live in. But if geometry can describe 
what we are able to see, our surroundings, why has 
it become a blind sight? According to Boi (2004), the 
anatomy of the eye entails light on a curved retina, 
therefore our visual system deploys a projective ge-
ometry rather than Euclidean metrics. An experiment 
conducted by Blumenfeld (Hardy, Rand, & Rittler, 1951) 
demonstrated that phenomenological visual judg-
ments do not satisfy all Euclidean properties, he re-
vealed that physical configurations do not coincide 
with Euclidean geometry (Suppes, 1977)[1]. Likewise, 
Burgin (1987) claims that the conception of Euclidean 
geometry’s space was based on technique rather than 
on visual evidence. It was based on axiomatic, which 
deployed an idealized world of ideal shapes, such as 
triangles, squares, platonic solids and so on. It is an 
objective knowledge.

For Daston and Galison (2007)[2], objectivity in science 
was not a matter of viewing nature as it really was, but 
as it should be to be studied – nature as an ideal nature 

–. The result of objectivism was an annulation of the 
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self by the self, it was “the suppression of individuality, 
including images of all kind, from sensations of red 
to geometrical intuitions” (Daston & Galison, 2007, p. 
46). Images, within science, were ‘left behind’ because 
it was the only way to break the mental world of indi-
vidual subjectivity. 

If objectivity in science aspires to a knowledge that 
bears no trace of the knower, how is geometry su-
pressing individuality? For Daston and Galison (2007), 
objectivity becomes an ‘epistemic virtue’ when ab-
stractions are able to transform subjective representa-
tions into objective concepts. For example, Tazzioli 
(2003) shows that Mario Pieri, an Italian mathemati-
cian, introduced the axioms and methods of projective 
geometry without any reference to intuition (neither 
to monocular vision). He was close to cut the link 
between geometry and empiricism. Hilbert’s work, 
inspired by Pieri, was the masterpiece that led to a 
geometry based on logic, axioms and theorems (règles), 
a form of geometry in which intuition and experience 
do not have a strong role. This led to a space that can 
only be reached by mathematics, very distant to the 
one we are able to see and interact with. 

But space is a product of concrete practices and at-
tempts to representing them; it is not abstract at all. 
However, when it comes to the knowledge that tra-
ditionally has dealt with space —geometry—, then 
it becomes the realm of abstraction. It becomes an 
objectified space. For instance, according to Lefebvre 
(1991) space can be understood in three forms: space 
as perceived, as conceived and as lived. The first form 
takes space as a physical form, as real space, a space 
that is generated and used. The second form, the space 
of knowledge (savoir) and logic, takes space as an in-
strumental space. Space becomes a mental construct, 
an imagined space. The third one, space of knowing 
(connaissance), sees space as produced and modified 
over time and through its use. It is a space that is re-
al-and-also imaginary. Geometrical space is a space 
of savoir, within Lefebvre’s forms; it is an idealized, 
imagined and constructed space. 

In the same fashion, school geometry is leading us to 
see space as an instrumental space, a mathematical 
space of savoir. Space becomes Euclidean, Cartesian, 
and flat. It is very distant to the one we can perceive.  
Ray (1991) stresses that school mathematics has been 
based on the axioms of Euclidean geometry because 
they provide an internally consistent system, evident 

to the eye. But this objective geometrical space de-
ployed by Euclidean geometry is limited, in terms of 
Lefebvre’s forms of space.

BLINDING THE CHILD

In school, geometrical knowledge tends to be con-
structed outside the body. It is a fixed knowledge that 
has to be learnt by students. School geometry is based 
on abstractions, very distant from our perception of 

‘daily space’, as if we had a body without the sense of 
sight. In other words, dealing effectively with school 
geometry tends to fabricate a sightless body. Then, 
learners are not really prompted to use their senses 
to learn or interact with geometrical knowledge.

For example, Chilean mathematics curricular guide-
lines claim that mathematics was developed to solve 
diverse challenges of mankind and of mathematics 
itself, within history and culture. Therefore, school 
mathematics must provide and facilitate the under-
standing of the real world we live in (Ministry of 
Education of Chile [MINEDUC], 2010). In this sense, 
school mathematics should supply students with tools 
to interact with the world they are able to see. An anal-
ysis of official documents of the Chilean Ministry of 
Education (MINEDUC) shows that its claims are built 
around certain statements, in a Foucaultian sense, 
that delineate the features of an ideal child, such as: 

School mathematics curriculum is aimed to pro-
vide students with the basic knowledge of the 
field of mathematic, and, at the same time, that 
students develop a logical thinking, deduction 
skills, accuracy, abilities to formulate and to solve 
problems and abilities of modelling situations 
(MINEDUC, 2010, p. 3, our translation).

To learn mathematics enriches the understand-
ing of the reality, facilitates the selection of strat-
egies to solve problems and contributes to an au-
tonomous and own thinking (MINEDUC, 2010, p. 
3, our translation).

School geometry becomes a valued and useful knowl-
edge, a set of tools that will help students to fulfil any 
situation of the real world. For Valero, García, Camelo, 
Mancera and Romero (2012), school mathematics “in-
serts subjects into the forms of thinking and acting 
needed for people to become the ideal cosmopolitan 
citizen” (p. 4). In this case, an ideal student should be 
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a logical thinker and a problem solver. The student 
should be capable of modelling real life situations by 
only using mathematical knowledge.

Furthermore, the Chilean Ministry of Education 
(MINEDUC) established a map of progress with sev-
en levels that students have to achieve along school 
geometry in compulsory education. An ideal student 
should perform successfully in activities where he/
she must be able to solve problems by only using ge-
ometrical axioms and theorems (see Figure 1), which 
leads to a notion of space in terms of the formal system 
of Euclidean geometry. What it takes to deal success-
fully with these tasks is far from spatial visualization. 
It seems that this ability is something that has to be 
developed by the student itself.

The mismatch between the expectations and the 
description of abilities could be related to the fact 
that Chilean school geometry is based on Euclidean, 
Cartesian and vectorial geometries, necessary to cope 
with other school subjects, such as physics. 

The world we live in is three-dimensional […]. It is 
aimed that students are placed in a real three-di-
mensional context, providing new tools to make 
spatial and flat representations, such as the 
vector model. This model constitutes one of the 
basic foundations of physics and mathematics. 
(Ministry of Education of Chile [MINEDUC], 2004, 
p. 68, our translation).

According to this quote, it becomes important to link 
“reality” with school mathematics. By doing so, it is 
assumed that students will be able to use geometri-
cal tools to solve everyday-life problems. The way to 

achieve this link is by introducing three-dimension-
ality to students. Within school, the “world we live 
in” becomes vectorial. Consequently, the expressed 
desire to link spatial thinking and the real world 
seems to blur, and the only important part left are 
the perennial mathematical abstractions. This gen-
erates a new type of space, the space of school, which 
has been ‘chopped’ and has been restricted.

As an example, the MINEDUC (2004) enhance certain 
types of activities where students “emphasize rela-
tions between Cartesian and vector equations within 
geometrical shapes” (MINEDUC, 2004, p. 68, our trans-
lation) than other type of activities where students 
could develope spatial skills. Space for school is in 
terms of XYZ, a space than can be modelled by school 
mathematics. Chilean school geometry is based on 
a flat geometry, mainly Euclidean. But in Euclidean 
geometry the studies are on objects situated in the 
void; objects that are not real (Kvasz, 1998). A possible 
question to pose is if Euclid of Alexandria was living 
in an abstract world? The easy answer is that of course 
not he was, and, moreover, he started his studies by 
analyzing his surroundings. He developed a theory 
known as Euclid’s optics. Which is a theory of vision 
and of intuition (Suppes, 1977). 

According to de Freitas (2013), logic and axiomatic 
relations in mathematics tend to erase the temporal 
and ontological. As a result, school mathematics is 
an untouchable knowledge that becomes universal, 
decontextualized and, therefore, without culture or 
the possibility to influence in it (Valero & García, 2014). 
It is an unalterable truth, installing mathematics as 
the science of pure logical structures and negating all 

Figure 1: Seventh level of the map of progress (MINEDUC, 2010, p. 18, our translation)
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connections between mathematics and the real world 
we live in (Kollosche, 2014). 

The concept of space to be reconstructed in the 
students’ understanding is that of a rational, ref-
erential space with fixed points in two or three 
dimensions. It is assumed that the conceptual de-
velopment of the child will lead to an internal and 
abstract representation which will contribute to 
making a decontextualized child, freed from the 
practical capacities of acting with objects in space, 
particularly of those spaces where everyday life 
occurs (Valero et al., 2012, p. 7).

However, school keeps making this link between what 
we are able to perceive and the abstract space of math-
ematics. We claim that there is a gap here to explore.

THE SIGHTLESS EYES OF REASON

We deployed a discourse analysis of official curric-
ular materials of the Chilean Ministry of Education. 
This analysis, built from Foucault, has pointed to the 
existence of statements circulating about an ideal 
student. In this existing discourse, it is believed that 
by connecting school geometry and reality students 
will become problem solvers, logical thinkers, ‘reality 
modellers’ and so on. The existing discourse requires 
that students perceive themselves as agents who are 
able to change the world, but also as agents who are 
responsible for their own learning (Foucault, 2009). 
More precisely, school geometry deals with pow-
er-knowledge relations [3], by promoting the fabrica-
tion of a certain type of subject, a scientific trained 
child. 

But, how is school geometry discourse operating on 
students? Here the discussion is not about the con-
tents of school geometry itself rather it is on how 
school geometry is operating in the fabrication of 
children’s subjectivity. In other words, it is on the 
power effects of school geometry in fabricating forms 
of being in the world. In this sense, human beings be-
come subjects through the objectifying effects of sci-
entific knowledge, a knowledge that is also objective 
(Foucault, 1982). And, at the same time, the practice 
of knowing generates effects in the form of knowing 
and in the subjects who know (Daston & Galison, 2007). 
Therefore, students must train themselves to become 
part of a practice. An example of this self-training is 
illustrated in the following activity proposed in the 6th 
level of the progress map of Chilean school geometry 
(MINEDUC, 2010, p. 17). 

A young girl is observing a pit formed by two con-
centric circumferences, 1 m. and 1.2 m. of radius 
respectively, and 3.5 m. of depth. Using this infor-
mation, she is able to make a model by drawing 
a rectangle ABCD in a coordinate system XYZ. It 
is asked to the girl to determine the rectangle’s 
vertices and to argue on which axis the rectangle 
must rotate to obtain a three-dimensional rep-
resentation of the pit. Finally it is asked to the girl 
to calculate the pit capacity, in litters. 

Clearly the ideal student must forget about his/her 
senses; must train him/herself to be able to model real 
life situations using geometrical deductions; must be 
able to think space in terms of XYZ. It is not necessary 
to use spatial visualization ability to solve this activity 
because is useless. Is it relevant to mention that the 

Figure 2: Example of a expected answer of a student
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girl was observing the pit? Would it make any differ-
ence if the problem had not been contextualized to a 
real life situation? Why is it relevant to use a coordi-
nate system to calculate the volume of the pit? 

This evidences a gap between the aims of school geom-
etry on curricular materials of Chile, in terms of the 
teaching of spatial abilities, and the notion of space 
that school geometry promotes, which is rooted in 
Euclid’s axioms and abstractions. Reasoning with the 
objectification of space in geometry, to shape a scien-
tific self implies to suppress the self, which means to 
cut all links between perception and geometrical for-
malizations. This suppression leads to perceive space 
and geometrical knowledge as decontextualized, and 
as universal and timeless. 

Nonetheless, space outside the school is not universal 
neither timeless. What if this notion of space changes? 
Sanjorge (2003) argues that the space in which the sub-
ject is constructed has already changed; consequently 
the subject itself has been changed. There are virtual 
movements, where there is no orientation, not right 
or left, it is a post-Cartesian space, which is nonlinear. 
It is a “spherical space, where up and down are not 
positions in the world but situations of the viewer” 
(Sanjorge, 2003, p. 5, our translation). This is a notion 
of space unfolded by technology, a virtual world that 
is subjectifying children to perceive no orientation, 
where everything is reachable by a ‘click’. It is a space 
opposed to Cartesian movements within ‘school space’ 
and the different spaces are not related at all.

At the end, the interplay between power and mathe-
matics education is on how the school mathematics 
curriculum generates cultural and historical subjects 
(Valero & García, 2014). Then, school geometry be-
comes a technology of the self and the others, by regu-
lating children’s conduct, and by developing ‘cultural 
thesis’ (Popkewitz, 2008) about an ideal student who is 
able to see with sightless eyes. This generates systems 
of reason in which forms of life and subjectivity are 
made possible, organized and constrained. Therefore, 
school geometry has power effects on how students 
understand and train themselves to see space. Such 
subjectification pursues to fabricate the scientific 
minds of the future by educating students to see not 
with the eyes of their bodies, but with the eyes of rea-
son and logic.
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ENDNOTES

1. Blumenfeld performed a series of experiments with 
parallel and equidistant alleys. One of the tasks in the 
experiment was to arrange two rows of point sources 
of lights as straight and parallel to each other as pos-
sible. The lights were placed on either side of a plane. 
The results revealed that physical configurations do 
not coincide with Euclidean geometry. In Euclidean 
geometry, parallel lines are equidistant along any mu-
tual perpendicular. However, in the experiment, the 
resulting lines diverged, they were not parallel at all. 
He concluded that Euclidean geometry does not apply 
to our visual space.

2. Daston and Galison (2007) analysed images on 
scientific atlases to study its history, emergence and 
development.

3. This power is not to be understood in terms of 
domination of the self; it is not an imposition to train 
students’ sight. This power understands ‘the other’ 
as a person who acts on his/her own; depending on 
the freedom of the subject (Foucault, 1982). Likewise, 
school geometry discourses are not a form of imposi-
tions; they are produced because we reproduce them 
through language. They are an ‘action upon action’ 
(Foucault, 1982).

http://dx.doi.org/10.1590/1980-4415v28n49a02
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This paper presents and discusses parts of a large-scale 
[1] ethnographical and longitudinal study that has fol-
lowed the process of implementing the National Test in 
Mathematics for third graders (Ntm3) in Sweden dur-
ing its first three years (2010, 2011, and 2012). Pupil talk 
from 2011 about pressure and what is at stake was used to 
construe three positions of need that might characterize 
pupils during the National Test in Mathematics in their 
third school year: the position of shame, the position of 
unfamiliarity, and the position of stress. How these might 
be handled in educational practices is discussed briefly.

Keywords: National test, pressure, mathematics, third 

grade, position of need.

INTRODUCTION

The National Test in Mathematics for third graders 
(hereafter called Ntm3) in Sweden was introduced in 
2010 (Utbildningsdepartementet, 2012). Since this test 
in its current form is a new phenomenon, research 
is scarce. Levlin (2014) has investigated how reading 
and langugage skills in the second school year predict 
achievement on the National Test in Mathematics for 
third graders, test anxiety and its connection to acieve-
ment have also been examined (Nyroos, Bagger, Silfver, 
& Sjöberg, 2012), and the tests have been studied as a 
technology of disciplinary power (Foucault, 1980) ex-
ercised over children (Sjöberg, Silfver, & Bagger, 2015). 
Other research on tests for children of similar ages has 
shown that national tests can contribute to difficul-
ties in mathematics (Sjöberg, 2006). There are ways of 
handling test anxiety, coping with stress, and learning 
test-taking skills (Sena, Lowe, & Lee, 2007), but these 
require identifying needs and pupils in need. The very 
concept of a pupil who needs support in mathematics 
is used and understood in a variety of ways in research, 
contributing to challenges in communicating and 
building knowledge about needs and support for these 

pupils (Bagger & Roos, 2014). The concept of need is in 
this paper understood as a position that a pupil might 
move in and out of, depending on the situation and the 
individual or the environmental prerequisites (Silfver, 
Sjöberg, & Bagger, 2013). This paper looks further into 
some of the discursive preresiquites for developing the 
position of ‘being a pupil in need’. The approach is to 
investigate pupils’ perspectives from an ethnographic 
point of view. Hereby I strive to adopt an insider’s per-
spective in the research by revealing the participants’ 
perceived experiences and, through this, building an 
emic narrative. The pupils are then the source for the 
emerging story about being a pupil in need. Three fo-
cus areas guide this investigation in exploring how 
pupils are positioned and position themselves in terms 
of possible needs: (1) pupils’ talk about the experience 
of pressure, (2) whether and how stakes are expressed 
by the pupils describing negative pressure, and (3) 
pupils’ talk about the position of being in need. This 
paper represents a pilot study that elaborates on the 
methodology before it is applied in a larger sample 
of pupils at the same three schools. Larger numbers 
will make it possible to discuss issues of diversity and 
equity and to take socioeconomic factors into account.

NATIONAL TESTS IN SWEDEN 

Educational reforms in which assessment and com-
parison of pupils have played key roles have become 
more common internationally in the last decades 
(Clarke, Madaus, Horn, & Ramos, 2000). One purpose 
of the testing is to identify pupils at risk of not achiev-
ing the educational targets (Wyatt-Smith & Castleton, 
2005). Media often publicize the results, reporting 
how well schools perform in relation to each other 
and whether more or fewer pupils have succeeded. 
Thus, the tests sort and categorize not only pupils 
but also schools. This can be understood as part of an 
international trend in neoliberal educational policy, 
whereby schools are governed and govern through 

mailto:anette.bagger@umu.se


Pressures and positions of need during the Swedish third-grade National Test in Mathematics (Anette Bagger)

1559

the test (Hudson, 2011). Parents’ choice of schools 
might then be described as a consumer’s choice of 
education, where the child’s knowledge is perceived 
as a product (Lange & Meaney, 2014). In this way, the 
discourse surrounding testing activates power rela-
tions between schools, teachers, and pupils. 

Ntm3 has the purpose of both evaluating the pupil’s 
level of knowledge and evaluating education at large. It 
also aims to support a just evaluation of pupils’ knowl-
edge by securing the equality in teachers’ assessments 
(Björklund Boistrup, & Skytt, 2011). The third-grade 
National Test in Mathematics is taken by all pupils 
with few exceptions and requires approximately one 
month to administer. It consists of several subtests con-
nected to different (but not all) parts of the curriculum. 
In addition, there initially is a self-evaluation section 
and a co-operation subtest. The test is administered 
and corrected by the classroom teacher. Afterwards, 
the schools’ test results are saved in databases (SIRIS, 
Swedish Ministry of Education).

THE PUPIL IN NEED DURING TESTS

Pupils might experience standardized tests as a pres-
sure on them, but whether the pressure is perceived 
as positive or negative varies. Negative pressure can 
increase failure rates and affect the learning progres-
sion because it threatens pupils’ self-worth (Putwain, 
Connors, Woods, & Nicholson, 2012). Putwain and col-
leagues (2012) describe how stakes relate to negative 
pressure:

Higher stakes tests increase the threats to self-
worth, unfamiliarity increases the uncertainty 
of being able to demonstrate competence and low 
competence beliefs increase the likelihood of fail-
ure, all of which result in the appraisal of tests 
as threatening rather than challenging. (p. 300) 

That is, if pressure is negative, the pupil might fear 
or imagine that something is at stake, and this could 
contribute to pupils “in general” being transformed 
into pupils in educational needs. A need is not only 
constituted of what the individual wishes and asks for 
but is also a matter of necessity and depends on the 
situation at hand (McLeod, 2011). The need for support 
during tests can be explained as an occurring agency 
need that for some individuals remains also on other 
occasions and at other times but may also be caused by 
a dispositional educational need. An occurring need 

may therefore be temporary or persistent and in some 
cases both. Teachers are good at detecting achieve-
ment but are less skilled at detecting what the pupil 
thinks about him- or herself (Urhahne, Chao, Florineth, 
Luttenberger, & Paechter, 2011); thus, it is crucial 
that research seek to clarify pupils’ understandings 
of themselves. Research about how pupils position 
themselves in testing situations contributes to this 
end, since it may reveal some of the social dimensions 
of testing from the pupil’s perspective and positions 
of need that are foreseen. Giving pupils support and 
equal chances of passing the test is especially urgent 
because reports indicate that the school system is seg-
regating pupils, which might be seen in test scores 
and grades (see, e.g., Swedish Agency for Education, 
Swedish School Inspectorate, 2012). Drawing on Atweh, 
Graven, Secada, and Valero (2011), I understand the 
issue of providing high quality mathematics and equi-
ty as an ethical imperative that schools must address.

METHODOLOGY

Ethnographical data were produced before, during, 
and after the national test. Contextual facts were col-
lected before the test regarding the municipalities, 
schools, and classes. 

Data collection and selection
In order to access the pupils’ firsthand experienc-
es about the test, video-stimulated recall dialogues 
(VSRD) were conducted with pupils individually and 
video recorded (see Silfver, Sjöberg, & Bagger, 2013). 
The technique used in interviewing the children was 
inspired by Morgan (2007). Data from these interviews 
have been analysed, whilst other data from the project 
constitute a contextual background for understanding 
and interpreting the interviews. The pupils with the 
highest and the lowest test scores at three schools in 
one municipality (2011) were selected. Choosing these 
pupils presumably brought forward some of the crit-
ical issues regarding mathematics testing. The selec-
tion makes it is possible to investigate preresiquites 
for needs regardless of achievements, gender, back-
ground, or skills. The schools ranged in size from medi-
um to large, and their locations varied from inner-city 
to suburban and from lower class, immigrant-majority 
to native Swedish-speaking, middle-class areas. The 
selection of schools allows for the discussion of social 
justice and diversity, in addition to discourses in the 
area of test taking in both policy and practice. 
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Analytical process 
Data were examined using Transana, a computer 
software for encoding and analysing video and audio 
recordings. Analysis was performed in three steps, 
according to guidelines from Heath, Hindmarsh, and 
Luff (2010) and is displayed in Table 2. Clips were or-
ganized, after repeated reviews, into collections with 
open codes. Patterns, such as similarities and con-
tradictions, were searched for between collections. 
Positions of need were construed as categories to 
summarize the patterns found. This is presented in 
the results. Examples are given of what was said.

Negative pressure was identified in the talk when pu-
pils implied that they had felt uncomfortable and ex-
perienced disturbing thoughts about the test, math, 
and themselves. Positive pressure was identified when 
the talk was influenced by positive feelings, expec-
tations about the test, math, and themselves. Whilst 
searching for things at stake, I applied Putwain and 
colleagues (2012) definition of stakes as

the real or imagined consequences of testing 
students’ academic credentials (test scores or 
grades), educational access (for example to a 
particular school) and educational progression/
ability setting, and also for teachers professional 
status (e.g. from school league tables). (p. 291) 

Instead of teachers’ professional status, I searched for 
pupils’ status. 

Positioning and discourse as analytical lenses
Drawing on Foucault, one can understand discourse 
as constructing and constructed by individuals and 
society through systems of representation. Through 
these systems, knowledge, truth, and power are pro-
duced (Hall, 2001). An individual’s ability to speak is 

regulated by discourse in determining how, when, and 
from what position people may speak (Davies & Harré, 
2001). These positions depend on the discursive con-
text, the participants themselves, and the activity 
at hand (Lofors-Nyblom, 2009). This means that the 
discourses in the test situation will govern possible 
positions of need and the ways that the test can be 
talked about. An important theoretical distinction 
is that a position of need is not the same thing as one 
pupil’s being in one fixed position of need. The concept 
is instead a construction of possible positions of need 
that a pupil may take on or be given in the test situa-
tion. One pupil’s talk might in this way contribute to 
several positions of need, depending on the position 
from which that pupil is talking. It is not the subject 
(pupil) who talks but the discourse that talks through 
the subject (Foucault, 1983).

RESULTS

Positions of need construed from pupils’ talk about 
pressure and stakes are presented in the following 
paragraphs. Positions of need were expressed only in 
regard to negative pressure. Positive pressure, along 
with what could be described as positions of ‘the good 
test taker,’ is also displayed. In pupil talk about posi-
tive pressure, no needs were apparent; neither was 
any talk about stakes.

Pressure as positive and the 
understanding of responsibility
Sofie and Ellen were both high achievers who talked 
about the test as interesting and the nervousness as 
stimulating. Ellen emphasized that loneliness and be-
ing on one’s own contributed to the feeling of positive 
pressure. These two girls were emphatic about posi-
tive aspects of the test. Ellen said, ‘The teachers want 
to see what we can do, so that we can achieve our goals. 

Year 2011 Outer-city school Inner-city school Non-city school 

Pupil Sofie Ali Ellen Emmanuel Anna Sara

Passed subtests All None All None All None

Score (max 101) 87 55 89 19 97 75

Table 1: Pupils with the highest and the lowest test scores from three classes (2011) in three schools, from various socioeconomic 

settings (the names are fictional)

Selection of pupils Review 1 Review 2 Review 3: Analysis

Highest and lowest 
performing in class

Talk about pressure 
and test consequences

Talk about negative pressure 
and stakes involved

Positions of need during 
tests

Table 2: Process of analysis
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I think it’s really important—it’s important to achieve 
goals in school, and you can do that if you take the test.’ 
Ellen had great trust that the actual accomplishment 
of the test would help her reach her goals. And Sofie 
was very clear about where the responsibly for her 
development lay:

Because this test is for—I think it’s for you to 
see what you already know and what you need 
to practise. And what the teachers will … if they 
need to give someone more instruction and if 
they should be clearer on something … So it’s 
really the teachers that get to know if they did 
well or not. 

Despite this outlook and the fact that Sofie had the 
highest score in her group, she referred to skilled boys 
in order to position herself as talented: 

Yes, I think I had the fewest mistakes in the class, 
because there are two other boys that have other 
math books since they are so good … [and] I had 
one mistake less than them. 

Lack of curiosity regarding the test
Sara did not express pressure in either direction but 
thought that the math on the test was difficult. She 
implied that she might lose knowledge that is impor-
tant to managing in life—for instance, ‘if you have to 
go somewhere, or buy things in a store.’ She also said 
that it could be fun to take the test because she was 
allowed to draw, something she liked to do. And it was 
fun to write the test because it was something unusual. 
Although she had the lowest scores, Sara passed all the 
tests. Her school’s area was a white, middle-class neigh-
borhood, and almost all its pupils spoke only Swedish.

Pressure as negative and what is at stake
In the talk about negative pressure, three different po-
sitions of need were construed: the position of stress, 
the position of shame, and the position of unfamiliar-
ity. The talk also contains signs of things perceived as 
at stake. Of the six pupils, four talked about the test 
as pressuring them in negative ways and mentioned 
things being at stake. 

The position of stress
Both high achievers (Anna) and low achievers 
(Emmanuel and Ali) reported having experienced 
anxiety and stress or disturbing thoughts in connec-
tion with the test. These emotions were felt in the 

body, whilst only the high achiever Anna described 
stressful thoughts. Emmanuel said, ‘I was nervous; my 
hands shook. It felt like they would write the wrong 
answer.’ Anna talked about the fear of not being able 
to retrieve her knowledge whilst working on the test. 
Even though she was sure that she was good at math 
because adults had told her so, she was insecure about 
whether her knowledge could really be trusted: 

But later on, I had a little panic … so that I could 
barely … I was still nervous, so I panicked because 
I was writing it. But exactly when you needed it 
[the knowledge] most and you needed … to write 
the answer … to remember the answer—then it 
flew out of your mind, and when you don’t need 
it, it comes back. I got more than a little irritated. 

Anna also vividly described how stressed she felt dur-
ing the test and how she tried to handle these feelings. 
She was worried about not finishing in time and about 
making mistakes; several times she indicated that she 
was afraid of not being permitted to continue to the 
fourth grade. Her social belonging was at stake: ‘If you 
didn’t get the right answer, maybe then you would have 
to retake third grade. It felt like that.’ At the same time, 
she understood that this was not the case: ‘I know that 
it’s not like that, but I just got that feeling, and it also 
felt like I would get a heart attack a little.’ The feeling 
of potentially loosing her social context grew whilst 
Anna was waiting for the results: ‘Waiting for the re-
sults felt like waiting to know whether I had to retake 
third grade or could move on to grade four.’ The stress 
may also have involved knowing that the test would be 
difficult and that the situation would demand concen-
tration and intense thinking. Ali commented on this: 

‘It’s hard, and you have to think really, really hard, and 
that might be tough.’ He also spoke of finishing as a re-
lief from pressure: ‘Finally, I’m done, and now I’m free.’

The position of disappointment 
Ali implied that knowledge might be lost if a pupil 
did not pass the test: he assumed that taking the test 
in itself generated mathematics learning. Along with 
this lost knowledge, his dignity would be at stake if 
he did not learn more, along with a potentially loss 
of social status: 

I think you can embarrass yourself sometimes 
if you don’t know it [math] … also, if we answer 
questions … and they say how much is one times 
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one or ten times ten, and when you don’t know, 
then you might embarrass yourself.

He also mentioned another possible outcome of not 
succeeding in the test—namely, feelings of sadness: 

‘If you don’t pass, you’ll be sad and feel sorry that it 
didn’t go well.’

The position of unfamiliarity 
The fear of not knowing mainly involved feelings 
about scores. Both Ali and Anna said, ‘What if I make 
a mistake?’ Anna also worried about being able to 
finish in time; that is, she did not know whether she 
had enough time. Emmanuel spoke of uncertainty 
about his skill and his possible results. ‘Will I pass 
this? (Interpreted as: I’m afraid I won’t.)’ This fear may 
have arisen partly because the test took place in an 
unknown situation. Anna said, ‘Beforehand, I didn’t 
know what to expect, what the test would look like, 
and I wasn’t prepared.’ This concern could be connect-
ed to Anna’s fear of being unable to retrieve knowl-
edge and putting her educational progress at stake.

DISCUSSION

The analysis of how pupils talked about pressure in 
order to study discursive preresiquites for positions 
of need in the test situation seems to have yielded re-
warding results, since the pupils talk about pressure 
and stakes seem to give valuable information to pos-
sible educational needs in the test situation. To per-
form the same analysis in a larger sample of pupils 
might reveal still other positions of need, beyond the 
ones discussed here. Clearly, issues of power and gov-
ernance were involved in the practice of test taking 
for the pupils in this article. They talked about the 
risk of losing social belonging, pride, and knowledge. 
Some critical gendered issues, as well as matters of 
diversity and social justice, are revealed, and it will 
be interesting to examine these further in a larger 
study. One conclusion from this limited sample, is that 
the test leads to a comparison and sorting of pupils. 
Pupils start to relate their achievements to those of 
others in order to understand their placement within 
the competitive discourse, which is more apparent 
in the multilingual schools. Comparisons were high-
lighted more often by the pupils in the multilingual 
schools, regardless of which kind of pressure they 
expressed. This implies that pupils on these schools 
are participating in a competitive discourse regard-
ing scores which position them as having the potential 

of ‘not winning’ or ‘loosing’. In the suburban school 
in a middle-class and mainly Swedish-speaking area, 
neither of the pupils compared themselves with oth-
ers. Instead, they talked about their knowledge as 
the focal point in the testing situation. Those pupils 
are in this way participants in a testing and learning 
discourse where their knowledge is at stake. Anna 
is a key informant since she had much to say about 
her experiences. It is an important methodological 
reflection that the boys who reported negative pres-
sure and stakes did not manage the Swedish language 
very well, going to the multilingual schools. It could 
be that their test performance was hindered because 
of this problem, which might cause negative pressure. 
It might also be that if they had been interviewed by 
someone who could speak their language, they could 
have provided much more information. 

The results suggest that the position of unfamiliar-
ity could both lead to uncertainty about one’s abil-
ity and derive from uncertainty about one’s ability. 
One educational need here is to cultivate knowledge 
about skills and the test, before the test. Knowledge 
about skills could decrease the risk of test anxiety 
(Ahmed, Minnaert, Kuyper, & Van der Weerf, 2012), 
but that would require that the teacher learn whether 
pupils lack these insights and have these feelings. The 
test situation enhances the focus on scores, which 
might lead to a heightened risk that teachers will not 
notice how pupils think or feel about this issue (see 
Urhahne et al., 2011). This also applies to the position 
of shame. Talking about these feelings would most 
probably positively affect both the achievement in the 
testing situation and the overall learning situation. 
Tests can actually create good opportunities to talk 
about feelings of putting things at stake, not remem-
bering, not knowing, and embarrassment. This might 
lead to a balancing of the test situation so that pupils’ 
needs come to the fore—not only the needs of the test. 
Clarifying the purpose of the test, how it will be used, 
and how it is understood by the teacher could perhaps 
lead to a leveling of inequalities for the pupils.
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In this paper, we explore the role of ‘others’ in one wom-
an’s mathematical identity. We draw on sociocultural 
theory to analyse identity in terms of the relationship 
between self and others: that is, as mutually shaped in 
interaction with others through the enactment of an 

‘identity in practice’. Our analysis focuses on the role of 
‘caring’ as a particular form of this relationship, suggest-
ing that our respondent uses this as a cultural resource 
to identify as a mathematician. We argue that caring 
supports her access to central mathematical spaces 
and, consequently, her potential to change the nature 
of mathematics itself. 

Keywords: Gender, caring, identity, others.

BACKGROUND

Mathematics is perceived by many people as abstract, 
masculine, irrelevant, boring, uncreative and diffi-
cult (Mendick, 2006; Schoenfeld, 1992).  Such nega-
tive views of mathematics appear to be particularly 
common amongst certain social groups – e.g. girls, 
low achievers, low SES (Forgasz & Rivera, 2012). Girls, 
for example, criticize school mathematics as repeti-
tive and rote, and show a “quest for understanding” 
(Boaler, 2002) which places both the relevance and 
use of mathematics as central.  A considerable body 
of research has suggested that such negative attitudes 
are symptomatic of a wider process through which 
girls are excluded from high status mathematics as a 
white, male, privileged social practice.  Walkerdine’s 
(1989) now classic study highlighted how from a very 
young age girls enter into mathematics though enact-
ing domestic/caring roles in play with their mothers.  
But once at school, this “domestic mathematics” was 
discounted and de-valued against “formal-school 
mathematics” which subsequently positioned girls 
as merely hard working in contrast to boys’ perceived 

natural and effortless ability. In school, the girls in 
Walkerdine’s study continued to find social status 
within the classroom through exercising domestic/
caring roles (such as being the class helper), but were 
positioned as lacking in school mathematics, foretell-
ing restricted access and participation in mathematics 
later in life.  Walkerdine thus highlighted how the 
domestic/caring roles that girls are socialised into 
ultimately served to exclude them from higher status 
forms of mathematics valued by school. 

In this paper, we explore this account of ‘caring’ and 
its connection to girls’ access to mathematics further. 
Whilst we recognise that many students’ experiences 
of mathematics are shaped by its position as a gate-
keeper to powerful and privileged domains, we argue 
that the processes by which individuals are includ-
ed/excluded from mathematics are complex and that 
in certain circumstances, individuals may ‘succeed 
against the odds’. Thus much of our previous work 
has provided examples of successful women (from 
non-privileged backgrounds) who have persisted with 
mathematics, examining the complex and contradic-
tory structural conditions which have afforded their 
success (Solomon, 2012; Black, 2013, 2010; Solomon, 
Radovic, & Black, submitted). With this in mind, we hy-
pothesise that ‘caring’ (both for others and by others) 
whilst still a result of marginalisation more generally, 
can potentially act as a cultural resource for individu-
als and, in the right circumstances, sustain a positive 
mathematical identity.   We explore this hypothesis 
here by drawing on one of our previous examples – 
Roz – a professional ‘academic’ mathematician who 
one of us (Yvette) interviewed on a number of occa-
sions over a period of 5 years. This period included an 
interview with Roz as a PhD student (Solomon, 2012) 
and as a post-doctoral researcher (Solomon, Radovic, 
& Black, submitted). We draw primarily on Holland, 
Lachicotte, Skinner and Cain’s (1998) theory of figured 
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worlds, and the ways in which individuals draw on 
cultural resources and models in ‘identity in practice’, 
using this as a lens for understanding the role of car-
ing and its relevance in Roz’s history of engagement 
with mathematics. 

Theorising identity and ‘caring for/by others’
Holland and colleagues (1998) argue that identities 
(rather than identity) are relatively durable entities 
which are drawn on and constructed in the stories we 
tell ourselves about who we are. Thus, they are multi-
ple in nature and connected to the various practices 
we engage with. This is elaborated by Holland and 
Lachicotte (2007) who suggest that our perception 
of our own self is rooted in how we are perceived by 
others as we engage in practice:

We actively internalize a sense of our own behav-
ior as compared to the behavior of others acting 
in related roles and positions. We develop an in-
ner sense of the collective regard that society is 
likely to have for our performances. Then, we 
craft our own way of being in roles and positions 
in relationship to this “generalized other,” the 
collective sense that we gradually develop from 
those who evaluate us (Holland & Lachicotte, 2007, 
p. 107).

Elsewhere we have argued (Black et al., 2010; Black & 
Williams, 2013; Solomon, Radovic, & Black, submit-
ted) that ‘the internalisation of our own behaviour’ 
which Holland and Lachicotte outline here takes place 
through reflection – in reflection we construct a sto-
ry about who we are and thus our subjectivity (our 
own behaviour in practice) becomes crystallised as an 
identity (I am a certain kind of person). Crucially then, 
the stories we construct are mediated and shaped by 
our subjectivities ‘in practice’ to the extent that we 
cannot simply decide to adopt a particular identity 
on a discursive whim. 

We find the idea of cultural models useful in this re-
spect since they lie on the boundaries between ‘prac-
tice’ and the narrated self (Gee, 2010; Holland et al., 
1998). Holland and Skinner (1987) describe cultural 
models as shared implicit knowledge about types and 
ways of talking about them, which become crystal-
lised so that the knowledge/story/assumptions that 
they embody remains implicit. Gee (2010) provides 
an example in questioning ‘Is the Pope a bachelor?’ 

– which illustrates that although the Pope might be in-

cluded in the formal definition of the term bachelor (a 
male who is unmarried), he does not typically fit with 
the implicit story or assumptions which have become 
crystallised through our use of this term. Therefore, 
we can argue that cultural models are culturally and 
socially shared and, to a large degree, shape what is 
possible and what is not. In Holland and colleagues’ 
(1998) account of the US college dating scene, we see 
cultural models relating to various figures (jocks, 
nerds and so on), and these determine a story about 
who can date which kind of girl. Applying this to 
our concern with girls and women in mathematics 
raises the issue of what cultural models and figures 
intersect with self-positioning in mathematics, and 
the related issue of what kind of engagement with 
mathematics these models support. Furthermore, 
given Walkerdine’s (1989) conclusions regarding 
the role of caring for others (in domestic roles) in ex-
cluding girls from mathematics, we are interested in 
how this particular cultural model might be used by 
someone who is female and yet apparently successful 
in mathematics. In this paper, therefore, we address 
the following questions: What is the role of ‘caring 
for/by others’ in a developing mathematics identity?  
How does the individual draw on a ‘caring self-other 
relationship’ in their self-authoring as a mathema-
tician?  How does ‘caring for/by others’ relate to the 
construction of mathematics itself?

METHODOLOGY

Roz began her university career at the age of 44, 
taking undergraduate, masters and PhD degrees in 
mathematics. At 52, she is now engaged in post-doc-
toral study at the same highly prestigious university 
where she undertook her PhD.  The interview, which 
was fully transcribed, took place in a university cafe, 
and was loosely focused on her ongoing mathematics 
career, and her account of the past, present and future, 
including the impact of being a mother on her career.  
We see the interview as a place which encourages re-
flection and, therefore, supports identity formation 
of the kind we have described above. It provides the 
space for Roz to reflect and thereby, co-construct with 
the interviewer a story about who she is and what 
identities she positions herself towards. In our anal-
ysis, we focus on the role of caring and others in her 
account of herself as a mathematician, and in particu-
lar the part they play in her vision of the mathematical 
world and her place in it.  
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ANALYSIS

The role of caring for/by others in 
a developing mathematical identity
Roz’s talk is populated by references to the role of car-
ing for/by others in her decision to become a mathe-
matician, and her on-going identification of what kind 
of mathematician she is. She especially identifies her 
relationships with her mother and father as crucial. 
Specifically, Roz locates the origins of her desire to 
become a mathematician in terms of a ‘genetic’ align-
ment with her father:

… when we were tiny he would bring home the 
scrap paper with all the technical drawings on 
for us to use the other side of – it was a purple 
one. (?) I was just fascinated with the drawings 
themselves, and the precision with which they 
designed even the (inaudible) in the lid, and how 
things worked – I just loved it.  And I was just gaz-
ing at these and how things worked and whatever 

… so it was always in there I think. …  I mean part 
of it’s intrinsic isn’t it, genetic – I’m much more 
like my father than my mother.  So the things that 
he liked – I like.  I don’t feel let down by him in 
the way I feel let down by my mother.  So there’s 
all those things going on, but there’s also sort of 
the natural being drawn to those pictures rather 
than turning it over and scribbling on the other 
side ... so that was already intrinsic.  So I think it 
was already in there to a large degree.  

Here we suggest that Roz is re-constructing a particu-
lar type of relationship with her father based around 
shared interests and enjoyment which, she believes, 
has resourced her mathematical identity.  This re-
lationship is presented in direct opposition to that 
with her mother with whom she feels ‘let down by’. 
Elsewhere in the interview, she explains this more 
negative relationship in further detail:

 She was a social worker, so she was working 
shifts in a home for children who’d been taken 
away from their parents. [..] So there was no reg-
ular routine at home.  I was the eldest so I was 
expected to look after my sisters.  [..] And I think 

… it might be the particulars of her job, but she 
never had time for us.  She did loads of stuff for 
us – washing, ironing, cooking and everything … 
but never anything with us.  [..]  So I think it really 
was important to me to stay home with my boys.  

Because she was always saying ‘Not now Roz, 
not now Roz’ but there was never a time when 
it was okay to talk to her.  And if you can’t share 
the trivial things, you can’t share the important 
things – cos you don’t establish a relationships.  
So … yeah.  So that’s why I say that. 

Whilst she recognises that in some ways she was cared 
for by her mother in that ‘she did loads of stuff for 
us’, the contrast she constructs between this and the 

‘with us’ type of  relationship she had with her father 
is notable. Roz clearly dis-aligns herself from this 
more distant relationship with her mother – for her, 
it was ‘regrettable’ that her mother worked when her 
children were young, and she emphasises her own 
choice to be a ‘stay at home’ mother, placing value on 

‘being there for them’:

I was 20 years full time at home with my boys, I 
was. [...] but at the same time I could be there for 
them, and they weren’t left to squabble it out, fight 
it out between themselves in the school holidays 
like we had to.  

We suggest that Roz’s account of how she became in-
terested in mathematics and how she came to identify 
with it is shaped by her re-telling of these significant 
relationships with caring others. In this re-telling 
she invokes a type of being cared for which involves 
spending time together and sharing interests. This is 
manifest in the relationship she had with her father 
whom she identifies as a critical ‘other’ in explaining 
the origins of her love of mathematics. But this is also 
not a simple causal relationship of positive parental 
influence = positive mathematical identity since Roz 
also frames her father’s influence in terms of what it 
is not i.e. the negative, more distant relationship with 
her mother who she was ‘let down by’.  We suggest that 
these two ways of ‘being cared for’ (‘spending time 
with’ versus ‘doing stuff for’) have shaped her trajec-
tory in becoming a female mathematics academic at 
different moments of her life. First, by resourcing 
her original interest in mathematics through shared 
interests with her father, and then, by motivating 
her late entry to academia as a mature student which 
emerged from her decision be a ‘stay at home’ mother. 

The role of a ‘caring self-other 
relationship’ in being a mathematician 
In a previous paper (Solomon, Radovic, & Black, sub-
mitted), we noted how Roz constructed a narrative of 
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her present and future self as a mathematician which 
entailed  negotiating the contradiction of being femi-
nine but doing ‘male’ mathematics. We suggested that 
this contradiction led her to enact her mathematics 
activity in a particular way, hybridising femininity 
(through dress, investing in relationships with other 
staff members and organising social activities) with 
her interest in the ‘theoretical stuff ’ which she sees 
as belonging to the ‘masculine’, systematising domain.  
These findings relate to the focus of this paper, since 
the ‘caring-other’ relationships we have discussed 
appear to be crucial in enabling Roz to negotiate this 
contradiction. For instance, in the following extract, 
Roz discusses how her previous experience as a stay 
at home mother (caring for others) has affected her 
current role as a mathematician:  

I        Being a mother and being a mathemati-
cian, do they … sort of go together?  

R      I think it’s added to me as a person. … 
[..] And I think that part of coming to 
maths as a mature student has given me 
things to hook it onto. [...] And I can un-
derstand it more quickly because I can 
relate it to things I already know.   And 
I think that being a mother has helped 
me to be the kind of person who will 
help the other students and who they 
can relate to and that kind of thing, and 
that persists.  …. and I think that being 
a mum has helped me with that.  

Here, we can see that being able to ‘relate to others’ 
is not only valued by Roz but also that she sees it as 
helping her to perform her role as an academic, con-
necting to her earlier emphasis on the form of ‘caring 
for others’ as sharing interests.  The fact that she con-
nects this to ‘being a mum’ re-iterates the particular 
kind of parental, caring relationship she values – one 
which now enables her to act in a certain way as an 
academic mathematician:

But when I’m here [in her department] I’m… you 
know okay I can be very firm … you know if need 
[to talk to] people with ice behind my eyes I can 
do that and get them to do what I need … but I can 
also be thoughtful … and people say ‘Oh I didn’t 
think of that’ – and it’s the most obvious thing, 
like you know just being extra careful to talk to 
the new person, or you know every day ‘How are 
you getting on?’ – this kind of thing.  

The role of ‘caring for/by others’ in the 
construction of mathematics itself
The particular form of ‘caring for/by others’ that 
Roz values not only appears to resource her identity 
as an academic mathematician in the context of her 
university department, but is also evident in her con-
struction of what mathematics itself is. Roz’s research 
expertise lies in the area of complexity theory and 
statistical modelling to address real world problems 
such as finding the most effective treatment in health-
care and structuring networks for food security de-
cision support. A persistent theme in her story is an 
emphasis on mathematics as a means to ‘describe 
the world’ and make it a better place (see Solomon, 
2012; Solomon, Radovic, & Black, submitted), and in 
describing this mathematical activity she sees herself 
as ‘helping people’  – she uses the term ‘the people ele-
ment’ frequently. This suggests that the ‘caring-other’ 
relationship which Roz invokes in describing both her 
historic love of mathematics and her current identity 
as an academic mathematician is also part of her con-
struction of her mathematical activity itself.  

But crucially, Roz is at pains to point out that she is 
not succumbing to a dominant (gendered) discourse 
about mathematics which creates a division between 
those who do applied, ‘people friendly’ mathematics/
statistics and those who do ‘real’ theoretical mathe-
matics (see Mendick, Moreau, & Hollingworth, 2008).  
This is apparent when she discusses the kind of work 
she does in her current role: 

… the thing is it’s such an outward facing role – 
the ability to engage with people is you know the 
thing that’s really really important.  [..] I started 
picking through some papers to get ready for 
the interview [for her current role], I was kind 
of like ambivalent about the job.  And then I saw 
this ‘algebraic statistics’ and there was ... it was 
talking about ideals and this kind of stuff, and I 
was thinking ‘It’s real maths, I don’t feel like I’ve 
done that for ages, oh I really want this job now.’  
And just suddenly I thought ...  Yeah real maths!  
Oh ... it’s a dichotomy isn’t it, because this is the 
really pure stuff, that really is not meant to ... I 
mean the model was [for helping] people, but 
this is the really pure stuff, and it’s just kind of 
playing with toys, and I think ‘Ooh ...’ [..] But also 
we needed to prove some stuff so … with its coher-
ence...  And I need to get into Bayesian statistics 
which I’ve not done before, and I need to go into 
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… yeah apparently you can represent a Bayesian 
network as a set of polynomials, in which case the 
algebraic geometry comes in and you can prove 
stuff about it.   

Here we suggest that whilst Roz recognises that a di-
chotomy between applied and pure mathematics exists 
in people’s perceptions of mathematics, her insistence 
that she can do both in one role indicates that she feels 
they are not mutually exclusive – i.e. her current ‘iden-
tity in practice’ involves doing mathematics which is 
both ‘outward facing’ and ‘the really pure stuff ’. In this 
way, Roz does not merely engage with mathematics to 
enact a feminine ‘caring for others’ role but, rather, en-
visages herself as changing the context of mathematics 
itself so that the traditional gendered and excluding 
binary (male – pure mathematics vs female – applied 
mathematics) no longer exists. The following extract 
highlights the energy and motive that is provided by 
this perception that she is changing mathematics: 

I sat through a series of lectures that my now boss 
gave,... and the lecture that I absolutely adored 
had a proof with three lemmas in it you know 
and  …. ‘I really am a mathematician – I just love 
this stuff ’ – my heart was racing, I just enjoyed 
it that much, you know.  [...] And um ... when I 
was at [her undergraduate university] ... it was 
actually to do with coding and cryptography.  But 
then you were calculating in rings and we were 
doing some stuff like that, and we just did a little 
bit of algebra ... and even then I was kind of like 

‘Oh I wish I could do more of this, I wish I could 
do more of this’ you know.  So ... and this is the 
precisely the sort of thing I’m going into now.

DISCUSSION

In this paper, we have highlighted how a particular 
form of the self-other relationship – ‘caring for/by 
others’ – can be used as a cultural resource in narrat-
ing a positive mathematical identity. Our analysis of 
Roz’s story has shown how she uses this cultural mod-
el to account for the kind of person she has become 
and to self-author as a particular kind of academic 
mathematician. We have also argued that her use of 
this cultural model has mediated a particular view of 
what mathematics is and what mathematics commu-
nities should be like. So, rather than subscribing to a 
gendered binary division of mathematics (female-ap-
plied vs male-pure) such as that reported by Mendick, 

Moreau and Hollingworth (2008) in their study of un-
dergraduate students’ perceptions, Roz sees herself 
as enacting both ‘people friendly’ and ‘real maths’ in 
her one role and, thus changing the world of mathe-
matics itself. 

The role of the ‘caring for/by others’ relationship in 
this process is worth commenting on.  We recognise 
that ‘caring’ as a construct is heavily loaded with con-
notations that relate to unequal gendered divisions of 
labour in society which for many women are a source 
of marginalisation. As Walkerdine (1989) has suggest-
ed, ‘caring’ plays a particular role in marginalising 
girls away from school mathematics at a young age. 
Here, we suggest that given the right circumstances, 
caring for others AND being cared for by others can 
be used to good end.  Rather than being a source of 
dominance/manipulation of women which reinforces 
their marginalisation, caring can be used to develop a 
positive mathematical identity and potentially a tool 
for change. However, our reference to the ‘right cir-
cumstances’ here is pivotal – Roz’s story must be seen 
in context as one of ‘success against the odds’. In taking 
up her role as a mathematician in a prestigious uni-
versity, she has to some extent already overcome the 
powerful structural conditions which make becoming 
a mathematician particularly difficult for women like 
her.  Now, Roz’s ability to use ‘caring for/by others’ 
as a cultural resource and thereby construct a way 
of doing mathematics that combines ‘helping others’ 
with ‘real maths’ is a result of her new found location 
in a profession where relating to others now holds 
value and where this form of capital is not perceived 
as readily available to many of her male colleagues.

The implications of this argument are significant. 
Archer, DeWitt, Osborne, Dillon, Willis and Wong 
(2013) have recently suggested that in order to raise 
girls’ aspirations in relation to STEM subjects (includ-
ing mathematics), interventions are needed which 
make a future in STEM more acceptable to girls.  They 
note that many (predominantly working class) girls 
focus on practical subjects and do not see science in 
this light.  Their findings denote particular forms of 
capital which include caring and domestic competenc-
es which are not seen as part of science: 

The data from the girls without science aspira-
tions reinforce the importance of capital in that 
their stated aspirations are clearly rooted within 
particular forms of social and cultural capital 
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(family contacts, everyday experiences of e.g. 
babysitting/childcare, fashion and sport). The 
absence of science capital within their daily lives 
renders science aspirations less conceivable (and 
achievable), not only reducing their opportuni-
ties for developing a practical ‘feel’ for science 
but also of being able to see science as a ‘thinkable’ 
performance of femininity (p. 186)

 Thus Archer, de Witt and Willis (2014) suggest, 
among other measures, that

In practice, our study indicates that “one size fits 
all” approaches to increasing science participa-
tion (whether generally or for “girls” or “boys”) 
are unlikely to have much effect on improving 
post-16 participation. Approaches that are sen-
sitive to young people’s gendered and classed 
identities would seem more appropriate for de-
livering STEM enrichment and/or interventions 
aimed at increasing participation. (2014, p. 24)

While this appears to be a reasonable suggestion, 
it is less than clear what exactly this would entail, 
and an emphasis on ‘broader forms of engagement’, 
while laudable, might not address the binaries which 
Archer and colleagues (2013) themselves have noted, 
and which may simply position girls and women in 
particular (lower status) areas of STEM.  Archer et al 
add that there is also a need to change cultures:

there is also a need to ensure that the cultures 
operating within post-16 science (in colleges, uni-
versities and workplaces) are indeed equitable 
and do not alienate or disadvantaged ‘non-tra-
ditional’ participants. (2013, p. 189)

Again, however, it is less than clear how this might be 
brought about or what it in fact entails.  True equity 
means enabling access to powerful knowledge and 
deepening engagement rather than simply widening 
participation; our findings suggest that this requires 
a fundamental change in the high status contexts of 
STEM to create new practices which critically engage 
with and ultimately transcend the binaries we have 
outlined.  We argue that Roz’s approach to mathemat-
ics can ultimately challenge the structures which de-
fine its status as a powerful gatekeeper in maintaining 
wider social divisions of class and gender. 
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The point of departure in this paper is my previous 
research in which I analysed how the idea of problem 
solving is recontextualised into the mathematics cur-
riculum for upper secondary school in Sweden and how 
this increases the risk for excluding lower SES students 
from future power. I discuss how this research could be 
followed up through a suggestion of how problem solving 
could be viewed in three different ways: as an ideology, 
a competence and an activity. Bernstein’s pedagogic de-
vice and dichotomy of vertical and horizontal discourses 
are crucial in this suggestion. By seeing problem solving 
as an activity, and connect this to what Bernstein labels 
the evaluative field, I thereby tie the whole pedagogic 
device together by taking an overall view of problem 
solving as global policy-speak.

Keywords: Pedagogic device, evaluative field, vertical and 

horizontal discourse, social equity, problem solving.

INTRODUCTION

Certain aspects of our way of life, certain kinds 
of knowledge, certain attitudes and values are 
regarded as so important that their transmission 
to the next generation is not left to chance in our 
society but is entrusted to specially-trained pro-
fessionals (teachers) in elaborate and expensive 
institutions (schools) […] Different schools may 
make different priorities, but all teachers and 
all schools make selections of some kind from 
the culture (Lawton, 2011, pp. 6–7). 

This selection is not only about what kinds of knowl-
edge, attitudes, and values that should be transmitted, 
but also to whom. Since this selection is often made on 
socio-economical grounds, school reproduces social 
inequity (Bernstein, 2000). Instead of ‘school being 
for all’ (see, e.g., Skolverket, 2012b) there is instead a 
risk of ‘school being for some’ (Dahl, 2014). 

Furthermore, education should not only be the trans-
mission of tools to interpret the world, but also the 
means to change the world  (Atweh & Brady, 2009). 
Bernstein (2000) suggests that what schools should 
provide students with for them to become citizens 
with a stake in society is a sense of, what he calls en-
hancement, inclusion and participation. According 
to Wheelahan (2007) this has to do with the form of 
knowledge that students are given access to: 

Unless students have access to the generative 
principles of disciplinary knowledge, they are 
not able to transcend the particular context. 
Students need to know how these complex bod-
ies of knowledge fit together if they are to decide 
what knowledge is relevant for what particular 
purpose, and if they are to have the capacity to 
transcend the present to imagine the future. (p. 
10, italics in original) 

In the mathematics curriculum for upper second-
ary school in Sweden (year 10–12) problem solving 
is emphasised as a main competence that students 
should develop (Skolverket, 2012a). This emphasis, 
both on competences and problem solving, is com-
mon to other curricula and frameworks, for instance 
Curriculum and Evaluation Standards for school math-
ematics (NCTM, 1989), Principles and Standards for 
School Mathematics (NCTM, 2000) and Adding It Up  
(Kilpatrick, Swafford, & Findell, 2001) in the USA, 
the KOM-project in Denmark (Niss, 2007) and PISA 
(Programme for International Student Assessment) 
(OECD, 2012). Sweden, in following this international 
trend without questioning the roles of competences 
and problem solving can be seen as adapting to, what 
Ball (2013) calls the global policy-speak (Dahl, 2014). 
Global policy-speak “produces, or is the effect of, a 
cutting-off of research in mathematics education from 
its political responsibility and consequences and from 
its philosophical and political roots” (Gellert, Barbé, 
& Espinoza, 2013, p. 303).

mailto:jonas.dahl%40malmo.se?subject=


The three faces of problem solving (Jonas Dahl)

1572

I have in previous research (Dahl, 2014) investigated 
how the need for problem solvers is expressed in the 
Swedish mathematics curriculum, where Sweden is 
seen as an exemplar of a wider trend in mathematics 
education. I have also suggested that, with the new 
curriculum in Sweden, launched in 2011, there is a 
greater risk of reproducing inequity through school 
compared to the older curriculum; mainly due to the 
greater division between vocational education and 
academic preparatory education that is more solid-
ly build in to the system with the curriculum (Dahl, 
2014). These different types of programmes attract 
students with different social background with voca-
tional education attracting to a greater extent from 
lower SES groups  (Broady & Börjesson, 2005). 

The curriculum is here defined as the official docu-
ments that address teachers and in Sweden these are 
the same for all upper secondary schools and includes 
the national tests since one purpose with these tests 
is to concretise the curriculum (Skolverket, 2012b). 
Together, these documents inform teachers and 
students of what should be taught/learned, in some 
sense how it should be taught, but also what should 
be assessed and how. Questions that arise from this 
are about what really happens in schools and in the 
classrooms in regard to competences, and especially 
problem solving competence. Is there a difference, 
as the curriculum suggests that there should be, be-
tween different educational tracks? If so, how does 
this intended difference affect students’ foregrounds? 

Before moving in to the theoretical background and 
framework, I need to describe what I mean with the 
problem-solving citizen, a term I introduced in my pre-
vious research. The problem-solving citizen is a citi-
zen who is flexible, employable and one who gives his/
her “best in responsible freedom” (Skolverket, 2012b, 
p. 4). Drawing on OECD in defining the problem-solv-
ing citizen, I add that he/she also has to be(come) an 

”intelligent consumer” (OECD, 2006, p. 72). With this 
view on the citizen, which is the dominant view in 
the curriculum, the citizen is one with duties to the 
country rather than rights (Dahl, 2014). As a contrast, 
with Bernstein’s view on the citizen, the rights of a 
citizen are emphasised.

THEORETICAL BACKGROUND 
AND FRAMEWORK

Bernstein (2000) described the pedagogic device as 
illustrating how education acted as a filter for ensur-
ing that class distinctions were reproduced. The ped-
agogic device consists of three sets of interdependent 
rules: the distributive rules regulate the power rela-
tionship by distributing different forms of knowledge 
to social groups; the recontextualising rules regulate 
the formation of pedagogic discourse; the evaluative 
rules constitute pedagogic practices that are real-
ised in instructional and regulative texts (Bernstein, 
2000). In relation to the problem-solving citizen, the 
distributive rules can be considered as controlling 
how the discussions of politicians, education bureau-
crats and educational researchers are relayed to those 
formulating the curriculum. The recontextualising 
rules control how the distributed knowledge about 
problem solving is incorporated into the curriculum 
and national tests which in turn control the ways that 
educators in schools and the wider education sector 
come to discuss problem solving. The evaluative rules 
control how teachers teach problem solving in class-
rooms. Within this field, the regulative discourse is 
dominant over the instructional discourse (Bernstein, 
2000). The regulative discourse “refer[s] to the forms 
that hierarchical relations take in the pedagogic rela-
tion and to expectations about conduct, character and 
manner” (p. 13). The instructional discourse “refer[s] 
to selection, sequence, pacing and criteria of knowl-
edge” (p. 13).

From a Bernsteinian perspective, the “generative 
principles of disciplinary knowledge” mentioned 
above in the quote from Wheelahan, could be equated 
with knowledge forms in a vertical discourse, which 
is context-free or generalisable, in this case, from 
the world of mathematics. The opposite is forms of 
knowledge in a horizontal discourse which includes 
mundane or common sense knowledge. According 
to Bernstein (2000), this latter form of knowledge is 
context-dependent and not easily used outside the 
given context, thus not generalisable. The difference 
between knowledge from the horizontal and vertical 
discourse is not a matter of abstract or concrete; rath-
er, it is a matter of reference to a specific material base, 
that is, to a context outside mathematics (Bernstein, 
2000). For instance, in school mathematics, a task or 
problem that is situated in a context outside math-
ematics can be regarded as within a horizontal dis-
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course. These contexts could be domestic areas, such 
as best-buy strategies, or vocational settings, but also 
other school subjects, such as economics or chemistry. 
Knowledge from the vertical discourse is context-free 
and can be realised in mathematics tasks that make 
no reference to the outside world, such as find the 
greatest area of a triangle with a given perimeter. Due 
to their context-independency, tasks such as this are 
generalisable to different contexts or can give access 
and insights to the esoteric world of mathematics. 
From the point of view of social equality, access to 
the vertical discourse is crucial.

In her small study, Lubienski (2000) raises questions 
about NCTM’s (1989) suggestion that problem solving 
should be a means for developing other mathemat-
ical skills or competences. Drawing on Bernstein, 
Lubienski (2000) states that “contextualised mathe-
matics problems seem to align nicely with lower-class 
students’ preferred ways of thinking” (p. 457) and 

“[o]ne might expect that if lower SES students tend 
to have a contextualised orientation to ideas, they 
would benefit from contextualized problems” (p. 
467). However, she concludes that this is not the case. 
Lubienski draws the conclusion that the lower SES 
students in her study were not able to transcend the 
context of the problems and had greater difficulties 
learning from solving contextualised tasks than their 
higher SES peers. Her conclusion was that by put-
ting mathematical problem-solving tasks in a context, 
some students, particularly students from a lower 
socio-economical background, are hindered in their 
mathematics learning.

Similarly, when it comes to assessing through prob-
lem solving tasks, Cooper and Dunne (1998) found 
that sometimes students, in solving contextualised 
tasks draw too much on the real world and, at other 
times, too little. They further suggest that there is a 
relationship to students’ socio-economic background 
wherein students from lower socio-economic back-
grounds struggle more often to bring in the appro-
priate knowledge form.

Bernstein (2000) states, “to make specialised knowl-
edge more accessible to the young, segments of hori-
zontal discourse are recontextualised and inserted 
in the contents of school subjects” (p. 169). Following 
Lubienski (2000) this is problematic when it comes 
to teaching or learning through problem solving. 
Following Cooper and Dunne (1998) it is also prob-

lematic when it comes to assessing problem-solving 
competence. This means that problem solving is prob-
lematic both when it is seen as a means for developing 
other mathematical competences and as an end in 
itself, both views highlighted in the mathematics cur-
riculum in Sweden (Skolverket, 2012a). As Bernstein 
suggests, segments of the horizontal discourse can 
be brought into school mathematics as hooks, but 

“using horizontal discourses other than as a ‘hook’ to 
entice pupils into vertical discourses is to destroy 
what is distinctive about pedagogic communication” 
(Whitty, Rowe, & Aggleton, 1994). From a categorisa-
tion of school mathematics tasks in a textbook series 
with tracks for different ability levels, Dowling (2005) 
concluded that students who are labelled low-ability, 
mainly from working class are denied access to, what 
Dowling calls the esoteric domain. This is another 
way of saying that the students are denied “access to 
the generative principles of disciplinary knowledge” 
(Wheelahan, 2007, p. 10).

Thus, although the purpose of using contextualised 
problems is to develop mathematical awareness and 
competences, it may have the opposite affect, especial-
ly if students from low socio-economic backgrounds 
are the students given these tasks more often, as 
suggested by for instance Dowling (2005), Lubienski 
(2000) and in my analysis of the mathematics curricu-
lum in Sweden (Dahl, 2014). Contextualised problems, 
including those based on the students’ own experienc-
es, can be used to hook students and promote math-
ematics, but can be problematic if, in solving them, 
students never leave the horizontal discourse and 
enter the vertical discourse.

FitzSimons (2008) suggests “these complementary 
discourses, vertical and horizontal, need to converge 
in formal education settings in order to enable richer 
forms of knowledge construction by learners” (p. 3). 
In order to see and understand the boundaries that 
exist between them, students need access to both dis-
courses. Access to the vertical discourse may be de-
nied to certain groups of students. In particular, low 
achievers from low socio-economical areas (Dowling, 
2005; Lubienski, 2000; Wheelahan, 2007) may be re-
stricted access into the vertical discourse. In order 
to gain equal outcomes and ensure that social differ-
ences are not reproduced, all groups of students need 
access to the vertical discourse in order to “transcend 
the present to imagine the future” (Wheelahan, 2007, 
p. 10). Therefore, a way of ensuring equality becomes 
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a question of ensuring equal access to the vertical dis-
course. My analysis of the mathematics curriculum 
in Sweden (Dahl, 2014) suggests that there is a risk 
this is not the case. Instead there is a risk that lower 
SES students are hindered from access to the vertical 
discourse. 

Sjöstedt (2013) draws the same conclusion, but adds 
Bernstein’s ideas about visible pedagogy (Bernstein, 
2003). In viewing pedagogic practice as a cultural re-
lay, Bernstein (2003) discusses some criterial rules 
about “criteria which the acquirer is expected to take 
over and to apply to his/her own practices” (Bernstein, 
2003, p. 64). Visible pedagogy has to do with whether 
or not these rules are explicit in the pedagogic prac-
tice. If the criterial rules are visible, students see the 
connection between pedagogy and evaluation; that is, 
they know what is expected of them. The syllabus in 
Sweden is divided into core content (what should be 
dealt with in the classroom) and competences (what 
should be assessed and graded). If there is a difference 
in what happens in the classroom and what is assessed, 
then there is a risk that the pedagogy becomes invis-
ible, meaning that the students will not know what 
is expected of them. According to Bernstein (2003), 
this is problematic for lower SES students. For a more 
equitable outcome, there is, besides being given all 
access to the vertical discourse, also a need for the 
pedagogy to be visible. 

THE CONNECTION BETWEEN 
THEORY AND METHOD

The term problem solving is ambiguous and my sug-
gestion is that problem solving can be seen to have 
three different faces: 1. Problem solving as an activity, 
that is, when someone, for instance a student, solves a 
problem. 2. Problem solving as a competence, that is, 
an interpretation and a description of problem solv-
ing in, for instance the curriculum, and 3. Problem 
solving as an ideology, that is, how problem solving 
is a part of the global policy-speak. I further suggest 
that these three faces can be connected to the evalua-
tive field (EF), the recontextualising field (RF) and the 
distributive field (DF) respectively.

Bernstein (2000) distinguishes “between an official 
recontextualising field (ORF) created and dominated 
by the state and its selected agents and ministries, and 
a pedagogic recontextualising field (PRF). The latter 
consists of pedagogues in schools and colleges, and 
departments of education, specialised journals, pri-
vate research foundations” (p. 33, italics in original). 
In Table 1, I add this division of the recontextualising 
field but also suggest that the ORF is the bridge from 
the DF to the RF and the PRF is the bridge from the 
RF to the EF.

Furthermore, within the recontextualising field, 
Bernstein (2000) distinguishes between two different 
discourses: the instructional discourse (ID) and the 
regulative discourse (RD). RD is dominant over ID 
and “refer[s] to the forms that hierarchical relations 
take in the pedagogic relation and to expectations 
about conduct, character and manner” (p. 13). Those 
students become and act as genuine problem solvers 
is seen as the main goal of mathematics education, 
the end in itself.

To summarize and put things in different words: 
Problem solving as an ideology is when politics, fol-
lowing a global policy-speak, talks about and uncrit-
ically assume that problem solvers is something all 
need to become. Within the RF this is transformed 
into competences and goals of the school. In the class-
room (the EF) problem is an activity, used both to de-
velop other mathematical competences but also for 
assessment, that is, to assess if the students “have the 
competence”, if they have become problem-solving cit-
izens. That the RD is dominant over the ID means that 
the actual goal of problem solving as an activity in the 
classroom is to make the students behave as problem 
solvers (problem solving as a competence) because it 
is assumed what the country needs (problem solving 
as an ideology). 

In my previous research, it is the operation of the dis-
tributive and recontextualising rules that are in focus 
around the construction of the problem-solving citi-
zen and this project was an analysis of the curriculum, 
including the national tests. In order to see the whole 

Problem Solving Ideology Competence Activity

Pedagogic device
DF RF EF

ORF PRF

Table 1
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picture, an investigation of what happens in schools 
and in the classroom needs to be added. By moving the 
analysis into the classroom would mean an investiga-
tion situated within the evaluative field which would 
cover the whole pedagogic device because “[t]his is 
what the device is about. Evaluation condenses the 
meaning of the whole device” (Bernstein, 2000, p. 36). 
The issue on the level of evaluative rules (the class-
room) could be transformed to be an issue about how 
the instructional discourse (about problem solving) 
supports or hinders access to the regulative discourse 
(the problem-solving citizen). My suggestion is that 
this is an investigation of problem solving seen as 
an activity but also that it connects back to the other 
views on problem solving. 

INITIAL THOUGHTS FOR A METHOD

To investigate the evaluative field there is not only 
a need to investigate how problem solving is reused 
as an activity. There is also a need to investigate why 
from the teachers’ points of views. And also what the 
effects could be from the students’ points of views. 
This would give indications of the influence that the 
global policy-speak (problem solving as an ideology) 
and the curriculum (problem solving as a competence) 
have on teachers and students and will hence tie the 
whole pedagogic device together. 

The investigation should have as it aims to find dif-
ferences and similarities between vocational pro-
grammes and academic preparatory programmes. 
Further, it should be based on access to the vertical 
and horizontal discourses. That is, how do teachers 
within the different types of programmes interpret 
problem solving as an activity?

It is also important to address another dichotomy 
that I used in the analysis of the curriculum (Dahl, 
2014): if problem solving is seen as a means for other 
competences or areas or if it is seen as an end in itself. 
This categorisation is important because of the issues 
that arise when problem solving is seen as a means for 
learning mathematics highlighted by, for instance, 
Lubienski (2000) and Dowling (2005). Together with 
the why question, this dichotomy is also important in 
order to investigate how the instructional discourse 
supports or hinders access to the regulative discourse. 

Finally, the visibility of the pedagogy is important 
to take into consideration. With an assumed risk of 

more recontextualisation for the lower SES students 
there is also a greater risk of the pedagogy being in-
visible. The risk of the lower SES students “looses” is 
then doubled. 
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Advanced mathematics often plays an important role 
in risk evaluation, for example in relation to climate 
change. How can mathematics related classroom dis-
cussions enhance critical citizenship when societal is-
sues are accompanied by advanced mathematics? In a 
master course in mathematics didactics, a figure from 
IPCC was discussed. The figure shows developments of 
the average global temperature changes. In this paper, 
we analyse the classroom discussion in accordance with 
Skovsmose’s six reflection steps, with focus on societal 
aspects. The students reflect critically on the data used 
to support the figure, on characteristics of the models, 
on the models’ significance in society and on their own 
participation in the classroom discussion. We discuss 
the results in a broader educational and societal context. 

Keywords: Critical mathematics education, climate 

change, reflective knowing.

INTRODUCTION

Mathematics often plays an important role in risk 
evaluation as support for policy making, for exam-
ple in relation to climate change. However, risk issues 
are often associated with complexity, uncertainty and 
conflicting stakes, which implies that mathematics 
supporting political decisions is advanced, but also as-
sociated with uncertainty (Funtowicz & Ravetz, 1993). 
A consequence of this uncertainty is that mathemat-
ics based arguments can support opposite political 
stances.

This is in line with Skovsmose’s claim that mathe-
matics has a formatting power in society in that it in-
fluences how reality is perceived (Skovsmose, 1992). 
He further argues that the ability to recognize this 
formatting power, and reflect on it, is an essential 
democratic competence in order to balance the ex-
perts’ influence on politics and society. He refers to 
this ability as reflective knowing. The role of offering 

critique to experts and politicians on societal issues 
can be denoted as critical citizenship (Jablonka, 2003). 
Mathematics and science educators offer perspec-
tives on what critique may signify in relation to the 
issue of climate change in education. Barwell and 
Suurtamm (2010) argue that the mathematising of 
climate change makes human activity invisible and 
call for more visibility in the modelling process, for 
example through information on model assumptions 
to help evaluating whether the model fulfils its pur-
pose. They suggest that mathematics education has 
a responsibility in facilitating reflective knowing on 
the role of mathematising climate change and call for 
research within the area. Barwell (2013) further sup-
ports these arguments by showing how a particular 
philosophy of science matches ideas from critical 
mathematics education, as for example the format-
ting power of mathematics, reflective knowing and 
critical citizenship. Hansen (2010) discusses what 
critical democratic competence might be in relation 
to predicted sea levels as an effect of global warming. 
As Barwell and Suurtam, she links this to the model-
ling process and underlying assumptions, and her 
emphasis is on mathematical modelling as a classroom 
activity to prepare students for future critical engage-
ment in such issues.

All these three papers are theoretical papers and in-
clude the idea of mathematics education as a prepa-
ration for critical citizenship. Although they suggest 
various student activities for enhancing reflective 
knowing, they do not suggest how this reflective 
knowing may be expressed when facing claims de-
veloped through advanced mathematics of climate 
science. Looking to science education, Erstad and 
Klevenberg (2011) describe a classroom study where 
the student task was to explore topics in “An incon-
venient truth” with Al Gore. The aim of the task was 
to learn about aspects on science in society. From 
searching the internet, the students discovered that 
certain controversies on climate change were linked 
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to disagreements between scientists. The paper thus 
addresses complexity in climate change through ex-
pert disagreements.

The issue of climate change may be too complex 
for students to develop alternative mathematical 
approaches that can pinpoint socio-political conse-
quences of mathematized information. A crucial area 
of research would therefore be on what kind of crit-
ical reflection non-experts can provide on advanced 
mathematized information that is useful for critical 
citizenship.

In our study, students of a master course on mathe-
matics education discuss a figure (Figure 1) taken from 
a report by the Intergovernmental Panel on Climate 
Change (IPCC, 2013) as an introduction to critical 
mathematics education. The authors of this paper 
are five of the master students and the lecturer. The 
IPCC graph presents different modelled courses of 
average global temperature changes. The mathemat-
ics supporting the graph is far too advanced for the 
students and the lecturer to grasp. Still, can reflecting 
on the graph enhance mathematical understanding 
that is useful for critical citizenship?

The research question of our study is: 1) What kinds of 
reflection related to critical citizenship are expressed 
during the classroom discussion on the IPCC graph? 
In the following, we describe the data and present 
Skovsmose’s (1992) six reflection steps, which we ap-
ply to our data analysis. In the analysis part, we fol-
low the course of the classroom discussion and offer 
examples of expressed reflections. Finally, we discuss 
the significance of our findings to critical citizenship.

DATA AND METHOD

As an introduction to critical mathematics education 
in a master course, the nine students and the lectur-
er (Kjellrun) discussed a graph produced by IPCC on 
predicted temperature changes (see Figure 1). The 
discussion was followed by a lecture on selected litera-
ture from critical mathematics education, where links 
between the initial discussion and the literature were 
collectively drawn. The lecturer chose this figure be-
cause of its potential for generating reflections about 
mathematics and its use: (1) its political relevance and 
dispute, (2) it expresses uncertainty through statis-
tical spread, different pathways of future emissions 
and implicitly through dissenting model results, (3) 

the social construct of “global average surface tem-
perature” and (4) the problem of measuring tempera-
ture in space and time. Her intended role was to keep 
the discussion as student driven as possible, but at 
the same time ensuring that student reflections took 
place. Before the discussion, the lecturer invited the 
students to write an academic paper on an analysis 
of their discussion together with her. The analytical 
tool to be applied was part of the curriculum. Five of 
the students accepted the offer and are co-authors of 
this paper.

The classroom discussion is analysed by using 
Skovsmose’s (1992) six reflection steps, of which five 
are later picked up by Gellert, Jablonka and Keitel 
(2001) and referred to as five reflection levels. The 
steps can be summarised as reflections related to the 
following questions: (i) Are the calculations right? 
(ii) Was the right algorithm used? (iii) Is the mathe-
matical approach reliable? (iv) Could the problem be 
solved without formal mathematics? (v) How does the 
mathematical approach affect the specific context of 
the problem? (vi) Could we have reflected on this in 
another way? The six reflection steps refer to what 
Skovsmose calls steps towards reflective knowing 
and which is essential for critical citizenship. They 
represent steps of students’ reflections while engaged 
in problem solving. 

The first pair of steps refers to reflective thinking 
within pure mathematics, the next within applied 
mathematics and the latter within a broader, societal, 
understanding of mathematics (Skovsmose, 1992). As 
these reflection steps are developed for situations 
where students reflect on their own problem solving, 
in contrast to our case, we have adjusted the reflection 
steps for our purpose. We have chosen (i) and (ii) to 
include our reflections on the mathematics expressed 
in the graph, which are developed by others. Since the 
underlying mathematics is hidden for us, we have con-
centrated on our understanding of the graph contents, 
for example: Have we understood the graph correctly? 
Have we understood underlying algorithms? We con-
sider such reflections as a required basis for reflective 
knowing and critical citizenship and are therefore 
relevant to include in our analysis.

The two classroom discussions on the graph and on 
applying the reflection steps on the graph are audio-
taped. Additional data include notes and the lectur-
er’s PowerPoint presentation. We have applied the 
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authors’ names in the excerpts. The other names are 
anonymised. The audiotaped discussions were tran-
scribed and coded by the students in accordance with 
the six reflection steps. The coding turned out to be 
challenging as the steps were not straight forward to 
apply. This was discussed during meetings.

ANALYSIS

In the following, we present some excerpts from the 
classroom discussion, which we analyse in accordance 
with Skovsmose’s six reflection steps. The beginning 
of the discussion was dominated by the students mak-
ing sense of the figure (Figure 1): the general features, 
the significance of the colours, the lines etc. Repeated 
words are deleted in the excerpts. The first excerpt 
takes place early in the discussion.

Tor Inge: Where does the limit go for where the 
measurements fall within?

Maria: It depends on which scenario is tak-
en into account. If they have calculat-
ed with an RCP value of 8.5, and that 
resulted in. Those who achieved the 
lowest values at the lowest one, right? 
And then they calculated with the same 
model with a value of 2.6. And that could 
have resulted in one of the lowest val-

ues there. While some with a high value 
could have ended down there. What  you 
can see here is that there’s a lot of vari-
ation here. That here it seems that they 
disagree much more.

Tor Inge: More uncertain?
Maria:  Yes, while at the blue, they quite agree all 

the way, in a way. They are more certain.

Tor Inge seems to misunderstand what the colours 
represent, as “limit” may refer to dividing mathe-
matical model output into colour categories. Maria 
responds by explaining that the colouring depends 
on the input of the model, “which scenario is taken 
into account”, determined by specific RCP values (see 
Figure 1 for an explanation). Further on, she offers a 
reason on why the shaded areas vary in magnitude: 

“they disagree much more.” When Tor Inge asks “More 
uncertain?”, he is probably asking whether Maria re-
fers to the spread in the graph, or uncertainty. 

When Tor Inge asks his first question, he is probably 
seeking to understand the graph, which can be cate-
gorized as Skovsmose’s reflection step (i). Indirectly, 
Maria expresses that the figure is based on several 
models that do not produce the same results. The stu-
dents do not discuss further what this disagreement 
implies, for example how and why the models are dif-

Figure 1: Temperature change. The graph shows modelled developments of the global annual 

mean temperature change (IPCC, 2013, p. 89). The change is calculated relative to the period 

1986–2005. Four future scenarios are presented with mean (the coloured trajectories) and 

90% confidence interval (the coloured shadings). The colours represent different possible 

emission levels of greenhouse gases (RCP – representative concentration pathways), which 

will depend on today’s and future global climate politics. 



Critical reflections on temperature change (Kjellrun Hiis Hauge and colleagues)

1580

ferent, the reliability of the various models or whether 
such disagreements can explain why there are climate 
change deniers. This means that the excerpt has on-
sets to Skovsmose’s reflection step on reliability (step 
iii) and on implications for society (step v).

The next excerpt is taken from a part where the stu-
dents discuss natural temperature fluctuations, ex-
emplified by ice ages. Tor Inge has expressed that he 
would have liked to know more about the temperature 
back in time.

Tor Inge: Yeah, I would have gone further back in 
time, and seen. We talk about they only 
are natural fluctuations, which also 
have taken place before, right? And how 
high were the peak temperatures longer 
ago, before the measurements?

It is likely that Tor Inge imagines that knowing “the 
peak temperatures longer ago” would have strength-
ened his confidence in that the temperature develop-
ment after year 2000 is extraordinary. Since Tor Inge 
is addressing the reliability of a conclusion drawn 
from the graph, we categorize his utterance to be a 
critical reflection in line with Skovsmose’s step (iii). 
However, the reflection can also be denoted as step 
(v), since the utterance may suggest that a different 
mathematical approach could have affected his per-
ception of climate change.

In the following, Kjellrun draws the students’ atten-
tion to a specific feature in the graph.

Kjellrun: […] But if we look at year 2100, what is 
happening there? [pause 16 sec.]

Anne: [inaudible] is a shift?
Kjellrun: Yes, why is that?
Anne: At least the red one.
Kjellrun: Yes, at least the red one, that’s very dis-

tinct.
Anne: There are fewer models, you know.
[…]
Tor Inge: I’m thinking that the most critical until 

2010 do not continue further in the mod-
els, [Kjellrun: Yeah, well that’s true.], so 
that the curve isn’t as steep when it con-
tinues.

The combination of Anne pointing to that “There are 
fewer models” and Tor Inge stating that  “the most crit-

ical” models “do not continue” after the drop, suggests 
that Tor Inge reflects on how the prediction results 
depend on which models are used. We assume that 
Tor Inge means 2100 and not 2010, and we interpret 

“critical” models in this case to be the models predict-
ing greater and more dramatic temperature changes. 
Anne’s statement that “There are fewer models” can 
be denoted as reflection step (i), as she seems to be in 
the process of making sense of the shifts in the graph. 
Tor Inge’s remarks can be categorised as questioning 
whether the right algorithm was used in selecting 
models (step ii), whether the approach is reliable (step 
iii) and whether the selection of models affects the 
perception of the severity of the problem (step v). 

Later, Kjellrun asks about the relevance of graphs like 
the one we had discussed:

Kjellrun: Has it had an impact? Have the climate 
panels’ - I guess we can call it warnings?

Terje: Maybe routines and control measures 
have become stricter?

Anne: I’m thinking about the discussion he had 
with Vesterålen and Lofoten. The loss of 
oil. This model may influence whether 
in fact there will be oil production there, 
because you can see what oil production 
causes. 

Terje and Anne (and other students) suggest various 
impacts of the graph, or maybe IPCC graphs in gen-
eral, and thereby argue that such graphs do have an 
impact on society and has certain potentials. Anne is 
probably referring to the Minister at the time (“he”) 
of the Ministry of Petroleum and Energy in Norway, 
who was in favour of oil exploration in the Vesterålen 
and Lofoten area. In the continuation of this excerpt, 
the students also reflect on how IPCC has had limited 
influence, for example in regard to the Kyoto Protocol. 
Since these reflections link the graph to societal as-
pects we characterise them as Skovsmose’s reflection 
step (v), although the students declare that mathemat-
ics makes a difference rather than discuss how the 
mathematics influence ways of understanding. 

Towards the end a student started reflecting on the 
discussion:

Andreas: Well, I thought that we were trying to 
find shortcomings or flaws in all state-
ments, on the graphs you have shown 
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us. That we have been very, well, very. 
Don’t know if we’ve been negative, or …

Theodor: Are receptive to flaws in the models. 
[Andreas: Yeah. Yeah.]

Tor Inge: We had that starting point all the time. 
I’m thinking about that the headline for 
the lecture is “in a critical”. [Andreas: 
Yeah.] I imagine this [Theodor: Yeah.] 
goes into that direction.

Andreas: There have been few positive arguments 
for the things that have, the statements, 
on the graph. There have been few ar-
guments on that they are right or that 
it is correct, and, on, of the researchers, 
of the. Yeah. …

Kjellrun: So, we have, in a way, been looking for 
shortcomings or flaws? Or how it was 
expressed? But are there shortcomings 
about what the climate panel does? So, is 
our critique completely unreasonable?

Anne: No, but you know, it’s. When saying that 
there’s a 95% probability, for example. 
That there’s a great divergence here. 
That maybe that’s why you become so 
critical? 

Marius:  The critique has shed light. That, the 
critique, by closer inspection, then this 
critique will strengthen, you know, the 
findings, or what I should call it. Not the 
findings, the prognoses. That if we in-
vestigate further, we’ll read more what 
was done. Then we maybe: how often do 
they measure the temperature, right? 
You know, we find: “Yeah! They do the 
measurements quite often, which means 
that they have quite accurate prognoses”. 
Then this would strengthen this graph. 
That, when we take a critical stance, it 
can also strengthen our impression. It’s 
hard to explain. That they, what we read 
here is. We believe it, maybe, [Kjellrun: 
Uhum.] that when being critical, you 
can. Difficult to explain.

Several of the students express unease about having 
been critical during the discussion. For example, 
Andreas says “we tried to find shortcomings or flaws” 
and expresses a concern for having “been negative”. 
When Tor Inge suggests that the topic of the lecture 
may have influenced the critical stance, he too indi-
cates that they might have been too critical. When 

Anne points to the “great divergence” she may be 
suggesting that the lack of certainty to be an explan-
atory factor, although her reference to “95%” is un-
clear. She is probably referring to the 90% confidence 
intervals in the figure, or she might be referring to an 
IPCC statement that was presented early in the discus-
sion about human influence causing global warming. 
While Andreas, Theodor, Tor Inge and Anne seem to 
associate “critical” with negative criticism, Marius 
suggests that “critique will strengthen […] the prog-
noses”. He indicates that critique can also increase 
confidence in a graph. Since the students are suggest-
ing that they could have reflected in different ways, 
the whole excerpt can be categorised as Skovsmose’s 
reflection step (vi). 

DISCUSSION

The analysis shows that the students reflect in accord-
ance with most of Skovsmose’s six reflection steps, 
taking our modifications of the steps into account. 
The students help each other interpret the graph, they 
question whether the graph supports IPCC’s claim on 
the present situation being extraordinary and they 
respond to the information about the graph being con-
structed by a number of models and which produce 
diverging results. They thereby reflect on the rele-
vance and sufficiency of the mathematical approach, 
and they further reflect on how the approach affects 
perceptions of climate change. Some students show 
resistance to their own critical reflections, expressing 
them to be negative, while one of the students defends 
them as critique of the graph rather than criticism. 
The analysis suggests that reflecting together on the 
graph, helping students to understand its mathemat-
ical contents, was vital for the later reflections linked 
to the reliability and the implications of the graph. 
This supports Skovsmose’s (1992) reasoning that re-
flective thinking about the mathematics itself and its 
application is necessary for reflective knowing.

Skovsmose (1992) further promotes reflective know-
ing as essential for critical citizenship. Although the 
students demonstrate reflective knowing, key ques-
tions remain. Do our findings show that these reflec-
tions are significant for critical citizenship? We argue 
that in several ways they do. We experienced that the 
graph was challenging to interpret, requiring insights 
in statistical concepts and mathematical modelling. 
Yet, the discussion demonstrates that although we did 
not have the expertise to understand the mathematics 
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behind the graph, the students are capable of reflect-
ing on how the mathematics relate to its context. A key 
capability for critical citizenship is being able to ques-
tion whether certain data are included, model assump-
tions and whether certain perspectives are taken into 
account (Barwell, 2013; Barwell & Suurtamm, 2010; 
Hansen, 2010; Funtowicz & Ravetz, 1993), of which 
all were demonstrated in the discussion. On the other 
hand, the students had only onsets to expressing a 
connection between uncertainty aspects and the role 
of this uncertainty in society and policy making. The 
students connect uncertainty in the temperature time 
series to society’s perception of climate change, but 
they do not explicitly reflect on the significance of the 
discrepancies between models.

This brings us to another question: What is the role of 
the lecturer/teacher in promoting reflective knowing? 
Should the lecturer have been more active in making 
links between the mathematics and society? She did 
bring the students’ attention to some of the features 
of the graph, as for example the shift. She also asked 
about societal impacts of the graph. Still, she could 
have taken a step further and invited the students to 
specifically reflect on the formatting power of mathe-
matics, as for example the significance of the shift for 
how climate change is perceived, how society can cope 
with the uncertainty they had addressed and the dif-
ference between critique and criticism in this context. 
This might have led to other crucial aspects of critical 
citizenship, as for example uncertainty in science and 
why there are disagreements about “facts” and how 
we should cope with this uncertainty (Funtowicz & 
Ravetz, 1993). We thus conclude that Barwell’s (2013) 
call for addressing the formatting power of mathe-
matics in climate change was partly achieved in the 
classroom discussion, but that it still had a potential 
that was not fulfilled.

With some amendments, Skovsmose’s reflection steps 
showed to be useful as an analytical tool for our study. 
Still, they are quite broad and do not guide a lecturer 
or a researcher on what specific attributes of the in-
volved mathematics that can be connected with soci-
etal aspects and how. In our case, the time series, the 
predictions, the spread, the number of models and 
the drop were significant mathematical features for 
the discussion. We therefore recommend the devel-
opment of a framework that captures attributes of 
various mathematical models in society, of which stu-
dents/citizens would benefit from gaining insights 

in. Jablonka’s (2003) paper on mathematical literacy 
shows a potential for such a framework as she char-
acterises a handful of mathematical model categories 
accompanied with their limitations.

Taken together, the classroom discussion demon-
strates that students are capable of reflecting on 
mathematical information although the underlying 
mathematics is too advanced to grasp. There are var-
ious attributes to the involved mathematics which 
non-experts, like us, could critically reflect on. We 
find such reflections useful for critical citizenship 
because it shows that non-experts can contribute by 
posing crucial questions about mathematics in a given 
context. As a final remark, we would like to add that 
discussions on IPCC graphs can also facilitate learn-
ing about climate change and that there are several 
other ways to discuss climate change in classrooms 
which complement our approach. We welcome re-
search on related issues in classrooms, spanning both 
primary and secondary school levels.
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Problem solving can involve using mathematics to solve 
everyday problems. In this study, we examine an inter-
action between a teacher and a class of six-year olds in 
Sweden around an open-ended problem, from an every-
day context. Using Bernstein’s ideas about vertical and 
horizontal discourse, a mixture of everyday and math-
ematics understandings is identified in the interaction. 
This mixture seems to result in confusion for both the 
teacher and the children over what should be the focus. 
This paper raises issues about how the connection to 
the everyday in problem solving could reduce children’s 
opportunities to learn mathematics.

Keywords: Real-life problems, Bernstein, vertical discourse, 

horizontal discourse, young children.

INTRODUCTION

Problem solving is often considered to provide a 
purpose for students to learn mathematics (Dahl, 
2014). For example, van Oers (2001) discussed how 
Freudenthal (1973) promoted the use of real-life con-
texts in his realistic mathematics education – “the 
realism of mathematics then is seen in the applica-
bility of self-invented mathematics in a meaningful 
problem, and for many people this seems to mean a re-
al-life problem” (p. 64). Nevertheless, van Oers (2001) 
queried whether it was possible for higher levels of 
mathematics to arise from real-life problems: 

Despite the enormous innovation this view could 
produce in the content and activities of the math-
ematics classrooms, it entails a serious danger by 
focusing too exclusively on the real life quality of 
the contexts from which the mathematical think-
ing originates. (p. 64)

In high school classrooms, research has shown that 
the use of contexts can result in some students being 
excluded from mathematical learning opportunities 
(Meaney & Lange, 2013). This could be because they 
have difficulties recognising the mathematics in a 
problem solving task when it is posed in an every-
day setting (Zevenbergen & Lerman, 2001). Students 
also can be uncertain about whether they are expect-
ed to ignore their everyday experiences (Gellert & 
Jablonka, 2009). Similarly, Boaler (1994) raised two 
related issues. The first is that students do not know 
how much or how little of the everyday they should 
use. The second is that students may not realise that 
the rules of the mathematics classroom require them 
to suspend their knowledge of reality to make sense 
of the mathematics classroom reality. Her research 
found that girls gained poorer marks on problems of 
which they had had real world experiences.

Although it has been suggested that using contexts 
could support working class students’ learning of 
mathematics (Lubienski, 2000), previous research has 
shown that these groups of students are more likely to 
draw on their everyday experiences than those with 
middle class backgrounds (Cooper & Dunne, 1998; 
Gellert & Straehler-Pohl, 2011). For example, Cooper 
and Dunne (1998) found that “working class children 
are almost twice as likely as service class children to 
refer only to their everyday knowledge in answering 
our enquiry” (p. 128). 

As is the case with the research already described, 
most research on the confusion caused from draw-
ing on everyday knowledge to solve mathematics 
problems has been done with high school students. 
Little research has investigated how young children 
make sense of mathematical problems set in everyday 
contexts. Therefore, our research question is: how do 
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young children solve mathematical problems situated 
in their everyday knowledge? 

The research is situated in a Swedish preschool class 
with mostly six-year-olds. This class is considered 
a bridge between preschool and school and as such 
is the first place children have contact with formal, 
school knowledge and ways of working. 

THEORETICAL FRAMEWORK

In order to respond to the research question, we follow 
Gellert and Straehler-Pohl’s (2011) and Dahl’s (2014) 
lead in using the concepts of vertical and horizontal 
discourse developed by Basil Bernstein. Over several 
decades, Bernstein developed a systematic sociolo-
gy of education which included the development of 
many different ideas. One of these was the distinction 
between what he labelled the horizontal and vertical 
discourses:

A vertical discourse takes the form of a coherent, 
explicit, and systematically principled structure 

…

A horizontal discourse entails a set of strategies 
which are local, segmentally organised, context 
specific and dependent, for maximising encoun-
ters with persons and habitats. (Bernstein, 1999, 
p. 159)

Horizontal discourse is vital for solving specific issues 
relevant to the solver. Consequently, it is often related 
to everyday understanding, gained through practical 
experiences. However, the knowledge gained through 
the horizontal discourse is not easily transferable to 
other situations because of how it is organised and 
its strong connection to a specific context (Bennett & 
Maton, 2010). Vertical discourse is considered gener-
alisable to a range of situations. In reviewing research 
on these concepts, Knipping, Straehler-Pohl and Reid 
(2012) suggested that vertical discourse is often equat-
ed with the knowledge learnt in schools.

Bernstein (1996) stated “to make specialised knowl-
edge more accessible to the young, segments of the 
horizontal discourse are recontextualised and inserted 
in the contents of school subjects” (p. 169). Therefore, 
the distinction between vertical and horizontal dis-
course seems useful because although school math-
ematics problems are often situated within everyday 

contexts, they require generalisable knowledge to be 
solved. In order to make use of these concepts, they 
need to be operationalised. Before describing the 
operationalisation, we provide background to the 
collected data.

DATA COLLECTION AND ANALYSIS

In the first half of 2013, video recordings were made 
in one preschool class on four different occasions. 
Our wider research aim is to investigate what math-
ematics is or could be in preschools and our video re-
cordings in this preschool class were to be compared 
with the preschool data. In order to get comparable 
material, we specifically asked to video problem solv-
ing sessions. In the problem solving situations, the 
children worked in pairs, groups or by themselves, 
with a sharing session at the end. We had permission 
from parents for 12 children to be filmed and the films 
to shared, but not all children were present at each 
session. The class had 2 teachers who shared being 
filmed and working with the children whose parents 
did not give permission for them to be filmed.

The lesson examined in this paper was typical in the 
format of all lessons, by beginning with a warm up 
activity, in this case around pairs of numbers that 
added to ten. Then a problem was posed to the chil-
dren, who were given time to solve it, this time, in-
dividually. The problem in this lesson was about ten 
children in a small preschool class who needed to be 
distributed to three different activities, woodwork, 
baking and painting. The teacher stated that there 
are no wrong or right answers and that it might be 
possible to distribute them evenly or it could be that 
one group had more children or another group had 
no children at all. The children were given paper on 
which to record their groups but were told that they 
could record them in any way that they liked. While 
the children worked, the teacher moved around the 
class, talking with each child. At the end of the session, 
the teacher had the children fold their papers and sit 
down in a horseshoe. She told the children that they 
must explain why they have distributed the class in 
the way that they did. With more or less help from 
the teacher, each child constructed a story about their 
distributions.

We discuss three children’s interactions with the prob-
lem, using photos and transcript extracts. In order 
to identify whether the teacher and/or the children 
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used vertical or horizontal discourses, we looked for 
particular characteristics as identified in Table 1.

THREE CHILDREN’S PROBLEM SOLVING

We have chosen to discuss the problem solving of 
Nicolas, Lova and Filippa as they illustrate a range 
of responses as well as showing different problem 
solving methods.

Nicolas
In the warm-up activity about ten-friends, Nicolas was 

given a card with 9 on it. Teo had 1 and soon located 
Nicolas. Teo ensured that they are acknowledged by 
the teacher as having the correct answer. During the 
individual work, Nicolas sat next to Teo and followed 
him in spending time copying the symbols (rolling 
pin, hammer, paint brush) for the three groups. He 
then wrote 5, backwards, against each of the symbols 

(see Figure 1). When the teacher called the children 
together, Nicolas was the fourth child to show his solu-
tion. The following exchange accompanied, Nicolas 
turning over his paper. When the teacher asked in the 
first turn, how many he had he shrugged his shoulders 
(see Figure 1) to indicate that he was uncertain.

Teacher: Nicolas, can you show? You’ve got five, 
is it fives? Five and five and five in each 
group. How many children is that? I see 
five here and five and five.  How many 
children is that? (Nicolas kan du visa? 
Du har gjort fem, är det femmor? Fem 
och fem och fem i varje grupp. Hur mån-
ga barn blir det? Jag får se här fem och 
fem och fem. Hur många barn blir det?)

A child: Twenty? (Tjugo?)
Children: Fifteen. (Femton.)
Teacher: Fifteen children, how many children 

were there? (Femton barn, hur många 
barn var det?)

Nicolas: Ten. (Tio.)
Teacher: Ten, how many children too much? Did 

you mix in a few more children from 
another preschool class? You thought 
fifteen children were better so you could 
share or? (Tio, hur många barn för my-
cket? Blandade du in lite barn från en 
annan förskoleklass? Du tyckte fem-
ton barn var bättre så man kunde dela 
eller?)

Discourse Characteristics Examples

Horizontal Context specific Filippa’s reason for only splitting the ten children into two groups was that 
only two teachers would be needed. In her class there were two teachers, 
suggesting she drew on her own experiences.

Segmentally 
organised 
knowledge

In the presentation session, the teacher queried the children about their 
distributions. The children did not know that they needed to have a story 
for their distributions until they did their presentations. The solving of the 
problem and the telling of their stories were separated both in time and in 
space and so can be considered as taking place in different sites and thus 
were segmentally organised. 

Maximising 
encounters between 
persons and habitats

When Nicolas presented a paper, on which there was written, 5, 5, 5, the 
teacher worked hard with the other children to provide a story that allowed 
for this, so Nicolas could be considered successful. The emotional demands 
of not having a child fail became the issue to be resolved.

Vertical Coherent, explicit 
and systematically 
principled structure

Lova uses a series of different strategies (using her fingers, making marks 
on the paper) to determine different combinations of 3 numbers which 
added up to 10. Although she does not systematically list all of the possible 
answers, her actions suggest that she is aware of the underlying principles 
which allows her to determine appropriate solutions.

Table 1: Characteristics of vertical and horizontal discourses

Figure 1: Drawing distribution and showing uncertainty in the 

presentation
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One child: It may be that five new children have 
started in that preschool class. (Det kan 
ju va så att fem nya barn har börjat på 
den förskoleklassen.)

Teacher: That I did not know of. So it became 
five in each group. I’ll take it. Thank 
you very much. (Som jag inte visste om. 
Så blev det fem i var grupp. Jag tar den. 
Tack så mycket.)

The discussion initially focused on the numbers, both 
on how many Nicolas used and how many more this 
was than in the task. At this point, the conversation 
seemed to be within the vertical discourse, as the 
teacher is sequencing the knowledge in a cohesive, 
structured manner. However, Nicolas’ body language 
(see Figure 1) indicated that he had become aware 
that his response was incorrect, perhaps because 
the teacher asked him number questions that she 
had not asked earlier presenters. The teacher then 
shifted direction and provided a possible story so that 
Nicolas’ numbers could be considered appropriate, 
perhaps because she had earlier indicated that there 
were no right or wrong answers. By producing a story 
about Nicolas’ numbers, the teacher moved back to the 
context-specific-ness of the horizontal discourse and 
restored the personal relationships. The difference 
between 10 and 15 disappeared from the focus and 
was replaced by a discussion about how 15 was a better 
number to share and how this number of children 
could come about. Nicolas made only one contribution 
to the discussion. It is therefore unclear whether he 
had understood either the vertical discourse about 
the difference between 10 and 15 or the horizontal 
discourse about the ease of splitting the class into 3 
groups. The teacher’s shifting between the two dis-
courses seems to provide him with no opportunities 
to develop his problem solving skills either in a con-
text-specific or more generalised format.

Filippa
In the introductory warm-up activity, Filippa had a 
card with 5 on it. It was not until all the other pairs 
were formed that Filippa realised that Hugo did not 
have a partner and therefore their numbers (5 and 
5) must equal 10. 

In giving the instructions about working individually, 
the teacher specifically mentioned Filippa. Filippa 
seemed to have taken the request to heart in that she 
covered her work with her arms so that Lova could not 

see what she did. After Lova was moved by the teacher, 
Filippa looked at Teo using his fingers to work out 
a solution. It was not possible to hear, the teacher’s 
comments to Filippa as she moved around the room 
but the consequence of it was that Filippa erased the 
beginning of a symbol for the first group on her paper. 
Filippa’s presentation was the third presentation. Her 
paper showed two 5s.

Teacher: Filippa, can you show what you have 
done? Okay, you’ve written five and five. 
Five in two groups, it is. Which group 
was it that there was no one in? Baking, 
woodwork or painting? (Filippa, kan du 
visa vad du har gjort? Okej du har skriv-
it fem och fem. Fem i två grupper blev 
det. Vilken grupp var det som det inte 
blev någon i. Baka, snickra eller måla?)

Filippa: Woodwork. (Snickra.)
Teacher: Woodwork there was no group of, no 

children at all, but why not? Do you 
remember, how you thought? (Snickra 
blev det ingen grupp i, inga barn alls i, 
men varför inte det? Kommer du på det, 
hur du tänkte?)

Filippa: Because they will do it another time. (För 
dom skulle göra det en annan gång.)

Teacher: They would do woodwork another time 
instead so then it became an equal num-
ber of children in each group. (De skulle 
snickra en annan gång istället så då blev 
det lika många barn i varje grupp.)

Filippa: Otherwise they thought that it became 
a little too bustling with everything. 
(Annars tycke de att det blev lite för 
stimmigt med allting.)

Teacher: Yes it could be, they would have had to be 
many teachers. Thank you so much. (Ja 
det kan ju bli. De hade ju fått va många 
fröknar. Tack så mycket.)

Figure 2: Filippa’s problem solving
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Filippa: Although they had only two teachers. 
(Fast de hade bara två fröknar.)

Teacher: Two teachers and then there was one 
teacher in each group. Brilliantly solved. 
(Två fröknar och då blev det en fröken i 
var grupp. Strålande löst.)

As with Nicolas, the teacher presented the drawing 
and immediately asked which group did not have any 
children in it. From this question, both the teacher and 
Filippa built up the story about why there were only 
two groups. Filippa was complemented by the teacher 
as having a brilliant solution. In developing the story, 
it seemed that Filippa drew on her own experiences 
of only having two teachers in the class and finding 
moving between too many activities busy and noisy. 
At no time, did the teacher bring up mathematical un-
derstandings. Whereas Nicolas’ unexpected answer 
resulted in the teacher moving into the vertical dis-
course, the interaction with Filippa remained firmly 
situated in the horizontal discourse. Unlike the girls 
in Boaler’s (1994) study, Filippa did not seem confused 
by the familiarity of the context, rather the teacher 
emphasised that she wanted the context-specific in-
formation.

Lova
In the warm-up activity, Lova was the first to stand up 
and try to find the pair number for her 2. However, it 
was her partner, Svante, who told the teacher about 
their pair. As the teacher described the problem of 
sharing ten children in the three groups, Lova could 
be seen using her fingers to work out possible solu-
tions (see Figure 3). Before she collected her paper, 
she shared her solution with Svante who also used 
his fingers to find a solution.

In working on the problem, Lova moved from using 
her fingers to putting tally marks next to the symbols 
for each of the groups (see Figure 3). She seemed to 

recognise that there was more than one solution. After 
she has added one round of tally marks, she counted 
them before adding the next round. Lova’s actions sug-
gested that her interest was in the vertical discourse 
surrounding the principles connected to adding three 
numbers together to make 10. When sitting in the 
horseshoe, Lova was one of the few children who the 
teacher asked to present her response (see Figure 3), 
although in this case, the teacher indicated that Lova 
had a proposal, not a solution.

Teacher: Lova, what proposal do you have? Oh, 
okay what is there? Can you tell me? 
(Lova vad har du för förslag. Oj okej vad 
står där? Kan du berätta för mig?)

Lova: Three, five and one. Three, five and two. 
(Tre, fem och ett. Tre fem och två.)

Teacher: Let me see, three five and two, okay. It is, 
let’s see here. (Jag får se, tre fem och två 
okej. Det är, ska vi se här.)

Lova: Three in one group, five in another. (Tre 
i en grupp fem i en.)

Teacher: But where are the three, is it in the bak-
ing group? (Men var är de tre, är det i 
bak gruppen.)

Lova: Yes. (Ja.)
Teacher: And then it’s five in the woodworking 

group and two in the painting group. 
(Och så är det fem i snickargruppen 
och två i målargruppen.)

Lova: Because the woodworking group, it’s 
many more who like to do woodwork, 
less who like to paint and in between 
who like baking. (För att snickargrup-
pen, det är mycket mer som tycker om 
att snickra, mindre som tycker om att 
måla och mittemellan som tycker om att 
baka.)

Figure 3: Lova’s problem solving
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Teacher: So they could choose for themselves in 
that class, okay. (Så dom fick välja själva 
i den klassen, okej.)

In presenting her solution, Lova seemed to focus on 
the numbers, suggesting that she wanted to stay with-
in the vertical discourse. However, the teacher shifted 
her to the horizontal discourse by asking about which 
group had three children in it. Lova happily partic-
ipated by providing details about why she had split 
the ten children. 

DISCUSSION AND CONCLUSION

Previously, van Oers (2001) highlighted how too much 
attention on children’s everyday experiences could 
be detrimental to their learning formal mathematics 
knowledge. In this study, we have examined examples 
from one lesson in a Swedish preschool class which 
suggests that the issue is more complex. 

To acknowledge the preschool class as a bridge be-
tween the informal learning in preschools and the 
formal learning in schools, teaching activities could 
invite children to participate in both vertical and hori-
zontal discourses. Certainly, the problem solving in 
this lesson provided a context with plenty of opportu-
nities to work within both the horizontal and vertical 
discourses. However, the interactions within the three 
cases suggest that the two discourses, metaphorically 
speaking, are conflated. 

In the case of Nicolas, the teacher made an initial at-
tempt to work in the vertical discourse by discussing 
the relationship between 5, 10 and 15. In a few, very 
complex and fast moves a horizontal discourse was 
created in which the question “what numbers are good 
for creating three groups” became legitimate. Like the 
initial vertical discourse discussion, the new hori-
zontal discourse “story” from Nicolas’ perspective 
seemed to make little sense. In this exchange, Nicolas’ 
opportunities to extend his understanding of either 
the horizontal or the vertical discourse seemed to 
disappear.

Filippa herself made use of the horizontal discourse 
to make a connection between the story and the 
mathematical context. The teacher had opportuni-
ties to introduce potential mathematical obstacles to 
Filippa’s story by suggesting that there could be as 
many teachers as groups. This would have indicated 

that in mathematics, it is possible to make such as-
sumptions. However, the discussion stopped and was 
kept within the horizontal component where Filippa 
seemed most comfortable. Possibilities for learning 
about the vertical discourse of formal mathematics 
never eventuated.

Finally, Lova presented her answer in such a way that 
it invited a discussion about numbers within the ver-
tical discourse. The teacher subtly hinted at this by 
remarking that 2, 5 and 3 “is okay”, but then shifted the 
discussion to the horizontal discourse. Thereby Lova, 
who of the three children, showed the most interest 
in the principles behind the different combinations 
of numbers that added to ten, lost an opportunity to 
extend her understanding.

The three cases reveal a group of children, which 
although not homogeneous, had in common the ex-
perience of not being provided with possibilities to 
connect their experiences to formal mathematics 
knowledge. The children were not confused over 
the knowledge needed to solve the problem. They all 
understood that numbers were expected. Instead con-
fusion may have occurred when the teacher brought 
the solutions into the horizontal discourse of every-
day knowledge, but without extending the children’s 
social concerns, such as having sufficient teachers. 
If similar lessons continue to highlight the everyday 
knowledge, even when children such as Lova show 
interest in the mathematics, then there is a risk of 
mathematical exclusion. 
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In this research paper, the assessment practices of math-
ematics teachers at an urban high school in the USA who 
primarily taught racial and ethnic minority students 
and low-income students are described. We found that 
the teachers’ assessment practices were largely influ-
enced by the pressures to prepare students for success 
on the state’s standardized test. For instance, teachers 
regularly used the language found on “the test” to classify 
students by their performance (i.e., Unsatisfactory), was 
regularly used by the teachers to label students, and was 
used in both assessment design and assigning student 
grades. Moreover, student performance on the test influ-
enced how teachers viewed students, and consequently, 
how they viewed them in the assessment process. This is 
problematic given the long history in the USA of low-in-
come, diverse students being denied access to challeng-
ing mathematics instruction.

Keywords: Assessment, diversity, urban education.

INTRODUCTION

The purpose of this research study is to examine how 
the assessment practices of mathematics teachers at a 
highly diverse urban high school in the United States 
of America (USA) were influenced by their students’ 
performances on the state test (“the test”). At a time 
when large-scale assessments such as No Child Left 
Behind mandated tests (NCLB, 2001) [1] have been dom-
inant in the USA, more research is needed to under-
stand the impact of these tests on teachers’ practices. 
It is important to understand how the test influences 
teachers’ assessment practices because assessment is 
at the heart of what Ball and Forzani (2007) refer to as 
the “instructional dynamic.” 

The five teachers who participated in this study taught 
at Chavez High School [2] during the 2013–14 school 
year, a school situated in an urban school district in 
the state of Colorado. Chavez High served slightly 
more than 2,000 students in grades 9–12 and had a 

highly diverse [3] student population. In 2013–14, the 
Free Reduced Lunch rate at the school was 75%; 64% 
of the Chavez High student body was Hispanic, 15% 
was African American, 13% was White, 4% was Asian 
American, and 1% was Native American or Native 
Hawaiian [4]. At the time this study was conducted, the 
standards-based Transitional Colorado Assessment 
Program (TCAP) assessment in mathematics was be-
ing administered to all grade 3–10 students in the state 
in the spring. The research question that we address 
in this paper is: How did the Colorado state mandated 
test in mathematics influence the assessment practic-
es of mathematics teachers at Chavez High? Before we 
offer our research findings and address our research 
question, we provide reviews of the relevant research 
literature in classroom assessment and research per-
taining to the mathematics education of low-income 
and diverse students. The research methodology used 
in this study is also described and we conclude with 
a brief discussion related to our research findings.

CLASSROOM ASSESSMENT

Classroom assessments are used to inform teachers, 
students and parents about student knowledge and 
understanding of mathematical concepts, process-
es and skills (Wiggins, 1993). Two ways of viewing 
assessment are assessment as an evaluative process 
focused on “an accounting of what is” (Webb, 1992, 
p. 663) and grade assignment (Kulm, 2013), and assess-
ment as “the process of gathering evidence about a 
student’s knowledge of, ability to use, and disposition 
toward mathematics…” (National Council of Teachers 
of Mathematics, 1989, p. 3). The former, summative 
assessment focuses on what students know at a giv-
en time (Guskey & Bailey, 2001). The latter, formative 
assessment, differs from summative assessment in 
that the focus is not just on summarizing students’ 
learning, but on using information derived from 
assessments to inform instruction (Black & Wiliam, 
2009). After more than a decade in which large-scale 
summative assessments such as No Child Left Behind 
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mandated tests (NCLB, 2001) have dominated the ed-
ucational landscape in the U.S., we agree with Kulm 
(2013) that it is time to “reclaim the true meaning and 
purpose of enlightened mathematics assessment” (p. 
4). Such assessment places a premium on using as-
sessment to support teachers and the development of 
their instruction for the betterment of their students. 
For instance, Shepard (2000) called for assessments in 
which students actively make meaning of mathemati-
cal concepts by building on their previous knowledge 
and experiences and making connections to previous 
knowledge and new understandings.

With the introduction of the No Child Left Behind 
(NCLB) legislation and the testing that accompanies 
it (NCLB, 2001), educators and researchers have ex-
pressed a number of concerns about the impact that 
the introduction of high stakes, large-scale testing in 
the United States have had on teaching and learning 
(Nichols, Glass, & Berliner, 2006). For instance, stu-
dents are reduced to test performers and “teachers 
find themselves using students to protect or help 
themselves… The marketplace mentality expands its 
reach” (Gergen & Dixon-Román, 2014, p. 8). “Teaching 
to the test” not only limits the content that is taught 
to what is tested, but also promotes superficial stu-
dent learning that tends to be more skill focused and 
furthers student alienation toward school and learn-
ing (Nichols, Glass, & Berliner, 2006). Furthermore, 
instruction may be more targeted to those students 
who are close to meeting proficiency on the test and 
less instructional attention is paid to those who are 
far above or below meeting proficiency (Harlen, 2007). 
In a nutshell, high-stakes tests have had many nega-
tive consequences such as categorizing students as 
numbers to be compared to their peers, while limiting 
instruction to the detriment of students and their ed-
ucational opportunities (Linn, 2000; Messick, 1995a; 
1995b). Rather than holding schools and teachers ac-
countable simply for student achievement on high-
stakes tests, a range of student assessment informa-
tion should be collected that will also inform teachers 
about how to improve their instruction (Harlen, 2007).

MATHEMATICS FOR LOW-INCOME 
AND DIVERSE STUDENTS
Globally, mathematics has served the historic role of 
sorting and stratifying students by race, ethnicity, and 
gender (Gerdes, 1988; Jurdak, 2014). In the U.S., white 
and Asian middle class and upper-middle class stu-
dents have been privileged to have greater access to 

challenging mathematics curriculum and instruction 
(DiME, 2007; Tate, 1995). Educational opportunities 
and access to such opportunities are influenced by 
where one lives, what Tate (2008) refers to as the “ge-
ography of opportunity” (p. 397). Massey (2009) con-
tended that advantages and disadvantages procured 
from an individual’s socioeconomic status (SES) are 
both reinforced and compounded by geographic con-
centration. For instance, students from low-income 
communities attend schools in which pupil expendi-
tures compare unfavorably to pupil expenditures in 
schools located in wealthy communities and achieve at 
lower levels than their wealthy counterparts (Payne 
& Biddle, 1999). Hogrebe and Tate (2012) found that 
algebra performance is also influenced by where stu-
dents live; the SES of local communities is significantly 
related to students’ performance in algebra. Brynes 
and Miller (2007) found that SES has direct effects on 
mathematics achievement and indirect effects on both 
the opportunities students have to enroll in advanced 
mathematics classes in high school and on their pro-
pensity to take advantage of learning opportunities 
in mathematics.

In addition to poverty and SES, student access to a 
challenging standards-based mathematics education 
is influenced by race, ethnicity, and English language 
proficiency (DiME, 2007; Gutiérrez, 2008; Martin, 
2013). A role that mathematics has played historical-
ly is to sort and stratify students by race, ethnicity, 
and gender (DiME, 2007; Gerdes, 1988). Specifically, 
white and Asian middle class and upper-middle class 
students have been privileged to have greater access 
to challenging mathematics curriculum and instruc-
tion (DiME, 2007; Tate, 1995). Schools that enroll large 
numbers of African American students often have 
disproportionally high numbers of remedial classes 
in mathematics in which instruction is focused on 
rote-learning and strategies that are intended to help 
students be successful on standardized tests (Davis & 
Martin, 2008; Lattimore, 2005). In response to NCLB 
(2001) and the demands to increase test scores, Davis 
and Martin (2008) argue that the preponderance of 
skills based instruction “[negatively] shape the lives of 
poor African American students in more significant 
ways than middle-class or affluent students” (p. 18). 
An extensive research base demonstrates that low 
academic expectations and lower pupil expenditures 
have historically been the norm for schools that serve 
students from low-income communities and racial 
and ethnic minority students (Ferguson, 1998; Knapp 
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& Woolverton, 1995). Given this research, it is not 
difficult to surmise that millions of low-income stu-
dents of color are being denied access to instruction 
in which students regularly engage in mathematical 
reasoning and discourse to solve complex tasks (Davis 
& Martin, 2008; Kitchen, Burr, & Castellón, 2010; Téllez, 
Moschkovich, & Civil, 2011; Valero & Meaney, 2014).

RESEARCH METHODOLOGY

Beginning in the fall semester of 2013, we visited 
Chavez High 2–4 times a month for the duration of 
the 2013–14 school year. A school visit included two 
classroom observations of one of the five participat-
ing mathematics teachers on consecutive days in fall 
2013 and again in spring 2014. A classroom observa-
tion consisted of videotaping the participating teach-
er teach a mathematics lesson as well as videotaping 
a group or groups of students who had provided 
consent to participate in the study. Every attempt 
was made to videotape in a manner that minimized 
interference in the mathematics lesson (e.g., the vid-
eo camera was placed in a location in the classroom 
such as the back of the room so as not to block stu-
dents’ view of their teacher, the whiteboard, and any 
other instructional resources used by the teacher). 
An interview was conducted with each participating 
teacher immediately following the first or second ob-
servation. Interviews with individual teachers were 
30–45 minutes in length. Two focus group interviews 
were also conducted in spring 2014. Four of the five 
participating teachers participated in the initial fo-
cus group interview and all five of the participating 
teachers attended the second focus group interview. 
An interview was conducted with the Chavez High 
principal in the spring of 2014 as well.

For the purposes of this study, the data analysed were 
all the interviews conducted that included the individ-
ual interviews conducted with participating teachers, 
the two focus group interviews and the interview with 
the Chavez High principal. The interview transcripts 
were analysed using interpretive methods (Erickson, 
1986; Maxwell, 2005). Each interview was read as a 
whole, followed by a period of open coding to allow 
for the emergence of themes, and themes were then 
compared across interviews conducted. After a set of 
themes were obtained from the dataset, we searched 
for commonalities and differences across interviews 
conducted (Miles, Huberman, & Saldaña, 2013). We 
also sought both confirming and disconfirming evi-

dence by searching for supportive and non-support-
ive evidence (Erickson, 1986; Miles, Huberman, & 
Saldaña, 2013). 

The five mathematics teachers at Chavez High who 
participated in this study were Ms. H, Ms. K, Ms. S, 
Mr. T, and Ms. V. All five teachers were chosen by the 
school’s administration as among the best mathemat-
ics teachers at the school and were recommended for 
inclusion in this study. Ms. S is Hispanic and was the 
only teacher of color in the group of participating 
teachers. 

HOW “THE TEST” INFLUENCED 
ASSESSMENT PRACTICES
In this study, we investigated how the Colorado state 
mandated test in mathematics influenced the assess-
ment practices of the mathematics teachers at Chavez 
High. It became clear from the outset of this study 
that the teachers’ assessment practices we report here 
were largely the result of administrative mandates 
to improve student achievement at the school. For 
example, teachers were frustrated that students were 
often allowed to retake assessments on which they 
had not performed well. Ms. H discussed a concern 
shared by her colleagues about how some students ap-
proached assessments; “I’m sick and tired of hearing 
that before I hand out the test, ‘there is a re-test, right?’” 
(Ms. H, Faculty Focus Group Interview, May 19th, 2014). 
Teachers explained that they were under pressure 
from the school’s administration to do everything 
they could to avoid failing students in their classes. 
Teachers knew that if 20% or more of their students 
failed a class, they would be called in for a meeting 
with a Chavez administrator (Faculty Focus Group 
Interview, May 19th, 2014). Thus, students were often 
allowed to take an assessment more than once to im-
prove their grade. Many of the assessment practices 
that the teachers pursued, and discussed below such 
as “deployment” and Exit Tickets had been mandated 
by the Chavez administration.

Our first finding was that because of the intense focus 
at Chavez High on students’ performance on the TCAP 
(“the test”), it was common for teachers and admin-
istrators to refer to students as Advanced Proficient 
or just Advanced, Proficient, Partially Proficient 
(“Bubble Students”) or as Unsatisfactory (or just as 

“Unsats”). This language reflected not only how stu-
dents had performed on the test, but had also become 
language that teachers had adopted to design assess-
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ments and even assign students grades. The “Bubble 
Students” and “Unsats” were specifically earmarked 
for additional mathematics instruction as a means to 
change their status to “Proficient students.” We also 
found the “Bubble Student” or “Unsat” label persisted; 
it was well documented who these students were and 
teachers were well aware of who was a Bubble Student 
and who was an Unsat student. “Bubble students” were 
specifically targeted for supplemental instruction 
since these students were within reach of achieving 
Proficient status on the test. 

Though students were classified as a “Bubble Student” 
or as an “Unsat” based on performance on the previ-
ous year’s test, teachers also used these categories to 
label student performance on summative and form-
ative assessments that they used in their classrooms. 
For instance, mathematics teachers at Chavez High 
School engaged in what was referred to as “deploy-
ment.” Students who were evaluated as Partially 
Proficient or Unsatisfactory on a unit test were “de-
ployed” to receive supplementary instruction on the 
mathematics unit just completed. After the 1–2 day 
deployment, students were administered a post-test. 
When discussing the impact of one such deployment, 
Ms. K reported that “77% of the Unsats moved up to 
Partially Proficient” (Ms. K, April 17, 2014) on one of 
the re-tests administered. 

Teachers also discussed aspects of classroom assess-
ments they designed using the language from the 
test. For instance, parts of unit tests used during 
deployments included “Unsat” items, or questions 
that generally required less of students (e.g., recall of 
mathematical vocabulary). The “Unsat” portion of an 
assessment was meant to provide “access points” for 
students (Ms. S, Focus Group Interview, April 17, 2014). 
By this, Ms. S meant that the content of the “Unsat” 
portion should be more elementary, focusing for ex-
ample, on vocabulary items in geometry. Teachers 
explained that the majority of the test items on sum-
mative assessments and even formative assessments 
such as Exit Tickets were “Unsat” items (e.g., 70–80% 
of the items), while the remainder of the items on the 
assessment were more advanced. Mr. T explained that 
he generally included only “the naked” or skills based 
tasks on his Exit Tickets (Mr. T interview, 2-20-14). 
The content of mathematics assessments was clearly 
influenced by the content teachers perceived would 
be included on the test. Ms. S, for instance, discussed 

modifying the curriculum she used because, in her 
opinion, it did not align well with the TCAP.

Finally, mathematics teachers at Chavez High used 
the test language categories to assign grades to their 
students. For instance, Ms. S used the classification 
language used on the test as part of her grading sys-
tem, she did not assign grades based upon percentag-
es: “I don’t have any numbers in my grade book. It’s a 
Partial, Unsat, or Advanced” (Ms. S interview, 10-24-
13). For Ms. S, grades were assigned based upon how 
each student was performing, in a holistic manner, 
relative to language aligned with the test: “Unsat is 
they have some knowledge of some of the math that we 
did, so that’s about a D. Partial Proficient is C-ish. And 
Proficient is about a B because you’re doing what the 
standards are asking you to do. For students to earn 
an A, they have to take the math they’ve been doing 
and apply it to new problems that hasn’t been taught 
to them.” (Ms. S interview, 10-24-13).

In summary, we learned that the TCAP, Colorado’s 
standards-based test profoundly impacted teachers’ 
assessment practices, including their grading prac-
tices. Because of the strong focus by the Chavez High 
administration on student achievement on the test, 
and their goal of increasing student test scores, much 
of how teachers classified students and designed in-
struction was driven by the need to improve student 
achievement. Perhaps more importantly, student 
performance on the test greatly influenced how 
teachers viewed students, and consequently, how 
they viewed them in the assessment process. The lan-
guage that was used on the test to classify students 
by their performance on it (i.e., Advanced Proficient 
or Unsatisfactory) was used as a means to label stu-
dents and had become the taken-for-granted language 
teachers had adopted in many of their daily practices. 

DISCUSSION

Few studies exist in the U.S. that examine how a state’s 
large-scale test impacts high school mathematics 
teachers’ assessment practices, specifically at a sec-
ondary school that serves primarily low-income and 
diverse students. An important contribution to the 
research literature is our finding that the test influ-
enced the mathematics teachers at Chavez High to 
frequently use assessments in a summative manner 
and that they used their assessment results to cate-
gorize students vis-à-vis student performance cate-
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gories used on the TCAP. Moreover, the mathematics 
teachers were largely concerned with their students, 
mostly low-income, students of color, deriving cor-
rect answers to skills based assessment tasks, rather 
than engaging them in solving rich mathematical 
tasks. This is problematic given the long history in 
the U.S. of low-income, diverse students being de-
nied access to challenging mathematics instruction 
(Davis & Martin, 2008; Kitchen, DePree, Celedón-
Pattichis, & Brinkerhoff, 2007). The intense focus on 
preparing students for the test, specifically students 
who have historically been denied access to a strong 
mathematics education program in the U.S., is contin-
uing the destructive legacy of prioritizing low-level 
mathematics instruction for students from margin-
alized and oppressed communities (Davis & Martin, 
2008; Lattimore, 2005). Finally, attaching a label such 
as “Unsat” to any student is unjust, particularly so 
when we consider that most Chavez High students 
were from historically marginalized and oppressed 
communities. 
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ENDNOTES

1. The No Child Left Behind Act of 2001 was passed 
by the U.S. Congress and requires states to develop 
assessments to be administered at the state-level. To 
receive federal funding, states must give these as-
sessments to all students at select grade levels < http://
en.wikipedia.org/wiki/No_Child_Left_Behind_Act>.

2. “Chavez High” is a pseudonym.

3. “Diverse students” refers to students who are mem-
bers of a racial or ethnic minority group and is syno-
nymous with “students of color,” a phrase commonly 
used in the U.S.

4. The ethnic/racial categories reported here are the 
categories used by the school district in which Chavez 
is located.
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This essay focuses on the connections between calcula-
tion and bureaucracy and points out implications for 
mathematics education. A genealogic analysis which 
methodologically follows Nietzsche and Foucault is used 
to show these connections firstly on a historical and 
secondly on the level of styles of thought. In the process, 
Weber’s theory of bureaucratic administration, Sybille 
Krämer’s history of formalisation and Foucault’s analy-
sis of the modern episteme will be considered. This study 
shows that mathematics – even in its unapplied and 
theoretical form – and bureaucracy share a common 
style of thought. Consequently, school mathematics can 
be understood as an institution which trains and exam-
ines a bureaucratic style of thought – an understanding 
supported by Paul Dowling’s sociology of mathematics 
education.

Keywords: Calculation, formalisation, bureaucracy, 

Foucault, genealogy.

FROM SKOVSMOSE’S QUESTION TO 
THE METHOD OF GENEALOGY

In mathematics education research, calculation tasks, 
i.e. tasks which can be solved following prescribed 
rules for the manipulation of terms of numbers and 
variables, are often considered to be too ‘bureaucratic’ 
and to be over-represented in the mathematics class-
rooms. Usually, this claim serves to promote innova-
tive approaches in mathematics education, but within 
this study it has not been possible to find research 
with such an object of an academic study itself. Ole 
Skovsmose (2005) also refers to the dominance of cal-
culation tasks to distinguish his Critical Mathematics 
Education. He tries to explain the social function of the 
vast amount of calculation tasks each student has to 
solve during his school career. He refuses some common 
explanations and eventually asks:

Could it be that ‘normal’ students in fact learn 
‘something’, although not strictly speaking math-

ematics, and that this ‘something’ serves an im-
portant social function? If we look back again at 
the 10,000 commandments [which students have 
to solve during their school careers], what do they 
look like? Certainly, not like any of those tasks 
with which applied mathematics occupies itself, 
tasks in which creativity is needed to construct 
a model of a selected piece of reality. Nor do they 
look like anything a working mathematician is 
doing. However, they might have some similar-
ities with those routine tasks, which are found 
everywhere in production and administration. 
An accountant has to do sums day after day. A 
laboratory assistant has to do a series of routine 
tasks in a careful way. [...] All such jobs do not 
invite creative ways of using numbers and fig-
ures. Instead things have to be handled carefully 
and correctly in a pre-described way. Could it be 
that the school mathematics tradition is a well 
functioning preparation for a majority of stu-
dents who come to serve in such job-functions? 
(Skovsmose, 2005, pp. 11–12)

At a first glance, it seems surprising that Skovsmose 
does not provide any answers to his questions al-
though he might be considered one of the founders 
of socially concerned research in mathematics educa-
tion. But a closer look shows that he does not consider 
mathematics itself but only its application and teach-
ing as socially critical. For Skovsmose, mathematics 
education is “undetermined”, “without essence”; it 
can “serve a grand variety of social, political, and eco-
nomic functions and interests” (Skovsmose, 2011, p. 2). 
Indeed, only under this assumption can he reasonably 
promote his emancipatory pedagogy. Then again, this 
very assumption hinders him from socially analysing 
non-applied calculation. So what if this assumption is 
misleading, if it is hindering us from discussing the 
social functions of what might belong to the essence 
of mathematics education: pure but nevertheless 
socially relevant mathematics, e.g. calculation? The 
question would then not only be how calculation is 

mailto:david.kollosche%40uni-potsdam.de?subject=


School mathematics and bureaucracy (David Kollosche)

1598

applied, but how it can be applied, which perspectives 
it allows and which ones it denies.

As calculation is no matter of applications and teach-
ing alone, but one of mathematics itself, the usual 
methods of Critical Mathematics Education are not 
promising for a comparison of calculation and bu-
reaucracy. Instead, this study uses the method of ge-
nealogy as introduced by Friedrich Nietzsche and con-
tinued by Michel Foucault. Genealogy is a method for 

“examining the historical origins of present day philo-
sophical concepts, ideas and discourses along with the 
institutions that sprang from them” (Lightbody, 2010, 
p. 1). Unlike other historical approaches, it questions 
the ethical, metaphysical and epistemological values 
which implicitly underlie our knowledge and prac-
tices. It assumes that our ideas and practices are not 
born perfect, but have evolved in a struggle against 
other ideas and practices. Therefore, genealogy “is 
not the erecting of foundations: on the contrary, it 
disturbs what was previously considered immobile; 
it fragments what was thought unified” (Foucault, 
1971/1984, § 3). By confronting the taken-for-granted 
with its fragile genesis, one gains the possibility of 
looking at it from an outsider’s perspective and recog-
nising the ideas it was directed against, the interests 
it served or the complicity into which it seduced us 
(Saar, 2007, p. 15). As every genealogy involves the 
danger of shaking our own convictions, it cannot be 
performed in any ‘objective’ way. Consequently, the 
purpose of genealogy is not to constitute any kind of 

‘true’ history (although it might contribute to such an 
endeavour), but to help us understand our contem-
porary ideas and practices. Especially, it allows us 
to gain a critical distance from the values operating 
in mathematics education and to analyse calculation 
inside and outside school as a morally ambiguous so-
cio-cultural phenomenon. Martin Saar states:

Genealogy is more qualified than any other form 
of critique to grasp phenomena such as imper-
fect liberty, complicity with authority and subtle 
heteronomy, for it illuminates the conditions of 
the possibility of life forms in which heteronomy 
stabilises and power effects mentalities. (Saar, 
2007, pp. 15–16; my translation)

The following analysis will first consider the genesis 
of calculation and bureaucracy in order to trace simi-
larities in development. It will then match the styles of 
thought represented by calculation and bureaucracy 

in order to substantiate the claim that both share a 
common style of thought. The genealogic questions 
to ask are: At what times, under which circumstanc-
es, to satisfy which needs and to serve whose interest 
did calculation and bureaucracy develop? What are 
the values underlying calculation and bureaucracy? 
What can the history of both tell us about commonalities 
between them?

TOWARDS A GENEALOGY OF 
CALCULATION AND BUREAUCRACY

Unfortunately, neither a genealogy of calculation nor 
one of bureaucracy exists. Therefore, this study will 
try to sketch a genealogic approach from the theory 
that exists on the history and theory of calculation and 
bureaucracy. Contemporary theories of bureaucracy 
are still based on the sociology of Max Weber (Anter 
et al., 2010). Apart from that, his approach towards 
bureaucracy is particularly valuable for this study as 
it has genealogic features (Saar, 2007, p. 296). Weber 
describes an ‘ideal type’ of bureaucracy which is well 
summarised by Robert K. Merton:

A formal, rationally organized social structure 
involves clearly defined patterns of activity in 
which, ideally, every series of actions is function-
ally related to the purposes of the organization. 
In such an organization there is integrated a se-
ries of offices, of hierarchized statuses, in which 
inhere a number of obligations and privileges 
closely defined by limited and specific rules. Each 
of these offices contains an area of imputed com-
petence and responsibility. Authority, the power 
of control which derives from an acknowledged 
status, inheres in the office and not in the particu-
lar person who performs the official role. Official 
action ordinarily occurs within the framework 
of pre existing rules of the organization. The sys-
tem of prescribed relations between the various 
offices involves a consi der able degree of formal-
ity and clearly defined social distance between 
the occupants of these positions. (Merton, 1949, 
p. 151)

Although Weber considers the rise of bureaucracy 
a modern phenomenon and contrasts it with patri-
monial forms of administration, which were typical 
for pre-modern monarchies, he acknowledges that 
some of its social and economic preconditions (such 
as the economic need for an effective, professional 
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and centralised administration or the development of 
monetary economy) existed before, leading to histori-
cal forms of administrations with bureaucratic traits. 
He explicitly mentions the New Kingdom of Egypt, the 
late Roman Principate and the absolute monarchies of 
early modern Europe (Weber, 1922/1972, pp. 556, 560).

It is striking that our records of the development of 
calculation date back to the very same places and 
eras. In Sybille Krämer’s unique history of formali-
sation (1988), which builds on the work of Jacob Klein 
(1936/1992), the outstanding contributors to that de-
velopment of calculation from purely arithmetic to 
algebraic forms are the Egyptians at the beginning 
of the New Empire in the 16th cent. BC, Diophantus 
at the time of the late Roman Principate and Vieta 
when monarchy began its change towards absolutism. 
In spite of their enormous contributions to philoso-
phy, the (decentrally administered) ancient Greeks 
considered calculation unworthy of a scientific dis-
cussion. It took only 200 years and the uprising of 
strict philosophical logic to have many contributions 
of the Pythagoreans, mathematicians said to be in-
fluenced by the Orient, excluded from the corpus of 
mathematics, most notably from Euclid’s Elements 
(Krämer, 1988).

In a collection of application tasks and solutions, the 
Egyptians documented their mathematical techniques 
which include fractions, written methods for multipli-
cation and division, applications of the Pythagorean 
theorem, solving quadratic equations and calculating 
areas and volumes. The Egyptian ‘aha-calculus’ is the 
earliest record of the use of variables; it documents 
the transfer of algorithms from numbers to signs. 
Different from our use today, the Egyptian variable 
could only stand for a specific, yet unknown number. 
It could be used in expressions such as 4 + h = 15, but not 
in expressions which describe relations of values such 
as y = 4x – 1 or a + b = b + a (although we have to keep in 
mind that these expressions could only be recorded 
verbally as our formalistic writing of mathematics 
developed only during the last few centuries). The 
variable was always connected to a certain number, 
it was its placeholder; and initially this was the only 
reason to treat it as a number (Krämer, 1988). Greek 
algebra separated values from their contexts of ap-
plication and linked them to geometry. While expres-
sions such as a + b = b + a could now be interpreted as 
an apposition of line segments, the use of algebra and 
variables was constrained by the necessity of its ge-

ometrical interpretation. Five centuries after Euclid, 
Diophantus emerged as the enfant terrible of classical 
mathematics: he added lengths and areas, thought of 
triangles as triples of numbers, introduced symbols 
for operations and facilitated a formal notation for 
terms and equations. Nevertheless, he still consid-
ered variables the mere placeholder of a fixed number. 
Thus, he was unable to present universal algorithms 
and had to document his techniques in examples of 
tasks and solutions (Krämer, 1988; Klein, 1936/1992). 
This did not change until Vieta developed his algebra. 
Vieta was the first to consider variable as autonomous 
entities, independent from any number(s) it might 
represent and defined only by its rules of calculation:

Algebra is no longer calculation with unknown 
numbers. Instead, it can be conceived as a calcula-
tion with characters, i.e. with ‘undetermined’ sym-
bols which can represent all possible numbers 
that – substituted into a given equation – form a 
right expression [...] This is how the mathematical 
formula came into the world. (Krämer, 1988, p. 61; 
my translation) 

A COMMON STYLE OF THOUGHT

The joint development of calculation and bureaucracy 
merely indicates a connection between both. The fur-
ther analysis will show that calculation and bureau-
cracy do not only share a common style of ‘bureaucrat-
ic thought’, but that this style of thought is exemplary 
and prototypical for the modern thought since the 17th 
century. To this end, considerations about the char-
acteristics of symbols in modern thought will lay the 
basis for analysing the role of bureaucratic thought 
in contemporary society. 

Again, the genealogic analysis lays its focus on histor-
ical events of change and conflict. In this case, the big-
gest changes can be spotted around 1600, when Vieta’s 
algebra became influential and the rise of bureau-
cracy allowed absolutism to develop. In his Order of 
Things (1966/1970), Michel Foucault identified a strong 
change in the episteme, i.e. the way people perceive 
and make sense of the world, in the years around 1600. 
Until the end of the Renaissance, thought was domi-
nated by the principle of resemblance – a relationship 
considered to be unbreakable. Signs were “thought to 
have been placed upon things so that men might be able 
to uncover their secrets, their nature or their virtues” 
(p. 59). Signs resembled the represented, literature 
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resembled truth, variables resembled numbers and 
money was made of valuable materials. In contrast to 
that, signs gain their independence in the 17th century. 
Suddenly, they are considered arbitrary constructs 
and require legitimisation. Consequently, science 
begins to discuss the criteria for the significance of 
symbols, leading to the appreciation of calculation 
and the evolution of formal logic. From then on, 
symbols are interrelated by their order (taxonomy, 
connected to logic) and by their measure (mathesis, 
connected to calculation) (pp. 71–76).

In his history of Algebra, Klein argues that while 
“in Greek science, concepts are formed in continual 
dependence on ‘natural,’ prescientific experience, 
from which the scientific concept is ‘abstracted’”, in 
modern science “nothing but the internal connection 
of all the concepts, their mutual relatedness, 
their subordination to the total edifice of science, 
determines for each of them a univocal sense”. Klein 
recognised that “the nature of the modification 
which the mathematical science of the sixteenth and 
seventeenth century brings about [...] is exemplary for 
the total design of human knowledge in later times” 
(Klein, 1936/1992, pp. 120–121). From that perspective, 
modern calculation is not only an example of the new 
episteme, since it uses autonomous symbols; it is also 
a condition of the possibility of the modern episteme, 
for it constitutes a method to interrelate autonomous 
symbols. Accordingly, Klein points out that the new 
form of calculation is not a mere “device” of science 
but predefines the forms, e.g. the possibilities and 
restrictions, of scientific understanding (pp. 3–4).

The modern episteme is a prerequisite of bureaucracy, 
too, for it builds on the dissolution of the resemblance 
and the installation of symbolic practices. Bureaucracy 
has the purpose to provide predictable and equitable, 
i.e. non-arbitrary, forms of administration. For that 
reason, administrative acts are bound by “a consistent 
system of abstract rules which have normally been 
intentionally established” (Weber, 1921/1947, p. 330) 
instead of resembling any natural, traditional or di-
vine law. Within this system of rules, officials act in 
a “spirit of formalistic impersonality”, “without ha-
tred or passion”, “without affection or enthusiasm”; 

“everyone in the same empirical situation” has to be 
treated equally and the official is not allowed any 

“personal considerations” (p. 340). According to this, 
obligations, administrative means and authority are 
linked to positions, which are abstract symbols within 

the system of rules and do not resemble any natural 
person; positions are only ‘held’ by persons (p. 330). 
Bureaucracy follows the principle of impersonality by 
separating the official and the client from the human, 
by ignoring their individuality: their hope, fear, anger, 
gratitude, concern and doubt. 

Calculation embodies a similar style of thought. 
Firstly, calculation is used for non-arbitrary, i.e. ‘ob-
jective’ predictions. The German berechenbar means 
‘calculable’ as well as ‘predictable’. Secondly, calcula-
tion works along a system of abstract rules that are 
culturally established and that the individual has to 
conform to. Thirdly, this system of rules demands 

‘formalistic impersonality’ as calculation operates by 
its rules alone. This formalism disregards any ‘per-
sonal considerations’ of the calculating individual 
just as it disregards those of the official. But on top of 
this, the variables of each calculation also have to be 
manipulated ‘impersonally’, i.e. without any regard 
for what they might stand for. Every situation is only 
perceived in the boundaries of the pre-defined cases, 
i.e. cases that rules (for calculation or administration) 
exist for. It is this separation of sign and represent-
ed, of case and individual, of variable and number in 
the modern episteme that allows both bureaucracy 
and calculation as known today. Calculation is not 
a mere tool of bureaucratic administration, but it is 
in itself a technique for the “de-humanised” (Weber, 
1922/1972, p. 563) processing of situations. Therefore, 
calculation is not an “undetermined” technique that 
can “serve a grand variety of social, political, and eco-
nomic functions and interests” (Skovsmose, 2011, p. 2); 
it is a technique which resembles a style of thought 
that is: bureaucratic.

CALCULATION AND BUREAUCRACY 
IN THE CLASSROOM

Merton acknowledges that bureaucracy has to exert 
“a constant pressure upon the official to be methodical, 
prudent disciplined”; it must attain “an unusual degree 
of conformity with prescribed patterns of action” 
in order to fulfil its purpose (Merton, 1949, p. 154). 
Accordingly, Weber states that the bureaucratic style 
of thought requires “specialised training” (Weber, 
1922/1972, p. 552). He explains the uprising of general 
education in modern times with the need for prepara-
tory training and selection. Mathematics education 
in particular has historically developed alongside 
the cultivation of bureaucracy, incorporating calcu-
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lation which has been shown to share a common style 
of thought. As Skovsmose points out, students have 
to solve a large amount of calculation tasks during 
their school career (Skovsmose, 2005). Solving these 
tasks is a prescribed activity with abstract symbols, 
following prescribed rules. Compared to other tasks 
used in school, calculation tasks specifically cannot be 
solved without a bureaucratic style of thought: There 
is usually no other valued solution to a calculation 
task than the development or application of a rule-
bound and impersonal algorithm. The experience of 
these ever-repeating challenges causes the student 
to adapt. On the one hand, she may be able and will-
ing to cultivate a bureaucratic style of thought. This 
would allow her to perform well (at least as long as 
mathematics education incorporates calculation to a 
large extent) and experience herself as a successful 
learner. On the other hand, she may be either una-
ble or unwilling to cultivate a bureaucratic style of 
thought. This would leave her to ever-repeating fail-
ure in calculation tasks. In the case of such a trauma, 
the only adaptation securing the student’s dignity is 
to escape from the humiliating situations. As a phys-
ical escape is not tolerated, it has to be performed 
mentally: those students ‘learn’ that mathematics is 

‘nothing for them’. Ideal-typically, this organisation of 
the mathematics classroom results in the production 
of either accomplices or avoiders of mathematics, en-
suring that mathematical rule goes unquestioned and 
thereby contributing to the domination of humans by 
mathematics which Roland Fischer (1984) has warned 
against.

In his Sociology of Mathematics Education (1998), 
Paul Dowling describes “myths” about mathematics 
which are spread in the mathematics classroom. He 
is especially interested in so called ‘real world prob-
lems’ in which problems formulated in situations of 
the real world are interpreted and solved by calcu-
lation. While no specific applications of calculation 
will be discussed here, Dowling’s analysis helps to 
understand who calculation is per se positioned in 
the mathematics classroom. The myth of reference is 
a mechanism which makes students think that calcu-
lation is a universal tool capable of solving any real 
world problem. Dowling states and exemplifies that 
many ‘real world problems’ build on situations which 
would not be solved mathematically in everyday life 
(Dowling, 1998, pp. 4–7). In addition to that, the math-
ematics classroom does not usually present any ‘real 
world problems’ that cannot be solved mathematically. 

Therefore, school mathematics provides experiences 
which foster the belief that mathematics can be rea-
sonably applied to solve any problem of the real world. 
To the extent to which these ‘real world problems’ are 
based on or result in calculation, ‘real world problems’ 
function as a mechanism to install calculation as an 
omnipotent means of perceiving and handling our 
world.

Dowling’s myth of participation refers to a mechanism 
which fosters the belief that students will need mathe-
matics to succeed in their everyday life outside school 
(Dowling, 1998, pp. 7–11). ‘Real world problems’ are 
often student-oriented, i.e. they build on situations 
that are close to the experiences of students, although 
the mathematics involved would usually not be used 
to solve such problems in the real world. Their latent 
message is: Look at these examples from your everyday 
life and see how calculation is needed to manage them! 
That is how school mathematics provides experiences 
which foster the belief that the students need math-
ematics and especially calculation to cope with their 
everyday life outside school.

Both mechanisms bear the possibility of intensifying 
the experiences students have with calculation tasks. 
On the one hand, those succeeding in calculation may 
be happy to master the seemingly omnipotent and 
even privately relevant, de-humanised, rule-bound 
approach towards our world. On the other hand, those 
failing in calculation may explain their failure with 
their own incompetence rather than with insufficien-
cies of the calculation method as the latter is believed 
to be omnipotent. Nevertheless, they may believe that 
calculation is important for their life outside school. 
In the end, they might come to think that they lack 
the ability to handle the mathematics necessary for 
a fulfilled life and feel compelled to lay their trust 
in mathematical experts. Thus, a function (although 
not an intended goal) of school mathematics would 
be not only to separate the capable and willing from 
the unable and unwilling, but also to make the latter 
appreciate their subordination.

As bureaucracy and calculation share a common style 
of thought, performance in calculation indicates 
whether or not students are suited for administra-
tive positions: whether or not they can reduce situ-
ations to cases and calculations, and whether or not 
they can handle these cases calculations according to 
imposed rules disregarding their personal thoughts 
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and feelings; whether or not they can separate from 
themselves an administrative or calculative processor 
of rules. But school mathematics also educates in the 
sense that it produces situations in which students 
cultivate their relationships towards calculation. 
Whether or not, or rather: how far this experience 
affects the student’s relationship towards bureau-
cracy, is hard to tell. It seems at least natural that the 
estrangement from calculation to some extent coheres 
with an estrangement from any practices sharing a 
similar style of thought, especially from bureaucratic 
ones. Therefore, school mathematics can be consid-
ered an institution which (alongside other functions) 
identifies and trains a calculatory-bureaucratic elite 
and teaches the rest to subordinate to the calculato-
ry-bureaucratic administration of our society. And 
although this explanation deserves further theoret-
ical and empirical elaboration, it can already serve as 
a first answer to Skovsmose’s questions, contribute to 
the socio-philosophical discussion about the essence 
of mathematics, question the educational objectives 
which mathematics educators assign to school mathe-
matics, explain why mathematics is such a polarising 
subject and shed light on anxiety and joy, motivation 
and estrangement in mathematics classrooms. Within 
the research community especially, it would also add 
a new dimension to socially concerned research in 
mathematics education and call for ways to deal with 
this social function of school mathematics.
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This theoretical paper investigates the relationship 
between socialisation and mathematics education in 
Swedish preschools. Socialisation is considered to be 
the process by which children construct their own child-
hoods and experiences as a preparation for adulthood. 
Mathematics education as defined by the curriculum 
outlines what learning possibilities preschools and the 
adults working in them should provide to children. The 
production and reproduction of cultural knowledge as 
components of socialisation are connected to the glob-
al issue of early year’s education and schoolification. 
I suggest that it is important to discuss how learning 
of content and subjectivities is a key feature in an in-
vestigation of the relationship between socialisations 
and mathematics education in the Swedish preschool 
curriculum.

Keywords: Learning, mathematics education, preschool, 

socialisation.

INTRODUCTION

In the research on mathematics education, there is a 
perception that young children need to have strong 
mathematical understandings when they begin school 
(Duncan et al., 2007). However, the implementation 
of programmes to provide this has led to concerns 
about the schoolification of preschool. Schoolification 
is described as:

an emphasis on the acquisition of specific pre-ac-
ademic skills and knowledge transfer by the adult 
rather than a focus on broad developmental goals 
such as socio-emotional well-being and the gain-
ing of understanding and knowledge by the child 
through direct experience and experimentation. 
The push-down of grade one materials, specific 
learning standards and the traditional primary 
school model of didactic instruction to pre-kin-

dergarten and kindergarten in some US states 
has heightened concern about the possible schoo-
lification of ECEC [early childhood education and 
care]. (Doherty, 2007, pp. 7–8).

Increased references to mathematics in the revised 
Swedish preschool curriculum (Skolverket, 2011) sug-
gest that perceptions of its value as being beneficial to 
society have increased. In this paper, I contribute to 
a discussion of the role of mathematics education in 
early childhood studies by reflecting on its relation-
ship to learning and socialisation. I link socialisation 
processes and mathematics education with two com-
ponents: the reproduction of culture from one genera-
tion to another; and the recognition of young children 
in preschool as knowledgeable and active participants 
in today’s society. Learning is a vital component of this 
investigation because it highlights the connection be-
tween content and subjectivities. Therefore, my aim 
is to offer a theoretical contribution regarding the 
understanding of socialisation processes and what 
learning possibilities preschools should provide. 

By placing a particular emphasis on preschool as the 
site of socialisation processes, I argue that there is a 
need for a discussion on what grounds and in what 
ways are children modified by the institution of pre-
school (Kampmann, 2004). Preschool as an institution 
is a place where children’s social context and experi-
ences are formed (Ebrahim, 2011), but with a specific 
focus on learning and development. Consequently it 
can be said that society considers preschools to be the 
necessary institutions for strengthening children’s 
social competence and general ability to develop their 
childhood so that they can live in a modern world both 
independently and as part of a democratic society. 
However this raises the question, how does increas-
ing the importance of mathematics education affect 
children’s socialisation and learning?

mailto:dorota.lembrer%40mah.se?subject=
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SOCIALISATION

Socialisation occurs from living within a society and 
taking part in activities with others (Thorne, 1987). 
Given that in 2013, 77 per cent of children aged be-
tween one and three years and 94 percent of children 
aged between four to five years attended Swedish pre-
schools1, it can be stated that children are socialised 
within the institution of preschool as this is where 
they participate in society: 

By interacting with playmates in organized play 
groups and nursery schools, children produce 
the first in a series of peer cultures in which 
childhood knowledge and practices gradually are 
transformed into the knowledge and skills nec-
essary to participate in the adult world. (Corsaro, 
1992, p. 162)

Walzer and Miller (2007) stressed that within cul-
turally diverse societies, educational opportunities 
provide an understanding of some of the meanings 
to be found in that society. Socialisation provides an 
educational structure which children learn to recog-
nize and interpret (Trondman, 2013). 

Socialisation as replication
Socialisation for young children, including that which 
occurs in preschools, has been equated with a process 
or a journey towards adultness. This journey con-
tributes to children’s gaining of knowledge of their 
own and others’ roles in society, in order to repro-
duce society’s key institutions (Lee, 2001). James, Jenks 
and Proud (1998) stressed that socialisation includes a 
transmission of culture from one generation to anoth-
er, in order to ensure that societies sustain themselves 
over time. As a consequence of the process of change 
and alteration, the child is seen as developing socially, 
so that they become the adults that society needs. 

Curriculum as a body of knowledge is an example of 
institutionalisation of the norms and values seen as 
important by a society, but also as an example of adults 
determining what skills, norms and values children 
need to become acceptable adults. The mathematical 
goals in Swedish preschool curriculum represent 
some of these institutionalised norms and values. 
The goals related to mathematics require preschools 
to provide opportunities for children to:

1  For more information see http://www.scb.se/en_/

develop their understanding of space, shapes, lo-
cation and direction, and the basic properties of 
sets, quantity, order and number concepts, also 
for measurement, time and change,

develop their ability to use mathematics to inves-
tigate, reflect over and test different solutions to 
problems raised by themselves and others, 

develop their ability to distinguish, express, ex-
amine and use mathematical concepts and their 
interrelationships, 

develop their mathematical skill in putting for-
ward and following reasoning (Skolverket, 2011, 
p. 10)

In these goals, what mathematics is has been already 
determined. Inclusion in the curriculum means that 
they take on the aura of being the valuable cultural 
knowledge which should be transmitted to children 
so that society can be sustained over time. However, 
if the process of socialisation is for children to gain 
valued knowledge about the subject, as part of the 
reproduction of society’s key institutions (Lee, 2001), 
then children may need to recognise the activity as 
mathematics. 

Yet, a focus on the future may lead to unwelcome con-
sequences. Sarama and Clements (2004) argued that 
such a focus can limit a child’s own hunger for knowl-
edge and their willingness to engage in mathematical 
activities. As well, it may be that the inclusion of more 
mathematical goals in the revised Swedish preschool 
curriculum (Skolverket, 2011) could restrict teachers’ 
possibilities in planning activities which value what 
children already know and can do. Concerns have 
been raised that the focus on mathematical knowledge 
needed for school learning is a form of schoolification 
regarding the effect on the kind of socialisation that 
preschool children receive (Alcock & Haggerty, 2013; 
Gunnarsdottir, 2014; Sofou & Tsafos, 2010).

Socialisation as creation
An alternative view of socialisation is that it can be 
considered as a process in which children co-create 
new cultural norms and values together with others 
(Thorne, 1987). For Ebrahim (2011), socialisation is 
the process by which people, who inhabit a society, 
create it. From this perspective, children need to be 
considered as knowledgeable, active participants in 

http://www.scb.se/en_/
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the construction of their childhood and experienc-
es (James et al., 1998). This would include producing 
norms and values connected to the societies of their 
childhoods. 

In the Swedish preschool curriculum (Skolverket, 
2011), the preschool is expected to provide opportu-
nities for children to engage with more general goals. 
Although many general goals also suggest that adults 
determine the necessary knowledge and skills for 
young children to know, some position children as 
having possibilities to create rather than just replicate 
cultural norms and values. These include:

Each child should have the opportunity of form-
ing their own opinion and making choices in the 
light of their personal circumstances (p. 4)

Children should also have the opportunity to ex-
plore on their own issues in greater depth and to 
search for their own answers and solutions (p. 5)

In these goals, children are situated as persons with 
their own rights, interests and experiences who can 
influence the acquisition of the necessary skills to 
perform as functioning members of their society. 

Having different emphases in the goals (creating 
versus recreating societal values and norms) could 
restrict teachers’ possibilities in planning activities 
(Lembrér & Meaney, 2014). The focus of the goals 
for mathematics education on replicating cultur-
al knowledge, including valuing certain aspects of 
mathematical knowledge, may mean that teachers 
do not consider children as needing opportunities, 
for example, to form their own opinions and make 
choices about mathematics. This could be an example 
of schoolification where the kind of socialisation that 
preschool children receive is restricted to ensuring 
that they become the kind of mathematicians needed 
for school learning.

Replicating and creating through socialisation
Socialisation as a process of creating/recreating so-
ciety and the transmission of culture is connected 
to perceptions of what young children are capable 
of doing. For example, Lee (2001) highlighted how a 
young child’s age affected adults’ perceptions of them 
having rights to have opinions and desires, as often 
children are considered too young to be worth listen-
ing to. Discussions such as these make it difficult to 

recognise children as fully human or people in their 
own rights (James & Prout, 1997). Consequently, re-
searchers have discussed the necessity of making such 
a distinction. For example, Thorne (1987) discussed 
the adult/child dualism as being socially constructed 
and therefore possible to change. 

Rather than seeing creating and replicating cultural 
norms and values as being in opposition, it has been 
argued that children’s own knowledge can be a start-
ing point for initiating social interaction in play and 
promoting construction of subject knowledge (Edo, 
Planas, & Badillo, 2009). However, this requires a del-
icate balance between production and reproduction 
of societal norms and values, a sense of responsibility 
for the future of the society while at the same time 
allowing them to create own values, knowledge and 
even cultural understanding. 

LEARNING

Although curriculum goals frame the operationali-
sation of mathematics education in preschools, they 
alone do not determine the socialisation that children 
gain from participating in activities. Instead, learning, 
not as a cognitive activity done by individuals, but as 
that done within societies and in particular in societal 
institutions such as preschools, needs to be consid-
ered in relationship to socialisation. Radford (2008) 
stated, “learning does not consist in constructing or 
reconstructing a piece of knowledge. It is a matter of 
actively and imaginatively endowing the conceptual 
objects that the student finds in his/her culture with 
meaning” (p. 223).

Often preschool children’s early learning is described 
as essential for further learning processes. Children 
acquire the understanding, skills and awareness 
of different mathematical concepts, developed in 
the course of their own experiences (for example, 
Brenner, 1998), through the process of learning and 
the reproduction of norms and values (Lee, 2001). 
Studies of how children learn mathematics together 
with their peers, family, environment and in culture, 
indicate that interactions around mathematical activi-
ties are of importance (for example Carruthers, 2006).

However, within discussions of socialisation, learning 
is conceived as being about learning knowledge or 
skills, either already found within a society as valued 
norms and values or newly created within the pro-



Socialisation and mathematics education in Swedish preschools (Dorota Lembrér)

1606

cess of learning. Such discussions fail to recognise 
that learning cultural norms and values results in 
children (and adults) learning to become someone, 
in other words – learning subjectivities. Such a view 
of learning positions children as human and contrib-
ute to an understanding that mathematics learning is 
socially constructed, not merely reproduced, so that 
children can explore and thus produce new forms.

Osberg and Biesta (2008) describe learning as some-
thing that can occur anywhere at any time but that ed-
ucation was about learning about taking on a particu-
lar subjectivity such as being a responsible member 
of society. Radford (2008) also saw learning as being 
more than simply learning about ideas. He stated that 
learning is “not just about knowing something but 
also about becoming someone” (p. 215). The role of the 
curriculum in shaping the kind of person that evolves 
from participating in activities in preschool. 

This ‘shaping of subjectivity’ is generally under-
stood to be achieved through the curriculum (and 
the pedagogy ‘supporting’ the curriculum). With 
the concept of ‘education’ the notion of curricu-
lum therefore acquires a very specific meaning. 
It becomes a course by means of which the subjec-
tivity of those being educated is directed in some 
way. (Osberg & Biesta, 2008, p. 314)

From this perspective, Biesta (2007) considered much 
of what occurs in institutional settings, such as pre-
schools, to be socialisation, as for him socialisation is 
the “insertion of ‘newcomers’ into existing cultural 
and socio-political settings” (p. 26). On the other hand, 
education as defined by Kant is the self-education 
needed to achieve rational autonomy in order to be-
come fully human. Biesta (2007) argued that this view 
of education was also a form of socialisation because 
it set up what the end product of self-education had to 
be, that of rational autonomy. Education of this kind 
results in individuals taking on the attributes of ex-
isting members of a society but without a recognition 
of the role of the community in this process (Radford, 
2008). Socialisation, then, must be considered as a not 
just learning cultural norms and values but living 
those norms and values, as with becoming a rational 
human being.

However, this suggests that those who did not have or 
did not gain the appropriate attributes could not be 
considered human (Biesta, 2007). Thus, young chil-

dren can be categorised as being non-human as they 
do not have the necessary desired rationality. As re-
search has come to highlight the importance of mathe-
matics in early years (Ginsburg & Amit, 2008; Sarama 
& Clements, 2009), this category of being non-human 
could be extended from not being rational to not being 
mathematical sufficient or “at-risk” from beginning 
school without the mathematical knowledge deemed 
necessary by adults (Meaney, 2014). 

In contrast, Biesta (2007) postulated that education 
should be deemed as preparation for an uncertain 
future, where freedom “needs to be realised again 
and again” (Biesta, 2007, p. 32). 

In a report for the Swedish National Agency of 
Education (Skolverket), Johansson (2011) stressed that 
the Swedish preschool curriculum clearly states that 
children’s own experiences should be actively drawn 
upon in preschool contexts because it is a source for 
knowledge and learning. Activities are to be based on 
a creative form of play, with opportunities for other 
kinds of expressions. This can be seen in the following 
example of goals from the curriculum (Skolverket, 
2011):

Learning should be based, not only on the inter-
action between adults and children, but also on 
what children learn from each other (p. 6)

The preschool should promote play, creativity 
and enjoyment of learning, as well as focus on 
and strengthen the child’s interest in learning 
and capturing new experiences, knowledge and 
skills (p. 9)

Take account of children’s eagerness, desire and 
enjoyment to learn, as well as strengthen confi-
dence in their own ability (p. 11)

In these goals, although children are positioned as 
having a major role in their own learning, their de-
veloping subjectivities are only apparent in regard 
to the kind of learner they should be encouraged to 
be. Similar points can be made about a lack of aware-
ness of the subjectivities that preschool children learn 
while engaged in mathematical activities.

As noted earlier when children’s socialisation is 
discussed in terms of learning mathematics, knowl-
edge and skills are considered crucial. However, what 
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young children are capable of doing mathematically 
is determined by the opportunities provided for them 
to engage in activities. When preschool children are 
often actively engaged in mathematical activities 
(see, for example, study by Lange, Meaney, Riesbeck, 
& Wernberg, 2012), they can construct new knowledge 
as well as making sense of existing knowledge in a 
process of cultural reproduction. Becoming aware 
of the knowledge they are learning can be seen as 
an active process of meaning making based on un-
derstanding and interpretation. In an earlier study 
on measurement (see Lembrér, 2013), a group of pre-
school children drew a map. As they became aware of 
the importance of different measurement attributes 
like the length of the boat and the height of the train, 
they utilised the knowledge that they already had to 
gain culturally valued knowledge that extended their 
measurement understanding. Consequently, learning 
is a process in which socialisation is bound together 
through mathematical activities. The subjectivities 
that the curriculum suggests should be available to 
children through participating in mathematics ac-
tivities are not explicit. Still the goals in the curricu-
lum indicate that preschool children’s possibilities for 
learning certain subjectivities is to be reproducers of 
existing norms and values. 

SCHOOLIFICATION AND SOCIALISATION

While engaged in activities based on the Swedish pre-
school curriculum (Skolverket, 2011), such as those 
involving mathematics, children learn to reproduce 
societal norms and values so as to become the adults 
society expects as a result of socialisation. This is 
likely to occur even when children are recognised 
in the curriculum as active participants, rather than 
passive learners. Thus, learning is associated with 
socialisation.

Societal views and perceptions of children and child-
hood influence what is stated in the curriculum. For 
example, research, such as that reviewed in Clements 
and Sarama’s (2007), indicates that the development 
of young children’s mathematical ideas and skills has 
come to be regarded as one of the core purposes of 
preschools in some countries. What is included in the 
curriculum in turn influences how activities are im-
plemented and children then are socialised. In regard 
to the revised preschool curriculum (Skolverket, 2011), 
Lembrér and Meaney (2014) indicate that schoolifica-
tion through the increased emphasis on mathematical 

goals is likely to be affecting preschool education in 
Sweden and this may have an impact on the subjectiv-
ities available to children. The results of their study 
suggest that there are societal expectations about 
children’s need to acquire the skills to perform as 
members of their society. This contributes to a ten-
sion between schoolification, where expectations 
about what children can learn shifts from school to 
preschool, and traditional foundations of preschools 
as institutional practice in Sweden, which has focused 
on children learning through play.

However, not only the curriculum determines the 
available possibilities for children concerning sub-
jectivities. These possibilities are further determined 
by an interplay, including how the curriculum is in-
terpreted and implemented by teachers, but also how 
children respond to the activities developed from it. 
Furthermore, dialogues with peers and adults can 
contribute to children gaining awareness of their 
own ability regarding mathematical knowledge, by 
inventing new meanings for improving their mathe-
matical knowledge and for widening their awareness 
of possible subjectivities that are available (Lembrér & 
Meaney, submitted). Thus, when engaged in open-end-
ed activities, children can encounter mathematical 
concepts/knowledge which can contribute to them 
asking for new knowledge, interests and ideas. This 
realisation of freedom can lead to children being bet-
ter prepared to face the uncertain future that pres-
ent-day adults are unable to predict (Biesta, 2007). This 
implies children developing the ability to be an agent 
for their peers, teachers and/or other adults in pre-
schools. However, a tightening of what is acceptable as 
mathematical knowledge and skills and a restriction 
of the way that young children interact with it as a 
result of schoolification may lead to children being 
exposed to a narrowed range of potential subjectiv-
ities. Rather than being prepared for an uncertain 
future, children learn how to become the adults of 
today. Society would waste the potentials of imagining 
a tomorrow that could be different than today. 

CONCLUSION

In this paper, I examine the connection between so-
cialisation and mathematics education in Swedish pre-
schools. Based on the curriculum, adults in preschools 
mediate children’s learning by creating mathematical 
activities or environments with an expectation that 
valued norms and values are passed on to the chil-
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dren. However, the curriculum does not situate this 
delivery of cultural norms and values as a passive 
process for children. Rather children are proposed 
to be seen as active participants. However, learning 
cannot be considered to be a mere passing of norms 
and values, whether or not this is done as an active or 
as a passive activity. This is because learning some-
thing also results in learning how to become someone. 
It is therefore possible to conclude that an individual 
is socialised when she or he has learnt to think and 
feel according to society’s expectations.

Socialisation processes may vary depending on the 
institutional setting and educational discourses. As 
almost all Swedish children attending preschool, this 
institution plays an important role in children’s lives. 
Children become organised by institutions’ norms 
and values which have profound effects on the so-
cialisation process. 

The impact of mathematics education as stated in the 
preschool curriculum is dependent on the interpre-
tation of the goals and guidelines of the curriculum 
and hence on how children are seen by teachers and 
working teams in preschools. In this endeavour, it is 
relevant to consider the tension between schoolifi-
cation and traditional foundations of preschools as 
institutional practice in Sweden which saw children 
as having a wider set of possibilities of subjectivities 
open to them. When the possibilities for the norms 
and values transmitted through mathematics nar-
rows the types of activities that adults in preschools 
feel able to offer children, then there will also be a 
limiting of the type of subjectivities made available to 
children to adopt. Therefore, mathematics education 
has a major impact on early childhood education in 
Sweden. When schoolification affects how preschool 
teachers implement mathematical learning situations, 
children’s possible subjectivities are narrowed by 
moving from broad developmental goals to learning 
mathematics. 
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There is increasing evidence that holding a growth-mind-
set in mathematics, and hence a belief in the capacity 
for change, pays dividends in terms of mathematical en-
gagement and attainment. However, much mathematics 
education policy and practice in England is embedded 
in fixed-trait theories; a belief that some people can do 
mathematics and some people cannot. Drawing on a 
wider mixed-methods study involving 284 pupils and 
13 teachers in two primary schools, this research used 
attitudinal questionnaire and interview data to identify 
pupils’ prevailing mindsets in primary mathematics. 
Pupils were found to hold predominantly fixed-trait the-
ories strongly grounded in a biological discourse. The po-
tential implications of these perceptions are examined.

Keywords: Primary mathematics, ability, growth-mindset, 

fixed-mindset.

INTRODUCTION AND CONTEXT

Ability-grouping has long been proposed as one an-
swer to concerns over standards in school mathemat-
ics. With a controversial history and concerns over 
equality and diversity, ability-grouping is often cen-
tral to educational debates. As I write this, England is 
witnessing ferocious political and media discussion 
as to whether setting – between-class ability grouping 
for individual subjects – should be made compulsory 
in secondary education with its use mandated through 
the inspection system. Whilst the literature on abili-
ty-grouping in secondary mathematics is quite exten-
sive, the literature for primary mathematics is more 
limited. However, the wider study this report draws 
on suggests that primary ability-grouping practices 
and their impacts essentially mirror the literature in 
secondary mathematics [1], and there is evidence that 
the use of ability-grouping is currently increasing in 
primary schools (Hallam & Parsons, 2013).

Underlying ability-grouping practices must be some 
notion(s) of “ability”, yet defining this concept is far 
from straightforward. Mathematical ability is a 
pervasive discourse within the English education 
system. Selection practices, such as ability-group-
ing, are commonplace, being grounded in ‘common 
sense’ fixed-ability thinking where individual poten-
tial is thought to be immutable and easily determined 
(Marks, 2013). The concept of individual boundaries, 
neatly described as ability, is entrenched in social at-
titude. A belief in the ‘correctness’ of this underlies 
many educational debates. This was vividly illustrat-
ed during a television debate on secondary school 
selection:

It seems to me that 1000 kids in a comprehensive, 
sooner or later, the ones who are good at maths 
will have to be told “you are good at maths” and 
the ones who aren’t, will have to be told “you are 
not good at maths” and you should be doing your 
darnedest to break the barriers but you should be 
learning as a young person that there are limits 
to what you can do. (Richard D. North, The Big 
Questions, BBC1, 26.07.2009) 

This paper examines how pupils’ come to under-
stand themselves and others within this discourse 
and practices. The paper asks:  How do pupils con-
struct themselves as mathematicians within the 
prevailing discourse of ability in primary mathe-
matics? Understanding this is fundamental in that 
beliefs about the capacity for change are known to 
impact on mathematical engagement and attainment 
(Dweck, 2000). This paper extends previous work, 
being grounded in primary mathematics, and hence 
allowing us to examine belief development within the 
earliest stages of schooling.

mailto:r.g.marks@brighton.ac.uk
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THEORY: THE CONCEPT OF ABILITY 
IN PRIMARY MATHEMATICS

Adopting a socio-cultural approach, learning is tak-
en as a process of participation and enculturation 
(Kirshner, 2002). In developing an understanding of 
how pupils construct themselves as mathematicians 
within the prevailing discourse of ability, mathemat-
ics education is taken to extend beyond the classroom, 
incorporating the wider cultural contexts in which 
pupils participate. Learning is seen as identity de-
velopment in which pupils negotiate between them-
selves and the social context in which “a culturally and 
personally located social schema” may be “transacted, 
redefined … resisted and, like discourse, called upon 
when the moment is opportune” (Carr, 2001, p. 527). In 
doing school mathematics, pupils can adopt and adapt 
available learner and/or mathematical identities and 
thus become enculturated to the mathematical world. 
However, this identity ‘choice’ is both constrained and 
constraining, with some identities excluding learners 
from mathematics. It should also be highlighted that, 
whilst research on affective issues generates consid-
erable interest, exploring pupils’ beliefs is complex 
(Hannula, 2011).

Ability is a difficult concept that lacks solid definition 
and is conceptually challenging (Howe, 1997), with 
these complexities debated in earlier CERME papers 
(e.g., Brandl, 2011). Despite this complexity, the term 
ability is in widespread use in education, usually go-
ing unquestioned. The dominant view of ability in 
schools – and perhaps particularly in mathematics – 
is as a fixed determinant of pupils’ future attainment, 
relatively impervious to change. Through a long his-
tory, such beliefs have become elevated to the status of 
truths through the simple stories they tell and the ap-
peal to a “basic human need to stratify society” (Kulik 
& Kulik, 1982, p. 619). Within this research, ability is 
conceived of as an aspect of identity rather than an in-
dividual attribute. Ability is co-constructed through 
discourse within social practices and pupils construct 
their ability identity in relation to those around them.

METHODS

This research formed part of a wider study into abil-
ity in primary mathematics. The aspects of the study 
presented here sought to ascertain primary pupils’ 
perceptions of their mathematical ability and elicit 
their views as to what mathematical ability is and the 

stability of their constructs. The wider study was a 
longitudinal mixed-methods study conducted over 
one academic year in two primary schools – Avenue 
Primary and Parkview Primary – in Greater London. 
[2] Both schools had similar Contextual Value Added 
scores (used to measure academic improvement) but 
employed different degrees of ability-grouping, al-
lowing for a range of experiences. All pupils in Year 
4 (ages 8–9) and Year 6 (ages 10–11, the final year of 
primary schooling in England) were included in the 
sample for the quantitative aspects of the study, total-
ling 284 pupils. From this sample, a sub-sample of 24 
focal-pupils representing a range of attainment was 
selected for the in-depth qualitative aspects.

Data collection
Attitudinal questionnaires were conducted with all 
pupils (n=284) as pre- and post-tests (testing construct 
stability) in October 2007 and July 2008. This instru-
ment consisted of four sub-scales: motivational orien-
tation, beliefs about the causes of success, perceived 
ability and enjoyment of mathematics. Reportage is 
limited to perceived ability. Given widely acknowl-
edged difficulties in measuring affective character-
istics, with no ‘best test’ (Kline, 1990), the instrument 
used was developed, with permission, from earlier 
work by goal-theory researchers (Nicholls et al., 1990). 
This instrument has been widely used, particularly 
in mathematics education, and favourably acknowl-
edged in reviews. Perceived ability was presented 
as a one-item scale asking pupils to indicate their 
perceived standing in mathematics related to their 
peers. The original instrument had high test-retest 
reliability (0.83). Pupils were presented with a hori-
zontal line labelled from ‘best in maths’ to ‘worst in 
maths’.  Pupils marked the line to indicate how good 
they were at mathematics, with piloting interviews 
suggested that this was easy for the pupils to under-
stand. Questionnaires were administered, following 
training, by class teachers in lesson time with admin-
istration observed in two classes. Data were collated 
for analysis in SPSS.

Individual and group interviews with the sub-sample 
of 24 focal pupils were used to “examine individuals’ 
thoughts, feelings, and experiences, which are not 
easily observed” (Moore, Lapan, & Quartaroli, 2012, 
p. 251). Individual pupil interviews were semi-struc-
tured using tasks adapted from Personal Construct 
Interviewing techniques. Focal-group interviews 
were semi-structured with a schedule and tasks – in-
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cluding a discussion of mathematical work – devel-
oped from earlier work by the researcher. Follow-up 
group interviews were used as a form of participant 
validation developing conversation around themes 
emerging from early analysis. All pupil interviews 
were conducted away from the classroom and de-
veloped as conversations with themes explored as 
brought up by the pupils. All interviews were au-
dio-recorded, transcribed and filed with task out-
comes.

Data analysis
Following the first administration of the perceived 
ability scale, the distribution of the data was graphed, 
then descriptive statistics, Kolmogorov-Smirnov tests 
of normality, and z-scores for skewness and kurto-
sis calculated to establish the characteristics of the 
data and appropriate statistical analysis tests. The 
first administration produced a distribution that did 
not differ significantly from a normal distribution, 
D(219)=0.06, p=0.08, allowing the use of parametric 
tests. The data for the post-test did differ significantly 
from a normal distribution but it was considered that 
the overall distribution was near normal and that the 
parametric tests were robust enough for them to be 
used on the untransformed data.

Transcripts from interviews were imported into a 
single NVivo project allowing for consistent coding 
and analysis. Interview analysis was conducted us-
ing constructivist grounded theory, the more theo-
ry-driven approach developed by Charmaz (2000) 
in response to criticisms of grounded theory as nar-
rowly empiricist and atheoretical. In this approach, 
analytical categories (codes) were derived from read-
ing the data alongside existing theoretical analyses. 
Codes were structured into trees prior to axial-coding. 
Mirroring Hamilton’s (2002) secondary-school work 
on ability constructions, analysis was split into inter-
nal beliefs and external references. From the corpus 
of data appended to each theme, extracts, often critical 
incidences, were selected which best illustrated the 
area under discussion.

Reliability and validity were key considerations 
throughout the data collection, analysis and pres-
entation processes. Where possible, established in-
struments with known reliability and validity were 
used; in all cases instruments were extensively pilot-
ed. Across the analysis, quantitative and qualitative 
data were linked using methodological triangulation 

(Denzin, 1997) where data types were compared to 
determine if there was convergence, difference, or 
some combination. Participant validation and in-
ter-researcher scrutiny of coding use and application 
provided a proxy for the validity of the themes drawn 
from the data (Kurasaki, 2000).

RESULTS: PUPILS’ PERCEPTIONS 
OF MATHEMATICAL ABILITY

The data suggest pupils tend to perceive ability as 
an internal construct, determined biologically and 
relatively impervious to change. Self-perceptions 
of ability appear to remain fairly stable. There is a 
tendency towards positive self-perceptions but this 
is accompanied by a long tail of pupils holding weak 
self-perceptions.

Primary pupils’ perceptions of 
ability: Questionnaire analysis
The self-perception of ability scores for the post-test 
covered the range of available scores from 0–100 
with a median of 68.5. These are illustrated in the 
boxplot in Figure 1. These data are significantly 
non-normal, D(239)=0.09, p<0.0001, being negative-
ly skewed (Zskewness=−4.73). A median of 68.5 suggests 
a tendency towards more positive self-perceptions. 
However, there is a long tail of weak self-perceptions 
with outliers representing pupils holding very low 
perceptions. Change in ability-perception scores were 
calculated (post- minus pre-test scores) (M=3.2, SE=1.4, 
sd=20.3) with scores ranging from -44.0 to +96.0. On 
average, there was a small increase in self-percep-
tions between the pre- (M=61.4, SE=1.6, sd=23.0) and 
the post-test (M=64.6, SE=1.5, sd=20.9). This difference 
was not significant t(396)=-1.46, p=0.15. Overall, pupils’ 
perceptions remained fairly stable over the year. 

Primary pupils’ perceptions of 
ability: Interview analysis
Of note, when conducting the interviews  – both 
individual and group – no pupil struggled to place 
themselves or peers on the perceived ability line. As 
Howe (1997, p. 2) suggests is the case with the wider 
population where “people today have so little hesita-
tion about ranking individuals as being more or less 
intelligent”, many pupils appeared enthusiastic in 
positioning their peers. Pupils regularly talked about 
ranking and had no difficulty in labelling how ‘good’ or 

‘bad’ they were or of categorising other pupils into a 
dichotomy of the ‘top’ and the ‘others’. Whilst all avail-
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able evidence points towards a continuum of attain-
ment (i.e., there are no distinct high or low attaining 
groups) and shows that learning trajectories are not 
fixed (Brown et al., 2008), the mathematical identities 
dominating pupils’ talk seemed to be predicated on a 
notion that some are, and some are not, mathematical.

Using Hamilton’s (2002) internal beliefs and exter-
nal references dichotomy for coding, there was a dis-
cernible bias in where pupils perceived mathematical 
ability to be located. Across the data set, pupils made 
121 references to ability being an internal construct 
(biologically determined) and 52 references to math-
ematical ability being driven by external factors 
(such as age and experience). 81% of pupils’ referenc-
es at Avenue Primary, which employed strong abili-
ty-grouping, located mathematical ability internally, 
compared with 54% of the total references made by 
pupils at Parkview Primary which employed weak 
ability-grouping structures.

Many pupils constructed mathematical ability, mir-
roring societal conceptions, as something real and 
located within the individual rather than being an as-
pect of a person’s developing and changeable identity. 
When asked what caused high or low mathematical 
ability pupils tended to recourse to natural varia-
tion and neurological and genetic differences. Of all 
pupils experiencing setting for mathematics, pupils 
in top sets made 80% of these links suggesting they 
held a stronger belief than pupils in lower groups in 

a biological explanation for individual differences in 
mathematical ability. Pupils expressed a belief that 
differences in mathematical ability were apparent 
from birth “because you are born with an ability” 
(Victoria, Avenue Primary, Year 4, Top Set). When 
asked, individually, what made someone good, or 
otherwise, at mathematics, pupils repeatedly talked 
about those who were good at mathematics as being 
born to be good at mathematics and vice versa:

Wynne: Their brain’s bigger. And they’re clev-
erer and better […] I don’t know, it just 
happens. They were born like that. They 
were born clever.

Zackary: Some people are just not born clever.
Yolanda: Some people are really good at maths 

and some people aren’t that good at 
maths. Probably it sometimes runs in 
the family.

(Avenue Primary pupils, Year 4, Bottom Set)

Talking about ability differences was a natural dis-
course to the pupils and strong links emerged be-
tween this and the ability-grouping practices they 
experienced:

Uma: Cause it’s like the erm, ability of what 
you can do, so there’s like a high, there’s 
like a top maths group, then a middle 
maths group then a bottom maths group

Victoria: And then you know which one is which
Uma: Because if you are like in one big maths 

group and you’re all different abilities 
then there might be something too hard 
for like the people that need to do easy 
questions, and the people that need to 
do it hard, it would be too easy for those 
people

(Avenue Primary, Year 4, Top Set)

In interview, the pupils introduced the language of 
ability themselves; in the extract above the pupils 
brought the terminology in at the beginning of the 
interview in response to being asked to describe what 
happens in their mathematics lessons. For these pu-
pils, ability, and the practices of ability, are important 
constituents of what mathematics is. The extract, in 
common with many pupil interviews, carries an un-
questioned assumption that there are different types 
of people in terms of ability levels and these can be 
clearly demarcated into groups. Based on this belief in 

Figure 1: Pupils’ perceived ability – full dataset
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clear groups, pupils voiced an acceptance that “some 
people are more clever than other people” (Catherine, 
Parkview Primary, Year 6, Top Set). People are seen 
as different, with, as in society more generally, ability 
providing a simple explanation for individual suc-
cess and failure. Pupils accepted that this was right 
without question. These beliefs may be influenced by 
ability practices:

Natalie: Well some people are just, you know, 
cleverer than other children, that’s 
what decided our groups in year 3 and 
it hasn’t changed.

(Avenue Primary, Year 6, Top Set)

Pupils construct an explanation that fits what they 
see. They hold the belief that individual differences 
lead directly to group placement and that group place-
ment has not changed as differences are innate and 
unchangeable. Holding a fixed-ability belief appears 
to be self-perpetuating with pupils viewing mathe-
matical ability as an internal force that drives, and 
limits, what they can do. External factors are seen as 
relatively inconsequential to outcomes with a belief 
that individuals can only take their attainment to a 
maximum level determined by internal limits.

Given that limits to attainment appeared to feature 
strongly in pupils’ constructs, I asked pupils if they 
felt they could improve upon their current position. 
The responses across schools, ability-groups and year-
groups were consistent and stark:

Zackary: I think I would not move. I think I would 
normally stay in the same place. I don’t 
think there’s anything I could do to 
make myself better.

(Avenue Primary, Year 4, Bottom Set)
Megan: I think I could move a few centimetres 

further up the line, not far.
(Avenue Primary, Year 6, Top Set)
Peter: Just about here, not a huge way, well be-

cause you can only do so much can’t you, 
it’s quite hard.

(Avenue Primary, Year 6, Bottom Set)

Most pupils suggested limited room for improvement. 
They positioned themselves within a hierarchy seen 
as normal and accepted the place they, their teachers 
and others gave them, believing they simply did not 

‘have’ something that others did which might have al-

lowed them to achieve more highly in mathematics. 
Peter’s statement was not made as a question, but as 
an acceptance coupled with an assumed shared un-
derstanding with myself as the interviewer. Other pu-
pils made similar comments. Whilst there were some 
positive statements from pupils who felt that some 
improvement could be made through teaching and 
learning in mathematics, this was tempered by the 
consistent underpinning theme of immutable limits:

Researcher: Could anything help you to improve?
Uma: Yes, if we had something like, Mr 

Iverson, if he explained it out a couple 
of times and actually came up to me in 
the lesson and talked it through then I 
would understand it a bit better.

Researcher: Could that make you move up higher?
Uma: No, because I have some trouble on a 

lot of sums with carrying over. I’m way 
past there in history though, but not in 
maths, there’s this bit [≈ the top 20% of 
the perceived ability line] I can’t get.

(Avenue Primary, Year 4, Top Set)

Although Uma suggests that intervention from her 
teacher could lead to improvement, she does not see 
this as having an impact on her ability, which she con-
structs as fixed and internal.  She talked about a part 
she would never be able to attain, even with teaching, 
suggesting a belief in upper boundaries. Extending 
this, pupils suggested that effort cannot overcome 
predestined limits:

Natalie: I don’t think all children can do really 
well in maths though

Megan: Even if they tried really hard, even if 
they tried really hard

Natalie: If they tried really hard their best might 
not be a 5A, but if you have lots of ability 
and you tried your best then you would 
do very well in maths. So not all children 
can do well. […] If you’re determined you 
might be better but I don’t think all chil-
dren, I don’t think, all children can’t be, 
well they could be okay at maths but not 
really brilliant, because…

Megan: Well you could have people who had lots 
of ability but they just weren’t trying 
hard enough so they were considered 
to be not as good but then when they try 
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hard they are really good, but they have 
to have lots of ability.

(Avenue Primary, Year 6, Top Set)

Natalie and Megan suggest that you can have ability 
and not use it but that you cannot move beyond innate 
ability limits; effort alone is not enough to achieve 
success. Such persistent fixed-ability beliefs hold im-
plications for mathematics education.

IMPLICATIONS FOR MATHEMATICS EDUCATION

This paper is significant for those working in math-
ematics education, illustrating how the pupils were, 
as Boaler (2000) suggests, not only learning math-
ematics, but also learning to be a mathematician. 
Understanding these pupils’ constructs has important 
implications for future research, as these foundations 
cannot be ignored when looking at any intervention 
aimed at increasing engagement or attainment.

From early on in their mathematics careers, pupils 
are engaged in producing understandings of math-
ematical-ability that are likely to be carried forward 
into and beyond secondary mathematics. These pro-
ductions are strong in Year 4 and particularly sali-
ent in Year 6, mirroring the “evolving sense of ability 
identity” found in Hamilton’s (2002, p. 601) secondary 
school study. Pupils’ models of ability portray a sta-
ble concept with little plasticity. These models can 
be complex, drawing on multiple ways of thinking 
including internal and external references. However, 
the overriding view of mathematical-ability is as an 
innate, biologically determined quantity, residing 
within individuals in specific quantities, with limit-
ed possibility for change. Few pupils suggested they 
could move in terms of their mathematical attainment 
and those that believed they could move placed bound-
aries on this.

It is perhaps not surprising that pupils are holding 
entity-theories of mathematical ability given the clear 
and consistent messages to this effect they receive 
from teachers, parents, and the media. Previous writ-
ing has suggested that primary teachers are engaged 
in reproducing their own relationships with math-
ematics in their language and practices (Hodgen & 
Marks, 2009). As such it is imperative that spaces and 
opportunities are provided for primary teachers to 
engage with their perceptions of mathematical ability 
and disrupt ‘common-sense’ practices which may set-

up, or perpetuate, the limits pupils impose through 
their constructions.
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The research fabricates an image of mathematics teach-
ers, which shape our knowledge and truths about teach-
ers. This image sustains the development of different 
discursive formations. The image’s configuration is 
entangled with spatio-temporal conditions, which are 
shaped by diverse social, cultural and political con-
texts. In this work, we are studying discourses —about 
the mathematics teacher that are circulating in the re-
search— from some theoretical toolbox of Foucault (1980) 
and Deleuze (1994) and from the methodological toolbox 
of Pais and Valero (2012). We are seeking to explore how 
discourses are operating in the fabrication of the math-
ematics teacher as a subject and in the production of 
truths about them. 

Keywords: Statement, discourses, subjectivity, dispositive, 

mathematics teacher.

INTRODUCTION

The research on mathematics education, focused on 
the mathematics teacher, has been a growing subfield 
of research since the 1990s. The research has shaped 
the constitution of diverse discursive formations 
around teachers. Also, from the research, certain 
images, truths and corresponding systems of rea-
soning have emerged to encourage us to think about 
the mathematics teacher from pedagogical topics that 
mainly emphasize teachers’ knowledge (of mathemat-
ics, of mathematics for teaching, of pedagogy, etc.), 
competencies and skills. A cognitive perspective has 
dominated most research. The impact of socio-cul-
tural theories in the understanding of teachers has 
added different views, such as identity formation and 
communities of practice.

The diverse studies about the mathematics teacher 
have attempted to set an understanding, a problem-
atizing and a reasoning about the mathematics teach-
er. These studies have established ways of thinking 
and ways of understanding the mathematics teacher, 
which are configured from the confluence and the 
convergence of ideas, notions, interests and reason-
ing. Since, the discourses circulating within mathe-
matics teacher research are shaping what is accepted 
or rejected and what is considered true or false about 
mathematics teachers.

This paper opens up a discussion that will help us to 
understand the configuration of different discourses 
that circulate about mathematics teachers and how 
these discourses operate the construction of knowl-
edge, of truths about teachers. We are seeking to show 
how discourses are operating in the fabrication of the 
mathematics teacher as a subject and how is config-
ured an ideal image of them, which produce truths, 
knowledge and an ideal to follow or to aspire. Hence, 
in this paper we develop a discursive analysis focused 
to understand how the research is shaping an ideal 
image of subject, the mathematics teacher.

To construe the mathematics teacher from the ideal 
image displayed in the literature will help us to posi-
tion the teacher as an historical and political product, 
which is produced through games of power. In oth-
er words, this will help to conceive the teacher as a 
person subjected to diverse technologies (Foucault, 
1980, 1997) and dispositive of control (Foucault, 1980), 
where thinking about the mathematics teacher is a dy-
namic idea, a theoretical construct established from 
diverse practices. This study is built upon three prem-
ises: (a) intentions, needs, and desires configure the 
conditions to set mechanisms of power, truths and 

mailto:montecino@learning.aau.dk
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discourses; (b) power produces knowledge, that is, the 
power is both the object and instrument of knowledge,

“What makes power hold good, what makes it ac-
cepted is simply the fact that it doesn’t only weigh 
on us as a force that says no, but that it traverses 
and produces things, it induces pleasure, forms 
knowledge, produces discourse’ (Foucault, 1980, 
p. 119);

(c) the mathematics teacher is an historical and po-
litical product. The idea of the mathematics teacher 

— as construct — is in constant development, and this 
development depends on spatio-temporal conditions.

STUDYING THE RESEARCH DISCOURSES 
ON THE MATHEMATICS TEACHER

We consider the discourses as a group of statements 
with regularities in its use and enunciation (Foucault, 
1980). Therefore, the discourses are not understood 
in terms of “a particular instance of language use 

—a piece of text, an utterance or linguistic perfor-
mance— but describing rules, divisions and systems 
of a particular body of knowledge” (Arribas-Ayllon 
& Walkerdine, 2008, p. 99). The discourses are gen-
erated in spatio-temporal conditions. Moreover, the 
production of discourse is controlled, is selected and 
is redistributed by a number of procedures (Foucault, 
1971). In every society the

“production of discourse is […] controlled, se-
lected, organized and redistributed according 
to a certain number of procedures, whose role is 
to avert its power and its dangers, to cope with 
chance events” (Foucault, 1972, p. 216).

The discourses are established as truth through di-
verse dispositive of control, where regularity in the 
use of certain statements leads to the configuration 
of certain discourses, which are accepted as true and 
naturalised. Therefore, these discourses are not ques-
tioned and are accepted. For this work, we keep in 
mind that the discourses are composed of statements. 

“We shall call discourse a group of statements 
in so far as they belong to the same discursive 
formation […discourse] is made up of a limited 
number of statements for which a group of con-
ditions of existence can be defined. Discourse in 
this sense is not an ideal, timeless form […] it is, 

from beginning to end, historical – a fragment of 
history […] posing its own limits, its divisions, its 
transformations, the specific modes of its tempo-
rality” (Foucault, 1972, p. 117)

And, the prohibitions that are surrounding the dis-
course reveal its link with the desired and with power 
(Foucault, 1971).

Thus, we consider the discourses that are configured 
around mathematics teachers as a technological pow-
er, which “determine[s] the conduct of individuals and 
submit them to certain ends or domination” (Foucault, 
1997, p. 18). Mathematics teachers are subjected to dis-
cursive formations, since, the discourses that circu-
late are shaping the ‘must be’ of teachers. This ‘must 
be’ is leading to ideas and images, which generates 
ways of subjectivity. Within the discourses that cir-
culate in the research about the mathematics teacher, 
it is possible to see resonances and recurrences in the 
statements that constitute these discourses. These 
resonances emerge from predominant rationalities, 
through the entanglement between the desired and 
ideas and ways of thinking. The predominant rational-
ities lead to some statements becoming the discourses 
that are repeated again and again. And these discours-
es are shaping ways of being for teachers from what 
is desired by society.

All research is developed given certain intention, as-
sumptions, ideals, and rules or notions, which are part 
of games of power that are configured within a so-
cial, political, and ideological contexts. The research 
shapes practices and knowledge through discursive 
formations that are set in the diversity of studies. 
Moreover, the research establishes networks, where 
it is valid or possible to enunciate determinate things 
about the mathematics teacher. These enunciations 
are the product of predominant rationalities, which 
lead to ways of understanding and thinking about 
the teacher. The subject is fabricated and configured 
within these networks; thus, the mathematics teacher 
as a subject and as an ideal image will be the result 
of discursive formations produced by the research.

This study is focused on the discourses that circu-
late about the mathematics teacher within the math-
ematics education research. We seek to understand 
two questions: (a) how discourses are configured? In 
other words: What were the necessary conditions 
to establish these discourses and their prevalence 
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through time? And why has a particular discourse 
been established (predominate discourse) about the 
mathematics teacher and not others? (b) What are 
the implications of those discourses. In other words: 
How are discourses operating in the fabrication of 
the mathematics teacher and how is an ideal image of 
them configured, which produce truths, knowledge 
and rationalities, to produce an understanding about 
them.     

ANALYTICAL STRATEGY

In our strategy we deploy concepts from the theoret-
ical toolbox of Foucault (1971, 1972, 1980, 1997) and 
Deleuze (1994); our focus is mainly on discursive for-
mations and its resonances. Hence, we will deploy a 
discourse analysis, which will allow us to detangle the 
statements, revealing the possible conditions of pow-
er effects by studying the discourses that circulate in 
the research. Valero (2014) argues that the mathemat-
ics education research creates language for naming 
study objects and ways of thinking about these ob-
jects. This language is composed of discourses, which 
are configuring new discursive formations and/or 
strengthening the diverse discursive formations that 
are circulating. 

Therefore, in this study, we perform a Foucault-
inspired discourse analysis, which seeks to ascertain 
the regularities and systematicities that lead to discur-
sive formations, where the diverse statements form 
a rhizomatic field affecting the desired subjects with-
in mathematics. The role of the analysis is to reveal 
the convergence of a complex network of discursive 
practices and to allow us to study the constitution 
and configuration of ideas or notions within diverse 
games of power. 

With this discourse analysis enables us to view the 
mathematics teacher as a discursive formation, name-
ly, as a subject immersed in discursive practices and 
configured from such practices. Within discourses, 
the images of the mathematics teacher are config-
ured, establishing ways and networks to think about 
teachers, to formulate ideas about them and to vali-
date statements.

To perform our discourse analysis, we consider —as 
empirical material— the 17th volume of the Journal 
of Mathematics Teacher Education ( Journal of 
Mathematics Teacher Education [JMTE], 2014), com-

posed of 6 issues; each issue has 3 or 4 papers with 
an introduction written by the editor. This journal 
was selected because it is one of the most important 
sources of mathematics teacher research. Moreover, 
the journal publishes research about mathematics 
teachers from diverse topics and theoretical frame-
works. This analysis of recent documents is a part of 
historicizing of the mathematics teacher configura-
tion. With this analysis, we are seeking to establish 
the shaping of the current image of the mathematics 
teacher from our historicity.

The focus is on statements that circulate in research 
and its resonances. These resonances lead to dis-
course formations about the mathematics teach-
er. When analysing the research, we took only the 
enunciations; we did not evaluate the researcher of 
the study. In our analysis as the focus is on the regu-
larities or resonances of statements and not the peo-
ple that formulated it, which led us to lose the notion 
of author. Rather we have quoted the journal pages 
because the journal provides us with the empirical 
material that evidences how the mathematics teacher 
is thought of.

We propose, in a Foucaultian sense, that discourses 
are generated by a spatio-temporal rationality and 
not by some particular people. Authors reveal the 
convergence of a complex network of discursive 
practices; hence, the discourses are not established 
because a person formulated them, rather because we 
reproduce them through discourse, “the function of 
an author is to characterize the existence, circulation, 
and operation of certain discourses within a society” 
(Foucault, 1977, p. 124).

Studying the diverse statements formulated in the re-
search, it is possible to see regularities or resonances 
in the different arguments deployed or in the anteced-
ents or in the conclusions of the studies. This study 
has allowed us build a rhizomatic web of statements 
that circulate, leading us to formulate categories of 
statements that emerge from ways of thinking and 
reasoning about mathematics teachers. The reso-
nances are shaping to desired images of the mathe-
matics teacher and lead to conditions that configure 
the teacher as a subject. From the diverse resonances 
that emerge in the research it is possible to establish 
two categories, these categories are clustering the dis-
courses that emerge and circulate in research. In both 
categories, the mathematics teacher is configured as a 
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discursive formation, synthesizing in him or her that 
which is desired and feared. The categories present 
the “must be” of the mathematics teacher and shapes 
truths about an ideal subject.

In short, these two categories emerged from: first, we 
selected our samples of text, the investigations report-
ed in 17th volume of the JMTE. Subsequently, we have 
identified, how in our empirical material is shaping 
conditions of possibility, which are configuring enun-
ciates about the mathematics teacher. But, we focused 
on enunciates that had resonances and recurrences. 
On the one hand, these resonances and recurrences 
have systematicity in its use and configuration; on the 
other hand, these resonances and recurrences show 
continuities and discontinuities in statements and its 
ideas, notions, intentions, social interest, among oth-
ers. Finally, we have clustered the diverse enunciates 
in two categories —through an interpretative work.

TRUTHS AND KNOWLEDGE ABOUT 
THE MATHEMATICS TEACHER

“Truth is a discursive construction and different re-
gimes of knowledge determine what is true and false” 
(Jørgensen & Phillips, 2002, p. 13). Truth is founded on 
systems of reason that characterize community and 
society; this system of reason sustains the production 
of knowledge and lead to the fabrication of a particu-
lar teacher subjected within a system of beliefs and 
ways of thinking. For example, currently it is possible 
to see a predominate reasoning, which prioritizes the 
calculation and standardization of everything (e.g., 
JMTE, 2014, pp. 5–36, 429–461), where the concept 
of the mathematics teacher forms part of this reason-
ing and in turn contributes to its construction. This 
reasoning is based in the objectivity of knowledge 
that has developed around mathematics teachers. 
More precisely, “objectivity and subjectivity are ex-
pressions of a particular historical predicament, not 
merely a rephrasing of some eternal complementarity 
between a mind and the world.” (Daston & Galison, 
2007, p. 379)

Moreover, from a Foucaultian approach, knowledge is 
conceived as a set of assumptions; these are based on 
the theoretical and personal experiences that emerge 
within a network and engage in interplay of different 
practices. Hence, knowledge is understood as an event, 
not as a universal structure, unique, absolute, or un-
biased. The “knowledge is always a certain strategic 

relation in which man is placed. This strategic relation 
is what will define the effect of knowledge” (Foucault, 
1970, p. 14). Knowledge is produced within different 
discursive practices; it cannot be conceived without a 
particular discursive practice and a discursive prac-
tice is defined by the knowledge itself (Foucault, 1972). 
In short, knowledge is composed of a series of continu-
ities, events and discursive formations established by 
diverse configurations of power. Knowledge is partial 
and fickle in relation to its historical-political context. 
Therefore, far from preventing knowledge, power 
produces it (Foucault, 1980).

Truth and knowledge that emerge from the discourses 
that circulate in the research shape ideal images of 
mathematics teachers and configuring a subject. This 
ideal image is used as a framework to think about the 
teacher, to speak about him or her, to recognize the 
teacher socially, and to understand his or her practic-
es, training, and work. Moreover, this ideal image is a 
product of the detangling of diverse games of power, 
dispositive regimes of knowledge, discursive forma-
tions, and rationality. Through this detangling, we 
can formulate the two statements category, where it 
is possible to see statements, such as:

Many PPTs [prospective primary teachers] 
wanted to continue taking another mathemat-
ics course because they wanted to improve their 
mathematics knowledge and skills not only for 
themselves but also for the sake of their future 
students (JMTE, 2014, p. 356) 

The statements that circulate about the mathematics 
teacher are composed of enunciations that evidence 

“well-intentioned” principles about the mathematics 
teacher. For example, it is possible to find enuncia-
tions, such as, “[the teacher should] provide students 
opportunity to clarify and communicate their think-
ing” (JMTE, 2014, p. 483). Showing the desired and 
feared ideas about mathematics teachers; therefore, 
these principles help to configure an ideal image, 
knowledge, practices and discourses, and moreover, 
help to configure the subjectivity of the mathematics 
teacher. 

TEACHERS’ KNOWLEDGE AND 
THEIR PASTORAL CALL

The job of the elementary school mathematics teach-
er (i.e., teaching), is generally regarded as a complex 
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and demanding practice that requires a mixture of 
both theoretical and practical knowledge, rehearsed 
skills and deep understanding of children (White, 
Jaworski, Agudelo-Valderrama, & Gooya, 2013). In ad-
dition, the practices of mathematics teachers are con-
figured within a network of practices and discourses, 
which fabricate the rational, objective, and universal 
subject to become the modern cosmopolitan citizen 
(Valero & García, 2014). Therefore, the mathematics 
teacher becomes an important agent for governing 
others, since, currently, governance is required to 
shape particular types of subjects. In other words, 
the mathematics teacher has an important role in de-
veloping and fabrication of the modern subject. In 
the 19th century, the narrative connected progress to 
economic superiority, and citizens began to develop 
an intelligible mathematical competence; by the end 
of the 20th century emerged the connection between 
people’s mathematical qualifications and social pro-
gress (Valero, 2013); Changes in demands for skills 
have profound implications for the competencies 
which teachers need to acquire to effectively teach 
21st century skills to their students.

Through an analysis of empirical research materials 
on the mathematics teacher, it is possible to observe 
how the regularities in the statements that circulate in 
the research are shaping ideal images of mathematics 
teachers. Moreover, these ideal images are setting the 

“must be” of the mathematics teacher; hence, these 
ideal images regulate the understanding of “a good 
teacher,” and also define the knowledge, skills and 
qualities that the teacher should have to reflect that 
ideal. The regularities observed are clustered into 
two categories: The first category considers state-
ments where the mathematics teacher is reduced to 
the knowledge and the skills that he or she has, for 
example, mathematical knowledge and pedagogical 
knowledge, among others. The second category con-
siders statements where the mathematics teacher is 
thought of as a useful tool for the governance of others, 
to conduct others, and to conduct oneself, for exam-
ple, the teacher is responsible for the fabrication of 
a particular subject, a rational and logical student. 

Examples of these two categories of statements that 
emerged in the discourses of the research on the math-
ematics teacher are revealed below:

The first category: The mathematics teacher is re-
duced to his or her knowledge and skills 

They found that teachers’ lack of content knowl-
edge interfered with their judgements and that 
there was a mismatch between their perceptions 
of students’ difficulties and the actual difficulties 
demonstrated by their students. (JMTE, 2014, p. 
405) 

[Teachers need to] develop professional knowl-
edge in support of their practice. (JMTE, 2014, 
p. 455) 

There is a strong correlation between the teach-
er’s knowledge of mathematics and successful 
classroom practice. (JMTE, 2014, p. 373)

The second category: The mathematics teacher as 
agent for governing. 

Mathematics teachers play a unique role as ex-
perts who provide opportunities for students 
to engage in the practices of the mathematics 
community. (JMTE, 2014, p. 105)

... promoting reform, considered by many to be 
a major responsibility of prospective teacher 
preparation (JMTE, 2014, p. 295)

It is possible to enunciate that both categories emerged 
from the statements that circulate in studies, which 
are based on an ideal of perfection (ideal teacher, ideal 
situations, ideal practices, among others) and on the 
mathematics teachers’ “must be” configured from an 
ideal image. This image is shaping from diverse forc-
es that are part of the society and at the same time 
this image promote what the society desired with the 
mathematics teacher.

More specifically, the first category responds to ob-
jective knowledge and the importance that was giv-
en to mathematical knowledge in modern society. 
Mathematical knowledge is privileged knowledge and 
is related to progress and the societal development. 
The second category argues that discursive forma-
tions are favouring the fabrication and conduction of 
the subject toward an ideal, located in an epistemology 
of that which is desired, therefore, the mathematics 
teacher is thought of as a dispositive. Hence, mathe-
matics teaching is thought of as a profession that has 
a pastoral call. For example, the mathematics teacher 
is believed responsible to promulgate the ideas and 
the ideals that mold the desired citizen by impelling 
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to his/her students toward what is desired, aspired 
for, and accepted within society.

In some statements it is possible to see both categories 
imbricated, as for example:

Teachers rely on established beliefs to choose 
pedagogical content and curriculum guidelines 
[…]; and teachers reflect their beliefs in their 
teaching, thus shaping their students’ beliefs […]. 
(JMTE, 2014, p. 305)

They [effective teachers] ensure that the lesson 
content has a strong mathematical focus and con-
tains opportunities for students to think, reason, 
communicate, reflect upon and critique mathe-
matics. (JMTE, 2014, p. 299)

These two examples show that mathematical knowl-
edge is not questioned; the knowledge is considered 
an important and sacred truth. This stance toward 
knowledge influences how students understand the 
world, which favours a type of rationality and subject.

CONCLUSIONS 

The discourses reveal our historic, ideological and 
political framework. Because the statements express 
desired ideas about the subjects involved in education 
and the role of school mathematics to imagine a better 
world, they also express some truths circulating in 
diverse teaching practices of school mathematics and 
its learning (Valero & García, 2014). Moreover, we can 
understand the discourses as forces acting on the sub-
ject, since these discourses are promoting practices, 
rationalities, thoughts, assumptions and knowledge, 
among others, from a spatio-temporal context, all 
which favour the fabrication of a particular subject. 
Therefore, we can understand discourses about the 
mathematics teacher as a dispositive power.

From the review of the pedagogical research on math-
ematics teachers, it is possible to see that it seeks 
to homogenize mathematics teachers in a context 
where differences and particularity are predominant. 
Moreover, diverse research promotes a denaturing 
and an abstraction of mathematics teachers, ignoring 
aspects of the complexity of teaching, for example, 
about the particulars of teaching as work, the internal 
dynamics of the work place, etc. The denaturation 
and objectivity in the research promotes a rationality, 

which favours the thought of the mathematics teacher 
as a neutral and perfect subject, an established ideal 
image. A large number of researchers have sought 
to compare the mathematics teacher (subject) with 
this ideal image, favouring the establishment of an 
epistemology of the deficit knowledge. Consequently, 
many researchers have focused on exploring the skills 
and knowledge of mathematics teachers, emphasiz-
ing their deficiencies and their negatives aspects. For 
example:

…the teachers’ knowledge of functional thinking 
was below the level expected for teaching mid-
dle-school algebra. This provides further evi-
dence of teachers’ inadequate understanding of 
mathematics for teaching (JMTE, 2014, p. 418)

This can generate a paradox because the ideal is de-
fining the mathematics teacher from an unattainable 
idea, but when the teacher approximates this ideal, the 
ideal is redefined and increases the distance between 
the ideal and the subject (the mathematics teacher). In 
addition, this ideal is constantly reformulated, accord-
ing to the research and the new demands of the society.

Hence, the diverse affirmations that were found in 
researched enunciations can establish a framework 
and a network for imagining the subject of the math-
ematics teacher, establishing statements about good 
practices, appropriation and management of specific 
knowledge, and its importance for society. For exam-
ple, it is arguable that “mathematical knowledge for 
teaching stresses the importance of using mathemat-
ical knowledge to bring about pedagogically useful 
mathematical understanding” (JMTE, 2014, p. 229). 
Consequently, the intention of the mathematics educa-
tion research is not only to show, question or analyse 
what mathematics teachers doing. Mathematics edu-
cation research configures a disposition that shapes 
the subjectivity of the mathematics teacher, where 
the knowledge has great value and the mathematics 
teacher is thought of as an agent for governing others. 

We can see that the statements established have been 
strongly influenced by objective ideas, the favour-
ing of certain practices, and discursive formations 
seeking abstraction and generalization. Moreover, 
thinking of the mathematics teacher from a social 
perspective, we can see diverse discourses that estab-
lish knowledge of a useful subject that seeks to form 
part of the desired truth and conduct other toward 
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the desired truth. The discourses and knowledge es-
tablished from the research are subjected to the study 
of the mathematics teacher under a particular logic 
that defines the real; this logic is developing from an 
epistemology of ideas both desired and feared. In ad-
dition, the discourses determine what is true or false 
about mathematics teachers, which helps establish a 
particular ideal image of the teacher and a particular 
subject. In the words of Deleuze (1994), the subject 
does not pre-exist, the subject isn’t reproducing the 
repeats that are part of the world. But rather the sub-
ject is produced by the multiples games of the real and 
these games are validating practices and knowledge.
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In opposition to neoliberal forces that are furthering 
homogenization of mathematics education worldwide 
as part of globalization, we argue for the necessity of 
maintaining diversity in all its human forms, including 
in mathematics and mathematics education. Central to 
this position is respect is the conception of mathematics 
and mathematics education as human activities, inex-
tricably embedded in forms of life.
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INTRODUCTION: GEOPOLITICAL BACKGROUND

Among the most salient aspects of education in the 
United States and many other parts of the world are: 
privatization and corporatization of public education, 
with associated profiteering by IT and publishing cor-
porations; homogenization that ignores all forms of 
diversity; as well as excessive and irrational use of 
high-stakes standardized tests (Apple, 2000; Picciano 
& Spring, 2013; Spring, 2008). 

Aspects that bear particularly on mathematics edu-
cation include:

 ― homogenization of the mathematics curriculum, 
reinforced by international testing 

 ― pervasive rhetoric about the necessity of high 
levels of formal mathematics education, typically 
phrased as essential for economic competitive-
ness in the global marketplace

 ― unwarranted weight afforded to performance 
on tests of mathematics as a gatekeeper to edu-
cational and economic opportunities

 ― continuing perception of mathematics as acul-
tural, and academic mathematics as a purely 
European achievement

In this paper, we present a counterposition.

MATHEMATICS AND MATHEMATICS 
EDUCATION AS HUMAN ACTIVITIES

We take it as axiomatic that mathematics itself, and 
mathematics education, are human activities, embed-
ded in historical, cultural, social, and political con-
texts.  Accordingly, we argue for mathematics educa-
tion that valorizes diversity in all its forms, stemming 
from diversity in forms of life, that we term “cultur-
ally responsive mathematics education” (CRME). In 
opposition to the corporate goal of (mathematics) 
education as a means to increase human capital, we 
would redirect it towards increasing human capabili-
ty, which Sen (1997, p. 35) defined as “the ability of hu-
man beings to lead lives they have reason to value and 
to enhance the substantive choices they have”. In short, 
we argue for humanization of mathematics education.

Mathematics as cultural construction
[…] mathematics must be understood as a human 
activity, a social phenomenon, part of human cul-
ture, historically evolved, and intelligible only in 
a social context (Hersh, 1997, p. xi).

Particularly since the 1980s, the position expressed 
by Hersh has been articulated among teachers, schol-
ars, and researchers who critique the sociopolitical 
systems of mathematics education. Central to the con-
cerns we raise in this paper is the Ethnomathematics 
movement, essentially launched when Ubiratan 
D’Ambrosio gave a plenary talk at the International 
Congress on Mathematical Education in Adelaide 
in 1984 on “Socio-Cultural Bases for Mathematical 
Education”, and the conference included an extra day 
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on the theme “Mathematics Education and Society”. 
Shortly afterwards, in another key work, Bishop 
(1988) framed mathematics education as encultur-
ation and identified counting, measuring, locating, 
playing, designing, and explaining as mathematical 
activities found in essentially all cultures. 

One definition is that:

Ethnomathematics is the mathematics practiced 
by cultural groups, such as urban and rural com-
munities, groups of workers, professional classes, 
children in a given age group, indigenous socie-
ties and so many other groups that are identified 
by the objectives and traditions common to these 
groups (D’Ambrosio, 2006, p. 1). 

Thus, although much of the work in Ethnomathematics 
analyses mathematical aspects of practices in non-in-
dustrial societies, it also applies to cultural groups in 
the industrialized world. For example, carpenters in 
many cultures operate very efficiently, when measur-
ing or designing, with decimal fractions or binary 
fractions such as ¾ and 5/16 – they never need to calcu-
late something like 3/7 + 4/11. From this perspective, it 
must be considered a major weakness in mathematics 
education as typically practiced in many parts of the 
world that there is a lack of connection between what 
happens in schools and the lived cultural and sociopo-
litical experience of students, their families, and their 
communities, and, for most people, their future lives.

Emphatically, the statement just made in no way ne-
gates society’s need for a cadre of people with math-
ematical expertise to provide the benefits that come 
from technological advances (and indeed to advance 
mathematics as a discipline that continues to evolve 
(Hersh, 2006)). What seems absurd to us is pervasive 
rhetoric (in which many in our own field join) about 
the need for all students to learn substantial amounts 
of technical mathematics, ignoring the most obvious 
fact about any society, namely that it relies on people 
filling a diversity of roles. Thus, instead of a soundbite 
such as “algebra for all”, we would suggest a less catchy, 
but more real, slogan like “a great deal of algebra for 
a few, a lot of algebra for a larger number, and the 
opportunity to learn useful algebra for everyone” 
together with the understanding that lack of perfor-
mance in formal algebra should not be a barrier to 
lives and careers for which it is not necessary. We 
also suggest that the opportunities for Internet-based 

learning, including courses delivered by top mathe-
maticians, are ideally suited for the nurturing of the 
next generation of mathematically gifted students, 
who are typically self-motivated.

While the study of mathematical practices among 
cultural groups may be defined as the essence of 
Ethnomathematics, from its inception another fo-
cus has been the construction of a counter-narrative 
to the Eurocentric – indeed, arguably, racist (Raju, 
2007) – account of the history of the development of 
academic mathematics, as addressed in the collection 
of key papers edited by Powell and Frankenstein 
(1997). Historians have documented the contribu-
tions of many cultures, including Indian, Chinese, and 
Arab, to the development of academic mathematics in 
Europe (Joseph, 1992; Raju, 2007). In other parts of 
the world, very sophisticated and elaborate systems 
of mathematics, astronomy, navigation, engineer-
ing, and science, were developed across millennia. 
D’Ambrosio (1985) pointed out that colonialism grew 
in a symbiotic relationship with modern science, in 
particular mathematics and technology, and Bishop 
(1990) characterized mathematics as a tool of impe-
rialism. Mathematics was, and remains, a powerful 
way to convey the supposed intellectual superiority 
of Europeans and cultural groups deriving from them. 
Accordingly, the rewriting of history of mathematics 
is essential, not just as a matter of truth and justice, 
but also because the continuing belief in the intellec-
tual inferiority of non-White people as doers of math-
ematics, deeply and unconsciously rooted among the 
colonizers and internalized by the colonized, is an 
obstacle to the construction of the identity of a non-
White person as a doer of mathematics, for example 
an African or Asian immigrant in a European school.

Humanizing mathematics education
Mathematics education, like mathematics, is a human 
activity – indeed, even more so, given the centrality of 
interpersonal relationships in learning/teaching. An 
adequate analysis of the relationship between mathe-
matics-as-discipline and mathematics-as-school-sub-
ject is beyond the scope of this paper; we simply state 
our convictions that mathematics education is not 
reducible to the immaculate transmission of a struc-
tured body of knowledge from experts to learners, 
and that mathematicians may be necessary, but are 
certainly not sufficient, when it comes to framing 
mathematics education. 
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Paulo Freire’s observation that “education is politics” 
(Freire & Macedo, 1987, p. 47) applies specifically to 
mathematics education in many ways, with far-reach-
ing consequences. A very important case is the extent 
to which so many aspects of modern life are governed 
by mathematical models that are often invisible to, 
and almost always beyond the control of, most peo-
ple – what Skovsmose (2005, p. 86) termed “mathe-
matics in action”. We have argued elsewhere (Greer 
& Mukhopadhyay, 2012) that mathematics education 
predominantly fails to prepare students to become 
citizens with a critical disposition to understand, and 
agency to disrupt, misapplied mathematical models, 
for example in relation to economics. We would argue 
that this failure in mathematics education serves to 
protect political systems from critique. By contrast, 
Gutstein (2012), operating in the spirit of Freire, has 
shown how mathematics can become a weapon in the 
struggle for social justice by teaching students how 
it can be a tool for analyzing and then acting upon, 
issues of importance in their sociopolitical reality 
(reading and writing the world, in Freirean terms). 

To raise another political theme in relation to mathe-
matics education, there is pervasive rhetoric across 
the world to the effect that advanced levels of math-
ematics (and science) education are essential for all 
students for a given country’s economic survival 
in a globally competitive world. Indeed, within the 
United States of America, this rhetoric is increasing-
ly couched in terms of threats to national security. 
Contrast this nationalistic stance with D’Ambrosio’s 
(2010) passionate plea that mathematicians and math-
ematics educators should collectively be seeking solu-
tions to the crises facing humanity.

CULTURALLY RESPONSIVE 
MATHEMATICS EDUCATION

In the previous section, we argued for a conceptual-
ization of mathematics as culturally constructed and 
for humanizing mathematics education, including 
recognition of its political roles. In this section, we 
consider, as an important aspect of humanization, 
making mathematics education culturally respon-
sive. This theme plays out, with variations, all over 
the world, of which we mention just a few. 

As movements of populations increase, for many 
reasons, children find themselves in complex inter-
cultural life situations. By way of example, Ali (2012) 

presents a detailed account of a young Pakistani im-
migrant in Barcelona constructing her mathematical 
identity and planning her career in a multicultural 
city, in the context of several languages (Punjabi, Urdu, 
Catalan, Spanish, English) and having experienced 
greatly contrasting styles of mathematical instruc-
tion in Pakistan and Saudi Arabia before coming to a 
school in Barcelona in Grade 10.

As a more general example, with the ending of colo-
nialism in its original form in many countries, liberat-
ed peoples face the issue of reconciling their cultural 
identity with the need to be economically competitive. 
Arguably the clearest example is South Africa (Graven, 
2014; Vithal, Adler, & Keitel, 2005). In many other parts 
of the world, such as South America, Australia, and 
New Zealand, campaigns for the rights of Indigenous 
peoples include work on both mathematics educa-
tion and on Ethnomathematics (Ferreira, 2015), not 
without many conflicts and dilemmas (Greer, 2013). 
A very striking manifestation of tension was mani-
fest in a report (Atweh & Clarkson, 2001, pp. 86–87) 
of interchanges at a conference at which Clements 
(1995, p. 3) stated that “Over the past 20 years I have 
often had cause to reflect that it is Western educators 
who were responsible not only for getting their own 
mathematics teacher education equation wrong, but 
also for passing on their errors to education systems 
around the world”. Yet, at the same conference, the 
president of the African Mathematical Union (Kuku, 
1995, p. 407) “warned against the overemphasis on 
culturally oriented curriculum for developing coun-
tries that act against their ability to progress and com-
pete in an increasingly globalized world” (Atweh & 
Clarkson, 2001, p. 87).

In India, activist academics have been striving to 
create curriculum and textbooks for elementary 
mathematics that “address diverse children’s knowl-
edge through a (re)humanizing pedagogy of empathy, 
despite the constraints of a large bureaucratic and 
increasingly neo-liberal state system” (Rampal, 2015). 
In the same context, Subramanian raises ethical issues 
involved in designing and developing a uniform cur-
riculum for an educational system of such a size and 
with such diversity of languages and cultures.

In the United States of America, since the passing 
of the legislation “No Child Left Behind” in 2001, in-
tensive use of standardized tests, combined with 
disaggregation of test scores by ethnicity, has led to 
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considerable attention being focused on attempts to 
reduce the differences in test scores among ethnic 
groups, in particular to raise the test scores of Black, 
Latino/a, and Native American students. (The usual 
terminology for such efforts is “closing the achieve-
ment gaps” which is problematic for a number of rea-
sons, including connotations of deficit models, the 
positioning of white students’ achievements as the 
norm, and concerns about the nature of the tests that 
yield the scores.) 

Attention to these aspects has been concentrated by 
rapid demographic changes – at the time of writing, 
the US Department of Educational Statistics has just 
projected that in the coming school year, the propor-
tion of school students that are White (by the clas-
sification structure used) will be less than 50%. The 
teaching population, on the other hand, remains pre-
dominantly White, being 83% in 2007.

Against this background, the concept of culturally 
responsive teaching has made considerable prog-
ress within the United States in the last twenty years 
(Gay, 2010; Ladson-Billings, 1995; Villegas & Lucas, 
2002). Contributing to its emergence, movements 
within critical education that have been founda-
tional include Multicultural Education and Critical 
Race Theory. The term “Culturally Responsive 
Mathematics Education” (CRME) originated in a 2004 
conference in Washington which we helped to orga-
nize, leading eventually to an edited volume (Greer, 
Mukhopadhyay, Powell, & Nelson-Barber, 2009). 

Given that central to all education is the relationship 
between the student and the teacher, then the cultur-
al and mathematical identities of both students and 
teachers are of paramount importance, as is the de-
gree to which they do or do not align, particularly in 
terms of culture, ethnicity, and class. In the context of 
the United States of America, Gay (2009, p. 189) posed 
many key questions: “How can middle-class mono-
lingual European-American math[ematics] teachers 
work better with students who are predominantly 
of color, attend schools in poor urban communities, 
and are often multilingual?”. Similar questions apply 
in all educational settings in which there are class, 
ethnic, and cultural differences between students and 
their teachers. Gay (2009, p. 194) also stressed that 
teachers-in-training should examine questions such 
as “What is it about the way math has been socially 
constructed that is exclusive, rather than inclusive 

to culturally, racially, ethnically, and socially diverse 
students?”. She also pointed to the fact that:

[many students] find it difficult to see the rele-
vance of many math concepts, principles, and 
operations to real life, when they are perpetual-
ly presented as decontextualized formulas and 
abstractions. Teachers need to be taught how to 
humanize mathematics, and to place these recon-
structions into the lived realities of different ra-
cial, cultural, social, and ethnic groups. (p. 195, 
emphasis added)

There is a conception that an educational system full 
of human beings, with all the complexity that im-
plies, can be treated as a black-box model controlled 
by crude external levers of standardized testing de-
signed to expose schools to market forces that will 
automatically improve education. This conception 
has its epicentre in the United States of America, but 
the seismic effects are widespread. Quite apart from 
the absurdity of such a position, and the lack of any 
evidence that it is viable, in the context of the current 
paper, we point out that standardized, mass-admin-
istered tests by their nature cannot take account of 
the diversity of students’ lives (Miller-Jones & Greer, 
2009). 

CONCLUDING THOUGHTS: HONORING 
DIVERSITY IN MATHEMATICS EDUCATION

We argue for mutual respect for the Other, through:

[…] celebration of diversity in all its human forms, 
specifically in relation to mathematics and math-
ematics education: culture, ethnicity, gender, 
forms of life, worldviews, cognition, language, 
value systems, perceptions of what mathematics 
education is for (Greer, Mukhopadhyay, & Roth, 
2012, p. 1).

One way to frame the argument that we are seeking 
to advance in this paper is to consider interactions 
between three families of mathematical activities, 
namely mathematics-as-discipline (MD), mathemat-
ics-as-school-subject (MS), and mathematics-with-
in-culture (MC). The simplistic notion held by some 
mathematicians that the role of MS is simply to pass 
on the rudimentary contents of MD to another gener-
ation, primarily as groundwork for the reproduction 
of their own species, needs to be confronted because 
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it exerts unwarranted influence on mathematics 
education, in our view. Rather, we believe that MC 
should play a central role in constructing mathemat-
ical schooling, a position aligned with the concept of 

“funds of knowledge” that is based on a simple premise, 
that “people are competent, they have knowledge, and 
their life experiences have given them this knowledge” 
(Gonzalez, Moll, & Amanti, 2005, pp. ix-x). 

As argued in this paper, a clear implication of this 
viewpoint is that diversity in all its forms, of which 
diversity of forms of life may be considered the bed-
rock, must be fundamental to mathematical schooling. 
Skovsmose (2012) draws attention to the variety of 
sites for learning mathematics, the variety of forms of 
mathematics in action, and the variety of educational 
possibilities. With reference to the first, he points 
out how research discourse in our field is dominat-
ed by an unexamined stereotype of “the prototype 
mathematics classroom” that ignores the reality of 
many classrooms around the world. The second type 
of variety that he mentions is an effective response 
to the question “But isn’t mathematics the same ev-
erywhere?” which is not tenable if the boundary of 
mathematics is drawn to include its applications 
(and, as Raju (2007) has pointed out is negated by the 
predominant reliance of Western mathematics on 
two-valued logic, a cultural choice). And the third is 
central to the argument in this paper. 

While we have not enough space within this paper to 
address linguistic diversity, it is of the greatest impor-
tance, not simply in its own right in a world increas-
ingly under the sway of English, but also in relation to 
issues in multilingual classrooms and the importance 
of language in framing and communicating thinking, 
including in mathematics.

Epistemological pluralism is another central issue, 
even from the perspective of mathematics-as-dis-
cipline. Pinxten, van Dooren, and Harvey (1997, pp. 
174–5), citing the fundamental different epistemol-
ogy of the Navajo, in particular in relation to space, 
point out that diversity is essential in order for evo-
lutionary selective processes to operate in the further 
development of MD. They comment that “Through a 
systematic superimposition of the world view and 
thought system of the West on traditional non-West-
ern systems of thought and action all over the world, a 
tremendous uniformization is taking hold… The risks 
we take on a worldwide scale, and the impoverish-

ment we witness is – evolutionarily speaking – quite 
frightening” (p. 174).
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In this paper, we discuss how newly arrived students 
experience, and perform in, school mathematics. There 
is little research on immigrant students’ initial time in 
Swedish school, and it is methodologically underdevel-
oped. Our own research will be revisited, and we give 
an account of the methodologies we have developed. We 
look for analytical tools using both qualitatively as well 
as quantitatively, to interpret classroom interaction, so-
cial practises, individual performance and achievement. 
Our attention to diversity and equity issues includes 
avoiding deficit discourses explaining both success 
and failure in school mathematics, in relation to back-
grounds, language and culture. 

Keywords: Newly arrived, mathematics education, 

methodology, foreground.

INTRODUCTION

Sweden today is a multilingual and multicultural 
society. Some suburban schools in the largest cities, 
Stockholm, Gothenburg and Malmoe have schools 
with up to 98 % of students speaking first languag-
es other than Swedish. 44 % of the total amounts of 
immigrated students, 7–19 years of age (Statistics 
Sweden, 2014), are from outside Europe. Several of 
these countries suffer from political instability and 
some of them are developing countries. Newly arrived 
student numbers increase as the worlds’ hot spots 
spread. The term newly arrived students is used in 
Swedish education policy and academic discourse. 
It defines students arriving from abroad during the 
time of primary or secondary school as newly arrived 
(Utbildningsdepartementet, 2013). In Sweden, stu-
dents can be regarded as newly arrived up to four 
years from arrival. Resources are tied to that time 
span within the educational system, and offers op-
tional teaching in both mother tongue and Swedish as 
a second language (Utbildningsdepartementet, 2013). 

The students cannot yet speak Swedish, and are enti-
tled to a special introduction to school. The present 
years Arabic is the most common mother tongue spo-
ken after Swedish (Skolverket, 2013/14). 

There is little research on immigrant students’ ini-
tial time in a Swedish school, and there are no studies 
comparing Sweden with other countries. Bunar (2010) 
mapped and reported research on newly arrived stu-
dents in Sweden. He found the Swedish research is 

“scarce and theoretically and methodologically un-
derdeveloped” (p. 6). It is impossible to draw certain 
conclusions and the Swedish research does not sup-
port understanding of learning conditions for newly 
arrived students. Bunar also states there are, to a high 
degree, local variations and a lack of a common edu-
cational policy, that might lead to arbitrariness and 
uneven quality in education. This paper is a response 
to Bunar’s call for more research on newly arrived 
students in Sweden and the purpose is to discuss the 
question: 

How do newly arrived students experience, and perform 
in, school mathematics in Sweden? To do this we look 
at data from our own research retrospectively. An 
underlying aim is to pay attention to diversity and 
equity issues in mathematics education, and to devel-
op theoretical and methodological tools for research 
on newly arrived students in Swedish mathematics 
classrooms.

In the following section, a brief review of research 
on newly arrived students in Sweden is given, and 
thereafter our own earlier research will be summa-
rised. The methodologies of our presented work will 
be indicated and then some final remarks for future 
research will be made.

mailto:eva.noren%40mnd.su.se?subject=
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BACKGROUND 

Studies on newly arrived students that have been 
undertaken in Sweden are divided into mainly three 
areas: 1) A social and individual perspective that in-
clude mostly identity formations among adolescents, 
the power relations in the society, and how students 
integration are affected by these factors. 2) An insti-
tutional perspective that focus on transitions and on 
measurements of the importance of migration age for 
students’ achievement. 3) A pedagogical perspective 
that focus on second language development and learn-
ing in a second language (Bunar, 2010). The studies 
come from a variety of academic disciplines.

Newly arrived students contribute to characterize 
the Swedish school with an increased diversity of lan-
guages, ethnicities, cultures, religions and national-
ities. Their introductory time in school is crucial to 
their continued performance in the Swedish school. 
Introductory teaching differs greatly between differ-
ent schools and we know very little about what works 
(OECD, 2006; Nilsson & Axelsson, 2013). Education 
for newly arrived students is commonly arranged in 
introductory classes, providing a basis in the Swedish 
language for later transition to mainstream classes. In 
order to deal with language requirements of academic 
school work in the language of instruction (Swedish) 
it is necessary to develop what Cummins (2008) refers 
to as Cognitive Academic Language Proficiency - CALP. 
That means to be able to use language in context-re-
duced situations such as advanced school mathemat-
ics. In a second language environment it may take 
about seven years to fully develop CALP skills, in the 
second language. Hakuta (1986) suggests that CALP 
skills are transferable across different languages. 

Criticism from both researchers and authorities in-
form us that students are retained in introductory 
classes for too long. In fact, it is the individual stu-
dent’s progress that determines when s/he will be in-
tegrated into a mainstream “regular” class. The rules 
on how the assessment of this progress is done and by 
whom is unclear. And as researchers have pointed out 
this assessment could be disastrous for the newly ar-
rived students’ motivation to study if there are delays 
in their transition to mainstream classes (OECD, 2006). 
In their recent study, Nilsson and Axelsson (2013) 
analysed the social and pedagogical resources in the 
contexts of introductory classes and how newly ar-
rived students experienced the time in and transition 

between introductory and mainstream classes. The 
students had arrived during the last years of lower 
secondary school. The result points to a tendency of 
allocating responsibility for newly arrived students’ 
education solely to the introductory classes or the 
individual student. Nilsson and Axelsson (2013) argue 
that this is an insufficient praxis, and that pedagogi-
cal and social provisions also have to be made in the 
mainstream system in order to fulfil inclusive and 
educational aims.

In an introductory class where students have different 
backgrounds, different educational background and 
knowledge of the Swedish language, there are often 
also various forms of trauma in the picture. One im-
portant factor for integration in school is that teach-
ers take into account the interactions and, above all, 
to create a supportive network around the individual 
student (Rodell-Olgac, 1999).

EARLIER AND ONGOING STUDIES IN SWEDISH 
MATHEMATICS EDUCATIONAL CONTEXTS: 
DRAWING FROM OUR OWN RESEARCH

Norén (2007, 2010) investigated bilingually instructed 
mathematics classrooms where teachers and students 
used Arabic and Swedish. Some of the students in her 
study were newly arrived and attended introductory 
classes except for mathematics and physical educa-
tion classes. According to Norén the newly arrived 
students, benefited largely from the bilingual edu-
cation. Knowing and using several languages opened 
up an opportunity for mathematics development. The 
bilingual teaching of mathematics favoured learning 
the Swedish language as Swedish mathematics text 
books was used and Swedish was focused for mathe-
matical concepts.

An example from the study (Norén, 2007) was cen-
tered on Nada, a 15 year-old girl originally from Iraq, 
Arabic as mother tongue. According to Nada, from 
interviews and participating observations, when she 
as a newcomer arrived into Swedish school, she was 
immediately placed in an introductory class where 
the focus was on learning the Swedish language at the 
expense of continued learning in mathematics. Nada 
was self-conscious about priorities in the introducto-
ry class, saying:

Then we worked almost nothing with math. It was 
just numbers (arithmetic) and plus and minus. 
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No texts. We invested in Swedish. Nothing in the 
maths. I have never got a passed grade in math-
ematics, I didn’t know any maths. (Nada, from 
interview in eighth grade)

Her account is a reflection of a strong influential dis-
course “Swedish only”, to learn Swedish first and fast. 
It is an everyday opinion that it would enable her to 
quickly start studying mathematics in her second lan-
guage Swedish (Sjögren, 1996; Runfors, 1993). When 
Nada started eighth grade, she was offered, and said 
yes to participate in the bilingual mathematics edu-
cation program. In a later interview Nada said:

I have learned more (mathematics and Swedish) 
/.../ Arabic makes it easier and possible to learn 
more /.../ Language is an important issue. /…/ 
When I started the bilingual program with other 
Arabic speaking students, when they got grades 
like pass and higher, I thought I could get grades 
as well.  (Nada, from interview in ninth grade)

Heading towards the end of ninth grade Nada start-
ed to identify herself as an engaged student working 
hard to pass the examinations in mathematics. That 
was also the expectations from her mathematics 
teacher. In the end of the ninth school year Nada got 
grades in mathematics good enough to get into the 
upper secondary school program she wanted.

In another example Norén (2010) informs us of a 
group of three newly arrived students from Iraq, 15, 
15 and 16 years old. When working with text problems 
in mathematics, they had access to dictionaries. The 
context in the text problems was arranged around a 
fishing trip. Although students with help of the dic-
tionaries, and a voluminous workload, managed to 
translate the information word for word the context 
was shrouded in mystery. With the help of the bilin-
gual mathematics teacher who clarified the cultural 
contexts, the students solved the tasks. It is not com-
mon with fishing trips in Iraq, the teacher explained, 
and it is not that the translations of words and sen-
tences from Swedish into Arabic help students solve 
text data in mathematics. By working with text data, 
students in addition to working with mathematics 
also learn some Swedish, and they learn something 
about the Swedish culture.

In an ongoing study Petersson (2012, 2013) investigat-
ed newly arrived immigrant students’ achievement on 

various mathematical tasks on a test in mathematics. 
The tasks are formulated as to not cause language 
obstacles for second language learners, and to in-
volve algebra, statistics, proportional reasoning and 
negative numbers. The performances of the newly 
arrived students, defined as those who immigrat-
ed during school years 8–9 are compared with stu-
dents who immigrated during school year 1–7, and 
Swedish native students. One important result is how 
the achievement for the different student categories 
was distributed over different topics in mathemat-
ics. On most tasks newly arrived and early arrived 
immigrant students achieved similarly and on a level 
of about two thirds of the level of the native students. 
For tasks on advanced school mathematics, such as 
algebra and negative numbers, the newly immigrated 
students performed as native students or better while 
the earlier immigrants performed significantly low-
er than both native and newly immigrated students. 
Petersson concludes that there is a need for research 
on how different student categories perform in spe-
cific topics in mathematics. That is, how achievements 
and various solution strategies are distributed among 
newly and early arrived students. It is not sufficient to 
draw conclusions that immigrant students in general 
perform lower than native students or that immigrant 
students perform lower in mathematics the later they 
immigrated, like, for example, Böhlmark (2008) does. 
An assumption, by Petersson, is that early arrived 
students have had most of their mathematics instruc-
tion in their second language Swedish, while newly 
arrived immigrant students have had instruction and 
textbooks mainly in their first language. That newly 
arrived students in average perform better on some 
tasks and native Swedish students perform better on 
other tasks may have to do with the fact that teaching 
of mathematics in countries over the world put em-
phasis on different mathematical topics.

Svensson (2014) examined how immigrant students 
experienced their possibilities to learn mathematics. 
This was done to broaden and critique common expla-
nations given concerning immigrant students’ unsuc-
cessfulness with mathematics. In their narratives in 
which, the fifteen years old students positioned them-
selves in discourses that contributed to poorer per-
formance in school mathematics than Swedish native 
students. The students were often confronted with 
not belonging to the normal i.e. Swedish students and 
describing their experiences of alienation and a sense 
of injustice. The students seemed to create themselves 
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as individuals with limited room for manoeuver in the 
present and in the future as they identified themselves 
as belonging to a problematic group of students. One 
of the students in the study, Khaled from Afghanistan, 
had been going to a introductory class for as long as 
three years, only the last year of compulsory school 
(ninth grade) was in a regular mainstream class. He 
expressed the need of knowing Swedish to be able to 
manage mathematics instruction and the text books 
in Swedish, when he was talking to his fellow students 
in a focus group interview:

Yes, but like this, I cannot so good language, I do 
not understand certain questions in math when 
they say it, I read it several times but I do not get 
it anyway, because I can not handle it. You have 
lived long time here, and know good Swedish so 
you can do it better than me. (Jo, men en del typ 
jag kan inte så bra språket, jag fattar inte vissa 
frågor på matematik när de säger det, jag läser 
det flera gånger men jag fattar det ändå inte för 
jag inte klarar det. Ni har bott länge här, och kan 
bra svenska så ni klarar det bättre än mig.)

Further on he says:

It is not so easy to learn so quickly the Swedish 
and then change it to a maths language, to then I 
do not understand so much at math, some ques-
tions you do not understand so well / ... / like full 
sentences / ... / when I read it gets, it becomes 
quite strange to me so I do not understand so I 
skip it. (Det är inte så lätt att lära sig så snabbt 
svenskan och sen ändra det till mattespråket, till 
sen man fattar inte så mycket på matte, vissa frå-
gor förstår man inte så bra /…/ typ hela meningar 
/…/ när jag läser det blir det, det blir helt konstigt 
för mig så förstår jag inte så hoppar över.)

Khaled tells about his experiences of being taught 
mathematics in Afghanistan. He does not believe 
that mathematics in Swedish schools is the same as 
in Afghanistan. He managed mathematics quite well 
there but not in Sweden. He says it may be because 
of language issues, and “I am mostly used to that, the 
Afghan maths one can say, what I did there”. He also 
states that his father cannot help him with his math-
ematics homework because the father knows Afghan 
mathematics, not Swedish mathematics. 

In a recently started study Norén and Sträng (in prepa-
ration) investigate how newly arrived immigrant 
students get access to mathematics teaching when 
starting school in Sweden. They will also investigate 
how the newcomers experience their education in 
Swedish mathematics classrooms. Sträng does par-
ticipant observations during mathematics lessons 
in introductory classes. Norén interviews students, 
who just have been transferred to mainstream classes. 
Also their parents are interviewed as well as their 
teachers. The study is part of mapping mathematics 
education for newly arrived students in a Stockholm 
suburban municipality. There are yet no results re-
ported from this study.

METHODOLOGICAL ISSUES

As this paper is a response to Bunar’s (2010) call for 
more research on newly arrived students, and to de-
velop theoretical and methodological tools, we give 
account of the methodologies we have developed in 
our research respectively. As we have concerns for 
equity in mathematics education we have to prob-
lematize how our research is carried out, in terms 
of “normality”, Swedishness, and newly arrived stu-
dents who not speak yet Swedish. It is about power 
relations as well as communication difficulties. To 
do so we use discourse theory in line with Foucault 
(2008). In classroom research, students’ experience, 
performance and achievement analysis require a var-
iation of research methods. So far we have used both 
qualitative and quantitative methods. Both may use 
document analysis and interviews while they typi-
cally differ in the use of classroom observations and 
statistical analysis of the outcome. So what are the 
methodological concerns when the focus is on how 
newly arrived immigrant students’ experience, and 
perform in, school mathematics in Sweden?

NEWLY ARRIVED IMMIGRANT 
STUDENTS’ EXPERIENCES OF 
MATHEMATICS CLASSROOMS 

Part of our research is mainly qualitative, using par-
ticipant observations (Hammersley & Atkinson, 2007), 
individual interviews, and focus group interviews 
(Kvale, 1997). The research is inspired by critical math-
ematics education research. Skovsmose (1994, 2005) 
has had a major impact as we are using his theoretical 
construct foreground (Norén, 2010; Svensson, 2012, 
2014). According to Skovsmose (2005), a foreground 
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represents a student’ interpretation of his/her learn-
ing opportunities and life choices in relation to what 
the student finds acceptable in the current socio-po-
litical context, but also what a student in question 
perceives as available for him/her. Skovsmose (2005) 
writes:

Intentions do not spring to life from nothing. They 
are grounded in a landscape of pre-intentions or 
dispositions, and I divide these into “background” 
and “foreground”. The background of a person 
can be interpreted as the socially constructed 
network of relationships belonging to the history 
of the social group to which the person belongs. 
When one tries to understand an individual’s 
intentions, one often refers to his or her back-
ground. But equally important is the persons’ 
foreground. By this, I refer to those opportunities 
that the social situation makes to the social group 
to which the person belongs. Opportunities are 
not to be understood as sociological facts but as 
collectively or individually interpreted oppor-
tunities (p. 89).

Using foreground as an analytical tool, we have noted 
that students’ success in school mathematics associ-
ates with the opportunities they have to positions 
formed in classroom practices. These practices are 
affected by public discourses on immigrant students 
and mathematics that occur on a societal level. Our 
focus is on the opportunities made available for the 
students to get involved in school mathematics, and 
in the long run, the hopes for the future that they will 
persieve through mathematics classroom practices. In 
line with Rodell-Olgac (1999) we argue for schools and 
teachers to take into account the social interactions 
in classrooms, and to create a supportive network 
around the individual newly arrived student. The 
contrast is what has been shown in earlier research: A 
focus on solely language aspects might position newly 
arrived students as “problems”, and the answer to that 
will be the remedy “Swedishness” with a quest to ho-
mogenize (Sjögren, 1997; Runfors, 2003; Norén, 2010; 
Svensson, 2014). Students will be viewed and treated 
at the basis of what they lack, and what knowledge 
they don’t have, in relation to how Swedish students 
the same ages are viewed and treated. The Swedish 
students will be the role model of what is “normal” 
while students whose mother tongue is not Swedish 
will be regarded as deviant with “weak language skills” 

(in Swedish). We name these aspects deficit discourses. 
In our research we look for other types of discourses. 

Another part of our research is to compare how newly 
and earlier arrived students perform in different top-
ics in mathematics. Seen as a sample for educational 
statistics purpose, immigrants are in many aspects a 
heterogeneous group. As discussed earlier they are 
a diverse group with respect to how recent they im-
migrated, their socio-economic situation, and their 
earlier experiences of schooling.  

NEWLY ARRIVED IMMIGRANT STUDENTS’ 
PERFORMANCE IN SCHOOL MATHEMATICS

Newly arrived students are rare. About 9 % of the stu-
dents are born abroad; about 4 % are newly arrived 
the first school year and about 1.6 % of the 16-year-old 
students. The difference in percentage is mainly due 
to the longer stay of the older students and not due to 
age of immigration. This is a challenge when studying 
achievement data of newly arrived immigrants, since 
the sample must be large enough for conducting quan-
titative research. One example is Heesch (2000) who 
re-used TIMSS 1997 data for a study on Norwegian 
immigrants. In their study, there were few immigrants 
and the authors often failed to reach statistically sig-
nificant results despite sometimes large differences 
in achievement. Secondary data may also have other 
limitations. For example test questions may be under 
secrecy and the sample may not be purposeful for the 
research question. 

Another factor to consider is the socio-economic sit-
uation of newly arrived students. Some of them come 
as refugees, some with less schooling than others. 
For this reason there is residential area segregation 
due to economic resources of individual families. In 
larger cities with many schools, this causes school 
segregation since most students are enrolled in a 
nearby school. This indirectly has consequences for 
students’ achievements. Schools with a high propor-
tion of first and second-generation immigrants, also 
have a slightly lower ratio of qualified teachers and 
slightly higher ratio of turnover of employed teach-
ers (Skolverket, 2004, p. 57). Hansson (2012) found a 
positive correlation between student achievement 
and whole class instruction in mathematics. She also 
found a correlation between high proportions of stu-
dents’ individual work and students with immigrant 
background or low socioeconomic status. This means 
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that the students, who can be seen as in more need of 
teacher support, get less teacher support. Hansson 
interpreted this fact as existence of segregation in 
Swedish mathematics classrooms. 

A challenge for quantitative studies is that random 
samples of entire classes needed for collecting a large 
enough sample of, say, newly arrived immigrants, and 
would be unmanageably large. An alternative to ran-
dom samples is purposive sampling when designing 
a student sample (Cohen & Manion, 1994). Petersson 
(2012, 2013) used a purposive sample with the aim 
of decreasing the sample size needed as he selected 
schools with an over average proportion of first gen-
eration immigrants. There are challenges also with 
purposive sampling since the samples can be biased. 
There is a risk of comparing students from a similar 
background instead of comparing students that rep-
resents a national random sample. 

Petersson (2012, 2013) handled the possible bias by 
comparing the achievements on the compulsory na-
tional test of the purposive sample with a national 
random sample. The latter sample was the same as 
was used for the evaluation of the national test.

FINAL REMARKS 

This paper is a response to Bunar’s (2010) call for more 
research on newly arrived students. Our focus on a 
particular school subject is important, as mathemat-
ics education has limited space in earlier research on 
newly arrived students. Newly arrived students must 
learn the new language while also having to acquire 
knowledge in other school subjects. For this to be pos-
sible, second language instruction has to be related to 
teaching in the school’s all subjects. The effects of the 
positive impact mother tongue has for newly arrived 
students must not to be forgotten.

Our aim in this paper was to pay attention to diversity 
and equity issues in mathematics education includes 
avoiding deficit discourses explaining both success 
and failure in school mathematics, in relation to back-
grounds, language and cultural issues. As shown in 
this paper, we look for analytical tools, qualitatively 
as well as quantitatively, to interpret classroom inter-
action, social practises, individual performance and 
achievement. Multiculturalism and multilingualism 
do not have to be constructed as obstacles to learning 
mathematics. 
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The broad interest of this paper lies in how a mathe-
matics teacher, Mary, justifies her professional deci-
sion making. The reported study draws on aspects of 
a PhD project and analyses Mary’s communications 
within a collaborative teacher meeting focused on the 
teaching of mathematics to grade five students. The 
analysis, drawing on social semiotics, highlighted the 
significance of artefacts, such as multiplication tests, 
in Mary’s articulated decision making. We also give 
account for what is addressed in a teacher’s justifica-
tions and how the teacher relates to her students in the 
justifications. Finally, we discuss the wider social and 
political context in which the teacher is working.

Keywords: Mathematics teacher, mathematics teaching, 

teacher collaboration, case study, social semiotics.

INTRODUCTION 

This paper is about a primary school teacher special-
ised in mathematics and science, Mary (pseudonym). 
She has about fifteen years of teaching experience. 
Together with Mary there are three teachers teach-
ing about 100 fifth graders and they meet alternate 
weeks to discuss the mathematics they will be teach-
ing. This study focuses on one of these meetings when 
the group discussed the assessment of multiplication 
tables and the use of textbooks to differentiate teach-
ing. We followed Marys’ communication through the 
meeting with an interest in how she justifies her pro-
fessional decision making. 

It is a challenge to discuss and understand why a math-
ematics teacher teaches the way she does. An easy 
response could be that the curriculum says so; another 
answer might be that the text book says so. From our 
perspective it is, in such a discussion, essential to un-

derstand that teachers’ actions are undertaken within 
a particular social and political context. One exam-
ple of this is how for the last twenty years, Sweden 
has had a decentralised curriculum that has forced 
autonomy on teachers. This forced autonomy, which 
has moved teachers to the centre stage of curriculum 
enactment (Skott, 2004), raises the demands on math-
ematics teachers to make informed decisions in the 
very complex set of actions that constitutes mathemat-
ics teaching. As a basis for teacher decisions there are 
different aspects of justifications possible to construe. 
The aim in this paper is, from a perspective close to 
a teacher’s, to investigate her justifications when she 
discusses mathematics teaching with her colleagues. 
We also discuss the wider social and political con-
text in which the teacher works, while focusing on 
artefacts as a part of the school system. We pose the 
following research questions:

1) What role do artefacts play in Mary’s justifica-
tions in the teacher meeting?

2) What circumstances, contents and ideas are ad-
dressed in Marys’ justifications?

3) What relational aspects concerning herself as 
a teacher and her students are a part of Mary’s 
justifications?

LITERATURE REVIEW

When studying teachers in their social settings, 
one possibility is to examine how they collaborate 
with colleagues. Even though teachers are autono-
mous they need to work in close relationship with 
colleagues, parents and students (Hargreaves, 1994). 
Findings from research about teacher collaboration 
indicate that collaboration within a culture where 
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teachers engage in mathematics teaching together, 
have a positive impact on both teaching practices and 
student achievements (e.g., Honingh & Hooge, 2014). 
Research situated in teacher collaboration is often 
used to study teacher development programs, e.g. 
professional learning communities (Riveros, 2012), 
communities of inquiry (Goodchild, 2014) or learn-
ing studies, which are common in Sweden today (e.g., 
Kullberg, Runesson, & Mårtensson, 2014). 

Teacher collaboration research is rarely situated in a 
naturalistic setting, with a collaboration that would 
have taken place whether the researcher was there 
or not. A review of CERME proceedings 6, 7 and 8 re-
veal only a few papers on teacher collaboration (e.g., 
Spencer & Edwards, 2011) and none situated in an 
everyday situation. If research is situated in a devel-
opment program it could be difficult to distinguish if 
the positive effects come from the collaboration or if 
it is from being in a development program. Here we 
can see a need for more studies on teacher’s everyday 
life, also teacher collaboration.

Studies concerning mathematics teachers and their 
practices are diverse. In literature relevant for this 
study we can see that different countries have differ-
ent school-cultures. Cross-nationally, students receive 
different numbers of mathematics lessons of differ-
ent length, but within countries there is considerable 
consistency in how mathematics teaching is executed 
(Andrews & Sayers, 2005). This influence of tradition 
and school culture on mathematics teaching is, for 
example, described in the way teachers engage with 
and use curriculum materials (e.g., Remillard, 2005). 
As a part of a school tradition, mathematics curricular 
materials such as the mathematics text-book are said 
to have a prominent role and bear traditional forms of 
discourse (e.g., Johansson, 2006; Herbel-Eisenmann, 
2007). Teachers deal with a complexity including the 
impact of culture, tradition, curricular materials and 
the competing objects and motives created by teachers 
and students (e.g., Skott, 2001). 

METHODOLOGY 1: ANALYTICAL PROCESS

We have divided the methodology into two parts. Here 
we describe the interplay between preliminary data 
analysis and theoretical considerations which led to 
the analytical framework that we finally exploited. 
In another part, below, we describe more about the 
research design and data collections. 

In order to acquaint ourselves with the data (tran-
scripts from teacher meetings), we undertook several 
constant comparison readings, inspired by Glaser & 
Strauss (1967), with the purpose of identifying recur-
rent themes focused on a teacher’s professional justifi-
cations. Our interest was directed only towards those 
justifications that were possible to observe in Marys’ 
utterances and not those that Mary may have kept 
to herself. In the initial readings three major themes 
emerged. One related to artefacts as part of the school 
system, for example multiplication tables and the role 
they played in the teachers’ discussion. Another was 

“what” Mary focused on in her justifications and a 
third concerned interpersonal aspects such as how 
Mary related to her students in her justifications. 

In other words, during our initial analyses we iden-
tified themes with a conceptual similarity to those of 
social semiotics (Halliday, 2004; Van Leeuwen, 2005, 
Morgan, 2006). Consequently, refocusing our anal-
yses around functions from this theory, provided a 
basis for new rounds of more focused readings. 

ANALYTICAL CONCEPTS – SOCIAL SEMIOTICS

There are three social semiotic meta-functions that 
suited our preliminary analysis: textual, ideation-
al and interpersonal. In this paper we adopt the 
meta-functions mainly according to a multimodal 
approach (Van Leeuwen, 2005; see also Björklund 
Boistrup & Selander, 2009). The meta-functions are 
not independent, they constitute each other. 

The textual meta-function is, in this paper, understood 
according to the roles different communicative re-
sources (such as artefacts, speech, voice, gestures and 
the like) play in communication, (Van Leeuwen, 2005). 
Communicative resources then constitute texts in 
a broader sense than only taking language into ac-
count. In this paper our interest is focused on what 
roles artefacts, for example textbooks, play in Mary’s 
communication.

The ideational meta-function is used to reflect the 
explicit content of the communication under scru-
tiny (Herbel-Eisenmann & Otten, 2011). In this paper 
the ideational meta-function is used to discern what 
Mary focuses on and addresses in her observable 
justifications. 
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The interpersonal meta-function can be used to de-
scribe interactions, roles and relations between peo-
ple “who are the participants in the interaction /…/ 
what relationships do they have to each other and to 
subject matter” (Morgan, 2006, p. 229). In this paper 
this meta-function is mainly adopted to construe how 
Mary relates to the students in her justifications.

METHODOLOGY 2: RESEARCH 
DESIGN AND DATA COLLECTION

Trying to understand a case, in this case when one 
teacher is studied, within the social setting and in-
vestigate it with depth is how case studies are used 
(Hammersley & Gomm, 2009). Consequently, we do 
not seek to offer material for generalisation but to 
provide a description of a part of one teacher’s reality, 
and the result will widen our experience of mathe-
matics teachers and these kinds of situations which 
could be seen as an alternative to generalisability in 
case study research (Donmoyer, 2009).

In this paper the collaboration between Mary and 
her colleagues served as the social setting where 
communications on mathematics teaching could be 
observed. We followed teacher meetings when Mary 
and her colleagues discussed different problems and 
possibilities concerning their mathematics teaching. 
Here we concentrate on one of the teacher meetings, 
although data on eight other meetings served as a 
background, and helped our understanding of this 
particular meeting. In order to capture mathematics 
teachers’ collaborative discussions, audio recordings 
were made and transcribed directly in the software 
Videograph [1]. The same software was used to assign 
codes in terms of the research interest. 

ANALYSIS AND FINDINGS

We present two excerpts, followed by our summary 
analysis, from the teacher meeting between Mary and 
her colleagues: Tomas, educated in advanced mathe-
matics, but not in education; Peter, an experienced 
primary school mathematics teacher like Mary; and 
Sara, a primary school mathematics teacher a little bit 
less experienced than Mary and a new teacher at the 
school. The described excerpts serve as to illustrate 
the various features identified from the teacher meet-
ing. The analysis draws on the three meta-functions 
which also are reflected in the research questions.

Episode 1: Discussion of a multiplication test
In the beginning of the teacher meeting a new teacher, 
Sara, was invited to describe what she had done dur-
ing the previous week. Tomas, the official leader of the 
group, stated that one of Sara’s teaching actions has 
been “really good” and referred the group to a times 
tables test comprising items such as 6 x 7, (the “really 
good” refers to the teacher having the test and not to 
the result of the test). In the following we present an 
episode from the meeting. To make the analysis as 
transparent as possible, some comments have been 
added to the excerpt. 

1 Sara: Yes, and then I did the multipli-
cation test in the afternoon

/…/  [The teacher group talk about 
the result of the test which was not satisfac-
tory]

2 Peter: How many did you do? Five? 
3 Sara: Five minutes 
4 Peter: Hundred exercises? 
5 Tomas: How many exercises? 
6 Sara: Hundred and twenty exercises 
/…/  [They talk about the test and 

other topics for about ten minutes]
7  Tomas:  Er, but then we have one or two 

in one class that thinks maths is like the 
plague and really hard, and that always feels 
like, and that has its grounds in this multi-
plication and then it was the worst anxiety 
attack and tears fell and it, it is really tough. 

8  Mary:  Arr! [Said with a voice construed 
as compassionate] 

/…/   [About five minutes of discus-
sion on other topics]

9  Mary:  I am sitting here thinking about 
your test, 120 exercises in 5 minute. Is that 
reasonable is it a lot or little or is it… 

10 Sofia:  That is reasonable! I had stu-
dents that did it in three minutes

11 Mary:  Ah, well then 
12  Sofia:  Two and a half minutes, if you 

know them it is there…
13 Mary:  Then it is… 
14  Peter:  Yes
15 Sofia:  When you see the problem you 

know that it is, you don’t have to.
16 Mary:  You don’t have to figure some-

thing out no that is good… 
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17 Tomas:  I can agree, if it was a long ago 
since last time, you could get seven, eight 
minutes the first time. 

18  Mary:  Yes 
19  Tomas: But the thing you test is if they 

have automated it if they know…
20  Peter: Hmm 
21  Tomas:  Not that they will sit there and 

think five times five let’s see that is five that is 
ten that is fifteen that is twenty, twenty five…

22  Mary: No, that’s not, you don’t have 
time for that… 

23  Tomas: They should know that five times 
five is twenty five.

24  Mary: Hmm 

Analysis of Episode 1
We view the test as an artefact and thus part of the 
multimodal “text” (Van Leeuwen, 2005). In this tex-
tual analysis we adopted social semiotics as “the 
way people use semiotic ‘resources’ both to produce 
communicative artefacts and events and to interpret 
them […] in the context of specific social situations and 
practices” (ibid, p. xi). Our analysis revealed that, for 
Mary, the test played the role of reflecting the students’ 
knowledge of automated multiplication skills. As the 
teachers discussed the test they talked about how the 
test was organised (line 2–6 and 9–14), and what the 
students need to know (line 12, 15–16, 19–24). We can 
also see the test having the role of a tradition keeper. 
Peter, who asked the question about how Sara did the 
test (line 2), almost said the answer together with Sara. 
This idea of having about 100 exercises in five minutes’ 
was only questioned by Mary, for example, in line 9. 
No one offered an alternative or questioned the or-
ganisation of it. This way of doing this test seemed to 
be taken for granted. Drawing on Björklund Boistrup 
(2015), we argue that artefacts like this test, and how it 
is executed, are part of the assessment tradition with-
in Swedish mathematics education. Looking at old 
Swedish text books, similar tests are found in teacher 
guides, so it can be inferred that this is part of a long 
term Swedish mathematics teaching tradition. When 
Mary tried to challenge the role of this test, she had 
not only her colleagues to argue against, she had a 
whole testing tradition to speak against. 

We adopted the ideational meta-function (Herbel-
Eisenmann & Otten, 2011) to analyse “what is being 
talked about or the specific content of the interaction”. 
In this case, the content matter of Mary’s justifications 

was knowledge concerning the automated recall of 
the multiplication tables. We construed this from 
the episode when Mary (line 16) said that it was good 
when the students do not have to calculate to know 
how much a simple multiplication is. In line 22 she 
agreed with Tomas that the test situation did not give 
time for calculation, and this was interpreted as Mary 
viewing it to be important when testing automated 
knowledge. Mary also agreed with Tomas in line 24 
that the students should know five times five. Our 
analysis identified that Mary justified the test with 
the argument that the automated knowledge of the 
times tables is important mathematical knowledge. 
This was also present when the teachers talked, in 
another episode not discussed here, where Tomas said 

“they understand how you should calculate the more 
difficult exercises but since they don’t know the times 
table it turns out wrong any way”. On this occasion, 
Mary agreed with an “mm”. This notion of ‘important 
knowledge’ was one of justification for Mary’s sup-
port of the test. 

We also identified an ideational aspect from Mary’s 
justifications in an episode before this one, where 
Mary displayed resistance to the test. She then justi-
fied her questions and proposals drawing on the mat-
ter of how to organise classroom work in mathematics 
teaching. She stated that testing multiplication tables 
could take too much time from her lessons, saying “I 
do that in third and fourth grade but after that I don’t 
want to use time from my lessons on this”. Here we 
construed a hesitation in Mary’s communication 
about the importance of doing the test.

Looking at interpersonal aspects in Mary’s justifica-
tions, we were inspired by Morgan’s (2006) descrip-
tion of the interpersonal meta-function as bringing 
forth relational aspects as well as “meanings, includ-
ing the possibilities for emotional experiences” (p. 
224). We then focused on how Mary’s justifications 
in this episode concerned her relations with and emo-
tions towards her students. Beginning at line 9, we 
identified a conclusion in Mary’s question; that this 
test might not be for all students. A care for students 
is construed in Mary’s justifications for resisting the 
test. Throughout the meeting Mary expressed a care 
for “low performing” students in relation to the test, 
for example her response to Tomas statement in line 
7. Our understanding from this analysis is that the 
justification for Mary’s resistance to the test came 
from this care for the students. 
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Episode 2: Discussion of 
mathematics textbooks
The next episode is when the teachers discuss text 
books. In this case the discussion concerns what text 
books to have available for the students. 

1  Mary: Yes, I will probably have Tom, he 
is on chapter four now, he will finish it soon…

2 Tomas: Yes, then we have the book for 
grade six

3 Mary: But then we have it so I don’t have 
to order…

/…/  [A few minutes discussion on 
what books to order and not]

4 Tomas: /…/ Peter and I agreed on, what 
we see as a wise thing. Those who work with 
more advanced mathematics so to say than 
grade five, they need two books. One for 
grade five and one for grade six /…/ they will 
do a test on this section to show, I can do this. 
If you showed that you can you can work in 
the grade six book but if you can’t, then you 
need the teaching for grade five /…/ if it is 
too easy, you can show me that you can

5 Mary: That’s right
6 Tomas: /…/ if they show us what they can 

do we should not hold them back.
7 Mary: No

Analysis of episode 2
In our analysis we construed the role of the text 
book as a differentiating artefact. Mary agreed with 
Thomas, when he argued that if the students have a 
text book relevant for the “own level” they will have 
mathematics teaching suitable for their knowledge 
(line 1–2 and 4–7). This idea of using the text book as 
the solution for differentiated teaching says some-
thing about the position the text book holds. 

Again we adopted the ideational meta-function to help 
us identify the idea that “high achieving” children 
need differentiated mathematics teaching. We con-
strued that the teachers wanted to achieve a teach-
ing suitable for these students through offering them 
more advanced text books. The teachers all agreed 
on the textbook as differentiator, as we can see when 
Tomas and Mary discussed this in lines 1–7. Tomas 
and Peter also had a special solution in line 4, con-
cerning how to organise who get access to the more 
advanced text book and who does not. Mary justified 
her support for the idea when she expressed the need 

for one of these text books in her own classroom (line 
1–3) and when she agreed with Tomas’ idea in line 5. 
This is also construed from line 7 when Mary agreed 
that the students should not be “held back”.

Looking at the interpersonal aspects of Mary’s jus-
tifications, we can see how Mary agreed with Tomas 
in line 5, when he stated that the students could be 
trusted to take the responsibility to show what they 
can do before they got a text book different from the 
rest of the class. Here we construed that Mary related 
to her students with trust.

Another interpersonal aspect is construed when 
Mary, in line 1, made sure that there was a book for 
one of her students who would need it very soon. Here 
we identified that Mary related to her student with 
care, but, when compared to the case of multiplication 
tests, this time the care was for the high achieving 
students and the purpose was to challenge, not to be 
careful with. 

CONCLUSIONS

In these two episodes, two artefacts were identified as 
indicators of Mary’s professional justifications: the 
multiplication test and the text book. In the analysis, 
we construed the multiplication test as playing two 
roles, a reflector of students’ skills as well as a tradi-
tion keeper, while the text book played the role of a 
differentiator.

Ideational aspects were identified in Mary’s justifica-
tions. When she argued for and against the multiplica-
tion test, we identified in our analysis how she argued 
that automated recall skills of the multiplication table 
is important mathematical knowledge. We also identi-
fied how she wanted to allocate time for mathematics 
teaching in the sense of a communicative practice and 
that this test was taking too much of teaching time. 
Discussing the mathematics text book Mary justified 
the need for different books with the experience that 
her students would need a certain book and with the 
idea that “high achieving” children need a differenti-
ated mathematics teaching.

We also read in our analysis how Mary related to her 
students in her arguments. In both these discussions 
Mary related to different students with care when she 
expressed how the students were in some kind of need. 
In the first episode she addressed “low achieving” stu-
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dents and the fear she had that they would suffer from 
failing at the test. In the second episode she addressed 
the “high achieving” students, whom she wanted to 
provide with the “right” kind of teaching. Mary also 
related to her students with trust when she agreed 
that they could be trusted to show that they could do 
the exercises in the ordinary text book before leaving 
it for a more advanced one.

To sum up, we have seen a variety of roles, ideas, ex-
periences and relations in Mary’s justifications. The 
result from this small study makes it clear to us that 
a mathematics teacher has a very complex broader 
context to take into account. The roles of the artefacts, 
such as tradition keepers and time savers, say some-
thing of the strong position they have. Discussing 
them, Mary also dealt with content-related issues 
and her students, in terms both of what teaching they 
needed and what they needed emotionally. All this was 
visible when Mary justified her views on mathematics 
teaching, negotiating with her colleagues.

DISCUSSION

The three meta-functions that underpinned the ana-
lytical process facilitated a diverse description and 
understanding of the data. They provided ideas to 
view the collaborative communication in different 
ways with and different aspects emerged. 

In the case of the multiplication test as artefact, we 
described Mary’s support of the test mainly in rela-
tion to an ideational aspect, the important knowledge, 
while her resistance appeared mainly in a relational 
aspect, the care for “low performing” students. This 
contradiction came close to what Skott (2001) de-
scribes as competing objects and motives. Something 
interesting here is that the importance of this knowl-
edge wins over the care for the students, since Mary 
both questioned the test and seemed convinced that 
since they were testing automated recall it was okay. 
In the case of the text book as a differentiator there 
was support both from ideational and relational as-
pects which made the teacher group unanimous. 

Looking at both the text book and the multiplication 
test with an interest in the socio-political context in 
which a mathematics classroom is immersed, we can 
see tradition (Remillard, 2005; Björklund Boistrup, 
2015; Herbel-Eisenmann, 2007) shine through. The 
test has a role as a tradition keeper since it is a part of 

the school tradition. The discussion of the text book 
also offers an interesting perspective, being focused 
on differentiated teaching. It still shows the strong 
position the text book holds when the teacher group 
unanimous justifies this idea. There is no doubt that 
the relation between Mary and curricular materials 
(text books) is very complex, and it would be inter-
esting to see deeper analysis of the role of curricular 
materials in relation to tradition connected to teach-
ers’ justifications. 
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The relationship between researchers and researched 
communities in the ethnomathematical field has been 
conceived and developed broadly and deserves a prob-
lematization. A revision of previous ethnomathemati-
cal research is presented, finding how theoretical and 
methodological assumptions are related with leading 
notions of ethnomathematics, as dialogue, communi-
cation, respect and otherness. 

Keywords: Ethnomathematics, ethnography, symmetry.

INTRO

Ethnomathematics emerged in the 80’s within 
Mathematics Education, as a program of research 
in the History and Philosophy of Mathematics that 
seeks to understand mathematical knowing and do-
ing throughout the history of humanity. It does so by 
studying “mathematics practiced by groups, such as 
urban and rural communities, groups of workers, pro-
fessional classes, children in a given age group, indige-
nous societies, and so many other groups identified by 
objectives and common traditions” (D’Ambrosio, 2006, 
p. 1). Nowadays, ethnomathematics is a well-estab-
lished field of research with a worldwide community 
of practitioners, most of them exploring implications 
in Education, using anthropological perspectives. 

The field was based since their origins on a critical 
attitude that promotes the emancipation and equality 
of discriminated groups (Powell & Frankenstein, 1997).  
As two of the main leaders of the field assert:

Ethnomathematics fits into reflection about 
de-colonization and the search for real possibil-
ities of access for the subordinated, the marginal-
ized, and the outcast, or excluded. The most prom-
ising strategy for education in societies that are 
in transition from subordination to autonomy 
is to restore dignity to their individuals, recog-

nizing and respecting their roots (D’Ambrosio, 
2006, p. 30).

In other words, ethnomathematical studies may 
broaden the (intercultural) understanding of 
what are mathematics, of what are mathemati-
cal ideas and activities. There cannot be a sole, 
unified view of mathematics. For a monolithic 
and dominant view there is no basis. At the same 
time, for the other extreme, a cultural relativ-
ism concerning mathematics, there is also no 
ground: intercultural intelligibility seems pos-
sible (Gerdes, 2001).

As ethnomathematical research pursues the aim of 
valorising new understandings and recognitions, 
there is a strong need for the development of ways 
to relate and interact with communities. Therefore 
communication arises as an important issue. Some 
researchers consider it explicitly, with notions 
such as dialogue (Vergani, 2007), respect (Powell & 
Frankenstein, 2006) or mutuality (Adam, Alangui, & 
Barton, 2010) while others deal with it in a tacit way. 
Indeed, all of them make methodological decisions 
about the participation of the community and how 
that participation will be considered and registered 
in an academic diffusion of the research. 

In an early attempt, S. Ferreira (1994) proposed eth-
nography as the proper and natural methodology for 
the growing discipline. To subscribe to that proposi-
tion has implications on how to conduct the relation-
ship between research, researched and researcher. 
However, with the development of the field, several 
other methodological approaches have been attempt-
ed, including culturally responsive action and partici-
patory action research (Mukhopadhyay & Roth, 2012). 
In addition, several ethnographical approaches were 
developed in the field of ethnomathematics. 

This paper focuses on ethnomathematical research 
developed in, or with, living communities. The main 
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goal is to problematize how that type of research has 
been devising the roles of communities and research-
ers, and contrast those enacted roles with well-known 
aims of ethnomathematics. To do so, a theoretical 
positioning is presented, introducing the concept of 
symmetry; then, an analytical strategy is proposed 
for a review of previous ethnomathematical studies, 
looking for some regularity within theoretical or 
methodological decisions. Some theoretical remarks 
are presented at the end. 

THEORETICAL FRAMEWORK 

As many practitioners adhere, ethnomathematics 
involves a program of research in the history and 
epistemology of mathematics (D’Ambrosio, 2006). 
For this analysis, epistemology of mathematics is not 
considered as a regular thing that exists in a void, but 
as a system of practices working in concrete places, 
where actual subjects make assertions. In that sense, 
for this approach, ethnomathematics has to cover not 
only an examination of the knowledge and practices 
that count as mathematics, but also encompass the 
procedures and instances of enunciation that allow 
to typify knowledge as mathematical. 

This approach intends to give new insights to the 
recurrent discussion about the “ethnomathematical 
paradox” pointed by Millroy (1992). In that dilemma, 
it is considered problematic to use the “lenses of a 
mathematical observer” to analyse practices that 
are not originally based on Western mathematics. 
Important critiques and counter-critiques to ethno-
mathematics have debated that issue (Knijnik, 1996, 
pp. 84, 75; Pais, 2013) expressing concerns about the 
constraints and contingencies of the academic obser-
vation. Nonetheless, the debate could be reduced to a 
claim for reflexivity: “check your lenses”, “research 
your own research” or “be aware that your standpoint” 
that does not alter the relation between observer and 
observed. However, building a broader vision of math-
ematics requires going beyond reflexivity, especially 
when living communities are researched. Such move 
towards a broader series of concerns is what I would 
call the problem of symmetry.

The problematic issue with ethnomathematics might 
not only be the use of mathematical lenses by the out-
sider researcher, but also to assume that insiders do 
not have their own ways to observe and analyse prac-
tices. Or even more, to assume that it is not possible to 

establish interchanges or interactions between those 
approaches. It becomes central to problematize how 
the involved subjects in the ethnomathematical field 
(both scholars and practitioners) position themselves 
with respect to each other trough the practices of re-
search, recognizing or neglecting degrees of legiti-
macy that, therefore, allow or constrain the presence 
of multiple voices in the research. I am arguing that, 
instead of limiting the problem to reflexivity, ethno-
mathematics research can be problematized around 
the issue of symmetry. Symmetry as a problem of re-
search in ethnomathematics is the study of how the 
participation of both researchers and practitioners 
have been conceived and expressed in research. In 
simple words, the problem of symmetry is the rec-
ognition that “the other has his own lenses” and that 

“researched people can research too”.

Anthropology and sociology have explored several 
alternatives in the fieldwork to face similar problems, 
with approaches like collaborative ethnography, par-
ticipatory action research, autoethnography, public 
ethnography and others (Denzin & Lincoln, 2011). All 
of them respond in different ways to the challenge that 
Woolgar identifies in the work of James Clifford, about 
a “dispersal of ethnographic authority in the sense 
that both researchers and natives be recognized as 
active creators (authors) of cultural representations” 
(Woolgar, 1988, p. 25). 

A classic assumption of ethnographic fieldwork is en-
capsulated in the phrase “being there, writing here”, 
demarcating a clear division between places, subjects 
and roles. In this paper I endorse a non-colonial pos-
ture about power and knowledge that questions such 
assumption, acknowledging the rights and the capac-
ities to theorize that communities and subjects have. 
Elsewhere I have pointed: 

[Individuals and people] do not only have various 
types of knowledge, but also have the capability 
to disseminate them, broaden them and contrast 
them with the knowledge of others. Indeed, peo-
ple and individuals have the power to define how, 
when and where their knowledge can circulate. 
(Parra, 2011)

Symmetry is related with the notion of infra-reflexivi-
ty that Bruno Latour proposed for studies in Sociology 
of Scientific Knowledge, trying to achieve “equal sta-
tus for those who explain and those who are explained” 
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(Latour, 1988, p. 175) through an engaged interaction 
in each stage of the research process. I am aware that 
the word symmetry can raise many doubts because 
it can be easily associated with a supposedly friend-
ly ideal horizontality that is often not the case. If we 
consider the complex power relationships involved 
in the very act of research, “equal status” has to be 
understood as a way to go, instead of a place to arrive. 
Notwithstanding that, I propose the notion of symme-
try to stress the presence of practitioners as actors 
with voice and agency. Additionally, symmetry can 
subsume notions like dialogue, respect and mutuality, 
which are used by ethnomathematicians with very 
diverse meanings, when they explore possibilities of 
partnership, collaboration and reciprocity between 
scholars and practitioners in the ethnomathematical 
observations and representations. 

In this paper, I assume that a singular piece of research 
does not express only the personal intentions of its 
direct developers [1], but also a shared set of truths 
and beliefs, that includes rules to follow, practices 
to perform, words to say and ideas to organize and 
explain within the research field. That set comprises 
what can be accepted in a specific space-time setting 
as a research experience.

Consequently, to scrutinize the understandings about 
symmetry within a particular ethnomathematical 
research project, it is necessary to observe this project 
as a whole, This includes an analysis of how symme-
try is addressed in the methodology, in the theoret-
ical approaches invoked, and also in the process of 
drawing conclusions. Moreover, whenever possible, 
subsequent activities of researchers and communities 
after the publication of the experience also should be 
observed because they allow to study the position-
ing of each agent about symmetry. Procedures are 
described in the next section. 

ANALYTICAL STRATEGY 

The empirical material for this paper will be a se-
lection of ethnomathematical research projects that 
were reported in PhD theses or peer-review journal 
papers. The selected reports vary broadly in the date, 
language and place in which they were developed and 
in the places that their results were published in order 
to reinforce the fact that the main focus is to study 
assumptions that circulate within the field and not on 
particular researchers or research centers.

The goal is to trace some features, present or not, that 
allow to establish at what extent the interplay with 
the researched communities has been developed. For 
that reason it is important to elucidate the compre-
hensions that previous ethnomathematical research 
developed about symmetry, when they faced the 
problem. For analytical purposes, clusters of ques-
tions have been defined following a simple division 
in: inputs, actions and outputs. Research stages are 
distributed in the three clusters. 

Inputs: this cluster covers justifications, antecedents, 
goals and theoretical positioning. It is important to 
observe the motivation to undertake the research; 
whether the community demanded the research be-
forehand, as part of their own interests  and concerns, 
or whether the motives follow mainly the researchers’ 
interest and how they found an agreement, if any.  How 
the researchers have met the community or group, as 
well as if the goals and the objectives for the research 
explicitly mention some benefits to the studied com-
munity, even if it is in a long-term, is illustrative of the 
motives. It is further intended to trace symmetry into 
the theoretical framework exposed by the researchers, 
searching if they have used explicitly a definition of 
dialogue, mutuality, reciprocity or respect, or in some 
way made theoretical considerations about their in-
teraction with the people being researched. 

Actions: concerns about methodological and analyt-
ical strategies are treated in this cluster; In order to 
asses in which conditions the interaction was conduct-
ed, it is relevant to analyze the applied procedures to 
collect data, for example, if there was an immersion or 
a sequence of visits or for how long interaction was 
undertaken. In which roles were the members of the 
community and practitioners involved? In what stages 
of the research process did they contribute? These 
questions attempt to grasp the type of communication 
that researchers establish with the researched people. 
The attention provided to collaboration, reciprocity 
and partnership, even through any kind of feedback 
or reverting action, will be examined also in the ways 
that the selected projects analyzed and discussed their 
data.

Outputs: this cluster comprehends the research 
outcomes, including not only the conclusions and 
recommendations that the researchers can draw in 
a published text. Issues of intellectual property, appli-
cability and uses of the research within the group can 
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be considered. Long-term or short-term experiences 
can develop different kinds of partnership and dia-
logue in the aftermath of a published research. 

PRELIMINARY FINDINGS 

For the scope of this conference paper, I will only 
present the first results of literature review, cover-
ing mainly the first two clusters of questions, leaving 
for further study considerations about the continuity 
of the relationship between researchers and groups 
after a publication of the research. 

For the first cluster, motivations for an ethnomath-
ematical research can be inquired, suggesting that 
collaboration and partnership are strongly connected 
to the preexistence of a sociopolitical project provid-
ing a frame to the research, as we can see in experi-
ences like (Knijnik, 1996, 2007), invited to participate 
in the Educational Literacy Project of the Landless 
movement in Brazil, or (Gerdes, 2007, pp. 227–256) 
commissioned by the government of Mozambique 
to educate mathematics teachers. Also the work of 
Meaney, Trinick, and Fairhall (2012) is embedded in 
the educational process of the Maorian people in New 
Zealand. In those three cases, researchers had in com-
mon the necessity to articulate their theoretical inter-
ests within a non-academic process that surrounds 
the research and demands some sort of result from 
the researchers. This does not imply that researchers 
were employees or militants of those processes but 
that they have to interact with them, and that a part of 
the projects’ theoretical concerns were related with 
those non-academic processes.

Cases like those contrast with other experiences con-
ducted for the pure sake of a theoretical interest, like 
the PhD project “Interpretacion matematica situa-
da de una práctica artesanal” carried out by Albertí 
Palmer (2007), who worked in Indonesia, seeking to 
develop a method to identify mathematics in a practice, 
founding on the identification of mathematics in the 
Torajan architectural ornamentation, or a project car-
ried out by Rohrer (2010), who interviewed sculptors 
in Mozambique, trying to solve questions like “Which 
mathematical means and tools do Makonde artists use 
and which mathematical knowledge can be revealed 
in their practice?”(Rohrer, 2010, p. 15) “Is it possible 
to find golden sections within their final sculptures, 
even though there might be no prior knowledge of this 
term as such?” (Rohrer, 2010, p. 149). Those questions 

where part of her doctoral thesis, which attempts to 
give resources for a theorization of ethnomathemat-
ics as an interdisciplinary theory. 

Motivations in the projects of Albertí Palmer and 
Rohrer appear to act completely outside of the inter-
ests of the researched groups because they are devot-
ed to register some specific practice or notion present 
within the community that can be identified by the 
researcher as mathematical, aiming to expand the 
idea of mathematics, from a culturally-free practice 
formalized by western rationality, to a human and 
contextualized one. However, such expansions hap-
pen inside a western academic context in the spirit 
of “Nothing better to show a new view of this Science 
[Mathematics] than observe how other societies are 
building it” (S. Ferreira, 1994, p. 94, my translation).

Moving to the theoretical positioning, S. Ferreira 
commented first about the relationship between re-
searchers and researched groups, when he contrib-
uted to theorize ethnomathematics using modelling: 

“I can not dismiss ethnography, ethnology, validation 
and, mainly, the action of return the model´s outcomes” 
(S. Ferreira, 1991, italics added). Some years after he 
proposed a cycle based on those ideas, conceiving 
ethnomathematics as a pedagogical model, where 
the fieldwork involves an action over the community.

In my view, every ethnographic research has to 
have, by necessity, a return of their results to the 
communities who are being researched. This 
proposal of a return is one of the indispensable 
actions in the process. It is up to the community 
to decide whether accept it or not. (S. Ferreira, 
2004, italics added, my translation)

By addressing educational possibilities of ethnomath-
ematics, authors like Lübeck and Rodrigues (2013), 
Vergani (2007) and Oliveira (2013) use explicitly the 
term “dialogue”, invoking Paulo Freire`s ideas to 
guide the encounter between different people in a 
respectful way. Mutuality becomes central to ethno-
mathematical research with Alangui’s (Adam et al., 
2010) work: 

Mutual interrogation is the process of setting 
up two systems of knowledge in parallel to each 
other in order to illuminate their similarities 
and differences, and to explore the potential of 
enhancing and transforming each other. In the 
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context of ethnomathematical research, mutual 
interrogation is a process facilitated by the eth-
nomathematician – the researcher  (p. 11).

Mutual interrogation locates ethnomathematician as 
an intercultural speaker that gathers different world-
views, transmitting questions and answers among 
practitioners of different traditions of knowledge. 
This approach goes beyond classic ethnography, be-
cause the parties involved become researchers as well, 
blurring the borders among “there” and “here”. 

In the second cluster of questions, the amount of 
time invested in the fieldwork with the communities 
is considered a key issue to unfold questions around 
symmetry. Usually, when a research for a PhD thesis 
adopts ethnography as a methodology, the common 
option is to give a short full immersion of a couple 
of months to collect data, like the studies by Rohrer 
(2010, as discussed above) or Millroy (1992). In those 
cases the researcher did not know the members of the 
community before she entered the field and she had 
to elucidate which member could provide the best 
information. Then she tried to establish as soon as pos-
sible a communication with those special members. 
Inferences are built using only one data collection, 
and other resources come from previous academic 
literature. 

It is less common in a Ph.D. thesis to make a sequence 
of visits along an extended period, like (Knijnik, 1996) 
or (Silva, 2013), who worked regularly with their stud-
ied groups before they accomplished their doctoral 
studies. This allowed them to interact with commu-
nities in other ways, to participate in community’s 
special events, and to know a wider range of members 
of the community, obtaining contradictory and com-
plementary data in each visit. These two experiences 
have transcended the scope of a PhD study and devel-
oped further books and papers 

Far from classic ethnographical approaches, continu-
ous long-lasting experiences made possible a deeper 
interaction between communities and researcher; 
projects like Urban Boundaries in Portugal (Mesquita, 
2010), MACIMISER in Micronesia (Dawson, 2013), or 
the already mentioned works of Paulus Gerdes in 
Mozambique, as well Tony Trinick and colleagues in 
New Zealand. Those cases permanently collect data, 
create small projects framed within a bigger research 
process, release multiple publications and occasional-

ly create re-elaborations of previous findings as a re-
sult of the continuity in the communication between 
researchers and researched. In these projects, commu-
nity members can hardly be considered “informants” 
in a simplistic sense. They become another researcher 
in special stages of the experience, discussing and as-
sessing questions, procedures or methodologies with 
the academic researchers. However, there is only one 
reported case (Caicedo et al., 2009) in which a group 
participated in the design and implementation of all 
stages of the research, even in the search for funding. 
This preliminary result does not deny the existence 
of some kind of reciprocity or collaboration in brief 
ethnographic experiences, but certainly confirms a 
basic idea: dialogue requires time, persistence and 
patience to be developed. 

The third cluster of questions demands to seek for 
tensions outside texts, like the research impact. As 
announced before, few considerations resulting from 
the literature review are presented here. Even though 
it is a very uncertain question to identify what kind 
of outcomes can be considered as a contribution from 
the perspective of the researched group, collaboration 
can be traced in the multiplicity of products resulting 
in a research that can be used by community members: 
textbooks, booklets, portfolios, videos, and other re-
sources. 

Research in doctoral theses is often driven by its in-
tention to answer a theoretical question. Very seldom 
does it create the opportunity to report implications 
of the research with the community, or at least to 
discuss the published thesis. The educational models 
produced in doctoral theses leave the possibility to be 
implemented to the community and remain on a level 
of proposals. This is consistent with the approach of 
Sebastiani quoted above. 

Long-term research has to deal with several challeng-
es, like the teamwork continuity, the funds for the re-
search and the perception of the community about the 
presence of the researcher. Interactions and dialogues 
are developed between people defending their inter-
ests and immersed in power relationships. Questions 
about the social relevance of the research can appear 
after some years of continuous work: members of the 
community ask for the benefits that they can or cannot 
receive for their participation. Additionally, research-
ers in long lasting experiences become engaged with 
the community not only for the matter of research, 
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but also with their social struggles. The relationship 
transcends the academic instances, gaining a personal 
dimension. Summarizing, these experiences involve 
ethical and political dimensions, not only theoretical 
or mathematical ones.

OUTRO

This literature review has suggested the classifica-
tion of ethnomathematical research in two groups, 
concerning virtues like dialogue, collaboration and 
associate concepts. This distinction is related with, 
but not determined by, time. It is obvious that a clear 
cut about what is a “short” amount of time in research 
cannot be provided. Such classification does not in-
tend to formulate any criteria to predict, to control 
or to evaluate ethnomathematical research. The in-
tention is to pay attention to the existence of one di-
mension usually overlooked in the field, that I have 
referred to as symmetry. This dimension expresses 
concerns about the consistence and effectiveness of 
our own actions towards a wider conceptualization 
of mathematics. 

Ethnomathematicians who work with communities, 
should be aware of the risk to betray their own goals, 
turning a thing that supposed to be a dialogue into a 
communication in only one way. To elude colonialism 
is not an easy task, because it is still present in our 
conceptualizations and beliefs about what can count 
as research. Classic ethnography exemplifies those 
beliefs, determining and distributing roles in the 
research process; as Woolgar states, ethnographers 
who stand for a division between image and reality 
try to maintain the exoticism of the reality observed 
and the epistemological superiority of the observer:

Not only is the tribesman different, the implica-
tion is that this difference entails the subject’s 
inferior access to reliable procedures for ob-
servation and report. In an almost paradoxical 
way, the more exotic the native, the more we can 
depend on the accuracy of the ethnographer`s 
report (Woolgar, 1988).

Of course, researcher’s intentions cannot be sim-
plified as “bad” or “negative”. Most of the times, eth-
nomathematicians express their sincere respect of 
community heritage and act consistently with that. 
However, the less time invested in the fieldwork re-
search, the more the researchers are tempted to do 

classic ethnography; despite researchers claiming 
their good intentions, not seldom the idea of dialogue 
in ethnography is in fact a dialogue between ideas 
interplaying inside the researcher´s mind. It is impor-
tant to realize that institutional frameworks prompt 
research by imposing measurements of time to assess 
the quality and the impact of an investigation, and 
accordingly to that, to provide financial support. This 
economical rationality of completion rates promotes 
certain specific styles of research.

To conclude, it is not easy to imagine how a dialogue 
around mathematics could be established with a 
group. However, there is some research that can give 
indications. For instance, ethnomathematicians could 
include practitioner´s way of thinking, and give them 
more control in the research process, as a way to lose 
pre-eminence in the report, accepting other voices 
and other interests. 
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ENDNOTE

1. Of course the individuals are not helpless opera-
tors in that set, they can strength it with their actions, 
change some components, or eventually they can de-
flate its importance as paradigm, accordingly to the 
awareness and consciousness that each individual 
has about the ways that set operates. Studies like the 
intended here, try to provide such awareness.
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This research paper reports the intersection between 
mathematics identity and the peer positioning of high 
attainment girls in a particular mathematics’ class-
room in Chile. Following an ethnographic approach, 
we explore how this intersection mediates girls’ percep-
tions of what mathematics is and how it is supposed to 
be done/practised. The main finding is that different 
female ‘peer’ group processes and identities appeared 
to mediate different mathematical positional identities. 
The discourse models of maturity/immaturity, compli-
ance/resistance and effort/effortlessness appear to be 
crucial in mediating peer processes – these are used 
to define membership and identity of the peer group 
(including relations with boys) and also mediate girls’ 
positioning in mathematics. 

Keywords: Mathematics identities, peer relations, gender 

and ‘maturity’.

BACKGROUND

The study of gender equity in mathematics educa-
tion has been an important focus of research for 40 
years. Several studies have tried to understand how 
girls have been persistently “counted out of maths” 
(Walkerdine, 1998), by lower mathematics grades 
(e.g., Hyde, Fennema, & Lamon, 1990) and lower rep-
resentation in post compulsory mathematics courses 
and careers (e.g., Mendick, 2005) compared to their 
male counterparts. Recent studies have shown that 
these differences are not homogeneous across coun-
tries (Guiso, Monte, Sapienza, & Zingales, 2008), and 
national heterogeneity suggests cultural construc-
tions of these differences. One concept that has been 
increasingly used in exploring this cultural diversity 
is that of identity (e.g., Solomon, 2008). For example, 
the concept of mathematical identity has helped ex-
plain how women in some countries (e.g. the UK) come 

to see themselves as not belonging in mathematical 
(or STEM) contexts, despite their high performance 
in the subject (Solomon, 2012). 

Alongside concerns regarding girls conflicted re-
lationship with mathematics, there has also been 
a significant amount of research trying to explain 
girls’ high achievement in most subjects (including 
mathematics) when compared to that of boys. This 
research has focused on masculine subjectivities in 
schooling, suggesting the existence of a “laddish” cul-
ture of (particularly working class) boys rebelling 
against the school in contrast to a feminized culture of 
compliance, and effort more apparent amongst girls 
(Jackson, 2003). However, simple dichotomies (e.g. 
rebellious boys/compliant girls) have been recently 
challenged by evidence showing that girls often aspire 
to effortless achievement (Jackson, 2006)I found this 
book a fascinating and engaging read...It provides 
a useful analysis and exploration of the classed and 
gendered ‘anti-school’ ethic in place presently within 
many schools, and it will provide a meaningful anal-
ysis for academics, policymakers and practitioners 
and anyone with an interest in gender, education 
and young people.\” Fin Cullen, Goldsmiths College, 
Review in Gender and Education \”I would [therefore] 
urge everyone concerned with what is happening in 
schools to read this book, with its fascinating data 
and nuanced arguments.\” Heather Mendick, London 
Metropolitan University – Review in British Journal 
of Educational Studies This innovative book looks at 
how and why girls and boys adopt ‘laddish’ behaviours 
in schools. It examines the ways in which students 
negotiate pressures to be popular and ‘cool’ in school 
alongside pressures to perform academically. It also 
deals with the fears of academic and social failure 
that influence pupils’ school lives and experiences. 
Drawing extensively on the voices of students in 
secondary schools, it explores key questions about 
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laddish behaviours, such as: Are girls becoming more 
laddish and if so, which girls? Do boys and girls have 
distinctive versions of laddishness? What motivates 
laddish behaviours? What are the consequences of 
laddish behaviours for pupils? What are the impli-
cations for teachers and schools? The author weaves 
together key contemporary theories and research on 
masculinities and femininities with social psycholog-
ical theories and research on academic motives and 
goals, in order to understand the complexities of girls’ 
and boys’ behaviours. This topical book is key reading 
for students, academics and researchers in education, 
sociology and psychology, as well as school teachers 
and education policy makers.” (Jackson & Jackson, 
2006, and furthermore, that the apparent girls’ com-
pliant behavior may also be a way of resisting con-
formity by becoming invisible rather than disruptive 
(Fisher, 2014). 

With these arguments in mind, this paper aims to ex-
plore further notions of diversity in the construction 
of girls’ mathematical identities in classroom cultures. 
Particularly, we are interested in understanding how 
high attainment girls’ positionings in the peer group 
and in the mathematical practices intersect, and how 
this intersection mediates their mathematical identi-
ties in the classroom. 

THEORETICAL BACKGROUND 

In order to account for the relation between learning 
and identity, this study takes a sociocultural perspec-
tive on identity. This perspective considers that both 
learning and identity develop in moment-by-moment 
engagement with others in, and through, sociocul-
tural practices (Holland, Lachicotte, Skinner, & Cain, 
1998). In these practices, individuals are positioned, 
and position themselves in relation to others, thus, 
constituting positional identities (Holland et al., 1998). 
As people move between practices, these identifica-
tions are multiple and therefore a single identity is 
never crystalized. A consequence of such processes 
is that identifying with contradictory practices can 
prove challenging and sometimes even generate con-
tradictions in or crises of identity (Black & Williams, 
2013).

The prime cultural practice that needs to be con-
sidered when researching mathematical positional 
identities is the mathematical practice itself, and 
how notions of competence or ‘smartness’ are cul-

turally constructed therein (Gresalfi, Martin, Hand, & 
Greeno, 2008). These notions constitute social norms 
and hence obligations against which students will be 
positioned by others, and will position themselves, 
for example, by resisting or complying with these 
obligations (Cobb, Gresalfi, & Hodge, 2009). 

A second practice that has received attention by re-
searchers is that of students’ positioning in their peer 
group culture. Studies that have explored how the 
school culture relates with the peer culture, have 
found that bringing these two (sometimes opposite) 
cultures together in a developing sense of self, can be 
challenging for individuals. For example, in a recent 
study, Francis and colleagues (2010) found that for 
high achieving students, notions of high achievement 
were in conflict with social popularity with peers, re-
quiring a particular kind of “identity work”. This iden-
tity work was extremely challenging for girls, who 
had to negotiate demands for being both attractive/
desirable (feminine) and clever/smart (masculine) 
(Skelton, Francis, & Read, 2010). This is particular-
ly important in mathematics, as this subject is often 
seen as geeky/non-popular and male (e.g., Mendick, 
2005b), so being mathematically able can act as a dou-
ble marked category for girls (Damarind, 2000).

Considering the existing evidence, it appears neces-
sary to explore further the complexity of cultures in 
the classroom and avoid essentialising specific cultur-
al forms as male or female, both in the mathematics 
and in the peer cultures. Hence, this study explores 
how girls’ peer group relationships and values relate 
to their mathematical identity in the classroom.

METHODOLOGY

Context of the classroom study
This study was purposefully situated in a school 
with average attainment, medium socioeconomic 
status (SES) and in a traditional working class area in 
Santiago, Chile. It was a private subsidized school that 
received government funding and charged parents 
a tuition fee. As some studies have found (Mizala & 
Torche, 2012), these characteristics generate a highly 
homegeneic population in terms of SES. In addition, it 
was considered a demanding school where students 
were asked to reach a 70% mark for a passing grade. 
Students that did not reach this score were held back 
a year. 
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The study focused on one case study in a year 7 math-
ematics classroom of 39 students. Not unusually for 
Chilean classrooms (see Ramirez, 2007), the students’ 
scores varied between failing and excellent. In addi-
tion, because of the hold-back policy, the classroom 
was also diverse in terms of students’ age, with a range 
between 13 and 16 years. These characteristics made 
this classroom a very typical one in this country for 
this type of population.

The mathematics’ teacher [who we will call Ms. Paula] 
had 2 and half years of experience in teaching math-
ematics. She came from a general teacher-training 
course (non-mathematics specific) in a non-traditional 
University, with relatively limited experience and 
specific preparation in mathematics. However, the 
Head of Department and her students characterized 
Ms. Paula as a “very good teacher”. 

Similarly to many Chilean classrooms (e.g., Martinic 
& Vergara, 2007), Ms Paula’s lessons followed a very 
consistent routine with three main parts: (1) whole 
class introduction of the day’s topics; (2) students’ 
working on exercises; and (3) a closure. In this par-
ticular classroom, during the closure part “reward 
points” were distributed among students according 
to whether they completed the activities. As also 
described in previous Chilean studies (e.g., Radovic 
& Preiss, 2010), most of the talking was done by the 
teacher in the whole-class parts, with students’ role 
mainly focusing on answering the teacher’s questions. 
Students had relatively more space for independent 
work and peer talk during exercises, where they could 
choose to work collaboratively. 

Data collection and data analysis
This study used an ethnographic approach to access 
the classroom culture and individual student’s and 
group’s mathematics identities. Following Cobb and 
colleagues framework (2001), instruments were de-
signed to capture both a social perspective (shared 
meanings in the classroom’s culture) and a psycholog-
ical perspective (individual student positionings in 
this culture), the latter particularly focused on girls. 
One of the authors [DR] visited the school regularly 
during the second semester of the school year, col-
lecting data from individual and group interviews 
with students, conversations with the teacher and 
observations. Different interview techniques and 
schedules were used to allow students to talk about 
their classroom, lessons, teacher and peers. 

A Mathematical Groups interview was concerned 
with the students’ perceptions of the different math-
ematical groups in the classroom and their own place 
in these groups (self and other’s positioning). It was 
used to explore what constructs of competence were 
working in the classroom and which students were 
consistently positioned as ‘competent’ or ‘non-com-
petent’. Sixteen students (7 boys and 9 girls) were 
sampled to represent different levels of attainment, 
and interviewed individually for about 5 to 10 min-
utes. They were asked to group their classmates by 
answering the following question: are there groups of 
students that show a similar relationship with mathe-
matics? Build as many groups as you want considering 
that students in a group should be similar within and 
different from other groups. After grouping, students 
were asked to talk about what criteria they used to 
group their classmates. 

A Natural Peer Group interview followed Cairns, Xie 
and Leung’s approach (1998), approach that allows 
mapping the classroom’s peer group structure in 
terms of ‘naturally occurring’ (i.e. informal, out-of-
school, or non-academically shaped) social clusters. 
Students were purposely sampled to represent dif-
ferent peer groups that were observed or mentioned 
in previous interviews until reaching saturation (i.e. 
no new groups appearing). In total, 12 students were 
interviewed (5 boys and 7 girls). They were asked 
to group their classmates by answering the follow-
ing question: are there people in this classroom who 
hang around together a lot? In a follow-up interview, 
meanings associated with each group were explored. 
Interviews again lasted between 5 to 10 minutes. 

This paper’s analysis is focused on 5 high attainment 
girls (between A- and A+) that were recognized as be-
longing to two big social peer groups, each of which 
included boys from the classroom, but in significant-
ly different ways. These girls were also interviewed 
more in depth about their relationship with mathe-
matics. In a semi-structured narrative interview that 
lasted about half an hour, they were asked to talk about 
their mathematics story and to describe how they felt, 
how they behaved, and how others saw them when 
doing mathematics. For the preliminary analysis that 
follows, the five girls participation in the classroom as 
observed during observations and their interviews 
were explored looking for communalities within the 
peer group and differences between the groups. 
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RESULTS: INTERSECTIONS OF GIRLS’ 
MATHEMATICAL AND PEER GROUP IDENTITIES

When the students were asked to group their class-
mates in terms of their relationships with mathematics, 
they tended to consider oppositions in achievement 
(high v/s low achievers) and effort (high effort v/s ef-
fortless) as significant categories for distinction. Thus, 
three main groups were mentioned in this regard: 
Effortless High Achievers [two boys and three girls], 
Effortless (‘lazy’) Low Achievers [four boys, of whom 
3 were held back], and High Effort students with var-
ious levels of attainment. 

In terms of naturally occurring peer clusters, the anal-
ysis that follows is centered on the girls that belonged 
to two of the six peer groups named by students 

‘Adolescent’ and ‘Normal’. While the ‘Adolescent girls’ 
were said to behave as if they were older teenagers (e.g. 
who ‘wear make up and go out partying with boys’), 
the ‘Normal girls’ were described as either immature 
or more appropriate to their age, and so positioned 
in contrast to the ‘Adolescent’.

Adolescent/Effortless girls
The intersection between the mathematical and the 
natural peer group revealed that the conformation of 
the ‘Adolescent group’ mixed students from two con-
trasting mathematics groups: three effortless high 
achieving girls and four effortless low-achieving 
boys. Their classmates described them as the group 
that acted as if they were older, thought they were the 

‘coolest’, showed off about what they owned (clothes/
technology, i.e. making the link with higher eco-
nomical capital), and appeared less concerned about 
school. Some classmates mentioned that the girls in 
this group were too worried about their appearance, 
wearing too short skirts, make up, and always hugging 
and kissing each other. Some of them, they said, even 
had boyfriends. 

When talking about themselves, students from the 
‘Adolescent group’ said they were the most mature 
group in the class. They said other groups of students 
(especially the ‘Normal group’, see below) played like 
children, ran about during breaktimes and were loud 
and euphoric. In contrast, the girls in the adolescent 
group said they hung out with boys and talked about 
their different interests: for example, Justin Bieber. 
They also claimed to balance their school life with 
other social obligations, like going out and partying. 

According to one of these girls, this was an important 
aspect of growing up.

New things will come in life, people can’t be all the 
time worrying about school. It’s not that school 
goes to second priority, but that new things come 
to life (...) like more friends, new things, I’m start-
ing to go out (partying) and those things are tak-
ing more of my time, and that’s it... less time...

This notion of maturity was further supported by 
these girls’ alignment with the ‘effortless low achiev-
ers’ boys’ in the group who had been held back a year 
and who, in consequence, were one year older than 
the rest of the class. 

During mathematics’ lessons, these girls were on task 
but somehow also seemed disengaged from the class-
room activities. During whole class teaching it was 
common to hear them making jokes (e.g., giving relat-
ed funny examples from the telly) and commenting be-
tween themselves (in group) on what the teacher was 
saying, but without sharing this commentary with the 
whole class. They were never seen offering an answer 
to the teacher’s question, or asking or commenting 
spontaneously to the whole class. Thus, they gave an 
appearance of not engaging but did so without being 
openly disruptive as such. During independent work, 
in contrast to other students, they remained sitting at 
their own desks, working with their partners. These 
girls were fast in their work, finishing ahead of time 
and, therefore, having the opportunity to chat about 
other things with their friends. Also, in contrast to 
other girls in the class (e.g. the girls from the ‘normal 
group’ see below), they rarely engaged with the teacher 
while working; instead, they sat back and waited until 
someone came and checked their work.

During individual interviews, these girls reported 
that mathematics for them was an active, collabora-
tive, and fast activity, where they were able to use their 
skills (“I’m good with numbers”, “I’m good with finding 
the solution”). Their perceived competence allowed 
them to enjoy and value Ms. P’s pedagogic approach 
as it allowed them to be mathematically active while 
remaining independent:

I like maths more than other subjects because it is 
not always the same. Exercises change; there are 
always new things to do and new ways to do them. 
It is not like other subjects that are always write, 



The intersection of girls’ mathematics and peer group positionings in a mathematics’ classroom (Darinka Radovic, Laura Black, Christian Salas and Julian Williams)

1655

read, write (…) Ms. P gives some time for doing the 
sheet and this time is like a little free time because 
you can.... I mean, not a free time in a bad sense, 
but you can work with your desk partner, or talk 
about the exercises with your group.

What they seem to accomplish in the classroom was 
the tenacity to maintain their academic performance 
as high achievers, but, at the same time, also preserve 
their status in the peer group. 

I try to do the exercises fast, so I can think in 
maths for a moment and then I can return to the 

“normal life” (...) that’s what I like to do... to do my 
work and then relax...

These data suggests a relationship between peer 
group membership and mathematical positioning, 
where each one appeared to be resourcing the other.  
Their effortless identity as a high achiever in math-
ematics meant they could complete the work quick-
ly – this then allowed them to accomplish their social 
‘obligations’, which were vital to maintain peer group 
membership and cohesion (e.g., chat between them 
and with the boys during the mathematics lessons). At 
the same time, performing their social identity as ‘ma-
ture girls’  involved achieving a good balance between 
social peer-group maintenance work and academic 
work (i.e., not working too much, and not being seen 
to engage with the classroom process, with the teacher, 
or with their immature inferiors) which at the same 
time resourced their ‘effortless’ mathematical identi-
ties. This relationship allowed these successful girls to 
construct a positive relationship with the subject and 
with their teacher’s pedagogic practice, while afford-
ing social independence and maturity as it aligned 
with the held back boys of their group.

The Normal/Non Effortless girls
The Normal Group presented a rather different inter-
section between mathematical and peer group identi-
ties. This group was comprised of six girls and three 
boys. Other students in the class described the girls 
in this group as ‘the quiet ones’; the group that nev-
er got told off by teachers. Girls from the adolescent 
group also commented that these girls were childish, 
contrasting them with their own social identity as 

‘mature’. 

Two of the girls within this group named themselves 
as the ‘Normal Group’ (hence the adopted name) and, 

in opposing themselves to the ‘Adolescent Group’, they 
said that they enjoyed childhood as appropriate to 
their age, not wanting to grow up too fast: as one of 
them said, “we live what we are supposed to live”.

During observations, the high achievers girls of this 
group appeared as described by their peers and in 
contrast to the adolescents: always on task and ac-
tively participating in classroom activities. During 
whole class teaching, these girls consistently offered 
answers to the teacher’s questions. As with the ad-
olescent girls, the normal girls finished their work 
fast. However, instead of waiting for the rest of their 
classmates to finish, they would seek help from the 
teacher in order to check their answers. Furthermore, 
the relative compliance of these girls with the teacher 
provided a degree of freedom in their behaviour: dur-
ing independent work, they were frequently stand-
ing and walking around the room. Although this was 
supposed to be against the rules and proscribed as 
disruptive, they were never reprimanded.

The Normal girls portrayed different ideas of what 
learning mathematics was when compared with the 
views of the Adolescent girls. Although they men-
tioned being relatively good at mathematics, they 
did not claim to value the independence of working 
alone to solve problems and felt that sometimes doing 
mathematics became too repetitive. For them, learn-
ing mathematics involved applying a method taught 
by the teacher and then waiting for the teacher to offer 
a new method if the first one was inadequate or too 
challenging.

I would like the teacher to teach us techniques 
that weren’t difficult so we could understand 
them in the moment and then we could move 
quickly, like the magic formula, easy procedures 
to understand (…) But in mathematics the teacher 
is like too serious and she explains everything as 
it is very complicated…

This version of what mathematics was (or was sup-
posed to be) appears to relate to how they saw their 
peer group role in the classroom. The Normal girls 
talked about maturity in order to differentiate them-
selves from their peers (particularly the boys in their 
group), but for them this term appeared to hold a dif-
ferent meaning. For them, maturity involves being 
responsible in doing their work and helping their 
(immature) male classmates:
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Yes, because when we start working on exercises, 
I look around and all the boys are just playing… 
some of them have it done but most of them just 
play (…) I think it is just that women are more 
professional, more mature, they keep focus on 
things (…)

I think we are 4 girls and we will have to be with 
the boys and we will have to help the boys to focus, 
we will have to be responsible, because I want to 
get a good grade…

These extracts again show how these girls’ peer and 
mathematical identities are related. Being ‘normal’, 
acting according to their age, feeds into their version 
of how mathematics should be: a set of methods that 
the teacher has to transmit to them. How are their peer 
group social relations then related to their mathemat-
ical positioning/identity? One can hypothesise that 
this peer group is constituted as being ‘child like’ in 
their peer activities, but also in its compliant/depend-
ent relation to adults – in this case the teacher – in con-
trast to the adolescent girls whose ‘maturity’ demands 
a degree of independence. Mathematically, this is as-
sociated with following rules and techniques, which 
should be simple and straightforward. Even the social 
relation to their male peers is not yet adolescent, and 
positions these males as in need of their (parent-like) 
surveillance/monitoring, reflecting their own compli-
ance with the authority of their teacher.

CONCLUSIONS AND DISCUSSION

This study offers further evidence for the idea that 
mathematical identities are intertwined with the stu-
dents’ peer culture (Gholson & Martin, 2014). More 
specifically, this study contributes to the literature 
by describing a dialectical relationship where peer 
group membership and identities inter-relate with 
their engagement in classroom activity and mediate 
how girls come to see what mathematics is, and how 
it is suppose to be done. In turn, emerging mathemat-
ical identities in the classroom may play some role in 
maintaining peer group membership. 

These preliminary results suggest that two cultural 
models can arise in this dialectical relationship: (i) 
effort/compliance with authority, and (ii) maturity. 
In the mathematics education literature, the notion 
of effort has been identified as crucial in defining 
mathematics as a male domain where essential abili-

ty involves effortless high achievement (Walkerdine, 
1998). Evidence from this study challenges such an 
argument by suggesting that girls can also position 
themselves as effortless high achievers as was noticed 
by Jackson (2006). However, it is important to point 
out that these girls are not particularly high achievers 
when compared with performance of students in the 
private school system in Chile and did not mention 
intentions of continuing studying mathematics after 
compulsory schooling: it seams that this effortless 
identity is still counting them out of mathematics, or 
it will in the future. 

This study also suggests that girls’ relationships with 
mathematics is also influenced by the meanings they 
attach to the process of growing up, particularly to 
their notions of maturity, which is a central theme 
in peer group membership (including relations with 
boys). On the one hand, the adolescent girls use ma-
turity as a way of addressing their need to position 
themselves outside the school academic culture, a 
process which is further aided by their alignment 
with the oldest boys: Despite the boys’ being lower 
achievers – they gave status to the girls who wished 
to use maturity to differentiate themselves and their 
group from the rest of the class. On the other hand, 
the normal girls associated maturity with compliance 
with school culture – not just being compliant but 
even taking responsibility for the poorly behaved 
boys as another means of performing their (appar-
ent) compliance. These different notions of maturity 
not only signify peer group membership but also how 
to approach mathematics, since for these girls their 
maturity was representative of the school culture (i.e. 
doing maths quickly, easily to allow for other activi-
ties v/s following rules/methods and verifying such 
procedures to perform well). 
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This paper aims to explore the way mathematics edu-
cation systematically disadvantages particular groups 
of children, beginning in their early education. I focus 
on the concept of number sense to illustrate how it acts 
as a gatekeeper to wider mathematical learning and 
subsequently life opportunities. By examining number 
sense from the perspectives of cognitive psychology, sit-
uated cognition and Bourdieusian social psychology, 
I demonstrate inequalities in how young children de-
velop number sense in primary school. I suggest that it 
is important to consider these different perspectives to 
reveal the dominance of cognitive theories on practice in 
primary schools. I propose that a Bourdieusian analysis 
of number sense reveals how number sense works to 
sort children and ultimately reproduce social divisions.

Keywords: Number sense, social justice, habitus, Bourdieu.

INTRODUCTION

Mathematics education systematically disadvantages 
some people (Zevenbergen, 2001). Crawford & Cribb 
(2013) report that high attainment in mathematics 
leads to higher earnings potential for individuals; 
with mathematics attainment at age ten being linked 
to individual earnings at age thirty. Similarly low nu-
meracy along with low literacy is found to be a gen-
uine barrier to employment (Wolf, 1999). We need 
to view such evidence alongside the knowledge that 
children from lower socio-economic backgrounds 
generally achieve lower outcomes in mathematics 
than their more advantaged peers (e.g., Nunes, Bryant, 
Sylva, & Barros, 2009). Thus there is a cycle of disad-
vantage, where children who are born into homes of 
low socio-economic status are likely to be failed by 
mathematics education and have limited opportunity 
to improve their life chances. In this paper I argue that 
an individual’s ‘habitus’ (Bourdieu, 1989) causes mis-
recognition of number sense skills as mathematical 

ability. Such attribution of success to individual both 
ignores the systematic advantages and disadvantages 
for particular groups of children as they navigate the 
education system and actively creates further advan-
tages and disadvantages for those groups. 

Situated cognition has sought to challenge such out-
comes through offering an alternative approach to 
teaching mathematics (e.g., Boaler, 2001). This is based 
on wider literature which suggests that mathematics 
in ‘real-life’ is not well supported by the mathematics 
taught in school (Carraher, Carraher, & Schliemann, 
1985; Lave, 1998). However, I argue that situated cogni-
tion does not go far enough to explore the systematic 
failures children experience in schools. By placing a 
particular emphasis on primary schooling as the site 
of rapid development of number sense, I argue we 
need to broaden our view of number sense and that 
a Bourdieusian framework is useful in this context. 
Such a perspective allows us to explore how children 
are being sorted by their ‘ability’ in number sense 
in this very early stage of education, which becomes 
a self-fulfilling prophecy of how well children will 
achieve in mathematics throughout their education. 

The purpose of this paper is therefore to offer a the-
oretical contribution regarding the examination of 
this development of number sense. Before outlining 
the contribution of the different theoretical perspec-
tives, I begin with a short discussion of the construct 
of number sense.

NUMBER SENSE

Number sense is a term widely used in educational 
literature, curriculum documents and other aca-
demic fields such as cognitive psychology. In terms 
of education, as Greeno (1991) comments, although 
the concept is not defined well, we recognise it when 
we see it. Largely, the child’s “fluidity and flexibility 
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with numbers” (Gersten & Chard, 1999) is useful as an 
educational definition of number sense in primary 
education, although this is a much boarder definition 
than that usually employed in cognitive psychology. 
As I work through the theoretical positions of cogni-
tive psychology, situated cognition and Bourdieusian 
social theory I demonstrate the aspects of number 
sense each focusses upon. I use this to illustrate the 
utility of a Bourdieusian analysis to highlight the 
structural inequalities that the concept of number 
sense reproduces through the education system.

COGNITIVE INFLUENCES ON NUMBER SENSE

Cognitive psychology offers a conception of num-
ber sense based solely on enumeration of numeros-
ity. Within this definition mechanisms underlying 
numerosity discrimination continue to be explored. 
In general two systems for processing numerosity 
are proposed: subitising and approximate number 
recognition. The assumption I read from this liter-
ature is that these systems are taken to be innate, 
building on specific neural pathways. Xu & Spelke 
(2000) suggest that number sense develops spontane-
ously and have demonstrated how children as young 
as six months can discriminate between sets of two 
and three. Halberda & Feigenson (2008) demonstrate 
that this numerical discrimination improves rapidly 
throughout infancy and then continues to develop 
until approximately the age of thirty, suggesting the 
presence of a developmental mechanism. Finally, 
Feigenson, Libertus, & Halberda (2013) demonstrated 
a correlation between the accuracy of enumeration 
and individual mathematical ability as recorded in 
school attainment data, which was found to be relia-
ble even when applied retrospectively across school 
records. Together, such data suggests an innate de-
velopmental mechanism which allows improvement 
in number discrimination and that this skill may be 
linked to formal achievement in mathematics. Such 
a perspective is influential on the development of 
primary school mathematics curricular (e.g., DfE, 
2013) which replicate these proposed hierarchical 
mechanisms; early counting practices in particular 
are heavily influenced by work on the way children 

‘develop’ counting skills (Wynn, 1990). There is sug-
gestion however, that a curriculum based on devel-
opmental stages is outdated (Goswami, 1991), yet the 
pervasiveness of such a model remains within the 
education system. 

I argue that a view where an innate capacity under-
pins mathematical learning can lead to a view that 
individuals have a particular ‘mathematical ability’. 
It can also lead to a view that certain people will be 
able to learn mathematics better or worse than others. 
This is to some extent a mis-use of the cognitive litera-
ture, and indeed educational neuroscience is working 
to address such a misconception through work such as 
that by Howard-Jones (2007) which looks to examine 
how neurological evidence can be used to enhance the 
learning experience, rather than restrict it. What is 
important when reflecting on the dominance of such 
cognitive theories on the learning of number sense, 
is not simply how well the definition describes the 
concept, but to interrogate the effect of the concept 
on practice (Henriques, 1984). Thus, despite great-
er understanding of flexibility of neural pathways 
in learning, a fixed ability mechanism is common in 
mathematics learning (e.g., Marks, 2014). We attribute 
individual differences in mathematical attainment to 
differences in individual abilities and this becomes a 
self-fulfilling prophecy. 

It is simple to see how such a situation operates in 
practice. For example, although there is no definitive 
list of skills, number sense is recognised when it is 
demonstrated (Greeno, 1991) – or perhaps when a ‘lack’ 
of it is shown. When children appear not to have mas-
tered a particular aspect of this body of knowledge, 
say number bonds, this is identified as a ‘gap’ in their 
knowledge. Such children are given further time and 
additional practise to acquire this skill, contrary to 
the evidence that such an approach may not in fact 
allow them to develop the skill being targeted (Denvir 
& Brown, 1986). Thus children without the necessary 
number sense experience a curriculum of practice 
and repetition (e.g., Gersten & Chard, 1999). In contrast 
to this, children who experience success are given 
more advanced work, further extending their attain-
ment. The achievement gap in mathematics is known 
to widen through primary schooling and such a model 
for teaching and learning begins to demonstrate a 
possible mechanism for this. 

A further difficulty with operating in this paradigm 
to try and ‘fix’ number sense is that children are likely 
to be labelled. Those who need further practise of the 
basic number sense skill are then considered to be 

‘low-ability’; they do not have the required skill. Those 
who do have it are considered better. Not only then 
do the ‘low-ability children get a narrowed curricu-
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lum, there is a high risk that they view themselves as 
unable to learn mathematics and have the associated 
difficulties of such a label, for example low self-esteem 
and low motivation. This aspect of identity will be 
referred to through the work of situated cognition.

Whilst cognitive psychology continues to provide us 
with increasingly sophisticated techniques to inves-
tigate and understand the neural basis of learning, 
over-emphasis on this paradigm may lead to a nar-
rowed curriculum, particularly for those children 
who experience mathematical difficulties. 

SITUATED COGNITION

Situated cognition offers an interesting lens through 
which to view number sense due to the discrepan-
cies observed in formal and informal arithmetic. For 
example, Lave (1988) demonstrates how adults were 
able to use mathematical information in informal 
settings such as the supermarket to make ‘best-buy’ 
calculations and purchases. However, when the same 
scenario was presented as a ‘pencil-and-paper’ cal-
culation, much like a school setting, the individuals 
often failed. As Greeno (1991) proposes, part of the 
concept of number sense is the ability to make connec-
tions and draw across different number concepts. In 
Lave’s (1988) study this was largely attributed to the 
formal setting causing the individual to turn to the 
use of an algorithm which was then not successfully 
remembered or executed. I offer this as an interesting 
perspective on number sense as the presentation of a 
calculation seems able to affect the way an individual 
engages with it. 

Situated cognition addresses this by proposing that 
mathematics as it is ‘traditionally’ taught in schools 
does not represent the mathematics used in real-life.  
McIntosh, Reys, & Reys (1992) state how as students 
increase their technical procedures in mathematics, 
they may in fact narrow their range of available strat-
egies. If informal strategies are more generally called 
upon in ‘real-life’ mathematics then it is easy to see 
how procedural teaching limits the way mathematics 
is of use to people beyond school. The work of Boaler 
(2001) has shown improved attainment through work-
ing on ‘real-life’ problems in context. Not only did the 
children report that such problems made the mathe-
matics they learned more relevant to their wider lives, 
the young people achieved more highly in formal test-
ing than other students with higher prior attainment. 

Another important outcome was a reduction in the 
way girls were ‘excluded’ from mathematics. 

The focus of Boaler’s (2001) work is on the high school 
context. Whilst this work is important in understand-
ing older pupils’ engagement with mathematics, the 
concepts it addresses are ones I argue build on num-
ber sense. Children often report much greater dissat-
isfaction with mathematics at secondary school where 
they fail to see the relevance of the topics to their lives. 
This is not usually the case with primary school math-
ematics as the concepts involved are in fact largely 

‘number sense’ and such learning is generally regard-
ed as important by young people (e.g., National Audit 
Office, 2008). To solve more challenging problems re-
quires prior learning; aspects of number sense need 
to be automatic to allow mental effort to be focussed 
on the more complex aspects of problem solving. If 
some calculations are not automatic, or at least flu-
ent, then focussing on specific calculations becomes 
time consuming and distract from the wider task 
in hand. Situated cognition identifies this dilemma, 
where people cannot connect calculations presented 
in a particular format to one in which they are able 
to solve such a calculation, they cannot demonstrate 
the “flexibility” expected of number sense (Gersten 
& Chard, 1999). This again returns us to a cognitive 
paradigm of rehearsal and repetition of skills before 
moving onto more complex problem solving; it is just 
such a requirement to have fluency with basic calcu-
lation that leads to a narrowing of the mathematics 
curriculum for children struggling to demonstrate 
these skills. 

Askew (2008) argues that it is not simply learning 
which is situated in mathematics, but that social iden-
tities in classrooms are also situated and that normal-
ised routines of the classroom lead to maintenance of 
inequalities. Including social identity as an element 
of the situated nature of mathematics learning does 
broaden the context and it is important to examine 
the way children develop such identities in relation 
to mathematics learning. Number sense is well placed 
to allow such an analysis. Number sense as a cognitive 
domain where we make sense of situations and differ-
ent contexts (Greeno, 1991) is likely to be influenced by 
how we feel in the situation, previous experiences and 
the response of others both to us and to our ideas – in 
short our mathematical identity. 
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Why, then, do children experience the same mathe-
matical environment in such different ways? Situated 
cognition poses this as a challenging question. In order 
to begin to address this, I propose that a Bourdieusian 
perspective allows us to examine wider societal fac-
tors influencing the learning of mathematics, the 
cultural influences of the school environment and 
the school within its broader environment. We can 
appreciate that some children have already been ex-
cluded from learning mathematics by assessment of 
their number sense early in their schooling. I now 
turn to Bourdieu to develop this broader perspective 
in the role of number sense development. 

BOURDIEUSIAN PERSPECTIVE

Viewing number sense with a Bourdieusian lens al-
lows us to see this number sense not only as a body 
of facts, but as a way in which we interact with math-
ematical information. Bourdieu’s method offers a set 
of conceptual tools through which to examine prac-
tice, namely field, habitus and capital. These concepts 
can be used to examine the way number sense is con-
structed demonstrating how it excludes particular 
groups of children.

Field
A field is defined by Bourdieu as “a universe in which 
the producers’ characteristics are defined by their 
positions in relations of production” (Bourdieu, 1993, 
p. 51) and is considered a site of competing interests 
(Green, 2013); and as such ‘primary mathematics 
education’ is conceptualised as a field in this sense. 
Mathematics education is often used as a field in such 
analyses as it has a particular language, specific ex-
pectations and outcomes (Jorgensen, Gates, & Roper, 
2013). Proposing primary mathematics education 
as a field allows the range of external and internal 
influences to be analysed. The nature of the British 
education system which separates largely primary 
and secondary schooling – at age 11 – further exac-
erbates the hierarchical nature of mathematics edu-
cation. My suggestion is that primary school mathe-
matics is largely seen as a gatekeeper to secondary 
school mathematics, and within this, number sense 
is a gatekeeper to the wider range of skills that allow 
one to access the wider curriculum to make success 
in primary school a possibility. Therefore, by con-
ceptualising primary school mathematics as a field 
using Bourdieu’s terms appreciate the expectations, 

barriers and opportunities presented by the system 
can be appreciated.

By conceptualising primary mathematics as a field, 
we can look beyond the classroom as the only site in 
which such skills are developed and thus have greater 
explanatory scope and power than the work of situ-
ated cognition. Children clearly develop much math-
ematical knowledge and understanding beyond the 
classroom, arriving at school with highly varied expe-
riences. Whilst situated cognition begins to address 
the need to make mathematics learning relevant to 

‘real-life’ it is not able to address the diverse contexts 
from which children are learning mathematics. In 
particular it is not able to explore the dissonance that 
children from lower socio-economic backgrounds 
experience between their home learning environ-
ments and that of the school. For example, the work 
of Street, Baker and Tomlin (2008) showed how chil-
dren may have rich mathematical experiences at 
home, through activities like pigeon racing, but that 
the knowledge and experience that this provided the 
children was not reflected in the school environment. 
The Bourdieusian framework permits the competi-
tion between the recognised and the un-recognised 
styles of mathematics to become apparent.

Habitus
Habitus is a term used by Bourdieu to define the tak-
en-for-granted way in which we act; a person’s natural 
manner or disposition (Bourdieu, 1989). This is more 
than a set of preferences as habitus is operationalised 
by class, gender and race (e.g., Reay, 1998). Habitus 
is shaped throughout one’s early socialisation and 
is well established by the time an individual enters 
education. Habitus is stable and durable, yet can be 
shaped, for example through education. Thus we can 
learn to act and operate in new ways, but our early 
socialisation never leaves us. Bourdieu expresses the 
way that early socialisation has such a powerful in-
fluence through concepts such as ‘manners’ or ways 
of acting in particular situations (Bourdieu, 1984). 
This is exemplified through the confidence that is 
acquired through ‘growing up around’ something, 
knowing ‘intuitively’ how to act and the confidence 
this brings, rather than having to learn it and being 
painfully aware that it is quite possible to make the 
wrong choice. 

Considering number sense in such a framework high-
lights the inequalities that exist in the education sys-



Number sense as a sorting mechanism in primary mathematics education (Rebecca Turvill)

1662

tem. Children who experience a home environment 
which is rich in number experiences – with parents 
who are confident and highlight numerical experienc-
es – are likely to enter school with a greater aware-
ness and confidence with numbers themselves. They 
have an apparently ‘innate’ confidence with numbers, 
which is mis-recognised as an ‘innate’ ability. Those 
children who do not have such opportunities appear 
as less able. Number sense is particularly suited to this 
explanation where it is seen broadly as the connected 
way of thinking about numbers, as linking different 
aspects of number, rather than solely elements of 
mathematics such as number bonds or multiplication 
facts. The way it privileges children becomes clear. 
Those children, who are used to working within the 
context of such number sense, used to talking about 
numbers in a confident way, will demonstrate ‘ability’ 
in school. Those who are not used to the language of 
mathematics (Walkerdine, 1989) are mis-recognised 
as ‘low-ability’ and thus excluded.

Habitus, is at home in the “field it inhabits” (Bourdieu, 
1992, p. 128) thus the habitus of the middle classes, 
which aligns well with the expectations of the ed-
ucation system positions them to excel. From this 
Bourdieu argues that achievement becomes self per-
petuating preserving the hegemony of dominant 
classes. Middle class discourses are largely in line 
with school discourses and the increased ability of 
such families to prepare their children for school al-
lows them to take every opportunity offered by the 
education system. It is the available resources of the 
middle classes in Bourdieu’s opinion which can read-
ily be converted into academic achievement; such re-
sources are considered to be capital as outlined below. 

Thus, habitus can offer itself as a tool to examine the 
development of number sense. How does a child’s hab-
itus impact learning through development of their 
mathematical identity? The final tool to which I now 
wish to turn is cultural capital as a way to further ex-
plore how habitus can advantage and disadvantage 
different groups of children.

Capital
Capital is the outcome of the combination of habitus 
and field. Bourdieu defines different capitals of which 
cultural, economic and social capital are of relevance 
here. As stated, children bring varied experiences 
of learning mathematics to school with them and 
particular cultural experiences offer educational 

advantages to a child. It is the ability of those from 
higher socioeconomic backgrounds to utilise their 
economic capital to offer increased cultural capital 
which offers the systematic advantage such children 
experience in school. 

What Bourdieu argues is very important in this 
transition from economic to cultural capital is the 
misrecognition of the conversion; that a child with 
such cultural experiences is better placed to learn 
mathematics is not recognised in the education sys-
tem. Schools attribute being well placed to learn as 
being more ‘able’. We know who is well placed to learn 
from our assessment of the children in school. Such 
educational assessment whilst pertaining to assess 
a child’s ‘ability’ and to shape subsequent schooling, 
is in fact measuring wider socialisation. Habitus is 
exchanged for a culturally-valued outcome in the spe-
cific field, in this case achievement in mathematics, 
and the individuals increase their cultural capital.

CONCLUSION

A Bourdieusian analysis allows a wider conception of 
number sense – with number sense acting as a sorting 
device itself for participation in mathematics learn-
ing more generally. Thus children ‘with’ a habitus 
which fits well with the mathematical expectations of 
the education system are mistakenly considered able, 
whilst those with a poorly-aligned habitus are not. 
The consequence for this latter group, predominantly 
those from lower socio-economic backgrounds, is a 
message about their own ‘ability’ to learn mathemat-
ics and an altered curriculum which is repetitive and 
narrow – in order for them to ‘fill gaps’ in their learn-
ing. Such an approach, whilst well meant and standard 
practice in primary schools, is a form of ‘symbolic 
violence’ (Bourdieu, 1986) enacted upon children from 
lower socio-economic backgrounds. Number sense, 
mistakenly viewed as individual ability, shapes chil-
dren’s mathematical futures and potentially their life 
chances, from their earliest engagement with math-
ematical learning. 
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Two experiences in primary school teacher education are 
reported. Both of them are based on Ethnomathematics 
understood as a tool to reflect about the ways of doing 
mathematics of two cultural groups. Geometric figures 
are built in different way by the two cultural group ana-
lyzed: a group of folk dancers of Argentina and an in-
digenous people of Costa Rica.

Keywords: Ethnomathematics, teacher education, cultural 

practice, geometric figure.

INTRODUCTION

We report two experiences performed with primary 
school teachers respectively in Argentina and Costa 
Rica, where it was proposed to use Ethnomathematics 
as a tool to promote professional teacher develop-
ment through a process of reflective inquiry about 
the ways of doing and understanding mathematics 
(ethnomathematics) of a cultural sign of the cultural 
groups involved: the guild of Argentine folk dancers 
and the Cabecares, an indigenous group of Costa Rica.

METHODOLOGY

Both works consist in organizing a course for the train-
ing of primary school teachers, where we propose 
the development of Ethnomathematical Microproject 
(Oliveras, 1996). These include the identification and 
characterization of ethnomathematics in a cultural 
sign of the group chosen, to develop contextualized 
teaching activities to be presented in the classroom 
of primary education. The objective was to engage 
teachers in a research about the ethnomathematics 
embedded in the cultural practices in each context 
and to identify its relationship with academic-formal 
mathematics.

In both countries we organized a course for teacher 
training, which promotes the research on the context 
through micro ethnographies realized by the partic-
ipants of the courses. The data collected consists of 
the reports of the Micro-projects and the audiovisual 
recordings of the course session.

SOME RESULTS

The cultural signs studied were the folk dance cha-
carera (Argentina) and the traditional conical House 
of the cabécar culture (Costa Rica). We highlight here 
the participants’ observations about the ethnomath-
ematics found in the cultural signs and about the 
relations and differences with academic and formal 
mathematics.

In the dance chacarera the participants focus on the 
geometric figures that outline the choreography and 
they observed that the circumference is associated to 
the movement of steps that include a turn of the body 
on itself for folk dancers, while in school mathematics, 
it is defined by an equidistance of all points in relation 
to a center. In fact the same steps in the figure called 
avance retroceso, which does not involve a rotation of 
the body on itself, are represented by a diamond, while 
the figure called giro, where a rotation is involved, is 
represented by a circular line; this is the evidence that 
the teachers provide for the hypothesis that dancers 
resemble the circular line to the rotation of the danc-
er’s body by a round shape without corners. Thus we 
conjecture that the circumference of the guild of the 
dancers is conceived as a regular polygon that tends 
to have no angles (Albanese and Perales, in press).

The cabécar traditional conical house is called Ju-Tsini 
and is itself a system of cosmological representation 
where elements of the cultural heritage and particu-
lar geometric concepts of the group –a specific logic 
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and a particular way of localizing- join together, since, 
in this ethnic group, the physical world serves as a 
system to represent the mythical world (Gavarrete, 
2012). The participants identify the construction of 
the Jú-tsiní as a powerful and contextualized exam-
ple to work with pupils concepts related to the solid 
corps, as symmetry (axis of symmetry and homolo-
gous points). The circle is drawn using a center pole, 
this means that here the conception of circle is associ-
ated to the distance from the central point. The space 
is represented by the union of a cone and an inverted 
cone, whose circular bases overlap and therefore have 
the same axial center, resulting in the model Nopatkuö 
which describes the three cosmic levels of the legend-
ary tradition of the ethnic group. This specular mod-
el represents the dual opposition of elements. The 
principle of complementary opposition is equivalent 
in school mathematics to that of symmetry even if 
in this culture it has an added value of cosmological 
meanings. 

CONCLUSIONS

In both countries, the research experience impacted 
the teachers training, as they reflected on the univer-
sality of mathematical knowledge and teaching ap-
plications, promoting teacher creativity to facilitate 
the developing of the mathematical curriculum in 
connection with the sociocultural environment.
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The purpose of the study presented in this poster is to 
examine characteristics of power relations between 
researchers and teachers in an action research project. 
We position the study within a critical and social ap-
proach and pay attention to inequities that may concern 
power relations between researchers and teachers in an 
action research project (Skovsmose & Borba, 2004). We 
draw on Gellert (2008) who argues that if “professional 
development of mathematics teachers is considered a 
collective affair, then the concepts used to describe the 
teachers’ actions and cognitions should reflect this per-
spective” (p. 94). We also draw on Atweh (2004) when 
we problematise “the process of research itself and cri-
tiques it in terms of power relationships between the 
participants” (p. 194).

Keywords: Mathematics classroom, action research, 

power relations.

ANALYTICAL FRAMEWORK: 
PARTICIPATORY ACTION RESEARCH

In our analysis we adopt a description by Atweh 
(2004), where participatory action research is char-
acterised as: 

 ― a social activity. This research always recognizes 
the broader institutional context as part of the 
process, for example the municipalities or col-
leagues etc. 

 ― a participatory action research. This research 
engages teachers and researchers to investigate 
their own knowledge and actions. A consequence 
is that people can only carry out action research 
‘on’ themselves. It is not research done ‘on’ oth-
ers. Emphasised here are the conditions for the 

research in which teachers should be given the 
opportunities to fully participate in research. 

 ― research which involves collaboration where 
teachers and researchers engage in research to-
gether. Everyone in the project strives towards 
developing her/his own professional competence 
with the support of each other. The collaboration 
may also include cooperation with people who 
are linked to, but not directly involved in, the 
research project. 

 ― research which is emancipatory. Participatory 
action research may afford teachers to see and 
analyse the mechanisms that put limitations to 
their work as mathematics teachers. 

 ― research which is critical. Included here is that 
the research itself seeks to challenge a mathemat-
ics teaching that do not provide equal opportuni-
ties for all students to learn mathematics. 

 ― research which is reflexive in that it goes in two di-
rections. The participants in the research investi-
gate their practice, and they also aim to change it. 

METHODS AND FINDINGS

This is a case study where we reanalysed data from 
an action research project with a specific interest in 
power relations between teachers and researchers. 
The data consist of participants’ logs. We also ana-
lysed audio recordings from three of the meetings in 
the project as well as notes from these meetings.

In the action research project, a model by Skovsmose 
and Borba (2004) was adopted with an addition by 
Björklund Boistrup and Norén (2013), see Figure 1. 
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This model frames our account of the findings that is 
presented on the poster while we also use the men-
tioned characteristics by Atweh (2004) as analytical 
concepts. One finding we elaborate on is how teachers 
went from acting as observing participants towards 
participatory researchers during the project, while 
the responsible researcher went from research lead-
er towards a facilitating participatory researcher. 
Simultaneously there were constraints identified 
in the institutional context which affected the affor-
dances for participants to take on new roles.
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CS: Current situation
IS: Imagined situation
AS: Arranged situation
1: Pedagogical imagination
2: Practical organisation
3: Explorative reasoning
4: Scrutinising the institutional context

Figure 1: (Skovsmose & Borbra, 2004) plus (4) from (Björklund Boistrup & Norén 2013)
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This paper presents some of the results from a research 
study about mathematics in agriculture and agricultur-
al education. The purpose of the study is to investigate 
the role of mathematics as a professional knowledge, 
and how to organize vocational secondary school edu-
cation so that students receive the math knowledge and 
skills they need for their future profession. The study 
is done from a curricula theoretical perspective with 
concepts from Bernstein (2000). The results indicate 
that mathematical skills are essential for a professional 
farmer, but according to those interviewed, many agri-
cultural students have deficient mathematical skills for 
their future profession after their education. 

Keywords: Mathematics, workplace, agriculture, vocational 

education, Bernstein. 

INTRODUCTION 

In Sweden it has in recent years been pointed out from 
various professions that vocational students do not 
have the desired or adequate mathematical skills for 
the professional life after their education. Based on 
that I found it interesting to study the reasons for 
vocational students to learn math, which math skills 
the professionals deem most important, how this is 
reflected in the school’s math education and also how 
the students’ mathematical knowledge affects their 
future career possibilities within their profession. 

THEORETICAL FRAMEWORK 
The study is done from a curricula theoretical perspec-
tive with concepts from Bernstein (2000). Bernstein’s 
pedagogical codes, classification and framing and his 
theory of discourses is used to analyse how the curric-
ulum is realized in mathematics education and how 
this may affect students’ professional career. 

METHOD

To answer the questions, I have in the winter of 2012 
and the spring of 2013, done interviews with 15 profes-
sional farmers, 13 vocational teachers in agriculture, 
11 mathematical teachers who teach agriculture stu-
dents and 40 secondary vocational agriculture stu-
dents. The students are interviewed in focus groups. 
The teachers and students come from eight different 
schools with vocational education in Sweden.

RESULTS 

The results indicate that mathematics is an essential 
professional skill for farmers because they use math-
ematics all the time. Farming profession is today very 
advanced and as a farmer you do not only have use of 
practical skills. The farmers that I interviewed gave 
examples of 54 different job tasks that require skills 
of mathematics. Many of the farmers also said they 
do not want to hire someone who doesn´t have suf-
ficient skills of mathematics since miscalculations 
can mean costly mistakes. The farmers claimed that 
they did not need any advanced skills but that they 
must have very good basic mathematical knowledge, 
since there is often advanced applications of the math-
ematics (cf. Fooreman & Steen, 1995). It is mainly the 
areas of percent, geometry and statistics that farmers 
need to have knowledge about. Farmers must also be 
very good at mental calculation, rough calculation 
and plausibility assessments. 

The interviews revealed that many students did not 
really seem to understand the importance of learn-
ing mathematics and they claimed it to be boring. 
Students’ lack of motivation to learn mathematics 
results in deficient mathematical skills to handle 
the calculations appearing in the profession. Lack of 
mathematical skills also results in that many students 
do not pass the professional certificates available in 
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agriculture. To learn the required mathematics of the 
farming profession, many of those that were inter-
viewed advocated that mathematics- and vocational 
classes should be largely integrated, and that even 
the professional farmers should be responsible for 
teaching mathematics. Students working with an in-
tegrated mathematics education say that it gives them 
more motivation, they learn better, and understand 
and remember more, when it’s related to their reality. 
Using concepts from Bernstein, an integrated code 
was requested with a more a context-bound and hori-
zontally organized mathematics teaching. But most 
of the schools in the study has what Bernstein calls a 
strong classification, where the school mathematics is 
clearly separated from other subjects and from work 
outside of school. At these schools the teachers have 
no or little cooperation with each other. Hierarchies 
and power relations described by Bernstein be-
tween different categories of teachers, were found 
to be prevalent. In order to enable an integrated code 
both the teachers and the school management must 
agree. An easy way to create a collaboration between 
vocational- and mathematics teachers, and thereby in-
crease an integrated mathematics education, seemed 
to be to let these categories of teachers have a shared 
office space.
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This paper describes the state of research concerning an 
international instruction collaboration between Italy 
and Tanzania. During the last five years of the project 
it has been possible to detect some of the educational 
aspects that might have a negative impact especially 
regarding mathematics. Starting from this analysis, it 
was elaborated a peer education proposal as a possible 
didactic methodology suitable to be used in the school 
context. Research was made and the last results show 
that the aforementioned methodology could be particu-
larly useful in this specific educational environment. 

Key words: African secondary education, peer education, 

CLIL, complexity.

INTRODUCTION

Since 2010 the Akap association (Italy), has brought 
together a group of researchers in mathematics ed-
ucation from the University of Bari, Bologna and 
Ferrara and teachers at Daudi Secondary School 
(Tanzania). Each year a meeting among these teams is 
organized in order to discuss and experience learning 
opportunities for Tanzanian pupils which respects 
the many interrelated factors operating within the 
school context.

THEORETICAL FRAMEWORK

Mathematics is recognized as important by govern-
ments all over the world. Why is it so important to 
teach it? Many reasons are provided and debated by 
influential people, both in mathematics education but 
also in government organisation. In many countries 
so-called “underdeveloped”, is still frequently the 
opinion that school systems must teach content that 
in the past were decisive factors in the industrialisa-
tion of “developed” countries, without thinking on the 
historical, social and cultural reasons behind their 

inclusion. Instead it has been suggested that the goal 
for “under-developed” countries is not to get where 

“developed” countries are today, but to develop and 
build a educative model that is appropriate for the 
social organization, based on ethical values which 
seek the common good (D’Ambrosio, 1997). 

1) The data analysis published by the Tanzanian 
Ministry of Education and Vocational Training 
[MoEVT] at the end of the first “Secondary 
Education Development Programme” (June 2010) 
showed a progressive decrease in the number 
of students promoted in the two main national 
examinations: the PSLE (Primary School Leaving 
Examination) and the CSEE (Certificate for 
Secondary Education Examination). 

2) Our investigation focuses on promoting quality 
in the education offered within a particular con-
text in Tanzania, characterized by specific social, 
cultural and political factors. Through studying 
the MoEVT official documents and a collection 
of testimonials from Tanzanian teachers and 
students, we became aware of the complexity1 
of the issues regarding teaching in an environ-
ment so different from the European one. Some 
of the issues that the teachers had to contend with 
were: overcrowding classes; lack of textbooks 
and teaching aids; English as the language of in-
struction instead of Swahili mother tongue; poor 
teacher recruitment program. Consequently, the 
teams developed a peer education proposal for 
this specific context. According to Cooperative 

1 We thought that the theory of complex systems in social 

sciences could allow us to manage the multiple dynamics be-

tween the components of the project, through a dialectic that 

goes continuously from the global to the specific. The main 

idea is that acting on a component means acting on the whole 

system, with a retroactive view

mailto:spglsn@unife.it


Discussing teaching/learning methods in a complex educational context (Karolina Muhrman)

1672

Learning Theory ( Johnson & Johnson, 1980), 
there are many reasons to investigate this meth-
odology: improvement in all students’ academic 
performance; increased motivation to study, due 
to the development of psychological well-being 
and a positive climate into the classroom.

MAIN RESEARCH RESULTS

The latest results show that a peer education program 
could be particularly useful in this school. The math-
ematics workshops carried out in 2014 confirm the 
usefulness of a teaching approach based on social me-
diation for Daudi Secondary School. The division of 
the students into groups, the organization of specific 
roles assigned to each member and the use of appro-
priate working schedules seem to overcome the prob-
lem of the high number of students in each class and 
to involve each pupil in all of the planned activities. 
The possibility of discussion within the groups has led 
the students to overcome language barriers related 
to the use of English and to develop skills in critical 
reasoning and understanding mathematics. 
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This poster illustrates how an exercise of ideology cri-
tique can employ a commercial for making ethical fil-
tration visible in the context of Critical Mathematics 
Education.
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CONTEXTUALIZATION IN CRITICAL 
MATHEMATICS EDUCATION

We are living in a mathematised world. More and 
more aspects of social live are penetrated by mathe-
matics-based technologies. As Davis and Hersh (1986, 
p. 17) make us aware, “we should observe these de-
velopments critically, as they could do damage to all 
of us”. This accounts a fortiori, as the trend of mathe-
matisation is accompanied by a simultaneous trend 
of demathematisation: while mathematics becomes 
more and more pervasive in all spheres of life, it van-
ishes more and more from the surface and becomes 
more and more invisible (Jablonka & Gellert, 2007). 
The emergence of Critical Mathematics Education 
(CME, e.g., Skovsmose, 1992) has brought critical at-
tention to the role of mathematics in our world. The 
demand for critical awareness has in the meantime 
grown beyond the boundaries of CME and has reached 
the mainstream of Mathematics Education (ME). That 
school mathematics must contribute to critical citi-
zenship has become common sense within the field 
of ME (Pais, 2012). As it appears, what has been lost 
on the way is the care for the limits of mathematics 
for handling socially critical issues – the juxtaposi-
tion of potentially more relevant non-mathematical 
strategies and their sincere consideration (Skovsmose, 
1992). It appears that the problematizing of socially 
critical issues within the mathematics classroom 
tends to structurally prioritize strategies that make 
use of mathematics. Skovsmose (2008) has described 

and de Freitas (2008, p. 87) has further analysed this 
effect as ethical filtration: “the agent [...] reduces the 
complex ethical and political situation to a set of 
abstract parameters which are then combined into 
a simplifying model primarily used for prediction. 
According to Skovsmose (2008), ethical filtration is 
built into the practice of mathematics in action”. She 
complements that “mathematics education actually 
teaches students to enact ethical erasure so as to suc-
cessfully generate solutions that seem unambiguous” 
(p. 88). A truly CME makes this ethical filtration visi-
ble and – where necessary – promotes support to put 
mathematics back to its refined place. 

CONTENT OF THE POSTER

The poster suggests an activity that reverses the pro-
cess of ethical filtration by carrying out an ideolo-
gy-critique that problematizes the improper use of 
numbers – improper in this case is not meant as a 
use of “wrong” numbers, but that the use of numbers 
itself is a dead-end for the social issue under question. 
The poster illustrates how the philosophy of Slavoj 
Žižek (e.g., 2008) can serve as a means to deconstruct 
the improper instrumentalisation of numbers for a 
rankly capitalist interpellation. In a first step, the 
poster illustrates how cultural capitalism simulta-
neously installs the contradictory imperatives of a) 
acting sustainable and b) increasing consumption, 
and hereby releases an unconscious feeling of guilt 
within the interpellated subject. Then the poster 
illuminates how the commercial instrumentalises 
this unconscious feeling of guilt in order to be able to 
promise liberation from this guilt - through consump-
tion. In a third step the poster illuminates the role 
of numbers in the construction of the commercial’s 
message. It shows, how the success of the commercial 
is dependent on the effect that the viewer believes 
in the fantasy that the numbers are indeed relevant 
and yet simultaneously maintains a critical distance 
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to the numbers – as taking them as actual facts that 
really have a meaning would lead to disintegration 
of the entire commercial’s appeal. In a fifth step the 
poster proposes “over-identification” (Žižek, 2008, p. 
29) as a pedagogic strategy that treats the numbers 
and numerical relations that are employed in the com-
mercial as if they were actually real. This leads to a 
reversal of ethical filtration, as the initial ambiguity of 
the complex social problem is brought back into light 
and further reveals the cynicism that is implicated in 
the advertising campaign. Finally, over-identification 
is proposed as a pedagogic strategy that allows for 
bringing social and political issues into the mathe-
matics classroom, without stepping into the trap of 
ethical filtration.
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Mathematical diagnosis and support require a high 
level of professional expertise from teachers. However, 
profound subject knowledge and the awareness of pu-
pils’ processes of learning mathematical concepts and 
strategies are not sufficient for appropriate diagnosis 
and support. Raising teachers’ awareness of hidden 
mechanisms of discrimination within the practice of 
diagnosis and support could be a valuable contribution 
in the struggle for more educational equity.

Keywords: Diagnosis, support, Numeracy Project, pre-

service teachers, sensitivity.

THEORETICAL BACKGROUND

In the organisation of pupil-centred teaching and 
learning in school, diagnosis and support play a sig-
nificant role. Diagnosis means for teachers that they 
need to recognize pupils’ current knowledge and 
proficiencies (Wartha & Schulz, 2012), so that they 
can appropriately foster learning. This fostering by 
a teacher can be labelled ‘support’. In the mathematics 
classroom, teachers are faced with the challenge of 
using mathematically and didactically appropriate 
methods of diagnosis and support, while at the same 
time bearing in mind the heterogeneity of the pupil 
body. This contribution focuses on teachers’ reflec-

tiveness using mathematical diagnosis and support 
materials from New Zealand’s “Numeracy Project 
(NP)” in a German classroom.

In a quantitative study by Irwin and Irwin (2005), chil-
dren from lower socioeconomic backgrounds were 
shown to benefit less from diagnosis and support 
with NP materials compared to children who were 
ranked more highly on a socioeconomic scale. My 
contribution focuses on how sensitive prospective 
teachers are to both subject-specific and generic as-
pects of social heterogeneity. Generic perspectives in 
particular, such as language or contexts in problem 
statements, may appear insignificant for mathematics 
teaching at first glance. They can, however, become 
relevant in mathematical diagnosis and support (e.g., 
Cooper & Dunne, 2000; Jablonka & Gellert, 2010), and 
lead to discrimination against certain pupil groups, 
or at least put the adequacy of diagnosis and support 
tools for them into question. 

The overall hypothesis I adopt is that attitudes and 
behaviours of teachers are crucial for effective, pu-
pil-oriented education. Against this background, not 
only teachers’ subject-related levels of proficiency 
concerning tools of diagnosis and support are impor-
tant, but also their awareness of potential discrimina-
tion. This discrimination within diagnosis and sup-

critical, reflecting 
dimension 
(relating to the 
NP materials)

high awareness of 
socioeconomic and social 
bias

SOCIOCRITICAL SENSITIVITY
MULTI-PERSPECTIVE 
SENSITIVITY

no/low awareness of 
socioeconomic and social 
bias

NO/LOW SENSITIVITY
SUBJECT-ANALYTICAL 
SENSITIVITY

no/low awareness of the NP 
material’s design and goals

high awareness of the NP 
material’s design and goals

subject-specific (mathematical, mathematic educational, pedagogical) 
dimension

Table 1
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port can take place by treating unequal individuals 
identically as well as by treating equal individuals 
differently (Gomolla & Radtke, 2009).

MY RESEARCH

For the purpose of my research I conducted five guid-
ed interviews with pre-service teachers from the 
University of Bremen who diagnosed and taught pu-
pils in a German school with translated NP materials.

The analysis of the interviews revealed that most 
pre-service teachers showed mathematics educa-
tion-related sensitivity to a certain extent and at the 
same time almost no awareness of socioeconomic and 
social bias in the NP material. They were not even 
aware that language plays a significant role in the NP 
and that language can be a filter to allow access to 
certain practices in the mathematics classroom exclu-
sively to particular groups of pupils. All interviewed 
pre-service teachers had to be placed in the ‘sensi-
tivity-matrix’, as shown above, in the field of ‘no/low 
sensitivity’ or at best in the field of ‘subject-analytical 
sensitivity’.
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As with earlier CERMEs, TWG11 adopted an eclectic 
perspective in its interpretation of comparison as 
referring to any study that documents, analyses, con-
trasts or juxtaposes cross-cultural or cross-contextu-
al similarities and differences across all aspects and 
levels of mathematics education. In this way, the TWG 
aimed to encourage critical but supportive discussion 
that would enable colleagues to:

 ― share findings and outcomes of empirical studies 
that adopt a comparative approach;

 ― outline the delineation of comparative and 
non-comparative research;

 ― develop and refine research methodologies spe-
cific to comparative studies;

 ― explore the interaction of macro-level survey 
studies and micro-level case studies;

 ― understand how various theoretical approaches 
and conceptual frameworks shape the goals and 
the design of comparative research;

 ― understand how comparative studies can inform 
teaching and learning practices;

 ― understand the role of culture in the construction 
of mathematics teaching and learning

A recurrent but very productive aspect of this work-
ing group has been the relatively small number of pa-
per presentations. This year thirteen papers created 
space not only for colleagues to share their research 
in some detail but allowed participants to engage in 
lengthy and inclusive discussions on the nature of 

comparative mathematics education research and the 
means by which it can be meaningfully and rigorous-
ly undertaken. The papers, along with two posters, 
were themed in various ways, highlighting significant 
substantive and methodological variation. However, 
two theoretical papers provided an interesting and 
provocative introduction and conclusion to the se-
quence of papers. The introduction being Jablonka’s 

“rationales for comparative classroom studies in 
Mathematics education” and the conclusion being 
Clarke’s examination of “the role of comparison in 
the construction and deconstruction of boundaries”. 
Between these bookends five themes were exam-
ined by means of papers and posters authored by 
colleagues, due to their nationality or current pro-
fessional location, representing Australia, Austria, 
China, Cyprus, England, Finland, Germany, Ghana, 
Greece, Hungary, Italy, Japan, Kosovo, Poland, South 
Africa, Spain and Sweden.

Firstly, three papers offered differently conceptual-
ised perspectives on how the intended curriculum 
is reified in official documents and school textbooks, 
particularly in contexts where the latter are regulat-
ed by the curriculum authorities. These were Vula 
and colleagues’ analysis of the treatment of fractions 
in Kosovan and Albanian mathematics textbooks, 
Xenofontos and Papadopoulos’ study of the ways in 
which the history of mathematics is incorporated into 
the lower secondary textbooks of Cyprus and Greece 
and Gosztonyi’s comparison of the ways in which the 

“new math” permeated Hungarian and French mathe-
matics education discourses.

Secondly, two papers and two posters confirmed that 
mathematics and the manner of its assessment is a 
cultural construction. The papers were Peng and col-
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leagues’ comparison of Swedish and Chinese teachers’ 
perspectives on what constitute good national math-
ematics test tasks, Branchetti and colleagues’ longi-
tudinal analysis of the Italian national standardized 
mathematics tests. The posters, which were also dis-
cussed, were Lemmo’s comparison of paper and pencil 
and computer based mathematics assessments and 
Bauer and colleagues’ provocative appeal for teachers 
to unite in addressing the expectations of PISA.

Thirdly, two papers, investigating different aspects 
of mathematics affect, highlighted the paucity of re-
search undertaken in African contexts and the fre-
quent inappropriateness for use in those contexts 
of tools developed in the West. These were Bofah’s 
demonstration of a reciprocal determinism between 
students’ mathematics self-concept and achieve-
ment in five culturally diverse African contexts and 
Joubert’s use of social media to examine the perceived 
causes of mathematics problems in England and South 
Africa.

Fourthly, two papers framed a discussion on the 
processes of mathematics. These were Saeki and col-
leagues’ comparison of how Japanese and Australian 
students responded to a mathematical modelling in-
tervention and Sajka and Rosiek’s use of eye tracking 
technology to examine differences between different 
ability groups’ approaches to mathematical problem 
solving. 

Finally, two papers offered different methodological 
perspectives on the use of classroom video-record-
ings in comparative mathematics education research. 
These were Andrews and colleagues’ exploitation of 
a foundational number sense framework to analyse 
learning opportunities for grade one students in 
Poland and Russia and Hommel and Clarke’s analysis 
of how teachers, in four different cultural contexts, 
use questions to encourage students to reflect on their 
learning of mathematics.

In sum, the papers presented to the group reflected 
not only cultural diversity but also methodological 
pluralism, allowing a number of commonalities to 
emerge. Most presented studies aspired to data flex-
ibility, with few being constrained by a priori theo-
retical assertions. Classroom processes have both 
form and function and a comparative study of one 
may transform the other. In comparative research the 
responsibility on the researcher to define adequately 

one’s concepts and constructs is of great significance, 
particularly with respect to large scale tests of educa-
tional achievement. Lastly, in undertaking compara-
tive research one should be mindful of the possibility 
of misapplying a set of culturally informed values.
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For a variety of reasons, children start school with 
differing number-related skills, leading to differences 
in later mathematics achievement. Such differences 
prompt the question, what number-related experiences 
are necessary if the first year of school is to prepare chil-
dren appropriately for their learning of  mathematics? 
In this paper, we discuss the development of an eight 
dimensional framework, foundational number sense 
(FoNS), that characterises those learning experiences. 
We then demonstrate the framework’s analytical effica-
cy by evaluating episodes from two sequences of lessons, 
one Polish and one Russian, focused on the use of the 
number line. The results show that the FoNS framework 
is cross-culturally sensitive, simply operationalised and 
analytically powerful.

Keywords: Foundational number sense, grade one 

mathematics, Poland, Russia, number line.

INTRODUCTION

Evidence internationally shows that the depth of a 
child’s number sense predicts later mathematical suc-
cess (Aubrey, Dahl, & Godfrey, 2006; Aunola, Leskinen, 
Lerkkanen, & Nurmi, 2004). For example, basic count-
ing competence has predicted later successes in, for 
example, Canada, England, Finland, Flanders, Taiwan 
and the USA respectively (LeFevre et al., 2006; Aubrey 
& Godfrey, 2003; Aunola et al., 2004; Desoete, Stock, 
Schepens, Baeyens, & Roeyers, 2009; Yang & Li, 2008; 
Jordan, Kaplan, Locuniak, & Ramineni, 2007). Also, 
under-developed number sense leads to later mathe-
matical failure (Jordan, Kaplan, Ramineni, & Locuniak, 
2009; Gersten, Jordan, & Flojo, 2005; Malofeeva, Day, 
Saco, Young, & Ciancio, 2004). Thus, understanding 
number sense and how it can be promoted seems a 
sensible goal.

However, despite its importance, number sense has 
been poorly defined (Griffin, 2004, not least because 
mathematics educators and psychologists work with 
different definitions (Berch, 2005). Indeed, “no two re-
searchers have defined number sense in precisely the 
same fashion” (Gersten et al., 2005, p. 296). Over the 
last two years we have been working on overcoming 
this definitional impasse. At the same time, we have 
tried to develop a classroom-focused analytical frame-
work that is simple to operationalise and sensitive to 
different cultural practices. In this paper, we summa-
rise our progress before evaluating the framework, 
foundational number sense (FoNS), against case study 
lessons from Poland and Russia.

EARLIER WORK ON FOUNDATIONAL 
NUMBER SENSE

As indicated above, this paper draws on earlier work, 
including a paper presented at CERME8 (Back, Sayers, 
& Andrews, 2014). Since then our understanding of 
number sense in general and foundational number 
sense in particular has developed further. For ex-
ample, our initial reading identified two broad con-
ceptions of number sense. Today we argue for three, 
including the earlier two. The first, preverbal number 
sense, refers to those number insights innate to all 
humans and comprises an understanding of small 
quantities in ways that allow for comparison (Ivrendi, 
2011; Lipton & Spelke, 2005). For example, young 
babies can discern 1:2 but not 2:3 ratios (Feigenson, 
Dehaene, & Spelke, 2004). The second, applied number 
sense, concerns those number-related competences 
that make mathematics sensible for all learners and 
prepares them for an adult world (McIntosh, Reys, & 
Reys, 1992). It underpins many curricular specifica-
tions and much of the material written on number 
sense (See, for example, Anghileri, 2000). Finally, the 
primary focus of this paper, is foundational number 
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sense (FoNS). This comprises those understandings 
that require instruction and typically arise during 
the first year of school (Ivrendi, 2011; Jordan & Levine, 
2009). Unlike preverbal number sense, it is something 
children acquire rather than possess. Unlike applied 
number sense, its focus is not a world beyond school 
but later arithmetical and mathematical competence.

When developing the FoNS framework, our intention 
was not to construct an extensive list of characteristic 
learning outcomes but a small set of simple to opera-
tionalise components amenable to cross-cultural ap-
plication. Our view was that extensive lists of number 
sense components and typically comprising around 
thirty components (Berch, 2005), would be unwieldy. 
Consequently, we exploited the constant comparison 
approach of the grounded theorists. Articles and book 
chapters typically addressing grade one students’ ac-
quisition of number-related competence were iden-
tified. These were read and broad FoNS-related cate-
gories identified. With each new category, previous 
articles were re-examined for evidence of the new. 
This approach, placed, for example, rote counting to 
five and rote counting to ten, two narrow categories 
discussed by Howell and Kemp (2005), within a broad 
category of systematic counting. Among the works 
examined in this process were (Aubrey & Godfrey, 
2003; Aunola et al., 2004; Berch, 2005; Booth & Siegler, 
2006; Clarke & Shinn, 2004; Dehaene, 2001; Desoete et 
al., 2009; Gersten et al., 2005; Griffin, 2004; Howell & 
Kemp, 2005; Hunting, 2003; Ivrendi, 2011; Jordan et al., 
2007; Jordan & Levine, 2009; Lembke & Foegen, 2009; 
LeFevre et al., 2006; Lipton & Spelke, 2005; Malofeeva 
et al., 2004; Noël, 2005; Yang & Li, 2008).

In this paper, we summarise these eight FoNS com-
ponents before showing how they play out in two 
post-Soviet educational contexts. This is the third 
case study pilot of the emergent FoNS framework, 
undertaken to ensure its viability for a large scale 
international study. The first case study examined 
two teachers, one in each of England and Hungary, 
working with grade one children on number sequenc-
es (Back et al., 2014). The analyses, based on an earlier 
seven component FoNS framework, indicated not only 
that the original framework’s categories were  sensi-
tive to culturally different classroom traditions but 
also that the ways in which the categories combined 
resonated with earlier studies’ showing high levels of 
didactical sophistication in Hungary and, in relative 
terms, low levels in England. The second case study, 

involving two teachers, one in each of Hungary and 
Sweden, focused on the ways in which children were 
encouraged to acquire the skills of conceptual sub-
itising (Sayers, Andrews, & Björklund Boistrup, 2014). 
In this case, the findings, based on the revised eight 
component framework, again showed a sensitivity to 
cultural context and highlighted well how different 
approaches to the same topic yield different FoNS-
related outcomes, pertaining again to different levels 
of didactical sophistication. This paper reflects a third, 
and final, pilot evaluation of the framework. Before 
presenting the analyses, however, we present a sum-
mary of the eight components, which derived from 
the literature review described above. To avoid repe-
tition and save space, each component is summarised 
independently of the literature on which it is based. 
The components of foundational number sense are:

Number recognition: Children recognise number 
symbols and know their vocabulary and meaning. 
They can identify a particular number symbol from 
a collection of number symbols and name a number 
when shown that symbol; 

Systematic counting: Children are able to count sys-
tematically and understand ordinality. They count to 
twenty and back, or count upwards and backwards 
from arbitrary starting points, knowing that each 
number occupies a fixed position in the sequence of 
all numbers.

Awareness of the relationship between number and 
quantity: Children understand the correspondence 
between a number’s name and the quantity it repre-
sents, and that the last number in a count represents 
the total number of objects, its cardinality.

Quantity discrimination: Children understand mag-
nitude and can compare different magnitudes. They 
deploy language like bigger than or smaller than and 
understand that eight represents a quantity that is 
bigger than six but smaller than ten.

An understanding of different representations of 
number: Children understand that numbers can be 
represented differently, including the number line, 
different partitions, various manipulatives and fin-
gers.

Estimation: Children can estimate, whether it be the 
size of a set or an object. Estimation involves moving 
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between representations of number; for example, 
placing a number on an empty number line. 

Simple arithmetic competence: Children perform sim-
ple arithmetical operations, which Jordan and Levine 
(2009) describe as the transformation of small sets 
through addition and subtraction.

Awareness of number patterns: Children extend and 
are able to identify a missing number in a simple.

Importantly, the eight FoNS components, while dis-
tinct, are not unrelated. This is because number sense 

“relies on many links among mathematical relation-
ships, mathematical principles..., and mathematical 
procedures” (Gersten et al., 2005, p. 297), links that 
help avoid situations where children can count but 
not know that five is bigger than three.

METHODS AND RESULTS

The data examined in this study derived serendipi-
tously from video-based teacher professional devel-
opment programmes. However, both sets of lessons 
exploited the number line with grade one children 
and, therefore, proved amenable to a topic-based 
FoNS-related analysis. Both teachers, construed lo-
cally as effective, were video-recorded in ways that 
would optimise capturing their actions and utteranc-
es. Lessons, with transcripts, were scrutinised by at 
least two of the three authors with the intention of 
identifying episodes suitable for demonstrating a 
range of FoNS-related opportunities. In the following 
we present three episodes from each teacher’s lessons 
as examples of the ways in which they worked with 
the number line.

The Russian episodes
The Russian teacher, Olga, began by sketching a hori-
zontal line across the board, telling her class that this 
was a number line before asking what was missing. 
Over the next two or three minutes, four volunteers, 
with appropriate commentary from Olga, complet-
ed the number line as follows. The first drew a small 
arrow at the right hand end of the line to signify that 
numbers go from left to right also extend indefinite-
ly. The second drew a small flag near to the line’s left 
hand end to represent the start or zero point. The 
third, using what looked like a postcard, added regu-
lar intervals, as shown in Figure 1. The fourth added 
the integers correctly.

Commentary: In this first episode can be discerned 
several FoNS components. The use of the number 
line reflected an expectation that students would en-
gage with different representations of number. The 
manner in which the line was constructed, using a 
repeated measure, implicitly addresses the relation-
ship between a number and the quantity it represents, 
while the process of numbering the line, including the 
emphasis on the placement of a zero, highlight both 
number recognition and systematic counting.

The lesson now progressed to the class using this new 
number line. A girl came to the board and was told to 
show three. This she did by pointing to the flag (zero) 
with the index finger of her left hand and three with 
her right. Next, she was asked to show five, which she 
did in the same way. This was followed by Olga asking 
the girl to show how she would get from three to five, 
which she did by counting on two units. 

Commentary: Within this episode, which was no more 
than two minutes in length, can be seen at evidence 
of least five FoNS components. The manner in which 
three, and other numbers, was demonstrated high-
lighted not only an identification of the symbol but 
also how three’s position reflected a measure of units, 
essentially arbitrary, along an axis. In other words, it 
reflected the relationship between number and quan-
tity. The task included an expectation that learners 
would count systematically, work with a particular 
representation of number, and engage with simple 
arithmetical operations.

In related fashion, the next task involved starting with 
seven and subtracting three. While the girl concerned 
initially struggled to stretch her arms sufficiently to 
reach seven, as shown in Figure 2, she seemed confi-

Figure 1: Marking the number line with an arbitrary unit
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dent with the mathematics. On Olga’s invitation, she 
counted out to seven, while keeping her left hand 
forefinger at the flag (zero). Next, she was invited to 
count back three spaces, which she did. Olga asked 
the class what the girl’s action signified and was told 
that she had subtracted three from seven to get four.

Commentary: Within this third episode, which lasted 
less than a minute, can also be discerned at least five 
FoNS components. The manner in which seven was 
demonstrated highlighted not only an identification 
of the number symbol but also the relationship be-
tween number and quantity. The task included an ex-
pectation that learners would count systematically, 
work with a particular representation of number, and 
engage with simple arithmetical operations.

The Polish episodes
Maria began her lesson by inviting each child ran-
domly to the front to receive a sticker placed on his or 
her chest bearing a number, with Maria beginning by 
giving herself zero. She then asked the class to arrange 
itself in numerical order in a line down the middle 
of the room. Once this was done, she asked the class 
to return to their seats before asking them to repeat 
the task as quickly as possible. On this occasion, with 

great excitement, the class arranged itself within a 
few seconds.

Commentary: With respect to the FoNS components, 
Maria’s actions were commensurate with her en-
couraging her students to recognise numbers and, 
essentially, count systematically. It also highlighted 
the extent to which the units of the number line are 
arbitrary and the use of the number line as a rep-
resentation of number.

Later in the lesson Maria presented a number line 
with units but no numbers. She asked what should 
be placed at the end and was told zero, before being 
told that this should be followed by one, two and so on. 
At this point she asked her students to complete the 
number line on their sheet, as shown in Figure 3. Next 
she asked what would happen if the first marked point 
had been two and not one. This initiated a discussion 
on the importance of each unit being a representation 
of the same value with the consequence that the line 
would now show even numbers, 0, 2, 4, 6 and so on. 
Finally, in response to her asking what would hap-
pen if the first number had been three, it was agreed 
that the sequence would go 0, 3, 6, 9, 12, … with each 
successive number being found by counting on three.

Commentary: Within this episode could be discerned 
five FoNS categories. At the most obvious level, Maria 
was attending to number recognition, different rep-
resentations of number and systematic counting. Also, 
the introduction of the multiples focused attention 
on number patterns and, in the counting on of threes, 
simple arithmetic.

Later, Maria sketched a number line from zero to 
fifteen on the board. She marked a point at five, and 
asked her students to do the same. She then wrote 
5 + 7 = before showing how the sum can be counted 
out, as in Figure 4. Following this she asked her stu-
dents to do the same on their sheets. The students were 

Figure 2: A demonstration of seven on the number line

Figure 3: Completing the number line
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then invited to repeat the process for 6 + 6 = , 14 – 9 = ,  
5 + 6 – 4 = . After each one, Maria repeated the process 
on the board, with instructions provided by different 
students. She counted very slowly and deliberately as 
she marked off each number on the way.

Commentary: In this final episode, in addition to the 
already familiar number recognition, systematic 
counting and number representations, Maria was 
attending to simple arithmetical operations and how 
they can be modelled on the number line. Interestingly, 
she did not just focus on addition but included sub-
traction and, with the third problem, both operations.

DISCUSSION

The analyses above, summarised in Table 1, indicate 
both similarities and differences in the ways in which 
FoNS was addressed. In respect of similarities, both 
teachers addressed, over the course of the analysed 
episodes, five categories. Both encouraged, through-
out their respective excerpts, students’ recognition 
of number alongside, systematic counting and aware-
ness of different representations of number. Both 
also, but not to the same degree, focused attention 
on simple arithmetic operations. Overall, and bearing 
in mind the number line focus, such findings were of 
little surprise and, from the perspective of validating 
the framework, helpful – an analytical framework 

that failed to identify the expected would be of little 
use.

While it is always important to acknowledge similari-
ties, differences are frequently  more enlightening. On 
the one hand, Olga emphasised, through her insisting 
that students make a bodily link between a number 
and zero, the connection between number and quan-
tity. On the other hand, through her discussion of 
multiples of two and three, Maria was seen to use the 
number line to support children’s engagement with 
simple sequences. However, it is our view that such 
findings reflect not insignificant qualitative differenc-
es in the teachers’ emphases. Olga’s exploitation of the 
bodily link avoided too early a shift to working with 
numbers as abstract entities. This seems a more sig-
nificant didactical decision when compared to Maria’s 
emphasis on sequences, albeit a key category of FoNS 
in its own right. Such qualitative differences show that 
the FoNS framework has the propensity for highlight-
ing, in much the way that generic learning outcomes 
exploited in other studies have shown, both simple 
analyses based on the frequencies of particular events 
and more sophisticated analyses based on the inter-
actions of those events (see Andrews & Sayers 2013). 

In this paper, we have shown how opportunities for 
students to acquire FoNS played out in two post-Soviet 
classrooms. This is of particular interest in the light 

Figure 4: Using the number line to undertake simple arithmetic

Olga’s episodes Maria’s episodes

Number recognition X X X X X X

Systematic counting X X X X X X

Relationships between numbers and quantities X X X

Quantity discrimination

Different representations of number X X X X X X

Estimation

Simple arithmetical operations X X X

Number patterns and missing numbers X

Table 1: the distribution of the categories across the episodes
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of recent evidence that the rise of the free market had 
had markedly different impacts on student achieve-
ment on international tests (Bodovski, Kotok, & Henck, 
2014). In this respect, Poland’s PISA mathematics 
scores, reflecting students’ real-world application of 
mathematical knowledge at age 15, have risen from 
significantly below to significantly above the inter-
national mean at a time when Russia’s have remained 
largely static, constantly significantly below the inter-
national mean. These scores are interesting when set 
against Russia’s grade 8 TIMSS scores, assessments 
of students’ technical competence, has been consist-
ently above the international mean. With respect to 
TIMSS grade 4, Russia has been consistently one of the 
higher achieving nations, while Poland has remained 
significantly below the international mean. In other 
words, and putting the case crudely, if such tests tell 
us anything it is that Polish students are increasingly 
competent on real-world mathematical tasks located 
in text and requiring a degree of interpretation, which 
Russian students are not, while Russian students are 
strong on mathematics tasks located in world of tech-
nical mathematics, which Polish students are not. In 
light of this, what do our limited analyses have to say?

Firstly, acknowledging the limited sample present-
ed here, Olga’s teaching seemed more focused on the 
structural properties of number and mathematics 
than Maria’s. Not once did Olga make any number 
line-related reference to a world outside the class-
room. Her efforts were focused constantly on a world 
contained solely within mathematics. Maria, on the 
other hand, although not reported above for lack of 
space, made frequent use of different representations 
of the number line drawn from the real world. For ex-
ample, at different times she made reference to several 
thermometers, each of which presented a different 
scale and starting value, different tailors’ measuring 
tapes, a carpenter’s retractable tape, a measuring jug, 
various skeletons of fish and snakes showing, in par-
ticular, the regular spread of ribs. Each one elicited a 
brief discussion as to its purpose and relationship to 
the number line. On a separate occasion she based a 
counting activity on the use of a representation of a 
hotel lift travelling between the many floors of a very 
tall hotel. Thus, these differing emphases, essential-
ly unrelated to the mathematics being taught, may 
have profound implications for students’ successes 
on international tests of achievement. Olga’s teaching 
seems unrelated to PISA expectations and Maria’s to 

TIMSS. Such matters clearly require further exami-
nation.
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The study tests the theoretical and methodological 
models of the direct feedback loop in which mathemat-
ics self-concept and achievement are specified as both 
causes and effects of each other using the TIMSS–2011 
cross-sectional data set. The participants were students 
in grades 8–9 from five African countries participating 
in TIMSS–2011 (N=38,806, MAge =15.42, SD =1.37). Using 
nonrecursive structural equation models, the author 
examined the reciprocal-effects model indicating that 
achievement has an effect on self-concept (skill-develop-
ment model) and that mathematics self-concept has an 
effect on achievement (self-enhancement model). There 
was support for the skill-development, self-enhancement 
as well as direct feedback loop models. Discussion cen-
tres on the theoretical, methodological, and practical 
implications of the results. 

 Keywords: Mathematics self-concept, achievement, 

reciprocal determinism, TIMSS.

INTRODUCTION 

Cross-national comparative studies such as the TIMSS 
and PISA have recently gained considerable atten-
tion. Research on TIMSS and other large-scale surveys 
has consistently shown strong relationship between 
achievement and self-beliefs across nations (Chiu & 
Klassen, 2010; Huang, 2012; Marsh et al., 2013; Parker, 
Marsh, Ciarrochi, Marshall, & Abduljabbar, 2014). 
Studies reporting different levels of self-belief (e.g., 
self-concept) across nations normally report with 
strong theoretical backing, a common trend of lower 
self-concept among Asian countries when compared 
to other nations (e.g., Wilkins, 2004).

Culturally, the causal relation between affect (e.g., 
self-concept) and achievement has been demonstrat-

ed to be valid cross-culturally, but more typically in 
the Western hemisphere (e.g., Seaton, Parker, Marsh, 
Craven, & Yeung, 2014). Moreover, other studies have 
shown that self-belief (e.g., self-concept) may oper-
ate differently across cultures (Chiu & Klassen, 2010; 
Markus & Kitayama, 1991) due to the fact that the self 
is highly influenced by the frame of reference effect—
social comparison, causal attribution, and reflected 
appraisals from significant others (Bong & Skaalvik, 
2003). 

In the present study, the nature of the relationship 
between students’ mathematics self-concept and 
achievement was investigated using a non-recursive 
structural equation models in the five African coun-
tries that participated in TIMSS–2011. The bidirec-
tional cause–effect between affect and achievement 
is of practical importance because many affective 
enhancement programs as well as educational poli-
cy statements throughout the world are based on the 
fact that an improvement in affects (e.g., self-concept) 
will lead to better academic achievement. The full 
intent is to test the reciprocal relationship between 
affect and achievement.  The study is also based on the 
fact that indigenous research and theorising which 
integrate cross-cultural perspectives are crucial to 
the establishment of more useful and universal the-
ories (e.g., van de Vijver & Leung, 2000). As Chiu and 
Klassen (2010) put it: “Cultural differences in self-be-
liefs can challenge the foundations of current theories 
and provide new ways of looking at the self ” (p. 2). 
Furthermore, there is a paucity of cross-cultural stud-
ies on domain-specific self-concept and achievement 
in the African context. The data for the present study 
is from TIMSS–2011, which provides a comparable 
open data source for these analyses. 

mailto:emmanuel.bofah%40hotmail.com?subject=
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The causal determinism of 
affects and achievement  
Self-belief (e.g., self-concept) theories have devel-
oped into several branches (for a review, see Wang 
& Lin, 2008). One such branch concerns the differing 
relationships between self-belief and achievement 
(Calsyn & Kenny, 1977; M-S. Chiu, 2012). Within this 
context  are competing hypothesis such as the self-en-
hancement model, which posits that self-belief is a de-
terminant of academic achievement (Chiu & Klassen, 
2010; Marsh & O’Mara, 2008), and the skill-development 
model, which sees self-belief as simply a reflection of 
performance (Chen, Yeh, Hwang, & Lin, 2013; Chiu 
& Klassen, 2010; Ma & Xu, 2004; Wang & Lin, 2008). 
Moreover, a more realistic and logical compromise 
between the self-enhancement and skill-develop-
ment models is the reciprocal-effects model (Guay, 
Marsh, & Boivin, 2003; Hannula, Bofah, Tuohilampi, 
& Metsämuuronen, 2014; Parker et al., 2014; Seaton et 
al., 2014), which posits that prior self-belief influences 
subsequent achievement and prior achievement in-
fluences subsequent self-belief (for an in-depth review, 
see Guay et al., 2003).

Cross-culturally, reciprocal effect models have been 
found to exist. For instance, evidence has been found 
in Germany (Marsh & Köller, 2004), Finland (Hannula 
et al., 2014), Canada (Guay et al., 2003), Australia (G. 
Marks, McMillan, & Hillman, 2001), United States 
(Marsh & O’Mara, 2008), and many OECD countries 
(Williams & Williams, 2010) but not in the African 
context. However, on the relationship between affect 
and achievement, some studies have indicated affect 
as the strongest predictor of achievement (Marsh & 
O’Mara, 2008; Morony, Kleitman, Lee, & Stankov, 2013), 
whereas others have indicated achievement to be the 
strongest predictor of affect (e.g., Hannula et al., 2014; 
Ma & Xu, 2004). Other studies have found no causal 

relationships (e.g., Williams & Williams, 2010). Taken 
together, no firm conclusions can be drawn about the 
causal ordering of affect and academic achievement 
cross-culturally.

Assumptions in cross-sectional 
models in causal determinism 
Modeling reciprocal effects with cross-sectional data 
sets is uncommon in mathematics-related affect stud-
ies; rather the normal approach uses a longitudinal 
data set. The arguments lie in the methodological chal-
lenges, assumptions and theoretical considerations 
associated with cross-sectional data to examine the 
causal ordering (Kline, 2011; Ma & Jiangming, 2004; 
Wong & Law, 1999). Structural equation models that 
are used to estimate the reciprocal relationships in-
volving cross-sectional data are known as non-recur-
sive models. Kaplan, Harik, and Hotchkiss (2001) indi-
cated that data from cross-sectional designs only give 
a “snapshot” of an ongoing dynamic process; as such 
estimations of reciprocal causal effects with cross-sec-
tional data sets require the assumption of equilibrium. 
Kline (2011 p. 108) summarized that: “any changes in 
the system underlying a presumed feedback relation 
have already manifested their effects and that the sys-
tem is in a steady state. That is, the values of the esti-
mates of the direct effects that make up the feedback 
loop do not depend on the particular time point of 
data collection”.  For an in-depth discussion, see Heise 
(1975) and Kaplan and colleagues (2001). With respect 
to the present study, the argument is that during the 
eight or nine years that these students have been in 
school and engaged in mathematics learning, their 
mathematics mastery levels and self-concept have 
reached a point of equilibrium where each student 
has formed a realistic view of their perception with 
regards to performing a given task (See Williams & 
Williams, 2010, for similar arguments).

Figure 1: Reciprocal causal effects between maths self-concept (MSC) and achievement (MAch) with a direct feedback loop based 

on a cross-sectional design. The assumptions are shown with dotted lines. These indicate effects that were fixed to zero a priori. 

SES = socioeconomic status, LEA = Students’ long-term educational aspirations. To avoid cluttering, only paths are shown
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METHODS

The hypothesized model for the study is depicted in 
Figure 1. Each model was analyzed separately for each 
country. The result of a confirmatory factor analysis 
(CFA) verified a clear factor structure after incorpo-
rating the method effect associated with combining 
both negative and positive items in a survey (for 
similar argument see M-S. Chiu, 2012; Marsh et al., 
2013). Moreover, in a multigroup CFA, measurement 
invariance (e.g., factorial invariance) of the MSC con-
struct across the five educational/cultural groups was 
supported. Due to restrictions of space, these results 
are not presented here. 

The students’ long-term educational aspirations 
(LEA), gender, and socioeconomic status (SES)—meas-
ures of their home educational resources—are the 
exogenous variables—variables that no explanation 
is offered by the model; that is, no directional path 
point to them. In order for a non-recursive model to 
be identified, some parameters need to be specified a 
priori as such gender and LEA were assumed to have 
no direct influence on MAch and MSC respectively. 
The theoretical basis for fixing the effect of gender on 
achievement to zero is based on Deaux and Major’s 
(1987) interactive approach model of gender differenc-
es which recognizes the importance of cognitive and 
cultural influences on gender roles, suggesting that 
more immediate factors, such as social and cultural 
patterns of discrimination, shape gender-related be-
lief (see also gender stereotype threat: Spencer, Steele, 
& Quinn, 1999). 

Arguing similarly as in Williams and Williams (2010), 
for all things being equal, the notion of males report-
ing higher mathematics achievement reflects a sim-
ilar notion in mathematics self-concept (e.g., Nagy, 
Trautwein, Baumert, Köller, & Garrett, 2006). The 
assumption about SES is based on numerous studies 
that have established a firm relation between SES and 
achievement, and self-belief (Chiu & Klassen, 2010; 
Howie, 2013; Williams & Williams, 2010). The level 
of educational resources at home has been found 
to relate to students’ achievement even after con-
trolling for parental education and other factors (e.g., 
Teachman, 1987). However, in developing countries 
where large numbers of students have no access to 
basic educational resources, home educational re-
sources are likely to be a more important component 

of socioeconomic disparity in education (Marks, 
Cresswell, & Ainley, 2006).

Concerning LEA, documented evidence (e.g., Gil-
Flores, Padilla-Carmona, & Suárez-Ortega, 2011) sug-
gests higher educational aspirations to be associated 
with higher achievement, and vice versa. With no doc-
umented evidence on the relationship between LEA 
and MSC, our argument is that students’ mathematics 
self-concept mediates the relationship between LEA 
and MAch. Moreover, the error terms associated with 
the unexplained variance in mathematics self-concept 
and achievement were allowed to covary since they 
influence each other (Wong & Law, 1999; Kline, 2011).

Model evaluation and estimation criteria
The models tested in the present study were assessed 
by Mplus 7.2. The estimator used was the Mplus Robust 
Maximum Likelihood Estimates (MLR) with standard 
errors and tests-of-fit that are robust to non-normality 
and non-independence of observations (Muthén & 
Muthén, 1998–2012). The Mplus feature of full infor-
mation maximum likelihood (FIML) was used to im-
pute missing data. To ascertain the model fit, empha-
sis was placed on the comparative fit index (CFI), the 
root-mean-square error of approximation (RMSEA) 
as well as the chi-square test statistic (for informative 
purposes only because of it sensitivity to large sam-
ple size). The CFI is normed  along a 0-to-1 continuum 
with values greater than .95 reflecting excellent fits to 
the data, and for the RMSEA, values less than .05 are 
indicative of a ‘‘close fit’’(West, Taylor, & Wu, 2012). 
Due to the complex design of the TIMSS survey, the 
Mplus complex survey design option to account for 
the clustered design and to adjust standard errors 
was used. Students’ class was used as the clustering 
variable, and students’ sampling weights were also 
taken into account (weighting variable supplied with 
the data). The fit indices shown in Table 1 indicate the 
model fits well in all countries.

Data Source
Data were obtained from 38,806 (MAge= 15.42, SD = 1.37) 
students who participated in TIMSS–2011 in five 
African countries (see Table 1). For detailed TIMSS 
sampling and method procedures, see Martin and 
Mullis (2012). 

The maths self-concept scale
Maths self-concept (MSC) was measured through five 
items on a scale with a 4-point Likert response for-
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mat: Agree a lot (1), Agree a little (2), Disagree a little 
(3), Disagree a lot (4). Item scales were reverse-coded 
to indicate higher values represent a more positive 
self-concept and vice versa. The items on the MSC 
are the following: 1) I usually do well in mathemat-
ics, 2) I learn things quickly in mathematics, 3) I am 
good at working out difficult mathematics problems, 
4) Mathematics is more difficult for me than for many 
of my classmates [reverse coded], and 5) Mathematics 
is not one of my strengths [reverse coded]. The reli-
ability (composite reliability) (Raykov, 2012) of the 
MSC ranged from acceptable in Botswana (.645) and 
Tunisia (.624), to low in South Africa (.557), Morocco 
(.526), and Ghana (.513). The maths self-concept scale 
was treated as a latent variable to account for meas-
urement error. The reliability of the MSC was incor-
porated into the measurement model by fixing the 
variance of the error term to [(1- reliability)*variance]. 
This approach is discussed in (Heise, 1975), and a simi-
lar procedure was used in (Williams & Williams, 2010).

Mathematics achievement 
TIMSS–2011 reported students’ MAch in terms of five 
plausible values—random numbers drawn from the 
distribution of scores that could be reasonably as-
signed to each individual (Martin & Mullis, 2012).The 
use of plausible values has been discussed at length 
in the TIMSS–2011 methods and procedures (Martin, 
& Mullis, 2012). The composite reliability of the MAch 
score ranged from .969 in Botswana, .966 in South 
Africa and Tunisia, and .957 in Morocco, to .946 in 
Ghana. Mathematics achievement was treated as a 
latent variable and was given the same format and 
procedure (i.e. on the variance and reliability) as that 
described earlier for MSC. 

Instrumental variables
Socioeconomic Status (SES). The SES scale was derived 
from students’ reported home educational resources 
based on their responses concerning three home re-
sources: Number of books in the home, Highest level 

of education of either parent, Number of home study 
supports: Own room, Internet connection. (See Foy, 
Arora, & Stanco, 2013 supplementary 3 for more de-
tails on the process of determining SES.) 
Long-term educational aspirations (LEA). The LEA 
scale was a self-report asking participants to indicate 
the highest level of education they expected to attain 
on a scale ranging from (1) “Lower secondary educa-
tion” to (6) “University program - Master/Doctorate.” 
(See Foy et al., 2013 supplementary 2 for specific na-
tionally define classifications).
Gender. The gender measure was based on students’ 
responses to the questionnaire coded as 1 = girl and 
2 = boy.

RESULTS 

Overall, the results shown in Tables 1 and 2 are con-
gruent with similar models estimated by other re-
searchers (e.g., Williams & Williams, 2010). This lends 
credence to the validity of the results and supports 
the hypotheses. As indicated in Table 2, the causal 
relationship between MAch and MSC is supported 
in Tunisia. Furthermore, in the remaining four coun-
tries one or both of the bidirectional relationships 
failed. In Ghana and Botswana, only the effect of MSC 
on MAch was statistically significant, validating the 
self-enhancement model. In Morocco, the effect of 
MAch on MSC was statistically significant support-
ing the skill-development model. In South Africa, 
neither the self-enhancement nor skill-development 
model was supported. These findings indicate that the 
countries vary in their causal relationships between 
MSC and MAch. 

The effect of SES on MAch was statistically signifi-
cant and positive in all but two nations (Ghana and 
Botswana). Similarly, the relationship between SES 
and MSC was less consistent across the countries. 
A statistically significant relation between SES and 
MSC was found in all but two of the countries (South 

Country χ2 df S CFI RMSEA Sch Stu Grade

Ghana 537.451 57 1.580 .991 .034 161 7,323 8

Botswana 654.534 57 1.105 .989 .044 150 5,400 9

South Africa 931.099 57 1.764 .990 .036 285 11,969 9

Morocco 642.498 57 1.359 .990 .034 279 8,986 8

Tunisia 430.827 57 1.181 .994 .036 207 5,128 8

Table 1: Measures of model fit and sample size by country. χ2 = chi-square; df = degrees of freedom ratio; s = Mplus scaling correction 

Factor; CFI = comparative fit index; RMSEA = root-mean-square error of approximation; Sch= Schools; Stu = students (unweighted sample)
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Africa and Tunisia). This indicates that the relation-
ship between SES, MSC and MAch is dependent on the 
national context (William & William, 2010).

With regard to the effect of gender, all parameter esti-
mates were positive and statistically significant. This 
indicates that males reported higher levels of MSC in 
all five countries. The effects of LEA on MAch were 
statistically significant for all the countries as well. 
The coefficients indicate that higher LEA predicts 
higher MAch in all countries. 

DISCUSSION

The reciprocal determinism of MSC and MAch was 
validated in one of the five countries. This supports 
the cross-cultural dimension of the reciprocal models 
(Guay et al., 2003; Marsh & O’Mara, 2008; Seaton et al., 
2014). Nevertheless, the analysis indicated that recip-
rocal determinism is dependent on the national con-
text specific, thus supporting Williams and colleagues 
(2010). In South Africa, neither the reciprocal relation 
nor the self-enhancement model or the skill-develop-
ment models were supported. Ghana and Botswana 
supported the self-enhancement model (Calsyn & 
Kenny, 1977; Chiu & Klassen, 2010; Marsh & O’Mara, 
2008), whereas Morocco supported the skill-devel-
opment model (Hannula et al., 2014; Ma & Xu, 2004). 
Moreover, the effect of students’ long-term education-
al aspirations and gender on their MAch and MSC, 
respectively, also shows evidence of cross-cultural 
generalization, since they are all positive and statisti-
cally significant. The findings are also consistent with 
higher reported MSC for males (e.g., Nagy et al., 2006) 
and higher MAch for students’ with higher long-term 
educational aspirations (e.g., Marsh et al., 2013). It also 
supports our assumptions behind the use of gender 
and LEA as instrumental variables.

The effects of SES on MAch and MSC were less consist-
ent, but were evident in more than half of the coun-
tries. The relationships between SES, MSC, and MAch 
are consistent with other studies (Chiu & Klassen, 
2010; Howie, 2013; Marks et al., 2006; Teachman, 1987; 
Williams & Williams, 2010). In countries where a rela-
tion was found between SES and MAch, governments 
can institute financial support schemes for low-in-
come families in the light of our results. Moreover, up-
grading schools and increasing funding for schools in 
low-income areas could help bridge the gap between 
low and high achievers (Marks et al., 2006). 

The present research is one of the few cross-cultural 
studies on causal relationships between the MSC and 
MAch in an African context, and provides important 
new evidence regarding the generalizability of the 
uni- and bidirectional relationship between MSC and 
MAch. 

A limitation of the study is the assumption behind 
using cross-sectional data when modeling a recipro-
cal analysis. For instance, the required assumption 
of equilibrium. The problem is that there is no statis-
tical measure to evaluate the equilibrium assump-
tion with a cross-sectional data set; it must be argued 
substantively (Kline, 2011, p. 108). Moreover, others 
have argued that the equilibrium assumption does 
not justify using cross-sectional models for bidirec-
tional determinism, because cross-sectional models 
are miss-specified due to the fact that they do not take 
time lags into account (Gollob & Reichardt, 1987; Wong 
& Law, 1999). However, others have argued for the 
importance of cross-sectional data to test reciprocal 
models because in most situations cross-lagged effects 
are virtually impossible to obtain (Wong & Law, 1999). 
As we have seen, “causal attribution is not an automat-
ic process; useful causal conclusions are the product 

Achievement estimates Self-concept estimates

Country MSC SES LEA MAch Gender SES

Ghana 38.519*** -2.158 2.744*** 0.003 0.089*** 0.071***

Botswana -13.009*** -0.359 3.474*** 0.000 0.096*** 0.036*

South Africa 11.045 4.458*** 3.847*** 0.000 0.069*** 0.012

Morocco 0.898 6.842*** 1.726*** 0.016*** 0.098*** -0.057**

Tunisia 41.140*** 2.757*** 0.685*** 0.015*** 0.035** -0.022

Table 2: Path Estimates by country. The absolute size of these metric estimates varies considerably because of the differences in the 

scales of Maths self-concept (MSC) and Maths Achievement (MAch). The effect of MSC, SES, and LEA on MAch is shown under the heading 

Achievement estimates. The effects of MAch, gender, and SES are shown under the heading Self-concept estimates. Socioeconomic 

Status (SES); Long-term educational aspirations (LEA). ***p <.001, **p <.01, *p <.05.
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of careful thought, high-quality data, and sound data 
analysis” (Rogosa, 1979, p. 301). 

The findings of this study clearly challenge some of 
the foundations of current theories on self-belief, 
and provide new ways of looking at the self (Chiu & 
Klassen, 2010). Reciprocal determinism was found 
in some countries and was non-existence in others. 
The data shows the degree of cross-cultural variations 
on the reciprocal determinism between affect and 
achievement. The author could not provide sound cul-
tural theory to explain these phenomena. Moreover, it 
is important to bear in mind that the analysis may not 
represent the dynamics of the feedback loop between 
math self-concept and achievement because the find-
ings represent a static view of an ongoing dynamic 
system and may vary based on when the system is 
observed as it moves toward equilibrium (Kaplan et 
al., 2001).
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This paper presents a longitudinal analysis of the out-
comes of the Italian national standardized mathematics 
tests. By intertwining quantitative and qualitative meth-
ods, we selected and analysed a set of linked questions 
among the tests administered to the same cohort of stu-
dents first in grade 6 and then in grade 8. In particular, 
we focus on poor knowledge students and we argue an 
example of the analysis of two linked questions about 
graphical representation of fractions. The comparison 
between the two questions allows us to interpret some 
difficulties of students and to expect possible future be-
haviours.

Keywords: Standardized mathematics tests, longitudinal 

analysis, fractions, qualitative and quantitative analysis.

INTRODUCTION

This paper presents an “in progress” research devel-
oped within the Ideas for the research project, funded 
by the Italian national institute for the educational 
evaluation of instruction (INVALSI). This project asks 
for new qualitative interpretative tools with the aim 
to integrate the statistical ones with them. These tools 
can be used by teachers to point out some groups of 
questions (in different grades) that could identify 
poor knowledge students (see the next section for a 
definition of this set) in specific mathematics con-
tents. Our study focuses on a longitudinal analysis of 
mathematics standardizes tests outcomes collected by 
INVALSI in 2011 and 2013 respectively in grade 6 and 
8 (therefore we analyse the same cohort of students 
who faced the INVALSI tests in grade 6 and 8). The aim 
of this analysis is to identify questions in which poor 
knowledge students have difficulties and, observing 

their behaviours, to describe possible causes of these 
difficulties. Such causes are going to be the object of 
our future analysis in classroom activities. 

We carried out an analysis that intertwined quali-
tative and quantitative interpretative tools in a lon-
gitudinal study: in particular, we analysed items of 
the INVALSI tests focusing both on the mathematical 
contents involved and on the solution strategies de-
veloped by students to face the tasks (qualitative anal-
ysis), and using the information given by a statistical 
analysis of the national sample results (quantitative 
analysis). We expect this study to be an useful tool for 
teachers because the outcomes of the research could 
help teachers in identifying students’ difficulties in 
longitudinally linked items. These information could 
be used to implement educational activities aimed to 
avoid the persistence of wrong behaviours of students, 
similar to the ones observed in the research, and fu-
ture failures in mathematics. 

In the next phase of our research some of the items, 
selected from the INVALSI tests and analysed in the 
first part of our study, will be administered again 
during classroom activities in order to give empirical 
support to the analysis presented in this paper. 

THEORETICAL LENSES 

The INVALSI test is designed by Italian teachers 
selected by INVALSI according to their experience 
and education. INVALSI framework is based on 
to National Standards Ministero dell’Istruzione, 
Università e Ricerca, 2012). In our study, we take into 
account INVALSI framework but we integrate it with 
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specific theoretical tools taken from the literature in 
mathematics education.

The items are presented in a written form with multiple 
choice questions, open questions, true or false and 
closed. As the topics are many and the test is faced by a 
large amount of students, we conjecture that the most 
frequent difficulties described in literature appear 
in students’ answers. For this reason, we create a list 
of difficulties found in literature for each topic. For 
instance, in this paper, we analyse two questions about 
fractions. Our theoretical framework on educational 
studies about fraction refers to the research carried 
out in the last thirty years and summarized in the 
Encyclopaedia of Mathematics Education (2014). In 
particular, Demetra Pitta-Pantazi describe some 
recurring misconceptions, for example:

Students often do not interpret fractions as numbers 
but view fractions as two numbers with a line between 
them. When adding fractions, they often add the nu-
merators and denominators or are unable to order 
fractions from smaller to larger (e.g., Behr et al., 1992). 
(Encyclopaedia, 2014, pp. 470–476)

We use also the study of Fandiño Pinilla (2007) who 
offers a wide review about difficulties in fractions 
domain. These researches gave us the tools to identify 
and to interpret students’ answers to the INVALSI test 
items. In this paper, we analyse students’ answers iden-
tifying some common difficulties and errors linked to 
the concept of fraction: (M1 – Divide in non-equiv-
alent parts: count-and-match misconception) the  

“Epistemic” misconception of fraction as a part but 
non-equivalent to the others; (M2 – Answer d – n 
instead of the total d) the mistake in identifying the 
fraction numerator and denominator when students 
analyse some coloured parts in a grid of equivalent 
parts of a figure and considering the coloured part as 
numerator (n) and only the rest (d–n) as denominator, 
not the total amount of parts (d); (M3 – Divide in equiv-
alent parts and take some parts)  Student implicitly 
suggests that “some” cannot be “all”; it becomes easily 
an obstacle for the fractions equivalent to the unit. 
The INVALSI items are given to students in written 
form, but words are often mixed with images, tables, 
graphs and other representations. For this reason, 
some students’ difficulties could be related to semi-
otic representations management. Indeed, we need 
a theoretical tool of analysis to figure out possible 
obstacles arising from this semiotic richness. We 

use semiotic approach proposed by Duval: “there 
are always many possible semiotic representations 
of the same object. The higher process of thought, and 
especially mathematical activity, are based on this 
plural semiotic object representation” (Duval, 1993; 
2008). Even if a richness of semiotic representations 
is necessary to conceptualize mathematical objects, in 
the very first steps of learning or for poor knowledge 
students coordinating many registers and connecting 
representations can be an obstacle. Different students 
errors in INVALSI tests can be interpret as a failure in 
verbal-graphic conversion, in the decoding of the text 
or in expressing a right solution in another register. 
In the examples argue below the students mistakes 
could be caused by a wrong transformation of the 
fraction verbal representation in the right graphic 
one or vice versa (S1) or in a incorrect transformation 
of the graphic results in the fractions’ register (S2). 

Our research question is: what kind of information, 
emerging from the analysis (both quantitative and 
qualitative) of the 8th grade items, are useful for the 
interpretation of the outcomes of the analysis of the 
6th grade questions?

We conjecture that a longitudinal analysis of the 
answers of the same cohort of students, carried out 
through the comparison between the two data sets 
from different years, could be useful to better inter-
pret the 6th grade outcomes in terms of the analysis of 
8th grade items. Unfortunately, by means the analysis 
of the statistical data, we cannot follow the specific 
test outcomes for each student in different years; for 
this reason we need a criterion to link questions from 
different grade tests. In particular we decided to select 
questions that deal with longitudinal topics, identi-
fied in the National Standards - Indicazioni Nazionali 
(2012), and  which can be solved using the same scheme, 
namely the same sequence of actions, controls, opera-
tional invariants and so on (Vergnaud, 2009).

METHODOLOGY

A longitudinal analysis of the tests, administered to 
the same cohort of students in different years has 
been performed integrating qualitative methods with 
quantitative ones. Starting from 2013 INVALSI test 
for grade 8 students, we consider 2011 test for sixth 
graders.
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As concerns the qualitative analysis we analysed all 
the items of the INVALSI test for grade 8 and grade 6 
focusing on some longitudinal contents: e.g., fraction 
and decimal representations of rational numbers and 
equivalent polygons. In this paper, we analyse items 
that deals with the fractions of a square area. 

The INVALSI team verifies the consistency of the 
whole test by Classical Test Theory tools (Cronbach 
alpha, point-biserial correlation coefficient). Then 
using an Item Response Theory approach (Van der 
Linden & Hambleton, 1997) the estimation of item 
characteristic parameters is carried on.

In our work we use some INVALSI test results to in-
vestigate the behaviour of the items. First we apply 
a latent class analysis [1] to classify students and to 
judge the item characteristics. This statistical method 
gives a classification of students in a fixed number of 
groups characterized by different levels of perfor-
mance. The classification is based on the estimated 
probability of correct answer of each item. Chosen the 
best number of groups, it is possible to interpret them 
(for example, the group with the worst performance, 
the group with the best performance and so on) and to 
investigate the probability of a correct answer for all 
items within each group. In this way items that show 
a particular response behaviour could be identified. 
Most items included in the test are unordered cate-
gorical (nominal) multiple-choice items. The statisti-
cal analysis and specifically the latent class analysis 
were conducted on dichotomous items, i.e. correct/
incorrect response. The analysis of the national sam-

ple (i.e., the students of the same cohort in grade 6 in 
2011 and in grade 8 in 2013) showed the presence of 
groups/classes of students with a lower probability 
of correct answers in comparison with the results 
of the whole of students’ answers to all the items of 
the INVALSI test. Analysing the results obtained by 
the group with the lower performance, we selected 
some items in which the ‘weaker’ group had the low-
est probability of correct answer compared to all the 
students who faced the same test. In our data we iden-
tify five groups/classes [2] which consist of students 
with a similar response probability for the same items. 
We analyse the results on a national sample of about 
28000 grade 8 students. 

Class 5 (about the 23% of the students) is the class with 
the lowest outcome probabilities so we consider it as 
the set of poor knowledge students. Comparing class 
performances item by item, a set of questions in which 
only class 5 has low performances can be observed 
(Figure 1). In particular, we gather the items in which 
the  success probability for class 5 is less than half of 
outcome probabilities for the other classes. Item D25 
(Figure 1) has the maximum ratio, equal to 0.46, indeed 
the probability of class 5 right answer is 14% instead 
of the other classes whose outcome probabilities are 
a range from 30% to 81%. This item seemed to be a 
good candidate to study the possible difficulties face 
by poor knowledge students in INVALSI test. It was 
identified through the interweaving of qualitative and 
quantitative analysis: this is meaningful both as re-
gards the contents and schemes involved (it concerns 

Figure 1: Classes’ outcomes probability of correct answer in 8 grade test
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the identification of relationships between areas of 
polygons), and the results on the national sample.

AN EXAMPLE OF ITEMS ANALYSIS

Using Latent Class analysis on data from grade 8 test 
of 2013, we select a set of questions with low perfor-
mances in particular for poor knowledge students. To 
give an example of our analysis we consider question 
D25 (Figure 2).

This is a multiple choice question with four options 
and only one right answer. The correct answer is 
Option D. Option A considers the number of all piec-

es as denominator, so it could be chosen by students 
who do not take in account the different areas of the 
pieces (M1); Option B may be selected considering 
only half of the Tangram maybe because of a wrong 
calculation of the area of the triangle not dividing by 
2; Option C is selected by students that correctly divide 
in equivalent parts the square, but take 1 as numerator 
and the difference between total and 1 (16–1=15) as 
denominator (M2). 

Looking at data, 42% of the students answer correctly 
and few students choose Option B and C (respectively 
8.0% and 11.3%). A relatively high percentage of stu-
dents, about 35%, chooses Option A.

Figure 2: Question D25 from the grade 8 INVALSI test administered in 2013 [2]

Figure 3: Characteristic Curve of question D25 from the grade 8 INVALSI test, 2013.  The probability of options 

choice is shown on the vertical axis, while the corresponding ability estimate is shown on the horizontal axis.
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In the Figure 3 on the abscissa of the graph we can 
read the measure of the ability of the students in the 
test (Latent Trait), and on ordinate there are the prob-
abilities of options choice. Each option choice is rep-
resented by a different Characteristic Curves (see the 
Legend in Figure 3). Analysing Characteristic Curve 
(Figure  3), we can notice that students with lowest 
performances, among which we expect to find poor 
knowledge students, have 60% of probability to choose 
Option A and less than 20% of probability to choose the 
others (see the framed region indicated by the arrow 
in the Figure  3). We link the question of grade 8 test, 
D25, to question D2 of grade 6 (Figures  4–5).

There’s a very good relation between the two ques-
tions in terms of statistic trends. Moreover the task is 
similar and the strategies developed to answer can be 
compared.  We have to stress that the two questions, 
even if similar, are different. The grade 6 question asks 

to cover while the grade 8 one to find a fraction, but in 
both the cases the operation to carry out the solution 
is the same: to compose the square using triangles 
equivalent to the coloured one. In item D2, the per-
centage of correct answers is 55.3%; since the question 
is not a multiple choice one, the Characteristic Curve 
gives information only in terms of “right-wrong” an-
swer. In this case, students belonging to the lowest 
performances in the graphic have a probability about 
10% to provide a correct answer, with more than 70% 
of failure. The percentages given by national results 
didn’t help us to understand which kind of errors stu-
dents made because, in open questions, we can know 
only how many students gave the right answers (and 
how many students gave the wrong ones). In order 
to identify the possible wrong answers, we collected 
a sub-sample of 74 tests from the national survey of 
2011 and we analyse the students’ answers. Obtained 
data are summarized in Table 1.

Figure 4: Question D2 from the grade 6 INVALSI test administered in 2011 [3]

Figure 5: Classes’ outcomes probability of correct answer in 6 grade test
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The percentage of right answers of this sub-sample is 
coherent with the national sample. Analysing wrong 
answers in Table 1, it is possible to identify some re-
sults that can be the outcome of the same students’ 
solution schemes captured by the options of the D25 
in 2013: therefore we conjecture a link between these 
difficulties observed in grade 8 and grade 6 results. 
As a matter of fact, students who answer 12 maybe 
look at triangle AOB as composed by three triangles, 
even if they are not equivalent (M1), and repeat this 
procedure in all the quarters of the square. This at-
titude could be linked with students who answer 3. 
They probably consider the three triangles but do not 
extend the procedure to the others. Another inter-
pretation of this phenomenon is that students could 
individuate the right number of triangles composing 
AOB, but do not consider in the calculation the grey 
one and count 3 triangles or 12 in the case of extending 
procedure for the whole square (M2). Students that 
answer 8 probably do not consider the grey part and 
count only the white pieces of AOB, then multiply by 
four (M2+M1). Who answers 4 maybe does not reach 
the instruction and refers to AOB instead of the grey 
triangle or just focus on AOB’s pieces (S3). As a mat-
ter of facts, same codes are present in both questions’ 
analysis. This fact allows us/makes us able to link dif-
ficulties in the two questions longitudinally. In par-
ticular, students who answer 12 in D2 can behave as 
students who choose Option A or C. For instance, M1 
refers to students who consider non-equivalent pieces 
and count 12 triangles in D2 (or 3 in the case in which 
do not extend the procedure to the whole square) and 

“one seventh” in D25. Otherwise, if we consider the 
second interpretation (M2), it is possible to link this 
attitude with the choice of Option C i.e. who does not 
consider the coloured triangle in counting. From the 
semiotic point of view, in both questions students 
have to recognize verbal, graphic and symbolic rep-
resentations of fraction and to switch from one to the 
others. Indeed, one of the students’ difficulties could 
be found in conversion between registers (S1–S2). 

An interesting difference we have to take in account is 
that the multiple choice question obliges the student 
to coordinate graphical register with the verbal one, 
because using written verbal register to represent 

fractions is quite unused in Italian schools for the 
solutions. Probably some wrong answers are due to a 
combination of these difficulties. It will be possible to 
validate this conjecture only in the second part of the 
project, that will be carried out through interviews 
and classroom experiments – on the qualitative side – 
and correlating sets of data from the same sub-sample 
of students in the two grades. Comparing the percent-
age of correct answers, we notice that from grade 6 to 
grade 8 it decreases of 13 percentage point (from 55% 
to 42%), thus there is a significant group of students 
that is able to give a correct answer to D2 question but 
not to D25, even if the operations required to give the 
right answer are the same. Indeed, there is a peculiar 
feature of D25 which make this question more diffi-
cult and the main difference can be identified in the 
presence of a direct reference to fractions.

CONCLUSION AND FUTURE PRESPECTIVE

In this paper, we show an example of longitudinally 
linked items (these can be seen as paradigmatic exam-
ples of questions) that can identify poor knowledge 
students in specific tasks. From the methodological 
point of view we selected these questions both using 
quantitative and qualitative methods intertwined. 
In particular statistical analysis on a big amount of 
data allowed us to focus our attention on a group of 
students, and starting from their performances we 
could select a set of items of interest for our aim. The 
opportunity to use data about the same cohort of stu-
dent in different grades has been exploited linking the 
selected questions from 2013 test to questions of the 
2011 one. This connection is achieved through a quali-
tative study focuses on the epistemological, cognitive 
and educational aspects: i.e. we analyse the concepts 
involved, the representations and schemes (Vergnaud, 
2009) developed by students in order to face that the 
task, and the possible difficulties arising from con-
version among different semiotic representations 
(Duval, 2003).

The comparison of the linked questions outcomes 
strengthens the a priori analysis of possible students’ 
difficulties facing these items. We identified the same 
coded difficulties and the percentages in outcomes are 

Answer 16 12 8 4 3 other missing

Percentage 52.7% 10.8% 5.4% 6.8% 4.1% 6.8% 13.4%

Table 1: 74 students’ response to D2: answers (16 is the right answer, the others are wrong)
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similar. The qualitative analysis of the grade 6 item 
allows us to formulate hypothesis for the selection 
of options in grade 8 item; it is reasonable to assume 
that grade 6 question outcomes can have a predictive 
power for the grade 8 ones, but only the classroom ex-
periment can confirm it. In particular, as concerns the 
analysed questions, we can assume that the students 
who have difficulties in dividing a figure in equivalent 
pieces in grade 6 will tend to consider non-equivalent 
parts in graphical representation of fractions in grade 
8. Similarly, the students who do not consider all the 
parts in a figure (in our example, the grey part) will be 
inclined to convert graphical representation of frac-
tion in symbolic or verbal ones with a wrong denom-
inator. Further interviews can confirm if students 
that have a difficulty in one of the questions have the 
same difficulties in the other. These interviews could 
be integrated with a correlation analysis of outcomes 
within already collected data. 

The next phase of the project is going to involve some 
schools to identify students with peculiar difficulties 
on the selected items and to analyse their behaviours. 
We can show how our analysis points out some groups 
of questions (in different grades) that could identify 
poor knowledge students in specific mathematics 
contents. We would like to share with the teachers 
involved both our theoretical tools and the analysis 
of the data. It is important for us to understand if the 
tools produced are usable by the teachers. 

These qualitative analysis of the items could be also 
useful for the teachers who design the test items be-
cause it shows some elements that can discriminate 
in the assessment of poor knowledge students. 

From a statistical point of view, future developments 
of this work could include the implementation of a 
multilevel latent class analysis (Vermunt, 2003; 2008). 
In fact, traditional latent class analysis assumes that 
observations are independent while a hierarchical 
structure could be present (e.g., students nested 
within classes or schools). The multilevel latent class 
analysis could account for the nested structure of the 
data by allowing latent class intercepts to vary across 
groups (level 2 units) and by investigating if and how 
the groups affect the level 1 latent classes. In our study, 
this analysis would allow to examine how the proba-
bility of belonging to a particular performance group 
could vary across level 2 units (classes or schools). 
Finally, covariates could be introduced at level 1 and 

level 2 in order to predict the probability of belonging 
to a certain latent class.
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ENDNOTES

1. We implemented a Random Effects Latent Class 
Analysis (random LCA); this R package fits latent class 
models, may include a random effect.

2. In our analysis the classification in five classes gave 
a good division of the group of students according 
their performance in the test.

3. Translation from Italian realized by authors.
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This paper addresses comparative research from the 
perspective of boundary crossing and argues that all 
research is intrinsically comparative and, as such, 
continually engages in the useful and productive ac-
tivity of constructing and reconstructing boundaries. 
Recognition of the significance of acts of comparison 
in both boundary crossing and boundary construction 
foregrounds comparison as a key tool in the essential act 
of boundary deconstruction. International comparative 
research in mathematics education provides the exam-
ples illustrative of the points being made. It is incumbent 
upon researchers in mathematics education to consider 
what boundaries they invoke in their comparisons and 
to examine critically the form of boundary crossing im-
plicit in their particular comparison event.

Keywords: Comparative research, boundary construction, 

boundary crossing.

COMPARATIVE RESEARCH AND BOUNDARIES

It is the assertion of this paper that it is the business 
of research to continually engage in the useful and 
productive activity of constructing boundaries. It is 
also true that some of the least useful and most harm-
ful boundaries are also products of research. I would 
further argue that there is a fundamental redundan-
cy to the expression “Comparative Research,” since 
comparison is implicit in all research. Nonetheless, 
this paper will continue to employ the expression 

“Comparative Research” to refer to those research 
designs for which the focus is on specific, differen-
tiated objects, communities or systems about which 
an act of comparison is to be undertaken. By contrast, 
a longitudinal study of evolving practice in a single 
classroom would not conventionally be thought of as 
a comparative study, yet the comparison between cur-
rent and recent practice is continual in such a design. 
At the heart of this paper is the argument that acts of 

research comparison necessarily construct bound-
aries that distinguish between the objects, groups, 
communities, settings or systems that are compared. 
These boundaries are important. Without them, 
our acts of comparison are futile. As a consequence, 
boundary construction is an inevitable entailment of 
all research activity.

RESEARCH AS COMPARISON: 
THE RIGHT TO COMPARE

A paper presented at the previous CERME conference, 
posited the Validity-Comparability Compromise as 
a central consideration in cross-cultural research in 
mathematics education (Clarke, 2013a). In this earli-
er paper, commensurability was interpreted as the 
right to compare. And the central assertion was that 
this right to compare cannot be assumed, but is con-
tingent on our capacity to legitimise both the act of 
comparison and the categories through which this 
act is performed. This earlier paper identified key 
considerations affecting the conduct and utility of in-
ternational comparative research. It posited as central 
to research design the dual imperatives of validity and 
comparability and argued that these imperatives are 
inevitably in tension. The paper identified, illustrated 
and discussed those tensions, utilising very specific 
examples from current international comparative 
research. It was argued that any value that might be 
derived from international comparisons of curricula 
or classroom practice is critically contingent on how 
the research design addresses the dual priorities of 
validity and comparability. It was further argued that 
since these priorities act against each other, research-
ers undertaking international comparative research 
must find a satisfactory balance between these com-
peting obligations.

Since it can be argued that all research involves acts 
of comparison (or “comparison events” from the per-
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spective of Verran (2011)), any examination of the 
principles and contingencies which frame interna-
tional comparative research will have implications 
for research in general. Those research designs cur-
rently associated with Comparative Research provide 
rich and fertile ground in which to speculate about 
the association between boundary construction and 
the acts of research comparison. The previous paper 
(Clarke, 2013a) questioned the assumptions we might 
make about our right to compare and attempted to 
foreground the decisions and obligations confronting 
a researcher undertaking particular types of compar-
ison. This paper examines the nature of the bounda-
ries constructed through our acts of comparison, the 
status that might be accorded to those boundaries, and 
our responsibilities as researchers to acknowledge 
our role in boundary construction. Further, making 
a virtue of necessity, I argue that sensitivity to the en-
tailments of our comparative acts can assist us in the 
deconstruction of those boundaries created by our re-
search. Such deconstruction would then better equip 
us to celebrate the useful work performed by those 
boundaries, while sensitising us to possible dangers, 
such as unwarranted extrapolation or generalisation, 
reification, segregation, stagnation or sanctification.

COMPARATIVE RESEARCH AS 
BOUNDARY CROSSING

If all research involves comparison, and all compar-
isons invoke or create boundaries, then my further 
proposition is that all research, and Comparative 
Research in particular, involves acts of boundary 
crossing.

It is useful at this point to consider the proliferation of 
boundary-related terms pervading educational litera-
ture at the moment: boundary crossing, boundary ob-
ject, boundary interactions, boundary practices, and 
boundary zones (see Akkerman & Bakker (2011) for a 
useful discussion). Underlying all these terms is an 
inevitable uncertainty about what the term “bounda-
ry” actually refers to; inevitable, because its use and 
referent will vary from study to study. Boundaries are 
constructions, built of language through discourse. 
However, we respond to boundaries in different ways. 
Sometimes the boundary appears as a natural fea-
ture, like a river, separating one habitat from another; 
sometimes, as an artefact, like a wall, constructed to 
enclose or to separate; and, sometimes, as the prin-
ciples by which the members of a club or society are 

distinguished from non-members [1]. Given such var-
iation, the nature of boundary crossing itself must 
take different forms. The remainder of this paper 
addresses possible different approaches to bounda-
ry crossing and attempts to illustrate its points with 
examples relevant to mathematics education. The 
lead question, to structure this discussion, is “How 
do you cross a boundary?” Sometimes, the answer to 
this question can provide significant insight into the 
nature of the particular boundary. Each method of 
boundary crossing comes with its own caveat.

METHODS OF BOUNDARY CROSSING

One way to cross a boundary is to abolish it
The insertion of cultural artifacts into human 
actions was revolutionary in that the basic unit 
of analysis now overcame the split between the 
Cartesian individual and the untouchable soci-
etal structure (Engeström, 2001, p. 134).

In this instance, the boundary between the individ-
ual and the physical world was abolished as a mat-
ter of theoretical dictate. In the field of research, the 
redefinition of metrics can significantly reconstruct 
boundaries. As a case in point, between the 2000 and 
2003 administrations of PISA, Australia moved from 

“low equity” to “high equity” status without apparent 
change in practice, but through “slight variation in 
the way ‘equity’ was measured in PISA” (Gorur, 2014). 
In such cases, boundaries are re-drawn without addi-
tional evidence and a school system may cross from 
one grouping to another as a matter of legislation, 
rather than any change in either practice or outcome. 
Political examples of such boundary crossing by proc-
lamation are extremely common.

Every act of boundary crossing can be associated with 
at least one potential danger, represented in this pa-
per as a caveat.

CAVEAT: the abolition of boundaries can deny the rec-
ognition of diversity.

Each abolished boundary assigns an integrity or 
connectedness to otherwise distinguished entities 
(students, teachers, school systems, or task types) as 
members of a unified aggregate that conceals diversity. 
These concealed diversities may disempower the com-
munities now integrated and may deny the researcher 
both explanatory alternatives and possibilities for 
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advocacy of action. A particularly obvious example 
is the national aggregation of student achievement 
scores across category distinctions of ethnicity or so-
cio-economic status that, once dissolved, no longer of-
fer avenues for researcher comparison, explanation, 
advocacy or political action (e.g., Berliner, 2001; see 
also Clarke, 2003).

Another way to cross a boundary 
is to demolish it
The distinction between abolition and demolition 
for me is one of theoretical dictate vs empirical 
demonstration. Theory or simply accepted wisdom 
(entrenched belief ) may treat a boundary as well-es-
tablished, in that it distinguishes two categories of 
occurrence or situational domains that are concep-
tually distinct in a useful way. However, if empirical 
evidence pertinent to the characteristics held to dis-
tinguish the bounded domains is not consistent with 
the posited difference, then the boundary must be 
considered demolished (or at least destabilized) on 
evidential grounds. This destabilizing of boundaries 
can be highly productive. The lack of evidence of dif-
ference, where difference might be expected, should 
lead us to interrogate the original assumptions on 
which that difference was posited. 

As a case in point, PISA student achievement perfor-
mance is commonly invoked as providing evidence 
of curricular or pedagogical difference. The inabil-
ity of PISA scores to distinguish between Korea and 
Finland, therefore demolishes a putative boundary 
that would have those two school systems in distinct 
domains, while calling into question the evidential 
value of similar distinctions that appeared to reify 
expected boundaries between other school systems 
(Clarke, 2013b). To labor this point: the distinction be-
tween high-achieving and low-achieving countries, as 
identified through either PISA or TIMSS performance, 
has been interpreted as indicating associated peda-
gogical differences that should inform educational 
change in less successful school systems. Research 
in classrooms in Korea and Finland problematize any 
simplistic clustering of Korean and Finnish school 
systems as pedagogically similar. Similarity seems 
limited to the comparable (measurably equivalent) 
success of their students on international tests of stu-
dent achievement. The comparability of Korea and 
Finland in one respect usefully destabilizes gener-
alized assumptions of difference with respect to the 
compared systems, but also (because of differences 

known from other measures/studies) suggests that 
the dissolution of boundaries is highly specific and 
cannot be simplistically generalized. It does, however, 
suggest the particularly useful question: “For what 
educational attributes might Korea and Finland be 
considered to reside in the same domain?”

CAVEAT: The demolition of a boundary can create a 
misleading appearance of homogeneity. Boundaries are 
situated constructions of prescribed conceptual tenure.

Yet another way to cross a boundary 
is to build a bridge
What is the work of a bridge? A bridge conveys indi-
viduals, groups, ideas or artefacts between domains. It 
does not interact with the boundary, but passes over it. 
When attempts are made to measure a construct like 

“Civic Principles” with sub-constructs such as equity, 
freedom, and social cohesion (IEA Civic Education 
Study, Shultz & Sibberns, 2004), the assumption that 
the construct can be defined in a commensurable 
fashion across two school systems builds a bridge 
between those school systems. Emergent empirical 
differences reify the boundary without necessarily 
interacting with or interrogating it. In the same way, 
assumptions of curricular comparability with respect 
to mathematics, such that mathematical performance 
is commensurable across various political and cul-
tural boundaries, then generate differences, which 
retrospectively consolidate the boundary and the 
respective domains being compared.

We know from comparative analyses of mathematics 
curricula that different school systems do not organ-
ize their mathematics content in the same way (see 
Figure 1). Figures 1 and 2 show the results of compar-
ative analyses of the Australian, Chinese and Finnish 
national mathematics curricula for the years of com-
pulsory schooling. The categories employed in both 
analyses are adapted from the work of Porter and his 
colleagues (Porter & Smithson, 2001; and see Xu, Kang, 
& Clarke, 2011).

As can be seen from Figure 1, both the content and 
its sequencing differ significantly between the three 
countries. Perhaps, as importantly, the types of math-
ematical performances (levels of cognitive demand) 
specified in the three curricula also differ signif-
icantly (see Figure 2). Figures 1 and 2 demonstrate 
profound differences in not only the nature of the 
mathematics considered essential but in the types of 
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student performances promoted in relation to this 
content.

The measurement of student mathematical achieve-
ment on international tests such as PISA or TIMSS 
constructs a bridge between the mathematics curricu-
la in the participating countries that affords compar-
ison with respect to the performances attributable 
to students benefiting from the various curricula. 
The institution of international testing provides the 
bridge for this form of border crossing and reifies 
through the international acclamation of its findings 
the boundaries its acts of comparison have simulta-
neously surmounted and invoked.

CAVEAT: Bridges can institutionalize both difference 
and the defining boundary, differentiating what is being 
connected.

Bridges such as international testing regimes, univer-
sity ranking schemes, and school comparison metrics 

(see, for example, the Australian My School website: 
http://www.myschool.edu.au) institutionalize the 
measures they document and the differences arising 
from their comparison. The paradox of simultaneous-
ly differentiating what is being connected through the 
act of comparison is at the core of the activity of re-
search comparison. As was discussed in the previous 
CERME paper (Clarke, 2013a), we must scrutinize the 
legitimacy of the act of comparison because its conse-
quences can consolidate the boundary it appears to 
transcend: both constructing and concealing differ-
ence (Clarke, 2013b).

A fourth way is to find objects to which 
the boundary is permeable
A truly impermeable boundary would prevent all pos-
sibility of comparison. Another way to say the same 
thing is that there would be no objects pertaining to 
one domain that had meaning within the other do-
main and nothing, therefore, that could serve as the 
basis for comparison. In one form of contemporary 

Figure 1: Comparison of Australian, Chinese and Finnish Mathematics Curricula by Content Category

Figure 2: Comparison of Australian, Chinese and Finnish Mathematics Curricula by Performance Type (Cognitive Demand)

http://www.myschool.edu.au
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boundary-speak, there would be no possibility of a 
“boundary object” (Star & Griesemer, 1989). I do not 
propose to make continued use of the term “boundary 
object” in this paper. The term is sufficiently widely 
used to have become ill-defined or at least variously 
defined and my metaphor of permeability will serve 
my purpose without the added burden of any possible 
misunderstandings of another multi-faceted term.

To provide a contemporary context for this form of 
boundary crossing, I would like to situate the discus-
sion around the acronym “STEM.” The acronym STEM 
has achieved recent popularity and is simultaneous-
ly invoked to affirm a perceived distinction between 
STEM and non-STEM disciplines, the implicit integ-
rity of a knowledge domain designated by STEM, and 
the independent integrity of the constituent elements 
of STEM, that is, Science, Technology, Engineering 
and Mathematics [2]. In fact, it seems that STEM is 
invoked in educational discussion as frequently to 
distinguish its constituent knowledge domains as it 
is to affirm their connectedness. This simultaneous 
invocation of integration and distinction makes STEM 
an ideal site to employ “boundary crossing” as an in-
terrogative tool.

We have become so accustomed to the subject group-
ing for which STEM is the acronym, that it is difficult 
to recognize that STEM could be the name for a fair-
ly monumental category error. One approach is to 
consider the nature of the truth claims characteristic 
of each discipline and the authorities to which these 
might appeal:

Science – empirical consistency

Technology – tool utility

Engineering – built viability

Mathematics – logical coherence

This approach demonstrates just how fundamental 
are the differences between STEM disciplines. If 
STEM, as representative of some unitary aggregate 
or assemblage, is to be of value in educational (or 
other) settings, then we need a mechanism to enable 
boundary crossing between the STEM disciplines. In 
this fourth approach to boundary crossing, we exam-
ine those constructs to which the boundary walls of 
the STEM disciplines seem most permeable. What we 

need to identify are constructs that demonstrably do 
explanatory or at least classificatory work in more 
than one domain within STEM.

How permeable are the disciplinary boundaries with-
in STEM? And to which constructs are they permea-
ble? Here are four contenders [3]:

Discourse – reasonable speech 

Artefacts – constructed objects

Reasoning – purposeful thought

Evidence – objects of justification

Take “Evidence” as a construct having currency in 
each of the STEM disciplines. What qualifies as ev-
idence in the domain of mathematics may be differ-
ently conceived than in science. Yet the function of 
evidence remains arguably the same in each domain: 
the validation of truth claims. Research seeking to 
compare phenomena across the STEM disciplines can 
do useful work by addressing how constructs such 
as Evidence are employed. How are these constructs 
transformed in their passage between STEM cells? 
Do we find conservation of function accompanied by 
transformation of form? Are the differences between 
STEM and non-STEM domains with respect to either 
the function or form of Evidence so disjoint that our 
act of comparison, legitimized by the existence of a 
construct (Evidence) to which the STEM to non-STEM 
boundary is permeable, retrospectively amplifies the 
STEM non-STEM distinction and consolidates that 
same boundary?

CAVEAT: How are these objects transformed in their 
passage through the boundary? Does conservation of 
function but transformation of form maintain object 
identity and consequently comparability?

We start to hear echoes of the Validity-Comparability 
Compromise (Clarke, 2013a), as the empirically-driv-
en opacity (impermeability) of the boundary under-
mines the legitimacy of the very comparison that is 
rendering it more opaque. I suggest that the status of 
our “boundary object” as “boundary object” is crit-
ically dependent on the balance between sufficient 
similarity to support comparison and sufficient dif-
ference to sustain the boundary.
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A fifth way to cross a boundary is to 
federalize the collective of bounded 
regions into a structured unity
STEM also provides an example amenable to our fifth 
method of boundary crossing. If we consider STEM to 
be a confederation of states subject to the same legisla-
tive and constitutional principles, but independently 
organized for many practical purposes, then bounda-
ry crossing is achieved through the identification or 
articulation of those constitutional (and constituting) 
principles. Not only does this approach constitute a 
form of boundary crossing by transcending intercel-
lular STEM boundaries, but it also holds the capacity 
to regulate the process of boundary crossing by legis-
lating which responsibilities are shared and which are 
the specific province of each domain. For example, is 
Evidence universally invoked, but Proof restricted to 
the domain of Mathematics? The mechanism where-
by such principles of intellectual trafficking are laid 
down will reflect the relative agency and voice given 
to the constituent entities in the federated states of 
STEM. Dominance of any particular voice in deter-
mining the principles of exchange (e.g., the standards 
for evidence-based practice) would constitute an act 
of colonization.

CAVEAT: Federation is a commendable aspiration pro-
vided it does not become colonization. Who speaks for 
each bounded region?

Again, we find echoes of the concerns expressed 
by Clarke (2013a), elaborating the proposition: 

“Comparison must not be unilateral” (Stengers, 2011). 
In the context of international comparative research, 
any construct employed for the comparison of the 
classroom practices of Confucian-Heritage-Cultures 
and “Western” cultures must be sanctioned by each 
conglomerate community as legitimately typifying 
some shared aspect of both. Such shared aspects can-
not be identified unilaterally (Clarke, 2013b). 

A sixth way to cross a boundary 
is to accept responsibility for its 
construction (and deconstruction) 
Each act of comparison simultaneously achieves the 
researcher’s creation of the domains that are the sub-
ject of comparison and the boundary by which the 
domains are defined and distinguished. Each research 
report solicits the reader’s complicity in these acts of 
construction and distinction. As already discussed, 
the event of comparison may be predicated on a pre-

sumption of difference that provided the warrant for 
comparison, but the consequences of the compara-
tive activity may provide evidence that could either 
consolidate or destabilise the boundary on which the 
legitimacy of the comparison was predicated.

From this perspective, boundaries must be seen as 
fragile entities, ephemeral, continually changing and 
immensely useful. Eugene Ionescu once stated, “Only 
the ephemeral is of lasting value” (see Rothenburg, 
1993). Whatever ideological commitments we might 
all feel to inclusivity, our practice as researchers acts 
to divide, to create boundaries. We do this most visibly 
in Comparative Research, where acts of comparison 
are foregrounded, as are the domains across which 
we compare. As has been argued, these acts of com-
parison have the inevitable outcome of constructing 
boundaries. Our obligation as researchers is to ac-
knowledge this activity and engage simultaneously 
in both the construction and the deconstruction of 
these boundaries. In this way, by accepting our role in 
boundary construction, we position ourselves across 
(on both sides of ) the boundary, not only able to make 
comparison but also to examine the implications of 
that comparison for the boundary it presumes. This 
examination will require the deconstruction of the 
boundary, providing insight into its utility, its fluidity 
and what I have called its conceptual tenure.

SUMMATIVE DISCUSSION

Boundaries are constructions, built of language 
through discourse. They are inevitably purposeful 
and can be both useful and affirming. They must also 
be fluid, in the sense that they must always be subject 
to contention, to destabilisation, and, consequently, 
open to deconstruction and reconstruction.

In this paper, I have foregrounded the role of compar-
ison (in Comparative Research and in research in gen-
eral) in creating and crossing boundaries. Viewing the 
various events of Comparative Research from the per-
spective of boundary crossing sensitizes us to the role 
research plays in creating boundaries and to the im-
plications for our research of both the possible nature 
of these boundaries and of the process of boundary 
crossing that is also intrinsic to our research activity. 

International comparative research in mathematics 
education can both create and destabilize bounda-
ries in ways that enhance or impede our ability to 
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benefit from the practices of mathematics classrooms 
and school systems elsewhere. The boundaries we 
construct should clarify our understandings, not im-
pede their application. Equally, our destabilisation of 
existing boundaries should result from our demon-
stration that some boundaries do no useful work, but 
rather inhibit our consideration of alternative ways 
to conceptualise our discipline, our pedagogy, and 
even our research.
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ENDNOTES

1. It is important to note the dangers of specific instan-
tiations of a more generalized construct: a river, a wall 
and a set of principles can all serve as boundaries; 
but a river can connect, a wall can protect and a set 
of principles can empower. The illuminating illus-
tration can also mislead and we need to be sensitive 
to entailments of such examples that are no part of 
the boundary function for which they were invoked.

2. In fact, it is arguable that STEM encompasses 
many more knowledge domains than simply Science, 
Technology, Engineering and Mathematics; each of 
which (as we have seen for mathematics) cannot be 
treated as consensually defined. Bioinformatics pro-
vides a useful example of a STEM discipline that is 
both additional to and a hybridization of the ‘primary’ 
STEM domains.

3. More detailed discussion can be found in (Clarke, 
2014).
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In this paper, I present my PhD research (in progress) 
focusing on the mathematical reform movements of 
Hungary and France in the 1960s and ’70s and their 
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the international “New Math” movement, and by the 
mathematical and mathematics education traditions of 
these countries. I consider different aspects of the reform: 
curricula, textbooks, teaching practices. I look for their 
general characteristics, in the sense of the Pedagogical 
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tural origins of these principles. In this paper, I present 
elements of this research, focusing on the example of the 
Pythagorean theorem.
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INRODUCTION

Although the reform introduced by Tamás Varga 
during the 1960s and ‘70s is generally recognized by 
the Hungarian mathematics education community 
as a key moment in the history of Hungarian mathe-
matics education, having an important influence and 
keeping its values until today, its detailed historical 
or didactical analysis is lacking [1]. In my research, 
I consider Varga’s work in its international context, 
comparing to the French “Mathématiques Modernes” 
reform of the same period: one of the most influential 
reforms during the international “New Math” move-
ment, and also one of the well described ones, thanks 
to French historians of mathematics education (e.g., 
d’Enfert & Kahn, 2011). I attempt to describe general 
characteristics of these reforms, looking for coher-
ent aspects between their different elements. Beyond 
common characteristics of the two countries’ reforms, 
issued from the international discourse, I attempt to 

underline differences, and to show how they ensue 
from cultural traditions of the countries in question. 
I focus especially on mathematicians’ conceptions 
about the nature of mathematics and its teaching.

I apply the term “pedagogical flow” in accordance with 
(Schmidt et al., 1996), where the international research 
group preparing the TIMSS studies introduces it to 
describe general characteristics of the  mathematics 
educational system of a country which are  present 
in different elements of mathematics education (as 
in curricula, textbooks, teaching practices). However, 
the cultural background of these characteristics, even 
if supposed, is hardly explored in (Schmidt et al., 1996); 
and the general model used by this research, the model 
SMSO which presents interrelations between the dif-
ferent levels of an educational system in detail, does 
not take into account the cultural, political, social or 
scientific background. Another model, the levels of 
codetermination of Chevallard (2002) takes these as-
pects into account, but integrates them into one hier-
archical and linear system, and supposes that broader 
institutions like society or the scientific community 
of a country determine the lower levels of the system, 
such as the teaching of mathematics, for example.

In my research, I take into account complex interrela-
tions between different elements (e.g., political, social, 
scientific and cultural) of the historical context, and 
the characteristics of the reform in each country. I fo-
cus more in detail on the epistemological background 
of mathematics and its teaching, expressed by a com-
munity of mathematicians in each studied country 
(communities which were particularly influential in 
the “New Math” period, as it is showed in the historical 
part of the study). By analysing written documents 
of the reforms:  curricula, textbooks, teachers’ hand-
books and also the teaching practices suggested by 
these documents, I try to show how the conceptions 
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expressed by mathematicians about mathematics and 
its teaching appear in the didactical characteristics 
of the reforms. In this paper, I focus on the example 
of the geometry curricula and, in particular, the 
Pythagorean theorem.

The “New Math” reform period is particularly suita-
ble for this kind of research for several reasons. First, 
the “New Math” reforms are profound reforms, trans-
forming curricula, resources and attended teaching 
practices in a coherent way, in accordance to some 
leading principles [2]. Secondly, exactly because of 
the profound changes, characteristics of the reform 
and the underlying principles are often explained in 
detail to inform the teachers and the society. Thirdly, 
the wide international discourses of the period make 
the comparison easier.

Finally, even though the “New Math” period is already 
history, it is not very far-away, and has its influence 
until today. Comparison of the present research to 
some more modern studies about “pedagogical flows” 
(e.g., Schmidt et al., 1996, for France; Andrews & Hatch, 
2001, for Hungary) allows us to suppose a certain con-
tinuity. In this sense, the research on the “New Math” 
reform of Hungary and France can contribute to a 
better understanding of the historical, cultural and 
epistemological background of pedagogical flow in 
these countries.

METHODOLOGY

The research consists of three major parts: a historical, 
an epistemological and a didactical part. The first part 
of the research, concerning the history of mathemat-
ics education, is based on existing historical studies 
about France and about the international discourse 
of the “New Math” period. Concerning Hungary, gen-
eral works on the history of pedagogy, original offi-
cial sources, as well as written and oral memories of 
Varga’s colleagues are used.

For the second, epistemological part, writings of 
mathematicians influencing the reforms are ana-
lysed: publications and lectures about mathematics 
education, mathematics popularisation books and 
correspondences. I look for characteristics of these 
mathematicians’ conception about mathematics, and 
their main principles about its teaching.

The third, main part of the research is based on analyt-
ical tools provided by French theoretical frameworks 
of mathematics education research. After a general 
analysis of the content and of the structure of the 
curricula, three chapters are chosen from the first 
8 grades in Hungary, and from the first 9 grades in 
France (primary and middle-school in each case). The 
analysis contains 1) an analysis of the place and role 
of the chosen chapter in the curriculum, based on the 

“ecological approach” of the Anthropological Theory 
of Didactics (Artaud, 1997); 2) a structural, rhetorical 
and linguistic analysis of the textbooks and teacher’s 
handbooks; 3) an analysis of the teaching practices 
suggested by these resources, based on the Theory of 
Didactical Situations of Brousseau (1998). 

THE HISTORICAL CONTEXT

During the 1960’s and 70’s, the international “New 
Math” reform movement, starting from the US and 
from some countries in Western Europe, influenced 
mathematics education in many countries of the 
world. France was one of the leading countries in 
this movement. International and French research 
studies underline the role of the technological com-
petition of the Cold War, of mathematicians’ efforts 
to integrate elements of modern mathematics, of the 
psychological discourses (first of all around Piaget), 
of the development of the educational systems and 
of society in the “New Math” reforms (e.g., d’Enfert 
& Kahn, 2011; Kilpatrick, 2012). Similar processes can 
be shown concerning Hungary. 

The French reform called “Mathématiques Modernes” 
was introduced in 1969 for secondary, and in 1970 for 
primary education, following the work of a national 
committee led by the mathematician Lichnerowicz, 
but also vivid debates in teachers’ associations and 
different, mostly short term experimentations. A 
modification of the reform took place in 1977.

In the same period in Hungary, a reform project was 
led by Tamás Varga, inspired by experiments of dif-
ferent countries but also by some Hungarian math-
ematicians and psychologists, and based on a long 
experimentation process since 1963 (Varga, 1975). 
This project was selected by a ministerial committee 
as basis of the reform of mathematics education, and 
the new official curriculum was introduced in 1978. 
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MATHEMATICIANS’ DISCOURSES 
ON MATHEMATICS EDUCATION

In the “New Math” period, mathematicians partici-
pated actively in influencing mathematics education. 
In France, several mathematicians, often members 
of, or near to the Bourbaki group, expressed their 
opinions (e.g., Dieudonné, Choquet or Lichnerowicz, 
the leader of the committee preparing the reform). 
They emphasize the importance of modern, unified 
formal language, abstraction, structures and the ax-
iomatic-deductive method in mathematics education. 
According to them, structures of modern mathemat-
ics correspond perfectly to the structures of human 
thinking; therefore they suggest that students should 
be introduced as quickly as possible to the use of this 
language and methodology (see, e.g., Piaget et al., 1955) 
[3].

In Hungary, mathematicians also took an active role 
in the reform movement of the period in question. In 
my present research, I focus on a group of first-rate 
Hungarian mathematicians who were interested in 
education since the 1940’s and had important influ-
ence on the later reforms: first of all L. Kalmár, R. Péter, 
A. Rényi, L. Surányi, but also Hungarian thinkers liv-
ing abroad: G. Pólya and I. Lakatos.

The analysis of their diverse writings (Gosztonyi, 
2012) shows that these Hungarian mathematicians’ 
image of mathematics is in deep contradiction with 
the one represented by the Bourbaki-school. They see 
mathematics as a constantly developing and changing 
creation of the human mind, and this development 
is guided by series of problems. According to them, 
the source of mathematics is intuition and experi-
ence; mathematical activity is basically dialogical and 
teaching mathematics is a joint activity of the students 
and of the teacher, where the teacher acts as an aid in 
the students’ rediscovery of mathematics. Excessive 
formalism is discouraged; formal language being also 
seen as a result of a development. Mathematics is pre-
sented as a creative activity closely related to playing 
and to the arts.

DIDACTICAL ANALYSIS OF THE REFORMS

The content and the structure of the curricula
Concerning the curricula, both reforms aim to intro-
duce new chapters from modern mathematics (such as 
set theory, logic, topology etc.), and to present math-

ematics as an integrated science (not “counting and 
measuring” as before the reform). But the way of real-
ising this, the structure of the curricula is very differ-
ent in the two countries; while the French curriculum 
is strictly hierarchic and linear, based on set theory, 
the Hungarian curriculum contains five big topics 
which are present in parallel during all the curricu-
lum and interact with each other in a dialectic way: 
1) sets and logic 2) arithmetic and algebra 3) relations, 
functions and series 4) geometry and measure and 
5) combinatorics, probability and statistics.

In the followings I briefly present the case of the geom-
etry curricula and that of the Pythagorean theorem.

In the French geometry curriculum of 1969 and 1970, 
an important break is marked between the lower 
grades (until 7th grade) and the last two years of the 
middle-school (8th and 9th grade). In the lower grades, 
geometry has minor importance, and is not recog-
nised as ‘veritable mathematics’: the related chapters 
of the curriculum are named “observations of phys-
ical objects” and “practical exercises”. The curricu-
lum underlines that the study of ‘veritable geometry’ 
starts from the 8th grade, as an example of axiomatic 
thinking. Axioms and notions have to be introduced 
via physical observations, but once they are admitted, 
they have to be clearly distinguished from the physical 
word and every further theorem has to be deduced by 
formal demonstrations.

The study of geometry follows the axiomatic con-
struction of real numbers, and is based on this last 
notion. Classical synthetic geometry is completely 
eliminated: the main aim of this geometry curriculum 
(in accordance with Bourbaki’s construction of math-
ematics, where geometry is not an autonomous do-
main but part of topology) is not to study geometrical 
figures but to construct an algebraic tool to describe 
first the affine, then the Euclidian plane and space. 
Principal notions are projections, vectors, frames, 
transformations etc.

In this French curriculum, the Pythagorean Theorem 
is of limited importance: it is integrated in a bigger 
chapter about the Euclidian plane, as an algebraic con-
sequence of a property of the orthogonal projection, 
and contributes to the construction of the notion of 
an orthogonal frame [4].
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The Hungarian curriculum links geometry to other 
domains of modern mathematics (e.g., to set theory; to 
functions by transformations treated as movements; 
to combinatorics by discrete geometry), but not in a 
hierarchic, rather in a dialectic way. The visual nature 
of geometry plays an important role: geometry of-
fers intuitive examples to treat problems of the other 
above mentioned domains. Although coordinate-sys-
tems are introduced, the studied geometry is mainly 
synthetic and concerns figures and their properties, 
transformations and symmetries.

The curriculum emphasises continuity; physical 
world experiences are present until the end of the 
middle-school, in a dynamic relation with argumenta-
tions and proofs on ideal figures. There is no complete-
ly axiomatic geometry in the Hungarian curriculum.

The Pythagorean theorem plays a significant role in 
this curriculum, not only as an important and useful 
property of right-angled triangles, but also as one of 
the first theorems, where students can discover the 
significance of proving.

The textbooks, teacher’s handbooks 
and the attained teaching practices
In France, there is a great diversity of textbooks and 
of related handbooks, but some general tendencies 

can be observed. In Hungary in the period in question, 
there is only one obligatory series of textbooks. Here 
I present some structural, rhetorical and linguistic 
characteristics of middle-school textbooks, their sug-
gestions about teaching practices; treating the exam-
ple of the Pythagorean theorem in detail. 

French middle-school textbooks, according to the 
curriculum, emphasise the initiation of students in 
the precise use of mathematical language. The first 
two years’ books give also some natural language 
examples and describe some physical experiments; 
the second two years’ books contain mainly formal 
mathematical discourse in an axiomatic-deductive 
form, followed by some “exercises” at the end of each 
chapter. 

Figure 1 illustrates a typical treatment of the 
Pythagorean theorem in one of the French textbooks 
of the period. The demonstration is purely algebraic, 
requires developed formal and theoretical knowl-
edge. The figure is only an illustration and what it 
represents is not really a triangle, rather three lines 
projected on each other. The textbooks, in accordance 
with the curricula, present the Pythagorean theorem 
as an element of a big theoretical system, constructing 
an algebraic tool to describe the plane and the space.

Figure 1: (Fauverge, Jeanmot & Rieu, 1976, p. 163) Handbook for the 9th grade
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This purely mathematic, deductive treatment cor-
responds to a lecture form in education: a direct 
transmission of institutional knowledge by teach-
ers, and passive understanding by students (as we 
can understand from several textbooks’ introduc-
tion).  Although the introductions of the textbooks 
emphasise the importance of modern pedagogical 
methods and students’ activity, they give only some 
general pedagogical indications and little help to con-
crete pedagogical practice. From the point of view of 
Brousseau’s theory, these textbooks offer little adi-
dactical potentiality:  occasions to situations when 
students would engage in the construction of their 
own mathematical knowledge.[5]

Hungarian middle-school textbooks of the period are 
different from the presented French ones in several 
aspects. As we can see in the example presented be-
low, the books contain a number of non-mathemati-
cal illustrations and didactical signs (the STOP sign 
means for example, as it explained in the introduction, 
that the reader should stop and think about the asked 
question). They also contain, in every grade, fictive 
dialogues of students to introduce new knowledge. 
The related teacher’s handbook proposes to provoke 
similar discussions in the class. The dialogues are 
guided by a series of problems.

In the case of the Pythagorean theorem (see Figure 
2), the first problem concerns the length of a rope 
stretched across the classroom, so that a student 
with a given height could stand under it. Students 
first estimate the result, and then solve the problem by 
experiment and measurements. The second problem 
is similar, but instead of the classroom, it concerns the 
bigger sports hall where students can’t perform real 
experiments. The question is whether the difference 
between the length of the cord and that of the hall is 
bigger or smaller than in the case of the first problem. 
They first try to solve the problem by modelling and 
measuring, but the approximate result obtained this 
way isn’t precise enough to answer the original ques-
tion. Then they look for another method to solve the 
problem, “only with the help of calculations”.

At that point, the handbook suggests finding a rela-
tion between the sides of a right-angled triangle, and 
introduces the figure of a classical geometrical proof 
of the Pythagorean theorem. Even the proof of the 
theorem is problematised, interrupted by questions 
and by discussions of students studying the figure. 

Finally, the theorem is applied to solve the original 
problem, as well as other problems.

The teaching practice suggested by the teacher’s hand-
book and illustrated in the dialogues of textbooks is 
a kind of “guided discovery” process: students are 
guided through a series of problems, while continuing 
a dialogue between each other and with the teacher 
about the problems. Intuition, visuality and experi-
ences play important role in this discovery process.

From the point of view of the theory of Brousseau, 
it is difficult to determine whether this work of stu-
dents can be called adidactic: they rarely work auton-
omously, without the teacher’s intervention (which 
is a necessary condition of the classical notion of an 
adidactical situation); nevertheless they take impor-
tant responsibility in the process of constructing 
mathematical knowledge. So, the “guided discovery” 
teaching practice can be interpreted as involving 
an adidactical character of student’s work, even if it 
doesn’t correspond exactly to the classical notion of 
adidacticity.

CONCLUSION

The different presented aspects of mathematics edu-
cation: the content and the structure of the curricula, 
the form of textbooks, and the attended teaching prac-
tices show great coherence both in the case of Hungary 
and of France. This observed coherence allows us to 
talk about “pedagogical flows” in the sense of (Schmidt 
et al., 1996).

Some common characteristics of the two reforms 
can be observed which may take their origin from 
the international discourses of the New Math period 
(like the ambition to present mathematics as a new, co-
herent subject; the emphasis on ‘mathematical think-
ing’; new topics introduced like set theory or logic; 
the use of manipulative tools, especially in primary 
school). But there are also some important differences 
between the two countries, and the analysis of the 
mathematicians’ principles let us suppose that they 
can be traced back to some mathematical traditions 
of these countries.

In France, such characteristics are the focus on big 
theoretical systems and on the strict hierarchical 
structure of mathematics, the emphasis on the axio-
matic-deductive method and on the formal language 
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of mathematics. A principal aim of mathematics 
education is to initiate students into the knowledge 
and the methodology established by ’modern mathe-
matics’, considered as an ideal of human thinking. A 
tension can be observed between mathematical and 
pedagogical ambitions: although teacher’s handbooks 
suggest to middle-school teachers to use some modern 
methods of active pedagogy, they offer little concrete 
suggestions to their realisation; the textbooks mostly 
correspond to the lecture form as a typical teaching 
practice. 

In Hungary, the emphasis is more on the natural de-
velopment of students’ mathematical thinking and 
problem solving skills. The curriculum content is 

diversified and different topics interact dialectically, 
presenting the developmental, rather than the hierar-
chical nature of mathematics. Varga’s curriculum is 
very careful with introducing formal language, and 
relies on empirical knowledge and on manipulative 
tools even on higher levels of mathematics education. 
A typical teaching form is the dialogue between the 
teacher and the students while they participate in a 
common discovery process based on series of prob-
lems.

To summarize, the “New Math” reforms of the two 
countries represent two, almost paradigmatic cases 
of mathematics education, related to different math-
ematical traditions and different epistemologies: a 

Figure 2: (Kovács, Sz. Földvári & Szeredi, 1980 pp. 205–209.) Handbook for the 7th grade
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“bourbakist” view in the French case and a “heuristic” 
or “lakatosian” view in the Hungarian case. 

The “New Math” is already history, and this research 
couldn’t even attempt to have access to practices in 
ordinary classes. Curricula and resources changed 
in important ways in both of the countries since the 
1970s, following social debates and didactical research 
among other factors (actually, the changes seems to 
be even more important in the French than in the 
Hungarian case). But, as I mentioned above, a com-
parison with results of other research works based 
on current classroom observations, confirms that sev-
eral observed characteristics remain present both in 
French and in Hungarian mathematics education (see, 
e.g., Schmidt et al., 1996; Andrews & Hatch, 2001). The 
analysis of the “New Math” reforms may complete 
these existing observations, provide basis for further 
ones, and contribute to understanding the complex 
interrelations within a country’s pedagogical flow 
more profoundly.
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ENDNOTES

1. Short commemorations with his colleagues are ac-
cessible, e.g., in the proceedings of the yearly organ-
ised ‘Varga Tamás Days’ (http://mathdid.elte.hu/html/
vtn.html). In English see for example, Szendrei (2007).

2. This research takes into account the intended and 
potentially implemented curricula, described in the 
official documents and in the textbooks and teacher’s 
handbooks. I don’t consider the implemented curric-
ula, the practice of ordinary teachers in the period, 
which can be fundamentally different from the in-
tended practices.

3. At the same time, the teachers’ association, also 
influential in the debates around the reform, and 
convinced by the importance of reforming the content 
of the curricula, emphasises also the use of modern, 
active pedagogical methods.

4. The next French curriculum, of 1977, doesn’t ask 
the complete axiomatic construction of real numbers 
or geometry in the middle-school any more, and em-
phasises the practice of proof rather than axiomati-
sation. The mathematical organisation of the geome-
try curriculum remains similar to the preceding one, 
however the curriculum provides broader liberty 
in the organisation of textbooks and in the practice 
of teachers. 

5. This contradiction between pedagogical ambitions 
and their realisation can be interpreted in the con-

http://www.bsrlm.org.uk/informalproceedings.html
http://www.bsrlm.org.uk/informalproceedings.html
http://www.cieaem.org/?q=node/18
http://www.cieaem.org/?q=node/18
http://mathdid.elte.hu/html/vtn.html
http://mathdid.elte.hu/html/vtn.html
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text of the debates mentioned in note 3.  The observed 
tension between mathematical and pedagogical am-
bitions probably contributes to the emergence of 
French didactical researches during the 1970’s. The 
textbooks related to the new reform of 1977 follow the 
development of the debates: although some of them 
remain similar to the preceding ones, new textbooks 
appear with more developed pedagogical suggestions, 
e.g. in problem solving, and with a more classical treat-
ment of geometry, among other things. 
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Reflection in classroom learning leads to a deeper 
understanding and helps to connect knowledge with 
application situations. Socially initiated reflection 
can be observed as a lesson event embedded in Review, 
Elaboration, and Summarization. Questions constitute 
a primary catalyst for stimulating reflection, particu-
larly in classroom settings. This study1 investigates 
reflection events and related questioning behaviour of 
students and teachers by undertaking a comparative 
analysis of video data from the Learner’s Perspective 
Study (LPS; Clarke, Keitel, & Shimizu 2006) in class-
rooms in Australia, Germany, Japan, and the USA. 

Keywords: Reflection, questions, patterns of question 

sequences.

INTRODUCTION

Already Dewey has pointed out, that reflective thought 
“… alone is truly educative in value…” (1910, p. 2). The 
importance of reflection in facilitating and shaping 
learning processes is broadly accepted. Reflection 
creates the conditions for the utilisation of new infor-
mation in several types of action situations. One key 
function of reflection is the connection, integration or 
synthesis of existing knowledge. Without reflection, 
an individual’s newly constructed concepts might 
remain abstract and isolated. If there is no connec-
tion to prior knowledge and to ways of action, new 
knowledge is useless, lacking either conceptual foun-
dation or the connection to contexts in which it might 
be employed.

1  The project was supported by DFG (German Research 

Foundation, HO 5092/1-1).

Processes of reflection in classrooms are frequently 
initiated by questions (White, 1995). Questions typi-
cally communicate a specific purpose related to iden-
tified content and context, and are usually intended 
to elicit an answer. But additionally, a question also 
conveys a more general indirect request (Searle, 1969). 
This indirect request implies: Think about it! That is, 
reflection can be triggered through the use of ques-
tions. An individual’s response to the attempted initi-
ation of reflection depends on situational factors and 
individual conditions, such as prior experiences and 
knowledge. With the help of questions, teachers can 
invite students to follow and even participate in the 
teacher’s externalised way of thinking and thereby 
model both reasoning and reflection (Walsh & Sattes, 
2011, p. 69), approaches to solving a problem, and the 
generation of insight by the elaboration of informa-
tion. Nevertheless, recognising the individual char-
acter of reflection as a cognitive process (function), 
it has to be supposed, that students’ respond differ-
ently to attempts to stimulate reflection in classroom 
learning situations. Classrooms all over the world 
are embedded in different cultural settings and it 
has been shown that teaching and learning are influ-
enced profoundly by culture (Clarke, Emanuelsson, 
Jablonka, & Mok, 2006; Stigler & Hiebert, 1999, p. 87). 
It is certainly possible that cultural influences might 
have an effect upon both questioning and reflection, 
leading to similarities and differences in the perfor-
mance of both in classrooms.

To get more insight into reflection in classroom learn-
ing, this investigation focused on observable indica-
tors and patterns for such processes in classrooms. 
In addition to the consideration of questions as ini-
tiators of reflection, observable phenomena related 
to conducting reflection in classrooms (methodical 
forms like question-answer processes between stu-

mailto:mandy.hommel%40tu-dresden.de?subject=
mailto:d.clarke%40unimelb.edu.au?subject=
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dents and/or between teacher and students, a mind-
map, or a task situated in a real-world context) have to 
be documented. Importantly, reflection phenomena 
must be studied in classrooms in different countries 
in order to know about the role of reflection in class-
room learning in different cultural settings. That is, in 
undertaking cross-cultural comparison of reflection 
as a socially-initiated process in classrooms, it is im-
portant to attend to both the form and the function of 
reflection in the different cultural settings.

THEORY OF REFLECTION AND QUESTIONING

Referring to White (1995), reflection can be thought 
of as initiated by questions and this may occur both 
as self-interrogation by an individual as well as by 
means of a socially performed process. Skovsmose 
(2006, p. 327) emphasized the importance of questions 
as facilitator and initiator of reflection. In classroom 
learning these questions could be raised by teachers, 
but also by students themselves. The assumption is 
that questions can be employed as the first observ-
able indicators of the occurrence of reflection. The 
use and the effects of questions in learning have been 
investigated in many studies. Previous research has 
shown that most questions in classrooms are asked 
by teachers (Wragg & Brown, 2001). “It is normal for 
students not to ask questions” (Dillon, 1988, p. 12). To 
change this state, it would be necessary to get more 
into a “habit of reflection” (Costa & Kallick, 2000, pp. 
60 ff.; Walsh & Sattes, 2011). To get into such a habit of 
reflection would constitute a significant change not 
only for students but also for teachers and schooling 
in many school systems and cultural settings (Costa 
& Kallick, 2000). Thought-provoking teacher ques-
tions as well as student-generated questions can be 
utilised to initiate reflection. Because students may 
not be accustomed to generating questions, it could 
be necessary to scaffold them with the help of ques-
tion stems (King, 1992; Hommel, 2012). Such guided 
student-generated questioning supports to higher 
level questioning (King, 1992). Extensive analyses by 
Clarke and his co-workers of video records of large 
numbers of mathematics lessons in China and Korea 
revealed a complete absence of student-initiated 
questions (Clarke, Xu, & Wan, 2013). Such a uniform 
absence suggests a well-established history of ped-
agogic practice wholly reliant on the teacher as the 
source of all classroom questions. It is possible that 
the contemporary dissatisfaction among Chinese 
and Korean educators with the capacity of school 

graduates for innovation and novel problem solving 
may be a consequence of less well-developed habits 
of inquiry and reflection. Certainly, recent reforms 
in curriculum and pedagogy in both China and Korea 
seem directed towards more interactive and interrog-
ative modes of classroom participation by students. 
Teacher questions promoting reflection, together 
with the opportunity for students to replicate such 
questioning in classroom interaction, may provide 
the means to realise not only contemporary Chinese 
and Korean educational aspirations, but also the aspi-
rations of communities where student-initiated ques-
tions already occur, but are not promoted to best effect. 

The concept reflection can be differentiated in con-
tent-oriented reflection and self-reflection. Beside 
self-reflection, Lengnink (2005) refers to different 
forms of content-oriented reflection: reflection of 
situation, reflection of sense, model-oriented and 
context-oriented reflection (p. 247). The focus of this 
study is socially-enacted, content-oriented reflection 
in classroom learning processes. That is, reflection 
as it is associated with the actual learning of content, 
application possibilities, and the further use of the 
learned content in the student’s participation in var-
ious communities and contexts (Skovsmose, 2006, p. 
328). Based upon the outline above, reflection can be 
defined as the process of further meaning-making 
and the deepening of an individual’s understanding 
of their existing knowledge, drawing connections to 
other experiences and prior knowledge, as voluntary, 
conscious, systematic; embedded in social context, 
requiring attitudes of willingness, openness for nov-
elty, interest, and the acceptance of responsibility for 
learning and for the outcomes of learning. Defined in 
this way, reflection in classroom learning is part of 

“student content engagement” (Mullis, Martin, Foy, 
& Arora, 2012 [TIMSS 2011]). The students’ embodied 

“in-the-moment cognitive interaction with instruc-
tional content” (Mullis et al., 2012, p. 358) contains, 
beside other processes, precisely this “reflection in 
classroom learning.” Without reflection, new infor-
mation could remain disconnected from prior knowl-
edge and ways of action.

RESEARCH QUESTION

Is there empirical evidence for the assumption that 
reflection processes in classroom learning are asso-
ciated with questions? Are there commonalities and 
differences of observable reflection phenomena in 
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classrooms in different cultural settings? It seems rea-
sonable to expect that the variable “culture” is also in-
fluencing the occurrence and nature of reflection. For 
this reason, this study analysed selected classrooms 
of different countries to obtain an indication of this 
kind of influence.

METHOD

This investigation is based upon video data drawn 
from the international comparative Learner’s 
Perspective Study (LPS). The LPS data set com-
prises lesson data from eighth grade mathematics 
classrooms in different countries (Clarke, Keitel, & 
Shimizu, 2006; Clarke, Emanuelsson, Jablonka, & Mok, 
2006). The investigation reported here accessed data 
from classrooms in Australia, Germany, Japan, and 
the USA. All LPS teachers were recruited on the basis 
of their competence as judged by local criteria. Twelve 
lessons were selected. Three consecutive lessons for 
one teacher from each country were analysed2. This 
sample provided both the opportunity to gauge con-
sistency of practice for each teacher across the three 
lessons and a sufficient database to facilitate compari-
son of practice between the classrooms situated in the 
four countries. Selection of teachers for this analysis 
was based on the existence of a coherent three-lesson 
sequence addressing an identifiable sub-topic within 
the lesson sequence recorded.

For the empirical identification and analysis of re-
flection in classroom learning, it has to be considered 
first, when and in which form reflection could occur. 
Reflection events can assumed to be embedded in dif-
ferent “lesson events” (Clarke, Emanuelsson, Jablonka, 
& Mok, 2006). The following stratified forms of re-
flection are assumed to be observable, in the order 
of their occurrence within the course of a lesson: 
Review, Elaboration, and Summarization. With 

‘Review,’ Mesiti and Clarke (2006) describe one of the 
dominant components in the beginning of the lesson 
as reflection activities related to the content of prior 
lessons and also to the prior knowledge of students 
(p. 51). These activities could be whole class activities, 

2  Overview about the learning content: Australian lessons: area 

concept, area of a triangle, area of a rectangle; German lessons: 

binomial formulae; Japanese lessons: equations; U.S. lessons: 

positive and negative exponents, prime factorization. For de-

tails see (Shimizu, Kaur, Huang, & Clarke, 2010; Mesiti & Clarke, 

2010).

involving either review of previous lesson content in 
form of teacher led discussions, or question-answer 
situations for repetition of prior knowledge, or the 
comparison of student solutions to homework tasks. 

‘Elaboration’ is a form of reflection, which can occur 
at the end of a lesson, but also during the whole les-
son. It implies a deep processing, while a systema-
tization and abstraction relating new concepts and 
existing knowledge takes place. During this further 
processing, facts and concepts will be clarified and 
corrected. The third form, ‘Summarization’, normally 
occurs at the end of a topic or a lesson. In Japanese 
classrooms, this lesson event is known as “Matome” 
(Shimizu, 2006). The core functions of Matome are 
highlighting and summarising the main point in the 
lesson, promoting students’ reflection on what they 
have done, setting the context for introducing a new 
mathematical concept or term based on previous 
experiences, and making connections between the 
current topic and previous one (Shimizu, 2006, p. 141). 
The authors’ experience of contemporary classrooms 
suggested the pessimistic hypothesis that Review and 
Summarization occur most frequently in classroom 
learning and that Elaboration, as the most desirable 
form of reflection on the basis of the depth of process-
ing, would be the least frequent. 

Following the assumed association between ques-
tions and reflection, questions need to be coded. To 
create an objective, comparable, and reproducible 
taxonomy, amenable to low inference empirical ap-
plication, it should be useful to anchor the categories 
of questions to cognitive processes. The “Taxonomy 
for learning, teaching, and assessing” (Anderson 
& Krathwohl, 2001) offers a suitable frame. The de-
veloped category system consists of Rote (or Recall) 
questions (remember), Comprehension Questions 
(understanding), and Elaborative Questions (elabo-
ration in the sense of apply, analyse, evaluate, and 
create) asked by teacher or students. Rote questions 
could be further distinguished into Single answer 
questions and Remembering questions. Single answer 
questions could be (theoretically) answered with ‘one’ 
word (e.g. yes, no) or the recipient is requested to name 
something. These kind of questions merely require 
a single (not a simple) and short answer. Single an-
swer questions could be differentiated further into 

“organizational” (coded SAO) and “learning content” 
(SAC) regarding the content focus of the questions. 
Remembering Questions (REC) require an answer 
more than one word. In this case, the requested answer 



Reflection and questioning in classrooms in different cultural settings (Mandy Hommel and David Clarke)

1720

exceeds only a single-word answer and consists of 
naming a concept, recalling a procedure or definition. 
Comprehension Questions (COQ ) refer to eliciting 
a meaningful understanding of facts, concepts and 
procedures and thereby leading to broader learning 
than rote questions do. Students’ need to have already 
understood the concepts and procedures the question 
is addressing in order to answer this kind of ques-
tion. Elaborative questions (ELQ ) are associated with 
a more deep and intensive form of processing than 
the previous question types. They refer, for example, 
to applying a procedure, analysing a relationship or 
explanation, or to evaluating or creating something. 
Irrelevant Questions do not have a conceptual connec-
tion either to the topic content nor the actual learning 
task. We decided to consider only questions which 
really required an answer. Utterances like rhetori-
cal questions (e.g., “Isn’t this great?”, “We said that’s 
a prime, right?”), in which the person who is asking 
the question does not actually expect a reply, explicit 
requests to students to do something, or questions 
which are answered immediately by the speaker him-
self, are not targeted.

The development of the coding system followed two 
steps. First, a deductive approach, based on a liter-
ature review and second, an inductive approach, 
within the coding progress, in discourse with other 
researchers. The validity of the coding system was 
proofed by means of intra-coder reliability (Kendall’s 
Tau τ = .926, α ≤ .01) and inter-coder reliability (τ = .875). 
Reliability could be further improved by generating 
a detailed coding handbook with question examples 
as indicators for the different categories. For the pur-
pose of this study the reliability was sufficient. 

The investigation relies upon video-based observa-
tion. Of particular interest are observable reflec-
tion phenomena and the assumed association with 
questioning behaviour in classrooms. The unit of 
analysis for this investigation consists of “lesson 
events” (Clarke, 2003). “A Lesson Event is intended 
to connote a form of classroom interaction occurring 
within a lesson, but at a level of social complexity 
greater than just a statement or action taken by an 
individual” (Clarke, 2003, p. 10). Some regularity and 
recurrence are necessary to label a phenomenon as 
a lesson event. Reflection as form is assumed to be 
an identifiable recurrent phenomenon in the class-
room. Lesson events involving reflection are related 
to a specific topic, task, problem or/and situation. As 

an individual process, reflection has the function of 
deepening understanding and elaboration. Whether 
a student responds effectively to the offer provided 
by a reflection initiation depends on several situa-
tional and individual factors (like emotion, motiva-
tion, prior experiences and knowledge). Individual 
reflection can occur within the socially-performed 
instructional form of teacher-orchestrated reflection, 
but is, of its nature, individual and regrettably mostly 
non-observable during the lesson. Beside, being an 
individual process in each student’s mind, reflection 
as a socially-performed instructional form occurs 
with sufficient regularity to be defined as a particu-
lar type of lesson event. Observable indicators for 
these events of further meaning-making, deepening 
understanding, and drawing connections are also 
associated with questioning. Questions and the fol-
lowing question-answer sequences can give insights 
into externalized processes of reflection. 

For analysing the lessons, the following forms of re-
search data were used: classroom videos providing 
different perspectives (teacher, students), videos and 
transcripts of the post-lesson interviews with several 
students, lesson tables providing an overview about 
time, progress, content, and social-interaction form 
within the lesson; transcripts (original language and 
transferred into English). The various forms of data 
were analysed with respect to the research questions, 
using the forms of reflection and question categories 
identified from the research literature. Within the 
coding process, all questions occurring within the 
selected lessons were coded and the lesson events in-
volving reflection (in the form of review, elaboration, 
and summarization) were identified and the associ-
ated question behaviour identified and documented. 
The data analyses included quantitative and qualita-
tive procedures.

RESULTS

Over the 12 lessons, 43 reflection events were iden-
tified (Table 1). 

All reflection events belong to a specific task, content, 
relationship or procedure and were initiated by a first 
question. The reflection events showed 21 phenomena 
of review, 18 elaborations, and 4 events of summari-
zation. The highest amount of reflection initiating 
questions (21) belonged to Review in the beginning of 
a lesson. Most of these (18) were rote questions (ROQ ) 
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(Table 2). Events in this category of reflection events 
were only initiated by teachers, for example: 

J1-L03  So, let’s take a look and try to remember 
what we did last time, and go over it be-
fore we go on. Um, do you all remember 
the equations, those we talked about in 
class yesterday, um, let’s share them 
with the class. What kind of equations 
we had? (REC)

Student questions were all at the elaborative level and 
consisted of three questions:

A1-L12  By that couldn’t a rectangle be a special 
kind of square? (EAN)

G1-L05  And what do you need ... what’s the prac-
tical application? (EAP)

Elaboration events in sum were observed 18 times 
during the lesson (initiated 3 times by student ques-
tions and 15 times by teacher questions). Elaboration 
did not occur at the end but during the lesson. For 
the observed elaboration events, initiating teacher 
questions were found at every level of question. So, 
it could be suggested that the level of the first initiat-
ing question was not crucial for the elaboration pro-

gress itself. Rather the subsequent questions-answer 
process determined the progress of stimulating and 
scaffolding reflection in the classroom.

The most frequent instances of Summarization were 
observed in the Japanese Lessons, for example:

US1-L05  Let’s - quickly guys, let’s quickly do this. 
What would be, then, a good way to go 
ahead and sum up then what exactly is 
a composite? (REC)

Other than in the Japanese classroom, there was 
only one event of Summarization, which occurred at 
the end of one of the USA lessons. Summarizations 
during the lesson that might have been assumed to 
take place at the end of one topic were not observed. 
Summarization events were exclusively initiated by 
teacher questions at the level of rote questions. The 
distribution (Table 2) could indicate some support 
for the researchers’ initial hypothesis of a theoretical-
ly-based hierarchy of reflection, with summarization 
associated with the lowest (least sophisticated) form 
of reflection, below review, and with elaboration as 
the deepest (most sophisticated) form of reflection. 
The observed “reflection events” provide support for 
the assumption, that reflection processes are asso-
ciated with questions. From a practical perspective, 

Review Elaboration Summarization 

Australia 7 3 0

Germany 3 4 0

Japan 3 3 3

USA 8 8 1

Sum 21 18 4

Table 1: Reflection events in Australian, German, Japanese, and USA-lessons

Question Level Review Elaboration Summarization 

SAO 1 0 0

SAC 6 2 3

REC 11 0 1

COC 1 8 0

EAP 0 3 0

EAN 1 5 0

EEV 1 0 0

ECR 0 0 0

Table 2: Distribution of initiating questions for reflection events
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questions provided the primary observable indica-
tors of reflection.

Within the qualitative analysis of the reflection phe-
nomena in the Australian classroom, intensive recap 
activities were observed in the beginning of the lesson. 
But the Australian classroom did not show recurrent 
reflection activities at the end of a lesson. Rather, the 
Australian teacher used the specific characteristics of 
a situation within the lesson, for example a student 
question, to foster reflection.

The first German lesson (new content: binomials) 
started without the typical recap activities for German 
lessons as reported by Stigler and Hiebert (1999, p. 
81). Further, the new content was practiced in group 
work, followed by comparing solutions. Group work 
was the predominant social-interaction form in the 
three German lessons. In fact, group work provided 
the context in all three German lessons for the major-
ity of student questions. Compared to the Australian, 
Japanese and USA-classrooms, the most student ques-
tions were observed in the German classroom. 

In contrast with the German classroom, the low fre-
quency of student questions in the Japanese classroom 
is remarkable. Student utterances were rarely self-in-
itiated. Similarly, Kawanaka and Stigler describe a 
proportion of 90 per cent teacher spoken words com-
pared to 88 per cent in the USA and 76 per cent in 
Germany (1999, p. 261). Mostly students only spoke 
in response to a teacher request.

The three USA lessons started with a few written tasks 
for the students to solve. A remarkable characteristic 
was the high frequency of teacher questions as well 
as question sequences. To understand the process, we 
added a qualitative analysis of question sequences. 
Question sequences related to a concrete situation 
provide a deeper insight into the process. In this 
analysis, question sequences were defined as three 
or more subsequent (but not instantaneous) questions 

belonging to an interaction about a specific content 
in a delimitated situation.

Observing reflection behaviour in the lessons, three 
particular patterns of question sequences (Table 3) 
were identified: sequences of questions belonging to 
an equal level of cognitive dimensions, sequences of 
alternating question levels. A third possibility, the 
funnel pattern (Bauersfeld, 1980): sequences of ques-
tions getting a more narrow range of required cogni-
tive dimensions in progress, was not explicitly found 
in the data. Instead, we found the opposite: sequences 
of questions leading from a single answer level to an 
elaborative level (inverted funnel pattern). 

CONCLUSION

The initial assumption of this study was that reflec-
tion in classrooms is facilitated by questions. The 
data support the association between questions and 
observable reflection processes. However, a student’s 
reflection process can only be observed once it is ex-
ternalized in some way. This form of externalization 
can frequently be associated with the occurrence of 
a question. The association between questions and 
reflection does not allow the conclusion that the ex-
ternalized question is actually the first incident of 
an individual reflection. The question could reflect a 
student’s sudden idea or cognizance, the result of a 
preceding internal (unobservable) process. 

This investigation analysed reflection in classrooms 
in different cultural settings. But the observed phe-
nomena also reflect the specific instructional behav-
iours of the teachers. Observed differences between 
the four different teachers might suggest cultural 
differences but cannot be generalized to repre-
sent cultural patterns. The different forms: Review, 
Elaboration, and Summarization were not observed 
in equal measures in the twelve classrooms. The re-
flection events of Review in Australian, Japanese and 
USA-classrooms, the Elaboration in the German and 

Review Elaboration Summarization 

equal level 13 (5 AU, 3 GE, 3 JA) 3 (1 GE, 2 JA) 3 (2 JA, 1 US)

alternating levels 7 (2 AU, 1 GE, 4 US) 10 (2 AU, 8 US) 0

inverted funnel pattern 1 (US) 1 (GE) 0

21 14 3

Table 3: Reflection events in Australian, German, Japanese, and USA-lessons
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USA-classrooms, as well as the Summarization of the 
Japanese classrooms could be employed to increase 
reflection for supporting students’ learning in class-
rooms all over the world. 
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Larger comparative studies of mathematics classrooms 
became most prominent as an appendix of interna-
tional achievement studies. With the advance of video 
technology and the potentials it offers for researchers, 
however, comparative classroom observation studies 
became attractive and feasible also for smaller scale 
and low budget projects. This paper intends to provide 
a basis for discussing rationales for comparative stud-
ies of mathematics classrooms. It is suggested that the 
affiliation of classroom observation with school inspec-
tion on the one hand, and ethnographic research on 
the other hand, lingers on in comparative classroom 
research. The paper provides a narrative, illustrated by 
examples, that exposes this tension between evaluation 
and documentation inherent in the field.

Keywords: Classroom research, mathematics education, 

international and comparative education, teacher 

evaluation.

INTRODUCTION

There is no shared set of specific goals or methodol-
ogies that would justify characterising ‘comparative 
studies of mathematics classrooms’ as a sub-field, oth-
er than reference to the classroom as a focus of inter-
est and ‘comparative’ as a research strategy. One might 
contemplate what constitutes a classroom as a unit; 
for example, the fact that all inside happen to gather in 
the same ‘room’ [1] in the presence of a teacher, or that 
there is a common practice in which all engage? The 
latter is not the case for individualised instruction 
or when students work on-line and access different 
sites, even if they are in the same room. Further, one 
can look at classrooms as micro-cultures, as reflect-
ing school culture and schemes of work, as sites for 
teachers enacting broader curriculum traditions, 

as sites for transmitting norms and values of larger 
communities, or as sites for differential distribution 
of curricular knowledge, amongst others. The ‘unit 
of comparison’ [2] will be different in each case. Not 
all of these interpretations are featured as compara-
tive studies in the mathematics education literature. 
These are usually comparisons across (groups of ) 
countries, regions or districts. While comparative 
studies of mathematics classroom practice are driven 
by diverse interests and methodologies, all assume 
that classrooms are an obvious site to look at. 

The range of comparative studies of mathematics 
classrooms presented in this working group at previ-
ous CERME conferences highlights well the diversity 
of goals pursued [3]. The intention of this paper is 
neither to provide a comprehensive review of compar-
ative classroom research nor to present its history in 
terms of research traditions, but to offer a narrative 
that exposes the tension between documentation and 
evaluation inherent in the field. 

SCRUTINISING THE QUALITY OF EDUCATION

There is a long tradition of carrying out comparative 
classroom observations that seek to identify how ped-
agogy and curriculum relate to students’ learning, 
with the aim of scrutinising the quality of pedagogic 
practice. In 1891–92, Joseph Mayer Rice took steno-
graphic notes from lesson observations in classrooms 
in primary and grammar schools in 36 United States 
cities (East Coast and Mid West). In addition to lesson 
observations, he talked to teachers, parents and staff 
in education authorities, visited teacher education 
institutions, collected student productions and also 
tested year-3 pupils in arithmetic, amongst others. He 
classified schools into ‘classes’ of excellence, ranging 
from a mechanical ‘antiquated’ drill-and-practice to a 
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‘scientific’ approach. Further, he argued that the dif-
ferences between the two higher ‘classes’ of practices 
can be brought out more effectively by a method of 
comparison. Accordingly, he summarised common-
alities and differences that accounted for his rank-
ing: In the schools of the two ‘higher classes’, teachers 
aimed at children’s development in all faculties, took 
into account their ‘developmental stage’ and made 
the work interesting. In addition, he observed an 

‘excellent spirit’ amongst the teachers, who treated 
the children kindly, were enthusiastic and constantly 
strived to increase their professional strength. The 
schools in the highest class differed in their practice of 
integrating school subjects in an ‘attempt being made 
to teach the subjects in their natural relation to each 
other’ (Rice, 1893, p. 222). Further, he notes a strong fo-
cus on having children express their ideas in written 
form in all subjects as a distinguishing feature of the 
highest class. He also reports that the supervision in 
these districts takes the form of guidance, instruction 
and inspiration rather than inspection.

Notably, Rice took the school as his unit of analysis 
and occasionally included the local policy context 
as well as the economic conditions of the schools’ 
district in his report. For example, he observed the 

‘poorest’ teaching as regards ‘methods and tone’ (Rice, 
1893, p. 131) in a primary school in one of the poorest 
neighbourhoods in Boston. [4] This points to anoth-
er feature of his report, namely the assemblage of 
impressions on curriculum and authority relations 
from classroom observations across a range of school 
subjects. 

The report is explicitly evaluative and critical, with 
clear preferences for a ‘progressive’ curriculum and 
pedagogy as outlined in the introduction (notably the 
labelling of the preferred pedagogic practice as ‘sci-
entific’). However, the principles for compiling his 
notes and the collected student work remain largely 
implicit. The writing style is journalistic and often 
scathing, which might be partly motivated by Rice’s 
trip being financed by the magazine The Forum that 
first published part of his report as a series of articles 
and later financed a second study trip. His overall 
approach to data generation could be classified as eth-
nography, while his goal clearly is critical evaluation. 
Hence he engaged in two different activities.

Around 120 years later, comparative classroom stud-
ies produce large data sets due to an increased level 

of methodological differentiation, such as refined 
multi-camera video observation, complex scaling 
and other statistical techniques for constructing 
reliability and validity of a range of measurements, 
inclusion of a variety of context variables, systematic 
procedures for ‘coding’ segments of classroom video 
footage, often embedded in research processes char-
acterised by a division of labour in academic work 
(e.g., coders/report writers). These large studies are 
affiliated with educational psychology and its tradi-
tion of measurement. On the other hand, there are 
many smaller projects, mostly within a tradition of 
ethnographic classroom research. The distinction be-
tween the activities of evaluation and documentation, 
however, does not necessarily specialise studies into 
these two forms. The picture looks more complex.

COMPARING AND MEASURING 
THE QUALITY OF TEACHING

Comparing and measuring the quality of teaching can 
be seen as an elaboration of strategies that have been 
used in many places for assessing teachers during 
classroom visits, including judgment of the level of 
teachers’ subject-related knowledge and appropri-
ateness of pedagogic strategies, in addition to curric-
ulum coverage and classroom management. Instead 
of a holistic evaluation based on largely implicit per-
formance criteria (practiced in many places by school 
inspectors), coding of lessons is based on developing 
a list of relevant aspects and identifying specific per-
formances that relate to these aspects. Presence/ ab-
sence or proportion of lesson time spent on different 
activities, are then used as a basis for numerical meas-
ures, but for lack of theory also expert ratings for each 
aspect are conducted (‘high-inference’ coding). The 
latter leaves the criteria for the ‘marks’ on each aspect 
implicit. Scales based on ratings of a range of aspects 
of teacher performance are increasingly employed 
in the USA for formative teacher assessment, eval-
uation of curriculum policy and professional devel-
opment (Hill et al., 2012). Sapire and Sorto (2012 used 
adaptations of such a scale (the Mathematical Quality 
of Instruction - MQI score) for comparing teaching 
quality in Botswana and South Africa, where teach-
ing appeared much less complex in terms of peda-
gogical techniques and use of resources than in the 
USA, which renders the application of the measure 
questionable. They complemented the measure with 
curriculum coverage and other codes. In this context, 
with reference to (Knight & Sabot, 1990), Carnoy (2012) 
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uses the term ‘natural experiment’ for the situation 
where national social conditions are similar but poli-
cies and outcomes differ. Even though measures of in-
structional quality originate in the idea that students’ 
scores on mathematics tests are not an appropriate 
measure of the quality of teaching and hence class-
room teaching practice needs to be looked at, corre-
lations with some measures of student achievement 
are still often incorporated in studies that use such 
measures and are sometimes used as an argument for 
their validity. Comparison and evaluation become 
intertwined.

Studies that aim at comparing instructional effec-
tiveness of different teaching approaches by means 
of randomised controlled trials have not (yet) been 
associated with comparative studies in mathematics 
education. These studies reflect a comeback of exper-
imentalism, asserting it a position of scientific superi-
ority for identifying ‘what works’. They occasionally 
include classroom observation in order to check the 
fidelity of the teachers’ dispending of the interven-
tion (treatment), or to complement measurement of 
gain scores with scores from classroom observations 
(e.g., Clements, Sarama, Spitler, Lange, & Wolfe, 2011). 
Classroom observation in these studies is asserted 
an auxiliary role, as the classroom is only relevant 
in relation to the statistical regularity the black box 
produces as its achievement outcomes. Hence these 
studies do not qualify as comparative studies of math-
ematics classrooms.

RELATING INTERNATIONAL ACHIEVEMENT 
RANKINGS TO TEACHING APPROACHES 

The international comparative measurement of aver-
age outcomes, which may include affective co-produc-
tions (e.g. attitudes) in addition to academic achieve-
ment, preceded international studies that included 
mathematics classroom observations. As a result, in 
many classroom observation studies, the nominal 
unit of comparison is countries and administrative 
units, or larger units defined by shared cultural tra-
ditions (such as the ‘Confucian Heritage Culture’ or 
CHC), with the aim of identifying characteristics of 
representative mathematics teacher practice based 
on random samples of lessons. This is motivated by an 
interest in high achieving countries (e.g., Hiebert et al., 
2003). Comparisons of teacher practices in countries 
at the bottom end of the achievement rankings rarely 
attract wider than local interest. 

In reflecting upon experiences with the video surveys 
from the Third International Mathematics and Science 
Study (TIMSS) and its follow-up study (TIMSS-R), 
Stigler, Gallimore and Hiebert (2000, p. 87) noted 
that “the most obvious reason to study classrooms 
across cultures is that the effectiveness of schooling, 
as measured by academic achievement, differs across 
cultures (e.g., Peak, 1996)”. A similar observation by 
the Under Secretary of State for Education recently 
prompted the invitation of 60 Shanghai teachers to 
give workshops for teachers in England. Stigler and 
colleagues (2000), however, also mention the illumi-
nating effect of making the familiar look unfamiliar 
when confronted with other cultural practices as a 
rationale for the TIMSS video studies, which does not 
suggest replanting of teaching practice. They describe 
the TIMSS video surveys as ‘integrating’ the tradition 
of ethnographic classroom research with a survey tra-
dition of schools and classrooms that aims at allowing 
generalization to a wider population. 

As ‘comparing’ only rests on generating analytical cat-
egories to find commonalities and specialising these 
for describing differences or variations, there is no 
restriction to the level of detail to which this strategy 
can be applied; neither is there any restriction to what 
could be usefully looked at in mathematics classrooms. 
Lesson structure, based on low-inference codes for 
time spent on a range of activities, has been a focus 
of many studies. In doing so, lesson structure (‘script’, 

‘pattern’) is taken as both an unconscious routine (e.g., 
Hiebert et al., 2003) or as an outcome of a more con-
scious act of teachers’ planning (e.g., Leung, 1995; see 
also the discussion in Clarke et al., 2007). Generally, it 
is not much looked at how instruction is constrained 
by traditions of classroom management other than 
through interpreting differences in student behav-
iour in terms of culturally typical inclinations, e.g., of 
Chinese students being obedient, a form of analysis, 
which Jablonka (2013) sees affiliated with cultural es-
sentialism. Wong (2004) is critical towards attempts of 
interpreting differences in terms of culturally typical 
behaviour of Chinese students. 

As the achievement measures are reported in the form 
country/region averages, relating classroom teacher 
practice directly to these measures can only be sugges-
tive. In the first TIMSS study, the classroom samples 
for the achievement test and the video samples did not 
overlap in Japan and US, but only in Germany. Klieme 
and Bos (2000) found a differential item function on 
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the Japanese test results in the achievement test for 
the type of mathematical tasks they observed in the 
lessons. For the German videos, relations between 
teaching practice and achievement were explored 
through high-inference ratings of some aspects of 
teaching quality with not much significant outcome. 
Clarke and colleagues (2007) observed more varia-
bility in lesson structure than reported in the TIMSS 
video study, and see the location of the lesson in a topic 
sequence as a key influence on a lesson’s structure. 
The TIMSS video studies have not only been criticized 
for taking single lessons as analytical units, but also 
for not exploiting the potential of their rich quali-
tative data sets (Stigler et al., 2000; Andrews, 2007; 
Clarke et al., 2007). Other studies reported more con-
sistent patterns in lesson structure in some places, 
as for example in China (Beijing) and also included a 
wider range of analytical categories than the TIMSS 
(Leung, 1995). In a random sample of lessons from 
Finland and Iceland (20 each), Savola (2010) found 
that the Finnish lessons followed a ‘conventional’ re-
view-lesson-practice script, whereas more than half 
of the Icelandic lessons exhibited versions of individ-
ualized learning. When looking at the range of codes 
employed for characterising lesson structure, a major 
challenge appears to be the apparent embeddedness 
of instructional and regulative discourse [5]; hence 
categories for coding tend to include ‘mixes’ of priv-
ileged teacher-student relations and mathematical 
knowledge structures.

Relating characteristics of teaching practices to na-
tional achievement levels did not work for the TIMSS-R 
video studies either. The official executive TIMSS re-
port (National Center for Education Statistics, 2003) 
is not explicitly appreciative of any practice, but the 
mentioning of the achievement levels of the countries 
implicitly suggests a ranking of some aspects identi-
fied in high achieving regions: “Results from the 1999 
study of eighth-grade mathematics teaching among 
seven countries revealed that, among the relatively 
high-achieving countries, a variety of methods were 
employed rather than a single, shared approach to 
the teaching of mathematics.” (p. 11). The Pythagoras 
Study (Klieme, Pauli, & Reusser, 2009) set out to fur-
ther investigate relations between characteristics of 
teaching practice and student achievement as well 
as motivation in 20 classrooms from Germany and 
Switzerland each, covering a broad range of achieve-
ment levels. They focussed on particular topics (the 
Pythagoras Theorem and algebra ‘word problems’), 

including some briefing for the teachers about how 
to approach these. This study, then, departs from the 
ethnographic tradition mentioned by Stigler and col-
leagues (2000) and moves towards an intervention 
and evaluation study. It included a broad range of 
methodological questions and produced a range of 
publications with detailed analyses. These studies 
are affiliated with educational psychology usually 
associated with measurement and with a conception 
of the curriculum as socially and culturally neutral 
content delivered in different ways by teachers.

As to the PISA, there is a limit in identifying the schools 
and classrooms that were chosen for further research. 
Hence, the use of the available contextual school data 
for comparative classroom studies is restricted. There 
is anecdotal evidence, however, that some comple-
menting video studies are planned by the OECD. All 
attempts at relating regularities of teacher practice 
to a country’s average achievement are further ham-
pered by severe methodological problems in the pro-
duction of achievement rankings, including sampling 
problems. Also, different international achievement 
measures privilege different forms of mathematical 
knowledge (Wu, 2010), which are balanced differently 
in national curricula (Cai & Howson, 2013). 

This does not derogate the value of looking at larg-
er samples of classroom videos. Most of the reports, 
however, are ignorant of the socio-political contexts, 
in which these classrooms are situated. Not much is 
said, for example, about practices of streaming and 
selection based on educational credentials, school 
fees, accountability regimes or working conditions 
of teachers. The highly competitive nature of the col-
lege entrance test in China or the amount of private 
tutoring in some places (cf. Bray & Kwo, 2014) are 
rarely mentioned in reports. In addition, classrooms 
are featured as culturally and socially homogeneous 
conglomerates, and one is left in the dark about the 
student intake and neighbourhood of the schools. 

EXPLORING REGULARITIES IN MATHEMATICS 
CLASSROOMS WITHIN AND ACROSS 
DIFFERENT CURRICULUM TRADITIONS

A range of comparative observation studies are more 
in line with an ethnographic tradition or interpretive 
sociology (e.g., Kaiser, 2002; Knipping, 2003). Rather 
than analysing random samples of classrooms, typ-
icality is achieved through selecting classrooms of 
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experienced teachers judged locally as competent 
(Clarke, 2006). The practices of these teachers and 
students can then be seen as representing a range 
of pedagogic discourses in different curriculum tra-
ditions. Identification of regularities and exposure 
of similarities and differences facilitates interroga-
tion of assumptions and so opens up possibilities for 
theoretical differentiation and practical innovation 
that might not otherwise be recognised. Exploring 
regularities of classroom practice can also be aided 
by use of statistical techniques (e.g., Andrews, 2009).

The Learner’s Perspective Study (LPS) (e.g., Clarke, 
Keitel, & Shimizu, 2006a) views classroom practice 
as co-constructed by teachers and students and so in-
cluded student video-stimulated reconstructive inter-
views and a camera focussing on changing groups of 
students (during ten lessons), in addition to a teacher 
camera and a whole-class view, which affords consid-
ering multiple points of view. This is a reminder of 
the insight that different techniques for producing 
video data reflect different analytical gazes (cf. Hall, 
2000). The variety of analyses conducted by different 
research groups and teams composed of insiders and 
outsiders is reported in a series of volumes (Clarke 
et al., 2006a; Clarke, Emanuelsson, Jablonka, & Mok, 
2006b; Shimizu, Kaur, Huang, & Clarke, 2010; Kaur, 
Anthony, Ohtani, & Clarke, 2013) and other publica-
tions. This demonstrates the productivity of a de-
parture from the search for ‘best practice’ and shows 
how a substantial data set can be used for iteratively 
developing languages of descriptions (‘theories’) as 
well as for complementary analyses. The advantage of 
publishing reports that contain transcripts, student 
work and examples of teaching material is that the 
audience can engage in their own interpretations.

DEPARTURES AND POSSIBILITIES

While classroom practice also produces valued learn-
ing outcomes not captured by the examination system, 
curricular choices might appear most aligned with 
external examination specifications or with criteria 
derived from other policies (e.g., school inspection 
regimes). In systems with strong regulation there is 
very limited space for teachers to act upon curric-
ulum. Weaker regulation affords more diversity in 
classroom practice and more adaption to apparent 
needs of different categories of students. Hence it 
would seem reasonable to analyse classroom practice 
with reference to a level where teachers and schools 

make deliberate decisions about curriculum, which 
clearly differs in different socio-political contexts. 
This strategy departs from attempting to uncover 
taken-for-granted lesson scripts, patterns or rituals.

Cross-subject studies with the same students or the 
same teacher would allow to create differentiated 
accounts of regulative principles of instruction and 
behaviour in relation to teacher authority and math-
ematical knowledge structures. Comparison is then 
a methodological strategy for creating substantial 
variation in the empirical data as a starting point for 
developing a language of description (see Gellert & 
Jablonka, 2009; Knipping, Reid, Gellert, & Jablonka, 
2008). Studies with a broader conception of curricu-
lum that illuminate issues of power, identity and sub-
jectivity are still almost absent amongst comparative 
studies of mathematics classrooms.

Irrespective of the substantial amount of work pro-
duced by comparative mathematics classroom studies, 
those that employ quantifications, in particular for 
establishing descriptive causality (‘findings’) between 
characteristics of teacher practice and some ‘student 
outcomes’, still (or again) earn more scientific respect-
ability, despite their often antiquated mechanistic 
conception of curriculum.
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ENDNOTES

1. Including, for example, open-air arrangements 
found in rural areas in periphery countries or in 
refugee camps.

2. The distinction between unit of analysis and unit of 
comparison has been discussed in the working group 
on comparative studies in mathematics at CERME 7. 

3. These are published in the CERME proceedings. 
For lack of space for an extensive bibliography, the 
examples mentioned in this paper will remain limited.

4. It needs to be pointed out that Rice did not comment 
on the racist nature of some student writing assign-
ment, which he collected from a grammar school.

5. The notion of ‘embeddedness’ of these two discours-
es is taken from Bernstein (e.g. 2000).



1731CERME9 (2015) – TWG11

The perceived causes of the (assumed) 
mathematics problems in England and 
South Africa: A social media experiment

Marie Joubert

African Institute of Mathematical Sciences, Cape Town, Republic of South Africa, marievjoubert@gmail.com

This paper presents an exploratory study, using a meth-
odology based on the idea of building knowledge through 
the use of social media such as blogs, discussion forums 
and twitter. The study builds on work carried out in the 
UK, collecting and synthesising reports related to math-
ematics education, and from this developing research 
on the perceived causes of the (assumed) problems 
with mathematics education in the UK. It develops the 
research to take account of the South African context, 
and investigates the same question in this context. The 
results are compared, and findings include the fact that 
in both countries ‘negative attitudes’ towards mathe-
matics are seen as a major cause. The paper concludes 
by reflecting on the methodology adopted.

Keywords: Negative attitudes, poor teaching, nature of 

mathematics, social media.

INTRODUCTION

This paper presents an exploratory study, which 
draws on, and extends, my previous work on the use of 
social media (e.g., twitter, blogs, wikis) in research (e.g., 
Joubert & Wishart, 2012; Joubert, 2011). I constructed 
a blog in which I collected and synthesised over 50 

‘official’ reports broadly about mathematics education, 
published in the UK after January 2011. The blog can 
be found at https://mathsreports.wordpress.com. The 
reports were commissioned by a range of governmen-
tal and non-governmental organisations, such as, for 
example, the Advisory Committee for Mathematics 
Education (ACME), whose membership includes re-
searchers and practitioners in mathematics education 
and which aims to advise policy, the Royal Statistical 
Society and the Nuffield Foundation. Naturally the 
reports can be seen to reflect the interests of these 
organisations. Many, but not all, of the reports make 

generalised statements without reference to empir-
ical research, raising questions about where these 
statements came from and what the status of the 
reports is; there is much more discussion about the 
reports on the blog.

I used social media such as twitter and online dis-
cussion forums to invite the mathematics education 
community and others (anyone who was interested 
and was willing) to help me understand more about 
these reports, by making comments on the blog. For 
example, what did they aim to achieve? Why were they 
commissioned? Whose interests did they serve? What 
is their role in shaping – or reflecting - a collective 
mindset?

On moving to South Africa in mid-2014, I aimed to 
carry this work forward but within the South African 
context. The work is at a very early stage but it is 
nevertheless perhaps interesting to compare initial 
results with the findings emerging from the UK. Of 
course the context is very different and one might 
expect there to be some differences; the value of any 
findings is under review.

The research has two distinct focus areas: the use 
of social media in research and the reported state 
of mathematics education. In this paper, I focus on 
one aspect of the latter, (the perceived causes of the 
perceived problems in mathematics education) and 
comment on the former.

BACKGROUND: PROBLEMS WITH 
MATHEMATICS EDUCATION?

In both countries there seems to be a belief that math-
ematics education is problematic, in terms of, for ex-
ample, low levels of achievement on international 
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benchmarking tests and low take-up of mathematics 
at post-compulsory levels. The extent to which these 
problems actually exist or could be said to be similar 
is of course debateable, but for the purposes of this 
paper the so-called problem is assumed. Perhaps the 
most compelling symptom of the (assumed) problem 
is that in both countries employers and higher educa-
tion claim that the mathematical knowledge of school 
leavers falls short of what they require (ACME, 2011a; 
British Academy, 2012; The Centre for Development 
and Enterprise, 2013). 

It could be argued that the commissioning of the UK 
reports is in itself a response to the assumed problem 
and a number of reports claim that a problem exists 
(ACME, 2011a; Harris, 2012; Vorderman, Porkess, 
Budd, Dunne, & Rahman-hart, 2011).

In South Africa, education generally is troubled 
(Spaull, 2013) but it seems that mathematics is par-
ticularly problematic (Howie, 2003; Human Sciences 
Research Council, 2011; Mji & Makgato, 2006) with, 
for example, South Africa at the bottom of the league 
table in mathematics in the 2008 international bench-
marking tests, TIMSS. Even the highest achievers in 
South Africa performed less well than the average stu-
dents in top performing countries (Human Sciences 
Research Council, 2011).

A second, related, problem in both countries is a re-
ported shortage of young people with appropriate 
skills in mathematics and so-called STEM subjects. 
(ACME, 2011a; British Academy, 2012; Southern 
African Catholic Bishops’ Conference, 2012).

The problems, it seems, are similar although the ex-
tent of the problem is perhaps not. The focus of this 
paper, however, is on the causes of the problems rath-
er than the differences in the extent of the problems. 
If the causes are well understood, then governments 
might be in a better position to target interventions; 
and if the causes are similar in both countries, then 
it could be that recommendations or successful in-
terventions in England might be applicable in South 
Africa and vice-versa.

THE CAUSES OF THE PROBLEMS

Many of the reports collected on the blog suggest the 
causes of the problems, which fall into three broad 
areas: young people’s (and adults’) mathematical ac-

tivity; the curriculum, qualifications and assessment; 
and teachers, teaching and schools. 

In terms of young people’s mathematical activity, neg-
ative attitudes are widely seen as a cause for the prob-
lems. The term ‘negative attitudes’ includes a general 
dislike of mathematics and a cultural acceptability 
of ‘I can’t do maths’. For example, the Royal Society 
mentions ‘a distinct general lack of warmth towards 
science and maths’ (2011, p. 55). It is further reported 
that not being good at mathematics is generally seen 
as acceptable and leads to low levels of post-compulso-
ry participation (ACME, 2011b; Harris, 2012; National 
Numeracy, 2012; Vorderman et al., 2011). Harris sums 
up the claim, stating that:

It seems that the UK has a culture where being 
less skilled in mathematics and numeracy is 
perceived as acceptable and not uncommon…. 
learners do not see the need to increase their 
mathematical skill. (p. 11)

The argument seems to be that because it is acceptable 
to be bad at mathematics, young people think that they 
do not need to study mathematics. 

The curriculum is sometimes seen as a cause of prob-
lems in (mathematics) education. In 2011 the then sec-
retary of state for education announced a review of 
the national curriculum, stating that ‘The previous 
curriculum failed to prepare us for the future. We 
must change course.’ (Department for Education, 
2011). This announcement seems to imply that the 
Government believed that a different (better?) cur-
riculum would drive standards up. 

The ACME report, Mathematical Needs of Learners, 
stated that ‘it is not necessarily mathematics itself 
that is problematic, but rather the nature of the cur-
riculum and the teaching methods and assessment 
regimes’(ACME, 2011b, p. 8). It went on to say that ‘the 
current curriculum is seen as being fragmented’ (p. 
6). As described by ACME, the curriculum is linear 
and lists topics and skills which should be taught and 
tested in order. This approach can mean that, for stu-
dents, learning in mathematics is ‘fragmented and 
incoherent’ (p. 17). 

Assessment is widely mentioned in the reports and 
there seems to be general agreement that it needs to 
be improved. However, assessment is not frequently 
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cited as a cause of the mathematics problems. Where it 
is given as a cause, this is in terms first of the content of 
some assessments and second the ‘assessment regime’.

In terms of the content, there appears to be a tension 
between promoting mathematical thinking within, 
for example, extended investigative projects or prob-
lems solving, and the ways in which mathematics is as-
sessed. The claim is that examination questions tend 
to be routine and familiar, and the only mathematical 
thinking that is assessed is that which is easy to test, 
and reliability of assessment tends to be highly valued 
possibly to the detriment of validity. (ACME, 2011b; 
Norris, 2012; Vorderman et al., 2011). As ACME says:

GCSE and A-level examinations are dominated 
by routine procedures and familiar applications. 
There is strong agreement among teachers, edu-
cationalists and Ofsted inspectors that unless all 
aspects are assessed they will not be given signif-
icant teaching time and resource in schools and 
colleges. (2011b, p. 6)

A bigger concern than the content of the assessments 
seems to be the ‘assessment regime’. Many reports 
suggest that assessment takes place within a ‘culture 
of performativity’ (Norris, 2012, p. 11) driven by the 
annual publication of league tables and that operating 
within this culture maybe at the expense of the best 
mathematical experiences for pupils (ACME, 2011b; 
Norris, 2012; Ofsted, 2012; Vorderman et al., 2011).

It appears that there are two main causes of the 
mathematics problems which are directly related to 
teachers and teaching. First, there is a shortage of spe-
cialist mathematics teachers (Parliamentary Office 
of Science and Technology, 2013; Royal Society, 2011; 
Vorderman et al., 2011). Second, teacher knowledge is 
sometimes limited; there is much within the reports 
to imply that poor or inadequate teaching is the cause 
of much of the mathematics problem although this 
point is not always made explicit.

Where teaching is given as a reason for the problems 
in mathematics, it is argued that the approaches which 
are often privileged in classrooms are over-simplified 
and mechanistic and that students do not benefit math-
ematically from these (ACME, 2011a, 2011b; Norris, 
2012; Ofsted, 2012; Vorderman et al., 2011). A number 
of reports claim that there is tendency to ‘teach to the 
test’ avoiding innovative teaching approaches, and us-

ing methods that are unlikely to lead to anything more 
than superficial learning (ACME, 2011a, 2011b, 2012; 
Harris, 2012; NFER, 2013; Royal Society, 2011). It seems 
that increased accountability (performance tables and 
inspections) has a role to play in this (Ofsted, 2012).

It is difficult to find South African reports equivalent 
to those cited above. However, the South African re-
search literature suggests a range of causes for the 
problems. For example, Spaull (2013) identifies factors 
such as teacher education, parents’ education and 
speaking English at home as being strongly associ-
ated with mathematics performance. Howie (2005) 
explored the relationships between background vari-
ables and mathematics achievement at the school level 
and the classroom level.  She found that the variables 
at the combined school and classroom level most 
strongly associated with mathematics performance 
were the community where the school was located, 
size of classes, attitudes, beliefs and commitment of 
the teachers including dedication towards lesson 
preparation and the workload of the teacher. In a sep-
arate earlier study (Howie, 2003), she also explored 
the relationship between language proficiency and 
mathematical achievement and found that students 
who spoke English or Afrikaans at home, and those 
coming from classrooms where these languages were 
mainly used, overall gained higher scores in mathe-
matics. In this same study, she also found that there 
was an association between achievement in math-
ematics and socio-economic status of the student, 
their ‘self-concept’ in terms of finding mathematics 
difficult and their perception of the importance of 
mathematics (their own perception as well as those 
of their mothers and friends). 

Research by Mji and Makgato (2006) investigated the 
causes of poor achievement in mathematics and sci-
ence by seeking the views of teachers and learners in a 
small number of schools. They found direct influences 
such as teaching strategies, content knowledge and 
understanding (of teachers), motivation and interest 
(of both teachers and learners) and non-completion of 
the syllabus; and indirect influences such as parental 
role and language.

Whereas research such as Spaull’s and Howie’s, and 
the reports produced in the UK, can be seen to take 
a top-down approach, the approach used by both Mji 
and Makgato and within this research is perhaps more 
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‘bottom-up’ or grass-roots. Building a comprehensive 
understanding may require both.

METHODS

As discussed above, this research draws on previous 
experience of using social media and web 2.0 within 
research, from which the principle of quick and easy 
data collection was derived. A very short online ques-
tionnaire was devised, which begins by stating ‘Too 
many of our young people leave school with mathe-
matical understanding which falls short of the needs 
of employers and higher education’ and then asking 

‘Why?’. 

Five possible causes were tested in the UK. These were 
derived from the UK reports and discussion points 
made on the online forums mostly by teachers and 
parents: assessment focuses on the wrong things; the 
curriculum is not fit for purpose; societal attitudes 
towards mathematics are negative; teaching is not 
good enough; and ‘mathematics is hard’.

The same questions were used for the South African 
audience, and to take account of the South African 
context two further causes were included. The first, 

‘Too many learners opt for maths literacy’ because of 
obvious concern amongst the mathematics education 
community about it (see for example Southern African 
Catholic Bishops’ Conference, 2012). Mathematics 
literacy was introduced in South Africa 2008 as an 
alternative to pure mathematics and was designed to 
provide functional mathematical learning to address 
the needs of the workplace. However, it is general-
ly seen as an easier version of mathematics rather 
than an effective preparation for the workplace, as 
explained by Spaull (News 24, 2014). The second addi-
tional cause, ‘The language of learning and teaching 

(LoLT) is not the home language’, takes into account 
the findings by Spaull, Howie and Mji and Makgato, 
see above.

Respondents were asked to rate each of the causes 
in terms of a) a key reason b) having some influence 
and c) not a reason. They were also provided with 
an opportunity to add ‘your longer comment’ in rec-
ognition of the fact that these five or seven ‘causes’ 
are somewhat over-simplified and the list is almost 
certainly not exhaustive.  It also allows respondents 
to disagree with the ‘causes’. Respondents were also 
asked for their main interest in mathematics educa-
tion, to allow for an analysis of the responses of dif-
ferent groups (if needed). Further this provides some 
sort of understanding of the demographic profile of 
the respondents.

FINDINGS

There were 101 and 62 responses to the questionnaire 
in the UK and South Africa respectively. Figure 1, be-
low, gives the breakdown of the respondents’ main in-
terest in mathematics education in the two countries. 
This has been included to demonstrate that in both 
countries responses come from a mixed demographic, 
with the majority of respondents being teachers.

In both countries, negative societal attitudes are seen 
as a major cause of the problems in mathematics; in 
both countries fewer than 10% of the respondents gave 
this as ‘not a reason’ and in both almost 50% gave it as 
a key reason.

For assessment, similar proportions in both countries 
(about 20%) stated this was not a reason. There is a 
relatively big difference, however, in whether it is a 

Figure 1: Main interest in mathematics education
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key reason; in the UK the figure is over 30% while in 
South Africa it is under 15%.

In terms of the curriculum, the biggest difference in 
the two countries is in the numbers stating that it is 
not a reason, with under 20% in the UK making this 
choice in comparison to just over 40% in South Africa.

In the UK, under 20% gave ‘teaching is not good 
enough’ as a key reason, in contrast to 50% for South 
Africa. Just under 30% in the UK stated that they did 
not think it is a reason, whereas fewer than 10% said 
this in South Africa. 

Finally, for ‘maths is hard’, fewer than 10% chose ‘key 
reason’ in the UK, whereas almost 30% made this 
choice in South Africa. In both countries about 40% 
chose ‘has some influence’ but the figures for ‘not a 
reason’ are 50% and just over 30% in the UK and South 
Africa respectively. 

For South Africa, for mathematics literacy, just under 
a third of the respondents chose key reason (28%), just 
over a third chose ‘has some influence’ and about a 
third (32%) chose ‘not a reason’. For the language of 
learning and teaching, however, almost 50% stated 
that this is a key reason with under 20% stating that 
it is not a reason.

Almost all respondents also provided longer answers 
sometimes adding further causes, such as a lack of 
commitment by the students in both countries (twelve 
comments). A number (seven) of responses from the 
UK mention accountability, ‘excessive’ monitoring, a 
target-driven approach and the need to see constant 
progress. In contrast, South African responses give 
reasons such as lack of accountability, unsafe schools 
and large classes. In both countries home life is given 
as a reason. Five UK respondents made comments 
to this effect, suggesting, for example, that parents 
do not support the students or that they ‘have rotten 
home lives’. Six comments from the South African 
survey suggest that home life and parents cause prob-
lems in mathematics learning. Of these, four suggest 
that parents do not support their children in their 
school work, sometimes explaining how difficult it 
is for parents:

‘Majority of our learners have no support at 
home and therefore have no culture of learning. 
Parents are too busy trying to make a living and 

do not have time to check up on their children’s 
progress or lack thereof. The learners only do 
the Mathematics during the Mathematics period 
and do not consolidate/practice/do homework, 
at home.’

Two further comments explain that children are hun-
gry and lack the basics in life.

DISCUSSION

The sample for this research was an opportunity sam-
ple of 101 in the UK and 62 in South Africa, very many 
of whom are teachers. Some of these people were invit-
ed directly to complete the survey but most responded 
to invitations on social media which implies at least 
that they had access to the Internet and excludes those 
without Internet access. It probably cannot be seen 
as a representative sample and I do not claim that the 
results reported above hold true for the whole popu-
lation. However, the findings of this study do seem to 
indicate that there are differences in the two countries 
with respect to the perceived causes of the (assumed) 
problems with mathematics education. This is hardly 
surprising as the contexts are so different. What is 
more interesting, perhaps, is what the differences and 
similarities are. 

In terms of the findings, in both countries the rea-
son ‘negative societal attitudes’ was selected as a key 
reason or as having some influence by very many re-
spondents, with almost half the respondents select-
ing it as a key reason. This is the only reason where 
there is strong similarity in the responses in the two 
countries. Of course, ‘negative societal attitudes’ 
over-simplifies the issue, which has many facets and 
could be seen as related to ‘maths is hard’ in complex 
ways. However, the point is that a) this is seen as the 

‘biggest’ cause by the samples in each country and b) 
that there is agreement between the two respondents 
from the two countries. In the UK, this cause is well 
recognised and attempts are made to tackle it (e.g., set-
ting up the charity ‘National Numeracy’). The extent 
to which these attempts are successful is difficult to 
gauge, but it could be that South Africa might learn 
something from the UK’s example.  

A key difference between the responses from the 
two countries is in terms of teaching. For the South 
African respondents this cause was selected as a key 
reason or as having some influence by as many people 
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as selected negative societal attitudes, whereas the 
figure for the UK is considerably lower. The biggest 
difference, however, is in the numbers selecting it as 
a key reason. It seems that the standard of teaching 
is a major concern in South Africa. One major factor 
contributing to the poor teaching, across all subject 
areas, could be the lack of accountability reported 
above (Spaull, 2014). However, in the UK accountabil-
ity does not seem to work well, also reported above as 
a cause of the problems. It is not clear how or whether 
either country could learn from the other.

There is also a difference in the responses from the 
two countries related to the cause ‘maths is hard’ 
where the proportion of South Africans selecting 
this as a key reason is over double the proportion for 
the UK. There is no obvious explanation for this al-
though it may be related to the language of learning 
and teaching.

Finally, for South African respondents the fact the 
language of learning and teaching is not the mother 
tongue appears to be a major cause of the problems. 
Whereas this is probably the case across all subject 
areas, in mathematics it is possibly more acute as 
many of the African languages do not have words 
for mathematical concepts (e.g., there is no word for 

‘parabola’ in Zulu).

CONCLUDING COMMENTS

The mathematics education landscape is highly com-
plex in the UK as is perhaps evidenced by the large 
numbers of reports produced on the topic. It seems 
clear that there is no ‘quick fix’ (such as a review of the 
national curriculum) for the problems although there 
does appear to be some general agreement about what 
needs fixing (attitudes mainly).The landscape in South 
Africa, however, is perhaps even more complex, and it 
is less clear where to put efforts in; negative attitudes, 
poor teaching and LoLT are all seen as major causes. 

It would be unrealistic to expect research of this kind 
to capture the complexity of the situation in either 
country but the research does, perhaps, begin to re-
veal something of the causes of the problems. Learning 
from this research, further work in the area will pay 
more attention to the school environment, policy and 
accountability.

The research approach is experimental and I con-
clude with a review of its success. To some extent the 
blog can be seen as successful as it has had over 11 
500 views (at January 2015) from all over the world. 
However, the number of comments, and the level of 
debate, is perhaps disappointingly low. The comments 
did not help me answer the questions posed at the 
start of this paper, but in a sense that is not relevant 
to this paper which has a different focus. The online 
forum activity generated active discussion which was 
useful in informing the questionnaire design. The 
micro-blogging (twitter) attracted some visitors to 
the blog and the questionnaire. 

As remarked above, the respondents and commenters 
were essentially a self-selected opportunity sample, 
mostly anonymous (although some provided email 
addresses). These were people who volunteered to 
contribute, and, for the questionnaire, many of them 
gave substantial responses to ‘your longer answer’. In 
my view, the data collected is interesting and worth-
while and justifies the approach adopted. However, I 
would like to explore further about how to use web 
2.0 and social media approaches more effectively.
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Mathematical tasks in tests are central to students’ 
learning. Research shows that there is a significant 
gap between mathematical tasks in national tests 
and teacher-made tests. In this pilot study, we exam-
ine nine Swedish and nine Chinese teachers’ views on 
what constitutes of a good mathematical test task at 
the lower secondary school level. E-Mail Interviewing 
is conducted by presenting seven mathematical tasks 
from national tests in Sweden and China, respectively. 
The preliminary results show that Swedish and Chinese 
teachers hold some common views on the characteris-
tics of good mathematical test tasks, but they also show 
different views on some mathematical tasks with high 
level of abstraction. Implications of the results and the 
methodology informed by the pilot study are discussed.

Keywords: Abstraction, assessment, mathematical task, 

pilot study, teacher belief.

INTRODUCTION

This study is motivated by the observations of a sig-
nificant gap between tasks in teacher-made tests and 
national tests. Palm, Boesen, and Lithner (2011) inves-
tigated the mathematical reasoning required to solve 
the tasks in the Swedish national tests and a random 
selection of Swedish teacher-made tests, and found 
that most of the tasks in the teacher-made tests did not 
require the students to produce new reasoning and 
considering the intrinsic mathematical properties in-
volved in the tasks, findings that were contrasted with 
the national tests that included a large proportion of 
tasks for which memorization of facts and procedures 
were not sufficient. Senk, Beckman, and Thompson 

(1997) examined the kinds of assessment tasks used 
in 19 mathematics classrooms in the United States, 
and found that, in general, teachers selected low-level 
abstract tasks that did not reflect the aims of reform 
curricula. Tasks in teacher-made tests generally were 
low-level, were stated without reference to a realistic 
context, involved very little reasoning, and were al-
most never open-ended (ibid). Chen (2013) investigat-
ed a group of Chinese teachers’ views of the tests made 
by them, and found that the tasks in the teacher-made 
tests were mostly adapted from previous tasks in dif-
ferent levels of tests, and a small portion of them were 
simplified from tasks in mathematical competitions, 
in general, tasks in Chinese teacher-made tests were 
predictable and therefore did not require students 
to produce new reasoning. Researchers state the ur-
gency to investigate the potential different factors 
that result in the gap between teacher-made tests with 
mostly routine tasks and national tests with a larg-
er proportion of creative tasks, so as to gain further 
insights into necessary and sufficient conditions un-
der which teacher-made tests can be improved (Palm, 
Boesen, & Lithner, 2011). Our study presented here 
aims to make such a contribution.

Assessment has become a central issue in the dis-
cussion of ways to improve mathematics education. 
Teacher-made tests are an important constituent of 
assessment. Mathematical test tasks are central to stu-
dents’ learning because what students learn is largely 
assessed by the tasks they are given. The characteris-
tics of mathematical test tasks in teacher-made tests 
are influenced by different factors including teach-
ers’ knowledge and beliefs, as well as the content and 
textbook of the course (Senk, Beckman, & Thompson, 
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1997), but the mathematics teachers’ beliefs are so in-
strumental in shaping their final decisions concern-
ing what tasks to include in a test (Nathan & Koedinger, 
2010). Accordingly, teachers’ beliefs on what consti-
tutes a good mathematical test task to a great extent 
determine the characteristics of mathematical tasks 
in teacher-made tests. In this study, we investigate 
this issue by comparing Swedish and Chinese teach-
ers’ views. We focus on Swedish and Chinese teachers 
because Sweden and China run totally different edu-
cational systems and the assessment of mathematics 
education in both countries are differently practiced 
by that, one has a long traditionally high-stakes assess-
ment culture whereas the other has not. This leads us 
to consider whether teachers’ views on mathemati-
cal test tasks may be different or common across the 
two educational systems. We specifically address the 
following questions: What constitutes a good mathe-
matical test task from a teacher perspective? What are 
the commonalities and differences between Swedish 
and Chinese teachers’ views on the characteristics of 
a good mathematical test task?

Our current study is a pilot study, which forms the 
foundation of a larger study that aims to develop a 
framework for examining good mathematical test 
tasks. A pilot study is defined by Wiersma and Jurs 
(2008) as:

A study conducted prior to the major research 
study that in some way is a small-scale model 
of the major study: conducted for the purpose 
of gaining additional information by which the 
major study can be improved – for example, an 
exploratory use of the measurement instrument 
with a small group for the purpose of refining the 
instrument. (p. 427)

It is widely accepted that pilot studies precede the 
main study and form an important component of the 
research design. Therefore, we have a dual purpose 
of the current study, one is to address the research 
questions stated above, and the other is to examine 
the methodology of the study.  

LITERATURE REVIEW

In this section we give a brief literature review on the 
nature of mathematical tasks and the attributes of a 
good mathematical test task, which helps to identify 
the potential contribution of the current study.

The nature of mathematical tasks
A mathematical task is defined as a set of problems or 
a single complex problem that focuses students’ atten-
tion on a particular mathematical idea (Stein, Grover, 
& Henningsen, 1996). According to the different pur-
poses, researchers classified mathematical tasks into 
different types. For instance,  Yeo (2007) classified 
them into mathematically-rich tasks, such as analyti-
cal tasks and synthesis tasks that can provide students 
with opportunities to learn new mathematics and to 
develop mathematical processes such as problem solv-
ing strategies, analytical thinking, metacognition and 
creativity; and non-mathematically-rich tasks, such as 
procedural tasks that can only provide students with 
practice of procedures. Sullivan, Clarke and Clarke 
(2013) classified three types of tasks, namely, purpose-
ful representational tasks, contextualised tasks and 
content-specific open-ended tasks, and highlight the 
importance of providing a wide range of types of tasks 
in a variety of different sequences:

… allow students opportunity to have a sense of 
control by allowing them to make decisions, are 
interesting to the students, incorporate a ration-
ale for them to engage, provide some challenge, 
reduce the risk of failure, and for which success 
provides the motivation for further engagement. 
(p. 10)

In reference to Sullivan, Clarke and Clarke’s work, 
Foster (2013) claimed that the most powerful task type 
presented was the content-specific open-ended one, 
which accommodates tasks that are ‘‘accessible by 
students, able to be used readily by teachers, foster 
a range of mathematical actions, and contribute to 
some of the important goals of learning mathematics’’ 
because “such rich tasks would seem to offer students 
deep opportunities for learning mathematics”. As we 
can see, the different types of tasks have explicitly or 
implicitly implied some features of a good mathemat-
ical task. However, a good mathematical task might be 
not necessarily a good mathematical test task. Below 
we address what makes a good mathematical test task 
shown in the literature. 

Attributes of a good mathematical test task
Our literature survey shows that there are only a few 
studies that focus on the attributes of a good mathe-
matical test task. These studies can be classified two 
types: one is from a researcher perspective and the 
other from a participant perspective. For the former, 
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Kin (2010) suggested three characteristics that a math-
ematical test task should have, firstly, the correctness 
and rigour (mathematically sound, correct, and accu-
rate); secondly, must be set within the scope of the stip-
ulated syllabus; thirdly, possess a respectable amount 
of beauty (in the form of neat formula, symmetry of 
the situation, beautiful link with a few topics, or in-
genuity of ideas). For the latter, Kontorovich (2011) 
argued that in the case of competition problems there 
is a “built-in kernel” which has the potential to be ap-
preciated by the intended solvers. And therefore he 
investigated 22 adult participants’ perception of an in-
teresting mathematical problem in mathematical com-
petition and identified four characteristics of those 
interesting problems, which are as follows: consisting 
of meaningful mathematics beyond the problem, the 
misleading problem situation image, A-typicality and 
novelty of problem’s formulation, and the dilemma 
on the problem’s “wrapper”. Building on the previous 
studies, our study aims to contribute to better under-
stand the attributes of a good mathematical test task 
from a teacher perspective.

METHODOLOGY

Participants
The participants consisted of 9 Swedish and 9 Chinese 
teachers, from two Swedish schools and two Chinese 
schools and teaching mathematics in grades 7–9. Most 
of them hold a Bachelor’s degree in Mathematics 
Education. They participated in the study through 
our contact of a liaison person who was one of their 
colleagues. Their participations were voluntary. They 
were informed about the purpose of the study, that all 
information they provided would be kept confidential, 
and that only the collective results would be shared. 

Material and its translation
To avoid our study resulting in general claims by 
just asking the teachers “what constitutes a good 
mathematical test task”, we adopted a task-based in-
terview that attempted to elicit specific and detailed 
responses about their views on characteristics of good 
mathematical test tasks. Mathematical tasks, selected 
from national tests in Sweden and China, served as a 
foundation of the current study. Based on researchers’ 
views on good mathematical tasks in national tests, 
and having considered both the coverage of different 
mathematics topics and the representativeness (or 
typicality) of tasks in each country, fifty tasks were 
firstly identified. Next, to ensure tasks from each 

country could be adapted to the other country, we 
discussed further with mathematics educators from 
both countries about each task and finalized seven 
mathematical tasks from each country. 

In a cross-national study, the equivalence of the two 
language versions of the instruments is an important 
issue (Andrews & Diego-Mantecón, 2014). In our study, 
the mathematical tasks presented to teachers were the 
main research instruments. In order to produce equiv-
alent information in the different language versions 
of the tasks, both the Swedish and Chinese tasks were 
first translated sentence by sentence from their origi-
nal language to English. Only the names of persons in 
the tasks were changed to those, which were familiar 
to teachers in their culture. An English version of the 
fourteen mathematical tasks was formed and tested 
by oral interview with two Swedish colleagues and a 
Chinese colleague. In the end, the Chinese teachers 
were presented with the original mathematical tasks 
from China and a Chinese version of the mathemat-
ical tasks from Sweden. The Swedish teachers were 
presented with English versions of the mathemati-
cal tasks from both China and Sweden. During this 
process, the first author who is proficient in Chinese, 
English, and basic Swedish, checked whether the two 
versions of the instruments were equivalent. 

Data collection
As a pilot study, we choose E-Mail Interviewing as a 
main method to collect data. We chose this method 
as it cost considerably less to administer than tele-
phone or face-to face interviews, and it also allowed 
us to invite participation of geographically dispersed 
samples from both Sweden and China (Meho, 2006). 
Furthermore, the participants also showed their pref-
erence to use E-Mail Interviewing because it saved 
time for them compared with arranging face-to face 
interviews, and also allowed them to allocate enough 
time to read and think about the mathematical tasks 
as an important precondition to answer the interview 
questions in this study. 

Through the contact of the liaison persons, every 
teacher in his/her school got a copy of the task-based 
interview questionnaire consisting of the fourteen 
mathematical tasks in the order of tasks from their 
own country and followed by those from the other 
country. In the beginning of the questionnaire, there 
were instructions about the interview where they 
were specifically informed to consider the tasks from 
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the perspective of assessment, and after every mathe-
matical task, there were specific interview questions 

“do you think this is a good mathematical test task? If 
so, clarify the reason; if not, clarify the reason”. After 
having finished the interview questions, the liaison 
persons collected all the questionnaires and sent back 
to us by emails.

Data analysis
Our data coding was inspired by grounded theory 
(Corbin & Strauss, 2008) to understand the differenc-
es and commonalities of the teachers’ views on good 
mathematical test tasks. The data was coded in the 
original languages, Swedish and Chinese, respectively. 
The coded data was translated into English. Finally, the 
data was scrutinized by two steps: 1) identify the good 
mathematical test tasks recognized by teachers, and 2) 
identify recurring themes on how the teachers viewed 
the selected mathematical tasks. Disagreements were 
resolved through discussion between the researchers.

RESULTS AND DISCUSSION

Good mathematical test tasks as identified 
by Swedish and Chinese teachers
The results show that teachers differ in their views 
on the 14 mathematical tasks. For some tasks, more 
teachers regard them as good mathematical test tasks, 
but for some tasks, only a few regard them as good 

mathematical tasks. The task that was identified by the 
highest number of teachers as a good mathematical 
test task was one of the Swedish tasks (S6 – Figure 1). 
This task is about looking for patterns, inductive rea-
soning and generalisation, which is regarded as “A 
good mathematics test task because it provides a fig-
ure with a clear visual representation, with subtasks 
ranging from simple to complex, and it also has strong 
regularities and suitable level of difficulty (CT2).” 

The task that the lowest number of teachers identified 
as a good mathematical test task is one of the Chinese 
tasks (C7). C7 is a task with a similar knowledge back-
ground as S6, but it is regarded as “too difficulty for 
students”. 

C7: As shown by the figures (Figure 2), in the rectan-
gular paper ABCD, AB = √6, BC = √10. Firstly, fold the 
paper to overlap point B and point D, where O1 is the 
intersection of the crease with BD and denote by D1 
the middle point of O1D. Secondly, fold the paper to 
overlap points B and D1, where O2 is the intersection of 
the crease with BD and denote by D2 the middle point 
of O2D. Thirdly, fold the paper to overlap points B and 
D2, where O3 is the intersection of the crease with BD, 
and so on. Assume the intersection of nth crease with 
BD is On. Then BO1 = _____, BOn= _____.

a) How many mango trees and how many orange trees would there be in figure 5?
b) How many mango trees and how many orange trees are there in figure n?
c) In figure 2 there are twice as many orange trees as mango trees. Investigate in what figure 

there are twice as many mango trees as orange trees.

Figure 1

Figure 2
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In generally, the Swedish tasks were more appreciat-
ed by the teachers than the tasks from China. Table 
1 shows the number of teachers from each country 
(#CT = number of Chinese teachers, #ST = number of 
Swedish teachers) that considered the specific task 
(C1-C7: Chinese tasks, S1-S7: Swedish tasks) as a good 
mathematical test task.

Commonalities of Swedish and Chinese 
teachers’ views on characteristics 
of good mathematical test tasks
Two recurring themes regarding the characteristics 
of a good mathematical test tasks commonly held by 
both Swedish and Chinese teachers emerge in our 
analysis. These are having connections with real life, 
and being accessible to average students. 

Our results show that both Swedish and Chinese 
teachers highly recognized real life context as a 
characteristic of a good mathematical task. With an 
increasing emphasis being placed on the applications 
of mathematics in real-life situations in school math-
ematics curriculum in most countries for various 
motivations, for instance, real life tasks are often 
familiar enough and imaginable to students and can 
therefore serve as a stepping-stone for thinking about 
important mathematical concepts (Yeo, 2007), as the 
enactors of curriculum, it is understandable that 
teachers also commonly recognize the value of tasks 
has collections with real life.  Below are quotations 
from both Swedish and Chinese teachers:

ST3:              The pupils can relate to it when they go 
for a trip.

CT4: It is a good task because it has close con-
nection with everyday life application, 
which reflects the idea that mathematics 
comes from real life and has the func-
tion of serving for real life.

A basic function of test is to assess students’ learn-
ing. Therefore, the accessibility to average students 

is an important indicator for mathematical test tasks, 
which is commonly shared by Swedish and Chinese 
teachers. Below are some selected comments from 
the teachers.     

ST6: They (the Swedish tasks) all have a re-
ality in which students can, without 
having lots of theoretical knowledge of 
mathematics, see a “picture” of the task 
and solve the task and think about the 
answer reasonably.

CT8:             The task is not very hard, can be solved 
by average students.

Differences of Swedish and Chinese 
teachers’ views on characteristics 
of good mathematical test tasks 
Two recurring themes regarding the differences of 
Swedish and Chinese teachers’ views on character-
istics of good mathematical test tasks emerge in our 
analysis, which is, students’ mathematical compe-
tency is emphasised by the Chinese teachers but is 
not visible in the Swedish teachers’ responses, and 
that Swedish and Chinese teachers have different 
views on some mathematical tasks with high level of 
abstraction.

Different from the Swedish teachers, when arguing 
the characteristic of good mathematical tasks, the 
Chinese teachers always refer to students’ mathemat-
ical competency that is expected to have in order to 
solve the tasks successfully. Niss (2003) defines that 
mathematical competency means the ability to under-
stand, judge, do, and use mathematics in a variety of 
intra- and extra-mathematical contexts and situations 
in which mathematics plays or could play a role. And 
he categorizes eight different types of mathematical 
competencies. In our study, the Chinese teachers con-
tinuously mention different mathematical competen-
cies such as computational competency, imaginative 
competency, observational competency, inductive 
competency, etc., which is not visible in the Swedish 

Table 1: Number of teachers considering the task as a good mathematical test task
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teachers’ responses. We interpret this difference by 
referring to mathematics education in China, where 
there is a long heavy tradition on emphasizing the two 
basics, basic knowledge and basics skills, which forms 
the foundation for any further study in mathematics 
and students’ mathematical competency development. 
And this tradition is deeply rooted in Chinese teachers’ 
beliefs in their mathematics teaching practice, there-
fore it. Below are the Chinese teachers’ responses on 
their perspectives on the Swedish and Chinese tasks 
by phrasing some mathematical competencies.

CT6:      The Chinese test tasks aim for cultivat-
ing students’ problem solving compe-
tency, which is a little bit far from reality. 
And most of the Swedish tasks relate to 
every life, which could have the realistic 
significance for students’ development. 

CT2: The Swedish tasks are simpler, but they 
focus on the application of mathemat-
ics, which is close to real life. And the 
Chinese tasks examine students’ synthe-
sis competency.

For some mathematical tasks with high level of ab-
straction, the study shows that Swedish and Chinese 
teachers have different views. As seen from Table 1, 
there are gaps between Swedish and Chinese teach-
ers’ views on two tasks (C3 and C5), which Swedish 
teachers do not regard as good mathematical tasks, 
but Chinese teachers regard as good ones. Below are 
some comments from the teachers. 

ST5: The Chinese task has a much higher level 
of abstraction and students need to have 
much more theoretical mathematics.

CT6: This task reflects the category idea; such 
tasks are very helpful to cultivate stu-
dents to form a mind of thinking com-
prehensively.

As Kin (2010) suggests that a good item must be set 
within the scope of the stipulated syllabus, Swedish 
and Chinese teachers differ in their views on mathe-
matical tasks with high level of abstraction could be 
explained from this perspective. Mathematics curric-
ulum standards (or syllabus) in Sweden and China are 
different with different requirements for students, 
the mathematical knowledge and competency cov-
ered in those mathematical tasks with high level of 
abstraction might be covered in curriculum standards 

in China but not in Sweden, therefore, Chinese teach-
ers value them but Swedish teachers do not. Another 
interpretation for this difference might be connect-
ed to the different cultural profiles in mathematics 
education. Grønmo (2013) stated that the Nordic and 
English-speaking countries has the profile of applied 
mathematics that can be referred to as mathematics 
applied to solving problems in everyday life, whereas 
the East Asian and East European countries has the 
profile of pure mathematics that is an abstract world 
with well-defined symbols and rules. Obviously, math-
ematics education in Sweden has the applied math-
ematics profile and whereas in China it labelled as 
pure mathematics, therefore, mathematical tasks with 
high level of abstraction are appreciated by Chinese 
teachers but not Swedish teachers. 

CONCLUSIONS 

Our study has contributed to our better understand-
ing on characteristics of good mathematical test tasks 
from a teacher perspective. To be a good mathematical 
task in tests, both the features of the tasks and the 
expected difficulties of the tasks for students need 
to be considered. Through the comparison between 
the Swedish and Chinese teachers, we uncover some 
common beliefs they hold and their different views 
on characteristics of good mathematical test tasks, 
which provide helpful insights for our reflections on 
mathematics education in Sweden and China.

Furthermore, the pilot study presented in this paper 
illustrates that there are several potential flaws in 
the instruments and in the procedures. Firstly, we 
would like to address the task selection. Surprisingly, 
although the researchers consider the tasks used in 
the interviews as good mathematical test tasks, not all 
of them are recognized as good ones by the teachers. 
Therefore, a pre-interview with schoolteachers might 
be helpful to ascertain whether the tasks are good. 
Secondly, we address the task organization. In the in-
terview, tasks are labelled by their sources either from 
Sweden or China, which may produce a priori preju-
dice for teachers when making their judgements, as 
we see from teachers’ comments on their view on dif-
ferences of mathematical tasks in Sweden and China. 
This could be avoided if we remove the information on 
the exact sources of the mathematical tasks. Thirdly, 
the E-Mail interviewing doesn’t allow for further 
prompting and clarification of responses, for such 
a reason we lose the opportunity to achieve deeper 
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understanding of teachers’ valuable insights. In all, 
the feedback obtained from this pilot study enables 
us to make revisions aimed at overcoming these iden-
tified weaknesses and improve on the design for our 
main study. Additionally, data analyses suggest that 
the research findings from the main study would be 
fruitful and likely to make valuable contributions to 
the knowledge in both characteristics of good mathe-
matical test tasks and teachers’ different perspectives 
across educational system.   
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The aim of this study is to compare how Japanese and 
Australian teachers utilise opportunities to promote 
students’ switching between mathematical modelling 
cycles based on the dual modelling cycle framework 
(DMCF). This study found that teachers need to change 
how they assist students when transitioning from one 
modelling cycle to another not only based on differing 
levels of student ability, but to account for differences be-
tween countries as well. The Japanese students had more 
sophisticated visualisation skills than the Australian 
students when working with the geometric structure of 
an ordinary helix on the side face of a cylinder. However, 
both groups of students benefited from use of the DMCF 
to develop their understanding of the mathematical 
problem as they moved between modelling cycles.

Keywords: International comparisons, dual modelling 

cycle framework (DMCF), ordinary helix, modelling 

teaching, mathematics education.

INTRODUCTION

Problem solving in the traditional mathematical class-
room has tended to be an individual task. Students 
work in isolation as they go about problem solving. 
When teaching problem solving skills, teachers have 
relied on the work of Polya (1945). His approach in-
cluded the hermeneutic of solving a similar, simpler 
problem which provided each student with an ap-
proach that they could use to find a solution for their 
problem. In more recent years there has been a reali-
sation that to effectively function in society students 
need to develop the skills of being more flexible and 
creative problem solvers. Mathematical modelling 

provides an opportunity to develop these skills, as it 
is designed for group work that promotes collabora-
tive interactions. This approach is usually set in the 
context of real world problems where information is 
incomplete or ambiguous, promoting questioning and 
the posing of conjectures (Brown & Walter, 2005).  As a 
result it allows for multiple solution paths, permitting 
discussions around the best solution rather than the 
solution. In these situations research indicates that 
modellers’ attempts to find a solution usually results 
in their shuttling between the real and mathemati-
cal worlds (e.g., Stillman, 1996; Stillman & Galbraith, 
1998; Borromeo Ferri, 2007; Matsuzaki, 2007, 2011). 
According to Busse and Kaiser (2003), modellers 
construct their own subjective figurative context from 
the modelling task, and the modellers’ perception of 
the task context can affect their modelling progress. 
When the modellers’ modelling processes have stalled, 
evidence suggests that students move from their in-
itial modelling task to a similar and simpler model-
ling task where some traction is considered possible. 
In this paper, we explore a theoretical extension to 
this approach to mathematical modelling, as limited 
research exists on how to facilitate the teaching of 
mathematical modelling when responding to a diver-
sity of modeller abilities. 

Saeki and Matsuzaki (2013) proposed a new theoret-
ical modelling framework called the dual modelling 
cycle framework (DMCF) (see Figure 1). This DMCF 
re-conceptualises the modelling cycle explicated by 
Blum and Leiß (2007). In the case of solving an initial 
task located on the first modelling cycle, one model-
ling cycle is enough if modelling is proceeding suc-
cessfully. If problem solving is unsuccessful or the 

mailto:asaeki@naruto-u.ac.jp
mailto:makio@mail.saitama-u.ac.jp
mailto:kawakamita@nishikyu-u.ac.jp
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modeller does not know enough to solve the task, the 
modeller can be assisted by trying to solve a similar 
task as was proposed by Polya (1945) in his earlier 
work. One rationale for using two separate model-
ling cycles when changing from an initial modelling 
task (TASK1) to a similar and simpler modelling task 
(TASK2) is that there may be cases when doing so leads 
to more success.

Research by Saeki and Matsuzaki (2013) has identi-
fied that to support successful outcomes for all mod-
ellers using the DMCF, the most important point is 
for teachers to support switching between the first 
modelling cycle and the second modelling cycle by 
providing a similar and simpler task. Matsuzaki and 
Saeki (2013) implemented experimental modelling 
lessons for undergraduate students in Japan and iden-
tified three stages: transition from the first modelling 
cycle to the second modelling cycle, modelling within 
the second modelling cycle, and transition from the 
second modelling cycle back to the first modelling 
cycle. Kawakami, Saeki and Matsuzaki (2012, 2014) im-
plemented DMCF-based modelling lessons with Year 
5 elementary school students in Japan and classified 
six types of students’ responses. They also described 
modelling lessons in terms of a first trial of two tasks, 
one in each modelling cycle; a second trial of TASK1 
based on TASK2, and a final trial of TASK1 through 
classroom discussion. DMCF-based modelling les-
sons were also implemented with Year 6 students in 
Australia (Lamb, Kawakami, Saeki, & Matsuzaki, 2014), 
permitting international comparisons. The aim of 
this paper is to compare how teachers can assist stu-
dents in switching between modelling cycles while 
supporting a diverse range of student capabilities 
within two different countries.

CHARACTERISTICS OF MATHEMATICS 
LESSONS IN JAPAN AND AUSTRALIA

In this paper, we explain the differences in mathemat-
ics teaching in Japan and Australia in order to make 
international comparisons between the two model-
ling lessons. Some of these differences are based on 
work by Mok and Kaur (2006), where characteristics 
of mathematics lessons are explained with a focus on 
the ‘learning task’. 

The teaching strategy used by Japanese teachers 
is one that supports each student’s level of ability. 
Teachers lead lessons by considering the needs of 
each student and providing a variety of activities 
to suit. Furthermore, many Japanese teachers have 
adopted problem-discovery oriented teaching meth-
ods based on Yamamoto’s (2007) work, which outlines 
three stages when detailing such methods: (1) initial 
learning activities, (2) discovery of a problem that 
must be solved, and (3) solution of the problem. A char-
acteristic of this method is to emphasize the children’s 
change of awareness. Consequently this style of lesson 
can be challenging for the teacher. Thus this view of 
mathematics teaching matches the modelling teaching 
practice described above (Kawakami et al., 2012, 2014). 

On the other hand, the teaching strategy adopted 
by Australian teachers relies on mathematical tasks 
based in daily-life contexts where students make 
links to their daily life activities (Mok & Kaur, 2006). 
Supporting this Australian teaching strategy, Stillman, 
Brown, Faragher, Geiger and Galbraith (2013) analyz-
ed the goal of mathematics by analyzing textbooks 
and curricula in secondary classrooms in Australia 
from a socio-cultural perspective. This led to three 
findings: (1) textbooks were used as a foundation for 
teaching materials, (2) teaching materials were based 

Figure 1: Dual modelling cycle diagram (Saeki & Matsuzaki, 2013, p. 94)
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in contexts that enhanced students’ understanding 
of the world, and (3) assisted the development of a 
critical disposition towards the surrounding world 
that requires decisions to be made. Thus teaching 
tasks emphasized daily-life contexts that evoked a 
need for decision making.  With this in mind we were 
conscious of the need for context based problem-solv-
ing in Australian schools and we found data for this 
perspective (Lamb et al., 2014).  

EXAMINING THE HEART OF THE DUAL 
MODELLING CYCLE FRAMEWORK

We developed DMCF-based teaching material for ele-
mentary school students to assist them in understand-
ing the geometric structure of an ordinary helix on 
a side face of a cylinder. The students were initially 
provided with a picture of oil tanks with differing 
diameters (see Figure 2). The students were then pro-
vided with an Oil tank task (TASK1) and a Toilet paper 
tube task (TASK2), displayed in Figure 3.

In our earlier research using the same task as above, 
we found that modellers who could not solve TASK1 
were able to advance their modelling of this task 

by modelling a similar but simpler task, TASK2 
(Kawakami et al., 2012; Lamb et al., 2014). Students 
who could solve TASK1 but were encouraged to en-
gage with TASK2 developed a more advanced under-
standing of TASK1. By actively switching between 
TASK1 and TASK2, most students were able to solve 
TASK1 (see Kawakami et al., 2012; Lamb et al., 2014 
for details). These tasks helped students understand 
the geometric structure of an ordinary helix on the 
side face of a cylinder. This structure is important 
because it forms the foundational knowledge neces-
sary to solve the oil tank task in higher grades (using 
either the Pythagorean theorem or trigonometric 
ratio). Student investigation of the 3D model leads to 
understanding the rectangle model and the parallel-
ogram model (see Figure 4). 

The DMCF aims to deepen students’ mathematical 
understanding by switching between two modelling 
cycles, as indicated in Figure 5. There are two kinds 
of switching that lead to in-depth engagement in the 
tasks. 

The first is a teacher’s intentional switching to facil-
itate student understanding. It is therefore very im-
portant for teachers to design an approach to switch-
ing through the use of teaching material before imple-
menting the lesson. Teacher’s intentional switching 
is done twice. The first instance of switching is the 
transition from the first modelling cycle to the second 
modelling cycle. In this transition, the teacher used 
the toilet paper tube to present an opportunity for 
students to work with a concrete object. The second 
instance of switching uses feedback from the second 
modelling cycle to return to the first modelling cycle. 
In this transition, it is necessary for all students to rec-
ognize that they have returned to TASK1. Therefore 

Figure 2: Oil tank image URL<http://blog.goo.ne.jp/kobeooi/e/

b021c971381154725 fc3ee4a3d645aa8> [18 Mar 2014] (Note: 

Picture reversed in class)

Oil tank task (TASK1)

There are several types of oil tanks. Their heights are 
equal but their lengths of diameters are different. Is the 
length of the spiral stairs on these oil tanks equal or not? 
As conditions, angles to go up spiral banisters are all the 
same.

Toilet paper tube task (TASK2)

It is impossible to open along the actual spiral stair of the oil tank. We can use a toilet paper tube 
as a similar shape to an oil tank as it can be opened along its slit to show the 2D shape. Consider 
what the shape of an opened toilet paper tube would be. 

10m

25°

5m

10m

25°

10m

Figure 3: Teaching material based on DMCF

http://blog.goo.ne.jp/kobeooi/e/b021c971381154725 fc3ee4a3d645aa8
http://blog.goo.ne.jp/kobeooi/e/b021c971381154725 fc3ee4a3d645aa8
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we offered the information of TASK1 to students again 
and let them predict whether the spiral stairs would 
be the same or not. It is necessary for the teacher to 
prepare methods of switching that accommodate 
differing levels of student ability. In the case of the 
Australian school, significant student difficulties 
necessitated a substantial change in the switching 
methods used (see description on pages 7 and 8).

The second is students’ intentional switching to solve 
TASK1. This switching is important as it provides an 
opportunity for students to develop ideas by them-
selves. Hence, teachers have to prepare a range of 
alternative approaches to stimulate the transition 
between modelling cycles that correspond to differing 
student needs. It is important to note that one of the 
problems in this process is that some students lose 
track of which modelling cycle they are in. When 
this is the case it is necessary for teachers to guide 
students in understanding their position in the mod-
elling sequence and the correct direction they need to 
take to move to TASK2 or back to TASK1.

THE MODELLING LESSONS IN 
JAPAN AND AUSTRALIA

Case of Japan 
The Japanese experimental class consisted of three 
45-minute lessons (see Kawakami et al., 2012). The 
class included 33 Year 5 students (aged 10 or 11) from 
a Japanese private elementary school. 

Showing the Oil tank task
At the beginning of the lessons, the teacher showed 
photographs of two oil tanks and asked the students if 
the length of the spiral stair was equal or not (see the 
oil tank photograph, Figure 2). In order to simplify the 
Oil tank task (Figure 3), the teacher asked which part 
of the spiral stair should be measured, its banister or 
its steps. Through discussion with the students they 
agreed to measure the length of banister at the side 
of the oil tank. Then the teacher showed 3D models of 
the oil tanks displayed in Figure 3 and asked students 
what they could do to solve the Oil tank task. The stu-
dents responded by producing 2D drawings.  

Seventeen students (52%) were able to draw the mathe-
matically correct 2D rectangle models of the oil tanks 

Figure 4: The geometric structure of an ordinary helix on the side face of a cylinder

Figure 5: Dual modelling cycle diagram of switching between two modelling cycles
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from the 3D models, representing the spiral staircase 
as straight lines on their models (see Figure 6). The 
remaining students were not able to draw the math-
ematically correct models, as the representation of 
the staircase was not connected on their models (see 
Figure 7). Some students rounded their paper to check 
whether the staircase would be connected or not. 
However they did not make the full link to the math-
ematical structure of the spiral shown in Figure 4.

Teacher’s intentional switching (1): 

Guiding to the Toilet paper tube task: 
At the beginning of the second lesson, in order to 
switch from the first cycle of the Oil tank task to the 
second cycle of the Toilet paper tube task, the teacher 
asked the students to consider what objects were sim-
ilar in shape to the oil tank, but smaller in size. The 
student responses included pencils, toilet paper tubes 
and so on. The teacher provided an actual toilet paper 
tube for each student and asked them to open the toilet 
paper tube. The students were asked to compare the 
length of each staircase and to produce a 2D drawing 
of the toilet paper tube (see the Toilet paper tube task, 
Figure 3). Almost all the students identified cutting 
the tube along the slit and were able to subsequently 
draw the parallelogram model. 

Teacher’s intentional switching (2): 
Returning to the Oil tank task: 
At the beginning of the final lesson, in order to switch 
from the second cycle of the Toilet paper tube task back 
to the first cycle of the Oil tank task, the teacher asked 
the students to compare the length of the staircase 
with reference to findings from the Toilet paper tube 
task. The students tried to solve the Oil tank task inde-
pendently. Fifteen students made the parallelogram 

model of the oil tank and tried to calculate the length 
of the staircase.

During the final lesson, the teacher observed four dif-
ferent methods used to find solutions: (1) calculating 
the length of spiral stair (five students), (2) measur-
ing the length of spiral stair in rectangle models and 
parallelogram models (four students), (3) translating 
the staircase in the rectangle models (three students) 
and (4) translating the staircase in the parallelogram 
models (six students). As a result of class presenta-
tions, students gained access to classmates’ solutions 
and were able to solve the Oil tank task using paral-
lelogram models or rectangle models of the oil tank.

Case of Australia 
The Australian experimental class consisted of two 
60 minute lessons (see Lamb et al., 2014). The class 
included 23 Year 6 students (aged 11 or 12) from an 
elementary school. 

Showing the Oil tank task
At the beginning of the lessons, the teacher showed 
photographs of two oil tanks and framed the problem 
within the context of a fireman needing to climb to the 
top of one of the tanks as quickly as possible to extin-
guish a fire. The teacher then asked the students if the 
length of spiral stair was equal or not. The teacher 
showed 3D models of the oil tanks displayed in Figure 
2 and asked the students to produce 2D drawings of 
the 3D models. 

No student was able to draw the mathematically cor-
rect models of the oil tanks from the 3D models of the 
oil tanks. Eleven students (48%) drew the rectangular 
representation of the oil tank. However, in each case 
the students drew the staircase as a curved line on 
their 2D model. The remaining students (52%) were 
unable to draw a 2D model, tending instead to copy 
the 3D model provided for them.

Teacher’s intentional switching (1): 
Guiding to the Toilet paper tube task
In order to switch from the first cycle of the Oil tank 
task to the second cycle of the Toilet paper tube task, 
the teacher showed the students a toilet paper tube 
and asked them to predict what the toilet paper tube 
would look like when cut along the slit. No student was 
able to draw a mathematically correct 2D model. Six 
students (26%) drew a shape close to a parallelogram in 
which the spiral stair was curved. Other students pro-

Figure 6: Mathematically correct models

Figure 7: Mathematically incorrect models
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duced shapes similar to a roll. To assist the students 
in finding the relationship between the Oil tank task 
and the Toilet paper tube task, the teacher asked them 
to cut the toilet tube vertically and confirm that the 
shapes created were parallelograms and rectangles.

As most students in the class were not able to first vis-
ualize and then draw 2D models from the 3D models of 
the oil tank or the toilet paper tube, at the beginning 
of the second lesson, the teacher used a concrete aid 
to demonstrate how the 2D models related to the 3D 
model. A rectangular piece of cardboard, rolled into 
a cylinder and marked with a red line, was cut at an 
angle and unrolled to illustrate the relationship be-
tween the 3D model and the 2D parallelogram model. 
Furthermore, the teacher cut a similar cylinder verti-
cally and unrolled it to show the 2D rectangular model. 

Teacher’s intentional switching (2): 
Returning to the Oil tank task
In order to switch  from the second cycle of the Toilet 
paper tube task back to the first cycle of the Oil tank 
task, the teacher again asked the students whether the 
spiral stair was  the same or different for each oil tank. 
The students tried to solve the Oil tank task collabo-
ratively. One group made another 3D model of the oil 
tank by using concrete 3D models. They opened the 
model and measured the length of spiral stair in the 
2D rectangle model and the 2D parallelogram model. 
A student in the group explained, “I think they are all 
the same because the parallelogram and rectangle are 
almost the same size, so I expect they are the same”. 

During the last lesson the students were able to ex-
plain that both staircases were the same length for 
both the rectangle model and the parallelogram 
model through cutting and placing the pieces of their 
concrete 2D models on the whiteboard. The teacher 
demonstrated both models represented the same 3D 
model (Figures 8 & 9).

DISCUSSION

Using the dual mathematical modelling cycle framework 
(DMCF) to examine the same problem in both Japanese 
and Australian classes allows for comparisons to be 
made. The results from this study indicate that the 
teachers needed to change the method used to switch 
between modelling cycles intentionally to account 
for different levels of student ability. The Japanese el-
ementary students in this study had more sophisticated 
visualisation skills and were able to move between 2D 
and 3D models of an ordinary helix on the side face of 
a cylinder as well as visualise the shape of the staircase 
in a 2D model. This allowed them to calculate the length 
of the spiral stairs and to compare the rectangle and 
parallelogram models, facilitating their understanding 
of the problem. As the Australian students had more 
difficulty with the problem, the teacher changed two of 
the switching methods. The teacher asked students to 
cut up the toilet tubes to confirm that parallelogram and 
rectangle models were equivalent, and demonstrated 
how concrete 3D models were related to 2D parallelo-
gram and rectangle models. The changed method for 
the modelling lesson still depended on the students’ 
understanding and promoted class discussion. It also 
remained grounded in the context, with a focus on the 
need to find the fastest route to the top of the oil tanks.

Use of the DMCF and its emphasis on switching be-
tween modelling cycles benefited both Japanese and 
Australian students by deepening their understand-
ing as they moved between 2D and 3D models and the 
two cycles. The approach encouraged all students to 
participate at their ability level and to gain access to 
more sophisticated modelling approaches during 
whole class discussions. 

Our future work will be to compare Japanese and 
Australian students’ international switching by ana-
lysing the students’ protocols, activities, and work-
sheets.

Figure 8: Solutions by both models Figure 9: Relationship between both models
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The main purpose of this study is to compare the prob-
lem solving processes of mathematically gifted and 
underperforming students by utilizing eye-tracking 
methodologies. We have found the following differenti-
ators between the groups: (a) time of the analysis of the 
problem’s wording, (b) the number and placement of 
fixations, (c) the number of fixations while analysing 
the text of the problem. We also prove that total amount 
of time of solving a problem is not an important differ-
entiating parameter; speed is not a characteristic of 
mathematically gifted students.

Keywords: Mathematics education, problem solving, eye-

tracking, gifted students, comparative study.

INTRODUCTION

The use of eye-tracking technology for the analysis 
of the learning process has become more and more 
widespread in recent years. Examining visual atten-
tion provides information not only on where the gaze 
is directed and how, but also constitutes a basis for 
further analysis and reflections on the ways of solving 
problems, reasoning, attention, and mental images 
(Just & Carpenter, 1976; Zelinsky & Sheinberg, 1995; 
Ball, Lucas, Miles, & Gale, 2003;  Yoon & Narayanan, 
2004).

Lai and colleagues (2013) reviewed 81 papers dedicat-
ed to the use of eye-tracking technology in research 
related to the analysis of the learning process, describ-
ing 113 studies carried out in the period of 2000–2012. 
The authors distinguished the following themes of 
studying eye movements and learning: patterns of 
information processing, effects of instructional de-
sign, reexamination of existing theories, individual 

differences, effects of learning strategies, patterns of 
decision making, and conceptual development. This 
research refers to the mainstream of examining pat-
terns of information processing, and strategies, and 
individual differences during the process of solving 
mathematical problems.

In the field of didactics of mathematics, studies are still 
being undertaken (e.g., Andra et al., 2009; Chesney, 
McNeil, Brockmole, & Kelley, 2013; Merkley & Ansari, 
2010; Schneider, Maruyama, Dehaene, & Sigman, 2012; 
Susac, Bubic, Kaponja, Planinic, & Palmovic, 2014).

Some research results indicate that the measurement 
of eye movements provides insights into otherwise 
unavailable cognitive processes and may be used for 
exploring problem difficulty, student expertise, and 
metacognitive processes (e.g., Susac et al., 2014). The 
authors have found that the number of fixations of the 
eyes represents a reliable and sensitive measure that 
can give valuable insights into the participants’ flow of 
attention during equation solving. The authors claim 
that the more efficient participants developed ade-
quate strategies, i.e., “knew where to look.” They found 
a correlation between the number of fixations and the 
participants’ efficiency in equation solving. What is 
more, they observed that the measures derived from 
eye movement data were more objective and reliable 
in comparison to the participants’ reports. 

Examining the differences between the performance 
of novices and experts during the process of mathe-
matical problem solving is also the interest of other 
researchers who use eye-tracking as a research meth-
od. They have found quantitative and qualitative dif-
ferences in the way of looking at a geometry problem 
(Epelboim & Suppes, 2001) and reading mathematical 
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representations (Andra et al., 2009) by novices and 
experts in terms of eye movements.

An in-depth knowledge on effective strategies of read-
ing mathematical problems has important didactic 
consequences. Students need to learn how to read 
mathematical problems, but this knowledge should be 
recognised by researchers and teachers beforehand. 
What is more, it can be useful for the authors of tasks, 
textbooks, and other didactical materials.

RESEARCH METHODOLOGY AND DESIGN

The aim of the research
The main purpose of this study is to find the differ-
ences and similarities in the process of solving the 
same problem by mathematically gifted students and 
non-gifted students, by utilizing eye-tracking meth-
odologies. 

The objectives of this study refer to the following com-
parisons in the two test groups of students:

Aim 1 (A1). Comparison of the total time of 
solving the problem,

Aim 2 (A2). Comparison of the time of analyzing 
the wording of the problem,

Aim 3 (A3). Comparison of the number of fixa-
tions (the stopping of the eyeball at a certain 
point on the screen) while working on the prob-
lem,

Aim 4 (A4). Comparison of the number of fixa-
tions while analyzing the wording of the pro-
blem.

Equipment used
The participants’ eye movements of the left eyeball 
were recorded by the eye tracker SMI Hi-Speed 1250 
as well as iViewX™ software. The sampling rate was 
set to 500 Hz, monocular. The data obtained in the 
experiment were processed by SMI BeGaze software.

All students attended the experiment in the same 
physical conditions, in the same air-conditioned room 
with the same intensity of lighting.

All of the study participants passed the calibrations 
with an accepted angular accuracy of less than 0.5º 

and were included in the eye-tracking experiment 
of solving the science problem. All respondents 
sat at a distance of 50 cm from a screen the size of 
30 cm × 47,5 cm.

The participants’ eye movement data, question re-
sponses and mouse clicking were recorded by SMI 
Experiment Center 3.4 software. In addition to provid-
ing answers by using mouse clicks, all respondents 
were also asked to verbally confirm the selected choic-
es. There was no time limit in regard to the duration 
of the experiment. 

Study participants
The research was carried out in June 2014. The exper-
iment included 52 fifteen-year-old students attending 
the last grade of junior high school (gymnasium) in 
Poland, all of which had already taken the final exter-
nal exam after finishing junior high school. 

The sampling of experiment participants was diver-
sified in terms of abilities and mathematical skills, 
where 18 students were finalists in a regional science 
competition and therefore recognized as gifted in the 
field of science. The remaining 34 students attended 
various lower high schools in Cracow, having mixed 
abilities and mathematical skills.

Each participant of the experiment was interviewed 
twice with the use of a questionnaire, both before and 
after the experiment. 

Problem
The problem was provided in the Polish language, as 
shown in the subsequent figures using the data gener-
ated by the BeGaze software. Figure 1shows an English 
translation of the screen.

This problem can be solved by children at the age of 12, 
but it is more appropriate for lower high school stu-
dents (13–15 years old). The problem is nonstandard 
in comparison to typical school tasks. The main dif-
ference and difficulty in solving it lies in the applica-
tion of a methodological approach based on analytical 
thinking, using reduction. If a student considers how 
many days pass until half of the pond is overgrown 
with duckweed, the answer to the problem appears 
evident. 

What is more, the formulation of the problem acti-
vates “System 1” according to the psychological dual 
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process theory (Kahneman, 2011; Stanovich & West, 
2000), and students have to overcome it. Answer C, 

“after 16 days,” is a System 1 trap which forces quick, 
intuitive judgements with low mental effort which 
are frequently wrong. The Problem is analogous to 
the “lily problem” described by Kahneman.

The slide showed as Figure 1 was followed by two more 
slides with additional questions, the first of which sug-
gested a method of reduction and provided graphical 
representations of the pond, as well as some hints and 
questions. The aim of slide 2 was to verify the answer 
provided to slide 1 and to suggest the proper method. 
After familiarizing themselves with this slide, all stu-
dents were asked to check and correct their previous 
answer and rerate the difficulty of the problem. 

The final slide was provided to the students in order 
to check their understanding of the method required 
to solve the problem. The students were asked to de-
termine how many days it would take for the pond to 
be overgrown to 1/8 of the pond. They were also asked 
to assess six different methods of problem resolution, 
shown on the slide.

In this article we are focused only on the analysis of 
the answers to the initial Problem (slide 1).

Methodology
The analysis of all the answers to the questions pre-
sented in the three slides allowed us to select the stu-
dents who correctly understood the whole problem 

and solved it perfectly. A ranking of the 52 partici-
pants was generated, taking into consideration the 
following criteria:

1. The correctness of answers to the whole prob-
lem (all questions on the three slides),

2. The mathematics score achieved on the final 
external exam after finishing junior high 
school.

The selection criteria for the comparative study was 
made by choosing a group of the best and worst per-
forming participants from the ranking. However, we 
analysed the results of the groups in the context of 
general results.

Data for the analysis
The following sixteen “Areas of Interest” (AOIs) for 
obtaining the participants’ data were defined within 
the slide area:

Text of the problem, Picture – lake, Indicate the 
answer, Cannot be resolved, After 4 days, After 16 
days, After 60 days, Another answer, Assign the 
difficulty, Very difficult, Difficult, Middle, Easy, 
Very easy, Explanation, White space. 

Our analysis is based on numerical data, including 
graphical representations, such as: focus maps, scan 
paths, AOI charts, key performance indicators.

Figure 1: English translation of the Problem (slide 1)
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RESEARCH RESULTS AND DISCUSSION

Overview of the general results 
Only 5 students correctly solved the whole problem 
contained on the three slides. The correct answer, 
D, was provided only by 17 out of 52 students. The 
incorrect answer, C, “after 16 days,” was selected by 
over half of the participants, i.e. 27 students. Despite 
the unsatisfactory general results, many participants 
rated the difficulty of the problem as “middle” (27) and 

“easy” (19).

The heat map for all participants is shown in Figure 2. 
Depending on the length of fixation time, the screen 
shows different colours – from blue (lack of fixations) 
through green, yellow, orange to red – representing 
the longest time of fixation.

The highest visual attention while reading the text of 
the problem was devoted to the most important phras-
es: “is doubled” („podwaja” at the end of the sentence); 

“64 days” and “¼ of the pond”. The selected options are 
also visible as red symbols: ♦.

Two groups for comparison: „High 
Five” and „Low Six”
Only 5 students answered all of the questions from 
the three slides correctly. We call this group the “High 
Five”. All of them were finalists of regional science 
competitions and they were recognized as gifted and 
interested in mathematics.

The second group in this comparative study was made 
by choosing a group of five the lowest performing 

participants from the ranking. This group consisted 
of 6 students and is called the „Low Six” group, as two 
of the students achieved the same mathematics score 
at the final external exam after finishing junior high 
school. The students from this group were the only 
respondents who did not pass the exam, achieving a 
result of below 30% of the available points.

A1. Total time of the analysis of the problem
The average total time for solving the problem by all 
participants of the study was 72 480 ms, the maximum 
time was 106 084 ms, and the minimum time was 32 
890 ms.

The average total time for the “High Five” group was 
72 150 ms, whereas the maximum time was 105 307 ms, 
and the minimum time was only 32 959 ms. Relevant 
individual differences can be observed (see Figure 3). 

For the “Low Six” group, the corresponding values 
are the following: 57 275 ms; 69 981 ms, and 40 918 ms. 
The duration of solving the problem by the “Low  Six” 
participants was more homogeneous (see Figure 3) 
and shorter than the average time of all participants.

A2. Time of the analysis of the 
problem’s wording
In the two compared groups, we observe a crucial dif-
ference in the strategy of the analysis of the problem. 
The proportions between the visual attention devot-
ed to analyzing the wording of the problem and the 
remaining text on the slide are significantly different. 

Figure 2: Heat map for all participants
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The average time percentage of the analysis of the 
wording of the problem in the “High Five” group is 
65.9%. On the contrary, for the “Low Six” group it is 
only 36.5%. The proportions between visual attention 
devoted to the text of the problem and to the other 
parts of the screen are reversed for the two groups.

Figure 3 shows time (in milliseconds) spent by the 
participants’ eyes at the defined AOIs respectively 
in the “High Five” and “Low Six” groups. The colors 
of the chart segments correspond to the sixteen re-
spective AOIs described above. For example, the text 
of the problem is visible on the chart in orange. The 
sequence charts for both groups show an important 
difference in the way of looking at the screen. 

A3. Number and placement of fixations 
while solving the whole problem
The respondents’ visual attention is significantly dif-
ferent for the two compared groups. The heat maps 
(see Figure 4) show that students from the “High Five” 
group were concentrated on the wording of the prob-
lem and they achieved the maximum number of fixa-
tions on the area containing crucial information: “64 
days”, which had to be the starting point of discovering 
the correct answer.

On the other hand, the attention of the students from 
the “Low Six” group was more dispersed. They looked 
at the middle part of the screen as well – C and 3 an-

Figure 3: Sequence chart for “High Five” and “Low Six” groups

Figure 4: Heat maps for “High Five” and “Low Six” groups
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swers. This is a typical subconscious and intuitive 
way of looking.

The effect of dispersion can be observed individual-
ly, analyzing the students’ looking paths, called scan 
paths. BeGaze™ software presents a clear graphic in-
terpretation of data, showing the successive fixations 
(using circles) and saccades, i.e. paths of displacement 
between two consecutive fixations (using segments). 
In Figure 5, we present the scan paths of chosen two 
representative members from both groups.

A4. Number of fixations while analyzing 
the wording of the problem
The number of fixations while analyzing the text of 
the problem is the following for the “Low Six” and 

“High Five” groups respectively: Average number of 
fixations: 75,17 and 152,2; Maximum number of fixa-
tions: 110 and 225; Minimum number of fixations:  
42 and 50.

SUMMARY

The following conclusions on the basis of the results 
of our research can be posed:

A1. 

a) The average total time of solving the problem by 
the gifted students was the same as the average 
total time of all participants in our study. This 
parameter did not turn out to be a differentiator 
between gifted students and non-gifted students 
in the context of our research.

b) The total time of solving a problem by gifted stu-
dents was very diversified. In this group we ob-
served fast solvers (32 959 ms), average solvers, 

as well as slow ones (105 307 ms). Speed was not 
a parameter of mathematically gifted students. 

A2.

The time of the analysis of the problem’s wording 
was a differentiator between the group of gifted stu-
dents and underperforming students in our research. 
Gifted students dedicated on average 65.9%  of the to-
tal time of solving the problem to the analysis of the 
wording of the problem while the underperforming 
students devoted only 36.5% of their time for this 
purpose.

A3.

Analyzing the respondents’ visual attention by ob-
serving the numbers and placement of fixations we ob-
served significant differences between the two groups. 
The gifted students were concentrated on the text of 
the problem and they achieved maximum number of 
fixation at the area of the crucial information, which 
had to be a starting point to discover the correct an-
swer. They did know where to look. 

On the contrary underperforming students looked at 
various places of the screen, in a seemingly chaotic 
way. They also looked for longer periods in the middle 
of the screen, which is a natural way of looking. Their 
fixations were more often observed occurring at the 
areas on the slide without the wording of the problem.

A4.

The number of fixations while analyzing the text of the 
problem was also a differentiator between the groups 
of gifted students and non-gifted students. Both the 
average and the maximum number of fixations of the 

Figure 5: Scan paths of the representative participants from the “High Five” and “Low Six” groups
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gifted students double those of the underperforming 
students.

On the basis of our research results, fixations were 
the visual symptoms of mental effort and motivation 
to solve the problem. It can be argued that the under-
performing students were not sufficiently motivated 
to solve the problem or to make mental efforts.

The eye-tracking method allowed us to distinguish 
important differences in the strategy of reading a 
mathematical problem between gifted and underper-
forming students. It is be worth examining this topic 
further if the conclusions seem too broad, verifying 
them using different problems and a wider sample 
of students.
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This study analyses the presentation of fractions in 
Kosovar and Albanian mathematics textbooks designed 
for students of one to fifth-grade. Physical characteristics 
of the selected textbooks, the presentation of fractions 
and the nature of the problems were analysed as well. 
Findings showed that Albanian mathematics textbooks 
covered more lessons on fractions than Kosovar text-
books. Textbooks from both countries focus mostly on 
part whole and operator construction. Also, the ma-
jority of problems focused on pure mathematics and 
single procedures. Few problems in Kosovar textbooks 
required problem explanation, while problem solving 
as a cognitive requirement was used more in Albanian 
textbooks. A common deficiency in all texts was the lacks 
of problems requiring special requirement.

Keywords: Textbooks, fraction representation, 

subconstruct, problems.

INTRODUCTION

Numerous studies have shown that there are enough 
similarities but also differences in curricula and text-
books of countries with different history, culture, lan-
guage, economy and geographical stretch (Delaney, 
Charalambous, Hsu, & Mesa, 2007; Charalambous, 
Delaney, Hsu, & Mesa, 2010; Alajmi, 2012; Erbaş, 
Alacaci, & Bulut, 2012; Cheng & Wang, 2012; Özer & 
Sezer, 2014). It is shown also that in addition to the 
culture of a country, language and structure of the 
school, students’ performance in certain countries is 
affected particularly by the educational background 
of teachers and textbooks (Cheng & Wang, 2012). 

Kosovo and Albania have been carrying out innova-
tive reforms to increase the quality of the system of ed-
ucation. Unfortunately, studies that show the degrees 

of student achievement as a result of these reforms 
are very limited. While, the data for improved student 
achievement on internationally comparable stand-
ardized tests in Albania (PISA, 2012) are welcome, for 
Kosovo, participation in international assessment 
programs still remains a challenge. Thus, both coun-
tries are making the efforts to reform school curricula 
and textbooks to achieve the educational objectives of 
European Union (EU) and Organization for Economic 
Co-operation and Development (OECD). Since major-
ity of the population in Kosovo and Albania speak 
the same language, have the same culture and tradi-
tion, regarding the improvements on education there 
are efforts to unify Curriculum for Pre-University 
Education System, with the assumption that this 
unification will have impact on improving quality in 
schools and students’ learning. By considering the 
textbooks as an important part of classroom life, as 
very important tools for quality assurance (Pehkonen, 
2004; Nicol & Crespo, 2006) and as an important indi-
cator that enable students to reflect on school curric-
ula (Erbaş, Alacaci, & Bulut, 2012), it seems important 
for us to explore how fractions as one of the key con-
cepts presented in elementary mathematics textbooks 
are used in Kosovo and Albania.

BACKGROUND AND RESEARCH QUESTIONS

Many researchers identified several factors which 
contribute to students’ learning fractions. Teachers 
can improve students’ fraction learning by placing 
more emphasis on examining and improving the 
design of their instruction (Brown & Quinn, 2007; 
Pitsolantis & Osana, 2013). Keijzer and Terwel an-
alysed how low-achieving students learn fractions 
in the context of Realistic Mathematics Education 
(2004) and Reimer and Moyer found that the virtual 
manipulative helped students in the class to learn 

mailto:eda.vula%40uni-pr.edu?subject=
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more about fractions (2005).  However, the textbooks 
are the major written source which play an impor-
tant role in guiding teachers in lesson planning and 
present them to their classes (Li, 2000; Alajmi, 2012). 
Textbooks, as an important resource in support of 
teaching and learning have received increased at-
tention from the international education communi-
ty over the last decades (Nicol & Crespo, 2006; Fan 
& Zhu, 2007; Charalambous, Delaney, Hsu, & Mesa, 
2010; Alajmi, 2012; Erbaş, Alacaci, & Bulut, 2012). The 
TIMSS survey found that in almost all countries, the 
majority of teachers use textbooks as the main writ-
ten source in deciding how to present a given topic 
in their classrooms (Beaton, et al., 1996). Textbooks 
influence what teachers teach, how they teach it, and 
how they measure the learning opportunities (Alajmi, 
2012; Özer & Sezer, 2014). We could consider that text-
books help teachers with their workloads because 
the books provide ready and sensible structures for 
lessons and enough exercises for pupils (Pehkonen, 
2004). They are an instrument for learning as well 
as an object of learning, and textbooks address both 
students and teachers (Erbaş, Alacaci, & Bulut, 2012). 
Because of their importance, many researchers fo-
cused on reviewing mathematical textbooks regard-
ing the presentation of a particular mathematical 
concept or they focused on the cognitive demands of 
the material in the texts (Kieren, 1976; Behr & Harel, 
1990; Alajmi, 2012). Fractions are among the most 
complex mathematical concepts that children learn in 
primary school. It was documented that teaching and 
learning of fractions has traditionally been one of the 
most problematic areas and one of the most serious 
obstacles in primary school mathematics (Behr, Post, 
Harel, & Lesh, 1993; Charalambous & Pitta-Pantazi, 
2007). The misconceptions that students have about 
fractions, both in terms of fractions as numbers and 
how to operate with fractions relates particularly to 
the way in which fractions are represented and how 
they are taught (Barmby, Harries, Higgins, & Suggate, 
2009). Various theoretical models have been proposed 
for understanding fractions in the elementary school 
(Behr et al, 1993; Charalambous & Pitta-Pantazi, 2007; 
Nicolaou & Pitta-Pantazi, 2011). Early subconstruct 
theories postulated that integrating the qualities 
of multiple perspectives were crucial to the under-
standing of fractions (Moseley, 2005). According to 
Behr and colleagues (1993), rational numbers can be 
interpreted as a part-whole comparison, an indicated 
division or quotient, a ratio, as an operator and as a 
measure. The part-whole construct refers to a contin-

uous quantity or a set of discrete objects partitioned 
into parts of equal size. This perspective emphasiz-
es situations which are related to the comparison of 
parts with the total amount. On the other hand the 
quotient construct considers a fraction as a result of a 
division of two whole numbers. The ratio perspective 
is based on comparing separate quantities and usually 
presented as a:b or a/b. Whereas the ratio is a relation 
between two sets, an operator is a relation between 
two states of a set. The operator construct reflects a 
function that transforms line segments, figures, or 
numbers. And lastly the measure construct identifies 
fractions as numbers or associating fractions with 
the measure assigned to some interval (Kieren, 1976; 
Behr & Harel, 1990).

Using multiple representations makes the fraction 
concept more concrete and understandable. But, it 
was shown that even in cases where students seem 
to understand the conceptual meaning (Hiebert & 
Carpenter, 1992) of the different perspectives of frac-
tion representations they still struggle to connect 
fraction ideas to real world problems (Moseley, 2005; 
Alajmi, 2012). Textbooks should focus not only on 
problems that have low-level cognitive requirements, 
such as recall and reproduction (Li, 2000). Also, they 
should not present only the pure mathematics con-
texts but they should emphasize real-world problems 
dealing with fractions in all lessons (Alajmi, 2012).

This study reviews the similarities and differences 
of the presentation of fractions and problems of frac-
tions in textbooks in Kosovo and Albania. Specifically, 
the study addressed the following questions:

1) What are the physical characteristics of first-to 
fifth-grade mathematics textbooks in the selected 
series in Kosovo and Albania?

2) What similarities and differences can be ob-
served in the representation of fractions in the 
mathematics textbooks in Kosovo and Albania? 

3) How are problems involving fractions intro-
duced in these textbooks?

METHODS

Textbook sampling 
Two elementary mathematics textbook series from 
Kosovo and Albania were chosen for this study. 
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Kosovo has a national curriculum. In this system only 
one textbook series is available, and it is published 
and distributed at no cost to students by the Ministry 
of Education, Science and Technology - MEST. Thus, 
all public primary schools use the same mathematics 
textbook series. Albania also has a national curricu-
lum but any of fifteen commercial series of textbooks 
may be used in Albanian schools. Teachers together 
with the parents’ council analyse each of these series 
of books and choose which textbooks will be used 
throughout the school year. For this study we selected 
the series of EduAlba publishing house, because these 
textbooks are used as secondary textbooks by some 
schools in Kosovo. Focusing on the fraction content, 
this study examined textbooks from both countries 
in detail, with respect to two aspects: presentation of 
fractions and the mathematics problems provided for 
students’ practice. In this study we have taken into 
account only the basic textbooks and not the student 
workbooks or other materials.

Data Analyses and Procedures
In this study a framework and the coding system 
was developed in two stages. First we analysed the 
textbooks’ physical characteristics, such as page size, 
number of pages and number of pages containing 
fractions while using a horizontal approach which 
gives readers an initial introduction of the textbooks. 
Secondly, for the vertical-analyses (Charalambous 
et al., 2010) we read each lesson relevant to fractions 
from each textbook carefully in order to analyse the 
meaning of tasks (Cheng & Wang, 2012). The meaning 
of tasks here indicated a meaning of a specific task, a 
definition, a picture, a question, an example, practi-
cal exercise or a problem that serves as a particular 
purpose in the lessons. Based on the meaning of tasks 
we developed the coding system which includes the 
following two dimensions: conceptual and contextual. 
Under first dimension we analysed the fraction mean-
ing and presentation based on Kieren (1976) model of 
the five subconstructs: the part-whole, the ratio, the 
operator, the quotient and the measure construct. For 
the second dimension, Li’s (2000) framework was used 
to analyse textbook problems provided to students. 
The problems selected from each textbook were those 
exercises or questions that did not have solutions or 
answers. Each problem was coded based on the three 
dimensions below:

1) Mathematical features: Single procedure (S) and 
Multiple Procedure (M);

2) Contextual features: Purely mathematical con-
text in numerical or word form (PM) and illus-
trative context or story (IC);

3) Performance requirements: 

3.1 Response type: no explanation or solution 
process required (numerical answer or nu-
merical expression only) (NES) and explana-
tion or solution process required (ES)

3.2 Cognitive requirement: conceptual under-
standing (CU); Procedurals practice (PP); 
Problem solving (PS) and Special require-
ments (SR).

Cognitive requirement mean ‘the kind and level of 
thinking required from students in order to success-
fully engage with and solve the task (Stein, Smith, 
Henningsen, & Silver, 2000, p. 11), while special re-
quirement (SR) refers to the problems that contain 
special or mixed cognitive requirements. For example, 
the problem asks students to write up a problem based 
on given information (Li, 1990).

After we selected the pages with fractions’ content 
from each textbook and we coded them independently, 
the tasks that were coded differently were discussed 
and recoded again for compatibility. The researcher’s 
agreement was 97 %.

RESULTS

Physical characteristics
Textbooks in Kosovo differ from Albanian textbooks. 
Textbooks in Kosovo are larger in size (28.5 x 20.5 x 
0.8 cm) in each grade level. Albania textbooks have 
smaller sizes (27 x 20.5 x 1 cm). For the first time frac-
tions are introduced in the second grade texts both in 
Kosovo and Albania. The number of pages devoted to 
fractions increased by grade to grade level in all two 
textbook series. In Kosovar textbooks, the percent-
age of pages grew from 2.34% on the second grade 
to 10.73% on the fifth grade, while in Albanian texts 
the percentage of pages grew from 3.15% to 24.89 %. 
Based on these facts the number of tasks per page 
related on fractions is bigger in Kosovar texts (5–6 
tasks per page) than in Albanian textbooks (2–3 tasks 
per page). Also, the number of lessons on fractions 
increased each year from three lessons in the second 
grade to fourteen lessons in the fifth grade in Kosovar 



A comparative analysis of mathematics textbooks from Kosovo and Albania based on the topic of fractions (Eda Vula, Jeta Kingji–Kastrati and Fitore Podvorica)

1762

textbooks while in Albanian text books it increased 
from one lesson in the second grade to eleven lessons 
in the fifth grade. Addition and subtraction of frac-
tions with same denominator for the first time are 
presented in third grade in the Albanian textbooks, 
though in Kosovar textbooks they are presented for 
the first time on the fifth grade. Also, in the Kosovar 
textbooks decimal numbers are not covered in the 
textbooks, whereas in the Albanian textbooks they 
are introduced in the fifth grade. The greatest differ-
ence in these textbooks is related to the quantity of 
real world problems included. It was found that the 
Albanian textbooks emphasize real world problems 
more than their Kosovo counterparts. Only two real 
world problems were found in the Kosovo fifth grade 
textbook, while in Albanian textbooks there are two 
real world problems in the second grade, twelve in the 
third grade, twenty-six in the fourth grade level and 
thirteen real world problems in the fifth grade level.    

Fraction meaning and presentation 
Based on the model of the multiple representations 
of fractions, the fraction constructs were identified 
in all textbooks (Table 1). Table 1 shows that the part-
whole construct is used from the 2nd grade, when 
fractions appear for the first time, up to 5th grade in 
both series of textbooks. It was identified that the 
part-whole construct was used in a higher percent-
age in 2nd grades and 3rd grades, while in 4th and 5th 
grades the percentage of tasks presented by this con-
struct is reduced. It seems that the ratio and quotient 
constructs were used only in a few tasks. In Kosovar 
textbooks there are only two tasks presented with 
the ratio construct, while in Albania textbooks, the 
ratio construct appears in 3rd grade and 4th grade, 
with a total of six tasks. It was found that only 5 tasks 
in the 5th grade Albanian textbook used the quotient 
construct. In Kosovar textbooks there were no tasks 
presented with the quotient construct. The dominant 

construct among tasks identified in 4th and 5th grade 
textbooks in both series of textbooks was the opera-
tor construct. Most of the tasks in 4th and 5th grade of 
both series of textbooks used the operator construct 
(about 70% in 4th and 87% in 5th grade Kosovar text-
books, whereas in Albanian textbooks, about 91% and 
94% of all tasks). The measure construct was identified 
in three Kosovar textbooks (grade 3, 4 and 5) while in 
Albania only one task in the textbook of the 3rd grade 
was identified.

Classification of problems with fractions
Table 2 shows the percentages of problems classified 
in terms of problems’ requirements (Li, 2000). It was 
found that there is a significant difference between 
the types of problems presented in the textbook series 
of the two countries.

From the third to fifth grade in Kosovar series of text-
books we have a higher percentage of problems or 
practice exercises which requires a single procedure 
(SP) in the solution process, while in Albania in third 
grade texts 76% of the tasks require multiple proce-
dures (MP). Also we founded that 50% of problems re-
quire single procedures and 50% multiple procedures 
in the Albanian textbook of the 4th grade. In contrast, 
the Albanian textbooks of the 5th grade contained 
about 85% of the problems that required a single pro-
cedure for the solution. In Kosovar 3rd grade textbook, 
the majority of problems are presented through il-
lustrative contexts (76.47%). In contrast, Albanian 
third grade textbooks have more pure mathematics 
problems (52.78%) than illustrative context exercises 
(47.22%). In the 4th and 5th grade textbooks we have 
approximately the same percentage of tasks with PM 
and IC. What is also important to mention (see Table 2) 
is the number of tasks that require only the numerical 
result (NES) of the assignment and no explanation on 
how the solution was reached (ES). Only in the Kosovo 

Country Kosova Albania

Grades 1 2 3 4 5 1 2 3 4 5

N# % N# % N# % N# % N# % N# % N# % N# %

Part whole / 8 66.67 18 78.26 8 21.62 7 9.72 / 13 92.86 26 37.68 5 7.35 1 1.0

Ratio / 0 0 0 0 2 5.41 0 0 / 0 0 5 7.25 1 1.47 0 0

Operator / 4 33.33 4 17.39 26 70.27 63 87.5 / 1 7.14 37 53.62 62 91.18 94 94.0

Quotient / 0 0 0 0 0 0 0 0 / 0 0 0 0 0 0 5 5.0

Measure / 0 0 1 4.35 1 2.70 2 2.78 / 0 0 1 1.45 0 0 0 0

Total / 12 100 23 100 37 100 72 100 / 14 100 69 100 68 100 100 100

Table 1: The fraction presentation based on the model of the five subconstructs
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5th grade textbook about 10.4% have problems that re-
quired the explanation. Regarding cognitive require-
ments, it was identified that in textbooks from Kosovo 
as well as in Albanian textbooks, the largest number 
of problems requires conceptual understanding (CU) 
and procedural practice (PP). There are very limited 
requirements for problems which ask for problem 
solving in Kosovar textbooks. There was only one 
problem in each of the 4th and 5thgrade Kosovar text-
books, while in the Albanian textbooks it was a greater 
percentage of problem solving (about 38% and 19% of 
problems in the 4th and 5th grade respectively).

A common deficiency in all analysed texts is the lack 
of problems requiring special requirements (SR).
Textbooks do not provide assignments in which stu-
dents have the opportunity to practice more complex 
cognitive requirement or require contextualising 
fractions in everyday life., , 

DISCUSSION

This study has analysed the physical characteristics 
of the textbooks, fraction presentation and nature of 
problems used in Kosovar and Albanian textbooks. 
In both series of textbooks, fractions are presented 
for the first time from the 2nd grade. The number of 
pages covered by fractions is larger in the Albanian 

textbooks than in the Kosovar textbooks. But, it was 
observed that there is a difference in terms of the num-
ber of tasks, associated figures, tables or diagrams 
per pages. While in the books from Kosovo there are 
five or six tasks per page, in Albanian books every 
page has at most 3 tasks. Also, there are differences 
in terms of content. An introduction to fractions as 
decimal numbers is presented only in the Albanian 
textbooks. It seems that Kosovar textbooks covered 
less content and less representations for fractions. 
Thus, low fraction content coverage can have a neg-
ative effect on the student’s abilities to use fractions 
in the future. According to Brown & Quinn (2007), 
students should spend the majority of their time 
learning fractions before the 6thgrade if we want to 
devote the time to the developing of their conceptual 
understanding of fraction relationships. Both series 
of textbooks used mostly two constructs for fraction 
presentation (part-whole and operator) and were fo-
cused more on rules and procedures, even though 
using multiple representations would assist students 
in developing more interconnected and viable rep-
resentations knowledge for fractions (Behr et al., 1993; 
Charalambous & Pitta-Pantazi, 2007; Moseley, 2005). 

It was found that the majority of problems in both 
series of textbooks are presented in purely math-
ematical contexts and that almost in all problems 

 

Grade 

 Mathematical 
features Contextual features Performance requirements 

S M PM IC 
Response type Cognitive requirement 

NES ES CU PP PS SR 

Kosova 

2 
N# - - - 5 - - 6 - - - 

% - - - 100 - - 100 - - - 

3 
N# 4 3 4 13 17 - 15 - 1 - 

% 57.14 42.85 23.52 76.47 100 - 93.75 - 6.24 - 

4 
N# 18 3 16 21 36 - 27 3 - - 

% 85.71 14.28 43.24 56.75 100 - 90 10 - - 

5 
N# 31 3 37 18 43 5 35 15 1 - 

% 91.17 8.82 67.27 37.72 89.58 10.41 68.62 29.41 1.96 - 

Albania 

2 
N# - - - 5 - - 5 - - - 

% - - - 100 - - 100 - - - 

3 
N# 6 19 19 17 42 - 6  10 - - 

% 24 76 52.78 47.22 100 - 37.5 62.2 - - 

4 
N# 18 18 22 25 46 - 29 3 20 - 

% 50 50 46.81 53.19 100 - 55.77 5.77 38.46 - 

5 
N# 45 8 35 9 33 - 30 13 10 - 

% 84.91 15.09 79.55 20.45 100 - 56.60 24.53 18.87 - 

Table 2: Problems Classified According Li’s Framework (Li, 2000) Table 2: Problems Classified According Li’s Framework (Li, 2000)
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single-procedures are required. Also, it was found 
that the largest number of tasks requires contextual 
cognitive requirement with illustrative context. But, 
as Hiebert and Carpenter (1992) argue, there is a need 
to have a conceptual understanding, as well as the 
necessary skills for procedural practice, in order to 
be successful in mathematics .Only few problems 
were found in Kosovar textbooks that demanded 
problem explanation and problem solving. Based on 
Li’s point of view, focusing only in the problems that 
have low-level cognitive requirements, such as recall 
and reproduction (Li, 2000) doesn’t help students to 
be good problem solvers. On the other hand, Albanian 
textbooks pay more attention to the idea of including 
more practice examples that require problem solving 
compared to Kosovo. However, it is important to men-
tion a common deficiency in all analysed textbooks, 
which is the lack of practice exercises that require 
special requirements. In this case connecting frac-
tions to students’ lives and with real word problems is 
an important issue. Students should be provided with 
opportunities to see fractions in their real lives and 
use these meanings in the learning process. Therefore, 
the texts should assist teaching and learning in order 
to enable the development of the meaning of fractions, 
understanding them (Moseley, 2005; Alajmi, 2012) and 
solving problems from everyday life contexts. 

The study has highlighted some differences that 
textbooks from different countries have, and aims 
to encourage authors of textbooks to cooperate at the 
international level in order to improve the quality 
of mathematics textbooks. A comparative study of 
mathematic textbooks from Kosovo, Albania and oth-
er countries will help to share the best practices for 
fraction introduction in elementary textbooks. The 
recommendation of this study is to increase both the 
number and the variety of problems in all textbooks, 
especially those with a high level of cognitive demand. 
Finally, taking in consideration that the elementary 
mathematics textbooks are the main instructional 
resource and learning tool, the teachers’ and students’ 
views on textbooks are crucial for their improvement. 
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In this paper, we examine the ways the history of mathe-
matics is integrated in the national textbooks of Cyprus 
and Greece. Our data-driven analyses suggest that the 
references identified can be clustered in four categories: 
(a) biographical references about mathematicians or 
historical references regarding the origins of a mathe-
matical concept, (b) references to the history of a math-
ematical method or formula containing a solution or 
proof, (c) mathematical tasks of purely cognitive ele-
ments that require a solution, explanation or proof and 
(d) tasks that encourage discussion or the production of 
a project that would connect the history of mathematics 
with life outside mathematics. 

Keywords: History of mathematics, textbooks, Cyprus, 

Greece. 

INTRODUCTION

A number of recent studies highlight the impor-
tance of introducing elements from the History of 
Mathematics (HoM) in lessons as an alternative and 
supplementary means to establish more efficient 
teaching and learning of the subject (see, for example, 
Fauvel & van Maanen, 2000; Siu & Tzanakis, 2004). 
While recognizing the various pedagogical benefits 
of such an incorporation –as, for example, the devel-
opment of more positive attitudes towards the subject 
(Farmaki et al., 2004), better conceptual understand-
ing of mathematical ideas (Fasanelli et al., 2002), the 
elimination of racial discriminations (Michalowicz 
et al., 2002; Strutchens, 1995) and so on – this paper 
describes and discusses the developed framework that 
facilitates our analyses for the textbooks of the two 
countries under scrutiny, Cyprus and Greece, as well 
as some of our findings. 

COMPARING MATHEMATICS 
TEXTBOOKS ACROSS COUNTRIES 

Textbooks constitute the main teaching resource for 
most countries around the world (Mullis et al., 2012), 
especially for highly centralised educational systems, 
as are those of Cyprus and Greece. Textbooks play a 
significant role in the ways mathematics lessons are 
designed and delivered; their influence over the con-
tent of the lessons; the instructional approaches; the 
quality of activities assigned for pupils, in classrooms 
and for homework; and, the learning outcomes and 
achievement (Alajmi, 2012; Törnroos, 2005; Weiss et 
al., 2003; Robitaille & Travers, 1992). Drawn from the 
well-known trichotomic distinction of the curriculum 
in the intended (vision and intentions as specified in 
official curriculum documents and/or materials), the 
implemented (teachers’ interpretation and enactment 
of the curriculum according to their perceptions and 
knowledge) and the attained (learning experience 
as perceived by learners and their resulting learn-
ing outcomes), mathematics textbooks could be seen 
as a mediator between the first two types (or what 
Schmidt, et al. call the potentially implemented curricu-
lum). From this perspective, Mesa (2004, pp. 255–256) 
talks about “a hypothetical enterprise: What would 
students learn if their mathematics classes were to 
cover all the textbook sections in the order given? 
What would students learn if they had to solve all the 
exercises in the textbook?” Rezat and Straesser (2014) 
take this argument a step further and distinguish be-
tween three perspectives on textbooks analyses. The 
first perceives textbooks as curriculum materials that 
offer supplementary ideas for teaching. From another 
perspective, textbooks are approached as artifacts 
that are employed for the preservation and transition 
of acquired skills. Analyses from this perspective fo-
cus only on opportunities to teach and to learn. Lastly, 

mailto:xenofontos.c%40unic.ac.cy?subject=
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textbooks can be seen as instruments. Such analyses 
take into consideration the actual use of textbooks 
in lessons. 

Many studies make use of various frameworks for 
analysing mathematics textbooks, which include, 
among other things, their physical characteristics 
(i.e. size, number of pages, volumes, and so on), the 
structure of the lessons, the topics covered, the pre-
sentation of particular mathematical concepts, and 
the level of the cognitive demands of tasks (Bayazit, 
2013; Alajmi, 2012). As far as cross-national compar-
isons of textbooks are concerned, a specific interest 
is shared between scholars, which shows how the cul-
tural expectations and goals of different educational 
systems are manifested in the instructional materials 
produced (Haggarty & Pepin, 2002). Cross-national 
textbook analyses typically fall under three broad 
categories; namely, horizontal, vertical, and contex-
tual (Charalambous et al., 2010). Horizontal analysis 
focuses on textbooks’ general characteristics (i.e. con-
tent, structure, etc.), while the textbook is examined 
as a whole. Such examples include Stevenson’s and 
Bartsch’s (1992) analyses of Japanese and American 
textbooks, and the work of Campbell and Kyriakides 
(2000), who have investigated Cypriot and English ele-
mentary textbooks as part of the national curriculum 
of the two countries. In vertical analysis, the interest 
is on how the textbooks under examination treat cer-
tain mathematical concepts. From this perspective, 
Ding and Li (2010) discuss the ways the distributive 
property is presented in US and Chinese elementary 
textbooks, while Alajmi (2012) examines how elemen-
tary textbooks in the US, Japan, and Kuwait address 
fractions. Finally, contextual analysis is concerned 
with the role of the textbooks in classroom activities, 
either by the teacher or the pupils (see Remillard, 
2005). Only few comparative studies employ more 
than one of the types of analysis above, as, for exam-
ple, Haggarty’s and Pepin’s (2002) work with English, 
French and German textbooks, and their function in 
classrooms, and Charalambous and colleagues’ (2010) 
framework developed for analysing learning oppor-
tunities provided by Cypriot, Irish, and Taiwanese 
textbooks. 

THIS STUDY

In this paper, we analyse references included in the 
lower secondary textbooks of Cyprus and Greece in 
regards to the HoM. Both countries have highly cen-

tralised educational systems (Charalambous et al., 
2010; Saiti & Eliophoto-Menon, 2009) in which schools 
are considered segments of the domain of government, 
and not of the community. The national curricula and 
continued textbooks are prepared by each country’s 
respective Ministry of Education, more specifical-
ly, by the Pedagogical Institute, a department of the 
Ministry of Education. In both the Cypriot (MoEC, 
2010) and the Greek intended curriculum (MoERA, 
2002), explicit references are made to the importance 
of the HoM. Nevertheless, the purpose of this paper 
is to examine how the general curricular references 
to the HoM are actually transformed into learning 
opportunities in the Cypriot and Greek textbooks for 
both teachers and pupils. 

In our study, textbooks are treated as artifacts (Rezat 
& Straesser, 2014) since we examine their content 
in relation to the HoM, and not in relation to other 
teaching material, or the ways by which they are 
utilized in classrooms. Furthermore, our approach 
could be regarded as a comparative vertical analysis 
(Charalambous et al., 2010), which focuses on how the 
two sets of textbooks, Cypriot and Greek, treat a par-
ticular concept, namely the HoM. 

For the purposes of this project, we analysed the 
national textbooks of Cyprus and Greece for lower 
secondary education (grades 7, 8, and 9). The educa-
tional system of Cyprus is currently reforming its 
curriculum for all subjects and grades; consequently, 
only the textbooks for lower secondary education 
were available to us once our study began, therefore, 
we chose to focus our analyses on the three lower sec-
ondary grades. The Cypriot textbooks were launched 
between 2012 and 2013 by the Pedagogical Institute of 
Cyprus, and the Greek ones were introduced in 2007 
by the Pedagogical Institute of Greece. 

At the first stage of data collection, all references to 
the HoM in both textbook series were identified. We 
were interested in both encyclopedic pieces of infor-
mation and mathematical tasks inviting pupils to in-
teract with them and provide solutions or answers. 
We worked independently with the two data sets 
(Cypriot and Greek), trying to find ways of clustering 
the references identified. Due to the long distance, in 
person meetings were not possible; however, after 
individual progress we had online meetings to discuss 
our ideas, which were, interestingly, similarly han-
dled. After combining our working ideas, we applied 
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a data driven analysis (Kvale & Brinkmann, 2009) as 
well as the constant comparison process outlined by 
Strauss and Corbin (1998), which led to clustering the 
references in two broad categories. Further analyses 
resulted in the division of the two categories into two 
subcategories each. The first category was concerned 
with references that did not pose questions to pupils; 
they’d rather provide historical pieces of information. 

In this category, we could find (a) simple biograph-
ical references about mathematicians or historical 
references concerning the origins of a mathematical 
concept and (b) references to the history of a mathe-
matical method or formula including a solution path 
or proof. Figure 1 shows an example of the first subcat-
egory and provides biographical information about 

Figure 1: An example of a biographical reference

Figure 2: An example of a historical reference to a method and its solution process
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the life and work of the German mathematician Georg 
Cantor (Cypriot textbooks, grade 7, part A, p. 27).

Figure 2 shows an example of a historical reference 
to a method and its solution process. In particular, it 
explains how Ancient Egyptians used a piece of rope 
with 13 knots and 12 equal line segments to create 
right angles, a method called in the book, “the reverse 
of the Pythagorean theorem” (Greek textbooks, grade 
8, p. 128). 

The second category comprised tasks that invited pu-
pils to interact with them and provide some sort of 
answer. This included (a) mathematical tasks of purely 
cognitive elements that require a numerical solution, 
explanation or proof and (b) tasks that encourage 
discussion or the production of a project that would 
connect the history of mathematics with life outside 
mathematics. Examples of these subcategories are 
illustrated in Figures 3 and 4 respectively. Figure 3 
shows the method applied by the ancient Greek math-
ematician, Thales, for the calculation of the distance 
between a ship and the coastline. Furthermore, pupils 
are asked to prove Thales’ method and explain how 
he could be sure that the distance was right (Greek 
textbooks, grade 9, p. 197). 

Figure 4 provides an example of a task that requires 
pupils to carry out a small project comparing and 
contrasting the number systems of Mayans and of 
Babylonians-Sumerians, as well as discussing the dif-
ficulties of these two systems, which eventually led 
to a need to establish the positional decimal system 
(Cypriot textbooks, grade 6, part A, p. 85). It is worth 
stating that there are no previous references to the 
two ancient number systems in the textbooks. Pupils 
are asked to conduct their own research and find in-
formation about them, since the textbook implies that 
there is no further instruction about these systems. 

Table 1 shows the distribution of the HoM’s references 
per country. No significant differences could be ob-
served as regards the two broad categories and the 
references of the HoM from each country, χ² (1, N = 
137) = 0.986, p = 0.32.

DISCUSSION AND CONCLUSIONS 

Clearly, both countries value the HoM, a fact not only 
expressed in their curricula, but also reflected in their 
national textbooks. This could be attributed to a com-
mon cultural-historic heritage and the profound role 
of ancient Greek mathematics in the development of 
contemporary mathematical thinking. Nevertheless, 
the two countries’ educational traditions share 
much in common, historically speaking (Koutselini-
Ioannidou, 1997). In the case of their mathematics 
textbooks, Cypriot textbooks, launched a few years 
after the Greek ones, include several slightly modi-
fied examples. For instance, in the Greek textbook of 
grade 8 (page 10) we find a mathematical riddle from 
the tombstone of the ancient Greek mathematician 
Diophantus, inviting passers to solve it and calculate 
the age of his death. In the textbook, an equation show-
ing the solution to the riddle follows. In the Cypriot 
textbooks (grade 7, part A, p. 173) although the same 
riddle is included, no solution is presented and pupils 
are asked to calculate Diophantus’ age. 

About half of the HoM’s references in the Cypriot se-
ries and more than half in the Greek one constitute 
biographical and historical information that do not 
ask pupils to interact with them in any way. From our 
experiences as former pupils in the two educational 
systems, such information typically remains unex-
ploited in classrooms, in a similar way to those argu-
ing that the mathematics curriculum so overloaded 
with topics that teachers do not have much time to 
dedicate to the HoM. Also, despite comments of au-
thors like Lawrence (2008) and Jahnke and colleagues 
(2002), who see advantages of the HoM in lessons as an 

No question(s) for pupils Asks pupils to interact with it

Simple historical/biographical 
references

Show solution/proof 
of a method/formula

Mathematical 
tasks

Encourage discussion/
project

Cyprus 27 2 28 2

Greece 41 4 26 7

Table 1: Distribution of the historical references in the two textbook series
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opportunity for pupils to realise how mathematical 
knowledge of the past has influenced our modern ev-
eryday life, both series include very few project-based 
tasks. Once again, from our experiences, Cypriot and 
Greek secondary mathematics teachers perceive such 
tasks as not “mathematical” and often ignore them, as 
a result. It is worth mentioning that both series are not 
restricted to ancient Greek mathematics; they include 
references from many civilizations, and this is an op-

portunity considered important for the elimination 
of racial discriminations (Michalowicz et al., 2002; 
Strutchens, 1995). 

In closing, we cannot but emphasize the significance 
of collaboration between researchers from differ-
ent countries in respect to comparative enquiries. 
Scholars must be aware that things with the same 
name might have a different meaning and function 

Figure 3: An example of a mathematical task

Figure 4: An example of a project-based assignment
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across nations, and they ought, therefore, to avoid 
assuming that colleagues elsewhere share the same 
understanding. Furthermore, we would like to in-
vite colleagues from other countries to draw on our 
emerged framework of analysis about the types of 
historical references in mathematics textbooks, and 
to examine the ways in which HoM is included in other 
curricula, textbook series, and classrooms around 
the world. 
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We are briefly describing the proposal of an interna-
tional project for enhancing mathematical literacy in 
different European countries (Italy, Germany, Portugal, 
Spain and UK), through the cooperation of teacher soci-
eties of mathematics and university researchers.

Keywords: Teacher education, comparative curriculum, 

international assessment.

INTRODUCTION

Our goal is to announce the proposal of the Teachers 
and Researchers Understanding   Mathematics in 
PISA (TRUMP) project, submitted to Eramus + EU 
programme in 2014 (Key Action 2: Cooperation for 
innovation and the exchange of good practices). 

The TRUMP project seeks to enhance adolescent’s 
mathematical literacy at a European level. PISA 
2012 (as others international projects) suggests that 
European mathematics education is often less suc-
cessful in developing mathematical literacy than oth-
er OECD members (PISA, 2012).

Mathematical literacy is essential, in modern society, 
for effective citizenship. In this way, the TRUMP pro-
ject aims to create a network of European teachers and 
researchers in partner countries that, informed by 
the PISA framework and its assessment, helps teach-
ers’ professional development.

Although the proposal presented in 2014 to Erasmus+ 
was declined, the potential of the project has been 
recognised and the current team is searching for new 
European members to collaborate with and to further 
develop the original proposal. 

CURRENT TEAM MEMBERS

The current working team is led by the Spanish 
Federation of Mathematics Teachers’ Societies 
(FESPM). This 25-year-old non-profit organisation 
comprises 21 Spanish mathematics teachers’ socie-
ties, with about 6000 members who are mainly sec-
ondary education teachers. The group team includes 
also universities from England, Germany, Italy, Spain 
and Portugal, as well as professional associations of 
teachers of mathematics from Portugal and England. 

The project is unique in the sense that it involves 
both universities and professional associations of 
mathematics teachers. We believe that universities 
will provide research and development expertise and 
teachers’ associations will ensure wide participation 
and dissemination to practicing teachers, and long-
term sustainability.  Digital technologies will be used 
to support collaboration among different partners.
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MAIN PROJECT ACTIVITIES 
TO BE UNDERTAKEN 

The participant members will work within the PISA 
theoretical framework to devise and evaluate strate-
gies for teacher professional development, drawing 
on existing materials and resources. Some examples 
are provided below:

1) Teachers and researchers from all the member 
groups will undertake bilateral visits to learn 
from teaching practices in the different countries.

2) Researchers from the member groups will de-
velop an evaluative framework to assess mate-
rials, classrooms teaching practices and learner 
outcomes.

3) A network of teachers will be created and guided 
to trial and evaluate the programmes and educa-
tional resources emerging from the project. 

4) Teachers in each participant country will adopt 
and adapt shared resources to their cultural and 
educational context. 

5) Transnational meetings of group leaders will be 
held to share resources, review progress to date, 
and to agree on priorities for the subsequent 
stages of the project. 

EXPECTED RESULTS 

Within the results expected are the following:

1) Establishing a community of researchers to de-
sign the training programmes materials and eval-
uative framework for teachers’ professional de-
velopment and enhanced mathematical learning.

2) Establishing a community of teachers and re-
searchers working together internationally and 
locally to enhance professional competences.

3) Enhancing and developing student mathematical 
literacy.

4) As a resulting outcome, the TRUMP project in-
tends to contribute to reducing the number of 
low-skilled adults.
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In this study, we describe two tools designed for com-
paring paper and computer assessment modalities: 
a “comparison table” to control migratory process from 
paper to computer modality and vice versa and a “grid 
for observation of students” to codify students’ behav-
iours in solving process. 
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INTRODUCTION

A large number of Institutions for Assessment (OECD-
PISA, PIAAC, NAEP, …) introduced a computer-based 
section. Ripley (2009) analyses the main approaches 
to the use of technology to support assessment. In 
particular, he defines the migratory approach to in-
dicate paper based tests migrating to screen based 
environment. Research on migrated tests, involving 
comparative analysis on outcomes, finds no statistical 
evidence to suggest that the administration modali-
ty changes the coherence and consistency of the test 
(Kim & Huynh, 2007). 

Quantitative studies give information on students’ 
performances in scoring without dealing with cogni-
tive aspects affected by this changing of environment. 
Threlfall and colleagues (2007) explore the effect on 
assessment of paper and pencil test items migrating 
into their computer corresponding ones. They show 
that, even if in most cases changing to the different 
environment seems to make little difference, for some 
items computer deeply affects how the question is at-
tempted and what is being assessed. Furthermore, re-
searches start from the assumption that it is possible 
to consider these assessment modalities as equivalent. 

The aims of this study is to develop a scheme to control, 
in terms of equivalence, migrating processes from 
paper to computer and vice versa and to analyse cog-
nitive aspects influenced by these migrated tests. 

FRAMEWORK AND METHODOLOGY

Comparing students involved in tests in different en-
vironments requires considering comparable ques-
tions. In migration process corresponding features 
of the questions probably change, such as syntax, vo-
cabulary, editing, layout, and others. For this reason, 
it is necessary to define a monitoring tool in order 
to control any possible changes that might affect the 
comparability of questions. We define a comparison 
table to control the migration from paper to computer 
based question and vice versa.

We administer to couples of students two parallel 
tests of migrating items, one in computer and the 
other in paper environment. Every couple involves 
in only one of these tests; protocols are video taped 
with the purpose to focus on behaviours and heuris-
tics processes. 

Protocol analysis is performed through a grid for 
observation of students’ behavior, inspired by the 
definition of problem solving episodes proposed by 
Schoenfeld (1985), which allows to identify differenc-
es focussing on strategies, planning and results, in 
qualitative terms.

CONCLUSION

Qualitative analysis on migrated questions shows 
that migration from one administration modality to 
another is necessarily influenced by the environment 
in which these questions migrate. It reveals the in-
consistency in the definition of equivalence between 
questions in computer and paper environment. 
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In general, protocols analysis highlights that students 
achieve the same outcomes in both administration 
modalities. However, a deeper study on cognitive pro-
cesses shows case studies in which administration 
environment greatly influences students’ strategic 
choices in resolution process. In other cases, despite 
comparable heuristic choices, the organization of the 
problem-solving process is less linear in computer 
than paper modality. 

REFERENCES

Kim, D. H., & Huynh, H. (2007). Comparability of computer 

and paper-and-pencil versions of algebra and biology 

assessments. The Journal of Technology, Learning and 

Assessment, 6(4). 

Ripley, M. (2009). Transformational computer-based testing. In 

F. Scheuermann & F. Björnsson (Eds.), The transition to 

computer-based assessment (pp. 92–98). Luxembourg: 

Office for Official Publications of the European 

Communities.

Schoenfeld, A.H. (1985). Mathematical problem solving. New 

York: Academic press. 

Threlfall, J., Pool, P., Homer, M., & Swinnerton, B. (2007). Implicit 

aspects of paper and pencil mathematics assessment that 

come to light through the use of the computer. Educational 

Studies in Mathematics, 66(3), 335–348.



1778CERME9 (2015) – TWG12

TWG12 

History in 

mathematics 

education



1779CERME9 (2015) – TWG12

Introduction to the papers of TWG12: 
History in mathematics education

Uffe Thomas Jankvist1, Snezana Lawrence², Kathleen Clark3 and Renaud Chorlay4

1 Aarhus University, Aarhus, Denmark, utj@edu.au.dk

2 Bath Spa University, Bath, UK

3 Florida State University, Tallahassee, USA

4 Université Paris-Diderot, Paris, France

CERME9 was the fourth time of the TWG on “History 
in Mathematics Education”. For CERME9 the group 
had fourteen papers and two posters, and around 
twenty participants in the sessions. TWG12 covers 
a range of topics related to history in mathematics 
education, but on an overall scale, submissions to 
the group may be distinguished by either concern-
ing “History in Mathematics Education” (HiMEd) or 

“History of Mathematics Education” (HoMEd). This 
time round, the group had five papers addressing top-
ics of HoMEd, while the remaining nine papers and 
two posters were concerned with issues of HiMEd 
at various educational levels, which also included 
teacher education.

BULLETS IN THE TWG12 CALL FOR PAPERS

For CERME9, TWG12 in particular welcomed empiri-
cal and theoretical research papers and posters, but to 
some degree also methodological and developmental 
papers related to one or more of the following issues 
(bullets below) – although any paper/poster of rele-
vance to the overall focus of the group was taken into 
consideration:

 ― Ways of integrating original sources in class-
rooms, and their educational effects, preferably 
with conclusions based on classroom experi-
ments;

 ― Surveys on the existing uses of history or epis-
temology in curricula, textbooks, and/or class-
rooms in primary, secondary, and tertiary levels;

 ― Design and/or assessment of teaching/learning 
materials on the history of mathematics;

 ― The role of history or epistemology of mathemat-
ics at the primary, secondary, and tertiary level, 
and in pre- and in-service teacher education, 
from cognitive, pedagogical, and/or affective 
points of view;

 ― Investigations or descriptions of the historical 
instances of research cultures and cultures of 
teaching and learning in mathematics; 

 ― Relationships between (frameworks for and em-
pirical studies on) history in mathematics educa-
tion and theories and frameworks in other parts 
of mathematics education; 

 ― Possible parallelism between the historical de-
velopment and the cognitive development of 
mathematical ideas; 

 ― Theoretical, conceptual and/or methodological 
frameworks for including history in mathemat-
ics education; 

 ― The potential role of history of mathematics/
mathematical practices in relation to more gener-
al problems and issues in mathematics education 
and mathematics education research. 

FOUR AREAS OF QUESTIONS FOR 
REFLECTIONS DURING SESSIONS

The work following the presentations of participants’ 
papers and posters was orchestrated by four over-
arching themes cutting across the topics of papers:

mailto:utj@edu.au.dk
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Meta-level or methodological 
reflections on HiMEd and HoMEd

 ― What (if any) is (could be) the role assigned to 
epistemological/historical reflection in some 
major mathematics education theoretical frame-
works: e.g. TDS; ATD; APOS; MKT; etc.?

 ― With regard to the local/global tension: Can large-
scale surveys (e.g., history of algebra, historical 
development of geometry, notion of proof from 
Euclid to Hilbert, evolution of the concept of func-
tion, etc.) go beyond the “bird’s eye view”? Can we 
elicit necessary conditions for such large-scale 
surveys to make any sense? Is the “epistemologi-
cal narrative” the only way to organize historical 
material on a large scale?

HiMEd – the student perspective
 ― Which theoretical perspectives provide fruit-

ful orientation for empirical studies designed 
to measure students’ engagement/learning/etc. 
of mathematics (when history of mathematics 
is “used”)? What measures are valued in such 
studies? What methods of analysis can be (should 
be) employed?

 ― What is the role of students’ mathematical ability 
(or mathematical interest or prior mathematical 
experience) in successfully including (elements 
of ) history of mathematics in the teaching of 
mathematics?

HiMEd – the teacher perspective
 ― What minimal/satisfactory level of command 

of history of mathematics can we reasonably at-
tempt to achieve in teacher training? 

 ― Sub-issue: The able reader: knowledge of avail-
able sources, distinction between primary and 
secondary sources (more generally, the ability to 
identify the nature of a source), ability to assess 
a document with a critical mind, deontological 
aspects (basically, citing one’s sources, indicating 
alterations when altering a text).

 ― Sub-issue: The epistemological toolbox: what 
descriptive/analytical concepts do we wish to 
make available to teachers? Concepts such as: 
proof-generated concept, zero-definition, con-
ceptual differentiation, analysis/synthesis, epis-
temic object/tool, etc. Beyond the toolbox, are 

there “facts” about the “nature of mathematics” 
that we find we ought to teach (cf. the wealth of 
literature in physics education on the “nature of 
science”)?

 ― To what extent should we expose (future) teach-
ers to elements of history of mathematics that 
have no direct connections with classroom con-
tents (in particular to enrich their “image” of the 
parts of higher mathematics, which they studied 
but will not teach)?

HoMEd – the mathematical education landscape
 ― Lessons from history that can be learned from 

the construction of the curriculum: Who is the 
curriculum mainly for? What “big” problems or 
issues does it aim to resolve? Who benefits most 
in the short and long run? What are the prefer-
ences of areas and topics from mathematics that 
are being promoted – and why? Who become the 
developers (and carriers) of the curriculum and 
how?

 ― How are mathematical institutions built and are 
they linked with the new curricula or aims of the 
society?

 ― How are cultural values created, narrated, and 
developed within the new mathematics education 
landscapes?

 ― What are the elements by which the tradition in 
mathematics education, practice, and research 
is perpetuated?

 ― What are the outputs of the new curricula/insti-
tutions/new mathematical education landscape 
(the material, the ephemeral, i.e. new values)?

In the following, we give examples of some of the spe-
cific questions addressed for each of these four topics. 
We conclude the report with some selected reflections 
related to the areas of questions.

SELECTED CONCLUSIONS

TWG12 participants – within both the small group 
and whole group discussions – had much to offer re-
garding the several subquestions related to the role 
of large-scale and small-scale surveys of history of 
mathematics. Several participants shared the view 
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that using a general survey of history (i.e., “global 
view”) helps to create a cultural landscape, which in-
cludes and accommodates multiple tools, concepts, 
and ideas – and which establishes a meaningful lens 
to use from the outset. Group discussions during 
CERME9 consistently returned to the notion that 
accessing and reading general surveys of history 
of mathematics provides a good starting point from 
which to approach resources. However, it was also 
important to access different types of resources so 
that practitioners would be equipped to address dif-
ferent views that emerge from history of mathematics 
in mathematics education. Participants also offered 
several examples of general survey textbooks and 
sourcebooks that would serve practitioners. 

Given the current educational landscape in several 
countries, particularly regarding curriculum re-
form, the participants of TWG12 spent a great deal 
of time discussing lessons that can be learned from 
the construction of curriculum over time. When 
considering the question, For whom is the curriculum 
constructed? participants believed that a country’s 
mathematics curriculum is for the ministers of edu-
cation.  However, this also raised further questions in 
the group’s discussion, such as, What does ‘curriculum’ 
mean? That is, there are several meanings and con-
texts that apply and what might be considered ‘curric-
ulum’ by one may not hold for another. Our group also 
discussed history in a different way when considering 
the questions of the fourth topic area. For example, we 
thought of historical heritage, and questioned wheth-
er mathematics curriculum had caught up with what 
is needed. And, of particular interest to many of the 
TWG12 participants, we raised the question of: How 
can history inform the decisions that are made with 
regard to mathematics curriculum? 

We look forward to exploring this issue in particular 
at the next CERME. 
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Mebahis-i İlmiye (1867–1869) was the first periodical 
on mathematical sciences published in 19th century 
Ottoman Turkey. The authors primarily attempted to 
introduce the mathematics required for the financial, 
societal, educational and military development of the 
country. This paper analyzes the periodical in order to 
understand (i) the fundamental reasons for its publica-
tion, and (ii) transmission of contemporary mathemat-
ics from Europe to Ottoman Turkey. Findings unveiled 
that the periodical had various reasons for mathematics 
education in the Ottoman society of the time. Moreover, 
it served the transmission issue to a certain extent.

Keywords: Mebahis-i İlmiye, Ottoman Turkey, history 

of mathematics education, reasons for mathematics 

education, transmission of mathematical knowledge.

INTRODUCTION

During the 18th and 19th centuries, the Ottomans trans-
mitted mathematical knowledge from Europe on the 
grounds that it was the leading region of the time 
in terms of mathematical sciences. The mathemati-
cal knowledge was chiefly conveyed by translating 
European textbooks. Periodicals were salient in this 
process too, because editors could compile various 
kinds of sources, such as excerpts from journal ar-
ticles, in accordance with the needs of the society. 
According to Günergun (2007), the earliest Turkish 
periodical introducing mathematical sciences was 
Mebahis-i İlmiye (Scientific Themes), issued between 
1867 and 1869 in Istanbul, capital of Ottoman Turkey. 
It was published in Ottoman Turkish, which included 
Arabic and Persian words and was written in Arabic 
alphabet. The authors aimed to contribute to the teach-
ing of pure and applied mathematics (other disciplines 
such as astronomy and physics). Mebahis-i İlmiye was 

a monthly publication of Cemiyet-i Tedrisiye-i İslamiye 
(Educational Society for Muslims) which was founded 
in 1865 by enlightened Ottoman state officials Yusuf 
Ziya Bey (1826–1882), ‘Vidinli’ Hüseyin Tevfik Bey 
(1832–1901) and Ahmet Muhtar Bey (1839–1919) with 
the goal of enlightening Muslim society by promoting 
mathematics and science education.

The idea of publishing the periodical belonged to 
Yusuf Ziya Bey, who was teaching basic arithmetic 
to apprentices in Grand Bazaar as an accountant in 
Daire-i Askeriye (Military Office) (Zeki, 1924). However, 
Hüseyin Tevfik Bey, a graduate of Mühendishane 
(School of Engineering) (Schubring, 2007), com-
mitted himself to the publication from the very 
beginning (Günergun, 2007). He was a remarkable 
mathematician and had a deep background in educa-
tion: military attaché and vice-principal in Mekteb-i 
Osmani (Ottoman School) in Paris. During the time 
of Mebahis-i İlmiye, he gave courses on mathemat-
ics and mechanics in Mekteb-i Harbiye (Military 
Academy), and he taught mathematics to apprentic-
es as a member of Cemiyet-i Tedrisiye-i İslamiye. He 
was well-known for his book originally titled “Linear 
Algebra” (first edition in 1882), in which he introduced 
the general notion of linear algebra independent of 
the terms ‘associative’ or ‘non-associative’ (Schubring, 
2007). Given Tevfik Bey’s education in the context of 
traditional Islamic mathematics and his later forma-
tion in European mathematics, he was the appropriate 
person for transmitting European mathematics into 
the Ottoman context of mathematics. Lastly, Ahmet 
Muhtar Bey, who was a graduate of Mekteb-i Harbiye, 
was teaching science in the time of Mebahis-i İlmiye 
in this school.

In her historical research, Günergun (2007) asserted 
that the periodical served the purpose of teaching 
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mathematical sciences for different groups of individ-
uals in the Ottoman society, which was considered as 
indispensable for the growth of national prosperity. 
Yet, there may be further reasons for publishing this 
periodical, which can be unfolded through mathe-
matics education literature. In accordance with Niss’ 
(1996) reasons for mathematics education in a soci-
ety, this study intends to analyze Mebahis-i İlmiye 
with respect to the motives leading to its publication. 
Moreover, it aims to clarify the mathematical tradi-
tions that the authors relied on in the publication, 
which will also reveal the transmission of mathe-
matical knowledge from European powers as the 

‘metropolis’ to the Ottoman Turkey as the ‘periphery’ 
(Schubring, 2000). Hence, the following research ques-
tions are asked: 

1) For what reasons did Mebahis-i İlmiye provide 
the 19th century Ottoman Turkey society with 
mathematics education? How were the reasons 
addressed in its content?

2) On which mathematical traditions did the au-
thors of Mebahis-i İlmiye rely?

According to Niss (1996), the reason why a society is 
educated in mathematics is “a driving force, typically 
of a general nature, which in actual fact has motivated 
and given rise to the existence (i.e. the origination or 
the continuation) of mathematics teaching within that 
segment, as determined by the bodies which make the 
decisions (including non-decisions) in the system at 
issue” (p. 12). Niss makes a distinction between the 
reasons addressing formative ends serving the indi-
viduals’ development, and those referring to practical 
ends resulting in practical outputs for the society.

Niss (1996) sets three categories of fundamental 
reasons for mathematics education: (i) technological 
and socio-economic development of society, (ii) politi-
cal, ideological and cultural maintenance and devel-
opment of society, and (iii) providing individuals with 
prerequisites which may help them to cope with life. The 
reasons may be driven by the desire for the societies’ 
own welfare or their effort for competing against the 
other groups of societies of the time. Related to tech-
nological and socio-economic development of society, 
mathematics education aims to train individuals who 
would serve their country as labor force of high qual-
ity. Such an education attempts to develop individuals 
with high abilities, knowledge and dispositions for 

performing their role in the society. In other words, 
it requires individuals to have “knowledge, skills, 
flexibility, and attitudes so as to allow them to obtain, 
manage, and develop jobs in the present and in the fu-
ture” (Niss, 1996, p. 25). This requirement connotes the 
indispensable relationship between science and com-
merce, manufacture and industry. Individuals should 
possess certain general qualifications (i.e., some ap-
plicable side of mathematics and geometry such as 
mensuration) as well as those specifically related to 
their vocation. The reasons of this first category are 
expected to produce practical ends. The global math-
ematics education in the 19th century substantially 
served this kind of reasons. 

The initial needs for a mathematics education have 
virtually sprung from the reasons under society’s 
political, ideological and cultural maintenance and 
development, for example, to meet the administrative 
requirements of the society. More precisely, this type 
of reasons indicate that mathematics education can 
assist individuals to become nationalist, collaborative, 
hardworking and dedicated to work for their society. 
Moreover, it enriches the individuals’ mental capa-
bility and skills, especially those related to reasoning.

Providing individuals with prerequisites which may 
help them to cope with life refers to making individu-
als to acquire the required knowledge and skills for 
different aspects of their daily lives such as business 
life, education, personal development and so on. This 
kind of reasons are valid for addressing practical ends, 
to exemplify, an individual may confront with a task 
in his work which requires the application of basic 
mathematics.

Schubring (2000) defines the notion of ‘transmission’ 
of mathematical knowledge as the dissemination 
process of mathematical ideas from scientifically es-
tablished ‘metropolis’ countries of the time to not yet 
scientifically productive countries in the ‘periphery’. 
In this process, contrary to a received view where by 
‘transmission’, it is understood to hand over concepts 
remaining identical, traditional and new mathemat-
ical knowledge becomes transformed according to 
the particular national, cultural and societal context 
of the peripheral country through an active role 
played by innovative individuals. Thus, in this con-
ception, reception transforms the received. Herein, 
the reasons behind such transmission are important 
as well. In order to examine such a transmission pro-
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cess, selecting a country, which was not colonized in 
the imperialism period, is a good choice because this 
situation could enable the country to be independent 
in receiving the new mathematical knowledge.

THE 18TH AND 19TH CENTURY CONTEXT 
OF THE OTTOMAN TURKEY

Decay strongly felt in the economic, educational, so-
cial and military fields was the main cause of the de-
crease in the political authority that existed in the 18th 

and 19th century Ottoman Empire. There were wars 
with neighboring countries and nationalistic up-
heavals in various communities under the Ottoman 
rule (Günergun, 2008). The Ottomans fought mostly 
against European and Russian armies, and most of the 
wars were lost. The defeats drew the Ottoman admin-
istrators’ attention to the superiority of the opposing 
military forces which developed new military organi-
zations (Günergun, 2006). The losses were also linked 
to complete regression including the abuses in the 
administrational and financial areas (Somel, 2001).

As a result of the decay, Ottoman Muslim adminis-
trators led a variety of necessary reforms in the 
above-mentioned fields to preserve the borders and 
to increase the prosperity of the Empire. In this sense, 
teaching of mathematics was initially modernized 
through the foundation of modern engineering 
and military schools in the late-18th and 19th century 
(İhsanoğlu, Şeşen, & İzgi, 1999). Günergun (2008) 
states that learning and application of the European 
scientific, mathematical and technical knowledge 
behind the military reforms were studied in these 
military schools which were systematized and tu-
tored by both Ottoman and European (e.g., French, 
English and German) professors, technicians and ex-
perts. The schools focused on reaching contemporary 
European mathematics and science (Günergun, 2008). 
Correspondingly, there was a need for new books in 
which western methods were utilized (İhsanoğlu et 
al., 1999). The Ottoman administrators and military 
officers translated and edited European mathematical 
texts (mostly French) including applied mathematics, 
geodesy, mechanics, ballistics, and so on (Günergun, 
2008). Mathematical studies according to the tradi-
tional eastern methods had seriously decreased af-
ter 1850. It was clear that these attempts by Ottoman 
scholars contributed greatly to the formation of the 
Ottoman mathematical and scientific nomencla-
ture which was formed of words in Turkish, Arabic, 

Persian and European languages in the 18th and 19th 
centuries (Günergun, 2006). Therefore, the Ottoman 
Turkey became a meeting point for the Eastern and 
the Western cultures of science (Günergun, 2008).

Mathematics education in the modern trend was ini-
tiated in 1775 with Hendesehane (School of Geometry) 
(Günergun, 2006). Technical training was first given 
here for military officers of artillery, fortification and 
navy. Various branches of mathematics were taught 
by French and Ottoman experts in the leadership of 
the French military expert François Baron de Tott. 
Some mathematical tools were imitated in parallel 
with the west. The sources for mathematics educa-
tion were mostly European texts at the beginning. 
The school was named as Mühendishane after 1781. 
Günergun (2008) states that teachers of this school 
in the 19th century translated and composed some 
European mathematics textbooks for teaching, for 
example, Ibrahim Edhem Pasha’s (1818–1893) transla-
tion of the geometry book by Adrien-Marie Legendre 
(1752–1833). Indeed, this was the time for replacing 
the medieval Islamic sources of mathematics by the 
modern European ones. Mühendishane-i Bahri-i 
Hümayun (Imperial School of Naval Engineering) 
was established in 1784. Çınari İsmail Efendi (died, 
probably 1790) and Gelenbevi İsmail (died 1790), who 
were teachers in this school, wrote translations and 
compilations regarding algebra and logarithms con-
sidering the European sources in addition to the 
traditional books on algebra. For instance, Çinari 
İsmail Efendi translated Cassini and Clairaut’s ta-
bles (Günergun, 2006). In order to train cadets in 
military officership and engineering that was neces-
sary for the modern army Nizam-ı Cedid (New Order), 
Mühendishane-i Berri-i Humayun (Imperial School of 
Military Engineering) was founded in 1795. Hüseyin 
Rıfkı Tamani (died 1818) was a prominent teacher in 
this school through his translated and edited geom-
etry and engineering textbooks from French and 
English. For instance, he and Selim Efendi translat-
ed John Bonnycastle’s (1750–1821) “Euclid’s Elements” 
from English as Usul-i Hendese (1797). Another teacher 
of Mühendishane-i Berri-i Humayun was Hoca İshak 
Efendi (died 1836) who wrote books on arithmetic, 
algebra, geometry and mechanical drawings based 
on the recent European mathematics. To illustrate, 
he used French Etienne Bézout’s (1730–1783) works 
in the first volume of his Mecmua-i Ulum-i Riyaziye 
(Compendium of Mathematical Sciences) (İhsanoğlu 
et al., 1999). In 1834, Mekteb-i Harbiye was founded to 
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train the cadets for the new army. This time a number 
of Ottoman administrators and teachers were trained 
in Europe (Günergun, 2006). To illustrate, Hüseyin 
Rıfkı Tamani’s son was Emin Pasha (died 1851), who 
graduated from University of Cambridge with his 
doctoral thesis “Calcul de Variation”, was assigned 
as director of Mekteb-i Harbiye in 1841. 

The modernization process addressed above was not 
easy to accomplish. There were uproars mainly from 
Yeniçeriler (Janissaries) and Ulema (the learned of 
Islam). The janissaries were opposed to any military 
reforms because they probably regarded new devel-
opments in the military as a threat for their existence. 
They had further become extremely influential in 
politics with their conservative character. They cre-
ated telling crises of modernization, for instance, de-
stroying the institutions of Nizam-ı Cedid (e.g., print-
ing house and schools) after the military defeats in 
Balkans and Arabian geography, and deposing Sultan 
Selim III in 1807 (Abdeljouad, 2012). In 1826, the re-
formist Sultan Mahmud II (1808–1839) abolished the 

Yeniçeri Ocağı (Corps of Janissaries) on the grounds 
that the janissaries had become inefficient as war-
riors. He established a modern army titled Asakir-i 
Mansure-i Muhammediye (Muhammed’s Victorious 
Army) which completely replaced the rebellious 
Janissaries in 1826.

FINDINGS

Mebahis-i İlmiye had two volumes formed of issues 
corresponding to 1867 and 1868. During the publi-
cation period, there were main topics serializing a 
mathematical subject or mathematics problems for 
the public. In Table 1, main topics in the periodical 
are illustrated with corresponding author(s) and brief 
contents.

Table 1 indicates that the topics in Mebahis-i İlmiye 
consisted of collections from both pure and applied 
mathematics. No primary research existed, hence 
Mebahis-i İlmiye can be characterized as a periodical 
rather than a journal. The authors apparently reflect-

Main Topics Author(s) Contents

Hesab-ı Müsenna (Dual 
Arithmetic)

Hüseyin Tevfik Bey Oliver Byrne’s dual arithmetic with explanations

Fenn-i Basite    (Science of 
Sundial)

Ahmet Muhtar Bey Construction and usage of Islamic sundials 

Fenn-i Makine (Mechanical 
Sciences)

Hüseyin Tevfik Bey The concepts of mechanical operation of machines

Mahsusat ve Gayrimahsusat 
(Perceptible and Imperceptible 
Matters)

Hüseyin Tevfik Bey Physics: motion, movements of the earth, Newton’s 
law of gravitation…
Metaphysics: logic, philosophy of knowledge…

Arsa Taksimi
(Partition of Lands)

Hüseyin Tevfik Bey Division of lands with various geometrical shapes

Emsile
(Examples)

Anonymous 17 problems asked to the reader and their solutions 
sent to the periodical

From Public to the Reader* Anonymous Problems sent by newspapers and their solutions by 
the periodical

Vocational Mathematics* Hüseyin Tevfik Bey & 
Yusuf Ziya Bey

Mathematical knowledge and skills needed for indus-
try or craft segments to increase effectiveness

Topics from European Science* Hüseyin Tevfik Bey Contemporary topics from European mathematics 
journals

Islamic Contributions to 
Science*

Hüseyin Tevfik Bey & 
Yusuf Ziya Bey

Topics from Islamic mathematicians’ textbooks 
(e.g., al-Karaji’s proof for                             13+23+33+…+n3 = 
[1+2+3+…+n]2)

Topics from Greek Mathematics* Hüseyin Tevfik Bey Diophantus’s problem on five equations with five un-
knowns

Main topics with a ‘*’ mark are categorized by the authors of this study considering the aim and content of shorter 
papers.

Table 1: Main topics in Mebahis-i İlmiye by the authors and contents
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ed their educational background and their lectures 
in Mekteb-i Harbiye when selecting and ordering the 
main topics such as Fenn-i Basite (Günergun, 2007). 
The periodical included recent European mathemat-
ics, ancient Greek mathematics and medieval Islamic 
mathematics.

Technological and socio-economic 
development of the society
Some of the articles under Vocational Mathematics* 
seem to stress the relationship between industry 
and science. It was stated in Hüseyin Tevfik Bey’s 
Sanayiinin Muhtac Olduğu Ulum (Knowledge Needed 
by Industry) that blacksmiths should master mechan-
ics, drawing, geometry and the relevant computation 
underlying metal working. Goldsmiths had to know 
basic chemistry, drawing and geometry. It was also 
noted that theoretical knowledge provided by sci-
ence was a must for improving crafts and industrial 
professions. It is not solely dependent upon practical 
knowledge. In another article by Hüseyin Tevfik Bey, 
Bakırcılık ve Demirciliğe Mütealik Bir Mesele (An Issue 
in Copperworking and Ironworking), the optimum 
ratio between the radius (of the base) and height of 
a container was given to produce the container with 
the smallest possible surface area and the least raw 
material. Kavaid-i İlm-i Hisab (Rules of Arithmetic) 
was the serial of an arithmetic book written by Yusuf 
Ziya Bey for educating the students of the Cemiyet-i 
Tedrisiye-i İslamiye’s school. The content mainly con-
sisted of numbers (integers, rational numbers, prime 
numbers, irrational numbers), the arithmetical op-
erations, checking the results of the operations, ex-
traction, ratio and proportion, and equations. This 
could be for training “‘human calculators’ for busi-
ness and commerce” (Niss, 1996, p. 25). 

Another relevant main topic was Fenn-i Makine 
(Mechanical Sciences). Based on his lecture notes in 
Mekteb-i Harbiye, Hüseyin Tevfik Bey explained the 
basic concepts such as velocity, time, rotation, power, 
resistance, motion, work and efficiency needed for 
geometrical and mechanical study of machines. He 
intended to teach the characteristics and working 
principles of machines and how to construct them.

Arsa Taksimi (Partition of Lands) included common 
problems for dividing lands of various geometrical 
shapes and their solutions according to the recent 
scientific methods of the time. Partition of triangular 
areas into two or three equal parts and curvilinear 

areas through integral calculus such as the trapezoi-
dal rule, Thomas Simpson’s (1710–1761) rule and Jean-
Victor Poncelet’s (1788–1867) rule. Exploiting such 
new European sources in the periodical illustrates 
the notion of transmitting mathematical knowledge. 
Moreover, some widely consulted measurement in-
formation about surfaces and solid matters was pro-
vided for workers. 

In Emsile (Examples), there were questions which 
would familiarize the audience with the working 
principles of some technological tools of the time 
such as pendulum (#14), lenses (#15) and barometers 
(#17). These questions were selected for those asked 
to students of a French lycée, and they indicate an 
attempt to knowledge transformation.

Political, ideological and cultural maintenance 
and development of the society
From political and ideological perspectives, the au-
thors emphasize Islamic Contributions to Science* 
through several articles. For example, Hasan bin Ali 
bin Ömer el-Marakeşi’nin “Cami el-mebadi ve’l gayat fi 
amel el felekiyat” Nam Kitabından Tercüme Olunmuş 
Bir Meseledir (A Problem Translated from Hasan ibn 
Ali ibn Omar al-Marrakechi’s Book Titled “Cami el-me-
badi ve’l gayat fi amel el felekiyat”) by Yusuf Ziya Bey 
was the translation of a problem on latitude and decli-
nation from a book by al-Marrakechi, a Moroccan as-
tronomer of the 13th century. The geometrical method 
in this problem based on length of shadow and geomet-
rical path did not require observational tools or loga-
rithmic scales. Bir Zaman Ulema-yı Arabın Malumları 
Olan Havas-Adaddan Bir Mesele (A Problem Known 
by Arab Scholars in Former Times) gave place to geo-
metric justification of the sum of the cubes problem, 
13+23+33+…+n3=(1+2+3+…+n)2, which referred to al-Kara-
jī’s (953–1023) famous book titled al-Fakhri fi’l-jabr 
wa’l-muqabala (The Glorious Book of Algebra).

The periodical presented cultural perspectives by 
means of displaying the interdisciplinary character-
istics of mathematics and multi-cultural face of mathe-
matics. To illustrate, mathematics was linked to other 
disciplines such as astronomy and physics. Real life 
problems like al-Marrakechi’s calculation of latitude 
and declination can be shown as an example of the link 
between mathematics and astronomy. As for mathe-
matics and physics, Fenn-i Muvazene-i Miyah Usulü 
ile Bir Dairenin Mesaha-yı Sathiyesini Tayin (Finding 
the Area of a Circle with Fluid Mechanics Method) 
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under Topics from Greek Mathematics* discussed a 
law by Archimedes and the related proof. It was about 
finding the area of a circle which served as a basis for 
a cylinder whose height was equal to the diameter of 
the circle. In order to find the area of this circle, the 
cylinder was filled with water. Then the water was 
transferred into a cube that had a length of the diame-
ter of the circle. The area of the circle was equal to the 
product of the length of the cube and the height of the 
water in the cube. Mathematics in physics could also 
be distinguished in Emsile through some problems 
regarding the concepts of heat and temperature (#3), 
mass and density (#5), velocity (#4), and so on. 

Mahsusat ve Gayrimahsusat (Perceptible and 
Imperceptible Matters) contained issues of physics 
and philosophy. Newton’s law of gravitation, which 
could be considered as relatively new mathematics-re-
lated knowledge, was utilized to distinguish between 
perceptible and imperceptible matters which were 
explained as that could be observed (e.g., free fall of 
objects) and could not be directly observed (e.g., gravi-
tational force). Herein, the necessity of asking the pos-
sible reasons behind the perceptible matters in daily 
life was stressed as well, for instance, why balloons 
fly rather than fall to the ground. Force, absolute and 
relative motion, the Earth’s daily and yearly rotation 
were also explained in the same manner. 

Mebahis-i İlmiye also took up interesting contempo-
rary topics in order to develop curiosity for mathe-
matics revealing the mystery of the universe. Hüseyin 
Tevfik Bey’s Arıların Peteklerinin Müseddes El-Şekl 
Olmasının Sebep ve Hikmetine Dairdir explained why 
bees made hexagonal wax cells in their nests together 
with the related mathematical proof. This subject and 
all the others under Topics from European Science* 
seemed to contribute to the transmissions from the 

‘metropolis’.

In order to make the society more intellectual, 
Mebahis-i İlmiye allowed exchange of ideas (Günergun, 
2007). The periodical published the answer of Emsile 
#3 by Saadet Efendi, a teacher in Mekteb-i Harbiye; and 
the answer of Emsile #7 by Zeki Efendi as a second 
grader in the same academy. In the latter, it was notable 
that Hüseyin Tevfik Bey stated that there might be al-
ternative solutions. The authors of the periodical also 
published the answer to an interest payment problem 
by İstanbul Gazetesi (Istanbul Newspaper) in From 
Public to the Reader*. In Mahsusat ve Gayrimahsusat, 

Hüseyin Tevfik Bey criticized Resul Mesti Efendi’s 
essay in a newspaper claiming that the earth does not 
move. This was in line with the periodical’s modern 
view of science.

Providing individuals with prerequisites of life
Mebahis-i İlmiye included some basic mathematics re-
quired for individuals’ day to day working life. Under 
Vocational Mathematics*, Mesele: Acaba Ayakları Ne 
Vecihe Vaz Etmekte Ziyade Faide Vardır (Issue: What 
is the Effective Position of Legs to Firmly Stand Up) by 
Hüseyin Tevfik Bey accounted for the ideal geomet-
rical standing position for a soldier when on guard. 
In Fenn-i Basite (Science of Sundial), how to design, 
construct and use the Islamic sundial was displayed 
in order to help local timekeepers determine the five 
prayer times in a day and also the Mecca direction for 
prayers. Another topic here was Fenn-i Makineden 
Dülgerliğe Dair Bazı Mebahis (Some Issues about 
Woodworking, A Branch of Mechanical Sciences) in 
which matters of physics such as force (e.g., direction, 
magnitude) and resultant force for the construction 
of poles underlying the construction of wooden build-
ings were explained. The content of Mebahis-i İlmiye 
was also composed of mathematics serving the indi-
viduals’ educational life and personal development. 
Emsile #14, #15, #16 and #17 were mathematical prob-
lems taken from French periodicals for lycée students 
published a decade earlier. Lastly, mathematical prob-
lems that would be encountered in everyday private 
lives were presented, for example, the interest prob-
lem in İstanbul Gazetesine Cevap (Answer to Istanbul 
Newspaper).

CONCLUDING REMARKS

Findings indicate that Mebahis-i İlmiye addressed 
all the three kinds of reasons for mathematics edu-
cation (Niss, 1996) to a certain degree. The authors 
utilized transformation of the recent knowledge of 
both pure and applied mathematics from Europe, 
mainly from France, as the ‘metropolis’ of the time 
(Schubring, 2000). Reception occurred in the difficult 
social setting of conflicts between modernizers and 
traditionalists, and within the already existing cul-
ture of Islamic mathematics. An important aspect of 
this transmission was the development of a terminol-
ogy for the modern mathematics in Ottoman Turkish 
language, since the traditional mathematics did not 
provide terms for the new developments in the field. 
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The development of an own terminology is essential 
for an eventual take-off. 

Future research will, on the one hand, focus on iden-
tifying the public reading of this periodical and its 
reception in the 19th century Ottoman Turkey and, on 
the other hand, introducing an international compar-
ative dimension on the transmission of mathematical 
knowledge to the other 19th century non-colonized 
countries (e.g., China) which have original mathemati-
cal cultures (e.g., the development of 19th century pub-
lications in mathematics). The further comparative 
studies may assess results of the project, begun in 
France in 2013, on Circulations des mathématiques 
dans et par les journaux: histoire, territoires et publics. 
The transmissions of mathematical knowledge from 
Europe to the Ottomans by Mebahis-i İlmiye, which is 
investigated in this paper, can shed light on a broad 
systematic investigation of the above-mentioned 
future research. Moreover, Mebahis-i İlmiye’s pro-
motion of mathematics education can enable such a 
further study to reveal national, cultural and societal 
motives behind the transmission in a clear way.
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Was Euclid in Iceland when he 
was supposed to go?

Kristín Bjarnadóttir

University of Iceland, School of Education, Reykjavík, Iceland, krisbj@hi.is

In a seminar on new thinking in school mathematics, 
held in Royaumont, France, in 1959, one of the main 
speakers, Jean Dieudonné, summarized the new school- 
mathematics programme he had in mind in the sen-
tence: Down with Euclid. The purpose of the article is 
to analyse the context in which this quote was expressed 
and connect it to geometry teaching in Iceland where 
Euclidean geometry instruction seldom had a firm 
ground. Euclidean geometry in an amended version 
gained new interest in Iceland by the introduction of 
the New Math in the 1960s.

Keywords: Royaumont seminar, Dieudonné, Euclidean 

geometry, New Math. 

INTRODUCTION 

One of the most renowned phrases connected with 
the Royaumont seminar in November 1959, where the 
reform movement, entitled New Math, was launched 
world-wide, was ‘À bas Euclide’ (Down with Euclid), 
attributed to Jean Dieudonné, who belonged to the 
Bourbaki-group. This seminar led to substantial 
alterations in mathematics teaching and geometry 
teaching in particular. In the following, some conse-
quences of this reform movement will be considered 
with special respect to geometry teaching in Icelandic 
schools. The research questions are:

In what context was the above quote expressed?

What context did the New-Math geometry meet 
in Iceland?

The research method is historical: i.e., a careful anal-
ysis of a range of documents. The history is traced 
by referring to scholars’ published work, legislation, 
regulations, reports, articles and mathematics text-
books, and the remembrance of the author of this arti-

cle. Textbooks were analysed, their forewords as well 
as their mathematical content, and information about 
their lifetime was sought in official reports. 

The importance of this study is contained in an 
analysis of some important seeds for development 
of school mathematics, sowed at Royaumont more 
than half century ago, but also in an analysis of an 
example of a dissemination process of mathematical 
ideas from scientifically established ‘metropolis’ of the 
time to a not yet scientific ally productive one in the 

‘periphery’ (Alpaslan, Schubring, & Günergun, 2015).

BACKGROUND 

The New Math movement and 
the Royaumont seminar  
In the aftermath of WWII, reforms of mathemat-
ics and science teaching were considered in many 
countries. A notable arena was the Commission 
Internationale pour l’Étude et l’Amélioration de 
l’Enseignement des Mathématiques, CIEAEM, 
the International Commission for the Study and 
Improvement of Mathematics Teaching, founded in 
1950. Among its members were the Swiss psycholo-
gist Jean Piaget, mathematicians Jean Dieudonné and 
Gustave Choquet from France, and some outstanding 
secondary school teachers. The main concern of the 
CIEAEM was a growing attention to the student and 
the process of teaching, the relevance of psychology 
in mathematics education, the key role of concrete 
materials and active pedagogy, and Piaget’s research 
of the relation between mental and mathematical 
structures as introduced by the French Bourbaki 
group of mathematicians, including Dieudonné, 
called Mathématique Moderne, Modern Mathematics 
(Furinghetti, Menghini, Arzarello, & Giacardi, 2008).

The actions of the CIEAEM, containing important 
germs of didactic research, were paralleled by the 
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New Math movement in the United States. World War 
II had focused national attention on the growing need 
for trained personnel to serve an emerging techno-
logical society (Osborne & Crosswhite, 1970), and 
several important school mathematics projects were 
launched. The actions by CIEAEM and the New Math 
movement had roots in common with the Bourbaki 
School: set theory, functions, relations and logic were 
to be placed in the new curricula, supported by the 
methodology of discovery. The reform movements 
gathered at a seminar on school mathematics reform 
in November 1959, held by OEEC, the Organisation 
for European Economic Co-operation, at Royaumont, 
France. The member countries were invited to send 
three delegates each, and the seminar was attended 
by representatives from all the invited countries ex-
cept Portugal, Spain and Iceland. A questionnaire was 
sent out before the seminar and replies were reported 
from most countries, also from Iceland (OEEC, 1961, 
pp. 7, 135–140, 213–219). 

Down with Euclid!
Among the guest speakers at the Royaumont seminar 
was Jean Dieudonné from the CIEAEM. In his speech, 
reproduced in full in the seminar’s report (OEEC, 1961, 
pp. 31–46), he described the diverse curriculum that 
first year students at university should master: on 
one hand to be familiar with a certain number of el-
ementary techniques in which it takes a long time to 
achieve proficiency, and on the other hand be already 
fairly well trained in the use of logical deduction and 
have some idea of the axiomatic method (p. 32). In the 
universities, new developments in analysis had been 
incorporated in the curriculum. Under the new over-
crowded curriculum, most students emerged with the 
haziest notions about it. 

Easing this squeeze could only be done in one way: 
The curriculum of the secondary schools had to be 
reorganized to eliminate any undue waste of time. 
Some elements of calculus, vector algebra and a little 
analytic geometry had recently been introduced for 
the last two or three years of secondary school, while 
such topics had been relegated to a subordinate posi-
tion, the centre of interest remained as before pure 
geometry taught more or less according to Euclid 
with a little algebra and number theory (pp. 33–34). 
In Dieudonné’s opinion, the day of such patchwork 
was over. Much deeper reform was required, and if 
he were to summarize the whole programme he had 
in mind in one slogan, it would be: Down with Euclid! 

Recently, it had become possible to reorganize the 
Euclidean corpus placing it on simple and sound 
foundation – separating what is fundamental from 
a chaotic heap of results with no significance except 
as scattered relics of clumsy methods or an obsolete 
approach. The whole course could actually be taught 
in three hours: one of them occupied with the descrip-
tion of the axiomatic system, one by its useful con-
sequences and possibly a third one by a few mildly 
interesting exercises (p. 35).

Actually, the whole system could easily be replaced 
by an axiomatic system producing two-dimension-
al linear algebra. The present process of teaching 
geometry was fantastically laborious, no complete 
system of axioms was ever stated and it was complete-
ly impossible to check the correctness of any proof. 
Dieudonné suggested the following list to take the 
place of Euclidean geometry (pp. 37–38):

a) Matrices and determinants of order 2 and 3.

b) Elementary calculus (functions of one variable).

c) Construction of the graph of a function and of 
a curve given in parametric form (using deriv-
atives).

d) Elementary properties of complex numbers.

e) Polar coordinates.

Dieudonné’s guiding principles were two: Firstly, that 
a mathematical theory could only be developed axio-
matically in a fruitful way when a student has already 
acquired familiarity with the corresponding material, 
i.e. with constant appeal to intuition. The other prin-
ciple was that when logical inference is introduced 
in some mathematical question, it should always be 
presented with absolute honesty without trying to 
hide gaps or flaws in the argument (p. 39). 

In his outline of a modern curriculum, Dieudonné 
recommended to limit the teaching of mathematics 
up to the age of 14 to experimental work with alge-
bra and plane geometry and to make no attempt at 
axiomatization. He referred to recent research and 
experimentation in educational circles, especially 
in Belgium, concerning the methods by which this 
teaching of geometry as a part of physics could be 
conducted. This development should be highly en-
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couraged, provided it did not put the emphasis on such 
artificial playthings as triangles, but on basic notions 
such as symmetries, translations, compositions of 
transformations etc. (pp. 40–41). 

The language and notations universally in use, such as 
∊ and ⇒, should be introduced in these experimental 
mathematics as soon as possible, and objects should be 
called by their proper name like ‘group’ and ‘equiva-
lence relation’ whenever such an object was naturally 
observed in some algebraic or geometric setting. This 
did not at all imply to develop in advance the abstract 
theory of those objects. The laws of arithmetic could 
also be developed, starting from the ‘Peano axioms’ 
(p. 41).

Dieudonné proposed detailed programme for age 14 
with the idea of a graph of functions; age 15 when a 
statement of axioms of two-dimensional linear alge-
bra should be given with both algebraic and geomet-
ric interpretation, by emphasis on the various linear 
transformations and the groups they form; age 16 with 
deeper study of the groups of plane geometry, and in 
particular the use of angles and of trigonometric func-
tions; and age 17 with three dimensional geometry by 
use of matrices and determinants. The programme 
should lead up to and connect directly with the then 
present programme of the first years in the university 
(pp. 42–45). 

GEOMETRY IN ICELAND

Earlier times
Iceland was a tributary of Denmark since the 14th cen-
tury. Its population was 40.000–50.000 until the 19th 
century. There was no army and therefore no mili-
tary academy and no need to teach geometry for that 
purpose. The sole Learned School adhered to Danish 
regulations of the Royal Directorate of the University 
and the Learned Schools. A certain number of grad-
uates from the school had priority for grants at the 
University of Copenhagen, (Þorláksson, 2003, p. 382) 
until Iceland’s sovereignty in 1918. 

In 1822, Björn Gunnlaugsson (1788–1876), who had 
studied mathematics at the University of Copenhagen, 
came to work at the school, to stay there until 1862. 
In his inauguration speech, Gunnlaugsson empha-
sized the utility aspect of mathematics education. 
During summers of 1831–1843, he travelled around 
the country to make geodetic surveys as a basis for 

a scientifically drawn map which served as a basis 
for maps of Iceland into the 1900s. Gunnlaugsson 
taught the prescribed syllabus of arithmetic, algebra 
and geometry by textbooks that were stipulated for 
the learned schools by the Royal Directorate, but re-
marked in his reports of 1823 that he gave exercises 
in land-surveying in order to enhance the students’ 
interest. Gunnlaugsson wrote his own textbook in 
geometry in Icelandic. The yearly cohort of learned-
school graduates was 10–12 students which was not 
enough for such a publication. Danish legislation of 
1871 prescribed streaming at the learned schools. The 
Icelandic school could only offer one stream, language 
and history stream, and mathematics teaching became 
severely reduced. Students who wanted to study math-
ematical subjects at tertiary level, such as engineering, 
had thereafter to spend an extra year in Denmark. 
That situation remained until 1919 (Bjarnadóttir, 2007, 
pp. 87–90, 108, 110–170). 

The Jul. Petersen’s secondary 
school geometry textbook
The Danish geometry textbook, Lærebog i elementær 
Plangeometri [A Textbook in Elementary Plane 
Geometry] (Petersen, 1870) was adopted in 1877 in the 
Icelandic Learned School for the lowest grade where 
the average age of students was 14 years but could be 
in the range 13–16 yrs. It remained on the reading list 
into the 1970s – in translation from 1943 – with breaks 
in the 1920s while a textbook by Daníels son (1920) was 
in use in the late 1930 and in the 1960s during the in-
fluence of the New Math reform movement (School 
reports for the Reykjavík School, 1846–1976). 

The content of Jul. Petersen’s plane geometry text-
book is probably typical of European textbooks in 
Euclidean geometry. In chapter one, several funda-
mental concepts are listed and the postulate that one 
and only one line may be drawn through two points. 
The structure: Fundamental concepts and their postu-
lates – Definitions – Theorems with proofs, is explained. 
In next two chapters, enough definitions and the 
parallel postulate are presented in order to be able 
to present theorems and their proofs. Chapter four is 
devoted to triangles and chapters five to seven to con-
structions using circles and triangles. Chapters eight 
to twelve concern angles and arcs, trapezes and par-
allelograms, the loci of points, similar triangles, and 
measuring area, with appropriate definitions, theo-
rems, proofs and constructions. One might interpret 
Dieudonné’s speech so that the first three chapters 
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sufficed as geometry teaching. Against that, one could 
say that objects for exercising proofs on were then 
lacking, such as the triangles, Dieudonné’s ‘artificial 
playthings’.

Even if this textbook managed to survive in the 
Reykjavík School for a century, it had notable criti-
cism. In Denmark, the textbook was intended for the 
so-called Mellemskole [middle school] for age 11–14 
(Hansen, 2002, p. 40). A reviewer said about Petersen’s 
1905 edition:

... one reads between the lines the author’s dis-
gust against modern efforts, which … deals with 
making children’s first acquaintance to the math-
ematics as little abstract as possible by letting 
figures and measurements of figures pave their 
way to understanding of the geometry’s content 

... Working with figures ... aids the beginner in un-
derstanding the content of the theorems, which 
too often has been completely lost during the 
effort on ‘training the mind’. If the author knew 
from a daily teaching practice, how often pupils’ 
proofs have not been a chain of reasoning but a 
sequence of words, he would not have formed his 
introduction this way ... for the middle school it 
[the textbook] is not suitable.1 (Trier, 1905)

In Petersen’s obituary in 1910 it said:

… People began to realize that the advantages of 
these textbooks were more obvious for the teach-
ers than for the pupils ... the great conciseness 
and left-out steps in thinking did not quite suit 
children. These books were excellent when the 
whole syllabus was to be recalled shortly before 
examination, but if the students were to acquire 
new material one had to demand a wider form 
for presentation. (Hansen, 2002, p. 51) 

A student at the University of Copenhagen, Finnur 
Jónsson, later philology professor, wrote in 1883, crit-
icizing Reykjavík Learned School and its regulations:

... the new regulations have [prescribed] ... that 
the [geometry] study is to commence in the first 
grade; in order to grasp it, more understand-
ing, more independent thought is needed than 
first-graders master … [I] tutored two [first grade] 

1  Translations of quotes were made by the author of this paper.

boys in geometry … and for both of them it was 
very difficult to understand even the simplest 
items; but the reason was that they did neither 
have the education nor the maturity of thought 
needed to study such things, which is very natu-
ral. (Jónsson, 1883, p. 116; underlining KB)

The pupils of the Learned School were sons of farmers, 
priests and other officials who also made their living 
from farming, so the majority of the pupils came from 
farming communities where there were no prima-
ry schools. The novices were prepared for school at 
home and by priests in Latin, Danish and basic arith-
metic, and had seldom met geometric concepts. Land 
was e.g. not measured in square units. Dieudonné’s 
first guiding principle was that a mathematical theory 
could only be developed axiomatically in a fruitful 
way when a student had already acquired familiarity 
with the corresponding material, i.e. with constant 
appeal to intuition. This is in accordance to Jónsson’s 
remark that the pupils did not possess “the maturity of 
thought” needed to study deductive geometry as pre-
sented in Jul. Petersen’s textbook. The young pupils 
had not acquired familiarity with the corresponding 
material with the appeal to intuition that Dieudonné 
recommended.

Daníelsson’s high school geometry textbook
The textbook Um flatarmyndir [On plane geometry] 
by Ó. Daníelsson (1920), intended for novices at the 
six-year Reykjavík High School, around age 14, may be 
interpreted as strictly adhering to the Euclidean tra-
dition. It began by a section on limits to prepare prov-
ing the existence of irrational numbers. Next section 
was a list of definitions. The author admitted in his 
foreword that his experience was that students were 
relieved when that section was completed. The third 
section was on parallel lines, followed by exercises 
whereof there were five on computing angles, one 
of them in the hexadecimal system, and all exercises 
after that through chapter six out of fifteen, were on 
proving on the basis of the definitions and theorems 
introduced. Following exercises were alternatively 
on constructions and proving, and computations by 
recently proved formulas, such as Heron’s formula on 
area. Eventually, On plane geometry was transferred 
up to the upper level. Geometry was again required 
for novices in 1937. From that time, Danish textbooks 
were translated, among them Peterson’s Geometry in 
1943 (School reports, 1846–1976). 
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The first two grades were dropped from the high 
school level in 1946 and after that there was no 
Euclidean geometry below the age of 16. There was 
shortage of trained mathematics teachers who had to 
seek their training abroad, traditionally in Denmark 
with which all connection was broken during World 
War II. Only five high school teachers in the whole 
country had graduate degree in mathematics in 1959. 
Training of engineers at University of Iceland began 
in 1940 due to the broken connection to Denmark. 
Mathematics had not been taught before at the uni-
versity. Mathematics teachers might be trained in 
engineering or natural sciences. In the 1960s, the 
high schools had to cope with up to ten times as 
many students as at Daníelsson’s time, beginning 
their mathematical training at the age of 16 by stud-
ying Petersen’s (1943) Plane Geometry (Bjarnadóttir, 
2007; School reports). The experience of the author 
of this article in 1959–1960 was that the main empha-
sis laid by a geologist teacher was on construction, 
the scattered relics of clumsy methods, according to 
Dieudonné, and the axiomatic structure of the content 
was scarcely visible.

Other school levels 
The first primary school legislation in 1907 contained 
requirements on knowledge in computations of area 
and volume of common objects. These requirements 
were repeated in national curriculum documents is-
sued in 1929 (Námsskrá fyrir barnaskóla, 1944) and 
1960 (Menntamálaráðuneytið, 1960). By the introduc-
tion of the New Math, a draft national curriculum 
was made, but when it came to geometry, the authors 
claimed that experience was lacking to build geome-
try on (Drög að námsskrá, 1970). So, indeed, the only 
geometry taught at compulsory school level before 
the introduction of the New Math was mensuration, 
computing area and volume.

The studies at the University of Iceland were tailored 
after the Technical University in Copenhagen. The 
mathematical subjects were mathematical analysis 
and linear algebra and no Euclidean geometry, but 
they surely built on the high school training.

The New Math in Iceland
For the Nordic countries the Royaumont Seminar was 
a catalysing event. The Nordic participants agreed 
upon organising Nordic cooperation on reform of 
mathematics teaching. A committee, Nordiska kom-
mittén for modernisering af matematik undervisningen 

(The Nordic Committee for Modernizing Mathematics 
Teaching), abbreviated as NKMM, was established. 
The committee produced model textbooks which were 
then translated into the various Nordic languages. 
Iceland did not have a member in that committee but 
learned about its activities through personal contacts 
of high-school and university mathematics teachers G. 
Arnlaugsson and B. Bjarnason with Svend Bundgaard 
who was guest speaker at Royaumont. Arnlaugsson 
and Bjarnason were the leaders of the introduction 
of New Math in Iceland (Bjarnadóttir, 2015). Their 
choices of textbooks for mathematics-teacher train-
ing witness that they were aware of Dieudonné’s rec-
ommendations. 

Bjarnason chose a Danish textbook: Matematik 65 
(Christiansen and Lichtenberg, 1965), for a special 
course to train high school mathematics teacher stu-
dents, the first time a course of its kind was run in 
the academic year 1966–67 for only three students. 
Other courses were part of a programme for engineer-
ing students. Section V of Matematik 65 concerned 
questions from geometry. The authors remarked that 
around the last turn of the century, David Hilbert had 
succeeded in composing such a system of axioms that 
could follow Euclid’s thought and solve all Euclid’s 
unsolved problems at the same time (pp. 309–311). 
They also mentioned Gustave Choquet’s system of a so-
called transformation geometry with few but strong 
axioms: 5 undefined concepts (plane, point, line, dis-
tance function and order relation) in a set-theoretical 
presentation; and 4 axioms (10 in total with sub-axi-
oms): axioms of incidence, axioms of order, axioms 
for affine structure, and a folding (symmetry) axiom 
(Christiansen and Lichtenberg, 1965, pp. 312–320; 
Choquet, 1969, pp. 17–75). Choquet was also member of 
CIEAEM and guest speaker at Royaumont. Dieudonné 
may have referred to his work in that recently it had 
become possible to reorganize the Euclidean corpus, 
putting it on simple and sound foundation.  

For the training of teachers at primary level, one of 
the three teacher students was entrusted to give a 
course in the New Math style in 1967. Bjarnason and 
Arnlaugsson chose a Danish textbook on geometry 
(Anderson Bo, Nielsen and Damgaard Sørensen, 1963) 
which was built on basic notions such as symmetries, 
translations, compositions of transformations, etc., as 
Dieudonné suggested. For the more advance students, 
an American textbook by Schaaf (1965) was chosen. 
These three books for training mathematics teach-
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ers at different stages were not in use for a long time, 
however. Not many educators were ready to interpret 
them, and the educational system was in flux. The 
training of compulsory school teachers was trans-
ferred to tertiary level and reorganized, as was the 
training of high school teachers. Arnlaugsson and 
Bjarnason became principals for new modern high 
schools and did not work further on promoting the 
New Math (Bjarnadóttir, 2015).

Some products of the NKMM for the primary and 
lower secondary school levels were translated into 
Icelandic. Primary level mathematics textbooks, 
written by Agnete Bundgaard, Svend Bundgaard’s 
sister, and E. Kyttä, were translated year by year, be-
ginning in experimental edition in 1966 (Bundgaard 
and Kyttä, 1967–1972). It had not reached the geometry 
in volume 5 when a draft national curriculum (Drög 
að námsskrá, 1970) was published, and people there-
fore did not know how to present New-Math geometry 
for primary level. For the lower secondary level the 
NKMM Rúmfræði [Geometry] by Bergendal, Hemer 
and Sander (1970) was translated with foreword by 
Arnlaugsson. It was based on set theory with e.g. lines 
defined as sets of points, but no axiomatization. Both 
products provided teachers with new ideas about ge-
ometry for compulsory level while both were in use 
for less than a decade.

During a six-year period, 1967–1973 various texts with 
new topics were tried in Iceland in order to replace 
Petersen‘s Geometry in high schools, such as NKMM-
texts with emphasis on vectors, functions and their 
derivatives, and Book T4 in the British SMP series 
(School Mathematics Project, 1966), which aimed at 
linking algebra and geometry by vectors and matri-
ces to present transformations and their combina-
tions, with a final chapter on algebraic structure of 
matrices and examples of groups of transformations. 
These texts included trigonometry. Influences from 
Royaumont were thus channelled to Iceland through 
various routes: from the Nordic countries, the United 
States and from Britain.

SUMMARY AND CONCLUSIONS

We may understand from Hansen (2002) and 
Dieudonné’s presentation at Royaumont that it was 
customary in Europe to teach axiomatic Euclidean 
geometry to young children, even 11–13 year old. 
Dieudonné’s reaction, such as to limit the teaching 

of mathematics up to the age of 14 to experimental 
work with algebra and plane geometry, and to make 
no attempt at axiomatization, must be considered 
in that context. This was less the case in Iceland. It 
may though be spotted in Jónsson’s (1883) criticism 
on the teaching of geometry in the Reykjavík School. 
However, from School reports for the Reykjavík School 
(1846–1976) one may gather that Eucliean geometry 
was most of the time transferred from the beginners’ 
stage at age 14 up to age 15 or 16. While the Reykjavík 
School was small, only enrolling 25 students a year, 
and Daníelsson was the head teacher in 1919–1941, 
Euclidean training may have been considerable, but 
less so later when the number of students increased 
out of proportions to trained mathematics teachers. 
The axiomatic structure of geometry was thus not 
much visible in the peripheral Iceland before the New 
Math reform as only few teachers were capable to 
interpret Petersen’s century old textbook successfully 
with respect to an axiomatic system in the 1960s.

Within a six years period, 1967–1973, geometry, 
modernized in the spirit conveyed by Dieudonné 
and Choquet, had been implemented in the teacher 
training and at all school levels. Euclid might thus be 
interpreted to have arrived in Iceland in Choquet’s 
modified versions, at least in the teacher training, at 
the time of the claim ‘Down with Euclid’. The conclu-
sion is therefore that Euclidean geometry was revived 
in Iceland by the New Math movement. 
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This paper is of a methodological nature. First, it aims 
at spelling out several structural differences which 
may stand in the way when researchers in mathemat-
ics education endeavor to derive didactically relevant 
information from the history of mathematics as writ-
ten by today’s historians. Second, the core of the paper 
aims at illustrating what historians actually do, with 
a methodological focus on the notions of “agency” and 

“puzzle-solving”.

Keywords: History, epistemology, methodology, Euclid, 

Descartes.

In a paper of 1990 entitled Epistémologie et didactique 
(Artigue, 1990), Michèle Artigue reflected on 10 years 
of practice within the French mathematics education 
community, while stressing the need of epistemology 
for the working researcher. First, she underlined the 
need for epistemological awareness as an experience 
for the researcher, enabling him to distance himself 
from his personal mathematical culture; second, she 
pointed out that some knowledge of the history of 
mathematics was of a key component of didactical 
research, either to understand the historical develop-
ment of some mathematical concept, or to understand 
the shaping of mathematics as a ruled cultural activity. 

This paper will, to a large extent, directly echo this 
Artigue paper, and is hence somewhat dependent on 
the French context [1]. For these reasons, we will here 
use the adjective “epistemological” to denote the en-
deavor to derive from knowledge/awareness of the 
history of mathematics some insight that is relevant 
from a mathematics education research perspective. 
As Artigue did, we will focus on issues of method, al-
though with a shift of emphasis. Instead of focusing 
directly on didactical concepts, we will mainly discuss 
research practices at the intersection of two autono-
mous fields of knowledge: math education research 
on the one hand and history of mathematics on the 
other hand; in this context, “history of mathematics” 

will denote the outcome of the work of historians of 
mathematics.

 After spelling out some basic structural differences 
(and some similarities) between the two fields of in-
quiry, we wish to present several examples in order to 
illustrate what historians actually do. These examples 
will enable us to highlight two methodological aspects: 
the focus on agency (how actors engage with math-
ematics), and the riddle-solving (or puzzle-solving) 
aspect of historical research (which we would like to 
contrast against the “erudite description” view some 
may have of historical research). We wish to provide a 
basis for further methodological discussion, and for 
ever more fruitful interactions. 

STRUCTURAL DIFFERENCES BETWEEN 
TWO FIELDS OF RESEARCH

RME (Research/researchers in mathematics educa-
tion) and HM (history/historians of mathematics) are 
two different and autonomous disciplines: each one 
has its own empirical field of investigation, its own 
set of legitimate questions, its own way of validating 
claims, its own reference works etc. That fact may be 
self-evident; however, we feel this fact should be taken 
into account seriously in order to pave the way for 
fruitful collaborations. It is also a fact that RME and 
HM have often been speaking at cross purposes: when 
HM read what RME say about the history of mathe-
matics, the typical reaction goes: “this is not history, 
but a sketchy reconstruction of history framed within 
a-historical categories; what really happened is really 
much more complicated than that, you know …”; which 
RME are usually fully willing to acknowledge while 
wondering why historians would deny them the right 
to make heuristic use of HM in a preliminary phase 
to their main investigation. For them, learning about 
history (which one of the things historians do) is a 
means to learn something from history (which is not 
what historians do). Reciprocally, RME are sometimes 
surprised by the lack of theoretical frameworks in the 
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work of historians, since such frameworks provide 
the main tools to describe and analyze specific issues; 
and enable researchers to integrate their particular 
study to a growing and soundly-structured body of 
knowledge about the learning of mathematics in cur-
rent educational contexts. Historians do not usually 
rely on explicit theoretical frameworks. 

The purpose of this paper is not to claim that these 
usual misunderstandings are only the result of the rel-
ative isolation of the two communities, and that they 
would soon fade away if everyone decided to work 
together with an open mind. Quite the contrary, we 
think these misunderstandings point to differences 
which are structural, and our purpose is to sketch 
ways of living with this fact.

Since the intended audience of this paper is that of 
RME, we would like to point to some elements which 
show what historians actually do. Of course, our ap-
proach is descriptive and not normative.

REM and HM have at least this in common: contrary to 
what research mathematicians do, the object of their 
investigation is not mathematics, and this object is 
not studied primarily mathematically. Rather, they 
study how agents engage with mathematics, in a con-
text which can be described; mathematics is necessary 
to make sense of this engagement and this context, but 
cannot possibly be the only background tool

Beyond this common agent-based approach, dissim-
ilarities become striking: MER study learners, HM 
tend to focus on experts (of course, both parts of this 
statement call for qualification). MER has direct ac-
cess to the living agents it studies, which means em-
pirical data can be gathered, hypotheses can be put 
to the test in finely-tuned conditions, and cognitive 
processes can be investigated; HM have indirect ac-
cess to the agents they study, and it is part of the trade 
to attempt to assess what biases it entails (critique of 
sources, careful methodological reflection on corpus 
delineation etc.). HM have to deal with events which 
happened once, but can be understood, compared 
and, to some extent, fit into narratives; MER has an 
experimental side to it, and can aim for invariants 
and reproducibility.

The fact that historians depend heavily on the avail-
ability of sources and do not explicitly rely on theo-
retical frameworks does not imply that their work is 

purely descriptive and erudite. To use Kuhn’s phrase, 
a historians solve puzzles, just as any researcher does, 
whatever the field. We would like to illustrate this 
agent-based, puzzle-solving approach from three dif-
ferent angles.

A SHARED INTEREST IN 
MATHEMATICAL AGENCY

First, let us mention the kind of questions that histori-
ans aim at tackling. A very general and context-free list 
of questions can be found, for instance, in Catherine 
Goldstein’s methodological paper (Goldstein, 1999, 
p. 187, trans. RC):

At a given period in time, what were the networks, 
the social groups, the institutions, the organiza-
tions where people practiced mathematics or 
engaged with mathematics? Who were mathe-
maticians? In what conditions did they live; in 
what conditions did they carry out mathemati-
cal work? How were they educated and trained? 
What did they learn?

Why did they work in mathematics, in what pre-
ferred domain? What did this domain mean to 
them? (…) Where did mathematicians find prob-
lems to be solved? What were the form and or-
igins of these problems? Why was some result 
considered as very important, or of lesser im-
portance? According to which criteria? What was 
considered to be a solution to a problem? What 
had to be proven, and what did not require a proof 
(tacitly or explicitly)? Who decided so? When was 
a proof accepted or rejected? When was an explic-
it construction deemed indispensable, optional 
or altogether irrelevant? 

When, where and how mathematics were writ-
ten? Who wrote, and for whom? For instance, 
were new results taught, were they printed, were 
they applied? What got transmitted? To whom 
was it transmitted, in which material and intel-
lectual conditions? 

What changed and what remained fixed (and ac-
cording to what scale, to which criteria)?

The variety of structural differences between history 
and didactics does not imply that no questions may 
be shared, in particular when one focuses on agency. 
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For instance, Goldstein’s list strikingly echoes the 
list of questions which Guy Brousseau considered to 
be meaningful for RME when attempting to derive 
didactically-relevant insight from a study of mathe-
matics from the past. Discussing Georges Glaeser’s 
paper on the epistemological obstacles relative to neg-
ative numbers (Glaeser, 1981), he critically summed 
up Glaeser’s “obstacle” approach, and then pointed 
to what he would consider to be the more relevant 
questions (as cited in Artigue, 1990, p. 252, trans. RC):

This formulation shows what failed Diophantus 
or Stevin, seen from our time and our current 
system. We thus spot some knowledge or pos-
sibility which failed 16th century authors and 
prevented them from giving the “right” solution 
or the proper formulation. But this formulation 
hides the necessity to understand by what means 
peopled tackled the problems which would have 
required the handling of isolated negative quanti-
ties. Were such problems investigated? How were 
they solved? (…) What we now see as a difficul-
ty, how was it considered at the time? Why did 
this “state of knowledge” seem adequate; relative 
to what set of questions was it reasonably effi-
cient? What were the advantages of this “refusal” 
to handle isolated negative quantities, or what 
drawbacks did it help avoid? Was this state stable? 
Why were the attempts at changing it doomed to 
fail, at that time? Maybe until some new condi-
tions emerge and, some “side” work be done, but 
which one? These questions are necessary for 
an in-depth understanding of the construction 
of knowledge [pour entrer dans l’intimité de la 
construction de la connaissance] (…).

In both list, we can see that a focus on agency does not 
mean that the object of study is a freely creative cog-
nitive agent. Quite the contrary. Agents are born in a 
world which pre-exists, and constrains their actions. 
When it comes to mathematical activity, constraints 
come from a great variety of sources, ranging from 
the material environment (a Chinese abacus is not 
an electronic calculator) to epistemic values (rigor, 
generality, simplicity, accuracy, applicability, etc.) and 
epistemic categories (definition, justification, proof, 
example, algorithm, analysis/synthesis, principle, 
etc.). The historical contingency of these constraints 
does not imply that they have no a-historical compo-
nents, be they mathematical properties (a rule such as 

“minus times minus equals minus” is not compatible 

with distributivity of × over +) or semiotic properties 
(an algebraic shorthand with no parentheses – such as 
Cardano’s – has different properties from Bombelli’s). 
Making historical sense of how actors engage with 
mathematics involves understanding how they act 
within a given set of constraint, what meaning they 
give to their actions, and in what respect these actions 
alter the system of constraints.

FOCUSING ON AGENCY: USES OF A DIAGRAM

Let us now flesh out this notion of agent-based ap-
proach – this focus on mathematical agency – from an-
other angle. We will use the example of this diagram 
to illustrate several methodological points.

The very same diagram (Figure 1) appears in two of the 
most influential works in the history of mathematics: 
Euclid’s Elements and Descartes’ La Géométrie. One 
could argue that not only the diagram is the same, but 
the mathematical content is the same; however, the 
parts these diagrams play in both works are strikingly 
different.

In Euclid’s Elements (Heath, 1908), this diagram comes 
with proposition 14 of book II; a proposition which 
solves the following construction problem: to con-
struct a square equal (in area) to a given rectangle. 
If the sides of the rectangle are equal (in length) to 
FG and GH, then the perpendicular IG is the side of 
the sought-for square, which Euclid proves using 
proposition 47 of book I (which we call Pythagoras’ 
theorem). At the end of book I, a series of proposition 
established that, for any given polygon, a rectangle 
with the same area could be constructed (with ruler 
and compass only), hence prop. 14 provides the final 
positive solution to the problem of quadrature of 
polygons (i.e. to transform any polygonal area into 
a square). In turn, this fact implies that – at least for 
polygons – area is a well behaved magnitude: areas 
can be compared (since square areas can), and added 
(since the Pythagorean construction provides a means 

Figure 1
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to add square areas). On this basis, a modern reader 
would conclude that a theory of measure in possible 
for polygonal areas; the modern reader also knows 
that this requires the set of real numbers. Euclid was 
very well aware of the fact that the theory of well-be-
haved geometrical magnitude (even line-segments, for 
which comparison and addition are straightforward) 
requires more than natural numbers and their ratios. 
The solution he presented in book V is a number-free 
solution, based on the notion of ratio of magnitudes 
and not of measure. The positive result of II.14 also 
points to open questions in the theory of magnitudes, 
in particular the extension of the theory beyond the 
case of polygons (the case of the circle being of prime 
importance).

The same diagram (Figure 1) appears on the second 
page of Descartes’ La Geométrie  (1637). Along with 
another diagram (Figure 2), he aims at defining op-
erations on segments; operations for which he would 
use the same names as for arithmetical operations. 
In Figure 2, if AB denotes a unit segment, then BE 
will be called the “product” of segments BC and BD. 
In Figure 1, if FG is the unit segment, then IG will be 
called the “square root” of GH. Descartes then adds 
that he would not only use the same names as those of 
arithmetical operations, but that he would also resort 
to the same signs as in algebra: letters for segments 
(known or unknown), symbols such as × and √ for the 
above mentioned constructions. The project is to use 
the means of algebra (rewriting rules, elimination in 
simultaneous equations, identification in polynomial 
equalities, method of indeterminate coefficients) to 
capture and analyze geometrical relations between 
segments; among such relations, those expressed by 
one equation in two unknowns capture plane curves .

This specific Cartesian project is quite different both 
from Euclid’s, and from what we call either algebra 
or coordinate geometry. In the Elements, prop. II.14 
solved an area problem; in terms of magnitudes, con-
sidering two line-segments could lead either to a new 

segment (by concatenation, which can be seen as a 
form of addition), or to an area (that of a rectangle, 
which can be seen as a form of multiplication), or to 
a ratio (which is not a geometrical entity, but not a 
number either). On the contrary, Descartes uses ele-
mentary construction (with an ad hoc unit segment) 
to define operations such as “time”, “divide” or “root” 
as internal operations within the domain of segments; 
this enables him to make free use of algebraic symbol-
ism while warranting geometrical interpretability. 
This system, however, involves no global coordinate 
system; it does not even involve coordinates, since no 
numbers play any explicit part in the system.

The fact that Descartes’ system is an algebra of seg-
ments has other far-reaching consequences. Let us 
mention one of general epistemological importance. 
At first, when we read in La Géometrie that the solu-
tion of equation z² = az + b² (z being unknown, a and b 
known) can be expressed by formula:

z = 1
2 a + √ 1

4 aa + bb,

we feel we are on pretty familiar ground. However, 
we need to recall that this formula is not a symbolic 
summary for a list of arithmetical operation on num-
bers, but is a symbolic summary for a geometrical 
construction program; a ruler-and-compass construc-
tion program which involves two concatenations, 
two multiplications (Figure 2), the construction of a 

“square-root” segment (Figure 1), and three midpoints. 
This, in turn, means that the algebraic manipulation 
of formulae and equations deals with the transfor-
mation and comparison of geometric construction 
programs. Here, the comparison with Al-Khwarizmi 
(ca 820 CE) is striking:

Roots plus numbers equal squares; for instance, 
when you say: three roots and four in numbers 
equal one square.

Procedure: halve the number of roots, you get 
one and one half; multiply it by itself, you get two 
and one quarter; add four, you get six and one 
quarter; take its root, which is two and one half, 
add it to half the number of roots, that is one and 
one half,  you get four, which is the root of the 
square, and the square is sixteen. (Rashed, 2007, 
p. 106. Trans. RC)

Figure 2
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With its purely rhetorical algebra and its use of ge-
neric examples, this excerpt from Al-Khwarizmi’s 
Algebra may look less familiar than Descartes’ formu-
la. However, it presents a bona fide list of operations 
which enables one to solve an equation, in a numerical 
context. In the rhetorical context, algorithms are easy 
to express, but not so easy to compare, transform and 
calculate upon. One of the properties of Descartes’ 
system is that its symbolic algebra allows for calcu-
lation to operate on algorithms; the fact that the basic 
steps of the algorithms involved are ruler and com-
pass constructions and not numerical operations is 
irrelevant, and testifies to the meta-level function of 
symbolic algebra.

This interplay between the familiar and the not-so-fa-
miliar (yet understandable) may feel disorienting at 
first, but this disorienting effect is a positive effect, as 
Artigue stressed. It has a critical function, helping the 
researcher to distance himself from his own mathe-
matical culture ; and a heuristic function, suggesting 
new viewpoints on seemingly familiar notions, for 
instance on the role of symbolism in algebra, or the 
role of real numbers in geometry (as measures and as 
coordinates). At least two other functions can be men-
tioned. First, it helps identify problems to which there 
are no straightforward answers. For instance, what 
should we consider to be the geometrical analogue of 
multiplication, at least for one-dimensional objects? 
In particular, should the analogue of the product be 
one-dimensional or two-dimensional? A long series 
of different – yet mathematically sound – construc-
tions provide different answers to this question, in-
cluding dimension changing solutions (going down 
with the dot product, or up with the exterior product). 
Secondly, it helps question the notion of identity. It 
could be argued that, from a purely mathematical 
point of view, Euclid and Descartes rely on the same 
content associated to Figure 1; this probably makes 
sense, but it is probably not very helpful, either to the 
historian of to the RME. Indeed, researchers in both 
fields aim at analyzing how content depends on – for 
instance – semiotic resources, or intended use.

To finish with this Euclid-Descartes example, we 
would like to make plain what it took to come up with 
such an example. On the one-hand it is relatively small 
scale: we did not need to include it in any large-scale 
narrative on the “stages” in the history of geometry 
for this sketchy comparison to serve the four above 
listed functions of epistemological inquiry; on an 

even smaller scale, the comparison with a short pas-
sage of Al-Khwarizmi could play a relevant part even 
with no background “big picture” on the history of al-
gebra, or even on the Kitāb al-Jabr. On the other hand, 
to compare the uses of the same diagram required 
that its role in the whole structure of the works (the 
Elements, and La Géométrie) be analyzed. It requires 
some knowledge of history to make sense of highly 
sophisticated but largely forgotten theoretical con-
structs such as the classical theory of ratios, or the 
17th century research program of construction of 
equations. This knowledge cannot derive from a quick 
look at short extracts from the original sources, and 
probably not even from a long look at the whole books; 
here we depend on professional historians such as 
(Netz, 1999) for Euclid, and (Bos, 2001) for Descartes.

SOLVING PUZZLES, DESIGNING 
RESEARCH-QUESTIONS

Finally, we would like to illustrate the fact that eru-
dite analysis is not all there is to historical research. 
Finding answers and grounding answers through er-
udite analysis of documents come only in a second 
phase; in a first phase, historians strive to identify 
challenges, and craft non-trivial (and possibly in-
novative) questions. Let us give five pretty different 
examples.

In (Proust, 2012), Christine Proust studies the algo-
rithm displayed in paleo-Babylonian tablets when 
working out the reciprocals of large numbers in the 
sexagesimal system. The clay-tablets display instanc-
es of calculations, but no general descriptions of the 
method (much less any justifications), which is why 
historians endeavor to come up with reconstructions 
of the algorithm. Pioneer in the history of Babylonian 
mathematics Otto Neugebauer (1899–1990) recon-
structed an algorithm on the basis few tablets; an al-
gorithm which required that additions be used along 
the way. However, in the floating point sexagesimal 
number system, and in the purely numerical context 
of these tablets, addition is not possible (whereas prod-
ucts and reciprocals make perfect sense)! On the basis 
of a much larger sample of tablets, Proust reconstruct-
ed a different algorithm; one which is fully compatible 
with a floating point arithmetic.

In his now classic The Shaping of Deduction in Greek 
Mathematics (Netz, 1999), Reviel Netz attempted to 
re-historicize the endeavor of the Greek mathema-
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ticians of the classical and Hellenistic periods, and 
help us question many things we implicitly take for 
granted. This difficult for two at least reasons: first, 
some of the basic elements of practice displayed in 
these texts – in particular, the practice of discussing 
lettered diagrams using only explicit axioms and for-
merly established results – is so familiar to us that we 
cannot imagine how a few men strove took to establish 
this specific cultural form on the background of other 
cultural activities. Second, because we feel we know 
that mathematics was a central intellectual activity 
in these periods, as many texts of Plato and Aristotle 
seem to indicate. Netz established that it was not the 
case, and discussed why Plato and Aristotle distorted 
our perception of historical realities. In a stimulating 
review of this erudite book, Bruno Latour emphasized 
the extent to which it echoed central methodological 
trends in the social history of science (Latour, 2008).

The question of the circulation of mathematics be-
tween different cultural areas – and not only different 
periods – is also a central field of investigation. In 
(Chemla, 1996), Karine Chemla discussed the introduc-
tion of “western” mathematics in 17th century China 
by Jesuit missionaries. It was usually thought that, in 
this period, the indigenous Chinese tradition of math-
ematics was to a large extent forgotten in China, and 
that western mathematics had been adopted passively. 
Actually, studying the Chinese sources leads to a more 
nuanced picture. In particular, when Jesuit Matteo 
Ricci and Chinese scholar Li Zhizao collaborated to 
write a treatise of arithmetic based on Clavius, they 
ended up with much more than a translation: Li added 
many elements from the indigenous tradition, in par-
ticular the fangcheng algorithm to solve simultaneous 
linear equations (similar to Gaussian elimination). 
This work of synthesis did not stir interest in the West; 
in China however, the introduction of western mathe-
matics revived scholarly interest in classical Chinese 
mathematics, and triggered comparative studies of 
both traditions.

It is well-known that for the founders of the calculus 
the prime goal was the study of curves defined by 
ordinary differential equations, in a geometrical of 
physical context. Pen and paper, and formulaic solu-
tions were not all there was to it, as is demonstrated by 
the deep and original work of Dominique Tournès. In 
(Tournès, 2003), he studied the intense work on graph-
ical methods and graphing devices carried out from 
the very beginning (Leibniz, Newton, Jean Bernoulli, 

Euler), up until the advent of digital instruments in 
the second half of the 20th century. This work brings to 
light a great wealth of largely forgotten mathematical 
ideas and techniques; shows the continuity between 
the algebraic research program on the “construction 
of equations” (as in Descartes) and the late-17th and 18th 
century researches on ODEs; and documents the deep 
connections between the most theoretical consider-
ations on the one hand, and the demand for effective 
approximation methods in the engineering commu-
nities on the other hand. 

The distinction between “local” and “global” is now 
standard in the scholarly mathematical world, but it 
was not always the case. Studying the emergence of an 
explicit local-global articulation is tricky for a number 
of reasons: it concerns more or less all mathematics; 
the meta level terms “local” and “global” have defini-
tions which differ in every specific mathematical con-
text; actually they can be used with no definitions at all. 
Moreover, the question of the explicit is crucial. When, 
at the turn of the 20th century, some mathematicians 
began to explicitly express a such distinction, was the 
general context one in which it was actually clear to 
everyone that this mattered (though it went without 
saying), or one in which no clear distinction was made 
between local and global statements, resulting in a 
wealth of faulty proofs and ambiguously-worded the-
orems? These questions were addressed in (Chorlay, 
2011), who provided answers based on a combination 
of quantitative and qualitative methods.

CONCLUSION

This short list of examples illustrates how historians 
endeavor to design non-trivial questions; what means 
they use to answer these questions; and what kind 
of answers they tend to consider relevant and inno-
vative. Although we feel historians provide a great 
wealth of material of prime interest for mathematics 
education research, it is a fact that they do not usually 
provide this material in a form which directly meets 
the needs or wishes of the mathematics education 
research community.

To further this paper, we can identify at least three 
avenues for research: (1) to analyze papers in mathe-
matics education research which depend heavily on 
historical analysis, such as (Sierpinska, 1985), (Katz, 
2007) or (Dorier, 2000); (2) to discuss the relevance of 
standard conceptual tools such as “epistemological 
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obstacle”, “(mis)-conceptions”, “historical genesis”; 
(3) to review the main theoretical frameworks in 
mathematics education research in order to identify 
which (if any) role they assign to epistemological or 
historical investigation.
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ENDNOTE

1. An altered version of this paper makes up the first, 
introductory part of a chapter in a collective vol-
ume in the honour of M. Artigue (scientific editors: 
B. Hodgson, J.-B. Lagrange, A. Kuzniak).
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This paper presents a small subset of results from a pilot 
study conducted at a small private university in 2012. 
The study sought to identify changes in students’ math-
ematical thinking competency. In this paper, I present 
summaries of pre-instruction and post-instruction 
think-aloud interviews for one of 18 items on the think-
aloud instrument, for two of the participants. I propose 
that history and philosophy of mathematics courses do 
have the potential to impact students’ mathematical 
thinking competency and further studies such as the 
one presented here must be undertaken to expand what 
we know and how we can use the knowledge to enhance 
the teaching and learning of mathematics.

Keywords: History and philosophy of mathematics course, 

think-aloud protocol, mathematical thinking competency.

INTRODUCTION

In the past, much of the available research on history 
of mathematics courses has been primarily focused on 
how to teach such courses (e.g., Miller, 2002). Recently, 
however, scholars have attempted to “describe ways in 
which a history of mathematics course can help pro-
spective teachers of mathematics develop knowledge 
they will need for teaching” (Huntley & Flores, 2010, p. 
603). Although investigations into the development 
of mathematical knowledge for teaching constitute 
important contributions, there exists a need to exam-
ine the potential impact of a history of mathematics 
course on the more general undergraduate mathemat-
ics major population. I propose that what is missing 
from the research literature regarding the alleged 
influence of the history of mathematics is inquiry on 
the actual impact on learning, or as considered here, 
on students’ mathematical thinking competency as a 
result of studying mathematical ideas from the per-
spective of the historical and philosophical develop-
ment of those ideas.

The field of mathematics education boasts fewer em-
pirical examples about how the study of the history 
and philosophy of mathematics contributes to student 
thinking about and understanding of essential mathe-
matics concepts than it does theoretical studies on the 
same. The outcomes of the study discussed here hold 
promise for increasing awareness of what the history 
of mathematics contributes to learning and thinking 
about mathematics (if anything) and for contributing 
something further to the empirical base of previously 
well-known theoretical studies.

Based upon research that I have conducted with pro-
spective mathematics teachers (Clark, 2012), I con-
jectured that the think-aloud task interview results 
would in fact reveal changes in the undergraduate 
students’ mathematical thinking competency, using 
the definition provided in Danish KOM-report (Niss & 
Højgaard, 2011, pp. 52–53). In particular, I am interest-
ed in identifying evidence for which participants en-
gaged in different aspects of this competency, such as:

…being able to recognise, understand and deal 
with the scope of given mathematical concepts (as 
well as their limitations) and their roots in dif-
ferent domains; extend the scope of a concept by 
abstracting some of its properties; understand the 
implications of generalising results; and be able to 
generalise such results to larger classes of objects. 
(emphasis in original; Niss & Højgaard, 2011, p. 53)

That is, the primary goal for the research was to link 
students’ experiences from a history and philosophy 
of mathematics course to changes in their competency 
for thinking about mathematics with regard to impor-
tant fundamental mathematical concepts. Thus, this 
qualitative, exploratory study set out to document 
and analyse changes in the students’ mathematical 
thinking competency on three topics of interest (in-

mailto:kclark@fsu.edu
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finity, the complex number system, and the axiomatic 
structure in mathematics). 

The results of the present research may enable in-
structors of history and philosophy of mathematics 
(HPhM) courses to consider the power of the course 
on improving mathematical understanding and could 
find it beneficial to revise courses to capitalize on this 
implication. Additionally, researchers interested in 
the “value-added” impact of a course on the history 
(and philosophy) of mathematics for prospective 
mathematics teachers may be able to make a strong-
er case for the inclusion of a history of mathematics 
course in teacher preparation programs that do not 
currently require it. 

METHODOLOGY

The importance of such an empirical study—even an 
exploratory one—on changes in how students artic-
ulate their mathematical thinking as a result of an 
HPhM course is timely. The study is exploratory along 
two dimensions. The first dimension entails piloting 
the mathematical task think-aloud protocol, created to 
allow students to articulate their thinking about the 
mathematical ideas of infinity, the complex number 
system, and the axiomatic structure of mathematics. 
The second dimension, which is the focus of this paper, 
is the description of students’ mathematical think-
ing pre- and post-instruction in the HaPM course and 
an attempt to qualify changes that occurred in their 
mathematical thinking competency with respect to 
these fundamental ideas in mathematics.

I heavily draw on Corbin’s and Strauss’ (2008) defini-
tion of qualitative analysis as “a process of examin-
ing and interpreting data in order to elicit meaning, 
gain understanding, and develop empirical knowl-

edge” (p. 1). The nature of data analysis required me 
to search for changes between a student’s thinking 
during the think-aloud interview post-instruction 
when compared to their pre-instruction thinking, and 
to qualify those changes using most of the aspects 
of the mathematical thinking competency (Niss & 
Højgaard, 2011): recognise, understand, and deal 
with the scope of the given concept; extend scope by 
abstracting; understand implications of generalis-
ing results; and generalising results to large classes 
of objects. For this reason, each student’s pair of in-
terviews was coded individually, according to their 
own phrasing, references (e.g., to the HPhM course 
material), and examples. 

Participants
The particular context for the study was selected for 
two reasons, First, I was already familiar with faculty 
members at the university (one in mathematics edu-
cation, one in mathematics), which would facilitate 
my multi-day visits to collect data, get to know the 
students in the course, and to conduct the think-aloud 
interviews. Second, students from a variety of ma-
jors took the history and philosophy of mathematics 
(HPhM) course at Private Christian University (PCU; 
a pseudonym). Thus, a course with a diverse student 
population as the one at PCU  (e.g., first-year through 
fourth-year undergraduate students; mathematics 
and non-mathematics majors) was a valuable conven-
ience sample to use.

Students were recruited from the HPhM course at the 
beginning of Fall 2012. The course instructor intro-
duced the opportunity to participate in the research 
study during the first class session. Then, at the end 
of the second class session, I introduced myself and 
explained that the primary goal of the research was to 
investigate changes in students’ mathematical think-

Participant Year in school Major Highest level mathematics course taken in high 
school; college mathematics courses taken

Jenny Senior Elementary Education Precalculus (high school); Intro to Mathematical 
Thinking (PCU)

Tabitha Senior History (Secondary History 
Education)

Intro to Mathematical Thinking (PCU)

Darren Sophomore Mathematics or Music (un-
decided in Fall 2012) 

Advanced Placement Calclulus (high school); 
currently enrolled in two math courses (PCU)

Michael Junior Mathematics (recent-
ly changed major to 
Mathematics Education)

Mathematical Analysis II (high school); Intro to 
Mathematical Thinking (PCU)

Table 1: Student participants (Private Christian University, Fall 2012)
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ing about mathematics concepts (e.g., the concept of 
infinity) that occur as a result of studying the history 
and philosophy of that concept. Finally, I explained the 
nature of the think-aloud interviews and answered 
students’ questions about the research, interview 
process, and their potential participation. Of the 19 
students enrolled in the course, four students volun-
teered to participate in the pre- and post-instruction 

“think aloud” interviews. Brief descriptions of the four 
participants are given in Table 1. The names that ap-
pear in bold indicate the participants on whom I focus 
for the results discussed in this paper. 

Data collection
Mathematical task interviews were conducted us-
ing a think-aloud approach, in which student par-
ticipants were asked to articulate their methods, in-
terpretations, and thought processes while working 
on mathematical tasks. During the think-aloud pro-
cess, the researcher intervenes as little as possible, 
with the exception of limited prompts such as “talk 
about what you’re thinking” or simply “keep talking” 
(Young, 2005). The think-aloud interviews were con-
ducted before and after classroom instruction and 
subsequent study of the three concepts of interest. 
Smartpen technology was used during each interview. 
The Smartpen was used by students during the inter-
views and enabled me to capture audio as well as writ-
ten documentation of the students’ responses to each 
of the tasks. Interview transcripts, once transcribed, 
were analysed for qualitative differences in students’ 
mathematical thinking competency, as a result of stud-
ying historical details and philosophical perspectives 
of fundamental mathematics topics. In addition to the 
audio and written documentation, the course instruc-
tor’s instructional plans and documentation related 
to the three selected topics comprised the third data 
source (e.g., lecture notes, assigned reading, home-
work assignments, class session activities).

Think-aloud interview instrument
A three-part interview instrument was constructed 
for this research, which was composed of 18 items. 
The instrument included items about the concept of 
infinity (five items), the complex number system (six 
items), and axiomatic structure in mathematics (seven 
items). However, due to space limitations, I discuss 
only one of the items in this paper: Item 1 (complex 
number system) asked students to draw a Venn dia-
gram to show the relationships among the different types 
of numbers that comprise the number system. 

In the following discussion, I present a summary 
of the pre- and post-instruction responses for both 
Tabitha and Michael. Additionally, I identify which as-
pects of the mathematical thinking competency were 
found in their responses. Finally, I provide a profile 
for Tabitha and Michael (based upon their pre- and 
post-responses) in an attempt to identify changes in 
their mathematical thinking competency resulting 
from their experience with a history and philosophy 
of mathematics course.

SELECTED RESULTS

The four students who participated in this study 
generated a surprising amount of rich data in their 
responses to the 18 items during the think-aloud inter-
views. In an effort to make sense of the various ways 
to describe the changes in students’ mathematical 
thinking competency, this paper presents responses 
for only one item of the think-aloud instrument from 
two of the four participants.

The important results of this study are found in the 
qualitative analysis of the participants’ pre- and 
post-instruction think-aloud responses. Tabitha’s 
and Michael’s responses to one item are presented 
to display the potential for HPhM course work to 
impact students’ mathematical thinking competency. 
For this paper I selected an item in which the HPhM 
course might impact students’ competency differently, 
given the range of student abilities and experiences 
represented. 

To illustrate the scope of changes in the mathematical 
thinking competency for Michael and Tabitha, I pres-
ent a summary of the key content of their responses, 
along with identification of aspects of the competency 
exhibited in their response. When necessary, I also 
provide a continuum rating to quantify the extent to 
which the aspect was evidence (e.g., “naïve or begin-
ning understanding”, “stronger example”).

The case of Tabitha
To begin, I provide the summary of Tabitha’s pre-re-
sponses to Item 1 (complex number system), with ele-
ments of the mathematical thinking competency (Niss 
& Højgaard, 2011) given in bold as well as an image 
from Tabitha’s think-aloud interview (Figure 1):

(a) She expressed types of numbers as dyads: positive 
and negative; real and fake, or “unreal” numbers; ra-



The contribution of history of mathematics on students’ mathematical thinking competency (Kathleen Clark)

1807

tional and irrational, which belong to real numbers 
(though her Venn diagram did not reflect this) [recog-
nise a given math concept];

(b) Numbers that are not numbers: e, i, π; she later 
changed her mind: π is a number—but not [recognise 
a given math concept (naïve or beginning understand-
ing)];

(c) She first stated that i means “infinity” and then 
changed her mind and stated that i stands for “irra-
tional” [(attempt to) recognise a given math concept];

(d) +4 and – 4 mean the same thing, since they each 
just reduce to 4  [(attempt to) recognise a given math 
concept]; and 

(e) She tried to seek connections throughout her dis-
cussion [extend concept by abstracting properties].

Next, I summarised Tabitha’s post-responses to Item 1:

(a) She identified whole numbers and fractions and 
those numbers that cannot be written as fractions: 

“so irrational” [recognize and understand a given math 
concept]; she also asked: “can prime numbers be irra-
tional?” [awareness of types of questions];

(b) In her Venn diagram she needed two non-intersect-
ing circles one for rational, one for irrational [recog-
nise and understand a given math concept]; 

(c) She again listed dyads of numbers: rational/irra-
tional; prime/composite; imaginary/complex [recog-
nise and understand a given math concept];

(d) Her post-response included imaginary versus real 
numbers (Figure 2) [recognise and understand a given 
math concept; extend concept by abstracting properties];

(e) She also added infinity and zero to her diagram, 
noting that these particular numbers represented 
divine connections for her [extend concept by abstract-
ing properties; deal with scope of given mathematical 
concept in different domains].

Figure 1: Tabitha’s pre-response Venn diagram

Figure 2: Tabitha’s list if types of numbers needed for her Venn diagram (post-response)
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Finally, I constructed a mathematical thinking compe-
tency profile for Tabitha (Item 1, complex number sys-
tem), based upon the elements from the mathematical 
thinking competency (in bold in the summary). This 
profile shows growth from pre- to post-instruction, 
in that the variety of aspects from the mathematical 
thinking competency developed from several instanc-
es of only two aspects to multiple instances of four 
aspects of mathematical thinking.

Tabitha: Item 1 (complex number) pre-response

 ― Recognise a given math concept (four instances, 
including two at a beginning or naïve level of 
understanding)

 ― Extend concept by abstracting properties

Tabitha: Item 1 (complex number) post-response

 ― Recognise and understand a given math concept 
(four instances at varying levels)

 ― Extend concept by abstracting properties (two 
instances)

 ― Deal with scope of given mathematical concept 
in different domains 

 ― Awareness of types of questions

The case of Michael
Michael, a mathematics major who recently changed 
his program of study (major) to mathematics educa-
tion, possessed stronger mathematics content knowl-
edge than Tabitha. However, the history and philos-

ophy of mathematics course experience did appear 
to impact his mathematical thinking competency. 
Michael’s pre-response summary and the identifi-
cation of the relevant competency aspects for Item 1 
(complex number system) included:

(a) He first listed kinds of numbers, including whole, 
natural, rational, irrational, imaginary, and integers 
(of the last category Michael asked: “where do these 
belong?”) [recognise and understand a given math 
concept (transitional understanding, not completely 
sophisticated)];

(b) He asked: Are you going to be paying attention to 
how big my circles are?...because there is this whole 
debate on if there are more rational or irrational num-
bers” [extend concept by abstracting properties]

(c) He was careful to make sure that the circles repre-
senting the sets of rational and irrational numbers 
did not overlap in the Venn diagram, but he did want 
the two circles to touch (see Figure 3) [recognise and 
understand a given math concept (transitional under-
standing)].

In his post-response to Item 1:

(a) Michael began the discussion of his Venn diagram 
by beginning with the top of the hierarchy for the 
number system as he understood it: “…[we have] real 
numbers, then we have imaginary, then you’d have…
complex numbers, which is a little of both” [recognise, 
understand, and deal with the scope of a given math 
concept]; 

Figure 3: Michael’s pre-response Venn diagram
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(b) He listed sets of numbers as he did before: whole, 
natural, integers; and real, irrational, algebraic, tran-
scendental, and transfinite [recognise, understand, and 
deal with the scope of a given math concept]; and

(c) He felt there was more that he could do with clas-
sifying types of numbers: “I feel like I could do this 
forever; just drawing circles and breaking them up…
because even with all of these you could define them 
into primes and which primes are seen more often, 
and…” [extend concept by abstracting properties].

Using the summary above, I constructed Michael’s 
mathematical thinking competency profile for this 
item:

Michael: Item 1 (complex number) pre-response

 ― Recognise and understand a given math concept 
(two instances; though not completely correct 
on each instance (e.g., “transitional understand-
ing”))

 ― Extend concept by abstracting properties (one 
instance)

Michael: Item 1 (complex number) post-response

 ― Recognise, understand, and deal with scope of a 
given math concept (two instances)

 ― Extend concept by abstracting properties (stron-
ger example than in pre-response)

Michael’s understanding of the complex number 
system before participating in the HPhM course 
was fairly strong. Yet even with his understanding 

of the complex number system, his mathematical 
thinking competency was strengthened by the end 
of the course. 

DISCUSSION

The pre- and post-response summaries, identification 
of mathematical thinking competency aspects, and 
construction of a competency profile for Tabitha’s 
and Michael’s work on Item 1 (complex number sys-
tem) attempt to show that the HPhM course had some 
influence on students’ mathematical thinking compe-
tency—at least from the perspective that the students 
themselves noted this while cognitively addressing 
the content before them. For example, Michael’s abil-
ity to discuss and organise the different numbers of 
the complex number system (although “complex” 
was purposely not given to participants in the item 
or during the think-aloud interview) was already 
strong before the HPhM course. However, after the 
course, Michael revealed a more complete or nuanced 
understanding of the complex number system, which 
he stated was due to his reading of a required course 
text, Zero: The Biography of a Dangerous Idea (Seife, 
2000). Classroom observations also revealed that 
Seife’s book was used during classroom discussions 
and assignments. 

Tabitha’s post-instruction responses do reflect a bet-
ter understanding of the types of numbers compris-
ing the complex number system. However, except for 
a brief reference to learning about Venn in a class 
lecture, it is difficult to explicitly link the change in 
her thinking about the complex number system to the 
HPhM course. That said, I believe the course did influ-
ence her knowledge because as a Secondary History 
Education major, it is unclear from where she would 

Figure 4: Michael’s post-response Venn diagram
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have gained such knowledge during the semester 
of study. Instead, an attempt to identify changes in 
Tabitha’s mathematical thinking competency shows 
promise for characterising the impact of HPhM cours-
es on tertiary students’ mathematical experience. 

CONCLUSION

This paper reports only a very small subset of results 
from a pilot study conducted in 2012 and its purpose is 
to highlight the potential for history and philosophy 
of mathematics courses to enhance students’ math-
ematical learning. In the current attempt, I tried to 
qualify the profile of two students’ mathematical 
thinking competency, using student responses to 
identify aspects of the competency (Niss & Højgaard, 
2011), for a single item from the interview instrument 
developed for this project. In the next step I will an-
alyse responses to several additional items from the 
interview instrument. Then, in a future publication, 
all four student cases (Darren, Jenny, Michael, and 
Tabitha) will be presented, along with supporting 
data from classroom observations and instructor 
documentation, in order to reveal a more extensive 
landscape of changes in students’ mathematical think-
ing competency resulting from their experience in 
a history and philosophy of mathematics course. In 
the interim, it is my hope that this initial report will 
promote discussion about similar empirical studies.
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Historical awareness has an impact on teaching and 
learning mathematics. It includes knowing the histori-
cal development, the questions under investigation and 
the answers given to these problems. In this paper, the 
focus lies on calculus and its applications in economics. 
It shows how far the knowledge of a changing scientific 
understanding can be beneficial in teacher education. 
The paper covers this issue from an epistemological, 
historical and educational perspective and suggests a 
constructivist view for educational purposes.

Keywords: Calculus, constructivism, economics, 

epistemology, teacher education.

INTRODUCTION

Within teacher education, an expansion of scientific 
understanding can be achieved, which promotes an 
adequate epistemological view and modifies naive-re-
alistic ideas. For this purpose, covering mathematical 
economics using methods of calculus is an unusual 
but promising approach. According to Fischer & Malle 
(1985, p. 107), the absence of a law-of-nature-character 
is necessary to allow learners the free use of mathe-
matics describing “reality”. In this way the modelling 
perspective demonstrates a human distance to reality. 
Jablonka (1996, p. 34f ) states, that this view assumes 
an understanding of the underlying mathematical 
concepts separate from the context. In the following 
text, this consideration will be modified by discussing 
the usage of a certain mathematical concept (calcu-
lus) for modelling (economic) circumstances, which 
originally did not contribute to its genesis. However, 
this approach should go along with an adequate his-
torical awareness of the evolution of the mathematics 
involved. 

In most cases first-year students have not experienced 
the formal treatment of scientific issues in the class-

room as a modelling process. Even more there is little 
or no experience with a systematic processing of eco-
nomics applications. Dealing with economics in terms 
of mathematical modelling offers general education 
and provides insights into epistemological concepts 
and helps to foster an enlightened understanding of 
science. In view of the above and considering also the 
potential of a constructivist understanding of science 
due to Ernest (2007) and Lyotard (1979) it is promising 
to use a mathematical tool in connection with a subject 
that it is originally not meant for. This approach aims 
at prospective teachers primarily, but it applies to 
their educators as well.

APPLIED MATHEMATICS IN 
TEACHER EDUCATION

Mathematical modelling is listed as one of the six impor-
tant competencies in Germany’s “Bildungsstandards 
Mathematik”. This is a consequence of the postulate 
of integrating more reality-based problems in lessons 
and lectures on mathematics. The focus is not the ap-
plication of a given algorithm, but the mathematiza-
tion of facts and problems whose relation to mathe-
matics may be not initially obvious. Circumstances of 
the so-called “real world” are to represent formally by 
abstraction so that the representatives enable a quan-
titative analysis. The solution found for the model 
may be interpreted as a proposal for the solution of 
the real problem. 

In many cases, such an approach is presented as a 
multiple passage of a modelling cycle that shows the 
interaction between “reality” and model as an ideal-
ized scheme. Critical validations should successively 
lead to a revised design of the model as an interpre-
tation of reality. 

Beginning their studies, prospective teachers have 
years of experiences in applying mathematical meth-
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ods. For example, elementary calculus, stochastic 
and analytical geometry are known in principle. 
Introductory lectures at university address those is-
sues again and there is the chance to add new aspects 
corresponding to the didactic spiral principle. This 
includes applications in general and should cover 
topics from mathematical modelling in particular.

MATHEMATICAL MODELLING IN ECONOMICS

In current mathematics education discussion the mod-
elling cycle of Blum and Leiss (2005, p. 19) is widely 
accepted as a “model of modelling”, but also different 
approaches are considered, e.g. an interpretation of 
the modelling process in the sense of taking the spiral 
principle or descriptions including a coexistence of 
cyclic and progressive courses into account. Meyer 
and Vogt (2010, pp. 142ff.) argue for an increased em-
phasis on the processual character and the inclusion 
of an appropriate terminology. Möller (2014) analyses 
the concept of the “rest of the world” and exposes the 
problems of the disjoint separation of mathematics 
and reality.

Facets of the reliance on mathematics
The field of economics shows a multitude of aspects 
that differ from those of the natural sciences. There 
are much less “canonical” formalizations than in 
physics, e.g.

Human action is involved, which refers to needs and 
wants. The scarcity of goods and services forces peo-
ple to economize. Economic actions go along with con-
flicts and competition; they require decisions under 
uncertainty. Therefore, they are fraught with risks. 
Economic activities are goal- or benefit-oriented, of-
ten for-profit. 

Economic issues, due to their reliance on mathemat-
ics, must take all aspects of the modelling process 
into account. Using mathematics within the “exact” 
and natural sciences often appears canonically, and 
in school they are rarely taught as a result of a mod-
elling process. An in-depth understanding of their 
non-canonical nature, which manifests itself in the 
different models of the physics of classical mechanics, 
Maxwell’s electrodynamics, the theory of relativity, 
quantum mechanics to recent developments in cos-
mology remains a domain of advanced students and 
experts. 

Nevertheless, mathematical modelling is often demon-
strated in the context of physical-technical issues. The 
decision for a certain model is closely related to the 
finding and definition of suitable parameters and 
their functional relationship. Frequently the number 
of parameters involved and their skillful assignments 
are looked upon as a quality criterion. 

While early graders get involved in proportionali-
ties relating to quantities, on the secondary levels the 
notion of function comes to the fore. It requires good 
education to impart the features of modelling in such 
a framework. This applies to teacher training, too.

At this point the comprehension of economic topics 
carries a valuable educational potential. The funda-
mentals of the conditions and circumstances – with 
respect to the subject of the application as well as the 
mathematical methods used – gives insight into the 
processes of gaining knowledge.

The values   of goods and services are defined by their 
position on a common one-dimensional discrete scale; 
a price is assigned. So already the introduction of the 
quantity “money” is an early normative modelling 
item (cf. Möller, 2007, pp. 3ff.). It allows a comparison 
and measuring with monetary units, which implies 
the definition of an order relation for all the goods and 
services. Here a descriptive aspect becomes appar-
ent: Aspects of economic objects can be characterized 
(via prices). Once the concept of functions is available, 
rates may be expressed by functional dependencies 
and forecasted under appropriate model assumptions. 
In accordance with and in extension to Henn (2000) 
the descriptive aspect can be interpreted as a summa-
ry of description, declaration and prognosis.

The role of calculus
Even if modelling using functional relationships is 
regarded as reasonable, there is initially no need to 
apply methods of calculus. Under what conditions and 
for what motives does this happen, at all? In order to 
answer this question one must distinguish between

 ― a use of a calculus not reflected upon (cf. Doorman 
& van Maanen, 2009, p. 4), which offers the possi-
bility of using methods taught in school to discov-
er certain properties of functions (local extrema, 
inflexion points, monotony etc.);
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 ― a deliberately chosen approach, which allows 
an analysis of the model with methods of infini-
tesimal calculus in the first place with the aim of 
gaining knowledge.

The latter begins with the substitution of discrete 
quantities, such as money or lot sizes, with contin-
uous ones. In this way, the real numbers (as well as 
real intervals) are involved. Functional dependencies 
described by tables or in terms of numerical sequenc-
es must now be expressed by functions defined on 
(connected) subsets of the real numbers. Often the 
mapping rules are chosen in a way, that allows an 
analysis according to infinitesimal calculus, i.e., they 
are continuous, differentiable etc. Providing this, it 
is possible

 ― to use methods from calculus on the mathemat-
ical model level;

 ― to interpret the available mathematical concepts 
relative to the real situation, i.e., an economic in-
terpretation.

Corresponding to the second point, we often observe 
an interaction between the mathematical practice and 
the subject to be mathematized: Several economic 
concepts were generated or at least clarified by the 
use of a certain kind of mathematics. Marginal costs, 
defined by the first derivative of the cost function, 
are an example. The history of physics and its partial 
co-evolution with calculus offers a variety of relevant 
analogies.

STUDENTS’ PREVIOUS KNOWLEDGE 
ABOUT THE CO-EVOLUTION OF 
CALCULUS AND PHYSICS

Modern calculus textbooks are characterized by an 
axiomatic representation and by offering physical 
applications. The representations are supplemented 
by graphics or pictures to support their understand-
ing. The main concepts include the real numbers, the 
notion of a function and a limit. They are proposed by 
a formalised representation following a trias that is 
definition, theorem and proof, supplemented by a few 
examples illustrating the propositions. In this way 
the representation of calculus made its way during 
the first half of the last century (see also Jost, 1998). 
This outcome is still regarded as “modern” and results 
from a long historical non-linear development with 

discontinuations. Thus it may be an ambitious task 
for first-year students to look into history of calculus 
self-contained. In the case of master’s students an in-
dependent research is more appropriate. The follow-
ing sections outline the knowledge students should 
have to participate in a discussion about further ap-
plications in social sciences, especially in economics. 

The discovery of the Archimedean palimpsest (cf. Netz 
& Noel, 2007) revealed his geometric view consisting 
of several singular perceptions of areas bordered by 
parabolas. His way can be characterized as singular 
efforts but he did not deduce a method which could 
have led to a general view. He took first steps onto the 
way to Riemannian integration, but however, he did 
not develop a general method like Riemann did.

New steps towards a theoretical approach of analysis 
were taken more than a thousand years later within 
occidental mathematics. Further efforts were made 
within the influence of natural sciences in particular 
the planetary movements as well as the ballistic inves-
tigations. These considerations corresponded to the 
notion of dynamics, e.g. the velocity, and both concepts 
involve the dependency between a geometric position 
and the time. Here Johannes Kepler (1571–1630) used 
the lists made available by Tycho Brahe (1546–1601) 
(lists that put the loci of the planets in dependency 
of the time) and deduced his laws of planetary orbits.

Newton (1643–1726) further developed and refined 
the theory of planetary movements by using an in-
finitesimal calculus that emphasized dependencies 
of time. However he did not yet apply yet our modern 
concept of a function. Around the same time Leibniz 
(1646–1716) generated an infinitesimal calculus by 
introducing infinitesimal quantities, not using conse-
quently a functional approach either. However, both 
of them and some other contemporary scientists pro-
vided a basis for their followers in the 18th century, 
see also Sonar (2011).

Euler (1707–1783) picked up these conceptions and 
was the first to introduce the functional concept in 
a way in which we use it still nowadays. This means 
the infinitesimal calculus reached the next level and is 
since called modern. During the following decades the 
focus was on computational aspects but there was still 
a lack of theoretical foundations. The real numbers 
had no theoretical foundation and the concept of a 
limit was still missing.
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Karl Weierstrass (1815–1897) bridged both gaps (real 
numbers and limits) using the epsilon-delta-statement 
for the definition of a limit and contributed a theo-
retical approach to the real numbers. The latter was 
refined later on by Dedekind and Cantor who defined 
the real numbers by Dedekind-cuts. Cantor contrib-
uted the concept of Cauchy sequences (equivalence 
classes of Cauchy sequences) and the continuum hy-
pothesis (cf. Hairer & Wanner, 1996, pp. 172ff.). Their 
contributions established a completion of the rational 
numbers to the real numbers so they obtained a com-
plete field of numbers.

Teacher students should be also aware of the follow-
ing: In the classroom, but also in contemporary uni-
versity lectures, especially in teacher education, one 
can observe some kind of (anti-) didactical inversion 
(cf. Freudenthal, 1983, pp. 305ff.), interpreted in terms 
of history. There is an introduction to the real num-
bers on secondary I level, which mainly consists of 
some examples of irrational numbers. As a matter of 
fact this is part of the recent history of calculus and it 
is, strictly speaking, mathematics from the 19th centu-
ry. Regarding the concept of functions, the situation 
is similar: It is introduced before a discussion about 
infinitesimal concepts takes place on secondary II lev-
el. The figure below presents a very rough scheme that 
reflects teacher students’ often observed reception of 
the history of calculus and the (experienced) order 
of teaching. 

EDUCATIONAL POTENTIAL

There is no controversy about the necessity of gain-
ing insight into economics and economics applica-
tions using mathematical concepts. However, this is 
defined differently or non-specifically. According to 
May (2001, p. 3), 

… economic literacy can be paraphrased as the 
qualification (knowledge, competencies, skills, 

attitudes etc.) to manage living conditions deter-
mined by economics. 

At the same time we find the statement:

The intention of teaching economics is … the (eco-
nomically) responsible citizen. 

Engartner (2010, p. 15) emphasizes the social meaning 
of economic literacy:

Only an appropriately qualified citizen, educated 
in matters of responsibility, is in a position to 
follow the rapid process of social change at least 
rudimentarily. 

Orientation towards the “basic experiences”
Sociological and economic issues affect the reality of 
young adults’ lives to a larger degree than topics from 
physics do. From the mathematics educational point 
of view they are matters of the “basic experiences” of 
Winter (1996): Mathematics education is providing 
general education by 

 ― realizing phenomena of nature, society and cul-
ture;

 ― knowing (and appreciating) mathematical issues, 
represented by language, symbols, images an for-
mulas;

 ― acquiring heuristic competencies.

Mathematics education has a general and life 
preparatory function (Heymann, 2013, pp. 131ff.). 
Mathematical modelling offers the opportunity to 
realize this in two ways: firstly, on the basis of concrete 
facts to be modelled, then again by modelling itself on 
a meta-level. This provides access to epistemological 
issues.

Figure 1: Didactical inversion – in terms of history 
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Epistemological aspects
Theory of science is not science philosophy, and the 
latter is not the same as epistemology. Especially the 
German language is differentiated here, although not 
uniformly (Poser, 2012, pp. 15ff.). It is not the role of 
an introductory mathematical lecture to explicate 
this in detail. But particularly with regard to teacher 
education one should not ignore the observation, that 
students, but also teachers, often show a naively real-
istic understanding of science. Zeyer (2005) confirms 
their socialization through their academic training in 
terms of an unconsidered positivistic attitude. In this 
context a proposal from Duit (1995, p. 905) deserves 
consideration. 

Knowledge acquisition is regarded as an active 
construction on the basis of existing ideas. The 
active, self-directed and self-reflective learner is 
in the center and the idiosyncratic processes of 
construction are always embedded in a particular 
social context.

In case of the natural sciences and pure mathemat-
ics there are justified objections to a strong empha-
sis of relativism, even from a didactic point of view. 
Regarding economics, the situation is quite different. 
It is obvious, that the economic denominations list-
ed above are closely connected to human action. The 
implications and theories deduced do not have the 
significance of “laws of nature”. This makes it easier 
for students who did not have any contact with episte-
mological questions until this point to identify the ref-
erence objects of many scientific discourses as models.

The history of economic sciences shows various para-
digm shifts – even within the radical meaning of Kuhn 
(1992) –, and even the contemporary ones are more ac-
cessible to laymen than the development of physics in 
the twentieth century. This supports an open-minded 
modelling activity in economic contexts in which the 
distinction between “wrong” and “correct” solutions 
becomes less important and is put into perspective. 
The main idea of the paradigm and the paradigm shift 
relates to the facts to be modelled and the mathematics 
used at the same time. For example, the economic mar-
ginal analysis uses infinitesimal methods originally 
physically and geometrically motivated. In economics, 
however, quantities of discrete nature are often mod-
elled as continuous ones with intent to apply methods 
of differential calculus, which emerged from com-
pletely different requests. Lectures and seminars on 

calculus offer the opportunity to point to the transfer 
of methods from natural to economic sciences and 
discuss how far this is an historic attempt to make 
economy “accurate”.

Considering everyday experiences, and apart from 
the necessity of laboratory conditions, Newtonian me-
chanics may be a “canonical” modelling. Anyway, the 
use of infinitesimal methods in economics is based on 
model assumptions which are replaceable in a more 
obvious way, e.g. by the application of methods from 
discrete mathematics.

Brodbeck (1998, pp. 22ff.) refers to these observations 
as “social physics” and continues:

The mechanical approach in economics shall pri-
marily allow the application of mathematical and 
experimental methods in analogy to physics (…).

Prospects
Jablonka (1996, p. 187) concludes her meta-analysis of 
approaches to mathematical modelling and applica-
tions by declaring: 

The lack of examples from which we can learn 
where to ask more questions and to try different 
ways and to illuminate the problem from differ-
ent perspectives and to weigh the outcome and 
evaluate critically clearly shows that a reflection 
beyond the scope of an analysis of purposes and 
efforts has little place in mathematics lessons, 
which target the comprehension of mathemat-
ical procedures and theories. 

As a resource to change the viewing angle 
self-consistent, and as an instrument to recognize 
and evaluate alternatives, to search for reasons 
and in the exchange of arguments, reflection is 
not knowledge, but an attitude in the assessment 
of mathematical methods to be aimed at an in-
tentional creation of situational activity, which 
results in the insight, that recipients or persons 
concerned are authorized and applying opera-
tors are obligated, to adopt a critical attitude.

Teaching experience meets the high expectations 
linked to the potential of economic modelling against 
the background of the history of calculus outlined 
here. Qualitative investigations planned in this con-
text will provide further indications. 
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This paper aims at discussing how a context of argumen-
tation can be created in the classroom through the de-
velopment of tasks based on the history of mathematics. 
These were proposed to a class of 8th grade. Through this 
experience, we found that students use different types of 
arguments that show different degrees of formality and 
kinds of reasoning; express and justify their ideas; and 
interpret and understand the opinions that are present-
ed to them. The history of mathematics proved to be an 
enabling tool for mathematics learning, particularly 
for building a community of mathematical discourse, 
in which mathematical argumentation is reflected.

Keywords: History of mathematics, argumentation, 

Pythagorean theorem.

INTRODUCTION

The integration of the history of mathematics in math-
ematics classes has, over time, attracted the interest 
of researchers, mathematicians and mathematics 
teachers (Fasanelli, 2000). In fact, in recent years, 
such an integration has been prominently featured 
in literature and in educational curricula of differ-
ent countries. In parallel, there are several studies 
that highlight the value of argumentation in mathe-
matics (Pedemonte, 2002; Knipping, 2008) as well as 
a number of specific references in the curriculum 
guidelines that advocate the development of students’ 
ability to communicate the way they reason. Taking 
as starting point these principles, we intend to show 
how the integration of tasks based on the history of 
mathematics in the context of the classroom can foster 
the development of mathematical reasoning, influenc-
ing students’ ability to reason.

HISTORY AS A PROVIDER OF 
MATHEMATICAL ARGUMENTATION

A number of arguments justify the benefits of inte-
gration of the history of mathematics in teaching and 
learning mathematics. Tzanakis and Arcavi (2000) 
point out five fields in which such an integration may 
be particularly relevant to support, enrich and im-
prove the teaching and learning process: the learn-
ing of mathematics; the nature of mathematics and 
mathematical activity; the didactical background of 
teachers; the affective predisposition towards mathe-
matics; the appreciation of mathematics as a cultural 
endeavor. On the other hand, Jankvist (2009) proposes 
two sets of categories in which to place the arguments 
for using history (the “hows”) – history as tool or his-
tory as a goal – and the different approaches to doing 
this (the “whys”) – illumination, the modules and the 
history-based approaches.

Discussing and developing mathematical arguments 
implies creating conditions for students to learn how 
to reason mathematically, since a classroom culture 
that promotes the argument stimulates the participa-
tion of students in their own learning (Krummheuer, 
1998). In this sense, the history of mathematics can 
play a useful role in creating a community of mathe-
matical discourse, namely fostering contexts for ar-
gumentation. The different points of view that arose 
from different historical contexts provide an oppor-
tunity for students to argue and to develop the art of 
arguing, to justify their own opinions and to present 
their thoughts to their peers (Fasanelli, 2000). Thus, 
students develop not only deeper mathematical skills 
but also other sorts of skills such as the ability to dis-
cuss, analyze and “talk about” mathematics (Tzanakis 
& Arcavi, 2000). In fact, according to Siu (2007), using 
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the history of mathematics in the classroom does not 
necessarily make students obtain higher scores in a 
particular subject, but it can make learning mathe-
matics a more meaningful and lively experience, thus 
helping to learn more and more easily. It contributes 
to establish a context of teaching and learning that 
provides both teachers and students with different 
ways of using and acquiring knowledge about what 
is taught in its diversity. These different forms may 
arise, for example, by proposing and solving certain 
problems, since they allow not only the observation 
of the historical evolution of the concepts, but also 
promote reasoning and comparison of resolution 
strategies. Such a process promotes the exchange of 
ideas and reasoning schemes (Lakoma, 2000), which 
allows not only the development of argumentation 
situations, but also the establishment of connections 
with previously acquired knowledge or other areas 
knowledge, fostering, in particular, the students fa-
miliarity and personal involvement in mathematics 
(Tzanakis & Arcavi, 2000). Therefore, the history of 
mathematics appears as a way promoting communi-
cation development and, in particular, mathematical 
reasoning in the context of the classroom.

ARGUMENTATION IN MATHEMATICS CLASS 

Argumentation refers to techniques or methods for 
establishing a speech statement, i.e. processes that 
produces a (not necessarily deductive) logical asser-
tion on a given subject. The value of arguments in 
mathematics classes, arises not only associated to the 
idea of explanation and justification – to convince the 
other – but also to the discussion and evaluation of 
different ideas expressed in the classroom, for exam-
ple while addressing a given task.

The model proposed by Toulmin makes possible a 
local analysis of the arguments. This model aims at 
capturing the “logical form” of a speech (Pedemonte, 
2002). Toulmin (2008) describes the basic structure 
of rational arguments as a pair data/conclusion. The 
passage from data to conclusion can be put in question, 
and often is justified by a warrant. Although, some-
times the distinction between data and warrants is 
unclear, their functions are different: data transmit 
a set of information; warrants authorize the step of 
inference. This distinction allows Toulmin to provide 
the skeletal elements of a pattern that we call sim-
ple argumentation form. However, this elementary 
scheme may not be sufficient to analyze certain argu-

mentative discourses. Toulmin, thus, adds three aux-
iliary elements of discourse analysis: modal qualifiers, 
conditions of rebuttal and foundation. In particular, 
in mathematical argumentation these auxiliary ele-
ments arise, respectively, as indicators of the strength 
of the argument, as exception conditions and warants 
to support the inference. We designate this by complex 
argumentation.

A classification of the different arguments produced is 
given by Reid and Knipping (2010), who establish four 
categories of arguments: empirical, generic, formal 
and symbolic. Moreover, they state that within these 
four categories several subcategories can be identi-
fied. Other cases may lie at the borderlines between 
them.

METHODOLOGY AND CONTEXT 

This experience, as part of a broader research study, 
followed a qualitative methodology, involving stu-
dents in a class of 8th grade and the respective teacher. 
It aimed at examining how the integration of histo-
ry-related tasks in the context of the classroom may 
influence the students’ ability for reasoning and ar-
gumentation. 

The study had several phases: organization of the task; 
implementation (along two-class periods of ninety 
minutes each) and data collection; analysis of the argu-
ments produced by students, local and global analysis 
of different discursive interactions, identification of 
difficulties experienced by students and their own 
assessment. 

The task – two towers, two birds and a fountain – was 
structured in different parts. Thus, for Part I, stu-
dents were asked, in small groups, to solve the fol-
lowing problem: Two towers, measuring 30 meters 
and 40 meters of height, respectively, are placed at a 
distance of 50 meters. Between the two towers there 
is a fountain to where two birds, flying down from 
the towers at the same speed, arrive at the same time. 
What is the distance between the fountain and each of 
the two towers? The problem is found on Fibonacci’s 
Liber Abaci. In Part II, students were asked to read 
and review strategies of resolution of this problem by 
Fibonacci himself and Gaspar Nicolas (a Portuguese 
mathematician of the 16th century). 
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Data collection was carried out through observation 
field notes, as well as audio and video records. A docu-
mental analysis was also carried on using documents 
produced by the students: resolutions of the tasks 
performed and their critical reflection upon them. 
The teacher put a strong emphasis on group work 
and discussion with the whole class, interacting with 
students whenever considered necessary. 

The analysis of the arguments produced by students 
was done using local analysis as proposed by Toulmin 
and the classification of arguments proposed by Reid 
and Knipping (2010) model arguments. The evalua-
tion made by the students was based on the five do-
mains mentioned by Tzanakis and Arcavi (2000).

PRESENTATION OF RESULTS 

We present in the sequel some examples of the work 
done by the students during the resolution of task’s 
Part I as well as a brief reference to how students 
reacted when reading and discussing the different 
arguments documented in the historical primary 
sources (Part II). 

Type of arguments (in solving the problem)
In Part I all groups tried to solve the problem and 
different types of argument were observed. Using 
unrepresentative examples, the arguments produced 
by students were not restricted to a simple enumer-
ation. In some cases they can even be framed in the 
subcategory crucial experience. Taking into account 
that at a certain moment the two birds are flying down 
from the two towers at the same speed and arriving at 
the center of the fountain at the same time, and that 
both birds start from the top of two towers, 30 and 
40m high, respectively, the students observed that 

“the [tower] 40 is higher than 30, so it must be closer 
to the fountain so that the birds arrive at the same 
time and with the same speed.” (Nelson, group G2). 
Moreover, given the difference between the heights 
of the two towers, 10 meters, the students felt that this 
value would influence the distance from the fountain 
to each of the towers. The fact that students take into 
account the data of the problem, noting what should 
be the position of the fountain (closer to the highest 
tower), suggests that they are addressing the problem 
in general. In fact, the initial argument of this group 
lies between the empirical and the generic, as it is the 
result of a refutation.

Nuno:  We depicted the towers [pointing to 
the towers drawn on paper] and the 
space between them is 50. If we put 
the fountain in middle, which is 25, 
gives this [pointing to the bird that is 
in the 30m tower] going down faster 
than this one [pointing to the bird that 
was in the 40m tower], because the 
building is taller.

Argumentation: local analysis 
(in solving the problem)
Yet in Part I, through the various types of arguments 
used, it was possible to carry out a functional recon-
struction of various statements made in the different 
groups. Observe an excerpt of the dialogue between 
the teacher and the G4 group:

1 Teacher:  What have you done? 
2 Diana:   We have depicted two towers 

with two birds each. A 40m high and anoth-
er with 30m and the distance between them 
was 50m. Afterwards we put the fountain 
here. 20m from this [pointing to the tower 
with 40m] and 30m from that [pointing to 
the tower with 30m, Figure 1], because the 
difference between them [the two towers] 
was 10m. So the fountain has to be closer 10 
meters to one of them than to the other. 

3 Teacher:  That is... 
4 Diana:   It is closer to this one [pointing 

to the tower 40m]. This one [pointing to the 
tower 40m] is 10m higher than that [pointing 
to the tower with 30m], therefore the foun-
tain must be 10m farther to walk the same 
distance. And here [pointing to the tower 
30m] has as least 10m, then [the bird] will 
walk less, then the fountain must be farther. 

5 Filipa:   That is, the fountain has to be 
closer to this [pointing to the 40m tower].

The excerpt shows that this group considers the fol-
lowing solution for the problem: the fountain must 
be located 20m from the highest tower and 30m from 
the lower (§2) one. The determination of these values 
was based on two preliminary conclusions, (§4) and 
(§5), which acted as new data in the argumentative 
discourse, to obtain the final conclusion. In this rea-
soning chain it is still possible to identify a warrant 
(§2) “because the difference between them [the two 
towers] was 10m. So the fountain has to be closer 10 
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meters to one of them than to the other”, whose role 
for this group of students was to legitimize the final 
conclusion. For the Toulmin model, the argumenta-
tive discourse corresponds to a simple form of argu-
mentation.

Almost all groups obtained the wrong values men-
tioned above. Group G1, however, initially proposed 
a set of different values. Their initial solution took 
the form of a conclusion obtained after a refutation, 
although later they also refute the conclusion. 

Nuno:  We depicted the towers [pointing to 
the towers, Figure 1] and the space be-
tween them is 50. If we put the fountain 
in the middle, which is 25, results in this 
[pointing to the bird in the lowest tow-
er] coming down faster than this one 
[pointing to the bird in the other tow-
er], because the building is taller. As 
this is higher, we added 10m ahead [for 
40m along the tower], so that they come 
down at the same speed [and arrive at 
the same time], we get 35 [25 + 10] with 
this [pointing to the tower 30m] and x 
[pointing to the way the bird would go] 
and use the Pythagorean theorem. 

Through this passage, we can conclude that the first 
solution figured out by the students was 25m, i.e. the 
fountain would distance 25m of each of the towers. 
However, students refute this possibility, because 
the bird on top of lowest tower would reach quick-
er the center of the fountain, since the other tower 
was “a higher building”. Although, at this moment, 
they do not mention the problem data given, they 
certainly consider it: the birds fly at the same speed 
and arrive at the same time to the center of the foun-
tain. Therefore, considering the negation of the claim 
refuted as a new data, they claim that the fountain 
should “move forward’” 10m, i.e. come 10 meters closer 

to the highest tower. Accordingly, they add 10m to 25 
(which was given as half of the distance between the 
two towers). Thus, for those students, the fountain 
should be located 35m away from the lowest tower 
and 15m from the highest one. It should be noted that, 
although not explicitly mentioned, the choice of 10m is 
related to such being the difference in height between 
the towers. According to the Toulmin model, this ar-
gumentative discourse is a complex form of argument.

In the final phase of the excerpt shown, students in-
sist they still need to apply the Pythagorean theorem. 
Later this group will come to refute the consensual 
conclusion: that fountain is located 35m ahead from 
the lowest tower and 15m from the highest one. Note 
that this group using the same method, will refute the 
conclusions of the others. Thus, at the end of Part I no 
group had come up with the correct solution. 

Reading and interpreting the reasoning 
argument present in primary sources
Although students have not found the correct solution, 
in Part II they were faced with three new resolutions 
coming from historical primary sources. They read, 
reviewed and discussed each of these resolutions, 
and arrived to the actual solution. They compared 
the resolutions, not only among themselves, but also 
with their own attempts. From what students wrote 
we are able to undertake a local analysis of the argu-
ments, but also to identify the difficulties shown and 
the assessment they made of their work, namely, the 
confrontation of different resolutions.

From the claim accompanying the arithmetic resolu-
tion by Fibonacci, which reads “(…) in geometry it is 
clearly demonstrated that the height of either tower 
multiplied by itself added to the distance from the 
tower to the center of the fountain multiplied by it-
self is the same as the straight line form the center 
of the fountain to the top of the tower multiplied by 
itself; this therefore known (…)”, the students were 

Figure 1: Illustration of the problem made, respectively, by groups G1 and G4 



The role of history of mathematics in fostering argumentation: Two towers, two birds and a fountain (Paulo Gil and Maria Helena Martinho)

1821

able to solve the problem algebraically. Observe the 
following:

1 Emanuel:  900, here 1600 (writing next to 
the respective towers, Figure 2).

2 Teacher:  Then what does he say? He adds 
what?

3 Emanuel:  The distance from the tower to 
the center of the fountain multiplied by itself.

4 Teacher:  You have already the square 
of the distance from the lower tower to the 
center. How much it is?

5 Emanuel: 900.
6 Teacher:  And what does he do? He add 900 

to…
7 Emanuel:  The square of the distance from 

the lowest tower to the center of the fountain.
8 Teacher:  You know how much is this dis-

tance?
9 Emanuel:   It is x!
10 Teacher:  It is x?
11 Emanuel:  Can be x, because I don’t know 

the length (marks on the drawing x)
12 Emanuel:  It’ll be this (pointing to 900) plus 

x squared (writing next to the figure 900 + x2). 
Then there is also this 1600.

13 Teacher:  And you agree with what is 
there?

14 Emanuel:  (After a silence) Yes, it is the 
Pythagorean theorem.

15 Teacher:  Let’s continue.  Could you do the 
same for the other triangle?

16 Daniel:  Yes.
17 Emanuel:  This is not x! (pointing the dis-

tance from the fountain to the highest tower).
18 Teacher:  So here is…
19 Emanuel:  50 – x. [The distance from the 

center of the fountain to the highest tower]

(Next, they write the expression 1600 + (50 – x)2 to de-
note the square of the distance from the highest tower 
to the center of the fountain).

20 Teacher:  Yes, and what can you do with 
these two expressions?

21 Emanuel:  We have to match! (they reply 
very promptly).

22 Teacher:  And why did you match?
23 Emanuel:  Must be the same distance, 

because the flights were of equal lengths. 

(Writing 900 + x2 = 1600 + (50 – x)2). And now 
we solve.

Through this passage, we can conclude that the stu-
dents translate, in current notation, the information 
given. Although the purpose of this task was to ana-
lyse the process of resolution presented by Fibonacci, 
this group, from reading the first part of the resolu-
tion of Fibonacci, chose to translate it algebraically, 
obtaining an equation. Thus, for this group, it was 
enough to solve the equation and thus get the solution.

After solving algebraically the equation, group G2 
continued to read and analyse the Fibonacci resolu-
tion. They noted that the method used by Fibonacci 
was the false position, a method often used by the 
Egyptians to solve problems. Students refer this fact, 
because the procedure used by Fibonacci corresponds 
to choose a measure for the distance from the center 
of the fountain to the highest tower, which is not the 
problem solution. Then this is revised in order to 
obtain the correct solution. Students observe that 
Fibonacci appointed for 10 the distance from the foun-
tain to the highest tower, introducing new data in the 
problem; naturally the distance from the lowest tow-
er to the fountain is 40, since “the distance between 
the towers is 50 steps”. Students justify Fibonacci’s 
choice of this value (10) as being related to the differ-
ence between the heights of the towers. Next, students 
report that Fibonacci squared these values (heights 
of the towers and the distance from each tower to the 
fountain), as he “knew that what was shown in the 
figure was the Pythagorean theorem”. Students con-
tinue their interpretation, noting that actually the 
result has to be the same. Therefore, they report that 
Fibonacci put the fountain 5 steps more ahead of the 
lowest tower. Implicitly, they account for the fact that 
the birds fly at the same speed and arrive at the same 
time to the center of the fountain, which shows that 
the birds travel the same distance. By the same pro-
cedure, which corresponds to the application of the 
Pythagorean theorem, students say that Fibonacci got 
a new value for the difference between the distance 

Figure 2: Illustration of the problem made by group G2
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travelled by birds. Again the values obtained are not 
equal, and thus conclude “the fountain was not well 
positioned”. They state that Fibonacci noted that when 
he “moves” the fountain 5 steps ahead the difference 
between the distance travelled by each bird was 300, 
i.e. the difference decreased in 500 steps.  Since the 
birds travel the same distance, students report he used 

“the rule of three to see how many steps they had to 
walk so that the difference stays equal to 0”. However, 
in Fibonacci’s resolution there is no reference to this 
rule, but rather a numerical recipe – “multiply 5 by 
300, and divide by 500”.

In the local analysis of the arguments produced, it is 
observed that those are presented sequentially, which 
did not happen when students attempted to solve, 
initially, the problem. It was also noted a common 
concern with effective warrants and even with the 
corresponding foundations, which could legitimate 
the inference steps.

The second strategy to solve the problem is based on 
the similarity of triangles, Figure 3, efz and gem where 
m is the intersection point of ef and the parallel to df 
which contains g. Fibonacci started solving the prob-
lem by showing geometrically that the point z is the 
center of the fountain. Then he proceeded numeri-
cally. In this first phase, the students were challenged 
to read the beginning of Fibonacci’s resolution and 
to find a justification for point z be the center of the 
fountain.

After some discussion students observed that e is, by 
construction, the midpoint of the segment ga, and ez, 
and also by construction, a segment perpendicular to 
the segment ga, and thus the triangles aez and gez are 
geometrically identical, since both sides are identical 

and form an angle (90º). With respect to the arith-
metic resolution, although the students were able to 
identify its main elements, they did not understand 
how Fibonacci arrived, in current notation, to the 
expression [35x(35 – 30)] / 25. 

Daniel:  Subtract this 35 by 30 will give 5; draw-
ing this parallel line will get this 5 [point-
ing to the Figure 3]. Then multiplying 35 
by 5 gives 175. Then dividing by 25 will 
[pointing to the segment]. But to divide 
by 25 will give the result of this [point-
ing to fz]. I’m not understanding why it 
gives the result of fz here [pointing to fz], 
if it is to change this [pointing to 5 and 
35] for this [pointing to 25].

This excerpt reflects the difficulty expressed by stu-
dents. Although the figure can identify the values 
reported by Fibonacci, it cannot justify the solution. 
Involving the whole class in the discussion the teacher 
points to the relationship between the triangles efz 
and gem.

1 Teacher:  And these two triangles are 
equal?

2 Andrea:  Which ones? This [pointing to 
the triangle egm] and this [pointing to efz]?

3 Teacher:  Yes.
4 Daniel:  No!
5 Emanuel:  They do not have the same meas-

ures.
6 Teacher:  Are they similar?
7 Teacher:  [after a silence] What is required 

for two triangles to be similar?
8 Daniel:  They must have two equal an-

gles...
9 Nelson:  Or the sides proportional....
10 Teacher:  Or two proportional sides and 

the angle formed by them equal.
11 Daniel:  They have a right angle [pointing 

to egm]... and also this [pointing to efz].

This extract, shows that students observed that tri-
angles, gem and efz, are not geometrically identical 
(§4), since they have different sides (§5). Questioned 
whether they were similar (§6), students pointed out 
two cases of similar triangles, (§8) and (§9), and the 
teacher a third one (§10). Students observed the exist-
ence of the two right angle triangles (§11). For them 
to be similar triangles it would be necessary to find 

Figure 3: Illustration of the problem made by group G2 to the 

second strategy
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another pair of geometrically equal angles. Later, the 
students find that angles gem and fze are geometrically 
identical and therefore the triangles are similar.

The resolution proposed by Gaspar Nicolas, is written 
in the form of a recipe without any algebraic symbol. 
Although he considered the towers with 80 and 90 
fathoms and the distance between both to be 100 fath-
oms, the students understood easily the calculations 
but question the procedure: “why to subtract 6400 
to 8100”, “why to add this difference to the square of 
the distance between the two towers” and “why to 
divide that result by 200”. The teacher suggested a 
possible correspondence with the algebraic process 
used previously. With two unknowns, students were 
able to establish a correspondence between Nicolas’s 
and their own algebraic process.

CONCLUSION 

The experiment shows that different sorts of argu-
ments were produced by different groups of students. 
Many of them were not developed sequentially, i.e. in 
a deductive way. The need for sharing ideas and ex-
change opinions was responsible for the emergence 
of not only parallel arguments, but also of new data 
which was suitably inserted into the argumentative 
chain. In simple forms of argumentation, we also 
observed the existence of inference steps for which 
the corresponding warrants or foundations were 
not explicitly presented. On the other hand, when 
analyzing the resolution strategies of Fibonacci and 
Gaspar Nicolas, students exhibit a strong concern for 
seeking warrants or some sort of formal explanations 
(eventually not explicit in the resolution shown) to 
legitimize certain inference steps. The analysis of the 
forms of argument used shows that students were not 
only able to express their ideas, but also to interpret 
and understand the ideas presented to them, as well 
as to participate constructively in the discussion. In 
assessing the experience, students highlighted the 
importance of solving the same problem through dif-
ferent processes and of becoming able to compare 
different resolution strategies. They also stressed the 
exercise influenced the predisposition to this disci-
pline, while providing a broader view of its nature: 

“the geometrical resolution was the most difficult, but 
we learned that it was possible to solve the same prob-
lem geometrically”; “for me the most interesting was 
the resolution of Gaspar Nicolas, because I liked to 

try understand his thought and to solve an equation 
in words”.

Experience has shown the potential of integrating the 
history of mathematics in the context of the classroom. 
This entails the need for a broader consideration of 
this problematic and its importance. Similarly, it 
seems necessary to outline a number of guidelines 
that promote this integration and scales up its po-
tential namely, in what concerns the development of 
mathematical reasoning. This experience confirms 
that the development of reasoning in the mathematics 
class is a complex process: it requires a careful selec-
tion of the tasks, and entails the need for promoting 
a suitable environment for them, focused on the stu-
dents’ mathematical maturation.
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The paper describes a course the purpose of which is 
to introduce future mathematics teacher educators to 
the topic of using history in mathematics education. 
Excerpts from students’ hand-in mini-projects are dis-
played and discussed in terms of the Danish mathemat-
ics competency framework. 
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INTRODUCTION

The paper addresses the question: how to introduce 
future mathematics teacher educators to the discussion 
of history in mathematics education, and how to pre-
pare them theoretically for a potential use of history of 
mathematics in their own future practice. The “answer” 
presented to this question is one by example, since the 
paper reports on a concrete design and implementa-
tion of a course. The theoretical framework adhered 
to in the paper is that of the Danish KOM-report (Niss 
& Højgaard, 2011), which lists eight mathematical com-
petencies that all students of mathematics should 
come to possess, and an additional six didactic and 
pedagogical competencies that mathematics teachers 
should also develop (to be described later). Illustrative 
examples of students’ reports from the course will 
be displayed and discussed. First, however, a bit of 
the background of the course participants and the 
educational setting is provided.

EDUCATIONAL BACKGROUND AND SETTING

To become a mathematics teacher educator of prima-
ry and lower secondary teachers in Denmark, it is 
often favoured by the teacher training colleges that 
the educators hold a master’s degree in mathematics 
education (in Denmark a Ph.D. is not required), which 
the Department of Education at Aarhus University is 

the only provider of in the country. More precisely, to 
enter the master’s program the student must already 
have a university bachelor’s degree, e.g. in mathemat-
ics, or a vocational bachelor degree, e.g. as a primary 
and lower secondary mathematics teacher. The two-
year master’s program consists of courses in mathe-
matics, courses in general didactics, a course in didac-
tics of mathematics, several of these involving student 
projects, and finally a master’s thesis. The course of 
our interest here is that in “didactics of mathematics”. 
In this course, the mathematics educators of the de-
partment, of which we are presently four, are given 
the opportunity to teach in a mathematics education 
topic of their own choice. One of the ideas behind this 
is that students in this way also are confronted with 
recent research, in which the mathematics educators 
themselves are involved. The course counts 10 ECTS, 
and each topic takes up six lessons of two to three 
hours teaching and supervision plus student group 
work, etc. For each of the topics, groups of students 
hand in a mini-project. Based on a random draw, at the 
end of the course the student groups are examined in 
one of the four mini-projects. In the following, I pres-
ent the design of the six sessions related to the topic of 

“history in mathematics education” – but first, a brief 
description of the theoretical framework of the paper.

KOM: THE DANISH COMPETENCY FRAMEWORK

In KOM – a Danish abbreviation for competencies 
and mathematics learning – a mathematical compe-
tency is defined as: “a well-informed readiness to act 
appropriately in situations involving a certain type 
of mathematical challenge” (Niss & Højgaard, 2011, p. 
49). More precisely, KOM deals with eight mathemati-
cal competencies: mathematical thinking competency, 
i.e., to carry out and have a critical attitude towards 
mathematical thinking; problem tackling competen-
cy, i.e., to formulate and solve both pure and applied 
mathematical problems and have a critical attitude 
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towards such activities; modelling competency, i.e., 
to carry out and have a critical attitude towards all 
parts of a mathematical modelling process; reasoning 
competency, i.e., to carry out and have a critical atti-
tude towards mathematical reasoning, comprising 
mathematical proofs; representation competency, i.e., 
to use and have a critical attitude towards different 
representations of mathematical objects, phenomena, 
problems or situations; symbols and formalism compe-
tency, i.e., to use and have a critical attitude towards 
mathematical symbols and formal systems: commu-
nication competency, i.e., to communicate about math-
ematical matters and have a critical attitude towards 
such activities; aids and tools competency, i.e., to use 
relevant aids and tools as part of mathematical activ-
ities and have a critical attitude towards the possibil-
ities and limitations of such.

In addition to the above mathematical competencies, 
KOM also provides a competency-based description 
of the profession of mathematics teachers, describing 
a set of six didactic and pedagogical competencies: 
curriculum competency, i.e., to evaluate and draw up 
curricula; teaching competency, i.e., to think out, plan 
and carry out teaching; competency of revealing learn-
ing, i.e., to reveal and interpret students’ learning; 
assessment competency, i.e., to reveal, evaluate and 
characterise the students’ mathematical yield and 
competencies; cooperation competency, i.e., to coop-
erate with colleagues and others regarding teaching 
and its boundary conditions; and finally professional 
development competency, i.e., to develop one’s compe-
tency as a mathematics teacher.

DESIGN OF THE SIX LESSONS

In the following, I describe the content and purpose 
of the six lessons. For each lesson the students read 
a collection of texts, mainly research papers, which 
the students then worked with during the lesson. Also, 
supplementary texts were given for each lesson. 

In lesson 1, students were to familiarize themselves 
with different arguments for and against the use of 
history (and epistemology) in mathematics education, 
potential dilemmas, and of course different approach-
es to involving history. The texts read included Fried 
(2001), Jankvist (2009) and Niss & Højgaard (2011). The 
purpose of this was to enable the students to more 
competently discuss concrete uses of history at dif-
ferent educational levels including teacher training. 

Lesson 2 focussed on the role and use of theoretical 
frameworks in empirical studies related to a use of 
history in mathematics education. The students were 
presented with two studies (Jankvist, 2011; Kjeldsen 
& Blomhøj, 2012) which served as cases, and they then 
were to discuss the use of Sfard’s (2008) framework 
of commognition in these (the students were already 
somewhat familiar with this framework). As supple-
mental literature for this lesson, students were also 
encouraged to look at Jankvist and Kjeldsen (2011) and 
the use of the Danish competency framework (Niss & 
Højgaard, 2011) in this. Lesson 3 addressed the use of 
original sources in the teaching and learning of math-
ematics as well as different approaches to involving 
such sources (e.g. Barnett, Lodder & Pengelley, 2014; 
Jankvist, 2013). Also here, one purpose was to qualify 
the students to argue for and against a potential use 
of original sources in a particular educational setting. 
Supplementary texts for this lesson included Glaubitz 
(2011) and Jankvist (2014). The topic of lesson 4 was 
that of history in mathematics teacher education and 
not least the teachers’ potential benefits of being in-
troduced to elements of the history of mathematics. 
Drawing on the topics of the previous lessons, the 
students were to compare an older empirical study 
(Arcavi, Bruckheimer, & Ben-Zvi, 1982) with a newer 
one (Clark, 2012), and discuss the outcomes of these 
in the light of interpreting results by means of the 
framework of Mathematical Knowledge for Teaching, 
MKT (e.g., Ball, Thames, & Phelps, 2008, students were 
already somewhat familiar with this), drawing also on 
a reading of Mosvold, Jakobsen and Jankvist (2014). 
Lesson 5 was a workshop in which the students were 
to further relate the read texts to each other as well 
as to a concrete case of their own choice. This work 
eventually resulted in a hand-in mini-project report 
(approximately 12 pages plus appendices) for each 
student group. These reports were presented and 
discussed during lesson 6, where each student group 
would also have read the report of another group in 
order to provide constructive feedback and receive 
feedback themselves.

ILLUSTRATIVE EXAMPLES OF 
STUDENTS’ MINI-PROJECTS

In this section, I provide three examples of students’ 
hand-in mini-projects: one centred around an ac-
tivity to compare different historical proofs of the 
Pythagorean Theorem; one dealing with the changing 
notions of the concept of function through the 18th and 
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19th century; and finally, one that applies the presented 
theoretical constructs of the course literature in an 
analysis of the inclusion of history of mathematics in 
a secondary school mathematics textbook. 

Example 1: The Pythagorean Theorem
The idea of Group 1 was to design an activity centred 
around four different proofs for The Pythagorean 
Theorem, more precisely that from Euclid, those of Liu 
Hui and Zhao Shuang, respectively, and finally, one 
from a modern day textbook. The focus of the group 
was mainly one of history as a goal, following a mod-
ules approach (Jankvist, 2009). The group explained:

The case may illustrate to the pupils that math-
ematics develops differently depending on the 
culture in which the development is embedded. 
The difference may be seen from the many dif-
ferent proofs for The Pythagorean Theorem. The 
Chinese proofs are characterized by wanting to 
picture the approach and in this way convince 
the receiver. Euclid’s proof is characterized by 
a more stringent way of proof and an axiomatic 
composition. The modern proof is also stringent, 
but makes use of modern notation which is easier 
for the pupils to follow. This amounts to an argu-
ment of history as a goal, since the different ap-
proaches to proving The Pythagorean Theorem 
may contribute to pupils’ understanding of math-
ematics not being absolute, a point also made by 
Fried (2001). (Group 1, 2014)

Group 1 argued that their historical case in principle 
may be backed by all three of Fried’s (2001) reasons 
for resorting to history:

[i] By including the history of the proofs from 
different cultures and presenting the originators, 
the mathematical content may be ‘humanized’. 
[ii] The history and the context may be more ‘in-
teresting’ for some pupils that for others and the 
proofs may appeal to different pupils as well, so 
that more pupils may experience the mathemat-
ics as understandable, and hence may obtain an 
insight into the theorem and the associated con-
cepts. [iii] Finally, examples and tasks from the 
history of mathematics may be used to provide 
pupils with insights into the use of the theorem in 

‘problem solving’. Such tasks might for example 
be the nine tasks, which Liu Hui described and 
solved, now named the Sea Island Mathematical 

Manual. These include tasks where one has to 
find the height of an island, or a tree, or the width 
of a river using The Pythagorean Theorem […]. 
(Group 1, 2014)

Following Sfard (2008) and Kjeldsen and Blomhøj 
(2012), the group discussed how their historical case 
may introduce meta-discursive rules:

Since the proofs are different, it becomes possible 
to ask the question: What is a good mathematical 
proof? That is to say, it becomes possible to make 
the pupils conscious about this meta-discursive 
rule by including history of mathematics in the 
teaching. By working with the historical sourc-
es, the pupils can become aware of the discourse 
they are themselves part of, and develop an un-
derstanding of that working with and developing 
mathematics is part of the discourse in force in 
the time of question. (Group 1, 2014)

Group 1 ended their project by discussing the poten-
tial anchoring (Jankvist, 2011) of meta-issues of their 
historical case in the in-issues of the four proofs.

Example 2: Concept of function 

The case of Group 2 was four different definitions of 
the concept of function; more precisely Euler’s defi-
nitions from 1748 and 1755, respectively, Dirichlet’s 
from 1837, and a modern definition relying on the no-
tion of sets (e.g., see Kjeldsen & Petersen, 2014). The 
group aimed for a small module to be implemented 
in 9th grade of secondary school, since they found that 
the concept of function is one that is troublesome for 
pupils at this grade and the beginning of upper sec-
ondary school. Hence, an assumption of the group 
was that such a module might assist in easing the 
transition phase between the two educational levels 
(Jankvist, 2014). Unlike the previous group, this one 
used history as a tool:

We intend a half-half relationship between math-
ematics and history, and we use the history of 
mathematics as a means to teach the pupils the 
concept of function, i.e. our ‘why’ is history as a 
tool. We use it [history] as a motivating and cogni-
tive tool by offering different ways to introducing 
the concept. (Group 2, 2014)



Teaching history in mathematics education to future mathematics teacher educators (Uffe Thomas Jankvist)

1828

In terms of approach, Group 2 intended a four-ses-
sion module relying on the hermeneutic approach 
(Glaubitz, 2011):

We find that the hermeneutic approach fits our 
case, because it is the contrasts between past 
and present that are to be examined consciously, 
and because it is the embracing of these tensions 
that provides the deeper understanding of both 
the mathematics itself and the history of math-
ematics (Barnett et al., 2014). Since we choose 
the hermeneutic approach we first present the 
pupils with the modern definition of the concept 
of function and afterwards the original sources. 
(Group 2, 2014)

The idea, the group explained, is that the pupils must 
relate the early definitions to the modern one. In rela-
tion to Dirichlet’s definition, they said that the point 
of it and the modern one is actually the same, but 
the associated concepts have changed over time, e.g. 
set theory was not available at the time of Dirichlet. 
And by relating the modern definition and Dirichlet’s 
to those of Euler, the pupils must obtain an idea of 
why Euler’s concept of function is insufficient for us. 
Following this explanation, the group addressed the 
potential benefits of relying on original sources:

One of the advantages of original sources is that 
they promote the reader’s abilities to think like 
the author, and another is an understanding of 
the different context in which the sources are 
written (Barnett et al., 2014). If the pupils be-
come aware of the historical context and try to 
understand what the author did, there is a chance 
that they also try to understand the mathematics. 
[…] Other advantages are, among others, to bring 
the pupils closer to experiencing the creation of 
mathematics and see the road of mathematical 
development, flow, errors, and success (Barnett 
et al., 2014). (Group 2, 2014)

Finally, Group 2 touched on the discussion of having 
a Whig approach to history, and even though they 
admitted that their purpose of using history as a tool 
may have such consequences, the important issue is 
that they did so in an informed and conscious manner:

In our case we have chosen not to use all of the 
original sources, because even in the Danish 
translations they appear to be too difficult. Hence, 

we have chosen to use only the definitions, which 
are what the pupils get as ‘original sources’. […] 
We have found ourselves in the dilemma that ei-
ther the original sources were too difficult, or 
we had to face that it was not possible to avoid 
being a ‘little’ Whiggist in our approach. Hence, 
we are aware of the fact that our approach is a 
little Whiggist, but we have found this difficult to 
avoid when the target group is secondary school. 
(Group 2, 2014)

Example 3: A textbook analysis
The case of Group 3 was a Danish textbook system 
called Sigma, and in particular they looked at the 
books for 8th grade, which consist of one textbook for 
the pupils and one for the teacher. For their initial 
analysis of the books’ use of history, the group relies 
on the constructs of Fried (2001) and Jankvist (2009). 
Firstly, the group discuss the textbook authors’ pur-
pose of using history and the degree to which they 
find this realized:

In the teachers’ textbook […] we find the follow-
ing statement in the chapter on Numbers and 
Algebra: “We believe it to be important that the 
pupils learn about the development of mathematics 
and in particular that of numbers. Although such 
knowledge may not have a direct yield, it assists in 
providing the background for a part of the world, 
which we live in today. Without this knowledge, 
mathematics […] appears as if it has always exist-
ed in the form we are introduced to today” [Sigma 
8, teachers’ textbook, p. 6]. Here, knowledge of 
the history of mathematics is viewed as relevant 
in itself. Hence, generally speaking, we have to 
do with a goal argument [of using history]. The 
interesting thing then is how this is reflected 
in the pupils’ textbook […]. Through the entire 
chapter, we see a large focus on the history of 
mathematics. 10 out of 24 pages are dedicated en-
tirely to history of mathematics, where the pupils 
are informed about the historical development 
of the numbers from hieroglyphs over Roman 
numerals to negative numbers and the number 
0. Occasionally, the historical account is replaced 
by traditional mathematics exercises. However, 
there is almost no connection between the his-
torical information and the exercises, since these 
can be solved without having read the historical 
account. Hence, the intention from the teachers’ 
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book is not clearly implemented in the pupils’ 
book. (Group 3, 2014)

Group 3 also provided another example, one on the 
Pythagorean Theorem, where the teachers’ textbook 
provides an extensive account of Pythagoras, his 
school, and the presumed Babylonian origin of the 
theorem. Again, the implementation of this piece of 
history in the pupils’ textbook is reduced to a cartoon 
drawing, a picture of a marble bust of Pythagoras, and 
several examples accompanied by modern-day nota-
tion. As pointed out by the group, the book misses 
an opportunity of applying excerpts from original 
sources here. Original sources, however, are part of 
the teachers’ book, but the book authors’ intention 
with this remains unclear:

… in the teachers’ book […] six excerpts from orig-
inal sources on the proof of The Pythagorean 
Theorem are shown […], but no suggestions as 
to how the pupils may be brought to work with 
these sources are provided – actually, there is 
no mentioning of the sources themselves, so it is 
unclear why they are included in the first place. 
(Group 3, 2014) 

In further relation to the discussion of purpose of 
using history versus approaches to using it, the 
group pointed out that despite it being difficult to re-
alize ‘history as a goal’ through mere ‘illumination 
approaches’ (Jankvist, 2009), this appears to be what 
is happening in the Sigma system. They continued:

The teachers’ textbook […] contains quite a num-
ber of test exercises, but history of mathematics 
is not a part of any of these. In the teachers’ book 
it is clear that history is used as a ‘spice’ and seen 
as a tool, not as a goal. In the notion of Fried (2001), 
what we are dealing with is a ‘strategy of addition’. 
(Group 3, 2014)

With continued reference to Fried (2001), Group 3 
went on to argue that the book system has a somewhat 
Whig approach to using history, in particular in the 
pupils’ textbook. Following this, the group discussed 
the missed opportunities of the book system in rela-
tion to fostering Sfard’s commognitive conflicts, with 
reference to Kjeldsen and Blomhøj (2012):

In the teachers’ textbook […] it is stated that the 
pupils should become acquainted with the Roman 

numerals, although not to a very large extent: 
“The positional number system should – once more – 

be examined carefully with the pupils, while the 
Roman numerals should not be examined as much – 
they merely serve to illustrate the advantages of the 
numeral system we apply today” [Sigma 8, teachers’ 
textbook, p. 7]. The authors’ intention here is that 
of having one numeral system meet another in 
order to illustrate clearly the good idea of one of 
them. It is exactly in this meeting between two 
different discourses that the opportunity for 
learning arises, since the difference between the 
two discourses is made clear by the advantage of 
one of them. The intention here is for students 
to discover the ineffectiveness of addition in the 
Roman numerals as compared to our current po-
sitional system. Unfortunately, as seen before, 
this idea is not pursued in the pupils’ textbook, 
which only contains little information about the 
Roman numerals, and not a single exercise where 
pupils are to work with these. (Group 3, 2014)

Finally, Group 3 attempted a small analysis of the (po-
tential) role of history of mathematics in the Danish 
mathematics teacher educational program. Using 
their own knowledge of KOM, the group was able to 
deduce that from a curricular and rhetorical stance, 
history ought to play some role in Danish mathemat-
ics teacher education, but unsurprisingly it does not. 
As a potential explanation, the group pointed to the 
non-trivial relationship between mathematics, histo-
ry of mathematics, and didactics of mathematics, and 
that teacher educators will need to possess knowledge 
and competencies not only in each of these, but also 
in their cross-sections.

CONCLUDING DISCUSSION

In the following, I discuss the students’ yield in terms 
of ‘history in mathematics education’ as part of their 
future practice as teacher educators by relating this 
to KOM’s didactic and pedagogical competencies (Niss 
& Højgaard, 2011). A basic assumption in KOM is that 
to be able to develop pupils’ mathematical compe-
tencies, teachers must themselves possess the eight 
mathematical competencies. A similar assumption is 
that for future teacher educators to be able to develop 
teachers’ didactic and pedagogical competencies, they 
must themselves also possess these. In the mini-pro-
jects, some of these competencies of course reveal 
themselves more clearly than others and some not at 



Teaching history in mathematics education to future mathematics teacher educators (Uffe Thomas Jankvist)

1830

all. The competencies of revealing students’ actual 
learning and of assessment cannot be analyzed mean-
ingfully based on the mini-projects. For that reason 
these are not discussed here, and they are marked out 
of the given summarizing table (see Table 1).

As for the curriculum competency, both Group 1 and 
Group 2 were well aware that the contents of their 
modules fit into the curriculum, and that their teach-
ing sequences focus on a variety of the mathematical 
competencies as well. Group 1’s module on proofs for 
the Pythagorean Theorem required pupils to develop 
both their reasoning and their thinking competency. 
Group 2’s module also built on these two competen-
cies, but draw in the representation competency to 
a large extent as well in the pupils’ comparison of 
concrete functions as a means for evaluating the defi-
nitions of function. All three groups reveal aspects 
of teaching competency: group 1 and 2 in the active 
part of the competency, since they themselves plan 
and organize a teaching activity; and group 3 in the 
passive part of the competency, since they analyze 
already designed activities in textbooks. Group 2, in 
particular, also takes into account the pupils’ “char-
acteristics and needs” (ibid, p. 86) in designing their 
activity, e.g. by evaluating the difficulty of the original 
sources and by arguing for looking at the concept of 
function in relation to the transition problem between 
educational levels. 

Having to do these mini-projects, the students, i.e. 
the future teacher educators, depend on, train, and 
develop their cooperation competency. In particular 
the KOM-framework mentions “the ability to bring 
the above-mentioned […] competencies into play in 
mathematical, pedagogical and didactic cooperative 
projects” (ibid. p. 88), which is most certainly what is 
taking place when the students have to design these 
teaching activities in their groups and write up the 
mini-project reports, while drawing on the course 
literature and putting this into play in design con-
siderations, etc. This matter of being able to apply 
the various theoretical constructs from the course 

literature is of course closely connected to the pro-
fessional development competency, i.e. being able to 
develop one’s competency as a mathematics teacher. 
The competency involves “being able to enter into and 
relate to activities which can serve the development 
of one’s mathematical, didactic and pedagogical com-
petency” (ibid, p. 88), which of course is a basis for the 
course design to begin with, but in relation to using 
history it is exactly the theoretical constructs from the 
literature which to a large extent assist the students in 
this. Also, this competency is “about keeping oneself 
up-to-date with the latest trends, new material and 
new literature in one’s field, about benefiting from rel-
evant research and development contributions” (ibid, 
p. 88), which certainly also took place since much of 
the literature had only recently been published. 

The professional development competency is to some 
degree a ‘meta-competency’, as can be seen from its 
drawing on the other didactic and pedagogical com-
petencies. Perhaps for this reason, in particular, it 
is essential for teacher educators. KOM’s six teach-
er competencies are of course directed towards the 
teaching of mathematics, and teacher educators will 
have to teach mathematics as part of their future pro-
fession. So, in this sense, it is quite meaningful for the 
students to reflect upon the potential role of history 
and how it may best be used in various situations and 
contexts, i.e. not only in primary, lower and upper sec-
ondary school, but also in pre-service and in-service 
teacher education. Nevertheless, the teacher educa-
tors are also going to teach courses on the didactics 
of mathematics to pre-service teachers. And in this 
respect, the professional development competency 
appears relevant as well. The way the students are 
able to articulate their considerations and choices 
regarding a potential use of history using theoretical 
frameworks and constructs to make their arguments, 
is likely to be reflected in their own teaching of future 
teachers, and hence also in the pre-service teachers’ 
professional development.

Curriculum 
Competency

Teaching 
Competency

Revealing 
Learning 
Competency

Assessment 
Competency

Cooperation 
Competency

Professional 
Development 
Competency

Group 1

Group 2

Group 3

Table 1



Teaching history in mathematics education to future mathematics teacher educators (Uffe Thomas Jankvist)

1831

REFERENCES

Arcavi, A., Bruckheimer, B., & Ben-Zvi, R. (1982). Maybe a math-

ematics teacher can profit from the study of the history of 

mathematics. For the Learning of Mathematics, 3(1), 30–37.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowl-

edge for teaching: What makes it special? Journal of 

Teacher Education, 59(5), 389–407.

Barnett, J. H., Lodder, J., & Pengelley, D. (2014) The pedagogy 

of primary historical sources in mathematics: class-

room practice meets theoretical frameworks. Science & 

Education, 23(1), 7–27.

Clark, K. M. (2012). History of mathematics: illuminating un-

derstanding of school mathematics concepts for pro-

spective mathematics teachers. Educational Studies in 

Mathematics, 81(1), 67–84.

Fried, M. (2001). Can mathematics education and history of 

mathematics coexist? Science & Education, 10(4), 391–

408.

Glaubitz, M. R. (2011). The use of original sources in the 

classroom: empirical research findings. In E. Barbin, M. 

Kronfellner, & C. Tzanakis (Eds.), History and Epistemology 

in Mathematics Education Proceedings of the 6th 

European Summer University (pp. 351–362). Vienna, 

Austria: Holzhausen Publishing Ltd.

Jankvist, U. T. (2009). A categorization of the ”whys” and ”hows” 

of using history in mathematics education. Educational 

Studies in Mathematics, 71(3), 235–261.

Jankvist, U. T. (2011). Anchoring students’ meta-perspective 

discussions of history in mathematics. Journal of Research 

in Mathematics Education, 42(4), 346–385.

Jankvist, U. T. (2013). History, Applications, and Philosophy in 

mathematics education: HAPh – a use of primary sources. 

Science & Education, 22(3), 635–656.

Jankvist, U. T. (2014). On the use of primary sources in the 

teaching and learning of mathematics. In M. R. Matthews 

(Ed.), International handbook of research in history, philos-

ophy and science teaching (pp. 873–908). Dordrecht, The 

Netherlands: Springer.

Jankvist, U. T., & Kjeldsen, T. H. (2011). New avenues for history 

in mathematics education – mathematical competencies 

and anchoring. Science & Education, 20(9), 831–862.

Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: his-

tory as a method for learning metadiscursive rules in 

mathematics. Educational Studies in Mathematics, 80(3), 

327–349.

Kjeldsen, T. H., & Petersen, P. H. (2014). Bridging history of the 

concept of function with learning mathematics: students’ 

meta-discursive rules, concept formation and historical 

awareness. Science & Education, 23(1), 29–45. 

Mosvold, R., Jakobsen, A., & Jankvist, U. T. (2014). How mathe-

matical knowledge for teaching may profit from the study 

of history of mathematics. Science & Education, 23(1), 

47–60.

Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and math-

ematical learning – ideas and inspiration for the develop-

ment of mathematics teaching and learning in Denmark 

(IMFUFA tekst nr. 485/ 2011). Rosklide, Denmark: University. 

Sfard, A. (2008). Thinking as communicating. Cambridge, UK: 

Cambridge University Press.



1832CERME9 (2015) – TWG12

Algebra in Dutch education, 1600–2000 

Jenneke Krüger

University of Utrecht, Freudenthal Institute, Utrecht, Netherlands, jenneke.kruger@gmail.com

Algebra became part of mathematics education in the 
Netherlands in course of the seventeenth century. At 
first in the form of cossic algebra, but by the end of the 
century, the influence of the notation of Descartes was 
noticeable. In the eighteenth century, algebra was part 
of the basic curriculum of the Foundation of Renswoude. 
In the second half of the nineteenth century, algebra 
was seen as useful for a technical career. The number 
of topics in school algebra grew, but eventually algebra 
became mainly a subject in which complicated calcu-
lations were performed, which did not seem to serve a 
purpose outside the subject. At the end of the twentieth 
century, school algebra in lower secondary became a 
fairly informal way of solving ‘practical’ problems. 

Keywords: Algebra education, Leiden Engineering School, 

Foundation Renswoude,  HBS.

INTRODUCTION 

When we consider examples of mathematics curric-
ula in Dutch education it is obvious that the content 
of geometry didn’t change very much for a long time. 
Some problems on geometry in the lecture notes from 
the Leiden Engineering School, dating from 1620 
(Krüger & Van Maanen, 2014), were recognisable for 
a student in secondary education around 1960. With 
algebra it is a very different matter. 

In 1600 Simon Stevin wrote the Instruction for the 
Duytsche Mathematique, as the Leiden Engineering 
School was called. In the Instruction Stevin specified 
the content of the course. He mentioned arithmetic, 
specifying calculations with decimal numbers, geom-
etry, surveying techniques and fortification, but no 
algebra (Krüger & Van Maanen, 2014). 

In the second half of the 18th century the Foundation 
of Renswoude provided talented orphans with an ed-
ucation for technical professions. A large part of the 
curriculum consisted of mathematical subjects: arith-

metic, algebra, geometry (Euclid) and trigonometry 
(Krüger, 2014a). Algebra included operations with 
algebraic forms, formulating and solving linear and 
quadratic equations and also geometric, arithmetic 
and harmonic series. 

About a hundred years later, in 1863, national leg-
islation for secondary education was introduced 
by mr. J. Thorbecke, the liberal prime minister. The 

‘Hogere Burger School’ (higher secondary school for 
citizens) or HBS as it was called, provided general ed-
ucation, with science and mathematics as important 
subjects and   prepared students for admission to the 
Polytechnic School in Delft. The HBS was meant for 
sons of the middle class. Mr. Thorbecke advised on the 
content of mathematics for the HBS, the only subject 
on which he gave such an advice. He advised that al-
gebra should contain quadratic equations, arithmetic 
and geometric series and the binomial theorem, not 
very different from  the algebra in the Foundation 
of Renswoude. The HBS attracted many students. 
Towards the end of the 19th century the number of 
topics in school algebra had expanded considerably 
(Krüger, 2014b).

By the end of the 20th century the word ‘algebra’ had 
disappeared from textbooks, though algebra itself was 
very much part of the curriculum and caused  a lot of 
debate in mathematics education (Drijvers, Goddijn, 
& Kindt, 2006). 

Which role did algebra have in mathematics education 
from 1600 until 2000? 

METHOD

Information on algebra in curricula from the seven-
teenth, eighteenth and nineteenth century was col-
lected in the course of research on factors and actors 
which influenced the content of mathematics curricu-
la in the past, from 1600 to the present (Krüger & Van 
Maanen, 2014). Archives, manuscripts and textbooks 
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were an important source of data. For the twentieth 
century there are many sources: textbooks, articles 
in teachers’ periodicals, the archives of the Ministry 
of Education, research journals, other publications 
on education research and curriculum development 
and the authors’ own archives provide abundant data. 
For this paper only changes in the algebra curriculum 
are taken into account.

ALGEBRA IN THE CURRICULUM: 1600–2000

Seventeenth century: Leiden 
Engineering School, 1600–1681
Towards the end of the sixteenth century the Republic 
of the Seven United Netherlands had become rather 
successful in its war with Spain. The war was main-
ly fought around fortified towns, with help of new 
military techniques, which required mathematically 
well trained engineers. The expanding population 
in Holland and the strong economy also caused de-
mand for military and civil engineers, surveyors and 
building masters. Prince Maurice of Nassau (1567–
1625), one of the two commanders of the army and 
former student of Leiden university, arranged with 
the curators of Leiden university that an Engineering 
School would be attached to the university. Simon 
Stevin (1549–1620) wrote the formal curriculum, the 
Instruction, in which he stated the aim, the teaching 
language, the content, learning activities etc. (Krüger, 
2010). The formal aim was to train military engineers 
as quickly as possible, the teaching language would be 
Dutch, hence the name ‘Duytsche Mathematique’ and 
the curriculum consisted of mathematical theory and 
practical exercises in surveying and in the basics of 
fortification. However, in a copy which the curators 
had made of the Instruction to have it printed, they 
slightly modified the aims into ‘training in engineer-
ing or other mathematical professions’. The Duytsche 
Mathematique was going to be a course for engineers 
and also other mathematical practitioners. 

Stevin did not mention algebra in the Instruction; ev-
idently algebra was not yet useful for an ordinary 
engineer. But he mentioned the possibility of further 
study for those who had mastered the basic course 
in Duytsche Mathematique. Further study may have 
included cossic algebra, with different symbols for the 
unknown, its square, its cube, etc. and numerical val-
ues for known quantities (Figure 1), as used by Stifel 
in his Arithmetica integra (1544). The introduction by 
Viète, in 1591, of vowels for unknowns and consonants 
for known quantities, was an improvement, but the 
close link with geometry remained. Descartes used a 
more advanced notation in his Géométrie (1637) and 
allowed powers higher than third degree, which made 
algebra more useful (Figure 2). 

The first teachers at the Engineering School were 
Ludolf van Ceulen, a respected mathematics teach-
er and advisor and Simon Fransz. van Merwen, a 
Leiden surveyor; not much is known about their 
interpretation of the curriculum. They both died in 
1610 and were succeeded by Frans van Schooten Sr. 
(1581/2–1645), who was a student of Van Ceulen and 
Van Merwen and who had assisted Ludolf van Ceulen. 
His lecture notes in the library of Leiden university, 
Mathematische Wercken (BPL 1013) date from ca. 1620 
(Van Maanen, 1987). They show the interpretation by 
Van Schooten of the Instruction and were also used 
by his successor, Frans van Schooten Jr. (1615–1660).

These lecture notes do not contain algebra, but the 
library of the university in Groningen possesses a 
manuscript by Van Schooten Sr., also a teaching text, 
on cossic algebra (Hs 443), which probably dates from 
ca. 1623 (Figure 1). The problems which are discussed 
in this manuscript were also used by Frans Jr. (Dopper, 
2014). It is likely that Frans van Schooten Sr. taught 
cossic algebra in private lessons or to advanced stu-
dents of the Engineering School. Frans van Schooten 
Jr. gave public lectures on algebra, using the cossic 
notation, though he knew the work of Viète and of 
Descartes very well. He produced a Latin translation 

Figure 1: Hs 443, cossic symbols and examples of multiplication, by Frans van Schooten Sr.
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of Géométrie, which made the work available to a much 
larger public. 

Frans van Schooten Sr. was a mathematical practition-
er, who worked as a teacher, surveyor and cartogra-
pher, also for the army. He had a good knowledge of 
mathematics and of the practice of surveying, map-
ping and fortification. Frans van Schooten Jr. was a 
very respected and well-known mathematician, but 
not so much a mathematical practitioner. He attracted 
a circle of talented private students, with whom he 
discussed Descartes’ work. Dopper (2014) suggests 
that in his public lectures Van Schooten Jr. used cossic 
symbols instead of Descartes’ notation for didactical 
reasons. 

So there was some cossic algebra taught at the 
Engineering School, probably by Frans van Schooten 
Sr., certainly by Frans van Schooten Jr. At the start 
of the 17th century geometrical solutions for prob-
lems were common; gradually geometrical problems 
were more often translated into equations, algebra 
gained importance (Van Maanen, 1987, p.174–175). Van 
Schooten Jr. made occasional use of Cartesian nota-
tion in his Mathematische Oeffeningen (Mathematical 
Exercises, 1659), published shortly before he passed 
away. In 1672 Abraham de Graaf (1635–ca. 1717), a 
teacher of mathematics, astronomy and navigation 
in Amsterdam, published De beginselen van algebra 
volgens de manier van Renatus des Cartes (The princi-
ples of algebra according to Renatus des Cartes). In this 
book he treated the rules for operations, linear and 
quadratic equations and he gave many geometrical 
applications, but also other examples of use of algebra, 
using Cartesian notation (Figure 2).  

So gradually algebra, with Cartesian notation, became 
more common. 

However, surveyors, an important group of potential 
students for the Engineering School, were not particu-
larly interested in new mathematical techniques, they 
did not feel a need to use algebra (Muller & Zandvliet, 
1987; Morgenster, 1707; Van Nispen, 1662).

Eighteenth century 

Several mathematicians contributed to the develop-
ment of algebra during the seventeenth and eight-
eenth century (Grattan-Guinness, 2000; Struik, 1995). 
Examples are Wallis (1616–1703), who published his 
Algebra in 1685, Newton (1642–1727), Euler (1707–1783) 
and Lagrange (1736–1813). When in 1761 teaching 
started in the Foundation of Renswoude in Utrecht, 
algebra naturally was part of the curriculum. The 
Foundation was the outcome of the legacy of a Dutch 
millionaire, Maria Duyst van Voorhout, baroness of 
Renswoude. She bequeathed her capital to three or-
phanages, in Delft, The Hague and Utrecht, on condi-
tion that the money should be used to educate talented 
orphan boys, to prepare them for a technical profes-
sion (Krüger, 2014a). In her own words (translation 
by author):

… select some of the most talented and suitable boys, 
at least 15 years old, to set them apart from the 
orphanage in order to teach them Mathematics, 
Drawing or Painting Art, Sculpture or Stone 
Cutting, practices in building dykes to protect our 
Country against floods or similar Liberal Arts….”  
(Utrecht Municipal Archive: HUA 771, inv. 1).       

The Foundation thus aimed to educate selected boys 
for a wide range of technical professions. This meant 
that a large part of the teaching was on mathematical 
topics, with drawing as the second most important 
subject. In Utrecht the governors of the Foundation 
left the decisions on what mathematics to teach to 
the mathematics teacher. However, they took care 
to find an excellent teacher, with a good reputation 
for knowledge content and for teaching. Laurens 
Praalder (1711–1793) had no academic background; 
he had been teaching mathematics, surveying, navi-
gation and other subjects, in the North of Holland and 
as mathematician and examiner at the Naval School in 
Rotterdam. In 1761 he accepted the position of mathe-
matics teacher of the Foundation in Utrecht. Praalder 
indeed was an excellent teacher, who integrated math-
ematical theory with practical work and did physical 
demonstrations with his students. Through his ex-

Figure 2: Cartesian notation in Algebra, by A. de Graaf (1672)
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tensive network he managed to find useful appren-
ticeships for many of his students. He also attracted 
private students.

The curriculum was divided into three phases, the 
first phase lasted ca. 2 years and was the same for 
every student; algebra was one of the topics in this 
phase. Praalder used his own teaching notes for les-
sons, but the students were also provided with books 
on all topics taught. During the first years of teaching 
in the Foundation, the governors bought mathematics 
books for the first and second phase, after consult-
ing with Praalder. For geometry the choice was fairly 
simple; an edition of Euclid by Warius and a standard 
work on geometry and surveying by Morgenster, this 
book also contained chapters on trigonometry and 
logarithms. For algebra the choice was more difficult, 
as is clear from the different publications which were 
purchased during the first three years, for 11 students. 
Eight copies of a Dutch translation of Elemens d’Algè-
bre by Clairaux, eight copies of Elements of algebra 
by Hammond and six copies of Algebra by Venema, a 
Dutch author.  After some years Venema became the 
standard book for most students, it offered a small 
amount of theory and many exercises. As Praalder 
taught the theory from his own notes, the students 
could use the book by Venema to make the exercises. 
Theory treated the principles of algebra, linear and 
quadratic equations and series. 

A similar program for algebra was taught in 1776 
by professor Hennert at the university of Utrecht, 
though ten years later he had diminished the amount 
of algebra taught (Bos, 1984). In 1789 the first three mil-
itary academies were established in the Netherlands, 
their mathematics curriculum was similar to that of 
the Foundation. One of the students of the Foundation 
was appointed as a tutor to the military academy in 
Breda in 1789 (Krüger, 2014a).

Evidently algebra was considered useful as a tool 
for solving problems; geometrical and other prob-
lems. Formulating and solving linear and quadrat-
ic equations formed a major part of the content in 
teaching. Negative solutions of quadratic equations 
were sometimes ignored, so were complex roots. For 
most students this would be sufficient knowledge for 
their future career. 

After Praalder retired, his colleague at the preschool 
of the Foundation, Dirk de West, was asked to take 

over the mathematics teaching in the Foundation. De 
West used copies of Praalders teaching notes, includ-
ing the four bands on algebra, for his lessons. In later 
years four copies of Euler’s Elements of algebra were 
bought, probably for the more advanced students, 
who could not be taught further by De West.

Nineteenth century
Characteristics of mathematics in the nineteenth cen-
tury were: an increasing specialisation, more empha-
sis on the distinction between pure and applied math-
ematics and a striving for mathematical exactness 
(Grattan Guinness, 2000; Struik, 1995). The algebraic 
properties of numbers, the fundamental theorem of 
algebra, roots of equations, complex numbers and 
quaternions were some of the topics in which much 
development took place. The mathematics curricula 
of secondary schools were somewhat influenced by 
these developments.

In the Netherlands secondary education remained a 
matter of private initiative until 1863 (Krüger, 2014b). 
Industry and commerce required an educational 
system of good quality, which would offer subjects 
such as mathematics and science, modern languag-
es and economics. Also the Royal Academy for Civil 
Engineers in Delft and the Royal Military Academy in 
Breda had problems with the relatively large number 
of students who entered with insufficient knowledge 
of mathematics and science. In 1863 the HBS, with a 
curriculum of five years, was Thorbecke’s answer to 
these problems. The programme for algebra should 
enable the pupils to do well in the physics lessons. Also 
after the first three years of HBS the pupils should be 
able to pass the entrance exams of the Royal Military 
Academy and after passing the final exams a student 
should be ready for the Polytechnic School, the suc-
cessor of the Royal Academy for Civil Engineers. The 
mathematics teachers at the HBS had to have a univer-
sity degree or an equivalent teaching degree. 

Mathematics was one of the 18 subjects taught in 
the HBS and one of the 16 subjects in the final exams. 
Mathematics was subdivided into several topics: 
arithmetic, algebra, plane and solid geometry, trigo-
nometry and descriptive geometry. The final exams 
on mathematics consisted of four exams: arithmetic/
algebra, geometry, trigonometry, descriptive geome-
try. Mathematical and science subjects took ca. 33% of 
teaching time, the same amount as the four languages 
and literature. Mathematics received ca. 18% of the 
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teaching hours, more than any other subject (Steyn 
Parvé, 1868). 

Until about 1890 most students at the HBS did not 
take the final exams. Many students left school after 
the first three years, to sit for entrance exams for 
a range of professional institutions or to enter the 
workforce. The content of mathematics in the first 
three years consisted of arithmetic, algebra and ge-
ometry, usually 2 hours each in every year. During 
the first three years of algebra the pupils were taught 
the main operations, also with fractions; roots, pow-
ers, negative and fractional exponents; linear and 
quadratic equations and sometimes also equations 
of degree higher than two, exponential equations 
and indeterminate equations. In year four and five 
there was more difference between schools in the 
choice of topics. Newton’s theorem (an extension of 
the binomial theorem), factorizing, combinations and 
permutations, infinite series, convergent series, con-
tinued fractions, limits, theory of irrational numbers 
and complex numbers were topics which were taught, 
but not in all schools. The exam syllabus, introduced 
in 1870, mentioned arithmetic and geometric series, 
Newton’s theorem, indeterminate and exponential 
equations. Teachers and textbook authors included 
topics outside the prescribed exam syllabus for vari-
ous reasons, i.e. the topic occurred in entrance exams 
of some institutions or the topic was of educational or 
didactical value. There were many different textbooks 
available, most of them written by teachers of HBS or 
gymnasium (the former Latin school).

By 1899 the authors of a popular textbook on alge-
bra explained that they had not included the theory 
of irrational numbers, as there was no time to treat 
the topic with the necessary exactness (Derksen & 
De Laive, 1899). Gradually, the topics which were not 
in the final exams would be treated in fewer schools. 

In the Polytechnic School algebra would be used in 
analytic geometry and in analysis. There were occa-
sional complaints about lack of skills of first year stu-
dents, but overall the results of the first year students 
in these topics were satisfactory (Onderwijsverslagen, 
1866–1876 [Education reports to Parliament, 1866–
1876]).

Twentieth century
Groen (2000) presents a concise overview of changes 
in the mathematics curriculum of the HBS between 

1900 and 2000. In 1937 a new mathematics curriculum 
for the HBS was introduced, after many fruitless at-
tempts to modernize the curriculum. Differentiation 
and integration, number theory, functions and graphs 
were some of the new topics. However, the exam syl-
labus did not change and so the topics in the final ex-
aminations remained the same. As the final exams 
had gained considerable importance since the start 
of the HBS, this meant that the new curriculum did 
not have much influence on the lessons. In 1958 a new 
curriculum was introduced, this time including a new 
exam syllabus. Analytic geometry, differentiation and 
integration were part of the new curriculum; descrip-
tive geometry was at long last abolished. There was 
less emphasis on extensive calculations in algebra. 

In 1963 new legislation introduced a new structure for 
secondary education; the HBS was replaced by new 
types of school. The pupils should receive general 
education and preparation for entrance into higher 
education (Van Kemenade, 1981). The new curriculum 
started in 1968; it was influenced by the ideas of ‘New 
Math’, as happened in many countries. For a short 
time algebra was fairly abstract, with emphasis on 
formal language and sets. Algebra was mainly taught 
in the first three years of secondary schools; pupils 
in higher years were supposed to make use of alge-
braic techniques in differentiation, integration and 
analysis. In the 1970’s, new teaching methods for low-
er secondary schools were introduced, exercises in 
algebra were based on realistic situations (contexts); 
the use of tables, graphs and simple formula’s was 
emphasized (Kindt, 2000). In 1998 new exam syllabi 
for upper secondary schools were introduced, these 
contained topics such as graphs, functions, combina-
torial analysis, matrices, analysis and differentiation 
and integration. It was a very full curriculum, but as at 
the same time the graphic calculator was introduced 
into the schools, the curriculum designers assumed 
that the use of a graphic calculator would save much 
time. This curriculum was supposed to improve tran-
sition to higher education and also to provide general 
education.  One of the many reasons it didn’t work as 
expected was the lack of algebraic skills with which 
students entered upper secondary school. Another 
reason was the lack of training of teachers in the use 
of graphic calculators in teaching (Krüger, 2014b). 
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CONCLUSION

From the mid-seventeenth century algebra was rec-
ognized as a valuable topic in mathematics education. 
The content expanded from mainly arithmetic with 
letters and modelling problems in linear and quad-
ratic equations to a variety of topics at the end of the 
nineteenth century. Algebra in the curriculum of the 
HBS was considered useful for physics; it also was 
part of the preparation for technical studies. In the 
twentieth century the emphasis shifted, at first from 
elaborate calculations to a more formal approach of 
structures, following that with an emphasis on global 
understanding and modelling of ‘realistic problems’. 
At the end of the twentieth century there were many 
complaints about (lack of ) algebraic skills, made by 
teachers from universities and colleges, by high school 
teachers and gradually also by other people who felt 
the need to make their point. It is interesting to note 
that this type of complaint was also made in the nine-
teenth and the first part of the twentieth century. It is 
evident however that the introduction on a large scale 
of new learning materials, graphic calculators and 
software for algebra, is bound to have a large impact 
on the learning of algebra (Drijvers & Van Reeuwijk, 
2006; Goos, Galbraith, Renshaw, & Geiger, 2003). These 
developments should have a large impact on teacher 
training and teaching methods as well. These aspects 
received insufficient attention from nearly all those 
who were involved. 
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E-Dynamic.Space: A 21ST century tool to stage-
manage and build experience in the field of 
the history of mathematics and its teaching
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This study aims to answer the question of how can 
the history of mathematics resort to a digital tool  – 
E-Dynamic.Space – designed by teacher-students and 
intended to serve as a workbench not only to create sup-
portive knowledge from historical material, which has 
proved to support the understanding of mathematics 
but, also to orchestrate both, their actual learning of 
the tangent line problem and their future mathemat-
ics teaching experience. It therefore explores aspects for 
the design of the teaching activities, and it analyses the 

‘whys’ and ‘hows’ of including the historical dimension 
into the teaching experience. It is part of a bigger re-
search project that looks at how can teacher-students 
favour from a historical informed pedagogy of mathe-
matics that uses a personalised learning environment 
as a means to learn.

Keywords: Digital tool, PLE, orchestration, tangent line 

problem, teacher education. 

INTRODUCTION 

Digital technologies are the landmarks of the 21st 
century, ubiquitous and bearers of social identity for 
the majority, especially young people (Boyd, 2014). In 
what way can digital technologies support ‘history in 
mathematics education’, which is understood here 
as the learning of mathematics supported by the in-
tegration of elements from the history of mathemat-
ics. Researchers of mathematics education call for 
more research of digital technology (e.g., Hoyles et 
al., 2010; Trouche & Drijvers, 2014), and this paper ex-
tends their call to the integration of supportive knowl-
edge created by teachers (Kuhn, submitted at the 7th 
ESU in History and Epistemology of Mathematics) 
using web-based tools, which have their own possi-
bilities and difficulties. In this paper, digital technol-

ogies are understood in a broader sense, not only as 
mathematical software but also as web-based tools 
and social media, which brought together by the end 
user in a flexible digital environment will constitute 
what I will call from now on personalised learning 
environment (PLE) (Buchem, 2010; Kuhn, 2014a1).

Teachers have to keep up to date with young students’ 
mind-set and expectations, and the advancement of 
digital technologies. On the other hand teacher-stu-
dents need support in being prepared in a sensible 
manner for their job in the near future and to move 
confidently in this new ecology of digital resources 
(Luckin et al., 2012). There is evidence that shows 
how designing and developing a PLE will improve 
the digital skills of the end-user (Wild et al., 2008), 
teacher-students in this particular case. 

How can teachers explore the affordances2 of digital 
tools, take advantage and build experience in the dig-
ital world and in the field of history and mathematics, 
integrating them for the learning of mathematics and 
further teaching? Looking for possible answers I pro-
pose a PLE, E-Dynamic.Space (Kuhn, 2014a) as a 21st 
century self-management tool, designed and popu-
lated with new content created by teacher-students 
to support them in the design and organisation of the 
learning experience. 

My proposal aims to address not only how to 
stage-manage the learning of mathematics but also to 
explore how teacher-students can create supportive 
material from historical sources, which has proved 
to support the understanding of mathematics (Kuhn, 
submitted op. cit.), using the E-Dynamic.Space as a 
tentative tool for constructing meaning or in words of 
Noss & Hoyles (1996), webbing3 in the process of grasp-
ing and understanding the tangent line. The tangent 

mailto:c.kuhn%40bathspa.ac.uk?subject=
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line has been chosen as a starting point that will set the 
ground of a number of concepts to develop (as a mid 
term goal of the project) in order to craft a more uni-
fied and connected way of teaching the background 
concepts of calculus for GCSE and A-levels in the UK. 

In a first stage of the project I will focus on the design 
of some of the teaching activities I propose for teach-
er-students and in a second stage, not addressed in this 
paper, I will look at how they can transfer these skills 
to their classroom practice and improve the learn-
ing experience of their pupils. Empirical evidence 
indicates that following the work of teacher-students 
during “a time long enough to be able to catch real 
changes (a) during a program, (b) immediately after 
the program, and (c) one or more years later, can assist 
in providing valid feedback mechanisms for profes-
sional development programs” (Trouche et al., 2013). 

SOME THEORETICAL ASPECTS 
FOR THE DESIGN

Troublesome Knowledge
The introduction of analytic geometry revived the 
tangent line problem in early 17th century. Descartes 
in his 1637 work La Géométrie described the problem 
of finding a tangent line to a given curve at a specific 
point as:

(…) the most useful and general problem in geom-
etry that I know, but even that I have ever desired 
to know. (Smith & Latham, 1925, p. 95)

Reading this sentence in combination with my inter-
est in the calculus as a rich topic, both historically and 
conceptually, made me wonder why would an intel-
lectual of the calibre of Descartes find this problem so 
useful and worth knowing. Although I was motivated 
and thrilled to know more I encountered difficulties 
while finding my way into Descartes’ ideas. I found 
myself confronted with some trouble, or maybe with 
troublesome knowledge?  But what exactly is trouble-
some knowledge and what it has to do with the history 
of mathematics in mathematics education? The notion 
derives from a research project in the UK looking to 
identify key factors leading to high quality learning 
environments in higher education, very much in line 
with the aim of my own research. The idea is associ-
ated with threshold concepts, conceptual gateways 
that have the potential to open up new conceptual 
spaces transforming the way learners understand 

the subject matter (Meyer & Land, 2005). Threshold 
concepts, although usually attached to particular con-
cepts, sometimes they are not necessary concepts in 
any rigorous sense but different ways of thinking and 
practicing with a threshold-like nature, all of them 
providing entrance in one sense or another to a new 
or different conceptual landscape (Meyer & Land, op. 
cit.). Transformative ideas, and it is in this sense that 
I am using the term.

These ways of thinking and practicing, often lead to 
what Perkins (2006) describes as troublesome knowl-
edge, knowledge that is conceptually complex, alien or 
counter intuitive, thus challenging students’ beliefs 
and intuitive knowledge but at the same time, devel-
opmental productive. This is in line with Barbin’s 
idea within mathematics education, of depaysement 
or reorientation, challenging student’s perceptions, 
making the familiar seems unfamiliar. History shows 
also how mathematics is a human understanding, a 
history of human beings disabling or extending estab-
lished ideas, allowing the learner to see mathematics 
as much more than disconnected algorithms or dis-
crete chapters, integrating the subject in a sociocul-
tural context. 

Why and how to use this historical 
knowledge in mathematics education?
The previous section introduced, in a general way, 
some of the reasons for using history of mathematics 
in teacher education. Adding to this Jankvist (2009) 
answers this question in a more focused and didactical 
oriented way connecting it with content knowledge, 
suggesting that history can be used as a goal or as 
a tool. In particular he refers to a cognitive tool for 
the learner (teacher-student in this particular case). 
In this latter sense he implies the idea of epistemo-
logical obstacles (Jankvist, 2013). Brousseau (1997) 
highlights in this regard that knowledge exists and 
it makes sense only because it represents an optimal 
solution in a system of constraints. For him, history 
can be illuminating in finding those systems of con-
straints. Sierpinska (1994) suggests: “epistemological 
obstacles are not obstacles to right or correct under-
standing: they are obstacles to some change in the 
frame of mind.” (p. 121)

Dimensions of knowledge in teacher training 
that can profit from the history of mathematics
One of the aims of our community for the histo-
ry and pedagogy of mathematics is to find ways in 
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which teacher-students can profit from the history of 
mathematics for their learning/teaching experience. 
In each profession there are core skills and knowl-
edge to be mastered. In mathematics education, Ball 
and colleagues (2008) have developed a theoretical 
framework, Mathematics Knowledge for Teaching 
(MKT), proposing the kind of knowledge demanded 
by the teaching profession. This framework has been 
explored recently by Clark (in press), cited by Jankvist 
and colleagues (2012). She contextualised it in the his-
tory of mathematics exploring how the history can 
add to teachers’ MKT.  In this work I will use three of 
the six dimensions of the model: knowledge of con-
tent and curricula (KCC); knowledge of content and 
students (KCS), and horizon content knowledge (HCK), 
in order to see how teacher-students’ knowledge can 
potentially profit from and be enhanced by the history 
of mathematics. This choice responds in part to a call 
that Jankvist (op. cit.) has made to address the absence 
of clearer links to general mathematics education re-
search frameworks. This theoretical construct –the 
MKT- seems to have productive implications for teach-
er education (Jankvist, op. cit.).

Epistemological obstacles and conceptual 
development, and its association with the 
Mathematics Knowledge for Teachers
Tracing the historical development of a particular 
concept, following Brousseau (op. cit.) is a way to 
understand the constraints of each time, hence to 
understand some of the epistemological obstacles 
involved in the development of an idea. Connecting 
epistemological obstacles with the didactical situ-
ation of teacher-students is possible through the 
idea of conceptual development, which has been re-
searched for didactical purposes by different authors 
(e.g., Vosniadou, 1994). The general consent is that 
for conceptual change to happen there must be, in 
the student, a cognitive conflict or a ‘stuck place’ in 
words of Meyer & Land (2005), a difficult stage in the 
conceptual development as it confronts them with 
different epistemological obstacles (Brousseau, 1997) 
blocking any transformation in the cognitive realm. 
Teachers are responsible to identify the sources of 
those obstacles and free them up making the change 
possible.  In this regards, teachers ought to develop 
knowledge of content and students (KCS) (Ball et al., 
2008). 

This ‘stuck place’ is similar to what happens to the 
collective culture of mathematicians throughout the 

development of an idea. Teachers can look closely at 
these epistemological obstacles in order to find inspi-
ration and knowledge to identify possible sources of 
obstacles in their students. This kind of understand-
ing can also improve teachers’ knowledge of content 
and curriculum (KCC) allowing them to make a histor-
ical informed decision in relation to the breadth and 
depth they should teach in the different key stages. All 
of the above seems to add to a wider kind of knowledge, 
one that goes beyond the basic knowledge teachers 
need to deploy in class. Following Ball & Bass (2009), 
it is called horizon content knowledge (HCK), and 
they describe it as “ (…) an awareness – more as an 
experienced and appreciative tourist than as a tour 
guide – of the large mathematical landscape in which 
the present experience and instruction is situated” 
(p. 6). This kind of knowledge “confers a comprehen-
sible sense of the larger significance of what may be 
only partially revealed in the mathematics of the 
moment.” (p. 6). There is evidence (Mota, 2008; van 
Maanen, 2009) that this knowledge will profit from 
the history giving teacher-students a wider breath 
of the mathematical cultural context of a particular 
idea to be taught. 

Having explored the whys of using history in teacher 
education and looking at how the mathematics knowl-
edge for teaching can be enhanced by the use of his-
torical material, let us look at how can this material 
be integrated in the teaching experience. Taking into 
account the varied background of Bath Spa University 
PGCE students (PGCE responds to Post Graduate 
Certificate in Education and it is a one year program 
for students with different backgrounds that want to 
become teachers), I decided to follow Tzanakis and 
Arcavi’s (2000) idea of historical packages in which 
a mathematical topic (in my case the tangent line 
problem) from the curriculum is taught by means 
of historical materials in a relatively short period of 
time; similar to Jankvist’s approach with historical 
modules.  

How can a teacher-student get involved with the his-
tory of mathematics in order to gain a deeper under-
standing of the epistemological development of the 
concept and also take advantage of the affordances 
of the PLE and its available tools? One way to do this 
is through the activities proposed below for which 
the didactical intention is underpinned by the idea 
of webbing described previously. There is also a wid-
er mathematical aim and it is to explore in depth the 
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development of the tangent line problem in order to 
gain a deeper understanding and a wider vision, in 
epistemological terms about the historical process of 
the definition of the derivative in terms of the limit; 
for that the tangent line is key. In words of Whiteside 
(1961): “It will be illuminating therefore, to discuss 
the particular methods invented to resolve the tan-
gent-problem, and this will yield a truer perspective 
on the elegant general treatments which were later ab-
stracted from the particularised methods of the mid-cen-
tury [emphasis added, p. 348].” History shows that the 
starting point of that definition was neither limits nor 
the differentials or fluxions.  It has been a process of 
successive abstraction (Lehmann, cited in Swetz et al., 
1995), which is what we aim to trace with this module. 

THE HISTORICAL TOUR: FROM 
EUCLID TO FERMAT 

In this section I will describe briefly what teacher-stu-
dents will explore during the sessions. The online 
sheets and the web-based tools are allocated in the 
PLE, which they will further populate with their own 
creations. The didactical intention is that the learner 
generates new supportive knowledge as a product 
of webbing while exploring the historical material, 
making sense of new chapters of the tangent line’s 
history. Teacher-students will course from Euclid to 
Fermat and reflect around the systems of constraints 
of each period identifying the epistemological obsta-
cles and the change in the collective frame of mind. In 
doing so they will become the appreciative tourist of 
the larger mathematical landscape as they advance 
in their epistemological tour.

We need to bear in mind that there is this unavoida-
ble risk – clearly explained by Fried (2001) – of doing 

‘Whig history’. In order to address this issue (though 
not sure to completely avoid it) an initial reading of 
his paper (2001) is assigned to the group.

Time and allocation of session 
is to be determined
As an integrative and final activity for webbing the 
learning of the topic and also intended to develop the 
epistemological understanding of the concept, stu-
dents will create an interactive timeline with at least 
two of the resources created by them through out the 
module. They need to add the group reflections where 
pertinent and illustrative, as well as the relevant com-
ments posted in Padlet. Highlighting new frames of 

mind is important in this task. The interested reader 
is invited to follow the link9 to explore the PLE with 
man examples of sheets and resources, as well as a 
time line crafted by the author to explore the affor-
dances of the tool. 

DATA COLLECTION AND THE PROCESS 
OF WEBBING THE UNDERSTANDING 
OF THE TANGENT LINE PROBLEM

As suggested by Barbin and colleagues cited in Fauvel 
& van Maanen (2000), we can evaluate the effective-
ness of introducing a historical dimension into teach-
er education through an examination of each of the 
processes involved in the development of understand-
ing, namely, the change in how teachers perceive and 
understand mathematics which generally is reflected 
in the way they subsequently will teach, and finally 
in the understanding and perception of their pupils 
about mathematics. None of those processes can be 
captured in a quantitative approach, instead a qual-
itative and holistic method is much more desirable 
for understanding more in depth how to best inte-
grate historical material into the teacher experience. 
Therefore qualitative data will be gathered (with the 
proper software, e.g., Camtasia) in their online public 
and private spaces. There is also a reflective logbook 
with didactical prompts (still under development) for 
each student to document their learning; the process 
of webbing the tangent line problem making sense of 
the different frame of mind and the historical develop-
ment of the concept studied. The prompts will trigger 
in the student the cognitive processes that will help 
them to describe their main struggle when trying to 
elaborate the resources. In particular the timeline is 
considered a rich intellectual artefact with the po-
tential to uncover partial understandings of the stu-
dent in relation to the epistemological advancement 
of the concept. What resources they choose, what they 
consider to be an illustrating example and how they 
justify it will reflect students’ process of constructing 
meaning throughout the task. An important aspect of 
the learning experience will be the idea of extending 
the web of ideas and intellectual resources (at the be-
ginning of the journey) and re-structuring it as a re-
sult of the connections made for the learner to be able 
to find and construct meaning through the sequence 
of activities he/she is doing including discussion and 
reflection. 
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Author Resources Task + Question + Reflection

Euclid Book III, def. 2 and prop. XVI
Online version of Oliver 
Byrne4

Go through the definition and work out the proposition in your 
group, post your work in padlet5 for a common discussion. Have a 
look at other posts and comment on at least one+reflect

Apollonius a. Module of the MAA: 
‘Tangent line then and now’

Read the extract about Apollonius method. Interact and explore the 
GeoGebra example and discuss with your peers your thoughts, diffi-
culties and any ‘aha’ moment. 

b. Treatise of conic section. 
Heath translation 1896. 
Online6 

Go through proposition I.33 and discuss, try to make sense of it with 
your peers.  
Find the analogue elements with the MAA method and document 
the process in your logbook. Pay special attention to any difficulty in 
understanding any of the parts, documenting it for further thinking 
in the group discussion.

c. Working with online sheets 
in GeoGebra7

Work in pairs and interact with the sheets for finding the tangent 
line to a parabola. Produce your own example in GeoGebra, record 
the steps in the sheet and post it to GeoGebra Tube. Do one of the 
sheets posted by your peers, comment your experiences in Padlet 
(difficulties + ahas + findings + remarks).
Reflect on the system of constraints you think could be present in 
that period and what implications do they have in the method you 
just did. Read and comment on one post in the wall

Descartes a. Look at the video8 by 
Jeremy Gray about the histo-
ry of the calculus.
b. The History of mathemat-
ics
(Fauvel, J & Gray, J.) Section 
11.A10

Watch with particular care the section where the method of 
Descartes to find the tangent line is explained. Read section 11.A9 
to complement. Make notes for a discussion session with the group 
about the steps of the procedure. Try it your self with a simple curve 
(y=x2) and document the process. Work in a small group for a richer 
and more reflective discussion.

Online GeoGebra sheets in 
the PLE

Go to GeoGebra and do the sheet with Descartes’ method. Take notes 
about things that were important for you to accomplish the task, 
key ideas. Think about your own difficulties along the exercise and 
write them down for a common discussion. Try to write about the 
new mathematical features introduced in his method and compare 
it to Apollonius’ one. Reflect about the system of constraints in 
Descartes’ time and think about the new frame of mind introduced 
then. Think about the implications and epistemological difficulties 
of a more general method comparing it to the Greeks (section 11.A10)

Fermat The history of mathematics  
(Fauvel, J & Gray, J).
A copy of the relevant text 
of module 9 of the Open 
University course: Topics in 
the history of mathematics

Read section 11.C – 11.C1b. Tinker with the method. Try to create your 
own example working with a curve that you feel comfortable with 
(use pencil and paper). Make notes about your process and docu-
ment any difficulties.  Think about the adequate method he used, 
trace the history of the term and give meaning to it in that context. 
What was the problem then? Can you see why Fermat could work 
with a wider range of curves? Go to GeoGebra, work through the 
sheet. Once you have understood the method create your own sheet 
with its animation and uploaded it to GeoGebra Tube. Try out one of 
the sheets of your peers and comment on his/her work.  Reflect on 
the steps taken by your peer. 

Table 1: Sources and questions in relation to the tangent line problem
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A session will be dedicated to reflective writing and 
how to do it in a way it can enhance their own learning 
process. The three dimensions, specified above, of the 
MKT framework will be explained in detail and their 
reflections will be stated in terms that make reference 
to these dimensions so consistent evidence can be col-
lected (still an idea under development). The prompts 
given in the activities are focused in the mathematical 
features that have been shifting from time to time and 
are intended to bring students to reflect on how those 
changes have transformed the tangent line problem 
into what we know today giving them a wider back-
ground knowledge or in words of Ball & Bass (op. cit.) 
enhancing their HCK. Important ideas to grasp along 
the learning experience are the optimal solutions in a 
system of constraints stated above by Brousseau and 
the change in the mind frame argued by Sierpinska. 

The module has not been tried out yet therefore a real 
and fruitful discussion will be part of a next piece of 
research, where the data will be collected and ana-
lysed, and hopefully the analysis will shed some light 
to the rich discussion in relation to the benefits of the 
integration of history for the mathematics education 
community.
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ENDNOTES

1. Available at: http://portal.sinteza.singidunum.ac.rs/
paper/114

2. Affordances are in this context related to the dig-
ital world and it refers to the potentialities and con-
straints of different modes that digital tools allow. 
What is possible to represent with the resources of 
a mode and what is not.

3. Defined by Noss and Hoyles (1996) as the fundamen-
tal motor for the construction of meaning.

4. The first six books of The Elements of Euclid, de-
scribed as one of the oddest and most beautiful books 
of the 19th century. Available at:  http://publicdomain-
review.org/collections/the-first-six-books-of-the-ele-
ments-of-euclid-1847

5. Padlet is a web-based tool. It affords to have a col-
laborative discussion and upload files to it (https://
padlet.com/)

6. https://archive.org/stream/treatiseonconics00apol-
rich#page/n9/mode/2up

7. http://hom.wikidot.com/calculus-1 (by Gabriela 
Sanchis, under Creative Commons Attribution 
ShareAlike 3.0 licence)

8. https://www.youtube.com/watch?v=OTMkCLtflHY

9. http://www.symbaloo.com/home/mix/13ePQJ81NS
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The National Curriculum in England has, over 
the past decade, been revised a multitude of times. 
Disengagement of pupils was one of the reasons for revi-
sions. In September of 2014, a new curriculum in math-
ematics was introduced, aiming to give greater freedom 
to teachers and schools to construct a curriculum and 
teaching episodes that are engaging and appropriate 
for their students. This paper investigates how such ep-
isodes can be constructed through the investigations 
based on historical development of mathematical con-
cepts and how they could easily link to the new curricu-
lum, offering at the same time greater opportunities for 
pupils’ engagement. The history of the fourth dimension 
is one such possible topic, and the paper suggests a way 
of using it in a secondary classroom. 

Keywords: Fourth dimension, engagement, Schläfli, 

Stringham, Flatland.

INTRODUCTION

In the decade between 2004 and 2014, mathematics 
curriculum changed twice, about fifty reports on 
mathematics education in the country have been 
published, and seven different Secretaries of State 
for Education passed through the British Parliament. 
Each of the changes and reports suggested that the 
state of mathematics education in Britain is trouble-
some; the causes were identified, the evidence was giv-
en (in either a narrative or analytical format), and of 
course the suggestions to improve the situation were 
recommended.1 The most troublesome of all troubles 
listed was the perceived irrelevance of mathematics 
and the lack of desire to engage with it.2 

When exploring the issue of disengagement, teach-
ers reported that it was the curriculum that narrows 
down the topics and the lack of choice to engage with 
different topics from the curriculum that was at the 

basis of the problem.3 The organizations such as 
National Strategies (discontinued 2010) previously 
tried to help teachers devise teaching episodes and 
gave suggestions on pedagogy. The new curriculum 
instead offers an element of autonomy, meaning that 
schools and teachers are given freedom to choose and 
design the topics and teaching episodes appropriate 
to their environments. Likewise, the curriculum it-
self lists the skills and knowledge to develop in pupils, 
but gives no (or minimal) guidance as to the choice 
of topics.

The choice of topic described in this paper – the his-
tory of the fourth dimension – arose from two expe-
riences: of working with gifted and talented pupils 
some years ago on the representations of the fourth 
dimension in mathematics (Lawrence, 2012) and the 
engagement reported in alternative curricula, such 
as, for example, Steiner system, which introduces 
projective geometry and the study of the fourth di-
mension in the final years of secondary school (Woods 
et al., 2013).

The paper thus first gives a historical overview of the 
topic, and then investigates the possible pedagogi-
cal approaches to develop material based on certain 
principles listed. It concludes by showing how an 
unorthodox topic such as this, can nevertheless be 
easily linked to the new curriculum and the skills and 
knowledge it aims to develop in pupils. The engage-
ment is expected but not yet empirically proven; this 
is proposed as a possible future study, and some ini-
tial experiments from schools in which the teaching 
pedagogy is trialed are described.

HISTORY OF THE FOURTH DIMENSION

Whilst the concept of the fourth dimension was de-
veloped in the nineteenth century, the origins of it 
could be traced as far back as the antiquity in the 
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most possibly wide sense of conceptual development. 
Aristotle for example, discussed it in De Caelo,4 and 
Ptolemy denied and disproved it but nevertheless 
mentioned and contemplated upon it (Cajori, 1926, 
p. 397; Heiberg, 1893, p. 7a, 33). John Wallis, although 
writing this whilst considering geometric interpre-
tations of quantities he was developing in the context 
of algebra, wrote (Wallis 1685, p. 126):

A Line drawn into a Line shall make a Plane or 
Surface; this drawn into a Line, shall make a Solid: 
But if this Solid be drawn into a Line, or this Plane 
into a Plane, what shall it make? A Plano-Plane? 
That is a Monster in Nature, and less possible 
than a Chimaera or Centaure. For Length, Breadth 
and Thickness, take up the whole of Space. Nor 
can our Fansie imagine how there should be a 
Fourth Local Dimension beyond these Three.

With the French Revolution, some revolutionary 
mathematical thinking happened, and Lagrange in 
particular, spoke of three coordinates to describe the 
space of three dimensions, introducing time as the 
fourth, and denoting it t (Lagrange, 1797, p. 223).

The reader is reminded that this can by no means be 
an exhaustive study, but is a sketch of the history of 
the fourth dimension and the narrative given is but 
a thread that will later be examined in possible edu-
cational setting and application to teaching. 

Let us then trace further historical development. The 
first such opportunity was the example of Möbius 
and Zöllner. Möbius (1827) first spoke about an ob-
ject getting out of a dimension it belonged to in order 
to perform a spatial operation. If one had a crystal, 
structured like a left-handed staircase, how would one 
get its three-dimensional reflection? Zöllner (Johann 

Friedrich, 1834–1882) further simplified this. If one 
has a circle and a point outside of it, how can one get 
the point into the circle without cutting or crossing 
over the circumference?

In 1852, Ludwig Schläfli (1814–1895), a Swiss math-
ematician published a book Theorie der vielfachen 
Kontinuität, (Theory of Continuous Manifolds), in 
which he wrote about the four dimensions. Schläfli 
looked at Elementa doctrinae solidorum published in 
1758, in which Euler described for the first time what 
was to become known as Euler’s characteristic, the 
expression which conveys the information that in all 
convex solid bodies the sum of the solid angles and the 
number of faces is equal to the number of edges add 2. 

We now usually denote Euler’s characteristic by 
Greek letter chi and describe it for convex polyhedra  
χ = V − E + F = 2, where V is the number of vertices, E 
is the number of edges, and F is the number of faces 
in a polyhedron. If we further analyze the formula 
we notice that we begin from the first variable which 
counts points (point we earlier took to represent 0th 
dimension); the second variable which numbers the 
edges in a solid, (representing line, 1st dimension) and 
the third variable, numbering the faces of a solid, (pol-
ygon is bound part of a plane, representing the 2nd 
dimension). 

Schläfli (1852) showed that this formula is also valid 
in four dimensions or indeed any higher dimension. 
We will get there – but let us first look at how he first 
defined a system which would describe any regular 
polytope in any dimension. 

There is only one polytope in 1st dimension, a line 
segment, and the Schläfli symbol denoting this is 
{}. Regular polygons in two dimensions are, for 
example, triangle {3}, square {4}, pentagon {5}, etc. 
Remembering that he only used these symbols to de-
note regular polytopes, we continue. In three dimen-
sions the five regular polyhedra, Platonic solids, can 

P

Figure 1: Zöllner illustrates that in order to perform certain 

operations in space, objects must exit their current dimension 

(Zöllner, 1878)

Figure 2: Euler’s characteristic first described in Elementa 

doctrinae solidorum, 119
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be described as {3, 3} – tetrahedron has three-sided 
polygons that meet three at each vertex; {4, 3} – cube 
has four-sided polygons three of which meet at each 
vertex; {3, 4} – octahedron has three-sided polygons 
four of which meet at each vertex; {3, 5} – icosahedron 
has three-sided polygons five of which meet at each 
vertex; {5, 3} – dodecahedron has five-sided polygons, 
three of which meet at each vertex (Schläfli, 1852). 

Schläfli realized and showed that Euler’s character-
istic can be represented in a slightly different form: 
he stated that V − E + F − C = 1, in effect stating that the 
number of vertices, minus the number of edges, plus 
the number of faces, minus the number of cells, equals 
1. Cell in three dimensions is a solid (convex); so for a 
cube this formula would be:

8 (vertices) – 12 (edges) + 6 (faces) – 1 (cell) = 1

He then showed that the minus plus pattern continues 
with even dimensions (0th, 2nd, etc.) having positive 
value and odd (1st, 3rd, etc.) negative. This was a big 
breakthrough: by extending the validity of Euler’s 
characteristic to the fourth and any other higher di-
mension, Schläfli showed that it was possible to cal-
culate various characteristics of four-dimensional 
polytopes if we had certain other information. This 
also meant that the four-dimensional solids could be 
now identified, classified, and studied. 

The mathematical description of generating the 
fourth (and higher dimensions) was first given in an 
elegant way by William Stringham (Stringham, 1880, 
p. 1):

A pencil of lines, diverging from a common ver-
tex in n-dimensional space, forms the edges of 
an n-fold (short for n-dimensional) angle. There 
must be at least n of them, for otherwise they 
would lie in a space of less than n dimensions. If 
there be just n of them, combined two and two 
they form 2-fold face boundaries; three and three, 
they form 3-fold trihedral boundaries, and so on. 
So that the simplest n-fold angle is bounded by 
n edges, n(n − 1)

2  faces, n(n − 1)(n − 2) 
2  3-folds, in fact, 

by n! 
k(n − k)!  k-folds. Let such an angle be called el-

ementary.

Stringham tried to illustrate this in his paper in the 
following manner (Figure 4).

The study of the dimensions became something of a 
vogue in the 19th century and many a famous mathema-
tician, from Graßman (1844), Riemann (1854), Clifford 
(1873) and Cayley (1885) to name but a few, wrote on it. 
But how to translate this into a classroom experience 
for teenagers? A novel from 1884 may give us some 
guidance on that.  

NARRATIVE ABOUT LIFE IN 
DIFFERENT DIMENSIONS

The introduction to ‘dimensionality’ could be given 
and illustrated finely through the metaphor about 
Flatland, the 19th century English mathematical nov-
el written by Edwin Abbott Abbott (1838–1926), a 
London schoolmaster and Shakespearean scholar. 
Flatland is a land that is flat. It is (Abbott, 1884, p. 2):

Figure 4: These represent ‘respectively summits, one in each figures of the 4-fold pentahedroid, 

oktahedroid, and hexadekahedroid, with the 3-fold boundaries of the summit spread out 

symmetrically in three dimensional space’ (Stringham, 1880, p. 6)

Figure 3
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like a vast sheet of paper on which straight Lines, 
Triangles, Squares, Pentagons, Hexagons, and 
other figures, instead of remaining fixed in their 
places, move freely about, on or in the surface, 
but without the power of rising above or sinking 
below it, very much like shadows – only hard and 
with luminous edges – and you will then have a 
pretty correct notion of my country and coun-
trymen…

Flatland, whilst it gives opportunities for many dis-
cussions to be brought into the mathematics class-
room, also offer a good introduction to the bigger 
questions that are not easily dealt with in mathematics 
education. Abbott for example raises the question 
of ethics and the place of women in the world as he 
knew it. The two dimensional beings who are stuck 
in the two dimensional reality are also stuck in the 
belief that women should be treated in a different way 
to men. One of illustrations from this strange world 
shows that very clearly. 

Apart from the social dimension, Flatland further of-
fers ample opportunities to introduce some higher 
order thinking about ‘big’ questions in mathematics – 
what is the nature of space for example and how many 
(real) dimensions does it consist of? The question of 
dimensionality is in the book introduced with an al-
most mystical experience that the main protagonist, 

Square, has when he meets Sphere. First the Square 
saw Sphere through Sphere’s intersection with the 
Flatland, but eventually Sphere spoke the Square. And 
the ‘mystical’ wasn’t that after all as Sphere explains 
(Abbott, 1884, p. 77):

Surely you must now see that my explanation, 
and no other, suits the phenomena. What you 
call Solid things are really superficial; what you 
call Space is really nothing but a great Plane. I am 
in Space, and look down upon the insides of the 
things of which you only see the outsides. You 
could leave this Plane yourself, if you could but 
summon up the necessary volition. A slight up-
ward or downward motion would enable you to 
see all that I can see.

Of course Sphere is, similarly to Square, stuck in his 
own world of limited dimensions and when, towards 
the end of the novel, Square regurgitates the analo-
gy between dimensions and speaks of projections of 
fourth dimensional bodies in three dimensions, the 
Sphere explains a simple “Nonsense!” – of course 
there are no higher dimension than that which he 
could experience. 

What Flatland offers is an introduction to the discus-
sion about dimensions in mathematics that can lead to 
asking pupils to imagine a life in dimensions different 
to the ones they are used to. What if they lived in two 
dimensions? How would they see the friend sitting 
next to them? Equally what if they lived in four dimen-
sions? What would they and their friends look like?

SOME SERIOUS MATHEMATICS, BUT 
HOW TO DO IT IN THE CLASSROOM?

We will now turn to examining points we have so far 
mentioned on our way from Aristotle to Flatland and 
suggest a way of constructing a narrative and teach-

Figure 5: The most common construction for a house in Flatland, 

with separate doors for men and women

Figure 6: The diminishing sphere leaving projections in Flatland, its cross sections being circles, p. 72
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ing episodes that could be used to engage teenagers 
in a classroom setting.

A Firstly, the trace we plotted of discussions about 
dimensionality stretch different times, cul-
tures, and geographies. By analogy there could 
be some new mathematics born just right here 
and now, from their own thoughts and ideas. We 
mention philosophers and mathematicians that 
span twenty three centuries. The development 
of mathematical ideas can be employed in the 
classroom in various ways: from construction 
of timelines to open-ended discussions about the 
nature of mathematical inventions, and the con-
tributions that are possible in this field. 

B We begin with defining of the fourth dimension 
by musing about our ability to describe it math-
ematically. Both Wallis’ and Lagrange’s descrip-
tions could be used in the classroom to give pos-
sible interpretations from different context and 
offer an insight into how new mathematics be-
gins. In this way the way to model behaviors and 
attitudes may begin to emerge, and pupils may 
feel emboldened to pose new questions, mathe-
matical exploration is thus brought closer to the 
classroom practice. A teacher can illustrate this 
by examples and geometric diagrams from orig-
inal works some of which are mentioned above 
and listed in bibliography, and some interpreta-
tions illustrate also this paper.

C We meet with the study of Platonic solids. This is 
a rich field in the history of development of math-
ematical concepts that also spans centuries, and 

can be investigated in the classroom in a number 
of ways. For example, construction of Platonic 
solids, their representations in art (Emmer, 1982), 
and the study of Platonic solids by Euler are some 
instances that could be used as starting points 
for activities. Students can derive formula for 
Euler’s characteristic and further investigate it 
in the light of Schläfli’s extension of it.

D We come across various mathematical descrip-
tions and symbols – the development of nota-
tion and formulae gives pupils opportunities 
to engage with the process and attempt to do 
the same/similar themselves in their own con-
texts. Teachers can work with pupils on Euler’s, 
Schläfli’s, and Stringham’s algebraic formula-
tions and discuss their different approaches: 
Schläfli symbols are also an interesting way of 
presenting geometrical entities. 

E Finally the depiction of how life would exist 
in different dimensions and the consequences 
for our world are well narrated with the help of 
Flatland. We come to the practical construction of 
that narrative – suggestion is to mimic a dialogue 
by examining existing dialogues in the book and 
one such example may be that between Square 
and Sphere, appearing throughout the novel.

CURRICULUM LINKS 

At this point it would be good to see whether we can, 
after all, establish some connections between the his-
tory of the fourth dimension and the new National 
Curriculum (DoE, 2014). We propose to state the NC 

Figure 7: Here is an opportunity to use dynamic geometry software in illustrating different dimensions: 

starting from the 0th dimension, represented by point, we generate one-dimensional object – the 

line segment. Further by moving the line segment perpendicularly to itself we generate a square, a 

two-dimensional object. By moving the square perpendicularly to itself, we generate four-dimensional 

object, a tesseract (image by the author).
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description and ‘answers’ from the 4th dimension as 
follows.

NC (National Curriculum description): Mathematics is 
a creative and highly inter-connected discipline that has 
been developed over centuries, providing the solution to 
some of history’s most intriguing problems. 

4dh (4th dimension history lesson for the classroom): 
Whilst mathematics is often described as a method 
and a way of exploring and solving the big questions of 
life and existence, the pupils in the classroom report a 
different experience (Smith, 2004). The history of the 
fourth dimension can give a concrete and a very tangi-
ble view of mathematical development that occurred 
in the pursuit of the question of existence of higher 
dimensions as we have shown on above examples.

NC: Mathematics is an interconnected subject in which 
pupils need to be able to move fluently between rep-
resentations of mathematical ideas. 

4dh: An example of dimensionality which can be 
described both visually and algebraically is the way 
Stringham described the nth dimension. Stringham 
says that, the simplest n-fold angle is bounded by n 
number of edges, and so on. Stringham’s formulations 
are related to number theory and figurate numbers. 
An investigation can be conducted on the similarities 
and certainly representations of the two correspond-
ing strings of formulae. We can here return to Wallis’ 
studies in context of algebra.

NC: Move freely between different numerical, algebraic, 
graphical and diagrammatic representations, includ-
ing of linear, quadratic, reciprocal functions. 

4dh: The descriptions of the fourth dimension include 
all of the above as we have seen in this short paper.

CONCLUSION AND FURTHER DEVELOPMENTS

From the listed history of the fourth dimension, the 
materials are being developed for the use in the 
classroom by the author and current cohort of train-
ee teachers studying with me, in the context of three 
very different educational settings. 

Institution A is the first school where we have start-
ed working with the pupils. It is a mainstream boys’ 
school, has a high achievement record in mathematics, 

and is comparable to specialized and grammar schools 
(i.e. the study of history, classics, and high achieve-
ment in mathematics are the norm). The school A pos-
es the challenges in terms of producing the material 
that would engage and stretch pupils’ abilities so the 
material developed aims to link geometry and alge-
bra as seen from our mention of Wallis, Euler, and 
Stringham. It appears that pupils in this setting are 
very keen to engage with mathematics, and the study 
of the 4th dimension is seen as a way of stretching the 
pupils to study beyond the curriculum. 

Institution B is a national institution promoting the 
study of mathematics for the gifted and talented pu-
pils. Whilst many pupils in this setting have some 
idea about the dimensionality, exercises offering 
them possibility to represent them in different ways 
as described above given pupils not only the sense of 
achievement, engagement, and enjoyment, but their 
further interest and individual research is also noted. 

Institution C is a special school for disabled pupils 
whose abilities in functional mathematics are low 
and hence the mathematical curriculum is narrowed 
down to teaching basic skills such as financial func-
tioning. The challenge in this school was to provide a 
curriculum that engages and instigates an aesthetic 
appreciation and enjoyment of mathematical ideas 
lest mathematics is perceived by both pupils and 
teachers as a discipline which is only functional or 
arithmetic bound. 

By working within these three very different institu-
tions, we trialed the three aspects of mathematics that 
we have identified as possible principles of developing 
teaching programmes for the new curriculum. These 
are: 

a) extending the most able pupils by modeling math-
ematical practices from the past 

b) engaging pupils by learning mathematical skills 
and understanding via ‘big’ questions of mathe-
matics 

c) teaching mathematical appreciation via aesthetic 
experience rooted in mathematical concepts. 

The preliminary conclusions are that researching a 
historical development of mathematical concept can 
give opportunities for multiple settings, differenti-
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ation in terms of possible levels of achievement in 
mathematics, and cover different aspects of modeling 
mathematical practice with different types of pupils. 

Finally, after identifying the links with the curric-
ulum so easily, an idea is forming that the new pro-
gramme for secondary school mathematics can in-
deed be entirely based on historical development of 
mathematics, offering for the first time an educational 
programme that would be truly meaningful and en-
gaging and give pupils a glimpse of the big questions 
of mathematics about the nature of space and time 
that many past mathematicians had been enthused by. 
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ENDNOTES

1. See in particular http://mathsreports.wordpress.
com/2013/01/05/homehome/ for summary and text 
of these. Accessed 1st October 2014. 

2. For example Adrian’s Smith’s report on the state of 
mathematics education in 2004 was followed by the 
establishment of National Centre for Excellence in 
the Teaching of Mathematics in 2006. See Lawrence 
(2009).

3. See for example a project report on student disen-
gagement in English secondary education by Sonia 
Sodha and Silvia Guglielmi (2009).

4. Aristotle says (2012, 268a, pp. 10–15): “A magnitude 
if divisible one way is a line, if two ways a surface, and 
if three a body. Beyond these there is no other magni-
tude, because the three dimensions are all that there 
are, and that which is divisible in three directions is 
divisible in all.” He however rejected the possibility of 
an extension of this thinking: “All magnitudes, then, 
which are divisible are also continuous. Whether we 
can also say that whatever is continuous is divisible 
does not yet, on our present grounds, appear. One 
thing, however, is clear. We cannot pass beyond body 
to a further kind, as we passed from length to sur-
face, and from surface to body.” (Aristotle, 2012, 268a, 
pp. 25–30)
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Teaching the concept of velocity 
in mathematics classes
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The genesis of the concept of velocity refers to a centu-
ries-old search within the context of motion. This led to 
Newton’s definition which is still taught in school. The 
historical development has shown that both mathemat-
ics and physics classes have their respective characteris-
tic manner using this term. However, the mathematical 
potential for teaching this concept is by far not exhausted.

Keywords: Concept of velocity, historical development, 

teacher education.

INTRODUCTION

The causes to investigate the historical development 
of the concept of velocity are mathematical problems 
which lately can be found in German fourth grade 
classes.

Several pictures are given which show people or ma-
chines such as cars or trains each with information 
about the respective velocity: the train covers 150 km 
in an hour. The assigned task is to fill out tables in 
which the students write the distances for different 
time spans: 1h, 2h, and so forth. Above the assigned 
tasks one can read the title velocities. One can observe 
at once that like in other cases in which an introduc-
tion into the field is in the focus of interest – here a 
start with a series of different observable motions and 
a leading to the question how they can be quantified – 
there is an emphasis on the computational aspect 
under which the ideas that have led to the possible 
to computations, have disappeared (Doorman & van 
Maanen, 2009). Instead of an approach pinpointing 
the quantities in question there is a given table to be 
filled out by the students. 

This kind of problem can be considered as an anticipa-
tion. There are at least three other kinds of anticipa-
tion tasks on the elementary level: one refers to the ra-

tios such as a half, one quarter and three quarters and 
the second refers to the decimals within the context 
of magnitudes. The third is the appearance of tables 
in application problems. In these problems prices of 
products are given – like 1 kg of apples cost 75c – and 
the question is how much is to pay for 2 kg / 3kg / 5kg. 
These three kinds of anticipations occur in math class-
es because of the application principle. Students see 
these kinds of numbers and these kinds of questions 
in their daily life and math classes respond to this 
phenomenon by introducing these numbers and these 
tables without giving a rigid mathematical reasoning.

What kind of anticipation is done when students solve 
this kind of velocity problem? Since the students are 
to fill out tables, which are methodically a representa-
tion of functions one could argue that functions 
have arrived in elementary math classes since the 
inspection of Felix Klein (1905) to make functions a 
subject matter in math classes. It also could be under-
stood as an example of an (anti-) didactical inversion 
(Freudenthal, 1983, pp. 305ff.). In any case it is obvious 
that this is not following the historical development 
and it is not showing an elementary approach which 
is possible at this stage of mathematics classes.

Since this kind velocity problem is not really an ap-
plication task, since only tables need to be filled out, 
one could argue that they give a mathematical way to 
compute velocities which the students can observe in 
their daily lives because our modern world presents 
this phenomenon. Since the formula is given later at 
secondary I level one chooses tables to compute.

Having in mind the way magnitudes are introduced 
in math classes on the elementary level (finding rep-
resentatives, studies of comparisons with chosen 
measurement objects and afterwards with agreed 
upon measurements objects, leaning the standardized 
measurement unity and at last solving of application 
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problems), the velocity problems in focus do not show 
any such procedure although velocity is the first com-
posed magnitude that the pupils encounter.

Since this is a mathematical concept one would expect 
a series of steps that lead to a definition. A possible 
approach would be the didactical triangle of Bruner 
(1960) in which he argues for an approach that en-
compasses the enactive, iconic and symbolic level. 
Another didactical theory of leaning concepts is giv-
en by Vollrath (1984) who outlines in general what 
kind of different steps lead to an understanding of 
mathematical concepts. 

Another concern is the fact that the concept of velocity 
can be looked upon as a real mathematical modelling 
procedure (e.g., Blum & Leiß, 2005). Observable move-
ments can be measured in two dimensions: length 
and time span. It could be arranged as a project for 
students in which the definition of velocity is the end 
product of their investigative endeavour.  

This point also leads to the question why a fundamen-
tal phenomenon like the concept of velocity lacks any 
historical approach in textbooks. The students could 
measure for example the free fall of objects getting an 
idea of how scientists in the middle ages approached 
problems of velocity. 

The paper focuses on the historical development 
of the concept of velocity with the idea that Newton 
might not have thought primarily of it as a function 
since he was still following Galilei’s proportional 
theory. The development starts with some inherent 
philosophical aspects since in times of Newton the 
subject matter still belonged to the so-called natural 
philosophy. 

PHILOSOPHICAL AND HISTORICAL ASPECTS

The concept of velocity is one with a long tradition, 
similarly like the history of calculus (e.g., Doorman 
& van Maanen, 2009). Embedded in the concept of 
motion already Greek mathematicians, especially 
Aristotle (384–322 BC), had ideas about velocity which 
he combined with his observations of the spheres and 
of the free fall of objects. Before the next step was done 
by Galilei (1564–1642), Nicole of Oresme (1360) used 
graphic representation of changing qualities. Later 
Galilei used experiments to argue for the statement 
that there is a quadratic dependency between the dis-

tance travelled and the falling time. Even later Newton 
(1642–1727) defined velocity using the concept of force 
that initiates motion. Leibniz (1646–1716) developed 
the differential and integral calculus also considering 
the idea of (planetary) movements. 

In the following sections, two aspects are discussed: 
Firstly, the formal definition of the concept of velocity 
was preceded by a struggle for a clarification of the 
concept of motion. Secondly, the concept of velocity 
embodies a circular reasoning.

Although a lot of the work of Archimedes (287–212 
BC) concerning mechanics is transmitted and gives an 
idea of his far-reaching mathematical understanding, 
we have no clear idea what he understood by velocity. 
Assured work is passed on us of Aristotle (384–322 
BC), who investigated the phenomenon of motion 
qualitatively and verbally (Aristotle, Physics, 1829). 
He distinguished three types of motion: motion in 
undisturbed order, such as the celestial spheres, the 

“earthy” motion such as the concept of the rise and 
fall, and the violent motion of bodies that needs an 
impulse (cf. Hund, 1996, p. 29). Although his remarks 
touched the phenomenon of velocity, his conceptions 
proved wrong later on: “Aristotle came close to the 
concept of velocity when in the sixth book, the words 

‘faster’ (longer distance in the same time, same route 
in shorter time) and the ‘same speed’ are explained.” 
(Hund, 1996, p. 30)

Galilei (1564–1642) succeeded in a better understand-
ing of the concept of velocity, as he did not rely on his 
direct perception: “The means of scientific evidence 
was invented by Galilei and used for the first time. It 
is one of the most significant achievements, which 
boasts our intellectual history [...]. Galilei showed 
that one cannot always refer to intuitive conclusions 
based on immediate observation because they some-
times lead to the wrong track” (Einstein, 1950, p. 17).

As Weisheipl (1985) points out, Galilei struggled with 
the Aristotelian concept of nature (pp. 8ff.). Aristotle 
considered nature as an active principle. “Nature is 
a source not only of activity but also of rest” (p. 22) 
which has an impact on the understanding of mo-
tion (p. 49ff.) He also still pondered over the idea of 
Parmenides “all change is illusion” and the one of 
Heraclitus “everything is flux”. Galilei can be under-
stood as being at the brink of Aristotelian sight of na-
ture and the one later proposed in Newton’s Principia 
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and Descartes’ Principia. Newton formulated the 
principle of inertia like this: “Everybody preserves in 
its state of rest or of uniform motion in a straight line, 
unless it is compelled to change that state by forces 
impressed upon it (Weisheipl, 1985, p. 69).

Another author, Palmerino (2004), argues for a new 
sight of the reception of Galilei’s theory since like any 
other theory it was not at once in the way accepted 
in which textbooks nowadays present for example 
the free fall and projectile motion (Palmerino, 2004, 
p. 140). During the last decades it became apparent 
that the ideas that Galilei, Descartes and Newton 
presented at their times were different from each 
other. Also the European continent was not aware 
of Galilei’s and Newton’s theories and later Leibniz 
focused very much on his functional approach using 
variables. That is, the way the theory of motion and 
velocity is presented nowadays is much more formed 
by Leibniz than by Galilei and Newton although it was 
very much their ideas that came through eventually.

Only Newton (1643–1726) introduced the concepts 
of absolute time and absolute space and opened up 
the exact relationship between force and motion: The 
power does not get the motion upright (Aristotle), but 
it causes its change (acceleration). While Aristotle 
argued by inspection, Newton made an abstraction, 
as he looked upon length and time as not necessarily 
bounded materially. 

In today’s linguistic usage, we understand motion as 
a change in position in the (Euclidean) space over a 
certain period of time. Lengths and time periods are 
conditions for the quantification of such motions. On 
this basis, the (average) velocity is defined as the quo-
tient of the distance travelled over the time required.

A circular argument is obvious on closer inspection: 
time depends on a movement and vice versa, because 
time is measured using motion (Mauthner, 1997, Vol. 3, 
p. 438). In the hourglass sand runs through, in an anal-
ogous clock the pointer moves, and for the period of a 
year, we follow the cycle of the earth around the sun.

Likewise, the idea of space is connected to motion, 
for only through movement we perceive the space. 
Mauthner said: “His [The people, note of the author] 
language makes it impossible for him to understand 
the metaphorical tautology of the preposition ‘in’. 
Only rigorous reflection will enable him, to at least 

understanding the metaphorical of the preposition 
(in time). In space means something like ‘in the space 
of the room’, for the time as much as ‘in the space of 
time’ (ibid, p. 443)”.

Even Piaget refers to this circular argument: “Speed is 
defined as a relationship between space and time – but 
time can be measured solely on the basis of a constant 
velocity” (Piaget, 1996, p. 69). For him the concepts of 
space, time and speed are mutually dependent.

MATHEMATICAL ASPECTS OF 
THE VELOCITY CONCEPT

Towards a functional terminology of velocity Oresme 
(ca. 1320–1382) sought the help of experiments to as-
sign a rate of change to certain intensities and con-
cluded: “All things are measurable with the exception 
of numbers …. (Pfeiffer, Dahan-Dalmedico, 1994, p. 
228ff.)”. The difficulties mathematicians had at that 
time are well summarized there.

The reasoning of Aristotle and Galilei were based on 
their observations of linear motions. However, both 
had also planetary motions in mind. For motions on a 
curved path you need two different aspects: the direc-
tion and the magnitude of a velocity vector. It is this 
distinction which led, in modern terms, to a vectorial 
description and thus to a further clarification of the 
concept of velocity, which is thus a generalization of 
the concept of velocity on a straight line. Bodies on a 
straight line have the same speed, in the same direc-
tion and the same quantity. Since then, the following 
statement is true: the change in force and velocity 
are vectors with the same direction (Einstein, 1950, 
p. 38). We observe an idea of permanence, because 
all statements that apply to velocities along curved 
paths must also apply to linear trajectories.

The cause of this observation is given by an idealized 
thought experiment, which confirmed the theory (cf. 
Einstein, pp. 25ff.); this is yet another idea that came 
to an effect only at the time of Galilei. Since then, the 
mathematical language has been used in physics to 
reason for not only qualitative but also quantitative 
conclusions.

As soon as you engage in quantitative calculations, 
one deals with quantities (“Größen”). With respect to 
the concept of velocity you have the dimension (the 
quotient of distance and time) and the measured value 
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(an element of real numbers), which is a composite 
physical quantity.

Griesel analysed the subject matter of quantities on 
the primary level (length, weight, time periods) (1973, 
vol. 2, pp. 55ff.) as a technical background for the di-
dactics of quantities. This presentation does not fit 
the quantity of velocity (and is not mentioned there) 
because it requires a description as an element of a 
vector space, which can be higher than one-dimen-
sional.

However, Freudenthal (1977, vol. 1, p. 188) argues that 
one can interpret measure indications as function 
symbols; an idea that was not previously addressed 
in class. Another functional aspect occurs in two 
ways with the concept of velocity: The distance-time 
function leads with considering of the difference 
quotients to the average speed and the transition to 
differential quotient to instantaneous velocities that 
are themselves again functions, namely, the veloci-
ty-time functions.

It has taken over 2000 years for the concept of velocity 
to be defined consistently out of the concept of mo-
tion – in today’s usage an act of mathematical model-
ling. It is therefore a prime example of a mathematical 
and interdisciplinary concept development – with 
both mathematical and physical – mechanical – rep-
resentations throughout history. The intuitive conclu-

sions drawn by Aristotle led to difficulties and proved 
much later untenable. Only an idealized thought ex-
periment led eventually to a verifiable physical theory. 
The concept of velocity is an example of a mathemat-
ical modelling of a qualitative knowledge with more 
potentials as there are quantitative statements and 
other insights. The knowledge of such phenomena, 
the resulting misconceptions and the trodden paths of 
knowledge are essential components of mathematical 
education and exemplify scientific processes.

The genesis also shows a potential for didactical 
perspectives of mathematics education. Despite the 
scarce representation of this topic in mathematics 
class (in many curricula of the German provinces the 
concept of velocity is only mentioned only one time 
on the secondary level), there are a diversity of ideas 
which can be reflected. 

DIDACTIC CONSEQUENCES 

This example shows again, that the mathematical 
subject matter is not always the ‘first philosophy’ in 
mathematics education (e.g., Ernest, p. 213). Although 
of great importance for the development of mathe-
matical and physical theory, it plays only the role of 
a physical application in mathematics classrooms. 
Hidden under algorithmic manipulations, the ideas 
that lead to the definition of concept of velocity do not 
appear to pupils in class. Since this topic also disap-
pears during teacher training, there is an extra afford 
needed to pull the history into the light.

In the light of the use of language in math classes, 
Vygotsky (1964) elaborated on the relationship be-
tween everyday experiences and logical reasoning. 
Everyday experiences may interfere with scientific 
reasoning which in the case of the concept of velocity 
occurred historically for quite some time because 
of the lack to understand the invisible forces. It is 
therefore necessary for teacher students to learn to 
discriminate between the appearance or motions and 
its scientific reasoning.

This afford can be done in three ways: there is a chro-
nology of historic development which can be shown 
on a line. There is the genesis which makes apparent 
who under which presumptions found a concept or 
an algorithm. 

Figure 2: Extended didactical triangle

Figure 3: Aspects of history
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The genesis of the concept of velocity is influenced 
by interdisciplinarity for centuries. Therefore, it 
is wrong to neglect it in mathematics education by 
pointing to the physics education or to avoid it in the 
classroom at all. In mathematics teaching, it owns 
several important functions:

Basic everyday experiences relate to the phenomena 
of velocity and can be used on several grade levels 
by taking up Vollrath’s idea and take seriously meas-
urement processes as a basis of experience (Vollrath, 
1980). This can be addressed in propaedeutic form 
at the primary level and in a quantitative manner at 
secondary levels.

Under the current relations of applications of math-
ematics education, the concept of velocity is a prime 
example of mathematical modelling of everyday 
phenomena of motions which can be quantified nor-
matively, allowing measurements and calculations. 
According to the current understanding these are 
necessarily factual and methodological skills.

As a first composite quantity the concept of velocity 
can be addressed in lower secondary education at 
many occasions. Before getting to the usual algorith-
mization (Doorman & Van Maanen, 2009) teaching 
this concept allows for teaching the fundamental idea 
of measuring. This is a valuable and vital contribution 
to the implementation of the rules in the education-
al standards and curricula and guiding principles 
would be met. The implementation of the items listed 
would be an important part in promoting mathemat-
ics education. 

To arrive at an overall conception of the concept of ve-
locity in mathematics education, a strategy is needed 
which leads from an intuitive to a structured taxono-
my (Vollrath, 1984, p. 14). Vollrath has given a general 
theory to teach mathematical concepts. The following 
steps outline the procedure scheme for the specific 
concept of velocity which teachers could have in mind 
before teaching the respective classes (Vollrath, 1984, 
pp. 202ff ). It would mean to get a clear view on the 
subject matter and teach perhaps more than what is 
given by the textbooks:

1) The concept as a phenomenon (intuitive under-
standing of the concept)

They recognize that

 ― the feature of the motion is the continuous change 
of position of subjects and the objects.

 ― for describing motion two quantities, length and 
time intervals, are required.

 ― with a constant distance the one object is faster 
that needs less time. Conversely, at constant time, 
the object is faster that has travelled a longer dis-
tance.

2) The second term and his wealth aspect (construc-
tive understanding of the term)

They recognize that

 ― rest and motion of a body are always give relative 
to a reference system.

 ― with a rectilinear and uniform motion in equal 
intervals of time, equal distances are covered.

 ― for a linear and non-uniform motion the same 
time intervals can be covered in different jour-
neys.

 ― for a linear and uniform motion, velocity can be 
described as the ratio v = s / t.

3) The concept is a carrier of properties (substan-
tive understanding of the term)

They recognize that

 ― for mathematical calculations of the body and 
the mass, they are idealized to a point.

 ― the ratio ∆s / ∆t possess a constant (average) value 
relative to the total distance and total time.

 ― at constant velocity ∆s to ∆t proportional.

 ― the quantity velocity possesses the dimension 
“distance per time” with the units m/s or km/h.

4) The concept as a tool for problem solving (prob-
lem-oriented understanding of the term)
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They can

 ― bring the definition v = s / t into relation to every-
day life contexts.

 ― calculate uniform velocity.

 ― appreciate that the concept of velocity is a fun-
damental physical phenomenon that can be de-
scribed quantitatively by mathematical means.

The discussion of the velocity concept in the context 
of the stage scheme shows the potential that this con-
cept already has in mathematics education. From this 
more elaborated standpoint the potential for the in-
terdisciplinary character can be developed further 
and more in detail.

The four steps in the concept development to enlight-
en teacher students in their knowledge of this topic 
also gives a good background to approach the topic in 
an ethical manner. It is essential for their teaching to 
have a grip on solid knowledge and cultural heritage 
in the subject matter they are to teach.  
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Proportional reasoning seems to be one of the oldest 
mathematical problem solving tools. Problems involving 
proportionality have consistently appeared in math-
ematics texts over time. Moreover, proportionality is 
still today one of the main topics in school arithmetic 
and several studies point out difficulties shown by the 
students in this context. In this paper, we perform an 
analysis of historical proportionality problems in order 
to describe the main situations where proportionali-
ty naturally appeared. Knowledge of these situations 
might be of interest in order to design and develop 
well-contextualized teaching and learning activities. 

Keywords: Proportionality, arithmetic, problems, history. 

INTRODUCTION

Rhind papyrus is the oldest known work that can be 
considered, in some sense, a Mathematics textbook. It 
is dated by the copyist Ahmose to the sixteenth centu-
ry BC, although he acknowledges to be copying older 
material from around nineteenth century BC. In this 
papyrus, we already find problems like the following 
one (Chace, 1979, p. 102):

“If 10 hekat of fat is given out for a year, what is 
the amount used in a day?” 

This daily problem clearly points out the important 
applications that proportional reasoning had in sever-
al situations involving productive aspects, commerce 
or administration. This fact, together with the difficul-
ties that many students show when they face concepts 
related to proportionality (Modestou, Elia, Gagatsis, 
& Spanoudis, 2008; Van Dooren, De Bock, Janssens, 
& Verschaffel, 2008) justify that proportionality and 
its applications are still important topics in Primary 
and Secondary school curricula in many countries.

THEORETICAL FRAMEWORK

Mathematics, just like any other human activity, takes 
place in a particular historic, social and cultural con-
text that is, of course, changeable (Wussing, 1998). 
Consequently, the study of mathematical concepts 
and problems from a historical perspective must 
be an essential part of research in Mathematics 
Education. In this sense, the contributions of History 
of Mathematics to Mathematics Education are diverse 
and admit many different approaches (Fauvel & Van 
Maanen, 2000; Katz & Tzanakis, 2011).

Phenomenology can also be approached from a 
historical perspective. Freudenthal (1983) presents 
historical phenomenology as one of the four types 
of phenomenology which have interest from a didac-
tical point of view. The idea is to pay attention to those 
phenomena lying in the origin of the concept that we 
want to study.

Since Mathematics can be conceived from a prob-
lem-solving point of view (Ernest, 1989), it seems inter-
esting to focus a historical-phenomenological study 
on those problems arising in the origin of a particular 
concept. This interest is even clearer if we note that 

“problems have occupied a central place in the school 
mathematics curriculum since antiquity” (Stanic & 
Kilpatrik, 1989, p. 1). Moreover, Tzanakis and Arcavi 
(2000, p. 224) point out that historical problems that 
motivated and/or anticipated the development of a 
mathematical domain are interesting from a didactic 
perspective.

Many authors (De Lange, 1996; Van Reeuwijk, 1997) 
point out that contextualization is an important is-
sue regarding mathematical work in the classroom. 
Obviously, the case of proportionality is not an ex-
ception. Thus, the knowledge of those situations in 
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which proportionality has historically appeared can 
be useful in order to design and develop well-contex-
tualized teaching and learning activities that might 
help the students to overcome their difficulties.

OBJECTIVE AND METHOD

In this paper, we perform an analysis of historical pro-
portionality problems. In particular we are interest-
ed in studying the contexts in which these problems 
appeared. Our main goal will be to give a survey of 
the most important situations in which proportional 
reasoning arises in a natural way.

In order to do so, we will focus on the study of an-
cient texts following the steps of content analysis 
(Krippendorff, 1990). 

It is difficult to make a selection of texts. First of all we 
must determine a temporal frame. We decide that the 
most recent work in our study would be the Liber aba-
ci, edited twice during the thirteenth century, because 
it presents proportionality in a relatively closed form. 
Later medieval and renaissance texts on Arithmetic 
will not include any essentially new problems regard-
ing proportionality [1].

On the other hand, since proportionality admits dif-
ferent conceptual approaches (Oller & Gairín, 2013), 
it is necessary to gather works coming from different 
traditions. Moreover, to ensure the representative-
ness of the sample, it seems interesting to search for 
texts that were encyclopedic in the sense that they tried 
to summarize the mathematical knowledge at the mo-
ment and place where they were written.

As a consequence of the previous considerations the 
following main sources were selected: 

1) Rhind papyrus, ca. 1650 BC, from Egypt (Chace, 
1979).

2) Jiu zhang suan shu, an ancient Chinese text com-
mented in 263 by Liu Hui but containing older 
material (Kangshen, Crossley, & Lun, 1999).

3) Lilavati, written in 1150 by the Indian mathemati-
cian Bhāskara II (Patwardan, Naimpally, & Singh, 
2001).

4) Liber abaci, written in 1202 by Leonardo of Pisa, 
Fibonacci (Sigler, 2002).

Quite often, ancient texts only present the statement 
of the problems or, even if they provide a solution, 
it is only of numerical nature. In these cases we do 
not have a clue about the actual solving method. Thus, 
if we want to avoid the mistakes [2] pointed out by 
Grattan-Guinness (2004) we cannot classify the prob-
lems according to their (modern) method of resolution. 
Instead, we decide to classify the problems according 
to the particular context and situation where they 
appear. This criterion is coherent both with the prac-
tical nature of proportional reasoning and with the 
didactical usefulness of the study.

CONTEXTS WHERE PROPORTIONALITY 
PROBLEMS ARISE

The practical and pedagogical importance of pro-
portionality is made clear by the great amount of re-
lated problems that appear in the consulted texts. In 
the Jiu zhang suan shu, for instance, three out of the 
nine chapters are solely devoted to this topic. Also, in 
Fibonacci’s text we find a chapter exclusively devoted 
to companies presenting thirteen problems with their 
detailed solutions.

This huge number of problems also represent a vari-
ety of problems ranging from distribution of food to 
purely mathematical and abstract situations. Hence, 
it is difficult to give an exhaustive and detailed clas-
sification of proportionality problems according to 
their contexts. Nevertheless, we have identified four 
categories that include most of the problems:

1) Exchange problems.

a) Exchange of merchandise (barter).

b) Buying and selling.

c) Exchange of currency.

2) Distribution problems.

3) Loan problems.

4) Mixing problems.
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EXCHANGE PROBLEMS

It is quite possible that the exchange and distribution 
of merchandise were the situations where propor-
tional reasoning firstly appeared. In fact, texts like 
the Jiu zhang suan shu or the Liber Abaci use barter 
situations as an introduction to this topic. In cultures 
where currency existed buying and selling made 
sense but these situations can be seen as an Exchange 
of merchandise for Money. Finally, when different 
cultures, towns or countries interacted, the need to 
compare and interchange their respective curren-
cies arose. We also consider these cases as exchange 
problems.

Exchange of merchandise
In order to perform an interchange, some criterion 
is needed to guarantee its fairness. Throughout our 
study we have found different criteria that we now 
exemplify. 

1) Sometimes a table or some additional informa-
tion giving exchange rates for different merchan-
dise is given. That is the case, for instance, in the 
Jiu zhang suan shu, where a table indicating the 
exchange rates for different cereals is presented 
and used to solve problems such as the next one 
(Kangshen et al., 1999, p. 146): 

“Now 5 dou 2/3 sheng of millet is required as ses-
ame seed. Tell: How much is obtained?”

2) In other cases, the monetary value of both mer-
chandises is known and this information is 
used to deduce the fair way to interchange them. 
These kind of situations appear, for instance, in 
the Liber abaci, where we find problems like the 
following (Sigler, 2002, p. 181): 

“A hundredpound of pepper is worth 13 pounds, 
and a hundredweight of cinnamon is worth 3 
pounds; it is sought how many rolls of cinnamon 
are had for 342 pounds of pepper.”

3) Finally, we can find a unit that measures, in some 
sense, the quality of a certain good. This happens 
remarkably in the Rhind papyrus, where a unit 
called pefsu (Robbins & Shute, 1987, p. 51) mea-
sures the lack of quality. This gives rise to prob-
lems like this (Chace, 1986, p. 108):

Example of exchanging loaves for other loaves. 
Suppose it is said to thee, 100 loaves of pefsu 10 are 
to be exchanged for a number of loaves of pefsu 
45. How many of these will there be? 

Buying and selling
Buying and selling processes can give rise to several 
different problematic situations, but the two main 
possibilities that we have found are:

1) The price of a certain quantity of merchandise 
is known and the price of some other quantity is 
sought. For instance (Sigler, 2002, p. 134):

“Also a hundredweight of some merchandise is 
worth 14 pounds and 7 soldi; how much are 37 
rolls of the same merchandise worth?”

2) The inverse situation; i.e., the price of a cer-
tain quantity of merchandise is known and the 
quantity of merchandise that can be bought with 
other quantity of money is sought. For instance 
(Patwardan et al., 2001, p. 78):

“If 3/2 pala of saffron costs 3/7 niskas O you expert 
bussinessman, tell me quickly what quantity of 
saffron can be bought for 9 niskas.”

Exchange of currency
The exchange of currency is a relatively recent com-
mercial phenomenon. Among the revised texts, only 
the Liber abaci presents these problems. This is not 
surprising considering the historical and geographi-
cal context in which it was written. In fact, these prob-
lems will be popular in renaissance arithmetics due to 
the active commerce around the Mediterranean Sea. 

Just like in the case of barter, there can be different 
pieces of information available at the moment of the 
exchange. The main possibilities are:

1) In the simplest case, the amount of one currency 
that is obtained in exchange of a certain quantity 
of the other is known (Sigler, 2002, p. 157):

“Also a Genoese soldo is sold for 21½ Pisan denari, 
and it is sought how much 7 Genoese soldi and 5 
denari are worth.”
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2) In some cases a third currency is involved that 
acts as a measure for the value of the two ex-
changed currencies (Sigler, 2002, p. 186): 

“Also it is proposed that one Imperial soldo is 
worth 31 Pisan denari, and one Genoese soldo is 
worth 22 Pisan denari, and it is sought how many 
genoese denari 7 Imperial denari are worth.”

3) The previous situation can be generalized so 
more than one currency acts as  mediator  (Sigler, 
2002, p. 195): 

“Twelve Imperial denari are worth 31 Pisan de-
nari, and one Genoese soldo is worth 23 Pisan 
denari; and one Turin soldo is worth 13 Genoese 
denari, and one Barcelona soldo is worth 11 Turin 
denari; it is soought how many Barcelona denari 
are 15 Imperial denari worth.”

4) Finally, the exchanged can be performed accord-
ing to the actual value of the silver (for instance) 
contained in each coin (Sigler, 2002, p. 199): 

“Again one indeed has 26/3 pounds of some com-
mon coin that has 2¼ ounces of silver, an one 
pound of silver is worth 149/20 Pisan pounds, 
and it is sought how many Pisan pounds will be 
had for the 26/3 pound of the coin.”

DISTRIBUTION PROBLEMS

As we already pointed put, distribution situations 
are among the oldest situations where proportional 
reasoning arises. Rhind papyrus already presents this 
type of problems. 

The “fair” way to perform the distribution is often 
implicitly assumed and the context determines if the 
distribution must be direct or inverse. We now give 
some examples.

1) Sometimes there is a benefit to distribute, coming 
from either work or investment. In these cases 
the distribution is made directly proportional to 
the individual contributions (Chace, 1979, p. 104):

“Suppose a scribe says to thee, four overseers 
have drawn 100 great quadruple hekat of grain, 
their gangs consisting, respectively, of 12, 8, 6 and 
4 men. How much does each overseer receive?”

2) In other cases, there is a loss to be distributed 
(like a tax payment, for instance) and the distri-
bution is inversely proportional to the “rank” of 
the payers (Kangshen et al., 1999, p. 166): 

“Now given five officials of different ranks: Dafu, 
Bugeng, Zanniao, Shangzao and Gongshi. They 
should pay a total of 100 coins. If the payment is 
to be shared in accordance with ranks, the higher 
pays the less, and the lower pays the more. Tell: 
how much should each pay?”

3) Finally, there can be several factors involved in 
the distribution which will be made directly pro-
portional to some of them and inversely propor-
tional to the others (Kangshen et al., 1999, p. 315):

“Now given a problem of fair distribution of tax 
millet. The tax bureau is at County A, which has 
20520 households and where millet costs 20 coins 
a hu. County B, 200 li away from the bureau, has 
12313 households and millet costs 10 coins a hu 
there. […] County E, 150 li away, has 5130 house-
holds, and millet costs 13 coins a hu. The total tax 
millet for the five counties is 10000 hu. A cart car-
ries 25 hu; the transport cost is 1 coin a li. Assume 
the payment by each household is equal in cash 
and labour. Tell: how much millet shoud each 
county pay?”

These distribution problems will continue to appear 
consistently over time, leading to the so-called prob-
lems of companies that received much attention from 
thirteenth century on (Lamassé, 2001).

Other interesting and important situation where dis-
tribution problems can be found is that of inheritance 
[2]. This is particularly the case in Muslim tradition 
because of the strict and somewhat complicated rules 
determined by the Islam. In fact, the whole third chap-
ter of al-Khwarizmi’s Algebra (Rosen, 1986) is devoted 
to inheritance problems. A typical example is given 
by the following problem coming from the twelfth 
century Andalousian mathematician al-Hufi (Laabid, 
2001, p. 321): 

“Une femme a laissé après sa mort, son mari, sa 
mère, sa sœur germain, sa sœur consanguine, sa 
sœur utérine. Et une succession constituée d’un 
esclave et de 15 dinars. La sœur germaine a pris 
pour sa quote-part l’esclave et a remboursé pour 
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les autres héritiers 5 dinars. (Il s’agit de calculer 
le montant global de la succession et la valeur de 
l’esclave, la quote-part de chaque héritier.)” 

This type of problems do not appear in the sources 
used for this work and, strictly speaking, they could 
be considered as an example of benefit distribution 
problems. Nevertheless, their context is specific 
enough to study them separately. 

LOAN PROBLEMS

In spite of the bad reputation that the loan of money 
at a certain interest had in several cultures, it seems 
that this was a quite ancient and common practice. 
Moreover, simple interest is still a topic in textbooks; 
although this is more due to tradition than to its prac-
tical use (compound interest is far more common). 

The problems that we have found in this context are 
very similar, if not identical, to problems that appear 
nowadays. For example (Patwardan et al., 2001, p. 84): 

 “If the interest on 100 for 4/3 months is 26/5, what 
will be the interest on 125/2 for 16/5 months?”

In most ancient problems the reader is asked to find 
the interest obtained by a certain amount of money 
after a certain time. In some cases the unknown quan-
tity corresponds to other magnitude. The following 
example from the Liber abaci shows such a situation, 
although it is not strictly a proportionality problem 
since it involves an affine function (Sigler, 2002, p. 
384):

“A certain man placed 100 pounds at a certain 
house for IIII denari per pound per month of in-
terest, and he took back in each year a payment 
of 30 pounds; one must compute in each year the 
30 pounds reduction of capital and the profit on 
the said 100 pounds. It is sought how many years, 
months, days and hours he will hold money in 
the house.”

MIXING PROBLEMS

The idea of mixing products of different qualities 
and prices naturally arises when working with raw 
materials. In this way one can obtain a product of a 
predetermined price or improve or worsen its quality.

A very particular case is that of alloys. These problems 
were important in Europe during the thirteenth cen-
tury (Williams, 1995). In fact, chapter 11 from the Liber 
abaci is entirely devoted to this topic (Sigler, 2002, pp. 
227–257). 

Again, a huge variety of different situations arise in 
this context. Nevertheless there are essentially two 
types of problems.

1) Knowing the weight and quality of the ingredi-
ents, the weight and quality of the resulting mix-
ture is sought (Patwardan et al., 2001, p. 98): 

“O golden mathematician, four types of gold 10 
masas of 13 carats, 4 masas of 12 carats, 2 masas 
of 11 carats and 4 masas of 10 carats are melted to-
gether to form a new one. Find its fineness. Is this 
is purified and 16 masas gold is obtained, what is 
its fineness? If the mixed gold when purified has 
16 carats fineness, what is its weight?”

2) Inversely, knowing the weight and quality of the 
mixture some information about the ingredient 
is required (Sigler, 2002, p. 255): 

“A certain man wishes to make a bell with five 
metals, of which a hundredweight of one metal 
is worth 16 pounds, another truly 18 pounds, an 
another 20 pounds, another truly 27 pounds, and 
another indeed 31 pounds; he therefore makes a 
bell from them that weights 775 rolls and costs 
651/4 pounds; it is sought how much he puts in 
of each metal.”

SOME DIDACTIC IMPLICATIONS

As we already pointed out, the previous study might 
be useful in order to design teaching and learning 
activities involving proportionality and, in particular, 
to decide which situations can promote that students 
significantly construct the main concepts regarding 
proportionality.

From this point of view, we think that the situations 
that are more adequate to introduce the basic tech-
niques of proportionality in the classroom are ex-
change problems. This choice is not only motivated 
by the historical importance of those situations but 
also by the fact that students are very familiar to them.
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Exchange problems are particularly suitable to intro-
duce outer ratios and what Cramer and Post (1993) call 
unit rate strategies to solve missing-value problems. 
In addition, these situations can be used to present 
the idea of co-variation that may lead to a functional 
view of proportionality (Bosch, 1994).

Distribution problems are as old as exchange prob-
lems and they can also lead to meaningful activities 
that help to present important aspects of proportion-
ality. 

For example, distribution situations are suitable to 
work at the same time with inner and outer ratios 
and discuss their relations and different meanings. 
Moreover, the idea of fair distribution can help to 
clarify the concept of proportional magnitudes and 
a distribution situation is a natural context in which 
inverse proportionality appears.

We find loan and mixing problems less useful, 
mainly because students are less familiar to them. 
Nevertheless, they are also interesting and can also 
be used under certain circumstances. For instance, 
mixture problems can be a nice context in which 
progressively start the difficult transition (Wagner 
& Kieran, 1989) between arithmetic and algebra.
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ENDNOTES

1. We must point out that we focus on arithmetic pro-
portionality. Of course, we find proportionality in 
several geometric problems of practical nature and 
the theoretical frame can be traced back to Euclid and 
before. Nevertheless, we think that arithmetic situa-
tions are more useful in order to introduce propor-
tionality in the classroom. 

2. Namely, the confusion of history and heritage. 
History describes what happened (and did not hap-
pen) in the past and tries to explain it, while herit-
age focus on the question “how did we get here?” In 
our case, it would be a mistake to classify problems 
as ‘direct proportion problems’, ‘inverse proportion 
problems’, etc. since these are modern categories. 
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The history of teaching the concept of function in 
Russian school and university mathematical education 
is described. For this reason, in the first section the brief 
survey of the history of the function concept is given. 
Finally, we conclude that the opinion about the intro-
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mapping has not been reached not only in school-based 
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ematics education.
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BRIEF SURVEY OF THE HISTORY 
OF THE FUNCTION CONCEPT 

The function concept is one of most complicated 
concepts not only of school mathematics but also at 
undergraduate level. The students’ difficulties with 
this notion have been reported for several decades 
(see, e.g., Tall, 1990; Sierpinska, 1992; Bardini et al., 
2014). Therefore, a need to elaborate upon effective 
approaches to the teaching of this notion still exists. 

This survey is a first step to the research project aimed 
at elaborating new ways of teaching the concept of 
function using the genetic approach. The application 
of genetic approach to the undergraduate mathemat-
ics teaching is described, e.g., by Safuanov (2005). The 
genetic approach could be combined with methods 
based on the APOS theory (Dubinsky, 1991). 

In order to understand the problems of teaching the 
notion of function, first of all we will trace the history 
of its teaching, at least in Russia. The changes in the 
teaching the concept of function have been largely 
determined by the history of the concept itself. Thus, 
in order to trace the history of teaching the concept 
of function, we should first make a short survey of 

the history of the concept itself. The other reason for 
surveying the history of the concept is our belief in 
the necessity of knowing the historical development 
of the concept for elaborating its teaching by genetic 
method. 

We will briefly trace the history of the development 
of the concept of function following the fundamen-
tal monograph edited by Yushkevich (1970, pp. 139–
148, and 1972, pp. 250–255), and also books by Klein 
(1977, pp. 286–292), Gleizer (1983, pp. 20–25) and 
the “Mathematical encyclopaedic dictionary” (1988, 
p. 617). We also trace the history of the development 
and teaching of the concept of function in Russia on 
the basis of the analysis of mathematical, didactical, 
educational and reference books and articles. 

In the monograph edited by Yushkevich (1970) it is not-
ed that “shoots of this concept though not yet realized 
or made explicit, were present in the Greek mathemat-
ics and natural sciences” (Yushkevich, 1970, p. 139). 

The concept of function for the first time emerged in 
medieval Europe in connection with the renewal of 
attempts of mathematical studying of various natural 
phenomena…

For the subsequent development of the theory of func-
tions crucial importance belongs to trigonometry and 
logarithms, on the one hand, and to the birth of sym-
bolic algebra, on the other hand.

At the beginning of 17th century functions were still 
quite often defined verbally, graphically, kinetically  
or through tables, but already in the second half of the 
century their analytical expressions being to play a 
leading role.

The term ‘function’ for the first time appeared in 
Leibniz’s manuscripts of 1673, in particular in the 
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manuscript entitled ‘The inverse method of tangents, 
or on functions’ (Methodus tangentium inversa, seu 
de functionibus)… The terms ‘variable’ and ‘constant’ 
were introduced by Leibniz” (Yushkevich, 1970, p. 146).

The definition of function as analytical expression, for 
the first time was distinctly formulated by I. Bernoulli 
in the article published in “Memoires de l’Academie 
des Sciences de Paris” in 1718: “Definition. A function 
of a variable is a quantity composed in any way from 
this variable and constants”. The notation f(x) for a 
function was introduced by Leonhard Euler in 1734.

The further development of the concept of function is 
connected first of all with Euler’s name. Yushkevich 
(1972) noted that “in the foreword to the ‘Introduction 
to the calculus of infinitesimals’ he (Euler. – I.S.) for 
the first time has distinctly expressed the idea that the 
analysis is the general science about functions, that 
the analysis of infinitesimals rotates around variable 
quantities and their functions” (Yushkevich, 1972, p. 
250).

In the first chapter of the first volume L. Euler, cor-
recting the definition of his teacher I. Bernoulli, “…
has emphasized that functions are defined by formu-
las: ‘A function of a variable quantity is the analytical 
expression composed somehow by its variable and 
numbers or constant quantities’. Thus the important 
step forward was done; the independent variable is 
considered as the set of all real and imaginary num-
bers so that functions of a complex variable were in-
troduced on the equal rights with functions of a real 
variable” (Yushkevich, 1972, p. 250).

To compose analytical expressions one could use four 
elementary operations, computation of a root, expo-
nential and logarithmic operations and, furthermore, 

“uncountable others, provided by integral calculus”, 
meaning thus also the integration of differential equa-
tions.

Euler’s definition of a function given in the first vol-
ume of the “Introduction to the analysis of infinites-
imals”, appeared to be too narrow for the calculus 
as a whole. Euler formulated the new definition of 
a function in his foreword to the “Differential calcu-
lus” (Euler, 1755): “When quantities depend on others 
in such a way that at the change of the last they are 
also changed the first are called functions of the sec-
ond ones. This term has extremely wide character; 

it covers all the ways by which one quantity can be 
determined by means of others”. In the quoted defini-
tion nothing is spoken about the way of calculation of 
values of a function.

Close to the modern definition of a function is 
Lobachevsky’s definition: “…the general concept of 
function demands, that one should name a function 
of x a number that is given for every х and that grad-
ually changes together with x. A value of a function 
can be given either by analytical expression or by a 
condition which gives means to test all numbers and 
to choose one of them, or, at last, dependence may be 
unknown” (Mathematical encyclopaedic dictionary, 
p. 617).

Thus, “… the classical definitions of a function given 
by Lobachevsky in 1834 and by Dirichlet in 1837 the 
second of which has passed to the latest textbooks (“If 
in some interval to each separate value x a unique 
value of the variable y corresponds then the variable 
y is called a function of х”), are hereditarily connect-
ed with a definition belonging to Euler” (Yushkevich, 
1972, p. 254).

Felix Klein (1977, p. 291) on the other hand noted that, 
beginning with the development of Cantor’s set theory 

“also functions defined for values of х from any set 
(not necessarily numerical) are considered…” In van 
der Waerden’s classical textbook, we already see the 
quite modern definition of a mapping: “If to each ele-
ment from some set M by any rule a unique (generally 
speaking, new) object ?(x) is put in a correspondence 
then this correspondence ? is called a function. If all 
objects ?(x) belong to some set N, the correspondence 
x??(x) is called also a mapping from M into N” (van der 
Waerden, 1930).

In the post-war decades (1945–1960), in connection 
with fast development of topology and abstract alge-
bra, the most formal definition of a function (=map-
ping) was introduced into the world of mathematics: a 
function is a correspondence from one set into anoth-
er (i.e., a subset of their direct product) where for any 
element х from the first set there is a unique element 
y from the second set such that the pair (х, y) belongs 
to this correspondence.

Klein (1977, p. 292) complained that “…the school 
mostly ignores all the development of a science which 
took place after Euler” and offered: “… we wish that 
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the general concept of a function … has entered as 
the enzyme into all the teaching of mathematics at 
school; but it should be introduced not in the form of 
abstract definition but rather on concrete examples 

… in order to make this concept a living property of a 
pupil”. He noted that “it would be desirable that among 
numerous teachers there was at least a small num-
ber of independently working people who would be 
familiar also with newest concepts of the set theory”.

Despite Klein’s appeal, formulated by him (and at-
tributed by him to Euler) and more precisely by van 
der Waerden definitions of a function did not soon 
find the way to the educational practice and literature 
not only in secondary school but also in undergrad-
uate mathematical education in our country. Up to 
the beginning of 21th century only the first part of 
Klein’s appeal has been in essence executed: Euler’s 
definition of a function has taken a strong place in 
school and university mathematical curricula. The 
second part – taking into account the development 
of mathematics after Euler and use of set-theoretic 
concepts has not been actually used until now at the 
either school or undergraduate level.

HISTORY OF TEACHING THE CONCEPT 
OF FUNCTION IN RUSSIA

In this preliminary survey of teaching the function 
concept we restricted the scope mainly by textbooks. 
Practices of teaching the notion of function have been 
largely determined by presentation of the subject in 
textbooks. These practices (of the last decades of 20-th 
century) have been partly described, e.g., by Dorofeev 
(1991).

Most probably, the first to mention the term “function” 
in Russian mathematical textbooks was Kotel’nikov 
who published in 1771 a book “On variable quanti-
ties” that was essentially the concise translation of 
Euler’s “Introduction to the analysis of infinites-
imals” (Prudnikov, 1956, p. 76). Note that the first 
German translation of Euler’s “Introduction to the 
analysis of infinitesimals” appeared later, in 1788. 
Thus, Kotel’nikov’s textbook was essentially the first 
translation of Euler’s book into modern language. In 
this book, the definition of function was given where 
functions should be represented by analytical expres-
sions. The similar definitions were given in the 3-rd 
volume of the textbook “Fundamentals of pure math-
ematics” published in 1812 by Fuss who was the disci-

ple and grandson-in-law of Euler (Fuss, 1812, p. 278), 
and also in the 3-rd volume of the textbook “Course 
of Mathematics” by Osipovsky (Osipovsky, 1823, p. 2).

Generally, throughout the 19-th century the definition 
of function as analytical expression representing a 
dependence of variables prevailed (see. e.g., Scheglov, 
1853, p. 310; Chebyshev, 1936, p. 8). The situation was 
slightly improved in the beginning of 20-th century 
when, following to the Klein’s appeal, prominent 
mathematicians called to reform the mathematics 
teaching and, in particular, “to permeate the entire 
exposition of elementary algebra, beginning with ele-
mentary grades, by the concept of functional depend-
ence” (Grave, 1915, p. 1). The textbooks with definitions 
not reducing functions to analytical expressions ap-
peared (e.g., Shaposhnikov, 1908, p. 92)

In Soviet schools, up to the middle of 60-th the text-
book of algebra written by Kiselev (first published 
before the October Revolution) was used with the fol-
lowing definition of a function: “That variable whose 
numerical values change depending on numerical 
values of another one is called a dependent variable or 
a function of that other variable” (Kiselev, 1964, p. 25). 
In the textbook there was a talk about tabulated and 
graphical presentations of functions; however the 
emphasis was made on the analytical expression of a 
functional dependence.

Similar definition was contained in the textbook of 
Barsukov for grades 6–8 used from 1956 to 1967: “If 
two variables are connected in such a way that to each 
value of one of them a unique value of another one 
corresponds, one speaks that there is a functional de-
pendence between these variables. … If two variables 
are in a functional dependence, the variable that can 
accept any (admissible) values is called an independ-
ent variable... Other variable, whose values depend 
on values of the former one, is called a dependent 
variable or a function…” (Barsukov, 1967, p. 250).

Still in 1970, in the algebra textbook of Kochetkova 
and Kochetkov for grade 10 that replaced Kiselev’s 
textbook, the similar definition is given (in the slightly 
more precise form), essentially ascending to Euler’s 
one: “If to every value of a variable х somehow a cer-
tain value of another variable y is put in a correspond-
ence one says that a function is defined” (Kochetkova 
& Kochetkov, p. 127).
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The same situation is observed in undergraduate text-
books. In the textbook on higher algebra by Shapiro 
(1935, p. 5) also the functional dependence is stressed: 

“If two variables х and y are connected in such a way 
that to each value х a certain value of the variable y 
corresponds, then the variable y is a function of х: 
у = f(x)”.

Similarly, in Sushkevich’s textbook (1941) it is sup-
posed by default that a function is an expression f(х), 
where x is a variable (p. 86). At the same time in his  
textbook there is (in a little archaic language) the quite 
modern definition of a group homomorphism with the 
requirement that to each element of the first group 
one has put in a correspondence a unique element 
of the second group, i.e. with the requirement to a 
homomorphism to be a mapping in the modern sense 
(p. 353).

Uspensky (2002, p. 163) noted that in Great Soviet 
encyclopaedia in 1956 a function was defined as a 
dependence of variables on other ones. He also men-
tions similar definitions of a function in authoritative 
undergraduate textbooks on calculus.

We explored a number of undergraduate textbooks 
on mathematics. Here are some results.

In the textbook of Stepanov (1953) on differential 
equations the definition of a function is absent. On 
the other hand, in the second edition of the textbook 
of Pontryagin (1965) the special appendix was add-
ed containing the modern definition of function as a 
mapping (pp. 292–293).

Note that the greatest mathematicians of the level of 
Luzin, Kolmogorov, Aleksandrov, Pontryagin, were 
apparently, first to realize the necessity of the intro-
duction of the modern definition of a mapping into 
the scientific and educational literature. Such defi-
nition of a mapping is used in books of Luzin (1948), 
Aleksandrov and Kolmogorov (1948), Kolmogorov and 
Fomin (1954). Note that all these descriptions charac-
terizing a function as a rule of correspondence were 
not strict definitions and left the concept of a function 
(mapping) undefined.

At the same time some great scientists still did not 
introduce the general concept of a function and its 
definition, limiting themselves to special cases. So did 
Mal’tsev (1956) and Gel’fand (1971) in their textbooks 

on linear algebra. Apparently, it was implicitly sup-
posed, that mastering special cases of the concept of 
a mapping is enough for mastering the appropriate 
themes of mathematics, and it is not necessary “to mul-
tiply entities”. Dorofeev (1978, p. 21) expressed similar 
educational ideas when he in a discussion article even 
protected a thesis about uselessness of the definition 
of a function: “Pupils have, basically, the correct sub-
stantial view of a function as a mathematical object, 
but experience significant difficulties when they en-
counter the definition of this object… This situation, 
namely the possession of a concept without knowl-
edge of its exact definition is not strange at all… it is 
typical in the majority of kinds of human activity…”.

Kolmogorov (1978, p. 29) in his reaction, however, 
indicated: “…Dorofeev … at school in general … allo-
cates to any version of the set-theoretical definition 
of function a modest place (basically only for optional 
lessons). I think, however, that for school textbooks 

… rules (composing the definition of the concepts of 
a function. – I.S)… should be given to pupils early 
enough and should be coordinated with some certain 
final definition”.

Beginning with 1960s, as many researchers observe, 
owing to “bourbakization” of mathematics, set-theo-
retical concepts and, in particular, the general concept 
of a mapping (function) entered into curricula of sec-
ondary and tertiary school.

Kolmogorov supervised the reform of school math-
ematics teaching at the end of 60s. However, in the 
textbook for upper secondary school edited by 
Kolmogorov (first editions appeared in 1960s) a con-
crete definition of function is used, and authors con-
sider only numerical functions: “A correspondence 
with a domain D where to each number х from the 
set D a unique number y corresponds by some law, is 
called a numerical function” (Kolmogorov et al., 1990, 
p. 20).

Thus, “Kolmogorov” reform did not aim at giving to 
teaching of mathematics abstract and formal char-
acter of what it was severely accused by opponents. 
The purposes were to eliminate archaic language and 
character of teaching, to correct the scientific level 
of mathematical education. The great attention was 
given to the didactical maintenance of the reform.
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The general definition of a mapping has been intro-
duced into the first textbooks corresponding to re-
formed curricula and published under the edition of 
Markushevich (1975) – the prominent mathematician 
and educator, the ally of Kolmogorov in the reforming 
of school mathematics. In 1960–70-s didacticians have 
developed also methods of teaching the concept of 
function at school (Kolyagin et al., 1977), and conclud-
ed that it is expedient to study the concept of function 
at school, consistently introducing concepts of sets, 
ordered pairs, direct products of sets, and correspond-
ences.

The “Kolmogorov” reform  met  strong resistance in 
the school environment. Many of innovations were 
not accepted. It seems that “Kolmogorov” reforms 
were doomed  to  failure  in  conditions  of  inflexi-
ble,  uniform   and authoritarian education system. 
Some prominent mathematicians such as Pontryagin 
in  1980, attacked  Kolmogorov  reforms.  They  used  as  
their  mouth-piece  the official magazine “Communist”.  
The article in  that  magazine  (as well   as   in  the  news-
paper  “Pravda”)  was  equivalent  to  the denunciation. 
As a result, the general concept of a mapping, as well 
as other general set-theoretic concepts, has been ex-
pelled from school curricula, and Euler’s definition 
of a function occupied a strong position in school 
mathematics.

In our opinion, this was a mistake, because the ab-
sence of the strict definition often complicates master-
ing the concept of a mapping by students in their fur-
ther study in universities (Kolmogorov, 1991; Carlson, 
1998; Bardini et al., 2014). We believe that, whilst not 
demanding from pupils the faultless possession of 
strict definitions, it is still necessary for them to attain 
an awareness of the modern definition of function.

Further development of methods of introduction and 
teaching of the concept of a function became possible 
in 1990-s when it was allowed to use alternative text-
books at school. 

So, in the set of textbooks of Mordkovich for grades 
7–11 the dialectic approach to the introduction of 
mathematical concepts is applied: “…the concept of a 
function … should not, in a deep belief of the author, be 
introduced strictly from the very beginning, it should 
grow” (Mordkovich, 1998, p. 6). Strict definition of a 
function is introduced only in grade 9. Nevertheless, 

A. Mordkovich also considers only numerical func-
tions, defining them in the language of variables.

We see a similar picture in the textbook of Bashmakov 
(1992, p. 11): “The variable y is a function of a variable 
х if such dependence between these variables is de-
fined that for each value х uniquely determines the 
value of y”.

Thus, the most widespread textbooks of mathemat-
ics for the senior grades contained definitions of 
functions which are similar to Euler’s definition, as 
mentioned by Klein. We note also that Klein’s advice 
was to introduce these definitions gradually, through 
examples. We see, that the majority of mathematical 
and educational community in Russia admitted that 
it is inexpedient to study the modern set-theoretical 
definitions of a mapping at school.

In undergraduate textbooks, since 60–70-s, the strict 
definition of a mapping basically has gained a strong 
position: one may mention textbooks of Skornyakov 
and Kostrikin on algebra, of Arnold on differential 
equations, of Zorich on calculus. In some textbooks for 
pedagogical institutes (for example, in the textbook of 
Kulikov on algebra) the strictness and formalism have 
got excessive character, complicating the learning 
of a subject. Nevertheless, in some undergraduate 
textbooks of the prominent scientists of the senior 
generation (for example, of Faddeev on algebra, of 
Gel’fand on linear algebra) authors still tried to avoid 
the introduction of the general definition of a map-
ping.

Thus, the final opinion about the introduction of mod-
ern strict definition of a mapping is not reached con-
cerning not only school, but also the undergraduate 
textbooks.
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The use of historical and cultural perspectives in uni-
versity mathematics education can support the develop-
ment of self-esteem and maturity. It can bring together 
students with similar interests. We present the concept 
of a seminar on the analysis of mathematical textbooks 
and of learning contexts based on the consideration of 
historical excerpts. Such a seminar can become a start-
ing point for a community of practice with the potential 
to develop social recognition and personal appreciation 
of the individual interests and talents of its members 
and their joint activities.
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INTRODUCTION

The organizers (among whom were the authors) invit-
ed gifted student teachers in mathematics at mathe-
matics departments nationwide to apply for a four-day 
spring workshop in beautiful surroundings in Bonn 
that was paid for by the university – including travel 
and entertainment expenses. Despite this exceptional 
opportunity, only a few students answered this call. 
A closer investigation of this fact informed the organ-
izers that most students, even the best mathematics 
student teachers, do not feel particularly gifted. In 
individual cases, there might be individual reasons 
for this, but in general, we interpret this phenomenon 
by the fact that these students were brought up in a 
school system in which they had to produce a required 
output in situations that are created and determined 
by others. The students learnt to interpret the evalua-
tion and assessment of the learning output as a degree 
of their own learning success – just as how they learn 
in social networks to take the number of ‘likes’ on their 
posted output as a degree of esteem.

Mathematics student teachers for the gymnasium 
usually study mathematics in courses together with 
mathematics bachelor students, who study only math-
ematics (and a minor) all day. In mathematical tests 
and evaluations, they often perform weaker. The stu-
dent teachers in Germany study next to mathematics 
a second subject and pedagogy, where they learn com-
pletely different perspectives and methods. Instead of 
feeling like a jack-of-all-trades they experience their 
inferior results in mathematics assessments as infe-
riority in terms of their ‘giftedness’. Other forms of 
assessment as well as feedback from fellow students 
and professors do exist, but it seems that they are not 
taken as much into account as written mathematics 
examinations, as far as the self-conception of the stu-
dent teachers is concerned.

Notably the von Humboldt Bildungsideal is built on 
two notions: the autonomous individual and the cos-
mopolitan or Universalist (Weltbürger) – that is, a uni-
versally interested person that cares about the impor-
tant questions of humankind. The university should 
be – both for students and professors – a place for 
autonomous individuals to become such a Weltbürger. 
Furthermore, how do we want the students to act later 
as teachers, when they educate their own students? 
What is their understanding of Bildung and education 
at school? Student teachers, who are about to become 
responsible experts for Bildung at school, not only 
need to get in contact with these ideas, but should also 
be given opportunities to work on their own Bildung 
and personal development. 

These considerations constitute in mathematics edu-
cation the need for appropriate learning opportuni-
ties. Working on Bildung has an impact on one’s whole 
personality and is therefore likely to last longer in 
professional practice. Here the history of mathemat-
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ics plays an important role in mathematics teachers’ 
education.

Several projects use historical themes for an auton-
omous study of student teachers or teachers. There 
are classical seminars, where students give talks on 
historical themes; there are websites to supply stu-
dents and teachers with historical sources that can 
be used for teaching at school1. In addition, there are 
book projects evolving from seminars with students 
on historical matters (e.g., Van Maanen, 1995). 

In this article, we reflect upon the set-up of a semi-
nar around historical excerpts from schoolbooks that 
allows a process of value creation in a community 
of practice. First, we explore this idea by conceptual 
considerations and secondly, we illustrate the concept 
using Euclid’s proof of the irrationality of √2 and the 
development of analysis.

ENLIGHTENMENT IN MATHEMATICS 
TEACHER EDUCATION

How can we transfer the existing learning opportu-
nities in the above-described direction of Bildung?

The normal procedure in academic studies for stu-
dent mathematics teachers is that they follow basic 
courses in pure and applied mathematics, courses 
and lectures in mathematics education, courses in 
educational studies (pedagogy, psychology) and study 
a second school subject on equal footing to mathemat-
ics. Only in some universities (e.g. Mainz) are there 
general courses on the historical and cultural roots of 
mathematics, reading courses and seminars for cho-
sen topics in the history of mathematics. Assessments 
in mathematics are mostly tests on problem solving 
and mathematical terminology. Assessment varies 
in the history of mathematics and in mathematics 
education – we find essays, coursework, oral exami-
nation, seminar papers, presentations and homework 
assignments. 

The feedback and assessment provided is thus much 
broader than in written mathematics exams. The 
problem is not that these alternative forms of assess-
ment wouldn’t exist. In mathematics, students hand 
in weekly exercises (often duos or trios) that are not 
only discussed qualitatively with the collaborating 
fellow students but also in weekly tutorials. Moreover, 
the students give talks in seminars. In mathematics 

education, in the history of mathematics, and in ped-
agogy courses as well as in most second school sub-
jects, students have to write homework essays and 
give presentations. All this seems not to essentially 
affect the student’s sense of self.

To sum up, with respect to Bildung, we encounter 
problems partly related to the common practices of 
assessment in mathematics courses:

 ― Student teachers appraise their own abilities 
according to their results in mathematical tests.

 ― The categories right and wrong characterize the 
attitude to mathematics.

 ― Prerequisites for teaching new content in mathe-
matics are thought of in the form of activity-free 
knowledge (the student knows...).

 ― The bureaucratic Bachelor-Master system insinu-
ates that education is about measurable outcomes, 
credits, evaluations, quality management, etc.

Do we want our future teachers to have this attitude 
towards their students? What are they going to teach 
them? Here, enlightenment ideals can still make a dif-
ference to the by now common views on education 
or training. 

Immanuel Kant gave “An Answer to the Question: 
What is Enlightenment?” (Königsberg in Prussia, 
September 30th, 1784):

Enlightenment is man’s emergence from his 
self-incurred immaturity. Immaturity is the in-
ability to use one’s own understanding without 
the guidance of another. […] If I have a book to 
have understanding in place of me, a spiritual 
adviser to have a conscience for me, a doctor to 
judge my diet for me, and so on, I need not make 
any efforts at all. I need not think, so long as I can 
pay; others will soon enough take the tiresome 
job over for me. The guardians who have kindly 
taken upon themselves the work of supervision 
will soon see to it that by far the largest part of 
mankind (including the entire fair sex) should 
consider the step forward to maturity not only 
as difficult but also as highly dangerous.  



Using historical school book excerpts for the education of mature mathematics teachers (Ysette Weiss-Pidstrygach and Rainer Kaenders)

1875

In this quote, one can sense what the age of enlight-
enment intended by education. Since present ways of 
teaching leave the student’s perception of self at the 
side of the educational system, the above-mentioned 
problems can be understood as a lack of enlighten-
ment in mathematics teacher education. 

What alternative ways and models are there to change 
the sense of self and the self-esteem of students in or-
der to become individuals that are more autonomous?

COMMUNITIES OF PRACTICE 
AND A GROWING MATURITY

In order to become autonomous, mature individu-
als the students need to experience a sense of self in 
which their own personal values for their develop-
ment arise, ones that are supported by a recognition 
of other like-minded people with similar developing 
interests – backed by universal values and rules. In 
that way, they can actualize themselves and determine 
their own actions.

Hence, we need a course that allows university teach-
ers and students to develop a community of practice, 
which fosters their development as far as orienta-
tion, maturity, autonomy, emancipation, responsi-
bility, self-actualization and self-determination are 
concerned. To this end, we withdraw our guidance 
in small steps and replace it by development through 
progress in the community. Such development of val-
ue systems has been described in the discourse on 
communities of practice. For instance in (Wenger, 
2002; chapter 8), we find several procedures for meas-
uring and managing the value creation of a communi-
ty or network. Such value creation methods are nowa-
days widely used in management. When we compare 
the five cycles of value creation, we discover some 
similarity between this procedure and the five ba-
sic questions for the preparation of lessons as Klafki 
(1963) formulated them. We use the value assessment 
framework as tool to structure the seminar and its 
development. A constant reframing and reconsider-
ation of how success, appreciation and development 
are defined characterize the framework.

A SEMINAR ON HISTORICAL EXCERPTS 
FROM SCHOOL BOOKS 

Historical excerpts from schoolbooks form the ba-
sis for an activity in the framework of the seminar. 

The goal is to undertake small-step lesson planning, 
starting from the “historical” excerpt. How can such 
an existing historical excerpt be augmented to curric-
ulum-relevant teaching that serves the Bildung of the 
students? In Germany, there are a handful of school-
book series that are used extensively in school (Rezat, 
2010; Otte, 1981). The historical insertions in these 
books are all of a similar kind. Since these historical 
references stem from books that teachers use in their 
daily teaching at schools, they constitute a link of this 
activity with the practice. Indeed, when the future 
teacher finds her or himself teaching with the help 
of such a schoolbook later, it might be an occasion to 
unfold the learned attitude again – together with stu-
dents and colleagues. In addition, it would be possible 
to get teachers from school involved in the project. 
Therefore, the seminar at the university already has 
the goal of letting the participants find like-minded 
people, who are also interested in history of mathe-
matics and the development of mathematical contents. 

Designing the seminar and also tackling the aforemen-
tioned problems in self-esteem and predominance of 
normative results, means starting with sufficiently 
open but concrete tasks and leaving a lot of time for 
group discussions: “A key element of designing for 
value is to encourage community members to be ex-
plicit about the value of the community throughout 
its lifetime. Initially, the purpose of such discussion is 
more to raise awareness than to collect data, since the 
impact of the community typically takes some time to 
be felt.” (Wenger et al., 2002, p. 60).

A motive of development and support for a commu-
nity of practice uniting student mathematics teach-
ers, mathematics teachers, mathematics educators, 
mathematics textbook authors, historians, educators, 
other social science people and workers in further 
education (teacher development) leads to various ac-
tivities. This motive defines activities and possible 
actions during the running seminar as well as long 
term planning as the: 

 ― organisation of student teaching to apply the 
developed material,

 ― establishment of connections to textbook authors, 

 ― development of an internet page with additional 
materials to the historical excerpts, 
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 ― linking of related existing internet sources with 
the materials of the seminar, 

 ― development of activities for teacher in-service 
training on the basis of the additional materials 
to the historical excerpts and some aspects of the 
use of history in mathematics classes.

For our project in Germany, the enormous influence 
of mathematics textbooks on teaching – especially 
at the beginning of the career – is essential. In other 
countries and periods, this might be different. For the 
development of a community of practice in the spirit 
we are aiming at, it is important that the joint activi-
ties  generate joint creations,  have a context that is rel-
evant to the participants, are related to their person-
al experiences and manageable by any member (the 
excerpts are small – about one page). An important 
step in transforming the seminar into a community 
of practice is the emergence and display of immediate 
values and potential values of the community. Having 
this in mind, monitoring, structuring and back up of 
the first group’s discussions are important.

The students work in groups on one excerpt. They 
choose the topic and the material from the books on 
different grounds, for example:

 ― individual historical or mathematical interests,

 ― relations to other school subjects,

 ― experiences from their practical lessons or teach-
ing in school,

 ― experiences in tutoring students,

 ― the wish to be in a team with a best friend. 

The activities and interactions between members 
of the seminar in the group discussions, the choice 
of the material and plans to unfold it are important 
for the immediate and potential value of the further 
community.

Intentions of the discussions are, for example for stu-
dents to get to know their biases and preferences, to 
start a general discussion about the use of textbooks 
and the particular design of the textbooks they will 
deal with, the realising of interrelations between 
topics studied in history of mathematics courses, the 

introduction of existing materials related to the ex-
cerpts and the repetition of basics in lesson planning 
and textbook use.

According to Wenger and colleagues (2002), one of the 
tasks of the seminar leader is to understand which 
potentials and knowledge capital of the community can 
be put into use. It may be helpful to give introducto-
ry presentations to support structure and to display 
possible joint activities. 

When dealing with a schoolbook there are essentially 
three perspectives that one can take: the high school 
student’s perspective, the teacher’s perspective, or 
the perspective of the schoolbook author. While be-
ing used to the first perspective, the students usually 
struggle with the two more mature ones. Here we see 
the major role of communities of practice. 

The textbook analysis starts from the perspective of 
a student, e.g. reading of the chosen excerpts, solving 
related problems, clarifying prerequisites and pre-
senting the results. The teacher’s perspective comes 
with learning objectives, reflection on the assumed 
knowledge, time management, and representation 
of the solutions of the problems. The perspective of 
an author appears in questions about the way history 
is used, the accuracy of the presentation of the his-
torical fact, the design of the historical excerpt and 
the learning objectives of the involvement of history.

The three perspectives are understood as levels 
of awareness (Mason, 1998). Cooperation of the 
students is organised by grouping around in-
terests in mathematics, history or interdiscipli-
nary questions related to concept development. 
For the analysis of the mathematical textbook stu-
dents can take a historical perspective, asking ques-
tions related to the story of a mathematical problem, 
the history of an idea, the story of a mathematical area, 
the biography of a mathematician, the story of an in-
stitution, the history of a concept.

Questions arising from a mathematical perspective 
are: 

 ― How do modern notations and representations 
differ from historical ones?

 ― Which problems led to the imposition of a term?
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 ― What is the mathematical statement of a histor-
ical mathematical text source?

The perspective involving reflection on historical, 
mathematical and cognitive development is the most 
complex and advanced. It includes theoretical frames 
for concept development with historical references; 
that is to say, a historiographic approach, a hermeneu-
tic approach, mathematical awareness, use of histo-
ry as a mathematical tool, ‘Whiggish’ approaches or 
cognitive genetic and historical genetic approaches.

Student work is organised in groups attached to an 
excerpt. There can be several groups working on one 
historical textbook excerpt. The joint product of the 

group activities consists of a joint essay and short 
lesson plan related to different perspectives, from a 
historical and from a mathematical point of view. Let 
us consider two examples.

Example from geometry – reproductions, 
excerpts from historical sources
Here, we consider a reproduction of a small part of a 
small historical source. We look (Figure 1) at the his-
torical proof of the irrationality √2 from Euclid, which 
one can find in most textbooks in a similar way: 

1) First students will study the proof from the per-
spective of a high school student. Corresponding 
mathematical questions from their perspective 

Figure 1: Historical excerpt from a German schoolbook (Neue Wege, 9. Schuljahr) 
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could concern the logic of the indirect proof, the 
logic of the arguments, and proof of the used ar-
guments, mathematical terms and notations.   

2) From a historical perspective, it is natural to 
search for the primary source and to compare it 
with the reproduction. In this case, it leads to an 
interesting search for a translation, containing 
the mentioned proof. At this point, the discus-
sion can be supported by translations with com-
mentaries introducing the students to historical 
questions that are related to translations and the 
choice of documents we are referring to when 
citing Euclid.

3) From the perspective of a teacher, the students 
would discuss whether the presentation helps 
to support mathematical understanding, what 
additional materials with enactive and iconic pre-
sentations can be used, and how to evaluate the 
understanding of the proof. Historical questions 
could deal with the use of original sources, with 
additional materials about Greek mathematics, 
and interdisciplinary learning environments 
relating to history, mathematics and philosophy.

4) Taking the perspective of a textbook author one 
could start with the question of whether history 

in this excerpt is used as a tool or as an object 
(Jankvist, 2009). Looking at the presentation and 
the use of modern notations can lead to questions 
related to Whiggish (Fried, 2001) presentations 
and their justifications. Another aspect is the 
use of geometrical concepts in Euclid’s books 
and their algebraization in modern school math-
ematics.

To support group discussions, the tutor could give 
introductions to Greek mathematics, an overview of 
Euclid’s Elements or an introduction to Geometric 
Algebra. Both translations and secondary literature 
on Euclid are easily accessible to the students. In this 
case, one would initially not provide reading material 
but rather help students to organise and structure 
the found sources.

An example from analysis
We now have an example of another kind. The textbook 
authors give a historical overview over a longer peri-
od. This excerpt at hand starts with general remarks 
about the roots of mathematics and analysis. The first 
mentioned mathematicians reach from Archimedes 
to Riemann. The excerpt ends with general remarks 
on the contemporary role of analysis and its central 
place in the study of mathematics. The subsequent 
questions are challenging for high school students 

Excursion
… After these preparations, in the 17th century, the Englishman Isaac Newton and the German Gottfried Wilhelm 
Leibniz independently laid the foundation for analysis with infinitesimal calculus.
Newton assumed variable magnitudes to be time-dependent and called them “fluents” (flowing ones). By the deriv-
ative with respect to time, he denoted their instantaneous velocities (“derivative”), which he called “fluxions” and 
marked them with a dot (e.g., ẋ).
Newton calculated the fluxions by limit considerations. Since such a practice did not fit to his own methodological 
ideals, at first he did not publish his results, but just mentioned them indirectly while arguing with time-independent 
geometrical magnitudes. 
In that way, it happened that the Germen Gottfried Wilhelm Leibniz developed about ten years later his own theory 
for the notion of derivative. Leibniz regarded a curve as an “infinity-gon”, such that a tangent would intersect the 
curve in an infinitely small line segment. Here he built, amongst other things, on the insights of Cavalieri. Leibniz in-
troduced the notion of “differentials”, which brought forth the notion of “differential calculus”. The quarrel between 
Newton and Leibniz, about which one of them would first have discovered the notion of derivative, has found its way 
as priority dispute into history of mathematics.
In the course of time, analysis was first further developed without really substantiated foundations. Only in the 19th 
century could one work with it in a way that fits today’s standards, for only since then have notions like function, lim-
it or integral been clarified precisely. To this end, the mathematicians Joseph Louis Lagrange (1736–1813), Augustin 
Louis Cauchy (1789–1857), Karl Weierstraß (1815–1879), Carl Friedrich Gauß (1777–1855) and Richard Dedekind 
(1831–1916) contributed in crucial ways.
The integral, in the form it is taught nowadays at grammar schools, goes back to the German mathematician Georg 
Friedrich Bernhard Riemann. Riemann determined the area that is bounded by the x-axes and the graph of a function 
by the help of easy to calculate areas of rectangles. The idea of the so-called “Riemann integral” was later further de-
veloped by the French mathematician Henri Léon Lebesgue (1875–1941). ...

Figure 2: Historical excerpt from a schoolbook (Lambacher Schweitzer, pp. 165–166)
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and for the student teachers in the seminar too. In the 
case of an overview, a restriction on a well-selected 
aspect is helpful. In the case of the development of 
calculus, Barrow-Green (2008) and Blåsjö (2015) give 
wonderful examples of how to illustrate development.

For the development of the perspective of a teacher 
or even a textbook author additional help by the tutor 
is necessary. 

The excerpt offers at several places the opportuni-
ty to go deeper into history. This single excerpt can 
supply the seminar with questions and aspects to be 
explored for many semesters. For our example we 
restrict ourselves to just one of them.

RESUMÉ 

We are aware that the development of a community 
of practice of mathematics teachers and mathematics 
educators interested in history is a long-term task.

At the present economising of university life and the 
strong dominance of normative value systems we 
consider this experiment nevertheless particularly 
important.
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ENDNOTE

1. For learning mathematics via historical sources see 
for instance: www.uni-due.de/didmath/ag_jahnke/
historische, www.fransvanschooten.nl, www.
cs.nmsu.edu/historical-projects/ or www.pagea-
boutme.mathsisgoodforyou.com/.

…  Prepare a presentation about the history of analysis. To this end, read up on more contributions of the mathemati-
cians that are introduced in the excursion. Take the following points into account:
Which mathematician is credited with the discovery of the exhaustion method? How did Galilei determine the veloc-
ity resp. the acceleration of a ball rolling down an inclined plane? What is understood by the theorem of Cavalieri? 
Explicate Newton and Leibniz’s approach to the notion of derivative, giving examples.

Figure 3: Exercise related to the historical excerpt in Figure 1 

http://www.uni-due.de/didmath/ag_jahnke/historische
http://www.uni-due.de/didmath/ag_jahnke/historische
http://www.fransvanschooten.nl
http://www.cs.nmsu.edu/historical-projects/
http://www.cs.nmsu.edu/historical-projects/
http://www.pageaboutme.mathsisgoodforyou.com/
http://www.pageaboutme.mathsisgoodforyou.com/


1880CERME9 (2015) – TWG12

TWG12

Posters



1881CERME9 (2015) – TWG12

“It is necessary to understand where we have  
come from so that we can further the journey”:  
History of mathematics in the 
formation of teacher identity

Maurice OReilly

St Patrick’s College Drumcondra, CASTeL, Dublin, Ireland, maurice.oreilly@dcu.ie 

The author draws on his work with pre-service math-
ematics, physics and chemistry teachers taking a 
capstone module including six hours of History of 
Mathematics (HoM). He reflects on this experience using 
two perspectives: Clark’s application of Ball’s mathe-
matical knowledge for teaching (MKT) in the context of 
prospective secondary mathematics teachers (PSMTs) 
use of history, and ongoing work on both teacher identity 
and ‘Mathematical Identity’.

Keywords: History of mathematics, prospective 

secondary mathematics teachers, mathematical identity.

SUMMARY DESCRIPTION

Initial teacher education is an activity that necessarily 
occupies a hybrid space, drawing on several episte-
mologies. The tension between pedagogy/didactics, 
on the one hand, and the ‘disciplines’, on the other, is 
ever-present. In the HPM community, we believe that 
HoM should play a central role in teaching mathe-
matics (e.g., Kjeldsen, 2012) and yet we struggle to 
find where and how to locate HoM in practice (e.g., 
Guillemette, 2012).

The context of this reflection involved 34 students in 
the second semester of their final (fourth) year of the 
BSc in Science Education at Dublin City University, 
meeting once a week for a 3-hour session background 
in over a period of twelve weeks in the spring semes-
ter of 2014. All students had significant background 
in mathematics, physics and chemistry (and major-
ing in two of these) and involving substantial school 
placement. The author accepted the invitation of the 
module coordinator to prepare and deliver two 3-hour 

sessions on HoM, and to design assessment associated 
with these sessions.

Students were required to choose a ‘fact’ from the 
MacTutor HoM Archive and respond to one of two 
questions online relating to their chosen fact, in fewer 
than 100 words. The first 3-hour presentation followed 
this exercise immediately, the intention being that stu-
dents would have some short, yet intense, engagement 
in HoM in advance of a substantial presentation. The 
second more extensive exercise required students 
to make a connection between one reading (from a 
choice of seven) and one (or two) web links (from a 
choice of twenty) to HoM topics ranging in time from 
Plimpton 322 to the fundamental theorem of algebra. 
The second 3-hour session comprised a presentation 
on these twenty topics and a group discussion, and 
immediately followed the second exercise.

Details of the range of student responses emphasising 
their mathematical thinking and their expectations of 
using HoM in their teaching are presented. This dis-
cussion relates to the aforementioned work of Clark 
(2012) which uses Ball’s MKT framework. 

It also draws on the author’s own work and that of his 
collaborators (Eaton, Horn, Liston, Oldham, & OReilly, 
2014) on Mathematical Identity to give a different per-
spective on the data arising from the second exercise 
just outlined. Mathematical Identity developed out 
of the works of several researchers such as Wenger 
(1998), Sfard and Prusak (2005) and Kaasila (2007). 
Initial consideration of these data, through the lens 
of Mathematical Identity, indicates a promising ap-
proach to encouraging PSMTs to take HoM seriously 
in their future careers.

mailto:maurice.oreilly@dcu.ie
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In keeping with the work of Eaton and colleagues, 
attention is drawn to the narrative elements of the 
data and in particular to the evolution of students’ 
perception of mathematics and their experience of 
learning/teaching it over time. It seems that the inclu-
sion of HoM can be a catalyst to enrich such narrative 
and consequently strengthen students’ Mathematical 
Identity.
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Primary sources in the elementary school
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The poster reports on the design and the implementation 
of a pilot teaching intervention – part of my ongoing 
research – with two historical texts. The sample was a 
small group of Greek students of the 6th grade. On the 
poster I present the texts, the design, and photos of stu-
dent’s activities.

Keywords: Primary historical sources, elementary 

education.

The historical texts belong to Liu Hui, a renowned 
Chinese mathematician of the 3rd century CE. The 
first one is his commentary (Lay-Yong & Tian-Se, 1986) 
on a problem of a circular field which is included in 
the ancient Mathematical Canon ‘The Nine Chapters 
on the Mathematical Art’. The area of the field is the 
unknown, but the data assumed π to be 3. The Canon 
offered four algorithms and the solution. Liu Hui 
proved the correctness of the first algorithm and 
gave a more precise value of π. The second text is the 
preface of Liu Hui’s commentary on the canon. In this 
text Liu Hui reveals his reasoning and pedagogical 
considerations (Siu, 1993).

OBJECTIVES – DESIGN AND IMPLEMENTATION

The objectives are for students to: 1. make a transi-
tion to the more theoretically oriented geometry of 
middle school; 2. appreciate mathematics as a human 
creation and of different cultures; 3. engage in me-
ta-level discussions about in issues and meta-issues 
of History (Jankvist & Kjeldsen, 2010). For addressing 
the objectives I designed a historical module (Jankvist, 
2009) with the use of MKT (Ball, Thames, & Phelps, 
2008) as the overall framework under which I tried 
to coordinate domain specific frameworks (i.e. proof 
in the elementary school’s settings).

The implementation of the module had three phas-
es: Introduction, Analysis and Synthesis (Jahnke, 
2000). In the introductory part, I provided historical 

information about the socio-historical context and 
the mathematics at the time of Liu Hui. The use 
of History was under the conceptual dipole ‘History 
as a goal’-‘History’ (Tzanakis & Thomaides, 2011) and 
partly the second objective was addressed. In the 
analysis part, and for the first objective (‘History as a 
tool’-‘History’), students were reading small excerpts 
of the first text, and were decoding the commentator’s 
guidelines. During the teaching students were en-
couraged to develop reasoning and communication 
skills (i.e. to explain and justify using deductive rea-
soning). In order to prove the geometrical face of the 
proof (the correctness of the first algorithm) students 
had tactile experiences and constructed geometric 
figures with conventional and digital tools. For the 
arithmetical face of Liu Hui’s proof (the reason that 
π is 3.14), which is not highlighted in the Greek text-
book, students made process pattern generalizations 
and filled in and interpreted tables and spreadsheets. 
In the third part I tried to address the last two objec-
tives. I gave information about the commentator’s 
philosophical context and with a more playful activity 
under the name ‘the cards of philosophy’, I engaged 
students in meta-issue discussions about the relation-
ship between Liu Hui’s work and philosophy (‘History 
as a goal’-‘History’). In this activity I incorporated the 
second text and students discussed about Liu Hui’s in-
ternal factors, by reflecting on the first text’s activities. 
Also, following Liu Hui’s concept of the discipline of 
mathematics as a ‘tree’, students created their own 

‘tree’ connecting mathematical topics that they had 
used while they were dealing with the proof. In the end 
students presented to peers a synthesis of their work.

The integration of primary sources in the elementary 
school’s mathematics may seem challenging for var-
ious reasons. Yet, if we want to stay true both to the 
commitments of mathematics education and of the 
History of mathematics (Fried, 2007) it is worthwhile 
to explore the possible ways to do so.
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INTRODUCTION

The aim of the Early Years Mathematics working 
group is to share scholarly research related to math-
ematics education concerning children aged 3–8. This 
age group spans preschool through the early grades 
of primary school, and takes into consideration that 
in different countries children begin primary school 
at different ages. During CERME9, there were approx-
imately 30 participants (authors and co-authors), with 
20 accepted papers and 7 accepted posters. Of the 20 
papers, one paper was a literature review paper on 
early childhood education (Alpaslan & Erden); the rest 
were empirical studies (12 related to preschool and 7 
to primary school). There were 6 posters reporting 
empirical studies conducted within the preschool en-
vironment and one poster which described a STEM 
project promoting popular science which involved 
both mathematicians and scientists (Sorokina)1. 

The structure of the timeslots was designed in order to 
stimulate interaction and collaboration among partic-
ipants and was as follows. Related papers were paired 
and after a short presentation of the first presenting 
author, a prepared question was posed by the second 
presenting author which initiated a general discus-
sion. The roles of the presenting authors were then 
exchanged. Each pair of papers was allotted nearly 
40 minutes. Posters were also allocated a few minutes 
of presentation time within the working group. One 
timeslot was devoted to small group discussions about 
general issues that had been raised during the papers 
and posters presentation. This report draws on the 

1  These short references hint at the authors of papers/posters 

in the TWG.

outcomes of these small group discussions and of an 
extra meeting of co-leaders with a few participants 
who had volunteered to help in the preparation of the 
report. On the last day of the conference, our room 
was visited by more than twenty colleagues from oth-
er working groups, where a lively discussion ensued. 

In addition to the presentations, we had the privi-
lege of visiting a local preschool. Very early in the 
morning, a group of participants visited the Materska 
Skola, Opletalova 14, Praha 1, directed by J. Moravcova, 
accompanied by Michaela Kaslova, one of the partici-
pants of the TWG. This visit was really interesting as 
it explained, better than a report, the organization of 
preschools in the Czech Republic.

IS EARLY YEARS MATHEMATICS 
“MATHEMATICS”?

The above question was raised and discussed in the 
first session of the TWG and continued to be in the 
background of many discussions throughout the 
conference. Our shared answer was positive. Early 
years mathematics is mathematics when it fosters 
the development of mathematical processes. We can 
study the construction of mathematical meaning at 
each age. Some of the participants preferred to use 
the terms pre-mathematics or prepa-maths (see Fuchs 
et al., 2015; Kaslova, 2010) in order to emphasize that 
during the early years, the concern is for the process-
es which enable construction of mathematical mean-
ings as opposed to the rote learning of terminology, 
techniques and calculation. It is important to raise 
public awareness about early years mathematics 
(e.g., through informal mathematics or new STEM 
projects). The papers and posters presented during 
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TWG13 sessions offer a wide variety of examples of 
mathematical meanings to be constructed during 
those early years. 

Preschool mathematics
The construction of mathematical meanings in pre-
school was presented by several authors in a variety of 
cases: the give-N task (Rinvold & Erstad); comparison 
of whole numbers (Tubach); conceptual subitizing 
(Rodrigues, Cordeiro, & Serra); the meaning of dou-
ble (Björklund); mathematical discourse (Lavi); the 
coordination of the audible, the visible and the tan-
gible (Pimm & Sinclair); unsolvable problems (Tirosh, 
Tsamir, Levenson, Tabach, & Barka); measurement 
(Erfjord, Carlsen, & Hundeland; Skoumpourdi), sha-
pes (Erfjord, et al.; Pettersen, Volden, & Ødegaard), 
and symmetry (Demetriou).

While discussing the various mathematical activities 
described in the studies, it became aparent that diffe-
rent countries have different curricula with specific 
mathematical goals for preschool. The group expres-
sed the need to know more about the organization of 
preschool in each country. Two cases were explicitly 
discussed – Italy and Sweden – observing that in both 
cases the preschool curriculum had been developed 
(in Italy in 1991, in Sweden in 2010) following Bishop’s 
(1991) analysis of the universal activities for mathe-
matical enculturation:  counting, locating,  measuring,  
designing,  playing, explaining (Svensson). In addition, 
it was noted that programmes for preschool teach-
er education and development must be encouraged, 
where clear mathematical goals and ideas for learning 
trajectories for children are pinpointed. A specific ex-
ample of a test for diagnostic purposes was analysed 
(Kaslova). The group discussed the risk that this kind 
of testing may introduce (e.g., teaching to test).

Primary school mathematics
Several authors offered examples concerning math-
ematics in early primary school:

Grade 1: inclusive definition of squares and rectangles 
(Bartolini Bussi & Baccaglini-Frank); conceptualizing 
parallel and perpendicular lines (Vighi).

Grade 2:  multiplication tables (Maffia & Mariotti); 
magic squares (Maj-Tatsis & Tatsis).

Grade 3: patterns (Ferrara); fractions on the number 
line (Robotti, Antonini, & Baccaglini-Frank); em-

ploying the bar model for solving arithmetic word 
prblems (Koleza).

In most of the above examples, argumentation was 
also emphasized.

The teacher’s role in promoting mathematics was 
the explicit focus of some contributions (Delacour; 
Erfjord et al.) but was also discussed in other ca-
ses. The group agreed that it is important to reach 
a balance between structured activities controlled 
by the teacher and fostering conditions which will 
encourage children´s agency. The issue of agency in 
preschool was the explicit focus of one contribution 
(Erfjord et al.).

CONTEXTS

Part of the time during small group work was used 
to discuss the issue of different contexts. Without en-
tering into a review of the related literature, there 
is a risk of misunderstanding the notion of context. 
However, defining what is meant by context that was 
not the aim of this working group. Instead several 
papers and posters related to context either when de-
scribing a specific task, a specific piece of mathematics 
knowledge or a specific intention of the teacher/rese-
archer. More generally, there are also institutional 
contexts (see, for instance, the short reference above 
on curricula in different countries) and the sociocul-
tural contexts (Jaworski et al., 2015).

We collected meaningful examples of different con-
texts (in all of the above meanings) concerning

 ― outdoor activities in northern countries in the 
very cold winter (Delacour in Sweden and Erfjord 
et al. in Norway), which was quite astonishing for 
researchers from southern countries but are, on 
the contrary, a part of the shared values of their 
culture;

 ― families as places for mathematical play (immi-
grant families in Germany, Solmaz);

 ― informal (out of school) activities (Math cir-
cles, STEM camps, talks with a mathematician, 
Sorokina).

When the focus was on school mathematics, we had 
many examples of using manipulatives, either con-



Introduction to the papers of TWG13: Early years mathematics (Maria G. Bartolini Bussi, Esther Levenson, Ingvald Erfjord, Eugenia Koleza and Bożena Maj-Tatsis)

1888

crete manipulatives (cardboad collection, Demetriou; 
straws, Vighi; three dimensional models and folding 
solids, Pettersen et al.; blocks, Solmaz; virtual ma-
nipulatives (programmable robots, Bartolini Bussi 
& Baccaglini-Frank; softwares and apps, Pimm & 
Sinclair). Comparing concrete and virtual manipula-
tives was also investigated and discussed (Demetriou).

THEORETICAL FRAMEWORKS AND 
RESEARCH QUESTIONS

Several different theoretical frameworks were men-
tioned:

 ― variation theory after Marton (Björklund);

 ― levels of artefacts after Wartofsky (Svensson);

 ― semiotic mediation after Bartolini Bussi & 
Mariotti (Bartolini Bussi & Baccaglini-Frank; 
Maffia & Mariotti); 

 ― discoursive approach after Sfard (Lavi; Vighi);

 ― semiotic bundle after Arzarello and colleagues  
(Ferrara);

 ― theory of didactic situation, didactical contract 
after Brousseau (Delacour);

 ― theory of knowledge objectification after Radford 
(Rinvold & Erstad);

 ― Interactional niche after Krummheuer (Solmaz);

 ― grounded theory (Arnell);

 ― sociocultural theories after Rogoff (Erfjord et al.).

In most cases, it seemed that theoretical frameworks 
are chosen with reference to either authors or groups 
of authors from the same country; this choice could 

be misunderstood as patriotism, it is not necessary 
the case. For instance, the semiotic mediation theory 
is useful in countries where the focus is on long term 
studies, which in turn depend on the institutional 
role of a teacher working for more than one year 
with the same group of pupils (Italy: Bartolini Bussi 
& Baccaglini-Frank, Ferrara). Hence, we have another 
interesting example of the influence of cultural con-
texts research on early years mathematics. 

The relationship between context and theoretical fra-
mework  is a big challenge for the diffusion of findings 
and the possibility of exploiting findings from diffe-
rent cultural contexts (Bartolini & Martignone, 2013). 
The presence of different theoretical frameworks 
shows that it is timely to discuss networking theories, 
according to the vision developed by Bikner-Ahsbahs 
and Prediger (2014, p. 170).

This issue might be focused in CERME10.

According to different theoretical frameworks, the 
authors of papers/posters  have developed different 
kinds of empirical studies:

 ― intervention studies (short term and long term 
studies; attention to the teacher’s role or focused 
on learners; examples of STEM in informal ed-
ucation) 

 ― observation studies (observing learners; observ-
ing teachers; observing classroom processes) 

 ― studies on teacher education .

It is difficult in some cases to make this clear distin-
ctions, as in developmental projects the main idea of 
the activities is a result of a process of the engagement 
between researchers and teachers.

Figure 1: Networking strategies
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CONCLUDING REMARKS

The discussion sketched above left a problem open. 
During the last meeting with visitors from other 
TWGs we realized that there was some overlapping 
between the TWG13 and other groups, for instance 
the TWG02 on Arithmetic and number systems, where 
a major focus was on primary school arithmetic. One 
possibility to avoid overlapping is to interpret Early 
year mathematics as focused solely on preschool. This 
choice might be problematic because of the different 
institutional interpretation of preschool and primary 
school in different institutional context (a relevant 
example was offered by Vennberg, with the “transi-
tion” year between pre-school and primary school 
in Sweden). One of the arguments for continuing the 
TWG13 on Early year mathematics with focus on both 
is the importance to study also continuity between the 
two kinds of schools. Participants of TWG13 added 
that the exchange between researchers of both levels 
contributed to the general understanding of issues 
related to teaching and learning mathematics during 
these critical years.
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A few months after the conference, we received the 
very sad news of the death of  Zişan Gûner Alpaslan 
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a paper she proved her talent in mathematics educa-
tion and we learnt to know her as a very nice colleague. 
She will be sadly missed.
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Using pivot signs to reach an inclusive 
definition of rectangles and squares

Maria G. Bartolini Bussi and Anna Baccaglini-Frank

Università di Modena e Reggio Emilia, Dipartimento di Educazione e Scienze Umane, Modena, Italia, bartolini@unimore.it 

We present some fragments of a teaching experiment 
realized in a first grade classroom, to sow the seeds for 
a mathematical definition of rectangles that includes 
squares. Within the paradigm of semiotic mediation, we 
studied the emergence of pivot signs, which were exploit-
ed by the teacher to pave the way towards an inclusive 
definition of rectangles and squares. This was done to 
favor overcoming children’s spontaneous distinction 
of these figures into distinct categories, reinforced by 
everyday language. The experiment is an example of an 
approach towards the theoretical dimension of mathe-
matics in early childhood.

Keywords: Bee-bot, first grade, pivot signs, rectangles, 

squares.

INTRODUCTION

Rectangles and squares represent a paradigmatic ex-
ample of the conflict between the perceptual experi-
ence and the theoretical needs of a mathematical defi-
nition (on this persisting conflict also see Hershkowitz, 
1990; Clements, 2004; Fujita, 2012; Koleza & Giannisi, 
2013), where squares are to be considered as particu-
lar rectangles (we will refer to a definition of rectan-
gles that includes squares as being inclusive). Mariotti 
and Fischbein (1997) claim that “from the figural point 
of view squares and non-square rectangles look so 
different that they impose the need of being distin-
guished at least as much as triangles and quadrilat-
erals” (Mariotti & Fischbein, 1997, p. 224). Actually 
the difficulty of naming and classifying geometrical 
figures (and, in particular, squares and rectangles), 
according to inclusive criteria, seems to depend on 
different reasons:

 ― the implicit constraints of everyday language: 
for instance, both in Italian and in English (as 
well as in other European languages) the names 

“quadrato” [square] and “rettangolo” [rectangle] 
hint at a complete separation of the figures into 
two different classes (square and not-square rect-
angles);

 ― some widespread improper practices in school 
which reinforce the separation between squares 
and rectangles (for instance, activities with at-
tribute blocks, where squares and non-square 
rectangles are classified in different sets).

Hence, teaching needs to orient learning towards 
an inclusive definition. The question is: at what age? 
We claim that, although this choice may create a dis-
continuity between everyday language and school 
language, it is possible from early childhood to sow 
the seeds of an inclusive definition, focusing on 
the experience of walking along or drawing a rect-
angular path, where the change of direction in the 
four angle vertexes has the potential to attract the 
students’ attention. In the following, we report on 
some fragments of a long term teaching experiment, 
carried out within the theoretical framework of se-
miotic mediation (Bartolini Bussi & Mariotti, 2008). 
Additional details are discussed by Bartolini Bussi 
and Baccaglini-Frank (2015).

THEORETICAL FRAMEWORK

In order to design and to analyze the teacher’s role in 
the classroom teaching process, we adopted the the-
oretical framework of semiotic mediation (Bartolini 
Bussi & Mariotti, 2008; Bartolini Bussi, 2013). The 
design process is represented by the reciprocal re-
lationships between the tasks, the artifact, and the 
mathematical knowledge at stake. In this relationship 
the semiotic potential of the artifact is made explicit. 
The artifact is the bee-bot, a small programmable ro-
bot represented in Figure 1 (also see the next section). 
When children are assigned a task they engage in a 
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rich and complex semiotic activity, producing traces 
(gestures, drawings, oral descriptions and so on), that 
we refer to as “situated texts”. The teacher’s job is to 
collect all these traces (by observing and listening 
to the children), to analyze them and to organize a 
path for their development into “mathematical texts” 
that can be put in relationship with the fragments of 
mathematics knowledge that are to come into play. 

The process of semiotic mediation also concerns the 
functioning of semiotic mediation within the class-
room. The teacher acts as a cultural mediator, in order 
to exploit, for all students, the semiotic potential of 
the artifact (the bee-bot in our case). In this last pro-
cess, Bartolini Bussi and Mariotti (2008) identify three 
main categories of signs: artifact signs, pivot signs, 
and mathematical signs. Artifact signs “refer to the 
context of the use of the artifact, very often referring 
to one of its parts and/or to the action accomplished 
with it. […]”; mathematics signs “refer to the mathemat-
ics context” and pivot signs, which “refer to specific 
instrumented actions, but also to natural language, 
and to the mathematical domain” (ibid, p. 757).  Pivot 
signs can be particularly useful for fostering a transi-
tion from situated “texts” to mathematical texts. Pivot 
signs develop and are enriched by their relationships 
with other pivot signs, hence building a network of piv-
ot signs. Mathematical signs are not intended to sud-
denly substitute artifact signs; in fact the latter may 
survive for some time, especially for lower achievers 
or in cases in which the formal mathematical defini-
tion and the reasoning of the corresponding concepts 
require long term processes to be achieved. 

Within this framework, our study addressed the fol-
lowing research questions:

(1): How might a long-term process of semiotic mediation 
that exploits the semiotic potential of the bee-bot with 
respect to the development of an inclusive definition of 
rectangles look for first graders?

 (2): In particular, which kind of pivot signs (if any) can 
be identified and exploited during such long-term pro-
cess?

THE CHOSEN ARTIFACT: THE BEE-BOT

The bee-bot (Figure 1) is a small programmable robot, 
especially designed for young students. Its ancestor is 
the classical LOGO turtle, originally a robotic creature 

that could be programmed through an external com-
puter to move around on the floor (LOGO Foundation, 
2000). It is not necessary to have any additional com-
puter to program the bee-bot; this can be done sim-
ply pressing a sequence of command buttons on its 
back. When the programme is executed, the bee-bot 
moves on the floor: the execution of each command 
is followed by a blink of the eyes and by a short beep-
sound. The bee-bot hints at many sets of meanings 
and mathematical processes, partly related to math-
ematics and partly related to computer science, for 
instance: counting (the commands); measuring (the 
length of the path, the distance); exploring space, con-
structing frames of reference, coordinating spatial 
perspectives, programming, planning and debugging. 
In a long term teaching experiment, all these sets of 
meanings are at stake, sometimes in the foreground 
and sometimes in the background. Focusing on any 
set of them depends on the adult’s teaching intention. 
The bee-bot walks on the floor and traces paths that 
can be perceived, observed, described with words, ges-
tures, drawings, sequences of command-icons and so 
on. Paths (either traced or imaginary, when no trace 
mark is actually left) constitute a large experiential 
base to “study” some plane figures, that can be traced 
using the available commands. These are polygons 
with sides measured by a whole number of steps and 
with right angles only. With the additional constraint 
of being convex, the bee-bot can be programmed only 
to turn “left” or “right” (with respect to itself ), and 
therefore the convex polygons it can trace are always 
rectangles (including squares). Moreover, in experi-
ences where “pretending to be the bee-bot” is essential, 
children embrace the robot’s perspective: they move 
with the bee-bot and they see through its eyes. In par-
ticular, when walking along a closed convex path and 
ending up where they started, the children turn 360o 
in four equal “chunks” during which their orientation 
is perceived as essential (they find it important to end 
up facing the same direction as when they started). 

Figure 1: Bee-bot’s back
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THE TEACHING EXPERIMENT

Above we have discussed some features that define 
bee-bot’s high semiotic potential with respect to the 
emergence of an inclusive definition of rectangles, 
characterized by the property of four right angles. 
Our teaching experiment was designed to capitalize 
on bee-bot’s potential of fostering awareness of the 

“four right angles” property of generic rectangles (in-
cluding squares).

Several sessions (15) were carried out in a first grade 
classroom at the beginning of the school year, for 
4 months (more or less once a week) either in the 
classroom or in the gym, with a careful alternation 
of whole class or small group activity (with adult’s 
guidance) and some individual activity. Each session 
was carefully observed by the teacher, by a student 
teacher or by a researcher (the second author of this 
paper), with the collection of students’ protocols, pho-
tos, and videos. The tasks were designed by the whole 
research team, drawing on the initial intention and 
on some changes implemented “on the fly” based on 
episodes that occurred during the experiment. Due 
to space constraints it is not possible to report on all 
the details, so we have focused on particular sessions 
where the production of signs was very rich and fun-
damental for preparing the final summary texts and 
poster for the students (see Figure 6 in this paper, and 
Bartolini Bussi & Baccaglini-Frank, 2015).

Observing programmed bee-bots
In this session, students were given two bee-bots that 
had ahead of time been programmed with the same 
sequence. The task was: Describe what they do. The 
students watched the twin bee-bots move together, 
starting facing in the same or in different directions, 
and then moving separately. Then the memory of one 
of the bee-bots was erased (CLEAR command-icon) 
and the students were asked to reprogram it so that it 
would move just like the other bee-bot. The students’ 
productions concerned both global and local aspects. 
Global aspects refer to the perception of a path as a 
whole (as if bee-bot had drawn it on the floor), whilst 
local aspects refer to special points of the path. An 
example of the former is the expression “it did an L”; 
an example of the latter is “they switched the turn”. 
Both aspects also appeared in gesturing: the path is 
represented by a single pointer finger tracing a path 
in the air (tracing gesture), whilst turning is repre-
sented by moving the right hand (for a right turn) or 

left hand (for a left turn) up and to the right or left in 
a rotation (turning gesture). The turning gesture was 
mirrored by the student-teacher, as a pivot sign with 
respect to the notion “angle” in a path.

Pretending to be a bee-bot
During this session the students were asked to work 
in pairs: one pretended to be the bee-bot and the other 
gave the first commands to move according to some 
undisclosed (to the first student) path. The intention 
was to guide the children to focus their attention 
on the turn command. Typical words used were be 

“Straight Ahead” “Left” “Right” “Backwards” usually 
without quantifying the number of steps, and fre-
quently combining a translation with a change of di-
rection (rotation). For example, when a student said 

“left” the bee-bot student frequently would not only 
turn left, but s/he would also take a step in that direc-
tion, or even just take a step to his/her left without 
even turning in that direction. The student-teacher’s 
intervention here was fundamental in focusing the 
children’s attention on “turn” commands, which led 
to their beginning to explicitly consider rotations as 
important elements per se, without having to associ-
ate them to steps.

Constructing paths 
Several activities were designed around tracing dif-
ferent kind of paths on the floor. When the aim was 
to produce particular letters of the alphabet, the stu-
dents’ attention was focused mostly on the “possible” 
and “impossible” letters: they empirically discovered 
that some capital letters (e.g., L, T. I) could be traced 
out, whilst others could not (e.g., B, A, D, O). In fact, 
neither acute angles (“sharp points”) nor circular arcs 
(“fat curves”) could be traced by the bee-bot. Children 
produced many examples of combinations of words, 
gestures and drawings, aiming at distinguishing the 
shapes (letters) which could or could not be drawn. 
There was a particularly rich production of words 
such as “angles”, “(fat) curves”, “diagonals”, “(sharp) 
tips/points”, “broken lines” and of related gestures 
and drawings. Suddenly, within this experience, an 
important event took place; this will be the seed of an 
inclusive definition of rectangles.

The main pivot sign: the “squarized” O
In a small group the following exchange occurred:

Student-teacher: …Did you do an O? 
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Student: No. Then it could do like this this this 
and this [he gestures four consecutive 
right angles] a squarized O. Ah, then it 
can make a square!

We have translated a non-existing Italian word 
(quadratizzato) into a non-existing English word 
(squarized). Other students started talking about 

“squarized Os” and other possible “squarized letters”, 
intending letters that include one or more squarized 
Os within them (e.g., P, B). These squarized 0s were 
acknowledged by the teacher and the research team 
as pivot signs, hinting at both the perceived path pro-
duced by the bee-bot (artifact sign) and at a square (a 
figure, interpreted as a mathematical sign). The im-
portance of the four consecutive right angles suggest-
ed to orient children’s attention towards this feature, 
that seemed to put in shade the length of each piece 
of the traced path (the sides) and to put in the fore-
ground the four changes of direction, common to all 
squarized Os. 

Focusing on the four right angles
In the students’ complex experience, each right angle 
appeared with seemingly different meanings, that 
also affected the signs used. These, initially, were 
mainly dynamic and related either to the student 
pretending to be a bee-bot or to the bee-bot:

a) Dynamic change of direction of the student 
pretending to be a bee-bot;

b) Dynamic change of direction of the bee-bot un-
der the effect of the turn command.

In both these cases, however, the angle was the exter-
nal angle, i.e. the region swept by the gaze of either 
the student or the bee-bot while changing direction. 
When the researcher proposed to draw the paths in 
a “faster way: using a mark like the one the bee-bot 

would make if a marker were used”, she chose to mir-
ror a sign produced by a student “a turn like this” close 
to the turning point of the path (see Figure 2).

The sign had the potential to become a pivot sign with 
respect to the notion of “angle” (external angle): it re-
calls the command-icon on bee-bot’s back, but it is 
somewhat decontextualized, since there appears to 
be no explicit mention to the bee-bot
In addition to these dynamic signs, as the teaching 
experiment went on, the children developed other 
signs, which lacked such dynamic components:

c) Hands-meeting gesture referring to the point in 
the path traced by the bee-bot;

d) Gestures to interpret a static figure (referring 
to a dynamic experience);

e) Verbal utterance of the list of commands (ut-
tered during or after the programming of the 
bee-bot);

f) List of commands written horizontally.

First we describe the hands-meeting gesture (type c). 
While exploring figures that represented rectangles, 
including squares, a powerful gesture was realized 
by one of the groups of children and rapidly imitated 
by others: the two hands coming together at a right 
angle (Figure 3). The gesture emerged as the students 
tried to explain the property that all squarized O’s (be 
they “allungati” [stretched] or “perfetti” [perfect]) had 
in common: all the four angles (internal angles) are 
equal and right. Moreover the gesture stresses the 
vertex as an important feature of the angle. Signs of 
type d were identified, for example, in the argument 
presented below (Figure 4), on how the angles of a 
square or rectangle have to be (as opposed to angles 
such as the ones of the parallelogram that was includ-
ed in one of the worksheets).  

Figure 2: Sign for the right angle

Figure 3: The students’ gesture
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Veronica: “[in a square or rectangle] the angles go 
down straight…[in the parallelogram] 
they are a bit down to the right and a 
bit down to the left. It has to go straight, 
not like this and down, it shouldn’t be 
a bit down like this one [she moves her 
pencil in the air along a slanted line 
with respect to a horizontal bottom 
line]. Instead it has to go straight like 
this and like this…it has to be straight 
like the line but a bit lying down [she 
marks the lower horizontal line].”

Signs of type e appeared when the students’ attention 
was drawn to the “length of the path”. Sometimes the 
turn command was in shade, as it did not lengthen 
the path perceived while the bee-bot spun around. 
However the number of commands for paths with an-
gles, was not the same as the number of steps forward. 
So sometimes the turn command was still skipped 
(children 1, 2, 3, below). While in some of the children’s 
utterances it was acknowledged (child 4, below) as a 
command like the others (it is represented by a similar 
button and it is executed with by a beep and a blink 
of bee-bot’s eyes).

Child 1: Three steps then three then three then 
three we make a square, because it is the 
same ends, the same length.

Child 2: Instead, the other one has 1, 2-1, 2, 3-1, 
2-1, 2, 3, it has two the same and two the 
same.

Child 3: The other was three, two, three, two. Not 
all equal.

In contrast 

Child 4: Two forward, turn right, two forward, 
turn right, two forward, turn right, two 

forward, turn right. The segments have 
to all be equal.

Type f emerged in activities in which children had 
learned to represent traced paths as written sequenc-
es of commands, typically in a horizontal line, from 
left to right. Within these sequences they searched 
for regularities allowing them to distinguish differ-
ent types of “squarized Os”. Figure 5 shows signs left 
on the interactive white board after a discussion on 

“stretched squarized Os” (non-square rectangles) with 
respect to “perfect squarized Os” (squares). We note 
here how some students’ language (in this and oth-
er occasions) seemed to be evolving into condensed 
pre-algebraic forms, such as a+b+a+b, that could even-
tually become expressions like 2a+2b for the rectangle 
and 4a for the square (a particular case in which a=b). 
In this teaching experiment, however, we did not pick 
up on these expressions, leaving them only as little 
germs to be nurtured by the teacher in future years 
(perhaps even during the second grade).

Focus on the shapes as wholes
Shapes as wholes were focused on from the very 
beginning of the teaching experiment, with either 
verbal descriptions alone or also with hand gestures. 
After the introduction of the idea of squarized Os, the 
adults involved in the experiment started mirroring 
students’ utterances involving the words “rectangles” 

Figure 4: Veronica’s gestures

Figure 5: Agreed-upon signs for the programmed sequences and 

the paths
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and “squares”. As expected, when the attention was not 
brought to the word squarized O students spontaneous-
ly tended to partition the two situations, implying that 

“rectangles” had pairs of sides with different lengths 
(“equal in front of each other”) while “squares” had 
sides that were “all equal”. For some children this prop-
erty seemed to persist when talking about “stretched 
squarized Os” with respect to “perfect squarized Os”, 
while other children seemed to only differentiate “per-
fect squarized Os” from all other squarized Os, since 
they were special, being “all equal”.

The shared meanings
We chose to build on what seemed to be the idea of 
this second group of students to reach a summary 
of the shared meanings. The most important step in 
this direction was a poster of “our” discoveries, a first 
step towards the development of “mathematical texts”.

In this poster (Figure 6) several signs produced in the 
classroom are reconsidered, constructing a text where 
artifact signs (e.g. the figure of the bee-bot, the recollec-
tion of “giving it” a sequence of commands, the turns), 
pivot signs (e.g. the squarized Os, the small arrow to 
represent the external angles, and mathematical signs 
(e.g. squares; numbers; rectangles) are included.

Is this text a mathematical text? Not yet: it is still a 
hybrid text, where the richness of the exploration re-
mains present. What is important in this phase is that 
all of the students could identify this poster as having 
been produced by the whole class as a community. The 
choice of which signs to include was discussed by the 
research team, trying to collect signs that hinted at the 
individual and collective processes. The poster was 
discussed in the classroom; the students seemed very 
happy to find their ideas made public and to receive 
a reduced-size copy to glue on their notebooks. Some 
months later, a follow up questionnaire confirmed 
that (at least some) students had appropriated, and 
transferred it to a mathematical context, an inclusive 
definition of rectangles (other students were still on 
their way along this process). As mentioned before, 
the process is not to be considered finished. The teach-
er has planned to go on with the same group of stu-
dents and deepen the inclusive definition for which 
she planted the seeds during this teaching experiment 
in the first grade.

DISCUSSION

The teaching experiment fruitfully exploited the se-
miotic potential of the bee-bot, joining different ways 

of representing the paths traced by the small 
robot, as sequences of commands, as wholes, 
as either physical or mental drawings, in 
both dynamic and static ways. During this 
long term process the students approached 
several pieces of mathematics knowledge, 
including counting (the commands), mea-
suring (the length of the path, the distance), 
exploring space, constructing and chang-
ing frames of reference, coordinating spa-
tial perspectives, programming, planning 
and debugging. The approach towards an 
inclusive definition of rectangles is only one 
aspect of this long and complex process.

A final comment on language. We do not 
claim that the inclusive (and decontextu-
alized) definition of rectangles is already 
accepted by all the students (in fact we saw 
that this was not the case). Rather we find it 
important that students started becoming 
aware of the fact that theoretical mathemat-
ical needs may be different from everyday 
life needs. Moreover, we do not believe that 
the inclusive definition should be used also Figure 6: Poster of “our” discoveries
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in everyday life. Rather it seems that, with this ex-
periment, we have put the students in the situation 
of potentially seeing squares and rectangles within a 
same “family”. What happened, indeed, was that the 
idea of “square” seemed to be overarching, in spite 
of the mathematical choices. The students seem to 
speak of the squarized O as the ancestor of rectangles 
(including squares) but, from the perceptual point of 
view they need to distinguish “perfect squares” from 

“stretched squares”. This reminds us of the Chinese 
way of naming squares and rectangles: the sequences 
of ideograms for the words “square” and rectangle” 
contain two out of three of the same ideograms. Those 
that indicate “sides” and “shape” are the same, while 
the first indicates “exact” (for the square) and “long” 
(for the rectangle). This is represented in Figure 7.

So, linguistically, a square is seen as a “shape with 
exact sides” and a rectangle as a “(same) shape with 
long sides”. In this case language makes explicit that 
squares and rectangles are two kinds of a same thing, 
deeply related to each other and not partitioned into 
categories. The Chinese choice of the square as the 
most important shape may be related to the Chinese 
ancient culture, where it represents the Earth and 
the circle represents the Sky. This Iconic cosmology 
is shared by other ancient cultures.
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This is a study of three teachers working with the notion 
‘double’ with 4- and 5-yearolds. The purpose is to analyse 
what aspects that are critical for children to develop 
conceptual understanding of the notion. Data for anal-
ysis consists of video documentations from the teachers’ 
authentic work that is driven by the theoretical frame-
work of Variation theory of learning. The results show 
that children perceive the notion as an operation, either 
absolute ‘add one’ or relative ‘add equally many’, but 
there are also children expressing awareness of the part-
whole relationship. These quali tatively different ways 
of perceiving the same notion give valuable in sights of 
emerging mathematical abilities and the analysis of 
the teaching acts reveal powerful strategies for learning 
the notion, in terms of simultaneous discernment of 
critical aspects.

Keywords: Mathematics, double, preschool, variation 

theory of learning.

BACKGROUND 

This study is part of a developmental project conduct-
ed in Swedish preschool (National Research Council, 
grant nr 724-2011-751). The general aim of the pro-
ject was to enhance preschool teachers’ awareness 
of mathematics as a content and goal in early years 
education, and to find pedagogical strategies that are 
in line with both the traditional way of working with 
children in Swedish preschool, which is heavily appre-
ciating play as children’s natural way of learning and 
being, and with contem porary research and theories 
on children’s mathematical development.

This study is a contribution to the field of knowledge 
concerning early mathematical learning and teach-
ing. The notion chosen for inquiry is ‘double’, which 
is regarded complex in its own simplicity, as double 
means not only an operation on a quantity, but also 

a description of the relationship between quantities 
and is relative in its nature.

CHILDREN DEVELOPING CONCEPTS

Mathematics in the early years is often considered 
close to the child’s experienced life, not least because 
of the common notions used on a daily basis to de-
scribe numerical and spatial relationships in the 
surrounding world. 

Piaget, Inhelder and Szeminska (1981) studied young 
children’s conception of parts and fractions, which 
showed that notions such as half and double are fairly 
difficult to operate with. The notion double seemed 
to be very hard to grasp. This was confirmed by 
Holmqvist Olander and Nyberg (2014) whose study 
of 6–7-yearolds revealed that children usually failed 
to separate the concept from the base amount. One 
interpretation was that the operation ‘to double’ de-
mands reasoning on quantities that are not present.

Numerical abilities and understanding are according 
to Piaget (1952) built on earlier acquired competencies, 
where the most basic competence is to abstract the 
perceived properties of objects (such as color, shape or 
size) and perceive objects as parts of a set that can be 
compared to other sets of same or different number of 
items. Piaget (1952) claimed that children develop con-
cepts from the concrete towards the abst ract. In order 
to learn to calculate and manipulate quantities, the 
child is thereby often supported by concrete referents 
(Mix, Huttenlocher, & Levine, 2002). Simulta neously, 
these concrete referents have to be considered as neu-
tral counters, meaning that features of the objects 
do not interfere with the numerical relationship. 
Vygotsky (1987; 1998), on the other hand, described 
concept development as beginning with abstraction 
that is enriched and further developed as the child en-
counters and makes meaning of the concept in more 
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complex settings. This latter way of seeing concept 
development broadens the view of children’s meaning 
making as they use notions according to their current 
understanding, which in itself is an abstraction based 
on the child’s logical reasoning.

Concepts such as ‘double’ are consequently trouble-
some to deal with for young children and for teachers 
to organize learning for. Considering these conjec-
tures outlined above, there is a need for a study that 
describes children’s perception of this kind of concept. 
A theoretically driven analysis will then contribute to 
our under standing of how children learn and develop 
their concept knowledge and how to facilitate deeper 
concept development.

THEORETICAL FRAMEWORK

The theoretical framework chosen for this study was 
the Variation theory of learning. This pedagogical 
theory (Marton & Booth, 1997; Marton, 2014) is based 
on empi rical research of learning activities within 
multiple knowledge areas and school forms. The 
theory contributes to our understanding of learn-
ing, in that it focuses on the object of learning, what 
is made possible to learn and how this is orchestrated 
in powerful ways. Variation theory unfolds aspects of 
a learning object that the learner needs to discern in 
order to understand a phenomenon in certain ways. 
In teaching acts, these aspects are put into play within 
carefully developed patterns that enables the learner 
to explore the learning object in ways he or she has not 
previously been able to. Such patterns are contrast, 
generalisation and fusion (Marton, 2014). 

According to the Variation theory, the learner cannot 
explore for example the number three if there are 
no numerical contrasts present, such as groups of 
two or four items. Generalization further means to 
implement an idea to other phenomena, meaning for 
example that there may be three of different kind, but 
still remaining its numerical meaning. In order for 
learning to occur, aspects of a learning object have to 
be differentiated through contrast and then brought 
together as a coherent whole, in other words fused 
together. Variation and simultaneous discernment 
are thereby necessary conditions to organise for in 
any teaching act.

This theoretical framework has been successful in 
both theoretical analyses and empirical studies in 

different kind of knowledge areas. Most research has 
been conducted in classroom settings, but there are 
also studies from early childhood education, where 
traditional lesson plans are exchanged with play and 
routine care situations (Björklund, 2013, 2014; Reis, 
2011). Variation theory of learning was considered a 
relevant approach to studying young children’s con-
cept development when the interest is a specific new 
notion, such as ‘double’, due to the analytical frame-
work and the pedagogical focus.

AIM, DESIGN AND METHODS 

In focus for inquiry was the notion ‘double’ and those 
dimensions and aspects that are critical for preschool 
children to discern the nature and complexity of. A 
design study driven by the theoretical conjectures 
outlined above was carried out where the learning 
object was explored in authentic preschool activi ties. 

Three preschool teachers participated in the empirical 
study. They planned and conducted one pedagogical 
activity each for the 4- and 5-yearolds they were work-
ing with (4 children participating with each teacher, a 
total of 12 participating children). The activities were 
designed in accordance with the theore tical frame-
work, in other words enabling aspects of the notion 

‘double’ to be explored through patterns of varia tion 
(Marton, 2014). In all learning sessions, the children 
were encouraged to talk and explore the notion by 
themselves and together with peers under the gui-
dance of their teacher, in order to facilitate so called 
meta-cognitive dialogues (Pramling Samuelsson & 
Asplund Carlsson, 2008). 

The acts and interaction between teacher and children 
are documented with video. The video documenta-
tions constitute data for analysis and interpretation, 
consisting of the three activities (12, 17 and 23 minutes 
of video data) conducted by the three teachers in dif-
ferent child groups. The various expressions of the 
children, both in verbal and non-verbal manners, are 
analysed as expressions of their understanding. The 
data is further analysed for revealing which aspects 
that are enabled to discern in the teaching acts, hence 
considered critical to elaborate in order to develop 
the children’s understanding. The study is thereby 
two-folded: first to find out how children experience 
and understand the notion and second to discuss im-
plications for the teaching act.
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RESULTS

The purpose of this inquiry is to discern critical as-
pects of the notion ‘double’ as they are expressed by 
preschool children in designed but authentic learn-
ing situations in preschool. Further, the analysis will 
reveal teaching strategies that appear to be powerful 
for concept development.

Two dimensions, operational and part-whole relation-
ship, are found to be emphasi zed in the learning act. 
This is unfolded by the directed attention that the de-
signed activities and the interactions enable. Within 
these dimensions, aspects of the learning object are 
brought fore, giving a broader picture of how the 
children perceive the notion and why difficulties may 
appear. This will be discussed in the following text.

Operational dimension
The notion ‘double’ may be interpreted as an action 
or operation. The study gives evidence of children 
perceiving the notion as an operation, either absolute 

‘double means you add one’ or relative ‘equally many’. 
When analyzing the effects these conceptions may 
have on children using and communicating this no-
tion, we can see where some challenges may appear. 

Excerpt 1: You add one
Maria (teacher): From the beginning we had one 

(pointing to a stick on a sheet of paper). 
We were about to double that one, then 
you went to get one more (pushes two 
paper sheet with one stick on each to-
wards one another). And together they 
make two. Pretty easy, don’t you think?

Niklas: If there is three, it will turn to four 
(showing three fingers on one hand, 
then four fingers).

The children are listening to the teacher’s explanation 
of how to ‘double’ a quanti ty. They perceive that it has 
to do with an operation on a quantity. However, as 
shown in Excerpt 1 above, there seems to lack some 
aspects of the notion, as the child expres ses this op-
eration in terms of ‘adding one’, and offering a logical 
solution to what happens when you double the quan-
tity of three, which according to this line of reaso ning 
would end up four. One critical aspect seem to be the 
number of the added unit, which should be perceived 
as a whole unit, equally large as the original one.

Excerpt 2: You add equally many
Isabella (teacher): Now it is Elias’ turn. You will 

get three camels, Elias (puts three cam-
els in front of Elias). And then you can 
pick out any ones you want from this 
pile (pushes the pile closer to Elias), ‘til 
you have twice as many [in Swedish, the 
same word is used for ‘twice’ and ‘dou-
ble’].

Elias picks out a blue figure, then a green one, he hes-
itates and looks up on the teacher.

Isabella: How many did you have from the begin-
ning? Do you know, when you only had 
the camels, do you know how many you 
had then?

Elias: Three.
Isabella: And if you are about to double that, then 

it means that you need to add equally 
many.

Elias: I have only taken two! (Elias leans for-
ward and grabs one more figure, leans 
back again and smiles)

Isabella: You had only taken two. Now…
Elias: I have equally many.
Isabella: Do you have equally many there? Good, 

then it turned out twice as many.
Elias: They are six together.

Elias seems to be occupied by the thought of adding 
items to solve the task, in other words, he perceives 
the notion as an operation on quantities. He thus be-
comes unsure of how many to add and gets support 
from the teacher who directs attention to the original 
quantity. Further it becomes necessary to recognize 
the aspect of equally many that is to be added, which 
we can see that Elias has acquired. He also perceives 
the original and added sets as one whole, as he sums 
them up, regardless of their original belonging or 
visual features.

Some children comprehend the idea of ‘equally many’ 
and are even able to reason about this aspect on a gen-
eralized level, thereby accounting for the relativity in 
the meaning of the notion. The number of objects that 
are to be added are depending on the original quan-
tity. This aspect, the relativity of the phenomenon, is 
with high probability a necessary aspect to discern 
in order to develop conceptual meaning in line with 
the conventional way of defining ’double’.
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Excerpt 3: Relative sets
Isabella (teacher): Let me ask Brenda, what did 

you have in the beginning, how many 
did you have?

Brenda: I had four in the beginning, those (point-
ing along the row of camels).

Isabella: How did you know how many to take to 
get the double?

Brenda: I knew because I looked at them (point-
ing at the camels), that I’d take four.

Isabella: Yes, you had four and thought you’d take 
another four. Exactly. And how about 
you Elias, which ones did you have or 
how many did you have from the begin-
ning? Can you remember?

Elias: Three.
Isabella: Three. And how many more did you 

take?
Elias: Three.
Isabella: And Tindra, how many did you have 

from the beginning?
Tindra: Two.
Isabella: And how many more did you take then?
Tindra:  Those two (pointing at the outermost 

two figures).
Isabella:  That means that when you have three 

items, like Elias has, you add equally 
many and then it is double. And Tindra 
had two and took equally many and Elias 
had three and took equally many.

The teacher in excerpt 3 is summarizing the tasks 
and solutions that the children have just complet-
ed. Attention is directed towards the added set and 
the teacher tries to generalize the relative aspect of 
the notion by pointing out examples of ‘double’. This 
does however not seem to be sufficient, as one child 
responds by pointing at specific items as an answer 
to the question ‘how many’, indicating that the child 
reasons about what they just did, not on the operation 
and its impact on the quantity.

Dimension of part-whole relationship
When encountering the notion ‘double’, there is one 
aspect that beco mes very impor tant to account for: 
What set is the question aiming at? This is apparent 
when child ren and teacher are giving different sug-
gestions for how to solve the doubling prob lems. In 
other words, are teachers and children focusing on 
the original quantity (that is to be doubled) or the re-
sult of the operation? This addresses the part-whole 

rela tion ship, which is essential in all phenomena of 
numerical character. 

Excerpt 4: Two or one and one?
Maria (teacher): Now there are equally many 

[one] on each paper. How many are there 
together?

Nora:  Two (showing two fingers on one hand).
Amanda:  One.
Maria:  How many are there together? (pushes 

the paper sheets next to one another)
All children: Two.
Maria:  Two.
Amanda:  And if they are not together it is one, one 

(showing both index fingers).

This excerpt shows that children may focus on either 
the new whole constructed by the two parts togeth-
er or on the set that is added to the original quantity 
(see also excerpt 5). The teacher in excerpt 4 and 5 
tries to visualize the idea of ’double’ as an addition, 
constructing a new whole. Amanda’s focus seem 
though to remain on the parts that were added, not 
necessarily on the sum of the parts. This visual way 
of combining units by pushing paper sheets closer 
together seems to facilitate the children’s attention to 
the result of an act, but at least one child’s responses 
in the excerpts reveal that the perception of separated 
parts is dominating. It is thereby important to rec-
ognize possible different perspectives, as they may 
have impact on how the children continue to follow 
a line of reasoning.  

Excerpt 5: Subsets by features
Maria (teacher) empties the paper sheets and pulls 
them apart. She puts a boat and a pig on one sheet, then 
adds a stick and another stick on the same paper sheet. 

Niklas:  Now it is two. Now they are three. Now 
they are four.

Maria:  How many items do we have on the pa-
per?

Niklas: Four. 

Agnes and Nora point at each item and count out loud.

Maria:  And if we are doubling four, how many 
items do we have to put on that paper 
then? (pointing at the empty paper 
sheet)

Nora:  Four!
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Amanda:  Two and two.

This dialogue is interesting in several ways. The an-
swer to the teacher’s question may be 4 or 8; she asks 
how many they should add to get double, but she does 
not point out if the intention is to double the original 
quantity or to compose a unit consisting of equally 
many as the original one. Anyway, the children seem 
to direct their attention to the ‘equally many’ aspect 
and answer, according to that, ‘four more’. One child, 
on the other hand, expresses her understanding of the 
task as a part-whole relationship, though focusing on 
the features of the objects, rather than the numerical 
relation, since she groups two sticks into one whole 
unit and the other two objects as another whole unit 

‘two and two’. The features of the objects that are used 
interferes with the numerical reasoning (see Piaget, 
1952; Mix, et al. 2002) and emphasize grouping of 
items according to their physical appearances. This 
draws attention from the numerical relationship and 
limits the child’s opportunities to get involved in the 
line of reasoning about the meaning of the notion.

The challenge of the notion ‘double’ is probably the 
shift from perceiving a set of items as a whole unit, 
to being a subset of a new whole that is doubled in 
number. It is probably easier to explore notions such 
as ‘half ’ that includes manipulation of a whole visible 
quantity, dividing it into subsets. Double indicates on 
the other hand manipulation towards an unknown 
quantity that is difficult to imagine without concrete 
manipulatives. This result confirms the statements 
of preschoolers’ percep tion of the notion as shown 
by Holmqvist Olander and Nyberg (2014).

Fusion of operational and part–whole 
relationship dimensions
The use of ’double’ as a description of a quantity is 
in fact quite complex. It includes a relativity, which 
means that the quantity has to be related to another 
quantity and it is this relationship that the notion de-
scribes, not any one particular quantity. One can see 
the complexity that lies within this in the children’s 
attempt to describe in words what double means, such 
as ‘that you want a lot’, ‘very, very much’ or suggesting 
to use a measuring tape to know how much double is. 
However, these are expressions of some insights to the 
notion that it is not an absolute number of added items 
and it would consequently be powerful to introduce 
and pay attention to the idea of ‘equally many’.

The following excerpt is an example where both di-
mensions are present and used deliberately in the 
teaching act to bring out those aspects that are neces-
sary for the children to discern simultaneously.

Excert 6: Making play-dough
The teacher Julia has prepared two identical recipes 
but instead of measuring units such as decilitre or 
table spoons she offers blocks. The task is to double 
the recipe. They have started by putting blocks for 
each amount of measuring unit on the original recipe.

Julia: How many were there on the flour? They 
[the blocks] can remain there.

Hugo:  Two.
Julia:  Now you should put twice as many here 

(pointing at the recipe sheet).

Hugo puts two blocks on the recipe.

Julia: How many are there (pointing at the 
original recipe with two blocks)

Hugo: Two.
Julia:  And how many there (pointing at the 

recipe Hugo put two new blocks on).
Hugo:  Two.
Joseinfe:  Are they equally many?
Hugo:  Yes.
Julia:  Are there twice as many then?
Hugo:  No.
Julia:  They are equally many. How many do 

you think we should put here to get 
twice as many?

Emelie:  Three there and two there. 

The teacher follows Emelie’s suggestion, which gives 
two blocks on the original recipe and three on the dou-
bling-recipe.

Linus: No, I think you should put like this (puts 
one block above each of Hugo’ blocks, 
then starts to do the same on the original 
recipe)

Julia:  But you cannot put any here (pointing 
at the original recipe).

Linus:  (throws away the block he had put on 
the original recipe) This is how I think.

Julia and the children continue comparing the origi-
nal with the recipe with added blocks, altering taking 
away and adding blocks on the double-recipe to see 
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the relationship between equally many and twice as 
many. They work in similar way with groups of one 
and two units through the whole recipe.

The excerpt above shows a way of teaching where 
bringing in contrast is used to support children’s di-
rected attention towards aspects that the teacher has 
considered necessary to explore. The starting point 
is the children’s suggestions, which are exp lored 
and then challenged by other children’s suggestions. 
Critical in this teaching act seems to be the simulta-
neous visualization of the original quantity and the 
doub le, combining the idea of adding ‘equally many’ 
with the comparison of quantities. The simultaneous 
discernment of equal and double is a powerful strate-
gy that seems to enable the children to make sense of 
the troublesome notion, troubles that are likely due to 
the ambiguous nature of the notion in that it includes 
both a dimension of operation (adding) and a dimen-
sion of part-whole (comparing sets).

SUMMARY

The notion ‘double’ is complex in its own simplicity. 
‘Double’ includes not only an operation on a quan-
tity, but also a description of the relation between 
quantities. The notion is also in this sense relative in 
meaning, as the number of objects are not fixed rather 
depending on the observed number of objects in a par-
ticular set. These aspects are critical to discern, but 
as this study has shown, they challenge the children’s 
per ception and understanding of said aspects. In the 
teaching act, the teachers become aware of the nature 
of the notion, in that it includes both a description of 
a quanti tative relationship between sets and an oper-
ation on a set. This insight is valuable, since it gives 
a reasonable explanation for children’s actions and 
interpretations of the notion explored in an activity.

Important for the development of conceptual under-
standing is presumably a simul taneous discernment 
of the operational dimension of the notion ’double’, 
which can be seen when children are talking about 
effects of doubling a quantity, and the relativity of the 
part-whole relationship of the notion, meaning that 
the number of added units of a set is related to the orig-
inal set, not an absolute number. The teachers tend to 
use the expression ‘equally many more’ to emphasize 
this, indicating (perhaps intuitively) that there has to 
be a differentiated set to depart from.

Pedagogical implications of the findings point atten-
tion to the question: Are the children focusing ‘double’ 
as a comparison of two quantities or an additive oper-
ation that changes a quantity. Or, is it how the teacher 
offers these dimensions to be discerned that becomes 
critical? This is put to the test by one of the teachers 
who design an activity where the children are enabled 
to compare ‘equally many’ with ‘original whole unit’ 
and ‘doubled whole unit’. The children participating 
in this activity seem to be given better opportunities 
to follow the line of reasoning and explore the nature 
of the notion in powerful ways. This is conjectured by 
the theoretical framework (Marton, 2014), but more 
empirical research will be needed to confirm this.

It is worth noticing that children who are expressing 
their solutions in verbal terms show variations in 
abstraction. Even though they solve a problem ending 
up with the right number of objects, some children 
are very attached to the concrete objects, expressed in 
terms of ‘these two were added’ aiming at two specific 
objects that were picked out to double the original 
quantity, even though the numerical abstraction of 
the notion would suggest that the specific objects or 
features of the objects are irrelevant for the quan-
tity that is described (Mix, et al., 2002; Piaget, 1952). 
Other children creates their own line of logical rea-
soning and implement ideas that may also be consid-
ered abstracted, such as ‘you add one’. In Vygotsky’s 
terms, children are developing their already existing 
concepts and implement their logical reasoning in 
new settings which will develop their concepts even 
further and towards feature-independent reasoning 
(Vygotsky, 1987; 1998).

Results from this study help us to better understand 
the very basic conceptual know ledge and abilities 
necessary for developing understanding of the no-
tion double. The study also indicates that pedagogical 
strategies start from which dimensions and aspects 
that the learning object contains and further which 
of these the children are enabled to discern.
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The purpose of this article is to study and analyse how 
two teachers implement an outdoor situation for chil-
dren aged 4–5 in a Swedish preschool. The analysis and 
interpretation of the data in this paper has been influ-
enced by situation theory and by the use of the didactic 
contract as a key concept. The term didactic contract is 
seen as a metaphor; consequently, I use a broader defini-
tion of the didactic contract to illustrate how the role of 
the teacher affects the communication of mathematics 
with children. Most of the text in this paper is adapted 
from my thesis (Delacour, 2013) and articles (Delacour, 
2014a, b).

Keywords: Kindergarten, teacher, didactic contract, 

mathematics.

INTRODUCTION

During recent years, preschool mathematics has been 
on the national agenda. In 2011, a revised preschool 
curriculum was introduced in Sweden (National 
Agency for Education, 2011), in which the goals for 
children’s mathematical development were made 
clearer both in scope and in content. How children are 
to create, explore, and use mathematics is not speci-
fied in the curriculum, however, as it is a goal-oriented 
document and is not concerned with teaching meth-
ods that can lead to different ways of communicating 
mathematics (Delacour, 2013).

In this study, two preschool teachers implement a sit-
uation in which the children investigate properties 
and what belongs together. I describe the situation, 
and compare the roles of the preschool teachers to 
analyse how they affect the communication of mathe-
matics with the children. The following research ques-
tion has been formulated: how do preschool teachers’ 
implicit expectations affect children’s motivation to 
participate in mathematical activities?

THEORETICAL FRAMEWORK

First, I take up the didactic perspective of the study, 
highlighting the theory of didactic situations. The key 
concept here is the didactic contract.

Theory of didactic situations
According to Brousseau (2000), it is common to see 
teaching as a transfer of a special knowledge to chil-
dren, and to see the didactic relation as a communica-
tion of information. Teachers try to plan their lessons 
so that the children get as much out of them as possible. 
Brousseau states that in order to succeed, it is neces-
sary to consider the factors that may contribute to the 
teaching of mathematics. Brousseau (1998) developed 
the theory of didactical situations (TDS) to highlight 
the didactic relation between the teacher, the chil-
dren, and the mathematical content. This relation is 
termed the didactic triangle. The theory of didactical 
situations offers a model of knowledge, teaching situa-
tions, and the roles of the teachers and children in the 
classroom. Knowledge cannot be transmitted merely 
through explanation but, according to Brousseau, the 
teacher orchestrates learning and teaching in order 
to increase the child’s knowledge. Knowledge needs 
to be learned through different contexts, and teachers 
can organize specific situations that lead to children’s 
learning of a particular piece of knowledge (Perrin-
Glorian, 2008). Teachers often try to find activities to 
introduce a new item of mathematical knowledge to 
children. When a teacher focuses on the “why” aspect 
of teaching, he/she will see a problem or a situation, 
not as a simple reformulation of knowledge, but as 
an environment that offers answers to the children, 
according to certain rules. What information do chil-
dren need from the “milieu” to make choices, and to 
use one specific piece of knowledge rather than an-
other? (Brousseau, 2000). 
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The didactic contract
Brousseau (1988) introduced the concept of the di-
dactic contract as part of his work in the theory of 
didactical situations, and defined it as the teacher’s 
behaviour (as expected by the child) and the child’s be-
haviour (as expected by the teacher). Brousseau stud-
ied how the didactic contract affects mathematical 
learning. Teachers usually develop different practices 
to give children the exact assistance they need, while 
children try to meet their teachers’ requirements by 
interpreting the teachers’ signals. However, teachers 
should not provide detailed instructions on how to 
solve mathematical problems, because this practice 
results in children not learning what the teacher 
expect them to learn (Delacour, 2014b). Brousseaus 
famous example shows how teachers can arrange a 
situation to help children gain a greater understand-
ing of numbers. The teacher takes up five tanks (more 
or less depending on the child’s number perception) 
and ask the children to pick up as many brushes as 
there are containers. The child should collect all the 
brushes at one time. The teacher does not tell children 
what to do but it is the children who must find a strat-
egy to solve the problem. Some children will use their 
fingers, others draw on paper, others use blocks. How 
the teacher is planning the “milieu” is important. How 
far brushes are from the containers, for instance, will 
affect how the children act. Eventually, the children 
will understand that counting is a useful strategy.

During a situation, the preschool teacher repeats, 
clarifies, or asks questions that allow the didactic con-
tract to progress in a direction that the teacher has 
in mind. Sometimes it is the children engaged in the 
contract who influence the change, when they make 
a discovery or get an understanding of something 
and share it with the group (Garcion-Vautour, 2002). 
My interpretation of the preschoolers’ expectations 
is that these are connected to the procedures related 
to the situation (Delacour, 2014a). The didactic con-
tract is often invisible until one breaks it. A child may 
break the contract when he or she accepts learning or 
playing the game, as Chevallard (1998) called it, but 
does not fulfill the teacher’s expectations. Learning 
is only obtained under the breach of the didactic con-
tract according to Brousseau (1998). When children 
sit around a table and play memory game for the first 
time for instance, they turn upside down on the pic-
tures without really understanding what will happen. 
They turn on the pictures they can access from their 
seats. Children believe that the teacher expects them 

to remain in their seats as they usually do when they 
eat, for instance. When a child breaks the didactic 
contract, getting up from his chair to reach the pic-
tures that are further away and manage to get a couple, 
an individual learning occurs which then becomes 
collective. 

DATA PRODUCTION AND ANALYSIS METHOD

This article is based on data collected for my thesis 
(Delacour, 2013) between the spring of 2011 and the 
autumn of 2012. The preschool teachers in this study 
were videotaped while they implemented a mathemat-
ical situation outdoors. They have been previously 
interviewed about their interpretation of the curric-
ulum which have influenced my analyses of the video.   

The teachers in this study work in two different pre-
schools in a group consisting of four-year-old and 
five-year-old children. The preschool teachers were 
videotaped while they implemented a mathematical 
situation outdoors. In this article, two of these math-
ematical situations (filmed material) were analysed 
in terms of a didactic contract. The selection of the 
first video is based on the richness of the material, 
and the selection of the second is due to its variation 
from the first.

The preschools included in this study are located in 
two small communities of the same municipality. The 
schools show no major differences in staff composi-
tion, group size, or children’s socio-cultural and eco-
nomic background.

To analyse and interpret the data, I made a reflexive 
interpretation of the preschool teachers’ implemen-
tation of a situation, and used an abductive analyti-
cal method, which meant that the reflection moved 
between data and theoretical analysis (Alvesson & 
Sköldberg, 2010). In the preschool teachers’ implemen-
tation of the situation, my focus was on highlighting 
the relation between the teachers, the children, and 
the mathematical content. The analysis shows that 
the teachers had similar expectations about how the 
children should communicate, but obtained different 
reactions from the children.

ANALYSIS

In this part, I describe how two preschool teachers in-
troduce a mathematical situation for the children, and 
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highlight how the communication between teacher, 
children, and learning object progressed. I describe 
in which situation the groups was engaged in before 
the situation I analyses in this paper because I believe 
it affect the outcome. As the objectives in the Swedish 
curriculum are formulated as goals that the preschool 
should strive towards and there are no specific goals 
for the children to achieve I will focus mostly on the 
participation of the children rather than on the knowl-
edge they acquired.

The mathematics situation
The preschool teacher Lotta collects four children 
in the schoolyard. She tells the children that she has 
found a lot of garbage in the forest, and asks them what 
they think about this. The children propose to remove 
the garbage from the forest, and then want to sort the 
garbage items in different piles according to their 
characteristics. Now the children are sitting around 
a white cloth that Lotta has laid on the ground. Lotta’s 
situation is based on a play in which children present 
four items individually. The video shows how Lotta 
makes a window out of sticks, and puts four items in 
it. She uses the garbage that the children have already 
sorted. She asks the children to point out one item that 
is not associated with the other three. Lotta introduc-
es a new concept: having something in common. She 
lets the children tell each other which one of the four 
items they think does not have something in common 
with the other items. The children argue with each 
other about the items they have chosen, and about 
how they are thinking. Lotta follows the discussion 
and asks an occasional question. Once the children 
understand the rules of the game, they take turns to 
choose four items.

The preschool teacher Malin asks eight children to 
sit on two logs in the forest facing each other. Malin 
has laid a white cloth on the ground. The children had 
previously been working with patterns. During the 
work with patterns, Malin had sent the children to 
collect a leaf and a pinecone each. Then she asked each 
child to tell what he or she had collected, and to lay one 
leaf, one pinecone, one leaf, one pinecone, and so on, 
on the white cloth. For the next situation that I will 
analyse for this paper, Malin has collected materials 
from nature in a box. She picks up one item at a time, 
and asks the children to tell what it is, what color it 
is, which tree it comes from, etc. Then she asks the 
children to come, one at a time, and choose two things 
and tell why they think the two things belong together. 

The rules of the didactic contract
There is a strong tradition of morning meetings in 
Swedish preschool, when the children and teacher 
sit in a circle and do different activities (Rubinstein 
Reich, 1993). The children have been instructed in 
the preschool’s rules, and know what is expected of 
them in a meeting. When Lotta and Malin laid a white 
cloth on the ground, the children expected that what 
was about to happen would be different from the 
meetings that take place in the morning and indoors. 
The children knew that free play was over, and that 
a teaching situation was beginning. The white cloth 
also provided an indication to the children about what 
was expected, and where they were expected to turn 
their attention. These rules were implied, as the chil-
dren have been through similar situations in the past 
and can now recognize the teacher’s actions, body 
language, and voice.

When Lotta introduces the situation, she does not 
need to tell them that they are allowed to talk, move, 
and exchange thoughts and ideas. There is an implicit 
understanding here of what mathematics is, as the 
teacher has previously communicated in this way to 
the children in this group. Mathematics in this pre-
school is something you do in groups, in which people 
help each other to solve various problems in a playful 
way related to the theme currently being worked on. 
This group has been working with environmental is-
sues throughout the semester. When the preschool 
teacher asks questions, makes small comments, and 
calls for the children’s attention on what is being said, 
the children are seen, and their actions are approved. 
They are encouraged to take the initiative and to listen 
to each other. The didactic contract is characterized 
partly by explicit rules but primarily by implicit rules. 
How the situation will proceed and what the children 
should do is not pronounced verbally. Lotta does not 
tell the children to come up with proposals of their 
own, or which garbage pieces they have to choose. In 
Lotta’s group, once the children are involved in the sit-
uation, they introduce mathematical concepts, while 
noting properties of the items such as flat and thick, 
and different sizes, shapes, and materials. There may 
be concepts that some but not all of the children know. 
The children can then learn from each other. Lotta 
encourages the children to be active and investigative. 
She would rather offer realistic problem situations 
in which many solutions are possible according to 
Lotta. She encourages them to find their own way, to 
explore rather than to find an answer. The children’s 



How the role of the preschool teacher affects the communication of mathematics (Laurence Delacour)

1908

responses and behaviour are valued and praised 
with words like “good” and “talented.” Both individ-
ual children and the entire group receive praise and 
encouragement.

David (5 years) puts three metal cans and a plastic 
bag in the window that Lotta (teacher) has made from 
sticks.

Olle (5 years): “This one, this one, this one.” 
(pointing to the plastic bag)

Klara (5 years): “These two should be removed,” 
(showing a can and a plastic bag) “for 
they are like that.” (showing two jars, 
turned upside down)

Olle:  “This one, this one, this one, this one.” 
(plastic bag)

Lotta:  “How were you thinking, Olle?”
Olle:  “For it is metal, this one is not!”
Klara:  “I think like this,” (putting her hands on 

the plastic bag and showing a jar) “this 
one will be removed because they are 
the same thing,” (the other jars) “for they 
are so.” (showing that the two jars are 
upside down)

Olle takes a jar that was removed by Klara and turns it. 

Olle:  “But if you turn it right side up, what is 
it then? It will be the same, right?”

Klara:  “But look, they are golden, so it should 
not be. It is silver.”

Lotta:  “Mmm right, and you think this one. 
What do you think, Eric?”

Eric (5 years): “Plastic and not plastic, and this 
one will be removed.” (pointing to the 
plastic bag)

During the situation, the children reflect and draw 
their own conclusions. The children are given the op-
portunity to experiment with the items and discuss 
with each other.

This situation can be interpreted as the preschool 
teacher creating a situation in which the children can 
communicate. The children’s diverse knowledge of 
the materials offered creates a dynamic. When they 
express their thoughts verbally, the children reflect 
with the help of their fellow students and the pre-
school teacher’s questions.

Malin introduces her situation to the children by 
giving instructions on what they have to do. During 
the first part of the situation, in which the children 
work with patterns, they have to follow the teacher’s 
instructions step by step, and no individual propos-
als are expected of them. In the part I analyse, Malin 
starts by asking the children to tell the names of the 
items she picks up from the box. She also asks differ-
ent questions about the qualities of the items. Again, 
no initiative or individual proposals are expected. 
The answers children give can only be right or wrong. 
Next, when Malin asks the children to come one by 
one, pick up two items in the box, and explain their 
choices, she is expecting them to take initiative and 
come up with individual proposals.

Malin (teacher) calls the first child, Richard (5 years).

Malin:  “You can pick up two things.”
Malin:  “You can stand there and tell what you 

chose.”
Richard:  “A berry and a leaf.”
Malin:  “A berry and a leaf. Why do you think 

the berry and the leaf belong together?”
Richard:  “Because both are red.”
Malin:  “Because both are red. Thank you very 

much, Richard.”

Six of the eight children use color to motivate their 
choice. Malin does not value or praise the children’s 
motivation. She thanks them for their participation.

According to Blomhøj (1995), the teacher usually devel-
ops different forms of work in order to give children 
precisely the assistance required, and the children 
try to meet the teacher’s expectations by interpreting 
the teacher’s signals. The teacher cannot give detailed 
instructions on how the children should solve math-
ematical problems, because under this circumstance, 
the children do not learn. Instead, Lotta uses differ-
ent signals to confirm that the children are acting as 
expected: She uses linguistic signals, such as telling 
the children they are doing well, repeating what the 
children say, asking them if they hear what a child 
says, and telling them that it is exciting to see how 
many solutions they can find; or she uses body-lan-
guage signals, such as putting her hand on a child’s 
arm, nodding, and looking satisfied. Lotta often uses 
the pronoun “we,” as in, “We have to think now!” to 
signal that they will reflect all together. She sits with 
the children around the white cloth.
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On the other hand, Malin gives complete instructions 
to the children, and tells them exactly what they have 
to do. She stands a bit back from the children, and calls 
one child forward at a time. It seems difficult for the 
children to suddenly start thinking by themselves. 
My interpretation is that the children are confused 
about what the teacher is expecting of them, and try to 
give a right answer, as they were previously required 
to do. Most of the children use the same motivation: 

“Because they are the same color.” Malin uses signals 
and asks further questions to invite the children to 
talk, but the questions she asks require a right an-
swer: Is it the same kind of leaf? What kind of leaf 
is it? What color is it? These questions may prevent 
the children from daring to come up with their own 
proposals. Malin does not involve the other children 
by asking them if they can see a different similarity 
than the one proposed by the child standing in front 
of them. Malin only involves all the children when 
she asks right and wrong answer questions. Her way 
of meeting the children does not seem to encourage 
discussion.

In Lotta’s group, when the children do something oth-
er than what the preschool teacher has shown from 
the beginning, the situation evolves as the children 
want it to, and the teacher follows the children’s be-
haviour. Lotta initially asks the children to point out 
one item that is not associated with the other three. 
After playing for a while, the children begin to point 
out two items that belong together. Lotta responds 
that it is true that the two items belong together, and 
the play continues with the new rules for the rest of 
the situation. Here, the children’s actions govern the 
rules. Lotta’s response can be interpreted as not want-
ing to inhibit the children’s creativity by telling them 
to point out only one item, because she has designed 
the situation to get the children to explore, and not to 
judge their competency.

The didactic contract becomes visible
According to Brousseau (1998) and Blomhöj (1995), the 
didactic contract is not visible until it is broken. There 
is a difference between not following the didactic con-
tract and breaking the didactic contract: The one who 
breaks the contract is involved and interested but does 
not act as expected, whereas the one who does not 
follow the contract loses concentration or is uninter-
ested. When Lotta communicates mathematics with 
the children, she wants the children to discover that 
there may be many different solutions to the same 

problem. However, she does not communicate this to 
the children before one of them breaks the contract:

Olle (5 years): “Yeah but what is this? This one 
should be removed; they are not the 
ones.” 

Lotta (teacher): “It is great thought. And you 
others have also found a solution. Great 
God, how good, oh, great. What do you 
say? Should we collect?”

Olle:  “What did you think? Did you think it 
was a bit difficult? You thought it was 
easy, and it wasn’t.”

Lotta:  (puts her hand on Olle) “There are sev-
eral different solutions. It was great.”

Olle:  “Did someone guess the right solution?”
Lotta:  “There are many right solutions. You 

had a great explanation of how you 
thought, Olle, and David, you too, you 
also thought very well. And Eric, you 
were thinking the same way, and Klara 
too. Really good.”

Olle thinks that the other children may have had dif-
ficulty guessing what he was thinking. 

Olle does not accept the rules. He does not accept that 
there can be many solutions to the same problem. He 
thinks that the others should try to guess what he was 
thinking. He breaks the didactic contract, and when 
Lotta explains that there are many right solutions, the 
contract becomes visible.

Lotta makes the didactic contract visible when she 
repeats that there is more than one solution.

CONCLUSION

Preschool teachers prepare for a situation with an in-
tention in mind. In one of the types of situation above, 
the children control the content of the situation and 
introduce various concepts. It is in the children’s in-
terests for them to control the shape of the situation 
when mathematics is being communicated. According 
to Lange, Meaney, Riesbeck, and Wernberg (2014), the 
teacher should be able to listen very carefully in order 
to build her suggestions on the children’s interest. The 
preschool teacher reinforces what the children say by 
repeating and by asking questions that challenge them 
to explain, listen to each other, and move on. The teach-
er’s scaffolding by using different feedback strategies, 
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such as putting her hand on a child’s arm, nodding, 
and looking satisfied; or by asking open-ended ques-
tions rather than giving instructions, will support 
children’s learning (Bäckman, 2014). The preschool 
teacher’s ability to follow the children’s interest is 
critical in the establishment of a didactic contract by 
which both students and teacher are able to accept the 
rules of the game. The two videos examined here (and 
my previous interview) show a difference between the 
attitudes of the teachers and the responses they get 
from the children. Many factors can affect children’s 
motivation to participate in a mathematical situation 
and it is difficult to know based on two observations 
how the “milieu” affects the children’s motivation. In 
Malin’s group, although the children did what they 
had to do, they were not motivated. My interpreta-
tion is that the kind of questions Malin ask confused 
the children about her expectation but I am aware 
that other factors can affects the outcome of the situa-
tion. The fact that eight children have to wait for their 
turn for instance, be quiet, sit still, and listen to each 
other can affect the communication in Malin’s group. 
Instruction, which refers to experiences aligned pri-
marily with the teacher’s goals, and construction, 
which refers to processes young children actively 
engage in to acquire concepts and skills, should be 
integrated, according to Jie-Qi Chen (2012). However, 
this study shows that young children who are initially 
engaged with instruction may have difficulty then en-
gaging with construction; and that the teacher needs 
to be clear about her expectations in order to help the 
children to break the didactic contract formed when 
instruction is used.
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This study aimed to explore kindergarten students’ abil-
ity in solving symmetry tasks. Specifically, I wanted to 
investigate how the use of virtual and concrete manip-
ulatives can improve kindergarten students’ (4,5–5,5 
years old) ability and representations in symmetry ge-
ometry tasks. For this purpose, I used two intervention 
programmes. In group A (n=25) students used virtual 
manipulatives and in group B (n=25) concrete ma-
nipulatives. Three types of symmetry tasks were used. 
Analyses of the data showed that both virtual and con-
crete manipulatives can help students move to a higher 
level of structural development. Additionally, students 
improved their ability to a greater extent with the use of 
virtual manipulatives. 

Keywords: Kindergarten, symmetry, virtual manipulatives, 

concrete manipulatives.

INTRODUCTION

The increased emphasis that has been given to the ge-
ometry during the last decades, has changed the con-
tent of traditional Euclidean Geometry by introducing 
new types of geometry (Jones, 2002). According to 
Sinclair (2008) one of the impacts of Euclid’s Elements 
in school geometry is that symmetry plays a peripher-
al role in the curriculum. Furthermore, additional to 
the mathematical motivations for increased emphasis 
on symmetry, the psychological research suggests 
that young children show a strong capacity for at-
tending to and identifying symmetry. According to 
Vurpillot (1976) the ability to detect symmetry devel-
ops early. This strong capacity for attending to and 
identifying symmetry should be developed through 
their school geometry experiences (Sinclair & Kaur, 
2011). Additionally, the use of technology is growing 
within schools and gives teachers the opportunity to 
differentiate their lessons and children’s experiences. 
Computers are important tools for exploration and 

discovery of mathematical concepts (Burns & Hamm, 
2011). Nevertheless, Burns and Hamm (2011) found 
little research that supports the use of virtual manip-
ulatives over concrete manipulatives and according to 
Steen, Brooks and Lyon (2006) research on the impact 
of virtual manipulatives is limited. 

As a result, the purpose of this exploratory study 
was to investigate kindergarten students’ ability 
in symmetry tasks as well as the role of virtual and 
concrete manipulatives in solving the specific tasks.  
Consequently, the research question addressed in this 
research is: 

How can the use of concrete manipulatives and vir-
tual manipulatives contribute to the understanding 
of symmetry by kindergarten students?

LITERATURE REVIEW

Students’ understanding of symmetry
Children have intuitive notions of symmetry from 
early years. As Sarama and Clements (2009) argued, 
symmetry was the easiest transformation regarding 
visualization to young students. Additionally, accord-
ing to Seo and Ginsburg  (2004),  pre-school children 
spontaneously constructing symmetrical figures in 
informal play. Vertical bilateral symmetry remains 
easier for students to handle than horizontal sym-
metry (Genkins, 1975) which in turn is easier than 
diagonal symmetries (Palmer, 1985). While Boulter 
and Kirby (1994) argued that analytical strategies may 
lead students into successful answers, Tzekaki and 
Christodoulou (2000) found that symmetry can be 
accessed by five and six year old students in a holistic 
manner. At the same time they found that five and six 
year old students were able to distinguish symmet-
rical and non-symmetrical shapes, but on the other 
hand they were unable to draw symmetrical shapes 
taking into account their relative position and size.

mailto:dimloui@hotmail.com


The use of virtual and concrete manipulatives in kindergarten school (Louiza Demetriou)

1912

Virtual and concrete manipulatives 
Virtual manipulatives are interactive, web-based vir-
tual representations of dynamic objects that present 
opportunities for constructing mathematical knowl-
edge. Learners could gain insight into mathematics 
using visual representations of concepts and rela-
tions. Results of available research on virtual manipu-
latives, offer potentially beneficial uses of technology 
in mathematics classroom.  For example, in a study 
with two treatments, in order to teach symmetry and 
congruence, Johnson – Gentile, Clements and Battista 
(1994) found that Logo-based version enhanced the 
construction of higher level conceptualizations of mo-
tion geometry. Additionally, more recently, Sinclair 
and Kaur (2011) found that kindergarten children 
were able to develop an understanding of symmetry 
that showed awareness of the properties of reflec-
tional symmetry through the behaviour of dynamic 
images. 

Even though studies found many perceived bene-
fits on the use of virtual manipulatives, Burns and 
Hamm (2011) found little research that supports the 
use of virtual manipulatives over concrete manipu-
latives. Concrete manipulatives are objects used as 
tools that allow students to experiment and explore 
mathematical concepts. Burns and Hamm (2011) found 
that fourth graders, who were just beginning a unit 
on symmetry, realized larger pretest–posttest gains 
when concrete manipulatives were employed.

Theoretical perspectives 
In order to analyze the geometric learning of students 
interacting with virtual and concrete manipulatives I 
adopted the levels of structural development as pro-
posed by Mulligan, Prescott and Mitchelmore (2003). 
Young children, who have learned to look for math-
ematical similarities and differences within and be-
tween patterns, will tend to look for similarities and 
differences in new patterns and broaden their struc-
tural understanding accordingly. In contrast, students 
who tend not to notice salient features of structure are 
likely to focus on idiosyncratic, non-mathematical 
features in all situations.  Children’s representations 
may classify into the following four broad stages of 
structural development: 

 ― Stage 1 – Pre-structural stage: Most examples 
show idiosyncratic features and representations 
lack any evidence of spatial structure. 

 ― Stage 2 – Emergent (inventive-semiotic) stage: 
Representations show some relevant elements 
of the given structure, but their spatial structure 
is not represented.

 ― Stage 3 – Partial structural stage: Representations 
show most relevant aspects of spatial structure, 
but the representation is incomplete.

 ― Stage 4  – Stage of structural development: 
Representations correctly integrate spatial struc-
tural features.

METHODOLOGY

The sample of this study consisted of 50 kindergarten 
students (4,5–5,5 years old) in an urban middle SES 
district in Cyprus. There were 25 children per class, 
with a wide range of academic abilities. The method 
of convenience sampling was used. In group A (n=25) 
students used virtual manipulatives, while in group B 
(n=25) students used concrete manipulatives. Firstly, 
students complete a pre-test in order to determine 
their initial notions on symmetry. After this, two in-
tervention programmes followed. Students in group 
A were taught with the use of virtual manipulatives 
in groups of five students. Nine virtual math applets 
were used, with three kinds of tasks: recognition of 
symmetrical and non-symmetrical shapes and images 
b) positioning axes of symmetry and c) completing 
shapes and images in order to be symmetrical. The 
activities used in group B were the same as in group A 
but in this case students used concrete manipulatives. 
Equal opportunities were offered to all students to get 
involved and touch real materials such as geoboards, 
symmetry mirrors, cardboards, pattern blocks, fold-
ing papers. 

Each teaching lasted 80 minutes and there were a 
total of 4 lessons for each group. At the end of the 
interventions the same test, as the initial, was given 
to students in order to see if they had an improvement. 
The test consisted of three parts. Figure 1 presents the 
three parts of the pre/post-test. Firstly, children were 
asked to identify symmetrical images and put them in 
a circle. Secondly children had to put symmetry axes 
in nine images. Finally, in the third part, children were 
asked to complete 8 shapes and images in order to be 
symmetrical. Data were collected in a quiet part of 
students’ school environment in the form of personal 
interviews and the interviews were audio-recorded.  
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Data analysis
Regarding the first part of the test, 0 was given to in-
correct answers and 1 point to correct answers.  At the 
second part of the test 0 was given to incorrect answers, 
0,5 points to mainly correct answers and 1 point to cor-
rect answers. Coding for the third part of the test was 
based on the classification of representations accord-
ing to the levels of structural development as proposed 
by Mulligan, Prescott and Mitchelmore (2003). The 
analysis of the data was qualitative and quantitative. 
Due to the limited size of the sample descriptive statis-
tic (means and standard deviations) was used. 

RESULTS

Means and standard deviations of pre-test are pre-
sented in Table 1. As we can see, the activity where 
children asked to complete symmetrical shapes have 
the lowest mean (x=0.43, SD=0.23). In addition low per-
formane appears in tasks where children asked to put 
axes of symmetry. Children seem to perform better 
in symmetry recognition tasks. 

As mentioned above, the lowest performance ap-
peared in tasks where children had to complete shapes 
and images in order to be symmetrical. The most dif-
ficult task in this category was task 5 where students 
asked to complete a symmetrical shape to create a 
triangle over a horizontal axis of symmetry. 

Table 2 presents students’ classification of representa-
tions in each task according to the level of the structur-
al development. As we can see a large number of stu-
dents seem to be at stage 1 (pre-structural stage) and 
stage 2 (emergent structure) since their representa-
tions do not present evidence of mathematical struc-
ture. Additionally none of students were at stage 4.

Post-test
As we can see in Table 3, after the teaching interven-
tions mean of both groups was increased. Specifically 
in group A, the mean increased from 0.50 to 0.70 and 
in group B from 0.53 to 0.60. As it revealed students 
in group A improved their performance to a greater 
extent compared with students in group B. 

 Figure 1: Pre/Post-test

Number of students Mean Standard Deviation

Identify symmetrical images 50 0.64 0.17

Axes of symmetry 50 0.46 0.17

Completing symmetrical shapes 50 0.43 0.23

Table 1: Means and standard deviation of the three tasks in pre-test

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Stage 1 19 25 26 25 32 24 21 25

Stage 2 26 15 15 16 14 15 23 15

Stage 3 5 10 9 9 4 11 6 10

Stage 4 0 0 0 0 0 0 0 0

Table 2: Students’ classification of representations in pre-test
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Noticeable seems to be the effect of teaching inter-
ventions in the third part of the test. Table 4 and 5 
presents the number of students in each stage at pre 
and post -test.    

Students in both groups moved from a lower stage of 
structural development in a higher level. In group A 
number of students which categorized at stage 1 and 
2 at pre-test was between 19–23 while number of stu-
dents which categorized at stage 3 and 4 was between 
2–6. After the teaching intervention with the use of 
virtual manipulatives the number of students which 
categorized at stage 1 and 2 reduced (between 9–15) 
while the number of students which categorized at 
stage 3 and 4 increased to 10–16.

Additionally in group B, before the teaching interven-
tion, number of students which categorized at stage 1 
and 2 was between 20–23 while number of students 
categorized at stage 3 and 4 was between 2–5. After 
the teaching intervention the number of students 
categorized at stage 1 and 2 reduced to 13–20 while 

the number of students categorized at stage 3 and 4 
increased to 5–12.  

As we can see, students in group A increased their 
ability in completing symmetrical shapes to a greater 
extent than students in group B.

Qualitative data analysis
Through a qualitative analysis of the pre-test we can 
see some difficulties that students faced. Firstly in the 
first part of the test students ignored some aspects 
of the original shapes, which determined whether a 
shape was symmetrical or not, in at least one image. 
In the second part of the test, where students asked 
to put axes of symmetry, students were able to put 
vertical axes of symmetry but unable to put hori-
zontal axes. Additionally only 2 of them were able 
to understand that shapes may have more than one 
axes of symmetry. In the third part, a large number 
of students at pre-test, transferred the initial shape 
in at least one task. Furthermore, they ignored some 
aspects of the original shapes. For example in task 2 

Number of Students Mean Standard Deviation

Group A Pre-test 25 0.50 0.20

Post-test 25 0.70 0.13

Group B Pre-test 25 0.53 0.17

Post-test 25 0.60 0.16

Table 3: Means and standard deviations for group A and group B

Tasks 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Stage 1 11 3 12 3 14 9 13 5 17 5 14 2 11 4 12 5

Stage 2 12 9 8 9 6 5 8 10 6 4 5 9 12 10 7 6

Stage 3 2 9 5 11 5 8 4 8 2 10 6 9 2 8 6 9

Stage 4 0 4 0 2 0 3 0 2 0 6 0 5 0 3 0 5

Table 4: Students’ classification of representations on each task: Group A

Tasks 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Stage 1 8 4 13 7 12 8 12 7 15 10 10 5 10 4 13 7

Stage 2 14 13 7 6 9 8 8 10 8 10 10 8 11 14 8 10

Stage 3 3 7 5 10 4 7 5 7 2 3 5 9 4 6 4 6

Stage 4 0 1 0 2 0 2 0 1 0 2 0 3 0 1 0 2

Table 5: Students’ classification of representations on each task: Group B
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and 8 they ignored the empty square. At the same time 
in tasks 4 and 5 students ignored the diagonal line 
segment that they had to bring in order to complete 
the symmetrical triangle. At the same time, a large 
number of students seem to ignore the relative size 
and position of original shapes.

The qualitative analysis of the post-test showed that 
the biggest improvement was achieved by a girl in 
group A. During the intervention Maria faced many 
difficulties. Originally, she completely ignored the in-
structions and as she said, she was just trying to make 
images “to look good.” In another attempt to complete 
the shapes, she ignored the initial position and the size 
of the shapes. However, at the end of those activities, 
she was able to complete symmetrical shapes with 
vertical and horizontal axes. In addition to this she 
was able to take into account the initial position and 
size of  most shapes. In Figure 1 we can clearly see an 
example of Maria’s improvement. 

As we can see in Figure 2, at pre-test, Maria transferred 
all initial shapes. Most of her representations were 
categorized at the pre-structural stage. However, after 
the teaching intervention, Maria’s representations 
improved significantly. In tasks 1, 2, 7 and 8 Maria’s 
representations manage to reach the stage of partial 
structure. In tasks 3, 5 and 6, Maria’s representations 
were classified at emergent structure stage. 

The use of virtual manipulatives generated enthu-
siasm and motivated most of the students. For ex-
ample John, a boy from group A, set more difficult 
tasks for himself. During an activity called “Creating 
Symmetrical Pizzas” John tried to complete a pizza 
(Figure 3) with a diagonal axis of symmetry even 
though he was not successful at it.  

John seemed to understand those activities from the 
very beginning. He was able to complete more compli-
cated shapes with vertical and horizontal axes of sym-
metry without facing particular difficulties. Figure 
below presents two examples of John’s activities.

John seemed to adopt an analytical strategy in order 
to complete those activities.

Figure 3: Pre/Post-test

Figure 4: “Creating symmetrical pizzas”

a)

b)

Figure 5: John’s activities
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Researcher: Can you tell me the way you think 
in order to complete this shape? 

John:             First, I count how many squares are 
painted on the one side.. at this line... 1, 
2, 3 ... 4. So, on the other side I should put 
4 squares. I have to put them next to the 
black line. 

Researcher: Why you have to put those squares 
next to the black line (axis of symme-
try)?  

John:   Well, since in the given example the first 
square is next to the black line, I  strong-
ly believe that I have to put another 
square to the other side right here (next 
to the black line). So when I have to fold 
this picture (he joined his hands and fold 
them) I am trying to imagine if the one 
side touch the other side. I remember the 
video we saw with the butterfly when the 
one side touches the other after we fold 
the picture.  

CONCLUSIONS

As it revealed from the data analysis, kindergarten 
students had higher performance in identification 
of symmetrical images and lower performance in 
tasks where they had to put axes of symmetry and 
complete symmetrical shapes. These findings seem to 
be agreed with previous findings (Sarama & Clements, 
2009; Tzekaki & Christodoulou, 2000).  According to 
Tzekaki and Christodoulou (2000) kindergarten stu-
dents, seem to access symmetry concept in a holistic 
manner.  This is something that is confirmed in this 
study. During recognition activities, students ignored 
important details which determine if a shape is sym-
metrical or not.  As a result, they made wrong recog-
nitions. In the third part, most of the students trans-
ferred the original shapes and this is something that 
supports the holistic manner that students faced sym-
metry concepts. Additionally our findings seem to be 
in agreement with Genkins (1975) who argued that ver-
tical bilateral symmetry remains easier for students 
to handle than horizontal symmetry since students at 
this study faced difficulties in putting horizontal axes 
of symmetry. As Tzekaki and Christodoulou (2000) 
argued children of 5 and 6 years old were unable to 
draw symmetrical shapes taking into account the rel-
ative position and size of shapes. This is something 
that is confirmed in our study since a large number 
of students from both groups were categorized at 

pre-structural stage and emergent structural stage 
according to Mulligan, Prescott and Mitchelmore’s 
(2003) classification.

Even though both teachings improved students ability 
in symmetry, the results of our investigation, suggest 
that the use of virtual manipulatives can improve stu-
dents’ performance to a greater extent than the use 
of concrete manipulatives.  As Yerushalmy (2005) ar-
gued computers may provide representations that are 
just as personally meaningful to students as physi-
cal objects. These results seems to be in agreement 
with Sinclair and Kaur’s (2011) findings who found 
that kindergarten children were able to develop an 
understanding of symmetry that showed awareness 
of the properties of reflectional symmetry through 
the behaviour of dynamic images. At the end of the 
computer session, students in group A were able to 
recognize symmetrical and non-symmetrical shapes 
and images, to place axes of symmetry and to complete 
shapes and images. The number of students which 
classified at stage 1 and 2 reduced after the teaching 
intervention with the use of virtual manipulatives. 
Additionally, more students from group A moved 
to stage 3 and 4 according to Mulligan, Prescott and 
Mitchelmore’s (2003) classification of representations. 
Char (1989) argued that a computer environment of-
fered students greater control and flexibility com-
paring with the concrete materials. The flexibility of 
computer manipulatives allowed students to mirror 
mental ‘‘actions on objects’’ better than concrete ma-
nipulatives do and probably this is the reasons for the 
better students’ performance in group A.

The results reported in this paper should, however, 
be interpreted with some caution. This study suffers 
from some limitations. First of all it is a study with 
small sample, so it is difficult to draw firm conclusions 
or to generalize the findings to other students or con-
text. Also another limitation of our study is the limit-
ed time horizon. This study measured the impact of 
virtual manipulatives on a short term. As a result the 
real impact of virtual manipulatives may not become 
apparent during this short term. As a consequence 
we can see multiple directions for follow-up research. 
For example further research is needed to analyze 
the impact of virtual manipulatives with the use of 
high level statistical analysis, in large scale studies. 
These studies should also measure the impact of virtu-
al manipulatives on a long term. Additionally another 
direction for future research consists of examining 
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the applications of more recent technologies in kin-
dergarten students such as touch screens.   
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The aim of this study is to investigate to what extent au-
thority is distributed and opportunities for children’s 
agency in mathematical activities. We are drawing on a 
sociocultural perspective on learning to analyse the dis-
tribution of authority among kindergarten teachers and 
children and exercise of agency in various mathemat-
ical activities in the kindergarten. Our analyses show 
that authority is distributed to some extent, through 
questioning and opening for children’s contributions. 
Moreover, opportunities are given in which children 
exercise conceptual agency with respect to mathemati-
cal reasoning concerning geometrical shapes and mea-
surement.

Keywords: Kindergarten, agency, authority, mathematics.

INTRODUCTION

Mathematics has not been explicitly mentioned in 
Norwegian curriculums for kindergartens until 2006 
(Ministry of Education and Research, 2006).  The 
2006 curriculum emphasises that the children are 
supposed to develop their mathematical competence 
through play, experimentation and daily activities, 
and that the kindergarten teachers (KTs) are to facil-
itate and empower children’s mathematical explora-
tions. Today the KTs are supposed to be able to address 
mathematics as a subject in their daily enterprise. It is 
therefore of interest to study in what ways kindergar-
ten teachers orchestrate mathematical activities in 
order for the children to engage in the mathematics. 

This was the background for our investigation of how 
mathematical activities were organised, to what extent 
mathematics was the core of the activities, who was in 
charge of the mathematical content of the activities, 
to what extent the children had opportunities to ap-

propriate mathematical concepts, and so on (see, e.g., 
Carlsen, 2013; Hundeland, Carlsen, & Erfjord, 2014). 
We have documented elsewhere (Erfjord, Carlsen, & 
Hundeland, 2012) evidence of a shift in the studied kin-
dergartens regarding the didactic triangle character-
ising the kindergartens’ enterprise; from a situation 
where a pedagogical activity (PA) was initiated with 
minimal mathematical input, to a situation where 
mathematics became the focal point in the activity – 
a so-called mathematical pedagogical activity (MPA). 
One important argument for this shift was found in 
the KTs’ roles as mathematically competent adults 
and leaders of these activities.

In the study reported here, we thus had an initial hy-
pothesis: In order for the mathematical activities to 
become effective with respect to mathematical out-
come and experience on behalf of the children, the KTs 
have to distribute authority and facilitate children’s 
exercising of agency in the adult-child interaction. 
Furthermore we had an initial hypothesis that if the 
KTs distributed authority amongst themselves and 
the children, the learning activities may gain flexi-
bility and children initiatives, but may suffer from 
less mathematically goal-directed actions. This may 
lead to a situation where a planned MPA in effect be-
comes a PA. From these hypotheses we formulated 
the following research question:

In what ways is authority distributed amongst 
kindergarten teachers and children in the ob-
served mathematical activities, and in what ways 
are opportunities created for the children to ex-
ercise agency?

Agency is something that constricts or permits what 
one is free to do in a given situation. This question 
thus addresses an under-researched and important 
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area in mathematics education, both the focus on dis-
tributed authority and exercising of agency as well as 
our focus on mathematical learning activities in the 
kindergarten setting.

Several studies during the last decade have document-
ed the mathematical learning opportunities offered 
for children when they are participating in MPAs (see, 
e.g., Carlsen, 2013; Clements & Sarama, 2009). These 
studies document that learning opportunities are in-
deed offered for children in the kindergarten setting. 
Moreover, the children are nurtured in their ongoing 
process of appropriating mathematical tools when 
participating in MPAs. However, none of these have 
focused particularly on the interaction between KTs 
and children with respect to distribution of authority 
and agency. 

AUTHORITY AND AGENCY

In order to address the research question, we adopt 
a sociocultural perspective on learning and develop-
ment (Rogoff, 1990; Wertsch, 1998). Within this per-
spective interaction amongst adults and children as 
well as the use of tools are acknowledged as funda-
mental elements constituting the learning process. 
Tools such as mathematical language, paper and 
pencil, concrete materials, etc. are used as mediating 
artefacts in order for persons to communicate and in-
teract in collaborative settings. In our study there are 
thus two main concepts that need a clarification, au-
thority and agency. Cobb, Gresalfi, and Hodge (2009) 
define authority as “the degree to which students are 
given opportunities to be involved in decision making 
about the interpretation of tasks, the reasonableness 
of solution methods, and the legitimacy of solutions” 
(p. 44). Authority is thus a term used to address who 
is responsible when it comes to making mathematical 
contributions to an on-going problem-solving pro-
cess. In our use of the term agency, we are following 
Lange (2009), that human agency is a term used about 
a child’s “faculty to act deliberately according to one’s 
own will and thus to make free choices” (p. 2588).

In order to align the view of authority, agency and a 
sociocultural perspective on learning, we are drawing 
on the work of Cobb and colleagues (2009) and their 
analysis of students’ possibilities to exercise agency 
in particular classrooms. According to these authors, 
there are two aspects that are of importance when it 
comes to effectiveness in supporting mathematics 

learning; distribution of authority and opportuni-
ties for students to exercise agency. Furthermore, 
Cobb and colleagues (2009) argue that authority is 
closely connected with students’ possibilities to ex-
ercise agency. According to Pickering (1995), agency 
concerns in what respect an individual’s actions are 
emerging from free will or are influenced by others. 
Attributes of classic human agency are thus choice 
and discretion. Cobb and colleagues (2009) follow 
Pickering (1995) and differentiate between two forms 
of agency, i.e. conceptual agency and disciplinary 
agency. Conceptual agency is about “choosing meth-
ods and developing meanings and relations between 
concepts and principles” (Cobb et al., 2009, p. 45), that 
is attributes familiar within human agency. Pickering 
(1995) introduced the term disciplinary agency to em-
phasise that agency, when exercised within a concep-
tual practice like mathematics, is closely connected to 
the discipline in which it unfolds. In mathematics it 
is about employing established methods. According 
to Pickering, disciplinary agency is thus a specific 
disciplined pattern of human agency, e.g. routines 
with respect to symbol manipulations like a(b + c) = 
ab + ac. The notion of disciplinary agency then de-
scribes human passivity within a conceptual practice. 
Disciplinary agency thus “leads us through a series 
of manipulations within an established conceptual 
system” (p. 115). 

Based on these notions of conceptual agency and disci-
plinary agency, Cobb and colleagues (2009) argue that 
in order for mathematical learning processes to be 
supported effectively, authority has to be distributed 
and students ought to be given opportunities to ex-
ercise conceptual agency. This argument is support-
ed by Boaler and Greeno (2000) as well. Their study 
reveals that students need to be given possibilities 
to participate as creative agents in the mathematics 
classroom in order for mathematics teaching to be 
effective. Moreover, Boaler and Greeno argue that stu-
dents need to be given possibilities to use their own 
language, to be given chances to think for themselves, 
to be given chances to make own interpretations and 
decisions. 

Additionally, Cobb and colleagues (2009) argue that 
experience in exercising conceptual agency is needed 
in order for students to be able to reason about the 
usefulness of disciplinary tools in problem-solving 
processes. If authority is kept with the teacher, stu-
dents are only offered possibilities to exercise dis-
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ciplinary agency. Within a conceptual practice, like 
doing and learning mathematics in a kindergarten 
setting or in a mathematics classroom, there is there-
fore what Pickering (1995) refers to as a dance of agen-
cy. Conceptual agency and disciplinary agency may be 
intertwined and alternately take a lead. In our study 
the KT, the child, and the conceptual practice, i.e. a 
mathematical pedagogical activity (MPA), influence 
one another. We thus suggest talking about such activ-
ities as situations where authority may be distributed 
amongst the actors, giving each of them opportunities 
to act and exercise agency. When orchestrating a MPA, 
the KTs may have intentional learning goals of their 
mathematical activities. But since authority is dis-
tributed amongst adults and children, opportunities 
may be given for children to participate and possibly 
exercise conceptual agency.

The notions of authority, conceptual agency and dis-
ciplinary agency are used by Cobb and colleagues 
(2009) within a school context. As argued elsewhere 
(Erfjord et al., 2012), the Norwegian school context 
and kindergarten context differ to a large extent, both 
with respect to the nature of the two curriculums and 
with respect to organisational and structural nature. 
It is thus relevant to discuss how these notions may 
be employed in a Norwegian kindergarten context. 
Since kindergarten children are young and less au-
tonomous than their counterparts in school, a KT 
may distribute authority in a different way than a 
teacher in school. The KT orchestrates mathematical 
pedagogical activities and she thus has most of the 
authority. However, she may ask the children several 
questions, suggest actions, asking for their opinions, 
their thoughts and ideas, asking for arguments and so 
on. In doing that some of the authority is distributed 
to the children, putting them in the position of being 
in charge for the mathematical interaction, how and in 
what direction this process may evolve. Nevertheless, 
as we will see from the analyses below, there is no 
doubt that the KTs have most authority in the cases 
we present. 

To sum up, we use the term authority in line with Cobb 
and colleagues (2009), as something that may be given 
to others. In our case authority is given by the KTs to 
the children. When authority is given, opportunities 
are created in which children may exercise agency. 
However, as we will see, the children do not always 
take advantage of those opportunities to unfold their 
agency.

METHODS

Our study may be described as having a collective case 
study design (cf. Stake, 2000), because we study a num-
ber of cases in order to investigate the phenomenon of 
distributed authority and exercising of agency with-
in MPAs in kindergartens. We were invited to kin-
dergartens when the KTs argued to be orchestrating 
MPAs. These activities were videotaped. We analysed 
data from three kindergartens, and in this paper we 
present four illustrating excerpts to address the re-
search question formulated for this study. We studied 
situations that from the outset were orchestrated by 
the KTs. Thus, the planned activities were led by the 
KTs and it was primarily the KTs that had the authori-
ty in the activities. Hence, the children’s opportunities 
to exercise agency were limited. However, we seek 
to analyse to what extent authority was distributed, 
even though authority was mostly kept with the adults.

Our analytical process may be described in the fol-
lowing way: Firstly, we carefully analysed the conver-
sations and actions between the KT and the children, 
paying attention to how the MPAs were orchestrated 
by the KTs. In doing that, we had the following ques-
tions in mind: Did the KTs invite the children to inter-
pret the tasks? Did they accept and use the children’s 
own wording of the situations, choices and actions 
to solve the tasks? The KTs actions indicate to what 
extent they distributed the authority in the MPAs 
to the children. Secondly, after having identified oc-
casions where authority was given to the children, 
our next step was to analyse whether the children 
used their freedom to handle the situation based on 
their own free will. That is, whether they were able 
to exercise their agency in order to solve the tasks. 
Our attention was now particularly focused on the 
children’s actions, whether they responded orally 
with own thoughts and actions or whether they only 
waited for the KT’s suggestions. Thirdly, in order to 
study the distribution of authority, we paid particu-
lar attention to the teachers’ conversations with the 
children. Did the KTs use suggestions or instructions? 
Did the KTs organise the MPA in a way that gave the 
children opportunities to act based on their own ide-
as? How did the KTs respond when the children pre-
sented their own ideas and acted in their own way? 
Fourthly, our analysis of the children’s exercising of 
agency included paying attention to what the children 
did in the situations where authority was distributed. 
Did the children solve the problem using their own 
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ideas? Did the children use their own language in their 
problem-solving process? 

ANALYSIS AND RESULTS

The analyses in this study comprise excerpts from 
three kindergartens. The first excerpt is taken from 
Duckling kindergarten in which four children and 
one KT participate and where the mathematical 
theme is measuring. Excerpts 2, 3, and 4 are taken 
from Pinocchio kindergarten. Six children of age 
4–5 years and three female adults were involved in 
planned activities with the children. The common 
theme for these activities was geometrical shapes: 
triangles, quadrilaterals and circles. 

Excerpt 1
A group of 4–5 year-old children went on a forest trip 
together with their KT. When they arrived at the place 
where they used to stay, the KT gave four children the 
task to find themselves one tree each. Then she asked: 

KT:  Whose tree do you think is the thickest 
one?

Birger: Pedro’s (5 sec.)
KT: Pedro’s. Maybe you can try to hold your 

arms around the tree, like this (holds her 
arms as if she is folding a tree). Which 
one do you think it is? Do you think it 
is Pedro’s tree? Can you imagine how 
we may find out whether it actually is 
Pedro’s tree that is the thickest one?

Lisa: Because it looks so big
(The four children are holding their arms around 

their tree) 
KT: Because you think it looks so big. 
Birger: I fold the tree like this (he holds his 

hands around the tree)
KT: You fold it like that. Do you think there 

are other ways to find out whose tree 
is the thickest? How can we find out 
whether your tree is the thickest (Looks 
at Pedro)? Because that was what the 
others thought, that your tree is the 
thickest. How can we find out whether 
Pedro’s tree is the thickest? Do you have 
any idea?

In this excerpt the KT seeks to distribute authority 
amongst her and the four children. She invites them 
into a discussion where they are supposed to reason 

about thickness of trees. The KT challenges the chil-
dren to come up with their own ideas and opinions. 
The problem is how to compare thickness of trees. It 
is apparent from the excerpt that the children expe-
rience difficulties in responding to the KT’s question. 
However, Lisa argues that it is Pedro’s tree that is the 
thickest one because it looks so big. 

The KT invites the children to contribute with their 
opinions. Authority is to some extent distributed 
between her and the children, when she asks the 
children to come up with their ideas with respect to 
deciding whether Pedro’s tree is the thickest one. The 
children are supposed to compare thickness of the 
trees with their arms.

The children are given authority at various occasions. 
However, the children do not seem to exercise agency 
due to the difficulty level of the challenge given by 
the KT.

Excerpt 2
This dialogue took part in a sharing time with the chil-
dren and the adults in a reserved small room. After a 
brief introduction where the KT gave the theme for 
the day, triangles, quadrilaterals and circles, she start-
ed off by giving the children a task:

KT:  Can you see any shapes in this room? 
(The children move their heads and look 
around in the room)

Clara: I can see a “rounding” (The child points 
to one of the walls in the room)

KT: Where can you see a “rounding”?   
Clara:  There! (She points to a transparent plas-

tic box, where a cross section of a rolled 
up poster has a circular shape)

KT: Yes. Great.

This kind of interaction pattern, with suggestions 
from the children and confirmation or clarification 
questions from the KT continued for a while. The au-
thority is handled by the KT in the sense that she has 
organised the activity, and she takes decisions during 
the session concerning what are being discussed and 
how the topic is investigated. Also the agency is main-
ly with the KT. However, the KT’s acceptance of the 
child’s vocabulary, as for example the use of words as 

“rounding” for circle and “circle” for a cylinder, indi-
cates that she transferred authority concerning way 
to express mathematics from her to the child. In oppo-
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site way she could have corrected the child’s incorrect 
mathematics naming of the figures. The KT’s invita-
tion to the children looking for geometric shapes in 
the room, also gives some authority to the children in 
the meaning that they can select what to point at.  As 
a consequence the object that is being discussed and 
interpreted as a triangle, quadrilateral or circle are 
chosen by the children. 

Excerpt 3
This excerpt is from an activity that took part on the 
floor. The KT had prepared a closed cardboard box 
containing different shapes. On the floor three A4 
sheets with big sketches of respectively one triangle, 
one quadrilateral and one circle were placed. The task 
for the children was to put their hand into the box and 
choose one of the shapes, describe the selected shape 
without looking at it, and finally place the shape on 
one of the sheets according to its shape. The KT asked 
one child at a time to do the task, and she interacted 
with questions to the child. One example of such in-
terplay is the following:

KT: It is your turn, Vicky
Vicky: (Uses a couple of seconds to select one 

item from the box)
KT:  What have you found, Vicky? (She holds 

a ball in her hand within the box)
Vicky:  A bouncing ball (She shows the ball and 

bounces it at the floor)
KT: What kind of shape has the bouncing 

ball?
Vicky: A rounding
KT: A rounding, yes. Can you place it on the 

“rounding” at the floor?

Compared with the activity analysed in Excerpt 2, 
this activity gives less possibility for alternatively 
solutions. In this sense the KT keeps her authority. 
However, the activity gives the children a possibil-
ity to describe the geometrical shape, firstly based 
on their tactile sense and secondly based on what 
the child see and is doing with the shape. Thus, the 
children have some freedom to describe this shape 
with their own wording. Similar to the activity 
above, the KT accepts the child’s vocabulary when 
the child labels a spherical ball as being “a round-
ing”. The KT also uses the child’s label when she 
asks the child to place the “rounding” on the floor. 
The fact that the KT had selected a spherical shape, 
despite asking them to categorise the shapes as two 

dimensional (triangle, quadrilateral and circle), 
indicates that the KT probably intended the child to 
categorise the ball as a “rounding” or “circle”. 

Excerpt 4
This excerpt is taken from an outdoor activity 
which involved a walking trip up to a church close 
to the kindergarten. The children got one sheet of 
paper each with three columns headed with pic-
tures of respectively a triangle, a quadrilateral and 
a circle. The children were asked to put a vertical 
mark in the correct column each time they discov-
ered a thing with the particular shape. A road sign 
outside the kindergarten was one of the first thing 
noticed by the children. The road sign had a quadri-
lateral form with an inscribed triangle. The follow-
ing talk took part between two of the children and 
one of the adults:

Clara: See the road sign
KT:  Yes, What kind of shape is this?
Clara:  A quadrilateral.
KT:  Yes. Put a mark there (The KT points 

with her finger at the column “quadrilat-
eral” on their sheets. The two children 
make a mark on their sheets in the cor-
rect column).

KT:  Can you see any more shapes on the 
road sign? (The children remain quiet 
for four seconds)

KT:  One – two – three (while the KT counts 
loudly, she points counting with fingers 
headed to the road sign). Can you see the 
shape within the road sign? 

Ida:  A triangle. 
KT:  Yes. Great. Put a mark under «trian-

gle» on your sheets.   
(The two children put a mark on the cor-
rect column in their sheets)

In this activity we observed several similar examples 
to the one above where one or two children talked and 
got some help from one of the adults. In the activity, 
the children had been offered authority in deciding 
shapes and categorisation in the three types suggest-
ed by the KT in the sheet. The interaction pattern is 
similar to what we found in Excerpt 2, However, the 
outdoor area opens up for more options of things to 
categorise than the small room in Excerpt 2. The chil-
dren’s possibility to take the agency is bigger, and the 
KT has less possibility to prepare the activity in the 
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open outside environment.  However, several times 
during the outside activity, the KT asked the children 
as a group to look at particular things like a circular 
brick area outside the church. Such interventions 
gave more authority to the KT with an emphasis on 
particular things shaped as triangle, quadrilateral 
or circle.

DISCUSSION

We set out in this study to answer the following ques-
tion: In what ways is authority distributed amongst 
kindergarten teachers and children in the observed 
mathematical activities, and in what ways are oppor-
tunities created for the children to exercise agency? 
The four excerpts show how the authority is distrib-
uted between the KTs and the participating children. 
The excerpts also exemplify how the children exer-
cise their agency by participating in the mathematical 
learning opportunities that occur in MPAs.

In excerpt 1 the KT collaborates with the children in or-
der to find out whose tree is the thickest one. The chil-
dren come with various responses and the KT notices 
them and gives a response back, as paraphrasing and 
with a new question. The excerpt is characterised by 
the children’s involvement in the activity, even though 
they are not so verbally activity. The KT lets the chil-
dren imagine what they think, to estimate thickness 
of trees, as well as to come up with reasons for their 
ideas. This shows that the children are given mathe-
matical authority in this case and that they exercise 
conceptual agency. They are given opportunities to 
participate and to give directions for the MPA. At the 
same time we observe that the KT is in charge of the 
activity. She controls the activity by actively asking 
questions to all children at the same time, but also 
individually.

However, our observations show a variety concerning 
the KTs’ distribution of authority to children and to 
what degree children exercise agency during their 
participation in learning activities. In excerpt 2, 3, 
and 4, the distribution of authority is limited inside 
a planned frame for the activities. It concerns chil-
dren’s oral response to questions, selections of cer-
tain objects or participation in well-defined physical 
actions. The KT invites the children to take part in 
these actions, and it seems reasonable to argue that 
the children perceive this participation as voluntary. 
In that way we conclude that the children seem to ex-

ercise agency. However, it is also clear that the KT 
controls the activity, and does only allow responses 
that support her goals for the activities. 

In the situations where authority is distributed to 
them, the children get opportunities to exercise con-
ceptual agency. That is, the children contribute with 
ideas and arguments that may strengthen their op-
portunities to develop mathematical meanings and 
relations (cf. Boaler & Greeno, 2000; Cobb et al., 2009). 
As we saw, there is not so much disciplinary agency to 
be found in the analysed cases. That is, however, not 
surprising, given the Norwegian kindergarten’s en-
terprise of being process oriented and situated with-
in a social pedagogical tradition. Thus, disciplinary 
agency as the use of “established solution methods” 
(Cobb et al., 2009, p. 45) is not that prevalent in the 
kindergarten since these methods to some extent do 
not exist in any readymade matter. 

We argue that authority, and hence, agency, ought to 
be distributed carefully within MPAs in order for the 
children to become supported in their mathematical 
learning process. Opportunities to exercise concep-
tual agency are needed, but the KTs need to orches-
trate the MPA in such a way that the children are able 
to exercise agency. At the same time the KTs ought 
to control the activities in order to possibly reach 
mathematical learning goals. This is needed due to 
the limited mathematical experience of the children.  
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This paper draws on recent research on the theorizing of 
embodiment in mathematics thinking and learning to 
adopt a non-dualist perspective that challenges the view 
that mathematical concepts cannot be perceived and 
created. This perspective brings out the intensive and 
immersive aspects of mathematical activity that feed 
the potential and the mobile in the classroom. Through 
the analysis of two 8-year old children, who reason on a 
figural pattern, I show how their ways of talking, mov-
ing and feeling allows them to mobilise and invent the 
mathematics they are learning. In so doing, I propose 
that perceiving is conceiving and creating is learning.

Keywords: Creativity, embodiment, mathematics learning, 

materialism, perception, virtual.

INTRODUCTION

In the last decade or so, lots of studies of embodied 
mathematics focused on the role and relevance of 
bodily activity in mathematics teaching and learning. 
Far from being an emergent generation of research, 
this corpus of work has started offering attempts to 
talk about and understand mathematical activity in 
non-dualist ways. Examples are studies of researchers 
like Nemirovsky, Radford, Roth and, more recently, 
de Freitas and Sinclair. No matter what their theoret-
ical stances are, whether phenomenological, semiotic, 
philosophical, etc., they all embrace visions of a ‘mul-
timodal’ or ‘sensuous’ mathematical cognition that 
recognise a special place to physical bodily aspects 
in the classroom, without assuming the existence of 

“two distinctive planes, one internal and one external” 
(Radford, 2013, p. 144). They all pursue a participa-
tionist view of teaching and learning that moves away 
from the constructivist tradition started with Piaget, 
which considers the mental schemas that students 
are expected to acquire. And beyond the mechanistic 
view still present in Lakoff and Nùñez’s (2000) seminal 

embodied cognition theory, which fails to escape the 
mind/body split by inferring metaphorical mappings 
in the mind as sites of/for knowledge. Acquisitionist 
theories, based on structural concept formation, also 
entail levels of abstract thought confining mathemati-
cal concepts to abstractions, to de-personalised intan-
gible and immaterial entities that cannot be perceived. 
Sfard’s (2008) communicational theory shares the par-
ticipationist commitment, by focussing on the ways in 
which students and teachers change their mathemat-
ical discourses, and conies the term ‘commognition’ 
to stress how thinking is communicating. But, sort of 
struck by all the ‘fuss’ about the body, and gesture in 
particular, it resists discussions about its participa-
tion in mathematics classroom discourse. 

In this paper, I adopt a non-dualist participationist 
position that pursues a different vision of perception 
and creation in mathematics, according to which bod-
ily activities are ways of thinking as well as of com-
municating (and feeling, I argue). In this way, I hope 
to contribute to the theorizing about the embodied 
nature of mathematics and of its learning. 

THEORETICAL PERSPECTIVES 

Sheets-Johnston challenges our ways of theorizing 
embodiment in thinking, shifting attention to “our 
being the animate organisms we are” (2009, p. 397) 
and “living moving bodies”, which “feel the dynamics” 
of their everyday tactile-kinesthetic/affective experi-
ences (2012, p. 393, emphasis in the original). There 
is no question then but that animate beings are not 

“embedded in the world” or “embodied in their actions, 
their emotions, their cognitions”—as Freedberg and 
Gallese (2007) would suggest on the basis of research 
on the mirroring system of the brain, which is in turn 
rooted in the realities of movement (Sheets-Johnston, 
2009, p. 397, emphasis in the original). Animate beings, 
claims Sheets-Johnston, “are already living, and being 
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already living, are already making sense of themselves 
and of the world in which they find themselves and of 
which they are a part.” (p. 397). She is here suggesting 
a new image with respect to the ‘I think therefore I am’ 
à la Descartes. One that we might refer to as ‘I move 
therefore I am’, which entails that moving is thinking, 
so gesturing is thinking—as much as communicating 
is thinking (the other way around in the commogni-
tive perspective). 

Nemirovsky and colleagues (2013) stress a resonant 
point of view when they make a parallel between mu-
sic and mathematics to investigate kinesthetic activ-
ity in museum exhibits where learners ‘play mathe-
matical instruments’. Fluent use of the instrument 
involves an interpenetration of perceptual and motor 
aspects of playing it. Kinesthetic activity is relevant 
here in two ways: “motor activity is involuntarily 
enacted as part of perceiving”, and “partial motor 
and perceptual components have the power to elicit 
the activity as a whole over time” (Nemirovsky et al., 
2013, p. 380). Working from a non-dualist approach 
to tool use, the authors again trouble the dichotomies 
between thinking and acting, perceiving and conceiv-
ing. In my own study on multimodality in mathemat-
ical activity (Ferrara, 2014), I examine kinesthetic 
activity in the context of motion detector use and 
I propose to see mathematical thinking in terms of 
floating intricate intensive entanglements of ways 
of perceiving, moving and imagining. Here, I follow 
Burbules (2006) in claiming that experiences engage 
our imagination “when we can interpolate or extrap-
olate new details and add to the experience through 
our own contributions”, so that we may be “making 
guesses about things that are not immediately pres-
ent to us” or “anticipating what will happen next in 
some sequence or development.” (p. 41). Imagination, 
depending on students’ active response and engage-
ment in the activities, triggers feelings of immersion, 
senses of “as if ”, which make the experiences virtual 
experiences for the students. A key dimension of this 
quality of immersion that, for Burbules, “makes the 
virtual seem or feel “real” to us” at that moment, are 

“our posture, body tension, and startle responses” or 
“our relaxation, rhythmic movement, and kinesthetic 
sensations” (p. 42)—and he takes here any truly edu-
cational experience as being immersive, or virtual, as 
much as watching a film, hearing a story and listening 
to music. As I have stressed, this sense of immersion 
reconfigures mathematics learning as an alive and 
genuinely creative adventure. 

A way of re-framing creativity in the mathematics 
classroom is offered by the new inclusive material-
ist approach of de Freitas and Sinclair (2013, 2014; 
see also Sinclair et al., 2013). Creativity is not studied 
here as 

a property or competence of a learner, as sug-
gested by approaches that seek to measure the 
flexibility or fluency of a child’s thinking. It does 
not exist independently of its exercise. In oth-
er words, it is not that individuals are creative 
or not creative, but rather that creativity flows 
across the learning assemblage in a somewhat 
impersonal way. (de Freitas & Sinclair, 2014, p. 86) 

This conception of creativity is not bound to a “per-
sonal creativity as a characteristic that can be devel-
oped in schoolchildren” (Lev & Leikin, 2013, p. 1204). 
Indeed, it shifts attention away from the doer, and 
from the idea of giftedness and high ability in math-
ematics, to focus on the doing, without lapsing into 
reading actions as reflections of mental states. It 

“treats creativity as an action taken that emerges in 
context, without being exhausted by it” (Sinclair et 
al., 2013, p. 241, emphasis in the original) and bringing 
forth the new. 

Thus the inclusive materialism centres on the pro-
cess of creation of something new, looking at students’ 
actions, with the other material actions in the class-
room, as an expression of creativity. Interestingly, it 
relies upon a re-configuration of the contours of the 
learners’ body, which enables to talk not only about 
the body in but also of mathematics. In fact, inspired 
by the French philosopher Gilles Châtelet and his 
notion of the virtual, de Freitas and Sinclair explore 

“how mathematics partakes of the material world” 
(2014, p. 1) and how this occurs “in operative, agential 
ways”, troubling the tacit belief that “the mathemat-
ical concepts (multiplication, cube, zero) are taken 
for granted, while students collaboratively move to-
wards them.” (p. 40). Within a tradition that assumes 
that abstract thought and materiality are entwined, 
their philosophical position looks for “how bodies 
are assembled through activity” (p. 15). For de Freitas 
and Sinclair, “the body is an assemblage of human 
and non-human components, always in a process of 
becoming that belies any centralizing control.” (p. 
25). Their perspective “moves away from a theory 
of power as a totalizing, external force and follows 
power as it flows through sensation and affect, across 
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the surfaces of bodies as they emerge in relation to 
these flows.” (p. 41). In so doing, they open room for 
post-humanist discourses of subjectivity and agency, 
for which students are always in a process of becoming 
mathematical subjects through agential relations with 
the diverse dynamic materialities in the classroom, 
including the mathematical concepts. 

Thus mathematical creativity (or inventiveness) is 
materially conceived of in terms of the process that 

“expresses and captures the temporal and dynamic 
moment when the new or the original comes into 
(in-venire) the world at hand”, for example in terms of 

“the dance between the gesturing and drawing hand” 
(de Freitas & Sinclair, p. 88, emphasis in the original). 
Other than bringing forth what was not present be-
fore—a feature stressed by Châtelet (1993/2000) in his 
analysis of inventive moments in the history of math-
ematics, a creative act has also other characteristics 
(Sinclair et al., 2013). It is unusual: it does not align 
with current perceptual habits or practices that are 
taken as norms and the extent to which it is recognized 
as creative, depends on the context where it occurs. It 
is unexpected or unscripted: it is not directly of for-
mally determined by the intentions of the individuals 
involved. It changes the way language and other signs 
are used and alters the meanings that circulate in a 
situation, so that its meaning cannot be exhausted by 
existing meanings. These qualities “point to the cen-
trality of the body and its movement (actions)—rather 
than internal mental disposition—in creative acts.” 
(p. 242). De Freitas and Sinclair (2014) discuss how 

“gesturing and diagramming can together bring about 
new ways of thinking, moving and imagining, and 
thereby give rise to inventive processes.” (pp. 109–110).   

In a different work, de Freitas (2014) claims that 
Châtelet shows us “how we might study a particular 
practice for how its lines of flight flourish and act gen-
eratively in unfolding new intensive dimensions.” (p. 
290, emphasis in the original). She draws on contem-
porary theories of perception to focus on the way the 

student’s body, together with its potentiality, can be 
reconfigured, and the contours of the sensible and the 
intelligible recoded. She argues that we need to un-
pack the provisional nature of perception for empha-
sizing its virtuality, or virtual movements: “We never 
just register visual information from that which is in 
front of our eyes:”, says de Freitas, 

we see potentiality, relationality, mobility, oc-
currence. […] In other words, we live on “spec-
ulative investments,” as though we were surfing 

“the front edge of a wave-crest” […]. Perceiving an 
object entails a prehending of our body’s potenti-
ality to walk around the object, to reach out and 
touch the object, to see the object, to weigh it, to 
smell it. (p. 298)  

In this paper, I want to use these arguments to focus 
on the immersive and animated ways in which chil-
dren talk, move and feel in mathematical activities. 
These become means to look at how the children per-
ceive and create in the mathematics classroom, giving 
rise to inventive moments that mobilise their doing 
mathematics as much as the mathematics they are 
doing. My non-representational monist view—align-
ing with those that challenge the body/concept and 
matter/thought dichotomy—questions the binary 
divide between perceiving and conceiving, creating 
and learning. 

METHODOLOGY

In the analysis, I have chosen to focus on a particu-
lar pair of 8-year old children, Lara and Filippo, who 
deal with pattern activities to develop early algebraic 
thinking. The whole elementary class participates, 
during regular mathematics lessons, in a 5-year lon-
gitudinal study concerning the introduction of the 
concept of function and the use of variables. Thus 
the children had already worked on patterns in the 
previous grades. The selected data refers to the be-
ginning of grade 3, when they are divided into pairs 

Figure 1: The figural sequence of the activity “Do you remember of Tobia?”
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to face an activity called “Do you remember Tobia?”, 
which re-presents a figural sequence to them. Tobia 
is the name of the imaginary dog that left the track 
on the ripped paper, having covered up term 2 of the 
sequence (Figure 1).

In grade 2, the children were asked to extend this 
sequence up to its sixth term and to find the second 
term. In grade 3, the purpose of the activity is to shift 
attention to the relationship between any term of the 
sequence and the term number—its position in the 
sequence. To this aim, the pairs are given the task of 
noticing any regularity in the pattern, and of explain-
ing it. 

Lara and Filippo sit on a desk, one in front of the other 
and turned around to face the other in the discussion. 
A master degree student, who participates in the les-
sons as an observer, films them by using a mobile cam-
era. Data of their discourses come from the video-clips, 
while additional material is given by their written 
productions. A university researcher (the author) and 
the teacher are also present in the classroom. The re-
searcher (labelled by R in the data) consistently takes 
on the role of the guest teacher, teaching the lessons 
in collaboration with the regular classroom teacher (T 
below), who has the role of an active observer. In the 
activities, phases of individual work alternate with 
pair work and collective discussions.

RESULTS AND ANALYSIS

The results are divided into three sections. The first 
two focus on the discovery of a remote term within 
the figural sequence. The last section centres on the 
way in which Filippo solves the new task about the 
position of a given total number of circles. 

Perceiving numerosity in the particular: 
What about position twenty-five?
The activity began with Filippo and Lara examining 
the pattern of Figure 1, with the instruction of looking 
for regularities. Filippo started by focussing on the 
bottom row of term 3 and seeing that the number of 
circles there relates to the term number. In particu-
lar, he has found that if one counts the circles on the 
bottom row and divides this number by 2, one gets the 
position of the term in the sequence. This introduces 
in the discourse the new operation of division by 2, 
which Filippo and Lara share with the researcher as 
soon as she comes to the pair. 

Filippo:  For example, you look at this [Points 
to term 3 of Figure 1 with the pen in his 
right hand], you do, you count the circles 
below [Runs the bottom row], one, two, 
three, four, five, six [Counts the circles], 
then you do six divided by two [Looks up 
at the researcher] that gives, oh 

Lara: Three [Looks up at the researcher]
Filippo:  And this is, is [Moves the pen twice 

around term 3], oh, the position
Lara:  Or you also take this [Overlaps Filippo’s 

voice. Points to term 4], you can also take 
this [Points to term 4 again]

R:  Oh, and does it also work here? [Indicates 
term 4]

Filippo: This one is equal. One, two, three, four, 
five, six, seven, eight [Counts with the 
pen the circles on the bottom row of term 4. 
Lara joins him in counting]. You do eight 
[Looks up] divided by two

Lara: It gives four [Looks at the researcher]
Filippo: And this one [Moves the pen twice around 

term 4] is in position four. This one 
[Shifts the pen to term 1], one, two, two 
[Looks up at the researcher] divided by 
two gives one [Points with the pen to ex-
pression “Figure 1” below term 1. Looks up 
at the researcher. Smiles]

R: Very Good! Oh, now I tell you: What 
about position twenty-five?

Lara:  Twenty-five divided by two! [Laughs. 
Looks at Filippo]

Filippo:  [Looks at Lara surprised, looks up at the 
researcher, looks back at the sequence. 
Keeps thinking in silence for some sec-
onds, suddenly mimes with his left hand 
a small rotation towards his torso. Looks 
up] you do twenty-five, oh, times two

R: What do you use twenty-five times two 
for? Explain me.

This short passage shows that Filippo and Lara per-
ceive the first structural relations in the figural se-
quence, between the numerosity of circles and the 
number of a given term like 3 or 4 – the children move 
the discourse beyond the recursive “adding six circles” 
(that emerged in grade 2), towards looking at the se-
quence in a functional way, by talking (for example us-
ing “position”) and gesturing (around the term, to its 
bottom row). What they perceive is of a very different 
nature, since it introduces reasoning on the pattern 
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in terms of whole numbers (numbers of circles), even 
if still per rows, but no longer strictly related just to 
the spatial structure. Dividing by 2 also comes to the 
fore as a means to manage the relations between num-
bers. A certain satisfaction can be grasped in Filippo’s 
explanation about term 1.

Hoping to encourage the children to perceive more 
than one relation in the sequence, the researcher 
then introduces a new task for a new (remote) term: 
the “position twenty-five” task. Lara hurriedly says 

“Twenty-five divided by two”, but Filippo keeps silent, 
marking his struggle (also expressed by his repeat-
edly changing gaze). The mathematics of the figural 
pattern is mobilised. Filippo responds thinking about 
multiplying by 2, but he gets confused about the kind 
of numbers in use when invited to explain. Thus he 
inquires “but do you say position twenty-five or the 
number twenty-five?”. The situation breaks through 
with the answer “No, the position twenty-five”, which 
prompts Filippo to insist on “you do twenty-five times 
two”. When the researcher then asks “And what do I 
find?”, discourse moves on. 

Filippo:  You find the number, the number of, of, 
oh, to put below [Runs the bottom row 
of term 4 many times with the pen in his 
right hand]. And you put them, at the be-
ginning [Moves left hand to term 4] you 
put two of them and then two [Indicates 
the bottom row with the pen, looks up], 
then you put two of them and you go by 
two [Jumps along the middle row], and 
then you don’t put any here [Points to 
the empty space on the top row with left 
index finger] and you always go by two 
[Jumps along the top row with the pen]

Filippo reasons in terms of numbers of circles on the 
4th term of the sequence to think about the shape in a 
remote term like 25. In perceiving the row disposi-
tion and composition in term 4, gesturing on its rows 
with both hands (“always” referring to groups of “two” 
circles), he conceives of the structure in term 25 in 
terms of the spatial similarity that is granted by the 
algebraic structure of the pattern. Through gestures, 
the circles begin to be mobilised together with the 
numbers in the sequence.  

Creating the new term: You skip 
the first two and you go
The teacher gets close and Filippo, excited, wants to 
tell her about term 25. 

Filippo:  In position twenty-five, you do, to discov-
er that one [Moves the pen many times 
around term 4 of the sequence], this one 
[Runs the bottom row of the term], you 
do twenty-five times two, twenty-five 
times two, oh, then you put [Points to 
term 4], oh, wait, twenty-five times two, 
and, this number, oh, wait, I do no longer 
remember [Smiles]. You do twenty-five 
times two [Pauses. Looks around, beats 
his head], oh, what did I say? [Looks at 
Lara, looks at the sequence]

Lara:  Twenty-five times two [Pauses, looks at 
Filippo who points to term 4], one, two, 
three, four, five, six, seven, eight [Counts 
the circles on the bottom row of term 4], 
you do eight divided

Filippo:  Ah! You do twenty-five times two [Looks 
at the teacher], and you put the result 
here below [Mimes with the pen the ar-
ranging of the first circles on the bottom 
row of term 4. Looks up at the teacher. 
Figure 2a], you put the circles, all, of 
the result [Continues the gesture outside 
of the paper. Figure 2b]. When you ar-
rive at the result with the circles, there 
[Shifts the pen to a position towards the 
desk side. Figure 2c], you stop and you 
go above [Shifts the pen to indicating the 
middle row of term 4, keeps reference to 
it with left index finger] and you always 
put twenty-five, no, always the result 
[Mimes the arranging of circles on the 
middle row, moving to the desk side. 
Figure 2d]. Then here [Points with index 
finger and pen to the initial empty space 
on the top row of term 4], you skip this, 
you skip the first two and you go [Keeps 
the finger as a reference, mimes the ar-
ranging of the circles on the row with the 
pen. Figure 2e], oh, and you put, you do 
[Looks at the teacher], oh, you take two 
away from the result and put those ones! 
[Repeats the miming of the top row. Looks 
at the teacher, smiles] 
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Filippo thinks of the pattern in terms of numbers 
as results of operations (no longer just numbers of 
circles). He uses his hands and fingers to enact the 
exact shape of the figure in the 25th position, with the 
reference of the 4th term. But he also gestures outside 
of the paper to talk about/imagine a term that would 
appear after the sequence––and, in any case, would 
be made of longer rows. Filippo mobilises the static 
diagram on paper through his gestures as a form of di-
agramming. He actualizes the virtual movement of the 
sequence, rather than only realising its logical possi-
bility through numbers (that exists in the given only). 
Thus the circles are mobilised and the mathematics of 
the pattern is invented in the moving assemblage of 
the child, the pattern and the mathematics. This allows 
the creation of new mathematics as the new term is 
figuratively brought forth through Filippo’s gestures. 

Without distinguishing between perceiving and con-
ceiving, as I am encouraged to do in materialist terms, 
I might say that, for Filippo, term 4 is term 25 here. In a 
similar way, without distinguishing between creating 
and learning, we might say that Filippo is starting to 
reason in algebraic terms and the children’s discourse 
is moving to a more functional one compared to the 
previously discussed. 

Perceiving and creating the 
unknown: What position is?
Filippo explains to the teacher the term in position 
Pippo that was introduced by the researcher as a chal-
lenge after term 25. The children faced the task with 
some tension with respect to using expressions like 

“the result of Pippo times two”. During this interac-
tion, the teacher poses the new task of having the total 
number of circles in a term: “I have a position, which 
I don’t know, which has twenty-two circles, how can I 

discover what position is?”, specifying that she means 
“as a whole”. 

Filippo: Twenty-two, oh, you take away four 
from twenty-two [Mimes the operation 
moving his hands together in front of his 
torso from right to left. Figure 3a] and 
you get eighteen, and it’s the first group 
[Mimes a grouping. Figure 3b] of four 
[circles], eighteen. Then, you take away 
six from eighteen [Mimes a block, with 
a vertical movement of his right hand. 
Looks at the teacher. Figure 3c] and you 
get twelve [Shifts right hand on the right, 
moves closer] that, so, are four and a row 
of six [Mimes the grouping again and a 
new block. Looks at the teacher. Figure 3d]. 
Then [Moves on the right again with both 
hands open to mime the remaining cir-
cles, bends his head], take away six from 
twelve and it gives six, so they are four 
[Marks a grouping with left hand] and 
two rows of six [Mimes a block with right 
hand]. Then [Pauses], take away six from 
six, so it gives three rows of six [Keeps 
still left hand, mimes the three blocks with 
right hand. Looks at the teacher. Figure 
3e], plus four [Marks the grouping again 
with left hand. Look at the teacher. Smiles. 
Figure 3e], and then, oh, there are no 
more [Turns more towards the teacher], 
you do, they are four plus three rows of 
six [Mimes the grouping with left hand, 
the blocks with right hand]

R: Ok, so what position is? 

Figure 2: (a-c) miming the bottom row of term 25; (d, e) miming the other two rows 

Figure 3: (a-c) miming the first operation; (d, e) miming the resulting blocks
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Filippo: So, it’s, one, two… three, four… five, six… 
four! [Mimes the counting of the circles 
on the bottom row of the term, moving 
from left closer to the camera up to disap-
pear almost entirely from its view. Smiles]

This short episode shows how Filippo’s ways of talk-
ing and moving become ways of diagramming the 
specific term in the sequence, and of imagining its 
position. It is as if Filippo had the term (big) in front 
of his eyes, could touch it and see it from various 
points of view, moving around it. His gestures, gazes, 
postures, smiles, all creatively tend to the term, with 
his body clearly marking the position and making 
space for the teacher. Like in the case of term 25, the 
invention of new mathematics is allowed as the given 
circles are mobilised, the imaginary blocks are an-
imated and their position is created in the evolving 
body-material assemblage, through gestures of re-
peatedly subtracting six and the body shift closer and 
closer to the camera. 

CONCLUSIONS

My goal in this paper has been to examine the chil-
dren’s ways of talking, moving and feeling as immer-
sive and animated ways of perceiving and creating in 
mathematics, the mathematics. In a monist materialist 
perspective, the episodes have shown that the chil-
dren’s gestures play relevant roles as for the claim 
that their perceiving is conceiving and their creating 
is learning. Filippo and Lara begin to learn to think 
algebraically in the first and second episodes, when 
they create the shape of term 25 using the reference 
of term 4 of the sequence. Filippo sometimes gestures 
on the 4th term as if the 4th term was the 25th, in other 
times he gestures beyond it for reaching the new im-
aginary term. Without these gestures, the diagram 
would stay static and the children would only use 
numbers to realise the possible given in the figure. 
In the third episode, Filippo is learning that a given 
total number of circles (not only the number of circles 
on the bottom row) can have a position in the figur-
al pattern, when he creates the position for twenty-
two circles without any reference to specific terms 
on paper. In the episodes, the child’s hand gestures 
are never iconic representations of one term in the 
pattern. Rather, they are conceptions and creations 
that allow reducing distance between the physical and 
the mathematical. They transform what is static/pos-
sible towards the mobile/virtual––algebraic thinking 

here. At the heart of this virtuality, the figural pattern 
is a part of Filippo’s body––and feelings––and is the 
mathematics in that mathematics is implicated by the 
pattern. As a consequence, the duality of the child-pat-
tern and pattern-mathematics can be rethought of as 
one, the child-pattern-mathematics, which is a learn-
ing assemblage in the classroom. 
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This study explores early childhood mathematics edu-
cation research from 2000 to 2013 in major journals of 
mathematics education and prior CERME-Early Years 
Mathematics papers. The comparison between the stud-
ies published in the journals and in CERME uncovers 
some interesting results: i) the majority of studies are 
from English-speaking countries in the journals where-
as the majority of CERME papers are from non-English 
speaking countries, and ii) the focus of research topics 
in the journals seems to be significantly different than 
that in the CERME papers. Moreover, there are more 
empirical studies than any other types of research and 
studies mainly focusing on children appear to be more 
popular. Accordingly, there should be more diversified 
papers (e.g. regarding research topic) to deepen and 
enrich this field. 

Keywords: Early childhood mathematics education, 

research trend, systematic review.

INTRODUCTION 

Early childhood mathematics education (ECME) which 
refers to the education of the ages of 3- to 6-year-old 
children (NAEYC, 2010) is significant for young chil-
dren (Clements, Baroody, & Sarama, 2013). The study 
of Clements and colleagues (2013) briefly positions its 
reasons in two main frames by stressing the benefits 
of early childhood mathematics (ECM) for minimizing 
the achievement gap among students from different 
backgrounds, and for being a precursor for children’s 
further achievement. The studies also indicate that 
ECME enables children’s acquisition of mathematical 
understanding and skills (Perry & Dockett, 2002) as 
well as their gaining positive attitudes towards learn-
ing mathematics (Stevenson & Newman, 1986). The 
contributions of early years to children’s cognitive 
and affective domains play an important role for their 

further mathematics success (Campbell et al., 2001). 
Furthermore, its significance is stressed through 
perceiving early years as an opportunity to support 
and improve children’s readiness for the learning of 
mathematics (Clements & Sarama, 2010). Hence, ECME 
has major interrelated goals concerning children. The 
first is related to content related goals, namely chil-
dren’s gaining a mathematical understanding and 
thinking. The second goal of ECME is about process 
goals, which include mathematical skills such as rea-
soning and predicting. The last one is about affective 
goals like enjoying learning mathematics (Clements 
et al., 2013). The above-mentioned outcomes and goals 
of ECME can undoubtedly be achieved through the 
high quality educational practices which rely on the 
research based policies, guidelines, and practices 
(Fox, 2007). In this sense, Sarocho and Spodek (2009) 
argue the significance of increasing number of re-
search studies in early childhood education on the 
growing interest in ECME. Thus, the contribution of 
published articles in ECME research cannot be un-
dermined because getting to know about the research 
trend becomes a priority for ECME researchers espe-
cially for the novice ones in terms of their guidance 
for the future of the field. However, the majority of 
these review papers reflect the status of this research 
field from a national perspective such as Australasian 
(Fox, 2007; Highfield & Goodwin, 2008), and American 
(Hachey, 2013). Besides, the remaining review papers 
seem controversial since they do not investigate the 
research papers on a certain database/journal and for 
a certain time period (Sarocho & Spodek, 2009). Rather, 
they examine the development of this field from a his-
torical view. Therefore, this study aims to reveal the 
status of international ECME research from 2000 to 
2013 in highly refereed mathematics education jour-
nals [i.e. Educational Studies in Mathematics (ESM), 
Journal for Research in Mathematics Education 
( JRME), For the Learning of Mathematics (FLM), 

mailto:zguner%40metu.edu.tr?subject=
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Mathematical Thinking and Learning (MTL), The 
Journal of Mathematical Behavior (JMB), Journal of 
Mathematics Teacher Education (JMTE), and ZDM: 
The International Journal on Mathematics Education 
(ZDM)] and Early Years Mathematics WG papers in 
CERME6, CERME7 and CERME8. The review is guid-
ed by the following questions: (a) What were the na-
tionalities of authors contributing to ECME research 
during these fourteen years? (b)What were the types 
of research design in ECME research during these 
fourteen years? (c)What were the research topics in 
ECME research during these fourteen years? (d)What 
were the research samples in ECME research during 
these fourteen years? In this way, the findings of this 
study will guide ECME researchers to better plan and 
improve the research field relying on the information 
about under-researched areas and also will call the 
need for the collaboration between policy makers and 
teacher educators to sustain the quality in this field.

METHOD 
This review study was carried out in Turkey. The 
journals were selected considering the ranking of 
European Mathematical Society (EMS) in terms of 
some criteria such as recognition and citation of the 
journals (Törner & Arzarello, 2012). Therefore, this 
study only focused on the journals ranked as A plus 
and A category which are ESM and JRME in A plus 
journals; and FLM, MTL, JMB, JMTE, and ZDM in A 
journals. Among these journals, FLM was not includ-
ed into analysis due to the limitation of online access. 
Besides, CERME papers were examined since the first 
meeting of Early Years Mathematics Working Group 
(WG) in CERME6. For the purpose of this study, the 
age interval for ECME (3 to-6-year-old) in NAEYC 
(2010) report was considered. Therefore, the papers 
that studied first and/or second grade children were 
not included. As a result, 49 published articles in the 
journals and 35 papers in CERME were analysed. 

The nationality of contributing authors was quanti-
tatively analysed in order to reveal the contributing 
countries to this research field. In this sense, the for-
mula of Howard, Cole and Maxwell (1987) was utilised. 
According to this formula, each paper was given one 
point. In the case of multiple authors from different 
countries, the order of author (i) and the total number 
of countries (n) in the study were taken into consid-
eration.

Score = (1,5n−i)

∑ 1,5n−in

i = 1

 

Research type of the published articles were deter-
mined based on the previous review study of Tsai and 
Wen (2005) which categorized the papers as empiri-
cal (e.g., quantitative and qualitative), position (i.e., 
advocating a certain issue related to the topic under 
investigation), theoretical (i.e., proposing or generat-
ing a theory the related field), review (i.e., summary of 
the previous research studies), and other papers (e.g., 
clarification of a specific curriculum or programme 
for the related research field). The interrater relia-
bility was calculated by the authors of the study and 
it was found as .95.

Research topic was determined considering the 
working group names of the Eighth Congress of 
the European Society for Research in Mathematics 
Education (CERME, 2013). Whereas some of the WG 
names such as university mathematics education and 
history in mathematics education were not included, 
the determined sub-titles in Early Years Mathematics 
WG were additionally used. The adapted version of re-
search topics were as follows: Teaching and Learning 
of Number Systems and Arithmetics (Topic1), 
Algebraic Thinking (Topic2), Geometrical Thinking 
(Topic3), Mathematical Potential, Creativity and 
Talent (Topic4), Affect and Mathematical Thinking 
(Topic5), Mathematics and Language (Topic6), 
Comparative Studies in Mathematics Education 
(Topic7), The Role of Natural Language in Early Years 
Mathematics (Topic8a), The Role of Play in Early Years 
Mathematics (Topic8b), The Role of Manipulatives 
and ICT Tools in Early Years Mathematics (Topic8c), 
The Transition between Manipulation and Different 
Kinds of Representation (Topic8d), Designing and 
Implementing Tasks for Early Years Mathematics 
(Topic8e), The Transition between Pre-primary and 
Primary School in Early Years Mathematics (Topic8f ), 
Ways to Learn to Become a Learner at School (Topic8g), 
Early Years Mathematics and Learning Disorders; 
Early Identification and Intervention (Topic8j), 
Teacher Education and Development in Early Years 
Mathematics (Topic8k), Theoretical Approaches in 
Early Years Mathematics (Topic8l), Technology in 
Early Years Mathematics (Topic9), Social, Cultural 
and Political Challenges for Mathematics Education 
(Topic10), Stochastic Thinking (Topic11), and 
Argumentation and Proof (Topic12). The interrater 
agreement for research topic of the published articles 
was calculated as .90. 
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RESULTS

The results indicated that there were 49 published 
articles about ECME in the investigated journals 
during the last fourteen years. The distribution of 
published articles was respectively provided by year 
and journal. Besides, there were 35 papers in Early 
Years Mathematics working group in prior CERME 
conferences. 

(For further details about results: https://www.aca-
demia.edu/7957956/CERME-9-_Appendix_).

Contributing Countries 
The formula of Howard and colleagues (1987) revealed 
the countries’ contribution to ECME research in the 
selected journals from 2000 to 2013. The scores of the 
countries were analysed in terms of year and journal. 
There were totally 18 contributing countries to this 
research field during these fourteen years. The anal-
ysis by year indicated the high ranking contributing 
countries as the USA, Germany, and the UK. There was 
not any study about ECME in the years of 2000 and 
2006 in the investigated journals. Although the total 
scores of the US, the UK and Germany were striking 
when compared to other countries, only the research 
articles from the USA were published during almost 
each year. As for Germany, the year of 2013 was effi-
cient in terms of the increased number of published 
articles when compared to previous years. The anal-
ysis of contributing countries by journal indicated 
that the variation of the countries was higher in ESM 
(44.4%) and MTL (38.8%) than other journals. Authors 
from five countries contributed to ZDM, JRME and 
JMB, while JMTE had publications from four coun-
tries. Although the dominance of English-speaking 
countries appeared in each journal, the top ranking 
countries were from non-English speaking countries 
such as Israel, Germany, and Turkey in ESM and JMTE. 
Furthermore, the number of articles from Germany 
(40%) and Israel (26.6%) was striking in ESM. As for 
the contributing countries in previous CERME con-
ferences, there have been eleven countries since the 
first emergence of Early Years Mathematics WG. As 
opposed to the majority of English-speaking coun-
tries in mathematics education journals, the top 
countries were Germany (37.1%), Israel (20%), and 
Norway (14.2%). The major contributing countries 
consistently continued to participate in CERME which 
is biennially organized. Although the number of coun-

tries in CERME6 and CERME7 was five, it increased to 
eight different countries in the recent CERME. 

Research type 
During the last fourteen years, almost all of the pub-
lished articles were in the empirical category (87.75%). 
In particular, all of the published articles were empir-
ical between 2001 and 2009. Among these empirical 
papers, qualitative research paradigm was the most 
popular (46.51%), and this was followed by quantita-
tive (30.23%) and mixed type research designs (23.25%). 
Yet, other research types such as review (2.04%), the-
oretical (2.04%) and position (2.04%) were rarely pre-
sented in 2001, 2011 and 2013. As for the other research 
types, there were totally three papers published in 
2010 and 2013 in order to provide an introduction into 
a mathematics education programme and/or a curric-
ulum. The research type by mathematics education 
journals showed similar consistency in terms of the 
majority of empirical papers per journal. All of the 
papers were specifically empirical in JRME, MTL and 
ZDM. Each investigated journals published studies 
with different research paradigms including qualita-
tive, quantitative and mixed research design. Among 
these papers, the dominance of qualitative research 
paradigm continued in ESM (54.5%), JRME (44.4%), 
JMB (66.6%), JMTE (66.6%), and ZDM (75%). However, 
the number of quantitative (50%) and mixed design 
research papers (40%) was interestingly higher than 
qualitative research papers in MTL. Other research 
types such as review, theoretical, position and other 
were published in ESM, JMB and JMTE. The domi-
nance of empirical research papers (91.4%) was still 
seen in previous CERME Early Years Mathematics 
WG papers. Most of the papers were qualitative (80%) 
and it was followed by quantitative (17.14%), and mixed 
design (2.85%) studies. Besides, there were three re-
search papers in the category of other to describe a 
certain curriculum or a programme. But, there were 
not any review, theoretical and position papers.

Research topic 
From 2000 to 2013, the mostly investigated research 
topics were about number systems and arithmetics 
(22.44%), algebraic thinking (16.32%), teacher educa-
tion in early years mathematics education (12.24%), 
designing and implementing tasks for early years 
mathematics (10.2%), and comparative studies in math-
ematics education (8.16%). The studies about number 
systems and arithmetics insistently became frequent-
ly explored topic almost each year except for 2000, 

https://www.academia.edu/7957956/CERME-9-_Appendix_
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2002, 2005 and 2006. Even though the frequencies of 
popularly investigated topics varied, the studies about 
teacher education reached its highest proportion in 
2011 (40%). Other research topics about geometrical 
thinking (6.12%), language and mathematics (6.12%), 
the role of play (4.08%), manipulatives and ICT tools 
(4.08%) in mathematics, theoretical approaches to 
early years mathematics (4.08%), affect in early years 
mathematics (2.04%), stochastic thinking, social and 
cultural challenges in mathematics education (2.04%) 
were not drawn attention by the researchers as much 
as popular topics. Furthermore, there were not any 
published articles about the role of natural language 
in mathematics, representations in early years math-
ematics, transition between preschool and primary 
school mathematics, technology in early years math-
ematics, ways to become a learner at school, and dis-
advantaged students in early years mathematics and 
intervention. As for the research topic by journal, the 
dominance of the research topics about numbers and 
arithmetics and algebraic thinking permanently con-
tinued as top research topics in JRME, JMB, and MTL. 
However, the top research topics per journal showed 
variance. For instance, designing and implementing 
tasks for early years mathematics got the highest pro-
portion in ESM (20%) and JRME (22.2%), whereas all 
of the published articles in JMTE were about teacher 
education and half of the articles in ZDM were about 
geometrical thinking. There were CERME papers 
about various research topics. Although some of the 
popular topics in CERME papers were consistent with 
the publications in mathematics education journals, 
some of them were strikingly different. Among these 
papers, the most prominent ones were about the role 
of play in early years mathematics (14.2%), teacher 
education (14.2%) and designing and implementing 
tasks for early years mathematics (11.4%). It was fol-
lowed by some of these research topics including geo-
metrical thinking (8.57%), mathematics and language 
(8.58%), and the role of manipulatives and ICT tools in 
early years mathematics. On the other hand, the top 
research topics showed variance per each CERME 
conference. To be more specific, the top topic was de-
signing and implementing tasks in early years math-
ematics (33.3%) in CERME6, teacher education (20%), 
the role of play (20%) and the role of natural language 
(20%) in early years mathematics became popular in 
CERME7. As well as the popularity of the role of play 
(18.7%) continued in CERME8, the use of manipula-
tives and ICT tools in early years mathematics (18.7%) 
were drawn attention. 

Research sample 
Research sample refers to the participants (e.g. chil-
dren and teachers) of the studies in the investigated 
journals and proceedings. Considering the research 
sample in published articles, only empirical papers 
were further examined and analysed by year and jour-
nal respectively. The results illustrated that studying 
with children (74.4%) was the most popular method in 
early years mathematics education research during 
these fourteen years. The number of the studies with 
children has increased since 2010. Even though other 
samples were not preferred as much as children, there 
were studies conducted with pre-service teachers 
(6.9%) and the combination of children and teachers 
(6.9%), teachers (4.06%), the combination of children 
and parents (4.06%) and other (2.3%). The results for 
research sample by journal provided that studying 
with children continued its popularity in ESM (90.9%), 
JRME (77.7%), JMB (83.3%), and MTL (80%). Moreover, 
there were published articles in JMTE conducted with 
pre-service teachers (75%) and as well as the combina-
tion of children and parents (25%). As for ZDM, this 
journal published the studies conducted with chil-
dren (50%) and teachers (50%). As for the combination 
of teachers and children, such studies were published 
in JMB, JMTE, and MTL. Similarly, the substantial part 
of the studies in prior Early Years Mathematics WG 
was conducted with children (60%) and the sample of 
children continued to be the mostly preferred one 
in all previous CERME conferences. Other research 
samples were not studied as much as children. But, 
there were studies conducted with teachers (14.2%), 
and the combination of children and parents (11.4%). 

DISCUSSION AND CONCLUSION

This study presents the major contributing countries 
to this research field as English-speaking countries 
in the context of mathematics education journals. 
This may be related to the benefits of reporting the 
scientific papers in a more efficient way than the way 
non-English speaking researchers do. Yet, the contri-
butions of non-English speaking countries particular-
ly Germany and Israel were striking. Furthermore, 
these countries became the top countries in previous 
CERME conferences in terms of their contribution to 
the research field. Moreover, they provided a signif-
icant contribution to the field through their being a 
research community since the publications of such 
countries were constructed through a collaborative 
work. 
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In this study, majority of the published articles and 
CERME papers were empirical. Among these papers, 
qualitative research paradigm was the most utilized 
one. This may be related to the research sample of 
the published articles because another finding of 
this study indicates that studying with children was 
superior to studying with other kind of samples. 
Furthermore, using qualitative research methods is 
the most common way to study with children (Trundle 
& Saçkes, 2012). This trend was followed by quanti-
tative and mixed research design. Although almost 
all of the quantitative studies were conducted with 
children, they mostly preferred to collect data in ac-
cordance with the target age group through using 
mathematical tasks and materials. As for the research 
type by journal, the majority of the empirical papers 
adopted qualitative research methods. Yet, the num-
ber of quantitative papers was higher than others 
in MTL. Moreover, as opposed to the dominance of 
empirical papers, other research types like review 
papers were rarely presented during these fourteen 
years and they were published in ESM, JMB, and JMTE. 
The difference among journals may be related to their 
aims and scopes. Although CERME accept various 
research types, there were not any review, theoretical 
and position study among the CERME papers. 

The results also announce the top research topics 
in ECME research. These top research topics were 
different in the investigated journals and CERME pa-
pers. In the mathematics education journals, the top 
topics were about teaching and learning of number 
systems and arithmetics, algebraic thinking, teach-
er education, designing and implementing tasks for 
early years mathematics, and comparative studies in 
mathematics education. Its reason may be related to 
the goals of ECME such as promoting mathematical 
thinking and learning and improving qualification 
through various ways like teacher education and the 
implementation of tasks (e.g., Clements et al., 2013). 
Besides, these research topics consistently remained 
the top topics almost each year. This shows us the in-
sistence of the researchers on these research topics 
to reach the stated goals of mathematics education. In 
spite of the significance of teaching various content 
areas such as geometry and measurement in ECME 
(NCTM, 2013), learning of number systems and arith-
metics and algebraic thinking were the most frequent-
ly investigated topics. This may be related to the broad 
focus of ‘numeracy’ in early childhood curriculum 
rather than process skills and affect (Ginsburg & 

Golbeck, 2004) and as well as its misinterpretation as 
generally dealing with numbers (Sarama & Clements, 
2004). However, other research topics such as geomet-
rical thinking and affect in early years mathematics 
were not studied as much as the top topics. Besides, 
there was no study about remaining topics like tech-
nology in early years mathematics, and learning dis-
orders; early identification and intervention in the 
selected journals and CERME papers though these 
topics are highlighted to achieve ECME goals, and to 
provide high-quality education to meet the needs of 
all learners (Highfield & Goodwin, 2008). Moreover, 
the top research topics varied per journal. For exam-
ple, the topic of designing and implementing tasks 
for early years mathematics was the mostly studied 
one in ESM. This may not be surprising because the 
journal focuses on the practitioners in mathematics 
education through dealing with didactical, theoreti-
cal and pedagogical issues. The top research topics 
(e.g. the role of play and the role of natural language 
in ECME) in prior CERME were in general different 
from the investigated journal articles. This may be 
related to the dynamic in Early Years Mathematics 
WG and the research interests of group members. 
Furthermore, CERME papers filled the gap in terms 
of investigated research topics since there was not 
any study about the role of natural language in the 
journals examined. Last but not least, the top ranking 
research sample was children in both mathematics 
education journals and CERME papers. Moreover, it 
is good to reach the studies conducted with other sam-
ples. The combination of both children and parents 
and children and teachers is particularly a good in-
dicator of understanding the relevant research topic 
through considering the context because the need for 
such research which explores parents’ educational 
interactions with their children and the role of par-
ents’ on children’s learning mathematics is pointed 
out (Ginsburg & Golbeck, 2004). Moreover, the re-
sults per journal indicated that some journals like 
JMTE and MTL publish the studies conducted with 
the combination of various sample. The findings of 
this study for each journal particularly introduce the 
aims and scope of each major journal in the field for 
ECME researchers who would like to contribute to 
this field. Thereby, this may play a facilitator role for 
future studies to fill a gap in the field as well as to de-
termine the right journal in accordance with the kind 
of topic, design and sample of the studies. In spite of 
the evolution of this research field in the past decade, 
the results may also suggest some further research 
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directions for the improvement of this research field. 
First of all, the research community in ECME should 
be internationalised through increasing the number 
of studies from various countries. Besides, cross-na-
tional and cross-cultural studies may contribute to 
the advancement of this research field. Second, oth-
er research types should be drawn attention by the 
researchers as well as empirical papers because the 
position, theoretical and review papers play an impor-
tant role in contributing to the research field. Third, 
the goals of ECME should be accomplished through 
studying various research topics rather than the re-
search topics focusing on only some goals of ECME. 
Particularly, there should be more research topics 
such as “technology education” for the improvement 
of children’s mathematical learning, and “transition 
between preschool and primary school mathemat-
ics” for the development of mathematical proficien-
cy (NAEYC, 2010). Last, there should be more studies 
conducted with various participants like children and 
parents based on the contributions of family environ-
ment to children’s ongoing mathematical learning 
(Ginsburg & Golbeck, 2004). Furthermore, there is 
a need for studies conducted with pre-service and 
in-service early childhood teachers since the findings 
of such studies may guide teacher educators for the 
professional development of early childhood teach-
ers in ECME (Lee & Ginsburg, 2007). The findings of 
the study were limited to the investigated journals 
in mathematics education and CERME Early Years 
Mathematics Working Group (WG) papers. Therefore, 
further review studies could be replicated through 
including highly refereed early childhood education 
journals and other international mathematics educa-
tion conferences as well. 
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In this paper, we report the preliminary findings of a 
study that considered how third grade students repre-
sent multiplication and division problems using the bar 
model as a tool. Initial results indicate that students are 
able to create visuals, representing problem’s structure, 
and based on these visual representations they can for-
mulate division problems given a multiplication one.

Keywords: Multiplication, division, complementary 

problems, bar model.

INRODUCTION

Use of diagrams is considered an efficient strategy in 
teaching and learning mathematics and especially in 
mathematical problem solving. “From the most ele-
mentary class to the most advanced seminar, in both 
introductory textbooks and professional journals, di-
agrams are present, to introduce concepts, increase 
understanding, and prove results. They thus fulfill a 
variety of important roles in mathematical practice” 
(Mumma & Panza, 2012, p. 1). Diagrams make plain the 
quantities in the story context and the relationships 
that exist amongst them, limit abstraction and there-
by aid in the problem-solving process (Bishop, 1989). 
Draw a diagram is a well known strategy for mathe-
matical problem solving (e.g., Polya, 1957; Schoenfeld, 
1985), grounding in the belief that generating a dia-
gram enables deeper understanding of the situation 
described and facilitates the conceptualization of the 
problem structure (van Essen & Hamaker, 1990). Not 
all diagrams are beneficial or can easily be used by 
the students. Vosniadou (2010) distinguishes between 
external representations that are perceptually based 
(grounded on everyday observations) depictions 
and those that represent conceptual models (theory 

–based). Pictures used in mathematics and science 
textbooks, number lines and bar models that are 

usually used on mathematical problem solving, are 
conceptual models. 

In our study, we used the bar model as a visual sup-
port for the resolution of simple (one operation) mul-
tiplication problems and the formulation of the two 
corresponding division problems. 

Children’s difficulty to understand the close relation 
between multiplication and division was a problem 
noticed very early in mathematics teaching literature. 
Nevertheless, in most western curricula, multipli-
cation and division, as well as addition and subtrac-
tion are taught separately. Paraphrasing Herscovics 
(1989), it is as if students are taught the syntax of 
operations, without the semantics. In other words, 
students know the algorithms (the rules of the ‘gram-
mar’) but they do not understand the meaning and 
their relations. This situation explains the difficulty 
that pupils often face when solving equations in al-
gebra with an operational view of equality (Wagner 
& Parker, 1988). “The ‘one-thing-at-the-time’ design, 
provide fewer opportunities for ‘making connections’ 
compared to those adopted in eastern cultures” (Sun, 
2013, p. 13). “In Chinese elementary schools, addition 
and subtraction are introduced simultaneously, and 
subtraction is introduced as the reverse operation 
of addition. Division is also introduced as a reverse 
operation of multiplication” (Cai, 2004, p. 110). As Cai 
refers (p. 112), “representing quantitative relation-
ships in different ways will not only help students 
develop deeper understanding mathematics, but 
also will help them develop their flexibility of using 
equations to solve application problems”. Giving an 
example of a variation in a multiplication problem, 
Sun (2011, p. 104) explains that “within the problem set, 
there are two concepts of multiplication and division 
behind three similar problems made with 4, 6, and 24. 
Example problem: How many trees do 6 lines need so 
that each line can have 4 trees? Variation problem 1: 
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How many trees will each line get if we plant 24 trees 
in 6 lines? Variation problem 2: How many lines do we 
plant if we plant 24 trees in order so that each line has 
6 trees? Clearly, the intent of One Problem Multiple 
Changes is to enable students recapitulate the gen-
eral relationship of multiplication and division, and 
the meaning of equal from the problem set 4  × 6 = 24, 
24 ÷ 4  = 6, 24 ÷ 6 = 4  […]. The task draws students into 
a space of relations as opposed to directing attention 
to the object itself.”

THEORETICAL FRAMEWORK

The ‘model method’, also known as graphical heuristic, 
consists of the use of rectangular bars to represent 
numbers rather than abstract letters to represent 
unknowns in word problems. This method is often 
used in education systems of many countries under 
various names: tape diagrams – in Japan (Murata, 
2008), strip diagrams – in US (Beckmann, 2004), or bar 
models – in Singapore (Hoven & Garelick, 2007).  This 
special kind of diagrams “are clearly designed to help 
children decide which operations to use. Instead of rely-
ing on superficial and unreliable clues like key words, 
the simple visual diagram can help children under-
stand why the appropriate operations make sense” 
(Beckmann, 2004, p. 43). Cai and colleagues (2005) con-
sider the ‘model method’ as one of the big ideas related 
to algebraic thinking in the Singaporean elementary 
curriculum. “Children solve word problems using the 

‘model method’ to construct pictorial equations that 
represent all the information in word problems as a 
cohesive whole, rather than as distinct parts. To solve 
for the unknown, children undo each operation. This 
approach helps further enhance their knowledge of 
the properties of the four operations”(p. 8). In other 
words a basic property of the bar model is that it can 
support an exploration and visualization of the ‘doing’ 
and ‘undoing’ processes in mathematics. According 
to Hall and colleagues (1989) when the structure of 
a problem is recognized, a formal representation of 
this relationship may be constructed. Departing from 
meaningful tasks, students may construct personal 

meanings by the use of the bar model. In an initial 
phase the bar model may serve as a model of the math-
ematical structure of a word problem. Later, through 
a process of vertical mathematization, reflecting on 
the relationship between their actions upon a diagram 
and the effects of those actions, students may gener-
alize and abstract those actions to successfully solve 
problems of the same semantic structure. In this way, 
bar model becomes, to those students, a model for the 
mathematical structure. Bar model is particularly use-
ful for problems that involve comparisons, part-whole 
calculations, ratio and proportion. 

In this paper, we will restrict to the use of the bar 
model as a visual support in order to formulate mul-
tiplication and division problems. 

The Singapore education system’s approach concern-
ing the use of diagrams, has close relation with the one 
several soviet researchers (Bodanskii, Mikulina, in 
Davydov, 1991/1969) has used in their studies concern-
ing algebra word problems. For example in Figure 
1 (on the left) is the diagram of the problem: “In the 
kindergarten, there were 17 more hard chairs than soft 
ones (labeled M). When 43 more hard chairs were add-
ed, there were 5 times more hard chairs than soft. How 
many hard and soft chairs were there?” as presented in 
Bodanskii (1991/1969, p. 302), and on the right the bar 
model representation.

In both cases, the common element is the concept of 
“unit”. Units are not simply single discrete entities, but 
instead may be composed of one or more ‘shapes’ (in 
the diagram) of various types (Davydov et al., 2000). 
Taking as a “unit” the number of soft chairs, the sum 
17+43=60 is translated as 6 units, giving, thus, the an-
swer of the problem. The problem solver is able to 
reason from the very diagram that was created as a 
model of the situation given. The algebraic equation 
that correspond to this visual solution- the model for 
this kind of relations- is just a step further.

The research question behind our study was:

Figure 1: Similar representations of the same problem



The bar model as a visual aid for developing complementary/variation problems  (Eugenia Koleza)

1942

Can the bar model support students in the resolution 
and formulation of multiplication and (complementa-
ry) division problems?

METHOD

In this study, 19 third graders (aged 8) were involved, 
belonging in a class of a primary school in Patras. 
During a period of eight 45-minutes sessions the 
students followed the regular lessons (teaching of 
the multiplication table) that were enriched by the 
bar model as a way to solve and represent problems, 
and mainly as a way to connect multiplication and 
division, in a unified scheme. This connection was 
designed only for the needs of our experiment, given 
that these two operations are taught separately in the 
Greek mathematics curriculum. Tasks given during 
instruction were arithmetic and algebraic tasks (giv-
en a problem, the task asked for his complementary 
ones-focus on relations) with three (group, restate and 
vary) of the five semantic relations (the other two were 
change and compare) identified by Marshall (1995). 
Data was collected and analyzed from field notes, pho-
tos, pupils’ written work, and final tests. Learning 
gains were assessed by means of a word-problem test 
just after the end of instruction and a second one a 
month later. 

Hereafter, the problems given in the tests. 

Vary-problem in the short-term test: Grandma has in 
her sac 45 sweets in 5 bags. How many sweet are there 
in each bag?

Vary-Problem in the final test: Grandpa gave to each 
one of his 5 grandkids 12 euros. How many euros he gave 
in total?

For each problem was asked to the students: “Departing 
from the problem, with the same story and the same 
numbers make two other problems and ‘design’ them”.

Teaching students for short periods of time could 
not serve as a basis for a solid understanding of their 
thinking and how it might be influenced by the use of 
a certain visual representation. Our ‘teaching exper-
iment’ has not the characteristics described by Steffe 
and Thompson (2000), but it was an exploratory one 
which aimed only to the evaluation of the bar model as 
a visual aid for the resolution and formulation of com-
plementary multiplicative-structure problems. “Any 

researcher who hasn’t conducted a teaching experi-
ment independently, but who wishes to do so, should 
engage in exploratory teaching first. It is important 
that one become thoroughly acquainted, at an experi-
ential level, with students’ ways and means of operat-
ing in whatever domain of mathematical concepts and 
operations are of interest” (Steffe & Thompson, 2000, p. 
274). In other words, we wanted first to explore the role 
this specific visual representation may have in help-
ing students to understand how multiplication and 
division are connected, and their eventual difficulties, 
in order to design our ‘teaching experiment’. Because 

“incomplete understanding […] can result in inappro-
priately designed artifacts or artifacts that result in 
undesirable side effects.”(March & Smith, 1995, p. 254)

DISCUSSION

The first of the 8 lessons (the corresponding textbook 
objective was the multiplication table of, 2, 5 and 10) 
began with a teachers’ question.

T: What is a problem? Who can make a prob-
lem?

S: I have 80 candies and I give 10 candies to 
each one of 8 children

T: Is this a problem? What are you asking? 
In order to have a problem you must ask 
for something. For example, 8 children 
bought 10 candies each one. How many 
bought in total? Lets make a picture of the 
problem. (The teacher designs the bar 
model). In order to have a problem, we 
must ‘hide’ something.

T: Can someone else make another prob-
lem, with the same story? 

S: We can ’hide’ the number of candies that 
each child will take. 

(The teacher changes the previous model)

Figure 2

Figure 3
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T: Another problem? 
S: We can ‘hide’ the children. 
T: So, I will delete the squares. 
T: If I had 40 candies, and 10 children, how 

many candies could have each child?
S: 4 
T: Can you ‘design’ the problem?

During the next 2 sessions students worked with the 
multiplication table (according to the official sched-
ule), and solved multiplication problems following a 

‘didactic contract’ of 4 precise steps that had emerged 
from the previous lesson: (1) we read first and we  ‘de-
sign’ (make a representation of ) the problem, (2) in 
order to make the 2 ‘inverse’ (complementary) prob-
lems, we “hide” a number from the design, (3) we write 
(in words) the ‘inverse’ problems, and (4) we solve the 
problems.

The complementary/inverse problems were intro-
duced by the teacher as the two variations of an initial 
problem, and the bar model was presented as a tool 
of organizing problems’ data. Each complementary/
inverse problem was creating by ‘hiding’ a number 
on the bar. 

During this process, students faced two major difficul-
ties: (1) Expressing in natural language the problem 
that they had already represented by the bar model, 
and (2) representing by the bar model the quotative/ 
measurement division problem-variation. For exam-
ple, while the multiplication problem «If I save 8 euro 
in a week, how many euros I will have after five weeks?» 
and –‘hiding’ the 8- the corresponding partitive divi-
sion problem “If I saved 40 euros in 5 weeks, how many 
euros I saved in a week” were easily represented by 
the bar model, it was not the same for the ‘quotative 
division’ problem. The rule of ‘hiding’ could not be 
applied: while in the “partitive division’ problem they 
had to ‘hide’ the numbers, in the ‘quotative division’ 
one, they had to ‘deconstruct’ the bar model. In the 
following pictures (Figure 4) we see (to the left) the 
incomplete diagram made by a student (reproduced 

in the middle), and the one suggested by the teacher 
(to the right). 

Teacher’s proposition in order to face the difficulty 
was to reformulate the problem as “How many 8s we 
want in order to make 40?” 

We present three different treatments of the “quo-
tative division” problems representation during in-
struction

a) An arithmetic treatment: no use of the bar model 

“30 ducks fly in groups of 5. How many groups of 
ducks are there?”

b) The ‘quotative division’ as a subtraction: A “fill-
ing-in” use of the bar model. “I have 45 stamps 
in pockets of 9 stamps. How many pockets I have?” 
The thought behind the model was: 

“I take off each time 9 stamps from the 45 stamps”

The ‘quotative division’ as the inverse of the mul-
tiplication: An ‘algebraic’ use of the bar model. 

Figure 5

Figure 7

Figure 4

Figure 6



The bar model as a visual aid for developing complementary/variation problems  (Eugenia Koleza)

1944

After instruction a final test was given. Hereafter, we 
comment students’ competency in using the bar model 
for the resolution of the ‘vary-problem’ given in this 
final test (see page 4). 

From a total of 19 students, 

a) 13 students formulated correctly the two divi-
sion-problems. The two main strategies observed 
during instruction, appeared also in the final test: 

 ― a mixed (‘filling-in’ and algebraic) strategy -MS(10 
students), and 

 ― an  ‘algebraic’ strategy -AS (3 students). 

We give an example of each case. 

(MS) Fey

(AS) Joseph

The 3 students who used the ‘algebraic’ strategy were 
the higher achieving students of their class. This out-
come confirms similar results by Booth and Koedinger 
(2007) according to which, higher-achieving middle 
school students do benefit from the diagrams while 
low-achieving students perform better on story prob-
lems that do not have accompanying diagrams. 

b) 3 students formulated only the partitive-division 
problem.

 “Grand papa has 60 euros and he wants to distrib-
ute them to his 5 grandkids. How many euros will 
have each one?”

c) The rest 3 students were not able to use the bar 
model at all. For example for the multiplication 
problem the diagram proposed was

or 

CONCLUSIONS

The results has shown, that the bar model is an effec-
tive model, but only for multiplication and partitive 
division problems. Though most students (13/19) after 
a relatively short term instruction (eight 45-minutes 
sessions) could formulate and represent by the bar 
model a multiplication and the corresponding divi-
sion problems, further research is needed about the 
kind of representation that is more appropriate for 
the quantitative division problems. 

Figure 10

Figure 11

Figure 12

Figure 8

Figure 9
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The fact that a representation may be “clear” for a 
multiplication problem does not mean that it would 
be a useful tool for the formulation of the correspond-
ing division problem. For example, lets take the array 
model. 

This model in a concrete (on the left) or in a more ab-
stract (on the right) version, under certain conditions 
may be useful for students to understand the relation 
between a multiplication and the two complementa-
ry-division problems. It is useful, if all information 
is on the representation, but not if the students must 
construct the representation by themselves, especial-
ly in case of big numbers. 

On the other hand, the use of the bar model, as our 
research has shown, is a high demanding task, because 
the level of abstraction needed. For example, in the 
problem: Sarah made 210 cupcakes. She put them into 
boxes of 10 each. How many boxes of cupcakes were 
there?, students must put on the representation in-
formation that does not exist. 

The mathematics symbolization “…..?....”, is not evident 
for the young students. 

A combination of an array and a bar model represen-
tation could be eventually easier to use for students. 
For example, in the problem:  Sarah had 12 apples to 
hand out to her class. Each group of students in the class 
got 3 apples. How many groups were there in the class? 
This kind of representation would be:

The data collected do not permit us to know if the stu-
dents who had used the algebraic strategy (AS) were 
acting in a pure algorithmic way, or ‘with understand-
ing’. Eventually a confrontation with the strategies 
used by the same students in additive-structure prob-
lems may offer a more complete explanatory frame-
work. A more accurate analysis of the relationship 
between the instrument and students’ meanings is 
required, and that is what is going to be done with 
the data analysis of the whole teaching experiment. 
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An early introduction to arithmetical expressions is 
realized in a teaching experiment involving an arte-
fact based on the rectangle model for multiplication. 
Children elaborate signs, strictly related to the activity 
with the artefact, which evolve to mathematical ones: 
the enchaining of different representations in many 
semiotic systems is described according to Theory of 
Semiotic Mediation. In particular the teacher role in se-
lecting and elaborating specific personal signs, in order 
to make them pivot signs, results as crucial. Elaborated 
tasks reveal to be good triggers for a relational approach 
to arithmetical expressions.

Keywords: Arithmetical expression, multiplication, 

rectangle model, distributivity, semiotic mediation.

DISTRIBUTIVITY IN GRADE 2

In Italy there is a long tradition for which students 
are expected to know all the times-tables from 1 to 10 
at the end of grade 2, often justified with sentences 
such as “if they do not learn times-tables in the second 
year, they will never learn them”. It is well known that 
recall of results of one-digit numbers multiplications 
is more difficult when the operands are closer to ten. 
Psychologists refer to this phenomenon as operand 
size effect (e.g., McCloskey, 1991). Operations’ proper-
ties can be used to reconstruct more difficult results 
relying on easier ones (8 × 2 = 2 × 8; 3 × 8 = 3 × 5 + 3 × 3), this 
kind of strategy could be particularly useful when 
times-tables have not yet been memorized completely. 
In other words an early introduction to operations’ 
properties may promote flexible calculation strate-
gies instead of rote memorization. 

The use of operations’ properties requires a relational 
approach to calculation in order to establish the equiv-
alence between different calculation procedures; 

establishing such an equivalence requires to grasp 
the relationship between two arithmetical expres-
sions organizing the relationship between two op-
erations (i.e. multiplication and addition) in a highly 
structured way. The classic symbolic representation 
seems hardly accessible to very young children, thus 
distributive property is often introduced by graphical 
representations (Ding & Li, 2014; Izsák, 2004): rectan-
gles have been largely used as model for multiplica-
tion (for a large review see Izsák, 2005) from Euclid’s 
Elements since more recent western textbooks (Ding 
& Li, 2010).

The aim of this paper is to describe the emergence 
of symbolic arithmetical expressions as numerical 
representation of the distributive property: work-
ing with a specific artefact (a rectangular model for 
multiplication), pupils begin using the artefact, pass 
through an iconic representation and arrive to make 
sense of a structural relationship between different 
numerical expressions.

THEORETICAL FRAMEWORK 
AND METHODOLOGY

The work here presented is a part of a wider teaching 
experiment on multiplication, implemented in a grade 
2 class in Italy. The general theoretical framework is 
the Theory of Semiotic Mediation (TSM) (Bartolini 
Bussi & Mariotti, 2008) and the teaching sequence is 
centered on the use of an artefact called “geometrical 
times-table”. In this table, rectangles are organized, in-
creasingly, in columns and rows as showed in Figure 1. 

According to the TSM approach, the didactic inter-
vention was implemented in didactical cycles, compre-
hending individual activity with the artefact, small 
group work and whole class mathematical discussion. 
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An artefact is defined as a tool of semiotic mediation 
when the teacher uses it intentionally to mediate a 
mathematical content to students (Bartolini Bussi 
& Mariotti, 2008). The artefact is both related to the 
personal meanings of its user while solving a par-
ticular task and to the mathematical knowledge un-
derpinning the task and/or the construction of the 
artefact itself. This double relation is called semiotic 
potential of the artefact (ibid, p. 754). When students 
accomplish a task using the artefact, they produce 
signs strictly related to this activity; those signs, to 
which we refer as artefact signs, can be very different 
from the ones usually used by mathematicians while 
working with the mathematical knowledge related to 
the task, because pupils can be unaware of this knowl-
edge. Anyhow students are expected to become able 
in using culturally determined mathematical signs. 
According to TSM we expect an evolution from arte-
fact signs to mathematical ones. In order to describe 
such evolution we use the notion of semiotic chain, 
the set of dynamic relations among artefact signs and 
mathematical ones. In the description of the evolution 
through semiotic chain, a specific role is played by an-
other type of signs named pivot signs. These signs are 
defined with respect to their function in promoting 
the relationship between the other two categories of 
signs (ibid, p. 756).

In the case of geometrical times-table, each one of the 
rectangles can represent a multiplication: the sides 
are the factors and the area is the result. Rectangles 
can be cut, moved and pasted and, in particular, some 
of results of these actions can be related to specific 
operations’ properties. For instance, commutative 
property can be related to observation of different 
positions of rectangles with sizes of the same length. 
In the first part of the teaching sequence, children 
explored the artefact and were asked to explain how 
numbers and operations could relate to it. Finally, af-
ter a couple of months, a didactic cycle was released 

aimed at introducing pupils to the distributive prop-
erty.

In the first task, students are asked to cut two pieces 
of paper with the same dimensions of two rectangles 
of the same row (both sides smaller than five). They 
also have to paste the two pieces of papers along one 
of the sides in order to form a new rectangle, then 
they are asked to look for a rectangle with the same 
dimensions into the table. Children are expected to 
use the obtained rectangle dragging and rotating it 
on the table, trying to fit it inside the borders of one 
of the rectangle in the table. We imagine a relation 
between the pasting of two rectangles in a bigger 
one as the sum of two multiplications to obtain an-
other one, i.e. it is a transformation of an arithmetical 
expression according to the distributive property: 
a × b + a × c → a × (b + c). In our a priori analysis we ex-
pected that pupils notice that all the rectangles have 
the same height and that the final rectangle has a width 
that is the sum of the two of the others, this constitute 
the germ of the mathematical meaning of the distribu-
tive property. In order to work on the other direction 
of the transformation (a × b + a × c ← a × (b + c)), a second 
task has been implemented: each student received a 
copy of a letter by Giovanni, an imaginary child who 
lives in another city. In his letter, Giovanni explains 
that he has to calculate 3 × 7 but he only remembers 
multiplications with factors smaller than five. In our 
a priori analysis of the task we expected children to 
use the signs produced during the past activities to 
decompose 3 × 7 in two smaller multiplications, even-
tually using the table to find the right ones. 

Using TSM lens, we analyse the activity of children 
in the progression of the didactic cycle, while facing 
the two tasks involving the use of the geometrical 
times-table and in the following collective discus-
sions. According to TSM, we will look for semiotic 
chains, identifying the three different types of signs 
and their mutual relations, in order to describe the 
development of the semiotic mediation process. Thus 
our research questions can be articulated as follows: 

(1) which semiotic chains can describe the semiot-
ic mediation process from the use of geometrical 
times-table to symbolic representations of the dis-
tributive property? 

(2) What is the role of the teacher in triggering this 
process?

Figure 1: Geometrical Times-Table with five columns and rows
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The two tasks have been implemented in a grade 2 
class of 20 students, in Tuscany in a period of two 
weeks. All lessons have been videotaped by the first 
author who, even if he was not the teacher, interact-
ed with the pupils during the different work phases. 
Following the analytical model for studying videotape 
data by Powell , Francisco and Maher (2003), all videos 
have been viewed several times and a description of 
the events has been written. According to a priori 
analysis of the semiotic potential of the artefact, we se-
lected critical events, then transcribed and coded. The 
different signs produced by teacher and students have 
been classified according to TSM (artefact signs, piv-
ot signs or mathematical signs) and semiotic chains 
identified. Videos and written productions made us 
able to reconstruct the storyline interpreted in the 
next section. 

DATA ANALYSIS 

Combining tiles of the same row: the 
emergence of a semiotic bundle
After a previous activity, pupils became familiar with 
the artefact, with cutting and moving rectangles and 
recognizing them on the table. A shared system of 
artefact signs was established around the key word 

‘tile’ that, at this point, has a complex meaning: it re-
fers to one of rectangles (either on the table or cut 
on the paper), but also to the multiplication between 
the two numbers that represents the dimensions of 
the rectangle, specifically it refers to both the multi-
plication and the result. The first task of a new cycle 
asked to select two tiles in the same row of the table, 
to cut them and to combine them into a new tile and to 
identify on the table a rectangle that corresponds to 
this new tile. Working on this task children engaged 
in finding where their rectangles (to which they refer 
as “tiles”) were inside the table. When all the students 
completed this task, the teacher asked for comments. 
A child made an intervention: 

Lor: That...when two tiles are far (he points 
at the table) you can calculate the result 
and then you know it.

Researcher: And how do you calculate the result?
Lor: Between these two (he points two rec-

tangles in the fourth row) you do nine 
times four, it is thirty-six (he points the 
4×9 rectangle) plus twenty (he points the 
4×5) it is fifty-six.

Researcher: […] Well, Lor gave an example and 
he said that when the results of two tiles 
are known, it is possible to discover the 
result of another tile. I have understood 
this way, you have to say to me if I under-
stood correctly. You said that if I know 
the result of two tiles (he does the ges-
ture in Figure 2a), I can do the addition 
(gesture in Figure 2b). Isn’t it?

Lor: No. It is that, if you do these far two, you 
calculate them!

The researcher elaborates the statement of Lor gen-
eralizing it, and also passing to the interpretation of 
the calculation – addition of multiplications – as the 
combination of tiles. The semiotic process of inter-
pretation is accomplished by enchainment of words, 
graphical representations, mathematical symbols 
and gestures. The word “addition” is combined with 
the gesture of joining the fingers, with the intention 
of relating the combination of tiles (gesture) and the 
operation of adding numbers. The pupil seems not 
to follow the researcher comment and repeats his 
statement stressing the fact that he is referring to tiles 
which are far one from the other. Maybe this child 
looks at the pragmatic scope of the activity as to find 
the results of the union of two tiles which cannot be 
compared directly (because they are far). He is able 
to produce a new personal example without cutting 
new pieces of paper and using numbers which lead 
to a multiplication out of the table. The researcher 
continues the discussion trying to change signs and 
to work on another, simpler, example.

Researcher: What do you obtain?
Lor: Fifty-six.
Researcher: And what do you need this number 

for? What does it represent?
Lor: A tile.
Researcher: It is another tile, it is what I was say-

ing: if you put together two tiles, then 
you find another one. Let’s do an exam-
ple […] if I, for instance, take the tile two 

(a) (b)

Figure 2: Researcher gestures during discussion
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times three (he draws a 2×3 rectangle on 
the squared blackboard, he writes “2×3” 
inside it). Do you all agree that this is the 
two times three tile?

Chorus: Yes!
Researcher: And I put together the four times 

three tile (he draws a second rectangle 
juxtaposed to the previous one, Figure 
3a) this is big as which tile? Putting all 
together? 

The sign “addition” has been replaced with the arte-
fact sign “put together” which refers directly to the 
activity done (i.e., the pasting of the pieces of paper) 
with the aim of bridging the gap between the idea of 
combining the tiles and that of adding multiplications. 
It is also introduced a graphical icon (Figure 3a) to-
gether with written and oral mathematical signs. The 
researcher refers to the graphical representation us-
ing the word “tile”, an artefact sign. Arzarello (2006) 
defines a semiotic bundle as a collection of semiotic 
sets (set of signs, modes of producing, relationships 
with meanings) and relationships among them. In the 
last excerpt there is a system of different related signs 
involving the ones used by students and new ones 
introduced by the researcher, it can be described as 
an example of semiotic bundle. In particular we ob-
serve a genetic conversion (ibid, p. 281), namely the oral 
and gestural signs, produced in the previous part of 
the discussion, are converted in new graphical ones 
enlarging the bundle. 

After these transcribed episodes, the researcher 
changes the example and asks children to develop 
the interpretation process, focusing on the dimen-
sions of the rectangles, then on the height and width 
of the resulting rectangle. When they agree on the 
answer, he synthesizes their intervention saying that 
the two tiles, together, equal [1] the two times seven 

tile and he draws it (Figure 3b). Finally, the researcher 
asks the children to say how many squares there are 
inside each one of the rectangles and he writes these 
numbers under the drawing, obtaining the signs rep-
resented in Figure 3c.

Some students begin to notice that six plus eight is 
fourteen. The researcher decides to rephrase one of 
his previous sentences.

Researcher: So, when I put together the squares 
inside this tile (he points the 2×3 tile) 
with the squares of this tile (he points 
the 2×4) I obtain the squares of this en-
tire tile (pointing 2×7). Isn’t it?

Non: It is true!
Researcher: Which operation does “put together” 

correspond to?
Chorus: Six plus eight!
Mab: Equals fourteen.
Researcher: (writes the symbol + and = between 

the numbers, Figure 3d) So, what does 
this mean? If I know the results of two 
little tiles (he points 2×3 and 2×4), I can 
put them together (he points the num-
bers 6 and 8) and what do I find? (he 
points 14) The result...

Chorus: Of a tile!
Researcher: And how do we find this tile? It has 

the same height, and this? (he points the 
base of the rectangle)

Sim: It is large as the two together.
Researcher: It is large as the two together. Do 

you all agree?
Chorus: Yes!

“Put together” becomes a pivot sign that is explicitly 
related to the operation of addition, but in the same 
time it is related to the combination of tiles and more 
specifically to the addition of the width-dimension 
of these tiles. As suggested by the children, the re-
searcher also introduces the symbol + in the discourse, 
it is not between the operations of multiplications 
but between the respective results. At the end of this 
discussion, the children are asked to produce some 
personal examples. Two children cannot find a way 
to accomplish this final task, another child just cop-
ies the example on the blackboard. The others give 
one or even more original examples imitating the 
pivot sign of Figure 3c to represent the distributive 
property (Figure 4a). Four children transform the 

(a)

(c)

(b)

(d)

Figure 3: Graphical signs on the blackboard
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drawing adding the sign + between the rectangles 
(Figure 4b). All these texts are made of two lines: the 
first line is composed of pivot signs and the second 
one of mathematical signs, as each text were a kind 
of Rosetta Stone: establishing an explicit relationship 
between the two lines they solicit the translation of 
artefact signs into mathematical ones, and so they 
may function as a resource for the unfolding of the 
semiotic potential of the artefact. The different texts 
produced by the pupils show interesting differences; 
for instance, the kind of text in Figure 4b (where the 
first line text includes both artefact and mathematical 
signs) presents an hybridisation between the differ-
ent semiotic systems that provides evidence of the 
movement from personal meanings, strictly related to 

the use of tiles, to mathematical meanings expressing 
the relationship between operations. In the following 
days the teacher asked the students to give examples 
using the version with the + between the rectangles 
(Figure 4b). The teacher recalls this bundle, used by 
some students, and decides to foster the sharing of 
this type of signs that has the potential of linking the 
text composed of artefact signs with the text made of 
mathematical signs.

Translating rectangles into 
arithmetical expressions 
After a couple of days, the teacher proposed a varia-
tion to the task: she gave them an example writing it 
on the blackboard, saying them to copy it on the note-
book (Figure 5a) and then to invent some personal 
examples. In this way the teacher enriched the text 
introducing a new line of mathematical text, in par-
allel with the previous ones. Such a text is provided 
as an alternative ‘translation’ of both the artefact text 
and the mathematical text. Though at this moment 
just few students create new text including this new 

expressions (Figure 5b), the availability of a transla-
tion key from a semiotic system to another will play 
a crucial role in the further activity.

A week after, the second task was given. The students 
were asked to read the letter, discuss some possible 
answers in small groups and then to report their solu-
tions to the whole class. A proposed solution consisted 
in decomposing the rectangle 3×7 in 3×4 and 3×3 or in 
3×5 and 3×2 using the graphical pivot signs developed 
in the previous activities to represent this process. It 
is interesting to notice that, while reporting this sec-
ond solution, Fra comes to the blackboard and begins 
from the expression 3×5+3×2 (written just in symbolic 
mathematical signs) and only after he completes it 
drawing rectangles (with the same height) around 
the two multiplications, without caring about their 
lengths. 

A while after, Mir asks to go to the blackboard say-
ing that he would like to try a new different solution 
(Figure 6a). As matter of fact, from the mathematical 
point of view, what Mir writes does not differ from 
Fra’s proposal; the difference is only in its represen-
tation: Mir’s representation eliminates any reference 
to the artefact using genuine symbolic register, as it 
is confirmed by the following exchange. 

Researcher: Ok, Mir can you explain me a thing. 
What do all that equal signs mean?

Mir: Three times five equals fifteen. Three 
times five plus three times two equals 
fifteen plus six.

The new signs are strictly related to the signs used 
till this moment, as shown by the activity of Fra, but 

(a)

(b)

Figure 4: Fra’s (a) and Mal’s (b) productions after the class discussion

(a)

(b)

Figure 5: Mir’s copy of the teacher example (a) and Lor’s personal 

production (b)
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have lost all the graphical qualities shared with the 
artefact. The text now relies completely on mathemat-
ical culturally determined signs, its meaning is not 
explained but the direct linkage with previous signs, 
condensed in our Rosetta Stone, allows students to 
interpret it. When Mir receives a good feedback for 
his representation, other students ask to come to the 
blackboard to use the same representation (Figure 
6b), among them, at the very end of the discussion, 
Lor comes to the blackboard and suggests another 
solution (Figure 6c). 

After this discussion, students are asked to write 
individually a letter to answer to Giovanni. The 
majority of the given examples about the order in 
which Giovanni has to perform his calculation are 
expressed by arithmetical expressions, only three 
students just use a representation with rectangles. 
In many productions the two kinds of representation 
appear together (Figure 7), showing evidence of the 
process of appropriation of a relational meaning of 
arithmetical expressions and its relation with the use 
of the artefact.

DISCUSSION

The usage of artefacts to introduce the distributive 
property is a diffused approach: in some studies it is 
possible to find pre-constructed paths implemented 
in textbooks (Ding & Li, 2014) or in instructional ma-
terials (Izsák, 2004). However “how students might 
be supported to make transitions from concrete to 
abstract representations remains largely unknown” 
(Ding & Li, 2014). Our study shades light on such a 
complex process, showing the crucial role played by 
the semiotic dimension as it is modeled by the TSM. 
In our experiment we introduced an artefact with 
strong representative features based on the rectan-
gular model for multiplication, with different tasks 
specifically designed for this experiment. The anal-
ysis of the data shows the expected process of semi-
otic mediation. The transition from artefact signs to 
arithmetical expressions is guided by the teacher and 
the researcher choosing tasks and orchestrating the 
mathematical discussions. 

From a theoretical point of view, TSM gave suitable 
aids to design the activity with the artefact and provid-
ed useful analytical tools. In particular the distinction 
of different kind of signs gives many insights on the 
evolution of students’ productions and on teacher’s in-
terventions. As clearly shown in the previous analysis, 
a sensible handling of the pivot signs in the collective 
discussion allows the teacher to foster the develop-
ment from personal meanings to mathematical ones. 
It has to be noticed that many different kinds of signs 
go under the label “pivot signs”. These signs are more 
or less related to the artefact or to mathematical sym-
bols and they belong to different semiotic systems, 
sometimes used in parallel or generated one from 
the other, briefly they constitute a semiotic bundle 
(Arzarello, 2006). This construct grasps this semiotic 
richness that may explain the potential move from 
representing the combination of rectangles (tiles) 
towards representing the relationship between ar-
ithmetical expressions. Moreover, the use of semiotic 
bundles as pivot signs aimed at relating the activity 
with the rectangles to mathematical signs, was inten-
tionally exploited by the teacher through the produc-
tion of hybrid texts explicitly relating – as in a Rosetta 
Stone – the two different systems of signs. 

It is also meaningful to remark how asking for indi-
vidual productions after the first discussion allowed 
the teacher to observe emerging personal represen-

(a) (b)

(c)

Figure 6: Arithmetical expressions are used to represent the 

proposed calculations

Figure 7: Sob’s and Sim’s combined usage of expressions and 

rectangles
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tations produced and shared by the children; these 
signs (specifically the introduction of the sign + be-
tween the rectangles), appropriated by the teacher, 
became fundamental to foster the evolution towards 
mathematical signs. 

The proposed kind of tasks seems to be very promis-
ing for introducing the usage of expressions in very 
first grades. The selection of appropriate signs leaded 
to a quite natural introduction of this mathematical 
representation in a context in which it is useful and 
meaningful. Moreover, the need of conventions about 
the order of operations computing appeared as natu-
ral in this context and children showed a good struc-
tural control of the expressions. We have also to stress 
that, even if it was a minority, there were children 
who had difficulties in following this approach. It is 
needed further research and more cases to give more 
relevance to these findings.
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“look the same as”.
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The paper presents the results of a case study of two 
eight-year-old girls working together on an activity in-
volving – among others – two magic squares. During the 
activity we have observed the girls’ participation in the 
task, which led them to the discovery of some properties 
of operations and, moreover, to mathematical reasoning. 
Additionally, there were differences in the way the two 
girls perceived the given activity at particular moments, 
a fact that may be related to their general views of math-
ematical activity.

Keywords: Mathematical reasoning, investigations, magic 

square.

INTRODUCTION

Mathematics teaching and learning is a process that 
begins from the early years of childhood and takes 
place in formal and informal settings. Children, even 
at a small age have access to powerful mathematical 
ideas, such as mathematization, connections, argu-
mentation, number sense and mental computation, 
algebraic reasoning, spatial and geometric thinking, 
data and probability sense (Perry & Dockett, 2002). 
During most of their time, and especially during play, 
children are engaged in informal mathematical think-
ing, which may include reasoning and argumentation 
(English, 2004). Although there is a consensus on the 
importance of that informal mathematical knowledge 
and its contribution to the child’s further develop-
ment, the research on reasoning processes in infor-
mal settings is rather limited (e.g., Ginsburg, Inoue, & 
Seo, 1999). Having in mind these considerations, we 
designed a case study aiming to study the reasoning 
processes that will occur, together with the mathe-
matical concepts that may evolve by engaging two 
girls in a series of mathematical tasks. Particularly, 
our research questions were the following:

 ― What aspects of mathematical reasoning can be 
observed during the particular activity?

 ― In what ways has the particular activity contrib-
uted in the girls’ understanding of properties of 
mathematical operations?

 ― Which were the characteristics of the girls’ par-
ticipation in the activity? 

THEORETICAL FRAMEWORK

The process of learning mathematics can be viewed 
by many different perspectives. Among them, there 
are those that focus on the child’s activity while doing 
mathematics and comparing that activity with that of 
a mathematician. Ponte (2001) talks about “a parallel 
between the activity of the research mathematician 
and the activity of the pupil in the classroom” (p. 53).

One of the important activities of the students who are 
doing mathematics is the mathematical investigations, 
in which the students rather than solving a problem 
with clearly-framed questions, are faced with a situa-
tion in which the conditions might not be completely 
clear, thus they might have to search for regularities 
and relations or even formulate some questions by 
themselves (Ponte, 2001). During these processes it 
is highly probable that the students will use some 
mathematical reasoning in their work. Lannin, Ellis 
and Elliot (2011) connect mathematical reasoning with 
nine essential understandings. Among them we find 
developing conjectures, generalizing to identify com-
monalities, generalizing by application, investigating 
why, justifying based on already-understood ideas, 
and validating justifications. This framework has 
proved much helpful for the purpose of our research.

mailto:bmaj@ur.edu.pl
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Mathematical activities like those described before 
can be also observed in students at the early stages 
of their education. In NCTM’s (2000) Principles and 
Standards of School Mathematics in the “Reasoning 
and Proof Standard for Pre-K through Grade 2” we 
read that the ability for mathematical reasoning 

“develops when students are encouraged to make 
conjectures, are given time to search for evidence to 
prove or disprove them, and are expected to explain 
and justify their ideas” (p. 122). It is also a known fact 
that children do use mathematical notions in their 
informal everyday activities before they enter the 
formal school system (Ginsburg et al., 1999). English 
(2004) claims that children during their play are en-
gaged in mathematical reasoning; moreover, from a 
researcher’s perspective, there is an interest towards 

“the thinking behind children’s mathematical respons-
es” (p. 14). 

The importance of children’s reasoning processes 
lies in the fact that they are strong facilitators of 
their learning, even more than specific contents of 
mathematical knowledge (Perry & Dockett, 2002). 
But we have to stress here that none of the previous 
can be achieved without the help of the teacher who – 
among other actions – has to ask the right questions 
and choose the proper tasks. Ponte (2001) offers a de-
tailed description of the expectations for the teacher 
in an investigation class. These vary from the careful 
selection and design of tasks to decisions concerning 
time management and class organisation. What is im-
portant, however, is that the tasks should be designed 
in such a way that conjecturing, justifying, general-
ising, etc. will come up naturally during the students’ 
participation in the activity.

DESIGN OF THE STUDY AND METHODOLOGY

The design of our study was based on our theoretical 
framework; most of the tasks were taken by a textbook 
which is aimed to promote interest in mathematics 
(Lankiewicz, Sawicka, & Swoboda, 2012). Our choices 
were driven by the following assumptions: the prob-
lems should be accessible to a wide range of students 
on the basis of their prior knowledge; they must be 
solvable, or at least approachable, in more than one 
way and without the use of tricks; they should illus-
trate important mathematical ideas; they should serve 
as first steps towards mathematical explorations and 
be extensible and generalisable (Schoenfeld, 1994).

The students were given seven tasks in total and the 
session, which took place in one of the students’ house, 
lasted for two hours. Both the authors of the paper 
were present in the session and both were known to 
the two girls. The first author, who will be referred 
to as Researcher in the transcripts, was the one who 
provided help and guidance to the students. Her roles 
were consistent with those described by Ponte (2001) 
and NCTM (2000) and can be summarised in the fol-
lowing:

a) propose challenging questions for the students;

b) support and evaluate students’ progress by pro-
moting a balanced participation in the activity;

c) think mathematically by asking new questions 
and by becoming involved in mathematical rea-
soning;

d) supply and recall information;

e) promote students’ reflection.

The two students, Ania and Magda, were both eight 
years old at the time of the study, and they were fel-
low-students in the second grade of a public primary 
school in Rzeszow, Poland. They both had good marks 

Figure 1: The worksheet containing the magic squares and part 

of solutions
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in mathematics and they volunteered to participate 
in the research.

The analysis in the present paper focuses on a task 
related to a particular type of magic squares, which 
are partially filled, contain equal sums horizontally 
and vertically (but not diagonically) and the same 
number can appear more than once. This task was 
chosen because it fulfils the assumptions mentioned 
before and, particularly it is aimed to promote con-
jecturing and justification. Moreover, it has led to a 
rich discussion and engagement of our students. This 
was the fifth task in the row and Figure 1 shows the 
worksheet that was given to the students, together 
with some of the girls’ solutions.

In the top of Figure 1 we read: “Complete the empty 
fields so that the sum of the numbers in rows and col-
umns is 20”. And then: “Try to create a similar table 
for your friend or somebody from your family”. 

The analysis of the girls’ activity was done according 
to our research questions and was based on our the-
oretical underpinnings. Particularly, we firstly tried 
to locate any manifestations of Lannin and colleagues’ 
(2011) essential understandings that are related to 
mathematical reasoning:

 ― developing conjectures,

 ― generalizing to identify commonalities,

 ― generalizing by application,

 ― conjecturing and generalizing using terms, sym-
bols, and representations,

 ― investigating why,

 ― justifying based on already-understood ideas,

 ― refuting a statement as false,

 ― justifying and refuting the validity of arguments,

 ― validating justifications.

The analysis of the episode has shown that not all of 
the above were manifested in our students’ interac-
tions, which was somehow expected, since some of 
these understandings (e.g. generalising by the use of 

representations) were rather advanced for our eight-
year-old participants.

Another useful analytic framework was Brandl’s 
(2011) mathematical giftedness model, which con-
sists of abilities specific to mathematics and general 
personality traits. The former include mathematical 
sensibility, memory, structuring, generalising and 
the reversion of mathematical processes. The latter 
include intellectual curiosity, willingness of exertion, 
joy in problem solving, perseverance and frustration 
tolerance. Although the model refers to mathematical 
giftedness, we have found it useful for characterising 
the participation of our students. Finally, throughout 
the discussion we have located the conjectures that 
are related to properties of the specific magic squares, 
as well as numbers and addition.

RESULTS

The task which is the focus of the study was the fifth in 
the row. For the purpose of the present paper we focus 
only on the first part of the task, which was to fill in the 
missing fields of the two magic squares. Mathematical 
activities of particular interest for our research are 
written in italics. Our notes are written in brackets. 
The discussion that follows took place few minutes 
after the worksheet was given to the students, since 
they needed some time to comprehend the task:

Ania: It will be here 12, for example 12 [the sum 
of 9 and 3 which are in the last column], 
2 plus…. in order to be equal to 10, then 
2+8. We have to put 8.

Magda: And here we can [put] 1 and add 10 [in 
the middle column].

Ania: [checking] Uhm. Yes. And here 8 [writ-
ing what she calculated before]. And 
here it would have to be 2 [in the top left].

Magda: and 10 [writing 10 in the last field, i.e. the 
middle in the first column].

Researcher: Is it ok?
Ania: Yes. 8+9+3 equals 20; 10+1+9 also equals 

20; 2+10+8 also equals 20.
Researcher: Magda, how did you know that there 

[in the middle field] has to be 1?
Magda: Because I knew here and here I knew 

that it will be [showing the middle row 
and middle column]
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Ania started with the last column in which only one 
number was missing; thus, she chose to begin with the 
easiest part of the task. Magda focused on the middle 
field; in this case the situation was open because both 
middle row and column had two empty spaces. Magda 
probably chose 1 because that was the number that 
added up to 10 (because of 9 in the bottom field). She 
made a conjecture, while Ania validated it. Both girls 
were engaged in solving the task and were monitoring 
each other. The researcher asked the question “why” 
in order to make Magda justify her choice. But she 
had difficulties in expressing her way of thinking. Up 
to that moment the girls were not aware that 1 in the 
middle field is not the only solution.

Thus later on, the question of the researcher “Can 
another number be in the middle?” surprised the 
students, since they thought that they had completed 
the first square. It created a cognitive conflict, since 
they were probably never faced a problem with more 
than one correct solution. It made them thinking for 
a while and the first answer of both of them was “no”. 
After that, Ania had a second thought. She made the 
conjecture that in the middle you can put the number 
2. But she quickly refuted the hypothesis: “If here would 
be 2, then not. Here has to be like that”. She showed 
the other numbers in the middle column: 9 and 10 and 
she concluded that 2 does not fit to them. Because the 
completed square was misleading the students, the 
researcher asked them to draw another one – the same 
with the one given in the task. Then she repeated the 
question: “Can something else than 1 be in the middle?” 

Ania: No, because for example if here was 2…
Researcher: yes…? [showing interest]
Ania: then here it would equal 11 [with 9]…

[thinking for a while] … and here (the 
last column) you have to add 8 for sure. 
Here you have to add 8 for sure! [repeat-
ing and writing 8]

Researcher: Yes..?
Ania: And if here was 11, then 11, then you 

would have to add nine…? [unsure]

Ania was engaged in solving the problem. It was a real 
challenge for her and she demonstrated intellectual cu-
riosity. She was not convinced that number 2 is not ad-
equate although she had rejected it before. Therefore, 
she wanted once again to check if number 2 can be 
put in the middle of the square. This resulted in dis-
covering that in the last column has to be 8 “for sure”, 

which is later expressed in the sentence: “Here always 
has to be 8, because it can’t be a different number”. 
This is an expression of generalization accompanied 
by an explanation which is not justified. While Ania 
was trying to investigate the situation with number 
2, Magda seemed to not be interested in the problem 
anymore. She proposed to move to the second magic 
square given in the task (see Figure 1). Ania firmly 
answered: “No, Magda. Wait, now we do that” which 
showed her perseverance. This happened few times 
during that task, which demonstrates Ania’s willing-
ness of exertion.

After filling the square the researcher wanted to en-
gage Magda, so she asked “When are we sure that the 
square is correctly filled?”. This provoked a justifica-
tion by Magda: she drew lines on all columns and rows 
and explained: “When all squares [she means sums] 
will be correct. You have to make operations”. After 
that the girls were convinced that number 2 can be put 
in the middle of the square. Ania also added: “But 1 also 
can be” by which she wanted to stress that there are 
two correct solutions. After that Magda proposed to 
check number 4. The solution made them enthusias-
tically state: “Here can be 4 as well!” Another discov-
ery encouraged their further investigations: Magda 
noticed that she can use the previously filled squares 
to fill the next ones:

Magda: [filling the square with 7 in the middle 
filed] It’s so easy. Look [writing 4 and 
8 at the top and showing the previous 
square with 4 in the middle; laughing]: 
From that. Because here everything is 
opposite! 

By identifying commonalities she made a conjecture 
which later resulted in generalizing by applying it into 
another pair of squares (2 and 9 in the middle). The 
outcome inspired her to continue. Ania developed 
Magda’s observation and “Everything is opposite” was 
elaborated to:

Ania: … every number is changing with some-
thing. (…) for example 7 with 4, 4 with 7 
[showing squares with 4 and 7]; 9 with 
2, 2 with 9 [showing the squares with 2 
and 9] 1 with 10 [the first square with 1 
in the middle], 6 with 5 [the square with 
6 in the middle]”.
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The researcher moved their focus to the sum of these 
pairs of numbers and this led them to a common dis-
covery:

Magda: 7+4 is 11 [square with 7 in the middle]. 
Here is also 11 [square with 4 – showing 
7 and 4]

Ania: Every square 11, 11 here also 11. All it has 
11.

The second cognitive conflict appeared when the stu-
dents were discussing what numbers could be put 
in the middle of the square. The first ideas that “all” 
numbers can be put (Ania) and “even 100” (Magda) as 
a synonymous of a big number were quickly rejected 
and reformulated into “all up to 10!”, which was clari-
fied by Ania: “it means all one’s [she means one-digit] 
numbers together with 10”. To the researcher’s ques-
tion about number 11, both girls answered “no”. The 
justification of Magda was that “If in the middle would 
be 11 and here 9, then it would already be equal to 20 
[in the middle column] ... and here [empty field] we 
have one more. It seems that zero is not treated by the 
students as a number: you have to add something in 
the field, but there is nothing to add. But as soon as they 
realized that zero can be put in the empty field, they 
applied that understanding: “And 11 will be changing 
with 0!”: 

Researcher: So, can 12 be in the middle?
Ania: yes
Magda: yes
Ania: And 11 will be changing with 0!
Researcher: Uhm. And what will 12 be changing 

with?
Magda and Ania: hmm
Ania: 12? So I will do it a small one [drawing a 

new square]
Researcher: Ok, so quickly and then we will move 

to the next task
Ania: it’s a pity. It’s so nice that task… 12. But 

12 cannot be because…
Researcher: Why 12 can’t be?
Ania: Because … because 12+9 is already 21!
Researcher: ok…
Ania: So 12 can’t be
Researcher: Magda, can’t it be?
Magda: No
Researcher: Hm. So what numbers can we put 

there in the middle?
Ania: up to 11.

Magda: from 1 to 11 [simultaneously]

Number 11 in the middle was immediately rejected, 
while with 12 they were more cautious. Only the 
thought about exchanging with another number made 
them remember the initial condition about sum of 20 
which was used by Ania in her argumentation. The 
work at the first square was completed by the range 
of numbers that can be put in the middle in order to 
fill the whole square. The range was partially com-
plete, since it did not include zero, although it was 
mentioned and used.

In the second square the students mainly applied their 
own discoveries (with some modifications according 
to the new conditions) and used the argumentation 
developed in the first one. It is interesting that Magda 
started filling the square by number 9 (which means 
that you have to add 0) which was the extreme case in 
the first square and it took them some time to accept it. 
Generally, they were working with a big enthusiasm 
and complemented each other. After filling the given 
square they did not draw any other squares because 
they expressed everything verbally: 

Magda: Here for example 8 [in the middle] and 
add here 1 [above 8]

Researcher: Aha (…)
Researcher: And if here we put 7 [in the middle], 

then what will be here? [above]
Magda: 2
Researcher: And if 6?
Ania and Magda: [loudly] 3!
Researcher: How do you know that 3?
Ania: Because when it was 7 then it was 2. And 

if we decrease it more then it will be 3
Researcher: And if we put 5?
Magda: Then 4 (…)
Researcher: What’s the biggest number we can 

put in the middle?
Ania: 20?
Researcher: Can we put 20 in the middle?
Magda: For me 9, because 10+11 it would be al-

ready 21.

We can notice that both students made a significant 
progress; they were more confident in making conjec-
tures and giving justifications. Moreover, their discov-
eries gave them satisfaction which can be described 
as joy in problem solving.
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Summing up, the particular activity had invoked 
many aspects of mathematical reasoning, which 
may be categorised according to our methodological 
framework into understandings related to mathemat-
ical reasoning (Lannin et al., 2011) and general per-
sonality traits which support mathematical activity 
(Brandl, 2011). The former may be further categorised 
into interactive understandings, which are directly 
oriented to the partner and personal understandings 
which have a more personal character (although 
they might be also directed to the partner or the re-
searcher). Characteristic cases of interactive under-
standings in our study were the monitoring of each 
other and the development/elaboration of the other’s 
observation; personal understandings included the 
development of conjectures and the generalization 
by application. During the episode that we analysed 
a number of conjectures were articulated, validated 
and eventually elaborated:

1) In the middle field you can put 1.

2) In the top right field always has to be 8.

3) In the middle field you can put 2 (in the sense of 
another solution for the square)

4) “Everything is opposite” – the addition of two 
numbers is commutative.

5) The sum of the two numbers in the upper fields 
of the middle column is constant and equal to 11.

6) 11+0 equals 11. Any number plus zero equals that 
number.

7) In the middle field of the first square you can put 
all numbers from 0 to 11.

8) The sum of the two numbers in the upper fields 
of the middle column is constant and equal to 9. 
Decreasing one number makes the second in-
crease.

9) The biggest number we can put in the middle of 
the second square is 9.

It is obvious that some of them are related to prop-
erties of the specific character of our magic squares 
and some properties of addition: identity property, 
commutative property and associative property.

The personality traits that we located in our mathe-
matical activity were: perseverance, willingness of 
exertion, intellectual curiosity and joy in problem 
solving. Moreover, we have noticed significant dif-
ferences in our students’ participation regarding not 
only their understandings of mathematical reasoning, 
but also the personality traits. Particularly, Ania was 
more willing to investigate the situation, developing 
new conjectures and perseverant. Magda, on the other 
hand, usually wanted to move on when she was faced 
with a novel situation; however, whenever she devel-
oped her own conjectures she experienced satisfac-
tion. Summing up, we may say that Ania was better 
in proposing new ideas, while Magda was better in 
justifying their conjectures and monitoring Ania.

CONCLUSIONS

Our case study has provided us with interesting and 
valuable data that go in line with the relevant litera-
ture. We have observed that our students have been 
able to articulate sound mathematical conjectures, 
which supported their mathematical reasoning. 
Moreover, both students were engaged in the task and 
have demonstrated signs of mathematical sensibility 
and intellectual curiosity, but in a different degree. As 
we mentioned, Ania was better in proposing conjec-
tures, while Magda was better in monitoring; thus, it 
seems that the students’ roles although not identical, 
were somehow complementary to each other. This 
fact was very helpful for the “flow” of the activity and 
the outcome of their investigations. The researcher’s 
interventions, mostly in the form of questions, were 
also vital for the girls’ investigations, promoting their 
mathematical reasoning and fostering their reflection. 

The magic squares have thus proved a useful tool 
for promoting our students’ investigations and we 
believe that it can also be used for the discovery of 
properties of numbers and addition.
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“How do you make numbers?”: Rhythm and turn-
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In this paper, we examine an environment involving 
a young girl, an adult and a touchscreen application 
(TouchCounts), in which engagement with number 
draws on all of the audible, the visible and the tangible. 
We broadly frame our analysis in terms of the conver-
sation (both verbal and non-verbal) that occurs, seeking 
to gain insight into the nature of number – and in par-
ticular of its ordinal aspect – in this complex assemblage. 
We propose that much can be learned from our analysis 
about the nature of counting in more traditional envi-
ronments, as well as about the particular forms to which 
TouchCounts may give rise.

Keywords: Kindergarten, touchscreen application, 

audible, visible, tangible.

INTRODUCTION

Over thirty years ago, Stephen Brown observed, “One 
incident with one child, seen in all its richness, fre-
quently has more to convey to us than a thousand rep-
lications of an experiment conducted with hundreds 
of children” (1981, p. 11). Nowhere, perhaps, is this as 
true as in the arena of early number. Our starting 
point here is with such an incident, involving a five-
year old girl – for argument’s sake, we’ll call her Katy. 
But the full encounter, which lasted just over an hour, 
also involved an adult, Nathalie (second author), some 
geometry tasks with pencil and paper, and, from about 
half-way through, an iPad with the numerical App 
TouchCounts (Sinclair & Jackiw, 2011), the pertinent 
aspects of which we describe briefly in this paper (see 
also Sinclair & Pimm 2014). We wish to explore the 
potential of framing this interaction as a conversation 
about number, albeit one involving an entanglement 
of the audible, the visible and the tangible.

We are also interested in examining how children’s 
number activities within this particular entangle-

ment relate to findings from prior research on chil-
dren’s development of number. Elsewhere, we have 
described how the design of this App supports the 
development of subitising (Sinclair & Pimm, in press) 
and finger gnosis (Sinclair & Pimm, 2014), in addition 
to offering more expected opportunities for children 
to work with cardinal aspects of number (Sinclair & 
Heyd-Metzuyanim, 2014). In this paper, we follow the 
suggestion of Coles (2014), who argues for the impor-
tance of ordinality in the early development of num-
ber, based on recent neuro-science findings, as well 
as on the work of Caleb Gattegno (1974). [1] Ordinals 
convey a sense of time and sequence, of ‘the next one 
to be named’ and ‘the one to be said after that’. Success 
with intransitive counting primarily involves being 
able every time to generate stably the same set of 
words in the same order. Transitive counting, which 
may be over-emphasised in early schooling (see Tahta, 
1991), relies centrally upon intransitive counting and 
can actually be seen as a ‘mere’ application of it, a sub-
ordinate practice. Among other things, ‘ordinality’ 
refers to the capacity to place numbers in sequence: 
for example, that 4 comes before 5 and after 3 in the 
symbolised sequence of natural numbers, as well as 
in the parallel ordering of the number words. We 
here interpret attending to any kind of sequencing 
of numbers (not just counting by ones) to be attention 
to the ordinal. 

In particular, Coles points to the need for research 
to explore the potential of an increased emphasis 
on ordinal aspects of number with children of pri-
mary school age, or younger. In current classrooms 
in Canada (and elsewhere), children are generally 
offered concrete resources and materials (such as 
Dienes Blocks, a move which Tahta, 1991, terms met-
aphoric). The neuro-science suggests such schoolwork 
on linking symbols to objects may reinforce the very 
way of thinking that underachieving students need to 
overcome in order to become successful at counting 
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and arithmetic. Coles hypothesises that what these 
students need is support to work with number words 
and symbols in their relationship to other number 
words and symbols (which Tahta terms metonymic). 
Our research focus and central question involves un-
derstanding better the particular entanglement of 
the audible, the visible and the tangible plays out in 
young students’ developing ordinal sense of number.

THEORETICAL FRAMING

In Jackiw and Sinclair (2010), user interaction with 
The Geometer’s Sketchpad is discussed in terms of a 
pedagogic conversation, one in which it makes far 
greater sense to frame the student as the teacher 
rather than the software acting as one. The authors 
rhetorically ask, “If Sketchpad cannot speak, in what 
sense can it participate in discourse?”, yet go on to 
claim, “there is a coherent and well-defined linguistic 
trajectory to users’ interactions with Sketchpad, an ex-
plicit interplay and evolution of language […]” (p. 159). 
The ‘language’ they discuss is all written and the user 
issues commands by means of verbal menu selection, 
mouse play and/or keyboard entries. 

In the excerpt we discuss here, we wish to go fur-
ther and examine the ‘coherent and well-defined 
linguistic trajectory’ we see in Katy’s interactions 
with TouchCounts broadly inspired by the field of 
Conversation Analysis (see, e.g., Sacks, 1992), specif-
ically focusing on sequential aspects of turn-taking, 
the core characteristic of naturally occurring conver-
sation. The focused conversation (in the conventional 
sense) between Katy and Nathalie in the first part of 
the encounter proves Katy to be well-accustomed to 
taking turns and a respecter of that: indeed, there 
are almost no instances of overlapping speech. But 
when she ‘converses’ with TouchCounts on the iPad, 
she takes most of her turns with her index finger, 
changing things significantly.

This latter ‘conversation’ is about the spoken sequence 
of number names in English, as well as the visual nu-
merals on the discs that are generated by her finger 
in the varying rhythms she adopts. Unlike with the 
Sketchpad setting mentioned above, there is no writ-
ten language here: the only visible symbols (which 
are not part of the English language) are the numerals 
appearing on the successively generated discs. But the 
associative rhythm – parallel structure in the number 
words said, repetition in her finger touches, pulse in 

her attention – is so evident that it becomes for us 
one of the main phenomena of interest in this epi-
sode. Temporality and sequentiality lie at the heart 
of ordinal awareness. As Tahta (1989) claims, “Time 
becomes manifest […] in the experience of rhythm and 
repetition. The medium for language, and so eventu-
ally for counting, is at first sound” (p. 20). Staats (2008) 
convincingly argues that, “repetition creates ideas 
that transcend the sentence”, a phenomenon she links 
to Roman Jakobson’s poetic function of language, one 
where “the form of the message calls attention to itself ” 
(pp. 26–27). [2] While ‘the number poem’ [3] may be 
used as informally to refer to the sequence of number 
words, we doubt users of this expression are attend-
ing to Staats’ assertion “Any time a repetition causes 
listeners to attend to the form of the statement, or to 
use the form of the statement to construct meanings, 
the poetic function of language is in play” (p. 28).

METHODS

The encounter at the heart of this paper occurred 
in an elementary school in a rural part of British 
Columbia, where the second author worked for about 
an hour with each of five kindergarten children, in 
a one-to-one setting separate from their customary 
classroom and teacher, which was videoed as part of 
the research project. The first part of each clinical 
interview focused on symmetry tasks, while the sec-
ond part involved the use of TouchCounts, which was 
new for each student. Because this was the beginning 
of Katy’s work with TouchCounts, it gave us an op-
portunity to see her first encounters with counting 
tasks on the iPad, seeing how she made sense of the 
App and how that interacts with her feel for number. 
Katy was the first student to be interviewed, as well as 
the youngest (having recently turned five). Although 
portions of this session have been analysed in a paper 
for the previous CERME (Sinclair & SedaghatJou, 2013; 
there is also more discussion of methods there), that 
paper focused on cardinal aspects of number. Here 
we offer a more ordinal focus and closer attention to 
the entanglement of the audible, visible and tangible. 

Brief description of TouchCounts
We briefly describe only the Enumerating World of 
TouchCounts, which starts almost blank, except for a 
horizontal bar representing a shelf (Figure 1a). In this 
world, a user taps her fingers on the screen to summon 
numbered objects (yellow discs). The first tap (when 
initially turned on or after pressing Reset) produces 
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a disc containing the numeral “1”. Subsequent discrete 
taps produce sequentially numbered discs. As each 
tap summons a new numbered disc, TouchCounts 
audibly speaks the English word for its number. As 
long as the learner’s finger remains in contact with 
the screen, it ‘holds’ the numbered object, but as soon 
as she “lets go” (by lifting her finger), the numbered 
object falls to and then “off ” the bottom of the screen, 
as if captured by some virtual gravity. If the user taps 
and releases a numbered disc above the shelf, it falls 
only to the shelf, and comes to rest there, visibly and 
permanently on screen, rather than vanishing out 
of sight “below”. (Thus, Figure 1b shows a situation 
in which there have been four taps below the shelf – 
these numbered objects are in the process falling – 
and then the “5” disc was placed above the shelf.) 

Discs dropping away (under ‘gravity’) mirror the 
way spoken language fades rapidly over time, with 
no trace left – the impermanence of speech. Also, with 
discs disappearing, any sense of cardinality goes too: 
the disc labelled ‘2’ is simply the second one to have 
been summoned (in the absence of the presence of 
the disc labelled ‘1’. So the Enumerating World with 

‘gravity’ enabled (it is an option) is almost entirely an 
ordinal one. However, the shelf feature allows the 

user to ‘store’ some objects for longer. Since a new 
numbered object is created each time a finger is placed 
on the screen and then lifted, one cannot ‘catch’ or 
reposition an existing numbered object by retapping 
or dragging it. Depositing discs on the shelf are as if 
they have been written down, inscribed on the screen 
as one might write on paper.

Fingers can be placed on the screen either one at a 
time or simultaneously. Thus, with five successive 
taps, a user sees five sequentially numbered objects 
appear one after another on the screen and hears 
these numbers announced by their English number 
name one by one. [4] However, if she places two fin-
gers on the screen simultaneously, she sees two num-
bered objects appear simultaneously, but only hears 
the higher-numbered one explicitly named (“two,” if 
these are the first two taps). Thus, repeatedly tapping 
two fingers on the screen produces the sequence of 
number names “two, four, six, eight, ….”. This feature 
is barely drawn on in our excerpts.

Notably, TouchCounts ‘takes care of the counting’, both 
in terms of making sure that the sequence of numerals 
is given correctly on the screen and in terms of ensur-
ing that the number names are said in the requisite 
order, in response to the fingered requests of the user. 

DATA, ANALYSIS AND RESULTS

In engaging with the data, we looked for interaction in 
conversation (including the iPad as converser) as well 
as elements of rhythm and repetition. The ten-minute 
sequence from which the excerpts discussed in this 
paper have been taken begins: 

Nathalie: Let’s do some, just some numbers first, 
OK?

Katy: Numbers. 
Nathalie: Yeah.
Katy: OK.

From strokes to pops
Without prompting, Katy’s hand then approaches the 
screen and the index finger of her right hand touches 
the top of it and then slides down to the bottom (we 
call this a ‘stroke’). A yellow disc appears under her 
finger with the numeral ‘1’ on it and at the same time 

“one” is spoken by the iPad. Her finger moves back to 
the top of the screen, before touching again and slowly 
stroking downwards. The iPad says “two”, followed by 

Figure 1: (a) Initial screen of TouchCounts; (b) After tapping five 

distinct times, but with only the last time tapped above the shelf
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Katy’s echo. This happens repeatedly for three, four 
and five, while for six, seven and eight she says the 
number simultaneously with the device (Figure 2a). 

She says nothing for nine (and it subsequently be-
comes clear she is not always sure nine follows eight). 
The appearance of the disc bearing ‘10’ attracts her 
attention, perhaps because of its double digits. Katy 
bends over to look closely at the screen and she then 
says “ten” after the iPad and with a rising intonation 
(Figure 2b). She keeps her head down while continu-
ing to make subsequent numbers at a good speed, but 
now only the iPad recites them: she is so quick that the 
iPad only gets to say the ‘four-‘ of “fourteen” before “fif-
teen” comes. After “seventeen”, several fingers fall on 
the screen at once, and then ‘twenty-one’ is heard. This 
produces a pause in the action and Katy’s lips spread 
into a smile. All her other fingers are tucked away, as 
the rhythmic stroking continues along with the cho-
rus of named numbers, which Katy begins to repeat 
with the iPad at “twenty-three” (only she consistently 
says “tenny” for “twenty”). At “twenty-seven”, Katy 
looks up, no longer watching the screen (see Figure 
2c), while she continues stroking and saying numbers. 

Even in this first small episode, some transcription is-
sues are evident, mostly concerning the coordination 
of ear, eye and hand. Each of the elements is a material 
event occurring in time in the world. Consequently, 
each of them occurs in time and takes a certain length 
of time and can occur in conjunction with the others. 
To transcribe them there would need to be a ‘channel’ 
(or ‘register’, though not in the technical, linguistic 
sense) for each, arranged horizontally (like a musical 
score for several instruments), where time is calibrat-
ed across them, but even then it would be difficult to 
show shifting subordination of one to the other (as 
occurs when Katy looks nonchalantly up while con-

tinuing to swipe). What we have had to attempt here 
is a narrative retelling, making observations about 
our linked phenomena of interest.

The TouchCounts timings are predictable, in that the 
numbered disc appears virtually instantly when the 
finger is lifted from the screen, while each number 
word takes a certain length of time to say. The words 
above twelve are generated syllabically, e.g. fif-teen 
and fif-ty, while “twenty-three” uses the same “three” 
as “three”. There is an appreciable gap between, for 
instance, the “twenty” and the “seven” in the saying of 

“twenty-seven”, a material fact that Katy makes good 
use of later by inserting her finger stabs to prevent 
the second part of each number word being said aloud.

Nathalie asks her to tap above the shelf, which she 
does, swiping her finger down to make ‘thirty-one’. 
After ‘thirty-two’, Nathalie asks Katy to let go of the 
disc above the shelf (not on the shelf ), which Katy does, 
noting that “it stops the number”. When she taps again 
(above the shelf ) she says “pop”, and then taps sever-
al times again. At ‘thirty-nine’, she starts placing the 
discs on the shelf side by side, going from the left to 
the right, until she gets to ‘forty-six’, at which point she 
returns to the left edge of the line, makes ‘forty-seven’, 
looks up at Nathalie and puts her hands on her lap. 
Nathalie asks Katy to reset. Instead of hitting the reset 
button, she creates numbers in quick succession, so 
that the iPad says “forty-eight, forty, fifty, fifty, fifty”. 

Nathalie asks Katy to put “just five” on the shelf. Katy 
tries several times, without success, then puts her 
head down and taps intently on the screen below the 
shelf, saying the number names aloud with the iPad 
(one, two, three, four), then moving her finger up to 
place five on the shelf. Nathalie asks Katy to put “five 
and ten up here”. On her first try, she places five below 

Figure 2: (a) Katy stroking; (b) Attending to the disc; (c) Stroking while looking up 
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the shelf, so has to begin again. On her next try, she 
very quickly taps four times below the shelf and once 
above. She then puts ‘eight’ above the shelf and realises 
her mistake, but continues tapping quickly on the 
screen, so that the iPad says “twenty, twenty, twenty, 
twenty, thirty, thirty, thirty, thirty, thirty, thirty, thirty, 
thirty, thirty, thirty-nine, forty, forty, forty, forty, forty, 
forty, forty, forty, forty, forty, fifty, fifty, fifty, fifty, fifty, 
fifty-five”. Katy smiles. We conjecture reassurance can 
derive from the regularity of repetition and rhythm.

The language of ‘friends’
In the moment, Nathalie spontaneously tries to ‘hu-
manise’ the mathematical task she wants Katy to 
attempt, namely to produce all the multiples of five 
alone on the shelf. She does this by saying, “Imagine 
five and ten are your best friends and they’re the only 
ones you want to come over to your house (points to 
the region above the line). So you just want five and ten 
and not the other people in your class.” The language 
of friends and home and the translation of what is 
happening on the screen into these terms, however, is 
precisely the sort of metaphoric shift that Tahta sug-
gested can take attention away from the ordinal, away 
from links between the number words and symbols 
themselves. Additionally, this move transfers the ‘I 
want’ framing of the task into what ‘you [Katy] want’. 
After a few tries, Katy succeeds in placing just five on 
the shelf (Nathalie: “Five is your friend.”), then taps 
below the screen to make six. 

When Katy spontaneously asks, “What kind of num-
ber is going to come after?” (there had been no talk 
about ‘kinds of number’ prior to this), we assume she 
is asking ‘friend or not friend’, but it could also signal 
that, at the moment at least, she is unsure that “seven” 
follows “six”. Also, following the placing of “eight”, 
Katy asks “Is nine going to come after?”. She eventu-
ally places 5 and 10 above the shelf successfully. She 
stops. Then Nathalie asks her which other numbers 
are her friends. She mentions several (seven, one, two, 

“all of the numbers”) and then starts tapping, making 
eleven, twelve, thirteen, four, fif, six, twenty, twenty, 
twenty, twenty-five. 

From “pop” to “drop”
She starts at one again above the shelf, puts two be-
low the shelf saying “drop”, then places three above 
the shelf and four below (repeating “drop”) and con-
tinues going over and under the shelf until she gets 
to seventeen above, pauses then continues until she 

reaches twenty-two. She then returns to the left side 
of the shelf, having filled the shelf with (mostly) odd 
numbers and continues to tap-drop, seemingly more 
focused on the rhythmic motion of her hand than on 
the specific value of the number names. She starts 
going very quickly, saying “drop” again so that only 

“forty, forty, forty, forty…” can be heard from the iPad, 
then “fifty, fifty, fifty…”, then “sixty, sixty, sixty…”. Katy 
says, “I’m doing a pattern”, but does not go into any 
more detail, alas, as to which pattern she is seeing. 
She continues in this way into the seventies, the eight-
ies and the nineties, until the iPad crashes. After this, 
Nathalie shows Katy how to use many fingers at a 
time to make “friends”. She gets to two hundred and 
five, says “I don’t want no friends” and presses reset 
while smiling. She then says she knows how many 
friends she wants, and makes one, two, three, four, five, 
six successively with her finger, then stops, saying, 

“That’s how many friends I want.”

DISCUSSION

Rhythm is the essence of counting, its heartbeat. It 
is there from the beginning, but changes over time. 
Katy’s first rhythms are the slow strokings of the 
screen with her index finger, which she watches swim 
down the screen, as if each numbered disc were wor-
thy of her attention. Here, she seems to be in conver-
sation with the motion of the discs, more so than with 
the iPad’s oral naming. Indeed, she notices the shift 
from single to double-digit numerals at ten (comment-
ing “a one and an o”). Then tactile rhythm turns into 
taps, a new gesture that seems less interested in the 
individual number than in the succession – and this 
is where Katy starts chiming in with the voice of the 
iPad, no longer even needing to see what she is mak-
ing happen. With the task of placing five on the shelf, 
a new rhythm develops over time, which is the four 
quick taps below the shelf and then a fifth above, this 
perhaps giving rise to the rhythmic ‘above then below’ 
alternation with which she will later play. 

Rhythm is also there in the structure of the number 
names. It is there in Katy’s large, alternating rhythmic 
gestures, gestures that are binary. The odd and the even, 
we might think: it is there in her gestures, but we hear 
none of it in what is said, merely in the pattern of the 

‘pops and drops’, to use Katy’s words. Were she attend-
ing to the numerals on the discs that were alternately 
produced above and below the shelf, she might have 
seen something recurring in the digits’ place, attend-
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ing to what changed, but changed regularly (but there 
would have been ‘noise’ here, as she occasionally places 
her finger on top of an already existing disc, which 
then does not make a new one). Had she allowed the 
iPad to say every number fully, she might have heard 
something similar: the same stem, first by itself, then 
followed by the number words one to nine, before the 
next stem changed, a decimal rhythm underlying a 
repeating refrain. But no, instead she edited [5] the 
conversation by means of her own interruptions, only 
allowing the iPad room to say the same thing each time: 
sixty, sixty, sixty, … (ten times), “seventy” (ten times), 

“eighty” (ten times), then “ninety”. 

Gattegno (1970) claimed, “To stress and ignore is the 
power of abstraction that we as children use all the 
time, spontaneously” (p. 12; italics in original). This 
episode with Katy illustrates his claim consummate-
ly: she consistently stresses the common decade stem 
and consistently ignores the variation that follows (by 
editing it out of the conversation, by making in vanish, 
aurally) and does so across more than sixty numbers 
one after another. She manages to do this by complex 
finger movements deployed in a highly rhythmic man-
ner. Hers is no small achievement. In relation to Staats’ 
comment about language drawing attention to itself, 
we assert that Katy’s dextrous manipulation of her 
side of the ‘conversation’ does precisely that (name-
ly drawing attention to the repetitive pattern of the 
number words in the decades).

CONCLUSION: THE TRIPTYCH OF THE SENSES

Deleuze (1981/2003), at the end of his book on the art of 
Francis Bacon, offers a brief discussion of the interac-
tion between the hand and the eye, as well as degrees 
of subordination of one to the other. Deleuze distin-
guishes four ‘values of the hand’, which he terms the 
digital, the tactile, the manual and the haptic, teased 
out first along the degree of subordination of the 
hand to the eye (digital more subordinate than tac-
tile, where the hand is reduced to a finger). With the 
manual, the direction of subordination is reversed 
(Deleuze writes of “the insubordination of the hand”, 
p. 155) and with the haptic, the link between eye and 
hand are relatively severed. 

But it is not so much in the detail of these distinctions 
that we wish to dwell. Rather, it is that here, with 
TouchCounts present, we are looking at dynamic in-
teractions among hand, eye and ear. And we are con-

cerned with numbering not painting. But Deleuze’s 
idea of mutual entanglement and relative subordi-
nation among senses and their organs remains. We 
are interested in the particular way that this specific 
entanglement is shaped, which is distinct from other 
counting environments, and we can extend Deleuze’s 
concern with the hand and the eye to include the ear 
also. The lifting of Katy’s eyes while still making num-
bers provides a clear instance of a subordination of 
the eye to the hand and ear, one that is easy to observe 
(whereas instances when the ear is or is not attending 
are less apparent). 

Nowhere in this episode does Katy seem to be count-
ing objects, but rather is simply counting [6]: the 
‘number poem’ is being made by her index finger – 
TouchCounts answer to Katy’s question as cited in 
our title. This one-to-one correspondence, in which 
TouchCounts takes care of saying the number names in 
the correct order, releases Katy from having to worry 
about what, if anything, is being counted, allowing her 
to dwell in the rhythmic succession that is counting. 
Later, the eye and the hand are both subordinated to 
the ear (in the same way that Hewitt, 1996, speaks of 
subordinating and coordinating actions and attention 
to achieve a central goal), as Katy achieves the (pre-
sumably desired) repetitive aural effect of the exag-
gerated looping back and forth tapping of her hand. 

To return to Coles’ work and renewed attention to or-
dinality, not only does number involve coordination 
of the audible, the tangible and visible, as illustrated 
in this episode, but TouchCounts affords the stressing 
and ignoring of each of these aspects in various ways. 
In particular, it allows the subordination of the aural 
to the tactile – with the IPad ceding conversational 
ground to her with every tactile interruption – with 
the possible exception of when it ends the conversa-
tion abruptly, by crashing just prior to the unspoken 

“ninety-three”.
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ENDNOTES

1. Such ideas are also present in Walkerdine (1988) 
and, particularly, Tahta (1991). 

2. Jakobson’s poetic function relates to his metaphoric 
and metonymic ‘axes’, as drawn on in Tahta (1991) by 
the latter’s use of these terms, as mentioned above. 

3. Sometimes, ‘the number poem’ refers to rhymes like 
‘One two, buckle my shoe’ or ‘One, two, three, four five, 
once I caught a fish alive’, that incorporate the number 
words in order as part of the text, while sometimes 
this expression simply refers to the number words 
being recited in order by themselves (see also Tahta, 
1991).

4. Other language options are available with 
TouchCounts, including French and Italian.

5. For more on editing, see Hewitt (1997), although he 
sees it as a teacher function to affect student attention.

6. In Symbols and meanings in school mathematics, 
Pimm (1995, pp. 64–66) distinguishes between transi-
tive and intransitive counting – the former connecting 
the counting of things to the fact that the verb ‘to count’ 
can take a direct object (an answer to the question 

‘What are you counting?’), while the latter label re-
fers to counting (reciting the number words in order) 
where there is no such direct object (where the answer 
to the same question is “Nothing”).

https://itunes.apple.com/ca/app/touchcounts/id897302197?mt=8
https://itunes.apple.com/ca/app/touchcounts/id897302197?mt=8
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This paper reports from a preliminary qualitative case 
study and accompanying theoretical considerations 
in preparation for a study of interventions designed 
to support the learning of numerosity in three year 
old children in a Norwegian kindergarten. Teaching 
interventions are analysed and discussed both from 
the perspective of children’s learning and the teacher’s 
mediation. Luis Radford’s theory of objectification is 
used as theoretical framework. This is a new approach, 
as most research papers in the field use quantitative 
methods and a cognitive approach. Our study indicates 
that preschool teachers face challenges in taking the per-
spective of the children they teach, and that knowledge of 
children’s learning phases and assessment of children 
is needed to improve teaching. 

Keywords: Numerosity, objectification, give-N task, 

parallel individuation system. 

INTRODUCTION

Already at the age of about two children begin to 
learn the sequence of counting words, but further 
development takes time.  More than a year is often 
needed from when children can count small sets of 
objects properly until children respond correctly to 
questions involving the use of numbers (see Sarnecka 
& Carey, 2008, p. 664). We hypothesize that this time 
can be reduced by planned learning interventions 
conducted by preschool teachers or other competent 
persons. In a preliminary qualitative case study over 
a period of three months we followed learning inter-
ventions in a Norwegian kindergarten conducted 
by a preschool teacher who was supervised by two 
researchers. Twelve children took part more or less 
throughout the study. We emphasised activities which 
use and give meaning to counting and number, but 
also the learning of counting skills. The interventions 
in the preliminary study started up with low quality. 

During the study we observed improved instruction 
and many signs of learning. Interventions of mixed 
quality proved much better than no interventions at 
all. A follow up study is planned and will build on the 
findings from the preliminary study. 

Norwegian children can attend kindergarten from 
the age of one until they start school the year they 
turn six. As much as 90 % of Norwegian children be-
tween one and five years old, attended kindergarten in 
2013. As remarked by Hundeland, Erfjord and Carlsen 
(2013), “the Norwegian kindergarten is regarded by 
OECD (2006) as situated in a social pedagogy tradition, 
i.e. an educational institution where core enterprises 
are upbringing, care, play and learning”. Norwegian 
preschool teachers usually do not support children’s 
learning of counting and number through planned 
and systematic interventions. Now and then they in-
itiate simple counting activities, and sometimes they 
initiate conversations about numbers with children 
based on free play situations. The preschool teacher 
in our study does not have mathematics as a subject 
in his education. However, since 1995 mathematics 
has been compulsory in preschool teacher education 
in Norway. 

From the adult expert perspective, numerosity is the 
same as the cardinality of sets, but we use the former 
term to underline the very different perspective of the 
child and the educated adult. The learning of numer-
osity means to catch the meaning and cultural use of 
number. This is complex and diverse, starting early 
in children’s lives. In the research literature, the un-
derstanding of the numerosity N has been operation-
alized by the so called give-N test (Wynn, 1990; 1992; 
Sarnecka & Carey, 2008).  In give-4 the child is asked 
to retrieve four objects, for instance plates, from a 
heap or a larger set. Research has shown the give-N 
tasks to be far from obvious for the child. Wynn (1992) 
found a progressive development in children from 
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first managing give-1, then give-2 and so on up to give-
5 or give-6. This has been confirmed by several others 
(see Sarnecka & Carey, 2008). When give-5 or give-6 
is mastered, children seem to respond correctly to 
give-N, for N as large as the child is able to count. We 
will analyse excerpts of interaction of such challenges 
both for the children and for the preschool teacher 
trying to support them. Finally, possible improve-
ments in the design of interventions will be discussed. 

RADFORD’S THEORY OF KNOWLEDGE 
OBJECTIFICATION

The research literature on young children’s acquisi-
tion of number has been dominated by psychologists, 
cognitive scientists and neuroscientists. Their per-
spective is cognitive with emphasis on understanding, 
mental models and what happens in the brain, and 
they use quantitative methods. The give-N activity 
has been seen as a test of “understanding the cardi-
nal principle” or being a cardinal principle knower, 
Sarnecka and Negen (2012). The cardinal principle 
was introduced by Gelman and Gallistel (1978), and 
states that the last counting word in a correct applied 
counting procedure, is the cardinality of the set. The 
latter refers to a concept as possessed by mature 
adults. We claim that the child does not experience 
concepts, but activities which gradually become mas-
tered and turned into procedures. To possess numer-
osity as a concept comes much later in the child’s de-
velopment. In place of speaking about understanding, 
the noticing of regularities in and connections among 
the activities is emphasized. This approach is based on 
Luis Radford’s variant of cultural historical activity 
theory. In his theoretical framework, mathematical 
objects exist in the culture among us. According to 
Radford (2008, p. 222), “[…] mathematical objects are 
fixed patterns of reflexive human activity incrusted 
in the ever-changing world of social practice mediated 
by artifacts”. Both counting and give-N activities are 
examples of cultural activities. Objectification is the 
crucial moments of the child’s learning when the child 
notices important aspects hidden in cultural activities.  

The term objectification has its ancestor in the 
word object, whose origin derives from the Latin 
verb obiectare, meaning” to throw something in 
the way, to throw before”. The suffix – tification 
comes from the verb facere meaning ”to do” or 

”to make”, so that in its etymology, objectifica-
tion becomes related to those actions aimed at 

bringing or throwing something in front of some-
body or at making something apparent − e.g. a 
certain aspect of a concrete object, like its col-
our, its size or a general mathematical property.  
(Radford, 2006, p. 6)

The child does not notice an abstract property, but a 
pattern or regularity in a cultural activity involving 
language, physical actions and artefacts. An example 
is the give-3 activity where a child is asked to fetch 
three plates from the shelf. A child can take part in 
such activities before being able to do it alone. During 
the learning process what children have objectified 
can vary significantly. Following Radford (2005), we 
use the concept ‘layers of objectification’ to classify 
alternative objectifications of the same activity. The 
original use by Radford was to study how students in 
school objectify the generality of geometrical number 
patterns. Later on Lorange and Rinvold (2014) have ap-
plied the theory to the study of students’ strategies in 
expanding fractions to a common denominator. One 
layer of objectification of give-3 is when a child is us-
ing 1–1 matching to take one plate for each member 
of his family. A more advanced layer of objectifica-
tion for the same activity is to remember the number 
word three and take one plate for each of the three 
first counting words. Different layers correspond to 
different strategies for doing the task depending on 
the regularities, skills and semiotic tools the child 
has grasped. Counting aloud, silently or using their 
fingers, are variants which give rise to more finely 
grained layers of counting. Layers are not necessarily 
linearly ordered. We have seen the same child demon-
strate different layers of objectification of counting 
within one learning session. An example is perfect 
counting of six toy cars and recital of the counting 
words one-two-three when asked how many noses 
the boy has. Fragile and uncertain mastery and un-
derstanding in a learning phase is one possible expla-
nation, but also social uncertainty in responding to 
demanding tasks together with other children. 

Children who master the give-N task for all N, or in 
practice 5 or 6, are called cardinal principle know-
ers or CP-knowers. According to Sarnecka and 
Negen (2012), recent empirical studies have found 
that CP-knowers show an implicit understanding of 
succession and equinumerosity. The competency of 
succession is described as knowing that adding one 
item to a set, means moving one word forward in 
the counting sequence. Sarnecka and Carey (2008) 
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found that CP-knowers performed well on two tasks 
intended to operationalize this competency, and that 
the non-CP-knowers performed only slightly better 
than chance. Sarnecka and Wright (2013) came to a 
similar conclusion for a task intended to measure the 
competency of equinumerosity.  The latter means that 
two sets with a 1–1 correspondence must be labeled 
with the same number word. These results indicate 
that objectification of give-N is an important mile-
stone in the learning of numerosity. 

THE PARALLEL INDIVIDUATION SYSTEM

Children younger than one year have been shown 
to be sensitive to small numerosities. This ability 
does not, however, mean that the children posit the 
concepts of the numbers one, two and three. Visual 
discrimination does not by itself gives understanding 
of language. Verbal subitizing (Benoit, Lehalle, & Jouen, 
2004) in which a child immediately gives a number 
word when shown a set of one, two or three concrete 
objects has to be learnt. This learning process does not 
have to be difficult, but is complicated by the fact that 
many children meet the number words only in count-
ing and not in number talk. Some children may never 
have been shown for instance three dolls and told that 
this is three dolls. Subitizing is believed to be based 
on what is called the parallel individuation system in 
the brain. According to Sarnecka and Negen (2012, pp. 
247–248), this system represents and tracks individu-
als (objects, sounds, or events). Concrete objects and 
their properties are represented, so the parallel indi-
viduation system is not an abstract number system. 

This system privileges spatiotemporal informa-
tion to initiate a mental index, or object file, for 
each item. Although inherently non-numerical 
in nature, these representations afford numer-
ical content by retaining information about 
numerical identity – mentally stored items can 
be compared on a one-to-one basis with visible 
objects in the scene to detect numerical matches 
or mismatches. (Hyde, 2011)

Learning the colour red is mediated by pointing to red 
things and saying for instance “this apple is red”. We 
expect that verbal subitizing can be learnt similarly, 
but that generalization is somewhat more demanding 
than for colours. The parallel individuation system 
does not let the child see twoness, but the mental im-
age of for instance two dolls. The possibility of com-

paring a given set of concrete objects to some standard 
visual representation makes generalization possible. 
Mental images also let the child solve some matching 
tasks without numerical thinking. 

METHODOLOGY

In the preliminary case study we followed twelve 
children in a Norwegian kindergarten for a period 
of three months. The kindergarten was chosen be-
cause it is located in reasonable distance from the 
university college where the researchers work, and 
has a preschool teacher interested in cooperating in 
this project. The participants were all the children 
between three and five years with no known learning 
difficulties who wanted to take part and whose parent 
granted permission. At the start of the study the ages 
varies from 3 years 2 months to 5 years 7 months. The 
children took part in weekly intervention sessions of 
10 to 20 minutes duration. In the first part of the study 
as many as seven children took part in each session. 
Later on some sessions had only three or even two 
children. All sessions were videotaped and observed 
by at least one of the researchers. An experienced 
male preschool teacher conducted all the sessions. 
Sometimes an assistant was present too, whose contri-
bution was limited. Before each session the research-
ers gave the preschool teacher an outline of what to 
do, but he had quite a bit freedom and was not given 
precise instructions. The content of the sessions were 
different kinds of counting tasks and activities. Most 
often one child at a time completed a task or answered 
a question. In the paper we study samples with the 
four youngest children, two boys and two girls. They 
were Siri: 3 years 2 months, Nina: 3 years 6 months, 
Ole: 3 years 7 months, and John: 3 years 10 months. No 
testing or systematic assessment of the children was 
done, but all of them had some previous experiences 
with counting. Already in the first session we noted 
that Ole and John were relatively poor in counting. 

ANALYSIS OF LEARNING INTERVENTIONS

We present selected excerpts from three sessions, 
focussing on one task from each of them. Each ex-
cerpt is a dialog between the teacher and one child. 
Information about movements, gestures and other 
relevant facts is put in square brackets. The tasks are 
analysed from both teacher’s and child’s perspective. 
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The pure give-N task
In this task a piece of paper with a numeral printed on 
it is laid on the floor. One of the children is asked to say 
which number it is, and then the teacher repeats the 
number. One child is asked to collect that number of 
plastic bears from a bucket and then place the bears 
beside the numeral. We follow the first give-N task 
given to Siri. 

Teacher: It’s the number four. Can you fetch that 
many bears?

Siri:  [Collects two bears without any signs of 
counting and puts them on the floor]

Teacher: How many bears have you put on the 
floor? [He moves one of them a bit and 
makes counting gestures towards each 
bear] How many is this? 

Siri:  [after some silence] Two [without visible 
or audible counting]

Teacher: one – two [while pointing to each of the 
bears]

Siri: two – three

The teacher thinks that counting will help the child, 
but Siri resorts to a more primitive objectification 
layer of counting. When the teacher says one – two, 
she turns back to the practice of reciting the number 
words. The teacher emphasises counting, and he prob-
ably expected her to count aloud before answering 

“two”. But, her answer was satisfactory. Both verbal 
subitizing and counting internally are legitimate 
strategies. He could have challenged her better by 
taking away the bears and giving her a give-2 task.

The collecting plates to the bears task
One week later Nina is part of the group in place of 
Siri. Now the children are given a situation which is 
modelling an everyday activity. This enables them to 
rely on information and strategies they already know. 

Teacher: In one of the houses live a mammy 
bear, a daddy bear and a tiny baby bear. 
[moving the mammy bear] Now you 
must come and eat. Can you Nina come 
and fetch a plate to each of the green 
bears. The green bears must have one 
plate each. [while holding a transparent 
plastic bucket with small circular plas-
tic pieces]

Nina:  [Takes four plastic pieces from the buck-
et, one at a time, without looking at the 

bears. She loses one piece on the floor, 
begins to retrieve it, but stops.]

Teacher: They must have one plate each.
Nina: [She lays down one plate for each bear] 

porridge [takes the last plate and gives 
it to a bear belonging to another family 
of bears]

Nina is not looking at the bears while collecting plates, 
so she either takes them randomly or relies on some 
other information. The former is less probable, since 
she is taking time collecting the plates. The individ-
uality of the bears can be remembered by the names 
mammy, daddy and baby or their medium, large and 
small sizes. This is within the limit of the parallel indi-
viduation system, so 1–1 matching based on memory 
is possible. That she takes one plate too many, may 
indicate that she relies on numerical information, but 
has not developed a firm grasp of numerosity. 

As number words are not mentioned, this is not really 
a give-N task. It could have been so if the teacher had 
introduced number words, for instance by asking the 
child how many bears there are in the family and how 
many plates are needed. Later on in the same session 
Ole gets a give-2 task in which the number word ‘two’ 
is used both before and after the task.  

Teacher (T): The bear family got visitors. [He 
places two bears beside the green fam-
ily] The mammy bear asked if the two 
visitors also wanted porridge. Can you 
put on plates to them Ole?

Ole and T: [Ole takes some plastic pieces from 
the bucket. Simultaneously, the teacher 
repeats “place plates to the two, two”.] 

Ole: [Ole looks at the bears and returns some 
plates to the bucket until he has two. 
Then he walks to the bears, takes one 
plate in each hand and places one plate 
in front of each bear.]

Teacher: Excellent. There they got two plates.

That Ole first collects several plates in the bucket, may 
be because the visual presence of five bears overrides 
the number word ‘two’. The teacher’s repetition of the 
question initiates a change to collection by visual 1–1 
matching. One week previously Ole was successful 
with give-2 tasks without direct visual support. The 
available visual resources lead Ole into a more prim-
itive layer of objectification of give-2.
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In the same session, John, the mathematically weakest 
child, gets a give-4 task.

 Teacher:  John, the red ones must also have plates. 
[points to each of the plates in front of 
the green bears] 

John: No. [takes three plates one by one from 
the bucket, staring into the bucket, plac-
es one plate carefully in front of three 
of the bears]

Teacher: How many have you there? Can you 
count them?

John: [points twice to the plate in front of the 
first bear]

Teacher: You must count them. [Counts to three 
aloud while both he and John point to 
each of the three plates] How many more 
plates do you need then? One [while 
John is taking one plate from the bucket]

John: [Places the plate in front of the fourth 
bear, then looks at the teacher]

Teacher: Good!

Since John is weak in counting and numerosity, it 
is unlikely that he relies on numerical information 
when taking out three plates. The sizes of the red bears 
(Figure 1) indicate that the family has two adults and 
two children, but this information does not seem to 
be used. A likely explanation is that the parallel indi-
viduation system is utilized, but that the capacity limit 
of three makes John unable to take four plates at first. 
The second time he correctly takes one plate, but this 
does not necessarily mean that John is a 1-knower. The 
teacher’s utterance ‘one’ comes while John already is 
about to take one plate, so it is likely that John’s action 
is based on spatiotemporal memory. 

The garage task
In a session more than one month later the teacher 
has placed a heap of cars on the floor beside a garage. 
Ole, John and Siri are sitting on chairs placed so that 
they see both the garage and the heap of cars.  The 
garage task is a challenging give-N task giving less 
support and meaning. Parking places and cars are 
part of daily life, and children enjoy playing with toy 

cars. However, it is not natural at all to park a giv-
en number of cars, randomly chosen from a larger 
set. The children’s interest in toys cars can also be a 
distracter. The attention of some children was lead 
toward the cars themselves rather on the numerical 
information they were given. 

Teacher: Then I first want that John takes two cars 
[taps three times with his hand on top of 
the garage] and puts them on top here. 
Can you take two cars and put them on 
top of the car house?

John: [gets up, walks to the heap and almost 
without hesitation takes three cars 
one by one into his left hand. After a 
very short break he takes another car 
and holds the cars to his chest. Then he 
continues and takes a last car. Then he 
takes a long break while looking at the 
last car.]

Teacher:  Two cars do we want up there [taps three 
times with his hand on top of the garage] 
two cars.

John: [rises and walks to the garage, then plac-
es all the five cars one by one carefully 
on top of the garage, then turns in the 
direction of his chair.]

Teacher: [gestures John to return] Can you count 
how many cars there are here? Can you 
count them together with me? [Takes 
John’s finger] one – two – three – four – 
five [while he moves John’s finger to 
each of the cars]

John: [starts moving towards his place]
Teacher: Wait a moment. How many should you 

have? Two cars
John:  [Begins to take up one car from the 

heap.]
Teacher: [Stops him] We must take away some 

cars. [Takes away three cars] Can you 
count now? How many cars are placed 
on top of the roof now?

John: one – two [while pointing to the cars one 
by one. Then looks at the teacher]

Teacher: Two, yes. It was this you should have. 
Exactly, two cars

Possible explanations for John’s inappropriate re-
sponse to this give-2 task are that he ignores the 
word ‘two’, or that he interprets it as ‘many’. He may 
also take the cars he liked, or he takes into account 

Figure 1: The green and red bear families
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how much space is available on top of the garage. The 
teacher’s question of counting the cars is intended to 
draw attention to the numerical aspects of the task. 
John, however, again tries to return to his place, so 
this does not seem to be of any help. The next action 
by the teacher is to remind John that it is two cars he 
should have. This initiates John to start a new give-2 
attempt by picking up a car. Unfortunately that at-
tempt is refused by the teacher before we know what 
John would have done. John seems to have objectified 
give-N as a procedure for selecting some objects and 
putting them in a given place. If John had not been 
stopped, he may have taken up two cars and been 
rejected again because five cars already are on top 
of the garage. The teacher’s strategy of reducing a 
larger set into a set of two members is far above the 
level of the child, and shows that he is not able to take 
the perspective of the child. 

DISCUSSION

The most striking observation from the selected ex-
cerpts is the challenges the preschool teacher meets 
in mediating the children’s learning. The same is 
true also for the rest of the videotaped interventions. 
When he tries to meet their needs, his response is of-
ten irrelevant and leads the children into more prim-
itive layers of objectification. The level of tasks is not 
adapted to what each child has managed earlier. In 
order to help children struggling with the most basic 
tasks, the teacher should systematically remember 
or make written assessments of what each child has 
achieved so far regarding counting and give-N. More 
basically, the teacher needs to be aware that the child 
experiences cultural procedures and does not possess 
conceptual knowledge of numbers. 

One conclusion is that give-N tasks are of different 
kinds and of varying difficulties. In the most demand-
ing give-N tasks numerosity is given by a number 
word, and the child has to rely on that information 
in order to carry out the task. For the most demanding 
give-2 and give-3 tasks, verbal subitizing is a possi-
bility if mastered by the child. In the easier tasks, the 
objects are visible to the child or have names support-
ing 1–1 matching while the child collects the objects. 
In the follow up study we plan first to give a child the 
easy type, but will also challenge the child with pure 
give-2 and give-3 tasks as preparation for the mas-
tery of give-4. While working with the easy tasks, the 
teacher has to support the connections to audible and 

visible counting, but also give praise and apprecia-
tion to children who can tell the number of objects 
in sets by internal processes. Both internal counting 
and verbal subitizing are competences which are 
valuable in the learning of numerosity. Beyond the 
limits of the parallel individuation system, counting 
is indispensable. This is in accordance with Sarnecka 
and Negen (2012, p. 252), who claim that it is not pos-
sible to learn the meaning of large numbers in the 
same way as the small numbers have been learned. 
Similarly, Sarnecka and Carey (2008, p. 664) report 
that children who only master give-1, give-2 or give-3 
(subset-knowers), do not use counting when solving 
these tasks, even when asked to do so. 

In a follow up study we will take into account both the 
findings from this paper and other results which were 
not included here due to considerations of space. We 
will try both collaboration between children and more 
physical activities. Give-N has been described as col-
lecting a set of physical objects. A variant of give-N is 
to repeat some physical movement a given number of 
times. This is used in collecting N objects, as the child 
fetches an object N times. Non-collecting examples are 
jumping N times or clapping N times. Board games in 
which the player moves a piece as many steps as a dice 
shows, is another possibility. Such a game may be tried 
with children who do not master the collection form 
of give-2 and give-3, by using a dice showing only one, 
two or three. To show the actual number of spots on 
a dice is an easier alternative than communicating N 
by a number word. Three different approaches can 
be combined by first asking a child to say the number 
of spots on a dice, and then apply counting to move a 
piece that many steps on a playing board.
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The aim of this paper is to present a didactical sequence 
that fosters the development of meanings related to frac-
tions, conceived as numbers that can be placed on the 
number line. The sequence was carried out in various 
elementary school classes, containing students with cer-
tifications of mathematical learning disabilities (MLD). 
Thus, our didactical aim was to make accessible to all the 
students of the class, including MLD students, meanings 
related to fractions using a common didactical sequence 
for the entire class. Our research is based on a range of 
different perspectives, from mathematics education to 
neuroscience and cognitive psychology. We discuss how 
such perspectives can be combined and provide the the-
oretical bases to design the didactical sequence, which 
will be outlined, and which allowed us to implement 
and strengthen inclusive education. 

Keywords: Fraction, number line, artifact, mathematical 

learning disabilities.

INTRODUCTION AND LITERATURE

The concept of fraction is a very difficult one to mas-
ter: frequently students are unable to reach an appro-
priate understanding of it, as described for example 
by Fandiño Pinilla (2007), and they can even come to 
fear fractions (Pantziara & Philippou, 2011). When 
children encounter fractions – typically in Italian 
school this happens in third grade (at 8–9 years of 
age) – it is the first time they have to treat sets of digits 
differently than how they treat those given in decimal 
positional notation representing positive integers. 
The numerator and denominator of a fraction are two 
numbers, each of which is bound by the rules that 
apply to positive integers, but that together represent 
a new, single, number. Learning to see the numera-
tor and the denominator of a fraction together, as a 
single number is one of the most difficult – if not the 

most difficult – cognitive aspect of fractions (Bobis, 
Mulligan, & Lowrie, 2013).

Others disciplines, besides mathematics education, 
such as cognitive psychology and neuroscience, have 
also been very active in investigating the phenom-
ena of (difficulties in) understanding mathematics 
(incuded fractions), even if the different interested 
fields of research have not yet reached sufficiently 
common grounds for conducting scientific and inter-
disciplinary studies. In this paper, we consider some 
results from research in neuroscience and cognitive 
psychology to ground important design decisions 
taken during the elaboration of a teaching experi-
ment constructed around the learning of fractions 
in primary school. In the following paragraphs we 
will illustrate reasons why it is important to learn 
(and therefore teach) fractions, both from a didactical 
(math education) point of view and from the perspec-
tive of cognitive science.

IMPORTANCE OF FRACTIONS AND 
DIFFICULTIES IN LEARNING THEM

From the logical and epistemological points of view, 
the notion of fraction can be seen in different ways: 
as a linguistic representation of the decimal number 
obtained from the division indicated (but not calcu-
lated) by the number corresponding to the numerator 
and the one corresponding to the denominator; as an 
operator where the denominator indicates in how 
many equal parts a given unit is divided (each part 
is called a unit fraction) and the numerator indicates 
the number of these to consider.

3/4 = 3 times 1/4 → 3 × 1/4

Frequently, at least in Italian education, the concep-
tion of fraction as an operator is not explicitly identi-

mailto:e.robotti@univda.it
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fied as a rational number. Only when it is transformed 
into a decimal number is it placed on the number line.

From the point of view of learning mathematics, frac-
tions constitute an important leap within domain of 
arithmetic because they represent a first approach to 
the idea of extension of the set of Natural Numbers. In 
this sense, fractions need to assume a specific position 
on the number line (Bobis et al., 2013; Bartolini Bussi, 
Baccaglini-Frank, & Ramploud, 2013). Teaching the 
notion of fraction is, therefore, a quite delicate issue 
and it is ever so important to explore insightful ways 
of structuring didactical activities around it. In this 
respect, particularly insightful approaches have been 
provided, for example, by Bobis, Mulligan and Lowrie 
(2013). Even if certain basic aspects of the concept of 
fraction, particularly when seen as the perception of 
the variation of a ratio, seem to be innate (McCrink & 
Wynn, 2007), the learning of fractions presents obsta-
cles, not only of a didactical nature. In fact, research 
in mathematics education (e.g., Bartolini Bussi et al., 
2013), has shown how learning about not only the 
semantic aspects but also the lexical and syntactical 
ones of fractions involves the overcoming of different 
epistemological and cognitive obstacles such as: 

 ― Assuming that the properties of ordering natural 
numbers can be extended to ordering fractions 
(e.g. assuming that the product/quotient of two 
fractions makes a greater/smaller fraction).

 ― Positioning fractions on the number line us-
ing the pattern of whole numbers  (Iuculano & 
Butterworth, 2011). 

From a cognitive point of view, fractions seem to de-
mand more working memory resources than repre-
senting whole numbers (Halford, Nelson, & Andrews, 
2007). Moreover, fraction knowledge also requires 
inhibitory control and attention (Siegler et al., 2013), 
so that the numerator and denominator are not treat-
ed as independent whole numbers (Ni & Zhou 2005). 
With this in mind, it is clear that for a student with 
MLD (even when “D” stands for “difficulties” instead 
of “disabilities”) the learning of fraction will be a par-
ticularly arduous task. In fact, recent studies suggest 
that dyscalculia, a particular kind of MLD, is rooted 
specifically in weak visual-spatial working memory 
and inhibitory control (Szucs et al., 2013).

Our present work on fractions is part of a broader 
body of research (Robotti, 2013; Baccaglini-Frank & 
Robotti, 2013; Baccaglini-Frank, Antonini, Robotti, & 
Santi, 2014) that has the objective of building inclu-
sive curricular material, grounded theoretically in 
research in mathematics education and in cognitive 
psychology, appropriate for all students, including 
those with MLD.

CONCEPTUAL FRAMEWORK

A large number of studies associated short-term 
memory (STM) and working memory (WM) with 
mathematical achievement for students and expert 
(see reviews in Raghubar, Barnes, & Hecht, 2010). 
Moreover, non-verbal intelligence, addressed to 
general cognition without reference to the language 
ability (DeThorne & Schaefer, 2004) also seems to be 
strongly related to mathematical achievement (Szűcs 
et al., 2013). These (and similar) findings suggest that 
non-verbal intelligence may partially depends on spa-
tial skills (Rourke & Conway, 1997). Thus, spatial pro-
cesses, performed on the base of spatial skills, can be 
potentially important in mathematical performances, 
where explicit or implicit visualization is required. 
Moreover, research in cognitive science (Stella & 
Grandi, 2011) has identified specific and preferential 
channels of access and elaboration of information. For 
students with MLD these are the visual non-verbal, 
the kinesthetic-tactile and/or the auditory channels.

Studies in mathematics education as well, although 
with different conceptual frameworks, have high-
lighted how sensory-motor, perceptive, and kinaes-
thetic-tactile experiences are fundamental for the 
formation of mathematical concepts – even highly 
abstract ones (Arzarello, 2006; Gallese & Lakoff, 2005; 
Nemirovky, 2003; Radford, 2003). In this regard, with-
in a semiotic perspective, Bartolini Bussi and Mariotti 
(2008) state that the student’s use of specific artifacts 
in solving mathematical problems contributes to his/
her development of mathematical meanings, in a po-
tentially “coherent” way with respect to the mathe-
matical meanings aimed at in the teaching activity. 

Thus, in this paper we aim to describe examples (ac-
tivities) of inclusive math education (Ianes & Demo, 
2013), constructed referring to the math education 
domain as well cognitive psychology and neurosci-
ence domains.
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The goal of the activities we will describe, was to 
realize a sequence that would favor, for all children 
(including those with MLD) the development of math-
ematical meanings of fractions as numbers that can 
be placed on the number line. The sequence of activ-
ities was designed, realized and analyzed taking into 
account the following principles:

 ― the importance of an epistemological analysis of 
the mathematical content 

 ― the role of perceptive and kinesthetic-tactile ex-
perience in mathematical concept formation as 
well the visual non-verbal, and auditory channels 
of access and elaboration of information, in par-
ticular in children with MLD

 ― the role of social interaction, verbalization, math-
ematical discussion;

 ― the teacher as a cultural mediator.

Following these principles, as we will describe later, 
particular artifacts (like paper strips, rulers and scis-
sors) were identified with the intention of using them 
to help mediate the meanings at stake in the activities. 

METHODOLOGY AND SEQUENCE OF ACTIVITIES 

The sequence of activities was designed by 22 primary 
school teachers and 1 supervisor (the first author) 
composing a study group. The activities were carried 
out during a pilot experimentation, which involved 
22 classes (nine 5th grade classes, six 4th grade classes, 
and seven 3rd grade classes), before being revised for 
an upcoming full-blown study. In this paper, we will 
report on the pilot experimentation carried out in 
the 3rd grade classes. Students worked in small groups.

The sequence of activities asked to work with differ-
ents artifacts such as A4 sheets of paper, squared-pa-
per strips or represented squared-paper strips in 
notebooks. At first, students were asked to represent 
fractions on squared-paper strips, then to represent 
squared-paper strips in their notebooks and to rep-
resent, upon these strips, fractions. At last, students 
were asked to represent fractions on the number line 
(see below). As described below, the teachers also in-
cluded moments of institutionalization and discus-
sion (Bartolini Busssi & Mariotti, 2008) based on some 
critical episodes.

The activities concerning the sequence are: 

1) Partitioning of the A4 sheet of paper: this activity 
involves dividing the A4 sheet of paper, chosen as 
a unit of measure, in equal parts, by folding and 
using the ruler; the procedure allows for the in-
troduction of “equivalent fractions” as equivalent 
surfaces, and of “sum of fractions” for obtaining 
the whole (the chosen unit, that is, the A4 sheet).

2) Partitioning of a strip of squared paper. This ac-
tivity involves three sessions: 

A) Given a certain unit of measure, position it 
on the strip; then, position some fractions 
on the strip (1/2, 1/3, 1/4, ….) according to 
the given unit of measure (see Figure 1). The 
objective is to represent, on the same strip, 
different fractions, introducing reciprocal 
comparison.

B) Given different units of measure on different 
strips, on each strip a same fraction is repre-
sented (1/2). The objective is to make explicit 
the dependence of the unit fraction upon the 
chosen unit of measure (1/2u).

C) Given a squared strip, choose appropriate 
units of measure to represent different frac-
tions on that strip (e.g., 1/3 and 1/5). The ob-
jective of this activity is to find the lcm (least 
common multiple) between denominators as 
the appropriate unit of measure.

3) Placing fractions on the number line. The frac-
tions, considered to be lengths of segments with 
origin in 0, are placed on the (positive) number 
line using the idea at the basis of the operator 
conception of fractions (developed in point 2). 
Since the right endpoint of the segment on the 
number line is labeled with a fraction, it will also 
assume the meaning of “number”, as do all the 
other whole numbers on the line. Different frac-
tions will be associated to a same point on the 
line, and will be used to revisit the meaning of 

“equivalent fractions”.

ANALYSIS AND DISCUSSION

In this section we present an analysis of points 2 and 
3 of the sequence, and in particular the transition 
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from point 2 to point 3, which we consider the most 
significant in order to place fractions on the number 
line. Our objective is to highlight how the meaning 
of fraction evolved, thanks to the use of the tools 
(squared strip of paper, and number line) and to the 
designed tasks.

ACTIVITY 2, SESSION A. A certain unit of measure is 
given (for instance, a unit measure corresponding to 
15 squares). The students are asked to position it on 
the strip of squared paper and to place and color on 
the strip unit fractions like 1/5,1/3, etc. 

With respect to the kinesthetic-tactile aspects that 
characterize activity 1 (partitioning of the A4 sheet 
of paper in equal parts), the manipulation of the arti-
fact “squared strip” becomes a prevalently perceptive 
experience, in which the main channel for accessing 
(and possibly producing) information is the visual 
non-verbal one. Therefore the task (implicitly) re-
quires the use of a procedure in which the fraction 
is conceived as an operator: the students partition 
the strip and produce linguistic signs associated 
to the name of the fraction expressed in verbal lan-
guage (“Un mezzo” – tr. “One half ”), in verbal visual 
language (the writing “un mezzo” – tr. “One half ”) 
and arithmetical language (“1/2”). The teacher insti-
tutionalizes the relationship between the different 
signs (partitions of the strips, visual verbal, visual 
non verbal, and arithmetical signs) in terms of ra-
tional numbers. Thus, the construction of meaning 
related to the notion of rational number, is based on 
the interplay between different types of semiotic sets 
(Arzarello, 2006). Note that the task was completed by 
all groups of students.

ACTIVITY 2, SESSION B. Each group of students is 
asked to choose a unit of measure, reproducing it on 
a strip and placing the fraction 1/2 on  the strip. Then, 
their strips are compared. The dependence of the frac-
tion on the unit of measure, observed comparing the 
results of the different groups of students, becomes 
explicit during a classroom discussion, from which 
we include an interesting excerpt: 

Student 1: Maybe we made a mistake.
Student 2: No, we did not make a mistake, I am 

sure I folded the unit in half, so it’s ½.
Student 3: We shouldn’t look at the length, be-

cause each group chose a different unit 
of measure. […]

Students 4: Because doing ½ is cutting in half, so 
if the units are different the halves are 
different […] we have to be careful be-
cause to understand which counts more 
we can’t put them one on top of the other 
like we did for the placemats.

Here a shared meaning is being developed for the 
fraction as an operator on a chosen unit of measure 
(1/2u). Note that the kinaesthetic-tactile approach in 
which the strips were put one beside the other is no 
longer effective for comparing fractions.

ACTIVITY 2, SESSION C. The task asks to choose a unit 
of measure to represent on the same strip different 
unit fractions like 1/3, 1/6, 1/8, 1/2, 1/4. 

The parameters defining the situations are such that 
the situation makes it necessary to choose 24 squares 
(corresponding to the lcm of 2, 3, 6, 8 and 4) as the unit 
of measure. In fact the children do not simpy looked 
for the unit of measure spontaneously, generally us-
ing trial and error methods, but they also check the 
efficiency of their choice. Moreover, positioning on 
a single strip different fractions, makes the ordering 
of fractions quite similar to that of the other numbers 
that are perceptively evident (Figure 2). 

We note here that for the different fractions on the 
strips (Figure 2), the teacher asks to also associate color 
to the verbal, figural and arithmetical representations. 
The reason is that, as suggested by Stella and Grandi 
(2011), the verbal channel is not the preferred one 
for most students with MLD. Color becomes a tool 
supporting working memory and possibly also long 
term memory, through which the meanings developed 

Figure 1:  Four strips of squared paper where students had 

postioned a certain unit of measure and had defined unit fractions 

and colored fractions (4/5, 2/3, 5/3, 7/5)
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can be recalled and used (Baccaglini-Frank & Robotti, 
2013).

ACTIVITY 3. The objective of this activity is to place 
and order fractions on the number line (Figure 3) that 
has been partially constructed in Activity 2 and that 
is now used by the teacher as a tool of semiotic medi-
ation (according to Bartolini Bussi & Mariotti, 2008). 
This transition is fundamental: the representation 
of the artifact “strip of paper” becomes a mathemati-
cal sign that represents the mathematical object “the 
number line”. 

Actually, from now on color is no longer used and the 
labels are referred to points on the number line. We 
can therefore claim that fractions here have assumed 
the role of rational numbers. The teacher could take 
advantage of this transition to construct a new tool 
of semiotic mediation, developed from the preceding 
artifacts. The “narrow strip” now becomes a concrete 
artifact (Figure 4): it turns into a piece of string on the 
wall, upon which 0 is placed at the left end and the po-
sition of the unit is made to vary dynamically sliding 
the corresponding label attached with a clothes’ peg. 
The dynamic component of this artifact recalls cer-
tain software (such as AlNuSet, GeoGebra, Cabri2…) 
of course with evident differences, including the fact 
that as the unit (the position of the paper card with 
written “1”) is made to vary, the positions of the other 
whole numbers and fractions do not vary dynamically 
at the same time or automatically, as a consequence of 
the new placement of the unit: their motion requires 

a specific action in order for the numbers on the line 
to maintain the desired mathematical relationships. 
This feature can actually be exploited to foster the stu-
dents’ appropriation and active control of important 
mathematical meanings at stake, such as the density 
of rational numbers or the ordering of fractions on 
the number line during activities like this one.

CONCLUSIONS

We have outlined particularly significant (and deli-
cate) passages of the sequence of activities, showing 
how the transition was guided. Initially the students 
were exposed to a somewhat traditional conception 
of fractions as operators in the context of partitioned 
areas (the “part-whole” meaning described in Bobis et 
al., 2013). This idea was soon re-invested in a slightly 
different context: the areas became strips that gradu-
ally lost their “fatness” and were narrowed down until 
they become (oriented) segments indicating distances 
from the origin of the number line. The power of an 
approach like the one described resides in how such a 
transition can be gradual and continuous, if the teach-
er manages to keep alive the situated meanings that 
emerge throughout its unraveling. This is in fact what 
happened, and the children (including those certified 
with MLD) came to deal with fractions as numbers on 
the number line, without hesitating to compare them, 
place equivalent fractions on the same point, and add 

Figure 2: different fractions on the same strip

Figure 3: Fractions on the number line Figure 4: String on the wall where the position of the unit is made 

to vary dynamically sliding the corresponding label attached with 

a clothes’ peg
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them, according to meanings they had developed us-
ing the strips of paper that still had an area.

In summary, the analysis of the teaching intervention 
has shown that students have elaborated personal 
meanings consistent with the mathematical mean-
ings related to fractions. In particular, the strip was 
used as instrument of semiotic mediation to develop 
the meanings related to fractions as operators and, 
then, to the ordering of fractions, to equivalent frac-
tions and finally to equivalence classes. The use of the 
strip, the string and color (for a certain period of time), 
has had a key role in favoring the construction of the 
number line as a mathematical object. On the number 
line fractions, associated with points, could assume 
the role of rational numbers being representatives 
of equivalence classes. Finally, it is possible that this 
kind of construction of meanings related to fractions 
might also support the management of procedural 
aspects involved in operations with fractions, as var-
ious researches both in mathematical education and 
in cognitive science have already suggested (Siegler, 
2013; Robotti, 2013; Robotti & Ferrando, 2013). Further 
studies are needed to explore and to confirm this hy-
pothesis that we consider significant both for research 
and for teaching.

We would like to greatly thank all the teachers of 
the “Questione di numeri” project who have real-
ized, together with the first author, this research 
study.
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Although the trends seem to be shifting, researchers have 
given far less attention to the work of teaching mathe-
matics in kindergarten than to children’s learning. This 
paper aims at contributing to this under-developed area 
by focusing on one particular task of teaching math-
ematics: asking productive mathematical questions. 
From analysis of a situation that involves Lego play, we 
attempt to decompose the different kinds of mathemat-
ical questions asked and thus contribute to the further 
conceptualization and understanding of this particular 
task of teaching mathematics in kindergarten.

Keywords: Kindergarten, mathematics, teaching, 

productive mathematical questions.

INTRODUCTION

Children’s learning of mathematics has been studied 
for decades; the teaching of mathematics to children 
below school age has been studied much less. Whereas 
numerous theories have been developed in order to 
describe different aspects of mathematics learning, 
few theories describe mathematics teaching. Almost 
three decades ago, Lortie (1975) called for a language 
to describe the work of teaching, and a language and 
theory of teaching is still called for – especially in 
kindergarten. 

When developing a practice-based theory of mathe-
matical knowledge for teaching (MKT), Ball, Thames 
and Phelps (2008) focused on “recurrent tasks of teach-
ing”. In the work of teaching mathematics, teachers are 
faced with different challenges, and these are referred 
to as tasks of teaching. An example is “asking produc-
tive mathematical questions” (Ball et al., 2008, p. 400). 
Teachers are continually challenged to ask questions 
that stimulate further mathematical thinking among 

children. Is this challenge similar in kindergarten? 
Identifying and investigating such tasks of teaching 
might provide a common foundation for further con-
ceptualizations of knowledge needed for teaching 
mathematics (Hoover, Mosvold, & Fauskanger, 2014), 
and this paper represents an attempt to further in-
vestigate the task of asking productive mathematical 
questions in a Norwegian kindergarten context. We 
approach the following research question: How can 
the task of asking productive mathematical questions 
be manifested in a Norwegian kindergarten context?

Based on studies in the US, Ginsburg and Amit (2008) 
argued that teaching mathematics in kindergarten 
is similar to teaching mathematics in school. Other 
studies suggest that the work of teaching mathemat-
ics differs across kindergarten contexts (Mosvold, 
Bjuland, Fauskanger, & Jakobsen, 2011). Further inves-
tigations of the work of teaching mathematics are thus 
needed, both in order to develop more comprehensive 
theories of teaching mathematics in kindergarten 
and to learn more about similarities and differenc-
es in the work of teaching mathematics in different 
kindergarten contexts. In our attempt to approach 
this challenge, we focus on the challenge of posing 
productive mathematical questions. This is arguably 
a central task of teaching mathematics – also in the 
kindergarten context – and we aim at contributing 
to the further unpacking of this task. We draw upon 
exemplary data from a Norwegian kindergarten con-
text, where a kindergarten teacher interacts with six 
children in an activity involving Lego play. The ac-
tivity is analyzed with a focus on tasks of teaching 
as conceptualized by Ball and colleagues (2008). In 
the following section, we present some trends from 
research on teaching mathematics in kindergarten 
as well as previous research and theories related to 
asking questions.

mailto:per-einar.saebbe@uis.no
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THEORETICAL BACKGROUND

Traditionally, research on early years mathematics 
has had a strong emphasis on children and their 
learning and understanding of mathematics. In the 
last decades, however, research on the early childhood 
mathematics teacher has flourished. Some studies 
focus on the knowledge and beliefs of the teachers (e.g., 
Schuler et al., 2013), whereas other studies investigate 
the actual work of teaching mathematics in a kinder-
garten context (e.g., Carlsen, 2013). In mathematics 
education, a large amount of research has focused 
on the knowledge needed for – or used when – teach-
ing mathematics (see e.g., Rowland & Ruthven, 2011). 
Relatively speaking, much research has focused on 
mathematics teachers in school; far less research has 
focused on teaching mathematics in kindergarten. 
The study by Ginsburg and Amit (2008) represents 
one of few examples of the latter, and these research-
ers argue that teaching mathematics in kindergarten 
is mostly similar to teaching mathematics in school. 

When investigating mathematics teaching, there are 
different possible approaches (for an overview, see 
Thames, 2009). One possibility is to identify and de-
scribe issues regarding the mathematical content of 
what is being taught; another possibility is to identify 
the work of teaching that is distinctively mathemat-
ical. Our study, although related to both of these two, 
represents a somewhat different approach in that we 
analyze the work of teaching in an attempt to identify 
the mathematical demands. In doing this, however, we 
also investigate the nature of the mathematical tasks 
of teaching that are involved in the work of teaching – 
in particular related to asking productive mathemat-
ical questions. 

A goal with mathematics teaching at all levels is that 
children (or adults) learn to think mathematically; 
some describe this as a process of mathematizing. 
In order to reach this a goal, an environment needs 
to be created where conjectures can be put forward 
and discussed without fear of being ridiculed, and 
children need to be engaged in such mathematical 
discussions (Lampert, 1990). When creating this kind 
of environment, the kinds of questions mathematics 
teachers ask are of importance. By asking the right 
mathematical questions, the teacher can create a sup-
portive atmosphere in which the children further de-
velop their mathematical thinking and start thinking 
like mathematicians (Mason, 2000). In a mathematics 

classroom, teachers ask different kinds of questions. 
Some questions are open and aimed at stimulating 
further inquiry, whereas other questions are more 
closed – oftentimes serving as control questions (cf., 
Carlsen, Erfjord, & Hundeland, 2010). There also seem 
to be cultural differences in the questions mathemat-
ics teachers ask in classrooms. In their study of ques-
tions asked in 1st grade mathematics classrooms in 
Japan, Taiwan and the US, Perry, VanderStoep and 
Yu (1993) found that teachers in the Asian countries 
asked more questions about problem solving strate-
gies and conceptual knowledge than their colleagues 
in the US. Subsequent studies seem to confirm these 
findings (e.g., Hiebert et al., 2003), and international 
assessments like TIMSS and PISA show that children 
from these Asian countries outperform children from 
most countries in the Western world. 

In a kindergarten context, Carlsen and colleagues 
(2010) found that the kindergarten teachers’ frequent 
use of questions enabled children’s participation in 
the learning activities. They did, however, also find 
that kindergarten teachers often asked questions 
that were not true questions. This coincides with a 
more recent study where Carlsen (2013) found that 
a kindergarten teacher mainly used structuring 
questions in her orchestration of a mathematical ac-
tivity involving the telling of a fairy tale. From these 
studies, it can be argued that the questions asked by 
kindergarten teachers oftentimes serve as a means 
of reaching joint attention, and numerous studies 
in psychology contend that joint attention is of vital 
importance in children’s learning. When Bruner and 
his colleagues started investigating this issue in the 
late 1950’s, they mainly analyzed newborn babies or 
young children with a focus on their eye gaze (Bruner, 
1995). A narrow understanding of the concept of “joint 
attention” would thus simply be whether or not an 
individual is looking where someone else is looking 
(Sigman & Kasari, 1995). A broader definition includes 
responsive and initiating behaviors as well as facial 
expressions and gestures. Baldwin (1995) defines joint 
attention with the mutual awareness in mental focus 
that two or more individuals have when looking at 
the same thing. A key issue then is that the mutual 
awareness must be in the mental focus – not only 
that two people stare at the same thing. Sigman and 
Kasari (1995) argue: “joint attention must involve an 
integration of information processing and emotional 
responsiveness” (p. 190). Studies like that of Tomasello 
and Farrar (1986) show that joint attention has a cen-
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tral role in children’s early language learning, but 
it is arguably important in early years mathematics 
learning as well. 

Given that joint attention has a central role in young 
children’s learning, a natural follow-up is to ask about 
the role of the adult in this. The process of reaching 
joint attention has been referred to as a tutorial pro-
cess (Wood, Bruner, & Ross, 1976), where an adult or 

“expert” helps somebody who is less skillful. A crucial 
feature of such interactions, it can be argued, is the 
adult’s ability to make joint attention (Bruner, 1983). 
In earlier works, Bruner focused on joint attention 
in relation to language development and learning 
(Bruner, 1983); later he described the role of the adult 
in terms of scaffolding (Bruner, 1995). In this study, 
we follow Baldwin’s (1995) understanding of joint 
attention in that it includes a mutual awareness of 
mental focus. We suggest that the questions posed 
by kindergarten teachers – and thus also the task of 
asking productive mathematical questions – could 
be understood in terms of reaching joint attention. 
When we investigate the task of asking productive 
mathematical questions, we therefore suggest that 
the process of joint attention needs to be an integrated 
aspect.

METHODS

In order to investigate kindergarten teachers’ math-
ematical questions, we asked a kindergarten teacher 
for permission to video record an everyday activity 
that involved something he associated with mathe-
matics. The kindergarten teacher decided to organize 
a situation of Lego play with six children from his 
kindergarten class (his class included a total of 18 
children aged 3–6 years). The kindergarten teacher 

and the children sat around a table that was filled with 
classical Lego bricks of different shapes and colors; 
the children could play freely with the bricks. The first 
author recorded the session as illustrated in Figure 1. 

The kindergarten teacher had 17 years of experience, 
and he finished his education before mathematics was 
introduced as a required course in Norwegian kin-
dergarten teacher education. The six participating 
children were between 3,11 and 5,4 years of age (the 
decimals represent months). We refer to the children 
by fictitious names; the kindergarten teacher is re-
ferred to as “Teacher”. The Lego play activity lasted 22 
minutes, and the researcher had the role of a passive 
observer. Neither the kindergarten teacher nor the 
children seemed to take much notice of the researcher 
or his camera. Afterwards, the video was transcribed 
verbatim, and the transcripts were coded by the use 
of conventional content analysis (Berg & Lune, 2012), 
where the unit of analysis was the kindergarten teach-
er’s questions.

RESULTS AND DISCUSSION

The activity begins with the kindergarten teacher 
gathering the children around the table to introduce 
the Lego activity. He explains that they are going to 
play with the Lego bricks, and someone (the first au-
thor) is going to record the activity in order to learn 
more about what they are doing. The children eagerly 
start playing with the Lego bricks. Shortly after, a first 
question is posed to the teacher:

8. Kaja:  (holds up one red and one blue 
brick and turns to the teacher) Have you 
found one of those or one of those?

Figure 1: The placement of the participants in the Lego-activity
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9. Teacher:  One of those? (scratches his chin) 
What do you mean with “one of those”?

10. Kaja:  Two of those (holds up the bricks 
again)

11. Teacher:  Yes… (Odin hands the teacher a 
red brick, and the teacher holds it up) What 
does it look like?

12. Kaja:  Table?
13. Teacher:  Do you see what they look like?
14. Kaja:  Triangle!
15. Teacher:  Triangle, yes. But look, I’ll show 

you something funny. If you … put them to-
gether (puts two blue and one red brick to-
gether on the board). If we had one more of 
those, what would it have become then? 

16. Kaja:  Taaaaaable … round [shape] 
(looks at the teacher)

17. Teacher:  A round shape, or simply a circle. 

Among the mathematical tasks of teaching, Ball and 
colleagues (2008) listed “responding to students’ 
why-questions”. The question posed by Kaja in the 
beginning (8) is not such a why-question, but we no-
tice how the teacher uses the question as a starting 
point for posing another question (9) in order to di-
rect the children’s attention towards the mathematical 
concept that can be used to describe the bricks. His 
question can be described as an invitation to use more 
precise concepts than “one of those”, and this could 
serve as an example of a productive mathematical 
question in a kindergarten context. When Kaja first 
responds by holding up the bricks instead of provid-
ing a more precise concept (10), the teacher asks her to 
describe what the brick looks like (11). As a response 
to this question, Kaja eventually says: “triangle” (14). 
The teacher confirms her answer and repeats what 
she said (15) – although the brick is not a triangle but 
a triangle-like shape with one round edge. 

Even though there are six children in the activity, Kaja 
(5,4) is the only active participant in this part of the 
discussion; Odin (4,11) also contributes by finding 
the desired bricks, but his contribution is non-ver-
bal. When Kaja responds to the teacher’s follow-up 
question by saying that it would become a table (16), he 
introduces the concepts of “round shape” and “circle” 
as alternatives (17). This can be seen as an example of 
the task of using appropriate mathematical language, 
and we can also say that the dialogue in this excerpt 
indirectly contains the challenge of “choosing and 
developing useable definitions” (Ball et al., 2008, p. 

400). Instead of using a more correct mathematical 
definition for a triangle – where the sides have to be 
straight line segments – the teacher decides to accept 
Kaja’s description of the shape as a “triangle” (15). 

Later in the discussion, when Kaja finished building 
her circle shape with two red and two blue bricks, Lisa 
(4,9) asks for the same kind of bricks: 

41. Lisa:  I need one more red and two 
more blue. 

42. Teacher:  Triangles like that? (points 
towards Lisa’s board) But isn’t it a little bit 
strange that … they. How many are there 
here? (picks up Kaja’s board to show)

43. Kaja:  One, two, three, four (counts out 
loud while pointing)

44. Teacher:  Four triangles. But isn’t it a little 
bit strange that those triangles make a ...

45. Lisa:  Circle
46. Kaja:  Circle
47. Teacher:  How is it that a circle can become 

a triangle? Or, triangles become a circle? 
48. Kaja:  We just … (points to the board)
49. Lisa:  The triangles have such round 

there.
50. Teacher:  That edge … side is a little bit 

round, yes. 

We notice that the teacher follows up on Lisa’s request 
by directing her attention using the word “triangle” 
and pointing (42) to reach joint attention. The teacher 
continues to ask questions while pointing at Kaja’s 
board – which is finished – focusing on the quantity. 
We assume that the teacher is aware that the children 
know how to count, and his question about how many 
bricks can then be seen as an invitation to count. Ball 
and colleagues (2008) identified a similar task as: 

“connecting a topic being taught to topics from prior 
or future years”. Kaja counts and finds out that four 

“triangles” are needed in order to build a circle (43). 

Within a sociocultural kindergarten tradition (like 
the Norwegian kindergarten), the kindergarten 
teacher’s knowledge and ability to ask questions are 
significant. Carlsen, Erfjord and Hundeland (2010) 
argued that the teacher’s questioning is of vital im-
portance for children’s learning, and they found that 
almost half of the questions posed were open ques-
tions where the children are encouraged to present 
a solution themselves. The teacher in our study also 
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poses a lot of questions, and through this questioning 
we gain knowledge of the children’s development of 
number concept as well as their knowledge of shapes. 

The teacher continues to pose questions, and his next 
question can be seen as an effort to re-focus the chil-
dren’s attention towards the seeming paradox that 
four “triangles” can make a circle (44). Both Kaja and 
Lisa are now referring to the shape as a circle (45 and 
46) rather than table or round shape – indicating that 
they have adopted the kindergarten teacher’s use of 
a more precise concept. When asked about how the 

“triangles” can become a circle (47), they do not re-
spond verbally but points to the board instead (48). 
This situation could have been used to reach a more 
precise definition of a triangle, but the kindergar-
ten teacher does not go in that direction. Instead, this 
part of the dialogue ends by the teacher confirming 
that the “triangles” have a round edge (50). Instead 
of stating that these particular “triangles” are in fact 
circular sectors – or quadrants – and four of them 
put together thus make a circle, the teacher leads the 
children into a mutual reflection about the shape of 
the bricks and how they can be used to create a new 
compound shape (circle). This also illustrates another 
task of teaching related to selecting representations 
for particular purposes – in this case using the Lego 
bricks to discuss shapes. Presentation and discus-
sion of non-examples like this can be important in 
children’s formation of solid concept images that go 
beyond the prototypical triangle (Levenson, Tirosh, 
& Tsamir, 2011). In this case, the children identified 
these particular Lego bricks as triangles although 
they are in fact non-examples. The children rely on 
visual reasoning, and the kindergarten teacher could 
have used the situation as a starting point for discuss-
ing more examples and non-examples and helped the 
children towards where they notice differences be-
tween shapes (ibid). From these examples, we have 
seen that the task of asking productive mathematical 
questions includes a number of intertwined challeng-
es – or tasks – for the teacher.

CONCLUDING DISCUSSION

Ball, Thames and Phelps (2008) identified “asking 
productive mathematical questions” as one of the 
recurrent mathematical tasks of teaching. We argue 
that asking productive mathematical questions is 
indeed a relevant task of teaching mathematics also 
in a kindergarten context. From our analysis of this 

play situation in a Norwegian kindergarten, how-
ever, we suggest that the task of asking productive 
mathematical questions is highly complex. In this 
concluding discussion, we point at three issues that 
add to the complexity. First, there are different types 
of questions that might be asked to facilitate children’s 
further reflection and exploration of mathematics. 
Second, there are different possible purposes that 
underlie the asking of questions. Third, the task of 
asking productive mathematical questions is often 
intertwined with other tasks of teaching, and the 
kindergarten teacher needs to address these tasks 
instantly as they appear. 

In their analysis of kindergarten teachers’ questions, 
Carlsen and colleagues (2010) found that the teachers 
posed open questions, asked for arguments, invited 
to problem solving, re-phrased children’s utterances, 
and made conclusions. These types of questions could 
also be identified in the play situation analyzed here. 
When we have focused specifically on the mathemat-
ical demands, however, we can observe the following 
aspects in the questions:

 ― encourage use of more precise mathematical 
language

 ― confirm use of more precise mathematical lan-
guage

 ― describe what children observe with their own 
words

 ― mathematical reflection about a more compound 
problem

 ― mentally complete an observed pattern or un-
finished shape

 ― encourage reflection about observed patterns 
and connections

 ― invite to count

This list represents an attempt to decompose the 
task of asking productive mathematical questions, 
but it can also be seen as an attempt to identify the 
teacher’s underlying purpose in asking these types 
of questions. It is difficult, however, to make conclu-
sions about purpose from observations of activities 
and conversations only. In this study, our focus was 
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on tasks of teaching that could be observed from dis-
cussions between the kindergarten teacher and the 
children. We have thus analyzed the observed work of 
teaching without bringing in the voice of the teacher 
concerning his intentions. Introducing the teacher’s 
voice from a follow-up interview could have been 
interesting, however, but that would be beyond the 
scope of this paper – where our focus was strictly on 
unpacking the observed tasks of teaching. Interviews 
with the kindergarten teacher could, however, pro-
vide further information about teachers’ beliefs and 
knowledge that would also be relevant to investigate. 

Although we have investigated the data with a focus 
on the task of asking productive mathematical ques-
tions in particular, we have also seen that several 
other tasks of teaching are oftentimes intertwined 
in this task. When asking children to use more pre-
cise mathematical language, for instance, the kinder-
garten teacher could also face the task of choosing 
and developing usable definitions. Being faced with 
the apparent paradox of how four “triangles” could 
make a circle, the kindergarten teacher would have 
to make decisions about whether or not he should 
go into a discussion about the proper definition of a 
triangle. If he were to go into such a discussion with 
these children, however, he might also have had to 
deal with the concept of polygons and straight line 
segments, and this would probably be beyond the top-
ics he intended to teach. On the other hand, avoiding 
the more precise definition at this stage could lead to 
misconceptions that would have to be dealt with later 
on, and this illustrates the complexities involved in 
the work of teaching mathematics in kindergarten. 

An additional challenge that can be seen in several 
parts of this dialogue is related to joint attention. At 
all stages, but perhaps in particular with smaller 
children, the teacher is faced with the challenge of 
reaching joint attention. Several questions, comments 
and even gestures made by the kindergarten teacher 
can be seen as acts of reaching joint attention, and we 
argue that the issue of joint attention is embedded in 
all tasks of teaching mathematics in kindergarten. 

In this paper, we have tried to contribute to the un-
packing of one particular task of teaching mathemat-
ics: asking productive mathematical questions. We 
have seen that this task is complex, as we have already 
discussed, and we believe that it is also context spe-
cific. Asking productive mathematical questions to 

kindergarten children probably involves other kinds 
of challenges than asking such questions to children 
in lower secondary school, but the task of teaching is 
still relevant at all levels. We thus support the argu-
ment made by Hoover and colleagues (in press) that 
mathematical tasks of teaching “can serve as a com-
mon foundation for conceptualizing and measuring 
mathematical knowledge for teaching” (p. 101) – also 
in kindergarten – but we suggest that further studies 
are needed in order to investigate and unpack the 
tasks of teaching mathematics in different contexts 
and at different levels.
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The present paper will clarify kindergartners’ informal 
ability and spontaneous strategies when using different 
materials in order to measure and quantify length. The 
results validated the fact that there are some sub compo-
nents of young children length measure informal ability 
which are of some interest. These are kindergartners’ 
strategies for measuring length, their confusion on the 
concept of length with the perimeter and the area, the 
nature of the measurement result, as well as, the rela-
tion between the measuring material and the measured 
object. 

Keywords: Length measurement, measurement unit, 

measurement materials, kindergartners.

INTRODUCTION

Geometric measurement is a crucial topic in mathe-
matics (Smith, van den Heuvel-Panhuizen, & Teppo, 
2011) due to the fact that it connects mathematical do-
mains with each other (number and geometry) as well 
as, real life. Length measurement is a fundamental 
concept for students’ geometric measurement learn-
ing. On one hand it is a comprehensible attribute for 
young children and on the other hand numerous other 
concepts rely on it. Students’ main ideas, concepts 
and skills on area and volume measurement are con-
structed through length measurement (Tan-Sisman 
& Aksu, 2012). 

Learning length measurement is a slow and evolving 
process and young children do have the capacity to un-
derstand and learn this attribute (Sarama, Clements, 
Barrett, van Dine, & McDonel, 2011). There are eight 
main concepts that are fundamental for children’s 
understanding of length measurement (Clements & 
Sarama, 2007): 1. Understanding of the attribute of 
length. 2. Conservation of length. 3. Transitivity. 4. 
Equal partitioning of the object to be measured. 5. 
Iteration of the unit; the placing of the unit end to end 
alongside the object and the counting of these itera-

tions. 6. Accumulation of distance; the number words 
of the counted iterations signify the space covered 
by the units up to that point. 7. Origin; any point on 
a ratio scale can be used as the origin, 8. Relation be-
tween number and measurement. These concepts are 
developed according to age and in a sequence that is 
not commonly accepted yet, since they are influenced 
by instruction and experience. 

Length measurement is included in most curriculums 
(ΠΣΝ, 2011; Smith, Tan-Sisman, Figueras, Lee, Dietiker, 
& Lehrer, 2008) from pre-kindergarten and its study 
usually promotes a sequence of instruction that is 
based on Piaget’s theory of measurement. These se-
ries include: use of words that represent quantity or 
magnitude, (direct and indirect) comparison of length, 
measuring of length with nonstandard units and with 
manipulative standard units, as well as, measuring 
with a ruler and other standardized tools. However, 
recommendations to this progression, propose the 
beginning of the instruction with standard units 
and rulers, for an initial understanding of measure-
ment, and a later introduction of nonstandard units 
(Clements, 1999), as a result of the fact that children 
are able to use standard measuring tools before they 
fully understand them (van den Heuvel-Panhuizen 
& Elia, 2011). Therefore, Sarama and Clements (2009) 
proposed an early childhood learning trajectory of 
length measurement, which follows a developmen-
tal progression: 1. Pre-length quantity recognizer. 2. 
Length quantity recognizer. 3. Length direct comparer. 
4. Indirect length comparer. 5. End-to-end length mea-
surer. 6. Length unit relater and repeater. 7. Length 
measurer. The revised learning trajectory proved that 
(Sarama et al., 2011) the 7th level does not exist and the 
4th and 5th levels are developed simultaneously. 

Most of young children pass into and through the 
end-to-end length measurer level in which they use 
several units or begin to iterate a unit while leaving 
gaps between units. The students’ errors that are 
most reported (Tan-Sisman & Aksu, 2012), during 
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the learning procedure of length measurement, are: 
overlapping units, mixing units of length with other 
units of measurement, confusing the concept of pe-
rimeter with area, incorrect alignment with a ruler, 
starting from 1 rather than 0, counting hash marks 
or numbers on a ruler/scale instead of intervals and 
focusing on end point while measuring with a ruler.

Research results, on what young children are able or 
incapable to accomplish in length measurement, are 
not always in agreement. Several researchers (Barrett, 
Jones, Thornton, & Dickson, 2003; Clarke, Cheeseman, 
McDonoug, & Clarke, 2003; Clements & Sarama, 2007) 
proved that children as young as preschoolers know 
about the existence of length, distance, area, weight 
etc and they have an informal understanding of them. 
They confirmed that kindergartners are capable to 
perform direct comparison of objects and order ob-
jects according to their length. They explained that 
preschoolers are not capable of reasoning about the 
attributes of length, distance, area, weight etc and 
measure them accurately and that kindergartners 
are not able to use units to determine the length of 
an object. 

Sarama and colleagues (2011), demonstrates that al-
though no pre-kindergartner was able to consistently 
measure objects end to end, or iterate a unit along a 
length, kindergartners were able to do it. They were 
capable of arranging units end to end (without spaces 
or overlaps between units), count the number of units, 
as well as to state correctly the total length measured 
in terms of that unit. On the contrary, none of the 
children of kindergarten used a ruler consistently to 
measure length, despite repeated introduction in var-
ious teaching experiments. A different study (Castle 
& Needham, 2007) indicates that, at the end of the first 
grade, less than half of the class demonstrated the 
ability to iterate units. The above results signify that 
research outcomes are not entirely consistent with 
young children’s capabilities to measuring length.

Kindergarten children face a great difficulty in length 
measurement tasks when tasks are of high complexity 
and require the mental use of the length measurement 
unit and unit iteration, as well as, complex ordering 
abilities (van den Heuvel-Panhuizen & Elia, 2011).

In this paper, the informal ability and the spontaneous 
strategies of kindergartners to realize measurement 
tasks using a variety of materials are investigated. We 

wondered if kindergartners were able to use different 
materials in order to quantify length. The research 
questions were the following: 1. Have kindergartners 
the ability to use the provided materials to measure 
the length of an object? 2. Which strategies they use 
to measure length and how are they related to the dif-
ferent materials? 3. Which of the materials were used 
more effectively?

METHOD

In order to investigate kindergartners’ informal abili-
ty and spontaneous strategies to quantify length with 
the use of various materials for measurement, data 
were collected from 20 kindergarten children (10 
girls and 10 boys) (4 years and 9 months to 6 years 
and 6 months) from a public kindergarten in Rhodes, 
Greece1. This kindergarten was chosen for two rea-
sons. The first was that there is a frequent cooperation 
with the teacher who likes integrating innovations 
in her teaching and her students are used in teach-
ing experiments. The second was that the children 
in that classroom were able to compare two objects 
directly and recognise their equality or inequality 
and they were also able to order objects according to 
their length.

For the purpose of the study, kindergartners were 
asked to measure the length of several objects’ icon-
ic presentations by using eight usual measurement 
tools and to note on a piece of paper, their size. The 
images were related to a story familiar to students 
and had rectangle-like-shape (stair, paper clips, a 
part of a road, frame, mirror) or oblong irregular 
shape (tower, lighthouse, shark). The materials used 
for measurement, were nonstandard manipulative 
units, standard manipulative units and standardized 
measurement tools. Specifically, the materials were of 
four types: 1) discrete items, such as 1cm cubes, 2cm 
cubes, same sized matchsticks, paper clips and ang-
legs which may be considered as measurement units, 
2) continuous material, such as a piece of string, in 
which the appropriate size must be generated by the 
child, 3) combined materials, such as Cuisenaire rods, 
which may be considered as measurement units or 
continuous material and 4) composite material, such 
as a ruler, in which its (conceptual) organization into 
units or ‘chunks’ may be used for quantifying the size 

1  Kindergartens in Greece include students from 3 years and 9 

months to 6 years and 6 months old. 
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of an object in a standardized way. The length of the 
different iconic representations was measured with 
different types of materials. 

The tasks were the following:

Task 1: Can you measure the length of the shark with 
these (2cm cubes)?

Task 2: Can you measure the length of the stair with 
these (Cuisenaire rods2)?

Task 3: Can you measure the length of the frame with 
these (1cm cubes)?

Task 4: Can you measure the length of the tower with 
these (anglegs3)?

Task 5: Can you measure the length of the frame with 
this (string)?

Task 6: Can you measure the length of the lighthouse 
with these (matchsticks)?

Task 7: Can you measure the length of the road with 
these (paper clips)?

Task 8: Can you measure the length of the mirror with 
this (ruler)?

The research was a case study and the unit of coding 
was each child’s strategy based on the type of material 
used. Each child was interviewed alone in a separate 
room and the process was videotaped. Principles of 
ethics were taken into consideration.

RESULTS

The students’ strategy was recorded in relation with 
the type of the material used for the measurement of 
each object (Table 1).

In the tasks 1, 3, 4, 6 and 7, where discrete items were 
used, the students acted in three different ways, which 
were common in all five tasks: linear placement strat-

2  The Cuisenaire rods are math learning aids for students that 

provide a hands-on way to explore math concepts as length 

measurement.

3  The AngLegs come in different lengths allowing students to 

explore math concepts such as length measurement.

egy, perimetrical placement strategy and spatial place-
ment strategy. The linear placement strategy was of 
two kinds: linear placement without gaps and linear 
placement with gaps. In the linear placement without 
gaps strategy, the children arranged the discrete 
items, in a linear way, either end-to-end with the ob-
ject (Figure 1 & 2) or not (Figure 3). In particular, they 
either connected them in a line before arranging them 
or just placed them linearly in a systematic way.

Although, there were children who measured length 
in a right way, not all of them gave the right quantita-
tive answer. They noted other numbers or series of 
numbers. In these cases they tried to count the items 
they used, but not always in a systematic way. In one 
particular case, a child, while counting, unitized the 
object, along the anglegs, by rhythmic movements 
of his index, whereas not always in a constant way. 
Except the quantitative answers, children notated 
either the name of the object to be measured or let-
ters. There were also children that did not answer 
anything or mentioned the colours of the items used. 
These types of answers were also provided in all of 
the following tasks. 

The linear placement with gaps strategy was the same 
with the previous one, but students left gaps between 
the linear arranged items or they began placing the 
blocks below the top of the object and stopped just 
before the end of it. The gaps between the 1cm and 
2cm cubes, in most of the cases, were due to the lack 
of cubes connection.

The position of the discrete items in a not linear, but 
perimetrical way, drove to the perimetrical placement 

Figure 1 Figure 2

Figure 3
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strategy in which object’s perimeter was covered by 
the items (Figures 4–6). In some occasions, only a part 
of the object’s perimeter was covered because of the 
items’ limited number (Figure 7). A kind of perimet-
rical strategy was the perimetrical dragging strategy, 
used by only one child. She was always dragging one 
of the items perimetrically to the object.

Children in many cases placed the items on the ob-
jects’ surface instead of placing them linearly. Like 
perimetrical strategy, in spatial placement strategy, 
items were not adequate to fill the surface and for 
this reason kindergartners covered just a part of it 
(Figure 8). The spatial placement strategy differed 
when children measured with matchsticks and paper 
clips, due to the fact that their placements were of two 
kinds: horizontal (Figure 9) and vertical (Figure 10). 
These placements may have been favoured by the type 

of material, which was not symmetrical, like cubes, 
but elongated. 

In task 2, combined materials were used, and students 
acted in the same three ways as mentioned above: line-
ar placement strategy, perimetrical placement strategy 
and spatial placement strategy. All strategies were 
as formerly described whereas with a significant 
differentiation. Since there was lack of materials in 
the same size, children had to decide what to select: a 
big one to manipulate it like a continuous material or 
small ones (with the same size or not) to manipulate 
them as counting units. The children chose one, two 
or three equal or unequal sized items that were: long 
as the object’s length, smaller than the object’s length, 
bigger than the object’s length (Figure 11). Similarly, 

there were occasions that the children chose many un-
equal sized items placed perimetrically to the object 
(Figure 12) or on its surface (Figure 13). 

The children, in order to reply to the query, counted 
the pieces of the materials used. In one particular case, 
a child placed his finger at the one end of the object, 
while having underneath the already placed materials, 
counting ‘one’, then skipped his finger counting ‘two’, 

‘three’, … . However, the distance skipped was not al-
ways stable. This student was the one who unitized the 
object, along the anglegs and the string. Perimetrical 
dragging strategy was used by a child, also in this task.

In task 5, in which continuous material was used, the 
students acted in two different ways: linear placement 
strategy and perimetrical placement strategy. In the 
linear placement strategy, the children, in most cas-

Figure 4

Figure 6 Figure 7

Figure 5

Figure 8 Figure 9

Figure 10

Figure 11 Figure 12

Figure 13
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es, left the string along the object without stretching 
it. The string was not placed end-to-end to the object 
but exceeded the length of it from both sides – mid-
dle linear placement strategy (Figure 14). In a case, a 
child put the string along the object’s length from its 
end – edge linear placement strategy – and a pair of 
scissors was requested in order to cut the string. The 
lack of scissors made him unitize the object along the 
string by rhythmic movements of his index, which he 
simultaneously counted. This student was the one 
who unitized the object, along the anglegs. The pe-
rimetrical placement strategy was the positioning of 
the string on the object’s perimeter. As with the other 
materials, here too, only a part of the perimeter was 

covered by the string, because of its limited length 
(Figure 15).

In task 8, a ruler was used as a composite material 
and students acted in the same way as before: linear 
placement strategy as well as perimetrical placement 
strategy. The linear placement strategy was of two 
kinds: edge linear placement strategy and middle linear 
placement strategy. In the former, the ruler was placed 
on the object’s edge (Figure 16), and in the latter, in 
the middle of the object’s length (Figure 17), just like 
the string’s placement. In the perimetrical placement, 
two children placed the ruler in each side of the object. 
Students’ notes in this task were in general arithme-
tic. Some children counted the ruler’s units in a one 
to one correspondence with number words, usually 
inconsistently. In a case, the edge linear placement 
directed to the right answer –  it was the student who 
unitized objects, along with the anglegs, the string and 
the cuisenaire rods. The rest of the students’ noted a 
number by chance without counting, or a number that 
they noticed on the ruler.

Generally, students were consistent in both of the 
strategies they used and the kind of response they 
provided, sometimes regardless of the material used 
for the measurement and occasionally in accordance 
with the material used. For example, the child who 
dragged a single material and rearranged it peri-
metrically to the object performed it in all tasks. In 
addition, the child who unitized with his finger the 

Figure 14

Figure 16 Figure 17

Figure 15

Tasks with discrete items Strategy

1)‘2cm cubes’ to measure a shark
3)‘1cm cubes’ to measure a frame
4)‘Anglegs’ to measure a tower
6)‘Matchsticks’ to measure a lighthouse
7)‘Paper clips’ to measure a part of a road

*Linear placement (without gaps or with gaps): For ‘Anglegs’ 
Linear placement (with 2 pieces equal to tower’s length or 2 pieces 
sorter than tower’s length) 
*Perimetrical placement (or dragging)
*Spatial placement: For ‘Matchsticks’ & ‘Paper clips’
*Spatial placement (horizontal or vertical)

Task with combined material Strategy

2)‘Cuisenaire rods’ to measure a stair *Linear placement (with 2 or 3 different size pieces equal to stair’s 
length or with 3 different size pieces longer than stair’s length)
*Perimetrical placement (or dragging)
*Spatial placement 

Task with continuous material Strategy

5)String to measure a frame *Linear placement (edge placement or middle placement)
*Perimetrical placement (or dragging)

Task with composite material Strategy

8)Ruler to measure a mirror *Linear placement (edge placement or middle placement)
*Perimetrical placement (or dragging)

Table 1: Tasks, types of material and strategies used for measuring length
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linear placed materials, like counting discrete quan-
tities of objects, was constant in his strategy no matter 
what the material was. Children who arranged items 
linearly performed it in all tasks. However, a child, 
who measured most of the objects in a correct man-
ner and rightly quantified the lengths, was puzzled 
with the use of the string and the cuisenaire rods. He 
held the edge of the string at the edge of the object 
and could not decide what to do with the other end. 
Finally, he placed the string perimetrically to the 
object. Regarding the rods, he used three different 
sized items which in total had the same length with 
the object, while he answered “three”. The same child 
placed the ruler correctly on the object, counted with 
his finger but his answer was wrong. 

It was also observed that perimetrical placement strat-
egy and spatial placement strategy were influenced by 
the object’s image. In one case, covering the perimeter 
was the same as covering the surface of the object, 
due both to the objects’ shape (shark) and to the ma-
terial used for measuring (2cm cubes). Furthermore, 
when the image was rectangle-like and empty inside 
(stair, frame, mirror), children covered its perimeter 
whereas when the image was oblong irregular and 
coloured inside (tower, lighthouse, shark, a part of a 
road), children tended to cover its surface.

Children quantified length in two different ways: a) 
counted the (equal or different sized) materials, b) uni-
tized materials by their finger. Their responses varied, 
except the quantitative ones, which represented the 
amount of materials used in measurement. The rest 
of their responses were related with the colours of the 
materials, letters of the alphabet, number series and 
the name of the object to be measured.

DISCUSSION-CONCLUSIONS

This study indicated that kindergartners have an 
informal ability and use several strategies when 
measuring with a variety of materials. There were 
children who used the provided materials and suc-
cessfully measured the length of objects’ image, as 
it is also reported by another research (Sarama et al., 
2011). They aligned units that were of equal size with-
out gaps and they counted them. Other times, they 
placed the materials linearly and unitized them in 
order to quantify the length. In the latter, the child 
coordinated discrete and continuous quantity, which 
is a high cognitive level. 

Although research mentions that children are able 
to use standard measuring tools before they fully 
understand them (van den Heuvel-Panhuizen & Elia, 
2011), in our research we clarified that the majority 
of students used the measurement materials and 
tools in a not systematic fashion and were not able to 
determine the length of an object. This finding is in 
accordance with other research results, mentioning 
that kindergartners are not able to use units to deter-
mine the length of an object (Barrett, Jones, Thornton, 
& Dickson, 2003; Clarke, Cheeseman, McDonoug, & 
Clarke, 2003). They measured length by placing multi-
ple materials that exceeded the length of the object or 
by attempting to iterate a unit, leaving gaps between 
units. Some children arranged enough materials to 
lay from one end to the other across the object without 
being concerned about their size. When children laid 
units leaving space between them, they spread them 
out to make them reach from one end to the other. In 
many occasions, although all materials were enough 
to reach from one end of the object to the other, chil-
dren semi-covered (or cross along) the perimeter or 
the surface of the object. Children’s notes were num-
bers, letter expressions, colours etc. In a few instances, 
they combined the numerical data with the qualitative 
in their verbal communication, mentioning the unit 
of measurement. 

Three were the main strategies that kindergartners 
used, in order, to measure the length: linear placement 
strategy, perimetrical placement strategy and spatial 
placement strategy. These strategies acquire special 
features depending on the material. With the use of 
discrete materials, the linear placement strategy was 
of two kinds: linear placement without gaps and lin-
ear placement with gaps. On the contrary when the 
materials were continuous, like string and ruler, the 
linear placement strategy was defined as: edge line-
ar placement strategy and middle linear placement 
strategy. The perimetrical placement strategy was 
transformed in a case, to the perimetrical dragging 
strategy. Finally, the spatial placement strategy dif-
fered when children measured with non-symmetric 
items, creating two kinds of placements: horizontal 
and vertical. The measurement of length by outlining 
or filling the object by measurement tools has also 
been mentioned in a study (Castle & Needham, 2007) 
as a first graders approach. The researchers state that 
this strategy may indicate their confusion of the dif-
ferent dimensions or that it may be a result of their 
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linear thinking and of a difficulty to conceptualize 
the object in more than one dimension.

The effectiveness or not of these strategies, seems 
to be an indicator that students possess an informal 
knowledge for measuring and quantifying length, in 
which the teaching process can be based in order to 
be developed in formal knowledge. The understand-
ing of kindergartners’ informal ability to cope with 
length measurement and the sub components of that 
capability, can inform teacher’s instructional de-
sign, in order to support children’s learning. This is 
a crucial point both for helping students to develop 
their length measurement ability and also to realize 
the importance of measurement unit, connecting a 
number to length and specifying what this number 
represents. For instance, they must understand that 
a length of 3 is different from the length of 3 cubes, 
different from the length of 3 anglegs and different 
from the length of 3 unequal rods: 1 red, 1 green and 
1 yellow. Likewise, that the length of five 1cm cubes is 
the same as the length of 5cm on the ruler. Further 
research is required to investigate how children inter-
pret their notes regarding the objects’ length, should 
they understand what they have written and what is 
written by others.

The results of this study, although it was investigative 
in nature and involved just one kindergarten class, 
are interesting, because they explore some sub-com-
ponents of young children length measure informal 
ability. These can improve our knowledge for kinder-
gartners’ ability to cope with length measurement, 
as well as, to understand why the research results 
often differ. These are, except of the most reported 
students’ errors, the personal effective strategies that 
even a kindergartner can use for measuring length, 
the confusing of the concept of length with perimeter 
and with area, the kind of the measurement result 
and most important, the relation of the measuring 
material with the measured object. 
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This paper aims at giving information about “interac-
tional niche in the development of mathematical think-
ing (NMT)” (Krummheuer, 2011b). Considering the bene-
fits of playing games, some games were developed within 
the scope of erStMaL-FaSt that enable children to play 
with their families. The aim of this study is to analyze 
mathematical development of children with the immi-
gration background. In a play setting, Tunç played with 
his father and mother. This paper provides a description 
of this play setting as well as its results. Based on empiri-
cal evidence of a familial play setting, the study provides 
further details of NMT. This study was conducted with 
a Turkish family that lives in Germany.

Keywords: Measurement, familial studies, interactional 

niche, immigration background, mathematics in early years..

THEORETICAL BACKGROUND

The place of geometry and measurement in our lives 
is unquestionable. Our environment is full of geomet-
rical shapes and we measure objects around us in our 
daily life. Indeed besides matures even children who 
are two years old can use mathematical concepts. For 
instance, a child at the age of two can decide effort-
lessly whether his friends or his cookies are bigger 
(Heuvel-Panhuizen & Buys, 2008). No matter how com-
plex these mathematical concepts can be seen, in fact 
they are used automatically. Children start to measure 
objects at very early ages (Clements & Sarama, 2007). 
While measuring, they use very different methods. 
For example, they make measurements with a ruler 
or compare objects by using their bodies (Clements 
& Sarama, 2007). In addition to these, by using their 
hands they can measure and comment about the 
length of a table (ebenda). When children engage 
in practical activities with support from adults, the 
mathematics embedded in the activities can be ad-
dressed and learnt by the children. Thus, it brings a 

question to mind “What is the role of the parents who 
spend most of their times with children?” In regards 
to children’s experience with mathematics and geom-
etry, Vygotsky states that, long before going to school 
children can improve their arithmetic skills and in-
teract with people around them (Baroody & Wilkins, 
1999). Children can make division, multiplication, 
addition, subtraction and can decide size of shapes, 
images and so on (ebenda). 

METHODOLOGY AND THEORETICAL 
PERSPECTIVE

Considering the benefits of playing games, some 
games were developed within the scope of erSt-
MaL-FaSt that enable children to play with their fam-
ilies. The aim of this study is to analyze mathemat-
ical development when children with immigration 
background and their parents play games. In order 
to achieve this goal, games were developed by using 
mathematical contents like shapes, patterns etc. The 
most important feature of these developed games was 
to explore how children learn mathematical subjects. 
Children were recorded with cameras while playing 
determined games within the scope of the project. 
Researchers later watched recorded videos and an-
alyzed the play situations. Project erStMaL-FaSt is a 
project of the IDeA (Center for Research on Individual 
Development and Adaptive Education of Children 
at Risk). This research center is constituted by the 
German Institute for International Educational 
Research (DIPF) and Goethe University Frankfurt. 
The financial support is provided by the Ministry of 
Higher Education, Research and the Arts from the 
state of Hessen (for more information: http://www.
idea-frankfurt.eu/de).

For the longitudinal analyses and comparisons among 
different mathematical learning situations, the con-
cept of “interactional niche in the development of 

mailto:gizem.solmaz%40metu.edu.tr?subject=
http://www.idea-frankfurt.eu/de
http://www.idea-frankfurt.eu/de
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mathematical thinking” (NMT) (Krummheuer, 2011b), 
is used. Krummheuer interprets NMT as, “interaction-
al niche in the development of mathematical thinking” 
(NMT) consisting of the provided “learning offerings” 
of a group or society, which are specific to their cul-
ture and will be categorized as aspects of “allocation”, 
and of the situational emerging performance occur-
ring in the process of meaning negotiation, which 
will be subsumed under the aspect of the “situation” 
(Krummheuer, 2012). NMT – Family, is an elaborated 
version of NMT offering analytical concepts to cap-
ture familial mathematical learning opportunities in 
early childhood and elementary school ages. Three 
components of NMT-Family are shown below, which 
will be elaborated later on, from the aspect of the de-
sign of FaSt. NMT-Fast, a developing subtopic of NMT, 
gives the opportunity to research the importance of 
families’ attendance for pre-school children’s learn-
ing of mathematical concepts. NMT-Fast consists of 3 
components as outlined below in Table 1.

Content: The play situations by erStMal-FaSt are set 
up to elicit the families’ chances for interactive nego-
tiations. In these play situations, from the situational 
view, the rules of play and/or mathematical topics 
might be chosen as themes in the period of emerging 
negotiation.

Cooperation: The collaborating process of child and 
adult provides more opportunity to cleanse their 
thinking and to make their performance more bene-
ficial and effective. A different leeway of participation 
comes up due to this cooperation. Krummheuer uses 
the term “Leeway” as a colloquial meaning of “room 
for freedom of action” (Krummheuer, 2012). “Leeway 
of participation” (“Partizipationsspielraum”, Brandt, 

2004) is one of the interactionist approaches by which 
child discovers and explores his/her cultural environ-
ment while co-constructing it. Therefore, this is a con-
cept which belongs to the situational aspect. Brandt 
(2004) defines that the participants interactively 
fulfill varied margins of leeway of participation that 
are contributing or limiting the mathematical devel-
opment of a child (see also Krummheuer, 2011a; 2012). 

Pedagogy and Education: Learning paths are described 
and delineated with developmental theories and the-
ories of mathematics education to study cognitive 
development. According to folk pedagogy, in the con-
crete interaction, the participating adults and chil-
dren become situationally active and operant. Each 
individual’s cognitive development is constitutively 
bound to the attendance in various social interactions. 
In the course of these interactions and participations 
in mathematical discourses, a “support system” which 
is called as “Mathematics Learning Support System” 
(MLSS) is proposed as a concept for the learning 
of mathematics evolving from Bruner’s concept of 
a Language Acquisition Support System (LASS) 
(Bruner, 1986). MLSS occurs in different ways in the 
phases and routines of interactions between child 
and families. During these play situations they con-
vey their knowledge by exemplifying explanation to 
the statements during negotiation of meaning. Either 

“the right given instructions” or “the wrong given in-
structions” by families bring about some different 
types of support. While the given instructions are 
being negotiated by children and their parents, they 
set new interpretations that support the development 
of the child or influence him/her unfavorably (see 
Acar Bayraktar & Krummheuer, 2011; Acar Bayraktar, 
2014). In respect of all these three components, one 

NMT-Family component:
content

component:
cooperation

component:
pedagogy and education

aspect of allocation
mathematical do-
mains: Geometry and 
Measurement

Play as familial arrange-
ments for cooperation

developmental theories 
of mathematics education 
and proposals of active-
ness for parents on this 
theoretical basis

aspect of situation
interactive negotiation of 
the rules of play and the 
content

leeway of participation

folk theories of mathemat-
ics  education,
everyday routines in
mathematics education; 
MLSS

Table 1
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chosen scene will be introduced as an example to show 
how measurement abilities in the interactional niche 
in a familial context emerge. In this study, data was 
collected through video recording. This study is a part 
of a bigger project which is erStMal-FaSt.

THE PLAY: “WHO WILL BUILD 
THE HIGHEST BUILDING?”

The chosen play is from the mathematical domain of 
‘measurement’, which is developed according to specif-
ic design pattern (Vogel, 2014). Aim of the game is to 
build the highest building. At the beginning, all blocks 
are placed on the table. All players take one dice them-
selves, on which pictures of blocks are present. The 

youngest player is to start first. He rolls his dice, then 
looks at the picture on the top of dice. The figure on 
the dice should be identified with the matching block 
from the pile on the table. The player is supposed to set 
each matching blocks on top of each other so that the 
highest building can be built without toppling down. 
In this way, all players try to set the blocks on top of 
each other by rolling dices in turns. In total, 6 rounds 
are played the blocks that are already placed cannot 
be moved or their places cannot be changed. During 
the game, if any of the player’s building topples down, 
he/she fails and leaves the game. In the end, the player 
with the highest building wins the game. In the play 
setting at this study, Tunç plays with both his mother 
and father. Their play takes about 15 minutes.

The required information about Tunç’s family is in 
the Table 2.

In the play situation, firstly, his father gives Tunç a 
little information about the game where he demon-

strates for Tunç how to pick up the block from the box 
after he rolls the dice. Then he rolls the dice and asks 
Tunç about the figure that has occurred. Afterwards 
he asks Tunç to find this figure in the box, to show 
him the figure and to put the block on the table. Tunç 
puts the cube shaped block in front of him. His father 
wants him to re-roll the dice. He requests Tunç to put 
the new block onto the first cube shaped block. Then 
the father confesses to Tunç that they will build a big 
house by putting blocks on top of each other and that 
they will continue like this until the blocks drop onto 
the ground. Then his father explains to Tunç that he 
has to set the blocks by himself without any help from 
neither his mother nor his father. His mother adds 
that everyone will have their own blocks and whoever 
gets the highest one will win. Afterwards she asks who 
will start first. Tunç says “me” and starts the game by 
rolling the dice. Block A comes on the top of the dice. 
Tunç takes it from the pile and puts it on the table. 
Then, his mother rolls the dice, gets Block A and puts 
it on the table. Then father rolls the dice, gets Block B 
and puts it vertically on the table. Hereafter comes up 
the transcript of the chosen part of the scene: Table 3 
on the next page.

Line 13, 14, and 15: Tunç, by showing a block that he 
picked up to his father asks him whether it is big. Tunç, 
by asking this question, may have tried to get a re-
sponse to whether the block he found is appropriate 
or not. Or maybe he asked just because he waited to 
be approved by his father. A possible indication of the 
latter interpretation is that immediately after posing 
the question, he responded “Yes” without waiting for 
his father’s feedback. Tunç has put his block horizon-
tally just like his father did it with the previous block. 
The reason behind this may be that he thinks his father 
did right or that he may wait for his father’s approval 
by putting it similar to the way his father put. If we 
look from another perspective, he may have behaved 
this way because his father did not listen to what his 
mother told him. In other words, he may have copied 
his father.

Block A Block B Block C

Figure 1

Tunç 5;3 years old Single Child
His first language is German 
also he can speak Turkish

Father worker Higher Education both German and Turkish 

Mother unemployed Higher Education both German and Turkish

Table 2
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01 V911160000000000000931005062395012.avi
02 01:31 father yes
03 01:32 mother looks at Tunç’s father it cannot be such high takes a block b 
04 than  from the box, regulates this is high now this is much 
05 higher
06 01:37 father but we must lay a strong foundation, don’t we? If I put it so,
07 it can be easily dropped, can’t it Tunç? holds block b
08 vertically,  makes it horizontally because of this, father puts
09 so puts block b horizontally on the table in front of him
10 01:38 Mother (not understandable)
11 01:50 Tunç rolls the dice, handles the box and looks into takes one 
12 01:52 Father yes! 
13 01:53 Tunç is this big? No
14 01:54 takes a block b sets horizontally on his first block a on the 
15 table in front of him.
16 01:56 father ok… looks at Tunç it is your mother’s turn
17 01:58 mother rolls the dice, picks a block b from the box, sets it on her first 
18 block on the table in front of the her
19 02:00 Tunç looks at his mother you have two blocks
20 02:05 father rolls the dice yes! takes a block c, looks at it from side to 
21 side,  smiles.
22 02:13 mother you must put on it you cannot put next to it like that….
23 02:18 father put block c vertically next to his first block b
24 mother you cannot put two next to each other. like that
25 02:19 father why cannot be next to each other?
26 02:19 mother you cannot put two next to each other  hand up vertically you 
27 should put like that
28 02:24 father why so that I win? Smiles
29 02:25 mother no smiles
30 02:27 Tunç rolls the dice, takes a block c ,  puts vertically on his corpus
31 02:28 father yes!
32 02:29 mother points Tunç look he does it right
33 02:30 father vaov Tunç!
34 02:31 mother rolls dice I get always small blocks picks block a from the 
35 box, puts it
36 02:33 Tunç (german not understanble)
37 02:36 father it’s my turn now rolls the dice yes picks a block c from the 
38 box, put it vertically on his corpus
39 02:43 Tunç looks at his mother you roll always small rolls the dice yes
40 02:47 father what’s it, Tunç?
41 02:48 Tunç shows figure on the dice to his father
42 02:49 father huge! vaoov!
43 02:50 Tunç looks for a blocks into the box
44 02:51 father pushes the box to Tunç,  asks to him which block matches 
45 with the figure
46 02:53 Tunç takes out a block c from the box, shows to his father this  
47 02:54 father yes
48 02:55 Tunç puts a block c vertically on his corpus, regulates it
49 02:56 father yes!
50 02:57 mother looks at Tunç make it robust then not to fall down rolls dice
51 03:03 father but you cannot regulate it so much that Tunç after you put it 
52 once, you cannot touch it again
53 03:08 mother why not?  handles a block b puts it horizontally, then 
54 vertically, then horizontally again
55 03:17 father smiles mother cheats Tunç

Table 3
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Line 22: The mother says “you must put it on you can-
not put next to it like that. The mother, by saying that, 
may have tried to remind the father of the rules of 
the game. The word “must” may cause one to think 
that there is a rule that has been mentioned. In other 
words, by saying “you must put on it you cannot put 
next to it like that” she may has reminded him that he 
is required to put them over each other. The mother, 
by doing so, may have tried to remind Tunç about the 
rules of the game again because as she was talking to 
his father, Tunç was also listening to them. So, with 
this reminder, it can be assumed that the mother may 
have opened up a leeway of participation for Tunç. 

Line 25: The father asks the mother why he cannot put 
the blocks side by side. With this question, the father 
may have opened up a leeway of participation for 
Tunç because, through this question he could think 
about what possibly could happen if he puts blocks 
side by side.  It can be supposed that there could be 
two reasons why the father asks this question. First, 
he may not have realized that he disobeyed the rules 
and tried Tunç to realize that also by waiting an an-
swer from mother. Second, he may have thought that 
the way he placed the block is correct. This way, by 
asking the question, he may have wanted the mother 
to reconsider about the subject.

Line 28: The father asks the mother “Why? So that 
I win?” He smiles. With this question, he may have 
tried to tell Tunç that he could win if he places blocks 
vertically like himself. Another possibility for this 
situation is that he may have tried to encourage Tunç 
by acting like they are racing to win the game. On the 
other hand, the father may have tried to finish the 
discussion between him and the mother.

Line 34, 35: The mother rolls the dice and says “I al-
ways get small blocks”. By saying this, the mother may 
have tried to get the attention of Tunç to compare the 
blocks with each other because the mother has got 
block A. In other words, Tunç could make the sense; 
block A was the lowest block, out of this. Namely, it 
could be assumed that the mother may have con-
structed a leeway of participation with this reaction. 
In contrast to this, the mother may have said this just 
to indicate which block she got.

Line 39: Tunç turns to his mother and says: “You al-
ways roll small”. Then, he rolls the dice and says: “Yes”. 
Tunç, by saying this, may have tried to show his moth-

er that he knew the blocks coming to her were low. On 
the other hand, he may have tried to remind her that 
she always got low blocks and that she cannot win 
the game. In addition to these possibilities, it can be 
examined that, in line 34, by saying ‘I always get small 
blocks’, the mother could have opened up a leeway of 
participation for Tunç. Through this, Tunç thought 
about that what his mother tried to say and finally he 
decided that her mother got small blocks. 

RESULTS

To sum up, I argue for indication of a developmental 
niche that has emerged for Tunç. His mother and fa-
ther are reminding him about the rules of the game 
and even explaining why they put the blocks vertically 
or horizontally. Thereby it seems that Tunç has un-
derstood which way to place the blocks to get a longer 
structure. Also his father supported Tunç during the 
game by saying “yes”. From this point of view, it can 
be said that the father’s supportive actions increased 
Tunç’s motivation.

Children at the age of 5 can easily decide which struc-
ture, created by placing objects over each other, and is 
longer than the others. Furthermore they can discover 
the connection between length and numbers. They 
can also perceive length differences between objects 
even though there is no discernible difference (Cross, 
Woods & Schweingruber, 2009). When this case is tak-
en into consideration, it is possible to say that Tunç’s 
perception about measuring has developed properly 
compared to his age. Also his mother and father have 
been helpful to him to apprehend the subject with 
their reminders and explanations.

Starting off from this analysis we can configure 3 com-
ponents that we mentioned before:

Component “Content”: There were 3 goals for the game, 
which are selected for Tunç: Measurement, matching 
shapes and figures and balancing the blocks statically. 
Pre-school aged children may have some difficulties 
with length measurement. They may not be able to 
compare the length of any object or building. But 
most of the children aged between 4 and 5 are able 
to measure with manipulatives, e.g. ruler, given to 
them. They can also make the connection between 
length and number of the components (Cross, Woods 
& Schweingruber, 2009) Based on this information it 
can be assumed that Tunç has succeeded in comparing 
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the lengths of objects without using any tools. At this 
point, his mother and father remind him with exam-
ples when they place the blocks vertically. Therewith 
they will get a longer structure.

Component “Co-operation”: During the game his moth-
er and father accompanied Tunç. But the game has not 
been directed by a specific person. The father was gen-
erally quite dominant, and he gives some responses 
like yes, huge and vaov. In addition to the father, the 
mother was also considerably involved in the game. 
From time to time, they reminded each other about 
the rule of the game. The father gave suggestions to 
Tunç from time to time which seem to have encour-
aged Tunç. Also, when Tunç asked a question to his 
father, he gave time for Tunç to think and answer. For 
example, when Tunç asked his father if the block is 
big by poking the block at his father, the father waited 
for an answer from Tunç. Afterwards, Tunç found 
his own answer by saying “No”. It can be said that the 
father has opened the leeway of participation of Tunç. 
On the other hand, the mother has succeeded getting 
Tunç’s attention to the game by interfering with the 
father from time to time. Her action has caused Tunç 
to question the playing style of the father. Thus, he 
placed the blocks just like his father did. From this 
point of view, both the mother and the father have 
enabled Tunç to an opened leeway of participation.

Component “Pedagogy and Education”: In the case of 
this selected game, Tunç has succeeded in building 
a long structure by observing his mother and father.. 
Vygotsky asserted that there is an important role of 

“social environment” in which child’s cognitive devel-
opment included (Kozulin, 2003). Children start to 
learn from people around them and their social world 
(ebenda). Starting off from this information, it can be 
said that Tunç has been able to explore how to build a 

longer structure with contributions from his moth-
er and father. Studies have shown that preparation 
of learning and capacity of thoughts affect learning. 
This capacity (potential of learning) is shown with 
zones of proximal development, ZPD (Cook & Cook, 
2007). French (2007) stated that with adult’s help, chil-
dren reach an extensive learning capacity which is 
different from the one earlier. At this point, we may 
assume tell that a child playing with an adult who di-
rects him becomes effective in his learning period. If 
we analyze the example with Tunç and his parents in 
relation to ZPD, we see indication of such extensive 
learning possibility. Tunç has apprehended how to get 
a longer structure with support from his father and 
mother and in fact he even won the game by getting 
the longest structure.

All in all, in the chosen situation, it can be assumed 
that through his father’s and mother’s reminders, the 
developmental niche has emerged for Tunç. 
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In this paper, preschool teachers’ documentation of their 
learning about playing as a mathematical activity are 
examined using Wartofsky’s three levels of artefacts, pri-
mary, secondary and tertiary. Playing is one of Bishop’s 
six mathematical activities and was a new considera-
tion for most teachers and in contrast to how play is 
generally conceived as a tool for learning. Wartofsky’s 
three levels of analysis provided insights into how the 
teachers were able to visualize and understand playing 
as a mathematical activity.

Keywords: Artefact, mathematical activity, preschool, 

preschool class.

BACKGROUND

In this paper, I analyse preschool teachers’ reflections 
on their learning about Bishop’s (1988a) mathematical 
activity Playing using Wartofsky’s (1979) three 
levels of artefacts. This investigation is a part of 
a wider study investigating preschool teachers’ 
mathematical learning in a professional development 
project designed around the introduction of a revised 
curriculum (Skolverket, 2010). The project involved 
teachers completing written documentation about 
their reflections and this paper explores how this 
documentation was analysed. According to the 
Swedish curriculum (Skolverket, 2010), the preschool 
teachers are responsible for that activities in groups 
of children are performed in a way to stimulate and 
challenge children in their mathematics development. 
Skolverket (The Swedish National Agency for 
Education) (2008) highlighted how, ten years after 
instigating a curriculum for preschools, mathematics 
still had an inconspicuous position in preschools. 

Previous research has suggested that preschool 
teachers perceive mathematics only to be about 
counting and measuring (Clements & Sarama, 2007; 

Ginsburg, Lee, & Boyd, 2008). Consequently, there 
have been suggestions that mathematics in preschool 
should include patterns (Björklund, 2008), and 
geometry (Clement & Sarama, 2007; Ginsburg et 
al., 2008). More broadly there is an argument made 
in favour of encouraging preschool children to 
think and make many mental relationships rather 
than to teach them specific subject content (Kamii, 
Miyakawa, & Kato, 2009). Counting, measuring, 
patterns and geometry are mathematical content 
and do not necessary include the expectation of 
mathematical thinking, such as Playing. This is in 
contrast to curricula such as the Swedish preschool 
curriculum (Skolverket, 2010) which emphasis 
mathematical thinking. In a background document 
to the curriculum (Utbildningsdepartementet, 
2010), mathematics in preschool is discussed on the 
basis of Bishop’s (1988a) six mathematical activities 
Counting, Measuring, Locating, Designing, Playing 
and Explaining, which perceive mathematics as a 
cultural activity, developed in all cultures. Bishop 
(1988a) considered the activities to be processes that 
lead to the development of mathematics. These six 
fundamental activities, he claimed are universal for 
two reasons. Firstly, because they seem to have been 
performed by each culture group that has ever been 
studied, and secondly because they are both necessary 
and sufficient for the development of mathematical 
knowledge.

Bergen (2009) asserted that Play can be defined as 
the medium for learning process for all ages because 
many qualities of play enhance learning process. She 
continues with saying that play is valuable for children 
primarily because it is a medium for development 
and learning, and it is important to understand that 
playing and playfulness is a quality which is valued by 
mathematicians, engineers and scientists. Helenius, 
Johansson, Lange, Meaney, Riesbeck, and Wernberg 
(2014b) also discuss that Play is an important means 
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for learning and continues by saying that; with 
for mathematicians Play describes as a necessary 
component of their creativity in problem solving. 
Thus, enhanced playful learning at every level of 
education that prepares professionals for scientific, 
mathematical and engineering fields is warranted 
(Bergen, 2009). Playing is the mathematical activity, 
which deals with aspects of mathematical thinking. 
Bishop (1988b) considered that Playing involves 
designing and participating in games and pastimes, 
which have more or less formalised rules which all 
players must follow. Bishop (1988b) included games 
for adults and claimed that Playing is an important 
activity for developing mathematical thinking for 
all ages. He considered Playing as characterized 
by thinking hypothetically (imagining a potential 
action to take in the game and is the beginning to 
think abstractly), modelling (abstracting something 
from reality) and abstracting (identifying the relevant 
features to focus on within a situation), guessing, 
estimating, assuming or adopting.

The role of play in education is a major concern of 
early childhood educators (King, 1979) and so even 
in Sweden. Play has a long history in preschool cur-
riculum in Sweden, which could be the means of that 
preschool teacher are unlikely to naturally connect 
it with mathematical thinking. Wernberg, Larsson 
and Riesbeck (2010) claimed that the early learning 
of mathematics needs to be problematized so that it 
not only consists of numbers and calculations. They 
argued that the learning of mathematics in preschool 
should be based on playing. They considered Playing 
to be the most important means for learning in pre-
school, because it promoted interactions between 
teachers and children or between children and chil-
dren. But the concept of learning by Playing needs to 
be more nuances to be categorized as a mathematical 
activity Playing (Bishop, 1988b). Helenius and col-
leagues (2014b) mean that, for play to be considered 
mathematical, it must include all or most of the fol-
lowing three parts. The first is that the participants 
must abide the implicit or explicit rules of the play. 
The second is that if the rules change there needs to be 
negotiation by participants. The third is that negotiat-
ing the rules contributes to forming the boundaries 
of the play situation and thus what aspects of reality 
can be suspended and what aspects are modelled in 
what ways. “However, young children are unlikely to 
know the rules of mathematics so for play to count as 
mathematical, there must be abiding by group nego-

tiated rules, but these may not necessarily be about 
mathematical content knowledge per se” (Helenius 
et al., 2014, p. 7).

As a result, it is possible that Swedish preschool 
teachers have difficulties understanding Playing as 
a mathematical activity. In research about the impact 
of a professional development project based on 
Bishop’s (1988a) six mathematical activities, Helenius, 
Johansson, Lange, Meaney, Riesbeck & Wernberg 
(2014a) noticed that preschool teachers focused 
more on counting and measuring. Very few teachers 
labelled the activities that they described as Playing. 
They argued that changes in teachers’ understanding 
take time and “a more explicit discussion of Bishop’s six 
activities could be beneficial for future professional 
development programs” (p. 10). 

Previous research on professional development in 
Sweden shows that, teachers claimed that they wanted 
to acquire extended knowledge and understanding of 
representations, and ideas in many different areas in 
mathematics (Doverborg, 2006). Furthermore, she 
found that continuous reflection with colleagues 
about videos, photographs, observations and 
interviews contributed to teachers’ extending their 
knowledge and views on mathematics and pedagogical 
discussions. Alnervik (2013) focused on sharing and 
discussing pedagogical documentation between 
colleagues as a tool for visualising and developing 
their teaching practices. Pedagogical documentation 
is mentioned in the foreword of the curriculum as a 
way of making preschool practices visible and sub-
ject to discussions and evaluations of the quality and 
quantity of preschools (Skolverket, 1998). However, it 
is only when documentation is used for reflection that 
it becomes pedagogical, which has also been empha-
sized in published literature to provide guidelines for 
the use of documentation (Taguchi, 1997). 

This research investigates teachers’ documentation 
of their reflections on their learning about Playing 
as a mathematical activity. In the next section, 
Wartofsky’s (1979) three levels of artefacts are 
discussed, as Alnervik (2013) used this in analysing 
the pedagogical documentation of preschool teachers 
in her research. The professional development 
was a project for developing preschool teachers’ 
understanding of mathematics, including Playing as 
a mathematical activity. The project provided data 
for my research when it was necessary to determine 
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whether teachers faced a conflict between Playing 
as a mathematical activity and other conceptions of 
play in order to improve the possibilities for learning 
opportunities within the professional development. 
Thus, the research question is: How can Wartofsky 
(1979) three levels of artefacts in the analyses inform 
how preschool teachers developing understanding of 
Playing as a mathematical activity?

WARTOFSKY’S THREE LEVELS OF ARTEFACTS 

Wartofsky’s (1979) three levels of artefacts have 
been used as tools for understanding the learning 
that occurs in mathematics classrooms (Hemmi, 2010; 
McDonald, Le, Higgins, & Podmore, 2005; Radford, 
2008). There are several ways to classify artefacts 
(Säljö, 2005; Wartofsky, 1979). Säljö (2005) defined 
artefacts as tools that mediate between the individual 
and the social practice. He divided artefacts into 
two groups: intellectual tools like discourses and 
systems of ideas and physicals tools like texts, maps 
and computers. He also classified them into primary 
tools like a hammer and symbolic tools like those used 
for communicating ideas. Radford (2008) argued that 
we think with and through cultural artefacts, like the 
wooden ruler, the number line, and the mathematical 
signs on a piece of paper. A similar argument can 
be made for pedagogical documentation. Alnervik 
(2013) used Wartofsky’s (1979) three levels of artefacts, 
primary, secondary and tertiary, to analyse teachers’ 
pedagogical documentation to identify different 
perspectives. Artefacts, such as a die, a photograph 
or a film about a mathematical activity are unlikely to 
support changes in teaching practices without a task, 
a reflection and a conversation between colleagues 
and a re-reflection for reconstructing or developing 
the educational work focusing on the activities 
(Alnervik, 2013). 

Following the Soviet tradition, Wartofsky (1979) 
focused on historic-cultural objects as artefacts. His 
interest was to define the ways humans worked to 
create cultural artefacts. He claimed that perceptions 
are culturally conditioned and represent a person’s 
internal mental model which, through different 
representations, indicates that possible changes 
have occurred. Wartofsky (1979) connected the 
function of tools for use in internal mental models 
of human understanding by going from the practice 
and use of the tool to the theoretical and imaginative 
understandings of the tool. He provided a strategy 

to do this by separating artefacts into three levels, 
primary, secondary and tertiary, although he also 
acknowledged the importance of linking the three 
levels. The artefact or tool itself does not determine 
whether it is primary, secondary and tertiary, but 
rather how it is used. 

Primary artefacts: These are tools, which are being 
used, in a special context. To utilise the tools means 
possessing the knowledge of how the tools operate, 
including the skills needed to operate them. 

Secondary artefacts: These tools act as a model or 
pattern in which the artefact is used to describe 
how people are supposed to do something i.e. seeing 
something that was not apprehended earlier. 

Tertiary artefacts: These are tools or aids for 
thinking, where the artefacts help people to see the 
environment in a special “new” way. These artefacts 
can be considered as a way to “create, understand and 
analyse the world” (Säljö, 2005, p. 98). Hence, new 
ways of viewing the world can be discovered and 
these can contribute to altering and understanding 
a practice in a new way (Alnervik, 2013).

METHOD

This paper reports on a part of a larger study aiming 
at investigating how preschool teachers use their 
understandings of the six mathematical activities 
(Bishop, 1988a) in their teaching practices during 
a professional development programme. This 
programme was part of Matematiklyftet (Skolverket, 
2013) and used materials developed specifically for 
teachers in preschool and preschool class. Preschool 
class is a “bridging” year between preschool and 
school and school starts in the year when children 
turn seven, preschool is for one to five year olds. The 
material is based on collaborative learning (Timperley, 
Wilson, Barrar, & Fung, 2007) and Bishop’s (1988a) six 
mathematical activities. Ninety preschool teachers 
and preschool class teachers, divided into four groups, 
actively participated in this project during a period 
of eighteen months, 2013–2014. The mathematical 
activity Playing (Bishop, 1988a) was the focus of three 
meetings with the teachers. The teachers were given 
mathematical tasks and questions to discuss, in order 
to develop their understanding of Playing. Before the 
first meeting the participants were supposed to have 
read the prescribed texts and looked at video(s), from 
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the professional development material. During the 
first two meetings, the texts and videos were discussed 
and between the meetings the teachers implemented 
tasks in their preschools that could be linked to 
modelling, abstraction and hypothetical thinking. 

Following Helenius and colleagues’ (2014) advice 
about the need for more explicit discussions of 
Bishop’s six activities, teachers got the opportunity to 
discuss mathematics in preschool and preschool class 
with their colleagues at the professional development. 
To base the discussions on teachers’ own practices, 
the teachers brought with them documentation in the 
form of photographs or videos. Every third meeting 
was a reflection meeting where the teachers discussed 
their documentation. During these discussions the 
teachers used a reflection protocol as support for 
their discussions so that they could further develop 
the mathematical activities. As one of the facilitators 
of the professional development, I kept my own notes 
of the meetings and these were also analysed. 

In this paper, the purpose is to look at how Wartofsky’s 
(1979) three levels of artefacts were used to identify 
what understanding of Playing as a mathematical 
activity teachers displayed in their documentations 
during the professional development. Bishop’s 
(1988b) description of modelling, abstraction and 
hypothetical thinking as key features of Playing 
was used in identifying how teachers visualises this 
mathematical activity in their work in preschools. 
Wartofsky’s (1979) three levels of artefacts were 
chosen as a way of seeing whether a conflict between 
understandings of Playing and other conceptions 
of play in the Swedish preschool was evident in the 
teachers’ pedagogical documentation. In order to 
operationalise Wartofsky’s (1979) three levels of 
artefacts so that they could be used in analysing the 
teachers’ documentation, descriptions of how they 
could be used in the data analysis were developed: 

Primary artefact: Tools as a photograph, video 
recording or a note from the teacher to visualise 
Playing as a mathematical activity. 

Secondary artefact: Tools in the documentation 
from the teacher, where the notes described what 
occurred in photographs or video recordings in 
form of the three concepts; modelling, abstraction 
and hypothetical thinking. 

Tertiary artefact: Tools that aid teachers’ thinking to 
see the environment in a special “new” way of Playing 
as a mathematical activity. 

ANALYSIS 

In the following sections, I provide a description of 
a teacher’s documentation and how it was analysed 
using Wartofsky’s (1979) three levels of artefacts.

Pedagogical documentation 
as a tertiary artefact
A teacher in a preschool class chose to video record 
a play situation where three children, six years old, 
played “doctor”. This is a common play situation 
in preschools and preschool classes and models 
children’s perceptions of a real hospital. Consequently 
it was considered to be an example of the modelling 
component of Playing as a mathematical activity. In 
the video, one child is a patient, one child was a doctor, 
and one child was a nurse and secretary. The teacher 
talked to the children and asked them questions 
during the episode captured on the video. 

The teacher discussed with the children different 
aspects of Playing by asking questions. From this, she 
then added comments to the documentation. 

The teacher asked the children question about objects 
they were using as part of their hospital game but 
which did not necessarily look like they did in reality. 
Such a situation occurred when the child, who acted 
as a secretary, sat down at the table and pressed the 
buttons of a calculator. The child answered that 
the calculator was a typewriter on which he wrote 
prescriptions. This was analysed by the teacher as 
illustrating the abstraction component of Playing 
because the child had only focused on specific aspects 
of a typewriter, the buttons, as being important for 
what he was doing. After that, the teacher asked the 
doctor about the patient’s condition. The doctor 
informed the teacher the patient had a very high 
heart rate, so he had to stay at the hospital for a few 
days. When the patient heard that his condition was 
very serious, he lay down on the sofa again. The child 
who was acting as the patient imagined what it was 
like to have such a bad condition so he followed the 
rules of the game situation in order to ensure that he 
received further treatment from the doctor. This was 
considered to be an example of hypothetical thinking 
because he had to work out what would be expected 
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of him, if he really was a patient with a bad heart 
condition the rules changes and there was negotiation 
by participants.

In her documentation, the teacher showed how 
her choice of implementing this situation and her 
conversation with the children, illustrated how she 
had perceived and worked with the three components 
of Playing as a mathematical activity. At the reflection 
meeting, my notes suggested that she had observed 
this play before, but had not seen it as a mathematical 
activity. During the reflection meeting, she also, of 
raised how she felt about her own presence during 
the children’s “free play”, and how this affected her 
further development and planning of this situation. 

Her documentation of Playing was analysed as a 
tertiary artefact, as the teacher showed that she had 
gained new understanding, that might contribute 
to her changing how she saw this situation in the 
future Playing by providing her with new ways of 
understanding what she did. 

Pedagogical documentation 
as a secondary artefact
The example of a secondary artefact comes from 
the documentation of two teachers who decided 
to work together. They took turns in participating 
in the children’s free play and simultaneously 
photographing it. The teachers provided texts to 
accompany their photographs about what the children 
said and did. 

However, they did not mention modelling, abstracting 
and hypothetical thinking (Bishop, 1988b) in their 
documentation. The children did discuss how chairs 
should be placed in order to resemble a ferry and in 
so doing organized the chairs from a model they had 
been aware of earlier and the rules contributes to 
forming the boundaries of the play situation. This 
situation could have been identified by the teachers 
as modelling. The children also put toys in a swimming 
pool to represent a pool on the ferry that could give 
massages. This second situation could have been 
identified by the teachers as abstraction like aspects 
from the reality. Later, the children informed the 
teachers that a chair was missing and it meant that 
not all the children could get a massage at the same 
time. This last situation could have been identified 
by the teachers as hypothetical thinking because of 

how the children pretended that the game could not 
continue if not all of the children participated.

This documentation was categorised as a secondary 
artefact because an individual reflection from the 
teachers on their roles, which was present in the first 
pedagogical documentation, was left out. The notes 
that they made allowed them to explain what the 
children had done but not reflect on it, thus making it a 
secondary artefact. Without the reflection component, 
it seems that teachers can remain unaware of how the 
components of Playing were present in the situation. 
It is interesting to note that when the teachers 
presented their documentation to their colleagues 
at the reflection meeting, they then could discuss the 
different aspects of Playing in the situation but this 
was not part of their documentation.

Pedagogical documentation 
as a primary artefact
In this documentation, the teacher video recorded a 
situation where a four-year-old child was supposed 
to sort material, containing teddy bears in different 
colours and sizes. The teacher asked questions 
during the documentation, which were related to 
the numbers and the sizes of the teddy bears, such 
as “how many teddy bears do you have?” and “do you 
have more orange teddy bears than red?” However, 
the child played with the material and responded 
with statements such as “this is a ring [of teddy bears], 
dancing around a Christmas tree”. However, this 
situation could be an example of modelling, as the child 
presents a possible model of a real-world situation. 
The child continued with “I get to do this instead when 
I throw out the Christmas tree” which could visualized 
be a hypothetical thinking as she presents a possibility 
of something occurring. The teacher used the video 
camera, as a direct tool to produce a description of 
a mathematical situation or a play situation with 
math material. In the documentation, the situation 
was neither explained nor reflected upon. Hence, it 
was categorised as a primary artefact, a tool as a video 
used in a specific context to visualize mathematic in 
an organised situation.

COMPILATION OF THE RESULTS 

A total of thirty-seven sets of documentation were 
collected from the teachers. Several teachers chose 
to do the documentation together, others chose to 
resist. About a quarter of the documentation were 
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categorised as primary artefact (Wartofsky, 1979). In 
many of these, it emerged that the teachers perceived 
the situations as playful environments which they 
connected to mathematical learning situations. 
In other documentation categorised as primary 
artefacts, the teachers described the situation as a 
representation of Playing (Bishop, 1988), similar 
to sorting the teddy bears, but which contained no 
explanation or reflection. The rest of the collected 
data was analysed as secondary and tertiary artefacts.

During the two meetings before the reflection 
meeting, when Playing (Bishop, 1988a) was discussed 
in different ways, the teachers expressed that they 
had difficulties to seeing the children engaged in 
modelling and the abstraction. The facilitators 
therefore chose to focus the meetings on these two 
parts, by showing many different representations of 
modelling and abstraction. However, in the results 
it is hypothetical thinking that many educators 
had difficulties with seeing. Consequently many of 
their sets of documentation could not be classified 
as indicating a tertiary artefact, because this lack of 
awareness hindered the teachers from changing their 
understanding about their practices.

Many of the teachers found that it was in the collegial 
learning, when they discussed their documentation 
of their own activity that contributed to opening up 
their view of Playing as a mathematical activity. In 
addition, the teachers identified the importance of the 
facilitators being involved in the discussion of their 
documentations in the reflection meeting in order for 
them to see Playing as a mathematical activity.

CONCLUSION 

Analysing how teachers in preschool and preschool 
class were able to visualize Playing as a mathematical 
activity is very complex. By using Wartofsky’s (1979) 
three levels of artefacts primary, secondary and 
tertiary it became possible to detect how preschool 
teachers developed their understanding of Playing as a 
mathematical activity. Helenius and colleagues (2014a) 
showed that teachers struggled to catch the sight of the 
mathematical activity Playing in their practice. The 
same phenomenon appeared in the documentation 
from this professional development. This suggests 
that teachers’ conceptions of play were connected to 
the curriculum understanding that learning occurs 
through play or that mathematics maybe is only about 

counting and measuring. Wartofsky’s (1979) three levels 
of artefacts could inform analysis of preschool teachers 
developing understanding of play as a mathematical 
activity. More research in this area is needed on how 
the mathematical activity Playing (Bishop, 1988b) is 
made visible and teachers understanding of the activity 
to enhancing playful learning in early childhood 
education for prepare professionals in the scientific, 
mathematical and engineering fields. 
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Not all mathematical problems have a solution. This pa-
per describes a decomposition problem, set in a real-life 
context, for which no mathematical solution exists. It 
describes the strategies children use and how the rea-
life context impacted on children’s solutions. Results 
indicated that young children accept the possibility that 
a problem may not have a solution and that some turn to 
the context in order to find a practical solution instead. 

Keywords: Unsolvable problems, kindergarten, real-life 

context.

Problem solving is an inherent part of learning 
mathematics at every age. In the U.S., the Curriculum 
Focal Points suggests that the content and concepts 
learned in kindergarten should be addressed in a 
context that promotes problem solving, reasoning 
and critical thinking (NCTM, 2006). In England, the 
Statuary Framework for the Early Years Foundation 
Stage (DCSF, 2008) states that “Children must be sup-
ported in developing their understanding of problem 
solving, reasoning, and numeracy in a broad range of 
contexts…” (p. 14). In Israel, the preschool mathemat-
ics curriculum stresses that problem solving should 
be interweaved throughout all of the main content 
strands (INMPC, 2008). Some major, related questions 
are: What types of problems should we present to 
young children? Should we only present problems 
that have a solution? Are young children capable of 
handling mathematical problems that have no solu-
tion? The INMPC (2008) suggests that problems, espe-
cially for young children, be set in a real-life context. 
How might such a context impact on the way young 
children approach a mathematical problem that has 
no solution?

One of the major content strands of preschool math-
ematics education is to promote number conceptual-
ization and skills, including number composition and 

decomposition. The INMPC (2008) states that between 
the ages of 4 and 6 years, children should learn that 
a given amount of objects may be divided into two or 
more groups and that those groups may or may not 
have equal amounts of objects. Being able to flexibly 
compose and decompose numbers allows children to 
apply various strategies when solving number prob-
lems in various contexts and assists in the develop-
ment of number sense (Baroody, 2004). This study 
describes kindergarten children’s engagement with a 
number decomposition problem set in a real-life con-
text that has no mathematical solution. Specifically, 
it investigates: What strategies do children employ 
when faced with a composition and decomposition 
problem? Do young children recognize when a prob-
lem has no mathematical solution? How might the 
context of a problem impact on the way children ap-
proach the absence of a solution?

NUMBER DECOMPOSITION AND 
PROBLEM SOLVING 

Children’s ability to compose and decompose numbers 
is at the heart of this study. Two prerequisite skills 
for composing and decomposing numbers are verbal 
counting and object counting. Both of these skills are 
almost always mastered by age five (Baroody, 2004). 
Related to quantification, but distinct from counting, 
is the process of subitizing (Baroody, Lai, & Mix, 2006). 
Subitizing refers to the immediate recognition of the 
number of items in a collection without counting the 
objects. It involves recognizing that three dots in a 
row has the same number of dots as three dots set up 
in a triangular array and that both of these sets have 
exactly three dots. As the child develops, these concep-
tions may be mentally operated on, such as mentally 
decomposing a pattern of five into two and three and 
combining them back together. 
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In addition to subitizing, children develop and use 
various counting strategies when solving arithmetic 
problems. Initially, when children are requested to 
add two numbers or to combine sets of objects, they 
use a “counting-all” strategy. For example, when com-
bining three items with four items, children will count 
1, 2, 3 and then 1, 2, 3, 4 and then finally, 1, 2, 3, 4, 5, 6, 
7. This strategy develops into several more sophisti-
cated strategies such as “counting-on-from-first” and 

“counting-on-from-larger”. Eventually, procedural 
counting knowledge develops into declarative knowl-
edge in the form of number-facts, which are remem-
bered and retrieved (Baroody, 2004). Children take 
advantage of number facts, along with their knowl-
edge of decomposing numbers, to count in a more 
efficient manner. In the above example, children may 
decompose the four into three and one, use a known 
fact such as “three and three makes six”, and then add 
the leftover one, to make seven (Verschaffel, Greer, & 
deCorte, 2007).

Not all arithmetic problems present the same cog-
nitive challenge. The easiest problems to solve are 
those that the child can use and manipulate physical 
items in a step-by-step procedure set out by the story 
problem (Sarama & Clements, 2009). For example, if 
the child is requested to find out how many candies 
Danny has if he received three candies from his grand-
ma and four candies from his grandpa, the child can 
physically act out this story using substitute items, in 
order to figure out how many candies Danny now has. 

Setting mathematical problems in real-life contexts 
is another issue discussed by mathematics educators. 
The realistic mathematics education (RME) approach, 
emphasizes that context problems must be imaginable 
to the students (e.g., Streefland, 1990). Such problems 
can serve as an introduction to a mathematical topic 
as opposed to merely demonstrating the applications 
of a mathematical topic at the end of a learning se-
quence. Students, however, do not always take into 
account the real-life context of the problem. When 
posed with the following problem:

450 soldiers must be bussed to their training site. 
Each army bus can hold 36 soldiers. How many 
buses are needed? 

a considerable amount of students wrote that 12.5 bus-
es would be needed (Verschaffel, De Corte, & Lasure, 
1994). 

While the bus problem is solvable (e.g., hire 13 bus-
es), not all problems have a solution. For example, 
De Corte and Verschaffel (1985) posed the following 
problem to first graders: Pete had some apples; he 
gave 4 apples to Ann; how many apples does Pete 
have now?” (p. 11). More than half of the children did 
not recognize that the problem was unsolvable. In 
other studies with similar unsolvable situations, stu-
dents gave answers which were irrelevant (Reusser & 
Stebler, 1997). It was as if students felt that if a problem 
is posed, a solution must exist. When does this belief 
develop? Does it exist already in kindergarten? In this 
study, we pose a problem which has no solution and 
investigate children’s strategies when attempting to 
solve this problem.

METHODOLOGY 

The participants in this study were 19 kindergarten 
children, ages 5–6 years old, attending three differ-
ent kindergarten classes. All three kindergartens 
were located in the same middle-low socio-economic 
neighbourhood. Their teachers had participated for 
two years in one of our professional development 
programmes (Tirosh, Tsamir, & Levenson, 2011). The 
children were scheduled to enter first grade the fol-
lowing term. The study was conducted in March, the 
second half of the school year.

Birthday parties are part of children’s reality. Every 
child experiences birthday parties in the kindergar-
ten class. For this task, four empty party plates were 
placed on the table. In addition, eight cards were 
placed on the table, with different amounts of candies 
on each card. One of the eight cards was left blank 
(See Figure 1). The child was told, “Four children are 
coming to your party and you want to give each child 
seven candies on their plate. Can you arrange it so 
that there are seven candies on each plate? You can 
arrange the candies however you wish, but there have 
to be seven candies on each plate.” At this point, the 
interviewer let the child work out the problem, adding 
comments as needed, such as letting the child know 
that it was permissible to place more than one card 
on a plate. When it seemed that the child had finished, 
the interviewer asked, “Are you finished?” When the 
child acknowledged that he or she was finished, the 
interviewer asked, “So, does every child get seven can-
dies?” The problem has no solution; twenty-seven is 
not divisible by four; seven candies cannot be placed 
on each of the four plates. 
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Analysis of the results began by considering correct-
ness. First, we noted if a child who claimed to have 
placed seven candies on a plate, did indeed place seven 
candies on that plate. Second, when the child com-
pleted the task, did he or she recognize that not all 
plates had seven candies or did the child claim that 
each plate had seven candies? Third, we noted what 
strategies were used when composing seven. Did the 
child use a counting strategy or were number facts 
recalled? Finally, we were interested in investigating 
how the context of the birthday party might influence 
the children’s solutions, and how the children would 
deal with a problem that had no acceptable mathe-
matical solution.

FINDINGS

This section begins by summarizing the final arrange-
ments of the cards on each plate, highlighting the 
issue of the blank card. It then describes one child’s 
strategies when engaging with the problem. Finally, 

we describe how children dealt with the fact that this 
problem had no mathematical solution.

Table 1 summarizes the frequency of the final arrange-
ments of candy cards on individual plates. The order 
in which the plates were filled was not recorded as 
children went back and forth moving cards from one 
plate to another. From the results we see that most 
children (11 out of 19) attempted to place seven candies 
on as many plates as possible, leaving only one plate 
with six candies. 

An interesting aspect of this problem is the blank card. 
The blank card was meant to represent zero candies. 
In an abstract context, seven may be decomposed 
into seven and zero. However, in the birthday party 
context, there is no added value to placing the blank 
card on any of the plates. After all, if we place the card 
with seven candies on one of the plates, then that plate 
now has seven candies. Why add the blank card? And 
yet, eight children added the blank card to one of the 
plates. It could be that for these children, there was 

Figure 1: The Birthday Party task cards

Plate Plate Plate Plate Final Status Frequency (claims not every plate has 7 
candies)

7+0 6+1 5+1 4+3 7, 7, 7, 6 5(-)

7 6+1 5+1 4+3 7, 7, 7, 6 4(4)

7 6 5+1+1 4+3 7, 7, 7, 6 2(1)

7+1 6+1 5 4+3 8, 7, 7, 5 2(1)

7 6+1 5+3+0 4+1 8, 7, 7, 5 1(1)

7 5+1+1 - - 7, 7, -, - 1*(1)

7 6 5 4 7, 6, 5, 4 1(-)

7 6 5 3 7, 6, 5, 3 1(-)

7+1 6+0 5+4 3+1 9, 8, 6, 4 1(-)

7+1 6+5 4+1 3+0 11, 8, 5, 3 1(-)

Table 1: Frequency of arrangements of candy cards per plate (acknowledged that there were not 7 candies on every plate)

* This child stopped in the middle realizing that the problem was unsolvable.
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an implicit understanding that all of the cards had to 
be used, even if it did not make sense according to the 
story.  If that was the case, then the blank card could 
have essentially been added to any of the plates. Yet, 
of the eight children, five placed it on the plate with 
the card with seven candies, representing the decom-
position of seven into seven and zero. Perhaps they 
were trying to place two cards on each plate. 

Regarding strategies for solving the problem, it was 
sometimes difficult to tell which strategy a child was 
employing. Counting was the most obvious, as chil-
dren usually counted aloud or at least pointed and 
touched each candy, probably counting silently in 
their heads. Estimation and subitizing were more 
difficult to discern, although we gathered that many 
children used this strategy, especially those who 
placed seven candies on the first plate and six on the 
second, without counting the candies on either plate. 
Recalling number facts was most apparent for the 
decomposition of seven into four and three. For ex-
ample, one girl looked at all the cards, chose the card 
with four candies on it and placed it on the first plate. 
Then she carefully looked over the rest of the cards 
and deliberately chose the card with three candies 
on it, placing it on the same plate as the four candies. 
She did not say anything. Because of the difficulty in 
accurately identifying which strategy was used, we 
do not quantify and summarize the number of times 
each strategy was used but instead illustrate in the 
following example how one child employed several 
different strategies when solving this problem and 
how the birthday party context impacted on her final 
answer. 

Shula begins by counting the candies on the cards 
(lines 1, 3, and 4) and choosing which to place on plates. 
However, after she counts four candies (line 4) she 
adds a single candy without counting the total.

1 Shula: (Shula uses her finger to count 

the candies on the card:    .) 1, 2, 3, 4, 5.
2 Interviewer: You can place more than one 

card on the plate.
3 Shula: (Shula counts the seven candies 

on the card ) 1, 2, 3, 4, 5, 6, 7 (and 
places the card on the first plate).

4 Shula: (Shula counts the four candies 

on the card ) 1, 2, 3, 4 (and places it on 
the second plate. She then places the card 

with on the same plate.)

She then seems to randomly place cards on the other 
plates (lines 5 and 6), without counting, perhaps just 
to fill up the plates with something. Later (line 10), 
when she does count them, we learn that perhaps she 
thought she was placing seven candies on each plate, 
possibly by estimating the amounts.

5 Shula: (Shula places  and 

 on the third plate.)

6 Shula: (Shula takes the three cards that 

are left: , ,   and puts them 
on the fourth plate.

Shula realizes that not every plate has seven candies 
(lines 8 and 12), but claims that it does not matter.

7 Interviewer: So, does each friend have sev-
en candies?

8 Shula: Here (pointing to the second 
plate with four and one) there are 1, 2, 3, 4, 
5. It’s not important.

9 Interviewer: It’s not important?
10 Shula: (Shula counts the candies on the 

other plates, miscounting the 5 and 3 and 
concluding that there are seven candies on 
that plate.)

11 Interviewer: So, does everyone have sev-
en?

12 Shula: No.
13 Interviewer: Who doesn’t have seven?
14 Shula: (Shula points to the second plate 

with 5 candies.)
15 Interviewer: So, what should we do?
16 Shula: Leave it.

Shula uses a combination of strategies to solve the 
problem. She counts, sometimes correctly and some-
times incorrectly. She may also have used estimation, 
placing the card with a lot of candies (six candies) on 
the same plate as the card with only one candy. Only 
when asked if each plate has seven candies, does she go 
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back and count the candies on that plate. It is interest-
ing to note that after Shula acknowledges that not all 
plates have the required seven candies, she does not 
try to rearrange the cards and work it out. Nor does 
she complain that there are missing candies. Instead, 
she says that it is not important and we should leave it. 

In real life, 27 hard candies cannot be distributed 
equally among four plates. Of the 19 children who 
participated in this study, eight children answered 
correctly at the end that not all plates had seven can-
dies. Four of those children, like Shula in the vignette 
above, acknowledged this fact without further com-
ment. They did not seem bothered by not having sev-
en candies on each plate; they made no comments or 
gestures that might be interpreted as frustration or 
exasperation; nor did they intimate that the problem 
was unsolvable. They seemed satisfied that the task 
was completed. One of those children placed the card 
with seven candies on the first plate, the card with five 
candies and the cards with one candy each on the sec-
ond plate (i.e., 5+1+1), and then sat back and said, “There 
aren’t enough.” When the interviewer asked her how 
come, she pointed and replied, “Because here this is 
zero and six and here four and three.” This child did 
not count and instead seemed to use a combination 
of subitizing (she recognizes without counting that 
there are three candies on the one card and four on 
the other) and number facts (e.g., 3+4=7). When the 
interviewer asks, “so only two friends will get can-
dies?”, she does not respond further and at her own 
initiative, she stops the activity, leaving the other two 
plates empty. 

Of the four other children, three made it clear that one 
candy was missing. One child, trying over and over 
to solve the problem said, “Something is not right,” 
before explicitly stating that one candy was missing. 
Another child turned over the blank card to make sure 
that there wasn’t a picture on the other side. When 
asked what he was looking for, he pointed to the card 
with one candy on it as if to say that he was missing 
one candy. The third child said that a card was missing 
and stated “like that one” pointing to the card with 
one candy on it. The interviewer responded, “You 
are right, so, what do you say we go to the store and 
buy candies?” The boy nodded his head in agreement 
and laughed. The fourth child suggested removing 
the plate that had less than seven candies, leaving the 
remaining three plates with exactly seven candies.

Of the 11 children who incorrectly claimed that each 
plate had seven candies, many simply did not count 
the candies as they distributed the candy cards. Some 
seem to have relied on the strategy of estimation. That 
is, the card with seven candies and the card with six 
candies both looked like a lot of candies and thus, they 
did not feel the necessity for counting. One boy be-
gan by placing the card with seven candies on one 
plate, the card with six candies on the next, and the 
card with five candies on the third. Only at that point 
did he stop and realize that the five candies were not 
enough. After he thought about it and added two extra 
cards, with one candy on each to that plate, he placed 
the card with four candies and the card with three 
candies on the fourth plate, counting the candies on 
that plate to make sure. He did not go back and check 
the cards on the first two plates (the second plate had 
six candies) and so claimed that each plate had seven 
candies. Other children counted incorrectly. Incorrect 
counting most often occurred for the cards with seven 
and five candies, possibly because the candies were 
not pictured in a row, making it more difficult to keep 
track of the counted candies. In general, children en-
gaged enthusiastically with this problem, used vari-
ous strategies to solve it, and displayed various levels 
of competency when it came to counting.

DISCUSSION

The mathematical context of the problem posed to 
children in this study was the decomposition of seven. 
As described above, many children did not recognize 
that the problem was unsolvable, possibly because 
they estimated and did not count or because they 
miscounted. One factor which contributed to the 
difficulty of counting was the physical setup of the 
task. If children had been given actual candies and 
could physically move the items, they might have 
found it easier to count (Sarama & Celements, 2009). 
However, if they had been given candies, the prob-
lem would have lost the focus on decomposing seven. 
Furthermore, with physical candies, children might 
have distributed the candies by placing one candy at 
a time on each plate until all the candies were used 
up. It would then be quite obvious that one candy was 
missing and thus the impact of having an unsolvable 
problem might have been lost. 

When children did recognize that every plate could 
not be filled with exactly seven candies, they did not 
seem very disturbed by the insolvability of the prob-
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lem. None claimed that every problem must have a 
solution. Only one child tried over and over to move 
the cards around and solve the problem. In addition, 
unlike the students in the studies reviewed in the 
background (e.g., De Corte & Verschaffel, 1985), none 
of the children in this study gave a non-relevant solu-
tion. 

In analyzing the reasons behind the results, we offer 
a few possibilities. First, it could simply be that this 
problem was not abstract and children were able to 
actually see the pictures of the candies and see that 
there were not enough. However, in a previous study 
of students’ handling of unsolvable problems, Reusser 
and Stebler (1997) found that when students were 
told to explicitly make a sketch of a real life problem, 
the results hardly improved. What did improve the 
results were students’ past experiences with other 
unsolvable problems. Reusser and Stebler (1997) sur-
mised that when students are made to solve “so-called” 
real- life problems that are essentially routine math-
ematical exercises disguised as word problems, they 
become immune to the actual contextual limitations 
of the problem. The students in that study were fourth 
and fifth graders, old enough to have absorbed implicit 
norms which indicate that every mathematical prob-
lem given in school, must have a solution. The children 
in our study were quite young, not yet enculturated to 
school mathematics problems. They were most likely 
young enough to rely on their natural problem solving 
sensibilities, sensibilities we wish to preserve and 
strengthen. We suggest that engaging young children 
with unsolvable mathematics problems is one way to 
provide experiences which children may reference 
in the future.

However, not every unsolvable problem may encour-
age children’s insight into or acceptance of the insolv-
ability of that problem. The context, and how close it is 
to the child’s real world, may also impact on the child’s 
ability to see that a specific problem is unsolvable. The 
solution to  is not a whole number. The problem pre-
sented in this study cannot be solved. However, there 
are also cultural norms related to the practice of birth-
day parties in kindergarten. Four children accepted 
the final status of the plates without further comment. 
For them, it could be that as long as everyone received 
some candies, the problem had a satisfactory ending. 
Or perhaps they felt that the child with fewer candies 
might get an additional piece of cake. One child stat-
ed that one plate should be removed. Perhaps for that 

child, equal sharing is more important than filling up 
all the plates. Perhaps, from that child’s perspective, 
it would be better to invite only three friends than 
have four friends who cannot get an equal amount 
of candies. Three children stated that one candy was 
missing; one of those three playfully agreed to go with 
the interviewer to buy more candies. That is a solution 
which is quite realistic. In answer to the the title of 
this paper, kindergarten children can engage with 
unsolvable mathematics problems.
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Mathematically rich games can offer children impor-
tant informal learning contexts for playful mathemat-
ical activities in kindergarten. At the same time, these 
activities can be used as starting points for formal learn-
ing in primary school. In the reported qualitative study, 
20 children were observed dealing with three developed 
playing and learning environments in the last year of 
kindergarten and the first year of school. This paper 
concentrates on children’s mathematical activities and 
insights while dealing with a playing environment in 
kindergarten. On the one hand, the focus is on how chil-
dren interpret relationships between numbers. On the 
other hand, two different types of play in the game are 
outlined. The results will be discussed regarding con-
necting points for learning processes in primary school.

Keywords: Kindergarten, playing, games, dice, relational 

understanding.

PLAYING GAMES AND LEARNING 
MATHEMATICS BEFORE FORMAL SCHOOLING

In recent years, empirical studies have provided ev-
idence that playing mathematically rich games can 
have a positive impact on children’s mathematical 
learning, including in kindergarten (e.g., Stebler, Vogt, 
Wolf, Hauser, & Rechsteiner, 2013). Characteristics 
of mathematical learning situations in games have 
been worked out and conditions for their develop-
ment have been investigated, whereby mathemati-
cally rich games can provide a meaningful context 
for mathematical activities and are open for different 
individual strategies (Stebler et al., 2013). An adap-
tive guidance through adults can help to unfold the 
mathematical potential of the game as a learning sit-
uation for the child (Schuler, 2011). At the same time, 

mathematical activities can themselves – independent 
from a game – be considered as play. This is the case if 
the mathematical activity has characteristics of play, 
e.g. it moves between the poles of rules and freedom 
(van Oers, 2014).

While current studies emphasize the importance 
of playing games for mathematics learning in kin-
dergarten, playing as a mathematical activity, as 
described by van Oers, can be important for both 
learning locations: kindergarten and primary school 
[1]. However, there are fewer findings on how to use 
the idea of ‘mathematical play’ as a bridge between 
kindergarten and primary school at present, as well 
as how mathematical learning in kindergarten is ef-
fected in the context of a game (van Oers, 2014). The 
purpose of this paper is to ascertain the children’s 
mathematical interpretations and characterize the 
playing activity in the context of a playing environ-
ment to outline opportunities for connected learning 
processes in primary school. 

Playing and mathematics learning
As mentioned above, playing games seems to provide 
an important mathematical learning opportunity. But 
how can play or playing be characterized? Following 
van Oers (2014), play is understood in this paper as an 
activity that is characterized by high involvement of 
the actors, oriented on rules and allowing some degree 
of freedom. Accordingly, a characteristic feature of 
playing activities is that players voluntary adhere to 
rules and adopt a specific role, e.g. in a game, they en-
gage themselves in a fictitious competition. The rules 
of the game can be explicit or implicit, predefined or 
negotiated in the process of playing. Van Oers (2014) 
differentiates between four different functions of 
rules: (1) social rules, namely how to interact and deal 
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in play; (2) technical rules, concerning how to use play 
objects properly; (3) conceptual rules, regarding how 
to act based upon specific concepts; and (4) strategic 
rules, in terms of how to improve the playing process. 
Van Oers (2014, p. 62) defines the degree of freedom 
in a positive way, “as the freedom to change, to resist, 
to produce extravagant ideas and so on” [original 
emphasis]. 

Ginsburg (2006) distinguishes the observable mathe-
matical play of children according to different types: 

“Mathematics Embedded in Play” and “Play Centering 
on Mathematics”. The former type can arise by play-
ing mathematically rich games. In particular, a game 
can imply mathematical aspects, although the core 
is the competition among the players. In contrast, 

“Play Centering on Mathematics” occurs in operative 
discovering, exploring and inventing patterns and 
structures. Children play with mathematical objects 
by varying them and, thus gaining insights into 
mathematical relations: They discover the impact of 
a change of objects and how to react accordingly with 
another specific change (Steinweg, 2001). Both types 
of play can offer children a context to verbalize their 
strategies and interpretations, as well as negotiating 
mathematical meanings. The playing environment 

“Who has more?”, which is addressed in this paper, 
links both types of play according to Ginsburg (2006): 
it enables “Mathematics Embedded in Play” as a game 
with mathematical aspects. While the choice of struc-
tured game materials it is designed to allow play with 
mathematical objects. Therefore, “Play Centering on 
Mathematics” can be realized. Here the question is 
how can the playing activities of the children in the 
context of the playing environment “Who has more?” 
be characterized? 

Mathematical play and relational understanding
The pivotal activity of mathematically-centered play 
involves establishing relations between mathematical 
objects of play. Wittmann and Müller (2009) highlight 
the ability to identify and use relations between sin-
gle numbers by counting and calculating as a central 
objective for learning processes in kindergarten. The 
epistemological perspective broadens the view for the 
principally relational nature of numbers. Numbers 
and relations between numbers are not concrete ob-
jects, but rather can only be represented by symbolic 
or concrete objects. Only by dealing with the concrete 
and abstract objects and construing differences be-

tween them can children acquire the concept of num-
bers and their relations (Steinbring, 2005). 

Due to the relevance of relational understanding, the 
playing environment “Who has more?” is focused on 
relations of differences. It is intended to give chil-
dren the opportunity to identify and use relations of 
differences in the interactive context of a game and 
based upon the game material. The main questions 
addressed in this paper are as follows: 

1) How do children in kindergarten interpret rela-
tions of differences in the interactive context of 
the playing environment? 

2) How can the children’s ‘mathematical play’ in the 
context of the playing environment be charac-
terized?

METHODS

The research method is oriented by Cobb and col-
leagues’ method of “design experiments” (Cobb, 
Confrey, diSessa, Lehrer, & Schauble, 2003). 
Accordingly, three complementary playing and learn-
ing environments for kindergarten and primary 
school were designed, focusing on the exploration 
of relations between numbers. In spring and sum-
mer, children in the last year of kindergarten were 
involved in playing environments. At the beginning 
of the first school year (in autumn and winter), they 
were involved again, albeit now in the context of 
learning environments. Overall, about 20 children 
were observed by video over two cycles dealing with 
the playing and learning environments in kindergar-
ten and primary school. The sequences presented in 
this paper are from observation in kindergarten. To 
reconstruct interactive processes of understanding, 
a qualitative approach is chosen, oriented in the 
interpretative classroom research (Krummheuer, 
2000). Essential for the mathematical analyses is the 
epistemological triangle, as described by Steinbring 
(2005), which enables identifying specific reference 
contexts that children use by interpreting differenc-
es. The epistemological analysis particularly focuses 
on the reconstructions of the interactive process of 
constructing knowledge based upon actions and in-
teractions.
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Construction of the playing 
environment “Who has more?”
In the following, one of three designed playing en-
vironments is exemplified: “Who has more?” The 
learning environment building on this playing envi-
ronment is not considered here (for further details, 
see Tubach & Nührenbörger, 2014). “Who has more?” 
(WHM) is a game for two children, whereby each child 
receives a wooden block of five, a ten-frame and a dice 
(with the numbers 0 to 5) in the color blue or red. The 
game material is completed by small round gaming 
pieces, called counters (with a red and an alternate 
blue side). 

Rule of the game: Both players roll their dice and put 
the appropriate number of counters in their respec-
tive blocks of five, according to the number rolled. The 
player with the higher number of counters is allowed 
to take the difference of counters (the ones that he or 
she has more) and puts them on the ten-frame (see 
Figure 1). Afterwards, the blocks are cleared and the 
dice are rolled again. The first player to fully fill the 
ten-frame wins the game. 

At the heart of the playing environment is the com-
parison of two numbers and the determination of 
their difference. Children have the opportunity to 
gain insights into relations of differences. Meanwhile, 
children collect, structure and determine the number 
of counters on their ten-frame and gain experiences 
in composing and decomposing of numbers. 

UNDERSTANDING OF MATHEMATICAL 
RELATIONS BY PLAYING “WHO HAS MORE?”

Maya (5,7) and Leon (6,4) play the game WHM with 
their guiding adult in kindergarten, a few months 
before entering primary school. Maya is already ac-
quainted with WHM from previous game experience, 

whereas Leon is playing for the first time. From this 
game, two sequences are selected in which the chil-
dren are engaged with the comparison of two num-
bers. One focus of the following analysis is on the 
children’s interpretation of differences. The leading 
questions are: How do children interpret differenc-
es based upon the game material? Which reference 
contexts do the children use for the interpretation of 
differences in the gaming process? The second focus 
is on the characterization of the playing activities in 
these sequences. This will help to gain deeper insights 
into the mathematics activity in the gaming process, as 
well as understanding and clarifying the role of this 
game for mathematical and playing activities.

Focus 1: Interpretation of differences – 
Comparison of 3 and 2
Maya (M) and Leon (L) start the game WHM. Maya 
has chosen the red color and rolls number 3, while 
Leon rolls number 2 with the blue dice. Both children 
put the corresponding number of counters in their 
blocks of five (see Figure 2). They agree that Maya has 
one counter more. The following scene begins as the 
guiding adult (GA) asks once more. 

1 GA Ok. But how do you see that it’s 
one more?

2 Maya ‘Cause, ‘cause three 
(takes her dice with the rolled num-
ber 3 and covers one dot with her 
finger)

Figure 1: Rolling and comparing

According to the 
rolled number, coun-
ters are put in the 
block of 5

Comparison: There 
are three red coun-
ters more.

The red player is allowed to take 
the three counters and put them 
onhis or her ten-frame.

Figure 2: Initial situation
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3 GA Why aren’t there two more?
4 Maya If, if you (.) because I 

didn’t roll two. Leon rolled two and I 
have three one more (lifting her third 
red counter and putting it back again)

5 Leon # If she had rolled five, 
she’d have two more.

6 Maya # then I can take it (takes the coun-
ter and puts it on her ten-frame) [...]

7 Leon Ah I know, I know (points 
at the blocks) Look here, one, two (tip-
ping the blue counters) and if it was 
there (tipping the third now empty 
field of M’s block), it’s always the one 
above, which is one more. And if she had five 
and I had two, then would be one, two, three, 
four, five (tipping the fields from bottom up 
in M’s block) So one, two, three (tipping the 
empty fields of M’s block) more. Three (.) more. 
Three pieces more (.) If she had rolled five.

In reply to the GA’s question (l. 1), Maya turns to her 
dice and covers one dot. Therefore, instead of three, 
there are only two dots visible. By showing with the 
dice pattern how to change the number 3 to achieve 
2, Maya relates the two rolled numbers 3 and 2: if you 
cover one dot of three, both dice show the same num-
ber of dots (l. 2). As the GA asks once more why there 
were not two more, Maya emphasizes that she rolled 
another number than Leon: she demonstrates the dif-
ference between the rolled numbers with the help of 
the blocks of five and lifts her third counter. Hence, 
she creates an equality of the red and blue numbers 
of counters. She emphasizes the difference ‘one’ by 
putting her counter back on the block (l. 3). Therefore, 
she interprets the difference as the change needed to 
establish an equality of two numbers; in this case, by 
removing or covering the difference. Leon, however, 
constructs an example of a number pair (5 and 2, l. 
7), which he regards will have the difference ‘two’ (l. 
4): if Maya had rolled number 5, she would have had 
two more. Accordingly, Leon increases the minuend 
to achieve a greater difference. In the following, he 
gains a new insight into how to compare two numbers 
(“I know”): he divides the counters in the blocks into 

‘lower’ and ‘upper’, stating that the counters above are 
the additional ones (l. 7). Consequently, he matches the 
equal number of red and blue counters and highlights 
that only those counters that cannot be matched have 
to be considered. These counters can subsequently 
be counted one-by-one. By separating the numbers 

of counters into ‘lower’ and ‘upper’ and focusing on 
the ‘upper’, Leon creates a new initial situation for 
comparing: instead of 3 and 2, he compares 1 and 0. 
Here, he unconsciously uses the mathematical rela-
tion that the difference remains the same if minuend 
and subtrahend are increased or decreased by the 
same amount. He illustrates this insight with an own 
number pair of 5 and 2 and, thus, probably picks up 
on his assumption in line 5 to check it. He determines 
the difference by first identifying the fields where red 
counters would be located. The counting procedure of 
the fields seems to represent or replace the concrete 
action of putting counters in the block. He then counts 
the upper three empty fields in Maya’s block where 
counters would be located, thus concluding that the 
difference is three. He succeeds in matching the equal 
number of blue and red counters, which are no longer 
important for determining the difference, whereby 
he can compare 3 and 0 rather than 5 and 2.

Conclusion: The children’s interpretation can be 
characterized by their different reference contexts. 
Maya’s actions indicate that she uses a reference 
context for interpreting the difference, which can 
be called “equalizing”. She answers the question of 
how many counters have to be removed to establish 
an equality between the two numbers of counters. 
Expressed algebraic: a-d=b; b+d=a. She represents 
this change dynamically in the material. In contrast, 
Leon interprets the difference in a spatial-static way, 
which can be described as “matching”, whereby he 
matches the same number of red and blue counters 
and determines as difference the number of counters 
that cannot be matched. Accordingly, he changes min-
uend and subtrahend by the same number to create 
a ‘to zero’ comparison: a-b=(a-c)-(b-c)=d-0, with c=b. By 
interpreting the arrangement of counters, however, 

Figure 3: Epistemological triangle: 3 and 2
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it is not necessary to identify the specific number of 
the equal change as subtrahend (c=b); rather, it is suf-
ficient to remove or separate two unspecific yet equal 
amounts. This view on the arrangement of counters 
in the blocks of five helps Leon to determine the dif-
ference of his own example of a number pair.

The interpretation of “matching” builds upon the 
equality of two numbers to focus on the ‘inequal’. 

“Equalizing”, however, concentrates on inequality to 
determine the necessary change to establish equality 
between the two sets of counters. For both interpre-
tations, it is not necessary to quantify the number of 
the equal counters; rather, a qualitative estimation 

‘equal’ is sufficient.

Comparison of 5 and 2: What does Maya 
have to roll?
In the following, Maya and Leon 
win further counters. Now Maya 
has nine and Leon has seven count-
ers collected on the ten-frame (see 
Figure 4). Leon rolls number 5 and 
is happy. Maya protests that num-
ber 5 would not be possible, since 
Leon would win too many counters. Hence, the ques-
tion arises of what Maya has to roll for Leon to win.

8 GA What does Maya have to roll so 
that you’ve won immediately?

9 Leon Mhh, one or zero or two.
10 GA Then you could win?
11 Leon ‘Cause, ‘cause wait (takes 

his dice with the rolled number five and 
covers two dots with two fingers), she’s 
got to roll two.

12 GA # Why?
13 Maya # Heh?
14 Leon Because then I have three more 

(shows his dice with the two covered dots)

Leon answers the GA’s question by giving three num-
ber pairs (5,1; 5,0; 5,2) with a difference greater than 
or equal to three (l. 9). Apparently, he assumes that 
he can win with every difference that is not less than 
three. In response to the question of whether he would 
win then (l. 10), Leon takes his dice with the rolled 
number 5 and covers two dots with two fingers so that 
only three dots are visible (l. 11). He concludes that 
Maya has to roll number 2 and then he would have 
three more. This approach leads to the following in-

terpretation: Leon covers as many dots from the dice 
pattern of 5 so that three dots are left. The number of 
covered dots represent the number that Maya has to 
roll. In opposite to Maya, who covered the difference, 
Leon covers the subtrahend and the three dots left 
represent the difference. 

It is remarkable that, on the one hand, Leon uses the 
dice pattern of 5 to construe the difference of 5 and 2. On 
the other hand, he uses it to construct differences due 
to the context of the game required to find a number 
pair with 5 for the given difference 3. 

Conclusion: Leon’s interpretation of the difference 
shows an expansion of his previous idea, whereby 
he decomposes the minuend 5 in two parts: 2 and 3. 
This enables both the statement that Maya has to roll 
number 2 to win three counters and the determina-
tion of the difference 3, if Maya had rolled number 
2. Therefore, he compares 5 and 2 by “subtracting” 2 
from 5. Expressed algebraic: a-b=d. Here, the activity 
of covering dots of the dice pattern has a double func-
tion: the construction of differences and the constru-
ing of differences. 

Focus 2: The playing activity – Mathematically-
centered play while playing a game
The playing activity of Maya and Leon in the context 
of “Who has more?” can primarily be described as 

“Mathematics Embedded in Play” (Ginsburg, 2006). 
Mathematical aspects are relevant, although the main 
issue is to win counters to fill the ten-frame the first. 
In addition and more surprisingly, “Play Centering 
on Mathematics” (ibid.) can be identified as a mathe-
matical activity focusing on differences (see Figure 6). 
In this section, both mathematical playing activities 
are analyzed by the following characteristics: involve-
ment, rules and degree of freedom (van Oers, 2014). 

Children seem to be highly involved by playing WHM. 
They engage themselves in the fictitious competition 
and are pleased with a ‘good’ rolled number, for ex-

Figure 4

Figure 5: Comparing 5 and 2
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ample. The game is framed by different explicit tech-
nical and conceptual rules, while further rules are 
negotiated in the gaming process (e.g. that the ten-
frame has to be filled exactly). The children are free 
to choose whereupon they put their attention: social 
or mathematical aspects. Another analysis of WHM 
(Tubach & Nührenbörger, 2014) showed exemplarily 
that children keep the rule that ‘the ten-frame has to 
be filled’, aside from which they try to interpret the 
rules in their favor, e.g. manipulate the dice to get a 
full ten-frame quicker. Therefore, playing the game 
WHM embeds mathematics.

Nevertheless, this deviation from the intended play-
ing course allows another type of play, namely “Play 
Centering on Mathematics”. This playing activity can 
be recognized in the variation of using the game mate-
rial, the variation of numbers and the interpretation 
of differences in the game material. In the following, 
these characteristics of mathematically-centered play 
are illustrated based upon the two sequences:

Variation of using materials: The reinterpretation of 
the game material is the key aspect for mathematical-
ly-centered play: Maya uses the dice pattern, which 
originally randomly determines the number of count-
ers to put in the block of five, to represent the differ-
ence. In the second sequence, Leon also uses the rolled 
number as a representation to construct a number 
pair for a given difference. Furthermore, Leon re-
gards the blocks of five ‘as if ’ counters would lie there. 
Therefore, it is possible for him to cope with fictitious 
number pairs, not only to determine differences but 
also to test assumptions (5 and 2 have the difference 2).

Variation of numbers: Maya decreases the rolled num-
ber 3 by one and establishes a relationship to Leon’s 
rolled number 2. Leon tries to increase the difference 
and increases the minuend of a number pair (5 and 2 
instead of 3 and 2).

Variation of interpretations of numbers and differences: 
The analyzed different reference contexts show that 
children vary their interpretation of differences and 

also shorten the process of comparing two numbers 
in their blocks of five. 

Children are obviously involved in these varying ac-
tivities, as they are based upon their own ideas. They 
play together rather than against each other and in-
spire themselves towards new ideas, pick them up 
and develop them further. The rules are not explicit 
and predefined, but rather implicit and arise in the 
interaction in the playing process. In the context of the 
mathematically-centered play, transparency in own 
ideas seems important (social rule). At the same time, 
the children’s ideas and interpretations are oriented 
on the properties and functions of the game material, 
e.g. they choose realistic numbers (technical rules). 
Their mathematical considerations are oriented on 
the game, which means that the game builds the con-
ceptual framework for the mathematical activity (con-
ceptual rule). The degree of freedom is apparent in the 
conceivable variations of how children (re-)interpret 
materials and their view on differences, as well as how 
they change numbers. 

By means of the selected scenes, two types of play can 
be reconstructed, namely playing the game WHM and 
therein realizing mathematically-centered play with 
numbers, materials and interpretations. 

CONCLUSION

The selected sequences of Maya and Leon indicate that 
the playing environment “Who has more?” offers rich 
possibilities to discuss interpretations of relations of 
differences. The epistemological analysis shows that 
children use individual reference contexts to com-
pare two structured numbers of counters. However, 
these reference contexts are not used constantly, but 
rather are varied and become more sophisticated. 
This is reflected by the representations used and the 
ways of interpreting differences. As representation 
for differences, children use: 

a) dice patterns, covering dots to represent a second 
or third number 

Figure 6: Mathematically-centered play in the context of playing a game
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b) blocks of five, to compare two linear structured 
(real or imagined) numbers

In addition, three different interpretations of differ-
ences could be worked out:

a) Equalizing: The difference (d) is the change need-
ed to achieve equal numbers of counters: b=a-d 
or a=b+d.

b) Matching: Equal amounts are matched to de-
termine the number of counters that cannot be 
matched. 

c) Subtracting: The two amounts are related so that 
the smaller number is interpreted as a part of the 
minuend, which can be removed: a-b=d.

It becomes clear that the recurring new situations 
for comparing and discussing in the game provide 
occasions to use not only individual different strat-
egies but also make situational different and new 
interpretations, which become more differentiated 
(Nührenbörger & Steinbring, 2009; Stebler et al., 2013). 

The analysis of the playing activities in the game also 
provided evidence that “Who has more?” not only en-
ables “Mathematics Embedded in Play” but also allows 

“Play Centering on Mathematics”, even while playing 
the game (Ginsburg, 2006). This mathematically-cen-
tered play can be distinguished from the social play 
where mathematics is embedded, in that it involves 
another intention (instead of winning, the focus is 
on varying numbers, materials and interpretation), 
it follows other rules and children are involved in 
other roles (explorer instead of competitor) (van 
Oers, 2014). Essential for mathematical play is the 
reinterpretation of the game materials as representa-
tions of mathematical relationships. Mathematically-
centered play gains space in the process of playing the 
game. Thus, the space for mathematically-centered 
play is always limited by the game. To maintain the 
game process, there are only short periods for mathe-
matically-centered play; for example, a new rolling of 
the dice interrupts the play with mathematical objects. 
If children’s play stays focused on mathematical rela-
tions, e.g. they try to find further number pairs with a 
given difference, the game fades into the background 
or disappears. 

Hence, connecting points for the arrangement of 
learning processes in primary school can be deduced: 
here, the mathematically-centered play can achieve 
more space in the context of a learning environment 
in primary school. Accordingly, children’s experienc-
es to construe and construct differences can be picked 
up, to play with the same material but independent 
from game, to construct differences, namely finding 
number pairs with a given difference.
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ENDNOTE

1. German kindergartens (depending on the federal 
state) normally have recommenations but not an 
obligatory curriculum for mathematical education. 
Compulsory education begins with school entry for 
children aged 5 to 6.
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This paper studies the interaction between language 
and mathematical learning, with the aim of investigat-
ing whether the spontaneous language of younger pupils 
and class communication may improve understanding 
and learning. Simple artefacts, based on ‘parallelism’ 
and ‘perpendicularity’ of segments, were prepared 
and presented to two first grade classes in a primary 
school, through a narrative. Two different linguistic 
approaches were adopted: traditional mathematical 
nomenclature presented by the researcher in one class, 
spontaneous language suggested by the pupils in an-
other class. Starting from this idea, similar didactical 
itineraries were realised in both classes. The results of 
the experiments are analysed and compared.

Keywords: 1st grade, spontaneous language, traditional 

language, parallelism, perpendicularity.

INTRODUCTION

Much research deals with the problem of the re-
lationships between language and thinking. As is 
known, Piaget (1983) and Vygotsky (1987) have very 
different and divergent positions on this. From an 
epistemological point of view, the problem is in term 
of a priority among experience, language and math-
ematical knowledge. For Wittgenstein (1978), the 
language is necessary to communicate, but the word 
used to describe an object do not convey immediately 
its meaning, which must be constructed. Lakoff and 
Nunez (2000) see the linguistic activity as an effect 
of the cognitive activity and strictly dependent on it. 
Moreover, Sfard (2001) confers a big importance to 
the communication in mathematics; specifically, she 
deals with this topic in term of “metaphors”.

In particular, in matter of the role of the language in 
learning processes, research underlines two funda-

mental and apparently opposing aspects: the specific-
ity of mathematical language and the role of natural 
language in mathematical communication. In the 
present paper, I want investigate whether (and how 
much) the spontaneous language used to describe 
some geometrical configurations can improve the 
understanding and learning of some geometrical 
concepts. The main hypothesis is that the transition 
from the observation of geometrical configurations 
to the use of a spontaneous language to describe them 
can improve the learning of mathematical concepts. 
The choice of the mathematical topic “parallelism 
and perpendicularity” is motivated from the follow-
ing reasons: these relations are uncommon in the 1st 
grade of Italian primary school, so it is possible to 
observe the role of spontaneous language without 
the influence of scholastic language. The geometri-
cal context is suitable at this age, since it relies on 
visual mediators, objects and drawings. The history 
of humankind (Keller, 2004) shows drawings, made 
in Paleolithic, in which parallel and perpendicular 
segments are present (Lascaux caves). The training 
with parallel and perpendicular segments in 1st grade 
is encountered in writing some capital letters (E, F, 
H, T, …). I found only a research on this geometrical 
topic (Meyer, 2010), but it was conducted in different 
manner and with students aged 9–10 years.

THEORETICAL FRAMEWORK

The present research compares the role of children’s 
spontaneous language with that of traditional geomet-
rical language in the acquisition of knowledge. The 
starting point is the following quotation:

[…] it is necessary to postpone the systematic use 
[…] of specific words, i.e. the typical concepts of 
geometry (circle, square, sphere …) […]. Children 
must also learn to speak about spatial events with 
their own words (i.e. to describe a path, a figure, a 
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movement) (Speranza, Vighi, & Mazzoni Delfrate, 
1988, p. 14) 

In other words, at the beginning, pupils use their 
spontaneous language to describe geometrical situ-
ations and then the teacher promotes the passage to 
the specific language.

Starting from the idea that the origins of all languages 
are “rooted in the child’s first experiences”, Gawned 
(1990, p. 31) elaborated a theory based on four consec-
utives stages: the origins of the language of mathemat-
ics, as well of all languages, are rooted in the child’s 
first experiences (real-word language); the classroom 
language has an important formative effect on chil-
dren’s mathematical understanding and learning, the 
teacher manages the specific domain of the language of 
mathematics as long as the construction of meaning in 
mathematics occurs. These four stages are not strictly 
sequential, but in practice, this model appears quite 
rigid.

Geometry allows one to work with concrete objects 
and their description by natural language. Therefore, 
I prepared some artefacts in the meaning of  “theory of 
semiotic mediation” (Bartolini Bussi & Mariotti, 2008): 
an artefact is a “tool of semiotic mediation” when the 
teacher intentionally uses it to mediate a mathemat-
ical content:

In particular, the teacher may guide the evolution 
towards what is recognizable as mathematics. In 
our view, that corresponds to the process of relat-
ing personal senses (Leont’ev, 1964/1976, p. 244 
ff.) and mathematical meanings, or of relating 
spontaneous concepts and scientific concepts 
(Vygotsky, 1934/1990, pp. 286 ff.) (Bartolini Bussi 
& Mariotti, 2008, p. 754).

Duval (1993) introduced another important aspect, 
the ‘semiotic representation registers’ and their role 
in knowledge: he provides a rich theory on it, based 
on the assumption that ‘there is no knowledge without 
representation’. Following this theory, the introduc-
tion of artefacts promotes the transition from “visual 
semiotic register” to “verbal semiotic register”: 

We may distinguish three main groups of semi-
otic representations: material represen tation 
(in paper, card, wood, plaster, etc.), a drawing 
(made either with pencils on a sheet of paper, or 

on a computer screen, with use of a geometrical 
software, etc.), and a discursive representation 
(a description with words using a mixture of nat-
ural and formal languages). Each register bears 
its own internal functioning, with rules more or 
less explicit. Moreover, students have to move 
from one register to another, sometimes implic-
itly, sometimes back and forth (Dorier, Gutiérrez, 
& Strässer, 2004).

Following Nonaka and Tageuchi (1995, quoted in 
Lester & William, 2002, pp. 494–495) the dialogue 
is fundamental in moving from a tacit knowledge to 
an explicit one. Speech helps to build concepts; subse-
quently the word used is a symbol of the concept itself.

Sfard (2001, p. 26) integrates the previous consider-
ations:

The conceptualization of thinking as communi-
cation is an almost inescapable im plication of the 
thesis on the inherently priority of social origins 
of all human activ ities. Anyone who believes, as 
Vygotsky did, in the developmental priority of 
communicational public speech (e.g. Vygotsky, 
1987) must also admit that whether phylogeny 
or ontogenesis is considered, thinking arises 
as a modified private ver sion of interpersonal 
communication.

Following these hints, the research chose to take ad-
vantage of the “need to find similari ties” to lead pupils 
speak in their “real world language” about the relative 
position of segments.

The research questions
1) Is it possible to extend ideas of Speranza and 

colleagues (1988) to the descriptions of binary 
relations of parallelism and of perpendicularity? 
Could the use of personal words (or locutions) 
enhance a child’s understanding of the concepts 
of parallelism and perpendicularity? The tran-
sition from spontaneous language to geometric 
language could improve the learning?

2) Do very young pupils perceive the relations of 
‘parallelism’ and ‘perpendicularity’ from a qual-
itative point of view? 
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THE EXPERIMENT AND ITS METHODOLOGY

The paper presents the results of a research per-
formed in school year 2013/14 in different Primary 
Schools, which will continue into the following year. 
In particular, it reports only on an experiment that 
involved two 1st grade classes1, class 1A (25 pupils) 
and class 1B (23 pupils), having the same mathemat-
ics teacher. All sessions of work were recorded using 
a video camera.

The researcher (the author of the present paper) pre-
pared some artefacts, made of simple materials (cards, 
straws, buttons, glue, adhesive tape): eight square 
cards, with 23 cm. sides, each containing two straws 
in different positions. I used pleasant colours, red and 
green, for caterpillars, and a ‘neutral’ colour, light 
grey, for the background. Obviously, straws would 
be unsuitable for representing segments, since they 
are 3D objects, but the age of pupils (6–7 years old) 
allows this choice. Furthermore, the superimposition 
of the straws it is not possible, while this operation is 
permitted with segments in the plane. A small button 
(as the head of caterpillar) is glued at one end of each 
straw; in this way, another didactical variable, the 
orientation of the segment, is introduced. Children 
suggested this feature during a previous activity in-
volving segments representing caterpillars (Vighi, 
2008). The researcher produced some cards about 
parallelism (cards 2, 3, 6), other cards about perpen-
dicularity (cards 5, 7, 8), and others (cards 1 and 4) with 
straws neither parallel nor perpen dicular (Table 1).

The experimentation took place with the presence 
of both, the teacher and the researcher, in classroom. 
The activity starts by presenting a narrative regard-
ing a green caterpillar, named Pelù [P.], and a red cat-
erpillar, named Mangiamela [M.], who stroll together. 
It consisted of four (class1A) or five (class1B) activities:

1) Presentation of the cards. I adopted two complete-
ly different ways of working in class. In class 1A, 
the researcher presented the cards and she im-
mediately introduced (and ‘imposed’) the corre-
sponding traditional locutions: “P. and M. are par-

1 Specifically, the experimentation took place in the Primary 

School of Vicofertile, a small town near to Parma (Italy). I ac-

knowledge the teacher G. Barantani for kindly giving us the 

permission to perform in her classes and for her collaboration 

during the experiment.

allel”, “P. and M. are perpendicular” and “P. and 
M. are neither parallel nor perpendicular”. In 
class1B, the researcher invited pupils to observe 
straws representing caterpillars placed on the 
cards and to describe them. Possible objections 
to the chosen methodology are: in class 1A the 
imposition of ‘locutions’ without explanation can 
create problems of understanding, in class 1B the 
choice of a ‘name’ for each card can obstruct the 
work by analogy and the recognition of common 
properties in same card’s configurations. I was 
aware of this, but the aim was also to observe if 
and in which way pupils would overcome these 
problems.

2) Choice of common linguistic expressions. This 
activity, developed only in class1B, characterised 
the research. The children proposed many and 
different ‘names’ for each card and the teacher 
wrote all the linguistic expressions proposed on 
the blackboard; at the end, she asked for a vote to 
choose common locutions. Thus, the “language 
of classroom” (Gawned, 1990) was constructed 
gradually.

3) Drawing and writing in the notebook: the teacher 
placed each card in a very visible position and 
wrote the corresponding ‘linguistic expression’ 
on the blackboard. The task was to copy the card 
into the notebook and write its name, using a 
page for each caterpillar’s position. In class 1A 
children wrote the ‘locutions’ imposed by the 
researcher (very long to write and difficult to 
read and to pronounce), in class 1B they wrote 
the ‘names’ obtained by vote.

4) Individual interviews: outside of the classroom, 
the researcher proposed two different tasks to 
each child. In the first the researcher presented 
the cards one by one to the pupil, asking him to 
remember to relative locutions and to say it out 
loud (transition from the representation to the 
language); when it was necessary, the child was 
allowed to bring her/his notebook to recall a for-
gotten linguistic expression.  In the second part of 
the interview, the researcher gave two straws to 
the child, with the task of placing them following 
each locution previously introduced (transition 
from the language to the representation).
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5) Activities in gymnasium: children worked two by 
two, reproducing the different mutual positions 
of caterpillars with their bodies, following the 
tasks suggested by the researcher.

The first four activities occurred of two-three weeks 
apart, the last at the end of school year.

RESULTS AND THEIR DISCUSSION

As expected, the activity 1 had completely different 
effects in the two classes. In class 1A, the experiment 
confirms that the absence of a relationship between 
a word and its meaning created obstacles (sometimes 
insuperable): often, it compromised children’s perfor-
mances. I observed difficulties in remembering the 
word ‘parallel’ or ‘perpendicular’ and in pronounc-
ing and writing them. Nevertheless, the methodology 
adopted allowed us to find possible relations among 
the cards described with the same locutions, without 
a specific request of recognition of common geometri-
cal properties. In fact, it happened sometimes in the 
case of parallelism, rarely in case of perpendicularity: 
a possible explanation is that the visual perception of 
the first relation is ‘stronger’ than that of the second. 
In class 1B, the activity had a completely different de-
velopment: each card suggested an image that evoked 
a common name or a linguistic expression and, in 
turn, each locution sent again to a mental image. 

As regards the activity 2, children of the class 1B sug-
gested many locutions, as shown in the following list 
of ‘descriptions of each card’ (DC):

 ― DC1: triangle, moun tain, crocodile’s mouth, their 
faces are far, they meet, they collide with each 
other, if you rotate it looks like an ‘A’.

 ― DC2: pencil with rubber, they are horizontal, in 
a line, letter ‘I’, they are going to the same side, 
falling down the tree, looking like as one caterpil-
lar, M. is going towards P., P. works harder more 
since it ahead, letter ‘I’ rotated.

 ― DC 3: tree trunk, croc odile’s closed mouth, hor-
izontal stairs, pole, they are as a strip, they are 
horizontal, two lolli pops, railway track, they do 
not meet since they are going straight, train, lad-
der with rungs.

 ― DC 4: beak, elephant’s trunk, mouse’s snout, 
mouse’s whisk ers, one straight and the other 
slanting, railway track, crocodile’s closed mouth, 
railway, they do not meet since they are going 
straight, a boat.

 ― DC 5: as a ‘T’, M. helps P. to bring an apple from 
the tree, P. climbs up M., turning it in another way 
it looks like a ‘T’, each one goes home, one goes 
up another one goes right, competing in a race.

 ― DC 6: slanting giraffe’s neck, slanting vertical 
line; curve; escalator in a super market, slope, 
steps, competing in a race, slanting railway track, 
slanting ver tical line, rows.

 ― DC 7: slanting; letter ‘Y’, M. is falling down, P. is 
standing up, a kind of ‘L’, turning it looks like a 

‘L’, P. is below and M. is on it.

 ― DC 8: letter ‘L’, two at tached lines, car seat, half 
rhombus, two colliding cars, M. sniffs the feet of 
P., looks like a hut slightly tilted.

The locutions underlined represent the results ob-
tained by votes. Afterwards, each locution became 
the only linguistic expression used in reference to 
the corresponding card. This list of possible names 
for the cards is a very rich material to study the role 
of the language as a vehicle of pupil’s perceptions. In 
a previous research paper (Vighi & Marchini, 2014), 
they were analysed in terms of “intrafigural, inter-
figural or transfigural space”, using the same adjec-
tives introduced by Piaget and Garcia (1983) but with 
reference to the “stages of learning”. I also observed 
the presence of “independent space” as reported by 
Speranza (1994); in particular, I re marked that the ma-
jority of the poll choices reveal an idea of intrafigural 
space (Vighi & Marchini, 2014, p. 115). The previous 
list contains metaphors (Sfard, 1997), linguistic con-
structions describing a subject in terms of another 
unrelated object. There are also expressions referring 
to movements of caterpillars (they collide, they are 
going to the same side, etc.), maybe influenced from 
the narrative. 

Drawings made during the activity 3 gave other infor-
mation: it was possible to observe if pupil’s drawings 
respect parallelism, perpendicularity, distances be-
tween segments, their orientation and their length. 
At this age, the ability to draw is limited, so the final 
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drawings very often were quite different from the 
cards configurations. In particular, some names in-
fluenced the drawing: for instance, the name “letter Y” 
induced to draw two segments with different lengths 
and not perpendicular, the name “letter L” suggested 
drawing segments parallel to the sides of the card by 
a rotation of the segments, etc.

The qualitative analysis of films produced during ac-
tivity 4 was very interesting. The individual interviews 
allowed us to verify not only the children’s learning 
and understanding, but also to study their behaviour, 
abilities, difficulties and progress. Regarding of the 
first part of the interviews, ‘cards names’ recollection, 
as expected, in class 1A were observed more difficul-
ties than in class 1B. Indicatively the percentage of 
positive answers was respectively 30% in class 1A and 
80% in class 1B. In the first class, very often children 
said: “I don’t remember”, “I don’t know”. Moreover, 
after the revision of their notebooks, some of them 
were unable to deal with the task. Often pupils remem-
bered only the name of two or three cards and they 
used the locution ‘neither parallel nor perpendicu-
lar’, systematically, in the other cases. Therefore, the 
lack of connection between a word and its meaning 
clearly emerged (Wittgenstein, 1978). Some pupils 
overcame the problem by proposing personal locu-
tions very similar to those that emerged in the other 
class: for instance, “the beak of a bird” for card 4, “the 
equal symbol” for card 3 etc. In contrast, in class 1B 
children gave correct answers very often. Sometimes 
they firstly remembered their own locution and only 
in a second time chose the common name. The case of 
Benedetta, a little girl of class 1B, is significant: in front 
of card 5, firstly she said her own description “M. helps 
P. to bring an apple on the tree” and only in a second 
time she remembered the common locution “as letter 
T” associated to the card. The behaviour of the pupils 
in class 1B can be explained also in term of ‘evoked con-
cept image’ (Tall & Vinner, 1981): for instance, when 
card 1 was shown, the child spoke the locution “croc-
odile’s mouth” almost immediately, since the ‘mental 
image’ and ‘name’ were strictly related.

About the second part of the activity 4, the work with 
straws, pupils particularly appreciated the possibil-
ity of ‘manipulating the caterpillars’, putting them 
in different positions. In both classes, I observed the 
attempt to remember the straws arrangements in 
the cards and to place them in the same way, but with 
very different results: it was very difficult in 1A, not 

in class 1B. Often in the first class, children put straws 
randomly, without relationship to the words suggest-
ed by the researcher, some pupils remembered only 
one relation, more often parallelism, only children 
with a ‘very good memory’ could deal with this straws 
activity without problems. An important observation 
emerged about the task “put the straw neither parallel 
nor perpendicular”: sometimes its meaning became ‘a 
change of straws orientation with respect to the sides 
of the card’. In fact, another didactic variable is pres-
ent in our artefacts, the ‘form of the background’2. In 
class 1B, both the activities of ‘writing with straws’ and 
of ‘reading straws arrangements’ appeared easy to 
execute. A possible interpretation, as previous writ-
ten, is that the ‘locutions’ chosen after the vote (those 
underlined in the list) became the ‘proper names’ of 
the cards and that these ‘locutions’ derive from the 
natural or scholastic language, in any case from lived 
experiences.

Lastly, pupils appreciated the activity 5: they consid-
ered it as a play activity and the suggestion to act out 
the caterpillars with their own bodies stimulated their 
motivation to remember the different arrangements 
of the straws.

CONCLUSIONS

Next year, the activity will continue and the research-
er will show some films produced in other classes3 on 
the same subject to class 1B. The comparison of very 
different locutions, adopted to describe the cards of 
Table 1, will pose the problem of the use of different 
linguistic expressions for the same thing. For instance, 
the card 3 was named “railway track” in class 1B, but 
in other classes the names proposed were “equal” and 

“road”: the question will be on the use of only one name 
well accepted and understandable for all children. In 
a second occasion, the teacher will organize a meeting 
between her classes 1A and 1B, with a comparison of 
the locutions. In this way, gradually, it is possible to 
stimulate the need of a common language and, later, 
to touch the topic of the ‘role of the scientific language’.

2 I decided to study its role preparing also eight round cards 

with straws glued ‘in the same positions’ of the straws placed 

on the squared cards. I presented the same activity based on 

round cards in another class and I compared the results.

3 Classes 1A of Fognano (Parma) school and 2A of Vigatto 

(Parma) school. I thank the teachers Barbara Riccardi and Lucia 

Ferrarini for their collaboration. 
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The activity proposed offers the possibility of rich 
visual and linguistic experiences about parallelism 
and perpendicularity. Pupils remembered more their 
own locutions easily, while the ‘imposed locutions’ 
created a real situation of difficulty. In class 1A some 
pupils tried to overcome by finding common proper-
ties when the ‘name of the card’ was the same. Other 
children memorized all the ‘names’ or many of them. 
In particular, one child refused to memorise and he 
repeated this question: “What is the meaning of this 
words?”

The answer to the first research question is affirm-
ative: the experimentation confirms that the use of 
personal locutions favours the concepts learning. For 
instance, in class 1B, in the case of cards 3 and 6 the 
votes gave, respectively, “railway track” and “slanting 
giraffe’s neck”: a possible interpretation of the use 
of these two different metaphors is that pupils are 
unaware of the likeness (i.e. parallelism) of the two 
cards. But, when a child of class 1B describes the card 
6 as “slanting railway track”, he shows to transfer the 
‘name of card 3’, “railway track”, to the card 6, making 
an adjustment by the use of an adjective: it documents 
the recognition of a common property of the straws 
arrangements in both cards. Similarly, the confusion 
between “railway track” and “slanting giraffe’s neck” 
shows a grasp of the property of parallelism present 
in both the cards. Hence, an apparent mistake becomes 
a symptom of generalisation and of the recognition 
of an analogy between the caterpillar’s positions in 
cards 3 and 6. 

Referring to the second research question, in both 
classes I observed that only a part of children per-
ceived the presence of invariants and, consequently, 
they distinguished parallelism, perpendicularity or 
the incidence of two segments. As regard parallelism, 
the constant distance between straws plays an impor-
tant role: sometimes a child indicates this property 
with her/his hand, comparing it with the cases of cards 
1 and 4 and highlighting the difference of the distanc-
es between the straws. As regard perpendicularity, I 
could observe the clear role of writing capital letters: 
the idea that cards 5 and 8 present arrangements of 
the straws similar to ‘letter T’ (even if in ‘not canonical 
position’) or to ‘letter L’ supports the pre-conception 
of perpendicularity. The case of letter ‘Y’ (card 7) is dif-
ferent: if a child makes it by attaching two straws with 
as much contact as possible, he obtains a right angle, 
but in fact, the shape of the letter Y, without a right 

angles, prevails. However, the observation “turning in 
that way it looks like an ‘L”, referred to card 7, suggests 
the recognition of right angles. Sometimes the role of 
capital letters was negative: since different letters 
have different names, some pupils did not recognise 
the analogy among cards 5, 7 and 8.

In conclusion, our research gives concrete and mean-
ingful situations that highlight the invariants in the 
concepts of parallelism and perpendicularity. The 
proposed activity appears suitable for young pupils. 
Usually the teaching of geometry in Italian schools 
starts in the third class (pupils 8–9 years old), when 
the parallelism is necessary to work with parallelo-
grams and the perpendicularity is associated with 
right angles. However, as I reported above, these con-
cepts are already present in writing capital letters, so 
they can brought forward without problems.
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This paper presents a minor part of an ongoing study 
about how young children meet mathematics. The pur-
pose of this study is to investigate how and when chil-
dren meet mathematics and engage in mathematical 
activities in preschool class and also to see how their 
meeting with school’s more formal mathematics is ar-
ranged.

Keywords: Mathematical meetings, mathematical 

activities, preschool class children.

INTRODUCTION

Mathematical knowledge develops through mathe-
matical activities, when shifting from act to thought 
and backwards. Bishop (1991) listed six fundamental 
activities that constitute the foundation of a culture’s 
mathematical development [1]. At an early age, chil-
dren are involved and engaged in informal mathemat-
ics connected to these, but in different degrees (Seo 
& Ginsburg, 2004). 

In Sweden, almost every six year old goes to pre-
school class, a voluntary type of school between pre-
school and elementary school. Preschool classes are 
supposed to follow most parts of the public school 
curriculum, but not the section about subjects and 
syllabuses, since preschool classes do not arrange reg-
ular lessons and subject teaching (Skolverket, 2011). 
When children enter school and meet more formal 
mathematics, we can see a large variation in math-
ematical skills between the children (Fredriksson, 
2009). But we know less about how this meeting is 
arranged. Therefore, it is important to investigate 
in what ways children actually meet and engage in 
(informal) mathematical activities in preschool and to 
see how they meet more formal mathematics in school.

METHOD

The data collection has an ethnographic design 
(Hammersley & Atkinson, 2007). It includes observa-
tions of and informal dialogs with 20 preschool class 
children in their everyday classroom. The study be-
gan in September 2014 and will last to October 2015, 
when the children have entered school. After the sum-
mer vacation the observations will especially concern 
lessons in mathematics, but also “non lessons” such 
as lunch breaks.

ANALYTICAL FRAMEWORK

Throughout the data collection and the analysis 
process a grounded theory (GT) approach (Glaser & 
Strauss, 1967) is used. The research question is rela-
tively wide and the constant comparative method in 
GT helps to avoid making premature conclusions by 
staying close to the data. It also helps to systematically 
sort the data to find categories that later will build up 
the theoretical model, grounded in data.

RESULTS

Preliminary results show that preschool class chil-
dren meet mathematics in several ways, in this study 
constituted by different categories. An inside and an 
outside perspective represent each of these, where 
the inside perspective includes mathematics children 
meet through own mathematical engagement and the 
outside perspective includes mathematics children 
meet trough encouragement and involvement from 
others, such as teachers and peers. 

One category, of how preschool class children meet 
mathematics, is called notices quantities. In this cat-
egory the inside perspective, entitled own quantity 
engagement, contains the subcategory quantity indi-
cating. This includes situations when the child, on 
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its own initiative, meets or engages in mathematics 
by showing interest for quantities, for example by 
telling or informing about how many, being curious 
about how many and then exploring it, and also by 
asking questions with a specific number in it. The 
outside perspective of this category, entitled quanti-
ty invitations from others, includes two subcategories, 
quantity challenging and quantity clarifying. Quantity 
challenging involves situations when someone else, 
a teacher or a peer, challenges the child to explore 
quantities, for example by letting the child answering 
questions about quantities, count something, add two 
quantities up or take away something from a quantity. 
These tasks can be given both on a concrete and on an 
abstract level. Quantity clarifying involves situations 
where someone else, usually the teacher, confirms, 
develops and clarifies the child’s quantifying answers. 
This category also involves making quantities visible 
for the child, for example by keeping statistics on the 
whiteboard or explaining the mathematical content in 
an activity, both individually and for the entire group.
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This work represents a part of a longitudinal research 
project realised in Czech kindergartens during last 15 
years. We analysed data obtained from 580 children 5 
to 6 years of age, 6–7 months before they began primary 
school. The research was focused on the natural number 
in different roles and situations. The variability of chil-
dren´s reactions is presented and a particular deficiency 
in the pre-school curriculum is described. The results 
can help elementary school and kindergarten teachers.

Keywords: Natural number, kindergarten, configuration, 

quantity.

INTRODUCTION

Pre-school children differ from primary school pupils 
in that they are in the stage of concrete reasoning and 
at a pre-operational level, their vocabulary is rela-
tively rich but not yet stabilised because the devel-
opment of notions is at its initial stage; their process 
of generalisation is limited by the characteristics of 
this evolutional stage including egocentrism (projec-
tion, identification, impossibility to differentiate their 
needs, desires from reality) and syncretic perception 
(the object as a whole); children’s experience could be 
deformed by accompanying emotions. The philoso-
phy of education in families has changed during last 
twenty years, as has the teachers’ work at kindergar-
tens. What is the situation in reality? 

Natural number can play different roles; it depends 
on the context in which it is used. For example, it 
can be in the role of quantity (number of objects/of 
physical units) or without any mention of quantity. 
Research shows that the development of the concept 
of natural number is not yet independent of the char-
acter of counted objects (colour, position, distance, 
configuration, material, shape, weight, size, visibil-
ity, …); see Piaget (2000) and Anderson (1987) cited 
in (Atkinsonová et al., 2003), Hejný, Kuřina (2001), 
Kaslová (2010) and others . This process of generali-

sation depends on different aspects. It is a relatively 
long process, not unified for six-year-old children. We 
assumed a certain starting level of the development of 
this notion. The pre-mathematical test (or PM-Test) is 
composed of 4 parts in which a natural number is in 
the role of: 1) a member of spoken series, the orienta-
tion in its order (a, b, c, d), 2) quantity – its independ-
ence of colour (a), shape (b), position (c), visibility (d) 
of counted objects or by mixture of these character-
istics (m, n), 3) quantity in changing conditions (a, b); 
4) quantity objects in the structure/ rhythm (a, b, c).  

METHODOLOGY

The PM-test was realized in the form of a dialogue 
between a questioner and 1 or 2 children. The PM-T 
had 15 subtests and it was accompanied by common 
checking activities. Subtest (2c) focused on natural 
number in the role of quantity of spots. I observed 
the independence of their quantity on their mutual 
position. The PM-T supposes that the pre-school child 
is able to draw more than 6 different representations 
of natural number “six”. The child had to observe a pic-
ture (6 spots on paper 10 cm x 10 cm); the configuration 
of spots corresponded to the configuration on the dice. 
The child received white paper of the same measures 
and had to draw the same number of spots but in a new 
position (using only one colour). We assumed that 90 
% of children would be able to create a minimum of 6 

“new draws” with a success and 50 % of children will 
use the strategy of modification (changing only one 
position of a spot).

SELECTED RESULTS

5 % of children were unable to discover a new configu-
ration; 10 % worked well but at most they created only 5 
different configurations; 4 % of children created more 
than 30 different configurations (max. 68); 11 % of chil-
dren in 20 % of their pictures, at maximum, created 
a new configuration, dividing an old configuration 
in two parts and transferring one part to a new posi-
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tion; 7 % of children created a configuration different 
from the model but in the majority of cases by making 
a quantitative mistake; 88 % worked with 0 – 3 mis-
takes at maximum. 22 % of children were able to use a 
good spontaneous self-check, corrections included at 
one correction, only 6 % of children self-corrected all 
their mistakes (complementation, cancellation) – half 
of this group created more than 30 configurations; 
71 % children worked in a special rhythm: after 3 to 
5 new configurations, they repeated one of the “old” 
configurations (“smaller or bigger” drawing). 94 % of 
children did not use the strategy of modification, in 
the majority of cases. This means that the configura-
tion was made as a new picture – a new whole. This 
shows that the “whole perception” (syncretism) still 
predominates.
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Figure 1: Example of children’s work
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In this study, I will trace the development of young 
children’s numerical discourse. I present a theoretical 
model constructed to reflect the hierarchical nature of 
primary numerical discourse. This model will be tested 
and refined in a longitudinal study among 2 to 5 year 
old children. Every child will participate in a series of 
number-related activities, to be performed either with 
the help of concrete objects like cubes, candies est. or as 
specially designed iPad tasks.

Keywords: Young children, numerical discourse, 

developmental model.

This research rest on the communicational approach, 
rooted in Vygotsky’s socio-cultural theory, which em-
phasizes the social aspects of learning (Vygotsky, 1962), 
and puts communication at the heart of any learning 
(Sfard, 2008). In this framework, the term “numerical 
discourse” embraces both interpersonal communica-
tion on numbers, and the intrapersonal communica-
tion (child’s thinking about numbers). This non-dual-
ist vision implies that the object called number, rather 
than being a self-sustained, mind-independent entity, 
is a discursive construct, that is, emerges from dis-
course and is built through communication (Sfard, 
2008, 2012, in press). Numerical discourse is using 
number words while telling stories about the world. 
As opposed to Piagetian approaches, in the communi-
cational approach there is no ontological gap between 
the world of abstract mathematical objects and the 
mathematical discourse as such. Numbers are part 
and parcel of the talk about them. Hence, numbers 
are discursive constructs that emerge for a person 
through using number words while participating in 
a numerical discourse. Learning mathematics is the 
process of extending and modifying one’s mathemat-
ical discourse. This process, called individualization 
happens while the student imitates the expert in the 
discourse, and results in the learner’s autonomous 

participation in the discourse. It is through the pro-
cess of individualization of numerical discourse as 
presented by others that the child will build new ob-
jects called numbers (Sfard, 2008). 

This longitudinal study will follow 16 children with 
middle and upper class socio-economic backgrounds. 
Data collection will continue for two years, and the 
participants will be split into groups based on their 
age. The data will be collected from conversations of 
the researchers, the participants and their parents as 
they perform predetermined activities. Each activity 
will be completed twice, once with concrete visual me-
diators and once with a specially designed programme 
on a tablet. During each meeting, the children will be 
shown a task involving one-to-one correspondence, 
rote counting and comparison. Conversations with 
the participants will be recorded on video and will 
be precisely transcribed. 

In presenting the poster I will provide a brief over-
view of the method of study, the individualization pro-
cess of numerical discourse and the developmental 
model. In assembling the model we based on (1) our 
understanding of numerical discourse (2) the hierar-
chical nature of this discourse (3) historical data and 
(4) past findings about rudimentary numbers learn-
ing (Sfard & Lavie, 2005).The underlying assumption 
in this model is that the initial numerical discourse 
as I know it from observation and experience is built 
from two different discourses: (1) Quantity discourse, 
which contains comparison words such as, “bigger 
than”, “smaller than”, “a lot”, “few”, “equals” etc.; (2) 
numerical discourse, which is comprised of number 
words. I will argue that at some point, these two dis-
courses join together. As a result of this amalgamation, 
two new discourses are produced: Numerical quantity 
discourse and Arithmetical discourse which deals 
with numbers and operations performed on them. 
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The challenge of this study is to develop and refine 
this current version of the model that describes the 
formation of the numerical discourse using the char-
acterisation of mathematical discourse as consisting 
of vocabulary and syntax, visual mediators, routines 
and endorsed narratives (Sfard, 2008, 2012) and ana-
lysed the data by these characterizations. I hope that 
this unique analytic approach would shed new light 
on the vastly investigated subject – the numerical 
discourse. Another challenge of this research is to 
identify the individualization process as accrued 
through the use of  iPad and material objects. These 
two alternating learning environments were chosen 
because these are the environments children play in 
nowadays, and in which they feel comfortable. 
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In 2006, the Norwegian government added mathematics 
and technology as a subject in the national guidelines for 
kindergartens in Norway. The activity in this case is a 
visualisation task about the connection between 2D and 
3D shapes. The activity starts with a short introduction 
from one of the researchers, where she together with 
children explored different 3D shapes with collapsible 
folding shapes. After a while, iPads were taken into the 
activity, using an application where they could see 3D 
shapes fold and unfold. The activity lasted for around 
50 minutes where the children freely combined the work 
on the concrete folding shapes and the ones at the iPads. 
Preliminary findings indicate that the children were 
focused on the appearance more than the characteristics 
of the shapes. Further, technology gave some new oppor-
tunities, but also some limitations due to tactile feelings.

Keywords: Kindergarten, technology, geometrical shapes.

RESEARCH QUESTION

How do children utilise technology when exploring 
the transition between 2D and 3D shapes? Does tech-
nology add something to this activity?

The aim of the study is to develop knowledge about 
children’s use of and explorations with interactive 
devices, like touch screens seen in relation to tradi-
tional play material for construction. 

THEORY

The case study will be discussed in light of explorative 
and a playful approaches to mathematics (van Oers, 
2010), where children experience different geomet-
rical shapes. Van Hiele’s model will work as a frame-
work for the analyses of children’s understanding 
(van Hiele, 1986). Clements and Sarama (2007) argue 
that use of different concrete models will help chil-
dren develop spatial skills. The study reported here 
will support this by using an iPad application. 

METHODS

The method is an explorative case study (Cohen, 
Morrison, & Manion, 2007) where the researchers 
together with kindergarten teachers designed and 
carried out the activity. The case study is explorative 
due to lack of research on kindergarten activities that 
combine virtual and concrete objects.

Figure 1
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Two boys and two girls aged five were studied and 
the activity was recorded with two video cameras and 
transcribed. It was analyzed by the researchers and 
discussed with kindergarten teachers for validations. 

EARLY FINDINGS

The children used the names of 2D shapes like circles, 
squares, rectangles and quadrilaterals, but not always 
in a very accurate way. For instance, a boy referred to a 
square as a long quadrilateral, although still pointing 
at a rectangle.

Figure 1 illustrates the activity. To the left, they com-
pare the shapes included in the cylinder. Initially, they 
interpreted the group of shapes as a smiling face and 
pointed out the eyes and mouth. To the right, they com-
pare concrete shapes with virtual shapes on an iPad. 
They used the color function to make the virtual shape 
look equal to the concrete shape. The children were 
focused on the appearance (e.g., color, proportions) 
more than the characteristics (e.g., angles, parallel 
sides) of shapes. Our findings indicate that the com-
bination of technology and traditional collapsible 
folding shapes can give children richer experiences 
when they use the iPads to understand how to fold and 
unfold 3D shapes. We observed that this iPad applica-
tion can help children investigate several shapes more 
effectively than with traditional solid shapes. Despite 
this, the tactile aspect must not be underestimated. 
Holding and touching the physical shapes is import-
ant for children´s investigation of shapes.
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This poster reports a broader project that aims to re-
search the preschoolers’ cognitive capacities in math-
ematics learning, and integrates two studies that were 
carried with four-year-old children aiming to under-
stand: (i) the children´s ability to subitize, and (ii) how 
the process of emergence of algebraic thinking develops. 
The results show the importance of structure in early 
mathematics education.

Keywords: Structure, early mathematics learning, pattern.

SUMMARY

Mathematics has been an important subject area with-
in the Portuguese curricula for preschool education. 
Moreover current research has shown that young 
children can generalize mathematical ideas much 
earlier than previously supposed (Mulligan, 2013). 
Structure has a key role in the process of generaliza-
tion. With appropriate designed and implemented 
learning experiences, young children are able to 
develop forms of reasoning involving the process of 
generalizing (Papic, Mulligan, & Mitchelmore, 2011).

Conceptual subitizing plays an advanced-organizing 
role (Sarama & Clements, 2009). In spatial patterns, 
some arrangements lend themselves to grouping fa-
cilitating the sudden recognition of the number using 
consciously strategies of decomposition linked to nu-
merical structure.

This poster will present the results of two studies in-
tegrated into a broader project which aims to research 
the preschoolers’ cognitive capacities in mathematics 
learning. Both studies were carried with four-year-
old children. One of them intended to understand the 
children´s ability to subitize and the other aimed to 

understand how the process of emergence of algebra-
ic thinking develops.

Both studies were developed in private schools in 
Lisbon and adopted a qualitative research methodol-
ogy under the interpretive paradigm, emphasizing 
meanings and processes. The researchers took the 
dual role of teacher-researcher: each one conducted 
the study with her own children’s group and in her 
own natural environment. Participant observation 
and document analysis (audio and video recordings, 
images and documents produced by the children) 
were used as data collection methods.

The research data of Cordeiro’s study showed that 
children can subitizing up until four and begin sub-
itizing sets of five and six items with different spatial 
arrangements. Children do perceptive subitizing, but 
few children begin to show signs of doing conceptual 
subitizing which contributes to numerical structur-
ing. Children are able to identify the number of dots 
in patterns, eventually become familiar with them 
and even start making mental relationships between 
numbers, composing and decomposing them, and de-
veloping their number sense. The most common spa-
tial arrangement of sets in the cards (corresponding to 
the domino game) is the easiest to identify, followed by 
rectangular, and after by linear and circular arrange-
ments. The structure marked by the use of two colors 
or by the use of two groups in the spatial arrangement 
of sets, in the cards, contributed to the emergence of 
conceptual subitizing, decomposing collections into 
smaller recognizable collections, and either using 
addition to determine the total.

The results of Serra’s study indicate that children mas-
ter the concept of repeating and growing patterns, 
and they are able to identify the unit of repeat, create 
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and analyze patterns of various simple repeating and 
growing patterns, evolving from simpler forms to 
more complex forms, in the case of pictorial repeating 
patterns. Children are aware of the pattern’s struc-
ture when they identify either the unit of repeat or 
the regularity of a pictorial growing pattern. In this 
last case, children used a correspondence analysis of 
change indexing the figure number with the changing 
aspect of the dependent variable.

These results offer possible implications for the exist-
ing research in the area stressing the role of structure 
in early mathematics education, namely in the field 
of mathematical relationships.

THE WAY OF PRESENTING

In the poster, we will illustrate the main results re-
lated with structure by exhibiting some of children’s 
productions, communicating them in a pictorial 
format. Next to visual data there will be short sec-
tions: (1) Introduction; (2) Theoretical framework; (3) 
Methodology; (4) Results; (5) Final considerations; 
and (5) References.
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Educators are always seeking alternative and effective 
approaches to education. The approaches, in the con-
text of young (from 3 to 8 years old) children education, 
discussed in this poster are based on joint work between 
scientists and teachers involved in the process. 

Keywords: Young children education, scientists, teachers, 

STEM.

AIM

Nearly from birth, young children develop everyday 
mathematics including informal ideas of more and 
less, taking away, shape, size, location, pattern and po-
sition. Mathematics helps children make sense of their 
world. All children can be successful with mathemat-
ics, provided that they have opportunities to explore 
mathematical ideas in ways that make personal sense 
to them and opportunities to develop mathematical 
concepts and understanding. Children need to know 
that teachers are interested in their thinking, respect 
their ideas, are sensitive to their feelings and value 
their contributions.

Young children have an endless supply of energy 
hence they can study till they have fun. It is very hard 
not to kill creativity and interest at that age. Apathy as 
a result of misunderstanding is a most common prob-
lem for the young children. No answer after another 
question “Why? What? etc.” makes it happen. How we 
can solve that problem will be shown on the poster. 

BACKGROUND

Mathematical education for young children is not new 
(Fuson, 2004; Denton & West, 2002; Vygotsky, 1986). 
In the 1850s, Froebel introduced a system of guided in-

struction focused on various “gifts.” It included blocks 
that have been widely used ever since to help young 
children learn basic mathematics, especially geome-
try (Brosterman, 1997). In the early 1900s, Montessori, 
working in the slums of Rome, developed a structured 
series of mathematics activities to promote young 
children’s mathematics learning. If children are capa-
ble of learning mathematics, and if we choose to help 
them learn it, what kind of mathematics should we 
teach and how should we teach it? The decisions stem 
from our educational values and goals, but should be 
informed by psychological research. 

METHOD

The author of the poster proposes to seek for a solu-
tion as collaboration between science and education.  
For four years, the author has been involved in project 
Futurum2020. The project provides education for 
children. We use several method in the case of young 
children (3–8):

1) Scientists come to the classroom once a week. 
Topics, which children have mastered during 
that week, are discussed. A scientist shows some 
visualisations and gives some additional topics 
(graph theory, logic, etc) (For example, one can 
use Martin Gardner’s ideas, 1970–1980)

2) A Math circle was organised for those children 
who enjoy math. Exciting topics that are normally 
outside the school curriculum were discussed. 
Some brilliant children get their first research 
problems. Simple ones, but real, with no known-
in-advance solution.

3) STEM camps were organised 4 times a year. Time 
and space in the camp was filled with the atmo-
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sphere of creativity. Solving problems took place 
both in classrooms and on the mountain paths 
thus allowing diving deeply into the amazing 
world of math.

Different generations of children and adults gath-
ered at the same place but had their own educational 
programme. Scientists organised several lectures for 
teachers.

RESULTS

Organising camps in such a way helps to make tran-
sition between pre-primary and primary school 

“smooth” and unstressful. The results are amazing! 
During the first months of the programme, teams (a 
scientist and a teacher) found children with learning 
disabilities and helped them by co-working on finding 
different ways to approach math facts.

This way we showed that collaboration between a 
scientist and a teacher is very important and useful 
because it looks like a symbiosis in nature: teachers 
study mathematics, scientists study psychology. QED

THE WAY OF PRESENTING

The poster included the purpose, method and results, 
also examples of collaboration between scientists and 
teachers were discussed. 
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I will present results from a case study of teachers’ experi-
ences and opportunities to assess pupils’ mathematical 
development and thereby identify pupils’ mathematical 
difficulties during the preschoolclass year. The study is 
part of a development and cooperation project between 
NCM (National Center for Mathematics education) in 
Gothenburg and Umeå University.   

Keywords: Preschool class, intervention, assessment, 

teachers.

BACKGROUND

The Swedish preschoolclass (age 6 years old) is of-
ten described as the link between preschool and 
school. Curriculum for preschool (age 1–5 years old) 
in Sweden has an ambitious mathematical content 
(Skolverket, 2010) that is in many ways linked to 
the compulsory school curriculum in mathematics 
(Skolverket, 2011). But for preschool-class there is no 
specific curriculum in mathematics. In preschool and 
school in Sweden there are different views on what 
develops pupils’ knowledge and/or competencies. 
Knowing mathematics can be understood in two dif-
ferent types of knowledge (Wedege, 2010). Knowledge 
developed in everyday life (Type 1), with representa-
tives as D’Ambrosio and Bishop, and knowledge want-
ed in everyday life (Type 2) were Kilpatrick and Niss 
are predominant. Preschool in Sweden are influenced 
by Type 1 whereas school are strongly influenced by 
Type 2. When it comes to developing mathematical 
knowledge, preschools assess their activities which 
is different from the school context were the pupils’ 
knowledge are assessed. This circumstances lead to 
a lack of clear guidance for the mathematical work in 
preschool class. In view of the lack of clarity that sur-
rounds goals in mathematics for preschool class, ques-
tions arise regarding on what grounds teachers meet 
and asses students’ knowledge and when do teachers 
in preschool-class discover misunderstandings that 
may exist in mathematics?

AIM

The twofold aim of my study include to describe pre-
school-class teachers’ perception of pupils’ mathemat-
ical development and analyze if raised awareness of 
pupils’ mathematical development changes the pos-
sibility of early identification of difficulties in pupils 
mathematical development and prevent creation of 
pupils with special educational needs in mathematics. 
For this purpose two questions are posed:

When and how will pupils’ mathematical development 
become visible to preschool-class teachers? When 
and how will pupils’ difficulties in their mathemati-
cal development become detectable to preschoolclass 
teachers? 

METHODS

Data was generated by following 14 teachers in nine 
preschoolclasses with a total of 200 students from 
four different schools from November to June. Three 
of the classes and three teachers were part of a control 
group where I followed their regular activities. The 
remaining 11 teachers and six preschoolclasses were 
part of an intervention, designed to build structured 
activity in mathematics where pupils, meet, use, de-
velop and reason with different representations of 
numbers (Sterner, 2014).

The study includes several data collecting elements. 
At four occasions the teachers were asked to assess 
their pupils. The assessment was based on a matrix, 
influenced by Kilpatrick’s framework (2001) on math-
ematical proficiency and the similarities in curricula 
goals for preschool and primary school. All the pu-
pils were interviewed and tested with the Van Luit’s 

“Early Numeracy Test” (2005) – in November and in 
June. The scores are used mainly as control points 
in relation to the teachers’ assessments in regards 
to number sense, as being one of the key factors in 
knowing mathematics.
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Interviews were held with the teachers in November 
and at the end of the preschool class year, in June. 
Observations were conducted in the preschool-classes 
on several occasions. 

RESULTS

The intervention group had more activities and com-
munication between teachers and pupils and in-be-
tween teachers. Increased communication between 
teachers led to raised awareness regarding their own 
knowledge of mathematics and of pupils’ mathemat-
ical development. Raised awareness of pupils’ math-
ematical development enhances the teachers’ possi-
bility to assess pupils’ and to detect and correct gaps 
in pupils’ math skills. The teachers describe a feeling 
of security in their knowledge and assessment but at 
the same time they express a sense of greater difficulty 
in assessing, even when the assessment were more 
accurate.
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Research on university level mathematics education 
is a fast developing field as evident in the growth 
of the CERME University Mathematics Education 
(hereafter UME) Thematic Working Group. TWG14 
was launched in CERME7 (Nardi, González-Martín, 
Gueudet, Iannone & Winsløw, 2011). After CERME8 
(Nardi, Biza, González-Martín, Gueudet, & Winsløw, 
2013), its leader team – in collaboration with TWG14 
participants and others – worked towards a Research in 
Mathematics Education Special Issue on Institutional, 
sociocultural and discursive approaches to research 
in university mathematics education (Nardi, Biza, 
González-Martín, Gueudet & Winsløw, 2014) which fo-
cused on research that is conducted in the spirit of the 
following theoretical frameworks: Anthropological 
Theory of the Didactic, Theory of Didactic Situations, 
Instrumental and Documentational Approaches, 
Communities of Practice and Inquiry and Theory of 
Commognition. 

The work of the group at CERME9 cemented and fur-
thered this work but welcomed contributions from 
across the board of research approaches: the teaching 
and learning of advanced topics; mathematical rea-
soning and proof; transition issues “at the entrance” 
to university mathematics, or beyond; challenges 
for, and novel approaches to, teaching (including the 
teaching of students in non-mathematics degrees); the 
role of ICT tools (e.g. CAS) and other resources (e.g. 
textbooks, books and other materials); assessment; 
the preparation and education of university math-
ematics teachers; collaborative research between 
university mathematics teachers and researchers in 
mathematics education; and, theoretical approaches 
to UME research.

The critical – and growing – mass and quality of the 
work presented at TWG14 has led to the launch of 
an ERME Topic Conference, INDRUM2016, a confer-
ence of the newly launched International Network for 
Didactic Research in University Mathematics (France, 
Montpellier, March 31 – April 2). Its two broad themes 
are teaching and learning of specific topics in university 
mathematics and teachers’ and students’ practices at 
university level. In anticipation of INDRUM2016, in 
this report, we outline briefly the main focal points of 
the 45 papers (31 long and 14 short contributions) that 
comprise the set of CERME9 TWG14 papers published 
in these proceedings in accordance with these two 
broad themes. We note that several papers fit both 
themes and that we have opted to classify the papers 
according to what we see as their main research focus 
and contribution.

TEACHING AND LEARNING OF SPECIFIC 
TOPICS IN UNIVERSITY MATHEMATICS

The 16 papers classified under this theme (8 long and 
8 short papers) address a range of mathematical topics, 
elaborate discussions of mathematical reasoning, logic 
and proof and introduce research into the teaching 
of mathematics to students in other fields (here: engi-
neering and economics).

With regard to mathematical topics, contributions 
regarded topics in calculus and Complex Analysis. 
Breen, Larson, O’Shea and Pettersson analyse student 
data from Ireland and Sweden to discuss concept im-
ages of inverse functions, particularly in relation to 
the predominance of the models of “swapping x and 
y”, reflection and reversal. Ghedamsi offers a Theory of 
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Didactic Situations (TDS)-based analysis of a teaching 
session on sequence convergence in order to exam-
ine the ways in which a university calculus teacher 
attends to students’ prior knowledge in calculus 
and facilitates the transition from school to univer-
sity mathematics. Grønbæk and Winsløw deploy an 
Anthropological Theory of the Didactic (ATD) lens to 
discuss the teaching of complex numbers using Maple 
sheets and demonstrate the institutional constraints – 
Maple sheets cannot create an appropriate media/
milieu dialectic – which lead to the development of 
disconnected practices. The short papers also covered 
a range of topic-specific research: the transition from 
informal to formal understanding of the concept of 
order in abstract mathematics (Akdemir, Narlı and 
Kaşıkçı); improper integrals (Cortés and Velasco); dif-
ferential geometry (Dana-Picard and Zehavi); differ-
ential equations (Fardinpour); linear independence of 
functions (Wawro and Plaxco); and, abstract algebra 
(Mili and Ascah-Coallier). 

With regard to mathematical reasoning, logic and proof, 
Hausberger introduces the innovation of the banquet, 
a pocket-size algebraic structure aimed at helping 
students reflect on mathematical structures and the 
axiomatic method. Bridoux and Durand-Guerrier, 
through an a-priori and a-posteriori analysis of 
two tasks in an exam paper taken by students of a 
Computing Sciences module that aimed at improv-
ing students’ proof production, find that the course 
did improve students’ proof fluency, although they 
also observe that many difficulties remain. In their 
short paper concerning students’ conceptions of 
logic, Kazima, Eneya and Sawerengera also highlight 
some of these difficulties, mainly focusing on issues 
of language.

With regard to research into the teaching of mathe-
matics to students in other fields, a relatively novel 
strand, Biehler and Kortemeier analyse students’ work 
with a typical electrical engineering task in relation to 
an expert solution and conclude that it is counterpro-
ductive to try to separate the mathematical and “real 
world” (engineering) parts of the problem. Kürten and 
Greefrath report aspects of a “bridging” course aim-
ing to reduce engineering students’ difficulties with 
mobilizing school mathematical skills. Mkhatshwa 
and Doerr investigate economics students’ reasoning 
about marginal change (instantaneous rate of change) 
and in her short paper Selinski explores student notic-

ing of exponential and power functions in university 
financial mathematics.

TEACHERS’ AND STUDENTS’ 
PRACTICES AT UNIVERSITY LEVEL

The 29 papers classified under this theme (23 long and 
6 short papers) also address a range of teaching and 
learning issues: curriculum and assessment; innova-
tive course design in UME; student approaches to study; 
relating research mathematicians’ practices to student 
practices; views and practices of mathematics lecturers; 
and, methodological and theoretical contributions to 
UME research.

In the cluster of papers on curriculum and assessment, 
González-Martín deploys a combination of theoretical 
frameworks (ATD and the documentational approach) 
to investigate the use of textbooks by pre-university 
teachers (particular focus: the topic concept of series 
of real numbers) and to observe that the textbook is a 
central tool for the teachers, who align with its presen-
tation and organisation. Dibbs describes the outcomes 
of the use of formative assessment in a calculus class 
and concludes that regular participation in formative 
assessment is the best predictor of achievement. Raen 
compares the assessment of student competencies 
through closed book examination and talk aloud in-
terviews. She concludes that different methods reveal 
different competencies and that therefore a mixture of 
assessment methods is desirable. Thoma and Iannone 
use two different frameworks, the MATH framework 
based on Bloom’s taxonomy, and a framework based 
on functional linguistics and Sfard’s commognitive 
approach, to analyse tasks from an examination in 
abstract algebra. They find both frameworks useful 
in highlighting different, and often complementa-
ry, aspects of the tasks. In their short paper Derouet, 
Henríquez, Menares and Panero also deploy a priori 
analyses of examination tasks in order to compare 
final secondary assessments in different countries.

With regard to innovative course design in UME, Biza 
and Vande Hey deploy the Communities of Practice 
approach to study the process of – and the pedagogical 
benefits deriving from – involvement of two under-
graduate students in a project of resource develop-
ment for statistics. Mesa and Cawley report the 3-year 
implementation of Inquiry-Based Learning (IBL) in a 
range of courses. Drawing on data from teacher logs 
and a Mathematical Knowledge for Teaching (MKT) 
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framework, they discuss challenges of the IBL ap-
proach. Nardi and Barton present a commognitive 
analysis of a “low lecture” episode (student-led in-
quiry oriented discussion on open-ended problems) 
to illustrate crucial steps of student enculturation 
into mathematical ways of acting and communicating, 
including a shift away from the lecturer’s ‘ultimate 
substantiator’ role. Rämö, Oinonen and Vikberg take a 
similar approach to report the shifting of an introduc-
tory course on linear algebra from a “lecture based” 
format to a new “extreme apprenticeship” format. 

In the growing area of student approaches to study, 
Farah investigates the role of students’ personal 
work in mathematics and highlights the influence 
of institutional differences on student approach. 
Gómez-Chacón, Griese, Roesken-Winter and Gónzalez-
Guillén report similarities in the learning strategies 
employed across two cohorts of engineering students, 
in Spain and Germany. Liebendörfer and Hochmuth 
identify different factors which support or hinder 
the autonomy of first year students and observe that 
student teachers are not convinced about the need 
of university mathematics for teaching at school. 
Lehmann, Roesken-Winter and Schueler reveal that 
mathematical competencies and beliefs about phys-
ics are substantial for engineering students’ success 
in technical mechanics. In their short papers in this 
area, Griese, Lehmann and Roesken-Winter focus on 
what obstructs or facilitates examination success in 
first year engineering and Švecová, Kohanová and 
Drábeková explore issues concerning the mathemat-
ical literacy of first year students.

Three papers documented the interplay between re-
search mathematicians’ pedagogical and mathematical 
practices and the influence of these on learner practic-
es. Cooper proposes a commognitive configuration 
of MKT (MDT, Mathematical Discourse for Teaching) 
as a tool to identify – and make optimal pedagogical 
use of – differences in the student teachers’ and a 
mathematician’s discourses. Ouvrier-Buffet presents 
a model of how research mathematicians practise the 
construction of formal mathematical definitions and 
highlights the pedagogical potency of epistemological 
analyses of mathematicians’ practices. Kondratieva 
also favours epistemological analyses and discuss-
es the pedagogical potential of exposing students to 
mathematical problems with different, more or less 
advanced, solutions to problems as opportunities for 
building mathematical connections. 

In the populated area of studies on the views and 
practices of mathematics lecturers (6 long and 3 short 
papers), Bergsten and Jablonka investigate the views of 
mathematics lecturers on the transition problem for 
engineering students and observe that, despite the en-
gineering context, lecturers see this transition as ap-
prenticeship into becoming a mathematician, namely 
able to produce mathematics. Hernandes Gomes and 
González-Martín highlight differences in how teach-
ers in engineering and in mathematics address rigor, 
approximation and modelling differently and how 
these views influence their teaching. Gueudet deploys 
the documentational approach to study teacher prepa-
ration and communication practices. She traces the 
interaction of teachers with resources in a goal-ori-
ented activity that produces documentation systems 
(structured set of all the documents they develop) and 
identifies features of these systems. Mali studies how 
teachers with different disciplinary backgrounds 
use examples and  representations in their teaching. 
Petropoulou, Jaworski, Potari and Zachariades deploy 
the Teaching Triad construct to investigate lecturer 
practices and rationales. They illustrate a case of a 
lecturer who shows sensitivity to students’ needs and 
draws students into mathematical culture through 
mathematical challenge.  Viirman offers commognitive 
analyses of how lecturers’ epistemological and 
ontological positions on mathematics are articulated 
in their teaching discourse. The three short papers 
in this area touch on ways to enable student mean-
ing making (Didis and Jaworski), UME conceptuali-
sations of pedagogical content knowledge (Khakbaz) 
and tackling the difficulties of the transition from 
school to university mathematics (Kouvela, Biza and 
Zachariades).

Finally, Kaspersen, Pepin and Sikko propose a meth-
odological advance in the study of the transition from 
higher education to the world of work through pro-
posing an approach to purposeful sample selection 
for measuring student teachers’ beliefs and practic-
es. An advance of a methodological as well as theoret-
ical character is put forward by Tabach, Rasmussen, 
Hershkowitz and Dreyfus who use a transcript of an 
excerpt of four undergraduate students’ interaction 
while working on a specific initial value problem, to 
demonstrate a local integration of two theoretical 
and methodological perspectives on knowledge con-
struction, namely Abstraction in Context (focusing 
on individuals) and Documenting Collective Activity. 
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IN CLOSING

While our presentation of CERME7 and CERME8 pa-
pers was in accordance with slightly different themes – 
for example in CERME8: transitions, affect, teacher 
practices and mathematical topics – some comparative 
observations across the three sets of papers are apt. 
As we noted in the Editorial of the RME Special Issue 
(Nardi et al., 2014), there is a clear surge of sociocul-
tural and discursive approaches – and the number 
of papers using ATD and TDS is also remarkable. An 
emerging focus seems to be also on systematic inves-
tigations of innovative course design and implemen-
tation and there is certainly a rise in the number of 
studies that examine the teaching and learning of 
mathematics in the context of disciplines other than 
mathematics, such as engineering and economics. 
Furthermore, this time we welcomed more colleagues 
from outside Europe and also noted the rise in the 
number of papers on assessment and examination. 
We also observed the further strengthing, maturity 
and increasingly more robust theorizing of studies 
into  teaching practices. Finally, we noticed in several 
papers the establishing of promising liaisons across 
different theoretical perspectives. We now look for-
ward to cementing these developments further in 
future CERME conferences, in the rich presence of 
UME at the upcoming ICME13 and EMF2015 confer-
ences – and of course INDRUM2016!
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This paper presents views of university staff about what 
has become called the ‘transition problem’ when stu-
dents start studying mathematics at university. The 
data are from a focus group interview with eight expe-
rienced university lecturers at a Swedish university 
department that offers mathematics courses for engi-
neering students. We use the portrayal of the problem 
in the literature as an axis for the discussion. 
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DIMENSIONS OF THE ‘TRANSITION PROBLEM’

In some places mathematicians seem to have for a 
very long time bemoaned a lack of university entrants’ 
knowledge (Thwaites, 1972); it clearly became an in-
ternational concern in the 1990’s (ICMI, 1997) as part 
of a transition problem. Based on our reading of the 
literature, we have grouped the issues mentioned in a 
range of Swedish and international studies into eight 
dimensions [1].

(1) Pass rates and participation: In Sweden pass rates 
in undergraduate mathematics courses were at 70% 
for engineering students at the beginning of the 21st 
century (HSV, 2005, p. 45). Relatively low pass rates 
were also reported from other countries (Dieter & 
Törner, 2010; EC, 2000; De Guzmán, Hodgson, Robert, 
& Villani, 1998). Further, there is a perceived need to 
increase participation in higher education of under-
represented groups in terms of gender, ethnicity and 
social class (Pampaka, Williams, & Hutcheson, 2012). 

(2) Alignment of curriculum: A couple of studies re-
veal discrepancies between the mathematics faculties’ 
expectations and the actual school curriculum (e.g., 
Brandell, Hemmi, & Thunberg, 2008). These relate to 

factual knowledge or use of formularies and tables, 
routine skills or problem solving, and computation-
al fluency or use of technology. Swedish students’ 
perceptions of their pre-knowledge tend to be more 
positive than that of their teachers (HSV, 2005, p. 34). 
Mismatches are also described in other countries (EC, 
2000; Hourigan & O’Donoghue, 2007; Hoyles, Newman, 
& Noss, 2001; Kajander & Lovric, 2005). 

(3) Changes in level of formalisation and abstraction: 
Mathematics at university entails specialised techni-
cal language, which students perceive as more cum-
bersome than at school. As depicted in the Swedish 
report issued by HSV (2005), 75% of the students find 
mathematics courses difficult, and for 85% the uni-
versity creates new challenges. In a study in France, 
Spain and Canada, the tasks were perceived as more 

“abstract” (De Guzmán et al., 1998). The authors also 
point out that tertiary mathematics includes “unify-
ing and generalising concepts” (pp. 752–753), often 
described as a switch from intuitive to formal mathe-
matical thinking or from informal argumentation to 
mathematical proof (e.g., Brandell et al., 2008).

(4) Unclear role of mathematics for the students’ career 
paths: HSV (2005) reports that only 40% of students 
in the second semester thought they have made much 
use of their mathematical knowledge in other sub-
jects. Rather than ‘directly’ useful, students in anoth-
er Swedish study described mathematics as generic 
problem solving technology (Bergsten & Jablonka, 
2013). De Guzmán and colleagues (1998) see an un-
derestimation of the role of mathematics in a range 
of subjects in the French, Spanish and Canadian con-
text. A ‘utilitarian trend’, noticed in the UK (Hoyles 
et al., 2001), can cause conflicting messages as to the 
purpose of studying ‘pure’ mathematics.

mailto:christer.bergsten%40liu.se?subject=
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(5) Differences in teaching and classroom organisa-
tion: In Swedish classrooms one finds a dominance 
of lessons devoted to individual work scaffolded by 
the teacher (Skolinspektionen, 2010), providing little 
experience with the lecture format common at univer-
sities where many students point at the increased pace 
as a characteristic difference to school (HSV, 2005). 
Similar views are reported by De Guzmán and col-
leagues (1998, p. 750). Also the character and function 
of assessment differ (Gueudet, 2008).

(6) Change in expected learning habits and study organi-
sation: To study at university requires a higher degree 
of autonomy than in secondary school (Wingate, 2007; 
cf. De Guzman et al., 1998). This is also acknowledged 
by many of the engineering students in Sweden (HSV, 
2005). When students’ expectations do not match the 
reality they meet, including a change of the didactic 
contract (Gueudet, 2008), students can experience 
stress (Jackson, Pancer, Pratt, & Hunsberger, 2000).

(7) Differences in atmosphere and sense of belonging: A 
university setting with large group lectures increases 
the social distance between teachers and students, an 
issue also expressed by Swedish students (HSV, 2005). 
The anonymity at a large university can be ‘quite a 
frightful experience’ (De Guzmán et al., 1998, p. 755). 
As students often change groups, a sense of belonging 
cannot be developed as easily as at school.

(8) Differences in pedagogical awareness and education 
of teachers: The image of the university mathematics 
teachers held by Swedish engineering students is 
rather positive; while some complaints were raised, 
a large majority appreciated the engagement as well 
as the knowledge of their teachers (HSV, 2005). Similar 
perceptions were revealed in the study by De Guzmán 
and colleagues (1998). Nardi, Jaworski and Hegedus 
(2005) describe a spectrum of pedagogical awareness 
among undergraduate mathematics teachers, includ-
ing four levels labelled as naive and dismissive, in-
tuitive and questioning, reflective and analytic, and 
confident and articulate (p. 293).

From these studies it is evident that the shifts between 
the two institutional cultures concern the curricular 
content, forms of pedagogy as well as the identity of 
the students as learners of mathematics and as begin-
ning university students. The outcomes of the studies 
suggest that the shifts of criteria for what counts as 
mathematics as well as for the appropriate study hab-

its that help the students to acquire this ‘new’ type of 
mathematics are often neither coherent nor explicit. 

This paper draws on data from a focus group inter-
view to investigate how lecturers who teach first year 
undergraduate mathematics courses talk about the 
transition problem, and how their views match the 
dimensions portrayed in the literature as outlined 
above. While most previous studies have been framed 
by curriculum discussions, exam results, or student 
responses, we hoped that an exploration of the views 
of experienced lecturers who teach first year mathe-
matics courses at university, may open up dimensions 
of the transition problem hitherto hidden.

METHODOLOGY

As part of a larger project [2], where around 70 engi-
neering students at two universities in Sweden were 
followed and interviewed during their first year of 
study, their lecturers of the mathematics courses 
at one of these universities were invited to a focus 
group interview, moderated by one of the authors, to 
discuss the transition problem. The eight university 
lecturers/professors of mathematics who volunteered 
to participate all work at a mathematics department. 
The audio-recorded session lasted for about 80 min-
utes and was organised by prompts concerning the 
beginning mathematics studies at university [3]. As 
participants knew each other as colleagues and were a 
homogenous group in terms of their extensive teach-
ing experience and involvement with undergraduate 
students, we hoped the interaction between them can 
develop freely into a shared opinion of the group and 
would also expose issues of disagreements (Morgan, 
1997). The participants (L1 to L8 below) were between 
40 and 65 years old, one female and seven males. The 
purpose of the ongoing project and the focus group 
interview was known to them, and shortly reviewed 
at the outset.

We used the dimensions of the transition problem 
as outlined in the literature review as a thematic 
framework, and indexed parts of the conversation 
that related to these themes and re-narrated the lec-
turers’ statements. This also helped to identify new 
dimensions and views that differed from how the 
transition problem is portrayed in literature. Thus, 
after discussing some general issues about the focus 
group interview, some subheadings in the presenta-
tion below of our analysis of the interview transcript 
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relate directly to some of the dimensions from the 
literature review (indicated by dimension number), 
while some categorise other topics emphasised by 
the lecturers. We also looked for expressions of emo-
tions, disagreement and take-up of topics by group 
members. We believe that there was some interactive 
synergy in the discussion, which justifies our choice 
of conducting a focus group.

Our analysis draws on some analytical frameworks 
that have been used for analysing knowledge in educa-
tion. Bernstein (1971) sees identity as the subjective, in-
teriorised consequence of a discursive specialisation. 
This specialisation can for example be that of a pure 
mathematician, an engineer or an applied mathemati-
cian. In a more structuralist interpretation, pedagogic 
practices are an attempt to shape and distribute forms 
of consciousness, identity and desire (Bernstein, 2000, 
p. 203). For the purpose of the study, the concepts of 
classification and framing that describe the relations 
between discourses (and groups of actors) and how 
these are established by distinct pedagogic practices, 
are of relevance.

THE ‘TRANSITION PROBLEM’ IN THE 
EYES OF THE FOCUS GROUP

General framing of the problem
To the opening question about whether there exists 
a ‘transition problem’, the answer was unanimously, 

‘Yes’. Even though the opening prompt of the moder-
ator was not phrased in a way that would essentialise 
the problem by talking about the ‘so-called problem’ 
and ‘if there is such a thing’, it might have been sug-
gestive; but it did not suggest any specific way to talk 
about the problem, as, for example, in terms of their 
own experiences as teachers or in more general terms 
concerning the structuring of the university courses 
in relation to conceptions of the school curriculum. 
The group agreed that it was nothing new, ‘This has ex-
isted all the time; one talked about this already when I 
started here as a doctoral student’ (L8). Some shared 
their memories from the student point of view and 
one lecturer suspected that the problem might have 
increased in magnitude.

During the discussion the group consistently referred 
to experiences with their students. The curriculum 
was taken as a given, although some changes intro-
duced earlier were mentioned. None of them re-
ferred to ‘us’ (as teachers or as an institution) having 

a problem. The participants did not phrase this as the 
students causing a problem for them. Instead they 
referred to their interpretations of students’ knowl-
edge and experiences and gave very specific examples. 
Only in one episode about marking criteria, the lectur-
ers talked about themselves (in terms of an inclusive 

‘we’). When referring to students, the participants in 
most cases talked about ‘students’ and ‘them’ or ‘one’ 
(indefinite pronoun) as a homogeneous group and 
occasionally used passive voice (such as ‘calculation 
rules have been forgotten’). In many of their state-
ments, however, three of the lecturers did not gen-
eralise to all students, but said ‘many students’ and 
occasionally ‘some students’. There was agreement 
in the group that there are many ‘good students’ who 
do not have problems with the transition.

A reading of the transcript with attention to individu-
als showed that none of them seemed to have changed 
their perception during the session. Also, there was 
not much evidence of argumentation amongst the 
group members. This does not entail that they held 
uniform views about of what dimensions the prob-
lem consisted, but that they mentioned different as-
pects and others agreed (often immediately with ‘yes, 
yes’) or provided additional examples. Some aspects 
brought to the discussion by L1 and L2 were picked up 
by the group and discussed in length. We looked for 
expressions of strong emotions, but felt there were no 
indications; most statements were to the point. The 
lecturers were engaged and eager to contribute and 
share their views. 

Topics and themes
Most of the issues were discussed in contrasting them 
with what the lecturers knew or suspected about cur-
riculum and pedagogy at school. In one prompt, they 
were explicitly asked about the differences, where 
some of the issues mentioned as being problematic 
were repeated. The problems raised were said to be 
very common, also among students who later ‘show 
to be very capable’ (L1).

Computational facility and problem solving 
strategies (#2 in the literature review)
Computation appeared as a key word in many state-
ments by the lecturers. What they found lacking in 
students included general computational facility:

L6: minus signs brackets and such basic 
stuff can go wrong
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L2:  the probability that it goes wrong at least 
once is pretty high if you have to make 
several computational steps 

When talking about computation, this was analysed 
as including both to calculate correctly and to have a 
strategy. In this context, they mentioned that many 
students appear not to have learned to think system-
atically, have no meta-strategies such as a habit to 
control results, do not know how to work through 
tasks that include more than one critical step and how 
to structure a solution when methods are not given:

L8:  you get a problem and then you need 
to adapt .. restate and do things with it 
before you can get to a point where you 
can apply that old standard method … at 
school this is more direct … it works to 
shove that into it directly

The questions students ask in lectures were said to be 
mostly of the type, ‘How did you do that?’ that is, more 
about computational details than about conceptual 
issues.

Dependency on guidance and instruction 
(#5 and #6 in the literature review)
The lecturers said that at university students are 
asked to a much greater extent to approach new prob-
lem situations and find out how to use known methods 
rather than solving tasks by applying given methods, 

‘you must find out yourself what method to use’ (L3). 
In relation to this requirement, they noticed that

L1: many students don’t seem prepared that 
you may have a good idea and then we 
try it out and test it to see where it leads

L8: they just sit there if they don’t see the 
whole way ahead they don’t start but 
instead raise the hand and ask 

The phenomenon illustrated by these statements had 
increased, according to the lecturers, and was given 
much attention in the discussion. Differences in the 
view of understanding were also raised: at school it 
means being able to follow the reasoning of others 
while at university one must do it oneself. One lectur-
er framed the inactivity of students in the face of more 
complex problems as a matter of ‘maturity’:

L5: it is also about being mature … one can’t 
require at upper secondary that peo-
ple have the same maturity maybe one 
needs one semester to level it out 

Organisation and academic study 
skills (#6 in the literature review)
Other aspects of an observed decrease in expected ma-
turity of new students compared to earlier concerned 
generally more messy classes, students who do not 
bring things or return assignments in time, who take 
teaching for granted as a kind of service, and that as 
a teacher one must explicitly emphasise how many 
hours students are expected to work.

Formularies and electronic calculators 
(#2 in the literature review)
The group also mentioned that the common use of 
formularies at school creates problems at university 
where one must have some foundational knowledge 
available.

L2: we require that they should know some 
terms … while at upper secondary it is 
required that they should know how to 
find [it in] a dictionary […] you experi-
ence more and more difficulties to learn 
any … rule and remember it 

Another issue concerned the fact that at this depart-
ment electronic calculators were not allowed at exams, 
while at upper secondary they were commonly used, 
‘that itself is a big step from upper secondary’ (L2). 
This problem was linked to a lack of seeing meaning in 
mathematical objects that earlier had been available 
as buttons on a graphic calculator. Students, however, 
generally did not complain about the change.

L2: the elementary functions sooner or 
later must acquire some meaning they 
don’t for many students when they come 
here […] it’s much more common that 
they complain that they were allowed to 
use them at upper secondary than that 
they’re not allowed to use them here

Mathematical rigour (#3 in the literature review)
When asked about the differences between school and 
university mathematics, “rigour most of all” (L8) was 
mentioned, but when discussing the level of rigour 
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the participants used in their lectures, it was agreed 
that such emphasis had decreased:

L1: much less than before
L3: you argue for your theorems by exam-

ples that make things likely

Nevertheless, how the examples were presented still 
supported a rigorous approach:

L2: the reasoning … the examples they see 
in lectures there the solutions are as rig-
orous that they no doubt would pass as 
solutions [on exams] 

The moderator also presented students’ solutions to 
exam tasks, which the participants were asked to mark 
with the intention to initiate a discussion about the 
level of rigour they expected from the students. They 
could not reach full agreement on the accuracy of the 
presentation in a task they classified as a ‘one-point 
task’ (see below) and hence were not sure whether 
to give it a zero. While one lecturer compared the 
solution with one to another task and found it ‘bet-
ter’, another qualified the discussion as ‘nitpicking’. 
About one solution that contained calculations with 
approximate values for π and e, they found it unlikely 
that one of their students had produced it.

Incoherence in students’ mathematical knowledge
An effect of the observations that ‘a student can be 
very good at some things but [at the same time] maybe 
knows nothing at all about other things’ (L3), implied 
that, in contrast to how it was earlier, ‘it takes longer 
time to discover who are really strong’ (L8). In the 
written exam results problems showed themselves 
through ‘lots of simple mistakes’ (L6), and that despite 
the adjustments of the level that had been made, re-
sults had generally decreased. However, in topics that 
were completely new to the students, this effect had 
not occurred:

L2: in linear algebra one is not so much dis-
turbed by things one does not remember 
from upper secondary

Assessment and knowledge criteria 
(#3, #5 in the literature review)
There was a long discussion about the assessment 
practice for the written exams. Eventually the dis-
cussion revealed well-established practice. One aspect 

concerned the organisation of the tasks in written 
exam papers for summative assessment of the course. 
In most first and second year mathematics courses 
these included seven tasks to solve during a given time 
(commonly four or five hours) with full solutions to 
be handed in. Each task was marked with 0, 1, 2 or 3 
points, where a solution obtaining 2 or 3 points was 
considered a pass on a task. A common criterion for 
a pass on the course was to obtain at least three ‘pass 
tasks’ and at least 8 points. However, the order of the 
tasks on the exam paper gave different ‘weights’ to the 
points given on each task. In this context, the intention 
of a task on behalf of the examiner was also critical, 
as was said after a long discussion about how to mark 
one specific task:

L1: if I had been the examiner on this task I 
would have considered beforehand what 
I want to test with this task, if I want to 
test the understanding of graphs yes 
then maybe this is a task for the upper 
part of the exam paper and then you can 
let a way of reasoning pass that we know 
or … want to test a rigorous mathemat-
ical reasoning then it ends up further 
down and then there will be no points 
for the B task

The overall result for the specific student being as-
sessed thus influenced the marking:

L2: actually we assess the exams the solu-
tions differently if it is about a pass or 
a pass with distinction … this we all do 
a little … that we set up higher formal 
requirements for solutions if it is about 
a pass with distinction

This marking practice was termed ‘holistic assess-
ment’, as explained by L7:

L7: if you make a holistic assessment of the 
whole exam paper and you look at this 
task in its context and compare to oth-
er tasks there are good things in it and 
pass or not is maybe not decided from 
this particular one but from a holistic 
evaluation of the whole paper 

When asked whether students would be aware of this 
practice, one lecturer replied, ‘I don’t think so’ (L2). 
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However, the holistic approach had been the prac-
tice at this department for a long time and several 
lectures acknowledged that it was somewhat hidden 
to the students: ‘I think not many students know this 
practice’ (L7).

How to overcome the problems
Typical for students who do well is that they work a 
lot with the course. The formulation that they ‘get it’ 
(i.e. the method, the theorem) was used here. It was em-
phasised, though, that also students with the highest 
school mark often have a very uneven knowledge base. 
However, when asked about what positive things they 
observe today, the group of lecturers agreed about a 
good ‘spirit’ in students and that most of them in the 
end overcome most of the problems pointed out.

L1:  enthusiasm is actually something I think 
has become better the last years

L8: when they eventually get going and go 
through our courses then in the end 
they do pretty well … and I don’t think 
we in any way produce worse engineers 
than we did some years ago …the end 
product I think is at least comparable … 
even if they maybe had to struggle more 
on the way 

DISCUSSION

Much of what this group of lecturers discussed is im-
plicated in the dimensions of the transition problem 
as portrayed in the literature. Not mentioned by the 
group as problematic was the lack of experience of 
students with the lecture format. As to the differences 
in teaching, the issue was only discussed in relation 
to the students’ behaviour and not in terms of differ-
ences in teachers’ pedagogical strategies. Change in 
expected learning habits and study organisation were 
touched upon, while differences in atmosphere and 
a sense of belonging were not discussed. The group 
focussed on differences in mathematical activities 
but did not talk about the role of mathematics for the 
engineering students’ careers. Interviewing lecturers 
allowed for a differentiation of the transition problem 
and opened up some new dimensions.

The institution aims at introducing their students into 
a strongly classified (Bernstein, 1971) canon of tradi-
tional undergraduate mathematics. The lecturers ex-
pected, for example, avoiding inappropriate levels of 

approximation and not relying on arguments derived 
from graphs of functions. They also saw school math-
ematics as strongly classified (applications and model-
ling were not mentioned) but different in knowledge 
structure and pedagogic relation. In addition, they did 
not differentiate between different groups of students, 
such as from different engineering programmes.

The lecturers shortly talked about decreasing pass 
rates, but were not sure about any trend before a 
member with access to the data reported a decrease. 
In relation to the performance patterns in the assess-
ments, they mentioned an increased ‘incoherence’ in 
the levels of individual students’ knowledge. The dis-
cussion about the ‘holistic assessment’ is related to 
this observation about the increased unpredictability 
of the students’ knowledge. The assessment practice 
is based on the assumption that there is only one di-
mension of mathematical competence that amounts 
to the students’ performance. ‘It takes longer time to 
discover who are really strong’, reveals an assumption 
about an essential generic mathematical competence 
hidden behind a range of more or less virtuoso per-
formances, a form of ‘mathematicality’. 

The ‘pedagogic relation’ (Bernstein, 2000) was by the 
lecturers depicted as one with students who depend 
on the expertise of their lecturers but even more so 
on their teachers at school level. In the eyes of the 
lecturers, the positions made available to the stu-
dents change substantially: While at school they are 
constructed as dependant learners who learn how to 
use a range of techniques with the aid of calculators 
and formularies but with no authorship in produc-
ing some original piece of mathematics, at universi-
ty they grant the students authorship to create some 
mathematics through combinations of techniques and 
mathematical argument as acceptable by academic 
mathematicians without calculation aids and formu-
laries. This is an apprenticeship into becoming an 
academic mathematician. Despite the vast majority 
of the students being from engineering programmes, 
the lecturers do not conceptualise their teaching as 
apprenticeship into users of techniques for mathe-
matical modelling in some of their students’ future 
engineering fields. 

The focus group came to the unexpected (with respect 
to the literature) conclusion that overcoming the tran-
sition problem is a matter of the students’ own work 
and natural development as they become more ma-
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ture and used to studying mathematics at university. 
They also maintained that the level of competency of 
the engineers who graduate from the institution has 
not in any significant sense dropped. As compared to 
earlier, however, today the students have to ‘struggle 
more on the way’.
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ENDNOTES

1. These only partly overlap with the ‘groupings’ in 
De Guzman and colleagues (1998) and Gueudet (2008).

2. The project is funded by the Swedish Research 
Council; see www.vr.se.

3. These prompts were: Is there a transition problem? 
How does it show? How common are these ‘problems’? 
How does it show in exam results? How much empha-
sis is made, in lectures and exams, on the formal as-
pects of mathematics? How are students informed 
about the assessment criteria? What type of ques-
tions do students ask in lectures? What is typical for 
students who do well? How does (upper secondary) 
school mathematics differ from university mathemat-
ics? Differences in knowledge criteria? Other issues? 
What is positive today?

https://www.uni-due.de/mathematik/agtoerner/
https://www.uni-due.de/mathematik/agtoerner/
http://www.engc.org.uk/documents/Measuring_the_Maths_Problems.pdf
http://www.engc.org.uk/documents/Measuring_the_Maths_Problems.pdf
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The project KoM@ING aims to investigate the mathemat-
ical skills which are required in technical subjects of en-
gineering bachelor courses. Our subproject is especially 
interested in the first-year-course “foundations of elec-
trical engineering”. In order to do research on this sub-
ject we developed the concept of a “student-expert-solu-
tion” (SES) which was generated by analysing expert 
interviews. The SES is supplemented by the required 
resources and a didactical reconstruction, for example, 
typical mistakes, alternative solution approaches and 
learning goals. The SES of a basic engineering exercise 
will be presented. We find some discrepancies with the 
standard modelling cycle, as well as some surprising 
problem solving strategies.

INTRODUCTION

We are interested in the competence expectations that 
are implicit in these tasks, i.e., expectations that are 
set up by the instructors of engineering courses, often 
based on years of experience, but not on any explicit 
theory of engineering competence. Originally, we 
intended to focus on mathematical aspects only, but 
it turned out that a more holistic approach is more 
appropriate. Based on this, we are analysing how and 
how well students in first year standard university 
courses on electrical engineering solve tasks given to 
them in homework assignments and written exami-
nations Our project is part of the KoM@ING-project, 
where the modelling and assessment of mathematical 
and engineering competences is the focus. Our sub-
project chose a qualitative approach. The tasks we 
are analysing require knowledge and cognitive re-
sources from mathematics on the one hand and from 
electrical engineering on the other. The mathematical 

knowledge is partly based on school knowledge and 
on the mathematics that students learn in the separate 
courses on higher math in the first year parallel to 
the engineering courses. It is well known that there 
is a mismatch between the mathematics learned in 
the separate courses, the mathematics at school level 
and “the contextual mathematics” required in solving 
engineering tasks (see, e.g., Redish, 2005). The math-
ematical practices in engineering contexts look far 
different from those in purely mathematical contexts. 
The tasks given to the students cannot directly be re-
garded as mathematical modelling tasks in the sense 
as this is discussed in mathematics education.

We focus on five tasks from the final exam of the sec-
ond part of the “foundations of electrical engineer-
ing”-course (called the “GET-B” exam), which electri-
cal engineering students are to take after their first 
year. All of the students’ written work was scanned. 
Moreover the same tasks were given to eighteen pairs 
of students and their work and communication was 
video-recorded. With nine of the student pairs we 
used stimulated recall for extending the base of our 
analysis. In order to analyse the problem solving pro-
cesses and the written work of the students we need 
a didactically oriented task analysis and theoretical 
frameworks on which we can base this analysis, in 
other words a “normative solution” of our task.

THEORETICAL BACKGROUND 

We consider the following three theoretical frame-
works as relevant: The first approach is the model-
ling cycle by Blum and Leiß (2007), which divides the 
solving of a mathematical modelling exercise into 
seven steps: (1) understanding of the task and the un-
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derlying situation, construction of the so-called “sit-
uation model” (2) simplifying and structuring of the 
situation: construction of the so-called “real model”, 
(3) translating into a mathematical problem (entering 
the “world of mathematics”), (4) mathematical work, 
(5) interpretation of the result in the real world, (6) 
validating and (7) presenting of the results. The cycle 
consists of two parts, the “rest of the world” with steps 
(1), (2), (6), (7) and the mathematics with step (4). The 
changes between the two worlds happen in step (3) 
and (5). This modelling cycle description is considered 
as an idealisation, probably only applicable in school 
contexts. Nevertheless, this approach is useful for us 
as a tool to show important features of our “modelling 
example”, which differ even on an idealised level.

The second approach is problem solving by Polya 
(1949), who divides problem solving processes into 
four phases: understanding the problem, devising a 
plan, carrying out the plan and looking back. The third 
approach is the description of ways of mathematical 
argumentation and mathematical resources in phys-
ics by Bing (2008) and by Redish and Tuminaro (2007). 
They distinguish between four framings that describe 
how students justify their results to exercises: calcula-
tion (algorithms give exact results), physical mapping 
(math should represent physics correctly), invoking 
authority (using of results of the physics-course) and 
math consistency (similarities to other physics prob-
lems solved with math).

We consider the first two approaches as “draft” pro-
cess models, which will have to be extended and 
adapted to the specific tasks we are analysing. The 
third approach discusses the role of mathematical 
resources and knowledge in solving problems from 
physics and we use this approach to identify and char-
acterize resources needed by the students. In other 
words, we consider that the development of theoreti-
cal descriptions has to be based on empirical results as 
well. We ask the task designer and electrical engineer-
ing experts to solve the tasks from the perspective 
of students who well understood the contents of the 
electrical engineering course. Based on further con-
sultation of subject matter and didactical experts, we 
(re-)construct what we call the “student-expert-solu-
tion” (SES). The SES is used as a basis for sharpening 
the theoretical description and analysis of the solving 
processes, resulting in what we call a “theoretically 
enhanced SES” (TESES). We use this as a tool for un-

derstanding first year engineering students’ solving 
problems.

METHODOLOGY

In order to get a detailed solution for the exercises 
we conducted interviews with the task designer and 
electrical engineering experts from the institute at 
the University of Paderborn, which is responsible 
for the GET-B, using the Precursor-Action-Result-
Interpretation (PARI) method, a task-based interview 
technique conducted with experts of the task (Means 
et al., 1995). The aim of these interviews is to identify 
the explicit and implicit expectations of competenc-
es. The half-structured PARI-interview consists of 
three phases: In the first phase, experts have to do 
the exercise without any interruptions, but they are 
told to think aloud while writing down solutions. In 
the second phase, the interviewer goes through the 
written solutions with the expert in order to recon-
struct the reasons for the way the exercise was solved 
and identify the used resources. In this phase experts 
need to justify each step of their solutions and make 
explicit the knowledge they used. The last phase is a 
didactic reconstruction of the exercise, which con-
sists of two parts. In the first part the experts’ view 
on students’ expected solutions is solicited. This 
part contains questions on alternative solutions to 
the exercise, typical mistakes of students after their 
first year and possibilities to validate the results. In 
the second part the interviewer asks for the reasons 
for assigning the exercise and possible variations for 
exercises on the topic, aimed at making explicit the 
implicit competence expectations.

The interview is the foundation of the student-ex-
pert-solution (SES), which is the best solution an 
electrical engineering student could achieve with 
the knowledge presented in electrical engineering 
and mathematics lectures prior to the exam (i.e., the 
knowledge after their first year of studies). In the next 
step the student-expert-solution is subdivided into 
categories, i.e., phases and cognitive resources in a 
deductive approach based on the three mentioned 
theoretic approaches. This document consists of a 
two-column table: the SES in first column and related 
theory-based comments in the second column; it is 
called the “theoretically enhanced” student expert 
solution (TESES). The TESES is used as theoretical 
instrument to analyse the transcribed solution pro-
cesses of our pairs of students. The participating 
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students attend degree-relevant courses in electri-
cal engineering or industrial engineering, and they 
were at the end of their first year when the study was 
conducted. Nine pairs were filmed while they were 
working on the exercises and were talking about the 
way they solved them. 

EXEMPLARY RESULT: A SES 
FOR ONE TYPICAL TASK

A sample exercise 
For illustration, we present one of the exercises of the 
mentioned exam, which deals with magnetic circuits, 
and its theoretically enhanced student-expert-solu-
tion. This section gives the problem setting and a 
short overview of the solution. The exercise consists 
of six subtasks and starts with the following sketch 
of a magnetic circuit:

The magnetic circuit consists of two iron cores with 
different cross section areas. The winding on the 
U-core has N=100 windings und is flown through by 
an electric current of I=10A. At the places of minimal 
distance between the two cores there should be a joint 
that behaves like an air gap. The exercise gives the 
following data for the iron cores: lFe,1=50 cm, lFe,2=30 
cm, AFe,1=150 cm2, AFe,2=60 cm2, μr=1000.

Subtask 1: Sketch the equivalent electric circuit dia-
gram of the magnetic circuit und simplify it as much 
as possible. Solution: The three parts of the U-core 
(the upper part and the left and right parts) and the 
lower iron core each give constant reluctances and 
can thus be summed up to one reluctance RFe. RL, the 
reluctance in the air gap, is dependant on the width 

of the air gap d and has to be doubled, because there 
are two joints between the two parts.

Subtask 2: Describe the total reluctance RM(d) as a 
function of the variable d. Solution: Because of sub-
task 1 the total reluctance can be written as the linear 
function of d: RM(d)=RFe+2RL⋅d using calculated values 
for RFe and RL.

Subtask 3: Describe the inductance L of the setting as a 
function of d, the width of the air gap; assess the width 
of the air gap for which the inductance is maximal, 
and calculate the value of this maximum. Solution: 
The formula for L is L(d)=N2/RM(d), i.e., the width of the 
air gap d is part of the denominator and the fraction 
becomes maximal, if d=0. We get the maximal value 
by insertion of d=0.

Subtask 4: Calculate the magnetic flux density bL in 
the air gap.

Solution: We get the formula for the magnetic flux 
density by combining two formulas for magnetic 
fluxes.

Construction of the associated theoretically 
enhanced student-expert-solution
The first tool to analyse the exercise is the modelling 
cycle by Blum & Leiß (2007). We have developed sev-
eral modifications of this cycle in order to better de-
scribe students’ processes including identifying the 
resources required during the solving process. We 
summarize first and go into details later: 

 ― Instead of constructing a real model as suggested 
in the modelling cycle students rather need strat-
egies to understand conventionalized sketches 
and use them to mathematize the electrical en-
gineering problem.

 ― Instead of entering the “world of mathematics,” 
they enter into a “mathematics of physical quan-
tities” with special resources: those resources are 

d

I

N

Θ

AF e,1

AF e,2

lF e,1

lF e,2

lF e,1

m

Figure 1: Sketch of a magnetic circuit consisting of two iron cores
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RF e=RF e,1+2RF e,2+RF e,3
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Figure 2: Equivalent circuit diagram
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not solely based on pure mathematics learned in 
school or university mathematics courses.

 ― The authenticity of the problems offers strategies 
to validate the results.

We subdivided the solution process of subtask 1 and 
2 into four phases. The two subtasks can be prelimi-
nary assigned to what is called (1) understanding of 
the task and the underlying situation, construction 
of the so-called “situation model” and (2) simplifying 
and structuring of the situation: construction of the 
so-called “real model”. However, the competence re-
quirements are quite different. The students do not do 
idealisations and simplification themselves, but they 
have to understand the given sketches as a “real model” 
whose idealisations will remain largely unconscious 
to them. The following idealisations, which were ex-
pressed in the interviews with the experts, are im-
plicit: We only look at the magnetic behaviour of the 
test arrangement in an idealized static situation. The 
inductance of the windings, leakage fields and non-lin-
ear magnetic behaviour of the test arrangement are 
disregarded. Dynamic effects caused by the motions 
in the system are disregarded: Because of the changing 
of the distance between the two iron cores the energy 
changes and hence a non-linear ratio between power 
and force arises. The students are socialised into a 
world of certain real models. Idealisations often stay 
implicit and the students are often not aware, that 
there are idealisations. That is similar to physics stu-
dents who use mass points without being aware of the 
idealisation, or geometry students that use dimen-
sionless points. Students are to learn to “read” the 
sketch of Figure 1 and later find the fitting equations 
for this figure.

In contrast to saying that students should draw a pic-
ture or diagram of their own choice for understand-
ing a situation (Polya, 1949; Blum & Leiß, 2007), the 
diagrams of Figure 1 and Figure 2 are very conven-
tionalized in electrical engineering and constitute a 
specific “notational system”, which is part of the tools 
of the discipline. Students who have not understood 
this might have difficulties if they approach the tasks 
and try to develop their own idealizations based on 
general physical knowledge – they could try to un-
derstand all the physical mechanisms and then be 
overwhelmed by the real situation. A further require-
ment is that students are familiar with the technical 
terminology (concepts) of electrical engineering in 

order to understand terms like the “magnetic flux” or 
“reluctance”. Subtask 1 of the exercise requires using 
the “method of the equivalent electric circuit diagram”, 
which helps to eventually mathematize the situation. 
The sketch of the test arrangement (Figure 1) has to 
be translated into an equivalent circuit diagram (e.g., 
Figure 2) using special rules for translation, which 
were expressed in the previous section. Equivalent 
electric circuit diagrams form a second notational 
system in electrical engineering. They are part of the 
acquisition of a domain-specific “graphical language” 
(similar to free-body force diagrams in mechanics or 
Feynman diagrams in quantum mechanics).

The third phase consists of setting up the equation 
for calculating the total reluctance with the help of 
the equivalent circuit diagram, which was generated 
in the first subtask. Once again, this is a translation 
task into which students have been socialized – ide-
alized electrical or magnetic circuit diagrams are 
translated into sets of equations using the so-called 
Kirchhoff rules, just like free-body force diagrams 
are translated into vector equations using Newton’s 
Laws, and Feynman diagrams are translated into 
path integrals using Feynman rules. The modelling 
of physical situations as idealized graphical diagrams 
and subsequent “mathematization” using sets of algo-
rithmic translation rules is a common theme among 
the most powerful theories in physics and engineer-
ing.  As mentioned above the reluctances in the iron 
and the air gap have to be added to execute this step, 
which requires forming of a set of equations between 
known and unknown physical quantities. There are 
also some differences to the modelling cycle in this 
step: A set of equations between physical quantities 
(numbers with units instead of just numbers) has to 
be set up. The student does not enter the “world of 
mathematics”, but instead the “mathematics of phys-
ical quantities” with electrical engineering meaning. 
We are also convinced that many modelling problems 
at school level equally do not enter the “world of pure 
mathematics,” but remain contextual mathematics 
with quantities.

In the next phase the total reluctance is calculat-
ed using the previous derived formula. As an ex-
ample, in Figure 3 we reproduce the calculation 
of the constant part of the total reluctance (i.e., 
the reluctance of the iron core). The shorthand 
μ=μrμ0=1000μ0=1000·4π·10-7  Vs/(Am) is used for the 
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permeability of the metal, where μ0 is the vacuum 
permeability and μr is the given relative permeability.

In the fourth phase, the resources of “mathematics of 
physical quantities” are needed, i.e., the management 
of units as well as techniques and strategies for the 
transformation of fractions containing physical quan-
tities. Often these have neither been part of school nor 
university mathematics, and students tend to make 
many mistakes when attempting to apply these re-
sources. One central resource is the “management of 
units”, which includes the “handling of powers of ten”. 
Those resources are typically required in physics and 
physics-related subjects if tasks require to calculate 
numerical values of physical quantities.

We define the “management of units” as the manipu-
lation of base and derived physical units. All physical 
units in this exercise can be expressed in the base-
units meter (m, for lengths), kilograms (kg, for mass-
es), seconds (s, for time), and Ampere (A, for electrical 
current). E.g., the unit Volt (for electric potential) can 
be expressed as (m2kg)/(s2A) using base units. The 
handling of powers of ten, which are expressed by 
letters in front of units, is also part of the management 
of units. The students have to translate the letters like 
k or m (for milli) to powers of ten, in this case 103 and 
10-3, respectively. The powers of ten then have to be 
multiplied, divided and potentiated using the rules 
for potentiation. For example, they need to realize that 
6cm2 is equal to 6·(10-2m)2=6·10-4m2, instead ignoring 
that the power of ten is squared alongside the unit 
and arriving at 6·10-2 m2. In the last step the base units 
have to be translated in a summarising unit and the 
powers of ten into the right letter in front of the units.

The techniques and strategies for the transformation 
of fractions containing physical quantities include 
handling of algebraic and arithmetic terms with frac-

tions. As seen in Figure 3, there are also compound 
fractions (especially due to units), and fractions have 
to be transformed in order to be able to add them. 

Also resources of electrical engineering in a narrower 
sense are needed to solve the second subtask: students 
must know the formula for the reluctance, which is 
R=1/μ·l/A, where μ is the permeability, l is the length, 
and A is the cross-sectional area of the conductor. 
They have to insert the right values for each part of 
the iron core as well as for the two air gaps in order 
to apply the formula to the situation.

For the third subtask, students need to recall the 
formula for the inductance. Initially, students have 
to find a formula, which only contains known pa-
rameters from the problem setting, in this case the 
formula L(d)=N2/RM(d). The maximum value can be 
determined using knowledge presented in the GET-
B-lecture, namely, that the value for the inductance 
decreases the farther the two iron cores are moved 
away from each other. So the inductance is maximized 
if there is no air gap, i.e., the width of the air gap is 
zero. Alternatively L(d) can be interpreted as a func-
tion of d, where the students can use techniques from 
mathematics to find the maximum (minimising the 
denominator). These two different types of reasoning 
for finding a solution are often applicable, i.e., rea-
soning by either calculation or physical mapping, see 
Bing (2008). 

In the fourth part, students need to recall the formula 
for the magnetic flux density bL, which is Φ=bL·AFe,1, i.e., 
the product of the magnetic flux density and the rele-
vant area. In this formula only AFe,1 is known, but there 
is another formula to calculate Φ, namely Φ=(N·I)/RM, 
i.e., the product of the number of windings and the 
electric current divided by the total reluctance. In the 
second formula all physical quantities are known, and 

Figure 3: Calculation of the total reluctance
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by combining the two formulas students can calculate 
the value for bL. They get bL·AFe,1=(N·I)/RM and with the 
help of this, bL=(N·I)/(RM·AFe,1).

This example shows the typical characteristics of 
“equation management”. Initially students recall the 
relevant formulas containing known and unknown 
physical quantities. Then they start to transform 
these equations in order to get unknown quantities 
with the help of known quantities. This can either 
be done systematically by writing down all possibly 
relevant formulas at the beginning of the solution 
process, or step-by-step by starting with one formula 
and in each step trying to replace unknowns with the 
help of known physical quantities. This task is not 
rule based like solving systems of linear equations. 
It is not necessary to derive all the equations from 
general formulas in electric field theory presented in 
the lecture. This is a didactic reduction compared to 
the lecture, which was communicated in the exercise 
classes accompanying the lectures. 

After finishing the calculations experts and students 
used various metacognitive strategies to validate 
their results:

 ― Validating of the result with the help of its unit in 
dimensional analysis: As the units of all physical 
quantities are known, one can check, if the units 
on the one side of each equation are the same as 
the units on the other side.

 ― Validating of the result with the help of its mag-
nitude: In many cases the lectures, the problems 
in the exercise classes or previously done ex-
periments show the order of magnitude of the 
resulting value.

 ― Check whether all information was used: it is a 
tacit agreement in the GET-B-course that all infor-
mation that is mentioned in a problem is needed 
to solve it.

In contrast to the modelling cycle the implicit assump-
tions of the model are not questioned after finishing 
the exercise. On a positive note, in contrast to many 
school students’ behaviour, validation takes place 
in a limited efficient manner, because the students 
expect tasks and results to be realistic, whereas in 
school mathematics often unrealistic, unauthentic 
assumptions and questions are prevalent.

PRELIMINARY RESULTS OF ANALYSING 
STUDENTS’ SOLUTIONS

As we have not yet completed the analysis of students’ 
work, we like just to point out two surprising results, 
where students employed special strategies that we 
did not anticipate. In the third subtask of the problem, 
the maximization of the inductance, all student pairs 
at first took the detour that when they read the word 

“maximum,” they thought they needed to differenti-
ate the term and find the roots of the first derivative. 
This does not lead to a solution, because the maxi-
mum is at the boundary of the interval; and since the 
differentiation itself is not easy, this approach could 
lead to further mistakes. This may be considered as 
a didactic obstacle in the sense of Brousseau having 
origin in school mathematics. In the fourth subtask, 
some pairs described the physical processes with the 
help of differentials like dA or dV, i. e., by application 
of university mathematics. Such argumentations are 
often used in exercises from field theory, which con-
tain applications of Stokes’ and Gauss’ theorems for 
integral vector calculus. The magnetic flux through an 
infinitesimal area was expressed as dΦ=bL·dA, where 
bL is a function of the position. Students then used bL·-
dA to mathematize the problem by seeing that the total 
flux can be computed using a surface integral. We 
observe a typical use of “differentials” in modelling 
physical problems that is not legitimated by mathe-
matical theory. Since bL is constant here, the integral 
method leads to the same simple formula as above, but 
in more general situations, the integral is mandatory. 
The phase of equation management was successfully 
preceded by a phase of deriving equations from more 
general principles. While unnecessary in this case, 
the approach was welcome as it shows further com-
petencies. It depends on the course whether these are 
part of the expected range of competencies or whether 
students are just trained in “equation management.”

FIRST CONCLUSIONS AND OUTLOOK

In summary we can state that our analysis shows that 
it is helpful to modify the modelling cycle as a theoret-
ical tool for describing solution processes of students 
in engineering contexts:

 ― The component “cognitive resources” has to be 
added to the modelling cycle.
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 ― One cannot distinguish between mathematics 
and the “rest of the world”.

 ― Electrical engineering “does not exist” without 
mathematics.

 ― The setting up of equations is inseparably inter-
woven with the process of getting mathematical 
results. A division into two separate phases (set-
ting up the model, mathematical solution) as in 
the modelling cycle is not adequate.

Furthermore, we have just started to use the TESES 
we described for analysing students’ work. We will 
validate and extend our research results by devel-
oping additional student-expert-solutions for the re-
maining exercises of the GET-B exam, which require 
the higher mathematics taught at university level to 
a much greater extent than our above example. The 
content of these exercises includes for example ordi-
nary differential equations of first and second order 
(in a task on oscillating circuits) or complex numbers 
(in a task on alternating current), which are the result 
of applying Kirchhoff rules to electrical circuits with 
time-varying currents through resistors, capacitors 
and inductances.

We will moreover analyse task solutions from written 
examinations to the GET-B-course in order to confirm, 
refine and enhance the results from the analysis us-
ing the SES and the video studies with the students. 
We also plan to interview teaching assistants from 
other universities. Although the content of the lec-
tures is nearly identical between different German 
universities, there seem to be many differences in 
the expectations of competences, which can be made 
explicit by these interviews.
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In this paper, we analyse the diaries of two intern math-
ematics undergraduate students who were involved in a 
project on statistics resource development. Our purpose 
is to use the theoretical perspective of communities of 
practice (Wenger, 1998) to investigate how internship 
functions as a learning environment for these students. 
The results indicate how the two students shaped their 
own practice within the internship by establishing a 
mutual engagement and a shared repertoire and by 
integrating the joint enterprise of the task to their own 
work. The overall social environment of the internship, 
consisting of other students and staff, shaped the prac-
tice of the two students and became a learning environ-
ment for them.

Keywords: Communities of practice, participation, 

statistics education, undergraduate mathematics 

education, learning resource development.

INTRODUCTION

In the last fifteen years higher education has started 
addressing the demand for statistics professionals 
in business, economics and research with curricular 
changes that improve the quality of undergraduate 
statistics education (Bryce, 2002). These changes 
demand further development of learning and teach-
ing resources that will cover not only the statistical 
content but also the contextual needs of a range of 
disciplines in which statistics is applied (e.g., in en-
gineering, psychology, finance, etc.). In this spirit a 
team of staff members and students in a UK univer-
sity has been working since 2012 on the development 
of resources that can be used in statistical teaching 
and research with the second author of this paper 
as a co-ordinator. The students are mathematics un-

dergraduates involved in the resource development 
either in summer internships or in the context of 
their final year dissertation project. Although there 
is little research on student involvement in curricular 
development in undergraduate mathematics educa-
tion (Croft, Duah, & Loch, 2013), it appears that there 
is potential benefit of this involvement to students’ 
learning and to resource development practice (Croft 
et al., 2013; Biza & Vande Hey, 2014). The study pre-
sented in this paper aims to contribute to this area 
of research by using the theoretical perspective of 
communities of practice (Wenger, 1998) to identify how 
the internship functions as a learning environment 
for the involved students. Specifically, we take a case 
study approach by concentrating on the Excel Data 
Generators (EDGE) project, which is a section of the 
overall resource development activity we described 
above, and on two intern students (Beth and Pauline). 
To this aim we analyse the diaries Beth and Pauline 
kept across the internship to investigate the following 
research questions: (a) How do students shape their 
own practice across the internship? (b) How is this 
practice related to the overall social environment in 
which it takes place? (c) How does this practice con-
tribute to students’ learning?

THEORETICAL PERSPECTIVE – 
ELEMENTS FROM THE LITERATURE

In this paper, we see students’ learning occurring 
in the social context of their interaction with staff 
and other students and we draw on the theoretical 
perspective of communities of practice suggested by 
Wenger (1998). Communities of practice are formed by 
people who engage in a process of collective learning 
in a shared domain of human endeavour. In order to 
form a community, people need to be involved in ac-

mailto:i.biza@uea.ac.uk
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tivities with the same objectives, share a concern or a 
passion for these and learn how to achieve them better 
as they interact regularly. The practice is the source of 
coherence for the community, and defines the commu-
nity through three dimensions: mutual engagement, 
joint enterprise and shared repertoire. Mutual engage-
ment gives substance to the practice that “exists be-
cause people are engaged in actions whose meanings 
they negotiate with one another” (p. 73).The joint en-
terprise “is the result of a collective process” (p. 77) 
towards a common understanding of what the aim of 
the mutual engagement is. Shared repertoire includes 
resources created and used in a community of prac-
tice including “routines, words, tools of doing things, 
stories, gestures, symbols, genres, actions” (p. 83). 
Research discusses several communities of practice 
related to the teaching and learning of mathematics, 
especially at university level: undergraduate students, 
mathematicians and mathematics education research-
ers (e.g., Biza, Jaworski, & Hemmi, 2014). Usually, in 
this research lecturers reflect on their teaching or/and 
students participate and potentially shape a learning 
environment without being involved in its design. In 
our study students join the resource developers’ com-
munity of practice: they work closely with members 
of staff and other students in resource development 
(e.g., data generator spreadsheets, problem/lab sheets 
guidance, video demonstrations, etc.) and engage in 
activities that are not included in their usual univer-
sity practices. In this sense, students who usually are 
users of learning resources find themselves on the 
other side as developers of these resources. 

Recently there is a growing interest in students’ en-
gagement as partners in course design and its con-
tribution to students’ learning. Croft and colleagues 
(2013), for example, identified several students’ bene-
fits from their involvement in producing screencasts 
for other students: “increased and deeper understand-
ing of mathematical topics, improved technological 
skills, improved study habits, improved personal and 
organizational skills, and enhanced communication 
skills” (p. 1053). On the other hand, although lecturers 
saw opportunities in this collaboration for their pro-
fessional development, they expressed reservations 
regarding students’ lack of mathematical maturity 
and concerns over the mathematical integrity of the 
produced content. However, the study concluded that 
collaboration between students and lecturers dur-
ing the resource design and production “may help 
lecturers overcome reservations, whilst preserving 

the benefits for students” (p. 1045). Solomon, Croft, 
Duah and Lawson (2014) see undergraduate students’ 
internships as a pathway for improving dialogue be-
tween students and staff that challenges traditional 
hierarchical roles and relationships. They claim that 
projects that support these internships establish a 
boundary-crossing setting in which there is a “potential 
for expansive learning to take place” for the students 
and challenges for “staff perceptions about pedago-
gy” (p. 332). Similarly, in our evaluation of students’ 
learning through their involvement in resource de-
velopment projects we have considered not only the 
learning per-se, but also how and in what extent this 
learning is a result of students’ participation (Biza 
& Vande Hey, 2014). This evaluation revealed that 
students explicitly linked their participation to the 
solidification and organization of their knowledge in 
terms of statistical thinking and reasoning. Also, this 
participation contributed to their learning about how 
statistics is taught and learnt. Students contributed to 
the whole process by introducing new practices and 
bringing in ‘student’ perspective. We also found out 
how students merged, or sometimes experienced the 
conflict of, multiple perspectives such as student vs 
developer and mathematician vs non-mathematician 
(ibid). In this paper, we pursue this investigation fur-
ther: we consider the internship as an apprenticeship 
to the resource developers’ community of practice, 
consisted usually by tutors, and we use the communi-
ties of practice theoretical perspective to investigate 
how this internship functions as a learning environ-
ment for the involved students.

THE CASE OF THE STUDY: THE EDGE 
PROJECT-BETH AND PAULINE

The Excel Data Generators (EDGE) project is the de-
velopment of an Excel based tool (called the EDGE 
tool) and materials that support its use in research or 
teaching and learning (e.g. guidance, online resourc-
es, video demonstrations, lab sheets, etc.). The EDGE 
tool can generate data according to statistical models 
whose parameters can be set by the user, and perform 
statistical tests. It can be used for teaching/learning 
resource development, such as generation of data-
sets with specific characteristics for problem sheets 
or assessment; creation of individualised tasks with 
similar datasets, demonstration of statistical meth-
ods with a range of datasets; experimentation with 
variation and randomness; etc. The instructor can 
design the context of the problem and use the tool to 
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generate relevant data. The full EDGE tool includes 19 
Excel spread sheets for data generation and statistical 
tests including: one sample t-test; two sample t-test; 
chi-square test; tables of t-distribution and chi-square 
distribution critical values; simple linear regression; 
one-way ANOVA; etc.. 

Beth and Pauline are the two intern students involved 
in the EDGE project. Beth had completed her math-
ematics degree (BSc with first class honours) just 
before the internship. Additionally, she was one of 
the final year students who worked on the develop-
ment of learning resources for a module on Statistical 
Modelling in the context of her final year dissertation 
the preceding academic year. This module was aimed 
at second-year students in mathematics and Beth pro-
duced a lab sheet and three videos on multiple linear 
regression in R (free software environment for statis-
tical computing and graphics, http://www.r-project.
org/index.html), together with an assessment tool to 
evaluate the effectiveness of these resources (Biza & 
Vande Hey, 2014). With this background Beth entered 
her internship with prior experience on working 
with staff on resource development and with skills 
on R and video creation. Pauline had just completed 
the second year of undergraduate studies in mathe-
matics and she had attended a module on Introductory 
Probability and Statistics in her first year and a mod-
ule on Statistical Modelling in her second year. She did 
not have any experience on resource development at 
the time she started the internship, but in her person-
al statement attached to her internship application 
she expressed strong interest in Statistics as a subject 
she wanted to take further.

The internship lasted five weeks during the summer 
break. Beth and Pauline were mainly working in a 
study area in which computers, learning resources 
(books, leaflets, etc.) and specialised software (such 
as LaTex, R, Excel, and Camtasia) were available. 
Elizabeth, the lecturer who coordinated the resource 
development, visited the study area almost every day 
and spent some time with Beth and Pauline on their 
project. Elizabeth, both students and Alicia (research-
er in mathematics education with statistical teaching 
experience) had weekly working meetings (lasting 
approximately an hour on average) in which the pro-
duced materials were discussed. In the same area oth-
er intern students (up to 6 in total) were working on 
statistical and mathematical resource development. 
Each afternoon the whole group of interns, Elizabeth, 

Alicia and other members of staff and PhD students 
had informal coffee/tea breaks of approximately 
45 minutes in which they discussed the progress of 
their work as well as other topics. This provided an 
informal context of discussion between students and 
staff on topics that were very often outside the strict 
boundaries of the projects. The resources produced 
by Beth and Pauline included: a fully developed set of 
Excel spread sheets; four video demonstrations of the 
use of the EDGE tool made with Camtasia software; 
and, two lab activities on one-sample and two-sample 
t-test with their accompanying handouts and EDGE 
(excel) files. 

METHODS

In parallel to the resource development, data were 
collected for research purposes and towards the eval-
uation of students’ experiences. These data included 
students’ weekly diaries and audiotape of the regu-
lar working meetings. Due to space limitations, in 
this paper, we report outcomes only from Beth’s and 
Pauline’s weekly diaries. In these diaries, produced 
by the end of each week, interns were asked by the 
first author to include: the activities of the week with 
some outcomes, if they existed; items that they have 
learnt or they want to improve (e.g., a statistical con-
cept or method, creation of spreadsheets or videos, 
use of statistical language, time-management etc.); 
what went well and what didn’t go so well and why; 
examples in which working together or individually 
helped them to understand statistics better; contra-
dictions in the collaboration (e.g., cases in which the 
collaboration didn’t work very well) and what they did 
to overcome them, if they did anything, or why they 
didn’t take any action; and, any other item they want 
to write down and reflect on it. These diaries, which 
were each around one A4 page long, were analysed 
according to how the students collaborated with each 
other (including the organisation of their work), with 
other students and with staff; and, how this participa-
tion affected their learning. 

RESULTS

Beth’s and Pauline’s collaboration
Beth and Pauline mentioned in their diaries how they 
organised the work between the two of them as a team 
and how also they interacted with the other students 
in the same study area and with the staff members. In 
terms of the teamwork, early on they decided to work 

http://www.r-project.org/index.html
http://www.r-project.org/index.html
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individually in some parts and together in others but 
try to be consistent all the time, especially in terms 
of formatting and symbolisation. As Beth described 
in her first week’s diary: 

This week myself and [Pauline] started working 
on the EDGE generator spread sheet. We focused 
on the first four sheets (one sample t-test, two 
sample t-test, simple linear regression and two-
way chi-square test) and divided up responsibil-
ity for them. [Pauline] worked on the one-sample 
t-test and I worked on the two-sample t-test sheet. 
We talked a lot together about how they worked 
in order to fully understand what we were doing 
and also to keep each other involved with what 
the other one was doing. [Beth, W1]

In the above excerpt Beth, who is more experienced, 
described how they “divided responsibilities” (who 
was accountable for what) by building a shared un-
derstanding of what they “were doing” and what the 

“other one was doing” (mutual engagement). In oth-
er occasions they worked together and helped each 
other:

After this, we worked together on developing the 
simple linear regression sheet and the Chi-square 
sheet. I think we worked very well together on 
these and both welcomed suggestions from one 
another. [Beth, W1]

So, from the first week, they both engaged with the re-
source development and they established the rules of 
this mutual engagement. They were working individ-
ually and together – and at the same time they main-
tained a consistency in the outputs of their work by 
using the same formatting and terminology (shared 
repertoire):

Now, we are creating two lab sheets, one for the 
one-sample t-test and one for the two-sample 
t-test. [Pauline] focused on the first lab and I fo-
cused on the second lab. […] We did make sure 
that the formatting was exactly the same and con-
ferred with each other on specific terminology 
so that the lab sheets were consistent. [Beth, W1]

This was evident in Pauline’s diary as well:

Although we wrote the lab sheets separately, 
checking with each other periodically has been 

important to ensure the layout and terminology 
within the labs is consistent. [Pauline, W1]

This pattern of work was followed across the intern-
ship, as Beth mentions:

We worked separately on these spread sheets, 
each picking a different one, so that we would not 
overlap with editing. We still discussed what we 
were doing with each other and would ask each 
other questions if we were stuck in order for both 
of us to understand how each spread sheet works. 
[Beth, W4]

It seems that this work distribution worked for them 
as Pauline acknowledged:

I feel we both worked really well together in 
deciding who would work on which part of the 
project and ensuring that we both knew exactly 
where we were at and what needed to be complet-
ed in the timeframe. [Pauline, W5]

Beth’s and Pauline’s collaboration with staff
The role of both Elizabeth and Alicia was to offer feed-
back and assess students’ work. But Elizabeth’s role 
also included the co-ordination and the management 
of the overall project, its objectives and enterprises. 
Both Beth and Pauline knew from the very beginning 
what was the overall aim of this project. However the 
aim of their task became more evident when Elizabeth 
informed them that she would use these resources in 
her module the following year:

[Elizabeth] informed us that she plans to use this 
lab sheet for her second year statistics students. 
Even though the lab sheet will be available to oth-
er staff throughout the University to use, having 
a clear audience for the resource made it a lot 
easier when returning to the lab sheet after the 
meeting. [Pauline, W2]

Elizabeth was accountable for the establishment of 
this enterprise and both Beth and Pauline had to align 
to her plan. It was difficult to them to proceed with-
out a confirmation from her that everything was on 
the right track. When Elizabeth was busy with other 
tasks and not available to confirm that everything 
was alright they “both felt that [they] were lacking 
a bit of direction” [Beth, W2] and that “[i]t was diffi-
cult to know if [they] were covering what she wanted” 
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[Pauline, W2]. We were interested to see how both 
students saw their relationship with staff at the end of 
the internship. Beth, who already had the experience 
of previous projects, wrote:

The interaction between myself and members of 
staff has been very positive. I have always felt like 
I could approach both [Alicia] and [Elizabeth], and 
am not afraid to ask questions. Also, having lunch 
and tea breaks with both [Alicia] and [Elizabeth], 
as well as many other members of staff and PhD 
students, has made all of us interns feel very 
comfortable, and I no longer see a divide between 
students and staff. [Beth, W5].

Whereas, Pauline described how her relationship 
with staff had developed through the internship and 
how this can be beneficial for the following year of 
her studies:

I also feel I have built a good relationship with 
[Elizabeth] and [Alicia] as this internship has pro-
gressed. To begin with it still felt as they were lec-
turers, and there was a boundary, but as we have 
been working so closely together I have become 
more confident in voicing my opinion and feel 
happy to ask questions whenever I have an issue 
within my work. This is a skill I aim to take with 
me into my third year at university and beyond 
and I believe it will have a positive effect on my 
module grades and hopefully my dissertation. 
[Pauline, W5]

Beth’s and Pauline’s collaboration with others
Throughout the internship Pauline and Beth had 
many opportunities to receive feedback from other 
interns and other staff members. Sometimes this was 
happening informally in the coffee/tea breaks or on 
purpose. In Week 4, for example, the whole group of 
interns and supervisors ran a presentation of their 
projects to three Human Biology lecturers who were 
interested in using these resources in their teaching. 
Beth and Pauline were very satisfied by their pres-
entation on the EDGE project and also by the fact that 
it attracted “some interest from other departments” 
[Pauline, W4]. This was the first time that they had 
some formal feedback from outside their team and 
their department and this was a strong motivation 
for them. 

Additionally, the interns working in the same study 
area organised between themselves a practice of re-
source exchange and getting feedback that increased 
gradually towards the end of the internship. In Week 
3, for example, Beth and Pauline shared the resourc-
es created by that time with the others. This helped 
them to make the content user-friendlier. Also, the 
appreciation of other interns on their work, especial-
ly Andy, a very experienced Masters student, encour-
aged Pauline:

After [Andy] letting us know how impressed 
he was with the EDGE tool (which uplifted my 
spirits a lot as it seems to have taken a long time 
to complete this!) he gave us comments on the 
lab sheet and ideas for further improvement. 
[Pauline, W3]

Both students claimed that the overall social interac-
tion in the study area was very positive. In Week 3 
the whole team of interns was already getting along 
and they had started socialising, as Beth mentioned: 

“We’re all getting on very well and were successful 
in winning a pub quiz last night!” [Beth, W3]. At the 
end of the internship, Beth acknowledged: “All of the 
interns have got along very well, and it’s much nicer 
to work in an environment where everyone is happy 
and having a laugh.” [Beth, W5]. Whereas, Pauline 
concluded: 

Overall I have really enjoyed this internship […] 
It is definitely interesting how close you can be-
come with a group of people when you are in a 
fairly small space with them for 40 hours a week! 
[…]. [Pauline, W5]

Contribution to learning
Both Beth and Pauline found their involvement in 
the project beneficial to their learning of statistics 
and other general skills. At the beginning Beth with 
her experience and her familiarity with this type of 
projects, worked as a bridge between Pauline and the 
lecturer (Elizabeth). As Pauline had not attended the 
module offered by Elizabeth the previous year, she 
had difficulty putting together the terminology she 
knew already with this used by Elizabeth. But Beth 
who had the experience from both modules was able 
to help Pauline to make the link:  

I found [Elizabeth] uses some different terminol-
ogy to what I am used to in statistical modelling, 
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however [Beth] has explained the differences to 
me which has made this clearer [Pauline, W1]

Beth helped Pauline to establish statistical knowledge 
that was familiar to her:

Although simple linear regression is something 
I am familiar with, I found working together was 
the best way to tackle this as I found myself strug-
gling with getting my head around some parts of 
this process and being able to collaborate with 
[Beth] helped my understanding. [Pauline, W1]

Or, to expand her knowledge in new items: 

I was unfamiliar with the code before doing this, 
so I am glad we both had a part in the completion 
of this sheet. It has expanded my knowledge of 
the different commands available in Excel and 
I have a good understanding of the calculations 
carried out throughout this sheet [Pauline, W1]

Pauline was keen on grasping the opportunity to 
learn new things although there were more experts 
than her to undertake the tasks. Whereas Beth found 
that explaining to Pauline (and other students) im-
proved to her own knowledge. 

We [Beth and Pauline] have decided to work to-
gether on the videos as [Pauline] is very keen to 
learn how to create them and I have made them 
before. I think this will be good as I can help 
[Pauline] if she gets stuck and she may notice new 
things for us to do when making the videos. Next 
week I am going to help teach [Pauline] and [other 
intern] how to make Camtasia videos, which will 
improve my knowledge and usability with this 
software even further. [Beth W2]

Both Beth and Pauline acknowledged that their knowl-
edge of statistics improved throughout the internship:

Beth: Throughout this internship I would say 
my knowledge of statistics as a whole 
has improved, and through the crea-
tion of the EDGE tool, I have become a 
lot more comfortable with various tests. 
My understanding of significance and 
power has increased as we spent a long 
time creating and editing the lab sheets 
which involved a lot of interpreting 

p-values and manipulating various val-
ues to see the effect on significance and 
power. I have also acquired some knowl-
edge of survival analysis […] [Beth, W5]

Pauline: […] I feel as if I have taken a lot of knowl-
edge away from this project. I have ba-
sically covered the bulk of [Elizabeth’s] 
Statistical Methods module, learning 
about multiple statistical tests that I 
hadn’t come across before. [Pauline, 
W5]

Also, they mentioned how their presentational skills 
improved alongside other skills: 

Beth:   This has reassured me that I am capable 
to present to groups of people, and that I 
don’t need to be nervous about present-
ing or having an interview. […] My abil-
ity with Excel has naturally improved 
a lot and I feel these skills will help me 
in the future. Also, creating the videos 
has reinforced my understanding of 
this software [Beth, W5].

Pauline: I really enjoyed learning how to use 
Camtasia to produce the tutorial videos. 
[…] It is a skill that I hope will come to use 
in my final year here […] I also increased 
my confidence in using Latex and came 
across new programs such as GeoGebra. 
I am able to come away from this intern-
ship with a lot more confidence not only 
in myself, but in my ability to research 
new areas. [Pauline, W5]

CONCLUSION

In this paper, we analysed the diaries of two intern 
students who were involved in a project on statistics 
resource development to our aim to investigate how 
the internship, in this case, and students’ involvement 
in curricular development, more generally, functions 
as learning environments. In this study we consid-
ered these students entering a resource developers’ 
community of practice and we obtained some insight 
into how students form their own practice across the 
internship (research question (a)). Specifically, from 
early on, both students established a mutual engage-
ment: they established a shared understanding and 
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distribution of responsibilities; they shared their 
practice with other students and staff; they negoti-
ated the meaning of their work with others and they 
valued this negotiation. At the same time they estab-
lished a shared repertoire that they maintained later by 
bringing together different terminologies and being 
consistent in formatting and symbolisation. Finally, 
the joint enterprise, although among staff ’s responsi-
bilities, became gradually part of their work. Also, we 
identified how this practice is related to the overall so-
cial environment in which takes place (research ques-
tion (b)) through the students’ regular interaction with 
each other and with other students and staff. Finally, 
we have evidence that, according to those students, 
the working environment of the internship became 
an environment of learning (research question (c)) 
through participation and communication. If we draw 
on the more recent work of Wenger, McDermott and 
Snyder (2002) on cultivating communities of practice – 
in our case the resource development community of 
practice Elizabeth aimed to establish – we identified 
different levels of participation: core members were 
Elizabeth and Alicia who knew the aims of the pro-
ject and co-ordinated the actions; Beth was an active 
member, who was familiar with this type of work and 
understood the rules; Pauline started as a peripheral 
member but very keen on drifting to the centre and 
becoming active with Beth’s and others’ support; oth-
er students or staff acted outside the community but 
involved occasionally when the community shifted 
to their area of interest and expertise and asked for 
feedback. According to Wenger and colleagues (2002) 
the quality of a community is established when all its 
members regardless their level of participation feel 
full members. From Beth’s and Pauline’s self-reports 
in their diaries we have evidence of them experienc-
ing this sense of membership. However, we cannot 
claim that the participation to the project did not have 
some drawbacks. Students’ frustration, for example 
when Elizabeth was not available to assist them was 
an indication that the teamwork was not always ef-
ficient. From the lecturer’s perspective on the other 
hand several downsides challenge the success of this 
experiment (see also Croft et al., 2013, about lectur-
ers’ resistance), such as disproportionate time invest-
ment; integrity of resources; limited contribution to 
lecturer’s professional development; and lack of in-
stitutional value on projects like this. The evaluation 
of the overall experience will be more comprehensive 
when we combine the students’ perspectives with staff 
views as well and this is the next step of our analysis. 
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In this paper, we present preliminary results from an 
on-going project about an innovative course for first year 
students in Computer Sciences aiming to improve stu-
dents’ abilities in manipulation of formal statements 
and writing proofs. The data analysed show that al-
though the course seems to improve syntactic abilities, 
the semantic control of formal statements remains prob-
lematic for most students.
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INTRODUCTION

It is well known that the manipulation of formal state-
ments is a main difficulty for many students starting 
university. In particular the widespread use of sym-
bolic register to characterize the notions minimizes 
the use of natural language and faces students with 
the obstacle of formalism (Dorier, 1995). As a conse-
quence, an important question is to find mathematical 
organisations [1] that allow students to both grasp 
the meaning of these notions and become familiar 
enough with formalism in order to be able to engage 
in proof and proving (Durand-Guerrier et al., 2012). 
In this paper, we describe such an attempt carried out 
at the University of Mons (Belgium), and we present 
elements of an explorative research aiming to inves-
tigate the effectiveness of such an innovation. 

BACKGROUND

In the teaching of mathematics at university, defini-
tions play a crucial role, in particular in the dialectic 
between proof and definition. From an axiomatic 
perspective, the role of definitions is to introduce 

new concepts relying on concepts already known, 
and avoiding contradiction. Ouvrier-Buffet (2006) 
showed the relevance of the activity of construction 
of definition for the process of mathematical concep-
tualization. However, in university courses, in France 
as in Belgium and in many other countries, the most 
common method of teaching is the axiomatic one 
(definitions, examples, theorems, proofs) in particu-
lar regarding formalising, unifying and generalizing 
(FUG) concepts such as the concept of vector space 
(Dorier, 1995). FUG concepts unify and generalize 
objects, tools or methods that exists previously in 
the students’ background in various forms by using 
a new formalism. These concepts are difficult to in-
troduce because the distance between previous and 
new knowledge is very big. Bridoux (2011) highlighted 
the nature of formalising, unifying and generalizing 
of the main notions of Topology, whose definitions 
require an intensive use of mathematical and logical 
formalism. 

Durand-Guerrier (2013) stresses the importance of 
taking into account the logical complexity of the state-
ment at stake in the tasks given to students in order 
to allow students to recognize the productiveness of 
operational formalism (the syntax) and to articulate 
it with the meaning of the mathematical objects in-
volved in the tasks (the semantics). At the University 
of Mons (Belgium), in order to take into account this 
perspective, an innovative course was implemented 
in 2012 to replace the traditional mathematical cours-
es for students in Computer Sciences. 

Although these students are a priori well educated in 
mathematics, we hypothesize that they will face the 
classical difficulties identified in the literature when 
using mathematical language and notations, produc-
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ing examples or engaging in proofs (e.g., Thomas et 
al., 2012). In this paper, we present the first stage of 
a project aiming to explore the following research 
question: How students involved in the innovative 
course deal with formal statements, in particular how 
do they take in consideration the relationship between 
syntactic and semantic aspects?

METHODOLOGY

The data was collected during a written examina-
tion. Due to the limited place, we choose two items 
for which the manipulation of formal statements was 
the key. The methodology that we use is a qualitative 
one relying on the consideration of the distance be-
tween a priori analysis, including a mathematical and 
a logical analysis of the tasks, and a posteriori analysis. 
The a priori analysis opens the possible answers that 
could be expected from students and the foreseeable 
difficulties. This a priori analysis has been done after-
wards, for the purpose of the research, and reveals 
an underestimated logical complexity of the state-
ments and the tasks considered. We first describe the 
main characteristics of the innovative course, and 
then present the data and the participants. In the next 
section, we provide the a priori analysis of the two 
items chosen for this paper, on which our a posteriori 
analysis relies. The last section of this paper is devoted 
to our conclusion.

DESCRIPTION OF THE DIDACTICAL 
INNOVATION INTRODUCED 
IN MONS UNIVERSITY

The teachers of the department of mathematics at 
UMONS took the opportunity of the introduction 
of the LMD [2] reform in Belgium to reconsider the 
content to be taught to first year students, and also 
the mathematical abilities that students should have 
developed at the end of their studies. The general ob-
jective for the first year at university is the deepen-
ing of concepts studied in upper secondary school 
in classical domains such as: Calculus, Algebra and 
Linear Algebra (e.g., Convergence of numerical se-
quences – Groups – Linear mapping – etc.) and at the 
same time helping students to master the following 
points: giving meaning to concepts, without neglect-
ing technical and operational aspects; being able 
to use relevant knowledge even when they are not 
explicitly required; developing flexibility between 
the various representations, frames and registers of 

mathematical objects as suggested by Douady (1987); 
making explicit reasoning and providing justifica-
tions. All these aspects involve the manipulation of 
formal definitions and the properties studied during 
the courses. According to these aims, there are many 
tasks devoted to the manipulation of definitions dur-
ing the tutorial classes and the assessment of students. 

The course named « Mathématiques pour l’informa-
tique 1 » takes place in the first semester. It comprises 
20 hours of lectures and 40 hours of tutorials and 
deals with logic, set theory, methods for proof and 
proving (mathematical induction, proof by contradic-
tion, proof by contraposition, etc.), and some topics 
in arithmetic. A characteristic of this course is to at-
tempt working with students on the syntax and the 
semantics of quantified statements, involving more 
or less familiar or intuitive concepts. The quantified 
statements we work with involve simple inequalities, 
classical functions or classical sets and subsets such 
as intervals. At this stage, convergence of numerical 
sequences or infinite sequences of sets had not been 
introduced [3]. Here is an example of tasks proposed 
to students in this course.

Let X and Y be subsets of ℝ and f: X → Y be a function.

a) Define « f is injective ».

b) Define « f is surjective ».

c) Is the function g: ℝ → ℝ defined by g(x) = x4 + x2 
injective ? Surjective? Justify your answer using the 
definitions provided in the previous points.

This kind of task is generally not given in secondary 
school. As a consequence, the teacher has to use di-
dactical means such as explanations on the methods, 
orally as well as in writing. During the tutorial classes, 
the students are asked to present their work to their 
peers in order to facilitate exchanges between stu-
dents and to allow collective discussions on reasoning 
and other difficulties.

PRESENTATION OF THE DATA AND 
OF THE PARTICIPANTS

In accordance with the aim of the course, exercises 
involving reasoning and manipulation of definitions 
were included in the assessment. We present below 
two items, the first one requires to prove by contrapo-
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sition the statement that characterises non positive 
real numbers; the second one requires the definitions 
of injective and surjective function and their use for 
studying two given functions. In the first exercise, we 
will mainly observe the mastery of the syntax, while 
in the second one, we will focus more on the articula-
tion between syntax and semantics (Weber & Alcock, 
2004, Durand-Guerrier, 2011).

52 students were assessed in January 2014 and the 
assessment lasted 4 hours. Around 80% of the partic-
ipants attended the whole course. Our data consists 
in the assessment papers submitted by the students. 
The seven questions given to students challenged 
them to manipulate quantified statements. It is not 
possible to say how much time the students spent on 
these two particular questions. The assessment was 
a closed book exam.  

A PRIORI ANALYSIS OF THE TWO EXERCISES

In this paragraph, we present the a priori analysis of 
the two chosen exercises taking into account their 
logical structure.

First exercise: A proof by contraposition [4]
Let us consider the proposition:  ∀x ∊ ℝ, (∀ε > 0 x ≤ ε2 ) ⇒ 
⇒ x ≤ 0 (1) 

The goal is to prove this statement by contraposition

 ― Provide the proposition to prove in order to achieve 
this proof

 ― Write down the proof

In the first item, it is required to provide the statement 
that will be proved, that is providing the contraposi-
tive of statement (1). During the course, students were 
encouraged to perform this step prior to engage in the 
proof in order to avoid confusion between negation, 
proof by contraposition and proof by contradiction. 
The statement (1) is a universally quantified condi-
tional statement whose antecedent is a universally 
quantified statement. 

Global structure of the contrapositive
Let us denote A(x): (∀ε > 0 x ≤ ε2 ) and B(x): x ≤ 0 respec-
tively the antecedent and the consequent.  Statement 
(1) can be formalized as: ∀x[A(x) ⇒ B(x)]. We hypoth-
esize that students will recognize this structure. 

The global structure of the contrapositive is hence: 
∀x[¬B(x) ⇒ ¬A(x)]. It is possible that some students 
could apply incorrectly the following rule: while 
negating a statement, change all the quantifiers (this 
rule is valid only for quantifiers in prenex position) 
providing: ∃x[¬B(x) ⇒ ¬A(x)]. Also some students may 
confuse negation and contraposition (or proof by con-
traposition and proof by contradiction) and propose: 
∃x[¬B(x) ∧ ¬A(x)].

The next step is applying the negation to A(x) and B(x).

Negation of A(x) and B(x)

B(x) is an atomic formula; taking its negation is ele-
mentary: ¬B(x): x > 0.

A(x) is a complex formula comprising a variable in the 
scope of a bounded universal quantifier: (∀ε > 0 x ≤ ε2 ). 
Taking the negation provides a statement (¬A(x)) with 
a bounded existential quantifier: (∃ε > 0 x > ε2 ).

Two rules are involved:

a) While negating a universally quantified state-
ment, change the quantifier to the existential one.

b) Negating “≤“ provides “>” and vice-versa, that ap-
plies correctly to “x ≤ ε2 ”, but not to “∀ε > 0”.

Although the treatment of bounded quantifiers had 
been discussed during the course, some students may 
apply this rule incorrectly, providing “∃ε ≤ 0,”.

The method to prove the contrapositive consists 
of providing a number strictly superior to a given 
number. It had been widely discussed during the 
course, and the mathematical knowledge required 
is elementary. So in this exercise we aimed to test the 
reasoning structure and the consideration of the log-
ical structure (mainly the manipulation of syntactic 
rules). Although this exercise might appear rather 
easy, this brief a priori analysis shows the complexity 
of the first item, whose understanding should help 
students to successfully write down the proof.

Second exercise: Manipulation of definitions
First, students are asked to provide the definition of 
an injective function and the definition of a surjective 
function. The formal definitions are expected, this 
should be clear for students due to the focus of the 
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course. Indeed, during the course, the two classical 
definitions of an injective function were given, both 
in natural language and in formalized language:

∀x ∊ Df ∀y ∊ Df (x ≠ y ⇒ f(x) ≠ f(y)) (1)

∀x ∊ Df ∀y ∊ Df (f(x) = f(y) ⇒ x = y) (2)

Various examples of functions had been studied and 
the necessity of identifying the logical structure and 
the mathematical needed to prove that a given func-
tion is injective (surjective) or not had been consid-
ered. This is required in the two following items, for 
which the students should indicate if the given func-
tion is or not injective, resp. is or not surjective, and 
then prove their claims.

Type of proofs expected from students
It should be obvious that to prove that a given func-
tion is not injective it is enough to simply provide a 
counterexample. To prove that a given function is 
injective students need to provide a proof by generic 
element using definition (1) or (2). Likewise, to prove 
that a given function is not surjective, students need 
either to determine the set of all the images, or iden-
tify an element b with no antecedent. To prove that a 
given function is surjective, students have to consider 
a generic element b of the outputs set and find an ante-
cedent. This leads to prove that for any b in codomain, 
the equation f(x) = b has at least one solution. 

In the course expectations, critical review of the rea-
soning produced by students is emphasised. A strong 
requirement of the course is also making explicit the 
logical structure of formal statement that should ap-
pear in the students’ work. Another requirement 
concerns justifications: students have to explicitly 
indicate the results of the course. 

Mathematical analysis
a) g: ℝ → ℝ: x → g(x) = x4 − 1

Injection: Here Dg  = ℝ.  is an even function; hence it is 
not injective. It is also possible to prove this by pro-
viding a counterexample, i.e. an element satisfying 
the negation: any couple of element (−a, a) with a ≠ 0 
is suitable. Note that attempting to prove that function  
g is injective leads to the class of counterexamples 
(a, −a)  with a in ℝ* (nevertheless, some students could 
provide an erroneous proof ).

Surjection: As Im g = [−1, +∞[, while the set of outputs 
is ℝ, function g is not surjective. It is also possible to 
prove directly that any given element of ]−∞, −1[ is not 
reached, i.e. that equation x4 − 1 = b with b an element 
of ]−∞, −1[ has no solution.

So in this question only elementary knowledge of 
functions, equations and real numbers previously 
studied at secondary school is involved. As indicated 
in the course description, similar functions had been 
studied during the course.

b) h: 2ℕ × 2ℕ → 2ℕ  
The function h associates to each couple of sub-
sets of the set of natural integers the intersection 
of the two subsets. No similar function has been 
studied during the course, but the set theory 
knowledge that is necessary to prove the function 
is surjective had been studied, and numerous ex-
amples had been treated in the corresponding 
chapter, so that a priori the repertoire of stu-
dents is sufficient to provide a counterexample 
for injection, in order to prove that function  is 
not injective. 

Injection:  It is possible to find different couples of el-
ements with the same image; example: h ({1}, {1}) = h ({1, 
2}, {1}) = {1}. Hence, h is not injective.  

Surjection: ∀X ∊ 2ℕ X = h(X, X); as a consequence h is 
a surjection.

Nevertheless, as considering couples of sets as in-
puts for a function is a rather abstract process, it is 
likely that many students will not be able to provide 
a correct proof. In particular, considering a pair of 
pairs of subsets in order to engage in a general proof 
of injection (in case non injection is not recognized) 
is difficult in terms of formal manipulation as well as 
conceptually. We hypothesize that such a proof will 
not appear in the students’ work.

This brief a priori analysis of this second exercise 
emphasizes the fact that here both syntactic and se-
mantic aspects of proof are closely and dialectically 
intertwined (Durand-Guerrier & Arsac, 2005). So al-
though syntactic forms are clue aspects of mathemati-
cal reasoning, a semantic control on objects is needed 
in order to elaborate the expected proofs. 
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A POSTERIORI ANALYSIS OF THE 
TWO SELECTED QUESTIONS

First exercise: a proof by contraposition 
Statements provided by the students are given in 
Table 1.

For this item, 42 students provide a conditional 
statement, among them 21 provide a correct answer; 
6 change the universal quantifier in prenex position 
in an existential one, and 19 negate “∀ε > 0” in “∀ε ≤ 0”. 
Two students provide a conjunction, which is not the 
negation, and two students provide a disjunction not 
equivalent to the contrapositive.

We observed that the statement provided by students 
for the contrapositive had an impact on the way they 
shaped their proof, as in the following example, where 
the student fulfils the expectation of the teachers by 
writing down the proof in detail: 

We interpret this as an indicator that this student 
remains in a syntactic point of view, neglecting the 
possible semantic control that could have lead him to 
come back to (and may be modify) the statement pro-
vided for the contrapositive. This example illustrates 
the importance of the relations between syntax and 
semantics in proof production, in line with consider-
ation by Weber & Alcock (2004).

Second Exercise: manipulation of definitions 
Providing the definition of an injective 
(resp. surjective) function 
Most students (45 out of 52) were able to provide 
the definition of an injective function. Among them 
38 choose the definition considering two distinct 

elements in the antecedent of the implicative state-
ment. For the definition of a surjective function, we 
have 38 correct answers; all students, except one 
who used the image set, provided the definition with 
quantifiers. Wrong answers are either incorrect 
statements in natural language like “f is surjective 
if every real number has at least one image” or in-
correct quantified statements like “f is injective if 
∀x1 ∊ C ∀x2 ∊ D x1 ≠ x2 ⇒ f(x1) ≠ f(x2)”.

Manipulation of definitions 
a) The first function considered in the a priori anal-

ysis is g(x) = x4 − 1.

As already said this function is not injective. 36 stu-
dents gave the correct answer, first writing down the 
negation of the statement (which is a teacher’s expec-
tation) and then giving a counterexample taking two 
opposite numbers. 5 students did not write down the 
negation, but provided a counterexample. This con-
firms that the rule “to prove that a universal statement 
is false, provide a counterexample” is available at that 
level for most students. What is often problematic is 
the relationship to the negation of a given statement 
(Njomgang & Durand-Guerrier, 2011) – here it is diffi-
cult to know if those who provide the negation make 
the links, or just fulfil the teacher’s expectation.

Function g is not surjective. We obtained 27 out of 
52 correct answers. Half of these 27 students began 
to write down the negation of the definition with a 
correct logical structure. Then, they provided a coun-
terexample: mainly saying that −2 has no antecedent, 
sometimes without mathematical justification; 3 stu-
dents provided Im g without mathematical justifica-
tion. These students seem to master the mathematical 
knowledge involved. It is not the case with the 8 stu-
dents who assumed the function is surjective, provid-
ing an antecedent for each given real number, without 
controlling its effective existence. In the following 
example, the student does not take in account the fact 
that ∜y + 1 is defined only on the interval [−1, +∞[.

∀x ∊ ℝ, x > 0 ⇒ ∃ε > 0 x > ε2
21 ∀x ∊ ℝ, x > 0 ⇒ ∃ε ≤ 0 x > ε2

16

∃x ∊ ℝ, x ≤ 0 ∧ ∃ε > 0 x > ε2
2 ∃x ∊ ℝ, x ≤ 0 ∨ ∃ε ≤ 0 x > ε2

2

∃x ∊ ℝ, x > 0 ⇒ ∃ε > 0 x > ε2
2 x > 0 ⇒ ∃ε > 0 x > ε2

2

∀x ∊ ℝ, x > 0 ⇒ ∀ε ≤ 0 x > ε2
1 No answer 6

Table 1: Students’ answers for the contrapositive

Given x ∊ ℝ. Let us consider x > 0. Let us show then: 
∃ε ≤ 0, x > ε2 .
Let us take ε = − 1. Let us show  x > ε2 , i.e.  x > − 1

2 ; 
true as x>0 by hypothesis.

Table 2: An example of an incorrect proof in the first exercise
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The second function considered in the a priori anal-
ysis is h: 2ℕ × 2ℕ → 2ℕ that associates to each couple of 
subset of the set of natural integers, the intersection 
of the two subsets. Function h is not injective. We ob-
tained 20 correct answers; 18 students did not answer 
this question. As in the previous exercise, most of the 
students began to write the negation of the definition. 
It appears that those who were able to identify that 
the elements of the inputs set were couple of subsets 
succeeded in providing the proof. Recognizing the 
nature of these elements was a difficulty for many 
students: some identified them as a subset of ℕ, or 
as a pair of numbers. In the following example, the 
logical structure of the proof is more or less adequate 
[5], but the proof is invalid due to the involvement of 
inappropriate objects.

Function h is surjective. We obtained 13 correct an-
swers; 20 students did not provide an answer. Here 
the nature of the mathematical objects at stake is prob-
lematic for many students. 

Concerning the results for both questions, we are able 
to say that students successful in the first question are, 
except one, successful in the second one. One perspec-
tive is to study whether the difficulties are the same in 
each question, for example for the sense given to the 
objects or for the manipulation of formal statements.

CONCLUSION

In this paper, we have focused on the elaboration of 
an innovative course for students attending the first 
year university in Computer Sciences in Belgium 
(Mons University). The aim of this course is to work 
with students on formal statements and proof and 
proving in mathematics. A main issue of this course 
is to emphasise some logical aspects that are often 

not elaborated upon by teachers, such as explicitly 
teaching and insist on how to negate or how to take the 
contrapositive of a conditional statement. In addition, 
specific attention is paid to the production of exam-
ples and counterexamples.

As a first exploration of the impact of this course on 
the students’ logical and proving abilities, we have 
analysed two of the exercises focusing on manipula-
tion of formal statements including definitions that 
were given in the assessment at the end of the course. 
A first result is that a rather large number of students 
attending the course were able to provide the required 
definitions, to recognize the logical structure of state-
ments and to correctly negate a statement involving 
quantifiers. Referring to the existing literature that at-
test of strong difficulties with negation for university 
students (e.g., Njomgang Ngansop & Durand-Guerrier, 
2011), we hypothesize that this could be a benefit of 
the course. Nevertheless, difficulties remain: we have 
observed that for some students, the manipulation of 
formal statements remains at a syntactic level. They 
seem to use routines without any semantic controls. In 
the case where familiar mathematical objects (such as 
real numbers) are involved, the related difficulties are 
limited, while these difficulties seriously increased 
when knowledge of less familiar objects is required. 
A second result concerns the logical complexity of 
the tasks that the students had to achieve, complexity 
that had been partly underestimated when designing 
the assessment. We mention in particular those dif-
ficulties related to the negation of statements involv-
ing bounded quantifiers, so that difficulties related 
with the dialectic between syntax and semantics, in 
particular in cases unfamiliar mathematical objects 
are being considered. The next step of this on-going 
study is to conduct interviews in order to better un-
derstand the way students deal with this type of tasks, 
for which mathematical and logical aspects are closely 
intertwined. 
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ENDNOTES

1. A mathematical organisation of a subject to be 
taught consists of teachers’ or institutionnal’s choic-
es among « a set of mathematical elements » (types of 
problems, techniques, notions, properties, results, 
etc.)  (for developments in English see, for example, 
Barbé et al. 2005).

2. LMD is the acronym for the three degrees of 
Higher Education in the Francophone area: Licence 

(Bachelor’s degree), Master (Master’s degree), 
Doctorat (Doctorate).

3. These concepts are taught in the course named 
« Mathématiques pour l’informatique 2 », organised 
during semester 2.

4. In the course, the coma is used to indicate that 
the scope of the universal quantifier is the con-
ditional statement, so that the statement at stake 
is closed. In predicate calculus, we would write: 
∀x ∊ ℝ [(∀ε > 0 x ≤ ε2 ) ⇒ x ≤ 0].

5. We notice an incorrect use of thus (in French donc), 
while what is expected here is That is to say (c’est-à-dire 
in French). Moreover, the statement provided by this 
students to formalise « f is not injective » is not correct.
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When university mathematicians teach mathematics 
courses for non-mathematicians, there may be a discrep-
ancy between the mathematics they aim to teach and the 
mathematics their students aim to learn. In this paper, 
I analyze a lesson on long division taught by a mathe-
matics Ph.D. student, where the learners were in-service 
elementary school teachers. Taking a Commognitive 
approach, I describe some crucial differences in the 
teachers’ and the mathematician’s discourse on mathe-
matics and on teaching, which created opportunities for 
mutual learning. Uncovering the affordances and lim-
itations of this teaching/learning situation is expected 
to help mathematicians become more effective teachers 
of non-mathematicians in general, and of pre-service 
and in-service teachers in particular.

Keywords: Elementary school mathematics, university 

mathematics, professional development, Commognition.

INTRODUCTION

Researchers such as Nardi and colleagues (2014) are 
coming to view university mathematics as a discourse, 
conceived as accepted modes of communication in 
mathematics departments. However, other commu-
nities engage in their own mathematical discourses 
(physicists, chemists, mathematics teachers), which 
may be quite different from the discourse of mathe-
maticians. What happens when mathematicians teach 
courses for non-mathematicians? What is the nature 
of productive learning in such situations? These are 
the questions that guide my investigation of an ex-
treme case – a mathematics Ph.D. student teaching 
in-service elementary-school teachers a lesson on 
the long division algorithm (LDA). This mathemati-
cian may be an expert on abstract algebra, but what 
can he possibly know about division in elementary 
school, how it’s taught, or what kind of difficulties 
students typically encounter? I show how the differ-

ences in mathematical discourses of the two parties 
created opportunities for mutual learning, and how 
this meeting of two communities of mathematics ed-
ucators brought a rich perspective to the teaching of 
LDA, where pedagogical considerations of teaching 
and learning interacted with mathematical consid-
erations. Understanding how this came about may 
guide mathematicians in teaching pre-university 
mathematics to non-mathematicians, particularly 
in the teaching of school teachers.

SETTING

The professional development (PD) under investi-
gation was the initiative of a university professor of 
mathematics, and was taught by mathematics grad-
uate students. Its declared goal was to broaden and 
deepen the teachers’ understanding of the mathemat-
ics they teach. Approximately 90 teachers enrolled in 
the 2011–12 program, which consisted of ten 3-hour 
sessions taught in six groups. The data collected in 
this research project consists of audio recordings of 
all the sessions, interviews with the instructors, and 
teacher questionnaires – expectations at the outset 
and feedback after each session. In this paper, I ana-
lyze a lesson on LDA in which 15 grade 3–6 teachers 
participated. The instructor was a mathematics doc-
toral candidate.

Here are some features of LDA that the instructor 
decided to attend to in this lesson:

 ― LDA is opaque – the underlying mathematical 
ideas of number decomposition, distributive rule, 
place value and regrouping are not salient. 

 ― Treating the dividend as a sequence of digits dis-
courages estimation. 

mailto:ntjason%40weizmann.ac.il?subject=
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 ― Answering “how many times does the divisor go 
into…” is difficult, since there is no margin for 
error – we must find the greatest multiple that 

“goes in”. 

The lesson proceeded as follows in Table 1.

The Short Division Algorithm (SDA) discussed in les-
son segment B is a variant of LDA for cases where the 
divisor has a single digit. Remainders are calculated 
mentally and written between the digits of the divi-
dend (Figure 1). The sequence of LD problems (seg-
ment C) focused first on place-value decomposition: , 
then on decomposition induced by LDA: , connected 
with regrouping and the distributive property. Two 
alternative division algorithms were presented (seg-

ment D), neither of which requires the performance 
of division operations: Division by approximation: 
choose an easy multiple of the divisor, subtract it 
from the dividend, and repeat. This algorithm does 
not have a single correct implementation; you are free 
to choose any multiple of the divisor you are comfort-
able with (Figure 2). Division in parts: pre-calculate 
the divisor multiplied by 1, 2, 4 and 8 by repeatedly 
multiplying by 2, and use these multiples (possibly 
with added zeros) to divide by approximation as de-
scribed above. This algorithm, unlike division by 
approximation, has a single correct implementation. 
You are not free to choose any multiple of the divisor, 
you should always subtract the largest one from the 
pre-calculated multiples (Figure 3).

Utterances Duration What was going on

A 88–195 11 min. Introducing the lesson’s topic and motivation

B 196–389 13 min. LDA and SDA exemplified and compared

C 390–862 30 min. Sequence of LD problems that focus on mathematical ideas one at a time.

D 863–1308 23 min. Two alternate division algorithms

Table 1: Overview of transcript data

3 goes into 8 2 times. The remainder (2) is calculated mentally and written to the left 
of the 5, which is now read as 25. 3 goes into 25 8 times. The remainder is written to 
the left of the 2. Finally 3 goes into 12 4 times.

Figure 1: Short Division Algorithm (SDA)

“16×50=800 is easy for me. I subtract from 1465 to get 665. Subtracting 16×10 is 
convenient, leaving 505. I know 16×30=480. Subtracting leaves 25. Subtracting 16×1 
leaves 9. 50+10+30+1=91. The solution is 91 (9)”.

Figure 2: Division by approximation

Four multiples of 16 are pre-calculated. The algorithm pro-
ceeds as in Division by Approximation, except that each 
stage is determined – we must use the greatest multiple 
from the table, adding zeros where appropriate.

Figure 3: Division by parts
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THEORETICAL FRAMEWORK AND 
RESEARCH QUESTIONS

The framework of Mathematical Discourse for 
Teaching (MDT) (Cooper, 2014) takes inspiration 
from Mathematical Knowledge for Teaching (MKT) 
(Ball, Thames, & Phelps, 2008) – in viewing mathe-
matics for teaching as special and different from 
mathematics for other purposes. Epistemologically, 
MDT endorses tenets of the commognitive frame-
work (Sfard, 2008), seeing fields of human knowledge, 
such as mathematical knowledge for teaching, as well 
defined forms of communication, and thus commu-
nication and cognition as aspects of a single entity 
termed discourse. Hence, MKT’s distinction between 
Subject Matter Content Knowledge and Pedagogical 
Content Knowledge is mirrored as a distinction be-
tween Subject Matter Content Discourse (SMCD) and 
Pedagogical Content Discourse (PCD). Similarly, each 
of the six subcategories of MKT has its discursive 
counterpart. Discourses are associated with com-
munities, thus university mathematicians’ MDT and 
elementary school teachers’ MDT are expected to be 
different. In the Commognitive framework, learning 
is conceived as changes in one’s discourse, which typ-
ically start out as discourse-for-others – imitation, 
possibly thoughtful, of a leader’s discourse – but may 
evolve into discourse-for-oneself – the discourse with 
which one communicates with oneself in problem 
solving (i.e. thinking).

Research questions
1) In what ways are the significance and the role of 

long division different for the instructor (in his 
university MDT) and for the teachers (in their 
elementary school MDT)? 

2) What opportunities for learning emerged from 
these differences?

a) How did the meeting of two MDTs create 
opportunities for learning?

b) What learning actually took place in this 
lesson, on the part of the teachers and the 
instructor?

METHOD AND DATA

This paper draws on the instructor’s lesson plan, a 
77 minute audio recording of the lesson – fully tran-

scribed and selectively translated, and an unstruc-
tured interview with the instructor five days after 
the lesson.

Commognitive methods of analysis focus on four 
interrelated characteristic features of discourse: 
keywords, visual mediators, distinctive routines, and 
generally endorsed narratives. Differences in inter-
locutors’ discourse (e.g. differences in the ways they 
use keywords, in their attitudes to visual mediators, 
in the routines they typically engage in, or in the 
narratives they endorse), may present opportunities 
for learning. Crisis points in communication – “signs 
indicating that something has gone wrong in the in-
teraction” (Jorgensen & Phillips, 2002, p. 125) – are a 
natural place to look for differences in interlocutors’ 
discourse, and for learning taking place.

LONG DIVISION IN SUBJECT MATTER 
CONTENT DISCOURSE (SMCD)

Understanding LDA as process, 
concept and visual mediator
The teachers and the instructor agreed that under-
standing LDA is important, but the keyword under-
standing is used differently in their respective MDTs. 
For the teachers, understanding is strongly linked 
to the algorithm process, as is evident in a teacher’s 
comment after a detailed review of a LD problem: Here 
there’s awareness of the process, it’s not automatic. This 
is your understanding. For the instructor, understand-
ing LDA has to do with making connections between 
the related mathematical ideas – decomposition, the 
distributive rule and place value: using the distributive 
rule and convenient decompositions (of the dividend) 
can be done without the algorithm… is very helpful for 
understanding the algorithm… sharpens the under-
standing of the distributive property in the context of 
division… understanding something we already know 
how to do. Here are some additional examples of the 
procedural nature of the teachers’ MDT versus the 
instructor’s more conceptual nature: The keyword 
DMSB (acronym for divide, multiply, subtract, bring 
down) is central in teachers’ discourse. Where the 
teachers speak of remainder in LDA (“in the LDA for 
693÷3 there’s no remainder”), the instructor replies 

“you mean there’s no regrouping”. Both keywords refer 
to the LDA procedure, but regrouping is the conceptual 
counterpart of bring down.
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Another difference in the MDT of the two parties is 
in the significance attributed to the visual mediation 
of processes. Comparing SDA to LDA, the instructor 
notes: we perform exactly the same operations in the 
same order… the difference is… [in LDA] we write a lot, 
and we’ve agreed that it’s a big mess. This does not do 
justice to the visual aspects of the algorithms. There 
are rules regarding how LDA and SDA are arranged 
on the page (see Figure 1), and these rules interact 
with the process and with the conceptual underpin-
nings, as is evident in some teachers’ comments: The 
bringing down is difficult… especially without grid pa-
per (a difficulty that is avoided in SDA where digits 
are not brought down); [in SD the kids] immediately 
notice the remainder ... [because] they need to write it; 
There are other examples of the teachers attending 
to visual mediation where the instructor seems to 
see it as secondary to the underlying mathematics: 
as the instructor walks through an alternate proce-
dure, a teacher asks for a visual mediator: don’t you 
write down the [interim] result? His response – I’m 
trying to tell you how I’m thinking about it, not how I’d 
explain it to students – implies that he views visual 
mediation as a teaching tool, having little to do with 
cognition. However, issues of visual mediation may 
be closely related to mathematical concepts. For ex-
ample, working through  using the approximation 
algorithm, the instructor mediates his actions by writ-
ing . A teacher says she would have written . Other 
teachers justify the division notation in many ways: 
it’s easier; it’s confusing otherwise; in a classroom with 
students struggling with division we need to get them 
accustomed to thinking division. For this last teacher, 
the visual mediation is entwined with a mathematical 
issue concerning the relationship between division 
and multiplication. In university mathematics there 
is no independent division operation, instead there 
is multiplication by inverse. This attitude to division 
is particularly evident in the alternate division algo-
rithms, where division problems are solved without 
performing any division operations, only multipli-
cations and subtractions! According to the instructor, 
the benefit is in avoiding the most difficult aspect of 
LDA – finding the greatest multiple of the divisor that 
goes into the dividend with no margin for error, but it 
is conceivable that he was influenced by his university 
conception of division as an unprivileged operation.

LONG DIVISION IN PEDAGOGICAL 
CONTENT DISCOURSE (PCD)

Teaching and learning long division 
The instructor’s Pedagogical Content Discourse per-
tains both to teacher education and to elementary 
school pedagogy. For him they are connected; in his 
words he aimed to give the angle that will connect [the 
PD] to what goes on in the classroom. One such con-
nection would be the teachers using PD activities in 
their classrooms, possibly with minor modifications. 
This is something the teachers also hoped for, based 
on questionnaires that explored their expectations. 
However, the teachers deemed much of the LD les-
son unteachable. Regarding the alternate division 
algorithms responses included: [Division by parts is] 
not a method you can teach a class; [it’s] explanations 
for good students. The instructor appealed to other 
modes of relevance, suggesting the method as an aid 
for struggling students, but this too was rejected by 
a chorus of teachers: it would confuse them so badly; 
it’s difficult; no way. Finally the instructor suggested 
yet another role for these algorithms, as a means for 
independent checking of standard LDA results. The 
teachers were not explicit about why they rejected 
methods that the instructor considered useful, but 
I offer some speculations, supported by what I have 
shown regarding the MDT of the two parties:

In the teachers’ MDT, an alternate algorithm is yet 
another procedure that would need to be mastered, 
i.e. memorized. For the instructor these algorithms 
make so much sense that they should not need to be 
memorized. 

The instructor considers the flexibility of the approx-
imation algorithm a strength: By using approxima-
tions and working with multiples that we’re comfortable 
with, we’re converting the problem to an easier problem. 
However teachers may be wondering how to teach 
an idiosyncratic algorithm, which each student may 
solve differently. And what about students who are 
not comfortable with any multiples of the divisor? 

Visual mediation may also be an issue. The instruc-
tor’s focus was on the mathematics involved in each 
of the algorithms, but a teacher commented that [we] 
need to remember [the multiplier] at each stage, appar-
ently attending to the lack of well-defined rules for 
organizing the solution visually. This is backed by 
teacher comments throughout the activities such as: 
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I’d have organized [the decomposition] in a [place value] 
chart; why don’t you do [by parts algorithm] in the table? 

WHAT ARE THE PARTIES LEARNING?

In commognitive terms, the differences in the MDTs 
of the teachers and the instructor present opportu-
nities for mutual learning. Although the goal of PD 
was for teachers to learn – primarily mathematical 
content – learning on the part of instructor is crucial 
for the design and implementation of activities that 
will be relevant for teachers. In this section I show 
some examples of both kinds of learning taking place. 

The teachers, in their active engagement in the var-
ious division algorithms  – LDA, SDA, by approxi-
mation and by parts – were exploring connections 
between mathematical objects such as division, mul-
tiplication, decomposition, place value, estimation. 
They had accepted the goal of understanding LD and 
its entailments, as is evident in this teacher’s com-
ment, which followed the decomposition activity: 
When we eventually reach long division, everything 
we did in this activity [decompositions of the dividend], 
the understandings, they disappear… The question is 
how to achieve understanding [for our students]. I now 
analyze some transcript excerpts to show the kind of 
learning that was taking place.

Excerpt 1: Developing Specialized Content 
Discourse, decomposing 852÷3 

574 I: What I think can help prepare for LDA 
is doing the division first without mention-
ing the algorithm. Let’s write it as a word 
problem. What do we get from dividing 8 
hundreds, 5 tens and 2 units into 3 equal 
groups?

578 I: First we divide what we can…six-hun-
dred… I’m left with 2 hundreds... not 2.

585 T1: Which are in fact 20 tens
596 I: [We now have 25 tens.] How many tens 

can be divided? 
597 T1: 240
598 I: 24 tens…
599 T2: You can do 240. Why 24?
601 I: Oh, here I wrote six-hundred…
610 T3: Why convert to hundreds? ... 6 instead 

of six-hundred… in Hebrew six…
613 I: Exactly. When I said six hundreds, I 

automatically thought six-hundred

Perhaps the most salient aspect of this excerpt is that 
teachers engaged in explorative discourse around a 
division procedure which is not part of the curricu-
lum. I would like to draw attention to what may appear 
to be a rather trivial slip on the part of the instructor, 
saying and writing six-hundred (600) instead of six 
hundreds. This is not at all trivial. Three related but 
very different division algorithms are being consid-
ered, each with its own language usage. In LDA the 
symbol 6 in the hundreds place represents 600, in 
the precursor algorithm under discussion in the ex-
cerpt 6 hundreds need to be divided equally (explicitly 
compared by the instructor to the problem of equally 
dividing 6 melons), and in the alternate algorithms (by 
approximation and in parts) the number six-hundred 
needs to be divided as a number, not a quantity. These 
subtle differences are at the heart of the instructor’s 
design. The alternate algorithms, in referring to the 
number, support estimation strategies. LDA makes 
sophisticated but opaque use of the principle of place 
value. The procedure in the excerpt subtly bridges 
the two; procedurally it follows LDA (hundreds, tens, 
units) while keeping track of the dividend as a quan-
tity and not just a sequence of symbols. T1 and T2 are 
not yet fully aware of these subtleties, but T3, in catch-
ing the instructor’s slip, appears to be on the way to 
making these distinctions part of her own discourse. 

Excerpt 2: Specialized Content 
Discourse – endorsing an algorithm
Please refer to Figure 3 to make sense of this excerpt. 
T3 makes a “mistake”, subtracting 128 from 185, the 
instructor goes along with it, T4 catches the mistake.

1125 T1:  I’d start with 128
1127 T2: 1280
1128 I: Alright? 128, but times 10 is 1280. 1465 

less 1280 is … 185
1175 T3: Less 128
1177 I: 128
1178 T4: But why did you do 128? You can do 160… 

It’s much easier
1180 T3: Yes, 160 is preferable
1189 I: It’s in the table, I forgot. I have 160 here, 

you’re right.
1190 T5: Because in your table, instead of 8 you 

can do 10… 10 times 16.

Here again a number of teachers are actively explor-
ing a division algorithm, and again are correcting the 
instructor’s authentic error. An important aspect of 
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this algorithm is that it has a unique “correct” move at 
each stage. By contrast, division by approximation is 
idiosyncratic – looking for “convenient” multiples of 
the divisor and subtracting them from the dividend. 
In division by parts we look for the unique greatest 
multiple from the table, where the instructor, using a 
procedural discourse, stated that obviously we can add 
zeros. T5 did not adopt this procedural language, pre-
ferring the more conceptual 10 times. Furthermore, T3 
and T4 seem to have appropriated something from the 
approximation algorithm, since they do not consider 
the instructor’s slip an error, rather 160 would have 
been easier or preferable. This is not a minor point. 
LDA has a single correct flow; procedures that can 
correctly proceed in different paths are from quite a 
different discourse. 

Excerpt 3: Specialized Content Discourse – 
mediating division and multiplication
The instructor commented that how many times does 
3 go into 8 is an instance of the measurement model of 
division. But times suggests multiplication at least as 
much as it suggests division. With this in mind, con-
sider the following exchange:

1000 I: I think about it this way: I want to know 
how many times 16 goes into 1220.

1001 T1: So, times...
1002 T2: times...
1003 T1: 50 times
1004 I: Yes. Ok, times. So we found 50 times 16. 

It sounds a bit strange doesn’t it?
1009 T3: Because you’re asking how many times 

16 there are in...
1011 T4: goes into 1220? It goes in 50 times.

The instructor invested some effort in mapping out 
connections between division and multiplication 
prior to the lesson. The discussion evolved in ways 
he could not have anticipated or prepared for. The 
teachers’ testimonies regarding students’ strategies 
for answering how many times it goes in (skip counting 
and repeated subtraction) revealed some such con-
nections, but in this excerpt we see something differ-
ent – the parties are listening to each other carefully 
and jointly exploring the role of the word times in 
mediating meanings of division and multiplication. 
We have “how many times 16 goes in” (division), “50 
times 16” (multiplication), and “how many times 16 
there are in 1220”, which can be seen as bridging the 
two preceding meanings.  This is a case of a joint ob-

ject-level learning in the realm of Specialized Content 
Discourse, with obvious implication for Discourse of 
Content and Teaching.

Excerpt 4: Discourse of Content and 
Teaching – is the algorithm teachable?
From the teachers’ participation throughout the activ-
ities it is clear that by and large they mastered the sug-
gested algorithms, yet they were convinced that their 
students would not, whereas the instructor believed 
that they would. This discrepancy is due to the rules by 
which the parties endorse narratives about students 
and teaching – the teachers based on their experi-
ence and the instructor based on an analysis of the 
mathematics. The teachers’ experience is a valuable 
resource and should not be taken lightly, and indeed 
I have shown why the alternate division algorithms 
might be difficult to teach, however, the teachers’ don’t 
have any direct experience regarding what they have 
not taught. Four teachers came to realize this towards 
the end of the lesson, where there were a total of 9 
utterances to this effect, for example:

1237 T1: Could be, I haven’t tried it. Could be that 
if you do one or two lessons this way... they’d 
understand the meaning of decomposition.

1240 T2: Exactly.
1244 T1: Not necessarily after LDA. I’m saying 

this cautiously since I haven’t tried...
1248 T3: Not in order to know how to do it, rather 

to understand the meaning
1264 T4: Theoretically. We should try it some 

time.

Even as these teachers entertained the thought of 
teaching this algorithm, the principle by which it 
will (or not) be endorsed remains reliant on teach-
ing experience.

Specialized Content Discourse – 
appreciating the role of visual mediation
I have shown that there is less attention to visual 
mediation in the instructor’s discourse than in the 
teachers’, however, the instructor was attentive to the 
teachers’ comments and suggestions. He accepted two 
suggestions: mediating division by approximation 
in terms of division instead of multiplication; and, 
keeping track of the stages of division by parts in a 
table. Furthermore, in the discussion about SDA he 
realized that writing the remainder between the divi-
dend’s digits addresses the common error of skipping 
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digits in the bring down stage. He also noted that the 
alternate algorithms generate solutions that look com-
pletely different than the LDA solution, even though 
they make use of similar mathematics. 

SUMMARY

I have shown that the teachers tended to see LDA as a 
procedure that needs to be mastered and understood, 
whereas the mathematician saw it as an opportunity 
for deepening understanding by connecting a num-
ber of different topics. This is just one of the many 
ways in which their MDTs differed. In the face of such 
differences, the lesson could have followed various 
different paths: The instructor could have insisted on 
his agenda, alienating the teachers, or he could have 
adopted the teachers’ point of view, setting aside his 
own agenda. Neither of these is what actually took 
place. The instructor was true to his mathematical 
agenda, but made a genuine attempt to appropriate 
the teachers’ discourse. This can be seen both in his 
preparation of the lesson and in the way it played out. 
Why did he present two similar algorithms – approx-
imation and in parts? The underlying mathematical 
principle is the same – incrementally decomposing 
the dividend into multiples of the divisor. I suggest 
that the instructor was developing sensitivity to the 
teachers’ Discourse of Content and Teaching, and, real-
izing how difficult it would be to teach an idiosyncratic 
algorithm, suggested the deterministic version as an 
alternative. Furthermore, the motivation he gave for 
these algorithms was from the teachers’ Discourse of 
Content and Students – they avoid the aspect of LDA 
that he considers most difficult for children (division).

The lesson on LDA may be considered productive in 
the sense that both the teachers and the instructor 
were enriching their MDT. It is interesting to note that 
this learning, when it involved changes in the rules 
of the discourse, did not follow the pattern described 
by Ben Zvi & Sfard (2007); there was no agreement on 
the leading discourse, the roles of the interlocutors, or 
the course of discursive change. Expertise was shared 
by teachers and mathematicians, who were all in the 
position of learners. 

My aim in this paper was to point out opportunities for 
learning in the meeting of two MDTs. I have claimed 
that, in some cases, learning was in fact taking place, 
in the sense that the parties – teachers and instruc-
tor – were not superficially adopting aspects of an 

unfamiliar discourse. Rather they were in the process 
of transforming this discourse into discourse-for-one-
self, that is, into the type of communication in which 
the person is likely to engage of her own accord, while 
trying to solve her own problems (Sfard, 2008, p. 285). 
This was evident on the part of the teachers; the 
mathematical activities stretched their Specialized 
Content Discourse, yet all the while they were con-
sidering implications for their teaching. In this sense 
the teachers were constructing new knowledge not 
through experience (teaching) but rather through 
discursive interactions, transforming mathematical 
ideas into ideas for teaching. How these discursive 
shifts subsequently influenced their teaching (if at 
all) is an important question that will be addressed 
in future research.

The instructor extended his own SCD while unpack-
ing LDA in preparation for the lesson. The lesson 
itself presented opportunities for learning, but it is 
difficult to make claims regarding the nature of the 
instructor’s learning based on the lesson transcript. 
For example, when some teachers suggested 30÷3=10 
instead of 3×10=30, he responded: Ok, but I’ll tell you 
why I did the multiplication. If he is thoughtfully con-
sidering the teachers’ discourse and is on the way to 
transforming it to discourse-for-himself, there are 
no indications of it in the transcript. Nonetheless, 
such learning is crucial for mathematicians to be 
relevant for the education of teachers. Based on an 
interview following the lesson, the instructor was 
thoughtfully exploring ways in which his teaching 
might be relevant for the teachers. It is not clear if the 
instructor’s learning would have been as productive 
in the absence of a researcher. However I believe that 
exposing mathematicians to these research findings is 
a crucial step for supporting their sensitivity towards 
teachers and their learning in similar situations. 
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Prior formative assessment research has shown positive 
achievement gains when classes using formative assess-
ment are compared to classes that do not. However, little 
is known about what, if any, benefits of formative assess-
ment occur within a class. The purpose of this study was 
to investigate the achievement of the students in intro-
ductory calculus using formative assessment at the two 
different participation levels observed in class. Although 
there was no significant difference on any demographic 
variable other than gender and no significant difference 
in any achievement predictive variables between the 
groups of students at the different participation levels, 
regular participation in formative assessment was the 
most significant predictor of achievement in the hier-
archical linear model.

Keywords: Approximation framework, calculus, formative 

assessment, hierarchical linear model, participation.

INTRODUCTION

Introductory calculus is one of the largest choke 
points for prospective undergraduates who wish to 
pursue STEM (Science, Technology, Engineering and 
Mathematics) careers.  Students who leave STEM ma-
jors are very likely to do so during or immediately 
after the first semester of calculus (Ellis, Kelton, & 
Rasmussen, 2014; Rasmussen, Ellis, & Zazkis, 2014). 
There are several reasons why introductory calculus 
is a particularly difficult course. The majority of stu-
dents enrolled in calculus are first-time freshmen, and 
mathematics and science classes are where students 
transitioning to higher education are most likely to 
struggle (Cabrera, Miner, & Milem, 2013; Waterson, 
Browne, & Carnegie, 2013). Furthermore, the students 
most likely to leave STEM majors after calculus are 
from groups that are underrepresented in STEM are-

as: women, first generation college students, English-
language-learning students, and students from un-
derfunded urban and rural high schools (Waterson, 
Browne, & Carnegie, 2013).

One study found that switchers were less likely to 
feel a sense of connection with their instructors (Ellis, 
Kelton, & Rasmussen, 2014), which suggests that the 
increased use of formative assessment, low stakes as-
signments for instructional planning purposes, may 
help to increase the number of prospective students 
in STEM majors past the first semester. The use of 
formative assessment with undergraduates appears 
to increase students’ perception of a positive rela-
tionship with their instructor, make students more 
likely to seek help, and allows instructors to make 
data-based decisions on how much review instruc-
tion can/should be incorporated into a particular unit 
(Black & Wiliam, 2009; Dibbs, 2014). For the purposes 
of this study, formative assessments are defined to be 
written assignments graded on completion for the 
purposes of instructor planning.

Regardless of the content area or age of participants, 
the effect size on most quantitative formative assess-
ment studies is around 0.5 (Karpinski & D’Agostino, 
2013). These studies show that classes where forma-
tive assessment is used do better on average on com-
mon summative assessments than those classes where 
no formative assessment is used; however, even in 
classes where formative assessment is used, not all 
students will regularly complete the formative assign-
ments. The purpose of this study was to investigate 
the influence of participation on students’ growth tra-
jectories on calculus labs designed to develop system-
atic understanding of limit concepts. Growth can be 
measured in either student achievement or increases 
in students’ conceptual understanding. The analysis 
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was delimited to the achievement definition of growth, 
though qualitative investigations of students’ con-
ceptual growth of the approximation framework also 
showed that regular participants appropriated nearly 
all limit concepts embedded in the approximation 
framework while the irregular participants showed 
little conceptual acquisition beyond procedural flu-
ency (Dibbs, 2014). For this paper, I will distinguish 
between two different participation levels: regular 
and irregular. Students regularly participating in the 
formative assessments missed no more than two of 12 
formative assessments during the semester. Although 
the regular participants earned significantly higher 
grades on the calculus limit labs, there were students 
that earned every possible final grade in each partic-
ipation level.

METHODS

This study is part of a larger QUAL-quan mixed meth-
ods case study (Dibbs, 2014). Participants were recruit-
ed from two introductory calculus courses taught 
using the approximation framework at a midsized 
doctoral granting institution in the Rocky Mountain 
region. The students enrolled in introductory calcu-
lus are most commonly chemistry, science education, 
mathematics education, or mathematics major, and 
35% of the students at the University are first gener-
ation college students. There were three sources of 
data collected: students’ assignments, classroom ob-
servations, and interviews.  The qualitative analysis 
consisted of daily classroom observations and student 
interviews. During classroom observations of labs, 
three of the eight groups in each class were closely 
observed for peer and instructor interaction: three 
groups of regular participants, two mixed groups, and 
one group of irregular participants. During non-lab 
class days, the instructor’s interaction with the class 
and students’ behavior was observed, with particular 
attention paid to the students observed during labs. 
After each lab, nine students (both of the mixed partic-
ipation groups and one regular participation group) 
were interviewed about their lab write-ups using a 
cognitive think aloud technique. Students were given 
a clean copy of their lab and asked to explain each of 
their answers, who if anyone helped them figure out 
that particular portion of the lab, and if they would 
change their answer now; these qualitative data were 
analyzed to understand students’ conceptual growth 
throughout the semester (Dibbs, 2014). The observa-
tions and interviews showed that there was some peer 

instruction during the labs, but most of the time, ir-
regular participants only consistently understood 
the procedural computations portion of the lab. All 
assignments generated by each participant were col-
lected for the quantitative analysis.

Introductory calculus is a four credit course that 
met Monday, Tuesday, Wednesday and Friday. The 
course begins with a brief pre-calculus review and 
ends with The Fundamental Theorem of Calculus and 
u-substitution. Students’ final grade in the course was 
determined by online homework (10%), labs (20%), for-
mative assessments (5%), three in-class exams (15% 
each), and a final exam (20%). Every week followed 
the same general schedule. On Monday, there was a 
new section of material introduced and students were 
given a prelab. Students were asked to complete the 
Unknown Value portion of the approximation frame-
work (Figure 1) and identify a quantity with which 
to approximate the unknown value. Students were 
asked to complete the prelab before class on Tuesday; 
the prelab was graded on completion at the beginning 
of class. During class on Tuesday, students worked 
in groups of three or four on their assigned lab con-
text. After class, students completed a postlab using 
the online course management software. Each post-
lab asked students to summarize what their groups 
did, evaluate how well they understood the material, 
perform a computation similar to the ones expect-
ed on the lab, and identify which portions of the lab 
they still needed help on. The post-lab was graded on 
completion, and instructors used students’ answers 
to plan a 20 minute discussion about the lab to begin 
that class Wednesday. 

Although the postlab completion grade was 5% of the 
students’ final grades, the primary purpose of the as-
signment was to evaluate students’ current under-
standing and plan the next class effectively; in that 
sense the postlab was primarily a formative assess-
ment. Students were provided automated feedback 
through the CMS, and it took an average of 15 minutes/
week to evaluate a classroom set of postlabs and plan 
the next class. The remainder of the week was spent 
on concepts from the textbook. For the derivatives 
and definite integral labs, the next week would be a 
repeat of the first; all of the other labs proceeded di-
rectly to the regrouping described next. On the third 
week, students would be placed in new groups, where 
they were responsible for teaching their context to 
their new group members; this type of presentation 
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is called a Jigsaw presentation because each student 
is responsible for one piece of a larger idea. After 
this Jigsaw presentation, students were expected to 
write up their individual answers to the 20 parts of 
the approximation framework; this assignment was 
the summative assessment of each lab. Each lab had 
one formative prelab and two or three postlabs asso-
ciate with the summative lab writeup. 

The approximation framework is built upon develop-
ing systematic reasoning about conceptually accessi-
ble approximations and error analyses but mirroring 
the rigorous structure of formal limit definitions and 
arguments (Oehrtman, 2008). Approximation is the 
most common of the seven informal understandings 
of the definition of a limit; by incorporating the ap-
proximation labs into the curriculum, all students are 
trained to conceptualize limits in the same manner; 
this makes the transition for formal calculus topics 
easier for both students and instructors (Oehrtman, 
2008). 

For each calculus concept, students are asked to iden-
tify the unknown value that cannot be solved with 
algebra, an algebraic technique for approximating 
the unknown, quantify the error, bound the error, and 
describe how an approximation can be computed to 
any desired accuracy. Although the context (and cal-
culus context) changed with each lab, students were 
asked the same questions on each lab; hence, the labs 
may be considered repeated assessments on the ap-
proximation framework concepts since the process 
was identical on each lab once the appropriate ap-
proximation had been determined. Students were 
asked to represent these five components of the ap-
proximation framework contextually (words and 
pictures), graphically, algebraically, and numerically. 
Each lab had three or four different contexts; one of 

which was more challenging and intended for stu-
dents that had seen calculus before. While there is 
a lab every week, this research was delimited to the 
approximation framework labs dealing with limits, 
derivatives, and definite integrals. These labs account-
ed for 10/14 lab sessions in the semester and contained 
topics common to all introductory calculus courses. 
The remaining labs dealt with practice on applications 
of derivatives: Taylor polynomials, optimization, and 
related rates. There was also a lab before limits on 
quantitative reasoning that was not considered due 
to its low reliability.

The courses were taught at the same time and on the 
same schedule by two equally experienced instruc-
tors. All of the lab questions were scored dichotomous-
ly so the inter-rater reliability of the lab write-ups 
was not a concern.  The content validity of the assess-
ments was checked by the course coordinator and an 
additional expert on the approximation framework. 
Since the labs were scored dichotomously, KR-20 was 
used to calculate reliability, and all assessments had 
reliabilities within acceptable levels (Gall, Gall, & Borg, 
2007): the limit, derivative, and definite integral labs 
had KR-20 values of 0.83, 0.72, and 0.78 respectively. 

In addition to participants’ lab write-ups, grade pred-
icative variables and demographic information were 
collected from each participant. There were no signif-
icant differences between the sporadic and non-par-
ticipation groups on all but one of the demographic or 
grade predictive variables tested (p > 0.25) [1]. Female 
students were significantly more likely to be regular 
participants in formative assessment (p = .03). Since 
asynchronous formative assessment, like the ones 
used in this study, require a greater level of organi-
zation and engagement, these assignments tend to 
slightly favor female students (DiPrete, 2013). Despite 

Fluid traveling at a velocity v across a surface area A produces a flow rate of F = vA. Poiseuille’s law says that in a 
pipe of radius R, the viscosity of a fluid causes the velocity to decrease from a maximum at the center (r = 0) to zero 
at the sides (r = R) according to the function v = vmax (1 − r2

R2 ). In this activity you will approximate the rate that water 
flows in a 4-inch diameter pipe if vmax = 4.44

Contextual Graphical Algebraic Numerical

Unknown Value

Approximation

Error

Error Bound

Desired Accuracy

Figure 1: Definite Integral Lab task and approximation framework
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the selection bias inherent in the participation levels, 
there was no significant difference on any measure-
ment of prior knowledge taken at the beginning of the 
study. These measures of students’ prior knowledge, 
which all indicated students that chose to participate 
or not participate in the formative assessments did 
not have significantly different levels of prior knowl-
edge were not included in the model.

There were 66 students that consented to participate 
in the study; 13 of the students were removed from the 
sample because they had prior exposure to the labs 
that could confound the results. Of the 53 students that 
were new to the approximation framework labs, only 
seven had no prior exposure to limit concepts in a pri-
or course, and 27 of the students had AP Calculus [2] 
in high school. Students needed to have completed at 
least 10/12 formative assessments to be classified as a 
regular participant. There were 30 students classified 
as irregular participants; the remaining 23 students 
participated regularly in the formative assessments. 
Only students that completed at least two of the four 
approximation labs were included in the analysis and 
are included in the table.

The initial analysis used Bonferroni corrected t-tests 
found that there were significant differences in the 
mean number of questions answered correctly by 
students in each participation level on the three labs, 
which suggested a hierarchical analysis was most ap-
propriate for the data (Raudenbush, Bryk, Cheong, 
Congdon, & Toit, 2004). After the null model showed 
significant differences in the intercept and slope be-
tween the two participation classifications, the final 
model was: 

SCOREij = γ00 + γ01*REGULARj + γ10*LABij + γ11*REGULA
Rj*LABij + u0j+ rij

The dependant variable is the number of questions a 
student answered correctly; regular and is a dummy 
coded variables at the student and time level. Gender, 
ACT Math score (a standardized exam students take 
their third year of high school in preparation for 
applying to college), ethnicity, year in school, native 
language, major, and the Calculus Readiness Test (a 
standardized exam administered to students on the 
second day of classes), did not explain significantly 
more variance when included, and were all discarded 
in order to retain the most parsimoniousness model.

RESULTS

There were students that earned every possible fi-
nal grade in both participation levels, but on the 
labs, the students that regularly participated in the 
formative assessments that followed answered more 
items correctly on the lab write ups than the irregular 
participants. Table 1 summarizes the results of the t 
test assuming unequal variances. The p-values have 
all been multiplied by a factor of three to account for 
multiple hypothesis tests. Despite the correction, the 
regular participants in formative assessment have a 
significantly higher mean score than those not partic-
ipating regularly. While these two groups were not 
significantly different on any of the grade-predictive 
measures available at the beginning of the semester, 
the students that were irregular participants in the 
formative postlabs actually had slightly higher aver-
age scores than the regular participants.

Given that there appeared to be differences in both the 
initial level of performance and the rate of change in 

Irregular Mean Regular Mean p-value

Limits 8.48 13 0.006

Derivatives (Final) 5.29 16.52 <0.001

Definite Integrals 5.51 17.34 <0.001

Table 1: t-test results for mean number of items answered correctly on each lab by participation level

Random Effect Standard 
Deviation

Variance 
Component

d.f X2 p-value

INTRCPT1, u0 4.005 16.040 42 189.1522 <0.001

Level-1, r 3.97055 15.765

Table 2: Null growth model results
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score from lab to lab, an analysis that accounted for 
time was more appropriate to explore this phenome-
non further. To confirm growth modelling was the ap-
propriate choice of statistic, a null model [3] was run; 
this model was significant (Table 2), confirming that 
multilevel modelling was required; the unexplained 
variance was 0.504 [4].

The only measurement that resulted in a significant 
reduction of ICC was participation. When included 
as a Level-2 variable, the dummy code for regular par-
ticipation reduced the unexplained variance to 0.363, 
a reduction of 0.141. The final variance component 
summary is given in Table 3.

The final estimation of the growth model fixed effects 
showed that students who regularly participated in 
the formative prelabs and postlabs were able to an-
swer an average of 5.44 more questions correctly 
when compared to a student of similar ability who 
did not regularly participate in the formative assign-
ments (Table 4). The maximum likelihood estimation 
of the number of significant parameters on the in-
tercept was two, but it was not any of the measures 
collected as part of the set.

Regular participation in formative assessments 
also had a significant influence on the rate at which 
students improved on their lab writeups (Table 5). 
Given the pronounced ceiling effect of the regular 
participants’ scores, it is not surprising that the slope 
is relatively small; the regular participants started 
with relatively high scores and had little room for 
improvement. However, the near-zero slope value 
for the non-regular participants does not imply that 
the irregular participants made no learning gains 
throughout the semester; rather by the end of the se-
mester these students were able to answer the same 
questions correctly at the end of the semester on inte-
gration that they were able to answer correctly about 
removable discontinuities in the limits lab. 

Although the score on the rewrite after accounting 
for initial score between the two participation groups 
was not significantly different (p=0.0501), the irreg-
ular participants’ regression in the subsequent lab 
indicated that they were not able to apply all of the 
instructor’s feedback in a new context. There is a 
marked ceiling effect on the final derivative lab and 
the integration lab for regular participants (Figure 
2), which interview data (Dibbs, 2014) indicated was 
due to nearly complete conceptual acquisition of the 
limit concepts embedded in the labs.

Random Effect
Standard 
 Deviation

Variance 
 Component

  d.f. χ2 p-value

INTRCPT1, u0 2.99581 8.97489 41 124.9583 <0.001

level-1, r 3.96119 15.69102      

Table 3: Growth Model (participation) results

Fixed Effect  Coefficient
Standard 
error

 t-ratio
 Approx. 
d.f.

 p-value

For INTRCPT1, β0

    INTRCPT2, γ00 9.504938 0.963904 9.861 41 <0.001

    REGULAR, γ01 5.447198 1.139113 4.782 41 <0.001

Table 4: Final estimation of growth model fixed effects

Fixed Effect  Coefficient
Standard 
error

 t-ratio  Approx. d.f.  p-value

For SLOPE, β1

    INTRCPT2, γ10 0.064472 0.446211 0.144 110 0.885

     REGULAR, γ11 1.586417 .521549 3.02 110 0.003

Table 5: Final estimation of growth model slope effects
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DISCUSSION

The results of the study indicate that the students not 
participating in formative assessments were able to 
answer fewer questions on average than those stu-
dents that did participate in the formative assess-
ments, and improved at a slower rate throughout 
the semester. This is surprising because the students 
that did not complete any formative assessments at-
tended class for the post-lab based instruction on the 
day after lab, and the students that did no formative 
assessments did not have significantly lower lev-
els of prerequisites knowledge than those students 
participating in the formative prelabs and postlabs. 
Although this study has a relatively small sample size, 
this analysis showed that regular participation ac-
counts for 28% of the interclass correlation.

While these results indicated that there were measur-
able achievement differences between the growth tra-
jectory of those students who participated regularly 
in formative assessments and those that did not, the 
analysis also suggested that there were two significant 
student level factors in the data. Since there were no 
significant differences on any academic preparation 
measures for the participants in this study, this sug-
gests that the missing factor in this model is not pre-
requisite mathematical knowledge. However, given 
that prerequisite mathematical knowledge is almost 
always an important factor, further research on the 
inclusion of this variable or the use of propensity 
scores in the model is warranted.

One possible explanation is calibration differences 
between regular and irregular participants in for-
mative assessment. Calibration is considered to be a 
general metacognitive skill; it is the ability of a learner 
to accurately assess what they do and do not know 
(Hacker, Dunlosky, & Graesser, 1998). In this study, 

the opportunity for calibration occurred on the lim-
its, first derivative lab, and the definite lab, and it is 
plausible that the regular participants in the forma-
tive assessments are better at identifying the areas in 
which they need additional help. 

There is some support for this supposition in the 
data. In every lab there was a set of questions that no 
student asked about on their postlabs. Since none of 
the students asked for help on the post-lab for these 
items, an item was considered to be well-calibrated 
if the student produced the correct solution. In the 
labs, the statistical evidence for differences in calibra-
tion is not clear. The regular participants did answer 
significantly more of these items correctly, but there 
were no formal investigations of calibration during 
this study. Whether pattern of responses is because 
completing formative assessments on a regular basis 
helped students maintain a high calibration level or if 
the formative assessments helped students improve 
their calibration throughout the semester is an area 
for future research. 
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ENDNOTES

1. Age, race, native language, and year in school 
showed no significant difference on a Chi-Square 
test. GPA, Math GPA, ACT Math Score, Math GPA, the 
pre-calculus skills test administered the second day 
of class, and time elapsed since the previous mathe-
matics course showed no significant differences using 
Mood’s median test.

2. AP Calculus is a one year introductory calculus 
course generally taught in the last year of high school. 
The content of this course is the same as the content 
in the one semester introductory calculus course. 
Students may elect to take the AP exam at the end of 
the year. Passing the AP exam (a nationally adminis-
tered standardized test) would allow students to earn 
college credit for introductory calculus. Students in 

introductory calculus who took AP Calculus in high 
school did not take/ did not pass this exam.

3. A Null Model assumes that the intercept and slope 
are both constant for all participants. Failure to reject 
this test indicates repeated measures ANOVA to be 
the appropriate test.

4. HLM reports unexplained variance rather than R2. 
The unexplained variance is 1-R2.



2096CERME9 (2015) – TWG14

Students’ personal work in mathematics in 
French business school preparatory classes 

Lynn Farah

Université Paris Diderot, Paris, France, lgf00@mail.aub.edu

This paper presents parts of a research study pertaining 
to students’ personal work in the learning of mathemat-
ics at the undergraduate level. It focuses on the main 
results conveyed by data collected through a question-
naire completed by students enrolled in two different 
tracks of French business school preparatory classes, at 
the beginning and end of their first year of study. The 
approach adopted in the description and analysis of re-
sults in this paper focuses on the role of the institutional 
context and its impact on student work.    

Keywords: Mathematics learning, student personal work, 

institution, CPGE.

CONTEXT 

Students enrolled in preparatory classes in France 
(Classes Préparatoires aux Grandes Écoles referred 
to as CPGE) seem to achieve much better results in 
mathematics than those enrolled in regular univer-
sities (Castela, 2011), where student failure during 
the first years has long been a serious widespread 
problem. These specific French higher-education in-
stitutions prepare students over two academic years 
to enter the “Grandes Écoles”, which are mainly busi-
ness schools or engineering schools, by passing the 

“concours”1. In the French educational systems, the 
two preparatory years are equivalent to the first two 
years of undergraduate study at university. However, 
the CPGE differ from universities in many ways. They 
are known for their selectivity in recruiting good – 
if not the best – high school students who hold the 
French baccalaureate, as well as their supportive 
culture, which favours student collaboration and 

1 The “concours” are national competitive exams which students 

take by the end of the second preparatory year in order to enrol 

in the “Grandes Écoles”. There are specific required written and 

oral exams for each type of school. 

provides them with close follow-up by teachers, in a 
relatively rigid high-school-like system within stable 
moderate-sized classrooms. These institutions con-
stitute a rich and interesting field of observation and 
study given both the resources they offer to students 
and the constraints they weigh on them. 

Furthermore, research about student personal work 
is not very common in mathematics education, in 
France and elsewhere. There have been few studies 
in mathematics didactics that tackled this topic how-
ever mostly in a marginal manner. In addition, given 
the diversity of the situations in higher education in 
France, the number of studies relevant to each situ-
ation is very limited. Some studies in sociology and 
education have closely explored student personal 
work but without taking into account disciplinary 
specificities. Our work comes as a continuation of 
the research conducted by Castela (2004, 2009, 2011) 
who studied students’ personal work in mathemat-
ics in high school (grade 11) and in higher education 
(comparing university and CPGE). Our study focuses 
on the personal work of students enrolled in two dif-
ferent tracks of business school preparatory classes, 
Scientific and Technological2, during their first year 
of study. S track students hold a scientific baccalau-
reate and have a strong background in mathematics 
and sciences; whereas T students have had a teaching 
specialized in human resources, marketing, business 
and finance or information systems with little focus 
on mathematics3. Hence, our study adds to the existing 
research about CPGE by targeting an unprecedented 
population while emphasizing the diversity brought 
by the two tracks. Furthermore, our study explores 
specific aspects of the “enveloping” institutional func-

2 In what follows, we will designate the tracks by the letters S 

and T respectively. 

3 The background difference is clearly reflected through the 

mathematics level of students in each track.

mailto:lgf00@mail.aub.edu
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tioning of the CPGE analysed and evidenced through a 
sociological study (Darmon, 2013) from a transversal 
point of view, adding a disciplinary focus on math-
ematics, while examining the link between the per-
sonal organization and the institutional organization 
of study in CPGE. It also introduces methodological 
novelties to the existing studies about CPGE in terms 
of data collection, by combining quantitative methods 
with methods that give a closer access to students and 
teachers.  

CONCEPTUAL FRAMEWORK 

We borrow several constructs from French didactics 
of mathematics and sociology in order to build our 
conceptual framework. In what follows, we define 
the two main components of this framework which 
are addressed in this paper. 

Firstly, the notion of institution is at the heart of this 
research. We use the definition of an institution giv-
en by Chevallard (2003) as our starting point. He de-
scribes an institution as a social system which allows 
and imposes on its subjects – that is people who occu-
py different positions within the institution – ways of 
doing and of thinking. In the broader sense of the term, 
we consider that the institution designates the CPGE. 
We adopt Darmon’s perspective who describes the 
preparatory institution as an “enveloping” institution, 

...powerful but not totalitarian, violent but con-
cerned about the well-being of its members, it 
operates by individualizing to the extreme rath-
er than homogenising, thus reinforcing its take 
over the individuals which are its members (2013, 
p. 28).

The other essential notion we consider is student 
personal work. We conducted an extensive review 
of literature about student personal work, in order to 
define the aspects we are concerned with in our study, 
and situate them with respect to other research tack-
ling the same topic. We advocate that, in mathemat-
ics, students need to construct practical know-how 
in addition to the theoretical knowledge they acquire 
in order to solve mathematical problems. We refer to 
Castela’s work (2011) on mathematical functioning and 
her contribution to the praxeological model. Our un-
derlying hypothesis is that such practical knowledge 
is not explicitly taught nor institutionalized. Thus, 
students are required to engage in “autodidactical” 

personal work in order to extend and complete what 
has been initiated in the classroom. In our study, we 
are looking to define the nature of this autonomous 
study and the gestures involved in it, that is what stu-
dents do in addition to solving problems in order to 
learn something in mathematics. On one hand, we 
focus on the disciplinary specificities of mathemat-
ics in student personal work. On the other hand, we 
perceive personal work as defined and influence by 
the institution and not as an isolated individual en-
deavour.

RESEARCH DESIGN 

Our target group includes first year students who 
come from preparatory classes in three different 
Parisian schools4 of both tracks, where three volun-
teer mathematics teachers have accepted to cooperate 
for the research and allowed us into their classrooms 
over two consecutive academic years (2011–2012 and 
2012–12013).

The study uses a combination of qualitative and quan-
titative methods in order to answer the research ques-
tions; the following questions are at least partially 
addressed within the scope of this paper: 

 ― How does students’ personal work evolve 
throughout a preparatory year, in terms of quan-
tity and forms of study? 

 ― What are the forms of study that students exhibit 
on their own initiative, in addition to those pre-
scribed and supervised by teachers?

 ― What forms of study are exhibited by “good” stu-
dents as opposed to those who are “weak”? 

 ― How do social relationships promote student 
work, in particular the relationships that are es-
tablished between the students and those built 
with the teachers?

Several instruments have been used to collect data: in-
formal discussions with students and teachers, email 
exchanges with few volunteer students, samples of 
student notes and documents, student questionnaires, 

4  Given that it is not possible to disclose the school names, we 

refer to them by their initials: D and K from the S track, B from 

the T track. 
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teacher questionnaires, interviews with few students, 
and interviews with the three teachers. All data col-
lected through qualitative methods is intended to 
provide explanatory elements and validation for the 
hypotheses and conclusions brought to light through 
the student questionnaire, which is the main tool of 
our study and the focus of this paper.  

Through this questionnaire, we seek to identify ways 
of working which are common to students in gener-
al, as well as those that differentiate the “good” stu-
dents from the “weak” ones. We determine a student’s 
achievement level (good, average or weak) solely ac-
cording to his/her end of year mathematics grade. In 
fact, the grade is the only criterion used in the “con-
cours” to evaluate students’ success and rank them 
for admission to the “Grandes Écoles”. We also look 
to establish comparisons between the schools and/
or the tracks, and examine how the ways of studying 
evolve throughout the first preparatory year, while 
considering the influence of the particular institu-
tional context of the CPGE and the social relationships 
on students’ work.  

This pre/post questionnaire explores the ways stu-
dents work for the mathematics course at two mo-
ments of their educational path, at the end of grade 12 
and at the end of the first preparatory year. It was in-
spired from several previous similar questionnaires 
used in studies related to our topic (Adangnikou, 2007; 
Castela, 2004; Najar, 2010) and was designed to match 
our research goals and conceptual framework. It in-
cludes 55 items from five categories: general work 
habits (including problems encountered by the stu-
dents), in class (following, taking notes), between 
two sessions (studying the lesson, solving exercises, 
making summary sheets, preparing the “colles”5), 
when reviewing before an exam (the resources, the 
way of working, the exercises), and self-evaluation 
of performance and results. The two versions of the 

5  A “colle” is an evaluation tool specific to preparatory classes. 

It classically takes the form of a one-hour oral examination by 

groups of three students working individually but simultane-

ously on the classroom board, answering lesson questions 

and/or solving problems given by the teacher who is present 

to supervise and grade the work. In mathematics, a student is 

subjected to a “colle” every two to three weeks. The conditions 

and functioning of a “colle” may vary from one school to anoth-

er. The questions related to the “colles” (4 Likert items and 2 

open-ended questions) are only found in the end of preparatory 

year questionnaire given that this tool is not used in grade 12. 

questionnaire (pre/post) are almost identical in terms 
of the questions asked, but each focuses on a different 
moment of the student path. Most of the items are 
four-level Likert items (the ordered responses are 

“never”, “sometimes”, “often” , “always”, or equivalent 
statements for few specific items), in addition to two 
multiple choice items, five yes/no answer items, and 
two open-ended questions (the latter are only found 
in the post version of the questionnaire since they 
pertain to the “colles”). The questionnaire was filled 
out by students of the three schools involved in our 
study, respectively at the beginning and at the end 
of the first preparatory year, over two consecutive 
academic years (82 students, then 97 students).

We used SPSS in order to conduct descriptive sta-
tistics analysis and hypothesis testing for the data 
gathered through student responses. For each item 
and for both moments of the study, the frequencies of 
responses were first calculated for the whole sample, 
then for subgroups of students created according to 
school (B, D or K), track (S or T) and level of students 
(good, average, weak) respectively. McNemar tests 
were used to verify the significance of the evolution 
of frequencies between the beginning and end of year 
for both academic years. Chi-square tests were used 
to check dependence relations between each item re-
sponses and the different subgroup modalities. Next, 
the items were crossed two-by-two in order to look for 
significant dependence relations using Chi-square 
tests. 

FINDINGS 

In this section, we present some of the main findings 
of the questionnaire data analysis which was struc-
tured around eight themes: 1. collaboration between 
the students, 2. student difficulties, 3. taking notes, 4. 
managing work and revisions, 5.between two sessions, 
6. resources, 7. before an exam, 8. colles6. We give few 
examples of items that differentiate between the two 
tracks on one hand and between the good and weak 
students on the other hand. 

6  Given the specificity of the “colles” to the CPGE context, it 

is difficult to fully understand their characteristics without a 

detailed description. Hence, we omit the results pertaining to 

this theme given the space limitations of this paper.  
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Collaboration between the students 
The data analysis shows that collaboration with class-
mates is highly valued by students of preparatory 
classes, even though it doesn’t always take the form 
of group-work. Group-work seems to be a relative-
ly common practice, with an average proportion 
of students who report working in groups often or 
always around 50%. The other half – students who 
never or only sometimes work in groups – can be at 
least partly accounted for by the fact that students 
in preparatory schools come from different areas 
outside Paris, hence they do not live close to school 
and choose to work most often at home rather than in 
school or at a classmate’s. In addition, group-work is 
more widespread among students of the S track on one 
hand, and among the good and average rather than 
the weak students of both tracks on the other hand. 
Collaboration also takes the form of a solidarity bond 
between students who seem to rely on each other for 
moral support and encouragement for non-academic 
purposes. In fact, more than 80% of the students totally 
agree with the fact that mutual support between class-
mates is as determining as one’s personal work for 
success. This disproves common stereotypes which 
advertise harsh competition in preparatory classes. 
In fact, teachers encourage student collaboration by 
allowing it in their classrooms for specific purposes. 
Irrespective of the form it takes, we believe that col-
laboration between classmates has a positive impact 
on students’ personal work.  

Student difficulties
Many students in preparatory classes have time man-
agement and concentration difficulties when studying 
at home. The proportions of students who say they 
often or always have difficulties by the end of the 
preparatory year are higher than those of grade 12, 
exceeding 60% in several cases. This is not surprising 
given the demanding requirements of these classes 
and the long intense school days. Many students also 
find it hard to stay focused and follow in class, the 
lesson rhythm being too fast for them. This problem 
is more frequent among students of the T track, par-
ticularly the weak ones, for whom the situation is 
aggravated compared to grade 12, whereas students 
of the S track seem to become less distracted by the 
end of the first preparatory year. One hypothesis 
which can partly explain these different behaviours 
is related to how students of each track perceive the 
importance of mathematics. This derives from the fact 
that mathematics is the main subject in the S track and 

plays a crucial role in the “concours” and recruitment 
process, while it can be counterbalanced by other 
subjects in the T track. Despite the many problems 
they face, students seek less help from others (teacher, 
parents, friends...) than they used to in grade 12. In 
fact, the number of students who solicit the teacher’s 
help when they don’t understand something in class 
radically drops by the end of the first preparatory year. 
This practice remains more common among the good 
students. Likewise, although the number of those who 
get help from others such as parents or friends var-
ies from one class to another, the average proportion 
does not exceed 50%, which shows that students tend 
to handle their difficulties on their own. This can be 
interpreted as a statement of independence or a lack 
of confidence in others. Some students, mostly weak 
ones, seem to completely shut themselves off from 
any external assistance, including discussions with 
classmates, which could suggest they have given up 
on mathematics. 

Taking notes 
We explored the way students take notes during the 
lesson and what they add to those notes. More than 
90% of the S track students copy everything the teach-
er writes on the board, while the proportion drops 
to around 73% for those of the T track. On the other 
hand, fewer students take notes based on the teach-
er’s oral comments. The proportion of those who do 
differs from one class to another, but it doesn’t exceed 
60%. This seems to be related to the students’ level in 
mathematics and their difficulties while following 
the course pace. As for student contributions to the 
notes, many claim that they add personal comments 
and signs, especially good students, but very few in-
dicate the things they did not understand while taking 
notes. These behaviours are analyzed and interpret-
ed in light of the differences between the teachers’ 
lessons, the content of the sheets they distribute to 
the students, the ratio of written and oral comments 
they add, as well as the students’ level and difficulties. 

Managing work and revisions
We tried to establish patterns in the way students or-
ganize and schedule their regular work and exam7 

7  In CPGE, mathematics exams are not typical university exams, 

but are rather similar to high school exams in format and con-

tent. They take place regularly every four to five weeks on a 

Saturday, are usually four hours long, and consist of exercises 

related to the last chapter or two chapters covered in class. 



Students’ personal work in mathematics in French business school preparatory classes  (Lynn Farah)

2100

revisions for the mathematics course. Despite the 
differences between classes, it is possible to observe 
that, compared to grade 12, more students use a tenta-
tive work plan to organize their work. It appears that 
this practice is more common among good students 
of the T track. Additionally, the number of students 
who wait for exam periods to review their lessons and 
work decreases by the end of the first preparatory 
year, particularly in the S track, where many students 
become more systematic in their work. This can be 
partly attributed to the “colles” which require stu-
dents to learn their lesson fortnightly. Similarly, very 
few students start exam revisions at the last minute 
or the day before the exam, while more students be-
gin their revisions two days prior to or at least one 
week before the exam. This shows that students in 
general become more organized, regular and antic-
ipatory than in grade 12, although some differences 
and exceptions can be noted. We can also find extreme 
cases of both very studious students and very careless 
students. No statistically significant conclusion can 
be drawn about the differences between good and 
weak students with respect to ordinary study habits 
or exam revisions.

Between two sessions
We first consider what students do with the lessons 
covered in class by focusing on the main three actions 
of mathematics learning: read, understand, and learn. 
Between two mathematics sessions, around 35% of the 
students on average read everything that has been 
done in class, while almost 45% of the students go over 
the things they didn’t understand in class, a practice 
mostly common among good students. In addition, 
less than half the students learn the lesson (theorems, 
definition, formulas, proofs). These numbers lead us 
to believe that only some students work on a regular 
basis between sessions, probably in order to be pre-
pared for the “colles”, while others tend to keep most of 
the work for exam revisions. As for the exercises, few 
students in schools B and D (around 28% on average) 
solve the exercises assigned by the teacher for the next 
session, as opposed to more than 60% of the students 
of school K. Likewise, very few students in schools B 
and D complete the exercises which the teacher didn’t 
finish in class, while this seems to be more common 
in school K. These results begin to reveal a particular 
attitude among the students of school K with respect 
to exercises, which is confirmed through the analysis 
of further items. 

Resources
Next we consider the resources which the students 
have at their disposal in order to prepare for exams. 
First, we examine summary sheets, self-produced re-
sources that students create using lesson notes and/
or exercises. Around 40% of students create summary 
sheets, mostly by selecting and copying important 
elements from the lesson and to a lesser extent from 
exercises. As for the resources provided by the teach-
er, most students (more than 80%) say they are satisfied 
with the lesson which they find complete and suffi-
cient for them to succeed, except for those of school 
D in 2011–2012 where the rate is 40%. Furthermore, 
around 60% of the students of schools B and K study 
the comments written by their teacher on their pre-
vious exams or graded homework, as opposed to only 
45% of those of school D. Finally, less than half the stu-
dents of  schools B and K use resources other than 
their teacher’s lesson, such as books or online refer-
ences, as opposed to more than 70% at school D. In fact 
teachers discourage such practice. These numbers, in 
particular those of the class of 2011–2012 at school D8, 
strongly suggest that special consideration should be 
given to the teacher role while interpreting the data.

Before an exam
In this section, we explore the way students review 
for an exam. To start with, we analyze the way stu-
dents study the lesson. It comes as no surprise that 
students give high importance to learning formulas 
and their application conditions by heart, and to a 
lesser extent to learning definitions and theorems. In 
fact, between 65% and 80% of students verify that they 
know by heart the different lesson components when 
preparing for an exam. This could compensate for 
the fact that more than half the students do not learn 
their lesson between two mathematics sessions as 
said above. These practices are slightly more common 
among students of the S track on one hand and among 
good students on the other hand. Moreover, 60% of 
students of the T track on average read and try to un-

8  In this school, two different teachers taught mathematics 

over the two years of our study. A detailed analysis of sever-

al items pertaining to the teacher role as well as information 

gathered from the interviews and discussions with students 

and teachers indicate that the relationship between the first 

teacher (class of 2011–2012) and the students was problem-

atic, while things were smoother for the new teacher despite 

some minor issues. Being aware of this delicate situation allows 

us to explain some of the numbers we see, such as the lack of 

appreciation of the first teacher’s lesson. 
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derstand proofs, and 40% try to re-do proofs as part 
of exam preparations, while the respective average 
proportions for students of the S track are 50% and 15%. 
Hence, it seems that proofs play an important role in 
the T track exams, whereas the S students encounter 
them mostly in the “colles”. Despite these differences, 
good students in general and in the T track in particu-
lar seem to pay more attention than others to studying 
proofs before exams. Lastly, 75% of students of the S 
track declare that they try to extract ideas (examples, 
methods, tricks) to remember when studying before 
and exam, while only 45% of students of the T track 
do so. These numbers underline differences between 
the two tracks which can be partly attributed to the 
nature and content of exams for each track. In fact, the 
latter are aligned with the “concours” objectives and 
requirements which are not the same for both tracks. 

Lastly, we consider the way students handle solving 
exercises before an exam. To the multiple-choice 
question “the most important thing to do in order to 
succeed in mathematics when solving exercises”, we 
provided four suggestions: 1. “being able to solve the 
exercises assigned by the teacher”, 2. “practicing by 
solving other problems than the ones assigned by the 
teacher”, 3. “identifying standard problems and know-
ing the methods and tricks to solve them”, 4. “other 
(to be specified)”. The majority of S students chose 
the third option, while the most common choice for 
T students was the first option. This difference be-
tween students of the two tracks can be interpreted 
using Castela’s (2004) work styles conceptions: the 
choice of T students matches the “reproduction con-
ception”, which is also that of successful university 
students, while the style of S students tallies more 
with the “transfer conception”, given that they tend 
to look for tricks and methods which can be applied 
to other problems. Another main difference between 
students of both tracks is relevant to the way they han-
dle exercises that had been previously solved in class. 
It appears that, on average, twice as many T students 
as S students say they only read the correction of an 
exercise and try to understand it, instead of actually 
trying to redo the exercise either mentally or by writ-
ing. Furthermore, weak students of both tracks tend 
to avoid redoing the exercises by writing, and settle 
for either solving mentally or reading the correction, 
but no such general observation can be made regard-
ing good students. We can conjecture that while re-
doing exercises by writing is necessary in some cases, 
it is not always obligatory. However, in order to get 

something out of these previously solved exercises, 
it is inevitable to redo them at least mentally, since 
mere reading does not seem to contribute towards 
success in mathematics. The difference between the 
two tracks is also underlined by the fact that more 
S students solve exercises of different types than T 
students. For example, 80% of S students on average 
solve exercises similar to the ones that are most likely 
to be given in exams, while less than 65% of T students 
report doing so. Similarly, solving exercises which 
have not been prepared prior to exam revisions is a 
common practice for 65% of the S students as opposed 
to less than 40% of the T students. It is important to 
note that we also find differences within the S track 
between the students of schools D and K, and between 
the two classes of each school. Hence, it is hard to for-
mulate comparisons between students of different 
levels. Yet we can summarize the main commonalities 
as follows: it seems that good students are more selec-
tive with respect to the type of exercises they choose 
to work on before an exam; they tend to tackle the 
long and difficult ones rather than the simple ones or 
those they previously managed to solve. 

DISCUSSION AND CONCLUDING REMARKS

Through our approach, we first consider the CPGE 
institution as a whole, and then we focus on the func-
tioning of each classroom considered as an institution 
on its own in order to interpret the results. We exam-
ine each classroom as an institution whose stability 
allows the transmission of norms (Monfort, 2000), 
despite the different students and in some cases dif-
ferent teachers over the years. Moreover, through its 
dual role of subjugating its members while providing 
them with the necessary resources, the institution is 
responsible for transforming and producing particu-
lar student aptitudes. Thus, we investigate the causes 
behind the observed phenomena at the level of the 
institution rather than the individual. 

It is very difficult to sum up our results given the 
extensive data and the different levels of analysis 
involved in the study. In fact, what we present in this 
paper are only some of the main findings which are 
accessible to the reader who is not exposed to all the 
details of the work. For example, we have omitted most 
of the results of items that distinguish between the 
three different schools and/or the two years of study. 
In addition, some items do not suggest any consistent 
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behaviour across schools, classes or years, but instead 
either produce non-results or reflect special cases.

Nevertheless, we can formulate three main conclu-
sions which are repeatedly conveyed by the results 
of several items. The first one pertains to the class of 
school B in 2012–2013. Students of this class appear 
to be much less studious and less diligent than those 
of the other classes, in particular when compared to 
their predecessors of the class of school B in 2011–2012. 
In fact, their responses suggest that they work signifi-
cantly less than the others in general as well as before 
exams. The second conclusion pertains to the class 
of school D in 2011–2012 which seems to be facing a 
problematic situation with the teacher. Some reper-
cussions of this situation are still visible in 2012–2013 
despite the change of teacher, but to a lesser extent. 
The third conclusion concerns the class of school K in 
2012–2013. Students of this class seem to share some 
common study gestures which differ from those of 
other classes, in particular those of the S track, es-
pecially with regard to exercises. This is partially as-
cribed to the fact that two-thirds of its students have 
an average level in mathematics by the end of the year, 
as opposed to other classes where more than half the 
students are weak.  
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In this paper, I present my methodological tool for ana-
lyzing regular mathematics courses on calculus and 
an application of this tool in the transition from sec-
ondary school to university. The tool is based upon the 
Theory of Didactic Situations (TDS), and especially on 
the constructs of the “didactic contract” and the “milieu”. 
The data are taken from the transcription of a regular 
lesson on sequence convergence which took place during 
a first year university course. The aim is to investigate 
in what ways university calculus teachers attend to stu-
dents’ prior knowledge in their teaching. The results are 
not surprising but the used tool does suggest a method 
of analyzing university teaching and its affordances 
or limitations for bridging the gap between secondary 
school and university.  

Keywords: Transition, sequence convergence, university 

teaching and learning, didactic contract, milieu.

AIM OF THE PAPER

It is widely acknowledged that the transition from 
secondary school to university on calculus requires 
students to move from a problem-solving orientation 
to a formal orientation. A previous study (Bloch & 
Ghedamsi, 2004), focussed on crucial differences be-
tween the secondary school mathematics contents 
and the university one on calculus, led to the cate-
gorization and the formalization of many important 
changes that should occur in the way students are 
required to work at the first year of their university 
studies. We deploy the TDS construct of didactical 
variables (Brousseau, 1996), which are defined as 
parameters that influence the mathematics students’ 
work, to characterize these changes. Here are three 
main relevant didactical variables:

 ― The use of proof setting: At the first year of the 
university, the mathematics organisation on 
calculus is based on Bourbaki’s rules; as a result 
students have to deal with proof by using formal 
definitions, theorems, logical operations such as 
negation of quantified predicates, reductio ad 
absurdum, etc. At the end of secondary school, 
calculus contents focus on graphic or numerical 
proofs and indeed on algebraic proofs. At most, 
students use general statements concerning the 
operations on the limits of convergent or diver-
gent sequences to “calculate” a limit of a sequence 
given by its general term. 

 ― The use of technical methods: At the first year of 
the university to solve calculus tasks an amal-
gam of technical methods is introduced, whereas, 
at upper secondary school, a few methods are 
very well identified and many exercises allow a 
work on each of them. Students then are never 
surprised by the work they have to achieve. Yet, 
at the university they have the responsibility of 
choosing the adequate technical methods. For 
instance, to check the convergence or the diver-
gence of a sequence at the university, one can 
identify adjacent sequences, use sub-sequences, 
use Cauchy theorem, use De l’ Hospital’s rule, etc.

 ― The use of conversion between semiotic settings: 
At the end of secondary school, the tasks empha-
size a fruitful conversion between the setting of 
algebraic semiotic representatives and the graph-
ic one. These tasks become rather common and 
helpful for students’ work. However, students 
have almost no possibility to take the initiative of 
using a graph in a heuristic way since these con-
versions are generally explicitly enunciated. At 
the first year of the university, there are no more 

mailto:ighedamsi%40yahoo.fr?subject=
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graphs. Students have the responsibility to draw 
a diagram or a graph and exploit by themselves 
their potentialities as a heuristic support during 
a phase of a control or an exploration.  

The modifications of the values of didactical variables 
in the transition from secondary school to universi-
ty suppose changes in the didactic contract, which 
is “the implicit set of expectations that teacher and 
students have of each other regarding mathematical 
knowledge and regarding the distribution of respon-
sibilities during the teaching and learning process-
es.” (González-Martin et al., 2014, p. 119). In the case 
of the study above, the values given to the didactical 
variables are mutually exclusive which may lead to 
an alteration of major rules of the didactic contract.

According to these results, it is important to inves-
tigate the reality of the work during regular mathe-
matics courses, especially the role of the teacher to 
manage such crucial changes into the students’ work 
at the university. The research questions of this paper 
therefore are: To what extent does university teaching 
support the students’ shift to formal calculus? How 
does university teaching help students learn through 
adjusting previous knowledge?  Finally – and this is 
the main question explored here – how can we model 
teaching and learning processes in order to allow the 
assessment of both the students’ actual work and the 
teacher’s management of these processes? 

For this, I demonstrate my methodological tool for 
analyzing teaching and learning processes in a regu-
lar lesson on calculus, with a particular focus on the 
transition from secondary school to university. Then, 
I apply the tool to analyze a regular lesson which took 
place at the first year of the university, on sequence 
convergence.

METHODOLOGICAL TOOL – ASPECTS 
OF MAIN TDS CONSTRUCTS

The central object of TDS is the notion of Situation 
which is “defined as the ideal model of the system 
of relationships between students, a teacher, and a 
mathematical milieu.” (González-Martin et al., 2014, p. 
117). The learning process is highlighted through the 
interactions taking place within such system. 

In the Situation, the students’ work is modelled at sev-
eral levels with a main focus: on the action “knowing 

appears as means for action through models that can 
remain implicit” (p. 119); on the formulation “know-
ing develops through the building of an appropriate 
language” (p. 119) and on the validation “knowing 
becomes part of a fully coherent body of knowledge” 
(p. 119). The students’ work grows up within a milieu 

“namely the set of material objects, knowledge avail-
able, and interactions with others” (p. 119) including 
the interactions with the teacher. 

The foundations of TDS constructs focus on the opti-
mization of interactions taking place within the sys-
tem mentioned above, “in ways that maximize the stu-
dents’ responsibility for producing knowledge”. The 
use of TDS at the university level compels researchers 
to reconceptualize the “maximal responsibility” (p. 
121) given to the students and leads to an adjustment of 
the role of the teacher, especially in helping students 
overcome the new requirements at the first year of 
the university. 

In this sense, in the transition between secondary 
school and university in calculus, teacher’s inter-
ventions should not be neglected since he/she has the 
responsibility to manage students’ evolution from 
problem-solving skills to formal calculus. These inter-
ventions should enrich the students’ work and its evo-
lution within and against a mathematical milieu dur-
ing the phases of action, formulation and validation. 
González-Martin and colleagues (2014) illustrate the 
potency of TDS to design and to experiment Situations 
at university level, and demonstrate its application 
in three recent studies related to calculus and proof. 

In regular (non-experimental) mathematics cours-
es, the interactions taking place within the system 
formed by the teacher, the students and the milieu 
are governed by the actual didactic contract and 
evolve according to its nature. As a result, the quest 
for optimizing the interactions taking place within 
such system, as stressed in the TDS constructs, has 
to be the essence of methodological tool that will be 
used to analyze a regular lesson and that will allow 
the assessment of the students’ actual work and of the 
teacher management. The emphasis on the phases of 
action, formulation and validation in the students’ 
work materialize this quest. This should be done with 
taking into account teacher’s interventions to manage 
these interactions.    
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Taking these considerations, the methodological tool 
for analyzing a regular lesson introduced in this pa-
per focuses on two categories of students’ utterances 
that deal with the phases of action, formulation and 
validation in the students’ work; and three categories 
of teacher utterances, one related to managing inter-
actions and two related to managing phases that sup-
port learning. The teacher categories are divided into 
subcategories that cater for the particularities of par-
adigmatic examples of didactic contracts (Brousseau, 
1996). The definition of these subcategories is helped 
by the use of Robert’s studies (2003; 2007))concern-
ing teacher practices in order to achieve better mean-
ing of transition phenomena. In particular, Robert 
(2003) attaches great importance to the organization 
of knowledge as a condition of learning and argues 
for the “comparison of several methods and the si-
multaneous operations of several properties at once, 
including old and new.” (p. 70). The subcategories re-
ferring to students’ work are outlined according to 
the structuring of the milieu. In the following, I set 
out the methodological tool with more explanations 
for each subcategory.  

Teacher management 
1) Management of interactions

MI1: Initiate discussion by asking questions about 
specific knowledge in relation with the aimed one.

MI2: Leave openings that help students to make 
a choice, to ask questions and to organize knowl-
edge (Robert 2003; 2007).

MI3: Abbreviate students’ work, including ques-
tions.

MI4: Splitting tasks into elementary subtasks, or 
specify technical methods to use. In this case, it 
imports to clarify whether the teacher limits the 
students’ work to an application of juxtaposed 
knowledge (Robert, 2007).

MI5: Guide students to take distance from what 
is happening and to work at the meta-cognitive 
level (Robert, 2007).

2) Management of action and formulation

MAF1: Treat examples and counterexamples.

MAF2: Support students’ formulations by provid-
ing them with opportunities “to make conjectures, 
to experiment with heuristic solution, and search for 
adequate means of reasoning.” (González-Martin et 
al., 2014, p. 122).

MAF3: Foster the changing of knowledge context 
by developing an operational status of the no-
tions, if any, by emphasizing relationships among 
notions, by changing the setting of semiotic rep-
resentations, etc.

3) Management of validation

MV1: Enunciate statements about knowledge

MV2: Argue by using formal proof.

MV3: Argue by using formulations, explanations, 
and by changing semiotic settings in a relevant 
way.

MV4: Exemplify general statements and discuss 
the implications of these statements on a certain 
class of notions (functions, sequences, sets of real 
numbers, etc.).

MV5: Make assessments of knowledge (local or 
global syntheses, including those relating to the 
use of formal rules of calculation).

Among some of these subcategories, the teacher’s in-
terventions do not enable students to undertake effi-
cient interactions within the milieu and to progress in 
the learning process; this is the case of MI3, MI4, MV1 
and MV2. The remaining subcategories emphasize 
the role that the teacher can play to enrich students’ 
work especially in the case of MI2, MI5, MAF3, MV4 
and MV5.

Students’ work
1) Action and formulation

WAF1: Formulate questions concerning specific 
knowledge in relation with the aimed one. 

WAF2: Express spontaneously knowledge by 
changing semiotic setting, by making examples 
and counterexamples, by linking several notions, 
etc.
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WAF3: Formulate views on knowledge.

2) Validation

WV1: Indicate technical methods.

WV2: Perform on validation.

WV3: Discuss validation patterns proposed by 
peers or by the teacher.

When students demonstrated evidence of maladjust-
ed knowledge, it is important to stress this in the anal-
ysis of the given lesson.

EXPERIMENTAL SETTING

Data collection
In Tunisia, mathematics courses at university level 
are organized into lectures and  tutorials. The tu-
torial constitutes a setting to apply definitions and 
theorems already studied in the lecture. The lesson 
I focus on in this study functions as a tutorial, and 
concerns the applications of the main theorems of 
sequence convergence studied at the first year of the 
university. The sequence convergence is a concept 
met by the students from the third year of secondary 
school (scientific direction), which lasts four years in 
Tunisia, and which makes it possible to build a very 
rich and diverse corpus of knowledge.

This paper draws on the tasks planned by the teacher 
and the transcription of the whole lesson translated 
verbatim from French. The lesson lasted 2 hours in 
which approximately 30 students participated. 

Mathematical tasks
Three mathematical tasks were planned by the teacher. 
The first one is related to the convergence of geomet-
ric sequences, the second one is related to the study 
of several sequences given by their general terms and 
the third one focuses on the use of Cauchy’s theorem. 
In the following, I present succinct, a priori analyses 
of tasks in order to identify the mathematical milieu, 
namely the targeted knowledge, the students’ previ-
ous knowledge and the elements that may optimize 
learning.   

Task 1: General statements for 
geometric sequences
Let (un)n a sequence defined by un = an, a ∊ ∈ ℝ

1) What is the nature* of the sequence if a = 0, 1 and -1?

2) We suppose a ∈ ]−1, 1[ et a ≠ 0. Prove that the se-
quence converges to 0.

3) We suppose a ∉ [−1, 1]. Prove that the sequence di-
verges. 

* Across the text ‘what is the nature of a sequence’ is meant 
as ‘Study this sequence in terms of its convergence or 
divergence”

At the end of secondary school, the theorem on the 
limit of geometric sequence is stated only for the case 
of ]-1, 1[. The validation is based on the use of both 
the graphic semiotic setting and the numerical one. 
This is done by plotting and discussing geometric 
sequences graphs, or by computing terms of larger 
orders. Both cases show how the sequence tends to a 
specific value. 

For this task, students have to pick out, among several 
university technical methods used to prove conver-
gence or divergence, the relevant one in the case of 
such sequences. Some of the most useful methods to 
prove divergence at the first year of the university are: 
use formal definition; use Cauchy’s theorem; prove 
that the sequence is not bounded; find two subse-
quences which don’t behave the same way; etc.

Task 2: Sequences defined by general terms
What’s the nature of these sequences?

un = (−1)
n(n + 1)

2 (1 +  1
n ); vn =  cos(2n3 + 1)

n + 1 ; wn = √n2 + 1 − n; 
 
tn = sin( nπ

2 ); sn =   cp
n

np , p a natural number ≠ 0.

The study of (vn)n
 
and (wn)n requires routine methods 

from the secondary school which correspond to the 
use of cosines properties and algebraic operations. 
The sequences (tn)n

 
and (un)n

 
diverge, numerical calcu-

lation of some terms permit to identify subsequences 
to prove the non-convergence. The general term of 
(sn)n

 
is not familiar but its algebraic transformation 

permits to deduce that the sequence converges to 1
p! .

Task 3: Convergence and Cauchy’s theorem
1)  Let un = 1 +  1

2  + … +  1
n , n ≥ 1. 

Prove that u2n − un ≥  1
2 . Deduce the nature of this 

sequence.
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2) Let vn = 1 −  1
2  + … +  (−1)n − 1

n , n ≥ 1. 
Prove that vn − vm ≤  1

n + 1 , 0 < n < m. Deduce the na-
ture of this sequence. 

This task requires more formal methods referring 
to logical operations such as negation of quantified 
predicates – which is nevertheless rather implicit – 
necessary condition, and sufficient condition. The 
intermediate subtasks allow students to use Cauchy 
theorem in order to conclude. Studying such sequenc-
es refers in reality to the study of ∑ 1

n   
n

 and ∑ (−1)n − 1

n   
n

.

 
Under these conditions, the task is widely different 
from what is common at the end of secondary school. 
As said by González-Martin and colleagues (2014), 

“The role of the teacher becomes essential in helping 
students overcome their difficulties and fully grasp 
the subtleties they are confronted with.” (p. 130).

Overview of transcript data 
according to each task 
A global description of transcripts shows few in-
teractions between teacher and students. Teacher 
utterances are generally isolated from those of the 
students. The students’ utterances are short and the 
interactions among peers are non-existent. This com-
pelled me to organize the analysis of the teacher and 
students utterances separately, and to do it in tandem 
when possible. 

The lesson proceeded as follows in Table 1.

DATA ANALYSIS 

Teacher management
The details of teacher utterances are as follows in 
Table 2.

About 26% of teacher utterances concern the argu-
mentation by using classical formal proofs (MV2), 
but no interactions were observed with the students. 
Likewise, the utterances relating to the enunciation of 
statements about knowledge (MV1) aren’t correlated 
to students’ work and refer to the definition of conver-
gence, theorems on the convergence, the definition of 
Cauchy sequence and its negation, etc. For instance, 
this is the case of the utterances (35 and 53) bellow:

35 Teacher: If (an)n tends to 0 and (bn)n is 
bounded then (an bn)n tends to 0.

The second utterance is the only one (from MV1) that 
is preceded by a student utterance formulated as a 
question:

23 Student: What’s the negation of a Cauchy 
sequence?

53 Teacher: (un)n 
isn’t a Cauchy one ⇔ ∃ε > 0, 

∀n0 ∈ IN, ∃n ≥ n0, ∃m ≥ n0; |um − un| ≥ ε.

The teacher intervened only five times to argue by 
using formulation and explanation (MV3). Among 
these interventions (20, 26, 31, 34 and 39), one of them 
carries some students’ knowledge: 

6 Student: [talking about ∀n  ∈  IN, 
n ≤ log |M|

log |a| ] This statement isn’t true because 
IN isn’t bounded!   

20 Teacher: Yes, it’is absurd… this means that 
the set of integers is finished!

The rest of these utterances are isolated from students’ 
work as shown below:

26 Teacher: [talking about un = (−1)
n(n + 1)

2 (1 +  1
n )] 

There’s no problem for  1
n  which tends to 0, 

then 1 +  1
n  tends to 1.

Task Teacher utterances Student utterances Duration (approximately)

Task 1 1 – 24 1 – 7 35 min.

Task 2 25 – 45 8 – 22 50 min.

Task 3 46 – 57 23 – 24 20 min.

Table 1: Overview of transcript data

MI1 MI2 MI3 MI4 MI5 MAF1 MAF2 MAF3 MV1 MV2 MV3 MV4 MV1

Occurrence 7 0 4 10 0 3 3 0 10 15 5 0 0

Table 2: Details of teacher utterances
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34 Teacher: [talking about vn =  cos(2n3 + 1)
n + 1 ] 

Cosine of any number is between -1 and 1.
39 Teacher: [talking about 0 < wn  ≤  1

n  and 
1
n  → 0] This statement isn’t available 

for 0… there is no problem as we search limit 
on +∞.

However, more than 60% of the total interventions 
concerning interactions (MI) don’t contribute to 
lead students to make links between knowledge and 
especially their previous ones (MI3 and MI4). More 
precisely, in the utterances concerning (MI4), the 
teacher specifies university technical methods to 
use; this way of doing limits students’ work to an ap-
plication of juxtaposed knowledge, such as the use 
of sub-sequences, Cauchy theorem and the theorem 
on bounded sequence. This is the case of utterances 
(9, 14, 16, 36 and 40) highly linked to students’ work:

2 Student: |un| = |an| ≺ ε ⇔ |a|n ≺ ε 
9 Teacher: We can apply logarithm for the 

two members of the equality! [to prove that 
geometric sequence is convergent given 
a ∈ ]−1, 1[ and a ≠ 0]

In the utterances 14 and 16, teacher seems to limit the 
choices of the students by imposing over and over 
again his technical methods:

4 Student: We can use the subsequences! [to 
prove that geometric sequence is divergent 
given |a| >1]

14 Teacher: Perhaps, we also can use a reduc-
tio ad absurdum.

15 Teacher: What’s the main property of a 
convergent sequence seen in the lecture?

5 Student: A convergent sequence is a 
Cauchy one.

16 Teacher: Otherwise, it’s bounded and then 
we suppose it and we conclude that it is ab-
surd.  

The teacher reacted in the same way for the utterance 
(36) that follows:

16 Student: wn = √n2 + 1 − n =  1
√n2 + 1 + n .

36 Teacher: We can put 1
√n2 + 1 + n  between two 

members that converge to zero.

The teacher kept on imposing his technical method 
for the utterance (40): 

20 Student: tn = sin(n π
2 ), t0 = 0, t1 = 1, t2  = 0, t3 = -1, 

t4 = 0.
40 Teacher: It’s clear that the sequence diverg-

es. You can easily find subsequences which 
converge to different values.

Among teacher utterances which explicitly abbrevi-
ate students’ work (MI3), the following one prevents 
student to use his/her own method to prove that the 
sequence converges (for the others, 37, 38 and 56 see 
students’ work section): 

7 Student: In this case we can use subse-
quences to prove that the sequence diverges.

22 Teacher: This is not fast. [meaning the 
method]

Finally, only 10% of the teacher utterances could help 
students’ work in the phases of action and formula-
tion (MAF). These interventions focus on the poten-
tialities of the graphic setting or the numeric one to 
make conjectures, as well as, permit to investigate 
some examples and counterexamples related to aimed 
knowledge. Nevertheless, these interventions are ini-
tiated by the teacher and isolated from students’ work.

Students’ work
The details of students’ utterances are anonymized 
and are as follows in Table 3.

Among the few questions asked by students (WAF1), 
three of them (17, 19 and 24) were shortened by the 
teacher (students who intervened in the exchange 
below aren’t the same):

17 Student: Can’t we directly calculate its lim-
it? [talking about the sequence wn =  1

√n2 + 1 + n ]
37 Teacher: Well! You’re used to do this at the 

secondary school. Now I apply the theorem 
on sequence bounded.

n → +∞

WAF1 WAF2 WAF3 WV1 WV2 WV3

Occurrence 4 7 0 3 10 0

Table 3: Details of students’ work
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18 Student: 0 < wn  ≤  1
n  and  1

n  → 0 then 
lim wn = 0.

19 Student: What’s the theorem on sequence 
bounded? 

38 Teacher: You saw it in the lecture.

A little further:

24 Student: Why n is an integer different of 
zero? It isn’t mentioned in the definition of 
a sequence?

56 Teacher: It depends on the sequence.

However, the few students’ interventions which ex-
press spontaneous knowledge (WAF2) emerged in 
response to questions posed by the teacher (MI1). 
Nevertheless, both the teacher questions and the 
students’ responses are basic and are not significant 
of real requirements on convergence. 

Finally, students’ work in the phase of validation (WV) 
is rather thin. In this phase, students employed tech-
nical methods widely used at the secondary school; 
some of their interventions are expressed in tandem 
with the teacher ones.

RESULTS

In this paper, I present my methodological tool, based 
on TDS constructs, for analyzing a regular lesson on 
calculus. The application of the tool for analyzing a 
regular lesson on convergence sequence at the first 
year of the university allows a global illustration of 
teacher management and its implications for the 
learning process, as well as a more local description of 
effective learning about the convergence of sequences, 
if any. In this situation, the teacher seems not to care 
much about students’ work as he doesn’t intervene 
to enrich this work by emphasizing relationships 
among notions, by changing the setting of semiotic 
representations, by allowing openings to organize 
knowledge, by making assessments of knowledge, 
etc. The interventions of the teacher failed to ena-
ble students to undertake efficient interactions with 
the mathematical milieu. For instance, he limits the 
choices of the students by imposing over and over 
again university technical methods, as well as, by ab-
breviating efficient students’ interventions including 
questions that may contribute to make links between 
knowledge. Furthermore, the few teacher interven-
tions that focus on the potentialities of secondary 

semiotic tools are initiated by him and isolated from 
students’ work. The teacher’s use of the formal semiot-
ic tool is done in an “ostensive way” (Brousseau, 1996, 
p. 45), which is defined as the act of the teacher who 

“shows” a mathematical object under the illusion that 
the students see the object that this “showing” aims to 
achieve. As a result, students’ work is not consistent. 
The students express basic knowledge with little ap-
propriate knowledge on convergence at the univer-
sity level. During the whole lesson, the students use 
methods from secondary school and do not succeed to 
shift to the use of methods expected at university level.
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The debate surrounding the teaching of mathematics 
in Engineering courses has inspired research for more 
than a century. However, Engineering students still have 
difficulties in recognizing the mathematics required 
to solve problems in non-mathematical contexts. In 
order to study the vision of mathematics adopted by 
Engineering teachers and understand its role in shap-
ing teaching practices, we interviewed two Engineering 
teachers with different backgrounds: one with BSc in 
Mathematics and MSc and PhD in Engineering, and an-
other with BSc, MSc and PhD in Engineering. Our data 
reveal differences in the way these teachers approach 
topics such as mathematical rigor and approximation, 
and identify challenges faced by their students when 
working with modelling.

Keywords: Engineering, teachers’ background, rigor and 

approximation.

INTRODUCTION

Mathematics is an important domain in science and 
technology, and is taught in a variety of universi-
ty programs such as Administration, Economics, 
Computation, Engineering, and many other scientif-
ic fields of study. In Engineering, the interpretation 
and solution of certain problems require the direct 
application of mathematical models. To understand 
and analyse these mathematical models, it is often 
necessary to use elements of statistics, linear algebra, 
or differential and integral calculus. This is one rea-
son why the teaching of mathematics in Engineering 
courses has been addressed in studies as far back as 
the early twentieth century (Howson et al., 1986, p. 
159). Some authors, such as Murakami (1988), have 
suggested that mathematics should be taught to 
Engineering students by mathematicians with the 
help of engineers, with the latter selecting suitable 

exercises, to create a learning environment more in 
tune with students’ professional realities.

Cardella (2006) sought to better understand how 
Engineering students use mathematics. She also iden-
tified the mathematics Engineering students use, and 
consequently, the brand of mathematics that should 
be taught in Engineering programs. Her results show 
that Engineering students use mathematical thinking 
in various ways to solve problems while designing a 
project (they apply informal and intuitive knowledge 
of a given mathematical field; employ facts, definitions, 
algorithmic processes, etc.). She noted the importance 
of these various types of mathematical thinking, in-
dicating that professors must carefully address stu-
dents’ mistakes throughout their learning process 
to ensure they understand what is being taught. 
Regarding teachers, Maaß and Gurlitt (2009) noted 
that teachers’ knowledge of and beliefs on a given 
topic influence the way they plan, select, implement, 
and assess tasks. Later, and Maaß (2011) agreed with 
Schoenfeld (1992), who states that if we know teach-
ers’ resources, goals, and orientations — including 
their beliefs — we can better explain their actions. 
In this same vein, the study of Clark and colleagues 
(2014) provides a framework that divides into four 
categories those elements that can influence teach-
ers’ beliefs: “(a) teachers’ professional background 
and experiences, (b) teacher knowledge, (c) teaching 
contexts, and (d) students’ experiences” (p. 251). The 
conjecture that different teachers will give different 
lectures on the same topic on the basis of their knowl-
edge and beliefs was confirmed at the university level 
by Pinto (2013). Pinto analysed the way two differ-
ent university instructors implemented an identical 
course plan (both were capable teachers with a solid 
background in mathematics). He showed that the two 
instructors held different beliefs, attitudes and objec-
tives and demonstrated varying degrees of confidence 
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in different resources. As a result they offered two 
substantially different lessons.

Regarding the teaching of mathematics through appli-
cations and modelling in the context of Engineering 
education, Cardella (2006) drew on the work of 
Schoenfeld (1992) and Doeer (2007) in recognizing 
the need for mathematics instructors in Engineering 
programs to better understand how mathematics and 
mathematical thinking are used in Engineering. She 
admits that instructors should be familiar with the 
mathematical content necessary for engineering, and 
should consider the importance of problem solving, 
resources, attitudes, practices and of the learning 
environment.

In this vein, we are interested in identifying and dis-
cussing the attitudes and beliefs of instructors with 
different academic backgrounds to pinpoint how 
these beliefs influence their teaching of mathematical 
elements in Engineering programs. To do so, we fol-
low Schoenfeld’s approach to mathematical thinking.

THEORETICAL FRAMEWORK

To analyse the mathematical elements preferred by 
Engineering teachers with different backgrounds, 
we draw on Schoenfeld’s (1992) proposal of five as-
pects of mathematical thinking: 1) knowledge base, 
2) problem solving strategies, 3) monitoring and con-
trol, 4) beliefs and affects, and 5) practices. Of these 
five elements, we focus on the fourth, because we are 
interested in analysing teachers’ beliefs and whether 
their different backgrounds (as mathematicians, phy-
sicians, or engineers) can influence their attitudes 
and their teaching practices. At this stage of our re-
search, we do not draw on Schoenfeld’s later work 
(1998), which provides a “theoretical account of how 
and why teachers do what they do […] why they are en-
gaged in the act of teaching” (p. 1); instead, we draw on 
his early proposal (1992), since we base our research 
on Cardella (2006), who in turn based her own work 
on this early proposal, which discusses “what it means 
to think mathematically” (p. 334), including the di-
mension of beliefs.

Using Schoenfeld’s work as a basis, Cardella (2006) 
refers to beliefs and affects in the following way: “an 
individual’s beliefs about and feelings towards math-
ematics influence how and when the problem solver 
uses mathematics. These beliefs and affects may be 

cultural beliefs or affects, or they may be particular 
to the individual problem solver. Additionally, an in-
structor’s beliefs and affects may affect the student’s 
practices.” (p. 26). Cardella concluded that one of the 
most frequent beliefs observed in the execution of 
Engineering projects was the “Need to be Precise” (p. 
119) promoted by teachers. For her, “this belief im-
pacted the way that the team [working on a project] 
dealt with Uncertainty and also affected their use of 
Estimation.” (p. 119). 

According to Schoenfeld (1998), the “definition of 
thinking mathematically includes having a solid 
knowledge base, but it also includes knowing a wide 
range of problem solving strategies, having model-
ling skills, metacognitive skills, productive beliefs, 
and more” (p. 79). This vision of thinking mathemati-
cally is broad and goes beyond mathematical content 
knowledge and its relationships; other elements are 
assigned importance as well, and beliefs about math-
ematics and mathematical activity are also a part of 
this expanded vision of thinking mathematically. For 
Schoenfeld (1992), teachers’ beliefs about mathemat-
ics determine the characteristics of their classroom 
environment. In turn, this environment “shapes stu-
dents’ beliefs about the nature of mathematics” (p. 359). 
According to Schoenfeld, “whether acknowledged or 
not, whether conscious or not, beliefs shape mathe-
matical behavior. Beliefs are abstracted from one’s 
experiences and from the culture in which one is 
embedded. This leads to the consideration of mathe-
matical practice” (p. 360). Certain practices identified 
by Cardella (2006) in Schoenfeld’s work point to ele-
ments in the practice of Engineering teachers, such as: 

“making multiple conjectures, coming to grips with 
uncertainty, defending claims mathematically, en-
gaging in a science of patterns, extracting tools from 
the solution of complex problems, having a mathe-
matical point of view, mathematical sense-making, 
using symbolic representations and manipulating 
symbols” (pp. 18–19). 

Cardella (2006) followed this approach to study the 
beliefs of Engineering students’ that emerge through 
their work on projects. Her research influences ours, 
in which we seek to analyse the beliefs of Engineering 
teachers with different backgrounds and education.
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METHODOLOGY

To pinpoint the different beliefs regarding mathemat-
ical elements that emerge from distinct teaching prac-
tices, we interviewed two teachers (T1 and T2) from 
the Engineering school in a private university in São 
Paulo (Brazil). T1 and T2 have different backgrounds: 
T1 is a female teacher with BSc of Mathematics, MSc 
of Space Engineering and Technology, and PhD in 
Mechanical Engineering. T2 is a male teacher with 
BSc, MSc and PhD in Mechanical Engineering. T1 has 
taught at the university for seven years, giving cours-
es in Differential and Integral Calculus, Analytic 
Geometry, and Linear Algebra. T2 has been teaching 
at the university for six years. His courses include 
Introduction to Computational Science, Mechanics 
of Solids, and Resistance of Materials. In addition to 
the aforementioned courses, both teachers super-
vise students’ capstone projects in the Production 
Engineering (T1) and the Mechanical Engineering 
(T2) programs. Because student supervision is com-
mon to both teachers, and considering Cardella’s work, 
which focused on capstone design projects and the use 
of mathematics in a design problem, we centred our 
research on the teachers’ supervision of student pro-
jects to identify implicit beliefs concerning the role 
and use of mathematics in Engineering programs. The 
interviews addressed the instructors’ teaching prac-
tices, in particular their approach to the supervision 
of students completing their capstone projects. The 
teachers were interviewed together on two occasions 
to initiate dialogue between them and draw out con-
trasts between their different visions and beliefs. The 
first interview centred on the teachers’ supervision 
of capstone projects in general and their approach to 
this supervision. The second interview focused more 
on the supervision process for two specific capstone 
projects that the teachers singled out during the first 
interview: Artificial Neural Networks Applied to the 
Prediction of Values in Sao Paulo’s Stock Market, the 
project supervised by T1, and Software of Simulation 
Applied to Mechanical Engineering, supervised by T2. 
Students are required to develop their own capstone 
project over one and a half years (the last three semes-
ters of the Engineering program). During the first six 
months, students must select a topic and a supervisor, 
learn the norms of scientific writing, and begin creat-
ing a review of literature in a course entitled Scientific 
Methodology. In the second semester, supervisors 
begin meeting with students weekly or biweekly to 
oversee the project’s design, data collection, and the 

students’ first analysis. In the third and final semester, 
students must finish their project and present it to a 
panel comprised of two teachers and their supervisor.

The interviews were semi-structured and addressed 
a variety of topics to extract as much information as 
possible on the supervision process for capstone pro-
jects. In this paper, we focus only on those elements 
that emerged from the interviews pertaining to the 
teachers’ beliefs, in line with the elements related to 
beliefs identified by Schoenfeld (1992) and Cardella 
(2006). These elements illuminate the teachers’ ap-
proach to supervision, which may influence the way 
their students use mathematics or how they design 
their projects. The topics originally proposed for 
the interviews were: 1) the academic and profession-
al background of each teacher; 2) the supervision of 
the capstone projects and how this supervision was 
conducted; 3) the use in these projects of content stud-
ied in the Engineering program; 4) difficulties the stu-
dents encountered while working on the projects; and 
5) the resources proposed by the teachers and used by 
students in completing their projects.

DATA ANALYSIS

After transcribing the two interviews, we created 
codes based on the teachers’ responses and discus-
sions, which allowed us to categorise thematically 
our data. This codification process was not linear, 
necessitating multiple readings of the interviews to 
draft the first codes, which were subsequently divided 
into subcategories (these subcategories were created 
because some categories allowed for more than one 
possible response). The codes were then recombined 
according to their conceptual similarities or differ-
ences, to define the final categories and subcategories 
(Figure 1).

Both teachers started the interview by providing de-
tails of their academic education and their experience 
in teaching courses and supervising projects in their 
university’s Engineering program. T1, who has a back-
ground in Mathematics as well as Engineering, raised 
the importance of addressing the students’ needs:

T1: […] I came from the Polytechnic School, 
where I did my PhD working with 
Artificial Intelligence, neural networks, 
and genetic algorithms. What could I 
offer to the student in Production 
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Engineering? For me to feel reassured, 
since I was also starting to supervise.

One of the elements mentioned by Schoenfeld (1992), 
developing competence with the tools of the trade, fig-
ures prominently in T1’s response. In discussing 
her first experiences supervising students for their 
capstone projects, she revealed concerns about her 
ability to adapt her knowledge, which she considered 
atypical for Production Engineering; we observed 
that she felt it important to integrate her knowledge 
in a way that is useful to her students.

Unlike T1, T2’s background is in Mechanical 
Engineering exclusively. However, like T1, his stu-
dents study topics outside the scope of his education. 
His courses include Computing and Programming 
for Materials Engineering, a course in Electric 
Engineering and another in Mechanical Engineering. 
On supervision, he noted:

T2: I supervise students in Mechanical 
Engineering for a simple reason: be-
cause I’m a mechanical engineer and 
within my field of expertise it’s more 
advantageous […]

We observed a tendency in T2 to supervise students 
whose capstone projects relate to his field of research, 
resulting from a belief that it is easier to supervise 
projects that fall within one’s area of expertise, where 
one masters the tools of the trade (Schoenfeld, 1992). 

Later in the interview, when discussing a particular 
Mechanical Engineering student’s project involving 
the measurement of a frame, T2 stated:

T2: […] with some measurement instru-
ments, you measure the deformations 
of this frame and obviously it’s subject 
to a static charge, which doesn’t happen 
in reality.[…] And then, as you make a 
static trial, you affect that result with 
a coefficient, making the effect bigger. 
And there you judge, as if it were sub-
ject to a real condition, what is in fact an 
approximation. You can also do it with 
more sophisticated experimental equip-
ment […] All of that is experimental. You 
can also make a mathematical simula-
tion, using computer programs, which 
are professional, commercial, available 
in the big firms, in the general market.

With statements such as “which doesn’t happen in 
reality” and “what is in fact an approximation”, T2 
revealed some of his beliefs about mathematics, as 
an engineer who deals with approximations of real 
situations solved using computer simulations. This 
supports Cardella’s findings (2006), who pointed out 
that engineers, when designing a project, work with 
approximate dimensions and make comparisons with 
already existing data to verify whether the ideas they 
propose fall within acceptable limits. According to 
Cardella (2006), this aspect of an engineer’s way of 

Figure 1: Final categories and subcategories
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thinking could be classified as a mathematical prac-
tice used by engineers. Cardella (2006) refers to 
Gainsburg (2003), who observed a tendency towards 
conservatism in structural engineers: “to understand 
a value or procedure as conservative is to attribute 
to it a broadly general and widely applicable quality, 
defined informally as ‘safe’.” (p. 9). Cardella observed 
that engineers adopt this attitude to ensure they meet 
minimum criteria, and that for more precise solutions, 
they reduce the margin of conservatism when it is 
justifiable to do so. She also found that despite the lack 
of precision inherent in “conservatism,” engineers 
still use “ = ” rather than inequalities such as “ > ” or “ 
< ” (Cardella, 2006, p.20).

T2 also discussed software used to model certain struc-
tures. However, he stressed that students encounter 
difficulties using the software and when modelling 
problems. Many of his responses indicate that soft-
ware and modelling are typically used by engineers to 
solve problems – in agreement with Cardella’s (2006) 
model concerning required knowledge for teachers 
of mathematics in Engineering – and they revealed 
T2’s awareness that students have difficulty with both.

T1 discussed the case of a Production Engineering 
student interested in economy and the stock market. 
T1 provided the student with data sources to allow the 
student to build an artificial neural network, and after 
a few simulations, they achieved satisfactory results: 

“the network had worked, the results were perfect re-
garding what we had seen in the site”. However, for T1, 
it was still necessary to validate the results:

T1: What else can be done for some work, 
to give it a better basis, to really being 
able to say: “Ah, this work doesn’t have 
any problem. Oh, let’s do the statistical 
analysis of this data”. And then, [the stu-
dent] performed all the parts regarding 
regression.

In this excerpt, we can observe elements arising from 
a belief that only mathematics can be used to prove 
the validity of a solution found using other tools (in 
this case, she used statistical analysis), even when the 
results are satisfactory as a whole. The use of statis-
tics is also identified as a way to validate knowledge 
obtained through results analysis. Regarding this last 
point, T1 added:

T1: […] the analysis performed by a mathe-
matician regarding that data is different 
from that performed by an engineer.

At this point, T1 was asked to define the difference, and 
an interesting exchange between T1 and T2 ensued:

T1: The difference I see: within Engineering, 
we don’t need the exact, exact, exact val-
ue, as it is treated with all that…

T2: Rigor.
T1: The rigor with which it’s treated in math-

ematics.
T2: The engineer… let’s say he makes some 

hypotheses to simplify.
T1: Exactly. And she [the student] started 

from those hypotheses.

To further this discussion, the teachers were asked to 
elaborate their ideas of what constitutes mathemat-
ical rigor. T2 provided an example concerning the 
resistance of materials, called bending displacement:

T2: Among the different methods to de-
termine the bending displacement, 
there’s [one] called the method of the 
differential equation of the elastic line 
of the beam. The elastic line is that con-
figuration the beam acquires when it’s 
deformed because of the load. The equa-
tion from which all the textbooks start 
off, it’s a second degree, second order 
differential equation. A very complex 
equation. And engineers, based on the 
fact that in a project – in the majority of 
projects, to speak carefully – we assume 
that in the angular displacements the 
slope is very small, the tangent to the 
angle, when the angle is very small it’s 
almost the very same angle. And there, 
a first derivative which makes that dif-
ferential equation harder for us… and 
which is to the square, we say it’s so 
small, so small, that it’s not considered…

T2 identified elements of mathematical practises that 
engineers use to solve complex problems, and noted 
their use of certain hypotheses to simplify mathemat-
ical calculations. T2 suggested that these practices are 
not well regarded by mathematicians:
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T2: And there, mathematicians get… crazy. 
They say no, that’s not the exact solution. 
That “we” [the engineers] are lying. And 
no. I’m just saying that the dislocation, 
the angle is so, so, so, so, so small, that 
I’m not gonna worry, and actually in re-
ality it doesn’t make a difference. I just 
simplify…

We see that T2 uses hypotheses to simplify calcula-
tions. Cardella (2006) identified this as a solving strat-
egy used by students, which she termed “problem 
transformation” (p. 88). This strategy seeks both to 
simplify problems and transform them into familiar 
problems. Furthermore, we observe in T2 a way of 
speaking which seems characteristic of an engineer, 
using a language different from that of a mathema-
tician (Nicol, 2002). Authors as Godfrey (2013) have 
labelled this as “An engineering way of thinking”.

In addressing the notion of rigor, T1 came back to the 
work of her student in Production Engineering:

T1: In my specific case, when I speak about 
this mathematical rigor, when you look 
at a residual graph and you see the dots 
disperse or not, that interpretation is 
very subjective. Then, you take a graph 
[…] and you go validate with others. And 
there, I think they look alike, she can 
think they don’t, but what was really 
important for us was to verify wheth-
er the system which had been modelled 
was giving us a prevision as close to re-
ality as possible, which were the data we 
originally had. And she got to 98.6% of 
accuracy. […] Furthermore, that rigor in 
Engineering is not considered, especial-
ly taking into account that the aim was 
actually to have a prevision of the data, 
using a computer tool, which is what 
was done. We wanted to use an artificial 
intelligence tool to know whether that 
tool was capable of doing the prevision. 
That was done, it was shown and with 
efficacy.

Again, here we can observe her belief that rigor in 
mathematics and rigor in Engineering are not the 
same. This aspect of her mathematical thinking (be-
lief ) may have a strong impact on others (monitoring 

and control, problem solving strategies, practices), 
and could influence her approach to the teaching 
of mathematics. Elsewhere in the interview, when 
discussing her first-year Engineering courses in 
Differential and Integral Calculus and Linear Algebra, 
T1 stated:

T1: For me it’s extremely important to have 
that mathematical rigor […] at the begin-
ning. Mathematics is an extremely im-
portant science; […] even Engineering 
can’t live without those calculations, al-
though in some cases you have: “Ah, it’s 
negligible” or “You don’t need a rigor as 
mathematical as when a mathematician 
does mathematics”. That’s one point. 
Another point is: [the student] needs to 
know the bond between mathematics, 
which he has in the first courses, and 
what he uses in the technical courses. 
Actually, we try to do that […], trying to 
show him that he’s gonna use that tool 
later, the link between all those calcula-
tions and the technical courses.

Her response reveals her desire to broaden her stu-
dents’ ability to think mathematically, and her beliefs 
appear to influence her approach to teaching. In the 
case of T1, we observe a more explicit concern for 
rigor, and an awareness of the dichotomy between 
what a mathematician would do and what an engineer 
would do. According to Schoenfeld (1992, p. 359), these 
beliefs may determine the way she teaches and, as a 
consequence, shape her students’ beliefs about the 
nature of mathematics.

FINAL REMARKS

The aspects identified in this study, although taken 
from interviews with just two teachers, are in keeping 
with the literature review and the theoretical frame-
work, and they inspire reflection about mathematical 
practices in Engineering courses.

One issue identified in the teachers’ responses con-
cerns mathematical rigor versus approximation. On 
the one hand, the teachers require students to know 
(T1) or at least follow (T2) formulas with all the rigor 
characteristic of mathematics. On the other hand, in 
applying mathematics to the practice of Engineering 
and in resolving problems, certain assumptions are 



Mathematics in Engineering: The professors’ vision (Gisela Hernandes Gomes and Alejandro S. González-Martín)

2116

made in order to simplify calculations (T2), which cor-
roborates Cardella’s research (2006) on the practices 
of Engineering professors. When results obtained 
through this process are close to those anticipated, 
based on the literature, they are deemed satisfactory 
by engineers. Regarding modelling, both T1 and T2 
identified some difficulties related to ‘approximation’ 
and data analysis, which is in accordance with Doerr 
(2007) with respect to the challenges faced in teaching.

Our analyses have identified certain mathematical 
elements that could be classified according to the 
elements of mathematical thinking of Schoenfeld 
(1992) and in keeping with Cardella’s (2006) argu-
ments. However, we believe more research is needed 
in this area. Specifically, more observation of teaching 
practices is required, particularly of teachers with 
different backgrounds. Future research could look 
at the connections between teachers’ beliefs, back-
grounds, teaching practices and choices, and identify 
possible consequences for their students’ learning. 
We intend to explore these aspects further in our fu-
ture research. 
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It is a pattern common to many countries that engineer-
ing students have trouble passing mathematics. The 
manifold reasons so far explored mirror various per-
spectives on the transition from secondary to tertiary 
education. Focusing on learning strategies presents a 
promising supplement to this range, as they have the 
potential to account for its cognitive complexity and 
affective considerations. By means of the LIST question-
naire, we explored learning strategies for two samples 
of 113 Spanish and 159 German engineering students. 
The findings show that both samples differ regarding 
their scoring on the scales Organizing, Elaboration, 
Repeating, and Metacognition. Finally, five clusters 
were used to group students according to their similar-
ities, supporting the decisive role of metacognitive skills.

Keywords: Engineering, learning strategies, secondary-

tertiary transition.

INTRODUCTION

For many engineering students, learning mathemat-
ics in tertiary education is a critical issue. They en-
counter epistemological/cognitive, sociological/cul-
tural and didactical obstacles (cf. Guzman, Hodgson, 
Robert, & Villani, 1998) as mathematics at university 
differs significantly from school mathematics. Some 
authors even label the transition “abstraction shock” 
since university mathematics adds a formal world 
to the mathematics encountered at school (Artigue, 
Batanero, & Kent, 2007; Tall, 2004). Besides these 
studies that focus on cognitive perspectives, other 
researchers additionally identified epistemological, 
conceptual, social-cultural, motivational as well as 
metacognitive and affective variables having an influ-
ence on students’ performance. Some authors explic-

itly elaborate on specific learning strategies students 
may not have developed throughout school time (Rach 
& Heinze, 2011). These learning strategies address 
a combination of both skills and attitudes such as 
self-organisation, perseverance and frustration tol-
erance (cf. Pintrich, Smith, Garcia, & McKeachie, 1991; 
Weinstein & Palmer, 2002; Wild & Schiefele, 1994). In 
particular, investigating the role of learning strate-
gies allows for revealing the cognitive dispositions as 
well as affective barriers and pathways, and studying 
the interrelations between them (Wild, 2005).

Both Spain and Germany face alarmingly high num-
bers of students giving up studying due to mathe-
matical problems. In engineering courses in Spain, 
students were usually enrolled for 52.4 credits, but 
only succeeded passing 31.8 credits, mathematics be-
ing one of the subjects with the highest fail rate (MEC, 
2013; Rodríguez Muñiz, 2011). The situation is com-
parable in Germany as 48% of engineering students 
fail in their first year university studies (Heublein, 
Richter, Schmelzer, & Sommer, 2012). In this paper, we 
explore for the two countries which cognitive dispo-
sitions and beliefs of students seem advantageous to 
successfully continue their studies.

THEORETICAL FRAMEWORK 

Studies exploring the transition from school to tertia-
ry education mostly concentrate on cognitive aspects 
when it comes to question challenges in mathemat-
ics. These studies elaborate on cognitive difficulties 
and conceptual obstacles that students experience in 
how mathematics is communicated to them (Artigue, 
Batanero, & Kent, 2007), particularly referring to the 
formal level of university mathematics and the prev-
alent role of proofs within (Selden & Selden, 2005). 

mailto:igomezchacon@mat.ucm.es
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Cognitive processes involve affective stances that 
moderate the tension between modes of intuitive 
and analytical thinking (e.g., Fischbein, 1987; Stavy 
& Tirosh, 2000). In particular, the theory of dual pro-
cesses in cognitive psychology has been adapted to 
mathematics education, and the role of affective vari-
ables has been pointed out in this context (e.g., Gómez-
Chacón, García-Madruga, Vila, Elosúa, & Rodríguez, 
2014). Some studies additionally investigate the con-
nection between affective variables and student per-
formances. Findings reveal that students’ cognitive 
reflection, as a metacognitive variable, their beliefs 
about mathematics, and their self-efficacy, are all cor-
related positively and significantly with mathemat-
ical achievement (Gómez-Chacón, García-Madruga, 
Rodríguez, Vila, & Elosúa, 2011; Gómez-Chacón et 
al., 2014). There is also evidence that metacognition 
impacts positively on learning strategies which in 
turn influences achievement (Griese, Glasmachers, 
Härterich, Kallweit, & Rösken, 2011).

An instrument focusing on cognitive, metacognitive 
and resource-related strategies is presented by the 
LIST questionnaire comprising 13 dimensions of 
learning strategies grouped accordingly. The LIST 
questionnaire (Wild & Schiefele, 1994) for measuring 
learning strategies in academic studies was first com-
piled in the 1990s and has since been modified and test-
ed several times. It encompasses general items that 
can be applied to all kinds of subjects (for examples, 
see Table 1 below) and uses Likert scales. One root of 
the LIST questionnaire is the Motivated Strategies for 
Learning Questionnaire (MSLQ ) which measures col-
lege undergraduates’ motivation and self-regulated 
learning relating to a special course (Pintrich, Smith, 
Garcia, & McKeachie, 1993). Apart from Motivation, 
the scales from LIST are derived directly from MSLQ, 
although the number of items varies. The main dif-
ference between the two questionnaires is that MSLQ 
puts more emphasis on including different aspects of 
motivation as Goal Orientation, or Control of Learning 
Beliefs. Another essential study influencing the LIST 
questionnaire is the Learning and Study Strategies 
Inventory (LASSI) by Weinstein and Palmer (2002) 
which also separates cognitive aspects. LASSI scales 
partly cover the same contents as LIST though holding 
different names. As there are no analogous German 
/ Spanish questionnaires on learning strategies, our 
study opted for the LIST questionnaire, thus hoping 
for the further asset of a parallel instrument for both 
countries. 

RESEARCH QUESTIONS 

In both countries engineering students struggle with 
mathematics, and in a first attempt to capture differ-
ences or commonalities, we used parts of the LIST 
questionnaire to explore students’ learning strategies 
with respect to Organizing, Elaborating, Repeating and 
Metacognition. We therefore translated the German 
LIST questionnaire into English and then into Spanish 
(and back into German for additional dependability) 
and checked for scale reliability. Finally, we investigat-
ed if students can be grouped based on their ratings 
of the different dimensions of the questionnaire. In 
our comparative study, we particularly pursued the 
following research questions: 

Research question 1a: Does the Spanish translation 
of the LIST questionnaire yield sufficient scale reli-
ability? 

Research question 1b: How do Spanish and German 
engineering students’ differ with respect to their 
learning strategies?

Research question 2: How are the different learning 
strategies of students in both countries correlated?

Research questions 3: How can students from both 
countries be classified with respect to their learning 
strategies?

METHODOLOGY

Participants and instrument 
The two samples from Spain and Germany are com-
parable in terms of age, gender percentage, and aca-
demic year in engineering studies. Moreover, their 
academic courses are similarly organised.

113 (71.7% male) Spanish undergraduate students 
attending the first academic year of the Industrial 
Engineering Degree participated in this study. 
Students enrolling in this course must have obtained 
high scores in the test of university entrance, even 
higher than for other engineering degrees. The math-
ematics module consists of 200 minutes of traditional 
lectures per week, with optional tutorials and digital-
ized learning material. The examination is a written 
test with a focus on calculation and normally without 
proofs. If students fail, they must retake the course.
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159 German students (72.3% male) were selected from 
a larger sample from an ongoing research project to 
match the Spanish data. The German students had 
enrolled in different kinds of engineering courses 
at a university (meaning a slightly more challenging 
course, compared to a technical college) all starting 
with near identical mathematics lectures in tradition-
al format, lasting 180 minutes per week, with option-
al tutorials and digitalized learning materials. As in 
Spain, there is a written test with focus on calculations. 
If students fail, they must retake the course, multiple 
fails result in expulsion. In both groups of students, 
attendance of lectures is optional and often low.

Originally, the LIST questionnaire comprises 13 di-
mensions of learning strategies, grouped into cogni-
tive, metacognitive, and resource-related strategies. 
They each contain between three and eight items. For 
the study at hand we concentrate on cognitive and 
metacognitive strategies; an overview on example 
items is provided in Table 1. 

The Metacognition scale contains the three subscales 
Planning, Monitoring and Regulating. 

Data analysis
In both cases (Spain and Germany) the data was an-
alyzed by computing the means, standard deviation 
and internal consistency (Cronbach’s α) for each of 
these scales of the survey (based on Likert scales, from 
1 to 5 respectively from 1 to 4); the correlation between 
scales; the factor pattern matrix; and clusters. Factor 
analysis was conducted using the extraction meth-
od of Principal Component Analysis and the rotation 

method of Varimax with Kaiser normalization. For 
rescaling the data, we calculated 2.5[1/n(x1+…+xn)-1] for 
the 5-point Likert scales respectively 100/3[1/n(x1+…
+xn)-1] for 4 points and were thus able to correct the 
effect of the different numbers of items in different 
scales. This finally yielded scores from 0 to 100 (scale 
scores under 25 describing rare use, between 25 and 
under 50 infrequent use, between 50 and under 75 
regular use, 75 or more continual use of the learning 
strategies).

Regarding clustering the data, the most common 
partitioning method is the k-means cluster analysis. 
Conceptually, the k-means algorithm follows the fol-
lowing process: it selects k centroids (k rows chosen at 
random), assigns each data point to its closest centroid 
(determined by the Euclidean distance), recalculates 
the centroids as the average of all data points in a clus-
ter (i.e. the centroids are p-length mean vectors, where 
p is the number of variables) and assigns data points 
to their closest centroids. Steps 3 and 4 are repeated 
until the observations are not reassigned or the max-
imum number of iterations is reached. The distances 
are reported in Table 2.

The results obtained show the closest clusters are 1 and 
5 or 1 and 3. For the hypothesis contrast, we obtain that 
the clusters represent data in variables of Organizing, 
Elaborating, Repeating, Planning, Monitoring and 
Regulating because of having p<0.0001 for values of 
the p-values. We note that for mathematic academic 
performance the centroid of this variable is 0 in some 
clusters and we have significance p<0.02 for mathe-
matic academic performance. 

Dimension # Items Example Item

Organizing 8 I go over my notes and structure the most important points.

Elaborating 8 In my mind I try to connect newly learnt facts to what I already know.

Repeating 7 I learn the subject matter by heart using scripts or other notes.

Metacognition 
(Planning)

11 Before starting on an area of expertise, I reflect upon how to work most effi-
ciently. 

Table 1: LIST dimensions and example items

Clusters 2 3 4 5

1 56.14 44.00 55.01 39.45

2 61.91 95.47 46.06

3 52.09 44.50

4 54.85

Table 2: Distances between the final centroids
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RESULTS 

Research question 1a. We calculated scale reliability 
for the factors Organizing, Elaboration, Repeating, and 
Metacognition. All Cronbach’s alpha values are higher 
than 0.7, except for Metacognition in the Spanish study, 
see Table 3. In sum, the results show sufficient reli-
ability between the different items. The comparative 
analysis between both countries indicates that there 
are no significant differences, except for Elaborating 
strategies. For this dimension, Cronbach’s α is slightly 
higher in the Spanish study. 

Research question 1b. The results of the factor anal-
ysis let to the four main dimensions Organizing, 
Elaboration, Repeating, and Metacognition and the 
three subscales Planning, Monitoring and Elaborating 
for the Metacognition scale. The variance explained by 
this factor structure is 54.7 % for the Spanish data and 
43.92 % for the German data. In Table 4 we provide an 
overview on how the students rated in the different 
dimensions. Students’ learning strategies differ sig-
nificantly across the two countries. In all factors of the 
LIST questionnaire, except for Monitoring, we noted 
distinctly higher values for the mean in the Spanish 
than in the German results. For this metacognitive 
variable there are no significant differences between 
both means. In terms of standard deviations, Spanish 
students on the whole produce lower values. 

Regarding the maximum and minimum scores, 
they are the exactly the same for Organizing and 

Regulating. For Elaborating, Planning, Monitoring, and 
Metacognition as a whole, the maximum value is high-
er in Germany, for Repeating it is lower in Germany. 
For the minimum values, we obtain significant dif-
ferences between all variables but Organizing. The 
results show that the Spanish minimum values for 
these variables are always higher than the German 
ones.

Research question 2. In addition to comparing the 
means for the Spanish and the German data, we ex-
plored the correlations among the factors. An over-
view is provided in Table 5, where the additional vari-
able Mathematics Academic Performance is coded as 1 
for pass and 0 for failing the exam. It is worth to point 
out the highly significant strong correlation of the 
variable Organizing (defined as the ability to struc-
ture and restructure matter) with the three variables 
of metacognitive skills: Planning (rS=.45 for Spain, 
rG=.48 for Germany), Monitoring (rS=.51 respectively 
rG=.48) and Regulating (rS=.46; rG=.34). In the German 
data, there are significant and strong positive cor-
relations between Organizing and Repeating (rG=.60), 
Elaborating and Monitoring (rG=.52) and Repeating and 
Monitoring (rG=.57). For the mathematic academic per-
formance, results show a negative (though not signif-
icant) correlation with Repeating for the German data 
(rG=-.47) which cannot be found in the Spanish sample. 

Research question 3. We realized a k-means cluster 
analysis with the 272 participants from both countries 
(113 Spanish (81 male and 32 female) and 159 German 

Scale/Country Spain Germany

Organizing .84 .82

Elaboration .83 .74

Repeating .73 .73

Metacognition .65 .73

Table 3: Scale reliabilities for the Spanish and German data

Mean Std. Deviation Maximum Minimum

S G S G S G S G

Organizing 61.92 47.87 20.67 22.16 100 100 0 0

Elaborating 59.21 48.76 16.58 17.47 90.63 95.83 6.25 0

Repeating 50.60 40.34 15.44 18.73 92.86 85.71 17.86 0

Meta – Planning 57.80 47.78 16.90 21.78 93.75 100 6.25 0

Meta – Monitoring 47.01 46.27 18.53 21.16 87.5 100 6.25 0

Meta – Regulating 72.35 65.15 15.48 20.58 100 100 25 0

Table 4: Descriptive statistics for Spanish and German students
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(115 male and 44 female)) according to the vari-
ables Organizing, Elaborating, Repeating, Planning, 
Monitoring and Regulating, using the k-means method. 
In this case, we present the results using five clusters 
(Table 6).

The interesting part is how to describe the clusters 
in reference to the learning strategies employed by 
the respective students. Table 6 shows the number 
of participants that belong to each cluster in the 
last row. Cluster 1 has high values (>55) in Planning 
and Regulating and a comparatively low value in 
Monitoring (<40). Organizing, Elaborating, and 
Repeating score medium. In this cluster there are 42 
students (15.44%), of them 15 (35.72%, 13 male and 2 
female) are Spanish and 28 (64.28%, 22 male and 6 
female) are German. Cluster 2 has high values (>55) 
in Organizing, Elaborating and Repeating strategies 
and Metacognition. In this cluster there are 95 stu-
dents (34.93%), of them 61 (64.21%, 37 male and 24 
female) are Spanish and 34 (35.79%, 20 male and 14 
female) are German. Cluster 3 has relatively high 

values in Planning and Organizing and medium val-
ues in Monitoring and Regulating but low values in 
Elaborating and Repeating. In this cluster there are 
28 students (10.29%), of them 6 (21.43%, 3 male and 
3 female) are Spanish, and 22 (78.57%, 15 male and 7 
female) are German. Cluster 4 has low values in all 
variables except medium values in Regulating. In this 
cluster there are 39 students (14.34%). Very few (2) 
are Spanish (5.13%, 1 male and 1 female). The rest (37) 
are German (94.87%, 23 male and 14 female). Cluster 
5 has high values (>55) in Regulating and Elaborating 
and medium in Organizing, Repeating, Planning and in 
Monitoring. In this cluster there are 68 students (25%), 
of them 29 (42.65%, 26 male and 3 female) are Spanish 
and 39 (57.35%, 27 male and 12 female) are German.

In summary, the data shows that 54.93% of students 
are concentrated in cluster 2 and cluster 5, whose stu-
dents show medium and high levels in their learning 
strategies. However, there are differences between 
countries. 79.65% of the Spanish students are in these 
clusters, contrasting with only 45.91% of the Germans. 

E R MP MM MR MC MA

S G S G S G S G S G S G S

O .20* .29** .32** .60** .45** .48** .51** .48** .46** .34** .66** .57** .04

E 1 1 .16* .32** .11 .29** .41** .52** .44** .26** .43** .47** .19*

R 1 1 .28** .44** .33** .57** .12 .24** .36** .58** .06

MP 1 1 .32** .33** .06 .31** .69** .78 .16

MM 1 1 .40** .27** .84** .75** .07

MR 1 1 .59** .64** .10

MC 1 1 .08

Table 5: Pearson correlation (1-tailed, *p<0.05, **p<0.001) for the factors 

(O = Organizing, E = Elaboration, R = Repeating, MP = Metacognition-Planning, MM = Metacognition-Monitoring, 
MR = Metacognition-Regulating, MC = Metacognition, MA = Mathematics Academic Performance)

Factors/Cluster 1 2 3 4 5

Organizing 39.14 72.35 61.94 19.31 42.85

Elaborating 40.35 63.97 31.66 23.37 57.17

Repeating 42.52 55.69 23.51 21.80 39.22

Metacognition – Planning 66.12 64.47 50.67 26.71 38.51

Metacognition – Monitoring 25.05 59.63 40.77 25.27 47.09

Metacognition – Regulating 69.25 80.18 47.02 50.21 70.06

Students (total = 272) 42 95 28 39 68

Table 6: Final centroids of the cluster analysis and number of students
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Regarding German students, it is remarkable that 
there is a group of 23.27% with low levels of learning 
strategies (cluster 4). 

CONCLUSIONS AND DISCUSSION 

In our exploration of two samples, we were able to 
detect commonalities between first-year engineering 
students of both countries: As much as three quarters 
of engineering students are male, only one quarter 
are female. That may seem unbalanced, but it de-
scribes a steady growth towards equality over the last 
decades. Our comparisons cannot be generalized to 
universal statements about two societies, but provide 
interesting insights into students’ learning behaviour 
against the background of different economic condi-
tions (where the unemployment rate of 25% in Spain 
raises higher demands than Germany’s 6%).

We found that the questionnaire employed works well 
in both countries, despite the initial double transla-
tion, backed up by the fact that the retranslated items 
correspond well to the original ones. The differences 
in learning strategies between the two countries can 
be condensed in the fact that the German engineering 
students showed more variation and often scored low-
er, meaning that the Spanish students tended to state 
desired behaviour, i.e. diligent learning activities. 
Both groups score equally low on Monitoring skills, 
which can be interpreted as a teaching perspective.

For both countries, the interrelations between the 
variables (apart from forming a complex pattern) 
stress the fact that metacognitive skills are at the core 
of learning behaviour, and can be viewed as an effec-
tive lever by which to influence learning strategies 
and thus learning success. However, there are no clear 
indications as for which learning strategies support 
examination success. 

As our sample consisted of 41.5% Spanish and 58.5% 
German students, we would expect this distribution 
to reflect on the different clusters as well. That is more 
or less the case for all clusters but one: Cluster 4 con-
tains almost exclusively German students and can be 
described as incorporating students who generally 
score very low, i.e. they do not report to work very 
ex- or intensively for their studies. This might be 
traced back to the fact that in Spain, you cannot enter 
a university course in Industrial Engineering without 
proving your commitment, motivation and capability 

in an exacting university entrance test. In Germany, 
there is restriction to university education, too, but 
it is less strict (meaning they can be sidestepped by 
time or space). These conditions may have influenced 
the pattern on cluster 3 as well, where Germans are 
overrepresented. This cluster contains students with 
high scores on learning strategies that reflect good 
intentions (Planning and Organizing), but low scores 
on actually realizing these in tedious day-to-day work 
(Elaborating and Repeating). Identifying clusters of 
students with homogeneous learning behaviour im-
plies offering customized courses fostering specific 
deficiencies.

As a final outcome, our interest in describing, de-
veloping and evaluating metacognitive strategies 
with respect to short- and long-term achievement in 
mathematics has been kindled. We expect to learn 
more from future investigations, particularly from 
a comparative exploration of Rasch analyses of the 
two surveys. Additionally, we would like to conduct 
qualitative research which can help to enlighten the 
quantitative data we already have.
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Textbooks are central to the teaching process at all lev-
els, including the tertiary level. However, the phenom-
enon of textbook use in higher education has not been 
extensively studied. In this paper, we analyse textbook 
use in the teaching of infinite series of real numbers at 
the pre-university level in Quebec. We interviewed five 
teachers about their textbook use in order to investigate 
similarities between their personal relationship with 
series and the institutional relationship with series 
transmitted through textbooks. Our results show that 
the teachers’ courses generally follow the textbook’s 
presentation, and that their documentation system is 
reduced to almost a single textbook, to which they adhere 
almost exclusively. We also compare our results with 
those of Mesa and Griffiths (2012) at the tertiary level.

Keywords: Textbook use, pre-university, personal 

relationship, documentation system.

INTRODUCTION AND BACKGROUND

In this paper, we analyse textbook use by pre-univer-
sity teachers in Quebec (Canada) in the teaching of 
infinite series of real numbers (series hereinafter). 
Textbooks play a crucial role in the school environ-
ment and “have always played a major role in mathe-
matics education” (Sträßer, 2009, p. 70). However, the 
vision of mathematics transmitted by textbooks can 
shape what teachers teach and what students learn. 
Textbooks can also influence students’ attitude to-
ward the discipline of mathematics and affect their 
self-perception as learners (Raman, 2004). Moreover, 
textbooks can mould students’ beliefs about what they 
can learn and how they can access and use knowledge 
(Mesa & Griffiths, 2012). For instance, González-
Martín, Giraldo and Souto (2013) recently analysed 
a sample of secondary textbooks to identify how real 
and irrational numbers are introduced. They showed 
that the approaches used in textbooks could have ma-

jor consequences for students’ learning, influencing 
their vision of mathematics (e.g., ‘it is possible to show 
that a statement is true by giving some examples’), and 
affecting their subsequent learning of other Calculus 
topics.

In addition, textbooks seem to play an important 
role in the teaching of tertiary mathematics (Mesa 
& Griffiths, 2012, p. 85). Although one might expect 
such textbooks to meet more rigorous academic 
standards appropriate for university classrooms, 
research seems to contradict this. For instance, in 
her study on continuity in Precalculus, Calculus, and 
Real Analysis courses, Raman (2004) concluded that 
textbooks send conflicting messages on the status and 
purpose of mathematical definitions. These results 
agree with those of Giraldo, González-Martín and 
Santos (2009), who also found that the presentation 
of content related to continuity in undergraduate 
textbooks sometimes conjures erroneous images 
that can impede the learning of derivatives and inte-
grals. Lithner (2004) analysed the types of reasoning 
that Calculus textbook exercises can encourage and 
instil in students, and demonstrated that exercises 
in which students merely need to reproduce a given 
example predominate. Regarding the topic of series, 
González-Martín, Nardi and Biza (2011) also estab-
lished a preponderance of algorithmic exercises in 
pre-university and university textbooks, as well as 
a lack of conceptually-driven tasks; we come back to 
this last work later. Because most of these studies on 
the introduction of Calculus reveal problems with the 
way post-secondary textbooks address mathematical 
topics, we decided to examine how post-secondary 
instructors use textbooks in preparing and teaching 
their courses.

Research on tertiary textbook analysis is rapidly 
evolving, but the phenomenon of instructors’ text-
book use in higher education has not been extensive-

mailto:a.gonzalez-martin@umontreal.ca
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ly studied (Mesa & Griffiths, 2012, p. 85). Mesa and 
Griffiths (2012) addressed this issue and found that 
tertiary instructors use textbooks for different pur-
poses: generating the syllabus, preparing classes, and 
designing homework. The various ways textbooks 
were used included: using the same information con-
tained in the textbook (offloading), supplementing it 
with alternative examples designed by the instructors 
themselves or culled from other textbooks (adapting), 
or changing the presentation altogether, including us-
ing different notation (a form of improvising). For all 
the tertiary instructors in their sample, the textbook 
appeared to be a crucial artefact in the instruction 
preparation process. However, the more frequently 
an instructor gave the same course, the less he or she 
relied on the textbook due to familiarity with its con-
tents and with what it did and did not offer.

Another important observation was that instructors 
saw the textbooks they used as written for students, 
and not as a tool from which the instructors them-
selves could learn (e.g., they did not mine textbooks 
for new ways of understanding certain topics, nor did 
they draw inspiration from textbooks to vary their 
teaching methods). Instructors also did not see text-
books as tools that could help them select problems 
or decide how to sequence topics in constructing 
their syllabi. In fact, the textbook features that were 
perceived to be the most helpful for improving the 
instructors’ teaching were problems and examples.

The research presented in this paper seeks to provide 
more information on this phenomenon, particularly 
with regard to the teaching of a very specific topic: 
series. Series are a key notion in mathematics: already 
present in early Greek mathematics, they were crucial 
in the development of Calculus. They have many ap-
plications within mathematics (such as the calculation 
of areas by means of rectangles) as well as outside 
mathematics (including the modelling of situations 
such as the distribution of atmospheric pollutants). 
These factors may partially explain why the study of 
series is included in introductory Calculus courses 
in many countries.

This is the case in Canada, where each province de-
velops its own official curricula. In the province of 
Quebec, compulsory education ends at age 16 and 
students who wish to attend university must first 
complete two years of pre-university studies (called 
collégial —other countries, such as Spain, follow sim-

ilar systems). Students pursuing scientific or techni-
cal careers are introduced to Calculus during their 
collégial studies, where series first appear. It is in this 
context that our research, like Mesa’s and Griffiths’ 
(2012), seeks to better understand the phenomenon 
of textbook use. However, while Mesa and Griffiths 
looked at general textbook use in universities, our 
work centres on preparatory courses at the collégial 
level and focuses on a topic that is introduced in 
university in many countries. Moreover, studying 
the collégial experience may help pinpoint gaps and 
continuities between textbook use at the collégial and 
university levels that could affect students’ transition. 
This could open the door to further research on sim-
ilarities and differences in practices with regard to a 
specific topic of study.

Before beginning our investigation of teachers’ use of 
textbooks in the teaching of series, we first developed 
an analysis of how series are presented in collégial 
textbooks, following an anthropological approach. 
We also identified some possible consequences of this 
presentation for students’ learning (González-Martín 
et al., 2011). Our sample consisted of 17 textbooks used 
in collégial studies in Quebec from 1993 to 2008 and 
our main conclusions can be summarised in four 
main results:

R1: Series are usually introduced through 
organisations that do not lead students 
to question their application or impor-
tance (raison d’être).

R2: Organisations tend to introduce series 
as a tool to later introduce functional 
series, but the inherent importance of 
series is not usually discussed.

R3: These organisations tend to ignore some 
of the main difficulties in learning se-
ries identified by research.

R4: The vast majority of tasks concerning 
series are related to the application of 
convergence criteria, or to the applica-
tion of algorithmic procedures.

Having identified how collégial textbooks introduce 
series, the next stage of the research consisted of 
analysing collégial teachers’ practices and their use 
of textbooks (González-Martín, 2010). In this paper, 
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we discuss how collégial teachers use and view their 
textbooks, specifically in relation to the topic of series.

THEORETICAL FRAMEWORK

We are interested in two main issues: determining 
how collégial teachers use their textbooks, and defin-
ing the relationship between teachers and textbooks.

To study how teachers interact with a range of re-
sources, and how these interactions are central to 
their professional activity, we followed the documen-
tational approach (Gueudet, 2014; Gueudet, Buteau, 
Mesa, & Misfeldt, 2014). In this approach, a resource is 
anything that can possibly intervene with the activity 
of a subject, including artefacts or even a discussion 
with a colleague. In the case of teachers, they may se-
lect, combine, and design their own resources. They 
may use resources in class, modify them (on the spot 
or afterwards), or share them. All this constitutes the 
teacher’s documentation work (Gueudet et al., p. 142) 
and, as a consequence, the teacher develops a struc-
tured documentation system. Teachers, through their 
use of given resources in pursuit of a teaching objec-
tive, develop a document: “a mixed entity, associating 
resources and utilization schemes of these resources” 
(Gueudet, 2014, p. 2336); this process is called a docu-
mentational genesis.

The knowledge involved in developing schemes is pro-
fessional knowledge and can concern a given resource 
(‘this exercise is a good one to trigger an interesting 
discussion to start this chapter’) or the mathematical 
content to be taught (‘I have to work on the idea of 
slope of functions before introducing derivatives’). 
The resource system is the part of the documentation 
system that refers only to the resources used. This ap-
proach therefore considers the professional activity 
of a teacher in its entirety, both in and out of class.

All the processes studied through the documentation-
al approach are developed in an institutional envi-
ronment, which establishes (and sometimes imposes) 
a set of conditions and constraints. Chevallard’s an-
thropological theory provides tools that allow a better 
understanding of choices made by an institution in 
organising the teaching of mathematical concepts, 
as well as the possible consequences of these choices 
on an individual’s practices. A fundamental aspect of 
this theory is the notion of institution. An institution 
I is defined as a social organisation that allows, and 

imposes on its subjects (every person x who occupies 
any of the possible positions p offered by I), the de-
velopment of ways of doing and of thinking proper to I 
(Chevallard, 2003, p. 82). For instance, a classroom is 
an institution (with two main positions: teacher and 
student), as is a school (consisting of several more 
positions: teachers of various disciplines, students in 
different grades, the principal, course coordinators, 
etc.), or an educational system.

To analyse how an institution approaches notions, fur-
ther definitions are required. An object is any entity, 
material or immaterial, that exists for at least one 
individual; in particular, any intentional product of 
human activity is an object. Every subject x has a per-
sonal relationship with any object o, denoted as R(x, 
o), as a product of all the interactions that x can have 
with o (using it, manipulating it, speaking of it, etc.). 
This personal relationship is created, or modified, by 
coming in contact with o as it is presented in differ-
ent institutions I, where x occupies a given position 
p. From this personal relationship, an individual will 
be endowed with what could be designated as ‘knowl-
edge’, ‘know-how’, ‘conceptions’, ‘competencies’, ‘mas-
tery’, ‘mental images’, ‘representations’ and ‘attitudes’ 
(Chevallard, 1989, p. 227).

This notion of relationship is also applicable to institu-
tions: given an object o, an institution I, and a position 
p in I, we define the institutional relationship with o 
in position p, RI(p, o), as the relationship with the ob-
ject o, which should ideally be that of the subjects in 
position p within I (Chevallard, 2003, p. 82); this is, 

‘what is done with o within I’ (Chevallard, 1989, p. 213) 
for any subject in position p. By becoming a subject 
of I in position p, an individual x is subjected to the 
institutional relationships RI(p, o), which in turn will 
re-model his or her own personal relationships. For 
our research, we consider as institution the system 
of mathematics teaching at the collégial level (MTCL). 
The institutional relationship of MTCL with series is 
mainly determined by official programmes and by 
textbooks that develop the contents required by these 
programmes.

In the case of teachers, their personal relationships will 
be affected by the institutional relationships, which 
impose constraints on what to teach and how to teach 
it (for instance, through textbooks). This personal re-
lationship can be seen as an element of the schemes 
developed as a part of a document. In this sense, the 
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document is constructed by taking into account a num-
ber of resources, as well as the personal relationship 
of the teacher with the topic being taught, which has 
a strong influence on his or her view of what should 
be taught and how this should be done, and guides the 
teacher in selecting which resources to use.

We can now state the main objectives of the research 
presented in this paper. We are interested in: 1) ana-
lysing collégial teachers’ personal relationship with 
series and seeing how it relates to the institutional 
relationship promoted by textbooks; 2) analysing 
collégial teachers’ documentation work concerning 
textbook use in preparing for the teaching of series.

METHODOLOGY

The research reported here is a part of a larger proj-
ect aiming at identifying collégial teachers’ practices 
regarding series (González-Martín, 2010), guided 
mainly by our results on the introduction of series 
in textbooks (González-Martín et al., 2011). To achieve 
the objectives of this larger project, and guided by 
the results of our analysis of textbooks, we construct-
ed a protocol for semi-structured interviews. These 
included questions about the textbook used by the 
teachers, their opinion on the adequacy of this text-
book for the students and for the teacher, the num-
ber and type of different representations used, the 
number and type of examples and applications used 
to teach series, their opinions on the most important 
tasks for students to perform during the learning of 
series, and their awareness of the main difficulties in 
learning series, among others. For this paper, we fo-
cus on questions concerning the textbook and its use 
as a resource in preparing lessons about series. The 
interviews were conducted from June to November 
2009, with an average length of 45 minutes. They 
were videotaped and later transcribed for further 
analysis. Once transcribed, the data was organised 
into clusters of different topics, with special atten-
tion paid to keywords that could serve as indicators 
of the teachers’ personal relationship with series and 

of their approach to preparing and organising their 
textbook use.

In order to cover a wider variety of practices for the 
teaching of series, we selected five teachers from var-
ious collégial establishments in Montreal, the biggest 
city in the province of Quebec. We thereby avoided 
interviewing teachers working in the same establish-
ment, who tend to organise their teaching in similar 
fashions. These teachers, designated T1, T2, T3, T4, 
T5, had varying levels of teaching experience at the 
collégial level and varying levels of experience teach-
ing series (Table 1).

It is important to clarify that because we were inter-
ested in the use and role of the textbook within the 
resource system of our teachers, we did not collect 
all the resources of the teachers (see Gueudet, 2014); 
we had previously analysed these teachers’ textbook 
(which shared the characteristics R1 to R4 described in 
the Introduction) and inquired about their vision and 
use of it. The study of the resource system as a whole 
will be the focus of future research. In the following 
section, we present the main results derived from 
the interviews.

SOME RESULTS

Coincidentally, at the time of the interview our five 
teachers were using the same textbook for their cours-
es. This textbook was part of our earlier study’s sam-
ple, and, as mentioned above, had been analysed by us 
previously. It displays the general characteristics R1 
to R4 of the textbooks within the sample. The teachers’ 
reasons for choosing it were varied (all quotes have 
been translated from the original French):

T1: I find that it is better than the others. 
[…] All textbooks are basically similar, 
but the order and the way they present 
content, I think that this one is good.

T2: Because two teachers from here wrote 
it […].

T1 T2 T3 T4 T5

Experience teaching in collé-
gial

5 years 20 years (mathematics 
and informatics)

32 years 6 years 7 years

Experience teaching series 5 years 4 years More than 20 
years

4 years 2 years

Table 1: Teachers’ experience at the collégial level and experience with teaching series
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T3: […] for many reasons. The simplest rea-
son is that [it] covers the course content 
so it’s a good work tool [for] students 
[and] the teacher.

T4: […] I found that it was better where 
integration techniques are concerned. 
Especially the way the exercises are 
grouped together. […] At the beginning, 
the drill exercises are grouped togeth-
er so that one can associate a concept 
with many examples […] So, I find that 
it is an appropriate learning sequence. 
[…] I believe a lot in drill exercises. I try 
to create a balance, but there are many 
textbooks that I do not like […].

T5: Well, it’s the one that was used before 
I started teaching… […] it is good, it has 
theory, […] it has a lot of exercises… it’s 
[…] good enough for the students be-
cause […] it helps the student a lot, [it 
also helps] the teacher because… it’s 
what we’re asked to teach. Meaning 
that, the parts… I mean, the proofs… […] 
here they’re not in the textbooks […] so 
in that way we know that we don’t have 
to teach those proofs… and […] it’s a well 
enough organised book… […] Yes, we use 
the textbook, but the teachers’ syllabi 
are also useful in order to know how… 
[…] which is the best way to introduce a 
concept.

We see here the different purposes of textbook use 
identified by Mesa and Griffiths (2012): generating the 
syllabus, preparing classes, and designing homework 
(when they speak about the exercises). However, the 
most prevalent use seems to be offloading, with the 
exception of cases where some portions are removed 
with no alternative information added (which we do 
not consider to be adapting). T2 and T5 seem to be 
subject to particular restrictions, indicating that 
they were not entirely free to select the textbook (‘two 
teachers from here wrote it’ and ‘it’s the one that was 
used before I started teaching’), although T5 adds infor-
mation concerning his opinion on content and struc-
ture. We can observe a phenomenon that was also 
detected by Mesa and Griffiths: the textbook seems 
to be perceived as written for the student. Moreover, 
aside from the syllabus, the resource system appears, 
so far, reduced to the use of a single textbook, which 
suggests that professional knowledge is underdevel-

oped with regard to the teaching of series in MTCL. 
We did not see any of the teachers use more than one 
textbook in preparing their courses.

We were able to confirm later that the most preva-
lent way of using the textbook was through offloading. 
When asked whether they follow the order of the text-
book when they teach series, T1 and T4 said yes (T4 
said ‘I think so’), whereas T2, T3 and T5 (transcribed in 
his previous response) indicated that they ‘almost’ do:

T3: Certain sections are set aside and left 
out, but on the whole we almost follow 
the order.

T4: Yes, but the textbook contains much 
more than the course content. So you 
have to make a selection. For example, 
the convergence criteria in the text-
book ― almost 10 criteria are present-
ed. In fact, we only have time to get the 
students to master perhaps half of the 
criteria.

In each case, it seems that the teacher’s personal re-
lationship with series does not diverge significantly 
from what is presented in the textbooks; the only con-
cern seems to be that there is more material in the text-
books than necessary, which results in some sections 
being set aside. It is possible that this similarity be-
tween their personal relationship with series and the 
institutional relationship transmitted by the textbooks 
is at the origin of the teacher’s decision not to enrich 
their documentation system with different sources. 
This could lead the teachers to develop schemes for 
the teaching of series that privilege the presentation 
of routine tasks. This became more evident when we 
asked them whether they thought the textbook they 
use meets the needs of the students and the instructor:

T1: Needs of the instructor, yes… I think that 
it’s complete enough when it comes to 
sequences and series… […] Meeting the 
students’ needs, well, that’s the eternal 
question of why do we teach that […].

T2: Hmm, we are currently re-evaluating 
what we are doing about sequences and 
series […] I would say that for the mo-
ment, there are not any textbooks that 
really correspond to what we would like 
to do. Especially because we are not cer-
tain yet of what we would like to do […] 
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As long as we don’t know what we want 
to do, we will not find the appropriate 
textbook…

T3: The one that we use, yes. It’s not the only 
one […]. But that one, yes.

T4: The one that I use does, yes.
T5: Hmm… yes, I would say for the teach-

er, yes… hmm… for the student […] well 
[…] we do not have a lot of time to make 
the student practise. They are the ones 
who have to practise. So the textbooks… 
[…] there are no parts where they can 
do activities or experiment. Even the 
teacher does not have a lot of time to 
experiment with students on the con-
cept of series and organise activities for 
them. So, time is short for that… and the 
students… all they have to do is practise 
with the exercises […]

These teachers seem to see the textbook as being for 
the student and they suggest that it meets students’ 
needs in their learning of series. T2 was the only 
teacher who seems to question how series should be 
taught (or what should be taught), but he ultimately 
bends to the pressure of the institutional relationship 
and uses the textbook exclusively. On the other hand, 
T1 also raises the fact that the reason for learning se-
ries may not be clear to students, but he does not seem 
to adapt the textbook and provide extra information 
to clarify this issue. It seems that the weight of the 
institutional relationship with series deters him from 
taking initiative and using other resources to enrich 
his documentation system and address these issues.

The teachers’ adherence to the presentation and or-
ganisation of the textbook seems absolute, and they 
generally insist on the importance of performing the 
exercises, which was identified as the most helpful 
textbook feature by Mesa and Griffiths (2012). In fact, 
the tasks that the teachers consider to be most crucial 
in learning series were all taken from the textbook 
(González-Martín, 2010). As in Mesa’s and Griffiths’s 
research, no teacher identified the textbook as a tool 
from which they could learn or that could help them 
decide how to sequence the topics.

FINAL REMARKS

We cannot present more excerpts from the interviews 
here, which would allow us to gain better insight into 

the use of the textbook by our teachers and paint a 
clearer picture of their personal relationship with 
series and their apparent compliance with the insti-
tutional relationship. This will be the subject of future 
papers.

However, the data presented here allows us to observe 
a kind of yielding to the institution’s approach to in-
troducing series (through textbooks). There appears 
to be a similarity between the teachers’ personal re-
lationship and the institutional relationship, in spite 
of the weaknesses on the way series are introduced 
by textbooks (González-Martín et al., 2011). Perhaps 
the fact that the teachers’ resource system seems so 
restricted can be explained largely by this yielding: 
our teachers may not see any reason to seek out com-
plementary resources in preparing their lessons. Our 
data indicates that the resource system of our teachers 
is by and large reduced to the use of a single textbook 
that the teachers do not question, and the choice of 
this single resource as core of the resource system 
appears to be guided by the personal relationship of 
these teachers with series, which appears to be quite 
close to the institutional relationship transmitted in 
the textbooks.

In general, our results echo those of Mesa and 
Griffiths (2012). However, textbook use at this school 
level seems to be more restricted to offloading (which 
in this case includes using material from the textbook 
while setting some parts aside). Offloading is the pri-
mary way textbooks were used by our interview sub-
jects. Also, textbook use is quite prevalent, which is 
common in collégial studies in Quebec although it 
diminishes at the university level. In spite of their 
varied experience, the instructors relied on the text-
book to an equal degree, and in this way they seemed 
to differ from the tertiary instructors interviewed by 
Mesa and Griffiths.

The conclusions of the study conducted by Mesa and 
Griffiths, as well as our own research, reveal a number 
of important tendencies related to textbook use that 
may have a strong impact on students’ learning at the 
post-secondary level, especially in light of research 
results on post-secondary textbook content. We are 
aware that our sample is quite small, and that we only 
focus on a specific mathematical topic; however, the 
similarities between our and Mesa’s and Griffiths’s 
results lead us to identify some possible concerns. 
The need for more research on textbook content and 
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textbook use at the post-secondary level is therefore 
crucial.

ACKNOWLEDGEMENT

This project has been funded by the Fonds Québécois 
de Recherche Société et Culture (FQRSC – 128796) and by 
the Social Sciences and Humanities Research Council 
(SSHRC – 195873).

REFERENCES

Chevallard, Y. (1989). Le concept de rapport au savoir. Rapport 

personnel, rapport institutionnel, rapport officiel. Séminaire 

de didactique des Mathématiques et de l’Informatique. 

Université J. Fourier, Grenoble, France, 211–235.

Chevallard, Y. (2003). Approche anthropologique du rapport au 

savoir et didactique des mathématiques. In S. Maury & M. 

Caillot (Eds.), Rapport au savoir et didactiques (pp. 81–104). 

Paris, France: Faber.

Giraldo, V., González-Martín, A. S., & Santos, F. (2009). An 

analysis of the introduction of the notion of continuity 

in undergraduate textbooks in Brazil. In M. Tzekaki, M. 

Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd 

Conference of the International Group for the Psychology 

of Mathematics Education (vol. 3, pp. 81–88). Thessaloniki, 

Greece: PME.

González-Martín, A. S. (2010). The concept of series: teachers’ 

conceptions and teaching practices. In M. M. F. Pinto & 

T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of 

the International Group for the Psychology of Mathematics 

Education (vol. 3, pp. 33–40). Belo Horizonte, Brazil: PME.

González-Martín, A. S., Giraldo, V., & Souto, A. (2013). The intro-

duction of real numbers in secondary education: an insti-

tutional analysis of textbooks. Research in Mathematics 

Education, 15(3), 230–248.

González-Martín, A. S., Nardi, E., & Biza, I. (2011). Conceptually-

driven and visually-rich tasks in texts and teaching prac-

tice: the case of infinite series. International Journal of 

Mathematical Education in Science and Technology, 42(5), 

565–589.

Gueudet, G. (2014). Digital resources and mathematics teachers’ 

professional development at university. In B. Ubuz, C. Haser, 

& M. A. Mariotti (Eds.), Proceedings of the Eighth Congress 

of the European Society for Research in Mathematics 

Education (pp. 2336–2345). Antalya: Middle East Technical 

University and ERME.

Gueudet, G., Buteau, C., Mesa, V., & Misfeldt, M. (2014). 

Instrumental and documentational approaches: from tech-

nology use to documentation systems in university math-

ematics education. Research in Mathematics Education, 

16(2), 139–155.

Lithner, J. (2004). Mathematical reasoning in calculus text-

book exercises. Journal of Mathematical Behavior, 23(4), 

405–427.

Mesa, V., & Griffiths, B. (2012). Textbook mediation of teach-

ing: an example from tertiary mathematics instructors. 

Educational Studies in Mathematics, 79(1), 85–107.

Raman, M. (2004). Epistemological messages conveyed by 

three high-school and college mathematics textbooks. 

Journal of Mathematical Behavior, 23(4), 389–404.

Sträßer, R. (2009). Instruments for learning and teaching mathe-

matics. An attempt to theorise about the role of textbooks, 

computers and other artefacts to teach and learn mathe-

matics. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), 

Proceedings of the 33rd Conference of the International 

Group for the Psychology of Mathematics Education (vol. 1, 

pp. 67–81). Thessaloniki, Greece: PME.



2131CERME9 (2015) – TWG14

Media and milieus for complex numbers: 
An experiment with Maple based text

Niels Grønbæk1 and Carl Winsløw2 

1 University of Copenhagen, Department of Mathematical Sciences, Copenhagen, Denmark, gronbaek@math.ku.dk

2 University of Copenhagen, Department of Science Education, Copenhagen, Denmark

Based on the notion of institutionally conditioned rela-
tionship to an organisation of knowledge and practice, 
we present our first design and implementation of a 
self-study module on complex numbers in an introduc-
tory mathematics course for non-mathematics majors. 
The basic idea is to develop an “interactive text” in the 
computer algebra system “Maple”, designed to create 
a reasonably self-sustaining dialectics of media and 
milieus for students to learn about and work with com-
plex numbers. We discuss some of the obstacles and con-
straints met in a first implementation of such a text, as 
well as hypothesis for future implementations.

Keywords: Media-milieus, Maple, self-study, interactive 

text.

INTRODUCTION 

Mathematics departments and auditoria are among 
the last strongholds for chalkboards. Sfard (2014) re-
flects on the reasons why lectures continue to be a com-
mon teaching format in undergraduate mathematics 
education and hypothesizes that “watching a mathe-
matician in action and imitating his moves while also 
trying to figure out the reasons for the strange things 
he is doing may be the only way to come to grips with 
[mathematical objects]” (p. 202). She also points out 
that this “coming to grips” can be initiated but by no 
means accomplished through watching; it requires 
solitary “thinking” (or “self-communication”, in the 
terminology of Sfard). However, the importance of 
individual study in advanced mathematics is indeed 
upstream our current “world of incessant chatter, 
where everybody talks to everybody else and where 
educators preach collaborative learning” (p. 202). 

This necessity of individual work could, in turn, be 
related to and in part explained by the primacy of 

written discourse in post-elementary mathematics, a 
phenomenon which appears already in the context 
of school algebra and which breaks with the usual 
role of written text as merely a formalized version 
of spoken language:

It is important to notice that in the algebraic sym-
bol manipulations, this relationship between oral 
and written work is reversed: writing comes first 
and orality is just a “secondary” accompaniment 
of the written algebraic formulations, which 
are furthermore not always easy to “oralize”. 
Contrary to our mental habits, written algebraic 
symbolism is not a derivation of oral language: 
it is the source, the manifestation and the touch-
stone of algebraic “thinking”. (Bosch, 2012, p. 7)

Certainly, the primacy of individual written work is 
fully compatible with the ostensive functions of chalk-
board lectures and also with other common formats 
of university teaching such as exercise tutorials. It 
does not imply that other more interactive forms of 
teaching cannot be very useful. But given the crucial 
role of individual writing in advanced mathematics, 
the proliferation of online courses, and the increas-
ing pressure on universities to deliver cost effective 
teaching, the following question is increasingly ur-
gent for university mathematics education: to what 
extent can cost-intensive face-to-face teaching be dis-
pensed with? What kinds of “real time” interaction 
with teachers and fellow students are necessary, if 
any?

These questions arose in a very practical and rather 
abrupt form for the first author, as he prepared to 
teach a first year course on calculus for a mixed public 
of science students: due to a mismatch of adminis-
trative rules and the calendar around Christmas, the 
course had to do with 8 instead of the usual 9 weeks of 

mailto:gronbaek@math.ku.dk
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teaching. Given the density of topics to be covered in 
the course, spanning from review of secondary level 
calculus over linear differential equations to surface 
and multiple integrals, the decision was made to select 
one week of the normal teaching programme, in which 
complex numbers and basic complex functions are 
introduced – and replace it with “self-study”. That did 
not mean that complex numbers should be any less 
part of the course as they continued to appear in other 
topics, in exam questions etc. It also did not mean that 
no support was to be given for students work with 
complex numbers; only would normal teaching time 
not be set aside for it, neither in lectures taught by the 
first author, or in class sessions taught by instructors.

Our basic idea for dealing with this situation was to 
create an “interactive” text based on the computer 
algebra system Maple 17. In this paper, we present our 
first designs and observations, as well as a theoretical 
framework, which helps to shape our work with the 
task and to situate it in the wider problem area, which 
was outlined in the first paragraphs above. We stress 
that this is on-going work, and we present neither a 
fully developed design, nor a systematic empirical 
study of its functioning. Thus, the points of the paper 
are, mainly, a set of theoretically sharpened design 
ideas.

THEORETICAL BACKGROUND: 
MEDIA AND MILIEUS

To render the quandaries outlined in the introduc-
tion more precise, we have found it useful to model 
them within the framework of the anthropological 
theory of the didactic (see, for instance, Chevallard, 
1999; Winsløw, 2011, for more detailed introductions). 
In the most general formulation, we consider an or-
ganization O of mathematical practice and knowledge, 
a generic student x within an institution I, and we 
are interested in the conditions and constraints for 
establishing a given relationship, denoted RI(x,O), be-
tween x and O. Among the most immediate conditions 
are the media and milieus (cf. Chevallard, 2009) made 
available by the institution to establish and develop 
RI(x,O). According to the original definitions, 

The word media designates any system of rep-
resentation of a part of the natural or social world 
in view of a certain public: the lecture of a pro-
fessor of mathematics, a treatise on chemistry, a 
televised news programme, a regional or national 

newspaper, an Internet site, etc., are in this sense 
media systems. A milieu is understood in a sense 
close to that of adidactic in the theory of didactic 
situations. In fact, we designate as milieu any sys-
tem that can be regarded as devoid of intention in 
terms of the answers it can bring, implicitly or 
explicitly, to a given question. By contrast (…) me-
dia are in general motivated by certain intentions, 
for instance, the intention to “inform”. Naturally, 
a media can also, with regard to some particular 
question, be considered a milieu and used as such. 
(Chevallard, 2009, p. 344).

Medias and milieus in the university context
Adidactical situations in the university context do not 
always take the form of teacher initiated student work 
within a classroom setting, as in the primary school 
settings investigated by Brousseau (1997). The individ-
ual work of students referred to in the introduction 
must be considered an important form of adidactical 
situation if this notion should apply to central learn-
ing situations in the university setting. Thus, when 
students study a textbook and encounter an inference 
they do not follow, they are supposed to consider the 
text as a milieu that resources and constrains their 
efforts to fill in the gap. Similarly, an exercise to be 
solved is part of a milieu to which the students can 
apply and adapt their own relevant knowledge, and 
thus develop their relationship with the mathematical 
organizations to be acquired.

Consider a generic student x of the mathematics 
course MatIntro at the University of Copenhagen 
(I) whose relation to the mathematical practices and 
theories related to complex numbers (Oℂ) we wish to 
study, and which of course have to be specified fur-
ther. Without further assumption about x, we may 
have reason to stipulate a number of conditions and 
constraints related to x, in view of developing RI(x,Oℂ) 
according to the aims of I; in particular, we may as-
sume that the students has established certain rela-
tions RI(x,Oi) to other mathematical organizations Oi 
in some way related to Oℂ, as a result of being a student 
in secondary school (I’) and university (I). In the exam-
ple, such assumptions concern the detailed practice 
and theory previously encountered by students in 
relation to relevant domain such as arithmetic and 
basic algebra, including polynomial equations, vec-
tors in the plane and exponential functions. Such 
assumptions can be based on a study of media and 
milieus through which many students are likely to 
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have established their relation to Oi – for instance 
textbooks (media), tasks devolved to students (part 
of milieu) and computer algebra systems (which can 
function as kind of a milieu for students). 

Chevallard (2009, p. 345) insists that “the existence of 
a vigorous (and rigorous) dialectics between media 
and milieus is a crucial condition to avoid that the 
study process is reduced to an uncritical copying of el-
ements of answers which are scattered in institutions 
and society”. In fact, even in the situation of lectures 
referred to in the introduction, this dialectics is pos-
sible: while the lecturer is of course, basically, acting 
as a medium, he may use the blackboard to create a 
milieu and let the students observe how he interacts 
with it, as when he says: “Let’s see what happens if we 
replace z by re

iθ in these identities”, and subsequently 
calculates in real time (with the possibility of commit-
ting errors, of volunteering students contributing 
at least orally, etc.). This way, students may observe 

“the mathematician in action” against a milieu, and 
students should try to follow and even anticipate the 
moves, which bring about the solution to whatever 
problem is at stake – but in the secure position of 
individual “thinking”, without being exposed to the 
responsibility of completing all required actions in 
public, as the lecturer.

Even in the most traditional university teaching of 
mathematics, one can find rigorous systems of media 
and milieus. The main problem is that of their being 
vigorous: to what extent do students develop a critical 
and autonomous relationship to the “answers” found 
in the media proposed by the institution? Do students 
interact with milieus in which these answers are re-
lated to meaningful questions?

CONTEXT AND DESIGN 

We now return to the somewhat special task of “teach-
ing” first year students the basics of complex num-
bers without disposing of any regular teaching time. 
Focusing on this context as a case, the aim of this paper 
is to discuss design principles for creating a rigorous 
and vigorous system of media and milieus for students’ 
self-study, using a computer algebra system, i.e. a mo-
no-media rather than a multi-media design. And, since 
vigour is also an empirical quality, we end by a few 
observations of the first experiments with our design.

We first specify some conditions and constraints, 
which the design was based on.

Conditions and constraints from the context
The course MatIntro caters to a number of different 
BSc study programmes in science, including pure and 
applied mathematics, and its contents are thus the re-
sult of adapting to the needs of these. The reasons for 
sharing this and other first year courses among study 
programmes are in part financial, but also the flexibil-
ity it gives for students to change programme without 
having to take new basic courses. On the other hand, 
this arrangement leaves little room for the teachers in 
charge to change the contents of the course. The “self-
study” material developed for complex numbers thus 
had to be relatively neutral in relation to its specific 
use in science disciplines. 

The design was experimented in a run of a version of 
the course with about 250 students from biochemistry, 
chemistry and nano-science. There was no face-to-
face teaching assigned to the design, and only very 
limited human resources available for interacting 
in other ways with the students, for instance provid-
ing feedback to exercise work. The only exception 
was what the lecturer (the first author) could use his 
own time during the course period. The design should 
thus provide students with media, which they could 
access on their own, and milieus in which they could 
both acquire and validate adequate relationships to 
the subject.

Another important condition for the solution to be de-
veloped is that MatIntro uses the advanced computer 
algebra system (CAS) Maple substantially, including 
weekly “labs”. Maple functions as a learning resource 
in the course and as a tool supplementing and enhanc-
ing paper and pencil techniques. The focus is on in-
sight rather than on computing results. The course 
grade is based on weekly hand-ins requiring Maple 
and two multiple-choice tests, in which no electronic 
tools are allowed.

As with many other CAS, work in Maple takes place 
in a window where input and output appear in con-
secutive lines, much as in a word processor window 
with the crucial exception that the latter has only in-
put. The contents of the window can be saved as a file 
(called a Maple sheet), for later use and development. 
Students less familiar with Maple often use Maple 
sheets found on the Internet (including the manu-
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facturer’s own support pages) in order to get ideas 
for how to solve a given problem. In MatIntro and 
similar courses, teachers regularly publish Maple 
sheets on the course web page, to demonstrate Maple 
techniques and other mathematical points to students. 
Such sheets are typically short and sketchy, and the 
idea is that students may use them (or parts of them) 
in their work with related tasks.

Design
The basic idea of our design was to create an inter-
active introduction to complex numbers as a set of 
Maple sheets to be used for self-study by the students. 

‘Interactive’ means that the document serves both as 
media and milieu and ‘self-study’ means that Sfard’s 

‘observing a mathematician in action’ (e.g., in a lecture) 
is replaced by ‘observing Maple in action’ through 
embedded input-output turns. 

The choice of a course theme (complex numbers) 
for self-study was motivated by two considerations. 
Firstly, this subject is somewhat isolated in the course 
syllabus, which makes the experiment less risky for 
the course as such. Secondly, it seems particularly 
suited to exhibit Maple in action. The course goals fo-
cus on a small number of connected techniques within 
complex arithmetic, algebra of low degree polynomi-
als, and basic properties of the complex exponential 
function. These are linked only to relatively simple 
Maple routines; moreover, complex numbers is a new 
area to most students and as already said, is relatively 
isolated in the course. So it could be conceivably de-
veloped as a kind of “Maple world”.

Traditional use of Maple in teaching is as a milieu in 
which certain computations, visualisations and ex-
periments can be performed using an input-output 
scheme. This milieu becomes operational only as a 
supplement to media and other elements of milieus 
that students interact with during lectures, exercise 
solving etc. The students must navigate in this jux-
taposition of different media and milieus to build a 
set of relationships RI(x,O) as demanded from I. The 

common formats of teaching gives various support 
to the student, and in particular the ‘mathematician 
in action’ is not just part of a media system for mathe-
matical content but also demonstrates how to use mi-
lieus (which could be Maple experiments) to take on 
various concrete tasks. If “live” (blackboard or other-
wise) manipulations of mathematical objects are to be 
replaced by a simple Maple sheet, it must reproduce 
some of the same experience of purposeful, reasoned 
instruction, complemented with work in explorative 
milieus. One added potential (difficult to realize!) is 
that students could take on a more active role as com-
pared with the common situation in lectures.

In our design, we used Maple to create a media-milieu 
dialectics in three ways: as a generator of dynamic 
text (media with embedded milieu), as a generator of 
drills for techniques to solve specific tasks with feedback 
to students’ solution proposals (milieu with embedded 
media), and to explore and exhibit phenomena (media 
with embedded milieu). In order to explain these op-
tions, we name the main components of a Maple sheet: 

 ― Maple text: non-executable text, essentially as in 
a word processor; 

 ― Maple input : executable text;

 ― Maple output : results of executions; 

 ― Maple Components: programmable interactive 
components (code is not shown) including sliders, 
buttons, Math Containers for in- and output, and 
other items.

The user or author of a sheet may hide or show Maple 
input, to produce different appearances of the work-
sheet. With the input hidden, the worksheet may read 
as a simple textbook (media) with its mixture of text, 
formulae, calculations and graphics; it is invisible that 
the latter are in fact Maple output. When the Maple 
input is revealed one sees the embedded milieu, which 
can be acted on. 

Figure 1: An excerpt of a Maple sheet with text, input (hidden in left version) and output
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Here is a simple example (cf. Figure 1 which shows 
a short excerpt of an introductory Maple sheet for 
the course): if we have defined two complex numbers 
by >z:=2+3*I;w:=1-5*I; a statement of their 
sum should be coded >‘z’+’w’=z+w; rather than 
>‘z’+’w’=3-2*I;. In both cases the output as part 
of the text reads z + w = 3 ⎼ 2 I, but the first option will 
preserve the correctness of the second part, even 
if changes are effected in the first. Thus, ‘=z+w;’ is 

“Maple in action”, while ‘=3-2*I;’ is just communi-
cating the sheet author’s knowledge.  

 The example illustrates how media-milieu dialectics 
is used explicitly in the design. When Maple is the 
primary source of mathematical content the Maple 
in- and outputs  are a-didactical and the dialectics is 
rigorous so that the user may act in this milieu (here, 
mainly re-assign z and w or change the operation). 
Conversely, no non-Maple manipulation, such as  

‘=3-2*I;’ can be negotiated by the user and there-
fore may lead to imitation rather than construction 
of knowledge.

Milieus are embedded more explicitly into the sheet 
by using Maple applets. The most basic way is a drill, 
aimed at education a specific technique. Computation 
of reciprocals of complex numbers serves as an exam-
ple. It consists of six components (see Figure 2): a but-
ton “new number”, an output container exhibiting a 
complex number, an input container to be filled by 
the student, an erase button, a true-false button, and 
an output container displaying either “true” or “false”. 

When “new number” is clicked, Maple exhibits a com-
plex number randomly chosen from a pre-set range 
(with more than 400 different numbers). Thus Maple 
serves two purposes. It generates a variation of tasks 
of identical type and provides feedback to the stu-
dent’s performance with a technique to solve the task. 

Math containers are also used to let the students inves-
tigate phenomena from a more theoretical point. The 
geometry of complex multiplication by a real factor is 
explored by means of a “new number” button, a slider 
to choose the real factor and a plot container exhib-
iting the geometric effect of multiplication. Similar 
milieus are offered to explore the geometric meaning 
of multiplication by purely imaginary factors and the 
general case. The student is asked to insert personal 
descriptions in terms of modulus and argument in 
the text (for this, no feedback is available). The full 
Maple material can be consulted at the web address 
http://www.math.ku.dk/kurser/2013-14/blok2/matin-
trokem/selvstudium/, where the reader may explore 
the examples mentioned above, and more.

The functioning of the sheets produced so far is 
incomplete in at least two respects. The plainest is 
that feedback, which can be produced with Maple, is 
very limited and (as with most software) merciless on 
syntax and other formal errors, which are naturally 
common for beginners. Also, institutionalization (in 
the sense of Brousseau, 1997, p. 215) is independent 
of what students have actually achieved in a milieu.

To address these problems in part a discussion forum 
dedicated to the self-study part of the course was set 
up in the on-line platform of the course. Here students 
and teachers could post and answer any question or 
comment. The intention was that teachers monitored 
the discussion forum in a stipulated weekly time slot, 
and students were promised answers and rectifica-
tions to questions and problems, if possible immedi-
ately but else within a deadline. 

Figure 2: A simple drill applet to work with a technique for taking reciprocals

http://www.math.ku.dk/kurser/2013-14/blok2/matintrokem/selvstudium/
http://www.math.ku.dk/kurser/2013-14/blok2/matintrokem/selvstudium/
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SOME OBSERVATIONS FROM A 
FIRST EXPERIMENTATION

Students were free to choose when to work with the 
material, and to work individually or with others. In 
their rather tight schedule only Friday afternoons 
were available to all students. Collaboration was en-
couraged in this slot. We reserved three afternoons 
for the monitoring of the discussion forum, corre-
sponding to the three sub-modules into which the 
Maple sheets for the full self-study, corresponding 
to one week of teaching, were organized: (i) arithmetic 
and geometry of the complex plane, (ii) the quadrat-
ic equation, the exponential function, (iii) review of 
main points. Very few used the Friday slots and the 
discussion forum was practically unused (6 questions 
altogether). We have no solid evidence of the reason 
for lack of use of the discussion forum, but from focus 
group interviews, it appears that students preferred 
to confer with fellow students and instructor, as well 
as more informal channels such as Facebook.

A focus group test and interview
Following the first module a focus group interview 
was set up with four volunteer students commencing 
with four written tasks very similar to the drills of the 
first module sheets. Having collected the students’ in-
dividual solutions to these tasks, we asked a number of 
questions about their experience with the sheets. The 
students reported to have worked with the sheets, in a 
combination of individual work and conferences with 
study groups. None reported difficulties; some even 
said the exercises were too easy. However, our written 
tasks suggested severe difficulties; for instance, not one 
of them had been able to compute (1+2I)(3⎼I), and in at 
least two of the cases, this appeared to be related to an 
inappropriate mastery of the distributive law. From 
this experience at least two observations can be made.

The first is methodological: what students say can 
be strongly misleading as to what they are actually 
able to do. The reasons could be reluctance to admit 
difficulties to fellow students and lecturers as well 
as self-deception. The latter might in part be due to 
insufficient feedback from the sheets (in fact, one stu-
dent noted that the applets may only let you know that 
you are wrong, not why). 

The second point is specific to students’ insufficient 
relationship with the distributive law (and other or-
ganisations of knowledge in the borderland between 

arithmetic and algebra). Whether or not it is rooted in 
CAS-use in secondary school, it becomes an obstacle 
to using the theoretical definition of operations in the 
setting of complex numbers. We had not anticipated 
such obstacles in our design.

Students’ results 
The most important measure of RI(x,O), from the view-
point of students and institution (the university) alike, 
is that of summative assessments. In MatIntro natu-
rally some of the items of the multiple choice tests 
are on complex numbers. Each test had one such 
task: in test 1, to calculate (2 + 3I)(1 − I)

1 + I ; in test 2 to find a 
polynomial with roots 1+7I and 1⎼7I. Texts and notes, 
but no computers, were allowed at the test. Students 
performed roughly 20% less well on these items than 
on the tests as a whole, but this is insignificant as the 
relative difficulty of items cannot be assumed to be 
uniform. However, the 250 students were organized 
in nine classes (for exercise sessions with instructors), 
and we observed significant variations among classes 
as concerns the ratio of class average score on com-
plex numbers items and average score on all items. We 
suspected these could be related to class instructors’ 
own initiatives to include complex number tasks in 
their teaching, even if they were not asked to. So, a 
survey on this was sent to them after the completion 
of the course. Indeed, it turned out that one instructor 
(whose class performed very well on complex num-
bers) had written and used a hand-out on complex 
numbers, based on the Maple sheets and providing 
an overview of most formulae and results on complex 
numbers to know about; these were also used by the 
instructors of a few other well performing classes. 
One could thus suspect that parts of the variations 
could be ascribed to these initiatives and the differenc-
es of focus. We do not have firm evidence to support 
our hypothesis that test oriented teaching caused the 
variations observed, but we can confirm that the “self-
study of Maple sheets” were, in the end, far from the 
only source of media and milieus for students to learn 
about complex numbers.

Students’ opinions
Most of our other evidence is gathered indirectly on 
students’ impressions and opinions. These are in par-
ticular expressed in the anonymous on-line evalua-
tion of the course, which is usually not very positive 
with students from the study programmes concerned. 
In fact, 71 respondents give mostly negative comments 
about the course as a whole, and also about the self-



Media and milieus for complex numbers: An experiment with Maple based text (Niels Grønbæk and Carl Winsløw)

2137

study (complex number) part. They criticize the lack 
of feedback, and some say directly that there should be 
accompanying lectures or videos of lectures. The idea 
of drills (built into the Maple sheets) seems, however, 
well accepted by those who mention them. Regular 
meetings between the lecturer and student represent-
atives confirm these trends. 

PERSPECTIVES AND FUTURE EXPERIMENT

The experiment with an “island” of self-study was 
imposed from the outside as an unexpected addi-
tion to the other constraints on this tightly packed 
introductory course for non-mathematics majors. 
The reaction of students and teachers alike seem to 
suggest that a satisfactory form of self-study is very 
hard to realize in these circumstances. In the absence 
of familiar teaching formats, they tend to replace a 
coherent organisation Oℂ of theory and practice re-
lated to complex numbers (as developed in the Maple 
sheets and foreseen in the course description) with a 
rather minimal set oℂ of disconnected practices which 
appear in the most rigorously administered parts of 
the summative assessment (the multiple choice tests). 
This way, the institution as a whole seems to devel-
op RI(x,oℂ) rather than RI(x,Oℂ), as its way to measure 
RI(x,Oℂ) is in fact rather a minimal measure of RI(x,oℂ).

One tempting way to proceed (under similar condi-
tions) may thus be to accept that a generic student x 
in this institutional context I cannot be expected to 
develop more than RI(x,oℂ). The design could be adapt-
ed to this situation by replacing most of the text with 
succinct expositions of task types and techniques, 
enriched with many more interactive drill items, 
examples and warnings on typical errors, and so on. 
This kind of approach seems to be endorsed, at least 
in deed, by many students and instructors.

This, however, would not be acceptable from the insti-
tutional point of view, for the reasons outlined in our 
exposition of “Conditions and constraints from the con-
text”. One could then try to pursue the (quite plausible) 
claim that the course is much too heavily packed with 
content, given the course time allotted. This makes the 
course very vulnerable to incidences as the one we 
described (one week disappearing), and one may also 
suspect that whether one accept it or not, outcomes of 
type RI(x,oℂ) rather than RI(x,Oℂ) will be common unless 
the size of the total content organisation is reduced 
and adjusted more exactly to the students’ programme. 

This, however, takes us away from the level of course 
design to the level of institutional politics.

Indeed, we are certain that the designed Maple sheets 
reflect the course goals adequately. They have been 
used with good results in two high school classes, in 
the spring of 2014 (with much more direct instruc-
tion on the use the sheets). This only strengthens our 
hypothesis that the framework (at the level of peda-
gogy) for their first implementation in MatIntro was 
inadequate, and that an island of unaccompanied “self-
study” in such a course is very likely to result in side 
effects as those observed.

A third way out, which we shall try to pursue in the 
next run of the course, is therefore to make use of a 
new concession of the institution, allowing lectures 
on some of the Friday afternoons. They will be used to 
introduce the students to the sheets, and in particular 
how to make use of them (both as media and milieus). 
The class instructors will be asked to align with these 
lectures and use the course material rather than self-
made cookbooks on how to pass the tests; in turn these 
latter will be amended to correspond more fully to 
both practical and theoretical levels of Oℂ. 
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In this paper, I investigate university teachers’ documen-
tation work: their interactions with resources for prepar-
ing and delivering their teaching, and the consequences 
of these interactions. I have interviewed and collected 
the material resources used by six university teachers 
working in France. Analysing the data collected, I ob-
serve specific features of their documentation systems, 
concerning crucial resources, professional development, 
and the place of digital resources. 
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INTRODUCTION: STUDYING TEACHERS’ 
WORK WITH RESOURCES AT UNIVERSITY

The work presented in this paper belongs to the grow-
ing field of research concerning university teachers’ 
practice (e.g., Nardi, Jaworski, & Hegedus, 2005), with a 
specific feature: I consider the teacher’s work in class, 
but also out-of-class. I investigate indeed university 
teachers’ work with resources, with a documentation-
al approach perspective (Gueudet, Pepin, & Trouche, 
2012). Previous steps have been done at CERME8, with 
a study concerning the detailed case of one teacher, 
working in a technological institute (Gueudet, 2014). 
The theoretical aspects of such a study and the spe-
cific features from university concerning teachers’ 
documentation work have been deepened in Gueudet, 
Buteau, Mesa and Misfeldt (2014), within the RME 
special issue concerning “Institutional, sociocultural 
and discursive approaches to research in university 
mathematics education”. 

I firstly briefly recall the main elements of the theoret-
ical approach. Then I present the methods, organised 
around the cases of six teachers with different profiles. 
I present the results obtained by analysing interviews 
with these teachers and the material resources they 

use, focusing on the documentation systems structure, 
on crucial resources, on professional development 
and on the place of technology.

THEORETICAL FRAME, CONTEXT 
AND METHODS

I retain in this work the theoretical frame provided by 
the documentational approach of didactics (Gueudet 
et al., 2012). According to this approach, teachers in-
teract in their work with a variety of resources. The 
concept of resource is considered here with the mean-
ing introduced by Adler (2000): a resource can be a 
textbook, but also a symbol, or more generally any-
thing likely to re-source the teacher’s professional 
activity. Teachers look for resources, sometimes they 
meet resources that they were not looking for (dis-
cussing with a colleague around the coffee machine, 
for example). They associate these resources, modify 
them, conceive their own resources and use them with 
students. All this activity is called the documentation 
work of the teacher (Gueudet et al., 2012). During this 
documentation work, interactions take place between 
the teacher and the resources; and these interactions 
contribute to teachers’ professional development. 
Drawing on the instrumental approach (Rabardel, 
2002/1995; Guin, Ruthven, & Trouche, 2005), the doc-
umentational approach considers that teachers are 
involved with sets of resources in a goal-oriented 
activity. Along this activity and for a given goal, they 
develop a document: the association of resources and 
of a scheme of use (Vergnaud, 1998) of these resources. 
Schemes of use encompass three ingredients: the ob-
jective of the activity; rules of action (a usual way to 
act for this objective); operational invariants, which 
are here professional beliefs. This process (develop-
ment of a document) is called a documentational gen-
esis. Multiple documentational geneses occur along 
the teacher’s work for various goals; they contribute 
to produce the documentation system of the teacher, 

mailto:ghislaine.gueudet%40espe-bretagne.fr?subject=
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which is the structured set of all the documents he/she 
develops. With this perspective and concepts, the cen-
tral research questions that I address in this paper are:

What is the content and structure of university teachers’ 
documentation systems? Which are the evolutions of 
these systems, and how are these evolutions linked with 
teachers’ professional development? 

In Gueudet and colleagues (2014), I have discussed 
possible specific features of teachers’ documentation 
work, in the context of university. One such feature 
is the possible central role of the work with resourc-
es for teachers’ professional development, since in 
many countries teacher education is limited at uni-
versity. Such a role has already been identified in the 
case of textbooks by Mesa & Griffiths (2012), using 
an instrumental approach: they have identified dif-
ferent schemes of use, shaping the teachers’ practice. 
Moreover, many digital resources are available for 
university; and the online platforms permit to develop 
distant work with students. Are these digital resourc-
es present in the teachers’ documentation systems, 
where do they intervene? In Gueudet (2014), I have 
investigated the case of a single teacher, who taught 
in a technological institute and was not involved in re-
search. He used many technological resources, but he 
worked in a specific context. The place of technology 
in the documentation systems of university teachers 
in more “ordinary” contexts still has to be investigated. 

I retain these foci, for the results I present here: the 
link between documentation systems and profession-
al development, in particular the intervention of re-
search in the development of documents and the place 
of technology in university teachers’ documentation 
systems. 

In this article, I study the cases of six colleagues, all 
of them working in France in the same middle-size 
university. These colleagues have been chosen to rep-

resent a variety of conditions that can influence their 
documentation work: experience, research domain, 
studies in France or abroad, position, gender. Table 1 
below summarizes the six cases, according to these 
factors.

They also teach in a variety of “teaching units”, con-
cerning calculus, linear algebra, number theory, prob-
ability, numerical analysis in the first or second year 
of university. A teaching unit lasts 12 weeks and can 
comprise between four and six hours a week, with 
generally half of the time for the lectures and half 
of the time for tutorials. Most of these teaching 
units concern the “Mathematics, Computer Science, 
Economy, Electronics” degree (MIEE; 270 students 
in first year, amongst them 60 specialized in mathe-
matics). Some of these teaching units concern all the 
MIEE students; some concern only one or two options, 
i.e. “economy and computer science”. Most lectures 
are given in an amphitheatre for a maximum of 150 
students. In fact for most teaching units, there is a sin-
gle amphitheatre, with two exceptions: the first year 
calculus teaching is organized in small groups, like 
secondary school classes and in the first year linear 
algebra teaching, two lecturers work in parallel in 
different amphitheatres. 

I met each of these colleagues for an individual inter-
view (see the interview guidelines in the appendix) 
and collected all the resources they mentioned. The 
interviews were recorded and transcribed. I noted 
in each interview the kind of activities mentioned 
by the teacher, the resources cited, how many times 
each of them is cited, and in connection with which 
activity(ies). I also noted the collective work (with who, 
for which objective), the beliefs expressed about math-
ematics or about teaching issues. I then connected 
teachers’ declarations and the content of the resources 
he/she uses or designs. For space limitation reasons 
I cannot present here a detailed analysis of each case, 

Experience Country of the studies, position Research domain

Bob (M) 7 years France, lecturer Numerical analysis

Doris (F) 17 years France, lecturer Symbolic computation

Nadia (F) 24 years Italy, lecturer Partial differential equations

Bill (M) 13 years Germany and UK, lecturer Geometric theory of groups

Mary (F) 2 years France, PhD student Geometric theory of groups

John (M) 1 year France, PhD student Spectral theory

Table 1: Profiles of the university teachers interviewed
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I only present the main results from the whole group 
of participants. 

RESULTS

General structure of documentation 
systems for teaching
Documentation systems are individual constructs. A 
detailed investigation of these systems, for each teach-
er participated, reveals specific features. Nevertheless 
here one of my aims is to identify common aspects in 
the structure and content of these systems. Naturally, 
a first general description leads to identify two poten-
tial systems: one for teaching and one for research. I 
did not ask the teachers about their resources and 
documents in the context of their research activity. 
I focus here only on the documentation system for 
teaching – but I try at the same time to identify in it 
documents which can also belong to the documenta-
tion system for research.

“Teaching” here refers to a large range of activities, 
with different aims: preparing a lecture, giving a tu-
torial, correcting worksheets, answering students’ 
e-mails, etc. 

So the documentation system for teaching is itself 
composed of different subsystems. For the teachers I 
interviewed and the teaching units concerned, except 
in special systems which I discuss later, the documen-
tation systems for teaching comprise four subsystems, 
linked to different activities: (preparing and giving) 
lectures; tutorials; assessments; and communication.

Starting from this general structure, I first try to 
identify crucial resources, defined as those that are 
present in the intersection of several subsystems. 
These resources intervene in documents for different 
aims of the activity. As a consequence, their features 
are linked with schemes and thus beliefs concerning 

mathematics and their teaching which have an impor-
tant influence on the teacher’s practice.

The analysis of the interviews indicates that three 
kinds of resources appear as crucial: the “polycopie”; 
the exercises sheets; and the texts of previous exams.

THE CRUCIAL RESOURCES AND 
CORRESPONDING DOCUMENTS

The “polycopie”
The polycopie is a text, corresponding more of less 
to the content of the lecture, which is available for 
the students on the lecturer’s webpage as a pdf file, 
from the beginning of the teaching. Teachers and stu-
dents at university in France do not use textbooks. 
This polycopie is used by the lecturer, for the prepa-
ration of his/her lecture and by the teachers offering 
the tutorial, to be informed about the content of the 
lecture and prepare the tutorial. It also intervenes in 
the communication between teachers and between 
teachers and students but not in the preparation of 
the assessments. The documents developed from the 
resource polycopie are not the same, when the aim is 
to prepare a lecture, or to prepare a tutorial. The doc-
uments associate indeed resources and schemes. The 
schemes can incorporate the same beliefs (e.g. “When 
a usual function is a bijection on a given interval, its 
reciprocal is also a usual function whose properties 
must be learned”), with different objectives and rules 
of action. More importantly, the teachers have differ-
ent beliefs concerning directly the content and the 
role of the polycopie. Some of them (Bob, Bill, John) 
think that students need to have access to the precise 
text that has been written on the blackboard (the most 
usual practice in this university, only one colleague 
amongst the six I interviewed used projects slides). 
The content of the polycopie should correspond to this 
content: if a student took incorrect notes, or missed 
a course, this is not a problem since the polycopie 
contains the reference text. Others (Doris, Nadia) 
think that the polycopie must only be a summary of 
the course, containing the most important results 
(“for theorems I do not write the proof on the poly”, 
Doris): the students’ notes are the reference text for 
their learning of the course. And one of the teachers 
I interviewed, Mary, thinks that the polycopie must 
complement the course by giving additional details, 
examples, worked exercises (“students must find 
additional information in the poly”), in particular 
for high-achieving students. As a result, from one 

Figure 1: General structure of the documentation systems for 

teaching
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teaching unit to another, the content of the polycopie 
can be linked to the content of the lecture in different 
manners. 

The exercises list and the previous 
assessments texts
The exercises lists and previous assessment texts are 
crucial resources, both for the tutorials and the as-
sessments (and they naturally also intervene in com-
munication). Similarly to the polycopie, the exercises 
list and the previous assessments texts are given to 
the students from the beginning of the year, available 
on the lecturer’s webpage. For most teaching units, 
the exercises list exists for a long time, amongst the 
teachers I interviewed, only two of them have been 
involved in the design of such a list. Nevertheless, the 
teachers develop from this list different documents. 
For the same objective, these documents encompass 
different rules of action, linked with different beliefs. 

Nadia: Each year the first thing to do is to inves-
tigate who your students are, and adapt 
the content and expectations to these 
students (rule of action).

Nadia believes that, for the first year students who 
have a limited mathematical background, it is not 
necessary to ask for proofs in the tutorials. 

Mary: I always start the tutorial by a summary 
of the content of the polycopie (rule of 
action), because they do not learn the 
course before the tutorial, some of them 
even do not attend the course (operation-
al invariant). 

Some of these beliefs, present in the documents de-
veloped for the tutorial, are linked with the teacher’s 
research activity: 

Nadia: Those who can say – well, I do not know 
this problem, but I will try to do some-
thing with my hands – this is a very im-
portant attitude for research.

The preparation of the exam and intermediate as-
sessments texts is always a collective work. It can be 
shared in the group of teachers for a given teaching 
unit (in each teaching unit the students take between 
2 and 6 exams and intermediate assessments), or pro-
posed by the lecturer(s). This particular documen-

tation work: “writing an assessment text” has been 
studied by Lebaud (2009). The data confirm the results 
of the study by Lebaud. The document developed by 
the six teachers comprises the list of exercises, the 
previous assessments texts, and beliefs as: “the exer-
cises for the assessment must be similar to those done 
in the tutorials”; “the assessment must cover all the 
content of the course”. Participating in this collective 
documentation work contributes to the development 
by novice teachers of beliefs shared with their col-
leagues. This issue can be further studied in terms of 
communities of practice (CoP, Wenger 1998): novice 
students progressively become member of the CoP of 
mathematics lecturers, by sharing the same resources 
and practice. 

Professional development and development 
of the documentation system
The university where the study takes place provides 
no professional development for the teachers. The 
progressive integration of novice teachers is managed 
by giving them gradually increasing responsibilities 
in the teaching, which I interpret here as: the profes-
sional development for teaching of novice university 
teachers corresponds to a development of the docu-
mentation system. 

The PhD students I interviewed (similarly to all PhD 
students in this university) only offer tutorials. This 
means that they are given the polycopie, the exercises 
list and previous assessment texts at the beginning of 
the year. Their responsibility is to choose exercises 
from the list to work with their students during the 
tutorial. They could naturally choose other exercises, 
for the tutorial or for homework, but they do not do 
it, because the list of exercises is sufficient. Their first 
opportunity to design themselves exercises is pro-
vided by the writing of assessment texts, with other 
colleagues, as described above. So the professional 
development corresponds to the development of the 
documentation system: from a documentation system 
reduced to the subsystems for tutorials, assessment 
and communication to a documentation system incor-
porating also the subsystem for lectures. 

In the case of a new lecture, the colleagues declare 
that they use books. In some cases these books are 
mathematics books addressed to higher level stu-
dents: about numerical analysis (Bob), or symbolic 
computation (Doris), for example. The teacher then 
makes an important didactical transposition work 
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(Chevallard, 1985), to produce content accessible for 
first or second year students.

Digital resources: An increasing, yet limited use
Proposing the polycopie, the exercises sheets, the 
previous exam texts on his/her professional web-
page is done by 3 of the 4 lecturers. The lecturer’s 
webpage is a central resource for the communication 
from the lecturer to his/her colleagues and his/her 
students. In general, the use of digital resources for 
the communication between colleagues, or with the 
students is a very important evolution, observed 
by each colleague. Information about the students 
is available on the university Virtual Learning 
Environment. Complementary information, such as 
the official curriculum, students’ photos, is provided 
by the mathematics department website. The discus-
sions within the team of teachers of a given teaching 
unit, the information on the course progress by the 
lecturer(s) for the teachers of tutorials are made via 
e-mail. Some students also write e-mails to teachers, 
but the in person discussion at the end of the lecture 
or tutorial remains the main communication mode, 
between students and teachers.

Nevertheless the use of digital resources remains lim-
ited, compared for example with secondary school 
(Gueudet et al., 2012). The six colleagues declare that 
they do not search for Internet resources to prepare 
their courses, considering that they will not find some-
thing corresponding to their precise teaching objec-
tive. The use of the calculator by students is allowed 
during tutorials, but forbidden for the assessments.

For four out of the six teachers I interviewed, the use 
of technology seems to be restricted to their documen-
tation system for communication. 

I observe a different situation for two colleagues, con-
tributing to two special teaching units: one about sym-
bolic computation (Doris) and the other about numer-
ical analysis (Bob). These teaching units encompass in 
particular, aside the tutorials, “practical works” in a 
computer lab. I consider here more precisely the case 
of Doris. Doris uses Maple for all the aspects of the 
teaching: lecture, tutorials, practical work – except 
for the assessment. She has developed different docu-
ments involving Maple, and has in particular a strong 
belief about the link between writing algorithms, pro-
gramming them, and learning mathematics: 

Doris: They work with algorithms by program-
ming them. This way they can evaluate 
their efficiency, and see if they are use-
ful.

She uses also Maple in her own research. For this 
special course, the resources for teaching and the re-
sources for research have a significant intersection: 
Maple, and associated computer programs. The same 
situation happens for Bob in numerical analysis, with 
Scilab. In these cases, the course is designed for math-
ematics majors, and concerns a topic linked with the 
teacher’s research; there is an associated link between 
the resource system for teaching and for research.

Lecture
Polycopie + Books (from higher level, or other countries). 
Sometimes: lecture notes of a colleague.

Discussions with students at the end of lectures, evaluation 
of the teaching unit by students

Communication
e-mails sent by students, by colleagues
website of the university, of the mathematics department

For a lecturer: Uploading files on his/her webpage to in-
form the colleagues and the students; discussing the case of 
specific students with colleagues.

Tutorials
Polycopie+ Exercises sheets + previous assessment texts 
+ e-mails from lecturer + his/her webpage + discussion 
with the students

Students’ productions (homework and assessments) + 
corrections

Assessment
Exercises sheets + previous control texts + 
e-mail discussion with colleagues + students produc-
tions

Table 2: Evolution of the documentation system: from tutorials to lectures as an enrichment of the documentation system (in italics the 

lecturer additional part)



University teachers’ resources and documentation work  (Ghislaine Gueudet)

2143

CONCLUSION AND PERSPECTIVES

The documentation systems of the six university 
teachers interviewed could be classified in three cat-
egories: Lecturer, for a “usual” teaching unit; Lecturer, 
for a teaching unit involving a specific software; 
Novice teacher (here PhD student), giving only tuto-
rials in a “usual” teaching unit. The novice teachers’ 
systems encompass only three subsystems: tutorials, 
assessments, communication; while the lecturers’ sys-
tems also have a subsystem for lectures, and a more 
developed communication subsystem (see Table 2). 
Naturally other kinds of documentation systems exist, 
for other cases. Nevertheless these six systems have 
interesting common features and differences. 

For all of them, the polycopie, the exercises list, and 
the previous assessments texts are crucial resources. 
None of them incorporates resources (exercises, math-
ematical texts) found on the Internet. This situation 
is completely different from the documentation work 
of secondary school teachers in France (Gueudet et 
al., 2012). Searching for resources on the Internet is 
a very usual practice in this context, in particular for 
the choice of “introductory activities” (problem texts, 
aiming at the introduction of a new concept or meth-
od). In fact such introductory activities do not exist, 
in the teaching at this university. The new concepts 
and methods are presented in the lecture, and then 
applied during the tutorials.

Novice teachers progressively develop their docu-
mentation systems. They firstly develop documents 
for the tutorials; then for the assessment, being in-
volved in the collective preparation of assessments’ 
texts. Along this work, they develop schemes which 
incorporate beliefs shared with their more experi-
enced colleagues. Starting to give lectures is another 
step, which can lead to the development of more per-
sonal beliefs, in particular for a new lecture with no 
previous polycopie.

In the documentation systems for teaching units in-
volving a specific software, this software is a crucial 
resource. Otherwise, only technologies for communi-
cation intervene, with the lecturer’s webpage playing 
a central role. 

Naturally this study remains limited, since I only met 
six colleagues, all of them working at the same univer-
sity. Other universities can have different teaching 

strategies, kinds of resources, different organisations, 
or local projects that shape the documentation work 
of teachers. I intend to extend this work, nationally 
and internationally. Another perspective is also to 
deepen this work by meeting again the six teachers 
interviewed, and by observing their courses to con-
front their actual practice with their declarations.
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APPENDIX: INTERVIEW GUIDELINES

This interview concerns resources (mostly material 
resources), intervening in your teaching for the first 
or second university year. Our aim is to understand 
which resources you use, which resources you design 
for your students etc. 

Years of experience in teaching: Research domain:

1) Let us consider a teaching you did this year, for 
example « linear algebra in year 1 ». Which re-
sources did you use, and design, for this teach-
ing? For the lectures, if you gave lectures; For the 
tutorials or practical works; For the preparation 
of the intermediate assessments and exams texts.

2) About digital resources: do you use a professional 
webpage, a virtual learning environment, specif-
ic software? Do you use online resources to pre-
pare your courses, do you project slides during 
your courses?

3) About collective work: do you work with col-
leagues to prepare your teaching? Which kind 
of work do you make for your teaching with col-
leagues?

4) For experienced teachers: which evolutions do 
you retain in the last 10 years, concerning the 
resources you use and design for your courses? 
For novice teachers: do intend to modify your 
teaching next year, how and why? 

5) Link with research: are there resources that you 
use both for your research and for your teaching? 
Or other links, between your teaching and your 
research?

6) Did I forget to mention important resources, or 
something else that you consider important con-
cerning your teaching?

http://ergoserv.psy.univ-paris8.fr/Site/default.asp?Act_group=1
http://ergoserv.psy.univ-paris8.fr/Site/default.asp?Act_group=1
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I report in this paper on my attempt to help students 
reflect on the axiomatic method and structuralist think-
ing in mathematics through a didactically-engineered 
activity (the theory of banquets, an invented structure 
simpler than group theory, but still quite rich seman-
tically), as a lever to tackle the issue of the learning of 
abstract algebra. It sheds light into the cognitive pro-
cesses involved in the conceptualization of an abstract 
algebraic structure, which are discussed within a semi-
otics framework.  Empirical data show an insufficient 
syntax-semantic dialectic and mental processes based 
on the recognition of (visual) patterns.

Keywords: Abstract algebra, mathematical structuralism, 

didactics and epistemology of mathematics, semiotics, 

syntax and semantics.

INTRODUCTION

This article focuses on the teaching and learning of ab-
stract algebra (the discipline dedicated to the study of 
algebraic structures, that is, the investigation of logi-
cal consequences of specific systems of axioms involv-
ing composition laws, and the relationships among 
them) which is taught at Montpellier University at 
the third-year university level. The difficulties are 
acknowledged by several authors (Leron & Dubinsky, 
1995; Nardi, 2000; Hausberger, 2013) and reflect a 

“transition problem” (Gueudet, 2008) which, in the 
present case, occurs inside the university curriculum.

The epistemological analysis presented in Hausberger 
(2013) allowed a connection with the following episte-
mological transitions: “the systematization of the axi-
omatic method, after Hilbert, and the transition, after 
Noether, from thinking about operations on elements 
to thinking in terms of selected subsets and homo-
morphisms”. Indeed, as emphasized by Cory (2007):

This image of the discipline turned the concep-
tual hierarchy of classical algebra upside-down. 
Groups, fields, rings and other related concepts, 
appeared now at the main focus of interest, based 
on the implicit realization that all these concepts 
are, in fact, instances of a more general, underly-
ing idea: the idea of an algebraic structure.

In other words, this epistemological gap leads to the 
vanishing of concrete mathematical objects in favor of 
abstract structures. This induces the following didacti-
cal problems: the teaching of abstract algebra tends to 
present a semantic deficiency regarding mathematical 
structures, which are defined by abstract axiomatic 
systems and whose syntactic aspects prevail. How 
does the learner build an “abstract group concept”? 
Indeed, what kind of representations can he rely on 
to do so when the purpose is to discard the particular 
nature of elements, in other words the mathematical 
context? Moreover, the investigation of the didactic 
transposition of the notion of structure shows that it 
is a meta-concept that is never mathematically defined 
in any course or textbook (and cannot be so):

As a consequence, students are supposed to learn 
by themselves and by the examples what is meant 
by a structure whereas sentences like “a homo-
morphism is a structure-preserving function” is 
supposed to help them make sense of a homomor-
phism (Hausberger, 2013).

As announced in loc. cit., I have engineered an activity 
for students to reflect on the axiomatic method and 
structuralist thinking in a simple context (simpler 
than group theory): the theory of banquets, an invent-
ed structure. It aims at operating the fundamental 
concrete-abstract and syntax-semantic dialectics (see 
below) and at clarifying the concept of mathematical 
structure using the meta lever (Dorier et al., 2000), 
that is “the use, in teaching, of information or knowl-

mailto:thomas.hausberger@univ-montp2.fr
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edge about mathematics. […]. This information can 
lead students to reflect, consciously or otherwise, 
both on their own learning activity in mathematics 
and the very nature of mathematics”.

The purpose of this article is to present a few results 
that were obtained as I experimented with this activity. 
It tackles the following questions: what kind of cogni-
tive processes and reasoning do students use to make 
sense of an axiomatically-presented structure such 
as the banquet structure? How do they engage in the 
task of classifying models of the axiomatic system (and 
interpret the task: for instance, what kind of represen-
tations do they use, and do they formalize a concept 
of isomorphism of banquets)? What kind of abstract 
banquet structure concept do they build through the 
completion of such a task? Similarly as in the context 
of classical algebra in secondary education, semiotics 
will give interesting tools to answer these questions. 
Still, some adaptation needs to be made to reflect the 
context of abstract algebra, since structures repre-
sent a higher level of organization compared to the 
classical mathematical objects that they formalize, 
generalize and unify.

EPISTEMOLOGICAL AND 
DIDACTICAL FRAMEWORKS

Abstraction
The French verb abstraire has three different mean-
ings: 1. to discard (“faire abstraction de”) 2. to isolate 
(from a context) 3. to construct (a concept). Although 
these are three different actions, they may take place 
in order to reach a common goal as is the case in ab-
stract algebra: mathematicians disregard the partic-
ular nature of elements and isolate relations to build 
the structure as an abstract concept.

The “principle of abstraction” as a process to create 
concepts has been used by Frege (1884) to define car-
dinal numbers. To introduce the reader to this revolu-
tionary idea, Frege gives the enlightening example of 
the direction of a line which is defined as the class of all 
lines that are parallel to the given line. The principle 
was formalized later on by Russell (1903): to say that 

“things are equal because they have some property in 
common” and reduce a class to a single element, the 
relation that traduces this property should be sym-
metric and transitive (an equivalence relation).

Semiotics
Just as language is compulsory to express any idea, 
mathematical objects are accessed through mathe-
matical signs.  Frege’s semiotics will be used in this 
paper, thus making the distinction between the sense 
and the denotation of a sign (Frege, 1892). The deno-
tation of the sign is the object it refers to whereas the 
sense is related to the “mode of presentation” of the 
object. Mathematical signs are often polysemic but the 
context is meant to determine the reference uniquely. 
Conversely, different signs may represent the same 
object, thus having a different sense but a common 
denotation. In this way, different representations may 
bring to light different aspects of an object; they are 
acknowledged as denoting one and the same object 
through the realization that a particular processing 
or conversion of semiotic register of representation 
(Duval, 1995) allows to transform one representation 
into the other, and reciprocally. In other words, as 
stated and illustrated by Winsløw (2004, p. 4), one 
may “think of objects as signs modulo object preserving 
transformations (OPT)”: 

Syntax and semantic
Mathematical signs are organized within sentences 
and formulae that are built according to strict syntac-
tic rules. From a logical point of view, a definition is 
an “open sentence” that may be satisfied or not when 
the variables of the sentence are assigned in a suitable 
universe of discourse: this is the semantic conception 
of truth introduced by Tarski (1944); see also Durand-
Guerrier (2003) for a more detailed account and didac-
tical applications. In this respect, a piece of data that 
satisfies the definition of a mathematical structure 
(which involves a set of axioms that forms its syntactic 
content) may be called a model of the structure (in the 
given universe of discourse or hosting theory). The 

Rep. 2...

Axiomatic structure

...

Figure 1

Figure 2
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models will be regarded as the semantic content of 
the axiomatically-defined mathematical structure, its 
extension as a concept. 

Tarski also defined the notion of logical consequence 
from a semantic point of view. It will be used below 
in order to show that a given axiom A1 cannot be de-
duced from other axioms Ai: it amounts to showing 
the existence of a model satisfying the Ai’s but not A1. 
This contrasts with syntactic methods which consist 
of deduction by application of valid rules of inference.

Structural objects
In a famous dispute with Hilbert, Frege argues against 
the legitimacy of abstract definitions by systems of ax-
ioms. One argument concerns the intrinsic polysemy 
of such definitions: in semiotic terms, an axiomatic 
definition as a sign has multiple references, the mod-
els of the axiomatic system. In abstract definitions, 
the context doesn’t inform on the denotation simply 
because it is abstracted (in meaning 1 of the verb).

In order to build an abstract structure (group, ring, 
banquet, etc.) concept, and therefore give a more ad-
equate (still polysemic) semantic meaning to the set of 
axioms as a sign, one needs to use structure preserv-
ing applications (SPT), the so-called isomorphisms, 
which are defined as relation-preserving bijections 
(all models may be viewed as sets endowed with ad-
ditional data which define relations and satisfy the 
axioms). This allows us to associate to an axiomatic 
structure its “structural objects” (our terminology), 
the isomorphism classes of models or models modulo 
SPT, in the same manner as mathematical objects were 
built from representations modulo OPT, by means of 
the principle of abstraction.

It should be pointed out that, compared to Winsløw’s 
diagram, dotted arrows do not represent the denota-
tion of a sign but only “quotient maps”. Since models 
are accessed through signs, the preceding diagram 
should in fact be reprinted, to reflect semiotic views, 
replacing each model by one of its representation and 
SPT by its semiotic version SOPT (structural object 

preserving transformations). Dotted arrows may then 
represent denotation when the context indicates a 
structural perspective: for instance, Z/2Zx Z/2Z and 

“the symmetry group of a rectangle” may both refer 
to the Klein 4-group V4, as an abstract group concept. 
One may also write V4= <a,b;a2=b2=(ab)2=1> for a more 
syntactical description. Nevertheless, since mathe-
maticians take care in emphasizing the difference be-
tween a class and one representative, many authors 
would prefer to use the sign V4 to denote the group 
Z/2Zx Z/2Z and say that it is isomorphic to the symme-
try group of a rectangle or to the quotient of the free 
group on two generators by the relations a2=b2=(ab)2=1. 
The idea behind structural objects is, following Sfard, 
that some kind of reification must occur for concept 
building: “Reification is defined as an ontological 
shift – a sudden ability to see something familiar in 
a totally new light” (Sfard, 1991). For this to happen, a 
plurality of models should be needed, borrowed from 
different mathematical domains and represented in 
different semiotic registers. Similarly as in Winslow’s 
context, the coordination of these representations 
(through SOPT) should be crucial to obtain a concep-
tual schema of the structural object. It should open 
the possibility to abstract from “templates” a “pattern” 
(Resnik, 1997). Nevertheless, unlike in Winsløw’s con-
text, a representation of a model as a sign may now 
refer to both the model and the structural object (in a 
context where both appear), whereas a mathematical 
distinction must be kept. Solving this issue would re-
quire a more direct mediation of the structural object 
by a new adequate (to be specified) sign.

THE THEORY OF BANQUETS

As a piece of didactical engineering, the theory of ban-
quets was built on the basis of an epistemological anal-
ysis previously presented (Hausberger, 2013) in order 
to cover the three usage contexts of the meta-concept 

“structure”: 1. the structure as defined by a system of 
axioms 2. the abstract structure (of a given group or 
banquet) 3. a ‘structure-theorem’ (which describes the 
way an object can be reconstructed from simpler ob-
jects of the same type). It is filled with meta-discourse, 
as is already visible in the worksheet title: “The theory 
of banquets: a mini-theory to reflect on structuralist 
thinking”. The interested reader is requested to email 
the author for a copy of the complete worksheet.

The activity is divided into three parts: 1. logical inves-
tigation of the axiomatic system and classification of 

Figure 3
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models 2. elaboration of an abstract theory of tables 
(this is the other way round: students are asked to for-
malize the disposition of guests around a round table) 
and structure-theorem for banquets (a banquet is the 
disjoint union of tables) 3. connection with the theory 
of permutations (a reinterpretation of the banquet 
theory that permits you to see the structure-theorem 
as a direct consequence of the well-known theorem 
of canonical cycle-decomposition of a permutation).

Part 1 and 2 clearly bring-in a concrete-abstract dia-
lectic. A top-bottom approach has been chosen in part 
1 for two reasons: as this is the standard strategy in 
textbooks, it is interesting to inquire how students 
will make sense of such a definition; moreover, part 
1 will suitably enrich the didactical milieu for stu-
dents to be able to model the situation given in part 
2. Nevertheless, part 1 is already dialectical in itself: 
it amounts to making learners move on from the still 
abstract and syntactical conception of a structure ex-
emplified by Figure 2 to the more concrete and se-
mantic conception of Figure 3 (with several structural 
objects). The expected result of the abstract-concrete 
and syntax-semantic dialectics is a formulation of an 
abstract and syntactic characterization of structural 
objects (question 2 d of the worksheet, see below).

The definition of a banquet is as follows: it is a set E 
(the objects) endowed with a binary relation R (encod-
ing the relations between objects) which satisfies the 
following axioms: A1. No object fulfills xRx A2. If xRy 
and xRz then y=z A3. If yRx and zRx then y=z. A4. For 
all x, there exists at least one y such that xRy.

In part 1, students were asked the following questions:

1 a. Coherence: is it a valid mathematical theory, 
that is, are the axioms non-contradictory? In oth-
er words, does there exist a model?

1 b. Independence: is one of the axioms a logical 
consequence of others or are all axioms mutually 
independent?

2 a. Classify all banquets of order n≤3

2 b. Classify banquets of order 4

2 c. What can you say about Z/4Z endowed with?

2 d. How to characterize abstractly the preceding 
banquet (meaning its abstract structure of ban-
quet among all the different classes of banquet, 
in fact how to characterize its class)?

Solving these questions amount to solving the follow-
ing tasks and sub-tasks:

T1. Construct a model by suitable assignment of 
variables

T2. Classify banquets of a given order:

ST2a. Define a notion of isomorphism

ST2b. Give a list that covers representatives 
of all possible classes

ST2c. Show that two elements of the list are 
non-isomorphic

T3. Show that 2 models are isomorphic by explicit 
construction of an isomorphism

T4. Characterize abstractly an isomorphism class

Note that answering question 1 b amounts to solving 
T1 from the semantic point of view of logical conse-
quence (see above) and negation of an axiom. In do-
ing so, the boundaries of the banquet concept will be 
marked out. In the sequel, it will be necessary to focus 
first on T1 and give a list of available domains of inter-
pretation for the axiomatic system and corresponding 
semiotic registers, since available representations 
greatly impact the other tasks.

Empirical interpretation: the name banquet may sug-
gest by itself (or by reading the entire worksheet) 
guests around tables, so one defines xRy if and only 
if x sits on the right of y. Note that proving that this 
universe of discourse can serve to interpret the whole 
banquet theory reduces to proving the structure-the-
orem. One could also imagine a rectangle table and 
pick up guest sitting face to face, as a particular model.

Set theory: the set E is described by naming its ele-
ments and the binary relation is represented by its 
graph inside E2. This straightforward representation 
is not very interesting since it doesn’t “encode” much 
structure.
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Matrix theory: a binary relation may be seen as a 
function from E2 to {0,1} (true/false), and therefore 
be represented by a double-entry table, in other words 
a matrix. In this interpretation, the axioms say that 
the diagonal contains only zeros, that there is exactly 
one ‘1’ in each row and at least one in each column. In 
finite dimension, one can easily prove that there is 
exactly one ‘1’ per row and column, hence it is a per-
mutation matrix.

Graph theory: xRy if and only if vertices x and y are 
connected by an edge directed from x to y. The axioms 
say that from a vertex there originates exactly one 
edge and terminates at most one; therefore, unlike 
in general graph theory, is it easy to see when two 
drawings define the same graph.

Function theory: According to axioms A2 and A4, de-
fines a function f and the other axioms say that it is 
injective and has no fixed point. When the set E is fi-
nite, then f is a permutation without fixed points and 
one may use the standard semiotic representations 
for these (including cycle-decomposition).

It is in fact quite amazing to see the diversity of inter-
pretations and models, which certainly reflects the 
unity and creativity of mathematics. Models may be 
represented in a mixed or purely symbolic register. 
When the graphical register is used, it may be a per-
sonal idealization of people around tables or an insti-
tutional representation borrowed from graph theory. 
Of course, one cannot expect students to connect to 
all these theories: for, instance, we bet that students 
won’t translate the problem fully in the function set-
ting and identify the connection with permutation 
theory (which would ruin part 3 of the activity). But 
one can wonder about the importance they may give 
to representations connected to everyday life (empir-
ical setting). Moreover, models may be more or less 

“generic”: compare (E,f), E=N and f(x)=x+1, with a ma-
trix that may serve to represent any binary operation. 
Students may also think that a model should be given 
by a mathematical formula (like the example given 
in question 2 c), and restrict themselves to concrete 
examples in function theory, whereas a generic repre-
sentation of R is necessary to complete the other tasks.

To give an idea about processes and conversions from 
one setting to the other, one should notice that a repre-
sentation such as points marked on circles (empirical) 
is easily transformed into a graph by adding arrows 

clockwise between points; one may then associate to 
the graph its adjacency matrix, from which the func-
tion is soon reconstructed by reading the positions of 
the ones. When E is finite, the algorithm of cycle-de-
composition of the permutation gives the tables (one 
per cycle) and the length of the cycle gives the number 
of people around each table, thus coming back to the 
empirical setting.

The pertinence of the setting (choice of a domain of 
interpretation) depends on the task: graph theory may 
easily suggests a model that verifies all the axioms 
except A2; matrix theory is quite pertinent for ST2b 
(a complete list of all possible relations), still, graph 
theory again (or even better, a cyclic representation 
as obtained in the empirical setting) is best to decide 
if two banquets are isomorphic, as it gives a visual 
representation that makes common pattern visible 
and illustrates the etymology of isomorphism as a 
form-preserving mapping.

I will now present some students’ productions. Tasks 
2 to 4 will be discussed in greater detail while analyz-
ing these.  

EMPIRICAL DATA

The full banquet activity has been tried out during 
the academic year 2013–14 with third year univer-
sity students with a background in group theory 
before teaching ring and field theory. They worked 
in small groups of 4–5 students and were asked to 
keep a research notebook that was collected before 
each phase of institutionalization (Brousseau, 1997). 
In parallel, in laboratory sessions, I videotaped two 
pairs of more advanced students (having a master’s 
degree). The interviewer (myself ) intervened only at 
the end of part 1 in order to discuss with the students 
their answers and their conceptions regarding the 
classification task. Due to lack of space, I will only 
give an account of the laboratory session with one of 
the pairs. Nevertheless, this will already be enough to 
give an idea of some interesting phenomena that could 
be observed by using our theoretical framework and 
in particular Duval’s semiosis, the apprehension or 
production of semiotic representations (Duval, 1995).

The pair of students tried to recognize the banquet 
structure as a pattern in known mathematical ob-
jects and theories (“what is it, what’s this structure?”). 
Unlike in the classroom experiment, they didn’t bring 
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in wedding banquets; they first thought about the or-
der relation, then analyzed the example B4=(Z/4Z,R) 
of question 2c as a “kind of a shift” and generalized it 
(E=Z, f(x)=x+1 or x-1). Semiotic representations of the 
semantic meaning of axioms A2 and A3 in the graph-
ical register (Figure 4a) led them to build models in 
graph theory which they used for tasks T1b and T2. 
Recognition of cyclic patterns suggested permutations, 
as a common representation: they performed conver-
sions of registers (but didn’t connect to the function 
setting), producing the following classification which 
comprises 9 banquets of order 4 (Figure 4b).  

Student A:  Here, we are doing with what we 
know, but we speak about a structure

Student B: Wait, we can always number the el-
ements […]

Interviewer: For you, this is an abstract classi-
fication because you didn’t consider 
particular relations and you can always 
rename elements x,y,z,t

A: So there would be 2 classes up to isomor-
phism?

B: Here Z/4Z and there Z/2Z x Z/2Z
I: You are thinking about the classification 

of groups […] So there are 2 types of ob-
jects and (x y z t) and (x z y t) would be 
the same?

B:  Not the same, of the same type

The student B couldn’t define what he meant by a type, 
he just made a connection between the word used by 
the interviewer and the notion of type of a permuta-
tion. The word bijection finally appeared but students 
found it difficult to define what “structure-preserv-
ing” meant. They drew the graph for (x z y t) but ob-
tained crossing edges which confused them even more 

(both are identical as graphs but not as drawings). On 
the contrary, converting to a graph the example B4 
allowed connection to (x y z t) (obvious congruence 
of drawings). They didn’t realize that abstracting the 
nature of elements simply meant forgetting letters, a 
mental process that makes the recognition of isomor-
phism classes in the representation as cycle products 
automatic.

CONCLUSIONS AND PERSPECTIVES

This study, through its theoretical framework and the 
analysis of the presented data, contributes to the rec-
ognition of the influence of semiotic representations 
in cognitive activities dedicated to the learning of ab-
stract algebra. I have discussed the hypothesis that a 
logical investigation of an axiomatic system and the 
classification of its models up to isomorphism, in the 
paradigm of the “theory of banquets” which connects 
to group-theory, is a cognitive activity that could bring 
good conditions for learners to develop an appropri-
ate conceptualization of an abstract structure, and in 
particular access what I called “structural objects”. 
Empirical data show mental processes based on the 
recognition of (visual) patterns. Conversions of reg-
isters were operated on by the two students in order 
to realize that two objects are isomorphic, a strate-
gy which is successful when the congruence of rep-
resentations is obvious, but the students couldn’t han-
dle the treatments inside a register since they couldn’t 
rely on a formal definition of an isomorphism or make 
this definition functional, which is evidence of insuf-
ficient syntax-semantic dialectic. This also suggests 
an incomplete understanding of abstraction as a pro-
cess that leads to structural objects. Finally, the two 
students tried to work out the analogy with group 
theory from which they borrowed directly or tried 

Figure 4a Figure 4b
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to adapt representations and concepts (see transcript 
above). As stated by Winsløw (2004), “mathematical 
concepts are not learned one by one but as coherent 
patterns or structures”, and this also happens at the 
level of structures themselves, thus gaining access to 
what I called level-2 unification (Hausberger, 2012).

The analysis of empirical data will be pursued in great-
er details in an expanded version of this article. It is 
expected that these investigations and refinements of 
the semiotic tools will lead to a better understanding 
of students’ difficulties in abstract algebra which are 
inherent in structuralist thinking, from a cognitive 
point of view.
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This paper reports on methodological results from an 
on-going project investigating student transition from 
teacher education to the world of work. We argue that 
research benefits from purposeful sampling, and we 
present two Rasch-calibrated instruments that aim at 
finding participants with particular characteristics. 
With items from existing instruments, one practice in-
strument is calibrated on Norwegian student teachers. 
Furthermore, these items are rephrased to fit a second 
instrument measuring beliefs about teaching mathe-
matics. Finally, ‘virtual equating’ is used to align items 
so that measures can be compared across instruments.  

Keywords: Student-centredness, measurement, Rasch 

modeling, sample selection.

INTRODUCTION

A considerable amount of research exists that sheds 
light on student teachers’ transition from higher ed-
ucation to the world of work. Most studies on novice 
teachers’ experiences show that the transition from 
teacher education to work (as a teacher) is problemat-
ic. For instance, many studies describe a gap between 
higher education and work (e.g., weak relationships 
between courses and field experiences) (Feiman-
Nemser, 2001), and that what students learn in school 
is not adequately linked to their future practices as 
teachers (e.g., Liston, Whitcomb, & Borko, 2006). Other 
studies describe new teachers’ first period in work 
as a time where the workplace communities expect 
new employees to be able to teach like experienced 
teachers (Worthy, 2005), a period with high emotion-
al intensity (Flores & Day, 2006) and a period where 
there is a gap between new teachers’ actual identities 
and the ‘designated identities’ shaped by the work-

place communities (Haggarty, Postlethwaite, Diment, 
& Ellins, 2011). In most studies, however, the sample 
selections do not seem to be based on pre-determined 
criteria (or these are not made explicit).

To build further on existing research, in this paper, 
we argue that Rasch-calibrated instruments can facil-
itate the selection of persons with certain character-
istics. For instance, some studies would benefit from 
selecting persons who identify with reform-minded 
practices, traditional practices, or persons who follow 
certain trajectories in the transition from education 
to work (e.g. resisting change; complying with tradi-
tional practices; coming to identify with reform-mind-
ed practices) etc. Thus, our research question in this 
paper is: how can Rasch-calibrated instruments inform 
the sample selection in studies on student teachers’ tran-
sition from higher education to the world of work/school?

In the paper, we report on results from an on-going 
study where the overall aim is to understand how 
identities are negotiated in the transition from high-
er education to the world of work, including those of 
mathematics teachers in schools. The study follows 
on from previous studies of the TransMaths project 
(www.transmaths.org) (e.g., Pampaka et al., 2012; Pepin, 
Lysø, & Sikko, 2012), and we will present two Rasch-
calibrated instruments that measure persons’ practic-
es and beliefs about ideal practice.  Finally, we discuss 
how these instruments can inform sample selection.

THEORETICAL BACKGROUND

The literature suggests different ways of character-
ising teachers. As a frame for our instrument, we 
build on the notion of student-centredness, defined 
by Stephan (2014) as 

mailto:eivind.kaspersen@hist.no
http://www.transmaths.org
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(…) an approach to mathematics instruction that 
places heavy emphasis on the students taking 
responsibility for problem solving and inquiry. 
The teacher is viewed as a facilitator by posing 
problems and guiding students as they work with 
partners toward creating a solution (p. 338).

The notion of student-centred teaching, both in 
practice and research, has grown in many different 
directions, and it is impossible to describe one sin-
gle approach. Nevertheless, Stephan (2014) listed five 
characteristics of student-centred teaching: prob-
lem-solving; collaboration; mathematical discourse; 
tools/manipulations; and classroom environment 
(pp. 340–342). Regarding classroom environment, 
Stephan (2014) emphasized four social norms, docu-
mented by Yackel and Cobb (1996), which are support-
ing student-centred teaching. That is, students are ex-
pected to: explain/justify solutions; attempt to make 
sense of others’ explanations; indicate agreement/
disagreement; and, ask clarifying questions (p. 340).

The rationale for choosing student/teacher-centred-
ness as a frame is that it is uni-dimensional, and thus 
meets one basic requirement for Rasch analysis. The 
construct was used by Pampaka and colleagues (2012) 
earlier in the TransMaths project, when they used 
Rasch analysis to construct an instrument to capture 
teachers’ self-reported pedagogies. Their instrument 
was based upon Swan’s (2006) practice-questionnaire, 
which in turn was based on three teacher orientations: 
transmission, discovery, and connectionist (Askew, 
Rhodes, Brown, Johnson, & Wiliam, 1997).

In order to measure the relationship between prac-
tice and belief about ideal practice, we have extended 
the practice instrument (Pampaka et al., 2012) with a 

‘belief-dimension’. We argue that there are three rea-
sons for including a belief-dimension to the original 
instrument. First, several studies suggest that teach-
ers’ practices are influenced by workplace norms 
(e.g., Haggarty et al., 2011). Gresalfi and Cobb (2011) 
distinguish between three ways in which teachers can 
relate to these workplace norms: consent and identi-
fy; consent and comply; or, resist. As such, knowledge 
about teachers’ practices alone does not distinguish 
between those who identify with their own practice 
and those who merely comply with a workplace norm 
(or are constrained by other contextual influences). 
Second, knowledge about teachers’ beliefs alone does 
not inform the researcher about how central those 

beliefs are. That is, two persons that express the same 
beliefs about teaching mathematics can hold those be-
liefs with different strengths. Green (1971) identified 
‘the degree of conviction’ as one of the three dimen-
sions in belief-systems. That is, beliefs can be central 
or peripheral, where central beliefs are more strongly 
held than peripheral beliefs. If the researcher wants 
to locate persons who hold certain beliefs strongly, 
we argue that persons who can relate those espoused 
beliefs to actual practice are more likely to meet this 
criteria than persons with different espoused beliefs 
and practices. Third, in longitudinal studies, knowl-
edge about both practice and belief can provide infor-
mation about participants’ trajectories in terms of the 
three categories presented by Gresalfi and Cobb (2011). 

In sum, we claim that knowledge about persons’ be-
liefs and practices can help researchers in making 
well-targeted sample selections, and that this is per-
tinent to studies conducted in the context of higher 
education. 

DATA COLLECTION AND ANALYSIS

In our study items in the instruments were influ-
enced by the original items in the ‘practice instru-
ment’ (Swan, 2006). For the belief instrument, these 
practice items were translated into belief items. For 
instance, the practice item: “Students work with tasks 
with a clear answer” was translated into a belief item: 

“Students should work with tasks with a clear answer.”  
The items and the response categories were then dis-
cussed at a Ph.D. seminar in mathematics education. 
From this discussion, 27 practice items and 27 belief 
items were piloted on 42 Norwegian student teachers 
in their second and third year of education, in addi-
tion to 9 teacher educators at the same institution. 
The items were discussed briefly with all participants. 
The items were then revised and piloted again on 36 
student teachers in their second year of education. 
After a final revision, 32 items were assigned to a con-
venience sample of 83 student teachers in their fourth 
(and for many, final) year of education. As the original 
practice-instrument identified some problems with 
the use of five response categories, four response cat-
egories were chosen in our study (‘in none/almost 
none of the lessons’; ‘in some of the lessons’; ‘in most 
of the lessons’; and ‘in all/almost all of the lessons’). 

In the analysis, the Rasch-Andrich Rating-Scale Model 
and the WINSTEPS software were used to construct 
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one practice scale and one belief scale. The Rasch model 
turns categorical data into interval measurements. 
Moreover, the model assumes an underlying trait (e.g., 
teacher-centredness) and is based upon the idea that 
persons with high measures (e.g., highly teacher-cen-
tred) are more likely to agree with the items that define 
the trait than persons with low measures (e.g. highly 
student-centred). Similarly, each person is more likely 
to agree on items with low measures than on items 
with high measures. A key feature of the Rasch model 
is that persons and items are not discriminated, which 
means that they can be measured on the same scale 
(Wright & Stone, 1979).

Since the purpose of the instruments was to detect 
persons with particular characteristics (e.g., persons 
that identify with their practice, or persons with a 
more teacher-centred practice than belief ), we pur-
sued equally scaled instruments. That is, if a person 
identified with her practice, then her practice-meas-
ure should, ideally, be equal to her belief-measure. 
Moreover, if her practice was more teacher-centred 
than her belief, then her practice-measure should be 
larger than her belief-measure. Thus, we conducted 
four steps for “virtual equating” (Luppescu, 2005): 
1) identified pairs of items with, possibly, similar ‘diffi-
culties’; 2) cross-plotted the pairs of items; 3) removed 
pairs of items that were not close (within a .95 confi-
dence bound); and, 4) rescaled the measures on the be-
liefs test to compensate for different item spacing. In 
rescaling the belief-instrument, we used two raw scores 
at each end of the practice-scale (20 and 45), and their 
corresponding measures, and computed new UIMEAN 
(mean of the item difficulty) and USCALE (the user-scale 
value for 1 logit) for the belief-instrument, so that the 
measures of the raw scores 20 and 45 were equal in both 

instruments. This is in principle similar to rescaling 
a Fahrenheit-instrument to a Celsius-instrument by 
defining two values (e.g. points of freezing and boiling). 

To ensure further validity, we used guidelines pre-
sented by Wolfe and Smith Jr (2006) which extends 
Messick’s (1995) validation framework with two as-
pects of evidence put forth in The Medical Outcomes 
Trust (MOT). To summarize, validity is viewed as 
a unified concept. That is, there are not different 
kinds of validity, rather, different kinds of evidence 
that support validity. Accordingly, Messick (1995) 
presents six different aspects of validity where evi-
dence can be found: the content, substantive, structural, 
generalizability, external, and consequential aspects. 
Furthermore, the MOT presents two aspects not men-
tioned by Messick: Responsiveness and interpretability. 

RESULTS

We now present the final instruments and corre-
sponding validity arguments. Both instruments con-
sisted of 12 items, whereas item 3 (marked with an [x]) 
was reversely coded due to negative point measure 
correlation earlier in the analysis. To find evidence 
for the content aspect of validity, the technical quality 
of items has been evaluated. Mean squared fit statis-
tics are chi-squared statistics divided by their degrees 
of freedom (and hence, have an expected value of 1). 
OUTFIT is outlier sensitive fit, and INFIT is infor-
mation-weighted fit. Linacre (2002) suggests values 
between .5 and 1.5 as productive for measurement, 
and all items in both tests were within this interval, 
with belief item 3 having the largest misfit (Figure 2). 
Furthermore, person reliability values, analogous to 
Cronbach’s alpha, were .87 (practice) and .78 (belief ), 

Figure 1: Final practice items
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and item reliability was .98 on both tests, an indicator 
that the sample was big enough to provide informa-
tion for item calibration. 

When practice items were cross-plotted against belief 
items (Figure 3), most items were within a .95 confi-
dence bound. An exception was one border-line item 
(item 4), but the effect on person measures, when this 
item was removed, was negligible. Thus we have de-
cided to keep the item in the analysis.    

Ideally, we would want each pair of items to have equal 
measures. The DTF-analysis, however, showed that 
measures were close but for most items not equal 
(Figure 3). The next step, then, was to see if the meas-
ures were ‘close enough’. And indeed, when person 
measures were compared with the ideal situation (an-

choring practice items to be equal to the belief items), 
only small differences in person measures could be 
found (.26 logits at the most with r2=1.00). 

Moreover, rating scale analysis has been conducted 
for both instruments, to find evidence for substan-
tive validity.  None of the four guidelines suggested 
by Wolfe and Smith Jr (2006, p. 210) were violated: 
1) each rating scale category contained more than 10 
observations (65 observations in the first category in 
the practice instrument, being the least); 2) the shape 
of each rating scale distribution was smooth and uni-
modal; 3) the average respondent measure associated 
with each category increased with the values of the 
categories; and, 4) the unweighted mean-squared fit 
statistics were all less than 2.0 (1.25 at the most). 

Figure 2: Final belief items

Figure 3: Differential Test Functioning (DTF)
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Uni-dimensionality is a basic assumption in Rasch 
analysis (Bond & Fox, 2003, p. 32). Thus, we have 
evaluated dimensionality (structural validity) using 
principal component analysis of the standardized 
residuals after the Rasch dimension was extracted. 
Among the practice items, a second dimension could 
explain 1.9 (in Eigenvalue units) (6.5 %) of the unex-
plained variance, and among the belief items, a second 
dimension could explain 1.9 (6.8 %) of the unexplained 
variance. By default, WINSTEPS stratifies items in 
three clusters for each contrast. The dis-attenuated 
correlations between person measures in these clus-
ters were close to 1 on the belief instrument, and .85 in 
the practice instrument. Thus, we treated the second 

dimensions as strands (like addition and subtraction 
on a mathematics test), and not as dimensions that 
needed separate instruments. 

To find evidence for the generalizability aspect of valid-
ity, we have used Differential Item Functioning (DIF): 
the loss of invariance of item estimates across testing 
occasions (Bond & Fox, 2003, p. 309). Item calibrations 
have been compared between genders, classes, and 
high/low-measured persons. The DIF (Rasch-Welch) 
t-value was less than 2.0 in all cases, where the belief 
item 5 had the most misfit between males and females 
(DIF-contrast = .78 with p = .07).

P rac tic e

Teac her-
c entred

B elief
Teac her-
c entred

S tudent-
centred

S tudent-
c entred

[…] So, we used envelopes and paperclips. Eh, and that X was the envelope, and the number of paperclips in the envelope was the value 
of X. So, by taking away and adding on both sides of a line, they could solve equations. Eh, and it worked very well.

[…] A good task. Hmm… […] that there is, kind of, a possibility for individual interpretation and exploration. Eh, that it is, it is open. That it is 
possible to do it in your own way. That it is not constrained by, by the method you are supposed to use, for instance.

[…] it was jus a recap of, they were having a test. And, from one chapter in the book. And then, I read in the book and made my 
own summary. Formula booklet summary. And then I went to the classroom. And then I went through all I had written down in 
advance.

[…] that I want, I don’t want it to be loose and floating, and, now you are going outside to think about this, and now you are going 
to play with these bricks. I want some structure, and I want it to be like, ok, now we are going to do this, why do we do it? And I 
want some rules and stuff. […] But, I think it is also important that you should explore and work with things you know. Perhaps go 
outside, in mathematics in particular, I think it is important that mathematics is not only abstract, but that you have to work with 
concretes, real life situations. 

Figure 4: The relationship between Norwegian teacher students’ practice and espoused beliefs about ideal practice
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To look for external validity, we have compared the 
results from our study with the literature on the 
relationship between beliefs and practices. The re-
sults in Figure 4 show that there was only a moderate 
correlation (r2 = .28) between students’ practice and 
espoused beliefs, consistent with the existing liter-
ature (Liljedahl, 2009). However, the responses lie 
heavily on one side of the identity line; inconsistency 
was more evident for those who held student-centred 
beliefs. Although it has not been expressed explicitly, 
we assert that traces of this relationship can also be 
found in the literature. Even if different notions are 
being used, inconsistency is mostly described in sit-
uations where participants express reform-minded 
beliefs (e.g., Kesler, 1985; Vacc & Bright, 1999).

Evidence for responsiveness validity can be found in 
the Person-Item Map (Figure 5). Marks on the right 
represent item measures, and marks on the left repre-
sent person measures. From this, we can see that when 
person measures exceeded -2 to 4 logits, we can expect 
that measures were being less accurate. However, since 
we have used the Rasch-Andrich Rating Scale Model, 
each item covered more of the trait than a dichotomous 
item. Thus, the ‘lowest’ and the ‘highest’ item measures 
were not to be considered the ‘floor’ and the ‘ceiling’. 

The interpretability aspect of validity is the degree to 
which qualitative meaning can be assigned to quanti-
tative measures (Wolfe & Smith Jr, 2006, p. 227). Thus, 
excerpts from two interviewed cases are presented 
in Figure 4. In addition, nine teacher educators, at 
the same institution, were asked to respond to the 
belief-test. Other than providing construct validity 
(as teacher educators were expressing significant-
ly more student-centred beliefs than the students), 
the instrument was rescaled, so that the mean of the 
teacher educators’ measures was set to zero. This was 
then used for qualitative interpretation: values close 
to zero could be thought of as in accordance with the 
values of the educational institution. 

CONCLUSION

In this paper, we have argued that research can ben-
efit from purposeful sample selection, and we have 
presented two instruments for this purpose. From 
these instruments, certain ‘kinds of persons’ can be 
selected: persons who seem to practise and identi-
fy with institutional values (measures close to the 
origin); persons who seem to practise and identify 
with traditional values (high measures on both in-
struments); persons who seem to consent and com-

Figure 5: Person-Item Map (belief instrument). M=mean, S=one standard deviation from person 

or item mean, T=two standard deviations from person or item mean
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ply to a workplace norm (having trajectories moving 
away from the identity line), etc. Our intention is to 
use these instruments for studying student teachers’ 
transition from higher education to the world of work. 
However, these instruments can also be used in other 
kinds of research, we argue. For instance, research 
on teaching and learning of mathematics in higher 
education can benefit from selecting particular kinds 
of participants (e.g. lecturers with a certain practice). 

Although we assert that our and similar instruments 
can be helpful tools for sample selection, we acknowl-
edge their limitations. In our case, we have reduced 
the practice (and belief ) of teaching mathematics to 
one dimension. This was done due to the statistical 
benefits, but we emphasize that teaching is clearly 
multidimensional. Thus, persons with similar meas-
ures might, and are likely to have, different practices/
beliefs, even when they are measured with reliable 
instruments. All we can say is that they probably have 
some characteristics in common. Nevertheless, we 
conclude that sample selection is, in many cases, bet-
ter when it is well-targeted rather than opportunistic. 
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more elementary ideas met (or not) before
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Some mathematical problems, which could be solved by 
a general approach, also have different and often origi-
nal solutions that appeal to less advanced mathematics. 
For example, drawing a tangent line to a parabola can 
be done by methods of differential calculus, and by ex-
clusively using methods of Euclidean geometry. A project 
that I conducted with students who recently completed a 
Bachelor degree focusing in mathematics revealed that 
they were familiar with advanced methods but lacked 
more elementary views. I argue that unfamiliarity with 
alternative elementary solutions hinders for students 
the opportunities both to build mathematical connec-
tions and to appreciate the groundwork of related ad-
vanced methods. 

Keywords: Problems with multiple solutions, connectivity 

of mathematics, parabola, Euclidean geometry, calculus. 

INTRODUCTION

Some problems employed in teaching to illuminate 
the essence of a mathematical method appear to be 
universally useful in a variety of courses. In these cas-
es students can compare how different ideas and tech-
niques are applied to address the same mathematical 
question. The practice of identification of problems 
useful for systematic use in various university level 
courses is discussed in the literature. For example, 
Mingus (2002) referred to “calculation of nth roots of 
unity” as a problem that “encourages students to see 
connections between geometry, vectors, group theory, 
algebra and long division” (p. 32). Further discussion 
revealed, “proving identities involving the Fibonacci 
numbers provide a solid connection between linear 
algebra, discrete mathematics, number theory and 
abstract algebra” (ibid, p. 32). Winsløw (2013) referred 
to several ways to approach constructions of ax for a 
> 0 and x real, which are based on either “direct” ex-
tension of the domain from natural to real numbers, 

or the inverse function to loge (x) = ∫z
1 dt/t, or the ini-

tial value problem dy/dx = y, y(0) = 1, or the functional 
equation f(x + y) = f(x)⋅f(y), or the Maclaurin power 
series (p. 2481). Sun and Chan (2009) discussed nine 
proofs of the “Mid-Point theorem of triangles”. The 
fact that “the sum of the interior angles in a plane tri-
angle is 180º” can be shown in eight different ways 
(Tall et al., 2012, p. 35). In my view, these are examples 
of interconnecting problems, which have the follow-
ing characteristics:  they allow various solutions at 
more elementary and more advanced levels; they can 
be solved by various mathematical tools from differ-
ent mathematical branches, which leads to finding 
multiple solutions; and they are used in different 
courses and can be understood in various contexts 
(Kondratieva, 2011a, 2011b).

When students familiar with a problem from their 
prior experiences use their intuition to support 
more elaborate techniques applicable to a problem, 
they also have a chance to perceive mathematics as 
a consistent subject (Kondratieva, 2011a). By means 
of investigation of such problems in different cours-
es “students were able to review concepts from pre-
vious courses and improve their understanding 
of the old and new concepts” (Mingus, 2002, p. 32). 
Knowledge of multiple ways to treat a mathematical 
object can strengthen the relation of a learner to the 
object “in the sense of providing extensions or alter-
natives to standard presentations” (Winsløw, 2013, 
p. 2483). Leikin and her collaborators extensively 
studied “tasks that contain an explicit requirement 
for solving the problem in multiple ways” (Leikin & 
Levav-Waynberg, 2008, p. 234), particularly in the 
context of the development of mathematics teachers’ 
knowledge, and for an examination of mathematical 
creativity (Leikin & Lev, 2007). When used in math-
ematics teachers’ education, interconnecting prob-
lems foster teachers’ ability to link elementary ideas 
with advanced techniques (Kondratieva, 2013), which 

mailto:mkondra@mun.ca
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might contribute to the construction of their horizon 
content knowledge (Ball, Thames, & Phelps, 2008), that 
is, an awareness of how mathematical topics are relat-
ed in the span of the entire curriculum. While being 
familiar with some individual examples of the use of 
interconnecting problems in teaching mathematics, 
I do not know to what extent students in general are 
exposed to teaching practices that encourage them 
explicitly to make connections between advanced and 
more elementary mathematics. According to Winsløw 
(2013), “there remains a practical need for systematic 
didactical research on how standard undergraduate 
mathematics is, or could be, developed in view of facil-
itating its use by students in inquiries related directly 
to high school mathematics.” (p. 2477)

My research question is to what extent students who 
have completed a Bachelor degree with a focus in 
mathematics are familiar with both advanced math-
ematical methods and more elementary ideas related 
to them. In order to address this question I developed 
a research instrument in the form of a handout and 
questionnaire, which is described in this paper. The 
handout includes an interconnecting problem, which 
is typical and familiar for students studying under-
graduate mathematics. This problem can be solved 
by a standard method taught at the university level 
and also has a more elementary treatment, which re-
veals some insightful ideas. This research instrument, 
along with the theoretical framework and results of 
testing in a small group of students, are discussed in 
the following sections.

THEORETICAL CONSIDERATIONS

Modern curriculum at all levels is moving from a 
formal approach to a more inquiry-based study of 
mathematics, focusing on genuine understanding and 
connecting various concepts and methods. House and 
Coxford (1995) argued that presenting mathematics 
as a “woven fabric rather than a patchwork of dis-
crete topics” is one of the most important outcomes 
of mathematics education. The goal of mathematical 
instruction consists of helping a dedicated learner 
go beyond instrumental understanding secured 
by knowing mathematical procedures, and achieve 
relational understanding between different mathe-
matical topics (Skemp, 1987), which assumes connec-
tions of various mathematical ideas. “An ability to 
establish and use a wide range of connections offers 
students alternative paths to the solution” (Hodgson, 

1995, p. 19). While making connections and multiple 
representations of ideas are recognized among the 
primary processes in learning mathematics (NCTM, 
2000), there is also a need for teaching strategies “for 
engaging students in exploring the connectedness of 
mathematics” (House & Coxford, 1995, p. vii).

One possible way to address this need is to use prob-
lems which allow multiple solutions, or specifically, 
interconnecting problems. In the latter approach 
(Kondratieva, 2011a), students encounter an inter-
connecting problem several times as they progress 
throughout their education, each time learning a new 
aspect of the same problem and building their under-
standing on “supportive met-befores” (Tall, 2013, p.15). 
Rephrasing Watson and Mason’s (2005) description 
of reference examples, an interconnecting problem 
is “the one that becomes extremely familiar and is 
used to test out conjectures, to illustrate the mean-
ing of theorems” (p. 7). Indeed, problems that have a 
range of solutions not only can help learners to move 
from elementary to advanced understanding, but they 
also may be used to exemplify advanced methods in 
elementary terms or to come up with an alternative 
and more elementary explanation of results found in 
a different way (Kondratieva, 2013). 

In order to collect and analyze results presented in 
this paper, I employ Tall’s notion of crystalline con-
cept. Formation of a crystalline concept in a learner’s 
mind refers to a phenomenon where an object of math-
ematical study “which originally was a single gestalt 
with many simultaneous properties, and was then de-
fined using a single specific definition – now matures 
into a fully unified concept, with many properties 
linked together by a network of relationships based 
on deductions” (Tall et al., 2012, p. 20). The crystalline 
concept of an object combines all prior experiences of 
a learner in relation to this object, which include per-
ceiving, acting upon, describing in natural or symbol-
ic language, further formalizing, theorizing, and or-
ganizing knowledge about the object in a compressed 
way. Perceiving the object in various contexts, recog-
nizing its multiple representations, and establishing 
equivalence relations between its various properties 
are important steps in the cognitive development of 
a learner towards building a corresponding crystal-
line concept. Eventually, “equivalent concepts may be 
grasped as a single crystalline concept that has all the 
requisite properties blended together within a single 
entity. Powerful mathematical thinking at the highest 
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level involves the external relationship between, and 
the internal relationship within, crystalline concepts” 
(Tall, 2013, p. 403).

The notion of crystallization comprises various 
frameworks and theories of knowledge compres-
sion including the Structure of Observed Learning 
Outcomes (SOLO) Taxonomy (Biggs & Collis, 1982). 
The SOLO Taxonomy describes the progression of a 
learner’s development using the following stages: (0) 
pre-structural, when the learner demonstrates a very 
limited understanding of a problem; (1) uni-structural, 
when the learner uses only one aspect of a concept 
and follows a single procedure to solve a problem; (2) 
multi-structural, when the learner refers to several 
aspects and is able to carry out several procedures to 
solve a problem; (3) relational, when the learner re-
lates several aspects together or sees the equivalence 
of different procedures; (4) extended abstract, when 
the learner grasps the concept so well that they can 
apply it outside of the problem’s domain. Thus, crys-
tallization requires both the familiarity with multiple 
aspects of a concept and relational unification of them. 

Further analysis of the development of mathematical 
thoughts at both the historical and individual level 
suggests that while mathematical arguments become 
more sophisticated and formal, “true mathematical 
thinking should become not only more powerful but 
more simple” (Tall, 2013, p. 19). According to Atiyah, 

“not only mathematics but science as a whole, only 
progresses if you can understand things... Its aim is 
to produce ideas and explain things in simple terms” 
(see Tall, 2013, p. 400). Similarly, Polya (1945/2004) 
suggested to always look back at your solution and 
ask yourself “Can you derive your result differently? 
Can you see it at a glance?” However, the simplicity 
and transparency of mathematical arguments pro-
duced by students often depends upon their prior 
exposure to basic but enlightening ideas related to 
more advanced methods (Kondratieva, 2014), as well 
as on whether they possess proper crystalline con-
cepts. The aim of this paper is to delve on this issue 
using an example from undergraduate mathematics.

RESEARCH INSTRUMENT AND 
ITS PRELIMINARY TESTING

A group of 16 students who had completed their un-
dergraduate degree participated in the project. These 
students were enrolled in my methods course for 

pre-service teachers whose teachable areas included 
mathematics and another subject (most commonly 
science). Each of these students had taken at least eight 
mathematical courses including at least three courses 
at the 3rd or 4th undergraduate level (with average mark 
above 70%). While the project was conducted during 
a regular class time, the participation was optional 
and no mark was assigned to this work. The students 
could have chosen to perform an alternative practice 
assignment; however, everyone in class agreed to par-
ticipate in the project. The students worked in pairs. 
They were asked to develop a theoretical solution and 
implement it using technology. They were presented 
with the problem and questionnaire.

Problem: Use dynamic geometry software to draw a 
parabola and its tangent line at a point using tools of 
your preference.

Through other assignments in my course the students 
were familiar with dynamic geometry software such 
as GeoGebra capable of drawing points, segments, par-
allel and perpendicular lines, circles etc., as well as 
graphs of functions given by their equations in the 
form y = f(x), and manipulating these objects. The tool 
of drawing a tangent line to a given curve was not 
amongst the available options. 

Questionnaire:

(1) Have you seen this or similar problems before? 

(2) If yes, identify the course title or corresponding 
mathematical context appropriate to treat this prob-
lem (e.g. linear algebra, geometry, combinatorics, 
pre-calculus, differential or integral calculus). 

(3) List all methods you know to approach the problem. 
Do you see any connections between them?

(4) If you have never seen this problem before, state 
another problem of which this problem reminds you, 
and which you can solve.

When students had completed the first four questions 
(normally within 20 minutes or less) the last question 
was given to them. 

(5) Read the following sample solutions and choose 
the most appropriate description: (a) I have found 
the same solution; (b) This approach is familiar but I 
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forgot the details; (c) I have never seen this method be-
fore but I can understand and explain the ideas used 
in this approach; (d) I have never seen anything like 
that and I do not understand it.

The students who chose answer (b) or (c) were asked to 
explain the corresponding solution in writing. Then, 
we had a whole class discussion where students could 
reflect on the solutions and connections between them.

Sample solution 1: Use the standard equation of the 
parabola in the Cartesian coordinates and Differential 
Calculus.

Let the parabola be given by the equation y = ax2. 
The derivative of the function   f(x) = ax2 is f’(x) = 2ax. 
The tangent line at a point (x0, ax0

2) has the form 
(y  –  ax0

2)  =  2ax0(x  – x0) or after a simplification 
y = (2ax0)x – ax0

2. Now we can draw the parabola and the 
line in the coordinate plane using the tool “graphing 
functions given by their equations y = f(x)” for some 
values of a ≠ 0 and x0.

Sample solution 2: Produce this construction by means 
of Euclidean geometry given the focus F and directrix 
l of the parabola.

Geometrically, a parabola is the locus of points equi-
distant from the given point F and the given line l not 
passing through F. This definition enables the follow-
ing construction (see Figure 1, left):  (1) Drop the per-
pendicular from F onto l with foot at A; the midpoint 
V of the segment FA is the vertex of the parabola; (2) 
Pick any point B on l; join F and B and draw the per-
pendicular bisector l’ to FB; draw l’’ perpendicular 
to l at B; let l’ and l’’ meet at C. As point B moves along 
line l, point C traces a parabola (Figure 1, right). Then 
the line l’ is tangent to the parabola with C being the 
point of tangency.

RESULTS AND DISCUSSION

The problem that was given to the students is a typical 
problem studied in Calculus courses, where students 
are taught that the derivative f’(x0) represents the slope 
of the line tangent to the curve y = f(x) at a given point 
x = x0. They are also supposed to know that the equa-
tion of a straight line passing through a given point 
(a, b) with a given slope k is given by (y – b) = k(x – a). 
Therefore, Sample solution 1 is a universal approach 
to this type of problem and all of the 16 participants 
recognized it as a familiar method to apply. However, 
none of them mentioned the second method as a pos-
sibility to solve this problem and only one participant 
recognized familiar ideas in the method. The majority 
of participants (15) answered “I have never seen this 
method before but I can understand and explain the 
ideas used in this approach”. The problem was that the 
majority of students did not know the definition of a 
parabola in terms of its directrix and focus.

Nevertheless, once students read the geometric defi-
nition of the parabola all of them were able to un-
derstand and explain the construction presented in 
Figure 1: since C lies on the perpendicular bisector l’ 
of FB, the triangle FCB is isosceles and hence C is equi-
distant from F and l. In terms of the SOLO Taxonomy 
described above this signifies passage to the second 
stage, namely to the multi-structural understanding 
of the problem by the students.

I refer to the second solution as being more elementary 
because it uses mathematical ideas less advanced com-
pared to those needed to develop calculus. However, 
students may have a different point of view. They may 
perceive the algorithmic approach studied in Calculus 
as being easier than using Euclidean geometry, which 
they experienced to a lesser degree.

Knowing two approaches to solve the problem is ob-
viously progress. However, in order to develop the 
crystalline concept it is also necessary for students 
to see a relation between the two approaches. Indeed, 
the students were able to establish a connection to 
the formulas given in the Sample solution 1 by intro-
ducing Cartesian coordinates so that l has equation 
y = -p, and the coordinates of points are F(0, p), V(0, 
0) and C(x, y). Without loss of generality we assume 
that p > 0. Then, by the Pythagorean theorem, FC2 = x2 
+ (y – p)2. But, FC = CB = y + p, and after simplifications 
one gets the equation y =  x2

4p. At the same time the slope Figure 1:  Construction of a parabola given its focus F and directrix l



On advanced mathematical methods and more elementary ideas met (or not) before (Margo Kondratieva)

2163

of FB is  −p
x , so the slope of l’ is  x

2p . This result agrees 
with the Calculus approach, by which the derivative 
is d

dx ( x2

4p) =  x
2p . Finally, the equation of the tangent line 

at point (x0,  x20
4p) is y = f(x) =  x0

2p x −  x20
4p. One can also see that 

f(x0) =   x20
4p  and for any x1 ≠ x0 we have f(x1) =  2x0x1 − x20

4p   <  x21
4p  

since x0
2 – 2x0x1 + x1

2 = (x0 – x1)
2 > 0 and p > 0. The ine-

quality demonstrates that the points of the parabola 
y =  x2

4p, p > 0, lie above any tangent line so that the fam-
ily of tangent lines form the envelope of the curve 
(Figure 2, left).

The above derivation, along with reflection upon its 
results, is an example of constructing the crystalline 
concept of the parabola. In this project, I was able to 
observe that my students had adequate knowledge in 
order to move from the first to the third stage of SOLO 
Taxonomy in understanding and conceptualization of 
the parabola within only one lesson period. I did not 
conduct any activities aiming at identification of the 
fourth, extended abstract, stage. Nevertheless, I will 
comment on some opportunities emerging from this 
lesson. Clearly, a learner familiar with the geometric 
definition of parabola may find it satisfactory to ob-
tain the same result by the more universal method 
learned in Calculus. By using  dynamic geometry soft-
ware and moving the point B along the line l, one can 
see that the point C traces a curve to which the line l’ 
is tangent (Figure 1, right). A learner equipped with 
such experiences will develop a more comprehensive 
understanding of the object called parabola and might 
be able to use alternative representations and prop-
erties of a parabola and its tangent line depending 
on the problems they need to solve. By developing 
representational flexibility of an object (e.g., the pa-
rabola) students become better prepared for solving 
non-routine problems (see also Bergsten, 2015). 

The geometrical view allows students to make closer 
connections of mathematics with physical phenome-

na, such as reflection of light from a parabolic mirror. 
Indeed, since ∠FCB and ∠FCD are supplementary an-
gles, their angular bisectors l’ and l’’’ are orthogonal to 
each other (Figure 2, right). The parabolic mirror near 
point C can be ‘replaced’ by the tangent line l’. This 
implies that the ray DC parallel to the axis FA of the 
parabola will be reflected at the point C towards the 
focus F. Such observations and insights are especially 
important for future teachers of mathematics and sci-
ence because it will allow them to enrich discussions 
in their classrooms.

Students’ unfamiliarity with the geometric definition 
of the parabola prior to my lesson can be explained 
by recent changes in the mathematical curriculum. 
Bergsten (2015) observed that in Sweden, while in 
the 1960s the study of the parabola was embedded 
in a local mathematical organization of analytic and 
Euclidean geometry, since the 1980s it became em-
bedded in a local mathematical organization of func-
tions. Similarly, in Canada the geometrical definition 
of conics no longer has a place in the secondary school 
mathematics. At the university level, this definition is 
supposed to appear in the Calculus stream, for exam-
ple, when equations of conics in polar coordinates are 
introduced. But at that point there is no time to study 
the geometry of the parabola in any detail because 
the focus of the course is on different methods. Thus, 
university graduates with a mathematical degree may 
actually never have seen a discussion of a parabola 
as a geometrical object even though they may know 
properties of geometrical objects (isosceles triangle, 
perpendicular bisector, etc.) necessary for under-
standing how and why the Sample solution 2 works, 
as was the case in my project.

Figure 2: A family of tangent lines to the parabola (left) and reflection property (right)
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CONCLUSION

The fact that completion of a bachelor degree in 
Mathematics does not automatically ensure deep 
knowledge of elementary mathematics is not new (see 
discussion in Winsløw & Grønbæk, 2014) and refer-
ences there). Indeed, even if students can apply an 
advanced approach or formula familiar to them, they 
are not always able to elaborate or explain why that 
formula works through connecting more advanced 
ideas with elementary facts. I conjecture that in some 
cases the students are simply not aware of relevant 
elementary ideas, definitions, and interpretations.

To verify my conjecture I developed an instrument 
that can identify the degree to which students are fa-
miliar with various solutions of a standard problem 
in Calculus. A preliminary study revealed that while 
the students felt comfortable applying the standard 
method, most of them were not familiar with the ideas 
which are more elementary compared to the consid-
ered standard method. I am planning to conduct a 
larger study in order to validate these findings.

Meantime, I suggest that while it is important for 
students to be exposed to standard and advanced 
approaches through university courses, their edu-
cation should also include experiences highlighting 
other approaches and more elementary mathematical 
ideas related to these advanced methods (especially if 
the students already have necessary background to 
understand and elaborate on these ideas). Otherwise, 
they will tend to stick to procedural and formal meth-
ods and will not be able to fully appreciate the results 
of advanced approaches because the connection to 
more basic but enlightening mathematics will be lost.
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In the transition from secondary to tertiary mathemat-
ics education, major difficulties occur for many students. 
To respond to this situation, the University of Applied 
Sciences Münster started the Rechenbrücke project 
with the object to alleviate the transition from school 
to university for engineering students through various 
support measures in the area of mathematics. In this 
article, we present the preliminary course which is part 
of the support measures of the Rechenbrücke and aims 
at refreshing basic calculating skills. The initial results 
of the pilot study presented indicate the potentially pos-
itive effect of these measures.

Keywords: Secondary-tertiary transition, preliminary 

courses, bridging courses. 

INTRODUCTION

The transition from school to university brings along 
many changes which take part over a vast period of 
time starting at secondary school and ending at some 
point during the course of studies. Differences be-
tween school and university can be found in thought 
structures and knowledge organisation, argumen-
tation, and mathematical communication, as well as 
teaching methods and the expectations of the institu-
tion (Gueudet, 2008). Bridging or preliminary courses 
cover one part of that period and as they are currently 
common measures to alleviate transition from school 
to university they present an important factor in the 
transition issue. 

In Germany there are at least two types of tertiary ed-
ucation institutes. Although the differences were re-
duced in the last years, there are still some important 
distinctions between universities and universities of 
applied sciences. While the first ones are “normally 
strongly research-oriented and typically offer a wide 
range of subjects” (Hochschulrektorenkonferenz, 

n.d.) the latter emphasise practical work and appli-
cation and “usually offer a narrower range of sub-
jects [with focus] on fields of engineering, business, 
and social sciences” (ibid). Furthermore students at 
universities of applied sciences are even more hetero-
geneous with often considerably lower mathematical 
skills than those at universities as you can start your 
studies without an A-level school leaving certificate 
(Abitur) but with an advanced technical certificate 
(Fachhochschulreife) or even with a finished appren-
ticeship and some work experience. Therefore many 
students spend some years between school and uni-
versity working or in an apprenticeship. 

The secondary-tertiary transition is experienced as 
difficult by many new students who take mathemat-
ics courses at tertiary level (De Guzman, Hodgson, 
Robert, & Villani, 1998). High drop-out rates and low 
satisfaction with the chosen study course are the re-
sults. In universities of applied sciences the drop-out 
rate of engineering students has been at 31% in the 
last years (Heublein, 2014, p. 501). While it is difficult 
to interpret the concrete percentage due to varying 
definitions of drop-out, the drop out quote of engi-
neers is the second highest (after Mathematics and 
Natural Sciences with 34%) and is notably higher than 
the average drop-out of 23% (ibid). The difficulties de-
scribed above also occur for engineering students at 
University of Applied Sciences Münster, for which 
reason the Rechenbrücke project has been started in 
order to alleviate the transition from school to univer-
sity. The Rechenbrücke is a cooperation project be-
tween five of the engineering faculties of University 
of Applied Sciences Münster and the Institute for 
Education in Mathematics and Computer Science of 
the University of Münster [1]. In this project, vari-
ous mathematics support measures for prospective 
and first-year engineering students at University of 
Applied Sciences Münster are developed and evalu-
ated. 

mailto:ronja.kuerten%40uni-muenster.de?subject=
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THEORETICAL FRAMEWORK

In many countries students entering higher educa-
tion lack proficiency in basic mathematical concepts 
and therefore are not able to develop a sound under-
standing of those key mathematical ideas needed at 
universities (e.g., ACME, 2011, Biehler et al., 2014). The 
situation is even worse at universities of applied sci-
ences as there students with many different learning 
backgrounds enter studies. The Standing Conference 
of the Ministers of Education and Cultural Affairs 
of the Länder in the Federal Republic of Germany 
(Kultusministerkonferenz) adopted educational stan-
dards in mathematics in 2003/04. These standards 
describe subject-based competencies to be acquired 
by students by certain stages of their school career. 
The competence K5 “Mit symbolischen, formalen und 
technischen Elementen der Mathematik umgehen” 
(KMK, 2012, pp. 8f.) which includes e.g., working with 
variables, terms, equations, functions etc. is needed 
by the other competencies as a tool (ibid). Therefore 
lacking mastery of K5 often results in lacking mastery 
of the other competencies. 

Preliminary courses and other support measures 
have been created in many countries to alleviate 
the secondary-tertiary transition. As such courses 
are often designed by single universities, there are 
many different approaches. Decisions to be made 
in designing preliminary courses are discussed in 
Kürten, Greefrath, Harth, & Pott-Langemeyer (2014): 
Framework conditions, objectives and contents, 
and competencies to be taught have to be clarified. 
Framework conditions vary from e-learning to blend-
ed-learning to classroom courses, from some weeks 
to two semesters, with voluntary or mandatory par-
ticipation. Course objectives range from compensa-
tion of mathematical deficits to repetition of school 
mathematics to development of skills used at tertiary 
education. The contents taught vary from specific 
mathematical contents (from lower secondary to 
tertiary level) to mathematical ways of thinking to 
metacognitive competencies (Biehler et al., 2014). 
Despite this richness in course conceptions, research 
on these measures is still at its beginnings. Questions 
like “How can we measure the effects of preliminary 
courses?” or “What are the effects of preliminary 
courses?” have yet to be answered (Biehler et al., 2014). 

Many support measures share the aim to enhance 
success rates by reducing student drop-out, but drop-

out quotes can only be directly measured after the 
students of a cohort have left university. Therefore the 
effects of support measures have to be measured by 
other variables which can be measured shortly after 
realization of the support measure and are predictors 
for the drop-out quote. Heublein (2014, p. 504) charac-
terises the drop-out as result of a complex inter-rela-
tionship between individual and institutional factors. 
Performance in studies is just one factor in that pro-
cess but on the other hand it is a factor which can lead 
to drop-out enforced by university. Therefore, and as 
it can be measured by exam grades, in this paper, we 
will focus on effects the preliminary course has on the 
students’ performance in studies. A similar approach 
is used at the University of Applied Sciences Aachen 
were first results show, that students that attended the 
preliminary course get significant better results in 
their mathematics exams than students that did not at-
tend (Greefrath, Hoever, Kürten, & Neugebauer, 2015).

INITIAL SITUATION

In individual interviews with the responsible math-
ematics lecturers of University of Applied Sciences 
Münster an estimation of the difficulties, students 
faced at the beginning of their studies, was ascertained. 
All the academic staff asked stated a lack of proficiency 
from school mathematics, especially from lower sec-
ondary level. Namely they claim that students fail in 
written exams in mathematics due to missing skills 
in term conversion (a common mistake is the lineari-
zation of all kinds of terms as in (a + b)2 = a2 + b2) and 
fraction arithmetic (e.g. a common mistake is the addi-
tion of numerator and denominator: a

b  + b
d  =  a + b

c + d ). These 
basic skills from lower secondary level are required 
for studying engineering at University of Applied 
Sciences Münster and therefore are not treated ex-
plicitly in the lectures. Nevertheless they are needed 
for solving of various problems in calculus and linear 
algebra. In her study regarding the British education 
system, Kitchen (1999) also determined deficits in the 
prior knowledge required of new students by uni-
versities. The answers from the mathematics lectur-
ers point out numerous parallels to the results of De 
Guzman and colleagues (1998). They describe a lack 
of interest in mathematics itself, of necessary prior 
knowledge, of an appropriate thought structure, in-
dependence, learning methods and organisational 
skills. Therefore the situation at German universities 
of applied sciences is not unique in Europe. Thus an-
swers to the question whether basic calculation skill 
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training can alleviate transitions problems (especially 
for students with low mathematical skills) should be 
of broad interest.

CONCEPTUALISATION OF SUPPORT MEASURES 

Within the scope of the project, various measures 
have been designed which should alleviate the tran-
sition to university in the area of mathematics. As the 
target group contains many students with assumed 
low mathematical skills, focus was laid on competence 
K5 to create a basis on which further mathematical 
understanding could be built as described above. In 
an initial step, a collective minimum requirements 
catalogue for mathematics was created. Based on 
this, a modular preliminary course was developed 
that encompasses an upstream diagnostic pre-test. 
Different scientific evaluation measures (e.g., a post-
test and evaluation sheet subsequent to the prelimi-
nary course) are used to examine the effectiveness 
and feasibility of these offers. 

The minimum requirements catalogue
The minimum requirements catalogue of mathemati-
cal prerequisites for students in engineering courses 
of study is based on the mathematics minimum re-
quirements catalogue which the cooperation team 
school – university (cosh) in Baden-Württemberg 
developed as a consensus of schools and universities. 
As a result, it can provide an expedient basis for the 
selection of mathematical contents in a preliminary 
course or a mathematics test at the beginning of stud-
ies (Dürrschnabel et al., 2013). In the project this cata-
logue was adapted and defined in coordination with 
the mathematics lecturers at University of Applied 
Sciences Münster. To improve the transparency of the 
requirements, the catalogue has been published for all 
interested parties on the homepage of the University 
of Applied Sciences [2].

The mathematics preliminary course at 
University of Applied Sciences Münster
The concept for the mathematics preliminary course 
was chosen to account for three aims: As much facets 
as possible mentioned above should be considered, it 
should be possible to recapitulate most of the topics 
posed in the minimum requirements catalogue by 
visiting the preliminary course and the expectations 
of the teaching staff in mathematics should be satisfied 
as far as possible. The result was a modularly struc-
tured preliminary course concept created in the first 

half of 2013. In the course, contents of school mathe-
matics from the lower and upper secondary levels are 
addressed in ten modules developed as a consensus 
of the participating staff of which the following arose 
from the initial interviews: Basic calculation meth-
ods and fractions; terms; equations with one unknown 
and functions (part I). The minimum requirements 
catalogue was taken as a basis for the modules that 
complement the preliminary course: Percentage calcu-
lation, power and square root calculation; inequations 
with one variable; functions (part II); differential calcu-
lus; integral calculus and simultaneous equations, vec-
tors and matrices. Besides post-processing of school 
mathematics, preparation for the requirements of the 
study course is also featured. Two modules address 
interdisciplinary mathematical and course-relevant 
aspects such as notation of statements and equations, 
argumentation, systematic approaches, lecture 
post-processing, examination preparation, etc. Here 
preparation refers to metaknowledge, interdiscipli-
nary methodology, and organisational information 
(Hoffkamp, Schnieder, & Paravicini, 2013). The pre-
liminary course takes place as a classroom course 
composed of lectures and tutorials, which is support-
ed by E-learning contents. Amongst other things, this 
includes parts of scripts, exercises and short videos 
regarding individual subjects. Due to the large num-
ber of new students, the course is conducted in two 
parallel courses divided according to faculty.

Based on an entry test, students can decide which mod-
ules of the preliminary course they wish to process. 
Subsequent to conducting the test, students receive 
feedback as to which tasks they have solved correctly 
or wrongly. For every wrongly answered task, they 
receive the additional urgent recommendation to visit 
the corresponding module of the preliminary course. 
In this way, the target group should be sensitised to the 
support offer. Given that the clientele of University 
of Applied Sciences Münster comprises of full-time, 
parallel-to-profession and dual system students, the 
online materials should simultaneously enable prepa-
ration for the study course. Furthermore, students 
can decide which module they wish to process in the 
classroom course or online. Modularisation and flex-
ibility should furthermore enable preparation for 
new students for their study course, adapted to their 
personal proficiencies.
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RESEARCH QUESTIONS AND METHODS

Given the initial situation described above and the 
project aim to alleviate secondary-tertiary transi-
tion for engineering students with heterogeneous 
and partly low mathematical skills, three research 
questions were designed.  

1) What are the difficulties experienced by new 
engineering students when trying to use school 
mathematics?

2) Can a preliminary course reduce these difficul-
ties and if yes, to which extend?

3) To which extend do these difficulties influence 
the outcomes of written exams in mathematics?

Within the scope of the project, data from mathemat-
ics tests and exam results are collected. In addition to 
these quantitative tests, semi-structured interviews 
are conducted with students and the students’ evalua-
tions regarding the conducted measures are gathered 
with the aid of a questionnaire in order to ascertain 
the effects of the measures in a differentiated manner. 
In the following, we address the stated quantitative 
research methods and initial results.

In the project a pre- and post-test are used in connec-
tion with the preliminary course. The pre-test should 
not merely act as a self-diagnostic instrument pro-
viding the students with feedback regarding their 
existing deficits, but moreover, in combination with 
the post-test, should serve as an evaluation of the pre-
liminary course. Based on these objectives, the test has 
become mandatory for all who wish to take part in the 
preliminary course, and is set up voluntarily for all 
others. Two dates were selected for implementation – 
prior to and shortly after the preliminary course. The 
test procedure is computer-based and, for the objec-
tivity of test procedure, takes place centrally in PC 
pools at the university. The tests have been integrated 
into the learning platform, ILIAS, used throughout 
the university. The evaluation requires automatically 
correctable task formats such as single choice and 
multiple choice tasks and tasks with short answers. 
Given that fundamental proficiencies are queried in 

these tasks, the test procedure was designed as assis-
tance tool-free. The test comprises of 13 items which 
are associated with the contents of the preliminary 
course modules (see Table 1). The following items are 
two of those used in the pre-test 2013 (translation into 
English).

Task 2: Calculate and write as an irreducible frac-
tion a

b .

a) 
1
3  + 

3
5

7
5

 = 
a
b    a =    b =   

Task 10: We are seeking an equation of the line 
with the following characteristics: intersects the 
x-axis in  and has the slope . The equation should 
be stated in the form y = m⋅x + b.
m =    b =   

In addition, „Type of school qualification“, „Time since 
the end of school“, „Average mark in school leaving 
qualification“, „Final mark in the subject mathematics“, 
and „Use of calculators in upper secondary level“ were 
ascertained. After the preliminary course, the stu-
dents take part in a parallel-designed post-test. This 
takes place at the beginning of the lecture period. The 
first implementation of this test took place as a pilot 
study in winter semester 2013/14. For organisation-
al reasons, the pre-test was carried out by students 
on home PCs and the post-test as a paper test during 
Mathematics I lecture at the beginning of the semester. 
In addition to the information ascertained in the two 
tests, the students’ results in the written mathematics 
exams are ascertained after the first (Mathematics I) 
and second (Mathematics II) semester. An example for 
items used in the exams is shown in Figure 1.

The written exam marks of the students are anony-
mously assigned to the corresponding data gathered 
in the tests. A possible correlation between a prelim-
inary course attendance and the results in written 
exams should be investigated using this data.

RESULTS

689 test persons took part in the pre-test, and of these, 
603 completed the test and provided evaluable results. 
Of initial interest for the Rechenbrücke project was 

Figure 1: Item of the Mathematics I exam in mechanical engineering (translation into English)
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the question of whether the contents of the prelimi-
nary course were expediently selected, i.e. whether 
room for improvement actually exists for these topics. 
The solution rates and topics of the individual tasks 
are depicted in Table 1. Even the task regarding basic 
calculation methods, with the highest solution rate, 
could only be solved by less than three quarters of 
the test people. Task 4 (power and square root calcula-
tion) had the lowest solution rate with only 21% correct 
answers. The solution rates of the items indicate that 
addressing these contents in the preliminary course 
is sensible.

Due to the non-objective test procedure in the pilot 
study, a comparison of the solution rates between 
pre- and post-test is only conditionally possible. For 
a small portion of the random sample (N = 209), the 
results from the pre- and post-test could be correlated. 
In the course of this, significant changes with a small 
effect size (|Cohens d| > 0.2) were indeed determined 
for several tasks (improvement with tasks 1, 4 and 6 
and deterioration for task 7), however these results 
serve as an indicator at the most and will be checked 
in the upcoming run in the actual investigation. The 

reliability of the tests was determined by means of 
Cronbach’s Alpha. For the pre-test, a value of 0.72 
(N = 603) resulted. For the post-test, the value lies at 
0.73 (N = 805). Therefore the internal reliability of the 
test is acceptable.

Based on the data of the tests and written exams, 
the correlations between written exam results in 
Mathematics I (the first lecture on mathematics 
in engineering studies at University of Applied 
Sciences Münster) and potential influencing factors 
have been investigated. The variables investigated 
were „Average mark of school leaving qualification“, 

„Final mark in mathematics“, „Number of points in 
the pre-test“ and „Number of points in the post-test“. 
Statistically significant correlations (p < 0.01) were 
determined for all variables which lie between 0.37 
and 0.45. The differences between the correlation co-
efficients were tested with Fisher’s z-transformation 
and are not significant. 

Furthermore, it was investigated whether the results 
in the written mathematics exams of students who 
have or have not visited the preliminary course differ. 
Looking at the overall random sample (N = 280), no 
significant deviation could be initially determined. 
However, if the results are divided according to the pre-
liminary course groups, then for group B (Faculties of 
Chemical Engineering, Mechanical Engineering and 
Physical Technology, N = 176) a significant deviation 
(p = 0.037) is obtained with the Mann-Whitney U-test. 
In these faculties, the written exam results of the stu-
dents who have taken part in the preliminary course 
are significantly better than those of the students 
who have not taken part in the preliminary course. 
In the other preliminary course group A (Faculties 
of Electrical Engineering and Computer Science and 
Energy – Buildings – Environment, N = 104) no signif-
icant deviation of distribution could be determined. 
A comparison of the average mark of school leaving 
qualifications showed no significant difference be-
tween the students either in group A or group B who 
took part in the preliminary course or not.

DISCUSSION

In winter semester 2013/14, the first measures of the 
Rechenbrücke project started. In the course of the 
investigation conducted, initial data was ascertained 
in pre- and post-tests and evaluated. 

Task and Topic Solution 
rate

1 Basic arithmetical operations involv-
ing brackets in Z

73%

2 Basic arithmetical operations on frac-
tions, cancelling 

61%

3 Percentage calculation: markup prob-
lem 

67%

4 Solving of a fractional equation 
where numerator and denominator 
involve powers and square roots 

21%

5 Term conversion using binomial 
formulas

52%

6 Calculation of inverse proportionali-
ty using the rule of three

69%

7 Solving of a fractional equation 70%

8 Solving of a quadratic equation 36%

9 Solving of a linear inequality 63%

10 Setting up the equation of a linear 
function

53%

11 Offsetting of a parabola 31%

12 Solving of a simple logarithm equa-
tion

33%

13 Trigonometry: definition of sine, 
cosine

53%

Table 1: Solution rate for the individual tasks in the pre-test (N = 603)
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The difficulties experienced by new engineering stu-
dents determined in the pre-test already confirm that 
the repetition of elementary calculation skills from 
mathematics lessons is expedient. Corresponding 
results are also indicated in the tests conducted by 
University of Applied Sciences Aachen. For each 
initial test, the students there attained an average 
solution rate of 40–50%, depending on the prerequi-
sites (Greefrath et al., 2015). The solution rate of the 
entrance test which has been conducted for more than 
ten years at the Universities of Applied Sciences in 
North Rhine-Westphalia lies even below this (Knospe, 
2011). A possible reason for this lack in basic skills 
might be the task of solving arithmetic problems with-
out using a calculator which is unusual for students 
in North Rhine-Westphalia.

At this point of the project a definite answer to the 
second research question cannot be given as the re-
sults of the pre- and post-tests are not comparable due 
to the non-standardised procedure. The determined 
tendencies of a slight improvement for some tasks 
could however be an indicator for the success of the 
preliminary course. The cause of the deterioration 
for the result of task 7 must be further investigated. 
The introduction of prerequisites which must be ob-
served prior to solving a fraction equation possibly 
had a negative influence on the previous, direct cal-
culation of the solution. The positive correlation de-
termined between preliminary course participation 
and performance in the Mathematics I written exam 
in some faculties can have diverse reasons, such as a 
higher level of motivation and willingness to learn 
among students who take part in a preliminary course. 
The quantitative numbers presented here are under-
pinned by the answers given in the questionnaire: 
Students state, that they feel better prepared for 
mathematics lectures after visiting the preliminary 
course. The evidence presented above gives reason to 
state the hypothesis that the preliminary course can 
reduce the difficulties in school mathematics of new 
students. Further investigations will test the hypoth-
esis to answer the second research question. 

During the search for causes for different effects in 
both of the preliminary course groups, differences 
in prior knowledge were sought and measured on 
the basis of the school leaving qualification marks. 
However, the research has not yet revealed any signif-
icant differences between the different groups. Both 
preliminary course groups were conducted by the 

same lecturer in the same way; however, the subse-
quent mathematics activities in the various faculties 
are different in their content and in the way they are 
conducted. For this reason, the match between the 
preliminary course concept and the lectures is pos-
sibly not given to the same extent in all faculties. In 
the following execution of the preliminary course, 
audio recordings or written minutes could improve 
the monitoring of the course implementation. 

Concerning the outcomes of written exams in math-
ematics in this investigation correlations between 
all variables and the Mathematics I exam have been 
found. Correlations between pre-test respective post-
test and the Mathematics I exam can be explained by 
the basic skills which are needed to solve the items 
(e.g., that in Figure 1) used in the exams. An interesting 
result is that the final mark in mathematics seems to 
be no better predictor for exam results than the av-
erage mark from school leaving qualification or the 
points achieved in the post-test. 

The modular preliminary course concept with the 
possibility of an individual compilation of prelimi-
nary course topics by the students provides great flex-
ibility. To what extent this flexibility is utilised by the 
students and which effects this has on performance 
in the written exams will be investigated in the main 
study. Furthermore, the Rechenbrücke supports the 
first semester students for the transition from school 
to university through further, in part freely selectable 
measures. The results from the pilot study presented 
in this article indicate promising findings from the 
performance of the main study in the coming years.
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The research field of problem solving in mathematics 
is highly relevant in mathematics education. There 
are manifold approaches to understand the process of 
problem solving like Polya’s phase model or Bruder and 
Collet’s heuristic methods. In two studies, we investi-
gate how engineering students’ performances in higher 
mathematics and technical mechanics are connected 
(study 1, n=37) and what role their problem solving com-
petencies play (study 2, n=8). In the first study, we as-
certained that mathematical competencies and beliefs 
about physics are substantial for success in technical 
mechanics. In the second study, students had to com-
plete sequences of tasks and their usage of heuristics was 
investigated. The results show that successful students’ 
heuristic tools and strategies are more elaborated.

Keywords: Problem solving, engineering education, 

technical mechanics, qualitative content analysis.

INTRODUCTION

Mathematics is an important subject in engineering 
education. The first courses of study are character-
ized by a high usage of mathematics, be it in math-
ematics, in physics or further engineering lectures. 
Besides continuously improving their declarative and 
procedural knowledge in the respective fields, it is 
important for students to develop their problem solv-
ing competencies as this is one of eight competencies 
that engineering students need to learn according to 
the SEFI1 (2013) framework: thinking mathematically, 
reasoning mathematically, posing and solving math-
ematical problems, modelling mathematically, repre-
senting mathematical entities, handling mathematical 
symbols and formalism, communicating in, with and 

1  European Society for Engineering Education

about mathematics and making use of aids and tools. In 
accordance with findings in mathematics education 
(cf. Törner, Schoenfeld, & Reiss, 2007), in SEFI (2013) 
problem solving as competency for engineering stu-
dents is characterized as follows: 

This competency [mathematical problem solving] 
includes on the one hand the ability to identify 
and specify mathematical problems […] and on 
the other hand the ability to solve mathematical 
problems (including knowledge of the adequate 
algorithms). What really constitutes a problem 
is not well defined and it depends on personal 
capabilities whether or not a question is consid-
ered as a problem. (p. 13)

The formation of these competencies is, however, of-
ten hampered by an asynchronicity of mathematical 
and engineering education. The overarching aim of 
the project KoM@ING2 is to measure mathematical 
competencies of engineering students and the rela-
tions between the different lectures by combining 
a quantitative and a qualitative perspective. In the 
quantitative approach (project partners from IPN3 
Kiel and University Stuttgart), IRT-based measures 
for higher mathematics and technical mechanics are 
developed to capture students’ development in their 
first year of study (Nickolaus, Behrendt, Dammann, 
Ştefănică, & Heinze, 2013). Thus, individual competen-
cies are measured reliably and validly, but no insight 
is provided into the students’ actual problem solving 
processes. This paper reports on the work of the qual-
itative project that scrutinizes these processes.

2  German acronym for “Modelling Competences of Engineering 

Students”, funded by BMBF (Ministry of Education and 

Research) 

3  Leibniz Institute for Science and Mathematics Education

mailto:malte.lehmann%40hu-berlin.de?subject=
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THEORETICAL FRAMEWORK

Mathematical problem solving is an important field 
in mathematics even at school and at university (cf. 
Halmos, 1980). There are many different approach-
es for research on this topic (cf. Schoenfeld, 1985; 
Chinnappan & Lawson, 1996; Rott, 2013). One perspec-
tive focuses on the inner structure of problem solving 
processes considering heuristics and beliefs, another 
perspective elaborates on the outer structure in terms 
of timing and organizing of processes. In our study, 
we focus on both aspects by investigating phases of the 
problem solving process (cf. Polya, 1945) and the use 
of heuristics (cf. Bruder & Collet, 2011). In his seminal 
work, Polya (1945) differentiates understanding the 
problem, devising a plan, carrying out the plan, and 
looking back as essential phases of any problem solv-
ing cycle. Schoenfeld (1985) extends the model of Polya 
by adding an exploration phase which interacts closely 
with the planning phase, but also allows a throwback 
to the first phase. Likewise, Chinnappan and Lawson 
(1996) stress the importance of the first two phases: 

“[…] the planning process forced the solver to make 
optimum use of information that was identified and 
information that was generated” (p. 13). In addition, 
Chinnappan and Lawson (1996) could show that not 
only the single use of heuristics is important, but also 
a training in management strategies that allows for 
effectively coordinating different phases. However, 
Rott (2013) could show that completely linear mod-
els are not always suitable to describe problem-solv-
ing processes and provides empirical evidence for 
applying a more flexible model. Bruder and Collet’s 
(2011) work on heuristics places the methods in the 
center and explains the process of problem solving 
by heuristic tools (e.g., informative figure), heuristic 
strategies (e.g., using analogies) and heuristic princi-
ples (e.g., symmetry principle). In addition, the prob-
lem solving process is influenced by the interplay of 
mathematics and physics as described in the frame-
work by Tuminaro and Redish (2007) that elaborates 
on so-called epistemic games. These epistemic games 
like, for instance, mapping mathematics to meaning, 
allow the description of how students make the tran-
sition from novices to experts, and contribute lenses 
to elaborate on either individual-related or task-relat-
ed characteristics. In order to solve problems with 
physical contexts, students need adequate beliefs 
about the physical concepts involved. From beliefs 
research we know that pre-service teachers “who ap-
proach learning physics with a more favourable belief 

structure are more likely to achieve higher learning 
gains” (Mistades, 2007, p. 185). An instrument to reveal 
students’ beliefs about the force concept is provided 
by Hestenes, Wells, and Swackhamer (1992) which 
proved to be useful in several studies. Based on these 
theoretical foundations, we investigate how students’ 
performances in higher mathematics and technical 
mechanics are connected and what role their problem 
solving skills play:

Research question 1: Do students’ performances at 
school, their mathematical skills, and their beliefs 
about physics concepts (related to the force concept) 
predict their achievement in technical mechanics?

Research question 2: Can task difficulties in higher 
mathematics and technical mechanics be described 
through analysing occurrences of Polya’s phases and 
students’ use of different heuristics? 

Research question 3: Does working on task variations 
in technical mechanics that imply increasing difficul-
ty requires using more and different heuristics?  

The first and second research question will be an-
swered using the results from study 1. Research ques-
tion 3 is answered by referring to the results of study 2.

METHODOLOGY

The research comprises two different, but related sur-
veys. The first one is taken from our larger study to 
investigating the development of students’ problem 
solving competencies in their first year at universi-
ty. That is, students work on the IRT-scaled test for 
higher mathematics (HM) and technical mechanics 
(TM) from the quantitative project. The other sur-
vey is task-related and investigates four sequences of 
tasks about statics and the different usage of problem 
solving competencies. Here, students are observed 
while working on and discussing tasks of increasing 
difficulty.

Our project partners developed TM/HM pre-tests 
delivered at the beginning of students’ studies. The 
pre-tests consist of 28 (TM) and 36 (HM) items with a 
combination of closed (multiple choice, multiple true-
false) and (semi-) open questions. The TM pre-test cov-
ers items on statics, kinematics, kinetics, energy and 
momentum, oscillations and basic concepts, all on a 
higher school level. For example, one task is: 
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Draw a possible amplitude curve of a damped os-
cillation in the diagram. 

The HM pre-test, based on work by Hauck (2012), asks 
questions on mathematical basics, calculus and geom-
etry. One example is:

Given is a plane E: 6x1+6x2–3x3= –12 and the point 
A (3/6/4)

a) Determine the distance d of the point from the 
plane.

b) Calculate the coordinates of A’ (A mirrored at 
the plane).

These tests are IRT-scaled (pilot study with N=1069 
students) and thus enable us to categorize our par-
ticipants in terms of their mathematical, physical 
and technical competencies at the beginning of their 
university course. Additionally, the scaling affords 
us selecting the five easiest and most difficult tasks.

The Force Concept Inventory (FCI; Hestenes, Wells, 
& Swackhamer, 1992) investigates students’ beliefs 
about the concept of force which is an important part 
of competences in mechanics. It consists of 30 items, 
each of them describing a physical situation. One must 
choose among five possible answers, one relating to 
the correct Newtonian concept and four relating to 
alternative concepts. Opportunities to analyse the 
scores vary. Either the raw score of correct answers 
can be used or special attention can be paid to how the 
wrong answers relate to misconceptions. We decided 
to use the raw score to investigate students’ changes 
during their first year (cf. Hestenes & Halloun, 1995), 

because we have been interested in analysing the 
changes in students’ beliefs during the first year.

Design of study 1: Development of 
problem solving competencies
In the first study data was collected at three points 
(Table 1). In September 2013, the students (n=37; 
male=27, female=10) worked on four tests: the TM 
pre-test, the HM pre-test, an intelligence test (CFT-3, 
Culture Fair Intelligence Test) and the FCI. In this pa-
per, we only focus on this first measurement point, but 
provide an overview on the whole study in Table 1. The 
longitudinal design was chosen to capture students’ 
development of their mathematical and physical skills, 
and problem solving competencies. These results will 
be presented elsewhere.

In addition, the students worked in groups of two or 
three on the five easiest and five most difficult tasks 
of the two pre-tests (Table 2). 

The group work was recorded on video for later anal-
ysis. The thinking aloud-method (Ericsson & Simon, 
1984) rendered thoughts and ideas observable. In or-
der to analyse the video data and the students’ work, 
we developed a category system based on the theoret-
ical framework described above (Table 3). 

The category system was carefully tested and opti-
mized in a pilot study. As a result we arrived at 38 
categories as an assessable selection with reasonable 
frequencies. 

Time Content

09/2013 TM/HM pre-test, IQ-test, FCI; Video: easy/difficult tasks (pre-test)

04/2014 Video: easy/difficult tasks (pre-test)

09/2014 TM/HM post-test, FCI; Video: easy/average/difficult tasks (post-test)

Table 1: Overview study 1

HM-Topic Difficulty TM-Topic Difficulty

Equation -3.71 Kinetic energy -1.98

Number line -3.39 Deflection curve -1.89

Reflection at a plane (see above) 2.80 Trajectory 1.80

Exponential function – Extremum 3.22 Load 3.17

Table 2: Overview on topics of the chosen tasks (in excerpts: 2 easy/2 difficult tasks)
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Design of study 2: Task-related 
problem solving competencies
The second study investigates characteristics of tasks 
by special sets of TM tasks at two measurement points 
(cf. Table 4). The set consists of two to four tasks with 
increasing difficulty for the four topics of gravity, 
reaction forces, displacement and deformation, free 
body diagrams and force systems (cf. Figure 1). Four 
students handled every sequence. These tasks are 
taken from the piloting phase of the TM post-tests 
where they showed inadequate model fit and therefore 
were rejected in the IRT-model. In our study we inves-
tigate how slightly changing task features influence 
students’ problem solving behaviour. 

To control for students’ competences we considered 
their first term grades (calculus, linear algebra and 
mechanics) as indicators. The participants (n=8, 
male=6, female=2) worked alone on the tasks and 
received in advance a detailed introduction into the 
thinking aloud-method (Ericsson & Simon, 1984), in-
cluding a preceding practice task. After that, students 
chose a topic, were given two to four tasks accordingly 

(cf. Figure 1), and processed the tasks in ascending 
difficulty. Finally, all students were interviewed and 
asked to reflect their courses of action. The video 
data was analysed by using the category system (see 
study 1). While students’ work was analysed as in 
study 1, the interview data was also checked for task 
characteristics and the conscious use of problem solv-
ing strategies.

RESULTS

Study 1
As mentioned earlier, only the findings from the first 
measurement point can be reported at the moment, as 
the data from the second and third survey have not 
yet been completely analysed. Our participants are 
comparable with the students from the larger pilot 
study conducted by the quantitative project. In de-
tail, they received the following mean personal ability 
estimates and results: MHM=-0.11 (SD=1.38), MTM=-0.86 
(1.01), FCI=11.35 (5.78) out of 30 points. To clarify which 
factors affect students’ performance in the process-
ing of tasks due to physical contexts, several multiple 
linear regressions and the corresponding correla-
tion matrices were calculated. For the correlations 
of pre-test results and prior knowledge, represented 

Structure Category Sub-categories

Inner 
Structure

Heuristic tools Informative figure, Table, Equation

Outer 
Structure

Polya’s phases Understanding the problem, devising a plan, Carrying out the plan, 
Looking back

Table 3: Category system (in excerpts)

Time Content

05/2014 Video: easy tasks

06/2014 Video: more difficult tasks; FCI

Table 4: Overview study 2

Figure 1: Task sequence: “reaction forces”
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by the final grade in school certificate, the results are 
provided in Table 5. 

Collinearity analysis detected that the factor Grade 
School Certificate contains the same information as the 
factor result HM pre-test, it is therefore not important 
for further calculations (cf. Table 6).

The model explains 60% of the variance in the TM pre-
test results. In particular, beliefs about physics have a 
great influence on these results. In contrast, only 20% 
of all observed uses of heuristic strategies occurred 
when students worked on physics problems. Thus, the 
mathematical problem solving approaches, such as 
problem solving strategies and Polya’s phase model, 
are only partly suitable for describing processes in 
solving physics problems. Here analyses by guide of 
the epistemic games framework, which are reviewed 
in a forthcoming analysing step, will probably deliver 
further explanations. However, when just looking 
at the use of heuristic tools and heuristic principles, 
we can conclude that these are used in a similar way 
when solving both mathematical problems and phys-
ics tasks. Table 7 shows the distribution of heuristics 
for the processing of easy and difficult tasks. 

The results show that the students are increasingly 
using both tools and principles for difficult tasks. The 
situation is similar for mathematical tasks when us-
ing heuristic strategies. Overall, the students used 
heuristics rather rarely. Only in slightly more than 
half of the task processing of the difficult tasks, the use 
of heuristics could be observed (tools: 54%, strategies: 
55%, principles: 27% of all difficult tasks). When solv-
ing the easy tasks, heuristics were less observed (tools: 
30%, strategies: 45%, principles: 0% of all easy tasks).

Applying Polya’s phase model to analyse the mathe-
matics tasks, it becomes clear that for difficult tasks, 
students worked much more in cycles (for example, 
between carrying out a plan and devising a plan) in 
their solution process than for easy tasks, where they 
tend to go through the problem solving process lin-
early.

Study 2
For the sake of brevity we limit ourselves to present-
ing only the results of the sequence of tasks to reaction 
forces (see Figure 1). All students successfully solved 
the first task, using one specific algorithm. At the end 
of their solving process, only two students recognized 

Results TM 
pre-test

Results HM 
pre-test

Results FCI Grade School 
Certificate

Results TM pre-test 1

Results HM pre-test .676** 1

Results FCI .744** .696** 1

Grade School Certificate -.382* -.612* -.372* 1

**p < .01, *p < .05

Table 5: Correlation matrix (first measurement point)

Predictor bi βi Sig.

(Constant) -1.883 p = .00

Results HM pre-test .236 .306 p = .05

Results FCI .093 .531 p < .01

R2=0.602

Table 6: Multiple linear regression

Easy tasks Difficult tasks

Heuristic Tools (HM/TM pre-test) 31% 69% 

Heuristic Strategies (HM pre-test) 37% 63% 

Heuristic Principles (HM/TM pre-test) 0% 100%

Table 7: Distribution of heuristics
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the symmetry aspect of the task. Students’ work dif-
fered only slightly concerning the amount of the heu-
ristic tools and strategies used. It is remarkable that 
the students who had mastered the more difficult tasks 
of the sequence, switched more frequently between 
the heuristic tools used when solving the simple task 
(here informative figure and equations). Table 8 sum-
marizes the results that the four students received. 
As it is shown in Figure 1 and Figure 2, students were 
asked to compute the three forces AH, AV and B in each 
task; yielding the correct result was coded 1, otherwise 
0 (see Table 8). 

The following transcript of Denise’s work shows the 
alternating use of the two heuristic tools mentioned 
above. She was able to determine the first two equa-
tions for calculating the x- and y- directions, and thus 
AH, and started to calculate the third equation for the 
momentum.

From her think aloud protocol we gain the following 
explanations:

So, for example, the sum of all momentums, what 
will be best? So you have to have any equation 
with only one unknown that you are looking for, 
yes. Then you could take, for example, the point 
(showing on the point, AV and AH point to), be-
cause the two go through that, then they do not 

have to be calculated. [The] Sum of all momen-
tums in point A which is here (draws a point to 
the place to which AV and AH point and labels it 
with A) must be 0. So the positive direction of ro-
tation is this (draws a curved arrow). F1 (redraws 
arrow F1) rotates negatively with the lever arm 
1m, meaning minus F1 times 1m, F2 negative with 
2m, and B (indicates B) is positive with 3m equals 
0. F1 and F2 on the other side mean B times 3m is 
equal to F1 times 1m minus F, plus F2 times 2m. 
Then, you need to convey the 3m here (indicates 
the side of the equation with F1 and F2), by divid-
ing, and then we have B alone in the end.

This procedure of combining heuristics is also seen 
in the processing of the two other tasks. The two other 
students (Alice, Bob) do not connect the informative 
figure and the equations in a similar way. They fail 
to solve the third task, since they apparently cannot 
transfer all the information from the figure correctly 
into their equations.

DISCUSSION

We were able to provide evidence for the expected 
influence of mathematical skills and beliefs about 
physics on the achievements in technical mechanics 
even in our small sample. In view of the above-men-
tioned asynchronicity of engineering education, this 

Figure 2: Student D’s work on task 1

Alice1 Bob Chris Denise

Task 1 (AH/AV/B) 1/1/1 1/1/1 1/1/1 1/1/1

Task 2 (AH/AV/B) 1/0/0 1/1/1 1/1/1 1/0/0

Task 3 (AH/AV/B) 1/0/0 1/0/0 1/1/1 1/0/1

Table 8: Results of the task sequence “reaction force”
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means that students first need to master the mathe-
matical basics to be able to successfully work on phys-
ics problems and not, as is often the case, learn them 
at the same time or after encountering the physics 
contents. The results about problem solving in our 
first study suggest two conclusions. On average, more 
difficult tasks require a greater use of heuristic tools, 
strategies and principles. In addition, we noticed that 
in some tasks which are assigned a high difficulty esti-
mate by the IRT scaling, the students’ use of heuristics 
is comparable to their processing of the easy tasks. 
Overall, the students rarely use heuristics in solving 
the tasks, both in the easy and in the difficult tasks. We 
note that only in just over half of the difficult tasks 
the students use tools and strategies when working 
on them. The cause may lie in a low consideration of 
problem-solving tasks in mathematics education at 
school. 

The results of the second study clearly show that it 
is not enough to simply master heuristics, although 
the use of individual heuristics helps solving tasks, 
as can be seen in the first item of the task sequence 

“reaction forces”. Only when these heuristics are mean-
ingfully connected, in a way that they support and 
enhance each other, students are able to solve chal-
lenging tasks successfully. An exemplary situation 
is the following one: first, a student used the diagram 
to understand the situation. The situation requires a 
certain algorithm which the student formulated in a 
general form. Then the components were adjusted 
using the diagram in the given situation. After that 
the result was checked for plausibility referring to 
the diagram. Therefore learning heuristics should 
attend to two competencies: Students must be able 
to use some heuristics deliberately, and they need to 
be able to effectively combine tools, strategies and 
principles.
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We focus on the perceived autonomy of mathematics 
students in their first semester at university. According 
to self-determination theory by Deci and Ryan (1985), 
students have to satisfy their need for autonomy in or-
der to develop intrinsic motivation. Using two facets of 
autonomy, we analyse interview data to explore which 
situations foster or hinder the students’ perceived au-
tonomy. The main factors affecting students’ autonomy 
are briefly discussed.

Keywords: Self-determination theory, autonomy, first 

study year.

INTRODUCTION

Students’ interest is an important factor in learning 
mathematics, especially for deep understanding 
(Köller, Baumert, & Schnabel, 2001) end of Grade 10, 
and middle of Grade 12--in order to investigate the 
relationships between academic interest and achieve-
ment in mathematics. In addition, sex differences in 
achievement, interest, and course selection were 
analyzed. At the end of Grade 10, students opted for 
either a basic or an advanced mathematics course. 
Data analyses revealed sex differences in favor of boys 
in mathematics achievement, interest, and opting for 
an advanced mathematics course. Further analyses by 
means of structural equation modeling show that in-
terest had no significant effect on learning from Grade 
7 to Grade 10, but did affect course selection--that is, 
highly interested students were more likely to choose 
an advanced course. Furthermore, interest at the end 
of Grade 10 had a direct and an indirect effect (via 
course selection. However, in their first semester at 
university, mathematics students often experience 
motivational problems (e.g., Daskalogianni & Simpson, 
2002), which form – at least in Germany – one major 
reason for drop-out (Heublein, Hutzsch, Schreiber, 

Sommer, & Besuch, 2009). Self-determination theo-
ry (SDT) by Deci and Ryan (1985; Ryan & Deci, 2002) 
postulates three basic psychological needs which are 
central to the support of interest: the needs for per-
ceived competence, autonomy and social relatedness. 
In this paper, we focus on autonomy, investigating 
how German first-semester mathematics students ex-
perience the satisfaction of their need for autonomy 
at university. We have chosen autonomy because in 
our data, many students have a problematic autono-
my experience despite possible positive influences 
at university (they study a topic of their own choice 
in an institution that gives many freedoms, e.g. min-
imal attendance requirements). After an explanation 
of the concept of the need for autonomy we state the 
research goals and describe the methods we have used. 
We then present empirical findings and finally dis-
cuss factors influencing students’ autonomy. 

This research is part of a PhD-project focussing on 
students’ interest development.

THEORETICAL BACKGROUND 
AND RESEARCH GOALS

In SDT, the role of the basic psychological needs for 
the development of motivation compares to the role 
of basic physiological needs (food, water) for the 
development of our body: need satisfaction is nec-
essary to thrive. A major difference is, however, that 
the satisfaction of psychological needs is a personal 
perception. Thus, even in the same situation, differ-
ent persons may experience need satisfaction very 
differently. The term autonomy as it is used in SDT 
should not be confused with different usages like in-
dependence or influence on one’s learning. The need 
for autonomy is described as referring “to being the 
perceived origin or source of one’s own behaviour” 
and “concerns acting from interest and integrated 
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values” (Ryan & Deci, 2002). Following Lewalter (2005), 
we distinguish two different facets of autonomy of 
Ryan and Deci’s description. The first one is the per-
ceived locus of causality (PLOC) people feel when they 
initiate and control their actions (but not necessari-
ly the outcomes, however). The second one refers to 
their personal goals and values (PGV). For example, 
one might compose music and feel a PLOC concerning 
the emerging ideas. In contrast, one might play music 
in an orchestra and give the initiative to the conductor 
but might still feel autonomous in the PGV sense if 
one’s goal is to play music in an orchestra and one 
sees being conducted a valuable way to do so. Since 
studying mathematics includes external causations 
(e.g. choice of content, exams) one might or might not 
agree with, we expect the usage of the two concepts to 
give more detailed results. Based on SDT, Reeve (2002) 
stresses the importance of autonomy in educational 
settings and gives descriptions of autonomy-support-
ing behaviour like being responsive, supportive and 
flexible (e.g., giving students time to work in their 
own way). In contrary, using directives, evaluating 
students and motivating them through pressure hin-
ders their perception of autonomy. Since motivational 
problems are known in the first semester, it would 
be interesting to see if and how the basic needs are 
satisfied. However, we could not find descriptions of 
students’ autonomy experience in university math-
ematics courses.

Our first goal is to identify typical ways to have au-
tonomy-related experience in the first semester. Our 
second goal is to find out in how far autonomy in stud-
ying mathematics may be perceived very differently 
across students. Since for the first two aspects, we 
distinguish two facets of autonomy (PLOC and PGV), 
our third goal is to analyse the relation between both 
facets. 

DATA COLLECTION AND ANALYSIS

Our data is formed by 17 semi-structured interviews 
with first-semester students. Some were enrolled 
in a secondary teacher programme, others studied 
for a mathematics degree, but they all attended the 
same lecture on real analysis. The professor held the 
course in a rather abstract way and included only 
few numerical examples. The setting was typical for 
German mathematics or higher secondary teacher 
programmes: About 100 students attended the lec-
tures where they had to hand-in a task sheet every 

week. The sheet was marked and then returned in a 
weekly tutorial where the solutions were presented 
and discussed. Only students who got at least 50 % of 
the maximum score were allowed to take the exam. 
Attendance was neither required in the lectures, nor 
in the tutorials. The lecture was based on definition 
and proof and also many tasks included proofs. Many 
students also attended a course on linear algebra in 
their first semester, which was more calculation-based 
in comparison to the analysis course. All students 
were asked to come for an interview in the lecture. 
They agreed in the scientific use of their data and were 
given the possibility to discontinue the interview or 
delete passages from the tape at any time.

The students were interviewed in the third or fourth 
week of their first semester and were asked to broadly 
describe their experience and learning behaviour 
at university. Subsequently, they were more specif-
ically asked for their satisfaction of the basic needs 
including autonomy (e.g., referring to their narrative, 
the interviewer could ask for situations which were 
similar or very different from those which affected 
students’ PLOC and for issues they did or did not agree 
with). The students were asked to include the linear 
algebra course in case they attended it, but happened 
to mostly speak about their analysis course. The inter-
views lasted 30 to 60 minutes and were taped and tran-
scribed. To illustrate the very personal nature of need 
satisfaction, we picked out two pre-service teachers, 
whom we call Betty and Chris. We included one more 
interview with each of them which was conducted 
at the end of the semester in the same manner. They 
were chosen to maximise the contrast of autonomy 
experience: Betty experienced very little autonomy 
and Chris quite a lot. 

Since need satisfaction is usually connected to emo-
tions and may thus be remembered quite well, we as-
sume that the students recalled large parts of their 
important experiences. We thus expect to cover a 
very broad range of need satisfaction. Students’ state-
ments in the transcripts were coded for PLOC and 
PGV concerning university mathematics anywhere 
in the interview, not only when the students had been 
asked for autonomy. As the interviews included both 
positive and negative experiences relating to need sat-
isfaction, we distinguished positive from negative in 
our coding depending on students’ reported emotions 
or evaluations. PLOC was coded when students either 
referred to themselves as source of their actions or 
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described situations where they were far from being 
the origin of their behaviour (having no idea what to 
do, feeling desperate). PGV was coded when students 
reported that issues were in accordance or in conflict 
with their goals and values. Coding one passage for 
both categories was also possible. We want to give 
some examples of our coding:

Positive PLOC

For example today, I could calculate some things 
because I knew how to rearrange them. And that 
felt great, I was really proud since I knew, it was 
right. And it was my thought.

Negative PLOC

I found the worst thing which frustrated me very 
much and still does: You shall prove or justify 
something but no one tells you how.

Positive PGV

I find it a great thing, that you simply have a task 
sheet every week. For this reason I am confident 
that if I engage with the sheet, then my studies 
will work.

Negative PGV

For me, it isn’t right, that the lecture is so fast and 
you really can’t follow and I find this really bad.

The codings of each category were then grouped into 
typical situations by the first author in a rather ex-
ploratory way. We believe the method to be sufficient 
to identify ways to experience or hinder autonomy, 
although there is no methodological control.

RESULTS

In order to answer the first question of how autonomy 
typically arises or is hindered, we present the main 
clusters according to the two theoretical facets.

For the PLOC-facet, 156 out of 204 codings were neg-
ative, which corresponds to most students’ general 
experience of some frustrating first weeks.

 ― Each student felt pressure to hand-in the task 
sheets in time and get a sufficient grading, which 
was a rather permanent experience. 

 ― On a situational level, they lost PLOC when they 
couldn’t (immediately) understand the lectures 
and the pace was too fast for them, so they could 
only take lecture notes. 

 ― The students also lost their PLOC when they did 
not know if they were mathematically right or 
wrong (e.g. if a proof was correct or complete, 
which argumentation was allowed) or missed 
explanations of mathematical objects.

 ― The most serious restrictions were experienced 
when the students worked on the task sheets. 
There is a frustrating feeling of being stuck which 
occurred in three different types of situations: 

 ― when students did not understand the task 
itself, 

 ― when they had no idea how to tackle the 
problem 

 ― and when they had an idea, but did not know 
how to write it down.

 ― Another autonomy restriction concerns the 
evaluation of the students’ work. The marking 
on the task sheets, sometimes just the score, and 
the tutorials did often not provide the students 
sufficient information to understand in which 
parts and why they had been right or wrong. 
Sometimes, students even got different grades for 
the same solution, so they felt treated arbitrarily. 

 ― When students positively experienced a PLOC, 
they mostly referred to situations contrary to the 
above mentioned ones (e.g. having ideas for the 
tasks). This especially related to calculation tasks. 

 ― In addition, managing their resources like books, 
the internet or peers gave them feelings of ini-
tiative on an organizational level and thus au-
tonomy.

For PGV, negative codings amounted to 65 out of 113 
codings. 
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 ― Students did not agree with the way mathematics 
was presented (too few explanations and exam-
ples, the high pace in the lectures) 

 ― and in general with a system that is so demanding 
that many students struggle. 

 ― For the future teachers, another conflict was that 
the subject matter was perceived to be not appro-
priate for their future work. 

 ― Positive PGV-experiences were reported with re-
gard to the general aim of deeper understanding 

 ― and in particular concerning the weekly task 
sheets, which made students work harder than 
they would have done otherwise and thus learn 
more. 

In order to illustrate personal differences in need sat-
isfaction, we now focus on the two students Betty and 
Chris who were enrolled in the teacher programme.

The case of Betty
After school, Betty did not immediately go to universi-
ty but completed a vocational training as an educator 
and then decided to become a teacher. Her autonomy 
experience at university was mainly negative. On her 
first task sheets, she received far less than 50 % and 
thus reported enormous pressure and lack of time. 
Her experience covered examples for every negative 
PLOC category mentioned above. Especially, she did 
not understand why it had to be so hard. She could 
work on proof tasks only when the tasks were about 
proving that something satisfies a given definition. 
Once, she handed-in a solution copied from a book 
which proved an implication, where the task had 
asked for a proof of equivalence. She felt treated un-
fair since even the book’s solution got a bad grading 
(affecting both PLOC and PGV). Asked for autonomy 
concerning her studies she confirmed that she knew 
she had autonomy, “but the feeling didn’t show up”. 
Despite her previous aims to fully understand the 
subject matter, she soon focussed on the minimal 
requirements and therefore merely worked on the 
task sheets without having time to review the lec-
ture notes. Betty experienced autonomy using her 
resources like peers, books and the internet where 
she tried to get hints or solutions from. In the sec-
ond interview she said that she had started copying 
homework although she did not like it. She was torn 

in her view on university mathematics. On the one 
hand, she characterised mathematics as “explaining 
simple things in complicated ways” and saw no use in 
it, especially in proofs since they would not have any 
application. On the other hand, she did not want to call 
university mathematics useless and gave it some im-
portance since teachers should know what is behind 
the results. Her only autonomy experiences related to 
connections to school mathematics (PGV), managing 
resources (PLOC) and few numerical calculation tasks 
or examples (PLOC and PGV). 

The case of Chris
Chris directly entered university after school, where 
he had reached the highest grades in mathematics. He 
felt pressure after his first task sheet was graded less 
than 50 %. He sometimes did not know how to tackle 
a task or write it down, but also solved some tasks 
so that positive and negative experiences balanced. 
Due to his partial success, he believed he could reach 
the necessary score so that fear and insecurity soon 
started fading out. He felt his autonomy restricted by 
having no guidance for proof tasks, getting no inform-
ing feedback on the marked sheets and having to do 
a lot for the tasks so he had less time for self-direct-
ed learning. All three aspects refer to both his PLOC 
and PGV. However, in principal he appreciated the 
task sheets since they make people work hard. Chris 
also readjusted his aims from getting good grades to 
simply passing and started using books and internet 
resources. 

In the second interview, Chris still described some 
tasks as frustrating but he received sufficient scores 
and had developed confidence in eventually meet-
ing this criterion. So although he still tried to solve 
every task, he did not feel pressure to do so. Chris 
also mentioned that he usually had several ideas and 
strategies for the sheets, including reviewing suitable 
parts of the lecture notes. He also highlighted his own 
evaluation of his solutions and his understanding in 
addition to the grading. Chris found having his own 
ideas was much more motivating than collecting in-
formation from different sources. Nevertheless, he 
sometimes searched for hint on the internet. When 
he found other interesting things there, he followed 
them for his own interest (PLOC). 

Personal differences in autonomy experiences
It is clear, that different situations may lead to differ-
ent autonomy experiences. Betty perceived very little 
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autonomy when she copied solutions for the tasks, 
whereas Chris could experience autonomy since he 
solved the tasks on his own. It is also clear that in sim-
ilar situations, students may have similar experienc-
es. Betty and Chris both feel pressure from the tasks 
sheets (PLOC) which they generally agree with (PGV), 
because they see the sheets as a good measure for their 
learning. They both appreciate that university math-
ematics aims at deeper understanding and they both 
like calculation tasks because they usually know how 
to tackle them. However, Betty and Chris also had very 
different autonomy experiences in similar situations:

They both believed that they would not need the uni-
versity mathematics in their future work at school, 
but related this to their goals and values very dif-
ferently. Betty said “Why? I do not want to become 
a mathematician but a teacher”. Chris’ reaction was 
rather opposite: “What else should we do then? They 
can’t tell us again what we already learned in school!” 
In addition, they both had been looking for solutions 
in internet forums, but all they had found were hints. 
Betty disliked such posts and expected others to pres-
ent the solution. Chris appreciated such posts as pro-
tecting him from copying something he would not 
understand (PGV). Differences also appeared for the 
PLOC-facet. When working on the tasks, Betty had 
mostly no idea what to do next whereas Chris often 
had several ideas and could then choose. In addition, 
Betty’s only reason to work on the tasks was the 
score, since “I need the crap 50%”. Chris, in contrast, 
saw things differently: “if I did it just for the external 
pressure, then I would tackle it very differently”. 

The relation between PLOC and PGV
Although the two facets of PLOC and PGV are con-
nected, they turn out to contradict sometimes. While 
there was no situation where students had a PLOC but 
did not experience PGV, it happened that students’ 
experienced no PLOC but felt their PGV were respect-
ed. Like Betty and Chris, all students (partially) lost 
their PLOC due to the pressure from the task sheets. 
However, this was mostly according to their PGV. A 
similar situation (no PLOC, but accordance with PGV) 
occurred when Chris could not find a solution for a 
task on the internet, but only hints. Concerning the 
content matter, Betty had very few PLOC experiences 
and was torn, struggling to connect the content to her 
goals and values, whereas Chris experienced both 
facets positively. 

DISCUSSION

In our study, we analysed interview data concerning 
experiences of autonomy using the two different fac-
ets of PLOC and PGV. We could reach our first goal 
by describing typical situations of need satisfaction 
or dissatisfaction. We could see that studying math-
ematics at university provides rich opportunities to 
experience need satisfaction but also dissatisfaction 
which may cause serious problems for students’ in-
trinsic motivation. Many typical situations could pos-
sibly also appear in other study subjects. However, 
especially those which refer to the task sheets (not 
understanding the task, having no idea how to tackle 
it or how to write down a solution) and proof (when is 
a proof correct and complete?) seem to be typical for 
university mathematics. Concerning the PLOC con-
cept, autonomy seems to not only have heteronomy 
as a counterpart, but also feelings of being stuck and 
having no idea what to do next. 

For our second goal, we compared the two cases of 
Betty and Chris, which illustrated that autonomy ex-
periences strongly depend on both the person and 
the environment. Similar situations may foster the 
autonomy experience of some students and hinder 
the autonomy experience of others.

Concerning the third goal, we could see different, 
sometimes contradicting experiences for PLOC and 
PGV, although both facets origin in the same frame-
work. Distinguishing the two facets helped analyse 
students’ autonomy by revealing hidden tensions, 
where students feel no PLOC and yet experience need 
satisfaction in terms of PGV. In such a situation, the 
students may sustain their intrinsic motivation. 

General issues affecting perceived autonomy 

The duty to get good grades on the weekly task sheets 
clearly affects students’ perceived autonomy, as it 
puts much pressure on them, violating Reeve’s (2002) 
criteria for autonomy support mentioned above. 
However, to some extend most of the students appreci-
ated the pressure which would eventually make them 
learn more. In addition, the case of Chris shows that 
students do not necessarily experience this duty as 
pressure if they are confident in meeting the criteria. 
However, like Betty, many students focussed main-
ly on the tasks and put their learning goals on hold. 
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Although the students did not express it, this might 
not meet their PGV.

Another major background is the personal competence. 
We could see that competence affects autonomy on 
different levels: First, content knowledge affects stu-
dents’ opportunities to tackle the tasks (PLOC) and 
also to evaluate their own mistakes (PLOC). As Chris’ 
case shows, this ability can also be important to assess 
the personal work independent of external judge-
ments like grades. Second, mathematical language is 
needed to even understand the task itself and to write 
down solutions (PLOC). Language can also affect the 
satisfaction of PGV, like in the situation where Betty 
misunderstood the task. A third level of mathematical 
competence refers to insecurities like how detailed 
proof needs to be or which arguments will be accepted. 
They may be described in terms of sociomathematical 
norms (see, e.g., Yackel, Rasmussen, & King, 2000) as 
normative understandings which are negotiated in 
the social context. It is clear to see that calculation 
tasks, which all students liked, do not address these 
problems apart from including difficult content. In 
turn, students may experience a PLOC based on their 
competence, e.g. seeing different ways to tackle a task 
or having their own ideas for solving problems. 

Proof as a new concept fitted many students’ PGV of 
heading for deeper mathematical understanding. 
However, students may have trouble to connect proof 
to their PGV because they do not see an application. 
In cases of proving obvious statements, they might 
see no use at all. Here, one decisive aspect is whether 
students see building a mathematical theory as part of 
their goals or restrict them to calculations and appli-
cations. In addition, proving as an activity may involve 
all competence-based problems mentioned above.

A very interesting point is the questioning of the need 
of university mathematics for teaching at school. The 
question itself is part of an open debate (e.g., Davis & 
Simmt, 2006) so there is no clear and simple answer. 
The students usually do not have teaching practice 
and see teaching often as “explaining”. Taking this as 
basis, they need to trust in the university doing what 
is necessary for them. In our study, this did not al-
ways happen. We could see that students felt a conflict 
with their PGV only if they also had a PLOC-conflict. 
However, it is also possible that some students do 
actually not agree with the content but do not start 
to question it unless they start struggling. What we 

could observe is that the conflict reduced when con-
nections to school were made explicit. Recent pro-
jects successfully provided such connections (Leufer 
& Prediger, 2007). In addition, the compulsory task 
sheets show that students may value things although 
they negatively affect their PLOC. 

Unlike in school, university requires learning activi-
ties which are not explicitly assessed such as reviewing 
the lecture notes, monitoring the personal progress, 
searching for alternative explanations and examples 
or generating them. Students may not be aware of the 
new rules and experience these changes as “bad and 
too few explanations” affecting both PLOC and PGV. 
Such a mismatch of expectations can be described 
in terms of the didactical contract (Brousseau, 1984) 
which was highlighted by Hourigan & O’Donoghue 
(2007)the consequences of the ’Mathematics problem’ 
are a source of concern for the education sector and 
governments alike. Growing consensus exists that the 
inability of students to successfully make the transi-
tion to tertiary level mathematics education lies in the 
substantial mismatch between the nature of entrants’ 
pre-tertiary mathematical experiences and subse-
quent tertiary level mathematics-intensive courses. 
This paper reports on an Irish study that focuses on 
the pre-tertiary mathematics experience of entering 
students and examined its influence on students’ abil-
ity to make a successful transition to tertiary level 
mathematics. Brousseau’s ’didactical contract’ is used 
as an intellectual tool to uncover and describe the con-
tract that exists in two case mathematics classrooms 
in Irish upper secondary schools (Senior Cycle for 
the secondary-tertiary transition. 

Some findings parallel the work of Sierpinska, Bobos, 
& Knipping (2008), who investigated “students’ frus-
tration” (which can be seen as contrary to autonomy) 
in prerequisite mathematics courses from an institu-
tional point of view. Especially since both of us found 
critical elements like techniques of problem solving 
and learning strategies, rules and norms as well as 
the didactic contract, we hypothesise that these ele-
ments are generally important for autonomy in the 
learning of mathematics at university level and thus 
for students’ motivation. 

Implications
It seems that in general some conflicts with students’ 
autonomy are inevitable. However, at some points 
help seems accessible, especially concerning aspects 



Perceived autonomy in the first semester of mathematics studies (Michael Liebendörfer and Reinhard Hochmuth)

2186

which are typical for university mathematics. For in-
stance, students expected to be guided more in their 
learning process. Making explicit new demands in 
strategies for learning and problem solving, socio-
mathematical norms and the mathematical language 
could possibly help students to experience more au-
tonomy. Since many students seek for suitable re-
sources, books addressing study skills (e.g., Alcock, 
2013) and mathematical language (e.g., Beutelspacher, 
2004) could be a good start. In addition, making con-
nections to school mathematics more visible would 
help pre-service teachers to connect their courses 
to their PGV. 

The German community should also question the 
task sheet system. For instance, students could have 
to hand-in documents of their learning process (e.g. 
a learning diary) rather than worked-out solutions 
only. They could then also be admitted to the exam 
for learning activities of their choice like engagement 
with the lecture notes.
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This paper reports early findings from university math-
ematics teaching in the tutorial setting. The study distils 
characteristics of two tutors’ mathematics teaching and 
through interviews, their underlying considerations. 
Analysis of a teaching episode from each tutor illumi-
nates their different teaching approaches and suggests 
ways in which approaches are linked to students’ mean-
ing making.

Keywords: University mathematics teaching, small group 

tutorials, meaning making.

INTRODUCTION

University mathematics teaching is of major signifi-
cance in mathematics education. Some of the numer-
ous benefits from research in this area of study are the 
production of professional development resources 
for novice and experienced university teachers as 
well as support to those teachers to create rich learn-
ing opportunities (Speer, Smith, & Horvath, 2010). 
However, the benefits from research go beyond uni-
versity mathematics teaching and learning. Speer 
and Wagner (2009, p. 537) stressed that by studying 
the practice of teachers with strong mathematical 
knowledge, teacher educators “are better able to de-
tect directions for growth in other areas of knowledge” 
such as “knowledge of typical ways students think 
(correctly and incorrectly) about the task or content 
in question” (p. 558), which teachers at all levels may 
need.

This report is based on the analyses from my ongo-
ing doctoral project that examines university math-
ematics teaching through an exploration of tutors’ 
teaching practice with first year undergraduate math-
ematics small-group tutorials. The analysis suggests 
that teaching practice can be construed in terms of 
three elements tools, strategies and characteristics of 
teaching (Mali, 2014). I focus here only on character-
istics of teaching, which are patterns in the ways that 

tutors teach in the tutorials. From observations of 
tutors’ teaching and interviews with tutors about 
their teaching, the aim of the doctoral project is to 
identify aspects of teaching practice and knowledge 
and connect them with students’ meaning making in 
mathematics. Tutorials are studied since they pro-
vide opportunities for teacher-student dialogue and 
interaction through which meaning making can be 
discerned.

The focus of this report is on two tutors’ teaching ap-
proaches. It is significant to juxtapose characteristics 
which look similar but are used in different ways by 
the different tutors to promote student meanings. So, 
the three research questions are: What are the charac-
teristics of the two tutors’ teaching? In what ways do 
two different tutors implement similar characteristics 
of teaching? What are the tutors’ actions that encour-
age students to make meaning (promoting meaning 
making.) and what do tutors do to find out what mean-
ings have been made (discerning meaning making)? 

THEORETICAL BACKGROUND 
AND LITERATURE REVIEW

University mathematics teaching is an area of interest 
where research is still rather limited. Speer, Smith 
and Horvath (2010), after conducting a systematic lit-
erature review in university mathematics teaching, 
reported that there is no systematic data collection 
and analysis focusing on teachers and teaching. As 
to the small group tutorial setting, the number of 
studies is far fewer. Certain studies (including this 
one) focus on the nature of tutor’s teaching and the 
knowledge that frames it. For example, Jaworski and 
Didis (2014) introduced the questioning approach to 
teaching and suggested tutor’s awareness about her 
teaching as the basis of knowledge in practice which 
informs future action. Mali, Biza and Jaworski (2014) 
focused on characteristics of university mathematics 
teaching, such as the use of generic examples, and 
suggest that the research practices of the tutor (math-
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ematician) influence her teaching practices; an in-
fluence which accords with findings in the format of 
lectures (Petropoulou, Potari, & Zachariades, 2011). 
Jaworski (2002) distinguished tutors’ exposition pat-
terns (tutor explanation, tutor as expert and forms of 
tutor questioning) as the main teaching aspect in the 
context of tutorials. She also stressed that teaching/
learning was idiosyncratic to the tutor and to some 
extent to the particular students. These studies give 
insight into elements of tutors’ teaching practices and 
their reflective thinking. Gaining access to students’ 
meaning in relation to teaching provides significant 
information about how tutors encourage students to 
make meaning; for example, Jaworski and Didis (2014) 
relate students’ meaning making to the why questions 
of the tutor. In our study reported here, we investi-
gate, through a sociocultural perspective, teaching 
practices of selected tutors that encourage students 
to make meaning.

The socio-cultural paradigm, rooted in Vygotskian 
psychology, considers the overall social and cultur-
al context, which frames mathematics teaching and 
learning in its complexity. Concepts and meanings 
are experienced and understood in the social and 
cultural small group tutorial practices (e.g., engage-
ment, participation and interaction). Meaning, think-
ing and reasoning are products of social activity and 
take place first on the social plane. Tutors’ teaching 
mediates students’ mathematical meaning making 
by using material (e.g., textbooks, problem sheets) or 
intellectual tools (e.g., exposition). 

In this paper, I embed tutors’ characteristics of teach-
ing in the socio-cultural tutorial practices of tutor-stu-
dent interaction and participation relating them to 
students’ meaning making. For the purposes of the 
analysis, I draw on the literature which considers 
meaning making in terms of making connections 
within mathematics through different representa-
tions, such as symbols, diagrams, pictures (Haylock, 
1982); and between mathematics and “other aspects 
of the world” (Ormell, 1974, p. 13), such as real world 
situations. I interpret this collective mathematical 
meaning making through observing and analysing 
tutors’ and students’ actions in the classroom. The 
tutor’s actions relate to the nature of teaching and the 
approach, and accord with what the tutor says (I can 
read in transcripts); does (gestures, body language) 
and intentions (I can ask in interviews or hear in the 

classroom). The students’ actions are what they say 
and do during the tutorials.

THE CONTEXT OF THE STUDY

The study is being conducted at an English University, 
where students are in their first year of a straight or 
a joint programme in Mathematics. They are expect-
ed to attend lectures (in analysis modules and linear 
algebra) and a small group tutorial of 5 to 8 students. 
Tutorials are 50 minutes weekly sessions and work is 
on the material of the lectures (lecture notes, problem 
sheets, coursework and exams). Students are expected 
to work on the material of the lectures beforehand 
and bring their questions to the tutorial. The tutors 
are lecturers in modules offered by the mathematics 
department and conduct research in mathematics or 
mathematics education. Phanes and Alex are experi-
enced lecturers as well as researchers. Phanes holds a 
doctorate in mathematics and Alex holds a doctorate 
in mathematics education. 

THE METHOD OF THE STUDY

This study is part of a doctoral project, which has an-
alysed data from one tutorial from each of 26 tutors, 
as a basis for conceptualisation of teaching. This has 
been followed by a systematic study of the teaching 
of three of the 26 tutors for more than one semester. 
Phanes and Alex are two of the three tutors. Data con-
sists of observation notes and transcriptions of their 
audio-recorded tutorials and follow up interviews. 
The interviews are discussions with them about their 
thinking behind the teaching actions in these tutori-
als. A grounded analytical approach is taken to the 
data in which aspects of tutors’ actions that seemed to 
be informed by their teaching knowledge are coded. 
Analysis is based on the identification and ground-
ed study of teaching episodes; there are several cy-
cles of interpretation: from initial ones using open 
coding to more advanced ones creating categories. 
Characteristics of teaching have been identified re-
peatedly throughout the analysis of each tutor’s teach-
ing, emerging from this as a category in the nature 
of teaching. Examples are provided in the accounts 
below.

RESULTS

Both Phanes and Alex work on a number of questions/
mathematical issues in their tutorials, which is a fre-
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quent general practice at tutorials. As preparation 
for the tutorial they look at the lecture materials, 
including problem sheets, a few minutes before the 
tutorial. In the following Table, I present character-
istics of teaching, identified so far, from both tutors. 
These characteristics emerged in the process of data 
analysis after the tutorial observations.

In order to scrutinise the different ways tutors imple-
ment common characteristics and the different issues 
that are raised, I offer a teaching episode from each 
tutor. These episodes are paradigmatic cases of the 
tutors’ teaching in terms of manifesting a number of 
characteristics of their teaching.

Phanes’ approach
This episode is situated in the second tutorial of the 
year and concerns work on an exercise from the first 
problem sheet in analysis: 

“Rewrite ||x|–1| without modulus signs, using sever-
al cases where necessary.”

Reading the exercise, Phanes suggests: “we can just 
sketch the graph of the function”. He uses exposition 
about know-how to get rid of the modulus sign (char-
acteristic 2/Table 1): “You see, to get rid of the mod-
ulus sign of |x|, you need to know that x is positive 
or negative. You have to consider cases. But there is 
another outer modulus. It’s external. Again, to get 
rid of it, you need to either consider the case whether 

the expression inside it is positive or not.” He offers a 
less complicated example to reveal the work on modulus 
signs (characteristic 3/Table 1); he constructs on the 
board the graph of |x3| reflecting the negative part 
of the graph of x3 about the x-axis. Then he requests 
students to work on their scripts for ||x|–1| (charac-
teristics 7/Table 1), after which the following episode 
occurs:

Phanes: So, how do I solve this problem? I’ll 
show you. I saw correct pictures; all of 
you had correct pictures. So, what am 
I going to do? I will do it step-by-step. 
First, I will construct |x|, right? |x| is this. 
[Phanes sketches the graph of Figure 1.] 
Ok? Then, we do |x|–1. |x|–1 means that 
you take |x| and you shift it down by 1. 
This means –1, right? So, it gives you this 
[g in Figure 1]. These points are 1 and –1. 
And this point is –1. This is the expres-
sion under the modulus sign. And then, 
you take the modulus of this function 
and it means that you reflect this nega-
tive bit about the x axis, right? And you 
get this function. Ok? This is the graph 
of the function. Now, we have to write 
down the equations for this. You can see 
that it’s given by different functions on 
different intervals. For instance, this ex-
pression is what [f in Figure 1]? This was 
y=x [e in Figure 1], and then, you shift it 

Grounded characteristics of teaching Phanes Alex

1 Use of graphs, diagrams or gestures to provide a visual intuition for formal rep-
resentations

✓ ✓

2 Know-how exposition about procedures or techniques for the work on mathe-
matics

✓ ✕

3 Use of problem-solving techniques ✓ ✓
4 Use of kind(s) of/multiple examples ✓ ✓
5 Use of different mathematical representations/notation ✓ ✓
6 Explanation/revision of theory from special to general cases devising less to 

more complicated examples 
✓ ✕

7 Provision of time to students to work on their scripts while tutor is circulating 
and supporting 

✓ ✓

8 Request to students to devise an example ✓ ✓
9 Tutor’s intuitive or formal explanation of concepts ✓ ✓
10 Use of funneling ✓ ✓
11 Invitation to specific students to answer ✕ ✓
12 Request to students to find definitions in lecture notes ✕ ✓

Table 1: Characteristics of the two tutors’ teaching
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by 1, so this is x–1 [f in Figure 1]. Is this 
clear? Please stop me if something is 
unclear. So, this is x–1 [f in Figure 1]. So, 
what is this [c in Figure 1]? What is this – 
this bit [c in Figure 1]? It has the same 
slope as x–1 but it’s shifted it up. 

St2: It’s x+1.
Phanes: It’s x+1. So, this bit is x+1 [c in Figure 1]. 

Now, what is this [a in Figure 1]? This 
graph is y=–x [b in Figure 1], and we shift 
it down, so it’s –x–1. So, this thing is –x–1. 
And what is this [d in Figure 1]? 

St4: –x+1. 
Phanes: –x+ 1. –x+1. So, what can we now say 

about this function ||x|–1|? It equals. 
Now, it depends on where x is, right? 
So, we know for this function that on 
this [Phanes points to interval [1,+ ∞)], 
it’s x–1 if x is greater than or equal to 1. 
Agree? It is –x+1, –x+1, if x belongs to (0, 
1). It is x+1, x+1, if x belongs to (–1, 0). And 
finally, it’s –x–1 if x belongs to (–∞, –1). 

In the above episode, Phanes uses the graph of ||x|–1| 
to provide a visual intuition for rewriting the algebraic 
expression ||x|–1| without modulus signs (characteris-
tic 1/ Table 1). He first constructs the graph “step-by-
step” and then the equations; in this way, he divides the 
mathematical task into steps (characteristic 3/ Table 
1) and uses geometric and algebraic representations 
(characteristic 5/ Table 1). For the construction of the 
graph, he offers know-how exposition for the work on 
modulus signs (characteristic 2/Table 1). Furthermore, 
for the construction of the equations, he shows how 
to find x–1 and –x–1 asking students for x+1 and –x+1 
respectively (characteristics 4/ Table 1). 

The above characteristics (1–5/ Table 1) are within 
Phanes’ thinking on the mathematics. Phanes uses 

the graph of ||x|–1| as a tool to think on the mathe-
matics; he adjusts basic graphs (i.e. |x|, x, –x) to con-
struct ||x|–1| and from that, he extracts the essential 
information (i.e. equations and intervals) for the 
solution of the specific exercise. He uses the graphi-
cal representation ||x|–1| and visual intuition of the 
equations as a problem solving technique (character-
istic 3/Table 1), thereby negotiating different contexts 
(geometric and algebraic) of the concept of modulus 
sign. Connecting the two contexts/representations, he 
promotes students’ meaning making of the modulus 
sign. To this end, he also uses know-how exposition, 
problem-solving techniques, multiple examples of ex-
pressing equations and provision of time to students 
for individual work (characteristics 2–4, 7/Table 1). 

In the beginning of the episode, Phanes comments 
that “I saw correct pictures; all of you had correct 
pictures.” This suggests that while circulating and 
supporting students (characteristic 7/Table 1), he also 
made some judgements about their meaning making 
of the modulus sign. These judgements arise from 
his assessment of the students’ scripts and indicate 
that he used characteristic 7 to discern their meaning 
making; not only to promote it. Phanes can also use the 
multiple examples of equations (characteristic 4/Table 
1) to discern students’ meaning making of the graph 
by assessing their correct answers for x+1 and –x+1.

The use of visual intuition of the equations on the 
graph does not provide enough insight into the inter-
vals. After the episode, Phanes stresses to students 
that the function is continuous, so “it doesn’t matter” 
if the endpoint is included in the interval; he says to 
them “strictly speaking, you should include it”. In our 
discussion and in response why he chose a geometric 
solution when some mathematicians avoid choosing 
them, Phanes connected his choice with mathemati-
cians’ research practices.

It depends on your research area. If you are a 
geometer [Phanes is a geometer], you are hap-
py with geometric solutions; it depends on your 
background I think. […] You see to me it is easi-
er to see the graph. […] For instance if you are a 
programmer writing computer programs, then 
it is more convenient to you to give an algorithm.

Phanes approaches mathematics teaching putting 
emphasis on the mathematics and geometric think-
ing, whereby he relates geometric solutions to his 

Figure 1: Graph on board, episode 1 
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research area. From this thinking on mathematics, 
he draws out his teaching practice which I recognise 
through his actions (characteristics 1–5, 7/Table 1) to 
promote and/or discern students’ meaning making. 
In this episode, Phanes presents the ways he is work-
ing through the graphs and symbols dissecting the 
mathematical task to make its aspects more visible to 
students. He thus works within his thinking about the 
graphs in characteristics 1–5. Characteristic 7 is differ-
ent in nature from the others since it can be used in 
the teaching of other subjects as well as mathematics.

Alex’s approach
In his third tutorial of the year, Alex used Venn dia-
grams to explain the definition of injectivity (char-
acteristic 1/Table 1) as well as examples and non-ex-
amples of the concept (characteristic 4/Table 1). In 
discussion after the third tutorial, he reflected:

By the reaction I got when I asked for the defi-
nition [of injectivity] the student couldn’t even 
say what the symbols were there. So, I had to re-
peat it for him. There was not so much meaning 
making there. So, that’s why I decided to use ex-
amples, use the Venn diagrams for the sets and 
what exactly it means to be injective and surjec-
tive. […] If the students get it, I am not sure about 
that, because after that they still have the face 
of ‘what are you talking about?’ So, at that point 
you say ‘Mmm if I carry on with more examples, 
eventually they will get it’, because I don’t have 
any other didactical instrument to make it even 
clearer for them. Ah in fact when I was prepar-
ing my module for another lecture, I thought of 
a very good example of the function. When you go 
to the supermarket and I am going to say to them 
next time […] to explain what an injective and a 
surjective function is. […] And I think that’s more 
near the experience of the students, so that they 
can say “ah yes, I get it now”.

Alex implemented the “good example of the function” 
in the fourth tutorial. He said to the students: “A func-
tion is a relationship between a set of inputs, in this 
case the products in the supermarket, a loaf of bread, 
and the set of permissible outputs, in this case the 
prices.  So it relates each product to the one, the only 
one price, it cannot be related to two.” In the following 
episode, we see Alex’s implementation of the example 
for the concept of injectivity. Before the start of the 
episode, Alex asked the students to express injectivity 

in the context of his example. As a response to their 
inability to do so, he asked them to find the definition 
of injectivity [∀x,y∈Dom(f), f(x)=f(y)⇒x=y] in their lec-
ture notes (characteristic 12/ Table 1). He then wrote 
the definition of injectivity on the board.

Alex: How would you read that [the defini-
tion of injectivity] in the supermarket 
example? Which are the x’s?  What’s the 
domain of the function? St3, what would 
the x’s be in this example in Tesco [i.e. 
supermarket]?

St3: Products. Products..
Alex: The products, exactly.  So for all the 

products in Tesco 
St3: They should be x and y.
Alex: So why would it be x and y?
St3: Because it’s product and price; x is prod-

uct, y is price.
Alex: x could be read, y could be milk, mm?  So 

what would this mean, this then? [Alex 
points to f(x)=f(y).]

St2: The same price. [St2’s voice is almost 
inaudible.]

Alex: What would that [Alex points to f(x)=f(y)] 
mean in the example?  I want you to con-
textualise a very abstract formal defini-
tion so we do an everyday job that you 
can understand; that you give some 
meaning to those things.  Try to think on 
the example of the supermarket, what 
would f(x) equal, what would f(y) equal, 
what would x be, what would y be?

St5: f(x) would be prices.
Alex: Yes, the prices, OK.  So it says if the prices 

are equal, let’s say 99p, what has to hap-
pen to x and y? [Alex sketches Figure 2 
on the board.]  Let’s say x is bread and y 
is milk, OK?  And I notice that the price 
of the bread and the price of the milk 
are the same, they are both 99p.  Yes?  
If this function was injective, then the 
bread would have to be milk, well that’s 
impossible isn’t it?  [Alex deletes milk on 
Figure 2.] In other words, I cannot have 
the price of 99p that belongs to two prod-
ucts, two different products, mm, in the 
abstract definition, there is no way that 
99p comes from bread and milk. Does 
that make sense or not?  Say no if …  well 
your faces say no.
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 St1: No, I’d say no.
 Alex: OK.  Can you think of another example? 

[…] Do you play a sport?

St1 mentioned hockey and Alex devised another exam-
ple regarding a function that relates hockey players 
with their scores (characteristic 4/Table 1). Despite 
the real world context of the example of function in 
the supermarket (a product cannot be related simul-
taneously to two final prices), a function that relates 
products/players with their prices/scores is not injec-
tive in real life since, there, two different products/ 
players can have the same price/score. 

In the above episode, Alex devises a real word example 
regarding a supermarket (characteristic 4/Table 1) to 
promote students’ meaning making of the concept of 
injectivity: “I want you to contextualise a very abstract 
formal definition so we do an everyday job that you 
can understand; that you give some meaning to those 
things.” He uses funnelling (characteristic 10, Table 1) 
by asking what the x, y, f(x) and f(y) are and invites st3 
to answer (characteristic 11/Table 1); then, he uses the 
Venn diagram of Figure 2 to provide a visual intuition 
for the definition of injectivity in the context of the 
supermarket example (characteristics 1, 5/Table 1). In 
the interview excerpt, Alex stresses that in order to 
promote meaning making he uses multiple examples 
(characteristic 4/Table 1) and Venn diagrams (char-
acteristic 1/Table 1). In discussion with Alex about 
the use of real world examples, he connects it with 
research in mathematics education.

By making it [the example] nearer to the students’ 
experience; that comes from mathematics educa-
tion. […] Because you need to make connections 
in order to make meaning. To understand some-
thing you need to make the appropriate connec-
tions from your own experiences.

Alex discerns students’ meaning making from their 
faces: “Does that make sense or not?  Say no if… well 

your faces say no” (episode excerpt) and “If the stu-
dents get it, I am not sure about that, because after 
that they still have the face of ‘what are you talking 
about?’” (interview excerpt1). In the episode, when st1 
answers he doesn’t make sense of the example, Alex 
asks him to devise an example close to his interests 
(characteristics 8, 4/Table 1). After the fifth tutorial, 
Alex reflects:

I thought it went a bit better last time when I 
asked st1: “What do you do in your life?” I play 
hockey he said. And it went well I thought; at least 
they said: “Oh yeah I understand now what you 
mean.” That’s the design at least to connect with 
what they do outside.

He also discerns meaning making by the reaction he 
gets from students.

Alex approaches mathematics teaching bringing in 
awareness from research in mathematics education; 
he connects mathematics with students’ everyday 
experiences for meaning making (e.g., Ormell, 1974). 
A number of his actions (characteristics 8, 10, 11, 12/
Table 1) to promote and/or discern students’ mean-
ing making relates to students’ participation, and 
can be used in the teaching of other subjects as well 
as mathematics. In this episode, Alex steps out of 
mathematics, goes into the context of the students 
and chooses examples there that he can use to parallel 
injectivity (characteristic 4/Table 1). So, Alex roots 
the abstract mathematics in examples of an everyday 
nature; starts in the abstract mode through symbols; 
discerns that students do not make meaning of them; 
and then brings in a diagram as an alternative way of 
representing injectivity. He uses this diagram as a tool 
to explain the mathematics to students; it constitutes 
another representation of the formal definition which 
he enriches with explanatory exposition. 

CONCLUSIONS

In this paper, I presented two different approaches to 
teaching, where both tutors put a considerable effort 
so that students make meaning of the mathematics 
of the lectures. I related this effort to their actions to 
promote and/or discern students’ meaning making 
coded in characteristics of teaching. I thus looked at 
the tutor’s perspective for students’ meaning mak-
ing, acknowledging that there is no right or better 
approach. Zooming in each tutor’s approach to teach-

Figure 2: Diagram on board, episode 2
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ing, they deploy different ways to implement common 
characteristics; for instance the characteristic use of 
graphical representations to provide visual intuition 
for formal representations. Phanes uses the graph to 
make fundamentally mathematical ways of thinking 
transparent to students, whereas Alex uses it as an 
alternative to explain the mathematics. In order to 
promote students’ meaning making of how a process 
works for the modulus function, Phanes uses expo-
sition, problem-solving techniques, explanation, ex-
amples and representations all within his thinking of 
the mathematics. By his exemplification of the process, 
students can potentially gain mathematical exper-
tise (i.e., use of graphs and visual intuition) to apply 
in other problems thereby being enculturated into 
mathematical practices. Alex’s real world example 
is localised around the concept of function and its 
properties (e.g., injectivity), which is fundamental in 
mathematics. In order to promote students’ meaning 
making of the concept of injectivity, he uses examples, 
representations, funneling and invitations as well as 
requests to students. Evaluation of students’ scripts, 
responses and facial expressions are ways tutors dis-
cern students’ meaning making. However, promoting 
and discerning meaning making are two processes 
that cannot be separated in some cases; for instance, 
while the tutor provides time to students to work on 
their scripts, he both supports and evaluates them. 
In future studies, I will analyse data from the other 
tutors and juxtapose their characteristics of teaching 
in order to identify aspects of teaching practice and 
knowledge and ultimately connect these aspects with 
students’ mathematical meaning making.
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In the context of using Inquiry-Based Learning (IBL) for 
teaching, 74 instructors teaching a wide range of uni-
versity mathematics courses and with different levels of 
familiarity with IBL filled out bi-weekly logs about the 
challenges they faced and the solutions they found. The 
analysis of pairs of concerns and solutions expressed 
over the three-year study reveals that faculty may be 
drawing from different domains of teacher knowledge 
for teaching to solve concerns teaching with IBL. Level 
of familiarity with IBL did not seem to play a role in 
the types of solutions proposed, except when faculty 
reported not having a solution. We conjecture that the 
method may induce faculty’s pedagogical awareness, 
independently of how experienced they are with teach-
ing university mathematics.

Keywords: Inquiry-based learning, teacher knowledge, 

university mathematics.

Originally proposed as a way to understand how facul-
ty learn to teach mathematics courses using Inquiry-
Based Learning (IBL) approaches, the Learning to 
Teach Mathematics with IBL Project followed a group 
of instructors new to using IBL over a period of three 
years and documented their experience using IBL. 
Prior work interviewing a handful of instructors 
who were new to the method at our university sug-
gested that at the beginning of the semester, their 
concerns centred on spatial and logistical aspects 
of managing the class: where do I stand in the room? 
How much time is it OK to wait before answering a 
question? As the instructors gained more experience 
with IBL their concerns shifted towards an interest 
in understanding students’ thinking (Mesa & Cheng, 
2008). Such dramatic change over the course of one 
semester countered some literature available on in-
structors’ knowledge, more notably work done by 
Nyquist and Sprague (1998), whom having worked 
with teaching assistants (TAs), identified three dis-

tinct stages of concerns: a self-centred stage in which 
beginner TAs worried about themselves and students’ 
perceptions of them (am I knowledgeable? do they like 
me?); a management-centred stage, in which more 
advanced TAs worried about managing the logistics 
and the different aspects of the classrooms (making 
sure students are not engaging in disrespectful be-
haviours); and a student-learning stage, in which the 
expert TAs worried mainly about whether students 
were understanding the material. These are described 
as stages in the development of TAs’ expertise in teach-
ing. Because our own experience did not suggest these 
stages with the faculty on our campus (Mesa & Cheng, 
2008), we proposed this study. The design of this study 
includes faculty who stated their familiarity with IBL 
as beginners, novices, advanced, or experts; its longi-
tudinal nature allows faculty to participate two to six 
consecutive semesters, with some participating only 
once. New faculty were added each year. We focused 
on the concerns faculty described and the solutions 
they proposed to those concerns when they engaged 
in four areas of teaching: sending students to the 
board, designing and managing group work, design-
ing assessments, and using assessments. Specifically 
we investigate the following two research questions: 
What are the solutions that faculty propose to address 
concerns in each area of teaching? Does the level of 
familiarity with the method determine differences in 
the solutions used? The next section briefly reviews 
the literature that informs and situates this study; we 
follow with a brief description of methods. We then 
present the main findings and their discussion. 

LITERATURE REVIEW

We conceive of teaching as the interactions between 
teachers, students, and the mathematical content and 
embedded within a particular environment (Cohen, 
Raudenbush, & Ball, 2003). Strategies are defined here 
as those activities that teachers organize to facilitate 
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some of the interactions of teaching (e.g., discussion 
with other students, technology or manipulative use, 
group work, etc.). Laursen, Hassi, Kogan, and Weston 
(2014) refer to IBL as a student-centred approach that 

“invites students to work out ill-structured but mean-
ingful problems… [and] construct, analyse, and cri-
tique arguments… present and discuss solutions alone 
at the board or via structured small-group work, while 
instructors guide and monitor this process” (p. 407). 
Initial research has documented the positive trends 
on self-reported student gains in the cognitive and 
social domains (see, e.g., Laursen et al., 2014). Laursen 
and colleagues (2014) indicate that students in IBL 
courses report higher cognitive gains than students 
in non-IBL courses, in terms of mathematical thinking, 
understanding of concepts, and application of math-
ematical knowledge. Students in IBL courses, and in 
particular future teachers, reported higher cognitive 
gains. In addition, students in IBL courses reported 
higher gains in terms of confidence, positive attitude, 
persistence, independence, and collaboration, than 
students in non-IBL courses. Finally, women in IBL 
courses reported higher gains than women in non-IBL 
courses. Thus, if teaching with IBL methods is related 
to these gains, assisting faculty as they learn to use 
these methods is crucial. As important as students’ 
gains are, an important aspect of the process is the 
teacher and his or her teaching. 

The literature on teacher knowledge as it pertains to 
teaching is extensive at the K-12 level but is sparser in 
the post-secondary level. Nardi, Jaworski, and Hegedus 
(2005) interviewed tutors at the University of Oxford 
over an 8-week period that prompted them to reflect 
on aspects of their teaching. The researchers identi-
fied four types of pedagogical awareness—naïve and 
dismissive, intuitive and questioning, reflective and 
analytic, and confident and articulate (p. 293)—which, 
they propose, reveal a spectrum of awareness about 
students’ difficulties, strategies to overcome those dif-
ficulties, and self-reflection about teaching practices. 
These researchers claim that instructor awareness 
can feed into other teaching formats (p. 293), which 
may suggest a similar categorization for instructors 
engaged in using an instructional method such as 
IBL. Other accounts of teaching with inquiry-orient-
ed curriculum (e.g., Speer & Hald, 2008; Stephan & 
Rasmussen, 2002) point at specific dilemmas that in-
structors face, in particular navigating the need to stay 
away from lecturing and moving into more discussion 
based classes. This literature is informative and allows 

us to think that there might be common concerns that 
faculty have when they teach with IBL methods, re-
vealing key dilemmas that mathematics teachers face 
in teaching (e.g., Chazan & Ball, 1999). Simultaneously, 
we think that instructors bring with them knowledge 
that helps them deal with many of these dilemmas, and 
that they can actually be very resourceful in solving 
some of those challenges on their own, depending on 
the type of work they are called to do, even if their 
main source of information is their own experience 
with lecturing (the predominant pedagogical strategy 
in university mathematics classrooms, Blair, Kirkman, 
& Maxwell, 2013). This study, which started with an 
investigation of faculty concerns, allowed us to also 
investigate a possible association with the familiarity 
using this method and the solutions proposed to deal 
with concerns in teaching. 

THEORETICAL FRAMEWORK

We conceive of the work reported here as being under 
the umbrella of practice-based theorizations of teach-
er knowledge, as proposed by Ball and colleagues (Ball, 
Thames, & Phelps, 2008). Their theory starts from 
observation of practice to derive the types of tasks 
that teachers frequently engage in when teaching and 
it seeks to understand the interaction between those 
tasks of teaching and the specific subject matter one is 
teaching. It is a further elaboration of Shulman’s (1986) 
idea that there was a kind of specialized knowledge 
that was needed for teaching. Ball and colleagues’ the-
ory includes six areas: Common Content Knowledge, 
Specialized Content Knowledge, Horizon Knowledge, 
Knowledge of Content and Students, Knowledge of 
Content and Teaching, and Knowledge of Content 
and Curriculum [1]. The last three areas are a further 
categorization of what Shulman called Pedagogical 
Content Knowledge. Knowledge of Content and 
Students, “(KCS), is knowledge that combines know-
ing about students and knowing about mathematics. 
Teachers must anticipate what students are likely 
to think and what they will find confusing” (p. 402). 
Knowledge of Content and Teaching, (KCT) is knowl-
edge that “combines knowing about teaching and 
knowing about mathematics” (p. 402), exhibited when 
teachers decide which tasks or representations to use. 
Knowledge of Content and Curriculum (KCC) refers 
to knowledge of the place in the larger curriculum of 
the various elements of content to teach. Our focus in 
this paper is on this further elaboration of pedagog-
ical content knowledge as revealed through teach-
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ers’ practice with a novel method, IBL, and gleaned 
through two pieces of information, what instruc-
tors find difficult to handle—which signals an area 
of knowledge needed—and what they propose as a 
solution for that need, which signals the use of one or 
various domains of knowledge. Within this theory, we 
also contend that experience with teaching in general 
and with IBL in particular informs these domains and 
that differences in how faculty report concerns and 
solutions signal the use of those domains.

METHODS

Faculty were recruited from the networks associated 
with the Academies of Inquiry Based Learning and the 
R. L. Moore conferences and workshops in the United 
States [2]. Over three years, 74 instructors from 30 
different states took part of the study. We collected 
two types of data, bi-weekly logs and interviews. The 
bi-weekly logs asked faculty to log into a secure sys-
tem and document concerns that they experienced 
over the prior two weeks on 10 different areas (pre-
paring class, designing assessments, using homework, 
using quizzes/tests/exams, pacing, lecturing, having 
students do presentations, group work, large group 
discussion, and mathematics) and the solutions they 
had found or ideas of what could help them if no solu-
tions were available. In all we collected information 
on 171 different courses [3] through 943 log entries. In 
addition to the logs, we selected a purposeful sample 
of faculty for conducting in-depth interviews. The in-
terviews covered two main areas, instructors’ under-
standing of IBL and the implementation of IBL in the 
most recent course they had used to fill the bi-weekly 
logs [4]. We conducted a total of 30 interviews. 

In this paper, we discuss faculty concerns and solu-
tions about two IBL practices, group work and stu-

dent presentations, and two assessment activities, de-
sign and use of quizzes, tests, and exams as revealed 
through the bi-weekly logs. Table 1 shows the number 
of instructors recruited who logged a concern in each 
of the areas included in this analysis, separated by 
their level of familiarity with IBL [5]. Group work and 
student presentations are two strategies that depart 
significantly from lecturing and constitute key fea-
tures of an IBL course. We focus on assessment be-
cause our analysis of interviews suggests that this is a 
major concern for faculty, as they struggle to fit what 
they understand the role of assessment is with the 
goals they want to promote by using IBL (Whittemore 
& Mesa, 2014). In addition, assessment is a practice 
that teachers, independently of the method, need to 
manage. We conjectured that the faculty would there-
fore draw from their prior knowledge more readily 
when dealing with concerns emanating from these 
areas than from the other two, therefore providing 
an important contrast.

We went through several iterations to build a coding 
system, using constant comparative methods (Corbin 
& Strauss, 2008), focusing at times on concerns and 
at times on solutions. Our intention was to create an 
all-encompassing, parsimonious system for coding 
concerns and solutions across all areas of teaching. 
We identified 14 solutions that describe what faculty 
proposed to solve the challenges they faced over the 
course of the term when teaching with IBL. The analyt-
ical strategy to answer our first question is qualitative 
in nature, describing the kinds of actions teachers 
propose, which will be used to connect to the types 
of knowledge they draw from. To answer our second 
research question, we model the likelihood that a solu-
tion will be chosen to answer concerns in each of these 
areas (each is coded as 1 or 0 depending on whether 
there is a concern in that area), controlling for instruc-

Number of Instructors
(L/M/H)a

Number of Logs
(L/M/H)

IBL Practices

 Group Work 33 (20/12/4)b 80 (45/25/10)

 Student Presentations 60 (31/24/7) 172 (75/80/17)

Assessment Activities

 Design 38 (21/13/5) 78 (38/28/12)

 Use 38 (21/15/5) 79 (45/28/5)
Notes: a. Level of familiarity with IBL, L: low, M: medium, H: High. b. Numbers do not add up because some teachers who participated 
more than one semester could change their level of familiarity after each semester.

Table 1: Number of instructors reporting solutions to selected areas of concerns and number of logs teachers used for reporting 

concerns by level of familiarity with IBL
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tors’ familiarity with IBL and type of course. More 
specifically, we estimated generalized linear logistic 
regression models with a binary outcome (proposing 
any given solution or not) for all the areas of concern. 

FINDINGS

In this paper, we describe the four solutions most 
frequently coded: Provide Direction, Adjust/Clarify 
Expectations, Prepare, and No Solution. We first de-
scribe the qualitative nature of these solutions and 
then present the analysis by level of familiarity.

Provide Direction referred to solutions in which the 
instructor guided students along a desired path while 
refraining from assuming the role of lecturer. The in-
structor may provide hints, ask students to break pro-
cedures down into smaller steps, or pose questions 
in general with the intent to incite comprehension/
reflection or metacognition:

I try to get the class to realize the problems. 
Sometimes I jump in, if it involves writing. 
Sometimes I give the class hints until they get 
it. I think this is the most challenging part of the 
experience, and it takes a lot of energy! (Log2.1_
I57_M_LD) [6]

Adjust/Clarify Expectations referred to solutions in 
which the instructor reminded students of course 
expectations, resources available to them, and the mo-
tivation and purpose for success within the course. 
The solution may involve relaxing or tightening 
classroom procedures, minimizing or adding to as-
signments/coursework, and adjusting the intensity 
of adherence to classroom procedures:

For the weak students, I have asked students to 
come and see me prior to class and work with 
group members outside of the class. I have asked 

students to go to the numerous daily tutorial ses-
sions. (Log6.5_I58_L_LD)

Prepare referred to solutions in which instructors 
reread course notes and lecture topics, and put to-
gether materials for classes in general. This solution 
describes instructors desiring to remain vigilant and 
flexible to the evolving nature of the unfolding work 
in the classes and ideas of actions they intend to take in 
the next class. It also included tasks that the instructor 
had found or created, plans to use those in class, or 
reports that the students had used those tasks:

I have been leaning towards teaching IBL style for 
the last few semesters, so I am adapting a lot of 
what I’ve previously used. I’ve also found some 
resources by looking on the Internet and email-
ing people if I saw something interesting. Since 
this class is really more of a hybrid IBL and not 

“pure” IBL and we don’t do a lot of theory-related 
things, some [of ] the things I have found (JIBLM) 
don’t quite work. (Log6.3_I45_L_UD) 

The No Solution code was assigned when the com-
ments indicated that the instructors were unsure 
about solutions to their concerns, that they had an 
idea for a solution but that the solution was not work-
ing, or that they were “at a loss” about what would help:

I know I should have the students presenting 
more proofs in class, but somehow I am not suc-
cessful this semester at getting proofs presented 
by the students in class. Most are not even trying 
the proofs outside of class. Even the examples are 
not being tried by most of the students. I’m at a 
loss even to the type of resources I might need. 
(Log7.4_I62_L_UD)

The frequencies with which these solutions were as-
signed to the logs by each area of concern are given 
in Table 2. 

IBL Practices Assessment

Group Work  
(n = 80)

Student Presentations 
(n = 172)

Design  
(n = 78)

Use  
(n = 79)

Provide Direction 21% 24% 8% 13%

Adj./Clarify Exp. 30% 33% 18% 31%

Prepare 15% 20% 35% 17%

No Solution 24% 7% 13% 17%

Table 2: Frequency of Solutions Proposed by Faculty to concerns on IBL Practices and Assessments (N=409 logs)
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We run three separate logistic regression models that 
included all the areas of concern (not only the ones 
that are the focus of this paper), the course type, and 
the level of familiarity with IBL as independent varia-
bles and the solution as the dependent variable (using 
it or not, one model per solution: Provide Direction, 
Adj./Clarify Expectations, and Prepare). The regres-
sion coefficient for level of familiarity with IBL was 
not significant in any of these models; that is, when 
controlling for the area of concerns and the type of 
course (upper division, lower division, or future 
teachers), the probability of using a particular solu-
tion was not significantly different for different levels 
of familiarity. For simplicity in presentation Table 3 
shows only the odds ratios estimate, standard errors, 
and significance of the corresponding coefficient for 
the three models for the four focal areas of concern. 

We highlight four points from Table 3. First, rela-
tive to teachers who report that they have concerns 
with group work, teachers who do not have concerns 
are 2.5 (1/0.393) times less likely to use prepare as a 
solution. This suggests, perhaps unsurprisingly, that 
when solving problems related to organizing group 
work in the classroom, faculty are likely to expect to 
spend time in advance, anticipating ways to handle 
those problems. Second and third, relative to teachers 
who report that they have concerns with designing 
assessments, teachers who do not have concerns in 
this area are 3.2 times less likely to use provide direc-
tion as a solution (1/0.309) and 3 times less likely to 
adjust or clarify expectations as a solution (1/0.332). 
This suggests, that in solving problems related to de-
signing assessments for IBL work, faculty will resort 
to modify the assessment or provide better explana-
tions for the requirements or for the work, in a way 
suggesting that they need to be flexible in order to 
account for the special nature of assessments in this 
environment. Naturally, this is a plausible interpre-
tation that would need to be corroborated with a dif-
ferent design in which instructors describe problems 

preparing assessments in non-IBL courses. Finally, 
relative to teachers who report that they have con-
cerns with using assessments, teachers who do not 
have concerns in this area are 2.3 times less likely to 
use prepare as a solution. Thus, similar to concerns 
faculty face with group work, faculty with concerns 
with the use of assessments for students will spend 
time thinking through those assessments based on the 
feedback they gather from how things work during 
class. When assessments are used they do provide 
direct information about students’ learning, which 
may trigger realizations for teachers of the need to 
learn to anticipate issues better.

We obtained an intriguing result when modelling 
No Solution. The odds ratio coefficient was signifi-
cant for faculty identified as having low level of fa-
miliarity with the method (Odds Ratio, Low Level 
of Familiarity = 0.296, SE = 0.603, p < .05) relative to 
faculty having high level of familiarity. This means 
that relative to faculty who had the highest level of 
familiarity, faculty with low level of familiarity were 
3.4 times less likely to report that they had no solution 
for their concerns.

DISCUSSION 

Our analysis of the solutions that faculty proposed to 
the concerns they had with teaching with IBL methods 
reveals the ways in which faculty use the knowledge 
they have to manage the situations. Of the three solu-
tions most frequently assigned, Provide Direction, 
Adjust/Clarify Expectations and Prepare, it seems 
that the first two need to be deployed by calling upon 
teachers’ appraisal of the instructional situation, 
namely the way in which students and the material 
are interacting in the moment and the possible ways 
in which teachers can provide feedback. In Provide 
Direction, the teacher refrains from giving a full 
explanation to the students to answer a particular 
question. This requires an in-the-moment assessment 

Area of Concern Provide Direction Adj./Clarify Exp. Prepare

Group Worka  1.137 (0.525)  0.781 (0.458)  0.393 (0.584)†

Student Presentation  1.140 (0.480)  0.835 (0.416)  0.586 (0.598) 

Design Assessments  0.309 (0.617)†  0.332 (0.484)*  1.233 (0.617) 

Use Assessments  0.595 (0.558)  0.789 (0.454)  0.424 (0.595) † 
Notes: a. The reference category for each coefficient is presence of the concern. The odds ratio is the exponential of the coeffi-
cient modelled for the cases in which there is no concern reported. The reciprocal of the value gives the relative ratio for the 
reference category. †: p < .10; * p < .05.

Table 3: Odds ratios and Standard Errors by Solution and Area of Concern
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of students’ thinking paths vis a vis the mathematics 
at stake and a decision-making process regarding the 
mathematical idea or question that may nudge the stu-
dent in a different direction. We see this as evidence 
of teachers drawing from their Knowledge of Content 
and Students. In contrast, when using Adjust/Clarify 
Expectations, teachers are taking a larger view of the 
constraints imposed by using the method; the actions 
taken refer to larger organizational aspects of the 
course that impinge on the quality of students’ work: 
more resources, tighter or more relaxed require-
ments. In order to make such decisions, instructors 
account for the contextual situation in which students 
are working and how that affects the pacing or other 
goals of the course; they need to keep in mind that they 
might need to adjust further the class organization 
so that the course maintains its coherence. We see 
this as evidence of drawing on their Knowledge of 
Content and Teaching. When using Prepare, on the 
other hand, instructors bring to bear knowledge in 
both domains. They need to take into account what the 
students have done in any given class, and decide on 
a path that will satisfy the goals of course and the de-
mands students have for understanding the content. 
It also involves the generation of documents informed 
by such thinking processes.

The level of familiarity did not play a role in the types 
of solutions proposed, except in the case in which fac-
ulty reported having no solution. We take this result 
as an indication that the method itself makes similar 
demands on teachers’ knowledge independently of 
the experience they have with the method. This result 
does not mean that the method does not get easier with 
time. Recall that we are talking about solutions, that is, 
about the types of knowledge that could be drawn from 
to solve problems of practice. Theoretically, there is no 
reason to believe that instructors of different levels of 
familiarity with the method will draw from different 
knowledge sources. This way of teaching, by making 
students visible, forces faculty to navigate through 
the spectrum of awareness described by Nardi and 
colleagues (2005) and puts all the teachers at the same 
stage in Nyquist and Sprague’s (1998) model of teacher 
development, in which they have to deal with student 
thinking in every lesson. 

This work implies that teachers use their knowledge 
of teaching when teaching with a new method. While 
we did see a large amount of no solutions to individual 
concerns, we see that faculty draw on their experi-

ence and knowledge to deal with the concerns that 
they face in IBL practice. Because teaching is in the 
moment, instructors must find a solution to concerns 
as they emerge in order to manage instruction in the 
classroom, and working on augmenting their math-
ematical knowledge for teaching could be a fruitful 
strategy for sustaining this way of teaching. While 
there are many outside resources to help teachers us-
ing IBL, it seems that for the instructors in this study, 
given their knowledge, the instructors themselves 
are their most valuable resource.
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ENDNOTES

1. Due to space considerations we only describe the 
domains that are relevant to our study. We refer the 
reader to Ball and colleagues (2008) for full definitions 
of the other domains.

2. See http://legacyrlmoore.org and http://www.in-
quirybasedlearning.org for details.

3. Lower division courses were intended for stu-
dents in their first two years of college (e.g., 100–200 
level courses: Calculus I, II, Discrete mathematics, 
Cryptology); Upper division courses were intended 
for students in their last two years of college (e.g., 
300–400 level courses: intro to proof, modern or ab-
stract algebra, topology, real analysis, etc.); Future 
teacher courses were those intended for future teach-
ers and could be of any level (e.g., geometry for teach-
ers, math for elementary teachers, etc.)  

4. The protocols for the logs and the interviews are 
available from the authors.

5. Familiarity with IBL was divided into three levels, 
Low, Medium, and High, depending on instructors’ 
described experience teaching with the method (e.g., 
# of IBL courses), the use of own generated notes, and 

the amount of mentoring they provide, among other 
dimensions.

6. The identifier Log2.1_I55_L_LD indicates the semes-
ter when the data was collected (second), the number 
of the log (first in the term), the instructor (#I55), the 
level of familiarity (Low, Medium, High), and the level 
of course for which the log was being recorded, (Lower 
Division, Upper Division, or Future Teachers).

http://legacyrlmoore.org
http://www.inquirybasedlearning.org
http://www.inquirybasedlearning.org
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Students’ understanding of marginal change 
in the context of cost, revenue, and profit

Thembinkosi P. Mkhatshwa and Helen M. Doerr
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This paper describes how eight undergraduate students 
majoring in economics and  business studies reasoned 
about marginal change (marginal cost, marginal reve-
nue, and marginal profit) in the process of deciding how 
they would advise the management team of an airline 
about an economic decision involving the addition of 
another jet plane. To elicit students’ understanding of 
marginal change in an economic context, pairs of stu-
dents were engaged in a task-based interview. Nearly 
all of the students were able to reason correctly about 
marginal change within the immediate context of the 
task, while four of the students also did so beyond the 
context presented in the task. Only one student consid-
ered the marginal change information in the task as a 
rate of change.

Keywords:  Marginal change, rates of change, business 

calculus, undergraduate mathematics education, 

economic decision making.

INTRODUCTION

The role of context in the way students reason about 
rate of change (average rate of change and instanta-
neous rate of change) has received considerable atten-
tion from researchers interested in the learning and 
teaching of this concept and students’ interpretations 
of rates of change in various contexts. In particular, 
there is a large body of research literature on students’ 
understanding of rate of change in a motion context 
(Beichner, 1994; Bery & Nyman, 2003; Monk, 1992; 
Nemirovsky, Tierney, & Wright, 1998). Research ex-
ists on students’ understanding of rate of change in 
non-motion contexts such as fluid flow, heat flow, tem-
perature, discharging capacitors, and light intensity 
(Bingolbali & Monaghan, 2008; Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Doerr, Ärlebäck, & O’Neil, 2013; 
Johnson, 2012; Marrongelle, 2004). However, there 

is little research on the context of economic change, 
which is the motivation for this study. 

THEORETICAL FRAMEWORK

This study draws on a multiple representations the-
oretical framework (Davis, 2007) to examine how 
students reason about the context of cost, revenue, 
and profit within a real-world context representation 
and across other representations. Davis’ multiple 
representation framework contains five representa-
tions: (1) tables, (2) algebraic, (3) graphs, (4) spoken 
language, and (5) real-world contexts. At the center 
of Davis’s framework are real-world contexts. As 
Davis puts it, “students’ investigations are dominat-
ed by real-world contexts and students are frequently 
translating between tables, graphs, and equations, and 
vice versa” (p. 391). The framework is an adaptation 
of Lesh’s (1979) multiple representation framework. 
The current study is part of a larger study that used 
three tasks that situated the context of cost, revenue, 
and profit in multiple representations, namely graph, 
table, and text. The current study reports on what 
students’ reasoning about the context of economic de-
cision making, presented as text, revealed about stu-
dents’ understanding of marginal change. Marginal 
cost refers to the cost per additional unit produced, 
marginal revenue refers to the revenue generated 
per additional unit sold, and marginal profit refers 
to the profit per additional unit produced and sold. 
Mathematically, marginal change can be calculated 
using instantaneous rate of change which can be ap-
proximated using average rate of change.

LITERATURE REVIEW

A review of the research literature on students’ under-
standing of rate of change in context reveals several 
things. First, even high achieving students in calcu-
lus have difficulties understanding and interpreting 
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rate information (points of inflection and concavity) 
in mathematical tasks that are situated in a non-mo-
tion context (Carlson et al., 2002). Second, the use of 
physical models such as the sliding ladder used by 
Monk (1992) and technology in the form of motion 
detectors and graphing calculators can enhance stu-
dents’ understanding of rate of change in a motion 
context (Monk, 1992; Nemirovsky, Tierney, & Wright, 
1998). Finally, the research literature reveals that a 
good understanding of a motion context in physics 
could enhance students’ ability to reason about rate 
of change when solving calculus problems that have 
been stripped of context (Marongelle, 2004). 

However, research on students’ understanding of rate 
of change in a business and/or economics context is 
lacking. To the knowledge of the authors, only one 
study by Wilhelm and Confrey (2003) investigated 
students’ reasoning about rates of change in an eco-
nomic context. These researchers studied algebra 
I students’ ability to project their understanding 
of average “rate of change in the context of motion 
onto the context of money” (p. 887). Wilhelm and 
Confrey found that some of their participants were 
able to project their understanding of average rate of 
change from a motion context to a banking context. 
However, their study did not examine what students’ 
reasoning about the motion and banking context re-
vealed about students’ understanding of instantane-
ous rate of change and marginal change. The current 
study seeks to address the gap about what it is that 
students’ reasoning about the context of cost, reve-
nue, and profit reveals about their understanding of 
marginal change.

Conflating function output values with the average 
rate of change values for the function considered over 
subintervals of the function’s domain is a well docu-
mented difficulty that students have when reasoning 
about rate of change (Carlson et al., 2002; Monk, 1992; 
Prince, Vigeant, & Nottis, 2012). It is also known that 
students have difficulty distinguishing between the 
amount by which a function changes and the rate at 
which the function is changing over unit subintervals 
(Confrey & Smith, 1994; Cooney, Beckmann, & Lloyd, 
2010). Research also indicates that students’ “under-
standings of rate in one representation or context are 
not necessarily transferred to another” (Herbert & 
Pierce, 2012, p. 455). This study is part of a larger study 
that investigated students’ reasoning about marginal 
change in three representations, namely graph, table, 

and text. This paper reports on students’ reasoning 
about marginal change in the latter representation. 

METHODOLOGY

This qualitative case study used task-based interviews 
(Goldin, 2000) with eight undergraduate students 
currently enrolled in business calculus. Four pairs 
of students were engaged in the following non-routine 
task that was designed to elicit their reasoning about 
the marginal change information rooted in the task, 
adapted from Hughes-Hallet and colleagues (2006): 

JetBlue is a major airline that currently operates 
195 jet planes. The airline serves 84 destinations 
in 24 states and 12 countries in the Caribbean, 
South America, and Latin America. The airline is 
trying to decide whether to add an additional jet 
plane. The choice that the airline has is between 
adding this jet plane and leaving things the way 
they are. The airline’s decision is to be made pure-
ly on financial grounds. 

How should the airline decide on whether or not 
to add the 196th jet plane?  

Setting and respondents
The study was conducted on the campus of a medium 
sized research university located in the north-eastern 
part of the United States. The respondents were eight 
undergraduate students, six females and two males, 
from the department of economics and the business 
school who had recently completed a business calcu-
lus course as a prerequisite for other required cours-
es in their programs of study. Four of these students 
were sophomores, one student was a freshman, two 
students were seniors, and the other student was a 
junior. Students taking this course are familiar with 
average rate of change, instantaneous rate of change, 
and the context of cost, revenue, and profit, hence the 
reason for recruiting them to participate in the study. 
Data were collected during a regular semester and the 
summer following that semester. Three of the four 
interviews were both audio and video-recorded; one 
interview was only audio-recorded. Each interview 
lasted for about 75 minutes. The interview data was 
transcribed for analysis. Work written by students 
during the interview was also collected as part of the 
data.
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Data analysis
Transcripts were coded for students’ understanding of 
the marginal change information rooted in the task. In 
particular, the transcripts were analyzed for students’ 
abilities: (1) to identify and interpret the marginal 
change information embedded in the task, and (2) to 
give reasonable advice on how the airline should de-
cide on whether or not to add another jet. Reasonable 
advice was considered to be one which takes into con-
sideration a comparison of the company’s marginal 
cost, marginal revenue, and marginal profit associated 
with the jet in question in the process of deciding for 
or against the addition of another jet plane.

RESULTS

Seven of the eight students who attempted this task 
were able to reason about marginal change in the con-
text of making an economic decision, that is, advising 
the management of an airline on whether or not to 
add another jet plane. Only one student considered 
the marginal change information rooted in the task 
as a rate of change. Two of the four pairs of students 
reasoned beyond the immediate context presented 
in the task. Following is a discussion of students’ rea-
soning about the marginal change information rooted 
in the task, first within the immediate context of the 
problem, and then beyond the immediate context of 
the problem.

Reasoning about marginal change within 
the context presented in the task
Two of the four pairs of students reasoned about the 
marginal cost, marginal revenue, and marginal profit 
ideas within the context of the problem. The following 
excerpt illustrates Isabel and Sally’s initial response 
to the question: How should the airline decide on 
whether or not to add the 196th jet plane? 

Isabel:  If the rate of change increases with the 
more jets that they have they should add 

another jet but if the rate of change is 
decreasing they should not add another 
jet.

Researcher: What do you mean by the rate of 
change?

Isabel:  Like say if they had a graph, if the graph 
shows their financial cost would look 
like that [drawing the graph on the left in 
Figure 1] which means that they should 
add…and then if they have another 
graph [drawing the graph on the right 
in Figure 1] where it is going more like 
this, then they should not add.  

Researcher: What is the curve [asking about the 
graphs she drew]? What does it repre-
sent?

Isabel:  Their financial, like how much they are 
making.

In stating that the airline should add another jet if 
“the rate of change increases”, it appears that Isabel 
is referring to the increasing profit that the addition 
of this jet would bring to the airline. It also appears 
that she is working on the assumption that whenever 
the airline added a jet in the past their profit always 
increased (graph on the left in Figure 1). In the graph 
on the right in Figure 1 which illustrates when the 
airline should decide against adding another jet plane, 
Isabel appears to be referring to the decreasing profit 
that would continue if the jet is added. One may argue 
that Isabel’s focus on the graph shifted her attention 
away from the context. Isabel, however, did not make 
any reference to marginal cost, marginal revenue, and 
marginal profit while talking about her advice to the 
management. Isabel was the only student to sponta-
neously talk about rate of change.

In talking about her decision, Sally’s reasoning was 
based on comparing the marginal cost and marginal 
revenue associated with the additional jet as the fol-
lowing excerpt illustrates.

Figure 1: Isabel’s graphical illustration of how the management of JetBlue Airline should decide on 

whether or not to add the 196th jet plane
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Researcher: Sally, what’s your own view? How 
should the airline decide on whether or 
not to add the 196th jet plane?

Sally: I think the profit [referring to Isabel’s 
graphs] works but it would be  easi-
er if you do a graph like it was before [re-
ferring to a graph from an earlier task 
that had two curves: a non-linear cost 
function and a linear revenue function] 
with the marginal revenue and like the 
marginal cost. So if this [referring to the 
graph on the left in Figure 2] I would say 
195 just to make it easy, then you would 
not add with that because for that it 
would make the revenue smaller than 
the cost.

Researcher: What is the line?
Sally:  It’s the marginal revenue.
Researcher: So in that case they should not add?
Sally:  Right, but then in that case [referring to 

the graph on the right in Figure 2] they 
should add.

Sally appeared to be comparing the marginal cost and 
marginal revenue associated with the addition of the 
196th jet plane. Her left graph in Figure 2 shows a real-
istic situation for when the jet should not be added: the 
marginal cost is greater than the marginal revenue 
generated for any jet plane added beyond the 195th 
plane. Sally’s decision for adding the 196th jet plane 
in the case of the situation depicted by the graph on 
the right in Figure 2 is also quite reasonable in that it 
shows that adding a jet beyond the 195th increases the 
airline’s marginal revenue while adding a jet beyond 
the 195th decreases the airline’s marginal costs and 
hence it would be in the best interest of the airline 
to add the 196th jet. The following excerpt illustrates 
Isabel’s reasoning about Sally’s graphs (Figure 2) and 
their final thoughts on the advice they would give to 
the management of the airline.

Isabel:  I see them showing the same thing, the 
only thing is that you would never know 
this [pointing at the MR line and MC 
curve extended beyond 195 in Sally’s 
left graph in Figure 1] because we don’t 
have more than 195 planes, so this is, I 
don’t know but that [pointing at the MR 
line and MC curve extended beyond 195 
in Sally’s left and right graphs in Figure 
1] wouldn’t exist on the graph anyway.

Researcher: Putting your ideas together, you 
want to give an advice to the manage-
ment of this airline on what they should 
do. How can you present your advice? 

Sally:  If the marginal revenue is higher than 
the marginal cost for the 196th plane you 
should purchase it but if it’s the other 
way round you should not.

Researcher: Isabel, how could you present your 
advice?

Isabel:  I agree with her.
Researcher: Would you use exactly the same 

words she used or?
Isabel:  Basically yeah. If it’s increasing the prof-

it then purchase it, if it is lessening the 
gap between the cost and the revenue, 
then purchase it as well but if it’s in-
creasing the gap and the profit is less 
then don’t purchase it.

Sally’s advice to the management is based on compar-
ing the marginal cost and marginal revenue. This sug-
gests that Sally is indirectly looking at the marginal 
profit that adding of the 196th jet would bring to the 
airline. Isabel, on the other hand, made her decision 
based on the increasing profit associated with the 
addition of the 196th jet. When talking about “the gap 
between the cost and the revenue,” Isabel appears to be 
drawing on Sally’s reasoning about marginal change. 

Figure 2: Sally’s graphical illustration of how the management of JetBlue Airline should 

decide on whether or not to add the 196th jet plane
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A second pair of students, Paige and Yolanda, reasoned 
similarly to Sally. Paige said that “they need to see what 
the potential revenue is from that one plane and then 
compare with the cost of that plane and see if that 
would give them more money”.  Paige’s advice is based 
on the marginal cost, marginal revenue, and marginal 
profit (which she referred to as “more money”) associ-
ated with adding the 196th jet. Yolanda said that “they 
need to see how the profit is at 195 and see how much 
more one plane makes,” thus reasoning about the mar-
ginal profit associated with the addition of the 196th jet.

Reasoning about marginal change beyond 
the context presented in the task
The other two pairs of students who attempted this 
task reasoned about the marginal cost, marginal rev-
enue, and marginal profit ideas beyond the context 
of the problem. In particular, the students’ thinking 
showed a consideration of the broader economic is-
sues that needs to be considered in trying to decide 
whether or not another jet should be added. In the 
case of Beth and Mary, Beth said that the airline’s de-
cision should be “based on how much more profit they 
will make versus how much they will pay to make the 
plane”. Beth reasoned about marginal change and in 
particular she reasoned about the marginal cost and 
marginal profit associated with the jet in question. 

Mary, on the other hand, said that “if the quantity of 
people that are flying increases then it would be accept-
able to get another jet plane but if it’s decreasing there 
is no need for another one.” After Mary’s response, 
Beth added that “you should always add the plane be-
cause that way you could even add more destinations.”  
In giving her advice, Beth initially took marginal profit 
and marginal cost (cost of making the 196th jet plane) 
into consideration but then she also thought about the 
expansion of the airline in terms of adding more des-
tinations. Mary’s reasoning was based on the increase 
or decrease in demand, that is, number of people flying 
with this airline. Mary’s thinking, however, does not 
show any evidence of considering the marginal change 
information rooted in the problem.

Noel and Paul’s advice to the management of the air-
line on whether or not to add another jet is another 
example of reasoning beyond the immediate context.  
Noel said that “if it adds incrementally to the profit of 
the airline, then truly based on financial grounds you 
would add that 196th jet.” He went on to add that “they 
need to know whether there would be capacity on that 

plane, actual demand, and cost of other things like fuel 
and union contracts.” Noel’s decision not only takes 
into consideration the marginal profit associated with 
adding another jet, but also several other important 
economic factors. 

Paul, Noel’s partner, said that “they should look at the 
cost of the plane and the marginal revenue they would 
get.” He went on to add that “they should look at the 
cost per average passenger and average revenue per 
passenger.” Later in the interview, Paul said that “if 
the marginal profit equals their marginal revenue 
minus marginal cost equals zero, it makes sense they 
are still in a capacity to add this jet, if this [the differ-
ence between marginal revenue and marginal cost] 
is negative then it doesn’t make sense to add another 
jet.” In this situation, Paul showed an understanding 
of marginal profit as it relates to the marginal cost 
and marginal revue associated with adding another 
jet, thus using his understanding of the mathematical 
content knowledge (marginal change) to understand 
the context of the problem.

Summary of students’ reasoning 
about marginal change in context
In summary, the results from this study revealed 
that: (1) students can correctly reason about marginal 
change when presented with a problem that is situated 
in a context [air travel] that is familiar and meaningful 
to the students, and (2) students are able to reason be-
yond the immediate information given in a task when 
it is presented in a familiar situation. A key finding 
of this study is that students understood marginal 
change as an amount of change (the difference) and 
not as a rate of change (the difference quotient). This 
was supported by the fact that in another task during 
the interview (not reported in this paper) all but one 
of the students indicated that the units of marginal 
change would be dollars instead of dollars per unit.

DISCUSSION AND CONCLUSION

This study investigated what students’ reasoning 
about a real-world problem in the context of cost, rev-
enue, and profit reveals about their understanding of 
marginal change. Nearly all the students were able to 
correctly talk about the marginal change information 
rooted in the task. However, only one student (Isabel) 
used the language of rate of change to give her advice 
to the management. 
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A major finding of this study is that students reasoned 
about marginal change as an amount of change and 
not as a rate of change. This finding would appear 
to be consistent with results from other studies 
(Confrey & Smith, 1994; Cooney, Beckmann, & Lloyd, 
2012). Distinguishing between the amount of change 
(a difference) and marginal change (a rate of change 
over a subinterval of unit length) would appear to be 
especially difficult for students. 

Even at the end of a business calculus course students 
do not speak of marginal change as a rate of change 
as it is presented in their calculus course and their 
textbook (Haeussler, Paul, & Wood, 2010). This is prob-
lematic because one major goal of a business calculus 
course is to help students move from understanding 
marginal change as an amount of change to under-
standing it as a rate of change. It might be important 
for future research to consider using modelling tasks 
(Doerr & English, 2003; Lesh et al., 2003) to support the 
development of students’ understanding of marginal 
change as a rate of change.
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In this paper, we draw on our experiences as member of 
the International Advisory Board and principal inves-
tigator of a research project on undergraduate mathe-
matics teaching and learning to comment on the study 
of university mathematics as a process of encultura-
tion into new mathematical practices and new ways of 
constructing and conveying mathematical meaning. 
We see this enculturation as the adaptation of differ-
ent ways to act and communicate mathematically. We 
take a discursive perspective and we treat the changes 
to the mathematical and pedagogical perspectives of 
those who act – students and lecturers – as discursive 
shifts (Sfard, 2008). Our particular focus is on the shifts 
concerning the ‘ultimate substantiator’ role typically 
attributed to the lecturer.
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UNIVERSITY MATHEMATICS: 
AN ENCULTURATION PERSPECTIVE

Mathematics undergraduates, and their lecturers, 
often describe university mathematics as a process 
of enculturation into new mathematical practices 
and new ways of constructing and conveying mathe-
matical meaning (Nardi, 1996). As often described in 
the literature (e.g., Artigue, Kent & Batanero, 2007), 
what characterises the breadth and intensity of this 
enculturation varies according to factors that include: 
student background and preparedness for university 
level studies of mathematics; the aims and scope of 
each of the courses that the students take at univer-
sity; how distant the pedagogical approaches taken in 
these courses are from those taken in the secondary 
schools that the students come from; the students’ 
affective dispositions towards the subject and their 
expectations for what role mathematics is expected 

to play in their professional life. On their part, lectur-
ers’ views on their pedagogical role (e.g., Nardi, 2008) 
may also vary according to factors such as: length of 
teaching experience; type of courses (pure, applied, 
optional, compulsory, etc.) they teach; perceptions of 
the goals of university mathematics teaching (such as 
to facilitate access to the widest possible population 
of participants or select those likely to push the fron-
tiers of the discipline); and, crucially, institutional 
access to innovative practices (Skovsmose, Valero, & 
Christensen, 2009).

Here we draw on our experiences, respectively, as 
member of the International Advisory Board (Nardi, 
2014) and principal investigator of the LUMOS pro-
ject (Learning in Undergraduate Mathematics: Output 
Spectrum; Barton & Paterson1, 2013) to comment on 
aforementioned student enculturation, particularly 
with regard to how students and lecturers experience 
the innovations introduced in the project. We first 
outline the project.

LUMOS AND THE LOW LECTURE INNOVATION

LUMOS is a two-year project funded by Ako Aotearoa, 
the New Zealand government body that distributes 
national research grants for tertiary education 
research, as well as the New Zealand Teaching & 
Learning Research Initiative (TLRI). Its main aim is 
to understand how course delivery at class level can 
achieve a range of desired learning outcomes for un-
dergraduate mathematics that includes content and 
skill related outcomes as well as outcomes related 
to the processes of mathematics, affect, and broader 
graduate issues. It is expected that the project will gen-
erate evidence that different types of courses contrib-
ute to student learning in different ways. Therefore 
developing a variety of pedagogical practices is part 
of the project. Three innovations are currently under 

mailto:e.nardi@uea.ac.uk
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trial: team-based learning, intensive technology and 
low lecture. The third of these, low lecture, is the focus 
of this paper. 

There are three key assumptions behind the low lec-
ture innovation. First, lectures are not necessarily 
the best means of imparting information or devel-
oping skills. They are however useful for material 
overviews, demonstrating model ways of communi-
cating mathematical ideas and enthusing newcomers 
with the skill and fluency that can often be found in 
the communicational practices of old-timers – thus 
one per week is sufficient. Second, responsibility 
for learning content and acquiring skills is handed 
back to students using specific guides of what they 
are expected to learn and where to find print and 
online resources, and with regular self- and lectur-
er-monitoring of progress. Third, learning about, and 
induction into, the processes of being mathematical 
are absent from most undergraduate courses, hence 
the time saved from lecturing is spent in small group 
sessions of semi-authentic mathematical experiences 
free from content-learning requirements.

The Low lecture innovation was trialled for the first 
time in 2013, with 14 MATHS108 students. MATHS108 
is a Year 1 course for non-mathematical majors that 
covers: linear functions, linear equations and matri-
ces; functions, equations and inequalities; limits and 
continuity; differential calculus (one/two variables); 
and, integral calculus (one variable). Faculty members, 
as members of the LUMOS team, run the trial on an 
extra-to-load basis. The trial consists of one lecture 
per week for the duration of the semester and three 
2-hour engagement sessions which students need to 
prepare for in advance, as well as write up a report 
for afterwards. These reports substitute assignments. 
The remaining parts of MATHS108 (tutorials, tests 
and final written examination) stay the same. 

The discussion we present here was initiated by the 
first author’s account (Nardi, 2014) of her experience 
of observing an engagement session and the discus-
sions that followed this observation. Our account 
adopts the commognitive perspective (Sfard, 2008). 
Commognitive terms in it are in italics and used as 
defined in the abridged presentation of the framework 
in (Nardi, 2014, p. 5–6) and (Nardi, Ryve, Stadler, & 
Viirman, 2014, p. 183–5). We conclude the paper with 
a consideration of the shifts in the lecturer’s role as 
experienced by the observed lecturer (second author).

As outlined in (Nardi, 2014) the observed engagement 
session was part of the low lecture MATHS108 course. 
Five students (thereafter Students B, N, J, D and A) 
participated in the session which was their first en-
gagement session and took place in the early weeks of 
the first semester. The session was run by the second 
author, leading member of the LUMOS team (thereaf-
ter Lecturer L). In the account that follows we outline 
what unfolded in the session and then present the 
discussions between the observer (first author) and 
L (the lecturer and second author) that followed. 

In presenting this account we are driven by the fol-
lowing questions: 

 ― What were these ‘newcomers’ to the practices of 
university mathematics to make of the open task 
set to them (see below)?

 ― What were their expectations of the ‘old-timer’ 
who led the session? 

 ― In return, what were the ‘old-timer’’s expecta-
tions of the students? 

 ― And, finally, what kind of bearing, if any, did the 
slightly unexpected nature of the task have on 
the session and its aftermath? 

OBSERVING AN ENGAGEMENT SESSION 
OF A LOW LECTURE COURSE

The five MATHS108 students arrived in the small, cosy 
meeting room where their first experience of an en-
gagement session was about to kick off. Their prepa-
ration for the session consisted of engaging with an 
open task, sent to them a week prior to the session: 
exploring functions from ℝ to ℝ×ℝ – see an outline 
of the task in Figure 1. The students expected to be 
invited to share their explorations with the lecturer 
and the group. We note the deliberately unexpected 
nature of the task: these students were so far accus-
tomed to working with functions from ℝ to ℝ and may 
have had a general awareness of functions from ℝ×ℝ 
to ℝ. L comments on the spirit of the task as follows:

“Engagement Session situations are intended to 
be open-ended mathematically, both conceptu-
ally and procedurally. That is, they are intended 
to ask students questions about mathematical 
concepts that they have not encountered before, 
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although they may be related to the work in the 
course. Additionally, there are not only many 

“take-off ” points (places where students can start 
working), but also several, different ways of de-
veloping their work.

Furthermore, there is no presumed “correct” 
process or result. […] What is important is what 
they then do, mathematically. […] Students are not 
given marks for “correctness”. They are marked 

on “mathematical thinking” in whatever form it 
is exhibited.”

We return to the two omitted ([…]) parts from the 
above L quotation later in the paper when we examine 
a little more closely some of the student productions 
in preparation, during and after the session.

The students and the lecturer were seated around a 
rotund table, arranged in the middle of a small meet-
ing room. The students arrived with their preparatory 

Engagement Situation #1:  Functions from ℝ to ℝ×ℝ

Most functions we have been using map a Real Number onto a Real Number. 

We write f : ℝ → ℝ   and we say “f  maps ℝ onto ℝ”.

But functions can be about any numbers, not necessarily the Real Numbers. That is why we have to specify 
the domain when we define a function. In fact, a function can map anything onto anything, vectors or 
matrices, for example.

Not only that, we can define functions that map TWO numbers onto one number. You will learn more 
about such functions later. An example of such a function is

f(x,y) = 3x − y2

We write f : ℝ×ℝ → ℝ   and we say “f maps ℝ cross ℝ onto ℝ”.

What about a function that works the other way? It starts with a Real Number but produces TWO Real 
Numbers. That is f : ℝ → ℝ×ℝ.

Our first problem is to find a suitable notation. Let’s take an example. We start with a function f and a 
variable x. Let the first number created by the function be x2, and the second number be (1/x).  Thus f (2) 
is 4 and ½. 

1) Devise a suitable notation for this.

2) Devise a new function h : ℝ → ℝ×ℝ. Make up your own rules for h. Explore some values of h. Check: 
is h a function? That is, will each separate input x give a unique output pair? 

3) Can you find a way of graphing h ? This will need to be a new kind of graph.

4) What can you say about the values of h for different inputs? E.g. what happens to h(x) when x is close 
to zero, when x gets very large, when x is negative? Find some other things to investigate about h(x).

5) Can you find another function, j(x), which behaves differently? Will your graphing and notation 
scheme work for  j(x)?

Figure 1: An outline of the Engagement Situation task pre-distributed to the students
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work in hand. One – N, the only female in the group – 
also had her laptop with online access, which she used 
often during the session. The ambience was convivi-
al and highly respectful of all. The students granted 
permission to the observer (first author) to join the 
session and seemed comfortable with her presence. 
The account that follows – described in (Nardi, 2014) 
as a sequence of episodes that evidence a substantial 
shakeup of the learning-teaching agreement – is based 
on notes jotted down during and right after the ses-
sion. The account is written from a commognitive per-
spective and aims broadly at addressing the questions 
listed at the end of the previous section.

Shakeup of the learning-teaching agreement 
in a low lecture session: evidence
At the very start of the session L reminds the students 
that its overall aim is set out in the preparation sheet 
(Figure 1). L had set two tasks for this exploration: 
first, propose a notation for this type of function; sec-
ond, devise a relationship of this type and explore 
how we would secure that it is a function, what its 
range of values would be, what its graph would look 
like and what its behaviour would be for very small 
or very large values of x. The preparation sheet ends 
with a request to devise a second function of this type 
and repeat the exploration with a view to comparing 
with the first. The students are also reminded that 
they will be expected to communicate the outcomes 
of their exploration and that some aids to doing so 
will be available in the room for them to this purpose. 
As the session starts, L reminds them that they are 
ultimately expected to produce a four-page report 
consisting of: an account of their pre-session efforts 
(on the first page), their take on the exchanges during 
the session (on the second and third pages) and their 
further explorations soon after (on the fourth and 
final page). 

The final words on the preparation sheet were ‘happy 
mathematising and they encapsulate explicitly the 
discursive object of the activity that the students are 
invited to participate in. L’s overall demeanour and 
utterances throughout the session also convey exactly 
that: this session is about engaging with the routines 
of a mathematician (he lists several of these in at least 
two occasions, including hypothesising, justifying, 
proving, visualising, extrapolating etc.). The students’ 
responses to these meta-discursive utterances by L – 
particularly when L asks them to cease activity for 
a moment to heed what they are doing, and how – is 

rather mute: they seem keen and confident to act but 
perhaps less so to take up this invitation for reflective 
distancing from the action. In fact it takes no more 
than a few seconds for them to return to the vicarious 
discussion of their exploratory work. 

On the grounds of this discussion – which we sample 
selectively in what follows – there was little doubt 
that the students’ take on the purpose of the session 
was essentially congruent to that of L. Sfard (2008, 
pp. 223 onwards) speaks of mathematical routines in 
terms of deeds, rituals and explorations and it would 
be hard to perceive what was happening in the session 
as anything other than evidence of exploration. L’s 
recollection of the students’ work substantiates this 
claim further:

[…] in this situation, while students may graph 
their functions as lines in 3-space, other alter-
natives are acceptable. For example, students 
have used the first element created to define a 
new (curved) axis, on which the second element 
is plotted; others have used the first element to 
define a line in 2-space as in a conventional graph, 
and the second element to determine the width of 
the line, hence creating a ribbon. […] For exam-
ple, the ribbon is not a function, as it is not 1 to 1. 
However an attempt to redefine “1 to 1” for this 
context would be an entirely acceptable process.

Let us now consider two aspects of the students’ activ-
ity that relate to the questions we listed earlier: first, 
some features of the students’ exploratory work, particu-
larly in relation to the slightly unexpected nature of 
the task (from ‘ℝ×ℝ to ℝ’ to ‘ℝ to ℝ×ℝ’ functions); then, 
some evidence of the students’ – and L’s – perceptions 
of the learning-teaching agreement that sessions such 
as this may bring to question. 

With regard to the first (students’ exploratory work), 
the session was marked by the high likelihood on 
several occasions of commognitive conflict, emerging 
from the students’ word use and form of visual medi-
ation. Throughout the session the students’ standard 
approach to substantiation was to endorse or reject a 
narrative about the objects at stake through indica-
tions in favour of – or against – a claim as evident on 
a screen, or on roughly produced drawings on paper. 
Combined with their generally non-standard use of 
symbolic realizations (notation, graphs and related 
terms), the ingredients seemed to be there for com-
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mognitive conflict. According to the task set by L in 
the preparation sheet (Figure 1), the students were 
expected to consider how a graph of a function from 
ℝ to ℝ×ℝ would look. However, on various occasions, 
their utterances, and scribbles produced during the 
session, seemed to concern functions that looked 
more like f + g, fg, f ∘g, rather than f : ℝ → ℝ×ℝ. In this 
sense the question ‘what does a function from ℝ to 
ℝ×ℝ look like?’ – central in the preparation sheet – 
was not pursued as directly as L might have expected. 

L’s recollects some of the student productions (not 
only the five observed in this session) as follows:

In their preparatory work most students defined 
two functions, e.g. g(x) = x2; h(x) = sin(x), and then, 
to draw the graph, composed them in some way 
to graph the equivalent of g+h, gh, or h∘g.

When it was pointed out that they had essentially 
created a function ℝ to ℝ, this led to other sugges-
tions such as using the first element to define the 
axis for the second element, or the first element 
to create a conventional graph that then got al-
tered by the second element to create some kind 
of ribbon (2D) or envelope (3D).

Throughout L’s contribution was to point out anoma-
lies in such a way that further mathematical invention 
or adjustments could be attempted, to ask for more 
exact formulations of what was intended, or formu-
lations using known conventional terms. We remind 
the reader that the aim was to trigger mathematical 
actions from the students, not “correct” objects.

In the commognitive perspective, one way to evalu-
ate whether the focus and object of the exchanges 
amongst interlocutors (here L and the five students) 
are well-coordinated is to examine the forms of 
word use evident in these exchanges. Sfard (2008, pp. 
181–2) distinguishes between passive, routine-driven, 
phrase-driven and object-driven word use – and system-
atic scrutiny of the exchanges can reveal the type of 
word use. In sessions such as the one we are discuss-
ing here there is plenty of deictic language, aimed at 
screen or paper, and this renders such scrutiny more 
difficult. Audio or video recording of the sessions (not 
done for the session we discuss here) is then crucial 
and this is a methodological decision that the LUMOS 
team might consider (taking account of the intended 
non-intrusiveness of the innovations). 

A similar observation to the one made above consid-
ering how the students’ engagement met L’s expec-
tations applies to the students’ loose, non-standard 
deployments of notation. During the session L seems 
also alarmed by this and on several occasions he draws 
on his ultimate substantiator (Sfard, 2008, p. 234) 
status to alert the students to the precariousness of 
such loose use of notation (see later in the paper one 
such occasion concerning the use of the expression 

‘cos(10x) on x2’). There was one occasion, initiated by 
Student A, who proposed the introduction of the no-
tation t → (f(t) ⋅ g(t)), which came closest to a standard 
notational realization of the type of function that the 
preparation sheet invited the students to consider. We 
elaborate some repercussions of not pursuing this in 
the session towards the end of the paper.

Further, while the confidence with which the students 
deployed online software to generate complex and at-
tractive visual realizations of their suggestions – often 
gazed at from all angles and bringing home the poten-
tiality of speedy, intuition-friendly resources – was 
impressive, it was also notable that these visual awe-in-
spiring moments were hardly interpreted or explicitly 
connected to the task set by L in the preparation sheet. 

With regard to the second aspect we wish to examine 
in this account (the students’ and L’s perceptions of the 
learning-teaching agreement), our account is far less 
hesitant: simply put, these ‘newcomers’’ expectations 
of the ‘old-timer’, L, who led the session, were very 
open. It is in fact this openness which brought about 
the use of ‘shakeup’ in the title of (Nardi, 2014), the 
first account of these observations. 

Certainly the ethics requirement of the learning-teach-
ing agreement for ‘tolerance and solidarity’ (Sfard, 
2008, p. 287) was amply met. One incident illustrates 
what we see as a substantial power-shifting observed 
in the session: the exchanges taking place in such a 
session will, in Sfard’s terms, eventually result in 
conceding to one of the present discourses being ul-
timately accepted by the interlocutors as privileged 
and paradigmatic. In a more conventional setting this 
would most likely be L’s discourse. In the observed ses-
sion this conceding did occur – but on the discursive 
path proposed by one of the students, not L. This was 
Student D, who proposed an innovative elaboration 
of the graph of a function from ℝ to ℝ×ℝ: The student 
defined two functions, the first was drawn in the con-
ventional manner, and then the second was drawn 
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using the graph of the first as the independent axis 
with scales along this graph, and perpendicular to 
it, being the same as the originals. A short time after 
the session Student D had worked out how to use a 
computer graphing package to handle drawing such 
a function and offered the following (Figure 2): 

In all this, L coordinated the intense exchanges with 
explicit and deliberate distancing, in fact with mini-
mal use of his ultimate substantiator status. 

It is in this ease with conceding this status that, in our 
view, the grandest element of the aforementioned 

‘shakeup’ lies: L seemed uniformly open to the narra-
tives proposed by the students; he seemed to actively 
hold back from encouraging their endorsement or 
rejection by the group. He seemed to sustain a mental 
list of proposed narratives that there had been no time 
to pursue, such as Student A’s (see earlier in this sec-
tion). In the pragmatic context of limited time – and 
Student D’s more vocal presence attracting perhaps 
more attention than Student A’s – this is not unlikely 
to happen during teaching. The observations of the 
session suggest that Student N appeared to experi-
ence the most obvious discovery moments. Student J’s 
gestural language and body positioning also suggest-
ed so, particularly when 3D images started appearing 
on the screen of Student N’s laptop. Only Student B ap-
peared minimally participant, and quietly perplexed. 

The session had buzz and warmth – but also left a 
slightly anxious sense of unfinished business about 
not having worked on Student A’s proposed narrative. 
We note however that the events that followed on the 
same evening of the session to some extent appeased 

that anxiety: Student A wrote to L with an imagina-
tive account of Student D’s idea (omitted here due to 
limitations of space). He had nobly conceded to the 
temporary dominance of another student’s proposed 
narrative in the session but made the most of it …af-
terwards. There is at least one implication of this turn 
of events (and we do say this in full awareness of the 
modesty of a claim based on evidence from a single 
observation of a LUMOS innovation session):

for at least the two hours of this engagement ses-
sion these ‘newcomers’ slipped comfortably into 
the shoes of the ‘old-timers’, with all the fallibility 
and excitement that walking in these shoes en-
tails. For that alone, surely this is an innovative 
path worth treading. (Nardi, 2014, p. 10)

A COMMOGNITIVE TRACING OF 
DESIRED LEARNING OUTCOMES?

Several questions emerge from our account of the 
‘shakeup’ of the learning-teaching agreement in the ob-
served session: Is this ‘shakeup’ liberating, perplexing 
to the students, both? How does it sit alongside the rest 
of these students’ experiences at this university? They 
seem comfortable with it but will they stay so through-
out? When, if at all, will they demand a reinstatement of 
L’s ultimate substantiator status in the form of a demand 
for (say) specific assessment of their proposed narra-
tives (on functions from ℝ to ℝ×ℝ, and beyond)? We 
conclude with tentative responses to these questions, 
based on the written reflections of L (second author).

L notes that the ‘conceding of much of [his] status’ we 
evidence here does not refer to his ‘administrative 
status, nor [his] professional status’ but his ‘status as 

‘old-timer’’. He prefers, however, the phrasing ‘control-
ler of content of discussion’: 

‘I still controlled the direction quite a lot, although 
I used their prompts, choosing between them for 
(hidden) pedagogical and mathematical reasons. I 
believe that I can remember making both pedagog-
ical and mathematical decisions at such moments.’

While on that point he stresses the pressures of ‘run-
ning one of these sessions’:

‘[it] is exhausting for the lecturer because of the 
constant attending to the direction of the conver-
sation and evaluating it for potential mathemati-

Figure 2: Student D’s “f(x) = cos(10x) on x2” production. He 

defines f: ℝ → ℝ×ℝ, f(t) = (x,y), where x=t-cos(10t)sin(atan(10t)) and 

y= t2+cos(10t)cos(atan(10t))
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cal (content and process) and pedagogical value. 
It is why, when a mathematician first watched me 
run a session […], then tried it himself, he said that 
it was much, much harder than it looked.’

As to whether the experience is liberating or perplex-
ing to students, he estimates that ‘about half ’ ‘find it 
liberating’ and recalls students talking about ‘re-find-
ing the creativity in mathematics’ and ‘expressing 
their pleasure at the sessions’. For ‘about a quarter’ 
though ‘it is perplexing – they just do not seem to get 
what it is about’ and for ‘another quarter it is a mix 
between the two – interesting but they feel a bit out 
of their depth’. These estimates are his ‘subjective 
judgement’ and he highlights that ‘these groups are 
not at all related to the students’ mathematical ability’. 

In relation to how the low lecture experience sits along-
side the rest of the students’ experiences L notes that 
his institution is ‘reasonably liberal’ and that it would 
not be unusual to find lecturers who are willing to 

‘cede some of their status’. Also many of these students 
‘will have had a similar sort of experience at times in 
their final year of school’ where they are likely to have 
been ‘treated quite respectfully as mature learners’. 
While ‘probably unusual at first year’ this respectful 
treatment in the low lecture innovation would then be 

‘not so strange’. Other factors, such as the presence of 
mature students in the group, may also reduce the 

‘strangeness’ of the experience and make the students’ 
commitment to this approach more resilient too:

‘I’ve not seen any students in any session get 
MORE perplexed or uncomfortable, I’ve seen 
some get less and some stay the same. For those 
who were comfortable with it, a few grow into it 
significantly quite quickly.’ [L’s emphasis]

As an example, L returns to Student A’s ‘radical’ fol-
low up (see earlier) of the discussion in the observed 
session: ‘He was checking with me that [his ideas] 
were ok, but he had really taken on the idea that the 
mathematics was there to be played with’. And while 
the students ‘do check things out’ with him (L), ‘they 
have never seen this as “assessment” in the formal 
way (is it right or wrong)’ but rather:

‘[they] seem to have caught on to the fact that this is 
exploration, and anything goes in some respects – 
it is what you do with it that counts, not what it 
is you are working with. I take this as a huge en-

dorsement of the idea of the engagement sessions – 
that they are not about content but about process. 
I did not expect that most of the students would 

“get” this so quickly, although I did reiterate it of-
ten both in writing and verbally.’

Here we sampled towards deploying the analytical 
potential of the commognitive approach. Analyses 
from the implementation of the LUMOS innovations 
are ongoing. 
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ENDNOTES

We dedicate this paper to our beloved LUMOS colleague 
Judy Paterson who passed away in January 2015. She 
will be sorely missed by all in this project and beyond.
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This paper presents a modeling of the defining process 
used by mathematicians. This modeling has a strong 
epistemological background and has didactical out-
comes. The aim here is to propose tools in view of stud-
ying the ways to implement a mathematical activity 
(close to the mathematicians’ one) at the university level. 
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INTRODUCTION – ON THE IMPORTANCE 
OF STUDYING THE DEFINING PROCESSES 
OF THE MATHEMATICIANS

The study of defining activities is a discreet but con-
stant didactical topic of research in mathematics edu-
cation since the 90s. Mariotti & Fischbein (1997) have 
underscored the importance of such research: “(...) 
learning to define is a basic problem of mathemati-
cal education.” (Mariotti & Fischbein, 1997, p.  219). 
Characterizing the defining processes and the defin-
ing activities is a new way, in mathematics education, 
to explore the mathematical concepts, their learning 
and their teaching. To place the definitions in the 
core of the mathematical activity (i.e. an activity that 
builds new knowledge, brings new proofs and the-
ories), actually reveals an epistemological interest 
and a didactical interest: besides, the construction 
of definitions is a component of the research process 
of the mathematicians. Some researchers in mathe-
matics education have characterized heuristics and 
behaviors of mathematicians (e.g., Schoenfeld, 1985, 
Burton, 2004; Carlson & Bloom, 2005; Gardes, 2013), 
but little research propose a modeling of the defining 
processes used by the mathematicians. Moreover, the 
modeling of defining processes in mathematics and 
the characterization of problems that allow a defining 
activity should be fruitful from a didactical point of 
view. Indeed, it brings a new way to analyze the pro-

cesses of constructing new concepts, new proofs and 
new theories; then, the analysis and the guidance of 
the mathematical activity of students becomes feasible.

My research, i.e. the modeling of the defining pro-
cesses in mathematics, fits into a wider field in sci-
ences education that is the inquiry-based learning. 
The study of the implementation of mathematical and 
scientific processes in the classrooms (for mathemat-
ics, it means every process at stake in a mathematical 
inquiry of a mathematical problem) is a crucial point 
for the research in mathematics education. Besides, 
the question of the closeness between the results of 
the on-going mathematical research and the contents 
of university mathematics has to be studied both by 
mathematics educators and mathematicians. 

In this paper, I propose first to synthesize the research 
in mathematics education that deal with the activity 
of mathematicians, with a short focus on the defining 
processes and the defining activities. I have developed 
in my research (Ouvrier-Buffet, 2013) a complete mod-
eling of the mathematical defining processes. This 
model is based upon an epistemological background 
with a didactical efficiency. In this paper, I have chosen 
to present the results of interviews with professional 
mathematicians regarding their defining processes: 
these interviews bring concrete features of the pro-
fessional defining activity. They also confirm and en-
rich the epistemological choices I have made for the 
design of my model (see Ouvrier-Buffet, 2006, 2011 
and 2013 for the whole epistemological component). 
The last part of this paper opens new perspectives for 
university mathematics education. 

STUDYING THE PRACTICE OF 
MATHEMATICIANS: AN OVERVIEW

In mathematics education, a recent kind of research 
deals with the practice of mathematicians. The focus 
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is often made on proof and proving processes, which 
is legitimated by the fact that proofs are the holder of 
the mathematical knowledge (Rav, 1999) among other 
reasons. Hanna & Barbeau (2008) extend this point of 
view and underscore that the proofs can have other 
functions such as introducing new methods, tools 
and strategies to deal with new problems. It fits with 
Weber’s conclusions: Weber (2011) shows that one of 
the reasons that mathematicians read the proofs of 
colleagues is to transpose ideas and techniques which 
may be useful in their own research. Wilkerson-Jerde 
& Wilensky (2011) analyze the reasoning of mathe-
maticians and students dealing with an unfamiliar 
proof. They show several processes such as: the use 
of previous knowledge, the construction of examples, 
the deconstruction of a concept or an idea into sub-
components in order to explore the different compo-
nents of a concept, the tests and the explorations of 
definitions, the attempts to connect definitions. As for 
Shriki (2010), he considers the creativity in the con-
struction of knowledge. He shows that teachers reck-
on that mathematics can be taught as a reconstruction: 
the same kind of defining activities (reconstruction of 
geometrical concepts) as in the research of Larsen & 
Zandieh (2008) and Zandieh & Rasmussen (2010) is at 
stake. The place of the study of the construction and 
the use of examples in mathematics is also import-
ant. The focus on the examples that can be produced 
by students when they try to understand new con-
cepts and when they want to illustrate mathematical 
ideas and properties, a focus which has been made 
by Watson, Mason and other colleagues, leads now 
to the analysis of the construction and the use of ex-
amples in proof processes (Watson & Mason, 2002; 
Sandefur et al., 2013). Recently, Gardes (2013) models 
the concept of “gesture” and defines it in a new way 
based upon the contemporary epistemology in or-
der to analyze the practices of mathematicians. This 
concept appears relevant (for further research) to 
analyze the processes of mathematicians and of stu-
dents during a research, and to consider the question 
of the transposition of the work of mathematicians 
to the classroom. In fact, in mathematics education, 
the defining activities are usually evoked during the 
study of proofs and of problem solving processes, but 
are not much studied for themselves. Indeed, it is com-
monly accepted that a proof can imply the necessity 
of the reconstruction of a definition: in this case, it 
concerns the exploration of the meanings of a defini-
tion (it can lead to the need of a better definition) and/
or the study of the consequences of an assumption 

(Hanna, 2000). Besides, the way the students learn 
new concepts can be described with the enrichment 
of their concept images (Tall, 1991; Vinner, 1991). In 
fact, in these examples of the emergence of a defining 
activity, the emphasis is made on a part of the math-
ematical activity only, and not on the whole process 
that deals with definitions in the research activity of 
mathematicians. From an epistemological point of 
view, the work of Lakatos (1961, 1976) gives a unique 
example in the literature where the defining process 
and the proving process interact. 

My research (see Ouvrier-Buffet, 2013 for the out-
comes) proposes a reference epistemological mod-
eling of the mathematical defining activity, taking 
into account the dialectic between defining and 
proving. Theoretical frameworks from the didactic 
of mathematics (the model of conceptions (Balacheff, 
2013) and mathematics (complexity theory, Garey & 
Johnson, 1979) are called upon. This modeling is also 
based upon several experiments (at secondary and 
university levels) and upon interviews with mathema-
ticians. The first level of my research was to identify 
emblematic epistemological conceptions which can 
characterize the mathematical defining processes: 
I have taken on the Lakatosian, Aristotelician, and 
Popperian conceptions (see Ouvrier-Buffet, 2006, 
2011). Yet, these conceptions were not enough to de-
scribe the defining processes because some cognitive 
aspects, for instance, were not taken into account 
(the didactical experiments have shown this aspect). 
Besides, the characterization of problems which can 
lead to a defining activity had not been carried out. 
Moreover, it was difficult to understand how the epis-
temological conceptions coexist and interact. Then, I 
have enriched the epistemological component and I 
have conducted interviews with mathematicians to 
propose a complete overview of the defining process-
es. I have then design four main components to define 
my modeling of defining activities and processes: the 
characterization of three main epistemological con-
ceptions regarding defining processes (the Lakatosian, 
Aristotelician, and Popperian conceptions; Ouvrier-
Buffet, 2013, p. 67); the definition of problems that can 
lead to a defining activity (Ouvrier-Buffet, 2013, p. 72); 
the emphasis of four moments of work involving defi-
nitions (this part highlights the role and the place of 
the epistemological conceptions and the cognitive 
aspects; Ouvrier-Buffet, 2013, p. 69); and a didactical 
methodology to build, to analyze and to guide defining 
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processes in classroom situations (Ouvrier-Buffet, 
2013, p. 76). 

DEFINING PROCESSES OF MATHEMATICIANS 

Research questions and methodology 
The aim of the interviews with mathematicians was 
twofold: firstly, I wanted to enrich my model of the 
defining activity based upon three epistemological 
conceptions, and intrinsically to validate it. Secondly, 
I was searching for a way to complete the aforemen-
tioned conceptions and to grasp the whole defining 
activity of mathematicians. Therefore, my underlying 
research questions were: how do the conceptions in-
teract? Can one identify different moments when the 
mathematicians work on definitions, and are the epis-
temological conceptions operational? What are the 
types of definitions which the mathematicians use? 

Regarding my previous epistemological research, I 
have defined six lines to analyze the data. They deal 
with the different kinds of definitions which the 
mathematicians talked about; the features of their 
defining processes (a focus is made on the interplay 
between defining and proving); the reasons of the evo-
lution of a definition during a research; the ways the 
mathematicians valid a definition; the view they have 
on the defining activity in university mathematics 
classes; the identification of the moments when the 
mathematicians work on definitions, and then of their 
moments of work dealing with defining processes. 
These features and the elements of the epistemolog-
ical conceptions gave me a grid with several compo-
nents to analyze the interviews. I have also focused on 
the actions described by the mathematicians in order 
to connect them to the epistemological conceptions. In 
this article, the aim is to provide concrete examples 
to give an overview of a professional defining activ-
ity (following the six lines above-mentioned) and to 
highlight the characterization of four moments of the 
work on definitions in particular. 

Data for this research
Eight professional mathematicians participated in 
this study. They come from different French uni-
versities and different fields of mathematics. Semi-
structured interviews (1 hour or less long) were au-
diotaped and then transcribed. The questions were 
oriented towards four elements: their professional 
profiles, their practices of mathematics, their practic-
es of the definitions and of the interplay between defi-

nitions and proofs, their representations of teaching 
at university level (do they think that implementing 
defining activities at university level can be useful 
and relevant?). The description of these interviews 
is available in Ouvrier-Buffet (2013).

Several kinds of definitions
The interviewed researchers actually identify several 
kinds of definitions: 

 ― the discrimination between the definitions one 
knows beforehand and the definitions one can 
deduce from other results;

 ― the distinction between the definitions which re-
main and will belong to the public domain and the 
local definitions which are used to shorten a talk. 

 ― the working definitions: one starts from the in-
tuition that one gets from objects and problems. 
With this kind of definitions, one can work with 
the mathematical objects, and the statement of 
these definitions can be put off.

These kinds of definitions are linked to different 
aspects of mathematics and then several moments 
of the mathematical activity already appear: the 
moment when the intuition of objects and problems 
catalyses a research; the moment when working defi-
nitions (which can be local ones) give legitimacy to a 
new object which becomes worthy of interest; and 
the moment when the theoretical, formal and logical 
definitions are at stake (here the axiomatic theory is 
concerned).

The defining process and its 
interplay with proof

It is clear that the formalized definitions come “af-
ter” during a constructing process. The processes 
involved in the construction of a theory are not re-
ally dealt with by the mathematicians. By “defining 
process”, they circumscribe a heuristic domain, from 
an intuitive exploration of mathematical objects and 
problem to the validation of a result. The insight of 
the results is often present. The defining processes 
specific to the construction of a new theory with 
axiomatic, logical and linguistic constraints are not 
much developed. For the mathematicians, to define 
is motivated by different needs: to have a better un-
derstanding of a concept or a problem, to simplify, 
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to generalize, to explore different linked frames or 
connected fields than the first one, to communicate. 
The mathematicians consider that the proof is the 
master and that the proof can imply an evolution of 
the definitions. When they define or re-define objects 
during a proof, it is first to continue the research pro-
cess, then to determine the domain of applicability of 
an idea or a proof, and finally to study more general 
cases or more particular cases. The definition of a 
really new concept (i.e. without an insight of it during 
a first exploration of a problem and/or a proof ) can 
emerge during a proof. The proof process can have a 
local or a global impact: the significance of the new 
built concept will be proved later. Therefore it implies 
a long-term study of this new concept. 

The reasons of the evolution of a definition

The “communication” dimension is important for the 
mathematicians: they explain that a definition will 
evolve when they will communicate their results. It 
can be in different institutions (seminary, talk, pub-
lications, university textbook) and the context will 
lead to one definition in particular or another. The 
mathematicians underscore the difficult use of the 
examples and the counter-examples in research. Some 
mathematical fields, where the concrete and discrete 
dimensions are involved (such as discrete mathemat-
ics), seem to be more suitable for building and using 
examples and counter-examples. Some defining prob-
lems (i.e. problems that can lead to a defining process) 
are pointed out by the mathematicians and are short-
ly described through research questions such as: to 
search if the problem can become a more general one, 
to search analogies with linked mathematical fields or 
with other concepts including a similar structure, to 
define the dual concept (it also implies the construc-
tion of new problems).

The validation of a definition

It occurs in different levels and places. The valida-
tion (i.e. when one considers that a definition is “cor-
rect”) can be an individual and personal process (it is 
a self-validation). The colleagues play the part of the 
validation too, as well as the mathematical community. 
The fact that the proof works is also an element for 
the validation of a definition. In the same way, when 
a conjecture is “almost proved”, or when there are 
no more counter-examples, or when the validity of 
a statement is controlled by the use of examples, the 

mathematicians consider that a definition can be valid. 
And a definition can also be agreed upon when it has a 
good strength during mathematical natural transfor-
mations or the implementation in different mathemat-
ical frames or structures. This being said, a mathema-
tician indicates that for some cases, one cannot bring 
a validation, in particular when one does not know if 
the research process is ending (this is consistent with 
the Lakatosian view). These elements go in the same 
directions as Weber’s results (2008) regarding the 
validation of a proof by the mathematicians. 

A MODEL OF HOW CONTEMPORARY 
MATHEMATICIANS DEFINE

A basis: Three epistemological conceptions 
I have previously presented an epistemological 
framework taking into account several conceptions: 
the Aristotelian one, the Popperian one, and the 
Lakatosian one (Ouvrier-Buffet, 2006, 2011). I have 
shown the ability of students to build definitions and 
to make a working definition evolve with the lack of 
counterexamples and with the reinvestment in a proof. 
I have also shown that the three aforesaid conceptions 
are useful to describe the students’ defining process-
es, but not enough to grasp the whole processes, in 
particular the intuition and the in-action processes. 
I have then reintegrated the in-action dimension (this 
cognitive feature was missing in the model) with the 
in-action definitions and extended the modeling 
(Ouvrier-Buffet, 2013). 

Mathematicians dealing with defining 
processes: Four moments of work 
Four moments of work have been characterized 
during the interviews with the mathematicians. These 
moments do not describe a linear activity, but they are 
connected: they give a dynamic overall view of the 
defining activity in the mathematical research which 
also integrates the epistemological conceptions and 
underscores the different kinds of definitions. The 
names that I have chosen for these four moments of 
work are directly connected to the different kinds of 
definitions which exist in the speeches of the inter-
viewed mathematicians.

The “in-action” moment of work
This moment of work deals with the intuition of 
mathematical objects, ideas, and results. The math-
ematical activity is here mainly an exploration and 
an impregnation of one or several problems and 
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of objects in order to know them better (the use of 
examples, non-examples, counter-examples is here 
at stake). Analogies with other close mathematical 
fields can be used and new weak problems are stat-
ed. The Lakatosian conception is operational, with 
several operators: the statements of problems, the 
construction of examples and counter-examples, and 
the change of mathematical framework. In this “in-ac-
tion” moment of work appear “in-action definitions” 
(Ouvrier-Buffet, 2011) and concept images (Vinner, 
1991). An “in-action definition” is a statement used 
as a tool (not an object) that enables students to be 
operational without an explicit definition.   

A transitional moment of work between 
“in-action” and “zero” – A potential link 
with the “axiomatic” moment of work
Two processes characterize this moment of work: to 
construct a first classification of mathematical ob-
jects and to re-use existing classifications; and to try 
to use analogies with existing concepts and theories. 
Here, the classifying, the categorizing activities and 
the denomination process of objects constitute the 
defining process. The Aristotelician and Lakatosian 
conceptions can be mobilized. If a link is made with 
the “axiomatic” moment of work, the Popperian con-
ception can be used. 

The “zero” moment of work
This is the place of the “zero-definitions” (Lakatos, 1961; 
Ouvrier-Buffet, 2011, 2013), but also of definitions that 
have a local impact. A “zero-definition” marks the be-
ginning of the research process. A zero-definition can 
be modified in order to protect a primitive conjecture 
from a “monster” or because the concept is altered by 
the presentation of a proof. The Lakatosian operators 
(to use and to build examples and counter-examples, 
to use the method of monster-barring for instance) 
and other processes can be mobilized such as: to do 
false things, to reach an idea of the proof (the proof 
constraints the concepts and their definitions, quoting 
the mathematicians). Then, the zero-definitions and 
other local definitions have different functions: to de-
nominate, to bring up several ways to grasp a concept, 
to work on a proof, to delimit the range of use of an 
idea or of a conjecture or of a proof, to communicate. 
The Lakatosian operator “to use another mathemat-
ical framework” can also be used and a link with the 

“axiomatic” moment of work made (in particular when 
a local or global theory pre-exists).

The “formalized” moment of work
I would like to underscore the “communicational” as-
pect, which appears during both a heuristic research, 
and a need of formalization, then I use the term “for-
malized” for this moment of work of mathematicians. 
Mathematicians can have to communicate (local) re-
sults during seminary, prepublications, talks etc. or 
to write a more formalized paper. In these both cases, 
there is a gap – an abstraction jump – compare to the 

“zero” moment of work. During the “formalized” mo-
ment of work, the mathematical activity concerns the 
use of some Lakatosian controls such as: the end of 
counter-examples implies that definitions, conjec-
tures and/or proofs are solid. Here, “proof-generated 
definitions” can emerge. The proof and the proof-gen-
erated definition work together. A proof-generated 
definition originates from a proof while stemming 
from the development of the potential of a zero-defi-
nition. The catalysis of a proof-generated definition 
is impossible without the proof idea. Other operators 
take part in this moment of work, such as Popperian 
ones dealing with the construction of local (or even 
global) axiomatic theories. The writing of formalized 
and successfully completed definitions can be par-
tially described with the Aristotelician conception. 
This moment interact with the concept definition 
(Vinner, 1991). Besides, the statement of new prob-
lems (a Lakatosian operator) allows the continuation 
of the mathematical research. The understanding of 
the new built concepts, and the generalization and 
the use of definitions, problems and results can lead 
new questionings. The exploration of neighboring 
concepts leads to a new “in-action” moment of work.

The “axiomatic” moment of work
The construction of a new theory (which can be mo-
mentarily local) and the construction of new concepts 
inscribed in this theory are at stake in this moment of 
work. I choose to call the definitions which are built 
during this moment “theoretical definitions” in or-
der to underscore that there are inscribed in a theory. 
The Popperian conception is here clearly useful to 
characterize the research process of the “axiomatic” 
moment of work. In particular, the construction of 
the involved mathematical theory implies the search 
of the minimal number of rules (axioms) in order to 
generate results with a wide range. The axiomatic 
process can also unify concepts (see, for instance, the 
case of linear algebra, Dorier et al., 2000). The transpo-
sition of concepts to other mathematical fields brings 
opening questions for the research too.
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The epistemological conceptions are 
operational in the moments of work
In the different moments of work on the definitions, 
as well as in the transition from one moment to an-
other, the mathematicians mobilize one ore more 
conceptions (mainly, they express in words differ-
ent elements which fit with operators and control 
structures of the epistemological conceptions). Then, 
Figure 1 synthesizes the features of each moment (in 
the coloured clouds), and shows the places where 
the epistemological conceptions are operational (in 
a cloud or in a transition between two clouds). The 
arrows mark the transition between two moments 
and sometimes the efficiency of a conception in such a 
transition. According to the interviewed researchers, 
one researcher cannot deal with all these moments, 
except for brilliant mathematicians. We can contin-
ue this research with new interviews, taking into ac-
count the different fields of mathematics.

OPENINGS

Ouvrier-Buffet (2011) has shown how a mathemati-
cal experience with a problem involving a defining 
activity can be conducted at university level.  Such 
experiments also bring opportunities to reinvest the 
constructed concepts and the ways of reasoning in 

other mathematical fields. Then the question of the 
in-service teacher education (of university mathemat-
ics teachers) becomes crucial, as well as the definition 
of the contents of the university mathematics i.e. the 
concepts and the processes involving a real mathe-
matical activity (and not only proof ). There are clear-
ly needs to engage collaborative research between 
university mathematics teachers and researchers in 
mathematics education (following Nardi, 2008). The 
interviewed mathematicians think suitable to imple-
ment defining activities at the university level, but 
they cannot conceptualize the way it can be imple-
mented with students. They are very interested in 
the didactical research that can lead to new situations 
for the university. One can also extend this idea to sci-
ences, especially with the study of the inquiry-based 
learning.
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We investigate Calculus teaching at university mathe-
matics departments and in particular research math-
ematicians’ teaching practice in the context of lectures. 
We are interested in how lecturers draw mathematics 
students into mathematical culture. In this paper, we 
focus on the teaching of a lecturer of a large cohort of 
students that we analyse using grounded techniques 
and the Teaching Triad construct (Jaworski, 1994). In 
spite of the lecture format, the analysis suggests that this 
lecturer’s teaching is characterized by the way he sup-
ports students’ engagement in the lecture and the way 
he familiarises them with mathematical production. 
The use of the Teaching Triad brings to our insight what 
sensitivity to students could mean in this traditional 
setting and what mathematical challenge could be at 
the university level.  

Keywords: University teaching, sensitivity to students, 

mathematical challenge.  

INTRODUCTION 

Teaching at the University level deals commonly with 
large groups of students and the lecture is the instruc-
tional activity within which teaching usually takes 
place. Arguably the lecture instruction has received 
a strong criticism and has been widely maligned by 
mathematicians and mathematics educators alike 
(Weber, 2004). It seems that lecture is considered as 
a unified, single teaching paradigm and thus a small 
number of studies investigated mathematics teach-
ing in this context (Speer, Smith, & Horvath, 2010). 
For example, Weber (2004) addressed the nature of 
lecturing showing that it is not as a single teaching 
paradigm as it thought to be and Jaworski, Treffert-
Thomas and Bartsch (2009) pointed out the tensions 
that a lecturer experiences in satisfying student 
needs and mathematical values. Yet, Speer and her 
colleagues (2010) in their systematic literature review 

argued that university mathematics teaching is “an 
unexamined practice” and drew attention to the need 
for empirical research that examines and describes 
the work of teaching university mathematics in detail.

Seeking to readdress this scarcity of empirical re-
search and to gain better understandings of the actual 
teaching at this level, our study aims to explore charac-
teristics of first year university mathematics teaching 
in Greek mathematics departments. The topic in focus 
is Calculus which is a first year compulsory course 
taught in a lecture format. Research concerning the 
learning of Calculus at the university level has shown 
that students experience difficulties in aligning with 
advanced mathematical processes and concepts when 
they enter into university (Artigue, Batanero, & Kent, 
2007; Nardi, Biza, & González-Martin, 2009). A ques-
tion is how teaching at this level and in the particular 
context of a lecture could deal with the above difficul-
ties while drawing mathematics students into math-
ematical culture. In this respect, there is a growing 
body of research seeking to characterize elements 
of teaching practice that takes students into account 
(some examples will be discussed below in the theo-
retical background section) but not at the university 
level. Being aware of the complexity of teaching that 
has been identified by many researchers into second-
ary level teaching (e.g., Potari & Jaworski, 2002) and 
does not end with the transition to the university level, 
we attempt to investigate first year Calculus teaching 
in the, most usual for this level, format of a lecture. In 
particular, we focus on one lecturer’s teaching actions 
and the rationale behind these actions to identify the 
characteristics of his teaching and we attempt to real-
ise the nature of the identified characteristics in this 
particular context. 

THE THEORETICAL BACKGROUND
Exploring characteristics of teaching deals inevita-
bly with the fundamental question “what is teaching” 
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addressed by some philosophical studies (e.g., Hirst, 
1971). Some other studies refer to the debate whether 
teaching is a practice or a means to introduce students 
to another practice – the mathematical practice (e.g., 
Noddings, 2003). We see teaching as an activity follow-
ing Pring (2000) who claims that: “An action might be 
described as ‘teaching’ if, first, it aims to bring about 
learning, second, it takes account of where the learner 
is at, and, third it has regard for the nature of what 
has to be learnt” (p. 23).  Adopting a sociocultural per-
spective, teaching is considered not only as a product 
of the constructive activity of the individual teacher 
but also as a social practice; a complex nexus of so-
cial inter-relationships (Jaworski, 2002). Learning 
mathematics at this level is seen as enculturation in 
advanced mathematical practices (Artigue, Batanero, 
& Kent, 2007). Enculturation, in the sense described 
by Bishop (1991), is an interpersonal process so the 
role of people who have special responsibility for 
this process is emphasized. This “cultural group” of 
people are for us the mathematicians who teach at 
university level. Bishop (1991) quoted Wilder (p. 6) 
who wrote for the mathematicians: “Those people 
who do mathematics – the ‘mathematicians’ – are not 
only the possessors of the cultural element known as 
mathematics but, when taken as a group in their own 
right, so to speak, can be considered as the bearers of 
a culture, in this case mathematics”. This view offers 
us a base to interpret lecturer’s attempts to draw stu-
dents into mathematical culture and characterize his 
practice since “introducing children into the culture 
of a mathematical practice is basically a social process” 
(Van Oers, 2001, p. 73). 

Speer and colleagues (2010) made a distinction be-
tween instructional activities and teaching practice. 
According to this distinction the lecture, the context of 
our study, is an instructional activity while teaching 
practice concerns what teachers do when they are 
planning, teaching and reflecting on their lesson. 
Thus, lecture is the usual instructional activity at 
university level yet in lecturing different teaching 
practices may take place. We investigate a lecturer’s 
teaching practice i.e. his/her teaching actions (what s/
he does intentionally) and the rationale behind these 
actions, seeking to characterize this practice and gain 
deeper insights into university teaching. 

Our research tool in the endeavour to interpret the na-
ture of teaching characteristics is the Teaching Triad 
(TT). TT is an analytic framework that emerged from 

an ethnographic study of investigative mathematics 
teaching at secondary level (Jaworski, 1994). Its main 
goal was to capture essential elements of the complex-
ity of mathematics teaching by analyzing classroom 
interactions. Jaworski (2002) describes that the triad 
consists of three “domains” of activity in which teach-
ers engage: management of learning (ML), sensitivity 
to students (SS) and mathematical challenge (MC). ML 
describes how the teacher organizes the classroom 
learning environment (e.g., groupings, planning of 
tasks, setting norms). SS describes teacher knowledge 
of students and attention to their needs and in par-
ticular the ways that he/she interacts with individual 
students and guides group interactions. Sensitivity 
to students has been shown to relate to both affective 
(e.g., offering praise, encouraging students to partic-
ipate) (SSA) and cognitive (e.g., judging appropriate 
questions, inviting explanation) (SSC) domains. MC 
describes the challenges offered to students to engen-
der mathematical thinking and activity. This includes 
tasks set, questions posed, and emphasis on metacog-
nitive processing. The above elements are closely in-
terrelated as the study of Potari and Jaworski (2002) 
indicated. The authors claim that a balance between 
sensitivity to students (in both cognitive and affec-
tive domains) and mathematical challenge is an indi-
cator of effective mathematics teaching in the sense 
that students can be involved in rich and meaningful 
mathematical activity. The triad has also been used to 
characterize teaching for example in a study of inter-
actions in university mathematics tutorials (Jaworski, 
2002, Nardi, Jaworski, & Hegedus, 2005) but it has not 
been used to characterize lecturing so far. It is a ques-
tion for example, what sensitivity to students could 
mean in lecturing large groups of students or what 
mathematical challenge describes in this context. It is 
in our interests to reassess the elements of the Triad 
and define the potential meaning they gain at this level. 

Nardi and colleagues ( 2005) also characterized teach-
ing approaches in small group tutorials from the per-
spective of the tutor offering a theoretical perspec-
tive on the links between mathematics and pedagogy. 
Lobato, Clarke & Ellis (2005) developed a theoretical 
reformulation of telling, characterizing teaching ac-
tions according to their function and Anghileri (2006) 
characterized teaching by identifying a hierarchy of 
interactions that relate to teaching practices that can 
enhance mathematics learning. Grandi and Rowland 
(2013) analyzed the function of teacher interventions 
while Drageset (2014) characterized teachers’ com-
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ments. The above studies characterized approaches 
to teaching and gave us the theoretical underpinnings 
to formulate specific criteria for coding the lecturer’s 
teaching actions.

METHODOLOGICAL ISSUES: 
DATA AND ANALYSIS 

This paper is a part of an ongoing study with aim to 
investigate the first year Calculus lecturing in two 
mathematics departments. Six lecturers participated 
in the wider study. Calculus is a proof-based, first year 
course in both departments and it is taught in parallel 
in two or three classes of approximately 100 students 
each (4 hours for theory and 2 hours for solving ex-
ercises per week for one semester – all in a lecture 
format). In this paper, we analyse data from one lec-
turer who is an experienced active research mathe-
matician and university teacher, with the ultimate 
goal to draw students into mathematical culture. Data 
for this lecturer were collected through observations 
(3 two-hour lectures), interviews (3 interviews right 
after each lecture) and group discussions (5 three-
hour group discussions). During the observation of 
the lectures, field notes were also kept and after class 
interviews with the lecturer conducted by the first 
author. Moreover, in group discussions among some 
of the 6 participants of the wider study and mathemat-
ics education researchers, more general issues about 
university teaching were discussed. The lecturer of 
this study participated in all group discussions. All 
lectures, interviews and discussions were audio-re-
corded (one of the lectures was also video-taped) and 
transcribed. 

In data analysis, grounded approaches (Strauss & 
Cobin, 1998) and the Teaching Triad (Jaworski, 1994) 
were used. The analysis was conducted in three phas-
es. In the first phase, each two-hour lecture was di-
vided into episodes according to the accomplishment 
of teaching a theorem. Each episode was coded with 
descriptive codes according to what the lecturer did 
during this episode and from these descriptive codes 
teaching actions were identified. Codes for teaching 
actions were merged or refined after continuous com-
ings and goings through the whole data and were sup-
plemented by categories taken from Anghileri (2006), 
Drageset (2014) and Grandi & Rowland (2013). This 
process enabled us to form criteria for characterising 
the codes of the teaching actions. Finally, the analy-
sis resulted in 12 codes. The rationale of teaching has 

been investigated through the analysis of interviews 
and discussions which were also coded according to 
the subject under discussion and in this way the lec-
turer’s teaching practice (i.e. teaching actions and 
rationale) has been identified. In the second phase, 
teaching actions were grouped into categories and in 
this way the characteristics of this lecturer’s teaching 
practice were identified i.e. characteristics are cate-
gories of teaching actions and their rationale. In the 
third phase we used the Teaching Triad to gain deeper 
insight into the identified characteristics. Thus char-
acteristics of teaching were analysed further by using 
the TT to explore potentials of TT’s elements in this 
level and in this way we gained insights into the na-
ture of these characteristics per se. 

In the next section, first we give an example of analy-
sis to illustrate the analytical process and the related 
emerging issues and then we give a brief account of 
the results from the analysis of the whole data for this 
lecturer. 

RESULTS

A teaching episode that appears to be typical of the 
way the lecturer interacts with students follows as an 
example of analysis. In this episode, which is about the 
convergence of series of real numbers, the lecturer 
tries to facilitate students to arrive at a conjecture.

An example of analysis: A teaching 
episode and its analysis 
At the beginning of the lecture after the definition of 
a convergent series, the lecturer gave the geometrical 
series

 ∑xk =  1
1 − x , |x| < 1 (S1) 

as an example of a convergent series (a familiar ex-
ample from secondary school). Subsequently, he gave 
the example of divergent series: 

∑(−1)k (S2)

Then the dialogue below followed in Table 1.

k = 0

+∞

k =1

+∞
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An episode
(The lecturer facilitates students to arrive at a con-
jecture)

Descriptive Codes Teaching actions

L: Now, can you hypothesize, when a series may con-
verge? 

Challenging students to be engaged in 
mathematical exploration  

Exploration

You can base on the series S1 and S2. Prompting students to focus on the exam-
ples [(S1) and (S2)] 

Focusing

(No response)
The lecturer wrote again the two examples (S1 and 
S2) on the board (one next to the other) with the 
words “converges” and “does not converge” respec-
tively next to each example. 

L: Can you see any differentiation in these two cases 
S1 and S2]? 
They are two specific cases of course but… 
is there any difference between them? 

Asking a more focused question to  com-
pare example’s characteristics

Focusing

S1: Yes. The base [of the v] in the first case (S1) is a 
positive number. 

Gaining insight from a student’s re-
sponse

Evaluating

L: Not necessarily. If x is a negative number the sign 
[of xk] changes. 
(he moves his hand left and right showing the alter-
nation of the signs over an imaginary number line). 

Offering a counterexample

S2: Counting starts from different numbers Gaining insight from another student’s 
response

L: No, it has nothing to do with… We could start from 
the same number. (He changed (in S1) the counting 
from k = 0 to k = 1 on the board). Now on the board the 
two series were:

∑xk (S1a) and ∑(−1)k (S2)). 

Modifying the example to avoid irrele-
vant details

Simplification

L2: Here you are! Now the series ((S1a) and (S2)) seem 
comparable. Finite number of terms at the begin-
ning of a series does not have any influence on its 
behaviour [related to its convergence].

Providing a reason for the modification Explaining

S3: Is the difference that the 1st series (S1a) has a 
variable? 

Gaining insight from a third student’s 
response

L: It’s not a matter of variable. OK. If I set here... I 
don’t want to confuse you. Let me take a specific ge-
ometrical series.

(He writes the series ∑ (−1)k

10k   (S1b)). 

I took units everywhere. This number… I made it to 
look about the same.

Specifying the example Simplification

S1: Is the difference that the 1st case (S1a) has the con-
dition |x|<1? 

Having relevant responses

S4: Is the difference that in the 2nd case (S2) the ab-
solute value is 1 (|-1|k = 1)? 

L: This observation (of S4) may imply something. It’s 
a correct observation. 

Confirming Evaluating

Your fellow student said we should take these terms 
(the sequence in S2) and we’d consider their absolute 
value. This absolute value will always be 1. This 
might be a difference. Whilst in this case (S1b) the 
absolute value of the sequence in the series is 1/10k. 
And? 

Rephrasing student’s talk Drawing on stu-
dents’ experiences

k =1

+∞

k =1

+∞

k =1

+∞
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In the above example we see some of typical teaching 
actions of this lecturer’s teaching. In particular, the 
lecturer mainly poses a problem; calls students to ex-
press their observations; uses examples familiar to 
them ; evaluates students’ observations by giving com-
ments and by simplifying the examples; asks more 
focused questions when students do not follow; uses 
students’ relevant observations as a basis to direct 
discussion and summarizes the main results. 

In terms of the TT, we see expressions of his sensi-
tivity to students and the mathematical challenge 
he offers to them. For example, he tries to moti-
vate students to participate by asking questions 
and reassures students that their contributions 
are acceptable (SSA); highlights and builds on 
their ideas and comments (SSC). He also addresses 
mathematical important questions; encourages 
students to think deeper to identify relations (e.g. 
by reflecting on familiar examples) and engen-
ders students’ interpretations of relationships 
and representations (MC). Moreover, he organiz-
es the content of the lecture to support students’ 
reflections (e.g. he brings an example and later 
he uses it as a basis for exploring relationships) 
and he establishes norms of a working group (e.g. 
he always uses “we” in his talk) (ML). Analysing 
all the data from this lecturer, two specific goals 
were identified. The first goal was mainly affec-
tive: the lecturer tried to stimulate students to 
become confident in their engagement with the 
advanced mathematical content: 

“What I do consciously is that I try to tone up 
students psychologically … Speaking emphati-
cally, I believe that, in order for someone to be 
engaged in the learning process he must have the 
appropriate psychology. I think that the 50% of 

learning is the learner’s psychology.” (Translated 
from Greek)

The second goal was mainly mathematical: he tried to 
initiate students into advanced mathematical think-
ing and mathematical production: “What I try to do is 
to teach students how to think mathematically... And 
I have to make them understand how someone thinks 
and produces mathematics.” (Translated from Greek).

These goals were carried out with specific teaching 
actions. These teaching actions were related and 
grouped forming the characteristics of this lectur-
er’s teaching which have been analysed further with 
the TT. Table 2 presents how all teaching actions are 
grouped into characteristics and how the character-
istics are related to the three domains of the Teaching 
Triad.

We related the actions “explaining”, “directing discus-
sion” and “summarizing” because they characterise 
lecturer’s guidance to students by informing or pro-
viding suggestions to them. In terms of the TT, we see 
this guidance as an indication of ML and SS as the 
lecturer gives explanations, suggestions or points out 
an idea with sensitivity to students’ needs.

We related the actions “evaluating”, “drawing on 
students’ experiences” and “checking for consensus” 
because they characterise lecturer’s supporting of 
students engagement. The lecturer evaluates stu-
dents’ contributions in a way that rewards their in-
volvement even if the contribution is invalid and he 
is not moving on without their consensus. In terms 
of the TT, we see supporting students’ engagement as 
an expression of lecturer’s SS as the lecturer opens 
up students’ ideas, builds on them and confirms that 
these ideas contribute in the learning process. 

An episode
(The lecturer facilitates students to arrive at a con-
jecture)

Descriptive Codes Teaching actions

S5: … and this absolute value is less than 1. 

L: Yes. And? 

(No response)

L: If k tends to infinity, where does 1/10k tend to? Providing a hint Directing discus-
sion

S1: To 0. 

Then the lecturer summarizes the result of the in-
vestigation and formulates the property. 

Recapping and formulating the conjec-
ture  

Summarizing
Explaining

Table 1: A teaching episode and its analysis (Translated from Greek)
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We related the actions “focusing” and “simplification” 
because they both characterise discarding any irrel-
evant features. The lecturer simplifies examples a 
strategy which he uses in his research: “This is the 
way I produce work.” So, discarding any irrelevant 
features is a process of mathematical production at 
least for him. As he states in an interview simplify-
ing also allows him “to include more students in the 
lecture”, so to be more in accord with students’ needs. 
Thus, in terms of the TT, we see discarding any irrel-
evant features as an expression of MC which, in this 
case, is related with SS. 

We finally related all the actions through which the 
lecturer introduces students to problem-solving 
techniques by creating conditions for investigations 
(“posing a problem” and “exploring”) and by encour-
aging connections (“relating” and “translating math-
ematical ideas”). In terms of the TT, we see that using 
problem-solving techniques is a characteristic of MC 
as the lecturer challenges students to be engaged in 
mathematical exploration and to relate and represent 
mathematical ideas – both important processes of 
mathematical thinking and production.

Summing up, we could claim that this lecturer’s teach-
ing is characterized by the way he takes students into 
account showing sensitivity to their needs and by the 
way he tries to draw them into mathematical produc-
tion offering mathematical challenge. 

DISCUSSION

In this paper, we studied the teaching practice of a 
lecturer teaching large cohorts of students and we 
identified characteristics of his teaching which we 
interpreted in terms of sensitivity to students, mathe-
matical challenge and management of students’ learn-
ing. In particular, this specific lecturer supported 
students to participate in the processes of advanced 
mathematical thinking and production bringing ex-
periences from his research activity into his teaching.  

In terms of the Teaching Triad, we see that in this 
case, mathematical challenge at the university level 
is directly related with the mathematical production. 
This is a different dimension of mathematical chal-
lenge than the ones may be found in secondary level 
and we believe that it is worth to explore what other 
dimensions mathematical challenge could receive at 
this level. We also see that in spite of the lecture for-
mat, this lecturer’s teaching is characterized by his 
sensitivity to students since he builds on their ideas 
to support their engagement in the learning process. 
This is far from obvious in lecturing large group of 
students.

We tried to shed light on what takes place during the 
dominant instructional activity of the lecture. Our re-
sults showed that the lecture is not a unified teaching 
paradigm. This lecturer’s teaching practice contrasts 
with the practices thought of as usually adopted in 
Calculus lectures and offers evidence that teaching 
can exist in a lecture format that is sensitive to the 
students and resembles mathematical production. 

Teaching actions Characteristics

Explaining
Guidance of students (ML and SS)Directing discussion

Summarizing

Evaluating
Support of students’ engagement (SS)Drawing on students’ experiences

Checking for consensus

Focusing
Discard any irrelevant features (MC and SS)Simplification

Exploration
Use of problem-solving techniques (MC)Posing a problem

Relating mathematical ideas

Translating mathematical ideas

Table 2: Teaching actions and characteristics of teaching
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Collegiate teachers seem to work in different ways in 
their classrooms under the instructional context of a 
lecture. For this reason, as Speer and colleagues (2010) 
state their practice and reasoning is worthy of study 
because it can help others (teachers and researchers) 
understand how and why teaching happens in certain 
ways.

Obviously, many lectures at the university level are 
still taught in a transmissive way in the sense that the 
lecturer conveys information and the students listen 
and passively take notes. However, this study provides 
evidence that there are alternative ways for teaching 
in the instructional context of the lecture and might 
be used as a lecturers’ self-awareness springboard 
towards improving teaching.
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We analyse data from two studies in Ireland and Sweden 
relating to the concept of inverse function. In particu-
lar, we consider components of the participants’ evoked 
concept images of this topic when answering open ques-
tionnaire questions. The results show that the students’ 
concept images contain algebraic, geometric and more 
formal components: both Irish and Swedish students 
describe inverse functions as swapping x and y, as a 
reflection or a reversal. How various components may 
or may not enrich students’ conceptual understanding 
of inverse functions is discussed.

Keywords: Inverse function, concept image, university 

mathematics education.

INTRODUCTION

In this paper, we aim to identify elements of under-
graduate students’ concept images of inverse func-
tions. The concept of inverse function is usually cov-
ered in introductory calculus courses either at school 
or at university, with a well-developed conception of 

‘function’ necessary for understanding ‘inverse func-
tion’ and deciding when an inverse function exists. 
However, as Pettersson, Stadler and Tambour (2013) 
argue, the function concept is a troublesome one for 
students and Carlson, Oehrtman and Engelke (2010) 
point out that students who are unable to conceive 
of a function as a process (rather than taking an ‘ac-
tion’ view) have difficulties inverting functions. The 
concepts of function and inverses are essential for 
representing and interpreting the changing nature of 
a wide array of situations (Carlson & Oehrtman, 2005) 
and to describe the relationships between logarithms 
and exponentials for example. In this study, to enrich 
and broaden the data, we considered data from two 
projects in two countries (Ireland and Sweden). Both 
projects were focussed on the development of concep-
tual understanding of the function concept, and both 

involved collecting data from first year undergradu-
ate students. The two studies included questions on 
the inverse function concept and we will present an 
analysis of these data here.

Despite the volume of research into the concept of 
function (e.g., Breidenbach, Dubinsky, Hawks, & 
Nichols, 1992), there does not seem to have been 
much work which concentrates on the topic of inverse 
function alone. One such paper is that of Even (1992) 
where prospective secondary mathematics teachers’ 
knowledge and understanding of inverse function 
were investigated. In an open-ended questionnaire 
the participants were asked to find. Both the function  
() and the inverse were given. The answer is straight-
forward if one uses the idea of an inverse as undoing. 
However, the results showed that several students 
did not draw on their conceptual knowledge of the 
inverse property of undoing and instead used a chain 
of calculations to get the answer. This tendency to 
calculate instead of using the conceptual meaning of 
inverse function may be related to weak conceptual 
knowledge. However, Even (1992, p. 561) concluded 
that “a solid understanding of the concept of inverse 
function cannot be limited to an immature conceptual 
understanding of ‘undoing’”, which she claimed may 
result in incorrect conclusions, e.g. that all functions 
have inverses.

The conception of undoing is not the only way to 
look upon inverse functions. Vidakovic (1996) also 
placed importance both on composing the function 
and the inverse to get the identity, and on the action 
of swapping variables. Carlson and Oehrtman (2005) 
categorise three different conceptions of inverse 
function: inverse as algebra (swap x and y and solve 
for y), inverse as geometry (the reflection in the line 
y = x) and inverse as a reversal process (the process 
of ‘undoing’). Carlson and colleagues (2010) showed 
that students who conceived of inverses as reverse 

mailto:kerstin.pettersson@mnd.su.se
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processes were able to answer a wide variety of ques-
tions about inverses.

The algebraic and geometric views are considered in a 
paper from Wilson, Adamson, Cox and O’Bryan (2011). 
They argue that the common procedure of swapping 
x and y to find the inverse is confusing for students 
and can lead to the meaning of the result being ob-
scured, especially for contextual or real-world prob-
lems. They contend that both swapping the variables 
and drawing the graph as a reflection in the line y = x 
do not take into account the important aspect of the 
domain of the inverse function being the range of 
the function and vice versa. In particular this causes 
problems when the dependent and the independent 
variable of the function are in different units. Wilson 
and colleagues (2011) instead proposed the approach 
of solving for the dependent variable, rather than lit-
erally swapping x and y, to reduce confusion and en-
hance students’ conceptual understanding of inverse 
functions. Attorps, Björk, Radic and Viirman (2013) 
commented on the geometric view, using GeoGebra 
to teach inverse functions. The results of their study 
indicated that several students showed an intuitive 
conception of inverse functions as some kind of re-
flection, but lacked the full comprehension of why 
and where the reflection should be performed.

Bayazit and Gray (2004) reported on teaching inverse 
functions to Turkish high school students and they 
observed that the students who showed a conceptual 
understanding of the inverse function put particular 
emphasis on the ‘1–1 and onto’ conditions. They sug-
gested that teaching should link the inverse function 
more explicitly to the concept of ‘1–1 and onto’ as well 
as to the concept of function itself.

ANALYTICAL FRAMEWORK AND 
RESEARCH QUESTION

One way of studying students’ conceptions is to use 
the theory of concept image (Tall & Vinner, 1981). This 
theory has, for a number of decades, proved to be a 
useful tool in analysing undergraduate students’ con-
ceptions of mathematical concepts (e.g., Bingolbali & 
Monaghan, 2008; Wawro, Sweeney, & Rabin, 2011). A 
concept image is defined to be the cognitive structure 
associated to a concept and includes the individual’s 
interpretations of characteristics and processes that 
the individual connects to the concept. It also in-
cludes examples, intuitive ideas, mental images and, 

if known, formal definitions and theorems. The cog-
nitive structure is built up successively through the 
individual’s meetings with the concept. When meet-
ing tasks involving the concept different parts of the 
concept image can be activated; the part activated at 
a particular time is called the evoked concept image.

In this study we are looking for components in the 
students’ evoked concept images. Our research ques-
tion is: What characteristic elements can be found 
in the evoked concept image of inverse functions of 
first-year university students?

METHODOLOGY

The Irish study
The data from Ireland involved students’ responses 
to one of twelve questions on a concept inventory in-
strument designed to investigate undergraduate stu-
dents’ understanding of the concept of function (the 
full instrument can be found at http://staff.spd.dcu.
ie/breens/documents/ConceptInventoryforFunction.
pdf ). First year Humanities, Education, and Finance 
students taking calculus modules (taught by the first 
and third authors) in two Irish universities were asked 
to voluntarily complete the inventory at the end of 
their module. 100 students took the test, 65 of whom 
answered at least part of Question I (see Figure 1).

The second level syllabus followed by these stu-
dents mentioned inverse functions solely in the 
context of inverse trigonometric functions and the 
textbooks did not contain formal definitions or ge-
ometric representations of inverses. Inverse func-
tions were initially discussed in both university 
modules (recall these were taught by the first and 
third authors) as reverse processes, and the role of 
bijectivity in determining whether an inverse ex-
ists was identified. A formal definition of inverse  
(for all x in the domain of f and all y in the range  
of f ) was presented, and means of adjusting the do-
main or codomain of a function to make it bijective 
and thus invertible was discussed. The graphs of a 
function and its inverse as mirror images of each oth-
er in the line y = x were explored, while the algebraic 
method of finding an inverse was acknowledged when 
presented by students.

The Swedish study
The Swedish data were collected as part of a project 
aiming to explore students’ development of their un-

http://staff.spd.dcu.ie/breens/documents/ConceptInventoryforFunction.pdf
http://staff.spd.dcu.ie/breens/documents/ConceptInventoryforFunction.pdf
http://staff.spd.dcu.ie/breens/documents/ConceptInventoryforFunction.pdf
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derstanding of a threshold concept (Pettersson et al., 
2013). A study group, in total 18 prospective second-
ary teachers who were enrolled in courses in math-
ematics, was observed during their second semester 
of teacher education. In the second level syllabus in 
Sweden inverses are not explicitly included although 
they might be mentioned. At university these students 
were introduced to inverse functions in the course 
‘Vectors and Functions’. Because of lecture observa-
tions we know that the inverse function was defined 
by . Both algebraic and geometric aspects were men-
tioned and also that the function needs to be 1–1 for 
an inverse to exist. In a subsequent calculus course 
inverse trigonometric functions were included and 

the need to restrict the domain of the function to en-
sure it is 1–1 was discussed.

The Swedish students participated voluntarily in 
three questionnaires relating to their understanding 
of the concept of function (Pettersson et al., 2013). For 
the present paper, focussing on the concept of inverse 
function, the answers on three of the questionnaire 
tasks were analysed (see Figure 2). In a questionnaire 
at the end of the course on vectors and functions, the 
students were given the question S1. In the question-
naire given at the end of the semester, not far from the 
end of the calculus course, the students were asked 
two questions on inverse functions, S2 and S3.

Figure 1: The questions in the Irish study (I)

Figure 2: The questions in the Swedish study (S1, S2 and S3)
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Coding
In each country the students’ responses were coded 
using a grounded theory approach: that is the stu-
dents’ responses were read multiple times, codes 
were assigned, and these codes were then grouped 
into categories. At the coding stage, the responses 
to the tasks above were initially coded by one of the 
researchers, and then checked by another before the 
agreed codes were grouped into categories. The two 
sets of categories which emerged were then compared 
to check for consistency.

RESULTS

Results from the Irish study
We first considered the students’ answers to I(a) above, 
i.e. the students’ explanations as to what it means to 
say one function is the inverse of another. Only 4 stu-
dents explained the concept correctly, 50 students 
gave an explanation which contained errors or was 
incomplete, while 11 answered true or false with no 
explanation. An example of a correct answer was:

Let  be the function in (i). Let  be the function in 
(ii). The claim states that . It claims that  is a re-
flection of  through the line y = x. I agree with the 
claim. (Cathy)

The categories of components that arise in the evoked 
concept images of inverse function are shown in Table 
1. Note that some students are counted more than once 
here if their answer referred to two or more of the 
concept image components identified. For example 
one student’s answer was coded using ‘opposite’ and 

‘reflection’ and so now appears under both ‘Opposite’ 
and ‘Reflection’ in Table 1.

We can see that the most frequent conception is ‘reflec-
tion’. This category also includes responses from stu-
dents who used the term ‘mirror’. Its close associates 
of ‘opposite’ and ‘symmetry’ are also frequent. Seeing 
the inverse as a reverse process is common, while only 
5 students gave anything resembling a concept defi-
nition of an inverse in answer to this question. There 
were 13 responses categorised in the ‘other’ category, 
these include: 6 responses which refer to a feature of 
the given graphs, 2 responses which mention ‘folding’, 
1 response for ‘domain and range interchanged’, and 
1 ‘example’. The remaining responses in the ‘other’ 
category are not mathematically relevant. We have 
included both correct and incorrect notions with-
in each component of the concept image in Table 1; 
for instance, although 33 students used ‘reflection’ 
or ‘symmetry’ in their explanations, only 9 students 
correctly described the line of reflection or symmetry 
as the line y = x. Two referred specifically to reflection 
in the origin and 3 to reflection in the x-axis, while a 
further 6 spoke of a reflection without being specific. 
Students used ‘opposite’ when describing their con-
cept image of an inverse in different ways: 6 of them 
used the word in a way that suggested reflection, and 3 
mentioned graphs; 7 talked about functions being the 
opposite of each other; 2 spoke about opposite values. 
Some examples of responses in different categories 
are given in Table 2 below.

When asked if the claim given in I(a) was true, 41 of 
the 58 students who answered this question were able 

Conception Reflection Opposite Reverse Symmetry Definition 1/f Swap  
x and y

Other

Total 27 17 10 6 5 3 1 13

Table 1: Conceptions emerging in response to I(a)

Conception Sample explanations given by students

Reflection Inverse is a reflection of the function.
The inverse is that function mirrored through the line y = x.

Opposite Inverse means they are exact opposites of each other, they cancel each other out.

Reverse It is the function in reverse.

Symmetry The inverse of a function is the function given through symmetry in the line y = x.

Swap x and y When the x and y coordinates swap, e.g. here the point (1, 2) becomes (2, 1).

Table 2: Sample responses from Irish students
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to correctly identify that the graphs shown did indeed 
represent inverse functions.

In response to I(b), 47 students attempted to draw an 
inverse function. 45 of these students sketched a re-
flection of some sort; Table 3 shows the distribution 
of these attempts.

Task I(b) was answered correctly by 11 students, that 
is, they were able to say that the function did not have 
an inverse and were able to give a reason for their 
answer. These reasons were: fails the horizontal line 
test (6), not 1–1 (6), inverse would not be a function (1) – 
illustrating a further component of the concept image 
held by these students. Note that two students said the 
function was not 1–1 and also illustrated using the 
horizontal line test which accounts for the numbers 
adding to 13. A further 4 students correctly stated that 
the function had no inverse but did not give a reason. 
Two students said that the function did not have an 
inverse but did not give a complete explanation, for 
example one of them said that “it is not just a line/
angled line”. The students who said that the function 
did have an inverse gave a variety of explanations 
for their answer: for instance, one said that every 
function has an inverse, while another said that the 
function was “defined for its whole domain”. We saw 
that the conception of inverse function as a reflection 
in the line y = x could be misleading with four students 
making remarks such as “There is an inverse as pos-
sible to draw line y = x and reflex (sic!) images”.

Students who gave correct and complete answers on 
I(b) offered a variety of answers to I(a) illustrating a 
variety of elements of concept images associated to 
inverse functions. These were: definition (2), reflec-
tion (3), reverse (1), opposite (2), no answer (3).

Results from the Swedish study
In the analysis of the survey, we first categorised the 
components of the evoked concept images that were 
exposed in the answers to task S1 (11 answers) and 
S3 (12 answers), see Table 4. The categories included 
also incorrect answers. Answers that contained more 
than one component were counted into more than 
one category.

To illustrate the components that arise in the students’ 
concept images of inverse function we have picked an-
swers from three frequent categories. In the category 

‘reflection’ a correct answer to S3 was given by Anna: 
“They [ and ] are each other’s reflections in the line .” 
Another student, Peter, gave through the mind map in 
S1 an explanation which is partly correct: “Reflection 
of a function in a line gives us an inverse function.” 
Like several students Peter omitted the line in which 
the reflection takes place. Helena wrote correctly: “A 
kind of reflection of the function. Sometimes the re-
flection is not a function and then there is no inverse. 
[…] The reflection is performed in ” But Helena also 
wrote: “A function can also be reflected in other ways, 
e.g. in  or in the x-axis.” That is of course true if you just 
talk about the graph, but it is irrelevant for inverse 
functions. Helena was the only student mentioning 
reflections in lines other than 

The following excerpt from Anna, exposes a compo-
nent of concept image categorised as ‘example’: “ and  
is an example of inverse functions.” Anna also drew a 
graph of the two functions and the line . Furthermore, 
Anna suggested that  has no inverse. Other students 
also mentioned these functions and some students 
commented that if we restrict  to , then the inverse 
exists. Answers which can be seen as exposing a com-
ponent of concept image categorised as ‘swap x and 
y’ were given by e.g. Anna and Bob, who wrote more 
or less the same phrase “change places for x and y”. 

Type of reflection In (0, 0) In x-axis In y-axis In y = x In y = –x In y = 2

Total 22 13 3 3 1 3

Table 3: Answers to I(b)

Conception Reflection Example Reverse Graphical 
features

Swap 
x and y 

Opposite Definition Other

Total 16 10 6 5 4 2 1 3

Table 4: Conceptions emerging in response to S1 and S3
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Helena gave a more detailed version: “To get the in-
verse to , we switch x and y  .”

The students often gave answers with several parts 
and each part was connected to one of the categories. 
To give an idea of a complete answer we present the 
answer from Frida, who gave a comprehensive ex-
planation:

The property for  can be transformed into , e.g. ; . 
To ‘raise’ has the inverse process ‘cube root’.  is a 
reflection of  in the line .  when  (inverse process-
es). There is a mapping of x such that the obtained 
value gives the original value, ; .

The analysis of task S2 (10 answers) was done with 
the same procedure as the other tasks. The categories 
of components of concept image evoked were: 1–1 (6 
answers), continuous (3), reverse (2) and graphical 
features (1). For example, Dora stated “the function 
needs to be able to run backwards” (categorised as 

‘reverse’) and continued with the following descrip-
tion, which was categorised as ‘1–1’: 

A ‘regular’ function needs only to satisfy the 
requirement that each x is mapped to one y. But 
several x can have images at the same y. To have 
an inverse function it must additionally meet the 
requirement that each y can be traced back to only 
one initial x.

Like most students Dora did not use any mathe-
matical word for injectivity but our interpreta-
tion is that she understood that the function must 
be 1–1 and had grasped the difference between 
the definition of a function and of an injective 
function.

DISCUSSION

The data presented here come from studies in two 
different educational systems and as such are quite 
rich. The tasks given in the two studies touched on 
the same content but differed in several ways. In spite 
of that, the answers revealed similar components of 
the concept images evoked; in particular, the notions 
of reflection, reversal and injectivity were found to 
be important. We saw that students’ concept images 
contain algebraic, geometric, as well as more formal 
components. However, very few students in either 
study gave a comprehensive explanation (similar to 

Frida’s above) or attempted a formal definition of an 
inverse function (such as Cathy as seen previously) 
in response to the tasks assigned.

The intuitive conception about inverse functions as 
reflections noted by Attorps and colleagues (2013) 
emerged also in this study: 33 of 58 Irish students who 
stated if the claim in I(a) is true or not mentioned re-
flection or symmetry, and 16 instances of reflection 
were observed in the Swedish students’ answers for 
task S1 and S3. In keeping with Attorps and colleagues'  
findings, many of the Irish participants also failed 
to correctly describe the reflection with only 9 stu-
dents identifying it as being in the line y = x. It could 
be argued that the nature of the Irish question and, 
in particular, the graphs shown, prompted a reflec-
tion conception of inverses. However, it is surprising 
then that many students inaccurately commented on 
reflection in the x- or y-axis. The Swedish students 
showed a clearer understanding on this point and the 
students who mentioned a line of reflection correctly 
gave the line y = x.

None of the Irish students mentioned the necessity of 
1–1 or onto properties of a function when explaining 
what an inverse is. But in answering task I(b), 10 of 
the 11 students who answered correctly were able to 
identify the lack of injectivity of the function (artic-
ulated as ‘not 1–1’ or ‘fails the horizontal line test’) as 
a reason for an inverse not to exist. However, only 2 
of these 11 students had given correct and complete 
answers to I(a), while 6 of the students gave answers 
to I(a) that contained errors or were incomplete and 3 
failed to give any explanation. Thus, it does not seem 
reasonable to argue that the students who emphasised 
the 1–1 property in relation to inverses had a more ro-
bust concept image or a showed a greater conceptual 
understanding of inverses as Bayazit and Gray (2004) 
may have assumed. For the Swedish data, when asked 
specifically what is required for a function to have 
an inverse, 6 students explained the necessity of a 
function being 1–1. We found evidence that at least 
Dora, despite not using any mathematical words for 
injectivity, understood that the function must be 1–1 
and had grasped the difference between the definition 
of a function and of an injective function. From our 
experience it seems that many students find this dis-
tinction difficult; it may be that study of the inverse 
function concept could be used to reinforce students’ 
understanding of function itself.
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We did not find evidence in the Irish data to support 
Even’s (1992) claim that a naïve conception of inverse 
functions as ‘undoing’ may result in incorrect conclu-
sions, such as that all functions have inverses. Only 
one student revealed this particular misconception 
and that student did not mention reverse processes 
at all. On the contrary, four of the students, whose 
conception of an inverse was as a reflection, believed 
that the ability to reflect the graph of a function in 
a certain way confirmed it was invertible. However, 
Dora who used the words “be able to run backwards” 
gave additional requirements for a function to have 
an inverse as mentioned above.

The studies have, despite different tasks given to the 
students, evoked similar components of students’ con-
cept images. The students in both studies were in the 
beginning of studying mathematics at university level. 
Breidenbach and colleagues (1992, p. 251) remark that 
progress in cognitive transitions “is rarely in a single 
direction”, thus it is not surprising that the concept 
images that emerged are complicated, with many over-
laps between categories and variations within catego-
ries. Indeed, Bingolbali and Monaghan (2008) found 
that students’ concept images of derivatives evolved 
over the course of a semester and were influenced 
by both the lecturer and the students’ area of prima-
ry study. Learning more about students’ progress in 
developing their concept images could inform our 
teaching preparation and help us to provide greater 
opportunities for students to gain valuable insights 
into the concepts of function and inverse function. 
At the very least, being aware of the concept images 
that students may hold and their likely consequences 
could inform teaching; for example lecturers could 
refer to the definition at different stages during the 
course as a means to develop intuition (Wawro et al., 
2011), and engineer cognitive conflicts in order to give 
students opportunities to refine their concept images 
and deepen their understanding.
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The research reported in this paper aims to explore how 
students’ competencies in calculus are exposed when 
being assessed. Several different competencies are re-
quired to achieve proficiency in mathematics. However, 
one problem is when the main focus of the student lies 
within procedural fluency because this is what pays 
off in the final examination. In this paper, written ex-
amination and task-based interview are used to find 
information about one student’s competence in using 
formulae, fluency in written procedures, and strategies 
used for solving tasks. It is argued that the information 
about the student’s competencies seen through a task-
based interview is different from information gained 
after analysing the written final examination. 

Keywords: Assessment, mathematical proficiency, higher 

education.

INTRODUCTION

The purpose of this paper is to provide a report 
from an on-going study that explores how students’ 
competencies in calculus are exposed in a setting of 
assessment. The study is set in the context of a math-
ematics course taught as part of the first year of an 
engineering degree programme. Advanced engineer-
ing students are required to have knowledge of basic 
calculus in order to focus on their subject while using 
mathematics as a tool. Students in higher education 
tend to learn what is needed to get a good grade in the 
final examination, what the teacher focuses on in the 
lectures has less impact (Entwistle & Entwistle, 1992). 
Because of this, what is being measured in the exam-
ination should be of great concern, and effort should 
be taken in striving to measure the competence that 
students are required to develop. 

At the University of Agder, one calculus course is 
compulsory for all engineering students in their first 
semester. This course is offered each autumn semes-
ter and has a large number of students, with around 
400 to 500 students enrolled every year. This course 
comprises six hours of lectures and two hours with 
task based sessions in smaller groups each week. The 
assessment in this course consists of four compulsory 
assignments, voluntary home-work-tests every week, 
and the final examination. All external resources ex-
cept communication are allowed because this is what 
is closest to what the students meet in real life, so this 
is an open book examination. Three of the compulsory 
assignments have to be approved before the students 
can take the final examination. The compulsory as-
signments and the home-work-tests are conducted 
using a software package called MyMathLab Global 
(MyMathLab, 2014) which comes with the textbook 
(Adams & Essex, 2010) used in the course. The students 
claims that they like to use MyMathlab because they 
get immediate feedback whether their answer was 
correct or not (Brekke & Hogstad, 2010). 

This paper reports on the learning of one student, 
here named John. I explore his competencies as ex-
posed through a task based interview and the final 
examination. The research question guiding my re-
search is: What information about students’ compe-
tencies in calculus is available through assessment?

REVIEW OF LITERATURE

Kilpatrick, Swafford and Findell (2001) argue that 
there are five strands of competence that are needed 
to achieve mathematical proficiency. They are inter-
woven and interdependent, and these skills should be 
a goal for the teacher when teaching in mathematics. 
The strands are:

mailto:kristina.raen%40uia.no?subject=
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conceptual understanding – comprehension of 
mathematical concepts, operations, and relations

procedural fluency – skill in carrying out proce-
dures flexibly, accurately, efficiently, and appro-
priately

strategic competence – ability to formulate, rep-
resent, and solve mathematical problems

adaptive reasoning – capacity for logical thought, 
reflection, explanation, and justification

productive disposition – habitual inclination to 
see mathematics as sensible, useful, and worth-
while, coupled with a belief in diligence and one’s 
own efficacy (Kilpatrick et al., 2001, p. 116)

The authors focus on children from kindergarten 
to eighth grade, however, I find these strands useful 
when it comes to being proficient in mathematics in 
higher education as well. 

For Kilpatrick and colleagues (2001), every strand is 
an important competence that is necessary in achiev-
ing proficiency in mathematics. However, one prob-
lem is when the main focus of a student lies within 
procedural fluency because this is what pays off in 
the final examination. “This suggests a tension in 
the student’s mind between learning the subject and 
passing the examination, with rather different strat-
egies being involved for each” (Entwistle & Entwistle, 
1992, p. 2). Brown, Bull and Pendlebury (2013) observe 
that the assessment defines what students regard as 
important. The response to this has to be that the ex-
amination measures what the student needs to know 
to be proficient in mathematics. 

I adopt the definition of assessment used by Niss 
(1992): “Assessment in mathematics education is taken 
to concern the judging of the mathematical capability, 
performance, and achievement…” (p. 3). Moore and 
Carlson (2012) used what they called structured task-
based interviews to gain insight into undergraduate 
pre-calculus students’ difficulties experienced while 
attempting to solve novel applied problems in func-
tions and graphs. In my PhD-project I explored the 
mathematical capability, performance and achieve-
ment of twelve students through such an interview. 

METHODOLOGY AND ANALYSIS

Research design and methodology
In 2013, about 400 students participated in the calcu-
lus course for engineering students at the University 
of Agder. Their final examination followed a tradition-
al form of open book examination, and was carried out 
at the end of the semester in December. John, who is 
the informant for this paper, is part of a larger study 
of twelve students that volunteered for the research 
after receiving an e-mail from the lecturer. The stu-
dents were interviewed in January, as soon as possible 
after the examination so that their competence about 
these subjects would be as close as possible to their 
competence at the time of the examination. I did not 
interview them before the examination to avoid af-
fecting their performance in the examination. Even 
though the students did not prepare for this interview 
the same way they did for the examination, I will ar-
gue that their skills were about the same. Since the 
communication went back and forth in the interview, 
I doubt quite strongly that the students knew things 
on the examination that he or she did not remember 
after some discussion in the interview. During the 
interview, I asked for their approval to gain access 
to their examination papers. The aim of this study 
is to make a judgment about the competence shown 
through the formal examination and compare this 
with the competence I can expose during a structured, 
task-based interview. 

In order to explore the student’s competence in calcu-
lus I used interviews which followed the methodology 
described by Goldin’s principles of structured, task-
based interviews (2000). The students were asked to 
think aloud when solving a mathematical task, in ad-
dition to writing. When they came no further, guiding 
questions were asked that would lead them into the 
path they needed to solve it. 

Analysis
The interviews were audio recorded, and in the ana-
lysing process I have the access to the paper on which 
the students wrote during the interview and the pa-
pers the students handed in at the final examination. 
I follow Clement’s (2000) methodology of analysing 
clinical interviews and my study is a Grounded Model 
Construction study. This means I have an interpretive 
analysis and that there are no predetermined catego-
ries into which the data will be coded. 
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At the end of the analysing process, the focus was 
about finding the mathematical competence of the 
student. This was also the case when analysing the 
written examination. As I now have two different rep-
resentations of the student’s competence, the discus-
sion will be about comparing the two.

FINDINGS

This paper sets out to demonstrate that there is infor-
mation about students’ mathematical competence in 
the examination papers. To demonstrate the trustwor-
thiness of this information I compare it to the infor-
mation gained through the interview. In this paper, I 
will view this by focusing on three factors. The first 
two are about what the student can do and the last 
focuses on how he does it. This is only a small part of 
what is seen; nevertheless, I believe that the features 
of these factors provide a good indication of the dif-
ferences of the two ways of evaluating the student. In 
Table 1 below I will sum up my main findings of what 
competencies that are exposed through the examina-
tion and through the interview, and in the following 
sections, I will report using excerpts of my data and 
some analytical arguments for my interpretation.

In the final examination I will use two part tasks, one 
in which John is asked to evaluate an indefinite in-
tegral, the other to solve a definite double integral, 
to discuss the competence revealed. These tasks are 
shown in Figure 1. The examination consists of four 
tasks with subtasks to be solved in five hours. If the 
assumption is that the same amount of time should 
be spent on each subtask, the students should spend 
40–45 minutes on these two tasks.

Competence in using formulae
In the final examination there are a lot of tasks where 
formulae are needed in order to solve them. In order 
to achieve a good result the students need to find the 
right formulae and they need to be able to use them. 
In the following examples, John uses the formulae for 
integration by parts and substitution. 

According to what we can see in the final examina-
tion John displays knowledge as to which formula he 
should use where, as well as how to use it in a given 
task. Even though there are some calculation errors, 
throughout the examination he uses the correct for-
mula and he replaces the variables in the formulae 
with the correct terms from the task. In the first task 
John makes clear which formula he uses as it is named; 

“integration by parts” and given in the form it is shown 
in the formula sheet with u and v. He does not show 
directly what he chooses for u and v, but by reading the 
first line after the framed formula it is evident that he 
does it correctly. There is not a framed formula in the 
second task, but here it is evident that he substitutes 
xy with u and then follows the rules for integration by 
substitution. This is done correctly, and he integrates 
and replaces u with xy again before inserting the lim-
its. Even though the calculation is incorrect, these 
examples show that he finds the correct formulae and 
uses them correctly. From these tasks it is not possible 
to infer anything about whether he knows the formu-
lae by heart, that he understands what they mean or 
how he works when choosing a formula.

In the interview I asked John to solve two tasks 
similar to the two discussed above; ∫(4x  +  3)ex  dx 
and ∫π

0 ∫y
0 4y2 cos x dxdy, similar to ∫(x2 − 5x)ex dx and 

 ∫1
0 ∫0

y2

 3y3exy dxdy, only one step simpler in both. At this 
first task he starts by saying there is a formula for 

Examination Interview

Remembering, finding and 
using formulae

John can choose the correct formulae and 
use these when calculating, it is not pos-
sible to determine whether he knows the 
formulae or the rationale for choosing 
them.

John does not have immediate recall of 
the formulae, however he does know 
how to use them in the tasks he solves. 

Fluency in written proce-
dures 

John is not fluent in procedural skills John is not fluent in procedural skills

Showing strategies It is not possible to know how John choos-
es the strategies he uses to solve a task

Some information is available about 
how John chooses the strategies that he 
wants to use when solving the task.

Table 1
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multiplication and division in integration and that 
he would attempt to use this. Below are two excerpts 
of the transcript from the interview where “I” is the 
interviewer (author) and “J” is the student. I ask how 
that formula looks, and his answer suggests that he 
is quite dependent upon the formula sheet, however, 
it seems that this formula is quite well known as it is 
almost correct. 

J: Yes, how does it look, it says in the formula 
sheet … But I guess it is something like u dash 
v minus integral of v dash u, I think, without 
being able to remember it right now, I have 
not put too much effort into remembering 
any formulae, because everything is written 
somewhere. 

This formula is almost identical to the correct formula, 
and I write that down. This was the formula he used 
himself in the examination. About picking u and v 
he says:

J: And then the crucial thing is to pick more 
or less appropriate what should be u and v 
here. Because e to the power of x is the same 
whether you differentiate or integrate it, I 
would pick u as this, four x plus three, and 
this as v (points at e to the power of x)… 

The first excerpt of the transcript is an example that 
shows that he does not know all the formulae by heart. 
Still, the fact that he says that he did not put too much 
effort into remembering the formula suggests that he 
trusts his competence to find the right one in his for-
mula sheet when needing it, and use it correctly. In this 
interview I did not have the formula sheet available 
so I do not know how John works when finding a for-
mula and thus how well he does it. The second excerpt 
shows how he substituted the letters in the formulae 
by the terms in the task and how he wanted to choose 
which factor fitted where, so by this I conclude that he 
knows how to use the formulae in tasks.

Procedural fluency 
Procedural fluency is used as defined in the report 
from Mathematics Learning Study Comity, edited by 
Kilpatrick, Swafford and Findell; “Procedural fluen-
cy refers to knowledge of procedures, knowledge of 
when and how to use them appropriately, and skill in 
performing them flexibly, accurately, and efficient-
ly” (2001, p. 121). To investigate procedural fluency 
showed in the examination, I will regard the same 
tasks as above. See Figure 1 for John’s answers. In the 
first task there are two tables of errors and his answer 
is slightly different from what it should be, however, 
other parts of the examination shows correct sign 
after dissolving the parentheses. 

Figure 1
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The second task shows the solution of a double inte-
gral. John tries to do the inner integral by substitution 
even if he did not need to. Although the integration is 
done correctly in the first task it is not done correctly 
now. The limits are correctly inserted but the outer 
integral is incorrect. Table 2 shows excerpts of the two 
tasks, what is correct and what John wrote.

This indicates that John has some fluency albeit at a 
fairly low level when it comes to integrating the ex-
ponential function and polynomials. Even though the 

two upper tasks are the same, the latter looks more 
complicated and it is therefore not surprising that the 
mistake happens in this task. 

John also displays lack of fluency with respect to 
integration of exponential functions in the inter-
view. Somewhere in the process of solving the task 
∫(4x  +  3)ex  dx  he must solve ∫4ex  dx, and this gives 
him trouble. He says that ∫4ex dx = 4xex + C:

J: And then we can put the number four out-
side I think, and… no, we cannot… e to the 
power of becomes the same no matter how 
you twist and turn it, yes, it becomes four x 
e to the power of x then, if you integrate this, 
four x plus three minus four x e to the power 
of x plus C is what you get…

Here is evidence that he is unsure of the path he is 
allowed to take because he has to consider what to 
do about the number in front of xe . After a couple of 
pauses he draws the wrong conclusion and ends up 
with a wrong answer. Nevertheless, he shows some 
degree of fluency because he considers the correct 
approach immediately, and when he realises that what 
he got was incorrect after a bit of prompting, the cor-
rect calculation was the only alternative left for him. 

I What would you do to check whether this is 
correct or not?

J: Eh… differentiate it again, could you do… this 
is maybe not exactly right

(…)
J: Yes, because you only put the number four 

outside then?

John choosing strategies
When calculating a mathematical task, there is a need 
for choosing a strategy. In the final examination the 
students are asked to write all the calculations, and 
this is what provides the information as to which strat-
egy the student might have chosen. If the sheet that the 
student hands in contains a crossed out section, this 
could indicate uncertainty in solving the task and if 
it is possible to read what was written before being 
crossed out, it might indicate which strategy was con-
sidered for solving the current task. Therefore, at best, 
the information available about which strategy has 
been used and possibly which have been considered 
lies in the paper, but there is nothing that indicates 
what influenced the student to choose that strategy 
or the thinking process. 

In the interview the tasks were intended to facilitate 
John’s explanation of what he normally did. In addi-
tion, my request to think aloud resulted in a certain 
insight into John’s procedures when starting to solve 
a task. I have already argued that the student’s compe-
tence is fairly close in the setting of the examination 
and the setting of the interview, and I will further ar-
gue that it is sufficiently close to say that more insight 
into the students’ proficiency in one of the settings 
will tell me what is not being communicated through 
the other. Now returning to the task about the unlim-
ited integral, the information made clear from John’s 
strategy choice is from what he communicates to me 
when attempting to explain his thought process. He 
starts by saying that he wants to find a formula that 
suits the task.

J: … I would use some kind of formula for… you 
have this multiplication formula (…) I would 
try to use that… and see where I ended up

From the sections about competence in using formu-
lae, the transcript excerpt indicates that he wants to 
look in the formula sheet to see if he can find a suitable 
formula. After examining the formula, he then pro-
ceeds to pick the appropriate u and v to fill into the for-
mula. When looking at the transcript excerpts from 
the section of procedural fluency it is for instance 

Task Correct John

∫ ex(2) dx 2 ex 2 ex

∫ 3y2eu du 3y2eu y2⋅ 3
2 e2u

∫  3
2 y2e2y3

 dy 1
4 e2y3 3

2 y3 1
2 y2y3

∫  3
2 y2 dy y3 2

3 y2

Table 2
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evident that he is uncertain about which integration 
strategy to choose. The two alternatives he names are 
rules of integration which also could be located in the 
formula sheet. He is worried about what he is allowed 
to do and appears to focus on recalling it because he 
is not stating a reasoned cause for choosing one of 
them, nor does he spend time thinking it through. 
After realising his mistake, he asks whether the other 
alternative was the correct one and is satisfied with a 
yes or no. The information about how John chooses a 
formula and wants to “see where I ended up”, and the 
fact that he expresses his uncertainty when using an 
integration rule yet still not explaining how he chose 
which rule to go for prompts my assertion that this 
interviewing method provides some information as 
to how the student chooses solving strategies. 

DISCUSSION

When discussing the information about students’ 
competence in calculus I will compare the findings 
from the interview and the examination. The strands 
needed for proficiency in mathematics are conceptual 
understanding, procedural fluency, strategic compe-
tence, adaptive reasoning and productive disposition 
(Kilpatrick et al., 2001). When taking into consider-
ation that procedural fluency can be “in addition 
to written procedures, mental methods for finding 
certain sums, differences, products, or quotients, as 
well as methods that use calculators, computers, or 
manipulative materials such as blocks, counters, or 
beads” (Kilpatrick et al., 2001, p. 121), I claim that find-
ing the correct formula and using it correctly comes 
into this category. The final examination shows that 
John has procedural fluency in formulae within this 
mathematical concept and I see evidence of this being 
the case also from the interview. He does explain to me 
where he would look to find the formula and he shows 
me that he knows how to substitute the variables in 
the formulae by the terms in the expression. However, 
this is all that is being tested in this examination. In 
the setting of the interview it is also revealed that John 
has not committed all the formulae to memory. He 
admits that this is not something he prioritises, which 
is understandable since the examination is an open 
book examination. There is also information about 
which strategies he is using when working with for-
mulae, which I intend to review below. The questions 
could have been changed to gain more information 
around this in both ways of evaluating the student but 

the information provided is based on the questions 
posed at the time. 

I concluded that there was some, albeit fairly low, 
written procedural fluency. My experience was 
that approximately the same information about the 
student’s overall fluency was gained from the two 
methods of evaluating the student. The crucial step 
for both the methods is to provide sufficient tasks in 
order to establish what the students can do, what they 
cannot do, and what they sometimes can do. Yet, there 
is a small advantage for the interviewing method in 
information about what parts of the calculation are 
the most difficult. During the interview I could see 
at what steps John used the longest time, and state-
ments he made gave information about what parts 
he is confident of. One problem is however present-
ed. In the interview it seems that he is quite certain 
about the integration of ex. It is the part where this is 
multiplied with a constant that causes trouble. In the 
examination it seems that he does not recall what he 
later states in the interview and he mixes the rule for 
integrating ex with the rule for integrating xa, at least 
once. I see two possible reasons for this. The first is 
that John actually learned this after the examination. 
My other possible reason is that a researcher always 
has to bear in mind that a student can have a “bad day” 
when testing him only once and that this could be a 
subject for the consideration of data reliability.

The last aspect explored in this paper concerns the 
use of strategies. From Kilpatrick and colleagues'  
mathematical proficiency (Kilpatrick et al., 2001) I 
argue that this goes into strategic competence, and 
then mainly about representing a problem. That part 
is about representing the task accurately and math-
ematically, and in order to do so the student should 
have some degree of understanding of the problem. 
However, I also argue that a part of this belongs to 
the part of procedural fluency which is about meth-
ods for finding certain sums, differences, and so on, 
as well as methods that use calculators, computers, 
or manipulative materials. This applies for instance 
when the student searches a formula or wishes to 
use a formula, expressing that he has to see where it 
takes him. There is very little information about this 
in the examination. Sometimes we see which strategy 
John did choose, but quite often the only way to know 
which strategies a student chooses is to rely on com-
mon mistakes and misconceptions revealed in previ-
ous research and compare this with what the student 
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answered. In the interview, when John was thinking 
aloud, it was quite often obvious which strategy he 
was using, which he was considering and which he 
was confident about. Still, if I wanted to know why he 
was choosing a strategy or what else he considered I 
would have to ask more questions. 

CONCLUSION

By evaluating students in different ways, there is dif-
ferent information to extract about students’ compe-
tencies in fundamental concepts in calculus. In order 
to gain mathematical proficiency there is a need for 
the five competence strands; conceptual understand-
ing, procedural fluency, strategic competence, adap-
tive reasoning, and productive disposition. Of the few 
issues addressed in this paper, the traditional open 
book examination that this course uses is quite good 
in testing written procedural fluency of the concepts 
on which there is preferably more than one task of 
different difficulty. The interviewing method which 
was used provided information as to how John‘s con-
fidence was displayed in the different written proce-
dures, how fluent he was in procedural methods, and 
which strategies he used when solving tasks. It turned 
out to be the discussions, after a student got stuck on a 
task that really revealed a lot about these last factors.
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Extreme Apprenticeship (XA) is an educational method 
that has been used in teaching undergraduate mathe-
matics in the University of Helsinki. In this paper, we 
analyse the course assignments and exam questions of 
a certain lecture course that has recently been reformed 
to an XA-based course. The results show that the XA 
method has made it possible to move the emphasis from 
rote learning towards understanding the concepts be-
hind the procedures.
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INTRODUCTION

The pedagogical decisions in introductory mathemat-
ics courses at university-level are of great importance. 
On these courses the students form their first percep-
tions of what university mathematics is about, and 
most importantly, what studying mathematics in uni-
versity will be like. Traditionally, the first year cours-
es have concentrated on memorising procedures and 
algorithms. The procedure-centred approach can lead 
to problems since procedures that lack connections 
with conceptual knowledge may deteriorate quickly 
and do not transfer easily to new situations (Hiebert 
& Lefevre, 1986). 

Over the past years many student-centred approach-
es have been used in mathematics teaching for fa-
cilitating conceptual understanding (Abdulwahed, 
Jaworski, & Crawford, 2012). These approaches in-
clude Inquiry-based learning (IBL) and Problem-based 
learning (PBL), in which learning revolves around real 
life based problems and questions that require crit-
ical thinking (Chang, 2011; Mokhtar, Tarmizi, Ayub, 

& Tarmizi, 2010; Retsek, 2013). Both IBL and PBL em-
phasise collaborative work, presentation of conclu-
sions and development of learning skills. Another 
innovative and widely used approach in mathematics 
teaching is Flipped classroom or Inverted classroom 
(Jungić, Kaur, Mulholland, & Xin, 2014; Talbert, 2014). 
In this approach students familiarize themselves 
with the new information through online video re-
sources outside of class, and class time is reserved for 
discussions and cooperative problem solving. Peer 
instruction (Lucas, 2009) and Just-in-Time Teaching 
(Natarajan & Bennett, 2014) are further examples of 
interactive teaching methods that allow teacher to 
adjust teaching to the needs of students. These can 
be used separately or with the Flipped classroom ap-
proach.

A new student-centred method for teaching large in-
troductory courses, Extreme Apprenticeship (XA), 
has been adopted in the Department of Mathematics 
and Statistics in the University of Helsinki (Hautala, 
Romu, Rämö, & Vikberg, 2012; Vihavainen, Paksula, 
& Luukkainen, 2011). The XA method has similarities 
with the approaches mentioned above, as it promotes 
active engagement of the students and preparation 
prior to the class. However, the main idea of the XA 
method is to support students in becoming experts 
in their field by making them participate in mean-
ingful activities, which resemble those carried out 
by professionals. This means there are neither video 
lectures nor screencasts. Instead, students read the 
course material with the help of the teaching assis-
tants. Another difference between XA and the other 
novel approaches is that in XA the main method of 
teaching is personal instruction: students have to do 
a lot of work outside of the classroom, but they are 
offered guidance in a drop-in basis several hours a day. 

mailto:johanna.ramo@helsinki.fi
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Previously it has been shown that students find the 
XA method satisfactory, and the passing rates do not 
drop even though the workload is significantly in-
creased and the requirement level raised (Hautala et 
al., 2012). Also, the XA method has increased student 
engagement and effort (Rämö & Vikberg, 2014).

In this paper, we study whether the XA method has 
shifted the emphasis towards tasks that promote the 
development of conceptual knowledge and the linking 
of procedural and conceptual knowledge. This is done 
by comparing the assignments and exams used on 
an XA-based course to those used traditionally. The 
course under study is the first year course “Linear 
algebra and matrices I”. While this paper focuses on 
the linear algebra course, the XA method has been 
used on many undergraduate mathematics courses, 
including algebra, logic and probability, and our expe-
rience leads us to believe that the conclusions drawn 
in this paper apply more generally than just in linear 
algebra. 

We use the definitions of conceptual and procedural 
knowledge by Hiebert and Lefevre (1986): Conceptual 
knowledge is characterized as knowledge that is rich 
in relationships of many kinds, whereas procedural 
knowledge is made up of two distinct parts: the for-
mal language of mathematics and the algorithms for 
completing mathematical tasks.

EXTREME APPRENTICESHIP

The Extreme Apprenticeship (XA) method is an ed-
ucational model for organising instruction in an 
effective and scalable manner. Its theoretical back-
ground is in situated view on learning and Cognitive 
Apprenticeship (Brown, Collins, & Duguid, 1989). The 
method was originally invented as an instrument for 
teaching university-level computer programming 
(Vihavainen et al., 2011), and later employed in math-
ematics courses (Rämö & Vikberg, 2014). 

In XA, the amount of tasks is substantially larger and 
the number of lectures smaller than traditionally. 
Students learn skills and gain knowledge by doing 
tasks that offer them small and approachable goals 
(Vihavainen et al., 2011). Passive activities, such as 
sitting in the lectures, are reduced to the minimum 
and active work done by the students is emphasised. 

The main method of teaching in XA is personal instruc-
tion, which is based on the concepts of coaching and 
instructional scaffolding in Cognitive Apprenticeship 
(Collins, Brown, & Holum, 1991; Lave & Wenger, 1991). 
Instructional scaffolding refers to temporary support 
given to students (Wood, Bruner, & Ross, 1976), and 
is interlinked with the concept of zone of proximal 
development introduced by Vygotsky (1978). Coaching 
refers to the broader perspective of regulating pace 
and difficulty of assignments in the course. A neces-
sity for coaching students’ progress is bi-directional 
feedback between the students and the teaching team 
(Kurhila & Vihavainen, 2011). The teaching team re-
ceives feedback on the progress of the students by 
evaluating their solutions during the course, and also 
from the conversations with the students during per-
sonal instruction. Students receive feedback on how 
they are performing, but also encouragement and 
support in completing the assignments.

EDUCATIONAL SETTING

University studies in Finland resulting in a Master’s 
degree are intended to last five years with three years 
of Bachelor’s studies and two years of Master’s studies. 
There are no tuition fees. The students are selected by 
their performance in the upper secondary school ma-
triculation examination, an entrance exam, or both.

A traditional lecture course
On a traditional lecture course, there are 4–5 hours 
of lectures per week, in which the lecturer covers all 
the theory of the course. Every week the students are 
given problem sheets consisting of 6–7 tasks they have 
to solve. The solutions to the tasks are discussed un-
der the guidance of a teaching assistant in a group 
session that lasts for two hours. In each group there 
are approximately 20–30 students, who usually take 
turns in explaining their solutions to the problems 
on a blackboard.

Extreme Apprenticeship based course
On an XA-based course, the amount of tasks is sub-
stantially larger than traditionally, approximately 
15–20 problems per week. There are relatively easy 
problems on new topics, but also more challenging 
tasks regarding more familiar concepts studied in 
the previous weeks. The tasks are designed to sup-
port the development of conceptual knowledge, and 
to aid the students in building relationships between 
procedural and conceptual knowledge. 
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Students are offered guidance by the teaching team to 
complete the assignments in drop-in sessions, approx-
imately 20 hours per week. This one-on-one or small 
group instruction forms the main part of teaching. 
The purpose of the instruction is to lead the student 
subtly towards the discovery of a solution through a 
process of questioning and listening, instead of simply 
giving away the answers.

One or two of the tasks are selected for inspection 
each week. Students receive written feedback on their 
reasoning and also on the readability and language 
of the solution, and they are encouraged to improve 
their solutions when necessary.

New kinds of learning spaces have been created to 
encourage student collaboration. The main corridor 
of the department has become a huge drop-in class 
where the tables are arranged into groups and act as 
whiteboards, and the walls are covered with black-
boards for the students to share their thoughts with 
each other and with the instructors. 

The amount of lectures is significantly smaller than 
on traditional lecture courses, only 2–3 hours per 
week. As the assignments force the students to investi-
gate the topics by reading the course material prior to 
the lectures, it is not necessary to deliver content or go 
through details in the lectures. Instead, it is possible 
for example to discuss the meaning and consequences 
of definitions and to address student misconceptions 
through various small group activities.  

Linear algebra and matrices I
The course investigated in this study is Linear algebra 
and matrices I. It is a first year course, and for most 
students it is the first mathematics course they take 
in the university.  Approximately half of the students 
on the course have mathematics as a major, and the 
rest study mathematics as a minor subject. Among 
these students the most common majors are com-
puter science, physics and economy. The amount of 
students taking the course has increased over the last 
few years. In 2008, there were 394 students enrolled 
for the course, whereas in 2013 the number was 484.

The content of the course has varied slightly from 
year to year, but the main topics have remained the 
same. They are systems of linear equations, matrices, 
spanning sets, linear independence, basis and coor-
dinates. The course lasts for 6 weeks. The workload 

of the course is approximately one third of the total 
workload of the students.

In this paper, we investigate the years 2008–2013. Two 
different lecturers taught the course as a traditional 
lecture course during the years 2008–2010, one of 
them in 2008 and 2010 and the other in 2009. In 2011, 
the course was transformed to an XA-based course 
(Hautala et al., 2012). Improving the implementation 
of the XA method continued in 2012–2013 (Rämö & 
Vikberg, 2014).  The teacher responsible for the XA-
based courses was the first author of this paper.

METHOD

The aim of this study is to compare the assignments 
and exams used on an XA-based course to those 
used traditionally. This was done by classifying the 
tasks using the classification scheme by Pointon and 
Sangwin (2003), which was modified slightly to fit the 
purposes of this study. 

The classification of Pointon and Sangwin consists of 
8 categories shown in Table 1 (categories 1–8). When 
the tasks of this study were analysed, it became clear 
that one category, namely category 9, had to be added.

The classification was executed as in the paper of 
Pointon and Sangwin: Each question was evaluated 
individually, and given equal value. If a question had 
multiple parts, it was classified by estimating the pro-
portion of each category. The evaluation was done by 
the second author.

The categories are described briefly here, and more 
detailed descriptions with examples can be found in 
the paper by Pointon and Sangwin (2003). 

1) Factual recall: A question that requires only the 
recall of some factual knowledge, usually ver-
batim.

1. Factual recall
2. Carry out a routine calculation or algorithm
3. Classify some mathematical object
4. Interpret situation or answer
5. Proof, show, justify (general argument)
6. Extend a concept
7. Construct example/instance
8. Criticize a fallacy
9. Information transfer

Table 1: The task classification scheme
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2) Carry out a routine calculation or algorithm: 
A question that requires routine use of algebra, 
calculus or matrix operations. Often such tasks 
may be performed by a computer algebra system.

3) Classify some mathematical object: Solving the 
task requires recalling a definition and provid-
ing justification to show that some specific object 
satisfies the definition.

4) Interpret situation or answer: The task requires 
modelling of a physical situation or interpreta-
tion of a mathematical model. 

5) Proof, show, justify (general argument): A ques-
tion that requires a general argument involving 
abstract or general objects rather than specific 
examples.

6) Extend a concept: Students are asked to evaluate 
previously acquired knowledge in a new situa-
tion.

7) Construct example/instance: Students are re-
quired to provide an object satisfying certain 
mathematical properties.

8) Criticize a fallacy: Students are asked to find mis-
takes in supposed proofs, or criticize reasoning.

9) Information transfer: A question that requires 
transformation of information from one form to 
another, as well as processing this information. 
This category was added by the authors of this 
paper. It is explained below in detail.

Category 9: Information transfer
Category 9 did not occur in the original classifica-
tion scheme of Pointon and Sangwin that consists of 
categories 1–8. A category bearing the same name, 
information transfer, can be found in the MATH 
Taxonomy proposed by Smith and colleagues (1996). 
Our category resembles theirs, but is only a subset 
of it. Introducing a new category was necessary, as 
many of the tasks did not fit in any of the categories 
1–8. Questions in category 9 require transformation 
of information from one form to another, as well as 
processing this information. Typically, in these ques-
tions students are asked to draw pictures, interpret 
diagrams, explain something in their own words or 
draw concept maps.

Examples of category 9:

 ― Denote v1 = (−3, 4), v2 = (1, 1) and v3 = ( 2
3 , −2). Draw 

pictures of the subspaces span(v1), span(v1, v2) 
and span(v1, v3). You do not need to justify your 
answer.

 ― The vector space ℝ2 has a basis B = ((1, 1), (2, 3)). 
Determine, by drawing a picture, a vector u ∈ ℝ2 
whose coordinates with respect B to  are 3 and −2.

 ― Explain in your own words why an elementary 
matrix always has an inverse matrix.

RESULTS

Course assignments
The weekly course assignments were evaluated using 
the classification described in the previous section. 
Table 2 shows that in category 2 (routine calculation), 
the proportion of tasks has decreased. In 2008–2010, 
when the course was a traditional lecture course, 36–
46% of the assignments were from category 2. In 2011, 
when the XA method was introduced, the proportion 
was still high (43%), but it dropped to 28% in 2013.

In category 9 (information transfer), the proportion of 
tasks has risen. In 2008–2010, 1–5% of the assignments 
were from this category, whereas in 2011–2013, the 
proportion was 15–18%.

Exam tasks
Also the exam tasks were analysed in order to find 
out how much weight each of the categories had in 
the final exam. The tasks were divided into the nine 
categories, and the maximum score of the tasks in 
each category was calculated. Table 3 shows the pro-
portions of maximum scores in each category.

It can be seen that the weight of category 2 (routine 
calculation) decreased when the XA method was in-
troduced: in 2008–2010, the proportion of points that 
could be obtained from category 2 tasks was 42–54%, 
whereas in 2011–2013 when the XA method was used, 
the corresponding percentage was 0–25%.

The weight of category 5 (proof ) has not decreased 
when using the XA method. A new category (7, con-
struct example) has appeared with the introduction 
of XA.
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Exam performance
Information on the performance of the students was 
obtained by studying the exam scores. From Table 4 
it can be seen that the average scores were 63–72% in 
traditional teaching and 65–75% in XA. There seems to 
be no distinctive change in the student performance 
since the XA method was introduced. 

CONCLUSIONS

The aim of the XA method is to educate skilled pro-
fessionals. As professional mathematicians need to 
understand the concepts they are working with, this 
should be emphasised also when teaching future 
mathematicians, even first year students. 
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2008 41 22 4 15 3 12 3 30

2009 46 13 8 28 3 1 30

2010 36 22 8 15 3 12 5 30

2011 2 43 14 2 13 2 7 18 133

2012 29 21 4 21 10 15 89

2013 28 27 7 11 10 18 89

Table 2: Proportions of course assignments in different categories. In 2011 the XA method was introduced
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2008 8 42 25 25 24

2009 8 54 13 25 24

2010 17 42 42 24

2011 8 25 25 25 17 48

2012 6 8 33 25 27 48

2013 13 50 25 13 48

Table 3: Proportions of exams points in each category. The points are divided into nine categories according to 

the category of the task they are awarded for. In 2011 the XA method was introduced

2008 2009 2010 2011 2012 2013

Number of students 307 262 280 324 345 383

Mean (%) 69 63 72 69 75 65

Standard deviation (%) 24 19 23 19 19 21

Lower quartile (%) 50 54 58 58 65 52

Median (%) 71 67 75 73 79 67

Upper quartile (%) 92 75 92 81 90 81

Table 4: The number of students taking the exam and statistical parameters of the exam scores 
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The results show that when the XA method was intro-
duced, the weight of routine calculations in the course 
assignments decreased and the weight of category 9 
(information transfer) increased. It can be concluded 
that there was a change of focus from rote learning 
of routine procedures towards tasks that require also 
conceptual understanding. However, there are still 
categories that are almost non-existent, such as “ex-
tend a concept” or “criticize a fallacy”. 

Also in the course exams the weight of category 2 de-
creased when the XA method was introduced. Instead 
of routine calculations, the tasks required construct-
ing examples or interpreting situations or answers. 
At the same time, there was no drastic change in the 
performance of the students. In the light of these re-
sults, we can draw the conclusion that the students 
have developed conceptual understanding. However, 
when interpreting the exam results, one should note 
that the level of difficulty of the exams may have var-
ied slightly over the years.

Conceptual understanding is not developed at the 
cost of routine skills: the actual amount of course as-
signments in category 2 has not dropped. Since the 
number of tasks in XA is greater than in traditional 
teaching, the amount of category 2 tasks has actually 
risen from 12 tasks in 2008 to 25 tasks in 2013 (Table 
3). This means that also in the XA method the students 
get plenty of practice in routine calculations.

There are many features in the XA method that facili-
tate emphasising conceptual knowledge. The teaching 
revolves around the tasks, and there are plenty of them 
for the students to work on. Therefore, it is easier to 
give students a wide range of diverse tasks. Because of 
the one-on-one instruction, also the weaker students 
have a change to fully work on the problems, and they 
do not need to give up if a task seems too difficult for 
them. The lectures support the development of con-
ceptual understanding by focusing on motivating the 
concepts and discussing how they are linked together. 
However, not all the students take advantage of the 
instruction: less than half of the students who submit 
course work speak with the teaching assistants, and 
many of the students do not attend the lectures. Our 
next goal is to find ways to encourage students to take 
part in the instruction.

In this study, the tasks were categorised by the second 
author. The reliability of the study would be improved 

if the tasks were given to an independent evaluator 
who does not know which tasks are from which year. 
Also, a detailed statistical analysis would give more 
information about the changes that have taken place.

The tasks given to the students should be versatile and 
varied because mathematical competence involves 
knowledge of both concepts and procedures, as well 
as understanding the relations between them (Hiebert 
& Lefevre, 1986).  Also, when students are offered di-
verse problems, they learn problem-solving strategies 
of experts (Collins et al., 1991). In this light, our results 
indicate that the Extreme Apprenticeship method is 
a step in the right direction.
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In this report, we highlight the epistemic actions and 
concomitant discursive shifts of four students as they 
reinvent the fundamental idea and technique in Euler’s 
method. We use this case to further the theoretical and 
methodological coordination of the Abstraction in 
Context (AiC) approach, with its associated model com-
monly used for the analysis of processes of constructing 
knowledge by individuals, and small groups and the 
Documenting Collective Activity (DCA) approach, with 
its methodology commonly used for identifying norma-
tive ways of reasoning with groups of students. In this 
report, we show students’ first steps towards re-inventing 
Euler’s method and explicate the theoretical and meth-
odological commonalities of AiC and DCA.

Keywords: Documenting collective activity, abstraction in 

context, networking theories, Euler’s method.

INTRODUCTION

Research at the undergraduate level is moving beyond 
the documentation of student difficulties towards the 
design, implementation, and analysis of innovative 
learning environments where students reinvent im-
portant mathematical ideas and methods. For example, 
in differential equations, research has documented 
that students are able to reinvent, given appropriate 
task sequences and learning environments, Euler’s 
method, bifurcation diagrams, and even an analytic 
approach for solving systems of linear differential 
equations (e.g., Rasmussen, 2007). Such reinventions 
are, from our perspective, both individual and collec-
tive accomplishments. Methodological approaches 
for analysing such accomplishments, however, are 
sorely needed. In this report, we highlight the epis-
temic actions and concomitant argumentation of four 
students as they reinvent the fundamental idea and 

technique in Euler’s method. We use this case to fur-
ther the theoretical and methodological coordination 
of the Abstraction in Context (AiC) approach and the 
Documenting Collective Activity (DCA) approach 
(see Hershkowitz et al., 2014; Tabach et al., 2014 for 
initial attempts at coordinating these two approach-
es). The two approaches have various theoretical and 
methodological commonalities that we will refer to as 
environmental and underlying ones; the analysis in 
the present paper led to the discovery of additional 
commonalities that we will refer to as environmental 
and underlying internal ones. We explicate these com-
monalities to set the stage for the analysis of student 
reinvention, but first begin with a brief summary of 
the AiC and DCA approaches. 

ABSTRACTION IN CONTEXT 
AND THE RBC+C MODEL

Abstraction in Context (AiC) is a theoretical frame-
work for investigating processes of constructing 
and consolidating abstract mathematical knowledge 
(Hershkowitz et al., 2001). Abstraction is defined 
as an activity of vertically reorganizing previous 
mathematical constructs within mathematics and 
by mathematical means, interweaving them into a 
single process of mathematical thinking so as to lead 
to a construct that is new to the learner. According 
to AiC, the genesis of an abstraction passes through 
three stages (ibid): (i) the arising of the need for a new 
construct, (ii) the emergence of the new construct, and 
(iii) the consolidation of that construct. AiC includes a 
theoretical/methodological model, according to which 
the description and analysis of the emergence of a 
new construct and its consolidation relies on a limited 
number of epistemic actions: Recognizing, Building-
with, and Constructing (RBC). 

mailto:Tabach.family@gmail.com
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These epistemic actions are often observable as they 
are expressed by learners verbally, graphically, or 
otherwise. Recognizing takes place when the learner 
recognizes a specific previous knowledge construct as 
relevant to the problem currently at hand. Building-
with is an action comprising the combination of rec-
ognized constructs in order to achieve a localized goal, 
such as the actualization of a strategy or the solution 
of a problem. The model suggests Constructing as the 
central epistemic action of mathematical abstraction. 
Constructing consists of assembling and interweav-
ing previous constructs by vertical mathematization 
to produce a new construct. It refers to the first time 
the new construct is expressed by the learner. 

Recognizing actions are nested within building-with 
actions, and recognizing and building-with actions 
are nested within constructing actions. Moreover, 
constructing actions are at times nested within more 
holistic constructing actions. Therefore the model is 
called the nested epistemic actions model of abstrac-
tion in context, or simply the RBC+C model. The sec-
ond “C” stands for Consolidation. The consolidation 
of a new construct is evidenced by students’ ability to 
progressively recognize its relevance more readily 
and to use it more flexibly in further activity.

DOCUMENTING COLLECTIVE 
ACTIVITY OVERVIEW 

The methodological approach of documenting collec-
tive activity (DCA) is theoretically grounded in the 
emergent perspective (Cobb & Yackel, 1996), a basic 
premise of which is that mathematical learning is a 
constructive process that occurs while participating 
in and contributing to the collective activity of the 
classroom. The collective activity of a class refers to 
the normative ways of reasoning that develop as stu-
dents work together to solve problems, explain their 
thinking, represent their ideas, etc. These normative 
ways of reasoning can be used to describe the mathe-
matical activity of a group and may or may not be ap-
propriate descriptions of the characteristics of each 
individual student in the group. A mathematical idea 
or way of reasoning becomes normative when there is 
empirical evidence that it functions in the classroom 
as if it is shared. The empirical approach makes use of 
Toulmin’s model of argumentation, the core of which 
consists of Data, Claim, and Warrant. Typically, the 
data consist of facts or procedures that lead to the con-
clusion that is made. To further improve the strength 

of the argument, speakers often provide more clar-
ification that connects the data to the claim, which 
serves as a warrant. It is not uncommon, however, 
for rebuttals or qualifiers to arise once a claim, data, 
and warrant have been presented. Backing provides 
further support for the core of the argument.

The following three criteria are used to determine 
when a way of reasoning becomes normative: 1) When 
the backing and/or warrants for particular claim are 
initially present but then drop off, 2) When certain 
parts of an argument (the warrant, claim, data, or 
backing) shift position within subsequent arguments, 
or 3) When a particular idea is repeatedly used as 
either data or warrant for different claims across mul-
tiple days. See Rasmussen and Stephan (2008) for an 
illustration of the first two criteria. 

ENVIRONMENTAL COMMONALITIES 

The use of both methodologies, AiC and DCA, requires 
very explicit classroom norms. First, they require 
classrooms in which students are routinely explaining 
their thinking, listening to and indicating agreement 
or disagreement with each other’s reasoning, etc. If 
such norms are not in place, then evidence is unlikely 
to be found of challenges, rebuttals, and negotiations 
that lead to ideas where knowledge is constructed and 
starts functioning as if shared by the whole class. We 
call such classrooms “inquiry classrooms.” Second, 
they require the intentional use of tasks that were 
purposefully designed to offer students opportuniti-
es for constructing new knowledge by engaging them 
in problem solving and reflective activities allowing 
for vertical mathematiziation.

Both methodologies focus on the ways in which math-
ematical progress is achieved and spreads in the class-
room. RBC+C focuses on individuals or small groups 
working in the classroom and DCA focuses on group 
discussions. In this sense, the two methodologies 
complement each other in analyzing a sequence of 
lessons including individual and group work and in 
tracing how knowledge is constructed and becomes 
normative along this sequence.

UNDERLYING COMMONALITIES

Other characteristics of a classroom culture in which 
DCA and RBC+C methodologies might be enacted to-
gether are that the tasks are designed to afford inquiry 



First steps in re-inventing Euler’s method: A case for coordinating methodologies  (Michal Tabach, Chris Rasmussen, Rina Hershkowitz and Tommy Dreyfus)

2251

and the emergence of new constructs by vertical math-
ematization from previous constructs; such learning 
materials allows for interweaving collaborative work 
in both small-group work and whole-class discussions, 
where the teacher adopts a role that encourages in-
quiry in the above sense.

Another underlying characteristic relates to the cen-
trality of the shared knowledge. AiC defined shared 
knowledge as “a common basis of knowledge which 
allows the students in the group to continue together 
the construction of further knowledge in the same 
topic” (Hershkowitz et al., 2007, p. 42). This definition 
relates to cognitive aspects. We find its counterpart in 
sociological terms, in the phrase “function as if shared” 
used by the DCA approach. What is common between 
the two constructs is the point that each operational-
izes when particular ideas or ways of reasoning are, 
from a researcher’s viewpoint, beyond justification 
for participants. At the collective level, ideas or ways 
of reasoning that function as if shared have the status 
of accepted mathematical truths for the group.  At the 
individual level, consolidation results in individuals 
accepting something as a mathematical truth.

FIRST STEPS TO REINVENTING 
EULER’S METHOD

We begin with the following excerpt, used also in 
Stephan and Rasmussen (2002) and in Tabach and 
colleagues (2014) but for different purposes. It is a 
discussion between Liz, Joe, Deb and Jeff, four stu-
dents in a class of 29 STEM, first year undergraduate 
students, working on the following problem during 
group work on the first lesson: 

Consider the following rate of change equation, where 
P(t) is the number of rabbits at time t (in years): dP/dt = 
3P(t) or in shorthand notation dP/dt = 3P. Suppose that at 
time t = 0 we have 10 rabbits (think of this as scaled, so we 
might actually have 1000 or 10,000 rabbits). Figure out a 
way to use this rate of change equation to approximate 
the future number of rabbits at t = 0.5 and t = 1. 

Prior to this task students received no instruction on 
Euler’s method, but the class did develop graphical 
depictions of what the exact solution should more 
or less look like (e.g., not linear but increasing at an 
increasing rate). The excerpt includes a DCA analysis 
and an RBC analysis. The DCA analysis classifies the 
shaded parts according to Toulmin’s model as data 

[D], claim [C], warrant [W], backing [B], or qualifier 
[Q ]. For example, D2 is the Data used for Claim 2. We 
indicate at the end of a turn if one of the three crite-
ria has been met. The RBC analysis is based on an a 
priory analysis of the activity that yielded the follow-
ing knowledge elements intended to be constructed: 
Csy – establishing connection between P and dP/dt 
(if you know P you can find dP/dt); Cpit – population 
iteration (given P and dP/dt at a moment in time allows 
one to find P at a later time); and Crit – rate of change 
iteration (applying Csy at that later time one can find 
the corresponding dP/dt); and finally Cit: Cpit and Crit 
can be combined into a repeating loop. We conjectu-
re that in previous courses students constructed dP/
dt as a ratio (Crat) and hence they can recognize and 
build-with this construct. To keep things transparent 
we omit mentioning previous constructs to which our 
analysis does not explicitly refer. RBC actions were ita-
licized in students’ talk and coded in the third column 
as recognising (R), building-with (B), constructing (C) 
or consolidating (CC). This side-by-side analysis was 
done to facilitate coordination between the RBC+C 
and DCA methodologies. This coordination is then 
helpful for analysing student’s re-invention of Euler’s 
method.

1 Liz I would plug in the population of 
rabbits for P to determine the rate of chan-
ge initially. What is the rate of change 
when time equals zero [W1]. So if we had 
a graph, its kind of like what we were just 
talking about, we are trying to determine 
the rate of change when this time is equal 
to zero [B1]. R B

2 Joe Oh ok. This is where 10 rabbits at 
zero [D1]. R

3 Liz What do you think?
4 Deb Oh ok, so I get the rate of change at 

time initially the rate of change would be 
3 [sic] [C1]. Did I multiply it right? R B Csy

5 Liz And then I guess the simple …
6 Joe How did you do that?
7 Liz Okay, well this [D2] [differential 

equation] is the change in the population 
over the change in time [C2]. Rrat

8 Joe Right.
9 Liz Okay, and this 3 I’m taking as 

being the constant or whatever you call 
the growth rate. And this P of t is the po-
pulation at any given point of time t, but 
this is just short hand notation for it . So I 



First steps in re-inventing Euler’s method: A case for coordinating methodologies  (Michal Tabach, Chris Rasmussen, Rina Hershkowitz and Tommy Dreyfus)

2252

thought, if we know the population is ten 
when our time equals zero [D1 & D2 elabo-
rated], can we plug in the P(t) population 
at time zero and find out what initially the 
rate of change is [W1]? B Csy

10 Joe It would be 10 = 3…
11 Liz Times 10 Csy
12 Jeff Okay I see so it would be 30 [C1]. Csy
13 Liz 30, I mean does that,
14 Jeff Yeah that does make sense.
15 Joe Well, wouldn’t 10 = 3P(t)? [C3]  At 

time zero we have 10 rabbits [D3]. (Note 
that his claim is incorrect) R B

16 Liz Well 10 is actually the population 
[D4] so I’m taking that that has to actually 
be the population at time t. I don’t think 
it’s telling us how the population is chan-
ging which would be dP/dt [C4]. CCsy

17 Liz So if we have that [initial rate of 
change is 30] [D5], the question is how 
can we use that to help us figure out the 
population after a half unit elapsed? [32 
sec pause] (identifies a need to construct 
Cpit)  Rsy

18 Jeff How would we work time into the 
equation?

19 Liz If we think of it right now as our 
time equals zero, we could say…  B

20 Deb We have the 30 [D5]. Rsy
21 Liz We have the 30 to work [D5] with, so 

couldn’t we say we don’t [5 second pause] Bsy
22 Deb You said the population is 10 right 

[D5]?  B
23 Liz um hm.
24 Deb So three times ten would give us 

our rate of change [D5]. Say 0.5 years pas-
ses, this is our rate of change. Then we’ll 
take that 0.5 times the rate of change [W5] 
which will give us what, the new amount 
of rabbits plus the old amount of rabbits. 
[C5] [Criterion 2 met for Csy, see turn 12 
where this was C1] Cpit

25 Liz So the old amount of rabbits is ten 
[D6]  R

26 Deb Am I making sense?
27 Jeff I think so, so that would be 25 [C5], 

is that what you’re saying? Cpit
28 Liz Okay I think I get what you’re say-

ing. So we’re at time zero and we have 10 
rabbits, and the rate of change is 30 [D6] 
so its going to grow at a rate of 30 rabbits 

per year [C6]? [Criterion 2 met for Csy, 
similar to turn 24 by Deb] Cpit

29 Deb Right. So we’ll have 30 more rab-
bits.[D7]

30 Liz But we only want to go a half a year.
31 Deb So it’ll be 0.5 times 30,[W7] which is 

15 [C7]. [Criterion 2 met for part of Cpit 
(namely that 30 is also the change over 
one year), claim C6 is now D7] CCpit

32 Liz And so we’re really not figuring 
out the rate of change we figuring…Well 
this is the rate of change and we’re using 
the rate of change to figure out the number 
of rabbits we are going to increase by in 
half a year [B5]. Cpit

33 Deb Well the new population…
34 Joe Well if t is 0 [D8] then we have 0 

[C8]. But you said when t is zero we have 
10 [Rebuttal to Argument 1]. (note that 
his assertion is incorrect) Rsy

35 Liz I think it just means initially we 
have 10 [Rebuttal to C8]. R

36 Joe Well according to this when t is zero 
[D8] we would have zero rabbits. Or the 
rate of change would be 0 [C8]. B

37 Liz Well actually we’re going to multi-
ply it by a half a year [B5, continuation 
of turn 32]. Cpit

38 Deb This is what I did. First I looked at 
the fact that this is a rate of change equati-
on. So this is telling me how many rabbits 
are being produced every year [W10].  So 
If I know 3 times the original population 
is produced every year, then I have 3 times 
10 is produced every year [Criterion 3 met 
for Csy].  But I want to know how many is 
produced in 0.5 years [D10]. So I know how 
many rabbits are produced per year, so if 
I multiply that by 0.5 then I’ll know how 
many more rabbits have been produced. 
So I take that new number that I get and 
add it to the old population [C10] CCpit

39 Deb Uh huh, so then I find the one with 
my new rate of change [W11], so I just take 
that population and put it in for p [D11]. 
And that is 3 times whatever that is [C11]. Bsy

40 Liz Do you get what Deb is saying?
41 Jeff Yeah you get 25 and then you get 55 

(sic) [W11]. Bsy
42 Deb I think we should make a chart like 

he did. [showing her paper to Jeff ] But 
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this would be your equation. This would 
be your 0.5, and then rabbits per year, and 
that will be your new amount of rabbits 
that’s been added, then you add that to 
your old amount of rabbits, and you’ll get 
your new population [B11]. CCpit

43 Jeff I think you can go dp/dt=30, actu-
ally your dt will be 0.5, and then you do it 
again for the next one [C12]. [Criterion 1 
met for Csy] Bsy

44 Liz What do you have right there?
45 Deb You take your old rate of change 

which we already know is 30 rabbits per 
year, and how much time that has passed 
equals 0.5. So 0.5 times 30 will get me how 
many new rabbits I have [D13]. So I take 
the new amount of rabbits I have and add 
it to the old amount of rabbits I have and 
that will give me the new population. And 
once I know the new population I know 
the new rate of change because I know the 
rate of change is right here. [C13] CCpit Crit

46 Liz And the reason for putting in the 
new population would be what? (iden-
tifying  a need to build Cpit which Deb 
has already constructed)

47 Deb Because now my population is larg-
er and I know the population changes at 
a constant of 3 times whatever that pop-
ulation is [W13]. CCrit

48 Liz Okay, so basically, I get you up into 
the point where you say you want to put 
in, what I understand is that we found 
our rate of change initially at time zero 
and that we are using that to find out what 
our population is after half a year. If we 
are expected to grow by 30 rabbits in a year 
then, in a half a year we grow by 15 rabbits. 
So we’ll have 15, [D14]. CCpit

49 Deb No no
50 Liz I mean 25 because 15 plus 10 is 25 

[D14]. CCpit
51 Jeff Then we have to do it again [C14]. 

[turns 48–51 repeat with specific values 
Argument 13] Crit

52 Liz Then you start over again [C14], so 
its kind of like our new initial population, 
so we could label it time equals zero if we 
wanted to [B14]. Crit

Since space constraints prohibit a complete account-
ing of the individual constructions and normative 
ways of reasoning evidenced in this episode we only 
highlight individual constructing actions associated 
with Cpit, the method for computing the next popu-
lation value. By recognizing and building-with pre-
vious constructs (e.g., turns 1, 4, 7, 9, 20) we see Deb 
first construct Cpit in turn 24, followed by Jeff in turn 
27 and Liz in turns 28+32+37. Per the DCA methodol-
ogy we see that “knowing P means you can find dP/
dt” (Csy) functions as if shared at the collective level 
per Criterion 2 (in turns 24 and 31 this idea was Data 
whereas in turn 4 it was a Claim). Even in this brief 
analysis we see how the coordination of the RBC+C and 
DCA traces well the individual and collective process-
es in mathematical progress. 

The epistemic actions and concomitant discursive 
shifts resulted in these students reinventing the core 
idea of Euler’s method, namely Cit. One way to express 
this core idea is in the following algorithm: Pnext = Pnow 
+ ((dP/dt)|now)*0.5. Indeed, this particular formulation 
of Euler’s method would be a viable extension of stu-
dents’ natural language. In particular, in turns 25–32, 
three of the four students essentially co-create the 
first step of the iterative process and then in turn 45 
Deb succinctly provides a verbal summary of the al-
gorithm. In turns 51 and 52 Jeff and Liz respectively 
highlight the iterative nature of the algorithm (“we 
have to do it again” and “then you start over again”). 
The use of “next” and “now” in the algorithm closely 
resembles students’ verbal description of the process. 
This however, is only the first step in developing a 
comprehensive understanding of Euler’s method. 

We now further the theoretical and methodological 
advance for analysing individual and collective math-
ematical progress that was started in Tabach and col-
leagues (2014) and Hershkowitz and colleagues (2014). 
In particular, we use the previous episode to show how 
the various individual epistemic actions are inter-
twined with the collective production of arguments. 
This intertwining reflects the internal commonalities 
between the RBC+C and DCA methodologies.

RBC+C AND DCA INTERNAL 
COMMONALITIES 

We begin by relating each of the RBC constructs to the 
DCA approach and then we relate the three criteria 
of the DCA approach to consolidation. 
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Relationship between Recognizing and Data. 
Theoretically, we argue that Recognizing actions are 
largely associated with Data. One uses some piece 
of information as Data because that piece of infor-
mation makes sense to him/her. Recognizing action 
means recognizing a piece of information as relevant 
as data. Empirically, in the above example, parts of 
students’ talk which were coded as Data were also 
coded as Recognizing. However in some cases, when 
a construction takes place, it happens that part of the 
argument is coded as Data (e.g., turns 21–24). In the 
previous example, we see that Recognizing actions 
are primarily associated with Data. In some cases (e.g., 
turn 1), Recognizing actions can be associated with 
Warrants, which are at times difficult to disentangle 
from Data. 

Relationship between Building-with and Warrants. 
Theoretically, Warrants establish a connection be-
tween data and claim; in order to establish such a 
connection, one needs to build-with what one has. 
In the example this commonality is largely the case. 
Sometimes Building-with is linked to Data, because 
oftentimes Warrants and data are interchangeable 
(e.g., turn 36). While the previous excerpt also shows 
some slight differences in the relationship between 
Building-with and Warrants (e.g., Building-with may 
be linked to Claims for which, by Criterion 1, the Data 
and/or Backing drops off (see turn 43), additional data 
sets are needed to empirically test the conjecture 
about the relationship between the two constructs.

The relationship between Constructing and Arguments 
as a whole. Constructing requires vertical mathema-
tization. Constructing actions are more global than 
Recognizing or Building-with actions; they incor-
porate sequences of interweaving Recognizing and 
Building-with actions (plus the glue between them). 
Similarly, arguments interweave Data-Claims-
Warrants and Backings as a whole. Hence, in a line 
by line coding it is not feasible to indicate the holistic 
nature of an argument and it is typically indicated 
after a line by line coding (see for example Tabach et 
al., 2014). Moreover, arguments are usually co-con-
structed by several participants over several turns. 
Such exchanges are similarly typical for constructing 
actions. 

Consolidating and the three criteria for identifying func-
tion-as-if-shared ideas. In processes of consolidating as 
well as across the three criteria for identifying when 

an idea functions as if shared, there is a repetition, 
reuse, revisiting, or repurposing of earlier ideas. To 
clarify, in Criterion 1 there is a repetition, but the 
repetition is partial in the sense that some parts of 
the argument (Data, Warrants) cease to be explicitly 
stated. In Criterion 2 there is repurposing of previ-
ous part of an argument (e.g., Claim) as either Data or 
Warrant. In this sense there is a repeating and reusing, 
but for a different purpose. In Criterion 3 there is 
a revisiting of either Data or Warrants to establish 
new Claims. In consolidation, previous constructs are 
recognized as relevant (i.e., revisited), and then built-
with (i.e. used, possibly repeatedly) for example for 
solving a problem, reflecting on a situation or result, 
or even in the framework and for the purpose of an 
additional constructing action (for example, in lines 
19–23, Csy is built-with as part of constructing Cpit). 

Further commonalities between consolidating and 
the three criteria can be seen by considering chara-
cteristics of consolidation: awareness, self-evidence, 
flexibility, immediacy, and confidence (Dreyfus & 
Tsamir, 2004). Self-evidence links to Criterion 1 – the 
evidence is the Data, which drops off in subsequent 
arguments. The subsequent argument also then re-
lates to immediacy and confidence in the validity of 
the idea. Flexibility links to Criterion 2 – components 
of an argument are being reused and repurposed (as 
sign of flexibility) in subsequent arguments. Similarly, 
Criterion 3 relates to flexibility in a different way. 
Flexibility lies in the fact that one is able to use an idea 
(e.g, Build-with) as Data or Warrant for a variety of 
different Claims. Hence close relationships exists bet-
ween the criteria and Consolidation characteristics

CONCLUSION

Students in undergraduate mathematics classrooms 
are increasingly experiencing inquiry based learn-
ing and research is pointing to the strong benefits on 
student success in terms of grades and subsequent 
coursework (Freeman et al., 2014; Kogan & Laursen, 
2013)2. While broad measures of student success are 
needed, there is also a need for methodologies that 
provide a fine-grained analysis of the individual and 
collective processes that make inquiry learning pos-
sible, and may have the potential to explain at the 
micro-level how such learning works and why it is 
beneficial. This report makes a contribution in this 
direction. The DCA analysis helps illuminate what is 
happening on the social or discursive plane, while the 
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RBC+C analysis helps illuminate what is happening 
on the cognitive side. 

In this report, we used the case of a group of students 
reinventing Euler’s method and we used this case to 
explicate the environmental, underlying, and internal 
commonalities between the AiC and DCA approaches. 
This represents considerable progress toward the call 
for what Prediger and colleagues (2008) refer to as 
the local integration of different theoretical/meth-
odological approaches as well as contributing to our 
understanding of how undergraduate students indi-
vidually and collectively reinvent important mathe-
matical ideas. 
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ENDNOTE

1. While acknowledging the teacher’s crucial role, we 
did not relate to it here, as this is the next step in our 
research plan.
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Assessment influences students’ approaches to learning 
and conveys to the learners what the exam-setters val-
ue. Frameworks have been developed in order to under-
stand and analyse the demands of the assessment tasks. 
In this paper, two frameworks are used to analyse one 
undergraduate closed book examination in abstract 
algebra. The analysis of the tasks resulting from the two 
frameworks are presented and discussed. Finally, some 
aspects regarding the applicability of the frameworks 
are highlighted and further steps are suggested.

Keywords: Undergraduate, closed book examinations, 

abstract algebra.

INTRODUCTION

Research highlights the strong relationship between 
assessment demands and students’ approaches to 
learning (Ramsden, 1983; Trigwell & Prosser, 1991). 
Assessment also conveys what lecturers consider sig-
nificant about their subject (Smith et al., 1996; van de 
Watering et al., 2008), thus it is important to examine 
and understand the demands of assessment. 

In mathematics departments in the United Kingdom, 
the predominant method of summative assessment 
is the closed book examinations (Iannone & Simpson, 
2011). This paper focuses on one closed book exam-
ination from a Year 2 course in pure mathematics. 
Three tasks from this examination are analysed 
using two frameworks: Mathematical Assessment 
Task Hierarchy (MATH) developed by Smith and col-
leagues (1996) and the framework introduced by Tang, 
Morgan and Sfard in 2012. The analysis of the tasks 
using both frameworks is presented and discussed. 
This will allow us to better understand the potential 
of each and to improve their use for specific research 
questions.

In what follows we first present the two frameworks 
and introduce the context of our study. Afterwards, 
we analyse in detail one of the examination tasks and 
offer an overview of the analysis of the rest. We then 
discuss the results, comment on the applicability of 
the frameworks and make some suggestions for fur-
ther research.

THE FRAMEWORKS

Different frameworks exist offering ways of ana-
lysing the tasks used in assessment. One of the most 
common is Bloom’s taxonomy of educational objec-
tives (Bloom et al., 1956). This taxonomy examines 
the different educational objectives the educators set 
for their students and assists them in developing bal-
anced assessments. Different adaptations of this tax-
onomy have been used in mathematics. One of those 
adaptations tailored specifically for undergraduate 
mathematics closed book examinations is offered by 
a team of mathematicians and mathematics educators 
(Smith et al., 1996). Smith and colleagues (1996) intro-
duce the MATH taxonomy aiming to assist lecturers 
in constructing examinations demanding a range of 
knowledge and skills. They distinguish between eight 
categories of knowledge and skills and they propose 
three groups: A, B and C (Table 1). In solving Group A 
tasks, the students are asked to recall factual knowl-
edge and fact systems, comprehend factual knowl-
edge and be able to use basic procedures. Students 
have to display the ability to transfer information 
and apply information or methods in new situations 
when attempting to answer tasks belonging to Group 
B. Finally, in answering tasks from Group C students 
are asked to justify and interpret a result, offer con-
jectures and comparisons and evaluate results. Smith 
et al. argue that examinations should have items from 
all the groups and note that items from Group A could 
guide students to adopt surface learning approach-
es (Ramsden, 1992) whereas items from Group B and 
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C might help them foster deep learning approaches 
(Ramsden, 1992). 

While the MATH taxonomy was developed to assist 
in the creation of examinations assessing a range of 
knowledge and skills, the framework introduced by 
Tang, Morgan and Sfard (2012) was developed to char-
acterise the discourse of school mathematics. Aiming 
to examine whether the nature of students’ participa-
tion in the mathematical discourse changed in the last 
thirty years, they focused on analysing the public ex-
aminations in the UK taken at age 16 (GCSE – General 
Certificate of Secondary Education). This framework 
draws on Systemic Functional Linguistics (Halliday, 
1978; Morgan, 2006) and Sfard’s theory (2008) of com-
mognition. The framework explores the mathematical 
discourse that the student engages with when reading 
and responding to an examination task. This analysis 

“allows a subtle characterisation of the nature of math-
ematics and of student mathematical activity con-
strued through the forms of language used” (Morgan 
& Tang, 2012, p. 242). The framework has two compo-
nents: mathematics and the student. The mathematics 
component characterises the mathematical discourse 
the student is expected to engage in when reading and 
solving the task. This is further distinguished using 
Sfard’s theory (2008) in four categories: vocabulary 
and syntax, visual mediators, routines and endorsed 
narratives. The student component investigates the 
relation between the examination task and the stu-
dent. More specifically, it examines the positioning of 

the student in relation to the exam-setter, the presence 
of human beings, in the task, engaged in everyday or 
mathematical activities, and finally the decisions and 
directions shaping the student’s response.

METHODOLOGY

For the purpose of the paper, we analyse examination 
tasks from an abstract algebra course in a mathemat-
ics department in the UK. This is a compulsory course 
and focuses on linear algebra in the autumn term and 
on group and ring theory in the spring term. Our data 
consists of the coursework tasks, the examinations 
tasks focused on group and ring theory and their mod-
el solutions, produced for departmental use, and was 
collected for a doctoral study (Ioannou, 2012). The 
examination accounted for 80% of the course’s final 
grade and selected coursework tasks accounted for 
the remaining 20%. This examination, which is the fo-
cus of our analysis, had six tasks: three on linear alge-
bra and the remaining three on group and ring theory. 
The examination lasted three hours and the students 
had to respond to five of the tasks. Notes were not 
permitted in the examination and the students were 
told that they could use the general theorems without 
proof unless stated otherwise. Non-programmable 
calculators were permitted during the examinations. 
In what follows we present a detailed analysis of task 
4 (Figure 1) followed by an overview of the analysis of 
the other tasks on group and ring theory (Figure 2).

Group A Group B Group C

Factual knowledge and fact sys-
tems

Information transfer Justification and interpretation

Comprehension of factual knowl-
edge

Application to new situations Implications, conjectures and com-
parisons

Routine use of procedures Evaluation

Table 1: The MATH taxonomy

Figure 1: Examination task 4
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ANALYSIS USING THE MATH TAXONOMY

Task 4 consists of three subtasks. In (4.1) the students 
have to describe the 24 elements of the group of ro-
tational symmetries of a solid cube, listing all the 
possible axes and angles of rotation. This is classi-
fied as information transfer since the students have 
to visualize the cube, identify the axes and angles 
and describe the elements. Afterwards, in the same 
subtask, the students are asked to examine whether 
a specific set of rotational symmetries is a subgroup 
and to prove that the order of the subgroup is 8. Here, 
the students are asked to select from the 24 elements 
the ones satisfying the criteria of sending l to itself. 
This is categorised as evaluation.

In the second subtask (4.2) students have to examine 
whether the given relation is an equivalence relation. 
In the MATH taxonomy the process of deciding wheth-
er the conditions of a definition are satisfied belongs 
to different categories depending on the definition of 
the concept. If the definition is considered simple it 
belongs in the comprehension category and if “under-
standing [the definition] requires a significant change 
in the students’ mode of thought or mathematical 

knowledge” (Smith et al., 1996, p. 69) it is considered a 
conceptual definition and belongs to the information 
transfer. Here, the concept of the equivalence relation 
is considered a conceptual definition and thus classi-
fied as information transfer. Then, the students need 
to comment on the form of the equivalence classes 
defined by this relation, which are actually the left 
cosets, and this is classified as comprehension. Finally, 
the subtask asks to prove that if the group G is a finite 
group then the equivalence classes formed from the 
relation have the same elements. The students have to 
examine whether these left cosets have the same order 
as the subgroup H by defining a bijective function. 
This is categorised as comprehension, as the students 
have to show understanding of the equivalence class-
es’ concept and define the bijective function.

The students, at subtask (4.3), must state Lagrange‘s 
theorem and prove this theorem using the knowledge 
demonstrated previously in subtask (4.2). This sub-
task is classified as factual knowledge and fact systems 
and justifying and interpreting.

The skills and knowledge needed to respond to tasks 
5 and 6 (Figure 2) are classified as factual knowledge 

Figure 2: Examination tasks 5 and 6
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and fact systems, information transfer, application to 
new situations and justification and interpretation. 

ANALYSIS USING THE TANG, MORGAN 
AND SFARD FRAMEWORK

First, we present the analysis regarding the student 
component. Considering the student and exam-setter 
relationship, we examine whether the students are giv-
en commands or asked to examine mathematical ques-
tions. In this task, the students are given imperative 
instructions. Regarding the directions, the students 
are directed to present the group S in a specific way 
(“list…rotation”), they are also given directions, by im-
plication (“and hence show”) on how to prove that the 
order of the group is 24. Also, they are given directions, 
by instruction in subtask (4.3) as it specifically states 
that they should use the facts proved in (4.2) to prove 
Lagrange’s theorem. Regarding the depth and accuracy 
of the expected response, the students are directed in 
(4.2) (“saying carefully what this means”). Examining 
the decisions the students have to make, we observe 
that in (4.1) the students can decide whether or not to 
provide visual representations of the rotational sym-
metries of the cube. Finally, in our analysis of these 
tasks we do not consider the presence of the human 
beings as the tasks do not offer descriptions of human 
beings engaged in mathematical or everyday activities.

In our analysis regarding the mathematics compo-
nent we focus on the routines, due to space limita-
tion. The routines discuss the patterns observed in 
the discursants’ activity when attempting to construct 
and substantiate narratives endorsed by the math-
ematical community (Sfard, 2008). Here, according 
to the framework, we examine the form of student 
engagement and the areas of mathematics involved. 
The imperatives, present in the tasks, are analysed in 
order to examine the student’s engagement which is 
distinguished in: engagement in material processes, 
construing the student’s role as a ‘scribbler’; and en-
gagement in mental processes, construing the student 
as a ‘thinker’ (Rotman, 1988). Here, the students are 
asked to engage in material actions (“describe”, “list”, 

“state”, “use”) as well as in mental activity (“show”, “let”, 
“prove”, “suppose”). Relating to the areas of mathemat-
ics involved we see that the students have to engage 
with concepts from set and group theory, but also to 
demonstrate knowledge from geometry when asked 
on the rotational symmetries of the cube. Finally, we 
offer a categorisation of the routines, using Sfard’s 

theory, into: construction, resulting in new endors-
able narratives; substantiation, assisting in the deci-
sion to endorse a previously constructed narrative; 
and recall, bringing to mind previously endorsed nar-
ratives (Sfard, 2008, p. 225). In this task, the students 
are requested to engage in a construction routine 
when asked to describe the elements of the group S and 
in a substantiation routine when examining which of 
the elements of S send l to itself. In (4.2), the students 
have to engage in a substantiation routine, as they 
have to verify the definition of the equivalence rela-
tion. Then they have to prove that all the equivalence 
classes have |H| elements engaging in a construction 
routine in order to construct one of the classes and 
the mapping of the elements; and next in a substan-
tiation routine where they have to examine that the 
mapping is bijective. In the last subtask, the students 
are required to state and prove Lagrange’s theorem 
using (4.2). Consequently, the students have to engage 
in a recall and a substantiation routine.

In tasks 5 and 6 the students’ actions are pre-shaped 
since they are given explicit or implicit directions re-
garding the presentation, the depth and accuracy of 
their response and the methods. There are only a few 
instances where the students can decide on the method 
and the degree of accuracy. The tasks involve number 
theory, set theory, group and ring theory. We also note 
that the student’s role is construed both as scribbler 
and thinker. Finally, the students are asked to engage 
in construction, substantiation and recall routines.

DISCUSSION AND SUGGESTIONS 
FOR FURTHER RESEARCH 

The aim of this paper was to uncover the potential 
of two frameworks in analysing examination tasks. 
To this aim we discuss the results obtained from the 
analysis of three examination tasks and we offer here 
some reflections on the application of the frameworks.

The MATH taxonomy highlights the nature of the 
skills needed to respond correctly to the task. The 
students are asked to demonstrate their knowledge 
of the basic concepts and theorems used in the course. 
They are required not only to remember but to show 
their understanding of them too. In order to solve 
these tasks the students have to demonstrate factual 
knowledge and fact systems, comprehension of fac-
tual knowledge, information transfer, application 
in new situations, justification and interpretation 
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and evaluation. The analysis using the Tang and col-
leagues (2012) framework highlights that most of the 
students’ actions are pre-shaped with the implicit or 
explicit directions given to them, allowing them to 
be autonomous in very few cases. Furthermore, the 
student’s role is interpreted as both a scribbler and 
a thinker engaging with material actions and mental 
activity. The students are asked to engage with con-
cepts from the following mathematical areas: geome-
try, number theory, set theory, group and ring theory. 
Finally, the students engage in recall, substantiation 
and construction routines in different parts of the 
tasks. 

Both frameworks deal with the concept of familiari-
ty through the categories of recall routine or factual 
knowledge and factual systems. We should point out 
that familiarity, a highly contextual and subjective 
concept, is not clearly defined in either one. A task 
may be considered as familiar to some students and 
thus require them to engage in a memory retrieval 
procedure, while the same task presented to students 
exposed to different teaching material might require 
them to engage in mathematical activities of a differ-
ent nature. Also, familiarity can be different for the 
individual students belonging to the same teaching 
group as each one engages differently with the giv-
en material. In our analysis we classified a task as 
belonging to the categories above when it required 
stating a definition or a theorem. However, we should 
note that some parts of the tasks were given to the stu-
dents as coursework although the model solutions of 
these tasks were not made available to them, as these 
were the ones assessed in the coursework. Here we 
should report that there is a framework which ex-
amines the concept of familiarity more rigorously. 
Bergqvist (2007) used a framework developed by 
Lithner (2008) regarding the reasoning expected of 
the students. She analysed examination tasks from a 
Swedish university and categorised them into tasks 
requiring imitative or creative reasoning. A task was 
classified as demanding imitative reasoning if it asked 
for a fact or a theory item, for which the students were 
clearly informed that it might be requested in the ex-
aminations; or the task occurred at least three times 
in the textbooks of the course. Note that the context 
of our study is different from the one in Sweden, as 
in the United Kingdom the students mostly rely on 
their lecture notes and not on textbooks. 

In our analysis of the tasks using the MATH taxonomy 
we were unable to exclusively classify one task into 
one of the eight categories. Furthermore, we experi-
enced difficulties when trying to position the tasks in 
some categories as we didn’t have clear instructions 
regarding the effect of the background information on 
the classification of the tasks. However, both of these 
issues are related to the origin of the taxonomy. The 
taxonomy was developed to assist lecturers in creat-
ing balanced examinations and not as a research tool 
as illustrated in the quote below: 

[I]t is not our aim to be able to uniquely charac-
terize every conceivable assessment task. Rather, 
the aim of the descriptors is to assist in writing 
examination questions, and to allow the exam-
iner’s judgement, objectives and experience to 
determine the final evaluation of an assessment 
task. (Smith et al., 1996, p. 68)

Some interesting aspects of the tasks are pointed 
out using the Tang and colleagues (2012) framework. 
More specifically by examining the areas of mathe-
matics involved we gain information regarding stu-
dents’ engagement with mathematical concepts from 
other mathematical areas than the one that the course 
focuses on. This aspect is not highlighted in the MATH 
taxonomy as the focus is on the activity and not on the 
areas of mathematics. To be more specific, the tasks 
analysed here are assessment tasks from an abstract 
algebra course, but in order to solve them the students 
have to display knowledge of geometry (4.1), number 
theory (5 and 6) and set theory, which are not the focus 
of this course. This emphasises the nature of the math-
ematics involved; the prior knowledge expected from 
the students and also examines the students’ ability 
to draw on different areas of mathematics.

The level of guidance given to the students and the 
degree of their autonomy when solving a task is also 
highlighted by the Tang and colleagues (2012) frame-
work. As it examines the directions given to the stu-
dent; and the complexity of the response expected of 
the students, namely the decisions they have to make. 
Examining a task in this respect might provide some 
information on the exam-setters’ perceptions of their 
students, though this would need to be confirmed with 
interviews with the exam-setters. The explicit or im-
plicit directions on the method may display what the 
exam-setters value or think that their students would 
be able to manage better. Similarly, by examining the 
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directions regarding the presentation of the response 
we gain information on the exam-setters’ perception 
of the depth and the accuracy of students’ respons-
es. For example we have three instances where the 
students are explicitly asked to provide a response 
with a certain degree of accuracy and depth (“saying 
carefully what this means” (4.2), “you should justify 
carefully” (5.2.b) and “justify your answer” (6.2)). On 
the other hand, we have the decisions the students 
had to make in these tasks on the degree of accuracy 
(5.1.a) or the presentation of their response (4.1). It 
would be interesting to examine how the accuracy 
and the depth of the students’ responses in this case 
are assessed by their examiners. Finally, there were 
some decisions the students had to make regarding 
the method of solution. One of them was explicitly 
stated: “By defining … or otherwise” (5.1.c), but having 
in mind the students’ knowledge of the subject their 
methods of solution are limited to the specific methods 
they have encountered in the course.

The classification process of the examination tasks 
is highly subjective as a response to the task is taken 
into account. In order to position the task in a spe-
cific category in the MATH taxonomy and in order 
to examine the routines using Sfard’s theory (2008) 
we have to consider a possible solution to the task. 
The final classification depends on the researchers’ 
choice of response and their opinion of that response 

(Jolliffe & Ponsford, 1989). In our attempt to reduce the 
subjectivity of our classification we took into account 
the model solutions produced by the lecturer of the 
course for departmental use (Figure 3). 

Choosing this response for our analysis we investigate 
the lecturer’s expectation of the students’ solution and 
not the actual solutions produced by the students. In or-
der to examine the actual routines the students engage 
in, for the Tang and colleagues (2012) framework, and 
the skills and knowledge, for the MATH taxonomy, we 
need to examine the solutions produced by the individ-
ual students. Follow up interviews with the students 
are also necessary as different students can employ 
different routines and different skills and knowledge, 
depending on their background, to arrive to the same 
solution. 

In conclusion, our analysis of the same examination 
tasks using two different frameworks highlights some 
interesting aspects regarding the two frameworks and 
their applicability. We should note that in our analysis 
of the Tang and colleagues (2012) framework from the 
mathematics component we took into account only 
the routines aspect. We intend to explore the results 
from the other aspects of the framework namely vo-
cabulary and syntax, visual mediators and endorsed 
narratives. Finally, in the following stages of this re-
search, we aim to seek the views of the lecturers, who 

Figure 3: Model solution of task 4
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set the tasks, and the views of the students solving the 
tasks and relate these findings with the results from 
the frameworks. 
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The study reported in this paper investigates how no-
tions of the nature of mathematical knowledge and 
mathematical objects are articulated in the discursive 
practices of three university mathematics teachers at a 
Swedish university. The data consists of video recorded 
lectures, and the analyses were informed by classifica-
tions presented by Lerman (1990) and Davis and Hersh 
(1981). The results indicate that different epistemological 
and ontological positions are indeed constituted through 
the discourse. Although the discourse is generally highly 
objectified, the ways in which mathematical objects are 
introduced differ. Mostly the discourse was within an ab-
solutist paradigm, but there were also examples of how 
the socio-historical nature of mathematical knowledge 
is emphasized.

Keywords: Tertiary mathematics, university teaching, 

epistemology of mathematics, ontology of mathematics, 

mathematical discourse.

INTRODUCTION

Recent years have seen an increasing research inter-
est in university mathematics teaching, including 
a growing number of studies focusing on so-called 
traditional mathematics teaching (e.g., Gücler, 2013; 
Viirman, 2014b; Weber, 2004). One aspect of univer-
sity mathematics teaching, which has so far received 
less attention, is how notions of the character of math-
ematics are constituted through the teaching prac-
tices in mathematics lectures. The present paper is 
an attempt at addressing this issue. There are many 
ways of characterizing mathematics (see, e.g., Devlin’s 
(2000) four faces of mathematics), but in this short pa-
per I have chosen to focus on the classic philosophical 
questions of epistemology and ontology, that is, on the 
nature of mathematical knowledge and mathematical 

objects, and how these notions are manifested in the 
teaching discourse.

THEORETICAL PERSPECTIVES

The study takes it theoretical starting point in the 
commognitive framework of Sfard (2008). In this 
theory, mathematics is viewed as a discursive activ-
ity, with mathematical discourse constituted by its 
use of words, visual mediators, narratives (sequences 
of utterances speaking of objects, relations between 
and/or processes upon objects, and subject to endorse-
ment or rejection within the discourse) and routines 
(repetitive patterns characteristic of the discourse). 
In the present paper the focus will be mainly on nar-
ratives and substantiation routines, that is, routines 
aimed at deciding whether to endorse previously 
constructed narratives. Mathematical discourse is 
also characterized by its high degree of objectification, 
where words in the discourse are viewed as signifying 
independently existing objects (ibid, p. 300). 

Concerning the questions of the epistemology and on-
tology of mathematics, these have been central topics 
within the philosophy of mathematics for hundreds of 
years, and a more thorough discussion is far beyond 
the scope of this paper. For the purposes of this study 
the distinctions made by Lerman (1990) and Davis and 
Hersh (1981) will suffice. Lerman, in a study investigat-
ing the relation between views of the nature of math-
ematics and teaching practice, distinguishes between 
absolutist and fallibilist epistemologies. The absolut-
ist sees mathematical knowledge as certain, absolute 
and timeless, and views the history of mathematics as 

“a demonstration of the errors and mistakes along the 
way to certain knowledge” (Lerman, 1990, p. 54–55). 
Fallibilism (inspired by Wittgenstein and Lakatos) 
on the other hand, “sees the growth of mathematical 
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knowledge as a process of conjectures, proofs and ref-
utations, and accepts the uncertainty of mathematical 
knowledge as part of the nature of mathematics” (ibid, 
p. 54). A similar stance is taken by Davis and Hersh, 
(1981), who also consider mathematical ontology. They 
distinguish between Platonism, where mathematical 
objects are seen as real, having an objective existence 
outside of human experience, and an alternative posi-
tion, later denoted as humanism (Hersh, 1997), where 
mathematical objects are seen as human creations, 
but still objective in the sense of being external to the 
consciousness of any single individual. Instead they 
belong to the social, non-material culture of mankind.

Thus, the focus of this paper is on how the epistemol-
ogy and ontology of mathematics are expressed in 
the teaching discourse. The question that the paper 
aims at answering is the following: How are notions of 
the nature of mathematical knowledge, and of math-
ematical objects, articulated through the discursive 
practices of the teachers?

PREVIOUS RESEARCH

Traditionally, questions about the nature of math-
ematics in relation to teaching practices have been 
handled in the context of research on teacher beliefs. 
That is, the focus has been on what beliefs about the 
nature of mathematics teachers possess, and how 
these beliefs might impact on their teaching practice 
(for overviews of the early achievements in this field, 
see, e.g., Pajares, 1992; Thompson, 1992). The study by 
Ernest (1989) can serve as an example. Ernest identi-
fies three categories for characterizing individuals’ 
views of the nature of mathematics: Instrumentalist, 
Platonist, and Problem-Solving. However, Ernest’s 
study, like most similar studies, focuses mostly on 
pre-service or practicing teachers in elementary or 
secondary school, although there are some examples 
of studies of university teachers’ beliefs about math-
ematics (e.g., Mura, 1993; Speer, 2008). Also, studying 
teacher beliefs shifts the focus from the teaching to the 
teacher, which runs contrary to the aim of the present 
study. Furthermore, the very notion of teacher beliefs 
as a topic of research has been the subject of much 
criticism, from a methodological standpoint – beliefs 
being notoriously hard to define and gain access to 
(Speer, 2008; Skott, 2009) as well as on a purely con-
ceptual level (Skott, 2013). Skott suggests that we move 
away from the objectified construct of beliefs, focus-
ing instead on “patterns of participation” in social 

practices, that is, on the processes said to give rise to 
beliefs (Skott, 2013, p. 549). This approach is similar 
to Sfard’s (2008) commognitive framework, with its 
focus on discursive practice as a patterned activity.

Unfortunately, studies looking at how notions of the 
nature of mathematics, as described for instance in 
the literature cited above, are expressed through 
teaching practice are rare. The previously mentioned 
study by Lerman (1990) could be said to be one, al-
though the principal focus of the empirical analysis 
in his (mainly theoretical) paper is on what student 
teachers’ interpretations of a teaching episode tells us 
about their views of mathematics. Another example, 
which also happens to concern university teaching, 
is the study by Österholm (2010), investigating “what 
types of epistemologies are conveyed through prop-
erties of mathematical discourse in two lectures” (p. 
241). Despite Österholm’s paper being framed in the 
language of belief research, the analyses in fact focus 
solely on the epistemological character of mathemat-
ics as conveyed through the discourse. To this end, 
Österholm considers the types of statements and the 
type of argumentations used by the teachers. Of par-
ticular relevance for the present study is the distinc-
tion between use-statements, related to procedural 
knowledge; and object-statements, related to concep-
tual knowledge. A dominance of object-statements 
can be seen in the calculus lecture, indicating a focus 
on conceptual knowledge.

METHOD

The analyses presented in this paper are based on 
data collected for my doctoral thesis (Viirman, 2014a). 
This data consists of video recordings of first-semes-
ter mathematics lectures by seven teachers at three 
different Swedish universities, approximately two 
hours of video for each teacher. The teachers were 
selected among those volunteering to participate in 
the study, aiming for variety both in teaching expe-
rience and in topics taught. In this study, however, I 
am using data from lectures by three of the teachers 
(denoted A1, A3 and A4 in what follows, in accordance 
with other publications arising from this data, e.g., 
Viirman, 2014a; 2014b). These were chosen since the 
analysis conducted for the doctoral thesis indicated 
that they were the richest and most varied with regard 
to the aims of the present study. All three teachers 
work at the same university, one of the largest and 
most well-established in Sweden, and are experienced 



The constitution of the nature of mathematics in the lecturing practices of three university mathematics teachers (Olov Viirman)

2265

teachers, having taught university mathematics for 
more than 10 years. Teacher A1 is female, while the 
other two are male. All three lectures were given in 
courses aimed at engineering students, and were 
taught in a traditional style, with the lecturer talking 
and writing on the board. The number of students 
ranged from about 50 (teacher A1) to about 150 (teach-
ers A3 and A4). Teacher A1 taught an introductory 
course, preparatory for calculus; teacher A3 taught 
linear algebra; while teacher A4 taught single-varia-
ble calculus. The topic in all three lectures was various 
aspects of the function concept. For more detail on the 
process of data collection, see (Viirman, 2014a; 2014b).

As part of the work on the thesis, the video recorded 
lectures were transcribed verbatim, speech as well as 
the writing on the board. For the present study, the 
transcribed lectures given by teachers A1, A3 and A4 
were then analysed, first separately and then in com-
parison, looking specifically at how mathematical ob-
jects and the nature of mathematical knowledge were 
expressed through the teachers’ discourse, focusing 
on word use and narratives. Regarding the teachers’ 
use of definitions, and how new mathematical objects 
were introduced I looked, for instance, at how notions 
of agency were expressed in the discourse – whether 
these new objects were spoken of as originating out-
side of the discourse or within it. Concerning means 
of substantiation I looked, for instance, for utter-
ances suggesting change in such means over time. 
Throughout I used the categorisations of Lerman 
(1990) and Davis and Hersh (1981) to guide my analy-
ses. I want to stress that this is not a study of teachers’ 
beliefs. I make no claims as to whether the ways in 
which mathematical objects and mathematical knowl-
edge are articulated in the discursive activity in the 
lectures have any bearing whatsoever on the views 
the teachers might be holding regarding these matters.

RESULTS

Considering first the question of mathematical ontolo-
gy, the discourse documented in this study is typically 
mathematical in that it is generally highly objectified. 
The mathematical objects are spoken of as being in-
dependently existing [1]:

Teacher A4 So, it’s about continuity, and that is a 
property that functions can have.

Teacher A3 There is a transformation that we call, 
I don’t know, id for identity, that takes 
every vector to itself.

In fact, functions are so much like physical objects 
that they can be moved around:

Teacher A1 That is a function; it is the function 
x2 that I move one step to the right and 
two steps upwards.

Teacher A4 What happens to this function when 
x is bigger than one? (…) It goes down, 
yes, and then it will wander here, and 
get bigger and bigger and bigger.

However, looking at how new mathematical objects 
are introduced, narratives are framed in different 
ways, suggesting different ontological positions. 
Consider the following example:

Teacher A1 for us to know what we are talking 
about, we have to begin by saying exact-
ly what we mean by a function. I think 
that most of you already have a feeling 
for what it is that a function is, but may-
be you haven’t seen exactly a definition. 
Because, you know, it is like this in math-
ematics that all words we use, we have 
to say exactly what we mean by them so 
that we are totally agreed, if I say that all 
functions have a certain property, then 
all have to agree with me what objects 
we are talking about. We have to agree 
about what we mean by the word func-
tion.

Here, even though the functions are explicitly spoken 
of as objects, it is still clear that regarding the proper-
ties of these objects it is up to the participants in the 
mathematical activity to decide what they are. But all 
participants have to agree in order to be able to use 
them meaningfully. This way of talking is very much 
in accordance with the humanist philosophy, as for-
mulated by Davis and Hersh (1981). Later in the same 
lecture, we find the following example. The teacher 
is discussing the unit circle, an example drawn on 
the board.

Teacher A1 We would perhaps want this to be a 
function (…) but then when we insert 
something which isn’t one or minus one 
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then we get- there are two y-values that 
fit, so the function doesn’t give us exact-
ly one, it gives more than one, and then 
it isn’t a function.

Hence, although we, the participants in the mathe-
matical activity, have ourselves constructed this ob-
ject called function, we are not free to do whatever 
we want with it. Once we have decided what to mean 
by the word, it comes equipped with properties that 
are not ours to decide over. It is not enough that we 
want something to be a function; it has to agree with 
what we decided that a function should be. Again this 
corresponds to the humanist position, where mathe-
matical objects, although human creations, still have 
objective properties.

Yet another example from the same lecture: having 
introduced trigonometric functions through right 
triangles the teacher notes that these functions are 
only defined on the interval (0,π/2), and continues:

Teacher A1 We would want these functions sine 
and cosine to be defined for all real num-
bers, we would like to exchange this lit-
tle piece for the whole of R (…) then we 
have to figure out how to do this, and 
before we do this we have to say how we 
are going to measure angles.

Again, it is up to us as participants to decide how to 
define the sine and cosine functions outside of the in-
terval (0,π/2). But, it can’t be done any way we want. It 
has to agree with what has already been decided, that 
is, with how the functions are defined for acute angles.

On the other hand, the introduction of mathematical 
objects can be done through narratives framed in a 
very different manner:

Teacher A3 A function from Rm to Rn is called a 
linear transformation if it is linear, that 
is, if it satisfies two conditions:

The teacher then goes on to describe the two linearity 
conditions. After giving, as an example, a character-
ization of all linear transformations from R to R, he 
concludes:

Teacher A3 this was a very small example, and 
an example that has completely negligi-

ble importance for the rest of the course, 
but anyway it says something about that 
linear transformations are very rare. In 
any case they are very important.

As presented here, there are some things called func-
tions, and among these a small number satisfy certain 
conditions, and these are called linear transforma-
tions. Indeed, these are spoken of as rare, almost as if 
talking about rare birds or flowers. There is nothing 
in the way these objects are discussed suggesting that 
they are anything other than objectively existing, in-
dependently of our working with them. No reasons 
are given for the linearity conditions looking the way 
they do, for instance. Looking at the example given 
at the start of the section about the identity trans-
formation, the transformation is there, we as practi-
tioners of mathematics just give it a name. Similarly, 
concerning the relationship between matrices and 
linear transformations:

Teacher A3 Every linear transformation defines 
a matrix which we will call the standard 
matrix of the linear transformation.

Again, the transformation defines the matrix; we only 
have to give it a name. This way of speaking about 
mathematical objects fits with the Platonist position.

Considering epistemology, that is, the questions of 
mathematical knowledge and how it is obtained, much 
of the discourse documented in this study is consist-
ent with an absolutist paradigm. Claims are mainly 
justified using traditionally mathematical means of 
substantiation, for instance through mathematical 
proof or by reference to already established mathe-
matical facts (for more detail on the teachers’ substan-
tiation routines, see Viirman, 2014b). Some examples:

Teacher A4 It isn’t obvious that it is like this, this 
is not a property that all functions have, 
but for us it was a consequence of what? 
Two things. The basic properties of lim-
its (…) and the standard limits.

Teacher A3 Why is it linear? It is linear precisely 
because matrix multiplication works 
like that. 

The mathematical substantiations are mostly done 
through algebraic and numerical reasoning, as in the 
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following example, where the aim is calculating the 
range of the function f(x) = (x − 1)2 + 2 :

Teacher A1 In this case, there is an even square 
here, plus 2. Even squares can be zero or 
bigger. (…) Hence it can be 2 plus some-
thing positive, so it can be all numbers 
that are greater or equal to 2.

Or here, part of the process of calculating the value 
of sin(π/4) from a diagram of half a square:

Teacher A1 [x02 + x02 = 12 ⇒ x02 = 1/2 ⇒ x0 = 1/√2]

There are also examples of using geometrical reason-
ing to substantiate claims:

Teacher A3 That these two vectors are perpen-
dicular, this you can see immediately ge-
ometrically (…) If we project something 
which is perpendicular to v on v, then 
we just get zero, right? [Draws a vec-
tor pointing straight upwards, draws 
another vector pointing straight to the 
right and marks it by “v”, marks the an-
gle between the two vectors as right.] 
Here is v [points to the vector v], here 
is something which is perpendicular 
[points to the vertical vector], if we pro-
ject it down here [points to the base of 
the vertical vector] then we get sort of 
nothing.

In a similar fashion, teacher A3 shows the linearity 
of rotations in the plane by geometrical arguments, 
drawing vectors and their images under the trans-
formation and showing why the linearity conditions 
are satisfied.

There are also examples of substantiations empha-
sizing the cumulative nature of mathematical knowl-
edge, referring back to previously known facts, as in 
the excerpt quoted above, as well as in the following 
examples:

 Teacher A4 If someone were to twist your arm 
and say: How do you know that? Then 
it is precisely from the good old rules 
of limits.

Teacher A4 And now it’s time to reconnect this 
part of the brain that you have neglect-

ed for some time, namely complex num-
bers. Because the fundamental theorem 
of algebra says that a third degree poly-
nomial has three roots, in general com-
plex.

This is still consistent with an absolutist paradigm. 
There are however some examples of substantiations 
consistent with a fallibilist epistemology, where the 
historical development of mathematics is explicitly 
used in the teaching, emphasising the socio-historical 
nature of mathematical knowledge. Some examples:

Teacher A4 In fact, this is how one often defines 
continuity during the 18th century, this 
means that the graph of this function if 
we are to draw it [Draws a coordinate 
system, and draws a connected curve] 
it hangs together like this; I can draw it 
without lifting the chalk from the black-
board.

Teacher A4 This is the beginning of a line of work 
that is quite important within analysis, 
and which gained momentum during 
the latter half of the 19th century, when 
the deal was to find really pathological 
functions, that test our understanding 
of the function concept and what we 
can assume (…) A lot of great mathe-
maticians spent time on this, and some 
people thought that it was totally nuts, 
such things don’t exist, they are totally 
insignificant, can’t be used for anything, 
and that turned out to be totally wrong.

Teacher A4 I just read an article by a German 
mathematician from the late 19th cen-
tury (…) and he spent half a page in his 
article explaining what this meant, it 
wasn’t established at that time, the ter-
minology was vague, and it isn’t totally 
trivial what it means.

This way of using historical examples indicates how 
mathematical definitions are subject to change over 
time, and how even what is to be counted as mathe-
matics is the subject of disagreement and controversy. 

DISCUSSION

The results of the study show how different philosoph-
ical positions on the nature of mathematical knowl-
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edge and mathematical objects are articulated in the 
teaching discourse. The study is thus an example of 
how notions traditionally studied within the context 
of research on teachers’ beliefs can indeed be studied 
purely on the level of discourse.

One prominent characteristic of the discourse of all 
three lectures documented in this study was the use 
of a highly objectified language, something Österholm 
(2010) also notes in his study. Some of the differences 
that could be seen, for instance, regarding the type of 
substantiations used for claims made, can probably 
be explained by differences in the courses taught. For 
instance, in an introductory course such as the one 
taught by teacher A1 one does not expect substantia-
tion through previously established facts to be very 
prominent.

Still, there are other differences, more directly related 
to notions of the nature of mathematics, which are not 
obviously explained by differences in topic or level 
of the courses taught. For instance, the results show 
clearly how two different, and indeed contrasting, 
positions concerning mathematical ontology can be 
seen in the teaching discourse: a humanist position, 
emphasizing how the definition is something we as 
participants in the mathematical activity have agreed 
upon, and a more depersonalized Platonist position 
where mathematics is presented as something that is 
discovered, appearing fully formed. 

Concerning the epistemology of mathematics, al-
though the discourse documented in the study is 
generally consistent with an absolutist paradigm of 
mathematical knowledge, such statements may be 
interpreted differently depending on other aspects of 
the discourse. For instance, statements suggesting an 
absolutist position may be interpreted differently in 
the light of whether emphasis is generally placed on 
the man-made character of mathematical objects or, 
on the other hand, on a more Platonist way of talking 
about mathematical objects. Similarly, an emphasis on 
the socio-historical development of mathematics (hu-
manism position) makes an absolutist interpretation 
of the mathematical discourse less likely. One might 
point out here, however, that the use of historical ex-
amples does not in itself necessarily suggest a falli-
bilist epistemology. As Lerman (1990) indicates, “[w]
hilst it may be generally accepted that, in its external 
history, it is influenced by cultural determinants and 
social factors, the prevailing view is that the mathe-

matical knowledge that results is self-justificatory 
in terms of its truth” (p. 54). It might be possible to 
interpret some of the statements quoted above in this 
way. For instance, on the topic of the classic theorems 
on continuous functions (the maximum value theo-
rem, the mean value theorem etc.) when the teacher 
notes that “it wasn’t established at that time, the ter-
minology was vague”, this could be taken to mean that 
mathematicians have now established the true state 
of affairs. Although such an interpretation might be 
less likely, one would have to gather more data, both 
in the form of further recordings of his teaching, and 
data on how students interpret the use of the history 
of mathematics in teaching, to be able to draw more 
certain conclusions. 

Indeed, data on the students’ interpretations of the 
teaching practices would be useful, to establish wheth-
er the notions of mathematics constituted through the 
teachers’ discursive practices actually have any effect 
on student learning. It has been claimed by many with-
in the mathematics education community that stu-
dents’ beliefs about mathematics affect their learning 
(e.g., Pajares, 1992). Even if one accepts Skott’s (2013) 
critique of the concept of belief, increased knowledge 
of how notions of the nature of mathematics are con-
stituted through teaching practices, and of how stu-
dents interpret these practices, would be useful to 
gain further insight into the relationship between 
teaching and learning mathematics.

More generally, although the present study is small, 
the conclusion that notions traditionally considered 
as belonging to the field of belief research can actually 
be studied as features of discourse could be of impor-
tance to any researcher interested in such aspects of 
mathematical teaching and learning.
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1. All excerpts have been translated from Swedish by 
the author. Text within [square brackets] indicates 
writing on the board.
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This study presents an analysis of the answers given by 
prospective teachers to a questionnaire that consisted 
of 6 open ended questions. They answered the questions 
before meeting the formal definition of order relation 
and after getting familiar with the formal definition of 
order relation. In this context, the theoretical perspec-
tive of concept image and concept definition is used in 
the study. 

Keywords: Concept image, concept definition, concept of 

order, order relation.

INTRODUCTION

Considering the theoretical perspective of concept 
image and concept definition by Tall and Vinner (1981), 
this study constitutes a detailed report regarding how 
and to what extent prospective teachers convert the 
informal information regarding order notion to for-
mal information after the subject of order relations 
is taught in abstract mathematics.

RESEARCH QUESTIONS

RQ1: What are the concept images and informal defini-
tions of undergraduate students related to the concept 
of order?  
RQ2: After meeting the basic definitions of order 
relation, what type of changes happen in students’ 
concept images? 

CONTEXT OF THE STUDY

Order relation is one of the important concepts in 
abstract algebra.  By using order relation, the elements 
of a set can be ordered and the maximum, minimum, 
supreme, minimum, maximal and minimal elements 

of this set can be determined. In daily life whenever a 
comparison is done such as big-small, thin-fat, rich-
est-poorest etc., we can say that order relation is an 
intrinsic part of these comparisons. Nevertheless, it 
may be thought that students generally may not be 
aware of these associations between the daily usage 
and the concept of order relation which they learn in 
school (Narlı, 2013). In this context, it can be thought 
that the concept of order used in daily life informally 
can be associated with the concept of order relation 
in an academic setting.

In this qualitative study, using content analysis, a 
questionnaire – that aimed to inform us about stu-
dents’ concept images of order and was made up of 6 
open ended questions – was applied to 25 first year stu-
dents in the department of Elementary Mathematics 
Teaching at Dokuz Eylül University. The following six 
questions were asked to the students:

Q1.What comes to mind when you hear the phrase, 
“order notion?” Q2. Can the symbols “◻,D,#,*” be or-
dered? If yes, show how you order them. Q3. May an 
infinite set be bounded? Explain. Q4. May a finite set 
be boundless? Explain. Q5. Is there any set where any 
two different elements can’t be compared with each 
other in terms of greatness-smallness? Write your 
justification and exemplify it. Q6. What is order re-
lation? Explain.

RESULTS AND CONCLUSION

Our analysis revealed some concept images (CI) as 
well as data that we were not able to classify as concept 
images (CD, as in “categorized data”) – see Table 1.

If we consider our research from the theoretical per-
spective of concept image and concept definition, we 
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can say that concept images have a vital role in forma-
tion of the formal definitions. Prospective teachers’ 
concept images need to be approached attentively 
in the instruction plan. This study may be carried 
forward with greater sample groups and different 
theoretical perspectives.
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Before meeting definition (with frequency) After meeting definition

Q1 CI-1“Grouping of elements” (5)
CI-2“Determining arbitrary criterion (rule)”  (11)   
CI-6“Everything can be ordered” (3)   
CI-4“Only the numerical data can be ordered” (6)

CD-2(22)“The category points to under-
graduate students who answered Q1 by 
associating the formal definition (order 
relation)”, CI-1(3)

Q2 CD-1(17) “The answers that seem as unconcerned to our re-
search questions and the answers that are left blank can be 
categorized as CD-1”, CI-2(8)   

CD-2(21), CI-2(4)

Q3 CI-3“Boundedness and boundlessness vs. finiteness and in-
finiteness” (21),   CD-1(4)

CI-3(15),  CD-1(10)

Q4 CI-3 (15)   CD-1(10) CI-3(7)   CD-1(3)   CD-2(14)

Q5 CI-4(17)   
CI-5“Elements should be of the same type” (7)   
CI-7“Infinite decimal numbers cannot be ordered”(1)

CD-3(19) “Some undergraduate students 
tried to answer the question by defining a 
mathematically convenient order relation”, 
CD-1(6)

Q6 CD-4“this category points to the answers which have state-
ments that are inconsistent with the formal definition” (20)   
CD-1(5)

CD-5(21), “students provided formal defini-
tion of order relation” CD-1(4)

Table1: Categories of concept images and categorized data
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With an instrumental approach in a CAS environment, 
our research is oriented towards the development of in-
strumented action schemes. Involving concepts relat-
ed to improper integral and the use of the parameter, 
this paper presents the tasks that aim to identify the 
functional relationship that fits the graph of the points 
defined by the parameter values and the value of the 
improper integral convergent.

Keywords: Instrumental genesis, improper integral and 

instrumented action scheme.

This paper presents part of a teaching sequence based 
on the instrumentalist theory (Verillon & Rabardel, 
1995), where an artifact and an instrument are differ-
entiated. Trouche (2005) argues that the construct 
called instrumental genesis is a complex process 
linked to the characteristics of the artifact (its poten-
tialities and constraints) and it can be explained by 
the use of schemes and instrumented action schemes.

An instrumented action scheme is a stable mental or-
ganization which includes technical skills, concepts 
and theorems, supporting a way to use a device, in or-
der to perform a class of tasks (Drijvers & Gravemeijer, 
2005). Drijvers and Gravemeijer (2005) use the notion 
of the instrumented technique developed by Lagrange 
(1999) and consider it the visible external part of the 
instrumented action scheme.

METHODOLOGY

The teaching sequence comprises two stages: one for 
training in a CAS environment and another where 
students perform the designed activities. The CAS en-
vironment where our research is based is the Derive 
software. Ten engineering students voluntarily par-
ticipated in the experiment.

Following the line drawn by Drijvers and Gravemeijer 
(2005) for the identification of an instrumented action 

scheme as a list of key elements which includes techni-
cal and conceptual aspects for a specific task involving 
the use of a command from the CAS environment, the 
instrumented action scheme is established as a priori 
guidance on the design of activities to be implemented.

The given functions were , ; with, ,  and . The task con-
sisted of exploring the “Product of the function  and 
the function “. Using the “vector” command of the 
Derive software, the requested activities were to ex-
plain the behavior of the family of curves generated by 
the product  where  runs on the interval  for possible 
values   of the parameter ; to calculate the improper in-
tegral  for some values   of the parameter , to complete 
a table with the values   of the parameter  and the value 
of the improper integral when converges; to plot the 
points  and to consider if there was any function  or 
piece function that fits the plotted points above.

A training for using the “vector” command allows 
the student to use the potential in this facility. We 
expect the student to use the syntax  and  in order to 
analyze different behavior when  runs between  and  
with distinct steps.

RESULTS AND COMMENTS

The purpose of the activity related to the use of skilled 
and trained software Derive “vector” command is ful-
filled by students. This is observed in actions under-
taken with the software and the answers given in their 
worksheets. Intervention for students assigned a dif-
ferent “step” to an integer value in the corresponding 
syntax needed.

The students require intervention to identify the im-
proper integral  as , which may be finite, infinite or not 
exist. They also recognize the range of real numbers 
of the  variable for the function  has an asymptotic or 
exponential behavior.
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The students explained the asymptotic or exponential 
behavior of the generated family of curves, use the 

“vector” command and graphics software resources. 
They also employed the “vector” command to calculate 
the requested improper integral and to identify the 
functional relationship which conforms the graphical 
representation of  for values   of the parameter  when 
the improper integral is convergent. The students de-
veloped the use schemes for CAS commands. However, 
those are the conceptual aspects of the commands that 
require intervention. We can see this in the difficulty 
to identify the  parameter as a real number that in-
finitely takes many values –   and thus the potential use 
of the “vector” command – as well as in the difficulty 
for the students to properly identify when an improp-
er integral converges or diverges. The differentia-
tion of the technical and conceptual aspects from the 
scheme instrumented action allow timely intervention 
on the weaknesses shown by students.
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We present a reflection on the usage of modern algo-
rithms and technology, in order to revive topics of clas-
sical Differential Geometry. This enables students to 
acquire new mathematical knowledge and provides new 
skills for applied science.

Keywords: Differential geometry, 1-parameter families of 

curves, envelopes, technology.

MOTIVATIONS

Classical topics in Differential Geometry like the 
study of 1-parameter families of curves and their 
envelopes have been abandoned in the past for vari-
ous reasons: the classical theory may not be rigorous 
enough, it has too many particular cases, it may be so 
rich that it cannot be forced into a rigorous pedagogy, 
nothing ensures that all the “pathological” cases have 
been included in a catalogue, etc. (Thom, 1962).

Nevertheless, this topic has a great interest, both in 
mathematics and in modern applied science. It can 
be studied via a blended activity, i.e. pencil and paper 
work together with CAS work. Moreover it has many 
applications in science and engineering – caustics 
and wave fronts, i.e., Geometrical Optics and Theory 
of Singularities (Arnold, 1976), robotics and kinemat-
ics, rigid motion in 2-space and in 3-space, collision 

avoidance, etc. (Pottman & Peternell, 2000). This topic 
is also connected to the theory of billiards.

EXAMPLES

Let be given a family of plane curves by an equation 
f(x, y, c) = 0, where c is a real parameter. An envelope 
of the family, if it exists, is a curve tangent to every 
curve in the family. It can be shown that this envelope 
is the solution set of the system of equations f(x, y, c) = 0, 

∂f
∂c (x, y, c) = 0. Figure 1a shows the envelope of the fam-

ily of lines given by the equation x + cy = c2 (it is the 
parabola whose equation is x = −y2/4. Figure 1b shows 
the envelope of the family of circles with radius 1 and 
centre on the parabola whose equation is y = x2 (here 
the result has two components).

STRUCTURE OF A WORKING SESSION

We use infinitesimal methods for exploration and 
derivation of the equations, then algorithms based 
on Gröbner bases computations, first to solve the sys-
tem of equations, and then to transform the obtained 
parametric representation into an implicit one. 

This is a core issue in other fields (Pech, 2007). A sim-
ilar, but non identical, scheme gives the mathemati-
cal educational frame for other topics in Differential 

(a) (b)
Figure 1: Exploration of envelopes
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Geometry, giving an extension of the curriculum 
(Dana-Picard, Mann, & Zehavi, 2014).

CORE ISSUES

Such a study provides an opportunity to discover new 
topics beyond the scope of the regular curriculum, 
sometimes together with applications to practical 
situations. New computation skills with technology 
may be developed, in particular for the experimental 
aspect of the work (e.g., exploring the existence of 
cusps, as in Figure 1b). For this, the availability in the 
software of a slider bar is a central issue. Moreover, 
ability to switch between different registers of rep-
resentation may be improved, within mathematics 
itself (parametric vs implicit) and with the computer 
(algebraic, graphical, etc.). An interesting instrumen-
tal genesis may appear (Artigue, 2002) and mind-and-
machine interaction is a central feature of the work.  

An envelope may not exist (e.g., for a family of lines 
where the coefficients of the equations are affine 
functions of the parameter). These issues have been 
observed by the authors in sessions for in-service 
teachers at the Weizmann Institute of Science.
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The poster reports from a study of teaching in one small 
group tutorial with first year mathematics students in 
a UK university. The aim was to characterise teaching 
that was designed to support students’ meaning making 
in mathematics.  The research was developmental in 
that it contributed to the development of the teaching, as 
well as the tutor’s knowledge in teaching. Two research-
ers, one who was also the tutor, collected and analysed 
data in the form of recordings of each tutorial and reflec-
tions of the tutor. Analysis was grounded in the data and 
a theoretical construct, the Teaching Triad, was used to 
support analysis. Findings showed the tutor taking a 
questioning approach, seeking to probe students’ mean-
ings, but needing to prompt frequently due to students 
very short and tentative responses. The study points to 
the difficulties in encouraging students to articulate 
their mathematical understandings.

Keywords:  University mathematics teaching in small 

group tutorials;  teaching triad; teacher questioning; 

difficulty in students’ articulation of mathematics.

INTRODUCTION 

In this paper, we focus on teaching in a small group 
tutorial in the first year mathematics programme at 
a UK university. We studied 10 tutorials in all and 
focus here on one tutorial which addressed questions 
in linear algebra. We are interested in studying re-
lationships between the planning for teaching and 
teaching approaches, and the responses of students 
in so far as they gave access to the students’ meaning 
making in mathematics (Jaworski & Didis, 2014). Our 
three basic research questions are:

1) What is the nature of the teaching manifested in 
the tutorials?

2) What student meanings can we discern and in 
what ways?

3) In what ways can we link (1) and (2) and what is-
sues does this raise?

We took a sociocultural approach toward the research, 
recognising the many factors that underpinned ac-
tivity in a tutorial, contributed to the interactions 
between students and tutor, and to mathematical 
meaning-making by the students. We see that, making 
connections to the worlds of mathematics and beyond, 
and processes of socialisation into culture and val-
ues are all central to how mathematics is taught and, 
associated with this, how students make meaning in 
mathematics.

APPROACHES TO OUR RESEARCH

The tutor (the second author of this paper) planned 
the tutorials and worked with the students. Her co-re-
searcher (the first author) observed and audio-record-
ed tutorials and transcribed the recordings. Our con-
versations we sat together after tutorials were also 
audio-recorded; capturing the tutor’s teaching reflec-
tions and our analytical discussion as two research-
ers. In working on our data we combined a grounded 
approach with the application of the ‘Teaching Triad’, 
a theoretical model which has been used extensively 
for analyses of teaching (e.g., Potari & Jaworski, 2002).

We read and reread the data, developing a coding 
scheme and seeking to make sense of the data in re-
lation to our research questions.  In addition we ex-
plored the nature of the teaching using the Teaching 
Triad. These forms of analysis were inter-woven 
to provide a rich characterisation of teaching prac-
tice. Our approach was two-fold: (a) reflections on 
the tutor’s discerning of meaning-making in the 
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tutorial in order to guide the teaching approach; (b) 
the discerning of meaning making through analysis 
of tutorial dialogue in order to link teaching with 
learning.

RESULTS AND CONCLUSION

Analysis revealed many aspects of teaching and ways 
in which the teaching approaches “in practice” related 
to the approaches planned. A finer grain of analysis 
showed that the codes relating to “tutor questioning” 
were the most prevalent. Through questions, the tutor 
not only invited and encouraged students’ participa-
tion, but also tried to control the mathematical focus 
of the tutorial. She asked prompting questions to invite 
students to respond and articulate students’ meaning, 
trying to promote both individual meaning and collab-
orative meaning of students. The following dialogue 
illustrates an example of the tutor’s approach. 

Tutor: Now, Julia, what is the standard basis in 
R3? [Prompting-Q ]

S: (Julia) A matrix [SR-short/hesitant]

Tutor: Is a basis a matrix? [Prompting & 
Probing-Q ] [Mathematical challenge] 

S: (Julia) No [SR]

Tutor: Ok, what is a difference? [Probing-Q ] 
[Mathematical challenge] 

S: (Julia) Vectors (student smiles) [SR-short/tenta-
tive]

Tutor: If I asked to write down the standard ba-
sis in R3, what would you actually write? 
[Prompting-Q ]

Students’ responses were mostly short, tentative 
and hesitant. This led us to deduce that discerning 
meaning making was difficult and time consuming. 
University cultures and practices, in which students 
are rarely expected to speak their mathematical 
thoughts or engage in discussion, result in such en-
gagement being uncommon. Therefore, in relating 
the teaching approach to students’ meaning making 
with mathematics, we need to address further: (i) what 
students expect from these tutorials and what their 
readiness is to deal with the planned teaching; (ii) 

what the tutor expects from the tutorial and wants 
to see from students, and how this can be achieved; 
and, (iii) what time factors influence the depth of stu-
dents’ meaning making.
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INTRODUCTION

This study aims at exploring the challenges that stu-
dents encounter when they learn about differential 
equations. The study was conducted as a one-semes-
ter project with second-year students at one Iranian 
university. Students received nearly 9 hours of in-
struction in a differential equation course. In the task 

“What does the differential equation dy/dt = y2(4 − y2) 
predict y(t) for (a) y(0) = 3, (b) y(0) = −1 and (c) y(0) = −2” 
one of the students, Rogayeh, figured out the correct 
answers to parts (a) and (b) but she was unable to ad-
dress the part (c). Why would she be able to do parts 
(a) and (b), but fail to part (c)? I had the opportunity 
to become aware of some challenges that students en-
counter when they learn about differential equations 
by conducting an in-depth one-on-one task-based 
interview with Rogayeh. She had arrived at correct 
conclusions, yet underneath lay erroneous ideas and 
conceptual gaps.

RESULTS AND DISCUSSION

As shown in Figure 1, Rogayeh does not plot the equi-
librium solution curves. I asked “What is the limit of 
y(t) for (a) y(0) = 3, (b) y(0) = −1 and (c) y(0) = −2?” She was 
unable to address the last of these questions, although 
she answered part (a) and (b) correctly as 2 and 0. So 
I asked “may you show me the equilibrium solutions 
in your solution curves?” She couldn’t. So I changed 
my question to “What is an equilibrium solution?” 
She answered “… equilibrium points are −2, 0 and 
2. … they are functions whit fixed values.”  Hopefully 
this answer was helpful, I continued “Excellent. Well, 
now where are these fixed value functions?” But she 
couldn’t answer.

After some more conversation she said “If you ask me 
about y(0) = 2 then the answer is 2. But in y(0) = −2, solu-
tion curves are not convergent.” By her description, I 

realized why she couldn’t answer part (c). Because she 
saw the solution curves related to the y(0) = −2 were 
not converging (see Figure 1). This is a challenge that 
students encounter when they learn about differen-
tial equations. As a matter of fact, she thought that the 
differential equation dy/dt = y2(4 − y2) predict y(t) = 2 
for y(0) = 2 because solution curves are convergent. 
It shows that behind the students’ correct answers 
there often lay an incorrect conception of equilibrium 
solution (Rasmussen, 2001). 

Then it was a good time to ask “What do you predict 
if the y(t) starts off at exactly zero?” Immediately she 
answered “zero” and explained that “by putting a zero 
instead of y in y2(4 − y2), the answer is zero”. I would 
expect Rogayeh’s notion of equilibrium solution in 
zero to be a subset of her notion of a fix value function 
as she mentioned before. But this did not appear to be 
the case. Consistent with Zandieh & McDonald’s (1999) 
findings, this incident suggests a conceptual challenge 
that may lie beneath a correct answer. 

When I asked “What is the relationship between solu-
tion curves and the graph of the f(y)?” Rogayeh did not 
answer. So I asked “How do you see the relationship 
between solution curves and the phase line?” She an-
swered “… solution curves are increasing or decreas-
ing according as arrows in the phase line … arrows on 
the phase line are according as f(y) sign…” Although 
she links the phase line and the solution curves, as 
well the sign of f(y) in the sign chart and the phase 
line. But she is not able to connect the graph of f(y) 
and solution curves.  

This study is yielding new insights into the challenges 
that students encounter when they learn about differ-
ential equations. It seems more research into these 
challenges is needed so that new pedagogical strate-
gies can be created that will help students overcome 
these challenges.
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When analyzing influences on examination success 
in reference to learning strategies, we found that Effort 
played an important role. This supports the importance 
of affective and motivational aspects in the teaching of 
mathematics.
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Engineering students often have trouble passing 
mathematics examinations. Some approaches to rem-
edy this relate to cognition, others to affect. Another 
one, improving learning strategies, is promising as 
it relates to both aspects and provides a perspective 
for interventions. 

THEORETICAL CONSIDERATIONS

The obstacles students are facing when starting 
a course in mathematics at university can be cate-
gorized in different ways (cf. de Guzmán, Hodgson, 
Robert, & Villani, 1998). When the emphasis is on 
learning strategies, interventions can address cog-
nitive aspects, learning resources or the metacog-
nitive level. The design research (van den Akker, 
Gravemeijer, McKenney, & Nieveen, 2006) project 
MP2-Math/Plus is based on the hypothesis that learn-
ing strategies are the key to influencing learning be-
haviour (cf. Dehling, Glasmachers, Griese, Härterich, 
& Kallweit, 2014). Apart from providing a selected 
group of students with special coaching, MP2-Math/
Plus researches learning behaviour and collects data 
on personal circumstances and examination success. 
In order to cover different aspects of learning behav-
iour, the LIST questionnaire (Wild & Schiefele, 1996) 
was employed. This questionnaire is divided into elev-
en scales covering different cognitive, metacognitive 
and resource-related learning strategies. Thus it is 
appropriate for answering the research question:

What patterns are emerging when analyzing examina-
tion success in terms of these three measures: learning 
strategies, participation in a project on learning strat-
egies, and gender? 

SELECTED METHODOLOGICAL DECISIONS

LIST factor scores were calculated (N=653), yielding 
values between 0 and 100. Mutliple linear regression 
identified factors with relevant influence. Descriptive 
statistics were computed (N>1750), differentiating be-
tween project participation, examination success, and 
gender.

RESULTS AND IMPLICATIONS

Internal reliability of the scales was satisfactory 
(α > 0.7). The correlations between the factors were 
below 0.63 (highest between Effort and Metacognition), 
allowing for multiple linear regression with LIST 
factors as predictors and the examination result as 
outcome. This explained 23% of variance and high-
lighted the importance of Effort (p  =  0.000), Using 
Reference (p < 0.001), and Time Management (p < 0.01), 
with standardized βEffort =  −0.50, βReference =  0.24 and 
βTime = 0.18. Interestingly, all these are resource-related 
learning strategies, and among these three, only Effort 
improves examination achievement. Other support-
ive (though not significant) influences were found 
in Organizing (structuring and summarizing subject 
matter) and Learning Environment. The hypothesized 
relevance of Metacognition is not directly mirrored in 
the results, but becomes evident through its relatively 
high correlation to Effort.

Gender had no detectable influence on any kind of 
learning behaviour, although females participat-
ing in MP2-Math/Plus achieved significantly higher 
pass rates than their male counterparts, e.g. in 2013, 
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79.31% of female but only 68.29% of male participants 
passed the examination. On the whole, project par-
ticipation helped examination success, with some 
variance among project years, the most substantial 
success being a pass rate of 72.86% among partic-
ipants, compared to 57.97% for non-participants in 
2013. Moreover, achievement was significantly higher 
(p = 0.007, t(89.928) = −2.125, r = 0.219), although the MP2-
Math/Plus concept postulates deliberately choosing 
students with below average prior performance.

These results indicate the importance of fostering 
aspects covered by the Effort scale. These items (e.g., 
I do not give up even though the subject matter is very 
difficult and complex or Whenever I have planned a 
certain workload, I make an effort to master it) relate 
to perseverance and motivation, describing attitude 
rather than aptitude. It seems advisable to continue 
focusing on affective and motivational aspects and not 
relying on cognition alone. In order to gain detailed 
insight, the next step will be qualitative analysis, e.g. 
through interviews.
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ENDNOTE

The poster presented and discussed at the conference 
can be found at http://www.ruhr-uni-bochum.de/ffm/
Lehrstuehle/stochastik/griese.html.
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Issues of learning mathematics through a foreign lan-
guage have been discussed by many researchers, howev-
er, the focus has mostly been on primary and secondary 
schools and not university. This poster presents findings 
from a study that focused on university and investigated 
undergraduate students' meanings for mathematical 
terms used in logic. The sample was 89 second year uni-
versity students that had studied the topic of logic in 
mathematics in Malawi where English is the language 
of instruction but not the students' mother tongue. The 
students were asked to write down what they understood 
by a list of mathematical statements such as: if and only 
if, implies, and, or, and not. Findings suggest that even 
at undergraduate level, the mother tongue influences 
students' conceptions of mathematical terms. The poster 
presents some examples of students' responses and dis-
cusses possible reasons for the responses in relation to 
the mother tongue. Furthermore, the poster discusses 
some implications for teaching logic specifically and 
teaching mathematics in general, to undergraduate 
students' learning mathematics in English as foreign 
language.

Key words: Language, logic, Malawi, mathematical terms, 

undergraduate.

INTRODUCTION

This paper reports a study that investigated students’ 
conceptions of meanings of mathematical terms used 

in Logic, which are also used and applied through-
out the undergraduate mathematics courses, and 
their meanings are often assumed to be understood 
by the students. The paper focuses on four terms: or, 
implies, if and only if, and there exists. The study took 
a constructivist view of learning that meaning is not 
transferred from teachers to learners but that mean-
ing is constructed by the learners. This construction 
of meaning is influenced and affected by the learners’ 
prior knowledge (Vygotsky, 1962).  From previous 
studies, we expected that ordinary English and the 
students’ local languages might influence their con-
ceptions of the mathematical terms (Kazima, 2006). 
Furthermore, it is well known that students face dif-
ficulties with mathematical terms that have different 
meanings in ordinary English from mathematical 
English (Orton, 1992). 

METHODOLOGY

Fifty (50) undergraduate students that have studied 
the topic of Logic in English, which is not their mother 
tongue, were asked to write down what they under-
stood by a list of mathematical statements including 
the following four: (i) or, (ii) implies, (iii) if and only if, 
and (iv) there exists.  The students were also given a 
short test where the statements were applied, These 
included True or False statements where they had to 
provide reasons for their answers, for example, ‘8 = 
27 if and only if  2 = 3’ Students responses were coded 

Term Percentage of students that gave 
valid meaning

Percentage of students that gave 
valid example

1 or 14 12

2 implies 56 42

3 If and only if 4 8

4 There exists 38 36

Table 1: Percentage of students that gave valid meanings and examples
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and analysed using SPSS, and common responses for 
each of the terms were recorded. 

FINDINGS

Table 1 shows the percentages of students that gave 
valid meanings of each of the terms and percentages 
that gave valid examples for the terms. Table 2 shows 
some of the common responses.

DISCUSSION AND CONCLUSION  

The findings suggest that even at undergraduate 
level, language is an issue and influences students’ 
conceptions of mathematical terms. This is important 
because it affects the students’ understanding of Logic 
as a topic in mathematics and their ability to apply 
logical statements in mathematics in general. 

The common responses that or is a ‘choice’ from two 
things that cannot occur together, and that if and 
only if is emphasis on the condition for something to 
happen may not be new, but worth noting because 
these terms are used throughout the undergraduate 
mathematics courses, and therefore important for 
students to have precise meanings. 
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Term Common meaning Examples 

1 Or 
One or the other A baby can be a girl or boy 

Not sure I am not sure if I should go or not 

2 Implies As a result I cook implies I eat 

3 If and only if 
The only way 

if and only if  it stops raining then I will go 
to town 

Only condition 
I will have money if and only if my mother 
comes 

4 There exists Something is discovered There exists some numbers 

Table 2: Some common responses for meaning of terms  
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Although university mathematics teachers have an in-
fluential role on developing culture of teaching-learn-
ing mathematics in society, little is known about which 
kinds of teaching knowledge a future university math-
ematics teacher should have. Pedagogical content 
knowledge (PCK) provided a suitable theoretical base 
to study university mathematics teaching knowledge. 
This study aimed to find out what pedagogical content 
knowledge (PCK) in context of university mathematics 
teaching means. To answer this question, this research 
has done through grounded theory. Data were gathered 
by interviews from 27 university mathematics teachers 
(8 mathematics faculty members and 19 PhD students as 
future university mathematics teachers) and analysed 
through coding and categorizing. Data analysis revealed 
a detailed model which described PCK in context of uni-
versity mathematics teaching.

Keywords: University mathematics teaching, university 

mathematics teacher, teaching knowledge development, 

pedagogical content knowledge (PCK).

RESEARCH PROBLEM 

PCK was first introduced by Lee Shulman as a “miss-
ing paradigm” in teaching in the 1980s. Shulman (1987) 
identified seven domains of teacher knowledge, one of 
which is PCK: content knowledge; general pedagogical 
knowledge; curriculum knowledge; pedagogical con-
tent knowledge; knowledge of learners; knowledge 
of educational context and knowledge of education-
al ends. He described PCK as a special amalgam of 
content and pedagogy that is uniquely the province 
of teachers, their own special form of professional 
understanding. He also noted that PCK itself includes 
knowledge of learners, knowledge of educational con-
text, and knowledge of instructional materials.

One of the most important conceptualizations of PCK 
was proposed by Hill, Ball and Schilling (2008) and 
was labelled mathematical knowledge for teaching 
(MKT). These authors divided MKT into two cate-
gories: subject matter knowledge (SMK) and PCK. 
SMK was described as consisting of three domains 
of knowledge: common content knowledge (CCK), spe-
cialized content knowledge (SCK) and horizon content 
knowledge (HCK). Knowledge of content and students 
(KCS), knowledge of content and teaching (KCT) and 
knowledge of content and curriculum (KCC) are de-
fined as being included in PCK.

The MKT model has provided a useful foundation 
in mathematics education at lower grade. Speer and 
King (2009) analyzed CCK, SCK and PCK in mathe-
matics teaching at higher levels. Their research con-
cluded with a set of questions that they believe are 
important for the research community to consider as 
investigations of teachers’ knowledge more broadly 
and beyond school contexts.

Speer and colleagues (2015) demonstrate that the na-
ture of SMK, especially CCK and SCK, for university 
teachers are different from that of school teachers. 
Therefore, conceptualization of PCK in university 
mathematics teaching needs more study.

RESEARCH METHODS

This research was conducted through the ground-
ed theory approach. The study took place in Iran, a 
country with a centralized higher education system. 
Two universities were selected for gathering data. 
In each university, participants were 8 mathemat-
ics faculty members and 19 PhD students as future 
university mathematics teachers. Data of this study 
were gathered mainly through semi-structured in-

mailto:azimehkhakbaz%40ymail.com?subject=


What does pedagogical content knowledge (PCK) in the context of university mathematics teaching mean? (Azimehsadat Khakbaz)

2286

terviews of the participants’ experiences of teaching 
and learning mathematics at university. Interviews 
were transcribed and analyzed through coding and 
categorizing.

FINDINGS

Data analysis revealed that we could conceptualize 
PCK for teaching university mathematics through 
relationships between four main categories of knowl-
edge: 

 ― Knowledge about the context of mathematical 
concepts

 ― Knowledge about students’ understanding of 
mathematics

 ― Knowledge about mathematics curriculum plan-
ning

 ― Knowledge about creating an influential mathe-
matics teaching-learning environment
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This paper reports on a study that investigates the diffi-
culties encountered by first year undergraduate mathe-
matics students during their transition from school to 
university mathematics. The research is a case study 
of five students who were followed regularly from the 
beginning until the end of the semester through ques-
tionnaires and interviews while they were attending 
a Calculus course. The results of the research revealed 
difficulties faced by undergraduate students regarding 
the content of the module and the social and academic 
context. In addition, the research suggests a categoriza-
tion according to the approaches that students adopted 
in order to tackle these problems. 

Key words: Transition, university mathematics, first year 

undergraduates, calculus.

This paper reports on a study that investigates the dif-
ficulties first year undergraduate students of a Greek 
department of Mathematics who attend a Calculus 
course face in their transition from secondary to 
tertiary education and how these students deal with 
these difficulties. The main research questions are: (a) 
Which difficulties do first year mathematics students 
face in their learning of Calculus during their tran-
sition from school to university? (b) To what extent 
do the social and academic environment affect the 
transition? (c) How do students deal with these dif-
ficulties? The results we report in this paper regard 
mainly the third question.

Transition problems from secondary school to uni-
versity mathematics have been a recurrent issue 
which varies across different educational systems. 
Researchers note that there is a gap between school 
and university mathematics. School students study 
mathematics in a different way than the one required 

in university and as Clark and Lovric (2008) have 
indicated, mathematics courses at university focus 
on conceptual understanding whereas school math-
ematics tends to have more procedural characteristics. 
Advanced mathematical thinking requires students to 
develop working techniques that are necessary to un-
derstand and apply mathematical notions, definitions, 
theorems and proofs and this is a challenge for first-
year students entering tertiary education (Hoffkamp, 
Schnieder, & Paravicini, 2013). Apart from factors re-
lated to mathematical content, other factors are also 
important when students are entering university. 
These include their mathematical background, the 
academic and social environment, and their study 
habits (Pongboriboon, 1992). 

In the department of mathematics where this study 
was conducted, Calculus is offered in the autumn se-
mester of the first year with four hours of lectures and 
two hours of tutorials. Attendance is not obligatory 
and students have the option to sit the exams just after 
the end of the teaching period in January and resit in 
July or September, if they fail, or transfer their assess-
ment to the resit periods directly. Also, students have 
the option to drop out of the module and register in it 
again the following year. 

The research is a case study of five students who were 
followed from the beginning until the end of the se-
mester. Data collection was separated in two phases. 
In the first phase a questionnaire was handed out in a 
Calculus course consisting of general questions about 
students’ profile (e.g., gender, grades in secondary 
school, etc.) and some mathematical tasks. Then five 
students were selected according to the criteria of 
gender, grades and responses to the tasks and were in-
terviewed. The second phase of the research included 
three successive interviews that were spread across 
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the first semester and were conducted by the first au-
thor. During the first two interviews students talked 
about their experience in the university, respond-
ed to a set of mathematical tasks and commented on 
their responses to these tasks. In the last interview 
students were asked about their overall experience in 
the Calculus module and their new life in university. 

The results of this research revealed that students 
face various difficulties during their transition from 
secondary to tertiary education. Some of these diffi-
culties concern the content of the taught module, in 
our case Calculus, and some others to the new social 
and academic environment that students have to ad-
just to. Analysis suggested three categories of stu-
dents in terms of the approaches they used to tackle 
these difficulties. In all categories students begin their 
studies with great interest in mathematics. In the first 
category, students face difficulties mainly with the 
mathematical content. They consider the Calculus 
module very difficult. They become disappointed in 
the first weeks and they decide to transfer the module 
to the following year and pay attention to other mod-
ules which are easier to them: “It is not going very well 
because I am left behind, I said I would study on my 
own because I could not understand the first things 
we have done and then I just quitted and I thought 
of studying another module.” In the second category 
students realize from the beginning of the semester 
the differences between school and university, such 
as the new environment, the content of the module, 
the way the course is taught and the study habits. 
Despite the difficulties, they study hard: “[…] I start-
ed dealing with it [module] more seriously, studying 
more and considering the whole situation in a more 
mature way”. However this is not always effective due 
to their lack of mathematical understanding. In the 
third category, similarly to the second one, students 
face difficulties but mostly to the social and academic 
environment of university. The autonomy of univer-
sity work challenges them mostly but gradually they 
adopt a new way of thinking. In the end they find a way 
to adjust to the new institution: “There are differences 
[from school] that make you feel insecure, it is a new 
environment that you have to integrate into, find your 
own path […] in the beginning you feel like you are lost, 
but once you find your way everything works better.”
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INTRODUCTION

As shown in the Quebec Ministry of Education curric-
ulum, the first notions of abstract algebra are present-
ed in the linear algebra class, at CEGEP level (students 
of 17 to 19 years old). After a census of the 13 French 
CEGEP of Montreal region, which offer pre-university 
preparation for mathematics, we found out that four 
textbooks (regularly re-edited) are used by the majori-
ty of teachers as guidance for this class (Ouellet, 2002; 
Amyotte, 2009; Charron & Parent, 2005; Papillon, 1993, 
2012). Unlike high schools, CEGEP are free to choose 
the didactic material they propose to their students; 
textbooks do not have to be approved by a Ministerial 
commission. However, for the sake of consistency, ed-
itors try to respect ministerial guidance and organise 
the textbooks following objectives given by the min-
istry. Notably, amongst those programme objectives 
(MELS, 2010, p. 5), we found that the most relevant to 
the class of linear algebra students were:

 ― identify a certain amount of ideas in link with the 
subject to compare, classify and evaluate them; 

 ― link pertinent ideas in a logical order;

 ― building a coherent argument / reasoning / 
proof (loose translation).

Goal of the research
It therefore seems relevant for us to inspect to what 
extent the organisation of didactic sequences of these 
textbooks permits the attainment of the ministerial 
objectives. In reference to the aforementioned min-
isterial objective, we also want to study what are the 
valid domains of reasoning in the different textbooks. 

We propose the outline of a typology of incoherence 
revealed following the textbook analysis.

FIRST ANALYSIS AND RESULTS

Our analysis revealed that, in terms of style in which 
linear algebra is taught (Dorier, 1997), the way usually 
chosen by Quebec authors consists of building on pre-
vious notions, already introduced to the students, to 
present their generalisations [1]. However, when the 
notion with a high level of abstraction is presented, 
very few references are shown with a low level ab-
straction. We can observe here a first breach in the 
presentation since these references could serve as 
examples and these passages could allow to work on 
the comparison and classification of ideas as men-
tioned in the ministerial objectives. More generally, 
by making a crossing between the typology of abstrac-
tion levels and the notion of didactic transposition (as 
in Chevallard, 1985), three categories of incoherence 
were identified: 

1) Breach in the generalisation process: This in-
cludes elements such as the circular generali-
sations (lack of distinction between the didactic 
transposition levels) and the lack of examples 
(either prior to introduce generalisation, or to 
verify the coherence of the previous knowledge 
of low level of abstraction in this generalised the-
ory). We also include here breaches in the deduc-
tive structure (presentation order of notions.)

2) Unnecessary generalisation and presentation of 
mathematical concepts of low relevance within 
the deductive sequence: This includes elements 
such as the introduction of concepts which are 
never revisited or in only in an artificial and 
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technical way, solely to achieve technical ends. 
This category can also generate breach in the 
deductive structure.

3) False concept and creation of didactic obstacles 
(in the sense defined by Brousseau, 1998): This 
includes elements such as the introduction of 
mathematical concepts by failing to mention 
their range of validity. These concepts turn out 
to be incorrect once they are evaluated out of this 
implicit range. For example, to consider a vector 
and a scalar quotient only makes sense in real 
vectorial spaces.
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This paper presents a comparative study of the final sec-
ondary assessments in France, Italy and Chile, through 
the a priori analysis of tasks involving functions. We 
detect particularities in each expected resolution pro-
cess, and we focus more specifically on the “availability” 
level of a piece of knowledge, which corresponds to acti-
vating it without any help or indication. At the core of 
the comparison, we distinguish between two degrees of 
availability: as “object” and as “tool”.

Keywords: Function, international comparison, transition 

high school/university.

CONTEXT OF THE STUDY

The aim of this paper is to have insight into what 
is expected from students at the end of secondary 
school. This can be a way to study the prerequisites 

“at the entrance” to university courses in mathemat-
ics. Analysing the tasks proposed in the secondary 
school final assessment seems to be a first possible 
approach. In this study, we want to present a compar-
ison between three countries: Chile, France and Italy. 
France and Italy are two European countries with 
similar school systems, which have already been the 
object of a comparative study about the teaching of 
functions (Derouet & Panero, 2014). Including Chile 
allows us to enlarge and to enrich the comparison by 
considering a country with a different educational 
system. The Chilean secondary school ends at grade 
12. The final assessment, called “Prueba de Selección 
Universitaria” (PSU), is a test that ranks students for 
accessing to university. However, it does not evaluate 
all the notions studied at secondary school. The PSU 
test in mathematics is a multiple-choice test. In France, 

the secondary school goes from grade 10 to grade 12. At 
the end of this period, students have to pass an exam, 
called “Baccalauréat”, which is compulsory to enter 
university. The “Baccalauréat” varies according to 
section. In the scientific section, the exam in mathe-
matics is composed of four exercises, with detailed 
questions. Finally, the Italian secondary school ends 
at grade 13 (so it lasts one year more than the Chilean 
and the French secondary school). The final exam is 
called “Maturità” and, as in France, it is necessary to 
access to university. In scientific section, the exam in 
mathematics consists of two problems, of which only 
one has to be solved, and 10 questions (the candidate 
chooses and solves 5 of them).

Clearly, preparing students for the final assessment 
represents one of the main aims of the last year of sec-
ondary school in each country. In our study, we focus 
on the tasks involving functions. And we wonder what 
mathematical activity is expected from students at the 
end of the secondary school in Chile, France and Italy.

A PRIORI ANALYSIS OF TASKS

We focus on one representative task on functions for 
each of the three countries and, through an a prio-
ri analysis, we try to detect particularities in each 
resolution process. We partially refer to the meth-
odology of analysis of tasks introduced by Aline 
Robert (1998). Specifically, we wonder if the question 
is open or closed, we focus on the activated frames 
(Douady, 1986), working frames and registers (Duval, 
1995). Moreover, we consider the adaptations to do 
(introducing steps, choosing a method, recognising 
the modality of application) as well as the expected 
level of activation of knowledge (Robert, 1998). We 
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focus on the “availability” level, which corresponds 
to activating knowledge without any indication in the 
statement. We can distinguish two degrees of avail-
ability. On the one hand, a certain notion/property 
can be recalled and employed as “object”: for example, 
the memorisation of a formula to directly work on 
the involved notion. We call it “availability as object”. 
On the other hand, a notion/property can be recalled 
and introduced by the students themselves as “tool”, 
to solve a question that does not involve directly the 
notion. We call it “availability as tool”. The degree of 
availability of knowledge is at the core of our com-
parison.

CONCLUSIONS

This analysis allows us to notice some remarkable 
differences between the assessments of the three 
countries. Our main result is the observation of a 
great dissimilarity at the level of availability and of 
autonomy expected from the students, linked to the 
degree to which the tasks are guided. Chilean students 
appear to be required to activate knowledge at a high 
level of availability as object. French students seem 
to be expected to mobilise some pieces of knowledge 
at the level of availability as tool, but the availability 
as object prevails, with little space left to autonomy. 
Italian students appear to be given more autonomy in 
solving tasks and in mobilising knowledge at a high 
level of availability as tool.
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Exponential functions are critical for university study 
of financial mathematics, yet they persist as a chal-
lenging mathematical topic within finance and in 
the mathematics classroom. My research examines 
students' initial conceptions of exponential functions 
and student noticing regarding exponential functions 
in an inquiry-oriented instructional sequence taght in a 
university mathematical bridging course. My analysis 
identifies a strong tendency for students to initially not 
distinguish between power functions and exponential 
function, but, with carefully designed tasks, students 
were able to identify the characteristics of exponential 
and power functions that make these types of functions 
distinct.

Keywords: Exponential functions, student mathematical 

noticing, university students.

INTRODUCTION

Exponential functions are critical for the universi-
ty study of financial mathematics, yet they persist 
as a challenging mathematical topic within finance 
(e.g., Stango & Zinman, 2009) and in the mathematics 
classroom (e.g., Strom, 2008). While researchers and 
educators alike traditionally perceive exponential 
functions as a remedial topic for university students, 
the multitude of courses covering “remedial” topics 
suggest students are still actively developing their 
conceptions of these topics during their university 
studies (Bausch, Biehler, Bruder, Fischer, Hochmuth, 
Koepf, Schreiber, & Wassong, 2014). In this paper, 
I add to the literature regarding exponential func-
tions, by addressing two research questions. First, 
in the context of university financial mathematics, 
what are students’ initial conceptions of exponential 
functions? And during the instructional sequence I 

developed, what do students notice about exponential 
functions? 

SETTING AND DATA SOURCES

Data was collected in the summer semester of 2013 
at a university in southern Germany during a volun-
tary remedial mathematics course running parallel to 
the students’ required first semester financial math-
ematics studies. In particular, data was drawn from 
two sources: (a) a written survey on students’ initial 
conceptions of exponential functions prior to the in-
structional sequence (16 participants), and (b) fully 
transcribed and translated video recordings of the 
remedial classroom (2–8 participants). The analysis 
in this paper focuses on one day of the instructional 
sequence, in which students explored the distinction 
between exponential and power functions. Only two 
students, Alisa and Heidi, were present in the class 
on this day.

RESULTS

An initial survey was used to identify students’ initial 
conceptions of exponential functions. When asked 

“What is an exponential function?” 10 (of 15) students 
claimed it was function containing an exponent. 
When asked about their conceptions of exponential 
functions as used in financial mathematics, 7 (of 14) 
students stated that exponential functions are used 

“to construct cost, revenue, and profit functions,” often 
giving as examples polynomials such as .

Following the results of the survey, I developed an 
instructional sequence that included tasks guiding 
students in distinguishing between exponential func-
tions and power functions. Specifically students were 
prompted to model two scenarios for borrowing 100€, 
one with a fixed interest rate i and variable time n 
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(known as the Brother’s Situation, represented by 
the formula Kn= 100 ⋅ 2n) and another situation with 
a variable interest rate i and fixed time n (known as 
the Cousin’s Situation, represented by the formula 
Kn= 100 ⋅ (1+i)2).

Analysis of the transcript from the day that the in-
structional sequence was conducted drew on the 
Student Mathematical Noticing Framework (Lobato, 
Hohensee, & Rhodehamel, 2013). Lobato et al. define 
noticing as “selecting, interpreting, and working with 
particular mathematical features or regularities 
when multiple sources of information compete for 
one’s attention” (p. 809). For the purpose of this paper, 
I worked with only two primary components of the 
Student Mathematical Noticing Framework: centers 
of focus, which are the properties, features, regulari-
ties or conceptual objects which students notice, and 
focusing interactions, which are the discourse prac-
tices including diagrams and talk that give rise to the 
centers of focus.

Three centers of focus were identified:

1) Positive input values lead to similar graphs show-
ing increasing growth;

2) Including negative input values lead to dissimilar 
graphs, a parabola for the Cousin’s Situation and 
an exponential curve for the Brother’s Situation;

3) Differences exist in parameters and variables in 
algebraic representation when comparing the 
Brother’s Situation and the Cousin’s Situation.

This last center of focus was best summarized by Alisa: 
“For parabolas [points to Cousin’s function]… the expo-
nent is always known and for [points to Brother’s func-
tion]… there it is unknown, the, the exponent.” It was 
by identifying the difference of a “known” parameter 
in the exponent versus an “unknown” variable that 
permitted Alisa to distinguish between the Brother’s 
exponential function and the Cousin’s power function. 
This finding suggests that there is room, and neces-
sity, for an expansion of Strom’s (2008) Exponential 
Functions Framework, particularly to include how 
distinguishing from non-linear functions, especially 
power functions, is critical to students’ conceptions 
of exponential functions.
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The aim of the project outlined in this paper is to launch 
a new performance tracker of students’ mathematical 
performance. Our project consists of two parts – data 
collection and analytical assessment – both of which 
will happen over three academic years. The data col-
lection will result in a detailed database of students’ 
math grades. This will provide us with a solid basis for 
understanding the overall performance of our students 
and any links between students’ secondary education 
background and their university grades. More broadly, 
we aim to gain more insight into approaches to students’ 
motivation, and, over time, we aspire to track the im-
pact of any changes to lecturing materials or assessment 
framework on students’ performance. As lecturers this 
will also add an indirect feedback loop for the quality of 
our teaching. for students from various types of schools. 
We aim to publish our findings by 2017.

Keywords: Student performance tracker, mathematical 

literacy, motivation.

INTRODUCTION

The aim of the project outlined in this paper is to 
launch a new performance tracker of students’ math-
ematical performance. This database will serve as a 
platform for analysis and understanding of deter-
minants of student performance, their motivation, 
and background and indirectly we can quantify the 
impact of changes of syllabus. Whilst the tracking of 
student performance is common in Slovak pedagog-
ical universities, we are the first group to research 
and propose a performance measurement tool in a 
setting of an economics faculty. The project proposal 
is focused on university education. We aspire to factor 
the relevant information into our ongoing live project. 
Our project consists of two parts – data collection and 

analytical assessment, both of which will happen over 
three academic years. The data collection will result 
in a detailed database of students’ math grades. This 
will provide us with a solid basis for understanding 
the overall performance of our students and any links 
between students’ secondary education background 
and their university grades. More broadly, we aim to 
gain more insight into approaches to students’ moti-
vation, and, over time, we aspire to track the impact 
of any changes to lecturing materials or assessment 
framework on students’ performance. As lecturers 
this will also add an indirect feedback loop for the 
quality of our teaching. 

RESEARCH PLAN

Our envisaged broader plan of action is the follow-
ing:  Our data collection begins in the current academ-
ic year of 2014/15, where we are able to track and store 
mid-term student scores, end of term exam grades 
as well as secondary education information. At the 
end of the current academic year, we will have suf-
ficient data to draw simplified conclusions. We are 
particularly interested in the link between students’ 
secondary school mathematics performance and their 
exam scores in our faculty. We are also keen on ex-
ploring the progression determinants of the students’ 
first year mathematical performance:  starting from 
mathematics admission test at our faculty, through 
any mid-terms test scores up to the final exam grade. 

We have developed theoretical hypotheses about de-
terminants of students’ university performance using 
a variety of available literature sources.

Our statistical analysis of the collected data will pro-
vide a test for validity of these assumptions in the 
context of a Slovak university setting. 
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We also aspire to be able to draw broader practical 
conclusions about student motivation based on fac-
tors such as composition of tutor groups, student geo-
graphic background and the type of secondary school 
and the graduation score from mathematics. We 
would like to identify the motivation of students by 
short pre- and post- questionnaires or interview from 
a random sample of students. Research (Anderson, 
2007; Rock, Gregg, Ellis, & Gable, 2008;) suggests that, 
if we would like to support differentiated classroom 
practices, we will have to continually assess,  reflect 
and adjust content, process, and product to meet 
students’ needs. On a more personal note, our own 
competence as lecturers can be greatly improved by 
having more data points and statistical evaluation 
at hand. 

In the academic year 2015/16, we will use the same 
data collection and analytical approach and this time 
with a new set of first year undergraduates and the 
same process will be repeated in 2016/17 as well. Of 
note, the students at our faculty only have first year 
undergraduate mathematics; because after this first 
year of study they have only optional mathematics 
and statistics is provided by the department of statis-
tics at our university. Hence our data set is different 
each academic year. 

RESEARCH EXPECTED OUTPUTS

With a three-year data set, we will then be ready 
to draw more robust conclusions and identify the 
causality between mathematical performance and 
prior education background as well as the teaching 
framework at our faculty. We have to be very careful 
when working with data. For example, we need to be 
attentive to the complexities generated by the type of 
secondary school students come from. However, we 
would propose creative uses of pedagogical proposi-
tions that accommodate for differentiated learning. 
Tomlinson (1999) offers a caveat: “For all its promise . 
. . effective differentiation is complex to use and thus 
difficult to promote in schools. Moving toward differ-
entiation is a long-term change process” (p. 6). It would 
be simpler and less invasive form of introduction of 
specialized mathematical seminars for students from 
various types of schools.

We aim to publish our findings by 2017, with a publi-
cation that highlights the determinants of the quality 
of education in our university.
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We present findings regarding student understanding 
of linear independence of vector-valued functions, a 
concept common in linear algebra and differential equa-
tions. Data were collected from written homework ques-
tionnaires and a paired interview, prior to any formal 
instruction about the definition of linear independence 
of functions. Grounded theory was used to categorize 
student approaches, resulting in five main categories: 
Function Combination, Focus on t Values, Focus on 
Graphs, Focus on Scalars, and Previous Rule. Results 
suggest that students' transition from linear independ-
ence of vectors in Euclidean space to linear independ-
ence of functions in function space is not trivial and 
that fostering an object view of function may facilitate 
students more readily operating with functions as ele-
ments of a vector space.

Keywords : Linear algebra, linear independence, funcion 

space, Euclidean space.

Linear algebra and differential equations are im-
portant courses for mathematics and engineering 
students, and research shows that students tend to 
struggle with these courses (e.g., Dorier, 2000). While 
a growing body of literature exists about student un-
derstanding of linear independence of vectors in �n, 
few empirical studies report on student understand-
ing of linear independence of functions. In one report, 
Harel (2000) contended that students might struggle 
to determine A = {x, x2, x3, x4} is linearly independent 
if they “have not formed the concept of function as 
a mathematical object, as an entity in a vector space” 
(p. 181). The focus of this study is on how students 
make sense of linear independence of vector-valued 
functions, a concept common in linear algebra and 
differential equations. In particular, we investigate 
students’ initial notions of how linear independence 
in Euclidean space might extend to linear independ-
ence in function spaces. 

THEORETICAL FRAMEWORK AND METHOD

This study is framed by Cobb and Yackel’s (1996) emer-
gent perspective, which coordinates the individual 
cognitive perspective of constructivism and a socio-
cultural perspective based on symbolic interaction-
ism. Within our analysis, we assume that learners 
acquire knowledge from their daily experiences, that 
prior conceptions affect interaction with new ideas, 
and that knowledge structures are contextually de-
pendent. 

Data were collected during the Fall 2012 semester in 
an honors linear algebra and differential equations 
course for first-year mathematics or engineering stu-
dents. Data sources include a semi-structured pair-
wise interview and written responses to two home-
work surveys collected prior to students’ encounter 
with the formal definition of linear independence 
of functions. This timing allowed us to capitalize on 
a unique opportunity to investigate how students 
initially make sense of linear independence of vec-
tor-valued functions with only their prior under-
standing of vectors in �n. Questions analyzed in this 
study, written exactly as they were presented to stu-
dents, are given in Figure 1. Grounded theory (Strauss 
& Corbin, 1990) was used to analyze student responses, 
which led to five categories of student approaches. 

SUMMARY OF RESEARCH RESULTS 

We analysed two aspects of student responses: their 
problem solving approach and their answer for if the 
given functions were linearly independent (LI), line-
arly dependent (LD), or something else. For the first 
aspect, we found student approaches could be sorted 
into five main categories: Function Combination, Focus 
on t Values, Focus on Graphs, Focus on Scalars, and 
Previous Rule. The Function Combination approach, 
for example, which is typified by a primary focus 
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on whether or not the functions could be written as 
a linear combination of one another, supported the 
correct answer (LI) across the three questions. The 
Focus on t Values approach, which never supported a 
correct answer in this data, is characterized by first 
evaluating the functions at specific t values and then 
making conclusions about vectors in �n rather than 
about functions in a function space. For the second 
aspect, we categorized student answers for each ques-
tion. For instance, for Question 2, twelve students 
stated correctly LI, six stated LD, and four stated LI 
at some t values and LD at others. A description of 
all results, with examples, can be found in the poster 
presented and discussed at the conference at megan-
wawro.com/presentations. 

We acknowledge that the students’ ways of reasoning 
captured in both their approach and final answer may 
have been influenced by the formulation of the ques-
tions in Figure 1. For instance, the phrase “for all t ∈ �” 
was included to align with the formal definition for 
linear independence of functions the instructor had 
used; however, this may have led to more approaches 
aligning with the Focus on t Values category than if 
the questions had not included that phrase. Similarly, 
students who stated linearly independent at some 
discrete t values but dependent at others may have 
been influenced by the inclusion of that phrase.  

This preliminary work illustrates that students’ tran-
sition from linear independence of vectors in �n to 
linear independence of functions in function spaces is 
not trivial. The Function Combination approach, how-
ever, not only led to correct answers but also seemed 
within reach for these novice students; as such, it 
deserves consideration as a fruitful approach to be 
leveraged as students encounter linear independence 
of functions. This further suggests an importance of 
fostering an object view of function so that students 
can more readily operate with them as elements in a 
vector space. 
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Figure 1: Questions analysed about linear independence of vector-valued functions
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The technology working group continues to increase 
in size since its inclusion at the first CERME congress 
in 1999. During CERME 9, for the first time the group 
was divided from the beginning, giving birth to two 
separate groups: TWG15 focusing on issues related 
to the teaching mathematics and teacher education 
and professional development, and TWG16 focusing 
on students’ learning with technologies and software 
and task design issues (see Weigand, Lokar, Robutti, 
& Sinclair, 2015). 

TWG15 builds on the legacy of the group work at 
previous conferences. A number of important issues 
related to technologies and resources and their use 
by teachers and teacher educators emerged from 
the group discussions, such as the need to elaborate 
specific methodologies for analysing and evaluating 
the efficiency of teacher education programs, or the 
construction of models that facilitate analyses of the 
evolution of teachers’ practices related to their ICT 
use. The research presented in the group contribu-
tions tended to be: local, focusing on a particular as-
pect of teaching mathematics; short-term; and often 
conducted in controlled laboratory conditions, which 
prevented general conclusions being drawn about the 
benefits of ICT in mathematics education. The group 
concluded that it was necessary not only to learn more 
about “real” uses of ICT in classrooms and beyond, but 
also to understand why ICT is not used and to conduct 
long-term studies with “ordinary” teachers in “ordi-
nary” classes in order to explore the impact of the 
ICT on students’ learning and on teachers’ practices 
(Trgalová, Maracci, Psycharis, & Weigand, 2013). 

The call for contributions thus proposed to deepen 
the community’s understanding of these issues by 
addressing themes such as: the specific knowledge 

and skills required for an efficient use of ICT; teach-
er education programs embedding these knowledge 
and skills and assessment of their impact on teachers’ 
practices; theoretical and methodological approaches 
to the evaluation of the evolution of teachers’ practic-
es, “best practices” with using technologies, among 
others. 

WORKING GROUP IN A FEW NUMBERS

The group involved 31 participants from 13 countries: 
Cyprus, Czech Republic, France, Germany, Greece, 
Israel, Italy, Poland, Portugal, Slovakia, Sweden, 
Turkey, and United Kingdom. 17 papers and 6 posters 
were presented and discussed during the working 
group sessions. 

REPORT OF THE WORKING 
GROUP DISCUSSIONS

For each session, the group Co-leaders defined a 
particular theme that was discussed in relation to a 
group of a few papers and posters. The discussions 
were framed by two or three questions raised after 
the paper and poster presentations. In what follows, 
we give a brief overview of the themes discussed and 
the main outcomes. We conclude with an outline of 
some emerging perspectives for consideration at the 
next conference. 

Teacher professional knowledge and 
frameworks for its analysis
Various frameworks are used to analyse teachers’ 
practices with technology and digital resources in 
math classrooms: Bozkurt and Ruthven refer to the 
Structuring Features of Classroom Practice (SFCP) 
(Ruthven, 2009) that “identifies key aspects of the 
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craft of teaching that indicate the corresponding 
professional reasoning and craft knowledge that 
teachers must develop about these aspects in order 
to successfully incorporate new technologies”. Robová 
and Vondrová draw on the technological pedagogi-
cal content knowledge (TPACK) framework (Mishra 
& Koehler, 2006) to analyse teachers’ specific skills 
needed for work with dynamic geometry software. 
Rocha introduces a new framework, Knowledge for 
Teaching Mathematics with Technology (KTMT) that 
she applies to analyse teachers’ practices with the use 
of graphing calculators. 

The participants were invited to discuss the specifici-
ties of these frameworks and their usefulness both for 
the observation of teachers’ practice and knowledge 
and for structuring teacher education programs.

Fostering creativity in mathematics
Creativity in mathematics is a new issue raised 
within three contributions to TWG15. Papadopoulos 
Papadopoulos, Barquero, Richter, Daskolia, Barajas 
and Kynigos raise the issue of the design of resourc-
es fostering the development of students’ creative 
mathematical thinking (CMT) based on teachers’ rep-
resentations of CMT. Kynigos and Kalogeria propose 
an analysis of a collaborative design of resources for 
CMT within a specific technological environment. 
Jančařík and Novotná discuss scaffolding strategies 
in an e-learning mathematics course attended by gift-
ed students and their effectiveness in supporting the 
students’ problem solving. 

These contributions promoted the issue of how ICT 
supports creativity in the students. Two main aspects 
have been highlighted in this respect: encounter-
ing different registers of semiotic representations 
through technology, and linking communication 
about mathematics between teachers, students and 
students and teachers. 

Design, appropriation, orchestration 
of teaching situations
Contributions to these issues include both studies 
on local, short-term projects focusing on particular 
aspects of teaching mathematics alongside studies 
involving teacher development within large-scale 
projects concerning mathematics teaching with 
technology. Benacka and Ceretkova present the re-
sults of a survey evaluation of a course involving 28 
pre-service mathematics teachers centred on the use 

of spreadsheets. Sollervall and de la Iglesia investigate 
how a co-design methodology can support teacher’s 
orchestration of a didactical situation aimed at fos-
tering so-called “logos-oriented discussions” among 
students and between students and teachers. Turgut 
presents the results of a pilot study of a larger re-
search project involving the design and orchestra-
tion of teaching interventions within a linear algebra 
course with the use of ICT. Clark-Wilson, Hoyles and 
Noss  elaborate a conceptual framework and methodo-
logical  approach  for  research  aiming  at  evaluating  
the  success  of  the professional development part 
of a large-scale intervention. Fahlgren’s study aims 
at identifying those elements of activities involving 
students in scaling coordinates system in dynamic 
software that can affect the process of instrumental 
genesis. Lavicza, Juhos, Koren, Fenyvesi, Csapodi, Kis 
and Mantecón outline the theoretical framework, the 
different stages and highlight initial results from the 
first phase of a Hungarian national project promoting 
technology integration into Hungarian schools. 

The theme of design, appropriation and orchestration 
of teaching situations appeared a really multi-facet-
ed one; hence the issues proposed for the discussion 
concerned a lot of different aspects: the educational 
objective which can be pursued through the use of 
ICT, and how the choice of educational objectives in-
fluences the teacher’s use of ICT in her/his practice; 
the principles which can inform the design of tasks or 
teaching situations and their “teach-ability”; what is 
needed from theories to inform the design of teaching 
activities,  situations or sequences centred on the use 
of ICT; and the conditions under which short, local 
experimentations could be scaled, and the method-
ology through which scaling can be monitored and 
evaluated.

Assessment issues
Within the context of TWG15, the term assessment, 
and the role of technology within assessment, incor-
porates two perspectives: the assessment of teachers’ 
individual knowledge and practice concerning their 
classroom technology use; and technological tools and 
approaches to facilitate the summative and forma-
tive assessment of students’ learning. From the per-
spective of teachers, the paper by Karatas and Tutak 
describes a Turkish study that adopts the TPACK M 
Scale by Handal, Campbell, Cavanagh, Petocz, and 
Kelly (2013) to assess a group of 138 secondary teach-
ers’ technological, pedagogic and content knowledge, 
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raising important methodological questions concern-
ing the reliability and validity of such scales. The re-
maining papers (and poster) focus on the assessment 
of students’ learning. Chenevotot-Quentin Chenevotot-
Quentin, Grugeon-Allys, Pilet, Delozanne and Prévit de-
scribe the design and uses of a diagnostic assessment 
tool Pépite for the assessment of algebra at different 
grade levels in France. At the classroom level, Aldon 
focuses on how critical incidents arising from the stu-
dents’ uses of TI-Nspire technology provide the con-
text for teachers’ formative assessment of students’ 
mathematical conceptions. In her poster contribution, 
Juskowiak’s study concerns the assessment of students’ 
mathematical outcomes with non-standard problem 
solving tasks involving the use of graphic calculators.

The discussions that arose from these contributions 
prompted questions concerning the different ap-
proaches to the assessment of students’ learning with 
technology and the role of technology in supporting 
teachers to assess students’ mathematical learning 
and, ultimately make decisions based on this assess-
ment.

Teachers’ support of students’ 
conceptualisation in mathematics
Contributions to this issue explore the ways in which 
instrumented activities, orchestrated by a teacher, can 
benefit students in meaning-making of mathematics 
concepts. Psycharis presents two computational sys-
tems and discusses their potential in helping students 
conceptualize the notion of functions, based on both 
an a priori analysis of the systems affordances and on 
empirical studies of students’ interactions with them. 
Likewise, Stoppel shows how the use of different me-
dia, providing different functionalities and command 
syntax, may lead the students to applying different 
methods in a problem solving activities. Diamantidis, 
Economakou, Kaitsoti, Kynigos and Moustaki explore 
the emergence of meaning of a concept of angle in 3D 
space in students working collaboratively in comput-
er-based environment. Their study highlights the im-
portance of technology supporting communication, 
collaboration and joint mathematical thinking. The 
learning potential of a video with mathematical con-
tent shared on the web is studied by Palatnik. His study 
evidences that Web2.0 resources can become a new 
source for generating interest in mathematics amongst 
a public audience. Bagdat’s study highlights the role of 
a teacher in helping students make sense of the concept 
of variable while working with spreadsheets. 

The discussions of issues related to this theme brought 
forward two main ideas: the ability to assess affor-
dances of technological tools as one of the basic skills 
teachers need to develop in order to successfully inte-
grate technology in their practices, and the awareness 
of the importance of social learning, either in class-
rooms or informally through open Web2.0 resources.

CONCLUDING REMARKS AND PERSPECTIVES

The papers and posters presented and discussed with-
in the group encompass a wide variety of research 
topics. Several convergent concerns emerged from 
the exchanges among the participants. First, an im-
portant role of teachers in the design of appropriate 
instrumented tasks was acknowledged, as the expres-
sion from one of the participants “teachers as design-
ers of students’ learning with technology” documents. 
A need was expressed to redefine teachers’ skills ena-
bling them to support students’ collaborative learning 
not only in a classroom, but also while working online 
or offline, and subsequently to elaborate education 
programs embedding these skills. The discussions 
brought forward a complexity of meaning-making 
processes in mathematics, which requires from teach-
ers the ability of analysing affordances of comput-
er-based tools in order to avoid situations in which 
the students can succeed to solve a given problem 
without understanding the underlying mathematics. 
Also, articulating syntax-related issues inherent to 
digital tools with mathematics appears as an impor-
tant aspect in teaching and learning with technologies, 
which is in line with the theory of semiotic mediation 
(Bartolini Bussi & Mariotti, 2008).     

What perspectives can be outlined for the next 
CERME10 congress? There is still a need to develop 
a more comprehensive theoretical framework to ad-
dress “old” but still topical themes, such as task design 
and methods for large-scale dissemination of “good 
practices” with digital technologies use. The role of 
technologies in formative assessment, of networked 
classroom technologies and e-learning appear among 
the emergent issues that require further theoretical 
and methodological development. Finally, some top-
ics, which are under-represented, would deserve re-
searchers’ interest: touch technology, 3D technology, 
including 3D printers, virtual reality in mathematics 
education, Massive Online Open Courses (MOOCs) 
and web2.0 or web3.0 environments, and technology 
for educational special needs.
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When using technology, the translation of a mathemati-
cal concept into a particular technology brings syntactic 
difficulties that may lead to problems that can either be 
an excuse to withdraw from knowledge construction 
or a starting point for a mathematical reflexion. The 
boundary between the two attitudes is directly linked to 
the situation and to the integration of technology within 
the classroom. In this paper, I’ll present the notion of 
syntactic incident and show in a particular class situ-
ations how students react in front of the consequences 
of such an incident. 

Keywords: Technology, didactical incidents, formative 

assessment, theory of didactic situations.

INTRODUCTION

When Evelyne decided to begin her novel after a long 
reflexion about the characters she wanted to intro-
duce, the context in which they will evolve and the 
general scenario of the story she wanted to share with 
the world, she sat down in front of her desk, laid down 
a sheet of white paper, verified that her eraser was on 
the desk and took a pencil. “Once upon a ti...” she wrote. 
And her pencil broke. She first searched for a pencil 
sharpener but she didn’t find one (she remembered 
having given it to her nephew for the beginning of 
the school year); after a thundering cry of anger, she 
decided:

1) to write with a pen instead of a pencil even if it 
will not be possible to erase her writing,

2) to take a knife and to try to sharpen her pencil 
even if the lead will not be sharp enough for her 
writing,

3) to stop writing of the first page of her novel and to 
go shopping (buy a pencil sharpener, she thinks)

4) to sit down in her chair thinking about the incipit 
of her novel and remembering the most famous 
incipits of the literature... “Longtemps, je me suis 
couché de bonne heure...”, “Call me Ishmael.”, “The 
sun shone, having no alternative, on the nothing 
new”, “I have never begun a novel with more mis-
giving”... [1]

5) to call a friend asking for a pencil sharpener,

6) to abandon this adventure which is not for her, 
even the things are against her,

7) to go and buy a computer, it will surely be safer to 
write her novel and she has always thought that 
it is high time to understand computer science,

8) …

An incident occurred thwarting her intentions and 
this incident is directly linked with the tool she want-
ed to use with precise intentions: she wrote with a 
pencil because she wanted to erase her clumsiness 
and to keep a clean manuscript. The next episode of 
this story may be very different regarding the differ-
ent attitude she would adopt. 

In the first case, a direct consequence will be that she 
will not be able to erase the first draft. If she wants 
to keep the idea of a clean manuscript, she’ll have to 
think more carefully to the sentences she’ll write, oth-
erwise she’ll have to strike through her draft but, in 
doing so, she’ll keep in memory her different trials. 
The choice of the tool she’ll use has consequences on 
the organization of the content. In the same time she 
loose properties of the first tool, she gains new ways 
of writing.

The second attitude will modify the potentialities of 
her tool: she chose a pencil instead of a pen or a quill 
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for some reasons, rational or irrational. But she surely 
had built for a while schemes of utilization of this par-
ticular tool and the combination of an unprecedented 
sharpness of detail and smoothly flowing movement 
will disappear. 

In the third case, there is a break in the continuity of 
her work. She perhaps will come back to this particu-
lar state of mind that allows to begin the writing of a 
story, but for the moment, the incident stopped her 
progression. This important disturbance modifies 
deeply the next step of the story: instead of writing, 
she goes shopping and perhaps, she may come back 
to her task later.

The fourth case is also a break in the progression of 
her writing, but in that case, the new direction she 
takes, brings her in a deep reflexion about her own 
writing in the literature’s world. She stays in the gen-
eral context of her task but still work on the first sen-
tence in another way she did initially.

In the fifth case, there is an externalisation of the 
procedure. The solitude of the writer is broken by 
an external component. She will have to explain and 
perhaps to justify her will of writing a novel, she’ll 
surely have to summarize her first ideas, to introduce 
the theme of her novel... The first environment that 
she designed is deeply modified.

This sixth case is surely the most radical case where 
the incidents lean to an abandonment of the realiza-
tion of the task. It is certainly because the project was 
not deep enough within the writer’s mind, and using 
didactical words, that the devolution of the task is not 
made.

The seventh case is also a very radical transformation 
of the writing conditions. A result of the incident is 
to consider that the tool is not appropriated for the 
task and that the learning of a new way of writing is 
a precondition to complete the project successfully.

There are surely other developments of this story, but 
the lesson of this parable is that, regarding the condi-
tions, the actors, the environment, a same event can 
lead to different scenarii that may modify the conti-
nuity of a story. Taking into account this parable in 
the field of mathematics learning can give interesting 
tools to analyse the mathematical activity of students 
in front of a specific task.

More theoretically, when students are learning in a 
digital environment that is the result of a construc-
tion of the teacher who has specific intentions and of 
students’ knowledge regarding both technology and 
mathematics, the questions relative to the syntactic 
knowledge and interpretation are crucial for the con-
struction of mathematical knowledge at stake.

More precisely, a question that can be addressed and 
that will be developed in the paper concerns the con-
ditions that allow students to overcome syntactic in-
cidents in order to transform them into mathematical 
questions and lean to knowledge construction.

THEORETICAL CONSIDERATIONS

In order to answer such questions, the first approach 
is to precise in which context the answers will be 
searched. In our case, the methodology is based on 
the theory of didactic incidents (Aldon, 2011) which 
took its founding principles in the theories of didac-
tic situations (Brousseau, 2004) and of instrumental 
genesis (Rabardel, 1995; Artigue, 1997; Trouche, 2004; 
Drijvers & Trouche, 2008). 

The theory of didactic situations takes, as a starting 
point, the relationship between an interaction of a 
player in a particular game with his/her milieu, and 
knowledge. The didactic situation is for an observer 
the modeling of the environment of the game, and 
is the game itself for the student. From the point of 
view of students, the environment of the game is inte-
grated within the game and knowledge construction 
results from the interaction of the player with the en-
tire environment including his/her own knowledge, 
mathematical situation given through a specific word-
ing, the interactions with the teacher and available 
artefacts at this moment. Interactions of the player 
with the environment produce knowledge through 
the experiences build with the different parts of this 
environment. An important point is to consider in 
this environment the different available artefacts and 
the process of transformation of these artefacts into 
instruments useful for winning the game. The instru-
mental genesis theory that initially comes from ergo-
nomic studies considers the artefact as a thing with-
out any intentions. The use of the artefact in specific 
context transforms it slowly into an instrument that 
can be considered as the combination of an artefact 
and schemes of utilization. The integration of tech-
nology into the classroom is of the same nature and 
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can be considered as a slow process in which the giv-
en technology (the artefact) becomes an instrument 
through the double movement of instrumentation and 
instrumentalization. The instrumentation is the pro-
cess where the artefact modifies the subject’s activity 
and the instrumentalization is the process where the 
subject modifies the artefact for her own use.

A didactic incident is defined as “an event of the di-
dactical system that occurs sporadically, that is un-
foreseen, and that requires an appropriate answer 
of the actors” [2] (Aldon, 2011, p. 26). A didactical sys-
tem is the implementation of a didactic situation in a 
particular context. In the different didactic incidents 
that have been picked out, some of them are directly 
linked to the digital environment of the didactic sit-
uation. A syntactic incident is a problem that occurs 
in the conversion from a register of representation 
in another. The term syntax refers to the units that 
make up rules to accomplish an action. For example, 
the drawing of a line in the “language” of paper and 
pencil can be done using a ruler and a pencil (place 
the ruler on the paper, place the pencil along the ruler 
and follow the ruler with the pencil) and, this same 
drawing in the language of a GDS will be to choose 
the menu create a point, to show with the mouse the 
place of the point, to click with the right button of the 
mouse, to choose the menu line, etc. 

Especially, when there is a translation into a digital 
representation, syntactic incidents can a priori be 
triggered by two factors: the operation is not foreseen 
by the software and must be built or the operation is 
provided but doesn’t work due to a misunderstanding 
of the syntax of the command or, is not known by the 
operator, in a particular environment. The perturba-
tions that follow can be short in the case of an assis-
tance provided by an actor of the situation (teacher, 
other student, element of the milieu...) or by under-
standing of the phenomenon by the subject (which is 
part of his/her instrumentation). But, they may also 
have long-term consequences, as shown in the parable 
of the writer who breaks her pencil: a disengagement 
of the subject locally (3) or globally (6) leading to a 
new instrumental genesis, a loss of devolution of the 
situation (3, 6, 7) that may lead to a disengagement 
of the student, a questioning of the relevance of the 
artefact in achieving the task (1, 2, 7) that may come out 
to a reflection about the pertinence of a tool relatively 
to a mathematical task or a mathematical concept, a 
modification of the working environment (5) and a 

reorganization of the way to approach the problem (4) 
whose consequence could be either the beginning of 
a new learning different from the teacher’s intention 
or a new approach allowing knowledge construction.

We took the opportunity of a wide introduction of 
handheld technology in different classes to study the 
impact of such a technology on teaching and learning 
of mathematics. The example that is developed in the 
next paragraph comes from a class which is equipped 
with TI Nspire calculators. The teacher (J.L. in the 
following) worked in this class in a perspective of in-
quiry-based learning and proposed to his students (16 
years old, in a scientific major) problems that allow 
a personal and collective reflection. The example of 
this paper has been designed, observed and discussed 
in the context of the European project EdUmatics [3] 
and illustrate a syntactic incident leading to different 
perturbations.

EXPERIMENTATIONS

The context of the experimentation is a mathematical 
problem that is proposed to the students. The general 
context of this problem is the study of the relationship 
between the distance of a walker to a given point ac-
cording to his/her position on a path. In this study, 
we follow students who are searching the following 
problem:

Pjotr moves at constant speed along a square ABCD 
with center O (intersection of the two diagonals) and 
given side L, starting from vertex point A.

Pjotr wants to describe how his distance from the 
center O of the square changes while he is moving 
along the square. How can you help him/her? (If you 
wish, you can choose any positive real number as the 
length L of the side of the square).

The observed group worked either on their own cal-
culators or on a computer with the software TI Nspire. 
The different illustrations of this paper show the cam-
era viewpoint for this group of four students who are 
working both with their own calculator and with the 
software available on computer. The first analyzed 
episode comes after a first episode of work with paper 
and pencil that leads students to explicitly calculate 
the relationship of the distance that Pjotr covered 
along the first side of the square and his distance to 
the center as shown on the Figure 1. 
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It is interesting to notice, that a freehand drawing 
of the behaviour of the function (which has been 
stressed on the Figure 1) has been made on the paper 
before any calculation: “it’ll be like that, it’ll make a 
wave” a student said drawing the freehand drawing. 
The second episode of work consists in a transposition 
of the mathematical situation to the software. The idea 
developed by the four students was to capture in the 
spreadsheet the values of the distance of P (the posi-
tion of Pjotr on the square) to the centre of the square 
and to represent on a graphic these values according 
to the covered distance of point P from his starting 
point A. The syntactic incident comes from the trans-
lation of this idea in the language of the software. It is 
indeed possible to measure the distance of two points 
but there is no menu giving the distance from a point 
to another on a given path (here the square ABCD). 
The first trial was indeed to consider the abscissa of 
the graphic representation as the distance of A to P. 
The resulting graphics appeared to be in contradic-
tion with the idea expressed previously and drawn on 
the paper. In that case, the syntactic incident associat-
ed with the previous mathematical reflexion led one 
of the students (S1) to think differently the parametri-
zation of the point P in this task. Students are here in 
the fourth situation of the parable: the incident is the 
starting point of a new mathematical reflexion that 
comes to a definition of a piecewise function: 

J.L.: And how did you do to obtain the second 
arch?

S1:  In the next drawing, I made BP but each 
time I added six because six is the length 
AB...

In the same time and in front of the same situation, 
the second student (S2) working on his handheld tried 
to solve the same problem. However, his mastery of 
the technology or the mathematical reflexion are not 

sufficient to allow a transformation of his research 
strategy. In the contrary, most of his time was spent to 
try to solve the syntactic problem using the function 

“distance of two points” and without referring to the 
mathematical situation. The result was in contradic-
tion with the former reflexion but this student tried 
to solve the problem without the good tool. He was 
exactly in the situation of the second choice of the 
parable: the tool is not adapted to a precise goal but can 
give the illusion to work well. The result of the work 
is illustrated on the handheld screen of the Figure 2. 
In the didactic situation, there was, in that case, what 
Margolinas (2004) called a didactic bifurcation where 
the problem that try to solve the student is no more 
the problem that the teacher wanted to be solved. It 
is also an illustration of the seventh choice of the 
parable: there is a knowledge construction or a trial 
of knowledge construction but out of the intentions 
of the teacher. Even if this knowledge participates 
to the instrumental genesis of the student, the lack 
of institutionalization leads the student to consider 
this trial as a failure. It’s not sure that the different 
trials and errors done by this student lead to a better 
understanding of the technology and, in the contrary 
it could be a pretext to abandon this technology which 
is “a waste of time” as expressed by another student 
in an interview:

Interviewer: […] and do you remember the time 
you said, oh no, I do not want any more 
this calculator? 

Student: It was very early, yes because we had to 
go to the menu, go to this location there, 
finally, Click everywhere, we had quite a 

Figure 1: The first approach of the problem with paper and pencil

Figure 2: Two different consequences of the same syntactic 

incident
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journey to make a calculation you could 
do very easily with our old calculator, in 
fact faster. [4]

In this paper, we only study one example of syntactic 
incident in a particular episode, but, it is by studying 
different observations that we have been able to deter-
mine the types of behaviour described in the parable 
of the introduction.

MAIN FINDINGS AND CONCLUSION

One syntactic incident and its consequences on two 
different students has been detailed in the previous 
section showing that the perturbations following 
an incident may differ regarding the choice that 
follows the incident. The question that we posed in 
the introduction was to analyze the reasons why one 
or another consequences occur and more precisely 
why and when an incident is a starting point of a re-
organization of knowledge or not. Answers to these 
questions are interesting for the student as well as 
for the teacher in a perspective of formative assess-
ment, defined by Bell and Cowie (2001, p. 536) as “the 
process used by teachers and students to recognize 
and respond to student learning in order to enhance 
that learning, during the learning”. The European FP7 
project FaSMEd [5] “aims to research the use of tech-
nology in formative assessment classroom practices 
in ways that allow teachers to respond to the emerg-
ing needs of low achieving learners in mathematics 
and science so that they are better motivated in their 
learning of these important subjects.” The incident 
analysis is part of the toolkit that allows to understand 
better the behavior of students in a digital learning 
environment.

In the different observations in teaching and learning 
digital environment, the analysis of syntactic inci-
dents and the perturbations that follow show different 
cause that can be clues for students and for teachers 
in order to understand when and why knowledge at 
stake in a particular mathematical situation is not 
reached.

Incidents lead to perturbations that prevent knowl-
edge construction when:

 ― Technology is external to mathematics, that is 
to say technology is not included in the set of 
mathematics tools useful in the resolution of a 

mathematical problem for a given student at a 
certain moment. 

 ― The knowledge of the syntax overcomes mathe-
matical knowledge: in that case learning the syn-
tax (in the sense defined in the second section) 
adds technical or conceptual difficulties that lead 
students to forget the mathematical notions at 
stake.

 ― The technological knowledge is more difficult 
that math knowledge at stake in a given situa-
tion: in that case, it is important to think about 
the adapted technology.

 ― Technology that is used doesn’t supplies poten-
tialities that are necessary in the mathematical 
situation most of the time because of a bad initial 
choice of technology.

In the contrary, incidents lead to construction of 
knowledge when:

 ― The class culture takes into account the experi-
mental part of mathematics, and technology is 
used internally in different mathematical situ-
ations.

 ― The instrumental genesis is sufficient to give 
adapted technological skills in the learning sit-
uation.

 ― The knowledge of the syntax of a particular tech-
nology is either sufficiently natural or trained 
before having to use it in a complex mathematical 
situation

A continuation of this study will be to make this kind 
of analysis operational both for teachers in a perspec-
tive of formative assessment and for students in a 
perspective of auto-evaluation. This work is part of 
the FaSMEd project.
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E: C’était très rapidement, oui parce qu’il fallait aller 
dans le menu, aller dans cet endroit-là, enfin cliquer 
de partout, on avait pas mal de cheminement pour 
faire un calcul qu’on pouvait très bien faire avec notre 
calculette, plus rapidement en fait. (Aldon, 2011, p. 
652) (Translated by us).
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The article presents the results of a survey on using Excel 
for graphing functions, solving equations and inequali-
ties without and with a parameter, and solving systems 
of linear equations with pre-service mathematics teach-
ers. The experimental group were 28 master students of 
teaching mathematics. The aim was to ascertain that 
the methodology can benefit teaching the topics and 
make mathematics more interesting.

Keywords: Spreadsheets, modelling, constructivism.

INTRODUCTION

The spreadsheet is a tool that enables access to ideas 
and concepts through a computational experiment 
without any need for programming. It allows using in-
quiry and heuristic methods and the immediate feed-
back provokes into experimenting and discovering. 

The use of spreadsheets in mathematics education has 
been researched for decades, however, mainly on pri-
mary and lower secondary level (Healy & Sutherland, 
1990; Rojano & Sutherland, 1993; Hošpesová, 2002ab; 
Haspekian, 2005, 2011, 2014; Ainley, Bills, & Wilson, 
2005; O’Reilly, 2006; Wilson, 2006; Tabach, Arcavi, 
& Hershkowitz, 2008; Tabach & Friedlander, 2008; 
Tabach, Hershkowitz, & Arcavi, 2008; Drake, Wake, 
& Noyes, 2012; González-Calero, Arnau, & Puig, 2013; 
Watson & Callingham, 2013; Geiger, Goos, & Dole, 2014). 
There is a considerably smaller  number of articles 
written on the use of spreadsheets in mathematics ed-
ucation at upper secondary level (Molyneux-Hodgson, 
Rojano, Sutherland, & Ursini, 1999; Sivasubramaniama, 
2000; Neurath & Stephens, 2006; Forster, 2007; Topcu, 
2011; Benacka & Ceretkova, 2013). 

Research of Molyneux-Hodgson and colleagues (1999) 
with 16 to 18 years old students from England and 
Mexico showed that the mathematical culture in the 
country affected the choice of the means when the 
students solved tasks with spreadsheets. Research of 
Sivasubramaniam (2000) with student of age 14 and 
15 showed that the use of spreadsheets had a positive 
impact on understanding Cartesian graphs. Forster 
(2007) researched a group of 17 and 18 years old girls 
on the use of technology when investigating the trend 
of a set of data from jewellery. Projecting graphs creat-
ed in spreadsheets had a positive effect. Topcu’s (2011) 
research with 16 years old boys showed that the boys 
who used spreadsheets to solve algebra tasks were con-
siderably more confident as they were aware of the 
possibility of checking and correcting errors. Neurath 
and Stephens (2006) researched the effect of integrat-
ing Excel into teaching of algebra with 14 to 17 years 
old students. The students’ opinion of the lesson was 
surveyed by a questionnaire. The result was that 69% 
were interested in solving tasks with Excel and under-
stood algebra better, and 77% of the students enjoyed 
the course because solving tasks with Excel made alge-
bra more interesting. Just 8% disapproved in both cases. 
Benacka and Ceretkova (2013) gave account on an ex-
periment in which 16 to 19 years old students developed 
Excel applications to graph functions, find extremes, 
solve systems of linear equations, calculate the area 
of a planar figure by the rectangle method and Monte 
Carlo method, and simulate motion of a projectile in a 
vacuum. The students’ opinion of the lesson was sur-
veyed by a questionnaire. The result was that 100% of 
the students found the lessons interesting, 35% under-
stood all and 65% understand most of the mathematics. 

This article presents the results of a survey on using 
Excel in mathematics teachers education. The exper-
imental group were 28 first year master students of 
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teaching mathematics. There were 6 men and 22 wom-
en in the group. The topics were Graphing functions, 
Solving inequalities, Solving equations with a param-
eter, and Solving systems of three linear equations 
with three variables. Aplications developed by the 
first author were used. The aim was to ascertain that 
the applications, the tasks and the presented teach-
ing methodology can make teaching mathematics at 
upper secondary level attractive, benefit the teaching 
of the topics and contribute to the technological and 
pedagogical knowledge (TPACK) of the pre-service 
teachers. Each topic took a 90 minute lesson. A ques-
tionnaire survey with the following questions was 
carried out at the end of each lesson:

A) The lesson was (1 = very; 2 = quite; 3 = little; 4 = not) 
interesting.

B) I understood (1 = all; 2 = most; 3 = little; 4 = nothing) 
of the mathematics involved in the activity.

C) The lesson contributed to my TPACK 

D) (1 = a lot; 2 = quite a lot; 3 = little; 4 = not at all).

E) The applications benefit the teaching of the topic

F) (1 = a lot; 2 = quite a lot; 3 = little; 4 = not at all).

G) Developing the applications helps comprehend the 
core of the topic 

H) (1 = a lot; 2 = quite a lot; 3 = little; 4 = not at all).

I) I am a man (1 = yes; 2 = no).

Answers 1 and 2 in questions A–E were considered 
positive. Altogether, 96 questionnaires were evalu-
ated. The survey summary is in the last section.

GRAPHING FUNCTIONS 

The application on the left side of Figure 1 graphs 
functions if the definition domain is R. The graph is 
produced from 100 points in range B16:C116. Cell C12 
contains the formula =(C10-C9)/C11. Cell B16 contains 

=C9, Cell B17 contains the formula =B16+$C$12. Cell 
C16 contains the formula =$C$3*(B16-$C$5)^2+$C$6. 
The two formulas are copied down as far as row 
116. The application on the right side of Figure  1 
graphs functions if the definition domain is not 
R. The graph is made over 5000 points in range 
B16:B5016 and J16:J5016. Cell C16 contains the formula 

=$C$3*TAN($C$4*(B16-$C$5))+$C$6. Cell M17 contains 
the formula =IF(ISERROR(C16);NA();C16). The two for-
mulas are copied down as far as row 5016. The points 
that are out of the definition domain are skipped by 
function NA(). 

Lesson and survey: There were 28 students in the les-
son, 6 men and 22 women. The students downloaded 
the template (Figure 1 with empty white and grey 
cells) from a website and developed the application 
with the teacher’s help. The shape of the graph, defi-
nition domain, range and symmetry of elementary 
functions y = x, y = x2, y = x3, y = 1/x, y = 1/x2, y = √x, y = sin 
x, y = cos x, y = 2x, y = log2 x, y = tan x and y = cot x,  was 
discussed and visualized by the applications. The ef-
fect of the sign and absolute value of the parameters 
on the orientation, steepness, period and shift of the 
graph were checked. The following algorithm for 
graphing functions y = af(a − m) + n or trigonometric 

Figure 1: Graph of a function with definition domain R (left) and not R (right)
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y = af(b(a − m) )+ n by hand was deduced and exem-
plified by graphing the functions y = (2x − 4)2 − 5  and 
y =2tan(2 − 2x) + 1 (Figure 1). At the end of the lesson, 
the students answered the questionnaire. The result 
is graphed in Figure 2.

The result is: (A) 92% found the lesson interesting (71% 
very, 21% quite); (B) 100% understood the topic (96% 
all, 4% most); (C) 89% had the feeling that the lesson 
contributed to his/her TPACK (71% a lot, 18% quite a 
lot); (D) 97% found the applications to be benefitting 
(86% a lot, 11 % quite a lot). (E) 93% were of the opinion 
that the developing helped comprehend the core (54% 
a lot, 39% quite a lot). The women found the lesson 
more interesting and benefitting than the men.

SOLVING INEQUALITIES 

Solving an inequality analytically may be an intricate 
process that takes many minutes.  With Excel, the solu-
tion is quick, transparent and credible. The inequality 
|3 − 5x|

x − 2   ≥ −x − 2 is resolved by using the application in 
Figure 3 and 4. The solution is clear from the position 
of the graphs.

Lesson and survey: There were 21 students, 5 men and 
16 women. The analytical solution to the inequality 

was quickly gone through. Then the students devel-
oped the application from the application on the right 
side of Figure 1 and resolved the inequality in two 
ways. First, the intersection point was found by itera-
tion (Figure 4). The maximum and minimum of axis x 
(cells C9:C10) were set up to be close to the intersection 
point from both sides. Then, the x coordinate of the 
intersection was found in the first column of range 
B16:D5016 in the row in which the values in the second 
and third column were equal (cell B3090). The other 
way of solving was by using Goal Seek (Figure 3, range 
K12:N13). The solution is x ∈ [−0.19, 1.14] ∪ (2, ∞). The 
exact solution is x ∈ [ 5 − √29

x − 2  , − 5 + √53
x − 2  ] ∪ (2, ∞); however, 

the bounds have to be converted into decimal num-
bers for practical use, which is the form shown above. 
At the end, the students answered the questionnaire. 
The result is graphed in Figure 5.

The result is: (A) 96% found the lesson interesting 
(67% very, 29% quite); (B) 100% understood (90% all, 
10% most); (C) 96% had the feeling that the lesson con-
tributed to his/her TPACK (67% a lot, 29% quite a lot); 
(D) 100% found the applications to be benefitting (71% 
a lot, 29% quite a lot). (E) 100% were of the opinion that 
the developing helped comprehend the core (81% a lot, 

Figure 2: Relative frequency of the answers

Figure 3: Solution with Goal Seek Figure 4: Solution by iteration
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19% quite a lot). The men found the lesson more in-
teresting while the women found it more benefitting.

SOLVING EQUATIONS WITH A 
PARAMETER BY USING ANIMATION

Solving an equation with a parameter is a hard task 
at upper secondary level. The graphical interpreta-
tion helps. If the parameter is changed quickly, the 
relation between the parameter and the solution 
can be easily revealed. The left side of the equation 
(p + 1)x2 + px + |p| = 0 is graphed in the application in 
Figure 6. Parameter p is controlled by a spinbutton. 
Clicking it and holding down animates the graph. The 
positions at other values of parameter p are depicted 
in Figure 7. The solution is:

 p ∈ (−∞, −1) ∪ (−1, −0.8): x =  −p ± √p2 − 4(p + 1)|p|
2(p + 1)

 p = −1: x = 1

 p = −0.8: x = 2

 p = 0: x = 0

 p ∈ (−0.8, 0) ∪ (0, ∞): x ∈ { }

Lesson and survey: There were 23 students, 4 men and 
19 women. The analytical solution to the equation was 
quickly gone through. The students developed the ap-
plication from the application on the left side of Figure 
1. They found that the graph is in a special position if 
p = 0, –0.8 or –1. The solution at these boundary values 
was obtained by substitution. The solution for the val-
ues inside the intervals given by the boundary values 
was obtained by applying the quadratic equation. At 
the end, they answered the questionnaire. The result 
is graphed in Figure 8.

The result is: (A) 87% found the lesson interesting (61% 
very, 26% quite); (B) 96% understood the topic (83% 
all, 13% most); (C) 83% had the feeling that the lesson 
contributed to his/her TPACK (57% a lot, 26% quite a 
lot); (D) 83% found the applications to be benefitting 
(65% a lot, 18% quite a lot). (E) 87% were of the opinion 
that the developing helped comprehend the core (65% 
a lot, 22% quite a lot). The women found the lesson 
more interesting and benefitting than the men.

INTERACTIVE SOLUTION TO A QUADRATIC 
EQUATION AND TO A SYSTEM OF THREE 
LINEAR EQUATIONS WITH THREE VARIABLES

Solving quadratic equations and systems of three 
linear equations with three variables are skills that 
are often applied in solving tasks at upper secondary 
level. The following task requires applying both skills: 

A projectile was fired in a vacuum. Three points of the 
trajectory were detected by radar. The trajectory is a pa-
rabola. Find the points of shot and impact. 

Substitution of the coordinates of the points in the 
equation y = ax2 + bx + c yields a system of three linear 
equations with variables a, b, and c. In Figure 9, the 
system is solved by using the Gaussian elimination 
method (GEM). 

Figure 5: Relative frequency of the answers

Figure 6: Position of the graph at p = 2
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The matrix is in range N5:Q7. The upper triangular 
matrix is obtained in four steps over ranges N9:Q11, 
N13:Q15, N17:Q19 and N21:Q23. Variables a, b and c are 
calculated in range C3:C5. The system always has a 
unique solution, which stems from the physics of the 
task. The discriminant of equation ax2 + bx + c = 0 is in 
cell L10. It is always positive.The roots are in cells L13 
a L14. The vertex coordinates are in cells K18 a L18. 
The application is interactive – if the coordinates of 
the points in range K5:L7 change, the point of shot and 
impact (L13, L14) are recalculated.

Lesson and survey: There were 24 students, 4 men 
and 20 women. The solution to the systems of linear 
equations by GEM was gone through. The students 
developed the application in Fig 9 from the applica-
tion on the left side of Figure 1 and resolved the task. 

At the end, they answered the questions. The result 
is in Figure 10.

The result is: (A) 92% found the lesson interesting (54% 
very, 38% quite); (B) 100% understood the topic (83% 
all, 17% most); (C) 92% had the feeling that the lesson 
contributed to his/her TPACK (54% a lot, 38% quite a 
lot); (D) 92% found the applications benefitting (63% 
a lot, 29% quite a lot); (E) 96% were of the opinion that 
the developing helped comprehend the core (50% a lot, 
46% quite a lot). The men found the lesson more in-
teresting while the women found it more benefitting.

SURVEY SUMMARY

Altogether 96 questionnaires were answered, 19 by men 
and 77 by women. The result is graphed in Figure 11. 

Figure 7: Positions at p = 0; -0.5; -0.8; -0.9; -1; -1.1 (left to right by rows)

Figure 8: Relative frequency of the answers
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The result is: (A) 92% found the lesson interesting (64% 
very, 28% quite); (B) 99% understood the topic (89% 
all, 10% most); (C) 90% had the feeling that the lesson 
contributed to his/her TPACK (63% a lot, 27% quite a 
lot); (D) 93% found the applications to be benefitting 
(72% a lot, 21% quite a lot). (E) 94% were of the opinion 
that the developing helped comprehend the core (62% 
a lot, 32% quite a lot). 

The outcome for all, men and women was:

A) The lesson was interesting: 92%, 84 %, 94 %

B) I understood of the mathematics involved: 99%, 
100 %, 99 %

C) The lesson contributed to my TPACK: 90%, 69 %, 95 %

D) The applications benefit the teaching of the topic: 
93%, 79 %, 96 %

E) Developing the applications helps comprehend the 
core: 94%, 90 %, 95 %

F) I am a man: 20%

Figure 9: Trajectory of a projectile in a vacuum

Figure 10: Relative frequency of the answers

Figure 11: Relative frequency of the answers in total
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The lessons contributed considerably more to the 
TPACK of the women than men (difference of 26%). 
The women found the applications more benefitting 
the teaching of the topics and more interesting than 
the men (difference of 17% and 9%). The women were 
stronger of the opinion that developing the applica-
tions helps comprehend the core of the topic (differ-
ence of 5%). 

The result implies that the presented method of teach-
ing mathematics through developing spreadsheet 
applications that model and solve tasks is of interest 
to pre-service teachers, benefits the teaching of the 
topics and contributes to the technological and ped-
agogical knowledge of the teachers, mainly women. 
The outcomes correspond well with the result of the 
authors’research with high school students (Benacka 
and Ceretkova, 2013). That suggests that “learning by 
doing” with spreadsheets has a potential in promoting 
mathematics at upper secondary level.

ACKNOWLEDGEMENT

The authors are members of the team of LLP Comenius 
project 539234-LLP-1-2013-1-AT-COMENIUS-CAM.

REFERENCES

Ainley, J., Bills, L., & Wilson, K. (2005). Designing spread-

sheet-based tasks for purposeful algebra. International 

Journal of Computers for Mathematical Learning, 10(3), 

191–215. 

Benacka, J., & Ceretkova, S. (2013). Excel modelling in upper 

secondary mathematics – a few tips for learning functions 

and calculus. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), 

Proceedings of CERME 8 (pp. 970–979). Ankara, Turkey: 

Middle East Technical University and ERME. 

Drake, P., Wake, G., & Noyes, A. (2012). Assessing ‘function-

ality’ in school mathematics examinations: what does 

being human have to do with it? Research in Mathematics 

Education, 14(3), 237–252. 

Forster, P. A. (2007). Technologies for teaching and learn-

ing trend in bivariate data. International Journal of 

Mathematical Education in Science and Technology, 38(2), 

143–161. 

Geiger, V., Goos, M., & Dole, S. (2014). The role of digital tech-

nologies in numeracy teaching and learning. International 

Journal of Science and Mathematics Education. DOI 

10.1007/s10763-014-9530-4.

Gonzalez-Calero, J. A., Arnau, D., & Puig, L. (2013). Solving word 

problems algebraically in a spreadsheet environment in a 

primary schol. Research in Mathematics Education, 15(3), 

305–306. 

Haspekian, M. (2005). An “instrumental approach” to study the 

integration of a computer tool into mathematics teach-

ing: the case of spreadsheets. International Journal of 

Computers for Mathematical Learning, 10(2), 109–141.

Haspekian, M. (2011). The co-construction of a mathematical 

and a didactical instrument. In M. Pytlak, T. Rowland, & E. 

Swoboda (Eds.), Proceedings of CERME 7 (pp. 2298- 2307). 

Rzeszów, Poland: University of Rzeszów.

Haspekian, M. (2014). Teachers instrumental geneses when 

integrating spreadsheet software. In A. Clark-Wilson, O. 

Robutti, & N. Sinclair (Eds.), The Mathematics Teacher in 

the Digital Era: An International Perspective on Technology 

Focused Professional Development (pp. 241–276). London, 

UK: Springer. 

Healy, L., & Sutherland, R. (1990). The use of spreadsheets 

within the mathematics classroom. International Journal of 

Mathematical Education in Science and Technology, 21(6), 

847–862. 

Hošpesová, A. (2002a). What brings use of spreadsheets 

in the classroom of 11-years olds? In J. Novotná (Ed.), 

Proceedings of CERME 2 (pp. 163–169). Prague, Czech 

Republic: Charles University, Faculty of Education.

Hošpesová, A. (2002b). Are spreadsheets worthwhile for all? In 

L. Bazzini & W. C. Inchley (Eds.), Proceedings of CIEAEM 53 

(pp. 158–164). Milano, Italy: Ghisetti e Corvii Editori.

Molyneux-Hodgson, S., Rojano, T., Sutherland, R., & Ursini, S. 

(1999). Mathematical modelling: the interaction of culture 

and practice. Educational Studies in Mathematics, 39(1–3), 

167–183. 

Neurath, R. A., & Stephens, L. J. (2006). The effect of using 

Microsoft Excel in a high school algebra class. International 

Journal of Mathematical Education in Science and 

Technology, 37(6), 721–756.

O’Reilly, D. (2006). Learning together: student teachers, children 

and spreadsheets. Research in Mathematics Education, 

8(1), 67–87. 

Rojano, T., & Sutherland, R. (1993). Towards an algebraic ap-

proach: the role of spreadsheets. In Proceedings of the 

17th International Conference for the Psychology of 

Mathematics Education (pp. 189–196). Tsukuba, Japan: 

University of Tsukuba.

Sivasubramaniama, P. (2000). Distributed cognition, computers 

and the interpretation of graphs. Research in Mathematics 

Education, 2(1), 169–190. 

Tabach, M., Arcavi, A., & Hershkowitz, R. (2008). Transitions 

among different symbolic generalizations by algebra be-

ginners in a computer intensive environment. Educational 

Studies in Mathematics, 69(1), 53–71. 



Graphing functions and solving equations, inequalities and linear systems with pre-service teachers in Excel (Ján Beňačka and Soňa Čeretková)

2318

Tabach, M., & Friedlander, A. (2008). Understanding equivalence 

of symbolic expressions in a spreadsheet-based environ-

ment. International Journal of Computers for Mathematical 

Learning, 13(1), 27–46. 

Tabach, M., Hershkowitz, R., & Arcavi, A. (2008). Learning begin-

ning algebra with spreadsheets in a computer intensive en-

vironment. Journal of Mathematical Behavior, 27(1), 48–63. 

Topcu, A. (2011). Effects of using spreadsheets on secondary 

school students’ self-efficacy for algebra. International 

Journal of Mathematical Education in Science and 

Technology, 42(5), 605–613.

Watson, J., & Callingham, R. (2013). Likelihood and sample 

size: The understandings of students and their teachers. 

Journal of Mathematical Behavior, 32(3), 660–672. 

Wilson, K. (2006). Naming a column on a spreadsheet. Research 

in Mathematics Education, 8(1), 117–132. 



2319CERME9 (2015) – TWG15

Expert and novice teachers’ classroom 
practices in a technological environment 

Gulay Bozkurt and Kenneth Ruthven

University of Cambridge, Faculty of Education, Cambridge, UK, gb408@cam.ac.uk 

This case study compares the teaching practices and 
craft knowledge of two secondary mathematics teach-
ers using GeoGebra to teach the same geometrical top-
ic. It forms part of a programme of research aimed at 
developing a more comprehensive understanding of 
technology integration in classrooms, by providing a 
model of key structuring features of classroom practice 
(Ruthven, 2009) which shape the use of technology in les-
sons and the kinds of professional knowledge required. 
In accordance with this conceptual framework, the class-
room practices of an expert technology-using teacher 
are analysed in contrast to those of an experienced but 
technologically novice teacher, so shedding light on the 
character of expertise and the process through which 
it develops. 

Keywords: Classroom practice, mathematics teaching, 

dynamic mathematics software, technology use, teacher 

knowledge and thinking.

INTRODUCTION

There has been considerable recent interest in issues 
of the integration of new technologies into ordinary 
classrooms in which the particular focus is on the 
teacher dimension. Researchers have suggested that 
teachers are faced with the need to consider a range of 
classroom management issues. They need not only to 
develop new types of interactions (Monaghan, 2004; 
Drijvers et al., 2010) but also to manage different kinds 
of time in their classrooms (Assude, 2005). They must 
establish a relationship between a technological envi-
ronment and a paper and pencil environment in order 
to “build connections with the official mathematics 
outside the microworld” (Guin & Trouche, 1998, p. 200). 
Furthermore, some researchers (Monaghan, 2004; 
Lagrange, Dedeoglu, & Erdogan, 2006) have shown 
how technology can affect the emergent goals of the 
teacher during the lesson. When a teacher integrates 

Dynamic Geometry Software (DGS) in order to make 
students engage with the task, s/he must consider not 
only a mathematical learning trajectory but also the 
instrumental aspect of this including the operation 
of the tool (Lagrange et al., 2006). In this light, it is not 
surprising that the process of orchestrating technol-
ogy-integrated mathematics learning is not straight-
forward, in particular for teachers who are novice 
in technology-use, since the use of digital resources 
calls for “change in teachers’ professional knowledge 
and development” (Gueudet & Trouche, 2009, p. 199). 
In this respect, Tabach (2012) showed that classroom 
practices of teachers in relation to technology-use in-
fluence their knowledge and thinking and vice versa. 
Similarly, a number of studies (e.g., Monaghan, 2004; 
Drijvers, 2012) have shown that, over time, teachers’ 
practices with technology generate professional 
growth as teachers revise and adapt their teaching 
in relation to technology through feedback from their 
experiences. In other words, teachers build up knowl-
edge from their reflection on their own classroom 
experiences and strategies they develop when, in the 
course of using the technological tools available, un-
expected issues occur in the classroom. 
Two fundamental questions, then, need to be ad-
dressed: “What aspects of classroom teaching shape 
the ways in which teachers integrate new technolo-
gies?” and “What kinds of professional knowledge 
do teachers need to teach with them?” 

THEORETICAL FRAMEWORK

The recently conceived Structuring Features of 
Classroom Practice (SFCP) (Ruthven, 2009) was the 
framework chosen for this research on teachers’ class-
room practices with the use of new technologies. This 
framework takes a naturalistic approach, focusing 
on constructs that are directly related to teachers’ 
classroom practices. Drawing from prior research 

mailto:gb408@cam.ac.uk
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on teaching and schooling in general, it identifies five 
constructs which have already been developed to anal-
yse what happens within classrooms and which bear 
crucially on incorporation of technology within class-
room practice. These are working environment (e.g., 
Horne-Martin, 2002), resource system (e.g., Cohen, 
Raudenbush, & Ball, 2002), activity format (e.g., Burns, 
1984), curriculum script (e.g., Putnam, 1987; Leinhardt, 
Putnam, Stein, & Baxter, 1991), and time economy (e.g., 
Assude, 2005). 

Working Environment: Using new technologies typ-
ically requires adaptation of the working environ-
ment, either through moving teaching to a specialised 
computer laboratory or re-organising the ordinary 
classroom.

Resource System: New technologies increase the range 
of tools and resources available in classrooms, and 
pose a challenge for teachers to create a coherent re-
source system.

Activity Format: Technology-based lessons may re-
quire the adaptation of existing activity formats from 
non-technology based lessons or the development of 
some new format which “structures the activity and 
provides the organizational means by which learn-
ing tasks will be accomplished” (Burns, 1984, p. 103). 
Grouping arrangements, delivery system and inter-
action patterns define the activity format.  

Curriculum Script: Mathematics teachers who are in-
tegrating new technologies in their classrooms need 
to develop their curriculum script in order to have a 
structure for planning and interpreting classroom 
teaching of a topic with technology. Curriculum 
script was developed by Putnam (1987) and defined 
as “a loosely ordered but well defined set of skills and 
concepts students were expected to learn, along with 
the activities and strategies for teaching this material” 
(p. 13).

Time Economy: Assude (2005) argues that time related 
issues in classrooms stem from time management dif-
ficulties in the classroom. Following Assude, Ruthven 
(2009) uses the concept of time economy to denote 

“how teachers seek to manage the ‘rate’ at which the 
physical time available for classroom activity is con-
verted into a ‘didactic time’ measured in terms of the 
advance of knowledge” (p. 14).

The SFCP framework identifies key aspects of the craft 
of teaching that indicate the corresponding profes-
sional reasoning and craft knowledge that teachers 
must develop about these aspects in order to success-
fully incorporate new technologies. Ruthven (2009) 
explained the interaction of these aspects in teaching 
decisions and activities: for example, “Each of these 
modifications of an established activity format calls 
for the establishment of new classroom norms for 
participation, and of classroom routines to support 
smooth functioning” (p. 10). Employing this frame-
work, the research reported here studies teachers’ 
use of technology in classrooms and the associated 
expertise teachers use in their everyday practice.

RESEARCH CONTEXT

This study examines classroom practices of two sec-
ondary math teachers’ use of GeoGebra (GGB) for 
math teaching, working within the English school 
system. GGB was of particular interest due to its ac-
cessibility. Although there is a lot of interest in GGB, 
difficulties arose when looking for suitable lessons, 
which indicated that in practice its use still remains 
quite rare. The most popular topics are concerned 
with graphing functions, geometrical transforma-
tions and angle properties in a circle. 

After teachers agreed to participate in the research, 
the first author visited their schools to discuss their 
timetable and to find out when they were planning 
to make some significant use of this technology. 
Observations took place at a time agreed in advance 
with each teacher. Thus, this study involved no at-
tempt to control or influence teachers’ lessons. In 
particular, the researchers did not participate in the 
lessons planning, although it is clearly possible that a 
teacher’s planning was influenced by the knowledge 
that a lesson would be observed. To try to forestall 
this, the research protocol made clear to teachers that 
they themselves should choose the topic, using GGB 
however they saw fit, and in any manner they wished. 

Both teachers in this study chose to teach the top-
ic referred to in the English curriculum as “Circle 
Theorems”. One (pseudonym Chris) is an Advanced 
Skills Teacher (a recognised grade of classroom teach-
er within the English school system, also taking special 
responsibility for leading professional development). 
He has around twenty years of teaching experience 
and is an expert technology user who utilises new 
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technologies in a progressive way in math instruction. 
He taught the topic over a series of four lessons to a 
top set Year 11 class. The other teacher (pseudonym 
Susan) also has around twenty years teaching experi-
ence, but is a novice technology user. Although Susan 
was experienced in teaching Circle Theorems, it was 
the first time she had integrated GGB into her teaching 
of this topic to this extent. She taught the topic over 
two lessons to a lower set Year 10 class. 

Teacher Interviews: Semi-structured post-lesson in-
terviews were conducted in order to clarify the pro-
fessional thinking behind the observed lessons ac-
cording to the SFCP framework key themes. Interview 
questions mainly focused on how using technology in 
the lesson might make it rather different to organise 
and run from a similar lesson without technology. 
These interviews were audio-recorded. 

Classroom Observations: A semi-structured, non-par-
ticipant observation approach was adopted for which 
the SFCP framework as an interpretative lens pro-
vided guidelines. In this regard, observation data 
aimed to provide evidence about teachers’ classroom 
practices in relation to use of technology, with a fo-
cus on pre-specified aspects of the SFCP framework. 
All observed lessons were recorded and transcribed 
verbatim. To do this the teachers were asked to wear 
a microphone during lessons to capture all speech 
during individual teacher-student interactions.

RESULTS

The data acquired from this study are presented in 
detail due to space constraints. Instead some of the 
main findings are outlined and compared with other 
research.

Working environment
Chris’s lessons took place in a Computer Lab where the 
computers for students were arranged in a U shape 
around the back and sidewalls, so that students work-
ing at them were facing away from the front of the 
room. There was also sufficient seating in the centre of 
the room to accommodate the entire class being taught 
as a group facing the front. At the front of the room 
there was a computer connected to a data projector 
for the teacher, and a Smart-board. Susan’s lessons 
took place in a normal classroom where the seating 
consisted of rows of tables with chairs. There was a 
Smart-board as well as an ordinary whiteboard at the 

front. The teacher provided students with laptops on 
which GGB was downloaded, which they used at their 
normal tables in the classroom. In order to ensure 
that students would have a functioning computer 
system she spent a considerable amount of time in 
preparation. 

Chris was satisfied with the working environment 
since the layout allowed him the most convenient 
method of monitoring students, which in turn sup-
ported interaction between teacher and students. 

I can see all of their screens. So if I stand in the 
middle and turn my head I can see everybody’s 
screen which means that I know immediately if 
somebody isn’t doing what they should. 

He also appreciated the availability of software that 
allowed the teacher to control students’ screens. 

Although Susan made an active choice to use laptops 
because her class had too many students to fit into 
the available computer room, she described her ideal 
layout as being a bigger U-shaped computer room 
where she could monitor students in a more straight-
forward way.

I’d rather have a bigger room. My ideal would 
have been a big U shaped computer room with 
big screens that they can see and that I can walk 
around easily. You can position yourself to see 
3 quarters of the screen to scan the room. And I 
suppose this is where for me I am always thinking 
about the classroom management issues particu-
larly in these lessons where I’m a bit out comfort 
zone.

Resource system
Chris as an expert technology user had a full com-
mand of the software. He was aware of difficulties 
that might arise with students’ use of the resource 
and preempted these through use of technical demo 
(Drijvers et al., 2010). For instance, he made sure that 
students all knew how to measure an angle with GGB. 
This was because, over the years, he had noticed that 
students often “measure” without clicking in the an-
ti-clockwise order (a convention embedded in GGB).

For example measuring angles, you can click on 
the three points and depending on which order 
you click. If you click one two three, then it will 
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measure the interior angle (he shows on the 
paper). If you click them the other way round it 
measures the reverse angle. That was just a mat-
ter of try clicking in a different order. 

However, Susan was a novice in using GGB and did not 
have a full knowledge of it. So she was learning some 
aspects of the software during the lessons. While she 
was doing a technical demo at the beginning of the 
first lesson she wanted to show how to measure an 
angle on GGB; however she was not aware that GGB 
measures anti-clock wise and she got the measure of 
an obtuse angle a number of times while wanting to 
measure an acute angle. But during students’ work 
on laptops, a student told her about clicking in the 
anti-clockwise direction.

I was learning on the hoof this bit where it meas-
ures it anti clockwise; I had not really tweaked 
that. As I say Mike (a student) helped me with that 
one. I mean, yeah yes I did learn during the lesson. 
So then I could show the students. But the only 
way I have got now that in my head is by going 
through that pain and then teaching the students. 

Similarly, she did not know how to set GGB to mea-
sure to the nearest whole number, which she thought 
created some confusion for students in this lower set 
since they had difficulties in seeing the relationships 
between angles. 

Both teachers allowed students to use GGB by them-
selves for around half of each lesson as their aim 
was for students to discover some CT rules (Susan) 
and to explore some mathematical ideas, i.e., proof 
through CT (Chris). During students’ use, teachers’ 
role was to walk around and make sure that students 
engaged with their task. The teachers also used GGB 
for whole class teaching to explain or discuss prob-
lems. However, the two teachers had prepared rather 
different sets of tasks for students. Chris used more 
open-ended tasks, which aimed to encourage students 
to use GGB as tools or representations to help think-
ing. With this particular class, which is a high ability 
group of students, Chris pointed out that they have 
established this way of working over several years. 
His aim was to show students that there were many 
paths to reach the same mathematical solution; in 
particular he saw the topic of Circle Theorems as 
a vehicle for developing ideas about mathematical 
proof by focusing on different ways of proving. He 

also thinks that students have to learn to interpret 
the diagrams through building them up by themselves. 
On the other hand, Susan asked students to set up the 
diagrams shown on the worksheet by using GGB and 
then to explore triangles inscribed into circles and try 
to formulate four different CT rules through using 
dragging techniques. 

I expected them to discover the circle theorems. 
That was the aim of it. I wanted them to have that 
moment of awe and wonder, when they notice 
that special things happen in the diagrams. And 
I think the GGB lent itself to that.

During her reflections, Susan indicated that she used 
GGB to add ‘fun’ to lessons and to help students engage 
with more examples through using dragging tech-
niques and to facilitate noticing the relationships 
between angles in circles. In comparison with under-
taking the same worksheet on CT by hand, she consid-
ered that GGB assisted investigating CT through its 
accuracy, speed and manipulative ease.

Activity format
SFCP does not suggest specific activity formats, how-
ever Instrumental Orchestration (e.g., Drijvers et al., 
2010; Drijvers, 2012), which also focuses on teachers’ 
classroom practices in technological environments, 
has particularly focused on how activity structures 
relate to particular ways of making use of the tech-
nological component of the resource system, and has 
provided operational descriptions based on a combi-
nation of data- and theory-driven analysis (Ruthven, 
2014). We will make use of the six activity format 
types identified for Instrumental Orchestration re-
search; Technical-demo, Explain-the-screen, Discuss-
the-screen, Spot-and-show, Work-and-walk-by and 
Sherpa-at-work (Trouche, 2004; Drijvers et al., 2010; 
Drijvers, 2012)

Chris’ lessons broadly broke down into 3 segments. 
Initially the teacher introduced lessons in a whole 
class when he gave information about the lesson agen-
da and projected student work from a previous les-
son to remind students what they had done and what 
direction to take from there. In the second segment, 
students went onto the computers and worked to dis-
cover for themselves in groups of at least two while 
the teacher walked around to monitor their progress 
and guide when necessary. Work-and-walk-by activ-
ity format comprised about 50% of a lesson. This for-
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mat gauged students’ involvement and engagement 
with the task, and also determined whether they had 
any difficulties during tasks. The teacher also guided 
the students to think in different ways during this 
format. Therefore, elements of Discuss-the-screen 
and Explain-the-screen were apparent in the teach-
er-students interaction during Work-and-walk-by. 
Finally, the teacher gathered the students in the mid-
dle of the room in order to discuss important points 
of the lesson primarily to create collective knowledge. 
Chris often made use of a Spot-and-show activity for-
mat during each segment of his lessons perceiving it 
as a means to enhance student involvement and dis-
cussion. He spotted students’ examples, in particular 
different approaches, and showed them to the whole 
class in order to make pupils think of different ways of 
doing things. Another activity format that Chris made 
use of was Sherpa-at-work (Trouche, 2004): he spotted 
an example while circulating in the classroom, and 
stopped the students to project this spotted example 
on the IWB for whole class discussion. However the 
difference from the Spot-and-show format was that 
the teacher let the student, whose example he spot-
ted, run the example from her computer and at the 
same time he was explaining/discussing the screen of 
what was going on. In other words, the Sherpa-student 
was the owner of the spotted example and she was in 
charge of the technology. Predict-and-test was anoth-
er activity format used during the middle segment. 
The teacher encouraged students to make their own 
conjectures and then test them out on the computer. 

The activity formats for Susan’s lessons consisted 
of whole class teaching as well as student work at 
computers with the teacher moving around to mon-
itor and provide support. The former was mostly to 
demonstrate some tool techniques, and to outline 
what the lesson was about. Since she was teaching this 
topic with GGB for the first time and most of the stu-
dents had never used GGB, she spent half of the first 
lesson using a Technical-demo format to show some 
tool techniques that they could use for angle proper-
ties. She demoed briefly what she expected students to 
do, and to exemplify she used GGB in modelling on the 
IWB how to tackle the first question from the printed 
worksheet. During this, she showed the specific tools 
in GGB that students would need for constructing the 
shapes shown on the worksheet. Susan’s activity for-
mats were still influenced by non-technology patterns, 
and not fully instrumented by the technology. For 
instance, when she made use of Spot-and-show, rath-

er than using GGB on the IWB she would hold up a 
student’s worksheet in order to show others how this 
student had done the question. 

Curriculum script
Examining the tasks sequences used in these cases 
provided a starting point for looking at how technol-
ogy featured in the curriculum scripts (CS) of the two 
teachers, and how these scripts were developing in 
response to using technology. In particular, post les-
son interviews focused on aspects where teachers 
reported change/development in their thinking about 
teaching the topic and/or structuring the lesson relat-
ed to using GGB. Striking contrasts appear, with the CS 
of the technologically expert teacher being richer and 
more detailed in this respect than that of the techno-
logically novice teacher. On that note, it was much eas-
ier to elucidate information from more experienced 
teacher about his CS. This richness was also evidenced 
by the differing nature of, and the degree of emphasis 
on, CS against resource system. The novice teacher’s 
focus tended not to be on the CS, but was more about 
developing instrumental knowledge to make it part 
of the resource system, first for herself personally 
and then also for her students. For instance, Susan’s 
reflections on what issues came up in lessons that she 
did not expect focused more on her lack of knowledge 
of GGB such as measuring acute angles and rounding 
measurements. These issues have already been raised 
in the section on resource system and they are more 
about GGB not yet being part of a functioning person-
al resource system for the teacher. In that sense she 
did not have a well-developed aspect of her CS for the 
topic that is specific to technology, which combines 
content and technology knowledge. Her CS consisted 
of following the sequence of her worksheet (prepared 
for teaching this topic in a non-technological environ-
ment) and she was at the stage of learning and adapt-
ing. However, Chris, who had been teaching with GGB 
for many years, had layers of accumulated knowledge 
about how to teach this topic with GGB. 

Time economy
It became clear in post lesson interviews how the use 
of DGS contributed to time efficiency in lessons. Both 
teachers indicated that GGB – in particular the an-
gle-measuring tool and the edit/undo option – enabled 
students to progress faster compared to measuring/
calculating angles by hand. 
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It will let us do lots of measuring without needing 
to do measuring or calculating so it will measure 
without us needing to do those by hand. That is 
a huge time saver. That saves a lot of time over 
drawing them out. (Chris)

This speed helped the students to produce and engage 
with more examples without spending as much time 
capital, therefore, maximised the didactic time. 

The speed is that they can see lots of versions of 
it and all the weird versions. (Susan)

As an expert technology user, Chris’s use of working 
environment and available resources such as control 
software for showing examples led to efficient use of 
instructional time. Also, instrumented use of Spot-
and-show during students’ work at computers pro-
vided ‘intermediate syntheses’ (Assude, 2005), which 
helped him save time capital. However, the fact that 
Susan was not aware of some tool techniques intro-
duced some time diseconomy in her lessons.

While students worked at computers in groups, both 
teachers walked amongst students and guided them 
through making ‘authoritative contributions’ (Assude, 
2005, p. 201) and posing leading questions in order to 
increase the didactic time during activity by avoiding 
students dissipating the limited time capital available.

CONCLUSION

As a novice technology-user, Susan believed that 
students need more monitoring during technology 
lessons, and that some room arrangements offer 
better scope for monitoring and interaction. Both 
teachers were very conscious of the degree to which 
GGB formed part of a functioning resource system 
for their class: in Susan’s case, that she was just em-
barking on establishing such a system; in Chris’s case, 
that he could count on such a system having already 
been established. In terms of activity formats, most 
of the orchestration types characterised in Drijvers 
and colleagues (2010) and Drijvers (2012) studies fea-
tured in this study but with more variants. However, 
an additional type of activity format, Predict-and-test, 
was identified in my study (resembling an activity 
format already noted in Ruthven, Deaney, & Hennessy, 
2009). The interaction becomes between the teach-
er, class and computer, with the students making a 
prediction and then testing it out on the computer 

rather than teacher validating – or invalidating – it. 
That shifts the role of the teacher towards becoming 
an organizer/observer of this process. Also, this ac-
tivity format appears to be specific to technology use, 
depending crucially on its use. Therefore, it could 
be said that the results of this study also contribute 
to extending the Instrumental Orchestration frame-
work to some extent. There was a notable difference 
in the way in which teachers instrumented activity 
formats through the use of technology. The novice 
teacher tended to customize existing (and more ge-
neric) formats for implementing activity. The expert 
teacher believed that Sherpa-at-work was distinctive 
to technology use where the involvement of the com-
puter uniquely influenced the nature of the interac-
tion-taking place.

This study makes a threefold contribution. Firstly, it 
provides a further empirically-based test of the us-
ability and usefulness of the SFCP conceptual frame-
work (Ruthven, 2009) as a tool for advancing research 
on technology integration. Secondly, in focusing on 
the teacher dimension (Lagrange et al., 2003) this case 
study provides an illuminating comparison which 
math teachers and teacher educators engaged in pro-
fessional development on the issue of the integration 
of technological tools could employ to build a holis-
tic understanding of the conditions of technology in 
ordinary classrooms and shed light on how teachers 
can adapt new technologies to their teaching. Finally, 
there might be a third type of contribution through 
presenting the report of these teachers’ teaching with 
technology in ways that could be directly accessible 
and useful to other teachers, by reporting practical 
solutions to concrete problems that a teacher com-
mencing integrating technology into their teaching 
would encounter. 
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CONTEXT

Teachers are looking for tools in order to help their 
students. In fact, to allow each student academic pro-
gress, teachers need detailed diagnosis about individ-
ual student’s learning. However, teachers also need to 
manage the whole class by proposing differentiated 
activities which are adapted to groups of learners 
with close competences or who require the same 
teaching strategy.

This paper addresses the TWG15 “Teaching mathe-
matics with resources and technology”. Our research 
concerns the development and the use of online re-
sources for diagnosis and differentiated learning in 
the field of elementary algebra. It takes place into the 
Pépite project whose objective is to design and imple-
ment a web-based application to support mathematics 
teachers in managing the cognitive diversity of their 
students in school algebra classes (Delozanne, Prévit, 
Grugeon-Allys, & Chenevotot-Quentin, 2010).

Since 2011, we spread our research tools on LaboMep 
(Pilet, Chenevotot, Grugeon, El-Kechaï, & Delozanne, 

2013), the online databank developed by Sésamath, a 
French mathematics teachers association. The success 
of the LaboMep platform shows us that such online 
resources may answer to the teachers’ needs (Artigue 
& Gueudet, 2008): they are looking for valuable in-
formation about consistency and misconceptions in 
student’s algebraic activity. First, we implemented 
the diagnostic assessment Pépite for 9th/10th grade 
students (15–16 years old). Second, we implemented 
a tool providing automatically teaching suggestions 
according to the learning objectives aimed at by the 
teacher and adapted to students’ diagnostic assess-
ment (Pilet et al., 2013).

This paper deals with the question of the transfer of 
the diagnostic assessment Pépite at different grade 
levels. First, we present the modalities of the diag-
nostic assessment Pépite and the theoretical elements 
mobilized. Then, we characterize the model of the di-
agnostic test and we study how this model is compati-
ble according to different grade levels. We detail the 
response analysis and we also explain how to trans-
fer it to different grade levels. Last, we conclude with 
some research perspectives.

THE DIAGNOSTIC ASSESSMENT PEPITE

The theoretical foundations

The modeling presented here is not based on a psycho-
metric approach. The Pépite diagnostic assessment is 
based firstly on an epistemological and anthropolog-
ical approach and secondly on a cognitive approach 
of elementary algebra in order to define a reference 
(Artigue, Grugeon, Assude, & Lenfant, 2001).

In its tool dimension (Douady, 1986), the algebra field 
covers traditional arithmetic problems, problems of 

mailto:chenevotot.francoise@neuf.fr
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generalisation and proof, problems where algebra 
appears as a modelling tool, problems to put into equa-
tion, algebraic and functional problems (Chevallard, 
1989). In its object dimension, algebra is a structured 
set of objects with specific properties, semiotic rep-
resentations and treatment modes taking into account 
both their semantics and their syntax (Kieran, 2007; 
Vergnaud, Cortes, & Favre-Artigue, 1988). The diag-
nosis Pépite relies on a multidimensional analysis of 
the algebraic activity (Grugeon, 1997; Kieran, 2007 
[1]) which allows identifying consistency in student’s 
algebraic activity and following its evolution. 

According to the anthropological approach, mathe-
matical knowledge strongly depends on the institu-
tions where it has to live, where it has to be learnt or to 
be taught. Mathematical objects do not exist per se but 
emerge from practices, which are different from one 
institution to another one. Chevallard (1999) analyses 
them in terms of praxeology, i.e., in terms of type of 
tasks, techniques used to solve these tasks (praxis), 
technological discourse developed to explain and jus-
tify particular techniques, and last, theories which 
structure the discourse (logos). Here, the diagnostic 
assessment Pépite depends on the curriculum at the 
end of compulsory education. At each grade level, di-
agnostic tasks are characterized by a type of tasks, the 
complexity of algebraic objects involved and the level 
of involvement of tasks in the resolution. 

Pépite diagnostic tasks
The Pépite test is composed of ten diagnostic tasks 
that cover the algebraic field grouped into four sets 
of types of tasks: calculus (developing or factoring 
algebraic expressions, solving equations), production 
(of expressions, formulas or equations), translation or 
recognition of mathematical relationships from one 
register of representation to another, solving prob-
lems in different mathematical frameworks (numeric, 
algebraic, geometric, functional) with algebra in or-
der to generalize, prove properties, model or put into 
equation. The diagnostic tasks may be multiple-choice 
questions or open responses with multistep reason-
ing.

The conceptual IT model of classes of tasks developed 
by Prévit (Delozanne, Prévit,  Grugeon, & Chenevotot, 
2008) allows characterizing equivalent tasks on a di-
agnosis point of view. Prévit developed PépiGen, soft-
ware that automatically generates the tasks and their 
analysis. It uses Pépinière software that generates 

anticipated student’s correct or incorrect responses, 
according to a priori analysis of the tasks.

We work on two main points to transfer Pépite assess-
ment at several grade levels. On the didactic modelling 
side, we have to define a set of tasks that cover the 
mathematical field at the grade level considered and 
the associated didactical variables. On the IT model-
ling side, we have to build generic tests in order to 
have a same framework for each test.

The response analysis
The diagnostic assessment Pépite includes three stages:

 ― The local diagnosis (on a single exercise) analyses 
each student’s response on several dimensions 
and not only in terms of correct/incorrect and 
the diagnostic system provides a set of codes that 
characterize this response according to types of 
anticipated responses;

 ― The individual global diagnosis (on a set of exercis-
es) collects similar codes on different exercises to 
build the student’s cognitive profile expressed by 
a level at three scales of skills, success rates and 
personal features (relative strengths and limita-
tions, false rules and correct rules);

 ― The collective global diagnosis defines groups of 
students who have close cognitive profiles.

In order to transfer the response analysis, for every 
task, we need to anticipate the different types of re-
sponses and their different forms and study if the 
computer algebra system Pépinière allows automat-
ed analysis. At last, we have to build the algorithm to 
calculate the student’s profile. 

We now expose the issue of the transfer of the diag-
nostic assessment Pépite at the 7th/8th grade level and 
define some conditions to succeed.

THE TRANSFER OF THE DIAGNOSTIC TASKS

The first step of the transfer of Pépite concerns the 
design of diagnostic tasks with two necessary con-
ditions: theoretical foundations and institutional 
constraints. 
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A tasks transfer that ensures the 
mathematical coverage area
To ensure that the test takes into account all types 
of tasks involved in the algebraic field, we character-
ize each item of a diagnostic task by one or more of 
these types of tasks (Chenevotot-Quentin, Grugeon, & 
Delozanne, 2011). We consider that the diagnostic test 
covers the types of tasks in the field if all types of tasks 
are involved. As shown in Table 1, the ten diagnostic 
tasks of the initial test (9th/10th grade level) cover the 
algebraic field. The test for the 7th/8th grade level is also 
composed of ten diagnostic tasks. The Table 2 shows 
that they are spread across all types of tasks. As at this 

grade level, numeric skills play an important role in 
the entry into the algebraic activity, we add a new type 
of tasks to our list: Produce a numerical expression. We 
assume that the question of whether a student may or 
may not produce a numerical online expression with 
correct parentheses is an important indicator of its 
interpretation of algebraic expressions. We illustrate 
this task in the following text.

A transfer by adapting existing 
tasks or adding new tasks
To comply with the curriculum experienced by stu-
dents in grade 7th in France, the transfer of the test 

Types of tasks Number of items Test item

Calculus 4 / 27 5.1 / 5.2 / 5.3 / 5.4

Producing algebraic expressions 6 / 27 3.1 / 8.1 / 8.2 / 8.3 / 9 / 10.2

Translation or recognition 16 / 27 1.1 / 1.2 / 1.3 / 1.4 / 2.1 / 2.2 / 2.3 / 3.2 /
4.1 / 4.2 / 4.3 / 4.4 / 4.5 / 6 / 7 / 10.1

Problem solving in different mathemat-
ics frameworks

3 / 27 8.3 / 9 / 10.3

Table 1: Organization of the 9th/10th grade level test in terms of types of tasks

Types of tasks Number of items Test item

Calculus 4 / 22 7.1 / 7.2 / 8.1 / 8.2

Producing numerical expressions 1 / 22 5

Producing algebraic expressions 3 / 22 3.1 / 5 / 6

Translation or recognition 14 / 22 1.1 / 1.2 / 1.3 / 2.1 / 2.2 / 2.3 / 3.2 / 4.1 / 4.2 / 9.1 / 
9.2 / 9.3 / 9.4 / 10

Problem solving in different mathemat-
ics frameworks

1 / 22 6

Table 2: Organization of the 7th/8th grade level test in terms of types of tasks

Figure 1: Item 3.1 of the initial test
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requires a specific work on tasks. We distinguish, on 
the one hand, characteristic tasks of the algebraic field 
that are transferred with adaptations from the 9th/10th 
grade to a lower grade, and, on the other hand, tasks 
of the numerical field, specifically designed for 7th/8th 
grade level. We adapt the tasks of the algebraic field 
by adjusting the values of didactical variables such as 
the structure of algebraic expressions or the choice 
of numbers. These adaptations are justified by both 
the curriculum and the algebraic activity expected at 
this grade level. We present an example of adapting 
item: adapting the item 3.1 of the initial test (Figure 1) 
for the 7th/8th grade level test (Figure 2). In both cases, 
the type of tasks is Produce an algebraic expression 
in the geometric setting. In the initial (resp. new) test, 
the task relates to the area (resp. perimeter) of a rec-
tangle (resp. figure). The area of the rectangle is a sec-
ond-degree expression and the structure is too com-
plex for the 7th/8th level. That is why we have chosen 
for this grade level a figure leading to a first-degree 
expression. Moreover, this choice allows identifying 
students that concatenate all terms (11x response) or 
those who are still in a repeated addition (x + x + x + x + 7 
response). 

To take into account the numerical skills of students 
who just discover algebra, we design new tasks. Figure 
3 shows one of these tasks which belongs to the type 
of task: Produce a numerical expression. This task as-
sesses if students can correctly produce one numer-
ical expression with parentheses or if “step by step” 
reasoning persists.

THE TRANSFER OF THE RESPONSE ANALYSIS 

We expose the issue of the transfer of the response 
analysis in the diagnostic assessment Pépite by suc-
cessively visiting the three stages of the process: local 
diagnosis, individual diagnosis and collective global 
diagnosis.

First stage: Local diagnosis
The whole process of the diagnostic assessment Pépite 
relies on the quality of this first step: assessment of 
each student’s responses. Students’ responses are not 
only evaluated in terms of correct/incorrect. They are 
also coded in terms of consistency in the student’s al-
gebraic activity, determined by a priori analysis (skills, 
recurring errors). We define six analysis codes found-

Shows how to calculate the perimeter of the figure

Draft for calculations Perimeter of the figure

Figure 2: Item 3.1 of the 7th/8th grade level test: an example of an adapting task

13 girls and 15 boys go to the movies. Each pays his ticket € 6.80, buys one soda 3 €, popcorn € 3.20 and also one glass € 
2.50. Write one line expression to find the amount spent by the group without doing calculation.

Expression of the amount spent by the group

Figure 3: Item 5 of the 7th/8th grade level test: an example of a new task

Tick the correct equation
1
2  +  1

3  =  3
2

1
2  +  1

3  = 
2
5

1
2  +  1

3  =  2
6  1

2  +  1
3  =  5

6

Choice A priori analysis Code

1 Incorrect calculation based on the cross product V3 EA5

2 Addition of numerators and of denominators V3 EA42

3 Addition of numerators and product of denominators V3 EA33

4 Correct V1 EA1

Figure 4: Local diagnosis of the item 1.4 for the 9th/10th grade level test
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ed on theoretical study: validity of the response (V), 
meaning of the equal sign (E), use of letters as varia-
bles (L), algebraic writings produced during symbolic 
transformations (EA), representations used during 
translating a problem (T) and level of justification (J). 
Figure 4 and 5 show the responses of a 9th/10th and 
7th/8th grades student to the task exposed in Figure 1 
and 2 and their analysis. 

Are these six analysis codes adequate to transfer the 
assessment to 7th/8th grade student? It is necessary to 
complete the six previous codes by adding two new 
codes to study the numerical writings produced dur-
ing symbolic transformations (EN) and the skills with 
negative and decimal numbers (N). The EN code is 
created to take into account that the algebraic skills 
are built from numerical skills. As the EA and the EN 
codes have a close structure, we do not distinguish EA 
and EN in the initial test.

The local diagnosis is based on the anticipated re-
sponses obtained both by a didactical analysis and 
a corpus of responses; it produces the analysis grid. 
This method is adapted to the IT designing and com-
puter programming. The two pieces of software 
PépiGen and Pépinière automatically generate tasks, 
their analysis and anticipated students’ responses. 
The computer programming of the multiple-choice 
questions is easier than the one line open respons-
es. In this case, the analysis is effective and generic. 
Around 10 to 15% of the open responses are still not 
analysed because of the complexity of the algebraic 
reasoning, sometimes written with a French text. The 
analysis of open responses needs specific treatments.

Second stage: Individual global diagnosis
The individual global diagnosis operates on the set 
of the ten exercises. The system analyses student’s 
responses and calculates the student’s cognitive pro-

file through a transversal analysis of the codes of all 
their responses.

To build the student’s cognitive profile, we define a 
scale of skills with three components founded on the-
oretical study: Use of Algebra for solving problems 
(coded UA); flexibility in translating different types 
of representations (geometric figures, graphical rep-
resentations, natural language) into algebraic expres-
sions and vice versa (coded TA); ability and adaptabil-
ity in various uses of algebraic calculation (coded CA). 
For each of the three components, we identify a scale 
with different modes, and appropriate criteria for 
each (Delozanne, Vincent, Grugeon, Gélis, Rogalski, & 
Coulange, 2005). Figure 6 shows the individual global 
diagnosis for a 9th grade student with CA3-UA3-TA3 
(Figure 6). This student does not give much sense to 
algebraic activity and does not use it as a tool for solv-
ing problems.

To transfer assessment to other grade levels, we also 
need to complete the algorithm to compute the profile 
by adding a fourth component to evaluate the various 

Tick the correct equation
2
3  +  1

6  =  3
6

2
3  +  1

6  =  3
9

2
3  +  1

6  =  3
18

2
3  +  1

6  =  5
6

Choice A priori analysis Code

1 Addition of numerators without putting the same denominator V3 EN33

2 Addition of numerators and of denominators V3 EN42

3 Addition of numerators and product of denominators V3 EN33

4 Correct V1 EN1

Figure 5: Local diagnosis of the item 1.1 for the 7th/8th grade level test

Figure 6: 9th grade student’s cognitive profile
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uses of numerical calculations (coded CN) and modes 
on the literacy scale. The CN component is created 
to take into account that the algebraic skills are built 
from numerical skills. This is the reason why the 
computation of the modes on scale on the CA and CN 
components has a similar algorithm. 

Third stage: Collective global diagnosis
Teachers request that the diagnosis allows defining 
groups of students according to their skills in algebra 
with the aim of setting up strategies of differentia-
tion. PépiMep software automatically calculates three 
groups of students (groups A, B and C) who have close 
profiles in algebra (Grugeon-Allys, Pilet, Chenevotot-
Quentin, & Delozanne, 2012). For 7th/8th grade, the al-
gorithm to calculate groups takes into account the 
new CN component.

CONCLUSION

Different studies comparing diagnostic assess-
ment Pépite to other forms of assessment show that 
Pépite is reliable and valid, even with open questions 
(Delozanne et al., 2008, Delozanne et al., 2010). Overall, 

it provides a tool to save time and to avoid a very tedi-
ous work of a human being. 

Since 2011, we implemented in LaboMep one test for 
9th grade students (14–15 years old) and two tests for 
9th/10th grade students (15–16 years old). We realized 
the model of the diagnostic tasks and we designed test 
and a priori analysis for 8th/9th grade students and 
7th/8th grade students. We are now programming them 
in LaboMep. 

From the theoretical foundations, we define a scale 
related to the algebraic activity. We can thus follow 
the evolution of the algebraic skills of the students on 
different grades. 191 students passed the 9th test and 
the 9th/10th test and we have already observed that the 
skills of the students increased. We project to validate 
this result from the 7th grade to the 10th grade (Figure 7).

What are the research perspectives? We project to 
extend the tool providing automatically teaching sug-
gestions according to the learning objectives aimed 
at by the teacher and adapted to students’ diagnostic 
assessment (Pilet et al., 2013), from 7th to 10th grade. 

Figure 7: Collective global diagnosis for 9th/10th grade students (191 persons)

Do the following three calculation programs give the same result?

Program 1 Program 2 Program 3

Choose a number, 
Multiply that number by 4, Add 3 to 
the product obtained.

Choose a number, 
Multiply that number by 7.

Choose a number, 
Multiply that number by 4, Add the 
product obtained triple the number 
selected.

Figure 8: Learning situation about equivalence of expressions
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The first step, transfer of the diagnostic assessment 
to 7th/8th grade, is already realized. The second step 
will be to adapt learning situations already defined 
to study some epistemological algebraic aspects, of-
ten not sufficiently explained in curricula: sense of 
algebraic tool for solving problems of generaliza-
tion, equivalence of expressions (Grugeon-Allys et 
al., 2012). The example given in Figure 8 illustrates 
a situation adapted to the target goal. This research 
is part of the NéOPRAEVAL project from the French 
Agence Nationale de la Recherche.
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ENDNOTE

1. Using a synthesis of international researches in di-
dactics of algebra, Kieran (2007) proposed the GTG 
model which differentiates three complementary 
algebraic activities: (1) Generative activities involve 
producing various algebraic objects (expressions, for-
mulas, equations and identities), (2) Transformational 
activities involve the usage of transformational rules 
(factorization, expansion of products, rules for solv-
ing equations and inequalities...), (3) Global/meta-lev-
el activities involve the mobilization and use of the 
algebraic tool to solve different types of problems 
(modeling, generalization, proof ).

http://www3.ac-clermont.fr/pedago/maths/pages/UE2008/prog_UE_2008.htm
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This paper reports research into aspects of ‘scaling’ 
classroom access to technology within the context of 
an English teacher development project, ‘Cornerstone 
Maths’. The aim of this multi-year project is to address 
issues of underuse of dynamic mathematical technolo-
gies by lower secondary students in classrooms through: 
specially designed web-based software; teacher and 
student materials; and professional development. The 
paper proposes the construct of a landmark question as 
a means to assess the degree of fidelity of the resulting 
classroom implementations at scale and reports emer-
gent data on this theme.

Keywords: Mathematics, technology, teacher 

development, scaling, implementation fidelity. 

INTRODUCTION

Despite multiple studies over many years that have 
concluded positive effects of student interaction with 
transformative digital technologies in mathematics 
education, teachers and schools find it difficult to 
integrate such resources within ‘normal’ mathemat-
ics lessons (Clark-Wilson, Robutti, & Sinclair, 2014; 
Gueudet, Pepin, & Trouche, 2012; Hoyles & Lagrange, 
2009). By ‘transformative technologies’ we mean ‘com-
putational tools through which students and teach-
ers (re-)express their mathematical understandings, 
which are themselves simultaneously externalised 
and shaped by the interactions with the tools’ (Clark-
Wilson, Hoyles, Noss, Vahey, & Roschelle, 2015). (For 
a more substantial elaboration of this, see Hoyles & 
Noss 2003). The reasons for this lack of engagement 
include: insufficient time and opportunity for sus-
tained professional development; weak alignment 

with institutional practices; difficulties installing 
and maintaining software access; teachers’ mathe-
matical knowledge and beliefs, and insufficient access 
to teaching materials that exploit the affordances of 
well-designed technologies. The Cornerstone Maths 
(CM) project has been developed to respond to these 
concerns.

Cornerstone Maths began in 2009 as a design-based 
implementation study (DBIR, Kelly, 2004) that seeks 
to implement a replacement curriculum for hard to 
teach topics (linear functions, geometric similarity 
and algebraic expressions), which included profes-
sional development, and, research the resulting class-
room implementations. This paper concerns the first 
curriculum unit on linear functions, which evolved 
from work in the USA. It is organised as a ‘curriculum 
activity system’ (Vahey, Knudsen, Rafanan, & Lara-
Meloy, 2013) and comprises: web-based interactive 
software, teacher guide and student workbook [1] and 
face-to-face/at distance professional development 
support. Adaptation and pilot studies in England 
established the efficacy of the materials – a more ex-
pansive elaboration of the previous work is report-
ed elsewhere (Clark-Wilson et al., 2015; Hoyles, Noss, 
Vahey, & Roschelle, 2013).

This paper extends this earlier work by elaborating 
a theoretical frame and methodological approach 
for research aiming at assessing the success of the 
professional development part of a large-scale in-
tervention. Central to the approach is the question 
of how a teacher’s classroom practice comes to align 
(or not) with the epistemic goals of the CM materials. 
We will limit this discussion to outcomes relating to 

mailto:a.clark-wilson%40ioe.ac.uk?subject=
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classroom implementations of the CM curriculum 
unit on linear functions.

THEORISING ABOUT SCALING

We have drawn heavily on the work of Hung, Lim 
and Huang (2010) who, from the context of technol-
ogy enhanced educational innovations within the 
Singaporean system, have defined the ‘products’ and 

‘processes’ of scaling. By products, they mean the 
mainly quantitative measures such as the number of 
schools, teachers, and classrooms, the geographical 
reach and the (school-derived) measures of increased 
student attainment [2]. The processes describe the 
means through which such products are achieved, 
which will differ according to each project. For CM, 
the processes included the development of a localised 
PD offer led by a CM project lead who could provide 
ongoing peer support for teachers to embed CM with-
in local of schemes of work.

However, whilst these products and processes in-
dicate the extent of teachers’ and schools’ access to 
(and use of ) the CM materials, they mask the more 
fundamental information about how the materials 
were implemented in classrooms and, crucial to our 
research interest, whether or not these implemen-
tations retain any fidelity to the design principles of 
the CM innovation. Existing literature on research 
into the enactment of the mathematics curriculum 
offers a range of methodologies to this end (Heck, 
Chval, Weiss, & Ziebarth, 2012 ; Polly & Hannafin, 
2011). However, few studies have addressed how to 
research classroom implementations during large-
scale projects involving hundreds of teachers over a 
timeline of years (Wylie, 2008).

Defining success at scale
Our earlier work (reported in Clark-Wilson et al., 2015, 
and summarised here) revealed a set of criteria or 

‘success indicators’ at the level of an individual teach-
er’s engagement with CM. These were:

1) Expression of satisfaction with the professional 
development and teaching materials;

2) Alignment between the professional develop-
ment and teaching materials and their goals as 
a teacher;

3) Use of materials and the extent to which they 
create legitimate adaptations (which align to the 
design principles of the innovation);

4) Positive outcomes in their classroom; 

5) Activity and engagement within the professional 
community and with the project team.

Ultimately, we were keen to uncover the extent to 
which teachers redefined powerful learning of their 
students in the light of the innovation. As our earlier 
work had concluded that legitimate adaptions [3] en-
hanced the epistemic value of the tool use (Hoyles et 
al., 2013), we viewed adaptation as an essential part of 
teachers’ actions as they made sense of (and began to 
use) the CM materials. However, we were aware that 
some teachers could adapt the CM materials to pro-
duce ‘lethal mutations’, i.e., implement the materials 
in ways that are inconsistent or detrimental to the 
design principles such that they no longer retained 
their intended epistemic value. For example, an im-
portant design principle was for students to have 
some control of their interactions with the software. 
Consequently, a teacher who chose to always lead the 
use of the software from the whole-class display could 
jeopardise student autonomy in this respect.

As the project scaled to 113 schools (and over 200 teach-
ers) it was evident that observation and interview was 
no longer a viable methodology. Therefore we chose 
teachers’ self-reports to provide an insight into the 
teachers’ perceptions of the epistemic value of the 
CM teaching materials and their associated classroom 
practices. 

METHODOLOGICAL DESIGN

The CM unit on linear functions comprised 14 
‘Investigations’, divided into sub-tasks, most of which 
required direct student interaction with the specially 
designed web-based software. In this paper, we focus 
on the first 7 investigations, which address the follow-
ing mathematical ideas:

Representational:

Equations, algebraic expressions, graphs and 
tables are forms of mathematical representation.
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Motion can be represented on a graph of distance 
versus time.

On a position-time graph, multi-segment graphs 
can represent characters moving at different 
speeds. 

Relational:

Linear equations can be derived using differenc-
es of position and time in a table or by using the 
y-intercept and speed/gradient of a graph.

Speed can be determined from different parts of 
graph and simulation.

Contextual

For equations of the form y = mx, in motion con-
texts, m is the speed of a moving object. 

For equations of the form y = mx + c, in motion 
contexts, c is typically the starting point and m 
is the speed of a moving object. 

Graphs of motion show characters’ start position, 
speed (relative) and places and times where char-
acters meet.

Landmark activities
The notion of a ‘landmark’ activity originates in the 
concept of cognitive breakdown, or a ‘situation of 
non-obviousness’ (Winograd & Flores, 1986, p. 165), 
in which established routines are ‘replaced by con-
flict, disagreement or doubt’ (Hoyles & Noss, 2002). 
This resonates with the role of ‘contingent moments’ 
within the development of mathematics teachers’ 
knowledge and practice (Turner & Rowland, 2011). In 
the context of the technology-enhanced mathemat-
ics classroom, it is anticipated in the design that the 
technology would disrupt routine practices in a trans-
formative sense, and that the ensuing breakdowns 
would provide insights into developing practices.

We define landmark activities as those which indicate 
a rethinking of the mathematics or an extension of 
previously held ideas – the ‘aha’ moments that show 
surprise – and provide evidence of students’ develop-
ing appreciation of the underlying concept. Our chal-
lenge was to develop a methodological approach that 
enabled us to research at scale teachers’ perceptions 

and use of previously identified landmark activities. 
There is a blurring as to whether such activities are 
landmarks for the teacher or for their students. They 
are derived in fact from the perspective of the teach-
ers although, as will be seen later, teachers’ percep-
tions are invariably influenced and substantiated by 
their students’ responses to tasks, supported by day-
to-day formative assessment practices. We recognize 
the temporal nature of landmark activities in that the 
teachers’ initial selections of landmark activities re-
sulting from their first teaching of the CM unit might 
evolve and, we conjecture, stabilise over time.  At this 
point, we start from the assumption that, if teachers 
show awareness of landmark activities that align with 
the design principles, and foreground [4] them for 
their students, they have ‘got it’ with respect to the 
design principles of the unit. 

The process of identification of landmark activities 
went through several stages. First, the research team 
(the authors of this paper) made their own selection 
from the student workbook. Then they discussed 
their selections and agreed a list of eight activities 
that were highly aligned to the design principles of 
the CM curriculum unit under discussion. The tasks 
included some that were mediated by the software and 
some that were paper-and-pencil tasks. This process 
was repeated face-to-face with a focus group of three 
teachers, selected as they had provided thoughtful 
reflections to the online surveys, who provided their 
rationale for their choices. We would have preferred 
that all teachers gave a wholly open-text response in 
justification for each landmark question. However, 
as hundreds of teacher would be responding to the 
questionnaire over a timeline of years, the project re-
sources did not extend to the resulting qualitative data 
analysis process. The data gathered from the focus 
group of teachers, supplemented by responses from 
the Cornerstone Maths professional development 
team informed the development of a set of answer 
prompts that were used within the wider online sur-
vey. These prompts are given in Table 1 alongside the 
teachers’ survey responses.

As part of the final questionnaire to teachers, admin-
istered after they had completed their first teaching 
of the CM unit, we asked teachers to report their three 
most memorable landmark questions and justify 
their choices by selecting one or more of the answer 
prompts and/or by selecting ‘Other’ and providing 
their own reason.



Scaling mathematics teachers’ professional development in relation to technology (Alison Clark-Wilson, Celia Hoyles and Richard Noss)

2336

We conjecture that the teachers would be able to iden-
tify particular tasks in the CM materials that could 
be described as landmark with respect to students’ 
mathematical learning and engagement. The teachers’ 
justifications would be based on their: observations 
of their students engaging in the various CM activi-
ties (with and without the technology); questioning 
of students about their work (individually, in small 
groups and during whole-class teaching); and reviews 
of students’ written responses in the workbooks. 

FINDINGS AND DISCUSSION

Our initial analyses of 98 of the 111 [5] teachers’ re-
sponses suggest that there are some trends emerging 
from the data that offer an insight into the teachers’ 
perceptions and classroom practices with respect to 
landmark activities. Table 1 summarises the teachers’ 
responses for all of their justifications of their chosen 
activities as landmark.

Almost half of the responses related to teachers’ evalu-
ation of their chosen landmark activities as being im-
portant for their role in: provoking rich mathematical 
discussion; revealing important misconceptions; and 
revealing progress in understanding. This suggests 
that the construct of a landmark activity is relatively 
well-defined. 

The ‘Other’ responses, of which there were 31 com-
ments that related to a particular landmark activity, 
could be classified as expanding on the particular: 
mathematical content (i.e., ‘stationary= flat line’); 
mathematical process (i.e., ‘it enabled the students 
to reflect on the connections between the graph, the 
table and the equation’); and highlighted the particu-
lar mathematical difficulties that the students had 
overcome (i.e., ‘students found it difficult to fill in the 
table from the information given’).

We highlight two contrasting findings that lead us to 
critique the validity of our approach with respect to 
our underlying aim to develop a methodology that 
might be appropriate for large-scale studies that seek 
to research implementation fidelity. 

Firstly, we report on the frequency of teachers’ align-
ments with one of our a priori landmark activities, 
supported by qualitative data provided by teachers 
for their choices. We focus on one landmark activity, 
as selected by 17 teachers (shown in Figure 1), taken 
from Investigation 3, which required students to 
interact with the software to respond to a series of 
questions that were designed to develop their under-
standing of the mathematical concepts. 

This question was one of a series of sub-questions that 
required students to generate an appropriate graph 
by interacting with the software. The teachers’ most 
common justifications for this choice of landmark 
question were: it provoked rich mathematical dis-
cussion (n=7); it revealed important misconceptions 

Rationale for choice of landmark question % of total num-
ber of selections 
(n=601) [6]

Most students were engaged and motivated to complete the activity. 22

It provoked rich mathematical discussion. 46

Most students were able to record their explanations. 20

It revealed important misconceptions. 35

It revealed progress in understanding. 48

Other 8

Table 1: Summary of teachers’ reasons for their identification of landmark questions

Figure 1: A landmark question from Investigation 3
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(n=10); and it revealed progress in understanding (n=9). 
One teacher offered the additional comment, 

When answered together they showed immedi-
ately whether a pupil had understood the nature 
of the graphs, the different axes, the similarities 
and differences.

Another reported,

I could easily see which students had a deep un-
derstanding of the concept specifically how the 
position and time were placed on the graph and 
the meaning of these axes.

By contrast, we were surprised by one landmark ques-
tion that was identified by 28 teachers, as we had inter-
preted this activity as simply recording what students 
were seeing in the dynamic multiple representations 
and it did not, in itself, highlight any relational con-
cepts. However, our teachers viewed it differently. 

This question related to the software screen shown 
in Figure 2.

In the activity, the students were asked to edit the 
graph and play the resulting simulation in order to de-
termine how time, position and speed were each rep-
resented in the graph, table and equation respectively. 

They were required to record a written response in 
their workbooks.

Fifteen of the teachers reported that this question had 
provoked rich mathematical discussion and fourteen 
stated that it had revealed important misconceptions 
on the part of their students.

One teacher justified her choice by saying,

Because if students understand and can artic-
ulate the representation, then everything else 
follows.

CONCLUSION

Research on the successful scaling of educational 
innovations, with an emphasis on aspects that im-
pact upon mathematics teacher development, is of 
primary importance given the funding constraints 
that many countries are experiencing (see Blömeke, 
Hoyles, & Rösken-Winter, 2015; Thompson & Wiliam, 
2008). Furthermore, innovations that involve mathe-
matical technologies are known to be slow to integrate 
and scale (Organisation for Economic Co-operation 
and Development, 2010). 

The developing methodology reported in this paper 
offers a way to ascertain the fidelity of the resulting 

Figure 2: The accompanying software environment



Scaling mathematics teachers’ professional development in relation to technology (Alison Clark-Wilson, Celia Hoyles and Richard Noss)

2338

implementations with a large number of teachers.  
Although needing further elaboration, the construct 
of the landmark activity appears to resonate with 
teachers and their views captured in an online sur-
vey methodology with high response rates over time.  
Follow up interviews would certainly enrich the find-
ings if this could be undertaken with some sample. 

We will also explore how the observation of teachers’ 
responses to landmark activities during the CM face-
to-face professional development might shed further 
light on teachers’ own knowledge development in our 
ongoing research.

The construct of landmark questions promises to be a 
productive way to probe teachers’ interpretations of 
the CM unit of work and the mathematical outcomes 
for their students. Our ongoing work will seek to ex-
tend and validate the construct and its application 
within our studies. 
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ENDNOTES

1. The student workbook is a consumable book that 
contains the task instructions. Students record their 
responses to interactions with the technology and 
other related questions in the workbook.

2. We conjecture that, whilst the efficacy of the 
Cornerstone Maths materials have been established 
by its pilot research projects, individual schools and 
teachers will seek to validate the materials to (re-)es-
tablish its efficacy within their institutional settings 
as an important component of the process of scaling.

3. We adopt the ideas of ‘legal’ and ‘legitimate’ muta-
tions of an innovation to describe the extent to which 
classroom implementations adhere to its original de-
sign principles. This is not a bipolar scale.

4. As all teachers have access to the same set of teach-
ing materials, they make individual decisions about 
which mathematical content and processes to empha-
sise (or foreground) in their teaching.

5. 111 teachers had completed their teaching of the CM 
curriculum unit by the end of September 2014.

6. Teachers could make multiple selections. This 
represents the total number of responses across the 
teachers’ choices of three landmark questions.
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The use of digital tools for “doing mathematics” has 
been studied both from the meaning making perspec-
tive and from the point of view of social interactions. In 
this study, we discuss how the use of digital tools that 
support collaboration, exchanging ideas and artifacts 
among students in a dense and intense way fosters the 
mechanism of meaning making in a group of 9th grade 
students that interact with a half-baked microworld. We 
reemploy the UDGS model to describe meaning making, 
but this time from a social aspect, using the notion of 
social and sociomathematical norms. In this context 
of analysis, we search for instances of social creativity, 
while investigating the connection between creativity 
and students’ joint mathematical thinking.

Keywords: Digital tools, meaning generation, social 

creativity, theory integration, Logo-turtle geometry. 

THEORETICAL FRAMEWORK

The use of digital tools for creative mathematical 
thinking has mostly been studied from two different 
perspectives, focusing respectively either on mean-
ing generation or social interaction. Nonetheless, the 
availability of digital tools that support both math 
meaning generation and communication among stu-
dents has recently highlighted the value of drawing 
from both perspectives. Following this strand, we at-
tempt to investigate meaning generation itself as a so-
cial interaction process. In this paper, we study shared 
meaning making in a context where the focus is on 
the social interactions among students. The students 
worked in groups with a digital medium designed to 
support tinkering with a 3D Turtle Geometry tool 
using dynamic manipulation and Logo programming. 
At the same time, this medium allowed students’ on-
line collaboration and communication through shared 
workspaces. 

For this study, we have chosen two theoretical 
tools. Firstly, the notion of social and sociomath-
ematical norms (Yackel & Cobb, 1996; Kynigos & 
Theodosopoulou, 2001), which we found useful, as 
it helped us interpret the social interaction of the 
students during their communication, in terms of 

“microcultures” and taken-as-shared behaviors of each 
group. We found especially useful to consider mean-
ings generated through interaction and the taken as 
shared as work progressed. 

Secondly, the UDGS model (Hoyles, 1987), which al-
though it was first used back in the mid eighties, we 
found it useful for our research, as it is a tool that 
describes students’ meaning making process while 
they engage in mathematical exploratory activities 
with digital media. According to this model, there are 
four phases of the meaning making process: Using, 
Discriminating, Generalizing and Synthesizing. At 
first, students use mathematical and non-mathemat-
ical concepts, without much attention to their actual 
meaning. In the next phase they discriminate ele-
ments of mathematics in their constructions and the 
way they use them. Through the observation of pat-
terns in relations or properties of the Logo commands 
they use, students generalize their ideas. Finally, they 
make synthesis of these generalized ideas with typi-
cal mathematics that these ideas are based on. In this 
framework a mathematical meaning is the way that 
a student understands, uses and thinks of a certain 
mathematical concept. 

In this paper, we discuss a classroom study where dif-
ferent group configurations of students experimented 
with the “Twisted Rectangle” half-baked microworld 
(Kynigos, 2007). Half-baked microworlds are incom-
plete by design, challenging students to explore the 
reason for the buggy behaviour they show, engaging 
them in the process of mathematical meaning-making. 

mailto:dimitrd@ppp.uoa.gr
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The Twisted Rectangle’s buggy procedure creates an 
open skewed rectangle, intriguing students to try to 
fix and express their own mathematical ideas on how 
to reconstruct it (Figure 1). To conduct their exper-
iments as they tried to find the bug and then work 
out the mathematics necessary to fix it, the students 
needed a medium able to support collaboration, joint 
planning, argumentation and meaning making. 

The Metafora Platform (Dragon, Mavrikis, McLaren, 
Harrer, Kynigos, Wegerif, & Yang, 2013) was built to 
encourage students to “learn how to learn together”. 
Group members have tools to make plans, to act as 
designers, and to publish, argue over and discuss their 
constructions. This act of designing and publishing 
(Kafai, 2006) is an externalization of an individual’s 
tacit knowledge, or a group’s knowledge, in the case 
of a joint construction of more than one individual. 
We were interested in studying how meanings were 
shared and argued over as an integral part of the stu-
dents’ activity. Artifacts were available at all times for 
inspection and reconstruction, starting from discrim-
inations of the ideas embedded in the procedure by 
the designers (Kynigos, 2012). It has been a long time 
now that Papert and Harel (1991) suggested that when 
artifacts are published intensively and densely in a 
learning collective, meaning making process happens 
naturally. We wanted to study this process in detail, 
to capture the process of shared meaning making and 
the kinds of socio-mathematical norms generated, as 
groups of students jointly tried to fix a buggy artifact 
and use it to build their own. 

In this context of social interaction and building on 
our previous work (Kynigos & Moustaki, 2013), we 
wanted to give particular focus on creativity in math-
ematical thinking. Since we talk about groups, we put 
emphasis on social creativity. We found Fischer’s ap-
proach as a good tool for us to think with. Arias and 
Fischer (2000) emphasize that externalization sup-
ports social creativity as students move from vague 
mental conceptualizations of an idea to a more con-
crete representation of it. It also allows students to 
interact with, negotiate around and build upon an 
idea as the diversity of voices and minds increases. 
Fischer’s group approaches creativity as a social pro-
cess which has four elements: (1) originality: people 
or, in this case, students have novel ideas or they are 
capable of applying prior knowledge in new contexts, 
(2) expression: students should be able to express and 
externalize these new ideas, (3) social evaluation: stu-

dents with different perspectives should be able to 
evaluate these novel contributions, reflect upon them 
and improve them, and (4) social appreciation: refers 
to the credits and acknowledgment from the other 
participants of the group motivating further cre-
ative activities (Fischer, Scharff, & Ye, 2004). Fischer, 
Giaccardi, Eden, Sugimoto, & Ye (2005) have described 
the characteristics of situations that, in their ap-
proach, support this social aspect of creativity: they 
are open-ended and complex so that students will be led 
to unpredictable results and eventually to experienc-
es of breakdowns. Breakdowns offer opportunities for 
reflection and learning, through the procedure of the 
back-talk of situations (Fischer et al., 2005). Another 
form of social creativity is co-creation which is a sit-
uated experience leading to emerging and sharing 
creative activities with no explicit goal and meanings 
in a socio-technical environment through synchroni-
zation and improvisation as students share emotions, 
experiences and representations (ibid).

Although there seems to be a connection between 
aspects of social creativity and the meaning making 
process when students work in groups, we found re-
search on these two approaches to be rather fragment-
ed with respect to emphasis on one or the other. In our 
study we tried to see if these separate views can be 
usefully integrated in a situation where co-construct-
ing students work in groups that communicate with 
each other exchanging ideas and different versions 
of the original figure. 

TECHNOLOGY

The Metafora platform brings together students from 
various backgrounds to solve problems of fixing mod-
els which we faulty by pedagogical design (Kynigos, 
2012). It hosts three types of tools available to the stu-
dents at all times: a 3D Turtle Geometry environment, 
an argumentation tool and a shared workspace for 
students to make shared plans of their actions as a 

Figure 1: The half – baked microworld “Twisted Rectangle” in 3D 

Math
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group. The 3D Math tool (Figure 1) affords Logo-based 
Turtle Geometry with a feature for dynamic manip-
ulation of variable procedures once executed with a 
set of values (Kynigos & Psycharis, 2003). 

THE STUDY

Research design and methodology
In the study we used the methodological tools of 

“design research” (Cobb,  Confrey, diSessa, Lehrer, & 
Schauble, 2003), which is an empirical study of human 
activity in real settings. In the implementation of the 
research, students and teachers were engaged, for sev-
eral sessions, in an activity with the use of digital tools. 
This research framework is suitable in the classroom, 
where the learning ecology is described by means of 
collaboration and effectiveness in addressing tasks 
that challenge students to take initiative in specific 
situations (Collins, Joseph, & Bielaczyz, 2004). 

Ten 9th grade students, three mathematics teachers 
of a public Experimental School in Athens and four 
researchers participated in the research. The imple-
mentation took place in the school pc lab, after-class, 
in the frame of the school Math Club activities, for 
twelve sessions of two teaching hours each (about 
two and a half months). Most of the students were 
not novice users of 2D Turtleworlds. In the time of 
the study, students had been taught trigonometry, but 
not stereometry. They were separated in two groups, 
and each group was divided in two subgroups. The 
subgroups of the same group were communicating 
through Metafora communication tools.

Task analysis
The bug in the procedure given to the students was 
the absence of a relation between a turn and a length 
of one of the rectangle sides. This resulted in the pro-
cedure producing an “open” figure and the students 
were faced with the challenge of fixing the bug so that 
it ‘closed’ no matter what the variable values were. The 
challenge required students to find simple sin and cos 
relations between angles and sides in two triangles 
lying respectively in two different planes joined only 
by one common side. Once figured out, the students 
would have to express these relations with functions 
allowing for the rectangle to be built with one varia-
ble for twist around a vertical axis (wmega), one for 
a horizontal axis (theta) and one for side length. To 
do that, the students would have to think about the 
concept of angle in 3D space.

A useful tool for us to recognize the meanings that stu-
dents generated was the approach of Henderson and 
Taimina (2005) of students’ conceptualization about 
angle: as a static geometrical figure, as a number that 
expresses a magnitude, or as a result of turning. These 
perspectives of an angle correspond to the static or 
dynamic definition of it (Mitchelmore & White, 1998). 
Our hypothesis is that ninth grade students mostly 
conceptualize angle as a static geometrical figure, 
which corresponds to the static definitions of angle. In 
Turtle Geometry however, angles are dynamic turns, 
rather than static direction relations. 

Data collection method
Data collection included conversations between 
teachers and students, or groups of students, their 
gestures during their discussions, their constructions 
on the screen or artifacts that they made by hand. For 
these reasons we used voice recorders and a camera. 
A screen-capture software (HyperCam2) was used to 
record students’ interactions with the Metafora tools. 
We also collected students’ manuscripts and drawings. 
The data corpus was completed by the researchers’ 
field notes. 

RESULTS

Episode 1: Elements of social creativity 
in the phase of discrimination used 
in the process of generalization 
The students of the subgroup 1 used dynamically the 
variation tool in order to find out which variable of the 
code corresponded to which spatial characteristic of 
the “Twisted Rectangle”. Founding it difficult to come 
to a conclusion, they had the idea of reconstructing 
the figure. They decided to use drinking straws, al-
though there were no straws available till then. The se-
quence of commands “forward(:length) right(90+:the-
ta/2) up(:wmega) forward(:width)” made the turtle go 
forward for a distance equal to the variable “length”, 
turn right “90+theta/2” degrees, then pitch up “wmega” 
degrees and go forward for a distance equal to the 

“width” variable. Turning right “90+theta/2” degrees 
seems to be complicated, but “theta” was a structural 
feature of the figure, related with its buggy behavior. 
Discriminating the role of “theta” was necessary, so 
that the students could focus on what was missing 
to fix the bug. Following this sequence of commands, 
the turtle drew an angle of the figure. Comparing the 
two representations of this angle, the one on 3D Math 
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and the other on the construction of straws, students 
realized that they are not the same.

Student 1: After fd(:length) it turns right.
Teacher:    How much it turns?
Student 1: 90 + theta/2.
Student 2: And after that?
Student 1: up(:wmega). So it goes like this, it has 

gone up and then goes fd(:width), nice!
Student 2: The figure shouldn’t have been like 

that. Let’s do it again...

In this dialogue, the students use interchangeably 
three representations of the shape: the figure inside 
3D Math, the logo code and their construction (Papert & 
Harel, 1991). Trying to represent the geometrical result 
of a right turn of “90+theta/2” degrees, they construct-
ed an obtuse angle (Figure 3). This construction of the 
artifact seemed to be a result of their conceptualization 
of the angle as a static geometrical figure (Henderson & 
Taimina, 2005; Mitchelmore & White, 1998). According 
to the UDGS model, this is the phase of “using”, as the 
students used the mathematical concept of angle with-
out having a complete image of it (Hoyles, 1987).

Furthermore, there seems to be a breakdown in 
their effort. Thinking that their construction of 
straws was not totally correct, the students decided 
to explain the logo code step by step. 

Student 1: I have second thoughts about this com-
mand...

Teacher:   Why?
Student 1: If it turns right 90 plus something, 

then it goes here (she shows 90-the-

ta/2). But it is not right; the figure 
ends up being wrong.

Student 2: Thanks God that I do not trust the logo 
code! (Laughing)

Student 1: Just a moment, give me the straws and 
the eraser. Ah, it goes here.

Student 2:  90+theta/2 to the right.

In the dialogue above, Students 1 and 2 seemed to eval-
uate their initial construction and improve it, using 
an eraser (pointing somewhere) as a representation 
for the turtle. This modification was revealing of the 
students’ thinking. It seemed that in the first model 
(without the eraser), the straws were not a signifier 
for the trace of the turtle. They used the straws as a 
semantic simply for the sides of the angle. Their idea 
to use an eraser, in order to add a signifier of the turtle 
to the model, led to an “improvement” of the use of 
the straws. The straws instantly became not just the 
signifier of angle edges, but of the turtle’s trace, as 
well. This “improvement” came up as a more concrete 
representation of an angle, than their initial conceptu-
alization (the angle as a static geometrical object). The 
extended model (straws and eraser) was the result of 

“expressing a new idea” (use an eraser as a turtle), after 
they interacted with the logo code and the figures. The 
students reflected upon their model and evaluated it 
due to the distrust to the code. 

The novelty of the students’ idea to use the straws, the 
construction of their model, and the reflection upon 
it, which led to the evaluation and improvement of 
the model,  according to Fischer’s approach, can be 
interpreted as three of the four elements of social cre-
ativity;  originality, expression and social evaluation.

Figure 2: (a) the construction made of drinking straws, (b) the result of command up( )

Figure 3: The two representations of the result of the logo command rt(:90+theta/2)
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Using their improved model as an instrument (Artigue, 
2002), the students started to generate new meanings 
for the concept of angle, which corresponded to the 
dynamic definition of it as a turn (Mitchelmore & 
White, 1998) (Figure 3). In this way, they discriminat-
ed the element of turn under their construction and 
the way they improved it (Hoyles, 1987). Later, as they 
tried to construct the rest of the figure using straws, 
they found that the logo commands were following 
the same pattern.

Student 1: You see? It is fd(:length) lt(90+(:the-
ta)/2) dp(:wmega) fd(:width) instead of 
fd(:length) rt(90+:theta/2) up(:wmega) 
fd(:width). Left instead of right and 
down instead of up.

Student 2: This part of the figure is an angle like 
the other we have already done.

The students appeared to transfuse a property of 
the logo code to the figure. They made an abstraction, 
using a certain pattern of logo commands as a rep-
resentation of the angle. This observation of patterns 
of the logo commands is a main characteristic of the 

“generalization” phase in the UDGS model. When they 
discovered the same pattern of logo commands else-
where in the logo code, they recognized it as the sym-
bolic representation of a similar angle, and searched 
for this angle on the eraser-straw model. In this way, 
they generated an abstraction, generalizing the con-
cept of an angle and using it. We also suggest that this 
joint mathematical thinking can be explained through 
the lens of sociomathematical norms. To be more spe-
cific, the argument that a pattern of logo commands 
defines a certain geometrical figure had been a norm 
of an accepted mathematical explanation within the 
group of students. 

Episode 2: Creative ideas for synthesizing 
concepts across context
At the end of the previous session the group managed 
to address the challenge (Figure 4a). Subgroup 1 and 
subgroup 2 had different perspectives of the solu-
tion (geometrical and algebraic), but they reached to 
a common solution. The students, reconstructing the 
code, created a formed and closed “Twisted Rectangle”. 
In this session, the subgroups using the Twisted 
Rectangle as a building block created their own con-
structions with 3D Math. Subgroup 1 had constructed 
a figure that reminded them a logo of a chain store, 
while subgroup 2 had constructed a “flower”. They 
used the communication tool in order to exchange 
and combine logo codes and ideas:

Subgroup 2: You could test the code “flower” that 
we have already tested. We‘d like to tell 
us what you think about it and what you 
have done… in order to make a combina-
tion of our codes!!!

Subgroup 1: We created the code “stem” and com-
bined both codes so we created a new 
code called “flower with a stem”!

Subgroup 2: Ok. We wanted to make a bigger 
flower, so we added more variables… 
We should combine this code now with 
yours again…

Subgroup 1: Ok! We sent you the new combined 
code: “The flower with a stem”!

Then, they used the logo of the chain store as a “vase” 
to put the flower in (Figure 4b). 

According to the UDGS model, using the generalized 
“Twisted Rectangle” as a building block is an instance 
of meaning making. Observing the students’ inter-
actions we notice a dense publishing of their own 
constructions and an intense exchanging, reflection, 
combination and improvement of their logo codes 
(which represent their ideas). Based on the approach 

Figure 4: Students’ construction: (a) The twisted rectangle, (b) The flower in a vase
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of social norms we suggest that this taken-as-shared 
behaviour was a basis for their communication, which 
indicated the group “microcultures” (Yackel & Cobb, 
1996). This kind of microcultures was characterized 
by externalization of original ideas and social evalu-
ation of them (through reflection and improvement). 
According to Fischer and colleague’s (2004) approach 
these are elements of social creativity. Moreover, dur-
ing the construction of the artifact we noticed the de-
velopment of taken-as-shared understanding of what 
was an “appropriate” logo code in order to create a 
common construction; the two subgroups used vari-
ables instead of numbers in their codes.

From our point of view, this shared behaviour of “us-
ing variables” is related to the embodiment of the pow-
er of generalization that occurs during the meaning 
making process and indicates a sociomathematical 
norm. We suggest that this common behaviour was 
crucial for addressing a task with no explicit goal, 
like this one. According to Fischer and colleague’s 
(2005) approach and taking under consideration that 
students used a digital tool which supports commu-
nication and sharing of ideas, this situation can be 
characterized as co-creation which is a form of social 
creativity.

DISCUSSION

The study discusses two episodes where meaning gen-
eration was evident in a context of social creativity in 
mathematical thinking. In the first episode students 
of subgroup 1 realized by tinkering with the model of 
straws that it was not an accurate representation of the 
Twisted Rectangle because it was static and they im-
proved it using an eraser. Taking a close look at the stu-
dents’ activity, we suggest that they were trying to re-
build their model to be the closer to what the Logo code 
represented, which was a construction of the Twisted 
Rectangle, rather than a static result. This novel idea 
came up early, during the phase of discrimination (of 
UDGS model) in the meaning generation process. It 
seems that this idea was shared by the students and 
used in their attempts to make sense of angle in space 
which were perceived as joint. The eraser semantic ini-
tiated a developing of a socio-mathematical norm about 
how to think of dynamic angle in space which was then 
taken as shared in subsequent generalizations of angle 
and trigonometric relations to twisted rectangle sides. 

In the second episode, the students of each subgroup 
used their shared resolved procedure of a generalized 
twisted rectangle as a building block to build their 
own constructions. The two subgroups exchanged 
their constructions through the Metafora argumen-
tation tool in a dense process focused on negotiating 
meanings to explain and exchange developing com-
plex models. The ideas of what to build and how it 
behaves were shared between the two groups which 
were operating as a new group to show the class what 
they had done. They were thus conceived and used in 
a social setting from the beginning and the language 
developing in the groups seemed to create an atmo-
sphere of social creativity and sharing of these ideas. 
We take these shared practices and behavior as situ-
ated in interaction with the medium of this particular 
collaboration. From this point of view, we can argue 
that the Metafora Platform afforded and fostered the 
emergence of social creativity in the group activities.

In both episodes the learning process seemed to be fos-
tered by social practices, such as the making of shared 
meaning, common argumentation and beliefs of what 
is accepted as a solution. Although we were looking at 
socially emerging meanings, we found the use of UDGS 
shows helpful to describe meaning generations but 
this time to try to understand if this meaning making 
process can be described with these tools as a collective 
process in emergence of social creativity. More pre-
cisely, we found elements of social creativity emerging 
within the phases of the UDGS model. This study made 
us reflect that it may be worth readdressing the prob-
lem of meaning making in new kinds of collectives now 
that we have digital media that support communication, 
collaboration and joint mathematical thinking.
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It is recognized that the process in which an artefact be-
comes an instrument for a user, denoted as instrumental 
genesis, is a complex process. The aim of this paper is to 
identify elements of the process of instrumental genesis 
when students are dealing with scales and scaling issues 
in a dynamic mathematics software environment. This 
study involves four upper secondary school teachers and 
their classes. By observing the students’ instrumented 
techniques while working with tasks designed with a 
hypothetical instrumental genesis in mind, some key 
elements are identified. 

Keywords: Instrumental genesis, scaling of axes, dynamic 

software environment.

INTRODUCTION

Several decades ago, researchers recognized the 
affordances provided by graphical technologies, in 
particularly in the field of functions and graphs (e.g., 
Goldenberg, 1988; Leinhardt, Zaslavsky, & Stein, 1990). 
For instance, in comparison to the corresponding 
work with paper and pencil, they emphasized the 
ease, and thereby the speed of changing the scales of 
the axes to obtain several different views of a graph. 
However, some difficulties have also been identified 
relating to the issue of scales and scaling of axes 
(Hennessy, 1999; Mitchelmore & Cavanagh, 2000; 
Yerushalmy, 1991).

The availability of different kinds of technology in 
mathematics classrooms is increasing and more and 
more students are provided with a computer of their 
own (Valiente, 2010), which entails new possibilities 
for the integration of technology in mathematics 
education. However, there is a need for students to 
learn how to use the technology appropriately so 

that it becomes an instrument for them. Several re-
searchers use the notion of instrumental genesis to 
describe this process by which an artefact [1] becomes 
an instrument for a user (e.g., Artigue, 2002; Drijvers 
& Gravemeijer, 2005; Trouche, 2004). However, there 
is agreement that the complexity of this process has 
been underestimated and may have contributed to the 
recognized difficulty of integrating technology into 
mathematics teaching and learning (Artigue, 2002). 

To address the challenge of integrating technology 
into the mathematics classroom, Trouche (2005) in-
troduces the notion of instrumental orchestration, 
which also takes account of the social dimension of the 
instrumental genesis within a classroom. Although 
many researchers associate instrumental orchestra-
tion primarily with the organisation of classroom 
interaction (e.g., Drijvers, Doorman, Boon, Reed, & 
Gravemeijer, 2010), the original notion also involves 
the customization of an artefact in order to create a 
particular task environment (Ruthven, 2014). This 
paper concerns the customization of a dynamic math-
ematics software environment, especially the tools 
associated with scales and scaling. The tasks were 
designed with a particular instrumental genesis in 
mind. The aim of this paper is to pinpoint some ele-
ments affecting the process of instrumental genesis 
in relation to scale and scaling issues within a dynam-
ic mathematics software environment, in this case 
GeoGebra. 

INSTRUMENTAL APPROACH

One important aspect of this approach is the process 
of instrumental genesis (Verillon & Rabardel, 1995). 
Through this process an artefact becomes an instru-
ment for a user. An artefact is an object, material or 
abstract, available to the user and aimed at perform-
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ing a certain type of task. For an artefact to become 
an instrument for a user, there need to exist a mean-
ingful relationship between them (Drijvers & Trouche, 
2008). In this way, “…the instrument consists of both 
the artefact and the accompanying mental schemes…” 
(p. 367), developed by the user. 

It is recognized that the process of instrumental 
genesis has two directions, one towards the artefact 
(instrumentalisation) and one towards the user (in-
strumentation) (Trouche, 2004). The user shapes the 
artefact by his/her knowledge and former method 
of working while the artefact shapes the subject by 
its constraints and potentialities. However, the fact 
that the process of instrumental genesis is a rather 
complex and thereby a time-consuming process has 
been underestimated (Artigue, 2002). One reason for 
this, Artigue argues, is the predominant role as a ped-
agogical tool given to technology.

Suggesting that instrumentation may be a com-
plex and costly process does not fit visions that 
consider technology mainly as an easy tool for 
introducing students to mathematical contents 
and norms defined independently from it. (2002, 
p. 253) 

Regarding what could be considered as an artefact 
depends on the situation under consideration. For 
instance, a symbolic calculator could be considered as 
a collection of artefacts (Trouche, 2004). Accordingly, 
this provides students with the possibility to devel-
op several types of instrument while working with 
this kind of technology. Besides the artefacts, the 
kinds of instrument being developed depend on the 
students and the accompanying tasks (Maschietto & 
Soury-Lavergne, 2013). Hence, it is important for a 
task designer to be aware of, among other things, the 
potentialities and constraints of an artefact (Artigue, 
2002; Trouche, 2004). 

Concerning the mental schemes students develop 
through the instrumental genesis process, research-
ers (e.g., Drijvers & Gravemeijer, 2005; Trouche, 2004) 
distinguish between two categories, usage schemes 
and instrumented action schemes. The usage schemes 
are basic and relate closely to the artefact while instru-
mented action schemes focus on actions upon objects 
such as graphs or formulas. In this way “Instrumented 
action schemes are coherent and meaningful mental 
schemes, and they are built up from elementary usage 

schemes by means of instrumental genesis.” (Drijvers 
& Gravemeijer, 2005, p. 167). However, it is not always 
obvious how to distinguish between these kinds of 
scheme; it might be a matter of level of capability of 
the user (Drijvers & Gravemeijer, 2005). 

Drijvers and Gravemeijer (2005) argue that instru-
mented action schemes involve both technical and 
conceptual aspects. Even if it is the development of 
conceptual knowledge that is the most interesting, 
it is the technical activities that are visible and thus 
the observable part which can be the object of inves-
tigation. The technical activities that are developed 
through instrumental genesis are denoted as instru-
mented techniques (Artigue, 2002) or just technique 
(Lagrange, 1999). In this way, it is the technique that is 
the “…gateway to the analysis of instrumental genesis.” 
(Drijvers & Gravemeijer, 2005, p. 169). 

SCALES AND SCALING WITH TECHNOLOGY

Several decades ago, researchers were already dis-
cussing the influence that new technology would have 
in the field of functions and graphs (e.g. Leinhardt et 
al., 1990). This section introduces some issues relating 
to scales and scaling of axes.

In traditional paper-and-pencil work, for example, 
textbook tasks, graphs often are presented as static 
diagrams with the coordinate axes scaled in an ap-
propriate way (Zaslavsky, Sela, & Leron, 2002). When 
working with a graphical technology, on the other 
hand, the scaling of axes is often left for students, 
which has proved to cause them some difficulties 
(Hennessy, 1999; Mitchelmore & Cavanagh, 2000). 
Further, Leinhardt and colleagues (1990) assert that 
students’ ability to deal with scaling of axes is often 
taken for granted and argue that “…the construction 
of axes requires a rather sophisticated set of knowl-
edge and skills.” (p. 43). As an example of elements of 
instrumental genesis observed in a CAS environment, 
Artigue (2002) discusses “framing schemes”:

When students use function graphs in a comput-
er environment (or a graphic calculator), they 
are faced with the fact that a function graph is 

“window-dependent” and they have to develop 
specific “framing schemes” in order to cope effi-
ciently with this phenomenon. (p. 250)
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Mitchelmore and Cavanagh (2000) argue that one 
reason for students’ limited understanding of scal-
ing might be their lack of experience in dealing 
with graphs where the axes are unequally scaled. In 
line with this, Goldenberg (1988) discusses students’ 
preference for “symmetric scaling”, i.e., x- and y-ax-
is are equally scaled. He refers to an example where 
students who had received an appropriate view of a 
graph, still changed the scales to obtain symmetric 
scaling. In this way, the students received a visual 
appearance obscuring important features of the 
graph. To receive a better visual appearance, they 
changed the scales of the axes by the same factor, i.e. 
they used a zoom operation. Goldenberg (1988) ar-
gues that one reason for this might be that students’ 
intuition about scale changes is closely connected to 
real-world experiences: “… our almost automatic ap-
proach is to change both scales by the same factor…” 
(p. 36). However, since usually different units on the 
axes are required to see the graph in an appropriate 
way, Goldenberg (1988) stresses the importance for 
students to deal with unequally scaled axes. 

Mitchelmore and Cavanagh (2000) found that stu-
dents in their study showed limited understanding 
of the zoom operation. The students used the zoom 
operation as a magnifying glass but “…were unable to 
link the operation of zooming with any change in the 
scale of the graphs displayed in subsequent viewing 
windows.” (Cavanagh & Mitchelmore, 2003, p. 14). As 
an example, they refer to a case were students who 
zoomed in on the vertex of a parabola were surprised 
to see a linear shape of the graph.

Concerning how unequal changes of the scales of the 
axes (i.e. not zooming) impact on the visual appear-
ance of the graph, Yerushalmy (1991) emphasizes the 
importance of understanding the difference between 
the properties of a function and its picture in a graph-
ical view. In her study, students showed difficulties 
when interpreting the same function graphed in two 
different scale systems, since the visual appearance 
differed (Yerushalmy, 1991). 

Godwin and Sutherland suggest graphing software as 
a mean to provide students with experiences of this 
kind since it provides “The ability to change the scale 
easily and hence the ‘frame of view’ of a function…” (p. 
134). Further, Hennessy (1999) emphasizes the impor-
tance for students not only to realize what will change 
but also what remains constant as the scales change. 

METHOD

This study is embedded within a form of design re-
search project involving two researchers and four 
upper secondary school teachers with one class each. 
The focus of the project was on a sequence of three 
lessons, taught over the course of a school year, in 
which some use was made of GeoGebra to tackle tasks 
concerning functions and graphs. The researchers 
and teachers had meetings before and after each les-
son. In total, three worksheets, one for each computer 
lesson, were designed. Although the responsibility for 
the design was the researchers’, the teachers provided 
valuable information regarding the participating stu-
dents’ capabilities and their current practices. 

Each worksheet consists of a sequence of related tasks, 
denoted as a task sequence, TS. The first and the third 
worksheets concern exponential functions, while the 
second worksheet is mainly about linear relation-
ships. This paper focuses on issues concerning scale 
and scaling which are mainly addressed in the task 
sequences for the first and second lessons. A more 
comprehensive report of the project will be provided 
in another paper by the author. 

The overarching aim of the task sequences is to en-
hance both students’ conceptual knowledge about 
functions and graphs and the scope for the dynamic 
mathematics software to become an instrument for 
the students (Verillon & Rabardel, 1995). Therefore, on 
the worksheets the task sequences were intertwined 
with computer instructions. As noted earlier, the way 
in which this was done constitutes an instrumental 
orchestration of the task environment.

The participating students were tenth grade students 
with no previous experience of working with either 
dynamic software or graphical calculators. Altogether, 
85 students participated in the study. The students 
were to work in pairs with one computer per pair. The 
purpose of this is that the computer screen should pro-
vide a shared object for discussions between students. 

The empirical data reported in this paper were main-
ly collected during the two relevant lessons with the 
four classes. Each lesson lasted about 60 minutes. In 
each class one pair of students was video recorded and 
all teacher-student interactions during the lessons 
were audio recorded using a microphone attached to 
the teacher. When necessary in the analysis process, 
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copies of the written responses from the students 
were used. 

In the analysis process, the video recordings were 
the primary source since these data made it possible 
to observe students’ instrumented techniques which 
are the observable part of the instrumented action 
schemes (Drijvers & Gravemeijer, 2005). The audio 
recordings provided further insight into the frequen-
cy of some student responses. 

The scope of this paper is restricted to only dealing 
with aspects concerning scale and scaling in relation 
to the process of instrumental genesis. Thereby the 
tools addressed in this paper are those associated with 
the coordinate system, and particularly the tools need-
ed to obtain appropriate visual graphical appearances. 

RESULTS

This section introduces some prototypical observa-
tions regarding how students deal with scales and 
scaling of axes. The first task in the first task sequence 
(TS 1) was intended to be a routine paper-and-pencil 
task which introduces the context of TS 1: 

The height of a sunflower is 50 cm when it is meas-
ured for the first time (June 1). After that the sun-
flower grows so that it becomes 30 % higher each 
week. Calculate the height of the sunflower one 
week after the first measurement. 

The first task is followed by computer instructions 
and the students are expected to use the software to 
enter the points known so far. Regarding the first 
point (0,50), we decided to provide students with both 
conceptual and technical guidance as follows:

When the first measurement is performed, x = 0 
(since 0 weeks have passed) and y = 50. The cor-
responding point in a coordinate system is (0,50). 

 Insert this point by entering (0,50) into the 
”Input Bar”: 

NOTE! To be able to see the point you must adjust 
the scale on the y-axis. This can be done by ”drag-
ging” the y-axis. (first mark )

Since we anticipated that several students might 
be confused when they cannot see the point in the 

Graphics View [2], we decided to add the note above 
to draw attention to the scaling of the y-axis. However, 
this note proved to be insufficient since utterances 
like “Should we not get a point there?” appeared sev-
eral times both in the audio and video recordings. 
The video recordings indicate that the reason for 
this might be students’ eagerness to start using the 
computer and not to spend time reading the instruc-
tions. Consequently, the teachers often had to draw 
students’ attention to the y-axis making them aware of 
its scale. Further, since the students tended to use the 
zoom operation when changing the scales, the teach-
ers frequently had to demonstrate the possibility to 
only adjust the y-axis.

Next, the students were expected to enter the point 
corresponding to their calculation in Task 1, i.e. the 
point (1,65). To make students aware of the possibility 
of adjusting the x-axis, i.e. adjusting one axis at time, 
to obtain an appropriate graphical view, we added 
the following note:

If appropriate, adjust the scale on the x-axis!

However, this note seemed to be ignored by most of 
the students. Maybe the note came too early, and by 
this stage the students could not see the point of it. 
The empirical data reveal that even students who had 
adopted the technique of adjusting one axis at a time 
tend to focus on the y-axis and not use this possibility 
when it comes to the x-axis. Both the audio and video 
recordings reveal that the teachers frequently had to 
draw students’ attention to the grading of the x-axis to 
get a more appropriate visible view of the coordinate 
system.

The second task sequence, TS 2, introduces a context 
problem where the students are encouraged to formu-
late a linear function formula to insert into GeoGebra:

To get money for a class trip, the Class 9b at Sugar 
School decided to rent a table and sell candy at the 
market place. The rent for a table is 100 SEK. They 
purchase candy for 40 SEK per kg. Determine a 
formula that describes how the total cost depends 
on the weight in kg of the candy purchased.

As in TS 1, the y-axis has to be adjusted to see the ob-
ject, in this case a graph, in the coordinate system. 
Therefore, we decided to give the following note:
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NOTE! To be able to see the graph (the line) there 
might be a need to adjust the axes.

As in TS 1, both audio and video recording show that 
several students could not see the object due to the 
scaling of the y-axis. In their attempts to find out the 
reason why they cannot see the graph, one pair of stu-
dents discussed whether they have to type a sign (*) 
for multiplication between 40 and x. Thus, they did 
not reflect on the scales. Reminded by the teacher of 
the scaling of the y-axis, they used the zoom operation, 
and obtained a graphical view like the one in Figure 1.

The empirical data reveal that graphical views similar 
to the one in Figure 1 were frequently obtained by stu-
dents. Actually, all the video recorded pairs obtained 
a similar view. This, in turn, caused difficulties when 
they were encouraged to attach a point at the graph 
and (a) describe how they could use the point to check 
their calculation in the preceding task, in this case 
moving the point so that its x-coordinate becomes 10 
and read off the corresponding y-value and (b) decide 
the value of x for a specific value of y. With a graph-
ical view like the one in Figure 1 it turned out to be 
impossible to use the Graphics View to read off the 
corresponding value of y when of x = 10 without chang-
ing the scale of the x-axis. One of the video recorded 
pairs of students expressed their confusion: 

Student 1: It looks like we have done wrong.
Student 2: mm
Student 1: Go back!
Student 2: We check a little more…lock from the 

start. There is nothing wrong with the 
equation.

Having convinced themselves that the formula is cor-
rect and that they understand what the point repre-

sents, they felt that they got stuck and asked the teach-
er for help. Notably, they did not reflect on the scales 
of the axes. Reminded of the possibility of changing 
the x-axis, these students solved the task.

The audio recordings also revealed this kind of confu-
sion on several occasions. Consequently, the teachers 
often had to remind and instruct the students how to 
scale the x-axis to receive integer marks and to obtain 
a better visual appearance of the graph.

However, it was observed how one of the video record-
ed pairs tackled the problem caused by inappropriate 
scaling of the x-axes (see Figure 1), by only observing 
the Algebraic View while solving the task. They moved 
the point along the graph until the x-coordinate of the 
point shown in the algebraic view became 10. 

Although the participating students when entering 
the first two task sequences seemed to lack experience 
of adjusting one axis at a time, to obtain an accessible 
graphical view, the video recordings indicate an en-
hanced ability among the students to perform this 
when tackling the third task sequence.

CONCLUSION AND DISCUSSION

The aim of this paper was to identify elements affect-
ing the process of instrumental genesis concerning 
appropriate scaling of the coordinate system in a dy-
namic mathematics software environment. During 
their work with the tasks, the participating students 
encountered situations which required rescaling of 
the axes; to see an object in the coordinate system and/
or to obtain an appropriate visible appearance of the 
object(s). The following closely related elements of 
instrumented action schemes were recognized:

Figure 1: One example of a Graphics View obtained by students
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1) Knowing how to change the scale of the axes, both 
by using the zoom operation and by adjusting 
one axis at a time. 

2) Realizing when it is necessary to adjust the y-axis 
to see an object, for example, points or a graph. 

3) Realizing when it is appropriate to change the 
scale of the x-axis to obtain a better visible picture 
of the objects. 

It is possible to distinguish between the technical 
and conceptual character of the elements (Drijvers 
& Gravemeijer, 2005). While the first item primarily 
requires technical capabilities the other two items 
primarily demand conceptual knowledge. In this 
study, the mathematical knowledge required to be 
able to rescale the axes in an appropriate way is about 
the range and domain of functions representing 
real world situations. Concerning the instrumented 
techniques of changing scales of the axes, the result 
indicates that students are disposed to employ the 
technique of zoom operation, which aligns with the 
findings already reported by Goldenberg (1988) more 
than two decades ago. This sometimes gave rise to 
obstacles when the visual appearance of an object, for 
example, a graph, made it hard or even impossible to 
solve problems graphically. 

One reason for students’ preference for using the 
zoom operation technique might be that students al-
ready are familiar with this technique from the use of 
other screen based technologies, for example, smart 
phones. In comparison, they did not adopt the tech-
nique of adjusting one axis at a time so easily. The 
reason for this might be that students lack of prior 
experiences of this kind of technique. 

Another reason might be the features of this kind of 
tool in the particular software under consideration, 
i.e., GeoGebra. While the zooming tool, and the asso-
ciated zoom operation technique, is readily availa-
ble, the technique of scaling one axis at a time is more 
demanding, probably because the associated usage 
schemes involve knowledge of tools with limited ac-
cessibility in GeoGebra. 

A further observation made in this study is that stu-
dents tend to neglect the written instructions on us-
ing the computer, at least when they do not see any 
immediate need for them. When, later on in the task 

sequence, they encountered problems due to their 
inattention to the instructions, they asked the teacher 
for help. The reason why students tend to disregard 
such instructions may be that they do not usually read 
instructions while using digital technology.

To summarize, the findings highlight various obsta-
cles which arose in the course of instrumental genesis 
under the instrumental orchestration of GeoGebra 
use provided by the teaching sequence and task en-
vironment as originally designed. These findings 
suggested ways in which that orchestration might be 
redesigned in order to better support students’ devel-
opment of the desired instrumentation schemes. In 
particular, they highlight the potential importance 
of taking account of students’ previous experiences 
both regarding the use of technology in mathemat-
ics and the use of every-day technology, e.g., smart 
phones. Furthermore, these findings emphasize how 
students draw on existing instrumentation schemes, 
developed in relation to what they perceive as sim-
ilar tools, when they start to work with a new tool; 
instrumental orchestration needs to plan for such 
transitions, taking account both of the continuities 
and discontinuities between tools. 
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ENDNOTES

1. In this paper, the terms of ‘tools’ and ‘artefacts’ are 
used interchangeably. 

2. We assume that students have obtained an equally 
scaled coordinate system showing y-values between 
0 and 16 and x-values between 0 and 28. 
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The paper presents partial results of research focusing 
on teacher-pupil communication in e-learning cours-
es. The authors of the paper study the form of possible 
teacher’s help to a pupil using soft scaffolding methods. 
The text presents examples of the use of scaffolding in 
the form of specific instruction in courses for talented 
pupils run within the frame of the Talnet [1] project. Most 
of the coursework in this project has the form of off-line 
discussions. 

Keywords: Scaffolding, off-line communication, e-learning, 

specific instructions.

INTRODUCTION

Information technology and modern technologies 
have considerable impact on all aspects of our lives, 
including education. The use of computers in mathe-
matics and in mathematics classroom has been subject 
to a number of researches and research studies. The 
goal of the here presented paper is to point at one 
of the aspects that has not entered the spotlights in 
research yet, namely the social aspects of the use of 
modern technology and its impact on communication 
in mathematics education.  Most attention is paid to 
the teacher-pupil communication and communica-
tion in small groups of pupils. The authors want to 
show the similarities and differences between com-
munication on a computer network and face to face 
communication in the classroom. Most emphasis is 
put on what form of support the teacher can offer 
to their pupils in this communication that result in 
achieving the desired solution – scaffolding.

Communication offline when compared to face to face 
oral communication has some specific features. An 
important difference is the time delay in reactions 
to other participants’ communications. The partici-
pants of the communication have the time to search 

for missing information in other sources (internet, 
printed documents etc.). No information is lost, as 
any information can be retraced (on the condition that 
it was not permanently deleted). This makes group 
communication easier as all its participants can ac-
cess the preceding course of the discussion and then 
find it easier to react. 

SCAFFOLDING

It is impossible to imagine scaffolding as one specif-
ic activity. In literature, we come across a number of 
similar definitions of scaffolding. For example, Boblett 
(2012) states that “Scaffolding as a metaphor in teach-
ing and learning describes a system of temporary 
guidance offered to the learner by the teacher, jointly 
co-constructed, and then removed when the learner 
no longer needs it.“ In other words, the concept of scaf-
folding in education means strategies and methods 
that help pupils overcome barriers in learning, and 
techniques that allow pupils to master knowledge 
and skills. In a broader sense, scaffolding can be un-
derstood not as a single activity but as a process that 
offers clues and strategies to pupils until they are able 
to cope with the activity on their own (Tejkalová, 2010).

Scaffolding may come in many various forms. Brush 
and Saye (2002) distinguish between two types of 
scaffolding: Soft forms of scaffolding (or contingent 
scaffolding (Li, 2001)) are those activities that come out 
of situations and have not been planned in advance, 
they evolved while solving a problem. These activities 
are, for example, a discussion between teachers and 
pupils in which the teacher reacts to the pupils’ needs 
and provides support in the extent required by the 
given situation (Simons & Klein, 2007). In contrast, in 
hard scaffolding, the teacher tries to foresee the possi-
ble problems and plans additional tasks and problems 
or clues for their pupils. 

mailto:antonin.jancarik@pedf.cuni.cz
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Tejkalová (2010) presents a detailed list of methods 
that can be used as scaffolding in a CLIL [2] classroom. 
Her list includes activation of existing knowledge, 
decomposition of a more complex task to a single, 
more easily viable subtasks, showing an example of 
the expected outcome, a teacher’s “thinking out loud”, 
offering hints, use of key words, reformulation, use 
of models, illustrations etc., use of internet resources, 
use of mnemonics, use of gestures and pantomime. 
Of course, the list is not and cannot be exhaustive 
but offers a better insight into what methods can be 
included under this umbrella term. It is obvious that 
some of these methods can be easily transferred to 
teacher-pupil communication in an e-learning en-
vironment (e.g., decomposition of a more complex 
task to single, more easily viable subtasks, or using 
of a motivating context). Other methods can be used 
in work in small groups (e.g., activation of existing 
knowledge by brainstorming to make a mind map of 
associations). However, Tejkalová’s list also includes 
methods that cannot be transposed into the e-learn-
ing course environment, either because they are not 
related to mathematics or cannot be applied in an 
internet course.

Palinscar and Brown (1986) distinguish between 
four basic types of “scaffolding construction”: pre-
dictions that are based on existent knowledge, posing 
questions that arouse interest in the text, summary 
in which pupils present the text in a somewhat con-
densed form, and final clarification in which attention 
is paid to the elements that obstruct comprehension. 

Wood and Middleton (1975) differentiate between 
three categories of scaffolding that can be provided to 
pupils: general encouragement, specific instructions 
and direct demonstration.

The goal of the presented study was to analyse com-
munication that took place within the course Talnet in 
2010–2014 and to find those phenomena in communi-
cation that are characteristic for situations in which 
a teacher’s intervention contributed to solution of 
the problem and to pupils’ progress in the course. 
When analysing the conversations, elements from 
Grounded theory (Strauss & Corbin, 1990) were used; 
the different phenomena were labelled and grouped 
into broader categories. With respect to literature, it 
seemed most appropriate to use the classification of 
scaffolding presented by Wood and Middleton (1975). 
However, this classification was too rough in the area 

of specific instructions, which is why more subtle 
were introduced by the authors of this paper. This 
classification is still in the process of development, 
which is why only two subcategories will be present-
ed – moving the limits and revealing the right answer.

OFF-LINE COMMUNICATION – 
THE COURSE TALNET

The following text demonstrates and develops possi-
ble uses of scaffolding in e-learning courses. The de-
scriptions and analyses are based on classification of 
scaffolding categories of Wood and Middleton (1975). 
The illustrative examples are from e-learning courses 
for pupils with talent in mathematics that are run 
within the frame of the Talnet project and come out of 
teaching practice of one of the authors (Jancarik, 2013). 

The Talnet project offers not only mathematics but 
also educational, inquiry and communication activ-
ities from other disciplines – physics, chemistry, bi-
ology, geography and technology. The activities are 
tailored to the needs of inquiring youth. One of the 
authors of this paper is involved in designing and 
implementing the course Mathematics within this 
project. The course Mathematics is run for a small 
number of participants (5–10 pupils). Secondary 
school pupils from the whole country enrol in the 
course voluntarily, based on their interest. 

The course Mathematics introduces the pupils to com-
binatorial game theory and is structured in such a 
way to allow pupils discover and prove statements on 
their own. The goal of this course is not to introduce 
pupils to a comprehensive theory. Questions and tasks 
guide pupils to independent discovery. The course is 
divided into two parts. In the first part the pupils are 
introduced to different variants of the game NIM [3]; 
the aim of this activity is to guide the pupils to discov-
ery of the winning strategy of this game (see Bouton, 
1901). In the second part, the pupils are introduced to 
the game Hackenbush [4] and their goal is to assess 
different positions (see Conway, 1976). 

Most of the coursework has the form of off-line dis-
cussions. The pupils enter these discussions at their 
leisure and according to their time possibilities. Thus 
sometimes the communication is very fast and some-
times there are long time intervals between the indi-
vidual contributions. This depends on the current 
possibilities of the pupils and the lecturer. While ana-
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lysing the conversations, the methods of scaffolding 
used by the lecturer were identified and then further 
studied. The following text offers illustrations of some 
of the methods suitable for e-learning courses. All of 
them are from the category of soft forms of scaffolding. 
Examples [5] from practice will be used to demonstrate 
the use of specific instructions. In analyses of the use 
of scaffolding in the form of specific instruction, hive 
categories have been identified and described. This 
text focuses only on two of these – Moving the limits 
and Revealing the right answer. 

Specific instructions: Moving the limits
Moving the limits is one of the soft forms of scaffolding. 
The teacher reacts to the conditions that limit the pu-
pil’s thinking and tries to motivate the pupil to extend 
and generalize his/her thoughts. The goal of this form 
of scaffolding provided by the teacher is to turn the 
pupil’s attention to those aspects of problems the pupil 
has not noticed or to guide them to relationships they 
have not realized. This form of scaffolding requires the 
teacher to carefully follow hints of deeper thoughts in 
the pupil’s statements and to channel the pupil’s atten-
tion to these rudiments of knowledge.  

Let us again demonstrate this by an example from the 
course. It is a situation from the discussion of the one 
pile NIM game with extended conditions. The core 
of the discussion focuses on general characteristics 
of the winning and losing positions in this game (see 
Jančařík, 2007).    

Example 1 – Moving the limits
Let us start this example by an extract from discus-
sion between the lecturer and pupil A. The goal of 
this discussion was to clarify the task. It is presented 
here as introduction to the problem.   

Lecturer (06/10/2010, 18:17): Hi, you’ve asked 
too many questions in your answer. I’ll 
reply by a counter question.  Is it possi-
ble that there would be neither winning, 
nor losing strategy in a game with no 
element of chance? 

Pupil A (07/10/2010, 15:03): Yes, I think that the 
Tic-Tac-Toe [6], if played according to 
the official rules, is a perfect example – 
otherwise there wouldn’t be champion-
ships in the game, would there?  

Lecturer (07/10/2010, 15:22): Are there better 
moves in Tic-Tac-Toe? If so, how will the 

game turn out (I’m not requiring here a 
specific answer but the principle – I can 
explain this to you later), if you make 
these moves. Is it determined, or not? 

Pupil A (07/10/2010, 16:03): Hmm… I’m a bit 
ashamed. Determined? I don’t quite 
understand and I don’t know the con-
cept. Anyway, what rules are you asking 
about? Classical or official? 

Lecturer (07/10/2010, 16:06): Determined – fixed, 
stated. Do they matter? 

Pupil A (07/10/2010, 16:10): Yes, I think they mat-
ter – the official rules are meant to break 
the advantage of the player who starts. 
There’s no doubt about this advantage. 

The goal of the discussion in the following extract is to 
guide the pupil to the discovery that in games with no 
element of chance, the result is given if both players 
play well. 

Lecturer (07/10/2010, 19:29): Let me repeat the 
question: Is it possible that in a game 
with no element of chance there would 
be neither winning, nor losing strategy?  

Pupil A (07/10/2010, 16:33): Hm... well, simple 
logic tells me it’s not possible (if there’s 
neither winning, nor losing strategy, it’s 
possible to win only by chance, so it can’t 
be without an element of chance), but I 
can’t say how this works in reality. And 
I think I’m not able to determine this as 
the number of various combinatorial 
games is enormous. 

Pupil A is aware that it is logical that the result in such 
games is determined from the beginning; however, 
he refuses to apply this knowledge generally. As he 
says, “there are many games and have different rules”. 
The pupil is trying to overcome the obstacle that is 
preventing him to generalize this knowledge. 

Lecturer (07/10/2010, 20:02): Try to think about 
what you’ve written. Are you ready to 
trust logical arguments? 

Pupil A accepted the argument, which is evident from 
his subsequent work in the course. Pupil B, who is 
solving the same problem, enters the discussion. 
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Pupil B (27/10/2010, 20:36): I think that if there’s 
no strategy in a game, it’s only a matter 
of chance, or maybe of the skill to take 
advantage of the opponent’s mistake.  

Lecturer (27/10/2010, 20:45): Hi, try to reverse 
the question. Ask when there can be 
(or must be) a strategy in a game. It’s a 
bit abstract question but sometimes it 
really helps to start by solving things 
generally and then apply the general 
solution to a specific situation. 

The teacher reverts the pupil’s consideration and 
hands it back to the pupil in the form of a coun-
ter-question. Thus he opens space for new consider-
ations. The teacher makes use of his experience from 
previous courses and tries to guide the pupil to the 
point that is the cognitive obstacle, i.e. the fact that 
in certain kinds of games there must be an optimal 
strategy, even if we do not know it. This is a high level 
of abstraction – a non-constructive proof. The course 
of the following discussion showed that the pupil man-
aged to overcome this difficulty successfully.

Specific instructions: Revealing 
the right answer 
This is again a soft form of scaffolding. Its basic prin-
ciple is described in its name. Let us illustrate this by 
two examples. 

Example 2 – Hinting at the correct 
answer, the game TIC TAC TOE

Pupil A (10/10/2010, 19:59): If both players play 
well, it must be a draw. But only if player 
two plays as he should. Already in his 
first move, if he makes the nought/cross 
incorrectly, then there is a winning 
strategy for player one.  

Pupil A presents the right solution but does not pro-
vide any justification or support of this solution. Pupil 
B, who joins in the discussion later, does not agree and 
attaches a detailed counterexample.

Pupil B (10/10/2010, 21:08): Hello, I’ve played this 
game several times and it seems to me 
there’s a sequence of moves in which 
the other player has no chance to win. 
But I may be wrong. Please, look at the 
attached file: 

Player One starts from the most advan-
tageous central field. 
Player Two can now make any move, 
none of them is much more advanta-
geous in his situation. So, he chooses 
the bottom middle field.
Player Two can now make any move, 
none of them is much more advanta-
geous in his situation. So, he chooses 
the bottom middle field. 
Player One takes the corner point so 
that... 
Player Two is now forced to prevent 
the next move which would make three 
crosses on the diagonal but... 
Player One forms scissors, which Player 
Two cannot beat and so... 
Player Two loses. 
In my opinion both players play the best 
moves. However, if we play ‘just for fun’, 
Player Two is often the winner...

Lecturer (10/10/2010, 20:49): So, who will tear 
this argument to pieces? 

The teacher does not provide the right solution here 
but points out that the presented solution is errone-
ous (which gives a clue to the right answer) and at 
the same time motivates other pupils to join in the 
solution.

Pupil B (11/10/2010, 15:09): Well, thinking about it 
I can see that Player Two is not playing 
ideally. In fact, his move is quite silly. He 
does not foresee more moves in advance. 
If he places his nought into a corner, the 
described trap disappears. In that case 
I’d even say that the game will lead to a 
draw. But I’d better think about it for a 
while, not jump to a wrong conclusion 
again.

Figure 1: Students’ solution to TIC-TAC-TOE game
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The clue provided by the teacher was enough to make 
Filip reconsider his solution, find there a mistake and 
correct his procedure. Nothing more than a clue was 
needed. 

The primary goal of providing a counterexample is 
not to draw attention to a pupil’s mistake but to give 
him/her the chance to discover the mistake on his/
her own. It is good to find such a counterexample that 
draws attention to the problematic passages in the 
pupil’s solution. Guiding the pupil to discovery of 
the mistake accelerates the solving process and also 
facilitates the communication. 

Example 3 – Hinting at the correct answer, 
Cat and Mouse Game (Tapson, 1977) [7] 

Pupil A (6/10/2010, 21:27): So far I haven’t got into 
studying situations that could happen 
if the mouse chose a different direction 
than the one I’m talking about, or if the 
same strategy would work if the mouse 
did not go one field back. So far I per-
ceive as “chance” the fact that the mouse 
moves in a convenient direction. 

Lecturer (6/10/.2010, 21:30): Fine, I’ll leave all of 
you some time to think about the answer 
once more and to refine it. 
Just a question, do you play chess? 

Pupil A (06/10/2010, 21:34): To be honest I know 
the rules and moves of the figures but 
I’m by no means an outstanding player. 
I’ve won a few games with my relatives. 
But to be good at the game I’d need some 
training, which is not my case.  

Lecturer (6/10/2010, 22:19): This has much to do 
with the position in chess which is re-
ferred to by the beautiful Czech word 
zugwang. But you need some skill in 
chess to know. May be there is a better 
chess player among us. And this hint 
could help him. :-) 

The teacher provides a clue that can be used to solve 
the situation. This is leaving the move to the opponent 
and taking the advantage of an unfavourable move. 
For more information see http://en.wikipedia.org/
wiki/Zugzwang.

Pupil B (07/10/2010, 15:00): I’m sorry but I had to 
google the term Zugwang (Zugzwang) 
up and now I’ve grown a bit smarter.: -P 
But still I can’t see any satisfactory solu-
tion in the Cat and Mouse – they can be 
running round and round as mad and 
the mouse will never be cornered. But 
how to describe in mathematical terms 
that it can be caught?

In this case the pupil learnt a new concept but failed 
to apply it in the situations. An additional hint was 
needed for the correct solution. The use of hints in 
this case gave birth to the knowledge that results can 
be transferred from one game to another, which was 
very important later in the course. 

Example 4 – Hinting at the correct 
answer, Cat and Mouse Game 

Lecturer (14/10/2014 18:10): A very simple idea 
(I’ve stepped down a bit): Be the cat, for-
get about the mouse, go directly to the 
centre of the board, run around the tri-
angle in the centre and then start chas-
ing the mouse (which has been running 
somewhere so far), how will this end? 

Student (28/12/2014 12:29): I was wondering 
about this comment and the comment 

“Has anybody noticed a triangle has 
three sides and rectangle four sides?” 
for a long time, so I tried to play in the 
way that I run around the triangle with 
the cat and then I got it – if I run around 
the triangle I’ll get to the same place in 
three turns. There are rectangles every-
where else so that it takes four moves. 
So I get one turn ahead, which was men-
tioned by Dominik: “If a mouse is to lose 
from this position, it must be its turn (if 
it is the cat’s turn, the mouse will simply 
move to a free field).” In contrast to the 
starting situation when it was the cat’s 
turn, it will be the mouse which has to 
move one field and the cat will be able to 
get to this field in the next move. 

Figure 2: Cat and Mouse Game (taken from Jančařík, 2007)



Scaffolding in e-learning course for gifted children (Antonín Jančařík and Jarmila Novotná)

2359

The last example borders on specific instruction and 
direct demonstration. After a lengthy discussion in 
which the pupils had not been able to get closer to the 
solution the lecturer almost gave up and described the 
way that leads to victory. The only thing he did not do 
was tell the pupils it was the correct solution. It took 
two and a half months for the above quoted reaction 
of one of the pupils who then managed to combine all 
the hints from the discussion and discover the right 
solution and especially the reason why it worked. 

Methods of direct demonstration were scarcely used 
as soft scaffolding in the course. One of the reasons 
is the specific nature of the course, whose goal is not 
the solution of particular problems but development 
of abilities to experiment and find solutions. Another 
reason is the pedagogical beliefs of the lecturer that 
only valuable is only knowledge that is discovered 
and justified by the pupil on their own. 

DISCUSSION

Communication in digital environment resembles 
common communication in the classroom but at the 
same time is very different. It is not a face-to-face com-
munication. Neither the teacher nor the pupils have 
the chance to use non-verbal means of communica-
tion – gestures, expressions or intonation. The “dia-
logue” is not continuous. There are many disruptions 
and time delays. It is often very concise or abbreviated. 
Writing of mathematics expressions may be difficult.   

The listed aspects clearly show that off-line commu-
nication deserves special attention. What is very 
important is the effort to understand the individual 
utterances and the teacher’s provision of effective 
support and help.

CONCLUDING REMARKS

The goal of the presented study was an analysis of the 
scaffolding tools in offline communication. As stat-
ed in the introduction, offline communication when 
compared to face to face communication is specific in 
that it affect the success of the used form of scaffold-
ing. It became obvious that specific instruction may 
come in various forms; the paper presents only two 
types – moving the limits and revealing the right an-
swer. The significant role they play in support leading 
to successful solution of problems in offline commu-

nication is illustrated on selected example situations 
from the course.

One of the tasks for future research is to study the 
patterns in off-line communication, to describe basic 
phenomena that are connected to this communication, 
and to identify its efficient methods. The examples 
above are not meant to illustrate the complete range of 
the different methods of scaffolding that can be used 
in offline communication. The goal of presenting 
them was to show the characteristic features of this 
type of communication and problems its participants 
(teachers and pupils) must face. It is more a pioneer 
research indicating the directions for future research 
in the area. 

Another important question to be addressed in our 
future research is to what extent the studied methods 
of soft scaffolding can be generalized and modified in 
such a way to make them implementable into courses 
in the form of hard scaffolding. Translation of soft 
scaffolding into the form of hard scaffolding will also 
enable us to transfer research results also into cours-
es with greater numbers of students.

One of the key questions that is of crucial importance 
for the educational process and that every teacher 
must ask is how to state the current pupil’s knowl-
edge and the horizon where it can be developed. In 
this paper, we discussed benefits, based on examples, 
of the use of scaffolding in an e-learning course for 
gifted students.

The examples are taken from highly specialized 
courses for talented pupils. However, the authors of 
the paper are convinced that the shown methods can 
be successfully applied not only in e-learning, but 
also in regular courses of mathematics where there 
is communication between the teacher and their pu-
pils, as they are helpful at every moment when the 
pupil faces difficulties trying to overcome obstacles 
in the cognitive process. 
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ENDNOTES

1. See, for example, http://en.wikipedia.org/wiki/
Talnet. Talnet is a project for gifted children and teen-
agers interested in natural sciences and technologies, 
as well as for their teachers from all country.

2. Content and Language Integrated Learning (CLIL) 
refers to any teaching of a non-language subject 
through the medium of a second or foreign language. 
CLIL suggests equilibrium between content and lan-
guage learning.

3. See, for example, http://en.wikipedia.org/wiki/Nim.

4. See, for example, http://en.wikipedia.org/wiki/
Hackenbush.

5. In case of the above presented forms of scaffolding, 
it seems that a discussion in the internet environment 
is in many aspects similar to the usual classroom in-

teraction. The authors deliberately present the exam-
ples with dates as they very nicely show how much 
time elapsed between the different contributions.

6. The game TIC-TAC-TOE is a simplified version of 
the game Noughts and crosses played on a board 
with a 3 x 3 square grid. Originally, TIC-TAC-TOE is 
a paper-and-pencil game for two players, X and O, 
who take turns marking the spaces in the 3×3 grid. 
The player who succeeds in placing three respective 
marks in a horizontal, vertical, or diagonal row wins 
the game. There are applets on the internet for this 
game in which we can play the computer. These ap-
plets are deliberately not offered within the course 
as they seduce the pupils to use heuristic strategies. 
What is expected for the participants is a systematic 
analysis of all possibilities. And applets do not de-
velop this.

7. The cat and the mouse are represented by tokens 
that move in the fields connected by a net (the squares 
represent mouse holes). The cat and the mouse can 
only move to the nearest field. The goal of the cat is 
to catch the mouse, the goal of the mouse is to escape. 
There is a very simple winning strategy for the cat. 
Still, most pupils are convinced at the beginning 
that the mouse will always escape and the cat has no 
chance to catch the mouse if the player plays well.

http://clanky.rvp.cz/clanek/c/z/9797/POSTAVTE-ZAKUM-LESENI-ANEB-JAK-NA-SCAFFOLDING-V-HODINACH-CLIL-A-NEJEN-TAM.html/
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This paper aims to examine secondary mathematics 
teachers’ technological pedagogical content knowledge 
(TPACK) and diversities in it due to teachers’ gender, 
age and years of experience. The participants of the 
study were 138 secondary mathematics teachers in 
Istanbul, Turkey. An adapted TPACK-M scale with three 
constructs (TCK, TPK and TPACK) was used to collect 
data. Results showed that TPACK level of teachers was 
moderate. According to demographic results, there was 
no significant difference in TPACK perception of male 
and female mathematics teachers. Also, small negative 
correlation was found between age and teachers’ TPACK. 
Furthermore, there was no significant difference in 
TPACK perception and teaching experience of teachers. 

Keywords: Technological pedagogical content knowledge, 

secondary mathematics teacher, integrating technology in 

mathematics education.

INTRODUCTION

In accordance with scientific and technologic devel-
opments in the world, technological opportunities of 
schools have increased in Turkey recently. Ministry 
of National Education (MoNE) has some attempts 
to integrate technology in schools. The FATIH pro-
ject (Increasing Opportunities and Improvement of 
Technology Movement) is among the most significant 
educational investment of Turkey. The aim of this 
project is to enable equal opportunities in education 
and to improve technology in schools for the efficient 
usage of information and communication technol-
ogies (ICT) tools in the learning-teaching processes 
through providing tablets and LCD interactive boards 
(MoNE, 2013). However, putting latest technologies 
into classroom without well trained teachers is not 

really technology integration (Dockstader, 1999). It 
can be achieved when technology is used effectively 
and efficiently in the different content areas to allow 
students to learn how to apply technology skills in 
meaningful ways. Although technology has relation-
ship with many domains, it has prominent place in 
mathematics education due to many reasons. In the 
last century, technology integration into mathemat-
ics education has brought many innovations in the 
mathematics classroom in terms of development as 
well as accessibility. According to technology prin-
ciple of National Council of Teachers Mathematics 
(NCTM, 2000), “technology is essential in teaching and 
learning mathematics; it influences the mathematics 
that is taught and enhances students’ learning. “ (p. 11). 
Moreover, the effective use of ICT is strongly empha-
sized in Turkish mathematics education curriculum 
(MoNE, 2013). From this point of view, mathematics 
teachers’ role in the integration of technology into 
instruction is crucial. They need to acquire the ability 
to use technology resources effectively. On the oth-
er hand, integrating technology is not just adding 
technological knowledge in curriculum; it needs a 
complex mixture of technology, pedagogy and con-
tent knowledge. In order to effectively integrate 
technology in instruction, teachers should have an 
adequate technological pedagogical content knowl-
edge (TPACK) (Mishra & Koehler, 2006). 

LITERATURE REVIEW

The knowledge needed for teachers to use technolo-
gy strategically in mathematics instruction is a topic 
that has recently gained much attention (Neiss, Lee, 
Sadri, & Suharwoto, 2006; Mishra & Koehler, 2006). 
TPACK, described by Mishra and Koehler, “represents 
a thoughtful interweaving of all three key sources 
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of knowledge – technology, pedagogy, and content” 
(2006, p. 14). The TPACK framework describes good 
teaching with technology by including the compo-
nents of content, pedagogy, and technology.  Shulman’s 
(1986) idea of pedagogical content knowledge (PCK) 
is the basis for this framework with the inclusion of 
the domain of educational technology. Technological 
pedagogical content knowledge (TPACK) provides 
a useful framework for understanding teacher per-
ceptions and practices of technology integration into 
curriculum and pedagogy. To integrate technology 
into their pedagogy and curriculum successfully, 
teachers must develop confidence in their abilities 
to integrate technology in the classroom because the 
integration of technology affects how students learn 
in the classroom. TPACK for teaching with technolo-
gy means that teachers should know how particular 
mathematics concept might be taught with technology 
so that students understand the concept (Niess, 2005).

After Mishra and Koehler (2006) introduced their 
TPACK model, it was used in many researches. This 
framework has been widely adopted for the planning 
of teacher ICT education (Cox & Graham, 2009) and 
used as a theoretical underpinning for the devel-
opment of surveys to measure teachers’ TPACK. In 
terms of measurement, all of the instruments were 
focused on teachers’ self-report, in other words their 
perception on use of technology. Also, conducting 
research about development and measuring of TPACK 
is an important and hard challenge. Since TPACK is a 
complicated construct and comprises many compo-
nents, measuring the effectiveness of TPACK depends 
on the relationships of these components with each 
other (Koehler, Mishra, Bouck, DeSchryver, Kereluik, 
Shin, & Wolf, 2011). As a result of the complexity of 
TPACK, getting reliable and valid results after assess-
ing the TPACK is an important process. Researchers 
encounter some problems while they are measuring 
the TPACK of teachers. They face different problems 
in each different measurement tool of TPACK. Two 
main problems occurring during the measurement 
process are understanding the effects of teachers’ do-
main knowledge on their current teaching practices 
and reliability, validity concerns of TPACK meas-
urement methods (Abbitt, 2011). So, researchers try 
different methods to measure TPACK because of its 
dynamic characteristic.

The definition of TPACK concept looks like settled 
but it continues to be studied. So, most of the studies 

focused on the definition of TPACK and developing in-
struments to measure it (Mishra & Koehler, 2006; Koh, 
Chai, & Tsai, 2010; Schmidt, Baran, Thompson, Mishra, 
Koehler, & Shin, 2009). Also, many TPACK studies are 
conducted with pre-service teachers. Similarly to a 
general trend in TPACK studies in international arena, 
in Turkey most of the studies focused on adapting 
surveys or developing new ones to measure TPACK 
(Öztürk & Horzum, 2011; Yurdakul, Odabasi, Kilicer, 
Coklar, Birinci, & Kurt, 2012).

Also, the adaptation studies in Turkey did not focus 
on any specific content. According to the results from 
a pilot study of the FATIH project, teachers do not feel 
themselves adequate and confident in their knowl-
edge. Therefore, the purpose of this study were to ex-
amine technological pedagogical content knowledge 
of secondary mathematics teachers at FATIH project 
schools and their possible gender, age and years of 
experience diversities related to TPACK by adopting 
mathematics specific scale (TPACK-M). The specific 
research problems addressed in this study are the 
following: 

 ― What are the levels of secondary mathematics 
teachers’ TPACK as measured by TPACK-M scale?

 ― Is there a significant difference in perception of 
Turkish secondary mathematics teachers’ TPACK 
in terms of gender?

 ― Is there a significant relationship between TPACK 
and age of secondary mathematics teachers?

 ― Is there a significant difference in perception of 
Turkish secondary mathematics teachers’ TPACK 
in terms of years of experience?

METHODOLOGY

This study contains the combination of survey and 
correlational research methodology (Creswell, 2012). 
In this study, all secondary mathematics teachers at 
FATIH project schools in Istanbul were identified as 
the target population. The reason why FATIH proj-
ect teachers were determined as participants in 
this study is that they have already been equipped 
with technological devices such as interactive board 
and tablets. However, it was not practical to visit all 
schools to meet the teachers. So, multistage cluster 
sampling was used in the study. FATIH project schools 
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in Istanbul were considered as clusters. Six districts 
(three from Anatolian side and three from European 
side) were chosen from 39 districts. When selecting 
each district, the ratio of students per teacher and 
school size in all districts were considered. Firstly, 
all districts ranged according to the ratio of students 
per teacher. Then, those districts separated into three 
groups (low, middle and high). The participants of 
the study were 138 secondary mathematics teachers 
working at FATIH project schools in Istanbul. Among 
the participants, 62 (44.9 %) of them were male and 76 
(55.1 %) female, aged between 29 and 62 years (M=41.1, 
SD=6.04). When teaching experience of teachers was 
considered, majority of the teachers had teaching ex-
perience between 11 and 15 years. As demographic in-
formation, it was also asked to participants to indicate 
whether they had their personal electronic devices 
(desktop, laptop, tablet and smartphone). The majority 
of teachers have their own laptop (76.1%), smartphone 
(73.9%) and tablet (70.3 %), while teachers showed low-
er percentage of desktop ownership (42.8%).

Technological pedagogical content knowledge of sec-
ondary mathematics teachers (TPACK-M) scale was 
used in the study after an adaptation into Turkish. For 
the adaptation of the study, the scale was translated 
into Turkish using a standard protocol. Also, both 
versions of the test applied twenty five pre-service 
mathematics teachers who are native in English and 
fluent in Turkish. The TPACK-M questionnaire was 
designed by (Handal, Campbell, Cavanagh, Petocz, & 
Kell, 2013) to identify teachers’ TPACK in terms of 
technological content knowledge (TCK), technolog-
ical pedagogical knowledge (TPK) and technological 
pedagogical content knowledge (TPACK). It focuses on 
secondary mathematics teachers and involves three 
parts. A 5-point (from 1-strongly disagree to 5- strong-
ly agree) Likert type scale contains a total of 30 items. 
Each construct has 10 items. Technology knowledge 
(TK) was not included in the questionnaire because of 
the research emphasis on discipline related technolo-
gy. The questionnaire deliberately focused on the con-

cept of ability as a measure of a respondent’s capacity 
to carry out a particular task, rather than focusing on 
the enactment itself.  Hence the examples of the items 
are, “I am able to use dynamic geometry software (e.g., 
GeoGebra, Geometer’s Sketchpad, Autograph, Cabri)” 
(for TCK), “I am able to teach a concept using an in-
teractive whiteboard” (for TPK) and “I am able to use 
technology to demonstrate mathematical models or 
concepts through learning objects (e.g., animations, 
simulations, online applications)” (for TPACK). Data 
was gathered through self-report. Non parametric 
statistical techniques were used to analyze the data.

RESULTS

Table 1 indicates mean values and standard deviations 
of participants’ TPACK level for three constructs TCK, 
TPK, TPACK and for whole instrument. 

According to Table 1, the whole TPACK mean score is 
3.38 (SD=.83) in a range of 1 to 5. When three compo-
nents of scale are examined, the highest mean sub-
scale score belongs to technological content knowl-
edge (M=3.48, SD=.92) while the lowest mean subscale 
belongs to technological pedagogical knowledge 
(M=3.28, SD=.77). Three dimensions as low, moderate 

N Mean Std. Deviation

TCK 127 3.48 .92

TPK 131 3.28 .77

TPACK 134 3.39 .90

Whole instrument 119 3.38 .83

Valid N (listwise) 119

Table 1: Mean TPACK scores

Figure 1: Distributions of TPACK Mean Score
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and high were determined to interpret the findings. 
If mean scores of tests are between 1 and 2.33, the 
level of perception is considered as “low”. If mean 
scores of tests are between 2.34 and 3.67, the level 
of perception is considered as “moderate”. If mean 
scores of tests are between 3.68 and 5.00, the level of 
perception is considered as “high” (Yurdakul et al., 
2012).  Considering these values, it may be inferred 
that secondary mathematics teachers’ perception on 
their TPACK level is moderate. Also, their perception 
level for three constructs (TCK, TPK and TPACK) can 
be considered as moderate. The distributions of the 
mean TPACK score is illustrated in Figure 1.

In order to explore possible gender differences of 
secondary mathematics teachers’ technological ped-
agogical content knowledge, non-parametric Mann-
Whitney U test was used because of the violation 
of normality assumption. A Mann-Whitney U test 
results, shown in Table 2, revealed no significant 
difference in the TPACK levels of male and female 
mathematics teachers (U=1557, z= -1.11, p=. 27). 

Furthermore, the relationship between participants’ 
age and TPACK perceptions was examined using 
Spearman rho correlation. As shown in Table 3, there 
were small negative correlation between age and tech-
nological pedagogical content knowledge of teachers 
( = −.16, p > .05)

In order to answer whether there is a difference in 
TPACK levels across five teaching experience levels, 
Kruskal-Wallis test was used. Teaching experienc-
es of teachers were categorized as less than 10 years, 
11–15 years, 16–20 years, 21–25 years and more than 
25 years. Chi-square value, the degrees of freedom 
(df ) and the significance level are shown in Table 4. So, 
there is not a significant difference in TPACK levels of 
mathematics teachers across five different teaching 
experience groups ( 6.56, p= .16).

DISCUSSION AND CONCLUSION

According to the results, the mean score of each con-
struct and the whole instrument showed that second-
ary mathematics teachers generally rated themselves 
as moderate. The moderate mean score in TPACK (and 

Sex N Mean Rank Sum of Ranks U Z p

TPACK male 56 63.71 3567.50 1556.5 -1.105 .269

female 63 56.71 3572.50

Total 119

Table 2: Mann Whitney U test for gender and TPACK

Age TPACK

Spearman’s rho

Age Correlation Coefficient 1.000 -.157

Sig. (2-tailed) . .087

N 138 119

TPACK Correlation Coefficient -.157 1.000

Sig. (2-tailed) .087 .

N 119 119

Table 3: Correlations between age and TPACK

TEACHINGEXP N Mean Rank χ2 df p

TPACK Less than 10 7 51.86 6.560 4  .161

11–15 53 67.71

16–20 32 55.69

21–25 19 52.53

More than 25 7 41.36

Total 118

Table 4: Kruskal- Wallis test for TPACK and teaching experience
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three constructs) may be explained by the familiarity 
with technology in daily life and in-service education 
on using technology. Overall, the participants report-
ed using various technologies in their personal life 
to communicate or obtain information. According to 
study conducted by Menzi, Çalışkan and Çetin (2012), 
teachers who have personal technological devices see 
themselves more competent in the field of technolo-
gy than those who do not have. So, this may explain 
why participating teachers’ perception is moderate in 
technology related knowledge in this study. However, 
as shown in other studies (Harris, Mishra, & Koehler, 
2009; Lei, 2009), use of technology for communication 
and information does not necessarily translate into 
technology integration in the classroom. Teachers 
used technology to communicate daily but lacked ex-
pertise or vision to translate this technology knowl-
edge into use in instruction. 

Moreover, in the scope of the FATIH project, teach-
ers took in-service education related to technology 
use in education. This education is mainly focused 
on functionality of the hardware and software, but 
not on content (choice of appropriate media, func-
tionality of the media) or pedagogical integration of 
the content in strategic ways, including interaction 
between tablets, interactive whiteboards, teacher 
and student (ERI, 2014). So, this may be the reason of 
teachers’ moderate perception on technology related 
knowledge. However, how and in what degree they 
use technology is a questionable issue. Teachers may 
still think pedagogical knowledge, content knowledge 
and technological knowledge separately. This does not 
mean technology integration.

Considering the specific subscale mean scores, the 
highest mean value of the teachers’ perception cor-
responds to technological content knowledge (TCK). 
This means that mathematics teachers feel more com-
petent in content-related technology. According to 
the report of 2000 National Survey of Science and 
Mathematics Education, high school mathematics 
teachers are significantly more likely than middle 
school teachers to report feeling qualified to teach 
a number of mathematics topics (Weiss et al., 2001). 
Therefore, mathematics teachers may prefer to use 
technology mostly in their good-at construct, content. 
On the other hand, among the TPACK sub-constructs, 
the least mean value of the teachers’ perception corre-
sponds to technological pedagogical knowledge (TPK). 
It can be concluded that mathematics teachers do not 

feel themselves sophisticated use of technology for 
pedagogical purposes as well as in other constructs. 
According to the report of 2000 National Survey of 
Science and Mathematics Education, high school 
mathematics teachers reported well prepared to use 
various instructional technologies in their teaching. 
As yet another lens on teachers’ perceptions of peda-
gogical preparedness, they are least likely to feel pre-
pared in technology-related areas (Weiss, Banilower, 
McMahon, & Smith, 2001). This result may stem from 
teachers’ lack of general knowledge about technolo-
gy-related pedagogy.

Based on the existing literature on teacher integra-
tion of technology into classroom, gender, age and 
teaching experience were possible predictors of tech-
nology integration. So, demographic diversities of 
TPACK were discussed in terms of gender, age and 
teaching experience in this study. Within the sample 
studied, there were no significant difference between 
secondary mathematics teachers’ TPACK and gender. 
North and Noyes (2002) suggested that the prevalence 
of computers in schools could provide both males and 
females with equal opportunities for computer use, 
thereby equalizing their perceived differences with 
respect to computer use. Therefore, if the FATIH pro-
ject reaches the aim of providing equal technological 
opportunities to schools, the impact of gender dif-
ferences on TPACK may become less significant on 
teachers. Also, teachers in the FATIH project school 
took in-service education which was constructed on 
similar content. This may be the reason why male and 
female teachers perceive themselves similar in terms 
of TPACK. 

Furthermore, weak negative correlation was found 
between TPACK and age in this study consistent with 
previous studies (Koh et al., 2010; Öztürk, 2013). When 
teaching experience of participants was considered, 
there was no significant difference in TPACK levels of 
teachers across five teaching experience groups. In 
this study, the respondents had an average of seven-
teen years of teaching experience and the categoriza-
tion was centered on 11–20 years of teaching experi-
ence. Therefore, the results of this study may not be 
generalized because of small numbers of teachers in 
some teaching experience categories. Previous study 
showed that age, gender and teaching experience all 
affect the teachers’ response to implementing new 
ideas in the classroom (Fullan, 2001). Since FATIH 
project is a new implementation, such demographic 
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information of teachers which can be effect on tech-
nology integration was discussed in the present study.
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This paper investigates the process in which teachers 
of different experiences and subjects collaboratively de-
signed an e-book unit around ‘Windmills’, aiming to fos-
ter students’ creativity (call c-book, c for creativity). Our 
aim was to identify the characteristics of this innovative 
design, as well as if and how this process can enhance 
teachers’ creativity. We found that the design evolved in 
four phases incorporating learning mechanisms–indi-
cators for teachers’ creativity: Searching for mathemat-
ical ideas/concepts, implementation of the raw ideas, 
pedagogical and /didactical contextualization, transi-
tion to the c-book. The c-book was the boundary object 
around which the participants interacted, reflected and 
finally transformed their knowledge regarding the way 
it should be designed to support creativity.

Keywords: Boundary crossing, community of interest, 

resource design, expressive media.

INTRODUCTION 

The present study refers to the process during which 
designers of different expertise and interests collec-
tively designed digital educational resources in the 
form of e-books, aiming to challenge and foster its 
users’ creativity in posing and solving mathematical 
problems through constructionist, exploratory and 
investigational activity with the use of digital media. 
Creativity is expected to be at the core of both the pro-
cess of jointly developing a c-book and the product 
itself (called c-book, c for creativity). Since this kind 
of resource constitutes an innovative approach to me-
diating mathematical content, we were particularly 
interested in studying both the process of developing 
as well as the affordances of the product itself, in order 

to identify their characteristics and their potential 
for the math teaching and learning.  

The designers’ online discussions and outcomes 
that we analyzed here, took place in the context of a 
European R&D project called ‘MC Squared’ focusing 
on technologies affording creativity both in collab-
orative designs and in using the media to engage in 
mathematical thinking. The project aims at develop-
ing the ‘c-book’, a technology supporting collabora-
tive authoring, diverse constructionist widgets and 
data-analytics configurable by its authors for the de-
sign of creative educational resources for creative 
mathematical thinking (CMT) (the c-book units). This 
technology has been thought to go along with the gen-
eration of some specifically generated collectives of 
designers characterised by their diverse disciplinary 
backgrounds, expertise, history and membership 
in different communities of practice, which are de-
fined in literature as Communities of Interest (CoI) 
(Fisher, 2011). Four such CoIs were formed in the pro-
ject whose members were as diverse as developers of 
math digital media, publishers of math educational 
materials, researchers specialized in creativity or in 
math education, creative math teachers and students. 
In this paper, we discuss a group within one of these 
CoI from Greece. 

THEORETICAL FRAMEWORK

We perceive mathematical creativity at the school lev-
el “as a process that results in unusual (novel) and/or 
insightful solution(s) to a given problem or analogous 
problems and/or as the formulation of new questions 
and/or possibilities that allow an old problem to be 
regarded from a new angle” (Sriraman et al., 2011).  
Novelty is interpreted as having a local character, i.e. 

mailto:kynigos%40ppp.uoa.gr?subject=
mailto:ekalog%40ppp.uoa.gr?subject=
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something that may not be novel to experienced math-
ematicians but from the perspective of the learners 
it can be judged as novel and therefore as creative 
(Askew, 2013). This issue brings to the fore the distinc-
tion (Craft, 2000, 2001) between ‘high’ and ‘ordinary’ 
creativity.  The former (big C) describes ‘great works’ 
by experts or gifted persons which change knowledge 
and/or our perspective on the world. The latter (small 
c) recognizes that all pupils can be creative and arises – 
for example – when a student creates a solution to a 
novel problem or connects together two seemingly 
disparate ideas. 

Our view on the creativity of educational designers 
of math resources is in accordance with Ervynck’s 
(1991) who considers as creative math activity every 
designer’s attempt aiming to reform or improve the 
network of concepts of a math curriculum for peda-
gogical reasons, even if new mathematics is not gener-
ated. According to Bolden and colleagues (2010) some 
of the creative opportunities that might be offered 
in the math classroom are the need for mathematical 
expression and communication (the social aspects of 
creativity), the construction of meaning and devel-
opment of personal understandings, the generation 
of ways for solving problems, hypothesizing about 
math situations and outcomes, constructing tests of 
those hypotheses and formulating plans for solving 
complex problems. In this paper, we sought for cre-
ativity in both the process and the products of col-
laboration among teachers so as to produce material 
which is expected to offer students some of the above 
creative opportunities. The kind of creativity which is 
developed in collectivities through joint enterprises 
is described as ‘middle c’ creativity and is needed to 
create strategies, to find ways to make the differing 
views of individuals capable of existing together and 
to produce collective learning outcomes, including 
an elaborated understanding of the learning topics 
addressed (Eteläpelto & Lahti, 2008). In MC2, the en-
gagement of teachers in this kind of collaborative de-
sign targeted the empowerment of students’ creative 
mathematical thinking (CMT). Although the use of 
digital media can facilitate the engagement with CMT 
in unprecedented ways (Healy & Kynigos, 2010), there 
is a lack of both pedagogical designs targeting CMT 
and corresponding technologies supporting them. 
Even in the case of digital tools with great potential 
for enhancing CMT, such as e-books, the pedagogies 
that accompany those tools are often outdated, fol-
lowing the traditional teaching and learning models. 

Moreover, the process of designing them is rather 
restricted and limited to the authors, instead of be-
ing open to collective design that leaves space to the 
designers for sharing creative ideas. Designing dig-
ital educational resources for CMT can be therefore 
viewed as a ‘squared’ creativity challenge, since it 
requires not only fostering students’ mathematical 
creativity but also situating the design process itself 
within a socio-technical environment that can boost 
educational designers’ creative potential (Kynigos, 
2014). In the context of MC2, learners’ engagement 
with CMT was planned to be designed in collectives 
with the use of digital media, resulting in a new genre 
of authorable e-book, the ‘c-book’. The technology of a 
c-book differs from the one of an e-book as it includes 
dynamic widgets and interoperability, anticipates 
collective design incorporating an authorable data 
analytics engine with appropriate interface, drawing 
on end-users’ and resource designers’ interactions. 
This environment is aiming to enhance and stimu-
late social creativity in designing for CMT through the 
generation of Communities of Interest (CoI) (Fischer, 
2001). A CoI has a heterogeneous character, as each of 
the participants of a CoI represents a group of practi-
tioners from different domains or communities while 
all of them target to resolve collectively a problem and 
achieve common understandings overcoming their 
cultural differences. The “symmetry of ignorance” in 
the process of framing/solving design problems and 
creating new artifacts/understandings, triggers the 
emergence of social creativity (ibid). In this context, 
such CoI is anticipated to operate as a socio-technical 
environment, i.e. a living entity where everyone might 
be, at the same time, “designer” and/or “consumer”, 
in the process of co-designing dynamic re-useable 
and re-constructible educational materials for CMT. 
Interconnectedness, different perspective-taking, 
knowledge exchange and integration between diverse 
domains are features of this environment expected 
to provide more opportunities for creative thinking 
and learning. The members of a CoI in order to inte-
grate these features in their communication need to 
cross the boundaries between the different sites and 
the c-book is anticipated to operate as boundary ob-
ject by fulfilling a bridging function (Star, 2010). The 
process of boundary crossing entails four learning 
mechanisms (Akkerman & Bakker, 2011): a) identifi-
cation of the intersecting practices, b) coordination 
of both practices through establishing routinized ex-
changes to facilitate transitions, c) reflection leading 
to perspective-making and perspective taking and d) 
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transformation that provoke changes in practices or 
even the creation of a new in-between practice. We 
perceive these mechanisms as indicators for teach-
ers’ creativity, thus in our study we sought for them 
during the design process.

The present study is a first attempt to describe in 
detail this kind of innovative design and identify its 
characteristics as well as if and how this process can 
enhance teachers’ creativity. Particularly, we inves-
tigated: (a) designers’ ideas in the process of formu-
lating mathematical problems as well as the way they 
designed and foresaw students’ CMT (b) the product 
of this process in terms of novelty and usefulness 
as well as its characteristics (c) the potential of the 
c-book for operating as boundary object between the 
CoI members.  

METHOD

In this paper, we study the development of the c-book 
unit ‘Windmills’ which was meant by the research-
ers to operate as a sparker for social creativity. It was 
planned to be jointly created by the following 9 mem-
bers of the Greek CoI: Tom (Computer Science devel-
oper), Dimitris (experienced math teacher, designer 
in math education with the use of digital tools, master 
degree in the didactics of math), Katerina and Areti 
(master degrees in math education with technology, 
but limited teaching experience in math classrooms), 
Popi (experienced math teacher and teacher educa-
tor for the pedagogical use of digital tools in math, 
with deep knowledge of the available tools), Marios 
(phd-student and Informatics teacher), Foteini (teach-
er in engineering education, phd in the pedagogical 
use of digital tools for the vocational education), 
Yannis (university teacher) and Elissavet (moderator 
of this discussion, experienced math teacher, PhD in 
the domain of math teachers’ education with the use of 
digital tools).  Our data were: (a) the 75 contributions 
in the CoICode, (b) the files attached in the CoICode (c) 
the pages in the platform of the c-book (the widget in-
stances and the respective narratives). For analysing 
the content of CoICode, we adopted the data grounded 
approach (Strauss & Corbin, 1998).

THE C-BOOK ENVIRONMENT 

The c-book provides space (CoICode) for organized 
discussions in two parallel interfaces: a threaded fo-
rum discussion view and a mind-map view (Figure 

1) and gives user the possibility of switching from 
one to the other. Users can characterize the nature 
of their contribution by selecting between different 
semantics (alternative, contributory, objecting, off 
task and management) in which they can write text, 
links, attach files or widget instances (a software such 
as Geogebra is a widget factory and a microworld of 
this factory is a widget instance). The platform (Figure 
2) is the space for authoring where the students inter-
act with the c-book. It incorporates pages with dynam-
ically manipulated widget instances accompanied by 
corresponding narratives. 

RESULTS

The analysis of the 75 contributions posted in CoICode 
during the first cycle of MC2 showed that 16 of them 
were related to technical and organizational issues, 
4 were off-topic and the majority (55) concerned the 
development of the c-book unit. It should be noted that 
Tom and Marios did not participate in this cycle of the 
design. From the analysis of our data we identified 
that the process of developing the c-book unit was 
evolved in the following four phases incorporated 
different characteristics: 

1) Searching for mathematical ideas and concepts

2) Implementation of the raw ideas

3) Pedagogical and didactical contextualization

4) Transition to the c-book: texts accompanying the 
constructions 

These phases are interconnected and sometimes not 
clearly limited, as one of them may penetrate or over-
lap the previous and evolve together overtime. Below, 
we describe them regarding their characteristics in 
terms of both processes and products. 

Phase 1: Searching for mathematical 
ideas and concepts
This phase starts with the exchange of files depicting 
different types of windmills all over Greece (Elissavet 
and Katerina) or the way they function (Foteini), aim-
ing to operate as starting point and trigger the subse-
quent expression of the first ideas. The shapes of the 
windmills and their operation turn the participants’ 
attention on the kind of software that should better 
integrate those characteristics. Their first ideas are 
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related to Turtlewords (Dimitris, Elissavet and Areti), 
as they were all fully aware of its functionalities 
for rotation with the variation tool. Then, Elissavet 
(Figure 1, 27/3) proposes a brainstorming concerning 
the concepts embedded in a windmill and mentions 
some of them: regular polygons, isosceles triangle 
and rotational symmetry of k grade (depending on the 
number of sails) for the wheel as well as cone and cyl-
inder for the main building. Dimitris (Figure 1, 28/3) 
adds some more complicated ideas, for example, when 
an ant is walking on a wing of a windmill as it turns 
the ant’s orbit might look like a helix. Katerina (Figure 
1, 28/3) adds concepts such as parallelograms, rectan-
gles, angles, turns and curves in 3d space. She propos-
es ways of connecting them and the use of Turtlwords 
to investigate the properties of parallelograms and of 
different kinds of triangles as sails of the windmill. 
Popi (Figure 1, 30/3) raises some questions about the 
mechanics and architecture of windmills, the loca-
tions which favor their operation, the time required 
for a complete rotation of two similar windmills with 
similarity ratio ½, the way the sprockets work etc.

In this part of the discussion we observe that most 
of the concepts come from geometry and have to do 
with the perceptions of windmill and its parts as geo-
metrical figures. Popi, who is experienced in both 
mathematics teaching and technology introduces the 
time parameter and searches for a context where a 
windmill would be integrated. At the same time, the 
participants start thinking which of the available soft-
ware should better be related to those concepts. The 

discussions of this phase seem to be focused rather 
on ideas than on actions. 

Phase 2: Implementation of the raw ideas
At this point the CoI members start implementing the 
ideas expressed during the 1st phase. The construc-
tions are individual and we note a lack of intervention 
in the other members’ constructions. Simultaneously 
new ideas are invented concerning mathematical 
concepts, technological tools and problems. Elissavet 
gives a logo-code in Turtleworlds that initially con-
structs an equilateral triangle and then rotates it in 
order to take the shape of a six sails wheel. Taking this 
perspective, Dimitris and Katerina give half-baked 
logo-codes constructing an equilateral triangle using 
trigonometry and a parallelogram for representing 
the sails respectively. Areti also attaches a file with a 
half-baked code in Turtlwords (variables a, b, c) that 
initially constructs an open jagged line of two equal 
sides of length a, turns depended on c and the third 
side of length b. The dynamic manipulation of vari-
ables with the variation tool, constructs an isosceles 
triangle.  Subsequently, the triangle turns and it is 
rotated n times with the variation tool, so as to give the 
impression of the sails of the wheel. At the same time, 
Dimitris and Popi start expressing their ideas with the 
use of Geogebra. Dimitris constructs a dynamic figure 
of a sail and Popi a simple model of the wheel in which 
she has incorporated the time parameter manipulated 
by a corresponding slider. The dynamic manipula-
tion of time, brought to the fore algebraic concepts 
and relationships. The investigation of the model led 
to direct proportional amounts, linear and multiple 
branch functions. Dimitris makes a further refine-
ment of the concepts and classifies them into: (1) struc-
tural relationships and construction of a windmill 
as a 2d shape and (2) movement of the windmill with 
the slider. Elissavet adds to this distinction a third 
group: the view of the wheel from different perspec-
tives as a solid 3d shape, i.e. its transformation from 
a plane to a solid shape. She also emphasizes on the 
complementarity of the activities with Turtlewolds 
and Geogebra: the former needs a constructionist 
activity from simple mathematical concepts as struc-
tural units to more complicated ones, while the latter 
requires a de-construction of the model, resulting in 
the embedded concepts. 

The discussions of this phase include both the expres-
sion of ideas and their implementation individually. 
The mathematical concepts are classified according 

Figure 1: CoICode map
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to the way they are used, while they are also related 
to the functionalities of specific software tools. As 
the CoI members exchange their constructions we 
observe their smooth transition from one practice 
to another, effortlessly, just crossing the boundaries, 
without reconstructing them. 

Phase 3: Pedagogical and 
didactical contextualization
In this phase the majority of constructions in the form 
of widget instances has already been completed and 
the next step was to put them on the platform as dif-
ferent pages. The CoI members discussed the optimal 
sequence of the activities encompassing their con-
structions, the targeted students’ ages, the relation 
to the official curriculum and the kind of activities 
regarding their openness. 

Foteini believes that this c-book unit should be ad-
dressed to specific school grades, while Dimitris’ opin-
ion is to put ‘neither floor nor ceiling’ in the targeted 
ages. From this disagreement the following dilemmas 
emerged: “How can we expect our students to do cre-
ative mathematics with the use of the c-book, without 
having previously defined their ages?” or “Did defining 
in advance the ages of students limit our own creativ-
ity?”  Finally, they decided to include in the c-book a 
wide range of activities, starting from the simpler 
and gradually address them to students 12–17 years 
old, with the structure of the concepts not aligned 
to the official curriculum. Then, they had to choose 

which of the constructions should be incorporated in 
the c-book as well as their sequence on the different 
pages. They all agreed to start from the constructive 
activities with Turtlewords, giving students the op-
portunity to explore separately the figures – and the 
concepts of isosceles, equilateral triangle, parallelo-
gram – which represent the sails of the windmill and 
then to continue towards more complicated concepts 
(for example rotational symmetry), using the initially 
investigated ones as structural units. The investiga-
tions of the model with Geogebra were decided to be 
posted after the 6th page, with the aim to offer students 
the experience of understanding functional relation-
ships through their use (for example multiple branch 
functions, representing the operation of the windmill 
in different time intervals). We note that the multiple 
branch functions are taught in the 4th grade of second-
ary education; however, the investigation of the model 
could lead students of lower grades to understand this 
notion through its use (a typical example of mathemat-
ics-in-use). At the end of this phase Dimitris expressed 
the following alternative opinion: “It does not really 
matter which activities we’ll choose from Turtlewords or 
Geogebra. The widget will change when we start writing 
the texts. I believe that text and widget are a unit and 
not two different pieces”. The interrelation of widgets 
and texts was an issue of less importance till then 
and Dimitris’ contribution revealed his conception 
of the c-book as a whole, integrating both instances 
and texts. Another issue was the form of the activities 
around these concepts, i.e. their openness and the 

Figure 2: Screenshot of the c-book
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level of instruction. Since most of the constructions 
involved activities on given microworlds the partic-
ipants expressed the need for thinking up ideas that 
would give students the opportunity to create their 
own constructions around windmills. Thus, for the 
last page of the c-book unit they chose to ask students 
to construct their own windmill.

Summarizing the content of this phase, we observe 
that the conversations are rather oriented to peda-
gogical and didactical ideas than in action, which was 
prominent in the previous phase. The CoI members 
are facing dilemmas regarding the pedagogy of their 
constructions (widget instances) and have to think 
of ways to stimulate students’ creativity without de-
creasing their own creativity in design. The coher-
ence of the activities had also provoked a number of 
contributions, since till this phase the constructions 
were products of individual work and, at this point, 
the need to be synthesized emerged. These construc-
tions expressed different pedagogical and didactical 
approaches of the embedded mathematical concepts 
and the participants had to deepen on these concepts, 
their interrelations with the available tools and the 
way they should be communicated through corre-
sponding activities. The CoI members made clear their 
perspectives (perspective making) and extended or 
synthesized the ideas and perspectives of the others 
(perspective taking). Now, the artifacts are accompa-
nied with pedagogy and the participants start think-
ing about the form of the c-book, expressing ideas 
alternative to their traditional way of designing.  

Phase 4: Transition to the c-book
This phase begins when the CoI members’ construc-
tions have just been put on the platform as widget 
instances, with the sequence which had already been 
discussed in phase 4. Now the participants are dis-
cussing the number of available tools and the kind of 
functionalities they should provide to students. They 
are also trying to connect them through narratives 
and real life situations, so as to make more attractive 
the students’ involvement with the c-book. ‘Eva’s ad-
ventures at Cyclades!’ was the title of the c-book unit, 
in which Eva, her father and a local windmill owner 
were some of the heroes of the story. The difficulty in 
connecting widgets and texts is evident in the follow-
ing discussion: 

Areti:  Dimitris, how would you find a hypo-
thetical scenario, such as ‘a boy trying 

to construct with a logo-code the wind-
mill’s wheel doesn’t finally manage it, 
can the students help him?’

Dimitris: I believe that we don’t need to ask some-
thing. If you have a story and a widget 
connected to it, the text needs to be chal-
lenging, otherwise the student would 
not use it, even in case he is asked to. I 
don’t know if it’s better to ask clearly 
students what we want them to do or not. 
If not, do we lose the story’s coherence, 
as we continuously interrupt it with 
questions?

Areti: I’m confused. Do you disagree on the 
way me and Katerina changed the texts?

Dimitris:  Texts resulting in a question are ok and 
constitute a safe teaching method. My 
objection is that I imagine the c-book 
unit as a book with texts, which is also 
a tool, something like the interactive 
books in Harry Potter. This kind of 
books does not need any questions in 
order to attract you… Trying to correct 
the texts of Popi’s model in page 6, I in-
spired a new activity and put it on the 
twelfth page, in the form ‘text-widget’ 
(Figure 2).    

Foteini: It seems that the texts have the potential 
to re-formulate the widgets. 

In this part of the discussions, the CoI members seem 
to reconceptualise the use of the c-book unit: Areti 
expresses the need for framing the widget with a 
real problem to stimulate students’ interest. This ap-
proach differentiates the c-book from a microworld 
accompanied by a formal mathematical problem. The 
development of the c-book unit was an unknown and 
unfamiliar territory for all and the perspective of 
the experienced Dimitris favoured the development 
of new understandings and practices around its use. 
In this process, the c-book was the boundary object 
around which the participants interacted, reflect-
ed and finally transformed their knowledge. At the 
same time, new ideas incorporating both a story and 
a widget instance are generated. For example, Yiannis 
proposes to give students a photo of a ruined wind-
mill or without sails or roof and ask them to repair 
or complete it or to put inside its conic roof a rectan-
gular parallelepiped reservoir of maximum volume, 
for water storage. Furthermore new widget factories 
are introduced: Katerina exploits available tools of 
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the platform and creates a widget instance with the 
respective story in which students starting from a 
2d plan are challenged to create a 3d building with a 
windmill. These ideas reflect a new holistic percep-
tion of the c-book and the need for making their con-
structions more attractive using ‘non-mathematical’ 
material (photos, plans) in challenging situations.

RESULTS

The results of our research reveal that co-designing 
the c-book unit was a process evolved in four phases 
that incorporated different characteristics and under-
lying learning mechanisms for the CoI members. The 
ideas about the product and the product itself were 
modified over time. Phases 1 and 3 include discussions 
rather concentrated on ideas, while phases 2 and 4 are 
oriented to practice. In phases 1 and 2 the CoI members 
coordinate their work, collecting individual ideas and 
widget instances respectively, which become objects 
of pedagogical and didactical reflection in phase 3, in 
order to be synthesized as a coherent whole. Before the 
end of phase 3 and at the beginning of phase 4, the form 
of the c-book is outlined and the participants gradu-
ally acquire a more precise picture of what the c-book 
unit might be. Holistic perception of the c-book and 
the importance of the narratives are the outstanding 
characteristics of phase 4. At the end of this phase the 
c-book hybrid form is progressively crystallized and 
the transformation of the CoI members’ knowledge 
on how to design a c-book aiming to stimulate stu-
dents’ CMT is evident, due to the contributions of the 
more experienced members. In conclusion, our find-
ings showed that the c-book was the boundary object 
around which the participants coordinated their ac-
tivities, reflected on their pedagogy and transformed 
their knowledge about how to design for creativity.

ACKNOWLEDGMENT 

The research leading to these results has re-
ceived funding from the European Union Seventh 
Framework Programme (FP7/2007–2013) under grant 
agreement n° 610467 – project “M C Squared”, http://
mc2-project.eu. This publication reflects only the au-
thor’s views and Union is not liable for any use that 
may be made of the information contained therein.
The c-book technology is based on the widely used 
Freudenthal Institute’s DME portal and is being devel-
oped by a consortium of nine partner organisations, 
led by CTI&Press ‘Diophantus’. 

REFERENCES

Askew, M. (2013). Issues in Teaching for and Assessment 

of Creativity in Mathematics and Science. Valuing 

Assessment in Science Education: Pedagogy, Curriculum, 

Policy, 169–182.

Bolden, D., Harries, T., & Newton, D. (2010).  Pre-service pri-

mary teachers’ conceptions of creativity in mathematic. 

Educational Studies in Mathematics, 73, 143–157.

Craft, A. (2000). Creativity across the Primary Curriculum: fram-

ing and developing practice. London, UK: Routledge.

Craft, A. (2001). An analysis of research and literature on 

Creativity in Education. Carrickfergus, UK: Qualifications 

and Curriculum Authority.

EC. (2006). Recommendation 2006/962/EC of the European 

Parliament and of the Council of 18/12/ 2006 on key com-

petences for lifelong learning. 

Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), 

Advanced mathematical thinking (pp. 42–53). Dordrecht, 

The Netherlands: Kluwer.

Eteläpelto, A., & Lahti, J. (2008). The resources and obstacles of 

creative collaboration in a long-term learning community. 

Thinking Skills and Creativity, 3, 226–240.

Fischer, G. (2001). External and Shareable Artifacts as 

Opportunities for Social Creativity in Communities of 

Interest. In J. S. Gero & M. L. Maher (Eds.), Computational 

and Cognitive Models of Creative Design (Proceedings 

of the Fifth International Conference “Computational and 

Cognitive Models of Creative Design”) (pp. 67-89). Heron 

Island, Australia: University of Sydney. 

Healy, L., & Kynigos, C. (2010). Charting the microworld territory 

over time: design and construction in learning, teaching 

and developing mathematics. ZDM, 42(1), 63–76.

Kynigos, C. (2014). Social Creativity in Designing Constructionist 

e-books: new mediations for creative mathematical think-

ing? In G. Futchek & C. Kynigos (Eds.), Proceedings of 

Constructionism and Creativity, Vienna, Austria.

Kynigos, C., & Kalogeria, E. (2012). Boundary crossing through 

in-service online mathematics teacher education: the case of 

scenarios and half-baked microworlds, ZDM, 44(6), 733–745.

Sriraman, B, Yaftian, N., & Lee, K. H.  (2011). Mathematical Creativity 

and Mathematics Education. In B. Sriraman & K. H. Lee (Eds.), 

The Elements of Creativity and Giftedness in Mathematics. 

Advances in Creativity and Giftedness (Volume 1, pp. 119–

130), Rotterdam, The Netherlands: Sense Publishers. 

Star, S. L. (2010). This is Not a Boundary Object: Reflections 

on the Origin of a Concept. Science Technology Human 

Values, 35(5), 601–617.

Strauss, A., & Corbin, J. (1998). Basics of Qualitative Research: 

Techniques and procedures for developing grounded theo-

ry. Thousand Oaks, CA: Sage Publications. 

http://link.springer.com/book/10.1007/978-94-007-6668-6
http://link.springer.com/book/10.1007/978-94-007-6668-6
http://link.springer.com/book/10.1007/978-94-007-6668-6
http://link.springer.com/search?facet-author=%22Bharath+Sriraman%22
http://link.springer.com/search?facet-author=%22Narges+Yaftian%22
http://link.springer.com/search?facet-author=%22Kyeong+Hwa+Lee%22
http://link.springer.com/book/10.1007/978-94-6091-439-3
http://link.springer.com/bookseries/10136


2374CERME9 (2015) – TWG15

What can be learned from online public-
generated mathematical content? A case-study 
of the comments on a viral mathematical video

Alik Palatnik

Technion – Israel Institute of Technology, Haifa, Israel, umapalatnik@gmail.com 

The study explores the phenomenon of “viral mathemat-
ics”, providing insights about the availability and the 
structure of mathematical content in public-generated 
media (in particular in comments on videos). The study 
offers the research methodology, relying on original mix 
of qualitative, quantitative and data mining paradigms. 
The findings show that communication using scientific 
argumentation can occur in comments on a recreation-
al mathematical video; the growth of public interest in 
mathematical themes can be triggered by the viral video; 
and the arguments used by the comment-makers con-
tain mathematical derivations, terminology and views 
on science. Public-generated content can be harnessed 
as a unique open educational resource and a new source 
for engaging mathematical problems.

Keywords: Public-generated content, viral video, web 

cloud analysis, argumentation, divergent series. 

INTRODUCTION

My first account with the video in question occurred in 
February 2014. My 10th grade students were intrigued 
and asked for my opinion about the “one plus two plus 
three plus four video”. The challenge was accepted and 
I designed the subsequent lesson to discuss the mathe-
matical ideas in the video. For me it was an example of 
blurring the boundaries between the classroom and 
out-of school learning. In turn, I was intrigued by the 
thought that a You Tube video succeeded to engage 
my students in university level mathematics. At that 
time, the video “Astounding: 1 + 2 + 3 + 4+... = -1/12” had 
about two and a half million views and about four and 
a half thousands comments, which defines it as a viral 
mathematical video. In general, can public interest in 
such a video facilitate learning of mathematics?  What 
can students learn from the comments on a video? To 

answer the above questions we have to understand the 
nature of communication through the comments, the 
structure of the comment and to anticipate its appli-
cation to education. This research is an exploratory 
study that used a mixed methodology approach in a 
relatively new field of learning.

THEORETICAL BACKGROUND

The advent of personal computers, electronic mobile 
devices and the Internet has increased the blurring 
between formal (institutional) and informal educa-
tion in the 21st century. Blogs, wikis, multimedia shar-
ing sites, podcasting, and social networks facilitate 
individual production and user generated content, 
harnessing the power of the crowd through an archi-
tecture of participation (Andersen, 2007). Hossain 
and Quin (2012) argue that the interactive features 
of Web 2.0 technologies enable mathematics teachers 
and students to create collaborative learning environ-
ments inside and outside of the classroom, providing 
new type of resources and ways of instruction. 

Educational resources, their design, sharing and im-
plementation receive a renewal attention from the 
mathematics education community (see, e.g., Ruthven, 
2013 for a comprehensive review). One of the growing 
tendencies, closely associated with online sharing is 
a development of open educational resources (OER). 
Theoretical lens of instrumental approach was used 
by Trgalova, Soury-Lavergne and Jahn (2011) and 
Trgalova and Jahn (2013) to study the particular OER 
(dynamic geometry content repositories) and mem-
bers of their communities. Kynigos (2014) urges to 
study new types of OER, which are able to “generate 
more powerful and relevant sociotechnical commu-
nities for the learning of mathematics” (p. 252).  

mailto:umapalatnik@gmail.com
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One of the social phenomena related to Web 2.0 is the 
‘viral video’: a video clip content which gains wide-
spread popularity through the process of Internet 
sharing ("Viral video”, n.d.). This particular type of 
media can be harnessed as a unique OER. As shown 
in 2011 by “The periodic table of videos” channel, ed-
ucational videos explaining basic notions in chemis-
try can become viral – garnering millions of views. 
The impact of the channel awarded its creators with 
a Science Prize for Online Resources in Education 
(Haran, & Poliakoff, 2011). This explores the poten-
tial of a general public interest, manifested in pub-
lic-generated content, as an educational resource in 
a mathematical classroom.

Research questions
This study aims to explore the phenomenon of “viral 
mathematics”, providing  insights about the availa-
bility and the structure of mathematical content in 
public-generated media (in particular in comments on 
videos with a mathematical topic). It raises following 
research problems. First, little is known about the 
nature of comments on mathematical video. Whether 
they consist mainly of expressions such as: “lol” or 
contain a valuable mathematical component? Second, 
within the interest on the viral video itself, the public 
interest in the mathematical concepts and ideas men-
tioned in the video has to be isolated. Third, the charac-
teristics of comments on the mathematical videos are 
unclear and have to be typified. To do so, a case study 
of the comments on the “Astounding: 1 +2 +3 +4... = -1/12” 
video (Haran, 2014) was undertaken.

The research questions, following from the research 
problems are:

1) What mathematical content can be found in 
public-generated online resources, such as com-
ments on a video?

2) Can viral video elevate public interest in the un-
derlined mathematical content?

3) What is the structure of comments on a mathe-
matical viral video?

RESEARCH METHODOLOGY AND APPROACH 

Viral videos and comments are an unused resource 
in mathematics education and to date have not been 
the subject of mathematics educational research. 

Therefore, one of the objectives of this study is to 
propose suitable research methodology, which relies 
on original mix of qualitative, quantitative and data 
mining paradigms.

The video “Astounding: 1 + 2 + 3 + 4 + 5 + ... = -1/12” was 
published on YouTube on 9/01/2014 and is one of 232 
(while writing this article) videos of Numberphile 
channel. Nearly all of those videos have hundreds of 
thousands of views. The “Astounding…” video intro-
duced the paradoxical result: 1 + 2 + 3 + 4 + … = −1/12 
through a manipulation with series (divergent and 
convergent) and infinity. The creators of the video 
present the following “proof ”. First, the following 
sums were denoted: S1 = 1 − 1 + 1 − 1 + …; S2 = 1 − 2 + 3 − 4 + …; 
and S = 1 + 2 + 3 + 4 + … Then the presenter claims and 
explains that S1 = 1 − 1 + 1 − 1 + … = 1/2. Based on this result 
he proves that S2 = 1 − 2 + 3 − 4 + … = 1/4. Through further 
manipulations the presenter derives that S − S2 = 4S 
and hence S = −1/12. In short, the paradoxical result 
is obtained due to inconsistencies of various natures: 
different meanings of “=” sign in mathematics; attri-
bution a numerical value to a divergent series; rear-
rangement of infinite series using the commutative 
property of addition, etc. Quoting Niels Henrik Abel: 

The divergent series are the invention of the devil, 
and it is a shame to base on them any demonstra-
tion whatsoever. By using them, one may draw 
any conclusion he pleases and that is why these 
series have produced so many fallacies and so 
many paradoxes. [1]

To answer the research questions different method-
ologies were applied:

To answer the first question and to identify the 
main themes of the discourse in comments on 
videos, word cloud analytics were applied. A word 
cloud is a special visualization of text where the 
more frequently used words are highlighted by 
their proportional size (Feiberg, 2013). Use of 
word cloud as an analytical tool is still rare in 
educational research, however it appeared to be 
a fast and visually rich way to overview the data 
(McNaught & Lam, 2010). Those features make a 
word cloud especially suitable for preliminary 
analysis and for validation of previous findings 
(ibid). Wordle and Tagxego programs were ap-
plied to obtain word clouds, containing 50 most 
frequently used words [2] out of 38452 words 
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in all the comments to the video. Comparison 
revealed no significant differences between the 
word clouds. The further analysis was made us-
ing Wordle software (Figure 1).

The data was prepared for analysis in the following 
way [3]: To open all of the pages of comments I selected 

“Show more” at the end of each page; to open all replies 
to each of the comments I selected the “View all N re-
plies” notifications (58); to show all the lines in lengthy 
comments I selected “Read more” notifications (340). 
The obtained HTML document was copied to the MS 
Word using “Keep text only procedure” resulting in 
a 209 pages document. The utility phrases (e.g., Hide 
replies; Show less) were deleted from the text file be-
fore the data mining stage.

To answer the second question, namely to estimate the 
impact of the video on public interest to the featured 
scientific content, the changes in information seeking 
behavior as expressed by Google Trends were used. 
The methodology, using Google Trends tool was pro-
posed and applied by Segev and Baram-Tsabari (2012). 
The mathematical concepts Grandi series and  Cesaro 
sums were chosen as the subjects of investigation for 
the several reason:

 ― Grandi series and Cesaro sums are the key con-
cepts of the video. The Cesàro sums method us-
ing the limit of the average of the first n partial 
sums of the series, as n goes to infinity, enables 

“summation” of the divergent series, thus Grandi 
series 1 − 1 + 1 − 1 + …  has Cesàro sums of 1/2.

 ― Terms Grandi series and Cesaro sums were not 
mentioned explicitly in the video and were men-
tioned in the comments

 ― Grandi series and Cesaro sums are usually un-
known to the lay public and for the non-math-
ematical academic audience unlike other key 
concepts of the video (e.g., those present in the 
university curriculum or related to Riemann or 
Euler).

The hyperlinks to mathematical sites and blogs in the 
comments are additional indicators of the video’s im-
pact. The standard Find function of Word with “http” 
argument was used to find the external links. Each 
link was labelled according to its content (e.g., Blog, 
Wiki, scientific paper).

Descriptive statistics of the data sample and qualita-
tive analysis of argumentation in the comments was 
applied to classify the comments and arguments, to 
answer the third question. Out of 209 pages of com-
ments 25 pages (≈12 % of pages) were randomly select-
ed. The sample contains 85 comments. An additional 
instrument for establishing the representativeness 
of the sample is a word cloud, produced from 5332 
words of the sample (≈14 % of text) (cf. Figure 1a with 
Figure 1b). The main themes and topics (e.g., sum, 
infinity, series) are intact. All the comments in the 
sample was numbered, and coded according to wheth-
er they contain the following indicators: presence of 
mathematical derivations/ scientific terminology; 
characteristics of scientific enquiry/ epistemology; 
attitudes toward science or scientists; emotions in 
support or against the video. In addition, each com-
ment was analyzed in order to locate the essential 
parts of an argument: a claim, a data and a warrant 
(Toulmin, 1958/ 2003). For example, comment #80 on 
the “Astounding…” video: “Assumption: the sum of an 
oscillating sequence is its arithmetic mean. Conclusion 
from assumption: the sum of a set of positive integers 

Figure 1: Word clouds containing 50 most frequently used words in all the comments on the “Astounding…” video (2a- out of 38452 

words; 2b- out of 5332 words of the sample)
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is negative. You’ve just proved by contradiction that the 
sum of an oscillating sequence cannot be its arithmetic 
mean.” was labelled as shown in Table 1.

The claim: the sum of an oscillating sequence cannot 
be its arithmetic mean, thus the main statement of the 
video is false; the data: a fragment of the video, where 
the statement 1 − 1 + 1 − 1 ... = 1/2 is proven; the warrant is 
a proof by reduction ad absurdum. Consequently, the 
abovementioned comment is an argument, which uses 
mathematical calculations and terminology and free 
of emotion. First stage of the research will provide a 
list of key words, which are the core of scientific com-
munication established in community of comment-
ers on the video. The data collection was completed 
by simple filtering technique using the key words. 
The comment-makers use pseudonyms and usual-
ly do not share any personal details such as gender, 
age, occupation and level of expertise in mathemat-
ics. However, in some cases it was possible to make 
grounded suggestions about the comment-maker’s 
background. For example search phrases: “teacher”, 

“class”, “students” revealed math teachers/ students 
among the comment-makers. I read the mathematical 
derivations line by line and checked the mathemati-
cal terminology used by comment-makers to find the 
experts in mathematics among them.

RESULTS

What mathematical content can be found in pub-
lic-generated online resources, such as comments 
on a video?

The word clouds (Figure 1) show that the com-
ment-makers were involved in scientific discussion, 
which main topics and themes were connected to a 
sum of infinite series. The word count confirms this 
finding. 30 words out of top 50 in the word cloud be-
long to mathematical/ scientific terminology (general 
or specific to the content of the video). See Table 2 for 
the details.

Mathematical der-
ivations/ scientific 
content

Characteristics of 
scientific enquiry/ 
epistemology

Attitudes toward sci-
ence and scientists

Emotions Argument

1 1 0 0 1
Table 1

# Word
Frequency in 
the comments # Word

Frequency in 
the comments

1 sum 233 16 average 72

2 series 220 *17
shift (tech-
nique) 72

3 infinity 213 18 positive 67

*4 S 191 19 negative 59

5 number 184 20 adding 55

*6 S2 161 21 theory 55

*7 1/2 142 22 mathematics 54

*8 1/12 134 23 sums 51

9 numbers 127 24 prove 51

10 infinite 113 25 physics 50

11 value 100 26 equation 50

12 answer 92 27 divergent 48

13 proof 92 28 sequence 47

*14 S1 80 29 summation 43

15 math 76 30 converge 41

Table 1: Word cloud frequency (* indicates the words specific to the video)
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Can viral video elevate public interest in the under-
lined mathematical content?

Figure 2 indicates the growth of public interest in 
Grandi series and Cesaro sum (abstract and unknown 
to the lay public mathematical concepts which are 
explicitly mentioned in the comments and not in the 
video). The peak of interest to the concepts in question 
was registered in January 2014, corresponding to the 
release date of the video–9/01/2014. It is of note, that 
there are 37 different hyperlinks pointing to 32 differ-
ent mathematical sites in comments (Figure 3). Most of 
the links led to various Web 2.0 platforms: Wikipedia 
articles about mathematical concepts related to the 
video (e.g., Divergent series, Riemann zeta function), 
mathematical blogs, social network, question and 
answer site or YouTube. Publication of the video has 
created a teachable moment and new resources for 
learning were generated/ brought into account. 

What is the structure of comments on a mathematical 
virus video?

The analysis of the sample shows that the com-
ment-makers use mathematical derivations and sci-

entific terminology to the broad extent (28% and 36% 
of comments resp.) The data analysis process revealed 
that 73% of the comments contained arguments (63 out 
of 85). These arguments were categorized according to 
the possible roles that they play within the discourse 
[4]. In short the most-used categories of argument 
were: common sense; mathematical laws; mathemat-
ical intuition (based on non-infinite mathematics); 
counterintuitive thinking, proof; and authority.  More 
than half of the comments (52%) in the sample con-
tained indicators of positive or negative emotions to-
ward video and its creators. For example: the fragment 
of comment #28: “You know what is more amazing? 
WHY anyone would ask for the result of 1+2+3+4... ? It 
is obvious it is infinity!! You must be a genius to think 
that maybe not.” Table 3 shows the distribution of the 
arguments/ emotions in the comments.

The next step was to apply the filtering technique 
to the text file of all the comments. It revealed data, 
which the two previous techniques could not dis-
close. There were evidences of various stakeholders 
to the “viral math” phenomenon. The math teachers/ 
lecturers were among the comment-makers. Most of 
them were concerned with misconceptions which stu-
dents may develop as a result of watching the video. 
Comment-maker X wrote:  “My complaint is, this video 
is leading my students to believe that 1-1+1-1+... converges 
to 1/2, and is encouraging them to work with limits of 
sequences without knowing if they converge, which is 
a huge problem…”  Nevertheless, most of the teachers 
appreciate the “arousing interest in discussing the 
problem”. The reading of the mathematical deriva-
tions line by line reveals mathematicians/ physicists 
among the comment-makers. Some of the comments 
were mathematically perfect and could be a part of 
a textbook, as previously cited in the Methodology 
section comment #80.

Figure 2: Google trends graph showing a percent of searches on Grandi series and to Cesaro sum

Figure 3: Distribution of hyperlinks in the comments
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There were some emotionally loaded comments to-
ward the video creators and comments expressing 
attitudes towards science. The following excerpt of 
the comments should raise the awareness of mathe-
matics educators, willing to use this resource to the 
issue of public understanding of the science and its 
role in society:

 ― Mathematicians are frauds (in Russian) 

 ― this equation means infinity is different from what 
we believe, or perhaps our whole concept of math-
ematics is wrong

 ― Why are you bashing on this channel? Blame the 
mathematicians who derived this and use it

 ― Unbelievable that scientists make “science” based 
on fallacies.

DISCUSSION

This study explores a viral mathematical video and 
a corpus of corresponding comments as an open re-
source which was adapted for the needs of (mathemat-
ics) education. Trgalova and Jahn (2013) studied more 
conventional OER (web-based repository specifically 
designed for the educational needs) and registered a 
relatively small number of reviews and modifications 
of the content by users. The authors suggest that lack 
of tools for communication and collaboration in the 
repository may decrease users’ motivation to contrib-
ute. In the list of key ideas of Web 2.0 application to 
education Andersen (2007) named individual produc-
tion and user-generated content in first place. The cur-
rent study, through analysis of the comments, makes 
a step toward better understanding of the learning in 
dynamic web environment with active user partici-
pation. The findings show that comment-makers on 
a recreational mathematical video can create, share, 
and communicate mathematical content using scien-
tific argumentation. The active public participation 

through embedded tools of communication and en-
gagement provided an educational component to an 
open resource. 

The arguments used by the comment-makers contain 
mathematical derivations, terminology and views 
on science and scientists. The high presence of argu-
ments in the comments advocates the further study of 
arguments as a promising direction in the research of 
mathematical communication based on Web 2.0 plat-
forms as file sharing sites, social networks and blogs. 
This study treats learning from comments as a special 
case of learning through argumentation. Learning 
from argumentation has been shown by Asterhan 
and Schwarz (2007) to lead to students’ conceptual 
gains where the introduction of the dialog of disagree-
ing discussants proposing reasons for their views 
about a problem resulted in the students’ discussion 
becoming more argumentative. Lachmy and Koichu 
(2014) use their analysis of students’ arguments to 
understand the interplay of empirical and deductive 
reasoning when proving in a computer-enhanced en-
vironment. To this end the categories that originated 
in the comments can facilitate the critical thinking of 
the students when applying to the public-generated 
content. For example, the most “innocent” step in the 
underlying proof is the implicit claim that the sums 
1-1+1-1+…; 1-2+3-4+…; 1+2+3+4+… can be denoted and the 
numerical values can be attributed to S1, S2 and S. The 
argument belongs to a common sense category and 
must be revisited.

The growth of public interest in mathematical themes 
triggered by the viral video was shown in this study 
and is a phenomenon that should be studied inten-
sively as a part of wider vein of research on a public 
interest in science (e.g., Baram-Tsabari & Segev, 2013).

Despite the study’s limitations (it is a case study of 
the comments on one video), the claim is that this par-
ticular type of media can be harnessed as a unique 
open educational resource.  First, it embodies the cy-

The comment contains: 
Emotional expres-
sions supporting / 
refuting the result

No emotional expres-
sions supporting / refut-
ing the result

Argumentation supporting / refuting the result: 
1+2+3+…=-1/12 

33 30

No argumentation supporting / refuting the re-
sult: 1+2+3+…=-1/12 

11 11

Table 3: Argumentative/ emotional component in the sample of the comments on “Astounding…” video
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ber-social learning opportunities typical of the Web 
2.0 environment. Second –it combines the benefits 
of multimedia learning with mathematically rich 
content in public-generated comments on the video. 
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ENDNOTES

1. From letter (Jan 1828) to his former teacher Berndt 
Holmböe. In (Morris Kline. Mathematics: The Loss of 
Certainty (1982), p. 170).

2. Except common words of English vocabulary.

3. As far as I know, there is no commercially available 
solution to the YouTube/ blog commentary’s page im-
port to CSV format. One of the possible contributions 
of the study is to define parameters and variables to 
be used in the algorithm.

4. The results of the categorization are omitted due 
to space limitations.
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The study presented here focuses on the representations 
of creative mathematical thinking (CMT) held by two 
Communities of Interest (CoI) before and after designing 
educational resources with an innovative tool affording 
diverse expressive media for creativity in classrooms. 
Our analysis revealed similarities but also distinct dif-
ferences in the way these communities operationalized 
their CMT representations in their products. Both CoI 
(Greek and Spanish) appreciated the novel affordance 
of diverse expressive media to foster CMT in students 
through open, real life, interdisciplinary problems 
amenable to multiple solutions. However, the CMT af-
fordances appreciated by the CoI members were distinct-
ly different with respect to contextual factors involving 
personal and schooling issues as well as influences by 
the research culture of the two corresponding teams.

Keywords: Creative mathematical thinking, technology.

INTRODUCTION: CMT AND TECHNOLOGY

Various definitions regarding mathematical cre-
ativity have been proposed during the last decades. 
Poincaré (1948) viewed mathematical creativity as the 
interplay between a period of conscious and uncon-
scious work, in which any choices in terms of mathe-
matical reasoning and proof are made in the pursuit 
of elegance and usefulness. Recently, Sternberg and 
Lubart’s (2000) identified mathematical creativity as 
the ability to predict some ‘non-predictable’ conclu-
sions that are at the same time useful and applicable. 
More recently discussion on math creativity has 
been led towards sorting out whether to approach it 
in terms of a product or a process (Shriki, 2010), as a 
general ability (associated with applying analogous 
problem-solving processes from one field to the other) 

or as some domain-specific skill (exemplified within 
a particular disciplinary or other activity field and 
taking into account the logico-deductive procedures 
already developed in it) (Lev-Zamir & Leikin, 2011). 
More particularly, the three most prominent strands 
in the research tradition of math creativity are as fol-
lows: the first and most popular is situated in the so-
called the ‘genius’ approach of creativity (Sriraman, 
2005); the second, represented by Silver (1997), is 
based on the claim that mathematical creativity is 
susceptible to instructional and experiential influ-
ences and gives equal emphasis on problem posing as 
on problem solving, with preponderance on the use 
of ill-structured and open-ended problems; finally, a 
more recent but rather under-researched approach 
is that of ‘techno-mathematical literacies’, the focus 
of which is on identifying and addressing mathemat-
ical creativity in out-of-school contexts and in out of 
mathematics (non-disciplinary) situations, such as 
looking for and applying mathematical concepts and 
relations in technology-based workplace practices 
(Noss & Hoyles, 2013).

Only the latter of these approaches tightly addresses 
the use and role of digital media for CMT. Although 
often implied, the development of CMT with the use of 
exploratory and expressive digital media has not of-
ten been centrally addressed in providing users with 
an access to and a potential for creative engagements 
with mathematical concepts (Healy & Kynigos, 2010). 
During the last decades several digital tools, applets 
and authoring systems have appeared designed to 
foster CMT affording dynamic manipulation, inter-
connected representations (inc. mathematical for-
malism), simulations of phenomena and situations 
embedding mathematical rules, visualisations of data 
representations and handling of probability. Some of 
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these technological advances have been developed 
within the frame of approaches with a constructionist, 
argumentational, inquiry-based, problem-based, ex-
perimentation origin, all connected but not centrally 
matched with creativity. Nevertheless, even though 
research points to the potential of expressive digital 
media to foster CMT, the uses of these same media 
in educational practice at large are conversely fre-
quently instrumented towards contexts of traditional 
lecturing and demonstration of exercise solutions 
(Ruthven, 2008). This looks like a paradox situation 
where digital media are being used very differently 
with respect to their potential for providing users 
with access to mathematical ideas hitherto obscure 
and inaccessible, and at the same time allowing them 
to creatively engage with experiential construction-
ist, dialogical and social generation of mathematical 
meanings, understandings and social norms has long 
been elaborated (Hoyles & Noss, 2003).

Our paper therefore addresses a real wide-scale prob-
lem and it is within that context we attempt to con-
tribute to our understanding of teachers designing 
of affordances for CMT. No doubt, the clarification of 
shared understandings of the essence of CMT and the 
spreading of respective activity in education are slow 
and non-linearly developing processes. New media 
affording collaborative designs for CMT may provide 
us with the means to generate socio-technical environ-
ments (Fischer, 2011) more conducive to addressing 
these issues and designing for learning cultures cul-
tivating CMT. This paper studies designers’ represen-
tations of CMT (in the context of a European project 
called ‘M C Squared’) as they became operationalized 
in the collaborative production of materials with an 
innovative e-book author aiming to afford CMT (we 
call it the ‘c-book’, ‘c’ for creativity) to the end users. 
The designer communities have been orchestrated 
by four research teams so as to ensure the diversity 
among the members in relation to the disciplinary 
backgrounds, expertise, history and membership 
in different communities of practice which are de-
fined in literature as Communities of Interest (CoI) 
(Fischer, 2011). Four such CoI (English, French, Greek 
and Spanish) were thus formed in MC2 project. The 
CoI were put together to include a variety of expertise 
involving designers and developers of digital resourc-
es for math education, publishers of mathematics edu-
cational materials, researchers in (and outside) math 
education or in creativity, teacher educators, school 
math teachers and students.

Given the diverse approaches to CMT outlined above, 
and the relative lack of connection to math activity 
with expressive digital media, the concept remains 
fuzzy in the literature. So, the aim of research is to 
illuminate how a shared understanding of CMT can 
be generated in CoI using technology specially built 
to afford collaborative design for CMT. Such research 
may contribute in crafting ways to orchestrate and 
moderate teacher communities of practice potential-
ly playing a role in spreading the use of expressive 
media for CMT related activities in classrooms. Our 
research focus was thus twofold: (a) to illuminate 
the designers initial representations of CMT in two 
(of the four) CoI, and (b) to illuminate the process of 
operationalization of these representations during 
collaborative designs of such technologies for stu-
dents which would be done by examining how the CoI 
members evaluated their product in terms of CMT 
affordances. In the sections to follow we briefly out-
line our research method, and then discuss the CMT 
representations of the two CoI so far revealed by our 
analyses (the Greek and Spanish respectively) in two 
ways. Firstly as they were expressed in their respons-
es to two semi-structured questionnaires before they 
were engaged in the design, and subsequently, as they 
were manifested in their evaluation of the CMT affor-
dances of their collaboratively produced c-book units. 
Finally, through a synthetic analysis we aimed to iden-
tify common patterns and differences in the ways the 
two CoI approached the CMT criteria with regards to 
their task at hand with the c-book technology.

DESCRIPTION OF THE STUDY 
AND METHODOLOGY

The decision to work with four (here two) CoI was 
a methodological one for two reasons: The first one 
was that we aimed to obtain diversity in relation to 
the expertise of the CoI members within each CoI. 
The second was that each CoI would correspond to a 
particular educational context. This decision would 
contribute to deepening our awareness of the role of 
the context diversity both by the exercise of de-con-
textualising our findings and by using our synthetic 
knowledge to later try to develop methods to re-con-
textualize generic findings (Lagrange & Kynigos, 
2014) by distinguishing between commonalities and 
differences in the operationalized representations of 
the members of the two CoI.
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In order to identify the CoI members’ initial repre-
sentations of CMT, an exploratory approach was 
chosen independently by the two research teams, 
mainly based on the use of questionnaire as the main 
instrument for data collection. Each research team 
developed its own questionnaire and followed a dif-
ferent but nevertheless comparable procedure. In the 
Greek case the questionnaire was administered to the 
17 participants in the Greek CoI. It consisted of: (a) 
open-ended questions aiming to explore the CoI mem-
bers’ personal definition of CMT, and (b) a list of 17 
statements concerning the nature and characteristics 
of CMT, based on a 6-point Likert type scale (ranging 
from 1=completely disagree to 6=completely agree). 
The Spanish research team developed a different ques-
tionnaire, which was administered to the 17 members 
of the Spanish CoI. This questionnaire consisted of: 
(a) a list of 26 statements (which respondents were 
asked to respond to by using a 5-point Likert scale, 
ranging from 1=completely disagree to 5=completely 
agree) concerning the nature of creativity and CMT, 
the characteristics of creativity in their professional 
background and the profile of a creative student and a 
creative math teacher; (b) three open-ended questions 
to collect features, criteria and examples of tasks and 
activities that could foster CMT. The qualitative data 
from the open-ended questions were subjected to the-
matic analysis (Braun & Clarke, 2006). This is a method 
for identifying, analysing, and reporting patterns 
(themes) within data and goes through the following 
six phases: (i) familiarizing yourself with your data, 
(ii) generating initial codes, (iii) searching for themes, 
(iv) reviewing themes, (v) defining and naming themes, 
and (v) producing the report. Quantitative data from 
close questions were statistically analysed, calculat-
ing, for each item, the median and the Inter-Quartile 
Range (Mogey, 1999). Then, a configuration of mem-
bers from each CoI produced one c-book unit each, 
the ‘Windmills’ [1] c-book unit (jointly created by 7 
members of the Greek CoI), and the ‘Viral behaviour of 
the Social Networks’ [2] (designed by 8 members of the 
Spanish CoI). After completing these c-book units, the 
two CoI were asked to evaluate the CMT affordances 
of their c-book units on the basis of specific criteria 
previously defined by them. Responses from the CoI 
were subjected to thematic analysis and the criteria 
identified were organized according to whether they 
(a) were aligned with established criteria already sug-
gested in the literature, (b) were specific to the CoI, 
(c) were shared between the two CoI, and (d) were in 
accordance to the two CoI initial CMT representations. 

Finally, comparative analysis was employed to trace 
similarities between the criteria proposed by the two 
CoI.

INITIAL REPRESENTATIONS OF 
CMT IN THE TWO COI

The analysis of the data gathered from the Greek CoI 
responses to the open-ended question asking them to 
provide a definition of CMT revealed a set of themes 
ascertaining that the participants conceptualised 
CMT both in terms of process and product. 

The first theme matched CMT with the ‘construction’ 
of either math ideas or some concrete mathematical 

‘objects’. This is in line with a ‘constructionist’ ap-
proach to creativity giving emphasis to the learners’ 
creative expression and learning through the active 
exploration, modification and creation of digital 
artefacts (Daskolia & Kynigos, 2012).The next two 
themes that emerged are in accordance to what liter-
ature identifies as the criteria of novelty/originality 
(Liljedahl & Sriraman, 2006) and usability/applicabili-
ty (Stenberg & Lubart, 2000). The former relates CMT 
to ‘mathematical productions’ that are new/unusual, 
and/or new or unexpected ways of applying mathe-
matical knowledge in posing and solving mathemat-
ical problems. The latter was perceived by the Greek 
CoI as the purposeful combination of math knowledge 
from different math domains or with knowledge from 
other scientific areas. Some other themes identified 
in the Greek CoI representations of CMT were those 
pertaining to fluency, flexibility and imagination. The 
literature views all three of them as characteristics of 
a creative mathematical process (Silver, 1997; Leikin, 
2009), interconnected but not necessarily all present 
at the same time (Baer, 1993).

The analysis of the close questions showed that almost 
all Greek CoI members seemed to agree that mathe-
matical creativity entailed that is an ability which can 
be fostered through interaction with other people in 
a collaborative context (Mdn=6, IQR=1) and within a 
milieu which is rich in many alternative –and even 
contradictory- ideas (Mdn=6, IQR=1), which allows 
openness to other disciplinary fields (Mdn=6, IQR=1), 
and includes problems inspired from real life (Mdn=6, 
IQR=0.25). Most Greek CoI members agreed that CMT 
has to be based on a deep and well-rooted mathematical 
background, and that it can emerge from the people’s 
ability (a) to use many, different and unusual ways 
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to solve a problem (Mdn=5, IQR=0.25), (b) involving 
many and diverse mathematical representations for 
approaching a math problem (Mdn=5, IQR=1.5). 

In the case of the Spanish CoI, thematic analysis was 
also employed for the analysis of the data from the 
open-ended questions. The analysis revealed the key 
traits which could trigger CMT in students: a) allow-
ing for multiplicity in the approaches and techniques 
to resolve questions (16 respondents out of 17); b) 
promoting multiple representations of a particular 
mathematical concept (16 / 17); c) engaging students 
in math problem situations close to their reality (13 
/ 17); d) situating math problems in interdisciplinary 
contexts, by combining math knowledge with other 
disciplines and showing its functionality in other do-
mains (13 / 17); and e) including communication tasks 
within the activities to share students proposals and 
opinions (10 / 17). 

Concerning the nature and characteristics of CMT, 
most Spanish CoI members consider creativity being 
a quality that can be developed through instruction 
(Mdn=4, IQR=1) and that interaction with people with 
different perspectives can enrich the creative pro-
cess (Mdn=5, IQR=1). Most of them consider themselves 
as creative professionals to a great extent (Mdn=4, 
IQR=0), and acknowledged that mathematics help pro-
moting creativity in other disciplines (Mdn=4, IQR=1). 
In describing a creative student, they emphasised as 
requisites the ability to: (a) formulate questions and 
initiate investigations (Mdn=4.5, IQR=1); and (b) find 
different ways to solve problems combining differ-
ent tools and representations (Mdn=4.5, IQR=1). The 
Spanish CoI members claimed that, in order to foster 
CMT, the teacher has an essential role, by holding a 
deep mathematical background (Mdn=5, IQR=1), and 
by encouraging the advent of diverse students’ re-
sponses when approaching the mathematical ques-
tions (Mdn=4, IQR=1).

Comparing the two cases it seems that both CoI shared 
several criteria, which the literature identifies as 
closely related to CMT. To mention some: the belief 
that CMT can be fostered in the classroom, through 
appropriate education (Silver, 1997), the recognition 
that the interaction between the learning actors is 
important (Leikin, 2009) and the connection of cre-
ativity with mathematics (Silver, 1997). The promotion 
of CMT is understood through tasks of an exploratory 
nature (Mann, 2006), through open problems amena-

ble to multiple solutions (Lev-Zamir & Leikin, 2011), 
through situations that demand the combination of 
various tools and/or representations, or through in-
terdisciplinary tasks (Perry-Smith & Shalley, 2003).

EXTRACTING THE COI CRITERIA OF CMT

The CoIs’ initial representations of CMT allowed re-
searchers to build a shared understanding and ‘vo-
cabulary’ on how to address CMT within their CoI, 
which helped them reflect on and develop their own 
criteria for assessing the c-book units’ CMT poten-
tial impact to prospective students. The two CoI have 
designed and produced a series of c-book units until 
now. However, from a research point of view we were 
interested in identifying whether and how these CMT 
representations were employed by the two CoI imme-
diately after they had completed their first c-book unit. 
In the following paragraph, we offer a short descrip-
tion of these two first c-book units, namely ‘Windmills’ 
and ‘Viral Behaviour of Social Networks’.

The main idea of ‘Windmills’ was to challenge stu-
dents to explore, identify and use the mathematical 
concepts underlying the construction and operation 
of Greek windmills, an integral part of the Greek is-
lands’ scenery, quite familiar to the students. The CoI 
intention was to design a c-book unit that would invite 
students to foster ‘unexpected’ mathematical ideas, 
surprising even to the initial designers of the activi-
ties. The construction of the c-book unit was initiated 
with the CoI members developing and exchanging 
through CoICode (the c-book author collaboration 
tool), Turtleworlds (a Logo-based Software), Geogebra 
(Dynamic Geometry Software) and DME Draw3D 
widget [3] instances (3D grid using cubes as building 
blocks). The rationale was to start addressing simpler 
and gradually move to more complex mathematical 
concepts. This ‘low threshold – high ceiling’ rationale 
adhered to the idea of making the c-book unit appro-
priate for students within a large range of school 
grades (lower to higher secondary). The first four 
pages included activities with Turtleworlds targeting 
the construction of geometrical figures – parts of a 
windmill (triangles, parallelograms, regular polygons, 
solid shapes) and use them to create a windmill. The 
following pages used GeoGebra to engage students 
in exploring the operation of ready-made models of 
windmills and identify the underlying mathemati-
cal concepts (linear functions, direct proportional 
amounts, multi-branch functions, periodic functions, 
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co-variation of geometric magnitudes). Finally, stu-
dents would have to repair a deserted windmill to 
explore geometric figures.

The Spanish c-book unit focused on fitting mathemat-
ical tools and models to describe and understand the 
‘Viral Behaviour of Social Networks’. Mathematical 
modelling was thought central to allow students to: 
a) formulate assumptions on different phenomena 
related to social network users, b) use mathematical 
tools to analyse relations and patterns on real data, c) 
look for, fit and test mathematical models to forecast 
social networks behaviour, d) use math (and its mod-
els) to obtain responses about reality, and e) be able, 
if necessary, to reformulate assumptions and models. 
The CoI wished to put forth an interdisciplinary ap-
proach where math (mainly arithmetic and pre-func-
tional modelling) would provide tools for analysing 
social phenomena. The c-book unit consists of 3 parts: 
The first part focuses on introducing students to a se-
quence of questions about how the number of friends 
evolves depending on the degree of friendship, in or-
der to explore exponential properties acting under 
social networks. The second part presents the ‘theory 
of the six degree of separation’, by asking students to 
estimate the number of friends a teenager can have 
and, then, forecast how this evolves depending on the 
degree of friendship. Finally, the third part allows 
students to work on their own data by asking them 
to search their friends and connections in Facebook 
and estimate up to what degree of friendship they are 
connected with any other person in the world. The 
c-book unit was developed in 14 pages and includes 
widgets from 3 different widget factories: GeoGebra, 
DME (probability tree, answers box, tables, etc.) and 
a special Cinderella widget to visualize and compare 
graphs of points using linear and algorithmic scale.

After completing the two c-book units, the CoI mem-
bers were invited to evaluate the potential of the units 
as educational resources fostering users’ CMT. Each 
research team conducted a separate analysis of the 
data gathered from their CoI evaluation. This analysis 
examined whether the criteria used by each CoI were 
in alignment with their initial CMT representations, 
with the criteria identified in the literature review, 
and with the educational traditions of the specific 
CoI. A comparative analysis between the two cases 
brought evidence about commonalities and differenc-
es between the two CoI. The findings of this analysis 
are as follow:

a) A focus on exploring ‘real’ problems and questions: 
Both CoI emphasised the use of real-life situations 
(close to students’ reality) in their c-book units. This 
is recognized as a characteristic of mathematical cre-
ativity and many mathematicians describe it as an 
invaluable aspect of their craft (Sriraman, 2005). The 
same criterion was traced in the initial CMT repre-
sentations of both CoI (a, c, d [4]).

b) Promote openness, exploration, and diversity in the 
approach taken: According to their initial represen-
tations the two CoI appreciated the fact that the activ-
ities included in the c-book units were based on open 
questions allowing the students to suggest their own 
answers. Silver (1997) suggests that such open ques-
tions encourage the development of students’ creative 
fluency, associating fluency with exploration as a way 
of thinking. On the first hand, there is an explorative 
nature in the questions included in both c-book units. 
The students are prompted to explore a problematic 
situation using different mathematical tools and also 
including simulation of different mathematical mod-
els. On the second hand, both c-book units include 
specific widgets to collect the diversity of students’ 
proposals, in a more open format as windows to write 
down their answers to be collected or as interactive 
widgets. For instance, the Turtleworlds widget allows 
students to build and work with their windmill con-
struction with different blade’s forms; the Cinderella 
widget facilitates that each user can work with their 
own Facebook data, combining the point table with the 
graphical representation in different scales (a, c, d).

c) Enable multiplicity of mathematical approaches/
representations/techniques/ solutions: According to 
both CoI, one of the strongest didactical qualities of 
the c-book units was the one of multiplicity. This re-
fers to the case of embedded activities that promote 
multiple solutions for a problem or multiple paths 
toward the solution of a problem (Leikin, 2009). The 
technology involved in the two c-book units facilitates 
the students to work with, and combine, different rep-
resentations of mathematical concepts. One example 
might be the variety of numerical and graphical rep-
resentations (trees, point graphs, etc,) of geometrical 
sequences (a, c, d).

d) Promote inter/intra-disciplinarity: According to 
Perry-Smith and Shalley (2003), a person’s exposition 
to diverse contexts and functional areas may lead to 
the production of different and unusual ideas. Such 
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manifestation is an indication of novelty/originali-
ty, which is considered an inherent characteristic of 
CMT. The Greek c-book unit deals with mathematics 
through some pure engineering and environmental 
issues, such as the preservation of old windmills, the 
use of alternative energy sources, etc. The Spanish 
c-book unit connects mathematics with social and 
technology issues such as the use of Facebook. Both 
c-book units combine a variety of mathematical top-
ics belonging to different mathematical domains. 
‘Windmills’ constructions invite students to apply 
knowledge from trigonometry (angles, construction 
of triangles, etc), functions, coordinates, and graphs, 
whereas the ‘Social Networks’ promotes the construc-
tion of models based on exponential and logarithmic 
properties, geometric sequences, and combines di-
versity of representations: probability trees, point 
tables and graphs with ordinary and logarithmic scale 
(a, c, d).

e) Promote a progressive modelling process: 
Mathematical modelling penetrates the whole activ-
ity in the Spanish c-book unit. The c-book unit starts 
with an initial generating question that was broken 
into some derived questions placed along the unit 
(and complemented with the most appropriate wid-
get instances). Each of its three phases leads to con-
sider different mathematical models (more complex 
at each step) that appears from the analysis of real 
data about social networks, at the same time models 
evolve thanks to its evaluation and contrast with re-
ality (a, b, d).

f ) Involve a constructionist aspect: In the case of the 
Greek c-book unit the students are invited to create 
their own windmill or to complete half-constructed 
ones. This constructionist aspect is very much based 
on the previous experience and educational tradi-
tion of the Greek CoI members. All of them were in-
volved in two wide-scale initiatives of the Ministry 
of Education in Greece. In the first, the aim was to 
expose mathematics teachers (amongst others) to con-
structionist epistemology, technologies and activity 
designs. The second project concerned the digital en-
hancement of the traditional textbooks which was also 
penetrated by the flavour of constructionism (a, b, d). 

CONCLUSIONS
The study was carried out in the context of a grow-
ing realisation that large scale use of digital media in 
educational practice is widely dis-aligned from CMT 

affordances. Understanding and promoting CMT 
representations in designer communities has had a 
dual purpose of suggesting a strategy to spread CMT 
cultures and illuminating our own understanding of 
the fuzzy notion of how CMT is represented amongst 
designers. We thus tried to identify some initial CMT 
representations amongst diverse designers and then 
to illuminate how these representations were opera-
tionalized in the process of collaborative design. Both 
CoI appreciated the potentiality for the c-book units 
to foster CMT in students appreciating the potential 
for integrating real-life problems that are open and 
amenable to exploration, multiple solutions and the 
combination of various disciplines and/or various 
mathematical topics. But equally important were 
the operationalization of representations of CMT 
linked to a specific context. The Greek CoI associat-
ed the chance to foster students’ CMT with the ability 
of the c-book technology to support constructionist 
activities. The Spanish CoI made a corresponding as-
sociation of this technology with its ability to support 
a progressive modelling process. 
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ENDNOTES

1. http://mc2-project.eu/index.php/technolo-
gy-and-production/c-books/100-windmills

2. http://mc2-project.eu/index.php/technolo-
gy-and-production/c-books/101-viral-behav-
iour-of-social-networks

3. Widgets – c-book-widgets (widgets for short) are 
small pieces of software which can be included into 
c-books via the c-book environment in order to allow 
interactive content. Widget instance – a widget that 
has actually been inserted into a c-book page is called 
a widget instance. They can still be configured by the 
c-book author in order to fulfill the specific needs. For 
example, for visualizing the graph of a function, the 
c-book author may specify the ranges to be used, etc. 

4. Letters a, b, c, and d refer to the four ways for organ-
izing the evaluation criteria used by the CoI members 
as they are described in p. 4.

http://www.icbl.hw.ac.uk/ltdi/cookbook/info_likert_scale
http://www.icbl.hw.ac.uk/ltdi/cookbook/info_likert_scale
http://mc2-project.eu/index.php/technology-and-production/c-books/100-windmills
http://mc2-project.eu/index.php/technology-and-production/c-books/100-windmills
http://mc2-project.eu/index.php/technology-and-production/c-books/101-viral-behaviour-of-social-networks
http://mc2-project.eu/index.php/technology-and-production/c-books/101-viral-behaviour-of-social-networks
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This paper proposes “formalising functional depend-
encies” as an approach to address critical aspects of 
the potential of digital technologies for the teaching 
and learning of functions. This approach focuses on 
the role of the available tools in supporting students’ 
transition from experiencing dependencies in terms of 
non-algebraic digital representations to expressing these 
dependencies formally. To illustrate the approach, data 
from two studies based on the use of two distinct com-
putational systems are analysed. Key aspects of their 
potential include: work with dependencies at the level 
of magnitudes, specially designed functionalities and 
dynamic interplay between symbolic and non-symbolic 
representations of functions. 

Keywords: Functions, dependency, formalism, digital 

technologies. 

INTRODUCTION 

The notion of function occupies a central position 
in school mathematics curricula but it constitutes 
a rather difficult topic for many students. Evidence 
identified by research concerns issues such as stu-
dents’ difficulties in understanding function as covar-
iation and dealing with algebraic symbolism (Kieran, 
2007). The development of new modes of representa-
tion within specially designed technological tools that 
allow considering functional dependencies through 
the use of non-standard representations (including 
non-algebraic ones) has generated further interest 
as regards their potential to deal with the above 
mentioned difficulties. One distinct feature of these 
tools is that they are designed to make the symbolic 
aspect of function more accessible and meaningful 
to students, especially through multiple linked rep-
resentations including some sort of combination of 
visual or geometric representations (e.g., dynamic 
geometry) and algebraic multirepresentation, pos-

sibly including Computer Algebra Systems (CAS) or 
other symbolic forms (e.g., algebraic-like formalism) 
(Mackrell, 2011). The interactive and dynamic charac-
ter of the corresponding digital representations have 
brought to the fore the need to acknowledge both the 
transformative potential of the corresponding tech-
nologies and the opportunities provided for meaning 
generation. This need was reinforced by the fact that 
such systems encourage different levels of interplay 
between symbolic and non-symbolic representations 
(e.g., direct manipulation of mathematical objects) and 
different kinds of algebraic expression that can be 
aligned or not with standard mathematical notation. 
In this study, I am particularly sensible to the possibil-
ity offered by particular computational environments 
to students to make sense of function through mod-
elling dependencies in a non-algebraic/symbolic (e.g., 
geometrical, iconic) setting before passing to formal 
expressions of these dependencies and to mathemati-
cal functions. In this process, there is always a transi-
tion from experiencing dependencies through the use 
of non-algebraic/symbolic digital representations to 
recognising which of these dependencies constitute 
functional ones and expressing them formally using 
the available symbolic representational forms. This 
transition is far from trivial for students. Apart from 
the novelty of the used representations, well-known 
problems that students face with functions and alge-
bra are also brought to the fore (Kynigos et al., 2010). 
Thus, the potential of the corresponding technologies 
needs to be addressed. This is the general goal of this 
paper. Based on the integrated framework developed 
by Lagrange and Psycharis (2014), I adopt a similar 
approach – I call it formalising functional dependen-
cies – to address such potential.  

FORMALISING FUNCTIONAL DEPENDENCIES

The approach formalising functional dependencies is 
developed around the need to address the following is-
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sues as regards the students’ transition from non-sym-
bolic/algebraic to symbolic/algebraic representations 
of function and the coordination between them in 
technology enhanced mathematics: (1) the role of 
the available tools in supporting different levels of 
students’ work with dependencies (e.g., modelling, 
exploration), (2) the students’ activity to ‘translate’ the 
modelled functional relations in symbolic language 
and to conceptualise the connections between dif-
ferent representations of function, and (3) critical 
aspects of the students’ difficulties with functions (i.e., 
covariation, symbolism). Below, I present briefly the 
three parts of the theoretical work that underlie these 
issues and constitute the approach. 

Levels of students’ work with dependencies. Lagrange 
and Artigue (2009) developed a conceptual frame-
work for functions and algebra in order to address 
students’ work with dependencies. Taking an epis-
temological point of view, they situated students’ ac-
tivities for approaching functions at three levels: (1) 
activity in a physical system (e.g., dynamic geometry, 
a simulation): students can experience dependencies 
sensually in a physical system through observation 
of mutual variations of objects; (2) activity on magni-
tudes: the idea of function is linked to dependencies 
between magnitudes which is expected to support stu-
dents’ consideration of functions as models of physical 
dependencies; (3) activity on mathematical functions: 
students work with mathematical functions of one 
real variable, with formulas, graphs, tables and other 
possible algebraic representations. 

Situated abstraction. Noss and Hoyles (1996) intro-
duced the notion of situated abstraction to address 
abstraction within computational media as a meaning 
generation process in which mathematical meanings 
are expressed as invariant relationships, but yet re-
main tied up within the conceptual web of resourc-
es provided by the available computational tool. In 
this perspective, a ‘situated abstraction’ approach 
to students’ conceptualisation of function within a 
particular computer-based setting involves meaning 
generation evident in the concretion of generalized 
relationships by students through the use of the avail-
able tools and structures. 

Function as co-variation and the role of symbolism. The 
essence of a co-variation view of function is related to 
the understanding of the manner in which dependent 
and independent variables change as well as the co-

ordination between these changes (Thompson, 1994). 
However, this dynamic conception of simultaneously 
variation between magnitudes is rather difficult for 
the students especially when mathematical symbol-
ism is involved. Research has been showing rather 
conclusively that the idea of independent variable, 
the algebraic expression of functions and its connec-
tion to other representations constitute obstacles for 
many students even for those beginning to study more 
advanced mathematics (Kieran, 2007). 

In order to concretize the approach, I consider 
here two computational systems, both dealing with 
functions through innovative representations and 
functionalities, but different in many other aspects. 
One is eXpresser, a microworld designed to support 
11–14 year-old students in their reasoning and prob-
lem-solving of generalisation tasks (Noss et al., 2009). 
It provides an ‘algebraic’ language, which involves the 
use of numbers and variables, with the aim to sup-
port students to construct relationships between pat-
terns. The other system is Casyopée (Lagrange, 2010). 
It offers a dynamic geometry window incorporating 
representations of measures and of their covariation 
connected to a symbolic environment designed to 
support students’ work on mathematical functions. 
Both systems offer opportunities for students to un-
derstand key actions in the process of modelling a 
dependency into a functional relation. However, eX-
presser uses non-standard ‘symbolic’ representations 
while Casyopée’s symbolic forms are consistent with 
current notations at secondary level. Next, I adopt 
the approach formalising functional dependencies 
to analyse data of eXpresser’s and Casyopée’s use in 
two respective studies so as to make sense of their 
potentialities for functional meaning making. 

FUNCTIONAL RELATIONS IN 
FIGURAL PATTERN TASKS 

eXpresser. The microworld affords the creation of co-
loured patterns in the construction area (Figure 1) by 
repeating a building block of several tiles (‘unit of re-
peat’). The students can select tiles of different colours 
to construct the unit of repeat and then to define a pat-
tern by specifying the number of repetitions and the 
appropriate number of coloured tiles in its property 
window (e.g., Figure 4). The number of coloured tiles 
can be represented iconically through expressions 
involving numbers that appear tied in a grey frame 
and ‘unlocked numbers’ – i.e. variables – and appear 
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tied in a pink frame. A variable can be defined through 
a pop-up menu by ‘unlocking’ a particular number 
corresponding to an attribute of a construction (e.g., 
the number of red tiles, the number of repetitions) and 
provides a representation of an independent variable 
and its current value. Variables can be copied, deleted 
or used in operations (e.g., addition). Thus, through 
the use of variables, students can create relationships 
between two patterns of different colours based on 
dependencies (e.g., between the numbers of tiles of 
different colours). A pattern is shown dynamically 
(i.e., animated) by pressing the button Play (Figure 1). 
Then, the microworld picks random values for every 
variable and the model is shown dynamically in the 
construction area. Thus, students have the opportu-
nity to see how their construction would look if the 
values of the independent variables of their current 
construction had different values.

It is important to mention that a model is always 
coloured only if the same independent variable has 
been used to build appropriate general expressions 
representing the total number of tiles for each one of 
the patterns used for the construction of the model. In 
different cases, the unfolded model/pattern appears 
to be distorted (‘messed-up’) and it is not coloured 
(e.g., see Figure 4b, c). Another feature of eXpresser 
is that of ‘General Model’ window (Figure 1): when 
the students animate a pattern this window shows 
different instances of the construction for different 
values of the various parameters in relation to the 
values assigned by the system in the representation 
appearing in the construction area. In order to col-
our their pattern in the ‘General Model’, the students 
have to build a general expression (i.e., the Model Rule, 
Figure 1) that always gives the total number of all tiles 
in the model (i.e., not just any pattern).  

The experiment. In the study with eXpresser (Zoupa, 
2013), three case study groups of 13-year-old students 
(6 sessions for each group) were asked to construct 
and validate patterns through general expressions 
that underpin them. Since the students had not had 
any experience with patterns in their school lessons, 
the aim was to investigate if and how the microworld 
could help them to understand dependencies and ex-
press them using the system’s structures and symbolic 
language. The data consisted of screen capture soft-
ware files, files of students’ work and video record-
ings. The data was analysed under a data grounded 
approach. Through the analysis of students’ interac-
tion with the available tools, episodes were selected 
to highlight the evolution of meaning generation for 
function.

After an initial familiarization with eXpresser, the 
students were engaged in constructing the patterns 
shown in Figure 2 and Figure 3 consecutively. They 
had to allocate the correct number of tiles of each col-
our that were needed for the construction and then 
to create appropriate general relationships by using 
the same independent variable in the task. Next, I de-
scribe one group of students’ work in four phases and 
corresponding steps that took place in the second and 
the third session.  

Phase 1: Exploring the role of 
numbers and variables
Task: Construction of the pattern in Figure 2. (a) 
Constructing two building blocks (patterns): the first 
one constituted by the first column (3 red tiles) and 
the second one constituted by the second and the third 
column (6 tiles: 5 red and 1 yellow). (b) Considering the 
first pattern as specific. (c) Constructing the second 
pattern specifically for three repetitions (Fig 4a). (d) 
Unlocking the number of repetitions in the second 
pattern but keeping constant the numbers of red and 
yellow tiles. Feedback showing the construction was 
not coloured for different numbers of repetition in 
the construction area (Figure 4b). (e) Unlocking the 
number of red and yellow tiles without linking these 
(new) variables to the variable defined in the previous 

Figure 1: A pattern in eXpresser

Figure 2 Figure 3
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step. Feedback showing that the construction was not 
coloured in the construction area (Figure 4c).  

Phase 2: Building functional 
expressions within a pattern
Task: Construction of the pattern in Figure 2. (a) 
Recognising the number of repetitions of the second 
pattern as an independent variable in the task. (b) 
Using this variable to express the number or red and 
yellow tiles (i.e., the number of red tiles is the same as 
the number of repetitions of the second pattern, while 
the number of yellow tiles is five times the number 
of repetitions of the second pattern). Inserting these 
expressions in the properties window through the 
choice ‘replace’ (Figure 4d). (c) Animating the model 
dynamically in the construction area. Feedback con-
firming the correct animation of it (Figure 4d). 

Phase 3: Building functional 
expressions between patterns
Task: Construction of the pattern in Figure 3. (a) 
Constructing three building blocks (patterns):  the 
first one constituted by the one red tile (i.e. the red tile 
on the left part of the first house), the second one for 
the roof with 5 red tiles and the third one for the green 
square with 9 green tiles (Figure 5a). (b) Considering 
the first pattern as specific and constructing the sec-
ond and the third ones as general by unlocking the 
numbers of repetitions and thus creating one inde-
pendent variable in each one of them. (c) Running 
the models dynamically. Feedback showing that the 
construction was ‘messed-up’ due to fact that the two 
variables representing the number of repetitions in 
each pattern changed according to different (random-
ly chosen) values (Figure 5b). Recognising that the 

two variables had to take the same value. (d) Linking 
the two patterns by replacing the one independent 
variable with the other through dragging and the 
choice ‘replace’. (e) Building appropriate functional 
expressions for the numbers of green and red tiles 
in the two patterns.

Phase 4: Expressing the general rule of 
the total number of tiles in the model
Task: Construction of the pattern in Figure 3. (a) 
Constructing a general expression giving the total 
number of all tiles (i.e. not just any pattern) in the 
Model Rule window through the use of the only in-
dependent variable (Figure 6 shows an immediate 
instantiation of this expression for three repetitions 
of the model). (b) Expressing the general rule through 
traditional algebraic notation with paper-and-pencil 
(i.e., 5x+9x+1). 

As regards the levels of dependencies, the physical sys-
tem in eXpresser involves the dynamic reproduction 
of patterns. At the level of magnitudes, numbers of 
tiles and numbers of repetitions are involved. These 
magnitudes are concretized in the system as numbers 
in grey frames and variables in pink frames showing 
current instances of their values. I note that the dy-
namic change of the values (assigned automatically 
at random) to one variable is shown inside the pink 
frame of a variable when the corresponding pattern 
unfolds dynamically in the construction area. Thus, 
measures are ‘encapsulated’ within the correspond-
ing magnitudes. As regards the notion of function, 
the independent variable is the number of repetitions 
of a building block created by the students while the 
dependent variable is the total number of tiles (of each 
colour). In this linear function, the input is the num-
ber of repetitions and the output the animated model. 
In all phases, while exploring the role of numbers and 
variables and experimenting with building different 
symbolic forms of general relations, the students con-
sidered together the physical system and the depend-
ency between magnitudes. Thus, they worked with 
dependency and co-variation together at the level of 

Figure 4: The properties window and the visual outcome (second 

pattern)

Figure 5bFigure 5a

Figure 6
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magnitudes and at the level of magnitudes represent-
ed through variables. 

From a situated abstraction point of view, the domains 
of students’ meaning generation here involve: (a) mak-
ing sense of the structure of the requested models 
in terms of specific and general patterns, (b) concep-
tualising the construction of appropriate building 
blocks, (c) identifying the independent and the de-
pendent variables, and (d) conceptualising the formu-
lation of functional relations between these variables. 
Building appropriate functional relations indicated 
the students’ transition to the world of functions as it 
is embedded in the structures of the system. 

As regards students’ conceptualisation of covaria-
tion and symbolism, the role of feedback was critical. 
eXpresser provided a dynamic representation of co-
variation: animating the pattern had the effect of the 
construction dynamically changing as the values of 
the respective parameters changed automatically. In 
this process, ‘messing-up’ and ‘correct colouring’ chal-
lenged students to create and undertake changes in 
the symbolic form of the corresponding relations and 
at the same time to progress in their conceptualisation 
of the involved covariations as functions.

LINKING GEOMETRICAL 
DEPENDENCIES AND FUNCTIONS 

Casyopée deals with various representations of func-
tions consistent with school mathematics and cur-
riculum. It provides a symbolic window with three 
registers: numeric, graphic and symbolic (Figure 8). 
Casyopée also includes a dynamic geometry window 
linked to the symbolic window. The geometric window 
allows defining independent magnitudes (related to 
free points) and also dependent ones (i.e., through 
the use of the “geometric calculation” functionality, 
see Figure 7 on the right) involving distances (e.g., 
lengths), x-coordinates or y-coordinates. The two win-
dows are interconnected: objects defined in one win-
dow can be used in the other. Couples of magnitudes 
that are in functional dependency can be exported to 
the symbolic window and the system automatically 
can define a function. This function can be further 
treated by the students with all the available tools. 
This functionality –called “automatic modelling”– is 
expected to help students in modelling dependencies.

The experiment. In the study with Casyopée 
(Kafetzopoulos, 2014), three case study groups of 17 
year-old students (six sessions for each group) were 
engaged in solving optimization problems through 
modelling geometrical dependencies. The aim of the 
study was to investigate how a computational medium 
linking CAS and dynamic geometry could help stu-
dents make sense of function as covariation through: 
(a) conceptualising dependencies in geometrical sit-
uations and (b) modelling them as functions in order 
to solve the given tasks. Here I will report on students’ 
work in the following task: “The owner of a rectan-
gular estate ABCD (AB=10m, AD=8m) wants to design 
two gardens and two buildings inside it. In the giv-
en geometrical figure (Figure 7), we consider A(0;8), 
B(10;8), C(10;0), D(0;0). M is a point on AR (AR=8m) and 
P a point on AD so as AMEP to be a square. The figure 
EGCF is a rectangle. The gardens will cover the shaded 
part of the figure and the two buildings the rest of it. 
By moving M between A and R, different shapes of the 
gardens are designed. (1) Is there a position of M in 
AR for which the two gardens have the same area? (2) 
Is there a position of M in which the two gardens will 
have the same area as the two buildings? Justify by: (a) 
exploring the dynamic figure, (b) using the software 
to create functions modeling these questions, and (c) 
using the available tools to find the solutions”. Since 
the main focus of the task was on students’ concep-
tualization of function as covariation, the figure was 
already prepared for them. The students had to: (a) 
make sense of M as the only free point in the figure, (b) 
recognize AM as an independent variable and use it to 
define functions of areas, (c) work with different rep-
resentations of functions. Next, I describe the work of 
one group of students in four phases and correspond-
ing steps that took place in the last two sessions. The 

Figure 7
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data and method of analysis were similar to the ones 
described in the experiment with eXpresser.

Phase 1: Exploring dependencies in the geometrical 
model. (a) Experimenting with the dynamic aspects 
of the figure by dragging points. (b) Recognising 
M as the only free point in the model. (b) Defining 
measures for different magnitudes (e.g., the areas 
of AMEP and EGCF and their sum) as geometrical 
calculations (Figure 7, right). (c) Observing covar-
iation at a perceptual level (i.e. how dragging M 
changes the shapes of the shaded parts) and numer-
ically (i.e. through the changes in the values of the 
corresponding magnitudes). Phase 2: Identifying 
independent and dependent variables. (a) Choosing 
an independent variable after recognizing depen-
dencies between co-varying magnitudes (e.g., AM 
for the area of AMEP). (b) Using the same indepen-
dent variable for the area of EGCF after checking 
that dragging M changes the area EGCF. (c) Choosing 
AM as an independent variable for the sum of areas 
(i.e. AMEP+EGCF, MBGE+PEFD). Phase 3: Working 
with algebraic functions through automatic mod-
elling. (a) Exporting functions to obtain formulas 
for four functions (two for question 1 and two for 
question 2, Figure 8, left) through automatic mod-
eling. (b) Working further on the algebraic func-
tions to solve the problems, i.e. making equal two 
functions and solve. Identifying the position of M 
in question 1 (AM=40/9) and question 2 (AM=4 or 5). 
Phase 4: Linking different representations of algebraic 
functions. (a) Interpreting the answers to questions 
1 and 2 given through the equality of functions by 
coordinating different representations, e.g., link-
ing table, geometry and graphics, focusing on the 
common point of the two graphs, changing the step 
in the corresponding tables for more precise values 
(Figure 9). (b) Conceptualizing the addition of two 

already defined functions as a new function (e.g., 
AM→AM∙ME+EG∙GC).  

As regards the levels of dependencies, the physical 
system in Casyopée is the dynamic geometry win-
dow which provides the context for modelling the 
problem in the geometrical setting and opportu-
nities for creating and animating geometrical ob-
jects. At the level of magnitudes, the students can 
use the geometric calculation functionality to con-
struct magnitudes in the form of symbolic objects 
that can be dependent to the geometrical situation 
(e.g., expressions of areas). These magnitudes have a 
dual status in the system since they are concretized 
symbolically as parameters (c0, c1, etc.) and numer-
ically as measures whose values can change dynam-
ically (e.g., through dynamic manipulation of the 
dependent geometrical objects). Thus, the students 
can be engaged in exploring covariation of pairs 
of magnitudes, modeling functional dependencies 
algebraically (through automatic modeling) and 
working further with mathematical functions. Thus, 
the combined use of geometric calculation and auto-
matic modeling supports students’ transition from 
the world of measures to the world of mathemati-
cal functions through work with magnitudes. This 
transition is evident in students’ activities described 
above: work in the physical system (phase 1a) was 
followed by work with magnitudes (e.g., definition of 
geometric calculations for areas) and observation of 
covariations (phases 1b, 1c), and then further extend-
ed to include identification of independent variable 
(phase 2), definition of functions through automatic 
modeling (phase 3) and problem solving by linking 
different representations of functions (phase 4). 

From a situated abstraction perspective, the layers 
of meanings for function here involve: (a) making 

Figure 9
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sense of the dependency between M and the areas in-
fluenced by its move, (b) conceptualizing the creation 
of relevant geometric calculations, (c) conceptualiz-
ing the idea of independent variable representing a 
geometrical object and using it to express functional 
dependencies through automatic modelling, (d)  ab-
stracting these dependencies at the algebraic level 
and use the corresponding functions to solve the re-
quested problems. 

As regards the symbolic aspect of function, the formu-
las taken in Casyopée seemed to have legitimized the 
use of all the available representations of functions by 
the students. Although the students were able to ex-
plain the provided formulas of functions, they chose 
to work with these formulas at an operational level 
for solving the given tasks (i.e. through the equality of 
functions). In doing so, they were engaged in linking 
different representations of functions.  

CONCLUSION

As regards the levels of dependencies, the analysis re-
vealed that eXpresser and Casyopée favour students’ 
work with dependencies at the level of magnitudes 
as a critical part of their passage to formalisation. 
In particular, the analysis indicated the importance 
of working with magnitudes as a bridge between 
sensual experience of dependencies and symbol-
ic expression of functional relations. In eXpress-
er, dependencies between magnitudes and visual 
representation of their covariation (i.e., through 
dynamic reproduction of patterns for random val-
ues) seemed to support the students’ articulation 
of general relations and favour a structural under-
standing of patterns. Dependencies of this kind in 
Casyopée seemed to facilitate the students’ transition 
from dynamic geometry and the world of measures 
to the world of mathematical functions. The anal-
ysis of the students’ activity according to situated 
abstraction helped us to capture the progression of 
their conceptualization of functional dependencies 
taking into account the role of particular function-
alities (e.g., automatic modelling) and feedback (e.g., 
messing-up). Experiencing covariation through dy-
namic interplay between symbolic and non-symbolic 
representations of functions helped the students to 
make sense of the role of independent variable and 
symbolism in expressing functional relations and 
connecting the formalism embedded in the tools to 
the formalism of school mathematics. This is an in-

dication that the two systems can be used to address 
well-known and researched difficulties of students 
with algebra and functions (e.g., recognising inde-
pendent variable, articulating functional relations 
and expressing them symbolically) and promote a 
meaningful transition to algebraic thinking. Thus, 
the potential of the two systems can be recognised in 
the direction of enriching representations of func-
tions with new non-symbolic and symbolic ones 
and of enlarging students’ possibilities to construct 
functional meaning by making connections between 
these representations.  
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Our research aims at some aspects of the teachers’ 
TPACK, namely their ability to identify specific skills 
needed for work in GeoGebra and to develop these skills 
in their pupils. Future mathematics teachers were ac-
quainted with specific skills via selected tasks to be 
solved in GeoGebra. The data consist of the pre-service 
teachers’ written solutions and proposals for teaching 
with GeoGebra and transcripts of discussions. The data 
were analysed in a qualitative way. Explicit work with 
the skills is needed for pre-service teachers to realise 
their importance for pupils’ work in GeoGebra. While 
their technology knowledge was good, their proposals 
for teaching were mostly static and provided pupils with 
step by step directions. Implications for educating future 
teachers to teach effectively with GeoGebra are given.

Keywords: Dynamic geometry, TPACK, pre-service 

teachers, GeoGebra skills.

INTRODUCTION

In our work as educators of pre-service teachers, we 
strive to find ways of developing their knowledge and 
skills so that they use ICT tools in their future prac-
tice productively. The programme for future teachers 
naturally includes mathematical courses (developing 
their content knowledge), a technology course (devel-
oping their technology knowledge or TK) and a gen-
eral didactics course (developing their pedagogical 
knowledge). All these strands should meet in a mathe-
matics education course. In this article, we will report 
on a part of a design experiment (Cobb et al., 2003) 
aimed at designing a part of a regular mathematics 
education course focused on ICT. To meet the time con-
straint within the course, we decided to explore the 
merits and limitations of one ICT tool only. We chose 

GeoGebra (or GG) as it mutually connects different 
representations of mathematical concepts (geometric, 
algebraic, tabular, graphic) and can assist pre-service 
teachers during all their mathematical learning. Two 
areas of mathematics were selected for investigation; 
geometry (synthetic and analytic) and, thanks to GG’s 
multi-representational nature, functions. 

THEORETICAL FRAMEWORK

To work with ICT tools in mathematics, differences 
between computer and theoretical mathematics must 
be observed, i.e., issues caused by the representation 
of mathematical concepts, operations, objects, etc. on 
the computer screen. For dynamic geometry software, 
Laborde (1998) points out a necessity to understand 
differences between theoretical-geometric and com-
puter-graphic worlds (e.g., the necessity to construct 
such figures whose properties are preserved when 
the objects are moved – i.e., robust constructions). 
Robová (2013) presents what she calls Specific Skills for 
work in GG. For the purpose of this article, we chose 
only those pertinent to functions: I. making functions 
visible (on the screen), II. changing visual appearance 
of graphs, III. interpreting points on objects, IV. inter-
preting numerical results, V. using dynamic features 
of GG, VI.  using graphic styles. Skills I. to IV. are part 
of technology content knowledge (TCK) while V. is 
between TCK and technology pedagogical knowledge 
(TPK) and VI. is part of TPK . 

We suggest that the teachers’ awareness of the Specific 
Skills and their ability to design teaching which takes 
them into account belong to their technological ped-
agogical content knowledge (or TPACK). 

mailto:jarmila.robova%40mff.cuni.cz?subject=
mailto:nada.vondrova%40pedf.cuni.cz?subject=
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[TPACK is] the basis of good teaching with tech-
nology and requires an understanding of the 
representation of concepts using technologies; 
pedagogical techniques that use technologies in 
constructive ways to teach content; knowledge 
of what makes concepts difficult or easy to learn 
and how technology can help redress some of 
the problems that students face; knowledge of 
students’ prior knowledge and theories of epis-
temology; and knowledge of how technologies 
can be used to build on existing knowledge and 
to develop new epistemologies or strengthen old 
ones. (Mishra & Koehler, 2006, p. 1029)

There is a growing body of literature on developing 
TPACK. For example, Balgalmis, Shafer and Cakiroglu 
(2013) claim that “focusing on the mathematical con-
cept more than technology and using technology 
when it is really necessary were the basic criteria for 
effective technology based lesson” (p. 2534). Bowers 
and Stephens (2011) suggest that rather than elaborate 
specific types of knowledge for TPACK, the best we 
can do is to “engage prospective teachers in technol-
ogy-enhanced mathematical explorations with the 
explicit goal of discussing the ways in which technol-
ogy enabled them to describe relationships among 
objects on the screen that could not have been devel-
oped without the tools employed” (p. 291). They de-
scribe a course on the Geometer’s Sketchpad; they let 
pre-service teachers explore the software by solving 
problems and then they discussed the model of TPACK 
with them. Sfard’s (2008) commognitive perspective of 
learning is of particular importance here: ‘‘Thinking 
is an individualized version of (interpersonal) com-
municating.” (p. 81). Thus, “teaching can be seen as the 
practice of orchestrating mathematical discourses” 
and “learning can be seen as the ways in which stu-
dents engage in these discourses” (Bowers & Stephens, 
2011, p. 287).

Abbitt (2011) summarises performance-based TPACK 
measures which are based on the idea that “by exam-
ining the design and planning process, it is possible 
to assess the knowledge of a preservice teacher in the 
TPACK domains” (p. 292). To achieve this goal, Harris, 
Grandgenett and Hofer (2010) developed Technology 
Integration Assessment Rubric for analysing les-
son plans. The rubric is to be used with pre-service 
teachers during a teacher preparation programme 
and thus it is specifically useful for us. According to 
the rubric, the plan is assigned 1 to 4 points in four 

measures: ‘Curriculum Goals & Technologies’ (curric-
ulum-based technology use), ‘Instructional Strategies 
& Technologies’ (using technology in teaching/learn-
ing), ‘Technology Selection(s)’ (compatibility with 
curriculum goals and instructional strategies), ‘Fit’ 
(content, pedagogy and technology together). 

Bowers and Stephens (2011) describe a rubric for 
assessing the quality of pre-service teachers’ teach-
ing plans made after 18 lessons of work with the 
Geometer’s Sketchpad. They determined for each 
plan: 

the degree to which the student demonstrated TK, 
TCK, TPK, or TPACK with the assumption that 
these types of knowledge are additive. […] If a stu-
dent demonstrated a good use of the technology 
to examine a particular content area but did not 
include any particular presentation affordances, 
such as use of colour or scripting tools, then he 
or she was characterized as having knowledge at 
the level of TCK, but not TPACK. (p. 293) 

Both rubrics, slightly modified, were used in our re-
search. Finally, we made use of a Tool Competence 
Model for symbolic calculators suggested by Weigand 
(2011) which specifically deals with functions: Static 
Mode (producing static representations), Dynamic 
Mode (creating dynamic representations), Multiple 
Mode (using the ICT tool as a multiple representa-
tional tool). 

METHODOLOGY

The research questions were the following: (1) Are 
pre-service teachers with good technology knowledge 
aware of the Specific Skills? (2) How do pre-service 
teachers connect their content knowledge, pedagog-
ical content knowledge and technology knowledge to 
prepare proposals for teaching with the help of GG?

By good technology knowledge, we mean that pre-ser-
vice teachers were able to work in GG, they could ori-
entate themselves in its workspace, they knew where 
to find required tools and how to use them. In view 
with literature, rather than presenting them with ide-
as of effective use of GG, we prepared worksheets with 
tasks in which they had to use Specific Skills which 
emerge from the differences between computer and 
theoretical mathematics. It was hoped that by con-
fronting pre-service teachers with such tasks, the 
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Specific Skills will be brought to their attention and 
they will realise their importance for their future 
pupils, too. Two worksheets concerned geometry and 
two concerned functions. The first set of worksheets 
on each topic comprised less demanding tasks, while 
the second set put the pre-service teachers’ in pupils’ 
role (the tasks were mathematically more demanding). 
There was a space after each task in which any skills 
needed for its solution in GG should be written.

The first (pilot) stage of the design experiment took 
place in spring 2013 (see Robová & Vondrová, 2014) 
with 19 future lower and upper secondary mathemat-
ics teachers, within their second mathematics educa-
tion course. One of the results was that pre-service 
teachers should meet more tasks in which technology 
fails as they are “forced” to reason mathematically 
then. If the task leads them towards using technol-
ogy (the solution via software seems to be obvious), 
they might forget to check the appropriateness of the 
solution by mathematical means. Thus, we modified 
worksheets accordingly. It also transpired that we un-
derestimated the importance of discussing the emerg-
ing issues. Thus, two discussion periods were to be 
organised in the second stage in order to make the 
Specific Skills more visible for pre-service teachers 
with the hope that they will use them in their teach-
ing proposals. Finally, the quality of the pre-service 
teachers’ proposals for teaching was not very high. 
Bowers and Stephens’ study (2011) suggests that such 
proposals should be subject to class discussion and 
the basis for bringing out pre-service teachers’ own 
metacognitive processes (e.g., by asking them to speak 
about the development of the proposals). Thus, a writ-
ten peer review was to be included in the next stage.

Main study
Twenty three future lower and upper secondary 
mathematics teachers participated in the study. It 
took place during a mathematics education course 
taught by the second author (Table 1). In the two dis-
cussions, the course teacher asked general questions 

first “what knowledge was needed in order to solve 
the tasks” and then chose questions on the basis of the 
pre-service teachers’ reactions. The audiotaped dis-
cussions focused on specific skills and on merits and 
drawbacks of GG. The pre-service teachers’ written 
work was collected. Seven pre-service teachers’ work 
on the screen was captured by Camtasia and saved as 
a videorecording.

After completing 4 worksheets, the students were 
to prepare a Project, that is, a proposal for teaching 
with the support of GG. The project was to include 
tasks which would lead to pupils’ autonomous inves-
tigation of a topic in GG, solutions to the tasks, GG 
figures, the goal(s) of activities, pupils’ prior math-
ematics and technology knowledge, their expected 
problems and a suggestion of their remedy, etc. The 
pre-service teachers submitted their Projects via a 
Moodle module Workshop. Afterwards, they were 
randomly assigned their peers’ Projects to evaluate. 

This paper only focuses on the part of the study deal-
ing with functions. Worksheet 1 on functions com-
prised tasks on determining the domain and range 
of functions, their monotony, zero points and x and 
y-intercepts. They were quite easy to solve as the aim 
was to make the pre-service teachers aware of the 
Specific Skills without having to concentrate on the 
mathematical aspect too much. Worksheet 2 tasks also 
referred to the Specific Skills but they were mathemat-
ically more demanding. Examples of tasks are given 
in (Robová & Vondrová, 2014).  

Analysis of data
In the analysis of the solutions to worksheet tasks, it 
was followed (research question 1): the pre-service 
teachers’ TK, content knowledge, the Specific Skills. 
When in doubt, Camtasia recordings were used to get 
more information. For the analysis of the pre-service 
teachers’ Projects (research question 2), the modified 
Harris, Grandgenett and Hofer’s (2010) and Bowers 
and Stephens’ (2011) rubrics were used as well as 

Session 1
4 lessons

Session 2
4 lessons

Session 3
4 lessons

Home study Home study

Individual 
work: 
Geometry 
worksheet 1, 2

Individual work: Geometry 
worksh. 2
Discussion 1 
Individual work: Function 
worksheet 1

Individual work: Function 
worksh. 2
Discussion 2 
Assigning project propos-
als

Individual work: 
Project proposals ei-
ther on geometry, or 
function

Individual 
work: Peer re-
view of project 
proposals

Table 1: Organisation of the study
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Weigand’s Tool Competence Model.  As the tasks were 
to lead to pupils’ autonomous work, we also used the 
measure of hypothetical pupils’ role in gaining new 
knowledge (from A1 – pupils are given step by step 
instructions, to A4 – it is up to pupils to decide how 
they will solve the tasks). The two authors coded the 
projects independently and discussed their coding 
until 100% agreement was reached. 

Two of Harris, Grandgenett and Hofer’s (2010) meas-
ures were not used in our coding: ‘Curriculum Goals 
& Technologies’ (as all the Projects were aligned with 
the curriculum) and ‘Technology Selection(s)’ (GG was 
prescribed). Instead, we used ‘Types of Goals’ measure 
which concern explicitly stated goals: Content Goals 
(related to specific mathematical topics), Skill Goals 
(related to the development of some skill), General 
Competence Goals (outside of mathematics). The two 
remaining measures were used: ‘Instructional strate-
gies and technologies’ was coded from I1 (technology 
use does not support instructional strategies) to I4 
(optimally supports); ‘Fit’ was coded from F1 (content, 
instructional strategies and technology do not fit to-
gether with the instructional plan) to F4 (fit together 
strongly).  

While Bowers and Stephens’ (2011) pre-service teach-
ers’ projects consisted of one sketch, our pre-service 
teachers proposed several tasks for more than one 
lesson. Thus, we had to assess what feature prevailed 
in the Projects. Moreover, we did not fully embrace 
the authors’ assertion that the elements of TPACK are 
additive (they coded pre-service teachers’ projects 
either TK, or TCK, or TPK, or TPACK), thus introduc-
ing a kind of hierarchy which, in our opinion, is not 
in the original model of TPACK. Unfortunately, the 
authors do not explain what kinds of projects were 
coded as TPK and we had to use our own modification. 
Instead of TPK and TPACK codes, we used TPACK1 
and TPACK2. The former means that the pre-service 
teacher demonstrates an understanding of using 
technology for more informative, quick and effective 
teaching of mathematics. Tasks proposed make under-
standing easier but do not lead to argumentation. The 
latter means that the pre-service teacher realises the 
potential of the software for developing mathematical 
reasoning up to the level of argumentation and proof; 
it goes beyond what can be observed on the screen. 
This is, we believe, Bowers and Stephens’ code TPACK.

Each Project was peer reviewed in writing by 1 to 3 
pre-service teachers. In their analysis, we followed to 
what extent they commented on the phenomena which 
we identified as important for TPACK (and used for 
the analysis of Projects): E1 – a shallow evaluation, a 
pre-service teacher does not comment on obvious de-
ficiencies or merits of the Project, his/her comments 
are general; E2 – he/she comments on some aspect 
only, such as the content; E3 – he/she comments on 
both positive and negative features, uses most meas-
ures (Tables 2 and 3); E4 – expert evaluation.

RESULTS

Research question 1 (pre-service 
teachers’ solutions to worksheet tasks)
All pre-service teachers demonstrated good TK. Some, 
though, did not connect technology and content 
knowledge sufficiently. For example, when they did 
not get a result via predefined tools in GG or when no 
direct tool is available, they did not use other tools of 
GG to solve the task but made paper calculations. On 
the other hand, in some cases TCK was evident; e.g., 
as for f: y = √3x − x3, GG does not find x-intercepts and 
some pre-service teachers used a function with the 
same zero points instead to solve the task: g: y = 3x − x3. 
In terms of pupils’ required skills, the pre-service 
teachers mostly recorded content knowledge, and 
some TCK (such as “to input an equation of a function”, 

“to determine intercepts”, etc.). They least commented 
on the fact that GG rounds off numbers and thus its 
numerical results must be critically evaluated (for 
irrational or periodic numbers).

In terms of the Specific Skills, nearly all participants 
demonstrated the use of skills I., III. and V. Ten of them 
failed in skill II. Input a bounded domain. The most 
problematic was skill IV. Interpret numerical results; 
seven pre-service teachers did not record 1,7320 as √3, 
thirteen left 0,33333 instead of 1/3 and sixteen did not 
recognise √2/2 in its decimal expansion (or did not use 
their mathematical knowledge to solve the task with-
out the help of GG to see the result in the exact form). 

The group discussion confirmed the above results. 
The pre-service teachers were able to solve the tasks 
and commented on many of the differences between 
computer and theoretical mathematics as they man-
ifested themselves in the tasks (e.g., the point of dis-
continuity for f: y =  x2 + x − 2

x − 1  is not depicted in the graph). 
The necessity to recognise decimal expansions of 
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common real numbers was not mentioned and when 
it was brought out by the teacher in the discussion, 
it transpired that some pre-service teachers did not 
use this skill for evaluating results GG produced for 
them, leaving them in decimal expansions. This cor-
roborates our above analysis.

Research question 2 (pre-service 
teachers’ Projects)
Table 2 shows what Specific Skills the pre-ser-
vice teachers mentioned (or not) in their Projects. 
Unsurprisingly, the skill to input the equation of the 
function was the most frequent one. However, the 
opposite relation, i.e., the fact that GG can display an 
equation of the function for a given graph (and when 
the graph is moved, the equation changes), was only 
given once and once used but not mentioned. Most 
pre-service teachers used dynamic features and noted 
a necessity to work with a slider.

Consistently with the above results, the skill to inter-
pret numerical results was only mentioned once and 
most alarmingly, in five pre-service teachers’ Projects 
the skill was needed but not demonstrated. Almost 
half of the pre-service teachers used such functions 
in their Project where this skill was not needed at all 
and we cannot say whether it was a chance or inten-
tion – they might have realised a possible problem and 
wanted their pupils to avoid it rather than confront it.

Table 3 shows that the quality of Projects varied. It 
was not our intention to rank them but to assess as 
many features as possible. But still, differences be-
tween pre-service teachers can be seen. On the one 
hand, student F3 reached very good evaluations in 
all measures, her Project was of a high quality. On 
the other hand, student M4’s project was quite poor, 
he only demonstrated TK and did not make any use 
of the potential of GG. Let us now look at individual 
measures.   

If a pre-service teacher provided some goals for their 
Projects, they were only about content, that is, what 
mathematical knowledge they want to develop. No 
competence outside of mathematics was mentioned 
nor a skill such as “to experiment”, “to make hypoth-
eses based on the observation of what is happening 
on the screen”, etc. It is quite important as skills like 
that are stressed in Czech curricular documents. 
The instructional strategy as proposed in Projects 
was mostly supported by technology. It concerned 
pupils’ individual work with the teacher helping 
them. The marks for the measure to which ‘content, 
instructional strategies and GG fit together within the 
instructional plans’ were mostly average. The same 
can be seen from the sixth column: only a minority of 
Projects included dynamic features of GG (mostly us-
ing sliders for functions – “observe what happens on 
the screen – how the graph changes – when the slider 

Specific Skills in the Projects
(I. to VI., see above)
Fi – females, Mi –males 

Explicitly stated Not stated, but 
used

Not used but 
required by the 
task 

I. Input the equation of the function F2, M1, F3, M2, F4, F5, M4, F6 M3, M5

I. Display the equation of the function for a 
graph

F3 M1

II. Input a suitable range of coordinates F1 F4

II. Input a bounded domain F2, F5, F6

II. Input multiples of pi on the axes F3 F2

III. Determine x and y intercepts F2, F4 M4

III. Determine intercept of objects via tools of 
GeoGebra

M1, F4

IV. Interpret numerical results produced by 
GeoGebra

F3 F2, M1, M2, F4, 
F6

V. Work with a parameter – slider F1, F2, F3, M2, F4, F5, F6 M3, M5

VI. Work with graphic styles of objects (in-
cluding hiding objects)

M1, F3, F6 F1, F2, M3, F4, F6

VI. Use texts and symbolic records in 
GeoGebra

F4

Table 2: Specific Skills for tasks in Projects on functions (n = 11)



Developing future mathematics teachers’ ability to identify specific skills needed for work in GeoGebra (Jarmila Robová and Naďa Vondrová)

2401

is moved”). In other words, the proposed tasks could 
be solved without the software and GG only made their 
solutions more illustrative and quicker. 

Student M4’s Project was coded as TK only, he does 
not seem to grasp the ways technology can support 
the development of mathematical knowledge. Most of 
the Projects were rated as TCK which means that the 
pre-service teachers could use GG productively for 
developing their own mathematical knowledge but 
did not concentrate on the ways tools of GeoGebra can 
support their pupils’ learning. No Project included 
tasks which would lead pupils towards the level of 
argumentation and proof. Just to compare: in Bowers 
and Stephens’ study (2011) 3 out of 21 pre-service 
teachers were coded as TPACK and 9 pre-service 
teachers as TK only. 

Even though the pre-service teachers were asked to 
devise teaching in which pupils will work autono-
mously, the Projects of about half of them were too 
instructive. They gave pupils tasks which lead them 
step by step towards the desired goal and provided 
them with explicit instructions what they should no-
tice and how to continue work. 

The pre-service teachers’ peer reviews of the Projects 
were mostly quite superficial and did not comment 
on even very obvious drawbacks. In the vast majority, 
the pre-service teachers evaluated the mathemati-
cal content only. Their comments were often general 
(“the project will contribute to pupils’ understanding”, 

“the tasks are well chosen”, “the use of GeoGebra is 
effective”). The Projects of students F3 and M2 were 
evaluated by us as the best ones in most measures. 
This was confirmed by the analysis of their reviews of 
their peers’ Projects. They wrote detailed and specific 
evaluations and commented on most of the measures 
as given in Tables 2 and 3. 

DISCUSSION AND CONCLUSIONS

As in the pilot study stage, we conclude that it is far 
from straightforward that the pre-service teachers 
will connect their technology, content and pedagog-
ical knowledge without deliberate support from the 
educator. The presented study remedied some of the 
deficiencies of the pilot study. We organised more 
discussion about the TCK and TPACK aspects and 
included a peer evaluation process. Still, the quali-
ty of the pre-service teachers’ Projects did not meet 
our expectation. A good example is the skill to inter-
pret numerical results produced by GeoGebra. The 
pre-service teachers solved many problems which 
required this skill, the skill was emphasised in the 
whole group discussions and still, some of them did 
not use this skill when it was required and many did 
not seem to realise its importance for their future pu-
pils. Some of them might not have good understanding 
of real numbers and do not see that a decimal number 
with an infinite expansion can sometimes be written 
in a precise way as a fraction or square root. More 
content knowledge is needed.

Fi – female 
Mi – male 

Types of 
goals
 

Instr. 
strate-gies 
and techn.

Fit TK, TCK, 
TPACK1 

Static Mode, 
Dynamic 
Mode

Pupils’ 
auto-no-
my

Peer 
eval.

F1 Absolute value Content I2 F2 TCK SM A1 E3, E2

F2 Goniometric functions Content I3 F3 TCK SM A1 E1, E1

M1 Power functions Content I2 F2 TCK SM A2 E1, E1

F3 Sine and cosine Content I4 F4 TPACK1 DM A3 E1

M2 Fractional linear 
function

Not given I3 F3 TPACK1 DM A3 E1, E2

M3 Quadratic function Not given I3 F3 TCK DM A3 E1, E1

F4 Quadratic function Content I2 F2 TCK SM A2 E1, E2

F5 Logarithmic function Not given I2 F1 TCK SM A3 E1, E1

M4 Transformations of 
graphs

Content I2 F2 TK SM A1 E3, E1, E1

M5 Power functions Content I3 F3 TCK DM A3 E1, E1

F6 Quadratic functions Content I2 F2 TCK SM A2 E1, E1

Table 3: Overview of measures used for analysing Projects (n = 11)
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One of the implications of our study is that a good 
choice of tasks must be accompanied by a more explic-
it discussion about the features of GG use in teaching 
(represented, e.g., by the measures in Tables 2 and 3). 
It can “guide students’ own metacognitive processes 
as they reflect on their learning and development ef-
forts” (Bowers & Stephens, 2011, p. 301). This discus-
sion, however, should be in person. In Bowers and 
Stephens’ (2011) study the worst results were reached 
by pre-service teachers who chose the completely on-
line version of the course: “This could suggest that 
these students did learn how to use the program, but 
did not engage in the discursive practices of using 
technology to probe either their own, or their fu-
ture students’ thinking in the conceptual ways that 
were discussed during in-person sessions.” (p. 294) 
Students in the blended course had better results and 
the best were reached by students in the “in person” 
course. Thus, the discussion should be organised 
during and after the work on the worksheets and af-
ter writing the Projects, commenting on the peers’ 
Projects and seeing the feedback from the peers. The 
instructions for the peer evaluation must be specific 
in order to provide pre-service teachers with more 
guidance by drawing their attention to measures from 
Tables 2 and 3. We see the peer review as an important 
part of the development of TPACK. 

Due to the number of participants, the results can-
not be generalised. The geometry part of the study 
awaits the analysis and its results together with the 
presented results will inform the next round of the 
design experiment in spring 2015. 
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Knowledge for teaching mathematics with 
technology and the search for a suitable 
viewing window to represent functions
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The usual difficulties of students regarding the choice of 
an appropriate window when using the graphing cal-
culator in the study of functions and the importance 
of the teachers’ knowledge to overcoming them, led to 
this study. The main goal was to characterize the way 
teachers address the viewing window in the classroom, 
trying to infer aspects of the Knowledge for Teaching 
Mathematics with Technology that can justify that prac-
tice. The conclusions reached point to the importance of 
a set of specific knowledge where I highlight the knowl-
edge of the students’ difficulties, the knowledge of math-
ematical content necessary to understand the impact of 
the viewing window on the graphic, and the knowledge 
of teaching strategies that address both the students’ 
difficulties and the relevant mathematical knowledge.

Keywords: Teacher knowledge, technology, functions, 

viewing window.

INTRODUCTION

Nowadays it is widely recognized the potential of tech-
nology for the teaching and learning of mathematics 
(Goos & Bennison, 2008). However, some studies point 
to difficulties on the integration of the technology, sug-
gesting that teacher’s knowledge is central in class-
room use (Doerr & Zangor, 2000; Hoyles & Lagrange, 
2010). One of these difficulties is related to the choice 
of a suitable viewing window to represent the graphic 
of a function (Cavanagh, 2006).

This study focuses on the teacher’s use of graphing 
calculators during the study of functions at 10th grade 
and intends to characterize the teacher’s practice in 
what concerns to the use of the viewing window and to 
infer from that characterization aspects of the teach-
er’s knowledge that can justify that practice.

KNOWLEDGE FOR TEACHING 
MATHEMATICS WITH TECHNOLOGY

Shulman’s work (1986) constituted a starting point 
for a whole set of investigations that have sought to 
characterize the teacher’s professional knowledge. In 
recent years many authors dedicated themselves to 
this theme, trying to clarify concepts, to propose new 
characterizations and, in some cases, to give a special 
attention to technology. A look at those characteri-
zations allows the identification of a set of domains 
that, with greater or lesser emphasis, appear to be 
consensual: Mathematics, Teaching and Learning, 
Technology, and Curriculum. These are the base 
domains of Knowledge for Teaching Mathematics 
with Technology (KTMT). Curriculum is however a 
domain that differs from the others in the sense that it 
is conceptualized in a transversal way, and therefore 
influential over all the others.

In addition to knowledge base domains, this model 
particularly values knowledge developed at the con-
fluence of more than one domain. This importance 
given to a knowledge that goes beyond a particular 
domain is somehow recognized by Hill and Ball (2009), 
which consider in their model, for instance, knowl-
edge such as Knowledge of Content and Students. 
Mishra and Koehler (2006) adopt a similar view in 
their TPACK model, considering also knowledge 
domains which consist of the mutual influence 
among other domains. But the first author who ac-
tually considers more than some influence among 
domains of knowledge, understanding this “influence” 
as a new domain of knowledge that is added to the 
initial ones, is Shulman (1986). Here I adopt a similar 
perspective. I consider two sets of knowledge, that I 
call inter-domain knowledge: the Mathematics and 
Technology Knowledge (MTK), and the Teaching and 
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Learning and Technology Knowledge (TLTK). In both 
cases the curriculum is considered to be a transver-
sal influence, always present. MTK focuses on how 
technology influences mathematics, enhancing or 
constraining certain aspects, and TLTK focuses on 
how technology affects the teaching and learning pro-
cess, enhancing or constraining certain approaches. 
One of the differences between KTMT and TPACK 
is that the inter-domains knowledge require some 
knowledge on the base domains but do not develop 
straightforward from that knowledge. However, the 
main difference between these two models is the way 
how KTMT intends to integrate in a single model the 
research developed on teachers’ knowledge and on 
the integration of technology in teachers’ practice. 
This is why MTK includes knowledge of technology’s 
mathematics fidelity, knowledge of new emphasis that 
technology puts on mathematical content, knowledge 
of new sequences of content, and representational 
fluency; and TLTK includes knowledge of new issues 
that technology requires students to deal, knowledge 
of mathematical concordance of the proposed tasks, 
and knowledge of the potential of technology to the 
teaching and learning of mathematics. Finally, the 
KTMT includes Integrated Knowledge (IK). This is a 
knowledge held by the teacher that articulates simul-
taneously the knowledge of each of the base domains 
and the two sets of inter-domain knowledge. It is a 
knowledge that develops from the interactions be-
tween all domains and is characterized by its global 
and comprehensive nature but, at the same time, by 
its particularity, in the sense that it is that knowledge 
that maximizes the specific potential of technology to 
provide better mathematics learning. It is this knowl-
edge that is the true essence of KTMT (Rocha, 2013).

DEFINING A SUITABLE VIEWING WINDOW

In the literature there are many references to issues 
related to the choice of the graphing calculator view-
ing window. Cavanagh (2006) mentions the students’ 
difficulty in understanding the impact on the graph of 
adopting different values   for each axis. Hodges and 
Kissane (1994) refer to the lack of awareness of stu-
dents regarding the impact that any change in the view-
ing window has on the observed graph. Rocha (2002) 
emphasizes the role of the teacher to minimize the 
students difficulties related to the definition of a suit-
able viewing window. This author, as well as Cavanagh 
and Mitchelmore (2003), highlights the need for the 
teacher to be aware of these difficulties. And she also 

stresses the importance of allowing the students the 
opportunity to face these difficulties in a way that al-
lows them to develop an understanding of the impact 
of the window over the graph displayed on the calcu-
lator’s screen. However, Cavanagh (2006) is cautious 
about the best moment to confront students with these 
difficulties, stating that it should not occur to soon.

According to Doerr and Zangor (2000) and Kastberg 
and Leatham (2005), teachers’ knowledge is determi-
nant in how technology is integrated in their practice, 
and in how the teachers highlight the link between 
knowledge from different sources (such as algebraic 
and graphic) and the development of critical thinking. 
And at this level, Cavanagh and Mitchelmore (2003) 
believe that teachers must do more than simply inform 
students about the limitations of the calculator and 
about how this machine can present information in a 
misleading manner. It is necessary that the teachers 
strengthen the connections between different rep-
resentations, continually drawing attention to dis-
crepancies between, for example, the expected graph 
and the one that is displayed by the graphing calculator. 
It is also essential, with regard to the aspects concern-
ing the choice of the viewing window, that the teachers 
appeal to the meaning of the values represented, so 
that they make sense for students (Rocha, 2002).

However, much of what has been done in research in 
this area is focused in telling the teachers what the 
integration of the graphing calculator should involve, 
and not on analyzing and understanding their practice 
(Kissane, 2003). And a better understanding of teach-
ers’ practice is fundamental if we want to promote 
teachers’ professional development in a relevant way.

METHODOLOGY

Given the nature of the problem under study and in 
line with the ideas advocated by Yin (2003), the study 
adopts a qualitative and interpretative methodolog-
ical approach, undertaking one teacher case study 
(in the part of the study presented here). Data were 
collected by semi-structured interviews, class obser-
vation, and documental data gathering. The teacher’s 
classes reported here were followed for one school 
year while she taught functions using the graphing 
calculator. It was performed an interview before each 
class, with the purpose of knowing the intentions of 
the teacher and the underlying reasons. This inter-
view was also used to decide which classes would be 
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observed. During the study, fourteen classes of 90 
minutes at 10th grade (age 16) were observed. After 
each of the observed classes, it was performed an in-
terview with the intention of knowing the analysis 
that the teacher did of the events. These interviews 
were based on data from the classes and discuss some 
episodes selected by the researcher. Data analysis was 
mainly descriptive and interpretive in nature, consid-
ering the problem under study. The process started 
with the identification of the episodes where the view-
ing window has been addressed, and then the KTMT 
model and the respective domains of knowledge 
(which encompasses the research results around the 
issue of the viewing window) were used to structure 
the analysis of the episodes. All interviews and ob-
served classes were audio-taped and later transcribed.

THE TASKS AND THEIR IMPLEMENTATION

Throughout the study of functions, the teacher offers 
students a wide range of tasks. In this section, I briefly 
present some of these tasks and their implementation, 
paying a special attention to the emphasis given to the 
viewing window.

In parabola’s axis
In this task, students should start by marking two 
points at opposite sides of the axis of symmetry of 
y = x2 and find the slope of the straight line that goes 
through them (Figure 1). After trying some examples, 
they should formulate a conjecture for the slope of the 
line that passes through any two points in the same 
conditions. And afterwards they must demonstrate 
the veracity of their conjecture.

The viewing window is one of the aspects considered 
by the teacher when she planned the lesson. Given 
that the experience of the students with the graphing 
calculator is still not much and that there are already 

several other aspects that they will have to face on the 
calculator (mark points on the graph, draw the line, 
calculate its slope, etc.), she decides to include infor-
mation about a suitable viewing window on the task:

Teacher: You cannot do everything at once. We 
are just starting to work with the calcu-
lator. The students aren’t used to it and 
on this task they already have to be able 
to do several things with the machine. 
We have to focus. And in this task the 
focus is not on the window. So I think 
it is better to give the window informa-
tion. This way you avoid wasting time. 
(pre-lesson 2)

Still, in class the teacher values the importance of the 
viewing window. She takes the opportunity to intro-
duce the expression ‘viewing window’ and to point to 
students two different ways to represent it:

Teacher:  To make your job easier, I give you 
the viewing window. (…) But what is 
the viewing window?... When I draw a 
graph, it has no reading if I don’t include 
the scale. I have always insisted on this. 
A value on the x-axis and a value on the 
y-axis… for us to realize the scale. (...) 
When I’m looking at a graph on a calcu-
lator (...), I see it in a particular window. 
We know that the graph will continue. 
In this case we know the shape of the 
graph outside this window. In some 
other cases we don’t know. Now, this 
window has x ranging from -10 to 10 and 
y ranging from -6.65 to 6.67. So, rather 
than include the scale on the graph, or 
together with that, I can write it in two 
ways: [-10, 10] × [-6.65, 6.67] or x ∈ [-10, 
10] and y ∈ [-6.65, 6.67]. (class 2)

The box
The goal of this task is to find the length of the side 
of the square that should be cut out of a cardboard 
of 1.2 m × 80 cm, to build a box with maximum vol-
ume (Figure 2). Working in groups, the students 
should analyze the problem and come to the con-
clusion that the volume of the box will be given by 
V(x) = 4x3 – 4x2 + 0.96x. Afterwards they are expected 
to use the graphing calculator to draw the graph of 
the function and find the value of x that maximizes V.Figure 1: In parabola’s
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This is a task where finding an acceptable viewing 
window requires some work. And the teacher seeks 
to support her students, trying to help them making 
sense of the values to consider:

Teacher: So let’s change the window to get a better 
view. (...) Let’s think a little bit further. 
What values can x take?

Student:  (…) Between 0 and 1.
Teacher:  No. What’s the size of the cardboard? 

This is a cardboard.
Student:  80.
Teacher:  80. How far can you cut? You cut at one 

side and at the other side. How much can 
you cut?

Student:  Ah! 40.
Teacher:  Ok, it can change between 0 and 40. So 

the x can go from 0 up to… instead of 1 I 
can choose?...

Student:  0.4.
Teacher:  0.4. (...) Let’s have a look. Notice I already 

have the function in the part that inter-
ests me. (...) Here it is so low, so low. So 
what can I do? I can put here a negative 
value and cut a little bit here (points to 
the top of the screen) (...) So, let’s go, win-
dow... You’re starting at 0, I’ll put -0.5, 
right? (...) yMin -0.5. And what about 
yMax? You have 1. 1 is up there, so it has 
to be a smaller value. What value do you 
want to try? (...) Try it! (class 7)

But the teacher has also in mind that the calculator 
provides several ways to change the viewing window. 
Thus, throughout the lesson she points to her students 
different possibilities. And, by the end of the lesson, 
when she addresses the problem with the whole class, 
she begins by discussing suitable values for x and then 
she uses successive zoom box until she gets a suitable 
viewing window:

Teacher:  Well, most people did this and got a 
graphic like this. (...) And now we can’t 

forget that we are in the context of a 
problem. (...) This means that I could 
adjust the calculator window according 
to the values involved on the problem. 
And one of the possibilities (...) was to 
go to the window settings and put 0 for 
xMin, or a little bit less, and for xMax… 
how much?

Student:  0.4.
Teacher:  0.4. Ok. If I did this, what happened? 

Then I see almost nothing, but I can 
notice that the curve is here, but it’s so 
close to the x-axis that is not possible to 
see. Now I have two choices. I can try to 
estimate the values assumed by y or I 
can use (...) the zoom box. Because what 
I want is to get a better view in this area 
here, around here. (class 7)

But it is not only the diversity of forms available to 
change the viewing window and its explanation to 
the students that are valued by the teacher. More than 
knowing the commands of the calculator, the teacher 
wants the students to understand what was done and 
why it was done, so that in future they are able to deal 
with a similar situation by themselves. In this sense, 
the teacher addresses the search for a good viewing 
window as a process. The viewing window is succes-
sively changed taking into account the problem and 
using the features provided by the calculator. And 
this is a conscious option of the teacher:

Teacher:  I think that if I just do it right, at the next 
time they are going to face difficulties 
again. Don´t you think?

Researcher: So, it’s a way of showing them the 
process. Is that so?

Teacher:  It is a way. (...) There may be situations 
where I realize what the optimum 
window is, but if I don’t, I need to have 
knowledge of some ways to look for 
it. And that was what I tried to do. (...) 
Because if not, if I go there and just do it 
right, they don’t even realize that there 
is some difficulty. They fail to do it, but 
that’s the right window and that’s it. 
(post-class 7)

Folding the corner of the sheet
In this task the students should fold a sheet of paper 
so that the upper left corner touch the bottom side 

Figure 2: The box
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(Figure 3) and then find the triangle of largest area 
that appears in the lower left corner of the sheet of pa-
per. Students work in pairs and begin by doing several 
folds and taking some measurements. This way they 
get a set of data that allows them to find a function that 
fits the data and then find a solution to the problem.

During the task the students are confronted with a set 
of data that suggests a quadratic function, when the 

corresponding function is actually a cubic. Students 
realize that the quadratic function does not fit per-
fectly to the data but, when they think of alternative 
functions, they are guided by data visualization and 
think on a quartic function:

Student:  Here we tried a quadratic (...) because 
the points are like... in parable form, but 
this is not quite...

Teacher:  Yes, it doesn’t go through all the points.

Student:  It can be like that?

Teacher:  (...) We are working with experimen-
tal data, so either you weren’t very ac-
curate in measurements (and there is 
always an error in the measurements 
we make), or that’s not the function that 
best fits your data. Did you try another 
function?

Student:  Yes, we tried this one, the quartic.

Teacher:  The quartic. And what happened?

Student:  It’s better here at the beginning, but then 
it also doesn’t go through the points.

Teacher:  Right. And did you try other functions?

Student:  No, we just tried these (...) the points 
are like this... (the student points to the 
U-shaped distribution of points), so 
these functions will be the best ones. 
Unless is grade 6... is it? (class 12)

Most students sought for the function that best fitted 
the data between polynomial functions of the 2nd and 
4th degree. Only the students who tried all kinds of 
functions provided by the calculator (using regres-
sion), considered a polynomial function of 3rd degree:

Teacher:  What about you? What conclusion did 
you reach?

Student:  We think it’s this one.

Teacher:  A cubic. And why did you choose it?

Student:  Well, we started by the quadratic be-
cause we thought it was. But it doesn’t 
go through all the points. And then we 
decided to try all that appear here in 
the calculator and this is the best one... 
(class 12)

The discussion of the task, performed in the following 
lesson, is based on the students work. The functions 
chosen by some students and their graphical rep-
resentation in conjunction with the data collected are 
presented. The discussion starts with presentations 
of 2nd and 4th degree polynomial functions, since these 
are the dominant responses in the class. The teacher 
has to insist, asking for something different, in order 
to get someone presenting a 3rd degree function. Given 
the obviously better way how this function fits the 
data, the teacher takes the opportunity to highlight 
some aspects of the viewing window and the cases 
where it does not show a global picture of the graph:

Teacher:  Most of you looked at these points, and 
thought it was a quadratic function, but 
you can’t conclude like that. You have to 
keep in mind that you are only seeing 
the graphic in a window and what you 
see doesn’t tell you anything about what 
you don’t see. (…) When I introduce a 
polynomial function of the 2nd degree 
in the calculator and ask for the graph, I 
know it will be a parable because I know 
these functions, because my knowledge 

Figure 3: Folding the corner of the sheet
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about Mathematics allows me to know it. 
(…) But when I see a graphic looking like 
a U, without more information I can’t 
conclude that this function is a quadrat-
ic... because the graph can reverse the 
concavity outside my window... I don’t 
know... (class 13)

Thus, the teacher analyzes the importance of the view-
ing window and how a partial view of the graph can 
easily lead to wrong conclusions.

DATA ANALYSIS

The practice of this teacher seems to be character-
ized by three different stages in what concerns to the 
viewing window. At an initial stage, the teacher avoids 
situations where the students need to look for a suit-
able viewing window. However, she does not give up 
of implementing what she believes to be a valuable 
task, just because the required window is not trivial. 
Whenever the standard window is not suitable for 
a full exploration of the task, she informs students 
about the values they should use on the viewing win-
dow. At an intermediate stage, the teacher already 
proposes to students tasks where they actually need 
to find a suitable viewing window. At this point the 
teacher discusses with the students how to find a suit-
able window, trying to make them develop an under-
standing over the searching process. At an advance 
stage, the teacher confront students with misleading 
situations, where the students need to understand the 
impact of the viewing window in order to avoid an 
uncritical acceptance of the graphic displayed on the 
calculator’s screen. All over these stages, the teacher 
highlights the importance of some kind of written 
record that gives information about the viewing win-
dow being used. This option turns the window into a 
noticeable and important aspect of drawing graphs on 
the graphing calculator since the first moment.

The teacher’s practice is certainly a consequence of 
her professional knowledge. So it makes sense to 
analyze the teacher’s practice trying to infer which 
domain of the KTMT model seems to be involved.

The teacher participant in this study recognizes stu-
dents’ difficulties in finding an appropriate viewing 
window. As such, initially she avoids complex situa-
tions, providing students with explicit information 
about a suitable viewing window (TLTK). She is also 

aware of the difference between plotting a graph with 
and without technology. Namely, she recognizes the 
importance of recording the scale/viewing window 
along with the graph obtained on the calculator (MTK). 
As so, the teacher highlights to the students the rele-
vance of the chosen viewing window. With this pur-
pose in mind, she selects tasks that allow her to em-
phasize the importance of mathematical knowledge 
for proper reading and interpretation of graphs, fo-
cusing on the usual difficulties of students in a phased 
manner (IK). Besides that, the teacher is concerned 
about explaining the different options available to 
find a suitable viewing window (includes TK), pre-
senting the demand for a suitable viewing window 
as a process (IK). Thus, the analysis of the teacher’s 
practice emphasizes the relevance of knowledge in 
the domains of KTMT involving technology: KT, TLTK, 
MTK and IK.

CONCLUSION

The conclusions of this study point to an approach 
to the viewing window which takes into account the 
degree of difficulty involved. Starting from a practice 
that ensures that the students are aware of the viewing 
window, but where any change is based on available 
information, it evolves to a practice where the stu-
dents are expected to actually find a suitable window, 
and afterwards it evolves again to include misleading 
situations. This practice of the teacher is aligned with 
the perspective of authors such as Cavanagh (2006), 
who emphasize the importance of a phased contact of 
the students with situations where finding a suitable 
viewing window is more complex, recognizing the 
difficulties usually faced by the students.

The analysis of the teacher’s practice also suggests 
that the way the demand for a suitable viewing win-
dow is addressed in the classroom is influenced by the 
teacher knowledge regarding KT, TLTK, MTK and IK. 
Namely, it seems to be highly relevant the teacher’s 
knowledge in what concerns to:

 ― the students’ difficulties in finding a suitable 
viewing window;

 ― the new emphases that technology puts on cer-
tain mathematical knowledge during the search 
for a viewing window;
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 ― the teaching strategies that allow the teacher to 
address mathematical knowledge relevant to 
guide the search for a suitable viewing window, 
while focusing on the usual difficulties of stu-
dents in a phased manner;

 ― and the different options available to find a suit-
able viewing window, as well as the importance 
of explaining this options to the students.

In the future, it would be particularly interesting to in-
vestigate the impact, on the teachers’ approach to the 
viewing window, of an education program (pre-ser-
vice or in-service) that emphasizes this set of knowl-
edge. After all, more than being a characterization of 
the teacher’s knowledge, the KTMT model intends to 
help identify aspects of the professional knowledge 
that, when included in training programs, can contrib-
ute to the professional development of those enrolled.

REFERENCES

Cavanagh, M. (2006). Enhancing teachers’ knowledge of stu-

dents’ thinking: the case of graphics calculator graphs. In 

P. Jeffery (Ed.), Creative dissent, constructive solutions. 

Parramatta, NSW: AARE.

Cavanagh, M., & Mitchelmore, M. (2003). Graphics calculators in 

the learning of mathematics: teacher understandings and 

classroom practices. Mathematics Teacher Education and 

Development, 5, 3–18.

Doer, H., & Zangor, R. (2000). Creating meaning for and with the 

graphing calculator. Educational Studies in Mathematics, 

41, 143–163.

Goos, M., & Bennison, A. (2008). Surveying the technology land-

scape: teachers’ use of technology in secondary math-

ematics classrooms. Mathematics Education Research 

Journal, 20(3), 102–130.

Hill, H., & Ball, D. (2009). The curious – and crucial – case of 

Mathematical Knowledge for Teaching. Phi Delta Kappan, 

91(2), 68–71.

Hodges, A., & Kissane, B. (1994). Learning about functions 

and graphs using a graphics calculator. In T. Andrews & B. 

Kissane (Eds.), Graphics calculators in the classroom (pp. 

39–48). Adelaide, SA (Australia): AAMT.

Hoyles, C., & Lagrange, J. (Eds.) (2010). Mathematics Education 

and Technology – rethinking the terrain (the 17th ICMI 

study). New York, NY: Springer.

Kastberg, S., & Leatham, K. (2005). Research on graphing calcu-

lators at the secondary level: implications for mathematics 

teacher education. Contemporary Issues in Technology 

and Teacher Education, 5(1), 25–37.

Kissane, B. (2003). A model for professional development for 

graphics calculator use. In A. Rogerson (Ed.), The humanis-

tic renaissance in mathematics education: Proceedings of 

the International Conference (pp. 191–199). Palermo, Sicily: 

The Mathematics Education into the 21st Century Project.

Mishra, P., & Koehler, M. (2006). Technological pedagogical 

content knowledge: a framework for teacher knowledge. 

Teachers College Record, 108(6), 1017–1054.

Rocha, H. (2013). Knowledge for Teaching Mathematics with 

Technology – a new framework of teacher knowledge. 

In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th 

PME (vol. 4, pp. 105–112). Kiel, Germany: PME.

Rocha, H. (2002). A utilização que os alunos fazem da calculado-

ra gráfica nas aulas de Matemática. Quadrante, XI(2), 3–28.

Shulman, L. (1986). Those who understand: knowledge growth 

in teaching. Educational Researcher, 15(2), 4–14.

Yin, R. (2003). Case study research – design and methods. 

Thousand Oaks, CA: Sage.



2410CERME9 (2015) – TWG15

Designing a didactical situation with 
mobile and web technologies

Håkan Sollervall1,2 and Didac Gil de la Iglesia2

1 Malmö University, Malmö, Sweden, hakan.sollervall@mah.se

2 Linnaeus University, Kalmar, Sweden

We have designed, implemented and evaluated a didac-
tical situation where 27 students in grade 4 created large 
triangular constructions in an outdoor environment by 
involving a customised GPS-based mobile application. 
The students’ strategies for construction were reflected 
upon during a teacher-led discussion involving web 
technologies and aiming at the formulation of princi-
ples for construction. The effective communication of 
underpinning theories and possible learning objectives, 
in combination with user-friendly mobile and web tech-
nologies, served to scaffold the teacher’s successful or-
chestration of a logos-oriented mathematical discourse.

Keywords: Didactical situation, mobile technologies, web 

technologies, design. 

INTRODUCTION

Many tasks in mathematics textbooks relate to con-
texts in the real world that are beyond the student’s 
reach and sight in the classroom. Such tasks are com-
monly treated in micro-space (Brousseau, 1986) on 
the student’s desk. Students seldom get the opportu-
nity to experience mathematics in large, full-sized 
space, which is crucial for considering spatial ideas 
and not only visual ideas as represented in models 
and in drawings on paper (Bishop, 1980). However, 
doing mathematics in meso-space, outside the class-
room, calls for the teacher to provide and orchestrate 
meaningful teaching activities. Further didactical 
challenges include how to connect such activities with 
mathematically meaningful follow-up activities in 
the classroom.

Recent developments in the field of technology-en-
hanced learning show promising attempts to design 
outdoor teaching activities involving the use of mo-
bile and web technologies (e.g., Sollervall & Milrad, 

2012). While mobile technologies can support the 
design and orchestration of outdoor teaching activ-
ities, they pose technological challenges regarding 
stability (Gil, Andersson, Milrad, & Sollervall, 2012) 
and pedagogical challenges regarding usability and 
instrumental genesis (Verillon & Rabardel, 1995). 

Beyond these pedagogical and technological challeng-
es, we have to consider how to connect the activities 
with the regular mathematics curriculum and how to 
implement complete didactical situations (Brousseau, 
1997) in specific schools with specific groups of chil-
dren, preferably with limited resources for the pur-
pose of scaling up. 

For these reasons, we have adopted a co-design 
methodology (Penuel, Roschelle, & Shechtman, 2007) 
where researchers in mathematics education and me-
dia technology work together with schoolteachers 
to design and implement didactical situations with 
innovative technologies such as augmented reality 
(Nilsson, Sollervall, & Spikol, 2010) and customised 
mobile applications (Sollervall & Milrad, 2012). 

The inherent complexity of the designed activities has 
on several occasions led to the researchers controlling 
the implementation of the outdoor activities and ne-
glecting the follow-up indoor activities. Although our 
ambition is to design didactical situations where the 
teacher has full agency of the implementation, our 
conclusion – based on the outcomes of several similar 
projects – is that a first design cycle should prioritize 
the functionality of the technologies and the didactical 
flow of the situation. During the first cycle, we are 
satisfied if the technologies perform acceptably and 
the students experience a sequence of meaningful 
and enjoyable mathematical activities. To support the 
achievement of such outcomes, the researchers have 
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been actively involved in implementing the activities 
(Figure 1). 

During the second design cycle, the researchers pro-
vide support for new teachers to orchestrate and adapt 
the didactical situation by enhancing the customised 
technologies, communicating learning objectives, and 
indicating how these objectives may be achieved by 
unfolding didactical affordances of the situation. The 
teacher is fully responsible for pedagogical design 
and implementation (Figure 1), but is not involved 
in the initial phase where the activity, including its 
tasks and artefacts, is modified by the researchers 
who also prepare guidelines for orchestration. These 
guidelines are communicated to the teacher during 
a short preparatory session, directed at enabling the 
teacher to interpret and unfold the learning oppor-
tunities that are embedded in the didactical situation.

In this paper, we report on the second cycle implemen-
tation of a complete didactical situation and charac-
terize the possible learning opportunities in terms 
of dimensions within a mathematical praxeology 
(Rodríguez, Bosch, & Gascón, 2008). 

Our research question addresses the evaluation of 
an implemented didactical situation, specifically 
designed to promote a logos-oriented mathematical 
discourse:

How do the scaffolds provided support logos-ori-
entation in a teacher’s orchestration of a didac-
tical situation that is specifically designed with 
mobile and web technologies to provide oppor-
tunities for a logos-oriented discourse? 

THEORETICAL AND METHODOLOGICAL 
CONSIDERATIONS

A teacher’s design cycle includes the analysis of a 
teaching activity both before and after it is imple-
mented with students. Such prospective and reflective 
analyses are central features of design-based research 
(Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). In 
our prospective analyses, we put focus on students’ 
hypothetical action trajectories, analysed from a so-
cio-cultural perspective. In the reflective analyses, and 
particularly when advanced technologies are involved, 
we shift our focus of attention between the cycles. In 
the first cycle, we simply evaluate the activity flow. In 
the second cycle we evaluate the teaching outcomes, 
and in the third cycle we analyse the learning effects. 
The current paper reports on a second cycle and will 
put focus on evaluating teaching outcomes, for the 
purpose of informing future implementations of the 
activity by modifying and improving the guidelines 
for orchestration. This approach is underpinned by 
an ambition to find a reasonable distribution of own-
ership between researchers and teachers.   

In the process of designing teaching activities with 
advanced technologies, we have noticed that funda-
mental didactical principles may become neglected 
when the research efforts favour enhancing the per-
formance of the technologies themselves. For exam-
ple, involving technologies that provide extensive 
feedback may remove didactical challenges that are 
actually needed to promote students’ learning pro-
cesses. For this reason, we have adopted the theory 
of didactical situations (Brousseau, 1997) as a design 
model. The fundamental structure of a didactical situ-

Figure 1: First and second design cycle, as implemented in the current project
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ation – devolution, adidactical situations, institution-
alisation (Figure 2; adapted from Balacheff, 2013) – fits 
particularly well when designing with mobile tech-
nologies across physical contexts. 

The three phases within a didactical situation be-
come naturally separated if adidacticity is promot-
ed by giving the students full responsibility for the 
technology-supported exploration of mathematical 
tasks by retroacting only with the milieu and not the 
teacher, as indicated in Figure 3 (left pane, adapted 
from Bessot, 2003, p. 7).

While the theory of didactical situations provides a 
structure for a teaching activity, with focus on achiev-
ing mathematical learning objectives, we utilize the 
notion of praxeologies to capture qualitative differ-
ences of the learning opportunities that are offered to 
the students during a didactical situation. In our anal-
ysis, we will charac-terise such teaching outcomes in 
terms of praxeological elements (Figure 3, right pane).

While praxis, that is, tasks and techniques, naturally 
dominates within the adidactical situations, the logos 
dimension may emerge in the phase of institutional-
isation where the students are invited to reflect on 
their experiences by engaging in technological and 
theoretical discussions about how and why the tech-

niques work. A technology-oriented discourse may 
include describing techniques, explaining how they 
work and when they work, while a theory-oriented 
discourse aims at justifying the techniques and the 
technological claims (Rodríguez et al., 2008).

In previous projects (e.g., Perez, 2014) we have ob-
served situations dominated by praxis-oriented ac-
tivities where the teacher has not unfolded the log-
os-oriented affordances that were embedded in the 
situations. In the current study, we chose to make 
explicit the notion of praxeologies for the teacher and 
discussed a variety of affordances for a logos-oriented 
discourse during the institutionalisation phase, based 
on the students’ experiences from exploring tasks in 
the outdoor environment. 

DESIGN CONSIDERATIONS

In the first cycle, a teaching activity in an outdoor envi-
ronment was designed for the purpose of investigating 
spatial orientation ability (Peng & Sollervall, 2014). 
The teaching activity involved ten similar tasks that 
each called for the coordination of two given distances 
with respect to two given reference points. Each such 
task can be interpreted as the construction of a trian-
gle with three given sides, a construction that is treated 
in Euclid’s Elements (Heath, 1908, p. 292; Figure 4). 

Figure 2: Structure of a didactical situation

Figure 3: A didactical situation (left pane) and elements of a praxeology (right pane)

Figure 4: Euclidean construction of a triangle with three given sides
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During the second cycle, the purpose was to stimulate 
a logos-oriented discourse during the phase of institu-
tionalisation, involving technology as well as theory: 

 ― technology: identifying and comparing strate-
gies for construction, distinguishing between 
possible and impossible constructions;

 ― theory: justifying the strategies particularly the 
circle strategy, formulating criteria and arguing 
why some constructions are possible and others 
are not.

Based on their experiences from the first design cy-
cle, the researchers designed a complete didactical 
situation encompassing devolution, an outdoor ac-
tivity, and institutionalisation. The outdoor activity 
involved ten tasks, that each called for the coordina-
tion of two given distances with respect to two given 
reference points. Seven of the tasks involved possible 
constructions while three were impossible, such as “10 
15” when the distance between the reference points 
was 35 meters. The impossible constructions were 
included for the purpose of stimulating a technolo-
gy-oriented discourse during the institutionalisation 
phase. 

The researchers’ ambition was that the students 
should work with their ten tasks in small groups, si-
multaneously and independently, in the schoolyard. 
To achieve variation of tasks between the groups, it 
was decided to place six different reference points in 
the schoolyard (Figure 5) and to vary the order of the 
tasks. For example, Group 7 had their first task “20 30” 
against the house and the tree (Figure 6, right pane) 
while Group 5 had “20 30” as their eight task against 
the bicycle and the car.

The didactical situation was designed for up to 14 
groups and targeting students in grades 4–6. The 
14 sets of tasks were deployed on mobile phones (an-
droids) supporting a customised technological appli-
cation (Figure 6, left pane).  

Although Euclidean constructions are not in the grade 
4 mathematics curriculum in Sweden, the presented 
didactical situation connects well with mathematical 
content such as distances, measurements, and circles. 
Moreover, the institutionalisation phase involved 
mathematical communication and reasoning, as com-
petencies that are strongly emphasised in the steering 
documents for mathematics education in Sweden.

Figure 6: The display (left pane) and an illustration of the solved task (right pane)

Figure 5: The presented Google Map (left pane) and the actual field (right pane)
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SCENARIO FOR THE DIDACTICAL SITUATION

Two days before the activity was implemented, with 
27 students in grade 4, the researchers met the teacher 
at her school. After a short outdoor session where the 
mobile technologies were tested hands-on, she was 
informed about the researchers’ desire to promote a 
logos-oriented discourse. The schematic structures 
of a didactical situation and a praxeology (Figure 2 
and 3), the Euclidean circle strategy (Figure 4), togeth-
er with possible logos-oriented learning objectives, 
were presented on a single sheet of paper and was 
briefly discussed. A sample set of 10 tasks was also 
presented and discussed. Furthermore, the teacher 
was informed about the possibility to show the stu-
dents’ results on a Google Map. It was made clear that 
these ideas should serve only to inspire her and that 
she was completely free to orchestrate the activity 
according to what she believed would be best for her 
students, not for the researchers.

The entire activity including devolution, the outdoor 
activity, and institutionalisation, was video-taped 
and lasted 1 hour 45 minutes (8.00–9.45 on a Friday 
morning). 

Scenario for devolution
The 27 students arrived to the regular classroom at 8 
o’clock in the morning. They had been told in advance 
that they would engage in an outdoor activity and 
use mobile phones. Before the students arrived, the 
teacher had divided them into 12 groups that were 
displayed with on the whiteboard. The three visiting 
researchers introduced themselves and the teacher 
informed the students that they were going to work 
with mobile phones to solve mathematical tasks out-
doors on a field where the researchers had placed six 
coloured markers (cat, house, tree, bicycle, car, horse). 

The field and the markers were displayed on a Google 
Map (Figure 5, left pane). When the teacher asked the 
students if they recognised the field in the picture they 
immediately answered yes. The teacher informed 
the students that they were going to look for “magic 
points” that were located specific distances from two 
of the markers, and that they were going to use the 
mobile phones to check the distances. The teacher 
asked the students what they would do if they were 
not satisfied with the measurements and they readily 
answered that they would try again. Each group re-

ceived a phone from the teacher and got them started 
after a few instructions.

When all students had opened their first tasks that 
were all different (an example is shown in Figure 
6, left pane) the teacher told them to go to the field 
(Figure 5, right pane) and try to solve the tasks. The 
time was now 8.15. The researchers noticed that the 
teacher had not informed the students about the in-
herent inaccuracy in the GPS values that may cause 
a measurement error of a few meters. 

Scenario for the outdoor activity 
As mentioned earlier, the researchers had prepared 
14 sets of 10 tasks. The 10 tasks were identical with 
respect to distances but were presented to the groups 
in different order and with respect to different mark-
ers. Each task referred to distances to two of the six 
markers. For example, for Group 7 the distances “20 
30” were shown on the display of their mobile phone 
directly under pictures of “house” and “tree” (Figure 
6, left pane). The objective was to find the point on the 
field that was located 20 meters and 30 meters from 
the markers, respectively (Figure 6, right pane). The 
response “21 32” could be considered as acceptable. 
On a few occasions, the teacher negotiated this issue 
of non-exact measurements with the students directly 
on the field.

The students showed no signs of confusion either 
regarding how to handle the mobile phones, how to 
interpret the tasks, and even accepted the somewhat 
inaccurate measurements. They were enthusiastic 
and engaged fully in the tasks, although some phones 
did not give correct measurements due to thick clouds 
that caused large errors in some of the GPS-values. 
After half an hour some students complained that it 
was cold outside and the teacher decided at 8.50 to ask 
them to go back to the classroom. 

Scenario for institutionalisation
At 8.56, everyone was back in the classroom. After a 
short discussion about some incorrect values and ask-
ing if the students liked the activity (which they did) 
the teacher asked the groups to present their strate-
gies for finding the “magic points”. Most of the groups 
were eager to present and the teacher promised that 
they would all get to do it. The first group gave their 
mobile phone to one of the researchers who download-
ed its log file to a computer that was connected to the 
classroom projector. Their tasks and their attempts 
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became visible (numerically) on the board (a regular 
whiteboard, not interactive) to the left of the Google 
Earth (Figure 7, left pane). They chose the task they 
wanted to present and what attempts they wanted to 
be shown with “pins” on the Google map visualisation.

For several of the groups, the teacher had to tell the 
students to describe the task before they started talk-
ing about how they worked with it. During the pres-
entations, she repeatedly asked technology-oriented 
questions like “How did you think when you did that?”, 

“Why did you do walk like that?”, and “How did you get 
those values?”. Several of our previously identified 
strategies were confirmed (Peng and Sollervall, 2014) 
but the targeted circle strategy did not appear in the 
presentations. 

However, when all the groups had presented, the 
teacher continued the discussion, focusing on the 
last group’s presentation. They had marked a point 
located 20 meters away from the bicycle marker 
(upper right corner in Figure 7, right pane) and had 
drawn a line segment from the point to the marker. 
The teacher asked the class if somebody could mark 
another point that was also located 20 meters away 
from the bicycle. Several students tried, but failed. 
They seemed confused about what to do but were ea-
ger to contribute. The teacher commented on their 
attempts, for example “Oh that is more than 20 me-
ters”, “That point is too close”, “That is too far away”. 
She tried to guide the students by asking questions: 

“If you stand there and it is 20 meters, how can you 
walk to keep 20 meters?”, “Where else can you find 
20 meters?”. Finally, one student managed to mark a 
point that seemed to be the same distance from the 
marker. The teacher confirmed the attempt by saying: 

“Yes! You found it!” and then “How did you know how 

to do it?”. The student responded: “I just thought it 
out”. The teacher continued with “Now I want each of 
you to mark a new point, that is also located 20 meters 
away from the bicycle”, and “Don’t worry, there are 
infinitely many such points and each of you will get 
a chance to mark one”. Most of the students caught on 
to the idea about keeping the distance 20 meters but 
changing directions, and occasional mistakes were 
quickly corrected. When about ten points had been 
marked, all located on the field, the teacher comment-
ed: “Oh, nobody is being brave today”. One student 
understood what she referred to and readily marked 
a point in the bushy area behind the field (Figure 7, 
right pane). A few more points were marked outside 
the field. A crucial scaffolding question was asked.

Teacher:  Do you begin to see a pattern? You can 
walk in any direction. 

Student 1: Oh it is a circle!
Student 2: A spider web!
Teacher: Yes! A circle! Can you all see that?

The teacher drew a circle through the points.

Teacher:  Now I have 20 here and how can I find 
30 down there? 

The students were invited to mark points that were in-
itially not connected with the first circle. These points 
were corrected after comments from the teacher, who 
wrapped up the discussion at 9.45 by saying “If you 
can find the point where the two circles meet then you 
have found the magic point”. Although enforced by 
the teacher, the concluding theory-oriented comment 
completed a didactical situation addressing all the 
four dimensions of an emerging point praxeology. 

Figure 7: One group presenting (left pane) and the whole class contributing (right pane)
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CONCLUDING DISCUSSION

The institutionalising discourse may be characterised 
as teacher-driven but student-centred. The teacher 
was informed about the researchers’ desire to pro-
mote logos-oriented discussions and was prepared 
for orchestrating the session towards issues relating 
to technology and theory. Knowing about possible 
strategies for construction guided her to ask log-
os-oriented questions aiming particularly at the circle 
strategy. She patiently awaited the students to catch 
on to the mathematical ideas that were embedded in 
the didactical situation. She amplified the students’ 
presentations by adding interpretations that led them 
to unfold ideas that were shared among all the stu-
dents by involving them in making new constructions.

The teacher’s orchestration was influenced by the 
preparatory session two days before the trial, particu-
larly regarding the logos-orientation and the circle 
strategy. The customised mobile applications inspired 
the students to engage in the outdoor activity, while 
the web technologies served to underpin the presenta-
tions and connect their obtained measurements with 
their field experiences. All students could readily re-
late to what the presenting students were referring 
to on the Google map application. These technical 
design features scaffold effective communication in 
the classroom and enabled the teacher to put focus on 
asking logos-oriented questions. 

A few incidents occurred during the implemented out-
door activity. The inaccurate and sometimes failing 
GPS-values (due to cloudy weather) caused confusion 
among some of the students. However, the teacher 
swiftly handled all such incidents. 

It may be noted that the teacher did not address the 
issue of possible and impossible constructions. This 
may be considered as a natural decision due to the 
fact that the students were quite young (grade 4) and 
possibly not yet ready to engage in conditional rea-
soning. Instead, the teacher engaged the students in 
interpreting their triangular constructions in terms 
of circles, as one of several suggested discourses. 

The mobile-assisted outdoor activity offered oppor-
tunities for the participating 27 students to simul-
taneously engage in similar coordination tasks, in-
volving the same pairs of distances but with respect 
to different markers. Being informed about possible 

logos-oriented discourses and having observed the 
students acting in the outdoor environment, the 
teacher cleverly managed to institutionalise their 
common experience with respect to the circle strategy. 
The customised mobile and web technologies inspired 
the students to engage in the activities and support-
ed transitions between outdoor and indoor contexts. 
These supporting technologies enabled the teacher to 
put focus on pursuing mathematically meaningful in-
stitutionalising activities, thus successfully finalizing 
a complete and complex didactical situation.    
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This paper presents a research project on the descrip-
tion of a linear algebra course within the perspective 
of the Theory of Semiotic Mediation (TSM), in order to 
construct mathematical meanings prioritizing arte-
fact–sign (i.e., ICT tools) and social context relationships. 
I will first describe the project and, following a theoreti-
cal framework of the TSM, discuss a priori epistemolog-
ical analysis of GeoGebra’s potentiality to be used as an 
artefact to bring out key linear algebra concepts in future 
didactic interventions. I also present the results of a pilot 
study elaborating the potentiality of GeoGebra for stu-
dents’ construction of the mathematical meaning of free 
variables. Future steps of the project are also outlined.

Keywords: Theory of semiotic mediation, teaching and 

learning linear algebra, ICT.

LEARNING LINEAR ALGEBRA: 
EPISTEMOLOGICAL ISSUES 

Because of the strength of generalization, linear al-
gebra is a powerful theory used to frame problems 
belonging to quite different contexts, but at the same 
time, it may be difficult to construct in itself. From 
a didactic point of view, merely taking a theoretical 
approach, i.e., introducing vector space concept to 
students, that is, only giving axioms, means asking 
students to enter a meaningless game of symbols, be-
cause the historical genesis of linear algebra indicates 
numerous lengthy steps to form an evolution of the 
idea of vector spaces. The notion of a vector begins 
with Aristotle who represented ‘force’ in geometric 
terms (Chong, 1985). However, after approximately 
2000 years, mathematical representations of vectors 
were used as points and directed line segments by 
Gauss and Hamilton in terms of Cartesian geometry. 

Researchers used matrices to represent these geomet-
rical ideas, as well as linear equations, and, by practi-
cal discernment, they obtained certain extensions to 
elimination techniques, n-tuples, determinants and 
transformations. However, all these developments 
were operational, sometimes having different theo-
retical elements, and so used different mathematical 
languages. There was, however, a missing unified-gen-
eral approach covering and connecting all of them. In 
1888, Giuseppe Peano defined the vector space concept 
with an axiomatic system, as a set satisfying certain 
axioms (Dorier, 2000). This was a formal definition, 
and opened a door to non-geometric vector spaces, 
such as polynomials and square matrices. Since we, 
as linear algebra lecturers, use all of these concepts 
together, one can conclude that the use of different 
notations, depictions and axiomatic language is 
essential for the teaching of linear algebra. From a 
didactical point of linear algebra education, the axio-
matic-formal system of the course reveals a learning 
obstacle in teachers’ hands; the obstacle of formalism 
(Dorier, Robert, Robinet, & Rogalski, 2000). This ob-
stacle is associated with the specific terminology of 
linear algebra and appears when students are faced 
with the mathematical symbol language triangle, com-
posed of equations, matrices and vectors. Students 
waver ‘under an avalanche of new words, symbols, 
definitions and theorems’ and therefore, for many 
students, ‘linear algebra is no more than a catalogue 
of very abstract notions’ (ibid. p. 95). In summary, the 
formalism obstacle can be considered as students’ 
failure to grasp linear algebra’s symbols and their 
associated-corresponding mathematical meanings. 
From the viewpoint of semiotic registers (Duval, 2006) 
of such mathematical meanings, learning linear al-
gebra needs conversion between different registers; 

‘graphical’, ‘tabular’ and ‘symbolic languages’ of linear 
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algebra or, in other words, students should have ‘cog-
nitive flexibility’ to overcome the obstacle of formal-
ism (Dorier & Artigue, 2001, p. 270). 

The construction of mathematical meanings cannot 
be easily achieved through a direct use of ICT, needing 
a careful didactic design of tasks to exploit the use of 
artefacts (Mariotti, 2012). I will try to overcome the 
obstacle of formalism using such didactic designs en-
riched with ICT tools, in particular GeoGebra (5.0 ver-
sion) (its potentiality will be presented in detail), for 
students’ construction of mathematical meanings of 
linear algebra concepts. Taking a semiotic approach, 
I will focus on the Theory of Semiotic Mediation (TSM) 
(Bartolini Bussi & Mariotti, 2008); both the design of 
the tasks and analyses of the processes.

RESEARCH QUESTIONS AND 
THEORETICAL FRAMEWORK 

This study is a one-year, post-doctoral research pro-
ject, planned to start in February 2015, focusing on 
the following research questions:

 ― How should a linear algebra course be designed 
within a didactic-semiotic perspective?

 ― Does this approach overcome the formalism obsta-
cle of linear algebra students?

Taking into account the TSM, I intend to address 
both research questions. This is because the TSM 
is a Vygotskian-rooted approach in math education 
proposed by Bartolini Bussi and Mariotti (2008). It 
relates to the semiosis feature of math, which bases 
the teacher’s actions in a social context and on the 
hypothesis that the production of signs can be elab-
orated on when the teacher intentionally uses an 
artefact to accomplish a math task within a commu-
nication-oriented process. By use of specific artefacts 
in the mediation process, the TSM aims to construct 
math meanings in students’ mental schemes; in oth-
er words, to transform personal meanings into math 
meanings, while they solve the proposed tasks as 
mediator. In this process, the main focus is on the 
emergence of signs that foster students’ possible math 
learning. Within this aim, the TSM is constructed on 
two key elements: the notion of the semiotic potential 
of an artefact and the notion of a didactic cycle. The 
semiotic potential of an artefact is associated with its 

‘… evocative power, stressing the distinction between 

meanings emerging from the activity with the arte-
fact and the math meanings evoked by such activity’ 
(Mariotti, 2013, p. 442). In other words, it is related 
to the potential for math meanings to emerge whilst 
students solve a mathematical task. The notion of a 
didactic cycle is about the design of the teaching-learn-
ing process, especially describing semiotic processes: 
(i) activities with artefact (students work in pairs or in 
small groups), (ii) individual production of signs and 
(iii) collective production of signs (Bartolini Bussi & 
Mariotti, 2008, pp. 754–755). Iteration of such didac-
tic-semiotic (environment) processes aims to foster 
the evolution of personal signs-meanings to (desired) 
math signs-meanings. This is because the (desired) 
evolution of the signs is ‘artefact signs’, ‘pivot (hinge) 
signs’ and culturally accepted ‘mathematical signs’ 
(ibid, pp. 756–757). Therefore, as an important com-
ponent of this polysemy of the artefact, the teacher 
has a central role; she should orchestrate mediation 
with specific social activities to exploit the semiotic 
potential of the artefact (Mariotti, 2013), i.e., her role 
should be surrounded by an interacting triangle of, 
use of artefact, personal meanings, and math meanings 
in a socially-communicative environment.

Why I select TSM in this project to 
overcome obstacle of formalism
Harel (2000) proposes three teaching principles for 
learning linear algebra (p. 180):

 ― the concreteness principle associated with results 
stemming from the use of the axiomatic language 
of linear algebra and students’ pedagogical needs, 
in particular, the transition from geometric to 
abstract features. For instance, the concept of a 
polynomial as a vector is not concrete for stu-
dents if they cannot comprehend the mathemat-
ical notion of linear independency.

 ― the necessity principle that refers to instructional 
activities which should form a problematic envi-
ronment for the construction of mathematical 
concepts, with students seeing an ‘intellectual 
need’ (ibid, p. 185).

 ― the generalization principle that reflects students’ 
generalization of driven concepts after the prob-
lem-solving process; in particular, with the help 
of the intellectual need character of the proposed 
learning environment. 
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In summary, one can conclude that construction of 
math meanings of the geometric features of linear 
algebra through ICT tools can provide dialectic re-
lationships among abstract features. The use of ICT 
didactic designs should provide a problematic en-
vironment (necessity) (Turgut, 2013); preparatory 
insights (concreteness) for non-geometric linear al-
gebra (Harel, 2000), and math discussions for compre-
hending abstract concepts. In other words, as Dorier 
and Artigue (2001) emphasize, the lecturer should 
create an environment for students, which provides 
an opportunity to reflect on ‘meta-level discussions’ of 
problems, referring to the generalization principle. 
This can also be an opportunity to unify linear alge-
braic concepts (p. 271).

Several attempts have been done within the semiotic 
perspective to analyse and construct math meanings 
of linear algebra with ICT tools. Sierpinska, Trgalová, 
Hillel and Dreyfus (1999) designed a research pro-
gram with Cabri–geometry II of a geometric model 
of vector space in order to overcome the obstacle of 
formalism. Lengthy teaching experiments (within 
different conceptual perspectives) reveal that stu-
dents are able to grasp math meanings, in particular 
specific concepts, such as linear combination (ibid, 
p. 129). Hillel and Dreyfus (2005) investigate how the 
conditions of communication influence the construc-
tion of math meanings, whilst students are attempt-
ing to solve tasks regarding the projection of vectors 
and an approximation with Maple CAS. Episodes 
were constructed on different semiotic systems, in 
particular agents for communication; the students 
themselves, an observer, the computer and Maple, 
classroom teacher, classroom notes and text. At the 
end of the sessions, the agents (communicative se-
miotic environment) were able to contribute to stu-
dents’ construction of new meanings of linear algebra 

concepts. The researchers also emphasize the Maple 
role as a ‘silent mediator’ that stems from students’ 
wait for-know-decide-use process of the commands. 
In summary, this was a glimpse of the use of dynamic 
geometry environments (DGE) as an artefact in the 
teaching/ learning linear algebra. 

To sum up, all these together imply a puzzle includ-
ing several keywords. I postulate and summarize the 
following key concepts to overcome the obstacle of 
formalism that, all together, fit with the TSM (Figure 1).

The keywords in Figure 1 have dialectic relationships 
with the TSM’s core elements. For instance, intellectu-
al need and problematic environment are related, but 
the dialectic relationship between them also implies 
the notion of the semiotic potential of the artefact and 
task designs. Consequently, the TSM underpins this 
process, because the TSM is a powerful framework for 
both the design of didactic cycles and analysis of the 
signs. Another fact is that the communication-meta 
level discussions process corresponds to Individual 
and Collective Productions of Signs and so on.

Within the framework of Figure 1, I hypothesize that 
GeoGebra may be a powerful artefact to use in task 
designs because one main potentiality of the use of 
GeoGebra is its involvement of a 3D interface, and 
hypothetically, this might help students to unify the 
different representations of linear algebra. However, 
it needs a grain analysis to describe the key points that 
we want to emerge from its use.

Semiotic potential of some tools 
of GeoGebra: A priori analysis
The following priori epistemological analysis of 
GeoGebra will describe our goals and answer the fol-
lowing questions; what key linear algebra concept can 

Figure 1: Key epistemological concepts in relation to the TSM
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emerge from the artefact, and what can we do with 
GeoGebra? As a consequence, this process leads us 
to discuss the semiotic potential of the artefact that is 
the core element of the TSM. The analyses of semiotic 
potential has a dialectic relationship between expli-
cation of goals and attempting to see what happens 
when we present the designed tasks to students, and 
then see which of their utilization schemes are useful 
to transform into mathematical meanings. To sum 
up, the process of outlining the semiotic potential of 
an artefact needs a deep analysis encompassing an 
epistemological and didactic-cognitive perspective 
that will give us a framework to assist in the design of 
the second phase of the TSM. Let us first describe this 
artefact’s tools in relation to linear algebra.

In the GeoGebra interface (Figure 2), all the win-
dows can be viewed together; the CAS, Graphics, 3D 
Graphics, Spreadsheet and Algebra. Using a spread-
sheet table, such as Excel, one can form matrices with 
any rows or columns. They immediately appear in 
the Algebra window. With the help of the Input Help 
column (right side), other forms can also be accessed. 
The key element, a vector, can be composed by the 
Input line or in the Spreadsheet window in the form 
of co-ordinates and vectors (also with manipulations, 
cross product or forming a line) that appear simul-
taneously in the Graphics window. The Graphics 
window enables the plotting of a 3D view of the lines, 
planes and surfaces. At the same time, the tools of 
this window provide certain 3D applications, but the 
important one is the plane through three points. In 
addition, the Transformation part in the Input Help 
window provides a matrix transformations applica-
tion in the plane, but not in 3D. As a limitation, one 

can see several tools in the windows, but the tools 
may be limited for the purpose of the tasks to pre-
vent possible cognitive loads on the students. The 
viewing of these windows all together can create an 
environment for the possible conversions of different 
semiotic registers by students that may help them 
unify linear algebraic concepts. Therefore, I decid-
ed to consider the following four different semiotic 
registers (in sense of Duval, 2006): algebraic register 
(AR), 2D graphics register (2DGR), 3D graphics register 
(3DGR), and spreadsheet register (SR). Conversion of 
these registers might help students to shift different 
representations of linear algebraic concepts. Besides 
this powerful feature of the artefact, 2DGR has a slider 
component that forms an environment as a dynamic 
variation. This process is also applicable in other reg-
isters by moving, or the controlled movement of the 
mouse. These may be important in enabling students 
to evolve meanings of particular notions, because 
variation in 2DGR and 3DGR, provided by the slider 
and AR, may be key elements in the construction of 
associated meanings in the design of cycles for our 
future didactic interventions. I limit myself to the 
emergence of ‘free variables in R3’ in the system of 
linear equations and associated geometric invariants 
with the following pilot study, which aforementioned 
registers can evoke students’ learning.

PILOT STUDY AS A TEACHING EXPERIMENT

In this part, I attempt to elaborate the semiotic poten-
tial of GeoGebra, in particular, the use of AR, 2DGR 
(slider tool) and 3DGR, in the construction of a link 
between the system of linear equations, augmented 
matrices and intersection of planes. In other words, 

Figure 2: GeoGebra interface with different windows
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I focus on the question, ‘will the use of those semiotic 
registers evoke construction of mathematical mean-
ing of free variables?’ For this purpose, I designed a 
task involving manipulation on different registers 
(inspired by the problem in Anton, 1981, p. 54). The 
educational goals of the experiment are: 

 ― conversions among 2DGR (slider), 3DGR and AR,

 ― evolution of personal meanings to mathematical 
meanings of a free variable,

 ― fostering construction of the mathematical link 
among the concepts.

Using three registers, I prepared a task, as described 
in Figure 3. The participants of the experiment were 
two sophomore level undergraduate mathematics 
education students, and the experiment was imple-
mented at the beginning of a linear algebra course, 
following the topic of solving the system of linear 
equations. A number of students volunteered to par-
ticipate, but only two were selected according to their 
mathematical background and communication skills. 
They had performed moderately on former courses, 
and had taken only three mathematical courses; gen-
eral mathematics, abstract mathematics and geometry. 
The fact is that they knew the equations of a plane, and 
the augmented matrices corresponding to the system 
of linear equations. The students were unable to use 
GeoGebra since, prior to the experiment, I had intro-
duced the main tools of the software by removing any 
unnecessary tools, i.e., the only tools in the 3DGR were 
move and rotate. Thereafter, they practised dragging 
and shifting in the windows.

The expected situations in this experiment were; (i) 
the students’ analyses using two sliders for a and 
b (2DGR), (ii) at the same time analysing the varia-
tions of the equations in AR, (iii) and the positions 
and manipulations of the plane in the 3DGR. Overall, 
the task was prepared to analyse the system of linear 
equations in terms of the variations of a and b, (for 
instance when a=0, b=2, the planes coincide). I esti-
mated that, after they analysed such variations, they 
would focus on the system in AR, and thereafter, they 
would build an augmented matrix in order to attempt 
to solve the system. As a next step, they would com-
pare their results within dynamic variations in 2DGR 
and 3DGR, also associated with the intellectual needs of 
the task. In the end, they would first construct a math-
ematical meaning of two free variables, as well as its 
corresponding meanings on the planes’ movements 
and intersections (c, d, e in AR, with yellow, red and 
purple planes in 3DGR).

Procedure and data analysis
The experiment was implemented as a teacher-re-
searcher, involving Buse and Deniz (pseudonyms), 
working as a pair on a computer screen. The data 
consisted of video-recorded interviews, screen re-
corder software and students’ productions, with the 
teaching episode ending after 40 minutes. Within 
a semiotic lens, the data was analysed with respect 
to the TSM’s frame of categories of signs (Bartolini 
Bussi & Mariotti, p. 756); emergence of artefact signs, 
pivot-hinge signs and math signs. Artefact signs are a 
production driven as a result of an immediate use of 
the artefact characterizing the proposed task; math 
signs refer to math meanings, such as definitions, a 
proposition or a math proof. Pivot signs refer to hy-

Task: Move the sliders a and b, and explore and explain what is happening in 
the GeoGebra interface systematically.

Figure 3: GeoGebra interface of the proposed task
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brid terms in natural language, such as ‘object’ or 
‘thing’, associated with math terminology (ibid.).

Summary of the results
After the teacher had introduced the task, the students 
tried to make certain interpretations by moving the 
sliders and analyzing the different registers together, 
and, thereafter, they focused on the equations in the 
AR. In this way, they comprehended what was differ-
entiating in the plane equations whilst they dragged 
the sliders, since they realized that a system of linear 
equations existed with the key values being a=0 and 
b=2. They also formed the planes’ equations with re-
spect to a and b, and Buse pointed out that the solution 
of the system must be related to these values. In this 
process, the teacher was orienting the students to fo-
cus on the relationship between the a and b values as 
well as the solution of the system of linear equations. 
The following excerpt is drawn from the discussion 
from which the signs evolved: from artefact type to 
mathematical signs.

45 Teacher: You said at the moment, values of 
a=0 and b=2 must be in relation to a solution 
of this [indicating the system on the paper 
sheet] system, how you are sure about that?

46 Buse: Because changing the values 
here [indicating the 2DGR], shows us dif-
ferent type intersections here [indicating 
3DGR], in fact, sliders are affecting the equa-
tions [meaning the AR]. These intersections 
must be similar to the position of the lines 
that we discussed.

47 Deniz: Exactly, look [moving the sliders] 
if a=0 and b=2, all the planes coincide. Oh yes, 
it is already obvious here [referring AR], in 
all the equations z=1, as in the case of coin-
ciding lines, therefore, I think, the solution 
must be infinite here.

Thereafter, the students also explain other cases us-
ing their knowledge, stemming from an analysis of 
the system of linear equations in R2: when a ≠ 0, b ≠ 2, 
the intersection of the planes is ‘single point’, ‘exact 
solution’ and ‘consistent system’. Similarly, if a = 0, 
b ≠ 2, they mention ‘parallel planes’, ‘no solution’, and 

‘inconsistent system’. Thereafter, the teacher asks how 
to find the relationship between the augmented ma-
trix and the interpretations expressed by the students. 
They use the Gauss-Jordan elimination method. The 
following excerpt is drawn from this discussion. 

71 Buse: Look [showing the solution her 
pair], I put a=0 and b=2 to see what will hap-
pen, I could only calculate z=1. I can not find 
x or y.

72 Deniz: We can not find, look, the second 
and third rows are completely zero.

73 Teacher: What does it mean? How can you 
relate this fact with your initial interpreta-
tion?

74 Deniz: Any real number can satisfy this 
system if we put it instead of x or y. They are 
independent from the plane equations, since, 
this is consistent with the picture here [indi-
cating 3DGR], where there are two variables 
that we cannot find, but the solution, I mean, 
the intersection is a plane: a two-dimension-
al thing. But I am not sure whether this hy-
pothesis is valid for other cases.

75 Teacher: Let’s analyse other cases then.
76 Deniz: [She is moving the sliders, check-

ing her hypothesis] If we take a=1 and b=2, 
there is again an infinite solution, [looking at 
the matrix form] and we can not find y either 
x, but x=y, since we have one free variable, 
the intersection is a line; a one dimensional 
thing.

As a consequence, Buse points out the exact solution, 
‘no free variable’, and therefore, ‘single point and 0-di-
mensional thing’. To sum up, I observed a semiotic 
chain (Bartolini Bussi & Mariotti, 2008) in the use of 
different semiotic registers, from artefact signs to 
math signs of free variables such as: ‘chancing value’ 
(item 46); ‘intersection of the planes’ (item 46); ‘solu-
tion types’ (item 47); ‘independence from equation’ 
(item 74); ‘variable’ (item 74); ‘dimension’ (items 74–75); 
and ‘free variable’ (item 76). 

CONCLUSIONS

Even if linear algebra does not consist of only geo-
metrical features, as Harel (2000) states, it can be a 
powerful ‘corridor to the more abstract algebraic 
concepts’ (p. 185). In this project, I aim to construct 
math meanings of geometrical features in linear al-
gebra concepts within the semiotic potential of an 
artefact; with GeoGebra, and particularly in this work, 
I focus on the notion of a free variable. Through this 
experiment, I conclude that the emergence of the no-
tion of a free variable has a strong link with student 
recognition of geometry and to relating geometric 
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objects’ invariants with their infinitive characteris-
tics, such as variables. The use of different registers 
helped students to articulate the different cases. In 
the experiment, I realized that the main feature was 
the students’ use of the software. Because they did 
not know how to use it as an instrument, they were 
not able to master the use of the sliders when they 
changed windows. The project will continue with un-
derpinning teaching experiments and case studies 
to analyze the semiotic potential of the mentioned 
software in terms of, ‘what key linear algebra concepts 
can emerge’ through its use, and I will also point out 
students’ utilization schemes in sense of Rabardel 
(1995). The description of such utilization schemes 
may also be a basis for describing possible meanings 
that may emerge during the designed activities.
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Using spreadsheets in learning equations
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Spreadsheets as a very functional tool has been used in 
many studies to facilitate transition process from arith-
metic to algebra. In this study, we describe middle-grade 
students’ experiences about using spreadsheets in learn-
ing equations. For this purpose, ten 7th grade students 
who had been taken an elective mathematics course 
participated in a spreadsheet activity about exploring 
equations with two unknowns. As a result, working on 
the problem arithmetically with spreadsheets helped 
students to conceive the spreadsheet cells as variables 
and it facilitate the students’ formulization of arithmetic 
generalisations.

Keywords: Spreadsheets, arithmetic, algebra.

INTRODUCTION

Transition from arithmetic to algebra is considered as 
one of the crucial point of mathematics. Many studies 
indicate that majority of students have difficulties 
in this process. In recent years, using technological 
tools have been seen as an alternative approach to 
overcome these difficulties. Since spreadsheet activ-
ities provide instant feedback in an interactive envi-
ronment, it appeared as an important learning tool 
for students. Lots of studies have been done in math 
education about spreadsheets, many of which in al-
gebra. Spreadsheets, in particular, provide students 

with a learning environment in which students can 
explore equations (Lagrange & Erdogan, 2008), and 
make pattern generalizations which are one of the 
crucial components of algebraic reasoning. Students 
can provide variety of solutions and have chance to 
see relationships among the variables as numbers 
change (Edwards & Bitter, 1989).

Although the importance of using spreadsheets in 
teaching algebra, we do not encounter many examples 
in actual Turkish classroom settings. This study con-
tributes the efforts of utilizing technology in learning 
and teaching mathematics through a real example 
from a middle school classroom setting.

METHODOLOGY

This study was conducted with ten 7th grade students 
in a public middle school in Eskisehir, Turkey. Data 
were collected through a word problem (see below) 
which can be solved both arithmetically and algebra-
ically. Students worked in pairs throughout the class-
room period. The whole problem solving process was 
recorded on all computers through using the software, 
Camtasia Studio 7.

The problem: “On Tuesday a total of 91 people vis-
ited the local zoo. Entrance fees: 4 TL (Turkish 
Liras) for adults and 2 TL for children. At the end 

Figure 1: Sample student solution
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of the day the total ticket sales were 230 TL. So 
how many children visited the zoo?”

FINDINGS AND DISCUSSION

Initially, students used the “trial and error” strategy 
to find the total number of children visiting the zoo. 
The teacher provided a table drawn on a paper for 
each group for draft solutions and asked students 
to think about the possible numbers of children and 
adults visiting the zoo. In this moment, students used 
only calculators. After a few trials, the teacher asked 
students to continue working on the problem using 
pre-designed spreadsheets. While some groups ran-
domly entered numbers for children and adults and 
tried to find the total ticket cost (i.e., 230 TL), others 
used a more systematic way (see Figure 1). 

Later the teacher asked students to solve the problem 
algebraically. Specifically, the teacher asked students 
to create algebraic representations for the total num-
ber of people visited the zoo, and the total ticket sale. 
Following algebraic equations were provided from a 
teacher-led group discussion:

Teacher:  What does x+y=91 represent?
Student A: It is the total number of people visited 

the zoo. While “x” is the number of stu-
dents, “y” is the number of adults. The 
total number of people who visited the 
zoo is 91.

Teacher:  Okay. How about 2x+4y=230
Student B: Since children pay 2 TL for each ticket, 

I wrote “2x” for the total amount of mon-
ey they pay for entrance to zoo. Then I 
did the same thing for adults (4y). The 
total ticket sales should be 230 TL. So I 
wrote “2x+4y=230.”

Working on the problem arithmetically with spread-
sheets helped students to conceive the spreadsheet 
cells as variables. Thus, it facilitated making sense 
of variable and helped students make a smooth tran-
sition from arithmetic to algebra.
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Influence of dominant cognitive structure on the 
way of students’ thinking during problem solving
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In this contribution, I present a part of a research 
project, whose goal is to study and describe the ways 
in which 14-year-old students and students of the 
Department of Mathematics and Computer Science at 
Adam Mickiewicz University in Poznań, Poland, use 
respectively the graphic calculator and Geogebra for 
solving particular tasks. During this study, I attempted 
to answer the following question: what is the influence of 
dominant cognitive structure, predicative or function-
al, on the way of thinking of students during specific 
problem solving?

Keywords: Dominant cognitive structure, problem solving 

with technology, mathematical thinking, GeoGebra, graphic 

calculator.

INTRODUCTION

The appearance of graphing calculators and GeoGebra 
computer software in Polish schools has raised the 
interest of the research community in the students’ 
learning process with the use of those tools, aiming 
at recognizing both their advantages and disadvan-
tages as well as their role and place in the process of 
learning and teaching mathematics. In this context, it 
is important to know the differences concerning the 
ways in which people work on the same task with or 
without the use of technology (Demana & Waits, 2000).

THEORETICAL FRAMEWORK

For this study, I have used Schwank’s theory of func-
tional and predicative thinking (Schwank, 1995, 2001). 
Schwank’s study shows that in every human being 
we can observe a relatively stable tendency to exhib-
it a way of thinking characteristic of one of the two 
cognitive structures: either the predicative or the 
functional one. 

QUESTIONS

How do pupils and students of mathematics (future 
teachers) solve mathematics problems using the 
graphing calculator and GeoGebra in relation to 
their dominant cognitive structure, be it functional 
or predicative? Does the analysis of solution of the 
problem allow determining the dominant cognitive 
structure of each student? Is this structure the same 
during the student’s work on a task with or without 
technology?

METHOD

This research study involved first grade junior high 
school students and students of Math and Computer 
Science Department of Poznań Adam Mickiewicz 
University, specializing in teaching. The work of the 
high school students was observed in the context of 
an examination requiring solving non-standard tasks 
with a graphic calculator; the work of the university 
students was observed in the context of a research 
project focusing on the ways of working on non-stan-
dard tasks with or without the use of new technol-
ogies. The data gathered consisted of the records of 
the students’ work on the task with technology, the 
records and notes of a discussion with the students 
after the activities with technology, and the students’ 
worksheet (Juskowiak, 2014).

RESEARCH RESULTS AND IMPLICATIONS

The attempt to define the way of thinking of the ex-
amined junior high school students and university 
students, based on their solutions, has turned out not 
to be an easy task. It required a specific methodology, 
which entailed a precise monitoring of the students’ 
work on the task through the use of tools for recording 
the students’ activity with technology. Such methodol-
ogy allowed observing the problem solving process in 
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a very precise and detailed way, so helping to define 
the students’ way of thinking. Though this is a pre-
liminary small-scale study, it seems to show that on 
the basis of tasks solution one can draw conclusions 
about the students’ dominant thinking structure. 
The same dominant cognitive structure manifested 
both in working with technology and without its use. 
Only in one case, this did not occur: a student with a 
dominant predicative cognitive structure solved the 
math problem with technology showing a functional 
cognitive structure. This confirms the fact, which had 
already been observed by Schwank, that the tendency 
to a specific way of thinking does not exclude thinking 
in other ways (Schwank, 1995, 2001).

REFERENCES

Demana, F., & Waits B. K. (2000). Calculators in Mathematics 

Teaching and Learning: Past, Present, and Future, Hand-

Held Technology in Mathematics and Science Education: 

A Collection of Papers. Columbus, OH: The Ohio State 

University.

Juskowiak, E. (2014). Functional or predicative – how student 

think during solving mathematical problem? – analysis of 

students’ work. In M. Pytlak (Ed.), Communication in the 

Mathematical Classroom (pp. 243–254). Rzeszów, Poland: 

University of Rzeszów.

Schwank, I. (2001). Analysis of eye-movements during func-

tional versus predicative problem solving. In J. Novotna 

(Ed.), Proceedings of the 2nd Conference of the European 

Society for Research in Mathematics Education (pp. 

489–498). Prague, Czech Republic: Charles University, 

Faculty of Education.

Schwank, I. (1995). On predicative versus functional cognitive 

structures. In I. Schwank (Ed.), Proceedings of the First 

Conference of the European Society for Research in 

Mathematics Education (pp. 84–96). Osnabrück, Germany: 

Forschungsinstitut fuer Mathematikdidaktik.



2430CERME9 (2015) – TWG15

Integrating technology into primary and 
secondary school teaching to enhance 
mathematics education in Hungary

Zsolt Lavicza1, Istvan Juhos2, Balazs Koren3, Kristof Fenyvesi4, Csaba Csapodi2, Marta Kis2 and Jose-
Diego Mantecón5 

1 University of Cambridge, Cambridge, UK, zl221@cam.ac.uk

2 University of Applied Sciences Budapest, Budapest, Hungary

3 Eötvös Loránd University, Budapest, Hungary

4 University of Jyväskylä, Jyväskylän, Finland

5 University of Cantabria, Santander, Spain

Keywords: Technology, teaching traditions, design 

experiments.

During the past decades, technology has been becom-
ing an integral part of everyday life and slowly shaping 
mathematics and science teaching and learning (e.g., 
Heid & Blume). Although there has been enormous in-
vestment on educational technologies in many coun-
tries, technology has yet to make a sizable impact on 
education (e.g., Drijvers et al., 2010). On the one hand, 
students are becoming increasingly proficient users 
of technology while, on the other hand, opportunities 
offered by technologies have still little been utilized. 
Nevertheless, technologies are becoming more inte-
grated into education providing new opportunities 
for pedagogical approaches and classroom organi-
sation. For example, mathematicians stated that they 
use technology because in this way they can more 
easily treat students as mathematicians and nurture 
their knowledge through discovery and experimen-
tation (Lavicza, 2010). To utilise the opportunities 
technology offers we developed a large-scale project, 
GEOMATECH (http://geomatech.hu), in Hungary in-
tegrating teaching traditions of the country as well as 
good practices from around the world.

Many Hungarian mathematicians, scientist and math-
ematics educators have a world-wide respect. In ad-
dition, mathematics education theorists and practi-
tioners, George Pólya, Zoltán Dienes, Imre Lakatos, 
Tamás Varga among others, are often quoted as great 
innovators and founders of modern theories and prac-
tices in mathematics education. In the GEOMATECH 

project, we are developing new approaches for tech-
nology integration into Hungarian schools utilising 
Hungarian teaching traditions, successful inter-
national examples, and experiences of Hungarian 
teachers. The research team of the project is closely 
working with 45 teachers (25 mathematics, 20 sci-
ence) and their students (1200 mathematics, 800 sci-
ence) for 8 months utilising Design Experiment and 
the Community of Practice frameworks (Cobb et al., 
2003; Jaworski, 2006) to develop teaching materials 
and employing theories of inquiry-based education 
(Artigue & Blomhoj, 2013). The research team offers 
continuous feedback to the material development, 
teacher training and software development teams 
to extend this work to other Hungarian schools. The 
GEOMATECH project (owing to the generous 8mil-
lion Euro EU Funding, TÁMOP-3.1.12) will develop 
high-quality teaching and learning materials for all 
grades in primary and secondary schools in Hungary. 
These materials (1200+ Mathematics, 600+ Science) 
will be embedded into an on-line communication and 
collaboration environment that can be used as an elec-
tronic textbook, a homework system, and a virtual 
classroom environment. In addition to material de-
velopment, we will offer 60-hour professional devel-
opment courses for more than 2400 teachers in 800 
schools in Hungary. Furthermore, we will organize 
a wide-range of teacher and student activities includ-
ing competitions, mathematics and science fairs, and 
develop a network of schools for the long-term sus-
tainability of the GEOMATECH project. The technol-
ogy background of the project is offered by GeoGebra 
(http://geogebra.org), which an open-source, dynamic 
mathematics software widely used around the world.

mailto:zl221@cam.ac.uk
http://geomatech.hu
http://geogebra.org
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All activities in GEOMATECH will be evaluated by 
the research team and questionnaires to measure 
students’ various beliefs and conceptions will utilise 
the modified instruments of Andrews and Mantecón 
(2015). Currently, we are in the initial phase of the 
project starting the Design Experimental phase and 
preparing the project team (almost 200 people) for 
further tasks in the project. In our poster, we will out-
lined the theoretical frameworks, the different stages 
of the project and highlighted initial results from the 
Design Experimental phase. 
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A lot of digital media are used in mathematics lessons. 
Students take recourse in them when difficulties arrive 
while solving exercises, but other difficulties often ap-
pear when choosing an inappropriate method to solve 
an exercise under usage of digital media. Students need 
to know whether, when, and in which way (wwww) to 
use digital media for procedures. Wwww differs for the 
same procedures in dependence on the digital media 
used. Activity Theory (AT) will be helpful to understand 
procedures used in solving exercises as described with 
examples of Computer Algebra Systems (CAS).

Keywords: Activity, method, object, digital media, CAS.

INTRODUCTION

In accordance with earlier findings (Stoppel, 2012), 
solving exercises include the development or the 
choice of methods like algorithms and their applica-
tion to objects like equations or geometric figures. The 
analysis of students’ solutions from two universities 
and several grammar schools showed that solving ex-
ercises depends on the ability of students to choose 
or develop an appropriate method to design or select 
any useful object for the solution of the exercise af-
terwards.

Based on these results, some exercises from calculus 
and probability theory were solved with different 
CAS. The analysis of solutions showed that different 
syntax of CAS leads to differences in the choice or the 
development of methods and activities for solving 
the exercises.

THEORETICAL BACKGROUND

Several possibilities for usage of CAS in different 
phases of a solving process are shown in Zehavi and 

Mann (2005). Examples of the applicability of CAS are 
described in Pointon and Sangwin (2001). We used 
Activity Theory to observe connections between the 
syntax of operations of media and the solution pro-
cesses. Studies concerning activities when using digi-
tal media already exist (e.g., Kaptelinin & Nardi, 2006). 
In contrast hereto we draw on the concept of activity 
system by Leontiev (1978) to study the methods used 
inside of solutions, and representations of the activity 
system of Engeström (1987) to investigate artefacts 
regarding the usage of media and their interconnec-
tions to methods.

Wwww lead to two questions: 1. In what situations 
are students unable to find methods or connections of 
methods to objects? 2. What might be helpful for stu-
dents to find legitimacy methods and connections? An 
analysis of several correct and wrong solutions in 
the abovementioned study shows that AT is helpful to 
understand the phases of the solving processes.

RESULTS

On the way to the application of a method, the learners 
need to decide whether to choose an already famil-
iar method or to construct a method by themselves. 
Independent of being useful for solving a given exer-
cise, the hierarchy of the approaches to solutions, the 
types of solutions and the way through solutions play 
a big role for students. When using different digital 
media, students might need to solve parts of exercises 
employing different command syntax. The command 
syntax could lead to methods that differ from usual 
methods of solutions without digital media, so that, 
with digital media, students might be distracted or 
even unable to recognize the solution at the end.

To find answers to question 2, we need to take a look at 
the usage of media by students in mathematics lessons. 

mailto:hannes.stoppel@uni-muenster.de
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While solving exercises, activities are important for 
the development of methods. Their complexities are 
visible in Engeström’s (1987) activity system while 
the inclusion of methods into solutions is shown by 
Leontiev’s (1978) concept.

With help of the systems the importance of various 
aspects and the interrelationships between them for 
a successful solution of an exercise becomes evident. 
Teachers need to consider them to support their stu-
dents and to decide on wwww to use digital media. 
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SCOPE AND FOCUS OF THE WORKING GROUP

Recent discussions within the CERME technology 
group have confirmed the relevance of introducing 
information and communication technology (ICT) 
in mathematics education with a range of various 
resources, such as software, hand-held devices and 
online classroom activities. The scope of the working 
group at CERME9 was to address the opportunities 
and possibilities, as well as the challenges and limita-
tions that resources and technology present for stu-
dent learning. Due to the large number of participants 
in the technology group at the last CERME conferenc-
es, the group was divided into two strands. TWG15 
concentrated on “teaching with resources and tech-
nology”, while the focus of TWG16 was on “students 
learning with the help of resources and technologies”. 

In TWG16, we were interested in empirical results 
obtained in the course of the last few years and dec-
ades concerning, for example, the introduction of new 
learning methods and concepts, the improvement of 
learning within the frame of old concepts or new 
forms of exercises in the whole range of mathematics 
education. Moreover, we wanted to set the scope to-
wards the future, to think about general conclusions 
for mathematics education, and the research required 
as well as the implications for the classroom. 

A range of different issues was covered, including: 

 ― The design and/or use of the current software 
and technologies concerning students’ formal 
and informal learning, at school and out of school;

 ― The design of teaching experiments with soft-
ware and technologies concerning student learn-
ing;

 ― The influence of computers, notebooks, tablets or 
handheld-technology on the learning of mathe-
matical concepts and the construction of learning 
environments;

 ― The results of empirical studies and investiga-
tions, especially those concerning long-term 
learning with ICT, massive courses, national pro-
grammes relating to the teachers’ professional 
development;

 ― The possibilities of present and up-coming mo-
bile communication and representation tools like 
tablets, smartphones;

 ― The possibilities of different methods of assess-
ment using ICT;

 ― The influence of web-resources and online cours-
es on the learning of mathematics;

 ― The examples of “best practice” in the classroom;

 ― The examples of the use of technologies designed 
for the support of students with disabilities.

RESULTS OF TWG16

In TWG16 we received 23 papers and 3 posters from 
15 different countries. In the following sections, the 
topics are classified as old questions and up-coming 

mailto:Matija.Lokar@fmf.uni-lj.si
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topics strongly represented in TWG16, which are 
discussed first, and finally the topics referred to as 
missing topics are discussed. 

“Old question” strongly represented in TWG16
Starting with the Dynamic Geometrical Systems 
Cabri-Geomètre and The Geometer’s Sketchpad in the 
late 1980s, dynamic mathematics has always been a 
strong argument for the use of new or digital technol-
ogies. Nowadays, there are numerous simulations in 
mathematical and environmental settings, which use 
dynamism in connection with touch screen technology. 
An example is the “place value chart” (Figure 1), which 
visualizes the changes while moving the tokens from 
one column to the other (see the article of Behrens). 
See also the papers by Brunström and Fahlgren and 
Bray, Oldham and Tangney.

Multi-linked representations are another often men-
tioned argument for using digital technologies in the 
learning process. Figure 2 shows the symbolical, nu-
merical and graphical representations of a quadrat-
ic function, which enable, for example, identifying 
structural analogies in the different representations 
(see the articles of Pinkernell and Swidan).

There are many more topics that are important and 
will stay important in the following years: 

 ― ICT and problem solving and/or guided in-
quiry learning (see for example the paper by 
Schumacher and Roth)

 ― The relationship between hands-on materials 
and ICT

 ― The transition from activities to mathematical 
thinking

 ― The transition between ICT-tools and pa-
per-and-pencil activities

 ― The benefits of ICT for the learning of content, 
e. g., calculus

 ― Programming and its connection to mathematics 
(see the paper by Misfeldt and Ejsing-Duun)

Up-coming topics 
a) Touch Screens and Human-
Computer Interaction 
Touch screen working with tablets is already a 
frequently discussed topic in present classrooms. 
Gestures will become more important – for exam-
ple, while zooming into a graph or diminishing an 
interval – to help visualizing and, hopefully, under-
standing mathematical concepts. The complexity of 
simultaneously changing more than one variable (by 
moving the fingers) should by no means be underesti-
mated. But the empirical basis concerning these new 
features is still quite small. See the paper by Bairral 
and Arzarello. 

b) Internet resources – Social media or networks
Although Internet resources such as Facebook, etc. 
are not constructed for doing mathematics, social me-
dia or networks open new possibilities, for example, 

“peer learning”. There might be automatic help systems 
available, but there will also be the possibility to get 
personal help from experts, tutors, students or other 
Internet users. See the article of Puga and Aguilar.

c) Automatic Testing – Automatic Feedback  
Intelligent tutoring systems have been developed and 
tested in mathematics classrooms for many years (see 
the article of Borba, Azevedo and Barreto). Nowadays, 
there seems to be a new approach possible in forma-

Figure 1: Changing the number’s representation within the place 

value chart by moving tokens

Figure 2: Dynamic multiple representation environment for 

exploring the effects of a on the representations of f(x)=x²+a
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tive assessment within the frame of automatic testing 
and automatic feedback, especially in arithmetic and 
algebra. 

The system described in the paper by Geraniou and 
Mavrikis supports the transition from arithmetic 
to algebra by visualizing the variables in different 
representations. The article of Mackrell shows how 
real-world problems will be solved in a CABRI envi-
ronment through the provision of effective feedback. 
There are a lot of didactical problems in the construc-
tion of systems like these: the problem of the right feed-
back in problem solving activities, the possibility of 
different kinds of feedback and feedback as step-wise 
help, feedback on task level or/and process level, and 
so on. Haddif and Yerushalmy focus their research 
on e-assessment of challenging calculus construction 
e-tasks designed to function as a dynamic interactive 
environment of multiple linked representations (MLR) 
that provide feedback to the learner (Figure 4).

d) The significance of “games” for 
mathematics learning
Young students often play games on their tablets and 
smartphones, which raises the possibility of integrat-
ing mathematical games into the environment that 
is already present. Soldano, Arzarello and Robutti 
want the users to improve their proving abilities in 
a geometric environment, while Avraamidou wants 
the users to build houses, while adjusting the budget 
in relation to some variables such as the size of the 
building, the cost of the furniture and the mood meter. 

e) ICT-support and special needs students
We only received one contribution referring to the 
learning style of a special needs student. Particularly 
students with physical disabilities might benefit from 
the possibilities of digital technologies. However, em-
pirical research is still quite rare and the results are 
quite individual anyway, and generalizations almost 
impossible because of the great variety of special 
needs.

Missing topics
In TWG16 we have “only” received 26 papers and post-
ers and, of course, these contributions represent a 
relatively small array of all possible topics. This just 
might be an indication of the waning importance of 
some topics, which were quite intensively discussed 
only a few years ago. 

 ― The new possibilities of ICT concerning creating 
videos, doing screen recording, gathering and an-
alysing big data … were not discussed in TWG16.

 ― Digital technologies allow more individuality, for 
example, the creation of portfolios and person-
alized e-textbooks.

 ― Communication is the norm and the goal in the 
NCTM standards (2000) and nowadays in many 
curricula all over the world. DT might support 
cooperation between communities and enable 
the “opening” of the classrooms. 

 ― Completely new and emerging technologies have 
not been discussed in our group: sensor devices, 
augmented reality, mobile technology …

 ― Symbolic calculators are not discussed in any pa-
per. They seem to be disappearing because they 
cannot compete with laptops, tablets and smart-

Figure 3: Transition from arithmetic to (formal) algebra (Geraniou 

& Mavrikis)

Figure 4: Construction of rational functions by given “dots” of the 

graph of the function
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phones. But there are still strict regulations (in 
some countries, for example in Germany), and 
these tools are not allowed during examinations. 

There are also some topics that might be called tradi-
tional and will be an ongoing problem in mathematics 
education, not only in relation to the use of digital 
technologies: 

 ― We need more long-standing quantitative empir-
ical investigations;

 ― We – as researchers – have to use proper research 
methods, which are informed by contemporary 
theories, and base our work on the existing and 
growing research in mathematics education;

 ― We have to get some more information about the 
actual use of digital technologies in real class-
rooms.



2439CERME9 (2015) – TWG16

TWG16

Research papers



2440CERME9 (2015) – TWG16

Children’s perception of the affordances 
of the mathematical tools

Yasmine Abtahi

University of Ottawa, Ottawa, Canada

Vygotsky’s theory proposes a sign/tool-mediated view 
of learning. Tools and signs are inseparable parts of 
teaching and learning of Mathematics. Vygotsky’s the-
ory provokes questions: how are tools perceived, how 
are signs tied to the use of tools and consequently how 
are tools being used in the mathematics classroom. In 
this paper, I look at Vygotsky’s perspectives on the per-
ception of the tools, through the lens of Gibson’s view of 
affordances. I analyse three children’s interactions with 
the mathematical tools, as they gradually begin to tie 
signs to them, while working on addition of fractions 
problems.

Keywords: Perception, affordances, tools, fractions, 

meaning.

INTRODUCTION

Fractions are one of the most challenging concepts 
to teach and learn in elementary-school mathemat-
ics (Steffe & Olive, 2010). Lamon (2007) noted that 
fractions are one of the topics in elementary-school 
mathematics that are among ‘the most difficult to 
teach, the most mathematically complex, the most 
cognitively challenging, and the most essential to 
success in higher mathematics and science’ (p. 23). 
One way to assist children in learning fractions is to 
employ different mathematical tools in the classroom 
(Cramer & Henry, 2002; Misquitta, 2011; Mendiburo, 
2011; DeCastro, 2008; Mills, 2011; Cramer, Post, & del 
Mas, 2002).  Extending Swan and Marshall’s (2010) 
definition, mathematical tools are any tool-like objects 
that can be handled by an individual during which 
mathematical thinking is fostered. Objects – any foci 
of attention (Engestrom, 2009) – are inseparable parts 
of any mathematics classroom. They include tools 
such as an abacus, symbols such as x2, and graphs.  
The use of tool-like objects refers to Marx’s view of 
the use of working tools; where man uses the phys-

ical and mechanical properties of objects to reach 
his goals. Hence, an abacus is a tool-like object and x2 
is not, because children are able to use the physical 
and mechanical properties of an abacus to achieve a 
mathematical goal.

Although the use of mathematical tools is concep-
tualised as being useful in the learning of fractions, 
children encounter difficulties in grasping the rela-
tionship between mathematical tools and the math-
ematical meanings that they are intended to repre-
sent (Norman, 1993; McNeil & Uttal, 2009; Rabardel & 
Samurçay, 2001). The process within which the child 
grasps the interrelationship between mathematical 
tools and the meaning of a mathematical concept is a 
highly complex one. 

McNeil and Uttal (1997) explained that any mathemat-
ical tool “can be thought of in two different ways: (a) as 
an object in its own right and (b) as a representation 
of something else” (p. 43). For example, if the relation-
ship between the sizes of the pieces in fraction circles 
and the concept of the additions of fractions is not 
clear to a child, then he/she needs to learn not only 
the mathematical concept, but also the functionality 
of the fraction circles as a system and its relationship 
with the mathematical concept; in other words, he/she 
needs to learn two separate systems and the relation-
ship between them. 

In this paper, I look at the interrelationship between 
mathematical tools and the mathematical meanings 
represented by the tools, in the context of fractions 
learning. Within the mathematics education re-
search, the relationship between the mathematical 
tools and the mathematical concepts has been stud-
ied under different theoretical framework, in par-
ticular Cultural Historical Activity Theory (CHAT) 
and Actor-Network Theory (ANT). CHAT providing 
a detailed theoretical lens to analyse the mediated 
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actions of a subject, investigates the subjects activi-
ty in relation to a particular goal (Engestrom, 1999). 
ANT, on the other hand examines the association of 
human and non-human entities as nodes of a network 
(Fenwick & Edwards, 2010) nodes of the network. Both 
these theories, even though seemingly relevant, have 
limitations in the particular context of my study. My 
focus in this study is on how children, with their own 
perceptions, utilise the physical properties of tools 
to construct meaning for the mathematical concept, 
through solving a mathematical task. Neither CHAT 
nor ANT provides me with a lens to thoroughly exam-
ine the role of the physical properties of the tools in 
children’s understanding of fractions.  Therefore, to 
look at the physical properties of mathematical tools – 
as objects in their own right – I used Gibson’s notion of 
affordances. And to look into children’s mathematical 
perception as they interact with the tools (i.e., the in-
terrelationship between the tools and mathematical 
meanings). I introduce the concept of perception, as 
viewed by Vygotsky in the object/meaning ratio. 

GIBSON’S VIEW OF AFFORDANCES 

Concerned with how the environment supports cog-
nitive activity, Gibson (1977) contended, “in any in-
teraction involving an agent with some other system, 
conditions that enable that interaction include some 
properties of the agent along with some properties 
of the other system” (Gibson, 1977, p. 72). Gibson’s no-
tion of affordance focuses on the contribution of the 
physical system to the cognitive activity. The term 
affordance refers to whatever it is about the environ-
ment that contributes to the kind of interaction that 
occurs. In relation to the learning of mathematics, 
the term affordances refer to whatever it is about a 
mathematical tool that contributes to the interaction 
of the child with these tools in the process of solving 
a mathematical task. I consequently refer to the term 
perception as whatever it is about the child’s thinking 
that contributes to the interaction with the tools. 

In a child’s interaction with the tools, it is crucial to 
highlight where to locate the reference of the term af-
fordance. For example, is the affordance that fraction 
circles provide for making half a unit or 1/2, a proper-
ty of the fraction circles, a property of the child inter-
acting with it, or properties of both? Fraction circles 
are a set of nine circles of different colours. Each circle 
is broken into different equal fractional parts, which 
use the same size as a whole. Gibson argued “affor-

dance is a property of whatever the person interacts 
with, but to be in the category of properties, we call 
affordances, it has to be a property that interacts with 
a property of an agent in such a way that an activity 
can be supported” (p. 341). Hence, for the properties 
of a mathematical tool to be called its affordances, they 
need to be perceived by the child in such a way that 
a mathematical activity can be supported. For exam-
ple, the physical properties of fraction circles that 
might assist a child to grasp a fractional concept are 
called their affordances only if the child perceives the 
interrelationship between the physical components 
of the fraction circles and the mathematical task, e.g., 
to solve 1/3 + 1/2. The physical properties of fraction 
circles might also be perceived as useful to build a 
bridge; these properties are called affordances if the 
task at hand is bridge making. 

The above argument implies that interacting with an 
environment that provides an affordance for some 
activity does not entail that the activity will happen; 
the occurrence of the activity is intertwined with: 
the activity of the agent in that situation – that is his/
her perception – and the task at hand. Assuming the 
task at hand is a particular mathematical task to be 
solved by the child, it is then the perception of the 
child that needs in-depth analysis; that is how the child 
perceives the tool and its affordances, in accordance 
with the mathematical task. Vygotsky’s notion of 
Object/Meaning ratio offers a systematic approach 
to look at the gradual yet complex process of change 
in the child’s perception as she/he interacts with the 
mathematical tools to make meanings for the tool as 
well as the mathematical concept. 

VYGOTSKY’S VIEW OF PERCEPTION

A special feature of human perception is the percep-
tion of real objects (Vygotsky, 1976). The perception 
of the real objects involves the perception of not only 
colours and shapes but also of meaning; we do not 
see a round object with two hands, we see a ‘clock’. 
The attachment of meaning to an object is a process 
that develops through the use of signs in interactions 
with tools (Vygotsky, 1978). Signs, such as language, 
drawings and the various systems of counting, are 

‘means of internal activity aimed at mastering oneself ’ 
(Vygotsky, 1978, p. 55). To better explain the process 
of attaching signs to the use of tool-like objects, I use 
Vygotsky’s object/meaning ratios. 
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Vygotsky argued that at first the perception of a hu-
man being could be expressed figuratively as a ratio 
in which the numerator is the object and the meaning 
is denominator – object/meaning. This means that for 
a young child the object is dominant and the meaning 
of the object is subordinate. At this stage, the physical 
properties of things play an important role in a child’s 
interaction with them. For instance, a stick can be a 
horse in child’s play but a box of matches cannot be 
a horse. It is only later, when the child can make use 
of signs and symbols in her/his interaction with the 
objects, that the meaning becomes the central point 
and objects are moved from being dominant to being 
subordinate, thus giving rise to the meaning/object 
ratio. At this stage Vygotsky noted that, for example, 
to show a location of a horse on a map a child could 
put a box of matches down and say, ‘This is a horse’. 
The perception of the child can now be expressed as 
a meaning/object. This figure of perception in which 
the meaning dominates is the result of tying signs 
to the tools; the box of matches is a symbol (sign) to 
represent the horse.

Vygotsky’s object/meaning view has a two-fold theo-
retical implication for the study of children’s percep-
tions as they interact with the mathematical tools to 
solve a task. On the one hand, it provides a base for 
analysing the gradual changes of the child’s percep-
tion of the affordances of the tools as the child inter-
act the tools to work on a mathematical activity. On 
the other hand, it provides a base for analysing the 
gradual changes of the child’s perception of the inter-
relationship between the tools and the mathematical 
meaning they are intending to represent.

Provided that the child is interacting with a mathe-
matical tool to solve a mathematical task, at the initial 
stage of the child’s encounter with the mathematical 
tool, the child’s perception can be presented by the 
object/meaning. This figure of perception applies to 
how the child perceives the affordances of the tool 
(i.e., the meaning of the tools as an object in relation 
to the task at hand) as well as how the child perceives 
the mathematical concept represented by the tool (i.e., 
the mathematical meaning). At this stage, the tool is 
dominant and its meaning(s) – as an object or its math-
ematical meaning – is subordinate. Hence, this is the 
stage that the physical properties of the mathematical 
tool play an important role in the child’s interaction 
with them, both to perceive the affordances provided 
by the tool and to perceive the mathematical concept 

presented by the tool. For example, in fraction cir-
cles, the relationship between sizes and colours of 
the pieces plays an important role in how the child 
perceives the affordances of the fraction circles and 
the fractional concepts they are presenting.

In order to invert this ratio, that is, in order for a tool 
to be used as a symbol (a sign) for a mathematical con-
cept, the child needs to increasingly tie signs to their 
use of the tool. Children do this by talking about what 
they do, talking about the tasks, drawing, and using 
mathematical symbols. It is in the gradual process 
of inverting the object/meaning ratio to a meaning/
object ratio that children grasp the interrelationship 
between the affordances of mathematical tools and 
the meaning of the mathematical concepts that they 
are intending to represent. 

In the following sections, I illustrate these ideas with 
two examples of children’s interactions with math-
ematical tools as they attempted to solve addition 
of fractions problems. In the first example, N and 
J used their perception of the addition of fractions 
to make meaning of the affordances of a newly de-
signed mathematical tool (i.e. the fraction board) in 
relation to the task. During the interviews, N and J 
used different mathematical tools, such as fraction 
strips and Cuisenaire Rods to solve different addition 
of fractions problems. My rationale to report their 
interaction with the fraction board is that this tool 
was designed by me, hence children had no previous 
encounters with the tools. Children’s first interaction 
with the tools gave me an opportunity to examine how 
they used the mathematical perception of the addi-
tion of fractions to perceive the affordances of the 
fraction board. In the second example, Teresa used 
the affordances provided by a mathematical tool to 
make meaning of the addition of fractions. In both 
cases, however, the children’s perception, both of the 
mathematical concept and of the tool, changed gradu-
ally and through tying signs to their interactions with 
the tools as they worked on the specific mathematical 
tasks. The reason for selecting these two pieces of data 
is to implicitly illustrate how the children’s perceptual 
change of the affordance of the mathematical tools 
goes through similar gradual and complex process 
as children’s gradual changes in perception of the 
mathematical meanings presented by the tool.
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THE CASE OF J AND N: WORKING 
WITH THE FRACTION BOARD

J and N, in grade 5, participated in a small-scale re-
search study in which they were asked to use a mathe-
matical tool called the fraction board to solve 1/6 + 2/5.  
The fraction board is designed to help students with 
the addition of fractions. It contains fraction strips 
of half, third, fourth, fifth and sixth, a board which 
frames a fraction chart from one to 1/30, and a wooden 
roller which holds the fraction strips and moved up 
and down the board (Figure 1). 

Both N and J has previously demonstrated an under-
standing of the addition of fractions through other 
tasks, but neither of them had had previous encoun-
ters with the fraction board. Hence, they initiated the 
task by attempting to grasp the mathematical affor-
dances of the fraction board, as an object on its own 
right. With the initial help of the researcher (Y), N and 
J started to perceive the general physical properties 
of the tool, not in any particular relation to the task 
at hand. For example when Y began to introduce the 
physical components of the board both N and J quickly 
perceived the affordances of the strips by assigning a 
fractional amount to them:

Y. Okay I just very quickly tell you that this 
is a fraction board.  These are called frac-
tion strips and we have different kinds

J. This is 1/2 and this is 1/4 [pointing to dif-
ferent fraction strips]

At this stage, the physical properties of the tool played 
an important role in N and J’s perception of the tool. 
For example, the ways in which different fraction 
strips are partitioned into different equal sized 
parts, assisted N and J to perceive their affordances. 

Through the gradual increase of the use of signs in 
their interaction with the tool, N and J’s perception 
of the affordances of the strips gradually changed. 
This time in relation to the particular task at hand 
(i.e., to solve 1/6 + 2/5), they picked the strips of 6ths 
and 5ths as stated: 

J. that is the 1/6 so I need one of that
N. yes and for that you need two (pointing 

to the 1/5 fraction strips). 
[J colours the strips, one part on the 6ths and 2 parts 
on 5ths]

It was only later, that N and J were able to tie signs 
related to the mathematical meaning of the addition of 
fractions to their use of fraction board, perceive other 
affordances of the tool, and solve the mathematical 
task at hand. After selecting the two useful fraction 
strips of (6ths and 5ths). N and J started to perceive 
the “adding” affordances of the tool: “N. and I …I…I 
guess they would go in here (pointing to the roller)”. 
After loading the strips on the roller, N and J did not 
immediately perceived the affordance that the tool 
provided for finding the common denominator.  So 
they used their perception of the mathematical con-
cept of the need of a common denominator to perceive 
the affordances of the tool. They knew that to add 1/6 + 
2/5, they needed to “turn the 5 and 6 into something”. 
So they started to randomly moving the roller down 
the fraction board to see what number on the chart fit 
in both 1/6ths and 1/5ths. They unsuccessfully tried 
12ths, 9ths and 18ths:

J. we can turn this (6ths) into two twelve’s.  
[they stopped at the 12ths line, noting 5ths 
did not fit]

N. Lets try the nines
J. nop…
N. No definitely not
L. try 18 … 18 going to 18?

After a few trial and errors they again used their 
perception of the concept of addition of fraction to 
conclude that the number that fits in both 5ths and 
6ths is the thirtieths. 

J. Oh… I get it, I can do it.  
[…]
J. 1, 2, 3, 4, 5
N. five… five thirtieth 
J. so we can trade this into five thirtiethsFigure 1
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N. and then counting on the sixths… (count-
ing from the top of the roller…), so 1, 2, 3, 
4,5, 6,7 ,8, 9, 10, 11, 12… twelve thirtieth  

J. so we can trade this (pointing to the one 
sixth strip on the fraction board) with 
12/30.  So we can change it into 17/30.

N and J’s interaction with the fraction board is an 
example of how perceiving the mathematical affor-
dances of a mathematical tool is a gradual process, 
which is intertwined with the mathematical task. 
Moreover, this example shows how N and J’s object/
meaning ratio (where they interacted with physical 
properties the fraction strips and the board to per-
ceive the affordances of the fraction board) was in-
verted to a meaning/object ratio (where they used the 
affordances of the fraction board to solve the task).

THE CASE OF TERESA: WORKING 
WITH FRACTION KITS

This example is borrowed from Pirie and Kieren’s 
(1989) study, in which Teresa used fraction kits to solve 
an addition of fraction problem. The reason for in-
cluding this episode is that Pirie and Kieren’s (1989) 
study was conducted over a period of time, which 
made it possible to look at Teresa’s gradual chang-
es in perception over a longer time span. Fraction 
Kits were designed by Tom Kieren; they contain rec-
tangles, based on a common standard sheet as a unit, 
representing halves, thirds, fourths, sixths, eighths, 
twelfths, and twenty-fourths. 

Teresa began the task of adding two fractions, not 
knowing what to do. She said ‘I don’t know’ and ‘I think 
you just add the tops and the bottoms’ (Pirie & Kieren, 
1989, p. 163). She was then given the fractions kits and 
a series of tasks. By perceiving the affordances pro-
vided by the fraction kit, ‘she noticed that one fourth, 
three eights, and two sixteenths together exactly cov-
er three fourths’ (Pirie & Kieren, 1989, p. 163). Later, 
Teresa could ‘add’ 1/3 + 1/6 + 6/12 using the affordances 
of the kit. This is the stage in which the physical prop-
erties of the fraction kit, for example, the relationship 
between the sizes and colours of the pieces, played 
an important role in Teresa’s interaction with the kit. 

After a while, with a gradual change in her percep-
tion of the mathematical concept of the addition of 
fractions, she was able to tie signs to her interaction 
with the tool: ‘You can do 2/3 + 5/6 because twelfths 

fit on both’ (Pirie & Kieren, 1989, p. 167). Later, when 
asked ‘What is 1/2 + 3/4 + 2/5 + 7/10?’, Teresa, without 
using the kit, she said: 

Twentieths will fit on all of them. Two times ten 
makes twenty, so one times ten or ten twentieths. 
Four times five makes twenty so three times five 
is fifteen twentieths... (p. 169). 

Teresa’s gradual perceptual development for the ad-
dition of fractions, through the use of the fraction kit, 
made it possible for her to make statements like: 

Addition is easy. You can make up the right kind 
of fractions just by multiplying the denominators 
and then just get the right numerators by multi-
plying by the right amounts (p. 169). 

This example shows how in the process of Teresa’s 
interaction with the mathematical tool her object/
meaning perception (where she used the fraction kit 
to solve the task) was inverted to become a meaning/
object ratio (where she used signs and symbols to solve 
the task). In this process, Teresa increasingly used 
signs, while interacting with the fraction kits.

DISCUSSION

In this paper, I have employed Gibson’s concept of af-
fordances and Vygotsky’s notion of object/meaning 
ratio to analyse children’s interactions with two dif-
ferent mathematical tools. Teresa’s case demonstrated 
a gradual perceptual change in the mathematical con-
cept of the addition of fractions as she used a fraction 
kit to solve the addition of fractions tasks. J and N’s 
case, by contrast, showed a gradual perceptual change 
in the affordances of the mathematical tool (i.e., the 
fraction board). These two examples show how chil-
dren’s perception of a mathematical tool and their per-
ception of the mathematical meanings presented by 
the tool go through similar gradual and complex pro-
cesses. Moreover, in both cases the children percep-
tions, of the tools and of the mathematical meanings, 
are highly intertwined with the children’s attempt to 
solve the mathematical task. For example, in J and N’s 
case, they would have perceived different affordances 
provided by the fraction board, had the task been to 
find the equivalent fractions of a particular fraction.

Perceiving the affordances of a mathematical tool is 
highly intertwined with perceiving the mathematical 
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concepts there are intended to represent and with the 
task at hand.  However, the main reason for contrast-
ing the case of Teresa (implicit focus on changes in 
perception of mathematical meaning) with the case 
of N and J (implicit focus on changes in perception on 
the affordance of the tool) in this paper, is to illustrate 
significance of combining the Gibson’s view of affor-
dances and Vygotsky’s view of perceptual changes. 

Based on Gibson’s view, the affordance of an object 
only become apparent in the ways in which the ob-
ject is being used in a particular task. Based on this 
perspective the meaning of the object is interrelated 
with not only what the child is doing with the object, 
in relation to the task at hand, but also the mathemat-
ical meanings that may or may not be apparent to the 
child using the tool. Consequently, the Gibson’s view 
of an object makes Vygotsky’s notion perception in 
the object/meaning ratio more dynamic.

Moreover, the combination of Gibson’s view of affor-
dances with Vygotsky’s perspective of object/meaning 
ratio may shed some light on how the children use 
the physical properties of the mathematical tools to 
perceive their affordance and their relationships to 
the mathematical task.  

Further research is required to examine how the 
physical properties of mathematical tools play a role 
in children’s interaction with them. 
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Gaming the system is a behaviour that must be avoided 
when interactive learning environments are designed. 
However, from the point of view of the research in mathe-
matics education, the observation of this behaviour may 
bring to light the students’ knowledge. In this paper, we 
provide results of a study in which primary education 
students (10–11 years old), grouped in pairs, solved prob-
lems in an arithmetical way using an intelligent tutor-
ing system. We analyse cases in which the students were 
able to refine a fuzzy idea of how to calculate a quantity 
based on the belief that they necessarily had to use cer-
tain quantities, operations or conceptual schemes. We 
also provide examples of how sometimes such students’ 
certainties can become obstacles.

Keywords: Word problems, intelligent tutoring systems, 

gaming, primary education, arithmetic.

INTRODUCTION AND AIMS

One-to-one tutoring (one teacher for one student) 
produces better results than instruction in ordinary 
groups (Bloom, 1984). However, the high cost of this 
kind of teaching prevents a widespread use. One 
way to circumvent these difficulties is to use intel-
ligent tutoring systems (ITSs) that reproduce some 
of the actions that are carried out by a human tutor. 
The learning of arithmetical word problem solving 
has been a field where the design of new ITSs has 
abounded. Some examples would be AnimalWatch 
(Beal, Arroyo, Cohen, & Woolf, 2010); HERON (Reusser, 
1993); or MathCal (Chang, Sung, & Lin, 2006).

Gaming the system is an unwanted behaviour when 
ITSs are used in teaching situations. We use the defi-
nition of gaming provided by Baker and colleagues 
(2009): “attempting to succeed in an interactive 

learning environment by exploiting properties of 
the system rather than by learning the material (by 
systematically guessing or abusing hints)” (p. 475). To 
avoid this behaviour, some control elements should 
be introduced during the ITSs design. However, from 
the point of view of the research in mathematics ed-
ucation, the observation of systematic guessing in a 
computer environment can provide us with informa-
tion about students’ prior knowledge when they make 
a mistake and the degree of certainty associated with 
this knowledge (see examples about the importance 
of analysing these performances in Mavrikis, 2010; 
Shih, Koedinger, & Scheines, 2008).

In this report we briefly describe the operation of 
the ITS called Hypergraph Based Problem Solver 
(HBPS) when it is used to solve word problems in an 
arithmetical way. We put forward an analysis of the 
performances of primary education students (10–11 
years old) when they solve problems arithmetically 
using HBPS. It is an exploratory study that is the first 
step of an ongoing research about the effect of gaming 
when teaching to solve word problems with an ITS. In 
particular, in this paper, our analysis focuses on the 
moments in which the students resort to gaming the 
system to advance into the resolution process when 
a verbal cue acts as a source of confusion. The aim of 
this report is to show that the analysis of this behav-
iour provides relevant information about students’ 
knowledge and misconceptions.

THEORETICAL FRAMEWORK

The arithmetical solving of word problems implies the 
repeated execution of analytical-synthetic process-
es (Bogolyubov, 1972). During the analytical process, 
solvers try to link the unknown quantities with the 
known ones through conceptual schemes that typical-

mailto:david.arnau@uv.es
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ly arise from the described situations in the statement 
(Riley, Greeno, & Heller, 1983). For example, a problem 
in which the time spent by a person going from one 
point to another is mentioned will usually evoke typ-
ical conceptual schemes of distance-rate-time (Mayer, 
1981) such as the distance covered by a person is ob-
tained through multiplying the speed of this person 
by the time spent. In an arithmetical solution, concep-
tual schemes let solvers link one unknown quantity 
to other known ones, and therefore make possible 
directly calculating the unknown quantity. Obviously, 
when students solve word problems, they may find 
difficulties in matching up the conceptual scheme to 
the right operation. These difficulties are reflected in 
the construction of incorrect operations.

On the other hand, when solvers read a problem state-
ment some key words, which act as verbal cues, can 
lead them to identify not only the conceptual scheme, 
but also the arithmetical operation necessary for 
finding the solution: e.g., altogether, lost, gained, etc. 
However, as Nesher and Teubal (1975) pointed out, 
these key words also might act as a source of confu-
sion leading the solver to an incorrect mathematical 
operation. In this way, Lewis and Mayer (1987) called 
statements such as “Joe runs 6 miles a week. He runs 
3 times as many miles a week as Ken does. How many 
miles does Ken run in 4 weeks?” (p. 366) inconsist-
ent compare problems, because the solution requires 
division of two numbers but the structure times as 
many as is involved. Several studies have shown that 
students tend to generate more solution errors in 
word problems that contain key words that suggest 
the opposite operation to that which is required in 
the solution process (Hegarty, Mayer, & Green, 1992; 
Lewis & Mayer, 1987; Nesher & Teubal, 1975).

MATERIAL AND METHODS

Material
In this study we used the program HBPS (Arnau, 
Arevalillo-Herráez, Puig, & González-Calero, 2013; 
Arnau, Arevalillo-Herráez, & González-Calero, 2014; 
González-Calero, Arnau, Puig, & Arevalillo-Herráez, 
2014), which is able to supervise both the arithmetical 
and algebraic ways of solving word problems [1]. In 
fact, HBPS was designed around the main actions that 
an expert human tutor would do when supervising 
a student at solving an arithmetical problem. In par-
ticular, HBPS can infer the line of reasoning that a 
student is following and provide him/her adapted 

feedback messages using natural language. In this 
sense, results from Arnau, Arevalillo-Herráez, and 
González-Calero (2014) back the idea that HBPS is able 
to provide conceptual support as human experts do. 
These capabilities enable the system to offer a hu-
man-like personalized tutoring. This feature may be 
especially relevant taken into account that one of the 
potentials of ITSs is to make individualized tutoring 
widely and inexpensively available (Woolf, 2009). For 
this study we employed a version of HBPS, in which 
help on demand were deactivated and error messages 
were reduced to a simple notification. To illustrate 
the operation of HBPS we use the problem The plans, 
whose statement and a brief analysis is offered below.

The plans: Ann and Mike earned 36,000 € for design-
ing a bridge. Since they did not work the same amount 
of time it should be distributed so that Ann will re-
ceive five parts of what they earned and Mike, seven 
parts. How much money did Mike earn?

The problem may be reduced to the known quanti-
ties (total of money, M (36000); number of parts that 
corresponds to Ann, Pa (5); and number of parts that 
corresponds to Mike, Pm (7)) and to the unknown ones 
(total of number of parts, P; money that corresponds 
to one part, Mp; and money that Mike receives, Mm). 
These quantities can be linked by the relations: P = Pm 
+ Pa, Mp = M/P and Mm = Mp·Pm [2]. If a solver follows 
this solution path, the last operation, which is used 
to calculate the part of money that corresponds to 
Mike, would be multiplication. When students are 
introduced to the solving of proportional sharing 
problems, this may cause difficulties due to the fact 
that in equal sharing problems the determination of 
these quantities usually implies dividing. In addition, 
in these problems it is common to find the key word 
part, which is usually associated with the mathemat-
ical operation division.

In the version of HBPS used in this study, the stu-
dents can see the statement of the problem and find 
the name of the quantities that must be employed 
in a drop-down menu. When they select a name of 
a known quantity, they must assign the appropriate 
numerical value to it (see screenshot on the left in 
Figure 1). When they select a name of an unknown 
quantity they must assign an arithmetic operation 
that HBPS calculates automatically. To assign this op-
eration, the expressions are introduced by using a 
calculator-like component. It is composed of a button 
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for each arithmetic operation, and another button for 
each different quantity that has been introduced into 
the system by the student (see screenshot on the right 
in Figure 1). In case of incorrect assignment of value 
or operation, this version of HBPS generates a simple 
error message by which the user is reported that last 
action is not correct but no additional information is 
offered (see screenshot on the left in Figure 1).

Empirical study design
The empirical study was carried out in a natural 
group of primary education composed by 20 students 
between 10 and 11 years old. As part of a wider study 
aimed at analysing how HBPS influences the students’ 
proficiency in arithmetic word problem solving and 
that is not described in this report, the students had 
used HBPS to solve word problems in the classroom. 
Then, six students were chosen and they were grouped 
in pairs. The criterion adopted to select the students 
pursued to pair students who had shown difficulties 
in the same problems during the former phase of the 
study. Each pair was offered the problems that both 
members had previously failed to solve when they 
had been working individually in paper and pencil 
at the end of the instructional phase with HBPS. One 
of the problems the three pairs had to solve was The 
plans. They were asked to try to solve it using HBPS 
and they were encouraged to verbalise their actions. 
The sessions were video-recorded and afterwards the 
performances were transcribed to written language. 
As our investigation aimed to observe the process of 
problem solving, the researcher had a very low degree 
of intervention (Schoenfeld, 1985). The researcher 
just provided the sequence of problems and helped 

with technical problems that could appear. The anal-
ysis of these transcriptions makes possible to identify 
at each moment what relationship among quantities 
was established by the pairs and which mathematical 
operation was employed to link quantities in order to 
evaluate how students translate information from 
the statement into the mathematical language over 
the resolution process.

RESULTS

Next, we describe episodes of systematic guessing 
produced when the three pairs were solving The 
plans problem. All cases start from a situation in 
which the unknown quantities “total of number of 
parts” (12) and “money that corresponds to each part” 
(3000) have been already determined and the only 
remaining quantity to be determined is “money that 
Mike receives”. At this point the determination of this 
quantity requires the use of the conceptual scheme 

“total money = money per part × number of parts”. First 
we offer the sequence of operations that each pair 
introduced from that moment onwards in order to 
calculate the only unknown quantity.

Lola-Juan: (1) 36000  – 3000; (2) 36000/3000; 
(3)  36000/12; (4) 3000/12; (5) 3000·12; (6) 3000/7; 
(7) 3000 – 7; (8) 3000 – 12; (9) 3000·7.

Julia-Roberto: (1) 36000/7; (2) 3000/12; (3) 3000/7; (4) 
3000/12; (5) 3000/7; (6) 3000/7; (7) 36000/12; (8) 3000/12.

Pablo-Helena: (1) 36000/3000; (2) 36000/7; (3) 3000/7; 
(4) 36000 – 3000; (5) 3000/12; (6) 3000·7.

Figure 1: Error message (left) and construction of an arithmetical expression (right)
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The pair Lola-Juan
The pair Lola-Juan starts the sequence performing 
three operations in which the quantity “total of mon-
ey” is involved. In the dialog that follows, there are 
evidences that they are initially convinced that that 
quantity must be employed to calculate “money that 
Mike receives”. After rereading the statement, Juan 
says that the quantity that must be used is “money that 
corresponds to each part” (3000) (item 7, Lola-Juan). By 
contrast, Lola is still convinced of having to use “total 
of money” (36000) (item 6, Lola-Juan) and, in fact, she 
introduces 36000/12 (item 10, Lola-Juan).

1 Lola: Then…
2 Juan:  36000 divided by 3…? … divided 

by 3000 (he introduces 36000 – 3000 and an 
error message is shown).

3 Juan:  I think it is divided by.
4 Lola:  So divide it. (Juan introduces 

36000/3000 and an error message is shown.)
5  (It is heard how they reread the 

statement quietly.)
6 Lola:  It certainly has to be 36000 (she 

introduces 36000).
7 Juan:  No, it has to be 3000.
8 Lola:  But then…
9 Juan:  But then, divided by 12?
10 Lola:  36000 divided by 12 (Lola intro-

duces 36000/12).
11 Juan:  You have already done it and 

you got 3000! (He says so before the error 
message appears.)

From the fourth attempt on (item 14, Lola-Juan) the 
quantity “money that corresponds to each part” (3000) 
appears in all the operations they perform. However, 
as it is shown in the following dialogue, the erratic 
sequence of operations seems to point out that they 
are not so sure about which quantity will be the other 
one or which operation they will have to use.

12 Lola:  Let’s see... 3000 divided by 12.
13 Juan:  Or 3000 times 12 or minus 12.
14  (Lola introduces 3000/12 and an 

error message is shown.)

During the rest of the resolution Lola seems to have 
no doubts about the necessity of using the quantity 

“number of parts that corresponds to Mike” (7). In ac-
tual fact, it seems like she were trying to make use of 
the scheme money = money by part × number of parts 

(item 15, Lola-Juan). However, she divides by 7 instead 
of multiplying by it. This could be a consequence of 
associating sharing with division. After introducing 
3000/7, Lola deduces that a multiplication must be 
done, whereas Juan carries on trying operations with 
the only criterion that “money that corresponds to 
each part” (3000) must appear.

15 Lola:  Wait. If he receives 7 parts: 3000 
divided by 7.

16  (Juan introduces 3000/7 and an 
error message is shown.)

17 Lola:  Or multiplying, it will be multi-
plying.

18  (Juan introduces 3000 – 7 and 
an error message is shown.)

19  (Juan introduces 3000 – 12 and 
an error message is shown.)

20 Lola:  3000 times 7 (she says so before 
Juan introduces the last expression).

21 Juan:  That’s true, minus 7 or minus 
12 (Juan introduces 3000 – 12 and an error 
message is shown).

22 Lola:  3000 multiplied by 7.
23 Juan:  Yes (he introduces 3000·7 and 

it is shown the message of problem solved 
correctly).

The pair Julia-Roberto
This pair opted to use division in all the attempts. This 
fact suggests that the pair erroneously considers a 
certainty, beyond any doubt, that the money an indi-
vidual receives must be calculated using the math-
ematical operation division. Maybe the pair thinks 
that, given the fact that “the money Mike receives” is 
a part of “the total of money” and that there is a quan-
tity “number of parts that corresponds to Mike”, the 
problem could be interpreted as a partition division 
one. As it shown in the following excerpt, the solving 
process is conditioned by this belief, which causes 
the pair not to manage to solve the problem. The dia-
logue starts when they introduce the first expression 
of their sequence.

1 (Julia introduces 36000/7 and an error mes-
sage is shown.)

2 Roberto:  So then, that number (he points 
out 3000 on the screen) must be there for 
some reason. 

3 Julia:  Yes. This one divided by 12 (while 
she is saying this, she writes 3000/12).
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4 Roberto:  3000 divided by 12? 
5 Julia:  I don’t know (she introduces 

3000/12 and an error message is shown).
6 Roberto:  Divided by 7, I think so.
7 Julia:  Yes.
8 Roberto:  And if it isn’t like that, nothing.
9 (Julia introduces 3000/7 and an error mes-

sage is shown.)
10 (They seem to read the name of the quantities 

inaudibly.)
11 Julia: It is divided by 7.
 […]
12 Roberto:  It would be money divided by 

the parts that Mike receives and it doesn’t 
come to anything (while he is speaking, he 
introduces 3000/7 and an error message is 
shown).

The pair Pablo-Helena
After performing, at the request of Helena, the oper-
ation 3000/7 (third in their sequence) and obtaining 
an error message, they decide to read, in the window 
Defined quantities (see screenshot on the right in 
Figure 1), the name of the quantities and their values. 
Then, the following dialogue started in which it is ev-
idenced how the Pablo’s suggestion of performing a 
multiplication was the trigger for solving the problem 
(item 9, Pablo-Helena). Indeed, Helena immediately 
reacts to this idea by identifying the correct operation 
(item 10, Pablo-Helena). It should be underlined that 
when Pablo mentions the operation multiplication to 
Helena she straightaway turns her attention to the 
quantity “number of parts that corresponds to Mike”.

1 Pablo:  Ah, I think it is (he introduc-
es 36000–3000 and an error message is 
shown)…!

2 Helena:  There is nothing else, only this 
one (she says this while Pablo is opening the 
drop-down menu where the name of the only 
non-defined quantity appears).

3 Pablo:  So we have to find it out, because 
we have already done a lot.

4 Helena:  Let’s see.
5 Pablo:  And can’t it be 3000 divided by 

5?
6 Helena:  And 3000 divided by 12?
7 Pablo:  It may be.
8  (Pablo introduces 3000/12 and 

an error message is shown.)
9 Pablo:  It may be multiplying.

10 Helena:  By 7!!
11 Pablo:  I’ll try it then (he introduces 

3000·7 and a message of problem solved 
correctly is shown).

DISCUSSION

All the three cases can be classified as gaming the sys-
tem performances. However, this does not mean that 
all the students’ actions correspond to trial and error 
efforts without any trace of reflection. In fact, what is 
observed is a repeated analytical-synthetic process by 
which students try to establish the relation that the 
quantity “money that Mike receives” has with the rest 
of quantities already determined. The process makes 
visible the students’ conceptions about what quanti-
ties should be used to solve the problem. Additionally 
the protocols reveal how the pairs’ certainties evolve. 
In particular, the three pairs turn their attention to 
the quantity “money that corresponds to each part” 
(3000) after having been working with the quantity 

“total of money” (36000) (for example, at first Lola stat-
ed that this quantity had to be used).

The pairs that solved the problem correctly posed a 
multiplication just after having proposed a division. 
However, the trigger for writing the correct opera-
tion wasn’t the same. In the case of the pair Lola-Juan, 
Lola proposes multiplying after the system had re-
ported an error when introducing the operation 
3000/7, which had been proposed by her. This may 
be attributed to Lola’s capacity of synthesising the 
correct operation once she had identified the concep-
tual structure that linked the quantities. In the case 
of the pair Pablo-Helena, Pablo merely suggested us-
ing a multiplication and it was Helena who proposed 
to multiply by “number of parts that corresponds to 
Mike” (7). Perhaps, Pablo’s suggestion acted as a hint 
for Helena, since, up to that moment, she had seemed 
to be sure about the need of performing a division.

The pair that did not solve the problem correctly in-
sisted that it was necessary to divide by “number of 
parts that corresponds to Mike” (7). In fact, they posed 
the operation 3000/7 up to three times. This suggests 
that they had identified part of the conceptual scheme 
that linked the quantities, but they were not able to 
make a synthesis correctly. Possibly, the fact that a 
share of the total money had to be done could induce 
them to consider that a division had to be performed. 
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In this case, the pair’s certainty that a division was 
mandatory could become an insurmountable obstacle.

This report illustrates how students’ conceptions play 
an important role in gaming the system behaviours. 
The analysed cases are far from being irrational trial 
and error sequences in which the pairs abuse of the 
system’s capabilities without engaging with the prob-
lem. Although, even in the case of the pairs that final-
ly solve the problem, more evidences apart from the 
excerpts are needed to state that learning took place, 
these pairs seems to have gain insight into the concep-
tual structure of the problem either by refining their 
previous certainties or by completing them. It should 
be recognised that the fact that some pairs managed to 
solve the problem can be favoured by the setting of the 
study in which the students worked collaboratively in 
pairs. However, according to the purpose of our work, 
we opted to use this setting because two-person pro-
tocols are appropriate for analysing decision-mak-
ing behaviour instead of using one-person protocols 
that could give rise to the purest students’ cognitions 
(Schoenfeld, 1985). Besides these considerations, the 
reported cases demonstrate that gaming behaviours 
can be an important source of information about stu-
dents’ knowledge and the difficulties associated with 
some problems. Often, this kind of performances is 
classified as mere trial and error attempts and little 
attention is paid to it. However, intelligent tutoring 
systems are now capable of logging and processing all 
the user’s actions when he/she is solving a problem. 
In this context, future studies may address how this 
massive information could be employed in intelligent 
learning environments in order to scaffold students’ 
learning.
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ENDNOTES

1. We consider that a solving process will be arithmeti-
cal when the solver calculates all unknown quantities 
going from the known to the unknown quantities. On 
the other hand, a solution will be algebraic when the 
solver uses one or more letters to represent unknown 
quantities, which will result in one or more equations.

2. Although relations have been represented by using 
algebraic language, we are not asserting that the rela-
tions are represented in this way on the mental level. 
We have just offered a schematic representation of 
the net of quantities and relations that can be taken 
from the statement. To do so we have represented the 
relations by algebraic language although this does not 
mean anything about the algebraic or arithmetical 
character of the solving process.
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This paper examines the computer gameplay of two 12 
year old children. In the analysis of gameplay in build-
ing a house without budget constraints and then a sec-
ond house with budget constraints within “The Sims 
3” video game in out-of-school settings, four variables 
appeared: Budget; Size of the House; Cost of furniture/
devices; and Sims mood meter. This paper argues that 
those four variables influenced the mathematical rela-
tionships in building the two houses and the ways play-
ers’ used the game’s artefacts in line with their everyday 
and mathematical prior understandings affected their 
gameplay and therefore the exploration of mathematical 
relationships that form instances of players’ mathemat-
ical thinking.

Keywords: Gameplay, mathematical thinking, out-of-

school settings.

INTRODUCTION

The aim of this paper is to present instances of mathe-
matical thinking as it occurred during the gameplay of 
a group of two 12-year old children who were, collab-
oratively, building two houses in “The Sims 3” video 
game, in out-of-school settings. The building of the 
first house had no budget constraints and thus the 
gameplay was less constrained than it was in the build-
ing of the second house with budget constraints. Much 
of this paper argues that four variables that occurred 
during gameplay, influenced the mathematical rela-
tionships in building those 2 houses. These variables 
were Budget, Size of house, Cost of furniture/devices and 
Sims mood meter. The paper is structured as follows: 
an integrated review of literature and presentation of 
the theoretical framework; the setting and methodol-
ogy of the study; results pertinent to the focus of this 
paper; a discussion of issues arising.

LITERATURE REVIEW AND 
THEORETICAL FRAMEWORK

Everyday experience and daily interaction with the 
world are perceived as starting points of mathematics 
(Bonotto, 2005). European Commission recommends 
mathematical competence as one of the eight key com-
petences a citizen should develop for lifelong learn-
ing by being able to “develop and apply mathemati-
cal thinking in order to solve a range of problems in 
everyday situations” (European Commission, 2007, p. 
6). Mathematical thinking is often described as a pro-
cess and Stylianides (2009, p. 258), for example, refers 
to mathematical thinking as a process that includes: 

“exploring mathematical relationships to identify and 
arrange significant facts into meaningful patterns” 
that can be later used in order to make conjectures. 
Hoyles (2003, p. 4) posits that these mathematical re-
lationships may be captured within the tools of an 
environment “but these relationships lie dormant 
until they are mobilised, and it is in their mobilisa-
tion that meanings are created”. Several researchers 
have explored the mathematics used in everyday sit-
uations: workplace settings (Magajna & Monaghan, 
2003); in the streets (Nunes, Schliemann, & Carraher, 
1993; Saxe, 1991); and in supermarket shopping (Lave, 
1988). They argue that the mathematics used in these 
settings is not formal mathematics but, rather, ‘street 
mathematics’, ‘supermarket mathematics’, and so on. 
Given that a quite common activity that children do 
in their everyday life is playing video games (ESA, 
2012), the question arises: What sort of mathemat-
ics (if any) might emerge, is developed and is applied 
during gameplay? 

Devlin (2011, p. ix) argues that “well-designed video 
games are going to play a major role in school mathe-
matics education in the future”. However, Bragg (2006, 
p. 233) argues that “assumptions that students will see 
the usefulness of mathematics games in classroom are 
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problematic” and Bourgonjon, Valcke, Soetaert and 
Schellens (2010) argued that not all students appreci-
ate the use of games, for educational purposes, in the 
classroom. That might be because, in most ‘comput-
er off the shelf (COTS) games’ context and gameplay 
are inextricably linked, whereas in most education-
al games, the educational content and context often 
demote the gameplay (Reiber, 1996). During the past 
decade, several researchers have turned their interest 
to the way COTS games might enhance players’ learn-
ing. For example, Squire (2006) illustrated the way the 
game Civilization helped students learn history in 
afternoon activities at school. Additionally, Gee and 
Hayes (2010), after exploring the Sims series video 
game, argued that building in such virtual worlds 
requires geometry knowledge and skills. The educa-
tional potentials of COTS video games exist, but how 
does mathematics enter gameplay in out-of-school 
settings? 

Players’ actions are central to the construction of their 
meanings and computers can provide a window mak-
ing players’ meanings visible (Noss & Hoyles, 1996). 
Within such actions, the construction of new knowl-
edge is linked to the negotiation and consolidation of 
previous knowledge as in constructionism (Papert, 
1993). In this research, actions are considered to be 
directed by players’ goals as they are playing the game 
(Leont’ev, 1978). ‘Goals’ are mainly interpreted in two 
ways in literature related to mathematics’ research; as 
the goal that directs an action of an individual which 
is part of an object-oriented activity (i.e., Leont’ev, 
1978) and as ‘emergent goals’, essential ‘deeds’ that 
need to be done and are emerged during the activi-
ty (i.e., Saxe, 1991). During an activity, an individual 
consciously performs goal-directed actions (Leont’ev, 
1978). However, in practice-related situations, there 
are instances where plans need to be changed and 
other goals emerge. These emergent goals are very 
important for understanding the activity because 
they emerge as a result of the interaction of individ-
uals with their material world, through practice (Saxe, 
1991). 

In his research regarding candy sellers’ real-life activ-
ities in Brazil, Saxe (1991) developed a research frame-
work, consisting of three components in order to in-
vestigate the strategies and techniques that children 
used in the practice of selling candies in the streets. 
Within such a framework, one is able to analyze the 
interplay of culture and individuals’ goals (and cogni-

tive process) as it occurs within a practice (Saxe, 1991). 
Saxe’s (1991) emergent goals component consists of 
four parameters: social interaction, activity structures, 
prior understandings and conventions/artefacts. This 
model suggests that candy sellers’ goals that emerge 
during their activities in their situated practice, are 
shaped and affected by their social interaction with 
each other or with other individuals involved in the 
practice (i.e., buyers), by their prior understandings 
that they bring in the practice (i.e., existing knowl-
edge), by conventions and artefacts related to the ac-
tivity (such as money and currency conventions) and 
lastly, by the whole activity structure. A previous study 
that examined the gameplay of an 11-year old boy, who 
was building houses in “The Sims 2” video game (the 
precursor of “The Sims 3”) using Saxe’s model to ana-
lyze the goals that emerged during gameplay, argues 
that the creation and use of an artefact-strategy that 
the player had developed during gameplay was a 
mathematical abstraction (Avraamidou, Monaghan, 
& Walker, 2012). 

WHAT IS “THE SIMS 3”?

“The Sims” series (http://www.thesims3.com/) are pop-
ular real life simulation games that allow players to 
control the lives and relationships of game characters 
and create houses for them, in an open-ended basis. 
Unlike many popular games, “The Sims” series do not 
have an explicit goal/objective that the players need 
to accomplish and players do not ‘typically’ compete 
with each other (or with a computer) in order to win. 
In fact, players can decide on the way they want to 
play the game. There are three game modes when 
playing The Sims (initial game): the Live Mode; the 
Buy Mode; and the Build Mode. While playing the 
Live Mode of the Sims, players can control the Sims 
characters during their virtual living in the Sims 
houses and observe their lives, maintaining (or not!) 
a balance between each Sims character’s mood meter 
by fulfilling their desires or making their fears come 
true, while the Sims virtual time passes by. Players 
can pause the virtual time of the game and edit and/
or delete constructions of the Sims virtual houses and 
neighbourhoods and also, build from scratch virtual 
houses for the Sims in the Build Mode. Lastly, players 
can decorate and furnish their Sims’ houses while in 
the Buy Mode of the game, by selecting items that ap-
pear in the menu. All items in the Build and Buy mode 
have prices in the game’s currency ‘Simolins’ indicat-
ed with the letter ‘s’. An important aspect of the Sims 
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series is the budget. The Sims families have specific 
budgets and when players need to build, edit, delete 
and/or buy items for a family, they need to do so with-
in the budget of that specific family. When the budget 
is exceeded, players need to ‘sell’ or delete items so as 
to increase the amount. When playing the Live Mode 
of the game, players can increase the family’s budget 
by finding jobs for unemployed Sims or making sure 
that employed Sims go to work and earn money.

RESEARCH DESIGN

This paper reports on an exploratory case study (Yin, 
2003) of the gameplay of two 12-year olds, Marios and 
Christina (M & C), who were selected on the following 
criteria: a. they were friends that usually met to play 
together; b. they had not played “The Sims” series 
before; c. both wanted to play the specific game; and 
d. both participants and their parents gave their con-
sent to the research. The researcher approached the 
parents of one participant, informed them and when 
both parents and participant gave their consents, the 
participant was asked to name one of his/her friend 
that they wanted to play the game with. Then partici-
pant’s friend and friend’s parents were also informed 
and gave their consent. Participants were informed 
that they were being recorded for research’s purposes 
but were not informed that the research was related 
to mathematics. M & C played the game in Christina’s 
bedroom, using the researcher’s laptop. They collab-
oratively built three houses: a. built a house without 
budget constraints, b. built a house for a Sims fami-
ly with a specific budget and c. reshaped an existing 
house of the game following a scenario given by the 
researcher. Participants’ talk and on-screen activi-
ty were recorded using screen recording software 
(Ambrosia) with audio recording, in order to ensure 
a rich data collection of approximately 5 hours of re-
corded gameplay. The researcher was present during 

their gameplay and acted as observer participant but 
her role was restricted to only assist them with any 
technical difficulties. Overall, three meetings took 
place, where M & C built and edited the three houses 
but only the first two houses will be used for the pur-
poses of this paper.

Data were transcribed in Greek (both talk and descrip-
tions of their actions) data analysis was conducted in 
three stages. The first stage produced open codes a la 
Strauss and Corbin (1998), describing participants’ 
actions during gameplay that were later grouped 
into categories. During the second stage of analysis, 
players’ actions and goals that directed those actions 
were identified. Whilst conducting the second stage 
of analysis, a pattern was observed: there were goals 
that emerged whilst actions were performed in or-
der to achieve a previous goal. Thus, a third stage of 
analysis was conducted, where emergent goals were 
identified and players’ actions were grouped into ep-
isodes consisting of related goals and emergent goals.

RESULTS

The selected results that follow are structured in a 
way to support the discussion section and the focus 
of this paper regarding the way the four variables 
(Budget, Size of the house, Cost of furniture/devices 
and Sims mood meter) influenced the mathematical 
relationships in building the two houses. 

The four variables were initially identified through 
the first stage of analysis that produced 13 categories 
that are illustrated in Table 1 below. The four variables 
arose from the analysis as overlapping sets whose 
elements are the categories.

Overall, 206 goals were identified in the second and 
third stages of analysis (144 in House 1 and 62 in House 

Variable Related categories

V1: Budget tensions/disagreements, feelings when referring to budget issues, ways to spend less / 
save money, interaction with the game’s features (errors), experiencing the reality of the 
game

V2: Size of the house tensions/disagreements, referring to previous house, experiencing the reality of the 
game, appearance considerations, ways to spend less / save money

V3: Cost of furniture tensions/disagreements, feelings when referring to budget issues, ways to spend less / 
save money, referring to previous house, appearance considerations, ways to spend less 
/ save money

V4: Sims Mood meter tensions/disagreements, experiencing the reality of the game

Table 1: Related categories of first stage of analysis and the four variables
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2) of which a total of 60 were emergent goals. Four of 
those emergent goals are illustrated next in the four 
variables-related results.

During the construction of House 1 there were in fact 
only two variables enabled; Cost and Size. Budget and 
Sims Mood meter variables were not affecting players’ 
actions because there was no family and therefore no 
budget restrictions. As soon as players selected a fam-
ily to build House 2, the Budget and Sims Mood meter 
variables were enabled. This affected the other two 
variables, Size and Cost. The relationship of the four 
variables will be discussed in the Discussion section. 
First, a description of the variables is needed.  

Variable 1: The budget
The 1st house that M & C built (House 1), was a house 
without any budget constraints. They created a 
two-storey house that was valued by the game as 
224.023s including furniture and devices. When M 
& C selected the Williams family (husband, wife and a 
baby) to build a house for (House 2) the family’s availa-
ble budget of 17.491s appeared on the gameplay screen 
and as soon as they added or deleted something the 
available budget increased or decreased respectively. 
When the available budget was almost used, the game 
excluded the unavailable options of the Buy mode 
menu that the family could not afford with a red colour. 
When M & C wanted to furnish the bathroom (Goal: 
To furnish the bathroom), they saw that they only had 
money (127s) to buy a baby’s toilet seat because it was 
the only available option in the menu. 

Christina:  It’s red! Everything is red! (non-af-
fordable)

Marios: Where are they going to go when they 
will want to go to the toilet?

A new, emergent goal then occurred: To increase the 
available budget. They needed to achieve this emer-
gent goal in order to be able to achieve the initial goal 
of furnishing the bathroom. They decided to move the 
bedroom furniture in the living room and delete the 
parents’ and baby’s bedrooms. The family’s available 
budget increased to 5.009s and they created a smaller 
room which they decided to be a room for the parents 
and the baby. They then furnished the bathroom and 
the rest of the house.

Variable 2: The size of the house
House 1 was a relatively large house that cost 86.388s 
unfurnished (including foundations, walls, tiles, win-
dows, doors and lights). When they started building 
House 2 with a budget that was ≈1/10th of the first 
house’s total value, they stated that they would do 
and maintain a smaller house by saying “We will do 
one floor, because it is a small family, that’s OK”. Indeed, 
they did eventually create a smaller-sized house, 
having only a ground floor instead of two which cost 
15.508s, unfurnished (see Figure 1). 

M & C reshaped House 2 several times by delet-
ing rooms in order to make the house smaller and 
increase the budget as described earlier. Category 
‘space-size-arrangement issues’ showed that they had 
issues with the size of House 1 as well. While furnish-
ing the kitchen of House 1, Christina stated “What are 
we going to do with all this space?”. The initial table they 
added was the largest table in the menu but they said 
that it was too small for their kitchen. Then another 
goal emerged: To reduce ‘all that’ space of the kitchen. 
They talked about reducing the size of the kitchen 
but preferred to add two more tables and ten chairs 
around them to make the table look bigger instead.

Figure 1: House 1 and House 2 (almost) final versions
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Variable 3: The cost of the house 
including furniture/devices
The total cost of House 1 was 224.023s in which 
137.635s was the cost of furniture and devices, where-
as in House 2 it was 17.491s including a cost of 1.983s 
for the furniture and devices. Indeed, House 1 was 
filled with a, sometimes unreasonable, number of lux-
urious items that were mostly chosen according to 
appearance criteria (see Figure 1). In fact, the category 

‘appearance considerations’ most frequently appeared 
in House 1. In contrary, House 2 was equipped with 
essential furniture and devices bearing in mind the 
family’s budget. The Cost variable was noted by the 
players when they started adding furniture in House 2 
and more specifically when the budget was decreased 
significantly. Table 2 below illustrates selected quotes 
of players’ talk during the building process of House 
1 and House 2. Each row maps quotes of talk while 
performing similar actions in each House.

M & C’s talk changed when adding the same items in 
House 2, as it included expressions showing that they 
compared the cost of the items and chose the ones that 
were not expensive bearing in mind the budget. 

Variable 4: The Sims mood meter
M & C stated that they were done with House 2 and 
they were happy leaving the family with a budget of 
861s. They then switched to the Live mode of the game 
to play with the family. While exploring the mood 
meter of their Sims they noticed that their Sims did 
not have a device to cook (emergent goal: To provide 
food for the family) and they added an oven/hob in the 
kitchen. They then noticed that they were not happy 
with an “unfinished” room looking at the mood me-
ter. Thus a new goal was emerged: To make the Sims 
happier. They added the cheapest available wallpaper 
that they saw (they did not notice that there were free 
wallpapers in the menu) and added the missing tiles 

in the kitchen in order to get their Sims mood meter 
higher and thus, their Sims happier, reducing the 
budget to only 9s.

DISCUSSION

In this section, I look at the relationships of the four 
variables Size, Cost, Budget and Sims mood meter and 
the way they influenced mathematical relationships 
in the two houses, with particular regard to literature 
on mathematical thinking and Saxe’s emergent goals 
model. 

Going back to Stylianides’ (2009) description of math-
ematical thinking as a process of exploring relation-
ships, M & C recognized that there were relationships 
between the four variables. They figured out that in-
creasing either the Size or the Cost of the House result-
ed in decreasing the available budget. Furthermore, 
they recognized that in order to increase the available 
Budget, they needed to decrease either the Size or the 
Cost of the House. For example, when M & C needed to 
increase the budget of the family in House 2 in order 
to continue building the house, they either decreased 
the Size of the house or selected furniture with low 
Cost or did both. It is not claimed here that M & C were 
fully aware of the exact interrelation of those four var-
iables. However, stating that they would do “a smaller 
house because it is a small family”, reducing the size 
of the house to increase the budget and selecting the 
cheapest available options indicate that they recog-
nized the way each variable affected the other. 

The mathematical relationships that were influenced 
by the four variables were ‘invisible’ as they were “ly-
ing dormant” (Hoyles, 2003, p. 4) within the artefacts 
of The Sims 3 game. However, those relationships be-
came ‘visible’ during the gameplay, through the way 
M & C used the game’s artefacts. For example, the Sims 

House 1 House 2

“Add more windows here to make the room 
brighter”

“No, we will not add any more windows, look (pointing at the 
budget).

“This wallpaper looks nice, add this one (worth 
10s per column)”

“No, that’s 10 (wallpaper worth 10s per column), that’s expensive. 
That’s 4, that’s good”.

“No, choose this one or this one” (the two most 
expensive available TVs)

“Not that one (the more expensive TV), that one (the cheapest), it 
doesn’t need to be nice-looking”

“It was 100.000s before and now we added so 
many expensive things and is now only 200.000s? 
That’s fine” (third meeting)

“No no, that’s expensive. We can’t”

Table 2: Players’ talk while building House 1 and House 2
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mood meter and the Budget are two important arte-
facts of the game. When M & C chose to play with the 
family in the Live mode, the meter was enabled. When 
M & C needed to increase the mother’s Mood meter, 
by adding devices in House 2, they realised that in 
order to do so, they had to spend more money from 
the family’s available Budget and therefore increase 
the Cost of House 2 so as to increase the level of the 
meter by providing the family with a device to eat. 
Even though their initial plan was to leave the family 
with an available Budget of 861s, they chose to spend 
that budget, in order to make their Sims happier.   

The interpretation of the Budget, the Sims Mood me-
ter and the Sims’ needs in House 2 was in fact shaped 
by M & C’s everyday knowledge of a house’s structure 
and content and also of real life needs. For example, 
Marios’ statement: Where are they going to go when 
they will want to go to the toilet? was enough for them 
to start deleting parts of House 2 and rearrange the 
furniture and rooms. It is important in real life to have 
a bathroom/toilet in a house and within the Sims game, 
they recognized that deleting items resulted in getting 
a refund and therefore increasing the Budget. Going 
back to Saxe’s (1991) emergent goal model, the goal of 

‘increasing the budget’ emerged and was achieved as 
a result of M & C’s prior everyday and mathematical 
understandings during their interaction with the 
game’s artefacts. Examining the other three emer-
gent goals that were presented earlier (i. to reduce 

‘all that’ space of the kitchen, ii. to provide food for the 
family and iii. to make the Sims happier), the way M 
& C used the artefacts of the game’s features, includ-
ing the available Budget, the Sims Mood meter and 
artefacts, in line with their prior understandings in 
order to achieve those emergent goals, influenced 
their gameplay. In addition, the four variables that oc-
curred during gameplay, influenced the mathematical 
relationships that were hidden within those artefacts. 
In fact, this constrained gameplay of M & C, was an 

“activity with relationships” (Noss & Hoyles, 1996, p. 
124) that M & C explored during their gameplay.

This paper argued that there were instances of play-
ers’ mathematical thinking during their collaborative 
gameplay of The Sims 3 video game in out-of-school 
settings. Those instances are not school-alike formal 
mathematical processes. Rather, the mathematical 
thinking occurred informally but meaningfully for 
the players in order to achieve their goals during 
gameplay. These instances were captured by players’ 

exploration of the mathematical relationships, hidden 
within the artefacts of the game. Those relationships 
were influenced by the four variables that emerged 
during the gameplay. The use of those artefacts, which 
was highly affected and shaped by players’ everyday 
and mathematical prior understandings, was crucial 
for the gameplay.      
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Touchscreen dynamic environments user interfaces em-
ploy a specialized interaction model on screen. In this 
paper, we analyse students’ manipulation to explore and 
justify their geometrical reasoning on a free online touch 
device: the Geometric Constructer (GC) software. We dis-
cuss data from a teaching experiment with Italian High 
School students. The experiment was videotaped. Based 
on this we observe two domains (constructive and rela-
tional) regarding the development of geometrical thinking 
on GC. Students’ manipulation on constructive domain 
is basically done to make construction and it contributes 
to exploration and to arise conjecturing. Indeed, manip-
ulation in relational domain can suitably support and 
improve students’ justifying and proving performances.

Keywords: Touchscreen device, GC software, constructive 

domain, relational domain, dragging to approach.

INTRODUCTION

The emergence of multi-touch devices - such as iPods, 
iPhones and iPads - will promote new impact and chal-
lenges in learning and instruction in general, and in 
mathematics in particular. Although in Mathematics 
Education some touch devices have been devel-
oped (for instance, Geometer Sketchpad Explorer, 
Geometric Constructer, GeoGebra app, Sketchometry 
and Math Tappers apps) research is still scarce con-
cerning mathematical learning through touchscreen 
manipulation.

In our current research project1 we are interested in 
the way of manipulation of tablet resources as iPad. 
Particularly, how ways of touchscreen manipulation 
can improve students’ geometrical thinking. In this 

1  In Brazil, the research project is granted by Capes (Ministry of 

Education).

paper we are addressing issues regarding the ques-
tion: during the process of solving geometric prob-
lems using the software GC which domain (construc-
tive or relational) of manipulation touchscreen could 
be fruitful to improve student’s strategies for justi-
fying and proving? We assume (i) that manipulation 
on tablet is different from a mouse click and (ii) that 
mathematics used by students to solve a geometrical 
task in a paper-and-pencil environment is different 
from what they use in a touchscreen device. 

Gesture and touchscreen manipulation
The role of gesture, particularly the touchscreen, in 
supporting mathematical reasoning in technological 
context is an emerging field of research in mathemat-
ics education (Arzarello et al., 2013; Nicholas, 2013). 
Regarding their usage, environment mobile touch-
screen user interfaces employ a specialized interac-
tion model. 

Interaction through current mobile touchscreens 
basically occurs with the computer recognizing and 
tracking the location of the user’s input within the 
display area. In other words, interactivity occurs in 
response to two dimensions of the input action (Yook, 
2009; Park, 2011). This enables six basic finger actions 
for input: tap, double tap, long tap (hold), drag, flick, 
and multi-touch (rotate). According to Sinclair and 
Pimm (2014), these types of manipulations “describe 
specific configurations and actions of the finger(s) on 
the screen and they are different from those discussed 
in the mathematics education literature in two ways: 
they involve contact with a screen and they perform 
an action” (p. 210).

Even though we are not looking only for ways of touch 
that represent mathematical concepts (for instance, 
rotation) we agree with Boncoddo and colleagues 
(2013) that a particular way of manipulation may 

mailto:mbairral%40ufrrj.br?subject=
mailto:ferdinando.arzarello%40unito.it?subject=
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serve as an important function of grounding mathe-
matical ideas in bodily form and they may also com-
municate spatial and relational concepts. Specifically 
for geometrical thinking, inspired in (Hostetter & 
Alibali, 2008), we consider important to stress that, 
in touchscreen devices, manipulations are based on 
visuospatial images, linguistic factors influence ges-
tures and ways of touchscreen are communicatively 
intended. 

Adopting an embodied cognition perspective in our 
research we highlight reciprocal connections be-
tween ways of touchscreen and cognition. Contrary to 
what happens in clicking, manipulating touchscreen 
interface implies a continuity of action, the spatial-
ity of the screen, the movement simultaneousness 
and movement combination and, depending on the 
resource device, the feedback speed. On the following 
Figure, we observe one student trying to explain one 
of the properties of the isosceles trapezoid. He uses 
hands to represent the sides that are not parallel.

Touchscreen manipulation in 
dynamic geometric devices
Inspired in (Tang et al., 2010) we assume that touch-
screen manipulation is not the same as mouse clicks 
(Arzarello et al., 2014; Bairral et al., 2015). There are 
differences if we use a usual PC, where dragging is 
produced with the help of a mouse, or we use a touch-

screen of a tablet, where we can use our fingers to 
move the figures, and there are differences if we can 
use more than one finger (as in multi-touch environ-
ments) or only one finger.

As we have had a first shift and improving passing 
from paper and pencil environments to DGS with drag 
and drop activities (e.g., Cabri Géomètre, Sketchpad, 
etc.), now we have a further shift and improvement 
with the transition to multi-touch environments 
(e.g., Geometric Constructor, SketchPad Explorer, 
Sketchometry) and to the variety of simultaneous 
fingers’ actions they allow. 

When we manipulate the screens in our device with 
touchscreen interface, we perform a set of move-
ments. Some manipulations we perform have specific 
mathematics cognition, like when we want to enlarge 
(or reduce the size of ) a picture in some image edi-
tor (Paintbrush), or when we perform this through a 
touchscreen manipulation.

On such occasions we “pull” the image diagonally, 
upwards or downwards, or we “click” on one of its 
vertices, so both dimensions (width and height) are 
reduced or enlarged proportionately. If we do not per-
form this type of movement, i.e., if we manipulate only 
one dimension, the image will come out deformed. 

Nevertheless, although all these manipulations are 
based on one mathematical concept (method of the 
diagonal as a way to generate similar figures), they 
are not necessarily the same in cognitive terms (the 
action of enlarging without deforming), epistemolog-
ical (the simultaneous changing in different parts of 
the shape) and spatiality (work and manipulating area 
on the screen). By the way, we still have to go further 
on these singularities.

Figure 1: Student construction on GC

Figure 2: (a) Illustration of an enlargement in a drawing program; (b) distortion in a drawing program; (c) enlargement through 

sliding on the screen (Bairral et al., 2015)
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Domains of manipulation and geometric 
learning in dynamic touchscreen devices
Touchscreen dynamic environments user interfac-
es employ a specialized interaction model on screen. 
In agreement with Arzarello and colleagues (2002), 
within this type of environment the interaction also 
concerns deeply perceptual aspects, which involve 
not only the objects (e.g., drawings) but also the phys-
ical perceptions of students, their motions, gestures, 
languages, etc. and the artefacts that they use as me-
diating instruments. Perceptual aspects which must 
be analysed concern many components, i.e. visual 
phenomena, motion, kinaesthesia, inner time(s); on 
the other hand, the most typical theoretical features 
are the structured mathematical objects, their invar-
iant properties, conjectures, theorems, proofs. 

Even though in the relational domain students also 
construct geometric objects we observed (Arzarello 
et al., 2014) that it is in this particular domain where 
they show more interacting and reflecting about the 
construction. 

According to Arzarello and colleagues (2014), a cogni-
tive process within a GC device could be seen in two 
interrelated domains of manipulation: the construc-
tion domain, where students basically refer either to 
tap and hold, which are the basic actions, or to isolated 
ways of constructing geometric objects (point, line, 
circle, shape, etc.) with a touch interface. What we 
call relational domain is a combination of this con-
structional and the performed touchscreen actions, 
which include drag, flick, free or rotate.

While in a construction domain student act as discrete 
observation (focused on some specific construction or 
constructed object or even doing some touch on the 
screen) in the relational domain their manipulation 
seemed more focused on their questioning, conceptu-

al understanding and other emergent demands con-
cerning their manipulation as a whole construction.

METHODOLOGICAL ASPECTS OF THE STUDY

We are conducting teaching experiments (TE) with 
High School (Brazilian and Italian) students and 
Brazilian prospective mathematics teachers. In this 
paper, we discuss data from one TE: five High School 
students (16–17 years old) at Liceo Volta (Turin, Italy) 
working on software Geometric Constructer (GC). All 
of them had previous experience with dynamic ge-
ometric environments (DGE). Each session took about 
two hours long and it was videotaped. In each session 
the students worked out on proposed tasks. 

Geometric constructer features
The choice of GC software is because, as far as we know, 
it is the only software which incorporates all the po-
tentialities of usual DGE in a fully touch-screen device. 
By ‘potentialities’ we mean two main facts (Arzarello 
et al., 2014): (i) the possibilities of using more than one 
digit (multi-touch) on the screen to interact with the 
software and (ii) the possibility of making construc-
tions and not only explorations. As far as we know, at 
the moment there are very few types of mathematical 
software that satisfy both these features. 

Some of the haptic devices on the market (for instance, 
GeoGebra app and FreeGeo) satisfy (ii) but not (i): in 
fact, they allow users to move only one point each 
time, which makes them very similar to environments 
where dragging is done with the mouse. A very few, 
for example Sketch-explorer, satisfy (i) but not (ii). 
GC satisfies both2. Using GC we may construct basic 
geometrical objects (points, segments, lines, circles), 
measure them, drag and make traces of geometrical 
objects and so on. The Student using different colors 
to edit the construction and measuring internal an-
gles from the quadrilateral EGHF for the Varignon 
theorem task3.

2  It has been designed by Professor Iijima Yasuyuki (Aichi 

University of Education, Japan2) and we used its version in 

English.

3 The Varignon Theorem proposed task: In quadrilateral ABCD, 

the middle points (E, F, G and H) on each side have been drawn, 

forming quadrilateral EFGH. What characteristics does EFGH 

have? What happens if ABCD is a rectangle? What if it is a 

square? What if it is any quadrilateral? Demonstrate.Figure 3: Student construction on GC
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The proposed and analyzed task: 
Constructing square4

Build a quadrilateral ABCD. On every one of its sides 
build a square external to the quadrilateral with one 
side coinciding with the side of the quadrilateral. 
Consider the centers of the squares that have been 
built: R, S, T, U. Consider the quadrilateral RSTU: what 
can you observe? What commands do you use in order 
to verify your conjecture?

Data analysis
Due to continuity of motion and spatiality on the 
screen we consider that with touchscreen devices 
analysis should be about paths of interaction rather 
than points of interaction. Further, it would be mathe-
matically inappropriate (in most cases) to reduce data 
of a trace to a single point, as we observe in device 
without touch action. The analytical process was done 
in two main steps: (1) identification of each type of 
manipulation (Arzarello et al., 2014; Park et al., 2011; 
Yook, 2009) and (2) construction of timeline to gain in-

4  This activity was thought as a task to introduce curiosity among 

students for the next task (Napoleon Theorem).

formation of the global cognitive movement through-
out interaction on GC software. Based on videotaping 
the timeline illustrates the ways of touchscreen and 
shows geometric aspects from students’ interaction 
on the GC software (Arzarello et al., 2014, p. 47). For 
the first step we adopted Yooks’ (2009) framework as 
summarized in the following Chart 1. 

RESULTS

In the following two Charts (2a and 2b), we show part 
of a timeline elaborated by students’ solving the task 
with the software GC performing four types of basic 
actions5 (tap single, scale, hold single and hold multi).

Although in order to make a construction (point, line, 
angle, circle etc.) the user has to use the software icons, 
we observed all the manipulation on the screen. We 
didn’t consider touch on the icon as an example, for 
instance, of the tap or hold touchscreen. Rather, in 
some interval of time we could observe more than 

5  To fix the timeline on the CERME template, we cut down some 

time interval.

Action Type Motion

Basic Refers to tap and hold 
which are the basic ways 
of interacting with a touch 
interface.

Tap (single) Closed

Tap (double)

Hold (single)

Hold (multi)

Active1 It is a combination of the 
basic action and the per-
formed finger action, which 
includes drag, flick, free, or 
rotate.

Drag Open

Flick

Free

Rotate

Chart 1: Yook framework quoted by Park (2011, p. 23)

Basic actions 0:00–
0:30

2:06–
2:56

3:10–
3:15

3:43–
4:54

4:55–
6:01

6:36–
6:37

7:06–
7:08

15:11–
15:30

Tap (single)  

Flip

Move

Push

Scale

Tap (double)

Scale

Hold (single)

Hold (multi)

Chart 2a: Part of the timeline illustrating basic actions
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one way of touch, but we selected some in which the 
exemplified type has predominance.

Due to the nature of the task (with open construction 
and exploration) we identified the predominance of 
touchscreen types on the relational domain and basi-
cally touch such drag (free or approach) and flick. The 
rotate didn’t occur in this task. As we can see on the 
Chart 2b the usage of drag to approach was dominant.

As we observed in a previous analysis (Arzarello et al. 
2014) the dragging to approach works as a refreshing, 
a quite stabilizing and reflecting area for deep un-
derstanding of the geometric properties that emerge 
from the manipulation on drag free or other way of 
touchscreen. This type of manipulation seems to be 
an appropriated moment to improve justification and 
proving.

According to Arzarello and colleagues (2014), manip-
ulation in the constructive domain seemed to be fo-
cused on only predetermined motion, whereas motion 
through relational manipulations is open in the sense 
that it can generate more unpredictable processes. 
We still have to research further on the issue of open 
motion.

Manipulation on construction domain seems focused 
on only predetermined motion although motion 
through relational manipulations provides motion 
open in a sense that they can generate more unpredict-
able processes. By the way, we still have to go further 
on the issue of open motion and on the issue of the two 
domains of manipulation on GC software. 

To summarize the reflection above, we illustrate 
on Chart 3 how we are relating the two domains of 
touchscreen with geometrical thinking and the mo-
tion through touchscreen. Although students dealt 
naturally with the device, their manipulation appar-
ently was related with the software constraints (or 
advantages) or with the proposal task. 

FINAL REMARKS

As simultaneous touchscreen manipulation of spots 
on the screen brings about implications of an episte-
mological order, it also adds complexity to our cogni-
tive structures. This particular feature was observed 
by one of the students in our research. According to 
him, “in a very complex figure, moving several elements 
at the same time can become a bit difficult”. Besides this 
cognitive implication, the use of touchscreen devices 
in the teaching of mathematics brings about transfor-
mations in didactic and epistemological realms, and 
educational research is still lacking.

Another relevant issue to consider is the way using a 
multi-touch-screen allows changing the task design in 
a substantial way. More precisely, multi-touch screen 
devices allow designing geometrical problems in a 
different way from the usual one, which would be 
very difficult within non-multi-touch screens envi-
ronments. For example, within multi touch screens 
it is possible to ask two students, who use the same 
screen, to play mathematical games, where each of 
them pursues antagonist aims: exploiting the strat-
egy they use to win they can so enter into the mathe-
matical property upon which the game has been built 
(Arzarello et al., to appear).  

We identified the touch “to approach” as a predom-
inant way in this type of environment. This sort of 
touchscreen should be seen as a cognitive tool to 
empower learners conjecturing and exploring for 
argumentation during the process of solving the task. 
This allows us to ascertain that the drag-approach 
allowed by the multi-touch environment can suitably 
support and improve students’ justifying (exploring) 
and proving (conjecturing) performances.

We think that manipulation that promotes open mo-
tion (relational ways of touching) can be appropriate 
to provide new epistemological challenges regarding 
geometric knowledge and different ways of proving. 
Since the drag to approach is a relational action, it 

Active actions 0:00–
0:30

0:30–
0:50

1:28 1:46–
1:54

3:15–
3:20

6:05–
6:09

8:31 / … / 
15:02

15:35–
16:55

Drag free

Drag approach 

Flick

Chart 2b: Part of the timeline illustrating active actions 
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seems to be an appropriated moment to improve jus-
tification and proving within mathematics classrooms 
using touchscreen devices. But we would say that, de-
pending on the aim of the teacher, the nature of the 
task is important and the teacher may let students 
work freely on the task, using naturally their own 
way of touch.

A new organization of lessons and of the nature of 
proposed mathematical tasks (didactic), a view on 
the touchscreen manipulation that is different from 
mouse dragging (cognitive), and attention to the 

changes in mathematics when simultaneously mov-
ing different points in a figure (epistemological) are 
examples of changes and will be an object for reflec-
tion on our results in CERME9 (TWG16).
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ENDNOTE

1.  According to Yooks’ (2009) framework, the four 
active actions can be associated to multi hold manip-
ulation.
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When using digital technology in the mathematics 
classroom, teachers should always consider whether 
the tool supports the students’ learning process in a way 

“traditional tools” do not allow. In this sense, the aim of 
this paper is to discuss theoretically how an interactive 
place value chart could foster substantial understand-
ing of the decimal place value system in the context of 
decimal fractions, by analysing the artefact’s potential 
for learning. Here, special attention is dedicated to the 
mathematical, structural aspects of the place value sys-
tem included in the software. This theoretical discussion 
builds the foundation for future empirical investigation 
that will be outlined at the end of the paper.

Keywords: Decimal fractions, place value system, 

interactive technology, semiotic resources.

INTRODUCTION

Different studies emphasize that students build sev-
eral misconceptions concerning decimal notation 
(e.g., Heckmann, 2006; Steinle & Stacey, 2004). The 
majority of these misconceptions indicate a lack of un-
derstanding of the decimal place value system which 
is fundamental to understand our decimal notation 
of numbers and which therefore plays an important 
role in learning mathematics. 

Besides practical learning approaches based on 
activities with concrete material (e.g., Montessori) 
also research on human cognition and especially on 
mathematical thinking emphasizes that knowledge 
formation does not evolve only in human mind, but 
rather through activities concerning the body, the in-
teraction with an artefact and linguistic and symbolic 
resources (Radford, 2005, p. 111). 

In this sense a digital, interactive place value chart 
(designed by Kortenkamp) offers special opportuni-
ties to actively explore the place value system for a 
substantial understanding of our decimal number 
notation in a way traditional tools (e.g., paper-pencil 
place value charts, base-ten-blocks) do not allow.

To discuss this theory, I will first show how the math-
ematical structure of the place value system is build 
up and how this is included in the digital tool, so that 
a first analysis of the mathematical content within the 
tool is given in this paper. Based on this I will further-
more reason why especially this tool could support 
students’ understanding of the place value system 
in comparison to other materials. As a last part I will 
present my research approach to investigate empir-
ically how this tool might support students’ under-
standing of the place value system regarding decimals. 
This project, called DeciPlace, is a cooperative project 
between Ulrich Kortenkamp (University of Potsdam) 
and Angelika Bikner-Ahsbahs (University of Bremen).

AN INTERACTIVE PLACE VALUE CHART TO 
FOSTER THE CONCEPT OF PLACE VALUE 
CONCERNING DECIMAL FRACTIONS

The expansion of the number system from natural 
to rational numbers often gives rise to difficulties in 
the learning process in relation to fractions but also 
concerning decimals. 

Different research projects emphasize that students 
build several misconceptions on decimal notation 
(e.g., Heckmann, 2006; Steinle & Stacey, 2004). These 
misconceptions often lead to inadequate strategies, 
for example to order decimals by size like “longer-is-
larger” or “shorter-is-larger” (Steinle & Stacey, 2004). 
Heckmann (2006) considers transmissions from nat-
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ural numbers and fractions (especially if fractions 
are taught before decimals) as the main causes for 
misconceptions (ibid, pp. 77–89). This suggests the 
assumption that some students have a non-viable un-
derstanding of our decimal place value system or do 
not use it, so that they are not able to arrange decimals 
according to size correctly (ibid, p. 51). 

That is why it is recommended to focus explicitly on 
the place value system while learning the concept of 
decimals (Heckmann, 2006, pp. 52, 562ff.; Padberg, 
2009, p. 166; Steinle & Stacey, 2004, p. 548).

Place value
The decimal place value system is based on four prop-
erties that are important to understand (Ross, 1989, 
p. 47):

1) Positional property. The quantities represented 
by the individual digits are determined by the 
position they hold in the whole numeral.

2) Base-ten property. The values of the positions 
increase in powers of ten from right to left.

3) Multiplicative property. The value of an individ-
ual digit is found by multiplying the face value 
of the digit by the value assigned to its position.

4) Additive property. The quantity represented by 
the whole numeral is the sum of the values rep-
resented by the individual digits. 

Within the mathematical structure of the place val-
ue system defined by these properties, the decimal 
fraction is a particular structure that is determined 
by a fixed value represented by a number in decimal 
notation. In order to preserve the decimal fraction 
and its structure, only transformations like bundling 
and de-bundling are allowed in the place value system. 

Although learners already know the decimal place val-
ue system and its properties, at least unconsciously, 
while ordering natural numbers and calculating with 
them, they normally do not pursue this concept in re-
lation to decimals. Furthermore the extension of the 
place value system from natural numbers to decimal 
numbers is not self-explanatory (Padberg, 2009, p. 167), 
since there are not only analogies but serious differenc-
es between both (ibid, p. 170). Therefore the emerging 
extensions and general properties of the place value 

system should be addressed adequately when teaching 
decimals to avoid inappropriate transfers from natural 
numbers and to foster a suitable understanding of our 
decimal place value system related to decimals.

The interactive place value chart by 
Kortenkamp and its benefits
One of the main reasons for difficulties in mathemat-
ics learning is the fact that mathematical objects and 
structures are not directly accessible through our 
sensory organs. Nevertheless we can represent math-
ematical objects and structures through symbols as 
well as through visuals and we can gather experience 
engaging in mathematical activities on concrete ma-
terial to get access to mathematical concepts (Gersten 
et al., 2009; Schipper, 2003).

That is why it is recommended to use visuals and con-
crete activities to develop an adequate understanding 
of place value (e.g., Heckmann, 2006, p. 577).

A digital, interactive place value chart (designed by 
Kortenkamp, see Ladel & Kortenkamp, 2013) allows 
the combination of concrete acting and iconic and 
symbolic representation of numbers. The following 
a priori analysis of the artefact examines the possible 
functions of the interactive place value chart and their 
corresponding mathematical meanings within the 
place value system. The main functionalities of the 
interactive place value chart are the representation 
of a number by tokens in a place value chart and the 
variation of the number’s representation by changing 
the quantity within place values moving tokens, while 
keeping the number invariant.

At the upper row of the place value chart the symbolic 
representation is described through the particular 
place values (Tens, Ones, Tenths, Hundredths, etc.), 
structured in columns. Additionally, the represented 
number can be displayed in standard notation. The 
bottom row as the main part shows tokens represent-
ing the quantity of each place value within the whole 
number (see Figure  1). 

A number can be created by adding tokens in the 
given place value columns by tapping the screen. 
Mathematically, this signifies an increase of the 
quantity in a particular place value by the quantity 
of added tokens. Here, the relation between particular 
place values and the number in standard notation 
can be explored addressing indirectly the positional 
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and the additive property of the place value system. 
Additionally, the function of the decimal zero is illus-
trated by a blank column of tokens.

The fundamental characteristic of this interactive 
place value chart concerns the invariance of the 
number, while varying its representation within the 
particular place values. Specifically, the user can slide 
tokens directly on the touchscreen, either within the 
same column or to other columns. Here, the former ac-
tion can be done to structure the token’s arrangement, 
e.g. to facilitate counting the tokens within a column. 
For the latter activity of moving a token to another 
column there are three different possibilities of the 
artefact’s reaction, which are guided by the mathe-
matical structure of the decimal place value system:  

a) When the user slides one token to one column 
rightwards, the token multiplies into ten tokens 
within the new column. If the user moves for 
example one token of tenths to the hundredths, 
in the hundredths-column there will emerge 10 
tokens (see Figure 2).

Here, the artefact represents the transformation 
of the representation through de-bundling ac-

cording to the base-ten-property of the decimal 
place value system. The artefact furthermore 
follows the multiplicative property of the place 
value system, which implies that the quantity in 
each place value has to be multiplied with the 
according place value that decreases in powers 
of ten from left to right, so that the quantity in 
place values has to increase in powers of ten 
while de-bundling from left to right. 

b) When the user slides one token to one column 
leftwards, there are two cases: 

i) If there are at least ten tokens in the initial 
column, nine tokens go along with the slid 
token and the ten tokens merge to one token 
in the new column. Here, the artefact auto-
matically bundles according to the multipli-
cative structure and the base-ten-property of 
decimal place value. 

ii) If there are less than ten tokens in the initial 
column, the token slides back to its initial 
position, because the condition for bundling 
only groups of ten is not given.

To sum up, the analysis of the relation between arte-
fact signs and the underlying mathematical meaning 
shows that the interactive place value chart follows 
the particular structure and corresponding proper-
ties of the decimal place value system by performing 
and illustrating bundling and de-bundling activities.

As an additional functionality, the number of place 
values as well as the basis of place values can be 
changed, so that the chart can address further num-
ber systems (basis 2–16) and can be used on different 
levels of learning. 

How this interactive place value chart might support 
substantial learning activities related to decimal place 
value in comparison to other learning materials for 
place value systems will be the focus of the following 
passage.

The interactive place value chart in 
comparison to other materials
To explore the structure of decimal fractions and the 
allowed rules within the decimal place value system, 
students need a tool that follows the rules keeping 
the structure invariant. In contrast to “traditional” 

Figure 1: The digital place value chart 

Figure 2: Changing the number’s representation within the place 

value chart by moving tokens
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place value charts (paper-pencil or with real tokens), 
the interactive place value chart allows and even 
performs bundling and de-bundling activities (see 
above). Ladel and Kortenkamp (2013) emphasize that 
this allows to “operate with the tokens while keeping 
the represented number unchanged” (p. 191, italic in the 
original), whereas in traditional place value charts the 
manipulation of tokens means a change of the number 
and therefore a change of the underlying structure. 
In this sense the “modern approach emphasizes the 
human activity and is ruled by the object (i.e. the num-
bers), not the artefact” (ibid). That means that the use 
of traditional place value charts requires to reflect and 
understand the artefact, so that the artefact and its 
function become additional issues to understanding. 
In contrast, the interactive place value chart follows 
and even illustrates the structure and the rules of the 
place value system, so that it could be helpful especial-
ly for low-performing learners.

Compared to the base-ten-blocks as well as line-
ar-arithmetic-blocks materials, the interactive place 
value chart does not illustrate particular place values 
by different sizes and aspects, but by its position with-
in the chart. Therefore the positional property of the 
place value system is emphasized. This can be seen as 
a preparation for the symbolic notation through dig-
its, because the digits of a number equally do not differ 
in aspect, instead their position within the number is 
essential (positional property). This preparation is 
important for disconnecting from concrete activities 
on the tool to understand and symbolise decimal num-
bers (Scherer & Moser-Opitz, 2010, p. 85; Schipper, 
2003, p. 223). Hasemann (1995, p. 13) points out that 
exactly this transition from the concrete situation to 
formalising and symbolising is the main difficulty of 
understanding mathematics for many students. 

Another chart that is used to illustrate the structure 
of our decimal number system is the Gattegno Chart 
(see Figure 3), where “each column has a digit name 
associated with it (one, two, three,…, nine) and each row 
has a value name associated with it (thousand, hundred, 

-ty, [nothing]). Thus, a number name can be thought of 
as made up from digit names and value names” (Hewitt, 
2005, p. 45, italic in the original). With respect to this 
structure the Gattegno Chart aims to “[help] students 
to learn to say and write number names” (ibid, p. 44) 
as well as it is meant to ”[provide] a basis for work 
on place value, decimals, addition and subtraction, 
multiplication in powers of 10 and standard form” 
(ibid). Various tasks are suggested for exploring the 
chart’s structure to invent calculating methods (see, 
e.g., Hewitt, 2005). However, these calculating meth-
ods are rather based on the chart’s structure than on 
conceptual understanding of the decimal place value 
system. The properties of our decimal place value 
system could be addressed by specific tasks within 
this chart, but in contrast to the interactive place 
value chart they are not illustrated directly within 
the table. Moreover the Gattegno Chart is focused on 
the symbolic representation of numbers in contrast 
to the interactive place value chart, where the iconic 
representation includes in particular the illustration 
of the multiplicative and base-ten property.

OUTLOOK INTO THE EMPRICIAL 
RESEARCH TO BE CONDUCTED

With this analysis of the mathematical structure of the 
place value system included in the interactive place 
value chart and the theoretical considerations on its 
benefits, the basis for an empirical investigation of 
the artefact’s impact on students’ learning is provided. 
On this basis my research approach will be to investi-
gate empirically how students interact with the digital 
place value chart in the process of conceptualising the 
place value system as a main factor for constructing 
a fruitful concept of decimals. 

In learning processes and their profound analysis, the 
use of artefacts seems to play a crucial role, especially 
while investigating the interactive place value chart, 
because the culturally construed structure of the 
place value system is already included in this artefact. 
Recognising this structure “may occurs [sic] for the 

Figure 3: An example of the Gattegno Chart
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expert automatically and unconsciously” (Mariotti, 
2012, p. 28), but students firstly have to explore and 
get to know this structure within the place value chart 
through the use of the tool (ibid.). That is why Radford 
emphasizes that artefacts in the mathematics class-
room “are not merely devices that provide stimuli for 
cognitive development” (Radford, 2014, p. 360), but 

“they are part of cognition, which we see simultane-
ously as ideational and material” (ibid).

With the neuropsychological model “gestures as simu-
lated action” from Hostetter and Alibali (2008) we can 
moreover understand why also the dynamics and rela-
tions between different semiotic resources (gestures, 
inscriptions, language, etc.) might be important in the 
analysis of learning processes. Hostetter and Alibali 
(2008) state that “gestures emerge from the perceptual 
and motor simulations that underlie embodied lan-
guage and mental imagery” (p. 502). That is why this 
approach leads to suppose that for example not only 
gestures and language, but also gestures and activities 
on artefacts in a learning situation are intertwined 
with each other and so both have to be considered in 
the analysis also concerning their relationship. 

Recent studies about the role of gestures in mathemat-
ics learning revealed that especially high-performing 
learners use gestures while “generalising” a math-
ematical concept, so that it seems as if they bridge 
the transfer from concrete acting to mathematical 
thinking through gestures (e.g., Goldin-Meadow & 
Beilock, 2010).

Regarding the interactive place value chart we can 
note that the sliding-actions needed to operate with 
the tokens originate in concrete sliding-actions of real 
tokens, but as well they are gesture-based because of 
the chart’s touchpad-surface. Furthermore the place 
value chart emphasizes the spatial property of the 
place value system within the chart, which also can 
be experienced by the sliding-actions on the touch-
pad. The virtuality of the digital place value chart, its 
gestural basis of sliding-actions and the spatial prop-
erty seem to be suitable to transfer the chart and the 
sliding-actions into the gesture space as a virtual and 
dynamic representation, that can similarly be used to 
reason (verbally) about the place value system and its 
properties in relation to decimals. 

Equally it would be possible that students transfer the 
virtual place value chart into an inscription, where 

the sliding-action and therefore the bundling- and 
de-bundling-activities of place value can only be rep-
resented statically and fixed in contrast to gestures.

In summary, all semiotic resources, the mathematical 
concept of the place value system and its impact on 
the artefact should be part of the analysis of learning 
processes. Thus the focus of investigation will be on 
the role of bodily and artefact-mediated action and 
perception together with linguistic and symbolic ac-
tivity, so that the following research questions are 
traced: 

 ― How do students construct decimals with the 
interactive place value chart? What conditions 
foster or hinder this process? 

 ― How do students use semiotic resources inter-
acting with and disconnecting from the inter-
active place value chart, and what functions do 
these resources accomplish within the process 
of learning?

To examine the mentioned research questions vid-
eo-recorded interviews with student-pairs in grade 5 
will be conducted before these students are formally 
introduced to decimal fractions. The students will be 
on different levels of their mathematical development 
and come from an inclusive setting within a compre-
hensive school (Oberschule) in Bremen. Within these 
interviews the students receive tasks dealing with 
the properties of the place value system in relation to 
decimal fractions, where they can use the interactive 
place value chart. 

The final goal of my research project will be to develop 
further the tool of the interactive place value chart 
and to design a learning environment that fosters 
substantial understanding of the place value system 
regarding decimal fractions taking into account dif-
ferent semiotic resources. Therefore, the tasks as well 
as the design of the tool will be developed further dur-
ing the process of data collection based on the emerg-
ing results of analysis. That is why the realisation and 
the analysis of the single interviews will be organised 
in an alternating way.   

Concerning the design of the tasks it is important to 
allow a non-predetermined use of different semiot-
ic resources besides the tool (gestures, inscriptions, 
language, etc.), so that it will be possible to investigate 
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the impact and function of different, spontaneously 
used resources on the students’ process of under-
standing. Here, the semiotic bundle (Arzarello, 2006, 
p. 267) as a refined notion of semiotic system provides 
a suitable framework for the analysis of semiotic re-
sources. This framework of semiotics combines the 
enlarged notion of semiotic system stated by Ernest 
(2006) and the Vygotskian approach of psychological 
processes (Arzarello, 2006, pp. 278f.). This means that 
besides the classic semiotic resources like words and 
inscriptions also gestures and artefacts are included 
in this modern notion of semiotic system (Radford, 
2002, footnote 7). Thereby the Vygotskian approach 
allows “a deeper understanding of its [the semiotic 
system’s] dynamics” (Arzarello, 2006, p. 279). That this 
enlarged semiotic approach of semiotic bundle could 
be fruitful in the analysis of learning processes has 
already been shown in particular studies. Different 
research projects on the role of gestures in mathe-
matical learning processes (e.g., Behrens, Krause, & 
Bikner-Ahsbahs, 2014; Krause, 2015 in preparation; 
Sabena, 2007) revealed for example that within the 
whole semiotic activity, gestures play an important 
role in the students’ process of generalisation. In this 
sense Radford describes the role of gestures by sup-
plying “the unperceivable general with something 
concrete” (Radford, 2005, p. 115).
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To help students prepare for the resit exam of the mathe-
matics Bagrut (Israeli matriculation) of 2013, the Center 
for Educational Technology established a virtual review 
session using Facebook, for four days before the exam.  
614 students and 16 teachers participated. We examined 
three central questions, each about using Facebook to 
prepare for the mathematics Bagrut: What opportuni-
ties for learning were created? What are the students’ 
opinions? What are the teachers’ opinions? Analysis of 
the posts on Facebook revealed five types of situations 
with potential for learning.  Answers to on-line question-
naires show that both students and teachers hold posi-
tive opinions towards the solution for learning provided 
by Facebook. We recommend researching opportunities 
for learning afforded by the social networks.

Keywords: Facebook, learning opportunities, student 

interactions.

INTRODUCTION

Online social networking sites such as Facebook have 
developed in recent years and have become the most 
popular meeting places for youth and adults (Boyd, 
2010). Many studies have investigated the potential 
of using these networks to promote learning (e.g., 
Forkosh-Baruch & Hershkovitz, 2013; Neman, Lev, & 
Amit, 2013). In some of these studies of teacher-student 
interactions the student has the status of the teacher’s 
friend (Madge et al., 2009) and hierarchies are formed 
as a result of this friendship status (Steinfield, Ellison, 
& Lampe, 2008). Asterhan and colleagues (2013) dis-
cuss whether and how teachers may use Facebook for 
innovative, collaborative forms of online learning 
that extend beyond the traditional classroom, and 
whether this is at all recommendable or feasible. 

Recently many researches have studied the Facebook 
option of creating a group where teacher and students 
belong but do not need to be “friends”. Students per-
ceived learning in this environment as very intensive 
and collaborative in nature (Meishar-Tal, Kurtz, & 
Pieterse, 2012). In the learning of mathematics, social 
network sites have been found to invite student collab-
oration and encourage learning (Baya’a & Daher, 2013).

In this present research the learners were members 
of a group on Facebook opened specially for prepa-
ration for the mathematics Bagrut (Israeli matricula-
tion) exam. We investigated what opportunities for 
learning were created as a result of the interactions 
that formed within the group and examined the view-
points of students and teachers who took part in the 
study group. We present the results of a pilot study, 
in preparation for a wider research on this subject. 
In this pilot we chose the medium of Facebook as 
being familiar and convenient. In a larger study we 
recommend investigating other possible platforms 
and comparing the influence of different platforms.

Our research questions were:

1)  What opportunities for learning could be iden-
tified as a result of interactions on the Facebook 
forum?

2) What were students’ and teachers’ attitudes to-
wards these interactions on the Facebook forum?

OUTLINE OF THE RESEARCH 

Eight groups – four in Hebrew and four in Arabic – 
were opened on Facebook for four days, twelve hours 
a day, before the resit of the mathematics Bagrut exam. 
Teachers were on call to respond to students (three 
shifts of four hours). The Hebrew speakers’ group 

mailto:yanivb@cet.ac.il
mailto:Sarah@cet.ac.il
mailto:MaureenH@cet.ac.il
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comprised 513 students, and the Arabic group 101 
students. The groups were divided according to the 
questionnaires in the Bagrut exams at intermediate 
and advanced levels. The teachers were trained in on-
line teaching, in the principles of a forum, and in the 
Facebook tools, and were given technical instructions 
on how to provide responses in the forum. 

During the activity the students raised questions in 
whatever subject they wished. The questions were 
uploaded to the forum as photographs or as details of 
book, page, and exercise number (the teachers were 
provided with all the relevant textbooks). On receipt 
of a question the teacher sent a reply, “I will upload an 
answer soon” and after several minutes (on average 
10 minutes) he uploaded a response to the forum as a 
photo of the page on which he wrote the solution, or 
hints on how to reach it. At the end of the study session 
online questionnaires were sent to the students and 
teachers who took part in the forums. 105 students 
and 15 teachers completed the questionnaires. 

RESEARCH METHODS AND TOOLS

We used a mixed methods research model (Johnston & 
Onwuegbuzie, 2004) which combines qualitative and 
quantitative data analysis. The research tools were 
two online questionnaires, one for students and one 
for teachers, comprising open and closed questions. 
The open questions for the student included those 
on his background, which exam paper he was taking, 
how he heard about the study group, and his sugges-
tions for what he would like to preserve in the study 
group and what he would like to improve. The open 
questions for the teacher included those on his sen-
iority, his online teaching experience and the classes 
he usually teaches. Teachers were also asked to write 
down their feelings about teaching through Facebook, 
to describe interactions they remember favourably, 
etc. The closed questions in both questionnaires com-
prised statements on a Likert scale from 1 (disagree) to 
4 (strongly agree). These statements included issues 
such as the use of technology, peer learning, motiva-
tion to continue learning/teaching in a similar man-
ner in the future, interactions with students, etc. 

The participants answered the questionnaire at the 
end of the Facebook review session. The answers to 
the open questions were analysed by three mathemat-
ics education experts to improve validity reliability 
by triangulation (Denzin & Lincoln, 2000). The anal-

ysis was carried out in four stages: first the answers 
were collected; in the second stage all the answers 
were divided into short sentences; subsequently each 
sentence was classified according to general subject 
matter; and finally the sentences in the same subject 
matter group were collected together and arranged 
according to categories. After much discussion 100% 
agreement was achieved between the judges about 
the categorisation of the data. 

In order to learn what opportunities for learning were 
created as a result of revising for the Bagrut exam in 
mathematics through the medium of Facebook an anal-
ysis was made of the content appearing in Facebook 
throughout the review session. First we divided up 
all the content into analysis units according to the 
participants in the interactions: teacher-student and 
student-student. In the second stage we analysed all 
the interactions and learning opportunities that arose. 
The analysis consisted of identifying and characteriz-
ing the students’ questions and the correctness of their 
explanations. Each analysis unit was examined with 
the aim of pinpointing the development of mathemat-
ical knowledge during the interaction. From this anal-
ysis we identified learning opportunities which can 
be seen in Figure 2. In order to preserve the privacy of 
the participants care was taken to ensure anonymity. 

FINDINGS

Figure 1 shows the number of students in each group 
according to the levels of the exam papers (804 and 
805 – intermediate, 806 and 807 – advanced) and the 
number of questions or discussions raised (the posts). 

Figure 2 presents a map of the opportunities for learn-
ing observed throughout the review session.  

Figure 1: Number of participants and number of posts in each 

study group
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We now provide a short description of each opportu-
nity and some episodes from the forum.

Evaluating peers’ solutions
During the review session students asked for help in 
pinpointing the mistakes they had apparently made in 
their solution, intending that the teacher would eval-
uate their work and find the mistake. We observed 
that during the time that passed between a student 
uploading his solution and receiving a reply from the 
teacher (perceived as the source of authority in the 
forum) other students responded and tried by them-
selves to pinpoint the source of their peer’s error.  The 
students’ attempts created a cognitive appeal to the 
correctness or incorrectness of the evaluation and 
thus started a chain of responses until a final response 
was given by the teacher. Similarly we noticed that 
throughout the review session students had consid-
erable success in taking the teacher’s role by attempt-
ing to provide explanations through the forum. This 
finding is strengthened by the students’ answers to 
the questionnaire at the end of the review session. 72% 
(N=104) stated that they learned from responses given 
by other students. 

We now provide an episode from the forum. Here we 
give an example of a student-student interaction in 
which a student uploads his solution to a problem and 
requests help to find his mistake. Sagi refers to the fol-
lowing problem (of which only the relevant sections 
are replicated here).

A sequence of 2n+1 numbers satisfies the follow-
ing conditions:  a1 = 10, an+1 = 5an.

a. Express in terms of n the sum of the terms 
in the even-numbered places.

b. The last term in the sequence is 3,906,250. 
Calculate:

1) the sum of the terms in the even-num-
bered places

2) the sum of the terms in the odd-num-
bered places

3) the term in the middle of the sequence.

Sagi posts the following:

I need help with general understanding of this 
problem. It’s clear to me that the sequence is ge-
ometric and that the q is 5…. The general term, 
according to the given information, should be 
an = 10 ⋅ 52n + 1 – 1 . And so a2 is 6,250. It’s clear that’s 
incorrect because it should be 50 but I would be 
happy for an explanation of what I am not un-
derstanding here, and for the solution. Thanks.

Sagi attempts to phrase his difficulty in his own words. 
We can see that he recognizes that the sequence is ge-
ometric and knows the formula for the general term 
in a geometric sequence an = a1 ⋅ qn-1. However he sub-
stitutes 2n+1 for n in the formula thus finding the last 
term instead of the general term. Avichay replies to 
Sagi and the following dialogue takes place:

Avichay: The general term in a geomet-
ric sequence is an = a1 ⋅ qn-1 and so    
a2 = 10 ⋅ 51 = 50.

Sagi: Right, but here the last term is in place 
2n+1.

Avichay: That doesn’t change anything buddy.

Figure 2: Learning opportunities on Facebook resulting from teacher-student interactions and student-

student interactions
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Sagi: I’m pretty sure it does because in section 
b you have to use the general term

  an = 10 ⋅ 52n.
Avichay: That formula is for every geometric se-

quence. The number of terms doesn’t 
matter for this formula, only for the 
sum formula.

Sagi: I’m pretty sure you’re wrong. Let’s wait 
for one of the tutors to answer.

Avichay: Okay, but there you’re looking at the sum 
of terms. You asked what’s a2?

Sagi: Let’s wait for an answer. I want to be 
sure. But really, thanks pal.

Avichay: I think I understand what your problem 
is…… The n-1 in the power of q isn’t ac-
cording to the number of terms in the 
sequence but the place of the term in the 
sequence.

Avichay: And if you want to find the value of a2 
you need to do q(2–1).

Avichay is determined to help Sagi and tries to fine-
tune the mathematical language he uses in his ex-
planation. Sagi appears doubtful but is grateful for 
Avichay’s efforts. The improvement in Avichay’s lan-
guage throughout the episode is evident. At the end of 
the discussion between Avichay and Sagi, Achinoam 
joins in as follows:

Achinoam: In my opinion if you substitute 2 in 
the first formula given an+1 = 5an you get 
a2 = a1 ⋅ 5, that is 10 ⋅ 5 = 50.

Sagi: Right, that’s clear, but I’m trying to un-
derstand why the formula for the gen-
eral term, and it’s correct, doesn’t give 
me a2 =50.

Achinoam: Why not? It works out terrific…If I 
understood you correctly you meant the 
formula for the general term an = a1 ⋅ qn-1 
where you substitute 2n + 1 for n?

Achinoam: If so, I can help.
Sagi: Yes.
Sagi: That’s what I meant.
Achinoam: Terrific so: a2n+1 = a1 ⋅ q2n+1–1 and that’s 

in fact equal to a2n+1 = a1 ⋅ q2n and then if 
you want a2 your n will have to be 1/2 
and then a2= a1 ⋅ q2*1/2 and that works out 
a2= a1 ⋅ q1 and that’s exactly right if you 
substitute the givens and you do get a2= 
50.  

Achinoam: I hope you understand me.  

Sagi: Wow thanks a lot!! Simply all the time 
I read my general term to be an instead 
of a2n+1.  Really thank-you.  I was getting 
stressed out.

Achinoam: Hey – my pleasure. Just glad I was able 
to help.

Achinoam has shown Sagi how he could have got the 
correct answer using his method. Sagi says he now un-
derstands and clarifies his mistake in his own words. 
Ironically Achinoam’s convincing argument is mathe-
matically flawed. Here the intervention of the teacher 
is required to make sure that Sagi and Achinoam will 
understand that n cannot take the value 1/2.

From an analysis of the present dialogue we can learn 
about learning opportunities that occurred among 
the students: exposure to different solution methods, 
improvement in mathematical language through giv-
ing explanations and asking questions, perseverance 
and motivation on the part of Sagi to find his mistake 
on the one hand and the desire of his peers (Avichay 
and Achinoam) to help him on the other. 

Exposure to peers’ questions 
Throughout the review session students were ex-
posed to questions raised by other students and tried 
to answer these questions themselves. This finding is 
based on the number of observers of each post in the 
forum, on the students’ reports in the questionnaire, 
and on the responses of the students in the forum it-
self. Exposure to peers’ questions expanded the avail-
able pool of exercises and presented the additional 
challenge of dealing with questions that were difficult 
for their peers to solve. This finding is supported by 
the students’ questionnaires where 78% reported that 
they learned from questions raised by other students.

Critical reading of teachers’ solutions
The most significant learning opportunities that oc-
curred during the review session were the chance 
to read, to analyse, and to understand the teachers’ 
solutions on the forum. On some of the posts, after 
reading the teachers’ solution the student returned to 
his own solution to compare the two methods. In this 
excerpt we can see the comparison one student made 
after receiving the teacher’s answer to his question. 
At the end of this post an error was found in the book, 
thanks to the student’s “stubbornness”.  
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Thanks. But somehow in the answers they put 3/4 
instead of 3 root 3 divided by 2. And according to 
the volume of the prism that you found I got the 
correct t but the maximum volume is different. 
Maybe they made a mistake? I’d like you to solve 
the rest because I didn’t get the same answer …

Coping with scaffolding not crutches
In not a few cases the teacher’s response was advice 
for continuing the solution and the student had to 
deal with the problem on his own. 87% of the students 
claimed that the teachers’ tips helped them learn. In 
this excerpt we see a hint given by the teacher and 
the student’s satisfied response that it helped him to 
solve the problem.  

Teacher: I recommend you to try to finish this by 
yourself. If not, let me know and I’ll post 
the solution. Tip: the lateral area is the 
sum of the areas of the rectangular faces 
without the bases.

Student: Thank you very much for the help. I got 
it right! J  

Asking questions
Throughout the review session, in addition to the 
problems the students posted as photos or text, they 
asked concrete questions on particular parts of a solu-
tion, and expressed doubts that arose during a solu-
tion. In contrast to questions asked face to face, here 
asking questions requires another skill – the ability 

to formulate the question in writing, with suitable 
emphasis for the teacher who is supposed to answer. 

The following excerpt shows a student’s questions 
after a solution has been posted by the teacher. It 
includes a search for explanation/proof, indicating 
critical reading of the solution.

It’s not clear to me why you can deduce from the 
sketch of the graph alone that there are no max-
imum or minimum points? Who says there isn’t 
one before the asymptote? And how can you tell 
without a table if the function is increasing or 
decreasing from the asymptote? Thanks!!

Instructional interactions on the social network
The answers to the questionnaires were analyzed 
as described in the section on research methods. In 
Table 1, we show examples of students’ and teachers’ 
remarks in each of the categories:  motivation for con-
tinued learning, peer learning, technology utilisation, 
and supportive learning climate. 

As can be seen in the table, students’ and teachers’ re-
sponses were mainly positive, and in general the par-
ticipants’ responses indicate great satisfaction with 
the use of Facebook in preparing for the exam. 75% of 
the students (N=105)  stated that it was easy for them 
to ask questions and receive replies through Facebook, 
79% stated that they would like to use Facebook in this 
way also for learning other subjects, and 87% stated 
that they would like to continue learning in a similar 

Categories Student questionnaire Teacher questionnaire

Motivation for 
continued learn-
ing

I’m glad I got the chance of the Facebook 
forum. It gave me the option with exercises 
that I couldn’t solve, not to give up like I 
usually do, but to get the solutions from a 
teacher – that really helped me.

I really liked the fact that the students 
asked relevant questions, related to the 
answers, and didn’t give up until they 
understood.

Peer learning
The forum was a very good idea. We could 
learn from other students’ questions and 
answers.

A student posted a question after a lesson, 
and I noticed that students started to help 
each other in the forum, and succeeded in 
solving some parts of it.

Technology utili-
sation

I would recommend improving the method 
of posting pictures on Facebook.

The idea of photographing the problem or 
the solution and posting is brilliant and 
effective in making best use of the time 
and for presenting the solution.

Supportive 
learning climate

I would be very happy to get this kind of 
help throughout the year. It is all over and 
above what a student can expect for suc-
cess. Thank you so much for all the help.

The students’ appreciation was 
heart-warming.

Table 1: Students’ and teachers’ remarks about the integration of Facebook in preparing for the Bagrut exam in mathematics
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manner throughout the year. 93% of the teachers (N = 
15) stated that the environment encourages meaning-
ful learning and that the project justifies the invest-
ment of resources. There was 100% agreement among 
the teachers on willingness to continue in a similar 
manner next year. 93% stated that they would be in-
terested in opening similar learning environments 
for their own students during the year. 

A little criticism on the use of technology was heard 
from both students and teachers, relating to the up-
loading of pictures that were sometimes not clear, 
thus making it difficult to understand and respond to 
the problem. In addition, teachers in charge of forums 
where there was a lot of activity indicated the need 
for extra staff to help manage the responses where 
necessary. 

DISCUSSION AND CONCLUSION

In this research we asked what opportunities for 
learning could be identified as a result of interac-
tions on the Facebook forum. The Facebook forum 
encouraged different interactions between teachers 
and students and among the students themselves. 
These interactions provided the learners with learn-
ing opportunities which included: asking questions, 
peer learning, different methods of problem solving, 
and critical reading of solutions, and were exposed 
to questions from different textbooks and to solution 
methods of different teachers. These learning oppor-
tunities carry extra value and are important in the 
learning process leading up to the Bagrut exam and in 
general.  Individual study without interactions with 
peers or with a teacher is unlikely to afford any of 
these opportunities.

We also asked what were students’ and teachers’ at-
titudes towards these interactions on the Facebook 
forum. The findings in this research indicate students’ 
great satisfaction with the opportunity given them 
to study for the mathematics Bagrut exam through 
the medium of Facebook. They were motivated to 
deal with questions their peers found difficult. The 
findings relating to the students’ positive opinions 
of learning in a Facebook environment strengthen 
findings of earlier studies about learning on social 
networks (Meishar-Tal, Kurtz, & Pieterse, 2012).  The 
teachers also expressed great satisfaction with the 
Facebook environment for learning and declared 
their intention to adopt a similar environment pre-

paring for Bagrut exams in the following years and 
for teaching during the school year. 

Advantages of this technological platform included 
the neutralizing of the time factor – the learning could, 
and did, take place at all hours of the day and night. 
Weaker students were able to take advantage of the 
greater abilities of their peers and to learn from them. 
Students who lack confidence to ask questions in a face 
to face situation felt freer to express themselves. The 
activity was open to students from different schools 
with different backgrounds. These are only some fea-
tures that are not present in a traditional classroom.  

This research was an initial testing of teacher-stu-
dent and student-student interactions on Facebook 
in a four-day review session in preparation for the 
Bagrut mathematics exam. The results encourage 
continuation and further research into these and oth-
er related aspects, on wider groups of teachers and 
students, and for longer time periods. A wide based 
research in the subject would be likely to lead to peer 
learning also among the teachers themselves  –   on 
how to characterize students’ questions leading up to 
the exam, and in general. In addition, we recommend 
that continued research on these issues could provide 
educational policy makers with an understanding of 
the value of investing in similar projects in the future.
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Combinatorial reasoning is very important in mathe-
matical development, providing students with contact 
with essential problem solving. One form of symbolic 
representation of combinatorial situations is a tree di-
agram. Two experimental studies were designed and 
implemented, the first with adults in initial school-
ing and the second with Elementary School children. 
Comparisons were performed in order to observe the 
impact that the use of tree diagrams – virtual or built 
with pencil and paper – had on combinatorial reason-
ing. From initial poor performance, both children and 
adults in initial schooling benefitted from instruction 
by use of tree diagrams that enabled them to perceive 
how elements can be combined in a systematic manner 
and helped them develop their combinatorial reasoning.  

Keywords: Combinatorial reasoning, tree diagrams, 

children and adults; initial schooling.

THE ROLE OF SYMBOLIC REPRESENTATIONS 
ON COMBINATORIAL REASONING

Combinatorial reasoning is a way of thinking very 
useful in general mathematical learning. According 
to Batanero, Godino and Pelayo (1996), Combinatorics 
is a key element of discrete mathematics, being essen-
tial for the construction of formal thought. The nature 
of combinatorial situations – counting techniques 
of possible groupings of a given set of elements that 
meet certain conditions, without necessarily having 
to count them one by one – provides students contact 
with essential problem solving and may help their 
development in Mathematics and other subjects.

Diverse forms of symbolic representation may be 
used in solving combinatorial problems, such as: 
drawings, lists, tree diagrams, tables, formulas and 
other forms. These distinct symbolic representations 
may provide means of systematization and help stu-
dents understand how to obtain the total number of 
combinations. 

The role of symbolic representations in mathemat-
ical development is pointed out by Vergnaud (1997) 
as a key element in conceptualisation. Considering 
Combinatorics, Fischbein (1975) emphasizes that the 
use of tree diagrams can enable advances in the de-
velopment of combinatorial reasoning because this 
representation helps systematization by pointing out 
the necessary steps in choosing elements to compose 
combinations.

In a longitudinal study, Maher and Yankelewitz (2010) 
investigated the initial understanding of eight and 
nine year olds in a problem of Cartesian product. The 
authors defend that it is necessary to invite children 
to use various representations to express their ideas 
and ways of thinking, because representations give 
meaning to the problems and communicate ideas. 
Thus, children can find patterns, be systematic and 
generalize results. 

Sandoval, Trigueiros and Lozano (2007) proposed 
the learning of Combinatorics by use of the software 
Árbol. The study was conducted with 25 Mexican chil-
dren, aged 11 to 13, and the authors observed improve-
ments in student performance, especially regarding 
the choice of strategies for efficient resolution. Thus, 
it is emphasized that this software, through tree dia-
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grams, favours the use by children at initial level of 
schooling, because it provides possible combinations 
in all types of combinatorial problems (Cartesian 
products, combinations, arrangements and permuta-
tions). Figure 1 shows a screen of the software Árbol of 
a Cartesian product problem in which in it possible to 
visualise the total number of combinations in a tree 
diagram.

COMBINATORIAL SITUATIONS

According to Vergnaud (1997), to study and under-
stand how mathematical concepts develop in students’ 
minds through their experience in school and outside 
school, one needs to consider a concept as a three-uple 
of three sets: the set of situations (S) that make the 
concept useful and meaningful; the set of operational 
invariants (I) that can be used to deal with these sit-
uations; and the set of symbolic representations (R) 
that can be used to represent invariants, situations 
and procedures. Thus, the immense role played by 
symbols cannot be ignored in mathematical teach-
ing and learning, as means to articulate invariants 

– conceptual properties and relations – situations and 
strategies used in problem solving.

Vergnaud (1997) also points out that combinatori-
al problems are part of what he calls multiplicative 
structures. In the same direction, Pessoa and Borba 
(2010) defend that as connected concepts, different 
types of combinatorial problems should be taught in 
the classroom and present examples of these distinct 
situations:

Cartesian product: At the square dance three boys and 
four girls want to dance. If all the boys dance with all 
the girls, how many pairs will be formed? 

Simple permutation (without repetition): Calculate 
the number of anagrams that can be formed with the 
letters of the word LOVE.

Simple arrangement: The semi-finals of the World 
Cup will be played by: Brazil, France, Germany and 
Argentina. In how many distinct ways can the three 
first places be formed? 

Simple combination: A school has nine teachers and 
five of them will represent the school in a congress. 
How many groups of five teachers can be formed? 

TWO STUDIES ON COMBINATORIAL 
REASONING DEVELOPMENT 

With the aim of investigating the role of symbolic rep-
resentations – in particular the use of tree diagrams 

– on the development of combinatorial reasoning, we 
designed and implemented two experimental studies. 
The first one involved adults in initial schooling and 
in the second study took part Elementary School stu-
dents (5th grade, 10 year olds).  

Method of the 1st Study: Adults in early 
schooling using tree diagrams and lists
The adults taking part in the study were 24 students 
of classes corresponding to the 4th and 5th years of reg-
ular Elementary School with no previous systematic 
instruction on Combinatorics. They were separated 
into three groups, each group consisting of eight 
students. After solving an eight item pre-test (two 
problems of each type), they were taught in groups 
that varied in terms of symbolic representations used: 
G1 – lists and tree diagrams; G2 – tree diagrams; and 
G3 – lists. After the learning session they solved an 
eight problem post-test.

Figure 1: Árbol screen of a Cartesian product problem
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Method of the 2nd Study: Children using 
virtual or written tree diagrams
This study was conducted with 40 students from the 5th 
grade of Elementary School, divided into four groups, 
that took part in a pre-test (eight Combinatorics prob-
lems), followed by different forms of intervention 
and two post-tests (also with two of the four types of 
problems), which assessed the progress achieved a few 
days after the teaching session (immediate post-test) 
and nine weeks after the intervention (delayed post-
test). Just as the adults, the children had no previous 
systematic instruction on Combinatorics. During the 
teaching session, the students worked in pairs. The 
first experimental group (EG1) worked with the soft-
ware Árbol (Aguirre, 2005) in which diagram trees are 
constructed; the second experimental group (EG2) 
constructed tree diagrams with pencil and paper; the 
third group, a control group (CG1), worked, through 
drawings, multiplicative problems, according to the 
classification proposed by Nunes and Bryant (1996) 
(excluding  Combinatorics); and the fourth group was 
an unassisted control group (CG2), that took part only 
in the pre and the post-tests.

HOW DO TREE DIAGRAMS HELP 
COMBINATORIAL REASONING? 

Results of the 1st Study: Adults progress 
on combinatorial reasoning 
Initially (at pre-test) the adults presented only incor-
rect answers or partially correct answers with very 

few correct combinations presented. They preferred 
to use lists in their answers but, usually, were not sys-
tematic in their usages and could not obtain the total 
correct number of combinations.

After the teaching session, all three groups progressed 
in their combinatorial reasoning. An Analysis of 
Variance (ANOVA) showed no significant differenc-
es between groups (F (2, 21) = .78; p >.05). Thus, both 
forms of symbolic representations helped the adults 
to understand the combinatorial relations involved in 
the problems, but tree diagrams more clearly helped 
them to be systematic in their answers. 

Table 1 shows that at post-test the adults presented 
more correct answers or much more answers very 
close to the correct ones. 

Progress in understanding was, however, sometimes 
limited. Figure 2 shows two examples of partially cor-
rect answers at post-test.    

The first example (a Cartesian product), asked to in-
dicate possible couples by choosing a man, out of a 
group of four, and a woman, out of a group of six. The 
adult that answered in this manner presented only 
four couples, considering there were only four men 
available. The second example (a combination) asked 
to form pairs, out of a group of five people. The adult 
in this case incorrectly considered, for example, Luíza 

Problem type Incorrect
Answer

Partially correct answer Correct answer

Pre-test Post-test Pre-test Post-test Pre-test Post-test

A 75 14,6 25 81.2 0 4,2

C 47,9 6,2 52,1 83.3 0 10.5

P 91,7 50 8,3 50 0 0

CP 91,7 12.5 8,3 75 0 12.5

A – Arrangements; C – Combinations; P – Permutations; CP: Cartesian products

Table 1: Percentage of types of answers in each problem type, at pre and at post-test

Figure 2: Partially correct answers at post-test



Using tree diagrams to develop combinatorial reasoning of children and adults in early schooling (Rute Borba, Juliana Azevedo and Fernanda Barreto)

2483

and Ricardo as a different pair from Ricardo and Luíza. 
In this way, 20 pairs were listed instead of only 10.

In three of the problem types, correct answers were 
presented at post-test, but difficulties with permuta-
tions still remained. When using lists, the adults listed 
some of the permutations but not all of them. The lists 
were sometimes limiting in the understanding that 
in permutations all elements are used in all possible 
orders. 

Some preferred, after the teaching session, to use 
tree diagrams and those that used this symbolic 
representation tended to do so in a more systematic 
manner that led to correct answers. Figure 3 is an ex-
ample of a correct answer presented at post-test of the 
problem of combination of two elements out of five. In 
this type of problem, and others, the adults benefitted 
from use of tree diagrams because this form of rep-
resentation highlighted the need to be systematic in 
the combination of elements in distinct combinatorial 
situations. The adult in this case noticed that if Emília 
and Ricardo have been already marked as a pair (top 
left hand side), than the branches started with Ricardo 
must not include Ricardo and Emília as a distinct pair. 

Results of the 2nd Study: Children’s 
advances in combinatorics
In the study with 5th grade children, each of the eight 
problems was scored zero to four, depending on how 
correct the answer was. If no combinatorial relation 
was observed the answer was scored zero; if only one 
combination case was presented, the score was one; if 

a limited number was presented, the score was two; 
if a larger number was presented, but not the total 
number of cases, the answer was scored three; and, 
finally, the score four was given to answers that were 
completely correct – with the total number of cases 
asked for. Thus, the total possible score was 32.

Table 2 shows children’s performance at pre-test, im-
mediate post-test and delayed post-test. The initial 
means were very similar because the children were 
distributed in the groups by pairing their scores and 
all four groups had very low initial scores. 

By use of paired t-tests, significant differences were 
observed when performance at pre-test and immediate 
post-test were compared, for both experimental groups    
(EG1: t (8) = -2.920; p = .0019; EG2: t (8) = -3,447; p = .0009). 
Thus, the teaching session that used tree diagrams (ei-
ther virtual or in pencil and paper) was effective in 
developing children’s combinatorial reasoning.  

No significant differences were observed between 
performance at immediate post-test and delayed post-
test for the two experimental groups (EG1: t (8) = -0.472;         
p = .649; EG2: t (8) = -1.541; p =.162).  This indicates that 
learning was retained by children of both experimen-
tal groups because, after nine weeks, the children still 
were able to recognize the distinct combinatorial rela-
tions involved in the problems and also were still able 
to successfully present correct combinations. 

The children in the control groups presented no sig-
nificant differences in performance, neither when 

Figure 3: Correct answer at post-test with tree diagram

Groups Pre-test Immediate post-test Delayed   post-test

EG1 – Software Árbol 4,6 12,1 13,22

EG2 – Pencil and paper 4,8 14,8 16,44

CG1 – Multiplicative problems 4,7 4,1 4,0

CG2 – Unassisted 4,9 2,8 4,2

Table 2: Means of groups at pre-test and two post-tests
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pre and immediate post-test were compared (CG1: 
t (9) = 0.751; p = .472; CG2: t (9) = 0.391; p = .705), nor 
when immediate and delayed post-test were compared 
(CG1: t (9) = 0.0750; p = .946; CG2: t (9) = -0.782; p = .454). 
Thus, only solving other multiplicative problems (not 
including combinatorial ones) or just taking part in 
other regular school activities was not sufficient to 
improve combinatorial reasoning. 

Table 2 also indicates a slightly better improvement in 
EG2 when compared to EG1. This performance some-
what higher may be related to the fact that students 
in this second group solved the situations using the 
same representation (writing with pencil and paper) 
adopted in the pre-test and post-tests, while students 
in the first experimental group solved the problems 
aided by the software and at post-tests had to use a 
pencil and paper representation. In addition, EG2 
may have been benefited by having to think about the 
combinatorial relations concurrently with the con-
struction of the tree diagrams, while EG1 had the tree 
diagrams built by the software, and it was necessary to 
think of these relations only when selecting the valid 
cases constructed. A positive result, observed mainly 
by the students of the group that learned with the soft-
ware, was that at post-test the children used different 
types of strategies – tree diagrams, lists and diagrams 

– showing that students did not merely learn a proce-
dure but understood the relations involved in distinct 
types of combinatorial problems.

Taking in consideration problem type, Graph 1 indi-
cates that there were huge improvements at post-test 
in Cartesian products, combinations and arrangements. 

Means in these types of problems were higher than 
four (considering that there were two problems of 
each type and that for each problem the maximum 
score was four, and the total maximum was eight). 
This indicates that children in the experimental 
groups tended to obtain correct answers in at least 
one problem of these types. The graph shows no im-
provement in permutations and, just as what was 
observed with adults, the children possibly needed 
more time to better understand the tree diagram con-
struction of this problem type, in which all elements 
are used in distinct orders. 

Figure 4 shows a child, from the first experimental 
group, solving similar combination problems at pre 
and at immediate post-test. At pre-test the problem 
involved selecting two pets out of three animals (a 
dog, a bird and a turtle) and at immediate post-test 
the problem involved the choice of two teachers out 
of four (Ricardo, Tânia, Luíza and Sérgio). Initially 
the child incorrectly answered that there was only 
one way of choosing two pets out of three animals. At 
post-test the child used a tree diagram and correctly 
answered that there were six different ways.  

0
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3

4

5

CP C A P

Pre-test - EG1

Post-test EG1

Pre-test EG2

Post-test EG2

CP: Cartesian product; C: Combination; A: Arrangement; P: Permutation

Graph 1: Means of experimental groups at pre-test and immediate post-test according to problem type

Figure 4: Incorrect answer at pre-test and correct answer at immediate post-test of a child from the first experimental group
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Figure 5 shows a child, from the second experimental 
group, solving similar arrangements problems at pre 
and at immediate post-test.  

The pre-test problem involved choosing two out of five 
letters (X, Y, Z, K and W) for license plates. The child 
listed only five options out of the 20 possible arrange-
ments. The list was not systematic and the child did not 
consider that the order of choice implied in different 
options (the licence plate XY is different from the YX 
one). The immediate post-test problem involved the 
choice of a representative and vice-representative of 
a class out of six students (Luciana, Marcos, Priscila, 
João, Talita and Diego). The child listed 15 arrange-
ments and answered that there were 30 in all. The child 
was very systematic in the listing produced. First all 
the choices with Luciana (represented by the initial 
L) as representative were listed, followed by Marcos 
(represented by the initial M) as representative and 
Diego as representative (represented by the initial 
D). The child at this point generalized that for each 
student as representative there were five options, so 
with all six children there would be 30 distinct ar-
rangements. 

Progress was not generally observed in permutation 
problems but Figure 6 shows how a child (from the sec-
ond experimental group) solved this type of problem 
at pre and at post-test. The pre-test problem involved 

ordering three people (Maria, Luís and Carlos) in a 
line. The child presented only one option. 

At post-test, the child used a tree diagram and was 
successful in doing so. The problem involved putting 
a ring (anel), a necklace (colar) and a pair of earrings 
(brincos) on three trays of a jewel box. The child cor-
rectly considered all possible branches of the tree and 
concluded there were six different ways of putting the 
jewellery in the box. 

One interesting aspect is that many children from 
the experimental groups preferred to use listings 
at post-tests, despite having had the experience – by 
use of software or pencil and paper – of using tree 
diagrams. What was observed was that learning with 
tree diagrams enabled systematic listing, not present 
at pre-test. Figure 7 is an example of a child, of the 
second experimental group, that at post-test correctly 
listed the 24 possible couples, chosen from a group of 
six boys (Gabriel, Thiago, Matheus, Rebato, Otávio 
and Felipe) and four girls (Taciana, Eduarda, Letícia 
and Rayssa). 

This was also observed amongst adults – the preference 
of use of listing was maintained but the child or adult 
used systematic lists, after instruction. This seems to 
be strong evidence that the child or adult did not simply 
learn a procedure but understood what relations were 
involved in distinct combinatorial problems.

Figure 5: Incorrect answer at pre-test and correct answer at immediate post-test of a child from the second experimental group

Figure 6: Incorrect answer at pre-test and correct answer at immediate post-test of a child from the second experimental group in a 

permutation problem
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USING TREE DIAGRAMS IN INITIAL SCHOOLING 

The two studies presented show that despite initially 
not understanding combinatorial problems,  children 
and adults in early schooling can develop their com-
binatorial reasoning by use of robust symbolic rep-
resentations (Vergnaud, 1997), such as tree diagrams, 
that aid the systematic enumeration of combinations. 

Tree diagrams – built by software use or in writing – 
may help students’ understanding of combinatorial 
situations, because this form of representation may 
aid systematic choice of elements to compose com-
binations, as pointed out by Fischbein (1975), and 
also attested by Maher and Yankelewitz (2010); and 
Sandoval, Trigueiros and Lozano (2007). The use of 
tree diagrams also enabled improvement in listings 
that at post-test were used in a systematic manner by 
adults and children. The better use of listings shows 
that the participants had not merely developed proce-
dural knowledge (how to use tree diagrams), but had 
developed a better understanding of combinatorial 
situations.

One aspect that must be pointed out is that the use 
of the software Árbol helped children develop their 
combinatorial reasoning but it required an extra ef-
fort when the students answered the problems by use 
of pencil and paper. In this case, what had been learnt 
using the software, had to be transferred to pencil 
and paper solutions. This aspect must be considered 
in teaching situations and future studies may look 
into how the use of technology may enable the use of 
varied forms of symbolic representation in solving 
combinatorial problems.  

Care is required in using tree diagrams in combina-
tions and permutations. In combinations care is need-
ed in not considering twice equivalent cases and in 
permutations the tree may have many steps of choice 
that must all be considered.

Combinatorial reasoning is a very relevant aspect in 
mathematical development and schooling is an im-
portant factor in this progress. How Combinatorics is 
taught can aid combinatorial reasoning development 
and tree diagrams may be used as tools that effectively 
represent combinatorial situations and the relations 
involved. This symbolic representation is especial-
ly useful at initial schooling by its visual aspect that 
enables both children and adults to perceive how el-
ements can be combined in a systematic manner and 
help them develop their combinatorial reasoning.    
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Many recent curriculum reforms aim to address short-
falls with regard to student engagement with mathemat-
ics by harnessing the affordances of technology, social 
constructivist pedagogies, contextual scenarios, and/
or approaches aligned with Realistic Mathematics 
Education (RME). However, these may not sit well within 
a conventional classroom setting; a 21st Century (21C) 
learning model may be more appropriate. This paper 
describes a teaching experiment in Ireland, supporting 
an ongoing curriculum reform; it used technology-me-
diated activities consonant with social constructivism, 
RME, and 21C learning. The study involved twenty stu-
dents (aged 15–17) over a two-day period. Results suggest 
that the approach has the potential to increase student 
engagement with and confidence in mathematics.

Keywords: RME, contextualised learning, twenty-first 

century learning, technology-mediated, post-primary 

education.

INTRODUCTION

Debate regarding the quality of mathematics educa-
tion at post-primary level is ongoing in many coun-
tries. Recent curriculum reforms have typically 
focused on developing students’ conceptual under-
standing, problem-solving ability and productive 
disposition (National Research Council, 2001), with 
the intention that students would be able to apply 
their mathematics confidently in real-life and other 
contexts. However, on leaving school, many students’ 
views of the subject are still fragmented and de-con-
textualised (Gross, Hudson, & Price, 2009), resulting 
in low levels of mathematical confidence and engage-
ment. Research indicates that factors contributing to 
these attitudes include a formal, abstract and assess-
ment-driven approach that reinforces behaviourist 

and didactic tendencies in teaching and learning, 
with content and procedure prized over literacy 
and understanding (Conway & Sloane, 2005; Ozdamli, 
Karabey, & Nizamoglu, 2013). Mathematical creativity 
is generally not encouraged, leading to a perception 
of mathematics as involving memorisation and exe-
cution of set procedures that lead to unique, correct 
answers (Dede, 2010; Ernest, 1997), and a belief that 
mathematics is “hard, right or wrong, routinized and 
boring” (Noss & Hoyles, 1996, p. 223). 

It has been suggested that, within an appropriate 
pedagogical framework, the use of technology in the 
classroom can make mathematics more meaningful, 
practical, and engaging (Drijvers, Mariotti, Olive, & 
Sacristán, 2010; Olive et al., 2010). Social construc-
tivist educational theories have been shown to align 
particularly well with the affordances of technology 
(Bray & Tangney, 2013; Patten, Arnedillo Sánchez, & 
Tangney, 2006). Another approach seen as address-
ing limitations in traditional mathematics education 
is that of Realistic Mathematics Education (RME) 
(Gravemeijer, 1994; van den Heuvel-Panhuizen, 2002), 
which also sits well with social constructivist pedago-
gy. However, activities combining a technology-medi-
ated, social constructivist and RME approach to math-
ematics learning do not fit easily into the conventional 
classroom with its didactic teaching and short class 
periods (Wijers, Jonker, & Kerstens, 2008).  So-called 
21st Century (21C) learning models – emphasising a 
student-centred, active approach and key skills such 
as collaboration, communication, creativity and prob-
lem-solving, as well as content – may be more appro-
priate (Dede, 2010; Voogt & Roblin, 2012).

In Ireland, a reformed post-primary mathematics 
curriculum is being introduced (Cosgrove, Perkins, 
Shiel, Fish, & McGuinness, 2012). The reform initia-
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tive, known as ‘Project Maths’, aims to increase stu-
dents’ understanding, problem-solving ability and 
engagement, particularly with regard to problems 
set in context; it recommends a focus on construc-
tivist learning and an emphasis on the meaningful 
use of technology. Research is being undertaken, 
not only to evaluate the effectiveness of the project 
on a national scale (Jeffes et al., 2013), but also to ex-
amine specific teaching experiments. In particular, 
Jeffes and colleagues (2013) refer to the problem that 

“teachers are currently emphasising the content of the 
revised syllabuses rather than the processes promot-
ed within it”, and that “students need to be regularly 
given high quality tasks that require them to engage 
with the processes promoted by the revised syllabus-
es” (p. 5). Within this context, we aim to investigate 
whether the combination of a technology-mediated 
approach, RME and a particular model – Bridge21 
(Lawlor, Marshall, & Tangney, 2015) – of 21C learning 
facilitates the development of mathematics learning 
activities that increase student engagement and con-
fidence. To provide a framework, the key features of 
RME and of the Bridge21 model are described and dif-
ferent levels of technology usage are discussed. The 
combination of the three elements is then illustrated 
through the description of a two-day experiment in a 
school setting. Preliminary results are discussed and 
tentative conclusions drawn.

FRAMEWORK

In this section, the three elements of the framework 
are outlined briefly.

Realistic Mathematics Education (RME)
RME is an approach to mathematics education that 
involves students developing their understanding by 
exploring and solving problems set in contexts that 
engage their interest, with teachers scaffolding their 
reinvention of the mathematics that they encounter 
(Freudenthal, 1991). Five characteristics of RME are 
identified: (i) the importance of problems set in con-
texts that are real to the students; (ii) the attention paid 
to the development of models; (iii) the contributions 
of the students by means of their own productions 
and constructions; (iv) the interactive character of the 
learning process; and (v) the intertwinement of learn-
ing strands. It should be noted that the contexts do not 
have to be drawn from the real world; the important 
aspect is that the students find them meaningful (van 
den Heuvel-Panhuizen, 2002).

The five characteristics guide a process called ‘pro-
gressive mathematisation’ (Gravemeijer, 1994). This 
involves: starting from a problem set in a context; iden-
tifying the relevant mathematical concepts involved; 
gradually refining the problem so that it becomes a 
mathematical one representing the original situation; 
solving that problem; and interpreting the solution 
in terms of the original situation. Mathematisation 
has two components, designated as ‘horizontal’ and 

‘vertical’. They are described by Dickinson, Hough, 
Searle, and Barmby in terms of modelling: “The pro-
cess of using a model to solve a particular problem 
is known as ‘horizontal mathematisation’, while that 
of using the model to make generalisations, formal-
isations etc. is known as ‘vertical mathematisation’” 
(2011, p. 48). As the students engage in progressive 
mathematisation, they encounter the concepts first in-
formally, then ‘pre-formally’, and only eventually at a 
formal level. The mathematisation and formalisation 
processes are illustrated in the teaching experiment 
described below.

The Bridge21 Model of 21C Learning
Bridge21 is a particular model of 21C learning devel-
oped in the authors’ institution (Lawlor, Conneely, & 
Tangney, 2010). It was originally used in an out-of-
school outreach programme, and in recent years has 
been adapted for use in Irish post-primary schools. 
Currently it is being trialled in a number of schools 
as part of a systemic reform process in Irish educa-
tion (Johnston, Conneely, Murchan, & Tangney, 2014). 
In this team-based pedagogical model, adults act as 
guides and mentors, scaffolding and orchestrating the 
learning experience. The model is innovative in that 
it offers a structured approach to the implementation 
of a 21C Learning activity, providing a set of steps to 
facilitate a successful intervention. The steps typi-
cally include: team formation; a divergent-thinking, 

‘warm-up’ activity; investigation of the problem/chal-
lenge; planning; an iterative phase of task execution/
problem solving/artefact creation; presentation; and 
reflection. Strict deadlines are enforced to encour-
age planning and ensure the teams stay on-task. The 
physical learning space is configured to support a 
collaborative, project-based, cross-curricular and 
technology-mediated approach, with an emphasis 
on individual and group reflection.
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Technology usage (enhancement 
and transformation)
Use of digital technologies in mathematics education 
has the capacity to open up diverse pathways for 
students to construct and engage with mathemati-
cal knowledge, embedding the subject in authentic 
contexts and returning the agency to create mean-
ing to the students. It can facilitate an emphasis on 
practical applications of mathematics, through mod-
elling, visualisation, manipulation and more complex 
scenarios (Olive et al., 2010). However, Olive and col-
leagues (2010) also note that “it is not the technology 
itself that facilitates new knowledge and practice, but 
technology’s affordances for development of tasks 
and processes that forge new pathways” (p. 154). The 
SAMR Hierarchy (Puentedura, 2006) offers a useful 
tool for describing different levels of technology inte-
gration in activities (Figure 1). The Bridge21 approach 
focuses on the creation of activities that fall within 
the Transformation space on the hierarchy. However, 
within the field of mathematics education, the use of 
technology to augment traditional approaches – out-
sourcing the calculation, increasing speed and accu-
racy, and thus permitting more focus on underlying 
concepts – is also seen as important. In the activities 
developed in this project, technology is incorporated 
in such a way as to create  and support tasks that are 
meaningful and realistic for the students; it is not 
used merely to re-instantiate aspects of traditional 
mathematics teaching.

RESEARCH METHODS

The experiment discussed in this paper makes up one 
embedded unit within an overarching explanatory 
case study (Yin, 2014). To date, three such experiments 
have taken place within school settings and initial re-
sults are currently being analysed. A mixed methods 
approach to data collection and analysis has been tak-
en, with considerable emphasis placed on qualitative 
data (Creswell, 2003; Yin, 2014). Qualitative analysis 
uses a directed content approach, and a pre-experi-
mental design is used to analyse the quantitative data.

The Mathematics and Technologies Attitudes Scale 
(MTAS) (Pierce, Stacey, & Barkatsas, 2007) was uti-
lised to gather quantitative data. MTAS is a 20-item 
questionnaire with a Likert-type scoring system. It 
has five subscales: 

1) Behavioural Engagement: how students behave 
when learning mathematics

2) Affective Engagement: how students feel about 
the subject

3) Mathematical Confidence:  students’ conceptions 
of their ability to do well in the subject and to han-
dle difficulties 

4) Confidence with Technology: students’ confi-
dence in their ability to master technological pro-
cedures required of them and resolve difficulties

5) Attitude to using Technology in Mathematics: 
the degree to which students feel that technol-
ogy provides relevance, aids their learning, and 
contributes to their achievement in mathematics. 

The instrument was administered to students before 
and after the interventions, and paired t-tests were 
used to analyse the data (Creswell, 2003). While it is 
ambitious to expect meaningful data about such large 
and important issues from a 20-item questionnaire, 
the descriptors of the MTAS subcategories have been 
very useful to guide the qualitative analysis, permit-
ting a more in-depth investigation of the themes.

Qualitative data came from focus-group interviews 
conducted 2 to 4 weeks after each intervention. The 
MTAS subscales were used as a-priori codes to direct 
content analysis of the interviews using NVivo10. Use 
was also made of codes drawn from a set of design 

Figure 1: SAMR Hierarchy (Puentadura, 2006)
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principles for mathematics learning activities that fit 
within the technology-mediated, Bridge21/RME para-
digm; their development is described by Bray, Oldham, 
and Tangney (2013). Some of the elements used as 
codes include: task design that is realistic, practical, 
and open-ended; teamwork; and transformative and 
computational use of technology. Matrix coding was 
used to identify associations between elements of the 
design principles and subscales of MTAS.

THE TEACHING EXPERIMENT

The students involved were from year 10 (age 15/16), 
which in the Irish system is known as Transition Year. 
This is a one-year school programme in which the fo-
cus is on personal, social, vocational and educational 
development, providing opportunities for students 
to experience diverse educational inputs in a year 
that is free from formal examinations (Department 
of Education and Science, 2004). Timetabling is more 
flexible than is the case for other school years, facili-
tating teaching experiments that are not constrained 
by short class periods. The first author had access to 
students for two days, from 10 am to 4 pm. During 
this period, she acted as the main teacher, or facilita-
tor, with one classroom assistant. The class consisted 
of 20 male students of mixed ability, assigned by the 
class teacher to 5 groups of 4 students each, in such 
a way as to balance abilities. The environment was a 
large room with movable desks; each team was allo-
cated a workstation, where they could work togeth-
er. Laptops (two per team, to enhance collaboration), 
smartphones and other resources were provided. 

Each of the two days followed the same general struc-
ture, based on the Bridge21 learning model of warm-
up, investigation, planning and implementation. 
Throughout the day the facilitators interacted with 
the students, scaffolding their exploration of the math-
ematics and the technology. Based on the activity, the 
final section of the day was dedicated to a ‘sales pitch’ 
on day 1 and  a competition on day 2; in each case this 
was followed by group presentations, in which the 
students discussed what they had accomplished and 
the mathematics they had understood. A whole-group 
discussion concluded the sessions.

The first day’s activity was ‘Plinko and Probability’, 
which encourages students to develop a deep con-
ceptual understanding of patterns, Pascal’s triangle, 
probability and bias. Plinko is a game of chance based 

on a Galton board: a board with evenly spaced pegs ar-
ranged in staggered order, to form a triangle (Figure 
2). Balls should be funnelled onto the board from di-
rectly above the top peg. If the pegs are symmetrically 
placed, the marbles have equal probability of bounc-
ing left or right. A number of evenly placed slots form 
the base of the board, into which the marbles fall. 

The students were informed that they were going to 
be developing a game for a casino and would have 
to devise the rules and scoring system in such a way 
that the game would be appealing to players, but that 
the casino owners would win overall. They were pro-
vided with a Plinko board template, a cork-board and 
some pins and marbles, smartphones, and laptops 
with open-source spreadsheet software and the free 
video analysis tool, Kinovea1 (Figure 2). They were 
also given a sheet of exploratory questions relating 
to the possible paths on a Galton/Plinko board.

The aim of the activity was to encourage the students 
to make sense of what appears to be random behav-
iour. In particular, they were encouraged to identi-
fy that the number of routes to the pegs in the grid 
(starting from the top) forms Pascal’s Triangle, and 
also to understand the probability of a marble land-
ing in a particular bin if the board were perfect. In 
addition, they analysed their own boards, using the 
spreadsheet to tabulate and visualise 100 rolls. They 
were thus able to see how well their game conformed 
to a digitally generated one,2 introducing the notions 
of bias and fairness. They used video tracking to see if 
any of the marbles they rolled followed the same path 
to any one bin, developing a practical understanding 
of the concept of probability. 

1 www.kinovea.org

2 http://phet.colorado.edu/en/simulation/plinko-probability

Figure 2: Plinko and probability

http://www.kinovea.org
http://phet.colorado.edu/en/simulation/plinko-probability
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Tasks that involve odds and chance are familiar to 
Irish students. In order to engage the students fur-
ther, and add to the realistic aspect of the activity, they 
were required to decorate their boards, and develop 
the rules and scoring for their game, with the pur-
pose of making a sales pitch to the facilitators (‘casino 
owners’) and to the year 12 (aged 17/18) students of the 
school (‘players’). The successful team would be the 
one that was able to persuade both groups of the va-
lidity and attractiveness of their model. This aspect of 
the activity led to much heated discussion regarding 
the best way to organise the game, for example: “The 
stats are here!”, “We get more money if we do it my 
way!”, and “Just think about it, we make more money!” 

In terms of the process of mathematisation, the first 
part of the activity, in which the students developed a 
physical board, and from that a mathematical model 
of the probabilities of their board, exemplifies hori-
zontal mathematisation. Vertical mathematisation 
is evident in their generalisation of these probabili-
ties into the set of rules for their games; in particular, 
some teams advanced beyond the basics and began to 
use the AND/OR rules of probability – beyond the cur-
riculum for this year group – to set up more general 
models. Progress from informal through pre-formal 
and on to formal conceptualisation was facilitated 
by the tools available to the students, with the formal 
language introduced as the concepts were developed. 
In particular, the development and exploration of the 
boards encouraged the identification of the pattern 
of Pascal’s Triangle, and the use of video-analysis and 
spreadsheet technology supported the development 
of formal mathematical models. 

The work on day two involved collection, representa-
tion and analysis of data, line of best fit, correlation, 
causality, and extrapolation. It used the Barbie Bungee 
activity described by Bray and Tangney (2014) and 
Tangney, Bray, and Oldham (2015).

RESULTS OF THE TWO-DAY EXPERIMENT

Quantitative data
The sampling distributions were normally distribut-
ed according to the Shapiro-Wilk test. Paired t-tests 
identified gains in all MTAS subscale scores; the differ-
ences were significant (p<0.5) for all subscales except 
Mathematical Confidence.

Qualitative data
Coding matrices generated by NVivo facilitated com-
parison between MTAS and the design principles, in 
order to generate conjectures as to the primary fac-
tors that caused the gains in student engagement and 
confidence indicated by the MTAS scores. 

The coding process is in its early stages. However, 
initial results suggest that the aspects of the design 
principles most associated with Affective Engagement 
were the realistic (in the RME sense), cross-curricular 
and guided discovery aspects of the task design; the 
Bridge21 activity structure; and the transformative 
use of technology, which facilitated the realistic na-
ture of the tasks. Behavioural Engagement was also 
positively associated with the realistic, practical and 
guided discovery aspects of the task design, the activi-
ty structure and the transformative use of technology, 
but the impact of working in a team also appeared to 
have a positive effect. Mathematical Confidence was 
positively associated with the real, guided, and practi-
cal tasks, with the use of technology also appearing in-
fluential. The use of technology, both transformative 
and computational, was most significantly related to 
Confidence using Technology, with the variety of tech-
nology noted as adding to flexibility and adaptability. 
The transformative and computational use of technol-
ogy, in conjunction with the task design, appeared to 
have the most influence on students’ Attitude to using 
Technology in Mathematics. 

DISCUSSION AND CONCLUSIONS

There is evidence from the results that technology-me-
diated interventions using the Bridge21 model and 
embodying an RME-style task design can have a pos-
itive impact on student experience in the classroom. 
The qualitative results in particular, indicate a en-
couraging increase in student engagement with and 
confidence in mathematics. The quantitative results 
also showed gains on all the MTAS subscales, although 
it should be noted that the gain for Mathematical 
Confidence did not reach significance. 

It is worth noting, however, that the students taking 
part in the experiment described here appeared par-
ticularly favourably disposed to the approach – one 
student went so far as to say “… it changed the way 
I look at maths… it was a life-changing experience!” 
(Groups in other schools were positive but not quite 
so ebulliently so.) Also worth noting is that, while the 
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impact of the collaborative, team-based approach was 
primarily positive, this is the one area in which some 
misgivings were expressed; one negative association 
was recorded between it and both Behavioural and 
Affective Engagement: “The groups […] in our class, 
we all like, know each other, and people just like got 
pushed aside and lost motivation to do anything and 
were just a bit bored.”

Ongoing data analysis is using an inductive approach, 
looking for emergent themes, not directly related to 
MTAS or the design principles. One of the most in-
teresting themes to emerge thus far is the students’ 
positive sense of ownership of their learning, which 
they are associating with mathematical confidence, 
reasoning that “because you can have your own idea, 
even if the teacher is explaining it wrong, or … in a 
different way, it’s like you have your own idea about 
it and you can add to what they are telling you to do”.

This study set out to identify whether activities de-
signed within a technology-mediated, socially con-
structivist, RME setting could increase student en-
gagement with and confidence in mathematics, in line 
with some of the aims of the Project Maths syllabus. 
While initial results are promising, the relative nov-
elty of the approach may be a contributing factor, and 
although the experiment took place in a school, it did 
so in a year in the Irish school system that allows for 
flexible approaches to curriculum and timetabling. 
If however, the findings can be replicated – both for 
repeated use with similar students, and for classes 
following syllabi leading to state examinations – it 
would augur well for addressing some of the short-
comings identified in the implementation of Project 
Maths to date. 
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In the digital era, it is crucial to explore how digital tech-
nologies can be successfully integrated in the mathe-
matics classroom and what their potential impact on 
learning is. This paper presents some reflections based 
on data gathered as part of the MiGen project (www.mi-
gen.org1) from studies aimed to investigate ways to sup-
port the transition to formal Algebra, through the use of 
a constructionist learning environment and carefully 
designed ‘bridging’ activities that consolidate, support 
and sustain students’ algebraic ways of thinking. Our 
claim is that explicit links need to be made to Algebra 
through those specially designed activities so that such 
a digital tool can support students’ learning of formal 
Algebra in order to be successfully integrated in the 
mathematics classroom.

Keywords: Generalisation, microworlds, transition, algebra.

INTRODUCTION

In the last few decades, the number of appearances of 
digital technologies designed for mathematics learn-
ing keeps growing. Relevant research (e.g., EACEA 
Eurydice Report, 2011), though, has shown that these 
technologies are not always used to their full or in-
tended potential and also, students rarely use ideas, 
concepts or strategies they seem to have acquired 
through their interactions with such technologies. For 
example, Gurtner (1992), referring to the Logo environ-
ment, demonstrated that the tool’s features which are 
designed to support students when faced with complex 
mathematical problems may impede them from making 

1  The MiGen project was funded by the ESRC/EPSRC Technology 

Enhanced Learning Programme (RES-139-25-0381 2007–

2011). Part of the research reported here was in the context 

of an ESRC ‘Follow-on’ project (ES/J02077X/1) and the M C 

Squared project, which was co-funded by the EU, under FP7 

Strategic Objective ICT-2013.8.1 “Technologies and scientific 

foundations in the field of creativity” (Project No. 610467).

connections between their work in Logo and any math-
ematical or geometrical ideas they are already familiar 
with and use when problems seem less complex. Also, 
the lack of information on why and how to build bridges 
to formal mathematics, which were not often made in 
standard Logo situations, led to the lack of connections 
to formal mathematics (Gurtner, 1992). In this paper, we 
discuss our approach to support students’ transition of 
moving back and forth from paper-and-pencil to inter-
acting with digital tools and therefore consider ways 
of facilitating the integration of digital technologies 
in mathematics classrooms. In particular, our focus is 
on the transition to formal Algebra and how students 

‘transfer’ their knowledge from their interactions with 
a digital tool, namely eXpresser, specially designed to 
support and address students’ difficulties with learning 
algebra, to paper-and-pencil (PaP) activities.

There is a lot of research on the issue of ‘transfer’ (e.g., 
DiSessa & Wagner, 2005). Our interpretation is closely 
aligned with Beach (2003) who has argued that the 
metaphor should be viewed as transition instead of 
transfer. Crossing boundaries from one location to 
another is in fact a process of transition and there-
fore people are the ones who move and not knowledge 
or learning. In the case of Logo, Gurtner (1992) con-
sidered “the type of connections generally expected, 
and very seldom observed, between Logo practice and 
mathematics” (p. 247) as transfer and suggested that 
there is a need for a long period of practicing in Logo, 
especially one which is rich in reflection, so that some 
transfer to mathematics can happen. 

Going back to our focus on Algebra, the transition to 
formal Algebra has been investigated by various au-
thors (e.g., Radford, 2014) and the literature is replete 
with examples of student difficulties (e.g., Stacey & 
MacGregor, 2002). Students struggle to understand 
the idea behind using letters to represent any value 
(Duke & Graham, 2007) and are inexperienced with 

mailto:e.geraniou@ioe.ac.uk
mailto:m.mavrikis@ioe.ac.uk
http://www.migen.org
http://www.migen.org
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mathematical vocabulary. Even students capable of 
expressing a general rule through the use of words, 
like ‘always’ or ‘every’, struggle to use letters and sym-
bols and form algebraic expressions.

Similarly to Radford (2014), who claimed that there is a 
need for specially designed classroom activity to sup-
port students’ developmental path to formal Algebra, 
and to Gurtner (1992), who suggested presenting 
structured tasks, using appropriate microworlds 
and making explicit interventions during students’ 
interactions, we claim that a digital tool specially de-
signed to support the development of algebraic ways 
of thinking (AWOT) together with carefully designed 
bridging activities should ‘smoothen’ the transition 
to formal algebra without rendering it impossible for 
students to reach the mathematical ‘bank of algebra’. 
Besides ‘learning’ the tool and developing expertise 
in using it, students should make the connections to 
mathematics. The issue is to find out ways for sup-
porting students to make such connections.

EXPRESSER AND THE 
TRANSITION TO ALGEBRA

The MiGen system is a pedagogical and technical envi-
ronment that improves 11–14 year-old students’ learning 
of algebraic generalisation. Its core component consists 
of a microworld, eXpresser, which has been specially de-
signed to help students develop AWOT through a series 
of generalisation tasks (Noss et al., 2012). In eXpresser, 
students construct figural patterns by expressing their 
structure through repeated building blocks of square 

tiles, and articulating the rules that underpin the calcu-
lation of the number of tiles in the patterns. A typical 
activity in eXpresser asks students to reproduce a dy-
namic model (or part of it) presented in a window that 
appears on the side of the activity screen.

Figure 1 shows a model where a row of red tiles is 
surrounded by grey tiles. Students are asked to 
construct a model that works for any number of red 
tiles, and find a rule for the total number of tiles sur-
rounding the red tiles. They can test generality by 
animating the model: that is, by letting the computer 
change the number of red tiles at random. The design 
of eXpresser capitalises on animated feedback and 
on the simultaneous representation of a specific and 
general model (‘My Model’ and ‘Computer’s Model’ 
in Figure 2), built by combining patterns and on the 
close alignment of the symbolic expression, the Model 
Rule and the structure of the model. All numbers in 
eXpresser are constants by default, referred to as 

‘locked’ numbers. When the user ‘unlocks a number’, 
it is possible to change its value; it becomes a varia-
ble. In the Computer’s Model, a value of the variable 
(‘Num of Red Tiles’ in this example) is chosen auto-
matically at random (it is ‘10’ in Figure 2) which will 
generally be different from that in the specific model 
(‘6’ in Figure 2). So the Computer’s Model indicates to 
students whether their constructions are structural-
ly correct for the different values of the variable(s). 
Students also construct a model rule for the total num-
ber of tiles, and validation of its correctness is made 
evident by colouring: tilings are only coloured if the 
rule for the number required is correct.

Figure 1: A model for 8 red tiles surrounded by grey 

tiles. Students must construct a general model and 

find the general rule

Figure 2: The eXpresser screen showing the general and specific models 

(Computer’s Model on the left, and My Model on the right), and a correct rule 

for the total number of surrounding tiles. The task goals are shown in the “Activity 

window” (lower left-hand corner)
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To make connections to formal Algebra feasible and 
support the transition from interactions with the eX-
presser tool to PaP Algebra, we had to consider what 
characterizes formal Algebra and more specifically 
AWOT. Algebra involves a number of mathematical 
concepts, from numbers, to variables, from numeri-
cal expressions to expressions that involve the use of 

‘unknown’ numbers and functions. Various authors 
have characterised algebra as ‘generalised arithmetic’ 
(e.g., Kieran & Chalouh, 1993). For example, Sfard and 
Linchevksi (1994) distinguished between the operation-
al phase, where “the focus is on numerical processes 
and there is no hint of abstract objects rather than num-
bers” (p. 197) and the structural phase, which involves 
processes of manipulations of symbols. They argued, 
therefore, that there are “two crucial transitions: from 
the purely operational algebra to the structural algebra 

‘of a fixed value’ (of an unknown) and then from here to 
the functional algebra (of a variable)” (p. 191). Leading 
on from these distinctions, Radford (2014) considered 
three conditions that characterise algebraic thinking: 
(i) indeterminacy, which is about recognising the use 
of ‘unknown’ values in the form of variables, parame-
ters, etc.; (ii) denotation, involving the symbolisation 
of the undetermined values of the problem in question 
that can include the use of natural language, gestures, 
signs, as well as a mixture of these or symbols and (iii) 
analyticity, involving the skill of manipulating the in-
determinate quantities like known values.

In the case of the eXpresser tool in our previous work 
(Mavrikis et al., 2013), we have identified two AWOT. 
The first one is:(i) Perceiving structure and exploiting 
its power, which is about noticing what stays the same 
and what is repeated in a figural sequence so as to un-
derstand how the sequence is ‘structured’, supporting 
therefore “the development of structural reasoning” 
and the habits of “breaking things into parts” by iden-
tifying “the building blocks of a structure” (Cuoco, 
Goldenberg, & Mark, 1996, p. 69). This AWOT, espe-
cially as it is operationalized in eXpresser that en-
courages students to construct what they perceive and 
manipulate the various properties of their construc-
tions, could relate to Radford’s (2014) indeterminacy 
and analyticity conditions, but also to the initial tran-
sition from the operational to the structural algebra 
of a fixed value of an unknown as described by Sfard 
and Linchevski (1994) above. The second AWOT is: (ii) 
Recognising and articulating generalisations, including 
expressing them symbolically, which is the process of 
translating the observed structure in an algebraic 

expression, using formal algebraic notation to write 
general rules for numerical sequences. This AWOT 
can be linked to Radford’s (2014) denotation condition 
as well as the second transition from the structural 
algebra to the more functional algebra of a variable 
(Sfard & Linchevski, 1994), as its focus is on the pro-
duction of formal algebraic expressions. 

BRIDGING ACTIVITIES

We designed a sequence of activities both to help stu-
dents become familiar with the tool but also to facili-
tate the transition to algebra. The sequence starts with 
introductory and practice tasks that ask students to 
construct figural models. It continues with individual 
activities, such as the one described above (see Figure 1). 
Students were asked to construct the task model in eX-
presser using different patterns and combinations of 
patterns, depending on their perceptions of the task 
model’s structure and derive a general rule for the num-
ber of square tiles needed for any Model Number. In our 
initial studies, students were presented with off-com-
puter tasks, immediately after the final eXpresser task 
in an effort to reveal their strategies on solving similar 
tasks on paper and whether eXpresser had an impact on 
those strategies or not. In later studies, though, and af-
ter close collaboration with teachers, we recognised the 
need of activities, which promote students’ reflections 
upon mathematical concepts and problem-solving strat-
egies they used throughout their interactions with eX-
presser and not just at the end. These we referred to as 
consolidation tasks. So, throughout their interactions 
with eXpresser and immediately afterwards, students 
were presented with four types of bridging activities 
(examples are given in Figure 3), which are designed 
to support their transition to paper-and-pencil tasks: 
(i) Consolidation tasks, which are usually short tasks 
that are used to intervene and encourage students to 
reflect on their interactions with eXpresser throughout 
a sequence of eXpresser tasks, (ii) Collaborative tasks, 
which are presented at the end of an eXpresser task and 
focus on students’ justification strategies regarding 
rule equivalence, (iii) eXpresser-like paper tasks, which 
are figural pattern generalisation tasks on paper, and 
(iv) text-book or exam like tasks, which are the traditional 
generalisation tasks given to students on paper.

STUDENT DATA

Over the past 7 years, we have carried out studies in 
6 different schools in London, worked with 11 mathe-
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matics teachers and collected data from 553 students 
aged 11–14 years old. Each study was carried out over 
the course of four consecutive lessons, during which 
students became familiarised with the tool through 
some simple tasks, worked on one or two main activ-
ities and then were given bridging activities. A sam-
ple of students was interviewed at the end of their 
interactions with eXpresser. All students had been 
introduced to Algebra at school before their interac-
tions with eXpresser, but of course their experience 
varied based on their age. Our data comprise one-to-
one and small groups of students’ and teachers’ in-
terviews and transcripts, video and audio files from 
interviews, one-to-one, small groups and classroom 
observations, detailed logs from students’ interac-
tions in the form of a database and bridging activities. 
Results from our studies are presented in a number 
of papers (e.g., Mavrikis et al., 2013; Noss et al., 2012; 
Geraniou et al., 2011). In this paper, we focus on the 
data collected from the bridging activities students 
worked on independently (or in pairs/groups of 3 
for the collaborative tasks) during, but mostly after 
their final interaction with eXpresser. Using the two 
AWOT described in Mavrikis and colleagues (2013), 
as an analytical framework for interpreting students’ 
strategies, we present our initial results under those 
two headings.

(i) Perceiving structure and exploiting its power. For the 
consolidation tasks, which were used with 175 stu-
dents as their necessity was identified later in our 
studies, most of the 175 students demonstrated on the 
model figures presented on paper how they visualised 
the structure of the given model. In Figures 4, 5, 6 
and 7, we present some examples of students’ answers 
on the four bridging activities presented in Figure 3. 
Students clearly marked the different parts that would 
remain the same in any instance of the pattern and the 
parts, which, repeated every time, create the different 
instances of the pattern. Especially for the collabora-
tive task, students verbally identified their building 
blocks in their models and rules and compared them 
to conclude about their equivalence. An example of 
two students’ collaboration and its outcome is pre-
sented in Figure 5. Students demonstrated a variety of 
ways to visualise the task patterns and it was evident 
how influenced they were by the eXpresser’s features 
as they were using the eXpresser terminology, e.g., 
number of building blocks or models. For example, in 
Figure 6 [F], [G] and [H], students drew the 2 building 
blocks that they could use if they were solving this task 
in eXpresser, that of a column of 3 square tiles and 
that of an ‘L’- shaped one of 5 tiles. For example, Janet 
named her independent variable as “number of red 
BBs” (BBs stands for Building Blocks), and even though 

Figure 3: Examples of Bridging Activities
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Nancy, named hers as ‘Nancy’, she used eXpresser’s 
terminology in her discussions with Janet. 

(ii) Recognising and articulating generalisations, ex-
pressing them symbolically. Students seemed to rely 
on the structure of the given task model in order to 
articulate a general rule. Most of them provided clear 
explanations to justify their derived rules.

Their work revealed some fluency in using the formal al-
gebraic language. They identified what stayed the same 
and translated that into a constant in their rule. For ex-
ample, in Figure 6 [H], the student annotated their rule 
(5xM)+3 and showed that the coefficient 5 is the number 
of repeated building blocks in their second building 
block. The constant 3 is the number of tiles in their first 
building block, which is not repeated. Similarly, the stu-
dent in Figure 6 [G] successfully identified 2 building 
blocks, that produce the task model, and indicated which 
building block stays the same and which is repeated. 

Students’ answers revealed their ability to articulate 
general statements, such as “with every new model, 
another 7 is added and if there’s ‘M’ amount of models, 
it should be (7xM)+5” (Figure 4[A]) or “there is always 
2 chairs to the ends of the single tables, then 2 chairs 
on the end of all tables put together” (Figure 7[I]). But 
the crucial step was their ability to translate that gen-
eralisation in parallel to their visualised structures 
into general rules and argue about similarities (or 
differences) between their models and derived gen-
eral rules, when discussing rule equivalence (e.g., 
Figure 5). Most students used the eXpresser language 
and terms such as ‘model number’ to represent the 
variable in their rule (e.g., “5xwhatever model number 
n is+3”, Figure 6[D]), as an intermediate step before 
expressing their derived rules in a formal algebra-
ic expression (e.g., “(5xM)+3”, Figure 6[H]). During 
collaboration, most students seemed to reach similar 
conclusions. Janet and Nancy for example recognized 
that the simplified general rule for their models is 7n+5 

Figure 4: 13 year-old students’ answers on the Train-track consolidation activity

Figure 5: 12 year-old students’ discussion on the Collaborative bridging activity
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and that ‘n’ represents any model number. eXpresser 
seems to have played a crucial role in this outcome, as 
it encourages students to name their variables (‘un-
locked’ numbers) based on what their values represent 
and therefore allows students to give meaning to that 
variable, thus easing students’ transition to formal 
algebraic language.

Even though the bridging activities have been care-
fully designed to prevent students from looking for 
the term-to-term rule in a sequence, there were some 
students, especially in the text-book like bridging ac-
tivities, who reverted to their past experiences and 
worked out the answers for each consecutive term in 
a sequence. For example, in Figure 7 [L], the student 
calculates the number of chairs when having 1 table, 
2 tables, 3 tables, etc. Despite, their focus on the term-
to-term rule, they spotted the correct general rule and 
wrote “Chairs=tablesx2+4”. Such an outcome though 
may be ephemeral and more work is needed to sup-

port the sustainability and longevity of any AWOT 
formed soon after interacting with eXpresser.

CONCLUSION

When solving problems, mathematicians do not need 
to stop and think, but instead get into a “mechanical 
mode” (Sfard & Linchevski, 1994). Similarly, students 
who become experts in a digital tool may learn how to 
interact with it procedurally and provide right answers, 
but not necessarily reflect on and consolidate their 
knowledge during their interactions. Consequently, 
they may fail in developing a robust understanding of 
the mathematical concepts (and procedures) the tool 
was designed to help them with and may not be able 
to offer mathematically valid justifications for their 
actions. Such an outcome can discourage teachers 
from using digital tools in their mathematics lessons, 
as they are not convinced of their value.

Figure 6: 12 year-old students’ work on the eXpresser-like Bridges bridging activity

Figure 7: 12 year-old students’ work on Tables and Chairs textbook-like activity
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In the case of eXpresser, the examples presented 
above reveal how students seem to successfully cross 
the ‘bridge’ from eXpresser algebra to formal algebra. 
Students demonstrated a conceptual understanding 
behind the development of general rules and general-
ised and adopted AWOT when solving PaP generalisa-
tion tasks. eXpresser, through the use of its language, 
supported students in their transition from numbers 
to ‘unknown’ numbers and variables and made the 
transition to symbolic thinking successful. In our ex-
perience, for such transitions to be successful, there 
is a need for bridging activities making the connec-
tions to algebra explicit. Their need and value have 
been mentioned by Gurtner (1992) too, who argued 
that ‘the do-math-without-noticing-it’ philosophy of 
Logo can be abandoned in favour of techniques that 
explicitly present looking for connections” (p. 253). We 
also recognised, similarly to Gurtner’s (1992) research 
that “In contrast to the more classical transfer model 
[…] useful bridges can be built from the beginning, 
as soon as work has started in both domains” (p. 265). 
This was addressed by the consolidation tasks. There 
also seems to be the need for a long period of practice 
with eXpresser, rich in reflection and consolidation, 
before transfer to mathematics can be possible.

We have investigated the initial transition from a 
constructionist learning environment to the PaP al-
gebraic generalisation tasks, and we have only started 
looking at the further transition to tasks that focus on 
abstract algebra, as described by Sfard and Linchevski 
(1994). The main concern is to identify and make more 
explicit the residual knowledge that gets noticed 
particularly by the interaction with constructionist 
learning environments. A successful integration in 
our view involves the successful transition from in-
teracting with a digital tool to the awareness of the 
knowledge that can potentially be transferred to PaP 
activities and identifying ways to encourage the sus-
tainability of such knowledge. Our aim remains to in-
vestigate further the issues of ‘Transfer’ and ‘Bridging’ 
and support the implementation of digital tools in the 
classroom through carefully designed and innovative 
bridging activities that consolidate and sustain stu-
dents’ mathematical ways of thinking.
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Our research focuses on the e-assessment of challenging 
calculus construction e-tasks designed to function as a 
dynamic interactive environment of multiple linked rep-
resentations (MLR) that provide feedback to the learner. 
A construction e-task requires students to use techno-
logical affordances to construct examples that satisfy 
specific conditions. The e-task is checked automatically 
and intermediate actions and submitted answers are 
reported. We present here an example of a construction 
e-task and report on a pilot experiment designed to elu-
cidate the role of the dynamic MLR environment in solv-
ing and assessing construction e-tasks. Specifically, we 
examine the student’s submitted solutions and analyse 
whether it helps reflect the reasoning behind the answer.

Keywords: Calculus, assessment, representations, 

technology, examples.

THRORETICAL BACKGROUND

The Joint Information Systems Committee (JISC)1 
defines e-assessment as the end-to-end electronic 
assessment process that uses information and com-
munications technology (ICT) to present the assess-
ment activity and to record the responses. By the term 
e-assessment we refer to forms of assessment that 
are created to be delivered, answered, managed, and 
marked mostly automatically, using ICT. We are es-
pecially interested in e-assessment of conceptual un-
derstanding of the content of calculus by high school 
students. In the present study we define an e-task as a 
technology-aided mathematical activity that engages 
students in seeing and doing mathematics. Scalise and 
Gifford (2006) introduced a categorization of inno-
vative item types that may be useful in e-assessment. 
These types are based on categories of ordering in-
volving successively decreasing response constraints, 
from fully selected responses (as in conventional mul-
tiple-choice questions) to fully constructed one (as in 

the traditional essay). The latter can be a challenge 
for computers to analyze meaningfully, even using 
sophisticated tools. According to the authors’ review, 
technology makes a limited contribution to tasks that 
attempt to assess higher-order mathematical skills. 
Our research focuses on designing and studying chal-
lenging e-tasks in a dynamic MLR environment that 
provides reflecting feedback through e-assessment. 
We are particularly interested in high-school level 
e-tasks, which until recently have been limited mostly 
to closed multiple-choice questions.

The dynamic linkage of MLRs has been used as a de-
sign strategy that attracts attention to the relation 
between different representations. Yerushalmy (1997) 
and Yerushalmy and Schwartz (1999) have incorpo-
rated these strategies in the design of e-tasks in the 
areas of functions and calculus. The ability of digital 
tools to translate instantaneously across representa-
tions enable students to exhibit and evaluate actions 
in more than one representation system. Cognitive 
and pedagogical research suggests that appreciating 
the manner in which multiple representations are 
related is not automatic (e.g., Tall, 1991). Using multi-
ple representations supports and requires tasks that 
involve decision-making and other problem-solving 
skills, such as estimation, selecting a representation, 
and mapping the changes across representations. 
E-tasks involving MLRs provide feedback to students 
that reflects the process of inquiry during the exami-
nation (reflecting feedback).

In computer-based instruction, feedback is any message 
or display that follows the learner’s action or response. 
Vasilyeva and colleagues (2007) provided an overview 
of feedback studies and classified feedback into several 
types.  For more than two decades, Yerushalmy and 
colleagues have explored the main differences between 
reflecting and judgmental feedback. Reflecting feed-
back provides immediate feedback to students about 

mailto:gnagarih@campus.haifa.ac.il
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their actions in multiple linked representations, and 
offers students the opportunity to judge and reflect 
upon the action taken. By contrast, judgmental feedback 
provides a short right/wrong answer, without other 
representations or explanations. Yerushalmy (1991) 
compared three groups of students performing symbol 
manipulations in algebra: one group received a reflect-
ing graph feedback, the second judgmental feedback 
without a graph, and the third group used a symbolic 
manipulation aid.  Yerushalmy found that judgmen-
tal feedback had a positive effect on the process, but 
that the students still lacked the motivation or ability 
to complete the tasks correctly. The effect of feedback 
was more significant on the first and third groups than 
on the second one (the manipulator aid motivated the 
students to obtain a correct product, and the graph feed-
back motivated them to make algebraic investigations). 

Examples may be used for assessment in several ways. 
One obvious use is in refuting conjectures, either by 
citing standard counter-examples or by construct-
ing new ones. Higher-level skills are needed when 
constructing instances of mathematical objects that 

satisfy certain properties, because typically there 
are many correct solutions but no general method by 
which such a solution can be constructed (Sangwin, 
2003). When students are asked to create their own ex-
amples, they experience the discovery, construction, 
or assembly of objects and of their relationships (Liz, 
Dreyfus, Mason, Tsamir, Watson, & Zaslavsky, 2006). 
Occasionally, students create an example based on a 
ready-made example, which helps them reach the cor-
rect answer. A major affordance of technology is that 
it allows the easy creation of many different examples. 

Figure 1 shows the GeoGebra applet, a challenging 
dynamic MLR learning object (http://tube.geogebra.
org/student/m97472). To support inquiry learning 
of rational functions and of their asymptotic be-
havior, this object provides graphic and symbolic 
representations of the numerator and denominator 
(linear and quadratic functions of a single variable) 
and of their quotient. Users create instances of the ra-
tional function (Figures 1 and 2), explore and discover 
which functions have specific types of asymptotes, 
how many, and what are the reasons for it. During 

(a) Construct a rational function: define the 
numerator and the denominator functions by 
dragging the dots marked on the functions. 
(b)  Fit the appropriate asymptote(s) to the ra-
tional function you have determined. 
(c) Alternatively, choose a set of asymptotes 
and try to find a rational function with those 
asymptotes.
You can use this environment to explore the 
behavior of rational functions formed by di-
viding a constant, linear, or quadratic function 
by a linear or quadratic function.

Figure 1: Dynamic MLR learning object: rational functions and asymptotic behavior, http://tube.geogebra.org/student/m97472

Figure 2: Examples/instances of rational functions of two quadratic functions

http://tube.geogebra.org/student/m97472
http://tube.geogebra.org/student/m97472
http://tube.geogebra.org/student/m97472
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the exploration, the GeoGebra applet provides many 
instances of the same object (Figure 2), and students 
can evaluate their actions, reflect upon the feedback 
they receive, and change their conjectures according-
ly (Santos-Trigo & Camacho-Machín, 2013).

GOALS AND FRAMEWORK

The current research is part of the Digital Interactive 
Assessment project at the University of Haifa (http://
assess.gigaclass.com). A main challenge for the de-
velopers is to design e-tasks that on one hand invite 
opportunities for active personal learning and on 
the other set limits that pertain either to pedagogy or 
content (Watson & Mason, 2006). Our research arises 
from the challenge to design e-tasks that faithfully as-
sess future learning and teaching. We are also seeking 
to create e-tasks that check automatically not only the 
correctness of the answer but also its justification, 
without the need for human check of written expla-
nations. Because examples play an important role 
in justifying answers (e.g., Buchbinder & Zaslavsky, 
2013) and can be checked automatically, we decided 
to include them in the present study. In this paper, we 
focus on construction tasks requiring students to con-
struct examples that satisfy specific conditions. These 
e-tasks can be used to generate examples and provide 
tools for exploration. The tools are interactive MLR 
artefacts designed for mathematical experimentation, 
and may be part of the GeoGebra applet (the words 
tools and artefacts are used without any theoretical 
connotation; the tools in the e-task shown in Figure 
3 are the value table, the coordinate system, and the 

symbolic input line). Each designed e-task appears 
as multimodal text. The designed tools are suitable 
for experimentation, and the answers submitted are 
checked automatically, almost without human inter-
vention. The answers appear as live screenshots of the 
relevant representations within the tools, for example 
symbolic expressions, tables of values, and graphs. 
Therefore, they can be checked automatically. Figures 
3 and 4 contain an example of a construction e-task 
(http://tube.geogebra.org/student/m440111) created 
by the authors. The e-task, which was inspired by 
the applet shown in Figure 1, also deals with vertical 
and horizontal asymptotes and has three representa-
tions: numeric (the value table), graphic (coordinate 
system), and symbolic (input line for the algebraic 
expression of the function). Students are asked to 
construct the requested function by typing an ap-
propriate symbolic expression. Before the exercise, 
students receive instruction about using the numeric 
table (by typing x and deltaX  as shown in Figures 
3, 4), dragging points to create different instances of 
functions, using sliders (Figures 1, 2) using the zoom 
in and zoom out buttons (Figures 1, 3, 4), and about 
other technical issues. At this initial stage of the study, 
we intend to follow the students’ reasoning mainly by 
asking them to submit their answers and to highlight 
the relevant component that justifies the answer. To 
make this possible, the task must provide multiple 
tools or operations for sending the answer. Moreover, 
students must be able to choose an appropriate nu-
meric interval or a point in the table, or indicate on 
the graph the relevant segment. The value table in the 
e-task shown in Figure 3 is initially empty. Students 

In each of the above parts you are required to 
submit a screenshot that supports your an-
swer. You may write further explanations, if 
necessary. The diagram allows construction of 
the function in the form: h(x) =  f(x)

g(x) . Define the 
numerator function f(x), the denominator func-
tion g(x), and the asymptotes by entering their 
expressions. You may use the value table and 
change x, deltaX. 
Construct a function  h(x) =  f(x)

g(x) :
1) With one vertical asymptote x = 4 and one 

horizontal asymptote y = 2
2) With two vertical asymptotes x = 4, x = 2
3) With two vertical asymptotes x = 4, x = 2 and 

one horizontal asymptote y = 2
4) With two horizontal asymptotes y = 2, y = −2.

Figure 3: Example of construction e-tasks

http://assess.gigaclass.com
http://assess.gigaclass.com
http://tube.geogebra.org/student/m440111
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may enter an infinite number of values   of x and its 
surroundings (deltaX). To support their construction, 
students must choose the appropriate values of x and 
its surroundings. Figure 4 shows a possible correct 
solution (the relevant components are surrounded 
by rectangles): the student constructs the function 
h(x) =  2x

x − 4  and builds the value table around x = 4, with 
∆x = 10000 to support the argument that lim h(x) = 2

x → ±∞
. 

The second value table around x = 4, with ∆x = 0.0001 
supports the arguments that lim h(x) = ∞

x → 4+
, lim h(x) = −∞

x → 4⁻
. 

Both tables support the student’s construction and 
demonstrate that y = 2 is a horizontal asymptote and 
x = 4 is a vertical asymptote of the function h(x) =  2x

x − 4 .

The automated checking system is under construc-
tion, therefore we can report only on a pilot exper-
iment. The submission and checking of the answers 
were conducted manually rather than automatically. 
Our research question is: What is the role of the dy-
namic MLR environment in completing construction 
e-tasks. Specifically, we explore how students use the 
environment to solve the task and what is the add-
ed value of marking certain parts on the screenshot 
they submit as the solution in reflecting reasoning 
behind the answer. To obtain initial answers to the 
above questions, we conducted a pilot experiment.

PILOT STUDY

We report a few excerpts from the experiment we 
conducted with two pairs of 11th grade high school 
students: Iddo and Ilay, and Shira and Ayala.  Each pair 
studied with the same teacher but in different schools. 
They studied the standard curriculum of functions 
and calculus in a regular classroom, without special 

emphasis on technology, and they successfully passed 
the Israeli matriculation exams.3 Each pair worked 
on eight calculus e-tasks created with the GeoGebra 
software (each e-task had up to four parts). Most of 
the e-tasks in the pilot experiment were construction 
e-tasks related to calculus, not necessarily asymptotes. 
In each e-task students were asked to mark certain 
parts on the submitted screenshot that reflect addi-
tional reasoning on their part regarding the answer. 
One of these e-tasks is shown in Figures 3 and 4. At 
the beginning of the experiment, the first author 
demonstrated all the functions of the applet. She was 
present during the experiment and answered techni-
cal questions (for example, how to enter the square 
root function into the input bar). The experiment was 
videotaped to capture the complete sound track and 
everything that happened on the computer screen. 
All subject matters included in the e-tasks are from 
the standard curriculum, and the participants were 
already tested on these topics at their matriculation 
exams. The students were asked to say out loud what-
ever they were looking at, thinking about, doing, and 
feeling as they went through their task. This enabled 
us to see the process of task completion as it was tak-
ing place, rather than only its final product, and to 
listen in on the problem-solving process. Figures 5 
and 6 present different trials of the two pairs, includ-
ing their conversation, as they were working on the 
e-task that appears in Figure 3. Both pairs were asked 
to construct a function in the form h(x) =  f(x)

g(x)  with two 
horizontal asymptotes, y = 2, y = −2.

The task:
Construct a function in 
the form:

 

h(x) =  f(x)
g(x)  

with one vertical asymp-
tote, x = 4, and one hori-
zontal asymptote, y = 2.

Possible correct solution: h(x) =  2x
x − 4  

Figure 4: A possible correct submission for a construction e-task 
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First pair: Ilay and Iddo

Ilay:  It is difficult… It (the result) has to be square of something.
 (Writing in their papers for several minutes.)
Iddo:   Aaah! When you have √x2, you have plus and minus. Try to do 4x2 divided by…

no… it’ll be reduced.
One minute later:
Iddo:   Let’s try 2x

√x2 , then think that you divide the numerator in x and it equals 2, and then you 
divide the denominator in x and you put it into the √x2 so that it equals 1. But there is 
another option of -1. 

 (Iddo refers to: h(x) = 2x
√x2  =  2x

√x2  : x
x  = 

2
√x2

x
 ⇒ 

2

±√x2
x

 =  2
±1  = ±2)

(First try on the screen.)

Iddo: Yes, right,
Ilay:  It’s all from our yellow book...
Iddo: Let’s see what’s wrong here.

On the screen:
h(x) = 2x

√x2
y = 2, y = −2

Iddo:  These are not the asymptotes. On the screen: h(x) = 2x
√x2  

They remove the horizontal 
lines y = 2, y = −2

Two minutes later:
Iddo:   Add 5 to the numerator. No, no... 

actually yes, it has to work, I 
think.

Iddo:   Oh, add 2 to the denominator, 
because then if you have a neg-
ative value for x, then x2 + 2 is 
positive.

On the screen:
h(x) = 2x + 5

√x2

Ilay:  Great! h(x) = 2x + 5
√x2 + 2

Figure 5: First pair's conversation and attempts at construction
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DISSCUSSION AND CONCLUSIONS

Construction e-tasks have a great potential for e-as-
sessment of higher-order mathematical skills. The 
e-tasks may have an infinite number of possible 
solutions, which all can be checked automatically. 
The solution stages (Figure 5) attest to the fact that 
submitting the correct answer is not accidental. Below 
we discuss the functionality of the dynamic MLR envi-
ronment in solving and assessing construction e-tasks. 

The first pair had no difficulties constructing the re-
quired examples (Figure 5). In each of the three trials 
they obtained a function with the required horizon-
tal asymptotes, y = 2, y = −2. They did not submit the 
first trial because they were not familiar with the 
Heaviside step function, and did not submit the sec-
ond trial because it had a vertical asymptote as well. 
Finally, they decided to submit the third trial. They 
appear to have started working with a firm conjecture 
in place regarding the functions with two horizontal 
asymptotes, and therefore constructed successfully 
the appropriate functions after a small number of 

Second pair: Ayala and Shira

1.  h(x) = 2x3
−x3 2.  h(x) = 2x3

−x2
3.  h(x) = 2x3

1

4.  h(x) = 2x3
−x3 + 2

5.  h(x) = 2x3
x3 + 2 6.  h(x) = −2x3

−x3 + 2

Ayala:  Do you remember that Felix (the teacher) read us from the book about horizontal 
asymptotes? The asymptote is the relation between the highest position, here and 
here (numerator and denominator)?

Shira: You know what? We can cheat a little.

7.  h(x) = 2x4
−x3 + 2 8.  h(x) = −2x3

−x3 + 2 9.  h(x) = −2x3
−x4 + 2

Ayala:  Now there is a horizontal asymptote y=0. Think about it mathematically, not graph-
ically. If you divide this and this in x4, it is cancelled.

10.  h(x) = 2x2
−x4 + 2 11.  h(x) = 2x2

−x5 + 2 12.  h(x) = −2x3
1 13.  h(x) = −2x

1

14.  h(x) = −2x
x3 + 2 15.  h(x) = −2x

x3 + 8 16.  h(x) = −2x + 2
x3

Shira: I’m sure that if we had more time we would have found the answer.

Figure 6: Second pair’s conversation and attempts at construction
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educated trials. They used the dynamic MLR environ-
ment merely as a control, to provide feedback about 
their results. The conversation transcript (Figure 5) 
shows that their trials were accompanied by correct 
mathematical explanations. By contrast, the second 
pair used the MLR as a tool for empty trial and error 
experimentation. They made 16 trials (Figure 6), all 
of them involving polynomial or rational functions, 
which cannot lead to a function with two different 
horizontal asymptotes. Their conversation transcript 
(Figure 6) implies that they had no ideas or direction, 
and guessed without method. Shira suggested cheat-
ing the computer, and Ayala tried to recall the rules of 
her teacher for finding asymptotes. They did not have 
a ready-made example, which may have helped them 
reach a correct answer, and the tools were of no help 
in constructing such an example. They could not meet 
the challenge and therefore did not submit a func-
tion. The dynamic MLR environment provided the 
second pair with feedback regarding their incorrect 
answers. We may carefully state that the MLR tools 
in construction e-tasks can help those who are close 
to the correct answer, but when the correct answer 
is too far removed, the tool may encourage trial and 
error behavior. When the students constructed the 
correct function, they submitted the screenshot with 
the appropriate value table, as shown in Figure 4. In 
this case, other justifications, beyond the construction 
itself, are redundant. Although we report here only 
on the asymptote task, the evidence is consistent with 
other construction e-tasks included in the pilot exper-
iment, but not reported here because of lack of space. 

In the pilot experiment we saw repeatedly that the 
correct construction was accompanied by appropri-
ate value tables, mathematical explanations, and ed-
ucated trials. We therefore cautiously suggest that 
a correct final answer, if produced in a compound 
environment such as the MLR, eliminates the need 
for manually checking all the solution stages, ena-
bling automatic checking of the solution. Tracking the 
solution process may be important to assess a partial 
solution, however, when the submitted construction 
is partially correct. The experimental setting would 
allow triangulation of human checks of scanned pa-
per submissions, tracks of intermediate stages and 
simultaneous computerized video records. 
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ENDNOTES

1. JISC 2009- http://www.jisc.ac.uk/assessment.html, 
accessed: December 2009.

2. Clearly, a value of a function cannot be infinite (±∞). 
But in the GeoGebra software it is the way to indicate 
that the value goes to infinity. This may explain the 

“∞” shown in the value table.

3. http://cms.education.gov.il/EducationCMS/Units/
Mazkirut_Pedagogit/Matematika/VaadatMkzoa/
BaaretzBaolam/. 

http://cms.education.gov.il/EducationCMS/Units/Mazkirut_Pedagogit/Matematika/VaadatMkzoa/BaaretzBaolam/
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This study seeks to characterize the mathematical prob-
lem solving activity with digital tools that emerges from 
students’ participation in an online mathematics com-
petition. Using a qualitative approach, we elected the 
case of a 13-year-old participant aiming to understand 
the ways in which she interweaves her mathematical 
competence and her technological fluency for solving 
problems, using GeoGebra. Main results expose the 
role of the digital tool that permeates every stage of the 
problem solving process, since the tool is used for solving 
and for expressing the solution. We further propose a 
framework for describing the processes that may cap-
ture the interplay between mathematical knowledge 
and technological fluency in solving problems, termed 
techno-mathematical fluency.

Keywords: Beyond school mathematics, digital literacy, 

mathematical competitions, problem solving, techno-

mathematical fluency.

INTRODUCTION

The constant immersion in a technologically pervad-
ed world is changing the “kind of mathematical abili-
ties that are needed for success beyond schools” (Lesh, 
2000, p. 177), especially since the new and powerful 
tools made available are introducing “new kinds of 
problem-solving situations in which mathematics 
is useful, (…) and they radically expand the kinds of 
mathematical understanding and abilities that con-
tribute to success in these situations” (p. 178). Whilst 
the kinds of mathematical thinking needed beyond 
school are shifting, the types of problem solving 
situations that demand some form of mathematical 
thinking are also changing. Furthermore, little is still 
known about the problem solving that occurs beyond 
the classroom and additional research is needed spe-
cially to understand the role of digital technologies in 

such activity (English & Sriraman, 2010; Santos-Trigo 
& Barrera-Mora, 2007).

A glimpse on the context: The 
mathematical competition SUB14
SUB14® is a web-based mathematical problem solving 
competition organised by the University of Algarve. 
Addressing 12-13-year-old students, it is supported 
by a website where the problems are published. The 
Qualifying consists of ten problems, each one pub-
lished every two weeks. Participants may solve the 
problems using their favourite methods or tools, but 
they are explicitly required to report on their solv-
ing process offering a complete and detailed explana-
tion of their reasoning. At this stage, the rules allow 
and encourage help seeking from relevant others. 
Participants who answer correctly to eight or more 
problems may attend the Final stage, which consists 
of a one-day tournament at the University of Algarve 
(see Carreira, 2012).

Our goal is to investigate mathematical problem solv-
ing with digital tools in this beyond-school compe-
tition, where participants may use their favourite 
digital tools but, at the same time, are required to 
use a mathematical stance. We report our progress 
on analysing how they combine their mathematical 
knowledge and their technological fluency in solving 
the competition’s problems.

THEORETICAL BACKGROUND

This study is supported by a conception of insepara-
bility between the subject and the digital tool in the 
development of mathematical thinking. Thus, we con-
sider humans-with-media (Borba & Villarreal, 2005) 
as a central unit in understanding problem solving ac-
tivity with technology. This metaphor brings forth the 

mailto:helia_jacinto%40hotmail.com?subject=
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idea that mathematical thinking is an outcome of this 
symbiosis between people and the digital tools they use.

Mathematical problem solving – 
the mainstream view
The competition poses non-routine problems, whose 
context is fully and clearly expressed in the statement, 
which allow different techniques, procedures or tools. 
As these problems are not aligned with the mathemat-
ics curriculum and a diversity of approaches and tools 
is encouraged, this problem solving activity can be 
seen as the development of a productive way of think-
ing about a challenging situation (Lesh & Zawojewski, 
2007). Current frameworks consider a mathematical 
literate person as someone who is an active problem 
solver, in other words, who has the “capacity to formu-
late, employ, and interpret mathematics in a variety 
of contexts. It includes reasoning mathematically and 
using mathematical concepts, procedures, facts and 
tools to describe, explain and predict phenomena” 
(OECD, 2013, p. 5). 

Looking for a way of explaining student’s and expert’s 
problem solving performance, Schoenfeld (1985) pro-
posed a model comprised of four dimensions: basic 
resources, heuristics, control, and belief systems. The 
processes followed by the solvers were organized into 
five stages: read – time spent “ingesting the problems 
conditions” (p. 297); analysis – attempt to fully under-

stand the problem “sticking rather closely to the con-
ditions or goals” (p. 298) that may include a selection 
of ways of approaching the solution; exploration – a 

“search for relevant information” (p. 298) that moves 
away from the context of the problem; planning and 
implementation – defining a sequence of actions and 
carrying them out orderly; verification – the solver re-
views and assesses the solution. While paper and pen-
cil were the predominant tools used in Schoenfeld’s 
studies, today’s wide dissemination of powerful tech-
nological tools is raising new queries, namely if and 
to what extent these frameworks still account for the 
mathematical problem solving proficiency in the pres-
ence of digital tools (Santos-Trigo, 2007, Santos-Trigo 
& Camacho-Machín, 2013). 

Bringing together mathematical 
and technological literacies
In reporting studies that sought to identify the math-
ematical competencies needed in several workplaces, 
Hoyles, Noss, Kent and Bakker (2010) highlight an in-
terrelationship of the technology use and the mathe-
matical skills of the workers, proposing the notion of 
Techno-mathematical Literacies as encapsulating both 
the technological and the mathematical skills needed 
within those specific work contexts.

Debates concerning the digital skills needed in our 
daily activities are undergoing. The European project 

Process Problem or Digital Task

Statement State clearly the problem to be solved or task to be achieved and the actions required.

Identification Identify the digital resources required to solve a problem or complete a task.

Accession Locate and obtain the required digital resources.

Evaluation Assess the objectivity, accuracy, reliability and relevance of digital resources.

Interpretation Understand the meaning conveyed by a digital resource.

Organisation
Organise and set out digital resources in a way that will enable the solution of the problem or 
achievement of the task.

Integration Bring digital resources together in combinations relevant to the problem or task.

Analysis
Examine digital resources using concepts and models which will enable solution of the prob-
lem or achievement of the task.

Synthesis
Recombine digital resources in new ways which will enable the solution of the problem or 
achievement of the task.

Creation
Create new knowledge objects, units of information, media products or other digital outputs 
which will contribute to the solution of the problem or achievement of the task.

Communication Interact with relevant others whilst dealing with the problem or task.

Dissemination Present the solutions or outputs to relevant others.

Reflection
Consider the success of the problem-solving or task-achievement process, and reflect upon 
one’s own development as a digitally literate person.

Table 1: Processes of digital literacy (Martin & Grudziecki, 2006)
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DigEuLit developed a theoretical framework address-
ing the meaning and operationalization of “digital 
literacy” by describing the activity of a digital liter-
ate person when dealing with a digital task (Martin 
& Grudziecki, 2006). Those processes (Table 1) can be 
summarized as actions required before solving the 
problem (stating, identifying, accessing, evaluating, 
interpreting, organizing), while producing the solu-
tion (integrating, analysing, synthesising, creating, 
communicating), and actions that occur afterwards 
(disseminating and reflecting).

To some extent, this list of processes resembles the 
problem solving stages proposed by Schoenfeld (1985). 
Due to the rules of the competition, a mathematical 
problem may be considered as a digital task that re-
quires a number of technological skills, so we con-
jecture that these two frameworks can provide the 
necessary level of detail for describing problem-solv-
ing-with-technologies. We, therefore, ponder an asso-
ciation of the stages and processes: read – statement 
(i.e., appropriation of the situation and the conditions 
in the problem); analyse – identification, accession, 
evaluation, interpretation (i.e., initial attempt to com-
prehend what is at stake, namely the mathematics that 
may be relevant and the tools that may be necessary); 
explore – organization, integration, analysis (i.e., the 
quest for a combination of mathematical and tech-
nological tools within a plausible strategy); plan and 
implement – synthesis, creation, communication (i.e., 
carrying out the outlined strategy); and verify could be 
complemented by dissemination and reflection since, 
at this point, there isn’t an overlap between the two 
frameworks. Thus, the notion of techno-mathematical 
fluency stresses the need to be fluent in a language 
that entails mathematical and technological knowl-
edge, promoting the skilful use of digital tools, and 
the efficient interpretation and communication of the 
mathematical solution produced.

Dynamic Geometry Software 
in problem solving
Constructing figures and investigating their prop-
erties are two of the most commonly known affor-
dances of Dynamic Geometry Software (DGS). In par-
ticular, one of the features of DGS is that it “visually 
make[s] explicit the implicit dynamism of thinking 
about mathematical geometrical concepts” (Leung, 
2008, p. 135) embedded in a challenging task. However, 
such dynamic environments are not only helpful in 
visualizing geometric concepts and understanding 

rules, but also in producing conjectures and general-
izations, and finding connections amongst concepts 
(Baccaglini-Frank & Mariotti, 2010; Jones, 2000). 
When tackling model eliciting problems, students 
often perceive and make use of the affordances of the 
software in order to develop a conceptual model of the 
situation. They undertake a construction, revealing 
how they are interpreting the problem and depicting 
the mathematics concealed; they explore and investi-
gate properties (Iranzo & Fortuny, 2011).

Carreira, Jones, Amado, Jacinto and Nobre (to appear) 
have identified six general affordances of GeoGebra 
for solving geometrical problems within the com-
petition SUB14: immediate constructions, measure-
ment, referential constructions, setting properties, 
constructions using parameters or variables, and 
drag and explore. Claiming that the perception of the 
affordances of GeoGebra is crucial to this problem 
solving activity, the researchers observed how several 
students tackling the same problem with GeoGebra 
produce different digital solutions that comprise qual-
itatively different conceptual models. We now argue 
that such differences may be explained by the solvers’ 
latent techno-mathematical skills, regardless of where 
the mathematical and technological knowledge were 
learnt or developed. 

RESEARCH METHODS 

Our main goal is to develop a deep understanding of 
the interplay among mathematical knowledge and 
technological fluency during the development of the 
solving process within SUB14. Thus, we developed 
an interpretative study where the research methods 
were steered by qualitative techniques for gathering, 
organizing and analysing empirical data (Quivy & 
Campenhoudt, 2008).

We report the case of Jessica (fictitious name), a partic-
ipant whose productions stood out due to the sophisti-
cated use of technology, namely GeoGebra, for solving 
these problems (Jacinto & Carreira, 2013). Data include 
the solutions sent by Jessica in two editions of SUB14; 
an in-depth interview with Jessica, audio and video 
recorded, focusing her problem solving activity in the 
classroom and at SUB14, and asking her to remember 
and retrace solutions submitted to the competition; 
and two specific solutions, where she used GeoGebra, 
were also selected for a deeper analysis. Whilst the 
data from the interview provide a view of Jessica as a 
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student, a problem solver and a technology user, the 
GeoGebra’s construction protocols and the written 
explanations shed light upon the interplay between 
mathematical knowledge and technological fluency. 
As the rules of the competition explicitly require to 
document the solving processes, we assume that the 
final versions of the constructions performed with 
GeoGebra account for the interplay between Jessica’s 
technological and mathematical knowledge to solve 
the problems and express her reasoning.

The several types of data were organized using NVivo®, 
where audio and video data were transcribed. The 
analysis followed an interpretative perspective pro-
viding a holistic description of the case, by combining 
Jessica’s perception of her own problem solving activ-
ity (interview), with the analysis of the participant’s 
productions (GeoGebra file), enlightened by the the-
oretical ideas discussed above. 

THE CASE OF JESSICA 

Jessica is a 13 years-old girl who engaged in SUB14 dur-
ing her 7th and 8th grades. Her answers to the problems 
are always on time, she describes and properly justi-
fies her processes in a clear language. She developed 
a particular interest on GeoGebra that stemmed out 
from her school experience, since her teacher used 
it often as a way to present geometrical contents. 
Despite being teacher-centred, it has driven Jessica 
to download, install and explore GeoGebra at home, 
independently. 

Jessica:  As I said, we use technology a lot. We 
have a board… a white board, and we 
also have an interactive board. We 
used GeoGebra very often when we 
were studying geometry and geometric 
transformations.

Researcher: When you say “we used”, you mean 
the teacher?

Jessica:  Precisely. And we watched it.

When asked to recall and retrace her solution to the 
problem “United and Cropped” (Figure 1), she claimed 
to enjoy solving geometry problems because of the 
possibility of improving the solutions’ graphical dis-
play, afforded by GeoGebra.

Jessica:  I think I went straight to GeoGebra. I 
knew it had something to do with ge-
ometry. I realise it was a triangle (…) 
and that by rearranging it in a simpler 
manner all I had to do was calculate 
the whole area and then subtracting 
the area of this triangle, which is easy: 
base times height divided by two. And 
then I thought… Oh, great! Geometry! 
I’m getting it neat!

Jessica usually resorts to a notepad, coloured pens, a 
calculator and the computer. Initially, she thinks that 
GeoGebra only affords “dressing up” the solution that 
she finds by using paper-and-pencil but, later, she ac-
knowledges that manipulating the construction also 
led her to a powerful understanding of the problem.

Jessica:  Hum… usually I look for the notepad 
and a pen, then [go to] Word and then I 
always… well I always use GeoGebra or 
some other software to add something 
to the text, for presenting a more com-
plete work.

Researcher: So… you use it [GeoGebra] only after 
you solved the problem?

Jessica:  Yes, but… it depends. If GeoGebra or 
some other tools would help me under-
stand the problem, then I’d use it firstly 
and later I’d move to Word.

Figure 1: The problem “United and Cropped”
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Researcher: Ok, so you also use them while 
you’re still looking for the solution…

Jessica:  Yes, for instance, in this case [the prob-
lem United and Cropped] I started by 
going to GeoGebra to understand it 
properly, and then I discovered ‘Oh, that 
is a triangle right there, therefore I have 
to subtract the area of that triangle’. In 
that case, I started with GeoGebra for a 
better understanding.

Her solving activity starts outside the screen but she 
easily recognizes that digital tools afford powerful 
approaches to the SUB14’s problems. The following 
section reports Jessica’s work with GeoGebra while 
solving another geometry problem.

The problem “A divided square”
Jessica’s solution (Figure 3) combines the construction 
of the figure presented in the statement and a written 
explanation where she presents a ‘label’ that helps in 
interpreting the image and her problem solving pro-
cesses, including finding the area. A closer analysis 
of the ‘construction protocol’, which allows tracking 
steps of the construction, reveals that GeoGebra’s role 
goes beyond ‘embellishment’. 

Resorting to immediate and referential constructions 
she represents the larger square that supports the 
construction: draws two perpendicular lines and a cir-
cle centred at their intersection and a radius of length 
CD. Then, she constructs four squares on the right by 
finding midpoints, using parallel and perpendicular 
lines and their intersections. Finally, she builds four 
squares and colours them in yellow (Figure 4).

As for the lower squares (Figure 5), Jessica marks R 
as the midpoint of FQ, then uses a central reflection 
of the point F over R and obtains F’1 which coincides 
with Q. She marks I’ as the central reflection of I over 
F’1 and, using another central reflection of F over F’1 
marks F’ and constructs the segment I’F’1. She then 
marks S as the midpoint of I’F’ and proceeds by us-
ing circles with given centre and radius, finds inter-
sections and midpoints, and drawing parallel lines 
to complete the representation of the lower squares. 
Similarly, she constructs the remaining squares on 
the left side (Figure 6).

Finally, by setting properties, she colours polygons, 
adds several squares along the exterior of the initial 
square and some circumferences whose centres di-
vide the side of a smaller square in four parts (Figure 
3). These items emphasise a visual perception of the 

Figure 2: Statement of the problem “A divided square”

Figure 3: Solution of the problem “A divided square”
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existing relations between several lengths of the ge-
ometrical figures. On the right, a label helps interpret-
ing the construction and establishing numerical rela-
tions between lengths of the sides of the squares. The 
unknown is defined as the length of the blue square 
and, using those relations, she formulates an equation 
that will provide the measurement that is missing: . 
With this value she determines the length of the side 
of the larger square and, then, its area.

This case illustrates how GeoGebra is crucial at sev-
eral stages of the problem solving activity: it is not 
only affording the construction but, most important-
ly, the construction activity is allowing to uncover 
the relations between the geometrical objects, it is 
transforming what is invisible and concealed inside 
the proposed figure, into visible and usable ideas for 
the development of a way of solving this problem and 
expressing the solution. In fact, the constructions 
become part of the reasoning, of the process and the 
solution itself. This can be interpreted as an instance 
of the problem solving activity of a student-with-Ge-
oGebra (Borba & Villarreal, 2005).

REFRAMING TECHNO-
MATHEMATICAL FLUENCY

Taking the problem solving stages proposed by 
Schoenfeld (1985) and the processes of the digital liter-
acy framework developed by Martin and Grudziecki 
(2006) as leverage, we have set an analytical tool to 
account for the ways a participant deals with digital 
tools whilst solving a mathematical problem and ex-
pressing its solution. 

Jessica starts by skimming the mathematical topic 
enclosed in the problem, such as geometrical notions, 
rules, procedures, and recognizing GeoGebra as a key 
digital resource (Read/statement). The following stage 
(Analyse) is patent through the identification of a math-
ematical repertoire and a technological repertoire 

(geometry and GeoGebra’s affordances) that are due 
to her previous knowledge about them and her access 
to them. Moreover, Jessica’s choice relies on her assess-
ment of the techno-mathematical resources and her 
interpretation of the techno-mathematical outcomes. 

She then Explores ways of organizing different re-
sources such as notepad, coloured pens, calculator, 
GeoGebra, text and image editor, e-mail, and several 
mathematical resources such as properties of parallel 
and perpendicular lines, circumferences and their 
representations, areas, algebraic expressions, and 
combines them in a relevant way to the development 
of her strategy (organisation, integration, and anal-
ysis). 

Based on the constructions and their manipulation, 
she Plans and Implements her strategy recombining 
the techno-mathematical resources (synthesis) in or-
der to produce new knowledge objects: strategies, rep-
resentations, conceptual models (creation). During 
these processes, she may ask for the assistance of rele-
vant others (like her teacher) to proceed in finding the 
solution (communication). It is important to note that 
the activity reported by Jessica and the analysis of the 
construction protocol suggest that the understanding 
of the problem and the decision on the actions neces-
sary to solve it are not limited to the initial stage but 
it develops throughout the analysis and exploration 
stages and it is deepened during the construction and 
manipulation of the geometrical figures.

The last stage consists of reviewing the process and 
the solution (Verify) but it also includes presenting 
the solution to others, in this case, the GeoGebra con-
struction and a detailed explanation of the procedure 
(dissemination). As for the personal reflexion on the 
success accomplished during the problem solving ac-
tivity, there are no other concrete evidences to sup-
port it than the fact that Jessica has decided to present 
this solution to the judges of the competition. 

Figure 4: Constructing the initial squares Figure 5: Constructing the lower squares Figure 6: Constructing the left squares
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CONCLUDING REMARKS

The two frameworks selected were meant to charac-
terize the problem solving stages and the processes 
of digital literacy and, as such, their combination 
seems to offer powerful tools to approach a descrip-
tion of the latent processes underlying the notion 
of techno-mathematical fluency. However, some im-
provements must be pondered. Firstly, the processes 
of digital literacy are a set of actions that occur in a 
relatively ordered sequence, unlike the stages of prob-
lem solving that, as Schoenfeld (1985) disclosed, are 
flexible enough to describe failed attempts or new 
appropriations of the problem. So, the descriptors of 
the techno-mathematical fluency involved in problem 
solving within SUB14 must comply with this flexibili-
ty. There may also be an overstatement of the digital 
literacy processes, particularly in the level of detail in-
cluded in the original framework. Our comprehensive 
knowledge about the competition and the participants 
allow us to assume that: i) they often choose the tools 
they are most familiar with, namely everyday digital 
tools available in their home environment, hence ac-
cession, interpretation and evaluation could result in 
some benefit if they were agglutinated in a broader 
process, bringing together knowledge and decisions 
about the digital resources; ii) the communication 
process, which relates to possible help seeking, per-
meates other stages of the problem solving activity, 
namely in understanding the problem or in devising 
a path; iii) the verification of the solution is not clearly 
addressed in the digital literacy processes, but it is a 
very important metacognitive process for assuring 
the completeness of the solution; iv) the dissemina-
tion process, not considered in Schoenfeld’s model, 
is extremely important given the competitive nature 
of this activity and the unavoidable fact of having to 
submit a solution to those who are responsible for 
their acceptance and from whom a return is expected; 
v) solving and expressing are inter-related activities 
that are often inseparable (Jacinto, Nobre, Carreira, 
& Amado, 2014). 

In light of the data and the theory, the notion of tech-
no-mathematical fluency that emerges from the 

‘problem solving with technologies’ activity is a use-
ful way of accounting for the intertwining of mathe-
matical knowledge and technological fluency. Future 
developments will concentrate on the refinement of 
the framework descriptors based on further analy-

sis of other participants’ problem solving activities, 
observed within the same informal learning context. 
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The University of Chicago Number Stories project aims 
to enhance student engagement in solving real-world 
problems in a Cabri environment through the provision 
of effective feedback. The relevant literature concern-
ing feedback and formative assessment in technology 
situations is hence reviewed in light of the affordances 
of Cabri, and issues arising in the project, such as pro-
viding feedback in open-ended situations, are discussed.

Keywords: Cabri, feedback, formative assessment, real-

world problems, technology. 

INTRODUCTION

The Number Stories (NS) project (University of 
Chicago, 2014) involves the development of an on-
line database of number stories, which are real-world 
questions based on real-world contexts supported by 
factual sources, targeted to individual users (or solv-
ers) including school students at any level, teachers, 
teacher-educators, home-schoolers, district super-
visors, and the general public. Unlike a traditional 
curriculum project where real-world problems may 
be used as a means to achieve specific mathematics 
learning goals, the main aim of the NS project is to 
promote understanding about how mathematics is 
used in daily life and to enable solvers to gain in their 
confidence and ability to apply mathematics in real 
situations. 

Each number story consists of a collection of Cabri 
files in which the context is established, a question 
or problem is posed, and a solution is given. There 
is a wide range in the mathematics required.  For ex-
ample, questions from the “Chain Letters” context, in 
which one person sends a letter to n people who then 
send letters to a further n people, may be solved by 
techniques ranging from dragging representations 
of letters into mailboxes to using geometric series. 
Questions may be specific or more open-ended, such 
as “Who got the better end of the deal when Manhattan 

was purchased by the Dutch from the Indians in 1626?”, 
which allows a number of  approaches and does not 
have a well-defined solution. Solvers may post their 
own solutions to the database and explore the solu-
tions posted by others.

A major concern of the project is to make the questions 
as engaging as possible to solvers through their intrin-
sic interest, the use of relevant digital manipulatives, 
and the provision of feedback that will enable solvers 
to be successful. This paper accordingly reviews re-
search evidence concerning feedback and discusses 
some of the issues and the ways in which this evidence 
is being implemented. 

The relevant mathematics education literature on 
feedback comes from classroom contexts where the 
aim of feedback is to enable the student to meet specif-
ic learning goals, not the aim of the NS project. More 
general learning goals are common, however, as is 
successful task completion, the difference being that 
in a classroom context this is taken as evidence that 
the learning goals incorporated into the task have 
been met. 

DEFINITIONS AND DIFFICULTIES

Feedback may be defined as any information provided 
to the learner about a response (Wiliam, 2013). Based 
on Shute (2008), we define formative feedback as feed-
back given to the learner with the purpose of enabling 
the learner to modify their thinking or behavior in 
order to meet the goals of the activity in which they 
are engaged.  Much of the relevant literature on feed-
back is concerned with formative assessment, which 
is broader than formative feedback in that learner 
responses are used more generally to adapt teaching 
and learning to meet student needs (Sangwin, Cazes, 
Lee, & Wong, 2010); this might, for instance, involve 
directing the student to an entirely different activity 
rather than giving formative feedback on the existing 
activity. 

mailto:katemackrell@me.com
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Digital learning environments such as Cabri provide 
direct manipulation feedback in which the technology 
responds to user actions, ranging from displaying 
text to  changing the appearance of a graph or other 
screen object as its parameters are changed. Such 
feedback is neutral; any evaluation comes from the 
student themselves, as they discover which actions 
enable them to meet their goals.

Formative assessment, in contrast, involves the pro-
vision of a more deliberate goal-directed response, 
ranging from evaluating a student action as correct or 
incorrect through giving formative feedback such as 
hints, or changing the task completely by presenting 
a simpler version or directing the student to external 
learning resources.

Despite growing awareness of its effectiveness, (aca-
demic achievement gains ranging from half to a full 
course grade have consistently been found (Black 
& Wiliam, 1998) formative assessment is not wide-
ly implemented. Hattie and Timperley (2007) state 
that there is little feedback at all in classrooms, and 
that much of this is ineffective. Bellman, Foshay, and 
Gremillion (2014) identify the implicit, unrealistic 
expectation that most teachers can immediately adopt 
the formative assessment model and differentiate 
instruction. Lee, Feldman, and Beatty (2012) note 
that teachers find it difficult to gather and respond 
appropriately to student ideas during whole class 
discussion. Hence, although technology may offer 
new opportunities for effective formative assessment 
(as is currently being explored by projects such as 
FaSMED (2015)) we cannot assume that implement-
ing effective feedback within Number Stories will be 
unproblematic. 

We will next consider a particular framework for 
feedback and then explore the affordances and con-
straints for such feedback in a digital environment.

FRAMEWORK FOR FEEDBACK

Hattie and Timperley (2007) categorize feedback ac-
cording to its purpose and have developed the follow-
ing framework for feedback:  

a) Feedback at the task level (FT) provides informa-
tion about how well a task is being accomplished 
in relation to a goal.

b) Feedback at the process level (FP) provides infor-
mation about the processes being used to accom-
plish a task.

c) Feedback at the self-regulation level (FR) provides 
information to help learners monitor and regu-
late their own actions towards a goal.

d) Feedback at the self level (FS) provides an evalu-
ation of the student as a person.

This framework aligns well with the aims of the NS 
project, highlighting task completion, but in the con-
text of developing solvers’ problem-solving abilities 
in an environment where solvers are self-directed in 
their choice of problems to solve.

Hattie and Timperley’s review shows that the effects 
of feedback vary according to level, though there are 
many mediating factors that still need to be explored. 
In particular, they argue that FS is least effective, FP 
and FR are the most effective for deep learning, and 
FT can be effective when the information in the feed-
back is “useful for improving strategy processing and 
enhancing self-regulation” (p. 91). 

Feedback at the task level (FT) is the most common 
type of feedback, but too much feedback at this level 
may encourage students to focus on the immediate 
goal and not the strategies to attain the goal. It is more 
powerful when it results from faulty interpretations 
rather than a lack of understanding (where it may 
be better to have elaborations provided through in-
struction), and enables student to examine erroneous 
hypotheses and ideas, particularly when the learner 
has expected the response to be correct), and is most 
effective when it leads to the development of better 
strategies for processing and understanding the ma-
terial. Simple tasks benefit most from FT, and simple 
FT is the most effective. 

Process feedback (FP) is aimed at the process used 
to create a product or complete a task. FP is more ef-
fective than FT for enhancing deeper learning, and 
is most beneficial when it enables students reject er-
roneous hypotheses and gives cues to directions for 
searching and strategizing. Ideally, it moves from the 
task to the processes necessary to learn the task to 
regulation about continuing beyond the task to more 
challenging tasks and goals. 
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Self-regulation involves the way students monitor, 
direct and regulate actions towards the learning goal. 
It includes the capability to self-assess and to seek out 
feedback. Self-regulation feedback (FR) can lead to 
further engagement with the task, and enhanced 
self-efficacy. Bellman, Foshay, and Gremillion (2014) 
and Sangwin, Cazes, Lee, and Wong (2010) also iden-
tify the importance of FR and the way that formative 
assessment can develop self-regulation capacities.

The most problematic type of feedback is FS. Praise 
directed at this level bears little relationship to stu-
dent achievement, and negative FS can undermine 
self-efficacy. 

Some of the implications for NS are straightforward, 
such as replacing “smiling” and “frowning” faces with 
more neutral correct/incorrect symbols to avoid FS 
feedback, and keeping all feedback as simple and 
goal-focused as possible. Another implication is that 
feedback may not be enough and that sources of in-
struction may be needed. Other implications are more 
problematic: it is clear that, particularly for more 
open-ended tasks, FP and FR are crucial to sustain 
engagement, to experience successful task comple-
tion and to enhance problem-solving ability.  

We next consider the extent to which feedback can be 
given in a digital environment. 

FEEDBACK IN A DIGITAL ENVIRONMENT

The MiGen project (Mavrikis, Noss, Hoyles, & 
Geraniou, 2013) is a digital environment that has been 
deliberately designed to incorporate formative feed-
back and is aimed at supporting children’s learning 
of mathematical generalization.  The system includes 
an open environment in which students can construct 
and explore the structure within patterns, and an in-
telligent support system that gives students hints and 
clues about what to do next. Two major issues have 
been identified in the development of this intelligent 
support system which need to be dealt with in any 
digital environment incorporating feedback. 

Interaction bandwidth 
The interaction bandwidth of a situation refers to the 
available modalities and speed of communication that 
the situation affords (Mavrikis & Gutierrez-Santos, 
2010). There are crucial differences between human 

communication modalities and those that are avail-
able to a computer-based system. 

The computer is limited in the amount of infor-
mation it can obtain from the student, and is also 
limited in the amount and types of feedback it can 
provide. These limitations are both technical (c.f., 
state of the art in natural language processing 
and generation) and pragmatic (e.g., humans be-
have differently with computers, i.e. they listen 
and read with different interest or attention) 
(Mavrikis & Gutierrez-Santos, 2010, p. 642). 

Examples of these limitations include the awkward-
ness of keyboard input of mathematical expressions 
and the tendency of students to do written calcula-
tions on scrap paper in paper-based mode but to try to 
work mentally in computer-based assessment (Stacey 
& Wiliam, 2013). 

In contrast, in face-to-face communication in a tech-
nology environment, a human facilitator can, for 
example, speak, point to screen objects, take control 
of actions, and draw inferences based on facial ex-
pressions and gaze direction, far beyond what can 
be achieved by most computer-based systems. This 
has an impact on the quality of assessment possible. 
Sangwin, Cazes, Lee, and Wong (2010, p. 231) note 
that “The process with which a human teacher en-
gages when assessing work at even this micro-level 
is both complex and subtle. Both for formative and 
summative purposes it involves them making many 
judgments rapidly.” 

Designing a feedback system involves finding ways 
to compensate for the reduced interaction bandwidth 
of a technology environment.  This is of particular 
importance in the NS project; learning may be en-
hanced by teacher feedback if the materials are used 
in a classroom, but materials need to be designed to 
be accessed and used by individuals without teacher 
support. We next describe some of the possibilities for 
action, interpretation, and response in a technology 
environment.

Actions possible 
A digital environment may be impoverished com-
pared to a face-to-face environment, but is signifi-
cantly richer than a paper-and pencil environment. 
Students may be given dynamic objects to manipulate, 
such as a 3D object to rotate, or linked representations 
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of equations and graphs (Stacey & Wiliam, 2013), or 
spreadsheets (Sangwin, Cazes, Lee, & Wong, 2010). 
Students may also be given tools to construct or op-
erate upon mathematical objects; tools for calculating, 
graphing, and manipulating algebraic expressions 
enable student attention to focus on problem-solv-
ing strategies, concepts, and structures, rather than 
mechanical processes. Students may also choose op-
erations which are then performed by the computer 
(Sangwin et al., 2010). 

Non-verbal ways of responding are also possible. 
Stacey and Wiliam (2013) argue that if a student needs 
to estimate the height of a tree after reduction by 30%, 
then dragging a slider to the estimated position pro-
vides a better test of estimation than selecting an an-
swer from a list presented on paper. Student choices 
may also be constrained in ways that are pedagogical-
ly useful; given only the choice of “multiply” or “add”, 
solving the equation 3x = 14 requires the awareness 
that division by 3 is equivalent to multiplication by 
1/3 (Sangwin, Cazes, Lee, & Wong, 2010). 

Cabri, incorporating dynamic geometry together 
with graphs, calculation and the ability to create and 
evaluate expressions, gives the possibility for a wide 
range of dynamic objects to manipulate and tools to 
use, as well as containing more traditional features 
such as input boxes and multiple choice questions. 
Importantly, the task designer has control over the 
availability to students of both objects and tools, en-
abling a focus that is unusual in a DGS.

Interpretation of actions 
The fundamental principle of mathematical assess-
ment with technology is that various mathematical 
properties of a student’s work on a specific mathe-
matical question are established (Sangwin et al., 2010). 
Technology can also identify other potentially task-re-
lated aspects such as the sequence of actions taken, the 
number of attempts and the response time (Stacey & 
Wiliam, 2013; Pellegrino, 2010).

Input boxes and multiple-choice questions are easily 
checked for accuracy. However, feedback based solely 
on this may not be of particular value to the student, 
as it may consist of FT alone. These also constrain the 
type of task that can be given. In particular, geometric 
constructions and more open-ended questions cannot 
easily be assessed using these means.

The challenge is to find means to gain more sophisti-
cated evidence on the basis of which FP and FR feed-
back may be given. This is dependent on both the 
way the task is modeled (discussed below) and the 
affordances of the technology. Sangwin, Cazes, Lee, 
and Wong (2010) note that some DGS (e.g., Cinderella 
and C.a.R.) allow teachers to set up assignments or 
exercises that can automatically check student con-
structions. All DGS can capture information about 
parameters such as coordinates, lengths, and angles 
which enables feedback to be given on tasks such as 
rotating a segment by 90 degrees, or dragging a point 
to make two segments parallel.

Cabri will soon be able to check constructions, can de-
tect any of the above parameters and also the number 
of objects inside certain types of other objects. Such 
objects may also be assigned values that can be the ba-
sis of calculations. Cabri also has booleans, which en-
able sophisticated evaluation of numbers, such as how 
far the response given is from the correct response, 
or whether the response is congruent with an earlier 
estimate. It is also possible to measure response time 
and number of attempts, and student can make and 
save a recording of the steps taken.

Response to evidence 
There are a number of ways in which the system can 
engage the student in evaluating their response, and 
hence enhance the possibility of FR feedback. One 
is to represent the student response in a different 
register, or otherwise work out its implications. For 
example, Sangwin, Cazes, Lee, and Wong (2010) ask 
students to give an example of a function with cer-
tain properties. The function given is then graphed, 
and the student can evaluate whether or not it has 
the required properties. Another example is where 
students are asked to integrate a function. The system 
finds the derivative of the function provided and asks 
the student to compare this with the original func-
tion. This is designed to encourage the students to 
differentiate in order to check the result for them-
selves. Geiger and Redmond (2013) ask students to 
create a function to model particular data. The system 
then graphs this function against the data in order to 
give immediate feedback about the suitability of the 
model. It is also possible to provide feedback about 
the immediate correctness of a step, leaving it to the 
student to evaluate their overall success in achieving 
the goal. An example here is the Digital Mathematics 
Environment facility to solve equations step by step, 
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with the program providing feedback on accuracy at 
each step – but not indicating whether or not the par-
ticular steps taken were useful in reaching the goal 
(Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013). 

In MiGen, responses come from the system, based on 
the properties of the student evidence (to be discussed 
below), and may range from variations on “correct” 
and “incorrect” to feedback that progressively pro-
vides more specific help through ‘nudge’ questions, 
comments, suggestions, and interventions (Gutierrez-
Santos, Mavrikis, & Magoulas, 2010). There is, for ex-
ample, a suggestion button which students are free 
to ignore that only lights up if the system observes 
an action that implies that help is warranted, and 
drop-down menus that allow students to choose a 
sentence and ask for help (Mavrikis, Noss, Hoyles, & 
Geraniou 2013). The advantage of technology here is 
the immediacy of the feedback, not possible from a 
teacher (Sangwin, Cazes, Lee, & Wong, 2010).

Apart from the calculus example (due to insufficient 
CAS) all the specific possibilities above may be imple-
mented using Cabri. 

It would hence appear that Cabri enables a rich 
enough bandwidth to open a number of possibilities 
for feedback.

Modeling the task to design feedback
The second major issue identified in the MiGEN proj-
ect is that of modeling the task to design feedback. 
The importance of such a model is recognized by 
Pellegrino (2010), who, in describing systems which 
explicitly make formative interventions and give de-
tailed diagnoses of student understanding, states that 
such systems are based on an underlying analysis or 
model of learning and performance in the content do-
main. Pellegrino recognizes the difficulty in achieving 
such a system, however, stating that systems with ex-
tensive diagnostic assessment capability, while desir-
able, require considerable research and development 
efforts. Even for an apparently straightforward task 
such as the Chain Letter problem in which the solver 
might be asked to find the number of letters sent after 
a certain number of iterations all possible solution 
processes and possible misconceptions would need 
to be identified. 

This is particularly difficult in an open-ended envi-
ronment. Mavrikis and Gutierrez-Santos (2010) iden-

tify a number of difficulties in the MiGen project in-
cluding eliciting precise, concise, and operationalised 
knowledge from ‘experts’ such as teachers and the 
nature of the microworld:

the freedom provided to the students to explore 
such environments makes it difficult to model the 
task, the learner and the relationship between 
the target domain and the knowledge which the 
system affords. (Mavrikis & Gutierrez-Santos, 
2010, p. 641) 

They found it crucial to involve students at all stages 
of development, as difficulties were problematic to 
predict; an in-depth understanding of user behaviour 
required observing and analyzing situations in their 
actual context. This modeling was necessary in order 
to generate the detailed set of messages used as feed-
back in the intelligent support system.

An implication for NS is that, with its large number of 
contexts and open-ended questions, the resources in 
terms of time to create detailed task models and soft-
ware capability to analyze and appropriately respond 
(Cabri does not incorporate a programming language) 
are not currently sufficient to create an intelligent 
support system of the sophistication of that developed 
in the MiGen project. 

NUMBER STORIES

Starting in July 2014, when feedback consisted simply 
of “correct” or “incorrect”, we have incorporated an 
increasing range of types of feedback, starting with 
giving further characteristics of the solver response 
(such as its distance to the correct answer), but in-
creasingly using techniques such as either on request 
or after a certain number of incorrect responses rep-
resenting aspects of the question with further visual 
manipulatives, or asking solvers to make decisions as 
to the type of help that they would like. 

One particular strategy that we are incorporating is 
to build in a level of direct manipulation feedback in 
which the solver can choose to see the consequences 
of their response, often translating an answer into a 
visual representation such as a graph or other visual 
model.  For example, distances on the Earth may be 
shown with a model of the Earth cut with a plane at an 
appropriate distance from a point. One of the aims of 
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such strategies is to increase the ability of the solver 
to self-assess. 

We are finding that, at least for more straightforward 
questions, our feedback systems may be elaborated 
in the process of creating the activities as further 
possibilities occur, meaning that we do not neces-
sarily need to develop our feedback support system 
in advance, and will be able to adapt and elaborate it 
further when the activities are field-tested.

We are looking at ways in which solvers can identify 
the mathematics that they need to solve a particular 
problem, particularly in problems that can be solved 
in a variety of ways. The chain letter context intro-
duced above is an example, where a solution might 
involve dragging icons, multiplying, or using geo-
metric series. The challenge is to direct the solver to 
the appropriate solution method while at the same 
time minimizing the amount of structure imposed. A 
possibility is to create separate problems, such as a sit-
uation involving smaller numbers for less advanced 
learners rather than attempt to address all possible 
solution methods in one question.

Some of the challenges we face arise from the scope 
of the project itself. The lack of specific learning goals, 
for instance, means that we have the temptation to fo-
cus feedback on the FT level, which may lead to merely 
instrumental problem-solving. 

A second issue is that instead of giving any explana-
tion of the mathematics required for learners who 
lack the necessary understanding to solve a partic-
ular NS problem we anticipate directing solvers to 
other sources. A tension is that such sources will use 
different contexts and hence may not be seen as im-
mediately relevant. One possibility is to create guided 
discovery environments using the question contexts. 

Another issue is that problems are designed to be 
independent, rather than follow any particular se-
quence. This mans that all our feedback needs to be 
problem-specific, and relatively exhaustive: we can-
not refer to other problems which may help the solver 
with the current problem. It also means that there are 
a large number of content domains to analyze. 

Our main challenge is that many of the most inter-
esting and engaging real-world questions involving 
mathematics are both open-ended in approach and 

do not have well-defined answers. An example is the 
NS about the purchase of Manhattan. It is not possi-
ble to create detailed intelligent support systems for 
each of these questions, in which all solver actions 
could be responded to appropriately by the digital 
environment, and we are committed to the use of the 
materials not being dependent on teacher feedback.  
One possibility is to structure these questions to give 
specific choices of direction, or specific sub-questions 
to solve. However, this is likely to defeat the broader 
aim of enabling solvers to increase their problem-solv-
ing skills, a major part of which needs to be the ability 
to make appropriate choices. We are considering scaf-
folding the question around the mathematical model-
ing process, asking solvers to identify what they need 
to do to formulate a mathematical representation of 
the real-world situation, use mathematics to derive 
results, interpret the results in terms of the given 
situation, and if necessary revise the model (Geiger 
& Redmond, 2013, p. 121). Another possibility is to ask 
solvers to self-evaluate and evaluate others through 
exploring solutions posted to the database by other 
solvers. Strategies that enhance FR are hence not just 
desirable, but necessary, as the most informative feed-
back possible must come from the solvers themselves. 

CONCLUSION

The Hattie and Timperley (2007) feedback framework 
is a useful fit with the aims of the NS project, involving 
task completion at the FT level, and, at the FP and FR 
levels, enhanced ability to engage confidently in the 
processes of mathematical problem-solving and great-
er awareness of the use of mathematics in the world. 
Their findings, together with those of others, give us 
ideas to incorporate, but also remind us that the best 
feedback to enable our most obvious goal, successful 
task completion, will also involve enabling the learner 
to achieve higher-order learning goals. 

Cabri’s comparatively rich variety of possibilities for 
student action, interpretation and response means 
that we have many possibilities for feedback to ex-
plore for structured tasks. However, it is not currently 
possible to develop a full intelligent support system 
in which all the processes in which solvers engage 
can be identified and appropriately responded to by 
the digital environment. We have hence identified 
FR feedback as critical and are seeking to develop the 
ability of solvers to self-assess through strategies such 
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as enhanced direct manipulation feedback and com-
parison of their work with the work of others. 

Field testing will commence in May, 2015, and will 
enable us to evaluate the success of the strategies that 
we are currently planning.
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In this paper, we explore the potentials for learning 
mathematics through programming by a combination 
of theoretically derived potentials and cases of practi-
cal pedagogical work. We propose a model with three 
interdependent learning potentials as programming 
which can: (1) help reframe the students as producers 
of knowledge and artifacts, (2) support abstraction and 
encapsulation, and (3) promote thinking in algorithms. 
Programming is a topic that has recently gained inter-
est in primary and lower secondary education levels 
in various countries, and hence a specific analysis of 
the potentials in relation to mathematics is paramount. 
Analyzing two cases, we suggest a number of ways in 
which didactical attention to epistemic mediation can 
support learning mathematics.

Keywords: Programming, Constructionism, APOS theory, 

Algorithmic thinking, instrumental approach.

INTRODUCTION 

Programming and mathematics are often thought of 
as strongly connected activities. Partly because of 
their shared genes – the first computers were con-
ceptualized and build by mathematicians – but also 
because programmers attend to logic, procedures, 
and functions in order to obtain their goals. Over 
the years a number of projects in mathematics ed-
ucation aimed at utilizing programming to obtain 
mathematical learning goals with the students. The 
earliest of these projects tended to collapse in main-
stream implementation due a complex combination of 
lacking technological readiness of the school system, 
teacher competences, and more principal didactical 
difficulties with connecting programming activities 
to accepted mathematical curricular goals. 

Recently, several countries have included basic pro-
gramming in the national curriculum. In some of these 

countries (such as Estonia and France) programming 
is placed in direct curricular connection to mathe-
matics, whereas in others (England, and Sweden) 
programming is related more to a design and engi-
neering agenda. However, in all cases the focus is not 
on developing general “humanistic” skills with tech-
nology, rather it is on thinking in algorithms, writing 
programs, and developing technology. In other coun-
tries such curricular changes are being discussed and 
tested on a small scale. Hence, it makes sense to take 
a closer look at the arguments that have previously 
been proposed for utilising programming in mathe-
matics education. In this paper, we will modestly at-
tempt to describe these arguments, however in order 
to compare and combine previous thoughts on this 
topic we will employ the instrumental approach to the 
use of Information and Communication Technology 
(ICT) in mathematics education. The instrumental ap-
proach was developed in a French didactical tradition 
to meet the challenge that computer algebra systems 
posed to mathematics education and it has in the last 
decade become a European mainstream framework 
for addressing ICT in mathematics education. 

In this paper, we investigate the mathematical learn-
ing potentials in programming activities by a com-
bination of literature and empirical observations in 
classroom settings. Furthermore we explore if the 
instrumental approach can be activated in order to 
study these potentials empirically. We will describe 
some of the main intellectual projects and frameworks 
in mathematics education that used programming as 
a means to obtain mathematical learning goals. We 
suggest classifying these projects in three clusters; 
(1) viewing students as producers, (2) supporting ab-
stract thinking, and (3) developing algorithmic think-
ing. Using the instrumental approach as theoretical 
framework we describe two educational situations 
utilizing pupils’ programming activities in order to 
learn mathematics.

mailto:misfeldt%40learning.aau.dk?subject=
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WAYS OF THINKING ABOUT TEACHING 
MATHEMATICS WITH PROGRAMMING

Investigation the intersection between mathematics 
and programming has many aspects. Mathematics 
and logic gave birth to programming with the pio-
neering work of Turing and others. Furthermore 
computing is influencing mathematical work in many 
areas of society. However the interaction between pro-
gramming and mathematics that we focus on here, 
relates to curricular activities in primary and lower 
secondary school and we aim at understanding the 
potential synergies between learning mathematics 
and learning programming. 

The tools that we choose to bring to mathematics stu-
dents do influence the learning of mathematics that 
becomes likely or possible (Guin et al., 2005, Ainley, 
Pratt, & Hansen, 2006). And in that sense bringing pro-
gramming into mathematics teaching does support 
certain types of learning. Bringing programming into 
the classroom with the purpose of learning mathemat-
ics easily leads to a version of the planning paradox; 
the more detailed the teacher articulates the mathe-
matical learning goal, the more difficult it can be for 
pupils to appropriate programming as a personal 
instrument (Ainley et al., 2006).

Students as producers: Constructionism 
and a different mathematics 
Serious attempts to use programming in teaching 
mathematics in primary and lower secondary school 
started with Seymour Papert. Papert’s idea was sim-
ple–to create an interactive universe (microworld) 
that children access through mathematics, which 
prompts them to think mathematically by embed-
ding nuggets of mathematical knowledge into the 
microworld that the pupils playfully stumble upon 
while developing projects.

As a means to obtain this goal, Seymour Papert devel-
oped the programming language LOGO, where the 
child steers a small turtle around the screen with 
commands such as “forward 10” and “right 90”. The 
turtle can leave a trace allowing the child to create 
various geometrical figures. Papert’s pedagogical 
strategy, constructionism, suggests that children 
learn in a particularly efficient way when they are 
engaged in developing constructs such as beautiful 
patterns, interactive art, computer games, etc., and in 
his bestseller, Mindstorms (1980), he describes LOGO 

as a ‘mathematical microworld’ that allows children 
to engage in such projects. The teacher’s role in such 
work is to connect the children’s work and intentions 
to “powerful ideas” from our mathematical heritage 
(Papert, 2000). 

During the 1980s there was great enthusiasm and 
confidence that LOGO and similar programming lan-
guages would radically reform mathematics teach-
ing in primary schools, and the first ICMI study on 
technology in mathematics education was focussed 
on how technology influenced mathematics as a 
topic (Churchhouse & International Commission on 
Mathematical Instruction, 1986). However, the results 
in mainstream implementation did not entirely live 
up to the expectations. There are a number of reasons 
for the disappointing results; for instance, students 
easily overlook the nuggets of mathematical knowl-
edge (Noss & Hoyles, 1992, Ainley et al., 2006), making 
their work in the microworld non-mathematical. 

Abstraction and concept 
formation: APOS theory 
The idea that programming could be helpful in math-
ematics education in the late 1980s also developed in 
the context of teaching mathematics in high school 
and college. Here the geometric and artistically 
framed LOGO program was less popular. On the con-
trary, teachers often utilized common programming 
languages   such as BASIC, COMAL and PASCAL to 
support learning. One of the outspoken hopes was 
to create a process-oriented approach to abstract 
mathematics, basing abstract constructions in con-
crete numerical computations. The arguments for 
this approach were often based in constructivism and 
radical constructivism, which claims that all abstract 
learning has a concrete starting point, as well as in 
the and in the discussions of process-object duality 
(Sfard, 1991). Ed Dubinsky’s work is probably the 
clearest description of the learning potential of pro-
gramming (see Breidenbach et al., 1992). His theory is 
often referred to as APOS theory and it is situated in a 
radical constructivist framework (Glasersfeld, 1995). 
APOS is an acronym for action, process, object, and 
scheme. The theory describes mathematical concept 
formation as beginning with performing actions on 
well-understood mathematical objects; these actions 
can be organized in processes and encapsulated into 
objects. These objects can be related to one another 
in schemas. The encapsulation stage is, as famously 
described by Sfard (1991), crucial and hard. And the 
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schematic aspects of concept formation is similar to 
Skemp’s relational understanding (1971).  This rather 
general learning theory of mathematical concept for-
mation relates to the use of computers because they 
can significantly empower and enrich the concrete 
numerical calculations that are – in this conception – 
the necessary foundation for concept formation. 

Process approach to mathematics: 
Algorithmic thinking 
The ability to think in algorithms and procedures is 
promoted as an important learning goal in mathemat-
ics. Algorithmic thinking describes students’ ability 
to work with algorithms understood as systematic 
descriptions of problem-solving and construction 
strategies, cause-effect relationships, and events. 
A recipe is a good example of an algorithm: (1) Add 
all dry ingredients together. (2) Stir. (3) Add 2/3 cup of 
the water and stir. (4) If the dough is steady, then stir 
for 2 minutes. Otherwise, go to step (3) and add more 
water. Algorithmic thinking is about being able to 
develop, execute, and make machines to perform such 
algorithms. Donald Knuth (1985) views algorithms 
as a crucial phenomenon constituting the intersec-
tion between computer science and mathematics. He 
traces the study of algorithms to the mathematical 
masterpiece Al Kwarizm from the 9th century (Katz, 
1993). Knuth defines algorithms as follows (Knuth, 
1985, p. 170): 

I tend to think of algorithms as encompassing 
the whole range of concepts dealing with well-de-
fined processes, including the structure of data 
that is being acted upon as well as the structure 
of the sequence of operations being performed; 
some other people think of algorithms merely 
as miscellaneous methods for the solution of 
particular problems, analogous to individual 
theorems in mathematics. 

Hence algorithms, according to Knuth, consist of both 
a recipe and the actual objects dealt with by the recipe. 
Knuth analyzes the difference between mathematical 
thinking and algorithmic thinking. He finds that a 
first approximation algorithmic thinking relates to 
(1) representation, (2) reduction, (3) abstract reason-
ing, (4) information structures, and (5) algorithms. 
Mathematical thinking can, according to Knuth, relate 
to all of these, however other aspects are also pres-
ent such as (a) formula manipulation, (b) behavior of 
functions, (c) dealing with infinity, and (d) generaliza-

tion. Hence algorithmic thinking is strongly related 
to mathematical thinking but emphasizes specific and 
slightly different aspects than other types of mathe-
matical thinking. 

Before we introduce classroom examples exemplify-
ing these learning potentials, we will introduce the 
instrumental approach that we use as a general theo-
retical framework for the use of ICT for mathematics 
teaching. This framework will be used to analyze the 
cases and create a connected description of the differ-
ent learning potentials. 

THE INSTRUMENTAL APPROACH  

The instrumental approach (Guin, Ruthven, & 
Trouche, 2005) addresses students’ use of technology 
when learning mathematics from the perspective of 
appropriating digital tools for solving mathematical 
tasks. It builds on (Verillon & Rabardel, 1995), and 
views computational artifacts as mediating between 
user and goal (Rabardel & Bourmaud, 2003). The 
approach presupposes a continuation and dialectic 
between design and use, in the sense that a pupil’s 
goal-directed activity is shaped by his use of a tool (this 
process is often referred to as instrumentation), and 
simultaneously the goal-directed activity of the pupil 
reshapes the tool (this process is often referred to as 
instrumentalization) (Rabardel & Bourmaud, 2003, p. 
673). In students’ work with technology the distinction 
between epistemic mediations and pragmatic media-
tions (Guin et al., 2005; Rabardel & Bourmaud, 2003) 
operationalize the difference between learning with 
technology and just using technology to solve tasks. 
Epistemic mediations relate to goals internal to the 
user – affecting his or her conception of, overview of, 
or knowledge about something Rabardel & Bourmaud 
(2003) use the example of a microscope, and Lagrange 
(in Guin et al., 2005, ch. 5) refers to experimental uses 
of computers) and pragmatic mediations related to 
goals outside of the user – making a change in the 
world (Rabardel & Bourmaud use the example of a 
hammer, Lagrange (in Guin et al., 2005, ch. 5) refers 
to the mathematical technique of “pushing buttons”). 
Finally, Rabardel & Bourmaud (p. 669) introduce sensi-
tivity to a broader conception of the orientation of the 
mediation. Instrumented mediations can be directed 
towards (a combination of ) the objects of an activi-
ty (the solution of a task), other subjects (classmates, 
the teacher), and oneself (as a reflective or heuristic 
process). Hence the theoretical framework consists of 
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the concepts: instrumental genesis, as consisting of in-
strumentation and instrumentalization, the concepts 
epistemic and pragmatic mediations, as well as a sen-
sitivity towards the orientation of an instrumented 
mediation. The orientation of the mediation can be 
towards oneself, external objects, and other subjects. 

EXAMPLES OF LEARNING MATHEMATICS 
WITH PROGRAMMING 

These classroom observations are taken from the pro-
ject Children as Learning Designers in a Digital School. 
The project is the realization of a research call from 
the Danish Ministry of Education. The research pro-
ject is directed toward the area students own produc-
tion and student involvement (Levinsen et al., 2014) 
and it explores: 

1) How students’ digital production impact on learn-
ing processes and the qualification of learning 
results regarding subjects and trans-disciplines; 
and 

2) How ICT involves designs for learning that al-
low students to act as learning designers of their 
own learning practice in terms of form, framing, 
and content on their learning, engagement, and 
motivation. 

The project comprises of a number of interventions 
in different schools. The examples in this paper come 
from a mathematics class where children in 5th grade 
(approximately 11 years old) program games for peer 
pupils to play and discuss using iPads and the soft-
ware program Hopscotch. We present two activities 
that we suggest are related to the three different learn-
ing potentials described earlier.  

Creating a good game: “It has to be fun”
The first example relates directly to the students’ po-
tential as artifacts producers. Oliver is trying to solve 
a problem–he wants to move his figure using tilt (i.e., 
by tilting the iPad). He asks the others for help. Instead 
of suggesting a solution, Ally asks him, “Why aren’t 
you just tapping it?” Oliver answers, “Because it’s a 
game, Ally. It should be fun.”

The motivation for Oliver is obviously that the game 
he creates should be fun.  Programming is merely a 
means for obtaining that goal. Throughout the course 
of the intervention Oliver gets really far in the process 

of making games. He is very independent and on his 
own he examines other games in order to, e.g., make 
points. 

For the same reason – wanting to develop good games – 
more pupils want to make countdowns, scoring sys-
tems, control with arrows, etc. They know the game 
genre well and what is needed to make a good game. 
These elements can only be done using variables. 
Despite the lack of algebra knowledge (algebra is con-
sidered “above their level” in the school), half the class 
voluntarily and with a high level of focus attends as the 
teacher demonstrates how to use algebraic concepts 
(variable and coordinate systems) to make an arrow 
control. In order to move one object (e.g., the avatar) 
by touching another object (e.g., an arrow) the pupils 
need to make a move-variable. Despite the emergence 
of this rapid algebra course, the pupils are not working 
with a task defined by the teacher. The teacher has 
merely defined a frame, “make a game”, and the pupils 
themselves start defining tasks within it.

From an instrumental perspective the pupils’ inter-
est in understanding the mathematical concepts that 
the teacher are oriented towards can be viewed as a 
pragmatic end of creating a good game. Such an end is 
indirectly oriented towards peer students as players 
of their games. Obtaining the pragmatic goal of creat-
ing a game does require students to obtain epistemic 
goals – in this case about variables and the coordinate 
system – as sub-goals along the way. But understand-
ing and acknowledging that there are mathematical 
sub-goals might not be so easy. In this case, mathemat-
ical sub-goals are strongly supported by the teacher’s 

Figure 1: Oliver’s first game, “Eat them all”. The player controls the 

parrot by tilting the iPad. The goal is to eat the toasts and avoid 

the purple devils
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choice to create a “what kind of math do I need in order 
to make my game” crash course, deliberately focusing 
the pupils’ attention on the mathematical aspects of 
creating arrow control and scoring systems.  

Thinking in algorithms
The second example we initially see as relating to al-
gorithmic thinking, but also to using programming 
as a way to support later abstraction and reification. 
The activity is introductory (just after the teacher has 
introduced the course structure and learning objec-
tives). In plenary, the pupils and the teacher program 
a small cardboard figure that the teacher has set up 
on the whiteboard. They decide to call him ‘Puff ’. The 
teacher challenges the pupils by asking how to make 
Puff do various things and the following dialogue 
happened (translated from field notes): 

Teacher: Puff can only speak mathematics. How 
can I make him go right? 

Zack: Go right. 
Teacher:  He does not know how far he should go.
Marc: Go 2 centimeters to the right.
Teacher:  Yes, but unfortunately he does not know 

centimeter on the screen. 
Austin:  Displace two units to the right. 
Teacher:  Yes, units he understands. But he does 

not know what right is.
Ann:  You must move to a coordinate.
Oliver:  If he should go to the left, then: Go -3.
Ann:  Could you get him to go to a coordinate? 
Teacher:  Yes, he would go there–but he would 

then fly around.

The teacher demonstrates her point by moving the 
cardboard figure from one point to another instead of 
sliding between points. She then shows how moving 
with a positive number makes Puff go right and neg-
ative number, as suggested by Oliver, will make him 
move left. After some discussion the teacher raises 
another issue:

Teacher: They [the sprites in Hopscotch] are ego–
they see the world from their own noses. 
How do you think he can go downwards? 

Girl:  I am just guessing...can he rotate de-
grees?

Teacher:  Yes he can. 
Zack:  Rotate 90° clockwise.
Teacher:  Now, you have to try programming each 

other. Give each other a rule and a signal. 

Use rotation and units. Make a square 
by controlling the other orally.

Pupils work together in pairs. They try to control each 
other. Zack and his teammate come over to the teacher 
and are frustrated. Zack says that he does not know 
which way to turn when she just says “turn 90° de-
grees”. His teammate complains that he “just lies down 
on the floor” instead of moving around. The teacher 
talks with them about being precise and setting an 
x- and y-axis on the floor. 

This example shows how pupils struggle with trans-
lating programming the figure on the whiteboard, 
which has two dimensions, to programming each 
other in three dimensions. Zack understood that the 
language should be precise, but he also teases on pur-
pose. Several pupils have this kind of negotiation with 
mathematical concepts (turning, coordinate system, 
etc.), but some are also getting away with just saying 

“turn 90 degrees right/clockwise” without their part-
ners correcting them. Those who are being controlled 
sometimes find that if they follow the instructions 
they end up walking into things, especially as the 
units are not precisely specified. Most use one step 
as a unit, some are using one foot as a unit.

By having pupils translate the programming activi-
ty to a classroom situation the teacher promotes re-
flection on the relationship between spatiality and 
algorithms. Another consequence of having pupils 
mediate programs by playing roles is that they get an 
understanding of what precision means. After this 
introduction the pupils described programming as 
a mathematical language that you ‘speak’. From an 
instrumental perspective, the pupils here aim at af-
fecting other subjects directly through programming 
and it has the effect that they negotiate what a good 
algorithm is and what it means to be precise in such 
instructions. It is a classical point that learning to 
program can benefit from attempting both to act as 
the creator of algorithms and as the performer (this is 
described as “playing turtle” by Papert, 1980). But it is 
interesting that the pupils’ negotiation of the instruc-
tions is resolved by the teacher through introducing 
mathematical concepts (the 2-dimensional coordinate 
system). The teacher consistently introduces the solu-
tions to pupils’ problems in mathematical terms; this 
seems like a strong didactical strategy that supports 
the pupils talking and thinking about mathematics 
when they work.  
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THE CHALLENGE OF MAINTAINING 
AN EPISTEMIC FOCUS

In this section, we will discuss whether the mathe-
matics learning potentials that have previously been 
suggested in the literature about programming and 
mathematics education can be viewed as genuine 
mathematics learning potentials in the sense that they 
involve epistemic mediations towards mathematical 
concepts. It is obvious from the cases that the pupils 
need help with mathematical concepts when they try 
to appropriate a programming language to develop 
their games. The two examples show how such situ-
ations can facilitate the engagement with classical 
mathematical concepts such as numbers, the coordi-
nate system, and orientation/angles. In both cases the 
pupils interact with the teacher, each other, and games 
developed by others in order to handle the challenges. 
But one can discuss whether the overall pragmatic 
purpose of improving their skills with Hopscotch and 
potentially making a better game support or hinder 
the pupils’ epistemic focus on mathematical concepts. 
The analysis shows that it is – in these specific cases – 
not reasonable to disregard this as only a pragmatic 
mediation with little educational value. But this could 
very well have been the case if the teacher had not 
been so careful in attracting the pupils’ attention to 
explicit and relevant mathematical ideas. However, 
the pupils also bring in mathematical ideas (for in-
stance, about angles) without being prompted by the 
teacher. Hence it would be meaningful to investigate 
further how the classroom norms and shared ideas 
about mathematics (the sociomathematical norms 
discussed by Cobb, Stephan, McClain, & Gravemeijer, 
2001) affect the mathematical value of introducing 
programming. 

By using the instrumental approach it is apparent 
that pupils’ epistemic relation to mathematics is nec-
essary for programming to be successful in mathe-
matics education. We see several ways that this epis-
temic relation can be strengthened or hindered. The 
teacher did acknowledge and talk about the different 
goal-levels of an activity; this allowed her to talk di-
rectly about mathematical goals, even though these 
where sub-goals of the larger goal of creating a good 
game. Constantly focusing attention on mathemati-
cal concepts as problem solvers and conflict settlers 
were also actively applied by the teacher, especially 
when the pupils programmed each other. When the 
pupils are either negotiating or in cognitive conflict, 

this teacher turns to mathematical concepts and prin-
ciples as part of the way forward for the pupils. In 
that sense our analysis suggest that the potentials for 
learning mathematics through programming, as pre-
viously described in the literature, depends largely 
on the teacher’s approach and didactical principles. 
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Reasoning with dynamically linked 
multiple representations of functions
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In video-taped interviews, teacher-students were asked 
to describe and explain effects of a parameter a on the 
standard representations of f(x)=x²+a in a computer 
based dynamic learning environment. An analysis of 
one particular interesting yet typical misconception 
leads to differentiating between surface perception and 
structural insight. Theoretical considerations based on 
Duval and Davydov lead to postulating that for a full 
understanding of the relation between a and f(x)=x²+a, 
a learner needs to identify to structural analogies be-
tween the representations of f. A qualitative analysis of 
further interviews results in a category model of student 
responses that can be used for diagnostic purposes.

Keywords: Multiple representations, functions, abstraction, 

ICT, qualitative analysis.

INTRODUCTION

A typical task connected with the use of mathemati-
cal software in classroom is to explore the relations 
between the standard representations of functions. 
For example, pupils could be asked to explore the ef-
fects of a parameter a in f(x) = x2 + a on the shape and 
position of the graph of f by means of a dynamically 
linked multiple representation learning environment, 
where the value of a is controlled by a slider (Figure 1). 

Usually, it seems sufficient to observe that changing 
the value of a causes the parabola to move upwards 
while a gives the distance. But is it really as simple 
as that? Just describe what seems, literally, obvious?

Duval (2002) argues that for showing a full under-
standing of the concept of function, a learner needs 
to be able to change within and between various rep-
resentations of a function, for example, equation, 
table and graph. This means that properties of one 
representation are explained by properties of another. 

If a learner is not able to perform such a change then, 
following Duval’s rationale, he does not understand 
to the full extent, even if his observations within one 
representation appear to be perfectly valid.

This article begins with a case study that illustrates 
Duval’s concept of understanding functions. A stu-
dent describes the effects of the parameter a on the 
graph of f(x) = x² + a (Figure 1). She then realises that one 
of her observations contradicts what she has learned 
about how graphs and equations connect, but she is 
not able to resolve this contradiction. She knows a lot, 
yet she does not quite understand.

So it appears that learning about functions based on 
visual perception only is not sufficient. For develop-
ing a sound understanding a learner needs to turn his 
attention from the visual properties of the different 
representations to structural analogies between them. 
These analogies do not equate to perceivable simi-
larities between the representations. For identifying 
structural analogies one needs to “see through” the 
specific appearance of each representation. In this 
sense, the identification of structural analogies is a 
form of abstraction. Hence this article then turns to 
the concept of learning by scientific abstraction by 

Figure 1: Dynamic multiple representation environment  

for exploring the effects of a on the representations of f(x) = x² + a
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Davydov (1972). It serves as a suitable theoretical basis 
for justifying the postulation that learners need to 
refer to a structural level.

When theoretical considerations lead to expect that 
learners behave in a specific way then we must be 
certain that they are able to do so. The last part of this 
article reports on a qualitative analysis of further 
interviews with teacher-students where three cate-
gories of understanding could be identified, among 
them references to structural analogies between rep-
resentations as required by theory.

A CASE STUDY 

In videotaped interviews, teacher-students of the 
University of Education Heidelberg were given the 
task as shown in Figure 1. They first were asked to 
describe the changes within graph, table and term 
when the slider is operated. Then they were asked 
to explain why they thought their descriptions were 
correct. One student described the effects of the slider 
as both a translation and a change of shape:

1 Student:  [moves slider to the right] well 
the parabola moves upwards along the y-axis 

… the um how is it called the width [moves 
both palms repeatedly towards each other 
as if clapping hands]

2 Interviewer:  yesyes, ok
3 Student:  changes … anyway when one 

moves it to the right … towards the positive 
… [moves slider to the far right such that the 
parabola nearly vanishes from the screen] 

… and when one moves it downwards to the 
negative [moves slider to the left such that 
the parabola’s vertex nearly touches the 
lower screen edge] and here the parabola 
becomes wider but still opens upwards

4 Interviewer:  can you explain why the pa-
rabola moves up or down when one changes 
the slider value [points at the slider with a 
pen]

5 Student:  [looks a the slider, murmurs] 
hm what is a … what … is a [leans back, talks 
louder] a is … a was something … a is … the 
y-direction

6 Interviewer: ah
7 Student: when I … upwards … well then it 

is not a normal parabola any more then it is, 
like, somehow narrower

When asking the student to explain her observations 
(line 4) the interviewer, who is the author of this text, 
ignores that she describes the effects of a as a trans-
lation as well as a change of shape of the curve (lines 
1 and 3). The student answers by referring to knowl-
edge about the effects of a she probably had acquired 
at school (line 5). But, again, she immediately points 
out that the curve looks shrunken (line 7). This seems 
to be a problem for her as it conflicts with what she 
has learned about parameters and graphs (meanwhile 
the value of a has been set to 1):

8 Student: this is simply a normal parabola 
that has been moved upwards by one, but the 
width changes too.

9 Interviewer: why do you say ‘but’?
10 Student: the parabola does not move up-

ward only but it becomes narrower too, and 
then there should be something in front of 
the [x] squared

11 Interviewer: ah, why?
12 Student: because that’s how I learned it

That the parabola has been reduced in size is, with 
respect to the algebraic structure of x²+a, wrong. The 
student is aware hereof since she expects a factor in 
front of x² (line 10) which could explain that the curve’s 
shape seems changed. Yet, considering her descrip-
tions of the effects on the graph only, she proves to 
be a careful observer. The parabola does appear to 
be shrunken (Figure 2).

The student realises that her description contradicts 
what she knows about the effects of a parameter 
change on the function graph. To resolve this con-
tradiction she needs to explain the effects of a on the 
graph by means of the specific algebraic properties 
of the equation, i. e. she needs to perform a coherent 
representation change. This is achieved by consid-
ering the additive structure of the expression x²+a: 

Figure 2: Moved upwards only or shrunken too?
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Every single value of f(x)=x² is increased by a, so each 
single point (x|x²+a) of the parabola has been moved 
upwards from its original position (x|x²) by a, which 
affirms that the effect of a can only be interpreted as a 
vertical translation. So a valid interpretation needs to 
be based on an analysis of the term structure. Hence 
algebra plays a decisive role for describing and ex-
plaining relations between parameters and functional 
representations. When a learner describes the effects 
of a parameter change without giving a sufficient 
explanation on the base of the algebraic representa-
tion it is not clear whether his descriptions are based 
on his visual impressions only or whether they are 
based on a structural insight into the situation. This 
is particularly problematic when these descriptions 
fulfil the expectations of the teacher: If a learner only 
mentions a vertical translation by a, does he just re-
produce what he sees, or does his description reflect 
an understanding of the ̀ mechanism´ of how a affects 
each representation of x²+a? One risks confusing a 
correct verbal description with an understanding of 
the situation, pupils as well as teachers.

Referring to possible restraints of the tool and its 
use – e.g., lack of visual aids or failing to adjust the 
window – misses the point this article is trying to 
make. The fact that misinterpretations can appear 
indicate a fundamental difference between a concept 
and its representations. A learning environment with 
a “perfect” design that avoids misinterpretations does 
not guarantee that a learner understands how the 
different representations interact. While giving all 
the correct answers, he might only reproduce what 
he sees on the screen, thus confusing the concept with 
its representations. Each learning environment needs 
to activate the learner’s reflection (Yerushalmy 2005), 
which means – as it is argued here – that he turns from 
describing perceptually accessible properties of each 
representation towards analysing analogies between 
the three representational forms on a structural level.

UNDERSTANDING MULTIPLE 
REPRESENTATIONS BY ABSTRACTION

Does the student from the case study understand the 
effects of a on the representations of x²+a? She gives 
a careful description of what she sees on the screen. 
And she knows, too, how the effects of a parameter on 
a function graph can be read from a given equation. 
But she cannot resolve the conflict between her obser-

vations and her knowledge. In this sense, she shows a 
lack of understanding.

So what does she – or a learner in general – need to 
achieve so that he or she shows a full understanding of 
the relation between parameters and the representa-
tions of function? Giving a description of his observa-
tions only is not sufficient as we have argued, even if 
the description is correct. He needs to give reasons for 
why his observations are valid, i.e., why they are con-
sistent with the whole of the multiple representation 
environment. Reasoning by referring to well-known 
rules might be acceptable, but in the case of the stu-
dent more was needed to clarify the conflict between 
what she saw and what she knew. It would be helpful to 
explain the mechanism of how a and representation of 
x²+a connect. This means to refrain from reproducing 
visual information but to analyse analogies between 
the representations on a structural level. Focussing 
on structures instead of surface leads to a cognitive 
activity that is central for the learning of mathemat-
ical concepts: abstracting. 

In the context of learning with a dynamic multiple rep-
resentation environment abstracting means extract-
ing the essential information from representations by 
conceiving structural analogies between representa-
tional forms while eliminating irrelevant surface 
properties. By referring to the concept of scientific 
abstraction by Davydov (1972) and others we will show 
that conceiving structural analogies is achieved by 
identifying invariants in the dynamic multiple rep-
resentation environment while the structure of the 
algebraic representation is decisive.

Mathematical concept formation 
as the result of abstraction
Mitchelmore and White (2007) identify two different 
approaches to abstraction among theories of mathe-
matical learning, which they call empirical and the-
oretical.

Empirical abstraction refers to a cognitive representa-
tion of knowledge that results from identifying com-
mon properties in a set of examples. “Abstracting is 
an activity by which we become aware of similarities 
[...] among our experiences. [...] An abstraction is some 
kind of lasting change, the result of abstracting, which 
enables us to recognise new experiences as having 
the similarities of an already formed class” (Skemp 
1986). However, empirical abstraction that is limited 
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to a perceptual analysis of real or cognitive objects 
can hardly explain the formation of such concepts 
that meet the scientific requirements of generality 
and precision. Hence, for the formation of a scientific 
concept, a theoretical basis is needed which supports 
argumentation that is independent from perceptual 
evidence.

Theoretical abstraction: To be valid beyond experi-
ence, knowledge needs to be developed within a the-
oretical system of its own, which comes with specific 
symbolic representations and rules of argumenta-
tion. Following Vygotsky (1934/1986), this symbolic 
representation form does not need to resemble any 
physical features of the knowledge that it represents. 
In fact, perceptually or otherwise empirically accessi-
ble properties are unsuitable for forming an abstract 
concept. “A theoretical idea or concept should bring 
together things that are dissimilar, different, multi-
faceted, and not coincident, and should indicate their 
proportion in the whole [...] Such a concept, in contrast 
to an empirical one, does not find something iden-
tical in every particular object in a class, but traces 
the interconnection of particular objects within the 
whole, within the system in its formation” (Davydov 
1972/1990, 255).

For continuing our case analysis the concept of the-
oretical abstraction – or “scientific abstraction” as 
Davydov puts it (1972/1990) – appears to be suitable: 
The effects of a on x²+a can be described as a function 
a → x²+a, which is a function different from f. Its prop-
erties can only be derived from changes within the 
representations of f. The change within the graphical 
representation of f appears to be a translation and a 
dilation, here the student is perfectly right. To decide 
whether this interpretation conforms with the rest 
of the multiple representation environment, the al-
gebraic expression of a → x²+a needs to be taken into 
consideration. Its additive structure decides which 
of the two interpretations of the effect of a on x²+a is 
valid. So it is knowledge about symbolic algebra that 
forms the necessary theoretical basis for understand-
ing relations between the multiple representations of 
a dynamic learning environment. However, the stu-
dent is not able to apply her knowledge about algebra 
to explaining how, or whether at all, her descriptions 
are valid for the whole of changes within the multiple 
representations of f(x) = x²+a.

Abstracting as conceiving structural analogies
In a teaching concept of “ascending from the abstract 
to the concrete” based on Davydov, Giest (2011) states 
that, with each new learning process, “initial abstrac-
tions” are gained from examining a learning material 
that allows change and variation. From varying the 
material, invariants become apparent that initiate 
the necessary reasoning for identifying a constant 
structure within change. With a dynamic multiple 
representation environment (e.g., Figure 1) the neces-
sary variation here is twofold. First by operating the 
slider, thus changing the visible appearance of each 
representation and second, by switching between 
the three representation forms. These changes cor-
respond to Duval’s (2002) forms of representational 
changes that characterise a full understanding of the 
concept of function.

Obviously, the student from the interview meets the 
first of Duval’s requirement at least partially. Within 
the graphical representation, she gives two pertinent 
interpretations of the effects of the parameter change 
on the actual function graph, and from the algebra-
ic representation she can read correct information 
about the effects of parameters on function graphs 
in gene. But she does not fulfil the second criterion 
of Duval. She is not able to make a coherent change 
between the algebraic and the geometric form of rep-
resentation here. Or to say it with Giest: She is not 
able to identify the necessary invariants within the 
multiple representation environment.

Conceiving structural analogies 
as identifying invariants
In Figure 1, the invariant in question is not visible, it 
becomes apparent as changes between and within 
representational forms. Considering the additive 
structure of the term of x²+a, the invariant is charac-
terised by the common operator +a. In the equation, 
the invariant is the summand +a that redefines f1(x)=x² 
to f2(x)=x²+a (Figure 3). In the table, the invariant is the 
constant difference between the values of f1 and f2 
in all table lines. In the graphical representation, the 
invariant is the constant vertical distance between 
the two graphs of f1 and f2, which is the same at all 
points. Thus, the invariant has a specific meaning in 
each representation form, yet, in each form, it can be 
visualised by an arrow with constant direction and 
length. Especially the arrows from the geometric 
representation form show that the effect of a on the 
graph of x²+a must be interpreted as a translation only.
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We can sum up now: To show understanding of the re-
lation between a parameter a and the representations 
of f(x)+a a learner needs to identify the operator +a as 
an invariant within each representation and between 
all representation forms of f.

This seems expecting much from pupils. However, 
next we report on a study where references to struc-
tural analogies in further interviews could in fact 
be identified.

CATEGORIES OF REASONING: 
AN INTERVIEW STUDY

Aim and methods
Together with the interview from our case study fur-
ther interviews were analysed with the aim of cate-
gorising students’ answers regarding to what extent 
they showed structural insight into the relations be-
tween graph, table and term of f. The interviewees 
were teacher-students of the University of Education 
Heidelberg from their first to their third year of study, 
all having selected mathematics as one of their com-
pulsory subjects. The interviews contained questions 
about various tasks about for exploring the relation 
between parameters and quadratic functions. The 
task from Figure 1 was the first. All were accompa-
nied by dynamic multiple representation learning 
environments, prepared in advance by means of the 
TI-Inspire CAS software on a laptop. Apart from two 
questions – the initial one that asked for a description 
of how the given parameter affected the appearance 
of graph, table and equation and one that asked the 
students to explain why they thought their observa-

tions were correct – no other questions were fixed 
in advance.

From the case study and subsequent theoretical 
considerations above, two a-priori categories were 
formulated, “reason with reference to a rule” and 

“reason with structural reference.” Roughly, the first 
comprises all statements where students refer to what 
they have learned and believe to be generally true, 
while the second covers all statements that refer to 
invariants as described above. A refined definition 
will be presented in the results section. The research 
questions were as follows:

(A) To what extent can the descriptions and expla-
nations from the interviews be assigned to the two 
a-priori categories?

(B) How did interviewees exemplify reasons with 
structural reference?

For the analysis, six interviews were selected which, 
on first view, promised a sufficiently large range of 
students’ observations and explanations. The cat-
egories  were developed by means of a qualitative 
content analysis (QIA, Mayring, 2010). The QIA is a 
systematic method for text analysis guided by pre-set 
coding rules. In the variant of the deductive catego-
ry application these coding rules are derived from 
the relevant theoretical framework, which then are 
applied repeatedly by trained coders with the aim of 
refining the rules by enhancing inter-subjective com-
prehension. The coders were three teacher-students 
who did not take part in the interviews selected for 
coding. As mathematics students they were able to 
understand the specific terminology of coding rules 
while, as students, they still relied on a very precise 
formulation of the rules to agree on common coding.

Results and discussion
Apart from the two a-priori categories two more 
emerged from the coding process. First a category 

“proposition” that separated observations prompted 
by the interviewer’s request to describe from explana-
tions prompted by the request to explain, which often 
were very similar. For this, the well-known Toulmin 
model of argumentation was introduced to the cod-
ers; the model itself was not object of analysis here. 
Second a category “reason with reference to an ex-
ample” which became necessary to allow for reasons 
that explained rules by referring to single values of 

Figure 3: The invariant + a, identified in all three representation forms, 

shows that the effect of a on x² + a is indeed a translation
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x or a, mostly x=0 or the actual value of a. Eventually, 
the third and most successful coding round in terms 
of intercoder reliability was based on the following 
rules:

 ― Category A “Proposition”: All statements or ges-
tures that can be seen as answers to the interview-
er’s initial prompt “Describe what you see when 
you operate the slider” and that show character-
istics of a general rule. They refer to the effects 
of changes of the slider on the representations of 
the given function. If the interviewee modifies 
his propositions later during interview, these 
modifications are coded within this category too.

 ― Category B.1 “Reason with reference to a rule”: All 
statements or gestures that can be considered as 
reasons for the observations assigned to category 
A or their modifications and that refer to a rule 
or sound like one. Such rules often refer to con-
nections between the parameter and the curve’s 
shape or position. The statement does not refer 
to single parameter values but shows that the in-
terviewee implies a global validity. Such rules do 
not need to be stated explicitly but the interview-
ee can also indicate that he knows of such a rule 
(e.g. “that’s how I have learned it”). Even when the 
interviewee shows understanding at a structural 
level in some other part of the interview, reasons 

with reference to rules or knowledge are to be 
assigned to this category. 

 ― Category B.2 “Reasons with reference to an ex-
ample”: All statements or gestures that can be 
considered as reasons for the observations as-
signed to category A or their modifications and 
that refer a single value of x or to the actual value 
of the parameter or the actual state of the visible 
graphical configuration. These statements often 
refer to connections between the actual value 
of the parameter or a single value of x and the 
curve’s present shape or position. Even when 
the interviewee refers to rules or shows under-
standing at a structural level elsewhere, reasons 
with reference to rules or knowledge are to be 
assigned to this category. 

 ― Category B.3 “Reasons with reference to struc-
ture”: All statements or gestures that can be 
considered as reasons for the observations as-
signed to category A or their modifications and 
that apparently refer to an invariant between 
different representation forms or within one 
representation. The invariant here is the value 
of a which takes on a specific appearance in each 
representation: In the algebraic representation it 
is the summand +a, in the numerical representa-
tion it is the difference between the old and new 

Figure 4: Categories of reasoning while exploring the effects of a parameter a on the epresentations of x² + a in a computer based 

learning environment
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function value in each table line. In the geometric 
representation it is the vertical distance between 
the graphs of both functions at each point. It dif-
fers from category B.2 insofar as statements here 
do not refer to single values of a but to any value 
of a in general. It differs from category B.1 inso-
far as a has been globally (i.e., for all values of x) 
identified within a representation.

The layout of Figure 4 places the four categories at 
appropriate places within the Toulmin model of argu-
mentation. The proposition (category A) corresponds 
to Toulmin’s “claim” which are descriptions of the ef-
fects of slider changes. The three categories of reason-
ing (B.1, B.2 and B.3) are placed as warrants into the 
diagram. All categories are illustrated by statements 
taken from interviews after little linguistic polish-
ing. Generally a statement was considered exemplary 
when all four coders including the author agreed. One 
statement for category B.1 is an exception which, to 
the author, still appears to be a significant example 
for this category.

For answering research question (A), both a-priori 
categories were suitable for categorizing students’ an-
swers when accompanied by the two more categories 
as defined by the coding rules above. As for question 
(B), the two statements cited here indicate a range of 
possible structural references from evoking dynamic 
images – here a ruler that moves vertically across 
the coordinate plane while measuring a constant 
distance between the two graphs – and a more stat-
ic view on how the different representational forms 
connect – here pointing out that, for all x, a is added 
to the corresponding f(x), which explains the congru-
ence preserving effect of a. The fact that structural 
references were in fact observable shows that such 
references can be expected from students. However, 
these statements also show that references to struc-
tural analogies between representations do not need 
to be as formal as indicated above. The “moving ruler” 
argument is a convincing example.

The category system from Figure 4 covers responses 
from the case a → x² + a only, where the invariant is eas-
ily identified as the constant vertical distance between 
the two curves or the constant difference between the 
two function values, each illustrated by an arrow with 
constant length (Figure 3). With parameters in other 
places of the algebraic expression this is different: 
For example, with b → b · x² or c → (x + c)² other (mis)

interpretations of the effects of the parameter can 
be expected. However, while coding rules need to be 
adjusted to these cases, the need for a structural ref-
erence still holds on theoretical grounds.

Prospects and consequences
Presently, standardised interviews are being devel-
oped for diagnostic purposes based on these results. 
Apart from diagnostic use, these results may be sig-
nificant for classroom teaching too. Nearly all stu-
dents and, in recent interviews, pupils reported that 
they had little, if any, experience with computers in 
school. Many were not able to explain the movements 
on screen which, to them, were totally new. These re-
sults plead for an extended use of dynamic software in 
mathematics teaching. In a dynamic environment, in-
sufficient conceptions about function representations 
become apparent and can be dealt with openly. Last, 
these results show that, for an exploratory learning 
with computer based dynamic multiple representa-
tions too, a sound basic knowledge in algebra is nec-
essary. Knowledge about term structure turns out to 
be essential as it plays a decisive role when validating 
the explorations.
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We report an exploratory study focused on identifying 
some of the Internet resources used by Mexican engi-
neering students when they need help for their mathe-
matics studies. The study consisted of an initial phase 
in which a questionnaire was designed and piloted, 
and a second phase in which such questionnaire was 
used to conduct individual and group interviews. The 
results show that looking for mathematical help on the 
Internet is a widespread practice among students and 
it is even preferred over traditional sources of help such 
as the library. Among the most widely used resources 
are YouTube and Facebook. These and other sites are 
used to find different ways to solve a problem, to clarify 
doubts and reinforce knowledge, to get ready-made re-
sults, to compare results, and when they skip class and 
need to catch up.

Keywords: Mathematical help-seeking, Internet resources, 

social networks.

INTRODUCTION

The phenomenon of help-seeking has captured the 
interest of sociologists and social psychologists for 
decades. Generally speaking, these studies have fo-
cused on identifying and explaining what demograph-
ic, sociocultural, and psychological factors encourage 
people to seek the help of others. These studies have 
been conducted mainly in medical, work-related, wel-
fare and social security contexts (see, for example, 
Cornally & McCarthy, 2011). Early conceptualizations 
of the concept of help-seeking favoured a perception 
of it as an undesirable activity, that is, some research-
ers began to interpret help-seeking as an indicator of 
lack of independence, which can have high costs for 
individuals’ self-esteem and sense of competitiveness 

(e.g., Shapiro, 1978). The reconceptualization of the 
concept of help-seeking provided by Nelson-Le Gall 
(1985) contributed to assign a positive meaning to the 
concept in the field of educational research; this in the 
sense that seeking help can be seen as a useful skill 
or competence for students to address problems that 
otherwise would be difficult to address. Help-seeking 
can be seen as a useful skill for students’ self-learning.

Looking for help (or help-seeking) refers to the pro-
cess of trying to find support from the people and re-
sources around us, when we have questions or need 
help related to our mathematics lessons. Looking for 
help is a basic process when studying mathematics, 
however, the studies addressing help-seeking practic-
es in mathematics instruction are still scarce. Some of 
these studies have focused on identifying affective el-
ements that motivate students to seek help or avoid it 
(Ryan & Pintrich, 1999), while other studies have char-
acterized seeking behaviours displayed by mathemat-
ics students (Kempler & Linnenbrink, 2006), there 
are also studies investigating mathematics teachers’ 
knowledge of students’ help seeking behaviors when 
they solve mathematical word problems (Marais, Van 
der Westhuizen, & Tillema, 2013). A common feature 
of these studies is that the only considered sources 
of help are people —teachers, classmates— but tech-
nological resources are not considered as potential 
sources of mathematical help.

Contemporary students’ help-seeking practices, how-
ever, are changing due to the pervasiveness of the 
Internet and mobile electronic devices; for instance, 
there are studies showing that mathematics students 
from different regions of the world use open online fo-
rums to find mathematical help (Puustinen, Volckaert-
Legrier, Coquin, & Bernicot, 2009; van de Sande, 2011). 

mailto:danelly.esparza%40uacj.mx?subject=
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Both studies, by analysing students’ exchanges and 
posts, focus on characterizing the help seeking be-
haviours that mathematics students manifest when 
they look for help in open online discussion forums. 
There is a need for more studies showing what other 
technological tools mathematics students use nowa-
days as sources of help and how they use them.

In this paper, we report an exploratory study fo-
cused on identifying the Internet sites and web-based 
tools that some Mexican engineering students use 
as a source of help for their mathematics lessons. In 
particular we explore three aspects of their Internet-
based help-seeking practices: 

1) What sites or tools do they consult when they 
need help in mathematics and how often do they 
use them?

2) What are the reasons that lead them to use those 
sites? 

3) What are the reasons why students trust in the 
information provided by such websites?

The motivation for this study comes from trying to 
understand how Internet resources are affecting the 
study processes of contemporary mathematics stu-
dents: how and why today’s students use the Internet 
to support their mathematical studies? Our study is 
relevant to the area of research focused on students’ 
learning of mathematics with resources and technolo-
gy as it helps to expand our understanding about how 
students independently use the Internet (web-based 
tools, social networks) as a source of help for their 
mathematical studies.

CONCEPTUAL FRAMEWORK

As we mentioned before, help-seeking in mathemat-
ics education is usually conceptualized as the ability 
of a student to rely on people —teachers, classmates, 
relatives— to get help that could be useful to over-
come the difficulties that arise when learning math-
ematics. Karabenick and Puustinen (2013) confirm 
this when they point out how educational research on 
help-seeking has focused primarily on interactions 
in the classroom where students ask for help to the 
teacher or their classmates. These authors raise the 
need to expand this area of   research in order to un-

derstand how new technologies are affecting students’ 
help-seeking practices.

Following the line of thought of Karabenick and 
Puustinen (2013), in this work we adopted a wider 
definition of help-seeking in mathematics that in-
cludes non-human elements as possible sources of 
help; thus, in this study, mathematical help-seeking is 
defined as the ability to use the people and resources 
around us (including technological resources such as 
the Internet and mobile devices) as sources of help to 
overcome the difficulties and doubts that arise during 
our mathematics learning process.

CONTEXT

The study was conducted at the Institute of 
Engineering and Technology of the Autonomous 
University of Ciudad Juarez (UACJ) of Mexico. The 
Institute is a public institution of higher education 
that is located in the city of Ciudad Juarez, on Mexico’s 
northern border, south of the city of El Paso, Texas, in 
the U.S. The Institute has an approximated population 
of 4,500 students from this area and with socioeco-
nomic backgrounds ranging from medium to low. 

One reason for selecting this institution for devel-
oping our study was our interest in exploring the 
Internet-based help-seeking practices among tertiary 
students. An additional reason for selecting the UACJ 
was that the first author of this paper works as a teach-
er at the institution, so this gave us access to both the 
students and the university facilities to conduct the 
study.

STUDY POPULATION

Undergraduate students who met two conditions 
were selected for the study: first, they were taking 
at least one course in mathematics at the time of the 
study; and second, they wanted to participate in the 
study voluntarily. The study involved a total of 21 en-
gineering students of both sexes, distributed into two 
phases: an initial-exploratory phase and the second 
phase of the study. More details on the structure of 
these phases are found in the section “procedure”.

All the participants in the study were students from 
different engineering specialties at the UACJ. We se-
lected students from different engineering specialties 
because all of them were taking several mathematics 



Looking for help on the Internet (Danelly Esparza Puga and Mario Sánchez Aguilar)

2540

courses (calculus, differential equations, linear al-
gebra) as part of their engineering education. At the 
time of the study their ages varied between 19 and 
38 years. 

In the initial-exploratory phase four students from 
three different careers participated: industrial engi-
neering, digital systems engineering, and electrical 
engineering. At the time they participated in the study, 
two of the students were enrolled in their first semes-
ter, one of them was in the third semester, and the last 
one was studying the forth semester (engineering 
studies at the UACJ last eight semesters).

The second phase of the study involved the partici-
pation of 17 students from five different engineering 
specialties: civil, electrical, biomedical, industrial and 
mechatronics. For this stage we only selected students 
from intermediate and advanced semesters (from 
fourth to eighth semester).

PROCEDURE

As mentioned above, the study was divided into two 
phases. The study began with an initial-exploratory 
phase in which a questionnaire of seven open-ended 
questions was used to guide semi-structured inter-
views; these interviews were conducted between 
November the 19th and November the 26th, 2012. The 
aim of this phase was twofold: on the one hand we 
sought to confirm the hypothesis that some university 
students use the Internet when they need help or have 
doubts related to their mathematics lessons; on the 
other hand we wanted to assess how well the designed 
questionnaire worked to generate empirical data, this 
is, to assess whether the wording of the questions was 
understood by the students or whether the question-
naire produced the type of information needed to an-
swer the questions raised. Examples of the questions 
included in the initial version of the questionnaire 
used in this phase were: have you ever used a website 
to look for help for your mathematics lessons?, if yes, 
how often do you use these sites?, in your opinion, 
what Internet sites or tools are trustworthy to look for 
help in mathematics and what makes them reliable?

This initial phase allowed us to refine the guiding 
questionnaire to conduct interviews during the sec-
ond phase of the study. The questions that constituted 
the final version of the questionnaire are:

1) Have you ever used a website to find help for your 
mathematics lessons?

2) If yes, what are the websites that you have used 
for your mathematics lessons?

3) How often do you use these sites?

4) How do you use these sites for your mathematics 
studies?

5) Mention the benefits of using Internet sites as a 
source of help for your mathematical studies at 
the university

6) Mention the drawbacks of using Internet sites as 
a source of help for your mathematical studies at 
the university

7) In your opinion, what Internet site or tool is more 
reliable and what makes it reliable?

This final version of the questionnaire was used 
during the second phase of the study to interview 17 
engineering students from the UACJ. Five of them 
were interviewed individually, while the remaining 
12 were interviewed through two focus groups of six 
members each. The second phase of the study was 
developed on three different days: February the 13th, 
March the 12th, and June the 26th, 2013. The answers 
given by these 17 students are the main empirical data 
on which the results of our study are based. All the 
interviews, both from the initial-exploratory phase 
and the second phase, were audio recorded for later 
analysis and transcription.

To analyse the empirical data consisting of individual 
and group interviews, it was necessary to repeatedly 
listen to the audio recordings in order to locate the 
answers to each of the survey questions, and thus try 
to make a categorization of the answers. During this 
process it was evident that some students’ responses 
had common elements, which effectively allowed us 
to produce a categorization of the data. These results 
are shown in the following section.

RESULTS

This part of the report refers only to the interviews 
conducted with the 17 students who participated in 
the second phase of the study, and is divided into 
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four sections: in the first section, the frequency with 
which students use Internet sites as a source of math-
ematical help is presented. In the second section we 
show the most popular sites among the engineering 
students who participated in the study. Then the stu-
dents’ perceptions of the benefits and limitations of 
using websites as a source of mathematical help will 
be described, and finally the reasons given by the stu-
dents to trust (or mistrust) an Internet site or tool as 
a source of help are presented.

Frequency of use of websites
All the 17 respondents reported using at least one web-
site as a source of help for their mathematics lessons. 
Most students are frequent users since 12 out of 17 re-
spondents reported using these sites on a daily basis, 
while the remaining five students declared that they 
use these resources during the weekend.

Popular Internet sites and their functionality
Figure 1 shows the websites and tools most frequently 
mentioned as a source of mathematical help by the 
engineering students who participated in the study.

The website most mentioned by the students was 
YouTube. 12 out of the 17 respondents agree that this 
is the site they turn to when they need to revise and 
fully understand the topics covered in class.

Facebook is the second most mentioned site, 11 out of 
17 students declared to have used it for their math-
ematics lessons. They claim that Facebook is a tool 
through which they can contact their classmates or 
the teacher to clarify questions about the homework 
or even logistic concerns (like finding out in which 
room a lesson will be taught). For example, the student 
number 2 from the focus group number 1 mentioned 

the following (all the presented excerpts were trans-
lated from Spanish to English):

Student 2, focus group 1:  
[…] I use Facebook with my classmates when I 
have doubts about what was explained in class, 
because sometimes when I come home I do not 
remember what I saw.

The next most mentioned site is Google with six men-
tions. This is the place where some students start their 
searches of the topics they want to investigate. Most 
users do specialised searches in Google Books and 
Google Scholar to delimit the sites or documents 
where they want to focus their search.

Other websites such as Wikipedia, buenastareas.com, 
Yahoo! Answers and Slide Share, and Internet tools 
such as the email, and the online calculator Wolfram 
Mathematica, were also mentioned because of the dif-
ferent features they offer, like ready-made answers to 
their mathematical problems:

Student 2, focus group 2:  
[…] I use Wolfram Mathematica to get the results, 
but sometimes it is not very reliable because 
omits a few steps [...]

Student 4, individual interview:  
[…] Sometimes you are given a problem and the 
answers are already uploaded ... I would use 
Yahoo! Answers when I am struggling and I feel 
like oh no [...].

In the category “Others” shown in Figure 1 are includ-
ed tools such as Skype, and websites like Profesores 
Universia (http://profesores.universia.es), Vitutor 
(http://www.vitutor.com) among others. These sites 

Table 1: Internet sites and tools most mentioned as a source of mathematical help-seeking among the students who participated in 

this study

http://profesores.universia.es
http://www.vitutor.com
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are used to find alternate solving methods, comparing 
results, and finding step-by-step solutions:

Student 1, individual interview:  
[…] There is one called Web Profesores (Teachers 
Web) which is a site where teachers upload docu-
ments or teaching techniques [...] they are written 
documents [...] once I put a formula that need-
ed on Google and so I got to this page, and there 
is another one that it is the same... Profesores 
Universia.

Student 5, focus group 2:  
[…] There is a page called vitutor.com, there are 
many exercises of many subjects… solved mathe-
matics problems and others to be solved [...] they 
give you everything step-by-step.

In sum we can say that most of the sites and tools that 
students turn to are used to: (1) find different ways to 
solve a mathematical problem, (2) clarify doubts and 
reinforce knowledge, (3) get ready-made results or 
mathematical problems solved, (4) compare results, 
and (5) when they skip a class and need to catch up.

Benefits and limitations as 
perceived by the students
Students’ perceived benefits in using the Internet 
as a source of mathematical help are diverse. Some 
students highlight the geographical and temporal 
unlimited access, making them prefer the Internet 
over more traditional sources of help:

Student 5, individual interview:  
I think I save... for example, if I go to the library I 
have to drive... [by using the Internet] I save time 
and money.

Some students perceive the Internet as a source of 
help to clarify doubts that is infallible, as stated by 
this student:

Student 3, focus group 2:  
The benefit that I find is that anything that I look 
for, I will find it; I get thousands of pages and I will 
always find something, I will never be in doubt.

Furthermore, we identified four limitations that the 
interviewed students expressed, these are: (1) re-
stricted access to the sources due to copyright and/
or language, (2) lack of reliability of the sources, (3) 

the Internet can function as a distractor, and (4) there 
is too much information on the web. To illustrate these 
limitations, next we present a few excerpts from the 
interviews:

Student 6, focus group 2:  
The problem is that unless you know what you 
are looking for, you get very vague answers, 
there is ambiguous information and copyrights 
are regulated on the Internet, if you want to read 
a book you can only see part of it [...] the useful 
material is restricted. 

Student 5, focus group 2:  
It happened to me once while I was studying for 
an exam, there was a topic that I knew nothing 
about [...] I found a method that had nothing to 
do, it was not what I needed [...] at times you put 
something in and you get like thousand things 
that are not what you are looking for.

Reasons to trust the information 
contained on a website 
Several students who participated in this study based 
the reliability of the Internet sources that they consult 
on the authority provided by the academic degree 
of the author or the prestige of the institution that 
produces the resource:

Student 3, focus group 1:  
YouTube seems reliable to me because university 
teachers upload the videos. 

Student 5, individual interview:  
SlideShare... I think is more reliable because 
there the doctors send [slides presentations].

Student 1, individual interview:  
[…] Profesores Universia because it is supported 
by several Latin American universities.

Student 3, focus group 1:  
For example in YouTube, well there the videos are 
from university teachers and themselves make 
the videos to clarify doubts, for me it is very re-
liable because they are university teachers and 
I think they even receive an economic benefit by 
making the videos [...]
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DISCUSSION

In this exploratory study we investigated the Internet-
based help-seeking practices among some Mexican 
engineering students. As other studies indicate (e.g. 
van de Sande, 2011), we found that the search for math-
ematical help on the Internet is widespread (12 out 
of 17 respondents reported using these sites for this 
purposes on a daily basis). According to the partici-
pants in our study, the most commonly used sites are: 
(1) YouTube, where students can find video recorded 
lessons to review and deepen the mathematical con-
tent covered in class; and (2) Facebook, where they can 
contact their peers or their teacher to clarify concep-
tual and logistic doubts related to their mathematical 
lessons. However, students also report using sites like 
Yahoo! Answers where they can find ready-made an-
swers to their mathematical tasks.

The students who participated in the study look for 
mathematical help on the Internet to find different 
ways to solve a mathematical problem, to clarify 
doubts and reinforce knowledge, to get ready-made 
results or mathematical problems solved step-by-step, 
to compare the results that they obtain, and when 
they skip class and need to catch up. However, when 
it comes to assessing the reliability of the information 
they get from these sites, students seem not to pay 
attention to the intrinsic mathematical properties of 
the information obtained (Lithner, 2003), but rather 
base their assessment on features not related to math-
ematics, such as the academic prestige of the person 
or institution that publishes information.

The exploratory nature of this study allows us to see 
only the surface of a widespread practice that is af-
fecting the way that contemporary students are stud-
ying mathematics. Next we outline future avenues 
of research that could be deepened in order to better 
understand this phenomenon. 

Future avenues of research
One limitation of our study is that it is based on self-re-
port measures of technology use, which may be less 
accurate than the observations of actual behaviours 
(Junco, 2014). A future avenue of research could fo-
cus on using more direct methods of observation as 
proposed by Junco (2014) in which recording software 
is used to document and characterize help-seeking 
behaviours manifested by mathematics students in 

different kinds of devices such as computers, tablets 
and mobile phones.

Another limitation of our study is that it does not 
deepen into how each site or web tool are used as a 
source of mathematical help. It is necessary to pro-
duce detailed characterizations of how students use 
tools like Facebook and YouTube to find mathematical 
help. Also, one could delve into the selection and ex-
clusion criteria applied by students when selecting a 
particular piece of mathematical information from 
the sea of information offered by the Internet.

Another relevant line of research would be to include 
the perspective of mathematics teachers about these 
practices of mathematical help-seeking: what do they 
think about these student’s practices? Do they con-
sider it a desirable practice? Do they integrate these 
sources of help into the mathematical instruction that 
they provide to their students? 

We believe that mathematical help-seeking on the 
Internet is an emergent area of   research that is not 
only fertile but also relevant to study because it is 
a widespread practice that affects the way in which 
contemporary students approach school mathematics.
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We present a theoretical model of a representational 
approach to inquiry based learning (IBL) in this paper. 
In IBL-environments, students investigate a mathemat-
ical domain by using multiple representations such as 
dynamic simulations and hands-on material guided 
by specially designed textbooks. In the empirical part, 
we describe a study focussing on self-generated rep-
resentations by students with the aim of representing 
procedures and results.

Keywords: Self-generated representations, protocols, 

guided inquiry learning, fractions.

CONCEPTUAL FRAMEWORK

In order to introduce the representational approach 
to inquiry based learning (IBL) in mathematics we 
define the concept of representational competence as 
two aspects that are two sides of the same coin. One 
side is the ability to manipulate and interpret pre-
scribed external representations (representational 
input) and the other side is the ability to generate own 
external representations (representational output) 
(e.g., Izsák, 2011; Schnotz, Baadte, Müller, & Rasch, 
2010; Cox, 1999). To build the link between IBL and 
representational competence, we need to define IBL:

Inquiry or scientific discovery learning environ-
ments are environments in which a domain is not 
directly offered to learners but in which learners 
have to induce the domain by experiments or ex-
amples. (de Jong, 2005, p. 215)

To specify this definition of IBL to inquiry in mathe-
matics, we need to clarify what makes the work of a 
mathematician.

Mathematics proper might be regarded as the sci-
ence of significant structure. Thus mathematics 

studies the representation of one structure by 
another, and much of the actual work of mathe-
matics is to determine exactly what structure is 
preserved in that representation. (Kaput, 1987, 
p. 23)

Combining the essence of these two quotes it becomes 
clear that in IBL-environments in mathematics the 
goal for students should be to investigate a domain 
by analysing structures of given representations 
through examples or experiments with, e.g., hands-
on usable material or dynamic representations. This 
represents the first side of representational compe-
tence, the processing of representational input. 

In IBL-environments the processing of the represen-
tational input in the cognitive system of each partic-
ipating students is mediated by (1) social interaction 
within the group the students are working in, (2) 
interaction of the group with the learning environ-
ment or (3) personal interaction of an individual with 
the learning environment. After the processing in 
the individual cognitive system of each student, the 
students are supposed to generate representational 
output, which is also mediated by social or personal 
interaction. Our approach is in line with Tytler, Prain, 
Hubber and Waldrip (2013, p. 3) who see the need for 
the development of and research on IBL-environments 
in science learning “with a strong explicit emphasis on 
student-generated representational work”. One major 
goal of generating representations during IBL is to 
represent results and solution steps externally. When 
it comes to student-generated representational work 
with the aim of presenting results and solution steps, 
we have to introduce the term “protocol”. A protocol 
can be defined as a record, notation or description 
of essential stages phases and products of a learning 
process (e.g., an IBL-process) by using external rep-
resentations such as texts, other symbols or diagrams 
(Dörfler, 2000, p. 111f ). 
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The aim of those protocols is to help the students to 
reflect on the IBL-process. By presenting results in 
form of protocols, these protocols become part of the 
learning environment and can therefore be part of 
the (social or personal) interaction with the learn-
ing environment in later stages of the inquiry-pro-
cess. Furthermore, students can revise their proto-
cols repeatedly during the inquiry process. What 
we described so far is our theoretical model of the 
representational approach to IBL (see Figure 1). We 
have derived this model from classic input-output ori-
ented information-processing models. In our model, 
the information-processing system is the cognitive 
system of the participating student. For the present-
ed research, we consider the cognitive system (see 
Figure 1) and therefore mental processes as a “black 
box”. To get deeper knowledge on IBL from a rep-
resentational point of view, we might have to open 
this “black box” in further research. For example the 

“integrated model of text and picture comprehension” 
of Schnotz (e.g., Schnotz et al., 2010) or other theories 
of cognitive processing in multimedia-learning could 
be used to open this black box. 

In this study, we focus on the individual student’s 
ability to generate protocols. We want to investigate 

 ― how the individual’s ability to generate protocols 
(in the case of fractions) develops over time, 

 ― in which way this development can be supported 
and 

 ― how it is related to the individual’s content knowl-
edge (in this case knowledge on fractions). 

See the chapter “Research Design and Questions” for 
a detailed list of the investi ga ted research questions. 
To investigate the research-questions we conducted 
a quasi-experimental inter vention study with two 
IBL-conditions and one control condition. The focus 
of this article is to present the quantitative data from 
three measurement occasions (pre-, post-, follow-up 
test). We do not focus on the qualitative analysis of the 
interaction in the IBL-conditions, even though we vid-
eotaped some of the groups during IBL. Nevertheless 
we want to introduce the IBL-environment we used in 
the study to make the research more clear.  

THE IBL-ENVIRONMENT

In the IBL-environment of the presented study, the 
students discovered fractions by analysing artworks 
of Max Bill who is one of the most famous representa-
tives of the so-called “concrete art”. Max Bills “pro-
gression in five squares” (see the left side of Figure 2) 
is one of the artworks we used. In this artwork, Max 
Bill arranged five equal squares in a column and split 
them progressively into smaller, but in each square 
equal sized rectangles. Because of the described struc-

IBL-Environment

Representational
Input

Texts, symbols, 
pictures and 

hands-on material

Representational
Output

Protocols using 
text and pictures

Interaction
• within the working group

(social interaction)
• within the individual itself

(personal interaction)

Cognitive System

Figure 1: Theoretical model of the representational approach to IBL

Figure 2: Max Bill “progressi-on in five squares” (left) and an 

equivalent fraction puzzle (right)
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ture, the artwork is suitable for students to explore 
the underlying structures of the “part-whole-concept 
of fractions”.

For every artwork presented in the IBL-environment 
hands-on material based on this artwork (see the right 
side of Figure 2) was available for the students. It con-
sists of the artworks outline structure on a laminated 
template and puzzle pieces of each coloured sub-area 
of the artwork. One can interpret each puzzle piece 
as a fraction of the whole artwork (or in the case 
of Figure 2 as a fraction of one of the five squares). 
Therefore, we named those hands-on materials “frac-
tion puzzles”. In Figure 3, you can see a student using 
the fraction-puzzles to reason on an argument on the 
comparison of unit fractions, the working group dis-
covered in their IBL-process. The students’ argument 
was that one third has to be “bigger” than one fourth, 
since in the case of the third the whole (the square) gets 
split into three parts, while in the case of the fourth the 
whole gets split into four parts. After writing down 
this argument in form of a protocol, the student in 
the upper right took a one half puzzle piece and two 
one fourth pieces (see Figure 3) and said that now the 
whole also is split into three parts as well. A discussion 
started after that and some students decided to revise 
their so far produced protocol. They added that the 
parts the whole is split into have to be of equal seize.

In addition to the fraction puzzles, students also had 
the opportunity to use dynamic visualizations (con-
structed using GeoGebra), again with a structure 
based on the artworks. Students can use these dy-
namic visualizations  to test hypothesis they put up 
while dealing with hands-on material by further ex-
amples. Using the dynamic representation presented 

in Figure 4 students can for example test hypothesis 
on different comparison strategies for fractions.

Since guided IBL can be considered more successful 
than unguided IBL, we chose to implement a “triple 
support scheme” (De Jong, 2005; Reid Zhan & Chen, 
2003) in the textbooks of our IBL-environment. We 
implemented interpretative support to help the stu-
dents to interpret the prescribed representations. 
Whenever we present a task in the textbook that we 
anticipated as probably hard to solve for at least some 
of the students, a question mark icon  indicates that 
there is some help provided in a special textbook. In 
this textbook, we present additional questions, hints 
or at the most solution steps but never the solution 
itself. We carried out experimental support to guide 
students while setting up experiments. This for exam-
ple could be hints how to use the fraction-puzzles or 
the dynamic visualizations. In the presented study, we 
focus on reflective support with the aim of supporting 
students to generate protocols. We consider gener-
ating protocols as reflection, since students need to 
reflect on their learning process to be able to generate 
protocols. Prompts seem to be a promising approach 
to support the generation of protocols (Rau, Aleven, 
& Rummel, 2009; Berthold, Eysink, & Renkl, 2009; 
Berthold, Nückles, & Renkl, 2004). They are defined as 

“requests that require the learners to process the to be-
learned contents in a specific way” (Berthold, Eysink, 
& Renkl, 2009). An example for a prompt we used is 
the following: “Represent the result of the task you 
just solved and reason why your result is correct us-
ing a sketch and a text.” In our learning environment, 
we provide requests like this next to a framed space 
in the textbook in which the students can represent 
their results bearing in mind the prompt. When the 
framed space next to the prompt is empty, we consider 

Figure 3: Students during an IBL-process

Figure 4: Screenshot of a dynamic visualization to compare 

fractions
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this as low instructional level. In contrast to that, we 
consider to some extent pre-filled framed spaces as 
higher instructional level. In pre-filled framed spaces, 
we provide for example the beginning of a sentence 
or a first rough outline of a sketch, which the students 
have to accomplish in order to represent their results.

RESEARCH DESIGN AND QUESTIONS

To investigate the students’ ability to generate pro-
tocols in more detail we conducted a quasi-experi-
mental study with two experimental IBL-conditions 
comparing two different instruction levels of reflec-
tive support through prompts to a control-group. The 
control-group was taught in a teacher-centred setting. 
The content of these teacher-centred lessons was the 
same as in the IBL-environment and in all three con-
ditions students learned in three 90-minute lessons 
(see Table 1).

We kept learning-time and content consistent over all 
three conditions. Experimental-Group 1 (EG1) learned 
with textbooks using prompts on a higher instruction-
al level. Experimental-Group 2 (EG2) learned with 
textbooks providing prompts on a low instructional 
level as described earlier. 

In this research, eight sixth grade classes from two 
different German grammar schools took part. We 
randomly choose one class from each school as the 
control-group (CG). The other three classes of each 
school learned in the IBL-environment. The students 
in the IBL-environment learned together in groups 
of three to four students. We randomly assigned the 
students of each class to these working-groups and 
then each working-group randomly to one of the ex-
perimental conditions, by either providing them with 
textbooks containing prompts on higher (EG1) or low 
instructional level (EG2). By this distribution a total of 
N = 81 students were assigned to EG1, a total of N = 68 

students were assigned to EG2 and a total of N = 50 
students were assigned to CG, which means a total 
of N = 199 students took part in the study (including 
later dropouts).

We carried out the study in a pre-, post-, follow-up-
test design and collected data on two variables at each 
of the three measurement-occasions. First data on 
the students’ knowledge on fractions was collected 
and in a second step the students’ ability to generate 
protocols was measured. For the measurement on 
fraction-knowledge a paper and pencil test was devel-
oped. This test has a special focus on the part-whole 
concept and operations amongst fractions (based on 
this concept) that were part of the intervention. The 
items in the test all focus on some kind of switch be-
tween representations. A typical task is to find the 
right pictorial representation for a given fraction in 
a multiple-choice-item.

For measuring the ability to generate protocols, we 
developed a new instrument based on so-called “video 
items”. The underlying idea behind video items is to 
present a short video to the students during the test 
situation. This video shows a complete problem-solv-
ing process simulating IBL. In the case of the present-
ed study, we used videos demonstrating a problem 
solving process on fractions, using hands-on mate-

First Unit  ― (Unit) fractions in the meaning of the part-whole concept
 ― Comparing Fractions using meaningful semantic strategies on the basis of pictorial rep-

resentations 

Second Unit  ― Repetition: Unit fractions in the meaning of the part-whole concept
 ― Equivalence of fractions using graphical representations
 ― Problematization of adding fractions on a semantic level

Third Unit  ― Adding fractions on a semantic level through pictorial representations
 ― Fractions with a value greater than one using the part-whole concept
 ― Application of the reached results on a realistic problem situation

Table 1: Content of the learning unit

Figure 5: Screenshot of a video item
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rials like the fraction puzzles described earlier. For 
a screenshot of one the videos, see Figure 5. By using 
videos, we want to simulate an IBL-process, which is 
in line with our theoretical model of the representa-
tional approach to IBL. 

The task for students in the test situation is to gen-
erate a protocol of the video-content using pen and 
paper after watching the video.

Raters can evaluate these protocols using categories 
like the correctness and completeness of the represent-
ed contents and of the represented relations between the 
contents. In Engl and colleagues (2014), we describe 
the concept of using video items to measure the ability 
to generate protocols in detail. See Figure 6 for an 
example of a protocol based on a video-item.

To close this chapter we list the detailed research ques-
tions that contribute to the overall research-question 
we want to answer with this design:

Research question 1: 
Do students in an IBL-setting achieve at least the same 
learning success as students in a teacher-centred set-
ting?

Research question 2:
In which way does the ability to generate protocols de-
velop over time under the three different conditions 
and is it possible to identify differences between the 
groups?

Research question 3:
Is there a correlation between the ability to generate 
protocols and the knowledge on fractions?

In the following, we present and discuss the results 
in detail. As said we put a special focus on the ability 
to generate protocols.

RESULTS

To investigate research question 1 we conducted a re-
peated measures ANOVA on the fractions-test scores, 
comparing the three conditions. The main-effect 
shows a highly significant increase in fraction knowl-
edge over time for the three groups (F(2,336) = 443,793; 
p < .01). However no significant difference on the in-
teraction between time and group could be detected 
(F(4,336) = .986; p = .415). This result shows that not 
only the teacher-centered setting can be considered 
successful. It indicates that the used support strat-
egies for the IBL-environment lead to satisfactory 
learning-outcomes. With a focus on the treatment 
condition (reflective support through prompts), we 
can conclude that according to knowledge acquisition 
it makes no difference whether students are prompted 
on a high or low instructional-level in the case of the 
presented IBL-environment. This leads to the con-
clusion, that other design-principles (experimental 
and interpretative support) have more impact on 
knowledge acquisition than the different treatment 
conditions. What it does not mean is that students 
should not be prompted to generate protocols at all. 
We can say that independent of the instructional level 

Figure 6: Student generated protocol on the basis of a video-item Figure 7: Relative values of presented contents in the protocols
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of prompts, students learn successfully in the IBL-
environment with the implemented support.

Let us turn to the results relating the ability to gener-
ate protocols now. According to the main-effect, the 
repeated measures ANOVA reveals a highly signifi-
cant increase in the numbers of correctly presented 
contents over time (F(2,306) = 37,282; p < .01). Looking at 
the interaction between group and time the repeated 
measures ANOVA does not reveal significant differ-
ences between the groups. (F(4,304) = 1,142; p = .337). 
However, a Tuckey-HSD Post-Hoc-Test detects a signif-
icant difference between EG2 and CG (p < 0.05).1 This 
result becomes clearer when looking at the difference 
between EG2 and CG at the third measurement occa-
sion in Figure 7. The interpretation of this result is 
that EG2 shows a more sustainable ability to generate 
protocols than the CG. This is interesting because we 
provided EG2 with prompts on a low instructional lev-
el. EG1 also seems to show a more sustainable ability to 
generate protocols in comparison to CG, even though 
we cannot detect a significant difference.

What we can conclude from the significant main effect 
of the ANOVA on the generated protocols is that stu-
dents develop the ability to represent results by learn-
ing on the topic, whether it is in an IBL-environment or 
a teacher-centered setting. However, students learn-
ing in the IBL-environment with prompts on a lower 
instructional level show a more sustainable ability to 
represent results.

Regarding research question 3, we detected low cor-
relations between content knowledge and the ability 
to generate protocols at each measurement occasion 
(see Table 2). There are high achieving students re-
garding to fraction knowledge who fail to generate 
protocols and the other way around. This leads to the 
conclusion that content knowledge and the ability to 
generate protocols are two different constructs. We 

1 Since the Tuckey-HSD Post-Hoc-Test uses pairwise testing, 

we can apply it without the ANOVA showing significant results 

(Hsu, 1996, pp. 175f.).

will discuss this interesting result amongst the other 
results in the closing section of this article.

CONCLUSIONS AND PRACTICAL IMPLICATIONS

As shown in the results section students improve their 
ability to generate protocols significantly over time. 
However, the ability to generate protocols is more 
sustainable for students who learned in the IBL con-
dition. As for the students of EG2, who were guided 
to generate protocols by prompts on low instruction-
al level (request to represent results next to empty 
framed spaces), the described effect was significant. 
Therefore, when it comes to reflective support, we 
recommend a low instructional level of prompts. Here 
we provided the prompts next to empty framed spaces. 
This means students are open to generate their own 
creative protocols, considering the hints how to gen-
erate the protocol given in the prompts. The benefit 
of the lower instructional level is that right or wrong, 
the students generate these protocols truly on their 
own and therefore represent their way of thinking. 
Therefore, the teacher can use them to get more de-
tailed information on the students´ thinking process. 
This would not be possible with pre-filled framed 
spaces, like in the first research-condition. When in-
terpreting protocols we have to take into account that 
the quality of a generated protocol is not to be mixed 
up with high content knowledge. The low correlations 
between these two constructs clearly indicate this. To 
find out more about why the correlations are low, it 
might be interesting to open the black box and try to 
gain insight into students’ mental models and the way 
they use them to generate protocols.

Another open research question is, whether students 
we consider “good representers” due to the results of 
the video items, really use their skills in IBL-settings 
and if not, how we have to design prompts to make 
them use their skills. Concerning this, it might also 
be interesting which factors influence the use of 
such skills. Motivation might have a huge impact, 
since our experience from watching students in IBL-
environments indicates that the motivation to gener-
ate protocols is generally very low. 
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The purpose of this paper is to draw attention to the 
strategic thinking that students develop facing mathe-
matical games. We hypothesise that prompting a stra-
tegic way of thinking within a didactical intervention, 
called the ‘game-approach’, could improve students’ 
proving processes and support them in the produc-
tion of proofs. More precisely, we are designing tasks 
based on two players’ games in a Multi-touch Dynamic 
Geometric Environment, in which the discovery of the 
winning strategy coincides with the discovery of a ge-
ometric property. We aim to contribute to the debate 
on the possibility of cognitive and epistemic unity and 
to deepen the studies based on dragging practises and 
their cognitive counterpart. 

Keywords: Games-approach, logic of inquiry, tablet.

INTRODUCTION AND 
THEORETICAL FRAMEWORK

Proving has always been one of the most difficult tasks 
in teaching and learning mathematics: its formal and 
rigorous features collide with the fallibility and guess-
ing aspects of the processes that produce it. There are 
not many teachers in Italian schools who think it is 
necessary that students experience an exploration 
and an argumentation phase in order to grasp what 
a proof is. Teachers’ convictions are encouraged by 
traditional textbooks, where students find the usual 
definition-statement-proof model. The conditions un-
der which students can make conjectures and validate 
them are left in the shadow. Furthermore, teachers 
forget that the formalistic aspects are not the main 
concern in proving processes (see the discussion of 

“formal” in Arzarello, 2007).

Some scholars have pointed out this aspect of proofs 
both from an epistemological (Thurstone, 1994; 
Tymochcko, 1998) and a didactical (Hanna & de Villers, 

2012) standpoint. For example, in the book “Proof and 
Refutations” (1984) the philosopher Imre Lakatos ex-
pressed a different view of mathematical statements. 
As it is well known, based on a detailed discussion of 
Euler’s errors in his search for a topological classifi-
cation of polyhedra, Lakatos pointed out a dialectic 
process in this search. He showed that definitions are 
not carved in stone, but often have to be patched up in 
the light of later insights, in particular flawed proofs. 
This gives mathematics a somewhat experimental fla-
vour. Balacheff agrees with Lakatos’ approach, and in 
the introduction to the French editions of the book, 
he writes:

Les mathématiques sont aussi prises en compte, 
non en tant que text de savoir, mais en tant que 
savoir construit socialment et donc l’acquisition 
par l’individu doit etre contrôlée comme sens et 
pas seulement comme langage. (Lakatos, 1984, 
p. XVIII)[1]

Following Balacheff ’s point of view, we are studying 
a fresh way of introducing pupils into mathematics’ 
rules of thinking in order to produce proofs in ele-
mentary geometry. The paper aims to present some 
reflection of a PhD work in progress research. The 
hypothesis we are checking consists of investigat-
ing if and how the introduction of some multi-touch 
Dynamic Geometric Environment for Tablets offers 
important facilities to work in this direction. Here we 
are referring in particular to applications or software 
that allow users to work on the same screen with more 
than one finger at the same time. This peculiarity 
gives the possibility of designing teaching/learning 
situations, where students are asked to build up and 
investigate geometric objects in a new and shared 
way. The aim of such multi-touch activities is to put 
students into a geometric game situation, and making 
them ask why it is… / it is not… /may be… / cannot be… 
/ so; and try to answer the question. We hypothesise 
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that questioning develops a specific type of rational 
behaviour, which can help students understand and 
produce proofs.

In the literature our idea finds a foundation in the 
epistemological research of Jaakko Hintikka (1998, 
1999). His aim is to replace the classical and static 
logic by a dynamic and dialectical model: the Logic 
of Inquiry, based on the analysis of the way people 
develop their strategic thinking in games. According 
to him, two types of rules characterize any goal di-
rected activity: definitory rules and strategic rules. For 
instance, in chess the definitory rules tell you which 
moves are possible, while the strategic rules tell you 
which moves is advisable to make in a given situation. 

We can apply this idea to the teaching of deductive log-
ic. It is clear that the rules of inference are definitory 
rules, not strategic ones. At each stage of a deductive 
argument, there are normally several propositions 
that can be used as premises of valid deductive infer-
ences. The so-called rules of inference will tell you 
which of these alternative applications of the rules of 
inference are admissible. They do not say anything as 
to which of these rule applications one ought to make 
or which ones are better than others. For that purpose 
you need strategic rules. 

Students should learn and keep in mind both these 
rules during the construction of arguments. However, 
teachers generally explain to students the rules of 
inference and the way to use them correctly (defini-
tory rules), not which rules are more advisable to 
use or how to select new arguments (strategic rules). 
Therefore, students learn how to avoid making mis-
takes, but not how to discover proofs or to find out 
new truths by means of deductive inferences. 

In concentrating their teaching on the so-called 
rules of inference, logic instructors are merely 
training their students in how to maintain their 
logical virtue, not how to reason well. (Hintikka, 
1999, p. 3).

Clearly, it is not easy to teach strategic rules. If you 
are engaged in a game, like chess, it is more natural 
and taken for granted the use of strategic thinking, 
than when you are doing mathematics. For this reason, 
we decided to design games (of mathematical kind), 
whose solution is the discovering of a geometric prop-
erty.  We hypothesize that the result of this choice 

could lead students to use strategic thinking within 
the mathematical one.

In literature the idea of using games for educational 
purposes has come back in fashion thank to the wide-
spread diffusion of mobile devices and virtual games. 

“A game can provide a structure for the learning that 
takes place in the environment” (Devlin, 2011, p. 32). 
We believe that, in order to bring these innovations 
into the classroom, epistemic games (Shaffer & Gee, 
2005) need to be designed. The authors define these 
games as follows:

Epistemic games are about knowledge, but they 
are about knowledge in action- about making 
knowledge, applying knowledge, and sharing 
knowledge. (Shaffer & Gee, 2005, p. 16).

Games based on geometric property have to be played 
in an environment that allows students to come back 
to what has been done or seen, produce interpreta-
tions and possibly explanations, anticipate facts and 
situations, produce forecasts and hypothetical dis-
courses. In other terms, an environment that allow 
students to answer such questions, as “How is it?”, 

“What is best for me to do?”, “How will it be?”, “How 
could it be?”, namely they apply strategic rules. DGEs 
are a powerful tool to support students in the formu-
lation of such questions and, therefore, in the applica-
tion of strategic ways of thinking within mathematics. 
Indeed they allow the design of dynamic game situa-
tions, where, in order to win, students have to discov-
er/use suitable mathematical properties, which allow 
them to develop suitable strategic moves. Discussing 
their strategies and why they were suitable for win-
ning, the teacher can coach them towards the formu-
lation and the proof of the mathematical properties 
that were behind the game, according to the Logic of 
Inquiry approach. 

A further necessary condition for developing the 
Logic of Inquiry in the classroom, is to let students 
be used to questioning by themselves during math-
ematics activities. Hintikka (1999) formulated the 
structure of the interrogative model in the form of a 
game between an idealized inquirer and a source of 
answers called nature or oracle. The inquirer starts 
from a given theoretical premise T and his/her aim is 
to establish a certain given conclusion C. At each stage 
of the game, instead of making a deductive move, the 
inquirer may address a question to the answerer (or-
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acle, nature, or whatever the source of new informa-
tion may be). If nature responds, the answer becomes 
an additional premise. Hintikka calls such a move an 
interrogative move. After that, the process starts again 
until all the information added to the premise T lead 
the inquirer to the conclusion C. 

The following example (Hintikka, 1999, p. 31) is illumi-
nating about the interrogative model and its impor-
tance in reasoning. It shows that we are able to rewrite 
the solution of any Sherlock Holmes’ story in an inter-
rogative form. The episode we analyse is “the curious 
incident of the dog in the night-time”, extracted from 
the story called “Silver Blaze”. The background is this: 
the famous racing-horse Silver Blaze has been stolen 
from the stables in the middle of the night, and in the 
morning its trainer, the stable master, finds it dead 
out in the heath. All sorts of suspects crop up, but 
everybody is very much in the dark as to what really 
happened during the night.

Watson: “Is there any point to which you would wish 
to draw my attention?”

Sherlock Holmes: “To the curious incident of the dog 
in the night-time.”

Inspector: “The dog did nothing in the night-time.”

Sherlock Holmes: “That was the curious incident.”

Even Watson can see that Holmes is in effect asking 
three questions: “Was there a watchdog in the stables 
when the horse disappeared?”, “Did the dog bark when 
the horse was stolen?”, “Who is it that a trained watch-
dog does not bark at in the middle of the night?”. The 
following deductive argument is the exact transposi-
tion of the three questions of Holmes’ inquiry: “There 
was a watchdog in the stables.” “The dog did not bark 
when the horse was stolen.” “A trained watchdog does 
not bark only at its owner.” “Hence, the thief was the 
owner.”

Each question is the source of a new abduction [2] 
and it is also an abduction that marks the transition 
from an inquiring to a deductive approach. Hintikka’s 
analysis shows that this way of thinking does feature 
the epistemological basis of mathematics altogether 
and not only of game theory. In particular, it shows 
an epistemic unity between the argumentation phase, 
represented by the process of questioning, and the 

proof, represented by the reorganization of the an-
swers in a deductive chain. In the literature, it has 
already been studied the cognitive unity between 
argumentation and proof (Boero, Douek, Morselli, & 
Pedemonte, 2010). Therefore, the result of epistemic 
unity can deepen these previous studies. In the in-
terrogative model, we find both natural representa-
tions of non-logical reasoning (argumentations), and 
representations of formal logic. Hintikka observes a 
similarity between the two types of reasoning, found-
ed on the role of presuppositions in the interrogative 
inquiry. In fact, before the inquirer is in a position 
to ask a convening question, i.e. “Who did it?” he or 
she must establish its presupposition “Someone did 
it”. From the point of view of the transition from one 
proposition to another, an interrogative step looks 
rather similar to a deductive step: the latter takes the 
inquirer from one or more premises to a conclusion, 
while the former takes the inquirer from the presup-
position of a question to its answer.

THE GAME-APPROACH

We divide what we call the game-approach into two 
phases: the game-task design and the so called Devil’s 
Advocate reflection.

The game-task design consists of the transformation 
of the geometric properties in a non-cooperative game, 
in which each student has a different aim to reach, 
that contrasts with that of the other player. The task 
contains the rules of the game, the players’ aims and 
some questions to answer. During the game, there 
is a silent inquiring activity in the students’ mind. 
Thank to a Tablet and the schoolmate’s feedback the 
inquiring process develops throughout the game, 
producing interrogative and deductive moves deeply 
intertwined: deductions are needed for establishing 
presuppositions for interrogative moves and inter-
rogative moves are needed to add possible new hy-
pothesis to the process of inquiry. In order to create 
a significant and relevant mathematical experience, 
we support students in the construction and develop-
ment of strategies with questions like “Can you write 
someone else a way for winning?” which indirectly 
guides their attention to switch from the particular to 
the general. John Mason summarized these two-way 
processes as follows:

…‘to see the general through the particular and 
the particular in the general’ and ‘to be aware of 
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what is invariant in the midst of change’ is how 
human beings cope with the sense-impressions 
which form their experience, often implicitly. 
The aim of scientific thought is to do this explic-
itly. (Mason, 2005, p. 8)

Finally, we ask students: “How do you know that the 
method always works?”. We hypothesize that, with 
this question, students can gradually discover the ge-
ometric property on which the game is designed, so 
avoiding a possible gap between it and the mathemat-
ics’ theory. Students play the game on a shared Tablet 
and answer the questions working in pairs. Generally, 
this activity requires a one-hour lesson. After that, 
we withdraw students’ worksheets and prepare a 
PowerPoint presentation in which we introduce the 
character called “The Devil’s Advocate”. This is the 
second phase, the Devil’s Advocate reflection. In this 
phase, the Devil’s Advocate (the teacher or the re-
searcher) makes the Logic of Inquiry more explicit to 
students. In fact, he questions students to make them 
think theoretically on what they have found and she 
insinuates doubts on their deductions and sentences.

THE ANALYSES OF AN EXAMPLE

The episode described below is part of a teaching ex-
periment developed in a tenth grade science class at 
a private high school. During the activity, the class-
room was composed by eight students, working in 
pairs: they have to read the task, play the game on the 
tablet and answer some questions on a worksheet. 
They use GC/htlm5 [3] a newest version of Geometric 
Constructor (one of the free dynamic geometry soft-
ware used in Japan since 1989) compatible both with 
iPad and Android tablets. During this first phase, the 
role of the teacher is to observe students and to help 
them if they are in trouble, whereas the role of the 
researcher is to videotape a single group. The work in 
pairs activity is followed by the teacher’s systematisa-
tion of the mathematical content at the blackboard (at 
that moment the Devil’s Advocate reflection has not 
been designed yet). In the second phase, the teacher 
asks students what they have discovered during the 
game in order to engage them as much as possible in 
the process. The systematisation generally takes place 
at the beginning of the subsequent lesson for matter 
of time (each class lasted 50 minutes). 

The teaching experiment deals with some themes 
related to a classical topic included in the National 

Curriculum 2012 (Indicazioni Nazionali): the circle. 
The teacher commits almost twelve lessons to the pro-
ject, developing six themes: the reciprocal position 
between two circles, the reciprocal position between 
line and circle, the chords theorem, the angles at the 
centre and at the circumference, the circumcentre and 
incentre of triangles, the inscribed and circumscribed 
quadrilaterals. 

The example we will show, describes a non-coopera-
tive game situation involving two players Z and Y. The 
final aim of the activity is discovering the geometric 
property that describes the reciprocal positions be-
tween two circles. Here is the task given to students: 

“Play the chase with your schoolmate. Z’s aim is chang-
ing the length of segment AB by dragging its endpoint 
in order to make the two circle intersect; Y’s aim is 
changing the length of segment CD by dragging its 
endpoint in order to avoid the intersection. When 
does Z win? When does Y win? Move the centre of the 
circles to examine the possible cases.”

1 Student Y: Have I to run away? (Reducing 
radius of circle E more and more)

2 Student Z: I think you could also move… 
(Enlarging more and more the radius of circle 
F)

3 Student Y: Yes, but if you are enlarging it, 
what could I do?

4 Student Z: I think you could also move… you 
can try to move this one (pointing the centre 
E)

5 Student Y: Wait, wait, wait!
6 Student Z: I think you can try to move this 

one
7 Student Y: Yes but if I run away…

Figure 1: The picture shows what students see on their Tablet
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8 Student Z: I will make it bigger [the 
circumference F]!

 I stay here so I always catch you!
9 Student Y: If I put myself [circumference 

F] inside (pointing the area of circumference 
E), you can make yourself [circumference E] 
bigger and catch me, but I can…   if I tighten…

10 Student Z: No! In this way it should be… it 
should be… Points should coincide (pointing 
the two centre E and F) because I catch you 
however!

During the game, students switch between two mo-
dalities: 

 ― the played game in which students play against 
each other or collaborate and their only aim is 
to win;

 ― the reflected game in which students take distance 
from the game to analyse and make judgments 
about what has happened. Their aim is collabo-
rate to discover the strategy to win. 

In the example, line 5 marks the switch from the 
played game to the reflected game. When students 
enter into the second modality, they start analysing 
the different types of situations that could arise dur-
ing the game. First, they examine the case in which 
player Y tries to escape by moving the centre of the 
circle (line 6–8). In this case, player Z always catches 
him by making his radius larger. Then they exper-
iment with a second strategy: putting the centre of 
circle Y inside the circle Z. This second solution leads 
player Z to win over player Y as well. Finally, student 
Z suggests to student Y a different situation in which 
the centres of the circles coincide (line 6). 

It is important to notice that during the reflected game, 
students exchange their roles (line 5), since they not 
only think about their movement, but at the oppo-
nent’s movement as well, and they identify themselves 

with the geometric object: each student is the circle 
that he/she moves on the screen. While students try 
to discover the strategy to win, they explore uncon-
sciously the reciprocal position between two circles 
and they implicitly discover the link between it (the 
reciprocal position between the circles) and the po-
sition of centres or the length of the radiuses. Even if 
the mathematical theory remains implicit in students’ 
actions, words and visualisation during the whole 
game, students build strong concept images (Tall & 
Vinner, 1981), which help them in the construction of 
mathematical concepts. 

As in the case of mouse dragging practises (Arzarello, 
Olivero, Paola, & Robutti, 2002), we aim to analyse the 
modality of dragging in order to notice if there is a 
correspondence with the cognitive level. In particu-
lar, in mouse dragging practises, there are two main 
cognitive typologies (Saada-Robert, 1989; Arzarello, 
2007): 

 ― the ascending processes, from  drawings to theory, 
in order to explore freely a situation, looking for 
regularities, invariants, etc.

 ― the descending processes from theory to draw-
ings, in order to validate or refute conjectures, 
to check properties, etc.

In designing the tasks, we started from the two main 
cognitive typologies which characterize mouse drag-
ging practises and tried to readapt them in order to 
describe that of games practices. Insofar, we began 
transferring the results on mono-touch to multi-touch 
dynamic geometry software: the aim is to observe 
what remains invariant and what changes in the stu-
dents’ approaches and processes. In particular, in 
the played game we distinguish between ascending 
processes when students enter into the game, explore 
the situation freely, look for strategies and descending 
processes when students play with a strategy in act. In 
the reflected game, instead, we recognize ascending 

Figure 2: 2a) First strategy “Running away”; 2b) Second strategy “A circle inside the other”; 2c) Third strategy “One centre”
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processes when students explicitly use the strategy 
and descending processes when they try to check it. We 
are interested in observing whether or not students 
share the ascending and descending processes.

In line 1 students are in the played game descending 
processes, they are playing with a strategy in act: Y 
tries to escape reducing the radius more and more 
and Z makes his radius larger following Y’s movement. 
The students realise that with this implicit strategy Z 
always win. Y is going to give up, when Z suggests her 
the first explicit strategy (line 6): “moving the centre 
of the circle to escape”. Students are now in the reflect-
ed game ascending processes, they play with the ex-
plicit strategy and they immediately understand that 
student Y always loses. Line 8 shows the moment in 
which students are in the reflected game descending 
processes, because they check the strategy and de-
cide to abandon it. Students come back to the reflected 
game ascending process and explicit another strate-
gy: “make a circle inside the other”. They immediately 
pass on the descending process and understand that Z 
continue to win. They abandon the strategy and make 
explicit a third one: “make the centres coincide”. They 
are one more time in the ascending process.

 Under the first two strategies, there is the implicit 
mathematical property: “if the distance between 
centres is less than the sum of their radius and ma-
jor of their difference, circles intersect at two dif-
ferent points”. Since for every Y’s movement, there 
are infinite Z’s movements such that the distance be-
tween centres is minor then the sum of the radiuses 
and major then their difference, students are lead to 
the conclusion that Z always wins. Students do not 
know the mathematical property that leads them to 
this conclusion, they only experiment the property 
in an empirical way, through the game.

CONCLUSION AND POSSIBILITY 
FOR FURTHER RESEARCH

The analysis of the protocols reveals that the game 
approach makes students explicit their strategic rules 
of thinking, but it is not enough to give them insights 
on the impact of the use of strategic rules of thinking 
on the mathematical reasoning. In particular, we ob-
served that students do not mention the mathematical 
property on which the game is based. For this reason 
we have designed two didactical interventions, which 
are fundamental in order to both make the mathemat-

ics rise from the game and overwhelm the possible 
cognitive discontinuity between the inquiry phase 
and the deductive phase:

1) The introduction of specific questions, such as 
“Can you write someone else a way for winning?” 
and “How do you know that the method always 
works?” 

2) The introduction of the Devil’s Advocate reflec-
tion.

The first one helps students thinking the reasons why 
one wins and detect the geometric property, while the 
second one helps students in the deductive transpo-
sitions of their arguments. Both these interventions 
make the Logic of Inquiry more explicit to students.

Another issue we are addressing now aims at deep-
ening the technological possibilities offered by DGEs 
in order to make the game more challenging and en-
gaging. For instance, we are designing more complex 
games, where players must overcome some interme-
diate steps in order to win. Such steps correspond to 
parallel steps in a possible proof of the mathematical 
properties upon which the game is built. For exam-
ple we are introducing the opportunity for a player 
to choose from time to time between two alternative 
possible constructions in the environment. Only one 
of them will facilitate her/him: exploiting which is the 
right one to choose corresponds to a mathematical 
property, which can facilitate the successive proving 
phase.     
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ENDNOTES

1. “Mathematics is also taken into account, not as a 
text to know, but as knowledge socially constructed 
and therefore the acquisition by the individual must 
be controlled as sense and not as just as language.”

2. The following example (Peirce, 1960, p. 372) clarify 
what an abduction is. Suppose I know that a certain 
bag is plenty of white beans. Consider the sentences: 
a) these beans are white; b) the beans of that bag are 
white; c) these beans are from that bag. A deduction 
is a concatenation of the form: b and c, hence a; an 
abduction is: a and b, hence c. An induction is: a and c, 
hence b. For more details, see Magnani and colleagues 
(2001) and Arzarello and colleagues (2000).

3. The inventor of GC/htlm5 is Yasuyuki Ijjma from 
Aichi University of Education (Japan). To visit the soft-
ware go to  http://iijima.auemath.aichi-edu.ac.jp/ftp/
yiijima/gc_html5e/gc.htm.

http://iijima.auemath.aichi-edu.ac.jp/ftp/yiijima/gc_html5e/GC.htm
http://iijima.auemath.aichi-edu.ac.jp/ftp/yiijima/gc_html5e/GC.htm
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During the last years, a multitude of web-based com-
puter assisted systems for learning mathematics were 
developed. Eva-CBTM (Evaluation of Computer Based 
Platforms for Training in Mathematics) makes a com-
plete survey of all such platforms (German or English 
as language). To do so, an evaluation scheme has been 
developed which assesses the help system, system struc-
ture and other features. A significant number of learn-
ing platforms will be compared using this assessment 
system.
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THE EVA-CBTM-PROJECT

Eva-CBTM is a project for the Evaluation of 
Computer Based programs for learning and Teaching 
Mathematics. The aim of Eva-CBTM is to develop a 
complete system for such an evaluation which has its 
focus on mathematics didactics, and to apply this sys-
tem to all relevant international platforms (German 
and English as language). The evaluation is carried 
out under the perspective of a formal analysis of the 
fulfilment of didactical criteria, and the perspective of 
pupils working with these systems will not be studied 
in this paper. 

Due to the limited space in this paper, the main focus 
will lie here on the description of the evaluation sys-
tem, whereas the results cannot be given in full. For 
the interested reader, (Stein, 2012) contains detailed 
results and descriptions of all platforms which were 
evaluated.

ASPECTS OF EVALUATING 
SOFTWARE IN EVA-CBTM

The main components of the evaluation system
An analysis of existing criteria catalogues for the 
evaluation of (mathematical) learning software (for 
instance, Grosser, 2000 (in German); Handal, Handal, 
& Herrington, 2006 (in English)) unveils that these are 
often written from a media-pedagogical perspective 
or test the user-friendliness of such systems. Such cat-
alogues can be used to evaluate individual programs 
(and then possibly to compare them). Since they cover 
a broad range of different types of websites – “drills, 
tutorials, games, simulations, hypermedia based ma-
terials and tools and open-ended learning environ-
ments” (Handal & Herrington, 2003, p. 278), they are 
not specialised enough for analysing and comparing) 
programs which focus on practise in mathematics 
only. 

School children working with such programs 
need feedback about their work (Handal, Handal, & 
Herrington, 2006, p. 8), and they normally also need 
help, resp., assistance (ibid, p. 13). Every practising 
software therefore needs an assessment system and 
an assistance/help system. Both of these components 
operate closely together in many cases, such as when 
the evaluation system notices a mistake and triggers 
the help section, but it still makes sense to describe 
the two systems separately.

Additionally, the systems require a pool of tasks that 
must be structured in some way. The follow-up-task 
should be provided by the system, according to wheth-
er or not the user was successful in the previous task. 
With this, we have a system structure and a follow-up 
system for task selection as further characteristics of 
a CBTM-System that are in need of evaluation (ibid, p. 
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11). Systems can also differ significantly in the ques-
tion of how many decisions they take autonomously, 
and how many they leave to the user. This is measured 
by the degree of freedom. 

Finally, the completeness by which the covered topics 
are handled has to be evaluated. This aspect is meas-
ured in thematic completeness. It is given as a percent-
age that is based on how completely the subject under 
consideration is covered. Using this percentage value 
on the point score already given to a system yields the 
overall evaluation score of the system.

A process model for the interplay between 
user activities and system activities
Doing mathematics, solving problems, calculating 
formulas… always follows certain steps: it is a process. 
This work process runs along a time axis that begins 
with the presentation of the task and ends when the 
solution is submitted. In teaching, we can describe 
three stages: pre-active, interactive, and post-active 
(Kysilka et al., 2002, p. 60). Looking at learning plat-
forms, we prefer the wording pre-active, formative, 
and summative, as used in literature about evalua-
tion (see, for instance, Schulmeister, 2002) since the 
learning software evaluates / assesses the outcomes 
of the pupils’ work.

Explanations
 Assistance without request.

  Communication between the assessment system 
and the assistance system.

  Assistance provided by the system at the user‘s 
request.

  User activity, the user‘s actions are communicat-
ed to the assessment system.

Pre-active: Before the start of the work process – it is 
clear that user input cannot be evaluated before the 
user starts to solve the task. However, assistance can 
be available at this point. 

Formative: During the work process – the evaluation of 
user activities takes place based on the user’s inputs. 
This temporal process is a basic part of any attempt to 
solve a task. Whether or not the system „notices” this 
work, is another matter. For that to happen, the system 
needs to enable the user to enter the consecutive steps 
of his/her work. Only then we can talk of formative 
assessment / assistance.

Summative: At the end of the work process – this is the 
standard kind of evaluation that every teaching and 
practice system has.

This model is applied at two levels:

 ― Micro level: Each task requires several solution 
steps. If the system has been programmed to work 
in this way, it can pick up on the individual steps 
that the user takes and react appropriately.

 ― Macro level: CBTM systems do not provide tasks 
in isolation from each other. Instead, they pro-
vide sets resp. sequences of tasks. The sequence 
of work on these tasks can be described and an-
alysed with the same model.

THE EVA-CBTM EVALUATION SYSTEM 

Assessment
According to the process model, assessment can take 
place pre-actively, formatively or summative. Apart 
from that we have to differentiate between assess-
ments that have a procedural component that touches 
on questions of heuristic strategy and assessments 

Figure 1
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that solely focus on the current content or input. 
Three levels are defined for both assessment strate-
gies of which six types of assessment follow, as shown 
in the Table 1.

Assistance
Literature on e-learning acknowledges demand for 
feedback and assistance, but lacks any detailed in-
formation which could cover the richness of types 
of assistance by an appropriate evaluation system: 
Schwier and Misanchuk (1993) demand a gradual 
increase on the “types, amount, and layers of stim-
uli and feedback presented” (p. 20). Bescherer and 
colleagues (2012, p. 152) say, “When students work 
on their exercises at home, however, lecturers and 
tutors generally are not available to help out. In such 
cases, computer-based approaches, where hints and 
feedback are provided on demand by using software, 
can be a real asset to learning. However, such feedback 
needs to be more differentiated than merely pointing 
out ‘right’, ‘wrong’, or ‘reread chapter X.’ ”

One perspective on the topic of assistance in work 
processes and solution-finding processes offered by 
literature on mathematics education (see, e.g., Zech, 
2002) leads to a catalogue of terms, listed and briefly 
explained here:

Strategic Assistance: Solution strategies are described, 
a specific strategy is recommended; Content-based 
assistance: Users are provided with assistance by the 
task currently in front of them; Motivating assistance: 
The help has an encouraging character („Keep it up”, 

„That was again very good”, etc.); Responsive assistance: 
Typical feedback. This contains the basic information 

as to whether the solution step was correct or incor-
rect or if the solution method will take you to your 
goal; Diagnostic assistance: The assistance contains 
information about the cause of the mistake. 

Solution-generating assistance: The assistance leads 
to the solution.

These types can be used

 ― Situation specific: The assistance is focused on the 
task currently in front of the user, using the con-
crete numbers of this specific task. For example, 
there would be two separate, pre-calculated solu-
tion methods to the equations 2x+3=7 and 3x+4=9.

 ― Generalised: The assistance is general in nature. 
So, for the solution to the equations 2x+3=7 and 
3x+4=9, one piece of assistance is given for each 
task, perhaps for the equation 5x+8=17.

 ― Global topical: The assistance includes several 
types of task. For example, the assistance for ex-
pansion, finding the common denominator and 
addition of fractions is all contained within a 
single explanation.

This system of 18 possible combinations is so nuanced 
in the case of motivation that a classification of learn-
ing systems would not be reliable. For example, it can 
be argued that the mention of addition

You have added on the right side. Think about it!

Strategic Content based

simple normative
Checks whether the user has found the correct 
solution method.

simple normative
Checks if the solution method corresponds to a prede-
fined target. If not, it is regarded as incorrect. If 1

2  is 
expected, 2

4  is considered as wrong.

complex normative
Choosing an alternative correct solution method is 
accepted or is reacted to flexibly. E.g., „This method 
is also possible, but we will continue our calcula-
tions as follows...”

complex normative
Equivalent solution methods are recognised, and are 
both designated correct or incorrect. 1

2
 
and 2

4  are both 
recognized as wrong or both as right.

diagnostic
The reason behind an incorrect solution method 
is recognized. „You have carried out the steps in a 
wrong order.”

diagnostic
The cause of a mistake is communicated. In case of  
2
3  +  1

2  =  3
5

 
the system says, for instance: „You have made 

the mistake ‚Numerator plus numerator and denomi-
nator plus denominator‘.”

Table 1
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… is strategic assistance (choose the correct operation 
as a solution strategy), or if it should be seen as con-
tent-based assistance (it is about the addition). 

Such a discussion is in any case superfluous – the fact 
that even in the theoretical analysis uncertainty is 
creeping in shows that these four categories are much 
too finely structured to be the basis of an evaluation 
schema. Using them would lead to unreliable coding. 

As such, some items of the classification system can 
be dropped and in the end the following items remain 
in the list:

Motivating Assistance | Feedback on the as-
sessment | Strategic, solution-generating, situa-
tion-specific | Strategic, solution-generating, gen-
eralised | Strategic, solution-generating, global 
topical | Content-based, solution-generating, sit-
uation-specific | Content-based, solution-gener-
ating, generalised | Content-based, solution-gen-
erating, global topic

Special types of help – for instance, the use of multi-
ple representations or interactive features – are not 
measured individually in this system. They are scored 
as content-based, solution generating and can be sit-
uation specific or generalized. 

The use of tools like computer algebra systems or dy-
namic geometry software can help students learning 
mathematics and can play an important role in the as-
sistance section of a CBTM-system. However, this was 
not made an issue of this study: Eva-CBTM analyzed 
the fraction arithmetic part of those systems, and here 
those tools do not play an important role. If the same 
study shall be executed for the algebra or geometry 
section of such systems, the assistance part of the Eva-
CBTM evaluation system has to be extended to cover 
such features.

System structure and choice of exercise
Before we can discuss system structure and exercise 
choice in a system, some remarks about the frame-
work of exercises are necessary.

Looking at the set of exercises, it becomes immediately 
clear that the minimal structure is that of a sequence. 
Every system of exercises gives exercises in a certain 
order – the exercise series. Exercise series of this type 
can be assembled „ad hoc“, or they can be put together 

according to internal evaluation systems. This is often 
done according to difficulty, although there are other 
conceivable systems. 

Every exercise is provided with certain labels and 
pointers. A label is a piece of information assigned to 
the task. A pointer directs the user to another exercise 
or sequence. There can be multiple pointers, such 
as if different follow-up exercises should be chosen 
based on information about the mistakes made by 
the user. A backwards pointer defines a relationship 
with a previous exercise or exercise series, which can 
be defined by labels that determine which previous 
exercises should be chosen based on certain events.

The interaction between the information about the ex-
ercises contained in the labels, the follow-up structure 
defined by the pointers and the information about 
previous exercises defined by the backwards pointers 
leads potentially to an extraordinarily complicated 
structure of exercises through which the system has 
to navigate. For practical use, the following selection 
structures can be designated.

Architecture of exercise sequences 
and the overall system
Ad-hoc arrangement: The program moves from one 
exercise to the next in such a way that no system is 
noticeable.

Internal arrangement through evaluation of exercises: 
Every exercise in a sequence receives a label through 
which it is evaluated. This is often „difficulty” or „com-
plexity”.

External arrangement through evaluation: For every 
sequence of exercises, preceding and following se-
quences are defined by an evaluation – e.g., by the 
level of difficulty. Preceding sequences for the addi-
tion of two three-figure numbers are for example the 
addition of two two-figure numbers or one two-fig-
ure number and one three-figure number. External 
arrangement by content-based analysis: Sequences of 
exercises are connected to others by follow-up rela-
tionships. This can be based on different types of ex-
ercise analysis: e.g., it is possible to define sequences 
by the basic skills necessary to solve them. In the case 
of solving the equation 3x + 4 = 17 those are addition, 
division, subtraction, etc. It is also possible to deter-
mine which follow-up sequences make the best sense.
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The system of choosing exercises
The system of choosing exercises touches on the ar-
chitecture of the system. More complex systems make 
decisions dependent on the successes or failures of the 
learner. They navigate within the defined architecture.

Depending on the starting point in the process model, 
there are different evaluation possibilities on the Pre-
activity, the Formative and the Summative stage. Due 
to the space restriction we cannot describe this here 
and have to refer to (Stein, 2012).

Degree of freedom
The above classification only captures the method and 
the complexity with which a system selects exercises 
or exercise sequences. CBTM-systems, however, can 
also be very different in the degree of freedom that 
they allow the users in their work. The fine grain eval-
uation system of Eva-CBTM cannot be discussed here; 
it is described fully in (Stein, 2012).

Thematic completeness
The question of how completely a given system covers 
its chosen area plays an important role in its evalua-
tion. The evaluation begins with a pedagogical anal-
ysis of the topic under observation, based on existing 
pedagogical and methodological knowledge. Every 
topic recorded in the evaluation is given an appro-
priate marker. If in the course of the evaluation a 
particular system introduces a new aspect, the table 
is expanded to include this aspect. At the end, the per-
centage of possible practical topics that each system 
covers is calculated.

ALLOCATION OF POINT SCORES 
IN THE EVA-CBTM-SYSTEM 

The combination of the different aspects of the eval-
uation (assistance, assessment, and so on) with the 
three stages of the process model, each being divided 
in different categories, leads to a multidimensional 
matrix. Each cell of this matrix describes one possi-
ble feature of the training system. In most cases for 
each cell a score of 1 point is allocated, if applicable 
(the few exceptions cannot be discussed here), and 
120 allocations have to be placed.

The allocation of one point for each feature is a per-
sonal view of the author, other allocations are possible. 
If, e.g., assistance (besides a feedback right / wrong) 
seems not a desirable feature of a system, for this part 

of the matrix 0 points would be given. And if the form-
ative part of the matrix is not seen as useful, the same 
will be done with all cells of the matrix belonging to 
the formative stage. In the result section, we give a 
brief summary of the outcome under the heading 
Alternative scoring.

Because the available contents can differ depending 
on the region for which they were principally de-
signed, this evaluation is carried out in a thematic 
area that all systems contain, i.e. calculations with 
fractions.

Each of the observed systems is evaluated by three in-
dependent evaluators – the evaluation was part of their 
master thesis (Frankewitsch, Menke, & Wietholt 2012 / 
available from this author) written under supervision 
of this author. After a training phase in which examples 
from different systems were scored by the evaluators 
and this author, the evaluation was carried out inde-
pendently by the three evaluators, the scores were 
compared in a joint meeting of the three evaluators. 
When the evaluators failed to come to a unanimous 
evaluation of an item, the reasons for the different rat-
ings of the point under discussion were then discussed 
by them further, and the final decision was protocolled, 
together with the reasons for it (see Frankewitsch et 
al., 2012, pp. 112 ff.). The independent evaluation lead 
to nearly unanimous results, with a minimum of 2 (4 
platforms), a maximum of 6 disagreements (1 Platform), 
the median is 4 disagreements (out of 120 scores) only.

The scores for assessment, assistance, and so on, are 
multiplied with 10, which leads to the following values:

Assessment Strength: AS-value | Assistance 
(Help) Strength: HS-value | System Structure: 
SyS-value | Choice of Exercise System: CES-
value | Degree of freedom: DF-value | Thematic 
Completeness: TC-value

The thematic completeness is evaluated as has been 
described before. The percentage is divided by 100 
to yield a decimal number between 0 and 1 which is 
called TC. The result of the multiplication of TC with 
the AS-value is the weighted AS-value W-AS, and so on.
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CONSIDERATIONS FOR CHOOSING WHICH 
ONLINE PLATFORMS FOR LEARNING AND 
PRACTISING MATHEMATICS TO EVALUATE

In the face of the over 60 mathematics-platforms to be 
found in the internet, often with very different objec-
tives, a definition of the platforms to be evaluated is 
necessary. The following conditions must be met to 
be included on the list:

The software can be used completely without a tutor, 
it serves principally to practise mathematical skills, 
the mathematical topics of grades 5 to 10 are covered 
as completely as possible, and the software can be used 
by interested school children or their parents without 
involving an external institution (such as the school).

The following list gives an overview of the finally se-
lected platforms. 

German language platforms
Abfrager: abfrager.de
Bettermarks: Bettermarks.de
Mathegym: mathegym.de
Realmath: realmath.de
Scolaris: scolaris.de
Skilltime: Lernen.skilltime.de

English language platforms
AAA Math: aaamath.com
ALEKS: aleks.com
Aplia: aplia.com
Bettermarks: bettermarks.de
BrainPop: brainpop.com
Ixl: ixl.com

Khan Academy: khanacademy.org 
Mangahigh: mangahigh.com
Mathletics: mathletics.eu
MathsOnline: mathsonline.com.au
TenMarks: tenmarks.com

RESULTS

10 points per item
Due to limitation of space, we give the results for those 
platforms only which yield a score over Q3(=120), and 
add the result for the weakest platform, to show the 
spread. (Table 2)

Alternative scoring
If we do not consider the formative stage, and find 
assistance beyond saying “right” or “wrong” not de-
sirable, the results are as follows in Table 3.

DISCUSSION

The evaluation system developed in this paper leads 
to a ranking order in which bettermarks is leader far 
ahead all other systems. An important reason for this 
is the construction of bettermarks as a system with a 
strong emphasis on the formative stage. This decision 
leads to a system in which not only the end result of a 
computation is assessed, but the intermediate steps as 
well. In consequence, the evaluation of the assessment 
system AS-score) and the assistance system (HS-score) 
of bettermarks leads to far higher scores than that of 
the other systems – but even if the formative stage 
is not rated as in the alternative scoring, the leading 
position of bettermarks remains untouched.

TC W-AS W-HS W-SyS W-CES W-DF Total

Scolaris 0,22 2 9 2 0 1 14

Mangahigh 0,58 15 58 17 29 1 120

Khan Academy 0,44 15 52 13 17 26 124

IXL 0,69 21 55 21 28 3 128

Tenmarks 0,67 13 87 13 13 1 128

Mathegym 0,62 31 62 12 12 25 142

Bettermarks 0,65 65 164 26 65 46 367

Table 2

Scolaris Mangahigh Khan IXL Tenmarks Mathegym Bettermarks

14 99 89 93 61 102 223

Table 3
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Other important aspects under which many of the 
systems are very weak, and which must be improved 
to yield higher scores, are deficits in the assistance 
system (IXL: no pre-active help, no formative help, HS-
value = 80 (of 410), W-HS=55), and the assessment sys-
tem (Mangahigh: simple normative only, AS-value=25, 
W-AS=15).
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Our study was designed to identify a learning trajectory 
for the accumulation function as it learned with multiple 
representational technology based artifact. Thirteen 
pairs of 17-year-old students were asked to explain the 
connections between multiple-linked representations 
and to conjecture about the mathematical relationship 
embedded in the artifact. The study was guided by the 
semiotic mediation theory and the theory of knowledge 
objectification. We include two rounds of analysis: one 
to detect mathematical elements involved in learning 
the accumulation function, another to identify the 
progression process of learning the accumulation 
function. The data analysis identified four phases in 
the processes of objectification along which we suggest 
a trajectory for learning the accumulation function 
concept.

Keywords: Accumulation function, multiple-linked 

representation, semiotic mediation, objectification, 

learning path. 

INTRODUCTION 

Constructing a learning trajectory for students is 
one of the most daunting and urgent issues facing 
mathematics education today (Steffe, 2004). The 
main issue concerns the promotion of students’ 
development of new mathematical concepts, especially 
concepts the development of which is challenging. 
The accumulation concept, which central to the idea 
of integration, is one of such concept. Learning the 
integral concept based on the accumulation function 
may create opportunity for the student to make the 
connection between the derivative and the integral 
which is essential for meaningful learning of calculus 
(Thompson et al., 2013). Simon (1995) offered the 
Learning trajectory as a way to explicate an important 

aspect of pedagogical thinking involved in teaching 
mathematical understanding. According to Simon, 
learning trajectory consists of three components: 
(a) the students’ learning goal, (b) a hypothesis about 
the process of the students’ learning of mathematical 
concept, and (c) tasks to be used to promote the 
students’ learning (Simon, 1995). 

Studies regards the learning of the accumulation 
function concept (Thompson, Byerley, & Hatfield, 
2013), have examined the role of graphic and numeric 
artefacts in learning the accumulation function. In 
these studies, technology was used mostly in attempts 
to relate a function with its accumulation function in a 
simulated-physical situation such that of time graphs 
involving velocity and position (e.g., Noble, Nemirovsky, 
Wright, & Tierney, 2001). The present study examines 
the learning of the integral concepts analytically by 
high school students as they learn it with dynamic, 
interactive, and multiple-representation artifacts.

Multiple-representational artifacts enable the 
development of learning environments that present 
in separate linked windows the accumulation 
and its rate of change functions. In an attempt to 
identify a learning trajectory which help students 
conceptualizing the accumulation function, our 
study was designed to explore the objectification 
processes of the accumulation function when it learn 
by multiple-linked representations and interactive 
artifact. To do so, we explore the ways in which high 
school students learn the accumulation function with 
multiple-linked representation artifact. 

THEORTICAL FRAMEWORK 

The study was carried out using the theoretical 
framework of semiotic mediation (Bartolini Bussi 

http://osamasw@gmail.com
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& Mariotti, 2008) and the theory of knowledge 
objectification (Radford, 2003). The semiotic 
mediation theory considers learning as an alignment 
between the personal meanings arising from the use 
of a certain artifact for the accomplishment of a task 
and the mathematical meanings that are deposited 
in the artifact. Personal meanings are to refer “to 
a state in which a learner believes/feels/thinks 
(tacitly or explicitly) that he has grasped the cultural 
meaning of an object (whether he has or has not),” 
and a mathematical meanings are to refer, “to the 
extent that its usage is congruent with its usage by 
the mathematical community” (Berger, 2005, p. 83).  In 
the context of using artifacts, the semiotic mediation 
theory describes the relations between personal 
meanings and mathematical meanings as a double 
semiotic relationship. On one hand, concentrating 
on the use of the artifact for accomplishing a task, 
recognizing the construction of knowledge within 
the solution of the task. On the other hand, analysing 
the use of the artifact, distinguishing between 
the personal meanings arising from the use of the 
artifact in accomplishing the task and meanings that 
an expert recognizes as mathematical when observing 
the students’ use of the artifact in order to complete 
the task. Radford (2003) suggests a semiotic tool 
to analyse the dynamically evolving relationship 
between personal and mathematical meanings. 
The basic components of the semiotic tool are the 
students’ progressive attention and awareness of the 
mathematical object. Varieties of semiotic means of 
objectification that have a representational function 
attract the students’ attention to mathematical 
objects. Furthermore, the properties of the artifact 
can help students attend to the mathematical 
objects related to the activity under consideration. 
Paying attention to the necessary aspects of the 
mathematical phenomenon and using various 
semiotic means of objectification, students become 
aware of the attributes of mathematical objects 
within that phenomenon. Being aware, students 
attain objectification of the mathematical objects, 
which then become apparent to them through various 
devices and signs. 

Given the cultural knowledge deposited in any designed 
artifact, we consider the linked graphs, the table of 
values, and the control tools that are the focus of the 
present study as culturally determined signs that 
convey knowledge regard the accumulation function. 
The accumulation function is represented symbolically 

as 
i = 1

n
∑ f(xi) ⋅ ∆xi . The mathematical structure of the 

accumulation function involve variety of mathematical 
elements. Such as ∆x, product f(x)∆x, and sum of 
products ∑ f(x)∆x. These elements are deposited in the 
artifact used in this study. 

The students’ learning goal is to come up with 
conjectures about the mathematical relationship 
of the accumulation function. We hypothesize the 
students should become aware of the mathemat-
ical elements of the accumulation function as they 
interact with the artifact. Our aim is to explore the 
ways in which students become aware of the idea of 
accumulation as it is represented in the artifact. We 
propose to answer the following research question: 

How and what are the mathematical elements used 
by the students in the process of becoming aware 
of the mathematical meanings of the accumulation 
function when it is learned with multiple-linked 
representational artifact?

SEMIOTIC POTENTIAL OF THE ARTIFACT  

The interactive integral and accumulation artifacts at 
the heart of our study are part of the calculus unlimit-
ed (CUL) artifact. As a multi-representational artifact, 
CUL contains different types of tools that we grouped 
into four categories. 

I) Graphing tools: Two vertically aligned Cartesian 
systems, coordinated vertically. The trajectory in 
the upper Cartesian system signifies a function. 
The function is defined symbolically by the free 
input of a single variable expression. The trajec-
tory in the bottom system presents the values of 
Riemann sums 

i = 1

n
∑ f(xi) ⋅ ∆xi.

II) Numeric tools: The associated table of values con-
tains three columns. The left column presents 
the upper boundary values, the middle column 
presents the delta x values and the right column 
shows the accumulated values.

3) Accumulation tools: Because our study focused on 
the computation of rectangles, the rectangles that 
appear on request in the upper Cartesian system 
(the function system) represent the product of 
f(xi + ∆xi)∆xi. Rectangles are color-coded to reflect 
the product sign (positive or negative) (Figure 1).
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IV) Boundaries tool: After the function f and the meth-
od of accumulation are specified, three parame-
ters determine the value of the accumulation at 
a given point: the lower and upper boundaries 
of a bounded region and the width of each inter-
val into which the region should be divided. The 
design of CUL attempts to direct the attention 
of the user to these parameters and emphasizes 
especially the control over the upper boundary 
value, with its immediate visual feedback of a val-
ue of accumulation points. Students control the 
bounded area by using arrows to move a marker 
in intervals of ∆x to the left or to the right of the 
lower boundary (∆x is an absolute measure of the 
interval, thus always achieving a positive value 
both right and left of the lower boundary). The 
upper boundary value is represented in the ac-
cumulation function graph by a marked coloured 
point and in the table of values.

STUDY DESIGN 

The present study explores approximately 12 hours 
of learning by 13 pairs of 17-year-old students from 

two different schools in Israel. The students volun-
teered to participate in five after-school meetings. At 
the time the meetings took place, the students had al-
ready learned the concepts of function and derivative. 
The Author introduced them briefly to the interface 
and illustrated how to use it. He explained, for ex-
ample, how to input the symbolic expression, how to 
change the controlling parameters. In particular, the 
students were told about the technical functionality 
of the artifact. 

To promote the processes of objectification of the ac-
cumulation function, we asked the students to explain 
and explore the possible connection between two giv-
en function graphs and the table of values. They were 
given the instructions in Figure 2.

The learning took place in the computer lab at school. 
Students were video-recorded and the corresponding 
computer screens were captured. 

Data Analysis. The data analysed through two lev-
els: (a) the macro level: identifies the mathematical 
elements involved in objectifying the accumulation 
function. Mathematical elements were defined as seg-
ments of discourse in which the students sought to 
discover the mathematical relationship inherent the 
accumulation function, for example, delta x, product, 
sum of product, and the positions of the accumula-
tion function graph. (b) at the meso level, we analyzed 
the data in two stages: (a) we distinguished person-
al meanings that are accepted mathematically from 
those that are not. Statements that in the context of 
the accumulation function are mathematically wrong 
were defined as personal meanings that are not ac-
cepted mathematically. By contrast, statements that 
are mathematically correct in the context of the ac-
cumulation function were defined as personal mean-
ings that are accepted mathematically. For example, 
statements like “the y-value of the initial point in the 
accumulation function is equal to the height of the 
rectangle,” which refers to the objectification product 

Figure 1: CUL interface

Figure 2
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were defined as personal meanings that are not ac-
cepted mathematically. For each value of delta x other 
than 1, the initial point in the accumulation function 
is equal to the product of the rectangle dimensions, 
but not equal to the height of the rectangle. For this 
reason, we defined this statement as a personal mean-
ing that is not accepted mathematically. Statements 
like “the y-value of the initial point in the accumula-
tion function is the same as the first rectangle area” 
were defined as personal meanings that are accepted 
mathematically. (b) we applied the strategy of evolu-
tion over time to each pair of students, to analyze the 
evolution of personal meanings into mathematical 
ones over time.

FINDINGS 

The detected elements were grouped into four catego-
ries: (a) objectifying delta x as splitting  the x-axis into 
equal-length segments, (b) objectifying the product, 
(c) objectifying the sum of product, and (d) objecti-
fying  the properties of the accumulation function 
graph. Categories (b), (c), and (d) were divided into 
subcategories based on the mathematical element 
that is under consideration. In the graph below, we 
summarized the frequencies of pairs of students who 
used each element at least once in the learning process. 

We found that all the students tried to objectify the 
product f(x)∆x, which are represented by the initial 
value point in the accumulation function graph (point 

A, Figure 1). Furthermore, all of them tried to objectify 
the sum of product in a domain in which the upper 
boundary values are bigger than the lower boundary 
values (B2, C1). The majority of students (11 pairs) con-
sidered the reflection of the lower boundary value in 
the accumulation function graph (B1). Eleven pairs of 
students also tried to identify the accumulation func-
tion in a domain in which the upper boundary values 
are smaller than the lower boundary values (C2). Nine 
pairs tried implicitly to identify delta x as dividing the 
x-axis into segments of equal length (A1). Nine pairs 
also considered the position of the accumulation func-
tion graph relative to the x-axis (D1). Six pairs tried to 
objectify the concavity of the accumulation function 
graph (D3). Five pairs considered the accumulated 
zero (C3), and three pairs considered the tendency of 
the accumulation function graph (D2)

Paths followed to learn the 
accumulation function
In Table 1 we present a distinction between personal 
meanings that are accepted mathematically and those 
that are not. The number of episodes associated with 
each category is also shown in Table 1. For example, in 
row B2 the number 41 indicates that 41 of all the epi-
sodes are associated with the mathematical element 

‘product’ represented by the “Initial value point in the 
accumulation function.” Eighteen of these were con-
sidered to be accepted mathematically and 23 were not.

Fig 2: Frequencies of pairs of students who used each elements at least onceFigure 3: Frequencies of pairs of students who used each elements at least once
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We counted a total of 211 episodes containing mathe-
matical elements. Five percent (10/211) of the episodes 
were devoted to identifying delta x as dividing the 
x-axis into intervals of equal length. Thirteen percent 
(27/211) were devoted to identifying the reflection of 
the lower boundary value in the accumulation func-
tion graph. All of these but one were coded as mean-
ings accepted mathematically. These findings may in-
dicate that the objectification of these two mathemati-
cal elements was not challenging for the students. It is 
possibly that the design of the artifact helped students 
objectify these mathematical elements. Twenty one 
percent of the episodes (41/211) were devoted to the 
objectification of the initial value point. Twenty-three 
of these were coded as personal meanings that are not 
accepted mathematically. This finding may indicate 
that objectification of the product was challenging 
for the students.

Twenty seven percent of the episodes (57/211) were 
devoted to objectification of the accumulated values 
when the upper boundary value is bigger than the 
lower one. Forty-four episodes of these were coded as 
personal meanings that are accepted mathematically. 
In contrast, among the 31 episodes that were devoted 
to objectification of the accumulated values when the 
upper boundary value is smaller than the lower one, 
only four were coded as personal meanings that are 
accepted mathematically.  This finding indicates that 
the students were better able to objectify the sum of 
product when the upper boundary is bigger than the 
lower boundary than the other way around.

 Seventeen percent of the episodes (35/211) were devot-
ed to objectification of the properties of the accumula-
tion function. Only three episodes of these were coded 
as personal meanings that are not accepted mathemat-
ically. Twenty-two episodes were devoted to objectify-
ing the position of the accumulation function graph. 
Two of these were coded as personal meanings that 
are not accepted mathematically. Four episodes were 
devoted to the tendency of the accumulation function, 
and all of them were coded as accepted mathematically. 
Nine episodes were devoted to the concavity of the 
accumulation function graph and coded as accepted 
mathematically. This finding indicates that the stu-
dents who noticed the last two elements also became 
aware of their mathematical meaning.

Below we present evolutionary path in the learning 
process, which we identified through the data analysis. 
A learning path refers to the organization of learning 
activities in a proper order composed of knowledge 
elements, designed task, and artifact such that stu-
dents can effectively study a subject area. 

The chart in Figure 4 show the order in which stu-
dents were engaged with various mathematical ele-
ments, showing also the time elapsed. The data are 
color-coded. The mathematical elements appear in 
the left column. The numbers at the bottom repre-
sent the time in minutes. We divided each minute into 
four squares, each one representing 15 seconds. The 
colours distinguish between personal and mathemat-
ical meanings. The grey colour represents personal 

Elements Accepted∆ Not accepted Total

A: Delta x 

A1:  Dividing the x-axis into intervals of equal  length 10 0 10

B: Objectifying the product  f(x) ⋅ ∆x 

B1: Reflection of the lower boundary  value in the accumulation function 26 1 27

B2: Initial value point in the accumulation function graph 18 23 41

C: Objectifying  the accumulation function as sum of products 

C1: Accumulated value in which the upper boundary is bigger than the lower 44 13 57

C2:  Accumulated value in which the upper boundary is smaller than the 
lower

4 27 31

C3:  Accumulated zero 10 0 10

D: Objectifying properties of the accumulation function graph

D1: Position of the accumulation function graph 20 2 22

D2: Tendency of the accumulation function graph 4 0 4

D3: Concavity of the accumulation function graph 8 1 9

Table 1: Frequency of mathematical elements distinguishing personal meanings that are and are not accepted mathematically
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meanings that are not accepted mathematically; the 
black colour represents personal meanings that are 
accepted mathematically. 

Analysis of the charts suggests a possible path for 
learning the accumulation function graphically. The 
chart (Figure 4) illustrate the suggested path, which 
consists of four phases: (a) objectifying delta x, (b) 
objectifying the product, (c) objectifying the sum of 
product, and (d) objectifying the properties of the ac-
cumulation function graph. Despite the differences 
between the charts, the similarity between them is 
apparent in the trend line. 

The students initially identified delta x and ascribed 
mathematical meaning to it as a divider of the x-axis 
into intervals of equal length. It seems that objecti-
fying delta x and becoming aware of its role was an 
important aspect of objectifying the product f(x)∆x. 
Students who initially tried to objectify mathematical 
elements other than delta x returned to objectify delta 
x after several unsuccessful attempts at identifying 
the other elements (Figure 3). Objectifying the reflec-
tion of the lower boundary value in the accumulation 
function occurred before the objectification of the in-
itial accumulated point in the accumulation function 
graph. This finding may point to the principal role 
played by the lower boundary in students becoming 
aware of the accumulation function. Although our 
analysis shows that becoming aware of the product 
was a complex process (row B2, Table 1), eventually 
most students were able to objectify the product and 
ascribe mathematical meaning to it. However, analy-
sis of the chart shows that these students undertook 
several attempts before becoming aware of the math-
ematical meaning of the product (Figure 4). This find-

ing indicates that students were able to overcome the 
complexity of objectifying the product. 

Objectifying the sum of the products usually occurred 
after the students have objectified the product f(x)∆x. 
Students who tried to objectify the sum of the prod-
ucts before becoming aware of the product f(x)∆x were 
not able to do so (grey segments in row C1 in Figure 3). 
Analysis of the chart reveals that only three episodes 
out of 13 that were coded as not accepted mathemati-
cally in category C1 (accumulated value in which the 
upper boundary is bigger than the lower, Table 1) oc-
curred after the students objectified the product f(x)∆x. 
This finding indicates that objectifying the product 
f(x)∆x made possible the objectification of the sum of 
the products ∑ f(x)∆x.

DISCUSSION  

The learning trajectory suggested in this study is 
comprised of four phases of objectification: (a) delta 
x, (b) product, (c) sum of product, and (d) accumula-
tion function graph properties. Since delta x is central 
element of the mathematical structure of the accu-
mulation function, becoming aware to it meanings is 
an essential part in understanding the accumulation 
function. The linked dynamic representation play a 
central role in objectifying delta x. Our decision to 
determine that delta x is a fix-equal value was inspired 
by pedagogical rather than mathematical considera-
tions. This decision found useful in drew the students 
attention which afford them to become aware of the 
mathematical meanings of delta x.   

Objectifying the product was challenging for the 
students. This finding is consistent with those of 
Sealey’s (2014) study, claiming that difficulties in 

Figure 4: Learning path for Remy and Shaheed
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understanding the product are not necessarily re-
lated to performing calculations but rather to how 
the product is formed. Our findings indicate that the 
complexity of becoming aware of the product was not 
related to performing the calculation but to the semi-
otic structure of the multi-representations. Although, 
the complexity that accompany the objectification 
of the product, eventually the students were able 
to overcome this complexity. The properties of the 
function graph and controlling the upper boundary 
afford the students to objectify the product. Varying 
the upper boundary parameter in a discrete manner 
and its reflection on the multi-representations drew 
the students’ attention to the connection between the 
emerging rectangles and the accumulation function 
graph. The semiotic potential of the artifact encour-
ages the emergence of personal meanings and that the 
control tools promote evolution toward the accepted 
mathematical meaning. Concerning objectifying the 
sum of product, the students have partially become 
aware of the sum of product. On one hand, objectify-
ing the sum of product in which the upper boundary 
is bigger than the lower was less challenging for them 
(Table 1). On the other hand, despite our attempt to 
provide students with a wide variety of graphs to 
help them objectify the meaning of the accumulation 
function for each value of x, they were not able to ob-
jectify the accumulation graph in which the upper 
boundary is smaller than the lower boundary value.  
This finding is not completely consistent with Sealey’s 
findings that “None of the students spent much time 
explicitly discussing the concepts represented in the 
summation layer” (p. 240). 

In spite of, the properties of the accumulation func-
tion graph is not mentioned implicitly in the mathe-
matical structure. However, becoming aware to the 
properties of the accumulation function graph is 
epistemologically important since the transition from 
local to global observation means an evolution of the 
meanings because of theoretical reasons. Hence, we 
believe that this phase should be included in the learn-
ing path for objectifying the accumulation function. 
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This article discusses student perceptions of if and how 
online resources contribute to mathematics learning 
and motivation. It includes results from an online sur-
vey we conducted at the Media Technology department 
of Aalborg University, Copenhagen, Denmark. For this 
study, students were given links to various online re-
sources (screencasts, online readings and quizzes, and 
lecture notes) for out-of-class preparation in a flipped 
classroom in mathematics. The survey results show 
support for student perceptions that online resources 
enhance learning, by providing visual and in depth ex-
planations, and they can motivate students. However, 
students stated that they miss just-in-time explanations 
when learning with online resources and they ques-
tioned the quality and validity of some of them. 

 Keywords: Student perceptions, screencasts, Khan 

Academy, flipped classroom, mathematics education.

INTRODUCTION AND CONTEXT

One of the recent developments in teaching is the 
flipped (or inversed) classroom approach (Bergmann 
& Sams, 2012).  In a flipped classroom the traditional 
lecture and homework sessions are inverted. Students 
are provided with online material in order to gain 
necessary knowledge before class, while class time is 
devoted to clarifications and application of this knowl-
edge. The course content, which is provided for self-
study, may be delivered in the form of screencasts and/
or pre-class reading and exercises, while class time is 
mainly used for group work activities. The hypothesis 
is that there could be deep and creative discussions 
when the teacher and students physically meet. This 
teaching and learning approach endeavours to make 
students owners of their learning trajectories, and 
relies heavily on current technology.

Various researchers and instructional designers have 
sought to investigate the advances in flipped learning 
environments (Bishop & Verleger, 2013). According 
to such studies, students were very positive about 
their experience and instructional video components 
in flipped classrooms (Love, Hodge, Grandgenett, & 
Swift, 2014) and suggested that flipped classroom 
approach (1) provided them with an engaging learning 
experience, (2) was effective in helping them learn the 
content, and (3) increased self-efficacy in their ability 
to learn independently (Enfield, 2013). 

While the aforementioned approaches report on 
benefits of the flipped classroom, there are also 
critics to this approach (Kellinger, 2012; Nielsen, 
2012). Concerns include among others: criticism about 
the accessibility to online instructional resources, 
the growing move towards no homework, lack of 
accountability for students to complete the out-of-
class instruction, poor quality video production, and 
inability to monitor comprehension and provide just-
in-time information when needed.

Taking into consideration the reported strengths and 
weaknesses, we introduced this instructional model 
to a statistics course for Media Technology students 
(Triantafyllou & Timcenko, 2014). The results of this 
study revealed appealing qualities but also drawbacks 
of flipped mathematics classrooms. One of our biggest 
concerns was the resources, which students would get 
as a preparation for the class. In that study, the stu-
dents got links to online mathematics courses, lecture 
slides from a mathematics course they had attended, 
and screencasts of problem solutions. The screencasts 
were produced by us using a smart pen. With regard 
to the screencasts, the results showed that students 
found them helpful, they appreciated the fact that they 
could skip or re-watch parts of the solution, and they 
felt they were supported when studying challenging 
concepts. Nevertheless, less than half of them watched 

mailto:evt@create.aau.dk
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most of them and they mentioned as a weakness the 
fact that they cannot ask questions for clarification 
during a recorded lesson. Moreover, our personal 
experience was that creating quality screen casts is 
time consuming and hard.

Therefore, we decided to conduct a survey study in 
order to further investigate student perceptions 
and preferences on online resources and especially 
screencasts as part of a flipped mathematics classroom. 
The study was carried out during a mathematics 
workshop, which was implemented using the 
flipped classroom model. The workshop was offered 
to fifth semester Media Technology students as an 
introduction to their computers graphics rendering 
and computers graphics programming courses. In 
the following sections, we discuss previous studies 
on student perceptions on online resources and 
describe our methodological approach. Afterwards, 
we present and analyse the results of this survey 
study. We conclude this paper with a discussion and 
an outline of future work.   

BACKGROUND

Various researchers have sought to investigate student 
perceptions and learning with online resources, both 
in traditional and flipped classrooms (McGarr, 2009). 
In the case of traditional classrooms, online resources 
are given to students for revision or preparation for 
assessments. Regarding student use of such resources, 
Biehler et al. introduced interactive modules 
containing domain knowledge, exercises, diagnostic 
tests and illustrations within blended bridging 
courses in mathematics and found that slightly more 
than 50% of the students used the diagnostic tests 
(Biehler, Fischer, Hochmuth, & Wassong, 2012). Kay 
and Kletskin introduced problem-based screencasts 
covering key areas in mathematics. The screencasts 
were created as self-study tools, and used by higher 
education students to acquire pre-calculus skills (Kay 
& Kletskin, 2012). The results indicated that a majority 
of students used the screencasts frequently.

As far as student perceptions of online resources 
are concerned, Biehler et al. found that students 
considered them helpful, while Kay and Kletskin 
reported that students viewed online resources 
as easy to use, effective learning tools, rated them 
as useful or very useful, and reported significant 
knowledge gains in pre-calculus concepts.

Factors that determine student perceptions of online 
resources have been also investigated. In the study 
by Biehler et al., the results showed that the use of 
such resources was highly depended on the learning 
type of the student. Yoon and Sneddon conducted a 
study on student perceptions of the effective use of 
lecture recordings (screencasts) in undergraduate 
mathematics courses and they identified a set of 
factors that determine student perceptions of live and 
recorded lectures as competing or complementary. 
Personal learning styles, study habits, esteem for 
the lecturer and the possibility of interaction in 
the lecture can namely make students prefer live 
lectures rather than lecture recordings (Yoon, Oates, 
& Sneddon, 2014).

Nevertheless, there are researchers, who challenge 
the learning that unfolds in online environments 
(Parslow, 2012; Schwartz, 2013). Such critics claim, 
for instance, that some online resources have no 
pedagogical underpinnings, don’t allow learners 
to build knowledge hierarchically, and don’t offer 
meaningful or personalized feedback. 

Our past research revealed that Media Technology 
students encounter challenges in their mathematics 
learning, because they lack motivation and basic 
skills in mathematics (Triantafyllou & Timcenko, 
2013). In our previous study these students perceived 
screencasts to be helpful and supporting for out-of-
classroom learning, but we wanted to investigate 
further if and why these students choose to learn 
using such resources.

METHODOLOGY

In order to explore student perceptions and preferences 
on online resources, we conducted an online survey 
study at the Media Technology Department of Aalborg 
University Copenhagen. We surveyed fifth semester 
students, who had just finished a mathematics 
workshop, which served as an introduction to two 
semester courses: computer graphics rendering and 
computer graphics programming. This workshop 
aimed at recapitulating prerequisite mathematics 
knowledge for these courses (i.e. linear algebra, 
geometry and trigonometry). 

The mathematics workshop followed a flipped 
classroom model of instruction. To facilitate this, we 
created a list of various online resources to provide 
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students with instruction outside of the classroom 
(before the lectures). We gave students a detailed 
reading guide that provided information on the topics 
covered by each resource and a studying sequence. 
The online resources included: (1) Selected Khan 
Academy screencasts and related practice problems 
(www.khanacademy.org/), (2) Selected sections of 
the www.mathisfun.com webpage, that contains 
both explanations, visualizations and quizzes, (3) 
Selected readings from the www.betterexplained.
com webpage, which aims at presenting mathematics 
in an intuitive way, using text and visualizations, (4) 
scanned lecture notes from their past mathematics 
course covering the relevant subjects. We chose 
different sources, in order to provide support in 
solving exercises, brief and simple introduction 
to the related concepts and real-life examples and 
intuitive explanations. Students had to take an 
online quiz out of classroom before attending the 
workshop. The quiz contained questions similar to 
past mathematics exams. Therefore, the students were 
aware with this kind of questions. We used the quiz 
in order to observe student understanding, recurrent 
misconceptions and common mistakes, since the vast 
majority of students had passed these exams in the 
past. The information exchange between the teacher 
and the students (i.e., resources for out of classroom 
learning, assignments, news forum) and the quizzes 
were facilitated by the Moodle VLE. 

The online survey used a Likert scale in order to 
collect student responses on use of the assigned 
or other online resources, and on perceptions of 

learning when using them. Items in the survey were 
measured using 5-point rating scales, with the range of 
answers from “strongly disagree” to “strongly agree.” 
Moreover, there were items, which gave students the 
opportunity to provide information in an open-ended 
manner. 

The survey was sent to the 100 students subscribed 
to the mathematics workshop. Since the survey was 
optional, it was not possible to ensure all students 
completed it. Forty six students responded to the 
survey, yielding a response rate of 46%. The response 
rate is relatively high, but it should be noted that 
it was not a simple random sample. For example, 
there could be bias towards more diligent students 
(who may be potentially more likely to give positive 
feedback), or only the students who actually used the 
online resources. The results of our past study and 
the large sample size help to some extent to mitigate 
the influence of this bias. 

RESULTS AND ANALYSIS

From the analysis of the survey results, we excluded 
two responses, because they were incomplete. 
Therefore we had a sample size of forty four responses 
(N=44, 61% male and 39% female). Nearly all survey 
respondents (91%) said that they had used some online 
resources in mathematics either for the mathematics 
workshop or in the past (Figure 1). The distribution of 
usage for the different resources is shown in Figure 2 
(students were allowed to select more than one option). 
One third of the respondents having used some online 

Figure 2: Distribution of answers to the question “Which material have you used?”

Figure 1: Proportion of students surveyed who have used online resources for mathematics

http://www.khanacademy.org/
http://www.mathisfun.com
http://www.betterexplained.com
http://www.betterexplained.com
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resources, made also use of resources we did not sug-
gest. These resources are shown in Figure 3.

Students who used online resources were invited to 
respond to a series of statements on watching Khan 
Academy screencasts and reading online resources. 
We made this separation, because watching a prob-
lem solution triggers different thinking from read-
ing a text or even a written solution to a problem. In 
the following analysis, we combine “Strongly agree” 
and “Agree” answers to summarize those people who 
agreed with the statements and “Strongly disagree” 
and “Disagree” answers to summarize people who 
disagreed with the statements. 

Figure 4 summarizes the results for the statements 
on Khan Academy screencasts. A significant majority 
of students who used these screencasts found that 
watching them has helped with their learning and has 
improved their understanding (82% and 81% respec-
tively). The statements on screencast contribution 
on understanding the course material and making 
mathematics easier received also high agreement 
scores (78% and 77% respectively). Less strong agree-

ment (72%) was seen with the second statement, which 
relates to their use for increasing engagement and 
even less (58%) with the statement about screencasts 
increasing opportunities to access other useful in-
formation.

Figure 5 summarizes the results for the statements on 
other online resources. The vast majority of students 
who used some kind of online resources found that 
reading online resources has helped with understand-
ing the course material and has improved their under-
standing (90% and 86% respectively). The statements 
on screencast contribution on improved learning and 
on increasing opportunities to access other useful 
information received also high agreement scores (82% 
and 79% respectively). Less strong agreement (76%) 
was seen with the fifth statement, which relates read-
ing online resources to making mathematics easier to 
understand and even less (58%) with the statement on 
online resources helping students engage.

In addition to agreeing or not with these statements, 
we asked students to define the strong and weak points 
of these resources. We included these two open-ended 

Figure 3: Distribution of other online resources among survey responses

Figure 4: Percentage agreement and disagreement of students with statements on watching Khan Academy videos (screencasts)
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questions, because we wanted to give students the 
opportunity to provide further information on their 
perceptions in an open-ended manner. The strong and 
weak points of Khan Academy screencasts as pointed 
out by the students are shown in Table 1, while the 

strong and weak points of reading online resources 
are shown in Table 2. For building these tables, we 
have grouped answers with the same meaning but 
different wording.

Figure 5: Percentage agreement and disagreement of students with statements on reading online resources

Strong points Frequency Weak points Frequency

The narrator is good at explaining 27.3% None 13.6%

You can pause/rewind 18.2% They are long 13.6%

Visual explanations 18.2% I don’t know 13.6%

They come along with quizzes 18.2% No one to ask questions 9.1%

They helped me focus 13.6% Complicated language 9.1%

Clear structure 9.1% They are boring 4.6%

Good tempo/pace of explanation 9.1% Too abstract 4.6%

Easy to understand 4.6% Sometimes confusing 4.6%

Step by step explanations
They are fun

4.6%
4.6%

Knowledge does not “stick” in memory if you 
just watch and don’t practice yourself

4.6%

Easily accessible 4.6% You don’t know which video to watch, in case 
you experience knowledge gaps 

4.6%

Table 1: Student perceptions on strong and weak points of Khan Academy screencasts

Strong points Frequency Weak points Frequency

Different explanations for the same 
topic

31.0% No one to ask questions 20.7%

Easily accessible 17.2% Debatable quality / validity 20.7%

Visual explanations, animations 17.2% Possibly time consuming to find what needed 13.8%

Can be fun 6.9% Overwhelming amount of information 10.34%

Explanations on specific topics 6.9% Sometimes confusing 6.9%

A fast way to find information 6.9% Notation and categorization may differ 6.9%

Easy to understand 6.9% Possibly inaccessible due to technical problems 3.5%

Reproducibility 3.4% No one to check your understanding 3.5%

You can get help from others 
They are fun
Some come along with quizzes

3.4%
4.6%
4.6%

Our brain gets used to search for knowledge, not 
to memorize it

3.5%

Table 2: Student perceptions on strong and weak points of reading online resources
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Respondents who said that they did not use any on-
line resource for mathematics were asked the reasons 
for it. Fifty percent of the students mentioned other 
reasons, namely “I was never introduced to anything 
good” and “(they are) too complex, no explanations, 
(I) can’t even solve the very first exercise”. The other 
statements were equally favored by students (Figure 
6). Students were also asked which tools they use for 
studying mathematics. Books and notes were men-
tioned by 50% of the students, pen and paper by 25%, 
Matlab by 25% and study groups by 25%.

DISCUSSION AND CONCLUSION

In this online study, we surveyed Media Technology 
students on their perceptions on online resources in 
mathematics. The survey consisted of both close- and 
open-ended questions in order to better sketch stu-
dent perceptions. We observed a general consistency 
between close- and open-ended questions. Regarding 
Khan Academy screencasts, students found them to 
provide good and detailed explanations, although 
some mentioned that they look messy or confusing 
sometimes. Students perceived them also as being en-
gaging and helping creating focus. The least support-
ed statement on screencasts is the one on screencasts 
creating links to other useful information. This can be 
explained by the mission of the Khan Academy web-
site to be a closed environment, where students should 
find all the information and support they would need 
(screencasts, practice problems, feedback from teach-
ers/peers, etc.). What students missed in screencasts 
was mostly the ability for just-in-time explanations, 
being shorter and using less complicated language. 
However, the last one can be attributed to the fact, that 
Media Technology students lack basic skills and thus 
also terminology in mathematics. Another fact worth 
mentioning is that 13.6% of the students stated that 
screencasts have no weak points. We would like here 

to acknowledge the fact that questionnaire data can 
be biased since survey respondents tend to answer 
questions in a manner that will be viewed favorably 
by others (King & Bruner, 2000). Therefore, we plan 
on incorporating more reliable methods for collecting 
data on resource usage, such as analyzing log data 
from Moodle.

Reading online resources were perceived by 
students to help answering specific questions 
and understanding the course material. They are 
perceived also as a means to find links to other useful 
information and to find different explanations on 
the same topic. Animations and visualizations are 
other aspects that students valued with regard to 
online resources. Nevertheless, 20.7% of the students 
mentioned the lack of just-in-time explanations and 
the matter of the quality and validity of such resources. 
There were also students (13.8%) stating that it could 
be time consuming to browse the internet for specific 
information. 

As to the reasons for students not to choose online 
resources, the survey results show some indication 
that there are students who still prefer books and 
pen and paper for studying mathematics. However, 
the number of students who completed the survey 
and did not use online resources is very small (N=4), 
therefore we cannot draw any statistically significant 
conclusions based on these answers.

The survey results indicate that online resources 
were seen by students completing the online survey 
as valuable and useful as an aid to learning. We con-
ducted this study in the context of a flipped classroom, 
where students were asked to prepare themselves be-
fore the lectures, by using this aid. Since working with 
mathematics by themselves is perceived by students 
the most important learning (Sikko & Pepin, 2013), we 

Figure 6: Distribution of answers to the question “Why have you never used online resources?”
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believe that the decision of which tools should support 
this individual learning is a crucial one. Our survey 
has indicated that watching screencasts is perceived 
more engaging than reading online resources, while 
reading online can help to find explanations that 
make sense to the individual. However, students still 
perceive face-to-face instruction as paramount, since 
the problems of the inability to follow comprehension 
and the lack of just-in-time explanations are still to 
be solved.

Although the results revealed that students perceive 
online resources as contributing to their learning 
and understanding, it is difficult to draw firm conclu-
sions in terms of improvements to student learning 
as at this stage it has not been possible to measure this 
quantitatively. In the literature, there are few studies 
on the flipped classroom that examined student per-
formance throughout a semester. In such cases, main-
ly pre- and posttest methods have been employed for 
student assessment. While the results from such stud-
ies are encouraging, there is not sufficient evidence 
for generalization beyond specific contexts (Bishop 
& Verleger, 2013). Thus, a further quantitative study 
will be designed for student assessment throughout 
a whole semester. 
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In recent decades, the approach to calculus in math-
ematics classrooms has changed: a quite formal ap-
proach—closely linked to the teaching of calculus at 
university and based on the sequence concept—has 
been transformed to an intuitive access to the concepts 
of limit and derivative. The importance of sequences 
has so far decreased that they are sometimes no longer 
even taught in the calculus course. In recent years, this 
concept has been criticized for not developing adequate 
perceptions of the basic concepts of calculus and not 
sufficiently preparing the students for scientific courses 
at university. In this paper, we will present an alterna-
tive discrete step-by-step approach to the basic concepts 
of calculus. It shows the theoretical basis of the on-go-
ing project “ABC – A discrete Approach to the Basics of 
Calculus” (see Weigand, 2014).

Keywords: Calculus, discrete mathematics, limit, derivative, 

digital technologies.

During recent decades, teaching the concept of deriv-
ative in mathematics classrooms has changed. In the 
seventies and eighties of the last century, especially 
in continental European countries such as France, 
Italy, Germany, and the Eastern European countries, 
the limit concept was based—in close relationship 
to college or university mathematics—on extensive 
work with sequences. A formal definition of the limit 
of a sequence and the proving of certain theorems 
concerning the convergence of sequences were the 
basis for the definition of the derivative of real-valued 
functions. In the late eighties and nineties—based on 
the calculus courses of Emile Artin (1957) and Serge 
Lang (1964/1973)—the model of an intuitive limit con-
cept was introduced in mathematics education, which 
was adopted as a concept for high schools (Blum 1975) 

and has since then been widely accepted in schools 
and is the dominant concept today (Törner et al., 2014).

Within the frame of the intuitive limit concept, no 
formal definition of a limit occurs. The access to the 
derivative starts with the discussion of real-valued 
continuous functions, using an intuitive limit concept 
such as “… coming closer and closer …” and calculating 
the derivative of polynomial functions by algebraic 
transformations without any formal definition of the 
limit. Using sequences is not necessary in this concept, 
at least as long as one does not consider more complex 
functions, for example trigonometric and exponen-
tial functions. The idea of the original concept of a 
simplified limit concept in the 1980s has been to con-
sider sequences “later,” but in reality, for example in 
many new curricula such as in Germany, sequences 
are no longer part of calculus in mathematics lessons. 

It becomes clear that this has been a turning point 
regarding the concept of calculus in mathematics 
lessons. The changes in the access to the derivative 
concept changed the contents and the structure of 
the entire calculus curriculum. A concept-oriented 
approach to calculus was substituted by an applica-
tion-oriented approach. There is a danger that learn-
ers stay on an intuitive and technical level and that 
basic ideas or conceptions for a content-oriented or 
integrated understanding of the mathematical con-
cepts are not given. 

In the following, we ask for the understanding of the 
basic concepts of calculus, concerning: 

 ― the present situation and (empirical) results if we 
look at the knowledge of students and freshmen 
at the university;

mailto:weigand%40dmuw.de?subject=
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 ― the theoretical basis or the basic knowledge to be 
able to understand the mathematical concepts of 
limit and derivative;

 ― a constructive strategy to develop these basic 
concepts in the classroom.

This article gives a theoretical framework for a new or 
an alternative access to the basic concepts of calculus. 
It uses digital technologies as a calculation and draw-
ing tool to present sequences or discrete functions 
and to compare the properties of different functions 
or sequences. It has to be seen as a basis for a follow-up 
empirical investigation.

CONCERNING THE UNDERSTANDING OF 
THE BASIC CONCEPTS OF CALCULUS

The understanding of the concept of limit has quite 
often been the subject of theoretical reflections and 
empirical investigations (Keene et al., 2014). It is well 
known that many students have problems with the 
formal definitions of the concepts of limit and deriv-
ative. They are either not able to use the definition 
properly in a given context, or they are able to solve 
problems on a formal level, but lack an advanced un-
derstanding of the concepts (e.g., Tall & Vinner, 1981). 
The main results of the investigations concerning the 
learning, teaching, and understanding of the limit 
concept in the last decades are: 

a) Conceptual understanding of the formal limit 
concept is challenging for high school students 
as well as for some college and university stu-
dents and requires explanations and visualiza-
tions using different representations (beyond 
the symbolic representation). 

b) The understanding of the process of the construc-
tion or calculation of limits in the sense of step-by-
step processes on numerical and graphical levels 
is essential for the understanding of the limit 
concept beyond a formal definition. This can be 
supported by computer visualizations.

To understand the concept of derivative, it is neces-
sary—besides understanding limit processes—to 
have adequate conceptions of the rate of change and 
to understand—in relation to limit processes—the 
transformation from the average rate of change to 
the local rate of change (see Rasmussen et al., 2014). 

There are numerous propositions concerning the use 
of digital technologies and their dynamic possibili-
ties of visualizing the approximation processes on a 
numerical and graphical level (e.g., Kidron & Zehavi, 
2002; Martinovic & Karadag, 2012). All those sugges-
tions have in common that they work with real-valued 
continuous functions and visualize—with programs 
such as Geogebra1—the limit processes dynamically 
with a sequence of secants converging to the tangent 
in a point of the graph of the function and/or the nu-
merical process of convergence in the frame of a ta-
ble (in a spreadsheet). The necessary transition from 
the continuous perspective to the discrete stepwise 
process—the discretization process—concerning 
the limit process, which includes selecting either a 
sequence of points on the graph or a sequence of nu-
merical values converging to a selected value of the 
function or to a point on the graph, has to be made by 
the learners on their own. 

The detailed (re-)construction of the limit process and 
the possibility of step-by-step thinking in the frame of 
this process has always been the strongest argument 
for working with sequences and their limits before 
starting to work with the limit of real-valued func-
tions and their limit processes, for example the first 
derivative.

SEQUENCES AND DIGITAL TECHNOLOGIES 

As a consequence of the increasing role of digital 
technologies in mathematics and mathematics edu-
cation, discrete mathematics, and hence sequences, 
have gained importance. This was emphasized by 
the NCTM Standards for School Mathematics (1989), 
which included discrete mathematics as a separate 
standard for grades 9 to 12: “Sequences and series ... 
should receive more attention, with a greater empha-
sis on their descriptions in terms of recurrence rela-
tions.”2 Sequences are prototypes of discrete objects 
in mathematics.

In the Principles and Standards for School Mathematics 
(NCTM 2000), however, discrete mathematics is no 
longer a separate standard but is now distributed 
across the standards and spans the years from kinder-
garten through twelfth grade. Iteration and Recursion 

1 www.geogebra.org

2 http://standards.nctm.org/Previous/CurrEvStds/9-12s12.htm

http://www.geogebra.org
http://standards.nctm.org/Previous/CurrEvStds/9-12s12.htm
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are explicitly emphasized as one of the three import-
ant areas of discrete mathematics. 

Even though sequences are not explicitly defined or 
introduced as a separate concept in the mathematics 
curriculum, they are used quite often implicitly or 
in an intuitive way: Many real-life problems allow 
mathematical representations with sequences, for 
example growth processes or problems involving 
goods and their cost, or approximation algorithms 
such as the Heron-method for calculating irrational 
numbers or the Newton-method for calculating zeroes 
of functions are based on iteration sequences. 

Nowadays, computers or digital technologies make it 
possible to generate sequences, to create symbolic, nu-
merical, and graphical representations, and to switch 
between different representations—by just pressing 
of a button. In the following, digital technologies are a 
tool allowing a discrete access to the concept of limit 
and derivative as a preliminary stage working with 
these concepts on a continuous level. 

A STEP-BY-STEP CONCEPT FOR A 
DISCRETE APPROACH TO CALCULUS

We will now present a concept of a discrete access to 
calculus, which develops the concept of the average 
rate of change based on a discussion of various se-
quences by looking at discrete functions. The advan-
tage of this concept is not presented in the beginning, 
the concept of rate of change is instead developed by 
using discrete examples. By gradually changing the 
step size of the discrete actions at hand, limit process-
es are prepared by comprehensible step-by-step ac-
tions and are thus easier to understand. Here, the com-
puter is used both as a tool for the representation and 
visualization of sequences and functions, and as well 
as a tool for creating recursively defined sequences in 
particular, which allows the user to switch between 
symbolic, numerical, and graphical representations 
(see Weigand, 2014). 

Level 1: Sequences and growth processes
Sequences can be explained or defined on a formal 
level via an explicit mapping an: ℕ → ℝ, or they can be 
defined recursively. This is widely used for the rep-
resentation of growth processes, for example linear 
growth by , exponential growth by an + 1 = A · an, and 
limited growth by an + 1 = an  + P · (B − an), n ∈ ℕ, while 
all other variables are being real numbers. These se-

quences can easily be visualized using a spreadsheet 
or a computer algebra system such as Geogebra. The 
main goal of this first level is to become acquainted 
with the recursive kind of definition of sequences, to 
see the relationship between local aspects, between 
successive elements, and global aspects of the whole 
sequence, and to see the dependence of elements of 
the sequence on the initial value and the parameters. 
In (Thies & Weigand, 2003) and (Weigand, 2004) it is 
shown that high school students (grade 11) can solve 
problems in the frame of growth processes while 
working experimentally with digital representations 
of recursively defined sequences. 

Level 2: Difference sequences 
The aim of this second level is the introduction of the 
concept of difference sequences (∆an)ℕ, ∆an := an+1 – an, 
of a given sequence (an)ℕ. The concept may be intro-
duced in connection with real-life problems, for exam-
ple the average air temperature in one year during the 
last 100 years, which may be presented in a table and 
a graph. The given relations in examples like this are 
not based on algebraic formulas. This would encour-
age students to not immediately working on a formal 
level and foster the understanding of the relationship 
between the sequence and the difference sequence by 
operating s step-by-step. 

Level 3: The concept Z-functions 
and their difference functions
3.1 Quadratic Z-functions
Starting with sequences or functions defined on the 
domain ℕ, we gradually extend the concept of se-
quence to functions defined on ℤ, f: ℤ → ℝ, and advance 
to more subdivided discrete domains. We call func-
tions f: ℤ → ℝ “Z-functions.” These functions f with y = 
f(z) are “extended sequences,” defined on integers z ∈ ℤ, 

Figure 1: f(z) = z2 – 2z + 3
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for example f(z) = z2 – 2z + 3. We will now look at these 
Z-functions in relation to their difference-Z-functions 
Df: Df(z) = f(z + 1) – f(z). 

The values of Df can be interpreted as the slope 
of a right-angled triangle with two legs of lengths 
|f(z + 1) – f(z)| and |∆z| = 1. Df(z) is the rate of change of 
the graph between the points (z, f(z)) and (z + 1, f(z + 1)). 
Digital technologies are used to visualize the depen-
dence of Df on the used parameters of f: f(x) = az2 + bz + c 
graphically and to give reasons for the behavior of Df. 

3.2 Polynomial Z-functions
The concept of Z-functions can be extended to polyno-
mial functions of a higher degree, as the respective dif-
ference functions can be obtained algebraically in an 
equally simple manner. For the family of Z-functions

f(z) = az3 + bz2 + c z + d,

for example, we get the (family of ) difference-Z-func-
tions Df with 

Df(z) = 3az2 + (3a + 2b)z + a + b + c.

We can see in particular that Df is a quadratic function, 
which is also apparent in the graph.

As an example we look at the Z-function f(z) = 0.1z3 – z 
+ 1, with the corresponding difference-Z-function Df = 
0.3z2 + 0.3z – 0.9 and their respective graphs.

The calculations can easily be extended to difference 
functions of higher order Z-functions, especially by 
using a CAS.

The advantage of working with these discrete func-
tions is the possibility of obtaining the rate of change of 
discrete polynomial functions only through algebraic 
transformations and the possibility of step-by-step 
argumentations concerning the properties of the func-
tion, especially concerning the rate of change and the 
difference function. 

3.3 Exponential Z-functions 
Using the graphical representation of the Z-function 
E(z) = az, a ∈ ℝ+, z ∈ ℤ, and its difference-Z-function, we 
obtain the graphs shown in Figures 5 and 6.

Figure 2: Df(z) = f(z + 1) – f(z)

Figure 3: Z-function f(z) = 0.1z3 – z + 1

Figure 4: Df(z) = f(z + 1) – f(z)

Figure 5: The Z-function E(z) = 1.7z
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It is striking how similar the “shapes” of the graphs of 
the Z-function and difference-Z-function are. A calcu-
lation on the formal level gives the following result:

De(z) = E(z + 1) – E(z) = az+1 – az = az (a – 1) = E(z)☉(a – 1).

The value De(z0) is obtained by the difference sequence 
for a given value z0 by multiplying the value E(z0) by 
the factor (a  – 1). Geometrically, the graph of the 
Z-function is the result of an orthogonal affinity of 
the difference-Z-function with the z-axis as the axis of 
affinity. For a = 2, the two graphs match exactly! There 
is therefore a value for which the difference-Z-func-
tion equals the Z-function!

Level 4: The function of the 
difference quotients
The difference function Df with Df(z) = f(z + 1) – f(z) of 
a Z-function f can be interpreted as the slope of the 
Z-function f concerning the points (z, f(z)) and (z + 1, 
f(z + 1)) of the graph of f. 

The next step of an expansion of the Z-function is 
considering a domain with non-integer values, but 

we will still remain within discrete domains. The idea 
of the difference function as well as the calculation of 
the slope can be used as long as the domain consists 
of discrete values. 

In a first step the domain ℤ of the Z-function f is ex-
panded by considering the values z10 = z

10 , z ∈ ℤ. This 
means z10 ∈ ℤ10 = {…, – 2

10 , – 1
10 , 0, 1

10 , 2
10 , …} and we obtain 

the Z10-function f10: ℤ10 → ℝ. To get the rate of change 
of successive values, we restrict the calculation to 
an interval of the length , and get the difference-quo-
tient-Z10-function 

Df10(z10) = 
f(z10 +  1

10 ) − f(z10)

 1
10

,  

z10 ∈ ℤ10 = {…, – 2
10 , – 1

10 , 0, 1
10 , 2

10 , …}.  

For example, the difference-quotient-Z10-function be-
longing to the cubic Z10-function f(z10) = 0.1z10

3 – z10 + 1 is

Df*(z10) = 
f(z10 +  1

10 ) − f(z10)

 1
10

 = 0.3z10
2 + 0.03z10 – 0.999

This can be generalized to an interval of the length 
1
n , n ∈ ℕ, and the difference-quotient-Zn-function (see 

Weigand, 2014).

Figure 6: Difference sequence

Figure 7

Figure 8: The Z10-function f(z10) = 0.1z10
3 – z10 + 1

Figure 9: The difference-quotient-Z10-function of f
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It emphasizes the global view of a function and its (dis-
crete) difference-quotient-function, and from the begin-
ning—while working with Z-functions—it draws the 
attention to the relation between function and differ-
ence-Z-function. Thus, it prepares the understanding 
of the relation between a function and its derivative 
function. 

Level 5: The local rate of change
The preceding steps to the access to the derivative 
emphasized the global view of the function and the 
difference-quotient-Zn-function. The next step will 
be the concentration on the local view of a function 
while seeing the relation to the local rate of change 
of a function.

We continue with any real function f, choose a fixed 
value z0 ∈ ℤn, or even a generalized value x0 ∈ D ⊆ ℝ, 
and consider the sequence of the difference quotient 
for a real-valued function f with respect to the value 
of x0 for n = {1, 2, 3, ...}: 

n → Dn(x0) = 
f(x0 +  1

n ) − f(x0)

 1
n

.

Thereby, we obtain a—special—sequence of difference 
quotients for the function f at the point (x0, f(x0)). For 
f(x) = ax2 + bx + c we get: 

Dn(x0) = 2ax0 + b + a
n .

Now, the sequence Dn(x0) can also be interpreted—con-
sidering the graph of f—as the sequence of the slope 
of the secants through the point (x0, f(x0)). 

Seeing the construction of the derivative of a func-
tion f in a special point of the graph of f as a sequence 
of slopes of secants, the discrete-Zn-functions with 
growing n provide a basis for the calculation of the 
local rate of change.  

CONCLUSION 

The way presented here can be seen as a preliminary 
stage of the—nowadays already traditional—intuitive 
limit concept approach with continuous functions. 
The advantage of the discrete way described here is 
that working with continuous functions–subsequent-
ly after the discrete approach and the working with 
sequences or Z-functions–and the development of the 
concept of derivative can be based on a content-ori-
ented level of understanding of the limit concept. To 

develop this level–beyond an intuitive level of under-
standing–is the main reason while explicitly working 
with sequences or discrete functions. Applying this 
idea of discrete actions or calculations, the concept of 
derivative of continuous functions is developed on 
mathematical aspects and properties of the limit or 
the approximation process and not only on intuitive 
perspectives. 

It is expected that the proposed strategy prepares the 
concept of local derivative of a function at one point 
and gives a chance of a better understanding of this 
approximation process because of the possibility of 
the stepwise construction of this process. But it is also 
expected that the parallel presentation of sequences 
(or discrete functions) and their difference sequences 
(or functions) allow also a well-founded understand-
ing of the concept of a (global) derivative function. The 
aim of the proposed concept is the better understand-
ing of the concept of derivative. It is part of the project 

“ABC – A discrete Approach to the Basics of Calculus” (see 
Weigand 2014). It is partially—concerning the first 
levels—empirically evaluated, theoretically extended 
to a global concept regarding the access to the deriv-
ative, and now needs to be evaluated in an authentic 
classroom setting. It does not—and cannot—avoid the 

“cognitive conflict” (Tall, 1992) or the necessity of a 
conceptual change from the discrete thinking used 
in working with sequences, difference sequences, and 
rates of change or difference quotient sequences to 
working with limits and derivatives of real functions. 
But it successively develops and explains the approx-
imation processes for an understanding of the deriv-
ative concept between the intuitive level, nowadays 
widely used in classrooms, and the formal mathemat-
ical level at university. It emphasizes the processes of 
understanding the concepts; it is a “procept” (Gray & 
Tall, 1994; Tall, 2013) for an access to the derivative.

The next step in the frame of this project is the con-
struction and development of classroom, learning 
or teaching units and the empirical evaluation of the 
results. This will be done in the near future.
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Using slider tools to explore and validate
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Technologies in mathematics education provide dif-
ferent tools. Researchers have elaborated on students’ 
use of some of these tools. For instance, students’ use 
of dragging tools (Arzarello, Olivero, Paola, & Robutti, 
2002) and measuring tools (Olivero & Robutti, 2007) 
have been categorized into different modalities. However, 
research on different ways of using slider tools seems 
to be sparse.  The aim of this study is to identify and 
categorize different uses of slider tools when students 
investigate how different values of parameters influence 
the graphical representation of functions.

Keywords: Slider tools, parameters.

THEORETICAL FRAMEWORK

The theoretical framework combines two different 
aspects. The first aspect concerns students’ use of 
dragging tools. In the context of dynamic geometry 
software, Arzarello and colleagues (2002) introduced 
a hierarchy of different uses of dragging, i.e. dragging 
modalities. Mainly, two different purposes with drag-
ging were noticed: drag to explore and drag to validate 
(Olivero & Robutti, 2007). These two different ways 
to use dragging have been subdivided into different 
dragging modalities (Arzarello et al., 2002). 

The second aspect concerns the concept of parameters 
and the associated tool, known as the slider tool or slid-
er bar. The slider tool has been highlighted as a means 
to examine the visual effect on a graph while changing 
the value of a parameter (Drijvers, 2003; Zbiek, Heid, 
Blume, & Dick, 2007). However, Zbiek and colleagues 
(2007) raised the concern that the slider tool, besides 
the symbolic and graphical representation, could be 
regarded as a third representation which might ob-
scure the connection between the parameter value 
and its visual effect. 

METHODOLOGY

In this study, six upper secondary students worked 
in pairs with tasks designed for a dynamic software 
environment, in this case GeoGebra. The mathemati-
cal topic under consideration was the sine function, 
y = A sin (Bx + C) + D. The students were supposed to 
investigate how different values of the parameters 
influence the graph. 

To collect data, both video and screen recordings were 
used. The students worked in pairs in front of one 
computer. The position of the camera was at an an-
gle behind the students to capture how they pointed 
at the screen when explaining their positions. The 
screen recordings made it possible to see in detail how 
students used the software. Both the recordings and 
transcripts were used to identify the different ways 
in which students used the slider tool.

RESULTS 

The study students used slider tools to explore math-
ematical situations and make conjectures. Further, 
when they had formulated a conjecture they used the 
slider tool to validate the conjecture. These results 
correspond to earlier research concerning different 
dragging and measuring modalities (Arzarello et al., 
2002; Olivero & Robutti, 2007). Thus, we suggest that 
the different uses of slider tools could be categorized 
into Exploring and Validating.

Furthermore, we could discern different ‘slider mo-
dalities’ within each category (exploring and vali-
dating). We identified the following three exploring 
modalities: wandering sliding, exploring systematical-
ly, and maintain a property. Wandering sliding could 
be compared to wandering dragging (Arzarello et al., 
2002) and wandering measuring (Olivero & Robutti, 
2007). Exploring systematically is reminiscent of guid-
ed dragging and guided measuring since the students 
examined particular cases in an intentional way. 
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In the second category, i.e., validating, we identified 
three different modalities: checking local hypothesis, 
slide to validate, and validating systematically. While 
students use the first modality to check hypotheses 
about special cases, they use the other two modalities 
to check more general conjectures. These two modal-
ities could both be compared to validation measuring 
(Olivero & Robutti, 2007). 
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Previous studies have shown that students learn math-
ematics better when they are engaged in creative rea-
soning, but that students in regular teaching mainly 
undertake imitative reasoning. It is therefore important 
to develop and examine didactical designs that support 
creative reasoning. These studies examine a didactic 
design where students work in pairs solving a complex 
task supported by dynamic software. The studies show 
that dynamic software supports creative reasoning by 
providing timely feedback closely connected to the stu-
dents’ activities. 

Keywords: Dynamic software, mathematical reasoning, 

problem solving.

Even though studies has shown that creative rea-
soning is more efficient for learning than imitative 
reasoning (Jonsson, Lithner, Norqvist, & Liljekvist, 
2014) there is a wide range of research reporting 
that regular teaching is guiding students into imi-
tative strategies (Hiebert & Grouws, 2007; Lithner, 
2008). Lithner (2000) found imitative strategies are 
a main obstacle when students are solving tasks for 
which they don´t know a solving method in advance. 
Imitative strategies are associated to imitative reason-
ing, IR, i.e., students are trying to recall remembered 
procedures and facts that are usable to solve the task. 
Creative mathematical reasoning, CMR, is character-
ized by creating new (for the student) solving methods 
supported by argumentation anchored in intrinsic 
mathematic components (Lithner, 2008). 

The didactical situation of the study was designed to 
invite students to engage in CMR. Pairs of students 
were solving a task to which they didn´t know a solv-
ing method in advance and there were no hints like, 
e.g. predicting outcome. They had access to dynamic 
software, GeoGebra. Features of dynamic software 

like multiple synchronized representations (e.g., al-
gebraic and graphic), immediate response, no explicit 
indications of right or wrong answer for specific tasks, 
have been suggested to support students´ reasoning 
(Barwise & Etchemendy, 1998). The instructions of 
the tasks meant an intellectual challenge (Schoenfeld, 
1985) and the students were responsible to create a 
solution method (Brousseau, 1997). Students work-
ing in pair have been found engaging in discussions 
and mutual explanations during problem solving 
(Mullins, Rummel, & Spada, 2011). Data were collect-
ed through screen- and video recordings. The main 
object of analysis was students´ reasoning associated 
to their use of dynamic software. Lithner´s framework 
of imitative and creative reasoning (2008) was used to 
categorize students´ reasoning. The use of feedback 
was analyzed through Shute´s theories of formative 
feedback theories (2008).

The study shows that GeoGebra supports CMR by 
providing neutral immediate feedback. The feedback 
becomes the object for students’ evaluation and ar-
gumentation, the latter is an important component 
of CMR. Furthermore, students who predicted the 
outcome before submitting the algebraic formula 
used the given feedback to elaborate on their prob-
lem solving and engaged in CMR. Students that did 
not predict the outcomes solely used the feedback to 
state if they were right or wrong and by that merely 
engaged in IR. 

The poster presentation will be made up of illustra-
tion and descriptions of the didactical design, exam-
ples of tasks used, method, CMR an IR-reasoning, and 
the results of the study.
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This study was designed to evaluate and elaborate a 
hypothetical trajectory for learning the fundamental 
theorem of calculus (FTC) by high school students using 
dynamic and multiple linked representations tools. The 
study focuses on 13 pairs of 17-year-old students. Data 
analysis identified the learning foci involved in concep-
tualizing the FTC, based on which I suggest a trajectory 
for learning the FTC.

Keywords: Learning trajectory, Fundamental theorem of 

calculus, technological tools.

INTRODUCTION

How to promote students’ development of new mathe-
matical topics, especially topics whose development is 
unsure, is one of the significant problems facing math-
ematics education. One of these topics is the funda-
mental theorem of calculus (FTC). Many students miss 
out on the conceptual learning of the FTC (Thompson 
& Silverman, 2008; Bressoud, 2011). I suggest a hypo-
thetical learning trajectory (HLT) for conceptualizing 
the FTC using multiple linked representations and 
dynamic tools that can help students construct an 
understanding of mathematical concepts. The pro-
posed learning trajectory can make the mathematical 
learning process more profitable (Steffe, 2004). My 
aim is to evaluate and elaborate the HLT for learning 
FTC by high school students learning with a dynamic 
and multiple linked representations tool.

THE HYPOTHETICAL LEARNING TRAJECTORY

I construct the HLT for FTC based on the functional 
approach for learning calculus notions. In this ap-
proach, the derivative is considered to be a rate of 
change function and integration is considered to be 

an accumulation function. At the first level of the HLT, 
students are asked to conceptualize the Riemann ac-
cumulation function as a sum of products. Next, they 
are asked to conceptualize the accumulation function 
as a convergence of Riemann accumulation functions. 
At the third level, they are asked to conceptualize the 
accumulation function as a rate of change function. 
Finally, they are asked to conceptualize the evaluation 
part of the FTC.         

THEORETICAL FRAMEWORK

Simon (1995) offered the HLT as a way to explicate an 
important aspect of pedagogical thinking involved in 
teaching mathematical understanding. In particular, 
he described how mathematics educators can con-
ceive the design and use of mathematical tasks to 
promote mathematical conceptual learning. An HLT 
consists of three components: (a) the students’ learn-
ing goal, (b) a hypothesis about the process of the stu-
dents’ learning of mathematical concept, and (c) tasks 
to be used to promote the students’ learning (Simon, 
1995). The HLT perspective provides no framework 
for thinking about the learning process. Therefore, 
I used the mechanism of reflection on activity-effect 
relationships to explain the relationship between con-
ceptual learning and mathematical tasks (Simon & 
Tzur, 2004). This mechanism provides a description 
of how the learner’s goal-directed activity can lead to 
the generation of new and more sophisticated concep-
tions for the learner.  

METHOD

The present study explores approximately 55 hours of 
learning by 13 pairs of 17-year-old students. The stu-
dents volunteered to participate in four after-school 
meetings. To study the progression processes of the 
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FTC, we asked students to explain and explore the pos-
sible connection between two given function graphs 
and the table of values. We designed the tasks to be 
learned by the students based on the mathematical 
structure of the FTC. The data for the present paper 
were collected from all the students who participate 
in the study. All the pairs of students in each session 
were video-recorded as they engaged in solving the 
task assigned to them. 

PRIMARY FINDINGS

The data analyses suggest that the HLT constructed 
based on the mathematical structure of the FTC helps 
students conceptualize the FTC. Based on the data 
analysis process, I detected the learning foci used by 
the students to find the possible connections between 
the graphs, and the mathematical relationships in-
volved in the FTC. These foci can be used to elaborate 
the HLT for conceptualizing the FTC. In this poster, I 
present the elaborated learning trajectory for FTC 
and discuss the role of the learning focus in concep-
tualizing the components of the FTC. I also present 
the ways that students used to connect between the 
differentiation and integration.
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INTRODUCTION

The ‘theory working group’ (under various names) 
has been a feature of CERME since CERME4. An early 
and constant focus has been ‘networking theories’, 
exploring ways of using different theories in math-
ematics education research (MER) into learning and 
teaching mathematics. The CERME9 ‘Call for papers’ 
included:

 ― The need to go beyond a specific theory when 
researching a phenomena

 ― Benefits and/or strategies and/or difficulties in 
connecting theories

 ― Conditions for a productive dialogue between 
theorists

 ― Difficulties and strategies when gathering results 
from different frameworks

 ― Linking theoretical and methodological ap-
proaches

 ― The epistemological dimension in theories

 ― Steps towards (local/global) theoretical conver-
gence in MER

In our 12 hours together at CERME9 we discussed 19 
research papers and two posters; our task in these 
five pages is to introduce you to the ones (almost all of 
them) which have been accepted for these Proceedings. 
We arrange the papers into five groups in the next sec-
tion. These groups are not ‘strongly defined’ but are, 
we believe, useful for communication. The closing 
section examines issues arising from the papers as a 
whole and future possibilities. For reasons of space, 
we refer to the papers by the surname(s) of the au-
thor(s) alone.

SUMMARY OF THE PAPERS AND POSTERS

The two papers, by Chevallard, Bosch & Kim and by 
Dudley-Smith, are grouped in relation to the question 

‘What is a theory?’ Yves Chevallard is the founder of 
the Anthropological Theory of the Didactic (ATD) and 
Chevallard and colleagues address the above question 
directly via the ATD:

ATD conduces to focus the research effort on ex-
amining the implicit, unassuming or even want-
ing parts of technologies and theories. It then 
appears that a theory is made up of two main 
components, that we may call its “emerged part” 
and “immersed part” … a theory is thus a hypo-
thetical reality that assumes the form of a (nec-
essarily fuzzy) set of explicit and implicit state-
ments about the object of the theory. A theory is 
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in truth the current state of a dialectic process of 
theorisation …

Dudley-Smith does not directly address the above 
question but uses ‘Social Activity Method’ to interpret 
(deform/recontextualise) theories in order to explore 
theoretical networking. It is difficult to summarize this 
paper, but the following words of the author express 
a key idea:

well-formed research activities are incommen-
surable – they are emergent and not graspable as 
such, even by themselves. The term “continuity” 
between theories can refer only to those meto-
nymic chains of signifiers that are of interest to 
the recontextualising regard of the theory in ques-
tion– hence also the possibility of discontinuity.

The papers by Castela, by Zaragoza and by Roos and 
Palmér are grouped under the heading ‘theories in 
mathematics education’. Castela considers theoretical 
diversity and networking theories from the points 
of view of the ATD and of Bourdieu’s theory of social 
fields. The processes of developing theoretical knowl-
edge is shaped through praxeologies that take place in 
a community. Further to this “A field is characterised 
by a game that is played only by its agents, according 
to specific rules”. Using these two approaches, Castela 
argues that networking will result from researchers 
from different paradigms working together on the 
same objects. Zaragoza presents a structuralist defi-
nition of a theory as a net of ‘theory-elements’ con-
nected via a ‘specialisation’. A theory-element is de-
termined by: the portions of reality it conceptualizes; 
the laws which apply; and potential and actual models. 
Specialisation concerns the models and laws related 
to theory-elements. Zaragoza applies these ideas to 
networking theories and the ATD. Roos andPalmér 
explore the use of Wenger’s ‘communities of prac-
tice’ construct in ten published mathematics educa-
tion studies. The paper documents differences over 
these ten papers with regard to: foci on pre-existing 
or designed communities of practice; foregrounding/ 
backgrounding individuals/groups; constructs (e.g., 
practice, identity, …) used. Roos and Palmér conclude, 

“if a researcher says that (s)he has been using Wenger’s 
social theory of learning, we can be quite sure that we 
do not know exactly what that use of Wenger’s theory 
might imply”.

The papers by Holm, by Monaghan and by Şay and 
Akkoç and the poster by Shvarts and Zagorianakos 
are grouped under the heading ‘connecting theories’. 
Holm reports on an attempt to use both the SOLO tax-
onomy and the ATD in order to better understand the 
advantages of peer collaborative learning exercis-
es for group investigation. The analysis shows that 
these two frameworks evaluate different dimensions 
of students’ behaviour and relating SOLO-levels to 
characteristics of ATD praxeology was not possible 
but the two theories are complementary in terms of 
understanding student activity. Monaghan focuses 
on tool use in mathematics and how different theories 
in mathematics education view tool use. Tool use is 
important in activity theory (AT) but the considera-
tion of tool use in AT studies varies with the unit of 
analysis. AT places human agency at the centre of ac-
tivity and, in contrast to actor network theory (ANT), 
undervalues non-human agency. Monaghan attempts 
to ‘synthesise’ AT and ANT with regard to tool use. Şay 
and Akkoç examine teachers’ social and social-mathe-
matical norms and their instrumental orchestrations 
in technology-enhanced learning environments in a 
study designed to investigate how orchestration types 
and norms affect each other. They found teacher-cen-
tred orchestrations in classes where the dominant 
norm was ‘teacher as the mathematical authority’ and 
student-centred orchestrations in classes where the 
endorsed social norms put students into the centre. 
Shvarts and Zagorianakos explore the complementa-
rity of activity theory and phenomenology through a 
detailed analysis of perceptual action by an eye-track-
ing methodology. While activity theory predicts the 
development of the perception of visual models 
through involvement into cultural practice, the data 
showed that it is the child who makes sense from the 
presented practice, at the levels of her operative in-
tentionality and the intentionality of act.

The papers by Florensa, Bosch and Gascón and by 
Kidron are grouped under the heading ‘epistemo-
logical aspects of theories’. Florensa and colleagues 
argues that didactics involves both the problem of 
the development of knowledge and the problem of the 
diffusion, the use and the transposition of knowledge. 
Using the ATD, the paper considers means to analyse 
learning and teaching practices within real institu-
tional environments. The construct ‘reference epis-
temological model’ is used to explore extant and new 
praxeologies through the elaboration of alternative 
mathematical organisations that could be close to or 
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very distant from the institutional contents that are 
taught and learned. Kidron considers “mathematical 
objects not as absolute objects, but as entities which 
arise from the practices of given institutions” and this 

“leads us to analyze the role of both, the epistemolog-
ical dimension and the socio cultural dimension, in 
theories”. The paper provides “an example of network-
ing that demonstrates how the social dimension might 
influence the epistemological analysis”.

The remaining papers (and one poster) have been 
grouped under the heading ‘issues in mathematics ed-
ucation related to theories’. The papers by Bingolbali 
and Bingolbali and by Godino, Batanero, Cañadas and 
Contreras focus on teacher-learners. Bingolbali and 
Bingolbali argue that student-centred teaching (SCT) 
consists of two components: mixed teaching meth-
ods and principals. They state six principles of SCT: 
valuing students’ prior knowledge into considera-
tion; handling students’ difficulties with appropriate 
methods; developing students’ skills; providing effec-
tive feedback; creating communicative classrooms; 
integrating assessment into instruction. Godino 
and colleagues argue that the inquiry-transmission 
polarity of instructional models is a simplification 
of a complex reality. The paper outlines semiotic, 
epistemological and cognitive assumptions of the 
onto-semiotic approach to mathematical knowledge 
and instruction which recognizes a key role to both 
inquiry and transmission models. The paper by Kent 
and Foster also challenges a polarity in mathemat-
ics education, conceptual versus procedural under-
standing in mathematics. The paper asks if it would 
be appropriate to describe a learner in possession 
of an algorithm for responding satisfactorily to such 
prompts as displaying conceptual understanding. 
They relate this question to Searle’s ‘Chinese Room’ 
thought experiment and draw on Habermas’ theory 
of communicative action to develop implications 
for addressing the problem of interpreting learners’ 
mathematical understandings.

The papers by Ertas and Aslan-Tutak and by Perez 
focus on the teacher. Ertas and Aslan-Tutak report on 
tests of mathematics content knowledge (MCK) and 
mathematics pedagogical content knowledge (MPCK) 
given to senior student mathematics teachers and 
senior mathematics students. The performance of 
the student teachers was significantly higher than 
that of the mathematics students in the test on MCK. 
The paper discusses the reasons behind this unex-

pected finding and notes the challenges to measure 
MPCK. Perez presents the notion of adaptive concep-
tual frameworks employed to conduct design-based 
research with the aim of developing ICT supported 
mathematics instruction. The paper employs three 
frameworks: one used when the researcher engages 
with the teachers; one used to understand outcomes 
and to plan the next design cycle; one for organizing 
and supporting the teachers’ professional develop-
ment. Perez uses ideas from ‘networking theories’ to 
consider interactions between the frameworks.

The papers by Koichu and the poster by Seidou focus 
on the learner. Koichu focuses on problem solving and 
introduces a ‘confluence framework’ which “consoli-
dates ideas taken from several frameworks”, mainly 
John Mason’s theory of shifts of attention. The cen-
tral premise of the framework is that a key solution 
idea to a problem can be constructed by a solver as a 
result of shifts of attention that come from individ-
ual effort, interaction with peer problem solvers or 
interaction with a source of knowledge about the solu-
tion. Seidou’s framework is Brandom’s ‘inferentialism’ 
which prioritises inference over reference or rep-
resentation. The paper reports on students’ language 

‘moves’ (how claims are put forward) while reason-
ing in a geometric sorting activity, “The open-ended 
aspect of this task creates favorable conditions for a 
fruitful game of giving and asking for reasons”.

The papers by Siller, Bruder, Hascher, Linnemann, 
Steinfeld and Sattlberger and by Lindenskov, 
Tonnesen, Weng and Østergaard focus on policy. Siller 
and colleagues report on a project that developed a 
competency grid to assess the quality of Austrian 
end of school examination questions. The competen-
cy grid has three dimensions (operating, modelling 
and reasoning) and four levels related to students’ 
mathematical actions: “activity theory forms the back-
ground for the didactic interpretation of such initially 
pragmatic levels”. Lindenskov and colleagues report 
on efforts to develop early “interventions for margin-
al student groups”. The work was inspired by critical 
theories in mathematics education and practical in-
tervention approaches from various countries. The 
paper investigates possible contextual influences on 
networking theories. The paper presents a ‘program 
logic model’ for early interventions.
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ISSUES ARISING FROM THE PAPERS 
AND FUTURE POSSIBILITIES 

To highlight the productivity and limitations of the 
work done in the TWG, we propose to consider the 
questions that have been raised by the papers, their 
reviews during the discussions, and also issues that 
have been disregarded or overlooked. 

The issue of networking theories was omnipresent 
in previous ‘theory’ TWGs since 2005. It has been ap-
proached, here, in a different (maybe more mature?) 
way. The efforts have focused on some basic epistemo-
logical and methodological reflections (the nature of 
theorising, for example) rather than on the descrip-
tion and study of networking strategies. Some new 
questions have also been opened to a broader debate, 
with a view to developing research topics in the years 
to come. One such issue can be called “the question of 
questions”: it relates to the way in which teachers’ and 
students’ difficulties can be made sense of by different 
theories and how the research problems thus arrived 
at depend on the approach taken. In this context, the 
issue of mathematics education as a discipline seems 
especially relevant: what is the place of the didactics 
of mathematics as a discipline in the arts and scienc-
es realm? How is it related to the didactics of other 
disciplines and to the other sciences? Can it lead the 
development of teaching and of teacher education? 

Another “big” question that deserves to be addressed 
is the relationship between local and global theori-
zations. Many proposed “theories” in (mathematics) 
education seem to be content with trying to account 
for a deliberately limited number of didactic phenom-
ena: in this respect, they can be termed “local” con-
structs for which we have to make clear the didactic 
dimensions they take into account as well as those 
they (necessarily or not) overlook. This is especially 
important since what is called a “theory” or a “theo-
retical approach” in a given research vein may vary 
in its degree of development, from limited models to 
more extensive theoretical constructions. For this 
reason, it is essential to be constantly aware that the-
ories are living entities in continuous development, 
and that most “global” theories started with a local 
or limited scope. The main aim, purpose or ambition 
adopted by a given theorisation process may result, 
in this context, as a crucial variable to be taken into 
account, an issue closely related to the notional and 
methodological tools elaborated to control and ensure 

the solidity and productivity of the intended theoret-
ical construction.

The balance between group and individual advance-
ment in the development of research areas is also an 
interesting topic to approach, in terms for instance of 
the cultures and craft methodologies elaborated with-
in communities, which are often not easy to dissemi-
nate through the traditional channels of science com-
munication (papers, surveys, doctoral dissertations, 
conference proceedings, etc.). Finally, and related to 
these last issues, the contrast between findings across 
different approaches is a question that has never been 
directly addressed, especially when these findings 
appear to be, if not contradictory, at least not directly 
compatible. More generally, a more straightforward, 
frank, and even antagonistic approach to the problem 
of theoretical diversity could prove fruitful.
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This paper aims to present principles of student-cen-
tred teaching (SCT) and provide some implications for 
mathematics teaching. We have determined six main 
principles of SCT: i) Taking students’ prior knowledge 
into consideration. ii) Handling students’ difficulties 
with appropriate methods. iii) Developing students’ 
skills (e.g., reasoning). iv) Providing effective feedback. 
v) Creating communicative classroom environment. 
vi) Integrating assessment into instruction. We first 
present the rationale of the study and note the am-
biguity regarding student-centred related terms. We 
then propose that STC approach consists of two main 
components: mixed teaching methods and principals. 
The paper ends with discussion and implications of 
SCT approach for mathematics learning and teaching.

Keywords: Student centred teaching, mathematics, mixed 

teaching methods.

INTRODUCTION 

The emphasis on individual learning has paved the 
way for the emergence of new terminology regarding 
the learning and teaching both in education as a whole 
and mathematics education in particular in the last 
three decades. One such term is that of student-cen-
tred teaching. Intuitively although it might appear to 
be a straightforward term, it seems that not only the 
term is not well defined but also what is attributed to 
the term is not clear. As teacher educators, our expe-
rience with pre-service and in-service teachers has 
also revealed that the term student-centred teaching 
often is attributed to only constructivist approach 
(e.g., discovery learning) and students’ physical ac-
tiveness in the classroom, whilst cognitive activeness 
was regarded as secondary if not disregarded at all. 
The vagueness regarding the meaning of the term 
has been the rationale for the emergence of this study. 
With this in mind, this paper attempts to examine 

the term SCT and aims to propose some principles in 
order to contribute to its conceptualisation especially 
for the practitioners working in the field. 

Considering that the term SCT is wide-ranging, any 
attempt to determine its principles requires an exam-
ination of multiple theories. To this end, an eclectic lit-
erature (e.g., behaviourist, cognitivist, constructivist, 
sociocultural perspectives on learning and teaching) 
has been examined. Six main principles have been 
determined to characterize the SCT. These principals 
develop from both the relevant literature as detailed 
below and our interpretation of what the teachers 
and candidates might need to know for conducting 
a SCT approach. Although we do not claim that they 
are sole principles of SCT, we argue that they provide 
an overall aspect of what the SCT might include. The 
determined principles are as follows:

1) Taking students’ prior knowledge into consid-
eration

2) Handling students’ difficulties with appropriate 
methods

3) Developing students’ process skills 

4) Providing effective feedback

5) Creating communicative classroom environment

6) Integrating assessment into instruction

In what follows, we first explain why we chose to ex-
amine the term SCT and present our stance on it. We 
then explain each principle in light of the relevant 
literature and relate them to SCT. We conclude the 
paper with discussions of the principals.

mailto:erhanbingolbali@yahoo.co.uk
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THE TERMINOLOGY

Dissatisfaction with teacher-centred approach (often 
known as traditional teaching) and behaviour-orient-
ed perspective in learning and teaching has directed 
educators to pay more attention to students and their 
cognitive needs. This shift in attention has resulted 
in generating new terms and concepts to capture 
the new phenomenon. Student-oriented terms that 
have been commonly used amongst educators are 
the result of such undertaking. As a result of such 
endeavours, the terms such as student-centred learn-
ing, student-centred pedagogy, child-centred learning, 
student-centred education, learner-centred learning 
and student-centred teaching come into use. Common 
to all these terms is the students and their individual 
learning.  

A close examination of these terms reveals several 
problematic issues though. First, it appears that stu-
dent-centred terms have sometimes been reduced to 
ideas popular to Piaget’s constructivist developmen-
tal theory and hence “discovery learning”. Second, 
the terms have mainly been associated with students’ 
physical activeness rather than cognitive ones. Third, 
sometimes a passive role is attributed to the teach-
ers since the students are construed be more active. 
Fourth, the terms have been loosely used and it is not 
exactly clear what meaning is actually attributed to 
them. Lastly, it seems that since the terms have mainly 
been used by the practitioners for practical reasons 
and have hence been not the foci of the systematic 
research, it has been difficult to provide a research-in-
formed operationalization of them for the teaching 
activities.

Given that the terms are commonly being utilized in 
the field, we as the researchers cannot be incognizant 
of their uses and need to make contribution into their 
clarification. In this study, we particularly prefer to 
use the term SCT for two reasons. First, we think that 
the term student-centred learning or similar ones 
have some shortcomings. This is because all learning, 
passive or active, is student-centred in nature. Besides, 
whilst examining different approaches to learning 
and teaching (e.g., behaviourism, constructivism), 
although the quality of learning may show variation, 
what mainly differs is indeed the teaching or the 
teaching methods. That is why we prefer to use SCT, 
not student-centred learning. Second, as the teachers 
are responsible for the teaching, they need to know 

how to conduct student-centred teaching and hence 
we take the teachers as the main addressee. In what 
follows, we present our position on SCT.

OUR STANCE ON STUDENT-CENTRED TEACHING

We use the term student-centred in the sense that stu-
dents and their learning needs should be prioritised 
in the learning and teaching activity. For instance, if 
a teacher takes students’ difficulty with a concept into 
account and teaches accordingly, this suggests that 
students’ needs are prioritised and the teaching has 
a student-centred feature. Determination of students’ 
needs, however, is not a simple endeavour. This, of 
course, depends on the teacher competency regarding 
the subject matter they teach. Moreover, the needs of 
students can show variability. The nature of concepts 
and the student competency are just only two factors 
that can cause the variability. For example, in teach-
ing group concept in abstract algebra, to us, what the 
students need is the definition in the first place as it is 
very difficult for them to discover the group concept 
through such approach as problem-based learning. 
The concept’s nature hence determines what the stu-
dents’ needs are and that affect the teaching. On the 
other hand, if a teacher values conceptual/meaning-
ful understanding, arousing the need for learning and 
developing reasoning skills etc., then teaching, for 
instance, “triangle inequality fact” via problem-based 
learning method and hence providing the students 
with opportunity to discover or at least attempt to 
discover the fact can be more fruitful. Given that all 
these aspects (e.g., reasoning) are important for the 
learning, this type of teaching is also considered to 
have a student-centred feature. 

One problematic issue that may arise with “discov-
ering” the inequality fact is that: what happens if a 
student or students cannot “discover” the fact even 
though the guidance is provided? If one is concerned 
with students’ needs, it is then possibly acceptable that 
sharing the formula of “|a − b| < c < a + b” with students 
is more reasonable. That is to say, teachers should 
(sometimes have to) provide the formula or the fact 
for the benefit of the students. In teaching, teachers 
hence may sometimes use a mixed instructional ap-
proach (e.g., both traditional and constructivist ones) 
depending on the concepts and students’ needs. This is, 
to us, what makes the teaching student-centred. In fact, 
Godino and colleagues (2015) also note that there is a 
need for mixture of construction/inquiry and trans-
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mission of knowledge that might optimize learning. 
They are also critical of basing the instruction solely 
on “Inquiry-Based Learning” (IBL) or “Problem-Based 
Learning” (PBL) methods and note that these methods 
might be more suitable for only gifted students and 
that these methods generally disregard heterogeneity 
of the students and the variety of knowledge to be 
learnt. 

In this paper, even though SCT is often associated with 
constructivist approach in education, we argue that 
this view is problematic and student-centred teaching 
needs reconceptualization. We also think that hav-
ing a practical method (we name it as mixed teaching 
method) as we presented above is not sufficient to 
conduct the SCT either, and that is why we propose 
its principals as well (see, Figure 1). In practice, there 
is a need for both principals and the mixed teaching 
method.

As can be inferred from Figure 1, our position is that 
SCT approach consists of two main components: 
mixed teaching methods and principals. In teaching, 
a teacher might employ mixed methods, that is, the 
teacher may use both problem-based and expository 
teaching methods in the same lesson. Yet, to conduct 
the mixed methods effectively and to take students’ 
needs at the centre, a teacher also needs some prin-
cipals. The principals guide the methods and enable 
their implementations. We now turn our attention 
to principals, their underpinnings and where they 
stem from.

Taking students’ prior knowledge 
into consideration 
Prior knowledge is essential for any learning and 
teaching activities. Learning theories (e.g., cognitiv-
ism, cognitive and social constructivism), particularly 
the ones shaping the current learning and teaching 
experiences in many classrooms, emphasise the role 
of prior knowledge in the learning processes. For in-
stance, as a cognitive learning theorist, David Ausubel 
put forward the following view on the role of prior 
knowledge in learning:

If I had to reduce all of educational psychology 
to just one principle, I would say this: The most 
important single factor influencing learning is 
what the learner already knows. Ascertain this 
and teach him accordingly. (Ausubel, 1968, p. 18).

Ausubel’s comments can be construed as a radical 
reaction to behaviourists’ view of learning. Prior 
knowledge draws explicit attention in Piaget’s works 
as well. To Glasersfeld (1995, p. 18), one of the two basic 
principles (radical) constructivism is that “knowledge 
is not passively received but built up by the cognizing 
subject”. In Piaget’s constructivist theory of knowing, 
since knowledge is actively constructed, not passively 
received, then the prior knowledge becomes indispen-
sable in the learning process. For instance, in explain-
ing the notion of assimilation, Piaget (1976, p. 17, cited 
in von Glasersfeld, 1995, p. 18) notes the importance 
of prior knowledge:

…no behaviour, even if it is new to the individual, 
constitutes an absolute beginning. It is always 
grafted onto previous schemes and therefore 

Figure 1: SCT, teaching approach and its principals
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amounts to assimilating new elements to already 
constructed structures (innate, as reflexes are, or 
previously acquired).

Prior knowledge is not only essential to assimilation 
but also fundamental to the other two components 
(accommodation and equilibrium) of Piaget’s theory. 
From a Piagetian perspective, it is thus vital that the 
teacher takes the prior knowledge into account in 
teaching. This stance of course requires an exami-
nation of students’ readiness for the teaching. For 
instance, in teaching the area of parallelogram, it is 
important to determine what the students know about 
the area and the concept itself. The previous experi-
ence that the individual brings to learning settings 
has hence important effects on what he/she is going 
to learn. We thus take this as a principle of SCT as 
it is concerned with students’ needs. We think that 
any teaching method with students’ needs in mind 
should begin with determining learners’ current 
knowledge level, types of experience they have and 
needs analysis.

Handling students’ difficulties 
with appropriate methods
The issues of how students learn and why some have 
difficulties in learning have always drawn the at-
tention of researchers. Many learning theories (e.g., 
APOS, Cottrill et al., 1996) have been put forward for 
the former. For the latter, it is known that students’ 
learning difficulties, misconceptions and errors are 
the reality of classrooms. Nesher (1987, p. 33) appears 
to even value the existence errors and notes that “the 
student’s “expertise” is in making errors; that this is 
his contribution to the process of learning”. If stu-
dents are experts of making errors, then any instruc-
tional consideration has to take them into account 
and teachers need to have an expert approach of han-
dling them. Students’ difficulties in learning are also 
important in the sense that they have been the cause 
for the emergence of many innovations, including 
new learning theories, teaching materials and new 
approaches to teaching etc. 

Difficulties generally manifest themselves as errors 
in the classroom settings. It is critical for teachers 
to be able to notice the underlying conceptions that 
cause the errors to emerge. Diagnosing the errors 
and the causes are hence crucial. Following that, it is 
essential to have a plan of how to handle the difficul-
ty. This plan might include selecting the appropriate 

materials and method of handling. For instance, the 
relevant literature proposes many different ways of 
handling the difficulties. Such handling methods as 
cognitive conflict, giving correction, ignoring are just 
some examples of teachers’ dealing with errors (e.g., 
Santagata, 2004). Deciding which method to use might 
depend on the nature of the errors and the teacher’s 
competency. Students’ learning difficulties are hence 
one of the most influential factors that influence the 
learning and teaching. To us, SCT must take this issue 
into account and acts accordingly. We think that the 
teaching concerned with students’ difficulties has the 
characteristic of SCT and has a better chance of getting 
over students’ difficulties. 

Developing students’ process skills 
Traditional teaching has mainly been concerned with 
the knowledge (e.g., fraction, function, derivative) 
and its transmission to the students. However, the 
aim of schooling is not only to transmit the knowl-
edge or teach concepts. One of the essential goals of 
schooling is to teach students to think (Padilla, 1990) 
in general and to reason, justify and make connections 
in particular. As Padilla (1990) notes “all school sub-
jects should share in accomplishing this overall goal.” 

In addition to teaching concepts, equipping students 
with basic skills has also become a goal for many cur-
ricula. For instance, in science education these skills 
are named as basic process skills and six such skills 
are targeted: i.) observation; ii.)  communication, iii.) 
classification; iv.) measurement; v.) inference; vi.) 
prediction. In mathematics education, NCTM (2000) 
names the skills as process standards and notes that 
mathematics instruction should aim to develop such 
skills as i.) problem solving, ii.) reasoning and proof, 
iii.) communication, iv.) connections, and v.) rep-
resentation. In addition to conceptual understand-
ing, procedural fluency and productive disposition, 
Adding It Up (NRC, 2001) document also propose stra-
tegic competence and adaptive reasoning as a part of 
mathematical proficiency. All these suggest that skills 
have become an essential goal of the curricula in that 
the teaching should be concerned not only with con-
cept teaching but also with skills acquisition. 

The development of these skills may have many advan-
tages. First, they enable students to think, justify and 
make connections. Second, skills can help students 
have conceptual understanding and therefore mean-
ingful learning (Ausubel, 1968; Skemp, 1978). Without 
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the skills, concepts in mind may stay disconnected and 
compartmentalised. Third, the skills may help the stu-
dents be better problem solvers and hence apply their 
concepts to real life settings. With all these advantag-
es in mind, we think that the teaching concerned with 
students’ intellectual development must also aim to 
develop students’ process skills. We therefore take 
the teaching process skills as a main principle of SCT 
and argue that conceptual and meaningful learning 
is more plausible through teaching them. 

Providing effective feedback
Students’ learning is complete with interesting expe-
riences from showing an exemplary performance to 
making errors, having fundamental misconceptions 
and not having a sense of direction of what to do un-
der some particular circumstances. An examination 
of what the students know, where they show good or 
poor performance and what to do next is sometimes 
needed for instructional decisions. All these are some-
how related to effective feedback and its conduction. 

Feedback is regarded as “one of the most powerful 
influences on learning and achievement” (Hattie & 
Timperley, 2007, p. 81). Feedback is defined as “infor-
mation provided by an agent (e.g., teacher, peer, book, 
parent, self, experience) regarding aspects of one’s 
performance or understanding” (ibid, p. 81). Winner 
and Butler’s (1994) conceptualisation of the feedback 
is also helpful. 

 “feedback is information with which a learner 
can confirm, add to, overwrite, tune, or restruc-
ture information in memory, whether that in-
formation is domain knowledge, meta-cognitive 
knowledge, beliefs about self and tasks, or cogni-
tive tactics and strategies” (p. 5740, cited in Hattie 
& Timperley, 2007).

As the quotation suggests, feedback can be provided 
by different agents and in many distinctive forms. A 
conceptualisation of feedback in the sense of Winner 
and Butler requires a careful examination of what task 
to choose, what kind of discourse to create and what 
method to use to handle students’ learning outcomes 
on the part of the teacher. The teaching concerned 
with student needs is hence expected to pay attention 
to the quality of the feedback that the students get and 
acts accordingly. We therefore argue that one of the 
basic characteristics of the SCT lies at the quality of 
feedback provided to the learners. 

Creating communicative classroom environment
As students participate in the learning activity as 
groups and since teaching students in groups is an 
indispensable reality of the schooling, the teaching 
cannot solely be reduced to the teaching of an indi-
vidual and that it needs to address the classroom as a 
whole. In such situations, the issue of how the teach-
ing, which takes students at the centre, can be conduct-
ed also needs to be examined and discussed. To us, a 
communicative classroom environment can be like 
an open society so that students can freely express 
their answers, make arguments and explanations. 
That is to say, a democratic classroom environment is 
needed so that students express their opinions. In this 
connection, Yackel and Cobb’s (1996) notions of social 
and socio-mathematical norms can be employed as a 
guide for creating such a classroom environment. In 
such classrooms, different solution methods, reason-
ing, justification can be encouraged for all students. 
In such an environment, it is then more possible for 
students to obtain different perspectives and develop 
a critical habit of mind. We therefore take commu-
nicative classroom environment as a principle of SCT 
to guide the teacher concerned with student-centred 
teaching. It should be noted that the application of 
this principle in the classroom helps the teacher gain 
insight into the other principles as well. For instance, 
a communicative classroom environment may pave 
the way for the expression of free speech and that 
might help to diagnose the learners’ difficulties. The 
teacher can hence employ this principle to have an 
overall picture of the instruction with regard to other 
principles as well. 

Integrating assessment into instruction
Traditionally, assessment follows the instruction. 
This type of assessment is termed as summative and 
is concerned with cumulative evaluations. It is cur-
rently proposed that assessment needs to be built up 
into and integral to the instruction. This type of as-
sessment is termed as formative one and is concerned 
with regular control of students’ conceptions and un-
derstanding (Van De Walle et al., 2010). This type of 
assessment shapes spontaneous decisions regarding 
the instruction and the findings reveal that effective 
formative assessment can increase students’ speed 
of learning by giving the effective feedback (Wiliam, 
2007).

As far as SCT is concerned, it is proposed that as-
sessment and instruction need be intertwined. 
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Assessment should not be something to be done at 
the end of instruction. Assessment concerned with 
students’ development, difficulties and learning has 
to be in time and based on students’ needs. In this re-
gard, rather than evaluating students through one 
method (e.g., test) students’ performances need to be 
assessed through different methods. Assessment also 
should not only be concerned with concept mastery 
but also with process skills proficiency. As a result, we 
think that SCT needs to be student-centred in terms 
of assessment as well. Moreover, as the Assessment 
Principle in Principles and Standards stresses: “(1) 
assessment should enhance students’ learning, and (2) 
assessment is a valuable tool for making instructional 
decisions” (Van de Walle et al., 2010, p. 76). When the 
assessment is carried out in this respect, we think 
that it can contribute to the development of the SCT 
instruction.

DISCUSSION AND CONCLUSIONS

We have attended to the ambiguity of the term SCT 
and noted that what is attributed to the term is of-
ten not clear. We have also stated that SCT has been 
mainly associated with constructivist approach and 
argued that reducing it to this approach is mislead-
ing. A functional SCT approach does prioritise the 
students and their needs rather than a particular in-
structional approach per se. In the light of the relevant 
literature, alongside the mixed teaching methods, we 
have provided six principles that might contribute 
to conceptualisation of SCT. We are aware that the 
proposed SCT principles are generic in nature. This is 
particularly due to both the nature of the term and the 
teaching itself. Although this is the case, we hold the 
belief that for the practitioners it is important to have 
a general perspective of SCT as well. This is because; 
having a broad perspective can help the teacher put a 
particular learning objective into practice. Therefore, 
although the proposed principles are generic; they 
might help the teacher have a broad perspective on 
SCT and to put it into practice. 

Most of current educational reforms suggest stu-
dent-centred teaching and the chief addressees are 
teachers and teacher candidates. Although they are 
expected to conduct SCT, they generally do not have 
a guideline of how to do that. We believe that these 
principles as a totality might act as a guide for teach-
ers and candidates to practice SCT. For instance, the 
principles can be used to design and implement lesson 

plans. We also think that these principles can be used 
to develop or assess in-service and pre-service teach-
ers’ competencies and knowledge bases. For instance, 
a teaching programme addressing methods of han-
dling students’ difficulties may contribute to the devel-
opment of teachers’ pedagogical content knowledge 
base. In addition, the SCT principles can be employed 
as theoretical framework to analyse the classroom 
discourse and determine whether the teaching is SCT 
or not. For example, it can be utilized to determine the 
extent to which the teaching values the process skills. 
Similarly, the framework can enable one to see how 
students’ difficulties are handled and to show which 
the types of feedback are provided in the classroom. 

As mentioned above, we are aware that these princi-
ples are generic and that is why they cannot be specific 
to any discipline. The nature of disciplines and their 
concepts will shape how each principle is put into 
practice. For instance, whilst handling a difficulty or 
error, one needs to know the nature of the concept and 
teach accordingly. More specifically, let’s take division 
of two fractions as an example. If the concept is to be 
taught in an SCT manner, in the light of SCT principles, 
the teacher first has to take learners’ prior knowledge 
of fraction and division into account. Knowing stu-
dents’ difficulty with division of fractions can help 
the teacher make necessary preparation, which would 
improve the instruction. These all suggest that the 
nature of concept in a discipline itself can affect how 
SCT is perceived and conducted. 

Process skills can play an important role in making 
SCT approach specific to a particular discipline or car-
ries its distinctive characteristics. Reasoning, justifi-
cation or representation of the concepts, for example, 
can differ from one discipline to another. For instance, 
the function  can be represented in many forms (e.g., 
numeric, graphical, algebraic, verbal). When the 
teacher teaches this function with its multiple rep-
resentations alongside with their interconnections to 
enrich students’ understanding, this would suggest 
that the teaching has a student-centred feature. 

Finally, as this work is still in progress, we suggest that 
further research needs to be carried out to see how 
functional the proposed principals are and examine 
them in the real classroom settings. There is also a 
need for making each principal more explicit. Further 
research is also needed to examine practitioners’ con-
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ceptions (e.g., values, beliefs) of SCT and how these 
conceptions play role in its implementation.
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The paper focuses on the social dimensions of the issues 
addressed in this working group, social being consid-
ered at different levels: interactions, culture, and insti-
tutions. It addresses the following questions: what is a 
theoretical framework? Why are theories so numerous 
in mathematics education? Is it necessary to reduce this 
multiplicity? Why or why not? The reflection is based 
on the anthropological theory of the didactic (ATD) and 
on Bourdieu’s theory of social fields. Assuming that the 
latter is not necessarily well-known in the mathematics 
education community, and that it offers an interesting 
potential to enrich the debate within the networking 
semiosphere, I devote a substantial part of my text to 
give an idea about the way Bourdieu applies his theory 
to science.

Keywords: Praxeology, paradigm, institutional 

determination, symbolic capital.

INTRODUCTION  

Addressing the topic of theoretical diversity in math-
ematics education from a social point of view is not 
something new in the European research community. 
The central preoccupation in this WG has been, since 
CERME4, the barrier to effective communication cre-
ated by the multiplicity of theories, be it communica-
tion within the field or with external partners from 
policy makers to educative professionals. Radford 
(2008, p. 318) suggests considering the networking 
practices as located in a semiosphere, that is, “an une-
ven multi-cultural space of meaning-making process-
es and understandings generated by individuals as 
they come to know and interact with each other”. It is 
quite representative of the interaction dimension in 
networking activities. Among the social aspects this 

paper considers, some have been more erratically 
present in the discussions. For instance, the WG11 
leaders’ introduction at CERME4 (Artigue et al., 2006, 
p. 1240) refers to a theoretical “more intrinsic diversi-
ty linked to the diversity of educational cultures and 
to the diversity of the institutional characteristics of 
the development of the field in mathematics education 
in different countries or global areas.” This issue of 
theoretical multiplicity linked to cultural diversity 
has not recently been discussed in CERME. Yet the 
influence of cultural contexts on the research in math-
ematics education has been discussed in the second 
plenary talk of CERME9. This confirms the need to 
address such topic in this WG. My position is that our 
reflection about theoretical diversity is obstructed by 
some beliefs that should be deconstructed and that, in 
order to do so, we need theoretical tools from inside 
and outside the mathematics education field. In this 
paper, my objective is to present some tools, borrowed 
from ATD and from Bourdieu’s field theory, which I 
find helpful to go forward. I briefly show how I use 
them to consider the social dimension of theoretical 
multiplicity and to discuss the unifying-theories in-
junction, thus developing a rational discourse (logos) 
with social concerns about the issues addressed. The 
adjective “sociological” in the heading must be under-
stood in this etymological meaning, this paper does 
not avail itself of the sociology scientific field.

Before going any further, I emphasise that, in my 
opinion, a valuable discussion about connecting 
theories relies on the participants having minimum 
knowledge about the theories at stake in the papers. 
Aside for some well-known theories, I believe it is the 
author’s responsibility to provide the readers with 
a first understanding of the invoked theories. I try 
to do so regarding Bourdieu’s field theory, assuming 
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that ATD is familiar enough in our research commu-
nity. Hence, the second part of this text encompasses 
large quotes intending to provide the readers with a 
direct, though limited, access to the key elements of 
Bourdieu’s analysis of science which I draw on later. 
Other theories appear as examples in the discussion 
for which I can only provide references. 

THEORY, RESEARCH PRAXEOLOGY, 
RESEARCH PARADIGM?

In this part, I recall and connect, especially for the 
newcomers to theory networking like myself until 
recently, crucial models elaborated by the first par-
ticipants in this group to address the issue of what is 
actually a theoretical framework. This gives me the 
opportunity to address the issue of what is a theory 
in the ATD and to discuss some points of Chevallard, 
Bosch and Kim’s contribution to this TWG (2015). 
Then I propose to encompass into the theory mod-
elling the contribution of well-identified research 
communities, thus considering the social dimension 
of networking theories.

What will we consider as networking 
theories in this 2015 session? 
An eight-year-long joint work in CERME as well as in 
research projects like Remath has largely evidenced 
that what is at stake cannot be reduced to networking 
of theories considered as “organized networks of con-
cepts (including ideas, notions, distinctions, terms, 
etc.) and claims about some extensive domain…” (Niss, 
2007, p. 1308). Other research aspects are involved in 
the interconnection activities. Two directions have 
been proposed to model this complexity. Radford 
(2008) describes the concept of theory using the tri-
plet (P, M, Q) where P is a system of basic principles, 
including implicit views and explicit statements, M 
a methodology, and Q a set of paradigmatic research 
questions. Hence, connecting two theories means 
connecting two triplets. Artigue, Bosch and Gascón 
(2011) use the notion of praxeology to model research 
theories and practices. Introduced by Chevallard as 
a general model for all human activities (see Bosch 
& Gascón, 2014, for an introduction to ATD), a punc-
tual praxeology is a quadruplet [T/τ/θ/Θ] with only 
one type of tasks T and one associated technique τ, θ 
being the technology of τ, i.e. a rational discourse ac-
counting for this technique. “The fourth component is 
called the “theory” and its main function is to provide 
a basis and support of the technological discourse” 

(ibid, pp. 67–68). Moreover, ATD considers more 
complex levels of praxeological organisations gath-
ering punctual praxeologies which have a common 
technology (local praxeology) or a common theory 
(regional praxeology). A regional research praxeol-
ogy is described through a set of research questions 
considered relevant when others are not, correlated 
techniques, their technologies and a theory. Artigue, 
Bosch and Gascón (2011) consider that this is the prop-
er level to address networking issues.

What is a theory in this model? In the case of well-de-
veloped research praxeologies, the theory may fit with 
Niss’ definition. However, not all such theories operate 
as identifier of their associated praxeology, because 
some are not recognised as “a Theory” in the research 
field. For instance, let us consider the so-called “dou-
ble approach” (of the teachers’ practices) developed 
by Robert and Rogalski (2002). A regional “double ap-
proach” praxeology obviously exists in mathematics 
education. Its theory, in both ATD and Niss’ meaning, 
is well developed, coordinating elements from several 
identified theories like Theory of Conceptual Fields 
and Activity Theory with some more isolated concepts 
or results from didactics and cognitive ergonomy. Yet, 
there is no “Double Approach Theory”, the praxeology 
access to social existence in the research field relies on 
other means, like the publication of a collective book 
gathering different studies (Vandebrouck, 2008) and 
its English translation (2013). 

Now, let me emphasise that, within ATD, most praxeol-
ogies’ theories are not this developed (see Chevallard 
et al., 2015, to go further on this issue); they may not fit 
with Niss’ definition. One strength of this modelling of 
research activities is that it may be used to account for 
the research praxeological dynamics as Artigue and 
colleagues (2011, p. 2382) do: “Research praxeologies 
can appear as different kinds of amalgams, more or 
less organized depending on the maturity of the field”. 
They highlight the part played by the technological 
discourse in such a stage of praxeology, when the the-
ory of the amalgam is underdeveloped and unable to 
organise through a coherent whole the first results 
produced by the research practices. I will focus on 
the social dimension of the development process: 
the emerging praxeological organisation would not 
strengthen and access a certain form of social exist-
ence in the research field without the setting up of a 
group of researchers with common concerns, collab-
orating towards the development of the praxeology. 
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In the case of the double approach, such a group was 
first created around A. Robert and J. Rogalski within 
the Parisian laboratory Didirem, especially through 
the completion of several PhD theses. In 2015, the 
double approach community still exists; it is dissem-
inated far beyond its original laboratory. This idea 
that there is no research praxeology recognised in 
the mathematics education field (or in some subfield) 
without an associated community of researchers is 
not accounted for by the praxeological model. Thus, 
I propose an extended model, called a research para-
digm [1], composed of a praxeology and a correlated 
social organisation, working as an institution. 

Connecting the three models
The praxeological model and Radford’s model appear 
as efficient tools to account for the fact that connecting 
theories is not only connecting conceptual structures. 
They share several aspects: Q is the set of T, M the set 
of [τ/θ], the explicit part of P belongs to Θ, such as does 
a fourth component, the set of key concepts K, added 
to Radford’s triplet in (Bikner-Ahsbahs & Prediger, 
2014). Yet each model highlights an aspect the other 
one overlooks. With regard to methodology, the prax-
eological twofold description [τ/θ] provides an appro-
priate tool to consider what is happening in the case 
of methodological exchanges between theories (with 
Radford’s meaning of the term), an issue addressed by 
(Radford, 2008, p. 322). The technique may or may not 
change, but certainly a new technological discourse 
will be produced to justify that the imported tech-
nique is consistent with the importing theory and its 
principles. Regarding principles, there is no place 
in a praxeology for the implicit part of P. This claim 
needs some discussion. Chevallard and colleagues 
(2015) argue that “a theory is made up of two main 
components, that we may call its “emerged part” and 

“immersed part. [...] In ATD, a theory is thus a hypo-
thetical reality that assumes the form of a (necessarily 
fuzzy) set of explicit and implicit statements about the 
object of the theory.” This recognises the need to en-
compass an implicit dimension in the human activity 
modelling. Yet, I dispute the idea that implicit views 
may be considered as parts of the praxeological logos 
component. According to the etymological meaning 
of this Greek term, the lógos is an explicit discourse. 
In my opinion, the praxeological model must carry 
this meaning where the [θ/Θ] block refers to explicit, 
socially legitimised knowledge, to the savoir in French. 
However, referring to ATD and its institutional di-
mension, I assume that the way a praxeology lives in a 

given institution is determined by a set of constraints, 
among which culturally shared incorporated norms, 
many of them being implicit. Studying this implicit 
praxeology environment is a condition to further-
ing the process of developing the praxeology, as high-
lighted by Chevallard and colleagues (2015). As for 
research, the paradigm model I propose provides a 
tool to take into account both emerged and immersed 
parts: within a given paradigm, researchers’ actions 
are regulated by the reference to the research prax-
eology and through the influence of the associated 
social organisation.

In summary, the research paradigm model presents 
three strong points: incorporating the different as-
pects of the (P, M, Q, K) and [T/τ/θ/Θ] models; includ-
ing in the modelling project the contribution of the 
research community that in some cases or times plays 
a decisive role in the scientific identification of the 
research praxeology; and considering social inter-
actions between communities within the networking 
issue.

LOOKING AT MATHEMATICS EDUCATION 
RESEARCH FROM OUTSIDE

I now present tools that I use in the last part of the 
paper to interpret the paradigm multiplicity in mathe-
matics education and the injunction to unify theories.

Institutional determinations
An ATD important contribution has been to introduce 
the notion of ecology in mathematics education in 
order to fight the pedagogical voluntarisms. The math-
ematical and didactic praxeologies are subjected to a 
complex system of conditions “that cannot be reduced 
to those immediately identifiable in the classroom” 
(Bosch & Gascón, 2014, p. 72). They are constrained by 
a whole scale of institutional determinations among 
which ATD considers at the highest generic levels 
the influence of Civilisation and Society (ibid, p. 73). 
This is only one example of the crucial part given to 
institutions by ATD, it aims to show that this theory al-
ways immerses the addressed questions in the whole 
anthropological reality, with a special focus on the 
social organisations and the way they determine hu-
man activities. In what follows, I apply this approach 
to mathematics education research. 
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Bourdieu’s field theory applied to science
A field is a structured social space, relatively autono-
mous from the wider social space and strongly differ-
entiated from other fields. According to Bourdieu, sci-
ence is a field. The field theory focuses on the ‘closed 
field’ dimension of these spaces, providing analysis 
of what is going on inside; this is the interesting con-
tribution for our group since ATD provides adequate 
tools to consider external influences.

A field is characterised by a game that is played only 
by its agents, according to specific rules. The agents 
are individuals and structured groups, in science they 
are isolated scientists, teams or laboratories. The con-
formity of agents’ actions to the game rules is partly 
controlled by objective visible means, but the key 
point of the theory, through the concept of habitus, is 
the inculcation of the field social rules into the agents’ 
subjectivity. This individual system of dispositions, 
partly embodied as unconscious schemes, constitutes 
an individual’s right of entry into the field.

The field game is twofold. Firstly, it is productive of 
something that is the field legitimised goal in the social 
space. The rules, and therefore the individual dispo-
sitions, are fitted to achieve the goal that every agent 
considers desirable. In the case of science, the goal 
is epistemic: accepting tacitly the existence of an ob-
jective reality endowed with some meaning and logic, 
scientists have the common project to understand the 
world and produce true statements about it. Bourdieu 
further adds a social dimension to the Bachelardian 
conception of the scientific fact construction: 

In fact, the process of knowledge validation as le-
gitimation […] concerns the relationship between 
the subject and the object, but also the relation-
ship between subjects regarding the object […]. 
The fact is won, constructed, observed, in and 
through […] the process of verification, collective 
production of truth, in and through negotiation, 
transaction, and also homologation, ratification 
by the explicit expressed consensus – homologein. 
(Bourdieu, 2001/2004, pp. 72–73). 

Despite this social nature, scientific homologation 
produces objective statements about the world thanks 
to specific rules of the scientific critical scrutiny, “the 
reference to the real, [being] constituted as the arbiter 
of research” (ibid, p. 69). Bourdieu also emphasises 

that constructed facts are all the more objective as 
the field is autonomous and international.

Secondly, the game is a competition between the 
agents, resulting in an unequal distribution of some 
specific form of capital, source of advantage in the 
game, source of power on the other agents. Thus, a 
field, including the scientific one, appears as:

a structured field of forces, and also a field of 
struggles to conserve or to transform this field 
of forces. […] It is the agents, […] defined by the 
volume and structure of the specific capital they 
possess, that determine the structure of the field 
[…This one] defined by the unequal distribution of 
capital, bears on all the agents within it, restrict-
ing more or less the space of possible that is open 
to them, depending on how well placed they are 
within the field… (ibid, pp. 33–34)

The capital includes several species, for instance, in 
science, laboratory equipment, funding, and journal 
edition. I focus on the symbolic capital, especially on 
its scientific modality: 

Scientific capital is a particular kind of symbolic 
capital, a capital based on knowledge and recog-
nition. (ibid, p. 34) 

A scientist’s symbolic weight tends to vary with 
the distinctive value of his contributions and the 
originality that the competitor-peers recognize in 
his distinctive contribution. The notion of visibil-
ity […] evokes the differential value of this capital 
which, concentrated in a known and recognized 
name, distinguishes its bearer from the undif-
ferentiated background into which the mass of 
anonymous researchers merges and blurs. (ibid, 
pp. 55–56)

This theory of science as a field challenges an idyl-
lic vision of the scientific community, disinterested 
and consensual. However, through the hypothesis of 
embodied dispositions, it avoids considering the sci-
entists’ participation to the capital conquest in terms 
of personal ambition or cynicism. 

In summary, I will focus on the fact that scientific 
strategies are considered twofold. 
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They have a pure – purely scientific- function 
and a social function within the field, that is to 
say, in relation to other agents engaged in the 
field. (ibid, p. 54)

Every scientific choice is also a strategic strategy 
of investment oriented towards maximization 
of the specific, inseparably social and scientific 
profit offered by the field. (ibid, p. 59)

One can see a true correspondence between the tri-
plets (institution, subjects, assujettissements-subju-
gation) of ATD (Chevallard, 1992) and (field, agents, 
habitus) of the field theory. In what follows, I consid-
er mathematics education research as an institution 
immersed in and determined by a complex system of 
other institutions, and as a field of forces, subfield of 
the scientific global field.

EXTERNAL DETERMINATIONS 
OF THE “THEORIES ISSUE” 

Research in didactics as externally 
determined in its questions and answers
I now consider the fact that the realm of reality of 
mathematics education research studies is deter-
mined by various economic, political, cultural insti-
tutions of different sizes. No one may dispute the vast 
distance that separates the following two objects of 
study: on the one hand, the passing down of arithmetic 
techniques in the Aymara villages of northern Chile, 
whose culture developed specific calculation praxe-
ologies, and on the other hand, the use of software in 
the French education system to promote the learning 
of algebra. Is looking for universal regularities the 
epistemic priority of mathematics education research 
when, unlike physics for instance, the studied reality 
is so diverse? Assuming that such common phenome-
na exist (the didactical contract is often cited as such), 
which part of the two aforementioned complex real-
ities are they able to account for?  Moreover, given 
that the research intends to act upon the mathematics 
education reality, a more crucial question would be: to 
what extent can these regularities support engineer-
ing projects? In this paper, I will consider that adapted 
tools must be designed to address the problems raised 
by the diverse educational institutions around the 
world, in order to understand the dysfunctions and 
to produce solutions that are acceptable to these insti-
tutions and their subjects. The research questions as 
well as the produced answers are determined by local 

characteristics. The paradigm multiplicity therefore 
appears as a result of the epistemology of a science 
intending to act upon the studied reality. To take only 
one example, the ethnomathematics paradigm has 
been developed in South America as well as in Africa, 
as a response to a massive failure in mathematics ed-
ucation within educative systems that are still based 
on the colonial vision and present “mathematics [...] 
as an exclusive creation by the white race” (Gerdes, 
2009, p. 31, my translation). Ethnomathematics follows 
as a paradigm from the need to “multiculturalise the 
curricula of mathematics to improve the quality of ed-
ucation and increase the social and cultural-self-con-
fidence of all students”. (ibid, p. 21)

Research in didactics as externally 
determined in its workings 
Obviously, research depends on national and in-
ter-national political and economic institutions 
which provide the material and the human resourc-
es. From this derives the existence of mathematics 
education research sub-institutions we partly find in 
the ICMI structure. But other institutions influence 
the research activities through less evident ways and 
means, such as cultures with more or less extended 
spheres of influence, up to civilisation. In spite of their 
scientific specific habitus, researchers with common 
culture also build upon this culture to address the 
research issues. That is one among other sources of 
some tacit principles of a paradigm. In other words, 
the paradigm multiplicity also results from the cultur-
al multiplicity of the agents within the mathematics 
education research field. The researchers’ cultural 
specificity may echo the educative local reality they 
study, hence resulting in a form of coherence and per-
haps of efficiency. At the same time however, several 
paradigms may coexist in the same society, in the same 
country, investigating the same education system 
with different philosophical, ideological positions. 
As an example, let me consider ATD and the double 
approach that are strongly differentiated by their 
conception of the human being: ATD highlights the 
multi-institutional building of the framework within 
which the individual develops and acts (Chevallard, 
1992, p. 91), the double approach focuses on the in-
dividual variations (Vandebrouck, 2008, p. 20). This 
second viewpoint is more present in the Western 
education research paradigms than the first one. I 
hypothesise that this is deeply correlated with the 
societies’ characteristics and that it is not mere coin-
cidence that ATD emerged in France.
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Another example of external determination is the pro-
ject of reducing theoretical diversity itself. This pro-
ject is epistemologically founded within Bourdieu’s 
theory since, as seen above, communication between 
researchers at the most international possible level 
is crucial in the construction of the scientific facts. 
However, it also comes from the requirements of po-
litical institutions, the Babel Tower aspect of research 
in mathematics education affecting its credibility. The 
proposed solution is unifying theories. Policy makers 
refer to the exact sciences model, and so does, rather 
surprisingly, mathematics education research itself, 
still (over)determined by its alma mater, mathemat-
ics. This reference neglects the diversity of educative 
reality. It forgets the exact sciences very long lifetime 
conducive to the unifying process, and that with the 
colonial expansion many local paradigms have simply 
been ignored, the occidental ones being imposed to 
the defeated countries. So the present homogenous 
theoretical landscape results as much from domina-
tion as from unification.

At this point, I have argued that the paradigm diversity 
is in some sense epistemologically legitimate in math-
ematics education and results from some social deter-
minations of research. I have also noted that the uni-
fying injunction might be considered as introduced 
into the field from outside for questionable reasons.

MATHEMATICS EDUCATION 
RESEARCH AS A POWER GAME

In this part, I build upon Bourdieu’s statement that 
every scientific strategy has a social function within 
the field, i.e. has something to do with the distribu-
tion of power among the agents. In such a framework, 
the production of independent theories as well as the 
call for their integration in new entities are taken 
as contributing to the contestation and conquest of 
positions. For a researcher, being recognised as the 
creator of an identified theory clearly increases his 
scientific capital, much more than a less visible par-
ticipation to the collective development of an existing 
paradigm would. This “visibility factor” fosters the 
paradigm multiplication, especially at the theory lev-
el; it should certainly be controlled when individual 
positions are at stake. However, let me now consider 
an emergent research community: in this case, devel-
oping a specific paradigm is an asset to free from the 
domination by older communities, generally tending 
to impose their own paradigms as ready tools which 

are adapted even for new problems. I will mention 
here the socioepistemology (Cantoral, 2013), deliber-
ately developed by a group of Mexican researchers 
with the dual intent of creating tools adapted for the 
educative reality in South America and putting an 
end to what was considered as an extension of coloni-
sation through the exclusivity of Western paradigms 
in didactics research.

I have already put forward that the need to unify 
paradigms could be epistemologically challenged by 
virtue of the diversity of the didactic reality depend-
ing on the societies and countries involved. Now, I 
question it as an obstacle to an autonomous organi-
sation of didactical research in countries where the 
latter is just emerging. To finish, I reverse this point 
of view: if developing a paradigm is empowering for 
a community in the field, the call for reducing the par-
adigm multiplicity has something to do with relative 
positions of the research institutions incorporated to 
the paradigm. It is an aspect of the social game in the 
field, certainly determined by other levels of power 
struggles outside the scientific field as well.

CONCLUDING REMARKS

In this paper, my intent was not to contest the impor-
tance of interactions between mathematics education 
researchers. I recognise the crucial part of the broad-
est possible communication in the construction of 
scientific facts and the major difficulty deriving from 
the paradigm multiplicity in the field. My aim was to 
bring to light some aspects of the multidimensional 
complexity of this well-documented phenomenon, 
so far almost unexplored in this TWG. Multiplicity 
is an epistemological adaptation to the diversity of 
educational realities and a social result of symbolic 
power struggle within a recent research field, some-
how less submitted to colonial and capitalistic rules 
to determine the power repartition than have been 
(and perhaps are) the oldest basic sciences. Hence, if 
reducing the number of paradigms appears as a direct 
solution, which favours communication thanks to a 
common conceptual language, this shortcut may be 
epistemologically inadequate for mathematics educa-
tion research. Moreover, from the social point of view, 
it should be considered as the current hidden form of 
the exercise of power conquest in the field. 

Unifying theories in order to produce a common dis-
course is not the appropriate way to scientificity for 
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mathematics education research in its present state: 
that is the opinion I have tried to convey through 
this text. Building on the Remath project experience 
among others (Artigue & Mariotti, 2014), I suggest that 
collaborating which brings together researchers who 
refer to different paradigms might be more relevant; 
theory networking will result from working together 
on the same objects. The challenge is to develop scien-
tific research collaboration praxeologies.
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ENDNOTE

1. Using the term paradigm may be provisory. It re-
fers to Kuhn’s notion of scientific paradigm (1962). Yet, 
in the postscript to the second edition (1970), Kuhn 
writes that: “Paradigms are something shared by the 
members of such groups [scientific communities]” (p. 
178). It seems that he does not include communities 
within the paradigm model.
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in discussing scientific matters. The analysis that we 
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INTRODUCING THE NOTION OF THEORY

In this study we examine the meaning and scope of 
a key concept of ATD which, paradoxically, since 
the inception of this theory, seems to have been con-
sistently overlooked: that of theory. A word akin to 
English “theory” exists in many European languag-
es [1]. According to John Ayto’s Dictionary of Words 
Origins (1990), the history of theory goes as follows:

theory [16] The etymological notion underly-
ing theory is of ‘looking’; only secondarily did it 
develop via ‘contemplation’ to ‘mental concep-
tion.’ It comes via late Latin theōria from Greek 
theōríā ‘contemplation, speculation, theory.’ This 
was a derivative of theōrós ‘spectator,’ which was 
formed from the base thea- (source also of theā́st-
hai ‘watch, look at,’·from which English gets thea-
tre). Also derived from theōrós was theōreīń ‘look 
at,’ which formed the basis of theṓrēma ‘specula-
tion, intuition, theory,’ acquired by English via 
late Latin theōrēma as theorem [16]. From the same 
source comes theoretical [17]. (p. 527)

A paper by a classical scholar, Ian Rutherford, gives 
more information on the uses of the word theoria in 
Ancient Greece:

The Greek word theoria means “watching,” and 
has two special senses in Greek culture: first, 
a religious delegation sent by a Greek city, to 
consult an oracle or take part in a festival at a 
sanctuary outside its territory, and second, philo-
sophical contemplation. Theoria in the first sense 
is attested from the sixth century bce until the 
Roman Empire, but the sources are particularly 
rich in the Hellenistic period. Sacred delegates 
were called theoroi, were often led by a so-called 
architheoros, and if they went by sea, the vehicle 
was a theoris-ship. (Abstract)

The first of these two senses has almost disappeared 
from modern usage. The second sense opened the 
way for our common uses of theory. In the following, 
we concentrate on “modern” meanings of this word, 
which dictionaries usually condense into a small 
number of categories, as does for example the English 
Wiktionary. The entry dedicated to theory in this dic-
tionary begins classically with the etymology of the 
word, then passes on to the uses of it that it does retain:

theory (countable and uncountable, plural the-
ories)

1) (obsolete) Mental conception; reflection, con-
sideration. [16th-18th c.]

2) (sciences) A coherent statement or set of 
ideas that explains observed facts or phe-
nomena, or which sets out the laws and 
principles of something known or observed; 
a hypothesis confirmed by observation, ex-
periment etc. [from 17th c.] 

mailto:y.chevallard@free.fr
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3) (uncountable) The underlying principles or 
methods of a given technical skill, art etc., as 
opposed to its practice. [from 17th c.]

4) (mathematics) A field of study attempting to 
exhaustively describe a particular class of 
constructs. [from 18th c.] Knot theory classi-
fies the mappings of a circle into 3-space.

5) A hypothesis or conjecture. [from 18th c.]

6) (countable, logic) A set of axioms together 
with all statements derivable from them. 
Equivalently, a formal language plus a set of 
axioms (from which can then be derived the-
orems). A theory is consistent if it has a model.

In what follows we shall draw upon such semantic 
summaries in order to suggest that the notion of the-
ory developed in ATD can account for the diversity 
of usages that exist today.

SOME BASICS OF ATD

In ATD, the basic “entities” are persons x and insti-
tutions I. These notions are close to their ordinary 
counterparts, although they are more general: in ATD, 
a newborn infant is a person; and, to take just one 
easy example, a class, with its students and teachers, 
is an institution. An institution I comprises different 
positions p— in the case of a class, that of student and of 
teacher. To every person x or institutional position p 
is assigned a “praxeological equipment”, which is the 
system of “capacities” that, under appropriate condi-
tions, enables the person x or any person x’ occupying 
position p to act and think through one’s actions.

Any praxeological equipment, be it personal or posi-
tional, is made up of, among other things, “notions”. 
Most persons and institutional positions thus have 
a certain notion of theory—if only through the over-
used phrase “in theory”. The present study could then 
be said to be partly about the notion of theory in ATD 
(taken as an institution). However that may be, it is 
essential to detach oneself from the seemingly undis-
puted belief that there would exist a unique, shared 
notion of theory of which the meaning would simply 
vary according to the context of use. In ATD, every 
person, every institutional position is supposed to be 
endowed with a peculiar notion of theory, that notion 
being shaped by the constraints to which the person or 

position is currently subjected. This phenomenon is at 
the origin of the processes of institutional transposi-
tion, of which didactic transposition is but a particular 
case (Chevallard, 1992). In order to make headway, we 
shall now delineate the “anthropological” notion of 
theory—which, at the start, is only one such notion 
amongst others.

THE NOTION OF PRAXEOLOGY IN ATD

ATD posits a theory of human activity that hinges on 
an essential and founding notion: that of praxeology 
(Chevallard, 2006, 2015; see also Bosch & Gascón, 2014). 
The word praxeology has been around for (at least) two 
centuries in the sense recorded by most dictionaries, 
in which it is held to refer to the “study of human ac-
tion and conduct”, to the “study of practical or efficient 
activity”, or to the “science of efficient action”. The use 
made here of the word pertains properly to ATD and 
departs decisively from this old-established, though 
infrequent, use. A key tenet of ATD is that when a 
person x acts purposely and knowingly, her doings 
can be analysed into a (finite) sequence of tasks t1, t2, 

..., tn. Contrary to the common meaning of the term 
(which has a ring of unpleasantness about it), task is 
taken here in a very general sense, irrespective of its 
volume or pettiness: to open this door and to smile to 
this neighbour are tasks; to scratch this person’s back, 
to write this sonnet, to save this polar bear, to prove this 
theorem, and to play this guitar chord are tasks as well. 
Any task t is regarded as a “specimen” of a type of tasks 
T. In order to execute the task t of type T, a person x 
draws on a determined technique, denoted τT, that is 
to say a (more or less precise) way of accomplishing 
(at least some) tasks t of type T. No technique τ can 
cope with the totality of tasks of a given type T—its 
range of success is usually called the scope of τ. If, for 
example, it is clear that elementary techniques for 
factoring numbers all have a limited scope, it is true 
also, for obvious reasons, that any technique whatso-
ever eventually reaches its limits.

Let us take another example, that of a technique for 
finding the quotient of number a by number b (with 
a, b ∈ ℕ*), which we make explicit on a specimen. 
Considering that 12 = 2 × 2 × 3, in order to arrive at the 
quotient of 417 by 12, we first determine the quotient of 
417 by 2, which is the quotient of 416 by 2, i.e. 208. We 
then calculate the quotient of 208 by 2, which is simply 
104; and finally we determine the quotient of 104 by 3, 
which is the same as the quotient of 102 by 3, or 34. The 
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quotient of 417 divided by 12 is “therefore” 34. (Indeed, 
417 = 34 × 12 + 9.) The inverted commas that surround 
therefore hint at the fact that many people—including 
mathematics teachers—will highly doubt the validity 
of this technique, on the grounds that it leads one to 
carelessly get rid of successive remainders. This paves 
the way for another key notion that ATD hinges on: the 
notion of technology. This word is used in ATD with 
its etymological value: as the suffix -logy indicates, a 
technology is a “discourse” on a given technique τ. 
This discourse is supposed, at least in the best-case 
scenario, both to justify the technique τ as a valid way 
of performing tasks t of type T and to throw light on 
the logic and workings of that technique, making it 
at least partially intelligible to the user. As concerns 
the technique of division shown above, it seems diffi-
cult to hit upon a full-fledged technology that would 
justify it, let alone explain it—if the technique is duly 
valid, why is it so? For lack of space, we shall leave 
these two mathematical tasks—justify and explain the 
aforementioned technique—to the perplexed reader.

A key point must be stressed. Owing to the presence 
of the suffix -logy, the word technology carries with it 
the idea of a rational discourse (about some tekhne—a 
Greek word meaning “a system or method of making 
or doing”, that is, a technique or system of techniques). 
In the universe of ATD, there is no such thing as uni-
versal rationality. Every person x, every institution I, 
and every position p has its own rationality, afford-
ed by the technologies present in its “praxeological 
equipment.” Of course, persons and institutions strive 
to indulge their “rationality” or even to impose it upon 
others. The interplay between competing rationalities 
is a major aspect of what it is the mission of didactics 
to explore.

We have now arrived at a crossroads. It appears that 
no technological justification is self-sufficient: it relies 
on elements of knowledge of a higher level of gen-
erality, which, whenever they do not go unnoticed—
they often do—, sound more abstract, more ethereal, 
oftentimes abstruse, as if they expressed the point 
of view of a far removed, pure spectator—a theoros. 
In ATD, such items of knowledge, sometimes dubbed 

“principles” (or “postulates”, etc.), compose the theory 
that goes with the triple formed by the type of tasks T, 
technique τ, and technology. This theoretical compo-
nent is denoted by the letter Θ (“big theta”) while the 
technology is denoted by (small) θ . We thus arrive at 
a quadruple traditionally denoted by [T / τ / θ / Θ]. It 

is this quadruple that we call a praxeology; it is called 
a punctual praxeology because it is organised around 
the type of tasks T, considered as a “point”.

It should be clear that, by its very definition, ATD’s 
notion of theory already subsumes case 3 of the 
English Wiktionary’s definition of theory: “The un-
derlying principles or methods of a given technical 
skill, art etc., as opposed to its practice. [from 17th 
c.].” Let us take a step forward. A central tenet of ATD 
is that all “knowledge” can be modelled in terms of 
praxeologies. The “praxeological equipment” of a 
person x or institutional position p is defined to be 
the more or less integrated system of all the praxe-
ologies that the person x or a person x’ in position 
p can draw upon to do what this person is led to do. 
A praxeology can be denoted by the letter ℘ (called 

“Weierstrass p”). It can be construed as the union of 
two parts or “blocks”: the praxis part Π = [T / τ], also 
called the practico-technical block, and the logos part 
Λ = [θ / Θ] or technologico-theoretical block. One can 
write: ℘ = Π ⊕ Λ = [T / τ] ⊕ [θ / Θ] = [T / τ / θ / Θ]. The 
operation ⊕ is sometimes called the amalgamation 
of the praxis and logos parts. The amalgamation of Π 
and Λ should be interpreted as a dialectic process of 

“sublation” [2] through which the praxis and logos parts 
are at the same time negated as isolated parts but pre-
served as partial elements in a synthesis, which is the 
praxeology ℘. Let us for a moment relabel “knowledge 
part” the logos part and “know-how part” the prax-
is part of a praxeology ℘. The dialectic sublation of 

“knowledge” and “know-how” that ℘ is supposed to 
achieve is hardly ever actualized. More often than 
not, the praxis and the logos observable in a person’s 
or institutional position’s praxeological equipment do 
not fit well together. The praxis block may be poorly 
developed while the logos part seems to be ahead of 
the game—a state of things often expressed by saying 
something like “he knows the theory, but can’t apply 
it.” Or the praxis part seems to be going smoothly but 
the logos part is so poor that it fails to substantially 
explain or justify the featured technique, which is 
consequently turned into a mere “recipe.” The failure 
to arrive at a “well-balanced” praxeology is the rule, 
not the exception—a key phenomenon that we will 
now dwell upon.
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INCOMPLETENESS AND IMPLICITNESS 
IN PRAXEOLOGIES

When it comes to discussing praxeological matters, 
people are prone to using metonymies or, more pre-
cisely, synecdoches [3]. This synecdochic bent general-
ly selects as a derived name some (supposedly) “noble” 
part or feature of the thing to name. The widely shared 
propensity to metonymize shows up in particular in 
the use of the word knowledge—which is the “lofty” 
part of a praxeology—to name the whole praxeology. It 
is even more manifest in the generalized use of theory 
as including not only what ATD calls technology, but 
also the praxis part and, therefore, the whole praxe-
ological matter. In common parlance, theory refers 
usually, though somewhat fuzzily, to a complex of 
praxeologies sharing a common “theory” (in a sense 
acknowledged by the naming institutions). Such a 

“body of knowledge” can be denoted by the formula 
[Tij / τij / θi / Θ] with i = 1, ..., n and j = 1, ..., mi, where 
the theory Θ “governs” all the technologies θi, each 
technology θi “governing” in turn the techniques τij. 
Such a praxeology goes by the name of global praxe-
ology. It is this generic analysis that ATD offers when 
one comes to speak of, for instance, “group theory” or 

“number theory” or “chaos theory” or “knot theory,” 
etc. It is to be observed that, in doing so, the praxe-
ological complex to which one refers is defined “in 
intension” rather than “in extension.” It allows one to 
identify conceptually the possible content of the prax-
eological complex, while its real “extension” remains 
somewhat unspecified. Of course, it is risky to be so 
unmethodical when it comes to describing praxeolog-
ical organisations. Naming a part to mean the whole 
leads to forget or neglect other parts. Therefore, the 
resulting praxeologies cannot be efficient tools for 
action—just as a car stripped down to the engine is 
of little avail to travel (even if, again metonymically, 

“motor” can be used to refer to the whole car).

This is however one aspect only of the problem of 
incompleteness in praxeologies. Any praxeology 
whatsoever can be said to be incomplete, be it tech-
nically, technologically or theoretically. And it is the 
fate of all praxeologies to continually go through a 
process which can further the development of any of 
their constituent parts: the technique can be further 

“technicized”, the technology “technologized”, and the 
theory “theorized”. Consider the following easy exam-
ple relating to the century-old “rule of three”, that of 
the so-called “unitary method”, which L. C. Pascoe in 

his Arithmetic (1971) introduces as “helpful to those 
who initially have difficulties with the ideas of ratios” 
(p. 64). Traditional arithmetical techniques were es-
sentially oral: to do mathematics, one had to say some-
thing, in order to arrive at the sought-for result. For 
instance, if it is known that 132 tickets cost £165, how 
much will be paid for 183 tickets? The right “saying” 
goes somewhat as follows [4]: “If 132 tickets cost £165, 
then 1 ticket costs 132 times less, or £ 165

132 ; and 183 tick-
ets cost 183 times more, or £ 165

132  × 183, that is £228.75.” 
Here the type of tasks T is clearly delineated; and so 
is the propounded technique τ0. As is often the case 
with arithmetic, the technology θ of τ is essentially 
embodied in the “technical discourse” above, that both 
activates τ and explains—makes plain—its logic, there-
by justifying it. As always, the “justifying efficacy” of 
θ depends much on the apparent “naturalness” of the 
supposedly self-evident reasoning conveyed by the 
technical discourse recited (if n cost p, then 1 costs p/n, 
etc.). There exist, of course, other techniques. Some 
centuries ago, people would have said something like 

“132 is to 165 as 183 is to price p”, writing down the 
“proportion” 132:165::183:p. Using the (technological) 
assertion that, in such a proportion, the product of the 

“means” (i.e. 165 and 183) equals the product of the “ex-
tremes” (i.e. 132 and p), they would have arrived at the 
equation 165 × 183 = 132 × p, which gives p =  165 × 183

132 . This 
formula appears to agree with the one found using 
τ0, provided one knows the (technological) equality 

a × c
b  = a

b  × c. But this age-old technique τ–1 was techno-
logically—not technically—more demanding, because 
the reason why the key technological assertion (about 
means and extremes) is true remains hidden—which, 
for most users, turns τ–1 into a recipe.

The technique τ0 can be modified in (at least) two 
subtly different ways. One consists in introducing 
an easy technological notion from daily life, that of 
unit price, which leads to a technical variant of τ0: “If 
132 tickets cost £165, then 1 ticket costs 132 times less, 
or £ 165

132 , that is £1.25; and m tickets will cost m times 
more, or £1.25 × m.” This technical variant τ01 is a little 
bit more complex technically (by contrast, τ0 skips the 
calculation of the unit price, though the technological 
concept of unit price is already implicitly present); 
but it provides more technological comfort to the lay-
man. Another variant results from a decisive theo-
retical change. While people generally understand 
the expression “number of times” as referring to a 
whole number of times, as was the case in the tickets 
problem, a major advance in the history of numbers 
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consisted in regarding fractions as true numbers, on 
a par with what came to be called natural numbers—
fractional numbers being called by contrast artificial 
numbers. A second step forward, not yet taken by so 
many people, consists in extending the scope of the 
expression “number of times” to include fractional 
numbers, so that, for instance, 183 is 183

132  times 132 (i.e. 
183 = 132 ×  183

132 ), from which it follows that the price 
of 183 tickets is 183

132  times the price of 132 tickets, or 
183
132  times £165, that is £165 ×  183

132  (which is yet another 
resolvent). As long as one accepts to think in terms of 
fractional number of times, we have a new technique, 
τ02, much more powerful and comfortable than τ0 or 
τ01. Knowing for instance that the price of 2988 tickets 
is £3735, we can now say that the price of 2012 tickets 
will be 2012

2988 times the price of 2988 tickets, i.e. £3735 × 
2012
2988; etc. While the variation leading to τ01 only called 
for a rather easy modification in the technique’s tech-
nological environment, here the change affects the the-
ory itself, which in turn leads to a new technological 
concept, that of a fractional number of times.

In mathematics as well as the sciences, praxeologies 
turn out to be no less incomplete than in other fields 
of human activity. Many aspects of a praxeology’s 
incompleteness are in fact linked to the impression 
of “naturalness” that so many people feel when they 
use (or even observe) this praxeology. Of course, the 
notion of naturalness undergoes institutional varia-
tions—let alone personal interpretations. But it is too 
often assumed that what is natural is, by definition, an 
unalterable given that does not have to be “justified.” 
This, of course, runs contrary to the scientific tradi-
tion, of which it is the ambition to unveil the figments 
of institutional or personal imagination. Thus the 
French mathematician Henri Poincaré (1902, p. 74) 
regarded the principle of mathematical induction as 

“imposed upon us with such a force that we could not 
conceive of a contrary proposition.” However, almost 
at the same time, progress in mathematics showed that 
this supposedly self-existent principle could be de-
rived from the well-ordering principle [4]. The same 
phenomenon had happened more than two centuries 
earlier. The leading character was then John Wallis. 
According to Fauvel, Flood, and Wilson (2013), here 
is what happened:

On the evening of 11 July 1663, he lectured in 
Oxford on Euclid’s parallel postulate, and pre-
sented a seductive argument purporting to 
derive it from Euclid’s other axioms. As Wallis 

observed, his argument assumes that similar fig-
ures can take different sizes. Wallis found this as-
sumption very plausible, and if it were true then 
the parallel postulate would be a consequence 
of the other axioms of Euclid. It does, however, 
imply a remarkable result: in any geometry in 
which the parallel postulate does not hold, that 
similar figures would have to be identical in size 
as well as in shape, and so scale copies could never 
be made. (pp. 129–130)

Seventy years later, Girolamo Saccheri was to observe 
that Wallis “needed only to assume the existence of 
two triangles, whose angles were equal each to each 
and sides unequal” (Bonola, 1955, p. 29). Wallis’s proof 
of the parallel postulate [5] opened the way to a major 
change that we can subsume under a broader histori-
cal pattern. By making explicit a theoretical property 
of Euclidean space—“To every figure there exists a 
similar figure of arbitrary magnitude” (Bonola, 1955, 
p. 15)—, Wallis reduced the incompleteness (in ATD’s 
sense) of Euclidean geometry as a praxeological field. 
But he contributed much more to the mathematical 
sciences: he discovered a constraint that, until then, 
had been taken for granted (and thus ignored) and 
which turned out to be crucial in the development 
of geometry, in that it drew a clear demarcation line 
between Euclidean geometry and the yet to come 
non-Euclidean geometries.

At this point, we must introduce another key notion 
of ATD: that of condition, stealthily used in the be-
havioural sciences (through the idea of conditioning 
or being conditioned) and akin to more widespread 
notions such as cause, variable, and factor. Didactics 
is defined in ATD as the science of the conditions of 
diffusion of knowledge to persons and within insti-
tutions. More generally, ATD views any science—in-
cluding mathematics—as studying a certain kind 
of conditions with a bearing on human life and its 
environments. In this respect, given an institution-
al position p, it is usual (and useful) to distinguish, 
among the set of conditions considered, those that 
could be modified by the people occupying position 
p, and those which cannot be altered by these people 
(though they could be modified by those in some po-
sition p’ ≠ p). Any science seeks to accrue knowledge 
and know-how in order to make the most of prevailing 
conditions and, in the case of constraints, to create 
new positions for which these constraints become 
modifiable conditions. Now, before doing so, it is nec-
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essary to identify such conditions and constraints, and 
this is precisely what happens in the Wallis episode, 
where the Euclidean constraint of invariance by sim-
ilarity is brought out as a key theoretical property. 
At the same time, revealing some constraint usually 
brings forth alternative conditions that had gone un-
noticed until then—non-Euclideanism, in the case at 
hand—and which become new objects of study. It must 
be stressed here that a science does not know in ad-
vance the complete set of conditions and constraints it 
has to cope with: constructing this set is, by nature, a 
never-ending task. All these considerations extend to 
any field of activity, whose praxeological equipments 
are the outcomes of facing sui generis conditions and 
constraints. We have now arrived at a position where 
it makes sense to revert to the question from which 
we started.

WHAT IS A THEORY?

It must be emphasized here that the interrelated no-
tions of technique, technology and theory do not refer 
so much to “things” as to functions. A technique is a 
construct which, under appropriate conditions, per-
forms a determined function—the technical function. 
The same may be said about technology and theory, 
which respectively perform the technological and 
theoretical functions. Up to a point, these last two 
functions look weakly distinguishable—indeed, any 
contrastive definition is sure to be plagued with coun-
terexamples. Obviously, there are some general cri-
teria allowing one to discern the technological from 
the theoretical: the first of them is regarded as more 
concrete, more specific and straightforward, while 
the second one is approached as being more abstract, 
more general, more meditative and far-fetched, as if 
it were reminiscent of its origins. In addition, as has 
been already highlighted, in an intellectual tradition 
that has persisted to this day, the second one is valued 
more highly than the other is. However, these consid-
erations may impede the recognition of an essential 
phenomenon: the use which is often made of words 
like theory refers to the explicit aspects of an entity 
which we described as definitely subjected to inex-
plicitness and incompleteness.

From the point of view of ATD, it appears that the 
technological and theoretical components of a prax-
eological organisation—that is to say, its logos part—
are almost always misidentified, because the usual 
view of them tends to focus on their “explicit” part, 

which looks generally pretentious and assumptive. 
This tendency clearly shows through the case 2 of the 
definition of theory given by the English Wiktionary: 

“(sciences) A coherent statement or set of ideas that 
explains observed facts or phenomena, or which sets 
out the laws and principles of something known or ob-
served.” This of course is representative of a dominant 
theory about... theories. Moreover, theory is often lib-
erally used to label what boils down to a few guidelines 
or precepts which, taken together, do not function as 
the theory of any clearly identified object; for a theory 
should always be a theory of something, built around 
the scientific ambition to study this “something”.

The metonymic use of theory is no problem in itself: 
when one says that ATD is a theory of “the didactic”, 
theory refers, as is usual in mathematics for example, 
to the whole of a praxeological field. But it is a symp-
tom of our propensity to give the word free rein with 
the uneasy consequence that the debate on theory is 
deprived of its object. By contrast, ATD conduces to fo-
cus the research effort on examining the implicit, un-
assuming or even wanting parts of technologies and 
theories. It then appears that a theory is made up of 
two main components, that we may call its “emerged 
part” and “immersed part”. To avoid engaging here in 
a titanic work, we summarize in two points the con-
stant lesson that praxeological analysis consistently 
teaches us. Firstly, the immersed part of a theory—in 
mathematics and, as far as we know, elsewhere—is re-
plete with inexplicit tenets that are necessary to keep 
the emerged part afloat. Secondly, these tenets have 
surreptitious, far-reaching consequences, which of-
ten go unnoticed and usually unexplained at both the 
technological and the technical levels. What people do 
and how they do it owes much to “thoughts” unknown 
to them—unknown, not unknowable.

In ATD a theory is thus a hypothetical reality that as-
sumes the form of a (necessarily fuzzy) set of explicit 
and implicit statements about the object of the theory. 
A theory is in truth the current state of a dialectic pro-
cess of theorisation of which it offers an instantaneous 
and partial view that may prove delusive. The study 
and exploration of a theory is tantamount to further-
ing the very process of theorisation. One main feature 
of this process is that it allows for the expansion of too 
often ad hoc, punctual praxeologies [T / τ / θ / Θ] into 
deeply-rooted global praxeologies [Tij / τij / θi / Θ]. The 
process of theorisation, as well as the networking of 
theorisations, has thus a liberating effect, in which, by 
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the way, the use of well-chosen terms and symbolic no-
tations helps achieve mental hygiene and theoretical 
clarity in bringing about what Bachelard once called 
the asceticism of abstract thought.
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ENDNOTES

1. See for instance the list proposed on the page at 
http://www.collinsdictionary.com/dictionary/eng-
lish/theory.

2. The word sublation is the traditional rendering in 
English of Hegel’s notion of Aufhebung. According to 
Wikipedia (“Aufheben”, n.d.), “in sublation, a term or 

concept is both preserved and changed through its 
dialectical interplay with another term or concept. 
Sublation is the motor by which the dialectic func-
tions.”

3. A synecdoche is a phrase in which a part of some-
thing is used in order to refer to the whole of it.

4. See at http://en.wikipedia.org/wiki/Mathematical_
induction#Equivalence_with_the_well-ordering_prin-
ciple

5. For Wallis’s proof in modern form, see, for example, 
Martin, 1975, pp. 273–274.
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This paper is written in an organisational language 
developed in the context of mathematics education by 
Dowling (2009, 2013) – social activity method (SAM) – as 
a commentary on Radford’s (2008, 2014) discussion of 
theoretical networking. An exemplar is given of SAM’s 
approach of recontextualising, and thus learning from, 
what it finds of interest elsewhere – here, Chevallard’s 
Anthropological Theory of the Didactic (ATD). The ap-
proach puts emphasis on the autonomy and emergent 
quality of well-formed research activity. SAM is not, how-
ever, solipsistic: it is designed to recursively self-organise 
in relation to what it encounters elsewhere but on the 
explicit basis of its own principles. By biasing a reading 
of ATD, SAM’s organisational language develops in the 
form of a discriminatory research network.  

Keywords: Anthropological Theory of the Didactic, 

deformance, discriminatory research networks, 

recontextualisation, Social Activity Method.

INTRODUCTION

Writing about theoretical networking presents a for-
midable challenge. This paper looks at the relation 
between two research programmes in the domain 
of mathematics education research, Social Activity 
Method (Dowling, 1998, 2009, 2013 – hereafter SAM) 
and the Anthropological Theory of the Didactic 
(hereafter ATD; Bosch & Gascón, 2014) together with 
one meta-theory of theoretical networking (Radford, 
2008, 2014). This already involves three specialised 
assemblages of principles and tacit knowledges: to 
introduce all three would exceed the space available. 
This limitation is addressed by considering the other 
approaches as an illustration of how, from SAM’s point 
of view, theoretical dialogue might be achieved. For 
this reason, it is the principles of SAM that are given 
most emphasis: these are then used to select princi-
ples from the other approaches. This means that the 

principles of ATD and Radford’s meta-theory must, 
fundamentally, be misread – what I shall refer to as a (I 
hope, productive) deformance (Dowling, 2009) of them.

SAM has in common with some other research in 
mathematics education an interest in the specificity 
of social activity in the context in which it is produced 
and reproduced (see especially Dreyfus & Kidron, 
2014, p. 87). Its focus is on the strategies that lead 
to emergent alliance; ordered relations of action in 
which people may come to recognise themselves as 
working together e.g. as in SAM or ATD. I first intro-
duce the central Domains of Action Schema of SAM. 
This provides principles for further application of 
the method in forming a regard on both ATD and 
Radford’s work. One part of this schema – the esoteric 
domain – is then considered in greater detail to allow 
a discussion of the continuities and discontinuities 
between SAM and ATD. A new schema is then gener-
ated to bias a reading of ATD from the regard of SAM. 

The question I address is: what can a strongly institu-
tionalised research programme in mathematics educa-
tion, SAM, make of another such strongly institutional-
ised approach, ATD? How does this allow SAM to learn 
and thus deform itself? It needs the greatest emphasis 
that SAM makes no assumptions at all about what ATD 
might or might not learn because SAM assembles only 
its own principles. From the point of view elaborated 
here there can be no literal connection of similars: any 
metonymic chain between signifiers of two research 
programmes involves recontextualising work. A second-
ary question is: what light does this shed on the need for 
meta-theories to conceptualise theoretical networking 
such as the one proposed by Radford? 

For the purpose of clarity and to summarise the posi-
tion and rationale of the paper:  well-formed research 
activities are incommensurable – they are emergent 
and not graspable as such, even by themselves. The 
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term “continuity” between theories can refer only 
to those metonymic chains of signifiers that are of 
interest to the recontextualising regard of the theory in 
question – hence also the possibility of discontinuity. 
To claim otherwise, I argue, is counter to a fundamen-
tal socio-semantic principle: that sense is made locally 
in the context of an assembled practice not outside of 
it. There is, therefore, no possibility of “connection” 
in terms of similar “component parts”. Such a claim 
would also involve an infinite regress: the notion of 
similarities or points of contact between theories begs 
the question of what is the theory that allows such 
similarity to be discerned. I formalise this as a general 
argument later in this paper.

INTRODUCING THE DOMAIN 
OF ACTION SCHEMA

The Public Domain
Radford’s (2008, 2014) discussion of “networking the-
ories” in mathematics education research recontex-
tualises some aspects of Lotman’s (2001) semiotics to 
introduce “the semiosphere as a theory networking 
space”. Of particular interest is the resulting delimi-
tation of theoretical work as “bounded” by the princi-
ples that grant its “autonomy”. Radford (2008, p. 319) 
produces a description of the mathematics research 
semiosphere that is in “constant motion”; accelerat-
ing as information is transmitted and received with 
new technologies. Autonomy of a theory within the 
semiosphere is given by a hierarchical order of princi-
ples, methodology and research questions in which the 
system (Radford, 2008, p. 320) of principles is in regu-
lative control. The potential for networking theories 
is then a question of their closeness of principle. Some 
theories are too far apart to work well together, others 
may have surprising affinities yet to be articulated. 
Generally, we may be experiencing a drifting apart: 
networking might stabilise this, at least for a time.

This paper is written in SAM: the selection of, and 
extracts from, Radford’s paper are motivated by its 
common interest in the terms given emphasis in the 
paragraph above such as boundedness and system. 

But these are expressions not specialised in SAM; 
and neither is their content – see the axes of Figure 
1 below. This schema relates expression to content 
but moves beyond semiotics by further taking into 
account whether this is specialised or unspecialised 
in the institutionalisation of the activity. My summary 
of Radford’s position is in the public domain of SAM – 
involving unspecialised, weakly institutionalised (I-) 
expression and content (Dowling, 2009, p. 206) from 
the regard of SAM. Radford’s language is a highly spe-
cialised one in its own terms; but these specialised 
terms – and the way in which they interlink – are 
not recruited in the institutionalisation (denoted I+) 
of SAM. Figure 1 expresses SAM’s self-reference: as 
a research activity it articulates specialised expres-
sion and content in its esoteric domain, for example 

“domain of action”.

The Esoteric Domain
A central concept in Radford’s work is that of autono-
my. I will retain this word but recontextualise it from 
SAM’s regard in the esoteric domain of SAM. Figure 
1 schematises this as a socio-semantics rather than a 
semiosphere – institutionalisation (recognisable regu-
larity of practice) occurring as research activity where 
flows of strategic semiosis (gestures, images, words) 
are assembled in more or less stabilised emergent alli-
ances. The principles of action in the esoteric domain 
regulate what can be recognised/realised in the public 
domain. Weakly institutionalised terms such as au-
tonomy and semiosphere are alienated in favour of 
I+ terms such as those given emphasis in this section. 
This is a deformance: the “encounter” (Radford, 2008, 
p. 317) read through the principles of SAM. Yet the 
expressive domain ensures that self-reference need 
not become solipsism: the “identity” (Radford, 2008, 
p. 319) of the self-reference changes in its engagement 
with the other.

The Expressive Domain
The deformance involved in expressive domain ac-
tion can be illustrated with respect to the expression 

“networking theories”. (a) Network. Eco (1984, p. 81) 

           Content (signifieds)

Expression (signifiers)        I+       I-

I+   esoteric descriptive

I- expressive   public

Figure 1: Domains of Action (from Dowling 2009, p. 206)
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characterises the semiosphere (in his terms the global 
semantic universe) as a labyrinthine rhizomatic net. 

The main feature of a net is that every point can 
be connected with every other point, and where 
the connections are not yet designed, they are, 
however, conceivable and designable. A net is 
an unlimited territory […] the abstract model of 
a net has neither a center nor an outside. (Eco, 
1984, p. 81). 

A network is not a net (fishing, internet, tuber or 
any other). The metaphoric expression nonetheless 
points to potentially productive specialised content. 
Perhaps its most significant aspect is that a network 
cannot be described as a whole or from a global point 
of view; because any attempt at such a description is 
immediately re-inscribed as new connectivity. The 
concept of connectivity here is semiotic: the deferred 
and anticipatory action of one signifier on another. 
This occurs even if they are the same. For example, the 
signifier <institutionalisation> in SAM points to the 
schematised content of Figure 1. The same signifier is 
part of ATD; but its sense there – forged in dialogue 
with Mary Douglas’ How Institutions Think – is not 
organised as a relational space. No literal connection 
of this similar is then possible, only a transformative 
one. (b) Theory. At the nodes of the network, Radford 
has “theories”. Radford is careful not to impart undue 
reliance on the discursive by putting emphasis on 
the composition of the “triplet” to include principles, 
methodology and the “template” of research questions. 
Yet from SAM’s regard there is still some danger of 
the term being read as implying potential representa-
tional adequacy (the global all-seeing net). For this 
reason the phrase research activity or approach has 
been preferred to allow full room for the “practice 
turn” in theory. 

ASSEMBLAGES OF MATHEMATICAL MODES

In its most recent development SAM has consid-
ered the esoteric domain of school mathematics to 
be constituted as an assemblage of strategies, a term 

recontextualised from Deleuze (Deleuze & Parnet, 
2007 [1997], p. 69; Turnbull, 2000, p. 44). As a sociolo-
gy, SAM is concerned with the distributional conse-
quences of the ways alliances emerge through stra-
tegic action in the social: these indicate (never quite 
fix) the norms of who can say, think, or do what; here 
in school mathematics. 

An assemblage is specified by SAM as a relational sche-
ma – Figure 2 – that can be contingently recruited 
in the (re)production of school mathematics. The di-
mension semiotic mode distinguishes discursive (ex-
plicitly articulated principles, methods and symbols, 
for example formulae) from non-discursive modes of 
mathematical engagement (diagrams, or equipment 
such as a pair of compasses). The dimension mode 
of action opposes interpretative and procedural ac-
tivity: in the former case where there is work to be 
done in making sense of the semiotic mode (formulae, 
diagrams), in the latter case where there are rules or 
sequences to be followed (discursively ordered algo-
rithms, non-discursive techniques for manipulating 
the compasses or computer software appropriately). 
This establishes four general strategies: template, op-
erational matrix, procedure and theorem. Further, the 
second term of each strategy in the table denotes local 
rather than generalising action.

The schema suggests competence in that discipline (or 
anything else) is not acquired as such but is constituted 
by the development of a pragmatic ability to contin-
gently deploy an effectively inter-linked mixture of 
strategies in local context – upon which action the as-
semblage and those whose alliances will be distribut-
ed by it will develop or change. SAM therefore has no 

“epistemological” concerns in contrast, for example, 
to ATD. Figure 2 is an introduction to the technology 
for generating empirical description in SAM – see the 
many further schemas in (Dowling, 2009). These pin 
down modes of action. This is not a speculative space: 
it arose from an empirical engagement with a number 
of mathematical settings (Dowling, 2013). For recent 
further work in SAM see (Burke, Jablonka, & Olley, 
2014; Dowling, 2014; Dudley-Smith, 2015; Burke, 2015).

                          Semiotic Mode

Mode of Action Discursive Non-Discursive

Interpretative theorem/enunciation template/graph

Procedural procedure/protocol operational matrix/operation

Figure 2: Modalities of the Esoteric Domain Apparatus (Dowling, 2013, p. 333)
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A RECONTEXTUALISATION OF ATD

Dowling (2014, p. 528) has noted that Chevallard’s 
work also makes use of a “complementary” concept 
of recontextualisation – didactic transposition – al-
though with a primary focus on the contextualisation 
of cultural sense-making in pedagogic settings. The 
schema of the assemblage is potentially in dialogue 
with ATD’s vision of schools as providers of discoveries 
along the way of research and study paths (Chevallard, 
2015) contingent to the opening up of a body of ques-
tions found to be of interest as the research unfolds. In 
what follows the “amalgam” of praxeologies (Artigue et 
al., 2011, p. 2) is recontextualised by SAM in a deform-
ative re-ordering. 

Consider the praxeological components [T/τ/θ/Θ] 
of type of tasks, technique, technology and theory 
(Artigue, Bosch, & Gascon, 2011; Chevallard & Bosch, 
2014). ATD notices a key relation between praxis and 
logos: one of both imbrication and tension. Yet em-
pirical studies have shown that this is sometimes de-
nied: thus, for example, in the university some action 
(Bosch, 2014) is seen to hive off  [θ/Θ] from [T/τ]. This 
has proved a highly fruitful distinction: thus, for ex-
ample, Job and Schneider (2014) use this framework 
to make a productive separation of the pragmatic 
praxeology of the development of calculus and the 
rather monumentalising deductive praxeology of 
analysis imposed on mathematics undergraduates – 
with school mathematics very much a hotchpotch 
of both. However, in ATD the amalgam [T/τ/θ/Θ] is 
conceived as containing “ingredients” (Artique et al., 
2011, p. 3) – suggesting to a casual reader elements to 
be enumerated. From SAM’s regard a prophylactic 
against such a misreading is to suggest that the idea 
of a praxeology can be schematised.

First, it is possible to distinguish what I will call op-
erationalising and orientation. Orientation concerns 
what one is about in a specific context: practically as 
embodied in type of tasks, logo-centrically as informed 
by a theory. The former involves low discursive satura-

tion (DS-) as it is embedded in the situated interests or 
(Maussian) habitus of context. The latter is discursive-
ly saturated (DS+), i.e., context free. Operationalising 
involves techniques – in SAM’s terminology “DS- skills” 
or ways of doing – as well as DS+ “technological dis-
course” (Bosch &  Gascón, 2014, p. 69).

In Figure 3 this produces four strategies rather than 
components. In SAM’s research activity the develop-
ment of schemas such as Figure 3 allows a particular 
kind of regulated engagement with the empirical 
(without exclusion of others such as ATD). One ori-
enting strategic mode of this is given discursively by 
the theory-logos Θ; self-referentially in SAM’s case, 
particularly the semiotics imbricated in the raison 
d’être of the operationalising technology-logos θ of its 
schemas. Yet much is tacitly acquired: the DS- orien-
tation of SAM’s emergent type of tasks T – a concern 
with emergent alliance, the strategies achieved that 
enable a stabilised commonality of action – is diffi-
cult to explain to novitiates outside a context of ap-
prenticeship. Operationalising is also composed of 
strategies of practical technique τ. Certainly these can 
be aggregated in homology with ATD: the DS- modes 
identified by ATD as [T/τ] can be identified as skill, the 
DS+ strategies of [θ/Θ] as discourse (Dowling, 2009, p. 
95); but the recontextualisation now sees each as a 
strategic mode rather than an element of an amalgam. 

Once relationised in this way, SAM and ATD (from the 
deforming regard of SAM) have the same objective: 
to describe the empirical deployment of strategies in 
the assemblage of Figure 2 and in the praxeological 
modes of Figure 3. These common objectives are not 
translatable but they are transformable. Specifying 
the schema of Figure 3 allows a development of SAM. 
The insistence that this is a recontextualisation pre-
serves the autonomy of ATD. Both may then point – 
in a dialogue of potential complementarity – to the 
principles for a resistance to the closed and syncretic 
esoteric domains typical of school disciplinary sub-
jects precisely of the kind Job and Schneider (2014) 
identify. In learning it is then both operationalising 

Discursive Saturation

Mode of Action DS- DS+

Operationalising technique (τ) technology(θ)

Orientation type of tasks (T) theory (Θ)

skill discourse

Figure 3: Praxeological Modes
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and the orientation of the student to the regularities 
of practice in both the DS- and DS+ that would establish 
apprenticeship 

In ATD the theory of didactic transposition acknowl-
edges that school is a specific context of pedagogic 
relations. In SAM this is expressed as a matter of re-
contextualising action conceived as a general socio-se-
mantic process of structuration, i.e. in constituting 
the esoteric domain of a specialised social activity 
such as school mathematics as a cultural arbitrary. 
Both approaches put great emphasis on an interro-
gation of how mathematics is institutionalised dif-
ferently according to circumstance. Thus in recent 
programmes for ATD (Chevallard & Bosch, 2014) the 
T of the current milieu of the student (in reference to 
its sociality outside the school) is given appropriate 
emphasis – this is so often tragically downplayed by 
policy makers. As Radford (2008, p. 322) observes, 
research questions derive from the principles that 
allow their articulation. The focus in ATD is on the 
provision of appropriate activity (and the elimination 
of the inappropriate) to open to the student the pos-
sibilities of what mathematics might become for the 
student in their specific context. To ATD the school 
may (and often does) block this possibility but this is 
incidental to the possibility. SAM also sees content as 
constituted through institutionalisation; within the 
research programme identified by Jablonka, Wagner 
and Walshaw (2013), the content of school mathemat-
ics is itself always-already recruited in processes of 
social reproduction – the particular alliances (and, of 
course, oppositions) formed in the schoolroom always 
different to those formed in research (for example, 
mathematics research).

GENERAL ARGUMENT

This paper has considered the way in which SAM 
might stand in productive relation to other theoretical 
frameworks and to itself. From the autonomous and 
self-referential regard of SAM this must be a matter 
of the principle of recontextualisation, as that is what 
organises its regard. The self-reference is fundamen-
tal; but it is not a solipsism unless foolishly demanding 
that its categories replace all others to totalise the net. 
Both development and renewal are possible via an 
openness to the empirical and to theoretical anteced-
ents. The following general argument rejects the idea 
that there is a “landscape of strategies for connecting 
theoretical approaches” (Prediger, Bikner-Ahsbahs, 

& Arzarello, 2008, p. 170) in favour of the deforma-
tive determination of autonomous self-reference. To 
formalise the situation, let the operator → refer to 
the recontextualising regard of an approach, ABC, to 
mathematics education research. Further, let Δ refer 
to its development, ⇒ denote consequence and let ESi 
be a particular empirical setting:

If one has SAM → ESi  and, elsewhere, ABC → ESi  

then recognition of commonality would require 
a general unifying framework, GUF, such that GUF 

→ (SAM → ESi, ABC → ESi) to integrate an answer 
to “perspectives of what?”. This would deny 
that ESi is constituted as an artefact of SAM or 
of ABC (a refutation of this denial is the many 
(justified) observations in Networking of Theories 
as a Research Practice in Mathematics Education 
(Prediger & Bikner-Ahsbahs,  2014) that the 
data was not collected appropriately for the 
theoretical framework concerned). Rather, net-
working occurs as SAM → (ABC → ESi) ⇒ ΔSAM 
with possible answerability of the form 
ABC → (SAM → (ABC → ESi)) ⇒ ΔABC & etc. In 
each case the recontextualisation is either mis-
recognised through literalised equivalence (in-
cluding elements of “similarity”) or constituted 
as a deformative chiasmus (Merleau-Ponty, 1968), 
that is, realised as (re)new(ed) embodied practice 
in response to the objectifying regard of the other. 
For obvious reasons SAM cannot totally catch 
its own tail: SAM → (SAM → ESi) also ⇒ ΔSAM; 
hence the importance of the dialogic (even if with 
yourself ), a potentially unlimited recursion (or 
freedom). 

In terms of their key diagram (Prediger & Bikner-
Ahsbahs, 2014, p. 119), there is no role here for un-
derstanding, comparison, synthesis or integration, 
no “relationships between parts of theoretical ap-
proaches” (ibid, 118). It is not a question of attempting 
to find “similarities and differences” (ibid, 119) but to 
be open to deformative encounters – allowing these to 
prompt further self-organisation. It is the possibility 
of complementarity, not commonalities, that defeats 

“isolation”, and the principle of recontextualisation 
that annihilates “global unifiers” who put forward 
GUFs. In Lotman’s (2001, p. 143) semiotics, as in SAM’s 
social-semantics, the principle of asymmetry is para-
mount – information-enriching activity deforms. 
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CONCLUSION – SOME GENERAL THEMES

The main theme of the paper has been to provide a 
framework which allows a discussion of the continui-
ties and discontinuities between SAM and ATD.  It sets 
out an agenda for a commentary SAM → (ATD → ESi) 
in invitation of a counter-commentary from ATD. The 
framework claims autonomy in the regards of ATD 
and SAM, but also the possibility of dialogue as de-
scribed in the general argument. 

I have to this point left one consequence of this im-
plicit. There is a need to take mathematics out of the 
theoretical framework of mathematics education re-
search. From SAM’s regard, mathematics (however 
institutionalised) is the empirical setting of research. 
Yet, contrary to both SAM and ATD, many research 
programmes seem to wish to make it part of their the-
oretical framework by including considerations from a 
(notional) mathematics-itself. For SAM, the separation 
is required because the truth claims of a particular 
practice (for example, the often rather strange modal-
ities of school mathematics) have their own specificity.  
A further consequence arises from the relationality 
of SAM’s approach. The coherence of a theoretical 
framework is not a matter of the signification of indi-
vidual theoretical terms; as if these can be translated 
by single substitutes to stand on their own account – 
and thus be ‘connected’ as such, or be absorbed into 
another theory. A theory’s coherence rests on the rela-
tionality of its content, not on a collection of atomised 
concepts.  The general argument above suggests the 
importance of dialogue between the esoteric domains 
of autonomous research activities. The development 
takes place as a coherent deformance of the principles 
that enabled a particular position in argument. Above 
all, therefore, we should see theoretical frameworks 
as a space for the becoming of the subjectivity of the 
individuated researcher. As such they must de-stabi-
lise existing identities in order to forge new ones. The 
development of a good research programme will offer 
the potential subject of research action an on-going 
deformance of their own certainties.
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In this paper, the authors will discuss pedagogical 
content knowledge of secondary mathematics teach-
er candidates in Turkey. The discussion is based on 
comparisons between senior students from secondary 
mathematics education and mathematics departments 
in terms of their pedagogical content knowledge meas-
ured by Teacher Education and Development Study in 
Mathematics (TEDS-M) released items. In addition to 
comparison of two groups, there will be a discussion on 
the challenges to measure pedagogical content knowl-
edge.

Keywords: Pedagogical content knowledge, TEDS-M, 

measuring PCK, secondary school, mathematics teacher 

candidates.

INTRODUCTION

Teacher knowledge and its components have been 
described and modelled in different ways by different 
researchers (Shulman, 1986; Ball, Thames, & Phelps, 
2008; Franke & Fennema, 1992; Tatto et al., 2008). 
However, it can be said that many teacher knowledge 
approaches have been influenced by the Shulman’s 
(1986) model of teacher knowledge. Shulman made an 
important contribution by categorizing teacher con-
tent knowledge as Subject Matter Knowledge (SMK) 
and Pedagogical Content Knowledge (PCK). As Petrou 
and Goulding (2011) stated, in the Shulman model, the 
most influential category was the new concept of PCK. 
Shulman (1986) described PCK as “special amalgam of 
content and pedagogy that is uniquely the province 
of teachers, their own special form of professional 
understanding” (p. 9). According to him as the require-
ment of PCK, teachers need to know using representa-
tions, illustrations, analogies, and demonstrations 

and also giving examples and explaining concepts in 
order to make them understandable.

Shulman’s conceptualization of teacher knowledge 
provided a basis for research field of mathematics 
education. The knowledge that mathematics teachers 
need to acquire for teaching was described with the 
Mathematical Knowledge for Teaching (MKT) model, 
which is the refinement of Shulman’s categorization 
(Ball et al., 2008). MKT model categorizes SMK and 
PCK into six subcomponents. Ball (2003) defined the 
subcomponents of PCK by reconsidering Shulman’s 
categorization. The components are Knowledge of 
Content and Students, Knowledge of Content and 
Teaching and Knowledge of Curriculum. 

Although the MKT model has been widely used, there 
is some criticism about it. This model was developed 
considering elementary and middle school mathemat-
ics teachers, but not secondary. Therefore, it is argued 
that the components of MKT do not meet the math-
ematical need for secondary mathematics teachers 
(Zazkis & Leikin, 2010). The claim is that “the higher 
the level taught, the more the teacher needs to know” 
(Usiskin, 2001, p. 86), so the nature of mathematics 
that secondary teachers need to know is at the much 
higher level than elementary teachers. According to 
Zazkis and Leikin (2010), Advanced Mathematical 
Knowledge (AMK), which is defined as knowledge 
of subject matter acquired during undergraduate 
studies at universities, is necessary knowledge for 
teaching mathematics at secondary level. It can then 
be said that, since generally SMK is prerequisite for 
PCK (Shulman, 1986) specifically at secondary lev-
el, AMK is also necessary for PCK. However, it is 
not sufficient because PCK includes the knowledge 
of content and teaching, the knowledge of content 
and students, and the knowledge of curriculum (Ball 

mailto:gunesertas@gmail.com
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et al., 2008). Therefore, classroom experiences and 
practices are also important for the development of 
PCK. Researchers argue that there is an interaction 
between SMK, PCK, beliefs and practices (Franke 
& Fennema, 1992; Walshaw, 2012; Türnüklü, 2005). 
However, PCK has a special importance because it is 
influenced by all the others: SMK, practice and belief. 
It can be said that PCK has a multidimensional nature. 
Wilson (2007) claims that this complex nature makes 
it difficult to investigate PCK by using efficient meas-
ures. Even though developing scalable efficient meas-
ures for content knowledge for teaching is difficult 
(Wilson, 2007), researchers tried to develop rigorous, 
effective and valid instruments to measure mathemat-
ics teachers’ knowledge (Hill, Schilling, & Ball, 2004; 
Krauss, Baumert, & Blum, 2008; Tatto et al., 2008). 

One of the instruments to study mathematics teacher 
knowledge is the Teacher Education and Development 
Study in Mathematics (TEDS-M) measure. TEDS-M 
is a cross-national study in which 17 countries par-
ticipated, even if Turkey was not involved. The char-
acteristics that differentiate TEDS-M measure from 
others are to consider both primary and secondary 
levels and to be designed for international usage and 
national adaptations. Differences in students’ achieve-
ment level in Trends in International Mathematics 
and Science Study (TIMSS) encouraged researchers to 
study on teacher education internationally in order to 
investigate how mathematics teaching quality differs 
across countries. Therefore, the TEDS-M measure was 
developed to examine the mathematical knowledge 
for teaching of future mathematics teachers, based 
on TIMSS 2007 framework of content areas and cog-
nitive domains. By considering such characteristics 
of the measure, in this study, TEDS-M secondary re-
leased items were used for the investigation of the 
mathematical knowledge for teaching of secondary 
mathematics teacher candidates. 

METHODS

Participants
In Turkey, both graduates of secondary mathemat-
ics teacher education departments and mathematics 
departments (after completing teaching certificate 
program) have chance to be mathematics teachers 
in secondary schools. Therefore, the participants of 
the study were senior students from secondary math-
ematics teacher education departments (n = 47) and 
senior student from mathematics departments (n = 48) 

of two universities in Istanbul. Totally, 32 females and 
15 males senior secondary mathematics education 
students (the mean age is 24) and 35 females and 13 
males students (the mean age is 22) from mathemat-
ics departments participated in this study. These two 
universities were ranked as first and second among 
the secondary mathematics education departments 
in the national university entrance exam. In the first 
ranked university, students enrol mathematics and 
secondary mathematics education programs by get-
ting similar scores from university entrance exam. 
In the second university, the minimum score of sec-
ondary mathematics education department is a little 
higher than the one of the mathematics department.

These two programs have different curriculum in 
undergraduate education programs. The secondary 
mathematics education program includes 50  % of 
content knowledge and skills, 30 % of professional 
teaching knowledge and skills and 20 % of general 
knowledge courses (YÖK, 2007). However, the un-
dergraduate program in a mathematics department 
consists of 70 % of content knowledge and 30 % of gen-
eral knowledge. Moreover, participants of the study 
were asked to explain whether they had an informal 
teaching experience like tutoring or teaching in cram 
school. As they stated, 76 % of secondary mathematics 
education students and 70 % of mathematics students 
had informal teaching experiences.

Instrument 
The instrument was designed by TEDS-M researchers 
considering the framework of Trends in International 
Mathematics and Science Study (TIMSS) 2007 (Tatto 
et al., 2008). MCK items comprised of four content 
areas: number, algebra, geometry and data, and three 
cognitive dimensions: knowing, applying and rea-
soning. Furthermore, MPCK items consist of two 
parts: knowledge of curricula planning, and interac-
tive knowledge about how to enact mathematics for 
teaching and learning. These were aligned with the 
PCK domains in literature. Table 1 and Table 2 show 
the distributions of MCK and MPCK items according 
to their content, cognitive domains and PCK compo-
nents. (In the appendix, Figures 1 and 2 are examples 
of MCK items and Figures 3 and 4 are examples of 
MPCK items.)

These items include 23 mathematics content knowl-
edge (MCK) and 9 mathematics pedagogical content 
knowledge (MPCK) items with three different item 
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formats: multiple choice, complex multiple choice 
and open constructed response. 

In order to compare MKT of participants who were 
studying in different departments, Turkish translated 
versions of TEDS-M secondary level released items 
were used. The method which was used while trans-
lating the instrument consists of three phases. Firstly, 
items were translated in Turkish by the researcher 
who is fluent in English. The translated items were 
reviewed by a mathematics educator who is an expert 
in the content area and fluent in English, a three-year 
experienced mathematics teacher who is fluent in 
English, and a professional translator. At the second 
phase, the original tests were administered to a group 
of pre-service mathematics teachers who are native 
in Turkish and fluent in English. The same group took 
the translated versions of the tests three weeks apart. 
At the last phase, the method of back translation was 
used to check the quality of translation and to investi-
gate the linguistic or conceptual errors in translation. 
It was also used to consider particular attention to 
sensitive translation problems across cultural cor-
respondence of the two versions.

Data collection and analysis
The data was collected from participants in a single 
point in different times. Instrument administered 
to senior students during the last two weeks of the 
spring semester of the 2012–2013 academic year just 
before they graduate. 

After data collection, all items were scored accord-
ing to the scoring guide of TEDS-M Secondary Items. 

Participants’ scores acquired from 23 MCK items 
were calculated and called as MCK scores and scores 
obtained from 9 MPCK items were calculated and 
called as MPCK scores. Total scores of participants 
were also calculated by the summation of MCK and 
MPCK scores. 

The scores of these two groups of participants were 
compared by using appropriate statistical methods. 
For total scores and MCK scores comparisons, an in-
dependent sample t-test was used since all the assump-
tions were met. For the comparison of MPCK scores, a 
non-parametric Mann-Whitney U test was used since 
the normality assumption was violated. 

RESULTS

Participants’ scores obtained from the 47 senior stu-
dents from the mathematics teacher education depart-
ment and the 48 senior students from the mathematics 
department were compared. Table 3 shows means and 
standard deviations of the two groups of participants.

Cognitive  
Domain

Content Domain

Algebra Geometry Number Data Total

Knowing - 2 4 - 6

Applying 5 4 - 1 10

Reasoning 2 1 4 - 7

Total 7 7 8 1 23

Table 1: MCK Secondary Items

Content Domain

Algebra Geometry Number Data Total

Curriculum and Planning 4 - - - 4

Enacting 1 - 3 1 5

Total 5 0 3 1 9

Table 2:. MPCK Secondary Items

M SD

Total
Math Teacher Education 26.83 3.96

Math 23.63 4.42

MCK
Math Teacher Education 20.45 3.35

Math 17.50 3.80

MPCK
Math Teacher Education 6.38 1.19

Math 6.13 1.35

Table 3: Means and Standard Deviations 
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The results of the t-test indicate that the mean of the to-
tal score of mathematics teacher education students is 
significantly 3.2 points higher than those from math-
ematics department, t (93) = 3.72, p < .001 and Cohen’s d 

= .76 with the marginal large effect size (Cohen, 1988). 
Furthermore, the independent sample t-test results 
show that students from the mathematics teacher ed-
ucation department have significantly higher MCK 
scores than those of mathematics departments: t (93) 

= 4.00, p < .001, and Cohen’s d = .82 with the large ef-
fect size. Moreover, according to the non-parametric 
Mann-Whitney U test, there is no significant differ-
ence between them in relation to the MPCK scores: Z 

= 1.00, p > .05.

DISCUSSION AND CONCLUSION

The study aimed at comparing the mathematical 
knowledge for teaching of students who will graduate 
from a mathematics teacher education department 
and others who will graduate from a mathematics de-
partment. In Turkey, graduates of both departments 
have a chance to become mathematics teachers at sec-
ondary level, but graduates of the mathematics de-
partments need to take a teaching certificate. However, 
the knowledge and skills that graduates are able to ac-
quire through these programs are different from each 
other. For example, the contents of undergraduate 
education programs of these departments are notably 
different. The mathematics departments’ program 
does not include any pedagogy or education course, 
but more advanced mathematics courses than the 
mathematics education departments’ program does. 
Therefore, the result was unexpected: mathematics 
students, who were not required to take any teach-
ing related courses, were not significantly different 
from students of the mathematics teacher education 
in terms of MPCK scores. 

This unexpected result may be explained by discuss-
ing the nature of PCK for secondary level mathematics 
teaching. Even though teacher education programs 
are the most influential factors that affect PCK of 
teacher candidates, there are other factors when the 
nature of PCK is considered. PCK includes knowl-
edge of “the ways of representing and formulating 
the subject that make it comprehensible to others” 
(Shulman, 1986, p. 9). It may be conceptualized as not 
only knowledge of students’ thinking and conceptions, 
but also knowledge of explanations, representations 
and alternative definitions of mathematical concepts, 

and knowledge of multiple solutions to mathemat-
ical tasks (Shulman, 1986; Ball et al., 2008; Krauss, 
Baumert, & Blum, 2008). Therefore, teaching expe-
riences play an important role in the development 
of teachers’ PCK (Ball et al., 2008). Because of this, 
teacher education programs include many teaching 
experiences opportunities like field experience and 
practicum. Moreover, both groups of students who 
were studying mathematics teacher education in a 
mathematics department had informal teaching ex-
periences like tutoring and teaching in cram school. 
Having this kind of teaching experience may explain 
the result. However, this may not be the only ration-
ale. Measuring and assessing PCK is another issue 
that should be considered by focusing on its nature 
in order to explain the results of study.

Achieving the specialized knowledge for teaching 
mathematics at secondary level requires Advanced 
Mathematical Knowledge (AMK) which is defined as 
the knowledge of the subject matter acquired at the 
university (Zazkis & Leikin, 2010). Mathematics de-
partments’ students take many advanced mathemat-
ics courses and they develop AMK. It should be noted 
that AMK is a necessary but not sufficient condition 
for achieving the specialized knowledge for teaching 
at secondary level (Zazkis & Leikin, 2010). 

Therefore, as it is seen, according to the PCK’s multi-
dimensional nature, deep mathematical knowledge 
plays an important role because it can provide teach-
ers to use effective explanations, representations and 
alternative definitions. These components may con-
tribute to make an explanation for the unexpected 
result of the study. For example, when MPCK items 
were examined according to required knowledge, and 
skills were needed to provide a correct answer, the 
need for AMK might be observed. For instance, one of 
the questions of the instrument (see Figure 3 in appen-
dix) asks to determine what knowledge is needed to 
prove the quadratic formula. This question measures 
knowledge of content and teaching, but without know-
ing how to prove quadratic formula it is not possible 
to give a correct answer. Therefore, it is not easy to 
differentiate and measure this kind of knowledge and 
skills. Difficulty in measuring PCK may explain the 
unexpected result that there is no difference in MPCK 
scores between two groups of students. 

Moreover, in this study, PCK was tried to be meas-
ured by few items (4 questions, 8 items). Therefore, 



Secondary mathematics teacher candidates’ pedagogical content knowledge and the challenges to measure it (F. Güneş Ertaş and Fatma Aslan-Tutak)

2632

only some domains of PCK and some abilities were 
able to be measured with these items. However, as 
Shulman (1986) and Ball and colleagues (2008) stat-
ed, PCK requires different kinds of knowledge, tasks 
and skills. This instrument can only address some of 
them. Table 2 shows the distribution of content and 
PCK domains of items, and Table 4 above shows the 
intended abilities for each of them. 

The reactions of the two groups of participants to 
these PCK items are different. For example, item 9b 
(Figure 3 in the appendix) were answered correctly by 
97 % of the mathematics department students and by 
86 % of the students from the secondary mathematics 
education department. On the other hand, 72 % of the 
students from the secondary mathematics education 
department answered item 1b (Figure 4 in appendix) 
correctly, while only 52 % of the mathematics depart-
ment student gave a correct response. 
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APPENDIX

Figure 1: An example of TEDS-M Secondary MCK items (Number, Knowing)

Figure 2: An example of TEDS-M Secondary MCK items (Algebra, Reasoning)

Figure 3: An example of TEDS-M Secondary MPCK items (Algebra, Planning)
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Figure 4: An example of TEDS-M Secondary MPCK items (Algebra, Enacting)
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This paper presents some theoretical considerations 
concerning the relationships between epistemology and 
didactics. We distinguish two big issues that show the 
mutual enrichment of both fields. On the one hand, con-
sidering teaching and learning phenomena as part of 
the empirical basis of epistemology enables proposing 
new epistemological models of mathematical bodies of 
knowledge. On the other hand, these epistemological 
models provide guidelines for the design and analysis 
of new teaching proposals, which, in turn, show the con-
straints coming from the spontaneous epistemologies in 
school institutions. Some critical open questions derived 
from these issues draw up the guidelines for a future 
research programme.

Keywords: Epistemology, didactics, ATD, praxeologies.

PEDAGOGY, EPISTEMOLOGY AND DIDACTICS

What distinguishes didactics of mathematics (or of 
any other field of knowledge) from general education 
or pedagogy is the status given to the knowledge or 

“content” that is taught and learnt. Pedagogy considers 
the knowledge to be taught as a given, and focuses on 
the best, conditions or practices to teach and learn it: 
the knowledge is not problematic, the relationships of 
the students to it are (Chevallard, 2000). In contrapo-
sition, didactics locates the epistemological problem at 
the core of the analysis. A double assumption is meant 
by this. First, the phenomena underlying teaching 
and learning processes, at school as well as in oth-
er social institutions, are closely dependent on the 
content that is designed to be taught, actually taught 
and learnt, and also on how this content is consid-
ered by the participants of the teaching and learning 
process. Second, that the study of these phenomena 
is also strongly dependent on the way knowledge is 

considered and modelled by researchers in didactics. 
In fact, the main point of the paper is to describe a 
research programme that seeks to clarify the prob-
lem of how to teach (and learn) mathematics and its 
relationship with the problem of what is considered 
as mathematics.

The pedagogical dimension of teaching and learning 
phenomena refers to generic practices, discourses, 
strategies and regularities that can be described re-
gardless of the content to be taught. The didactic di-
mension is reached when the concrete mathematical 
activities organised by the teacher and carried out 
by the students, as well as any other fact affecting the 
delimitation, construction, management, evolution 
and assessment of these activities are considered.

The need to integrate both the pedagogical and the 
epistemological dimensions was one of the main 
motivations for Guy Brousseau to promote the con-
struction of a new field of knowledge called didactics 
of mathematics and which he contributed to with the 
first formulations of the theory of didactic situations 
during the decade 1970–1980 (Brousseau, 2002). We 
are here pointing out two main reasons for this inte-
gration that will later on be at the basis of the prob-
lematic issues we wish to raise. The first one is the 
dependence between the dominant epistemologies of 
mathematics (or of any other field of knowledge) at 
an educational institution and the way teaching is 
organised in this institution. In other words, the way 
mathematics and its specific bodies of knowledge are 
considered in a given institution, usually as implicit 
assumptions, affects the conditions established for 
its learning. In this sense, we can say, rephrasing 
Brousseau (2002), that teaching organisations are 
supported by spontaneous epistemologies appearing 
to the subjects of the school institution as the unques-
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tionable and transparent way to conceive the content 
to be taught. 

The second main reason, also put forward by 
Brousseau, is related to the implementation of re-
search results wishing to improve teaching and learn-
ing. Whatever general strategies or conditions we 
may find at the pedagogical level, teachers will always 
have to specify them in terms of what ties them to the 
students: the knowledge-based learning activities. Of 
course, it is possible to delimit general pedagogical 
phenomena affecting any content to be taught and 
to propose general pedagogical actions in order to 
improve teaching and learning processes. However, 
eventually, these actions will need to be concretized 
and converted into didactic facts and strategies, that 
is, to specific ways of organizing mathematical con-
tents and designing mathematical activities for the 
students.

Once the necessity to integrate the “epistemological 
problem” into the “teaching and learning problem” 
is assumed, there are different levels to take the epis-
temic dimension of the teaching and learning process 
into account. In some cases, the focus can be on a giv-
en piece of knowledge (“proportionality”, “limits of 
functions”, “linear equations”), or a whole area (“alge-
bra”, “calculus”, “statistics”), thus considering specific 
models relying on a more or less explicit conception 
of what mathematics is and how it can be described. 
Therefore it can be said that the consideration of the 
didactic problem needs to include, in one way or anoth-
er, a specific answer to the epistemological problem. To 
interpret the interrelation between epistemological 
and didactical problems, we now present a historical 
development of the object of study of each discipline 
and their respective empirical basis.

THE EVOLUTION OF EPISTEMOLOGICAL 
AND TEACHING PROBLEMS

In a previous study, Gascón (2001) describes a rational 
reconstruction of the evolution of the epistemological 
problem and, in parallel, the evolution of the didactic 
problem showing that a certain convergence exists 
between them. The evolution of the epistemological 
problem can be interpreted as a successive expan-
sion of what is considered as the object of study and 
of the consequent empirical basis used to approach 
it. Briefly speaking, this work shows that the nature 
of the epistemological problem began as a purely log-

ical problem (EP1), became a historical problem (EP2) 

and ended up being considered, at the end of the last 
century, as an essentially cognitive problem (EP3). Its 
successive formulations together with its correspond-
ing tentative answers can be outlined as follows:

EP1: How to stop infinite regress to get a logical 
justification of mathematical theories?

EPA1: Euclidean models: logicism (Russell), for-
malism (Hilbert) and intuitionism (Brouwer).

EP2: What is the logic of the development of math-
ematical discovery?

EPA2: Quasi-empirical models (Lakatos)

EP3: What are the tools and mechanisms found in 
history and psychogenesis of the development of 
mathematical discovery?

EPA3:  Constructivist models (Piaget & García, 
1982).

This evolution of the epistemological problem can be 
interpreted as a progressive detachment from logical 
procedures and an approximation to empirical scienc-
es such as history and psychology. This expansion 
continues since the 70s, with the inclusion of socio-
logical data. Indeed, sociologists such as Barry Barnes 
and David Bloor, and later others like Bruno Latour, 
heavily influenced by the ideas of Thomas Kuhn, tried 
to highlight the essential social nature of scientific re-
search. Let us notice, however, that, apart from Kuhn’s 
mention of the “textbooks epistemology” (Kuhn, 1971), 
none of these approaches seem to consider empiri-
cal phenomena related to the teaching, learning and 
disseminating of mathematics. The division between 
pedagogy and epistemology appears to be taken for 
granted in this research domain also.

All of the epistemological models above can be related 
to general teaching models, ranging from theoricism 
(organizing the teaching of mathematics following the 
logic construction of concepts) and technicism (exer-
citing the main techniques in a given domain without 
many theoretical tools), to constructivism, which aims 
to enable students to construct knowledge according 
to certain predetermined stages.
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Gascón (1993) shows limitations of the empirical 
basis used by constructivism to address the episte-
mological problem. Taking into account personal 
psychogenesis data, in some sense completed with 
those provided by the history of science, it does not 
integrate didactic facts and, can thus hardly explain 
institutional-depending phenomena as the so-called 

“personal” construction of knowledge. In other words, 
and according to Chevallard (1991), the study of the 
genesis and development of knowledge (traditional 
object of epistemology) cannot be separated from the 
study of the diffusion, use and transposition of knowl-
edge (object of study of didactics).

It is at this point where both problems, the epistemo-
logical and the didactic one, converge, with the conse-
quently significant expansion of the object of study of 
both disciplines. Historically, this time corresponds 
to the first formulations of the theory of didactic situ-
ations (TDS) proposed by Guy Brousseau in the early 
1970s (Brousseau, 2002). It is no coincidence that at 
this early stage of didactics of mathematics, Brousseau 
initially considered to name this new discipline “ex-
perimental epistemology”. In particular, didactics of 
mathematics accepted the responsibility to elaborate 
and use epistemological models of mathematical bod-
ies of knowledge as a new way to study didactic phe-
nomena, thus turning the pedagogical problem into 
an epistemological-didactic one.

New questions arise from this perspective: What new 
general epistemological theories, based on which 
empirical data, may serve to support new teaching 
organizations in order to overcome the limitations of 
the current ones? To what extent and by what means 
can the dominant spontaneous epistemologies in a 
teaching institution be changed in solidarity with the 
teaching models based on them?

AN ANSWER TO THE EPISTEMOLOGICAL-
DIDACTIC PROBLEM

The anthropological theory of the didactic (ATD), fol-
lowing the research programme initiated by the theo-
ry of didactic situations, considers a specific model of 
mathematical knowledge and its evolution formulat-
ed in terms of a dynamical sequence of praxeologies. 
Praxeologies are entities formed by the inseparable 
combination of a praxis or know-how made of types 
of tasks and techniques, and of a logos or knowledge 
consisting of a discourse aiming at describing, ex-

plaining and justifying the praxis (Chevallard, 2000). 
In didactics research, mathematical praxeologies are 
described using data from the different institutions 
participating in the didactic transposition process, 
thus including historical, semiotic and sociological 
research, assuming the institutionalized and socially 
articulated nature of praxeologies. Furthermore, a 
dialogue with the APOS theory shows how data inter-
preted as the different levels of development of schemes 
by psychogenetic developments, can be reformulated 
in ATD in terms of the institutional evolution of praxe-
ologies (Trigueros, Bosch, & Gascón, 2011). 

Reference epistemological models 
as sequences of praxeologies
To describe and analyse the specific contents that are 
at the core of teaching and learning processes, the gen-
eral model in terms of praxeologies is structured in an 
articulated set of specific models of the different areas 
of the mathematical activity at stake called reference 
epistemological models (REM) (Barbé, Bosch, Gascón, & 
Espinoza, 2005; Bosch & Gascón, 2006). The Reference 
Epistemological Model of a body of knowledge is an 
alternative description of that body of knowledge 
elaborated by researchers in order to question and 
provide answers to didactic facts and problematic as-
pects taking place in a given institution. This REM pre-
vent researchers to take for granted how this body of 
knowledge is conceived in the institution considered. 
For instance, Ruiz-Munzón (2010) and Ruíz-Munzon, 
Bosch and Gascón (2013) present a REM about elemen-
tary algebra which is used to analyse the status and 
role of this area of school mathematics in relation to 
arithmetic and functional modelling. The model takes 
into account the processes of didactic transposition to 
explain what is currently taught as algebra at school 
and provides a rationale to this area that does not co-
incide with the official and more limited one assigned 
by the educational system. Some of the difficulties in 
the teaching and learning of elementary algebra can 
then be referred to these limitations and new teaching 
proposals can be designed to overcome them (Ruiz-
Munzón, 2010; Bosch, 2012). 

In this REM, algebra is interpreted as a tool for model-
ling any type of (mathematical and extra-mathemati-
cal) systems and the process of algebraization is divid-
ed into three stages. The first one concerns the passage 
from the execution of computation programmes (se-
quences of arithmetic operations on numbers like the 
ones carried out when solving an arithmetic problem) 
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to the written or rhetoric description of their struc-
ture; the second stage requires the symbolic manipu-
lation of the global structure of written computation 
programmes (not only simplifying and developing, 
but also “cancelling”, etc.); at the third stage, the whole 
manipulation of formulas is reached. 

It is important to note that this REM is not a static de-
scription of a piece of mathematical knowledge, it also 
suggests a dynamical process to introduce elementary 
algebra: starting from the study of arithmetic com-
putation programmes (CP) in order to motivate the 
entrance into the second stage of algebraization by 
the limitations of the rhetorical formulation of CPs in 
the first stage. Encountering problematic questions in 
this arithmetical work with CP may generate the need 
to build a written symbolic formulation of these CP to 
globally manipulate their structure, thus promoting 
the need to establish symbolic codes (hierarchy of op-
erations and bracket rules). 

In a similar way, different REM of other specific areas 
of mathematics have been proposed, all formulated in 
terms of sequences of related praxeologies: limits of 
functions (Barbé et al., 2005), proportionality (García, 
Gascón, Ruiz Higuera, & Bosch, 2006; Hersant, 2001), 
measure of quantities (Chambris, 2010), real numbers 
(Bergé, 2008; Rittaud & Vivier, 2013), among others. In 
general, the organisation of a teaching process based 
on the REM of a given mathematical content is called 
research and study activities.

From teaching of contents to enquiry 
processes: Study and research paths
These reference epistemological models correspond 
to previously established bodies of mathematical 
knowledge: algebra, limits, proportionality, etc. They 
provisionally assume the delimitations of mathemat-
ical knowledge provided by the school and the schol-
arly institutions, which are then often redefined. In 
order to also take into account enquiry processes that 
start with the consideration of problematic questions 
to be solved (instead of pre-established contents to be 
learnt), REM have been enriched with the proposal of 
the Herbartian schema (Chevallard, 2006; Chevallard, 
2015). This scheme is a useful tool to observe, analyse 
and evaluate existing and potential didactic processes 
that start with the consideration of a generating ques-
tion and evolve with the search of partially available 
answers (“contents” to be learnt) and the construction 
of new answers through the interaction with a milieu. 

The study of a specific question leads to a rooted-tree 
of derived questions and provisional answers, which 
outlines the generating power of the initial question 
and the possible paths to follow. We thus obtain new 
reference epistemological models assigned to prob-
lematic questions instead of pre-established praxe-
ological contents. Winsløw, Matheron, and Mercier 
(2013) provide several examples of this kind of root-
ed-tree REM, such as the dynamics of a population or 
the trajectory of a three-point shot in basketball. The 
enquiry process of a particular generating question 
materializes in an open didactic organisation called 
a study and research path (SRP). During the develop-
ment of SRP, the need for new knowledge to solve some 
of the derived questions found in the path usually 
leads to the activation of study and research activities.

Didactic praxeologies emerging from 
reference epistemological models
The previous section briefly outlined how the design, 
implementation and analysis of study and research 
paths and study and research activities call for the 
activation of specific didactic techniques and creates 
new types of didactic tasks. For instance, in the case 
of elementary algebra illustrated above, the didactic 
technique proposed by Ruiz-Munzon (2010) consists 
in introducing the study of “mathemagic” games of 
the sort “Think of a number, apply these calculations 
[…], you get 73” as generating questions. How do you 
explain the magician’s trick?” These games generate 
the need to look for new pieces of answers, in the ma-
nipulation of the calculation programmes proposed 
or in their transformation and generalisation through 
algebraic symbolism. Questions based on “mathemag-
ic” games allow producing an important number of 
computation programmes economically. They are 
presented to the students without much artificiality 
and their first contact with computation programmes 
is not problematic. Moreover, the limitations of the 
rhetorical and numerical formulations of computa-
tion programmes inevitably appear and they do so 
soon enough. 

PROBLEMATIC ISSUES

The aim of this paper is to formulate some problemat-
ic issues at the crossroads of epistemology and didac-
tics. We will initially explain them within the context 
of the ATD before extending the questioning to other 
didactic approaches. If we try to characterize a didac-
tic approach by how “pedagogy” and “mathematics” 
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are integrated, in the case of the ATD such integration 
can be formulated in terms of two movements. They 
appear in the design, management and evaluation of 
teaching and learning processes and can briefly be 
described as follows:

1) Starting from the analysis of teaching and learn-
ing processes at school and considering an empir-
ical basis of study that is large enough to include 
the processes of didactic transposition, all this 
empirical work provides tools to design specific 
REMs for the main mathematical contents or ar-
eas that are designed as knowledge to be taught. 
We can define this movement as “using didactic 
facts and phenomena to produce epistemological 
models”.

2) Conversely, the principles and criteria that have 
guided the construction of a REM for a specif-
ic area of school mathematical activity and, in 
particular, the contrast between the rationale 
assigned by the REM to this area and its official 
(explicit or tacit) role in school mathematics, all 
provide some mathematical and didactic tools to 
design, manage and evaluate teaching and learn-
ing processes based on study and research paths 
sustained by that REM. This movement can be 
defined as “using the epistemological model as 
the core of didactic tools”.

This double movement raises different open issues 
which are at the starting point of the research pro-
gramme we want to propose in this paper.

New didactic needs
We have seen how previously elaborated REM on 
mathematical contents or problematic questions 
(obviously complemented with other methodological 
design tools) can provide criteria for the design and 
implementation of teaching and learning process-
es that are considerably different from the existing 
ones. In principle, they aim at organising activities 
that should allow the students to carry out new math-
ematical tasks and techniques in a more autonomous, 
functional and justified way. The “mathemagic” games 
in the case of elementary algebra (Ruiz-Munzón, 
2010) or the different enquiry processes described 
in Winsløw, Matheron and Mercier (2013) are good 
examples of this enrichment. Obviously, these new 
didactic organisations should be made available to 

the study community and their viability in different 
school institutions should be tested. 

It is important to emphasize that all didactic approach-
es and theories are also based on general models of 
mathematical-didactic activities. These general mod-
els are a particular way to interpret the mathemati-
cal activity and to conceptualize the study process of 
mathematics (teaching, learning, diffusion and ap-
plication). Even though these models are not always 
clearly spelled out, they remain an essential feature 
of theoretical approaches, as they strongly affect the 
type of research problems this approach can formu-
late. Two crucial questions arise:

1) In the case of ATD, how to transform the REM 
into possible didactic organisations that could 
live in current school institutions? How to take 
into account the interrelation between the REM 
and the didactic phenomena appearing in the 
implementation of these new didactic organisa-
tions? How to make this process available to the 
school institutions, especially to the profession 
of teachers?

2) How is this mutual enrichment between the epis-
temological and didactic proposals taken into ac-
count in other theoretical frameworks?

New epistemological needs
The empirical analysis of the study processes taking 
place in various institutions (for example, but not 
exclusively, in schools) clearly shows that the didactic 
praxeologies are closely related to the epistemologi-
cal tools available in the institution to describe and 
manage the mathematical praxeologies. For exam-
ple, in the institutions where the dominant model is 
Euclidean, teaching and learning processes are con-
ceived and described in terms of didactic activities 
around “definitions”, “concepts”, “theorems”, “proofs” 
and “applications”. In addition, these didactic activi-
ties tend to be hierarchically structured according 
to the logical construction of mathematical concepts 
(real numbers before limits, limits before derivatives, 
etc.).

If, instead of analysing traditional teaching processes, 
we look at those based on didactic research, the situ-
ation is very similar: how didactic processes and the 
dynamics of mathematical praxeologies are designed, 
described and managed also depends on the tools pro-
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vided by the epistemological model which upholds, 
more or less explicitly, the didactic approach consid-
ered. The further this research-based epistemological 
model is from the dominant epistemological model at 
schools and scholarly institutions, the more difficult it 
becomes for teachers to carry out innovative teaching 
proposals designed within this frame. 

In all these cases, the most remarkable feature is the 
shortage and inadequacy of tools available in the 
teaching institution to describe, manage, and evalu-
ate the dynamics of mathematical activity. This lack 
of tools could in the first place be attributed to the 
scarcity of spontaneous epistemological models and, 
in particular, to the shortage of the Euclidean episte-
mological model of mathematics whose supremacy 
is still present, to a greater or lesser extent, in most 
institutions. 

Which new notions or tools are needed to describe 
and manage the dynamics of the mathematical ac-
tivity that will take place in study processes? How to 
describe these tools depending on the role addressed 
(didactic researcher, teacher and students)? How to 
make them available in the teaching institution and 
to the participants of the didactic process?

The evolution of didactic-epistemological 
models
In order to establish an alternative and rich REM of 
a specific mathematical domain or questioning, it is 
necessary to take into account the didactic phenom-
ena taking place in teaching institutions. This leads 
to an enrichment of the spontaneous epistemological 
model during the first design of the REM. However, 
it is important to keep the process running during 
the implementation and the evaluation of teaching 
proposals based on this REM. The consequent evo-
lution of the REM is a clear example of the dynamic 
and provisional nature of the epistemological mod-
els elaborated by didactics, evolving from its initial 
proposals through the analysis of empirical facts. 
From a mathematical perspective, these continuous 
evolutions of the REMs can be seen as the incorpora-
tion of new notions and organisations into the field 
of knowledge. This phenomenon can be related to the 
transformation of some paramathematical notions 
into mathematical concepts, as happened with con-
cepts (such as “set”, “function”, “continuity”, “graphs”, 
etc.), a transformation which takes place as long as 
researchers deal with new problems. For instance, in 

the case of elementary algebra, the notion of “compu-
tation programme” is a new and crucial element of the 
proposed REM. In the experiences described by Ruiz-
Munzón (2010), this notion played a very ambiguous 
role in the management of the teaching and learning 
processes, given the fact that it did not belong to the 
official mathematics to be taught and the teacher did 
not feel at ease with it. A similar phenomenon hap-
pened when implementing SRP on population dynam-
ics with notions such as “quantities”, “model”, “system”, 

“mixed and separated generations”, etc. 

Another important and difficult question is the de-
gree of explicitness that should be adopted with the 
new epistemological models necessary to design, 
implement and evaluate new teaching and learning 
processes depending on the participants of the study 
communities addressed (students, teachers, mathema-
ticians, etc.). Also, what kind of similar experiences 
can be learnt from other approaches? Did they find 
similar difficulties? These open questions establish a 
new research programme where the results of previ-
ous investigations carried out within the ATD should 
be analysed together with analogous research from 
other perspectives. In all cases, the status given to 
the epistemological dimension in didactics analysis 
seems to appear as a crucial question to take into ac-
count.
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Different theories assume that learning mathematics 
should be based on constructivist methods where stu-
dents inquire problem-situations and assign a facilitator 
role to the teacher. In a contrasting view other theories 
advocate for a more central role to the teacher, involving 
explicit transmission of knowledge and students’ active 
reception. In this paper, we reason that mathematics 
learning optimization requires adopting an interme-
diate position between these two extremes models, in 
recognizing the complex dialectic between students’ 
inquiry and teacher’s transmission of mathematical 
knowledge. We base our position on a model with an-
thropological and semiotic assumptions about the na-
ture of mathematical objects, as well as the structure of 
human cognition.

Keywords: Mathematical instruction, inquiry learning, 

knowledge transmission, onto-semiotic approach, 

mathematical knowledge.

INTRODUCTION

The debate between the models of a school that “con-
veys knowledge” and others in which “knowledge is 
constructed” currently seems to tend towards the 
latter. This preference can be seen in the curricular 
guidelines from different countries, which are based 
on constructivist and socio-constructive theoretical 
frameworks (NCTM, 2000):

Students learn more and learn better when they 
can take control of their learning by defining 
their goals and monitoring their progress. When 
challenged with appropriately chosen tasks, stu-
dents become confident in their ability to tackle 
difficult problems, eager to figure things out on 
their own, flexible in exploring mathematical 
ideas and trying alternative solution paths, and 
willing to persevere (p. 20).

In the case of mathematics education, problem solving 
and “mathematical investigations” are considered es-
sential for both students’ mathematical learning and 
teachers’ professional development. Constructivist 
viewpoints of learning shift the focus towards the 
processes of the discipline, practical work, project im-
plementation and problem solving, rather than prior-
itizing the study of facts, laws, principles and theories 
that constitute the body of disciplinary knowledge.

Nevertheless, this debate is hiding the fact that stu-
dents differ in skills and knowledge, and most of them 
need a strong guidance to learn; even when some 
students with high skills and knowledge can learn 
advanced ideas with little or no help. The issue of the 
type of aid needed, depending on the nature of what is 
to be built or transmitted is also missed in this debate. 
Consequently of this situation, the question of the 
kind of help that a teacher should give to a usually 
heterogeneous class, when we want students acquire 
mathematical knowledge, understandings and skills, 
also arises.

The family of “Inquiry-Based Education” (IBE), “In-
quiry-Based Learning” (IBL), and “Problem-Based 
Learning” (PBL) instructional theories, which postu-
late the inquiry-based learning with little guidance 
by the teacher, seem not to take into account the de-
scribed reality, namely the students’ heterogeneity 
and the variety of knowledge to be studied. These 
models may be suitable for gifted students, but pos-
sibly not for the majority, because the type of help that 
the teacher can provides could significantly influence 
the learning, even in talented students.

In this paper, we analyse the need to implement in-
structional models that articulate a mixture of con-
struction/inquiry and transmission of knowledge 
to achieve a mathematical instruction that locally 
optimize learning. The basic assumption is that the 

mailto:jgodino@ugr.es
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moments in which transmission and construction 
of knowledge can take place are everywhere dense 
in the instructional process. Optimization of learn-
ing involves a complex dialectic between the roles 
of teacher as instructor (transmitter) and facilitator 
(manager), and student’s roles as active constructor of 
knowledge and receivers of meaningful information. 
Hiebert and Grouws (2007) state that “because a range 
of goals might be included in a single lesson, and al-
most certainly in a multi-lesson unit, the best or most 
effective teaching method might be a mix of methods, 
with timely and nimble sifting among them” (p. 374).

We support this mixed model of mathematical instruc-
tion in cognitive (architecture of human cognition) 
and onto-semiotic (regulative nature of mathematical 
objects) reasons. 

Below we first summarize the main features of in-
structional models based on inquiry and problem 
solving and secondly of models that attribute a key 
role to transmission of knowledge. We then present 
the case for a mixed model that combines dialectically 
inquiry and transmission, basing on the epistemolog-
ical and didactical assumptions of the onto-semiotic 
approach to mathematical knowledge and instruction 
(Godino, Batanero, & Font, 2007). Finally we include 
some additional reflections and implications.

INQUIRY AND PROBLEM BASED LEARNING 
IN MATHEMATICS EDUCATION

As indicated above, the acronyms IBE, IBL, PBL desig-
nate instructional theoretical models developed from 
several disciplines, which have parallel versions for 
the teaching of experimental sciences (IBSE) and math-
ematics (IBME). They attributed a key role to solve 

“real” problems, under a constructivist approach. In 
some applications to mathematics education it is pro-
posed that students construct knowledge following 
the lines of work of professional mathematicians 
themselves. The mathematician faces non-routine 
problems, explore, search for information, make con-
jectures, justify and communicate the results to the 
scientific community; mathematics learning should 
follows a similar pattern. 

Using problem-situations (mathematics applications 
to everyday life or other fields of knowledge, or prob-
lems within the discipline itself ) to enable students 
making sense of the mathematical conceptual struc-

tures is considered essential. These problems are 
the starting point of mathematical practice, so that 
problem solving activity, including formulation, com-
munication and justification of solutions are keys to 
developing mathematical competence, i.e. the ability 
to cope with not routine problems. This is the main 
objective of the “problem solving” research tradition 
(Schoenfeld, 1992), whose focus is on the identification 
of heuristics and metacognitive strategies. It is also es-
sential to other theoretical models such as the Theory 
of Didactical Situations (TDS) (Brousseau, 1997), and 
Realistic Mathematics Education (RME) (Freudenthal, 
1973; 1991), whose main features are described below.

Theory of Didactical Situation (TDS)
In TDS, problem-situations should be selected in or-
der to optimize the adaptive dimension of learning 
and students’ autonomy. The intended mathematical 
knowledge should appear as the optimal solution to 
the problems; it is expected that, by interacting with 
an appropriate milieu, students progressively and 
collectively build knowledge rejecting or adapting 
their initial strategies if necessary. According to 
Brousseau (2002),

The intellectual work of the student must at times 
be similar to this scientific activity. Knowing 
mathematics is not simply learning definitions 
and theorems in order to recognize when to use 
and apply them. We know very well that doing 
mathematics properly implies that one is dealing 
with problems. We do mathematics only when 
we are dealing with problems—but we forget at 
times that solving a problem is only a part of the 
work; finding good questions is just as important 
as finding their solutions. A faithful reproduc-
tion of a scientific activity by the student would 
require that she produce, formulate, prove, and 
construct models, languages, concepts and the-
ories; that she exchange them with other people; 
that she recognize those which conform to the 
culture; that she borrow those which are useful 
to her; and so on. (p. 22).

To allow such activity, the teacher should conceive 
problem-situations in which they might be interested 
and ask the students to solve them. The notion of devo-
lution is also related to the need for students to con-
sider the problems as if they were their own and take 
responsibility for solving them. The TDS assumes a 
strong commitment with mathematical epistemology, 
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as reflected in the meaning attributed to the notion of 
fundamental situation, which Artigue and Blomhøj 
(2013, p. 803) describe as “a situation which makes 
clear the raison d’être of the mathematical knowledge 
aimed at”.

Another important feature of the TDS is the distinc-
tion made between different dialectics: action, for-
mulation and validation, which reflect important 
specificities of mathematical knowledge. 

Realistic Mathematics Education (RME)
In RME, principles that clearly correspond to IBME 
assumptions are assumed. Thus, according to the 

“activity principle”, instead of being receivers of 
ready-made mathematics, the students, are treated 
as active participants in the educational process, in 
which they develop themselves all kinds of mathe-
matical tools and insights. According to Freudenthal 
(1973), using scientifically structured curricula, in 
which students are confronted with ready-made math-
ematics, is an ‘anti-didactic inversion.’ It is based on 
the false assumption that the results of mathemati-
cal thinking, placed on a subject-matter framework, 
can be transferred directly to the students. (Van den 
Heuvel-Panhuizen, 2000).

The principle of reality is oriented in the same direc-
tion. As in most approaches to mathematics education, 
RME aims at enabling students to apply mathematics. 
The overall goal of mathematics education is making 
students able to use their mathematical understand-
ing and tools to solve problems. Rather than beginning 
with specific abstractions or definitions to be applied 
later, one must start with rich contexts demanding 
mathematical organization or, in other words, con-
texts that can be mathematized. Thus, while work-
ing on context problems, the students can develop 
mathematical tools and understanding. The guid-
ance principle stresses also the same ideas. One of 
Freudenthal’s (1991) key principles for mathematics 
education is that it should give students a “guided” 
opportunity to “re-invent” mathematics. This implies 
that, in RME, both the teachers and the educational 
programs have a crucial role in how students acquire 
knowledge. According to Artigue and Blomhøj (2013, 
p. 804), “RME is thus a problem-solving approach to 
teaching and learning which offers important con-
structs and experience for conceptualizing IBME”.

TRANSMISSION BASED 
LEARNING IN EDUCATION

We consider as models based on knowledge trans-
mission various forms of educational intervention 
in which the direct and explicit instruction is high-
lighted. A characteristic feature of strongly guided 
instruction is the use of worked examples, while the 
discovery of the solution to a problem in an informa-
tion-rich environment is similarly a compendium of 
discovery learning minimally guided.

For several decades these models were considered as 
inferior and undesirable regarding to different com-
binations of constructivist learning (learning with 
varying degrees of guidance, support or scaffolding), 
as shown in the initiatives taken in different interna-
tional projects to promote the various IBSE and IBME 
modalities (Dorier & Garcia, 2013). Transmission of 
knowledge by presenting examples of solved prob-
lems and the conceptual structures of the discipline 
is ruled by didactical theories in mathematics edu-
cation with strong predicament, as mentioned in the 
previous section. 

The uncritical adoption of constructivist pedagogical 
models can be motivated by the observation of the 
large amount of knowledge and skills, in particular 
everyday life concepts, that individuals learn by dis-
covery or immersion in a context However, Sweller, 
Kirschner and Clark (2007) state that

There is no theoretical reason to suppose or 
empirical evidence to support the notion that 
constructivist teaching procedures based on 
the manner in which humans acquire biologi-
cally primary information will be effective in 
acquiring the biologically secondary informa-
tion required by the citizens of an intellectually 
advanced society. That information requires di-
rect, explicit instruction. (p. 121)

This position is consistent with the argument put for-
ward by Vygotsky; scientific concepts do not develop 
in the same way that everyday concepts (Vygotsky, 
1934). These authors believe that the design of ap-
propriate learning tasks should include providing 
students an example of a completely solved problem 
or task, and information on the process used to reach 
the solution. As Sweller, Kirschner, and Clark (2007) 
observe, “we must learn domain-specific solutions 
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to specific problems and the best way to acquire do-
main-specific problem-solving strategies is to be given 
the problem with its solution, leaving no role for IL 
[inquiry learning]” (p. 118). According to Sweller et 
al., empirical research of the last half century on this 
issue provides clear and overwhelming evidence that 
minimal guidance during instruction is significantly 
less effective and efficient than a guide specifically de-
signed to support the cognitive process necessary for 
learning. According to (Kirschner, Sweller, & Clark, 
2006):

We are skilful in an area because our long-term 
memory contains huge amounts of information 
concerning the area. That information permits 
us to quickly recognize the characteristics of a 
situation and indicates to us, often unconsciously, 
what to do and when to do it. (p. 76).

STUDYING MATHEMATICS THROUGH 
AN INQUIRY AND TRANSMISSION 
BASED DIDACTICAL MODEL

In the two previous sections we described some ba-
sic features of two extreme models for organizing 
mathematics instruction: discovery learning versus 
learning based on the reception of knowledge (usu-
ally regarded as traditional whole-class expository 
instruction). In this section, we describe the char-
acteristics of an instructional model in which these 
two models are combined: the students’ investigation 
of problem-situations with explicit transmission of 
knowledge by the “teacher system” [1] at critical mo-
ments in the mathematical instruction process. We 
consider that it is necessary to recognize and address 
the complex dialectic between inquiry and knowledge 
transmission in learning mathematics. In this dialec-
tic, dialogue and cooperation between the teacher and 
the students (and among the students themselves), 
regarding the situation-problem to solve and the 
mathematical content involved, can play a key role. 
In these phases of dialogue and cooperation, moments 
of transmitting knowledge necessarily happen. 

The onto-semiotic complexity of 
mathematical knowledge and instruction
The semiotic, epistemological and cognitive assump-
tions of the Onto-semiotic approach to mathematical 
knowledge and instruction (OSA) (Godino, Batanero, 
& Font, 2007) are the basis for our instructional pro-
posal, which recognizes a key role to both the inquiry 

and the transmission of knowledge in the teaching 
and learning of mathematics (and possibly other dis-
ciplines). This model takes into account the nature 
of mathematical objects involved in mathematical 
practices whose students’ competent performance 
is intended.

The way a person learns something depends on 
what has to be learned. According to the OSA, stu-
dents should appropriate (learn) the onto-semiotic 
institutional configurations involved in solving the 
proposed problem-situations. The paradigm of “ques-
tioning the world” proposed by the Anthropological 
Theory of Didactics (TAD) (Chevallard, 2015), and, in 
general, by IBE models is assumed, so that the starting 
point should be the selection and inquiry of “good 
problem-situations.”

The key notion of the OSA for modelling knowledge 
is the onto-semiotic configuration (of mathematical 
practices, objects and processes) in its double version, 
institutional (epistemic) and (cognitive). In a training 
process, the student’s performance of mathematical 
practices related to solving certain problems, brings 
into play a conglomerate of objects and processes 
whose nature, from the institutional point of view is 
essentially normative (regulative) (Font, Godino, & 
Gallardo, 2013) [2]. When the student makes no rele-
vant practices, the teacher should guide him/her to 
those expected from the institutional point of view. 
Thus each object type (concepts, languages, proposi-
tions, procedures, argumentations) or process (defi-
nition, expression, generalization) requires a focus, 
a moment, in the study process. In particular regula-
tive moments (institutionalization) are everywhere 
dense in the mathematical activity and in the process 
of study, as well as in the moments of formulation / 
communication and justification.

Performing mathematical practices involves the 
intervention of previously known objects to under-
stand the demands of the problem-situation and im-
plementing an initial strategy. Such objects, its rules 
and conditions of application, must be available in 
the subject’s working memory. Although it is possible 
that the student him/herself could find such knowl-
edge in the “workspace”, there is not always enough 
time or the student could not succeed; so the teacher 
and peers can provide invaluable support to avoid 
frustration and abandonment. These are the moments 
of remembering and activation of prior knowledge, 
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which are generally required throughout the study 
process. Remembering moments can be needed not 
only in the exploratory-investigative phase, but also 
in the formulation, communication, processing or 
calculation, and justification of results phases. These 
moments correspond to acts of knowledge transmis-
sion and may be crucial for optimizing learning.

Results of mathematical practices are new emerging 
objects whose definitions or statements have to be 
shared and approved within the community at the 
relevant time of institutionalization carried out by 
the teacher, which are also acts of knowledge trans-
mission. 

Inquiry and transmission didactical moments
Under the OSA framework other theoretical tools 
to describe and understand the dynamics of math-
ematics instruction processes have been developed. 
In particular, the notions of didactical configuration 
and didactical suitability (Godino, Contreras, & Font, 
2006; Godino, 2011). A didactical configuration is any 
segment of didactical activity (teaching and learn-
ing) between the beginning and the end of solving a 
task or problem-situation. Figure 1 summarizes the 
components and the internal dynamics of a didac-
tical configuration, including the students’ and the 
teacher’s actions, and the resources to face the joint 
study of the task.

The problem-situation that delimits a didactical con-
figuration can be made of various subtasks, each of 
which can be considered as a sub-configuration. In 
every didactical configuration there is an epistemic 
configuration (system of institutional mathematical 
practices, objects and processes), an instructional 
configuration (system of teacher and learners roles 
and instructional media), and a cognitive configura-
tion (system of personal mathematical practices, ob-
jects and processes) which describe learning. Figure 
1 shows the relationships between teaching and 
learning, as well as with the key processes linked to 
the onto-semiotic modelling of mathematical knowl-
edge (Font, Godino & Gallardo, 2013; Godino, Font, 
Wilhelmi, & Lurduy, 2011). Such modelling, together 
with the teachers and learners roles, and their interac-
tion with technological tools, suggest the complexity 
of the relationships established within any didactical 
configuration, which cannot not be reduced to merely 
inquiry and transmission moments.

SYNTHESIS AND IMPLICATIONS

In this paper, we argued that instructional models 
based only on inquiry, or only on transmission are 
simplifications of an extraordinarily complex reality: 
the teaching and learning processes. As Hiebert and 
Grouws (2007) write, “classrooms are filled with com-
plex dynamics, and many factors could be responsible 

Figure 1: Components and internal dynamic of a didactical configuration
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for increased student learning.… This is a very central 
and difficult question to answer” (p. 371).

Although we need to establish instructional designs 
based on the use of rich problem-situations, which 
guide the learning and decision-making at the global 
and intermediate level, local implementation of didac-
tical systems also requires special attention to man-
aging the students’ background needed for solving 
the problems, and to the systematization of emerging 
knowledge. Decisions about the type of help needed 
essentially have a local component, and are mainly 
teacher’s responsibility; he/she needs some guide 
in making these decisions to optimize the didactical 
suitability of the study process.

We also have supplemented the cognitive arguments 
of Kirschner, Sweller, and Clark (2006) in favour of 
models based on the transmission of knowledge in 
the case of mathematical learning, with reasons of on-
to-semiotic nature: What students need to learn are in 
a great deal, mathematical rules, the circumstances of 
its application and the required conditions for a prop-
er application. The learners start from known rules 
(concepts, propositions, and procedures) and produce 
others rules that should be shared and compatible 
with those already established in the mathematical 
culture. Such rules (knowledge) must be stored in 
subject’s long term memory and put to work at the 
right time in the short-term memory.

The scarce dissemination of IBE models in actual 
classrooms and the persistence of models based on 
the transmission and reception of knowledge can be 
explained not only by the teachers’ inertia and lack 
of preparation, but by their perception or experience 
that the transmission models may be more appropri-
ate to the specific circumstances of their classes. Faced 
with the dilemma that a majority of students learn 
nothing, get frustrated and disturb the classroom, it 
may be reasonable to diminish the learning expecta-
tions and prefer that most students learn something, 
even only routines and algorithms, and some exam-
ples to imitate. This may be a reason to support a 
mixed instructional model that articulates coherently, 
locally and dialectically inquiry and transmission [3].
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ENDNOTES

1. This system can be an individual teacher, a virtual 
expert system, or the intervention of a “leader” stu-
dent in a team working on a collaborative learning 
format.

2. This view of mathematical knowledge is consistent 
with that taken by Radford’s objectification theory. 
Radford (2013) writes: “Knowledge, I just argued, is 
crystallized labor – culturally codified forms of doing, 
thinking and reflecting. Knowing is, I would like to 
suggest, the instantiation or actualization of knowl-
edge” (p.16). He adds: “Objectification is the process 
of recognition of that which objects us  – systems 
of ideas, cultural meanings, forms of thinking, etc.” 
(p. 23). In our case, such crystallized forms of work 
are conceived as cultural “rules” fixing ways of doing, 
thinking and saying faced to problem-situations that 
demand an adaptive response.

3. The research reported in this paper was carried out 
as part of the research projects EDU2012-31869 and 
EDU2013-41141-P (Spanish Ministry of Economy and 
Competitiveness).
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Teaching at Swedish primary and secondary schools 
is often combined with collaborative exercises in a va-
riety of subjects. One such method for learning together 
is Supplemental instruction (SI). Several studies have 
been made to evaluate SI in universities throughout 
the world, while at lower levels hardly any study has 
been made until now. This study aimed at identifying 
learning conditions in SI-sessions at two Swedish upper 
secondary schools. Within this study, a combination of 
ATD (Anthropological theory of the didactic) and the 
SOLO-taxonomy (Structure of the Observed Learning 
Outcome) was successfully tried as an analysis strategy. 

Keywords: SOLO, ATD, networking, mathematics 

communication, SI.

INTRODUCTION 

The teacher’s choice of education methods has a high 
influence on what students learn (Hattie, 2009), and 
education research has shown to add to a better un-
derstanding of the prospects of successful teaching 
(Good & Grouws, 1979; Hattie, 2009). In spite of previ-
ous educational research, there is no clear answer to 
the question whether one method has advantages over 
the other, or if whole-class teaching is more successful 
than “dialogue-teaching”.

To strengthen the findings, researchers have argued 
that there is a need for more sophisticated research 
methods (Jakobsson, Mäkitalo, & Säljö, 2009). There is 
also a need for more systematic connection between 
various education research theories – so-called net-
working (Prediger, Bikner-Ahsbahs, & Arzarello, 
2008). According to (Prediger et al., 2008), the reasons 
that theories in mathematics education research have 
evolved differently are (1) mathematics education is 

a complex research environment, and (2) various re-
search cultures prioritise different components of 
this complex field. Different theories and methods 
have different perspectives and can provide differ-
ent kinds of knowledge. Thus, different theories and 
perspectives can connect in different ways.

An educational concept that needs to be explored, and 
systematically connected with various theories, is the 
so-called Supplemental instruction (SI). SI is a method 
where groups of students are provided peer collabo-
rative learning exercises at meetings led by SI-leaders 
(Hurley, Jacobs, & Gilbert, 2006). The method is used 
worldwide both at the university level and lower levels. 
To strengthen students’ knowledge in mathematics, a 
number of upper secondary schools in Sweden have 
introduced SI as a complement to regular teaching. 

AIM

Within the present study, SI-sessions were analysed 
in upper secondary school. The purpose was gaining 
more insight into the conditions that may facilitate 
mathematics learning. For the analyses two frame-
works were chosen and tested: (1) the Anthropological 
theory of the didactic (ATD) with focus on the devel-
opment of mathematical activities defined in terms 
of praxeologies (Chevallard, 2015; Winsløw, 2010), 
and (2) Structure of the Observed Learning Outcome 
(SOLO), which instead focuses on students’ learning 
outcome quality (Biggs & Collis, 1982). An aim of the 
study was to explore whether a combination of these 
two frameworks could contribute to deepen the analy-
sis of the students’ discussions. The research questions 
of this paper are, hence: To what extent is a combina-
tion of SOLO and ATD a suitable strategy for analysing 
SI-sessions? Are these two frameworks compatible and 
complementary?

mailto:annalena.holm@varberg.se
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THEORY AND CONNECTING FRAMEWORKS

Research needs theoretical frameworks. This was 
stated by (Lester, 2005), who argued that a theoreti-
cal framework provides a structure when designing 
research studies, and that a framework helps us to 
transcend common sense when analysing data. Below, 
the two frameworks that have been important for the 
study are discussed. First, the concept Supplemental 
instruction is presented. Then follows a section where 
SOLO-taxonomy and the ATD-praxeology are present-
ed. Finally, possibilities and challenges with combin-
ing frameworks are discussed. 

Supplemental instruction, or SI, is an educational meth-
od used at universities in many countries. Groups of 
students discuss and solve problems together, and SI 
is a complement to regular teaching. No teacher is 
present at the meetings (Malm, Bryngfors, & Mörner, 
2012). The groups are instead guided by an older stu-
dent, who is supposed to provide peer collaborative 
learning exercises (Hurley et al., 2006). SI has lately 
been introduced in some upper secondary schools in 
Sweden. First year students form the groups, while sec-
ond and third year students serve as SI-leaders (Malm, 
Mörner, Bryngfors, Edman, & Gustafsson, 2012). 

Biggs and Collis (1982) developed the SOLO-taxonomy 
for evaluating learning outcomes for students at ter-
tiary level. SOLO names and distinguishes five levels 
according to the cognitive processes required to obtain 
them. The authors argued that SOLO is useful when 
categorising test results in closed situations with for-
mulated expectations. They used five levels, SOLO-1 to 
SOLO-5, when categorising student responses (Biggs 
& Collis, 1982). Later Brabrand and Dahl (2009) used 
the SOLO-taxonomy for analysing (1) what curricula 
focus on and (2) what students actually learn. By using 
so-called active verbs (as shown hereafter), the authors 
state that it is possible to understand on which level 
of knowledge the learning outcome is:

SOLO 1 (pre-structural): student misses the point 

SOLO 2 (uni-structural): define, count, name, re-
cite, follow instructions, calculate

SOLO 3 (multi-structural): classify,describe, enu-
merate, list, do algorithm, apply method

SOLO 4 (relational): analyse, compare, explain 
causes, apply theory (to its domain)

SOLO 5 (extended abstract): theorize, generalize, 
hypothesize, predict, judge, reflect, transfer the-
ory (to new domain)

Brabrand and Dahl (2009) conclude that SOLO can be 
used when analysing science curricula, but they ques-
tion whether SOLO is a relevant tool when analysing 
mathematics curricula. They write: 

For mathematics it is usually not until the Ph.D. 
level that the students reach SOLO 5 and to some 
extent also SOLO 4. The main reason is that to be 
able to give a qualified critique of mathematics 
requires a counter proof or counter example as 
well as a large overview over mathematics which 
the students usually do not have before Ph.D. lev-
el. (Brabrand & Dahl, 2009, p. 543)

Other researchers, however, claim that SOLO is useful 
in various contexts. Pegg (2010) has described three 
studies where SOLO has been used to analyse primary 
and secondary students’ learning mathematics. In ad-
dition, Pegg (2010) states that SOLO helps to describe 
observations of students’ mathematics performance. 
Hattie and Brown (2004) also describe SOLO as a use-
ful tool in mathematics education. They use a strate-
gy where mathematics exercises are formulated by 
using SOLO, and they claim it is possible to use SOLO 
when analysing children’s mathematics knowledge 
and when describing the processes involved in ask-
ing and answering a question on a scale of increasing 
difficulty or complexity.

The Anthropological theory of the didactic (ATD) is 
a research program for analysing and developing 
mathematics education, which offers a handful of 
tools (Chevallard, 2006; Winsløw, 2010). One of these 
is the notion of praxeology, and one of the overarching 
perspectives is the paradigm of questioning the world.

While the paradigm of questioning the world defines the 
perspective of the curriculum, the ATD-praxeology 
makes a helpful tool for analysing the content that is 
taught. A praxeology can be described as a four-tuple 
explaining the components of activities or knowledge 
that are taught. This four-tuple consists of: a type of 
tasks (T), a technique (τ), a technology (θ) and a theory 
(Θ) (Winsløw, 2010). These four constituents, if fully 
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understood and used, can help to analyse what is done 
at school. The type of tasks and the technique form the 
practice block or the know-how. The technology and 
the theory constitute the theory block or the know-why. 
Hence, a technique is used to solve a task of a given 
type, while the technology justifies the technique, and 
the theory gives a broader understanding of the field. 
When used to describe bodies of knowledge, praxeol-
ogies can refer to “small” as well as “big” fields. Hence, 
a point praxeology is a single type of tasks that is solved 
by a technique; several point praxeologies can be 
combined into a local praxeology when they share 
the same technology and several local praxeologies 
sharing the same theory can be combined to form a 
regional praxeology (Winsløw, 2010). 

The ATD-praxeology can be applied at various levels 
of education. Winsløw (2006), for example, discusses 
how to use the praxeology when studying advanced 
mathematics, while Barbé, Bosch, Espinoza, and 
Gascón (2005) suggest how to use ATD when studying 
classroom activities at upper secondary school. All 
together ATD is described as a theory which analyses 
what is taught and thus showing the shortcomings or 
even paradoxes of didactic practices. Winsløw (2010) 
also states that ATD is useful when proposing ambi-
tious ways to transform education.

Different theories have different perspectives and 
can provide different kinds of knowledge. Looking 
at the same data from different perspectives can give 
deeper insights (Prediger et al., 2008). In this study, 
the ATD and SOLO frameworks were combined in or-
der to study the conditions and outcomes of students’ 
learning through SI. The purpose of combining two 
frameworks was to catch the advantages of each of 
them, and hence, to contribute to mathematics edu-
cation research and networking. 

METHOD

This study bases its statements on classroom observa-
tions. The phenomenon being studied was students’ dis-
cussions of mathematics. The context was small groups 
in upper secondary school. We used a qualitative case 
study approach (Cohen et al., 2007) to provide an anal-
ysis of how the students in the groups dealt with the 
mathematical problems. (Cohen, Manion, & Morrison, 
2007) describe the purpose of a case study to portray, 
analyse, and interpret situations through accessible 
accounts. As such, the case study method provided a 

systematic way of looking in depth, analysing and re-
porting how students discuss mathematical problems 
and how the discussions might facilitate learning.

Meetings at two upper secondary schools in 
south-western Sweden were observed with groups 
from the humanist, technology and natural science 
programs. The main criterion for choosing schools 
was their different experiences of support from 
the university. Another difference between the two 
schools was the implementation of SI. The criterion 
for choosing SI-groups to observe was availability. Not 
all groups wanted to be observed. Meetings were vide-
otaped and the tapes were transcribed. The documents 
were coded by closed coding, i.e. a deductive analysis 
with codes from theoretical frameworks. During the 
whole study, the analysis strategy was developed and 
revised. Due to limited space not all observations can 
be presented here. For more comprehensive insight 
in the study see Holm (2014).

The first students to be observed were one group 
from the technology program and one group from 
the humanistic program. Both groups discussed the 
same exercise (see Table 1). The exercise was part of a 
former national test from the Swedish national agen-
cy for education, which in 2010 had been intended 
for all students in the first grade of Swedish upper 
secondary school. At these two particular group-ses-
sions no SI-leaders were present as this was a first test 
of the frameworks. The observed sessions lasted 40 
minutes at one school and 60 minutes at the other. The 
students were not told anything about the SOLO- and 
ATD-classification of the exercise. 

The exercise was pre-classified by SOLO and the ATD-
praxeology. The intention was (1) to test if it was pos-
sible to do this classification in advance before giving 
the exercise to the students, (2) to decide whether the 
two frameworks were a suitable choice when analys-
ing student learning outcome, and finally, (3) if it was 
possible to correlate every SOLO-level to a specific 
dimension of the ATD-praxeology.  

Three different ways of using the SOLO-taxonomy 
were found in the literature, and initially all three of 
them were used when classifying the exercise. One of 
the three was part of the original method defined by 
Biggs and Collis (1982), with instructions for how to 
analyse student achievements in elementary mathe-
matics. The authors recommended that the children’s 
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solutions were to be analysed by deciding inter alia 
whether the child can handle several data at the same 
time and whether the child shows the ability to “hold 
off actual closures while decisions are made”. 

A second method was described by Hattie and Brown 
(2004). They grouped the exercises in advance, so that 
if a student answered a certain question the student 
was considered to reach a certain SOLO-level. Finally, 
Brabrand and Dahl (2009) used the SOLO-taxonomy by 
the active verbs once formulated by Biggs (2003) and 
compared university curricula with the table of verbs. 
Certain verbs were considered to point at certain “in-
tended learning outcomes” in the curricula. Notice that 
the verb “calculate” and “do simple procedure” are add-
ed to SOLO 2. These verbs are mentioned in (Brabrand 
& Dahl, 2009) and in (Biggs & Tang, 2011). In the results 
section we explain why not all the three ways of using 
the SOLO-taxonomy were suitable for the present study.

Although the SOLO-taxonomy is widely used, in differ-
ent ways, the work done by Biggs and Collis (1982) was 
based on closed situations, and not open situations, 
which are one of the main ideas of SI. Thus, it was 

decided that a complementary framework was needed 
for this study, specifically designed for mathematics 
education and also for open situations. Here, the ATD 
was found a suitable complement to SOLO.

The ATD is widely used, especially within the French, 
Spanish and Latin-American mathematics education 
research traditions (Bosch & Gascón, 2006; Chevallard, 
2015). It is developed to fit education research in math-
ematics and other disciplines, and calls for more open 
situations and open questions at school in general and 
in school mathematics in particular (Chevallard, 2015). 
In this study, the analysis and development of open 
mathematics learning situations was, thus, done by 
using the ATD-praxeology, while the SOLO-taxonomy 
was used for the analysis of student learning outcomes.

RESULTS 

The initial exercise about the volume of a cylinder 
was coded before it was given to the students (see 
Table 1). The SOLO-coding was based on the three 
methods described above. First, the “Hattie-Brown-
method” was used, as it appeared to be near to practice. 

Exercise: A roll of paper (statement) SOLO ATD praxeology

A rectangular sheet of paper can be rolled to 
make a tube (cylinder) as shown in the figure.

Such a tube is made by rolling a square piece of 
paper with side length 10 cm.
*The diameter of the tube will be about 3.2 cm. 
Find the volume of this tube (cylinder).

2 /later 
chang-ed 
to 3

Technique τ1 (calculate the volume of a cylinder 
given its diameter and height)

*Show that the diameter of the tube will be 
about 3.2 cm if the side length of the sheet of 
paper used is 10 cm

2/3
/later 3

Technique τ2 (calculate the diameter of a circle giv-
en its perimeter)

If the length and width of the paper are differ-
ent, you can make two different tubes (cylin-
ders) depending on how you roll the paper.
*Starting with rectangular sheets of paper with 
dimensions 10 cm × 20 cm, two different tubes 
are made. Find the volumes of the two tubes (cyl-
inders).

3

Combination of techniques τ1 & τ2
(first calculate diameter, then the volume)

*Compare these two volumes and calculate the 
ratio between them. 
*Investigate the ratio between the cylinder vol-
umes using sheets of paper with other dimen-
sions. What affects the volume ratio between the 
tall and the short cylinder?

4

4

Technique τ3
(calculate the ratio of the volumes found)
Technology (general statement about the ratio)

*Show that your conclusion is true for all rectan-
gular papers.

5 Technology (variation of τ3 using parameters, 
proof the general case)

Table 1: An exercise was pre-classified SOLO and the ATD-praxeology
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It seemed to be easy to decide whether one or two as-
pects were involved in the question. However, when 
it came to higher SOLO-levels, it was more difficult 
to judge whether the aspects were “integrated”. Here, 
the “Biggs-Brabrand-Dahl-method” was helpful as it 
offered additional verbs, alternative to “integrate”, 
e.g., “compare” and “analyse”, which could be used 
for the coding. 

An example of the use of active verbs in the coding 
is the sub-task where students should first calculate 
two volumes and then compare these two volumes 
(Table 1): 

“Starting with rectangular sheets of paper with 
dimensions 10 cm × 20 cm, two different tubes 
are made. Find the volumes of the two tubes (cyl-
inders).” 

“Compare these two volumes and calculate the 
ratio between them.”

In both sub-exercises several aspects are involved. A 
volume is calculated by multiple parameters. But the 
active verbs separate the two sub-tasks, as the first 
requires only an algorithm: “find” (the volume), while 
the second requires that the student goes one step 
further and makes a comparison: “compare” (these 
two volumes). Finally, it was important to compare 
the coding with the “Biggs-Collis-method”, as Biggs 
and Collis (1982) had formulated the original recom-
mendations for how to use SOLO. In their book, how-
ever, the mathematics examples were fetched from 
elementary mathematics, and it was not obvious how 
to apply the method in the present study. 

To conclude, the active verbs were found to be the 
most appropriate method when dealing with math-
ematics exercises. By using SOLO, a clear borderline 
could be drawn between the active verbs “do algo-
rithm” (SOLO 3) and “explain causes” (SOLO 4), and 
the active verbs made it possible to identify these 
structural differences between exercises. The initial 
exercise about the volume of a cylinder was also coded 
using the ATD-praxeology (Table 1). This coding was 
based on the work done by Mortensen (2011), who has 
coded museum exhibition exercises – the so-called 

“intended praxeology”. In the exercise about the cyl-
inder, each sentence was coded. It was for example 
decided whether the students were supposed to deal 
with available “know-how” to solve a problem (the 

dimensions type of task & technique) or if they were 
supposed to deal with “know-why”, i.e., a special way 
to justify the technique (the dimensions technology 
and theory). 

At first, in the analysis of the described exercise 
(Table 1), SOLO and the ATD-praxeology were laid side 
by side. The exercise was coded both by SOLO and 
ATD. The strategy to try to correlate every SOLO-level 
to a specific dimension of ATD- praxeology caused 
problems. ATD and SOLO evaluate different dimen-
sions. Thus, the strategy was abandoned at this early 
stage in the study. From now on, the two frameworks 
were used for different purposes: SOLO to analyse 
the quality of student learning outcomes, and the 
ATD-praxeology to analyse the didactic situations. 
In other words, they were considered answering 
different questions: what qualities does the student 
outcome show? and which dimensions does the learn-
ing situation contain? During the rest of the study it 
was discovered that the two frameworks often did 
not correlate.

The next step of the study was to code the group dis-
cussions about the cylinder. The sentences of the dis-
cussions were coded by the active verbs, and by the 
praxeological analysis. There were occasions when 
SOLO and ATD did correlate and there were other oc-
casions when they did not. Table 2 shows part of one 
discussion and how the discussion can be analysed by 
SOLO and ATD. The students discussed the volume of 
the cylinder. They did not remember the formula and 
therefore they tried different strategies. Finally one 
student managed to solve the first exercise. 

According to the analysis of the discussions of this first 
exercise, the SOLO-active verbs clarified the learning 
outcome. SOLO 4 for example told that students may 
have “explained” and/or “analysed”. If an element of 
the situation was classified by ATD as “technology”, 
it means that the student dealt with a discussion con-
cerning “knowing why” a technique was being used. 
Hence, it was possible to use the two frameworks within 
one study (compatible). However, when entering into 
detail, the two approaches lead to different character-
isations of students’ mathematical activities (comple-
mentary). 

 ― Students follow instructions “how”: SOLO 2 & 
Technique
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 ― Students use an algorithm: SOLO 3 & Technique

 ― A discussion about single tasks (point praxeolo-
gies) develops into a situation about knowing why 
(regional praxeologies), students may then ex-
plain why a method works: SOLO 4 & Technology 

 ― A problem can develop into a situation that deals 
with knowing why, but students use the algorithm 
without discussing why: SOLO 3 & Technology

 ― The situation deals with knowing how to solve 
a problem by using an algorithm and students 
compare different solutions: SOLO 4 & Technique

Finally, it was concluded that the pre-classification 
did not hold. When the students did not remember 
the formula, they had to discuss the problem more 
thoroughly and thus reach other SOLO-levels and 
ATD-dimensions (Table 2).

DISCUSSION AND CONCLUSIONS

ATD and SOLO were combined to deepen the analysis 
of students’ mathematics discussions. Such network-
ing of frameworks is supported by Lester (2005) and 
Prediger and colleagues (2008), who argue that net-
working does not have to imply a total integration or 
unifying between frameworks. Lester (2005, p. 466) 
even advocates the adaptation of ideas from a range 
of theoretical sources to suit goals both for research 

and for developing practice in the classroom in a way 
that “practitioners care about”.

The initial intention was to correlate specific SOLO-
levels to specific ATD-praxeology dimensions. If this 
had been possible the conclusion would have been 
that one of the frameworks had been eliminated 
from this study. However, it was found that the two 
frameworks were both compatible and complemen-
tary. The present study thus succeeded in adapting 
theoretical models for analysing empirical material 
and in contributing to the development of strategies 
for analysing students’ learning. 
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Quotes SOLO ATD Comments

e) It is the diameter times the length or height 
...
a) Is that so?   (e) I think so.
a) But no. It does not become square …
a) It is supposed to be CM3. It just gets CM2. It 
does not work.

1

3/4

Technique/
Technology

Student (a) and (e) try to find a relevant 
technique to calculate the volume of the cyl-
inder. However, the technique is erroneous. 
Student (a) notices that their technique does 
not work. (a) tries to discuss “knowing why”. 
They try to question the technique. 

d) How do you count ... We were supposed to 
have the area of the circle.
b) Wait what are we supposed to figure out? 
(reading task)
d) Volume ... then we need the area of the base   
b) What?

3 Technique A parallel discussion goes on between 
student (d) and student (b). Student (d) com-
ments what (a) just said.

a) Yes exactly 
 
b) The area of the base? ...
d) Is not the radius times the radius times pi?

3 Technique The two groups start to discuss with one 
another. Student (d) takes the command and 
finds the technique – the “knowing how”.

Table 2: Quotes from group discussion analysed by SOLO and by ATD-praxeology. Quotes are translated from Swedish and commented 

by the observer
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In this theoretical paper, we explore interrelationships 
between conceptual and procedural understanding of 
mathematics in the context of individuals and groups. 
We question the enterprise of attempting to assess learn-
ers’ mathematical understanding by inviting them to 
perform a (perhaps unfamiliar) procedure or offer an 
explanation. Would it be appropriate to describe a learn-
er in possession of an algorithm for responding satisfac-
torily to such prompts as displaying conceptual under-
standing? We relate the discussion to Searle’s “Chinese 
Room” thought experiment and draw on Habermas’ 
Theory of Communicative Action to develop potential 
implications for addressing the problem of interpreting 
learners’ mathematical understanding.

Keywords: Conceptual, Habermas, procedural, Searle, 

understanding.

INTRODUCTION

The quest to help learners develop a deep and mean-
ingful understanding of mathematics has become the 
holy grail for mathematics educators (Llewellyn, 2012), 
particularly since Skemp’s (1976) seminal division of 
understanding into “instrumental” and “relational” 
categories. Relational (or conceptual) understand-
ing is seen as more powerful, authentic and satisfy-
ing for the learner, representing true mathematical 
sense-making. But how can we know whether or not 
a learner has this relational understanding in any 
particular area of mathematics? The short, closed 
questions which dominate traditional paper-based 
assessments are unlikely to elicit this information. 
Hewitt (2009, p. 91) comments that “it is perfectly 
possible for a student to get right answers whilst not 
knowing about the mathematics within their work”, 
and offers an example in which a learner aged 12–13 
was finding the areas of triangles by multiplying the 

base by the height and dividing by 2, but admitted that 
he had no idea why he was multiplying or dividing 
by 2. This same example is used by Skemp (1976) to 
exemplify his distinction between instrumental and 
relational understanding of mathematics. Yet inviting 
learners to go further and explain their mathemat-
ics is also problematic. An invitation to “explain” an 
answer may be experienced as yet another request 
for “a performance”: the “right” explanation that will 
satisfy a teacher or examiner may be memorised or 
produced algorithmically, just like the answer itself.

We might ask what it means for learners to have 
relational understanding of factorising a quadratic 
expression, for instance (Foster, 2014). If they can 
perform the procedure fluently (i.e., quickly, accu-
rately, flexibly and confidently) then would we be sat-
isfied (Foster, 2013)? We might argue that relational 
understanding involves adapting what is known to 
novel, non-straightforward problem-solving situa-
tions. Yet a robust enough algorithm will dispose of a 
very wide range of scenarios, including unanticipated 
ones, and a comprehensive enough set of algorithms 
might successfully deal with any situation likely to be 
encountered in any assessment (MacCormick, 2012). 
If the learner’s performance continued to be faultless 
would we wish to probe their thinking further? To 
some extent mathematical fluency entails withdraw-
ing attention from the details of why and how the pro-
cedure works so as to speed up the process and allow 
cognitive space for focusing on wider aspects of the 
problem (Hewitt, 1996; Foster, 2013). A mathemati-
cian does not want to have to differentiate 3x2 – 2x + 4 
from first principles every time, although they are 
capable of doing so. Perhaps relational understanding 
involves an ability to deconstruct the procedure if 
required rather than an expectation that this is going 
on every time it is carried out? But deconstructing 
a procedure could itself be regarded as a procedure, 
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and presumably one that can be prepared for – even 
memorised, just as proofs can be memorised. So is 
there something more to relational understanding 
than expert procedural fluency, and if so how might 
this be conceptualised? Is there a difference between 
being able to manipulate syntax and being able to un-
derstanding meaning?

PROCEDURAL AND CONCEPTUAL KNOWLEDGE

Skemp’s (1976) famous distinction between instru-
mental and relational understanding characterises 
relational understanding as “knowing both what to do 
and why” (p. 20), whereas instrumental understand-
ing is merely “rules without reasons” (p. 20). While ac-
knowledging that “one can often get the right answer 
more quickly and reliably by instrumental thinking 
than relational” (p. 23), he nonetheless criticises in-
strumental learning as a proliferation of little rules 
to remember rather than fewer general principles 
with wider application. More recently, the terms pro-
cedural and conceptual learning have been widely 
adopted, and theoretical interpretations of these in 
mathematics education have increasingly highlighted 
their interweaving and iterative relationship (Star, 
2005; Baroody, Feil, & Johnson, 2007; Star, 2007; Kieran, 
2013; Star & Stylianides, 2013; Foster, 2014). 

The most commonly-used definitions of procedural 
and conceptual knowledge in the context of mathe-
matics are those due to Hiebert and Lefevre (1986). 
They see conceptual knowledge as knowledge that 
is rich in relationships, where the connections be-
tween facts are as important as the facts themselves, 
whereas procedural knowledge is rules for solving 
mathematical problems. This distinction parallels 
Skemp’s (1976) conclusion that there are really two 
kinds of mathematics – instrumental and relation-
al – dealing with different kinds of knowledge. More 
recently, Star (2005, 2007) distinguishes between 
types of knowledge (knowledge about procedures or 
knowledge about concepts) and qualities of knowl-
edge (superficial or deep), and complains that these 
are frequently confounded. He highlights the way in 
which “procedural” is often equated with “superficial”, 
and “conceptual” with “deep”, and draws attention to 
the possibility of “deep procedural knowledge” and 

“superficial conceptual knowledge” as valid categories. 
Kieran (2013) goes further in declaring the dichotomy 
between conceptual understanding and procedural 
skills a fundamentally false one. Other researchers 

have also explored the interplay between procedural 
and conceptual knowledge (Sfard, 1991), with Gray 
and Tall (1994) integrating processes and concepts 
into what they term “procepts” (Tall, 2013). But there 
remains the question of what precisely it is that con-
ceptual knowledge consists of beyond confident pro-
cedural knowledge.

THE CHINESE ROOM

Searle’s (1980) famous thought experiment about a 
“Chinese Room” was an attack on the “strong” artificial 
intelligence claim that a computer is a mind, having 
cognitive states such as “understanding”. Searle im-
agined a native English speaker who knew no Chinese 
locked in a room with a book of instructions for ma-
nipulating Chinese symbols. Messages in Chinese 
are posted through the door and the English speaker 
follows the instructions in the book to produce new 
messages in Chinese, which they post out of the room. 
Unknown to them, they are having a conversation 
in Chinese, a language which they do not speak a 
word of. Searle argued that syntax does not add up 
to semantics; behaving “as if ” you understand is not 
the same as understanding. But it is very difficult to 
pinpoint exactly where the difference lies (Gavalas, 
2007). Searle does acknowledge that “The rules are in 
English, and I understand these rules as well as any 
other native speaker of English” (1980, p. 418), but it 
remains mysterious exactly what test could distin-
guish a competently performing machine from a real 
mathematician. A learner performing a mathematical 
procedure may be making mathematical sense to an 
observing mathematician, such as a teacher, without 
apparently knowing much themselves about what 
they are doing.

The focus here has now changed from whether the 
computer (or the mind as a computer) understands 
mathematics to the question of whether some com-
puter could be such that it is indistinguishable from a 
real mathematician. It may be that, whether or not you 
could tell them apart, they would perform the tasks 
of producing syntactically correct mathematics in im-
portantly different manners. Thus the issue becomes 
the sense in which rules are being followed. If rules 
are followed in a meaningful sense and their semantic 
content is well defined and connected within constel-
lations of schemas, then test item responses could be 
strong evidence of mathematical understanding. But 
this requires that those items are designed so that they 
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engage procedural knowledge in a sophisticated man-
ner which takes into account all of the aspects of the 
concept image that is the object of assessment. We 
could specify an additional requirement that the test 
be administered to a human being and not a computer. 
While this may seem flippant, it points to the heart of 
Searle’s argument, which is that humans follow rules 
through semantic causality that is more or less part 
of the “hardware” of our brains; that there is no (or 
minimal) “software” layer (Searle, 1984). So does this 
imply that truly instrumental understanding is an 
impossibility for a human being?

MATHEMATICAL UNDERSTANDING

Searle’s later articulation of social theory addresses 
how language can be used to create a social reality 
which is iterative and generative (Searle 1995, 2010). 
Further, Searle articulates an analysis of language 
that points towards strong connections between the 
structure of language and the structure of intentional 
states. In some ways this leads us back to the idea of the 
mathematician as performing as though merely in com-
mand of a complex constellation of algorithms that are 
triggered and brought to bear in a purely syntactical 
manner. In light of the argument put forth by Searle, 
we should rather say that the mathematician employs 
an array of mathematical understandings which have 
semantic content. While this seems unsatisfying, as 
though Searle is saying “it is semantic when humans 
do it”, it bears strong connections with Sierpinska’s 
articulation of procedural understanding and its re-
lationship to conceptual understanding. Procedural 
understandings, according to Sierpinska (1994):

are representations based on some sort of schema 
of actions, procedures. There must be a conceptu-
al component in them – these procedures serve 
to manipulate abstract objects, symbols, and they 
are sufficiently general to be applied in a variety 
of cases. Without the conceptual component they 
would not become procedures. We may only say 
that the conceptual component is stronger or 
weaker. (p. 51)

Hence, it is reasonable for a mathematician to see 
many elements of their understanding as arrays of 
algorithms that allow them to address wide categories 
of mathematical problems. Yet this is fundamentally 
different from how a digital computer would operate 
in a purely syntactical approach.

Gordon, Achiman and Melman (1981, p. 2) define rules 
as “statements of the logical form ‘In type-Y situations 
one does ... X’”. For Wittgenstein (1953), it is not possi-
ble to choose to follow a rule: “When I obey a rule, I do 
not choose. I obey the rule blindly” (p. 85, original em-
phasis). Otherwise it is not a rule. It is in this sense that 
Searle raises a question fundamental to this discus-
sion: Should understanding mathematics be under-
stood as sophisticated algorithmic arrays which are 
akin to complex computer programs? Searle’s (1984) 
critique of this and related ideas has several facets, the 
most pertinent of which is that there is an ambiguity 
in what is meant by rule following and that humans 
and computers do not follow rules in the same sense. 
In essence, Searle argues that humans follow rules in 
as much as they understand the meaning of the rules 
(which is thus semantic and about intentional states), 
whereas computers are purely syntactical in their 
rule following; they can be said to “act in accord with 
formal procedures” (ibid, p. 45, original emphasis).

Returning to the question of relational versus in-
strumental understanding, it seems that if we follow 
Searle’s arguments we can say that mathematical un-
derstanding is probably not effective human under-
standing if it is primarily instrumental (in the sense 
of syntactical rule following). However, it is clear that 
procedural, syntactical and algorithmic practices and 
concepts form an important part of the background 
to meaningful mathematical understanding. Thus 
from a perspective of assessment we would expect it 
to be important to assess algorithmic fluency while 
also seeking to assess the strength of the conceptual 
content associated with the procedural performance.

So in contrast to the kinds of digital computers that 
Searle and Hiebert and Lefevre are talking about, al-
gorithms exist within a semantic framework. Perhaps 
it is as though a digital computer (syntactical machine 
environment) is being modelled using a semantic 
machine environment (the brain). If so, the potential 
problem for mathematics education relating to in-
strumental learning in mathematics may be that the 
seeming simplicity of rule following is made vastly 
more complicated by its need to run in a sort of virtual 
syntactic machine running on essentially semantic 
hardware. On the other hand, the generation of cor-
rect syntactical content is a power of certain constella-
tions of semantic knowledge (relational knowledge). It 
seems that the teaching of algorithms and procedures 
is crucial for the development of sophisticated math-
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ematical understanding, but also that how they are 
taught is critical to supporting the development in 
learners of mathematical understanding that goes 
beyond procedural understandings with weak con-
ceptual content (Foster, 2014).

Habermas’ theory of communication, partly based 
in and complementary to Searle’s theories, can point 
towards models of understanding and how to assess 
it. In communicative action, as defined by Habermas 
(1984), action is coordinated intersubjectively through 
achieving understanding. The theory of communica-
tive action (TCA) analyses communication as having 
an inherent rationality focused on the goal of achieving 
understanding. Using speech act theory and argumen-
tation theory, Habermas identifies categories of validity 
claims that are raised in any communicative interaction 
and also identifies implicit preconditions for successful 
communication. The former is referred to by Habermas 
as “discourse”, but might better be termed “validity-dis-
course”, in order to differentiate it from other uses of 
that term in social sciences. The preconditions for com-
municative action are referred to collectively as the 

“Ideal Speech Situation” by Habermas and constitute a 
set of counterfactual norms identified abductively as 
necessary for successful communication. These norms 
are focused on equitable conditions for participation in 
communication where the “unforced force of the better 
argument” has the opportunity to motivate agreement. 
This is a bit tricky, as Habermas claims that such condi-
tions must be assumed by participants as in operation 
in order to communicate, despite representing more of 
an ideal horizon that never completely obtains. Society 
is power-laden, and all communication occurs within a 
social context. Thus the breakdown of communication 
is all too common, and intersubjective understanding 
is seen as a fleeting and fallible goal that is ever ap-
proached but seldom attained. 

The claim that Habermas’s TCA and Searle’s speech 
act theory are complementary and can be produc-
tively networked is based on the specific arguments 
made by Habermas in the TCA, his use of speech act 
theory to develop his ideas of communicative action 
and also upon analysis of similarities and departures 
between the principles, methodologies and questions 
of each author:

Analytical philosophy, with the theory of mean-
ing at its core, does offer a promising point of 
departure for a theory of communicative action 

that places understanding in language, as the me-
dium for coordinating action at the focal point of 
interest. (Habermas, 1984, p. 274)

While it might be possible to argue that Searle’s theo-
ries depart somewhat from the kinds of analytic the-
ories that Habermas wants to make use of, this is mis-
taken, since their focus is on incorporating theories 
of intentionality. Searle beings with the structure of 
linguistic expressions and then deals with intention-
ality, and importantly in his later work he introduces 
the idea of collective intentionality, which is focused 
on the coordination of speakers, and which is closely 
related to Habermas’ ideas about the importance of 
intersubjectivity in communicative action:

For a theory of communicative action only those 
analytic theories of meaning are instructive that 
start from the structure of linguistic expressions 
rather than from speakers’ intentions. And the 
theory will need to keep in mind how the actions 
of several actors are linked to one another by 
means of the mechanism of reaching understand-
ing. (Habermas, 1984, p. 275) 

Searle’s ideas add rigour and detail at the level of so-
cial ontology and may allow for a more sophisticated 
operationalising of concepts and constructs based in 
Habermas’ TCA. These ideas could be used to further 
network critical theory, cognitive science, neurosci-
ence and other approaches to the study of mathematics 
education so that they may inform one another without 
reducing one to the other. Thus the issue of theoretical 
incommensurability may be navigated without theoret-
ical insights becoming “siloed” within various sub-cul-
tures of theory which do not communicate with one 
another. A common theoretical language might allow 
researchers to disagree with greater clarity without 
running the risk of becoming an over-arching “grand 
theory”. More broadly, Searle’s ideas could serve as 
tools for building rigorous analysis of particular in-
stances of theoretical networking, allowing productive 
discussion between theoretical perspectives.

These ideas can be operationalised to analyse small-
group problem solving and in this manner interpret 
the mathematical understanding of participants 
(Kent, 2013), which could serve as the basis for the 
development of interactive assessment techniques, 
activities and protocols. Understanding from this per-
spective is about being able to identify what reasons, 
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arguments and evidence could be legitimately raised 
to justify a claim. This emphasis on the identification 
of shared bases for validity can serve as a pragmatic 
approach to the analysis of human understanding in 
mathematics. Thus when we speak of assessing math-
ematical understanding we can begin to identify as 
a community of mathematicians and mathematics 
educators (with due consideration of developmental 
and disciplinary appropriateness) the claims and the 
appropriate reasons that justify these claims. We can 
consider how to engage participants in communica-
tive actions around mathematical goals that require 
the articulation of arguments and justifications that 
show evidence that the participants can explain why 
certain mathematical claims are true. 

Returning to the Chinese Room, this turn to the social 
does not suggest that there need be two people in the 
room, but rather that the person in the room must 
share requisite background knowledge or be able to 
develop it contextually with the Chinese speakers out-
side the room. The idea of communicative competence 
is key: sharing the contextual background knowledge 
that allows a language to have semantic meaning is 
the basis for “understanding”. This is different from 
quickly and accurately manipulating the symbols in 
a language in a syntactic fashion: no shared under-
standing entails from such activity. Now it is possible 
that meaning could be attributed to rules or symbols 
by the person in the Chinese room, but, without the 
ability to test these against another person who has 
semantic understanding of the symbols, no inter-
personal communication or shared understanding 
is achievable. The meaning so developed would be a 
private language that would not necessarily corre-
spond to that of the interlocutor. Thus the person in 
the Chinese room might imagine that they were hav-
ing a discussion about a family’s vacation outing when 
in fact the interlocutor interpreted the exchange of 
symbols as being a mathematical discourse on the 
solution to an algebraic problem (or vice versa).

CONCLUSION

These ideas about the nature of the relationship be-
tween syntax and semantics, procedure and concept, 
and instrumental and relational understanding do 
not undermine the importance of procedural fluency. 
Pimm (1995) addresses the issue in depth and iden-
tifies some of the important features of fluency in 
mathematics education: 

For me, fluency is about ease of production and 
mastery of generation – it is used also in relation 
to a complex system. ‘Fluent’ may be related to 
efficient, or just no wasted effort. It is often about 
working with the form. Finally, it can be about not 
having to pay conscious attention. (ibid, p. 174, 
original emphasis)

Thus fluency, including syntactical fluency, can serve 
as partial evidence of understanding in a communica-
tional context. Mathematical fluency, as in non-math-
ematical communication, is a sign of communicative 
competence, which is a prerequisite for interpersonal 
understanding according to the hermeneutic/commu-
nicational tradition (Habermas, 1984; Sierpinska, 1994). 
Thus when we say that a human being does not follow 
rules in the same sense as a computer, we mean that the 
symbolic rule following (or algorithmic manipulation 
of syntax) is done in the context of mathematical com-
munication, and thus has semantic framing.

Habermas’ articulation of rational behaviour in dis-
cursive practices has been identified as productive 
for the analysis of shared cognition in mathematics 
education (Boero et al., 2010). In communicative action 
participants achieve shared goals by coordinating 
action (including speech action) through the develop-
ment of a shared understanding. Thus, establishing 
shared goals and coordinating action around an ap-
propriately designed mathematical task could serve 
as an interpretive basis for the researcher (or other 
virtual participant) to make a judgement about the 
understanding of the participants in collaborative 
learning of mathematics (Kent, 2013).

We suggest that consideration of Searle’s (1984) cri-
tique of cognitive science allows for ongoing produc-
tive insight into what mathematical thinking is and 
its relation to education. An important problem faced 
by the mathematics education community is how we 
can use ideas of relational understanding and instru-
mental understanding in a sophisticated manner to 
promote the learning of mathematics. Learners of 
mathematics should gain genuine experience of real 
mathematical sense-making rather than engage in a 
charade of imitating what they think such behavior 
should look like. The increasing focus on fluency in 
policy in the UK (DfE, 2013) suggests the need for tools 
and practices to be developed which coordinate ideas 
of cognition, mathematical understanding and edu-
cational practices of teaching and assessment. Our 
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consideration of Searle’s Chinese Room argument has 
sought to highlight the nuance involved in these issues 
and the kinds of practices and theoretical frameworks 
that could be leveraged to address the problem of in-
terpreting learners’ mathematical understanding. 
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Epistemology and networking was discussed in the last 
CERME working group on theory. This paper aims to 
continue the discussion. I reflect on epistemological 
analysis and the cultural dimension of knowing and 
present examples which demonstrate how the changes 
in the cultural context influence the epistemological 
analysis. Then, I reconsider the epistemological di-
mension and the networking of theories. In some cases, 
the epistemological dimension permits the networking. 
In other cases, we notice how by means of networking, 
strong epistemological concerns in one theory might be 
integrated in another theory in a way that reinforces 
the underlying assumptions of this other theory. I end 
the paper with an example of networking that demon-
strates how the social dimension might influence the 
epistemological analysis.

Keywords: Cultural dimension, epistemological analysis, 

networking theories, social dimension.

EPISTEMOLOGY AND NETWORKING 
THEORIES IN THE PREVIOUS CERME 
WORKING GROUPS ON THEORIES

The present paper aims to continue the work done at 
the previous CERMEs in relation to the epistemolog-
ical dimension in theories. At CERME8, the focus on 
networking and epistemology was stronger than in 
the previous working groups on theory. For example, 
the role of epistemology in the networking of theories 
was an explicit focus in the paper by Ruiz-Munzón, 
Bosch, and Gascón (2013). The idea of a “reference 
epistemological model” (REM) was introduced for net-
working Chevallard’s Anthropological Theory of the 
Didactic (ATD) and Radford’s Theory of Knowledge 
Objectification (TKO). The authors analyzed how each 
approach addresses the nature of algebraic thinking. 
The point of view of the ATD was presented with its 
own REM about elementary algebra as well as the kind 
of questions addressed by this approach, in relation 
to the TKO. 

In their paper, presented at CERME8, Godino and col-
leagues (2013) analyzed two approaches to research 
in mathematics education: “Design-based research” 
(DBR) and “Didactic engineering” (DE), in order to 
study their possible networking. DE (closely linked 
to Brousseau’s theory of didactical situations) focuses 
on epistemological questions; DBR does not adopt a 
specific theoretical framework, nor does it explicitly 
raise epistemological questions. In the working group 
(Kidron et al., 2013) interesting questions arose like 
the following one: “is the epistemological focus only 
a question of ‘cultural and intellectual context’ or is 
an epistemological reference necessary for each the-
oretical approach used in design based research in 
math education?”

Artigue (2002) wrote that the anthropological ap-
proach shares with the socio-cultural approaches 
the view that mathematical objects are not absolute 
objects, but are entities which arise from the practices 
of given institutions. These practices are described 
in terms of tasks in which the mathematical object 
is embedded, in terms of techniques used to solve 
these tasks and in terms of discourse which both ex-
plains and justifies the techniques. It is interesting 
to note that the nature of mathematical objects was a 
theme that appears at CERME4 in the context of the 
need to be aware of the underlying assumptions of 
each theory and that underlying assumptions also 
concern ontological or epistemological questions 
such as the nature of mathematical objects. This 
theme reappears in the next CERMEs especially at 
CERME7 while networking was needed in order to 
analyze the emergence and nature of mathematical 
objects. This was well demonstrated, for example, in 
the paper presented by Font and colleagues (2011). The 
authors asked “What is the nature of the mathemat-
ical objects?” They explored this question by the use 
of a synthesis between the onto-semiotic approach 
(OSA), APOS theory (with its four components, Action, 
Process, Object, and Schema) and the cognitive sci-
ence of mathematics (CSM) as regards their use of the 
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concept of “mathematical object”. APOS theory and 
CSM highlight partial aspects of the complex process 
through which, according to OSA, mathematical ob-
jects emerge. OSA extends APOS theory by address-
ing the role of semiotic representations; it improves 
the genetic decomposition by incorporating ideas of 
semiotic complexity, networks of semiotic functions 
and semiotic conflicts; it offers a refined analysis due 
to the way in which it considers the nature of such 
objects and their emergence out of mathematical 
practices. Considering mathematical objects not as 
absolute objects, but as entities which arise from the 
practices of given institutions, leads us to analyze the 
role of both, the epistemological dimension and the 
socio cultural dimension, in theories.

EPISTEMOLOGICAL ANALYSIS AND 
SOCIO CULTURAL DIMENSION

The following question was asked by Luis Radford at 
the colloquium at Paris in honour of Artigue (2012): 

“How can epistemological analysis take into account 
the social and cultural dimension of knowing?” In the 
last decades the increasing influence of sociocultural 
approaches towards learning processes is well rec-
ognized. Therefore, the question is essentially how 
the social and cultural dimensions are taken into ac-
count in the epistemological analysis. In this section, 
I will consider this question in relation to the cultural 
dimension of knowing, I analyze the changes in the 
cultural context and their influences on the epistemo-
logical analysis. In the section about epistemological 
dimension and networking theories, I will reconsider 
Radford’s question in relation to the social dimension 
of knowing.

Changes in the cultural context and their 
influences on the epistemological analysis
In the last decades we face the changes of our cultur-
al environment as well as the changes of the context 
in which our theory emerged. I will give an example 
from my own research on students’ conceptual un-
derstanding of central notions in calculus like the 
notion of limit in the definition of the derivative. In 
my previous research, using essentially theories that 
privilege epistemological and cognitive dimensions, I 
was aware of the cognitive difficulties relating to the 
understanding of the definition of the derivative as 
the “limit of the quotient Δy/Δx as Δx approaches 0”. 
In my epistemological analysis, my first thinking was 
that these cognitive difficulties are inherent to the 

epistemological nature of the mathematics domain. 
I realized that students viewed the limit concept as a 
potential infinite process and I understood that this 
was a possible source of difficulties. Moreover, previ-
ous researches (Tall, 1992) expressed students’ belief 
that any property common to all terms of a sequence 
also holds of the limit. I therefore realized that this 
natural way in which the limit concept is viewed might 
be an obstacle to the conceptual understanding of the 
limit notion in the definition of the derivative func-
tion f’(x) as lim∆x → 0 ∆y/∆x. In particular, the derivative 
might be viewed as a potentially infinite process of 
∆y/∆x approaching f’(x) for decreasing ∆x. As a result 
of the belief that any property common to all terms 
of a sequence also holds of the limit, the limit might 
be viewed as an element of the potentially infinite 
process. In other words, lim∆x → 0 ∆y/∆x might be con-
ceived as ∆y/∆x for a small ∆x. I therefore looked for 
a counterexample that demonstrates that one can-
not replace the limit “lim∆x → 0 ∆y/∆x” by Δy/Δx for Δx 
very small. “Finding such a counterexample.... was 
crucial to my research focus. Such a counterexam-
ple demonstrates that the passage to the limit leads 
to a new entity and that therefore omitting the limit 
will change significantly the nature of the concept. 
It demonstrates that the limit could not be viewed 
as an element of the potentially infinite process” 
(Kidron, 2008, p. 202). In Kidron (2008), I explain 
that such counterexample exists in the field of dy-
namical systems which is considered as a new field 
in mathematics. In the counterexample (the logistic 
equation), the analytical solution obtained by means 
of continuous calculus is totally different from the 
numerical solution obtained by means of discrete 
numerical methods. The essential point is that using 
the analytical solution, the students use the concept 
of the derivative as a limit lim∆x → 0 ∆y/∆x but, using the 
discrete approximation by means of the numerical 
method, the students omit the limit and use Δy/Δx for 
small Δx. Students reactions are analyzed in (Kidron, 
2008), in particular how students reach the conclu-
sion that passing to limits may change the nature of 
a problem significantly. The essential point is that 
the changes in the cultural context permit the new 
settings for the learning experience. More precisely, 
the changes in the cultural context permit modern 
results in research Mathematics which influenced 
my own research in mathematics education by means 
of changes in the didactical designs. The didactical 
design described in (Kidron, 2008) was possible by 
means of the epistemic status of the new artifacts used 
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in the research study. The way the students interacted 
with the software demonstrates that the artifact used 
in this study should not be considered only as an aid 
for the students. It had a deep cognitive role while 
learners interacted with it. The artifact was conceived 
as co-extensive of thinking: the students act and think 
with and through the artifact as described by Radford 
(2008). In another study (Kidron & Dreyfus, 2010) we 
also notice this specific epistemic status of the artifact 
as co-extensive of thinking while the computer is con-
sidered as a dynamic partner. Kidron and Dreyfus 
consider the influence of a CAS (Computer Algebra 
System) context on a learner’s process of constructing 
a justification for the bifurcations in a logistic dynam-
ical process. The authors describe how instrumenta-
tion led to cognitive constructions and how the roles 
of the learner and the computer intertwined during 
the process of constructing the justification.

Another example describing how epistemological 
analysis takes into account the cultural dimension of 
knowing is described in Artigue (1995, p. 16) in which 
the author describes her mathematical research in dif-
ferential equations and the way she notes the episte-
mological inadequacy of teaching in this area, for stu-
dents in their first two years at university. By means 
of epistemological analysis, Artigue described how 
historically the differential equations field had de-
veloped in three settings: the algebraic, the numerical 
and the geometric settings. For many years, teaching 
was focused on the first setting due to epistemological 
and cognitive constraints. Reflecting on these con-
straints was a starting point towards building new 
teaching strategies which better respect the current 
fields’ epistemology. By means of the epistemological 
analysis, Artigue could see the epistemological evolu-
tion of the field towards new approaches, the geomet-
rical and numerical approaches. The essential point 
in this example is that the epistemological evolution 
is a consequence of the changes in the mathematical 
culture and the epistemological analysis highlights 
the crucial role of the cultural dimension.

THE EPISTEMOLOGICAL DIMENSION 
AND THE NETWORKING OF THEORIES

Epistemological sensitivity
A new view on the epistemological dimension is of-
fered in Kidron and colleagues (2014) by means of 
the networking between three theories, TDS, the 
Theory of Didactic situations (Artigue, Haspekian, 

& Corblin-Lenfant, 2014), ATD, the Anthropological 
Theory of the Didactic (Bosch & Gascón, 2014), and AiC, 
the theory of Abstraction in Context (Hershkowitz 
et al., 2001; Schwarz et al., 2009; Dreyfus & Kidron, 
2014). The foci of the three theoretical approaches 
are different. In particular, AiC focuses on the learner 
and his or her cognitive development, while TDS and 
ATD focus on didactical systems. The three theoretical 
approaches are sensitive to issues of context but, due 
to these differences in focus, context is not theorized 
and treated in the same way. The authors expected 
some complexity in the effort of creating a dialogue 
between the three theories in relation to constructs 
such as context, milieu, and media-milieus dialectic. 
However, they observed how the dialogue between the 
three theories appears as a progressive enlargement 
of the focus, showing the complementarity of the ap-
proaches and the reciprocal enrichment. A new term 
was introduced in this research study: epistemological 
sensitivity. 

The authors explain the meanings of the terms context 
(for AiC), milieu (for TDS) and media-milieus dialectic 
(for ATD), each of them being a cornerstone for the 
theory while all of them try to theorize specific con-
textual elements. The three theories share the aim to 
understand the epistemological nature of the episode 
described in the paper but in each of the three the-
ories different questions were asked. Questions for 
analyses in AiC stressed the epistemic process itself, 
whereas researchers in TDS and ATD asked how this 
process is made possible. Nevertheless, these ques-
tions indicated that the researchers were able to build 
on the other analyses in a complementary way. The di-
alogue between the different approaches was possible 
because a point of contact was found. In this case, we 
may talk about a common epistemological sensitivity 
of AiC, TDS, and ATD, which can be noticed in the a 
priori analyses provided by each frame. This initial 
proximity was essential for the dialogue to start and 
become productive, showing the complementarity 
of the approaches and the reciprocal enrichment, 
without losing what is specific to each one. The three 
concepts, context, milieu and media-milieus dialectic 
were accessed by different data or different foci on 
data in a complementary way sharing epistemological 
sensitivity, which facilitated establishing connections 
and reflecting on them.
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Epistemological concerns as a 
consequence of networking 
It is not by chance that the common epistemological 
sensitivity of AiC, TDS, and ATD, was noticed in the a 
priori analyses provided by each frame: the reason 
is that the a priori analyses take into account the 
mathematical epistemology of the given domain. In 
the last years, the AiC researchers decided to imple-
ment the idea of a priori analysis in an explicit way. 
This happened as a consequence of the networking 
experience with the TDS researchers. An example of 
such a networking experience is described in Kidron 
and colleagues (2008). Three theories were involved 
in this case of networking: TDS, AiC and IDS, the the-
ory of Interest-Dense Situations (Bikner-Ahsbahs & 
Halverscheid, 2014). Kidron and colleagues (2008) fo-
cus on how each of these frameworks is taking into 
account social interactions in learning processes. The 
authors wrote that

In a more general way, the different views the 
three theoretical approaches have in relation to 
social interactions force us to reconsider these 
approaches in all their details. The reason for 
this is that the social interactions, as seen by the 
different frameworks, intertwine with the other 
characteristics of the frameworks. (p. 253)

The authors identified not only connections and con-
trasts between the frameworks but also additional 
insights, which each of these frameworks can provide 
to each of the others. In this paper, we only focus on a 
specific kind of insights: the epistemological concerns 
which were highlighted as a consequence of the net-
working of theories. We first characterize the epis-
temological dimension in each of the three theories 
before the networking experience:

 ― TDS provides a frame for developing and inves-
tigating didactical situations in mathematics 
from an epistemological and systemic perspec-
tive. TDS combines epistemological, cognitive, 
and didactical perspectives. TDS focuses on the 
epistemological potential of didactical situations;

 ― IDS, the theory of interest-dense situations, is “a 
social constructivist theory that cannot say much 
about cognitive processes of individuals and does 
not provide tools for epistemological analyses” 
(Bikner-Ahsbahs & Halverscheid, 2014, p. 102);

 ― AiC analysis focuses on the students’ reasoning; 
mathematical meaning resides in the vertical-
ity of the knowledge constructing process and 
the added depth of the resulting constructs. An 
epistemological stance is underlying this idea of 
vertical reorganization but AiC analysis is essen-
tially cognitive.

Focusing on epistemological concerns as mentioned 
earlier, we will only characterize the insights offered 
by TDS to AiC as described by Kidron and colleagues 
(2008):

According to Hershkowitz et al. (2001), the genesis 
of an abstraction originates in the need for a new 
structure. In order to initiate an abstraction, it is 
thus necessary (though not sufficient) to cause 
students’ need for a new structure. We may at-
tain this aim by building situations that reflect 
in depth the mathematical epistemology of the 
given domain. This kind of epistemological con-
cern is very strong in the TDS, and the notion of 
fundamental situation has been introduced for 
taking it in charge at the theoretical level. It could 
be helpful for AiC. (p. 254)

This was an invitation for AiC researchers to build an 
a priori analysis that reflects in depth the mathemati-
cal epistemology of the given domain. In the same vein 
the a priori analysis of TDS offers another perspective 
to IDS to think about the building of situations reflect-
ing in-depth the mathematical epistemology of a given 
domain and the consequence of such reflection on the 
analysis of the social interactions.

The social dimension and its influence 
on the epistemological analysis
In the following, I analyze a case of networking be-
tween AiC and IDS which demonstrates mutual in-
sights in the process of networking. In particular, we 
will observe how the epistemological analysis carried 
by the AiC researchers is influenced by the social di-
mension of knowing which characterizes IDS. This 
case of networking illustrates how the epistemologi-
cal analysis might take into account the social dimen-
sion of knowing.

Kidron and colleagues (2010) focus on the idea of net-
working and on two theoretical concepts: the need for 
a new knowledge construct, and interest. IDS con-
siders social interactions as basis which constitutes 
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learning mathematics. Interest-dense situations pro-
vide motivation for processes of in-depth knowledge 
construction. AiC is a theoretical tool to investigate 
such processes. As already mentioned, in the AiC anal-
ysis, the first stage of the genesis of an abstraction is 
the learner’s need for a new construct. Such a need 
might arise when the learner’s existing knowledge 
is insufficient to solve a task or to understand a new 
concept. This individual need is related to the specific 
mathematical situation at hand. Analyzing this need 
is a part of AiC epistemological analysis. For IDS the 
situation is different: interest constitutes a psycho-
logical source to gain more knowledge. This need is 
nested in the situational interest rather than shaped 
by the epistemic nature of the topic. The aim of the 
networking was to relate these two concepts: need and 
interest. As mentioned earlier, the AiC researchers 
implemented the idea of a priori analysis. Their analy-
sis was based on an a priori analysis of the knowledge 
elements intended by the design. The AiC analysis 
focused on the students’ reasoning and mathematical 
meaning resided in the verticality of the knowledge 
constructing process. The AiC researchers identified 
students’ constructs of the intended knowledge ele-
ments. They expected to identify students’ need for 
the new constructs before or during the process of 
knowledge construction. However, the researchers 
found it difficult to identify a need for a specific new 
construct. Networking the two approaches was help-
ful: The IDS analysis focuses and reconstructs the 
whole situation sequentially on the basis of utterances 
that show intense social interactions, whereas the AiC 
analysis focuses on segments that appear relevant to 
the constructing process. In fact, the excerpts ignored 
at first by the AiC researchers did contribute to the 
constructing process thanks to the social interaction 
analysis provided by IDS which allowed the AiC re-
searchers to focus on and incorporate these seeds of 
construction in their analysis. The networking helps 
AiC researchers realize that there are situations in 
which constructing actions can occur on the basis 
of a general epistemic need rather than on the basis 
of specific needs for new constructs. The benefit of 
networking was mutual thanks to the epistemologi-
cal nature of AiC a priori analysis which makes the 
researchers sensitive for the mathematics at stake and 
implicit mathematical ideas were identified very early. 
This was very helpful towards IDS re-analyzing of the 
epistemic actions in the research study.

CONCLUDING REMARKS

In the last CERME we discussed cases in which the 
epistemological dimension permitted the networking. 
This was done, for example, by means of the idea of 

“reference epistemological model”. In this paper, we 
notice how by means of networking, strong epistemo-
logical concerns in one theory might be integrated in 
another theory in a way that reinforces the underlying 
assumptions of this other theory. This was illustrated 
by the insights offered by means of a priori analysis. 
We also analyzed examples that demonstrate the influ-
ence of the cultural context as well as the influence of 
the social dimension on the epistemological analysis. 
The cultural context in which the different theories 
emerged is changing all the time. As a result of these 
changes, a new view on the epistemological dimension 
is offered. This new view should be further discussed. 
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An exploratory confluence framework for analysing 
mathematical problem solving in socially different ed-
ucational contexts is introduced. The central premise of 
the framework is that a key solution idea to a problem 
can be constructed by a solver as a result of shifts of at-
tention that come from individual effort, interaction 
with peer problem solvers or interaction with a source 
of knowledge about the solution. The framework consol-
idates some existing theoretical developments and aims 
at addressing the perennial educational challenge of 
helping students become more effective problem solvers.

Keywords: Problem solving, networking theories, shifts of 

attention.

RATIONALE

It has been repeatedly asserted that problem solving 
is an activity at the heart of doing and studying math-
ematics. Its central feature is that problem solving 
requires the engaged person(s) to invent a solution 
method rather than to recall and implement a previ-
ously practiced method (e.g., Kilpatrick, 1982; NCTM, 
2000). Accordingly, a central challenge associated 
with the use of mathematical problems in educational 
contexts – how to help learners to become effective 
or successful problem solvers – can be worded as the 
challenge of supporting learners’ mathematical in-
ventiveness in ways that preserve their problem-solv-
ing autonomy and self-efficacy. 

For the last 50 years this challenge has been ap-
proached through various conceptual frameworks 
and models (see Carlson & Bloom, 2005; Schoenfeld, 
2012; Törner, Schoenfeld, & Reiss, 2008, for compre-
hensive accounts of the state of the art). Each frame-
work has aimed at addressing specific queries of 
pragmatic and theoretical importance. Some of the 
queries were: 

 ― How do mathematicians solve problems? What 
phases and cycles are they going through while 
solving problems? (Carlson & Bloom, 2005; Pólya, 
1945/1973). Can, and if yes, how problem-solving 
heuristics be taught? (Schoenfeld, 1985; Koichu, 
Berman, & Moore, 2007).

 ― What are the attributes of mathematical prob-
lem solving besides heuristics? (Schoenfeld, 1985). 
What is the role of affect in problem solving? 
(DeBellis & Goldin, 2006).

 ― How do the problem-solving attributes come to 
cohere? (Schoenfeld, 1992). How does decision 
making occur when an individual solves a prob-
lem? (Schoenfeld, 2012). 

 ― What sociomathematical norms should be pro-
moted for supporting learners’ intellectual au-
tonomy in problem solving? (Yackel & Cobb, 1996).

Some of these and such queries have been addressed. 
For instance, we know a lot about phases and cycles 
involved in problem solving by experts and by some 
categories of students. The use of problem-solving 
attributes and phases as a research tool has proven to 
be particularly helpful for analysing the phenomenon 
of unsuccessful problem solving. For example, if there 
is evidence that a particular belief about mathemat-
ics is depriving an individual from persisting when 
solving a problem, then that belief might provide a 
sufficient explanation for the problem-solving failure 
(see Furingetti & Morselli, 2009, for an elaborated 
example). When, however, one problem is solved and 
another is not by an individual who possesses all need-
ed mathematical, cognitive and affective resources for 
solving both problems, the explanation of the success 
and the failure can sometimes be sought outside of 
the existing problem-solving models and frameworks 
(Koichu, 2010). 

mailto:bkoichu@technion.ac.il
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Some of the queries about problem solving have prov-
en to be hard nuts to crack (e.g., Schoenfeld, 1992, 2012). 
For example, Schoenfeld’s (1992) question about how 
the problem-solving attributes – knowledge, heuris-
tics, control and beliefs – come to cohere has been 
under research scrutiny for more than two decades. 
Furthermore, different problem-solving frameworks 
and models have emerged from different contexts 
and situations. As a result, it is sometimes difficult 
to use one model outside its original context. A re-
cent example of extending the scope of a particular 
problem-solving model to another context is given 
by Clark, James and Montelle (2014) (their work is 
discussed in more detail below), but it is rather an ex-
ception than a trend (cf. Koichu, 2014, for a collection 
of views on the recent trends in research on problem 
solving). As a rule, problem-solving frameworks and 
models co-exist with little coordination. This is one of 
the reasons for which, in terms of Mamona-Downs 
and Downs (2005), a clear identity for problem solving 
in mathematics education has not yet been developed. 

The goal of this article is to present an exploratory 
problem-solving framework that has the potential 
to consolidate some of the previous frameworks and 
can serve as a research and pedagogical tool in dif-
ferent educational contexts. The framework is, in a 
way, a tool for better understanding the process that 
Pólya (1945/1973) might term as a heuristic search 
embedded in the planning phase of problem solving. 
The central query of the framework is, simply stated, 

“Where can a solution to a problem come from?” A 
more precise formulation of the query is as follows: 

“Through which activities and resources can a chain of 
shifts of attention towards an invention of a key solu-
tion idea to a mathematical problem be constructed 
by a problem solver in socially different educational 
contexts?” 

CONFLUENCE FRAMEWORK

The confluence framework is schematically presented 
in Figure 1. A key solution idea notion is in the core of 
the framework. It is a solver-centered notion. Along 
the lines defined by Ramon (2003), a key solution idea 
is a heuristic idea [1] which is invented by the solver 
and evokes the conviction that the idea can be mapped 
to a full solution to the problem. The full solution is a 
solution, which, to the solver’s knowledge, would be 
acceptable in the educational context in which prob-
lem solving occurs. 

Examples of key solution ideas include: an auxiliary 
construction that enables the solver to see a chain of 
deductions connecting the givens of a geometry prob-
lem with the claim to be proved, a way of reassembling 
the terms of a sophisticated trigonometric equation 
so that the solver begins to see the equation as a quad-
ratic one, a way of representing a word problem (e.g., 
Euler Seven Bridge Problem) as a graph that makes 
the solution to the problem transparent. One can see 
connections between the notions of a key solution 
idea and of an illuminating or insightful idea. An in-
sight, however, is frequently defined as restructuring 
the initial representation of the problem followed by 
so-called aha-experience. A key solution idea does 
not necessarily emerge at once and accordingly its 
invention is not necessarily accompanied by an 
aha-moment. 

The framework relies on three premises. First premise: 
Even when a problem is solved in collaboration, it has 
a situational solver, an individual who invents and 
eventually shares its key solution idea. Second prem-
ise: A key solution idea can be invented by a situational 
solver as a shift of attention in a sequence of his or 
her shifts of attention when coping with the problem. 
Third premise: Generally speaking, a solver’s pathway 

Figure 1: Confluence model of mathematical problem solving
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of the shifts of attention can be stipulated by: (i) indi-
vidual effort and resources, (ii) interaction with peer 
solvers who do not know the solution and struggle in 
their own ways with the problem or attempt to solve it 
together, (iii) interaction with a source of knowledge 
about the solution or its parts, such as a textbook, an 
internet resource, a teacher or a classmate who has 
already found the solution but is not yet disclosing it. 
The possibilities (i)-(iii) are intended to embrace all 
frequent situations of problem-solving. These possi-
bilities can be employed in separation or complement 
each other in one’s problem solving. 

The framework is a confluence framework because 
it consolidates ideas taken from several frameworks 
and theories by means of a strategy that has been in-
troduced at CERME8 as networking theories by iterative 
unpacking (Koichu, 2013). Mason’s theory of shifts 
of attention (Mason, 1989, 2008, 2010) serves as the 
overarching theory of the framework. Additional the-
ories are embedded. Each of the next four sub-sections 
begins with a brief introduction of a particular theory 
and proceeds to show how the theory contributes to 
the confluence framework. 

Invention of a key solution idea 
as a shift of attention
Mason’s theory of shifts of attention had initially 
been formulated as a conceptual tool to dismantle 
constructing abstractions (Mason, 1989) and then ex-
tended to the phenomena of mathematical thinking 
and learning (Mason, 2008, 2010). Palatnik and Koichu 
(2014, submitted) adopted the theory as a tool for ana-
lysing insight problem solving.[2] Mason (2010) de-
fines learning as a transformation of attention that 
involves both “shifts in the form as well as in the focus 
of attention” (p. 24). To characterize attention, he con-
siders not only what is attended to by an individual 
but also how the objects are attended to. To address 
the how-question, Mason (2008) distinguishes five 
different ways of attending or structures of attention. 

According to Mason (2008), holding the wholes is the 
structure of attention, where the person is gazing at 
the whole without focusing on particular. Discerning 
details is a structure of attention, in which one’s at-
tention is caught by a particular detail that becomes 
distinguished from the rest of the elements of the at-
tended object. Mason (2008) asserts that “discerning 
details is neither algorithmic nor logically sequen-
tial” (p. 37). Recognizing relationships between the 

discerned elements is a development from discerned 
details that often occurs automatically; it refers to spe-
cific connection between specific elements. Perceiving 
properties structure of attention is different from rec-
ognizing relationships structure in a subtle but essen-
tial way. In words of Mason (2008), “When you are 
aware of a possible relationship and you are looking 
for elements to fit it, you are perceiving a property” (p. 
38). Finally, reasoning on the basis of perceived proper-
ties is a structure of attention, in which selected prop-
erties are attended to as the only basis for further rea-
soning. Palatnik and Koichu (2014, submitted) added 
a why-question to Mason’s what- and how- questions: 
Why does an individual make shifts from one object 
of attention to another in the way that he or she does? 
Possible ways of addressing this query are related to 
the obstacles embedded for the solver in attending 
to a particular object and to continuous evaluation 
of potential “gains and losses” of the decision to keep 
attending to the object or shift the attention to another 
one (Metcalfe & Kornell, 2005). 

The process of inventing a key solution idea is seen as 
a pathway of the solver’s shifts of attention, in which 
objects embedded in the problem formulation or prob-
lem situation image (this notion is used in the meaning 
assigned to it by Selden, Selden, Hauk, & Mason, 2000) 
are attended to and mentally manipulated by applying 
available schemata. The process at large is goal-direct-
ed, but particular shifts can be sporadic. A pathway 
of the shifts of attention depends on various factors, 
including: the solver’s traits, his or her mathemati-
cal, cognitive and affective resources and a context 
in which problem solving takes place. I now turn to 
discussing the specificity of the process in three so-
cially different educational contexts.

Shifts of attention in individual problem solving
The lion’s share of the data corpus that underlies 
the development of the foremost problem-solving 
frameworks (e.g., Schoenfeld, 1985; Carlson & Bloom, 
2005) consists of cases of individual problem solving. 
Carlson and Bloom (2005) consider four phases in in-
dividual problem solving by an expert mathematician: 
orientation, planning, executing and checking. The 
model also includes a sub-cycle “conjecture-test-eval-
uate” and operates with various problem-solving at-
tributes, such as conceptual knowledge, heuristics, 
metacognition, control and affect. Generally speak-
ing, Carlson and Bloom’s framework offers a kit of 
conceptual tools that can be used for producing thick 
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descriptions of individual problem-solving effort. 
These conceptual tools enter the suggested conflu-
ence framework as tools for addressing how- and 
why-questions about the shifts of attention. 

For example, when solving a challenging geometry 
problem, a solver can direct her attention to proving 
similarity of a particular pair of triangles, and then 
shift her attention to another pair of triangles. The 
pre- and post-stages of the shift can be described as 
two “conjecture-test-evaluate” sub-cycles within the 
planning phase. The shift itself can be viewed in terms 
of the mathematical, heuristic and affective resourc-
es of the solver (see Palatnik & Koichu, 2014, for an 
elaborated example). 

Shifts of attention when interaction 
with peers is available
While studying problem-solving behaviours in small 
groups of undergraduate students, Clark, James and 
Montelle (2014) extended Carlson and Bloom’s (2005) 
taxonomy of problem-solving attributes by introduc-
ing two new categories/codes. They termed them ques-
tioning and group synergy. The former category was in-
troduced in order to give room in the data analysis to 
various questions (for assistance, for clarification, for 
status, for direction) that the participants had asked. 
The latter category appeared to be necessary in order 

“to capture the combination and confluence of two or 
more group members’ problem-solving moves that 
could only occur when solving problems as a member 
of a group… A key characteristic of this group synergy 
code is that it leads to increased group interaction 
and activity, sometimes in unanticipated and very 
productive ways.” (pp. 10–11).

Indeed, when a possibility to collaborate with peers 
is available to a solver, his or her shifts of attention 
can be stipulated by inputs of the group members, es-
pecially when the inputs are shared in some common 
problem-solving space (e.g., a small-group discussion 
or an internet forum) in a non-tiresome way. Here 
I would like to stop on the word “sometimes” in the 
above quotation. The possibility to collaborate can 
increase one’s chances to produce a key solution idea, 
but can also be overwhelming or distracting. When 
nobody in a group knows how to solve the problem, 
the other members’ inputs of potential value are fre-
quently undistinguishable for the solver from the 
inputs of no value. Consequently, it can become too 

effortful for the solver to follow and evaluate the in-
puts of the others. 

Schwartz, Neuman and Biezuner (2000) deeply ex-
plored, in laboratory setting, the cognitive gains of 
two children, who fail to solve a task individually, 
but who improve when working in peer interaction. 
They characterized the situations, in which (in their 
words) two-wrongs-make-a-right vs. two-wrongs-make-
a-wrong. The mechanisms of co-construction behind 
two-wrongs-make-a-right phenomenon were: the 
mechanism of disagreement, the mechanism of hy-
pothesis testing, and the mechanism of inferring new 
knowledge through challenging and conceding. These 
mechanisms might be involved in those cases of collab-
orative problem solving, in which group synergy led 
the participants in Clark, James and Montelle’s (2014) 
study to “very productive ways” (ibid) of solving the 
given problems. 

The confluence framework seeks to consolidate the 
theoretical insights of the aforementioned studies. 
In particular, to further explore the phenomenon of 
group synergy, it seems me necessary to acknowl-
edge that the above mechanisms can become active 
on condition that at least sometimes a solver shifts 
his or her attention from an object that he or she is 
being exploring to an object attended to by the peer.

An example of the processes of co-constructing a key 
solution idea as pathways of students’ shifts of atten-
tion is drawn from an on-going study on high-school 
students’ long-term geometry problem solving. The 
example concerns a situation, in which a group of 16 
10th grade students were engaged in solving the fol-
lowing problem:

Two circles with centres M and N are given. 
Tangent lines are drawn from the centre of each 
circle to another circle. The points of intersec-
tion of the tangent lines with the circles define 
two chords, EF and GH (see Figure 2). Prove that 
segments EF and GH are equal. 

The students could solve the problem individually, 
but also share their ideas in a closed forum in one of 
the social networks. Interestingly, all the students 
indicated in the reflective questionnaires that they 
had worked collaboratively only for about 40% of time 
that had been devoted to the problem. (On average, 
the students worked on the problem for 3 hours). The 
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shifts of attention of individual problem solvers were 
stipulated either by individual or by shared prob-
lem-solving resources. As a rule, the students chose 
to collaboratively work in the forum when they were 
stuck and sought for new ideas or for the feedback 
on their incomplete ideas. In a few cases the students 
chose to shift their attention to the ideas of the other 
students. 

Shifts of attention when interaction 
with a solution source is available 
The option to interact with a source of knowledge 
about a key solution idea to a problem can drastical-
ly change a pathway of one’s shifts of attention, up 
to the point that the entire process can stop being a 
problem-solving process and become a solution-com-
prehending process. The suggested framework seeks 
to encompass only the situations in which a solution 
source is present as a provider of cues to the solu-
tion or as a convenient storage of potentially useful 
facts, but not as a source of telling the solution. Such 
situations are common, for instance, when a teacher 
orchestrates a classroom problem-solving discussion. 

When a source of knowledge about the solution is 
present but does not tell the solution, the solvers may 
attempt to extract the solution from the source (e.g., 
see questions for assistance and questions for direction 
in Clark, James, & Montelle, 2014; see also Koichu & 
Harel, 2007). In some cases, the solver’s shifts of atten-
tion may occur as a result of a conflict that emerges 
when more knowledgeable and less knowledgeable 
interlocutors assign different meanings to the same 
assertions (cf. Sfard, 2007, for commognitive conflict). 

For example, the assertion “Triangle similarity is a 
good idea” can either pass unnoticed in the group 
discourse or be a trigger for the solver to shift his 
or her structure of attention. The effect of the asser-

tion would depend on who it has come from, a regular 
member of the group or a teacher or a peer who acts as 
if she has already solved the problem. The occurrence 
of the shift in one’s attention as a result of another 
person’s assertion depends not only on that person’s 
status in the group. It is mainly the matter of differ-
ent meanings that can be assigned to the assertion 
by different individuals. In one case, the assertion 
about triangle similarity may be perceived as, “It is 
possible that similarity helps,” in another, “I’ve tried it 
and it helps,” and in yet another, “This is the direction 
approved by the authority.” Stimulated by Sfard (2007), 
I suggest that such a conflict of meanings can first be 
unnoticed, then it can hinder the communication, and 
then (when the assigned meanings are explicated), it 
can help the less knowledgeable solvers to progress. 

SUMMARY AND FURTHER DEVELOPMENT

Developing a confluence framework of mathematical 
problem solving that would be applicable to different 
educational contexts is motivated by several causes. 
First, with few exceptions, the existing problem-solv-
ing frameworks utilize different conceptual tools for 
exploring problem solving in socially different educa-
tional contexts. Second, the foremost frameworks are 
comprehensive within the problem-solving contexts 
from which they have emerged but it is sometimes 
difficult to apply them to additional contexts. Third, 
in spite of the comprehensive nature of the existing 
frameworks, the central problem-solving issue of in-
venting (as opposed to recalling) a solution method 
is still not sufficiently understood. At the same time, 
theoretical tools that can help to progress the state 
of the art are available from the other sub-fields of 
mathematics education research. Hence, a confluence 
framework. 

Figure 2: A problem about two chords
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In this article, a particular way of constructing a 
confluence framework is presented. The confluence 
effect is pursued by considering common roots of 
problem solving in three socially different contexts. 
This is done in terms of Mason’s theory of shifts of 
attention, which initially had been constructed for 
other reasons. Simultaneously, the specificity of the 
attention shifts in different problem-solving contexts 
is considered by means of additional theoretical con-
structs. The use of the model as a research tool for 
understanding heuristic aspects of problem solving 
is stipulated by availability of research methodologies 
for identifying and characterizing shifts of attention 
in socially different problem-solving contexts. In part, 
such methodologies are available from past research 
(e.g., Mason, 1989, 2008, 2010; Palatnik & Koichu, 2014) 
but they should be further developed. Our research 
group currently works in this direction and explores 
long-term geometry problem solving supported by 
online discussion forums. 

As mentioned, the framework is only exploratory. The 
outlined mechanisms of attending to, proceeding of 
and shifting between objects of attention should be 
further unpacked. At this stage, it seems that further 
unpacking would require the adaptive use of select-
ed theories that have been developed outside of the 
field of mathematics education. For instance, research 
on learners’ decisions about how to allocate study-
time (e.g., Metcalfe & Kornell, 2005) can be a source 
of insights about why some objects of attention are 
short-living, and the others are long-living. Research 
on hypothetical thinking and cognitive decoupling 
(Stanovich, 2009) can be useful for understanding 
how the attended objects are mentally manipulated. 
The hope is that, eventually, the confluence frame-
work would have power not only to usefully describe, 
but also explain the emergence of problem-solving 
ideas in different educational contexts. 
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ENDNOTES

1. Ramon (2003) explains what a heuristic idea of a 
proof is as follows: “This is an idea based on informal 
understandings, e.g. grounded in empirical data or 
represented by a picture, which may be suggestive but 
does not necessarily lead directly to a formal proof.” 
(p. 322). Note that not any heuristic idea is a key idea.

2. The next 10 sentences consist of an abridged ver-
sion of the description that appears in Palatnik and 
Koichu (2014).
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The constructivist paradigm is the primary underpin-
ning of the Mathematics Recovery Programme (MRP) 
in Australia, the UK, the USA and Canada. The criti-
cal mathematics education paradigm is the primary 
underpinning of the Early Mathematics Intervention 
Programme for Marginal Groups in Denmark (TMTM 
for Tidlig Matematikindsats Til Marginalgrupper). The 
paper tells the story of how networking strategies have 
informed the design of TMTM: one strategy is combin-
ing elements from the two paradigms; another strat-
egy is contrasting elements from the paradigms. The 
two constructs ‘the six stages-construct’ and ‘the math 
holes-construct’ have been decisive for the networking. 
Possible influences from the Danish educational con-
texts on the networking processes are put forward for 
further discussion.         

Keywords: Networking theories, early intervention 

in mathematics, math holes, constructivism, critical 

mathematics education.

CULTURAL CONTEXT AND OUR 
CULTURAL CONTEXT  

A main issue at CERME9 was cultural contexts 
in European research in mathematics education. 
What is meant by cultural contexts and what are the 
mechanisms by which cultural contexts influence 
research and practice in mathematics education 
were displayed in the plenary by Barbara Jaworski, 
Mariolina Bartolini Bussi, Edyta Nowinska and 
Susanne Prediger. 

This paper primarily focuses at issues in primary 
school mathematics in a certain cultural context: 
the Danish educational culture.  The development of 

school mathematics in Denmark is in no way isolat-
ed from Nordic, European or global tendencies and 
policies. For instance the 2004 OECD review of the 
Danish primary and lower secondary school empha-
sized the need to support failing pupils in mathemat-
ics in the first school years (Mortimore, David-Evans, 
Laukkanen, & Valijarvi, 2004). It is evident that the 
OECD review has influenced Danish policy, and so 
have Danish teachers’ and researchers’ initiatives to 
improve the school support for pupils at risk of falling 
behind in their mathematics learning. 

It seems natural to Danish mathematics teachers 
and educational researchers to get inspirations 
from abroad, also when it comes to interventions 
for pupils at risk. Generally speaking, inspirations 
from theory and practice in school mathematics in 
especially the Netherlands have been strong since 
1970s, and Realistic Mathematics Education from the 
Freudenthal Institute is still influential. 

Still, some characteristic aspects of the Danish school 
mathematics seem evident and are visible in national 
goals and aims despite influences from international 
politics and tendencies. This paper will look into the 
tension between national and international trends 
for educational research and practice, by looking at 
the development processes behind the Danish early 
mathematics intervention programme for margin-
al groups (TMTM for Tidlig Matematikindsats Til 
Marginalgrupper) as a case. Especially the theoreti-
cal networking in the development processes is to be 
explored. We are ourselves central persons in these 
development processes, which we aim to document 
and critically assess. 

mailto:lenali@edu.au.dk
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We generally argue that how theories are being in-
terpreted and networked locally is influenced by 
local contexts as for instance Danish school mathe-
matics cultures. It is shown that culture does matter 
for values and practices in mathematics education. 
As an example, teachers in London and in Beijing 
hold different views on mathematical learning and 
teaching. Teachers in London see syllabus and text-
books as less important in determining the content 
taught than interest and meaningfulness, which is 
again opposite to teachers in Beijing (Leung, 2006). 
Similarly, teachers in London see students’ ability as 
more important for their learning than effort, which 
is the opposite of teachers in Beijing. We claim that it 
is by now a well-known fact that culture matters for 
values and practices in mathematics education, but 
how culture matters in networking theories, is not 
yet well addressed. 

CONSTRUCTIVIST THEORY 
UNDERPINNING MRP

Among the most common implemented programmes 
internationally for early intervention in mathematics 
the Mathematics Recovery Programme (MRP) is to 
our knowledge the most described and researched 
one. It is broadly implemented in Australia, the UK, 
Ireland and the USA (Wright, Martland, & Stafford, 
2000) (Wright, Ellemor-Collins, & Tabor, 2011). We 
have studied programme materials and background 
papers and we have made personal contacts to lead-
ing figures like Robert J. Wright and like Noreen 
O’Loughlin, University of Limerick.

MRP is an intensive one-to-one tutoring offered to 
first graders falling behind and at risk of mathematics 
difficulties. Since 2006 the material Teaching num-
ber – Advancing children’s skills and strategies has 
been suggested for whole-class teaching, too. Tutor 
training is a mandatory part of the programme. A 
learning framework and an instructional framework 
are described in detail. The tutoring is meant to be 
diagnostic, so that instruction can be adapted to pu-
pils’ reactions. 

The mathematical content in MRP focuses on num-
bers and arithmetic. The MRPMP covers knowing and 
understanding numbers, names and symbols, basic 
strategies in the four operations (Wright, Martland, 
Stafford, & Stanger, 2006) and supplemented with 

basic understanding of part-whole concept (Wright 
et al., 2011).

Important for this paper are the theories behind the 
MRP, which is drawn primarily from Leslie P. Steffe 
and colleagues. Steffe was engaged as early as 1976 in 
establishing the research program, Interdisciplinary 
Research on Number (IRON). As documented in (Steffe, 
van Glasersfeld, Richards, & Cobb, 1983), (Steffe, Cobb, 
& van Glasersfeld, 1988) and (Steffe, 1992), a tremen-
dous empirically based work has been going on to 
explore how children reason and meaningfully grasp 
processes and concepts related to numbers and arith-
metic. The research has led to insights into many di-
verse aspects of children’s mathematical knowledge 
and how this knowledge is developed. 

The constructivist underpinning manifests itself by 
maintaining that knowing is not passively importing 
other peoples’ knowledge as if you were receiving a 
birthday gift. It is maintained and underlined that 
knowing is an active endeavour for the person, who is 
acquiring/constructing knowledge through genuine 
problem solving.     

THE SIX STAGES CONSTRUCTS

The idea of development through stages runs as a gen-
eral structuring idea through the work of Steffe et al. 
Like the construct of the five stages of geometrical 
reasoning from van Hiele (1985/1959), it seems that an 
underlying idea of stage has been transformed into 
several constructs of several and often six stages by 
Steffe et al. and by their followers. 

While the descriptions of the counting stages used in 
solving addition and subtraction problems is ground-
ed through the work of Steffe et al., the stage con-
structs are further developed by Wright (1991, 1994) 
and by Wright and colleagues (2000, 2006, 2011). The 
stages of children’s development of different areas of 
mathematical knowledge are put forward in the learn-
ing framework and in the instruction framework of 
MRP.  The organisation of how tutors’ come to observe 
pupils’ development and how tutors adapt instruction 
to the pupils’ present knowledge is facilitated by the 
lenses of stages. 

In Wright and colleagues (2006), the idea of six early 
arithmetical strategies is used as the main organising 
principle. The six stages go from stage zero to per-
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ceptual, to figurative, to initial number sequence, 
to implicitly nested number sequence and end with 
explicitly nested number sequence. Each stage is de-
scribed. At the last one, the explicitly nested number 
sequence, the child uses a range of non-count-by-ones 
strategies. The child also uses a known result, adding 
to ten and commutativity, and the child knows that 
subtraction is the inverse of addition (p. 9). 

The Wright and colleagues’ book from 2006 presents 
a network of stages in each of the mathematical area 
covered. Also for forward number word sequences 
and number word after six stages are described. The 
same for backward number word sequences and num-
ber word before, while number identification has five 
stages, and base-ten arithmetical strategies has three 
stages. 

CRITICAL MATHEMATICS EDUCATION

The Nordic part of critical mathematics education 
has primarily been dominated by the Danish schol-
ars Mogens Niss (1984) and Ole Skovsmose (1994, 
2001) and the Norwegian scholar Stieg Mellin-Olsen 
(1987, 1991). Niss underlined that it is an important 
but difficult task for research and practice in mathe-
matics education to relate to authentic applications of 
mathematics from a critical stance of view, and to let 
mathematics education address fundamental social 
functions of mathematics and school mathematics. 
For school mathematics this implies mathematical 
modelling and project work. Skovsmose added the 
philosophical view of learning mathematics as in-
vestigation of mathematical landscapes. For school 
mathematics this implies a critique towards exercise 
paradigm and a focus on communication between 
teachers and pupils. Skovsmose also invented the 
concept of pupils’ foreground as just as important 
as pupils’ background. Mellin-Olsen (1991) added the 
project work about authentic applications should be 
for all. It should be for less able and less motivated 
pupils as well as for all other pupils. He also added the 
metaphor of travelling as a tool to understand teach-
ers’ thinking about instruction. He recognised that 
teachers talked about their mathematics instruction 
as being the drivers in the busses full of pupils.  

THE MATH HOLES-CONSTRUCT

Based on Nordic critical mathematics education we 
have researched special needs education in Denmark. 

We found that the ideas from Niss, Skovsmose and 
Mellin-Olsen of mathematics instruction and learn-
ing were all promising. For instance we found the idea 
of mathematics instruction and learning as a common 
teacher-pupil investigation of mathematical land-
scapes promising. Since 2003 Bøttger, Kvist-Andersen, 
Lindenskov and Weng (2004), we have therefore been 
involved in demonstrating mathematics learning as 
a journey in landscapes, which evolve with hills and 
holes as you travel. Many routes can be appropriate 
for the teachers and students involved, depending of 
their backgrounds and foregrounds and depending 
on available authentic (in Freudenthal’s sense realis-
tic) materials and activities for problem solving and 
for modelling.  

Closely connected to the general idea of investigating 
or constructing mathematics landscapes, we needed 
to add a specific idea of pupils at risk of becoming 
low-level performers. Therefore we invented the 
math holes-construct. 

The math holes-construct metaphorically describes 
pupils in difficulties as pupils, which for the moment 
are stuck and are not progressing further into the 
mathematics landscape.  It is as if the pupil has fallen 
into a trap or – as we finally decided to name it – it is 
as if the pupil has fallen into a hole. 

Sure, it is not our intention with the math holes-con-
struct to see learning mathematics in a negative bi-
ased light. Neither is it our intention to avoid mathe-
matical elements, which may cause obstacles, as for 
instance learning the rules of the positional decimal 
number system. Our intention is to develop pedagogi-
cal constructs to help teachers recognise and support 
every child’s mathematical learning. Therefore it is 
important to identify when a child is stuck and to 
provide intervention models, materials and teacher 
training for how schools and teachers can help getting 
the pupil moving again.

Within the math holes-construct pupils in difficulties 
are not pupils lacking behind or pupils with special 
neurological characteristics as implied by some defi-
nitions of dyscalculia. Within the math holes-con-
struct pupils in difficulties are pupils who stopped 
progressing learning. Gervasoni and Lindenskov 
(2011) describe the construct with the following: 

http://www.dpu.dk/om/weng
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When mathematics is seen as a landscape it 
means that whenever students stop learning and 
feel stuck it is as if they ‘fall into a hole’. There 
are several ways for a teacher to cope with a stu-
dent’s ‘fall’. First, a teacher can invite the student 
to move to another type of landscape, maybe far 
away from the hole in which the student was 
stuck; this means that even when students fail 
to thrive in one area of mathematics there are 
still many other mathematics landscapes to ex-
perience and learn. Second, teachers can help 
students ‘fill up’ the hole from beneath with math-
ematical building stones; or third, teachers can 

‘lay out boards over the hole’ in order to let the 
student experience new and smart mathematical 
approaches. (p. 317)

It is, in our view of the math holes-construct, crucial to 
draw attention to the individual pupil: Much still needs 
to be done, following Ginsburg’s (1997) more than 
15-years-old call for teaching experiments focusing 
on pupils with learning difficulties, as children today 
are exposed to physical and social environments that 
are rich in mathematical opportunities. In Denmark 
as in many other countries, children today are exposed 
for instance to even very big numerals in computer and 
board games and in family activities. This questions 
the generality of the existing cognitive models of chil-
dren’s reasoning and of the theories of instruction. For 
instance it questions the motivating effect as well as the 
learning effect of splitting instruction on numbers into 
first 1–20, and then 1–100, as it is done in MRP.

What children are exposed to rapidly develops, and no 
one can predict what will happen just a few years from 
now. This means that the generalisation of identified 
mathematics learning trajectories in research studies 
may not be generalizable to all children in the world. 
On the other hand, the learning trajectories, which 
are found in research, and upon which MRP have built 
their stages, do show valuable insight into children’s 

learning, which is not visible for teachers even with 
profound training. We do advocate for teachers to 
obtain extended knowledge on researched learning 
trajectories.

NETWORKING THEORIES TO INFORM 
DEVELOPMENT OF TMTM

Our design processes towards the Danish model for 
early intervention for marginal groups TMTM were 
highly informed by networking theories from construc-
tivism and from critical mathematics education. Tutor 
material is published in a 191 pages book (Lindenskov & 
Weng, 2013), but lots of work were done before. 

Certainly some authors see the two paradigms as con-
tradictory, and Mellin-Olsen is a prominent example. 
He disliked the focus on the cognitive development of 
the individual pupil in the constructivist paradigm. 

But as researchers have showed for the last decade 
networking theories are much more than rejecting 
or approving specific theories. Bikner-Ahsbahs and 
Prediger (2010, p. 492) suggested the following illus-
tration of a landscape of strategies for connecting 
theoretical approaches (Figure 1).

We chose to let the development processes for TMTM 
be informed by contrasting some of the above men-
tioned theories and constructs and by combining 
others. 

The combining part includes the deep insight into in-
dividual pupils’ problems and development coming 
from Steffe and colleagues’ constructivistic research 
combined with the math holes-construct. 

Also in the Danish programme tutor training is a man-
datory part of the programme, and also the tutoring 
is meant to be diagnostic, so that instruction can be 
adapted to pupils’ reactions.  

Figure 1



Theories to be combined and contrasted… (Lena Lindenskov, Pia Beck Tonnesen, Peter Weng and Camilla Hellsten Østergaard)

2679

The contrasting part includes that Steffe and col-
leagues’ focus solely on numbers and arithmetic con-
tradicts the broader goals and aims in critical mathe-
matics instruction. It is not enough for a Danish model 
to focus on numbers and arithmetic. We find them 
necessary, but not sufficient. 

The contrasting part also includes that the stage con-
structs contrast the idea of learning mathematics as a 
journey where parts of the mathematical landscapes 
are being constructed as pupils and teachers travel 
together. The paths are chosen by teachers and pupils 
collaboratively, and the teachers take into account chil-
dren’s background and foreground in order to motivate 
the children. The stage construct does not allow that the 
teachers also take the pupils’ foreground into account.   

CONTEXTUAL INFLUENCE ON 
THE THEORY NETWORKING

School cultures in Denmark are influenced by the 
German/continental tradition in educational philos-
ophy. Danish language has, like German language, 
two main concepts for ‘Education’: one is ‘Dannelse’ 
(German: Bildung), another is ‘Uddannelse’ (German:  
‘Erziehung’).

At the level of school mathematics this tradition 
emerges in the common aim for primary and lower 
secondary school mathematics by pointing at every-
day life, citizen life, creativity, problem solving, and 
democratic responsibility and impact:

The aim is that students develop mathematical 
competences and acquire skills and knowledge 
in order to appropriately engage in math-related 
situations in their current and future everyday, 
leisure, education, work and citizen life. 

Subsection 2. Students’ learning should be based 
upon that they independently and through dia-
logue and cooperation with others can experience, 
that mathematics requires and promotes creative 
activity, and that mathematics provides tools for 
problem solving, reasoning and communication. 

Subsection 3. Mathematics as a subject should help 
the students experience and recognize the role of 
mathematics in a historical, cultural and social 
context, and that students can reflect and evalu-
ate application of mathematics in order to take 

responsibility for and have an impact in a dem-
ocratic community. (Undervisningsministeriet, 
2014, our translation)

On this background it was evident, that the construc-
tivist paradigm had to be combined with the critical 
mathematics education. The constructivist paradigm 
gave a too narrow picture of what should be learnt. 

According to the choice of subject matter, the school 
mathematics tradition emerges in broad scope 
throughout all school grades and for all pupils. Danish 
pupils are not streamed before Grade 10. This means 
that skills, conceptual understanding and authentic 
applications are taught to all pupils. Mathematical 
competences as well as mathematical conceptual 
fields like numbers and algebra, geometry and meas-
urement, and statistics are included for all pupils 
from the very start of primary school. 

Besides it is our impression that Danish teachers 
have a relatively high self-confidence and a relatively 
strong wish to influence. From the European compar-
ative perspective it seems as if Danish teachers more 
than teachers in England prioritise the pupils’ per-
sonal development and see the pupils’ mathematical 
development as a means for personal development 
(Kelly, Pratt, Dorf, & Hohmann, 2013).  

This led us to include a group of teachers, in a decisive 
way, in design cycles in the development towards a 
Danish model (Lindenskov & Weng, 2014), and it led 
us to make the material much open for teachers’ ad-
aptation. This also led us to confront the stage con-
struct with the math holes-construct. With a stage 
construct less is up to the tutor to decide, and with a 
math holes-construct pupils’ emotional and motiva-
tional background and foreground are easier to take 
into account.  

CONCLUSION

Thus, the Danish developmental and research pro-
jects on early intervention are based on an original 
construct, the math holes-construct. But the whole 
development processes are very much informed by 
combining and contrasting theories.  

With Skott (2015), in our view networking theories 
is very much depending on what we mean by theory, 
constructs and conceptual framework. Skott points to 
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decisive elements as a) preliminary understanding of 
concepts involved, b) theoretical stance on interpre-
tation of these concepts, and c) the overall rationale 
for engaging in the field of inquiry.   

The math holes-construct implies differences com-
pared to MRP concerning all three elements, although 
similarities between MRP and TMTM exist. 
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In the course of research into the interpretation of tools 
in the didactics of mathematics I found both voids and 
conflicts. This paper presents the results of my research 
and a resultant statement on tool use in mathematics 
education. The statement incorporates constructs from 
several theoretical frameworks and I consider the con-
sistency of my statement on tool use with regard to ac-
tivity theory.
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tools.

INTRODUCTION

In the course of work on tool use in mathematics I 
examined literature which I summarise in this paper. 
The literature sit in various theoretical frameworks 
and this paper, in the language of Prediger, Bikner-
Ahsbahs and Arzarello’s (2008), can be considered as 
an attempt to ‘synthesise’ frameworks with regard to a 
statement on tool use in the didactics of mathematics. 
This synthesis, however, does not aim at synthesising 
complete theories but synthesising activity theory 
with principles from other theories. This paper has 
the following structure: a definition of tools; a sur-
vey of theoretical frameworks with regard to tools; 
an exposition of activity theory with regard to tools; 
actor network theory ideas that augment an activity 
theoretic account of tools; an activity theoretic state-
ment on tool use in mathematics education which in-
corporates ideas from outside of activity theory, and 
a consideration of the consistency of this statement 
with regard to networking theories.

TOOLS: A DEFINITION

I define a tool via four action-related distinctions, the 
first of which is between an artefact and a tool. An ar-
tefact is a material object which becomes a tool when 
it is used by an agent to do something; a compass be-

comes a tool when it is used to draw a circle (its intend-
ed purpose) or to stab someone. This establishes that 
tool use cannot be separated from the animal using 
the tool and the purpose of use. After being used as a 
tool (for whatever purpose), the compass returns to 
being an artefact. The materiality of an artefact is not 
just that open to touch. An algorithm, e.g., for adding 
two natural numbers, is an artefact. It is material in 
as much as it can be written down or programmed 
into a computer. My second distinction is between an 
artefact/tool and ways of using the artefact/tool. For 
example, I could use a calculator to perform 45 + 67 by 
typing in ‘45 + 67=’ or I could imitate the standard writ-
ten algorithm (adding the units, storing the result) and 
adding the tens and adding on my stored results. My 
third distinction is between the mental representa-
tion of a tool and material actions in tool use. This 
distinction comes with an interrelationship: to carry 
out material actions with an artefact you need some 
form of mental representation, which may be quite 
crude, of how to act with the artefact-tool, but actions 
with the artefact-tool will provide feedback to the user 
which may change the mental representation. My 
fourth distinction is between signs and tools. Signs, 
like tools, are artefacts but a sign points to something 
whereas a tool does something. Having said this, signs 
or systems of signs, can function as tools. Similarly 
representations can function as tools but they may 
also have non-tool functions, e.g., to point to an object. 

Is there such a thing as a ‘mathematical tool’? – only 
in use, a compass is a mathematical tool when it is 
used to draw a circle but not when it is used to stab 
someone. When artefacts are used for mathematical 
purposes they generally incorporate mathematical 
features, e.g., a compass encapsulates the equidistant 
relationship between the centre and points on the cir-
cumference of a circle. 

mailto:john.monaghan%40uia.no?subject=
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A SURVEY OF FRAMEWORKS 
WITH REGARD TO TOOLS

I conduct an historical tour of theoretical frameworks 
employed in Western mathematics education. I select 
papers from the 1960s to the present which reflect 
dominant ‘grand theories’ over this time that address 
or ignore tools. Behaviourism regarded artefacts as a 
means of stimulating a response in a subject. Suppes 
(1969), for example, considers computers as tutorial 
systems that can provide:

individualized instruction [where the] intention 
is to approximate the interaction a patient tutor 
would have with an individual student … as soon 
as the student manifests a clear understanding 

… he is moved on to a new concept and new exer-
cises.” (ibid, p.43). 

Suppes does not consider the environment in which 
the tool is used. During the period when behaviour-
ism ruled two psychologists, E. and J. Gibson, ventured 
on a non-behaviourist route to the theory construct 
of affordances (and constraints):

The affordances of the environment are what it 
offers the animal, what it provides … If a terrestrial 
surface is nearly horizontal … nearly flat … and 
sufficiently extended (relative to the size of the 
animal) and if its substance is rigid (relative to 
the weight of the animal), then the surface affords 
support. (Gibson, 1979, p. 127)

There is no mention of tools in this quote but math-
ematics educators have learnt that the construct ‘af-
fordances’ is useful in considerations of the relevance 
of artefacts and digital software environments to stu-
dents’ mathematical learning. 

The demise of behaviourism in mathematics edu-
cation saw the rise of cognitive studies and Piaget 
was the Guru. The interesting thing about Piaget’s 
extensive output with regard to tool use is that he 
says nothing at all about the role of tools in cognitive 
development. Piaget’s work inspired several ‘local 
theories’ in mathematics education: Brousseau’s the-
ory of didactical situations (TDS), constructionism 
and constructivism. TDS was developed over dec-
ades starting in the 1960s. The influence of Piaget in 
Brousseau’s work is explicit. An important construct 
of TDS came to be called the ‘milieu’ which includes 

the teacher, the materials and the designed learning 
strategies. I know of no explicit consideration of math-
ematical tools in 20th century TDS but tools are a part 
of the milieu. Papert, who spent several years with 
Piaget, experimented with children using the comput-
er language Logo. Constructionism views that learn-
ing occurs through the construction of meaningful 
products. Logo is integral to constructionism but, de-
spite statements that these languages equip students 
with tools to think with, there is no clear statement 
as to what a tool is in Papert (1980) and a clearer con-
structionist view of tools did not emerge until Noss 
and Hoyles (1996) – by which time constructionism 
had relinquished its Piagetian roots and embraced 
socio-cultural viewpoints.

Piaget’s ideas inspired constructivism, which focused 
on the ontogenic development of the individual child 
but developed to include a focus on microgenetic 
(child-environment) development (social construc-
tivism). Yackel and Cobb (1996) is a developed form 
of social constructivism which examines teacher-stu-
dent discussions and argumentation in a classroom 
context. This paper introduced the construct ‘socio-
mathematical norms’. The classroom considered in 
the paper had various resources (centicubes and an 
overhead projector) but the paper does not mention 
tools. This neglect has been noticed by others, e.g., 
Hershkowitz and Schwarz (1999, p. 149) “... socio-math-
ematical norms do not arise from verbal actions only, 
but also from computer manipulations as commu-
nicative non-verbal actions.”

In summary, 20th century mathematics educator 
frameworks influenced by Piagetian ideas had little 
to say on tools in learning and teaching but outside 
of mathematics education, deep ideas, published in 
the 1970s, on tools were in circulation.

Wartofsky (1979) includes an essay on perception, 
“an historically evolved faculty … based on the devel-
opment of historical human practice” (ibid, p.189). 
Practice is “the fundamental activity of producing 
and reproducing the conditions of species existence 

… human beings do this by means of the creation of 
artefacts … the ‘tool’ may be any artefact created for 
the purpose” (ibid, p. 200). Wartofsky extends the 
concepts of artefacts to the skills required to use ar-
tefacts as tools:
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Primary artefacts are those directly used in this 
production; secondary artifacts are those used 
in the preservation and transmission of the 
acquired skills or modes of action or praxis by 
which this production is carried out. Secondary 
artefacts are therefore representations of such 
modes of action (ibid, p. 202)

Vygotsky (1978), published posthumously, was to 
have a profound influence on mathematics educa-
tion. Vygotsky was interested in language, signs and 
mediation. His interest in tools was in their mediating 
qualities, “the basic analogy between sign and tool 
rests on their mediating function that characterizes 
each of them” (1978, p. 54). The difference between 
signs and tools rests on:

The tool’s function is to serve as the conductor 
of human influence on the object of activity; it 
is externally oriented; it must lead to a change in 
objects … The sign, on the other hand, changes 
nothing in the object of a psychological opera-
tion. It is a means of internal activity aimed at 
mastering oneself; the sign is internally oriented. 
(ibid, p. 55)

The reader, however, may note the influence of both 
Wartofsky and Vygotsky in my definition of tools 
above. I now move on to the work of B. Latour and 
P. Rabadel1. Latour is a sociologist and, around 1980 
and with others, established what is now called actor 
network theory (ANT); Latour (2005) is a fairly recent 
exposition. ANT is a theory about how to study social 
phenomena – by following the actors, where an actor 
is “any thing that does modify a state of affairs by mak-
ing a difference” (ibid., 71). ANT symmetrically views 
both society and nature as being in a state of flux and 
looks to the performance of the actors in situations. 
Objects (artefacts/tools) can make difference in per-
formance and so can be actors, exerting agency, in the 
playing out of social situations. Pickering (1995), who 
is ‘almost ANT’ in my opinion, examines practices of 
20th century elementary particles physics. He accepts 
ANT’s human and material agencies and adds ‘disci-
plinary agency’ (in our discipline a+a=2a regardless 
of what we might want it to be). He proposes a ‘dance 
of agency’ where, in the performance of scientific 
inquiry, human, material and disciplinary agencies 

“emerge in the temporality of practice and are defi-
nitional of and sustain one another” (ibid., p.21). I 
see this in ‘dance’ in techno-mathematics lessons – a 

myriad of influences between students, teachers, com-
puters and mathematics.

Rabadel introduced the ‘instrumental approach’ 
which distinguishes between an artefact, as a ma-
terial object, and an instrument as a psychological 
construct. An instrument is an emergent entity that 
begins its existence when a person appropriates an 
artefact to do something; this has influenced my dis-
tinction, above, between an artefact and a tool. The 
instrumental approach has been well known in math-
ematics education since Guin and Trouche (1999). This 
views an instrument as a composite entity composed 
of the artefact and knowledge (knowledge of the arte-
fact and of the task constructed in using the artefact). 
Artefact and the agent(s) are interrelated: the artefact 
shapes the actions of the agent, instrumentation; the 
user shapes the use of the artefact, instrumentalisa-
tion. The process of turning an artefact into an in-
strument is called ‘instrumental genesis’. The agent 
brings her/his knowledge and the artefact brings its 
potentialities and constraints to the artefact agent 
interaction. 

I leave my historical tour at this point with the ob-
servation that a lot of the frameworks used in math-
ematics education pay scant regard to the nature of 
the tools used in doing mathematics but frameworks 
initiated by Wartofsky, Vygotsky, Latour, Pickering 
and Rabardel provide interesting, though diverse, 
insights into the role of tools in activity. I now turn 
to the focus framework of this paper, activity theory.

ACTIVITY THEORETIC 
CONSIDERATION OF TOOLS

I briefly outline activity theory (AT), trace its genesis 
into mathematics education research (MER) and con-
sider differences in approaches.

AT is an approach to the study of human practices. It 
sees constant change (flux) in practice. Activity be-
came a focus for Vygotsky in his conviction that con-
sciousness originated in socially meaningful activity. 
In AT ‘object orientated activity’ is the unit of analysis, 
that which preserves the essence of concrete prac-
tice. ‘Object’ here refers to raison d’etre of the activity. 
Educators employing AT must take care that they do 
not merely employ the word ‘activity’ without consid-
ering the object and the unit of analysis. Vygotsky’s AT 
is often presented via a triangle with ‘subject’, ‘object’ 
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and ‘mediating artefacts’ at its vertices. Leont’ev (1978) 
developed Vygotsky’s work by considering individual 
and collective actions (usually with tools) and opera-
tions (things to be performed or modes of using tools) 
involved in socially organized activity. Engeström 
(1987) extends Vygotsky’s and Leont’ev’s frameworks 
to ‘activity systems’ and extends the focus on medi-
ation through signs and tools to multiple forms of 
mediation including the community and social rules 
underlying activity. Activity systems research often 
examines interactive activity systems with a focus on 
the objects of activity in the two systems; the place of 
tools in such research usually emphasises tool use 
in the context of the whole system. I now turn to the 
influence of activity theory in MER.

I was curious of AT’s introduction into Western MER 
literature and I traced its introduction into the journal 
Educational Studies in Mathematics (ESM). Two AT 
papers appeared in ESM in 1996. Crawford (1996) is 
an exposition of Vygotskian AT and asks “What dif-
ference does the use of tools such as computers and 
calculators make to the quality of human activity?” 
(ibid, p. 47) but does not explore the nature of tools 
further. Bartolini Bussi (1996) reports on a teaching 
experiment on geometric perspective. The word ‘tool’ 
has two uses in the paper: Leont’ev’s theory as a tool 
for analysis; ‘semiotic tools’, which are defined via 
examples. In 1998 two ESM AT papers considered 
tool use in different ways to Bartolini Bussi (1996). 
Chassapis (1998) focuses on the processes by which 
children develop a formal mathematical concept of 
the circle by using various instruments to draw cir-
cles: by hand; using circle tracers and templates; and 
using a compass. “The process of learning to use a tool 

… involves the construction of an experiential reality 
that is consensual with that of others who know how 
to use [the tool]” (ibid, p. 276). Pozzi, Noss and Hoyles 
(1998) focuses on nursing and ask “how do resources 
enter into professional situations, and how do they 
mediate the relationship between mathematical tools 
and professional know–how?” (ibid, p. 110) The paper 
states that AT provides evidence that “acts of problem 
solving are contingent upon structuring resources, 
including a range of artefacts such as notational sys-
tems, physical and computational tools” (ibid, p. 105). 
Radford (2000) focuses on early algebraic thinking 

“considered as a sign-mediated cognitive praxis” (ibid, 
p. 237):

to accomplish actions as required by the contex-
tual activities … The sign-tools with which the 
individual thinks appear then as framed by so-
cial meanings and rules of use and provide the 
individual with social means of semiotic objec-
tification (ibid, p. 241).

The first mention of Engeström in ESM is in Jaworski 
(2003, p. 249). This outlines “insider and outsider re-
search and co-learning between teachers and edu-
cators in promoting classroom inquiry” and is not 
concerned with tool use in mathematics.

Thus, although AT is quite an old theory, it is a fairly 
recent theory in terms of Western MER and there is 
wide variation with regard to the meaning of tools in 
ESM AT papers from 1996 to 2003. After 2003 a consid-
erable number of ESM papers used AT as a theoretical 
papers but I do not have room to summarise. To get 
a handle on contemporary AT conceptions of tools 
in MER I go to a special edition of The International 
Journal for Technology in Mathematics Education de-
voted to AT approaches to mathematics classroom 
practices with technology. For reasons of space I fo-
cus on three (of 11) papers which illustrate a range of 
approaches.

Chiappini (2012) focuses on the learning and teaching 
of algebra with software with a visual ‘algebraic line’ 
and conventional algebraic notation, to draw students’ 
attention to the culture of mathematics. Chiappini 
is interested in ‘cultural affordances’, which, “allow 
students to master the meanings, values and prin-
ciples of the cultural domain” (ibid, p. 138). With re-
gard to tools, Chiappini’s focus is the evaluation of 
software designed to exploit visuo-spatial and deictic 
affordances and allow teachers to consolidate student 
learning. Ladel and Kortenkamp (2013) focuses on 
the design and use of a multi-touch-digital-table to 
engage young children in meaningful work with 
whole number operations, “We want to restrict the 
students’ externalizing actions to support the inter-
nalization of specific properties … mediation through 
the artefact is characterized by restriction and focus-
sing.” Artefacts are the focus of attention and the word 

‘tool’ is not mentioned in the paper. They hold that 
“the artefact itself does not have agency and is only 
mediating … [but] the artefact changes the way chil-
dren act drastically and in non-obvious ways” (ibid, 
p. 3). Mariotti and Maracci (2012) outline the Theory 
of Semiotic Mediation (TSM) with regard to “the use 
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of artefacts to enhance mathematics learning and 
teaching, with a particular focus on technological 
artefacts” (ibid, p. 21); like Ladel and Kortenkamp 
(2013) above, the word ‘artefact’ is favoured over the 
word ‘tool’. This paper continues the work of Bartolini 
Bussi (1996) considered in the previous section and is 
critical of research where “the mediating function of 
the artefact is often limited to the study of its role in 
relation to the accomplishment of tasks” (ibid). TSM 
views that “teaching-learning … originates from an 
intricate interplay of signs… mathematical meanings 
can be crystallized, embedded in artefacts and signs” 
(ibid) The paper presents a rather strange (to me) take 
on mediation, “The mediator is not the artefact itself 
but it is the person who takes the initiative and the 
responsibility for the use of the artefact to mediate 
a specific content” (ibid, p. 22). To mediate the learn-
ing of mathematics the teacher has to design specific 
circumstances, a didactical cycle, aimed at fostering 
specific semiotic mediation processes. 

Differences in the papers outlined above include the 
unit of analysis, cognition, the words used, media-
tion and agency. Some papers explicitly state the unit 
of analysis, e.g., Chassapis (1998), but many do not. 
Chassapis’ unit of analysis is ‘quite small’ compared 
to Engeström’s, the activity system itself. I think the 

‘size’ of the unit of analysis impacts on the extent to 
which the AT analysis permits a study of microgenetic 
learner development with tools (i.e., Chassapis’ unit of 
analysis allows a focus on cognition and tool use but 
details of cognitive development are easily ‘lost’ when 
the focus is on activity systems). With regard to the 
words used it is clear that some scholars use ‘artefact’ 
for what I refer to as a tool. This seems unimportant 
but the difference between sign and tool is important 
and the fact that this difference is sometimes blurred 
does not downplay this importance; some of the pa-
pers do not consider signs vs tools. With regard to 
mediation the biggest difference is between Ladel and 
Kortenkamp, where artefact mediation is central, and 
Maracci and Mariotti, which holds that people and not 
artefacts mediates. My final consideration concerns 
agency. Only Ladel and Kortenkamp comment on this, 
to claim that artefacts do not have agency. The differ-
ences noted above show that AT in MER is a collection 
of approaches in which there are many ways to view 
tools within AT. 

ANT IDEAS THAT AUGMENT AN 
AT ACCOUNT OF TOOLS

I am drawn to AT as a framework as it mirrors my 
view that tools are important but tool use is not an 
activity in itself though tool use and activity are in-
terrelated. But I detect an anthropocentric position 
in AT – even though AT recognises that people think 
through/with tools, people are at the centre, they ap-
pear as ‘the’ agents. This anthropocentrism is explicit 
in Maracci and Mariotti’s view that artefacts are not 
mediators and Ladel and Kortenkamp’s statement 
that artefacts do not have agency. I think tools can 
be powerful things and I am drawn to an ANT view 
on material agency, but can ANT ideas be brought 
into AT? I first look at a potential major obstacle to 
networking these theories and a difference between 
Latour and Pickering.

Miettinen (1999) considers ANT and AT as approaches 
to studying innovations and locates the main division 
between these approaches as ANT’s generalised prin-
ciple of symmetry which states that the same “vocabu-
lary must be used in the description and explanation 
of the natural and the social … no change of register 
is permissible when we move from the technical to 
the social aspects of the problem studied” (ibid, pp. 
172–173). This is a problem for AT because the object 
(of activity) is generated from human needs. OK, hu-
mans do generate the object but once the object is 
established the agency which follows in the activity 
can be distributed. Indeed, Latour (2005) states that 
he abandoned most of the symmetry metaphor be-
cause what he had in mind was a “joint dissolution 
of both collectors” (ibid, p. 76). Pickering (1999, p. 15) 
also considers the generalised principle of symme-
try to be problematic, “As agents, we humans seem 
to be importantly different from nonhuman agents”. 
With the generalised principle of symmetry ‘put in 
to perspective’ I now look to two commonalities in 
principles between Latour and Pickering: focus on 
performance; don’t restrict agency to animals (hu-
mans) alone. 

Latour (2005) mentions performance with to regard 
groups, social aggregates. Classical sociologists are 
accused of making ostensive definitions of groups – 
there’s a group of teachers –and focusing on stability 
but, from an ANT point of view, “the rule is perfor-
mance and what has to be explained, the troubling 
exceptions, are any type of stability over the long 
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term [and this cannot be explained] without looking 
for vehicles, tools, instruments, and materials able 
to provide such a stability” (ibid, p. 35). This focus 
on performance is akin to flux in AT. A sketch of a 
performative view of science is presented early in 
Pickering (1995, p. 6), instead of a world where scien-
tists only generate knowledge from facts, he sees a 
world filled with agency:

The world … is continually doing things, things 
that bear upon us not as observation statements 
upon disembodied intellects but as forces upon 
material beings … Much of everyday life … char-
acter of coping with material agency, agency that 
comes at us from outside the human realm and 
that cannot be reduced to anything within that 
realm.

Later, in Pickering (1995), ‘disciplinary agency’ and 
the ‘dance of agency’, as described above, are intro-
duced. Neither Latour nor Pickering are concerned 
with mathematics education but their ‘multi-agent’ 
stance resonates with my experience of mathematics 
classrooms. When a teacher uses a tool in a mathe-
matics class, then s/he is only one of the agents in the 
activity, other potential agents are: other teachers; 
students; the curriculum; the institution; other avail-
able artefacts; and the tool itself. 

I now consider mediation and what mediates: lan-
guage, signs, artefacts or people? I think the problem 
here can be viewed via the ostensive-performative 
distinction. Scholars have different interests and tend 
to point to something and say “that (those) is (are) the 
mediator(s)” whereas the mediator in a specific situ-
ation exists in relation to what is actually done (the 
activity/performance). I am, for instance, interested 
in artefact/tool-mediation but two learners may be 
involved in ostensibly similar activities with a mathe-
matical tool but one learner may be heavily reliant on 
the tool whereas the use of this tool to the other learn-
er may be peripheral; mediation by the tool comes 
down to the actual use of the tool. Similarly Mariotti 
and Maracci (2012) may expect the mediator to be the 
teacher but I doubt if this is always the case. Latour 
(2005, p. 39) appears to present a similar idea in dis-
tinguishing between mediators and intermediaries, 

“An intermediary … is what transports meaning or 
force without transformation … Mediators transform, 
translate, distort, and modify”.

A STATEMENT ON TOOL USE IN 
MATHEMATICS EDUCATION

The considerations above, together with those in the 
previous three sections, provide a basis for the follow-
ing statement (in italics) on tool use in mathematics 
education.

AT provides a framework to interpret tool use in practice 
but the level of detail on tool use will depend on the ‘size’ 
of the unit of analysis. An AT account of tools would 
benefit from being augmented by constructs from instru-
mentation theory and the theory of affordances. Activity 
is mediated by human and non-human mediators but 
this mediation cannot be stipulated in advance of the 
performance of the activity. Human and non-human 
agents impact the activity; as with mediation, the impact 
of these agents cannot be stipulated in advance of the 
performance of the activity.

I now state my networking argument. The theories 
of affordances and of instrumentation have few as-
sumptions and a lot of application. Recognition of 
the relationship between learners and their environ-
ments is important in AT as is the process by which 
an artefact becomes a tool for learners. Both theories 
can be used in MER to shed light on the action and 
operation aspects of AT without compromising any 
tenets of AT. With regard to taking ideas from Latour 
and Pickering I focus on the two principles outlined 
above. The ‘focus on performance’ principle is entire-
ly consistent with the concept of flux in AT. AT focus-
es on describing practice and tools (and, I add, other 
things) are used as they are used (or not) – there is no 
pre-ordained plan. As for not restricting agency to 
humans alone, well, this is a problem for many activity 
theorists because the object of an activity is generated 
by humans. But if the principle of non-human agency 
is weakened to restrict non-humans from initiating 
activity, then I don’t think there is a problem.
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ENDNOTE

1. I would have liked to have considered tool-focused 
work within the Anthropological Theory of Didactics 
as well but this was not possible in the length restric-
tions for this paper.
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RECONSTRUCTION OF SCIENTIFIC THEORIES

As it is the case in many other disciplines, in 
Mathematics Education there are several theories liv-
ing together: Theory of Didactic Situations (Brousseau, 
1997), Anthropological Theory of the Didactic or 
ATD (Chevallard, 1999; Bosch et al., 2011), APOS1 the-
ory (Dubinsky & McDonald, 2002), Onto-Semiotic 
Approach (Godino, Batanero, & Font, 2007), Theory 
of Abstraction in Context (Dreyfus, Hershkowitz, & 
Schwarz, 2001), Theory of Knowledge Objectification 
(Radford, 2003)… Whereas the cohabitation of the-
ories is perfectly normal, efforts aiming to connect 
some of them, especially from the CERME working 
team “Theoretical perspectives and approaches in 
mathematics education research” (CERME8, 2013), are 
also very natural and desirable. 

We defend in this work that, for a better understand-
ing of the possibility of connection of two theories, 
we must reconstruct them by using the same lan-
guage. The reconstruction of a theory can be carried 
out from different conceptions. When we speak of 

‘conceptions’ we mean ways of giving an account of 
what a scientific theory is, and not of how a scientific 
theory (in particular, a scientific law) is constructed. 
Thus, a priori these conceptions do not pay attention 
to methodological aspects. 

The one favoured here is the so-called structuralist 
conception (Balzer, Moulines, & Sneed, 1987). This is 
an elaboration of the semantical conception (initiated 
by Suppes and Adams in the 1970s), and it seems to 
reconcile the most important aspects of the syntac-
tical conception (advocated by Reichenbach, Ramsey, 
Bridgman, Campbell, Carnap in several works from 
the 1920s to the 1950s) and the historicist conception 
(advocated by Kuhn, Lakatos, Laudan in several works 
in the 1960s), while it avoids their problems (Diez & 
Moulines, 1997).

Now we will give a brief explanation of the main 
points of the structuralist conception. For a more 
extensive treatment, see (Balzer et al., 1987). 

According to the structuralist conception, a scientific 
theory is a net of many nodes (which will be called 
elements of the theory or theory-elements) connected 
in several via specialization, see Definition 2 below. 
Of course, such a net does not appear out of the blue, 
but it is developed little by little along the time. This 
is how the structuralist captures the diachronic char-
acter of a theory. The synchronic character of a theory 
appears in the description of the theory-elements. 

Definition 1: To determine a theory-element one has 
to specify:

1) The portions of reality the theory-element con-
ceptualizes, i. E. The portions of reality the theory 
can speak of, called potential models. These poten-
tial models are   described as portions of reality 
which can be modelled by using a structure (that 
is to say, a tuple (D1, D2, …, R1, R2, …) of sets Di and 
relations Rj between these sets) and a list of prop-
erties applicable to the structures of the former 
type. We call Mp the set of potential models.

mailto:pedronz@um.es
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2) The laws with which the theory-element aims 
to enlighten reality. Each law is a property ap-
plicable to the structures of the specified type. 
The laws distinguish the so-called actual models 
among the potential models. We call M the set of 
actual models.

3) The partial potential models, which are these 
portions of reality which can be checked to be 
potential models without assuming the laws of 
the theory-element. Notice that to verify that a 
portion of reality is a potential model we check, 
in particular, that the relations Rj appearing in 
the type of structure are satisfied. In this check-
ing we use some method and this method might, 
or might not, assume the laws of the theory-ele-
ment. A relation Rj is theoretical with respect to 
a theory element T (or, in short, T-theoretical) if 
every method of determination of Rj assumes the 
validity of the laws of this theory-element. Thus, 
a partial potential model of a theory-element is 
nothing but a potential model in which we omit 
the theoretical relations. We call Mpp the set of 
partial potential models.

4) Those partial potential models that are expect-
ed to be actual models. These partial potential 
models are, after all, the intended applications of 
our theory-element. We call I the set of intended 
applications of our theory-element. 

Thus a theory-element is an ordered pair T = (K, I) where 
I is the set of intended applications and K = (Mp, Mpp, M) 
is the core, formed by the set of potential models, the 
set of partial potential models, and the set of actual 
models.

The empirical claim of a theory-element is just the 
statement which asserts that the intended applica-
tions are actual models, I ⊆ M, that is to say, that in 
certain portions of reality, which can be detected with-
out assuming the laws of the theory-element, these 
laws actually hold.

In the next section we will give several examples of 
theory-elements but, unfortunately, we will not point 
out a theoretical relation in any of them. It is an im-
portant open question whether there are theoreti-
cal relations in the current theories of Mathematics 
Education. In Classical Mechanics (CM), the relations 
of position or time are not CM-theoretical, since you 

can determine them without assuming any proper law 
of Classical Mechanics. However, the relation mass is 
CM-theoretical, since any method of determination of 
the amount of mass of an object assumes a law prop-
er of the CM. For examples in other disciplines see 
(Balzer et al., 1987).

NETWORKING THEORIES

In what follows we use the structuralist approach to 
present different kinds of possible connections be-
tween theory-elements.

Definition 2: A theory-element T’ is a specialization 
of another theory-element T, and we write T’ σ T, if: 

1. 

1.1. M’p = Mp, that is to say, both theory-elements 
conceptualize the world in the same way.

1.2. M’pp = Mpp, that is to say, both theory-elements 
consider the same theoretical relations.

1.3. M’ ⊆ M, that is to say, every law in T is also 
a law in T’.

2. I’ ⊆ I, that is to say, every portion of reality aimed 
to be explained by T’ is also a portion of reality 
aimed to be explained by T. 

In short, to specialize consists of increasing the 
amount of laws without changing the conceptual ar-
chitecture.

Definition 3: A net-theory is a pair N = ({Ti}, σ) where 
{Ti} is a non-empty set of theory-elements and σ is a 
specialization relation on {Ti}.

Next we are defining the notion of theorization, but 
first we need the following:

Definition 4: Given two structures (see Definition 1) 
x = (D1, …, Dm, R1, …, Rn) and y = (D’1, …, D’p, R’1,…, R’q), we 
say that y is a substructure of x if:

1. p ≤ m, q ≤ n.

2. Every D’i is a subset of some Dj.

3. Every R’i is a subset of some Rj.
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Definition 5: A theory-element T’ is a theorization of 
a theory-element T if:

1. Every intended application of T’ admits an actual 
model of T as substructure.

2. There are potential models of T’ which are not 
substructures of potential models of T (because 
they contemplate new domains and/or new re-
lations).

The first condition says that every portion of reality 
T’ aims to explain satisfies the laws of T. The second 
condition says that T’ includes new (not necessarily 
T’-theoretical) concepts not contemplated by T.

Next I will show in examples some tentative structur-
alist descriptions of some elements of the ATD.

Example of theory-element: Our first example is in-
spired in the so-called Herbartian scheme (Chevallard, 
2015), which is probably the most general structure 
proposed by the ATD to deal with situations of study. 
In this structure there are things like a task or ques-
tion which requires some answer, a series of partial 
answers, and a final answer. Therefore, the structure 
corresponding to our theory-element T1 will be the 
tuple ({1, …, n}, P, s) where {1, …, n} is the set of the first n 
natural numbers, P is a non-empty set P, and s is a map 
from {1, …, n} to P. The image of 1 is said to be a generat-
ing question, the image of n is said to be a final answer 
and the other images are said to be partial answers. 
Since no law is stated, there is no distinction between 
potential, partial potential and actual models. Notice 
that every temporal sequence of n events fits in this 
structure, but, of course, not every such sequence is 
an intended application of T1. This is why it is impor-
tant to explain which are our intended applications, 
namely, those sequences of events consisting in find-
ing an answer to a question.

Example of theorization: If, moreover, in each of the 
partial answers of T1 we distinguish between tasks, 
techniques and logos elements, that is, if we look at 
the constituent parts of the so-called praxeologies 
(Chevallard, 1999), we would have reached a theori-
zation, T2, of T1. The structure corresponding to T2 will 
be a tuple ({1, …, n}, ST, St, SL, s) where ST, St, and SL are 
non-empty sets whose elements are called tasks, tech-
niques and logos-elements, respectively, and s is a map 
from {1, …, n} to ST × St × SL. Since no law is stated there 

is no distinction between potential, partial potential 
and actual models. Now not every temporal sequence 
of n events fits in the structure of T2. Not even every 
temporal sequence of n events consisting in finding 
an answer to a question! In fact, our intended appli-
cations are temporal sequences of events consisting 
in finding an answer to a question such that in each 
of these events we find three components and such 
that, moreover,

 ― all the first components of the events are “of the 
same nature” (this is encoded in the fact that they 
belong to the same set), namely, tasks;

 ― all the second components of the events are of the 
same nature, namely, solutions to the task spec-
ified in the corresponding first component, and

 ― all the third components of the events are of the 
same nature, namely, explanations of why the 
corresponding second element solves the corre-
sponding first element.

Example of theorization: If, moreover, we take into 
account the dynamics of each of these praxeologies, 
recognizing the so-called study moments (Chevallard, 
1999), we would have a theorization, T3, of T2. The 
structure corresponding to T3 will be a tuple ({1, …, 
n}, ST, St, SL, {0,1}, {*}, s) where

– {1, …, n}, ST, St and SL are as before;

– s is a map from {1, …, n} to S × (S ∪ {*}) × (S ∪ {*}) × {0, 1} ×  
{0, 1} × ([0, 1] ∪ {*}) × (N ∪ {*}) × (N ∪ {*}), where S is the 
union of ST, St and SL, called the study sequence map, 
and its images are called events.

The structure is now more complicated because it 
has to model more ambitious intended applications. 
Indeed, in the events of the sequence we still look at 
tasks, techniques and logos, but we also pay attention 
to the way they are related:

–  The first (respectively, second, third, fourth and 
fifth) component of an event refers to the first (respec-
tively, second, third, fourth and fifth) study moment 
(Chevallard, 1999).

– The last three components of an event refer to the 
sixth study moment, namely, to the evaluation mo-
ment. More precisely, the sixth component refers to 
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the scope of the technique (it is a bounded magnitude 
which reaches the value 1 if the technique covers all 
the possible cases of the task), the seventh component 
refers to its economy and the eighth component refers 
to its reliability (see Sierra, Bosch, & Gáscon, 2013)2.

For example, an event which is an element of 
ST × St × SL × ... is regarded as a task followed by an 
elaboration of a technique followed by an explanation 
of why this technique works, whereas an element of 
St × ST × {*} × … is regarded as a technique followed by 
a task which is solved by the technique followed by 
no explanation of why the technique works. We use 

* to express absence of activity in the second, third, 
sixth, seventh and eighth components, and we use 0 
(respectively, 1) to express absence (respectively, pres-
ence) of activity in the fourth and fifth components. 
We can add some axioms devoted to prevent us from 
considering impossible events, for example:

Axiom 1: There are not events starting with a task and 
continuing with a logos element.

Axiom 2: If an event starts with a technique, then it 
cannot continue with a logos element.

Axiom 3: In an event there are not two tasks, two tech-
niques or two logos elements. Thus, for instance, there 
are not events which are elements of ST × ST × …

Axiom 4: If in an event there is no task, then the last 
three components of the event are (*, *, *).

Axiom 5: If the fourth component of an event is *, then 
the last three components are (*, *, *).

Examples of specialization: Imagine we create a new 
theory-element T4 by adding the following law to the 
theory-element T3:

Law: The last three components of every event are 
(*, *, *).

The new theory-element T4  is a specialization of T3. 
Indeed, there are actual models in T3 which are not 
actual models in T4, namely, those study sequences 
having at least an event in which the last three com-
ponents are not (*, *, *). After the axioms, it is clear 
that the former law holds for those study sequences 
in which each event si = (si1, si2, si3, si4, si5, si6, si7, si8) satis-
fies that none of the sij are a task or that si4 = *. Hence, 

those study sequences would be actual models of our 
theory-element T4.

The notion of didactic contract (Brousseau, 1986) is a 
good source of laws for theory-elements dealing with 
study sequences. Indeed, a didactic contract can be 
regarded as a special family of clauses or conventions, 
and, inspired in Lewis (1969), we could express a con-
vention as a law stating that a certain regularity in 
the events of a study sequence holds (see for instance 
the law above).

Remark: In Chevallard (1988b), there is a sketch of 
the possible sets and relations of the structures an 
anthropological theory of the didactics would deal 
with. It would be interesting to compare them with 
the ones used in our examples above.

Remark: Brousseau (1986), inspired among others by 
Suppes (1969, 1976)3, used finite automata to give a 
structuralist formulation of the notion of situation. 
Our structuralist formulations of notions of the 
ATD are more in the spirit of the Stimulus-Sampling 
Theory (Estes & Suppes, 1959). It is worth noting that, 
as proved in Suppes (1969), given any finite connected 
automaton there is a stimulus-response model that 
asymptotically becomes isomorphic to it.

Finally, let us consider the relation of reduction be-
tween theory-elements.

Definition 6: A theory-element T is reducible 
to a theory-element T* if there exists a relation 
ρ ⊆ Mp(T) × Mp(T*) such that:

1. If (x, x*) ∈ ρ and x* ∈ M(T*), then x ∈ M(T).

2. If y ∈ I(T) ∩ M(T) then there exists y* ∈ I(T*) ∩ M(T*) 
such that (y, y*) ∈ ρ.

The underlying idea is to regard the elements (x, x*) 
of ρ as pairs of portions of reality so that x* is the T*-
version of x. The first condition says that the laws of T 
can be derived from those of T*. The second condition 
says that all the successful applications of T admit T*-
versions which are also successful applications of T*. 
In other words, the successes of T can be explained in 
virtue of those of T*. Notice that, in contrast to what 
happened with the theorization (Definition 5), reduc-
tion does not require an increase in the conceptual 
map, that is to say, the kind of structures contemplated 
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as potential models. Indeed, the conceptual map of T* 
might be completely different to the conceptual map T.

Examples of reduction: The classical mathematics edu-
cation (see Gascón, 1998) explains certain phenomena 
with laws involving cognitive or motivational con-
cepts. Indeed, these would be the kind of concepts used 
by the classical mathematics education to explain the 
kind of phenomena presented in IREM de Grenoble 
(1979). One can use Chevallard (1988a) to sketch how 
part of this classical mathematics education can be 
reduced to a theory-element including among the laws 
the clauses of the didactic contract. On the other hand, 
one can also use (Chevallard, Bosch, & Gascón, 1997) 
to reduce part of this classical mathematics education 
to a theory-element with laws stating the incomplete-
ness of scholar study processes (this incompleteness 
can be expressed in terms of the study moments, for 
example, by saying that the moment of the construction 
of the technological-theoretical frame or the moment of 
the work of the technique is lost).

In Bikner-Ahsbahs and Prediger (2010) the following 
“networking strategies” are presented: to ignore other 
theories (as an extreme strategy of non-connection), 
to make your own theory and foreign theories un-
derstandable, to compare/contrast, to coordinate/
combine, to integrate locally/synthesize and to unify 
globally (as an extreme strategy of total connection). 
Next, let us clarify this taxonomy by presenting, in a 
brief and simplified way, possible translations of these 
strategies to the structuralist language:

 ― To ignore other theories: not to consider the pos-
sibility of (even partial) specialization, theoriza-
tion or reduction (see Definitions 2, 5 and 6) as a 
relation among two theory-elements.

 ― To make your own theory and foreign theories 
understandable: to accomplish this, as we said at 
the beginning of this paper, one need to translate 
both theories to the same language. What we sug-
gest here is to use the structuralist language. So, 
in a sense, in the present work we take seriously 
this second networking strategy.

 ― To compare/contrast: to check which are the po-
tential models shared by two theory-elements. 
Thus, when comparing/contrasting we could be 
performing a theorization.

 ― To coordinate/combine two theory-elements T 
and T’ consists in saying that a common intended 
application is both an actual model of T and an 
actual model of T’. It is important to notice that, 
for this to happen, T and T’ must share the partial 
potential models. This last sentence explains the 
meaning of the following statement of Bikner-
Ahsbahs and Prediger (2010): “Whereas all theo-
ries can of course be compared or contrasted, the 
combination of (elements of ) different theories 
risks becoming difficult when the theories are 
not compatible.”

 ― To integrate locally/synthesize two theory-ele-
ments T and T’: to find a third theory-element T” to 
which we can reduce the theory-element derived 
from T when considered just some sub-structures 
z of the structures x of T, as well as the theory-ele-
ment derived from T’ when considered just some 
sub-structures z’ of the structures x’ of T’. Notice 
that the structures x” of T” should admit both z 
and z’ as sub-structures.

 ― To unify globally: to find a theory to which any 
other theory could be reduced.

CONCLUSION

Here we suggest to use the structuralist formalization 
of scientific theories to the benefit of the questions 
about the theoretical status of different approaches 
in Mathematics Education. Needless to say, we do not 
mean one cannot work properly in theory unless this 
is formalized. For example, it is not reasonable to say 
that Newton was not doing Mechanics just because 
he did not have at hand a strict formalization. On the 
other hand, theories in Mathematics Education are 
still far from being formalizable, being this (even 
partial) formalization a long-term project in any case. 
Concerning this, it is important to point out that the 
degree of resistance of a theory to be formalized is in-
versely proportional to its degree of development. For 
example, if we cannot distinguish the actual models 
among the potential models, then we cannot identi-
fy any law of the theory (and at this point we should 
wonder whether this forces us to accept this theory 
is nonexistent…). Anyway, regardless of the difficulty 
of a complete formalization, we defend that:

 ― The framework offered by the structuralist con-
ception of scientific theories is illuminating to 
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the extent that it provides us with high order 
tools which allow a better understanding of the 
theoretical scene in Mathematics Education.

 ― Even if we were not interested in networking the-
ories, the attempt to formalize a theory in the 
structuralist way forces us to consider extreme-
ly interesting questions about this theory. For 
instance: which are the underlying structures? 
Which are the laws? Which are the theoretical 
relations?

Among many other things, it is still an open question 
which are the links between our structuralist ap-
proach, the definition of theory by Radford (2008) and 
the notion of research praxeology by Artigue,Bosch, 
and Gascón (2011a, 2011b).
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ENDNOTES

1. This is the short form for “Action, Process, Object 
and Scheme”. 

2. For the sake of simplicity, we do not distinguish be-
tween task and type of task, and between technological 
and theoretical elements among the logos elements, 
even if they are important distinctions in the ATD.

3. Actually, the last two components should be inter-
preted as evaluations of a technique in comparison 
with another technique. Indeed, we typically speak 
of a technique as being more or less economic or reli-
able than another technique. However, for the sake of 
simplicity, we do not take into account this aspect here.

4. It is a remarkable fact that Suppes was the main pro-
moter of the semantic conception, direct precedent of 
the structuralist conception.
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In this paper, the notion of adaptive conceptual frame-
works is presented. These frameworks have been used to 
conduct educational design research aiming at develop-
ing ICT supported mathematics instruction. In this ap-
proach, empirical data is connected with various theo-
ries in an adaptive and iterative process. Differentiation 
is made between conceptual framework for development 
(CFD) and conceptual framework for understanding 
(CFU) depending on how the frameworks are used in the 
design process. The use of adaptive conceptual frame-
works contributes to the transparency in the design 
process by making explicit the levels at which different 
theories operate and how the design process is evaluated. 

Keywords: Conceptual framework, educational design, 

professional development.

INTRODUCTION

During the last decades, several similar methodol-
ogies have emerged that address the desire to con-
duct educational research with relevance for school 
practices. For example, design-based research aims 
explicitly at developing theories that could do “real 
work” by providing theoretically underpinned guid-
ance on how to create educational improvement in 
authentic settings (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003; McKenney & Reeves, 2012). A common 
feature of these approaches is the design of teaching 
activities in an iterative design process that shares 
many similarities with teachers’ daily work. 

This paper contributes to research by describing 
how the design process may be co-determined by the 
interaction between different stakeholders such as 
researchers and teachers, disciplinary knowledge, 
theoretical frameworks, and other resources. This 
approach has been inspired by co-design, as a design 
methodology that highlights the importance of in-

volving different stakeholders such as teachers in 
the design research process in order to address the 
issue of ownership of innovation (Penuel, Roschelle, 
& Shechtman, 2007). Furthermore, working in close 
collaboration with teachers deepens our knowledge 
about pragmatic issues and promotes development of 

“innovations that fit into real classroom contexts” (ibid, 
p. 52). Following the conceptualization of knowledge 
proposed by Chevallard (2007) in the Anthropological 
Theory of the Didactic (ATD), the two different per-
spectives of understanding and development could be 
viewed as two inseparable aspects of knowledge, in-
tegrating a practice that includes the things teachers 
do to solve different educational tasks (praxis) with a 
discursive environment that is used to describe, ex-
plain, and justify that practice (logos). The adaptive 
conceptual frameworks presented in this paper ex-
plicitly address both perspectives. 

The purpose of this paper is to describe the develop-
ment of adaptive frameworks and how they were used 
to meet the emerging needs in a design process of ICT 
supported mathematics instruction during one de-
sign cycle. The empirical data presented in this paper 
is therefore only used to motivate the development of 
the adaptive conceptual frameworks and not analyzed 
with respect to the intended learning objectives.

ADAPTIVE CONCEPTUAL FRAMEWORKS

In this approach the researcher connects empirical 
data with various existing theories that are chosen 
in retrospect and that are used to generate additional 
empirical data in an iterative, incremental and adap-
tive process. In other words, theory is not applied onto 
practice, it is more about a “progressive interaction 
between theory and practice, by means of appropri-
ating existing theoretical tools” (Bartolini Bussi, 1994, 
p. 127). Furthermore, the adaptive conceptual frame-
works are considered in a state of flux and changea-
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ble according to the different challenges that might 
emerge when conducting design-based research in 
authentic settings. Thus, the adaptive conceptual 
frameworks should be regarded as tentative and a 
result of a research work that has similarities with re-
search that sometimes is portrayed by the “bricolage” 
metaphor (Kincheloe, 2001), particularly regarding 
the efforts of embracing methodological flexibility 
and plurality of theories. From this perspective, this 
research approach aligns with the Singerian inquiry 
system (Churchman, 1971; Lester, 2005).

The workflow of the formal stages of a design cycle is 
illustrated in Figure 1. Each design cycle starts with a 
planning phase, followed by an implementation phase 
involving the teachers. The cycle is completed with an 
evaluation of the outcomes. Three different frame-
works are distinguished depending on their role in 
the different phases: 

 ― methodological framework for professional de-
velopment (MFPD),

 ― conceptual framework for development (CFD),

 ― conceptual framework for understanding (CFU). 

The researcher uses the methodological framework 
for professional development (MFPD) to plan and sup-
port the teachers’ participation in the design process. 
The conceptual framework for development (CFD) 
is used to describe and justify the different activi-
ties that the researcher engages in together with the 
teachers. Finally, the conceptual framework for un-
derstanding (CFU) is used to understand the outcomes 
of an intervention in order to decide how proceed 
in the next cycle. While the conceptual frameworks 
for development and understanding (CFD and CFU) 
naturally share similarities, since they both put focus 
on the design process, the methodological framework 
for professional development should be regarded as 
a separate framework for organizing and supporting 
the teachers’ professional development. 

The different frameworks in this approach consist of 
multiple theoretical components. In order to consider 
how they interact, the categorization presented by 
Prediger, Bikner-Ahsbahs, and Arzarello (2008) was 
used. In their landscape of different levels of integra-
tion, the authors present a scale ranging from one ex-
treme of ignoring other theories to the other extreme 
of unifying theories globally. Those strategies that are 
intermediate are called networking strategies and 
include strategies such as comparing, combining, coor-
dinating and integrating locally. According to Prediger 
and colleagues (2008), the strategies of coordinating 
and combining are mostly used for a networked un-
derstanding of an empirical phenomenon or a piece 
of data and are typical for conceptual frameworks 
that, as in our case, not necessarily aim for a coherent 
theory. While comparing and contrasting always are 
possible the strategies of coordinating and combining 
can be a more difficult task especially if the theories 
are not compatible relative a specific purpose. The co-
ordinating strategy is in turn used when a conceptual 
framework is built on well-fitting theoretical elements 
(ibid). The networking strategies used in this study 
were comparing and coordinating.

THE BACKGROUND OF THE CASE STUDY

The participating teachers were involved in a develop-
mental project in their school related to how ICT could 
enhance their students’ learning of mathematics. As 
part of this project, the teachers participated in a one-
day event with lectures and hands-on learning activi-
ties developed by researchers from media technology 
and mathematics education. One specific learning 
activity was designed to stimulate students to com-
municate, collaborate and generate general problem 
solving strategies (Sollervall & Milrad, 2012). Mobile 
phones were used in this activity to bridge between 
formal and informal learning spaces. During the dis-
cussions about this activity the teachers seemed to be 
more worried about the practical issues (e.g., handling 
the mobile phones) rather than the didactical issues. 
It seemed that the teachers perceived the didactical 
challenge of connecting between students’ activities 
outdoors and a mathematical content as unproblemat-
ic. In fact, a successful orchestration would depend on 
the quality of the student-generated artifacts as well 
as the teachers’ ability to orchestrate this remaining 
part of the activity performed indoors.

Figure 1: The adaptive frameworks for research and professional 

development
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Later on, two of the mathematics teachers from the 
school and a researcher from mathematics education 
met to discuss the prospects of developing new activ-
ities supported by ICT. The teachers expressed their 
concerns about their students’ inability to use the dis-
tributive law and wanted to address this issue. The 
teachers had themselves completed the above-men-
tioned activity, which also could be used to address 
students’ conception of the distributive law by con-
necting multiple representations (ibid). Using the ac-
tivity with this particular focus would not require any 
modifications of the activity itself but would require 
the teacher to orchestrate the activity towards this 
content. None of the teachers seemed to perceive this 
opportunity and the continued discussions revealed 
that they did not know about possible geometrical 
representations of the distributive law. These events 
influenced the direction of design process. Based on 
the overall goal of creating educational improvement, 
it seemed important for the researcher to address the 
teachers’ ability to use ICT for different goals and pur-
poses. This issue was perhaps more important than 
developing new activities with the teachers. With this 
pre-understanding the planning phase of the design 
was initiated.

METHODOLOGICAL FRAMEWORK FOR 
PROFESSIONAL DEVELOPMENT

The methodology of collaborative design based re-
search is at the same time a process of professional de-
velopment (Penuel et al., 2007) that should be regarded 
as gradual and difficult for the teachers (Guskey, 2002). 
In this case, the teachers’ insufficient understanding 
of mathematical representations was taken as a con-
straining factor for the teachers’ participation in 
the design process. To address this issue, two com-
plementary theories were used to guide and plan for 
the teachers’ professional development. One of the 
frameworks specifically focuses on knowledge for 
teaching mathematics: Mathematical knowledge for 
Teaching (Loewenberg Ball, Thames, & Phelps, 2008) 
and the other framework focuses on the affordances 
provided by ICT and on the integration of ICT in differ-
ent subject areas: Technological Pedagogical Content 
Knowledge (Koehler & Mischra, 2008). 

The strategy of comparing (Prediger et al., 2008) was 
used to identify common principles in these two the-
ories related to the use of ICT for supporting students’ 
learning of mathematics. Based on this comparison, 

the researcher decided to specifically support teach-
ers’ understanding of the affordances for representa-
tion provided by ICT. The idea was to use the dynamic 
geometry software GeoGebra (www.geogebra.org) 
to develop an application, with focus put on provid-
ing affordances for representation, that the teachers 
could use later in a learning activity to address their 
students’ conception of the distributive law. Thus, 
depending on the user, the software was used with 
different purposes. 

CONCEPTUAL FRAMEWORK 
FOR DEVELOPMENT

Inspired by the work of Duval (2006) the dynamics 
of GeoGebra is used in the application to illustrate 
how numerical expression can be interpreted and 
represented geometrically (Figure 2). 

The teachers were not familiar with the software so 
the application was designed for them as end-users 
to operate only by using “click and drag” features. 
Even if the teachers were provided with the appli-
cation, the teachers needed to create a hypothetical 
learning trajectory (HLT), i.e. “the consideration of the 
learning goal, the learning activities, and the thinking 
and learning in which students might engage“ (Simon, 
1995, p. 133). In other words, while the researcher took 
responsibility for the didactical design (the applica-
tion), the pedagogical design was intended for the 
teachers to decide. 

When the application was presented to the teachers 
they wanted immediate access to it. They seemed to 
recognize the limitations of the explanations that 
they normally used that were exclusively based on 
instructions on how to manipulate different varia-
bles. They also agreed on using the application with 

Figure 2: Snapshot of the application, implemented in GeoGebra
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their students but they never did. Therefore, there 
was an additional meeting where the researcher 
demonstrated a possible way to use the application 
in a learning activity. The demonstration was followed 
by a discussion about possible ways to orchestrate the 
interplay between different representations and the 
dynamical affordances (dragging mode, show/hide 
figures) supported by the application. By discussing 
related pedagogical issues and offering the teachers 
opportunities to adapt the application according to 
their needs, the researcher wanted to challenge the 
teachers to create their own hypothetical learning 
trajectory (HLT). The teachers were offered additional 
support on how to adapt or use the application but the 
teachers did not use this possibility. In the following 
section, the crosscutting features of the enacted les-
sons will be presented. 

The teachers used different interpretations of mul-
tiplication simultaneously and alternately without 
making explicit why and when an interpretation was 
preferable in some situations and not in others. This 
lack of explicitness resulted in vague connections be-
tween the numerical and geometrical representations. 
Justifications were based on computations or algebra-
ic manipulations instead of referring to the available 
geometrical representations in the application. When 
the teachers became uncertain on how to proceed 
with the activity they tended to rely more on the more 
familiar numerical and algebraic representations to 
maintain the flow of the lesson. A significant part of 
the lessons was also dedicated to what seemed to be 
other more familiar activities such as formulating 
expressions for area and perimeter. Furthermore, the 
teacher-initiated communication with the students 
did not seem to support a discussion on how and why 
things work the way they do. Occasional misinter-
pretations of students’ responses, not acknowledging 
their responses as correct, and not connecting their 
responses to the available representations, further 
contributed to the activity not proceeding as intended. 

In summary, the CFD was developed by using the net-
working strategy of coordinating (Prediger et al., 2008) 
theoretical components (i.e., mathematical representa-
tions, GeoGebra and HLT) for practical reasons without 
aiming for a deeper integration. The purpose of this 
framework was to outline the theoretical underpin-
nings of the activities with the teachers. In contrast to 
the other components in the CFD, the notion of hypo-

thetical learning trajectory (HLT) was not presented 
explicitly to the teachers. 

CONCEPTUAL FRAMEWORK 
FOR UNDERSTANDING

The enacted lessons were also different compared to 
the suggestions the teachers had themselves when 
discussing different ways to orchestrate a lesson 
supported by the application. During the first two 
phases of this design cycle, the focus was on differ-
ent types of teacher knowledge but the crosscutting 
features of the lessons revealed another dimension. 
How does teacher knowledge come into play in the 
moment of teaching? Why did the teachers not make 
use of the ICT-supported affordances for connecting 
representations? To address these emerging ques-
tions the researcher decided to go beyond the theories 
of representation and different categories of teacher 
knowledge used previously and focus on the teachers’ 
overt orchestration of the lessons. In other words, a 
different representation was chosen to evaluate the 
design process and in particular the teachers’ profes-
sional development.

Developing the CFU
A different conceptualization of knowledge was found 
in the Anthropological Theory of the Didactic (ATD). 
In this theory a body of knowledge, a praxeology, con-
sists of two inseparable blocks, the praxis and the logos. 
The praxis block refers to the kind of given tasks that 
you aim to study and the different techniques used to 
face these problematic tasks. In this sense, the praxis 
block represents the “know-how” of the praxeology. 
The logos block provides a discourse that is struc-
tured in two levels with the purpose to justify the 
praxis. The first level of the logos is the technology, 
which provides a discourse about the technique. The 
second level of the logos is the theory, which provides 
a more general discourse that serves as explanation 
and justification of the technology itself (Chevallard, 
2007) by providing a framework of notions, proper-
ties and relations to organize and generate technol-
ogies, techniques and problems (Barbé et al., 2005). 
The praxeology is the minimal unit of human activity

The ATD includes the study of didactic transposi-
tions processes, which concerns the transformation 
of knowledge through different institutions. The 
transposition is a process of de-constructing knowl-
edge and rebuilding different elements of knowledge 
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into a more or less integrated whole with the aim of 
establishing it as “teachable knowledge” while trying 
to keep its character and function (Bosch & Gascón, 
2006). It consists of the four following steps; scholarly 
knowledge, knowledge to be taught, taught knowledge 
and learned knowledge. The notion of didactical trans-
position provided a new way of putting the interven-
tion into perspective. As the researcher provided the 
teachers with competence development in terms of 
the didactical value of multiple representations, the 
focus of this design cycle was on the step between 
intended and enacted knowledge, that is, between 
knowledge to be taught and taught knowledge (shad-
ed in Figure 3). The researcher could therefore use 
the recordings of the enacted lessons to understand 
the teachers’ professional development from this new 
perspective. 

Moreover, teaching is a didactic type of task that teach-
ers can solve in a complex process of didactic trans-
position by using a set of available resources (didacti-
cal techniques), both external resources (curriculum, 
textbooks, tests, ICT-tools, colleagues, manipulatives, 
etc.) and teachers’ internal resources that in our case 
of ICT-supported instruction could be related to tech-
nological-pedagogical content knowledge (Koehler & 
Mischra, 2008). The logos block of a didactical prax-
eology then serves as means to describe and justify 
teaching and learning practices in the considered 
institution (Rodríguez, Bosch, & Gascón, 2008). 

A specific adaptation to the new empirical data was 
to replace the notion of HLT by the notion of rou-
tines (Berliner, 2001) with focus on the IRE sequence 
(Initiate, Response, Evaluate). The IRE sequence is a 
three-part pattern where the teachers ask a question, 
students reply, and teachers evaluate the response or 
gives feedback (Mehan, 1979; Schoenfeld, 2010). In its 
most basic form the teacher initiates the sequence by 
posing a question to a student to which the teacher 
already knows the answer. The student then replies 
and the teacher evaluates by using phrases such as 

“yes” or “that’s fine” and continues with the next ques-
tion or next problem. Communicational exchange 
patterns, such as the IRE sequence, can be regarded 
a didactical technique that teachers use in the creation 
of a mathematical praxeology. This adaptation was 

made in order to better describe the teachers’ overt 
orchestration of the lessons and especially the com-
munication patterns between teachers and students. 
This theoretical component was further developed 
in a second design cycle into a didactical resource 
(Perez, 2014).

The role of representation is multifaceted. From one 
perspective it is a generic property of many ICT tools 
(Koehler & Mischra, 2008). From a second perspec-
tive, mathematical representations have important 
didactical affordances (Ainsworth, 1999), and finally 
representations are essential to mathematics as a dis-
cipline (Duval, 2006). Thus, mathematical representa-
tion is closely related to both praxis and logos of a 
mathematical praxeology. In addition, instructional 
strategies that systematically focus on knowledge 
about representations could be conceptualized as an 
element of a didactical technique and consequently a 
part of a didactical praxeology. Thus, depending on 
the purpose in which representations are used, the 
role of representation for a discipline as mathemat-
ics could be attributed to both a mathematical and 
a didactical praxeology. Thus, representations were 
placed within the notion of praxeology instead of be-
ing treated as a separate theoretical component as in 
the CFD. These adaptations allowed the researcher 
to provide a more comprehensive description of the 
crosscutting features of the enacted lessons and to 
understand the teachers’ professional development. 

In summary, the conceptual framework for under-
standing (CFU) consists of several theoretical compo-
nents where the ATD is used as overarching perspec-
tive. The CFU was developed by using the strategy 
of coordinating different theoretical components 
(Prediger et al., 2008). To achieve this, the theoretical 
components of representations and routines (the IRE 
sequence) were interpreted as knowledge resources 
in accordance with the ATD and its focus on the epis-
temic dimension of teaching and learning processes 
in different institutions.

Evaluating the first design cycle
The theoretical notions provided by the CFU allowed 
the researcher to capture the essence of this part 
of the design process and to better understand the 

Figure 3: The transposition of knowledge
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crosscutting features of the enacted lessons. The re-
searcher’s intention was to introduce the geometrical 
representation as a technological element in a math-
ematical praxeology. Instead, the teachers used the 
application to allow the students to work with more 
open-ended tasks. The result was that only some as-
pects of knowledge (praxis) were addressed during 
the lessons. Furthermore, the didactical techniques 
used by the teachers did in many cases not support 
the creation of a mathematical praxeology including 
a well-developed logos discourse. In other words, the 
underlying principle-based learning objectives did 
not survive the transposition from how the research-
er intended the application to be used and how it was 
actually used by the teachers. The step from knowl-
edge to be taught and taught knowledge in the didac-
tical transposition proved to be a greater challenge 
requiring more scaffolding than the researcher had 
anticipated and planned for (in the MFPD). With this 
understanding, a new design cycle could be initiated.

SUMMARY

In this research the possibility of viewing design re-
search as incremental and adaptive has been consid-
ered. For example, the common goal of designing a 
new activity supported by ICT was adapted to include 
the teachers’ ability to use ICT for different purposes. 
Thus, the researcher decided to address the teachers’ 
understandings of the affordances for representa-
tion and communication provided by ICT and used 
the software GeoGebra for this purpose. Towards the 
end of the design cycle, additional adaptations were 
made in order to meet the emerging challenges orig-
inating from the teachers practices. New theoretical 
notions were introduced and others were replaced in 
order to evaluate design process from a prospective 
view – what could be done differently in the next cy-
cle? This resulted in a more comprehensive conceptu-
al framework for understanding (CFU) based on the 
Anthropological Theory of the Didactic (ATD). The 
ATD served as an overarching theoretical perspec-
tive although only some aspects of the ATD have been 
particularly highlighted in this research project. The 
flexibility of the ATD allowed the researcher to attend 
to all the didactical issues that the researcher decided 
to pursue during the research process. 

It is important to stress that adaptability should not 
be interpreted as a matter of searching for whatever 
works in the current situation. Instead, it is about the 

problematic task of assuring that the activity of in-
quiry is meaningful relative to the research objectives, 
i.e. the problem of developing systems guarantors 
(Churchman, 1971). This is a basic problem for any 
researcher but in this case, the problem of guaran-
tors was not settled a priori and once and for all. The 
design problem of knowing when and how to revise 
becomes therefore even more difficult because there 
is no a priori authority to rely on. Instead, the deci-
sion to pursue a revision depends on an ambition to 
improve the performance of the system according 
to a specific measure and relative to the purpose 
(Churchman, 1971). Furthermore, when the system 
has been revised a new measure may be adapted to the 
new system. In order to make such tactical decisions, 
the researcher must be prepared to consider a “whole 
breadth of inquiry in its attempt to authorize and 
control its procedures” (ibid. p. 196). In other words, 
the development of adaptive conceptual frameworks 
could be understood as a modeling process that aims 
at developing system guarantors while preserving 
a high level of complexity in order to achieve high 
ecological validity. 

Finally, the use of adaptive conceptual frameworks 
specifically affords transparency in the design pro-
cess by making explicit the levels at which different 
theories operate and how the system performance 
is evaluated. In other words, it allows the research-
er to cast light on how theory and practice interact 
throughout the design process. 
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The social learning theory of communities of practice 
is frequently used in mathematics education research. 
However, we have come to recognise that the theory is 
used in diverse ways, regarding both the parts that are 
used and the ways in which those parts are used. This 
paper presents an overview of this diverse use of the the-
ory based on three themes: Are communities of practice 
viewed as pre-existing or are they designed within the 
study? Are individuals or groups foregrounded in the 
study? Which parts of the theory are mainly used? The 
aim of the paper is twofold: to make visible the diverse 
possibilities within one single theory, and to make vis-
ible how, even though we might think we know what a 
theory implies in research, if we look beneath the surface 
we may find that “the same” theory can imply many 
different things. 

Keywords: Communities of practice, theory, social, 

learning, Wenger.

INTRODUCTION 

Since Etienne Wenger published his book Commu-
nities of Practice: Learning, Meaning, and Identity in 
1998, the notion of communities of practice has be-
come common in mathematics education research as 
well as in other areas of educational research. Both 
authors of this paper have been using Wenger’s social 
theory of learning in research within mathematics 
education. In reading other researchers’ work we 
have discovered that the theory of communities of 
practice is frequently used in mathematics education, 
but there are many differences regarding both which 
parts are used and how those parts are used. In this 
paper, we will explore some of the ways in which the 
theory of community of practice is used in different 
mathematics education studies. The aim of this is 
twofold: to make visible the diverse possibilities and 
uses of one single theory, and to make visible how we 

in research may think we know what using a specific 
theory in a study implies, but when we look beneath 
the surface we may find that “the same” theory can 
imply different things to different researchers. 

The notion of communities of practice has been inves-
tigated and discussed before, for example by Kanes 
and Lerman (2008). They investigated similarities 
and differences in how the notion is used by Lave 
and Wenger (1991) and by Wenger (1998), respec-
tively. (However, we find Kanes and Lerman’s (2008) 
description of Wenger’s communities of practice 
very different from our own interpretation and the 
interpretations we found when preparing this paper.) 
In this paper, we focus only on research referring to 
Wenger’s 1998 book, in which he writes that his aim 
is to present a conceptual framework where learning 
is placed “in the context of our lived experience of 
participation in the world” (p. 3). In this paper, we will 
not present Wenger’s theory more than that, in order 
to avoid imposing our own interpretations of which 
concepts are the main ones in his theory. Instead, the 
use of communities of practice will be explored ac-
cording to the differences we found when reading 
other researchers using Wenger’s theories. Hence, 
the exploration is divided based on the following 
three themes: Are communities of practice viewed 
as pre-existing or are they designed within the study? 
Are individuals or groups foregrounded in the study? 
Which parts of the theory are mainly used? These 
three themes will be presented under each heading 
followed by a concluding discussion.

SELECTION OF STUDIES

Our selection of studies to explore was limited to those 
focusing on mathematics teaching or learning and/
or mathematics teachers’ professional development. 
We searched 19 databases, using the search words 
communities of practice, mathematic* and/or teach*; 
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the search was limited to peer reviewed journals or 
books. From this selection, consisting of more than 
8000 articles, we limited the search to communities 
of practice and mathematic* and/or Wenger; although 
that reduced the number of articles, there were still 
too many in some of the databases. We then removed 

“or” teach*. Thereafter we were able to browse through 
all the titles and keywords to find a selection of re-
search articles using communities of practice. This 
selection is not at all comprehensive, however, the 
purpose is not to generalise but to illustrate some of 
the differences we have found. Wenger’s theory is 
also used frequently in studies within economy and 
management, but such studies are not explored in 
this paper. 

Due to space limitations, this paper cannot present all 
the articles we have read; instead, we present articles 
that together illustrate the differences we found based 
on our three themes. The following ten studies will be 
discussed in relation to the three themes in the paper: 
Bohl and Van Zoest (2003); Corbin, McNamara and 
Williams (2003); Cuddapah and Clayton (2011); Cwikla 
(2007); Franke and Kazemi (2001); Goos and Bennison 
(2008); Graven (2004); Hodges and Cady (2013); Pratt 
and Back (2009) and Siemon (2009).   

DESIGNED OR PRE-EXISTING 
COMMUNITIES OF PRACTICE

Some studies using Wenger’s social theory of learn-
ing view communities of practice as pre-existing. 
In some other studies, for example, Bohl and Van 
Zoest (2003), Cuddapah and Clayton (2011), Goos and 
Bennison (2008), Hodges and Cady (2013) and Franke 
and Kazemi (2001), communities of practice are de-
signed by the researcher(s).

In the study by Goos and Bennison (2008), a web-based 
community of practice is designed within teacher ed-
ucation. After graduation, interaction in the commu-
nity of practice continues through the web-based tool 
developing an “online community” (p.41). In their arti-
cle, Goos and Bennison discuss the issue of emergent 
versus designed communities of practice. Although, 
in their study Goos and Bennison design the external 
frames for the community of practice, their interest 
is in whether or not the web-based community devel-
ops into a community of practice. To give the commu-
nity the best chance to develop into a community of 
practice on its own, the researchers provide only a 

minimum of structure concerning how community 
members are to communicate using the web-based 
tool. As such, they design a community, but it is its 
emergence as a community of practice they investi-
gate in their study. 

Hodges and Cady (2013) seek to expand on the work 
of Goos and Bennison (2008) by investigating the de-
velopment of communities of practice within a pro-
fessional mathematics teacher’s development initia-
tive. In this study a web-based tool is used to “foster 
the development of communities of practice” (p. 302). 
Hodges and Cady design a virtual space in order to see 
the emergence of communities of practice. However, 
unlike Goos and Bennison (2008), Hodges and Cady do 
not highlight the issue of an emergent or a designed 
community, even though the emergence of potential 
communities of practice is in focus. 

Cuddapah and Clayton (2011) design a community 
of practice by arranging physical sessions with a 
group of novice teachers. They focus on one of sev-
eral groups of novice teachers that, within a univer-
sity-sponsored project, meet every second week. The 
novice teachers meet 15 times during the study. Every 
session has a theme and the sessions are planned and 
led by experienced educators. Cuddapah and Clayton 
write that the group of novice teachers “itself was a 
community” (p. 69) and they use Wenger’s theories to 
analyse the development of the group and its function 
as a resource for new teacher support. In their anal-
ysis they present how the “community was observed 
throughout and between the data” (p. 72). As such, 
the group of novice teachers being a community of 
practice was both a precondition and a result of their 
analysis. 

A fourth example of researchers who design com-
munities of practice is Franke and Kazemi (2001). In 
their study they design communities of practice with 
mathematics teachers with the purpose of providing 
teachers with opportunities to learn about mathemat-
ics teaching and learning. The teachers in this study 
do mathematical tasks with their students in their 
classrooms and then they meet and discuss their expe-
riences. The researchers take part in the discussions 
and they also visit the teachers at their schools sever-
al times. Franke and Kazemi do not describe why or 
how the group of teachers is a community of practice, 
but they analyse and describe the interactions in the 
group connected to teacher professional development.
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Examples of studies in which communities of practice 
are treated as pre-existing, developed before the study 
began and without the influence of the researchers, 
are studies by Bohl and Van Zoest (2003), Corbin and 
colleagues (2003), Cwikla (2007), Graven (2004), Pratt 
and Back (2009) and Siemon (2009). In some studies 
the communities of practice are identified in the re-
search process based on concepts from Wenger’s the-
ory, whereas other studies do not explain how they 
are identified as communities of practice. 

Bohl and Van Zoest (2003), Graven (2004), Corbin and 
colleagues (2003), Cwikla (2007) and Pratt and Back 
(2009) are examples of studies where communities of 
practice are viewed as pre-existing at the start of the 
study, where the researchers do not explain how the 
communities have been identified as such. 

Bohl and Van Zoest (2003) analyse how different com-
munities of practice in which novice teachers par-
ticipate influence their mathematics teaching. They 
give an empirical example of one novice teacher, in 
relation to whom they discuss differences in the role 
of novice teachers in different communities of prac-
tice, but they do not present how they identified these 
as communities of practice, nor do they explain how 
they identified the novice teacher’s membership in 
these communities. 

Graven (2004) investigates teacher learning in a 
mathematics in-service program. In this study an 
in-service program is considered to be a community 
of practice, but it is not explained how this commu-
nity of practice has been identified as such. This is 
also the case in the study of Corbin and colleagues 
(2003), who investigate numeracy coordinators in an 
implementation of a national numeracy strategy. They 
use the notion of communities of practice as a tool 
to describe the participation of the coordinators in 
different communities, but they do not explain how 
they define the communities. 

Pratt and Back (2009) investigate participation in 
interactive discussion boards designed for mathe-
matics students. They simply state that “two ideal-
ised communities of practice” (p. 119) were adopted 
as a means to understand the discussion boards. How 
these communities were created and why they can 
be seen as such is not explained. They even describe 
the communities of practice as “hypothetical com-
munities” (p. 128). Cwikla (2007) uses the concept of 

communities of practice in her study of the evolution 
of a middle school mathematics faculty. The concept of 
communities of practice is used to identify boundary 
encounters, but the article does not present any defi-
nition of communities of practice, nor does it specify 
which communities of practice are identified within 
the study. 

Siemon (2009) is an example of a study where commu-
nities of practice are viewed as pre-existing at the start 
of the study, but where the researcher explains how 
the communities of practice have been identified as 
such. Siemon (2009) investigates improvements in in-
digenous students’ numeracy skills after they worked 
on key numeracy issues in their first language. Three 
pre-existing communities of practice are described 
and it is explained, using Wenger’s concepts, why 
these are considered to be communities of practice. 
In the study, the intersection between the acknowl-
edged pre-existing communities of practice is inves-
tigated. The members of these communities are not 
described in detail, only as, for example “members of 
the local Indigenous community” (p. 225), or “all those 
that by virtue of their responsibilities are concerned 
in some way with school mathematics” (p. 225). The 
intersection between the communities of practice is 
not highlighted, although the author states that the 
edges of the communities took time to emerge. 

FOCUS ON INDIVIDUALS OR GROUPS  

Wenger’s theory makes it possible to foreground 
groups (communities of practice) or individuals 
(learning and/or identity) or both. Since Wenger’s 
theory is very broad and yet detailed, it is not surpris-
ing that either groups (communities of practice) or 
individuals are foregrounded in the studies. Wenger 
explains that this is not a “change of topic but rath-
er a shift in focus within the same general topic” (p. 
145). Franke and Kazemi’s (2001) study is an excep-
tion, however, and an example of “both” since they 
analyse both the interaction within the community of 
practice and the identity development of individual 
participants.    

In the studies by Cwikla (2007), Cuddapah and Clayton 
(2011), Goos and Bennison (2008), Hodges and Cady 
(2013) and Siemon (2009), groups of teachers are 
in the foreground and individuals are in the back-
ground or are not mentioned as individuals at all. Bohl 
and Van Zoest (2003), Corbin and colleagues (2003), 
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Graven (2004) and Pratt and Back (2009), however, 
foreground the individuals, trying to understand how 
they are influenced by the different communities of 
practice in which they participate. 

The issue of communities of practice or individuals 
being foregrounded in the studies as presented in this 
section is connected to which parts or concepts from 
Wenger’s theory are used in the analyses, which is the 
focus of the next section.  

WHICH PARTS OF THE THEORY 
ARE MAINLY USED?

Another consequence of Wenger’s theory being very 
broad and yet detailed is that researchers focus on and 
use smaller parts of the theory, selecting just some of 
the concepts within it. 

Graven (2004) uses the concepts of practice, mean-
ing, identity, and community to describe and explain 
teacher learning. These four concepts are, accord-
ing to Wenger “interconnected and mutually defin-
ing” (p. 5). Graven also mentions Lave and Wenger’s 
(1991) concepts of co-participation and participation, 
but these are not used in her analysis. Even though 
Graven describes communities of practice in her 
study, the “three dimensions” (p. 72) that according 
to Wenger are the source of a community of practice, 
mutual engagement, joint enterprise and shared reper-
toire, are not used. However, Graven instead wants to 
add confidence as a supplement to practice, meaning, 
identity, and community.   

Cuddapah and Clayton, like Graven (2004), initially 
refer to Lave and Wenger (1991) but to the concept 
of legitimate peripheral participation. They discuss 
this concept as one that can be used when analysing 
novice teachers as newcomers in teaching. However, 
as all novice teachers in their study are new members 
of a new community of practice designed by the re-
searchers, they instead, like Graven (2004), use prac-
tice, meaning, identity, and community when coding 
their empirical material. They briefly mention the 
concepts of mutual engagement, joint enterprise and 
shared repertoire, but they do not use them in their 
analysis. 

Those three concepts, mutual engagement, joint en-
terprise, and, shared repertoire, are used by Goos and 

Bennison (2008), Hodges and Cady (2013) and Siemon 
(2009) in their studies. As shown in the last section, 
these three studies have communities of practice in 
the foreground. Goos and Bennison (2008) use the 
three concepts when they analyse the emergence of 
their designed web-based community of practice. To 
investigate mutual engagement they count the num-
ber of interactions in the web-based tool. By analysing 
the content in these interactions they also investigate 
the joint enterprise and the shared repertoire that 
develops. Siemon (2009) uses the three concepts by 
making lists of what it is in the different communi-
ties of practice identified in the study that indicates 
joint enterprise, mutual engagement and a shared 
repertoire. Consequently, in her study communities 
of practice are pre-existing, but she defines them by 
mutual engagement, joint enterprise and shared rep-
ertoire. Three communities of practice are acknowl-
edged this way. Hodges and Cady (2013) use the three 
concepts in the same way, but their approach is some-
what different. They use the concept in order to find 
and/or see development of communities of practice 
in a designed web-based tool. In their analysis they 
look for evidence of joint enterprise, mutual engage-
ment and a shared set of ways of interacting in order 
to see if a community of practice has been developed. 
As such, the concepts of mutual engagement, joint 
enterprise and shared repertoire are used to identify 
both designed (Goos & Bennison, 2003; Hodges & Cady, 
2013) and pre-existing (Siemon, 2009) communities 
of practice. 

In addition to mutual engagement, joint enterprise 
and a shared repertoire, Siemon (2009) also uses 
Wenger’s concept of negotiation of shared meaning 
when referring to a space where the participants in 
the different communities of practice can meet. This 
space is used both as a place to negotiate meaning and 
as a research tool to “explore the processes involved 
in building community capital” (p. 226). Furthermore, 
Siemon uses the concept of boundary objects when 
defining Probe Tasks as a boundary object in the ne-
gotiation described above (a Probe Task is described 
in the paper as a specifically chosen or designed task 
to support indigenous teacher assistants as they teach 
key aspects of number). Cwikla (2007) also uses the 
concept of boundary objects. In her investigation of the 
evolution of a middle school mathematics faculty, she 
uses this concept together with the concept of brokers, 
which is also from Wenger. She mentions communi-
ties of practice, but she does not define them. When 
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using the concept of brokers, she refers to Wenger’s 
definition, stating, “a broker can serve as a conduit for 
communication and translation between communi-
ties of practice” (p. 558). Corbin and colleagues (2003) 
also use the concept of brokering when investigating 
numeracy coordinators in an implementation of a 
national numeracy strategy. The concept is used to 
theorise tensions in the work of the coordinators. 
Corbin et al. find signs of brokering in their analysis 
by using three more of Wenger’s concepts: the modes 
of belonging: engagement, alignment and imagination. 
Pratt and Back (2009) also use the concepts of engage-
ment, alignment and imagination in their analysis. 
They also use Lave and Wenger’s (1991) concept of 
legitimate peripheral participant as well as peripher-
al and central participation in their analysis. These 
concepts are used to describe a person’s participa-
tion, and changes in participation, in two different 
communities of practice. 

Bohl and Van Zoest (2003) mention that communities 
of practice develop through mutual engagement, joint 
enterprise and shared repertoire, but in their analysis 
they use two other concepts of Wenger’s: modes of 
participation (their term for what Wenger refers to 
as modes of belonging) and regimes of accountability. 
They use these two concepts to analyse how novice 
teachers have different roles in different communities 
of practice and how this influences their mathematics 
teaching. 

As mentioned, Franke and Kazemi (2001) analyse both 
the interaction in one community of practice and 
the identity development of individual participants. 
However, they do this without explicitly using any of 
Wenger’s concepts. The artefacts they mention are 
not identified explicitly as artefacts used by Wenger 
but as used in sociocultural theories in general. They 
also mention identity and negotiation of meaning, both 
of which are thoroughly elaborated by Wenger, but 
they do not refer explicitly to how the concepts are 
used by Wenger. As such, Franke and Kazemi refer 
to, and use, Wenger’s social theory of learning, but 
not explicitly or solely; rather, they present it as part 
of a general sociocultural view of learning. 

Overall, several of Wenger’s concepts are used in the 
studies presented in this paper, including practice, 
meaning, identity, community, mutual engagement, 
joint enterprise, shared repertoire, modes of belonging, 
engagement, alignment, imagination, identity, broker-

ing, negotiation of meaning, boundary objects, regimes 
of accountability, co-participation and participation. 
However, seldom are more than three or four concepts 
used in the same study. Since the theory is broad and 
yet detailed, it is not surprising that researchers fo-
cus on and use only parts of it. Even so, none of the 
articles referred to in this paper draws attention to 
the fact that only certain parts of Wenger’s theory will 
be used. Neither do they discuss the eventual conse-
quences of not using the theory in its entirety. Hence, 
anyone reading only one of the articles may easily 
believe that the whole of Wenger’s theory is used.  

DISCUSSION

As seen in the examples in this paper, Wenger’s so-
cial theory of learning is used in different ways in 
different studies. Wenger (1998) terms his work a 

“conceptual framework” (for example, p. 5), a “social 
theory of learning” (for example, p. 4) and/or a “per-
spective” (for example, p. 3). According to Eisenhart 
(1991), there are three kinds of research frameworks: 
theoretical, practical and conceptual. Eisenhart dis-
tinguishes these as theoretical frameworks based on 
formal logic, practical frameworks based on practi-
tioner knowledge and conceptual frameworks based 
on justification. Somehow Wenger’s social theory 
of learning comprises all three of these features. 
According to Niss (2007), theories are stable, coherent 
and consistent systems of concepts that are organised 
and linked in hierarchal networks. Those criteria ap-
ply to the content of Wenger’s book. However, when 
researchers use only some of Wenger’s concepts the 
criteria are no longer met. Furthermore, Niss (2007) 
writes that one purpose of theories “is to provide a 
structured set of lenses through which aspects or parts 
of the world can be approached, observed, studied, 
analysed or interpreted” (p. 100). The diverse uses of 
Wenger’s social theory of learning presented in this 
paper show that the structured set of lenses used in 
these studies differ substantially.  

According to Lester (2005), a framework provides 
structure in research when it comes to the questions 
being asked and the concepts, constructs and pro-
cesses being used. Connected to the overview in this 
paper, the use of Wenger’s social theory of learning 
appears to coincide with the first (questions), but 
not the rest. Even though the use of Wenger’s social 
theory of learning differs in the studies presented 
in this paper, one similarity is the type of questions 
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asked. These questions imply that the theory is con-
sidered suitable for studies of mathematics teachers’, 
novice teachers’, student teachers’ and/or students’ 
learning. Furthermore, in several of the studies (for 
example, Bohl & Van Zoest, 2003; Siemon, 2009) the 
social dimension of learning provided by Wenger is 
emphasised as its main strengths. As such, the use of 
Wenger’s theory in mathematics education research 
seems to be part of the “turn to social theories in the 
field of mathematics education” (Lerman, 2000, p. 20). 
According to Lerman (2000), social theories make it 
possible to foreground individuals (practice in per-
son) or practice (person in practice). However, both 
elements (person and practice) are always present and 
part of the analysis, which is in line with Wenger’s 

“shift in focus within the same general topic” (p. 145).  

As shown in this paper, there are differences in the 
presented studies in terms of communities of practice 
being viewed as pre-existing or designed as well as 
communities of practice being identified based on 
Wenger’s concepts or not. In his book Wenger actually 
writes that since communities of practice are about 
content and negotiation of meaning – and not form – 
they are not “designable units” (p. 229). That is, accord-
ing to Wenger, it is possible to design the outer limits 
but not the practice that may, or may not, emerge. As 
presented above, there is also diversity with respect 
to whether individuals or (communities of ) practice 
are in the foreground. As also shown, there are dif-
ferences regarding which of Wenger’s concepts is 
used, even when the same perspective (individuals 
or communities of practice) is in the foreground. In 
terms of the concepts used, we were surprised by the 
rare presence of reification and negotiation of meaning, 
as these two concepts recur frequently throughout 
Wenger’s book. Furthermore, there are many other 
concepts of Wenger’s that are not used in any of the 
studies we read, including local/global, identification, 
economies of meaning, ownership of meaning and tra-
jectories.

Finally, what can be learned from this overview of 
how Wenger’s social theory of learning is used in 
different ways in mathematics education research? 
Well, often we (think that we) know what researchers 
imply when they say they have been using a specific 
theory in their research. However, from the overview 
presented in this paper, we know that if a researcher 
says that (s)he has been using Wenger’s social theory 
of learning, we can be quite sure that we do not know 

exactly what that use of Wenger’s theory might im-
ply. In this paper, we have highlighted some of the 
diverse uses of Wenger’s social theory of learning 
based on three themes: Are communities of practice 
viewed as pre-existing or are they designed within 
the study? Are individuals or groups foregrounded 
in the study? Which parts of the theory are mainly 
used? Probably further comparisons based on other 
themes will reveal other diversities. Further, based on 
the breadth and wealth of details in Wenger’s social 
theory of learning, the list of themes and diversities 
may become quite long.  
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The aim of this study is to bring a socio-cultural dimen-
sion to “instrumental orchestration” framework. Our 
claim is that social and socio-mathematical norms 
endorsed by teachers are crucial for their pedagogies. 
A case study was designed to investigate how orchestra-
tion types and norms affect each other in technology-en-
hanced learning environments. Participants are five 
pre-service mathematics teachers. Data were collected 
through lesson plans, semi-structured interviews and 
observations. Analysis of data indicates that there is a 
two-way interaction between norms and orchestration 
types. In some cases, norms are determinants of orches-
tration types used by participants. In other cases, orches-
tration types challenge participants’ endorsed norms.

Keywords: Socio-cultural approach, Social norm, Socio-

mathematical norm, Instrumental orchestration. 

INTRODUCTION

Recently, mathematics teaching in technology-en-
hanced environments has been widespread and math-
ematics teachers are faced with a large number of re-
sources (Drijvers, 2012). Various official curriculum 
documents around the world emphasise the impor-
tance of using technology to support learning (NCTM, 
1999, 2000; DfES, 2013a, 2013b). This requires certain 
knowledge and pedagogy. For example, International 
Society for Technology in Education describes tech-
nology standards and performance indicators for 
teachers. Teachers should be able to “plan and design 
effective learning environments and experiences sup-
ported by technology” (ISTE, 2000, p. 9). 

Teachers play a key role in effective use of technology 
in the classroom and the way they integrate technolo-
gy into teaching affects the way students learn math-
ematics (Ely, 1996, as cited in Besamusca & Drijvers, 
2013). Therefore, mathematics teachers and teacher 

educators should be guided for the design of learning 
environments using technological tools and resources 
(Şay, Kozaklı, & Akkoç, 2013). 

One of the theoretical frameworks to investigate 
the use of technological tools in the classroom is 

“instrumental orchestration” which is based on the 
framework of instrumental genesis (Trouche, 2004). 
Considering the literature on orchestration, it can be 
claimed that this theoretical framework focuses on 
classroom organisation but fall in short to explain 
psychological and sociological development of teach-
ers. Teachers and pre-service teachers have differ-
ent pedagogical approaches and go through different 
professional development phases. Therefore, an in-
vestigation of technology integration purely based 
on physical organisation of technology-enhanced 
learning environments and certain teacher behav-
iours is only one part of the whole picture. Teachers 
might have different norms and these affect the way 
they integrate technology into their lessons. However, 
there is little research in the literature on how teach-
ers’ activities in the classroom are shaped by their 
norms and very few of them investigated this in the 
context of technology. The aim of this study is to bring 
a socio-cultural dimension to instrumental orchestra-
tion. Socio-cultural theory aims to investigate human 
action and its relationship with cultural, institution-
al and historical situations. Therefore, it focuses on 
social interactions and the effects of culture on psy-
chological development (Wertsch, del Rio, & Alvarez, 
1995; Lerman, 2001). Technological tools can turn into 
effective instruments for learning mathematics via ef-
fective classroom interaction. Social and socio-mathe-
matical norms, as one of the aspects of socio-cultural 
theory, might take a role in shaping student-teach-
er-tool interaction in the classroom. Furthermore, 
they are also shaped by this interaction. Therefore, 
one could elucidate how teachers use technological 
tools by embracing a norm-perspective within so-
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cio-cultural approach. Our claim is that social and 
socio-mathematical norms (Višňovska ́, Cortina, & 
Cobb, 2007) endorsed by teachers are crucial for their 
pedagogies and their choices for different orchestra-
tion types. To support this argument, this study inves-
tigates the interaction between orchestration types 
used by pre-service mathematics teachers and social 
and socio- mathematical norms. 

INSTRUMENTAL ORCHESTRATION 

An instrumental orchestration is defined as the teach-
er’s intentional and systematic organisation and use of 
the various artefacts available in a learning environ-
ment in a given mathematical task situation, in order to 
guide students’ instrumental genesis (Trouche, 2004). 

Drijvers (2012) distinguishes three elements within 
an instrumental orchestration: a didactic configura-
tion, an exploitation mode and a didactical perfor-
mance. “A didactical configuration is an arrangement 
of artefacts in the environment, or, in other words, 

a configuration of the teaching setting and the arte-
facts involved in it” (p. 266). An exploitation mode is 
defined as the teacher’s decisions on the way she or 
he configures a task by providing certain roles for the 
artefacts to achieve his or her didactical intentions. 

A didactical performance involves the ad hoc de-
cisions taken while teaching on how to actually 
perform in the chosen didactic configuration and 
exploitation mode: what question to pose now, 
how to do justice to (or to set aside) any particular 
student input, how to deal with an unexpected as-
pect of the mathematical task or the technological 
tool, or other emerging goals (Drijvers, p. 266).

Drijvers and his colleagues (2010), Drijvers (2012) and 
Tabach (2013) distinguish ten types of instrumental 
orchestrations as seen in Table 1 (The last three or-
chestration types are not in the original table and 
were added from the literature). In this study, pre-ser-
vice teachers’ lessons will be analysed considering the 
orchestration types in this table.

The orchestration types Didactical configuration Exploitation mode

Technical-demo 
(Drijvers and his col-
leagues, 2010)

Whole-class setting, one cen-
tral screen

The teacher explains the technical details for using the 
tool.

Explain-the-screen 
(Drijvers and his col-
leagues, 2010) 

Whole-class setting, one cen-
tral screen

The teacher’s explanations go beyond techniques and 
involve mathematical content.

Link-the-screen board 
(Drijvers and his col-
leagues, 2010)

Whole-class setting, one cen-
tral screen

The teacher connects representations on the screen to 
representations of the same mathematical objects that 
appear either in the book or on the board.

Sherpa-at-work (Drijvers 
and his colleagues, 2010)

Whole-class setting, one cen-
tral screen

The technology is in the hands of a student, who brings 
it up to the whole class for discussion.

Not-use-tech (Tabach, 
2011)

Whole-class setting, one cen-
tral screen

The technology is available but the teacher chooses not 
to use it.

Discuss-the-screen 
(Drijvers and his col-
leagues, 2010)

Whole-class setting, one cen-
tral screen

Whole class discussion guided by the teacher to en-
hance collective instrumental genesis.

Spot-and-show (Drijvers 
and his colleagues, 2010)

Whole-class setting, one cen-
tral screen

The teacher brings up previous student work that he/
she had stored and identified as relevant for further 
discussion.

Work-and-walk-by 
(Drijvers, 2012)

Students work individually or 
in pairs with computers

The teacher walks among the working students, moni-
tors their progress and provides guidance as the need 
arises.

Discuss-the-tech-without-
it  
(Tabach, 2013)

Every students have own 
laptops or laptops bring class-
room with wheeled vehicles

The teacher uses mobile transport system if he/she 
needs computers in teaching

Monitor-and-guide  
(Tabach, 2011)

----- The teacher uses a learning management system by 
giving guidance to students

Table 1: Orchestration types (Tabach, 2013, p. 3)
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SOCIAL AND SOCIO-MATHEMATICAL NORMS

In mathematics education literature, it is widely rec-
ognised that social interaction promotes learning 
opportunities. Norms construct how students learn 
mathematics and how they become mathematical-
ly autonomous (Cobb & Bowers, 1999; Pang, 2000). 
Norms regulate the way teachers and students par-
ticipate in learning and teaching activities within a 
classroom culture (Cobb & Yackel, 1996). While norm 
emerges from social interaction; belief, value, opinion 
and attitude are concerned with the individual.

Cobb and Yackel (1996) propose social and socio-math-
ematical norms to investigate how students’ math-
ematical values and beliefs develop within the 
classroom culture from the psychological and so-
cio-cultural perspectives. Cobb and his colleagues 
(2007) also investigated teachers’ professional de-
velopment through social and socio-mathematical 
norms (Visnovska, Cortina, & Cobb, 2007). Social 
norms apply to any subject matter area. Students’ 
cooperation when solving problems or privileging 
a logical explanation over other correct answers are 
examples of social norms (Hershkowitz & Schwarz, 
1999). Another example is the way teachers promote 
students’ thinking and value different ideas. On the 
other hand, socio-mathematical norms are specific to 
mathematics and are concerned with the way math-
ematical beliefs and values develop in the classroom. 
For example, acceptability of a mathematical expla-
nation or a justification is a socio-mathematical norm 
(Yackel & Cobb, 1996; McClain & Cobb, 2001). 

METHODOLOGY

This study embraces the interpretive paradigm to 
investigate how orchestrations types and norms 
affect each other in technology-enhanced learning 
environments. A case study was designed to answer 
the research question. Participants are five pre-ser-
vice mathematics teachers who were enrolled in a 
teacher preparation program in a state university 
in Istanbul, Turkey. It was a four-month program 
which will award its participants a certificate for 
teaching mathematics in high schools for students 
aged between 15 and 18. The program accepts grad-
uates who have a BSc degree in mathematics. There 
were two kinds of courses in the program: educa-
tion and mathematics education courses. The study 
was conducted during “Instructional Technologies 

and Material Development” and “Teaching Practice” 
courses. The former course focused on six soft-
ware, namely Geogebra, Graphic Calculus, Derive, 
Geometry Sketchpad, Excel and Probability Explorer. 
Participants were involved in hands-on activities in 
front of a computer and prepared teaching materi-
als. Participants also taught lessons in partnership 
schools during “Teaching Practice” course. 

There were thirty-six participants in the program. 
They were all interviewed on their approach to the 
use of technology for teaching mathematics. Five par-
ticipants were purposefully selected. Two of them 
(one male and one female) had positive attitudes and 
two of them (one male and one female) had negative 
attitudes towards the use of technology. One partic-
ipant was selected because she had neutral attitude. 

The data collection methods are observation and 
semi-structured interviews. Each participant taught 
a total of five lessons in a partnership school. At least 
two of these lessons were technology-based. Each par-
ticipant taught at least two same classes of students. 
They were interviewed after their lessons. During 
the semi-structured interviews they were asked what 
kinds of norms they endorsed, how they used tech-
nology in their lessons and differences between their 
lessons with or without technology. Their lessons 
were video recorded. The first author of this paper 
observed lessons using an observation form. The 
aim of the observation form was to reveal social and 
socio-mathematical norms endorsed by pre-service 
teachers. Interviews and lesson videos were verbatim 
transcribed. Data from different sources such as inter-
views, observations and field notes were triangulated. 
Common themes emerged from verbal discussions 
among pre-service teachers and students, patterns 
in pre-service teachers’ behaviours and statements 
about their endorsed norms during the interviews. 
For instance, the socio-mathematical norm “Answers 
which are logical are acceptable’’ was determined con-
sidering pre-service teachers’ discussion with stu-
dents and how they defined “an acceptable answer” 
during the interview. 

FINDINGS

This section presents orchestration types and social 
and socio-mathematical norms used by participants. 
First we demonstrated how participants used orches-
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tration types and then how norms and orchestration 
types affected each other. 

The analysis of the data indicated that participants 
mostly used technical-demo, explain-the-screen, link-
the-screen-board, discuss-the-screen, Sherpa-at-work 
and not-use-tech orchestration types as seen in Table 2. 

Explain-the-screen promoted the social norm “the 
authority is the teacher”. For example, Mahir taught 
a lesson on parabolas using Geogebra software. He 
started his lesson by explaining how to draw a parab-
ola and adding a slide which is defined as the deter-
minant. He then moved the slide and explained what 
happened to the graph of parabola. At this stage he did 
not questioned the mathematical meanings behind 
what the software performed, but just explained how 
to use the software. 

When participants used link-the-screen, they ex-
plained a concept or a mathematical idea on the board 
followed by an elaboration using the software. For 
example, Orkun taught a lesson on how to draw the 
graph of y = sin x using Geometry Sketchpad. He first 
plotted a few points and then drew the graph on the 
board. However students claimed that points should 
be joint using straight lines. He then moved to the 
software and constructed a unit circle. He defined a 
point A on the unit circle and a point B which defines 
the sine function. Using “trace” feature, he obtained 
the graph of y = sin x. Up until now, the authority was 
the teacher. Therefore, it can be claimed that link-the-
screen orchestration type promoted this social norm. 
Afterwards he asked students how to draw y = cos x 
and y = tan x themselves. His question is an indication 
of a social norm “Students are challenged with the 
questions of why and how”. This social norm required 
using discuss-the-screen orchestration type.

Another participant who used discuss-the-screen 
discussed with their students the actions they per-
formed using the software. For example, Melek used 

Geometry Sketchpad to explain how to draw trigono-
metric functions. She first drew the graph of y = sin x 
and then asked one of her students to draw y = cos x. 
Later she discussed with her students how to draw 
y = tan x using the software and tried to reach a com-
mon ground (tan x = sin x/cos x): 

Melek: Is there anyone who wants to draw 
the tangent line? 

Student A: This time, we will construct a point 
with x and y (on the unit circle)...

Student B: Slope
Melek: What else? What is slope? One of 

the definitions is opposite over 
adjacent. It’s the ratio of opposite 
side over adjacent side or what is 
tan x?

Student C:  sin x over cos x
Melek:  Isn’t it sin x over cos x. That’s the 

expression that everybody knows. 
Therefore, when we want to find 
the ratio of sin x over cos x, that is 
when we think graphically (show-
ing the point on the unit circle) if 
we vertically projected this point 
onto x-axis, we say opposite over 
adjacent to find the tanjant

When pre-service teachers were using discuss-the-
screen they endorsed the socio-mathematical norm 

“Answers which are logical are acceptable”. For ex-
ample, Melek who used discuss-the-screen aimed at 
having her students discuss mathematical meanings 
behind what the software perform. When doing this, 
she considered different student answers and did not 
impose her answers or solutions. She encouraged her 
students discover their own solutions which were 
meaningful for them. As can be seen in this case, the 
orchestration type used by this pre-service teacher 
affected her endorsed norm. In other words, a norm 
has emerged which support discuss-the-screen orches-
tration type. 

Orchestration types Pre-service teachers

Technical-demo Nil, Orkun, Melek

Explain-the-screen Mahir, Orkun, Melek

Discuss-the-screen Melek

Sherpa-at-work Orkun, Melek, Nil

Not-use-tech Oya, Mahir, Nil, Orkun, Melek

Table 2: The orchestration types used by pre-service teachers
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Pre-service teachers chose not to use technology (not-
use-tech orchestration type) at least once out of five 
lessons they each taught. Before participants had 
teaching experiences with using technology in the 
classroom, they had the socio-mathematical norm 
which gives the teacher the mathematical authority 
and believed that technological tools were not neces-
sary for teaching mathematics:

Oya: I’m quite conservative. I believe 
that mathematics should be taught 
using the blackboard. I think that 
maths would be better understood 
this way 

Oya was a unique case who’s social or socio-mathe-
matical norms did not change after she started using 
technological tools in her lessons. On the other hand, 
Orkun who has negative attitudes towards using tech-
nology in a mathematics lesson changed his endorsed 
norms and this situation is illustrated with the fol-
lowing excerpt:

Orkun: In my first lesson (which he did 
not use any technological tool) I 
wished that student would not 
ask me any questions. Because I 
was teaching inverse trigonomet-
ric functions and the questions I 
prepared were very difficult ones…
students in this school were very 
clever and I was worrying about 
receiving different questions. 
And there was no help from tech-
nology. I had to teach on the black-
board. But on the next lessons 
when I used technology, I wasn’t 
afraid of their questions. When 
I’m stuck on the board I knew that 
I could switch to technology 

As can be seen from the excerpt above, he sees tech-
nological resources as a helpful tool which gives him 
confidence. This confidence changed his norms and 
pedagogy. 

Another orchestration type observed in this study is 
Sherpa-at-work. Participants in this study used this 
orchestration type in a different way when compared 
to the related literature. In the literature, when using 
Sherpa-at-work students work in front of a computer 

individually or in pairs and “the technology is in the 
hands of a student, who brings it up to the whole class 
for discussion” (Tabach, 2013, p. 3). However, there 
was a lack of technological resources in partnership 
schools and students did not get the chance to use their 
own computers during the lessons.  Participants had 
their own computers which were projected on to a 
screen. This situation prevented active participation 
of students. Orkun, Melek and Nil tried to resolve this 
problem by having students use the teacher’s com-
puter. This corresponds to Sherpa-at-work orchestra-
tion type which emerges as a result of “students who 
answers correctly go to the blackboard” social norm. 

DISCUSSION

This study investigated how orchestration types and 
norms affect each other in technology-enhanced 
learning environments. The findings indicated that 
pre-service mathematics teachers used some of the 
orchestration types frequently such as link-the-screen-
board and not-use-tech. On the other hand, some 
of the orchestration types such as spot-and-show, 
work-and-walk-by, discuss-the-tech-without-it and 
monitor-and-guide were not used because of lack of 
technological resources in the partnership school. 
All classrooms in this school have smart boards but 
students did not have their own computers or tablets. 
Therefore, some of the orchestration types were not 
observed. 

Drijvers and his colleagues (2010) claimed that teach-
ers make pedagogical choices based on their views 
about how to teach mathematics. This study has 
similar findings by illustrating how orchestration 
types and norms support each other. Social and so-
cio-mathematical norms endorsed by participants 
affected their choices of technological tools for teach-
ing mathematics and as a result orchestration types 
they used. 

Our claim was that there was a two-way interaction be-
tween orchestration types and social and socio-math-
ematical norms. This study attempted to justify this 
claim. As a matter of fact, Drijvers (2012) described 
technical-demo, explain-the-screen and link-the-screen-
board orchestration types as teacher-centred and 
Sherpa-at-work, spot-and-show and discuss-the-screen 
orchestration types as student-centred. Therefore, 
participants who used teacher-centred orchestration 
types endorsed socio-mathematical norms accept the 
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teacher as the mathematical authority. On the other 
hand, participants who used student-centred orches-
tration types endorsed social norms which puts stu-
dents into the centre. 

Findings of this study also revealed that instrumental 
orchestration framework fall in short in explaining 
the socio-cultural aspect of technology integration. 
In terms of teacher-student-tool interaction, tech-
nological tools provide a language which supports 
communication between students and teachers (Noss 
& Hoyles, 1996). Examining the micro-culture of the 
classroom provided by this kind of language and so-
cial and socio-mathematical norms required by that 
culture expanded our understanding of orchestration 
framework. Integrating instrumental orchestration 
framework into norm perspective provided an insight 
on the question of why and how particular orchestra-
tion types are used. 

This study suggests some implications for research-
ers and teacher educators. First of all, as mentioned 
above, there is not satisfying research which explic-
itly investigates norms in the context of technology 
integration. In this study, this was investigated in the 
context of a short-term teacher preparation program 
in Turkey. There is a need for further studies. Second, 
teacher education programs which aim successful 
technology integration should develop an awareness 
of social and socio-mathematical norms and moni-
tor pre-service teachers’ development with regard 
to their endorsed norms. 
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A project group was commissioned to develop a content- 
and action-related competency grid in order to enable 
quality assessment and comparability of mathematics 
examination questions in the Austrian Matura (final 
examination at the end of the Secondary School Level II). 
Based on theoretical grounds, in the competency grid the 
three dimensions operating, modelling and reasoning 
are distinguished and described on four levels.

Keywords: Competency level model, school, final exam, 

operating, modelling, reasoning.

Obtaining information on the development of math-
ematical competency is a central concern of mathe-
matics education (e.g., Leuders, 2014) and empirical 
educational research (e.g., Hartig, 2007). In Austria, 
an approach with the goal of a standardized com-
petency-based written final examination – the so 
called ‘Matura’ at the end of Secondary Level II – (cf. 
AECC Mathematik, 2009; BIFIE, 2013a) in the con-
text of mathematics as a general education subject 
(cf. Fischer, 2001; Fischer & Malle, 1985; Klafki, 1985; 
Winter, 1975, 1996) was applied. Examinees are ex-
pected to have both mathematical (basic) knowledge 
and (basic) ability, as well as general mathematical 
skills such as reasoning skills, problem solving 
skills, and also the ability to use mathematics in 
different situations, i.e. modelling skills. However, 
in PISA 2000, a lack of modelling competency was 
observed, when students failed to solve (real-life) 
problems with the help of models in a satisfying way 
(cf. Klieme et al., 2001). Based on this result, modelling 
competence was crucial for competency orientation 
in the curriculum enhancement of mathematics edu-

cation in the German-speaking region (thus also for 
the Matura in Austria). With reference to Weinert’s 
definition of competencies (2001, p. 27) as 

the cognitive skills and abilities which the in-
dividual possesses, or which can be learned, to 
solve certain problems, as well as the associated 
motivational, volitional and social readiness and 
skills in order to successfully and responsibly 
use problem solutions in a range of situations.

In an iterative process we developed a competency 
level model for the written final exam in mathemat-
ics at the end of Secondary School Level II. The pro-
cess consisted of four elements: the discussion of 
competency specifications and developments, the 
discussion of mathematical tasks, task rating in due 
consideration of the competency model and the dis-
cussion of these ratings. Against the background of 
theoretical and also experience-based ideas about 
the current development of mathematical skills in 
school learning, we described the following three 
domains of mathematical competencies: operating, 
modelling, and reasoning1 (O-M-A) on four levels.

In close cooperation with the Federal Institute of 
Educational Research, Innovation and Development 
of the Austrian School System (‘BIFIE’), we developed 
a competency level model facilitating the description 
and comparison of the exam requirements, especial-
ly with regard to examination questions in the final 
examination in mathematics (Siller et al., 2013). 

mailto:siller%40uni-koblenz.de?subject=
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COMPETENCY LEVEL MODEL

In the competency models of the German-speaking 
countries Austria, Switzerland and Germany (AECC 
Mathematik, 2008; HarmoS, 2011; KMK, 2012), con-
tent areas (such as geometry or arithmetic), general 
mathematical competencies (such as reasoning) and 
skill levels (usually three-stage) are considered. The 
elements of the model in each country are therefore 
different when compared to one another. The com-
petency levels are somewhat vague. Therefore, they 
can only be described on the basis of empirical task 
difficulty. To put our competency level model in a 
wider scientific context, we follow Leuders (2014, 
p. 10): “A model is discussed which (i) a priori pos-
tulates levels in acquiring a certain competence, is 
describing (ii) through stepped task situations and 
(iii) hierarchically ordered categorical latent ability 
variable. This allows (iv) determination about which 
competency pupils possess at each level.” 

In comparison to earlier statements, the develop-
ment that has taken place in this area is evident. For 
example, Helmke and Hosenfeld stated in 2004 (p. 57): 

Neither are the currently available versions of 
the educational standards derived at the time 
from comprehensive and didactic accepted com-
petency models (...) nor is there already in all rel-
evant areas of content expertise models which 
meet the abovementioned requirements, par-
ticularly theoretically coherent developmental 
and learning psychology based levels concepts.

Thinking in (competency) levels is common in 
schools since curricula and teaching materials are 
based on this view (cf., e.g., Kiper, Meyer, Mischke, & 
Wester, 2004). Competency level models contribute 
to the diagnosis of the learners’ levels of competency 
by the assessment of their achievements. Moreover, 
the models aim at describing the development of com-
petencies. Their weaknesses, however, are embodied 
in the fact that it usually remains undetermined how 
a change to the next level can be accomplished and 
what conditions are necessary for this. Furthermore, 
a fixed sequence is assumed, which implies that nei-
ther can any steps be skipped nor regressions occur, 
but which assumes steady, cumulative learning. 

For the present competency level model we have 
agreed on four stages, which can be identified in a 

manner analogous to Meyer (2007), who described 
the following four levels (Meyer, 2007, p. 5):  

1) Execution of an action, largely without reflec-
tive understanding (level 1)

2) Execution of an action by default (level 2)

3) Execution of an action after insight (level 3)

4) Independent process control (level 4)

The activity theory forms the background for the 
didactic interpretation of such initially pragmat-
ic levels (cf., e.g., Lompscher, 1985) with the corre-
sponding concept of different cognitive actions and 
their specific dimensional structure. Nitsch and col-
leagues (2014) developed and empirically verified a 
competency structure model that describes relevant 
student actions when translating between different 
forms of representations in the field of functional 
relationships. For example, they could show that the 
two basic actions of acquirement Identification and 
Implementation (Construction) and the basic cog-
nitive actions Description and Explanation differ 
in their cognitive demands, i.e. they are based on 
different facets of competency. Therefore, we used 
the theoretical model of hierarchical structure of 
cognitive actions (Bruder & Brueckner, 1989) for the 
description of competency levels.

DEVELOPMENT OF A COMPETENCY 
LEVEL MODEL

Currently existing competency models are primarily 
based on empirical analyses: Based on the solution 
probabilities of tasks (items), competency levels are 
modelled in the context of large-scale studies. An 
alternative approach is to primarily derive a mod-
el from theoretical concepts. This also requires the 
recognition of central instructional goals such as a 
sustainable understanding of mathematical relation-
ships, which in turn presupposes a high level of cog-
nitive activation in the teaching processes (cf. Klieme 
et al., 2006). This can, for example, be achieved by the 
following measures:

 ― the preparation of relationships for basic knowl-
edge and skills learned; 
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 ― the challenge to describe mathematical relation-
ships or solutions in application contexts;

 ― the creation of occasions for reasons or reflec-
tions. 

Such criteria of demanding instruction should also 
be appropriate to form a competency level model.

THE COMPETENCY LEVEL MODEL O-M-A

Competency level models that are empirically based 
indicate to what extent tasks differ in their level of 
difficulty in terms of processing. Evidence of existing 
difficulties can be obtained by carefully analysing 
potential and actual solutions. Normative stipula-
tions of difficulty levels imply that it is not possible 
to successfully process the task on a lower level. The 
levels of the competency model postulate what skills 
are needed to solve them. This does not exclude that 
there are multiple solution strategies, particularly 
for complex task definitions.

For designing the domains of mathematical compe-
tencies, we follow an orientation to Winter’s basic 
experiences (cf. Winter, 1996, p. 37): 

1) To perceive and understand phenomena of the 
world around us that concern or should concern 
all of us, from nature, society and culture in a 
specific way,

2) to learn and comprehend mathematical objects 
and facts represented in language, symbols, im-
ages and formulas as intellectual creations as a 
deductive-ordered world of its own kind,

3) to acquire task problem-solving skills that go 
beyond mathematics (heuristic skills).

While the first basic experience corresponds to math-
ematical modelling as a fundamental action area in 
learning mathematics, there are the other two ba-
sic experiences “operating” and “reasoning”, which 
serve the second fundamental experience as well 
as “problem solving” for the third basic experience. 
In various competency models „communicating“ is 
included to emphasize the linguistic aspects, as well 
as other domains of mathematical competencies.

“Problem solving” is not separated as an independent 
domain in the Austrian requirements for the final ex-
amination (BIFIE, 2013). “Problem solving” is defined 
as a more complex aspect of action and therefore 
includes the domains of the mathematical competen-

Figure 1: O-M-A Grid
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cies Operating, Modelling and Reasoning, especially 
in higher levels of performance. “Communicating” 
is seen as an important domain of mathematical 
competencies for teaching mathematics, but can-
not be specifically differentiated from Operating, 
Modelling and Reasoning and is therefore included 
in the other aspects.

The domain “Reasoning” is related to the suggestions 
of Bruder and Pinkernell (2011), who also pick up on 
considerations of Walsch (1972). “Modelling” served 
as the basis of the fundamental work of Niss (2003) 
and other ideas, e.g. of Boehm (2013) or Goetz and 
Siller (2012). There are relatively few preparations 
for a levelled conception of competencies in the 
mathematical domain “Operating”. 

For example, Drueke-Noe (2012) shows that complex 
algorithms are required already in early grades. But 
for a high level of expertise, it is not only necessary 
to use complex algorithms, but also to find the right 
algorithm to apply in a given situation and to com-
bine different algorithms where appropriate. 

The result of our considerations as part of this pro-
ject is a model with three domains of mathematical 
competencies (cf. Figure 1) that substantially cap-
tures the key aspects of mathematical work at school. 
The competency level model is aimed at fulfilling all 
essential requirements with regard to the concep-
tion of mathematical learning outcomes in Austrian 
mathematics education of the Secondary School 
Level II (cf. BIFIE, 2013a). Complex problem solving 
situations can be described by the interaction of the 
three domains of mathematical competencies. 

EMPIRICAL EVIDENCE FOR THE 
COMPETENCY LEVEL MODEL 

The question about an empirical verification of the 
theoretical competency level model with respect to 
the separation of domains of mathematical compe-
tencies and the gradation can be answered only in 
the context of a sufficient number of processed tasks 
for each area of expertise. 

Data were taken from the so-called “school experi-
ment” in 2014. Before the central final examination 
throughout Austria will be implemented in the 
school year 2014/2015, secondary academic schools 
and mathematics teachers were invited to voluntar-

ily take part in a pilot study on graduating students’ 
math competences. In this study, the math tasks were 
processed under the same conditions as they would 
be processed at the mandatory central final exami-
nation. It is important to note that the performance 
in the tasks contributes to students’ final grade. For 
the school experiment whose data are being reported 
here, there were 803 students (m = 345, f = 458) from 
42 classes from 9 districts in Austria. The examina-
tion consisted of two separated parts with so-called 
type 1 and type 2 tasks (cf. BIFIE 2013b).

Type 1 tasks “focus on the basic competencies listed 
in the concept for written final examination. In these 
tasks, competence-oriented (basic) knowledge and 
(basic) skills without going beyond independence 
are to be demonstrated.” (cf. BIFIE, 2013a, p. 23). They 
are coded as solved against non-solved. The various 
bound response formats such as multiple-choice for-
mat and a special gab-fill format enable accurate scor-
ing. For the award of points in tasks with open and 
semi-open response format, solution expectations 
and clearly formulated solution keys are specified. 

The characterization of type 2 tasks presents serious 
challenges to the basic principles of modern test the-
ory. The tasks are considered “for the application and 
integration of the basic competencies in the defined 
contexts and application areas. This is concerned 
with extensive contextual or intra-mathematical task 
assignments, as part of which different questions 
need to be processed and operative skills are, where 
appropriate, accorded greater importance in their 
solution. An independent application of knowledge 
and skills is necessary” (cf. BIFIE, 2013a, p. 23). These 
tasks are also consistently structured in design and 
presentation, as well as in terms of scoring (cf. BIFIE, 
2013).

A total of 16 (type 1) tasks in the competency domain 
of operating, 2 tasks (type 1) in the competency area 
of modelling, and 4 tasks (type 1) in the competency 
area of Reasoning were tested in the 2014 school ex-
periment. Thus, no level analyses could be conducted. 

There is a relatively high variation of the solution 
frequency within competency domain Operating (cf. 
Figure 2), which can be explained by the heteroge-
neity of tasks presented, especially with regard to 
high profile / over-training. Variation of solution 
frequency was also observed for the competence do-
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main Modelling (cf. Figure 3) as well as Reasoning (cf. 
Figure 4). The parameter “difficulty” was not meas-
ured, only the percentage of solution as an indicator 
for the level of difficulty of a task. 

Two of the type 1 tasks are positioned on competen-
cy level 2 and could be analysed. A heterogeneous 
picture emerged for these two tasks: While task 2 
could rarely be solved, task 16 was easily mastered 
by the students.

Can the pre-defined four levels be confirmed em-
pirically in all the three areas of competency? This 
question can be answered in a first approximation 
only on the basis of type 2 tasks for levels 1 and 2 due 

to the fact that higher graduations did not appear in 
these exam booklets.

As can be seen in Figure 5 (in general) and Figure 6 
(separated among O-M-A), the level 2 tasks seem to 
be more difficult in general. Thus the competency 
level of the task gives us a good statement about the 
level of difficulty. 

SUMMARY AND OUTLOOK

The provided model with the three domains of 
mathematical competencies Operating, Modelling 
and Reasoning (O-M-A) distinguishes three basic 
mathematical operations on four levels. It is based 
on considerations from educational sciences and 

Figure 3: Difficulty level of the tasks for 

the domain Modelling (n = 803)

Figure 2: Difficulty level of the tasks for the 

competence domain Operating (n = 803)

Figure 4: Difficulty level of the tasks for 

the domain Reasoning (n = 803)

Figure 5: Empirical difficulties of type 2 tasks 

separated by type and level (n = 803)

Figure 6: Empirical difficulties of the type 1 and type 

2 tasks among O-M-A (n = 803)
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learning theories as well as insights and experi-
ences with regard to relevant factors for learning 
mathematics in school. It is part of a complex effort 
to gain a sound basis for competency diagnostics 
and performance assessment in mathematics in the 
German-speaking countries. It differs from other 
models by its consistent theoretical foundation and 
by the focus on potential lines of development for 
long-term competency building. The model O-M-A 
provides a normative setting for relevant levels of 
requirement in the three domains of mathematical 
competencies. This facilitates a certain comparabil-
ity of type 1 and type 2 tasks provided for the final 
examination. 

The added value of the developed model lies in sev-
eral areas:

 ― It provides guidance both for the assessment 
of (written) performance and for the learning 
tasks in the classroom.

 ― It serves the purpose to reveal potential for de-
velopment in the classroom.

 ― It allows for the identification of development 
potential in the task structure.

Limitations of the competency level model O-M-A 
lie in the coarseness of the approach. Neither can 
all the differences between the test tasks relevant 
to their level of difficulty be considered in detail 
(such as linguistic complexity), nor can individual 
developmental trajectories be mapped in learning 
processes. Further restrictions of the model are also 
indicated by the fact that of all the mathematical con-
tent and activities implied in each task only a basic 
competency referring to the list of basic skills (cf. 
BIFIE, 2013a) can be adopted. The specific situation 
of each school class or priorities of teachers cannot 
be reflected. Thus, many tasks can prove to be easier, 
but also more difficult than in the rating.

The competency level model O-M-A aims at describ-
ing levels of competencies by identifying the quali-
tative differences of each competence. The growing 
body of research on mathematics learning served 
as the theoretical background. The data and results 
presented so far are preliminary and did not ac-
count for not controllable influence factors such as 
training effects. However, they can be interpreted 

as a first clue that the O-M-A can be rudimentarily 
verified empirically. Therefore, further research is 
necessary to empirically test the levels of the model 
and to test the model against level 3 and level 4 tasks.

The model O-M-A is indefinite in explaining the at-
tainment of the next higher level. For this reason we 
define it as a competency level model and not a com-
petency development model. To answer the question 
as to whether this model could map potential lines 
of students’ long-term competency development, 
more theoretical and empirical work is needed. So 
far, it cannot be applied to the development of a math 
learning process. 
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ENDNOTE

1. The German word ‘Argumentieren’ is synonym to 
reasoning.
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Inferentialism in mathematics education: 
Describing and analysing students’ moves 
in sorting geometrical objects

Abdel Seidou

Örebro University, Örebro, Sweden

This poster presents a language for describing and ana-
lysing students’ language “moves” while reasoning in 
an open-ended sorting activity. A close analysis of one 
individual student’s language moves in a collaborative 
activity is supposed to shed light on individual contribu-
tion to the collaborative reasoning process. Furthermore, 
these moves give indications on what pupils decided to 
be relevant in the simultaneous enterprise of reasoning 
in collaboration, and even the prior knowledge available 
in the classroom.

Keywords: Inferentialism, deontic score-keeping, 

mathematical reasoning, collaboration.

THEORETICAL FRAMEWORK

The purpose of this poster is to present an inferen-
tialist language for describing reasoning in terms 
of moves in language game. Inferentialism is intro-
duced by Robert Brandom (1994), and it advocates a 
new order of explanations. Inference is to prioritize 
over reference or representation, and it is set at the 
heart of human knowing. Inferentialism identifies 
the meaning of an expression by its inferential rela-
tionship to other expressions. Brandom (2000) stated:

To grasp or understand […] a concept is to have 
practical mastery over the inferences it is in-
volved in – to know, in the practical sense of being 
able to distinguish (a kind of know-how), what 
follows from the applicability of a concept, and 
what it follows from. (Brandom, 2000, p. 48, his 
italics)

The introduction of inferentialism to mathematics ed-
ucation research is recent. Nevertheless, ideas based 
on inferentialism have already been used in different 

ways in mathematics education research. Schindler 
and Hußmann (2013) used the status of claims (com-
mitments and entitlements) to investigate 6th grade 
students’ individual learning process and concepts 
formation in the topic of negative numbers. Bakker 
and Derry (2011) draw upon inferentialist epistemol-
ogy, to design tasks in teaching statistics inferences. 
Based on inferentialism, this poster will present a 
language to describe and analyze young learners’ col-
laborative mathematical reasoning. 

Geometrical objects (2D) of different sizes and shapes 
were presented to groups of four first grade young 
learners (6–7 year olds) by the teacher. They were 
challenged to collaboratively come to an agreement 
on ways of sorting. The open-ended aspect of this task 
creates favorable conditions for a fruitful game of 
giving and asking for reasons. 

Brandom (1994; 2000), used the term deontic score-
keeping to name a process embedded in the game of 
giving and asking for reasons. During this process, 
different competent interlocutors keep track of their 
own and others’ linguistic performance. It describes 
the course by which different interlocutors converge 
toward the same meaning, in search of agreement or/
and objectivity. It comprises both collaboration and 
the reasoning. The analysis of the deontic scorekeep-
ing, especially the “moves” will serve as tool to char-
acterize and analyze young learners’ collaborative 
mathematical reasoning. 

The “moves” express how claims are put for-
ward: Attributing, acknowledging and undertaking. 
Attributing is just a kind of reporting, and it does not in-
dicate an understanding or knowing. Acknowledging 
is to take something to be true. Undertaking a claim 
is to be aware of the premises and consequences of it. 
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The moves are interrelated and depend on each other. 
For instance undertaking a commitment is something 
that makes it appropriate for others to attribute it 
(Brandom, 2000). 

I believe the “moves” could also show signs of par-
ticipating norms/rules in a classroom if they are in-
vestigated with appropriate quest. To illustrate the 
analytical points of the proposed theoretical frame-
work, the poster presents video recorded data from 
a Swedish classroom.
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theory in the study of the number line perception
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The research is a study of the productivity of a dual 
analysis of the same phenomenon from the cultural-his-
torical activity theory (CHAT) and from the Husserlian 
phenomenological perspective. It analyses the eye-move-
ments of children and their parents while they were op-
erating with the number line. We also were focused on 
the interaction between children and parents while each 
parent was teaching the child and we analyzed it in cor-
respondence with eye-movements. The implementation 
of the dual theoretical perspective to our eye-tracking 
data sources disclosed the subtle synchronization of in-
tersubjective communication, already starting in the 
embodied, pre-reflective area of the cognitive experience. 
The two theoretical perspectives exerted a significant 
complementarity in bringing about the social and the 
subjective – intentional aspects of the phenomenon of 
learning.

Keywords: Activity theory, phenomenology, intentionality, 

eye-tracking, number line.

Radford (2010) considers the development of percep-
tion in mathematics education from a cultural-histor-
ical activity theory (CHAT) perspective and argues 
that only through social practice the “domestication” 
of a perceptive organ (an eye) can occur, and that the 
phenomenological approach towards perception as a 
system of intentional acts cannot explain acquiring of 
the new, culturally specific ways to approach objects. 
Our research shows the productivity of a dual analysis 
of the same phenomenon from CHAT and phenomeno-
logical perspectives. We analysed the eye-movements 
of participants while they operated with the number 
line. An SMI RED eye-tracker was used with sample 
rate 120 Hz. The task was to specify the point on the 
number line from 0 to 10 a grasshopper was sitting. 
There were 6 pairs of adults and pre-schoolers. We 
collected three sorts of data: adults’ perception; inter-

action between children and parents when we asked 
each parent to teach their child; and children’s percep-
tion. The results in our poster from qualitative anal-
ysis presented as series of pictures, which represent 
synchronized data of short time interval (0,5–5 sec-
onds) tracks of eye-movements, speech oscillograms, 
audio transcriptions and pictures of gestures, taken 
by an external camera. Here is a space-saving sum-
mary of interweaving ways to address results from 
the two perspectives.

 (1) Adults’ perception and teaching strategies re-
vealed a vivid difference in how the parents detected 
the point on the number line themselves, and how 
they taught the children to do it. All adults either im-
mediately grasped the answer by one fixation, or by a 
couple of fixations while they were counting from the 
midpoint or the last point. While teaching, most of our 
adults showed the child a strategy of counting from 
zero up to the point, making arc movements with their 
finger from point to point, and rhythmically count-
ing or making pauses for the child to count. From the 
CHAT perspective that focuses on cultural practices 
and artefacts (Vygotsky, 1981) we need to interpret 
the adults’ kind of perception as mediated by previ-
ous knowledge and by the number line itself—which 
is a visual semiotic means that has sedimented the 
activity of counting. We can judge the way that adults 
performed counting as a developed perception that 
has a form of mental action that keeps only a general 
form of real action and misses the intermediate parts 
(Davydov, 1959). Following the Husserlian phenome-
nology by adopting the first person perspective in our 
analysis, we see the adults’ perception as immediate, 
where a number line is “taken for granted” (Husserl, 
2001, p. 338), i.e., approached as a natural object of 
their living world without treating it as a product of 
previous mathematical work.    
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(2) In the teaching stage the attention of the children 
was strongly driven by a system of means used by 
the adult. Each pointing movement of the finger 
of the adult corresponded to a prosodic stress and 
to a fixation of the child’s glance on a point on the 
number line; the adult made a theoretical percep-
tion possible through involving the child into social 
practice, “through an intense recourse to pointing 
gestures, words, and rhythm”, as Radford (2010, p. 5) 
puts it. Now let us look more closely at the children’s 
eye-movements. In one case the child followed the 
adult’s movements precisely in counting from zero 
up to ten, but at the moment when her finger was 
passing the point where the grasshopper was sitting, 
the child found time to look at the written question of 
the task. In another example a child misperceived an 
adult’s gestures: she was moving her eyes one point 
ahead of where the adult was pointing. But being in 
contact with the original task she managed to correct 
herself at the end of the counting: she was making two 
fixations on the same point where the grasshopper 
was, corresponding to two separate arc movements 
of her father’s finger. Thus, being “moved” by the 
adult activity the children caught up the meaning of 
it through the goal, which was retained at a grounding 
level of the children intentionality. So, our data show 
that it is exactly a complex system of intentionality 
that makes possible the “crucial form of communica-
tion in which two consciousness meet in front of the 
cultural mathematical meaning” (Radford, 2010, p. 6) 
within the social practice. From a phenomenological 
perspective this meaning should not be perceived 
as a “ready-made entity” which a child is expected 
to follow; instead, only a serious and genuine move 
back to the intentional origins of this meaning gives 
us a real understanding of its constitutive potential 
(Husserl, 1970, 2001).

CONCLUSIONS

CHAT analysis focuses on cultural means and social 
practices, which necessarily mediate the transforma-
tion of perception, while phenomenological analysis 
aims towards understanding of the role of intention-
ality in acquiring new forms of immediate perception. 
Hence these two perspectives attempt to grasp two im-
portant aspects of the educational/learning complexi-
ty, and seem to be neither contradictory nor reducible 
to each other, but rather essentially complementary.
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RATIONALE 

The study of mathematics teacher education and 
professional development has been a central focus 
of research over recent decades. Research activities 
have focused on topics such as reflection, collabora-
tion and teachers’ professional growth. In particular, 
models and programmes of professional development, 
as well as their respective content, methods, and im-
pacts have been described and analysed. Research has 
increasingly focused not only on the participating 
teachers, but also on the role of teacher educators and 
academic researchers. So far, the research community 
has attempted to develop theoretical and methodo-
logical frameworks to both describe and explain the 
complex topic of mathematics teacher education and 
professional development.

The goal of TWG18 was to offer a communicative, col-
legial and critical forum for the discussion of these 
and other related issues, which would allow diverse 
perspectives and theoretical approaches to contrib-
ute to the development of our knowledge and under-
standing as researchers, educators and practitioners.

PARTICIPANTS

39 papers underwent a peer review process in TWG18: 
during this process, all papers were revised, accord-
ing to reviewers’ remarks, by authors. 34 papers were 
accepted as contributions and five were re-submitted 
for poster presentation. Four of the accepted papers 

were withdrawn. Finally, 30 papers were presented 
during the TWG sessions.

19 posters (14 original submissions and 5 former pa-
per submissions, see above) underwent a peer review 
process in TWG18: all authors revised their posters, 
according to the reviewers’ remarks. All of the post-
ers were accepted. Four of the accepted posters were 
withdrawn. Finally, 15 posters were presented during 
the conference poster session.

ORGANISATION

Due to the high number of participants and pres-
entations, the TWG sessions comprised both plenary 
and sub-group working phases. During the plenary 
phases, three (or four) papers were presented for a 
maximum of five minutes each, in which the authors 
provided their respective paper’s central message(s) 
and challenging questions for discussion. These ple-
naries were followed by parallel sub-groups, which 
were each managed by one of the presenting authors. 
Participants were free to choose and join one sub-
group, where they discussed the paper for 20-30 
minutes. Afterwards, the TWG’s participants met in 
plenary to hear reports of each sub-groups’ central 
topics and to summarise emerging issues. 

TOPICS

The presentations were categorised into seven main 
topics: 
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 ― Models of Teacher Education Programmes

 ― Pre-Service Teacher Education

 ― Lesson Study and Videos in Teacher Education

 ― Tasks, Problems and Assessments

 ― Mathematics Teacher Educators

 ― Reflecting Teaching Practices

 ― Cooperative Communities

Within the topic “Models of Teacher Education 
Programmes”, the papers dealt with teacher educa-
tion programmes, teacher educators, teachers’ profes-
sional growth, training models, teachers of levels K-8, 
teacher empowerment, problematisation of knowl-
edge, meta-didactical transpositions and praxeologies.

The topic “Pre-Service Teacher Education” comprised 
teacher preparation, pre-service primary and second-
ary mathematics teachers, inquiry based mathematics 
education, students’ mathematical thinking, scaffold-
ing, one-to-one interactions, deficits pertaining to 
core mathematics, positive attitudes towards mathe-
matics, analyses in one-on-one interviews, diagnostic 
strategies, subject matter knowledge and knowledge 
base for teaching.

The session on “Lesson Study and Videos in Teacher 
Education” focused on lesson study, video-based pro-
fessional development, mentor teachers, pre-service 
and in-service teachers, pedagogical content knowl-
edge, theory-practice problems, initial teacher edu-
cation, classroom situations, teacher expertise, peer 
discussions, anthropological theory and mathemati-
cal knowledge for teaching.

The papers of “Tasks, Problems and Assessments” dealt 
with task design, learning scenarios, problem posing, 
problem solving, teacher professional competencies, 
a four-step dynamic model, characteristics of a good 
(mathematics) teacher, and levels of cognitive demand.

The topic “Mathematics Teacher Educators” com-
prised practices of teacher educators, prospective 
teachers, mathematical knowledge, awareness, stu-
dents’ errors, non-standard reasoning, instructional 
coherence of teacher educators, teaching-learning en-

vironments, impact on teacher and student learning, 
professional development and social network sites.

The focus of “Reflecting Teaching Practices” was on 
self-reflection, beginner teachers’ practices, content 
and methods of professional development courses, 
mathematical quality, didactical analysis competency, 
pedagogical content knowledge, didactic transposi-
tion, anthropological theory of didactics, content rep-
resentation, spatial visualisation ability, teaching ex-
periments, common games and childhood education.

Within the topic “Cooperative Communities” the pa-
pers dealt with communities of practice, inquiry com-
munities, developmental research on tasks, identity 
and social perspectives on learning.

EMERGING ISSUES

This section provides several questions and issues 
which emerged during the sessions of TWG18:

Models of Teacher Education Programmes

 ― How do we deal with the differences between 
the role of the mentor and the mathematics 
educator?

 ― How can we evaluate teachers’ changes from 
their classroom actions? 

 ― How can we assess the stability of change 
induced in the teachers?

 ― If we analyse ourselves when we work as 
teacher educators, what are possible prob-
lems, or advantages?

Pre-service Teacher Education

 ― How does our take on the nature of mathe-
matics affect our studies?

 ― Perspectives are hard to change and student 
teachers learn to answer what their teacher 
educators want – do you consider this when 
designing research?

 ― How are student teachers able to identify 
and imagine key aspects of development and 
the learning trajectories of their students?
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 ― How can we measure the effectiveness in 
the development of prospective teachers of 
1-1 interactions with students? How do we 
research this? 

 ― How do we measure immediate and long-
term effects?

Lesson Study and Videos in Teacher Education

 ― How does Lesson Study literature fit into wid-
er perspectives such as teacher knowledge?

 ― Lesson study across countries and across dif-
ferent subjects is different due to cultural 
background. How can we map the territory?

 ― How to make change visible?

 ― How to keep the balance between quantita-
tive and qualitative aspects within confer-
ence papers with reduced length?

Tasks, Problems and Assessments

 ― There is a job to be done in mapping and 
bringing together, rather than separating 
mathematics, didactics and pedagogy. After 
the mapping, what is our vision, what would 
we propose?

 ― Theoretical frameworks that are too gen-
eral are not helpful for teachers. Which 
tasks could illustrate more specific points 
of frameworks?

 ― Notions and definitions: what is problem-pos-
ing, problem-solving; is problem-posing a 
part of problem-solving? How clear are we 
with notions and definitions?

 ― It is important to work with teachers in PD 
programmes. But the question remains: 
What will the teachers do with the PD in 
their classrooms?

 ― Mathematics Teacher Educators

 ― Thinking through our roles as teacher ed-
ucators we are also researchers – how can 
we manage this?

 ― How to reflect on philosophy of mathematics 
and the philosophy of mathematics educa-
tion? How do they meet? 

 ― How can we assess a chain of effects in teach-
ers’ professional development? 

 ― How to conduct research on the internet 
with social communities? There are ethical 
issues and how do we deal with these? How 
to intervene in a group as a researcher?

Reflecting Teaching Practices

 ― How to deal with being (at the same time) a 
researcher, a teacher, and an educator? 

 ― How to access practice if we want to use that 
as a research object? 

 ― How to optimise teaching time? How to fo-
cus during that time on the deep questions 
teachers face about mathematics?

 ― Teacher education is heterogeneous across 
one country. How can we make comparisons 
between countries?

 ― Culture is so important in comparing coun-
tries. What are the valid lenses we can use 
in comparisons?

Cooperative Communities

 ― Difference between ‘community of practice’ 
and ‘community of inquiry’ – what makes an 
inquiry community? How will we recognise 
it in the data?

 ― What is relevant to the teachers within the 
community? 

 ― The roles of researchers and teachers when 
we do research on practice  – symmetry, 
asymmetry?

 ― How can we actually observe identity devel-
opment in terms of practice?
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This research presents features of knowledge of content 
and students (KCS) and knowledge of content and teach-
ing (KCT) as empirical evidence of mathematics teach-
ers’ pedagogical content knowledge (PCK) utilised and 
enhanced through their participation in iterative cycles 
of lesson study. Over the course of one academic year, 
twelve teachers in two secondary schools engaged in 
this research as a double case study of teacher learning 
within a lesson study community. Qualitative data was 
generated through audio recordings of teacher meetings 
and through multiple teacher interviews. Dialogue with-
in the lesson study communities was mapped to a frame-
work of PCK as proposed by Ball, Thames and Phelps 
(2008). Results of this study find empirical evidence of 
the features of KCS and KCT in teachers’ planning and 
reflection conversations and demonstrate teacher learn-
ing over iterative cycles of lesson study.

Keywords: Pedagogical content knowledge, lesson study, 

reflection, teacher knowledge.

INTRODUCTION

Lesson study is growing in popularity as a form of 
professional development for Mathematics teach-
ers (Dudley, 2013). Although much research has 
shown that teacher knowledge is developed through 
participating in lesson study (Fernandez, Canon, & 
Chokshi, 2003; Lewis, Perry, & Murata, 2006; Murata, 
Bofferding, Pothen, Taylor, & Wischnia, 2012) this 
learning has not yet been explicitly mapped to a 
framework of knowledge for teaching. Furthermore, 
lesson study research has mainly focused on primary 
mathematics teachers and on single cycles of lesson 
study (e.g., Corcoran, 2011; Lewis, Perry, & Hurd, 2009; 
Murata et al., 2012). 

In this research the development of secondary mathe-
matics teachers’ pedagogical content knowledge (PCK) 
is investigated through their participation in iterative 
cycles of lesson study. Twelve mathematics teachers 
in two schools were introduced to this model of profes-
sional development and participated in multiple cy-
cles over the course of one academic year. As teachers’ 
participation in lesson study continued, they began 
to incorporate and develop more elements of PCK in 
their planning and reflection meetings around re-
search lessons. 

Utilising Ball and colleagues’ (2008) framework of 
PCK, qualitative data generated through teachers’ con-
versations and interviews were analysed in terms of 
knowledge of content and students (KCS) and knowl-
edge of content and teaching (KCT). Features of KCS 
and KCT emergent from the data are presented here as 
empirical evidence of PCK in teachers’ planning and 
reflection conversations around research lessons and 
also as evidence of teacher learning in lesson study. 

LESSON STUDY

Lesson study is a systematic inquiry into teaching and 
learning where teachers collaboratively plan, exam-
ine, conduct, observe, and reflect on research lessons 
(Fernandez et al., 2003; Lewis et al., 2006; Lewis et al., 
2009; Murata et al., 2012). The aim of lesson study is 
not to construct a “perfect” mathematics lesson, nor 
is it to study lessons in detail, but rather it aims to 
engage teachers in dialogue around their pedagogical 
practices. Lesson study also incorporates many of the 
features of teacher community advocated as a form 
of sustainable professional development (Grossman, 
Wineburg, & Woolworth, 2001).
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A modelled description of the lesson study cycle can 
be seen in Figure 1 (adapted from Lewis et al., 2006):

1. Study curriculum and formulate goals

2. Plan a research lesson

3. Conduct or observe research lesson

4. Reflect on research lesson and planning process

4a. Option to revise and re-teach the research lesson.

Teacher knowledge is enhanced through participa-
tion in lesson study (Lewis et al., 2006; Murata et 
al., 2012) and this research aimed to consider such 
learning relative to a particular framework of teacher 

knowledge. In this paper, detailed analysis focused 
on fine-graining the features of KCS and KCT evident 
within teachers’ planning and reflection conversa-
tions in lesson study as a lesson study community. 

PEDAGOGICAL CONTENT 
KNOWLEDGE: KCS AND KCT

In attempting to define teacher learning in this re-
search, teacher knowledge was mapped to a particular 
framework of PCK proposed by Ball and colleagues 
(2008) (Figure 2).

KCS and KCT are important elements of PCK which 
combine teachers’ knowledge of mathematics with 
their knowledge of students and of mathematical 
didactics respectively. KCS and KCT incorporate ele-
ments of knowledge specific to mathematics teachers 
from developing an awareness of students’ mathemat-
ical thinking (Carpenter, Fennema, Peterson, Chiang, 
& Loef, 1989; Simon, 1995), to more effectively sequenc-
ing learning trajectories (Ball et al., 2008; Simon, 1995). 
Features of KCS and KCT utilised and developed in 
teachers’ planning and reflection conversations in 
lesson study were identified as part of this research.

DATA GENERATION

This research took place in two urban secondary 
schools, Doone and Crannog (all pseudonyms), over 
the course of the 2012/2013 school year. Teachers were 
invited to participate in the research with 5 teach-

Figure 1: Lesson study cycle – adapted from (Lewis et al., 2006)

Figure 2: Mathematical Knowledge for Teaching (Ball et al., 2008)
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ers in Doone and 7 teachers in Crannog (varying in 
teaching experience from 1 to 33 years) agreeing to 
take part.

Each lesson study community was taken as a case 
study within which the development of teachers’ 
conversations around the teaching and learning of 
mathematics could be analysed. Data was generated 
through audio recordings of each of the lesson study 
meetings in both schools (3 cycles in Crannog and 4 
cycles in Doone) and through individual teacher in-
terviews held at three stages during the research. 

Teachers had autonomy over the content they taught, 
the class group involved, their overall lesson study 
goal, the construction of their lesson plans, and how 
they reflected on their students’ learning. As partic-
ipant-observer the researcher was present in each of 
the meetings and research lessons as an additional 
member of each lesson study community and partic-
ipated as lesson study facilitator in the first cycles in 
both schools. In each of their subsequent lesson study 
cycles teachers rotated roles of conducting teacher 
and of facilitator.  

In total, 38 hours and 17 minutes of teacher discus-
sions around planning and reflection were recorded 
(over 18 hours in Crannog and over 20 hours in Doone). 
Teacher interviews with all participating teachers 
served as an additional data source in providing 
teachers with opportunity to self-report on their 
own learning and on any changes to their classroom 
practices that may have changed as a result of their 
participation in lesson study.

DATA ANALYSIS

The data was transcribed and analysed over four phas-
es as a chronological evolution of teachers’ planning 
and reflection conversations over iterative cycles of 
lesson study. A framework of analysis of KCS and KCT 
derived from the literature (Ball et al., 2008; Hill et 
al., 2008) and incorporating codes emergent from the 
data was utilised in the analysis. Analysis involved 
reading all of the transcript text, identifying if the 
text qualified as a legitimate code, and deciding if the 
text was relevant to the codes within the framework 
of analysis. 

A unit of analysis was defined as any episode of con-
versation which a) was relevant to the lesson study 

cycle and b) was relevant to constructing content of 
a lesson from either the perspective of the student 
or from a pedagogical perspective. This parsing 
approach of conversation excerpts, also utilised by 
Cjakler and colleagues (2013), aimed to encapsulate 
elements of teachers’ conversation where teachers 
introduced elements of KCS and KCT within their 
planning and reflection phases. For example, the fol-
lowing conversation excerpt identifies an episode of 
learning for Lisa who, prior to participating in lesson 
study, had not recognised how her students might 
interpret variables within Pythagoras’ theorem. This 
discussion occurred as part of the final cycle in Doone 
where teachers planned a series of lessons introduc-
ing students to Pythagoras’ theorem.

Lisa The thing about learning for the stu-
dents is that they can learn the theo-
rem but then it is confusion when the 
diagrams are labelled in any given way...
We think it’s saying  a2 + b2 = c2 but it’s 
meaningless to them when you give 
them a thing and ‘a’ is the hypotenuse 
and then you go, a2 + b2 = c2 … They don’t 
actually understand.

Owen  So that’s rote learning.
Kate Yeah, concept rather than formula...
Lisa We know it. We know that this is the for-

mula but we don’t look at it from the kids 
[perspective]. And it’s only that you talk-
ing about it today – if they label the hy-
potenuse ‘a’ – I hadn’t actually realised 
that that is what’s causing the problem.

This conversation higlights Lisa’s realisation of seeing 
the mathematical content through the eyes of a stu-
dent (Fernandez et al., 2003), where she made sense 
of students’ common conceptions – developing her 
KCS as part of this lesson study community’s planning 
dialogue.

The final two phases of analysis led to a further de-
termining of the categories of KCS and KCT relevant 
to these elements of lesson study such as: noticing 
students’ mathematical strategies, developing con-
textualised questions, and reflecting on student talk. 
These features, linked to existing literature on teacher 
learning, formed the basis of codes for a final phase 
of analysis and are presented below as indications of 
teacher learning through participation in iterative 
cycles of lesson study. 
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FINDINGS

Features of KCS and KCT are presented as empirical 
evidence of PCK in teachers’ planning and reflection 
conversations in lesson study and also as evidencing 
teacher learning, since the frequency of these fea-
tures increased as teachers’ participation in iterative 
cycles of lesson study continued. As part of both teach-
er communities’ initial engagement with lesson study, 
not all of these features were present in the initial 
cycles of lesson study but began to be incorporated 
as teachers began to observe research lessons, focus 
on students’ mathematical thinking, and plan subse-
quent lessons. 

Teacher learning through the development of these 
features of KCS and KCT in iterative cycles of lesson 
study may be modelled as proposed in Figure 3. As an 
example of developing KCS, following the observation 
of students within research lessons (noticing and in-
terpreting students’ mathematical responses) teach-
ers became more cognisant of anticipating how their 
students would mathematically engage in planning 
subsequent lessons. From an increased focus on an-
ticipating students’ thinking, teachers became more 
aware of the value of engaging students in their own 
learning and began designing relevant, contextual-
ised questions (KCT) which, in turn, focused teachers 
on noticing and reflecting on students’ mathematical 
strategies in attempting these activities (KCS).

This model is included as suggested theoretical frame 
of teacher learning in iterative cycles of lesson study 

and further research is required in refining and de-
veloping this model.

Findings: Features of KCS
From the analysis of the data three features of KCS 
were identified as being utilised and enhanced 
through teachers’ participation in iterative cycles of 
lesson study: 

 ― Identifying students’ prior knowledge (Ball et 
al., 2008)

 ― Anticipating students’ mathematical responses 
(Ball et al., 2008; Hill et al., 2008)

 ― Noticing students’ mathematical thinking 
(Carpenter et al., 1989; Jacobs et al., 2010; van Es 
& Sherin, 2008)

A number of narrative samples of each of these fea-
tures will now be explored.

Identifying students’ prior knowledge
While at the beginning of their engagement in lesson 
study teachers in Doone did not incorporate students’ 
prior knowledge in their planning, this became more 
and more important to them as their planning of re-
search lessons continued. From their observation of 
research lessons, teachers reflected on the need to 
correctly identify students’ prior knowledge in being 
able to then anticipate students’ responses (KCS) and 
plan a relevant sequence of learning (KCT). In their 
final research lesson, teachers identified and incorpo-
rated the mathematical content students had already 
met and used this information to build on students’ 
mathematical thinking over a series of lessons. This 
development of KCS in turn benefitted teachers’ KCT 
in outlining sequences of learning over a number of 
lessons. 

Anticipating students’ mathematical responses
From observing particular students within the first 
research lesson, teachers in both schools began to an-
ticipate how students might engage with and respond 
to mathematical tasks within subsequent lessons. 
Within their planning, teachers began to anticipate 
and identify various strategies which students might 
employ for particular mathematical activities and 
also began to articulate how students might think 
about particular topics. In Crannog’s first research 
lesson, teachers began to anticipate how students 

Figure 3: Features of KCS and KCT developed in iterative cycles 

of lesson study
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might respond to a planned activity exploring quad-
ratic patterns:  

Stephen Because some would look as if it is 1, 4, 
9. Some will look at it as being squared. 
Some will look at it as being – 

Fiona Add 3 and 5 – 
Stephen And 7, and that is...if you give them a 

pattern, if you give them a list of num-
bers of 1 to 9, that is what they do. They 
will actually see how much it is going 
up whereas some don’t relate it to being 
anything squared. 

This anticipation of students’ mathematical responses 
began to also impact on teachers’ practices outside of 
lesson study as reported by Eileen (a newly qualified 
teacher) in her mid-point interview:

Eileen Yeah, I probably would ask myself a 
bit more how would they react to this 
or what questions will they have. Pre-
empt their questions or pre-empt their 
confusion. Yeah, I would think about 
that a little bit more. 

Noticing students’ mathematical thinking
Through the detailed planning and anticipation 
of students’ mathematical responses within teach-
er meetings, teachers began to focus on and notice 
more of students’ mathematical thinking during 
their observation of research lessons. This noticing 
of students’ mathematical thinking was an important 
element of developing teachers’ perspectives on their 
own pedagogy (Carpenter et al., 1989; Corcoran, 2011; 
Jacobs et al., 2010; van Es & Sherin, 2008) and as the 
cycles continued teachers began to explicitly reflect 
on elements of student strategies and student talk in 
their post-lesson discussions. Teachers self-reported 
that this noticing and interpreting of students’ math-
ematical thinking also impacted on their classroom 
practices outside of lesson study, such as extending 
the ‘wait time’ for students to answer questions in.

Findings: Features of KCT
From the analysis of the data three features of KCT 
were identified as being utilised and enhanced 
through teachers’ participation in iterative cycles of 
lesson study with their colleagues:

 ― Sequencing learning trajectories (Ball et al., 2008)

 ― Designing contextualised questions (Schoenfeld, 
2011)

 ― Evaluating mathematical activities (Ball et al., 
2008)

A number of narrative samples of each of these fea-
tures will now be explored.

Sequencing learning trajectories
It was a surprising result that in both schools, as teach-
ers continued their participation in lesson study they 
began to plan series of lessons along a learning trajec-
tory within which the research lesson was incorporat-
ed. In Crannog’s second cycle teachers realised that 
planning a number of lessons would be more benefi-
cial to students in revising and developing important 
mathematical concepts. 

Fiona I suppose what we have to do in a 
pre-runner class, we have to go back 
with them over the concept of factors: 

“What are factors?” and then they need 
to look. Because we kind of gloss over 
that a bit when we go into factorising 
usually.

Stephen That we don’t make up two numbers in 
algebra.

Fiona Yeah, so go back into factors.
Gerald Yes and I think the discussion of fac-

tors should start with prime numbers 
because they have only got two factors 
to talk about then. 

In their final research lesson teachers planned a se-
ries of 6 lessons which incorporated students’ prior 
knowledge and guided students towards a necessity 
for differentiation in Calculus. 

Similarly in Doone, their final research lesson was 
planned as part of a series of lessons which teachers 
felt was far more valuable to both the lesson study 
community and to students in building their mathe-
matical understanding. 

Kate This is the first time we’ve actually kind 
of planned a little scheme.

Nora For the whole thing. Take you, follow 
it – follow it through. Because I think 
you know exactly where you stand or 
where they [the students] should stand.
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Designing contextualised questions
As teachers continued to participate in lesson study 
it became more and more important to them to de-
sign mathematical activities that were relevant and 
context-based for their students. In Doone’s first cy-
cle students’ activities were of a traditional textbook 
format (O’Sullivan, Breen, & O’Shea, 2013) which were 
not particularly relevant to their group of secondary 
students. In their subsequent cycles teachers devel-
oped activities that were both context and content 
based but were also of interest to these students, such 
as a rugby based problem designed for a particular 
class of 15 year old male students.

Evaluating mathematical activities
As a further feature of KCT, teachers also began to crit-
ically analyse and evaluate mathematical activities 
during planning. This evaluation of activities during 
planning impacted on how they taught or introduced 
such activities during the research lesson as exem-
plified in the following conversation excerpt where 
teachers modified a question in order to necessitate 
students multiplying two fractions together:

Lisa The Ireland rugby squad: 1/5 of these 
have eye problems. Of this 1/5, ½ wore 
contact lenses. What fraction of the 
players wore contact lenses?

Kate But – they’re going to get 30 players.
Lisa 30 multiplied by 1/5 is 6.
Kate Well, they’re going to divide by 5. So 

unless we said “a squad” instead of say-
ing 1/5 of the “players”. Don’t give them 
a number of players because they’ll di-
vide by 5 and get 6.

Lisa I think that’s what we’re doing wrong. 
We just want a fraction – 

Owen So it’s one whole squad.
Lisa So it’s “a squad”. Brilliant!

This evaluation of mathematical activities also en-
couraged teachers in developing and designing their 
own activities instead of their traditional reliance on 
textbook questions (O’Sullivan et al., 2013). 

CONCLUSION

Over a number of lesson study cycles, teachers de-
veloped in their perspectives of and approaches to 
teaching and learning mathematics through planning 
research lessons, observing students’ mathematical 

responses during those lessons, and reflecting on 
students’ interactions and responses. This research 
maps the learning of these teachers in their lesson 
study community to a framework of PCK suggested by 
Ball and colleagues (2008). Furthermore, the research 
provides empirical evidence of KCS and KCT in the 
context of teachers’ planning and reflection conver-
sations of research lessons in lesson study. 

In this paper, three features of both KCS and KCT were 
identified within the data as part of teachers’ planning 
and reflection conversations in lesson study. While 
these features were not all present in the data in in-
itial lesson study cycles, they began to be incorpo-
rated as teachers’ participation in cycles continued 
where their PCK was developed through structured 
conversations with their colleagues. While some of 
these emergent features of PCK were expected from 
literature on teacher learning and lesson study (such 
as highlighting students’ prior knowledge), others 
(such as designing contextualised questions and in-
terpreting students’ mathematical responses through 
reflection) were added to this proposed framework of 
PCK as part of teacher learning in lesson study. 

The presentation of these features of KCS and KCT as 
empirical evidence of PCK in planning and reflection 
phases of lesson study represents a contribution to 
the literature in identifying teacher learning through 
participation in iterative cycles of lesson study. 
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In this paper, we examine the implementation of a 
Japanese teacher educators’ lesson, where he applies 
and, at the same time, inform the students about “struc-
tured problem solving”. We describe a specific lesson ti-
tled “Quantity and Measurement” for elementary school 
teacher students and we show how the educator make 
the students aware of the didactic transposition of the 
material and how he makes the students experience 
and learn about applying “structured problem solving” 
in practice. We also show how the Japanese curriculum 
influences the scale of the mathematical praxeology to 
be learned and how the students are given opportuni-
ties to develop their insight into the PCK during their 
education in mathematics.     

Keywords: Teacher education, pedagogical content 

knowledge, didactic transposition, anthropological theory 

of didactics, content representation.

INTRODUCTION

In recent years, the need to train teachers’ and teacher 
students’ skills for teaching mathematics has been 
strongly emphasized by both politicians and mass 
media in Sweden. One of main reasons for this is that 
the performance of Swedish students in internation-
al surveys of education, such as the TIMSS and Pisa 
study in mathematics has radically declined since 
1990’s. According to Brown and Borko (1992), one of 
the most important purposes of teacher education is 
the acquirement of pedagogical content knowledge 
(PCK). It is recognized, that such knowledge forms the 
essential bridge between the academic subject mat-
ter knowledge (SMK) and the teaching of the subject 
matter. Furthermore, it includes an understanding 
of which representations are most appropriate for 
an idea, which ideas are difficult and which are easy 
for learners and what conceptions and preconcep-
tions students of different ages hold about an idea. 

Specifically, if the preconceptions are erroneous 
conceptions, teachers need to know about strategies 
for reorganisation of the learners understanding 
(Shulman, 1986).

This is a part of a future comparative study project be-
tween Japan, Finland and Sweden concerning teacher 
education that aims to identify and analyse differ-
ences of institutional settings in several countries 
(Artigue & Winsløw, 2010). Our intention is to illu-
minate teacher educators’ perception of the SMK and 
PCK, by analysing the mathematical and didactical 
organisations in the countries’ primary school teach-
er education. In this paper, we present our first study 
from Japan, where the focus is on how the teacher 
educator applies the structured problem solving in his 
lecture. Structured problem solving has the emphasis 
on creating learning opportunities for students by 
using challenging problems and to stimulate students’ 
corrective reflection on their solutions. 

Shimizu (1999) explains some pedagogical terms 
which are used daily by Japanese teachers in math-
ematics class: hatsumon: asking a key question, ki-
kan-shido: teachers’ instruction at students’ desks, ne-
riage: whole-class discussion, matome: summing up. 
Having such common didactical terms indicates that 
Japanese teachers have acquired an institutionalised 
perception about the teacher’s role in the classroom. 
Many Japanese teacher educators in mathematics 
apply and instruct on this teaching pattern in class-
es for their students. We observed and analysed the 
mathematical and didactical organisation of a lesson 
concerning “Quantity and Measurement” in a course 
named “Arithmetic Education” for prospective ele-
mentary school teachers in Japan.
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THEORETICAL FRAMEWORK

Teacher knowledge
The importance of teacher knowledge both in teach-
ing and in teacher education has been cogitated by 
researchers in several articles (see, e.g., Shulman, 
1986; Kind, 2009). A number of models of teacher 
knowledge have been generated in this field. Although 
researchers differ in their definitions of various 
components in teacher knowledge, three areas of 
teacher knowledge can be seen as the cornerstones 
of the emerging work on professional knowledge 
for teaching: subject matter knowledge (SMK), gen-
eral pedagogical knowledge and pedagogical content 
knowledge (PCK) (e.g., Shulman, 1986). PCK is a term 
to describe ‘the ways of representing and formulat-
ing the subject that make it comprehensible to others’ 
(ibid, p. 9). It has been found that PCK is a useful tool 
for understanding the professional practices of teach-
ers (Kind, 2009). Investigating PCK in teaching prac-
tice is a difficult process, but Kind (2009) points out 
that using Content Representation (CoRe), developed 
by Loughran, Mulhall and Berry (2006), might give a 
unique awareness into the teachers’ PCK and their 
practices relating to specific topics and subject areas. 
CoRe focuses on different parts of PCK and offers a 
way to give an overview of the teaching approaches 
for a specific subject area and to motivate teaching 
decisions. 

The didactical transposition theory and 
the anthropological theory of didactics 
Chevallard developed the conceptualisation of a di-
dactical transposition: how the knowledge content is 

adapted for the purpose to be taught within a given 
institution. It means a transposition from scholarly 
knowledge (Bosch & Gascón, 2006), which is produced 
in the community of mathematicians, into the knowl-
edge for teaching at different levels within the teaching 
system. Bosch and Gascón (2006) illustrated the steps 
of a didactical transposition process through different 
institutions as Scholarly knowledge → Knowledge to be 
taught → Taught knowledge → Learned, available knowl-
edge (ibid, p. 56). Chevallard’s attempt to describe the 
mathematical knowledge in an institutional context 
extended into “the anthropological theory of didactics” 
(ATD) (ibid). There, mathematics learning holds to 
be modelled as the construction within social insti-
tutions of praxeologies (ibid). A praxeology supplies 
both methods for the solution of a domain of problems 
(praxis) and a framework (the logos) for the discourse 
regarding the methods and their relations to a more 
general setting. The block of “praxis” is usually de-
scribed as “know-how” and the “logos” is described 
as “know-why”. The praxis can be described by the 
set of tasks and techniques and the logos is constituted 
of a technology that informs and describe techniques 
and a theory, which is used to motivate and establish 
the technologies. A praxeology that describes some 
mathematical knowledge is also called mathematical 
organisations (MO) (Barbé, Bosch, Espinoza, & Gascón, 
2005).  In the same way, didactical organisations (DO) 
(ibid) is a praxeology that describes the knowledge 
and know-how used by teachers to teach the subject 
matter knowledge to their students. 

Figure 1: CoRe Template (Bertram & Loughran, 2012, p. 1029)



Applying the structured problem solving in teacher education in Japan – A case study  (Aoibhinn Ni Shuilleabhain)

2743

METHOD

We applied two methods for data acquisition in this 
study: Firstly, we used classroom observation with 
video recordings and, secondly, an interview, using 
a Content Representation (CoRe) template as a reflec-
tion document. CoRe, was developed, by Loughran 
and colleagues (2006), to help to focus on different 
parts of the PCK. An illustration of a Core Template 
is given here below.

CoRe is originally developed for science teachers’ prac-
tice. It used before a lesson is conducted as a collabora-
tive tool helping teachers to identify important aspects 
of the content within the specific area. After the lessons, 
the experiences by the teachers’ can be documented in 
a Pedagogical and Professional-experience Repertoire 
(PaP-eRs), which are linked to the CoRe, and illumi-
nate the decisions underpinning the teacher’s actions 
intended to help the students better understand the 
content (Loughran et al., 2006). In our study we have 
used the CoRe template in a different way: After the 
lesson, the teacher educator answers to the items on the 
CoRe template to reflect and to consider on the content 
of the lesson. Thereby making explicit his different 
conceptions and decisions about teaching the specific 
topic. The reason we chose to apply CoRe as an inter-
view format is that it is a convenient way to map how 
the teacher perceives the association between scholarly 
knowledge and the knowledge to be taught.  Furthermore, 
by conducting the interview afterwards, it is possible 
to analyse the association with the taught knowledge. 
Thus we may illustrate the teacher educators take on 
the discourse on techniques and technologies – the 
praxis and the knowledge, in the sense of ATD, into 
account when he/she designs the lessons.  

 “Quantity and measurement” in 
Japanese curriculum
The guideline of the Japanese curriculum “The Course 
of Study” for primary school describes determina-
tion of area and volume in the domain “Quantity and 
Measurement”. It states that (Ministry of education, 
culture, sports, science and technology (MEXT), 2008, 
pp. 23–26), pupils need to learn to “compare length, 
area and volume of different objects” in grade 1, learn 
about “standard units of length and volume (e.g., me-
ters and liters) and measurement” in grade 2, “the 
units of area and its measurement” in grade 4 and they 
are obligated to learn “to determine area of triangles 
and parallelograms” in grade 5. Thus, area and vol-

ume determination is considered as a part of learning 
“Quantity and Measurement”. Hence, it is not located 
in the domain “Geometry” in the Japanese Curriculum. 
The introduction to “Quantity and Measurement” in 
Japanese elementary schools usually consists of four 
phases (Miyakawa, 2010): 1. Direct comparison of two 
objects. 2. Indirect comparison of two objects with 
a third object, having the same kind of quantity. 3. 
Comparison of two objects with arbitrary object as 
a unit (e.g., a pencil). 4.  Comparison using standard 
units (e.g., meters). 

RESULTS AND ANALYSIS

The lecture “Quantity and Measurement” 
in “Arithmetic Education” 
A main focus for the course “Arithmetic Education” is 
the content of primary school mathematics and how 
to teach such content. The lecturer of this course Mr. 
Matsui, has himself worked as a mathematics teacher 
in lower secondary school for 14 years. We observed 
55 teacher students in Matsui’s class. 

Mr. Matsui begins the lecture by instructing the stu-
dents to read the description of the domain “Quantity 
and Measurement” in the “Guidelines of the Course 
of study”. He remarks that the comparison of two ob-
jects’ areas and volume is a new addition from 2008 
in the Course of Study for grade one. Furthermore, 
he refers to the Guidelines of the Course of study 
and explains the four phases in the process of pupils 
learning about quantities. Mr Matsui picks up two 
pens and asks his students “How do you compare the 
length of these two pens?” He requests that a student 
show the class how to put the pens together in a way 
so that the difference in lengths demonstrates clear-
ly and he explains the term direct comparison of two 
quantities. Secondly, Mr. Matsui clarifies an example 
of the indirect comparison of two quantities by com-
paring the length and the depth of his desk. A student 
answers that one can use an object such as paper tape 
and so on to compare the length of the two sides of the 
desk. Accordingly, Mr. Matsui takes up a pencil and 
describes how to use an arbitrary object as a unit to 
measure and compare the two sides of the desk. He 
illuminates the disadvantages of this method using an 
arbitrary unit, (the length of the pencils varies), and 
he explains the reason why standard units, like meters 
and centimetres, are finally introduced in order to get 
exact measurements. Finally, Mr. Matsui writes down 
these four phases on the blackboard and then shows 
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the class a digital textbook that shows how the first 
three phases are handled in the textbook. 

In the textbook for grade 4, the author uses a small 
grid of 1cm2 squares to determine the area of a rect-
angle by counting and then to demonstrate that it 
is obtained by multiplication of the width times the 
length. Moreover, the textbook describes that the area 
of a square is determined in same way and defining 
what it calls a formula that determines the area of any 
kind of rectangles and squares. Mr. Matsui explains 
that the area of triangles, parallelograms, trapezoids 
and rhombs will be learned in the fifth grade and men-
tions that most textbooks nowadays consider the de-
termination of the area of parallelograms before that 
of triangles; it used to be taught in the opposite order.

Here, Mr. Matsui’s actions indicate that he is making 
the students aware of the process of didactic transposi-
tion: That is, the transformation from the knowledge to 
be taught to the taught knowledge. The knowledge to be 
taught, i.e. the curriculum as stated in the “Course of 
Study”, is designed by Chevallard calls the noosphere 
(1992), which is a non-structured set of experts, who 
have a big influence within the educational system. 
In Japan, the contents of the textbooks are controlled 
by MEXT before publishing. Therefore, the contents 
of the textbooks can be treated almost as the knowl-
edge to be taught. Mr. Matsui’s students verify how 
the textbook treats the area of rectangles and how to 
think of a formula as a generalised computation. The 
textbook treats the determination of the area of rec-
tangles as an initial task and where some techniques 
are eventually justified by algebraic reasoning. It is 
clear that the theory, which justifies this technology, 
is both algebra and geometry and, in that sense, the 

praxeology of the textbook is large since it follows the 
stipulated praxeology in the Course of Study. 

The taught knowledge is created by the teachers’ praxis 
when conducting lessons in their classrooms. By re-
ferring to the four phases of learning “Quantity and 
Measurement” in the curriculum guidelines and re-
lating it to the taught knowledge – by referring to text-
books – the students are given an opportunity to reflect 
deeply upon the SMK (or MO) and PCK (or DO). Thereby, 
the teacher students can avoid the “illusion of transpar-
ency” (Chevallard, ibid), i.e., that one believes that the 
mathematical knowledge is fixed and known and that 
one does not question the form it is presented in the 
curriculum since one feels that it is already known.

The praxeology of the lecture
The students are now going to find out several dif-
ferent methods for the determination of the area of 
parallelograms with the intention of teaching pupils 
of grade five. For this reason Mr. Matsui distributes 
grid papers with parallelograms and reminds that 
grade five pupils have learned the how to determine 
the area of rectangles and squares but not of triangles. 
He gives his students several minutes to reflect, and 
starts to walk between the students’ desks (kikan-shi-
do) and gives them hints and decides which students’ 
solutions will be presented later, due to the variation 
of their methods for the solutions. Mr. Matsui lets 
four students draw and explain their solutions on 
the blackboard. Student A has combined some incom-
plete grid squares with the corresponding incomplete 
squares on the opposite side of the parallelogram. 
Thus transforming the parallelogram to a rectangle 
(see Figure 2 in the middle) without changing the area.  

Figure 2: Students’ presented methods for determination of area of parallelogram
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Matsui remarks that student A is using an arbitrary 
unit to determine the area. 

Student B has divided the parallelogram into a tri-
angle and a trapezoid to shift the triangle to the oth-
er side to make a rectangle (Figure 2 in the top left). 
Student C has divided the parallelogram into two 
small rectangles, two trapezoids and two triangles. 
Then she rotates the triangles in order to construct 
two rectangles (Figure 2 in the bottom left). 

Finally, student D has divided the parallelogram in the 
middle and shifted one of the two trapezoids to the oth-
er side (Figure 2 in the top right). Mr. Matsui points 
out the different kinds of “shifts” used by student B, D 
and C. Student B and D used parallel translation and 
student C also used rotation. 

Mr. Matsui notes that the operations of translation 
and rotation will be covered in more detail in grade 
seven. He continues by writing “previous knowledge” 
on the blackboard. He goes on to explain the formula 
for the area of the parallelogram as w × l (width times 
length), since the geometric transformations shows 
that the width (or height) and length of the parallel-
ograms exactly corresponds to those of rectangles. 
He mentions that once pupils have learned how to 
determine of area of a parallelogram, they are able 
to consider the area of any triangles.  

Thereafter, Mr. Matsui gives as task to find out meth-
ods for determining the area of trapezoids, using same 
didactical approach. He chooses 7 students. Three of 
them shift parts of the trapezoid in different ways so 
to transform it to a rectangle. Two of them divide the 
trapezoid in different ways. One student adds a small 
triangle on the top of the trapezoid to make a big tri-
angle. Finally, the last student doubles the trapezoid 
so as to transform it into a big parallelogram. From 
the last method, Mr. Matsui establishes the formula 
for the area of trapezoid, which is (a + b)h/2. 

To finish, Mr. Matsui shows an article, written by 
a teacher in service, about a case study of teaching 
the area of trapezoids using the structured problem 
solving approach. By doing this, he institutionalises 
the conception of the structured problem solving as 
a general didactical approach.

Mr. Matsui’s didactical task is to make his students 
consider how pupils would reason about such tasks 

concerning area determination. At the same time, 
he is letting the students experience, how the taught 
knowledge in domain of “Quantity and Measurement” 
might look like. In this sense, the knowledge dissem-
inated in the lecture has a double focus – one is for 
the students to construct the didactical praxeology 
based on structured problem solving and the other 
is to discuss the viability of different mathematical 
organisations to be taught in grade five. 

The mathematical organisation for the educator/
teacher students (MO1); Types of tasks: comparison of 
lengths and areas of different objects. Techniques: mea-
suring with direct comparison, indirect comparison, 
comparing with arbitrary units and standard units, 
transformation of shapes, using formulas. Technology: 
comparison, figures, translation, rotation, formulas. 
Theory: Quantity and Units, Euclidean geometry.

The didactical organisation for the educator to be used 
in teaching teacher students (DO1); Tasks: determine 
how pupils in various grades would reason during 
a class with area determination of polygons, by con-
sidering the pupils’ previous knowledge. Technique: 
make the student participate in an example lesson 
using the structured problem solving approach, and 
follow it up with discussions. Technology: statement 
of previous knowledge, mathematical textbook and 
curriculum used as reference. Theory: structured 
problem solving. 

The mathematical organisation for the teachers/pu-
pils of grade five (MO2) of this area determination: 
Task: to derive a formula for the area of parallelogram/
trapezoid, Technique: transformation of shapes, using 
formulas for rectangles. Technology: figures, parallel 
shift, rotation.  Theory: Quantity and Units, Euclidean 
Geometry.   

The didactical organisation for teachers of grade five 
(DO2): Task: making the pupils participate in the les-
sons and to reason about the determination of area of 
parallelogram and trapezoids. Technique: questioning, 
giving the task (hatsumon), and using graph paper 
(grid of 1cm) to draw their ideas on. Technology: group 
discussion, whole-class discussion (neriage). Theory: 
Structured problem solving.   

Interview with Core template
As the Big ideas in CoRe template for the theme “deter-
mination of the area of a parallelogram and trapezoid”, 
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Mr. Matsui named: 1. Area of geometrical figures, 2. 
The concept and properties of geometrical figures, 
3. Formula to generalize the calculation of the area. 
These ideas show how Matsui understands how the 
knowledge to be taught is derived from the scholarly 
knowledge.  He considers that “determination of area 
of parallelogram and trapezoid” originates from the 
domain “Quantity and Units” (according to the big idea 
1), “Euclidean Geometry” (according to the big idea 2) 
and “Algebra” (according to the big idea 3). In order to 
illustrate his perception of these ideas, the outcomes 
of the interview, is presented below. 

Mr. Matsui’s intention for students learning about 
this idea is that Area of parallelogram, triangle, trape-
zoid and rhombus can be determined in various ways 
by using the previously learned knowledge – the area 
of a square and rectangle by dividing those shapes 
into standard areas. Matsui mentions also that his 
students should be able to apply some mathematical 
terms such as tosekihenkei (same area transformation: 
transformation of the shape without changing the 
quantity of the area), baisekihenkei (double area trans-
formation: transforming the shape of with a duplica-
tion of the area). These terms describe the various 
ways for determination and helps in understanding 
the methods. Mr. Matsui intends that the students 
should learn the process of finding out the formulas 
for area of various geometrical figures, rather than 
memorising those formulas. 

As a starting point for the planning of teaching, Mr. 
Matsui takes up the pupils’ previous knowledge. It 
is an important component in the teacher PCK; the 
pupils’ previous knowledge has a strong impact when 
choosing techniques. The sharing of terms like toseki-
henkei and baisekihenkei, (for which we could not find 
exactly corresponding terms in English), indicates 
that the technology is institutionalised among teacher 
educators in Japan. Emphasising the learning process 
of finding out formulas, shows that Mr. Matsui ac-
knowledges the importance of developing conceptual 
knowledge, rather than procedural knowledge. He 
also emphasises the necessity for his students to un-
derstand the meaning of the algebraic generalisation.

Matsui names some concepts which the students do 
not yet need to know within this area: 1. additivity, 2. 
bunriryo (discrete quantity, where the range of possi-
ble values are not continuous), 3. gaienryo (extension 
quantity with additivity, e.g., length, time and area), 4. 

naihoryo (inclusion quantity, a quantity that does not 
have additivity, e.g., temperature, velocity and densi-
ty), 5. other remarks as Cavalieri’s principle. 

The mathematical concepts named by Mr. Matsui 
above, shows his awareness of the technology with-
in the praxeology MO1. He links these concepts to the 
domain “Quantity and Units”. This shows that MO1 is 
strongly influenced by the knowledge to be taught, 
which are denoted by the curriculum. 

Concerning teaching procedures listed in the CoRe 
template, Mr. Matsui names several detailed methods. 
As preparation, he proposes to use graph papers (grid 
of 1cm), an article written by a teacher in service and 
to refer to corresponding pages of in digital textbooks 
of the subject matter. 

He states that the teacher educator should stress the 
importance of the children’s perspective during the 
lecture, so that when the students perform their own 
lessons in the future, they are able to confirm previ-
ously learned items and acknowledge various ways 
of solutions (including wrong answers) during their 
lessons. According to Mr. Matsui, the teacher students 
know intimately the flow of working with tasks: rea-
son individually → discuss with neighbors → present 
the solutions in class → respond to comments from 
the lecturer. 

Mr. Matsui uses different didactical methods in order 
to transform SMK to PCK, making the subject under-
standable to the teacher students. For instance, with-
out using graph paper, student A would never come 
up with the idea for her solution to determine the area 
of parallelogram. The didactical contract (in this case, 
both the teacher and the students are aware of the ba-
sic flow of working with tasks) is required in order to 
apply the structured problem solving approach in the 
classroom. This holds both for the lessons instructing 
teacher students and classroom lessons for pupils in 
elementary school. 

CONCLUSION

Our aim was to analyse a lesson titled “Quantity and 
Measurement”. Our impression is that the act of di-
dactical transposition from the scholarly knowledge 
to the knowledge to be taught is insightfully done by 
the Japanese noosphere. For example, the area and 
volume determination is located within the topic of 
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“Quantity and Measurement” and not in “Geometry”, 
which is the case in many other countries (e.g., 
Sweden). Compared to the Swedish curriculum, the 
Japanese curriculum provides a relatively detailed 
fundament for the large mathematical (and also didac-
tical) organisations that are also replicated in the text-
books. As a consequence, the transposition from the 
knowledge to be taught to the taught knowledge be-
comes more explicit and more uniform. It also makes 
the progression of the content visible. For instance, 
the “four phases of comparison” in different grades 
is clearly institutionalized within the discourse of the 
teachers in Japan. Furthermore, the curriculum sets 
the scale of the mathematical praxeologies in the text-
books, which in turn influences the complexity of the 
mathematical organisations that are discussed in the 
teacher education classes. The scale is also enhanced 
by the use of the structured problem solving when 
reviewing the mathematical organisations in these 
classes, since it gives a natural setting to discuss and 
enrich the associated technologies. It is also a way to 
consolidate the didactical organisations implied by 
the problem solving approach. By combining an anal-
ysis of the interview with the analysis of the didacti-
cal transposition and ATD, we have illuminated the 
teacher educator’s perception of the PCK and the SMK. 
This case study indicates that prospective teachers in 
Japan are given good opportunities to develop their 
insight of the PCK during their teacher education in 
mathematics.   
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This paper is based on a study that draws on Wenger’s 
Communities of Practice perspective and accounts for 
the coherence of mutual engagement, joint enterprise 
and shared repertoire in a community of Swedish upper 
secondary mathematics teachers participating in a pro-
fessional development initiative. The aim of this paper 
is to describe and understand practice when teachers 
are working together to plan a lesson. An overall char-
acteristic of practice is that it develops in a teaching 
culture, and as the community lacks of awareness of how 
it organises their teaching, practice becomes resistant 
to change when planning the lesson. Also, this paper 
addresses further research considering teaching culture 
when teachers work together to plan a lesson as a way 
to obtain, and maintain collegiality.

Keywords: Collegiality, lesson, teaching culture, 

community of practice.

INTRODUCTION

The present trend aimed at improvements in schools 
is through collegial collaboration. Today “communi-
ties of practice” fill the air (Putnam & Borko, 2000). 
However the shift towards collegiality is a new setting 
for many teachers. Teachers in secondary education 
primarily feel responsibility for their own classroom 
practices, resulting in largely autonomous and isolat-
ed work and private learning activities (Hodkinson 
& Hodkinson, 2004). The discussions in many staff 
development sessions are characterised as “style 
shows”. These sessions provide few opportunities for 
meaningful reflection and growth and maintain the 
individualism and isolation of teaching (Ball, 1994). 
Collegiality is de-privatising the work of teaching, 
and it means being able to disagree constructively 
about professional practice (Evans, 2012). It is more 
than simply sharing ideas, it means confronting tra-

ditional practice – the teacher’s own and that of his 
or her colleagues. 

The Swedish upper secondary school was reformed 
2011 and a new curriculum was formulated. It em-
phasises that teachers should cooperate with other 
teachers in order to achieve the educational goals 
(National Agency for Education, 2013). This paper is 
based on a case study that captures the characteristics 
of a community of four upper secondary mathematics 
teachers in a professional development initiative. A 
version of the Japanese lesson study – learning study – 
gave access to empirical data of the study. Learning 
study involves teachers and researchers working 
together to plan a lesson. The lesson is taught by the 
teachers in one or several cycles, and is observed, eval-
uated, and modified by the team before the next cycle 
is taught (Marton & Lo, 2007). 

The aim of this paper is to describe and understand 
practice when Swedish upper secondary mathematics 
teachers work together to plan a lesson.

BACKGROUND
In order to understand practice I will review litera-
ture regarding a Swedish lesson and a Japanese lesson, 
as the idea of working together to plan a lesson was 
imported from Japan. 

In Japan teachers work in collegiality and Japanese 
lesson study was chosen as model for Swedish learn-
ing study.1 The premise behind lesson study is simple; 
if you want to improve teaching, the most effective 
place to do so is in the context of a classroom lesson. 

1 The difference between learning study and lesson study is 

that the former comes with a theory of learning. Most often 

learning study draws on the theoretical assumptions of the 

variation theory. However, in this paper, the variation theory 

is not in focus. 

mailto:anna.bengtsson@lnu.se
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Yoshida (2004) writes that Japanese teachers spend 
hours planning a single lesson in a lesson study. The 
teachers first engage in the problem from which the 
lesson will be launched, as the Japanese mathemat-
ics lessons are based on structured problem solving. 
Then the anticipated solutions, thoughts and respons-
es that students might develop as they struggle with 
the problem will be explored. This is in relation to 
the kinds of questions that may be asked to enhance 
student thinking during the lesson, as the type of guid-
ance that could be given to students who show mis-
conceptions in their thinking. The end of the lesson, 
the moment at which students understanding can be 
advanced, is carefully considered in the lesson study 
(Yoshida, 2004; Stiegler & Hiebert, 1999). 

Swedish lessons however, are largely synonymous 
with solving of exercises. The teacher presents a 
few tasks on the whiteboard, while the students are 
listening. Similar exercises will then follow and the 
remaining time of the lesson is spent for individual 
work in the textbook. The exercises are solved with 
a specific method and have a correct answer. It is 
not necessarily that the students are practicing the 
same skills in their individual work in the textbook 
as those the teacher presented at the beginning of the 
lesson (Lundin, 2008). Swedish teaching resemble in 
many ways with U.S. teaching. Evans (2012) writes 
that teaching is highly personal in the U.S., and over 
time, every teacher develops a unique instructional 
repertoire, a set of personal, artful, assumptions and 
responses. 

Stiegler and Hiebert (1999) stress that teaching is a 
cultural activity, it is composed of elements that in-
teract and reinforce one another. The methods teach-
ers use, are not determined by their qualifications as 
much as by the culture in which they teach and the 
role of the teacher will follow his/her assumption of 
the nature of learning. When a lesson takes the form 
of following the teacher’s directions by practicing a 
procedure during seat-work, the teacher believes his/
her responsibility is also to keep students engaged 
and attending. Moment to moment attention is fun-
damental. Teaching in this typical culture is about 
enhancing students’ interest by increasing the pace of 
the activities, by praising students for their work and 
behaviour, by the cuteness or real-lifeness of tasks 
and by their own power of persuasion through enthu-
siasm, humour and “coolness”. This practice should be 
relative error-free, as the importance of the feeling 

of success is not underrated in a learning situation. 
The teacher acts as if confusion and frustration are 
signs of them not succeeding at their jobs (Stiegler & 
Hiebert, 1999). The Japanese teaching culture on the 
other hand is reinforced by that learning occurs by 
first letting the students struggle to solve mathemat-
ical problems.

Stiegler and Hiebert (1999) write about challenges in 
importing lesson study to another teaching culture. 
Trying to improve teaching by changing individual 
features usually makes little effect, positive or neg-
ative, especially when the feature is imported from 
another teaching culture. Lewis (2009) however, ar-
gues that there is evidence that lesson study can be 
used effectively outside Japan. She reports changes in 
teachers’ professional community in terms of, capaci-
ty to improve instruction, shared language, processes, 
and frameworks for analysing instructions. 

Collegiality is not a feature in the Swedish teaching 
culture, and in this case, the model of working togeth-
er to plan a lesson is imported from Japan. It is above 
given that planning a Swedish lesson is different from 
planning a Japanese lesson. 

THEORETICAL FRAMEWORK

Within the paradigm of social practice theory, Wenger 
(1998) conceptualised Communities of practice as a 
social theory of learning.

Practice is doing in historical and social context 
that gives structure and meaning to what we do. 
[…] In this sense, practice is always social practice. 
(Wenger, 1998, p. 47)

Wenger (1998) writes that communities of practice 
are groups of people who share a concern or a passion 
for something they do and learn how to do it better as 
they interact regularly. A community of practice has 
a shared domain of interest. Membership therefore 
entails a commitment to the domain and a shared com-
petence distinguishes members from other people. 
In pursuing their interest in their domain, members 
engage in joint activities and discussions and share 
information. They develop a shared repertoire of re-
sources: experiences, stories, tools and ways of ad-
dressing recurring problems. We belong to several 
communities of practice, in some we are core mem-
bers, in many we are merely peripheral. 
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The framework is not about whether the practice is 
right or not. It is about the active involvement and 
how it takes place; what is brought to the table in a 
community of practice (Wenger, 1998). The teachers 
in the case are an active part of their community but 
at the same time they are influenced by a teaching 
culture. The teachers are accountable to the quality 
of the community of the practice. Their experience 
of teaching and learning mathematics will be nego-
tiated in the community of practice and validated as 
competences. The tension between competences and 
experience is very important for the dynamic in a 
community of practice. When the core is too strong 
there is a lack of tension between competences and ex-
perience and the community of practice may become 
static and stand in the way of learning (Wenger, 1998). 

The framework of Communities of practice has been 
used in previous mathematics education research ex-
amining teacher learning, with different focus, and 
in different ways. My approach to the framework is 
neither attempting to design, nor analysing if a com-
munity of practice emerges or not. I see the mathemat-
ics teachers as a community of practice; it is my unit of 
analysis.

Framing this case as a community of practice pays 
attention to the teachers’ negotiation of meaning. 
Meaning is defined as an experience of everyday life 
and is located in a process; in the negotiation of mean-
ing2 (Wenger, 1998). That is the negotiation of their 
experiences of teaching and learning mathematics. 
A community has dimensions of source of coherence 
through mutual engagement, a joint enterprise and a 
shared repertoire. Mutual engagement defines a com-
munity and being engaged gives a sense of belonging. 
It can give rise to differentiation as to homogeneity, 
as it involves competences and competences of others 
(Wenger, 1998). The teachers’ practice draws on what 
the teachers know, and their ability to negotiate what 
they do not know. The joint enterprise is what is being 
negotiated and reflected upon in the community. It 
does not imply that everybody agrees with everything. 

2 The negotiation of meaning involves the interaction of two con-

stituent processes, participation and reification. Participation is 

defined as active social involvement but also as personal mem-

bership. Reification is defined as a shortcut for communication, 

a focus, a projection of what they mean. Participation may refer 

to the active involvement in planning the lesson (Wenger, 1998). 

This reflects the complexity of mutual engagement 
(Wenger, 1998).

Communities of practice are not self-contained 
entities. They develop in larger contexts – histor-
ical, social, cultural, institutional – with specific 
resources and constraints. Some of these condi-
tions are explicitly articulated.  Some are implicit 
but are no less binding. (Wenger, 1998, p. 79)

An explicit condition for the practice of this case is 
that it takes place in a setting; the teachers are to plan 
a lesson. The process of defining a joint enterprise is 
keeping the practice in check, just as it also pushes it 
forward (Wenger, 1998). A history of teaching culture 
may also be a binding condition, as it is so fully inte-
grated into teachers’ worldview. A shared repertoire 
is the development of the joint enterprise, it is the 
words, tools, concepts that are produced or adopted 
throughout the community of practice. 

My approach to Communities of practice and the as-
pects of practice have been characterised by concepts 
from the theory. This is for the analysis of empirical 
data. Next methods will be discussed. 

METHODOLOGY

This research has arisen in response to the shift to-
wards collaborative work in schools. This is a search 
for understanding rather than establishing expla-
nations and looking for causes. This is a distinction 
between qualitative and quantitative research (Stake, 
1995). 

Stake (1995) writes that we study a case when it itself 
is of very special interest, when we look for details 
of interactions with their context. This case consti-
tutes four upper secondary mathematics teachers 
in a setting of learning study, taking place at an up-
per secondary school in Sweden. The four teachers 
have been teaching mathematics in upper secondary 
school for 4–12 years and they have been employed at 
the school for 3–12 years. An external advisor, based 
at a university, is also participating in the learning 
study. The teachers and advisor met on 7 occasions 
and in between the teachers were set up for work. 
Each meeting had a purpose and the work in between 
was also defined. Their meetings focused discussions 
on what and how to teach the mathematical concept 
of slope aiming to plan a lesson.
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The choice of method in this case study is based on it 
being qualitative research as well as on the nature of 
the selection of case. Through the setting of the learn-
ing study there was access to 14 two-hour meetings. 
Empirical data was therefore generated through ob-
servation of these meetings. Previous research re-
garding learning study has mostly aimed at develop-
ing practice and the advisor and the researcher is then 
the same person. In this case study, I was a strict ob-
server (Bryman, 2001) meaning that I did not interact 
with the respondents. Field notes were taken during 
these observations, and transcribed as soon as possi-
ble after the observation. The field notes did not follow 
a structure or include any categories. I was writing 
down my immediate reflections, trying to make sense 
of the case as it unfolded in practice (Flyvberg, 2006). 
The meetings were also video-recorded. The video-re-
cordings have not been important for the purpose of 
hearing the exact words; it was the meaning that was 
important. It gave access to the source of empirical 
data again, and again. Hence I would not capitalise 
on making sense of the case (Stake, 1995).

An interview took place once the learning study was 
conducted, a month later. Interview questions were 
used to confirm the empirical data (Bryman, 2001). The 
interview was also held to provide a complement, to 
find out what was not understood or not heard through 
the observations. The interview was consequently 
semi-structured, i.e., a set of questions had been pre-
pared but there was also space for further questions. 
The themes focused on in the interview were the 
teachers’ expectations and experience of collegiality. 
The interview was also aimed at complementing and 
confirming issues of the setting of learning study.

The case study has an abductive approach, rather than 
a deductive or an inductive approach. Eriksson and 
Lindström (1997) say abduction is a way to discover 
meaningful underlying patterns. It makes possible 
to connect surface and deep structures. The abduc-
tion has a starting point in interpreted knowledge. 
The interpretation is made in a wide sense, including 
literature, conceptual analyses and historical sourc-
es. The perspectives determine which of the deep 
structures that are tangible. From this approach new 
knowledge is established (Eriksson & Lindtröm, 1997). 
By focusing on different aspects, the interpretations 
have helped to define the unit of analysis. Alvesson 
and Sköldberg (2000) define abduction as entailing a 
commutation between data and theory in a scientific 

and systematic way to look for answers to research 
questions of interest. They continue that the research-
er is minimising the risk of interpreting what they 
think they are seeing in light of their own unreflected 
preunderstandings or to reinvent the same theory 
but in new words and concepts. A chronologically 
analysis and an attempt has been made to capture 
the case through short, impressionistic scenes that 
focus on one moment or give a particular insight into 
meaning and community (Stake, 1995). 

WHEN THE LESSON IS THE UNIT OF ANALYSIS 

The teachers have focused discussions on teaching 
and learning slope, which has resulted in a mapping 
of the concept of slope and relating mathematical 
concepts. The lesson will take the form of the teacher 
presenting the concept, increasing the difficulty and 
pace of the activities. They have identified that under-
standing the meaning of a coordinate in the Cartesian 
coordinate system is crucial for the students to fully 
understand the rate of change. The following scene 
captures the teachers planning an initial part of the 
lesson concerning coordinates:

Teacher 1:  So now I have drawn four points here. 
[…] Then they will be named A, B, C and 
D. 

Teacher 3: Will you name them A, B and C?
Teacher 1:  They can be named anything. Or?
Teacher 3:  I was thinking that you have the 

points and that you fill out the coordi-
nates, the coordinates should not be giv-
en. […] Or will you display all the three 
coordinates at the same time?

Teacher 1: Four [points]. But it might be a smart 
idea to present one point at a time.[…] 
I did not plan to write the coordinates 
out, but of course you can do that as well.

Teacher 2: It becomes clear if you write them out.
Teacher 3: Why did you not want to write them 

out?
Teacher 1:  I can write them out!
Teacher 3:  I think there is a value in introducing 

one point at a time. 

The community negotiate how the points should be la-
belled, if they should be introduced one by one, if they 
are to write them up on the whiteboard. It is typical for 
this case that as the community plans the lesson they 
start to negotiate teaching techniques. The mutual 
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engagement concerns how to create a presentation 
maximizing the students’ attention and understand-
ing of the content. It gives rise to differentiation, as it 
involves competences of three teachers. The teachers’ 
practice draws on different techniques of present-
ing content, developed in larger implicit contexts. As 
history of how to maximize the students’ attention 
may be a binding condition, as it is so fully integrated 
into teachers’ worldview. The joint enterprise is what 
is being negotiated and that is different techniques 
introducing coordinates. The process of defining a 
joint enterprise when planning the lesson is keeping 
the practice in check, just as it also pushes it forward 
(Wenger, 1998). The scene captures that it is hard to 
coordinate practice to move forward.

To give a dimension to the above their previous expe-
rience of collegiality, will be included. I asked them 
about their experience of working together:

Teacher 2:  We have never experienced anything 
like this [learning study] together. We 
are very traditional, those who teach the 
same courses in parallel classes might 
construct tests, mark tests and assess 
students’ grades together. 

Asking to what extent they have experience of plan-
ning lessons together, they say:

Teacher 1:  Yes, sometimes, as an outline of a 
lesson. It is more often the activity we 
plan, rather than the lesson. We plan the 
courses together, in term of its sched-
ule; let’s cover this chapter by then, let 
the students take a test then and so on. 
In addition we also talk about what we 
have done today as in how far [in the 
textbook] we have come. We have done 
this for a long time, more or less. When 
it suits us. 

The teachers have no previous experience of planning 
lessons together; they are rather collaboratively en-
gaged in more organisational matters in the faculty.

Discussing the model of working together to plan a 
lesson, the teachers reflected:

Teacher 2:   It does not feel that the primary goal 
of this learning study is to plan a perfect 

lesson. What is important to me is that 
I have got something from this. When 
I teach my lessons later, that are not in 
a learning study, then I take this with 
me. Those lessons will not be ruled by 
manuscript. 

Teacher 4:  That is also my experience, that it was 
everything around that gave me that 
good feeling when processing the lesson. 
The lesson was very tightly structured 
and I felt by the end, as I was teaching, 
that the students were quite exhausted. 
Normally I would have cut it, or done 
something different. It rarely happens 
that you have such a controlled lesson 
for 60 min. The last 20 min you often let 
them work on their own.

As the teachers reflect about the role of the lesson they 
reflect that the lesson is not the primary goal of the 
learning study, it is the teachers’ professional develop-
ment that is their mutual engagement. Still the lesson 
has a value, for them to imagine and to engage around. 
The analysis gives that it is the joint lesson that keeps 
the practice check, as it moves forward. However the 
shared repertoire is not defined by a lesson as a prod-
uct. The projection of the joint enterprise is what was 
negotiated as they planned the lesson. 

When planning the lesson further they negotiate to 
let the students discern the relation between distance 
and change:

Advisor:  We want the students to discern what a 
distance is and what a positive and neg-
ative change is.

Teacher 3:  But then…..I don’t know. As I do, I al-
ways let ∆x be positive, should we talk 
about negative and positive change on 
the x-axis then. (…)

Advisor:  I have experienced that students do not 
have the meaning of positive and nega-
tive change. I always say to them to fol-
low the direction of the axis. If you go 
with the axis then it is a positive direc-
tion and if you go in the other direction 
then it is negative.

Teacher 2:  That is a way of going through the 
structure of the coordinate system!

 (…)
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Teacher 3:  What comes with this is that ∆x can 
become negative and then we have the 
negative sign in the denominator to 
handle. If we instead always treat ∆x as 
positive then if ∆y is negative the m-val-
ue (y = mx + c) is also negative. (…)

Teacher 2:  It is still the structure of the coordi-
nate system.

 (…)
Teacher 3:  We create a natural structure for the 

student. We say we call them point one 
and two. It says in their formula-booklet.

Advisor: Yes, but this could be point one and this 
point two, it doesn’t matter which point 
is point one.

Teacher 2:  I think, (…) we should not decide 
which point that is the first and the sec-
ond. It is rather the structure [of the 
coordinate system].

Teacher 3: You think? I do not! I think the stu-
dents will drown in minus signs and 
they need to consider going left or right.

Teacher 2:  Why should we be afraid of minus 
signs?

Teacher 3:  Because it becomes wrong. Minus 
signs are shit. [Laughing]

This scene rather captures a lack of discontinuity; it 
shows a static core in the community. The challenge 
in the community is to allow discontinuity, to keep the 
tension between competence and experience (Wenger, 
1999). The competence is formulating questions from 
your experience, but from a new perspective. 

The core is very static regarding the negotiation of 
∆x; students’ difficulties with negative numbers will 
cause frustration and confusion in the classroom, 
thus it is better to avoid it in the teaching. The idea is 
to always let the leftmost point be point number one 
and hence the right most point number two. Then the 
students can use the algorithm in the formula book-
let, without any risk of ending up with a negative de-
nominator. It saves students from “drowning in minus 
signs”. The community does not agree when they are 
negotiating how to teach the content in the lesson. A 
shared repertoire does not imply shared as in a com-
mon view on what is negotiated (Wenger, 1998). 

Wenger (1998) writes that practice develops in histor-
ical, social and cultural contexts that give structure 

and meaning to what we do. The analysis will be dis-
cussed in relation to the background.

DISCUSSION

An overall characteristic of practice is that it devel-
ops in a teaching culture. As the community lacks 
awareness of how it organises their teaching, prac-
tice becomes resistant to change when planning the 
lesson. This case captures the fact that the teachers 
value the lesson and negotiates its importance, but 
their mutual engagement is in regard to their teacher 
professional development. They say they were en-
gaged around everything that was learned as were 
working together to plan the lesson; it was not an en-
gagement to produce a perfect lesson in itself. Stiegler 
and Hiebert (1999) write that the unit of the lesson has 
validity for the teachers, as it does not lack of gen-
eralisation to real life experience. The lesson is also 
a part within a teaching culture and coincides with 
teachers’ thoughts on the nature of mathematics and 
how learning takes place. The Japanese mathematics 
lesson tells a story, it is tightly connected with a begin-
ning, a midpoint and an end. They are different from 
the Swedish mathematics lesson, which are described 
to be more modular with fever connections. Yoshida 
(2004) writes that a lesson is highly sharable among 
teachers in Japan. Teachers plan these lessons in col-
legiality and all work in lesson study is done after 
school. According to both Evans (2012) and Stiegler 
and Hiebert (1999), U.S. teachers find professional 
communities as “more work” and they would rather 
go home early to plan tomorrow’s lessons. Even so:

Teaching can only change the way cultures 
change: gradually, steadily, over time as small 
changes are made… (Hiebert & Stigler, 2004, p. 13)

Working together to plan a lesson in professional de-
velopment initiatives might be challenged in certain 
teaching cultures; when teaching is highly personal, 
underpinned by a unique instructional repertoire; if 
the lesson is more modular with fewer connections 
and not a unit in itself. In the introduction I have 
problematized that; collegiality is a new setting for 
many teachers; collegiality requires structure that 
goes beyond simply sharing ideas, that sustains the 
individualism and isolation of teaching and collegi-
ality requires de-privatising of the work of teachers 
to start to engage critically with issues of practice. 
This paper addresses further research considering 
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teaching culture when teachers work together to plan 
a lesson as a way to obtain, or maintain collegiality.  
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How to improve spatial visualization 
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In this paper, we describe a teaching experiment de-
signed and implemented in a classroom of preservice 
teachers of Childhood Education with the main pur-
pose of measuring the improvement of their spatial 
visualization ability. Indeed, taking into account some 
common materials and games, we have designed a 
four-sessions experiment in mathematical classroom 
of an Undergraduate Degree of Childhood Education 
of the University of the Basque Country. After the im-
plementation of the experiment in a classroom with 
27 students, the analysed results assert that the spatial 
visualization ability of the students is better than before, 
implying that this ability can be achieved and improved 
even in adults.

Keywords: Spatial visualization ability, teaching 

experiment, common games, pre-service teachers, 

childhood education.

INTRODUCTION

Nowadays, we get more and more information 
through symbols and images that has to be analysed 
and interpreted in order to extract the meaning. 

Understanding symbols is not the only application 
of the visual-spatial ability that we use in daily life, 
moreover we are actually surrounded by actions that 
need it like parking a car, where ideally we need to be 
able of visualizing the parking spot and calculate if 
our car fits in. This involves making decisions about 
how we see objects in a three-dimensional world and 
how they behave in it. That means we are constantly 
using our natural ability to position objects, project 
them on a plane, moving or rotating them mentally. 
But how can [these abilities] be acquired? And more 
important, are they susceptible of being taught?

Among the objectives of the book “principles and 
standards for school mathematics” of the National 
Council of Teachers of Mathematics (NCTM, 2000) 
we can find we need to develop the spatial sense and 
appreciate the geometry as a way to describe and 
model the physical world. These goals are completely 
related with the orientation and spatial visualization 
and, as “Curriculum Focal Points” of geometry points 
out, they should be studied from childhood Education 
to 8th course. 

 In our case, the curriculum of the Childhood Education 
of the Basque Country has as one of its main goals the 

“Identification of flat and three-dimensional elements 
of the environment” (therefore, the visualization skill 
is required) (EJ / GV, 2010).

These facts imply the visualization ability should be 
taken into account in the mathematics classroom, de-
veloping the necessary activities to improve the skills 
related with spatial visualization. In this sense, many 
studies have been done with the purpose to research 
the factors involved in the teaching-learning of visu-
alization (Bishop, 1983; Gaulin, 1985; Gutiérrez, 1996; 
Gonzato, 2013; Hershkowitz, Parzysz, & Van Dormolen, 
1996; Presmeg, 2006) and one of the open questions is 
the influence of teacher’s ability in this process. 

SPATIAL VISUALIZATION

According to Eurydice and Culture Executive Agency 
(EACEA, 2011), mathematical competence is one of 
the key skills for personal development that facili-
tates social and labour inclusion of citizens satisfac-
torily. After a thorough analysis of the results of the 
Programme for International Student Assessment 
(PISA) and Trends in International Mathematics 
and Science Study (TIMSS) studies at European level, 

mailto:ainhoa.berciano@ehu.eus
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training and professional development of teachers 
of mathematics highlights as one of the key issues in 
education.

About mathematical competence, one of the sections 
analysed by PISA is the “space and form” section, in 
which the phenomena and geometric and spatial re-
lationships are examined. Indeed, the development 
of this competence requires observe similarities 
and differences, analyse the components, recognize 
shapes in different representations and dimensions 
and understand the properties of objects and their 
relative positions. Summarizing it, we must learn 
how to visualize objects in space and understand the 
two-dimensional representation thereof, but what 
does “visualize” mean?

Spatial visualization can be defined as “the ability, the 
process, and the product of creation, interpretation, 
use of and reflection upon pictures, images, diagrams, 
in our minds, on paper, or with technology tools, with 
the purpose of depicting and communicating infor-
mation, thinking about and developing previously un-
known ideas and advancing understandings” (Sarama 
& Clements, 2009, p. 183).

Furthermore, Presmeg specifies spatial visualization 
ability as a collection of processes involved in gen-
erating and manipulating mental images, as well as 
guiding the drawing of figures or diagrams on paper 
or computer screens (as cited in Sarama & Clements, 
2009, p. 184).

These processes and skills of subjects have been ex-
tensively studied to perform certain tasks that require 
spatial visualization ability. In fact, these investiga-
tions figure out the visualization throughout focusing 
on different tasks depending on mathematical content: 
planar representations of 3D-objects (Gutiérrez, 1996; 
Hershkowitz, Parzysz, & van Dormolen, 1996), planar 
developments of 3D-objects and 3D-constructions of 
planar developments (Cohen, 2003; Fischbein, 1993), 
classification of figures, comprehension of concepts 
and properties, geometrical transformations (rota-
tions: Battista et al., 1982), compose and decompose 
3D-objects in their parts (Bishop, 1983). 

About visualization in education, according to NCTM 
and Basque government, spatial thinking can be 
learned and should be taught at all educational basic 
levels. Regarding this, Bishop (1980) proposes ques-

tions about teaching that, nowadays, some remain 
still unanswered: a) Should experimental teaching 
methods in this area take into account the spatial 
abilities of the teacher; b) How much responsibility 
should mathematics teachers take for the training and 
teaching of spatial abilities? Is this perhaps an area 
like language, which is every teacher’s responsibility? 

Hershkowitz, Parzysz and van Dormolen (1996) un-
derline that the nature of mathematics is the search 
of patterns and therefore visualization is a funda-
mental tool to recognize them, but even though this 
relevance, the visual education is often neglected in 
the curriculum.

In the same way, but some years later, Presmeg (2006, 
p. 227) gives a big perspective of the researches done 
in mathematics education and, again, she proposes 
13 open questions, some of them related with visual 
ability: 5. What conversion processes are involved in 
moving flexibly amongst various mathematical regis-
ters, including those of visual nature, thus combating 
the phenomenon of compartmentalization? 9. How 
may use of imagery and visual inscriptions facilitate 
or hinder the reification of processes as mathematical 
objects? 10. How may visualization be harnessed to 
promote mathematical abstraction and generaliza-
tion? 13. What is the structure and what are the com-
ponents of an overarching theory of visualization for 
mathematics education?

Actually, different studies have been published giv-
ing partial answers to these questions, for example, 
Gaulin (1985) outlines some activities connecting 
coding and decoding of spatial information through 
representations. One of the conclusions was that even 
the teachers had problems to interpret some graphical 
representations.

Likewise, Battista, Wheatley and Talsma (1982) show 
that a specific design of a course based on manipula-
tive materials and some concrete models (symmetry 
of polygons and polyhedral, paper folding, tracing and 
using a Mira), improves the specific part of the spatial 
ability of prospective teachers related with rotations 
(the test used was “Purdue Spatial Visualization”).

In this sense, the work presented here tries to ana-
lyse the influence of a specific teaching experiment 
designed for prospective teachers of Childhood 
Education, where the methodology is based on com-
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mon materials, games and working as collaborative 
teams (see, for example, Gutiérrez & Berciano, 2012). 

METHODOLOGY

Context of the study and 
objectives of the research
The research showed here is included in a bigger pro-
ject where the main objective is to improve the skills 
of our students with respect to their didactical compe-
tency in spatial visualization as teachers of childhood 
education (this project has the restriction of time: in 
60 hours a big curriculum related with childhood 
mathematics has to be given); but, first of all, we will 
analyse if their spatial visualization ability can be 
improved and how. For this purpose, we will focus on 
the first question, measuring the improvement of the 
spatial visualization ability of our students after the 
implementation of a designed teaching experiment. 

Participants
The group chosen for the teaching experiment was a 
Spanish group of the 3rd level of the Undergraduate 
Degree of Childhood Education of the University of 
the Basque Country of the topic “Mathematical think-
ing and its Didactics”, formed by 27 persons, 26 women 
and 1 man. All of them usually went to classroom and 
participated actively. This group was divided in small 
groups of 2 or 3 persons to work in a collaborative way 
during the entire course.

Instruments to measure the 
spatial visualization ability
The instruments used to analyse the results have been 
mainly two: the diaries of the students, where their 
evolution could be seen, and a test to measure their 
competency about spatial visualization (used as a pre-
test and a post-test). 

About this second tool, we have seen that different 
authors focused their research in a specific task re-
lated with spatial visualization ability, but in our 
case, to measure it, we have taken into account all of 
them, that is, we have focused on studying the tasks 
of interpreting perspectives of three dimensional ob-
jects (activities requiring recognize and change views 
(change of perspective)), rotate objects mentally, inter-
pret different planar representations of three-dimen-
sional objects (perspectives, views,...), turn a planar 
representation into another, build objects from one 
or more planar performances, ....

For this purpose, we have used the test called “Test 
of Three-Dimensional Objects” (VOT), designed and 
validated by Gonzato (Gonzato, Fernández, & Godino, 
2011; Gonzato, Godino, & Neto, 2011; Gonzato, 2013). In 
this test, the mathematical knowledge and the knowl-
edge of teaching Spatial Visualization in elementary 
education are measured. As the author shows in her 
PhD thesis, the tasks proposed in the test involve the 
following actions: change the representation type (pla-
nar or three-dimensional object); rotate the object or 
parts of the object, or equivalently, change mentally 
the perspective of it; fold a planar development to cre-
ate a three-dimensional object  (physical or represent-
ed), or vice versa, expand the object for obtaining one 
of its developments; compose and decompose in parts; 
and, given a solid, count the component parts (units 
of volume, faces, edges, vertices, etc.).

In fact, the test has 5 items (with sub items), each of 
them dedicated to a previous action. Let’s see the 
first item and its parts (extracted from (Gonzato, 
2013), question 1b’) has been adapted to Childhood 
Education):

1a) From which positions have been taken the 
pictures you can see at right side? 1a’) Justify 
the answer.  1b) Identify the knowledge involve 
in the resolution of 1a).  1b’) Indicate how should 
you change 1a) to be able to work it at Childhood 
Education classroom.

1c) The following figure shows a building drawn 
from front-right angle. Draw the view from back. 
1c’) Justify your answer.

Figure 1

Figure 2
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The way to correct this test is:

1) To measure the skills our students have about 
mathematical knowledge, we have analysed the 
results given by them in the first sections of each 
item. In this case, the correction is right, partially 
right or wrong (1a, 1c). In the same way, it is possi-
ble to do a qualitative analysis of the errors given 
by the students to obtain more information about 
the error types.

2) To study the skills that the students have about 
didactical knowledge, we have examined the an-
swer given in sub item 1b’ (not included in this 
paper).

We have used this test as a pre-test and post-test to, on 
one hand, study the starting point of our students and, 
on the other hand, see the variance of the ability of 
our students after the implementation of the teaching.

Mathematical task
In all the activities of the experiment, the task request-
ed to the students is to determine which mathematical 
concepts and properties are needed to realize a spe-
cific exercise where visualization skills are involved. 
These are some questions:

1) Which properties of a 3d-object should be used 
to do its planar development (and the reverse)?

2) Given a 3d-object, how many different projec-
tions can be done, and which mathematical prop-
erties are involved?

3) Which are the mathematical concepts involved in 
the movement of a 2d-object in the plane, which 
properties do they have and how can be they 
composed?  

Design of the experiment, schedule of the 
materials used and the activities done
Previously to the experiment, the students filled out 
the pre-test. The experiment has been realized inside 
the topic “Geometry” in 3 sessions of 2 hours each and 
another hour and a half of a fourth session has been 
used to evaluate the results after the implementation 
using the post-test. The way to design the session has 
been the same, that is, first the students should be-
come familiar with a selected material (a specific game 
or common material); second, they should realize dif-

ferent activities to explore the characteristics of the 
material from mathematical point of view; third, they 
should formulate a hypothesis about a given question; 
fourth, they must compare the hypothetical results 
with the real answer; fifth, they had to give an expla-
nation about the result with mathematical arguments. 
All of these activities were done in small collaborative 
teams and the students had to talk to each other at all 
times. 

Next, we describe each session with the given instruc-
tions to the students:

Session 1: Visualization and spatial representation 
(01/04/2014) 

The activities done: VOT test and playing with boxes, 
where the main objective is to learn how are the card-
board boxes constructed from their planar develop-
ment, and vice versa. 

This activity has two different parts, but the way to 
work with the material is always the same. Each pair 
of students should complete a diary where the next 
steps should be done:

1) Observe the given object (3d or 2d).

2) Describe it verbally and graphically.

3) Make a hypothesis about its planar development/
the 3d object that can be done with it (3d and 2d 
object respectively).

4) Do the planar development/ the 3d object.

5) Describe verbally and graphically the planar de-
velopment/ the 3d object.

6) Compare the hypothesis with the experimental 
result.

The materials selected were a commercial box for the 
first activity and a common planar development for 
the second activity.

Next, let’s see a small part of the diary realized by a 
student with respect to the first exercise, the planar 
development of a cardboard box that contains coffee 
capsules.
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Session 2: Identification of 3d objects and their com-
ponent parts (08/04/2014). The activities done: con-
structions with multilink cubes and constructions of 
buildings with the game called “Skyscraper”. 

The way to give the instructions is the same than in 
session 1. Two different parts, but with the same line 
of argue. 

With the multilink cubes, the students should con-
struct different structures, describe them verbally to 
other colleagues of the same collaborative group and 
the other students should replicate the construction 
only with the explanations, without see it. 

In the second part of the session, students should play 
with Puzzle Skyscraper. Each puzzle consists of a 4x4 
grid with some clues along its sides. The object is to 
place a skyscraper in each square, with a height be-
tween 1 and 4, so that no two skyscrapers in a row or 
column have the same number of floors. In addition, 
the number of visible skyscrapers, viewed from the 

direction of each clue, is equal to the value of the clue. 
Higher skyscrapers block the view of lower skyscrap-
ers located behind them.

When the construction is done, the students should 
describe all the projections of the construction ver-
bally and graphically. 

Session 3: Geometric transformations (symmetries, 
turns) (15/04/2014). In last session, the main purpose 
is to recognize the differences between symmetries, 
translations and turns. For this end, the material used 
was: game reflections, game “the prince and Munster” 
and mirrors. The instructions were given following 
the next steps:

1) To distinguish between symmetries and trans-
lations, the students should find examples at the 
classroom.

2) Next, taken into account the symmetry, a classi-
fication of alphabetic letters was done.

Take the box Describe it verbally Describe it graphically Make an hypothesis about its pla-
nar development

It is a cube-shaped box 
that has all the edges 
equal (where two faces 
meet), which is measur-
ing the same. It also has 
6 faces.

Table 1: Theoretical planar development of a given box and part of the diary of a student

Figure 3: A given square and its construction with all the perspectives done by a student (left and right respectively)
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3) Find the differences between a photo and an im-
age in front of a mirror.

4) Finally, the students should anticipate the hypo-
thetical answer of the reflections of the mirrors 
to create a copy of the asked image (reflection) 
or the face of the prince (prince and Munster). 
Again a verbal explanation should be given to 
their colleagues.

Session 4: Evaluation of the spatial visualization ability 
(29/04/2014). Again, VOT test was used to evaluate the 
results after the experiment.

RESULTS

To show the main results, first of all we’ve focused in 
the analysis of the differences between the results 
in the pre-test and the post-test considering that the 
maximum score is 20. 

As Figure 3 shows (left graphic), it is clear that in a big 
percentage, the students have improved their results 
in the test. Only 4 students have obtained worse re-
sult in the post-test than in the pre-test (right graphic), 
but this can be biased because two of them showed no 

interest in doing right both the pre and the post-test. 
Furthermore, the average in the pre-test is 10.04 and 
11.56 in the post-test, the median is 10 and 12 respec-
tively and the standard deviations are almost the same 
(3.5 and 3.6). All this implies that their spatial visuali-
zation ability is better, which is the main objective of 
this teaching experiment.

On other hand, if we count the students who have done 
successfully each task in pre-test and post-test (Figure 
4, left graphic), we can see that, apart from task 1A and 
5A, this number has increased, implying again that the 
students have developed their spatial visualization 
(see Figure 4, right graphic). 

CONCLUSIONS

As we have shown along the paper, we have designed 
and implemented a new didactical proposal to work 
visualization with preservice teachers of childhood 
education. The main part of the design is the use of 
common materials and games, which normally are 
known by the students, but with the main purpose 
of focusing their attention in activities related with 
visual skills. The activities have the same structure, 
beginning with an experimental part with verbal and 

Figure 3: Quantitative results in pre-test and post-test about total punctuation of spatial visualization and the 

improvement about it (left and right respectively)

Figure 4: Number of students with correct answer per item and the frequency difference after the experiment 

(left and right)
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graphical descriptions; later, they ask for a hypothesis 
about a question and a verification of the veracity of 
the hypothesis and finally end with a question about 
the description of mathematical properties and con-
cepts involved on it. Regarding to results, our students 
have significantly improved their spatial visualiza-
tion.

This new perspective allows us to go from a simple 
activity to abstraction, opening a new research line 
where Realistic Mathematics Education is the basis of 
the methodology for designing new teaching experi-
ments, where the goal is to evaluate the impact and the 
possible improvement of mathematical competencies.
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Lesson study was originally a professional development 
initiative from Japan. In some of the previous attempts 
to introduce it into initial teacher education, the role of 
the teacher educator has been highlighted. In this study, 
we analyse the questions that two mathematics mentor 
teachers ask in mentoring sessions, one in a lesson study 
intervention and one in a regular practice period in 
teacher education. Our findings indicate that the men-
tor teacher’s questions in the lesson study intervention 
were more focused on planning, observation and pupil 
engagement and less focused on a deep understanding 
of the mathematical content.

Keywords: Lesson study, initial teacher education, 

mentoring sessions, questioning.

INTRODUCTION

A main goal in teacher education is to develop reflec-
tive practitioners who are able to carry out the work 
of teaching mathematics with high quality and profi-
ciency. Lesson study has a focus on teachers’ critical 
reflection about the content and organisation of les-
sons in order to develop more high-quality teaching 
and learning. A decisive feature of lesson study is 
that groups of teachers conduct focused observation 
of lessons along with collection of data necessary to 
collectively analyse the lesson (Lewis, Perry, & Murata, 
2006). Although originally used in systematic profes-
sional development in Japanese schools, lesson study 
has lately been applied also in teacher education (Hart, 
Alston, & Murata, 2011). When Murata and Pothen 
(2011) implemented lesson study in mathematics 
methods courses for student teachers, they devoted 
8–9 weeks to preparation and lesson planning, and 
they also underlined the importance of the written 
guidelines in creating lesson plans as well as carrying 
out the entire lesson study. Dudley and Gowing (2012) 
argue that lesson study is relevant for student teach-

ers because it enables them to learn from detailed 
micro-level practices and allows them access to the 
tacit knowledge of their experienced mentor teachers. 

The teacher educator has an important role when 
lesson study is applied in teacher education (Potari, 
2011). In the school-based part of initial teacher edu-
cation in Norway, the mentor teachers have the role of 
teacher educators (Nilssen, 2010), and the interaction 
between the mentor teacher and student mathematics 
teachers is important in this respect. Recently, lesson 
study has been implemented in a Norwegian teacher 
education context, and the role of the mentor teacher 
is a natural focus of investigation. Initial teacher edu-
cation in Norway is organised as a four-year bachelor 
programme with 20 weeks of field practice. For this 
research project, the student teachers were in their 
second year (fourth semester), preparing for a three- 
week long field practice.

In this paper, we focus our attention in particular 
on the questions posed by two mathematics mentor 
teachers in the pre- and post-lesson mentoring ses-
sions. We approach the following research question:

What kind of questions does the mentor teacher 
ask in mentoring sessions in a lesson study inter-
vention compared with the questions asked in a 
regular period of teaching practice?

As our initial attempt to investigate this question, we 
analyse two cases: one mentor teacher and a group of 
student teachers in the lesson study intervention, and 
another mentor teacher with her group of student 
teachers in a regular teaching practice with no lesson 
study intervention.

mailto:raymond.bjuland@uis.no
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MENTOR TEACHERS ASKING QUESTIONS

In a review of research on the role of mentor teachers 
in mentoring dialogues, Hennissen and colleagues 
(2008) found that mentor teachers are normally direc-
tive and focused on organising activities. This coin-
cides with analyses of mentoring sessions in Norway 
(Helgevold, Næsheim-Bjørkvik, & Østrem, 2014). In 
this paper, we investigate the questions that mentor 
teachers pose to student teachers when mentoring 
them in connection with the teaching practice that is 
part of their initial teacher education. Asking ques-
tions is related to characteristics of mentor teachers 
with non-directive supervisory skills, highlighted as 
important for student teachers’ learning (Hennissen 
et al., 2008).

Gadamer (2004) proposes that questions are imper-
ative to the development of knowledge, but this re-
quires that the questions are “true”. He refers to ques-
tions where the answer is already settled as apparent 
questions; questions where the answer is not settled 
are referred to as true questions. Following Gadamer, 
it can be argued that mentor teachers should ask true 
questions, which guide the student teachers toward 
subject matter knowledge (SMK) and pedagogical 
content knowledge (PCK) in the mentoring sessions 
(Johnsen-Høines, 2011). 

Posing questions that guide the student teachers to-
ward SMK and PCK relates to Shulman’s (1986) early 
categorisation of teacher knowledge. His categories 
have been important for the development of several 
frameworks for teacher knowledge. Shulman divid-
ed teachers’ content knowledge into three domains: 
SMK, PCK, and curricular knowledge. PCK relates 
to instruction, integrating teachers’ knowledge of 
content with their knowledge of pedagogy. SMK, on 
the other hand, relates to content knowledge only. 
Shulman’s work, in particular PCK, has created de-
bate and has given rise to new categorisations (e.g., 
Graeber & Tirosh, 2008), all including knowledge of 
instructional strategies and knowledge of pupils’ un-
derstanding (e.g., Ball, Thames, & Phelps, 2008). Both 
types of content knowledge are highlighted as impor-
tant for high quality teaching (e.g., Ball et al., 2008). 
A focus on SMK and PCK is therefore emphasised as 
important in mentoring of student teachers (Johnsen-
Høines, 2011). Therefore, it is of importance to study 
the content of questions posed by mentor teachers 
while mentoring student teachers.

METHODS

The present study is a part of the larger TasS 
(“Teachers as Students”) project. This project aims at 
investigating student teachers’ learning in field prac-
tice through a time-lagged design experiment (Hartas, 
2010). Two groups of student teachers from each of 
four subject areas (mathematics, science, English as 
a foreign language, and physical education) partici-
pated in a control group situation; the same number 
of groups participated in an intervention situation. 
The control group is referred to as the “business as 
usual condition” (BAU), and the intervention group 
is referred to as the “lesson study approach condi-
tion” (INT). In BAU, data collection included video ob-
servations from student teachers’ planning lessons 
with their mentor teacher (pre-lesson mentoring ses-
sions), from carrying out lessons and from mentoring 
sessions after carrying out the lessons (post-lesson 
mentoring sessions). In INT, data collection included 
video observations from pre-lesson mentoring ses-
sions, from carrying out lessons, from mentoring 
sessions after carrying out the lesson for the first 
time, carrying out the lesson for a second time, and 
from post-lesson mentoring sessions. In mathemat-
ics, which is in focus here, data were collected from 
four groups of student teachers (two BAU and two INT 
groups) altogether. In one of the INT groups, the men-
tor teacher was replaced by a colleague during the 
lesson study cycle due to sick leave. In this paper, we 
therefore analyse the four mentoring sessions from 
one BAU group and one INT group. The duration of 
the mentoring sessions varied from 18 to about 46 
minutes (see Table 1). Both the mentor teacher from 
the BAU group (we have called Rut) and the mentor 
teacher from the lesson study intervention (referred 
to as Ina) are experienced mathematics teachers. 

The mentor teachers in the lesson study intervention 
participated in three workshops on lesson study. In 
the first workshop, the mentor teachers were intro-
duced to important ideas concerning lesson study 
and the different phases of the lesson study cycle. The 
aim of the second and third workshops was to devel-
op a draft version of a “Handbook for Lesson Study”. 
Inspired by Munthe and Postholm (2012), this hand-
book provided suggestions for possible questions to 
ask throughout the lesson study cycle. More specifi-
cally, crucial elements of the handbook were to high-
light questions that could help the student teachers 
to make a detailed lesson plan, emphasising careful 
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planning and focused observations with a clear con-
tent goal for the research lesson. The handbook also 
stressed the importance of posing a research question 
for the research lesson. This research question would 
normally have a focus on increasing pupils’ learning 
of the mathematical content. An aim of the planning 
and observation throughout the lesson study cycle is 
to answer this question. The aspects stressed in the 
handbook are closely related to SMK and PCK.    

The unit of analysis is the mentor teachers’ ques-
tions as posed in the mentoring sessions. The ana-
lytical approach is directed content analysis (Hsieh 
& Shannon, 2005), and the coding was inspired by 
important elements emphasised in the handbook. In 
order to increase the reliability of the coding, the first 
and third authors coded the questions independently. 
The codes were discussed and agreement reached in 
the few instances where there was a mismatch. The 
second author then revised and ensured that the cod-
ing was consistent.  

Initially, we identified three main categories: 
Observation, Planning and Other; these were further 
split into sub-categories of questions (see Table 1, first 
column). The mentor teachers’ questions that are re-
lated to more general comments, concerning observa-
tion in the classroom were coded as Observation (Obs). 
The subcategory Obs-Goal is related to the goal for the 
lesson. Obs-Content focuses on mathematical observa-
tions from the classroom. The subcategory Obs-Pupil 
highlights observations about pupils’ learning. The 
subcategory Obs-Teaching is related to observations 
based on incidents from the student teachers’ teach-
ing in the classroom.  

The questions that are related to the planning of a les-
son were coded as Planning (Plan). The subcategory 
Plan-Goal focuses on the planning of a lesson with 
a more general focus on the goal. The subcategory 
Plan-Content is related to a focus on the mathemati-
cal content. The subcategory Plan-Pupil Engagement 
highlights questions, emphasising how the chosen 
problems or activities could lead to increasing or 
decreasing pupil involvement and motivation. Plan-
Prediction refers to the subcategory of questions that 
is related to possible teaching problems or pupil dif-
ficulties that may arise in a lesson. The subcategory 
Plan-Teaching focuses on questions that are related 
to practical considerations about the organisation of 
the teaching activities.  

The third category, Other, refers to questions that do 
not fit into any of the other categories, for instance, 
a question about practical issues and clarifications. 
Two particular consecutive questions, challenging 
the student teachers to reflect on what they have 
learned about the pupils’ learning, were also includ-
ed in this category.  

In Table 1, MS1 and MS2 refer to the mentoring ses-
sions before and after the first (research) lesson that 
was recorded; MS3 and MS4 refer to the mentoring 
sessions before and after the second lesson. The four 
student teachers of the INT group had written in their 
lesson plan document that the plan for the research 
lesson was to teach the pupils in this particular tenth 
grade class about algebraic factorisations and how to 
simplify algebraic expressions. In the BAU group, the 
three student teachers’ plan for the first lesson was 
to teach the pupils in this eighth grade class about 
the equal sign and the unknown, helping the pupils 
understand the balance in a simple equation like box 
(x) + 3500 = 5000. In the second lesson of the BAU group, 
the student teachers planned to teach the pupils about 
the difference between an unknown and a variable.

RESULTS

In our analysis, we mainly focus on the qualitative 
differences between the two mentor teachers’ ques-
tions. When applying content analysis, however, a 
combination of counting the frequency of particular 
words or content and a more qualitative interpreta-
tion of the content is often used (Hsieh & Shannon, 
2005). In our study, the counting of frequencies was 
useful to discover patterns in the data that were later 
investigated more qualitatively. Table 1 displays the 
comparison of relative frequencies of the different 
categories of questions posed by Ina and Rut. 

Planning for pupil engagement
In lesson study, there is a focus on planning for pupil 
engagement, not only on how to deliver the content 
(e.g., Dudley & Gowing, 2012). Rut, the mentor teach-
er in BAU (Table 1, shaded columns), did not ask any 
questions related to planning for pupil engagement. 
She was more focused on questions related to pre-
diction and planning the teaching. Ina, the mentor 
teacher in the intervention (Table 1, white columns), 
on the other hand, asked a number of questions about 
planning for pupil engagement. In the first mentoring 
session, when discussing pupils who were not active, 



What questions do mathematics mentor teachers ask? (Raymond Bjuland, Reidar Mosvold and Janne Fauskanger)

2765

Ina asked: “Yes, what do you think we as teachers can 
do then, in order to include these pupils?” Later in 
the same mentoring session, they were getting more 
practical and discussed tasks that are suitable for a di-
versity of pupils: “Do you feel these tasks are suitable 
for all levels? I mean, to start with what is known in 
order to move them along.” As a third example from 
the same mentoring session, Ina addressed the issue 
of motivating pupils to learn algebra: “Yes, how are 
you going to motivate all pupils to learn algebra? 
Because that should be the goal, right?” Later on she 
asked about the potential use of manipulatives and 
games to motivate pupils. 

In the second mentoring session, after the teaching 
of the first research lesson, Ina asked: “Could you 
have done it differently in order to get more pupil 
engagement?” Later, when commenting on how two 
of the student teachers reported that they had ignored 
some initiatives from the pupils, she asked: “Do you 
think you managed to activate the pupils? Could they 
have been even more active, participated more, con-
tributing more verbally?” Towards the end of this 
mentoring session, she commented on the diversity 
of pupils in the class, and she asked: “Looking back 
at this group of pupils, I’m thinking: how could we 
ensure that everyone is following us?” She returned to 
these questions in the next mentoring session, where 
the student teachers were planning for the second 
teaching of the research lesson. One of the student 
teachers commented that she would observe whether 
or not the pupils are active, and Ina challenged her 
on this: “Yes, you say that you will observe if they are 

active, but there are some pupils who never partici-
pate or say anything. How are you going to ensure 
that they participate?” This question was followed 
by some questions about how they were going to 
observe the pupils during the research lesson. This 
leads to another interesting difference between the 
two groups. In the intervention, the mentor teacher 
posed more questions related to observation, which is 
also highlighted in lesson study research (e.g., Dudley 
& Gowing, 2012). 

Focus on observation
A feature of lesson study is that teachers use obser-
vation as a means to collect data in order to analyse a 
lesson (Lewis et al., 2006). We find examples of such 
questions about observation in the first mentoring 
session in the intervention group. Having grasped 
this aspect of lesson study, Ina challenged the student 
teachers with regards to observation: “How are you 
going to observe to see that the pupils actually learn 
something from the teaching, in relation to what you 
have been planning and the goals you have?” One of 
the student teachers responded that they are going 
to observe which pupils are active and which not. Ina 
followed up by asking: “Yes, but what about pupils 
who are not active in the lesson, who you don’t observe 
raise their hands, would that imply that they have 
not received anything, or that there is no learning?” 
When the student teachers responded that they plan 
to ask the pupils after the lesson, Ina continued to 
challenge them on this: “Yes, what do you think is the 
reason that they – if it appears that they have really 

MS1 MS2 MS3 MS4

BAU INT BAU INT BAU INT BAU INT

Observation
- General
- Goal
- Content
- Pupil
- Teaching

0,08
0,00
0,00
0,00
0,00

0,28
0,00
0,00
0,00
0,00

0,07
0,00
0,12
0,10
0,12

0,22
0,03
0,08
0,16
0,03

0,10
0,00
0,07
0,00
0,00

0,05
0,00
0,00
0,16
0,03

0,00
0,00
0,14
0,28
0,27

0,07
0,00
0,00
0,17
0,07

Planning
- General
- Goal
- Content
- Pupil Eng.
- Prediction
- Teaching

0,08
0,03
0,15
0,00
0,36
0,31

0,14
0,07
0,10
0,20
0,10
0,03

0,06
0,05
0,05
0,00
0,07
0,16

0,14
0,03
0,03
0,11
0,03
0,08

0,02
0,00
0,26
0,00
0,10
0,21

0,11
0,00
0,16
0,14
0,05
0,22

0,00
0,02
0,08
0,00
0,02
0,17

0,00
0,10
0,00
0,07
0,03
0,00

Other 0,00 0,07 0,21 0,08 0,26 0,08 0,03 0,50

Duration 18:17 33:43 40:36 33:33 19:45 33:53 46:10 38:12

Table 1: Relative frequency of questions in the four mentoring sessions
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learned something from the lesson – that they are not 
active; what is the reason for that?” 

In the second mentoring session, Ina reminded the 
student teachers about what they had planned to ob-
serve, and she asked: “What issues were the observa-
tions supposed to focus on? […] [W]hat questions did 
you pose yourselves there?” Later on in the same men-
toring session, she asked: “How did you plan this thing 
about observation before [the lesson]? Did you ask 
yourselves how, what you were going to observe, how, 
and why?” When planning for the second teaching of 
the research lesson, in the third mentoring session, 
Ina returned to this and asked: “And how are you then 
going to see and evaluate whether or not the pupils 
learn?” She followed up with questions about how 
they were going to plan for pupil engagement, before 
she posed some more questions about how they were 
going to observe the pupils. 

Rut also posed some questions concerning observa-
tion in the mentoring sessions in the BAU group, but 
her questions were different from Ina’s. Whereas Ina 
focused on challenging the student teachers about 
how they were planning to observe, using observa-
tion as a tool to collect data (e.g., Lewis et al., 2006), 
Rut mainly asked questions related to observation 
in the sessions after the lessons. Her questions were 
mainly focusing on what the student teachers asked 
and what the pupils responded. As an example, they 
were discussing some observations from the first les-
son (in the second mentoring session), and Rut said: 

“And then you underlined this and said: Yes, so you 
thought the opposite, how many ice creams do you 
need?” This question was related to an observation 
of pupils, but Rut was mainly referring to the stu-
dent teacher’s question rather than asking about the 
pupil’s learning. Shortly after, she asked a question 
related to an observation concerning the content: “Is 
this a correct use of the equal sign?” This leads to an-
other observed difference between the two mentor 
teachers. Whereas Ina asked more questions about 
planning and observation, Rut asked more questions 
that focused on content. This is interesting, since a 
deep reflection about content is emphasised in lesson 
study research (e.g., Murata & Pothen, 2011).

Focus on content
In the third mentoring session, prior to the second 
lesson, Rut asked several questions about how the 
student teachers planned to present the content. At 

the beginning of the session, she asked the following 
question to clarify the focus of the lesson: “So, the 
lesson is really about variables then?” Shortly after, 
she posed another question about the content: “Are 
you going to end up with some kind of definition, or 
are you only going to teach them about variables?” 
After having discussed this for a while, they started to 
discuss the concepts of ‘unknown’ and ‘variable’. Rut 
asked: “Why do we use two different words [variable 
and unknown] in this situation?” When one of the 
student teachers responded, Rut continued to chal-
lenge them about the connection between these two 
concepts by asking: “Because we end up with letters 
in both, don’t we?” 

Later, in the third mentoring session, Rut posed some 
more questions about planning and observation relat-
ed to content: “It is about an expression that contains 
parentheses, but we mentioned yesterday that we are 
missing a small revision really, about what a paren-
thesis really is? And then one of the pupils also asked: 
What is it really, what does a parenthesis mean?” She 
followed up by challenging the student teachers about 
the meaning of a parenthesis by asking: “How would 
we respond to that, what does a parenthesis really 
mean?” 

In comparison, Ina asked fewer questions that fo-
cused on content. Her questions seemed less focused 
on challenging the student teachers about their un-
derstanding of the content and more focused on the 
pupils’ learning of the content. Some examples from 
the second mentoring session, after the first research 
lesson, illustrate this: “If you had asked her [referring 
to one of the pupils] if she knew prime factorisation, 
do you think she would have known what to do then?” 
In the third mentoring session, she posed some more 
questions about prime factorisation, but this time 
with a focus on the planning of the second research 
lesson: “And then you mentioned about prime num-
bers, because in the previous lesson you started off 
directly with factorisation and didn’t mention prime 
numbers a lot. And I observed that, and if this is what 
is important, that they should be able to do prime 
factorisation, then you should probably mention it?” 
Later she followed up by asking another question 
about their planning of this: “Yes, and then you are 
going to explain factorisation and reducing?” When 
comparing the two, it appears that Ina focused less 
on asking questions about the content than Rut, and 
when she did, her focus was more on how the student 
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teachers were going to plan their teaching of the con-
tent in order for the pupils to learn. Rut was more 
focused on challenging the student teachers’ own 
understanding of the content. 

CONCLUDING DISCUSSION

Teachers who participate in lesson study are supposed 
to have a strong focus on specifying a clear goal for 
the lesson. In addition to this, a deep reflection about 
content as well as pupil engagement and prediction of 
pupils’ responses is often emphasised in lesson study 
groups (Munthe & Postholm, 2012; Murata & Pothen, 
2011). When implementing lesson study in teacher 
education, the role of the teacher educator has been 
stressed (Potari, 2011). In our study, the mentor teach-
er had the role of a teacher educator, and it is thus 
interesting to observe the differences in emphasis in 
the mentor teachers’ questions in these two groups. 
We notice that the mentor teacher in the business as 
usual condition asked far more questions regarding 
the mathematical content and teaching (Table 1, shad-
ed columns). The questions on teaching were, however, 
mostly related to practical issues such as organisation. 
Contrary to what one might believe, we observe that 
this mentor teacher also had more questions relating 
to prediction of pupil learning than the mentor teach-
er in the lesson study intervention. More specifically, 
the analyses of the BAU-sessions have revealed that 
the mentor teacher (Rut) posed several questions on 
Plan-Content and Obs-Content, and these questions 
have the potential of being true questions (Gadamer, 
2004). We suggest that these types of questions, em-
phasising the mathematical content to be learned by 
the pupils in the classroom, could be an important 
affordance that might inform future implementations 
of lesson study (Table 1, white columns). Our analy-
ses have also illustrated that these types of questions 
were not that prominent in the INT sessions. 

Murata and Pothen (2011) emphasise the importance 
of spending a lot of time on preparation and lesson 
planning, discussing the mathematical theme in focus. 
The student teachers in this study did not have the 
same opportunity to work on their lesson planning 
for several weeks and future implementations of les-
son study might consider this. The student teachers in 
our study had also finished their course work in math-
ematics before their period of teaching practice and 
the subsequent lack of involvement from the teach-
er educator at the university could have led to a lack 

of focus on the mathematical content in the lesson 
study cycle. The lack of time for preparation and les-
son planning as well as the lack of involvement by the 
teacher educator could represent serious constraints 
for the lesson study implementation. It is also possi-
ble that the “Handbook for Lesson Study”, developed 
during the TasS workshops, was too focused on more 
general questions related to planning and observa-
tion since it was designed for use across subjects. In 
that respect, the handbook could function both as an 
affordance (initiating pedagogical questions), but at 
the same time it could function as a constraint (too 
little emphasis on the subject matter).

Lesson study seems to have several benefits when 
implemented in the right way and one benefit is the 
focus on important aspects of SMK and PCK such as 
planning and student engagement, observation as 
a means to collect data in order to analyse a lesson 
(Lewis et al., 2006) and content. The handbook in-
spired by Munthe and Postholm (2012) used in this 
study provided suggestions for possible questions 
to ask throughout the lesson study cycle highlighting 
these important aspects of SMK and PCK. Our study 
indicates that implementing lesson study in teacher 
education is far from straightforward. The mentoring 
dialogues in the intervention had a stronger focus 
on planning and pupil engagement, as well as obser-
vation, but a weaker focus on content. The questions 
on content in the lesson study intervention were also 
more related to planning for pupils’ learning of the 
content, whereas the questions in the business as usu-
al condition had a stronger focus on the student teach-
ers’ own understanding of the mathematical content. 
Further studies are needed to investigate whether or 
not this is a general tendency, or if a stronger focus on 
the content can be achieved by revising the handbook.
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The theory of Communities of Practice (Wenger, 1998) 
provides a model of social learning whose assumptions 
differ from those made in the common theoretical frame-
works of teachers’ professional competencies. This shift 
in perspective on learning takes into account the con-
cept of identity and connects it to the concept of practice. 
In this theoretical paper, we will clarify how teachers’ 
learning works in terms of selected elements of Wenger’s 
theory. Simultaneously, we will refer to empirical re-
search findings on teachers’ professional development 
and check whether they are in line with the theoretical 
considerations derived from the social perspective on 
learning.

Keywords: Teacher identity, teacher learning, professional 

development, identity development, communities of 

practice.

INTRODUCTION AND MOTIVATION

Facilitators of mathematics teachers’ professional de-
velopment are looking for effective ways of promoting 
teachers’ learning. The term learning normally re-
fers to a psychological-individual process of gaining 
professional competence, i.e., the capacity, skills or 
abilities to be more effective when teaching. A tar-
geted aim of professional development programs is 
therefore not only to improve teachers’ knowledge 
but also to change teaching practice on this basis and 
thereby to improve students’ competencies (Lipowsky 
& Rzejak, 2012).

Schoenfeld (2011) considers that teachers’ implemen-
tations of goal-oriented decisions – that make up an 
important part of teaching practice – do not only base 
on knowledge (and other resources) but also on con-
text-dependent orientations. This summarizing term 

comprises beliefs, attitudes, dispositions etc. and 
can be regarded as a notion that describes the affec-
tive-motivational characteristics of a teacher’s profes-
sional competence. In this respect, Schoenfeld’s term 
orientation frames, extends and in particular refines 
belief theory, since especially beliefs are very often 
discussed isolatedly from the complex surrounding 
framework.

Current research on teachers’ professional compe-
tencies (Döhrmann, Kaiser, & Blömeke, 2012) as well 
as guidelines for professional development programs 
(Deutsches Zentrum für Lehrerbildung Mathematik, 
2013) include both, cognitive competencies and mo-
tivational-affective characteristics of professional 
competence in the respective theoretical frameworks. 
This extension also marks a progress since the older 
postulate ‘teaching should be cognitively enhancing’ 
lacked the axiom that mathematics lessons should also 
be emotionally inspiring.

In accordance to Zehetmeier and Krainer (2011), 
teachers’ learning can also be described in terms of 
knowledge, beliefs, and teaching practice. However, 
they conclude that further categories like “in-school 
levels” and “beyond-school levels” have to be consid-
ered when analyzing teachers’ professional develop-
ment: Which roles do colleagues and principles play 
for teachers’ learning? Which impact is induced by 
students and the teachers’ experiences in the class-
room? And how does personal experience beyond 
professional practice in school constitute hindering 
or fostering factors for learning?

Particularly in our studies dealing with the profes-
sional development of so-called out-of-field teaching 
mathematics teachers, i.e. teachers without formal 
qualification for teaching mathematics, we real-
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ized that considering cognitive competencies is not 
enough if we want to understand their actual profes-
sional practice (Bosse & Törner, 2014). In an ongoing 
analysis of interviews with this group of mathematics 
teachers, we can observe that identity-related aspects 
(e.g., experiences made with mathematics when the 
teachers were students themselves) influence their 
present teaching.

On this account, we want to change the perspective 
on teachers’ learning from a psychological-individual 
transformation to a more holistic socio-cultural pro-
cess in terms of identity development. 

We will delineate teachers’ learning as identity devel-
opment as follows:

Firstly, we will give a short overview of the relevant 
literature locating teachers’ learning as a social pro-
cess in the field of theories of teachers’ professional 
development. 

Secondly, we will define the terms identity, identi-
ty development and learning by using the theory of 
Communities of Practice (CoP) (Wenger, 1998). 

Thirdly, some important components of the CoP 
framework will be selected and discussed with the 
aim of explaining research findings and illuminating 
considerations of why mathematics teachers’ profes-
sional development may be sustainable and effective 
or not. 

Finally, we will critically reflect on our theoretical 
considerations and derive reasonable conclusions for 
designing effective professional development courses 
for mathematics teachers

TEACHERS’ LEARNING IN 
COMMUNITES OF PRACTICE

The socio-cognitive approach 
and identity in practice
Rösken (2011) comes to the conclusion that recogniz-
ing professional development as identity develop-
ment means integrating “personality as a relevant 
variable in the classroom” (p. 25). In the same way, 
Alsup (2006) postulates that teachers should be seen 
as intellectuals in a lifelong process of learning but 
not as technicians whose possible shortcomings in 

knowledge, beliefs, and practice have to be overcome 
via professional development programs. 

This understanding of teachers’ learning entails a 
temporal-historic dimension: Learning can be seen as 
the holistic process of turning an actual identity into a 
designated identity (Sfard & Prusak, 2005). Moreover, 
the notion of identity is directly connected to the role 
of contexts of teachers’ learning. Beijaard, Meijer, and 
Verloop (2004) highlight that context is an important 
factor for analyzing and understanding identity de-
velopment while Zehetmeier and Krainer (2011) even 
claim that communities and socio-cultural contexts 
have an impact on the sustainability of teachers’ learn-
ing. Similarly, Beauchamp and Thomas (2009) come 
to the conclusion that information about contexts as 
well as communities and their influence on shaping 
teacher identities should be integrated into profes-
sional development courses.

Bohl and van Zoest (2002) have picked up the idea of 
using identity as an analytical and descriptive cate-
gory of teacher development as well. In terms of our 
introduction, identity from their point of view is 
not exclusively located either “In-the-brain” or fully 
in the “Social”. In fact, they assume identity being a 

“combination of aspects of self-in-mind and aspects 
of self-in-community” (p. 142). 

Having this in mind, mathematics teachers’ identities 
are therefore located within a socio-cognitive con-
tinuum: On the one hand, the aspects of self-in-mind 
relate to the areas of knowledge and beliefs, involving 
the domains of content, pedagogy and professional 
participation. This is in line with the perspective on 
teachers’ professionalism and teachers’ profession-
al development in terms of competencies referring 
to individuals’ psychological realms. On the other 
hand, Bohl and van Zoest (2002) consider identity 
as the “self-in-community”, referring to processes of 
participation and perception within communities of 
practice. 

In this paper, we want to focus on the social per-
spective of this mediating model. Of course, identity 
can be seen at various positions within the contin-
uum, depending on the researchers’ own identities 
(Grootenboer, Lowrie, & Smith, 2006). However,  
Grootenboer and colleagues (2006), reasonably sym-
pathize with the idea that “identity is always con-
nected to activity or practice” (p. 614), and therefore 
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a “useful construct for understanding the formation 
of mathematical teaching” (Grootenboer et al., 2006, 
p. 614). We want to follow this assumption when illus-
trating teachers’ learning under the notion of identity 
development.

In the same respect, Skott, Moeskær Larsen, and 
Hellsten Østergaard (2011) argue in favor of shifting 
the research perspective on teachers’ learning from 
the “underspecified” concept of beliefs (Skott, 2013, 
p. 548) to the patterns-of-participation framework. By 
doing so, it is possible to consider the relationships 
between teachers’ identities and their participation 
in social practices (Skott, 2013, p. 511) which naturally 
comprise both, teaching in classrooms and teachers’ 
learning in professional development courses.

Wenger’s theory of Communities of Practice
In the theory of Communities of Practice (=CoP) 
(Wenger, 1998), identity development can be posi-
tioned at the very ‘social end’ of the above mentioned 
continuum. By doing so, Wenger describes learning 
from two points of view: The perspective of practice, 
in which learners are characterized as individuals 
taking part in socially-determined, community-based 
practices, and the perspective of identity, in which 
learners are considered as individuals, each being a 
member of different communities.

The crucial point of the CoP theory is a complex pro-
cess called Negotiation of Meaning (=NoM), comprising 
the process of participation and the interconnected 
process of reification. It is a fundamental statement 
of the theory that NoM does not necessarily involve 
direct interaction with others but is a constant process 
in terms of experience in everyday life. Therefore, 
CoP theory can be applied to all mathematics teach-
ers who are able to take part in a specific process of 
NoM, even though they are not able to interact direct-
ly because of geographical distance. Certainly, the 
theory can also be used naturally when referring to 
the learning of a group of mathematics teachers who 
attend a particular professional development course.

CoP-definition of identity: The assumption is that 
identity is the fully lived and negotiated experience 
of engagement in the practice of a community. In this 
sense, the definition of identity can be derived from 
the extent and quality of participated experiences 
and corresponding reifications through the process of 
NoM. Accordingly, identity exists as a constant work 

of negotiating and therefore, identity is not a static 
entity but a constant “becoming”. 

CoP-definition of identity-development: Because of 
the definition of identity alone, the historic-tempo-
ral dimension of a development process is already 
considered. Identity in the CoP theory is neither a 
core of personality that already exists at a particular 
beginning of a development nor a final state. Identity 
development occurs when so-called trajectories are 
formed due to the participation in communities of 
practice. These trajectories connect the past, the pres-
ent and the future; however, they are not predefined 
paths but continuous motions occurring through the 
negotiated experiences which are made in the process 
of NoM.

CoP-definition of learning: In CoP theory, learning is 
characterized as “the engine” of practice and practice 
is described as “the history” of learning. This means 
that practice as an ongoing, social, and interaction-
al process of NoM goes hand in hand with learning 
processes. As a consequence, educational processes 
based on actual participation in practice are effective 
in promoting learning since they are “epistemolog-
ically correct”. As a further consequence, Wenger 
(1998) underlines that there was a “match between 
knowing and learning, between the nature of compe-
tence and the process by which it is acquired, shared, 
and extended” (pp. 101–102). This assumption requires 
a competence term that basically differs from the 
individual-psychological one: Competence means 
knowing how to engage in practice, understanding 
the enterprise of a community of practice, and being 
able to use the shared repertoire of resources that is 
available to a community for using it in practice. In 
this sense, learning is becoming a member of a com-
munity by being familiar with its practices. However, 
since being a member of a community and being en-
gaged in its practices is tantamount to the work of 
identity formation, learning and identity develop-
ment are two interconnected, inseparable processes 
in the CoP theory.

MAPPING THE THEORY TO MATHEMATICS 
TEACHERS’ PROFESSIONAL DEVELOPMENT

The coherence of a community and translations 
from community membership to identity
According to the theory, the practice of a community 
is based on three dimensions: Mutual Engagement, 
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a Joint Enterprise and a Shared Repertoire. As a com-
munity membership is defined by these dimensions, 
they are important when newcomers are supposed 
to become a new member of the community or pe-
ripheral members turn into core members. Applied 
to mathematics teachers’ professional development, 
the extent of how these three dimensions are propor-
tioned is an indicator of how likely the practice in a 
training course actually becomes a practice of teach-
ing in a classroom – or in terms of identity – of how 
likely participating in a course transcribes identity 
as a form of competence into a teacher.

The mutuality of engagement in this manner is a 
crucial factor for teacher learning (Goos & Bennison, 
2008). Are the teachers able to interact with each other 
and take part in the process of NoM? Is it possible that 
the teachers are actually in a position to be involved 
in the practices desired by the teacher educators? Or 
is the training course designed in a way that the teach-
ers have no opportunities to engage at all? Research 
shows that participant-orientation is an important 
and effective element of teachers’ professional devel-
opment (Clarke, 1994).

In the CoP theory, a community additionally bases 
on a joint enterprise, i.e. the negotiated goals and 
the corresponding ways to achieve them. Here it is 
also a matter of how and how far the members of a 
community are actually accountable for the enter-
prise. According to the theory, teachers attending a 
professional development course will be more likely 
to develop their identities by gaining new perspec-
tives on interpretations, choices and values if they 
are actually included in the process of negotiation. 
This issue is discussed in literature as the question of 

“ownership” of professional development (Zehetmeier 
& Krainer, 2011).

Becoming a member of a community in terms of the 
theory also means that newcomers have to learn how 
to use and interpret the repertoire of practice (styles, 
artefacts, actions, tools, concepts, discourses, stories, 
etc.). Therefore, effective professional development 
programs manage to translate the shared repertoire 
of the training course into a personal repertoire as a 
feature of a teachers’ identity. Only by doing this, the 
teacher is able to apply the repertoire to new prac-
tices outside of or peripheral to the practices of the 
course. Hence, the question is if there should just be 
exposure to the repertoire and the related practices 

or if the teacher should actually participate in the 
practice using the repertoire. Effective profession-
al development is characterized by opportunities to 
try out practices in the classroom and by referring to 
the practices or cases of the teachers’ actual teaching 
(Lipowsky & Rzejak, 2012; Timperley, Wilson, Barrar, 
& Fung, 2007). Therefore, one can further conclude 
that teachers need sufficient time during the profes-
sional development program in order to make use of 
the new repertoire of the course (Penuel, Fishman, 
Yamaguchi, & Gallagher, 2007) even if it is negotiated 
and not only presented.

In terms of the theory, mutual engagement, a joint 
enterprise and a shared repertoire are conditions 
for a coherent and robust community. Such commu-
nities or networks contribute to a sustainable and 
effective teacher learning. (Cochran-Smith & Lytle, 
1999; Lipowsky & Rzejak, 2012; Zehetmeier & Krainer, 
2011). If facilitators of mathematics teachers’ profes-
sional development intend fostering collaboration in 
this sense, they should reflect on whether the three 
dimensions have actually been considered and how 
they can be integrated into the program.

Boundaries and multi-membership
Boundaries between different communities are de-
fined by practice, not by institutional or organization-
al structures. All participants of professional develop-
ment courses for mathematics teachers are teaching 
mathematics in school; however, they each have each 
experienced different practices of mathematics teach-
ing in their individual professional life. It is therefore 
the usual case that a training course for teachers is 
an encounter between different communities whose 
respective members form a new community via prac-
tices negotiated within the frame of the course.

As a consequence, a professional development course 
implicates several boundaries between the practices 
of the respective teachers and a further significant 
boundary between the teachers and the teacher ed-
ucators. The aim of a successful course in terms of 
the CoP theory is to allow crossing the boundaries 
by allowing the teachers to engage in the practice of 
other communities and especially in the teacher ed-
ucators’ practice. In this way, teachers should be able 
to use practices of other communities for the NoM at 
their own schools (Lipowsky & Rzejak, 2012). In other 
words, boundary crossing means the construction of 
an identity that includes different forms of practice. 
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On the one hand, this “multi-membership” requires 
the work of reconciliation: Teachers attending pro-
fessional development programs must often cope 
with conflicting forms of practice, because they are 
supposed to develop identities and gain competences 
defined by teacher educators or even by outsiders. On 
the other hand, various forms of practice can offer 
new learning trajectories for the teachers and there-
fore constitute a basis for identity development.  

The CoP theory considers two mechanisms of bound-
ary crossing. Firstly, so-called brokers are able to trans-
fer elements of one practice into another. In our case, 
the teacher educators themselves are brokers as they 
are able to translate, coordinate and align between 
different perspectives. Furthermore, teacher edu-
cators are capable of opening new possibilities for 
the process of NoM. The question is: Who is actual-
ly an effective broker, being able to allow boundary 
crossing and to promote identity development? In our 
opinion and with respect to the theory, successful bro-
kers are teacher educators and mentor teachers who 
have strong experience in multi-membership them-
selves. This means that they have made experiences 
in teaching the content of the course in school as well 
as in educating teachers in the topic. This also means 
that these educators have experienced the content in 
a perspective of practice as well as in a perspective of 
theory. In conclusion, when it is not possible to find 
one single teacher educator who has experienced 
that multi-membership, the tandem approach could 
be helpful for initiating boundary crossing (Rösken, 
2011, p. 81).

The second mechanism for initiating boundary cross-
ing is the use of boundary objects like artefacts, docu-
ments, terms, concepts, styles and so forth. An object 
can become a boundary object if it allows different 
interpretations, each interpretation being based on 
the perspective of the respective community of prac-
tice. Such objects are particularly suitable for discus-
sions: In which ways can a mathematical concept like 
derivations be taught? What kinds of activities are 
possible in order to teach the aspect of covariation 
between two variables? In which manner can the 
graphing calculator be a reasonable tool for teaching 
stochastic? Each answer and each corresponding per-
spective represents a specific practice and therefore 
individual experiences and identities teachers bring 
with them into professional development courses. We 
also know from literature that discussions and collab-

orative reflection are effective elements of teachers’ 
professional development leading to processes of 
change (Zehetmeier & Krainer, 2011). Furthermore, 
students’ documents, actually used textbooks, and vid-
eotaped lessons are suitable for being used as bound-
ary objects in training courses since they connect the 
practice in school with the practice in the professional 
development program.

Modes of Belonging
As a part of his conclusion, Wenger (1998) introduc-
es the three Modes of Belonging to a community and 
therefore having access to its practices: Engagement, 
Imagination and Alignment. Since engagement as an 

“active involvement in mutual processes of negotia-
tion of meaning” (Wenger, 1998, p. 173) has already 
been discussed, we want to draw attention to the re-
maining two.

Imagination: This mode refers to the process of extrap-
olating from one’s own experiences to future images 
of the world, future practices and future identities. 
Since imagination in terms of the CoP theory is not 
exclusively considered as an individual process but 
also as an integral feature of the collective process of 
NoM, imagination can be used as a source of identity 
development in a professional development program. 
In order to initiate processes of imagination, teacher 
educators should enable discussions and activities of 
self-reflection. By doing so, new learning trajectories 
are generated: How do teaching practices that are dif-
ferent from the experienced ones improve students’ 
learning? What is it like to adopt teaching practices 
that vary from one’s own teaching style? Lipowsky, 
Rzejak, and Dorst (2011) suggest that showing teach-
ers videos of teaching practices that lead to an im-
proved students’ learning generate such trajectories. 
Teachers having observed these scenarios rather 
change their practices (Lipowsky & Rzejak, 2012) as 
they are able to see their own identities in the light of 
a different practice by means of imagination. 

Alignment: Professional development programs usu-
ally intend aligning teachers to intended curricular 
requirements. Alignment in terms of the CoP theory 
comprises activities which lead to the adjustment of 
practices to broader structures and enterprises. In 
this context, Wenger (1998) emphasizes that the “chal-
lenge […] is to connect local efforts to broader styles 
and discourses” (p. 186). In other words: Curricular 
requirements are commonly political or administra-
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tional specifications which are not in line with the 
mathematics teachers’ needs on a local level in the 
sense of a community of practice. Hence, the task for 
the facilitators of teachers’ professional development 
is to negotiate the different perspectives by “convinc-
ing, inspiring and uniting” (Wenger, 1998, p. 186). A 
means for doing this might be coordinating boundary 
practices and reconciling diverging perspectives with 
the help of brokers and boundary objects.

CRITICAL REFLECTION AND CONCLUSIONS

With respect to educational designs, Wenger (1998) 
claims: “The primary focus must be on the negotiation 
of meaning rather than on the mechanics of infor-
mation transmission and acquisition.” (p. 265). This 
is in a particular way in line with the postulation of 
avoiding deficit-oriented approaches in teachers’ pro-
fessional development: Instead of analyzing deficits 
and filling the holes in teachers’ professional compe-
tence profiles, philosophies of teachers’ growth and 
empowerment are named (Rösken, 2011). We want to 
join the attitude of valuing the teachers’ practice and 
the experiences they make in their classrooms every 
day. Therefore, we have the opinion that the CoP the-
ory provides a framework of learning that respects 
the teachers’ individual backgrounds they bring 
along into the professional development programs. 
In addition to that, we have shown that the shifts in 
perspective on teachers’ learning are in line with the 
empirical findings concerning the effectiveness of 
professional development programs.

Nevertheless, we still have to think about how our con-
siderations concerning teachers’ learning in terms 
of identity development might be implemented in 
practice. A next step in this sense could be ponder-
ing appropriate teaching methods based on Wenger’s 
ideas of learning and respecting the specific situation 
in mathematics teachers’ training courses.

To be honest: Modeling professional development is 
a never completed, challenging task which involves 
many, partly cultural and administrative variables. 
We have learned that what is working in country x 
may be an unrealistic measure in country y. Last not 
least any theory has to handle these eventualities. It 
seems to us that Wenger’s theory possesses this po-
tential; however, this quality finally complicates its 
structure. To put it in another way: Wenger’s contri-
bution is not just a straight and lean theory.
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The goal of this study is to examine how prospective 
secondary school mathematics teachers learn to no-
tice students’ mathematical thinking about the process 
of classification of quadrilaterals. Findings point out 
that when prospective teachers identified the inclusive 
classification of quadrilaterals as a “key developmen-
tal understanding” (Simon, 2006), they modified what 
they considered evidence of secondary school students’ 
understanding of quadrilaterals classification process. 

Keywords: Noticing skill, classification of quadrilaterals, 

students’ mathematical thinking, prospective teachers 

learning.

INTRODUCTION

Previous research focused on prospective teachers 
education has underlined the importance of learning 
to notice what it is happening in a classroom (an im-
portant teacher’s skill) (Mason, 2002). Furthermore, 
research has shown that this skill could be developed 
in teacher education programs in some contexts 
designed ad hoc (Coles, 2002; Fernández, Llinares, 
& Valls, 2012; Sánchez-Matamoros, Fernández, & 
Llinares, 2014). 

A particular focus of this skill is how prospective 
teachers notice students’ mathematical thinking. 
Magiera, van den Kieboom and Moyer (2013) showed 
that prospective teachers demonstrated a limited abil-
ity to recognise and interpret the overall algebraic 
thinking exhibited by students in the context of one-
to-one interviews. Furthermore, research has under-
lined the relationship between mathematical content 
knowledge (MKT, Ball, Thames, & Phelps, 2008) and 

the process of recognising evidence of students’ un-
derstanding (Sztajn, Confrey, Wilson, & Edgington, 
2012). For instance, Bartell, Webel, Bowen and Dyson 
(2013) examined the role mathematical content knowl-
edge plays in prospective teachers’ ability to recog-
nise evidence of children’s conceptual understanding. 
After an instructional intervention (based on lessons 
where prospective teachers had to examine many ex-
amples of students thinking), their ability to analyse 
children’s responses improved. Fernández, Llinares 
and Valls (2012) indicated that discriminating be-
tween proportional and non-proportional situations 
was a key element in the development of prospective 
mathematics teachers’ abilities to identify evidence 
of different levels of students’ mathematical under-
standing in the domain of proportionality. Sánchez-
Matamoros, Fernández and Llinares (2014) examined 
the development of prospective teachers noticing skill 
of students’ mathematical understanding of the deriv-
ative concept. This study indicated that a key element 
in this development was prospective teachers’ pro-
gressive understanding of the mathematical elements 
that students use to solve problems in the domain of 
the derivative. However, difficulties in developing the 
skill of noticing students’ mathematical understand-
ing make more research in this line necessary, and 
particularly, in the different mathematical domains. 
In this study, we are going to identify key elements 
in the development of this skill in the domain of the 
classification of quadrilaterals.

Learning how to classify quadrilaterals causes diffi-
culties for secondary school students. These difficul-
ties are related to the relationship between inclusive 
and exclusive classifications of quadrilaterals since 
students recognise the different quadrilaterals by 
means of prototype examples without considering the 
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inclusion relations associated with the classification 
processes (De Villiers, 1994; Fujita, 2012). Inclusive 
classifications result when the application of a clas-
sifying criterion to a specific set creates subsets in 
which it is possible to establish an inclusion relation 
(hierarchical chain) among its elements. For example, 
in an inclusive classification of parallelograms, the 
square can be considered a special type of rhombus; 
while in an exclusive classification (partition) the 
square and the rhombus belong to separate groups. 
Understanding the role inclusive and exclusive clas-
sifications plays when classifying the quadrilaterals 
in order to define different types of quadrilateral 
(Usiskin & Griffin, 2008) is important in learning 
about students’ mathematical understanding. In 
this context, understanding inclusive classifications 
and how they are related to the process of defining 
geometric figures can be considered as a key develop-
mental understanding (KDU) (Simon, 2006) since the 
understanding of inclusive classifications implies a 
conceptual advance for students that enables them to 
understand inclusive definitions (for example, that a 
square is a special type of rhombus). 

Taking these aspects into account, our research ques-
tions are: (1) how do prospective teachers use their 
knowledge of quadrilateral classification in order 
to identify evidence of students’ understanding? (2) 
What teaching decisions do prospective teachers take 
in order to support the development of students’ un-
derstanding? 

METHOD

Participants and design principles

The participants of the study were six Spanish science 
graduates (mathematics and engineering) enrolled 
on an initial training programme that provided them 
the skills needed to teach mathematics in the second-
ary school (we will refer to the prospective teachers 
as PSTs). The programme included subjects such as 
school organisation, psychology of instruction, math-
ematics education and teaching practice in secondary 
schools. In the part corresponding to mathematics ed-
ucation, the prospective teachers were studying a sub-
ject aimed at learning the characteristics of secondary 
school students’ mathematical understanding. This 
subject was taught for 4 hours a week, for 13 weeks, 
and focused particularly on students’ understanding 
and how to select tasks that would promote a concep-

tual understanding. One of the topics was students’ 
understanding of the classification of quadrilaterals. 

The module focused on the classification of quadrilat-
erals consisted of 3 sessions of two hours, and the par-
ticipation in a week-long online debate. The design of 
the module incorporated a socio-cultural perspective 
(the spiral of knowing, Wells, 2002) and considered 
four aspects: Experience, Information, Knowledge 
Building and Understanding. ‘‘Experience’’ is the 
prior knowledge that prospective teachers have 
constructed during their participation in learning 
and teaching situations. ‘‘Information’’ consists of 
our understanding (as a scientific community) of the 
quadrilateral classification processes (theoretical in-
formation) that we provided to prospective teachers. 

‘‘Knowledge Building’’ is related to how prospective 
teachers engage in meaning-making with others in 
an attempt to extend and transform their under-
standing of a student’s mathematical thinking and 
their own understanding of mathematics. Finally, 

‘‘Understanding’’ constitutes the interpretative frame-
work in terms of which prospective teachers make 
sense of new situations, that is, what they mobilise to 
identify students’ mathematical thinking in order to 
anticipate and monitor student response, select and 
sequence tasks and make connections with students’ 
responses.

In the module, firstly, PSTs had to answer a task 
where they had to anticipate, individually, the way 
in which students’ answers to the classification prob-
lems reflected evidence of understanding and had to 
take decisions to promote students’ understanding 
(“Experience”). Next, the teacher trainer presented 
information about the characteristics of the quad-
rilaterals classification process and about students’ 
understanding of quadrilaterals classification (inclu-
sive and exclusive classifications, De Villiers, 1994; 
Usiskin & Griffin, 2008), and discussed this with the 

Figure 1: The spiral of knowing (Wells, 2002, p. 85)
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PSTs (“Information” in the spiral of Wells). Finally, 
the PSTs compared their answers in pairs in order to 
explore differences and similarities in the way they 
recognised evidence of students’ understanding of the 
classification process (Knowledge building) and take 
teaching decisions to promote students’ understand-
ing (“Understanding” in Wells’ spiral of knowledge). 

The task (instrument)

Prospective teachers had to answer a task consisted of 
two quadrilateral classification problems (ages 14–15) 
from secondary school textbooks (Figure 2), and six 
professional questions aimed at prompting prospec-
tive teachers to anticipate the response of students 
with different levels of conceptual understanding and 
propose tasks to improve their understanding:

A1. Indicate exactly what Maria, a 3rd year 
secondary school student (aged 14–15), would 
have to do and say in each problem in order to 
demonstrate that she has achieved the learning 
objective assigned for the problem (Classify the 
quadrilaterals according to different criteria).

A2. Explain which aspects of Maria’s answer 
to each problem make you think that she has 
understood the classification of quadrilaterals. 
Explain your answer.

B1. Indicate exactly what Pedro, another 3rd 
year secondary school student (aged 14–15), 
would have to do and say in each problem in or-
der to demonstrate an understanding of certain 
elements of the classification of quadrilaterals 
while remaining unable to achieve the learning 
objective. Explain your answer.

Figure 2: The two quadrilateral classification problems of the task
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B2. Explain which aspects of Pedro’s answer 
to each problem makes you think that he has 
not achieved the intended learning objective. 
Explain your answer.

C. If you were the teacher of these students,

How would you modify/extend the task in order 
to confirm that Maria has achieved the intended 
learning objective? Explain your answer.

How would you modify/extend the task so that 
Pedro achieves the intended learning objective? 
Explain your answer.

The first four questions refer to the teacher’s ability 
to anticipate possible answers to the problems that 
reflect different levels of secondary school students’ 
understanding of the process of classifying quadrilat-
erals. The last two questions (section C) are related to 
the teaching decisions; the decisions that the teacher 
should take in order to promote student progress. 

The aim of problem 1 is to classify a set of nine quad-
rilaterals using three different criteria. The different 
sections of the problem could be solved by identifying 
the figures that met the criterion and grouping them 
together. The problem 2 requires the use of some 
elements of the geometric figures (sides, angles and 
diagonals of the square) to classify the parallelograms 
on the basis of the diagonals. 

Analysis

We analysed PSTs answers to the individual task 
(Experience) and the modifications introduced when 
solving the task in pairs (knowledge building) on the 
basis of the theoretical information related to stu-
dents’ understanding of the classification process 
(Information). Initially, we focused on how the PSTs 
considered that the hypothetical answers they gave 
individually to problems 1 and 2 indicated different 
levels of students’ understanding of the classifica-
tion process. We then identified the decisions they 
took to help students consolidate or improve their 
understanding. In the analysis of the task resolution 
carried out in pairs we tried to identify how the pre-
viously discussed theoretical information modified 
what the PSTs understood as evidence of secondary 
students’ understanding of the classification process 
(taking into account how PSTs considered the under-

standing of inclusive and exclusive classification as a 
key development understanding). We also identified 
modifications in the decisions taken to help students 
to improve or consolidate their understanding.

The data was analysed by four researchers creating 
categories. The initial categories were redefined as 
new data was added. Points of agreement and disa-
greement were discussed, with the aim of reaching a 
consensus on the inferences from the data by means 
of a process that looked for evidence that did or did 
not confirm the characteristics initially produced.

RESULTS

The results section is organised in two parts. In the 
first part, we identify the changes in how the PSTs 
characterised students’ understanding and, in the sec-
ond part, the changes in how they decided to support 
students understanding.

Changes in how the PSTs characterised 
students’ understanding 

The 6 PSTs, initially, considered the use of just one 
criterion as evidence of the understanding of the clas-
sification process: the one that generated exclusive 
classifications. For example classifications in which 
a square is a parallelogram but is not a special type of 
rectangle or rhombus. One PST considered as criteria 
whether the diagonals were congruent and if they 
formed a right angle (item 2.3 of problem 2). From this 
perspective the parallelograms formed three groups: 
squares (parallelograms with congruent and perpen-
dicular diagonals), rectangles (parallelograms with 
congruent diagonals that do not form a right angle), 
and rhombuses (parallelograms with non-congruent 
diagonals). 

On the other hand, PSTs considered evidence of an in-
complete understanding of the classification process 
of parallelograms when the secondary school student 
was not capable of generating exclusive classifications. 
Anna, one of the PST, justified this fact by stating that:

(the student with an inadequate understand-
ing of the classification process) does (would 
do) problem 1 correctly but not problem 2. The 
student’s error comes (would come) from con-
sidering that the diagonals of the square do not 
intersect at right angles – perhaps because of a 
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printing error- (referring to Figure B in prob-
lem 1), which means that the classification of 
item 2.3 only creates two large groups: those 
that have equal diagonals (square and rectan-
gles) and those that do not (rhombus). 

After the discussion of the theoretical information 
(“Information” in the Wells’ spiral of Knowing) fo-
cused on the relations between the inclusive and ex-
clusive classifications and definitions, PSTs started to 
consider the inclusive relation as a key developmental 
understanding when they tried to identify evidence 
of students’ understanding. Putting the relation be-
tween inclusive and exclusive classifications in the 
focus of their noticing allows them to accept that a 
square can be considered a special type of rhombus 
or rectangle and this understanding should be con-
sidered as an advance in the student understanding.

For example, a pair of PSTs anticipated using a criteri-
on based on diagonals (item 2.3 in problem 2, Figure 1) 
and the possibility of generating an inclusive relation. 
They used the criterion “congruent diagonals”, which 
leads to a classification in which the rectangles and 
squares are in the same set and the rhombuses and 
rhomboids in another. Then, in both sets they consid-
ered the criterion “the diagonals intersect at a right 
angle”. From this way, they obtained an inclusive clas-
sification that allowed them to define, for example, 
that “a square is a rectangle whose diagonals intersect 
at a right angle”. To demonstrate an inadequate under-
standing of the classification of parallelograms, they 
considered that the student was not capable of gener-
ating inclusive classifications that could allow him/
her to get definitions where a square can be consid-
ered a rectangle. So, for example, they evidenced the 
difficulties involved in handling inclusive relations 
assuming that the student could define squares and 
rectangles with no relationship: a square is a parallel-
ogram with equal diagonals that form a right angle; a 
rectangle is a parallelogram with equal diagonals that 
do not form a right angle.

Changes in the PSTs’ teaching decisions 
to support students’ understanding 

The changes in teaching decisions were linked to how 
PSTs understood the inclusive classification as a key 
factor in the understanding of classification processes. 

Initially, when PSTs considered that the understand-
ing of the classification process was linked with ex-
clusive classifications, they supported their teaching 
decisions in helping students to identify and apply 
classification criteria that generate singleton subsets. 
For example, to consolidate students’ learning of the 
classification process, Anna proposed the following 
problem:

a) In problem 1 find a square, a rectangle and a 
rhombus, and check the characteristics in the 
table (section 2.1. of problem 2).

b) Analyse the characteristics in the table for all the 
figures in problem 1. What do you observe?

c) Give definitions for the parallelograms

Furthermore, to help better understanding of the clas-
sification process, Anna tried that the student was 
capable of recognising a second criterion “diagonals 
intersect at right angle” that produce an exclusive 
classification with singleton subsets. Anna stated:

First I would ask the student about the differ-
ences between the square and the rectangle 
in their classification (observing the answers 
given in activity 2.1); and then I would make the 
student draw different squares with their diag-
onals and measure the angles with a protractor.

If it is possible, in a computer room, I would also 
make sure that the student correctly draws and 
measures the angles the diagonals form with 
enough squares so as to be sure that they fully 
understand that this characteristic is common 
in all squares.

After the discussion of the theoretical information 
(“Information” in the Wells’ spiral of Knowing) the 
PSTs understood that inclusive classifications were a 
key factor in the understanding of classification pro-
cesses and they took different teaching decisions. For 
example, to consolidate understanding of the classi-
fication process in students that accepted inclusive 
classifications, Anna and Robert proposed extension 
activities aimed at establishing the equivalence of 
different definitions.

a) Analyse the characteristics in Table 2.1. in the 
figures in problem 1. 
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b) Give two different definitions of parallelograms

With students that hypothetically only generated 
exclusive classifications, they recognised that inclu-
sive classifications are a key factor in helping them 
to understanding the classification of quadrilaterals. 
To this end, they designed tasks that serve, through 
analysis and reflection, to underline the possibility of 
seeing a figure as a special case within a larger group. 
For example, Anna and Robert modified sections 2.1 
and 2.2 in problem 2, incorporating the figure of a 
rhomboid and asking Classify Figure H in Table 2.1. 
Is it a parallelogram? and Classify the parallelograms 
into only two groups. Can you do it in another way? 
In this way, in their view, the new problem 2 forces 
the student to choose classification criteria for the 
parallelograms in two groups and thereby creates an 
opportunity to generate an inclusive classification. 

These changes in the PSTs’ teaching decisions can 
be linked to the knowledge building (an aspect from 
the Wells’ spiral of knowing) in which the inclusive 
classification was considered as a key developmental 
understanding in the task of attempting to recognise 
evidence of students understanding of quadrilaterals 
classification.

DISCUSSION 

This research aims to examine some characteristics 
of PSTs learning. Our focus is how the changes in the 
way that PSTs understand the classification process 
of quadrilaterals influence on what they consider 
evidence of students’ understanding, and on how 
they decide to assist students in their development. 
Initially, the PSTs only considered exclusive classifi-
cations, which implied that the definition of the dif-
ferent parallelograms was a succession of properties 
without the establishment of relationships between 
them. This meant that the way in which they were able 
to help students was to propose tasks in order to iden-
tify the largest possible number of characteristics in 
the figures, but without establishing relationships 
between them. The recognition of inclusive classifi-
cations of quadrilaterals as a key mathematical factor 
for conceptual development enabled them to modify 
the way in which they characterised students’ under-
standing. This led the PSTs to focus their attention on 
helping students to identify relationships between 
the characteristics of figures as a means to generate 

inclusive definitions. To some extent, the prospective 
teachers set the development of the understanding of 
inclusive classifications (a “key developmental under-
standing”, Simon, 2006) as a learning objective. For 
example, to define a rhombus as a parallelogram with 
four congruent sides and the opposite angles congru-
ent two by two, and to consequently be able to define a 
square as a rhombus with four congruent angles. This 
result is in line of previous studies which shown the 
importance of prospective teachers’ mathematical 
knowledge when attempting to interpret students’ 
understanding (Fernández et al., 2013; Magiera et 
al., 2013; Sánchez-Matamoros et al., 2014; Son, 2013). 
To summarise, participation in this module enabled 
prospective teachers to recognise the understanding 
of inclusive classification as a conceptual advance 
in the development of classification and definition 
of geometric figures. As a consequence, prospective 
teachers identified the understanding of inclusive 
classification as a learning objective, recognising it 
as a necessary qualitative transition in the ability of 
students to think about and perceive relationships be-
tween elements of geometric figures. This recognition 
was demonstrated in the way they posed new tasks to 
support the understanding of classifications and the 
process of defining geometric figures. 

Although more research is still needed to help us to 
identify the factors that influence the development of 
prospective teachers’ noticing of teaching and learn-
ing, our data provide characteristics of the learning 
of knowledge needed to teach and its use in noticing 
evidence of students’ understanding. Although the 
intervention might be considered short in terms of 
time, these results provide ideas that can help in the 
design of sequences of learning activities for pro-
spective teachers, aimed to make explicit what they 
considered “key knowledge” when notice students’ 
understanding and make teaching decisions in order 
to support students in their learning.
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Analysing classroom situations belongs to the everyday 
requirements of mathematics teachers. From the per-
spective of professional development, empirical evidence 
related to the growth of this aspect of teacher expertise 
however is still scarce. Consequently, this study focuses 
on developments in the way pre-service teachers analyse 
classroom situations. In a first approach, we concentrated 
on pre-service teachers’ analysis of how representations 
are dealt with in the classroom, which is a key for fostering 
students’ understanding. The study examined whether 
it is possible to develop the pre-service teachers’ analysis 
through a specific university course. The results suggest 
that the quality of the participants’ analyses increased 
significantly according to several relevant criteria.

Keywords: Teacher education, video analysis, noticing, 

representations.

INTRODUCTION

What expert teachers should “see” in classroom sit-
uations does not only consist of noticing in the sense 
of identifying and describing relevant events in class-
room interaction, but it also encompasses linking 
their observations to criteria, giving arguments and 
discussing the interaction against this background. 
As several studies have shown, differences in noticing 
between samples of expert and novice teachers (van 
Es & Sherin, 2011), it is widely accepted in the scien-
tific community that a development in this aspect of 
expertise takes place over a long-term process of pro-
fessional development. However, the base of empir-
ical evidence whether pre-service teachers’ analysis 
can be developed, in the framework of a one-semester 
university course, still needs to be broadened. 

This study aims to respond to this research need by 
focusing on pre-service teachers’ analyses of how 

representations are dealt with by students and their 
teachers in classroom videos. What we understand 
by growth in analysing is the pre-service teachers’ de-
velopment in analysing the use of representations in 
classroom videos and their use of theory as fostered 
by a university course. We build on prior work related 
to research methods (e.g., Dreher & Kuntze, 2013) and 
examine whether it is possible to develop the pre-ser-
vice teachers’ analysis through a specific one-semes-
ter university course (Dreher & Kuntze, 2012). To our 
knowledge, this is the first study that combines quan-
titative and qualitative methods in order to describe 
pre-teachers’ growth in this specific context. 

We will, in the following, introduce the theoretical 
background of this study (1), derive the research in-
terest of this study (2), inform about the sample and 
methods (3), present results (4) and discuss their im-
plications for theoretical and practical contexts (5).

THEORETICAL BACKGROUND

There is a broad consensus that expert mathematics 
teachers should be able to foster learners by provid-
ing them with challenging learning opportunities 
and help according to their needs. Both of these re-
quirements can be considered to be closely linked 
to activities of analysing  – in this case analysing 
learning opportunities and analysing the learners’ 
thinking or potential difficulties, for instance. Such 
analysis makes use of professional knowledge (e.g., 
Shulman, 1986; Ball, Thames, & Phelps, 2008; Kuntze, 
2012), for example, when referring to criteria that are 
necessary for the analysis. For the case of analysing 
classroom situations, the concepts teacher noticing 
or professional vision (van Es & Sherin, 2008; Sherin, 
Jacobs, & Philipp, 2011) describe elements of teachers’ 
analysis of such situational contexts in the classroom. 
These elements are identifying relevant events for 

mailto:friesen@ph-ludwigsburg.de
mailto:dreher@ph-ludwigsburg.de
mailto:kuntze@ph-ludwigsburg.de
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learning mathematics, describing the events from 
a criteria-oriented perspective as well as reflecting 
about their role and about potential implications 
connected with the analysis of classroom situations. 
These aspects make it almost obvious that noticing 
should be considered as knowledge-based (van Es & 
Sherin, 2008). 

In the following, we would like to give an example 
of such criterial knowledge – and how this knowl-
edge may enable teachers to analyse classroom sit-
uations – namely professional knowledge related 
to dealing with representations of mathematical 
objects. Representations stand for mathematical ob-
jects (Goldin & Shteingold, 2001), and they are the only 
possibility to approach these abstract and ‘invisible’ 
mathematical objects (Duval, 2006). This highlights 
the importance of dealing with representations in 
the mathematics classroom. Connecting different 
representations in the learning process can enrich a 
learner’s concept image (Ainsworth, 2006; Lesh, Post, 
& Behr, 1987), however, changing between represen-
tations is often very demanding for learners and can 
hence also be an obstacle for the learning process (e.g., 
Duval, 2006; Dreher & Kuntze, 2015). 

Expert teachers (cf., e.g., Kunter et al., 2013, for the 
notion of ‘expertise’) are expected to be able to use 
such criterial knowledge when analysing relevant 
classroom situations regarding the use of represen-
tations. For instance, whether representations are 
carefully connected in the classroom by explicitly 
emphasising how properties of a mathematical object 
can be seen in different representations, whether the 
learners are encouraged to reflect on representations, 
on their use and on changes between representations, 
or whether a learner’s difficulty is connected with the 
interpretation of a specific representation (Dreher & 
Kuntze, 2015).

This discussion is mainly in line with the teach-
er-noticing framework (e.g., van Es & Sherin, 2008). 
However, diverse conceptualisations of teacher no-
ticing can be found in the literature (Sherin, Jacobs, & 
Philipp, 2011), so the full spectrum of criterion-based 
analysing is not always reflected in what is under-
stood by “noticing”. Given this situation, it may be use-
ful to include the perspective of systematic observation 
(Schwindt, 2008), in which analysing videotaped class-
room situations comprises of aspects such as describ-
ing, explaining and evaluating situations, highlighting 

(making focused and structured comments), as well as 
articulating critical incidents. 

Bringing together these approaches under the focus 
of using representations in the mathematics class-
room, we define “analysing” in this study to be an 
interaction of the following processes: 1) Identifying 
relevant situations concerning the use of representa-
tions, which marks the “starting point” of an analysis; 
2) evaluating such situations in a critical way based on 
connecting relevant situations and arguments with 
corresponding elements of theory regarding the use 
of representations; and 3) presenting/articulating 
the results of the analysis. These processes should 
neither be considered to be ordered nor completely 
separable, as there may be jumps between processes 
or simultaneous and interacting processes. 

In order to develop the process of analysing with the 
pre-service teachers as described above, we carried 
out a one-semester university course. The core of this 
course was the analysis of videotaped classroom situ-
ations and the analysis of tasks from textbooks, both 
focusing on the learning potential related to using 
multiple representations. At the beginning of the 
course, key elements of theory (e.g., Duval, 2006) were 
introduced and the pre-service teachers developed 
criteria based on literature about dealing with rep-
resentations. Such criteria concerned, e.g., changes 
between different representations (treatments and 
conversions); possible obstacles to students’ under-
standing connected to representations; or the teach-
ers’ support in using and reflecting on representa-
tions. The criteria were used in two ways. First, as a 
framework for analysing and evaluating videotaped 
classroom situations as well as textbook tasks and 
second as a basis to further develop the analysed ma-
terial regarding the use of representations. In case 
of the textbook tasks, the pre-service teachers were 
encouraged to change and enrich the tasks concern-
ing the use of representations. In the case of the vid-
eos they were asked to conceive improved classroom 
situations regarding the use of representations. The 
course sessions provided the opportunity to share 
and discuss the ideas and material that the pre-service 
teachers developed throughout the course.
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RESEARCH QUESTIONS

For evaluating whether it is possible to develop the 
process of pre-service teachers’ analysing, the study 
aims at answering the following research questions: 

 ― How do pre-service teachers who participated in 
a specific university course analyse videotaped 
classroom situations before and after the course? 

 ― Is there a growth in linking relevant situations 
with criteria related to the use of representa-
tions?

 ― To what extent do the pre-service teachers ex-
amine the observed classroom situations criti-
cally against the background of corresponding 
elements of theory before and after the course?

SAMPLE AND METHODS

In order to answer these research questions, a vid-
eo-based test was developed which comprised of two 
videotaped classroom situations and a corresponding 
questionnaire with different questions (see Table 1). 
The test was completed by 18 pre-service teachers 
(14 of them female) in a pre-post test design at the 
beginning and the end of a four-month university 
course (one 90-minute-session per week). The par-
ticipants were all advanced or last-year students at 
Ludwigsburg University of Education, preparing to 
teach mathematics at primary or secondary schools. 

The first video clip lasted about six minutes and shows 
a classroom situation with individual work. A student 
working on a problem in her book has difficulties crea-
ting three-digit numbers where the sum of the digits 
would be nine. The teacher asks her to draw three col-
umns in order to represent the hundreds, tens and 
units on a place-value board. He then gives her nine 
chips, asks her to arrange them in the three columns 
and to tell him the number she had arranged. As the 
girl appears to have problems in translating the chips 

into numbers, the teacher shows her how to write 
down the number of chips under each column. At the 
end of the video, the teacher leaves the student with the 
instruction to arrange and write down more numbers. 

The second video clip lasted about seven minutes and 
shows a whole-class activity where a teacher works 
out the solution to an age word problem with her class. 
First she lets the students read the problem in their 
book and they explain in their own words the rela-
tion between the age of a father and his son. Then she 
draws a table on the board to set up the variables and 
asks the students to label them with their definitions. 
At the end of the clip, the teacher tells the students to 
use the information from the table to set up equations 
and reminds them of important solution steps. 

Although the two classroom videos seem to be quite 
different, they share important aspects concerning 
the use of representations that appear suitable to 
evoke pre-service teachers’ attention and elicit ana-
lysing in this context. In both videos, the teachers use 
different registers of representations in order to sup-
port their students’ understanding. However, both 
teachers miss important opportunities to offer their 
students help in dealing with those representations, 
for example, in the sense of translating between them, 
connecting them or reflecting on their use.

Table 1 shows the open-ended questions of the ques-
tionnaire the pre-service teachers had to answer at the 
beginning and the end of the university course. Item 
1 aims at eliciting pre-service teachers’ analysis with-
out specifically prompting them to look at representa-
tions. Items 2 and 3 prompt the pre-service teachers 
to look at representations and motivate evaluations 
of corresponding events.

The answers to the open-ended questions were coded 
by two researchers, according to a top-down coding 
manual. The inter-researcher agreement was found 
to be good (κ = .83). For item 1, it was coded whether 
representations were mentioned, whether critical 

Item 1 In what way was the students’ understanding (not sufficiently) supported in the vid-
eo clip? Please describe.

Item 2 Please evaluate the support given by the teacher regarding the use of representa-
tions.

Item 3 Please evaluate the support given by the teacher regarding the translation between 
different representations. 

Table 1: Open-ended questions for each videotaped classroom situation
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evaluations of the teachers’ support were made, and 
whether there was a reference to elements of theory 
regarding the use of representations. Critical evalua-
tions were defined as evaluations that also included 
negative judgements of the teachers’ support as shown 
in the videos. Regarding elements of theory related to 
the use of representations, it was coded whether an 
answer was related to at least one of the following five 
aspects: support in using representations, translating/
changing between representations, enhancing reflec-
tions on the use of representations, clarification why 
certain representations were used, and how learning 
was fostered by the way representations were dealt 
with. 

Before answering items 2 and 3 in which the partici-
pants were prompted to look at representations (see 
Table 1), the pre-service teachers were given a defini-
tion of representations in the mathematical context 
in which examples of different registers of represen-
tations such as symbolic or iconic were mentioned. 
Accordingly, it was coded whether the answers con-
tained both a reference to the corresponding elements 
of theory (teachers’ support in using representations 
or translating between representations) and critical 
evaluations of the teachers’ support.

RESULTS

We would like to start with two sample answers, which 
may also illustrate the coding process (see Figures 1 
and 2).

Already in the pre-test answer, the pre-service teacher 
in Figure 1 (see below) appeared to give critical eval-

uations, but these evaluations are not connected to 
representations and the way they are dealt with (e.g., 

“The way of problem solving has no relation to a re-
al-world problem”). The criterion of using or dealing 
with representations is not referred to. However, in 
the post-test the pre-service teacher does not only 
attend to the representation registers from the vid-
eo clip (“word problem”, “table”, “equation”), but also 
manages to analyse their use according to different 
elements of theory (e.g., “But what about the connec-
tions?”). Further, both positive and negative evalua-
tions of corresponding events are given (e.g., “Chance 
unfortunately not optimally taken”), which was coded 
as critical evaluation.

Comparing the answers in pre-test and post-test, the 
analysis of this case suggests a progression in the 
quality of the analysis.

In the sample answer for item 2 (see Figure 2 below), 
the pre-service teacher’s analysis of the video clip 
remains somewhat incomplete both in pre-test and 
post-test.

Although referring to the teachers’ support in using 
representations in the pre-test as prompted by the 
question, there is no critical evaluation of this sup-
port. The pre-service teacher mainly sticks to mere 
descriptions of events (e.g., “student was asked to 
draw the place-value board herself; numbers were 
written directly under the board”). In the post-test, 
the pre-service teacher suggests alternatives for the 
teacher’s action. The expressions used (e.g., “could 
have explained”) suggest that the participant sees 
the video clip critically with respect to the suggest-

Pre-test

The same type of problem has been introduced be-
fore and is now recalled from the students in a very 
schematic way. The way of problem solving has no 
relation to a real-world problem.

Post-test

word problem → table → equation

useful for students as 
they often cannot keep 
all information in mind 
and so they get it sorted 
and structured

Necessary step to solve 
the problem. But what 
about the connections? 
Could be nicely done 
with the help of the table. 
Chance unfortunately 
not optimally taken.

Figure 1: Sample answer and translation for item 1, video 2, questionnaire #9
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ed alternatives. However, the coding yielded no clear 
direct reference to the criterion of using representa-
tions beyond rather general remarks (e.g., “could have 
explained and used the material in more detail”). In 
the case of these answers, we could thus not detect a 
progression in the quality of analysis according to 
our coding categories. 

On the basis of the coding of answers in the pre-test 
and post-test, we could count how often the corre-
sponding codes were assigned to the pre-service 
teachers’ answers. Table 2 shows the results of all 18 
pre-service teachers for the first item by displaying 
the relative frequencies of the codes in per cent. The 

data mainly suggests an overall growth in analysing 
for this item. In the post-test, nearly all pre-service 
teachers mentioned representations when asked 
about the teachers’ support of students’ understand-
ing in the video clips and there is also a growth in 
referring explicitly to the use of representations as 
analysis criterion.

Figure 3 shows the results for the code frequencies re-
lated to items 2 and 3. The data reveals a strong growth 
of the pre-service teachers’ criterion-based analysing 
consisting both of the reference to the teachers’ sup-
port in using representations or translating between 
them, and of the critical evaluation of corresponding 

Pre-test

 ― student was asked to draw the place-value board   
herself and to arrange the chips

 ― numbers were written directly under the board 
to show the connections between the place value 
and the number

 ― stimulating questions: Should we try to do this?

Post-test

 ― he brought in material
 ― [he] let the student take action herself
 ― [he] could have explained and used the material 
 ― in more detail 

Figure 2: Sample answer and translation for item 2, video 1, questionnaire #16

video 1 video 2

pre post pre post

mentioned representations 72% 94% 78% 100%

gave critical evaluations
of the teachers’ support

50% 67% 61% 39%

referred to the use of representations/elements of theory 50% 56% 50% 67%

Table 2: Code frequencies related to pre-service teachers’ analysis in item 1

Figure 3: Code frequencies related to pre-service teachers’ analysis in items 2 and 3
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events in the video clips. However, even in the post-
test, not more than half of the students carried out an 
analysis satisfying the code definition.

Concerning the pre-service teachers’ connections 
to elements of theory, data analysis shows a growth 
in the number of references to translations between 
representations from pre-test to post-test (see Table 3). 
While the majority of the pre-service teachers men-
tioned only up to one translation in the pre-test, most 
answers contained two or even three connections to 
this element of theory in the post-test. Comparable to 
these findings, there was a growth in the number of 
references to additional elements of theory in the an-
swers to items 2 and 3: nine pre-service teachers made 
additional connections to the elements of reflection or 
goal transparency in the pre-test, whereas 17 pre-ser-
vice teachers additionally referred to elements such 
as reflection, goal transparency or the fostering of 
learning processes in the post-test.

In a further step in our data analysis, we made use of 
indicator scores, which can be seen as an exploratory 
first step towards quantitative forms of describing 
how criteria-based pre-service teachers analyse class-
room situations. For this explorative quantification 
approach, code-based scores were created as follows. 

In the case of the answers to item 1, one point was giv-
en if the answer mentioned representations. In this 
case, an additional point was obtained if not only the 
mere existence but also the use of representations was 
mentioned explicitly, and another point correspond-
ed to the code of “critical evaluation given”. Like this, 
the participants could reach a range from 0 up to 3 
points for each video, resulting in a total score rang-
ing from 0 up to 6 points. In the case for the answers to 
items 2 and 3, one point was given only if the answers 
contained both critical evaluations and relations to 
the teachers’ support in using representations (item 
2) or the teachers’ support in translating between rep-

resentations (item 3), resulting in a total score ranging 
from 0 up to 4 points. 

Data analysis for the score based on item 1 showed that 
the pre-service teachers had on average higher scores 
in the post-test (M = 4.22, SE = 0.25) than in the pre-test  
(M = 3.33, SE = 0.38). This increase is significant and 
corresponds to a medium-sized effect (T = -3.06, df = 17, 
p < .01, r = 0.60, d = 0.55). 

For items 2 and 3, the comparison between the scores 
yielded comparable results: the pre-service teachers 
reached on average higher scores in the post-test (M 

= 1.73, SE = 0.32) than in the pre-test (M = 0.53, SE = 0.19). 
This increase is also significant and corresponds to a 
strong effect (T = -3.52, df = 14, p < .01, r = 0.69, d = 1.62). 

DISCUSSION AND CONCLUSIONS

Before discussing the results in detail, we would like 
to recall that the data has to be interpreted with care. 
We do not have data from a control group so far and 
the sample size restricts the possibility of making any 
broader generalisations from the results.

However, the research questions of the study could 
be answered and the findings show the pre-service 
teachers’ development in analysing classroom vid-
eos throughout the university course. Even if not all 
pre-service teachers have reached the level of in-depth 
analysis with an extensive reference to aspects of rel-
evant theory, the overall results suggest a deeper and 
more careful analysis of the videotaped classroom sit-
uations after the university course. On average, more 
pre-service teachers referred to representations in 
their analyses after the course, more critical evalua-
tions of the teachers’ support in the videos were given 
and the pre-service teachers made more connections 
between the classroom situations and criterial knowl-
edge related to the use of representations. A particular 
growth could be detected in the pre-service teachers’ 

video 1 video 2

number of references to the translation between 
representations

pre post pre post

0 67% 22% 28% 17%

1 28% 17% 50% 11%

2 6% 28% 17% 33%

3 or more references 0% 33% 6% 39%

Table 3: Pre-service teachers’ connections to theory in items 2 and 3
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analysis of relevant situations where the translation 
between different representations played an import-
ant role, which is a key to students’ understanding. 

At first sight, a possible explanation of the observed 
growth might be the pre-service teachers’ increased 
awareness of representations and their use in the 
post-test. Taking a closer look, however, this interpre-
tation of the findings appears too simplified. Already 
in the pre-test, the teachers were prompted to the cri-
terion of dealing with representations in items 2 and 
3, which was not reflected in their answers. Moreover, 
in the post-test, many pre-service teachers still were 
not able to analyse the classroom situations in depth 
as the corresponding coding only showed frequencies 
of up to 50% (Figure 3), indicating that the potentially 
higher awareness of dealing with representations was 
not sufficient for carrying out successful analysis. 
This underpins the significance of both components 
of the analysing process: the identification of relevant 
classroom situations as well as their critical and the-
ory-based evaluation.

The quantitative results suggest that it is possible to 
describe the quality of teachers’ analyses by quanti-
tative measures and thus to tap into a key aspect of 
their expertise in follow-up research. Corresponding 
instruments are currently being developed.

For practice in teacher education, the findings clear-
ly highlight needs of professional development. The 
analysis of classroom situations offers challenging 
learning opportunities for pre-service teachers and 
corresponding competencies should be fostered. 
This study can offer a first orientation to how crite-
rion-based analysing of classroom situations could be 
the subject of a focused university course (cf., Dreher 
& Kuntze, 2012) in which pre-service teachers showed 
growth in this aspect of professional expertise. 

We thus conclude, that pre-service teachers’ growth 
in analysing classroom videos can be encouraged in 
the framework of a university course, but that this 
growth should be seen as one step in a longer chain 
of ongoing professional development.
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This paper tries to delineate principles and frameworks 
for task design in primary mathematics teacher educa-
tion. The reflection process developed both for mathe-
matics teacher educators and members of a community 
of inquiry led us to identify a four-step dynamic model 
relating theory and practice, which is used here in a 
specific part of mathematics teacher educators’ practice: 
the design of tasks. The identification and characteriza-
tion of two dimensions, related to what to teach during a 
course in mathematics for preservice primary teachers, 
allowed us to design tasks that seek to consider specif-
ic features of each one. For us, task design is a process 
in which mathematics teacher educators are involved 
through the development of their professional activity.

Keywords: Task design, four-step dynamic model, task 

design as a process. 

INTRODUCTION 

Some years ago, with the aim of discussing our ideas 
within our community of practice, we presented in 
CERME3 an ongoing research related to the knowl-
edge and the learning process of preservice elemen-
tary school teachers. The objective of the research 
was to determine how student teachers used concep-
tual tools provided in mathematics methods courses 
(García, Sánchez, Escudero, & Llinares, 2003). The re-
sults were later published (2006) and provided us with 
a theoretical framework leading with the relation-
ship between theory and practice (García, Sánchez, & 
Escudero, 2007). The study of learning processes led 
us to focus on the specific mathematical background 
that these teachers could need, leading us to focus 
on the key aspects of the mathematical activity. Six 
years later, in CERME6, we focused on the character-
ization of secondary students’ justifications and their 
persistence (or not) when making decisions related 
to tasks that involve defining, proving and modelling, 

considered as metaconcepts that constitute a back-
ground to advanced mathematical thinking (García, 
Sánchez, & Escudero, 2009). Now, we focus on the de-
sign of tasks that can incorporate theory in practice 
and develop a specific teachers’ mathematical knowl-
edge.

THEORETICAL FRAMEWORK 

The reflection process developed both for mathemat-
ics teacher educators and members of a community of 
inquiry led us to identify (in previous research) the 
‘skeleton’ of a process of relationship between theory 
and practice (García, Sánchez, & Escudero, 2007). From 
there, we have been able to build the model schema-
tised in the Figure 1.

In the figure, the model starts from the practice (P). 
As a first step (Step 1), we seek the theoretical aspects 
more closely related to the practical problem under 
consideration (TE) in the general theory (T). In a sec-
ond step, we are aware of some implications of adopt-
ing the theoretical framework provided by TE in our 
practice. The analysis of this new way of consider-
ing practice led us to a third step in which, from the 
identification of practical problems, some research 
questions are formulated. In the final step (Step 4) 
there is a return to the theory, which is now enlarged. 

This four-step dynamic model relating theory and 
practice is used here in a specific part of teachers’ 
practice: the design of tasks. Design of tasks has 
been considered by several authors with very differ-
ent aims. Special issues of journals (e.g., Journal of 
Mathematics Teacher Education, 10(4–6), December 
2007); books (e.g., the edited collection by Clarke, 
Grevholm and Millman, 2009), or specific research 
projects (e.g., the QUASAR project see (Silver & Stein, 
1996; Stein, Smith, Henningsen, & Silver, 2000)) have 

mailto:rtoscano%40us.es?subject=
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emphasised the importance of the design of tasks in 
mathematics education.

Here we consider the design of tasks as a part of math-
ematics teacher educators’ practice, focusing on the 
connection between theory and practice in this par-
ticular context.

SPECIFYING THE FOUR-STEP MODEL 
IN THE DESIGN OF PRESERVICE 
MATHEMATICS TEACHER TASKS

Starting from the practice (P) 
Some years ago when we planned the organisation of 
our courses in our Primary Teacher Education pro-
gram, we started to take into account the fact that, in 
the future, Primary Teachers will have to use math-
ematical ideas in the classroom from the perspective 
of mathematics and from consideration of them as 
teaching/learning objects. As mathematics teacher 
educators, we looked for key ideas that were the back-
ground to our decisions. We were aware of the need 
for theoretical perspectives that could be the base for 
our decisions. Thus, we looked to theory.

A look to theory (T)
At that time, researchers such as Brown, Collins, and 
Duguid (1989), Cobb (1994), and Lave and Wenger 
(1991) had started to develop theoretical ideas that 
have been summarized by different authors (García, 
2003, 2005; Putnan & Borko, 1997). These ideas ena-
bled us to understand the characteristics of cogni-
tion in an educational context. Our approach was 
rooted in some of them, in particular, the situative 

perspective (Brown et al., 1989), which allows us to 
characterize the activity of teaching mathematics, the 
specific knowledge and skills that are needed for this 
activity, and the learning processes that allow student 
teachers to develop this knowledge. At that point, we 
asked ourselves the following question: What should 
a primary teacher know about mathematics?

From general theory to specific 
aspects to be used (TE)
At that moment, we particularised the general theory 
(T).

We started by considering that primary teachers’ 
mathematics knowledge should be related to con-
texts and situations where that knowledge was used, 
i.e., with activities, educational goals and contexts 
of teaching of mathematics. In addition, the identi-
fication of authors such as Shulman (1986), Llinares 
(1991), and Bromme (1994) of different mathematics 
teachers’ domains of knowledge, allowed us to infer 
components of content of the curriculum of primary 
teacher education related to mathematics (García & 
Sánchez, 2002). In particular, we started to consid-
er that a component of such a curriculum should be 
knowledge “of ” and “about” mathematics (Ball, 1990). 
Thus, we went back to practice (P).

Going back to practice: designing tasks (P)
The identification and characterization of the two 
aspects in the component mentioned above allowed 
us recognition of specific features, such as problem 
solving and its consideration as a deductive science 
with empirical tools, and to incorporate processes, 

Figure 1: A four-step dynamic model relating theory and practice (García, Sánchez, & Escudero, 2007, p. 15)
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concept and procedures in its conceptualization. At 
that moment, we tried to design tasks that sought to 
consider these new aspects (García, Sánchez, 2002).

At that point, we asked ourselves the following ques-
tion: Are these tasks appropriate to generate specific 
mathematical knowledge in primary teachers? That 
is to say, is the activity generated by the task valid for 
this purpose? We turned to theory (TE1), in search of 
some theoretical elements that allowed us to answer 
those questions. At that time, we reinitiated the pro-
cess, moving on to a new plane and reformulating 
the practice question into a research question: What 
specific mathematics does a primary teacher have 
to know? What are the characteristics of that knowl-
edge?

Starting another time 
Assuming that, even with different characteristics 
and characterizations, and regardless of the theory 
that is taken into account, a knowledge of mathemat-
ics exists among the different domains of knowledge 
that are part of the knowledge base of mathematics 
teachers, from our point of view, this knowledge of 
mathematics has two subdomains, which are com-
plementary as well as autonomous and necessary. 
On the one hand, there is a subdomain related to the 
particularities of mathematical content when it be-
comes a mathematical content to teach at the consid-
ered level. We consider this knowledge analogous 
to Ball’s (2008) specialized content knowledge. On the 
other hand, we identify a knowledge related to the 
particular characteristics of the subject matter itself, 
which is essential to ensure the teacher can generate 
mathematical knowledge in his/her future students. 
We have called this knowledge intrinsic mathemati-
cal knowledge. To consider the features that intrinsic 
mathematical knowledge entails, we have taken into 
account the works of some authors that enable the 
identification of aspects that are indispensable in 
mathematical knowledge (Anderson, 1976; Hiebert 
& Lefevre, 1986; Lesh & Landau, 1983; Skemp, 1976; 
Thompson, 1985). 

From general theory to other specific 
aspects to be used (TE1) 
We focused on the characterization of mathematical 
intrinsic knowledge, considering it as a knowledge 
that considers mathematical elements from a dual 
point of view, integrating “operational”/“structural” 
aspects (Sfard, 1991), and also the mathematical com-

petence of analysing said elements, allowing “packing 
and unpacking” of the mathematical elements. Other 
people who understand and use mathematics in other 
contexts and situations do not necessarily have to 
share a particular teacher’s competence. Specificity 
adds to their knowledge and expands the common 
content knowledge in Ball’s sense (2008).

For instance, when, from a mathematical point of view, 
we talk about operations, we may know, for instance, 
their meaning, use, properties, and algorithms relat-
ed to them. A teacher also needs to identify the mathe-
matical elements involved in these operations, as well 
as the role these elements have in the different ways 
of establishing relationships between, for example, 
different properties and different algorithms.

In some cases, intrinsic mathematical knowledge 
can be confused with the mathematical knowledge 
coming from other levels or contexts. The lack of rec-
ognition of the existence of that specific knowledge 
has led, on many occasions, to a repetition of topics 
corresponding to previous levels, or has contributed 
to generating a certain inaccuracy between what fu-
ture teachers need to know and what their students 
have to know. 

As researchers, this led us to look for the dimensions 
that must become operative in practice (Sánchez & 
García, 2008, 2009). These dimensions were:

- On the one hand, we consider activities of mathemati-
cal practice such as defining, justifying and modelling, 
among others (Rasmussen, Zandieh, King, & Teppo, 
2005). These activities underlie any mathematical 
content and are part of what we consider to be “do-
ing mathematics” (García, Sánchez, & Escudero, 2009).

- On the other hand, we consider mathematical con-
tent to be organized into areas, taking into account 
those that have traditionally been considered part 
of mathematics. These areas include, among others, 
analysis, geometry, algebra, statistics, and probabil-
ity. The manner in which the content of these areas 
is considered will depend on the specialization of the 
teachers (primary or secondary school teachers).

In the Figure 2 we show the dimensions and the spaces 
generated by them.
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Designing new tasks (P) 
As teacher educators, we will start again to put the 
theoretical ideas into practice, looking for new tasks 
that incorporate the above mentioned dimensions. In 
Figure 3, we include a task that we use as a starting 
point (basic task). This task corresponds to justifying 
in Algebra and is based on the Remainder Theorem 
(extracted from García & Sánchez, 2012). 

We think that in these tasks preservice teachers could:

 ― analyse the different elements of a theorem care-
fully and in detail, 

 ― think about the algebraic elements that intervene,

 ― identify axioms, definitions and theorems, and 
distinguish between them, 

 ― notice that justifying is a characteristic of theo-
rems, and not a characteristic of axioms or defi-
nitions. 

In the process of solving the task, preservice teachers 
could: 

 ― verbalize their ideas, recognize explicitly what 
they “see” and give reasons to support their com-
ments; 

 ― “unpack” characteristics and particularities that 
give form to a specific theorem and 

 ― “pack” them only in a property that has been jus-
tified. 

Mathematical practices’  
activity

Mathematical
content areas

Defining Justifying Modelling ….

Analysis

Geometry

Algebra

Statistic/Probability

Figure 2: Dimensions related to what to teach in a course of mathematics for primary teachers. (Sánchez & García, 2008, p. 286)

Figure 3: Task corresponding to justifying in Algebra (García & Sánchez, 2012, p. 25) 
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This process of unpacking and packing favours the 
characterization of the different parts of theorems 
and the role of premises, statements, and propositions. 

From our point of view, this type of task can contrib-
ute to the generation of specific mathematical knowl-
edge that allows preservice teachers to construct and 
deconstruct mathematical elements.

If we consider the task (Figure 3) as a ‘basic task’, its 
characterization as a task for concept development 
could be associated with the incorporation of the 
following questions: Can you give an example of any 
concept/idea in which they are part? Can you charac-
terize any other concept/idea/mathematical property 
in which some of the identified elements take part? If 
our aim is a generalizing task, we can ask for the way 
in which the identified process can be generalized. 

CONCLUSIONS

On the basis of the selection from the many different 
proposals related to tasks for mathematics teacher 
education that were sent to the above mentioned spe-
cial issue of JMTE, Zaslavsky (2007) pointed out that 

“they provide insight into different theoretical foun-
dations and discourses which are used to inform and 
justify choices in task structure, task presentation, 
and exploitation of learner experience arising from 
the consequent activity” (p. 433). She schematised the 
information obtained in a diagram, showing the dy-
namical nature of task design for teacher education 
that emerged from the analysis.

In this work, we have enlarged this information, con-
sidering in addition the design of tasks as a mean of 
connecting theory and practice in mathematics teach-
er educators’ professional activity. 

For us, task design is a process, not a product. It is a 
process in which a teacher is involved through the 
development of his/her professional activity, in which 
he/she is going to incorporate aspects originating 
from several sources: for example, his/her practice, 
interaction with colleagues, textbooks, and informa-
tion from specialized journals. Nevertheless, unlike 
what happens in other scientific fields (for example, 
scientific research in the field of medicine), where 
results (once validated) are quickly incorporated into 
professional activity, the results of mathematical ed-
ucation research are not incorporated so readily into 

task design activities. Fostering their incorporation 
is our task.
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In this study, during a secondary mathematics meth-
ods and practice-teaching course, we investigated one 
prospective secondary mathematics teacher’s, Denise’s, 
development of a progressive incorporation perspective 
from a traditional perspective on mathematics, mathe-
matics learning and mathematics teaching. We analyz-
ed data from Denise together with data from classroom 
discussions with 28 prospective secondary mathematics 
teachers. Results showed that the awareness of the quan-
titative and numerical operations, tasks focusing on 
logico-mathematical and empirical learning processes, 
conceptual analysis, and clinical interviewing afforded 
Denise’s shift towards a progressive incorporation per-
spective by the end of the study. 

Keywords: Teacher preparation, prospective mathematics 

teachers.

INTRODUCTION 

Preparing teachers to teach mathematics effectively is 
an ongoing concern for teacher educators. There has 
been research on mathematics teachers’ knowledge 
(e.g., Ball, Thames, & Phelps, 2008) and beliefs (Ernest, 
1989); the relation of teacher’s beliefs to their practice 
(Beswick, 2005) and the role of methods and/or practice 
teaching courses on prospective teachers’ knowledge 
and/or beliefs (e.g., Ebby, 2000). However, compelling 
evidence suggests that rather than focusing on pro-
spective teachers’ knowledge and beliefs separately, 
research needs to address the consistencies between 
knowledge and beliefs prospective teachers hold and 
practices they engage in so that they can ‘… learn to use 
their knowledge base to provide the grounds for choic-
es and actions’ (Shulman, 1987, p. 13) during methods 
and practice teaching courses (Ebby, 2000).

In this respect, some researchers have made impor-
tant contributions regarding teachers’ perspectives 
(e.g., Heinz, Kinzel, Simon, & Tzur, 2000; Simon, Tzur, 
Heinz, & Kinzel, 2000). These researchers postulated 
perception-based (PBP) and conception-based (CBP) 
perspectives on mathematics, mathematics learning, 
and mathematics teaching, and contrasted these with 
the traditional approach (see Table 1). Extending the 
results of these studies, Jin and Tzur (2011) also pro-
posed a progressive incorporation perspective (PIP). 
These researchers argued for the need to investigate 
the promotion of teacher development from a tradi-
tional perspective towards a PIP. PIP is a conglomerate 
of thinking about mathematical construction both 
dialectically independent and dependent of the know-
er. The dependency relates to mathematics learning 
occurring through active mental participation of the 
knower and the dialectic independence relates to 
mathematical concepts having commonalities/differ-
ences amongst each other. In this respect, PIP regards 
mathematics teaching involving prospective teach-
ers’ frequent questioning (ibid) to take their students’ 
attention to the commonalities/differences among 
mathematical concepts. 

Informed by the aforementioned studies, done mostly 
with in-service teachers, and coordinating these with 
quantitative and numerical operations (Thompson, 
1994), logico-mathematical and empirical learn-
ing processes (Simon, 2003), conceptual analysis 
(Thompson, 2008) and clinical interviewing (Hunting, 
1997), the work reported in this paper is an attempt to 
go beyond understanding particular knowledge and 
beliefs in the context of the practices of prospective 
secondary mathematics teachers (PSMTs). We inves-
tigated the following research questions:

mailto:gulserenkaragoz%40yahoo.com?subject=
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How does a prospective secondary mathematics 
teacher develop a progressive incorporation per-
spective on mathematics, mathematics learning 
and mathematics teaching?

What practices in a secondary school methods 
and practice teaching course are likely to afford 
changes towards a progressive incorporation 
perspective on the prospective teachers’ part?

CONCEPTUAL FRAMEWORK

Simon and his colleagues (2000) postulated a CBP on 
mathematics, mathematics learning and mathematics 
teaching and stated that it dwells on the basic princi-
ples of radical and social-constructivism. Therefore, 
mathematics knowledge, compatible with the Problem 
Solving view, is considered to be “a dynamic, contin-
ually expanding field of human creation and inven-
tion, a cultural product” (Ernest, 1989, p. 250). By the 
same token, mathematical learning occurs through 
one’s transformation (accommodation) of existing 
ideas (assimilatory schemes) through their own logi-
co-mathematical mind activities rather than empirical 
learning processes (Simon, 2003). So, mathematics 
teaching requires that; fırst, the teacher is aware of 
her/his current mathematical understandings being 
qualitatively different from her/his students’ under-
standings (Jin & Tzur, 2011); second, a teacher focus-
es on what students currently do know rather than 
what they do not know (Heinz et al., 2000). Jin and Tzur 
(2011) stated that developing a CBP on teachers’ part 
is a hard endeavour.

On the other hand, one important difference between 
a CBP and a PIP is that, in the latter, mathematics is 
also dialectically independent. This means that math-

ematics concepts have commonality in themself and 
it is the teachers’ responsibility to bring such com-
monality to students’ attention through focused and 
frequent questioning. In this regard, a teacher with 
a PIP might focus on both what the students do know 
and do not know. Though similar to a CBP, in this per-
spective, mathematics learning is an active mental 
process, and, therefore mathematics is also depen-
dent on the knower. That is, although teachers engage 
in frequent questioning to point to commonalities 
among mathematical concepts, students are thought 
to have such ability to re-construct the mathematical 
knowledge on their own. Jin and Tzur (2011) stated  ‘…a 
PIP-rooted teacher’ practice can endenger students’ 
learning processes envisoned by CBP without requ-
iring the teacher’s explicit awareness of such view...’ 
(p. 20).  It is in this respect that we think that effective 
mathematics teaching (Hiebert, Morris, & Glad, 2003) 
corresponds with a PIP and a CBP.

The difference of a PIP and a CBP from a PBP is that, in 
the latter similar to a traditional perspective, math-
ematics is an ontological reality independent of the 
knower, compatible with the Platonist view of knowle-
dge (Ernest, 1989). Thus, mathematics learning means, 
coming to see a first-hand experience of mathematical 
reality shared by all through discovery. That is, mat-
hematics is obvious to everyone in engagement in 
materials interconnecting it on her/his own. That is 
why teachers with PBP do not realize that their mathe-
matics is different from their students mathematics. 
Also, they focus only on what students do not know. It 
is in this respect that researchers postulated a PIP to 
be more powerful than a PBP. They further stated ‘...
Whereas, fostering teachers’ progress toward a CBP 
was found rather challenging, it seems much more 
reasonable to expect teachers to adopt teaching stra-

Table 1: Placing PIP within Ernest’s (1989) and Simon and colleagues’ (2000) frameworks
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tegies ...’ (p. 20) corresponding with a PIP (Jin & Tzur, 
2011). Jin and Tzur (2011) proposed the following table 
to refer to the differences among these perspectives

METHOD

Participants
This study was done in a teacher education program 
at a university in Turkey for which the language of 
instruction is English. Twenty-nine PSMTs (including 
Denise) participated in the study. They were in their 
fifth year of undergraduate studies. Denise had a GPA 
of 3.53, being at the first rank among her classmates, 
whose GPAs ranged between 2.35 and 3.53. Denise 
was eager to become a mathematics teacher. She was 
one of the prospective teachers who have attended 
classes regularly doing all the tasks. We used data 
from Denise because it was representative among 
data coming from the rest of the participants in the 
study and allowed for a full account on the develop-
ment of a PIP perspective.

Data collection
Data were collected for a total of eleven weeks during 
the methods course and the practice teaching course 
taught by the first author. We used classroom teaching 
experiment methodology while collecting the data 
(Cobb, 2000). The first author planned the teaching 
sessions in advance. However, for each teaching ses-
sion in the methods and practice teaching courses, 
the (sub)learning goals depending on the hypotheses 
about what PSMTs knew were revised. Each of the 
teaching sessions was videotaped and transcribed. 
PSMTs also kept weekly journals concerning in-class 
and out-of-class discussions, due online before mid-
night of the same day of class. Also, a pre-assessment 
and two post-assessments, which collected their 
thoughts on learning and teaching mathematics 
and assessed their understanding of multiplication 
of fractions (the topic in the case study), were given 
at the end of the methods and the practice-teaching 
courses. Finally, PSMTs’ practice teachings and an 
interview with Denise afterwards were videotaped 
and transcribed. 

In the classroom teaching experiment methodology, 
prior to the enactment of the study, the teaching ses-
sions are planned in advance. For instance we conjec-
tured that once the PSMTs knew the nature of mathe-
matics, this could help establish the nature of mathe-
matics learning (with understanding) towards a PIP: 

we used Thompson’s (1994) theoretical framework 
on quantitative and numerical operations, aligned 
with a CBP and Problem-Solving view of mathematics 
(Ernest, 1989). For that, prospective teachers read the 
understanding of improper fractions provided and 
pointed to the quantitative operations. For the out-
of-class activity, they considered the understanding 
of exponential numbers in three ways. 

Similarly, to assist prospective teachers to develop the 
view of mathematics learning occuring through the 
abstraction of the regularities in their own logico-mat-
hematical activities, such as subdividing, matching, 
etc., we brought Simon’s (2003) logico-mathematical 
and empirical learning processes to their attention. 
Additionally, we included the conceptual analysis 
framework Thompson (2008) proposed for teachers 
to provide lenses through which they could analyse 
a case study (Stein et al., 2000) because it created an 
opportunity to reflect on both the teachers’ and stu-
dents’ focus of attention (Karagöz Akar, 2010). Also, re-
searchers argued for the addition of clinical aspects of 
teaching (such as interviewing) to (prospective) teach-
ers’ knowledge repertoire. Thus, we brought clinical 
interviewing (Hunting, 1997) to the PSMTs’ attention. 
Finally, prospective teachers did peer-teachings and 
practice-teachings and reflected on them (Hiebert et 
al., 2003). 

Data analysis
We read each of the data sources line-by-line look-
ing for Denise’s explanations for the questions in the 
within and outside classroom activities regarding her 
perspectives on mathematics, mathematics learning 
and mathematics teaching. Using the characteristics 
of teachers’ perspectives given in Table 1, we looked 
for both Denise’s existing and developing meanings 
on them. For instance, after working on Thompson’s 
(1994) framework, Denise provided the articulation 
of the exponential numbers. This made us realize that 
she was able to think through students’ mind activi-
ties. Similarly, once we had spotted the changes in her 
meanings in any of the data sources, we also checked 
other data sources that chronologically provided us 
further evidence on such change. Then, we went back 
to the whole data set to challenge our conjectures and 
check the chronologies. When our conjectures were 
challenged we modified them to cohere with the whole 
data. This way we were able to write the narrative on 
data from Denise.



A prospective secondary mathematics teacher’s process of developing a progressive incorporation perspective  (Gulseren Karagoz Akar, Ali Delice and Emin Aydın)

2799

FINDINGS 

We show data in five sections regarding Denise’s 
views on the nature of mathematics, mathematics 
learning and mathematics teaching.

Section 1 – The beginning: Prior to any instruction, 
Denise answered the written pre-assessment ques-
tions. Data showed that she had a traditional per-
spective with similarities to a PBP.  One prompt was: 

‘Please draw a model of what effective mathematics 
teaching means and explain the components’. Denise 
drew the following: 

The first picture represents a teacher. Text beneath: 
“guides, helps, encourages to ask questions.” The 
second picture represents a student. Text beneath: 

“research, ask questions, is curious.” The third col-
umn reads: “Mathematics learning: The ability to 
analyze and synthesize. The ability to problem solve. 
Internalizes the mathematical concepts.”

Denise’s explanation for the components of effective 
mathematics teaching involves teachers’ and students’ 
roles, such as questioning and guiding. These practic-
es Denise mentions seem to fit with a PBP. 

To examine how Denise and her classmates think 
about how connections occur in conceptual under-
standing, during the first teaching session after the 
discussion on Van de Walle (2007, pp. 21–25), the first 
author asked them to think about it again. This gen-
erated the following discussion:

R: Okay guys. How do connections occur 
in conceptual understanding?

A: Could it occur when you remember 
something? When you see something 
you remember another thing and then 
you make a connection.

B: It happens when you observe something. 
Then you observe something else and 
then you connect them, relate them.

Denise: I think making connections is not only 
limited to making observations. If the 
student is making connections between 
what she knew before this is important 
too, the connections might be logical or 
not logical but what she knew before has 
an important place. It is like, there is a 
diagram on page 23 (referring to Van 
de Walle, 2007, p. 23). It is like showing 
earlier knowledge and the new knowl-
edge and how we see them related in our 
minds. It is like making new chains into 
the already existing ones. 

F:    What if we learn something totally 
new? What will happen then?

Denise:  Then, we put it somewhere else. For 
example, its place is somewhere totally 
different than others.

C:  She puts it and then she makes the con-
nection later on.

Denise: Yes, but when she cannot make a rela-
tionship this happens, when she makes 
the relationship then they are connect-
ed. 

Denise’s uttering “then we put it somewhere else” 
is important because when a “totally new” topic is 
learned, it might not be related to the students’ cur-
rent knowledge. This suggests that, for Denise and her 
classmates, some mathematics topics are connected, 
but others are compartmentalized. This indicates that 
Denise’s perspective on mathematics deviated from a 
PBP, in which mathematics is viewed as interconnect-
ed. In addition, Denise agrees with her classmates that 
connections in learning occur through remembering 
and observing. Viewing learning this way also leads 
away from a PBP and towards a traditional one. To ex-

Figure 1: Denise’s model for effective mathematics teaching
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amine Denise’s thinking further, we read her journal 
after this class. She wrote:

A mathematical idea is to go one step further in 
the mathematical knowledge by making some 
logical inferences from the prior mathematical 
knowledge. … Let us think about an example we 
discussed in class. Assume that a teacher wants 
to teach proper fractions. He/she gave the defi-
nition of the proper fractions and showed some 
examples about the proper fractions and their 
representations with shapes. Then a student re-
alized that the shape of ¾ and 12/16 are the same. 
Then the student thought these two fractions are 
equivalent. 

Denise’s statement about a mathematical idea sug-
gests that she views mathematics as interconnected. 
For Denise, mathematics learning proceeds with a) 
teacher giving a definition, (b) students recognizing 
from the example an equivalence (teacher showing 
with representations) and (c) students arriving at the 
conclusion that both fractions are equivalent. That is, 
for Denise, students learn mathematics through ob-
servation: a second-hand experience. These data also 
indicate that Denise thinks of mathematics teaching 
from a traditional approach, although she thinks of 
using representations.

Section 2 – Quantitative versus numerical operations: 
Data from this section showed that, after engaging in 
the activities regarding quantitative and numerical 
operations, there was a shift in Denise’s reasoning 
on the nature of mathematics and mathematics learn-

ing, the relationship between the tasks, and teachers’ 
learning goals for their students. Also, she was able to 
articulate a mathematical idea from a student’s per-
spective.  After working on a task during the class on 
the understanding of exponential numbers, Denise 
wrote: Figure 2.

Data show that Denise splits the quantity into identi-
cal copies, repeating the same process for the newly 
found whole until she reached the desired power. Also 
she finds the number of groups using the base as a 
measuring unit, showing that for her mathematical 
understanding is the result of one’s mind activities, 
splitting and measuring. So, mathematical learning 
(with understanding) is dependent on the knower, 
suggesting a shift on her part towards a PIP. Denise 
also wrote the following. 

Here, Denise has constructed a relationship among 
the teachers’ learning goals for their students, selection 
of effective tasks, and knowledge of students’ thinking: 
For Denise, once a teacher has a task focusing on 
quantitative operations, she has access to the quanti-
tative/numerical operations, which in turn provides 
access to her students’ thinking. This then assists in 
determining the learning goals. Strikingly, Denise 
started with the task rather than other components. 
Unfortunately, we failed to ask her why she chose to 
do so. 

At this point in the semester, we discussed the mean-
ings of logico-mathematical and empirical learning 
processes. First, PSMTs did the two tasks on equivalent 
fractions in Simon (2003) on their own to determine 

Figure 2
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whether these were cognitively high demand tasks. 
They concluded that the first task, which focused on 
finding equivalent fractions from the fraction chart, 
writing number sentences showing equivalences, and 
looking for patterns in the number sentences, con-
cerned a task on empirical-learning processes. On the 
other hand, the task focusing on finding equivalent 
fractions based on re-drawing (re-partitioning) the 
given shaded rectangles focused on logico-mathemat-
ical learning processes. Then, in her weekly journal, 
Denise stated ‘I think high cognitive demand tasks 
are tasks that require quantitative reasoning ability…’ 
This suggests that Denise constructed a relationship 
between the quality of thinking in cognitively high 
demand tasks and quantitative operations. 

Section 3 – Conceptual analysis: Data in this section 
showed how conceptual analysis might contribute to 
prospective teachers’ awareness of the cyclic nature 
of effective mathematics teaching. We provide data 
from one week later after the discussion on conceptu-
al analysis, pointing to the robustness of prospective 
teachers’ knowledge of conceptual analysis.

R:  Do you remember what we have talked 
about conceptual analysis last week?

N:  I think you asked about the process of 
it. Who does it?

R:  Yes. Can somebody say one more time 
what was it, what was the nature of it? 

Q:   It was like, while choosing the task, if 
she is choosing or if she is construct-
ing, then we were doing the conceptual 
analysis. Like, we were thinking where 
the students might have difficulties, or 
might make mistakes, as teachers we 
were thinking how we can overcome 
those, help our students. Then, while 

the students are doing the task, the 
teachers were getting feedback from 
them. So, she would know how her 
students think. Also, she was getting 
feedback about how she could change 
the task the next time. So, it was like re-
cursively going on this way. 

Denise:   She is looking at how much they know 
conceptually before the lesson too.

Strikingly, student Q stated that conceptual analy-
sis can be done before, during, and after the lesson 
for different purposes, and Denise agreed. Also, the 
statement “So, it was like recursively going on this 
way” suggests that student Q is aware of the cyclic na-
ture of the teaching. In addition, Denise’s statement 
suggests that she is aware of a teacher’s focusing on 
what students know prior to the teaching.

Section 4 – Clinical interviewing: In this section, data 
from Denise in the Clinical Interviewing Project was 
shown. Denise and her two group members chose ra-
dian, degree and the relationship between them as 
their topic to interview their classmates. We show 
Denise’s analysis of her classmate, Veli, on the 4th 
question (see next page).

Our contention here is not to point to Denise’s un-
derstanding of angle or radian; rather our emphasis 
here is what she focuses on. Denise’s focus is not just 
on what her students do not know (he does not know 
what radian is). Rather, Denise focuses on how Veli 
understands it (he understands it as a length measure 
rather than openness, from her point of view), a char-
acteristic of a PIP on mathematics teaching.

Then, prospective teachers did the Post-Assessment-2. 
We include the data to show that Denise’s model for 

Figure 3: Denise’s answer during within-class activity
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effective mathematics teaching changed at the end 
of the study. For the second question, Denise drew 
her model of a lesson plan for effective mathematics 
teaching.

For this model, Denise also provided her explanation 
as to why and how this figure models a lesson plan. 
For lack of space, we are not able to share her analysis. 
What is important is that Denise started her model 
with the key mathematical ideas that would yield her 
to learning goals for her students prior to the teach-
ing. This would also allow her to choose higher order 
tasks she would engage her students in during the 
lesson through conceptual questions. This suggested a 
shift on her part towards a PIP since she was aware of 
the relationships between the components of teaching. 

DISCUSSION

At the beginning of the methods course, Denise viewed 
mathematics, mathematics learning and mathematics 
teaching from a traditional perspective although she 
stated using representations and thought of some 
mathematical concepts as interconnected. After en-
gaging in the quantitative and numerical operations 
her thinking has changed such that she was able to 
articulate a concept, exponential numbers, through 
her own mind activities. This suggested that she start-
ed viewing mathematics and mathematics learning as 
dependent on the knower. This suggested a shift from 
a traditional perspective towards a PIP. Also, working 
on the tasks focusing on logico-mathematical activ-
ities of mind, Denise came to know that cognitively 
high demand tasks require quantitative reasoning 
on the students’ part. Also, Denise was able to think 
of tasks from a student’s point of view. This indicated 

Figure 4

Figure 5
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that she realized the differentiation of her reasoning 
from her students’ reasoning. This was evident in her 
analysis of one of her classmates’ reasoning on radian 
from the clinical interview project, in which she both 
focused on what her classmate did not think and how 
he thought. Denise was also able to realize the cyclic 
nature of the teaching process and showed it in her 
lesson model, given that she engaged in conceptual 
analysis, suggesting that awareness of the quanti-
tative-numerical operations, logico-mathematical /
empirical learning processes, the conceptual analysis 
and the clinical interviewing might afford changes 
in perspectives on the prospective secondary mathe-
matics teachers’ part. Empirical evidence showing the 
effect of engaging in aforesaid practices on a prospec-
tive teacher’s perspective from a traditional approach 
towards a PIP represents a contribution to teacher 
development in terms of the design of methods and 
practice- teaching courses.
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Developing the professional competence of mathematics 
teachers we need to consider different dimensions, for 
example, the content knowledge, the pedagogical content 
knowledge, and the pedagogical knowledge. Empirical 
studies in this area seem to provoke certain “trends” re-
garding the conclusions about “most effective” character-
istics of a good (mathematics ) teacher. Our findings with 
future mathematics teachers show that our students 
over-emphasize the pedagogical dimension while almost 
neglecting the importance of content knowledge. We 
analyse how the different dimensions interdepend and 
present exemplary learning scenarios for the education 
of future mathematics  teachers focussing on the content 
knowledge dimension but, at the same time, combining 
it with pedagogical intentions derived from the special 
nature of our subject.

Keywords: Dimensions of competency, role of content 

knowledge, learning scenarios.

INTRODUCTION AND RATIONALE

The professionalization of mathematics teachers is 
still in the focus of politics and empirical studies like 
the international TEDS-M study (König & Blömeke 
2012). In order to investigate and develop the profes-
sional competence of mathematics teachers different 
dimensions need to be considered. Describing the 
professional competence of teachers, Bromme (1997) 
distinguishes between general pedagogical knowledge, 
content knowledge, curricular knowledge, the philoso-
phy of the subject, and pedagogical content knowledge. 
However the description of the complex structure of 
interweaving conditions between these dimensions 
is often missing or not addressed.

Especially since the study of Hattie (2009) there is a 
strong focus on the teacher personality: 

[..] the differences between high-effect and low-ef-
fect teachers are primarily related to the atti-
tudes and expectations that teachers have when 
they decide on the key issues of teaching – that 
is, what they teach and at what level of difficulty, 
and their understandings of progress and of the 
effects of their teaching. This brings me to the 
first set of attributes [..]: passionate and inspired 
teachers. (Hattie, 2009, p. 26)

This led to a certain trend: the attempt to promote the 
pedagogical dimension within the teacher personality 
by describing and recommending only certain factors. 
For example, Anthony and Walshaw (2009) describe 

“characteristics of effective teaching of mathematics”. 
In our opinion some of the descriptions are too little 
connected to the subject mathematics. Also the special 
(complex) relationship between the characteristics is 
not a subject of discussion, which implicitly implies 
that they can be treated independently. 

Hattie also stated that the content knowledge dimen-
sion seems to have little effect on the quality of student 
outcomes. This can be similarly found in the study 
of Bromme (1997). By misinterpreting these results 
one might underestimate the dimension of content 
knowledge. Indeed Hattie concluded that “experts 
possess knowledge that is more integrated” and – of 
course – the content knowledge is an integral part of 
it (Hattie, 2009, p. 28). In fact Hattie (ibid) emphasizes 
the importance of formative assessment and feedback. 
Of course this requires a strong mathematical back-
ground of the teachers since the effect size of feedback 
referring to the subject or content appears to be high.

An opposite standpoint to the over-emphasis of peda-
gogical dimensions is the contribution of Wu (2005) – 
a professor of mathematics in Berkeley. He criticizes a 

“mathematics avoidance syndrome” at school and anal-
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yses how content “opens up the world of pedagogy and 
offers many more effective pedagogical possibilities”.

Helmke (2012) criticizes that there are hardly any em-
pirical studies investigating the professional quali-
ty concerning the content knowledge dimension of 
teaching at schools. Two very important works in 
this context originate from Ball and colleagues (2008) 
and Wittmann and colleagues (2001). Both refer to 
primary school mathematics. Based on Shulman’s 
(1987) categories of teacher knowledge Ball and col-
leagues (2008) analyse the content-specific dimension 
detached from the general dimensions (like the ped-
agogical one). They characterise the subject matter 
knowledge, which is specific for mathematics teach-
ing and differentiate it from the pedagogical content 
knowledge. With a different focus we find a similar 
approach in the work of Wittmann and colleagues 
(2001). They describe the content knowledge as the core 
of mathematics teaching. Moreover they develop the 
pedagogical dimension and the teaching methodology 
on the basis of mathematical ideas or content. In con-
trast to Ball et al. they particularly emphasize the role 
of metacognition (“consciousness”): teachers need 
to encourage the children to perceive the specifics 
of mathematics as a subject. This helps children to 
establish self-regulation mechanisms with regard to 
the subject.     

In a deep theoretical analysis the educational sci-
entist Gruschka (2008) also underlines the impor-
tance of content knowledge for teaching processes: 

“Teaching at school suffers by the shrinkage of content” 
(Gruschka, 2008, p. 73). In his work Gruschka often 
refers to mathematics teaching and reflects the role 
of content in a systemic way. According to Gruschka 
the professional competence concerning the content 
knowledge needs to be regarded within the complex of 
curriculum, pedagogy and philosophy of the subject. 
In more sophisticated words Gruschka (2008, p. 49) 
states that the unity of content knowledge and phi-
losophy of the subject manifests itself in convictions 
about the pedagogical content dimension; whereas 
the pedagogical content dimension is determined by 
the anthropology of the students (as the core of ped-
agogical knowledge) and the attitude of the teacher 
towards the curriculum. 

In our contribution we adopt the positions of 
Wittmann and colleagues (2001) and Gruschka (2008) 
for secondary mathematics teachers. We consider the 

whole complex of dimensions based on the specifics 
of our subject mathematics in an integrated way. By 
presenting examples we illustrate that the general 
dimensions, like the pedagogical or educational ones, 
are strongly connected to the content knowledge and 
philosophy of our subject mathematics. Our article 
is meant as a theoretical contribution to this topic 
containing illustrating examples. We also draw con-
clusions for the design of learning scenarios for math-
ematics teacher education at university. Following 
the above theoretical considerations we start with an 
analysis of some statements of future mathematics 
teachers in this context. These statements show that 
the beliefs about the dimensions of teacher compe-
tence have been shifted in a disadvantageous way.

DIMENSIONS OF TEACHER COMPETENCE 
FROM THE STUDENTS’ POINT OF VIEW

To understand the context we shortly describe the sit-
uation of teacher education at Humboldt-Universität 
zu Berlin. At this university the future mathematics 
teachers learn their subject mathematics by attending 
mathematics lectures given by the mathematicians of 
the institute. Although these lectures are established 
for the future mathematics teachers only they are 
usually not practically oriented with regard to their 
future profession. As we will see later this is a dilem-
ma. The pedagogical knowledge is acquired separately 
at the department of educational sciences. The peda-
gogical content knowledge is taught in seminars and 
lectures of the mathematics education group. The only 
courses in which the dimensions mentioned in the 
rationale are explicitly combined are some courses of 
the mathematics education group called “Stochastics 
and its pedagogy” or “Algebra and number theory 
and its pedagogy”. Within these courses the content 
knowledge and pedagogical content knowledge di-
mensions are combined. Apart from these courses 
the dimensions are not taught in an integrated way. 
Especially the pedagogical dimension is nearly com-
pletely separated from the content knowledge.

The following statements and reflections originate 
from future mathematics teachers within a seminar 
in 2014 preparing the educational practical training 
phase (a 4-weeks period at school) in the master study 
program. Our students have to complete two practical 
training phases – one for each studied subject. Most 
of the students of this course will become secondary 
school teachers.
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In the second session of the seminar we asked the 
students to write down the three most important 
characteristics of a good mathematics teacher. In 
the written answers of 24 students four categories 
could be identified: content knowledge, pedagogi-
cal content knowledge, pedagogical properties and 
abilities, and personal properties. The absolute fre-
quencies of the answers are presented in Figure 1. 
Unexpectedly half of the students’ answers could be 
attributed to the personal dimension. These were 
answers like personality, fairness, patience, empathy, 
being not unforgiving, authenticity, or spontaneity. 
Since the personal dimension is closely related to 
the pedagogical dimension, we were wondering 
about the students’ beliefs about the connections 
and interrelationships between the categories.

Students’ reflections about 
mathematics and pedagogy
Considering the mathematical content as the core of 
teaching we tried to find out which interrelations the 
students describe between the pedagogical and the 
content knowledge dimension. We were especially in-
terested if the students deduce any pedagogical or per-
sonal factors from the content dimension. Therefore 
the students were faced with the results of the first 
questioning in the following way:

“Comparing and clustering the characteristics 
named by the students of the course we see that 
most of the characteristics refer to personal and 
pedagogical abilities resp. qualities (see list of 
characteristics attached). On the other hand cer-
tain educational goals could be deduced from the 
list of characteristics.

Please draw up your opinion to the following 
statements and write it down: 

1) Without a firm mastery of the mathematical 
content, good pedagogy is impossible. 

2) A firm mastery of the mathematical content 
opens up the scope for pedagogical actions 
and reinforces the pedagogical effective-
ness.”

The statements are adapted from Wu (2005, p. 7). 
Different from Wu the term “pedagogy” addresses 
mainly the pedagogical and personal dimension 
(“Pädagogik” in German) and not (only) the pedagog-
ical content dimension.

The results of this questioning lead to more differ-
entiated categories and allow a deeper insight. The 
following categories are specified by typical formu-
lations of the students.

 ― Content knowledge as the core of teaching: 

A firm mastery of the mathematical content leads to 
charisma, respect, self-consciousness and self-confi-
dence of the teacher. Without a strong mathematical 
background a teacher cannot manage a class or will 
provoke discipline problems. Credibility and authen-
ticity need a high level of mathematical competence.

“Without a firm mastery in mathematics good 
pedagogy does not make sense, because the math-
ematical content and its mediation is the core of 
teaching and it has to be mediated by using ped-
agogical abilities.”

In the statements within this category the students 
connect personal properties (self-confidence, charis-
ma) and pedagogical factors (discipline, classroom 
management) directly with a high competence in the 
content knowledge dimension. In the students’ view a 
strong mathematical background seems to strengthen 
personal and pedagogical skills that are important 
for teaching at school. However none of the students 
deduced personal or pedagogical properties or goals 
that are specific for the subject mathematics.

 ― Mathematical content and pedagogy are separated 
areas:

“No, a firm mastery of the mathematical content 
and the scope for pedagogical actions are two 
totally disconnected ‘construction sites’.”

Figure 1: Students’ answers to „Name the three most important 

characteristics of a math teacher“: Absolute frequencies sorted 

by four categories
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 ― Good Pedagogy is possible with low or no content 
knowledge:

“I am convinced of the thesis that a teacher with 
low professional content knowledge can cope 
well or better than teachers with high mathe-
matical competence. I compare this with the 
study where an actor without any mathematical 
content knowledge gives a convincing talk about 
game theory in front of experts in this field.”

This illustrates the dilemma mentioned at the begin-
ning of this section. Mathematics lectures at univer-
sity are not considered to be relevant for the teaching 
at school. 

 ― High mathematical competence could hinder 
good teaching and pedagogy.

“I observed cases in which a high competence in 
mathematics hindered the establishment of em-
pathy for the children, because these teachers 
were not able to imagine why and wherewith the 
children have problems.”

The statements in these categories reflect the students’ 
strong need for the human and emotional component 
of their profession. The implicitly mentioned aim of 
the students is: They want to be well received and ap-
pear likeable when teaching at school. In this sense the 
pedagogical dimension is over-emphasized by sep-
arating it from the content knowledge. Usually the 
students refer to their own experienced mathematics 
classes and want to do better. Therefore the students 
need to build their own pedagogical framework and 
system of values. We are confident that by consider-
ing the subject mathematics as the core for education 
in an integrated way, we could and have to support 
the development of the students in the above sense.

Analysis of a teaching professional’s 
introduction of a new mathematics concept
With the following example we want to show how a 
teacher loses pedagogical effectiveness because of 
insufficient mathematical competence. We chose this 
example because it illustrates in an impressive way 
the interrelationships between the different dimen-
sions concerning the professionalism of mathematics 
teachers. Besides the discussion of the interrelations 
we also show that examples like the following offer a 

valuable pedagogical potential for the education of 
future mathematics teachers.

One of our master students completed her 4-weeks 
practical training phase in which she had to teach and 
observe mathematics classes at school and write a 
training report. These reports consist of different 
parts. Aside from two lesson protocols and their re-
flection, the students describe their own lesson plan-
ning and resource development. The planning section 
especially contains an analysis of the taught subject by 
the student – as part of the content knowledge. About 
30% of our students do not succeed in this part in their 
first attempt. 

In her training report, she documented the observa-
tion of a “basic math course” in grade 13 (last year of 
secondary school). In the following protocol of the 
lesson, the student focussed on the methods of the 
mathematics teacher to introduce a new concept to 
the class – the concept of “expected value” in the case 
of the binomial distribution. 

The teacher started with an extrinsic motivation: 
“What I will do next, will also be important for the 
next written exam.” Having said this the teacher im-
mediately moderates his statement by “But it is not 
that hard.” The teacher uses an inductive approach to 
the concept and solely uses examples of the following 
type: “If I throw a fair dice 720 times. What do you 
think, how often will I get a 4?” The pupils answer “120 
times” together with the reasoning “Well, there are 
six possible results. Thus 720 divided by 6 is 120.” is 
accepted by the teacher with the words “Good, now the 
example with the tetrahedron. Whose example was 
that?”. After four more examples of exactly this kind 
the teacher explains “Let’s write this down in a math-
ematical way. μ = E(X) denotes what we expect. The 
number we receive is not a probability any more. The 
number usually doesn’t lie between 0 and 1. We can 
also receive integers, for example if n is very large.” 
After another example, which does not really fit to the 
binomial distribution, the teacher writes down the 
formula for the standard deviation by saying: “That’s 
not difficult, you can just learn the formula.” After that 
the class ends after 45 minutes.

This example reveals several dimensions of our sub-
ject matter. First the content knowledge dimension: 
The teacher does not have a conceptual understand-
ing of the concept of “expected value” (low content 
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knowledge). Therefore he cannot act didactically. He 
is not able to address the previous knowledge of his 
students and cannot use it for the development of the 
new concept. Therefore the teacher is methodological-
ly restricted to direct instruction, since the content is 
not presented logically coherent and does not allow 
for pupil-centred methods. Also the teacher does not 
refer to the relevance of the concept for everyday life. 
Therefore he cannot act educationally resp. pedagog-
ically. Education to critical use of reason would mean 
to discuss the significance and the misinterpretation 
of mean values as well as random fluctuations specif-
ic for stochastic phenomena. Expected values are a 
mathematical means for structuring and communi-
cating. Since they reduce information they are sup-
plemented by standard deviations. Their legitimacy 
as a teaching subject is only given if their relevance 
and limits are experienced (curriculum dimension). 
This is the prerequisite to educate mature people in 
an intellectually honest way.

Coming back to the education of future mathematics 
teachers, we take a look at the student’s reflection of 
her protocol: The student criticized some methodo-
logical details and the abrupt termination of the class. 
From a mathematical perspective she did not have any 
objections. This example and the fact that about 30% of 
our students fail when working out a subject analysis 
is of course an alarming feedback for our education at 
university. It shows that we have to put more emphasis 
on the linkage between the content, the pedagogical 
content, and the pedagogical knowledge dimensions, 
and enable the future mathematics teachers to reflect 
on these linkages.

LEARNING SCENARIOS INTEGRATING 
DIFFERENT DIMENSIONS

As we analysed in the last section the different dimen-
sions of teaching and learning mathematics depend 
on each other in a complex way. Since we cannot 
assume that the students achieve this view on their 
own, we need to offer substantial learning scenarios 
at university that allow them to actively deal with the 
dimensions in an integrated way. We want to present 
two exemplary learning scenarios following our the-
oretical considerations.

Using authentic material to educate 
reflective practitioners
As Gruschka (2008, p. 59 & 49) writes “if you want 
to understand teaching you have to understand the 
content dimension of the subject”, and the core of ped-
agogical knowledge lies in the anthropology of the 
pupils. Therefore we start from the subject mathe-
matics and use authentic material for the design of the 
learning scenario. The basis of the following activity 
is the protocol (presented in the last section) which 
is used as authentic material. The students receive 
the whole protocol as working material. The tasks 
should be worked out in small groups and afterwards 
discussed and reflected with the whole group.

Give-your-opinion!-task
a) Work out the definition of the “expected val-

ue E(X)” of a discrete random variable X with 
finite range of values. Which information of 
the distribution of X contains E(X), which in-
formation gets lost? Illustrate three different 
examples by using a graphical representa-
tion of the distribution of X.

b) Let E(X)=3. Interpret this value by switching 
from the level of mathematical model to the 
real world level. To which previous knowl-
edge do you have to connect to?

c) Assess the approach of the teacher to intro-
duce the new concept of “expected value”. Do 
you agree with the teacher’s given view of 
mathematics? Give reasons for your answer.

d) Give a sketch of your ideas for the introduc-
tion of the concept of “expected value”.

e) How is the concept of “expected value” con-
nected to the education to the critical use of 
reason? Where are the limits of the concept 
and its necessity to complement it by further 
concepts?

The above task combines the content knowledge di-
mension (a) as a necessary condition and basis for 
the following subtasks containing the pedagogical 
content and learning psychological dimension (b and 
d). Afterwards (c) the reflection of the situation and of 
the own view of the subject mathematics is required 
(philosophical dimension). The last subtask (e) refers 
to the pedagogical dimension and its connection to the 
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mathematical subject matter. Particularly the peda-
gogical dimension in this scenario has the potential 
to develop – by criticising the authority of the teacher – 
autonomy and critical faculties, which are worthwhile 
pedagogical aims when teaching mathematics.

Including the metacognitive dimension
With the next scenario the content knowledge is 
combined with the philosophical dimension. This 
activity aims at the reflection of the special nature 
of the subject, since – as we analysed in the ration-
ale – metacognition does play an important role when 
teaching mathematics and acting pedagogically. In a 
sense the following can be seen as a continuation of 
the first scenario, as it makes the role of definitions 
within mathematics a subject of metacognitive and 
philosophical discussion. The next scenario builds on 
the work of Hoffkamp and colleagues (2013). We al-
ready integrated it in a university course at Humboldt 
University and will briefly refer to our experiences.

Task 1: (An exercise in defining in number theory.) 
Define the concept “even number”. Also consider 
how you would define this concept at school and 
at university on different levels: primary school, 
secondary level and at the transition from school 
to university. Discuss the validity of the given 
definitions.

This seemingly simple task led the students to defini-
tions like “the number 0,2,4,6 and so on”, “all twosome 
numbers” (primary level), “all numbers that can be di-
vided by two without remainder” (secondary level), or 

“the definition of divisibility leads to the description of 
the set 2Z” (university level). Then a lively discussion 
about the validity of the different definitions arose. 
Especially the definitions at primary level were not 
accepted by everybody as “being mathematical”. With 
this task the students realized, that a definition is not 
necessarily unique, but depends on the mathematical 
context and purpose.

Input phase: The students are confronted with 
the definitions and propositions of Euclid in the 

“Elements” (Book VII and IX): An even number is 
that which is divisible into two equal parts. An odd 
number is that which is not divisible into two equal 
parts, or that which differs by a unit from an even 
number.

Using these definitions the following (simple) 
propositions of Euclid were deduced together 
with the students: If as many odd numbers as we 
please are added together, and their multitude is 
even, then the sum is even. If an odd number is sub-
tracted from an odd number, then the remainder 
is even.

What the students experience in this part of the 
activity is that definitions change under historical 
conditions. They perceive the work of Euclid as the 
beginning of the axiomatic method and realize that 
Euclid’s definitions are descriptive. They also realize 
that the proofs of the propositions “differ” from each 
other when using different definitions (like Euclid’s 
or the modern university definition).

Task 2: (An example from geometry.) Is it possible 
to decompose a square in two congruent parts? 
(from Fischer & Malle, 1985)

By discussing this task the students realize that the 
answer to the above question depends on our pre-
defined concepts of “square”, “decomposition” and 

“congruency”. One can show that it is actually impos-
sible to decompose a square into two congruent (and 
disjoint) parts. In fact a square could be mathemati-
cally described as a set of points in the plane. Then 
we have to ask: If we “cut” the square at the “center 
line”,  to which part do the “dots of the line” or the 
midpoint belong? Certainly mathematical definitions 
abstract from reality (of course we can cut a quadratic 
sheet of paper with a pair of paper scissors into two 
equal parts) and create ideal (mathematical) objects. 
Because of the idealization we need to proof our state-
ments within our theory. The first two tasks lead to a 
sort of cognitive conflict: Both mathematical objects 
(even number and square) are familiar terms and the 
above difficulties are unexpected. This opens the way 
to discuss the nature and role of definitions from a 
metatheoretical point of view.

Task 3: Give your opinion to the following state-
ment: Definitions are abstractions from reality 
following certain interests/purposes and change 
under historical conditions. 

Based on the previously made experiences the stu-
dents discussed this statement philosophically in an 
explicit way. They started to emancipate from absolute 
truths and to reveal convictions about their subject. 
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They especially realized that – if each definition fol-
lows a certain purpose – this purpose has to be made 
explicit at school. This is strongly connected with the 
pedagogical dimension: as teachers we should take 
the pupils seriously as partners in a dialogue about 
mathematics and enable them to decide reasonably in 
a self-determined way. 

CONCLUSION

In our article we analysed the dependency of the differ-
ent professional dimensions of teaching mathematics 
forming an integrative entity. Based on our findings 
with future mathematics teachers we reasoned that 
the content knowledge dimension should be the core 
of mathematics teaching. We also derived pedagogical 
aims connected to our subject and its philosophy: a se-
rious and genuine dialogue with the students and the 
education of the students at school (and university) to 
act and reason autonomously and rationally. In other 
words we developed the dimensions of the teacher 
competence based on the content and philosophy of 
mathematics – which defines the special nature of our 
subject. We claim that by offering learning scenarios 
(like the described ones) at university we help the 
students to create their professional system of values 
concerning educational aims. This could enable the 
students to build their own pedagogical framework 
based on the specifics of the subject mathematics. In 
this sense this is a very important point in the profes-
sionalization of future mathematics teachers.

Our present and future work is and will be guided 
by this approach and more learning scenarios will 
be developed and evaluated.
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In order to become school teachers, since the last re-
forms in teacher education in France, the student 
teachers have to obtain a master’s degree, including a 
research report in a field linked to education, or to the 
disciplines taught in school. In this study, we analyse 
the content and methods of an initial course in research 
in mathematics education, building some tools to assess 
how such a course can influence the beginner teach-
ers’ practices in class during the first years after their 
training.

Keywords: Teacher education, research initiation, 

practices, primary school.

In France, teacher training has gone through many 
changes during the last five years. The main result 
is that, since 2010, teacher training became part of a 
university master’s degree, including some periods of 
internship in classrooms, the preparation for the com-
petitive examination which serves to recruit teachers, 
and, what is new, a research course that leads to a re-
search report on a field linked to education or a dis-
cipline taught in school. This initiation into research 
is supposed to help the prospective teachers in their 
professional development, reading and understand-
ing results from research articles. Adapting findings 
for teaching should allow the teachers to reflect on 
their own practices.

Each university makes its own choices for the con-
tents of the master’s program for teachers, within 
the national guideline for the number of hours for 
the 2-year training. In the University of Créteil, near 
Paris, where the researchers of this report are also 
school-teacher educators, the time allowed for the 
research part of the training is rather important 
(120 hours out of 770 hours in total, spread over 2 
years), compared to the training programs of the 
other French universities, but also compared to the 

time allowed for the rest of the training (professional 
and disciplinary content). The report requested from 
the student teachers after 2 years can be considered 
to be a research report, as it has to follow the same 
rules as any research report in our research field (a 
research question and hypothesis, an experiment in 
class, citation and bibliography norms) even though 
we probably are less demanding than with students 
following a research program. This part of the mas-
ter’s represents 34 ECTS out of the 120 needed for the 
diploma, including 10 ECTS for the report itself.

We are teacher educators for school teacher training 
(for teaching pupils from 3 to 11 years old) and particu-
larly we run the course for research in mathematics 
education, which we designed a few years ago, after 
the reform. As researchers (Nadine Grapin, Brigitte 
Grugeon-Allys, Julie Horoks, Eric Mounier, Cécile 
Ouvrier-Buffet, Monique Pézard-Charles and Julia 
Pilet, all from the LDAR) we are also trying to assess 
how this course affects the professional development 
of our students, and find ways to pinpoint the effects 
of this initiation into research in mathematics edu-
cation on their practices while teaching mathematics 
during the early years after the end of their training. 

In order to study the effects of the training, we need 
theoretical and methodological tools to analyse both 
the content of our research course and the practices of 
the beginner teachers who were our former students. 
We present here the different sets of tools that we have 
developed for this purpose.

RESEARCH QUESTIONS AND 
THEORETICAL FRAMEWORK

To study teacher training
Some studies in France have already tried to assess the 
effects of initial training, for school teachers (Butlen 
et al., 2003) or high-school teachers (Grugeon-Allys, 
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2008; 2010). But these studies were carried out before 
the many reforms of teacher training and the intro-
duction of research in the training program. Since 
2010, the content for the training has changed in var-
ious ways depending on the universities (Grugeon-
Allys, 2010). Note that we refer mostly to studies that 
were carried out in France, as we believe that the in-
stitutional and cultural context has an influence on 
teacher training and teacher practices.

We are trying to build tools to assess the effects of 
teacher training on professional development, and, 
in particular, the (potential and real) effects of train-
ing teachers through an initiation into research. We 
define some reference grids, linking the content of the 
training to the teachers’ practices that are aimed for, 
and being able to relate the evolution in the teachers’ 
practices at the beginning of their career to the dy-
namics of the training program. We are also looking 
for consistency among our former students’ profes-
sional practices that we could link a priori to the train-
ing that we provided, in terms of knowledge as well 
as in terms of strategies used to share this knowledge. 

The general question that we are asking is: does a 
course offering an initiation into research in mathe-
matics education allow the students to enter a process 
of reflection upon their own practices, on the mathe-
matical content taught in class and on their didactics, 
reflection which could promote their professional 
development as teachers? In this paper, we will focus 
on the tools that we are building to witness potential 
similarities between our former students’ practices 
when they begin teaching in class, and link them to 
what was aimed for during the training.

Initiation into research in mathematics 
education, inside a teacher training program
The content of the course “initiation into research in 
mathematics education”, in the Master’s program for 
school teachers in the University of Créteil, is inspired 
by research results from the French field of Didactique 
des Mathématiques, and particularly results about 
the content taught in nursery and primary school 
(pupils aged 3 to 5 and 6 to 10 years old respectively), 
and about the related teaching and learning (and of 
course the content offered in this part of the training 
is influenced by the interests of the researchers par-
ticipating as educators in this part of the training as 
well as in other courses). Our priorities are to prepare 
the students for their 50-page research report but also 

to bring them knowledge and tools that we consider 
useful and essential for their practice as future school 
teachers (for example, the ability to analyse and criti-
cise a textbook on a mathematical topic, which is both 
a research and a teaching tool). The main theory that 
we talk about and use for analysis is the Theory of 
Didactical Situations (Brousseau, 1997), which can 
also be found among the objects and vocabulary used 
in other courses in the rest of the training, through 
some of its conceptual notions (such as didactical 
contract (a system of reciprocal obligation between 
the teacher and the students that sets their responsi-
bilities, mainly implicitly, in class, during a didacti-
cal situation); didactical variables (parameters of the 
situation, with values that affect solution strategies. 
The effects can be of three kinds: (i) a change in the 
validity of a strategy, where a strategy that produces 
a correct answer with a certain value of a didactical 
variable will produce an incorrect answer with an-
other value; (ii) a change in the cost of the strategy, 
for example, counting elements one by one is effi-
cient for a small number but much more costly for 
a larger number; and (iii) the impossibility of using 
the strategy. (Mackrell et al., 2013); or, devolution (“the 
act by which the teacher makes the student accept 
the responsibility for an (adidactical) learning situa-
tion or for a problem, and accepts the consequences of 
this transfer of this responsibility” (Brousseau, 1997)) 
and institutionalization (which can take place after a 
series of activities where a piece of knowledge has 
been useful in the class to act on, communicate, or 
validate something, and is then linked by the teacher 
to a more general and shared knowledge)). Some of the 
sessions deal with particular mathematical content, 
its learning (pupils’ errors) and its teaching (didactical 
strategies). Other sessions are more focused on the 
work with tools for the researcher, depending on the 
data to be analysed (textbooks, pupils’ papers, vide-
otaped sessions) or around the research literature 
(database, critical review). There are also many ses-
sions dedicated to helping the student teachers with 
their research report.

Theoretical frameworks: Many levels of analysis
When trying to build some tools to try to assess the 
effects of the training on professional development, 
we have to be able first to analyse every stage of the 
training process, from the analysis of our goals and 
choices as teacher educators, to the analysis of the 
practices and choices of the teachers that we trained, 
during the first two years of their teaching when we 
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are in their classes. This is a complex process, with 
many sides and points of view (the researcher’s, the 
teacher educator’s, the student’s, the teacher’s), and 
with many pieces of knowledge (on mathematics, on 
pupils, on teachers) (Shulman, 1986, although note 
that we do not use this framework in this research 
because we do not use the same categorisation of 
knowledge), some transmitted through the training, 
and some only influencing our choices without being 
visible to the students.

Different frameworks are thought to be useful for 
this study at different levels: to guide our choices for 
teacher training; to implement this training; and to 
analyse both its setting and its effects on students. We 
propose a multi-dimensional approach.

The Theory of Didactical Situations (Brousseau, 1997) 
is useful to us when we analyse sessions in class, in 
terms of didactical variables and a priori analysis of 
a task or situation. These are among the tools that we 
are presenting to our students during the initiation 
into research in mathematics education. They can 
be used to build and/or analyse situations for the 
classroom, to teach or to experiment in class with a 
research question. We also use the concepts of chron-
ogenesis (progress of didactic time: description of the 
evolution of the knowledge proposed by the teacher 
and studied by the students) and topogenesis (change 
of positions of students and teacher with regard to 
knowledge (cf., for example, Laborde & Perrin Glorian, 
2006). 

To analyse and interpret teachers’ practices, as well 
as our own as educators, we use the Theory of the 
Double Approach (Robert & Rogalski, 2005) defin-
ing five components in teachers’ practices: cognitive 
and mediative components (what happens in class in 
terms of content and teaching/training strategies), 
but also personal, institutional and social (the cur-
ricula, the background, the institution, the colleagues 

...). This theory allows us to take into account some 
constraints, which can explain teaching and training 
choices (for example, the fact that the content that we 
teach is linked to our own research can be explained 
through the personal component of our practice as 
educators). 

Our hypotheses about teacher training also come 
from the Double Approach: being willing to take into 
account the constraints of training (not everything is 

possible for any teacher on any classroom) and the ac-
tual practices and needs of the teachers while training 
them. Regularity observed among teachers’ practices 
might then be linked to their training, and variability 
of their practices linked to the particular constraints 
of the profession applied to each teacher.

To refine our analysis of teachers’ practices, we use 
the concept of didactical vigilance (Charles-Pézard, 
2010): we consider the permanent didactical adjust-
ment made by the teacher in class and outside of class 
at different levels (local, global, micro practices), mo-
bilising knowledge on mathematics as well as the way 
they are taught to analyse situations a priori and a 
posteriori, using tools from the Theory of Didactical 
Situations to detect phenomena in the classroom and 
take decisions regarding them.

To take into account the complexity of the teaching 
practices, we need to develop a multi-dimensional 
study, intertwining several frameworks, depending 
on what we focus on (teachers’ or educators’ practices), 
with a more or less wide focus. 

METHODOLOGY

Based upon the rich theoretical material that we pre-
sented in the previous section, we built several grids 
of analysis to link the teachers’ training and the teach-
ers’ practices potentially achieved through training 
(and later compared to the practice that we actually 
observed in class):

 ― a list of the types of tasks actually proposed 
during the training through the initiation into 
research in mathematics education;

 ― a list a priori of the expected teachers’ practices 
that could be shaped by the work done during 
the training, the ones we might expect, based on 
research results of practices and on the national 
list of competences for teachers;

 ― a scale a priori of professional development of 
the school teachers, linked with the activities of 
the teachers in class.

We will show these grids and how we put them into 
use to assess and interpret teachers’ professional de-
velopment linked with their training.
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The list of the categories of tasks that 
we proposed during the initiation into 
research in mathematics education
We analysed the content of the two-year course organ-
ised for the initiation into research in mathematics 
education in the Master’s training program of the 
university of Créteil between 2011 and 2013. This con-
tent was not chosen with this research in mind, given 
that the research only started in 2013, two years after 
the beginning of the course. We considered the tasks 
given to the student teachers during the sessions and 
drew a list of types to characterise what our student 
teachers might have worked on: different kinds of 
analysis (mathematical tasks, pupils’ productions, 
textbooks, mathematics sessions) as well as biblio-
graphical work or the construction of the research 
questions and the methodology to test them. Some of 
these tasks can be found in the rest of the training but 
probably dealt with in a different way and with oth-
er aims: for example, mathematics sessions’ analysis 
a priori / a posteriori are probably also proposed in 
the professional blocks of the program, but without 
a research question in mind. Tasks such as selecting, 
reading and analysing research articles might only 
be found in the research part of the training.

We consider that answering a research question and 
answering a professional (teacher) question does not 
require the same tools and resources. The data ana-
lysed might be the same (pupils’ productions, text-
books) but with a different question in mind (testing 
research hypothesis). We believe that the resources 
used for the initiation into research are different 
from the ones the student encounters in the rest of the 
training (research articles / institutional documents). 
We also think that doing an experiment in class and 
teaching are not the same activities, even if they both 
usually involve building and implementing a session. 
The analyses involved are not the same and will not 
produce the same effects in the classroom.

The list of expected teachers’ practices 
The list of expected practices of the teachers when 
teaching mathematics was drawn up  a priori, not con-
sidering what might or might not have been addressed 
during the training, but using the French reference of 
competences for teachers and some results in mathe-
matics education research on teachers’ practices that 
have been linked to potential learning for the pupils 
in mathematics. This helped us focus on particular 
activities of the teachers when they teach, or prepare 

their class, taking into account the mathematical con-
tent aimed at by the teaching:

 ― Choose or build a pertinent situation regarding 
the learning goals and the progression in learn-
ing;

 ― Know the mathematical content to be taught and 
their didactics;

 ― Manage different types of sessions (introduction, 
institutionalization, training, assessment, ...) and 
the different moments of a session (devolution, 
research, comparison of the procedures, valida-
tion, ...);

 ― Evaluate the pupils’ learning and manage their 
heterogeneity; 

 ― Reflect on one’s own session afterwards, keep 
training and innovating.

We can see, in particular, considering the types of 
tasks proposed during the initiation, which practices 
we did not train at all (build an entire sequence of ses-
sions on a subject for example) and the ones on which 
we spent much time (analysing tasks and sessions in 
class), but of course we cannot isolate the particular 
effects of the initiation into the global training.

The levels of achievement for 
every teacher activity
To analyse the evolution of every teacher’s practices 
and compare it with other teachers, we built three 
levels of achievement for the practices (see Table 1). 
It takes into account what happens in the classroom, 
in terms of tasks and management, as in Butlen et al., 
(2011), but also, on a more global focus, the prepara-
tion of the class by the teacher, and the reflection that 
he or she can have upon his or her own sessions. To 
illustrate this scale, we give an example, to assess the 
competence of a teacher for “managing different mo-
ments in a session” (see Table 1): level A is the high-
est one, and includes elements of analysis from the 
Theory of the Didactical Situations, to characterize 
the different phases of the session (from the devolution 
to the institutionalization).
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EXPERIMENT AND FIRST RESULTS

To analyse the practices of our former student teacher 
with as much objectivity as we could, we built the cat-
egorization of the teacher practices and defined three 
levels of achievement for each of them, based upon 
some a priori result from mathematics education, and 
from national standards. We confronted these grids 
with the actual practices of our students, once they 
had started teaching full time in school, after the end 
of their initial training.

Data collected
We followed 13 students out of the 16 who took part in 
the initiation into research in Mathematics Education 
course between 2011 and 2012, who agreed to partici-
pate in the study, in order to assess the effect of their 
training:

 ― 7 out of 13 answered a questionnaire at the end 
of their Master’s program, about their opinion 
of their training, with questions on their back-
ground before the training, but also on the in-
terest they had taken in each of the subjects pro-
posed in the initiation into research course, and 
the use they made (or thought they could make 
in the future) of the content of their training for 
their teaching.

The answers of our students to the questionnaire 
filled in at the end of the training showed a certain 
lack of interest for the theoretical content of the re-
search initiation. The reasons why they chose our 
initiation into research in the first place vary from: 

“good in math” to “fear of teaching math”, which means 
that we do not only have the best scientific students in 
our study. We asked them also to point out links be-

tween the research initiation course and the rest of the 
training, and they did not seem to see much common 
ground between research and the professional part of 
the training, not even with the same tasks proposed in 
both cases. We still have to pursue this study, but the 
small number of answers does not allow us to draw 
on the results of this questionnaire much.

 ― We followed our 13 former students (the ones 
who volunteered out of the 16) through observa-
tions in class and individual interviews by one 
of the researchers, during their first years as 
teachers. 

We did not record the sessions (as it would have been 
difficult in this context) but the researcher who did the 
observation filled in a grid that we all had built before 
the observations, about the context of the school and 
the class, the phases organized by the teacher and the 
mathematical content and tasks proposed during the 
session, according to the tools we have set in place 
to analyse teachers’ practices in mathematics. The 
interview allowed us to know if the teacher explicitly 
used some tools from the research training (through 
his or her vocabulary for example, or when describ-
ing his or her activity with other words than the ones 
used with us during the training), and to ask questions 
about how they would describe now the contribution 
of the training to their practices.

We also followed in class 8 student teachers who did 
not choose our initiation into mathematics education 
(but followed an initiation into research in another 
field). This part of the data has been collected but not 
analysed yet. It should allow us to pinpoint specifici-
ties of our former students, but we will not have as 

Level C Level B Level A

*The different moments 
are not clearly identified 
(collective + individual 
research, no comparing of 
the procedures)
*Not many initiatives for 
the pupils, the teacher is in 
charge of the validation
*No moment of recollection 
of previous knowledge

*Some moments are organized 
during the session but they do 
not allow the pupils to engage 
actively in research or to com-
pare procedures
*Shared initiatives but the 
teacher is still in charge of the 
validation
*The moments of recollection 
are about tasks and not knowl-
edge, and taken in charge by 
the teacher

*The “launching” of the activity is organized 
(re-wording)
*There is  potential for active research for pupils
*Procedures are gathered and compared with a hier-
archy in the order in which they are presented, with 
shared initiatives for their validation, and construc-
tion of mathematical meaning
*a summarization is made, leading to an institution-
alization (dépersonnalisation, décontextualisation) 
linking it with the previous activity
*Some moments of recollection of previous knowl-
edge are promoted by the teacher

Table 1: An example of the three levels of achievements of teacher activity (managing different moments in a session)
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much information on these eight students’ training, 
which will be an important limitation.

First results in class
Trainers have to visit teachers twice in their class-
room during their first year after training, to assess 
their work, and the two observations took place in this 
context. The evidence assessing the level of achieve-
ment for each element of the practices comes from the 
two observations, a few months apart, of half a day of 
class, including, each time, a session in mathematics, 
and from the interview that took place at the end of the 
second visit. The results for our 13 former students 
can be seen in Table 2.

We can see here that the global level of achievement of 
the 13 beginner teachers is between B and A, except for 
one student (who obtained a level C for each activity; 
it was a student who was in great difficulty, and did 
not succeed in becoming a teacher at the end of her 
first year in class). They built rather meaningful and 
pertinent situations for their class in mathematics, 
with an a priori analysis that allowed them to antici-
pate the pupils’ difficulties in most cases. 

They seem particularly efficient in managing the 
different phases of the session, with long phases of 
research for the pupils in certain classes. This is a 
type of task that has been often proposed to the stu-
dent during the initiation into research course, while 
analysing videos, or experimenting in class for the 
research report. Validation of the tasks is still per-
formed by the teacher rather than letting the pupils 
take the initiative. 

Their opinion on the content of their training through 
the initiation into research has often evolved (from 

“too much work, too much theory” to “useful for pre-
paring the session and reflecting on it afterwards”). 
Though they do not use concepts from the didactical 
theories in their discourse, they still seem to enact 
them in their practice (didactical variables, compari-
son and organisation of a hierarchy in the pupils’ pro-
cedures, a priori analysis). For example, even if almost 
none of them used the term “a priori analysis” during 
the interview afterwards, they showed some capac-
ity to analyse the content of their sessions, and the 
potential gaps between what was planned and what 
actually happened during the session. Incidentally, 
in the questionnaire at the end of the training, the 
majority of the students said that some content of the 
initiation was helpful to anticipate pupils’ procedures, 
and that some of the content also gave them means to 
analyse their own sessions afterwards.

They seemed to us very reactive when reflecting on 
their sessions (changing things from their original 
plan immediately to take into account our remarks) 
and giving themselves means to keep improving their 
practices; which could confirm our hypotheses about 
the value of training through research to help the 
teacher enter a reflexive attitude for their teaching. 
Of course we still have to analyse the data collected 
in the other classes to confirm these results.

CONCLUSION

Even if the first results on teachers’ practices during 
their first year teaching are very encouraging to us, 
we obviously have to underline the many limitations 
of our research:

 ― the small number of students, that does not allow 
us to generalise our findings;

 Expected practices C B A

Choose or build a pertinent situation regarding the learning goals and the progression in 
learning

1 5 6

Choose a textbook or other resources and use them with a critical view 1 6 5

Know the mathematical content to be taught and their didactics 1 8 3

Manage different types of sessions 1 8 3

Manage the different moments of a session 1 9 2

Evaluate pupils’ learning 1 7 4

Manage the heterogeneity of the pupils 1 4 7

Reflect on one’s own session afterwards 1 8 3

Keep training and innovating 1 9 2

Table 2: Levels of achievement of our former students at the end of their 1st year in class
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 ― the impossibility to totally differentiate the ef-
fects of the research training from the effects of 
the rest of the program (but the questionnaire 
gave us an idea about the originality of the tasks 
proposed in our initiation, compared to the rest 
of the training, in which we also take part);

 ― conflicting roles of researchers, at the same time 
teacher educators and evaluators of the students 
whose practices they are trying to assess (even if 
we tried to separate the research from the assess-
ment by giving clear protocols to the students) in 
a training context that was not built as an exper-
iment on teachers’ development.

As teacher educators, this study helped us build tools 
to organize the training, and gave us a clearer view 
of what we can potentially offer to the prospective 
primary school teachers through an initiation into 
research. We already made changes in our initiation 
program to take into account the needs of our students 
and address the question of the development of their 
practices more efficiently.

But we still have a lot of research to do to assess the 
real effects of training in general and through re-
search in particular.
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This study discusses how the analysis of mathemati-
cal tasks, within a teachers’ in-service education study 
group, can help teachers who teach mathematics in the 
early years of Elementary School to reflect and (re)think 
their pedagogical practice. This research was carried 
out in a Brazilian public school, with the participation 
of 14 teachers. Within the in-service study group, the rec-
ognized importance of the tasks and their classification 
according to levels of cognitive demand by the teachers is 
discussed. The reflections and discussions in this study 
group allowed the identification of some changes in the 
teachers’ perspectives in regard to tasks choice/prepa-
ration, the role of the teacher in the classroom and the 
recognition of students’ capacities. 

Keywords: Mathematical tasks, levels of cognitive demand, 

teacher education.

INTRODUCTION

The tasks proposed to students influence what and 
how they learn (Doyle, 1983; Stein, Smith, Henningsen, 
& Silver, 2009); therefore, it is essential for teachers to 
be prepared to select, in an informed way, the tasks to 
be proposed to their students and to support them in 
their work without reducing their complexity. 

Several researchers have developed studies in 
which tasks are the focus of investigation, indicat-
ing that there is a relationship between the type of 
the proposed tasks and type of thinking developed 
by students (Doyle, 1983; Christiansen & Walter, 1986; 
Shimizu, Kaur, Huang, & Clark, 2010; Stein & Smith, 
1998; Stein, Smith, Henningsen, & Silver, 2009). Thus, 
it is important to provide teachers with professional 
development opportunities to help them reflect on 

the role and relevance of the task for the teaching and 
learning processes and make them realize that not 
only tasks play a significant role in these processes 
but also that the way they are explored by the teacher 
in the classroom is fundamental. 

In this article, we present the results of a research 
whose objective was to investigate how tasks anal-
ysis in a context of in-service education can help 
teachers who teach mathematics in the early years 
of Elementary School to reflect and (re)think their 
pedagogical practice and, more specifically, to under-
stand these teachers’ perspectives in regard to the 
tasks’ choice and preparation, proposition and imple-
mentation, based on the levels of cognitive demand of 
each task (Stein, Smith, Henningsen, & Silver, 2009).

THE IMPORTANCE OF TASKS AND THE 
LEVELS OF COGNITIVE DEMAND 

Tasks are used by teachers for different teaching pur-
poses and they may appear in different moments of 
the lesson as exercises and problems, for instance. In 
this study, task is viewed as a proposition made by the 
teacher in the classroom with the objective to focus 
the student’s attention in a determined mathematical 
idea which implies an activity from his part (Stein, 
Smith, Henningsen, & Silver, 2009). 

When planning their lessons, many teachers are not 
used to think about the reasons behind their task 
choices and many times this action is supported mere-
ly by the mathematics contents which they are work-
ing or those included in the textbook. According to 
Pepin and Haggarty (2007), tasks can and must be seen 
as “[...] a process that can potentially help to enhance 
mathematical understanding rather than simply a 

mailto:criscirino@gmail.com
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vehicle for content” (p. 13). Next, three significant ar-
guments related to the role of the task are presented 
to help teachers understand the importance of having 
a set of task selection criteria. 

Firstly, “tasks with which students engage constitute, 
to a great extent, the domain of students’ opportuni-
ties to learn mathematics” (Stein, Smith, Henningsen, 
& Silver, 2009, p. 131). The student’s work is defined 
by tasks carried out by him/her, daily; however, 
some have the potential to mobilize complex forms 
of thought while others do not. Therefore, 

tasks that ask students to perform a memorized 
procedure in a routine manner lead to one type 
of opportunity for student thinking; tasks that 
require students to think conceptually and that 
stimulate students to make connections lead to a 
different set of opportunities for students think-
ing (Stein & Smith, 1998, p. 68). 

A second argument is that tasks are instruments used 
to connect the students’ learning objectives (Stein, 
Smith, Henningsen, & Silver, 2009). When choosing 
or preparing a task, it is important for the teacher to 
have a clear objective to propose to students. To think 
about the tasks’ objectives prior to implement them 
can help teachers create a classroom environment 
that motivates the student to get involved in the solv-
ing of the proposed tasks. 

A third argument is that tasks affect significantly the 
reasoning process students develop in order to solve 
them (Stein & Smith, 1998). Therefore, teachers should 
prioritize cognitively challenging tasks with the po-
tential to engage students in complex thinking forms. 
This type of task can help students develop reasoning 
forms and strategies that allow them to go beyond 
the memorization of facts and procedures. However, 
the teacher must be aware of the fact that to select or 
prepare this type of task does not guarantee students’ 
engagement since there are several classroom factors 
that can contribute to the maintenance or decline of 
the task’s cognitive demand (Stein, Smith, Henningsen, 
& Silver, 2009). 

Tasks can be analyzed from several perspectives such 
as nature, characteristics, number of strategies used 
to solve them, levels of cognitive demand among oth-
ers. In this study, tasks are analyzed based on their 
levels of cognitive demand since, according to Stein, 

Smith, Henningsen and Silver (2009) “the cognitive 
demands of mathematical instructional tasks are re-
lated to the level and kind of student learning” (p. 17).

For Stein and Smith (1998), tasks can be grouped in 
four levels of cognitive demand: memorization; proce-
dures without connections; procedures with connec-
tions, and doing mathematics. The first two categories 
involve tasks with lower-level of cognitive demand 
and the last two refer to high-level of cognitive de-
mand tasks. With the purpose to provide support to 
teachers during task analysis according to their levels 
of cognitive demands, in a context of teachers continu-
ing education, these researchers prepared a Guide to 
Tasks Analysis (Appendix 1), which includes a list of 
tasks characteristics in each one of the four levels of 
cognitive demand that can be used as a parameter for 
their classification. 

The teacher can still use this guide “as lens for reflect-
ing on their own instruction and as a shared language 
for discussing instruction with their colleagues” 
(Stein, Smith, Henningsen, & Silver, 2009, p. 2). Thus, 
by selecting/preparing tasks based on their cognitive 
demand allows the teacher to look into what the stu-
dents learn and how they work with the tasks; their 
actions at the moment of proposing and implementing 
the tasks; the factors that affect the proposition and 
implementation of the tasks, which may contribute 
to their maintenance or decline. 

However, in order to choose or prepare tasks based 
on the levels of cognitive demand, the teacher must 
not only be informed by some principles for tasks 
analysis but also know their students deeply and pay 
attention to aspects such as age, learning pace, level of 
education, mathematical knowledge and prior expe-
riences so that those tasks constitute a real challenge 
for students (Stein, Smith, Henningsen, & Silver, 2009).

RESEARCH CONTEXT AND 
METHODOLOGICAL PROCEDURES

This research was developed within an in-service ed-
ucation program, in a study group context, with the 
participation of 14 teachers working with the early 
years of a public Elementary School in Brazil. The 
teachers had more than eight years of experience and 
played different functions in their schools. 
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The study group was coordinated by two researchers, 
one of them is the first author of this article, from 
the Mathematics Education and Sciences Teaching 
Graduate Program– PECEM1, and was part of an 
in-service education project outlined by the school 
within the City Education Department annual plan-
ning. One of the goals of this study group was to moti-
vate participants to learn about the levels of cognitive 
demand of the tasks and how to analyze tasks based 
on some principles. The study group met weekly, for 
one hour, for a period of six months and it focused 
on tasks analysis based on the categories proposed 
by Stein and Smith (1998). 

The group discussions were organized in four phases. 
In the first, we discussed the tasks brought by the 
teachers and, they presented and explained the rea-
sons that guided the selection of these tasks and how 
they worked with the tasks in the classroom.  In the sec-
ond, the teachers studied and discussed the features of 
tasks in each level of cognitive demand and later they 
conducted a new analysis of these tasks, classifying 
them according to the level of cognitive demand.   In 
a third moment, the teachers worked on tasks with 
different levels of demand cognitive proposed by the 
coordinator of the study group, they analyzed and 
classified these new tasks and some teachers have 

1  This program is being developed at State University of Londrina, 

Brazil. 

expressed interest to apply them in the classroom 
(due to space limitations, it is not possible present 
the tasks in this paper). After this implementation, in 
the fourth phase, the study group discussed the rele-
vant points and the difficulties faced by the teachers 
in the classroom, as well as evaluated the importance 
of task analysis and cognitive demand levels. 

The instruments adopted for data collection included 
transcriptions of the audio recordings of the meetings 
so that the participants’ speeches could be registered 
in their original form, keeping the integrity of the 
dialogues; written productions, with comments and 
reflections of teachers on discussions that occurred in 
group (free writing) and semi-structured interviews 
with some teachers. To identify the instrument from 
which the information was obtained, we use the fic-
titious name of the participant followed by the first 
letter of the instrument. So, the letter G was used for 
group meeting followed by the number of meeting, 
P for written productions, and I for interviews. For 
example, the identification of an information given 
by Cintia in the first meeting, is registered as “(Cintia, 
G1)”. Due to space limitations, in general, only one 
excerpt was presented as an example of each analysis 
unit. Analysis units were constructed after several 
readings of the meetings’ transcriptions, written 
productions and interviews, highlighting relevant 
excerpts for our study. Data analysis uses the Tasks 
Analysis Guide as reference (Stein & Smith, 1998).

Reasons given by the 
teachers for their choice 
of tasks

Tasks allow teachers to 
approach mathematical 
content

I choose a task to work with content. If I want to work 
with the operations, the multiplication table, I choose 
tasks that allow me to work with them. If the content is 
measures, for instance, I choose a task that explores this 
content (Isadora, G1)

Tasks allow to verify 
whether the mathemati-
cal content was “assimi-
lated”.

When I propose tasks to my students it is always with the 
intent to check whether they have learned the content 
and also to verify which contents still need more work to 
be done […] (Fabiane, P1)

Tasks allow to work with 
non- mathematical as-
pects

I never choose a task which deals exclusively with 
Mathematics. I choose a problem that involves several 
areas such as Sciences, Portuguese, Geography, several 
disciplines, a task that does not involve only calculations. 
(Carla, G1)

Tasks allow to relate 
mathematics with the stu-
dent’s reality

[...] Tasks must always be connected with the child’s reali-
ty. Children learn mathematics for their life. [...] They are 
more motivated (it’s more pleasurable) when they have to 
solve real problems. (Mariana, G1)

Tasks allow to develop 
reasoning skills

The objective of the tasks must be to contribute with the 
development of the student’s reasoning skills. (Cintia, P1)

Table 1: Summary of the initial reasons given by teachers for their tasks choices
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Reasons given by the teachers 
for choosing tasks 
One of the actions developed in the beginning of the 
study group was a discussion over the tasks teachers 
had brought upon request of the teacher educators. 
They were asked to explain the reasons behind their 
tasks choices which included: to approach mathemat-
ical content; to verify whether the mathematical con-
tent was assimilated; to work with non-mathematical 
aspects; relate mathematics to the student’s reality 
and to develop reasoning (Table 1). Some teachers gave 
more than one reason for their choices of the tasks. 

The reasons presented by the teachers show that most 
of the tasks they selected are based on memorization 
or on procedures without connections (Stein, Smith, 
Henningsen, & Silver, 2009), i.e., they require only the 
reproduction and memorization of contents, rules 
and formulas learned previously, without establish-
ing connection with concepts or meanings that give 
support to the contents given, and being more focused 
on correct answers than on the student’s understand-
ing. 

Tasks analysis and the levels of 
cognitive demand relevance
The study of the levels of cognitive demand, the re-
flection on the tasks’ role in the teaching and learning 
processes and of the high-level of cognitive demand 
tasks led teachers to think about their initial reasons 
to choose tasks and develop another view in relation 
their selection or preparation. Next, we present a 
table with some points provided by the teachers on 
the relevance of tasks and levels of cognitive demand 
(Table 2) during the study group work.

Teachers started to notice that tasks have different 
characteristics and that this difference can be in-
terpreted through their levels of cognitive demand, 
bringing implications to the student’s activity and 
to the complexity of the mathematical processes in-
volved. They also became aware that their tasks se-
lection criteria were focused almost exclusively on 
the coverage or verification of mathematical content.

Signs of changes triggered by discussions, 
reflections and task analysis
The actions developed by the study group on the rea-
sons for choosing tasks, levels of cognitive demand as 
a tool to classify them and on tasks analysis allowed us 
to identify signs of changes in regard to tasks choice, 
role of the teacher in the classroom and student’s ca-
pacity  (Table 3).

During our first meeting, teachers had difficulty in 
justifying their choices to the group, considering that 
the habit of thinking about why the tasks were selected; 
for they serve; what contents they cover, their level of 
complexity and whether the objectives were met, it was 
not common practice of most teachers who participat-
ed in the study group. “I never stopped to think why I 
chose the tasks. Today I become to realize how important 
it is to think about it”. (Ana Lívia, G1). “Great! You know, 
when I gave the task to my students I did not think about 
the objective, about the reason behind it; so, I’ll pay more 
attention to it from now on”(Ana Júlia, G1). 

During the group sessions, some teachers started to 
become more aware of the importance of selecting 
tasks and aggregating levels of cognitive demand to 
their criteria, reducing the number of tasks proposi-

Reflections on 
tasks analysis 
and levels of cog-
nitive demand 

Tasks relevance for the teach-
ing and learning processes

I had never stopped to think about the importance of tasks for 
the student’s learning process; but, now, here with this group, 
with these discussions and being aware of the difficulties some 
teachers had to justify their choices I realized how important 
it is to reflect on it. I realized that we have chosen tasks haphaz-
ardly.  (Vitória, P1)

The relevance of learning 
about the levels of cognitive 
demand of the tasks 

[...] knowing about levels of cognitive demand changed my way 
of thinking and choosing  tasks and helped me think better 
about how and which task to use and whether it is going to be 
useful to the public at hand [...]. (Ana Júlia, I)

The relevance of high-level of 
cognitive demand tasks

It is extremely important to work with high-level of cognitive 
demand tasks, since they promote the development of autono-
my, self-confidence and critical thinking, argumentation and 
therefore to think mathematically and to search for solutions 
to problems. (Denise, P19)

Table 2: Reflections on tasks and levels of cognitive demand
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tions focused on memorization or on the realization 
of a procedure without connections.  

In regards to their role, discussions and tasks analysis 
allowed teachers to understand the impact of their 
actions on some teaching and learning processes, es-
pecially in relation to tasks choice and to promote a 
change in the way to implement tasks in the classroom.  
This way, they started to promote teaching and learn-
ing processes focused on the students’ understanding.

As for the student’s capacity, tasks implementation 
and solution helped teachers to realize that, many 
times, they underestimate the cognitive capacity of 
their students, their specific learning pace and dif-
ficulties and that the role of the teacher is to help 
them think on how to solve the task without remov-
ing its challenges (National of Council of Teachers of 
Mathematics, 2000). 

FINAL CONSIDERATIONS

To think about the tasks they propose was not a 
usual practice for most teachers in the study group. 
Consequently, in the phase of the study group, some 
of them had difficulty justifying their choice of the 
tasks to be used in the classroom. However, despite 
these difficulties, some teachers were able to voice 
their reasons for choosing the tasks such as to use 
a task to approach mathematical content or verify 
whether the mathematical content was assimilated, 
and these practices are strongly present in the peda-
gogical practice of these teachers.  

To learn about the levels of cognitive demand and 
analyze tasks was highly significant for most teach-
ers, since they were able to realize the importance of 
thinking about the tasks and the way to work with 
them in the classroom. Thus familiarity with the lev-

Change signs Sentences that show the signs of change

Tasks selection by the teacher

These reflections have contributed a lot to my mathematical tasks selection crite-
ria and also to tasks from other subjects. We are becoming more careful, thinking 
not only on the objectives of the tasks but also on their levels of complexity and 
the students, trying to imagine how they will react to the task and which are their 
possible answers. (Cintia, P6)
The reasons I had before remain, but now I also select high level tasks which in-
volve reasoning and not only formulas. But, I look for a balance among the tasks. 
Students still have lots of difficulty, so it is impossible to work only with high level 
tasks, that’s why I stick to my old set of criteria (Fernanda, I)
Today I look for tasks that make my students think; not only tasks that focus on 
the correct answer but on how the student will carry it out, on the process. But, I 
continue choosing tasks for verification, which are also important (…) I think that 
the other criteria came up due to my participation in the study group otherwise 
I would not have learned about them and become aware of their existence (Ana 
Júlia, I).

The role of the teacher

My posture in the classroom has also changed. Now I try to question the student 
more to know about his reasoning process (Ana Júlia,G17)
[...] This group work not only helped us know the task but also to try to work with 
tasks in a different way. For example, I never gave the opportunity for my student 
to explain their work. Now, I always ask them to explain their work process to me 
and their classmates. (Fabiane, G17)

The students’capacity

I learned to value my students and their capabilities. Before I saw them as indi-
viduals coming from a poor neighborhood, with whom I was supposed to teach 
some mechanical skills and I would be very happy if they were able to learn them.   
However, I learned that they can achieve more; I did not know their potentials so, 
when I gave them the task you suggested I saw how wrong I was and that I could go 
beyond mere mechanical tasks. (Mariana, I)
I was surprised by some students who many times have difficulty in carrying out 
simple mathematical operations, an algorithm; however, they solved very fast the 
sequence’s problem they did very fast without questioning [me] much. Other stu-
dents, who were always the first to finish a routine task, had difficulty solving this 
problem. (Denise,G13)

Table 3: Sentences that show signs of change by the teachers
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els of cognitive demand has also helped teachers to 
understand that tasks with a high-level of cognitive 
demand have the potential to involve the student in 
a work focused on reasoning and on understanding, 
making them choose and propose this kind of tasks. 

Teachers became more critical regarding their choic-
es of tasks which became an action based on a lot of 
thinking. They become more attentive to the objec-
tives of the task, trying to anticipate how students 
would react to it and their possible solutions. 

In addition, the teachers had the opportunity to reflect 
on their role in the classroom, since they realized that 
their attitudes and decisions influence their students’ 
learning. Therefore, some teachers considered that 
they changed the way they teach by questioning more 
the students during the lessons, to know about their 
line of thought rather than being only concerned with 
the correct answers and mainly giving them more 
opportunities to justify their reasoning processes. 
Consequently, this change in the teacher’s attitude 
shed a new light on the way they regard the students, 
since some of them used to underestimate their stu-
dents’ capabilities.  

Thus, according to Stein, Smith, Henningsen and 
Silver (2009), to know about the levels of cognitive 
demand allowed teachers to differentiate mathemati-
cal tasks in order to identify those that offer opportu-
nities for students to think without being led by their 
superficial characteristics. 

However, even acknowledging the potential of tasks 
with high-level of cognitive demand, teachers have 
only aggregated them to their previous reasons. The 
lack of confidence in dealing with these tasks, the fear 
of not being able to meet the objectives of the lesson 
and at the same time demotivate students due to their 
difficulties and the justification that memorization 
and verification tasks are also relevant, are some of 
the arguments presented by teachers to justify the low 
frequency of high-level of cognitive demand tasks in 
their work. Such resistance must be understood with-
in the context of an instituted professional practice, 
considering that the knowledge of levels of cognitive 
demand can help teachers to reflect on their teaching 
style and focus more on what students learn and how 
they work on a task as well as on their actions and 
attitudes when proposing and implementing a task.
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APPENDIX 1.  GUIDE TO TASKS 
ANALYSIS (STEIN & SMITH 1998)
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Memorization Procedures without connections

- Involve  either the reproduction of facts, 
rules, formulas  learned  previously  or mem-
orization;
- They cannot be solved by using procedures 
because they are either not necessary or the 
time is short to use them;
- They are not ambiguous and involve the exact 
reproduction of the subject studied previously 
and what is to be reproduced is clear and di-
rectly stated;
- No connection with concepts or meanings 
underlying the facts, rules, formulas or defini-
tions taught or reproduced.

- They are algorithms. The use of one procedure or is 
specifically indicated or evident due to a previous instruc-
tion, experience or question location; 
- Require limited cognitive demand to resolve it success-
fully. There is little ambiguity on what needs to be done 
and how to do it;  
- There is no connection with concepts or meanings un-
derlying procedures used initially;  
- They are focused on the production of correct answers 
instead of on the development of Math comprehension;  
- Do not demand explanations or whenever needed, they 
are explanations focused only on the description of the 
procedure used. 
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Procedures with connections Doing Math

- Focus the students’ attention on the use of 
procedures to develop an in-depth knowledge 
of concepts comprehension levels and Math 
ideas;
- Suggest ways to be followed (explicitly or 
implicitly), which are general, common pro-
cedures which have intimate connection with 
conceptual ideas;   
- Usually represented by several ways (such as 
diagrams, manipulatives, symbols and prob-
lem-situations). They make connections among 
multiple representations that help develop 
meanings;   
- Demand some degree of cognitive effort. 
Although general procedures can be followed, 
they cannot be followed without being fully 
understood. Students need to get involved with 
the conceptual ideas underlying the proce-
dures to be followed in order to fulfill the task 
successfully and develop comprehension.

- Demand complex thinking skills rather than algorithmic 
skills, and the tasks do not suggest, explicitly, a predict-
able way to be followed, instructions for its solution, or 
an example, which, when well-trained, could lead to their 
resolution;
- Demand that students explore and understand the  na-
ture of Math concepts, procedures or relations;
- Demand high monitoring or high regulation of the stu-
dent’s own cognitive process;
- Require students to mobilize relevant knowledge and ex-
periences make  appropriate use of them during the task;
- Require students to analyze and examine the task active-
ly and whether it has limited resolutions and solutions 
limitations; 
- Demand considerable cognitive effort and may involve 
some levels of anxiety from the students’ part for not hav-
ing a previous natural list of the processes demanded by 
the problem.  



2825CERME9 (2015) – TWG18

Video-based peer discussions as sources for 
knowledge growth of secondary teachers

Ronnie Karsenty, Abraham Arcavi and Yael Nurick

Weizmann Institute of Science, Rehovot, Israel, yael.nurick@weizmann.ac.il   

This paper reports on a study conducted as part of a 
larger project, named VIDEO-LM, which centres on 
video-based professional development for secondary 
mathematics teachers. The project aims to facilitate the 
reflective skills and the Mathematical Knowledge for 
Teaching (MKT) of secondary school teachers, in par-
ticular those teaching advanced mathematics courses. 
At the core of the project is a 6-component framework 
developed for analysing videotaped lessons in collabora-
tive discussions with teachers. We describe the rationale 
and novelty of the project and the framework. Then, we 
focus on a study which examines the MKT growth of a 
group of teachers who participated in VIDEO-LM peer 
discussions, and present some preliminary findings.   

Keywords: Video-based professional development, peer 

discussions, mathematical knowledge for teaching (MKT), 

secondary mathematics teachers.         

INTRODUCTION

The power of videotaped teaching episodes as a 
vehicle for stimulating discussion and reflection 
among mathematics teachers has been discussed in 
recent years from various angles (Borko et al., 2011; 
Coles, 2013; Sherin & van Es, 2009). Although video 
has been used as a tool for teachers’ professional de-
velopment for the past 50 years (Sherin, 2004), the 
rapid advancements of digital video documentation 
has allowed for significant amplification in this field, 
which manifests in a host of professional development 
programs in various countries that include video as 
a major resource (e.g., KIRA and Mathe sicher kön-
nen in Germany; the Problem-Solving Cycle and the 
Learning and Teaching Geometry programs in the US; 
WMCS in South Africa). Online video resources are 
now largely available to educators (MET in the US and 
Teachers Media in UK are prominent examples) and 
at least two international symposia were dedicated 

recently to the use of video in mathematics teacher 
education (see http://www.weizmann.ac.il/conferenc-
es/video-lm2014).

The following citations distil the main feature of video 
that can explain why it is regarded as a valuable tool for 
teacher development. Sherin and van Es (2009, p. 21) 
claim that “Teachers benefit from opportunities to 
reflect on teaching with authentic representations of 
practice”; Brophy (2004, p. 287) argues that video can 
introduce “the complexity and subtlety of classroom 
teaching as it occurs in real time”; and Nemirovsky 
and Galvis (2004, p. 68) suggest that “because of the 
unique power of video to convey the complexity and 
atmosphere of human interactions, video case studies 
provide powerful opportunities for deep reflection”. 
All these scholars emphasize the role of video as a 
window to the authentic practice of teaching, which 
allows teachers to focus on complex issues that may 
be unpacked through observing,  re-observing and 
reflecting on specific occurrences.     

Generally speaking, there are three main trends in 
using videotaped episodes from mathematics lessons 
as resources for teacher development. First, video 
is utilized for introducing new curricula, activities, 
pedagogical strategies, etc. This target is mainly im-
plemented through supplying teachers with video 
cases that model how teaching the new curricula, or 
using the pedagogical strategies, may be enacted (e.g., 
Seago et al., 2010). A second trend, becoming more 
and more prevalent (particularly in the US), is us-
ing videotaped lessons as a source for feedback and 
evaluation. Teachers watch videos from their own 
classrooms and discusses them with colleagues or 
instructors, often with the use of a pre-constructed 
standard-based rubric such as the one developed by 
Hill and colleagues (2008). The third trend is using 
videotaped episodes to enhance teachers’ proficiency 
to notice, understand and discuss students’ mathemat-

mailto:yael.nurick@weizmann.ac.il
http://www.weizmann.ac.il/conferences/video-lm2014
http://www.weizmann.ac.il/conferences/video-lm2014
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ical thinking (Sherin et al., 2011), usually in the form 
of “video clubs” (Sherin & van Es, 2009). 

This paper brings forward a different direction for 
using video as a major resource for professional de-
velopment of mathematics teachers, as emerges from 
a new project in Israel, named VIDEO-LM (Karsenty & 
Arcavi, 2014). In what follows, we describe the project 
and introduce the framework of analysis which lies 
at its core. We then report on a study conducted as 
part of the project, investigating the development of 
new Mathematical Knowledge for Teaching (MKT) in 
a group of teachers who participated in VIDEO-LM 
sessions. 

THE VIDEO-LM PROJECT 

VIDEO-LM (Viewing, Investigating and Discussing 
Environments of Learning Mathematics), is a project 
launched on 2012 at the Weizmann Institute of Science. 
Its over-arching goal is to improve mathematics teach-
ing, with particular emphasis on the advanced tracks 
in secondary schools, through enhancing the reflec-
tive skills and the mathematical knowledge of teach-
ers. The means to achieve this goal is by creating a pool 
of videotaped mathematics lessons, which serve as a 
basis for guided peer discussions with teachers. We 
use the lessons as “vicarious experiences” for teach-
ers, centering on how the filmed teacher displays mul-
tifaceted elements of practice. The videos we use do 
not necessarily display ‘exemplary teaching’; rather, 
we pick lessons that can potentially trigger fruitful 
conversations. As opposed to the first trend noted 
above, teachers are not presented with demonstrative 
videos focused around new materials or strategies, 
nor do they engage in evaluative discourses, as in the 
second trend. They may relate to students’ thinking, 
the aspect centralized in the third trend, but only as 
part of the whole “teaching picture” revealed on the 
screen. In other words, the discussions are intention-
ally teacher-centered, and not student-centered.   

Rationale
It is well known that teaching can be a lonely profes-
sion. Despite participation in professional communi-
ties, online forums and other forms of communication 
and collaboration with other teachers, the reality is 
that the vast majority of teachers are the “solo adult 
actors” in their classrooms, where they spend the li-
on’s share of their professional life. In many countries 
teachers seldom get the chance to watch their peers 

in action once the pre-service period is over. This is 
not merely a social deficit, but also a barrier to certain 
processes of professional evolutions embedded in 
peer learning in situ. For instance, watching peers 
may expose teachers to alternative instructional 
strategies, which makes it possible to change routine 
thinking and actions (Santagata et al., 2005; Sherin, 
2004). Thus, the VIDEO-LM project aims at creating 
opportunities for teachers to watch whole lessons 
given by others. Moreover, we seek to enhance the 
potential gains from these opportunities, by directing 
teachers to collectively analyse these vicarious expe-
riences through a systematic use of a 6-component 
framework.  

The framework for analysing videotaped 
lessons in teachers’ discussions
We have developed a unique framework for ana-
lyzing videotaped lessons, inspired by the work of 
Schoenfeld (1998) and Arcavi and Schoenfeld (2008). 
Schoenfeld’s theoretical model of “teaching in context” 
describes and predicts how teachers’ goals, knowl-
edge and beliefs affect their in-the-moment deci-
sion-making during lessons. Arcavi and Schoenfeld 
have taken this model as a basis for creating analyti-
cal tools with which mathematics teachers can reflect 
upon their own practice while watching videotaped 
lessons of other teachers. In the VIDEO-LM project, 
we have modified and extended these analytical tools 
to include six components, which are the building 
blocks of the framework we use. In the following, we 
briefly describe these six components. 

1) Mathematical and meta-mathematical ideas. 
Given the topic of the lesson, there is a range of 
relevant concepts, procedures and ideas that may 
be associated with this topic. For instance, the 
topic of the square root function may involve 
the following ideas: the non-negativity of the 
function’s domain; its monotonously increasing 
graph; continuity and derivability of the func-
tion; its relation to the function y=x²; and so forth. 
Topics may also evoke meta-mathematical ideas, 
such as what makes a proof legitimate, why is 
one counter example sufficient to refute a con-
jecture, the arbitrariness of certain mathematical 
definitions, etc. Before watching a videotaped 
lesson, teachers are requested to elicit ideas, in 
an attempt to gauge the boundaries of this range. 
Then, once the tape is screened, they can refer to 
questions such as: Which of these ideas, or oth-
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ers, did the teacher bring forward in the lesson? 
Which ideas were left out? How can this decision 
be explained? Which meta-mathematical notions 
were evident in the lesson?   

2) Explicit and implicit goals. The rich span of math-
ematical ideas around a given topic enables choic-
es of the goals teachers wish to pursue within a 
lesson. One of the reasons that lessons of different 
teachers on the same topic do not resemble one 
another is that teachers derive different goals 
from the range of relevant mathematical ideas. 
While watching a video, teachers try to identify 
the goals they think the filmed teacher was at-
tempting to achieve, whether explicitly or im-
plicitly. In other words, they ascribe goals to the 
teacher, just as one would ascribe meaning to a 
poem or some other piece of art. In this context, 
our aim is not to scientifically verify any “true 
situation” (i.e., what were the teacher’s “real” in-
tentions); Rather, we encourage the mental exer-
cise of ascribing goals, targeted at (a) promoting 
the skill of articulating goals; and (b) enhancing 
awareness to the fact that alternative (sometimes 
even competing) goals to teaching a certain math-
ematical subject may exist. 

3) Tasks and activities selected by the teacher. The 
tasks, problems and activities presented by the 
teacher during the lesson are the means by which 
the teacher’s goals are fulfilled, hence reflecting 
the mathematical ideas chosen by the teacher. 
The video enables teachers to watch a “task in 
action”; how it is implemented, the nuances in 
introducing it and how the teacher addresses stu-
dents’ reactions. This enables quite a different 
exploration than the one teachers may preform 
when presented with the task in its written form 
(i.e., as it appears in textbooks or other written 
resources). We refer to such an exploration as an 
a posteriori task analysis, which can potentially 
enrich the discussion, giving an additional angle 
to that of the a priory task analysis.

4) Interactions with students. The implementation 
of the tasks and activities selected by the teacher 
is carried out through classroom interactions.  
This component includes generic elements such 
as positive and negative feedbacks given by the 
teacher, listening to students, wait time, etc., 
but also considerations that are more related to 

the subject matter, for instance how the teach-
er navigates the students’ responses during the 
mathematical activity and poses subsequent 
questions. Following Clarke (2014), questions 
of equity, authority and knowledge construc-
tion are also valuable as triggers of productive 
conversations: Who gets permission to speak? 
Who is responsible for the flow of ideas? Is the 
mandate to produce new knowledge distributed 
or centralized?    

5) Dilemmas and decision-making. The mathematics 
education community has learned much about 
teachers’ decision making processes, from the 
work of Schoenfeld (1998; 2008) and others. 
However, for many teachers the “diving” into 
another teacher’s decisions is a novel experience. 
The exercise offered to teachers participating 
in the discussion is to focus on the filmed teach-
er’s dilemmas as they may be uncovered in the 
lesson, the decisions taken in order to resolve 
these dilemmas, and their consequent tradeoffs. 
The risk is drifting into criticism and judgmental 
talk, a problem pointed out in the literature on 
video sessions (e.g., Coles, 2013; Jaworski, 1990). 
To avoid this, teachers are guided to consider the 
choices made by the teacher under the assump-
tion that she acts in the best interest of her stu-
dents (Arcavi & Schoenfeld, 2008). Taking this as a 
starting point, the constraints and affordances of 
the teacher’s choices can then be examined, and 
alternative paths can be elicited and explored. 

6) Beliefs about mathematics teaching. The issue of 
how teachers’ beliefs shape their practice has 
been widely studied (e.g., Li & Moschkovich, 2013; 
Schoenfeld, 1998). In fact, all the components (1) 
through (5) above are likely to be guided by the set 
of beliefs the teacher brings into the classroom. 
Facilitating discussion about beliefs is a highly 
complicated and delicate matter. However, we 
suggest that such a conversation can be valuable. 
Teachers are not always aware of messages they 
convey during mathematics lessons, through 
direct or latent communications, nor of their 
considerable influence on how students perceive 
the domain of mathematics and how they func-
tion during the lesson. Thus there is a potential 
gain in the exposure to explicit and implicit atti-
tudes reflected in another teacher’s actions. The 
discussion focuses on questions such as: What 
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may be the filmed teacher’s views about the na-
ture of mathematics as a discipline? How does 
the teacher perceive her role? What may be her 
ideas about what “good mathematics teaching” 
is? What does she think about the students’ role 
as learners? 

THE STUDY

The framework of analysis described above was im-
plemented by the VIDEO-LM team in several courses 
with in-service teachers. As described earlier, and 
in line with Sherin’s review (2004), different vid-
eo-based programs set different learning goals for 
discussions with teachers. Ours was a two-folded 
goal, strongly linked to two agendas that we found 
valuable. One is the need to promote teachers math-
ematical knowledge for teaching (MKT), as defined 
by Ball and colleagues (2008). The other is the import-
ant move from a judgmental or evaluative discourse 
about the mathematics teaching profession towards 
a reflective and more constructive discourse, as ad-
vocated for instance by Jaworski (1990). In this paper, 
we limit our focus to the first goal only. We report 
on an exploration conducted on a group of teachers, 
who experienced peer discussions using the VIDEO-
LM framework. The research question was defined 
as follows: 

 ― What may be the gains of video-based peer dis-
cussions around the VIDEO-LM framework, in 
terms of the teachers’ MKT? 

Design, data collection and data analysis  
During 2013–2014, a group of teachers participated 
in VIDEO-LM workshops, as a pilot for a professional 
development program conducted later on with other 
groups. The group met once a month throughout the 
2013 academic year, and continued to meet monthly, 
with some change in members, during 2014. Each ses-
sion lasted about 4–5 hours, a total of 60 workshop 
hours. For every session we used one videotaped 
lesson (45 minutes on average) with various modes 
of watching implemented (e.g., watching together or 
in small groups, focusing on different components of 
the framework, watching the whole lesson uninter-
ruptedly vs. breaking it to selected episodes). About 
half the lessons used were filmed in high track high 
school classes (grades 10–12), and the others were ju-
nior high school lessons (grades 7–9). Data collection 
means included field notes taken during workshops, 

video-documentations of all discussions, documenta-
tion of e-mail correspondences initiated by the teach-
ers after some of the sessions, and questionnaires 
administered at the end of the course, focusing on 
the participants’ views about the 6-componant frame-
work used in workshops. The content analysis pre-
formed on the collected data included (a) tracing all 
of the participants’ utterances associated with MKT 
(i.e., unpacking mathematical concepts or relating 
to teaching these concepts); (b) grouping utterances 
into units of analysis that share similar ideas; (c) using 
the units to form “utterances maps” that convey the 
development of mathematical, meta-mathematical 
and pedagogical ideas throughout different parts of 
the sessions. This process is still ongoing; therefore 
the results reported herein are preliminary.  

Subjects
The 2013 group comprised of 10 teachers, of which 
7 continued to the second year in 2014, with 5 new 
members joining in. All participants were secondary 
school mathematics teachers with a teaching record 
of over ten years, and were well acquainted with the 
mathematics curriculum of grades 7–12. Nine of them 
were lead teachers, i.e., holding additional positions 
such as heads of mathematics departments in their 
schools, instructors, or principals. The group was 
diverse in terms of gender and sector (i.e., included 
religious and secular Jews, Israeli and Palestinian 
Arabs). None of the subjects had a prior significant 
experience with watching videotaped lessons.          

Preliminary results
The data analysis revealed that discussions focused 
around the six components of the framework were 
rich in examples, insights and suggestions brought 
up by participants. The deep mathematical conver-
sations during sessions and in subsequent e-mail 
correspondences, although not fully analyzed yet, 
point to the joint development of new mathematical 
knowledge for teaching, triggered by the videotaped 
lesson. We chose to present here two detailed exam-
ples, demonstrating processes of collective knowledge 
growth. 

Example I: How do we define an inflection point? The 
videotaped lesson in this case was given in an 11th 
grade high track calculus class. The teacher explored 
with her students the concept of concavity of func-
tions, leading to the definition of inflection points 
as points where the graph changes from concavity 
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upwards to concavity downwards, or vice versa. This 
was then translated into a “working tool”, associat-
ing inflection points of f(x) with the extreme points of 
f’(x), or the zeros of f’’(x). Discussing the mathematical 
ideas introduced in this video, participants raised the 
following question: What about an inflection point 
where the first or the second derivatives do not exist? 
The group became motivated to find counterexamples 
where f(x) has an inflection point in x0 but f’(x0) or 
f’’(x0) do not exist, and found a graphic example but 
not an algebraic representation of such a function. 
Following the session, in an intense and rich e-mail 
conversation, teachers found and shared different 
counter- examples, as described in Figure 1. 

In all these examples, f(x) has an inflection point in 0, 
but f’(0) and/or f’’(0) do not exist. Furthermore, one 
teacher generalized that the product of sgn(x) and any 
even function in which f’(0)=0 and f’’(0)≠0 would be a 
suitable counterexample (e.g., g(x) = (cosx − 1) × sgn(x)). 

As a result, the group reached a consensus about the 
accuracy of definitions of inflection points that are 
customarily presented in advanced calculus class-
rooms. This new collectively generated MKT was ex-
plicitly articulated by one of the teachers, as follows: 

“I think that everything we have seen so far shows 
that the correct definition of an inflection point is a 
point where the second derivative changes its sign, 
that is, there is an opposite sign in the neighborhoods 
before and after the point. The ‘usual’ definitions are 
incorrect – (1) a point where the second derivative is 
zero, and (2) a point where the first derivative has an 
extremum”.

The process of knowledge development also included 
valuable pedagogical ideas offered by participants, 
such as the idea to have students find on their own 
counter- examples to the “rule” that identifies inflec-
tion points with f’’(x)=0. Another component of the 

process evolved during the session, when the goals of 
the videotaped teacher were discussed. Participants 
attempted to justify the choice of the teacher to pres-
ent an inaccurate working definition, by ascribing to 
her two major considerations: firstly, students may 
not be ready to grasp the correct definition, which 
requires advanced thinking, and secondly, left/right 
derivatives and functions such as x ⋅ |x| are not in-
cluded in the curriculum and in the final exams. This 
part of the discussion opened a debate on a more gen-
eral question, i.e., when is it legitimate to “sacrifice” 
mathematical accuracy for the sake of our students’ 
best interests? 

Example II: Are the commutative and associative proper-
ties interdependant? In this case, the teachers watched 
an episode from a lesson on the commutative and asso-
ciative laws, given in a 7th grade heterogeneous class. 
Prior to watching the video, they were asked to elicit 
any mathematical ideas that may be associated with 
this topic. They suggested a fairly wide range of ideas, 
from the simple fact that addition and multiplication 
satisfy both laws, while subtraction and division do 
not, through various models that demonstrate the 
laws, to efficient solutions of multi-term exercises us-
ing the laws. It appeared that most teachers perceived 
the topic as natural and intuitive for students, at least 
in the numerical level. Thus, the lion’s share of the 
discussion was dedicated to considering the general 
algebraic forms of these properties (e.g., a + b = b + a ), 
and suggesting why and how they should be taught. 
Some teachers viewed the teaching of the algebraic 
generalizations as necessary for consolidating stu-
dents’ intuitive knowledge, while others perceived 
it as a difficult goal to achieve in 7th grade.  

In the video episode screened, the teacher asked the 
class whether operations that satisfy the commuta-
tive law necessarily satisfy the associative law as well, 
and vice versa. The students’ spontaneous collective 

Figure 1: Teachers’ generated examples
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answer was “yes”. The teacher then introduced three 
examples of mathematical operations (see Figure 2), 
and led a discussion about which property exists in 
each example, resulting in the conclusion that the 
properties are not interdependent. 

Each pair of teachers was requested to focus, while 
watching the episode, on one of the components of 
the analysis framework. Then, in the plenary, find-
ings were described by the teams and discussed by all 
participants. According to our goal, we focus herein 
on the mathematical ideas which were elicited and 
discussed. It should be noted, however, that these 
ideas were triggered not only by the first component 
(‘mathematical and meta-mathematical ideas’), but 
also when discussing the videotaped teacher’s goals, 
choice of tasks, interactions with students and beliefs. 

On the whole, teachers were surprised by the episode, 
since the main mathematical idea they have noticed 
was not included in the span of ideas constructed by 
the group earlier: they described it as “undermining 
the perception that an operation can either satisfy 
both the associative and commutative laws, or none 
of them”. The teachers used representations from set 

theory to express this idea (see Figure 3), noting that 
addition and multiplication are in the intersection 
of the commutative operations and the associative 
operations sets, while subtraction and division are 
in the complement of the union of these sets. While 
students might hold the misconception that the other 
possible two sets are empty, the lesson demonstrates 
that operations exist in all possible sets. 

A major discussion evolved around the use of opera-
tion tables to exemplify operations that satisfy only 
one of the two properties. Some teachers asserted that 
operations on small finite groups are not equivalent, 
both mathematically and pedagogically, to operations 
defined on the real numbers. The discussion facilita-
tor asked the teachers to consider the advantages and 
disadvantages of the teacher’s choice of operations. 
The advantages offered by participants were that (a) 
these examples clearly serve the teacher’s apparent 
goal – challenging what students erroneously per-
ceive as obvious; (b) the process of considering these 
operations and checking which properties they hold 
may contribute to the development of critical thinking, 
which is another goal that can be ascribed to the teach-
er; (c) using such examples conveys that operations 

Verbal description: Operation #1:
The operation on a given pair of 
numbers returns the first num-
ber in the pair.

Operation #2:
The operation on a given pair of 
numbers returns the larger num-
ber in the pair.

Operation #3:
None

Operation Table pre-
sented:

None

Commutative law û ü ü
Associative law ü ü û

 Figure 2: The operations discussed in the ‘commutative and associative laws’ episode

Figure 3: A teacher presenting the mathematical idea of the episode using set theory
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can appear in different contexts, for example, real 
numbers, finite groups, or height of students (which 
was one way the teacher used to illustrate operation 
#2), and furthermore, demonstrate that operations 
can be defined for one’s needs. On the other hand, the 
disadvantages mentioned concerned the same fact 
that the operations were “made up”, i.e., somewhat 
artificial, and in 2 of the 3 examples were defined only 
on 3–4 objects. This was viewed by some teachers as 
limiting, irrelevant to the students’ prior or subse-
quent knowledge and therefore unconvincing; they 
opined it was problematic to generalize from these 
examples that the laws are not interdependent. Thus, 
the teachers were challenged to find an operation, de-
fined on the real numbers and relevant to students’ 
school learning, for which only one of the properties 
holds. They have eventually found such examples: 
a □ b = (a + b)n, a □ b = sin(a + b)  and a □ b = |a + b|. In all 
these cases the operation satisfies the commutative 
law but not the associative law.   

CONCLUDING WORDS

The instructional practice for using video with teach-
ers is still underdeveloped (Ball, 2014). Despite a nota-
ble progress in this field, essential questions such as 
how to design and facilitate effective discussions need 
further exploration (Coles, 2013). This paper reports 
on a pilot work that may contribute to the develop-
ment of such practice, by using a unique framework 
of analysis in video-based teacher discussions. The 
framework is deeply rooted in the subject matter of 
mathematics, thus discussions are perceived, along-
side their role as promoters of reflective skills, as 
opportunities to deepen mathematical knowledge. 
The collaborative discussions support teachers’ at-
tempts to unpack the practice observed on the screen, 
through the implementation of mechanisms such as 
ascribing goals and weighing alternatives. The two 
examples presented clearly demonstrate the potential 
contribution of such video-based discussions to the 
evolution of a rich and multifaceted mathematical 
knowledge for teaching. We hope that the continu-
ation of our studies, exploring teachers’ use of this 
framework, will amplify the understanding about the 
nature and impact of this process. 
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The aim of this study was to investigate pre-service math-
ematics teachers’ scaffolding practices occurred during 
one-to-one interactions with students. Seven pre-service 
teachers worked with a pair of sixth grade students for 12 
weeks. Their interactions with students were videotaped 
and they were used the main data source for the anal-
ysis. Their interactions with students were analysed 
according to Anghileri’s (2006) scaffolding practices 
framework. The findings revealed that the pre-service 
teachers’ scaffolding practices were mostly based on 
reviewing what students did by using prompting and 
probing type of questions and asking for explanation 
and justification.

Keywords: Scaffolding, pre-service teachers, mathematics, 

one-to-one interactions.

INTRODUCTION 

Student-centered teaching strategies are accepted 
to be an effective way of enhancing students’ under-
standing and learning by constructivist theorists 
(Moore, 2009). In a constructivist teaching envi-
ronment, teachers scaffold students’ learning by ar-
ranging classroom settings, supplying appropriate 
materials, giving meaningful tasks or using effective 
questioning (Anghileri, 2006; Bliss, Askew, & Macrae, 
1996; Hobsbaum, Peters, & Sylva, 1996; Wood, Bruner, 
& Ross, 1976). The effectiveness of such scaffolding 
practices depends on how effectively the teacher leads 
the student-teacher interactions for the sake of stu-
dents’ learning. To promote students’ understanding, 
teachers should encourage students to explore, think 
and practice rather than simply telling and explain-
ing (McCosker & Diezmann, 2009). As teachers gain 
experiences in teaching, specifically if they know how 
students learn, what is difficult or confusing for them 
and what misconceptions they have, better they begin 
to manage scaffolding practices (Goos, 2004).

For effective teaching, teachers should know how 
to teach the given topic to the particular group of 
students by using appropriate strategies, examples 
and representations, in other words, they should 
possess strong pedagogical content knowledge (PCK) 
(An, Kulm, & Wu, 2004; Ball, Thames, & Phelps, 2008; 
Shulman, 1986). An and colleagues (2004) defined 
knowledge of students’ thinking is one of the com-
ponents of PCK such that teachers should build on 
students’ mathematical ideas, address to their mis-
conceptions, engage them in mathematics learning 
and promote their mathematical thinking. Because 
scaffolding practices entails direct interactions with 
students aiming to contribute their understanding 
and learning, those practices are naturally counted 
as the signs of teachers’ PCK (Appleton, 2008; Rosiek, 
2003). In other words, teachers’ scaffolding practices 
reflect their PCK. Furthermore, because the mission 
of teacher training programs is to prepare pre-service 
teachers (PSTs) to the profession, they should enable 
PSTs to begin to build up their PCK through experi-
ences. Therefore, in order to contribute to the devel-
opment of PSTs’ PCK in a teacher training program, 
they might be given opportunities to experience some 
scaffolding practices with a small or large group of 
students and then reflect on their practices.

The aim of this study was to investigate how one-to-
one interactions with a pair of students contribute to 
PSTs’ PCK, in particular, their knowledge about how 
students think and how to scaffold students’ under-
standing and learning. However, in this paper, PSTs’ 
scaffolding practices occurred in three of twelve in-
teractions are discussed in terms of the frequency 
of using those particular practices because overall 
analysis of data has not been completed yet.

mailto:kilichul%40yahoo.com?subject=


Pre-service mathematics teachers’ scaffolding practices (Hulya Kilic)

2834

THEORETICAL FRAMEWORK

Since the constructivist learning theory is the es-
sence of many reformed school curricula and teach-
ing practices, there are more studies on how to train 
PSTs to address the requirements of such reforms and 
practices. Although recent studies revealed that PSTs 
are lack of PCK (e.g., Morris, Hiebert, & Spitzer, 2009), 
engaging in one-to-one interactions with students 
aiming to understand their mathematical thinking or 
analysing videos of such interactions with the same 
purpose contributes to PSTs’ PCK (e.g., Llinares & 
Valls, 2010; Stockero, 2008). During the interactions 
with students, PSTs need to provide necessary scaf-
folding through guidance and effective questioning. 
There are different scaffolding practices varying in 
terms of the effectiveness of students’ conceptual un-
derstanding and learning. Anghileri (2006) defined 3 
hierarchical levels of scaffolding practices to enhance 
mathematical learning (see Anghileri, 2006 for de-
tails). In this paper, her classification of scaffolding 
practices will be used to analyse PSTs’ interactions 
with students.

Anghileri (2006) named the first level of scaffolding 
practices as environmental provisions such that teach-
er organize the classroom, provide necessary arte-
facts (manipulatives, tools) and tasks and follow a se-
quence during the instruction to help students under-
stand the subject matter. At this level student-teacher 
interaction is not so direct with respect to the other 
levels. The second level is explaining, reviewing and 
restructuring and it involves direct student-teacher 
interactions. Explaining involves showing and telling 
and teacher explaining where the teacher has the con-
trol of the interaction. Reviewing involves five types 
of interactions: “1) getting students to look, touch and 
verbalise what they see and think, 2) getting students 
to explain and justify, 3) interpreting students’ actions 
and talk, 4) using prompting and probing questions, 
and  5) parallel modelling” (p. 41). In the first type, the 
teacher encourages students to tell what they did, re-
peat the instructions or use manipulatives and reflect 
on what they observe. In the second type, the teach-
er asks students to explain their ideas by providing 
their reasoning so that the teacher gets opportunity 
to understand students’ thinking and catch possible 
gaps in their reasoning.  In the third type, the teacher 
attempts to make students’ actions explicit for other 
students as well as for that particular student. In the 
fourth type, either the teacher directs the students 

to the predetermined solution or the solution in her 
mind through prompting questions or she attempts to 
encourage students to think deeply through probing 
questions. In the last type, the teacher provides a task 
similar to the one that the students have difficulty to 
understand and then she solves it.  Anghileri (2006) 
defined four interactions for Restructuring: “1) pro-
vision of meaningful contexts to abstract situations, 2) 
simplifying the problem by constraining and limiting 
the degrees of freedom, 3) rephrasing students’ talk, 
and 4) negotiating meanings” (p. 43). In the first type, 
the teacher provides real life problems for abstract 
calculations to help students to understand the mean-
ing of the calculations. In the second type, the teacher 
gives a simpler problem or decreases the complexity 
of the problem to make it understandable for the stu-
dents. In the third type, as different from interpreting 
students’ actions and talk, the teacher provides appro-
priate terminology and encourages students to use 
appropriate mathematical language. In the fourth 
type, the teacher attempts to understand whether 
students have some misunderstandings or they are 
able to derive correct meanings from the interaction. 
The third level of scaffolding practices identified by 
Anghileri (2006) is developing conceptual thinking. She 
described those practices as to be “teaching interac-
tions that explicitly addresses developing conceptual 
thinking by creating opportunities to reveal under-
standings to pupils and teachers together” (p. 47). 
She defined three types of such practices: 1) making 
connections, 2) developing representational tools, and 
3) generating conceptual discourse. Making connec-
tions refers to showing how mathematical concepts 
are related to each other and encouraging students to 
use those relationships when necessary. In the second 
type, the teacher uses various representations (sym-
bolic, numeric, graphical, etc.) to promote students 
understanding and facilitate making meaningful 
connections. In the third type, the teacher initiates 
a discussion to revise what have been said so far and 
what the students get from it eventually.

METHODOLOGY

Sample
Seven female pre-service mathematics teachers and 
14 sixth-grade students participated in this study. Two 
of the PSTs were junior students and the rest were sen-
iors. The PSTs voluntarily participated in the study. 
The sixth grade students were from the middle school 
that Faculty of Education had a university-school col-
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laboration agreement. Those students were deter-
mined by their own mathematics teachers amongst 
the students who volunteered to participate in. The 
teachers informed us that it was a heterogeneous 
group in terms of mathematical achievement. The 
PSTs were randomly matched with a pair of students 
and they worked with those students during the whole 
semester.

Data collection
In this study, data was collected through the videos 
of interactions of PSTs with a pair of students, videos 
of group discussions before and after the interven-
tion sessions, and PSTs’ written reflections about the 
sessions. The data was collected for 14 weeks of 2014 
spring semester but the PSTs worked with students 
for 12 weeks because the first week was used to intro-
duce the aim of the study and the expectations from 
the PSTs and the last week was used for PSTs’ evalu-
ative feedbacks about the study.

At the beginning of the study, PSTs were told about 
how to scaffold students’ understanding and learning 
by referring to the related literature (e.g., Anghileri, 
2006; Moyer & Milewicz, 2002). They were given ex-
amples (in the form of video clips and vignettes) of 
what to notice during the interactions, how to use 
effective questioning and how to use representations 
and manipulatives to enhance students’ mathematical 
thinking and understanding. As they worked with the 
students, some episodes were selected from their own 
interactions as an example to discuss in the following 
weeks.

The researcher prepared the tasks that PSTs would 
work with students. Those tasks were aligned the 
sixth grade math curriculum and they involved the 
topics that had already been covered in the school. 
The PSTs were asked to work on the task before the 
pre-group discussion. Each week the researcher and 
the PSTs discussed the tasks in terms of the expected 
students’ performance. PSTs shared their ideas about 
possible misconceptions and misunderstandings and 
how to eliminate them. In some cases they suggested 
to make some revisions on the tasks and the revised 
versions were used during the intervention sessions. 
After 10 weeks, the PSTs were asked to prepare and 
implement two tasks for their own groups and give a 
rationale for preparing those tasks. 

The intervention sessions took place in a classroom 
provided by the middle school administration. During 
the intervention sessions, the students firstly worked 
on the given tasks individually for 10–12 minutes and 
then they discussed their answers with each other 
for 5–10 minutes. During this period, the PSTs did 
not interact with the students, they just observed 
and videotaped what students did or said. Then she 
began to interact with them by asking what they did 
and why they did so. At the end of each intervention 
session, whole class discussion was carried out by the 
researcher to summarize the solutions of the given 
tasks. After then, the PSTs came back to the Faculty 
of Education which is located 10-minutes apart from 
the middle school to discuss how the session went. 
In this post-group discussion the PSTs talked about 
whether the students performed in a way that they 
expected, whether they were able to address students’ 
difficulties or misconceptions effectively, whether 
that particular difficulty or misconception was com-
mon for the majority of the students. Then the PSTs 
were asked to watch their own intervention videos 
and write about what happened during the sessions, 
what they noticed, what questions they asked, etc. In 
the following week, the researcher gave feedbacks to 
the PSTs at the beginning of the pre-group discussion 
after reading their reflections and watching their vid-
eos. This procedure was followed for 12 weeks.

Data analysis
The videos of each intervention session of each PST 
and all written reflections will be analysed to under-
stand how the setting of this study contributed to PSTs’ 
PCK. However, the data analysis has not been complet-
ed yet. In this paper, three of intervention sessions 
were selected and analysed according to Anghileri’s 
(2006) scaffolding practices framework. Three in-
tervention sessions were determined according to 
the date of occurrence in order to discuss whether 
the type of scaffolding practices changed over time 
or not. Therefore, the videos of the third, the sixth 
and the tenth week were analysed. Each session was 
analysed in terms of whether the PST used that par-
ticular scaffolding practice or not. This analysis did 
not involve the evaluation of whether they used them 
effectively or whether it eventually helped students’ 
understanding. Two researchers watched the videos 
together and determined what scaffolding practic-
es occurred during the interactions. Therefore, the 
coding according to the framework based on the full 
agreement of the raters.
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FINDINGS

The third, the sixth and the tenth weeks were select-
ed for the analysis of PSTs’ scaffolding practices. All 
scaffolding practices were coded at Level 2. None of 
them was at Level 1 or Level 3. 

In the third week, the task was about divisibility rules. 
There were two questions in the task such that in the 
first question the students were asked to construct the 
smallest or the largest number that is divisible by 3, 4 
or 6 by using the given digits. In the second question 
they were asked to figure out divisibility rule for 15 by 
filling out the given table. As shown in Table 1, PSTs 
mostly used prompting and probing, looking, touching 
and verbalizing and students’ explaining and justifying 
type of scaffolding practices.

In the third week, the majority of the PSTs began dis-
cussion by asking to tell what the students did (verbali-
sation). They usually asked for justification of students’ 
answers such as “Why do you think that 96 is the larg-
est number that is divisible by 3?” Some of them used 
prompting questions to help students figure out the 
divisibility rule for 15. For instance, they said “Look 
at the numbers divisible by 15. Are there any other 

common numbers that they are divisible by?” Thus, 
the students were able to notice that those particular 
numbers were divisible by 3 and 5 at the same time. In 
some cases to make sure that students understood the 
divisibility rules, they repeatedly asked for them. For 
instance, after asking why 96 is divisible by 3 in the 
first item, they asked how 45 is divisible by 3 or why 
80 is not divisible by 3 in the following items (probing). 

In the sixth week, the task was about equations, ine-
qualities and solving simple equations. There were 
three questions in the task such that in the first ques-
tion the students were asked to determine the heaviest 
or the lightest object by looking at the given system 
of pan balances. In the second question, they were 
asked to figure out what to put on the left side of the 
pan balance by using the relationships in given two 
other balances. In the third question, they were given 
a system of balances involving different solids and 
asked to determine the height of each. As shown in 
Table 2, again PSTs mostly used prompting and prob-
ing, looking, touching and verbalizing and students’ 
explaining and justifying type of scaffolding practices. 
The majority of the PSTs preferred to begin the inter-
action by asking what the students did. After listening 
to their answers if they did something wrong they 
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PST_A 0 1 2 2 2 1 0 0 2 0 0 10

PST_B 0 0 2 2 2 2 0 0 0 0 0 8

PST_C 0 0 2 2 2 2 0 0 1 0 0 9

PST_D 0 1 2 2 1 2 0 0 0 0 0 8

PST_E 1 0 2 2 1 0 0 0 0 0 0 6

PST_F 0 2 1 1 1 2 0 0 0 0 0 7

PST_G 0 2 0 2 1 0 0 0 0 2 0 7

Total 1 6 11 13 10 9 0 0 3 2 0

Table 1: The frequency of PSTs’ scaffolding practices during the third week
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either encouraged them to explain their reasoning or 
asked probing questions to make them realize their 
mistakes. For instance, PST_F’s one of the students 
thought that if three cubes are in balance with one 
sphere in a pan balance then the cube is heavier than 
the sphere. When she asked him to explain his reason-
ing he said that the amount of cubes is more than the 
amount of the sphere.  Then she said that “numerically 
3 is greater than 1 but what characteristics of the ob-
jects you need to pay attention when comparing them 
in a pan balance? That is, when they are in balance…
The amount of the objects?” He thought for a while 
and told that he needs to compare the weight because 
there is inverse relation between the amount and the 
weight. That is, if there are more cubes than spheres 
it means that single cube is not enough to hold one 
sphere, that is, it is lighter.

In the tenth week, the task was about fractions. There 
were two questions in the task such that in the first 
question the students were asked to share the given 
amount fairly among the given number of people. In 
the second question, they were expected to solve a 
problem involving two-step partitioning. As shown 
in Table 3, PSTs mostly used looking, touching and 

verbalizing and prompting and probing type of scaf-
folding practices.

In this task, the PSTs asked students to represent the 
problems by using fraction tiles (looking and touch-
ing). Because most of the students failed to solve the 
problems correctly, such manipulatives helped them 
to understand their mistakes. Then, the PSTs helped 
students to find the answers by asking prompting 
and probing questions. For instance, some students 
thought that when they share 3 sandwiches among 
6 kids, each gets 1/6 of the sandwich because when 
they divide each sandwich into two, they get 6 pieces 
totally and each kid gets one of the pieces. The PSTs 
asked students what 1/6 represents as a fraction and 
what the “whole” is in the given problem. The students 
realized that one sandwich is the “whole” and each 
kid is getting the half of a sandwich. That is, each kid 
is getting one of the six pieces but each piece is half 
of a sandwich.

DISCUSSION

The findings revealed that the PSTs’ scaffolding prac-
tices were at Level 2 according to Anghileri’s frame-
work. Other studies also support this finding (e.g., 
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PST_A 0 1 3 1 1 1 0 0 2 0 0 9

PST_B 0 1 2 2 3 1 0 0 1 1 0 11

PST_C 0 3 0 2 2 3 0 1 1 1 0 13

PST_D 0 1 3 2 3 2 0 0 1 0 0 12

PST_E 0 0 2 3 1 0 0 0 0 1 0 7

PST_F 0 0 2 1 3 1 0 0 1 0 0 8

PST_G 1 1 1 1 0 1 0 1 0 2 0 8

Total 1 7 13 12 13 9 0 2 6 5 0

Table 2: The frequency of PSTs’ scaffolding practices during the sixth week
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Kaldrimidou, Sakonidis, & Tzekaki, 2011). Probably 
because the setting was not an actual classroom envi-
ronment and the PSTs worked with just a pair of stu-
dents, many of the scaffolding practices at Level 1 (en-
vironmental provisions) were not observed. However, 
the setting allows the usage of Level 3 scaffolding 
practices but none was observed in those three weeks. 

A similar pattern in terms of the frequency of scaf-
folding practices was observed in those three weeks. 
The PSTs mostly used reviewing type of practices. The 
parallel modelling and simplifying the problem practic-
es were not observed in any of three weeks. Because 
the PSTs were told not “to teach” but “to help” students, 
they might avoid using modelling practice to support 
their learning. Furthermore, because the tasks were 
clear and simple for the sixth grade students, they 
might not need to simplify the problems. 

Having similar pattern in scaffolding practices was 
not surprising because the PSTs were encouraged to 
try to understand students’ mathematics and their 
thinking. Therefore, they mostly used prompting and 
probing questions and asked for students’ explana-
tions and justifications. Although the discussion of 
how effectively they used those questions is not the 

scope of this paper, such questioning seemingly con-
tributed to their PCK in terms of knowledge of stu-
dents and teaching strategies as noted in the studies 
of other scholars (e.g., Llinares & Valls, 2010; Stockero, 
2008). For instance, as time passed, the PSTs began to 
estimate the students’ performances more accurately. 
Before the implementation of the task in the tenth 
week, some of the PSTs claimed that their students 
would answer the sharing question as 1/6 because they 
would count the pieces rather than using the defini-
tion of fraction and those students did so. However, 
a further analysis needs to be done to claim how this 
setting helped the development of PSTs’ PCK.

Although it is expected that PSTs would use higher 
level of scaffolding practices over time, it was not the 
case for those three weeks. For each session the PSTs 
inclined to explain some facts, review the discussed 
concepts or tell what to do. The PSTs mostly used 
teacher explanation towards to the end of the sessions. 
The reasoning behind this might be to make sure that 
everything is clear in students’ mind and there are 
no misunderstandings. The PSTs used showing and 
telling when they realized that the students’ did not 
possess/remember prior knowledge to solve the given 
problems. When the students did not remember the 
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PST_A 0 1 2 1 1 2 0 0 1 1 0 9

PST_B 0 1 2 2 1 1 0 0 1 0 0 8

PST_C 0 1 1 2 1 1 0 0 0 1 0 7

PST_D 0 1 2 2 2 1 0 0 0 0 0 8

PST_E 1 0 2 2 2 0 0 0 1 0 0 8

PST_F 0 2 2 2 0 1 0 0 0 0 0 7

PST_G 0 1 2 1 0 1 0 0 0 1 0 6

Total 1 7 13 12 7 7 0 0 3 3 0

Table 3: The frequency of PSTs’ scaffolding practices during the tenth week
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mathematical concepts involve in the tasks, they did 
not do anything with the task. This “showing and tell-
ing” practice commonly occurs whenever the teacher 
notice that the students are not able to engage in task 
because of lack of knowledge (Kim & Hannafin, 2011; 
Stylianides & Stylianides, 2011). Therefore, this ten-
dency of PSTs is understandable. 
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In the winter semester 2013/14, the department of 
Mathematics Education at the Justus Liebig University 
of Gießen launched a two-year-project offering assis-
tance to students aspiring to become primary school 
teachers. The aim is to identify and rectify deficits per-
taining to core mathematics. Moreover, the objective 
is to develop a positive attitude towards mathematics. 
This project applies to all but particularly to students, 
who have a weak mathematical foundation and require 
a boost in motivation. Data from the student’s initial 
standard is used to develop practical modules such as 
tutorials, reflections, learning portfolios, consultations 
as well as systems that help manage individual learning.

Keywords: MKT, primary school preservice teacher 

education, reflection, learning opportunities, education 

support programme.

INTRODUCTION

Various studies have shown that a teacher’s mathe-
matical foundation plays a key role in good teaching 
(Döhrmann, Blömeke, & Kaiser 2010). As such, the 
German state of Hesse has made German and math-
ematics mandatory subjects for teacher-students, 
who are studying to become primary school teachers 
(Grade 1 to 6). Hence, passing these two subjects is a 
prerequisite to becoming a primary school teacher. 
Our investigation is about the skills, beliefs, self-con-
cepts and motivations of teacher-students in the first 
year of their studies. In this paper, we focus solely on 
the students’ skills and the various support-offers 
for students. 

According to our surveys, only about half of the stu-
dents, who enrolled into the course of becoming a pri-
mary teacher, would have opted to study mathematics 
by choice (see Table 1). The study groups have heter-
ogeneous motivation and foundation levels. Among 

students who pass mathematics with ease, there are 
also struggling students that attend math lectures. 
Therefore, weaker students need to overcome their 
deficits. Fears, which may have developed and accu-
mulated over time, are also covered in this project. 
If the deficits in math are not eliminated, the path of 
becoming a primary teacher cannot continue despite 
the level of motivation or performance in German 
and their third subject of choice. Should this be the 
case, students would be forced to change to secondary 
teaching or transfer to a university located in another 
state of Germany. 

PROJECT IDEA

Due to the pressing issue mentioned above, the depart-
ment of Mathematics Education of the Justus Liebig 
University of Gießen has launched a two-year-long 
project since the winter semester 2013/14. The aim 
of this project is to identify potential deficits of stu-
dents’ with regard to their skills, problems, attitude as 
well as their self-concepts pertaining to mathematics. 
Thereupon, supportive arrangements should be de-
veloped and evaluated.

All students, including those with weak mathematical 
foundations and low motivational drive, are support-
ed throughout their course of study. In an attempt 
to overcome learning difficulties, students learn to 
reflect and develop a positive attitude towards math-
ematics through consultation sessions and additional 
training programmes provided by the department. 
This is done based on retrieved data from the analyses 
of the students. The level of math expertise and moti-
vation as well as self-concepts of one’s own abilities 
are to be inquired. In addition, the attitude towards 
mathematics needs to be identified. The results from 
these steps are used to customise consultations and 
training programmes for students in need of assis-
tance. 

mailto:nicole.koppitz%40math.uni-giessen.de?subject=
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INVESTIGATION

This investigation focuses on primary school teach-
er-students, who are in their first two semesters of 
academic study and may experience a drastic change: 
changing from school to university life. They are now 
confronted with having to be responsible for their 
own attendance of lectures and tutorials. Their whole 
academic study period is made of 7 semesters (3 ½ 
years) including a semester of examination. It has a 
total of 180 credit-points (ECTS). In the department 
of Mathematics Education they have to earn 26 or 38 
credit-points, depending on whether they choose to 
do an internship for German or mathematics. The 
lecture, pertaining to this project, deals with ‘subject 
matter knowledge’ (Ball, Thames, & Phelps, 2008), 
together with the tutorials constitutes of about 330 
hours of work, which are equivalent to 11 credit-points 
(ECTS). The module consists of two main lectures that 
run over two semesters and are accompanied by tuto-
rials. A final exam will round up the second semester. 
The lecture’s content covers in particular the basics of 
arithmetic, stochastic and geometry. Around 190 stu-
dents attend the first academic year. In the first year, 
the dropout rate, usually before the second semester’s 
final exam, is about 10%. We gathered data of all these 
students in order to get a good overview about their 
skills, their motivation and their beliefs. In future, 

we hope to continue to evaluate individual students 
to investigate different cases in greater detail. 

At the beginning of their first semester, students com-
pleted a mathematical proficiency test and filled out 
a questionnaire anonymously with regard to their 
personal attitude towards mathematics (Grigutsch, 
Raatz, & Törner, 1998), their self-concepts (Dickhäuser, 
Schöne, Spinath, & Stiensmeier-Pelster, 2000) and lev-
el of motivation (Brandstätter, Schüler, Puca, & Lozo, 
2013) towards their tertiary studies. The mathemat-
ical problems that had to be solved in the test were 
mostly from junior high school. The math problems 
were selected according to their mathematical rele-
vance at university level, so as to identify the student’s 
mathematical knowledge boundaries. These results 
are explicitly of a pilot-study and they are still pre-
liminary in nature. Therefore, we will only describe 
observed trends and provide a few examples from the 
tests of October 2014 in the following  (n=155):

Pertaining to individual personal assessment, we ob-
served that a majority of students started their studies 
with overall low levels of motivation. Only about 32% 
of the students have indicated to be of the opinion that 
they are good enough to meet the demands of their 
mathematics course. However, 93% of them believe 
that they will become great math teachers.

Figure 1: An overview of the project idea

Item Strongly 
Agree (%)

Agree 
(%)

Agree Less 
(%)

Disagree (%) No Decla-ration 
(%)

Having been given the freedom of choos-
ing a subject, I chose mathematics.

18 31 15 33 3

Table 1: Choosing Mathematics freely



Advice and guidance for students enrolled in teaching mathematics at primary level (Nicole Koppitz and Christof Schreiber)

2842

We have to consider that these results are based on 
the students’ self-assessments. 70% of the students 
feel, that they are able to study the math they need for 
becoming a primary school teacher. Interestingly, the 
percentage of students who believe they already have 
the required knowledge, does not match the results 
of the mathematical proficiency test.

The evaluation of the mathematical proficiency test 
shows that 80–95% of the students were able to solve 
questions of the German ‘Abitur’ (general qualifica-
tion for university entrance) standard. In particular, 
applying Pythagoras theorem and mathematical equa-
tions. Moreover, commonly used units such as length 
or currency were converted correctly with ease. 

The following results show that one third or even half 
of the math students cannot apply their knowledge 
learnt in school. This correlates with our assumption 
that there is a need to provide support options for 
the weaker students. Thus, these problem areas are 
indeed important and relevant to the educational path 
of studying to become a primary school teacher. 

In the following year, we will try to achieve a greater 
participation of students for the questionnaire, so 
as to optimise the foundation of our support options. 
Furthermore, we will evaluate the initial approaches 
that started in the first year of the project in the fol-
lowing paragraphs. 

After having gathered the data mentioned above, we 
have chosen a broad sample of students to be inter-
viewed. The interviews adopted the problem-centred 
approach by Witzel (2000). Each student is inter-
viewed 4–5 times. It should be noted, that the focus 
lies not on the interviews nor on the questionnaires, 
but rather on the upcoming project approaches.

PROJECT APPROACH

As the project launched in the winter semester 
2013/14, only a few approaches to address the iden-
tified deficits could be outlined. We have conducted 
another inquiry, although still ongoing, dealing with 
the initial circumstances that the students begin their 
studies with. By the means of this data, measures are 
customised to fit the needs of the students. The meas-
ures, which have already been implemented and those 
that have yet to be, will be described in the following. 
We have to consider, that it is an alternating iterative 
process: There are existing measures and some that 
have yet to be implemented, but the problems are not 
yet sufficiently identified in detail. At the same time 
we have to support the student’s learning, we have to 
identify problems, prevent them from occurring and 
evaluate measures. 

Exercises
Besides lectures, exercises play the most important 
role in learning. Students may even feel that exercises 

Item Strongly 
Agree (%)

Agree 
(%)

Agree Less 
(%)

Disagree (%) No Decla-ration 
(%)

I believe I can meet the demands of the 
subject mathematics. 

32 38 23 7 0

I believe that I can be a good mathematics 
teachers.

18 75 6 0 1

Table 2: Excerpt of the questionnaire concerning students’ self-concepts

Item Tested skills Answered 
Correctly (%)

Answered 
Wrongly (%)

No Attempt 
(%)

Solve the following problem: 
9475:25=

Basic Arithmetic 
Operations

65 27 8

In a square, draw all the axes of symmetry. Concepts of Plane 
Figures, Symmetry

76 16 8

In a parallelogram, draw all the axes of sym-
metry.

Concepts of Plane 
Figures, Symmetry

48 44 8

How many results can be produced by roll-
ing a dice four times consecutively.

Combinatorics, 
Concepts of 
Multiplication

47 36 17

Table 3: Examples of the mathematical part of the questionnaire
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go before lectures. As the feeling is mutual, this pa-
per will focus on the importance of exercises. As the 
project began upon the commencement of the winter 
semester lectures, the already prepared math exer-
cises received only minor adjustments. Just like in 
previous semesters, students were assigned exercises 
to deepen their understanding of the lecture content. 
These exercises were discussed in weekly tutorials 
lead by students of higher semesters, supervised by 
a research associate. The exercises can be categorised 
into five types, namely arithmetic problems, applica-
tion questions, problem solving and modelling tasks 
as well as justifying mathematical concepts. 

In the following semester, the exercises will be re-
structured to take the form of “productive practicing” 
(Leuders, 2014). The exercises should help sustain 
knowledge and be retrievable at any given point in 
time. During these exercises, automated calculations 
should be prevented, as they tend to be forgotten easi-
ly. Nevertheless, it is important to strengthen and link 
mathematical understanding to arithmetic technique. 
In each series of exercises, the following competences 
should be covered: ‘Securing factual content’, ‘auto-
mation of skills’, ‘broadening and deepening of per-
ception’, ‘reflection of concepts and their application’, 

‘applying knowledge pertaining to problem-solving’ 
as well as ‘creating an appropriate impression of 
mathematics’ (Leuders, 2014, p. 253; translation by 
the authors). As such, the homework of the following 
semester will comprise of three parts:

 ― The first part deals with tasks in which students 
are taught to solve problems on a syntax level. 
This skill should be integrated into structure and 
problem-solving tasks. Either a structure is inves-
tigated to practice applying skills or simple forms 
of problem-solving tasks can be used. As each 
student approaches the task on his own terms, 
they develop a personal heuristic to solving prob-
lems using the given arithmetic rules. The tasks 
remain at a standard that allows students to check 
if they have understood their calculation method 
and the arithmetic rules used. Two days before 
the tutorial, students receive a suggestion sheet 
providing a solving method for the task. If neces-
sary, the students can receive help using the on-
line-forum or bring their query to the tutorials. 

 ― The second part covers mathematical problems 
that are in line with the competences mentioned 

above. These tasks should meet the demands of 
the math lecture. The students are given one 
week to solve the problems. These problems aim 
to teach the students mathematical understand-
ing, justification, problem-solving and deriva-
tional skills. After the given week, the suggested 
answers are only handed out if they have been 
compared and discussed within the tutorial. The 
tutorials actively incorporate the student’s input 
and provide a platform for communication to 
take place. 

 ― The third part occurs during the tutorials, where 
math problems are done in class. These tasks can 
cover various types of the targeted competences. 
Due to the broad spectrum of lecture topics avail-
able, various types of questions can be chosen for 
discussion in the tutorial. Moreover, mathemat-
ical topics can be explored and nurture compre-
hension by using the resources provided by the 
Math Learning Lab to create practical situations. 

Personal consultation 
After the mathematical proficiency test had been eval-
uated in the first part of the project, students were 
given the opportunity to seek advice and support 
through consultation sessions. Consultations were 
visited on a voluntarily basis, in light of having to 
remove a student’s anonymity in order to discuss his 
test results. 

First, the students were asked about their own ex-
pectations. The idea was to observe if the students 
were able to assess themselves and reflect on their 
performance. Thereafter, the students received feed-
back pertaining to the test. Having identified their 
strengths and weaknesses, they were given advice on 
what topics to focus and brush up on. These sugges-
tions were supposed to help the students to cope with 
the expectations of the syllabus. If deemed necessary, 
a follow-up consultation could be arranged to discuss 
topics of the first session in greater depth. 

As the project continues, we plan on implementing 
consultation sessions addressing topics beyond the 
proficiency test, so that students are able to receive 
advice and support anytime. In order to make these 
consultation sessions more sustainable in the long 
run, consultation sheets have been introduced to se-
cure results and progress as well as to give students 
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a way to prepare for the sessions (Macke, Hanke, & 
Viehmann, 2012). 

E-learning platform
The University provided an online learning platform 
called ‘Ilias’ for the students. Based on this platform 
we provide tasks, which enable students to practice 
additional math problems at their own time, while 
being able to instantly monitor their learning pro-
gress. The following types of math problems were 
incorporated into this system. 

 ― Some problems merely recapped mathematics of 
secondary education. Algebra, geometry, arith-
metic and stochastic theory make up the founda-
tion and prerequisites of studying mathematics 
at tertiary level. 

 ― The majority of problems were similar to the 
above-described homework. The tasks are de-
rived from lecture content and serve as addition-
al practice. These tasks are especially relevant for 
the examination at the end of the lecture-period.  

 ― Some tasks go beyond basics and covered lecture 
content. This is done, so that students receive a 
broader spectrum of topics and greater under-
standing through exploring other topics on their 
own. 

In future, more features will be added to this platform 
in order to break down complex lecture topics and to 
be able to tackle them with a variety of methods. For 
example, relevant Internet links and teaching videos 
can be useful for post-preparation of lecture content. 
In addition, the learning platform is undergoing de-
velopments to enable the upload of mock exams for 
additional exam preparation. As a result, students 
receive a first glance and what might face them during 
an exam. 

Portfolio
Different forms of e-Portfolios used in teacher edu-
cation are described by Vogel and Schneider (2012). 
Our paper exclusively refers to a ‘reflection-portfolio’ 
(Vogel & Schneider, 2012, p. 136, translation by the au-
thors). Nearly every exercise worksheet has questions 
incorporated that trigger self-reflection. These are 
supposed to be worked on individually and filed, so 
that each student has a portfolio that documents their 
learning progress over the first year of their studies. 

Up to now, the students were required to reflect on 
the following: 

 ― Personal experiences of primary and secondary 
school

 ― Their opinion of certain lecture topics being rel-
evant for teaching in primary school

 ― The importance of mathematics and certain lec-
ture topics to society

 ― Their factors which motivate them to become a 
teacher

At the end of the summer semester 2014, the portfolios 
were collected, looked through and given feedback by 
the lecturers. On one hand, the portfolios shed light 
on personal attitudes and each learning progress. On 
the other hand, they revealed that several students did 
not take the reflections seriously as they were written 
rather superficially. Bräuer (2014) experienced the 
same scenario and demonstrates how students could 
be supported. 

Hence, the next round of portfolios will be integrated 
into the platform’s server. The lecturers can not only 
monitor entries and strategically upload additional 
exercises and revision material but also address prob-
lems and difficulties in the lecture itself once voiced 
out in the reflections. If necessary, the lecturer can 
also leave comments immediately and encourage the 
student to reflect deeper (Bräuer, 2014). The portfo-
lios can also serve as personal learning diaries or be 
published on a blog to help others too. 

Anonymous forum
From the winter semester 2014/15 onwards, students 
have the opportunity to post questions onto a second 
forum. Previously, students had the tendency of ask-
ing questions directly to their tutors via email. Thus, 
interactive discussions on the forum were non-exist-
ent and there was no need for other kinds of support. 
Furthermore, many questions were asked repeatedly. 
It was not clear if they were general problems or iso-
lated incidents. We assumed that the reason students 
had refrained from using the non-anonymous forum 
was due to the fear of humiliating themselves when 
posting their question. Therefore, the anonymous fo-
rum aims to promote the asking of questions through 
the means of an open and safe platform. As the stu-
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dents are generally familiar with the social-media 
platform ‘Facebook’, Kempen (2014) refers to it as an 
appropriate tool for exchanges between the students. 
We however, chose ‘Ilias’ (s. above), an e-learning plat-
form that is more secure and ensures more privacy.

Learning Café 
Students can come to the Learning Café located at the 
institute’s Math Learning Lab. They will be given a 
room in which they can meet to discuss math prob-
lems. Additionally, a staff member of the lecture will 
be present to provide answers to questions students 
might have. Some math concepts can be visualized 
through the ready-available resources found in the 
Math Learning Lab. Over time, study groups may 
develop, as the Learning Café serves as a conducive 
meeting point. Students can create “learning commu-
nities” (Gunnarsdottir & Palsdottir, 2013, p. 3085) to 
acquire and develop a professional jargon as well as 
collaborative competences. This suits reserved stu-
dents, who may now have the courage to clarify con-
cepts with lecturers, tutors or even students directly. 
A similar project is described by Zimmermann (2012), 
in which though, these opportunities are offered on a 
daily basis and for students of different ages. 

MathPodcast 
Students can volunteer to participate in a podcast pro-
ject that runs alongside the lectures. Audio podcasts 
are created within small groups. They are based on 
math lectures and trigger students to reflect on math-
ematical content and their standard of math skills. 
They need to explain a lecture topic verbally without 
the use of gestures or other materials. The podcast 
production starts with the recording of a spontane-
ous attempt of trying to explain the topic using basic 
knowledge. This recording will then be fine-tuned 
through collective research. Thereafter, a script will 
be designed which will be used to create a podcast 
ready to publish (Schreiber, 2013). This process is suit-
able to allow students to reflect on a particular math 
topic. Tutors will accompany the podcast productions 
throughout, while the students will receive feedback 
on their correct and wrong understanding of concepts 
(Klose, Tebaartz, Schreiber, & Lengnink, 2014).

FURTHER PROSPECTS

In the second part of the project it is important to get 
data of all the students, not only of 110 out of 160 like 
we did this semester. The E-Learning-Platform will be 

available once the lecture-period begins. As such, the 
students can benefit from its content throughout the 
semester and we receive access to evaluate the plat-
form’s success. Furthermore, the Learning Café and 
tutorials will be offered from the first week onwards 
throughout the lecture-period. Hence, we can evalu-
ate the students’ reception of both support options 
and optimize them further.

The project’s running time is limited to two years. It 
serves to develop and implement measures that nur-
ture and foster mathematical understanding. Once 
the project is over, the measures have to be contin-
ued without any additional financial support. Many 
points mentioned above are easily implemented and 
complemented in terms of materials. Specific assis-
tance can only be given if the evaluation of a student’s 
learning process requires minimal effort. Therefore, 
it is vital to carry out an online evaluation, so that 
lecturers receive an overview by the means of simple 
statistical data on the current learning standard of 
the students.
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Studying practices in a teaching-learning environment, 
such as professional development programmes, is a 
complex and multi-faceted endeavour. While several 
frameworks exist to help researchers analyse teaching 
practices, none exist to analyse practices of those who 
organize professional development programmes, name-
ly mathematics teacher educators. In this paper, based 
on theoretical as well as empirical results, we present a 
protocol for capturing different aspects of mathematics 
teacher educators’ practices in a professional develop-
ment setting. Implications for professional development 
programmes’ planning, implementation and evalua-
tions are given at the end of the paper.

Keywords: Mathematics teacher educators, professional 

development, training practices.

PROFESSIONAL DEVELOPERS OF 
MATHEMATICS TEACHERS

The teaching-learning quality in schools and, with it, 
teacher professionalisation has long been a concern 
of educational organisations, schools, governments 
and researchers and continues to grow in importance. 
Many countries, such as England (National Centre for 
Excellence in the Teaching of Mathematics (NCETM)), 
Sweden (National Centre for Mathematics Education), 
Austria (Austrian Centre for Instructional and School 
Development), set their focus to improve education, 
and in that effort, are investing vast resources in 
teacher professional development. These countries 
established so called CPD institutions, which offer a 
systematic approach to large scale and sustainable 
CPD, establishing standards for high quality CPDs. 
This has been recognised as one driving force to al-
low reform of school mathematics. Germany is not an 
exception to this phenomenon. For years already, the 
German educational system is being challenged with 

many difficulties, such as considerable shortage of 
specialised secondary subject teachers, high quota of 
at-risk students, more and more out-of-field teachers, 
and a high variability between different federal states 
(Kramer & Lange, 2014). In 2010, the German Center 
for Mathematics Teacher Education (DZLM) was 
founded as a cooperation of seven universities, and 
is oriented at improving and innovating the German 
mathematics classroom. The core objectives of the 
centre are to promote continuous professional devel-
opment, set nationwide standards for it, and develop 
quality needs-based CPD programmes. 

However, do we have the capacity to reach plethora 
of mathematics teachers? Gal (2013) in his PME plena-
ry talk in Kiel discussed this issue in a sense of 2.5% 
rule. The 2.5% rule denotes the fact that only 2.5% of 
teachers are novice teachers coming from the uni-
versity. Thus, this small group might receive “up to 
date” quality teaching and learning ideas as advocat-
ed by current professional organisations and new 
curricula. Gal further warned that, when we train 
as many inservice as preservice teachers, a quota of 
barely 5% can be achieved. This fact raises the need 
to develop new structures within the professional 
development institutions to reach the big masses. 
Along these ideas, DZLM’s key mission is to develop 
comprehensive training programs to educate mathe-
matics teacher educators (MTEs), sometimes shortly 
called “multipliers”, as it would allow for a large scale 
dissemination of the centre’s initiative. Depending 
on the country, MTEs take upon different roles (e.g., 
coach, mentor, specialist). They are responsible for 
strengthening classroom teachers’ understanding of 
mathematics content, and helping teachers develop 
more effective mathematics teaching practices, and 
by doing that to better student learning. Hence, MTEs 
are central for providing opportunities for teachers’ 
professional development.

mailto:biehler%40math.upb.de?subject=
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Elliot and colleagues (2009) contend that this area has 
been understudied – we know very little as to what 
MTEs need to know and be able to do – but is growing 
in its importance (e.g., Kuzle & Biehler, 2015; Rösken-
Winter et al., 2015). Understanding MTE’s practices 
is essential for attending their diverse needs – dur-
ing planning, implementation, and evaluation of the 
professional development programmes. The more 
we know about how to support them, the more math-
ematics teachers can benefit. In order to fill in this 
gap, we present here a protocol for analysing MTEs’ 
training practices, which was developed on the basis 
of effective CPD practices. We contend that such pro-
tocol may allow scholars with lenses for evaluating 
MTEs’ PD courses and at the same time supporting 
their further development.

THEORETICAL CONSIDERATIONS WITH 
RESPECT TO EFFECTIVE CPD FACTORS

In this section, we give a succinct overview of descrip-
tors for effective professional development from the 
literature (e.g., Cochran-Smith & Lytle, 1999; Garet et 
al., 2001; Lipowsky, 2004; Lipowsky & Rzejak, 2012; 
Putnam & Borko, 2000). These are elaborated by out-
lining DZLM’s (2013) six PD design principles, which 
were used as a theoretical frame in this paper as well 
as in Kuzle and Biehler (2015). There is a small over-
lap between the two papers, however, without literal 
quoting.

Learner-orientation 
Effective professional development links directly 
to teachers’ job, namely teachers’ curriculum, and 
their specific needs and concerns. In other words, 
the training courses focus on the individual, hetero-
geneous prerequisites and needs of the participants. 
They encourage and demand active and responsible 
participation of the participants in design and im-
plementation of the PD. Hence, the participants are 
not informed, but involved as active learners in this 
process through which they develop their profession-
al knowledge (Garet et al., 2001). However, PDs that 
are based solely on this knowledge do not suffice for 
influencing their actions. They need to, however, ad-
dress the individual circumstances of the participants, 
account for participants’ daily activities, and capi-
talise on teacher’s prior knowledge and experiences. 
Ensuring and amplifying learner-orientation can be 
achieved through designing and administering pre-

liminary inquiry regarding participants’ experiences, 
expectations, and needs (Kuzle & Biehler, 2015).

Case-based learning  
Relating CPD practices to the participant, his or her 
experiences, teaching and/or student learning sup-
ports teacher motivation and commitment to the 
learning process. In other words, the reference to 
teachers’ everyday situations, so called “cases” or 

“training cases” serve both as a starting point and as 
a field of application for teaching and learning in the 
context of the PD. To intensify case-relatedness the 
MTEs can incorporate their student work or use par-
ticipants’ practical experiences (Kuzle & Biehler, 2015). 
In either case, subject-specific learning processes and 
learning outcomes of learners (e.g., pupils) should 
be diagnosed, interpreted, and direct consequences 
for the teaching practices should be extracted (e.g., 
Lipowsky & Rzejak, 2012; Timperley, 2011). Combining 
individual needs with overreaching goals of the pro-
fessional development initiative, strengthens teacher 
commitment to the PD and increases motivation to 
learn (Timperley, 2011).

Competence development 
Effective professional development is coherent; 
competence and goal orientation are a crucial pre-
requisite for a didactical and organisational design 
of PD that satisfy “depth and breadth of impact” (e.g., 
Garet et al., 2001; Lipowsky & Rzejak, 2012). This con-
struct is multi-faceted and encompasses all resources 
teachers need to create quality teaching-learning en-
vironments. Among others, competence development 
should address teachers’ professional knowledge, in-
cluding also orientation towards students’ learning 
(Lipowsky & Rzejak, 2012). This competence and goal 
orientation should be transparent for all concerned 
parties (Kuzle & Biehler, 2015). Only then can the ref-
erences to one’s own teaching practices become clear 
and the implementation tangible (Elliot et al., 2009). 

Application of various instructional formats 
To ensure interactive learning experiences, various 
instruction formats should be combined in collabora-
tion with the leader(s) and other teachers. A diverse 
variety of working methods (e.g., blended learning 
seminars, practice- and collaborative based work, self-
study) supports participants in their skill acquisition, 
and helps accommodate different learning styles and 
preferences. The participants must also be given time 
to engage in different activities at different levels and 
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in different settings in order to learn or consolidate 
their knowledge (Putnam & Borko, 2000). In addition, 
an intertwinement of input, active learning and re-
flection phases (so called “sandwich model”) in crucial 
for connection between theory and practice.

Stimulating collaboration 
Another essential CPD design aspect is to stimulate 
cooperation among the participants, and between the 
participants and the professional developer. This fos-
ters exchange of experiences. Whereas using various 
instructional formats begins at fostering collabora-
tion (short-term collaboration), these could be used 
as a starting point for a collaboration going beyond 
the CPD course itself (long-term collaboration). Thus, 
beyond just sharing ideas, and reflecting on the learn-
ing process, the participants, for instance, work to-
gether towards a common goal, jointly plan lesson, 
and organise mutual classroom visits (Lipowsky & 
Rzejak, 2012). In that manner, community building 
and networking can take place, which is together with 
professional developer-teacher structure, important 
for sustainability of PDs (Zehetmeier & Krainer, 2011). 
The extent of effect is dependent on the PD format.

Fostering (self-)reflection 
Relevance of a PD and the sustainability of the pro-
fessional learning can also be attained through re-
flective activities (Ingvarson, Meiers, & Beavis, 2005). 
Participants are encouraged to engage in collaborative 
and self-reflection on covered topics/material as well 
as on their own teaching, student work, attitudes, con-
ceptions, and other. Through reflective practices the 
teachers can consolidate their skills and knowledge, 
and better understand teaching and learning in the 
classroom (e.g., Cochran-Smith & Lytle, 1999; Putnam 
& Borko, 2000). Reflective practices are most effective 
when reviewed throughout the PD (Ingvarson et al., 
2005). 

PROTOCOL FOR ANALYSING 
TRAINING PRACTICES

In the previous section and in Kuzle and Biehler (2015) 
we outlined effective professional development de-
sign principles. As seen above each design principle 
is composed of many different attributes. These were 
used to create a protocol for analysing what different 
attributes of each design principle can get implement-
ed (see Table 1). In addition, we assigned to what extent 

these practices can be addressed in a PD with “yes”, 
“no”, and “partly”.

This instrument was tested on a sample of PDs, that 
took place as a part of five month long DZLM’s CPD 

“Competence-oriented teaching and learning of data 
analysis” for MTEs (Biehler, Kuzle, & Wassong, sub-
mitted; Kuzle & Biehler, 2015), which was developed 
by a team of researchers from the University of 
Paderborn (Biehler, Kuzle, Oesterhaus, Wassong). 
The CPD program focused on deepening MTEs’ pro-
fessional knowledge of teaching statistics using dig-
ital tools, and developing MTEs’ competencies and 
knowledge for developing and implementing PD in 
statistics. As a part of that CPD, five MTEs’ teams de-
veloped and implemented five 4-hour long PDs on 
teaching data analysis with statistical software. The 
general structure was prescribed by the course de-
signers and was composed of 4 thematic blocks: (1) 
introductory block (ca. 1 hour), (2) block 1 (1¼ hours), 
(3) block 2 (1¼ hours), and (4) reflection and closure (ca. 
½ hour). While the general function of the first and 
last block was clear, the mentors were free to organize 
and implement blocks 1 and 2, however, they had to 
select content and activities from the CPD for them 
and implement DZLM design principles. These were 
video-taped and then analysed using content method 
analysis as suggested by Miles and Huberman (1994). 

For filling in the protocol, we used a five-step pro-
cedure for analysing the MTEs’ practices exhibited 
in each PD. First we divided the first short PD into 
blocks. Secondly, for each block in the PD 1 we iden-
tified whether different design principles occurred 
at all. Thirdly, after having determined the six design 
principles and its accompanying attributes for each 
block, we looked at their quality in each block. For 
each block, we assigned the three categories, yes, part-
ly, no, to each of the characteristic attributes for each 
design principle based on the following algorithm:

 ― A statement got categorised as “yes” when it was 
thoroughly and thoughtfully addressed within 
the block.

 ― A statement got categorised as “partly” when it 
was either not thoroughly or thoughtfully ad-
dressed within the block.

 ― A statement got categorised as “no” when it was 
not addressed whatsoever within the block.
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DESIGN PRINCIPLES Addressed level

Yes Partly No

Learner-orientation

MTEs’ focus of the PD is of relevance to MTs.

MTE provides opportunities for MTs to share experiences with respect to the PD topic.

MTE designs the PD in a manner that allows MTs to be integrated into the learning process 
as active learns through hands-on activities.

MTE designs the PD in a manner that allows MTs to be integrated into the learning process 
as active learners through hands-on technology use.

MTE provides MTs opportunities to actively build their content knowledge on the basis of 
their existing knowledge and experiences.

MTE provides MTs opportunities to actively build their pedagogical content knowledge 
on the basis of their existing knowledge and experiences.

MTE provides MTs opportunities to actively build their technological knowledge on the 
basis of their existing knowledge and experiences.

MTE provides MTs with opportunities to actively build their technological pedagogical 
content knowledge on the basis of their existing knowledge and experiences.

MTE provides MTs with opportunities to build an understanding of student’s thinking in 
a specific area.

Case-based learning

PD connects to MTs’ teaching practices.

PD combines the MTs’ needs with the goals of educational initiative.

MTE integrates MTs’ input with respect to the topic of the PD.

MTE addresses explicitly specific needs and concerns of MTs with respect to their teach-
ing experiences and daily concerns.

MTE allows MTs to apply newly learned knowledge into follow-up activities.

MTE allows MTs to discuss newly learned knowledge with respect to their teaching prac-
tices.

The content of the PD is illustrated on real student work (artefacts).

MTs analyse student work, interpret it and reflect on their student learning in their own 
classroom or in the classroom of other MTs. 

Competence development

MTE’s focus of the PD connects to specific curricula and learning standards.

MTE has a well-defined image of effective classroom learning and teaching.

MTE makes/describes clearly fostered competencies and/or goals are transparent.

MTE focuses on developing MTs’ content knowledge.

MTE focuses on developing MTs’ pedagogical content knowledge.

MTE focuses on developing MTs’ technological knowledge.

MTE focuses on developing MTs’ technological pedagogical content knowledge.

MTE engages MTs as adult learners in the learning approaches. 

MTE models pedagogy and various instructional strategies for the whole sequence of les-
sons designed to support development of conceptual understanding. 

MTE provides MTs with concrete ideas for implementing new materials and/or ideas in 
own classroom. 

MTE supports MTs in understanding student thinking with respect to the topic.

MTE emphasises how to improve student learning.

MTE helps MTs anticipate possible student learning difficulties and/or misconceptions.

Application of various instructional formats

MTE accommodates individual learning styles and preferences.
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In the fourth step, on the basis of step 3 we assigned 
the three categories, yes, partly, no, to each of the char-
acteristic attributes for each design principle for the 
PD as a whole. The categorisation was based on the 
following algorithm:

 ― A statement got categorised as “yes” when it 
was overall always or not once thoroughly and 
thoughtfully addressed (2 points).

 ― A statement got categorised as “no” when it was 
never addressed (0 points).

 ― A statement got categorised as “partly” for all 
other cases (1 point).

Lastly, we visualised a profile of the PD in a table (see 
Table 2) on the basis of the sum of the scores of char-
acteristic attributes for each design principle. This 

process was used for all other short PDs. In addition, 
Table 2 allows for insights what design principles 
were more prevalent, and how the PDs differed in 
their focus and goals.

In addition, another rater coded the data. We checked 
the inter-rater reliability by using the formula recom-
mended by Miles and Hubermann (1994), in which the 
coder reliability is calculated in the following manner: 
coder reliability = number of agreements/total num-
ber of agreements + disagreements. The inter-rater 
reliability was calculated at 96.6%.

DISCUSSION: A 4-DIMENSIONAL 
MODEL OF TRAINING PRACTICES 

Reform of mathematics classroom is an ambitious 
and very much needed cause. Understanding MTEs’ 
practices is an essential mean to achieving this goal. 

MTE engages MTs in different learning formats such as sharing and discussion, reflection, 
solving problems.

In a PD, input, active learning and reflection phases are intertwined.

MTE relates different parts of the PD one to another.

Stimulating collaboration

MTE provides MTs with opportunities to collaborate with other MTs (share ideas, view-
points, work together). 

MTE supports MTs to develop their professional expertise and to serve in leadership 
roles.

MTE supports MTs to plan together instruction and/or analyse student work with respect 
to a common goal.

MTE offers MTs support beyond the PD course itself. 

Fostering (self-)reflection

MTE provides MTs with opportunities to reflect throughout the PD.

MTE provides MTs with opportunities to reflect critically on their teaching practices. 

MTE provides MTs with opportunities to reflect critically on the new ideas particularly 
with regards to their teaching practices, and experiences.

Table 1: Protocol for analysing MTEs’ training practices

PD
Design principles

Learner
-orientation

Case-based 
learning

Competence de-
velopment

Application of 
various instruc-
tional formats

Stimulating col-
laboration

Fostering 
(self-) reflec-
tion

PD 1 13 (72.2%) 10 (62.5%) 17 (65.4%) 8 (100%) 4 (50%) 6 (100%)

PD 2 9 (50%) 5 (31.3%) 12 (46.2%) 6 (75%) 3 (37.5%) 1 (16.7%)

PD 3 16 (88.9%) 15 (93.8%) 23 (88.5%) 8 (100%) 5 (62.5%) 5 (83.3%)

PD 4 10 (55.6%) 4 (25%) 10 (38.5%) 6 (75%) 2 (25%) 1 (16.7%)

PD 5 11 (61.1%) 7 (43.8%) 15 (57.7%) 5 (62.5%) 4 (50%) 2 (33.3%)

Total 18 (100%) 16 (100%) 26 (100%) 8 (100%) 8 (100%) 6 (100%)

Table 2: Descriptive statistics of protocols for analysing MTEs’ practices
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The developed protocol for analysing MTEs’ practic-
es proved to be a reliable instrument for measuring 
what different effective CPD design principles and 
to which extent these got implemented in the PD 
courses. More particularly, the above presented pro-
tocol offers means to evaluating MTEs’ PD practices 
with respect to effective CPD factors. Hence, it offers 
lenses for insights into their training practices and 
challenges that seem to impact the quality of their 
professional development programmes. On this basis 
needs-based professional development programmes 
can be developed to support MTEs’ diverse needs in 
the professional development system. On the other 
hand, it may provide MTEs’ with lenses for captur-
ing different aspects of their training practices when 
planning and implementing their PD courses.

While DZLM principles (2013) and the work of other 
researchers (e.g., Cochran-Smith & Lytle, 1999; Garet 
et al., 2001; Lipowsky & Rzejak, 2012; Putnam & Borko, 
2000) focus on practices for effective PD and the activ-

ities of its participants, in the instrument we focused 
explicitly on the MTE itself, that is, on their actions 
to achieve the prescribed practices. No matter the 
situation, the professional developer (here MTE) is 
a critical protagonist, as he/she is the one who sets 
goals for a professional development. For that reason, 
we contend that their doing – as it is when focusing 
on teachers – should be made the central focus of the-
oretical frameworks. 

With these considerations in mind, we propose here 
a model in which four interrelated professional de-
velopment dimensions with respect to MTE’s doing 
stand in focus (see Table 3). This model focuses on 4 
dimensions: (1) general MTE’s role, (2) nature of se-
lected materials/tasks and its quality (3) role of the 
MTE when using manipulatives, and (4) established 
socio-mathematical norms. The first dimension en-
tails practices aligned with learner-orientation. The 
second dimension focuses on activities in which MTs 
engage to make the new ideas problematic, connect 

MODEL DIMENSIONS AND ITS FACETS

(1) General role of the MTE
 ― Engages MTs as adult learners in the learning process (e.g., time on tasks, building on existing knowledge, 

practices, and experiences)
 ― Integrates in depth knowledge about assessment, curriculum and how to teach it
 ― MTE and MTs work together on a specific concern about student engagement, learning, etc.
 ― Makes target goals transparent (e.g., emphasises the important content to know and understand, and why)
 ― Uses ample opportunities for an on-going assessment of learning
 ― Integrates MTs’ knowledge into an active learning process

(2) Nature of activities and materials
 ― Allows MTs to build and/or consolidate their professional knowledge
 ― Challenges MTs existing practices
 ― Helps MTs focus on student learning
 ― Helps MTs understand their students’ learning, misconceptions
 ― Allows integration of theory and practice
 ― Connects with teacher current knowledge and/or practices

(3) Role of the MTE when using manipulatives 
 ― Allows MTs to construct meaning for the tool with respect to the topic 
 ― Supports MTs to use the tool for a purpose (e.g., to better their teaching practices, to consolidate their knowl-

edge and skills)
 ― Connects the use of tool with MTs’ teaching practices
 ― Connects the use of tool to the topic(s) of interest

(4) Socio-mathematical norms (professional exchange, collaboration) 
 ― MTE uses various instructional format allowing MTs to engage in a variety of continuous teaching-learning 

scenarios
 ― MTs have opportunities for discussions (professional exchange) with the MTE and other MTs in profession-

al learning 
 ― Professional learning focuses on MTs’ problems in teaching and learning
 ― MTs can choose issues of interest and share those
 ― MTs have ample opportunities to share their results, concerns, etc. and to reflect on those
 ― Continuous learning and learning opportunities are a part of the PD

Table 3: A 4-dimensional model for analysing MTEs’ practices with some descriptors
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to where the MTs are with respect to their knowl-
edge or practices, and leave behind a mathematical 
value. Thus, this dimension entails practise aligned 
with competence development and case-based learn-
ing. The third dimensions focuses on manipulatives 
used to achieve mentioned dimensions. The fourth 
dimension entails practices aligned with application 
of various instructional formats, stimulating collabo-
ration and fostering (self-)reflection. Thus, its focuses 
on normative aspects of professional development 
discussions that are specific to MTE’s mathematical 
activity.

In our future work we plan to continue developing 
instruments for examining MTEs’ PD programmes. 
Our goal is to define and develop a descriptive model – 
on the basis of the above presented protocol and the 
4-dimensional model – that would allow us to assign 
different quality levels (level 1 to level 5) to the five 
PDs, and PD programmes in general. This would allow 
giving MTEs a detailed feedback on their practices, 
and target those facets of professional knowledge that 
may be either lacking or need to be further developed. 
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We describe here the training model, developed within 
the ArAl project and characterized by the tight interrela-
tion between contents to be taught (didactics of arithme-
tic and algebra in the perspective of early algebra) and 
teacher-educational processes, meant for teachers of the 
K-8 levels. We show how teachers, tutors and mathemat-
ics educators, by reflecting onto the Multi-commented 
Transcriptions (MTs), attain a shared development of 
the theoretical frame, of the methodologies and of the 
teaching materials that shall create the basis for the 
teachers’ professional evolution. Finally, we tackle the 
question of how to assess teachers’ professional growth 
by showing that MTs contain precious evaluation in-
dicators.

Keywords: Teacher education, professional growth of 

teachers, assessment.

INTRODUCTION

In the last years, many studies have been devoted to 
teachers’ professional growth. Most of them under-
line that the teachers’ change depends on the inter-
twining of different teachers ‘inner’ factors: mathe-
matical knowledge for teaching, beliefs, emotions and 
awareness at different levels (Jaworski, 2012, Mason, 
2008, Schoenfeld, 2013). In particular, Sowder (2007) 
states that many of a teacher’s core beliefs need to 
be challenged before change can occur. Schoenfeld 
stresses that the point is not what a teacher knows, be-
lieves or says, but rather how his/her knowledge and 
beliefs play out in the classroom. The change needed 
to traditional teachers to become non-traditional, in-
quiry-oriented teachers is not simple to achieve: it is 
very difficult to deeply affect the complex structures 
that constitute the basis for teachers’ practices and 
strictly influence what they do, and their way of in-
terpreting everything what happens. Our studies con-
sider these aspects together: they aim at the renewal 

of the arithmetic and algebra teaching, they take into 
account both cultural and affective factors influenc-
ing teachers’ action and develop the implementation 
of teachers’ educational paths that are linked with the 
class activity and the students learning.

TEACHERS’ EDUCATION: OUR APPROACH

As mathematics educators we are involved in activ-
ities for pre-service/temporary teachers or in-ser-
vice teachers. In both cases, we develop studies on 
teachers’ education with the aims: a) to validate our 
hypotheses about the effectiveness of our approach 
to favour changes in arithmetic/algebraic teaching; 
b) to individuate relationships between education-
al processes enacted and new teachers’ awareness, 
attitudes and behaviours; c) to confirm, extend and 
generalize results highlighting the essential condi-
tions which determine them. Our research studies 
are essentially qualitative and develop through a 
methodology framed in the Italian research model 
for teaching innovations which is based on a sharp 
interaction with the teachers and a constant practice 
of shared reflections on the experimental paths jointly 
planned and enacted by the teachers about the math-
ematical content in play, the quality of their behavior, 
attitudes, knowledge, ways of thinking promoted in 
the students. Our interventions with/for the teachers 
are centered on the following key points.

Fostering teachers’ reflection on their 
knowledge and on the coherence between their 
expressed beliefs and their teaching practice
The teachers involved in our educational programs 
(K-8 segment) have different cultural backgrounds, 
due to their different educational paths. Their be-
liefs about arithmetic and algebra are based on their 
knowledge but mainly on their emotions and beliefs, 
fruit of their previous experience (as student and 
teacher). These aspects constitute an often fragment-
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ed and fragile net of reference which underpin their 
teaching orientations. Most of the teachers believe 
that the teaching of arithmetic precedes the teaching 
of algebra; therefore, the procedural point of view 
prevails over the relational one, the manipulation 
of mathematical objects prevails over the reflection 
upon them, products prevail over processes, in prob-
lem solving the operational aspect prevails over the 
representation and interpretation leaving in shadow 
the control of meanings. As to the teachers’ vision 
of their role in the classroom, the most widespread 
one is that of a (‘soft’) director, deriving from the be-
lief that teaching means mainly conveying pieces of 
knowledge. Trying to make teachers overcome such 
beliefs through training means, first of all, leading 
them – through the practice of the reflection – towards 
a deep analysis of their knowledge and beliefs, which 
makes them call into question and gradually re-for-
mulate their personal epistemology in a new frame 
oriented towards early algebra.

Developing open and redefined 
educational paths
Teachers’ educational programs often present a struc-
ture having a mono-directional motion within work-
groups: mathematics educators limit themselves to 
giving teachers indications on how to improve their 
teaching, together with a set of tasks to be presented 
in the classrooms. In such a structure, teachers are 
basically users of a framework vision that they re-
ceive in top-down mode. On the contrary, our model 
suggests a multidirectional motion, characterized by 
a synergic network of relationships among teachers, 
tutors and mathematics educators, aimed at obtaining 
results that a single teacher would hardly achieve on 
his/her own. This synergy of relationships allows a 
continuous development of theory, methodologies 
and tools. We can therefore define this framework as 
being built in a bottom-up mode, within a tight inter-
relation between teaching contents and educational 
processes. A glossary shared with the teachers sup-
ports the educational process. It is a dynamic tool, to 
which teachers constantly refer. With the aim of con-
stituting a real sharing of these theoretical elements, 
the glossary is progressively integrated according to 
the teachers’ declared needs. Thus, a real ‘formative 
communication’ develops among teachers, tutors and 
mathematics educators in the inquiry community [1] 
(Cusi et al., 2011).

Planning teachers educational paths and 
designing tools for data detection
The teachers addressed by our project are distributed 
in almost all Italian regions but they are subject to a 
frequent turn-over (funding decreasing, retirements, 
change of school directors and teachers etc.) and are 
fluctuating in duration. For this reason, the educa-
tional paths we develop for pre-service/temporary 
teachers are different from those developed for in-ser-
vice teachers. In the first case more space is given to 
the study of classroom processes of others teachers 
with the aim of educating trainee-teachers to devel-
op a good sensitiveness about constructive teaching 
(Malara & Navarra, 2009; Cusi & Malara, 2011). In the 
second case the educational paths are focused on the 
study of the teachers’ own teaching processes and on 
the comparison between the attitudes and behaviors 
of the teachers involved in the same experimentations. 
This kind of activities are developed with the aim 
of making the teachers become aware of their own 
ways of acting and of the possible strategies to adopt 
in order to refine problematic didactical approaches. 
These activities also enable to deduce general results 
and to identify new research problems.

Collecting narratives and discursive 
data meaningful to teachers’ growth
Our results are generated by different kinds of data: 
notes about the meetings during which the teachers 
and the researchers discuss the potentiality of the 
activities to be presented in the classes or, a posteriori, 
analyse the effectiveness of the teachers’ ways of pro-
posing the activities; in-progress didactical materials 
(tasks, students protocols, short excerpts of micro di-
dactical situations, terms of the glossary, etc), selected 
by the teachers for the sharing of experimental re-
sults; teachers interviews or discussions, where aspects 
linked with their knowledge or methodological and 
emotional aspects are highlighted; multi-commented 
transcripts (MTs) [2] of audio (sometime video) record-
ings of classroom processes. Teachers’ meta-reflec-
tions are encouraged, since they are asked to anal-
yse the transcripts of class discussions commenting 
not only on students’ interventions but also on their 
own interventions, trying to refer to the different 
constructs of the wide theoretical frame (see for-
ward the point ‘Methodology of Multi-commented 
Transcripts’). The collected data are studied to iden-
tify categories of teachers’ behavior, characterized by 
set of actions modeling a metacognitive and effective 
teaching (Cusi et al., 2011).



Principles and tools for teachers’ education and the assessment of their professional growth (Nicolina A. Malara and Giancarlo Navarra)

2856

THE CONTENTS: EARLY ALGEBRA 
AND THE ARAL PROJECT

Early algebra arises from the need to favour the pupils’ 
construction of meanings in arithmetic in a pre-alge-
braic perspective across K-8 school levels. Its approach 
to arithmetic is based on specific principles: the antic-
ipation of generational activities at the beginning of 
primary school; the social construction of knowledge, 
i.e. the shared construction of new meanings, negoti-
ated on the basis of the cultural instruments available 
at the moment to both pupils and teacher; a focus on 
natural language as main didactical mediator for the 
slow construction of syntactic and semantic aspects 
of the algebraic language; identifying and making 
explicit algebraic relationships and structures within 
concepts and representations in arithmetic. In this 
context, our ArAl Project: arithmetic pathways towards 
favouring pre-algebraic thinking (Malara & Navarra, 
2003) counters the traditional sequence of arithmetic/
algebra teaching and suggests that their teaching is 
based on the intermingling between two disciplines, 
in the perspective of a continuity between primary 
and secondary school (see Figure 1).

We claim that the main cognitive obstacles to the 
learning of algebra arise in unsuspected ways in arith-
metic contexts and may impact on the development of 
mathematical thinking, mostly owing to the fact that 
many students have a weak conceptual control over 
the meanings of algebraic objects and processes, seen 
as translations of verbal sentences and in their math-
ematical status. Our hypothesis is that algebra should 
be taught as a new language from the beginning of 
primary school, so that one gets to master – through 
a set of shared social practices (collective discussion, 
verbalization, argumentation)– modalities that are 
analogous to the learning of a natural language: grad-
ually appropriating its semantic aspects and putting 
them in their syntactic structure. For this reason, it is 
necessary to build up an experimental and continu-
ously redefined environment, capable of informally 
stimulating the autonomous elaboration of a formal 
coding for verbal sentences by discussing them with 
the whole class. This process of construction/ inter-

pretation/refinement of ‘draft’ formulas is what we 
call algebraic babbling.
This approach leads to a sort of Copernican revolution 
in the teachers’ beliefs. It brings about awareness for 
the meaningfulness of their role, with reference to 
their position within the educational process. The 
teaching of arithmetic in an algebraic perspective is 
fostered by making teachers shift their attention from 
procedures towards relationships in arithmetic. Let 
us clear up this point by presenting four key-issues 
that exemplify our framework.

The equal sign and the duality process-product
The usual reading of 5 + 6 = 11 is ‘5 plus 6 is 11’: what’s 
on the left to the equal sign is seen as an operation, 
whereas on the right it is seen a result. The two sides of 
the equal sign are interpreted as ontologically different 
entities. But the algebraic meaning is different: it in-
dicates the equivalence between two representations 
of the same quantities, i.e. between two entities that 
are ontologically equal. We usually introduce this al-
ternative perspective by discussing with teachers the 
words of an 8-year-old pupil: “It is correct to say that 
5 plus 6 makes 11, but you cannot say that 11 ‘makes’ 5 
plus 6; so, it is better to say that 5 plus 6 ‘is equal’ to 11, 
because in this case, the other way round is also true.”

Canonical and non-canonical 
representations of a number
Similarly to what happens with the equal sign, writ-
ings such as [(3 + 2) × 4]2 are seen as operations wait-
ing for a result. In order to promote a reflection upon 
them in an algebraic perspective, we use the strategy 
of writing on the blackboard a list of facts concern-
ing a specific pupil: name…, daughter of…, owner of 
a dog called…, and so on. We then explain that the sit-
uation is similar with numbers: each number can be 
represented in many different ways, through any odd 
equivalent expression. Among these representations, 
only one (e.g., 12) is its name – the so-called canonical 
form, whereas the others (3 × 4, 3 × (2 + 2), 48/4, …) are 
its non-canonical forms, each of which makes sense 
with reference to the context and the underlying 
process. This experience enables to understand that 
[(3 + 2) × 4]2 is one of the many non canonical forms 

Figure 1: Towards a new perspective of the teaching/learning of arithmetic and algebra
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of the number 400. Being able to recognize and in-
terpret these forms builds up the semantic basis for 
the understanding of algebraic expressions like -4p, 
ab, x2y, k/3. The concepts of canonical/non-canonical 
form also allows to reflect upon the possible meanings 
associated with the equality sign; in [(3 + 2) × 4]2 = 400 
we don’t see the operations and results anymore, but 
rather the equivalence between two representations 
(non- canonical and canonical) of the same quantity.

The duality ‘representing vs. solving’
It is a widespread belief that solving a problem means 
identifying its result; this perspective focuses the at-
tention on the operations. In order to bring about a 
change of perspective, it is necessary to move from the 
cognitive to the metacognitive level, where the solver 
interprets the structure of the problem and represents it 
through algebraic language. In the traditional perspec-
tive, solving a problem means separating the entities 
that are known from the entity to be found, then spot 
out the necessary operations. In the perspective of 
early algebra, the attention is concentrated on the 
(known or unknown) entities, and on the relationships 
among them. In a ‘classical’ problem for level 4, ‘The 
sides of a rectangle are 3cm and 4cm long. find the 
perimeter’, the explicit entities are two (3 and 4), the 
implicit one is the ‘double’ operator applied to each 
side and the operations are two; we obtain the writ-
ing (3 + 4) × 2 which gives the result 14. But if the task 
is expressed as follows: ‘Represent in mathematical 
language the situation so that you can find the perim-
eter’, the entities are four: the length of the two sides, 
the ‘double’ operator, the length of the perimeter (p), 
the operations are two but there is also a relationship: 
the equality between p and the representation of the 
process through which it is obtained. The sentence p = 
(3 + 4) × 2 expresses all this is. This shift of perspective 
amplifies comprehension; in order to foster it, we use 
the principle ‘first represent, then solve’.

The duality transparent-opaque
A representation in mathematical language is made 
of symbols that convey meanings, the comprehen-
sion of which depends both on the representation 

in itself and on the ability of those who interpret it. 
One could say that the canonical form of a number is 
poorer of meanings than its infinite possible non-ca-
nonical forms, for example: the tendency of imme-
diately carrying out the calculation 5² × 5¹ × 5³ leads 
to a result, represented by its canonic form (15 625), 
but the efficacy produced by the ‘intermediate’ rep-
resentation 52+1+3 gets lost, whereas it would allow to 
build the comprehension of why, in algebraic realm, 
ab² × a²b = a³b³. We can therefore talk of a higher opacity 
for writings such as 15 625, of a higher transparency 
for those like 5² × 5¹ × 5³ and 52+1+3. Generally speaking, 
the transparency of the process favours the control of 
meanings, highlighting the underlying properties; it 
allows to understand possible errors and to clear up 
possible misconceptions which may arise.

THE EDUCATIONAL PROCESS: TEACHERS’ 
PROFESSIONAL GROWTH IN THE 
PERSPECTIVE OF EARLY ALGEBRA

The methodology of multicommented 
transcripts
In order to fulfil these, and others, key-issues, we in-
volve teachers in an activity of critical analysis, and 
consequent reflections, of the transcripts of audio 
and video-recordings of classroom processes, which 
we call Multi-commented Transcripts Methodology 
(MTM). It has the aim of highlighting the interrelation 
between the students’ construction of knowledge and 
the teacher’s behaviours in guiding them to perform 
this construction. The Multi-commented classroom 
Transcripts (MTs) are sent by teachers, together with 
their own comments, to e-tutors who make their own 
comments and send them back to the authors and oth-
er members of the team. The e-tutor highlight not 
only the positive aspects, but also the possible stere-
otypes, beliefs and behaviour that are often mistaken, 
and comment them with reference to the theoretical 
framework that is shared in the community of inquiry 
and, for some key-elements, also with the pupils. The 
joint reflection on the MTs strongly influences the 
development of theoretical, methodological, instru-
mental, material aspects (Units of the ArAl Series, 

Figure 2: The cycle of teachers’ mathematics education
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papers, articles, learning objects) and supporting 
elements (website, blog, Facebook Group) aimed at 
offering teachers a cultural background that can help 
them act differently in the classroom (see Figure 2).

HOW TO ASSESS

The problem of how to assess the teachers’ change is 
an open research question. The strategy we adopt is 
to assess in an indirect and articulated way, through 
the MTs, the way in which the teacher’s classroom 
action evolves during the training path. The factors 
we observe are: (a) the pupils’ interventions; (b) the 
modalities in which the teacher interacts with the pu-
pils; (c) the comments expressed by a teacher in the 
MTs and his/her reflections received in the sharing of 
his/her MTs within the community of inquiry. With 
this goal, the intersection of experience between both 
typologies of teachers (pre-service/temporary and 
in-service) becomes relevant in the strategies of the 
project, for example: meaningful excerpts from MTs 
produced by in-service teachers give vent to tasks for 
future teachers, aimed at assessing their ability to 
face specific classroom situations by hypothesizing 
contingent actions and foresee their development 
(Malara and Navarra, 2009). Some examples (teach-
ers in service):

How pupils express themselves
One can infer from pupils’ sentences whether the 
teacher works in a pre-algebraic perspective, i.e. 
fostering the development of algebraic babbling and 
therefore inducing a ‘metacognitive’ attitude.

Episode 1(9 years old, grade 4)
Pupils are asked to represent in mathematical lan-
guage the total number of sweets contained in six 
bags (each of which contains four chocolates and 
three candies).

Alessandro: I have written 7 × 6.
Miriam: I have written (3 + 4) × 6: it is more trans-

parent, Alessandro’s writing is opaque. 
It means that it is not clear, whereas 
transparent means that you understand.

Miriam refers to the dichotomy opaque/transparent 
to express how the non-canonical form of a number 
helps to illustrate the structure of a problematic situa-
tion. This awareness in the pupil testifies to the fact 

that the teacher has acquired the ArAl theoretical 
framework and shares it with the pupils.

How teachers interact with pupils
The way in which a teacher interacts with the pupils, 
and the role that he/she takes up have a strategic im-
portance, because they influence the quality of the 
teaching.

Episode 2 (8 years old, grade 3)
The pupils have represented this situation in the 
mathematical language and reflect on the suggestions 
made by Alice n = 5 + 2 × 8, Martina 5 + 2 × 8 = n and Ada 
n = (2 + 5) × 8.

Francesco: I think they are right because 5 +2  rep-
resents the marbles that are in a box, by 
8 which is the number of the boxes.

Maria: They are the same as Ada’s but they don’t 
have parentheses.

Teacher: Let’s reflect on the presence of the pa-
rentheses. Do they change anything?

Andrea: I think they do, because 5+2×8 is equal 
to 21, while (2+5)×8 is equal to 56.

Bruno: It’s true: the teacher said once that in a 
chain of operations you solve multipli-
cations first.

Maria: This means they are not the same! 
Francesco: That’s right, the translation with the 

parentheses is the more correct one.

There are many elements here that let us assess pos-
itively, at different levels, the teacher’s action: (a) 
mathematically: she has introduced the pupils to the 
use of letters, to the priority of operations within 
expressions, to the use of parentheses; (b) linguisti-
cally: she has fostered the organization of meaning-
ful, complete sentences; (c) metalinguistically: she has 
promoted the reflection on the mathematical writings 
and their comparison; (d) socially: by inviting pupils 
into discussion, she has let them interact without her 
influence, listening to each other and having sponta-
neous dialogues; (e) methodologically: she has shared 
the theoretical framework with the class, by spread-
ing words such as ‘represent’ and ‘translate’. On the 
other hand, we make the teacher notice and reflect 
on the fact that (2) Francesco has referred ‘5 + 2’ to the 
marbles and not to their number; (2) Andrea speaks of 
result, and pupils should be guided from the level of 
calculations to the level of representations.
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The teacher’s self-reflection and the 
suggestions offered by other comments
The way in which a teacher interacts with the pupils, 
and the role that he/she takes up have a strategic im-
portance, because they influence the quality of the 
teaching.

The comments written by the e-tutor and other ex-
perts – even in several diaries by the same teacher – 
allow to ascertain whether the classroom-leading 
strategies have changed (and how) during the educa-
tional project. Among the factors that influence the as-
sessment there are, for example, the following issues: 
Does the teacher develop a wide range of roles in order 
to promote a refection onto mathematical processes 
or objects? Does he/she foster linguistic interactions 
by encouraging verbalization, argumentation, and 
collective discussion? Does he/she negotiate and share 
with the pupils the theoretical framework? Does he/
she modify their initial points of view or does he/she 
seem unsensitive towards meaningful changes in his/
her initial attitude? 

Example 3 (12 years old, grade 7)
The class is tackling with the teacher the mathemati-
zation of a situation that requires the translation of 
the sentence ‘for each 4 sage plants there are 6 rose-
mary plants’. The pupils attain first the formula s = 
(6/4) × r, then s = 3/2 × r. The teacher shifts to the level 
of interpretation and asks the pupils to determine the 
number of rosemary plants corresponding to 66 sage 
plants. Some pupils offer a solution by substituting 
the value 66 and s in the second formula. Then, an-
other pupil speaks:

Mario: I have done it in a different way: 66:4=16 
and the remainder is 2. Then I have done 
16×6=96 because for 4 sage plants I have 
6 rosemary plants. Then, since 4s=6r, I 
have divided by two that is 6:2=3 and af-
ter that I have added 3 to 96. The result 
is then 99.

Teacher: Bravo, now let’s draw a graph by using 
the relationships that we know. 

To this point, the teacher’s reflection and the tu-
tor’s comment in the MT are: 

Teacher: Here I should have lingered on what the 
pupil was trying to say, because I think 
that his reasoning is very interesting 
and it could have helped his classmates 

to see the same situation from different 
points of view. 

Tutor:  Ok. But before that, one should have 
underlined the improper use of letters 
as labels and the argumentation should 
have been interpreted at relational level, 
so as to show that his procedure is based 
on the non-canonical representation of 
66 as 4×16+2, on recognizing the multi-
plicative relationship between 2 and 4 
(2 is the half of 4) and on the implicit as-
sumption of the distributive property. 
The pupil is referring to the non-simpli-
fied formula r=(6/4)s and transforms the 
calculation (6/4)×66 into (6/4)×(4×16+2) = 

= (6/4)16+(6/4)2=6×16+3=96+3.

CONCLUSIONS

The question of teachers’ evaluation is complex also 
because what we want to evaluate is a process which, 
in its nature, is continuously becoming and reflects 
daily changes of mood, energy, personal interest in 
the topic being dealt with, relationship with the pu-
pils. All these factors interfere with the quality of 
the classroom activity management and therefore 
influence what one would like to evaluate: the effect 
of participating in the training on the strategies of 
leading a lesson. Our studies concentrate therefore 
on a formative evaluation of what arises in the MTs, a 
dynamic evaluation, which pays attention to nuances, 
apparently unimportant details, to micro-decisions 
that the teacher makes in just as many micro-situa-
tions, in which he/she often shows the co-existence of 
pre-existing beliefs and possibly hesitating opening 
attitudes, induced by the training. We hold this way 
promising, particularly if it is embedded in a educa-
tional context that constantly involves teachers and 
broadens the sharing of the MTs and of their reflec-
tions (along with their possible evaluation) to other 
actors of the community of inquiry, fostering a system 
of crossed evaluations.

These aims could be reached in a medium/long-term 
(two/three years or more) under these conditions: (i) 
enacting an educational project with several sup-
porting tools; (ii) avoiding separation between the-
ory and practice; (iii) building an environment in 
which effective circular relationship occurs between 
what happens in the classroom, the joint reflection 
of teachers-tutors-mathematics educators on class-
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room events, the shared effort of refining practices 
by relating it to the theoretical frame and develop-
ing materials, tools, as well as the assessment of the 
progressive change of the teaching through further 
classroom activity.
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ENDNOTES

1. We use the term ‘community of inquiry’ in the sense 
of Jaworski (2012). It involves mathematics educators 
(in the double role of didacticians and researchers), 
tutors (in the double role of mentors and teachers/
researchers) and teachers.

2. The MTs are shared by e-mail and after critically 
analyzed during the periodical meetings of the ArAl 
community. Currently about 300 MTs have been put 
on the website < http://www.progettoaral.wordpress.
com>. Together with other theoretical or practical ma-
terials, they constitute an integrated set of tools for 
teacher professional development”.

http://www.progettoaral.wordpress.com
http://www.progettoaral.wordpress.com
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This paper presents a didactic experience with problem 
posing carried out with in-service secondary teachers. 
We propose a strategy specifically designed to modify a 
given problem and enrich its mathematical and didactic 
potential. The starting point is a teacher’s class episode, 
which includes a previously designed problem as well 
as the reactions of the teacher’s students when solving it. 
We ask the participating teachers to pose ‘pre-problems’ 
and ‘post-problems’, working individually at first and 
then in groups. The experience shows that problem pos-
ing contributes to the development of teachers’ didactic 
and mathematical competencies. 

Keywords: Problem posing, problem solving, teacher 

competencies, teacher training.

INTRODUCTION 

In 1989 the National Council of Teachers of 
Mathematics (NCTM) recommended providing op-
portunities for students to think mathematically and 
develop knowledge by creating problems: “Students 
in grade 9–12 should also have some experience rec-
ognizing and formulating their own problems, an 
activity that is at the heart of doing mathematics” (p. 
138). In addition to this, the NCTM recommended 
offering opportunities to formulate problems from 
a given situation as well as opportunities to create 
new problems by modifying the conditions of a given 
problem (NCTM, 1991, p. 95). In this sense, teachers 
must obviously develop their problem posing skills 
in order to work in this way with their students; they 
should not be limited to using the problems found in 
books or online (Ellerton, 2013; Singer & Voica, 2013; 
Malaspina, 2013b; Bonotto, 2013). The cited authors 
also emphasize the importance of the relationship 

between problem solving and problem posing. In 
Bonotto’s words (2013): “There is a certain degree of 
agreement in recommending problem-posing and 
problem-solving activities to promote creative think-
ing in the students and assess it.” (p. 40).

Some research on problem posing and its relation to 
the problem solving process has led to new research 
on the benefits of incorporating problem posing in 
teacher training programs (Ellerton, 2013; Tichá & 
Hošpesová, 2013; Malaspina, Gaita, Flores, & Font, 
2012; Malaspina, 2013b). We agree with Ellerton (2013) 
when she says: “For too long, successful problem solv-
ing has been lauded as the goal; the time has come for 
problem posing to be given a prominent but natural 
place in mathematics curricula and classrooms” (pp. 
100–101) and our research shares this idea. We have 
designed activities with the purpose of motivating 
pre-service teachers and current teachers to create 
math problems and reflect on their didactic aspects.  
The problems were posed starting from a given prob-
lem or from a given situation. In this paper, we de-
scribe some cases of the first type. 

FRAMEWORK

Mathematics teacher’s competencies 
At the international level we have observed a tendency 
for convergence among university curricula design. 
Some countries have opted for a curriculum model 
organized by professional competencies that differ-
entiates general (or transversal) competencies from 
specific ones.

Many of the tasks proposed in order to develop and 
evaluate students’ mathematical competencies are 
problem-based. A teacher must not only be good at 

mailto:umalasp@pucp.pe
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solving problems, but also needs to know how to 
choose, modify and create them with a didactic pur-
pose. A teacher also needs to be able to critically eval-
uate the quality of the mathematical activity required 
to solve the problem proposed and, if necessary, to 
be able to modify the problem in order to facilitate a 
richer mathematical activity.

Teachers should already have mathematical com-
petence to solve problems, but if they want to select, 
modify or create them with a didactic purpose, they 
need to be competent in didactic analysis of the math-
ematic activity (Rubio, 2012). The first competence 
is common in many of the professions developed by 
mathematicians. The second one is, however, more 
specific to the mathematics teacher.

According to Giménez, Font and Vanegas (2013) and 
Rubio (2013), we understand the competence of didac-
tic analysis as the ability to design, apply and evaluate 
learning sequences by means of didactic analysis tech-
niques and quality criteria. In teacher training, this 
competence has to be developed by proposing tasks 
to the future and current teachers that require them 
to carry out didactic analysis. One of these tasks con-
sists of creating problems and thinking about them 
didactically.

Problem posing
Stoyanova and Ellerton (1996) summarize the mean-
ing of creating mathematical problems from different 
points of view: 

Problem posing has been viewed as the genera-
tion of a new problem or reformulation of a given 
problem (Duncer, 1945); as the formulation of a 
sequence of mathematical problems from a given 
situation (Shukkwan, 1993); or as a resultant ac-
tivity when a problem is inviting the generation 
of other problems (Mamona Downs, 1993). Dillon 
(1982) conceptualized „problem finding as a pro-
cess resulting in a problem to solve.“ Silver (1993, 
1995) referred to problem posing as involving the 
creation of a new problem from a situation or 
experience, or the reformulation of given prob-
lems. (p. 518)

As Silver, we consider that posing mathematical prob-
lems is a process through which one produces a new 
problem from a given one (problem’s variation) or a 

new problem from a situation (problem’s elaboration), 
whether it is real or imagined. 

In order to develop this perspective of problem posing, 
it is necessary to identify the four key elements of 
a problem: Information, Requirement, Context and 
Mathematical Environment (Malaspina, 2013c). The 
Information consists of the quantitative or relational 
data that are given in the problem. The Requirement 
is what is asked to be found, examined or concluded; 
it can be quantitative or qualitative, and it can include 
graphics and demonstrations. With respect to Context, 
a “contextualized problem” usually relates to any real 
situation, to everyday life; but we consider that the 
Context can also be strictly formal or mathematical. 
In this sense, we affirm that the Context can be intra 
mathematical or extra mathematical. In the first case, 
as its name implies, the problem is more linked to an 
abstract situation and, in the second case, the prob-
lem is more linked to a real situation. Finally, the 
Mathematical Environment refers to the mathemat-
ical concepts needed to solve the problem.

Therefore, we understand the problem’s variation as 
a process that builds a new problem by modifying one 
or more of the four key problem elements.  

OBJECTIVES AND METHODOLOGY

We have two objectives:

 ― To show that an appropriate strategy helps stim-
ulate the ability to create mathematical problems 
by modifying a given problem and considering 
its mathematical and didactic aspects. 

 ― To show that problem posing is a means of con-
tributing to the development of teachers’ didactic 
and mathematical competences.

Regarding the methodology, since the research relates 
to creativity, we have chosen a qualitative methodol-
ogy that includes a strategy, observations and case 
studies. 

The first step was choosing a topic and designing some 
easy and motivating problems as starting points to 
pose new problems.

At the beginning, the problem posing experiences 
were performed with pre-service primary school 
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teachers as part of the mathematics course in the 
Faculty of Education of the Pontificia Universidad 
Católica del Perú. These did not have a context of a 
specially designed strategy. The positive experiences 
of both the individual and group works were the basis 
for designing problem posing workshops, which are 
summarized below.

A PROBLEM POSING STRATEGY

We give a short presentation on problem posing, 
including some examples of problems created in 
previous workshops, in which we emphasize the im-
portance of creating problems that favour learning 
and mathematical thinking. We present a previous-
ly elaborated problem to the workshop participants 
considering the context of a concrete class episode of 
Teacher P. In this episode, some of the students’ reac-
tions when solving the problem are described briefly. 
We ask participants to: i) solve the given problem; ii) 
pose problems by modifying the given problem to 
make the solution easier and to help clarify students’ 
reactions (these problems are called ‘pre-problems’); 
iii) pose problems by modifying the given problem so 
as to challenge Teacher P’s students beyond correctly 
solving the given problem (these problems are called 

‘post-problems’). The problem posing must be carried 
out individually at first and then in groups with the 
help of the instructor of the workshop. Moreover, the 
problems created by a group are also solved by oth-
er groups. There is also a socialization phase with 
all the participants. In this phase, the participants 
share the rationale behind the individually or collab-
oratively created problems. In addition, the problem 
solved by a group (which is not the author group of 
the problem) is exposed and commented critically. 
The purpose of this is that the discussion with the 
authors of the problem as well as the participants’ and 
instructor’s comments help to enhance the capacity 
of posing problems with mathematical and didactic 
potentialities.  

This is the strategy we have followed in several work-
shops, especially with current secondary teachers. It 
should be mentioned that the experiences we show 
and examine in this article are about percentages.  

CASES OBSERVED

After explaining and exemplifying some ways for 
varying a given problem, we applied the described 

strategy in a workshop with 15 current secondary 
school teachers. We proposed the following class ep-
isode and we asked the teachers to do the tasks (i)–(iii) 
related to the episode problem. Both, the interaction of 
the teachers with the instructor and the socialization 
phase, were very important for obtaining informa-
tion about the rationale behind the created problems.  

The episode
In a class of mathematics, teacher Sánchez asks his 
students to solve the following problem:

The first week of July, a store called ALFA sold all prod-
ucts at full price; the second week, the store discount-
ed all items 20%; and the third week, the store applied 
an additional discount of 15% that was announced as 
the “GREAT DISCOUNT OF 20%+15% ON ALL THE 
PRODUCTS”.  

You have to decide whether or not during the third 
week of July ALFA sold its products at prices 35% less 
than during the first week of July.

After a few minutes:

 ― Most of the pupils say “Yes, they did.”

 ― Juan and Carla say “No, because in the third week 
the discount was less than 35%.”

 ― Maria says that in the third week the discount 
was 68%.

Some pre-problems posed by 
teachers in the workshop
Pre-problem 1 (Individual work)
Rosa bought a $100 blouse that was discounted 20% 
because of end of season sale and with an additional 
discount of 10% for having the store credit card. What 
was the total percentage discount that Rosa received?

The author’s idea when she posed the problem was to 
set a price with percentages that are easy to calculate 
in order to help students focus their attention on the 
total discount.

Pre-problem 2 (Individual work)
In a clearance sale, a shop applies a 50% discount on 
all its textiles during a week, and the following week it 
applies an additional discount of 50%. What is the total 
percentage discount applied during the second week?
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The author of this problem was interested in showing 
the students that the total discount is not a simple sum 
of percentages. In order to achieve this objective, the 
author had chosen discounts of 50% because a total 
discount of 100% is not intuitive.

Pre-problem 3 (Group work)
(The author of Pre-problem 1 joined this group)

Rosa bought a $100 blouse that was discounted 20% 
because of end of season sale and with an additional 
discount of 10% for having the store credit card.

a) How much did Rosa pay for the blouse? 

b) What percentage of the blouse´s original price 
did Rosa pay for the blouse?

c) What is the blouse’s total percentage discount?

The author group thought this problem would help 
students distinguish between the amount paid and the 
discount. This seemed to be the confusion of student 
Maria in the episode. Apparently she had done the 
calculations well, but she did not distinguish between 
the amount paid (68% of the initial price) and the total 
discount (100%–68% = 32%). Some of the participants 
commented that considering $100 as the initial price 
should be used as a counterexample for illustrating 
the wrong answers, and they said to be careful be-
cause it could reinforce a simplified and not deeply 
reasoned way of generalizing a particular case.

Some post-problems posed by 
teachers in the workshop
At the beginning of creating post-problems, the par-
ticipating teachers created problems that were very 
similar to the given problem, some with other prices 
and, in other cases, considering three successive dis-
counts; essentially, they were the same problems as 
the original, but with quantitative modifications in 
the information. However, little by little they carried 
out more creative modifications when they formulat-
ed post-problems:

Post-problem 1 (Group work)
Pedro and Juan each bought a shirt. Pedro bought a shirt 
with a discount of 20% plus an additional discount of 
20%. Juan bought one with a discount of 30% plus an 
additional discount of 10%. Who received a greater dis-
count?

The author group thought this problem would rein-
force the fact that the total discount is not a simple 
sum. When it was solved by other group and social-
ized, the participating teachers appreciated that there 
were no specific initial prices for the shirts.

One of the teachers said that he created a similar 
post-problem considering percentage wage incre-
ments: for worker A, 5% in 2011 and 4% in 2012; and 
for worker B, 6% in 2011 and 3% in 2012. The problem 
was to determine which of the workers received a 
better percentage increment in the two years; or did 
they receive the same percentage increment? In his 
group, this problem was considered easier than the 
episode problem and, for that reason, it was not used 
as a group post-problem.

Post-problem 2 (Group work)
There is a store where you can pay 30 days later, but there 
is a 10% surcharge. And if you want to pay after 31 days 
but before 35 days, there is an additional 5% surcharge. 
If Julio bought something on August 20th and paid on 
September 23rd, what total percentage surcharge did 
he pay?

The author group thought it was interesting to pose 
situations about cumulative percentage, considering 
surcharges and not only discounts. As in Post-problem 
1, initial amounts are not specified in this problem and 
its solution requires a better understanding of the 
percentage concept. In the socialization it was com-
mented that this problem was easier than the problem 
of the percentage wage increments.

Post-problem 3 (Group work)
Celia bought a dress for $ 125.46. If the dress was 15% 
off with an additional discount of 18%, what was the 
original price of the dress? 

The author group said its intention was to motivate 
students to use algebra to solve percentage problems. 
Indeed, the group that solved the problem used the 
equation:

(0,82)(0,85)x = 125.46

One of the comments during the discussion was that 
all problems maintained an extra mathematical con-
text. However, we also need to create problems with 
an intra- mathematical context. Generalization allows 
us to work in this context. The following problem was 
created with this idea.   
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Post-problem 4 (Group work)
If the shop called BETA has an end of season discount of 
p%, plus an additional discount of q%, what is the total 
percentage discount in relation to the original price?

The problem allowed us to illustrate the total discount 
using a composition of linear functions that express 
the sale price of a product whose original price is x 
and has a discount of r%. That means, functions of the 
form f(x) = (1 −  r

100 ).

COMMENTS

The studied cases show that the proposed strategy 
contributes to the development of the competency 
of problem posing and to thinking about problems 
didactically (e.g., Pre-problem 2, the comments about 
Pre-problem 3 and Post-problem 1).

In most cases, the primary modification of the initial 
problem is about its information and its requirement. 
Post-problem 4 did not arise spontaneously. However, 
the alterations are not only quantitative (e.g., different 
percentages), but also qualitative (e.g., the problem 
deals not only with discounts, but also with increases), 
relational (e.g., the information is given in a way that 
it makes it easier to reflect on possible wrong answers, 
as in Pre-problem 2) and, in some cases, a piece of in-
formation is added or a requirement is extended (e.g., 
Pre-problem 3)

The percentage theme favours the creation of prob-
lems in an extra mathematical context and we high-
light the great diversity of imagined situations in 
problem posing workshops. The problems exposed 
in this paper are only a part of those imagined by the 
participants in this workshop and there are many 
others created in other workshops. The processes 
of reflecting on these diverse new problems – indi-
vidually, in a small group and with all the workshop 
participants – contribute to the teachers’ advances in 
knowledge of the mathematical object, in the obser-
vation of their reality and in elaborating tasks to go 
deeper into the subject to solve the problem created. 
We underscore the importance of working individual-
ly at first and the richness of working in groups later. 
All work is strongly enriched with socialization, in 
which arguments, opinions and comments that reflect 
involvement in creating problems arise.

Problem posing has to be designed to promote stu-
dents’ learning or to develop their mathematical 
thinking. We have studied (Malaspina & Vallejo, 2014) 
that problem-posing workshops related to one con-
crete theme allow participants to go deeper into the 
subject matter and to make mathematical connections. 
In the present research, Post-problem 4 shows the 
connection between percentages and linear functions, 
which was unknown for most of the participating 
teachers.

Examining the quality of the created problems is not 
the intention of this article, but we can appreciate that 
problems created by groups have a higher mathemati-
cal and didactic potential – above all if they have been 
created from episodes in classes. Certainly, the better 
the teachers’ mathematics background and teaching 
experience, the higher the quality of the problems 
they create.

FINAL CONSIDERATIONS

We have developed problem posing activities with pre 
service teachers and current ones. We have consid-
ered individual work and group work in dealing with 
a given problem during an episode, which happens 
under certain characteristics. The analysis of these 
activities – in particular the cases considered in this 
paper, with current secondary teachers – show that 
they contribute to the development of didactic and 
mathematical competencies. Problem posing provides 
opportunities in which the two competencies have the 
possibility to interact in a creative way. The results are 
didactically valuable suggestions for their students 
as well as advances in teacher training.

It is important to break the “enculturation process 
of accepting problems that others create as those 
which need to be solved” (Ellerton, 2013, p. 87).  We 
will contribute to this breaking by giving pre-service 
and in-service teachers good opportunities and ori-
entations for creating problems. When teachers have 
experiences with didactic analysis and mathematical 
connections through processes of creating new prob-
lems, they improve their mathematical and didactic 
competencies, and they could induce their pupils to 
create their own problems. 

This article is part of a wider area of research in which 
problem posing is also considered from a given situa-
tion. The corresponding activities have been consid-
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ered in a next phase. We have interesting didactic ex-
periences, some of which are explained in Malaspina 
and colleagues (2012) and Malaspina (2013a).

The problem posing strategy exposed and comment-
ed in this paper could be a good methodological tool 
for teacher training. Certainly, from a research point 
of view, it would be interesting to test it in relation 
to different mathematics topics at various teaching 
levels and in different countries.

As a part of the challenges posed by this research on 
creating math problems in mathematics education 
contexts, we invite readers to consider the following 
questions:

How do we measure the influence of the problem pos-
ing competency development for teachers on their 
performance in class with students?

How do we verify or reject the conjecture that assum-
ing the challenge of creating math problems on a given 
topic activates new learning processes that favour 
intra mathematical connections with other fields of 
knowledge and reality?
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This paper shows how the study of the meta-didactical 
praxeologies can highlight different features of tasks, 
actions and theories that a researcher can develop work-
ing also as a teacher educator. The theoretical tools pre-
sented are part of the Meta-Didactical Transposition 
model: a model based on the Anthropological Theory 
of Didactics adapted to the analysis of teacher educa-
tion processes. These tools are useful to identify and de-
scribe when and how some different components of the 
researchers’ praxeologies changed during the dynamic 
processes, which involved researchers and teachers in 
a teacher education project.

Keywords: Teacher education program, Meta-Didactical 

Transposition model, meta-didactical praxeologies, teacher 

educators.

INTRODUCTION 

The study presented in this paper is part of an ongo-
ing larger research that involves Italian and French 
researchers (Aldon et al., 2013; Arzarello et al., 2014). 
It aims at developing theoretical tools in order to de-
scribe and analyse the peculiar features of different 
teacher education programs. The first result was 
the elaboration of a model that takes into consider-
ation the complexity of the processes evolving in a 
teacher education program. This model is based on 
the Anthropological Theory of Didactics (Chevallard, 
1992, 1999) adapted to teacher education, and is named 
Meta-Didactical Transposition model (MDT). 

This paper deals with the first step of a fresh study 
that focuses on one of the aspects that MDT model 
can investigate: how to study the development over 
time of researchers’ praxeologies during a teacher 
education program. At first we present MDT model 
and then we analyse the praxeologies of the research-
ers, who worked as teacher educators in a particular 

teacher education program (the MMLab-ER project). 
The paper shows how the theoretical lenses given by 
the MDT model can be useful to identify and then to 
analyse the development of a specific type of praxe-
ologies: the meta-didactical praxeologies.

THEORETICAL LENSES

The knowledge needed for an effective teaching of 
mathematics is a crucial issue faced by the interna-
tional research on math education. Drawing from 
Schulman’s categories of knowledge (Shulman, 1986) 
and using examples from the practice of teaching, 
Ball and colleagues (Ball & Bass, 2003; Ball, Thames, 
& Phelps, 2008) identified a special Subject Matter 
Knowledge that they labelled as Specialized Content 
Knowledge (SCK):  i.e., “the Mathematical knowledge 
and skills unique to teaching” (Ball et al., 2008, p. 400). 
This is a set of knowledge and skills that cannot be 
reduced only to the knowledge of the discipline or 
to the pedagogical knowledge: for instance, to look 
for patterns in student errors or to size up whether 
a nonstandard approach would work in general, re-
quire a specialized mathematical work not needed in 
other settings. The identification of the SKC is useful 
for analysing the knowledge involved in specific ac-
tivities, but in order to describe the processes devel-
oped over time during a teacher education program, 
other theoretical tools are necessary. Therefore this 
paper presents some suitable interpretative tools 
that can be useful to describe and analyse the actions 
developed to face particular tasks in a teacher edu-
cation program. In our research (Aldon et al., 2013; 
Arzarello et al., 2014), we adapted the Anthropological 
Theory of Didactics – ADT- (Chevallard, 1992, 1999) 
to teacher education, and we constructed the Meta-
Didactical Transposition model – MDT – (Aldon et al., 
2013). The ADT is a model of mathematical knowledge, 
conceived as a human activity developed for the pur-
pose of addressing specific families of tasks. Its main 
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theoretical tool is the notion of praxeology, which is 
structured into two levels: the “know-how” (prax-
is) and the “knowledge” (logos). The praxis includes 
different kinds of problems to be studied as well as 
techniques available to solve them. The logos includes 
the “discourses” that describe, explain and justify the 
techniques used. This theoretical discourse is called 
technology whose etymology derives from “discourse 
(logos) on the technique (technè)”. The formal argu-
ment, which justifies such technology, is called theory. 
(Garcìa et al., 2006). As already underlined by Huillet 
(2009), the ADT can also give strong interpretative 
tools to analyse the mathematical knowledge and com-
petencies needed by a mathematics teacher to teach 
mathematics in a given institution. 

The MDT model gives the lenses for studying the 
different praxeologies developed during a teacher 
education program. These praxeologies develop by 
means of the interaction between the community 
of researchers and teachers, who can develop both 
new awareness at a cultural level and new skills in 
teaching. 

This paper argues the researchers’ meta-didactical 
praxeologies development by means of an explanato-
ry example of a teacher education program carried 
out in Italy, the MMLab-ER project (see next para-
graph). The paper focuses on the meta-didactical 
praxeologies, analysing their development over time 
at praxis level and at logos level. The term “meta-di-
dactical” denotes that these praxeologies deal with 
the actions and the reflections of researchers about 
the educational activities. The analysis of these prax-
eologies is useful to show when and how researchers’ 
actions and theories develop by reflecting upon the 
nature of and reasons for the changes that occur. The 
study of the meta-didactical praxeology is a fresh way 
to analyse the processes involved in a teacher educa-
tion program because it doesn’t focus only on PCK 
(Schulman, 1986), or on SCK (Ball et al., 2008) or on 
the relationship between researchers and teachers, or 
on the actions carried out to orchestrate the working 
group sessions. 

This paper shows a germinal study about the 
developing interlacement of the praxeologies linked 
to researchers’ work as teacher educators, and to the 
praxeologies developed when they study theories, 
plan, observe and analyse classroom activities, or 

construct theoretical lenses to describe and interpret 
students’ difficulties and successes.

THE MMLAB-ER PROJECT

The MMLab-ER project, framed in the Italian re-
search for innovation (Arzarello & Bartolini, 1998), 
responded to national and international standards 
about Inquiry Based Science Education (Rochard et 
al., 2007). The researchers involved in the projects 
are also the teacher educators. The project aimed 
at the construction of a network of well-prepared 
in-service teachers (primary and secondary school 
teachers) about mathematical laboratory and about 
the semiotic mediation processes (Bartolini Bussi 
& Mariotti, 2008). In this project, ancient and new 
tools were involved: i.e. working reconstructions 
of ancient mathematical machine and ICT (Bartolini 
Bussi et al., 2011; Martignone, 2011, Bartolini Bussi 
& Martignone, 2013). The focuses of the MMLab-ER 
laboratory approach were the analysis of exploration 
and argumentation processes (Boero, 2007) and the 
study of the cultural aspects involved (Bartolini Bussi 
& Martignone, 2014). During the MMLab-ER activi-
ties, the teachers carried out a Cultural Analysis of 
Content (Boero & Guala, 2008) that consists of work-
ing on what they know about a specific content and, 
above all, on their capacity of analysing the historical, 
cultural and epistemological aspects of the mathemat-
ical content involved. During the project, teachers 
were engaged in laboratory activities designed and 
orchestrated by the teacher educators; afterword, the 
teachers designed and carried out several teaching 
experiments with their classes. During the meetings, 
and also by means to e-learning platform, the teachers 
and the teacher educators shared and discussed the 
teaching experiments plans and results. Over a period 
of four years (2008–2012), the project was carried out 
for the first two years, followed by one year break in 
which the researchers analysed the project results, 
and resumed and completed on the fourth year. This 
development makes the MMLab-ER project a suitable 
example for studying the development of the meta-di-
dactical praxeologies over time. 

THE RESEARCHERS’ PRAXEOLOGIES 
DEVELOPMENT

In this paper, the focus is on the researchers’ me-
ta-didactical praxeologies. Some of the researchers 
involved in the MMLab-ER project (in particular, over 
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the whole four years, the researchers involved were 
Rossella Garuti and myself ) analysed their actions 
using the MDT model lenses. We analysed our me-
ta-didactical praxeologies (both as teacher educators 
and as researchers) in three different phases of the 
MMLab-ER project: at the beginning, during the first 
two years, and in the last year of the project. The MDT 
model gives us some interpretative tools to control 
the overall development of researchers’ meta-didacti-
cal praxeologies, identifying how these praxeologies 
changed at different levels: praxis level and logos level. 

At the beginning of the MMLab-ER project 
When the MMLab-ER teacher education program 
started, the researchers had their own meta-didacti-
cal praxeologies linked to: 1) their studies on students’ 
activities in the classroom, and 2) their experiences 
and studies on teacher education. In the former ones, 
the problem is to study the educational potential of 
the laboratory activities with mathematical machines. 
In the second ones, the researchers’ praxeologies 
are linked to their work as teacher educators. These 
praxeologies are strictly intertwined but the tasks, 
techniques and the theoretical discourses are different. 
According to the aims of the MMLab-ER project, the 
researchers designed the activities to foster teachers’ 
attention on the exploration processes, on the con-
jecture productions, and on the proof constructions. 
The techniques concerned the development of tasks for 
teachers (Watson & Sullivan, 2008) that include, for ex-
ample, the selection and the analysis of some teaching 
experiments (Martignone, 2011). The following tables 
contain the answers to the questions: which tasks did 

the researchers face? Which techniques did they use? 
Which theoretical tools were in the background?

Table 1 describes the different aspects of researchers’ 
meta-didactical praxeologies (PR1), where the task is 
to think over the educational potential of the labora-
tory activities with mathematical machines. These 
praxeologies are meta-didactical because they reflect 
on educational activities. They are developed when 
the researchers study theories, plan, observe, ana-
lyse classroom activities, and construct theoretical 
lenses to describe and interpret students’ difficulties 
and successes. Table 1 details the techniques and the 
theoretical discourses involved in these praxeologies.

Table 2 describes the researchers’ praxeologies linked 
to the researchers’ work as teacher educators and 
their studies on teacher education processes (PR2). 
Also in this case, the praxeologies are meta-didactical, 
because the task is about the reflection on education-
al activities that involved in-service or pre-service 
teachers. 

In the MMLab-ER project the researchers were also 
the teacher educators, therefore they directly ob-
served and then reflected on the activities carried 
out during the teacher education program. The the-
oretical background was grounded on the research 
on teacher education (see Table 2). 

Tables 1 and 2 show how the praxeologies components 
developed by the researchers are different when they 
reflect on classroom activities or on their work as 
teacher educators. The actions and the theoretical 

PR1 praxis level

Tasks
To reflect on the educational potential of the laborato-
ry activities with mathematical machines

Techniques
Design and study of activities for primary and sec-
ondary school students. Analysis of students’ written 
worksheets, clinical interviews, and collective discus-
sions. 

PR1 logos level

The theoretical discourses that describe, explain and justify the techniques of these praxeologies are based on 
the studies about laboratory activities with the mathematical machines:

 ― Semiotic mediation framework (Bartolini Bussi & Mariotti, 2008)
 ― Educational studies about proof (Garuti, Boero, Lemut, & Mariotti, 1996; Garuti, 2003; Theorems in School 

(Boero (Ed.), 2007))
 ― Mathematics laboratory [1]
 ― Italian standards for grades 1 to 8 [2] and for grades 9 to 13 [3]
 ― Studies about the mathematical machines carried out by the MMLab research group [4][5]
 ― Studies on mathematical machines utilization schemes (Martignone & Antonini, 2009)

Table 1: PR1
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background are coherent. The study of the praxis 
and logos levels of these meta-didactical praxeologies 
allows us to underline the different features of the 
work of the researcher, who is also a teacher educa-
tor during a teacher education program. As already 
underlined, the praxis and logos levels of the different 
praxeologies identified are strictly linked but we can 
distinguish, according to the different tasks faced, the 
specific techniques and theoretical discourses involved. 
The next paragraphs describe how these praxeologies 
change over time.

During and at the end of the MMLab-ER project
During the MMLab-ER project new praxeologies are 
generated by the intertwining and sharing of praxe-
ologies developed by researchers and teachers. The 
teachers and the researchers analysed together the 
laboratory sessions: in particular focusing on the ex-
ploration processes, the conjectures productions, and 
the proof constructions in the activities with mathe-
matical machines. By means of this work, in which 
theory and practice are strictly intertwined, new 
shared praxeologies developed, and also the previ-
ous teachers’ and researchers’ praxeologies improved. 
The analysis of praxeologies is useful to show when 
and how researchers’ actions and theories develop, 
by reflecting upon the nature of and the reasons for 
the changes that occur. Focusing on researchers’ me-
ta-didactical praxeologies, we have identified the as-
pects that do not change and how the praxis and logos 
levels of the initial researchers’ praxeologies (Tables 
1–2) are modified over time. We face these questions: 
How do the researchers meta-didactical praxeologies 
change? At what level? Why do they change? 

During the first two years of the MMLab-ER project 
some techniques of the researchers’ praxeologies were 
improved by introducing new activities elaborated 
with the teachers, and by modifying some tasks for 
teachers and classroom tasks. We took into account 
what was discussed during the teacher education pro-
gram, and we refined the tools for analysing teach-
ers’ and students’ worksheets, logbooks, videos, etc. 
(Martignone, 2011). Also the theoretical discourse was 
improved by refining some interpretative tools: for 
example, the cognitive studies about mathematical 
machines were developed by analysing and identify-
ing the argumentation processes involved (Antonini 
& Martignone, 2011).

During 2011, while waiting for new funds for a 
new start of the project, the researchers had the 
possibility to analyse all of the documentation 
collected: in particular, videos and worksheets about 
the laboratory activities carried out by teachers 
and students, the teachers’ reflections collected in 
the logbooks, and the final reports of the teaching 
experiments, all stored in the MMLab-ER e-learning 
platform. In the last year of the project, the materials 
produced in the previous teaching experiments 
(educational paths, worksheets, final reports [6], 
logbooks, etc.) became the starting point for new 
teaching experiments designed and carried out in 
the classrooms by the teachers. The reflection on 
the previous activities influenced the design of the 
tasks and the development of the researchers/teacher 
educators’ techniques: for example, some activities 
were modified, others were removed. Through the 
lenses of praxeologies development (PR2) we can see 
that an improvement of meta-didactical praxeologies 

PR2  praxis level

Tasks
Design and analyse the activities for developing 
teachers’ attention on the exploration processes, on 
the conjecture productions and on the proof construc-
tions by means of laboratory sessions with mathemat-
ical machines.

Techniques
The development of tasks for teachers: e.g., a priori 
analysis of tasks, discussion of teaching experiments, 
etc.
The analysis of teachers’ actions during the program 
and of teachers’ reflections by means of logbooks and 
final reports

PR2  logos level

The theoretical discourses that describe, explain and justify the techniques of these praxeologies are based on 
studies about teacher education and proving processes:

 ― Cultural Analysis of Content  (Boero & Guala, 2008)
 ― Research in Mathematics Education and studies about argumentation processes (Gutierrez & Boero, 2006; 

Boero (Ed.), 2007)
 ― Research on teacher education (Schulman, 1986; Wood (Ed.), 2008, etc.)

Table 2: PR2
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techniques occurred: modifying some task for teachers, 
removing others, introducing new tasks elaborated 
with the teachers involved in the previous years of the 
project. Researchers worked with the new teachers in 
analysing many logbooks, used as tools for reflection, 
and in sharing the analysis carried out with the 
previous teachers. There was also an improvement 
in the logos level: developing new studies on cultural 
and educational aspects involved (Bartolini Bussi & 
Martignone, 2014). 

Thanks to the project, the researchers had the 
possibility to work with teachers for many years, 
developing long term collaboration. They carried 
out design and fine grain analysis of their teaching 
experiments. Therefore the researchers improved 
also their praxeologies about the reflection on 
students’ activities with mathematical machines (PR1). 
They shared reflections and theoretical tools with 
teachers in order to interpret students’ difficulties 
and successes (Banchelli & Martignone, 2013), and to 
design new activities to overcome the found obstacles 
and to investigate new aspects about the educational 
goals of the activities.

CONCLUDING REMARKS 

The paper describes how the identification of the meta-
didactical praxeologies can be used to analyse the 
researchers’ actions and reflections developed during 
a teacher education program. The development over 
time is described as a sequence of frames where the 
researchers’ praxeologies change. In particular, the 
overall development of researchers’ praxeologies 
can be checked by studying how the praxeologies 
changed at different levels: practical-technical and 
theoretical. The identification of these different levels, 
the praxis level (or “know how”) and the logos level 
(or “knowledge”), gave us a fine grain tool to analyse 
how the praxeologies change over time. We would like 
to answer the questions: Which are the researchers’ 
meta-didactical praxeologies? How do the researchers’ 
meta-didactical praxeologies change? At what level? 
Why do they change?

In the paper, the different features of the work of 
the researchers, who work also as teacher educators, 
are identified by distinguishing the different tasks, 
techniques and theoretical discourses developed. 
The new key (explained by the word “meta”) is the 
identification of reflective actions about the activities 

carried out by the researchers/teacher educators in a 
teacher education program. The analysis of the meta-
didactical praxeologies is useful at first to identify 
and then to think about the evolution over time of 
important aspects linked to the work of researchers 
involved in a teacher education project. The next 
step of the research will consist in an improvement 
of the theoretical tools used to study the praxeologies 
development: in particular, we will carry out a fine 
grain analysis of the praxeologies by classifying them 
as specific, local, regional and global (Chevallard, 1999). 
These further interpretative tools could be useful 
to describe the complexity of the meta-didactical 
praxeologies developed in the teacher education 
programs.

As a final remark, it is important to stress that this 
paper deals with a little part of the research that used 
the MDT model: as a matter of fact, MDT model can 
give also useful tools to compare the components of 
meta-didactical praxeologies involved in different 
teacher education programs carried out in the same 
country or in different ones (Aldon et al., 2014). 
Moreover, the research group will work on further 
developing of the MDT theoretical tools, in order to 
make them suitable also for planning and designing 
new teacher education programs.

REFERENCES

Aldon, G., Arzarello, F., Cusi, A., Garuti, R., Martignone, F., Robutti, 

O., Sabena, C., & Soury-Lavergne, S. (2013). The meta-di-

dactical transposition: a model for analysing teachers 

education programs. In A. M. Lindmeier & A. Heinze (Eds.), 

Proceedings of the 37th Conference of the International 

Group for the Psychology of Mathematics Education (Vol. 1, 

pp. 97–124). Kiel, Germany: PME.

Antonini, S., & Martignone, F. (2011). Argumentation in explor-

ing mathematical machines: a study on pantographs. 

In B. Ubuz (Ed.), Proceedings of the 35th Conference of the 

International Group for the Psychology of Mathematics 

Education (Vol. 2, pp. 41–48). Ankara, Turkey: PME.

Arzarello F., & Bartolini Bussi, M.G. (1998). Italian trends in re-

search in mathematics education: A national case study in 

the International perspective. In J. Kilpatrik & A. Sierpinska 

(Eds.), Mathematics Education as a Research Domain: 

A Search for Identity (Vol. 2, pp.243–262). Dordrecht, 

The Netherlands: Kluwer.

Arzarello, F., Robutti, O. Sabena, C., Cusi, A., Garuti, R., 

Malara, N., & Martignone, F. (2014). Meta-didactical 

Transposition: a theoretical model for teacher education 



A development over time of the researchers’ meta-didactical praxeologies (Francesca Martignone)

2872

programs. In A. Clark-Wilson, O. Robutti, & N. Sinclair 

(Eds.), The Mathematics Teacher in the Digital Era: An 

International Perspective on Technology Focused 

Professional Development (Vol. 2, pp. 347–372). Dordrecht, 

The Netherlands: Springer. 

Banchelli, S., & Martignone, F. (2013). A dialogue about tasks. 

Quaderni di Ricerca in Didattica (Mathematics) – G.R.I.M., 

23(1), 334–342.

Ball, D. L., & Bass, H. (2003). Toward a practice-based theory 

of mathematical knowledge for teaching. In B. Davis & E. 

Simmt (Eds.), Proceedings of the 2002 annual meeting 

of the Canadian Mathematics Education Study Group 

Edmonton (pp. 3–14). Edmonton, AB: CMESG/GDEDM.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowl-

edge for teaching: What makes it special? Journal of 

Teacher Education, 59(5), 389–407.

Bartolini Bussi, M. G., Garuti, R., Martignone, F., & Maschietto, 

M. (2011). Tasks for teachers in the MMLab-ER Project. In 

B. Ubuz (Ed.), Proceedings of the 35th Conference of the 

International Group for the Psychology of Mathematics 

Education (Vol. 1, pp. 127–130). Ankara, Turkey:  PME.

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic Mediation 

in the Mathematics Classroom: Artefacts and Signs after 

a Vygotskian Perspective. In L. English, M. Bartolini, G. 

Jones, R. Lesh, B. Sriraman, & D. Tirosh (Eds.), Handbook of 

International research in Mathematics education (pp. 746–

783). New York, NY: Routledge Taylor & Francis Group.

 Bartolini Bussi, M.G., & Martignone, F. (2013). Cultural issues in 

the communication of research on mathematics education. 

For the Learning of Mathematics, 33(1), 2–8.

Bartolini Bussi, M.G., & Martignone, F. (2014). Manipulatives in 

Mathematics Education. In S. Lerman (Ed.), Encyclopedia 

of Mathematics Education (pp. 365–372). Dordrecht, 

The Netherlands: Springer.

Boero, P. (Ed.) (2007). Theorems in school: from history, episte-

mology and cognition to classroom practice. Rotterdam, 

The Netherlands: Sense Publishers.

Boero, P., & Guala, E. (2008). Development of mathematical 

knowledge and beliefs of teachers. In P. Sullivan & T. 

Wood (Eds.), The International Handbook of Mathematics 

Teacher Education (Vol. 1, pp. 223–244). Rotterdam, 

The Netherlands: Sense Publishers.

Chevallard, Y. (1992). Concepts fondamentaux de la didac-

tique: perspectives apportées par une approche anthro-

pologique. Recherches en Didactique des Mathématiques, 

12(1), 73–112.

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en 

théorie anthropologique du didactique. Recherches en 

Didactique des Mathématiques, 19(2), 221–266.

García, F.J., Gascón, J., Ruiz Higueras, L., & Bosch, M. (2006). 

Mathematical modelling as a tool for the connection of 

school mathematics. ZDM, 38(3), 226–246.

Garuti, R., Boero, P., Lemut, E., & Mariotti, M.A. (1996). 

Challenging the traditional school approach to theo-

rems: a hypothesis about the cognitive unity of theorems. 

In Á. Gutiérrez & L. Puig (Eds.), Proceedings of the 20th 

Conference of the International Group for the Psychology 

of Mathematics Education (Vol. 2, pp. 113–120). Valencia, 

Spain: PME.

Gutierrez, A. & Boero, P. (Eds.) (1996). Handbook of Research on 

the Psychology of Mathematics Education: Past, present 

and future. Rotterdam, The Netherlands: Sense Publishers.

Huillet, D. (2009). Mathematics for teaching: An anthropolog-

ical approach and its use in teacher education. For the 

Learning of Mathematics, 29, 4–10.

Martignone, F. (2011). Tasks for teachers in mathematics labo-

ratory activities: a case study. In B. Ubuz (Ed.), Proceedings 

of the 35th Conference of the International Group for the 

Psychology of Mathematics Education (Vol. 3, pp. 193–

200). Ankara, Turkey: PME.

Martignone, F., & Antonini, S. (2009). Exploring the Mathematical 

Machines for geometrical transformations: a cognitive 

analysis. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), 

Proceedings of the 33rd Conference of the International 

Group for the Psychology of Mathematics Education (Vol. 4, 

pp. 105–112). Thessaloniki, Greece: PME.

Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-

Henriksson, H., & Hemmo, V. (2007). Science education 

now: A renewed pedagogy for the future of Europe. 

European Commission. Retrieved from: http://ec.europa.

eu/research/science-society/document_library/pdf_06/

report-rocard-on-science-education_en.pdf 

Shulman, L. S. (1986). Those who understand: Knowledge 

growth in teaching. Educational Researcher, 15(2), 4–14.

Watson, A., & Sullivan, P. (2008). Teachers Learning about 

Tasks and Lessons. In P. Sullivan & T. Wood (Eds.), The 

International Handbook of Mathematics Teacher Education 

(Vol. 2, pp. 109–134). Purdue University, West Lafayette, 

USA: Sense Publishers.

Wood, T. (Series Ed.) (2008). The International Handbook of 

Mathematics Teacher Education 4 Volumes. Rotterdam, 

The Netherlands: Sense Publishers.

ENDNOTES

1. www.umi.dm.unibo.it/downloads/icme10.pdf 

2. Italian Standards (grades 1–8): http://www.edscuola.
it/archivio/norme/programmi/indicazioni_nazionali.
pdf 

http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
http://www.umi.dm.unibo.it/downloads/icme10.pdf
http://www.edscuola.it/archivio/norme/programmi/indicazioni_nazionali.pdf
http://www.edscuola.it/archivio/norme/programmi/indicazioni_nazionali.pdf
http://www.edscuola.it/archivio/norme/programmi/indicazioni_nazionali.pdf


A development over time of the researchers’ meta-didactical praxeologies (Francesca Martignone)

2873

3. Italian Standards (grades 9–13): http://www.indire.
it/lucabas/lkmw_file/licei2010///indicazioni_nuovo_
impaginato/_decreto_indicazioni_nazionali.pdf 

4. MMLab publications: http://www.mmlab.unimore.
it/site/home/pubblicazioni.html  

5. Website of the Mathematical Machine Association: 
http://www.macchinematematiche.org/ 

6. Final reports written by the teachers involved in the 
MMLab-ER project: http://www.mmlab.unimore.it/
site/home/progetto-regionale-emilia-romagna/risul-
tati-del-progetto/report-delle-sperimentazioni.html

http://www.indire.it/lucabas/lkmw_file/licei2010///indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf
http://www.indire.it/lucabas/lkmw_file/licei2010///indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf
http://www.indire.it/lucabas/lkmw_file/licei2010///indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf
http://www.mmlab.unimore.it/site/home/pubblicazioni.html
http://www.mmlab.unimore.it/site/home/pubblicazioni.html
http://www.macchinematematiche.org/
http://www.mmlab.unimore.it/site/home/progetto-regionale-emilia-romagna/risultati-del-progetto/report-delle-sperimentazioni.html
http://www.mmlab.unimore.it/site/home/progetto-regionale-emilia-romagna/risultati-del-progetto/report-delle-sperimentazioni.html
http://www.mmlab.unimore.it/site/home/progetto-regionale-emilia-romagna/risultati-del-progetto/report-delle-sperimentazioni.html


2874CERME9 (2015) – TWG18

Mathematics educator transformation(s) by 
reflecting on students’ non-standard reasoning

Maria Mellone1, Arne Jakobsen2 and C. Miguel Ribeiro3

1 University of Naples Federico II, Naples, Italy, maria.mellone@unina.it

2 University of Stavanger, Stavanger, Norway

3 Norwegian University of Science and Technology, Trondheim, Norway

In this study, we present some results stemming from a 
research work exploring the way in which prospective 
teachers develop their interpretative knowledge and 
awareness by discussing students’ errors and non-stand-
ard reasoning. For this purpose, we designed a particu-
lar kind of task that was administrated and discussed in 
our own lectures. The discussions and reflections asso-
ciated with this experience allowed us, as educators, to 
expand our own mathematical knowledge and aware-
ness. Based on the analysis of video-recorded lessons 
delivered as a part of a course based in Italy, we will 
argue that work grounded in discussing students’ naive 
ideas/non-standard reasoning represents a core aspect 
of the mathematics teachers’ education field, whereby 
educators are also viewed as learners.

Keywords: Teacher’s knowledge, educator’s knowledge, 

interpretation, pupils’ productions. 

INTRODUCTION

This work is a part of a wider research project aimed 
at accessing and developing the knowledge mathe-
matic teachers require for effective instruction. Part 
of this work pertains to designing and implementing 
contexts and tasks suitable for promoting the devel-
opment of such knowledge. In our previous work, the 
focus was mainly on prospective teachers’ answers 
and reasoning when solving a specific task. In this 
paper, we expand on this early work and promote a 
discussion on our own reflections upon the imple-
mentation and analysis of this particular task and the 
way of managing it. This particular task is essentially 
rooted in asking the (prospective) teachers to provide 
sense to students’ productions, some of which can 
be considered incomplete, containing errors, or sim-
ply being grounded on nonstandard reasoning (e.g., 

Jakobsen, Ribeiro, & Mellone, 2014; Ribeiro, Mellone, 
& Jakobsen, 2013b). Our aim is to provide reflection 
on how this kind of task can promote mathematical 
knowledge development among (prospective) teach-
ers and teacher educators.

Several historical examples show that the growth 
of mathematical knowledge often occurs through a 
dialectic process of “proofs and refutations,” where 
initial, and often partially incorrect, hypotheses are 
progressively refined through a critical analysis of 
their consequences (Lakatos, 1976). Moving from a 
phylogeny to an ontogeny level, we can argue that this 
is similar to the learning process experienced by an 
individual. Adopting this perspective, a learner that 
makes an error can be compared to a person that got 
lost on his/her journey. Thus, if (s)he had an important 
meeting, (s)he will likely arrive late and agitated. On 
the other hand, if (s)he is a tourist who is visiting new 
places, getting lost may be perceived as an opportu-
nity to discover new places that (s)he wouldn’t have 
known otherwise (Borasi, 1994). 

Grounded in some of our previous work (mentioned 
above), and starting from these reflections, we ar-
gue that the work on errors, incomplete answers, 
or non-standard reasoning should represent a core 
aspect in and for developing mathematics teacher 
education. Agreeing with Tulis (2013), we claim that 
teachers must be sensitive to students’ errors and 
nonstandard reasoning. We also point to the fact that, 
in everyday classroom, a learning climate in which 
errors are perceived in a positive way should be estab-
lished, allowing students to learn from their mistakes. 
The development of positive attitudes towards errors 
should be pursued from the beginning of mathematics 
teachers’ professional development (assuming that it 
starts in teachers’ initial training). With this aim, we 
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worked in our own courses with prospective teachers 
(and in other professional development contexts) us-
ing the previously mentioned particular type of task. 
This task has been used in our lessons as a prompt to 
orchestrate a mathematical discussion (Bussi, 1996). 
We used mathematical discussion as main tool to 
develop, together with our students, mathematical 
knowledge and new awareness of the opportunities 
and richness of learning experience that can come 
from the work on nonstandard reasoning. Such use is 
thus also aimed at building a co-learning community, 
throughout an inquiry community perspective (e.g., 
Jaworski & Goodchild, 2006).

THEORETICAL FRAMEWORK

In mathematics teacher education, only a few ap-
proaches are using mistakes and nonstandard rea-
soning as a resource in Mathematics Education (Tulis, 
2013). From our perspective, one of the core aspects 
of teaching practice should focus on developing 
teachers’ knowledge that can assist them in giving 
sense to students’ productions and perceiving errors 
as a learning opportunity (e.g., Ribeiro et al., 2013b). 
Such knowledge would allow teachers to develop 
and implement ways to support students in building 
knowledge that is founded in their own reasoning, 
even when such reasoning differs from that expected 
by the teacher. Aiming at accessing and developing 
such knowledge and ability, we have been developing 
tasks for teacher training that require them to solve 
problems before trying to give sense to students’ pro-
ductions aimed at answering such problems. Thus far, 
these tasks have been used as a tool for both observ-
ing and deepening the access to prospective teachers’ 
mathematical knowledge for teaching (MKT) (Ball, 
Thames, & Phelps, 2008). Driven by this prompt, we 
also aim to support, in our lectures, the development 
of prospective teachers’ MKT. During this research 
work, we have been focusing on a particular kind of 
knowledge we refer to as interpretative knowledge 
(Jakobsen et al., 2014). It is essential for teachers to 
possess, as it entails the knowledge in and for mak-
ing sense of students’ solutions and helps teachers 
provide productive feedback to them (in the sense 
discussed by Bruno & Santos, 2010).

In particular, we recognize the peculiar and specific 
nature of this knowledge and thus consider it a part 
of the Specialized Content Knowledge (SCK) domain 
of the MKT model, while also recognizing its links to 

the Pedagogical Content Knowledge (PCK). Findings 
of our previous studies indicated that a poor Common 
Content Knowledge (CCK) compromised the prospec-
tive teachers’ ability to give sense to students’ solu-
tions that differed from their own. Indeed, we found 
evidence in support of our hypothesis that a lack of 
common knowledge on a particular mathematical 
topic hinders the prospective teachers in forming a 
flexible perception of that topic, making it difficult 
to move to different visions and their potential use 
in teaching (Ribeiro et al., 2013b; Jakobsen et al., 2014). 

At this time, our research work is moving to another 
aspect we consider intrinsically involved in the kind 
of mathematical activity developed in teacher train-
ing—our growth and development as mathematics 
teacher educators. For this reason, we are comple-
menting the previous focus on MKT and on the in-
terpretative knowledge with the Inquiry community 
perspective (see, for example, Jaworski & Goodchild, 
2006). According to this approach, 

Didacticians have designed activity to create 
opportunity to work with teachers, to ask ques-
tions and to see common purposes in using in-
quiry approaches that bring both groups closer 
in thinking about and improving mathematics 
teaching and learning . . . . This design process 
is generative and transformative. (Jaworski & 
Goodchild, 2006, p. 354)

The principal aim of this approach is to work with 
teachers as co-learning professionals, with didacti-
cians and teachers each contributing with their spe-
cialist knowledge in order to collaboratively develop 
new knowledge in practice (e.g., Schön, 1987; Wagner, 
1997). By using this type of tasks in our lectures, and 
paying attention to the response we receive from the 
attendees, we, as educators, are living a transformative 
experience, derived from participating in what we con-
sider a co-learning community with our students. The 
idea of Inquiry Community is rooted in the Activity 
Theory Framework (Vygotsky, 1978), comprising of a 
subject, an object, and a mediation between them. In our 
case, the subjects involved are the community of pro-
spective teachers and teacher educators. The mediation 
corresponds to the task, whereby the prospective teach-
ers are asked to give sense and feedback to students’ 
solutions. Finally, the outcome is the MKT development 
of both prospective teachers and mathematics teacher 
educators. The considered perspective for professional 



Mathematics educator transformation(s) by reflecting on students’ non-standard reasoning (Maria Mellone, Arne Jakobsen and C. Miguel Ribeiro)

2876

development of teacher educators is grounded, from 
one side, in reflecting and discussing upon our own 
practices (e.g., Avalos, 2011). On other side, complemen-
tarily, we also assume that being a teacher educator 
involves much more than applying the skills of school 
teaching to a different context (e.g., Loughran, 2014). In 
our view, it requires a specialized type of (complemen-
tary) knowledge that the teachers need (e.g., Superfine 
& Li, 2014) in order to expand teacher trainers’ vision 
of teaching. At this stage, working with students must 
be different from working with teachers, and should 
focus on deepening the “hows,” the “whys” and the con-
nections among and within topics. 

METHOD

The context of this study is the mathematics courses in 
teacher education, in particular some courses where 
we (the authors) were the lectures. In this paper, for 
brevity, we limit our focus to the data pertaining to 
two classes of the course held in Italy. This course is 
taught in the third year of a five-year program of the 
master degree in education, and can be taken upon 
passing the Foundation of Mathematics exam. 

In the course, different tasks were explored, focus-
ing on problem solving aimed at exploring particular 
mathematics education issues in depth (e.g., arithmeti-
cal, algebraic, and geometrical thinking) and the stu-
dents’ MKT pertinent to such issues. Complementarily, 
the course also focused on more general mathematics 
education approaches (e.g., sociocultural nature of 
learning, semiotic mediation process), among other 
goals. The entire course was conceptualized assuming 
the Inquiry Community Perspective, with the aim of 
promoting the development of a co-learning commu-
nity. Around 100 prospective primary teachers par-
ticipated in these classes. In addition, one educator/
researcher was responsible for delivering the course, 
while one researcher took responsibility for the data 
collection (gathering the prospective teachers’ writ-
ten answers, as well as audio and video recording the 
classes). This was the second course in which this task 
was implemented and pertinent data gathered. 

During the first lesson of the activity, a questionnaire 
containing the task was given to prospective teach-
ers, asking them to answer it individually within one 
hour. The task required them to solve a very “simple” 
problem. They were given the following instructions: 
Teacher Maria wants to explore with her students some 

notions concerning fractions. For this purpose, she has 
prepared a sequence of tasks involving five chocolate 
bars. Let us look at one of them: What amount of choco-
late would each child get if we divide five chocolate bars 
equally among six children? 

After completing the task (i.e., providing their own 
answer to the aforementioned problem), we asked the 
participants to consider some students’ solutions to 
the same problem. Some responses contained errors 
while others were incomplete, and some involved a 
nonstandard approach to problem-solving. Figure 1 
and 2 present two of those responses, while a broader 
discussion of the productions included in the ques-
tionnaire is given in Ribeiro, Mellone, and Jakobsen 
(2013a). In particular, we asked prospective teachers 
to give sense to a set of pupils’ productions, while 
following specific requirements: (i) For each pupil’s 
production, decide if you consider it mathematically 
correct (adequate) or not, and justify the (in)adequa-
cy of the mathematical rationality shown; (ii) Give a 
constructive feedback to pupils, especially to students 
whose answers you consider inadequate, and create 
a set of possible questions in order to promote their 
mathematical knowledge development.Data from the 
questionnaire was analyzed in terms of prospective 
teachers’ own solutions to the problem, taking into 
consideration the different types of answers given, 

Figure 1: Ricardo’s solution “1º We divide each bar in six squares; 

2º In total, we have 30 squares; 3º We divide 30 squares among 

the 6 children. 30/6=5 squares”

Figure 2: Mariana’s solution “Each child will get”
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the number of representations used, and their evalu-
ations of the pupils’ solutions (for further details, see 
Ribeiro et al., 2013b). The subsequent lesson, ground-
ed in the collective mathematical discussion (Bussi, 
1996) of the task was video recorded and analyzed in 
terms of prospective teachers’ and educators’ own 
reflections, discoveries, and points of turn in the MKT 
development. The fact that we, as educators, are con-
sidered an integral part of the inquiry community, in 
particular community of learners, is the key point of 
this paper. Nonetheless, this same fact represents a 
sensitive point of the method we chose for our anal-
ysis, since we analyzed “ourselves.”  However, in this 
case, we analyze the Italian experience. Thus, at the 
beginning of the lesson, the Italian researcher was 
chosen to provide her point of view on some crucial 
points of the mathematical discussion that took place. 
In the next stage, we conducted a joint analysis, fol-
lowed by joint discussion and reflection.

SOME EVIDENCE OF THE TRANSFORMATIVE 
EXPERIENCE

The transformative experience is a complex process 
and there are several considerations to take into ac-
count. Here, we will focus on two examples of the kind 
of reflections that are driving our experience, as well 
as our reflections and discussions. These examples 
were chosen because they are perceived as constitut-
ing crucial and critical points of the mathematical 
discussion undertaken. In particular, we focus on 
some of the mathematical discussion that took place 
when commenting on Mariana’s solution (Figure 2). It 
should be noted that prospective teachers’ answers to 
the questionnaire revealed that some found interpre-
tation of this solution particularly difficult. This find-
ing is in line with the reports of Norwegian (Jakobsen 
et al., 2014) and Portuguese experiences. Among the 
prospective teachers’ comments to this solution, the 
following answers were particularly interesting: 

Mariana’s solution is not understandable, so 
the first question would be: what does this rep-
resentation mean?  After I have listened to her 
answer, I will try to show her my own representa-
tion and we will reach the solution together”; or 

“She does not understand fractions – she is just 
dividing the pieces.

Comments such as these reveal the difficulty these 
prospective teachers had in leaving their own space 

of solutions. In particular, when this space consists 
of a single element (Jakobsen et al., 2014), it seems 
impossible for prospective teachers to appreciate 
and understand different solution strategies students 
adopt. As a result, they are unable to exploit them to 
support children’s deeper knowledge development 
on the subject. Many of the prospective teachers re-
sponded in a similar way. A particular case concerns 
those that provided answers using only natural num-
bers, similar to Ricardo’s solution (Figure 1), or saying 

“each will get 5/6 of each chocolate bar.” 

The collective discussion promoted some changes in 
reasoning and argumentation. Here, it is worth noting 
the difficulties in orchestrating a mathematical dis-
cussion within a community of about 100 individuals. 
Thus, in order to facilitate constructive discussion, 
Mariana’s production was projected on the wall and 
was thus clearly visible to all participants, while the 
educator focused on identifying prospective teachers 
that wanted to comment on the solution (using a mi-
crophone). After some minutes of discussion, in which 
most prospective teachers expressed their difficul-
ties in understanding Mariana’s reasoning (including 
how she obtained 10 bars), something changed. This 
is evident in Miriam’s contribution to the discussion.

Miriam: She basically takes the five bars and 
divides them in half and so she has ten 
pieces, so she gives six, while four re-
main. Then she divides the others in 
half again, and then there are eight and 
she assigns six, so two remain. The oth-
er two are divided into three parts, so 
six more pieces. Then finally, she says: 
every child will have a half of bar, plus 
the half of the half of a bar and a third 
of a bar (she stopped)

–voices of students who want to intervene–
Educator: Wait a moment, give her time…
Miriam: mmm ... it’s as if ... a third of the half of 

the half.

It is worth pointing out that Miriam, along with the 
majority of the prospective teachers that took part 
in the discussion, did not previously understand 
Mariana’s solution. However, by building her own 
reflections on those of her colleagues, she was able 
not only to understand something that was not clear 
during the individual work, but also to recognize in 
the pieces of Mariana’s representation the particular 
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fractions representing parts of the unit (the chocolate 
bar) involved. In the next step, the educator proposed 
to all participants to write down the explanation 
Miriam provided. The aim of this task was to prompt 
the prospective teachers to understand and verify 
the equivalence between 5/6 and the sum of these 
particular fractions. The amazement most prospec-
tive teachers felt upon discovering the meaning of 
Mariana’s solution was the prompt to build an inter-
esting discussion about the fact that, just because one 
does not understand something, it does not mean that 
it is incorrect. Such prompt also facilitated exploring 
links between teachers’ specialized and pedagogical 
content knowledge, as well as understanding its im-
portance/role in practice (e.g., Ribeiro & Carrillo, 2011). 
One of the focal points of the task conceptualization 
and implementation is on exploring and developing 
students’ awareness on the knowledge involved (na-
ture and type) in and for elaborating constructive 
feedback. In taking this approach, we were deepening 
some aspects of Bruno and Santos’s (2010) work on 
written feedback. 

While discussing and reflecting upon Mariana’s pro-
duction, prospective teachers experienced some con-
tingency moments (Rowland, Huckstep, & Thwaites, 
2005), allowing us to reflect and discuss upon the 
work we had done thus far. Such reflection is linked 
to the development of a mathematical knowledge we, 
as mathematics teacher educators, experienced by 
sustaining our own professional development. The 
situation presented here was driven by a comment 
made by Francesca, another prospective teacher. 
Indeed, after recognizing the correctness of the sub-
division of the bars presented in Mariana’s solution, 
most prospective teachers also saw the possibility to 
create numerical representations of the quantities in-
dicated within the drawings. However, another issue 
was raised by Francesca.

Francesca:  Yes, I think it is mathematically 
correct, because there are six chil-
dren. But, if I had seven children, 
for example, I don’t know if this di-
vision into equal parts could work. 
However, it was a trial and error 
process and this time it succeeded; 
but I do not know if, with other num-
bers, it could work.

Educator:  So . . . you are saying that this proce-
dure does not seem to be applicable 
to other numbers …

Francesca:  I do not know, it amazes me, but per-
haps it could not work with other 
numbers.

At that moment, the educator was not prepared for 
such a comment and did not prompt a discussion that 
would explore this issue further. However, Francesca’s 
comment was a focus of discussion and reflection in 
the scope of the research group, and served as a start-
ing point for developing a new mathematical aware-
ness. Indeed, on one hand, according to Empson, Junk, 
Dominguez, and Turner (2006), Mariana’s solution 
can be seen as a progressive parts strategy considering 
it without any anticipatory organization of the subdi-
vision. Yet, on the other hand, such solution reflects a 
peculiar management of subdivisions, with the poten-
tial for being generative of a precious mathematical 
insight. One can argue that Ricardo’s solution (Figure 
1) is grounded in the understanding/assumption that, 
in order to equally share five chocolate bars, each bar 
can be partitioned into 6 parts, thus perceiving 5

6  as 
equivalent to 1

6  +  1
6  +  1

6  +  1
6  +  1

6 . Linked to this strategy, 
in which it is possible to recognize a kind of anticipa-
tory thinking (Empson et al., 2006), there is the view 
of a fraction n

m  as equivalent to the sum of n unitary 
fractions 1

m. In contrast, Mariana’s progressive par-
titions strategy suggests an interpretation of 5

6  as 
equivalent to 1

2  +  1
4  +  1

12. Thus, it is impressive to see 
how this particular representation of a fraction as 
the sum of unitary fractions appears naturally in her 
reasoning. Her approach reveals the possibility to 
represent uniquely any fraction as a finite sum of de-
creasing rational numbers, such that the first element 
is the integer part of the fraction and each subsequent 
one is the greatest unitary fraction that is contained 
in the remaining part, which can be represented as 
n
m = i +  1

q₀  +  1
q₁  + … +   1

qk
. Such a representation has the strong 

advantage of showing clearly a sequence of rational 
numbers, simpler than the one assigned, that are, in a 
sense, the best lower approximations of it. Thus, after 
developing these reflections, during the following 
class, the educator had the opportunity to discuss the 
findings with the prospective teachers. The aim was 
to allow them to develop complementary elements 
to be included in their own space of solutions (e.g., 
Jakobsen et al., 2014). 
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SOME FINAL COMMENTS

In this paper, some insights and reflections pertaining 
to a particular task were presented. The discussions 
prompted by Mariana’s production have provided the 
opportunity to reflect on prospective teachers’ knowl-
edge elaboration on a particular aspect of fractions, 
as well as on our own role in the development of such 
knowledge and of our own awareness. However, we 
want to stress that, although such reflections were 
grounded in a task on fractions, the mathematical top-
ic itself and the particular mathematical fact of “dis-
covering” the possible link between Mariana’s solu-
tion and the representation of a fraction as the sum 
of unitary fractions, are not the focus here. Indeed, 
as a meta-discourse, we are arguing something more 
general. The experience, and the way in which we 
presented it, is perceived as a contribution to the dis-
cussions and the associated reflections that highlight 
the need for a more focused work (and research) on 
the interpretative knowledge needed by (prospective) 
teachers and their educators, and the way(s) to pro-
mote it. Moreover, assuming that teachers and teacher 
educators need different “ways of hearing,” we argue 
that different aspects and different natures of pro-
fessional knowledge need to be taken into account 
when designing and implementing teacher training. 
The ultimate aim of this initiative is a joint and in-
tertwined development of all the constituents of the 
inquiry community (Jaworski & Goodchild, 2006). 

A significant number of diverse possibilities and 
paths for discussion were anticipated when we dis-
cussed and prepared the task and its implementation. 
Fortunately, some unforeseen situations emerged, 
leading to improvisations, some of which correspond-
ed to contingency moments (Rowland et al., 2005). The 
reflections upon these situations, and the associated 
discussions on our own practice, have enabled us to 
develop a broader perspective on the process of teach-
ing teachers, providing us with a deeper insight into 
what it requires and entails. Indeed, as we listened to 
the prospective teachers’ comments on the proposed 
students’ solutions, we also had some difficulties in 
interpreting and giving sense to their reasoning. This 
has led to mathematical critical moments, allowing us 
to reflect upon them. In our view, this is an essential 
aspect in and for promoting professional develop-
ment for teachers as well as teacher trainers. In this 
sense, collaboration among the authors was crucial. 
By reflecting upon the discussion with prospective 

teachers, we could appreciate the type and nature of 
possible connections, representations, and naviga-
tions that could be made (needed) between and within 
topics. This has been one triggering event, leading to 
the awareness of the need to help teachers develop 
a much deeper knowledge. The work of Superfine 
and Li (2014) is a good example of an effort aimed at 
deepening and evolving this knowledge further. 

Finally, we want to call attention to inextricable links 
among the tasks we prepare and implement (type, na-
ture, and focus), the role of research on (prospective) 
teachers’ knowledge and practices, and the learning 
opportunities we, as facilitators, provide. In order 
to also bring together theory and practice, we must 
recognize the importance of the role teacher trainers 
play in developing teachers’ knowledge and practices. 
Thus, we argue that, if we want to enable prospective 
teachers to give sense to students’ solutions and pro-
vide constructive feedback, we, as educators, need to 
do the same, albeit with a different focus. We posit that 
the courses specifically designed for teachers must 
have aims differing from those classes for students 
are geared towards. In this sense, a practice-based 
approach, in which prospective teachers can expe-
rience similar situations to those we expect them to 
encounter with their students is essential. We also 
recommend that teacher training address the role and 
the attitude of the educator, as one of the key elements. 
In particular, we recognize the importance and the 
need for teacher educators to live/work in terms of 
transformative experience, being sensitive to grow-
ing opportunity it offers. 
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This study was developed in the context of a developmen-
tal research project with eleven mathematics teachers 
and two university researchers working collaboratively 
during part of one school year. The paper analyses the 
participation of one teacher in the emergent inquiry 
community devoted to developmental research on tasks 
targeting students’ statistical reasoning. Inquiry and 
modes of belonging to an inquiry community are present 
in the analysis of the data that were mainly collected in 
the collective meetings of the project. Preliminary results 
show that the teacher’s participation is closely connect-
ed with an inquiry stance and critical alignment to her 
practice and in some instances to the project’s goals.

Keywords: Inquiry community, statistical reasoning, 

developmental research.

INTRODUCTION

Assuming the important role of sound tasks and the 
use of technological tools to promote students’ sta-
tistical reasoning, a developmental research project 
that seeks to deepen the understanding about the 
conditions for the development of that kind of rea-
soning in the classroom has been carried out by the 
two authors. Recognizing the teacher’s central role in 
the classroom practice, the project assumed a collab-
orative nature, involving the authors, as researchers 
and a group of teachers who wanted to learn and share 
new ideas about the teaching of statistics in basic ed-
ucation.

The project was originally planned to be, simultane-
ously, a research and a teacher development project. 
Teachers had some previous contact with research in 
education and assumed the shared role of designers 
and researchers with the university researchers, as it 
happened in other developmental research projects 
(Goodchild, 2014). Our first reflections about the pro-

cess, made us consider the teachers’ participation in 
the group and its nature, as we observed that some 
teachers expressed doubts, resistance and delayed 
the implementation of the tasks in the classroom. 
Addressing this issue is seen by us as an opportunity 
to question the dynamics foresaw for the project, as 
well as to understand the conditions for professional 
development that were created. Preliminary analysis 
of the work carried out in the group made us conjec-
ture if implicitly were we trying to promote an inquiry 
community (Jaworski, 2008) since we intended that all 
participants would assume a role in the tasks’ design 
and in reflecting about their use in the classroom. We 
did not have readymade tasks for teachers to apply 
and we did not intend to include them in the action 
only (Jaworski, 2008). In fact, teachers got involved 
in designing the tasks, making punctual or important 
suggestions or proposing alternatives. We, as univer-
sity researchers, had many questions and few answers 
and wanted to learn from this experience. However, 
since this was a funded project, there were certain 
constraints to the collaboration with the teachers, 
namely: the sessions should follow a predetermined 
time schedule and the teachers’ written reflections 
had to fulfil some conditions. All this made us ques-
tion how teachers would conceal the interests of their 
teaching practice and the compromise they had with 
the project. 

In order to understand the nature of the teachers’ par-
ticipation in an emergent inquiry community commit-
ted to developmental research on tasks targeting stu-
dents’ statistical reasoning, we started by developing 
an exploratory study focusing on one teacher in the 
group. Thus, this study is oriented by the following 
research question: how did one mathematics teacher’s 
participation in an emergent community of inquiry 
evolve? With this study we also intend to reflect about 
the conditions created by this developmental project 
for teachers’ professional development.

mailto:hmoliveira%40ie.ul.pt?subject=
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THEORETICAL BACKGROUND 

This study comes from a developmental research pro-
ject that assumes the perspective of co-learning among 
teachers and researchers as they design tasks and en-
vironments and investigate their students’ learning. 
This is in line with many recent studies that see this 
collaboration as a favourable setting for developing 
teachers’ knowledge (Potari, Sakonidis, Chatzigoula, & 
Manaridis, 2010). Specially, when implementing new 
approaches in their classroom teachers may benefit 
from working in collaborative settings that involve 
other teachers and researchers (Ponte, Segurado, & 
Oliveira, 2003). 

In a developmental research project  based on collab-
oration, teachers and researchers both learn in the 
process since they come together to develop teach-
ing with the goal of improving students’ experience 
of mathematics (Goodchild, Fuglestad, & Jaworski, 
2013). Concerning the practice that evolves when 
teachers and researchers are collaborating, learning 
occurs through inquiring into it (Potari et al., 2010). 
According to Jaworski (2008) inquiry is “a media-
tional tool in social settings enabling development of 
knowing between people and hence the participative 
individuals” (p. 327). When inquiry is used as a tool 
for learning and development, we can talk about an 
inquiry community (Jaworski, 2008).

According to Potari and colleagues (2010) the differ-
ence between a community of practice as conceived 
by Wenger (1998) and an inquiry community is that 
in the later inquiry is part of the norms of practice 
and so it attributes great importance to critical re-
flection on the practice, as a form of meta-knowing. 
Inquiry is assumed as a stance in those communities 
which “means to challenge regular practice when it is 
ineffective, to reflect on the reasons why an approach 
might not achieve the intended outcome and to pro-
pose alternative approaches” (Goodchild, 2014, p. 313). 

Goodchild, Fuglestad, and Jaworski (2013) consider 
that inquiry can be used “as a tool to be a form of crit-
ical alignment, that is engagement in and alignment 
with the practices of the community while at the same 
time asking questions, trying out new approaches and 
reflecting critically” (p. 396), and therefore critical 
alignment is crucial for the developmental process. 
Jaworski (2008) contends that in opposition to com-
munities of practice that are more stable, the inquiry 

community is emergent as “It does not avoid issues, 
tensions and contradictions, but deals with them as 
part of emergent recognition and understanding lead-
ing to possibilities for expansive learning” (p. 327).

In Wenger’s work (1998), to belong to a community of 
practice involves three different modes: engagement 

— active involvement in mutual processes of negotia-
tion of meaning; imagination — creating images of the 
world and seeing connections through time and space 
by extrapolating from our own experience; alignment 

— coordinating our energy and activities in order to 
fit within broader structures and contribute to broad-
er enterprises. According to the author, when these 
modes work in combination in a community of prac-
tice, it can become a learning community. In terms 
of an inquiry community, critical alignment is also 
required as participants “engage in existing practices, 
aligning to some extent with those practices, but in a 
questioning or inquiry mode” (Jaworski, 2008, p. 314). 

THE CONTEXT

The idea for the developmental project grew from 
our perception that statistics receives reduced at-
tention from mathematics teachers in basic educa-
tion in our country. They usually consider it an easy 
theme that does not require much time in its teaching. 
Recognizing the need to further understand how to 
develop students’ reasoning using the technological 
tools at our disposal, specifically the TinkerPlots soft-
ware, we envisioned that it would be more productive 
to involve teachers that are well informed and inter-
ested in this issue (Wells, 2007) in a joint enterprise 
of developing and testing specific statistical tasks in 
their basic education classrooms (5th to 9th grades), 
rather than to develop our theoretical ideas and then 
simply propose them to teachers. Previous experi-
ences in collaborative research projects showed us 
that collaboration between teachers and researchers 
can produce important synergies (Ponte, Segurado, 
& Oliveira, 2003).

The proposal presented to the teachers concerned the 
participation in the developmental research project 
where two or three cycles of a sequence of task design, 
implementation in the classroom, analysis of results 
and refinement of the tasks would involve everyone 
in the group. To make collaboration possible in the 
multiple activities of the project we required that par-
ticipant teachers were acquainted with research meth-
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ods in education. Therefore the eleven mathematics 
teachers who accepted the invitation had diverse 
experiences in teaching statistics but all of them had 
a masters’ degree in mathematics education or were 
attending such a course. However, the theme of sta-
tistical reasoning and the use of TinkerPlots software 
were new for the majority of the teachers in the group.

The work carried out was inspired in Design Based 
Research and followed a teaching experiment design 
(Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). The 
university researchers were responsible for the over-
all plan of the project and for conducting the research 
and the teachers for developing small scale teaching 
experiments in pairs. The university researchers also 
assume the ultimate responsibility for the tasks to 
be implemented in the classroom and the guidelines 
for teachers to elaborate the reports of the teaching 
experiments.

The project had financial support that facilitated the 
support of one research assistance to collect data and 
extended itself for eight months (from November to 
June), in a total of 13 meetings (three to four hours 
each). The first three meetings were dedicated to dis-
cuss big ideas concerning statistics reasoning and the 
required conditions to its development and to explore 
the software’s potentials. The perspective of Garfield 
and Ben-Zvi (2010) of Statistics Reasoning Learning 
Environment (SRLE) was discussed within the group 
and the basic principles of Cobb and McClain (2004) 
for the design of the sequences of tasks were adopted.

The first cycle in the design research took place in the 
subsequent meetings. The tasks’ characteristics were 
informed by the principles of SRLE, and they were 
designed with the intention of providing meaningful 
contexts in which students would be challenged to 
formulate questions based on real data, analyse data 
with the TinkerPlots and to make data based infor-
mal inferences. Teachers generally worked in pairs, 
planning the lessons, collecting data and reflecting 
about them. One or both teachers in the pair imple-
mented the sequence of tasks in one’s class, and were 
supported by the other in the classroom management 
and data collection. After finishing the sequence, the 
teachers elaborated a short written report about each 
task and shared their experience in the group meet-
ings. The materials produced and the joint reflection 
in the group informed the tasks’ reformulation and 
the conditions for their implementation in the subse-

quent cycle by other teachers. In the last two meetings 
the teachers presented, in pairs, the reports of the 
teaching experiments, and discussed them with the 
group. Finally, they produced a written report that 
extended their oral presentation and presented the 
main ideas on the experiment.

Retrospectively looking at this group, we start con-
ceiving it as an emergent inquiry community, where 
co-learning inquiry occurs as researchers and teach-
ers are learning together through inquiry (Jaworski, 
2008) about challenging tasks, the students’ activity 
with technology and the opportunities for promot-
ing their statistical reasoning. We share Jaworski’s 
perspective that in this group “teachers and didacti-
cians are both practitioners and researchers” (p. 312). 
The collaborative engagement of all members, even 
though they assumed different roles and identities, 
made possible the development of insider and outsid-
er research (Goodchild, Fuglestad, & Jaworski, 2013). 
The projects’ extended live period also contributed 
to emergent relationships among the participants, 
mainly among the pairs, and among university re-
searchers and teachers.

METHODOLOGY

This study represents our first attempt to analyse 
teachers’ participation and their professional devel-
opment in the project. Among the eleven teachers 
in the group, we choose to start by studying Maira’s 
participation as an exploratory case study (Cohen, 
Manion, & Morrison, 2007), since we were surprised 
by her reluctance in applying the tasks that were be-
ing designed in the project in her class. She was one 
of the two teachers who had previous experience 
with the software, and showed more enthusiasm in 
getting involved with the project from the beginning. 
Nevertheless, for several weeks we doubted she would 
apply the tasks in her classroom. Finally, Maira de-
cided to apply two tasks with one 5th grade class that 
she considered very problematic, and this gave us the 
motive for trying to understand how her participa-
tion in the inquiry community evolved throughout 
the project, which is our research question. 

All group meetings with the teachers were audio-re-
corded and the teachers’ written reports from their 
teaching experiments were collected which allows 
us to understand the teachers’ participation in the 
emergent community of practice. In a case study 
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research, the identification of critical incidents or 
events is crucial for understanding the case (Cohen, 
Manion, & Morrison, 2007). Hence, after a careful 
reading of transcripts of all meetings, we looked for 
key moments in the project where Maira’s discourse 
expressed more or less sense of belonging to the emer-
gent community, and we used the notions of engage-
ment, imagination and (critical) alignment (Jaworski, 
2008; Wenger, 1998) to characterize her changing par-
ticipation. According to the adopted methodology, the 
results are presented as a chronological narrative of 
events and combine description and analysis (Cohen, 
Manion, & Morrison, 2007).

RESULTS: THE CASE OF MAIRA

We identified four key moments related to Maira’s 
participation in the project which define the four sec-
tions in the data analysis.

Discussing the theory
In the third meeting, the group discussed some the-
oretical principles concerning SRLE, based on one 
paper from Garfield and Ben-Zvi (2010). Maira con-
nected the overall perspective about teaching of those 
authors with an episode from her classroom, which 
occurred a few days earlier. She expressed her dif-
ficulties in dealing with students’ lack of interest in 
school, learning difficulties and disruptive behaviour 
in the classroom. Her decision to develop group work 
with these students produces evidence of her motiva-
tion to try new methods.

… this paper dates from 2010, but almost 20 years 
after my initial training course, we still debate 
the issue of the traditional teaching (…) Therefore 
there is a high resistance and I think it has to do 
with us … I have been resisting but this week I 
promoted small group work [in that class]. I im-
agined it would be chaotic and this and that … And 
again, I must admit: it didn’t happen. The mistake 
is ours, because, perhaps, this was my best lesson 
since the beginning of the school year.

Conceiving her usual practice as different from the 
one reflected theoretically in the paper, Maira recog-
nizes that there is a personal and general resistance 
to change, expressing critical alignment with it. The 
results gave her more confidence in assuming some 
risks with those students: “We have to belief and take 

a chance even in [the perspective of ] a chaotic lesson 
(…) and then, maybe, we really have surprises”.

In this meeting, Maira also attempts to give meaning 
to some theoretical ideas by trying to think about their 
connections with the statistical knowledge she con-
siders possible to develop with 5th graders. Speaking 
about possible tasks for promoting students’ statis-
tical reasoning, the main goal of the project, she con-
siders that:

This kind of tasks that nurtures relationships is 
important, at least to develop their vocabulary 
and bring them close to this kind of argumen-
tation, to the discourse that is used in statistical 
reasoning.

In the project’s initial phase, Maira shows critical 
alignment to her practice, disposition to engage in 
the project, and motivation to imagine to do things 
differently. However, she is permanently thinking on 
the characteristics of the students and conjecturing 
about how those theoretical ideas (that the project 
seem to adhere to) might be adapted for her classroom 
(critical alignment with the project).

Thinking about the tasks
During the 5th meeting where one of the tasks for the 
8th grade was designed, several discussions about the 
situations that could be adapted for the 5th grade oc-
curred. In the next transcript, we observe that Maira 
shares her opinion about the tasks that she considers 
more suitable for her 5th grade class and the sequence 
in which they should be integrated.

They [the students] need to have data that are 
very close to them, so they can recognize them 

… Because… this is a completely different rep-
resentation from the ones that they are acquaint-
ed with. They are used to see graphic, pie graphics, 
bar graphics, at least in the press, isn’t it? (…) But 
if we want them to manipulate those data with a 
deep understanding, what each one represents, 
I think that is has to be something closer to them, 
as in the first task [discussed] where they insert 
the data. 

In this moment, the teacher expresses engagement 
with the project, making suggestions that reflect what 
she knows the students’ needs in this school level, and 
the kind of work they will do with the software.
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Later on, Maira begins to question the opportuni-
ty for implementing the tasks in her classroom. In 
the 7th meeting, she speaks again about the students’ 
misbehaviour, lack of interest in school, resistance to 
learning and lack of autonomy. She rehearsed many 
strategies but none seems to succeed:

And also already tried to have a small text ex-
plaining what they have to do, [and asked them] 

“Let us read!” and “Let us do!”, “No”! It’s no use. (…) 
I really have to be by their side, even if it is only 
to read and to follow. So it will be an experience, 
perhaps… very difficult. (…) I have not been able 
to solve this.

It seems that in face of the circumstances, Maira starts 
questioning the possibility of developing the tasks 
as foreseen. It is still possible to identify her will to 
be engaged with the project, making part of the joint 
enterprise, but she also reveals a strong disbelief in 
obtaining any positive outcome from the implemen-
tation of the designed tasks with her students.

Discussing the lessons
Close to the end of the project, when teachers were 
presenting the results from their teaching experi-
ments, Maira reacts to one comment of one of the two 
university researchers that she interprets as one of 
surprise for the lack of involvement of the students 
from a different teacher in the first lesson they used 
the software TinkerPlots.

I know it is hard to hear when we have software 
which we, as teachers, find fantastic, that “with 
this the students became more restless”. But we 
have to think in a different way … It is obvious that 
the software has great potential, and it would be 
great that this was a magic formula that when en-
tering the classroom the kids would be attached 
and involved … but that is not going to happen… 
However, I think we should not lose this enthu-
siasm! 

It seems that Maira is interpreting the project expecta-
tions in a simplistic way: we presume to have excellent 
results with these tasks. Maybe she has assumed some 
disappointment in university researchers concerning 
the effort made in producing the materials for the 
classroom and having the students not so involved has 
they expected. It appears that she is also manifesting 

her frustration by what she says next: “We have to 
consider that we have many obstacles”.

Later in the same meeting, Maira reflects on the na-
ture of tasks that have been designed and the difficul-
ties her students had in dealing with their openness. 
She considers that such situation makes her reflect 
on the lack of opportunities their students previously 
had for working with such kind of proposals:

[Students say]: “I don’t know how to do! What 
shall I do?”. And they were a bit lost. And that 
is also due to the fact, maybe, that her teacher 

… didn’t work certain kind of situations that can 
be explored and not the traditional “Calculate 

… Determine”, isn’t it? Hence, there is a lot to do, 
really. I consider that this make us [think].

In this meeting, Maira expresses her lack of engage-
ment with what she considers to be one motivation 
in the project, as she interprets the expectation of 
the university researchers. However, the difficulties 
faced by her students in understanding the questions 
in the tasks made Maira question her own practice and 
therefore exhibiting also critical alignment with it.

Inquiry on the students’ activity
In the subsequent meeting, when presenting the re-
sults of her teaching experiment, Maira shows a small 
video from one moment of the collective discussion 
in the class, to share with the group of teachers some-
thing she valued positively:

… I thought this is interesting because, if you no-
tice, they are really discussing this issue. And 
this issue of being probable or not is not so obvi-
ous (…) Carlos seems to be surprised “How come 
you did not understand?!” (…) But to her [another 
student] it was still confusing. And I think that 
the example given by Bianca was excellent and it 
was also very good that the other girl questioned 
that it was not the same thing, because in her rep-
resentation a big difference was visible.

The interactions among the students are highly val-
ued by Maira, as she identifies that they are discussing 
important statistical ideas, especially because this 
kind of social practice never occurred before in this 
class. In her final report about this experiment, Maira 
argues that the students’ interactions that took place 
had “a noteworthy impact on improving the students’ 
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argumentative discourse”, as well, allowed her to have 
“a clearer understanding of the informal inferences 
[that] emerged in groups and nurture a discussion of 
statistical ideas”.

However, Maira also questions her role in those mo-
ments, considering that she could have explored more 
deeply some statistical concepts:

… when he spoke about “more than 50%” … I could 
have taken that situation but then I left it because, 
in the meanwhile, the other girl was trying to 
speak … It might seem ease but that [discussion] 
was a bit confusing, and sometimes we cannot 
grasp all. 

Another important remark concerning Maira and her 
colleague’s reflection about the teaching experiments 
was their proposal of a new category to analyse stu-
dents’ statistical reasoning, because they felt they had 
interesting results which did not fit the framework 
it was provided by the university researchers (by 
Makar & Rubin, 2009). Maira explained that the cat-
egory appeared as they observed that students made 
generalisations that rely on the context: “which are 
statements that they do that come from their personal 
experiences and beliefs”. In the final report, she refers 
explicitly the activity of her class and identifies differ-
ent difficulties and limitations concerning students’ 
statistical reasoning.

DISCUSSION

In this teacher’s case it is possible to see elements con-
nected with belonging to an emergent inquiry com-
munity. Maira engaged with the project in noteworthy 
ways since she expressed her ideas in the meetings, 
made an effort to understand the theoretical ideas 
conveyed, and was highly involved in reasoning about 
task design. Imagination was also present in her par-
ticipation since she started to conceive the possibility 
of developing new approaches with the class even if 
this represented a big challenge for her. In an initial 
moment she appeared to believe that students could 
accomplish the project’s expectations regarding the 
work with the designed tasks but as the project un-
folds many doubts arise. We observe that Maira expe-
rienced a tension between the adherence to the joint 
enterprise of the group, with critical alignment to her 
established practice, and the non-participation in the 

implementation of the tasks, assuming that those can 
only be applied in certain favourable circumstances.

Close to the end of the project, through her inquiry 
about the taught lessons with the tasks designed in 
the group, she came to express her critical align-
ment: there were difficulties and the results were 
not in line with what she had imagined according to 
the project’s goal – developing students’ statistical 
reasoning. From her point of view, the conditions for 
developing the lessons according to the adopted model 
were not adequate. It was her further inquiry on data 
from those lesson supported by some theoretical ideas 
that helped her to notice some positive results and 
to evaluate what happened in some instances of the 
teaching experiment in a different way. This made 
her question her attitude and role in the classroom, 
and the mathematical situations she usually proposes 
in the class. The critical alignment with her practice, 
presents “possibilities to develop and change normal 
states” (Jaworski, 2008, p. 314).

The analysis of Maira’s participation in the project 
shows that some characteristics of an inquiry commu-
nity were present in the practices of the group, being 
inquiry an important aspect to consider. The devel-
opmental research project created many opportuni-
ties for discussing ideas among the group, and stim-
ulated the teachers to negotiate changes to practice. 
Therefore, inquiry emerges in the participation of this 
teacher as an attitude that informs her practice and 
that it is not reduced to a technique applied in some 
situations (Goodchild, 2014). The results concerning 
just one teacher reveal the project’s potentiality for 
promoting teacher development through a cycle of 
collectively planning demanding tasks, experiment 
them in the classroom and reflecting collaboratively 
about the outcomes using one analytical framework.

However, when we analyse the tensions Maira expe-
rienced concerning her engagement with the project, 
it appears that her active involvement in the mutual 
process of negotiation of meaning about the joint en-
terprise and its purposes was absent in some instanc-
es. This requires further research to understand how 
this was experienced by the other participants, and 
the implications of this participation to their profes-
sional development.
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The paper presents and discusses an ATD based 
(Chevallard, 2012) model of theory-practice relations 
in mathematics teacher education. The notions of di-
dactic transposition and praxeology are combined and 
concretized in order to form a comprehensive model for 
analysing the theory-practice problematique. It is illus-
trated how the model can be used both as a descriptive 
tool to analyse interactions between and interviews with 
student teachers and teachers and as a normative tool to 
design and redesign learning environments in teacher 
education, in this case a lesson study context.

Keywords: Anthropological theory of the didactic, teacher 

education, lesson study.

THE THEORY-PRACTIC PROBLEMATIQUE 

Establishing coherence between theory and practice 
is one of the main challenges in mathematics teacher 
education (e.g., Bergsten, Grevholm, & Favilli, 2009). 
In Denmark more than four out of ten student teach-
ers experience a lack of coherence between the teach-
ing of general educational science and didactics tak-
ing place at the university college and the practice of 
teaching in schools (Jensen et al., 2008). Throughout 
the last decades teacher education has become increas-
ingly academic – which can be seen as positive – but 
concurrently, the practices at schools have become 
much more challenging due to increasing social and 
ethnic segregation, which affect schools particularly 
in disadvantaged neighborhoods. Therefore, many 
student teachers tend to focus on practical teaching 
tools rather than academic theories.  This develop-
ment causes a risk of a widening of the gap between 
theory and practice in teacher education. 

The theory-practice divide can be regarded from (1) 
theory to practice or (2) from practice to theory. Ad 

(1) the questions are: How can theoretical knowledge 
be utilized to analyze and develop teaching practice 
in schools and how do we create a shared frame of ref-
erence from teaching practice to interpret the theory? 
Subject matter knowledge, pedagogical knowledge 
and pedagogical content knowledge are taught sepa-
rately at university colleges but are in reality inextri-
cably entwined with each other. The challenge is how 
to create interplay between the academic theories of 
mathematics and pedagogy and teaching practice in 
teacher education. It is crucial to create this interplay 
in order to legitimize the theoretical education and to 
place school knowledge in a wider context. 

Ad (2) the teaching practice must be made visible and 
handled as the main object of discussion and theori-
zation in the teacher education. This is necessary in 
order to ensure that student teachers’ learning in and 
from teaching practice is connected to the theoreti-
cal education and brings about a critical view on the 
theories and research from a practical point of view. 

These complex theory-practice relations in teacher 
education calls for a model, which can be used to de-
scribe and analyze the interplay between mathemat-
ical and didactical knowledge; teaching practice and 
learning in both teacher education and mathematics 
teaching in school. In particular, it is important that 
such a model can help differentiating between the 
different kinds of theory-practice relations in teacher 
education.

The aim of the research project behind this paper is to 
answer the following two research questions:

1) What different kinds of theory-practice problems 
appear in mathematics teacher education – ac-
cording to the student teachers?

mailto:kost@via.dk
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2) How can these theory-practice problems be con-
ceptualized and analyzed within a model based 
on The Anthropological Theory of the Didactic 
(ATD)? 

In this paper, the focus is on how the model can be 
used as a tool for analyzing empirical data from a les-
son study project with teachers and student teachers. 
However, at first, the model evolved will be presented 
and discussed. The paper is round off with discussion 
of the benefit of the model in analyzing theory-prac-
tice relations in mathematics teacher education and 
on how such analyses can inform the design and use 
of lesson studies in teacher education. 

A MODEL OF MATHEMATICAL 
TEACHER EDUCATION

ATD (Chevallard, 2012) provides an epistemological 
framework for mathematical knowledge. In ATD 
mathematical knowledge, regarded as a human ac-
tivity including teaching and learning mathematics, is 
modelled by mathematical and didactical praxeologies 
(Winsløw & Madsen, 2008). Praxeologies consist of a 
practice block (praxis) regarding the questions what to 
do and how to do it (know-how) and a theory block (lo-
gos) regarding why to do it (know why). In addition to 
this, ATD models the didactical transposition of math-
ematical knowledge from scholar mathematics mainly 
evolving at universities to knowledge actually taught 
and learnt in schools (Bosch & Gascón, 2006, p. 56). The 
didactical transposition is divided into two steps. The 

first step is the external didactical transposition from 
scholar mathematics to knowledge meant to be taught – 
the mathematical knowledge as it is described, for 
example, in curriculum and textbooks. This step is 
often performed by people outside the school. The 
second step is the internal didactical transposition 
from knowledge meant to be taught to knowledge actu-
ally taught – this step is every day work for teachers.     

The two concepts, praxeology and didactic transposi-
tion, both bring central theory-practice relations into 
focus – the first one inside an institutional frame (e.g., 
the school) and the second in a broader context be-
tween institutions. Together they provide a compre-
hensive picture of teacher education in mathematics, 
which can be usable to point out and analyse problems 
and constraints as the theory-practice problematique.

In the model below the two concepts are combined 
to form a model for analyzing the theory-practice 
problematique in teacher education (Figure 1). In 
my research the model is intended to be a tool for 
both descriptive and normative analyses. At first, 
the model is used descriptively to analyze different 
kinds of empirical data from two lesson study projects 
in connection with teacher education. On this basis, 
the model will be used normative to propose new ways 
to organize teaching practice, preparatory education 
and the theoretical education at the university college 
to improve the coherence between theory and practice 
in teacher education.

Figure 1: Teacher education model
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The model consists of four columns containing the 
four kinds of knowledge in the didactic transposition. 
Each kind of knowledge is described by a mathemat-
ical praxeology with theory, technology, technique 
and task (see Winsløw & Madsen, 2008, for further 
details) depict with white boxes and a didactic praxe-
ology, also with a theory and practice block,  depict as 
blue boxes in Figure 1. By collocating the model and 
teacher education practice three different, pivotal 
theory-practice problems can be located – occurring 
in different forms. These are emphasized by red axes – 
two vertical and one horizontal axis. 

The horizontal axis is dividing the practice blocks 
and the theory blocks. This axis stresses the divide 
between practical, procedural mathematics with em-
phasis on techniques to carry out tasks and theoreti-
cally doing mathematics by combining techniques and 
concepts, arguing, proving etc. The transcendence of 
this barrier is a crucial point for mathematical educa-
tion – the higher level of abstraction in the theoretical 
block is a necessity but also a very difficult barrier to 
almost all pupils. Consequently, this axis is a signif-
icant problem area for teacher education both with 
regard to student teachers learning scholar mathe-
matics and pupils learning mathematics at school and 
the relation between practice and theory block is an 
appropriate model in both cases.

The two vertical theory-practice axes are dividing, 
respectively, the scholar mathematics and knowledge 
meant to be taught and knowledge meant to be taught 
and knowledge actually taught. The divide in the first 
axis is treated at the university college. Comparison 
of scholar mathematics and knowledge meant to be 
taught is again highly relevant in teacher education 
to analyze what and why specific content is or is not 
selected for curriculum. It is pivotal for student teach-
ers to be critical to this selection and to question the 
decisions in curriculum or textbooks. The arrows at 
the base of the model pointing “back”, for example,  
from knowledge meant to be taught to scholar math-
ematics stresses that knowledge meant to be taught 
or actually learned can be taken as a starting point 
for analyzing the mathematical knowledge on the 
previous levels in the system. The latter of the verti-
cal axes is dividing the theoretical education taking 
place at the university college and teaching practice 
at schools. To combine these two, university colleges 
often organize preparatory education as a special fo-
rum, depict as a small box in the bottom of the model. 

The internal didactical transposition from knowledge 
meant to be taught to knowledge actually taught is 
everyday work for teachers and thus obvious content 
in mathematical teacher education. 

The two columns to the right are a little different com-
pared to the other kinds of knowledge. The relation 
between knowledge actually taught and knowledge 
actually learnt cannot offhand be described as a the-
ory-practice problem because both are a part of the 
teaching practice at schools – the knowledge actually 
taught and learnt. Of course, teaching and learning 
can be described and analyzed by theoretical tools 
but the interplay at schools is a practice matter. As 
the transposition takes place inside school it is a part 
of the internal transposition but knowledge actually 
taught and knowledge actually learnt are closer con-
nected and appears in a more direct interrelationship 
than the other kinds of knowledge. Student teachers 
are supposed to react to pupils’ communication and 
learning, for example, during a dialogue in the class-
room and adapt the teaching to the individual pupil 
or the specific class. Knowledge actually taught and 
knowledge actually learnt can be theoretically an-
alyzed separately but are intertwined in practice. 
Therefore, the two kinds of knowledge are not sep-
arated in the model, but have a common borderline 
regarded as the interplay between the pupil’s knowl-
edge and the knowledge presented by the teacher in 
the form of the teaching environment presented.

THE LESSON STUDY PROJECT 

The next section is an analysis of a group of two teach-
ers and three student teachers’ learning outcome from 
a lesson study project on the basis of the ATD-model. 
The lesson study was conducted in autumn 2013 in two 
classes grade 6 and 7 and the title was “Similar – what 
does it mean?” It was a part of a bigger lesson study 
project with the title Trigonometry and inquiry based 
learning involving 29 student teachers and 17 teachers 
conducted by a colleague and me.  The empirical data 
from the lesson study consists of a lesson plan, video 
recordings of the two completions of the lesson, two 
45 minutes interviews with one of the teachers and 
one of the student teachers and an article written by 
the student teachers. After the lesson study project I 
formulated an interview guide and accomplished the 
following data analysis on the basis of the ATD-model 
with a special focus on the three theory-practice axes.
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Lesson study
Lesson Study is a Japanese form of action based de-
velopment of teaching and teachers’ and student 
teachers’ teacher knowledge. In Japan, Lesson Study 
is an integrated part of both teacher education and 
teaching development in elementary school (Stiegler 
& Hiebert, 1999).

The ingenious and yet simple idea of Lesson Study 
is that the participants  – student teachers and/or 
teachers – consider substantial didactical questions 
through mutual preparation, completion, analysis 
and reflections on one single lesson. Participants’ 
observations and subsequent reflections on the pu-
pils’ learning and from this the didactical theme are 
crucial elements in the format. In the concrete proj-
ect the student teachers studied trigonometry and 
inquiry based education at the University College 
before the project to be well-prepared to cooperate 
with the teachers. Together with the teachers, they 
prepared the lesson and formulate focus points for 
the observations to ensure that the observations are 
targeted at the didactical theme. A central element in 
Lesson study is the written Lesson Plan encompassing 
i.a. deliberations on mathematical, didactical and ped-
agogical aims of the lesson and hypothesis on pupils’ 
strategies to solve the problems they are faced with. 
After a minimum of four hours of preparation one 
of the student teachers taught the lesson while the 
rest of the participants observed on the basis of the 
focus points. The lesson was evaluated immediately 
after the completion on the basis of the observers and 
the teacher’s observations after a carefully worked-
out plan. The evaluation resulted in suggestions to 
change the lesson and improvement of the lesson plan. 
Afterwards, the lesson was taught by a new student 
teacher in a new class immediately followed by an 
evaluation meeting where the second completion and 
the entire lesson study process was evaluated. The 
lesson plan was edited and the gained experience was 
described and discussed. At last, the student teachers 
wrote an article for Matematik – the Danish journal 
of mathematics teacher. It must be emphasized that 
the learning outcome from the lesson study not only – 
and not even mainly – relates to the lesson in question. 
On the contrary, lesson study is suitable to work with 
pedagogical and didactical problems on a generally 
level. The concrete and empirical basis opens up new 
possibilities to confront didactical and pedagogical 
principles with teaching practice at schools (for fur-
ther details see, e.g., Lewis, 2002).     

Data analysis: The lesson plan
The lesson plan is divided into three sections: First, 
some practical information concerning the partici-
pants, who taught the lessons, the name of the school, 
dates for completion of the lesson and the classes 
involved. The second part encompasses the tittle 
and aims of the lesson, competencies involved and 
working method. The last section is a detailed plan of 
the lesson containing mathematical focus point and 
learning goals of the lesson, a timetable, key question, 
teaching resources and useful tips for the teacher.  

The lesson starts with a 10 minutes introduction to 
geometric similarity on the basis of every day exam-
ples of similar and not similar objects like a golf ball 
and a football, different sizes of Toblerone packaging 
(chocolate), enlarging/reducing in a photocopier and 
a pony and an Arab horse (not similar). After the in-
troduction, the pupils receive a right-angled triangle 
cut of cardboard and the teacher asks the key question: 

“You shall pretend that you are a photocopier and draw 
an enlarged and a reduced copy of the triangle”. This is 
the main mathematical task t of the knowledge actually 
taught. When the pupils have drawn the two trian-
gles they must contact the teacher. The teacher then 
asks them two questions: “How did you construct the 
triangles?” and “How can you convince me that the two 
triangles are similar to the one cut of cardboard?” The 
two questions encompass the transcending of the hor-
izontal theory-practice axis from the practice block 
to the theory block in knowledge meant to be taught. 
The teacher’s didactic praxeology in connection to 
this mathematical praxeology is therefore a key issue 
of the lesson. 

The crucial mathematical praxeology to be devel-
oped in the lesson study is based on the type of task 
T: Given a right-angled triangle, how can you reduce/
enlarge the size without changing the form? A possible, 
predictable – and desirable – technique τ is to copy 
two or three angles from the cardboard triangle for 
instance by putting it on top of the paper and draw 
the angles and then reduce/enlarge the length of the 
sides. The technology θ to be realized by the pupils 
is firstly, that equiangular triangles are similar and 
secondary; the ratios between the lengths of equiv-
alent sides are constant. Theory Θ – in this case the 
mathematical definition of similarity – is framing and 
justifying technology.
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The lesson plan also points out some pivotal didactic 
praxeologies. One substantial didactical praxeology 
is concerning the inquiry based education mentioned 
in the category mathematical working methods: “work-
ing in pairs – inquiry based education“ (IBE). IBE is 
concerned with the teaching-learning relation in the 
model – a theoretical idea about how pupils learn and 
from this how to teach. The example shows the deli-
cate interplay between the pupil’s and the teacher’s 
didactic praxeology. The appertaining type of task in 
the teacher’s didactic praxeology is how to set up a 
learning environment that makes the pupils investi-
gate the mathematical task. The task is not explicitly 
mentioned in the lesson plan but two different tech-
niques to solve the task appear in the following quotes: 

“The pupils work inquiring with concrete materials and 
get the opportunity to reason on their own” and “Tips for 
the teacher: Be careful not to unveil the points”. So, the 
two main didactical techniques are to use concrete 
materials and to give the pupils opportunity to work 
out their own solutions (in pairs) without a standard 
procedure presented by the teacher. 

The example shows how the model captures underly-
ing mathematical and didactical considerations and 
the relations between these. In this case, the model 
is primarily used descriptively to analyse the lesson 
plan but it can as well be used normatively for instance 
to improve the design of the lesson plan template in 
the example about the ratios between the lengths of 
the sides by stressing the connections between math-
ematical and didactical praxeologies or type of task, 
technique and technology. 

Video recordings of the lessons
The video recordings show that the student teachers 
to a great extent conduct the lesson as it is described 
in the lesson plan. They have experience with lesson 
study and know that this is important to focus the at-
tention on the teaching instead of the teacher. During 
the section of the lesson where the pupils work with 
the problem in pairs they stick to the manuscript of 
the lesson, for example, “Be careful not to unveil the 
points”, and pose the planned question. For instance, 
in the following situation in grade 6:

Pupil 1:  This one is double size
ST:  How can you convince me, that it is the 

same triangle? Can you argue that they 
are similar?

Pupil 1: It has the same shape – and it has three 
sides

Pupil 2: And it is right-angled
ST:  Yes. But so is this triangle (the teacher 

shows a triangle from another group).  
And your triangles are not similar to 
this one?

Pupil 1: No
ST: No, but they both have a right angle 

and three sides. Try to find out what 
the similar triangles have in common 
but these have not. Think about it…  
(The student teacher leaves) 

The student teacher’s first question is almost exact-
ly quotation from the lesson plan. This question is 
difficult to answer to the pupils. Nevertheless, Pupil 
1 refers to “same shape” as a colloquialism but unfor-
tunately, the teacher do not respond to the suggestion 
and so the pupil do not get the opportunity to create a 
link to the mathematical concept – equal angles. This 
is the task of the didactic praxeology – to extend their 
understanding of the everyday word similar to a more 
exact mathematical interpretation. The example (and 
others alike) shows that the question does not encour-
age the pupils to investigate mathematical properties 
about the similar triangles and thereby get an oppor-
tunity to become acquainted with the theory block of 
the mathematical praxeology. The technique to solve 
the didactical task seems to fail. Maybe as a conse-
quence of this, the student teacher improvises and 
reformulates the question: “Try to find out what the 
similar triangles have in common but these have not.” 
This question is not mentioned in the lesson plan but it 
leads the pupils to examine mathematical properties 
because the question is posed in mathematics. An ob-
vious answer to the question is that similar triangles 
have angles in common but ratios of the length of sides 
are not in the same way immediate obvious for pupils 
at this age. A new didactical task is therefore how the 
teacher can pose questions to lead the pupils to exam-
ine the ratios of the length of sides without “unveiling 
the point”? Analyzing the situation by means of the 
model could for example lead to a question like “What 
will happen if you multiply the length of the three sides 
with the same number – 2 for example?” The example 
shows that a problem concerning the didactic praxeol-
ogy requires an analysis in details of the appertaining 
mathematical praxeology. 
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The video recordings show that the student teachers 
are very determined to follow the lesson plan as it 
is planned by the participants. The comprehensive 
preparation of the lesson and the very close connec-
tion to the theoretical education gives the student 
teachers an opportunity to try out their theoretical 
knowledge – both didactical and mathematical – in 
practice. Because they stick very carefully to the 
lesson plan there is a close connection between 
knowledge meant to be taught and knowledge actu-
ally taught and between the mathematical and the 
didactical praxeology – this is a crucial challenge in 
teacher education. Obviously, this challenge should 
be taken up in teaching practice but student teachers 
often find this very isolated from the theoretical edu-
cation at the university college. In teaching practice 
the student teachers are “forced to act” – they have to 
teach a fixed number of lessons each week. Therefore, 
they often experience teaching practice as complex 
and stressful and fall into short-lived performance 
without coherence to their learning outcome from 
the theoretical education. 

Interviews
Dialogue and working relationship between teach-
ers and student teachers are – off course – important 
learning resources about school practice for student 
teachers. The interviews show that both teachers and 
student teachers experience significant differences 
between the dialogue involving teachers and student 
teachers in the lesson study compared to the usual 
teaching practice situation: 

Teacher (about teaching practice): Usual, when 
you have student teachers, it is vulnerable. Very 
often, you tell them what they did wrong or what 
they shall be aware of next time in the class in-
stead of sticking to the point, the lesson, the con-
tent. (…)

Teacher (about lesson study): Focus is on the les-
son and not on the student teachers. We are not 
supposed to supervise them. We discuss what is 
working and what is not working about the les-
son. We share a common responsibility to make 
the lesson work. We don’t evaluate the student 
teachers but the lesson. 

Student teacher: In teaching practice, the teacher 
watches you when you teach, whereas in lesson 
study we are equal. We should all participate in 

the preparation of the lesson and we could all 
contribute to the lesson.  

In teaching practice the student teacher usually pre-
pare the teaching and teach a single lesson, while 1–3 
of his or her fellow students and the teacher observe 
the lesson. Afterwards, the teacher supervises the 
student teacher in very close connection to the stu-
dent teacher’s presentations and interactions with 
the pupils in the lesson. The student teacher then 
tries to “correct the mistakes” before the next perfor-
mance – some descriptions by student teachers and 
teachers indicates an inappropriate “trial and error” 
method. The strong focus on the student teacher’s 
performance emphasizes the practice block of the 
teacher’s didactic praxeology and – to a lesser extend – 
the teaching-learning relation in the ATD-model. 
According to both teachers and student teachers, it 
is unusual to discuss didactical and mathematical 
theory, curriculum and other topics in connection 
with the teaching on a general level – the two col-
umns to the left in the model are almost absent in the 
dialogue. The interviews show that the teacher’s di-
dactical praxeology in knowledge actually taught is 
most often disconnected from both the appertaining 
mathematical praxeology and the mathematical and 
didactical praxeologies in the other columns. This is 
evident in many of the dialogs between teachers and 
student teachers in connection with teaching practice. 
Such practice off course implies a risk of widening the 
gap between student teacher’s experience of theory 
and practice during their teacher education. 

The interviews show two main differences between 
the dialogue between teachers and student teachers 
in connection with usual teaching practice and lesson 
study. Firstly, the dialogue in lesson study take place 
both before and after the teaching and especially the 
very long time spent preparing the lesson was em-
phasized as fruitful. The common preparing together 
with the lesson plan template makes the participants 
discuss and consider knowledge meant to be taught, 
the internal didactical transposition and the interplay 
between mathematical and didactical praxeologies. 
Secondly – as stressed by the teacher in the quote 
above – focus is on teaching and not the teacher in 
lesson study. This implicates for instance that knowl-
edge actually learnt to a much higher degree is includ-
ed in the dialogue in connection with lesson study 
than it is in the dialogue in connection with teaching 
practice and thus, the interplay between knowledge 
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actually learnt and knowledge actually taught can be 
examined, discussed and related to knowledge meant 
to be taught.

There is a very clear consensus between teachers and 
student teachers that the dialogue in connection with 
lesson study to a much higher degree than the dia-
logue in connection with teaching practice includes 
a broader range of pivotal problems in teaching and 
learning mathematics. As a consequence, theory-prac-
tice axis in the model are treated and transcended 
more often. 

CONCLUSION

The ATD model points out three different theory-prac-
tice problems in mathematics teacher education. It 
is crucial to put focus on all three axes and give stu-
dent teachers opportunities to establish coherence 
between theory and practice in connection to the 
three axes.

Through different examples from a lesson study 
it is shown, that the model can be a fruitful tool to 
analyse teaching and learning contexts. Firstly, the 
model can be used as a descriptive tool to analyse and 
criticize planned teaching (lesson plan), actually com-
pleted teaching and the participants’ experiences of 
the teaching with a special focus on theory-practice 
problems. Secondly, the model can be used as a nor-
mative, prescriptive tool for making adjustments to 
or changes in didactical designs for teacher education. 

REFERENCES

Bergsten, C., Grevholm, B. & Favilli, F. (2009). Learning to Teach 

Mathematics: Expanding the Role of Practicum as an 

Integrated Part of a Teacher Education Programme. In R. 

Even & D. Ball (Eds.), The professional education and devel-

opment of teachers of mathematics. The 15th ICMI Study. 

New ICMI study series, vol. 11 (pp. 57–70). New York, NY: 

Springer.

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic 

transposition. ICMI Bulletin, 58, 51–65.

Chevallard, Y. (2012). Teaching mathematics in tomorrow’s soci-

ety: A case for an oncoming counterparadigm. Paper pre-

sented at the 12th International Congress on Mathematical 

Education, Seoul, Korea. 

Jensen, T., Kamstrup, A., & Haselmann, S. (2008). Professions

bacheloruddannelserne – De studerendes vurdering af 

studiemiljø, studieformer og motivation for at gennemføre. 

Copenhagen, Denmark: AKF. 

Lewis, C. C. (2002). Lesson Study. A Handbook of Teacher-Led 

Instructional Change. Philadelphia, PA: Research for Better 

Schools.

Stigler, J. W., & Hiebert, J. (1999). The Teaching Gap. New York, 

NY: The Free Press.

Winsløw, C., & Madsen, L. M. (2008). Interplay between research 

and teaching from the perspective of mathematicians. In 

D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the 

Fifth Congress of the European Society for Research in 

Mathematics Education (pp. 2379–2388). Larnaca, Cyprus: 

University of Cyprus.



2895CERME9 (2015) – TWG18

Uncovering facets of interpreting in diagnostic 
strategies pre-service teachers use in one-
on-one interviews with first-graders

Simone Reinhold

Leipzig University, Faculty of Education, Leipzig, Germany, simone.reinhold@uni-leipzig.de

The research presented in this paper focuses on prospec-
tive elementary teachers’ proceeding in one-on-one di-
agnostic mathematics interviews. It goes beyond meas-
uring the accuracy of teachers’ judgments of students’ 
achievements and analyses qualitative facets of diagnos-
tic competence. Participants of mathematics methods 
courses were asked to prepare and conduct diagnostic 
interviews with children in grade one and reflect on 
their diagnostic proceeding afterwards. Findings of the 
research affiliated to this university teaching project 
lead to a model of strategic elements in PTs diagnostic 
proceeding and suggest types of diagnostic strategies. 
These may be realized or deliberately used to foster a 
sensitive qualitative diagnostic attitude. 

Keywords: Prospective teachers, teacher education, 

analyses in one-on-one interviews, children in grade one, 

diagnostic strategies.

INTRODUCTION

Shulman (1986) or Ball and colleagues (2008) suggest 
distinct domains of teacher knowledge and point out 
pedagogical content knowledge (PCK) to be an integral 
element of teacher knowledge. PCK includes knowl-
edge about common mathematical conceptions or 
misconceptions that are frequently encountered in 
the classroom. An interesting option to gain this kind 
of knowledge arises from teacher education settings 
where teachers examine individual cases: Analyzing 
a student’s error to understand the underlying mis-
conception refers to knowledge of content and students 
(KCS), which is regarded as a sub-domain of PCK by 
Ball and colleagues (2008, p. 403). Thus, the capabili-
ty of “eliciting and interpreting individual students’ 
thinking” can be found among the set of “high-leverage 

practices” (University of Michigan, 2015; Cummings 
Hlas & Hlas, 2012). 

In this sense, identifying unique facets of the specific 
individual situation may contribute to a better under-
standing of widespread (mis)conceptions and provide 
an improvement of KCS (e.g., Peter-Koop & Wollring, 
2001; Hunting, 1997). Dealing with individual cases 
may thereby foster the development of a teacher’s 
diagnostic attitude and improve his or her teaching 
practices: If a teacher has detailed information on a 
student’s individual mathematical concepts at his or 
her disposal, he or she gets the chance to design appro-
priate learning opportunities for this student. In this 
sense, diagnostic competence is an important element 
of adaptive teaching competence (Wang, 1992). 

Recent studies concerning teachersʼ diagnostic com-
petences mainly focus on measuring the accuracy 
of teachers’ judgments (e.g., regarding a rank order 
within classes; cf. Südkamp et al., 2012). In these stud-
ies, diagnostic competence is “operationalized as the 
correlation between a teacher’s predicted scores for 
his or her students and those students’ actual scores” 
(Helmke & Schrader, 1987, p. 94). Individual mathe-
matical learning processes which teachers try to cap-
ture during phases of concrete diagnostic activities 
are scarcely touched upon this understanding of the 
concept of diagnostic competence. But, focusing on 
high-leverage practices and on approaches of infor-
mal formative assessment (cf. Ginsburg, 2009), how do 
teachers arrive at a diagnosis of a student’s concep-
tion via oral questioning or observation? As differ-
ences in accuracy might be due to teachers’ different 
ways of diagnosing and analyzing, how do they get to 
an appropriate interpretation of a child`s utteranc-
es or how can they be helped to achieve appropriate 
diagnoses?
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THEORETICAL FRAMEWORK

Diagnostic interviews in research, in the 
classroom and in teacher education
One-on-one diagnostic mathematics interviews stem 
back to the clinical method of interviewing developed 
by Jean Piaget. For educational research, one-on-one 
interviews provide a powerful method to gain insight 
into children’s mathematical conceptions. Following 
a qualitative research paradigm, these conceptions 
can be interpreted from the children’s utterances and 
activities they show while working on a problem. (cf. 
Hunting, 1997; Ginsburg, 2009).

To cope with the challenges of every-day classroom 
situations, teachers need a sensitive, constructivist 
views of their students’ individual mathematical 
thinking and their progress in developing mathemat-
ical concepts. Thus, diagnostic interviews not only 
serve as a research method, but have also reached 
the classroom and may appear as little talks between 
teacher and student during a phase of individual 
working. In addition, research-based frameworks 
(e.g., concerning learning trajectories) resulted in 
the design of standardized task-based interviews to 
assess the range and depth of children’s thinking in 
the context of mathematics learning in school. In these 
task-based interviews, in-service teachers actively ex-
plore facets of children’s approaches to mathematics 
tasks. Prepared interview tools and empirically based 
growth points for the analysis guide teachers through 
these one-on-one diagnostic interviews and provide 
them with weighty arguments for their diagnoses. 
This may not only foster children’s mathematical 
learning but also serve teachers’ professional devel-
opment (e.g., ENRP task-based assessment interview/
CMIT/EMBI; cf. Clarke, 2013; Bobis et al., 2005; Peter-
Koop et al., 2007).

High-quality programs for prospective teachers (PTs) 
engage them in concrete tasks which also include 
tasks of assessment or observation and focus on stu-
dents’ learning processes (e.g., Borko et al., 2010). Thus, 
studying students’ mathematical conceptions in one-
on-one interviews (which the PTs themselves prepare, 
conduct and analyze) offers substantial learning op-
portunities (cf. Prediger, 2010; Sleep & Boerst, 2012). 
Being involved in research projects that include inter-
view assessments may also support the development 
of a sensitive diagnostic attitude (cf. Jungwirth et al., 
2001; Peter-Koop & Wollring, 2001).

A process-oriented approach to 
diagnostic competence
Expertise in the area of diagnosing children’s math-
ematical conceptions must not be restricted to teach-
ers’ accuracy in measuring children’s achievements. 
It should additionally include rather vague aspects 
like diagnostic sensitivity, curiosity, an interest in 
children’s emerging understanding and learning or 
the aptitude to gather and interpret relevant data 
in non-standardized settings (e.g., Prediger, 2010). 
Aiming at a framework to analyze processes and fac-
ets of diagnosing, it seems helpful to take a model into 
account which points out phases of the diagnostic pro-
cess. In this sense, acting within a diagnostic situation 
in a one-on-one interview which intends to enlighten 
studentsʼ (mathematical) thinking can be regarded as 
an integral element of a circular process consisting 
of three dimensions, each including several compo-
nents (Klug, 2011; Klug et al., 2013): Before trying to 
sum up information for a substantial diagnosis, it is 
crucial that the teacher sets the aim of the diagnosis 
in a preparatory pre-actional phase. This includes that 
the teacher should intentionally aim to watch the in-
dividual student’s learning processes and therefore 
choose appropriate tasks and methods. The following 
actional phase includes data collection and data in-
terpretation. Finally, the post-actional phase implies 
taking the necessary action from the data collection 
and interpretation in the actional phase (e.g., giving 
feedback, planning actions to foster). Activities in this 
phase also serve to prepare a repeated run through 
the diagnostic macro-process.

Cognitive elements in the micro-processes 
of the actional phase of diagnosing
Researchers in mathematics education have partially 
specified the challenges that in-service or prospective 
teachers face within such diagnostic macro-process-
es: Obviously, teachers actively do “construct knowl-
edge by observation, experience, transfer and inter-
relation.” (Bräuning & Nührenbörger, 2009, p. 945). 
Furthermore, there is a strong interest in the field 
of noticing and interpreting which can be analyzed 
when PTs face students’ mathematical solutions. In 
this field, Ribeiro and colleagues (2013) investigate 
prospective teachers’ interpretative knowledge which 
they regard to be part of SCK (specialized content 
knowledge, specified as sub-domain of content knowl-
edge by Ball and colleagues (2008)). In these studies, 
the concept of interpretative knowledge is related to 
the ability of noticing and the authors point out that 
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many PTs “find difficulties in interpreting children’s 
solutions different from their own solution”. Crespo 
(2000) and Kuhlemann (2013) offer similar results.

Focusing on micro-processes within the actional phase 
in a one-on-one mathematics interview; collecting data, 
interpreting and drawing conclusions have a major 
impact on the diagnosis which is derived from an 
interview and are likely based on different kinds 
of knowledge (e.g., KCS or SCK, see Figure 1). Here, 
proceeding in a one-on-one diagnostic interview is 
vitally influenced by cognitive processes and a per-
son’s (verbal) articulation (e.g., ways of questioning, 
confirming). Intentional decisions (e.g., switching be-
tween tasks) may reveal facets of the ongoing internal 
considerations.

Moyer and Milewicz (2002) identified general ques-
tioning categories (check-listing/instructing/prob-
ing and follow-up questions) used by PTs while col-
lecting data in one-on-on diagnostic interviews. As 
there is no direct access to students’ conceptions in 
these interviews, they “must be reconstructed by in-
terpreting their utterances” (Prediger, 2010, p. 76) as 

“the interviewer attempts to construct a model of the 
student’s mathematical knowledge” (Hunting, 1997, 
p. 149). Consequently, it is also important to reach 
a substantial perception of the diagnostic situation 
while interpreting. According to Barth and Henninger 
(2012, p. 51), this “includes the ability to structure the 
situation cognitively, the ability to change the focus 
of attention and the willingness and ability to adopt 
other perspectives” which leads to the generation and 
testing of hypothesis. Moreover, there is a demand 

“to know which information or knowledge sources 
play the most important role during the process of 
diagnosing students’ learning prerequisites” (Barth & 
Henninger, 2012, p. 50). Yet, the implications of “gath-
ering information, acting systematically” (Klug et al., 
2013, p. 39) within the actional phase are not entirely 

clear for one-on-one interviews in mathematics ed-
ucation, so far. 

RESEARCH QUESTIONS

The project diagnose:pro which is setting the frame 
for the study presented here emphasizes the need to 
sensitize prospective elementary mathematics teach-
ers (PTs) to varieties, ranges and depth of young chil-
dren’s mathematical thinking. Therefore, graduate 
students (Master of Education) prepare, conduct and 
analyze one-on-one interviews about arithmetic prob-
lems with first-graders. These activities were part of 
a specific teacher education project at the University 
of Braunschweig (2011–2014) which is, due to space 
limitations, not presented in detail here. One part of 
the affiliated research project focuses on cognitive 
diagnostic strategies PTs use in their reflection and 
during the analysis of those interviews. To reach an 
empirically grounded theoretical framework for a 
qualitative view of PTs’ cognitive activities in one-on-
one interviews with children, the main purpose is to 
detect traits of these diagnostic strategies:

 ― What cognitive elements characterize the PTs’ 
diagnostic strategies when diagnosing individual 
arithmetic approaches in one-on-one mathemat-
ics interviews with children at the beginning of 
grade one?

 ― Which types of (flexibly used) diagnostic strate-
gies can be reconstructed from interviews they 
or others have been conducting? 

 ― What kind of (pedagogical content) knowledge 
is included during the diagnostic proceeding?

METHODS

Making use of various approaches, data collection has 
been ongoing since 2011 and started with explorative 
studies via video-vignettes which led to written (most-
ly open) diagnostic comments of 31 PTs on diagnostic 
scenes. As analyzing these “diagnostic products” was 
not sufficient to answer the posed research questions, 
the following data-collection was shifted to video- and 
audiotaped peer-talks about mathematic diagnostic 
interviews: Here, students of two university courses 
(Master of Education, 28 participants in 2012) were 
asked to discuss about diagnostic scenes in video-vi-
gnettes. Finally, seven PTs (who had conducted a di-

Figure 1: Differentiating the micro-process in the actional phase 

of diagnosing
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agnostic mathematics interview with a first-grade 
child themselves) agreed to take part in retrospec-
tive interviews which complemented data collection 
in 2013. These interviews resembled methods used 
by Moyer and Mielewicz (2002). All PTs attended a 
mathematics methods course in the last year of their 
university studies which provided the opportunity 
to conduct individual diagnostic interviews with up 
to six first-graders per PT in cooperation with an ele-
mentary school. First drafts of these interviews were 
prepared at the beginning of the course where the PTs 
could refer to previous theoretical work on concepts 
of arithmetic learning trajectories and the method of 
task-based mathematics interviews (e.g., EMBI; Peter-
Koop et al., 2007). 

With only general advice at the beginning of the ret-
rospective interviews, the PTs were asked to “analyze 
the interview” while watching the video-recording 
of an interview they had conducted. The PT was 
requested to stop the video at any scene in order to 
comment on the diagnosis he or she would derive 
from this specific situation or related observations. 
If comments were rather short or pure in detail, the 
PT was asked to explain what knowledge, informa-
tion or evidence warranted his or her hypothesis. In 
addition to this concrete task (diagnosis of the child’s 
conception or knowledge), the PT reflected on his or 
her proceeding in a more general way: Referring to 
the preliminary design of the interview, the PT was 
asked to comment on the choice of tasks selected, the 
wording of questions, on their own gestures or on 
deviations from the sketch. All re-interviews’ analy-
ses are based on Grounded Theory methodology and 
methods including open, axial and selective coding (cf. 
Corbin & Strauss, 1990). The interpretation, coding 
and contrasting comparison of the data are support-
ed by ATLAS.ti which enables the research team to 
directly code video-data. 

FIRST RESULTS

Analyses of the study’s data support the notion that 
cognitive elements of PTs’ approaches to diagnosis in 
one-on-one interviews often resemble basic processes 
in qualitative data analysis. This includes acts like 
collecting, interpreting and concluding within diagnos-
tic micro-processes (see Figure 1). Furthermore, the 
findings contribute to the identification of sub-cate-
gories of collecting, interpreting or concluding and 
to interrelations among these sub-categories (see 

Figure 3). Excerpts from re-interviews with Ann and 
Sue, Master students in their last year of studies, ex-
emplify facets of interpreting within the diagnostic 
micro-process of the actional phase.  

Facets of interpreting: Comparing 
and contrasting
In her interview with six-year old Tom, Ann offers 
empty boxes for ten eggs and some chestnuts. The box-
es of ten are partitioned in four fields (see Figure 2) 
since Ann intends to find out how children use these 
structures for counting. She assumes the children to 
use abbreviated enumeration, i.e, counting strategies 
including subitizing parts of an amount (cf. Besuden, 
2003). Ann stops the video and comments on a scene 
where she has just put five chestnuts into the box 
(forming a row). Tom is asked to add further chest-
nuts in order to get a result of eight and fills two, then 
one more into the box. Answering Ann, he remarks 

“Because I left two free, one more’d be nine, then ten.”

Ann (07:08): And there I noticed that he, eh, al-
ways took ten as a starting point for the 
higher numbers, well, for eight and a 
moment ago for nine. He remembers, 
okay there are ten in the package, and 
then he always counts backwards.

In her comment, Ann compares and refers to Tom’s 
previous work (“a moment ago”). Comparing details 
to a child’s previous utterances or actions, to that of 
others or to the PTs own concept may also occur in 
terms of contrasting different scenarios:

Ann (08:30): Here, he saw, okay, there are four 
in one box and there are another four 
in the second box, well, four plus four 
equals eight, but he didn’t do it that way 
in the next task. There he’d count single 
ones, it was done quite differently.

Facets of interpreting in a diagnostic 
micro-process: Coding
Sue uses the same kind of tasks in her interview with 
six-year old Ben. She wants him to find out how many 

Figure 2: Structured box 
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chestnuts have to be added to four chestnuts (which 
are presented in the “square” on the right side of the 
box) to get a result of seven. Ben replies by first adding 
two (forming a “rectangle”), then one more to reach 
seven (Ben: “These are six, then seven.”). Sue codes 
these activities by creating and applying the new term 

“auxiliary calculation”:

Sue (05:40):  Responding to my enquiry, how he’d 
done this, now, how many he’d add, ac-
tually, I only wanted to hear three, well, 
he would seize on his, let’s say “auxiliary 
calculation”, six plus one equals seven. 

PTs are similarly coding observed phenomena as they 
try to grasp unfamiliar, but obviously central aspects. 
Codes are often referred to later in the interviews (e.g., 
Sue’s reference to the code “auxiliary calculation”, 
22:30) and also include substitutions for established 
terms (e.g., “shortcut” instead of “subitizing”).

Facets of interpreting in a diagnostic 
micro-process: References to knowledge 
of content and students (KCS)
To describe the children’s performances in the re-in-
terview, PTs also try to make use of standardized 
terms that refer to previously acquired KCS and seize 
on theoretical concepts that were studied in the meth-
ods course before conducting the interviews:

Sue (04:50): Well, at the beginning, Ben definitely 
used counting strategies. He saw those 
four and went on counting from that 
summand. He noticed, okay, if I add two 
then I’ll get six, thus, he didn’t go like 

“five…six”, but he said, okay, two, that’s 
six.

Although details of the counting strategy “counting 
on by steps of two” are not reflected here, referring to 
mathematical KCS tends to be an important element 
of PTs’ diagnostic strategies: PTs do use information 
from their teacher preparation courses. They retain 
general knowledge of children’s development of math-
ematical conceptions (e.g., “understanding of quanti-
ties”), but then remain unfocused in supporting their 
interpretation with this knowledge: 

Ann (15:17): But, Tom doesn’t have, eh, a complete 
understanding of quantities at his dis-
posal, partly he did, partly he didn’t. It’s 

when a child notices that a number is 
now, eh, bigger than the number before, 
or that one can draw conclusions from 
one equation to the next, that is connect-
ed to the first one.

Types of diagnostic strategies

Following Grounded Theory methodology, distinct 
types of diagnostic strategies with a stress on different 
elements of diagnostic proceeding (i.e., on the exem-
plified (sub-) categories) are detected. As indicated 
by the arrows in Figure 3, PTs’ diagnostic strategies 
are far from a linear process and may be driven by 
general dimensions of diagnostic strategies (e.g., topo-
graphic or symptomatic search; Cegara & Hoc, 2006). 

Following the strategy descriptive collector, the PT 
focuses on collecting and describing the actions, ne-
glects both interpreting and concluding, and searches 
rather typographically. A concluding collector strategy 
is characterized by skipping elements of interpreta-
tion as collecting leads directly to conclusions which 
resembles findings of Crespo (2000). Symptomatic 
searches occur when elements of interpreting pre-
vail in a branched interpretation. Here, interpreting, 
collecting and concluding are intertwined and fre-
quently linked to KCS.

DISCUSSION

The findings of the study provide evidence of sub-cat-
egories of collecting, interpreting and concluding 
within micro-processes of the actional phase of di-
agnosing. They point at KCS within these processes 
and hint at a variety of strategy types. Thus, results 
enrich, for example, the idea of “interpreting” in the 
actional phase of diagnosing suggested by Prediger 
(2010) or Barth and Henninger (2012). 

Figure 3: Sub-categories of collecting, interpreting and concluding
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Bearing in mind that the findings are restricted to a 
particular type of tasks (arithmetic issues) and that 
they refer to a rather small number of participants 
(n=28 in peer-talks; n=7 individual interviews), the 
study outlines new topics in the field of teachers’ 
professional development: It raises the hypothesis 
that reflecting on facets of interpreting in one-on-
one interviews enhances PTs diagnostic sensitivi-
ty. This may increase their knowledge of assessing 
children’s mathematical abilities and contribute to 
the consideration and implementation of “high-lever-
age practices”: An awareness of “strategic diagnostic 
tools” might help to master diagnostic challenges in 
the classroom. Thus, further activities of the project 
diagnose:pro will explore how the findings (elements 
of diagnostic strategies/types of strategies) can be 
taken up in university courses and contribute to ap-
propriate diagnoses of children’s concepts in one-on-
one interviews. Further steps also include using the 
developed model to qualitatively evaluate changes of 
PTs’ interpretations over the duration of university 
courses and to analyze what leads to changes in PTs’ 
diagnostic strategies.
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Teacher empowerment is an alternative proposal from 
Socioepistemology that postulates it as a tool for the 
professional development of teachers. The concept of 
empowerment is accompanied by the “problematization 
of knowledge” in both senses: mathematical knowledge 
and school mathematical knowledge. We assume that 
teachers will be better able to transform their education-
al reality, since they will have taken possession of the 
teaching knowledge. This new relationship to knowledge 
is not based more on mnemonics, but on what we con-
sider to be the essence and “raison d’être” of knowledge 
that will allow the teacher to develop various strategies 
considering his group of students. In this paper, we will 
discuss “proportionality” for its high cultural value and 
its transversality in education.

Keywords: Socioepistemological Theory, teacher 

empowerment, problematization of knowledge, 

proportionality.

POSITIONING THEORY

While “the best-selling question” of the 90’s was how 
to teach using various teaching strategies in order 
to make the understanding of certain mathematical 
knowledge more accessible to students at different 
educational levels, the Socioepistemological Theory 
posed a somewhat different question: What is it that 
we are teaching? What is it that our students are learn-
ing? That is to say, lets study and discuss the nature of 
mathematical knowledge, and thence, “reflect on” the 
school mathematical knowledge. Studying its nature 
does not implies just making an epistemological study, 
but getting a systemic perspective of the epistemo-
logical, didactical, social and cognitive dimensions of 
mathematical knowledge, it means, looking at them 
as a whole.

In terms of teaching practice, while the classical 
currents analyzed the tasks that teachers use in the 
classroom, the teacher-student interactions, the com-
petition brought into play to solve math problems, the 
teacher’s knowledge on how students think, know or 
learn a specific mathematical content, among many 
others, Socioepistemology wondered what and how is 
the professor’s relationship to knowledge in a speci-
fied didactic relationship? It is for this reason that our 
line of research considers a necessary articulation 
between two theoretical elements: the functionality 
of the mathematical knowledge of proportionality 
(transversal notion in the educational system with 
high practical value in everyday life) and the theo-
retical construct of teacher empowerment (Reyes-
Gasperini & Cantoral, 2014). On the basis of such an 
articulation we wove a conceptual framework in 
order to show that the teacher empowerment, from a 
socioepistomological vision, is a little known alterna-
tive to study the professional development of teachers 
problematizing mathematical knowledge.

Socioespistemological theory studies the social con-
struction of mathematical knowledge. The education 
problem is not that of the constitution of abstract ob-
jects, but their shared significance by its culturally situ-
ated use. It is assumed that since this knowledge is so-
cially constituted in non-school settings, its diffusion 
to and from the educational system forces it to a num-
ber of changes that directly affect their structure and 
functioning, so that also affects relationships estab-
lished between students and their teacher. The soci-
oepistemological research promotes a decentration of 
the object, that is, to pay attention to the practices from 
which it emerges and not just on the mathematical 
object per se. Socioepistemology delimits the role of 
historical, cultural and institutional setting in human 
activity, so the problem that motivates the research 
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can be student’s difficulties in learning a particular 
concept; however, studying it seeks to contribute to 
an alternative vision that includes the associated so-
cial practices and, to that extent, provide a social and 
cultural look of mathematical knowledge (Cantoral, 
2013, Cantoral, Reyes-Gasperini, & Montiel, 2014).

SOME LINKS TO TEACHER EMPOWERMENT 
WITH MATHEMATICAL KNOWLEDGE

Empowerment is a social phenomenon typically stud-
ied in various disciplines and approaches, from social 
(Martínez Guzmán Dreyer & Silva, 2007), feminist 
(Camacho, 2003), from the Psychology Community 
(Montero, 2006), or from an educational point of view 
(Howe & Stubbs, 1998, 2003; Stolk, de Jong, Pilot, & Bulte, 
2011). While each of the disciplines has a particular fo-
cus on the phenomenon, they all concur in their main 
characteristics that we have synthesized in the follow-
ing way: empowerment is understood as a process of the 
individual in collective work (interaction is required in 
collective work), which parts from the reflection to be 
consolidated in action, which is produced by the indi-
vidual without the possibility of being granted (collab-
orative work will be necessary but not sufficient to pro-
mote empowerment) and, above all things, transforms 
the reality of the individual and his context.

In particular the projects that aim to promote teacher 
empowerment (Howe & Stubbs, 1998, 2003; Stolk, de 
Jong, Bulte, & Pilot, 2011) provide teachers with tools to 
design new situations emphasizing contextualization, 
either by knowledge of new research related to the 
topic, as well as by the sample of situations that pro-
vide a context to what they already know. All with the 
aim of obtaining an attitude of leadership, confidence 
and improvement in their practices towards educa-
tion, emphasizing the fact that they may acquire the 
power to take the reins of their own growth. While 
we may coincide with the results that are expected to 
be achieved, we believe that this type of analysis is 
reduced to only a pedagogical interpretation. 

Our proposal, given the socioepistemological charac-
ter that is added to this phenomenon, incorporates the 
notions of problematization of mathematical knowledge 
(PMK) and problematization of school mathematical 
knowledge (PSMK) keys to boost teacher empowerment. 
The action of problematizing the school mathematical 
knowledge is done with the knowledge that teachers 
use in the educational system. Now, why do we dif-

ferentiate PMK from PSMK? The PMK refers to the 
fact of “making a problem out of knowledge”, an object 
of training analysis, locating and analyzing its use 
and its raison d’être, namely refers to the study of the 
nature of said mathematical knowledge, for example 
related to the proportionality, on the basis of questions 
like: What problem did the notion of proportion come 
to resolve that could not be resolved without them? 
Are the problems more difficult when the magnitudes 
are heterogeneous than when they are homogeneous? 
Why are problems on the fourth missing value worked 
on if the comparison is not represented there? Where 
do the proportions appear in the civilization? What 
characterizes the relation of proportionality? Among 
many others. The socioepistemological study based on 
teaching, epistemological, social and cognitive dimen-
sions of knowledge can make up a unit of socioepistemic 
analysis (USeA, UASE in spanish) that causes a singular 
symbiosis between, and from, the four dimensions, in 
order to generate a theoretical framework that chal-
lenges mathematical knowledge, and subsequently, 
school mathematical knowledge.

In contrast, when we work with the PSMK, we draw 
on the knowledge that is fundamental to the educa-
tional system. Based on the USeA an activity guide 
is designed which confronts the typical educational 
activities in order to put the teacher in a learning 
situation and thus generate spaces for the PSMK to 
be performed (Reyes-Gasperini, Cantoral, & Montiel, 
2014). We understand the PSMK as the action part of 
the introspection, the gaze of the learner and uses 
available in their everyday life. 

It is necessary to mention at this point that the soci-
oepistemological theory rests on four fundamental 
principles (Cantoral, 2013): the regulatory principle of 
social practice, the principle of contextualized rational-
ity, the principle of epistemological relativism and the 
principle of progressive resignification or appropria-
tion. These four principles underlie the PSMK, well 
this problematization will allow the teacher to consider 
that social practices are the foundation of the construc-
tion of knowledge (regulation of social practices), and 
that the context will determine the type of rationality 
with which an individual or group – as a member of a 
culture – builds knowledge whilst he/she can express it 
and put it to use (rationality contextualized). Once this 
knowledge is put to use, that is to say, it is consolidated 
as knowledge, its validity will be relative to the individ-
ual or the group, as it emerged from their construction 
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and their arguments, which gives that knowledge epis-
temological relativism Thus, because of the evolution of 
the life of the individual or group and its interaction 
with various contexts, such enriching knowledge of 
new meanings will be redefined constructed to this 
moment (progressive redefinition).

Therefore, the links between empowerment and 
mathematical knowledge are given by the articula-
tion of the typically social phenomenon with the so-
cioepistemologic character that underlies its main 
action: the PSMK.

PROBLEMATIZATION OF MATHEMATICAL 
KNOWLEDGE (PMK) AND PROBLEMATIZATION 
OF SCHOOL MATHEMATICAL KNOWLEDGE 
(PSMK): THE CASE OF PROPORTIONALITY

In our current research, we take the proportionality, 
as a mathematical notion, to work the PMK and the 
subsequent PSMK with teachers. In order to give some 
guidelines for what leads to the construction of the 
USeA, we part from an idea rooted in the educational 
system and society in general, however, we should 
make it plain that here there will only be presented 
some examples of what the USeA is in its entirety. If 
we asked in a generic way, “What is proportionali-
ty?” most would answer that it is a form of variation: 

“When more is more or less is less”, or, “when using the 
rule of three”. In these responses, we find two aspects 
to consider, first, the memory of a “recipe” to iden-
tify a problem of proportionality; on the other, an 
algorithm with which to solve said problem. Some 
typical examples given in this respect are: the price 
in buying tortillas in kilos, the distance traveled in a 
certain time, among others; but they all have the same 
prototype. The use of colloquial language allows the 
fluidity of a set mathematical thought, but will inevi-
tably redefined subsequently, for example, at a formal 
level, it should be reflected in written form at a level of 
symbolic object and consider “the notion of constants 
proportionality” as the product or the reason for the 
magnitudes. Piaget’s theory (1958, quoted in Noelting, 
1980) considers proportionality as the hallmark in the 
development of formal operations, therefore, we ask, 
have students (or teachers in our case), developed this 
type of reasoning? The idea of   spending an additive 
relationship to a multiplicative relationship seems 
to be the fundamental idea that has been pursued in 
studies concerning proportionality. 

In problems of proportionality, usually, it is asked, 
“How many hours it take to travel 25 miles?”, for us it 
is important to reflect on the notion of speed, consid-
ering it as relation between distance and time, rather 
than solely the notion of “missing value”. Perhaps this 
is an obstacle that so far may not have been considered 
as an issue that cuts across the colloquial and has to do 
with a germinal idea of what the notion of reason is. To 
do this we ask, what is the nature of proportionality? 
Is it a continuous or a discrete nature?

Given this situation, we question whether it is possi-
ble that the question “how many” can generate a cen-
tered answer among students in the quantification 
rather than the relationship. Well, if we asked what is 
or what are the relationships that can be established 
between the magnitudes, perhaps we would be giving 
the students a relationship beyond the concentration 
in number and quantity to think about. That is, if from 
a psychologist point of view the research reports that 
proportional reasoning is related to the development 
of formal operations and is complex, if not impos-
sible, to achieve such reasoning, it would seem that 
we should think that the way that said knowledge is 
addressed is alien to the reality of the student and 
teacher in our case. 

We conducted a formal analysis of the theory of pro-
portions addressed by Elements of Euclid in his Book 
V, we work on par with the idea of incommensurability. 
Hence we affirm: if there is no such thing as a com-
mon measure, how can these quantities be measured? 
The problem of measuring, was replaced by Euclid as 
the problem of comparing. This is the fundamental 
question that gave rise to the theory of proportions 
between magnitudes. So, is the condition caused by 
the inability to measure what has led to the need to 
compare? Just as the inability to advance time which 
has led us to predict (Cantoral, 2013). 

In this respect it is stated that this theory emerges 
to address two specific problems of the time. On the 
one hand, before the conflict that had suffered the 
Pythagorean theory regarding the impossibility of as-
signing a number to the ratio of two quantities, theory 
of proportion was redesigned in such a way that “you 
could talk about reasons and proportions, without 
specifying whether or not they were considered com-
mensurable magnitudes” (Guacaneme, 2012, p. 104), 
where the greatest merit of the theory described in 
Book V is the possibility of comparing incommensu-
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rable magnitudes (Corry, 1994, quoted in Guacaneme, 
2012). On the other hand, the elements are intended to 
present the mathematical theories under a deductive 
axiomatic scheme. Now, if the theory of proportional-
ity arises as the possibility of comparing incommen-
surable magnitudes, it is logical to think that if most 
of the problems encountered in the literature that are 
to do with the missing fourth, these kind of problems 
does not always require a proportionate reasoning 
(Lamon, 1999), for there will be nothing to compare 
because the amounts are given and you have to oper-
ate on them arithmetically, applying the rule of three 
most of the time. In addition, they can announce them-
selves with the structure of the missing fourth, with-
out there being a proportional relationship between 
the magnitudes, however, the students will resolve it 
since the characteristic they believe to be enough to 
apply the simple rule of three is that both magnitudes 
increase (while the issue is to characterize the type 
of growth). So far, we conjecture that it is necessary 
to return to emphasize the relationship between the 
magnitudes by comparing them.

During the process of research on proportionali-
ty, we have studied the famous “Cauchy functional” 
that gave light to analyze the difference between the 
additive and multiplicative thinking in depth, creat-
ing a new look at the nature of the proportionality. 
There are four functional Cauchy equations (Roa, 
2010), in a later study we related each of the four 
functional equations at school-level with four func-
tions that are of significant importance: Exponential 
function: f(x  +  y)  =  f(x)  ⋅  f(y); x,  y  ≥  0; Logarithmic 
function: f(x ⋅ y) = f(x) + f(y); x, y ≥ 0; Power function: 
f(x ⋅ y) = f(x) ⋅ f(y); x, y ≥ 0; Proportional function: 
f(x + y) = f(x) + f(y); x, y ≥ 0. 

The Cauchy’s functional served as sustenance to give 
evidence, in an analytical and graphical way, for the 
differences between a proportional linear function 
and a non-proportional linear function, since that 
function is only true in the first case. This allows us 
to analyse the proportional function from a particular 
property and not just from the classical ownership 

“double receives double” or from “the rule of three”.

In our case, we study in depth the related with the 
proportional function, which, based on the USeA of 
Reyes-Gasperini (2011), it was stated with the models 
of proportional thinking reported in the literature. 
Let’s start now by thought patterns, there is a quali-
tative thought that is the first to appear in individuals 
(Inhelder & Piaget, 1972) and is exemplified by the idea 
of the chorus “more is more; less is less”.Godino and 
Batanero (2002) conducted a study based on (Noelting, 
1980) where they report the following types of reason-
ing used by students to decide between two jugs of 
juice which is the one with the “stronger” taste. Their 
arguments are based on the comparison of the num-
ber of glasses of water and juice placed. The question 
posed is: “My mother has prepared two jugs of lemon-
ade. In jug A she has mixed two glasses of water and 
one glass of lemon juice. In jug B she has mixed three 
glasses of water and one glass of lemon juice. In which 
of the two jugs is the lemon flavor is more intense?”

Even if the amounts are in play, the answer is not a 
quantity, but a relationship between them: which is 
more intense? As the authors say “the additive strat-
egy would be to compare the difference between 
the glasses of water and the lemon juice in each jar” 
(Godino & Batanero, 2002, p. 439), but they ensure that 
this strategy will not be sufficient to address problems 
of greater complexity. Regarding the above, Carretero 

Figure 1
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(1989) distinguishes two types of structures. On the 
one hand, those having a given relationship between 
homogeneous magnitudes (also called extensive by 
other authors) to those called scalar multiplicative 
models; and on the other hand, those having a relation-
ship between heterogeneous magnitudes (also called 
intensive), to those called functional multiplicative 
models. Subsequently Lamon (1993) also makes a dis-
tinction as strategies for students to find the missing 
value in a proportion. He calls them inter models (cor-
responding to the multiplicative model scalar) and 
intra models (corresponding to the functional mul-
tiplicative model). The work with the different types 
of multiplicative structures around the acquisition 
of the notion of proportionality allowed Carretero to 
conclude that “the division is evidently a more difficult 
operation than multiplication, despite the underlying 
multiplicative structure” (Carter, 1989, p. 95). Thus, we 
conclude that the additive model precedes the scalar 
multiplicative model, which is less complex than the 
functional multiplicative model, however, they are 
all thoughts that underlie the idea of proportionality. 

Moreover, G. Vergnaud works on the theory of con-
ceptual fields considering them a set of situations that 
can be “analyzed as a combination of tasks of which 
are important to know their own nature and difficulty” 
(Vergnaud, 1990, p. 140). Regarding proportionality, 
he compares the conceptual fields of additive struc-
tures (those that require an addition, subtraction, or a 
combination of the two) and the multiplicative struc-
tures (those that require multiplication, division or a 
combination of the two). This allows him to generate a 
classification and an analysis of cognitive tasks and in 
procedures that are potentially at stake in each. This 
allows her to generate a classification and an analysis 
of cognitive tasks and in procedures that are poten-
tially at stake in each.

He concludes by stating that “it is not superfluous, on 
the contrary, to emphasize that the analysis of the mul-
tiplicative structures is profoundly different from the 
additive structures.” (Vergnaud, 1990, p. 144). This 
is to say, we can ensure that there will be tasks that 
demand a multiplicative structure, and others, an 
additive structure.

Therefore, not all problems deserve to postulate a 
proportional reasoning in terms of Lamon (1993), but 
as Vergnaud (1990) says, there are problems that can 
be solved by additive structures or pre-proportional 

reasoning, for example: “If one coconut costs 35, how 
much do 10 coconuts cost?”. 

This example is tackled by Carraher, Carraher and 
Schiemann (1991), where they see how a child solves 

“on the street a sales situation”: Client: How much does 
one coconut cost?; M: Thirty-five; C: I want ten coco-
nuts; How much is it for ten coconuts ?; M: (Pause) 
Three are 105 plus three is 210. (Pause) we are four 
short. It is ... (pause) ... it seems to be 350. 

An immediate question, at this level of analysis is: 
Has the child developed proportional thinking? Our 
answer is yes, because the situation does not require 
a multiplicative structure, but reaches an additive 
structure (additive model composed seen above), 
and behold, our assumptions about the mathemat-
ical knowledge of proportionality: proportional 
reasoning viewed as the relationship between two 
magnitudes that remain constant, should be assessed 
whether developed or not, whenever the situation 
warrants a comparison, that is, an analysis of rela-
tionship type between the magnitudes, and not the 
discovery of a missing value. Hence the need to draw 
up a learning situation that involves a sequence of 
activities where different thoughts are progressively 
and systematically put into play. 

Proportionality arises to address the inability to 
measure incommensurable magnitudes; therefore, 
as it has already been shown as evident, the current 
school significance induces us to look at a math prob-
lem with a different rationality for offering its epis-
temological nature. This may explain the academic 
failure of students to proportionality. 

Given the fundamental idea that the inability to meas-
ure generates the need to compare, let’s see what hap-
pens with a purely mathematical problem to which the 
scales for working have been removed with the idea 
of the type of relationship between the magnitudes 
more than in the quantification of the values.

Activity: To the right of the graph of the function f is 
presented. Does this represent a direct or inverse pro-
portional function? Justify your answer.

Most teachers with whom we have worked on this ac-
tivity (both secondary school teachers and students) 
argue that it is inversely proportional because “a plus 
x, minus y” (qualitative thought). This was the trigger 
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to replant the way we work proportionality in the 
education field, because it generates germinal math-
ematical errors supported by “rote simple recipes”.

The work with teachers leads us to characterize “what 
it is proportional” (the proportional, as we use to say 
in our language of practices) as a relationship between 
two magnitudes whose ratio remains constant. First, 
is analyzed the constant rate of change, that charac-
terizes all linear relationship () and then analyzes the 
constant ratio, that is maintained between its varia-
bles, which characterize directly proportional line-
ar relations (). Thus, was worked on the relationship 
between the magnitudes as from different properties 
of proportional relationships. So rote recipes make 
sense and meaning.

To illustrate, we will show an activity we did with 
teachers, in order to address the idea that not every 
relationship which have the simultaneous increase or 
decrease characterizes a proportional relationship:

“Considers that the first figure is the original. Which of 
them could be considered an extension or reduction 
of it?”

After the teachers’ discussions, where the notion of 
scale was at stake, we address them to reflect that it 

is not enough to consider the presence of an increase, 
we must emphasize the way this increase is done.

DEBATE AND FINAL CONDITIONS

The mathematical treatment of a transversal mathe-
matical subject in all of mathematics education shows 
that you not only need to work with teachers on peda-
gogical issues of general teaching process, or only the 
contents as they are addressed in school. But to this 
type of study we add the need to problematize mathe-
matical knowledge to then work with teachers posing 
questions of school mathematical knowledge and thus 
contribute to the professional development of teach-
ers through the change of relation to mathematical 
knowledge, and not solely based in mnemonic rules 
or formulas with little meaning, but based on what 
we call “the reason for this mathematical knowledge 
and its frameworks that allow their use.”

What we propose to be discussed in in the Group of 
Mathematics Teacher Education and Professional 
Development is how to generate, within the profes-
sional development of the teacher, areas in which the 
knowledge of the teacher is not classified, but through 
what the teacher has in its repertoire (background), 
deepen and challenge the school mathematical knowl-
edge and change accordingly their relationship to 
knowledge. Thus we assume that teachers will be bet-
ter able to transform their educational reality, since 
they will have taken possession of knowledge that 
teaches. This new way to relationship to knowledge no 
longer based on mnemonics, but on what we consider 
the essence of its purpose and allow the teacher to 
develop various strategies by the group of students 
he/she may work with. In short, we are studying the 
process of teacher empowerment, which we postulate 
as a tool that contributes to teacher development. 

The line of research on teacher empowerment pro-
vided by socioepistemology brings a fresh, different 
look on dominant versions in the literature of pro-
fessional development of the teacher in the field of 
school mathematics.
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One of the notions that future Chilean teachers hold 
about their educators is the lack of coherence between 
the latter’s instructional practices and the ways in which 
they are expected to teach mathematics in school. Upon 
this basis, we sought to characterize the Instructional 
Coherence of teacher educators, and particularly the 
way in which it is perceived by students. By applying a 
questionnaire to prospective teachers from two Chilean 
universities, focused on their teaching models, the rel-
evance of replicating certain instructional practices 
in the school classroom, and the types of modelling ob-
served in their educators, we were able to establish that 
coherence is perceived when prospective teachers notice, 
in the practices of their teacher educators, the character-
istics of the teaching model that they themselves profess.

Keywords: Mathematics teacher educators, instructional 

coherence, modelling, pre-service teacher education.

CONTEXT

In Chile, international evaluations of both Chilean ed-
ucational policy (OECD, 2009) and mathematics teach-
er quality (TEDS-M; Ávalos & Matus, 2010) have shown 
that the pedagogical and disciplinary education of the 
country’s newly graduated and practicing teachers is 
not good enough to result in good performance. Even 
though major efforts have been made to improve Pre-
Service Teacher Education, little light has been shed 
on the education processes of teachers in university 
classrooms (the so-called “black box”). In addition to 
this, and despite the relevance of teacher educators 
in this process, fewer studies have been conducted in 
Chile about these participants than about prospective 
teachers (Cisternas, 2011). Conducting more in-depth 
research on this issue could help to understand a fac-
tor which we consider essential in pre-service teacher 

education: the instructional practices of teacher ed-
ucators and the perception of prospective teachers 
about the coherence between their educators’ dis-
course and such practices.

THEORETICAL FRAMEWORK

Rojas and Deulofeu (2013) have observed that the 
teacher educator’s instructional practices (math-
ematical-didactic activities designed and its class-
rooms management) are strongly related with the 
construction of the teaching models of prospective 
teachers. This educational process should include at 
least two aspects to be constructed: on the one hand, 
that the body of teacher educators offer future teach-
ers opportunities to learn mathematics in the way 
their students are expected to learn (didactic model 
transference) (Chapman, 2008; Deulofeu, Figueiras, 
& Pujol, 2011), thus generating processes that model 
teaching practices; on the other hand, that the teach-
er educator introduce activities which constitute 
opportunities to learn to teach mathematics, in the 
sense of planning one’s teaching, analyzing classroom 
management through classroom episodes, and work-
ing upon the basis of the mathematical production of 
secondary school students, which should establish 
a strong theoretical-practical relationship (Boyd et 
al., 2009; Gellert, 2005). The general purpose of these 
activities, in terms of design and implementation, is 
to allow prospective teachers to construct the knowl-
edge necessary to teach high school mathematics. A 
major part of these activities depends on how the 
teacher educator manages them, that is, how he/she 
uses them to display their underlying didactic-math-
ematical approaches (Zaslavsky, 2007).

mailto:frojass%40uc.cl?subject=
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Instructional coherence
However, it is not enough to study the teacher ed-
ucator’s practices. If we consider Chilean students’ 
demands for greater coherence in their educators 
(MINEDUC, 2005), it is necessary to advance a notion 
of coherence that is functional within the educator’s 
job. In the literature, coherence is defined as the de-
gree to which the main goals associated to teaching 
and learning are shared by everyone involved in the 
education of teachers, and also considers the degree to 
which learning opportunities are organized, both con-
ceptually and logistically, to achieve these goals (Tatto, 
1996). Within this concept, two types of coherence can 
be identified: conceptual (between the professional 
perspectives of those who work with teachers) and 
structural (associated with the design of learning op-
portunities) (Hammerness, 2006). Beyond capturing 
the notion of consistency, these definitions stress the 
idea that coherence requires alignment between ideas 
and learning opportunities (Grossman, Hammerness, 
McDonald, & Ronfeldt, 2008). However, none of these 
conceptions emphasizes the instructional coherence 
of the teacher educator, understood as the degree of 
alignment between his/her instructional practice and 
the didactic transfer models that he/she promotes in it, 
including the theoretical models that support them.

The alignment between the theoretical and didactic 
models of the teacher educator and his/her instruc-
tional practices in the university classroom may pro-
vide information about how teacher educators can be-
come models for future teachers. Therefore, a teacher 
educator will display Instructional Coherence when 
his/her practices model the didactic-mathematical 
actions that he/she expects prospective teachers to 
acquire.

Modelling
The teacher educator is always an example for teach-
ers; thus, when considering the widespread idea that 
teachers teach in the way they were taught, the model-
ling role that the educator acquires becomes relevant. 
In this regard, Lunenberg, Korthagen and Swennen 
(2007) state that the ways in which the educator mod-
els certain views of learning can be more important 
than the content itself. For the authors, these “ways” 
are grouped under the notion of modelling, under-
stood as “the practice of intentionally displaying cer-
tain teaching behaviour with the aim of promoting 
student teachers’ professional learning” (p. 589). So, 
considering these ideas, we could study Instructional 

Coherence in order to understand the ways in which a 
teacher educator makes explicit the message that he/
she wants to convey to his/her students.

The authors define four types of modelling based 
on their literature reviews and their own research. 
These forms of modelling are grouped into implicit 
and explicit, with the latter having several degrees 
of complexity.

Implicit modelling: Even though the educators recog-
nize that they must be good examples of the concep-
tions of teaching that they attempt to transmit, stu-
dents often do not see these conceptions in practice. 
In fact, many educators do not manage to make their 
teaching models explicit, and their students’ precon-
ceptions about teaching and learning do not change 
significantly.

Explicit modelling: teacher educators should make 
explicit which choices they make while teaching, and 
why. Some techniques to achieve this goal could be 
journal writing, “thinking aloud”, or co-teaching. 
Although these ways of making educators’ didactic 
decisions explicit may be useful, they are not natu-
rally observed in their actions.

Explicit modelling and facilitating translation into 
student teachers’ own practices: even if educators 
explicit their decisions, students should be able to 
transfer them to their own classroom practices. This 
requires reflection and an analysis of the educator’s 
instructional practices, combined with an attempt to 
define what they mean in teaching terms. From this 
starting point, students will be able to make their own 
decisions.

Connecting exemplary behavior with theory: it is clear 
that the theory-practice connection is essential in 
teacher education. For this reason, it is necessary to 
go beyond making pedagogical decisions explicit and 
giving students the chance to analyze them; students 
should connect practice with theoretical structures 
that allow them to explain these decisions and char-
acterize them to inform their decision-making.

In order to identify which of these characteristics of 
their educators’ instructional practices were present 
in the lessons observed, the questionnaire included 
referred to the modelling that students observed in 
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their educators when conducting certain actions 
aimed at developing their knowledge for teaching. 

Questionnaire dimensions
Both for educators and students, mathematics teach-
ing involves the consideration of several theories that 
make it possible to construct a didactic model (Steiner, 
1990) which has stable foundations and which can be 
implemented flexibly (Godino, 1991). Therefore, to 
study said models at any educational level, it is nec-
essary to break down the practice of the participants 
involved according to the fundamental characteristics 
of the model that they profess.

In order to do this, and on instrumental terms, our 
questionnaire was created considering a set of the-
oretical approaches which are currently observed 
in Mathematics Education research. In this regard, 
Furinghetti, Matos and Menghini (2013) distinguish 
certain dimensions that make it possible to study the-
oretical teaching models. The first dimension, which 
emerged from early 19th century mathematics, con-
cerns the promotion of mathematical thinking. This 
dimension also involves the promotion of statistical 
thinking, which is distinguished from mathematical 
thinking in that the argumentation of the former is 
based on data (Ben Zvi & Garfield, 2004). The second 
dimension is associated with the psychological-cog-
nitive theories of the teaching and learning of math-
ematics advanced by Piaget, Vygostky, Dehaene–
Gingerenzer, Bruner, Ausubel, and Van Hiele, among 
others. The third dimension defined here groups cul-
tural and social approaches together. The theories it 
concerns are those of Freudental, Kilpatrick, Polya, 
and Shoenfeld; social epistemology, socio-criticism, 
the Theory of Didactic Situations, and the Theory 

of Didactic Transposition, given their sociocultural 
nature. In addition, considering the latest results of 
Lesson Study, we added a fourth dimension which is 
associated with the hermeneutic processes that char-
acterize the Japanese teaching model.

The following are the characterizations that we have 
constructed for each dimension in order to illustrate 
how indicators present them.

RESEARCH QUESTION

By singling out instructional coherence as a key ele-
ment in teacher education, due to its role in the con-
struction of the teaching-learning models of future 
teachers, our study is guided by a fundamental ques-
tion: Which characteristics of teacher educators’ prac-
tices make students regard them as coherent? More 
specifically, this article focuses on student perceptions 
about the coherence displayed by their educators which 
can be useful as issues for reflection.

METHODOLOGY

Given that the purpose of this research is to assess stu-
dents’ perceptions about the instructional coherence 
of their educators, we used techniques and instru-
ments capable of measuring this qualitative variable. 
Thus, we employed Likert qualitative measurement 
scales, because they are capable of generating a dis-
crete ordered continuum of the students’ perception 
level.

Sample
In order to look into students’ perceptions about the 
instructional coherence of their professors, students 

Dimension Theoretical Characterization

Mathematical 
Thinking

This dimension is expected to capture characteristics of the mathematics teaching model which 
revolve around mathematical work, considering key aspects of mathematical or statistical think-
ing.

Psychological-
Cognitive

This dimension is expected to capture characteristics of the mathematics teaching model that 
focus on cognitive-structural aspects of mathematics learners. It should also identify aspects that 
shed light on the reasons behind learners’ behaviors and actions concerning mathematics.

Socio-Cultural This dimension is expected to capture characteristics of the mathematics teaching model associ-
ated with the relationships established by social and cultural groups when learn or create mathe-
matical meaning.

Hermeneutic This dimension is expected to capture characteristics of the mathematics teaching model which 
are aimed at creating expertise and command of mathematical knowledge via the thorough use 
of processes and strategies.

Table 1
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and educators belonging to education programs for 
secondary school mathematics teachers at Chilean 
universities were invited to participate. In order for a 
university to be selected, the following requirements 
had to be met: (a) having a teacher education program 
accredited for 4 or more years1, (b) having had a min-
imum admission score of 550 points in the mathemat-
ics part of the test for the last 4 years2, (c) having 14 or 
more Mathematics classes, and (d) 3 or more didactics/
method classes in the program curriculum3. These 
values were established after analyzing the data for 
the 36 secondary education programs in Chile, since it 
was necessary to set a minimum quality level accord-
ing to the parameters used in the national context. Of 
all the teacher education programs studied, only two 
met these criteria.

Specifically, the classes chosen were those belonging 
to the didactic or methodological area, since they are 
where students’ mathematics teaching knowledge 
is strengthened, regardless of their formal name in 
each teacher education program. Finally, a total of 
42 students, 11 from one university and 31 from the 
other, answered the questionnaires.

Questionnaire structure
The coherence variable is complex to study; therefore, 
in order to collect information about it from the stu-
dents’ perspective, an instrument comprising three 
parts (A, B, and C) was used. In part A, the students 
were asked about their academic trajectory in the 
teacher education program they are part of (number 
and type of courses taken) and their perception about 
their preparation for teaching the syllabus contents 
at different educational levels. In part B, they were 
asked about their beliefs concerning the main charac-
teristics of mathematical activity in schools through 
a Likert scale (Likert I) that presented several strat-

1  The accreditation of programs certifies their quality according 

to their declared purposes and the criteria established by each 

academic and professional community (see www.cnachile.cl).

2  The University Selection Test (Prueba de Selección Universitaria, 

PSU) is a standardized measurement with a mean of 500 points 

and a standard deviation of 110. The selection process for stu-

dents who wish to become teachers requires that they obtain 

at least 500 points in the PSU.

3 Teacher education processes are heterogeneous in terms of 

the number and types of classes that they offer their students. 

The programs available are concurrent and consecutive, with 

8 to 24 mathematics courses and 1 to 7 methods (didactics) 

courses.

egies or methodologies which they would regard as 
necessary for their pupils to generate mathematical 
knowledge. In part C, they were asked about the educa-
tional process that they had experienced in their pro-
grams via two Likert scales. The first of them (Likert 
II) presented instructional practices, which can be 
observed in courses of a didactic or methodological 
nature. Students were asked which of these practic-
es they believed were useful to replicate in schools, 
in order to identify which instructional practices 
were making an impact on the construction of their 
teaching-learning models. The second scale (Likert 
III) aimed to identify the type of instructional mod-
elling used by their professors. In order to achieve 
this, the same indicators present in the previous scale 
were presented, but identified as actions performed 
by the educator. For each of them, students were asked 
to classify the indicator according to the modelling 
types described above.

Analytic process
In order to evaluate perceived coherence, this study 
analyzes parts B and C of the instrument. Likert I (Part 
B), was coded binarily, assigning 1 to “Yes” and 0 to 

“No”, and Likert II (Part C), was again coded binarily, 
assigning 1 to the option “Useful to replicate” and 0 to 
the option “Not useful to replicate”. The second scale 
of part C (Likert III) was coded binarily for each in-
structional model. That is, the implicit model was first 
identified with number 1, while 0 represented the rest; 
then, number 1 was used for the explicit model and 
0 for the rest, and so on. In this way, 4 dichotomous 
scales were obtained, which made it possible to com-
pare and group the indicators for each of the models. 
Binary scales were used because, to perform hierar-
chical and event tree analyses on the indicators for 
determining concentration in categorical variables 
when N is small, it is necessary that data be binary 
or be arranged into a Likert scale, that no normality 
be observed, and that no relations be present among 
them. 

To analyze the binarily-coded scales, a hierarchical 
cluster analysis was performed using the Jaccard 
index, which makes it possible to determine the ho-
mogeneity between two indicators. These indicators 
reflect each of the characteristics of the mathematics 
teaching models within the frameworks established 
and described above. Index I is defined as I = x / (x + y – z), 
with “x” reflecting the number of prospective teachers 
who chose indicator X, “y” reflecting the number of 

http://www.cnachile.cl
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prospective teachers who chose indicator Y, and “z” 
reflecting the number of prospective teachers who 
chose both X and Y.

RESULTS

In order to characterize the students’ perception of 
their professors’ instructional coherence, three key 
elements reported by the above Likert scales were con-
sidered: the students’ teaching models (Likert I), the 
usefulness of replicating the instructional practices 
of their educators in their own teaching (Likert II), 
and the type of modelling under which they observe 
said practices (Likert III).

Students’ teaching models (Likert I)
With respect to the predominant mathematics teach-
ing and learning models among prospective teachers, 
when asked “For a student to generate mathematical 
knowledge, it is necessary to”, the hierarchical cluster 
analysis revealed two clusters with Jaccard homoge-
neity indexes over 70%.

The first cluster grouped the next indicators: 3. 
Consider the mental structures of students in terms of 
the concepts’ abstraction level, 4. Consider the discus-
sion between students to generate the concept, 5. Show 
examples and counterexamples, 6. Create a representa-
tion of the concept in the student, 8. Consider that stu-
dents have a certain knowledge and that they will use it 
to understand concepts, 9. Consider the socio-cultural 
aspects of students in connection with the activity, 14. 
Transform pure mathematical knowledge into knowl-
edge that can be taught, 16. Present situations which are 
significant to the student.

This set of indicators shows that students attach great 
importance to their pupils’ previous knowledge, both 
cognitive and sociocultural. This reveals that the 
socio-cultural dimension, as well as the psychologi-
cal-cognitive dimension, are among the elements that 
characterize the model that prospective teachers use 
to teach mathematics.

The second cluster concentrated the following in-
dicators: 9. To formulate a problem for knowledge to 
emerge in response to it and 13. To face the student with 
a problematic situation. Both of them are associated 
with problem-solving as a strategy to generate knowl-
edge. Said indicators are included in the socio-cultural 
dimension of the theories about how mathematics 

should be taught; specifically, they are linked with 
the Theory of Didactic Situations and Polya’s notion 
that mathematics should be learned by simulating the 
activity of a mathematician.

Usefulness of replicating their educators’ 
instructional practices (Likert II)
Concerning the instruction provided by university 
professors, the actions which are part of or char-
acterize their teaching model are those which stu-
dents believe would be useful to replicate in schools. 
Specifically, the following clusters displayed a Jaccard 
homogeneity coefficient over 75%.

Cluster 1: 1. The way in which mathematical problems 
were solved, 3. The way in which students were made 
to participate, 4. The way in which discussions were 
generated about the mathematical learning activities 
conducted, 10. The way in which students were made 
to reason, 11. The way in which complex didactic and/
or mathematical activities were approached (breaking 
something down into smaller elements, giving examples 
and counterexamples, using analogies, etc.).

Cluster 2: 17. The way in which students’ comprehen-
sion was verified, 18. The way in which mathematics 
education theory was used.

Both clusters are part of the social and cultural di-
mension of how mathematics is taught, which inter-
sects with the elements that characterize the students’ 
teaching model. It is noteworthy that, even though 
the indicators ask students to reflect on the aspects in 
which the educator’s work--his/her way of conducting 
activities in the classroom, on the one hand, and his/
her “mathematical-pedagogical” work, on the other--it 
is precisely the “form” of mathematical-pedagogical 
action that is relevant when generating an impact on 
the knowledge of prospective teachers.

Modelling type observed in 
the educators (Likert III)
Finally, regarding the forms of modelling observed 
by the students, only transfer modelling displayed 
an association with the indicators in the clusters 
that characterize the students’ mathematics teach-
ing-learning models. Although the Jaccard coefficient 
was lower than those of previous classifications, it 
never dropped below 45% in any of the clusters of the 
transfer model.
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Cluster 1: 14. To identify students’ mathematical errors, 
15. To tackle students’ mathematical errors.

Cluster 2: 10. To make students reason, 3. To make stu-
dents participate

Cluster 3: 4. To generate discussions about mathemat-
ical learning activities, 17. To verify students’ compre-
hension, 19. To motivate or involve students in classroom 
tasks or activities.

As can be observed, the three clusters again belong 
both to the social-cultural and the psychological-cog-
nitive dimensions. In addition, it is interesting to note 
that the aspects or actions associated with evaluation, 
such as providing feedback to students about their 
work, were observed to have 50% of homogeneity, but 
in the implicit model of the educator.

CONCLUSIONS

When comparing the dimensions students’ teaching 
model, usefulness of replicating educators’ instruc-
tional practices, and type of modelling observed, three 
strong associations can be observed. First, comparing 
the students’ teaching models with the usefulness of 
replicating certain instructional practices (Likert I & 
II) reveals that those deemed useful correspond to the 
same dimensions that characterize their own teach-
ing models, and are associated with aspects of the so-
cio-cultural and psychological-cognitive theories of 
mathematical education. Second, when comparing 
teaching models with the modelling types observed 
in instructional practices (Likert I & III), the students 
manifest the same traits (indicators) that character-
ize their teaching model only for a specific modelling 
type: the transfer model. This implies that students 
observe characteristics of their own teaching model 
when the educator connects instructional practices 
with the reality of schools. Third, comparing the use-
fulness of replicating certain instructional practices 
with the modelling type displayed by the teacher edu-
cator (Likert II & III) reveals that those deemed useful 
are precisely those that belong to the transfer model. 
These associations indicate that, when the educator 
manages his/her class in such a way that allows him/
her to relate didactic-mathematical actions with the 
school classroom, the student regards such actions 
as relevant because they are the ones which belong to 
his/her teaching model. In terms of perceived instruc-
tional coherence, students regard their professors as 

coherent when their practice reflects their teaching 
model.

We believe that the results provide empirical evidence 
of a phenomenon that we knew, but which we had not 
characterized. In this regard, it is worrying for our 
national teacher education system, as well as for other 
systems, to know that students only consider their 
teaching to be effective in terms of coherence when 
instructional practices match their didactic models. 
This prompts a question: to which degree has the 
education received affected students’ conceptions of 
teaching and learning? In the case of the education 
of secondary school teachers, one of the main char-
acteristics of education programs is their strong dis-
ciplinary focus, which contrasts with a brief period 
of pedagogical instruction. So, how has disciplinary 
instruction helped to change the traditional teach-
ing patterns of school mathematics? This and other 
questions lead us to consider the need to know the 
initial didactic models of students, that is, how they 
see the teaching and learning of mathematics when 
they enter university, and how their views change 
as they progress in their teacher education program. 
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The paper reports on the results of a research study fo-
cusing on how to train prospective teachers for guiding 
their pupils through the process of solving word prob-
lems. The teaching experiment involved prospective 
teachers’ work with graphical representations called 
branched chains to solve and pose word problems. The 
paper shows the difficulties the students were facing, 
presents ideas from discussions during joint reflection, 
tries to describe the changes in the students’ skills and 
attitudes. It also points at the differences between pro-
spective primary and secondary mathematics teachers.

Keywords: Inquiry based mathematics education, 

prospective teacher training, subject matter knowledge, 

knowledge base for teaching. 

INTRODUCTION

This contribution is a follow up to a presentation on 
CERME8 (Hošpesová & Tichá, 2013), which focused 
mainly on the quality of prospective teachers’ content 
knowledge and their ability to apply their knowledge 
of mathematics in the solving process of problems 
leading to inquiry based mathematics education 
(Artique et al., 2011). This became the starting point of 
this paper in which we discuss one of the possibilities 
of developing pedagogical content knowledge (PCK) 
and prospective teachers’ inquiry based approaches 
to word problems.  

As has been pointed out repeatedly, students learn 
mathematics by problem solving. While solving a 
problem, they learn to instruct themselves, to make 
decisions which methods of solving to choose. It comes 
natural when solving problems to explore, discover 
and justify. The whole solving process can be regard-
ed as the solver’s dialogue with the problem (How to 
begin? How to carry on at a particular point?) The 

solver modifies his/her decision on the basis of infor-
mation from the problem and confrontation with the 
goal (with the question to be answered in the problem). 
He/she alternately asks questions or poses problems 
and solves these problems. This implies that problem 
posing and problem solving are intertwined. 

A mathematical (word) problem should have certain 
properties one of which is structure. When posing a 
problem we should always bear this in mid. That is 
why we started to include posing of problems of a giv-
en structure into teacher training. We are convinced 
that this activity helps (prospective teachers) (a) get 
rid of stereotypical nature of problems they pose (he/
she grows aware of a structure of a problem and the 
much needed variety), (b) get insight into the struc-
ture of a problem when solving it and (c) overcome the 
tendency to focus only on the sequence of calculations 
that lead to the result.

What we find crucially important is the need to de-
velop prospective teachers’ skills and ability to cre-
ate (mental) representations, to model phenomena 
with mathematical tools, to formulate questions and 
pose problems. In the past years we have shown the 
diagnostic, educational and motivational benefit of 
integrating activities connected to problem posing in 
teacher training (Tichá & Hošpesová, 2013). We have 
discovered that problems posed by the trainees are 
often stereotypical in context, quality of the environ-
ment, representation and structure. The trainees did 
not find it hard to diversify the context and environ-
ment. However, it is very difficult to start considering 
deliberate, conscious work with the structure of the 
problem; both in problem solving and particularly 
in problem posing. That is why we have shifted our 
attention to this area. 

mailto:ticha@math.cas.cz
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In the here referred study we would like to discuss 
how prospective teachers work with the structure of 
a word problem. With this aim we selected one part of 
Czech primary school curriculum, solving two-step 
word problems. In teacher training, we used specif-
ic graphical representations called branched chains 
(example in Figure 1 from the textbook for primary 
school level written by Kittler and Kuřina, 1994). 
Kittler and Kuřina understand branched chains as 
the model of the problem translated into the language 
of chains or as a record of the solution of the problem. 
We use these chains as the means of visualization, as 
graphical representation either of the problem struc-
ture or the problem solving procedure.

Similar graphical representations were used by 
Nesher and Hershkovitz (e.g., 1994). They refer to 
them as schemas for representation of two-step word 
problems.

Let us remark here that the concept of a schema is 
very frequent in mathematics education research 
and is used in various interpretations. These inter-
pretations are often based on approaches and theo-
ries of cognitive psychologists such as Skemp (1971), 
Fischbein (1999), etc. A schema is habitually charac-
terized as a mental structure with two main functions: 
it integrates the existing knowledge, and it is a mental 
tool for acquisition of new knowledge; a schema de-
scribes both the mental and physical actions involved 
in understanding and knowing. Also other character-
istics are given: schema as internal representation of 
information, as a model of activity (action scheme), as 
a set of interrelated knowledge in a specific area, as 
representational structures that represent knowl-
edge in the form of networks of connected concepts, 
as action structures, goal directed activity. 

An analysis of the use of the concept of schema within 
different theoretical context of mathematics educa-
tion is given for example by Davis and Tall (2002). 

Hejný (2012) justifies that a schema, which in his 
opinion represents understanding, is the necessary 
condition for creation of a knowledge structure. Our 
approach to work with branched chains is analogical. 
We understand this work as the graphical means of 
visualization and a tool for grasping the structure 
of problems (data and relations between them) both 
when solving and posing problems. This means that 
we use these chains for deepening understanding of 
the problem solving process and the structure and/
or construction of the problem. 

TEACHING EXPERIMENT, ITS 
PARTICIPANTS AND METHODOLOGY 

We tried to answer the following questions: What 
problems do prospective teachers pose when their 
structure is given by a branched chain? Are prospec-
tive teachers aware of the structure of the assigned 
problems? Whether and how do the students consider 
the structure of word problems? 

It should be noted that in Czech schools it is a very com-
mon practice to solve word problems using various 
graphical representations. However, our experiment 
showed that most of the participants probably had no 
prior experience with branched chains. 

Participants
We worked with two groups of participants – pro-
spective teachers. The first group consisted of 36 pro-
spective primary school teachers. Their undergrad-
uate studies include courses in pedagogy, didactics 

Figure 1 
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and psychology, and also basics and didactics of all 
subjects taught at primary school level (mathematics, 
Czech language, arts, sciences, etc.). The other group 
consisted of 15 prospective secondary school mathe-
matics teachers.

Teaching experiment 
The participants solved a set of tasks in the seminar 
on didactics of mathematics. In the first stage the 
students (a) created branched chains to the assigned 
problems, (b) posed word problems of a specific struc-
ture represented by a branched chain, and (c) decided 
which branched chain represents a given word prob-
lem. In the second stage the students carried out joint 
reflection of posed problems.  

Data analysis 
The survey was planned and conducted as a qualitative 
study. We analyzed all students’ written production 
as well as their verbal comments in the subsequent 
joint reflection. At the beginning we used open coding. 
After that we were looking for relationships between 
solutions and the students’ subsequent discussions. 
What we could observe in our analysis was the grad-
ual acceptance of branched chains and deepening of 
understanding. This could be observed both in the 
posed problems and in the students’ contributions in 
the joint reflection. Our decision was to conceive this 
paper as an analytical story describing how students 
come to adopt branched chains and outline some of 
their misconceptions. 

RESULTS AND DISCUSSION

We started by discussing branched chains (Figure 3) 
and asked prospective teachers how they understand 
and would call these “pictures”. Their responses in-
cluded: “means of visualization, graphical representa-
tion, graphical record (of gradual addition), addition 
snake, alternative form of recording addition, a se-
quence of operations using brackets, analogy to addi-
tion “pyramids”, family tree, tournament tree, mind map, 
Pascal triangle”. 

Posing a problem of a given structure
In the beginning, participants were solving two tasks: 

T1. Create a simple word problem to match Figure 2.

T2. Replace one piece of data in the simple problem 
you have just posed by a simple problem (e.g., as 

shown in Figure 3), thus you will pose a two-step 
word problem.

Most students were able to fulfil these tasks without 
difficulty and posed the required problems, e.g.:

Problem 1 (Figure 2): Every school day, Matyáš 
gets pocket money from his mum and dad. He 
always gets 20 CZK from his mum and 30 CZK 
from his dad. How much money does Matyáš get 
every day? 

Problem 2 (Figure 3): Matyáš gets pocket money 
from his mum and dad. He always gets 20 CZK 
from his mum and three ten-crown coins from 
his dad. How much money does Matyáš get? (The 
author implicitly assumes commutativity.)

We could observe that in the beginnings some students 
(especially prospective primary school teachers) un-
derstood branched chains clearly as a representation 
of the solving procedure. Many students when solving 
T2 posed a problem which was set in the same context 
and which was a sequel to the story in T1, but they 
posed two separate simple one-step problems. As an 
example we present problems 3 and 4. Problem 4 is 
self-contained; it does not develop Problem 3. However, 
the follow-up discussion showed that the author had 
expected this pair of problems to be understood as 
connected, that the assignment of Problem 4 would 
be understood as a sequel to Problem 3.   

Problem 3 (Figure 2): Mum was baking biscuits. 
There were 6 lines of biscuits on a baking sheet. 
There were 3 biscuits in each line. How many bis-
cuits were there on the baking sheet?

Problem 4 (Figure 3): Mum divided baked bis-
cuits among her two children equally. How many 
biscuits did each child get? 

For some students it was hard to grasp “the language 
of chains”. In the follow-up discussion the author re-

Figure 2 Figure 3
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alized that Problem 4 did not correspond to the figure 
from task T2 (Figure 3). That is why she visualized 
Problem 4 by a new branched chain (Figure 4); the 
words “divide between two children” was replaced by 
the sign for division “:” used in Czech schools. In fact 
she tried to make a kind of illustration of the prob-
lem; but Figure 4 made by her does not correspond to 
graphical representation using the language of chains, 
neither in the solving procedure, nor in the structure. 

Another prospective primary school teacher posed 
two consequent simple problems 5 and 6. She also 
continued the story. When representing problem 6, 
she used representation which contains problem 5 
and is a mere record of gradual addition.  

Problem 5 (Figure 5): We saw 3 giraffes and 6 
sheep in the ZOO. How many animals did we see? 

Problem 6 (Figure 6): In the afternoon we con-
tinued our trip and we saw 1 hippo, 1 bear and 
4 zebras. How many animals did we see during 
the whole day? 

There were also inaccurate, ambiguous or even mis-
leading formulations in various answers that could 
be interpreted in more ways in the posed problems. 
This became clear in the joint reflection on the posed 
problems which involved also solution of posed prob-
lems both by their creators and other participants. 

Expanding the chain 
Following the previous two tasks T1 and T2, the stu-
dents were asked to work on modification of chains 
and structure of problems and solved the following 
task: 

T3. Find other possibilities of “developing” the initial 
simple scheme (Figure 2) than shown in Figure 3.

In process of solving T3, the students proposed the 
expansion of a chain given for example in Figure 7 
and returned to Figure 3 and reminded it. Doing that 
they formed for example a triplet of consequent prob-
lems 7–9: 

Problem 7 (Figure 2): I will buy 4 cakes at the price 
of 7 CZK each. How much will I pay? 

Problem 8 (Figure 7): I will buy 4 cakes at the price 
of 7 CZK each and bread for 19 CZK. How much 
will I pay altogether? 

Problem 9 (Figure 3): I will buy 1 poppy seed cake 
and 3 jam cakes. Each cake costs 7 CZK. How much 
will I pay?

This triplet of problems was then discussed by the 
students. After the discussion, one of the students 
expanded the original chain (Figure 2) into Figure 8. 
However, when posing Problem 10 she was not sure 
whether the chain corresponded to the assignment of 
the task T3 and to the text.

Problem 10 (Figure 8): I will buy 4 cakes worth 
7 CZK, i.e. (4 x 7) = 28. I will pay using a twen-
ty-crown coin and add 8 CZK using two-crown 
coins, i.e. (20 + 8). Is this OK?

Other students proposed to visualize Problem 10 with 
the help of Figure 12. That is they realize that Problem 
10 was not a problem with two operations.

Linkage of the problem to the chain
T4. Decide whether Jirka’s (Figure  9) or Hana’s 

(Figure 10) schemes “fit” the following assign-
ment: We were giving out notebooks. 15 were left 
in one package, 9 in another. I want to make packets 
of three from the remaining notebooks. How many 
packets will I make? Justify your answer.

Figure 4 Figure 5

Figure 6

Figure 7 Figure 8
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Within the frame of the joint reflection, one of the 
students suggested that the assignment of task T4 
should be expanded and proposed the three chains 
in Figure 11 (i.e., Jirka’s, Hana’s, and Magda’s).

A very passionate discussion broke out in connection 
to the chain “Magda”. One of the students proposed the 
chain should be “straightened”. This idea launched a 
discussion on the meaning of numbers and symbols of 
operations in this chain. It was very useful and bene-
ficial when students compared the chain “Magda” to a 
graphically seemingly very similar chain in Figure 14 
(Problem 12).  

Some other findings
We could also come across problems with more opera-
tions (multiple-step problems) that did not correspond 
to the assignments, which the students came to realize 
only in the joint reflection – for example, Problem 11 
that was meant to represent chain in Figure 12. 

Problem 11 (Figure 12): I will buy 4 cakes at the 
price of 7 CZK. I have one twenty-crown coin and 
several two-crown coins. How can I pay? 

Another student posed Problem 12 and created two 
chains to visualize it (Figures 13 and 14). This trig-
gered a discussion on whether this is visualization of 
the solving procedure or the structure of the problem. 

Problem 12 (Figures 13 and 14): Honzik found 10 
glass marbles on the pathway. He knew his broth-
er was collecting glass marbles and that he would 
get 2 crowns for each. However there was a hole 
in his pocket and he lost 3 marbles on the way 
home. How much did he earn?

It is clear that students’ opinions on the function, role 
of branched chains vary. However, most of the stu-
dents agreed that a branched chain could help them 
solve problems. 

We could also see that the effort to visualize required 
strenuous mental and intellectual effort. For some 
the will to use a chain at all costs may result in con-
fusion. The chain stops being a benefit and becomes 
an obstacle. The student who had posed problem 13 
was not able to decide whether it corresponded to the 
chains in Figures 15 or 16 and said: “I am totally lost 
in this task.” and “I think I first posed one problem and 
then a chain. When creating the problem I was already 
thinking about the model. Of course I could proceed the 
other way.” 

Problem 13 (Figures 15 and 16): The best basket-
ball players were to be selected from three classes. 
Five were chosen from 2.A, they went to team A. 
6 pupils were selected from 2.B, they were sent to 
team B. Eight pupils from 2.C were divided equal-
ly into both teams. How many players were in 
both teams? 

Figure 9 Figure 10

Jirka

Magda

Hana

Figure 11

Figure 12 Figure 13

Figure 14
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SUMMARY AND DISCUSSION 

As we showed above some participants grasp branched 
chains as a representation of a problem structure, 
others as a representation of its solving procedure. 
This corresponds to the frequent view that a schema 
includes both a category of knowledge and the process 
of obtaining that knowledge. Both these perspectives 
could be come across. However, the conducted survey 
showed differences between the respondents: pro-
spective primary school teachers usually understood 
branched chains as a record of the solving procedure 
(they did not mention the structure, the construction 
of the problem). In contrast, prospective secondary 
mathematics teachers were more likely to perceive a 
branched chain as a graphical representation of the 
structure of a problem. They stated that work with 
branched chains helped them “penetrate into the 
heart of the problem”, grasp the problem. The follow-
ing students’ opinions could be come across: 

“... this is the first time I’ve seen visualization of 
word problems of this type ... these schemas can 
help children who find it difficult to solve multi-
ple-step problems to grasp the assignment.”

“I used to make an illustration of a problem only if 
everything else had failed. Now it’s the other way 
round and I will teach my pupils to do the same ...”

“I can now get to know the structure of each prob-
lem. Thanks to this I can create also other types 
of problems than those they are usually assigned.”

Both groups agreed that it was more difficult to pose 
a problem to match a model than to create a chain 
illustrating a problem. This regardless of whether 
the chain visualizes the problem solving procedure 
or its structure. This is documented by the follow-
ing respondent’s opinion: “It’s much harder for me to 
proceed from the chain to the problem ... when posing a 
problem one must think very differently and this leads 
to better comprehension and in consequence to easier 
solution of problems.” However, we also came across a 
contrary opinion: “I believe a branched chain helps us 
pose problems. It was easier for me first to construct the 
chain and then to come up with a story that fits it.” But 
some students refused the use of branched chains in 
teaching mathematics entirely.

Let us note here that joint reflection was a very impor-
tant part of work in the seminar. Without this stage 
the students would have never grown aware of the 
fact that their problems did not meet the criteria from 
the assignment. 

This makes us ask the following open questions: Why 
do some students understand branched chains as rep-
resentation of the structure of a problem, what is its 
cause? Will this have impact on their understanding, 
on their competence to guide pupils while solving 
problems?

The relationship of this study to inquiry 
based mathematics education 
We perceive work with branched chains for rep-
resentation of word problems as (a) another substan-
tial and stimulating activity leading to cultivation of 
PCK of prospective teachers and as (b) the field for 
application of inquiry based learning in teacher train-
ing (the concept is used in accordance with Artique 
et al. 2011). We are convinced that this approach is 
important in teacher training not only because of 
the fact that trainees get hands-on experience with 
inquiry based education but also because it develops 
creation of PCK. It is not insignificant that it brings 
other quality to the acquired knowledge, in this case 
focus on deliberate work with the structure of prob-
lems, which helps prospective teachers realize possi-
ble modifications of a problem and their effect on the 
cognitive difficulty of their solution, the potential of 
different problems. This should result in more delib-
erate and focused integration of word problems into 
their teaching.

Figure 15

Figure 16
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When we study the issues related to problem solving, 
we build on the concepts of inquiry and discovery 
in mathematics education, i.e. on activities that are 
characteristic of inquiry based learning. The effort 
to improve mathematics education especially in the 
1960s’ resulted in bringing the issue of genetic teach-
ing. This concept came out of the characteristics for-
mulated by Bruner (1966) (who speaks of learning by 
discovery; to educate somebody means to teach him/
her to get actively involved in the process of gaining, 
structuring and storing knowledge), Wittmann (1974) 
(genetic teaching is based on natural cognitive pro-
cess in building and using mathematics), Freudenthal 
(1973) (genetic principle is characterized by guided 
rediscovery as a step in the learning process). These 
fruitful, powerful ideas are also as a rule present in 
the definition (indicated in the list) of the basic char-
acteristics of inquiry based mathematics education 
and are reborn in a new form. 

Benefit of posing problems of a given 
structure in teacher training 
Some positive changes could be observed when the 
students were working with branched chains. We 
are well aware of the fact that the question how this 
change can be verified remains unanswered so far. 
Using a metaphor, similarly to force which is meas-
ured from its effects, the benefit of joint reflection 
and work with structure can be seen in changes, in a 
shift in certain aspects, as an indicator of these activi-
ties to development and refinement of PCK. We could 
observe the following changes: 

 ― Change of climate (intentional work with struc-
ture when posing problems motivates students, 
improves their attitude to teaching mathematics 
and supports their self-confidence).

 ― Change of character of problems (from simple, 
easily solvable “textbook-like” problems that 
were often uninteresting, stereotypical and 
sometimes erroneously formulated, to prob-
lems that were challenging to pupils, were not 
common, whose assignment was varied (there 
were graphs, charts, tables …), that allowed dif-
ferent solving procedures, whose solution often 
required reasoning.

 ― Deeper insight into a selected area, domain, deep-
er understanding of concepts and procedures 
(solving strategies and methods).

In our ongoing research we expand our database and 
we classify the posed problems and branches accord-
ing to pinpointed characteristic properties.  
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The aim of this study was to investigate how three 
pre-service teachers (PSTs) listen to students, notice 
Mathematical Opportunities (MO) and scaffold ideas 
based on MOs. There were 12 videos of three PSTs’ in-
teractions with a pair of 6th grade students respectively 
while studying fractions. We analysed videotapes and 
identified different number of MOs for each PST. The 
findings revealed that with the help of this research and 
teaching environment, all PSTs listen to the students 
to understand their mathematical thinking initially 
(meaning catching MOs) and try to follow-up on them 
in action in differing levels of sophistication. While 
most of the investigated MOs resulted in a mathemati-
cal solution, PSTs need to further develop appropriate 
scaffolding practices. 

Keywords: Pre-service teacher education, mathematical 

opportunities, fractions, scaffolding, listening to children.

INTRODUCTION 

Reform oriented teaching supported the idea that 
“all students should have the opportunity and the 
support necessary to learn significant mathematics 
with depth and understanding” (NCTM, 2000, p. 50). 
Reform-oriented teaching and its natural necessity, 
student-centred education, require teachers to attend 
to students’ thinking both in planning and in action. 
Many researchers investigated how this mechanism 
work in terms of how teachers listen to, pay attention 
to students’ mathematics and act accordingly (Franke, 
Webb, Chan, Ing, Freund, & Battey, 2009; Sherin, 2004). 
Giving importance to students’ mathematics and us-
ing this construct in pre-service teacher education 
programs as component for quality teacher-education 
have been also argued in different research venues 
(D’Ambrosio & Campos, 1992; McDonough, Clarke, & 
Clarke, 2002; Philipp et al., 2007). While the research 
in pre- and in-service education of teachers helps us 
illuminate the issue of how to use students’ thinking 

for practice, there is more to investigate for how this 
opportunity pre-service teachers become to notice 
children’s mathematical thinking and act on such 
situations. 

In this paper, we will report an intervention study 
that focused on three pre-service teachers and their 
interactions with three pairs of 6th grade students. 
The purpose of the study was to understand how 
pre-service teachers’ (PSTs) notice children’s math-
ematical solutions and steer their interactions using 
those notices i.e., how they use those constructs for 
the purpose of “scaffolding activities.”  In relation to 
this concern, we defined Mathematical Opportunities 
(MOs) occurred in the interactions and used those op-
portunities as basis for our web of analysis. Therefore, 
we had following research question:

To what extend do the pre-service teachers notice MOs 
and scaffold students’ mathematical thinking during 
interactions (with the students)?

THEORETICAL FRAMEWORK

Mathematical opportunities
Our definition and use of mathematical opportuni-
ties for pre-service teachers might show parallelism 
with what Leatham et al. noted for teachers. It is 
that teachers should recognize such opportunities 
initiated from the students to build on the students’ 
mathematical thinking (Leatham, Peterson, Stockero, 
& van Zeist, 2015). They called those opportunities as 
Mathematically Significant Pedagogical Opportunities 
to Build on Student Thinking (MOSTs) and described 
them as being observable student actions that enable 
teachers to make inferences about students’ mathe-
matical thinking, as being appropriate and important 
mathematical point to be focused on and as having 
potential to help students to understand the essence 
of the mathematical point. We build further on MOs 
for the purpose of understanding how they might pro-
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vide opportunities for PSTs and what the affordances 
of those opportunities in action for the students.

Instruction based on students’ thinking
A teacher-initiated or student-initiated conversa-
tion between the student and the teacher is valuable 
in terms of having a potential for creating teach-
ing-learning opportunities. Van Es and Sherin (2002) 
stated that in reform-oriented teaching, teacher’s no-
ticing and interpreting students’ actions are key com-
ponents when adapting instruction in the moment. 
While many experienced teachers can learn how to 
notice and interpret over the years of practice, it is 
important that these concepts should be integrated 
in the teacher education programs as basis for re-
form-oriented teaching centered on students’ think-
ing. From their research, van Es and Sherin (2002) 
identified the components of “noticing” as follows: 

“(a) identifying what is important and noteworthy 
about a classroom situation; (b) making connections 
between the specifics of classroom interactions and 
the broader principles of teaching and learning they 
represent; and (c) using what one knows about the con-
text to reason about classroom interactions.” (p. 573). 
For the purpose of providing learning opportunities 
for PSTs about “noticing,” instead of the whole class-
room interactions, we provided a setting where PSTs 
observed the two individual students solved mathe-
matical problems. Then PSTs continued to observe 
when two students discussed about their solution of 
the particular problem and lastly we let them to inter-
act with the students to understand, and extend stu-
dents’ thinking with their questioning and scaffolding 
activities. In this sense we think that providing such 
micro-classroom environment is important for PSTs 
to focus on “noticing” of a pair of students’ mathemati-
cal thinking and provide in-action instruction around 
their observations of students’ thinking. 

Questioning and scaffolding 
With the demands of reform-oriented teaching, the 
nature of the interactions between the students and 
the teachers has to change from traditional show and 
tell to more advanced interactions. Teacher’s use of 
language, teacher’s intentions, the use of representa-
tional and instructional tools, how an interaction 
is started, continued and ended are important for 
providing learning opportunities for the students. 
Anghileri (2006) discusses three levels of “scaffolding 
practices” (for further explanations, see Anghileri, 
2006). The first level is basic and it is related to the en-

vironmental and physical materials in the classroom 
and their effect on orienting students for preparing 
learning. She defines Level 2 scaffolding as “explain-
ing, reviewing and restructuring.” Anghileri (2006) 
states that usually showing and telling had been an 
accepted explaining in traditional teacher initiated 
actions. However, she states that there are alternatives 
to showing and telling, such as reviewing and restruc-
turing. Probing and prompting questioning types are 
mainly used in reviewing students’ mathematical 
ideas. While probing questions are “to gain insight 
into students’ thinking, prompting their autonomy 
and underpinning the mathematical understanding 
that is generated” (p. 42), prompting questions might 

“lock the teacher in the center stage” (p. 43) and might 
put the student into guessing mode of teacher’s in-
tentions behind the questions. Level 3 scaffolding is 
identified as the highest level of scaffolding such that 
we rarely observe this in classroom discourse, it is the 
scaffolding that helps students’ extend their thinking 
and “specifically focused on making connections and 
generating conceptual discourse” (Anghileri, 2006, p. 
47). While Anghileri’s framework helped us to how 
to focus on scaffolding actions, we needed to develop 
a new framework, which helped us to explain PSTs’ 
teaching practices in this study (see the Analysis part). 

METHODS

Research setting and participants
Data collected for this analysis occurred in an after 
school program with the partnership of a university 
in Istanbul, Turkey and a local low SES middle school 
6th grade classroom. Participants included three se-
nior PSTs specializing in teaching middle and high 
school mathematics (Anna, Betty, Carol; all names are 
pseudonyms) and three pairs of 6th grade students 
(Pair A, Pair B, and Pair C; worked with Anna, Betty 
and Carol, respectively). PSTs and the students par-
ticipated in this study voluntarily. All of PSTs had 
some informal teaching experiences such as tutoring 
mathematics, teaching in an after school programs 
voluntarily, however their teaching experiences were 
not homogenized. 

Mathematics workshops
Mathematics workshops originally started with the 
idea to teach 20 local 6th grade students difficult mathe-
matics concepts using manipulative as an after school 
program. There were two university professors (au-
thors) who did team-teaching in the workshops, five 
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to seven PSTs who voluntarily came to workshops 
and helped the 6th graders whenever needed and one 
research assistant videotaped the whole class inter-
actions. After each session, the professors and PSTs 
came together and discussed their observations re-
lated to what happened in the workshop and their ob-
servations related to students’ understanding. About 
11th week in the workshop program, we realized that 
PSTs were doing “show and tell” instead of paying 
attention to students’ mathematical thinking and 
they were very directive in their questions. For the 
following eight weeks, we recruited three PSTs from 
the group, assigned them to particular three pairs of 
students, and focused on one mathematical topic, frac-
tions. Sixth grade students were chosen based on the 
observations and performances they showed during 
the first 11 weeks. There were two mid-achieving pairs 
(Pairs A and B) and one-high achieving pair (Pair C). 

In this paper, we will focus on smaller part of the data- 
4 weeks. During this 4-week period, each session was 
about 45 minutes and organized as follows: The first 
author introduced the activity and 6th graders indi-
vidually worked on them. Later, 6th grade students 
worked in pairs and had chances to discuss their 
solutions with their partners. During this time peri-

od, PSTs only observed and video recorded students’ 
individual work and their work in pairs. PSTs did not 
talk to students during this time period. This was on 
purpose since we wanted to have PSTs focus on stu-
dents’ activities while freeing themselves from the 
urge of teaching. This enabled them to observe the 
students’ mathematical thinking process, how stu-
dents communicated and negotiated their thinking to 
their partners. Later, PSTs were allowed to talk, inter-
act and ask questions for 10–15 minutes. Finally, time 
permitting we had whole classroom discussions with 
6th graders that the first author led.

ANALYSIS

We analyzed four sessions of three PSTs own-record-
ed videotapes. Data analysis consisted of analytic in-
duction (Bogdan & Biklen, 2003). We reviewed all the 
videotapes one by one and identified MOs.  We define 
MOs as 6th grade students initiated solutions and these 
solutions are usually interesting ways of mathemati-
cal thinking related to the fractions topic. For example, 
6th grade students were asked to draw a number line 
and locate unit fractions such as 1/2, 1/3, 1/4, 1/5 on it. 
Betty’s students treated the unit fractions as if they 
were whole numbers and they located them accord-

Identifier Description Coding

Opportunity

The mathematical situation 
that 6th grade students pro-
vide and overall how PSTs 
approached the situation

Y: Yes
N: No

Opportunity 
in action

The interactions such that 
what kinds of questions PSTs 
asked to assess and advance 
students’ thinking, what 
kinds of mathematical or 
mathematical pedagogical 
knowledge they used in their 
interactions, and how they 
proceeded and closed the 
conversations

N/A: If the PST missed the opportunity
Level 1: If PST has surface level questioning. Conversation is mostly 
described as individual questions-answers. There is no big mathemat-
ical idea communicated in the conversation. Teacher mostly asks for 
explanation but does not take it to the further; she does not do any-
thing with the explanation. 
Level 2: If PST asks probing and prompting questions. There is pro-
gressive conversation, which might include students’ contribution, 
but it is mostly teacher-dominated conversation with her mathemati-
cal goals in mind. “Reviewing” and “show and tell” could be indicators 
of this level. In addition, PST might attempt to give examples and use 
materials to help students achieve her mathematical goal in mind but 
the students may/may not understand or make the teacher’s intended 
connections. 
Level 3: If we saw evidences of PST’s guiding students. Purpose of 
questioning is guiding towards a legitimate mathematical idea. The 
students also positively perceive questioning. Questioning might 
advance the students thinking. Students might have some ownership 
of the ideas developed during conversation. PST addresses misconcep-
tion (if there were any) by providing mathematically valid examples to 
help the students to understand the teacher’s mathematical goal.

Table 1: Coding scheme for analysing MOs
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ingly with equal distances.  This is an example of a MO 
that we investigated in detail. We made coding based 
on a grounded framework we developed ourselves 
(see Table 1) but it also shows some similarities to the 
focal points of van Es and Sherin’s (2002) “learning 
to notice” and Anghileri’s (2006) “questioning and 
scaffolding” frameworks.  

We will introduce two examples from the common 
opportunities and discuss how the opportunity was 
used by two PSTs. In the third opportunity (see Table 
2) the students were asked to find a fraction between 
1/2 and 1/3, make a number line and place that fraction 
between 1/2 and 1/3. 

Anna and Pair A
Anna’s students’ answer to the given problem is giv-
en in Figure 1. The students thought 1/2 and 1/3 as 
integers of 2 and 3 respectively. Therefore, a number 
which was bigger than 2 and smaller than 3 was 2.5 
(In Turkey, comma is used to show decimals).

From their drawing we inferred that students prob-
ably thought that, except “0”, the numerators of the 
fractions would be “1” and denominators would be “in 
order” starting from “1.” Because they knew that 2.5 is 
between 2 and 3 then ½.5 would be the answer. Anna 
had the idea that fractions should be represented in 
a/b form where “a” and “b” are natural numbers but 
not decimals. In the following vignettes, Anna first 
wanted to discuss this point:

Vignette 1
Anna: How did you find two and a half? What 

kind of number is two and a half?
Pair A1: It has comma
Anna: Decimal
Pair A2: It is with comma, that is, it is not whole.
Anna: What kind of number system are we in-

terested in? That is, how do we call the 
numbers [pointed to 1/2 and 1/3] in this 
system?

Pair A2: Proper fraction [it was supposed to be 
unit fraction].

Anna: Proper [Unit] fraction, right? Even it is 
improper, it is fraction. We show frac-
tion like this [pointed to 1/2]. So, why 
did you write a decimal here [pointed 
to ½.5]?

Pair A2: We couldn’t find anything else.
Anna: OK. How can you represent two and a 

half in other way?
Pair A2: 2/4
Pair A2: The half of 5. That is 1/2 of 5.
Anna: What do you do with 5, that is, how can 

you represent this as a fraction?
Pair A2: 1/5…
Anna: Your thinking is good but you are miss-

ing something. What did you do here? 
[Pointed to the previous number line] 
What did you do to show 1/4? What did 
you do 1?

Pair A2: We divided into 4 pieces.
Anna: What did you do with 5 and got 2.5?
Pair A2: 5, again we divided it into two.
Anna: OK.    What kind of expression is that?
Pair A2: 1/2.
Anna: You are saying that 5 but then how did 

you divide it into 2.5? Where that divi-
sion operation comes from?

Pair A2: Division operation...
Anna: Don’t get confused by division. Here 

[pointed to previous drawing for 1/4] 
you divided into 4 because you have 1/4 
at hand and to find it you divide one by 
four. Then, I am just talking about this 
2.5. Because, why you wrote 2.5 here, it’s 
interesting. Very interesting. I cannot 
think of it.   

Then Anna drew a number line placing 1, 2 and 3 and 
then placing 2.5 between 2 and 3. The conversation 
continued with her questioning but because of the 
limited space we will not include it. Anna realized 
that students’ thinking would lead to a correct answer 
if the problem statement asked a number between 
2 and 3; an answer of 2.5 as a decimal would be ac-
ceptable. Her questioning shows us that she realizes 
students are not necessarily thinking in the same 
way that Anna thinking about conception of frac-
tions. Anna’s interaction with the students evolved 
around many topics. She first questioned students 
whether their answer was a fraction or decimal, then 
she wanted to have the students show 2.5 as a fraction 
(where she differed from the original answer of ½.5). 

Figure 1: Anna’s students’ work
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In our framework, PST notiaced the MO (coded as Y for 
Opportunity). Once she received answer of “one half 
of 5” from the students, she moved asking questions 
about how to represent it (students said 1/5 that Annaa 
did not investigate). She then asked them to relate to 
earlier example of 1/4 “where 1 was divided into four 
pieces” (as students verbalized).  Anna then focused 
on centralizing the conversation on “division opera-
tion” and how students might have used “division” to 
get 2.5 from 5. For a while, the focus of the conversa-
tion and leading questions were unclear. Eventually, 
Anna asked how they thought ½.5 as in the same way 
they would give meaning to 1/4 (where students said 
it was one piece out of four pieces). Students did not 
give a definite answer to the question but they indi-
cated that it seemed “illogical” after talking to Anna. 
The conversation ended without a satisfying situation 
neither for the students nor for Anna. 

When we analysed the conversation, we observed 
that Anna controlled the conversation. Nature of her 
scaffolding and questioning changed throughout the 
conversation: she used some probing questions (e.g., 
how can you represent this as a fraction? So, why 
did you write a decimal here?) But interestingly the 
conversation did not lead to any productive ways of 
thinking on the students’ part. The probing questions 
sometimes did not help the students and the teacher 
did not know how to use it to steer the conversation 
to help students gain some understanding. We cod-
ed these interactions as Level 2, for Opportunity in 
Action. We did coding for all three PSTs and on five 
common MOs (see Table 2 for the results). 

Betty and Pair B
Betty’s students’ answer to the given problem is given 
in Figure 2. They thought a number between 1/2 and 
1/3 could be found if the numbers are rewritten as 2/2 
and 3/3. A number in between would be less than 3/3 
and more than 2/2, so it would be 2/3.

Betty started the conversation by summarizing what 
the problem was asking. She wanted to make sure that 
students were also viewing the situation as she was. 
Then, students’ answer was not an answer she expect-
ed. She asked “how” they found the answer. We coded 

whether teacher noticed this Opportunity as Yes. The 
conversation continued with teacher’s questions fo-
cused on understanding how students came up with 
the answer of 2/3. Students introduced “wholes” and 
used number line as a conveying representation of 
their ideas. When Betty did not agree with students’ 
answer of 2/3, she did not say this directly but asked 
them to locate 1/2 and 1/3 on the same number line. 
This was a good move in terms of reorienting students’ 
thinking to what was asked in the original question 
situation. But she moved to using fraction strips, i.e., 
a tangible linear manipulative with colored parts 
and unit fraction symbols written on them. Betty 
first asked a general question, such as how to use 
the fraction strips to transfer that knowledge into 
the number line. Then the focus of the conversation 
moved to comparing 1/2 and 1/3 with the colored frac-
tion strips. Even though with questioning, students 
were able to say, “1/2” is bigger than “1/3” they had hard 
time to understand what fraction might be in between 
those two numbers when fraction strips were used. 
Eventually, since the students were so immersed in 
the context, i.e., fraction strips, they were not able to 
look at all the other possibilities that included proper 
fractions such as 5/12 or 2/5. They were thinking that 
it should be a unit fraction that was overly written 
on the fraction strips. Betty indicated that she was 
surprised: “Now you say there is no fraction. But you 
were saying there was 2/3 before…” Betty’s purpose 
of questioning evolved depending on what kinds of 
answers she received from the students. We coded 
Opportunity in Action as Level 2 since PST asked 
probing and prompting questions. There was a pro-
gressive conversation, which might include students’ 
contribution, but it was mostly teacher-dominated 
conversation with her mathematical goals in mind.

FINDINGS

In the initial round of coding, two researchers (au-
thors) checked all the videotapes that three PSTs re-
corded and identified different number of opportu-
nities for each PST. We identified 9 opportunities for 
Anna and pair A (mid-level achieving), 10 opportuni-
ties for Betty and Pair B (mid-level achieving), and 15 
opportunities for Carol and Pair C (high-level achiev-

Figure 2: Betty’s students’ work
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ing). This different number depended on the nature 
of the interactions PSTs and the pair of 6th graders 
had about the specific fraction problem. In the second 
round of coding, we overviewed all of the occasions 
and we identified 5 opportunities common for all the 
three PSTs (See Table 2). Based on the coding scheme 
we coded the PSTs interactions with students sepa-
rately and achieved 0.88 consistency initially. Then 
we discussed the different coding and reached full 
consistency in coding.

With this experience, none of the three PSTs did 
“show and tell”. They developed better questioning 
skills (Sleep & Boerst, 2012). Although, this was the 
case, as stated in other studies (e.g., Morris, Hiebert, 
& Spitzer, 2009; van Dooren, Verschaffel, & Onghena, 
2002), one PST’s lack of content and pedagogical 
content knowledge hindered to catch all MOs and 
address them effectively (see Carol’s case, in Table 2). 
For Anna, while her interactions in defined MOs indi-
cated as Level 2, her communication skills in Turkish 
deterred her from finding ways to use her content 
knowledge. This situation was directly related to 
her developing pedagogical knowledge for teaching 
fractions. Even though, PSTs listen to the children 
to figure out students’ mathematical thinking, they 
need to further develop appropriate scaffolding activ-
ities. For instance, working with high-level achiever 
students who can argue their thinking more firmly 
might benefit PSTs growth more (see Carol’s case). In 
addition, PSTs’ own preparation, thinking ahead the 
necessary mathematical connections and planning 
towards some mathematical goal can improve their 
scaffolding actions (see Betty’s case). Eventually, this 

might result in advancement of the conversations and 
6th grade students’ mathematical gains. In the working 
group, we will provide further evidences related to 
these claims and seek contributions from the group 
members.
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Nowadays, communication and cooperation on social 
network sites, such as Facebook, have become common. 
These kinds of sites are also used within teachers’ profes-
sional development, both in formal and informal ways, 
as they create and form new opportunities to communi-
cate and cooperate. In this paper, our aim is to discuss 
how mathematics teachers’ informal participation in 
social network sites can inform the mathematics edu-
cation research community. 

Keywords: Professional development, social network sites, 

Facebook, mathematics teacher.

INTRODUCTION

It is well known that the present evolution of social 
media and social network sites transforms how people 
communicate, interact, and work together. Teachers 
use these different forums, such as: web sites, person-
al blogs, twitter or Facebook as resources in terms of 
networking, give and take advice and lesson plans, 
etc., for mutual benefit in their professional devel-
opment (Manca & Ranieri, 2014). This is an informal 
professional development initiated and formed by the 
teachers themselves (Bissessar, 2014; Liljekvist, 2014).

Each forum serves different purposes: websites are 
often one-way communication and serve to inform 
others and share ideas1. Such ideas can be lesson plans; 
hence websites where teachers upload their own 
planning documents to be shared with other teachers 

1 The examples given in this paper are taken from a Swedish 

context. However, the phenomenon of Social network sites is 

not limited to merely Sweden, therefore the examples can be 

generalized.

occur (e.g., www.lektion.se). There are websites initi-
ated by a municipality (e.g., www.pedagogvarmland.
se), where active teachers, for instance, comment on 
pedagogical debates, or notify on-going developmen-
tal work. Furthermore there are teachers’ personal 
websites where they gather materials of interest, such 
as lesson plans, but even research articles or links to 
other interesting web sites. (e.g., mattefroken.word-
press.com). Another form is the blog; some teachers 
have started blogs merely focused on their personal 
reflection in relation to their profession. ‘Blogging’ 
can be incorporated within a teaching position; for 
instance, one of the head teachers in a municipali-
ty can be responsible to share pedagogical ideas, etc. 
through a blog (e.g., http://pedagogstockholmblogg.
se/vara-bloggar/).

All of these media are mostly a one-way communi-
cation – a monolog. However, other media offer the 
possibility for (instant) dialogue. The micro blog 
Twitter is one such way, where comments on events 
and actualities are given and shared with followers. 
Another dialogic resource is social community sites, 
such as Facebook. Teachers in Sweden have started 
to use this resource to a great extent in the past year. 
Facebook offers the opportunity to comment and to 
share, like twitter and other websites, but it also offers 
the ‘members’ to ask questions and to get response 
from other members. Thus the members themselves 
activate pedagogical discussions on mathematics 
teaching and learning. This differs from how more 
monologue Internet resources work. In the next sec-
tion a brief overview of the situation in Sweden will 
be given – regarding the use of Facebook by teachers.

http://pedagogstockholmblogg.se/vara-bloggar/
http://pedagogstockholmblogg.se/vara-bloggar/
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Teachers’ professional development
In a review of research on teachers learning from 
teachers, White, Jaworski, Agudelo-Valderrama and 
Goya (2013) find that there is a complexity of settings 
in which teachers learn. The complexity is “influenced 
by both global and local forces, such as the recent pres-
sure on teachers to meet different demands imposed 
on them […] directly by politicians and national laws” 
(p. 421). There is interdependence between the institu-
tional context and the teachers themselves as learners. 
Thus: even if practicing teachers need to change their 
teaching because of external reforms, it can be diffi-
cult to integrate reform practices due to institutional 
and social expectations (Nickerson, 2008).

White and colleagues (2013) show that the relation-
ships between the support given (e.g., by expert/
experienced teachers, teacher educators, research/
researchers) and the supportee (e.g., the individual 
teacher, a group of teachers) can be of different kinds, 
such as teacher educators as guides, teachers and 
researchers working together, or teachers working 
together to design their own developmental activities. 
White and colleagues point out the similarities and 
differences between the knowledge that teachers and 
teacher educators/researchers respectively bring to 
the learning interface. They state: “neither group had 
all the knowledge that was needed for the develop-
ment of teaching, but working together they could 
become a unified, powerful developmental force” (p. 
422). Mutual respect and collaboration that allow the 
input of critical elements of knowledge, by teacher 
educators, colleagues etc., are found to be valuable 
to developmental practice and hence deepening their 
pedagogical content knowledge. In a review of teacher 
education Leder (2008) put forward the core factors 
of ‘community building’ and ‘networking’ as a means 
for in-service teachers’ out-of-class meetings. She con-
tinues: 

Providing time out of class for meetings and in-
volving academics to supplement the expertise 
within the group, for example, to add a stronger 
research dimension to the network’s activities, 
have also been found to be facilitative, if not crit-
ical.  (p. 361) 

Nevertheless, White and colleagues (2013) stress that 
teachers’ knowledge is pre-eminent in the in-school 
situations, and researchers and teacher educators 
have “much to learn about issues that influence what 

can happen in schools, and what is needed to put re-
search-based knowledge into practice” (p. 422). As 
social network sites can be seen as such out-of-class 
meetings, a systematic study of social network sites 
will give the opportunity to look at the factors and 
issues of importance.

Social network sites
Bechmann and Lomborg (2012) describe three char-
acteristics that define social network sites: 1) the com-
munication is de-institutionalised, as each user has 
the ability to contribute, filter and share content, 2) 
the user is thus seen as both producer and participant, 
and 3) the shifting roles and communicative practice 
of the users can be described as interactive and net-
worked. 

Social network sites are widely used in Sweden; 
for instance, 50% of the inhabitants actively use 
Facebook every day (Findahl, 2013), although boyd2 
and Ellison in 2007 conclude that “…[social network 
sites] are primarily organised around people, not 
interests... structured as personal (or ‘egocentric’) 
networks with the individual in centre” (2007, p. 219). 
However, the rapid evolution of the Internet allows 
us now to see groups formed around a theme, and it 
is noteworthy that special groups for the issues of 
teaching and learning have been created on Facebook 
(see e.g., Bissessar, 2014; Ranieri, Manca, & Fini, 2012; 
Rutherford, 2010). Facebook offers the opportunity 
to comment and to share, as with Twitter and other 
websites, but it also offers the ‘members’ to ask ques-
tions and to get responses from others (henceforth: 
posts and comments). Thus the teachers themselves 
can activate pedagogical discussions of teaching and 
learning. This differs from how more monologue 
Internet resources work, such as blogs or web sites. 
Rutherford (2010) concludes that ”Facebook provides 
teachers with an opportunity to engage in informal 
professional development that is participant driven, 
practical, collaborative” (p. 60).

Social network sites can be viewed as emerging com-
munities of practice (Goodyear, Casey, & Kirk, 2014; 
Gunawardena et al., 2009). For example, some of the 
Facebook groups are specialised for mathematics 
teachers (e.g., “Mathematics course 2b for upper 
secondary school”; “Mathematics for lower primary 
school”). Other groups are gathered around more gen-

2  Note: danah boyd spells her name with lowercase letters.
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eral themes in education (e.g., “The big five”; “Ipads 
in school”). Narrow thematic themes can have very 
few members, such as “Mathematics for course 2b 
in upper secondary school” with only about 60 mem-
bers. Not surprisingly, more generic themes attract 
more teachers; hence the group “Mathematics for 
lower primary school” has 4 500 members. Generic 
themes that are interesting to all Swedish teachers can 
consist of groups of up to 20 000 members. Findings 
from various educational settings reveal how social 
network sites used as professional resources are 
not an isolated phenomenon and that the impact of 
social network sites on professional development 
varies (see e.g., Bissessar, 2014; Borbra & Llinares, 
2012; Liljekvist, 2014; Manca & Ranieri, 2014; Pepin, 
Gueudet, & Trouche, 2013; Rutherford, 2010). However, 
Leder (2008) problematizes the tension between rec-
ognising results from particular studies and the wish 
to generalise the findings to broader settings. She calls 
for studies on whether, and when, interventions from 
professional development programs remain more 
permanently. She reflects on how the possibilities and 
the accessibilities of ICT are “opening new pathways 
for professional development with their own – often 
yet not fully realized – fresh strengths and challenges” 
(p. 368).

Some studies have been made of Facebook groups and 
teachers’ professional development. One study inves-
tigated five Italian Facebook groups and focused on 
the motivation, activity level and outcome (Ranieri et 
al., 2012). This study gives valuable information about 
and insight into teachers’ concerns and teachers’ be-
haviour in the groups. Bissessar (2014) sees in her 
study that the teachers address issues on curriculum, 
and didactical and pedagogical concerns, but we need 
more studies to examine the extent to which critical 
discussions occur. 

Aim of the paper
In this paper, we want to introduce a discussion in or-
der to problematize some aspects when conducting a 
study in social network sites (in this paper: Facebook), 
and discuss how these kinds of studies can inform the 
TWG community on, for instance, how it influence 
teachers’ practice. Webster-Wright (2009) points out 
in her review of research informing professional de-
velopment practice that 

There is a need for more research beyond the 
‘development of professionals’ that investigate 

the ‘experience of PL’ [professional learning] as 
constructed and embedded in authentic profes-
sional practice. (pp. 712–713) 

She calls for research understanding more about the 
experience of professional learning – to support it 
more effectively; rather than just developing pro-
fessional development programs. In teachers’ social 
network sites, such as Facebook groups, we might 
find such an environment. In the following pages, we 
will outline some possible directions for our coming 
research on social network sites. We propose, with 
departure in our pilot study and literature review, 
three possible foci for further research into this new 
phenomenon: 1) mapping the arena, 2) inquiry into 
the collective knowledge created, and 3) consider 
the social network sites as extended working place 
learning. Our aim is to converge the discussion on 
the question: In what way can mathematics teachers’ 
use of, for instance, Facebook inform the mathematics 
education research community?

SUGGESTION 1: MAPPING THE ARENA.

Some attempts have been made to map the arena of 
Facebook groups and professional development. One 
such study investigated five Italian Facebook groups 
and focussed on the motivation, activity level and 
outcome (Ranieri, Manca, & Fini, 2012). Such a map 
might be of interest concerning the Swedish Facebook 
groups as well giving valuable information and in-
sights in teachers concerns and teachers behaviour 
within the groups. Two aspects are suggested to map: 
facts and professional development issues.

 Facts
Concerning the facts: Statistics can be obtained on the 
fluctuation of the number of members in the groups. A 
relevant question to look at would be when people be-
come a member, if that is related to specific timeslots 
in the year, or special events (e.g., yearly events, or 
more specific as launching new curricular goals). 
Statistics can also reveal when people are most active, 
what time of day for instance. This could shed a light 
on in what way Facebook is experienced as a formal or 
informal way of professionalization. One could argue 
for the idea that teachers, who are active on Facebook 
during working hours, look upon this phenomenon 
as a formal way of professionalization. Teachers who 
only are active during after-working-hours might 
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look upon these Facebook groups as informal ways 
of professionalization.

A questionnaire posted on the site would give some 
first indications on the motives for joining the 
Facebook group, but also expectations of what teach-
ers expect to gain from participation in the specific 
Facebook group. Members in this group could be con-
tacted to conduct interviews in order to gain deeper 
insights in their motives and expectations of member-
ship within the group. A strategic choice of members 
should be made: for instance new members, active 
members in responding to posts, or active members 
in posting a status, etc. 

Questions to be asked will be of the kind: ‘why did you 
chose to join the group’, ‘when do you decide to post a 
question within this group’, ‘what kind of questions 
do you post’, ’what kind of questions do you respond 
to?’, ‘what kind of topics do you discuss’ etc.

Professional development “issues”
A pilot study revealed that different types of ques-
tions appear in the groups at different time during the 
year. For instance, at the beginning of the school year 
a common post would be to ask for help with a good 
starting exercise for the beginning of the semester. 
Just before the summer holiday, a lot of teachers post-
ed questions about textbooks – often explained by the 
motive that they were about to change textbooks and 
needed advice on qualities in different items. Prior to 
public holidays, questions were asked about suitable 
exercises for ‘Easter’, or ‘Christmas’, etc. Hence, the 
teachers’ pedagogical considerations, as they differ 
over the year, can be studied more in detail. This in-
forms teacher educators and professional develop-
ment programs in terms of when to address specific 
topics or support teachers. 

Furthermore, our pilot study revealed that differ-
ent groups address different types of questions. For 
instance, one of the Facebook groups has a focus on 
discussing relevant and interesting research papers. 
All posts in that group concern either the choice/ar-
gumentation for a specific paper, or the content of the 
chosen paper. This indicates teachers’ diverse condi-
tions (e.g., depending on school level, topic, etc.) and 
what kind of support specific groups of teachers need.

As the description of TWG18 says, research has fo-
cussed on “topics like reflection, collaboration, or 

teachers’ professional growth. In particular, models 
and programmes of professional development, as well 
as their respective contents, methods, and impacts 
were described and analysed” (Call TWG18, CERME9). 
With Facebook being another kind of arena: teachers’ 
social network sites, to ‘map’ this new phenomenon 
inform the community of professional development 
of mathematics teachers on new reflections, collabo-
ration and professional growth.

Mapping the arena is of importance as the discussion 
at CERME9 revealed that Swedish Facebook groups 
might differ from Facebook groups in other coun-
tries concerning the norms within a group. As we de-
scribed a positive open non-anonymous atmosphere 
in the groups, other participants of TW18 at CERME9 
described similar groups in other countries as hostile, 
with anonymous members, and a focus on complains.

Nevertheless, however interesting mapping the arena 
might be, more information is ‘hidden’ in the Facebook 
groups that could inform the community of profes-
sional development of mathematics teachers. Besides 
mapping the arena, two more suggestions are of in-
terest. We don’t suggest that further research consist 
of merely one of our suggestions, nor that is the only 
possible ways to conduct research. Mapping the are-
na probably is a prerequisite for the following two 
suggestions, starting with an inquiry of the collective 
knowledge in Facebook groups.

SUGGESTION 2: INQUIRY INTO 
COLLECTIVE KNOWLEDGE 

Some studies have looked at single posts within 
specific Facebook groups. Rutherford (2010), for in-
stance, has looked at one Canadian Facebook group, 
and categorized each posts in this group according 
to Shulmans’ categorization of teachers knowledge. 
To continue on such categorization, we suggest go-
ing further than the individual posts, and hence 
look upon each Facebook group as a whole to make 
an inquiry in the collective knowledge. Facebook can 
be looked upon one of the emerging communities of 
practice (Goodyear, Casey, & Kirk, 2014; Gunawardena 
et al., 2009).

To do so, one could categorize all posts in a similar 
way as Rutherford did, but with the difference not 
to distinct each post, but to look upon the results as 
an indicator for the collective knowledge of the com-
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munity of teachers in the specific Facebook group. 
Previous studies have looked at discussions where 
they have taken out single posts, meaning: if a ques-
tion was posted and nobody responded, that question 
was not taken into consideration for data analysis 
(Rutherford, 2010). However, once teachers can for-
mulate their questions, they have reflected upon their 
own teaching knowledge. Therefore, we argue, that 
both the questions posted and the reactions from the 
group show us the collective knowledge, expressed 
through the members’ communication– including 
single posts. Again it is of importance to point out 
that the norms in the groups influence such collective 
knowledge and this might be different in different 
cultural settings as expressed by the TW18 at CERME9. 

In the previous example, Shulman’s categorisation 
was used to analyse the data. Different frameworks 
have described the knowledge needed for teach-
ing mathematics (cf. Ball, Phelps, & Thames, 2008; 
Huckstep, Rowland, & Thwaites, 2003; Niss, 2004; 
Shulman, 1987). All of these have their own specifics 
(See Kaarstein, 2014, for an extended comparison of 
three of such frameworks) and hence, one of these 
could serve as a framework for analysis for posts with-
in each Facebook group. Yet another option could be 
to analyse the mathematical content of the posts and 
focus on the mathematical topics addressed, includ-
ing possible references to competencies (Niss, 2003) 
or proficiencies (National Research Counsil, 2001). 
The Swedish curriculum has changed recently and 
the pupils’ possibilities to develop five competencies 
are the overarching principles in the current curric-
ulum (Swedish National Agency for Education, 2011). 
Within Facebook groups for mathematics teachers at 
primary school, questions concerning the five com-
petencies arise frequently. There is also one generic 
Facebook group ‘The big five’, aiming at teachers of 
all subjects.

This second suggestion, we believe, would inform the 
community of professional development of mathe-
matics teachers via an explanation of the collective 
knowledge made in the groups, concerning the math-
ematical content as well as the knowledge needed for 
teaching mathematics.

SUGGESTION 3: EXTENDED 
WORKPLACE LEARNING 

In the previous suggestions the attention has been on 
activity and on what kind of knowledge created in the 
Facebook groups of mathematics teachers. However, it 
can also be worthwhile to investigate how this knowl-
edge is constituted. Social media and social network 
sites are, as we all know, used in professional devel-
opment programs (for instance, ‘Mathematical Boost’, 
matematiklyftet.skolverket.se). In this paper, we want 
to discuss social network sides as an informal part 
of mathematics teachers’ professional development; 
we suggest approaching social network sites as an 
arena for extended workplace learning. Professional 
development programs are culturally bounded and 
the Mathematical Boost is one such program that lo-
cally can influence in what way teachers look upon 
their extended workplace. Comments from TW18 at 
CERME9 implied that a detailed description of such 
programs is necessary in order to be able to clarify 
cause and effect. 

Borko (2004) points out that teachers’ discussions 
on work-related issues tend to be on a surface level, 
such as discussing ideas or materials; and that it takes 
support to foster critical discussions on teaching. She 
states that teachers need to “collectively explore ways 
of improving their teaching and support one another” 
(Borko, 2004, p. 7) in order to develop their teaching. 
Thus communication norms enabling a critical di-
alogue need to be established and maintained. In a 
study of Facebook groups it would be possible to study 
such communication practices, and examine to what 
extent these kinds of communication norms occur. 
Moreover, as we know the development of teacher 
communities is difficult and time-consuming (see 
e.g., Grossman, Wineburg, & Woolworth, 2001) are 
Facebook groups a way for teachers to foster such 
discussions – despite its instantaneous format and 
more or less loose gathered groups?

For instance, Bissessar (2014) sees in her study that 
the teachers address issues on curriculum, didactical 
and pedagogical concerns, but we need more studies 
to examine to what extent critical discussions occur. 
That is, does the informal arena of social network site 
nurture workplace learning? Can we see communica-
tion patterns changing due to changes in, for instance, 
curriculum, or due to impact of formal professional 
development programs? One way of looking at this 
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informal arena would be via inquiry as a developmen-
tal tool in a community of practice, as described in 
Goodchild (2014).

Webster-Wright (2009) thinks it is a lack in research 
designs in professional development programs. She 
states that it is necessary for us to learn from teach-
ers’ authentic learning situations: “To gain further 
insights to enhance support for professionals as they 
learn, there is a need to understand more about how 
professionals continue learning through their work-
ing lives” (Webster-Wright, 2009, p. 404). We believe 
that studying; for instance, Facebook groups can help 
our community understand more, since it is a situated 
digital, hence extended workplace for the teachers. 

ETHICAL CONSIDERATIONS

Although it is not the main focus of the discussion of 
TWG18, we need to address some aspects of ethical 
concern when conducting research on social network 
sites. Normally in a classroom the observer might in-
fluence the practice, and now a new question arise: in 
what way does the presence of researching members 
in groups influence the group?

This is not merely a methodological question; the 
blurred distinction between the private and the pub-
lic in social network sites must also be considered 
(Bryman, 2008). 

SUMMARY

In this paper, we have introduced a discussion contin-
ued at CERME9 in the Thematic Working Group 18 in 
order to problematize some aspects when conducting 
a study in social network sites. We proposed three 
possible foci for further research into this new phe-
nomenon: 1) mapping the arena, 2) inquiry into the 
collective knowledge created, and 3) consider the so-
cial network sites as extended working place learning. 
Our aim was to converge the discussion on the ques-
tion: In what way can mathematics teachers’ use of, for 
instance, Facebook inform the mathematics education 
research community concerning mathematics teach-
ers’ professional development? Regarding issues of 
teaching and learning mathematics in social network 
sites, the uniqueness of the Swedish Facebook groups 
should be taken into account where an open, positive 
climate describes the conversations in these groups.
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In this paper, we present how future mathematic teach-
ers improve their self-reflection in didactical analysis 
competency. We draw on data collected from two groups 
of prospective teachers, using qualitative methods. We 
use a prospective teacher as an example to discuss how 
the training on the use of didactical suitability criteria 
and reflective tools lead them to learn about the experi-
ence, and explain in a deep way how they will change 
their own practices in the future.

Keywords: Mathematical quality, future teachers, 

professional development, didactical analysis.

INTRODUCTION

In this paper, we analyze how a specific pre-service 
mathematics teachers’ training program produces 
changes in terms of future secondary school teach-
ers’ competence of didactical analysis. In particular, 
aiming at the growing and building mathematical 
knowledge for teaching (Zaslavsky & Sullivan, 2011) by 
using theoretical tools for self-analysis. Our general 
intention in such a program is to lead future teach-
ers to develop the professional ability of reflecting 
about changing their own planning by using didacti-
cal analysis theoretical tools. In this paper, we focus 
on explaining how future teachers value the need of 
analyzing mathematical quality in their final reflec-
tions when they tell us how and why they will improve 
their school practice for the next future. The research 
relates to the dilemmas of task redesign that provides 
a framework that can be used for analysis of quality 
and suitability of tasks (Giménez, Font, & Vanegas, 
2013). Our aim in this presentation is to describe how a 
specific set of professional tasks, promotes the emergence 
of using theoretical tools from future teacher’s reflec-
tions, when valuing epistemic/mathematical suitability 
of an instructive process in a multidimensional way.

In our study we call ‘professional task’ those task s that 
we propose to future teachers in order to encourage 
them doing didactic analysis and developing their di-
dactical analysis competences. We want to focus on 
some immediate effects of the task redesign done by 
the future teacher. In previous researches (Vanegas 
et al., 2014), it was found it when analyzing prospec-
tive teachers’ thoughts emerging from their feedback 
[work assignments] with the researchers; and also 
emerging from our analysis of some impacts of the 
program itself. Such above mentioned development, 
it is stated when future teachers incorporate and use 
tools for the description, explanation and process 
valuation of mathematical school teacher/learning 
practices. Thus, our main hypothesis is that future 
teachers can reflect and value their own practices in 
a deep way, and to have ideas to structure a possible 
redesign that improves the quality of their own math-
ematics and teaching for the future.

THEORETICAL FRAMEWORK

In our research, we assume a learning through teach-
ing perspective between the design of classroom tasks, 
the pedagogies associated with the effective imple-
mentation of tasks and the learning of mathematics 
(Leikin, 2006) and task design problematics. The role 
of the Mathematic teacher in such a framework is to 
select, modify, design, redesign sequences, implement 
and evaluate mathematical practices. The analysis 
and description of the mathematical activity is con-
ducted using the theoretical constructs proposed 
by the ‘Ontosemiotic’ approach (OSA). According 
to this perspective (Godino, Batanero, & Font, 2007), 
the mathematical activity plays a central role and it 
is modelled in terms of systems of operative and dis-
cursive practices. From these practices the different 
types of related mathematical objects emerge build-
ing cognitive or epistemic configurations among 
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them. Problem situations promote and contextual-
ize the activity; languages (symbols, notations, and 
graphics) represent the other entities and serve as 
tools for action; arguments justify the procedures 
and propositions that relate the concepts. Lastly, the 
objects that appear in mathematical practices and 
those which emerge from these practices might be 
considered from the five facets of dual dimensions 
(Godino, Batanero, & Font, 2007). Both the dualities 
and objects can be analyzed from a process-product 
perspective, a kind of analysis that leads us to the 
processes shown.

In fact, there are two possible perspectives to ana-
lyze the quality of a mathematical practice. On the one 
hand, international experiences focusing on rigor 
and mathematical richness (Hill et al., 2008). They 
introduced a set of categories to measure the mathe-
matical quality of an instructive process (Hill, 2010): 
(1) well done format, (2) work done in a connected 
way to mathematics, (3) richness of the mathematics 
itself, (e) work done with the students (4) errors and 
imprecise language used, (5) students’ participation. 
It’s also explained that for mathematical richness, we 
can see some indicators as: mathematics explanations, 
multiple procedures or solving methods, mathemat-
ical generalization development, use of a mathemat-
ical language, and general mathematical aspects of 
richness as representations, among others. On the 
other hand, by considering OSA we interpret that it 
is necessary to see the theoretical tools not as a priori 
solution, but an emerging process from the practice 
itself. We consider that it relates to a way of construct-
ing quality criteria by the future teachers during the 
professional training process. Hypothetical trajecto-
ries should reveal not only the acquisition of theoret-
ical tools for analysis, but also to see how personal 
didactical principles are assumed by future teachers 
in an open and personal way. The notion of epistemic 
quality proposed by OSA is centered on representa-
tiveness of mathematics taught by the future teachers 
in a lifelong learning perspective according a holistic 
meaning of mathematical objects to be learnt, under-
stood as a pair (mathematical practices, primary ob-
jects and processes activated in such practices). The 
determination of such a global meaning or holistic 
meaning requires an epistemological/historical study 
about the origin and evolution of the mathematical 
object. We must take also into account the diversity of 

“using contexts” in which it’s possible to play each of 
the possible configurations of these primary objects.

There is a consensus on considering what epistem-
ic suitability mean: Representative and articulated 
sample of diverse types of problems (contextualized, 
according different levels of difficulties, etc.); use of 
different modes of expression (verbal, graphic, sym-
bolic...), also with translations among representations. 
In such a way we could consider an adequate level of 
mathematical language; definitions and procedures 
should be correctly stated and adapted to the level of 
the students; presentation of basic statements of the 

“topic” in order to, establishing relations and mean-
ingful connections among definitions, properties, 
problems and so on. The complexity of perspectives 
about mathematical objects from OSA perspective, 
introduces the idea that a mathematical object is not 
simple but a complex system. The idea of represent-
ativeness as quality criteria is related to coherence 
and connectness aspects.

In a previous research, it was observed that epistem-
ic suitability criteria and epistemic configurations, 
could be useful tool to organize self- reflection, but 
those tools were not used by future teachers in a 
pre-implementation as planning phase (Giménez et 
al., 2012). Now, our research aim is to confirm if the 
future teachers could emerge the suitability criteria 
from their final analysis. We also want to see how they 
use it, by describing a future teacher case study.

METHODOLOGY

According to the proposed aim for this study: a) a set 
of professional tasks had been designed; b) these tasks 
are implemented in the training program; c) the writ-
ten productions of future teachers are considered as 
essential data and d) a student production is analyzed 
as a case study.

We assume a learning by teaching approach based on 
an inquiry and reflective practicing in which it was ob-
served the tensions presented for task designers and 
teacher adaptation whether they are designing tasks 
for themselves or for others. Framework in which we 
design and implement diverse teacher training cycles 
as teaching experiments for developing didactical 
analysis competences among others. In particular, we 
discuss some effects of a teacher training cycle named 

“Epistemic Analysis” (as a part of a more general cycle 
of didactic analysis). The development of this cycle 
includes four main professional tasks: (a) First naïf 
analysis of a teaching episode about proportional rea-
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soning, and refined analysis using suitability criteria 
(b) Looking for errors, ambiguities, and construction 
of different meanings by analyzing three episodes 
about perpendicular bisector concept; (c) Analysis 
of connectness and representativeness; (d) The need 
of improving richness of processes, by analyzing ep-
isodes of introducing integral concept. After that, the 
future teachers designed and implemented a lesson 
into their period of internship. They did a first re-
flection and valuation of the suitability from their 
didactic implemented unit. Finally, we ask for an im-
provement and re-planning of their lessons designs 
(for future implementation), within the Master’s Final 
Project (MFP).

As a general schematic framework, we see in Figure 1 
the developmental process.

During the cycle we present theoretical tools (suitabil-
ity criteria, according Godino, Batanero, & Font, 2007) 
to conduct evaluative analysis to answer “what could 
we improve from our self-analysis?” We understand 
that the study of descriptive and explanatory analysis 
for a didactical situation is necessary to justify the 
evaluations. As the aim is to give tools for reflection, 
we use methodology based on case study design based 
research (Gravemeijer, 1998): the use of a real envi-
ronment, to generate new and efficacy learning envi-
ronments, collaborative enquiry perspective among 
trainer-researcher and future teachers, searching 

simultaneously construction of theories and practice 
innovation (Cobb, di Sessa, Lehrer, & Schauble, 2003).

The study was conducted by two groups of 32 future 
Secondary School teachers of Mathematics from the 
Interuniversity Program in Catalonia. For the results, 
we analyze the final work of a single student in terms 
of his use of tools. The data were registers on virtual 
platform, audiovisual comments about classroom 
episodes, final Master’s work valuing mathematical 
quality about their implemented own practice. Now, 
we explain each of the analysis through the four main 
activities introduced.

(a) Task 1. Noticing mathematical 
objects and processes in a math task
A first task had been introduced to show how con-
structs emerge from a school practice as cognitive 
and semiotic conflicts, epistemic obstacles, types of 
norms, interactive, patterns of models of manage-
ment, etc. It was selected an initial task in which stu-
dents confront a short case study about proportional 
reasoning, using transcripts of a classroom situation. 
Such an initial tasks introduce the students for read-
ing and analyzing the classroom example, by using 
their previous knowledge and beliefs of didactic anal-
ysis. During the first task, future teachers did naive 
comments about a proportion class talking about the 
comparison of two quarters with different density of 
population. It’s easy for them to identify mathemat-

Figure 1:  Scheme of different constructs involved in epistemic cycle
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ical objects but it’s difficult for them to recognize all 
the processes involved in the task.

Refining the analysis by using theoretical tools
It was analyzed a class about equations by applying 
structured suitability criteria. The students start 
by analyzing mathematical practices, by observing 
objects and processes. Then the trainer develops an 
example in which it was revised suitability construct. 
After that the future teachers reflect, improve and 
refined their analysis by using the notion of epistemic 
suitability. In such professional task, it’s still difficult 
for the future teachers to identify some semiotic con-
flicts. Later, in the different subjects of the Master, the 
students realize other analysis of practices, objects ac-
tivated in the above mentioned professional practices 
(problem, definition, proposition, representation and 
argument) and mathematical processes. Observing 
such initial analysis realized by the future teachers, 
we expect to improve some difficulties to distinguish 
between concepts and definitions. It’s also found that 
during second analysis, the future teachers recognize 
their duplicities between definitions, propositions 
and procedures, and also their duplicities between 
propositions and thesis of arguments. It’s still difficult 
for them to have a good description of practices be-
cause they overlap the configuration of objects and the 
description of processes. It’s also difficult to see and to 
catalogue mathematical processes. The reflective pro-
cess in this training period, try to add historical values 
of mathematical objects, relations among concepts, 
and to analyze how the use of resources can change 
the construction of different meanings. Therefore, it 
is expected to see mathematical structure behind the 
mathematical practice.

(b) Task 2. Analyzing the role of 
mathematical errors and ambiguities
Initially, the first proportion professional task was 
enough to see that if you did or introduced miscon-
ceptions or errors you will promote semiotic conflicts. 
It’s common sense of quality the idea of coherence 
when using mathematical errors. But another task 
was introduced to review such idea about perpen-
dicular bisector.

Analyzing the role of definitions and meanings
In such epistemic analysis, we notice that it’s needed 
an adequate contextualization, in order to delete abus-
es, to focus on mathematical purposes, and to promote 
transference of knowledge. As a prototyping profes-

sional task to promote such analysis, it was proposed 
the observation of three short ways of introducing 
perpendicular bisector with 12–13 years old students, 
by observing three different teachers. The main idea 
to present a discussion about the different practices, 
objects and mathematics processes and to introduce 
a reflection associated to how each of these episodes 
contribute to introduce different kind of epistemic 
configurations and objects associated to three dif-
ferent definitions. First practice introduces perpen-
dicular by the middle point of the segment. Second 
teacher use a definition as right-lane formed by the 
points being equal distance from the end points of the 
segment. Third teacher uses the idea of border of two 
regions determined by the closest neighbour princi-
ple) It was observed that both first and second teachers 
did classical proposals and management about the 
content and the classroom. The third teacher proposal 
is innovative not only because of the management but 
mathematically as a way of changing the regular use 
of mathematical content as a change of configuration 
of practices, objects and mathematical processes by 
using a non-routine task. Future teachers observed 
interpretation processes, communication of didacti-
cal and mathematical meanings, etc. Furthermore it 
appears a reflection about distinguishing complex 
processes from simple processes and also a general 
reflection about the idea of processes itself.

(c) Task 3. Analysis of connectness and 
representativeness of knowledge
To characterize epistemic quality, we analyze how rep-
resentative and articulated set of activities/problems 
(contextualized, different levels of difficulty, different 
modes of representations and translations, etc.) had 
been proposed. It as a way to see the need of clarifi-
cation of questioning and exemplifying, because in 
such situations we can see how different meanings 
appear, how we establish relations and connections 
among definitions, properties, and problems.

A prototypical example of this task analysis is a case 
based analysis upon a previous future teacher re-
flection that: first planned a sequence with 7th grade 
(13–14 years old students) for Thales theorem. She 
analyzed her own practice about Thales Theorem 
after the school practice, but she didn’t notice a good 
mathematical connection among different activities. 
The trainer introduces epistemic configurations to 
see that some connections had been forgotten. The 
aim of this professional task is to recognize a deep 
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level of analysis from such previous prospective 
teacher’s practices (Choppin, 2011). Thus, the future 
teachers learn from this analysis, the need of connect-
ing several epistemic configurations.

(e) Task 4. Improving richness of processes
It was decided to use the integral concept to start such 
a general analysis. The episodes presented come from 
a school experience in which a substitute teacher uses 
her common knowledge with a regular textbook to in-
troduce integrals for 18 years old students. The trainer 
explains the idea of richness of processes, and talk 
with future teachers about the complexity of the in-
tegral concept by noticing seven meanings as geomet-
ric, result of a change process, inverse of a derivative, 
limit approach, generalized content, algebraic, and 
numerical method (Contreras, Ordóñez, & Wilhelmi, 
2010). After that, it was questioned which process-
es they think it’s possible to promote by using some 
problems. We considered if the situations activate 
some of the following processes: contextualization, al-
gorithmisation, communication, argumentation and 
problem solving. In such analysis it’s also discussed 
the relevance of some specific questions. After such 
task analysis, there was a consensus about the low 
level of accuracy in terms of promoting processes 
associated to different meanings.

RESULTS AND DISCUSSION

In order to reflect about how the future teachers in-
troduce and interesting self-reflection, we exemplify 
some important unexpected acquisitions as a special 
case study to understand possible influences of the 
above professional tasks upon their epistemic valua-
tion. The future teacher (N from now), was considered 
interesting for being analyzed because he is not math-
ematician, but economist, and he uses very carefully 
the theoretical framework above presented for his 
own reflection. Some teachers tell us that they didn’t 
introduce mathematical errors. It is important to say 
that in previous years, they were not worried about it.

I did an error introducing the notion of compat-
ible undetermined system, by using an apparent 
good example of prices, but telling the students 
that there are infinite solutions. It was difficult 
to see, but I promoted an error, because the con-
textual situation is related to a finite set of an-
swers. The children conclude that there are many 
solutions, but limited because of non existence 

of negative money. Nevertheless, I didn’t say an-
ything about the limited use of coins in Spanish 
currency. (N)

The same teacher explains explicitly how he will 
change a statement in a problem, because of the re-
flection.

The future teachers accept that they did ambiguities 
relating language problems that they identify as cre-
ating possible semiotic conflicts.

I promote some statements, not enough clear 
as we see in the task … Finally, my tutor tell me 
about the need for clarifying why we used the 
expressions “It passes subtracting” “We delete 
denominators … and others”. (N)

According formalism introduced, the future teacher 
assumes that he started with not necessary sentences. 
The teacher T relates such ambiguity to a theoretical 
article. For instance, he said about “the need of search-
ing analogies found because of an incorrect use of con-
textual framework”. He read a text from Reed to reflect 
about the use of two important variables influencing 
the decisions of the teacher.

“The context understood as a set of traits perceive 
d in a certain problematic of real world involving 
objects, and facts”… But, the laws, principles, re-
lations among quantities, and equations, consti-
tute the structure of a problem”. It is interesting 
that the future teacher explain some conclusions 
from this discussion: “the need to describe the 
similarities and differences among structures 
and surfaces of the source problems and aiming 
problems, because it influences the decisions 
about the equations presented to solve the aiming 
problems. It is also important to identify that fa-
miliarity can help the transference processes, but 
it also could be an obstacle to see the similarities 
and structural differences among problems”. (N)

About richness of processes
The future teacher expressed the need to incorpo-
rate problem solving from the perspective of Polya, 
which had not been considered in his planning. He 
also explains the need to articulate the role of letters 
and unknowns.
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It would be necessary to change the status of 
quantities designed by letters We must identify 
the global traits of mathematical competency, not 
only because of my experience, but the studies 
conducted in which it’s found the serious difficul-
ties to produce right equations. If it’s correct, is 
because of the use of Cartesian methods in a flex-
ible way, producing a diversity of equalities for 
the same problem… It’s also important to identify 
different patterns when we build equalities. (N)

We also found in his work, much unexpected reflec-
tions about the need of modelling processes in an in-
quiry perspective. The future teacher N tells about 

“the emphasis on algorithms instead of modelling that 
gives opportunities to observe similar structures in the 
same model…” Quoting Chevallard “presented three 
important steps for modelling in algebraic situations: 
To introduce letters to define variables of the system, 
that gives opportunities for generalization and increase 
mathematical power. To establish relations among var-
iables and to work mathematically to establish new re-
lations…”. The future teacher N, not only recognize 
the students’ difficulties but also indicate that “some 
researches explain the possibility to validate the mod-
el and learning from such a perspective … de signing 
courses using graphic calculators”.

About representativeness
The future teacher tells us that it’s needed not only a 
look for meanings, but to see a historical, epistemo-
logical and curricular perspective. Then proposed a 
set of ideas about the Arabic way of solving problems 
to be introduced next time. In this case, he just offer 
a reflection about “considering algebra as part of cul-
tural legacy”.

About connectiveness
N explains the need for applications to other disci-
plines.

As an economist, I can say the use of systems 
of equations to find equilibrium points, as in-
tersection of different conditions, interpreted 
by curves of offer and demand… and planning 
problems of dead points… programming prob-
lems…We also use algebra as a process to solve 
engineering problems…chemistry problems, re-
storing digital images. About intramathematical 
connections, algebraic systems of equations are 
referent knowledge for optimazation problems…

We assume that some of these knowledge must 
be introduced and adapt according the age of the 
students.

CONCLUSIONS

The professional tasks proposed, promote that the 
future teachers did positive reflections about their 
own practices. In each set of tasks and analysis we 
could identify the emergency of the different aspects 
characterising the epistemic suitability. Some of these 
are in agreement to which were presented by Wilson, 
Cooney and Stinson (2005).

The different type of analysis done during the im-
plemented Program, not only gave opportunities for 
establishing categories and structure for the reflec-
tion, but also permitted to explicit how to improve 
the didactical sequence as we have seen in the case 
study. We consider that such attitude for changing 
from reflective analysis is important for professional 
development.
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We study the evolution of primary teachers’ practices 
in mathematics by analyzing the effects of a profes-
sional development training called lesson study (LS) in 
Lausanne, Switzerland. We answer the following ques-
tion: what practices will change and what will resist 
change? 

Keywords: Teachers’ practices, lesson study, professional 

development.

LS is a field of research and professional development 
in Asia, in US and in Northern Europe (Lewis & Hurd, 
2011; Yoshida & Jackson, 2011). LS is a collective and 
reflexive process that involves a group of teachers 
and coaches. LS has four steps to a cycle (Lewis & Hurd, 
2011): the group studies a mathematic subject (step 1), 
prepares a lesson plan (step 2), one of the teachers 
conducts the lesson while others observe (step 3), and 
finally, the group analyses and may revise the lesson 
(step 4), with the option of teaching it again. 

Teachers’ practices are analysed using the theoretical 
framework: the double approach (Robert & Rogalski, 
2002, 2005) based on a French didactical approach 
and an ergonomic approach (Leplat, 1997) based on 
activity theory. In the ergonomic approach, the main 
goal is to distinguish prescribed work (the prescribed 
task, or what the teacher must do, planned together 
during step 2) and real work (the conducted task, or 
what the teacher does in reality, enacted during step 
3). To appropriate the prescribed task, the teacher 
should modify it. We study the teacher’s activity as a 
process of modifications between tasks (Leplat, 1997; 
Mangiante, 2007). The prescribed task includes the 
mathematic task, the mathematical knowledge, the 
lesson plan and the planning material. Leplat (1997) 
adds two tasks: the represented task (how the teacher 
represents the prescribed task and what he thinks 

the group attends of him) and the redefined task (the 
teacher redefines his task according to the prescribed 
task and his own professional goals).

In this framework, teachers’ practices are seen as a 
complex, coherent and stable system. Regularities are 
observed in teachers’ practices during three import-
ant moments of teacher’s activity (process of devolu-
tion, regulation and institutionalization (Brousseau, 
1997)) and correspond to teachers’ strategies and 
choices.

MEHODOLOGY AND DATA ANALYSIS

The prescribed task is analysed a priori, which means 
we study the mathematic knowledge at play in the task, 
the possible resolutions and the didactical variables.

From the conducted task, we analyse the proceedings 
and the students’ offered activities. We set up indi-
cators to describe the teachers’ practices in order to 
categorise their practices in i-genre. We define the 
represented task and the redefined task from research 
data (particularly with collective sessions enacted 
during step 2 and step 4).

We transcribe all video data (lessons and collective 
sessions) and we analyse with indicators (in Nvivo) 
video data, written documents and students’ produc-
tions during the LS cycle.

SAMPLE

The group consists of seven primary teachers ranging 
from experienced, voluntary and generalist teachers, 
and two coaches. The LS process occurs over two years 
with two collective sessions occurring per month.
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FORMAT CHOSEN

We present a figure of the LS cycle with first analysis, 
indicators and results applied to teacher’s practices by 
visual material. Next to visual material there are short 
sections: (1) Context of the research and theorical 
framework, (2) Research questions, (3) Methodology 
and (4) References. 
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This study is part of a larger research project about 
a comprehensive professional development program 
(PDP) in formative assessment for mathematics teach-
ers. The aim of the study is to investigate in which ways 
the teachers’ classroom practice change, with respect to 
formative assessment, after participating in the PDP, 
and which some of the reasons may be for these changes. 
Fourteen randomly chosen grade-seven mathematics 
teachers participated in the PDP. The teachers were 
interviewed and their classroom practices observed, 
before and after the PDP. They also answered two ques-
tionnaires about the PDP. Preliminary results show that 
all teachers were motivated to change and did change 
their practice, but to varying degrees. 

Keywords: Professional development, formative 

assessment, mathematics education.

BACKGROUND 

Several studies have demonstrated that the use of 
formative assessment in classroom practice is one 
of the most educationally effective ways of increas-
ing student achievement (e.g., Black & Wiliam, 1998; 
Hattie, 2009). But Wiliam (2010) also highlights that 
little is known about how to effectively help teachers 
implement a formative classroom practice, and that 
designing ways of supporting teachers to developing 
their formative assessment practice is an important 
issue. This study is part of a larger project about a 
comprehensive professional development program 
(PDP) in formative assessment for mathematics teach-
ers. The overall aim in the project is to contribute to 
the understanding of factors that are significant in the 
support of teachers’ implementation of a formative 

assessment practice. In this specific study the aim is 
to investigate in which ways the teachers’ classroom 
practice change, with respect to formative assessment, 
after participating in the PDP, and which some of the 
reasons may be for these changes. In the project, we 
use a conceptualization, suggested by Wiliam and 
Thompson (2008), of formative assessment as practice 
based on an adherence to the “big idea” of using evi-
dence about student learning to adjust instruction to 
better meet student learning needs, and a competent 
use of the following five key strategies: (1) clarifying, 
sharing and understanding learning intentions and 
criteria for success, (2) engineering effective class-
room discussions, questions, and tasks that elicit ev-
idence of learning, (3) providing feedback that moves 
learners forward, (4) activating students as instruc-
tional resources for one and another, (5) activating 
students as the owners of their own learning.

METHOD

Fourteen randomly chosen grade-seven mathematics 
teachers participated in the PDP. The PDP was pro-
cess-oriented, focused on the “big idea” and the five 
key strategies of formative assessment and had dura-
tion of 24 full days distributed over 4.5 months. The 
teachers were interviewed and their classroom prac-
tices were observed, before and after the PDP. They 
also answered two questionnaires about the PDP. The 
analysis of the teachers’ changes in classroom practice 
was carried out using the framework of formative 
assessment described above. 
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PRELIMINARY RESULTS AND CONCLUSIONS

After the PDP all teachers changed their classroom 
practice but to varying degrees. The most common 
and frequent change was that the teachers more often 
elicited evidence of student learning with the pur-
pose of adjusting their instruction. Another common 
change was that they used more effective activities 
to engage and create thinking among all students 
during whole-class sessions. They did so by using 
an “all-response system” and a system for random 
distribution of questions when asking questions in 
class. These changes were mainly connected to Key 
strategy 2. Small changes connected to the other key 
strategies were also made. After the PDP the teachers 
were motivated to change their classroom practice 
since they believed in the idea of formative assess-
ment, had tried activities and experienced positive 
effects on students and also felt that they had suffi-
cient knowledge to develop their formative assess-
ment practice. Some reasons to why the teachers did 
not change their classroom practice more was that 
the teachers experienced that they needed more time 
and that old habits are hard to change. This study may 
contribute with knowledge that can be used when 
designing professional development programs in 
formative assessment in the future. 
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I investigate 17 mathematics student teachers’ produc-
tions, in view of examining the synergy and interaction 
between their mathematical and didactical knowledge. 
The concrete data material consists in lesson plans 
elaborated for the final exam of a unit on “numbers, 
arithmetic and algebra”. The anthropological theory 
of the didactic is used as a framework to analyse these 
components of practical and theoretical knowledge. 
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INTRODUCTION

Mathematics teacher education is often described as 
consisting of several components such as mathemat-
ical contents, didactics and pedagogy. Bergsten and 
Grevholm (2004, p. 125) introduced the term didactic 
divide to indicate a lack of connection between such 
components. In this paper, I wish to investigate the 
degrees of didactic divide (or coherence!) by analys-
ing certain productions of Faroese mathematics stu-
dent teachers for an exam in a module that seeks to 
integrate the teaching of mathematical contents and 
didactics (in the context of algebra and arithmetic). 
This is my first research project as part of my work 
towards the Ph.D.

THEORETICAL FRAMEWORK AND 
RESEARCH QUESTIONS

In the anthropological theory of the didactic, hu-
man practice and knowledge is modelled in terms of 
praxeologies, which consist of a practice block and a 
knowledge block. The practice block consists of types 
of tasks and corresponding techniques. The knowledge 
block contains technology (discourse on techniques) 
and theory (unifying discourse on technology). For 

more detail see Barbé and colleagues (2005). In our 
study we consider mathematical and didactical prax-
eologies (defined by tasks being of mathematical and 
didactical nature) and their mutual connections. We 
can then formulate the research question of the study 
as follows: What links and gaps can we observe in the 
mathematical and didactical praxeologies of students 
as evidenced in their plans for a lesson on school algebra, 
produced in the setting of a teacher education course? 
Naturally, a methodological problem is closely linked 
to this question: How can we, concretely, extract the 
components of mathematical and didactical praxeol-
ogies from a lesson plan?

CONTEXT AND STUDY

The mathematics teacher education programme at 
the University of the Faroe Islands can be described 
as mainly consecutive (cf. Winsløw et al., 2007) in 
the sense that general pedagogy and other generic 
courses make up the first two years of the programme, 
while the last two years comprise units with a main 
focus on contents and a secondary, integrated focus 
on didactics. One of these units in the third year is 
the source of our data for investigating the above 
research question. Halfway through the course, the 
format of lesson plan is introduced (in connection to 
the wider idea of lesson study) as a way to work with 
a school mathematical theme. 

The task (a didactical one) is “to plan a lesson on a spe-
cific theme” (e.g., “how to add two fractions?”). The 
theme in turn can be described as a mathematical 
praxeology, in this case focused on techniques for 
adding fractions, descriptions and justifications of the 
techniques (technology), and mathematical links to 
similar practices (including theoretical notions such 
as commutativity, inverses etc.). The lesson plan will 
potentially articulate both elements of this mathemat-
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ical praxeology and also present choices of didactic 
techniques, and as these are explicit (written) there 
will be elements of didactic technology and theory 
to analyse. The students elaborate (individually) one 
such lesson plan which forms the basis of the final oral 
exam in the course. Their presentation of the plan 
may take up to 20 minutes followed by questions from 
the lecturer. While the main data will be the lesson 
plans themselves, transcripts from the exam will also 
be used to complement the information regarding 
students’ mathematical and didactic theory blocks. 

My analysis focuses on the students’ choice of didactic 
techniques, the justification of these techniques in re-
lation to the mathematical praxeology, the preciseness 
of their didactic technology, their reference to explicit 
didactic theory and the connection between didactic 
and mathematical theory blocks (for instance, didac-
tic theory on the teaching of fractions could be more 
or less connected to the theoretical components of the 
mathematical praxeologies proposed by the lesson).
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This paper presents the tool for measuring the quality 
of questioning in mathematics classes. Its construction 
is based on video analysis and interviews with teachers. 
Actually, we identified five different categories within 
the constructs of questioning. These rubrics have po-
tential to be used in research and in teacher education
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measurement tool.

BACKGROUND

Education in Slovakia has recently overcome a lot of 
changes. They were forced by poor results of Slovak 
students in PISA measurement. Unfortunately, this 
reform movement seems to miss its goal. The last 
mathematics PISA measurement revealed signif-
icantly worse Slovak students´ results in mathe-
matics when compared to previous measurements 
(NÚCEM, 2012). Influential reasons of this failure are 
unchanged teachers´ practice and beliefs while the 
content and the aims of mathematics education were 
modified. 

THEORETICAL FRAMEWORK

We consider questioning to be the one of the most im-
portant teachers´ skills. As pinpointed by Aizikovitsh-
Udi, Clarke and Star (2013), the questioning is not only 
an issue of good questions, further, there is a strong 
importance of the way the questions are asked, timing 
and number of times each question is asked. Webb 
(2004) claims that classroom discussions present an 
ideal opportunity to explore students´ understand-
ings and to inform instructional decisions. In good 
questioning, a teacher asks questions – to gain infor-
mation about students´ knowledge, misconceptions, 
etc. – provides feedback and/or asks the next question 

based on elicited evidence. Therefore, the question-
ing fulfils the definition of the formative assessment 
introduced by Black and Wiliam (1998). 

METHOD

At the beginning, we have reviewed scientific liter-
ature on the topic of formative assessment and pre-
pared theoretical rubrics to describe different quality 
levels of the questioning (and three other constructs, 
connected to formative assessment).

The next step was to videotape four high school teach-
ers with positive beliefs about inquiry based teaching. 
We found out the importance of this in our previous 
research (Hubeňáková & Šveda, 2013). Each teacher 
could say which topics are good for her to be video-
taped, thus there are four different topics recorded, 
one for each teacher. Now, we are at the beginning of 
their qualitative analyses. The teaching passages of 
each class are fully transcribed. We use the software 
NVivo10 for their precise analyses. The next step will 
be the discussion with the teachers to choose the ru-
brics that are useful for them.

RESULTS AND IMPLICATIONS

We have found five different categories within the 
construct of questioning up to now: if and when are 
procedural versus conceptual questions asked; who 
is asked procedural versus conceptual questions; 
who is questioned; who answers questions asked to 
whole classroom; teachers reply on wrong answer. 
Elaborated rubrics are available upon request via 
email.

The implications of this work are in the research and 
in the teacher professional development, as well. We 
will be able to quantify the differences in teachers´ 
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questioning practice and this enable us to observe its 
influence on students´ results and beliefs about mathe-
matics. Hopefully, such information provides us with 
a good way how to enhance teachers´ questioning.
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The focus of our study is on student teachers’ engage-
ment in and with their own learning during a teacher 
training for primary school program. Different ways 
of working at the university college are combined with 
students’ practicum at primary school. The aim is to mo-
tivate students to actively participate in, and be critical 
towards, their preparation in a meta-level in discussing 
their experiences.
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THE LEARNING LOOP AND CRITICAL 
MATHEMATICS EDUCATION 

The study involves second year students during their 
mandatory mathematics course of 30 ECT in a teacher 

training for primary school program (1st to 7th grade). 
Different methods of working are integrated in the 
course where we attempt to engage students at dif-
ferent stages in their learning loop (Figure 1). 

One part of the course is based on common lectures 
for all student teachers, where the lectures are held 
either by lecturers from the university college or pri-
mary school teachers. The largest part of the course 
is group-based lectures on mathematical concepts 
and didactical aspects of teaching/learning these 
concepts. An important part of the teacher educa-
tion programme is students’ practicum at different 
schools where they collaborate closely with practic-
ing teachers and are followed by university college 
lecturers. During the first semester students have 
a group assignment in which they analyse data col-
lected during their practicum based on didactical 

Figure 1: Student teachers’ learning loop
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concepts and theories included in the mathematics’ 
course curriculum. The focus of the group work is 
pupils’ learning of different mathematical concepts. 
During the semester(s) students also have different 
seminars on relevant topics in which they themselves 
prepare presentations of articles in groups for the 
rest of the class.

We have developed an initial learning loop inspired 
by an idea from Johnsen-Høines (2010). In our study 
we make clear the structure of the learning loop for 
the students and try to integrate the theoretical prepa-
ration of students with their practicum. The aim for 
this is to motivate students to be involved in their 
learning and their pupils’ learning of mathematics 
by helping them in creating a meta-perspective, thus 
a whole picture, of their preparation at the university 
college. Our research perspective is one of critical 
mathematics education (Skovsmose & Greer, 2012) and 
it is concerned with students being critical to their 
own learning and teaching practice. 

Skovsmose and Borba (2004) talk about current, im-
agined and arranged situations as “part of the research 
perspective in which classroom change plays a crucial 
role” (p. 214). We want to engage students in formu-
lating imagined situations of teaching mathematics 
in the classroom, to teach those and then critically 
discuss the differences between the actual arranged 
situations and the imagined situations and reasons for 
such differences. This will hopefully help students to 
always find room and ways for improving their teach-
ing in relation to pupils’ numeracy, and to develop a 
critical attitude toward mathematics learning and 
teaching in general. We plan to use these critical dis-
cussions in teaching sessions at the university college 
where students summarize their practicum period. 
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The application of multimedia-based representations 
provides new opportunities for teaching mathematics. 
As the students are offered new options and new chal-
lenges, teachers are also faced with modified require-
ments respective to their teaching competencies. This 
project focuses on the development of an instrument to 
assess and foster multimedia teaching competencies.
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teachers’ competencies.

Using multimedia-based representations in mathe-
matics teaching could support the students to gain 
a different access to the underlying structure of the 
mathematical problem which probably leads to a deep-
er understanding of the topic (Ainsworth, 1999).

However, too many representations can provoke 
a cognitive overload (Chandler & Sweller, 1991). 
Furthermore, teachers have to be careful not to gen-
erate misconceptions through the representations 
(e.g., Hadjidemetriou & Williams, 2002).

While several studies investigated the effect of multi-
media-based representations on learning outcomes, 
little is known of how to measure the competencies 
teachers need in order to take advantage of the poten-
tial of multimedia-based representations.

To measure these competencies, video-vignettes, 
which show various situations during mathematics 
teaching using multimedia-based representations, 
have been developed. These representations have 
been integrated in a classroom situation with inter-
actions between students, teachers and the computer. 
The vignettes are constructed with a closed-ended 
question type, where each statement has to be an-
swered on a scale from one to six according to its ap-
propriateness for the situation. This type of assess-

ment is thought to be effective to measure teachers’ 
competencies (Blomberg, Stürmer, & Seidel, 2011).

35 vignettes have been developed, with 6 to 14 state-
ments each, validated by a multistage expert review-
ing process. The first step consisted of qualitative 
interviews with nine experts to assure relevance 
and clarity of the situations. In the second step, the 
vignettes were implemented in an online-tool, which 
was reviewed by 104 experts to get insights into the 
appropriateness and difficulty of the assessment. This 
is the data-base for the choice of the vignettes. For the 
current study only 10 vignettes are planned to be used. 
They are chosen from the data-base by sequentially 
applying different criteria, comparable to the step-
wise selection procedure of Witner and Tepner (2011). 
The content of the individual vignettes was analysed 
separately after the second step of the expert review-
ing process and only vignettes comprising interac-
tions between students and computer were chosen, 
so that the number of vignettes could be reduced to 
26 (criterion 1). A second analytical criterion does not 
refer to a whole vignette, but to each statement. The 
more of a consensus between the experts concerning 
a statement, the better it would be ranked. To meas-
ure this consensus, we will have a closer look at the 
quantity of experts that chose each of the possibilities 
from one to six. We are going to determine the abso-
lute value of the differences between these quantities 
varying from the modal value and furthermore from 
the median, calculate the sum of the differences of 
each statement and standardise this value, so that the 
statements can be ranked. Furthermore, the experts’ 
ratings concerning relevance (criterion 2) and clarity 
(criterion 3) will be analysed (as well as any available 
comments of the experts). Relevance and clarity of the 
vignettes were also ranked by the experts on a scale 
from one to six.
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According to these four different criteria, the vi-
gnettes will receive a score corresponding to the cri-
teria, so that ten vignettes with four statements each 
will be chosen for the pilot study in spring 2015. 

In a next step, an experts’ norm will be generated. A 
selection of vignettes, based on psychometric prop-
erties, will be used in the final assessment that will 
be validated in summer 2015.
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The purpose of this study is to reveal the experiences 
of lesson study being a model implemented by second-
ary school mathematics teachers participating in the 
Professional development project for the first time. Five 
secondary school mathematics teachers comprise the 
participants of the study. In the end of the study, ac-
quirements and problems experienced by the teachers 
while implementing the model were determined. As a 
result, it can be said that lesson study is a model to be 
utilized by the teachers for professional development in 
the perspective of Turkey.

Key words: Teacher professional development, lesson 

study, experience.

INTRODUCTION

When we examine studies focused on professional 
development of teachers, the model of lesson study 
draws attention to the mathematics education re-
search (Murata, 2011). Lesson study comprises of 
planning the lesson by the group as the teachers 
come together in a way that the student will learn 
the lesson efficiently, implementing and discussing 
(Lesson Study Research Group, 2002). This model 
is mentioned as the professional development pro-
cess that Japanese teachers participate to evaluate 
the practices systematically to be more efficient in 
their professions. While this model improves teach-
ing of teachers, it is also a professional development 
model contributing to benefiting from experience 
and knowledge of each other. In addition to this, it is 
emphasized that Murata (2011) lesson study model 
places the teachers in the center of efficiency of pro-
fessional development. This study is quite significant 
in terms of revealing contributions of their profes-
sional development and experiences of mathematics 

teachers implementing the lesson study model seen 
in few studies since 2011 in Turkey.

METHODOLOGY

Participants of the study comprise of five mathemat-
ics teachers working at four different schools and 
having different years of service. Seminar was held 
with these teachers for a month before the sessions 
of lesson study started within the scope of the study.  
The model of lesson study was described at these sem-
inars and also discussions on methods and techniques 
they could use during the process were held. Then the 
sessions of lesson study were carried out with teach-
ers for 3 months at geometry classes. Data obtained 
from these seminars were analyzed by qualitative 
data analysis methods. In this poster, findings of the 
study will be presented as diagram under the titles of 
contributions of teachers to their professional devel-
opment, problems they encountered and advantages 
of lesson study. 

FINAL DISCUSSION

It was observed in this study that teachers benefited 
from the ways of thinking of each other in planning, 
implementing and discussing the implementation. 
Moreover, it was observed that teachers expressed 
that lesson study enabled them to see different meth-
ods and points of views. Teachers emphasized that 
since different opinions were presented during les-
son study, a rich discussion environment was created 
and it enabled them to prepare an efficient lesson plan. 
In addition to this, they mentioned about the fact that 
it created team spirit and improved skill of making 
decision together. Also, since school conditions of 
teachers participating in the study were different 
and lesson study lasted longer, it was seen that they 
indicated that participation of teachers working at the 
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same school would be more efficient for implementa-
tion of this model. As a result of this study, it can be 
expressed that the model of lesson study is a model 
to be employed for the professional development of 
secondary school mathematics teachers.
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Our aim is to present the views of a group of basic 
education teachers involved in a lesson study as they 
discuss the features of tasks, students’ difficulties, and 
how to conduct exploratory work about rational num-
bers in the mathematics classroom. Data collection 
was made through audio/video recording of the lesson 
study sessions, teachers’ written reflections, individual 
and group interviews, and a researcher’s journal. The 
results show that the teachers developed a vocabulary 
to speak about mathematics tasks, and developed an 
appreciation for students’ reasoning processes such 
as generalizing and justifying as well as for classroom 
discussions as important moments for argumentation 
and negotiation of meanings.

Key words: Professional development, lesson study, 

exploratory approach.

LESSON STUDY AND 
EXPLORATORY APPROACH

Lesson study is a professional development pro-
cess focused on professional practice with origin in 
Japan, which, in recent years, has been widely used 
in many countries. An important feature of lesson 
studies is their reflexive and collaborative nature 
(Fernandez, Cannon, & Chokshi, 2003; Perry & Lewis, 
2009). Teachers identify an important issue and work 
together, analysing students’ difficulties, discussing 
curriculum alternatives, and preparing what they 
expect to be an “exemplary” lesson. Afterwards, they 
verify to what extent this lesson achieves the desired 
objectives and what difficulties arise. Therefore, a les-
son study is a process very close to a small investiga-
tion developed by the participating teachers on their 
own professional practice, informed by curriculum 
guidelines and by research results on the given issue. 
Our aim is to present the views of a group of grade 
5–6 teachers as they discuss the features of tasks, 

students’ expected difficulties and how to conduct 
exploratory work in the mathematics classroom. We 
focus especially on the professional learning of the 
teachers regarding the nature of the tasks, students’ 
reasoning processes, and classroom communication. 

A central aspect of lesson studies is that they focus on 
students’ learning and not on teachers’ work. Indeed, 
lesson studies aim to examine students’ learning and 
to observe the way they learn. By participating in 
lesson studies, teachers may learn about mathemat-
ics, curriculum guidelines, students’ processes and 
difficulties, and classroom dynamics. Lesson studies 
provide opportunities for teachers to reflect on the 
possibilities of an exploratory approach to mathemat-
ics teaching which is receiving an increasing support 
in curriculum orientations for mathematics educa-
tion (e.g., NCTM, 2000). In this approach students are 
called to deal with tasks for which they do not have an 
immediate solution method (closed or open problems), 
constructing their own methods using their previous 
knowledge. Exploratory work creates opportunities 
for students to build or deepen their understanding 
of concepts, procedures, representations and mathe-
matical ideas. Students are thus called to play an active 
role in interpreting the questions, representing of 
the information given and in designing and carrying 
out solving strategies which they must justify to their 
colleagues and to the teacher. However, conducting 
exploratory mathematics teaching is a serious chal-
lenge for teachers, demanding specific knowledge, 
competency and disposition. 

RESEARCH METHODOLOGY

The methodology is qualitative, using participant 
observation. The participants are a group of grade 
5–6 teachers of a school in Lisbon involved in a lesson 
study focusing on rational numbers. Data collection 
was made through audio/video recording of the ses-
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sions, teachers’ written reflections, individual and 
group interviews, and a research journal made by a 
member of the research team.

RESULTS, IMPLICATIONS AND 
CONTENT OF THE POSTER

By participating in this lesson study, focusing on 
mathematical tasks and on students’ reasoning, the 
teachers had many opportunities to get involved in 
doing mathematics through exploratory approach. 
They had many occasions to discuss the features of 
tasks that make them simple exercises or more en-
gaging problems or explorations as well as features of 
reasoning processes such as justification and general-
ization (Lannin, Ellis, & Elliot, 2011) with rational num-
bers. Anticipating possible difficulties of students and 
looking at what they actually do in the classroom were 
key features of lesson study (Perry & Lewis, 2009) that 
were effective in leading the teachers to reflect and 
consider changes in their practice to conduct a more 
exploratory teaching in their classrooms. This led 
to significant learning regarding the nature of the 
tasks, students’ reasoning processes, and classroom 
communication. 

Using photos, schemes, and text, the poster presents 
the aims of the study, our framework on lesson study 
as a professional development setting, samples of the 
teachers’ work on lesson study sessions, as well as 
implications of this kind of work for mathematics 
teacher professional development.
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Mathematical tasks play a crucial role in mathematics 
education in the school context, in higher education 
and therefore also in the professional development of 
pre-service mathematics teachers. Pre-service teachers’ 
views of mathematics are reconstructed in relation to 
experiences with mathematical tasks in those contexts. 

Keywords: Pre-service mathematics teachers, 

mathematical tasks, view of mathematics.

INTRODUCTION

The findings presented in this paper are part of an 
ongoing qualitative study addressing learning experi-
ences of pre-service mathematics teachers at univer-
sity. Ten semi-structured interviews with pre-service 
mathematics teachers are analyzed using a combina-
tion of grounded methods (Strauss & Corbin, 1990) and 
objective hermeneutics (Wernet, 2009). The topic of 
mathematical tasks emerged to be worthwhile taking 
a closer look at in relation to the institutional dimen-
sion. Interestingly the topic of mathematical tasks is 
addressed in the interviews in relation to insecurities 
concerning the view of mathematics.

In her analysis of word problem tasks, Jean Lave (1993) 
has pointed out that the institutional dimension is 
an important aspect leading to a deeper understand-
ing of meanings ascribed to mathematical tasks. She 
described that mathematical tasks fulfil a variety of 
different roles in the school context, which can be 
contradictory (e.g., “realistic” word problems being 
motivating to all students vs. the complication of tasks 
due to backward translation into mathematical lan-
guage). Taking a closer look at teacher education, at 
least three institutional dimensions have to be con-
sidered; the pre-service teachers’ experiences (I) at 
school level, (II) in subject matter courses at universi-
ty and (III) in pedagogical content knowledge courses 

at university. These three dimensions do not stand 
alone, but are all embedded in the societal discourse. 

One aspect of pre-service mathematics teacher’s pro-
fessional development is reflection on mathematical 
tasks. Taking a closer look at the influence of math-
ematical tasks on views of mathematics in relation 
to the different institutional contexts, the following 
question arises: 

What meanings do pre-service mathematics teachers 
ascribe to mathematical tasks that they are confronted 
with throughout their university education? 

The findings are discussed through the cases of Anna 
and Georg; both addressed modelling tasks in the in-
terview as being a new aspect of mathematics for them.

THE ROLE OF MATHEMATICAL TASKS 
IN TEACHER EDUCATION

Bearing in mind the central role of mathematical 
tasks in mathematics education it is reasonable that 
they are an important topic for pre-service teach-
ers. Experiences with mathematical tasks in school 
have already shaped students’ views of mathemat-
ics (Hannula et al., 2005) and their perception of the 
teacher’s role before they start their studies to become 
teachers. According to their view of mathematics, dif-
ferent meanings are ascribed to mathematical tasks 
in university courses: Anna’s experiences with math-
ematical tasks in school led her to the stable view that 
doing mathematics will lead to definite solutions. In 
university courses she relies on sample solutions for 
learning mathematics. She perceives mathematical 
tasks provided by her subject matter courses to be 
guidelines of what she is supposed to learn. She plans 
on providing step-by-step instructions to her future 
pupils. Georg sees mathematics as a logic game. To 
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him, mathematical tasks in university courses pro-
vide opportunities to learn a way of thinking.  

Throughout their studies, pre-service mathematics 
teachers’ views of mathematics are challenged by the 
different nature of mathematical tasks compared to 
those in the school context. For Anna and Georg, mod-
elling tasks seem contradictory to their view of math-
ematics. Anna recognizes that modelling tasks differ 
from her view of mathematics and has difficulties in-
tegrating this new type of task into her mathematical 
practices and perceives teaching modelling in school 
as a burden. Georg recognizes, due to modelling tasks, 
the application facet of mathematics but even so he 
cannot imagine presenting the abstractness and ap-
plication of mathematics in a coherent manner in a 
school context. At the time of the interview he favours 
promoting the application facet in school.

Different aspects of mathematics that seem contra-
dictory to pre-service teachers need to be explicitly 
addressed and reflected on in university courses in 
order to help future teachers broaden their view of 
mathematics and integrate those aspects into their 
practice.
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Mathematics teachers’ development and the under-
standing of what constitutes learning are an on going 
topic and highlighting the complexity in the processes 
of learning in and from practice. This study builds on 
the idea that mathematics teachers’ professional devel-
opment needs to be based on their classroom practice 
(Goodchild, 2008; Kazemi & Franke, 2004). Teacher par-
ticipating in a working group, a learning community, 
and reflect on their own teaching and students learning. 
Working collaborative the mathematics teacher devel-
oped understanding of mathematical communication 
and mathematical reasoning in their teaching algebra. 

Keywords: Developmental research project, mathematical 

communication and mathematical reasoning.

AIM AND RESEARCH QUESTIONS

Results from a pilot study showed teachers’ difficul-
ties with describing the concepts mathematical com-
munication and mathematical reasoning as well as 
with using these concepts in their teaching. Based 
on the results from a pilot study and by means of 
using developmental research (Gravemeijer, 1994) 
the main study was designed as a collaborative work 
between mathematics teacher and a researcher. Also 
based on the results from the pilot study the reflec-
tion group decided to focus on; how could teachers 
develop classroom communication to stimulate stu-
dents’ mathematical reasoning? The main purpose 
of this study is to gain understanding of a process, of 
what and how teachers learn when participating in 
a reflection group.

THE THEORETICAL PERSPECTIVE 

The theoretical perspective used in this study is com-
munities of practice (Wenger, 1998), where learning 
is considered to be a function of participation and 
participants are constantly involved negotiation of 
meaning. From this theoretical perspective reification 
and participation are used in the process of negotia-
tion of meaning (Wenger, 1998). 

THE METHODOLOGY

This is a study of single case, consisting of five math-
ematics teachers from different elementary schools 
(grade 1–6). The five teachers and a researcher meet 
monthly in a workgroup, the reflection group. The pro-
ject has used the model of the developmental research 
cycle (Goodchild, 2008, p. 208) as a methodology. This 
model is a cyclic process for both the professionals’ 
mathematics teachers and the researcher. The model 
gives opportunities to analysing developmental activ-
ities with special emphases on the relation theories 
and practice (Goodchild, 2008). My interpretation 
and using the developmental research cycle (Goodchild, 
2008, p. 208) is mutual between the researcher and 
the mathematics teachers, empirical data was gener-
ated from discussions and activities in the reflection 
group. The preliminary and on going results of the 
analyses fed back in the reflection group to provide 
development for practice (Goodchild, Fuglestad, & 
Jaworski, 2013). In the reflection group the teachers 
prepare mathematic tasks collaboratively, to be used 
in different classrooms. The participants use reflec-
tions in three different levels. These reflections are 
both individual and shared in the reflection group. 
The teachers make individual reflection before, dur-
ing and after implemented lesson. When the teachers 
meet in the reflection group they discuss and reflect 
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together both on own reflections, on the student work 
generated and on the videotapes from their teaching. 
The third level of reflection the researcher present as 
questions from previous meeting. These reflections 
are used as a tool to problematize the on going edu-
cation in mathematics. 

PRELIMINARY RESULTS

The study indicates how teachers in this learning 
community came to understand the concepts com-
munication and reasoning in mathematics and shifted 
their ways of talking about students´ mathematical 
reasoning. I identify four shifts that teachers made in 
there learning about students’ mathematical reason-
ing. Understand, identify, interpreting and applies the 
mathematical reasoning in their education.  
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This poster focuses on the beliefs accompanying first-
year teacher students with respect to aspects of mathe-
matics as a product of human creativity that might be 
designed in various ways. 
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INTRODUCTION

Transition issues are a frequent problem in academ-
ic mathematics education, particularly appearing 
in teacher students’ education. Currently, there are 
several projects intervening in this field in German-
speaking countries (e.g., Beutelspacher, Danckwerts, 
Nickel, Spies, & Wickel, 2012). We created a lecture, 

“Mathematical Genesis”, held parallel to the correspond-
ing calculus course in which the transition gap seems 
to be at maximum. The lecture deals with the develop-
ment of mathematics in and by the society of mathema-
ticians. First-year students learn about the importance 
of creativity and experience the process of developing 
mathematics. This study assesses effects of the lecture 
on their beliefs (cf. Weygandt & Oldenburg, 2014).

THEORETICAL FRAMEWORK, 
METHOD AND RESULTS

This research is based on Törner’s theory and conclu-
sions about German math teachers’ beliefs, in which 

he stated the “key role [of beliefs] in the teaching and 
learning process” (Törner, 1996). Moreover, Törner, 
Grigutsch and Raatz (1998) identified four aspects 
of mathematics: “formalism-”, “scheme-”, “process-” 
and “application-aspect”. Only the “process aspect” 
corresponds to the genesis of mathematics. Our initial 
hypothesis stated that this should be analysed in more 
detail as more aspects of mathematics that might be 
especially important in the beginning of academic 
mathematics education appear to exist. We adopt-
ed Törner’s survey on prospective teachers’ mathe-
matical beliefs and added 60 items focussing on lec-
ture-related subjects. During the course of the study 
we surveyed 178 first-year (mixed math and math 
teacher) students concerning their acceptance of each 
statement. Exploratory factor analysis of the 37 test 
items (introduced by Törner et al., 1998) verified those 
four factors with good reliability. An analogously con-
ducted factor analysis of the newly designed 60 items 
suggested the exploration of five further factors. The 
extracted factors are homogeneous concerning their 
content. Thus we propose to add the following aspects 
to those postulated by Törner (1996): (a) “output effi-
ciency”, (b) “structure of mathematics”, (c) “creativity” 
and (d) “universality”. The aspect (e) “latitude” can 
probably be included as well. In order to get an idea 
of these new factors, Table 1 illustrates three aspects 
through corresponding example items.

The current research concentrates on an inter-aspect 
correlation matrix and compares the pre- and post-

aspect example item(s)

(b) Learning maths, it’s a waste of energy to take a non-productive approach.

(d) Mathematical objects are comparable to natural principles, i.e., they may be discovered, but are un-
changeable. / Any extra-terrestrial intelligence would reach same mathematical conclusions.

(e) If one dislikes the consequences of a definition, one may modify the definition accordingly.

Table 1: Example items for some of the five assumed aspects
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test results of teacher students having or having not 
attended the lecture on “Mathematical Genesis” with 
the corresponding effect sizes in Table 2.
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aspect shift   \   group attending MG (n=15) not att. MG (n=22)

scheme-orientation decreases d=-.70 (p=.02) d=-.45 (p=.04)

structure of mathematics increases   d=.60 (p=.01)

universality decreases d=-.61 (p=0.03)  

latitude might increase d=.49  (p=.07)  

application might decrease d=-.43 (p=.08)  

output efficiency might decrease   d=-.35 (p=.09)

Table 2: Effect sizes of differences in mean values
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INTRODUCTION 

This Thematic Working Group (TWG) together with 
TWG18 and TWG20 addresses questions related to 
mathematics teachers, teaching, and their develop-
ment. TWG19 focuses particularly on mathematics 
teaching, including important micro and macro fac-
tors that frame it. Classroom research has been the 
focus for many years in mathematics education, but 
new theoretical and methodological directions have 
been reported in this group aiming to study on the 
one hand the overall complexity of teaching and on 
the other the particular aspects that characterize it. 

TWG19 initially received 64 proposals (56 papers and 
8 posters), and being the largest group in CERME9, 
it was split in two new groups (TWG19 and TWG20). 
Finally, 31 papers and 6 posters remained in the group. 
The reviewing process led to revisions in most of the 
papers and eventually 27 papers and 6 posters were 
presented in the conference and are included in the 
proceedings. The papers and posters were classified 
in three thematic groups: instructional practices (14 
papers and 4 posters); classroom interaction (8 papers 
and 1 poster); and tasks and teaching resources (5 pa-
pers and 1 poster). The papers and posters in the first 
thematic group mostly concern general teaching prac-
tices, whereas there are some which focus on teaching 
practices related to the teaching and assessment of 
specific mathematical issues. In the second thematic 
group, the topics addressed are patterns of interac-
tion, teacher’s questioning, and classroom discourse. 
In the third thematic group task and textbook analysis 
is the main focus. Below, we discuss the papers and 
posters with reference to these thematic areas.

INSTRUCTIONAL PRACTICES 

Most papers and posters in this area report on small-
scale, qualitative studies of the interactions in one or 
a few school classrooms aiming to support practices 
for effective teaching, but also to gain a better descrip-
tion of teaching practices by looking for patterns of 
argumentation in classroom interaction (Zalska & 
Tumova). However, there are also examples of more 
quantitative approaches (Felmer et al.; Gunnarsdottir 
& Pálsdottir) and of researchers who do not report on 
their own observations of classrooms, but on teachers’ 
interpretations of classroom events (Reid et al.) or task 
design (Opheim). Between them, the papers deal with 
all levels of schooling, from primary (Allard; Caseiri 
et al.; Gade; Velez & Ponte; Taylan), over middle (da 
Ponte & Quaresma; Zalska & Tumova) to secondary 
(Dias & Santos; Mata-Pereira & da Ponte; Reid et al.) 
and vocational (Opheim). One paper addresses in-
structional designs of novice teacher educators and 
the practices that unfold in their course for in-service 
teacher education (Kalogeria & Psycharis), and an-
other one does not deal directly with interpretations 
of classroom events, but is based on interviews with 
teachers on how imposed assessment practices may 
significantly transform teaching practices in ordinary 
schools (Pratt). Also one of the posters deals with ex-
ternal evaluation and the teachers’ attitude towards 
it (Signorini). Two posters explore the effects of form-
ative assessment on teaching practice (Anderson & 
Boström; Vingsle).

Theoretical and methodological issues
Pratt’s paper highlights the significance of taking 
contexts beyond the individual classroom and school 
into consideration. His theoretical framework, based 
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primarily on Bourdieu, allows him to do so. Context, in 
one or other understanding of the term, is dealt with 
also in other studies (Reid et al.; Opheim; Taylan), and 
in fact the notion of context is mentioned in 10 of the 14 
papers. However, it is not always clear how the term is 
used and how its significance is taken into account in 
the theoretical framework and the methodology. This 
seems to be an issue that needs attention in research 
on mathematics classroom practices. 

The theoretical or conceptual frameworks that are 
used vary. Gade draws on CHAT, Reid and colleagues 
on Maturana (among others), whereas Allard as well 
as Kalogeria and Psycharis refer to the French school. 
Others base their studies on more local theories of 
classroom communication, problem solving, or the 
teaching and learning of particular mathematical top-
ics. Clearly, there are strong limitations to what theo-
retical frameworks can be presented in a conference 
paper. Nonetheless, the interest in context combined 
with the limited attention paid to theoretical frame-
works in most of the papers may indicate that it is a 
challenge to develop and use approaches that allow 
for a combined analysis of micro-, meso-, and macro 
issues of significance for instruction. 

The approach in most of the papers is a carefully con-
ducted qualitative analysis of unfolding classroom 
events, sometimes combined with stimulated recall 
interviews and textual analyses of tasks and student 
work. Other studies are based exclusively on inter-
views. In both cases, the research participant(s) are 
often purposefully selected teachers, who are either 
co-researchers engaged in teacher-researcher collab-
oration (Gade; Dias & Santos), experienced teachers 
whose participation in the study is based on their 
reputation and/or their participation in long-term 
teacher development initiatives (Allard; Taylan), or 
teachers who are engaged in focused collaboration 
with their colleagues on issues of interest to the study 
in question (Velez & da Ponte). In these studies, the re-
search participants qualify as critical cases (Flyvbjerg, 
2006), this means, as particularly useful cases that 
allow for conclusions of the type: if reform intentions 
do not materialise with these teachers, they never will. 
Although some of the studies invite this type of con-
clusion (Allard), most of them do not. As mentioned 
above, most of the papers report fairly positive find-
ings, and the general conclusions seem more related to 
ways in which interventions or the work of competent 
teachers may inform teacher education or induction 

programmes. This is so for instance with a series of 
studies from Portugal by Caseiro and colleagues; 
Mata-Pereira and colleagues; da Ponte & Quaresma; 
and Velez & da Ponte and with the Turkish study by 
Taylan. 

Reid and colleagues do not make use of critical cases, 
but adopt a second order perspective on classroom 
practice: they analyse groups of teachers’ collective 
interpretations of video recordings of “typical” and 

“exemplary” lessons from their own classrooms. The 
intention is to understand the criteria that guide the 
teachers’ observations. It is interesting that research 
participants focussed on different aspects of typical 
and exemplary lessons, when they had access to the 
videos and when they did not. Reid and colleagues 
argue that this indicates the research design needs to 
allow for different ways of accessing teachers’ views 
of what is valued in mathematics education.

Substantive issues
There seems to be a shared vision of quality teaching 
underlying most of these papers. Some papers make 
explicit reference to the reform, but, even in the ma-
jority of papers that do not there appears to be a set 
of shared understandings inspired by current reform 
efforts about good classroom practice. In particular, 
students are expected to become involved in inde-
pendent and creative activities much beyond their 
repetition or imitation of ready-made concepts and 
procedures as presented by the teacher or the text-
book. In turn, this requires teachers, for instance, to 
organise problem solving activities (Felmer et al.); to 
orchestrate whole-class discussion and promote other 
forms of classroom communication (Gade; Ponte & 
Quaresma; Mata-Pareira, Ponte & Quaresma); to fa-
cilitate the development of students’ ability to assess 
their own mathematical progress (Dias & Santos); and 
to base instruction on interpretations of the students’ 
mathematical thinking, including their unexpected 
questions, comments, and suggestions (Taylan). 

The papers mentioned report on relatively successful 
examples of instruction, when seen from the perspec-
tive of the researchers. Some studies are part of or 
follow up on intervention programmes and in these 
studies research participants generally appear to 
cope well with the challenges of teaching according 
to the reform (e.g., Felmer et al.). The most significant 
of these challenges appears to be the contingencies 
that arise as students are to make their own mathemat-
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ical contributions to classroom practice. The specific 
contents of students’ inputs are not necessarily part of 
the teacher’s agenda, as their contributions may take 
the form of a surprising question or an unforeseen 
conjecture (Ponte & Quaresma). In this sense, the re-
form inserts an element of planned unpredictability 
in instruction that teachers need to capitalise on in 
the moment (Skott, 2004). One major challenge for 
teachers is to cope with the inherent unpredictability. 

Despite the positive descriptions of the interactions 
in most of the papers, some point to problems in re-
lation to the reform. Gunnarsdóttir and Pálsdóttir 
report on a study from Iceland on dominant ways of 
organising instruction in grades 1 to 10. There are ex-
amples of group work and whole class discussions, but 
students appear to spend most of their time working 
individually on textbook tasks. Allard’s paper points 
to problems that arise because of difficulties involved 
in linking instruction to students’ thinking. Her study 
on a highly qualified elementary teacher in France 
shows a tension between devolution and institutional-
isation, that is, between handing over initiative to the 
students to support their independent activity and 
ensuring that what is learned is decontextualized and 
in line with the discipline of mathematics. One par-
ticular problem when taking students’ thinking into 
account is that of the time needed for task completion. 
Opheim, working with vocational schools in Norway, 
suggests that the diversity of the student population 
poses particular problems related to timing for teach-
ers’ selection and use of tasks.

A somewhat different approach is adopted by Pratt. 
Working in the UK, he reports on part of a study of 
how a dominant assessment culture influences the 
position of teachers and the relationships among 
them. In turn, this is likely to significantly influence 
instruction. 

CLASSROOM INTERACTION 

The papers in this area consider various aspects of 
the interactions taking place in mathematics learn-
ing and teaching settings and the ways these inter-
actions shape participants’ learning. All but one of 
the papers concern small-scale, qualitative studies 
often situated or initiated in the context of a larger 
project.  Only the study by Seker and Ader adopts a 
quantitative approach, focusing on teachers’ writ-
ten answers to items allowing for tensions between 

students’ perceptions and teachers’ intentions to be 
explored. The remaining research reports deal with 
aspects of interactions taking place in various math-
ematics education contexts: teachers’ discussions 
in mentoring sessions (Mosvold); teacher practices 
when exploiting contingent opportunities (Kleve & 
Solem) or when aligning values to smoothen learn-
ing (Seah & Andersson); whole-class discussions 
(Drageset; Larsson); and students’ grasp of teach-
ing changes initiated by an intervention (Evans & 
Swan) or by a national reform (Wester, Wernberg & 
Meaney). Most studies are based on observations, the 
exceptions being the ones by Larsson and by Wester, 
Wernberg & Meaney, which are predominantly based 
on interviews. The interest in the impact of the emer-
gent interactions on students’ mathematics learning 
and directly or indirectly on teachers’ learning about 
teaching mathematics is central to all the studies pre-
sented here, whose focus extends from the upper pri-
mary to the secondary school level.  

Theoretical and methodological issues
The design and the implementation of the research 
reported in the papers are framed by the conceptu-
al focus chosen, the theoretical perspective adopted 
and the methodology employed.  The studies deal 
predominately with classroom practices related to 
promoting interaction and thus facilitating particu-
lar aspects of mathematics learning, mainly through 
teachers’ management of teaching incidents (e.g., 
Seah & Andersson), classroom communication (e.g., 
Larsson), tasks (e.g., Evans & Swan), tools (e.g., Seker 
& Ader) and resources (e.g., Wester, Wernberg & 
Meaney). The theoretical frameworks employed in 
the studies concentrate on mathematics classroom 
interactions related to advancing students’ learning 
or to developing teachers’ knowledge for teaching.  
The former might refer to management (e.g., Drageset; 
Evans & Swan) or socio-cultural (e.g., Larsson; Seah 
& Andersson) issues of the interactions involved, 
whereas the latter frameworks adopt either a practice 
oriented (Kleve & Solem) or a discursive perspective 
(Mosvold).  Finally, the methodological choices are 
qualitative in character (with the exception those of 
Seker and Ader), include mostly selection and anal-
ysis of classroom events, sometimes combined with 
interviews (e.g., Larsson) and involve teachers who 
agree or are willing to experiment with new ideas (e.g., 
Wester, Wernberg, & Meaney).  The results reported 
are generally positive, illustrate how and shed some 
light on why interactions can promote classroom par-
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ticipants’ learning, but may also limit their learning 
opportunities.  

Substantive issues
The research presented in the papers under consid-
eration is based on a shared view of learning as a pro-
cess of pursuing challenging tasks and activities via 
student-student and/or teacher-student interactions.  
Opportunities for such tasks and activities to be intro-
duced are sought in instances of the moment-to-mo-
ment decision making or in carefully planned and 
implemented teaching interventions, aiming in all 
cases at particular, well defined learning outcomes. 
In the former category, we find contingent moments 
of teaching seen as unplanned opportunities of sup-
porting students’ mathematical learning (Kleve & 
Solem); unexplained students’ answers exploited 
as occasions for effective intervention (Drageset); 
tensions between teachers’ intentions and students’ 
interpretation taken as instances for improving par-
ticipatory learning (Wester, Wernberg & Meaney); 
teachers’ value alignment strategies related to the 
quality of the students’ learning experiences (Seah 
& Andersson).  As for the tasks and activities that are 
planned, some are based on and explore the power 
of theoretical models of learning, cognitively (Seker 
& Ader; Evans & Swan; Klein) or a socio-culturally 
oriented (Larsson; Mosvold). 

The classroom practices supported by the tasks and 
activities utilized in the studies described above are 
characterised by significant to moderate teacher-stu-
dent and only occasionally noticeable student-stu-
dent interaction.  For example, unexplained answers 
appear to attract teachers’ attention (Drageset) and 
the same is true for contingent teaching moments 
(Kleve & Solem), leading to a range of teacher-student 
interaction strategies, which are generally beneficial 
for students’ learning.  Similarly, well-designed and 
established social and socio-mathematical norms 
contribute to pupils interacting effectively with one 
another, giving rise to an inquiry classroom culture 
(Larsson). However, overall, students find it hard to 
cope with and build on interactions with their peers 
in the classroom (e.g., Evans & Swan).

Overall, the studies reported here reveal that math-
ematics classroom interactions constitute critical 
teaching incidents that function in complex ways and 
offer opportunities for students’ and teachers’ indi-
vidual and collective learning. However, the studies 

also indicate that there may be difficulties involved 
that we are just about to begin identify and under-
stand. 

TASKS AND TEACHING RESOURCES 

Teaching can be regarded as plausible conceptions of 
teachers’ professional practice, and most of the papers 
in TWG19 deal with such conceptions. Among the dif-
ferent approaches to conceptualize the work of teach-
ing, one considers teaching as a didactic encounter 
between teacher and students about a certain math-
ematical content. In such an encounter, the teacher 
presents the content by using mathematical tasks or 
resources. Two of the papers discussed here, mainly 
concentrate on the content of textbooks and textbook 
tasks (Burke; Wijayanti), whereas three papers focus 
more on teachers’ use of tasks in their work of teach-
ing mathematics (Ayalon & Hershkowitz; Kwon; Matic 
& Gracin). In addition to these papers, a poster focused 
on mathematics teacher guides (Ahl & Koljonen).

Theoretical and methodological issues
The textbook is a central resource for mathematics 
teachers and students alike. Appraising, adapting 
and administering mathematical textbook tasks 
constitute professional challenges for the mathe-
matics teacher. Textbooks are not only a source of 
mathematical tasks, but they also include demon-
strations of techniques. When analysing Indonesian 
mathematics textbooks, Wijayanti focuses on tasks 
and techniques presented in the textbooks and uses 
Chevallard’s Anthropological Theory of the Didactic 
(ATD) in her analysis. Burke focuses on the strategies 
deployed in textbooks and the pedagogical tasks em-
bedded in them. As a theoretical framework, he ap-
plies Dowling’s Social Activity Method (SAM). From 
such a theoretical perspective, he aims at describing 
possibilities for engagement between author and au-
dience in a pedagogical relation. 

Most textbooks also have a teachers’ guide, and Ahl 
and Koljonen analysed the teachers’ guides to the 
two most commonly used mathematics textbooks in 
Sweden. They apply content analysis in their analysis 
of these teacher guides. 

Whereas the above-mentioned studies focus on the 
texts themselves – the textbook, the tasks, or the teach-
ers’ guide – the other three papers have a particular 
focus on teachers’ use of textbooks and mathematical 
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tasks in the work of teaching. In their study, Ayalon 
and Hershkowitz survey 17 Israeli secondary school 
teachers. They attend to the teachers’ rationale for 
selecting particular mathematical tasks from the text-
book in order to facilitate argumentative activity in 
the classroom – considering argumentation as a so-
cial process. Whereas these researchers investigate 
teachers’ different explanations for the choice of tasks, 
Matic and Gracin analysed two Croatian primary 
teachers’ use of textbook tasks. When applying the 
socio-didactical tetrahedron in their analysis, the con-
nection between student, mathematics and textbook 
appeared important. In her attempt to conceptualize 
the teachers’ work in supporting students’ develop-
ment of mathematical explanation, Kwon focused on 
the encounter between an expert teacher and five dif-
ferent cohorts of students around some mathematical 
tasks. Kwon’s analysis revolved around core tasks of 
teaching, and this corresponds somehow to Burke’s 
focus on pedagogical tasks.

Altogether, the papers and poster presented in this 
group vary considerably in their use of theoretical 
framework, instruments, and methods of data col-
lection and analysis. This variation can be seen as 
a challenge for the further development of the field. 

Substantive issues
From these studies, some emerging issues can be ob-
served. First, there is the connection between teach-
ing and students. Investigations of this connection 
differ among the studies, but the teachers’ work can-
not be dissociated from the students’ learning activ-
ities. Second, the connection between mathematical 
tasks and the decomposition of teachers’ practice into 
core tasks of teaching emerged as a central issue (e.g., 
Kwon). Such tasks of teaching are arguably important 
to study when attempting to conceptualize teachers’ 
professional practice. Finally, an issue emerges in 
the various theoretical conceptions of teaching. The 
papers in this group adopt different theoretical frame-
works, and different interpretations of core concepts 
like tasks and teaching are applied. Some papers ap-
pear to describe tasks merely as mathematical prob-
lems from textbooks (e.g., Ayalon & Hershkowitz), 
whereas others also discussed pedagogical tasks 
(Burke), or tasks of teaching (Kwon). Future studies 
in this TWG need to be more specific about their use 
of such core concepts and develop shared language 
necessary for establishing solid conceptions of the 
professional work of mathematics teachers.

GENERAL ISSUES – MOVING FORWARD 

Research on mathematics teaching has been devel-
oped in mathematics education during the last few de-
cades. Different research questions as well as theoret-
ical and methodological tools have been formulated 
throughout the years. The papers and the discussions 
in this TWG show that we have taken some steps for-
ward. For example, we have developed questions and 
frameworks that allow us to: look closer into critical 
moments of classroom interaction; consider contex-
tual, epistemological and social issues that frame 
mathematics teaching; build general models that de-
scribe mathematics teaching; understand better in 
what ways the resources and tools that teachers use 
in the classroom transform mathematics teaching and 
learning.  We have also started to consider mathemat-
ics teaching in its complexity and move away from 
dichotomies of what is “effective” or not and adopt 
deeper explanations of teacher’s decisions and ac-
tions. We work with teachers in more collaborative 
contexts and care more about what our research says 
for them. 

However, we still need to look more critically at our 
research concerning mathematics teaching. For ex-
ample, many papers study the teaching of an expert 
teacher. Do we work under the assumption that there 
is an ideal teacher and/or an ideal teaching? We possi-
bly need other interesting cases of mathematics teach-
ers in different school contexts that will allow us to 
understand better the dynamic character of teaching. 
We also see that many studies use multiple research 
methods. Is there the underlying assumption that 
different methods provide differential access to the 
same phenomenon, for example, teachers’ meaning 
making? It may be that different methods shed light 
to teachers’ views and meaning making in decidedly 
different contexts that frame teacher actions very dif-
ferently. In the discussions in the group, it appeared 
that because mathematics teacher education and 
teacher resources were discussed in other groups, 
we missed the dialectical relationship between mathe-
matics teaching, resources and teacher education. Do 
we really have theoretical and methodological tools 
that allow us to study this dialectical relationship? 

We close this introduction by addressing a number 
of challenging questions that were discussed in the 
group: How can we link students’ activity to teach-
er’s activity? How can we include the significance of 
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context in our research on mathematics teaching? 
Can we listen to teachers’ voices? How complemen-
tary are the different theoretical frameworks we use 
for studying mathematics teachers and teaching? Is 
there a coherent meaning underlying the different 
constructs we use?
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My study deals with Institutionalization Process in 
French primary school. Institutionalization Process (IP) 
is defined in the Theory of Didactical Situations (TSD) as 
a process enabling to decontextualize and depersonalize 
knowledge. I focused both on what decontextualizing 
and depersonalizing imply in teachers’ actions and on 
knowledge exposure, proposed by teachers. I particu-
larly focused on fraction teaching at the end of primary 
school. My methodology allowed me to collect everything 
that is said diffused about fractions. 

Keywords: Institutionalization, practices, fractions, 

decontextualization, depersonalization.

INTRODUCTION

In TSD (Brousseau, 1998) also explains that the aim of 
TSD was the production of mathematical situations 
because there was a lack of such situations in teach-
ing, so questions about institutionalization (knowl-
edge exposure) arose much later. More recent works 
question this process and show in what manner it is 
important for teachers to take over didactical mem-
ory of the class (Brousseau & Centeno, 1991). Butlen 
(2004), Butlen, Peltier-Barbier and Pezard (2004) 
show that a tension exists between devolution and 
institutionalization for the benefit of devolution. 
Coulange (2012) obtains similar results to those of 
Butlen and colleagues (2004) and of Margolinas and 
colleagues (2002). Coulange talks about deletion of the 
formulation and knowledge exposure for the benefit 
of practices that puts ahead a “permanent shoring”. 
Observations and results of these authors lead us to 
question how expert school teachers (Tochon, 1993) 
deal with knowledge exposure. What are their con-
straints (Robert, 2001), which regularity and varia-
bility (Robert & Rogalski, 2002) will it be possible to 

determine when they institutionalize (for their mean-
ing as for our)?

QUESTIONS AND OBJECT OF STUDY 

In TSD, institutionalizing is defined as the action of 
depersonalizing and decontextualizing knowledge 
that arise following a situation of action. Pupils face a 
situation they need to solve by mobilizing knowledge 
and skills. The results of this situation lead them to 
build new knowledge. Brousseau (1998) thus shows 
one of the first institutionalization paradoxes: how to 
convince pupils that they have just learned something 
new despite the fact they were not able to solve the giv-
en problem. The teacher’s main role here is to demon-
strate and focus on this new knowledge. For this he 
has, on the one hand, to promote discussions between 
pupils in order for them to realize the great variety 
of their strategies involved to solve problems. On the 
other hand, they need teacher’s support to agree due 
to their lack of a common language. In addition, the 
teacher has to show and name the new knowledge. 
These moments when the teacher names and shows 
the knowledge engaged will be called knowledge ex-
posure.

Several recent French works (e.g., Butlen, Pezard, & 
Masselot, 2011; Coulange, 2012; Margolinas & Lappara, 
2008) have shown difficulties met by junior faculty to 
deal with these knowledge exposures. Butlen and col-
leagues (ibid) show that teachers know how to devolve 
situations but meet strong difficulties to institutional-
ize knowledge. They then talk about tension between 
devolution and institutionalization. These difficulties 
to say and show involved knowledge at school, partly 
explain educational inequalities in France (some par-
ents can help their children, some others not) (Rochex 
& Crinon, 2011).

mailto:cecile.allardb@free.fr
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A first study (Allard, 2009) has shown that written 
knowledge exposures, were few in number at the end 
of primary school (around twenty short texts for 36 
class weeks for an average of 5 hours mathematics les-
son per week). This small number of written traces let 
us assume the hypothesis that knowledge exposures 
are made orally most of the time. For my PhD I have 
tried to check this hypothesis.

These knowledge exposures can take place at the 
end of a lesson, at the beginning of another (remind-
er-phase), during the lesson, or during the correction 
of exercises. These knowledge exposures are quite 
fuzzy and I had to design a specific methodology to 
study them. We will describe it in a next part.

Although recent works are generally focused on 
junior faculty, we have decided to deal with skilled 
teachers. These teachers passed a specific exam 
(CAFIPEMF) to validate their expertise. These expert 
teachers are called PEMF (for “Professeur des Ecoles 
Maitre Formateur”). The exam consists in three parts. 
The first part consists in presenting two lessons in 
two different disciplines in front of a five-people jury 
(inspectors, PEMFs, academic advisors, university 
professors). The second part takes place in the class-
room of a pre-service teacher whose practice has to 
be analyzed by the candidate to CAFIPEMF. The final 
event consists in making a short presentation about 
his/her professional dissertation. These PEMFS are 
teachers that receive and train teacher trainees. In 
this paper, I will approach the following research 
question: How do these skilled teachers deal with 
knowledge exposure?

METHODOLOGY

My methodology is comparative and qualitative. 
Comparisons are possible between several PEMFS but 
also, over several years for the same PEMF. Depending 
on comparisons, we had to use different methodolo-
gies. I followed five PEMFS over a year, including two 
for three years. In order to make comparisons easier, 
I set down some particular variables such as the use 
of a common manual and keeping to one mathemat-
ical problem: fractions. To make comparisons easier 
I filmed the teachers during all their lessons on frac-
tions. In this paper, I will focus on the comparison of 
teaching practices of the same teacher for two years. 
I will therefore be able to talk about regularities and 
variabilities of these practices.

For this teacher, teaching fractions represents seven 
sessions of 50 minutes each for the entire year. I have 
transcribed all the lessons I filmed. These videos ena-
bled me to retrieve a large variety of data. I mainly fo-
cus on the words expressed by the teacher depending 
on pupils’ activities. I will particularly focus on the 
fidelity of the field of mathematics during three mo-
ments in the classroom: explanations given to pupils, 
before and after a research phase, and during knowl-
edge exposure. These oral knowledge exposures are 
part of teacher-pupil dialogues. Through the analysis 
of these fragments of sentences, I will be able to put 
them together to recompose a text of knowledge as 
was shown to pupils. These knowledge exposures 
are studied according to their decontextualization 
level (Pezard & Butlen, 2003). I also kept the exercise 
books in which exercises were given and done and 
also the other exercise books that contained mathe-
matical texts to be learned at home by heart. This data 
collection enables me to determine what kind of tasks 
pupils have done and what they have to learn at home. 
In France, it is forbidden to give written homework. 
Despite this prohibition that has been in effect since 
1956, parents in certain social environments claim 
homework for their children. The only type of au-
thorized homework, however, is reading and learning 
mathematical rules by heart.

These different data enable us to fill in the various 
practices components of PEMFs and to determine var-
iabilities and regularities (Robert & Rogalski, 2002). I 
thus adopt the methodology described by Robert and 
Rogalski (ibid). These authors break down practice 
into 5 components (personal, social, institutional, cog-
nitive and mediative) then recompose them. The per-
sonal component is only accessible by interviewing 
the teacher. It gives information on the relationship 
that the teacher has with mathematical knowledge, 
and choices made to help him/her carry out in com-
fortable manner his/her classroom teaching. The so-
cial component gives information on the teacher’s 
working place, his/her colleagues and the social en-
vironment of his/her pupils (both in disadvantaged 
and advantaged areas). The official curriculum, the 
mandatory hourly amount of math lessons, the use (or 
lack of use) of certain handbooks and the relationship 
with inspection and inspectors, all give information 
on the institutional component. The cognitive com-
ponent corresponds to teacher choices about content, 
tasks, organization and forecasts on how to manage. 
The mediative component is particularly relevant 
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since it deals with improvisations, speeches, pupils’ 
participation, devolution of instruction and knowl-
edge exposures. 

Thus, in order to describe practices and inform me-
diative and cognitive components, I focused on the 
choice of handbooks, the mathematical problems, on 
exercises books and on the teacher’s speech. I then 
had the necessary’s data to know how things are said 
and what is transmitted to pupils.

CASE STUDY

I chose to study the particular case of teaching frac-
tions because it is a new notion that is introduced at 
the end of primary school. In French primary school, 
fractions are only studied under the subconstruct, 
called part-whole (Kieren, 1983). Introducing frac-
tions is backed up by materials such as paper strips 
and circular areas.

I will name “Solene” the teacher I followed from 
September 2011 to June 2014. I previously followed this 
teacher from 2008 to 2011 but with a different focus. 
During these five years, I have collected enough data 
to describe her teaching practice carefully. 2011 was 
the first year when she had to deal with a double level 
class (CM1 and CM2: from 9 to 10 year old pupils). That 
year she proposed only three sessions on fractions. 
These sessions consisted in coding shapes. Shapes 
were subdivided into several equal parts. Fractions 
can be described by a numerator (colored area, part of 
a whole) over a denominator (all the parts, the whole). 
Solene proposed little written knowledge exposure. 
In 2012, she did not teach fractions to her group of 
CM2, but her colleague carried out this teaching.

We are now going to describe the five components 
found in Solene’s particular case.

Personal and social components
Solene have a good personal relationship with math-
ematics. She declares that she loves mathematics and 
considers that she has a solid knowledge in this field. 
She has a Master degree in the field of Developmental 
Psychology. She is confident enough in her choices 
and her professional skills to use the resource de-
signed by the ERMEL team (a group of PEMFs, didac-
ticians and mathematics teachers). She has been using 
this resource since 2008 even though this handbook 
is considered to be difficult.

Solene has been a teacher for 15 years, 10 of which she 
served as a replacement teacher. In 2008, she took the 
responsibility of a class in a rural school and she still 
teaches there today. She passed the specific exam to 
become a PEMF (CAFIPEMF), in 2013. She collabo-
rates with a colleague (also a PEMF). The school team 
is stable. Pupils who attend the school have a good 
general scholastic level (above average for national 
evaluations), and none of the parents are unemployed. 

I can conclude that Solene has a good relationship 
with mathematics and works with a good team in a 
pleasant, working environment.

Institutional component
To describe this component, it is necessary to study 
the official curriculum proposed by education depart-
ment in 2008. In this curriculum, teaching of fractions 
is spread over the last two years of primary school. 
The proposed progression is dedicated to decimal 
building “from fractions to decimal fractions”. It relies, 
on Perrin-Glorian and Douady’s (1986) work without 
explicitly naming them. The progression is built over 
several steps: learn, name and write fractions of the 
unit, know how to break up fractions into the sum of 
a whole number and a fraction of unit.

After this introductory work is carried out, teaching 
of fractions will begin. Decimal writing or “with dot” 
are introduced as a different way of writing, after the 
one of decimal fractions, to name decimals.

Arditi (2011, p. 95), in his PhD on the use of a written 
resource by didacticians, explains that, “the study of 
fractions is only a prerequisite to install decimals”. 
Note that the French program adds an indication on 
using fractions in a particular context which is the 
coding of size measures. The official instructions have 
not changed over the three years of my study even 
though, in France, they are often updated. The last 
versions occurred in 1995, 2002, 2008 and will change 
again in 2015. 

Solene uses the ERMEL handbook, which is recom-
mended during teacher training. This resource is 
appreciated by the inspectors. In France, inspectors 
come to observe teachers in their classrooms. They 
check that the curriculum is followed conforming to 
official instructions and, finally, they evaluate teach-
ers. This evaluation is important for career devel-
opment.
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Cognitive component
Solène spent seven sessions devoted to the teaching of 
fractions (including evaluation) and then continued 
with decimal fractions. Solene introduced fractions 
using paper strips. Using these strips, pupils draw 
and measure segments whose lengths are expressed 
under the form of fractions smaller than a unit or as 
the sum of a whole and a unit fraction. To understand 
what is proposed to pupils, it is important to describe 
the activity presented by the teacher. I noted that the 
cognitive path was identical in 2011 and 2013, because 
same activities and same instructions were given to 
pupils. The global project remained stable.

The first situation proposed to pupils by ERMEL aims 
to:

 ― Set in mind the first meaning of simple fractions: 
1/2, 1/4, 3/4, 1/8, 3/8.

 ― Know and use the relationships between frac-
tions, express them in multiplicative and additive 
writings.

Ermel offers two activities. In the first activity, the pu-
pils are asked to fold a paper strip in order to cut out 
three quarters of the strip. Then an additional instruc-
tion is given: from a strip measuring three-quarters 
of a unit strip, pupils have to restore the unit strip. 
Below is a brief description of this activity.

The unit strip is named A. Pupils have two strips of 
the same width (B and C strips).

 ― B strip longer than the A strip 

 ― C strip is three quarters the length of A strip.

The “A-strip” is shown on the board. The “C-strip” 
has two folds to visualize each quarter. Pupils are 
now given the task on the strip B to duplicate four 
times a quarter, two times a half or even duplicate 

the “C-strip”, and then add one quarter. “C-strip”: can 
be read in two ways¼ + ¼ + ¼ or ½ + ¼.

Solene has proposed this same activity for three years, 
and her instructions were always the same. Despite 
the similar teaching pattern, variations have also 
been noted. The first session is organized in the same 
way, and pupils carry out mental arithmetic on dou-
bles and halves. Solene then goes on to the second step 
of the session by presenting the paper strips. Even 
though questions and global project stay identical, 
significant differences arise according to the duration 
of the sessions.

The first session lasted 48 minutes in 2011 and 90 min-
utes in 2013. In each year, the session is divided into 
three main parts (Table 1).

The duration of these three parts is well balanced, but, 
in 2013, the entire duration of the session was doubled. 
For all the other sessions I observed, the time for each 
session was also doubled. A notable difference can 
be explained by taking into account what the pupils 
have to say. In 2013, Solene clearly understood this 
situation and was ready to listen to her pupils. 

Mediative component
To describe this component, I will rely on the tran-
scription of what the teacher says about mathematics. 
I will then propose possible explanations of why the 
duration is doubled for the same session.

In 2011, Solene proposed ten calculations on halves 
and doubles. Solene spent a very short time on ob-
serving pupils procedures. She only listened to pupils 
who found the  correct answer, and she concluded by 
giving the following rule: “cutting a number or figure 
is two times less, cutting a number or a figure by four 
is four times less”.

The second part of the session is dedicated to the ma-
nipulation and folding of strips and to understand 

2011 2013

Part 1: thoughtful calculation : calculate doubles and halves 21 minutes 30 minutes

Part 2: fold a strip and cut three quarters. (see instructions for 
session A in Table 2)

10 minutes 30 minutes 

Part 3: make a one unit strip from the three quarters of this unit 
strip. (see instructions for session A in Table 2)

17 minutes 30 minutes 

Table 1
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what a fraction of the unit (context part/whole) can 
represent.

In 2011, it was the first time the teacher introduced 
this concept, using the support of paper strips. The 
teacher exposed knowledge at two moments. The first 
moment occured just after bringing the procedures 
together. For example, she said that “four times one 
quarter is equal to a unity” without writing the num-
ber one.

46 Teacher:  So initially, you have a half plus 
a half equals two halves (this written on the 
board as ½+ ½= 2/2), you have cut each half in 
half and four quarters (¼+¼+¼+¼) is equal to 
a unit. Is that okay?

At the time the aim of the lesson was given, Solene 
showed what she wanted to teach but keeping with-
in pupils’ vocabulary. She oriented her explanations 
towards resolution strategies. Knowledge exposures 
were targeted to the exposure of resolution strategies.

82 Teacher:  I have a question ... the two strat-
egies that have been used to do the work, is 
to add a quarter. Second strategy ... to use a 
half, to reproduce a half to obtain my strip. 
That’s it! Perfect.

In 2013, the global scenario (Butlen, 2007) was the 
same with a view to the written preparations of the 
teacher. It is at the micro level that differences arise. 
There was no conclusion at the end of mental arithme-
tic. The teacher asked pupils to expose their strategies 

“a quarter is half of a half ”, and explained that it was 
more difficult to find the half of 24 that of 38. In 2013, 
the teacher let pupils elaborate more about their pro-
cedures. I can note that half is defined as the action of 

“cutting by two” and “it’s two times less”, whereas a 
quarter is defined as “the half of a half ”. Same expres-
sions are used with reference to the school equipment: 

“cut in two”. Two pupils did not manage to carry out 
these calculations correctly.

I can only hypothesize that pupils’ knowledge is ac-
quired by action. When pupils expose their strategies, 
they used their current vocabulary language instead 
of mathematical terms. They refer to actions as “cut-
ting by two”. The teacher also uses pupils’ vocabulary, 
which may not help the pupils learn and understand 
mathematical terms.

The teacher questions numerous pupils and spends 
a long time explaining their strategies again without 
proposing other reformulations. The teacher uses 
pupils’ vocabulary and does not propose other more 

“mathematical” vocabulary.

Most of the pupils manage to carry out the task, and it 
seems satisfying enough to go ahead with the rest of 
the session. The following session consists in folding 
sheets of paper to represent what one half is.

I therefore think that this phase of mental arithmetic 
was a means for the teacher to recall the knowledge of 
her pupils on what a quarter and a half are. The teach-
er reminds pupils of knowledge in a numerical con-
text. I note that taking ½ of a number (operator point 
of view) is not the same point of view as the fraction 
which is as considered a part of the whole. Whether 
or not pupils are able to take this into consideration 
without the help of the teacher is hard to tell.

During this second step, Solene finally said and 
wrote that four quarters are “four times a quarter, 
but also three times a quarter plus one quarter”. A 
pupil proposed “three quarters plus two quarters 
minus one quarter”. This indicates that pupils are 
capable of producing equalities on fractions by the 
use of strips. They therefore produced more varied 
different equalities than in 2011, but all references to 
the unit disappeared. 

At the end of the session, the teacher asked what they 
have learned today. She did not do this in 2011. Two 
pupils were capable of answering. They said that 
they had “learned quarters and halves” or “strips”. 
The teacher concluded her lesson and reminded her 
pupils of the successive interventions. She proposed 
what seemed to be a synthesis of what was said: “These 
are fractions; we learned to fold strips to get quar-
ters, three quarters in a strip plus several fractions 
enable to reconstruct a whole strip, OK?” The syn-
thesis underscores actions on school equipment and 
vocabulary used.

These knowledge exposures are not prepared in ad-
vance. The knowledge exposure moment, is planned, 
but the content isn’t. The knowledge exposure is 
produced in action after a discussion with the class. 
They re-use certain pupils’ terms, excluding others. 
Fraction is defined by reference to an action using 
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school equipment. Pupils are responsible for under-
standing that the whole strip is a reference to the unit.

632 Teacher:  the halves ... we learned the 
strips? We have not learned strips. We 
learned to do what with these strips? Three 
halves ... no, we did not learn to do three 
halves, we did quarters. How do you call this? 
(Shows a fraction) What is called?

635 Pupil: fractions 
636 Teacher:  These are fractions, we learned 

to fold the strips to get quarters, three quar-
ters in a band plus several fractions allow us 
to rebuild a whole strip. Ok?

During the following lesson, Solene distributed a text 
to be learned by heart at home. This text was the same 
in 2011 and in 2013. Whereas she spent 20 minutes 
to exploit this text in 2011, it took her more than an 
hour in 2013. Pupils were asked in 2013 to comment on 
every line of the text that was distributed. Once again, 
I noted this difference in duration and the attention 
given towards what the pupils had to say.

CONCLUSION

For two years, I followed 5 teachers, but in this pa-
per, I have only developed one case. The knowledge 
exposure does not develop mathematical exposure 
but develops methodological knowledge much more. 
These institutionalizations (knowledge exposure) re-
main strongly contextualized. The context does not 
remain entirely the same from one year to another 
and depends on interactions with pupils. 

The study of the five components leads us to point out 
regularities and variabilities. For this teacher con-
cerned, the teaching project is consistent concerning 
official programs and didacticians’ recommendations 
(context of lengths). Apparently, the teaching pro-
ject remains the same, although differences appear. 
I question these differences. The variabilities I no-
ticed appear at the level of the mediative and cogni-
tive components and more precisely in the content 
of knowledge exposure moments. What the teacher 
says orally seems randomly improvised and depends 
on discussions with the pupils. The oral content of 
the lesson leans on the pupils’ vocabulary and moves 
away from mathematical vocabulary. 

The game of questions/answers, difficulties met to 
name mathematical objects, to express the target 
taught, lead me to introduce the notion of negotiated 
institutionalization.

Expecting the pupils to be able to say what they have 
learned at the end of a session seems to be quite am-
bitious. Taking into account what the pupils declare 
they understood, by using imprecise vocabulary ena-
bles them to formulate and share their newly acquired 
knowledge between their peers. It can be questioned, 
however, if it is reasonable to propose incorrect and 
unclear mathematical definitions. This leads me 
to ask myself new questions oriented towards the 
practices of training teachers and more precisely 
on their professional gestures. What mathematical 
and didactical knowledge should a teacher acquire in 
order to achieve the transition from contextualized 
institutionalization to de-contextualized institution-
alization?
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This study investigated secondary school mathematics 
teachers’ attention to task’s potential for argumenta-
tive activity in the classroom. Analysis of the teachers’ 
choices of tasks and their explanations revealed cat-
egories that fall into two dimensions: (1) Attention to 
the mathematics in which the argumentative activi-
ty is embedded, focusing on three aspects: the mathe-
matics inherent in the task; the mathematics related 
to the teaching sequence that the task is a part of; and 
meta-level principles of mathematics. (2) Attention to 
socio-cultural aspects related to the argumentative ac-
tivity. Four attention-profiles of teachers were identified: 
Teachers who attended to both dimensions; teachers 
who were attentive only to the mathematics aspects in-
herent in the task; teachers who were attentive only to 
the socio-cultural dimension; and teachers who were 
attentive to neither of these dimensions. 

Keywords: Argumentative activity, teachers, attention, 

task.

THEORETICAL BACKGROUND AND GOALS

The approach taken in this study is socio-cultural; 
therefore, we considered approaches to argumenta-
tion as a social process in which two or more individ-
uals engage in a dialogue, and where arguments are 
constructed and critiqued (e.g., Ayalon & Even, 2015; 
Conner, Singletary, Smith, Wagner, & Francisco, 2014; 
Krummheuer, 1995). In recent years, there has been a 
growing appreciation of the importance of incorpo-
rating argumentation into mathematics classrooms: 
first and foremost because mathematics is intrinsical-
ly connected to argumentation. The principal facets 
of argumentative activity – justifying claims, gener-
ating conjectures and their justifications, as well as 
evaluating arguments – are all essential components 
of doing and communicating mathematics. In addition, 
accumulating research suggests that participation 

in argumentative activities – which encourage stu-
dents to explore, confront, and evaluate alternative 
positions, voice support or objections, and justify 
different ideas and hypotheses  – promotes mean-
ingful understanding and deep thinking (Schwarz, 
Hershkowitz, & Phrusak, 2010). Moreover, involve-
ment in argumentation in the classroom may provide 
students with a feeling of sharing responsibility with 
the teacher for the learning that occurs in the lesson 
(Forman, Larreamendy-Joerns, Stein, & Brown, 1998).

Research suggests that the teacher plays a crucial role 
in establishing norms and standards for mathematical 
argumentation in the classroom (e.g., Forman et al., 
1998; Yackel, 2002). These roles include prompting 
students to establish claims and justifications, encour-
aging students to critically consider different argu-
ments, explicating the argumentative basis of stu-
dents’ claims, and supplying argumentative support 
that was either omitted or left implicit, presenting to 
students what constitutes acceptable mathematical 
arguments, and modelling specific ways of construct-
ing and confronting arguments. These various roles 
express the rich and complicated dimensions of estab-
lishing learning environment in which mathematics 
and argumentation are integrated (Yackel, 2002). 

Research also suggests that argumentative activities 
are not often implemented in class, and that teachers 
need adequate training and scaffolding if they are to 
improve classroom argumentation (Conner et al., 2014; 
Hiebert et al., 2003). A possible first step towards of-
fering such assistance may be to investigate teachers’ 
approaches to and sensitivity towards argumentation 
as a practice in the mathematics classroom. Our study 
goes to this direction: It investigates teachers’ attention 
to the argumentative potential of mathematical tasks. 

The concept of attention is currently used in 
studies concerning mathematics teaching (e.g., 
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Paparistodemou, Potari, & Pitta-Pantazi, 2014; Sherin 
& van Es, 2005). Common to these studies is the as-
sumption that teachers’ ability to notice is a key fea-
ture of teaching expertise, and that such an ability can 
be improved. This study shares the above assumption, 
and we focus on teachers’ attention to task’s potential 
of utilizing argumentative activity, i.e., what teachers 
take into consideration when they choose tasks from 
their textbook with the aim of promoting argumen-
tative activity in their mathematics classroom. The 
specific research question was: What do teachers at-
tend to when they choose tasks that, in their view, en-
courage argumentative activity in their mathematics 
classroom? Unlike other studies, our focus on teacher 
attention was not part of teachers’ training; rather 
we intended to learn on teacher’s attention towards 
argumentation in teaching, within a situation close 
to their day-to-day individual work of planning their 
teaching.

METHODOLOGY

Participants
A group of 17 secondary school mathematics teach-
ers in Israel, at the beginning of a year-long in-ser-
vice-course, participated in the study. Their teaching 
experience varied from 1 to 30 years; each holding a 
B.Ed. in teaching mathematics or B.Sc. in mathematics. 
The teachers were not explicitly exposed to the issue 
of argumentative activity before the research was 
conducted. All the teachers used the same 7th grade 
mathematics textbook in their classrooms. 

The research tool
We developed a questionnaire that focused on the 
teachers’ practice of selecting mathematical tasks. The 
teachers were individually asked: (1) to choose three 
tasks from a unit of the 7th grade textbook (Ozrusso-
Hagiag, Bouhadana, Friedlander, Robinson, & Taizi, 
2012) that they view as encouraging argumentative 
activity, and (2) to explain and justify their choices. 
All the teachers taught this unit in their classes while 
the data were being collected. 

The textbook and the unit
This is the fourth unit of the 7th grade textbook, a part 
of the Integrated Mathematics junior-high school cur-
riculum. This curriculum is specifically designed as a 
series of trajectories of tasks, one of the main charac-
teristics of which is to engage students in conjectur-
ing and justifying. The preceding three units include 

some work on algebraic generalization of patterns 
and some drilling on the properties of real numbers. 
The unit comprises five lessons; each includes tasks 
for direct teaching used as part of the whole class 
discussion and exercise tasks (total of 72 tasks). The 
main mathematical emphases are: using algebra as a 
tool for generalization; acquaintance with equivalent 
algebraic expressions; and purposeful use of simpli-
fication and substitution. 

Data analysis
The 17 teachers produced 52 responses (16 teachers 
chose three tasks as they were asked and one teach-
er chose four tasks); each response consisted of the 
choice of a task that will encourage argumentative 
activity in the classroom and an explanation for their 
choice. Overall, 21 different tasks from the unit were 
chosen by the 17 teachers. As a first step, we identified 
the tasks’ distribution within the unit, including the 
lesson the task was taken from (1–5), its function in 
the lesson (direct teaching, exercise), and the num-
ber of teachers’ responses per task. We then took two 
directions when we analyzed the data: Top-down di-
rection and bottom-up direction. The reason why we 
used top-down analysis was to learn how researchers, 
as presenters of the scientific educational authority, 
conceptualize the chosen tasks as encouraging ar-
gumentation. Our intention was to use this concep-
tualization as a backdrop against which to highlight 
and characterize the teachers’ attentiveness, which 
emerged from the bottom-up analysis.

Top-down analysis of the 21 chosen tasks’ affordances 
for argumentation, by adapting a widely used analyt-
ical framework suggested by Stylianides (2009), and 
was adapted by Bieda, Ji, Drwencke, and Picard (2014). 
This framework is commonly used to examine the 
opportunities provided in mathematics textbooks to 
engage in what Stylianides called reasoning-and-prov-
ing (RP), which means “the overarching activity that 
encompasses… identifying patterns, making conjec-
tures, providing non-proof arguments, and provid-
ing proofs” (Stylianides, 2009, p. 259). Following this 
framework, we coded each chosen task according to 
the (1) Purpose of the RP Problem, e.g., making claims, 
making justifications; (2) Intended Outcome of the RP 
Problem, i.e., the type of justification expected: proof-
type argument (demonstration or generic example), 
or non-proof-type argument (empirical or rational). 
For example, the task presented in Figure 1 was taken 
from the direct teaching part of lesson 1. Question a 
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in the task engages students in generalizing visual 
patterns algebraically and introduces them to equiv-
alent of algebraic expressions. Several teachers chose 
question b, which addresses a common mistake. Using 
Stylianides’ framework, and assisted by the textbook’s 
teacher guide (Integrated Mathematics, 2012), we cod-
ed the Purpose of the RP Problem as making a claim 
(Maya is not right) and a justification (e.g., multipli-
cation precedes addition). The Intended Outcome of 
the RP Problem was coded as a proof-type argument 
of demonstration (e.g., relying on the properties of 
real numbers). We analysed in the same way all the 
72 tasks within the five lessons unit.

Bottom-up analysis of the 52 teachers’ responses, 
through which the categories of attention to the task’s 
potential for argumentative activity were generated 
and consolidated, and then used to identify teachers’ 
attention profiles, as will be elaborated below.  

In both phases of analysis, the data were coded inde-
pendently by each researcher, followed by a compar-
ison of the codes. All disagreements were resolved by 
discussion and a consensus was reached.

FINDINGS

The distribution of the 21 chosen 
tasks across lessons
The distribution of the 21 chosen tasks was found to 
be rather homogeneous across the five lessons, and 
also across their function in the lesson (direct teach-
ing or exercise). Out of 52 teachers’ responses, the 

number of responses per each of the 21 chosen tasks 
was between 1 and 7. 

Top-down analysis of the tasks’ 
affordances for argumentation 
Using this framework, we analyzed the 21 tasks chosen 
by the teachers, which revealed that the purpose of 19 
of them was to make claims and justifications and the 
purpose of the other two tasks was to make claims; this 
is where 32 tasks of the 72 within the whole unit asked 
for justification, while the other 40 asked for claims 
only. In 16 out of the 19 tasks the intended outcome 
was a proof-type argument of demonstration, which 
is “at the top of the hierarchy” (Stylianides, 2009, p. 
280), In the other three tasks, the intended outcome 
was an empi rical argument, where from the 32 tasks 
within the whole unit, aimed at justification, 24 were 
of proof-type and 8 of empirical argument. Thus, we 
can conclude that the teachers chose tasks that by and 
large match Styliandies’ RP spirit. 

Bottom-up analysis: Dimensions 
of teachers’ attention to the task’s 
potential for argumentative activity
Bottom-up analysis of the 52 teachers’ responses led 
to identifying categories that fall into two dimensions 
of attention: 

 ― (D1) Attention to the mathematics in which the 
argumentative activity is embedded (23 out of 
52 responses). 

 ― (D2) Attention to socio-cultural aspects related to 
the argumentative activity, such as student-teach-

Figure 1: A task chosen from the direct teaching section of lesson 1 
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er interactions and the nature of the class discus-
sion (20 out of 52 responses). 

Note that each response may refer to one of the di-
mensions, both dimensions, or neither dimension.

Upon further analysis, we found that teachers focused 
on three aspects of dimension D1: (D1a) the mathe-
matics inherent in the chosen task itself (23 out of 23 
responses; this means that each response that was 
attentive to D1 was attentive to D1a); (D1b) the mathe-
matics related to the teaching sequence that the task 
is a part of (9 out of 23 responses); and (D1c) global/
meta-level principles of mathematics that transcend 
the particular task (8 out of 23 responses). 

When looking at each teacher’s responses separately 
we found that each teacher was consistent regarding 
the nature of his/her attentiveness across his/her 3–4 
responses – i.e., the responses associated with the 3–4 
tasks that each teacher chose fell in the same catego-
rization in terms of D1 a-c and D2. 

Overall, four different profiles of teachers’ attention 
were found, as shown in Figure 2. It is worth to note 
that there was no correlation between a certain profile 
and a certain chosen task: different tasks were chosen 
by teachers of the same profile, and the same task was 
chosen by teachers from different profiles.

Next, we describe the various profiles in more detail 
and with examples.

Profile 1: Teachers whose all responses referred to 
the two dimensions of attention: the mathematics 
(D1) regarding its three categories (D1a–c) and the 
socio-cultural aspects (D2) (three teachers).

Example: A profile 1 teacher chose the task presented 
in Figure 3, which was taken from the exercise section 
of lesson 2. In the previous lessons students became 
acquainted with methods for justifying the equiva-
lence of algebraic expressions.

She explained her choice (our coding appears in 
brackets after each utterance):

Here different algebraic expressions may be sug-
gested, some correct and perhaps some incorrect. 
It is possible to write all of them on the board and 
ask the students to say what they think about each 
expression (D2). The answers should be based on 
mathematical justifications: Use of the properties 
of real numbers to prove that the expressions are 
equivalent and use of substitution for a counter 
example or use of the properties to show that the 
expressions are not equivalent (D1a+D1c). If there 
is a disagreement about a certain expression, they 
(the students) will have to convince each other 
until they reach an agreement (D2). It is possible 

Figure 2: Profiles of teachers’ attention
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that first students will suggest numerical exam-
ples as a proof for equivalence, but they will have 
to convince me and their peers that it is correct 
(D1a, D2). If no objection is raised in class, I might 
suggest a counter example in order to show them 
that an example is not necessarily sufficient to 
prove equivalence (D1c, D2). I want them to move 
to a general algebraic justification (D1c), which 
is one of the goals of this study-unit (D1b). If a 
student will justify equivalence by substituting 
a number, it is an opportunity to talk about the 
idea that one example is not enough for proving 
equivalence. Here is an opportunity to talk about 
how, in general, it is acceptable to justify in math-
ematics (D1c).

In her response, the teacher considers the mathe-
matical justifications related to the task itself, the 
role of the task in the unit’s learning trajectory, and 
the general principles of proof in mathematics, and 
interweaves them all in the socio-cultural process of 
shaping collective argumentation in class.

Profile 2: Teachers whose all responses referred to 
the mathematics within the task (D1a) and not to the 
other elements in D1. In addition, they did not refer 
to socio-cultural features (four teachers).

Example: A profile 2 teacher chose question b in the 
task presented in Figure 1, taken from the direct teach-
ing section of lesson 1. This question was aiming at ad-
dressing a common mistake. In explaining her choice, 
the teacher considered only the mathematical claims 
and justifications related to the task:

The task involves argumentative activity in 
which the argument is that Maya is not right be-
cause multiplication precedes addition, or you 
substitute a number on both sides of  Maya’s equa-
tion and receive different values, meaning there 
is no equality here (D1a).

Profile 3: Teachers whose all responses referred to 
the socio-cultural dimension (D2) and not to the D1 
aspects (four teachers).

 Example: A profile 3 teacher also chose question b in 
the task presented in Figure 1:

In this activity students are requested to explain 
whether Maya is correct or not. Each student 
holds a different point of view. I will ask for more 
and more arguments. Students will describe their 
opinion and justify it and will have to convince 
their friends and me, or change their opinion and 
together reach the right answer (D2).

In her response, the teacher considers the socio-cul-
tural aspects of organizing collective argumentation 
including raising arguments, convincing peers, and 
reaching a consensus. However, the response lacks 
any mathematics. 

Profile 4: Teachers whose all responses were not con-
sidered to relate to any of the categories of attention 
(six teachers).

Example: A profile 4 teacher chose the same task and 
wrote: 

Is Maya right? Explain. Engaging in this activity 
requires students to raise arguments.

DISCUSSION AND CONCLUDING REMARKS 

We consider as a major achievement of this research 
the possibility of getting close to a group of mathe-
matics teachers and revealing some of their views 
concerning the argumentative potential of mathemat-
ical tasks in a textbook’s unit for the teaching-learning 
processes in their classrooms. Our methodology was 
naturally integrated into the teachers’ work, allowing 
us to reveal teachers’ actual choices of “argumentative 
tasks” and their genuine attentiveness to different 
dimensions of what they consider the task’s argumen-
tative potential. 

In examining the teachers’ choices of tasks through 
the lens of established research “tools” (Bieda et al., 
2014; Stylianides, 2009), we found that most of the 
chosen tasks are of the proof-type argument (RP) of 
demonstration, which is “at the top of the hierarchy” 
(Stylianides, 2009, p. 280), whereas more than a half 

Figure 3: A task chosen from the exercise section of lesson 2 
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of the unit-tasks did not ask for argument of any kind. 
This suggests that teachers were attentive to tasks that 
afford argumentation. Moreover, viewed collectively, 
the teachers attended to important rich dimensions of 
argumentative activity in their explanations. These 
dimensions – the mathematics in which the argumen-
tative activity is embedded and the socio-cultural as-
pects related to the argumentative activity – reflect 
the complex process of establishing argumentation 
in the mathematics classroom and the simultaneous 
tasks teachers need to manage in order to facilitate 
it (e.g., Yackel, 2002). However, the attentiveness of 
individual teachers in the group was quite diverse; 
whereas some teachers were attentive to both the 
mathematics and social dimensions, for other teach-
ers, such attentiveness was partial or nearly absent; 
they attended only to the mathematics embedded in 
the task, or only to the social situation, or did not ex-
hibit attentiveness in either of the dimensions. 

Our finding of consistency of the dimensions of at-
tention found within each teacher’s explanations for 
their choices and the fact that a same task was chosen 
by teachers of various profiles, suggest that the ef-
fect of the teacher’s approach to argumentation was 
greater than the effect of a particular task. It is worth 
to note that no correlation was found between a teach-
er’s profile and teaching experience, neither between 
a teacher’s profile and education.

Restricted to the rather small sample, the findings 
of this study raise several intriguing questions and 
issues for further research. One is related to pos-
sible connections between what teachers attend to 
when choosing tasks and their actual teaching in the 
classrooms: Does a teacher who attends to the social 
aspects of argumentation but does not attend to the 
mathematics aspects in which the argumentative 
activity is embedded find it difficult to interweave 
the pedagogical practices successfully with the math-
ematical ideas (e.g., in presenting to students what 
constitutes acceptable mathematical arguments, in 
supplying argumentative support that was omitted 
or left implicit)? Does a teacher who focuses on the 
mathematics aspects but does not attend to the social 
aspects of argumentation make less room or find it 
difficult to support collective argumentation in the 
classroom?  

Another question is related to the finding that the 
teachers who attended to the mathematics aspects 

within the task only, did not attend to the social aspects 
at all, whereas teachers, who attended to the mathe-
matics aspects within the task, within the teaching 
sequence, and to global principles, attended to social 
aspects as well. Can this point at certain connections 
between attention to the mathematics in a broader 
sense and attention to social aspects? And if yes, what 
are the implications concerning the education and 
support planned for teaching focusing on argumen-
tation? Further study will address such questions.

Paparistodemou and colleagues (2014) showed that 
teachers can learn to enrich their attention by re-
flecting on their teaching. We plan to devise ways to 
support teachers’ development of attention, taking 
into consideration two main issues identified in this 
study: One is the diversity of the teacher population 
concerning attentiveness to argumentation in the 
learning-teaching process. The other is that this diver-
sity ranged between attentiveness to mathematical as-
pects and socio-cultural aspects, and no attentiveness 
at all (at least not explicit). The fact that some of the 
participating teachers considered both dimensions 
as an integral part of enhancing argumentation pro-
cesses in the classroom is encouraging; apparently 
teachers are at least partially open to adopting these 

“habits of teaching”.

Still, another issue that emerges from our findings is 
related to design. We saw that the same task was cho-
sen by teachers of different profiles; i.e., teachers saw 
differently “through” the task. This raises the question 
of how we can make a task more transparent in its 
argumentative potential so as to be “seen” by varied 
population of teachers.
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Pedagogic tasks can be considered as a resource for en-
gaging an audience and manipulating their appren-
ticeship. Different strategies can be deployed according 
to the pedagogic aim and what constitutes competence 
in the practice being pedagogised. The position taken 
here is that message acquirers will assume a degree of 
authority in the practice and the degree to which that is 
achieved is dependent on the possibilities made availa-
ble in the task(s) set. A sociological analysis recognises 
that the engagement between author and audience in a 
pedagogic relation will lead to a distribution of message 
across positioned acquirer voices; the argument present-
ed here seeks to map those possibilities in an explicit 
way. Texts on trigonometry are taken to exemplify this.

Keywords: Social Activity Method (SAM), pedagogic 

strategy, pedagogic tasks, textbooks, trigonometry.

There has been concern expressed about the use of 
textbooks in school mathematics teaching from a 
number of perspectives including a preponderance 
of procedures and calculation rather than concep-
tual development (Dole & Shield, 2008) allied with 
an authority position assumed in the author voice 
(Herbel-Eisenmann & Wagner, 2007). Whilst proce-
dures are frequently used in mathematics practices 
there are other features which are available to make 
up a broader competence. My argument is based on 
the premise that in a pedagogic relation acquirers of 
the practice may have a range of subjectivities made 
available: a high level would be indicative of attaining 
some recognition as an adept in the practice and a low 
level suggests a degree of dependency (e.g., Dowling, 
2009, p. 244). My concern here is the pedagogic strat-
egies deployed in mathematics teaching may lead to 
the availability or restriction of access to some inde-
pendent competence in the practice. My analysis is 
sociological insofar that I am concerned with social 
strategic action within pedagogic relations. 

I wish to draw on Dowling’s (2013) Social Activity 
Method (SAM) in which he outlines the practice being 
pedagogised as the yet to be acquired esoteric domain. 
The esoteric domain is recognisable through strongly 
institutionalised (I+) signification. In school mathe-
matics texts I+ expression will include a specialised 
use of words, algebraic notation, technical diagrams 
or graphs. The expression will link to I+ mathemat-
ics content. The esoteric domain practice is realised 
through an assemblage of strategies that includes pro-
cedures and instrumentation, but also interpretive 
action including “discursive definitions, principles, 
theorems […and] visual exemplars” (Dowling, 2013, 
p. 332). For further recent work in SAM see Dudley-
Smith (2015), Olley (2015) and Burke, Jablonka and 
Olley (2014).

DISCURSIVE SATURATION

In Dowling’s (1998) study of the very widely used 
School Mathematics Project (SMP) scheme in the UK, 
which was provided in sets of books, colour coded 
according to a ‘level’ of ability attributed to the read-
ers. Here he found that there were different textual 
strategies played out in the Yellow (highest) and Green 
(lowest) series. Of particular note was a difference 
in the degree to which the texts provided access to 
the esoteric domain. A key distinction was between 
strategies which make the principles of the practice 
explicit within language (high discursive saturation) 
and those which are tacit in this respect (low discur-
sive saturation)  (Dowling, 2013, p. 322).

Textbooks, as extensively used resources, provide a 
good indicator of the specificity of classroom practice, 
and gives an indicator of the intensity of discursive 
saturation provided in a pedagogic message. For 
this reason, I have looked at a current, widely used, 
textbook series focused on the General Certificate 
of Secondary Education (GCSE) examination set for 
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school students aged 16 years across England. The 
GCSE examinations are set and administered by ex-
amination boards one of which is Edexcel. The books 
I am referring to are from the Heineman/Edexcel 
texts, 1996 and the Pearson/Edexcel texts, 2010. The 
earlier series were divided into three tiers Higher, 
Intermediate and Foundation and the later series into 
Higher and Foundation, which, like the SMP books, 
construct a body of potential readers as having dif-
ferent ‘ability’. I have taken, here, an example from 
the introduction to trigonometry from the Higher 
tier Books where there appears to have been a shift 
between the Heinemann/Edexcel texts (Pledger & 
Kent, 1996) and the Pearson/Edexcel texts (Pledger 
& Cummings, 2010) in terms of the discursive satura-
tion of the texts. 

Trigonometry
In the first chapter on trigonometry the 1996 book 
provides a detailed exposition based on a unit circle, 
generating three functions sin x, cos x and tan x. The 
limits of the range of the functions are introduced and 
then their application to right angled triangles. The 
hypotenuse of the triangle in the unit circle becomes 
analogous to the scale factor of enlargement which in 
turn explains the ratio sin x = opposite/ hypotenuse 
and so on. The text here is DS+, making relatively ex-
plicit the form and structure of trigonometric func-
tions. I notice that the strategy in this book is also in-
tegrative of the esoteric assemblage (in providing the 
non-discursive visual resource to work in relation to 
the well specified theorems and procedures). There is, 
then, more interpretative work to be done by the ideal 
reader compared to the proceduralisation exemplified 
in the next paragraph

In the more recent Pearson/Edexcel textbook each 
chapter is written to a template where the topic is 
introduced largely referring to esoteric domain con-
tent. The presentations are focused on stepwise pro-
cedures for answering word problems, with call-out 
text boxes pointing where to do calculations, where to 

‘remember’ certain steps or conditions and so on. The 
book provides an introduction to trigonometry thus:

Key Points

 ― The hypotenuse (hyp) of a right-angled tri-
angle is the longest side of the triangle and 
is opposite the right angle. The other two 
sides are named adjacent and opposite. The 

side opposite an angle is called the opposite 
side (opp)

The next side to this is called the adjacent 
side (adj)

 ― Here is a right-angled triangle with its hy-
potenuse of length 1. 

The length of the opposite side (opp) in this 
triangle is known accurately and is called 
the sine of 70º and is written sin 70º.

Its value can be found on any scientific cal-
culator. Not all calculators are the same but 
the key sequence to find sin 70º applies to 
many calculators.

(Pledger & Cummings, 2010, p. 383)

This text is considerably more limited than in the ear-
lier book. There is no detail about what trigonome-
try is or where it comes from, as in the earlier text. It 
provides  abbreviations and reference to calculator 
generated values, perhaps a literal ‘black box’. A little 
later the book offers SOHCAHTOA to help memorise 
the three specified trigonometric ratios. The exercise 
that follows this introduction directs the use of a cal-
culator to find the value of the trigonometric function 
given an angle, for example,

Use a calculator to find the value of

a) sin 20º

b) b. sin 72.6º

c) c. cos 60º […]

(ibid, p. 385)

  This text provides more procedural work utilising 
both discursive (e.g., the procedural definitions of 
trigonometric ratios) and non-discursive (e.g., a cal-
culator) resources, than the 1996 text.

In both of these books there is a pattern of introduc-
ing new content with an explanatory text of some 
form. Stacey and Vincent (2009) looked at modes of 
reasoning deployed in these introductions but they 
differentiated between, “a set of instructions that ex-
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plain, for example, how to set up a stem-and-leaf plot 
… [and] a deeper sense of explanation and connection 
involving derivation, justification and/or proof of a 
new mathematical result.”  This is consonant with my 
findings, but I shall argue that I have provided a finer 
analytical purchase on the strategies deployed.  

OSTENSIVE AND RESERVED 
PEDAGOGIC MODES

One way of approaching a lesson plan is to consider 
what task will be set with which the audience can en-
gage, and what prior introduction is needed in order 
to facilitate the engagement with the task. This pre-
sents a task as a two stage process of presentation and 
activity. In these texts, and those referred to by Stacey 
and Vincent, the content is introduced before the task 
activity. The task activity is anaphoric in relation to 
the pedagogic presentation: that is the presentation 
may make sense only through the task that follows it. 
The pedagogic mode, in these texts, is to point to the 
how or why attributes of the topic, which is redolent 
of Wittgenstein’s description of ostensive explanation, 
pointing at the content and providing the expression, 
Wittgenstein (2009, 17§28). Wittgenstein also consid-
ers some limitations of “ostensive explanation” and 
here an alternative is conceived as a cataphoric peda-
gogic mode, where the task activity refers to the detail 
yet to be explicitly given. I turn now to an example of 
this, drawn from a different text altogether.

Shadows
Ollerton (2002, p. i) argues for an apparent freedom 
that is afforded teachers by not using a textbook in 
order to wrest “control away from authors of schemes 
and texts”. Instead he offers a range of “starting 
points and extension ideas”. Typical of these is a task, 

‘Shadows’, included in the Association of Teachers of 
Mathematics (ATM) Points of Departure, vol. 4, as fol-
lows:

63. SHADOWS
A child is standing near a lamppost. What hap-
pens to the  child’s shadow

 ― if the child walks directly towards the lamp-
post

 ― if the child walks in the other direction […]

ATM (1989)

Here the introduction is minimal. A diagram is given 
showing how the shadow is formed, but other than 
that there is no prior guidance. In terms of a peda-
gogic task there has been little action on the part of 
the author. There is no explanation given as to what 
to do next. There is no procedure to follow. There is 
no answer at the back of the book. What then might 
be expected of a student engaging with such a task? 
It could be addressed through taking various exam-
ples, perhaps using a dynamic geometry package. Or 
it may lead to a recognition of 3 different triangles 
which are all similar and consequently have the same 
ratio of sides. In this case, the focus would be on a tan-
gent ratio, and recognising that as the distance from 
the lamppost changes, so does the angle of elevation. 
However, that the similarity of the triangles maintains 
the ratios of the sides is fundamental in theorising 
trigonometry, in which case the task becomes DS+, that 
is the principles are made explicit.

This appears to be the obverse of the example from the 
GCSE textbooks. Instead of an ostensive explanation 
there is none given in advance of the situation pre-
sented. There may have been prior lessons on finding 
areas, or on strategies, such as Polya’s heuristics, for 
dealing with “investigations”, but these are not avail-
able from the text in this case.

The point to note is that there is still a pedagogic re-
lation. The authorial voice sets a task, and there is 
little option but for the audience to engage in some 
way with it, and I rather suspect that Mike Ollerton’s 
pupils, also, cannot opt out. This is because, as 
Bernstein (2000, p. 32) proposes, there are (at least) 
two discourses: the one relates to the disciplinary dis-
course (instructional) and the other a non-discipli-
nary discourse (regulatory). The latter will typically 
position the instructional author as the authority in 
respect of the disciplinary discourse also (Burke, 2011). 
The pedagogic relation is maintained even without an 
ostensive explanation. I consider this to be the case 
of a reserved pedagogy. The principles of evaluation 

Figure 1
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of the practice are still retained by the author who 
will determine whether the performance of the au-
dience is adequate. The ATM book does not provide 
any ‘answers’ and the opportunity is provided for 
definitive statements of coherence and arguments 
for solutions to questions developed in response to 
the situation. This would constitute a move towards 
a highly discursively saturated text (DS+), albeit one 
that is produced in the first instance through the en-
gagement with the task.

However, whilst this has the appearance of the open 
text (Eco, 1984) it is not ultimately a writerly text 
(Barthes, 1974). The closure will come in the evalua-
tive judgment of author, although this has been held 
in reserve for the duration. I will return to the discus-
sion of the open task.

Tarsia
The three examples given outline tasks which are 
differentiated in terms of the discursive saturation 
of the texts produced, either as prior presentations 
or as performances based on engagement with the 
task. A fourth example will suffice to complete a sche-
ma. There is a widely used task activity referred to 
as Tarsia puzzles where students tessellate parts of 
a larger design according to the connection between 
two statements given on the sides of two pieces. An 
example of a puzzle requires pairing trigonometric 
identities, and here the blogger reports that pupils 
were keen to  (Roy, 2013). Another example is given 
on the National Centre for Excellence in the Teaching 
of Mathematics (NCETM) website of a triangular puz-
zle constructed from 16 equilateral triangular pieces. 
A teacher says:

I produced a triangular Tarsia puzzle for my 
class on the topic of number sequences. The 
questions consisted of number sequences with 
two missing terms […] I gave out the puzzle to the 
students with no input at all and was specific in 
not providing any initial assistance. Although 
some students were disconcerted at first, they 

soon settled to the task and quickly solved the 
puzzle. (NCETM, 2010)

The task has no prior introduction from the teacher, 
so similar to Shadows, there is a reserved pedagogy. 
However the reservation appears to have lasted a rel-
atively short period of time as the student “quickly 
solved the puzzle”. The solution does not, as it stands, 
lead to making the principles of the ‘solution’ clear. In 
fact the teacher notes that students use a strategy of 
answering easier questions first suggesting a prob-
abilistic response to the final questions. The task ac-
tivity consists of a set of components to be assembled, 
but this is a DS- text. 

PEDAGOGIC TASKS

I am now able to show these four tasks as pedagogic 
strategic engagements in a SAM type schema. The 
horizontal axis distinguishes DS+ and DS- discourse. 
The vertical axis distinguishes the pedagogic mode 
as Reserved or Ostensive.

The cells now give a typification of a strategic pro-
cess of task engagement. With reference to the 1996 
trigonometry text, there was a clear exposition of 
the principles followed by word problems includ-
ing some of an analytical nature. The text was DS+ 
and the pedagogic mode was ostensive. This can be 
characterised by the anaphoric relation exposition 
and problem. The more recent GCSE textbooks had 
a rapid demonstration of how to find the value of a 
trigonometric function using a calculator and the 
application of SOHCAHTOA, followed by exercises 
using a calculator. This I am showing as demonstration 
and drill. The ‘Shadows’ task, on the other hand had a 
cataphoric task-pair relation. The task had no prior 
introduction other than the situation. However the 
production, following engagement can be considered 
in the form of a composition, which in mathemati-
cal terms would include an argument for both the 
strategy adopted and the coherence of any statement – 

‘discursive definitions and principles’ (Dowling, 2013, 
p. 332) The task offers access to the esoteric domain 

Discourse

Pedagogic mode DS+ DS-

Reserved situation/composition components/assembly

Ostensive exposition/problem demonstration/drill

Figure 2: Pedagogic tasks
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albeit through the action of engagement with it. I 
have termed this pair as situation and composition. 
The final cell is exemplified in the Tarsia task, with 
no introduction and little development of esoteric 
domain principles, comprising the presentation of 
components to be assembled.

The scheme does not fix action around pedagogic tasks. 
Empirically there will be activity by both the practice 
adept and the audience being potentially apprenticed 
to the practice. There can be moves between the task 
instantiation and the task activity. The way that the 
task is read will also depend on a number of factors.

READER THEORY AND CUEING

Weinberg and Weisner (2011) are concerned with how 
students use a textbook and develop an analysis which 
contrasts the intended, implied and empirical reader 
of the text. They note that whilst the text constructs 
an ideal reader the empirical reader may not conform 
with expectations. The pedagogic tasks outlined above 
may be responded to in a way which seeks to change 
the strategy initially promoted. The teacher in the 
Tarsia report observes that the “students were dis-
concerted”. Weinberg and Weisner note that under-
graduate mathematics students might look for a rule 
or procedure to guide them through their task activity. 
If the opening presentation had been in exposition 
mode, the students might respond as though it was a 
demonstration. Similarly the presentation might be 
in one format, but a response from the reader might 
lead to a change. In the Shadows example, the situation 
was given and a response could be to raise a question, 

“What should I do now?”. Such a response is also stra-
tegic. Maintaining a reserved pedagogic mode the 
response to the cue to close down the task would be 
to ask a question in response. This could be as bald as, 

“What do you think you should do?” More productive 
questioning might be along the lines of Brown and 
Walter’s (2004) ‘What if?’ and ‘What if not’? If the re-
sponse was to provide a procedure, ‘compute the ratio 
of the height and base of the triangles’ the move would 
be towards demonstration and drill. 

Weinberg and Weisner also draw on the idea of Eco’s 
open text where the invitation is for the reader to com-
pose in response. This is the appearance of tasks such 
as Shadows, but the task is given in the context of a 
mathematics classroom. The text is already subject to 
its setting, and the reader expectation of (minimally) 
a mathematics classroom will also be a feature of a 
reader response. I wish to argue that the text is not 
open and that the relation between the author and 
reader is pedagogic – whether it is the author of the 
textbook or the empirical adept.

The form of responses to cues might be considered as 
further questioning to maintain a reserved DS+ strat-
egy or simply a correction to maintain an ostensive 
DS- strategy. In the other two cases, then an explana-
tion maintains an ostensive DS+ strategy and a hint a 
reserved DS- strategy. This is shown in Figure 3. 

Herbel-Eisenman and Wagner (2007, p. 8) are also 
concerned about the positioning of students within 
mathematics textbooks and they provide a framework 
to examine “the way a textbook might influence a 
mathematics learner’s experience of mathematics.” 
The analysis is based on “the social positioning ex-
perienced by students” (ibid, p. 10).

They are careful to note that an analysis of a text does 
not give an unequivocal reading of the positioning 
effect on the reader. This is consonant with Dowling 
and Burke (2012) who pointed out that the various 
gendered representations in mathematics textbooks 
appeared not to have had an effect on girls out-per-
forming boys in GCSE, at least up until 2010 when 
the format of the exam was changed. It seems likely 
that the pedagogic tasks deployed will have more of 
an effect on outcome, which is perhaps why the lat-
er Pearson/Edexcel texts provide, almost uniformly, 
tasks formed from demonstration and drill strategies 
which have been associated with a gradual rise in the 
number of GCSE passes at grade C and above over re-
cent years. The ‘effect’ on learning mathematics might 
be different from an effect in terms of a wider social 
difference in other settings.

Discourse

Pedagogic mode DS+ DS-

Reserved situation/composition/question components/assembly/hint

Ostensive exposition/problem/explanation demonstration/drill/correction

Figure 3: Pedagogic tasks and adept cuing
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Stacey and Vincent (2009) in their study on reasoning 
in school mathematics textbooks concluded:

…the critical point for developing students’ math-
ematical reasoning is whether they understand 
that some modes of reasoning are indeed part of 
the acceptable range of reasoning in mathematics, 
whilst others serve a local pedagogical purpose, 
such as helping them remember a rule, building 
connections between topics, making mathemat-
ics plausible. Textbooks could more often make 
these distinctions explicit, and in so doing, give 
students a stronger sense of mathematical justi-
fication. (Stacey & Vincent, 2009, p. 287)

Indeed textbooks could be more explicit about the 
strategies they are deploying but it is also perhaps 
as critical that mathematics teachers have some clar-
ity about the resources they are using. The current 
Pearson/Edexcel textbook adopts, almost entirely, a 
pedagogic strategy of demonstration and drill, similar 
to the observations of Dole and Shield rather than dis-
tinctive, contingent strategies observed by Stacey and 
Vincent. The schemas I have given provide a coherent 
description of the process of interaction and peda-
gogic strategy in pedagogic tasks, demonstrated here 
through mathematics texts. They might also prove to 
be productive in classroom contexts to analyse the 
process of task presentation and student engagement 
in terms of whether they are being told, or they are 
finding out, or if there is a ubiquity of procedure.
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This study aimed to analyze the practices of an ele-
mentary teacher in conducting project work involving 
statistics. The study follows a qualitative case study 
design with data gathered by means of video and au-
dio recording of the teacher’s class. The results showed 
that the teacher followed an exploratory approach with 
constant reflection during the teaching process. The re-
sults also showed a diversity of types of communication 
and teacher’s interventions during the development of 
the students’ projects and a high concern for students’ 
involvement.

Keywords: Teacher practice, statistics, project work, 

communication.

INTRODUCTION

In Portugal, the 2007 Mathematics Curriculum of 
Basic Education emphasizes statistics, recognizing 
that this is a key area in modern society in which stu-
dents must have a good preparation. To achieve this, 
students must carry out statistical investigations in 
school (Groth, 2006). Wild and Pfannkuch (1999) sug-
gest that this is an important way of the learning of 
statistics. 

Teachers’ practices are one of the key factors that in-
fluence students’ learning (Ponte & Serrazina, 2004). 
So, in order to support the quality of teaching and 
learning, it is important to develop research on this 
field (Franke, Kazemi, & Battey, 2007). As project work 
is about formulating questions and finding informa-
tion to answer these questions in an engaged and 
participative way, our research question is to know 
how do teachers explore students’ ideas and promote 
discussions during this process.

TEACHERS’ PRACTICE IN STATISTICS

The concept of teachers’ practice is a complex one. 
O’Donnell and Taylor (2007) emphasize the tasks that 
teachers use in their classes. Among the various kinds 
of tasks, project work can be used to foster students’ 
learning as it favours their affective and cognitive 
involvement. Alarcão (1996) defines six phases in 
carrying out project work: (i) Choosing significant 
problems based on the desire to solve them or at least 
to study ways of solution; (ii) Establishing a plan and 
outlining ways of doing things, providing resources, 
planning possible interventions, dividing tasks and 
managing time; (iii) Contacting with reality, doing 
data collection through field work; (iv) Organizing 
and processing data, by comparing, analysing and 
reflecting on the data; (v) Preparing presentations to 
others to make known to others the results and the 
processes experienced; and (vi) Presenting the most 
significant aspects in a motivating way followed by 
evaluation of all the work carried out.

The stages of a statistical investigation are similar to 
those of project work. Problem solving using data is 
carried out through the investigative cycle (Burgess, 
2007). Graham (1987) and Franklin and colleagues 

Figure 1: The statistical investigation cycle (Wild & Pfannkuch, 1999)
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(2007) refer that a statistical investigation typical-
ly involves four steps: asking a question; collecting 
data; analysing data; and interpreting the results in 
an organized manner. Wild and Pfannkuch (1999) 
consider five basic phases of a statistical investiga-
tion: choosing the problem, defining a plan, gathering 
data, analyzing it, and drawing conclusions (Figure 
1) and consider three additional key dimensions in 
statistical work: types of thinking, questioning cycle 
and provisions. 

As Makar and Fielding-Wells (2011) refer, the formula-
tion of the problem is important and should be related 
to the students’ interests. The research question is the 
starting point of the work and is often overlooked by 
teachers who end up focusing on the other phases of 
the cycle. The problem to be investigated should take 
into account aspects such as the age level and the math-
ematical development of the students (Ponte, 2001). 
The second phase of the investigative cycle (plan) is 
also an important step. According to Shaughnessy 
(2007), little time is devoted to this phase. Most stu-
dents are only taught “pre-statistical” topics, being 
presented with a ready-made problem formulation, 
plan, and production of data. The next two stages (data 
collection and analysis) allow students to become fa-
miliar with statistical concepts and representations. 
Finally, in the last phase of the cycle (conclusions) stu-
dents should be able to verify if their initial questions 
were answered or whether is necessary to formulate 
and conduct a new investigation. 

Another key aspect of teacher’s practice refers to 
the nature of the classroom communication (Franke, 
Kazemi, & Battey, 2007). Brendefur and Frykholm 
(2000) propose a model with four types of commu-
nication: (i) uni-directional communication, where 
the teacher dominates classroom discourse while stu-
dents listen, so they can reproduce, i.e., in this type 
of communication the main role belongs to the teach-
er; (ii) contributive communication, where there is a 
large number of interactions between actors (teacher 
and students and among students), although mostly 
short and where the teacher continues to have a ma-
jor and dominant role; (iii) reflective communication, 
where the work carried out is subject to constant re-
flection, with the students engaging actively in dis-
course and having freedom to express themselves; 
and (iv) instructive communication where the teacher 
systematically draws on students’ contributions to 
improve teaching and learning 

Wood (1999) notes the importance of teachers leading 
students to justify their choices, encouraging every-
one to participate in classroom discussions. Based on 
previous research, Ponte, Mata-Pereira and Quaresma 
(2013) developed a framework for analyzing the teach-
er’s actions in conducting mathematical discussions, 
distinguishing four main types of actions: (i) inviting, 
in which the teacher promotes the initial involvement 
of students in the discussion; (ii) supporting/guiding, 
in which the teacher leads the continued participation 
of students through questions or other interventions; 
(iii) informing/suggesting, in which the teacher intro-
duces information, providing arguments or validat-
ing student responses; and (iv) challenging, in which 
the teacher seeks that students make generalizations 
and justifications and question the responses of their 
colleagues.

METHODOLOGY

The methodology is qualitative and interpretative, 
following a case study design (Bogdan & Biklen, 1994). 
We study the case of a grade 4 teacher, Maria (ficti-
tious name) who is 28 years old and has been teaching 
for 8 years in a private school in Lisbon. After getting 
her degree as a primary school teacher, Maria strived 
to deepen her mathematics preparation, making a 
master’s degree in mathematics education and is 
now enrolled in a doctoral program in mathematics 
education. In addition, she regularly attends mathe-
matics teachers’ professional meetings. In this paper, 
we analyze her case, as the construction of the other 
cases is still in progress.

Data collection was carried out from April to June of 
2013. Usually, she proposes statistics tasks with situa-
tions in which a graph is given and the students had to 
answer questions about it. The teacher showed some 
discomfort with this practice, stating that “I would like 
to do a work like that with other curriculum topics 
[such as environmental issues] including project work 
by the students”. 

The data presented in this paper was gathered 
through video and audio recording in seven classes 
taught by Maria. It is presented in the various stag-
es of the investigative cycle of Wild and Pfannkuch 
(1999) and analyzed according to the types of com-
munication proposed by Brendefur and Frykholm 
(2000) (uni-directional, contributive, reflective, and 
instructive communication) and teachers’ actions sug-
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gested by Ponte, Mata-Pereira and Quaresma (2013) 
(inviting, supporting/guiding, informing/suggesting 
and challenging). 

The decision to conduct project work with the stu-
dents was taken on a collaborative group work that 
was composed by the first author of this paper (here-
after referred to as researcher), Maria and two other 
grade 3 and 4 teachers. In this session the researcher 
proposed to discuss the investigative cycle (Wild & 
Pfannkuch, 1999) and an article about different types 
of tasks, which included an explanation of project 
work. After this discussion the teachers decided to 
use this material to plan their lessons in the frame 
of project work. For teachers, a key idea was to en-
gage students in their own learning, motivating them 
through interesting themes, and having them working 
in small groups. As the teachers had already worked 
tables and graphs with the students, it was decided 
that this work would verify the students’ knowledge 
on these representations. Thus, the work was planned, 
discussed and adjusted together in the teacher collab-
orative group. The research presented here refers 
to data collected in Maria’s classes in which the re-
searcher assumed the role of participant observer, 
collaborating with the teacher and interacting with 
students. 

The introduction of the task sought to involve the 
students in all decisions, especially in deciding how 
to format their project as a statistical investigation. 
The only condition imposed was to use quantitative 
data that could generate statistical representations. 
The first lesson was intended for proposing the pro-
ject work, with the teacher seeking to motivate and 
engaging students. In the second lesson, in a plenary 
session, all suggestions for topics and study questions 
were discussed. The following three lessons were re-
served for the collection, compilation and processing 
of data. The sixth lesson aimed to analyse the data 
and to prepare the presentation and the seventh les-
son was designed to the presentation of results to the 
whole class.

MARIA’S PRACTICE

Introduction of the task and 
choice of the projects
Maria begun by informing the students that they 
would develop a project work involving data handling 
and explaining the different phases that they should 

follow. The teacher referred that all the work would 
be discussed with them. A student asks:

Ana: But we are supposed to do a project 
work? It takes so long.

Teacher: I do usually tell you what to study? No. 
Now what we want to do is to make a 
project work. It takes time, very well, so 
we have to organize ourselves. Do you 
know the planning sheet that we usually 
do? We will also do it to organize our 
work.

José: You can choose to be a 2 in 1.
Teacher: The theme is of your choice and our 

concern is that you have to present in-
formation in graphical representations.

Thus, the teacher introduced the work seeking to en-
gage students in making decisions about the whole 
process. This introduction led the students to begin 
thinking about what they would like to study. The 
teacher guided the students’ work from a perspec-
tive of reflection by all (reflexive communication), 
promoting their early involvement in the discourse 
(inviting actions), giving them freedom to express 
themselves. The challenging nature of this proposal 
made students to promptly begin participating in the 
discussion.

The students indicated some topics of interest. The 
class discussed whether their study made sense to 
carry out and was of general interest. Many students 
made suggestions:

Beatriz: We had the idea of making Chinese char-
acters. Are more than ours.

Teacher: Well, are symbols, so it is so hard.
Mafalda: In which countries are different from 

the letters A, B, C, D, E.
António: It was also turning to ask what they 

think: think how many letters have al-
phabet X.

Teacher: But that’s just an opinion, an answer.
Mafalda: They could say how many think they 

have every number of letters and then 
give the correct answer.

(…)
Teacher: The group of Rome: “What monuments? 

What are the Roman gods? What is the 
number of visitors who visited one (or 



Elementary teacher practice in project work involving statistics (Ana Caseiro, João Pedro da Ponte and Cecília Monteiro)

2998

more) monument each year?” What they 
want to know with this project work?

Leonor: We want to know the number of visitors 
to monuments per year.

Ana: Why not make the Greek gods who are 
over?

José: Why do not the mean or the mode of the 
number of visitors?

This dialog shows that students were quite partici-
pative, making suggestions for the work of their col-
leagues. The teacher kept a low level of intervention 
thus enabling the discourse to be carried out mainly 
through student-student interactions (reflexive com-
munication). All the students proposed themes and 
questioned their colleagues who received their opin-
ions and questions in a constructive way. The teacher 
involved all the students in the discussion (through 
inviting actions) and promoted their participation, 
leading the discourse through supporting/guiding ac-
tions. In the end nine themes were raised by the stu-
dents to study: “Monuments and Roman gods”; “Stars 
and planets”; “Curiosities about the world”; “Sharks”; 

“Rally Dakar”; “Butterflies”; “The strangest animals in 
the world”; “Trivia about writers”; and “Professions”.

The plan
The teacher began by referring the importance to 
design a plan to serve as guide to carry out the sub-
sequent work. With this goal Maria distributed a sheet 
of paper with a model in order to guide the students 
to organize the work reinforcing the idea that they 
should record the questions they wanted to study and 
begin to think about the representations they intend-
ed to build with the data collected to answer each of 
their questions. The teacher emphasized that they 
should think about what kind of graph they consid-
ered appropriate to use.

A student asked the teacher if they could put some 
information about the topics under study without 
doing graphical representations. At this stage, Maria 
showed a more directive attitude, not allowing a dis-
cussion of some aspects of the work she had already 
decided (as the work plan) or had to decide at the 
time of the class (such as the introduction of a part 
writing more information on the subjects). In spite of 
allowing students to be inquirers, she took a leading 
role intervening at all times of discussion in the large 
group (informing/suggesting action). In turn, when 
supporting the small groups in the development of 

their work plan, the teacher showed a less interven-
tionist attitude and a more questioning role. She led 
some groups to think about the issues that their work 
would address and on the adequate representations 
concerning the data they would collect. Thus the kind 
of communication privileged by the teacher was con-
tributive, and also, at times, reflective.

Data collection
To collect the data they need for the project, some 
groups decided to search for information in maga-
zines, books and internet, while others decided to 
construct a questionnaire. The teacher supported 
the groups in this crucial phase of the investigation 
cycle, especially two groups that had never done this 
kind of work. One of these groups decided to study the 
occupations of parents of students in the class, based 
on a small questionnaire. The teacher provided some 
guidance questioning the students about the various 
aspects they could ask and suggested some elements 
which students could not be aware:

Teacher: And no matter whether you are male or 
female? 

Afonso: But to know that we have to put that “is 
the father of Monica” or “is the mother 
of Duarte”.

Teacher: But that is what is important or you just 
want to know the occupations of the par-
ents of the class in general?

António: Oh, we could get to put a cross in the 
genre, and then write the name of the 
child.

Teacher: Oh, good. And they should not put the 
objective of the questionnaire? 

(…)
Afonso: We want to know the unemployed.
Teacher: But knowing what about the unem-

ployed?
Afonso: The number.
Teacher: And do you not ask parents what col-

lege degrees they have? And you are 
not interested to see if the parents are 
working in your area?

This excerpt shows the help that Maria gave to her 
students who had never built a questionnaire. When 
she felt that the students could reflect on their issues 
and could improve by themselves the wording of the 
questions of their questionnaires, she performed sup-
porting/guiding actions. When she realized that the 
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work was not moving forward she suggested what 
students should put in the questionnaire, with inform-
ing/suggesting actions. In this phase the teacher was 
both a guide and a reflective participant privileging 
reflective communication.

Data analysis
The students had to process and analyze the data 
(organizing it in tables in Excel and then making a 
graphical representation). The teacher circulated by 
the several groups in order to support their work and 
to assist in solving their questions. When checking 
that the question was not just specific of a group or 
referred to aspects already worked out and discussed 
in class, Maria conducted a whole class discussion:

Teacher: Now stop a little because now I want to 
discuss something with you. All of you 
can help that group studying butter-
flies… The group of butterflies discov-
ered several species of butterflies and 
so now they want to make a bar chart 
and want to put here [in the x axis] the 
name of the butterfly and then here [y 
axis] heights. And my question is: this 
is a bar chart?

Gonçalo: It’s not because it has no frequencies.
Teacher: And what is the frequency?
Gonçalo: It was for example if they where [x axis] 

had 2m to 5m. Imagine that these two 
[butterflies] one has 3m and another has 
4m, then both were in that range and so 
it was a bar chart with frequency.

Teacher: I do not know if it is okay but what he is 
saying is that maybe it would be a good 
idea to arrange size ranges. (...) You must 
have what the Gonçalo said: frequencies, 
how often it happens, the number of 
times, the number of butterflies with 
20cm (...). 

In this example the teacher strived to involve the en-
tire class in discussing an aspect of interest to several 
groups, the construction of a bar chart. She took the 
opportunity to explain students about the concept of 
bar graph, stressing the distinction between variable 
and frequency. The teacher assumed the central role 
of the classroom discourse by systematizing some 
knowledge of statistical representations, and the role 
of students was to listen to her explanations. At this 
stage of the investigative cycle the teacher tended to 

have a uni-directional and contributive communica-
tion, and her main actions where informing/suggesting 
and supporting/guiding students.

Conclusions and presentations 
of projects’ results
Due to the end of the school year students ended up 
not having much time to draw conclusions from the 
data analysis that have made, and for preparing pres-
entations. Maria suggested that all groups prepared a 
presentation with the data that they had already col-
lected and analyzed so far. Thus some studies only 
presented a brief analysis of the data, and the teach-
er questioned some aspects to lead the students in 
reaching some conclusions. For example, the group 
that conducted a study on the Rally Dakar elaborated 
the graph (Figure 2) that displays information about 
the bikes used by the winners between 1979 and 2011. 
The students were asked by the teacher:

Teacher: So if we want to win you have to be with 
a ktm?

Miguel: The ktm is usually that almost all win-
ners use. It is almost always the ktm 
wins.

Despite the short time available for this phase was 
still possible for the teacher to discuss some impor-
tant aspects with their students, with a great student's 
involvement in the discussion, having the possibility 
to express themselves and to question the colleagues. 
At this stage of the investigative cycle, the role of the 
teacher became more questioning and challenging 
providing the formulation of conjectures by students.

Figure 2: Graph constructed by the group, whose project was on 

the Rally Dakar
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FINAL REMARKS 

In the introduction of the task and in the phases of 
problem, data and conclusions of the investigation 
cycle (Wild & Pfannkuch, 1999) the teacher encour-
aged the students to get involved in the classroom 
discourse with complete freedom of expression. The 
communication developed along these phases may 
be seen as reflective communication. In the reflection 
phase of the conclusions the communication promoted 
by the teacher tended towards instructive communica-
tion. In the phase plan, Maria tended to promote con-
tributive communication, notably in the whole class 
discussions in which she allowed small interactions 
between the students but made many validations and 
kept a major role in the decisions. This aspect may be 
due to the fact that she did not feel safe in carrying out 
project work involving statistics, as it was the first 
time she was doing it in her class. In turn, during small 
group discussions, the teacher enabled the students 
to discuss the issues and representations they wanted 
to do, which demonstrates reflexive communication. 
In the analysis phase, Maria tended to dominate the 
discourse explaining and transmitting knowledge, 
assuming a dominant role in the classroom discourse. 
Sometimes she put some closed questions and gave di-
rect responses, which seems in line with uni-direction-
al communication and contributive communication. 
This may be due to the fact that she felt the need to 
address some statistical aspects with the class that had 
already been worked before, as she just realized that 
such aspects had not been understood by students.

In terms of the actions of the teacher, they varied 
depending on the progress of the class and the de-
velopment of the projects. In the introduction of the 
task these actions were mainly inviting students to 
participate, which also happened in the choice of the 
problem. At this stage, Maria also took supporting/
guiding actions in the discussions. During the phases 
plan, data and analysis, the teacher tended to inform-
ing/suggesting actions, which during data and analy-
sis are complemented by supporting/guiding actions. 
Finally, the phase of the conclusions the teacher tend-
ed to challenging actions, seeking to lead her students 
to go further 

Finally, the choice of project work methodology shows 
that the teacher follows an exploratory teaching ap-
proach. In this approach the teacher does not have 
full control, to the extent that, for example, she cannot 

predict what topics and issues the students will select 
to study and how they will want collect the data. In 
summary, and responding to the research question, 
how do teachers explore students’ ideas and promote 
discussions during the project work process, we see 
that the teacher enabled students to express them-
selves, using mostly supporting/guiding actions and 
following a reflexive communication.
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In this paper, we present some results concerning an 
assessment practice, composed of oral interaction 
between a teacher and students that a mathematics 
teacher, José, in a context of a collaborative work, uses 
to develop the capacity of self-assessment of his second-
ary school students. The assessment practice developed 
by José includes two ways to promote self-assessment: 
self-assessment of the answer and self-assessment of 
performance. While the former is ensured by cognitive 
and motivational strategies, the latter is mostly based 
on meta-cognitive strategies.
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INTRODUCTION

The tasks that simultaneously serve to teach, learn 
and assess students’ performance have an effect on 
their school results, mainly because they are not as-
sociated with the practice of common assessment and 
aims to promote self-assessment skills for mathemat-
ics learning (Hodgen, 2007). Moreover, when teachers 
analyze students’ answers and give them an appro-
priate feedback, they deepen the knowledge that stu-
dents need to organize information and reply (Price, 
Handley, Millar, & O’Donovan, 2010). This practice 
helps the student to get a better knowledge structure, 
allowing an adequate self-questioning, contributing 
therefore to develop the capacity of the students to 
self-assess. It promotes mathematical efficiency and 
self-assessment of the mathematical knowledge, skills 
and capacities (Quinton & Smallbone, 2010). 

But in Portugal, as in several other countries, this 
kind of practice is really still far from reality in 

mathematics classes (Santiago, Donaldson, Looney, 
& Nusche, 2012). We studied, in a collaborative work 
context, assessment practices done by secondary 
school’s mathematics teachers, whose aim was to 
promote self-assessment of mathematics learning. 
In this text, we present only part of the study (Dias, 
2013), focusing upon a secondary school mathematics 
teacher, José, and one assessment practice, the oral 
interaction between teacher and students (IT-S). In 
particular, we aim to answer to the following research 
question: What is the nature and the characteristics 
of IT-S assessment practice of a secondary school’s 
mathematics teacher, developed in a work context of 
collaborative nature, which seek to promote self-as-
sessment of learning? 

THEORETICAL OVERVIEW

The study of teaching practice of mathematics teach-
ers is relevant to understand their performance in the 
classroom (Ponte & Chapman, 2006). The understand-
ing of the meaning given to the mathematics teach-
ers’ decisions contributes to deepen the knowledge of 
how the mathematics teachers work in the classroom. 
Regarding assessment practices in specific, it is not 
sufficient to assess whether students have mastered 
facts and algorithms or developed attitudes, skills and 
knowledge advocated in mathematics curriculum. It 
is necessary that assessment practices reflect teaching 
and learning processes. For this purpose, rich tasks 
are required (Smith & Smith, 2014) and the assess-
ment questions have to be constructed so that, when 
analyzing the answers of the students, it is possible 
to get an idea of how students organize information 
(Price et al., 2010). To accept that the students have an 
essential part in the construction of their knowledge 
implies that the teacher must pay particular attention 
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to feedback processes and self-assessment of learning 
(Santos, 2002).

The focus on self-assessment of learning is justified 
by the importance of student success in mathematics 
assignments and consequently in mathematics learn-
ing. Self-assessment develops the ability to assess a 
task and to implement the necessary corrections 
or adjustments. It is a group of actions that the stu-
dent develops when regulates his or her own work 
(Zimmerman & Schunk, 2011). Self-assessment is the 
process in which students develop the strategies need-
ed to achieve the desired objectives, creating condi-
tions for a successful learning. But self-assessment of 
mathematics learning do not develops spontaneously 
(De Corte, Mason, Depaepe, & Verschaffel, 2011). It is 
the teacher who has the responsibility to promote 
it through several actions. This study emphasizes 
the oral interaction, conversation between students 
and teacher while performing a mathematical task 
(Henning, McKeny, Foley, & Balong, 2012). Because it 
is an intentional action from the teacher and occurs 
in the daily work of the classroom, may be considered 
an assessment practice for learning (Wiliam, 2007).

Interaction and communication in a mathematics 
classroom is definitely essential to improve student 
learning (Santos & Semana, 2012). Nevertheless, some 
aspects have to be respected. On one hand, teacher has 
to use relevant information about students reasoning 
and ways of learning in order to deal properly with 
the process of teaching and learning (Pinto & Santos, 
2006). On other hand, some conditions have to be re-
spected concerning the act of questioning, such as not 
correcting errors but giving clues, not confirming but 
asking in a way that leads the students to develop a 
convincing argument about their reasoning. 

IT-S is characterized by questions, stimuli and direc-
tions given by the teacher during the implementation 
of a mathematical task. The impact of this practice 
may be conditioned by the opportunity of the in-
tervention and the increased student confidence in 
building their mathematical knowledge (Schwarz, 
Dreyfus, & Hershkowitz, 2009). In this practice, the 
teacher should avoid correcting errors and adopt an 
attitude that contributes to students formulate ques-
tions independently. Students can be referred to their 
own productions or to the proposed tasks, or can be 
suggested to share and discuss, in pairs or in groups, 

their interpretations of the answers (Henning et al., 
2012).

METHODOLOGY 

Following a qualitative and interpretative method-
ology approach, through a case study design (Stake, 
2009), the assessment practice of a secondary school’s 
mathematics teacher, José, has been observed along 
two school years. José was chosen because of his recog-
nized experience (31 years of teaching, both in schools 
of basic and secondary education), and his willing-
ness to develop assessment practices that promote 
self-assessment. 

The collaborative context (Jaworski, 2007), constitut-
ed by José, another secondary school’s mathematics 
teacher and the researcher (first author), was created 
by invitation from the researcher, and has as main 
objective to develop and implement assessment prac-
tices to promote self-assessment. Episodes of class-
room reported in almost all the texts read by the group 
were considered essential to trigger discussions and 
to define the assessment practices to study. After each 
lesson, there were moments of reflection between the 
three members of the group. The selection/creation of 
mathematics tasks was a great challenge for teachers 
when seeking to integrate assessment, teaching and 
learning (James, 2006; Pinto & Santos, 2006) and to 
promote self-assessment of mathematics learning 
(Black & Wiliam, 2006). Noteworthy the assessment 
practices planned by the group features challenging 
tasks (Smith & Smith, 2014), including the themes 
Trigonometry, Geometry and Functions. 

Data collection was done in a 11th grade class (students 
aged 16–17) and included observation of 10 mathemat-
ics classrooms (A), that includes 5 tasks, respective-
ly with trigonometry, geometry and mathematical 
functions, and collaborative work sessions (ST) from 
February 2009 to April 2010, with audio recording, a 
structured interview to José at the beginning of the 
study (E), and documental analysis, that collected 
documents used by the teacher and the mathematical 
work done by the students.

Data analysis was performed by content analysis 
considering three domains, planning, implementa-
tion and reflection (Clark & Peterson, 1986). Planning, 
before class was focused on the role of the teacher in 
interpreting, managing, planning and putting into 
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practice his curricular choices. The implementation, 
during class, focused in the actions of the students 
during the development of the task and the role of the 
teacher in the oral interaction between teacher and 
student. Finally, the third moment, reflection, after 
class, helps teachers to make progress in their pro-
fessional development and to build their own way of 
knowing. In this moment, the teacher makes explicit 
the strengths and weaknesses of his assessment prac-
tice. 

In each of the distinct phases sought by José’s actions 
showed his intention to promote the success in the 

task, either by teacher’s questioning of the analysis, 
and the analysis of the self-regulation of mathematics 
learning by the student. Later, elements were orga-
nized as seen in Table 1.

ORAL INTERACTION TEACHER 
AND STUDENTS (IT-S)

Planning
The assessment practice was defined and planned 
within the collaborative work. Initially, students’ 
difficulties were identified. According to José, the 
most relevant ones were written and oral mathe-
matics’ communication as well as the understanding 
of mathematical content, although students master 
some techniques in solving exercises. In this context, 
the IT-S planning gave attention to the selection of 
the task and to the support given to students during 
the task, avoiding correcting the errors and to give 
too many guidelines for shaping. According to José, 
questions and stimuli are guidelines that can help 
students to increase student confidence in improving 
their mathematical knowledge:

I understand the students’ difficulties, but how 
can I help them? I might answer through inter-
action. Asking, stimulating, and giving clues to 
each one. [ST, 12nd]

Looking for the best approach in the classroom was es-
sentially one of the texts discussed in the collaborative 
group (Santos, 2002). To avoid correcting errors was 
considered an important contribution to help students 
to think for themselves while solving tasks. Some of 
the questions suggested in the text were harnessed 
by José as an example of how it should be the role of 
the teacher in the classroom:

“What have you done?”, “Why did you take that 
option?”, “Why did you think like that?” “Where 
did that idea come from?”, “In which other sit-
uations does this process may be applied?”, “If 
you want to convince someone that this is true, 
what would you say?” and I would wait for their 
reaction. [ST, 12nd]

In achieving the tasks, José prefers that students work 
in pairs, considering that this method may help stu-
dents to learn:

If students work in pairs, they can help each other, 
explore, understand and look for the solutions. 
[E, 1st]

José recognizes the importance of questioning 
to help students to accomplish the task. This ac-
tion neither includes the correction of errors, nor 
provides many guidelines. He seeks students to 
explore their work in pairs or in groups, encour-
aging discussion among students. 

Implementation
While the pairs of students develop the task, José ob-
serves and interacts with them.

In a task of Trigonometry (Figure 1), José pointed out 
for the importance of the task assignment and called 
attention for it, trying to commit the students to the 
task:

José: Read again. You should go on after un-
derstanding the picture \ figure and 
what it is said about it.

David: But we just have to look at it and we un-
derstand.

José:  The information is important. It is es-
sential to the solution. [A, 1st]

In this task, students had difficulty in selecting the 
information and José stimulus to individual strategies, 

Self-assessment 
of the answer

Commitment with mathematical 
tasks

Stimulus to individual strategies

Articulate student ideas

Self-assessment 
of performance

Self-regulate mathematics efficiency 

Self-assessment

Table 1
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supporting this selection and helping them to find 
a solution strategy, encouraging them to continue 
(speaking 9), guiding them to the analysis of the fig-
ure and from the strategies designed for each pair of 
students (speaking 5):

1 David: Teacher, we already know, it is 
the trigonometrically reason: sine, cosine 
and tangent

2 José:  Are you going to use the three?
3 Alexandre:  No, no. we will see. the triangle 

needs the opposite cathetus AB
4 David:  No way! AB is useless, what mat-

ters is h!
5 José:  Where is h?
6 Alexandre:  On the hypotenuse. but we also 

have R in it
7 David:  We will do it with the cosine
8 Alexandre:  We have the adjoining cathetus 

and the hypotenuse that goes for the cosine 
and then we find the value of h, can that be?

9 José:  it can be, there are many ways, 
that´s yours choice. Go on! [A, 1st] 

In the same task, other item (Determine the value of 
h, when R = 1000 meters and α = 60° and when α = 45°. 
Present the results rounded to units. Compare the 
two previous results), he managed the same with two 
other students (Magda and Ruth). These students 
worked  cos 60° =  1000

1000 + h  and cos 45° =  1000
1000 + h  equalities. 

From these equalities, they said, just watching the 
figure, that as h increases, the value of the angle has 
to increase too. José feels a little hesitant, because he 
was not expecting this task solution. He articulated 
students’ ideas, not validating the work and asking 

students to articulate these ideas so that they may be 
able to present arguments of the result:

Rute: Is this true?
Magda: Adjoining cathetus upon the hypote-

nuse
José:  Yes, it is right, but you did not use the 

equality R =  h cos α
1 − cos α

Magda: But it is the adjoining cathetus upon the 
hypotenuse or not? 

Rute: It is the cosine!!!
José:  Yes, but how do you justify the compar-

ison? 
Magda: When h increases, the fraction value 

decreases and the obtained angle in-
creases.

José:  But you have to convince me that it is 
right! [A, 1st]

José wanted the students to identify the errors and re-
port it orally. He believed that this explanation would 
help them to self-regulate mathematics efficacy and 
the ability of self-questioning about some important 
issues, such as how to work with the calculator:

For instance, a student answered R =  2,35 cos 1,5564°
1 − cos 1,5564° , 

so R ≈ 0,034, and other student  answered R ≈ 1,35. 
I can identify that the first changed in the cal-
culator “Rad” for “Deg”. I would accept it as 
correct and alerted the student for the lapse. 
But I could not consider correct the second 
one. After some experiences, I could identify 
that the second student wrote on the calculator, 
2,35 × cos 1,5564 ÷ 1 − cos 1,5564. In both cases, 
they are serious mistakes. [ST, 13nd]

The figure illustrates a simple process to determine the ra-
dius of Earth. This method consists in measuring the angle 
α, horizon depression angle, from a high altitude point from 
which one can see the ocean.
The figure is not to scale. Consider that:

 ― B represents the observation point; 
 ― C means the centre of the Earth;
 ― α is the amplitude, in degrees, of the depression angle, 

(0o <α<90o);
 ― h is the altitude of the place, in kilometres;
 ― the triangle [ABC] is rectangle in A;
 ― R , is the radius of Earth, in kilometres;
 ― BC = R + h

1. Show that: 
R =  h cos α

1 − cos α

Figure 1
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In this assessment practice, José encourages the iden-
tification of mistakes. For example, he gave clues to the 
students so that they may self-assess their performance:

David: Are these the calculations?
José: How did you do the equations?
Alexandre: I think it was very fast, but it´s right.
José: Remember the change of signs…
David: Let´s see but this way leads us to what 

we wanted [A, 2nd]

In another task (Functions) after identifying a stu-
dent’s difficulty, José questioned him and, in some 
cases, the error was identified by the student through 
self-assessment:

David: It is 40 days.
José: Are you sure?
David: From 4 to 40 it is 30 plus 10.
José: But it is 4th January.
David: January
José: And the month of January has 30 days?
David: Okay, so t=41days [A, 3nd]

When students recognize difficulties to understand 
the mathematical situation, José do not hesitate to give 
them a clue to proceed, to pursue the approximation 
of their work to what the teacher expected them to do 
(self-assessment):

Alexandre: I am going to need help. I cannot un-
derstand.

José: Write first the formula of the area of 
the figure that you want to estimate, to 
calculate.

Alexandre: The area of the triangle?
José: Yes and now you can go on. [A, 5nd] 

Reflection
José highlighted the improvements made by the stu-
dents and the promotion of self-assessment as two 
aspects to value in his assessment practice. IT-S has 
raised José knowledge about the students, about the 
difficulties of writing and oral communication, poor 
connection between trigonometry and geometry con-
tent, the increase mode of understanding of mathemat-
ical content, and how to keep them motivated students.

In the first task, he realized through the help he gave 
the development of the student capacity to select infor-
mation. This support, according to José, was essential 

to meet the first items of the task and to motivate the 
students to achieve it: 

I had to help them at the beginning, but I think 
that with that help they improved and accom-
plished the first questions. It also motivated them, 
it guided them to go through. [ST, 13nd]. 

José remembered the episode where he was confront-
ed by the unexpected strategy followed by Magda and 
Rute, which he decided to not validate. He justified 
his decision by the need to verify the extent to which 
students arrived to the presented solution and to un-
derstand the knowledge that students have applied:

They were confident that they were right, but 
when would they give up? (…) I left it unknown 
so they could think over it and that really amazed 
me, they knew what they were doing and rightly. 
[ST, 13nd]

In his opinion, students used strategies that work out 
things they learned previously. Strategies are not al-
ways predictable, but to use these strategies with con-
fidence reveals effectiveness:

Magda and Rute answered item solving it in a way 
I wasn´t expecting, but even so it was correct. It 
is like this, students use methods that I was not 
expecting, and we must validate them. These stu-
dents knew what they were doing and were very 
confident about it. [ST, 13nd]

Difficulties concerning the understanding of infor-
mation given in a short text are obstacles to self-as-
sessment, which, according to José, make it harder to 
understand the question: 

When students read the assignment of a task and 
are not able to select the information, sometimes 
they get lost through the text. They do not even 
read the given information, which makes it much 
more difficult the approach of self-regulation 
strategy. They cannot use the knowledge they 
have, because they do not understand the work-
sheet. My questions sometimes do not make any 
sense to the students. [ST, 15nd]

One essential characteristic of this assessment prac-
tice is the existence of an understanding between 
teacher and students, so that they can understand 
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the issues that the teacher poses. It is important that 
students understand what is asked in the tasks (on 
paper) or orally (inquiry in the classroom).

This reflection was important to José as it allowed him 
to identify different behaviors in the students: stu-
dents participated more, discussed the tasks among 
themselves and produced work. In addition, José 
avoided answering directly to the questions of the 
students, chose to encourage them to overcome the 
difficulties without help, which resulted in students 
taking the necessary attitudes to comment on each 
other‘s ideas. This outcome has led José to reflect on 
his practice, making him particularly aware of the 
positive consequences of a reduction in the number 
of teacher inputs in the interaction with students. 

FINAL CONSIDERATIONS 

After observing and analyzing José‘s practices, we 
can infer two ways to promote self-assessment of 
learning mathematics: answer and performance. Self-
assessment of the answer includes the action of the 
teacher, providing monitoring of the final work of the 
students, while the performance is concerned to the 
action to monitor processes and knowledge needed 
to find a solution. Self-assessment of the answer is pro-
vided by cognitive strategies and motivation for stu-
dents who face questioning and oral feedback (Santos, 
2002). Since planning, José prepares possible practic-
es such as not correcting errors to help students to 
be autonomous in their cognitive strategies. He also 
pays attention to the need of students’ confidence in 
doing mathematics, continuing in encouraging them 
during the development of the tasks. Once achieved, it 
leads students to increase the engagement with math-
ematical tasks, to develop strategies and to promote 
the integration of students‘ own ideas about learning 
mathematics.

Self-assessment of performance is assured by meta-cog-
nitive strategies. It occurs to assess the efficiency of 
the mathematics performance of students and to en-
courage self-assessment of mathematical strategies 
to solve the tasks. José demands that their students 
deem complete answers, and present arguments to 
support their reasoning. He promotes self-assessment 
by not confirming the answers and guiding students 
to read the question again. To promote self-assess-
ment, José also seeks to assess the depth of knowledge 
of mathematics and to identify errors when needed, 

leading students to think about the results (Quinton 
& Smallbone, 2010). 

Although this assessment practice was new to José, 
he developed it over a whole school year, supported 
by a collaborative context, which led him to develop 
his self-confidence and ability in using it, recognizing 
positive aspects in the capacity of self-assessment of 
their students and, consequently, in the learning of 
mathematics. José assumed that his role is to support 
students’ knowledge and learning processes, helping 
them to learn. Questioning, in IT-S, assumed the char-
acteristics of oral feedback (Hodgen, 2007): to be focus 
on the task and not on the student; to be challenging, 
and to require achievable action. The IT-S practice 
shows progress in how students participate and en-
gage in mathematical tasks, albeit the full understand-
ing of the factors that increase the motivation and 
commitment of students with the mathematics tasks 
can and should be further explored.
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This paper studies students’ unexplained answers and 
how teachers respond. The data is from observations of 
teaching in five different classrooms at Norwegian upper 
primary schools. Using frameworks and concepts usable 
to describe classroom discourse on a turn-by-turn basis, 
it is found that teachers more often attend to details of 
how and why when responding to unexplained answers 
than in general. This creates opportunities to learn for 
the students and opportunities for teachers to gather 
information usable for formative assessment. It is also 
observed that these teachers rarely attend to details of 
how and why when students answers incorrectly and 
by this limiting opportunities to learn.

Keywords: Communication, discourse, IRE, teachers’ 

response.

INTRODUCTION

Several scholars have studied how teachers orches-
trate classroom discourse in general. While the IRE 
pattern (Initiation – Response – Evaluation) (Cazden, 
2001; Sinclair & Coulthard, 1975) only offers two con-
cepts describing how teachers’ intervenes, others 
have developed concepts such as extending, support-
ing and eliciting (Fraivillig, Murphy, & Fuson, 1999), 
advocating, reformulating and challenging (Alrø & 
Skovsmose, 2002), and simplification, requesting 
details and notice (Drageset, 2014c). Such concepts 
enable us with tools for describing communication in 
more detail, and also inspect how teachers responds 
to different types of student interventions. 

In a recent study Drageset (2014a) has described five 
different types of student interventions (explanation, 
initiative, teacher-led responses, unexplained an-
swers and partial answers) and described how teach-
ers responds to these (Drageset, 2015). Unexplained 
answers might be one of the most interesting types 
of student interventions because it describes student 
comments where the reason for the answer is not giv-

en. The aim of this article is to go one step deeper into 
the data and re-visit the unexplained answers and 
study how teachers respond to these. 

This aim resulted in the following research questions: 
How do teachers respond to students’ unexplained 
answers? And what might this mean for students’ op-
portunities to learn mathematics?

LITERATURE REVIEW

Conversation analyses developed from the hypothe-
sis that ordinary talk is a structurally organized and 
ordered phenomenon (Hutchby & Wooffitt, 1998) 
where turns are the most fundamental feature (Sacks, 
Schegloff, & Jefferson, 1974). The default option is that 
people take turns of speaking one at a time (Sidnell, 
2010). But even if the turns are sequentially organ-
ized, it is not possible to characterise a conversation 
as a series of individual actions, instead each turn is 
thoroughly dependent on previous turns and individ-
ual contributions cannot be understood in isolation 
from each other (Linell, 1998). This means that in a 
study of teacher and student turns (interventions, 
comments, responses, answers) it gives no meaning 
to study or describe turns isolated from the sequence. 
A description of the role of each turn is in fact a de-
scription of how it relates to prior turns and how it 
affects subsequent turns. 

One example of such a description is the redirect-
ing, progressing and focusing framework (Drageset, 
2014c) where each single teacher turn were studied re-
lated to how teachers used student comments (turns) 
to work with mathematics. This developed into thir-
teen categories in three groups describing different 
ways in which teachers orchestrated the mathematical 
discourse in the classroom. The framework describes 
three types of redirecting actions (put aside, advising 
new strategy, and correcting questions) four types of 
progressing actions (demonstration, simplification, 
closed progress details, and open progress details) 

mailto:ove.drageset@uit.no
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and six types of focusing actions (enlighten details, 
justification, apply to similar problems, request as-
sessment, recap, and notice). 

Using the same data, Drageset (2014a) developed five 
main types of student interventions; explanation, in-
itiative, teacher-led responses, unexplained answers 
and partial answers. The most frequent type of stu-
dent turns were teacher-led responses, and this is 
an illustration of how dependent a turn might be of 
prior turns as teacher-led responses are more or less 
given by the teacher through the prior turn (typical-
ly a question). Both (Sidnell, 2010) and (Linell, 1998) 
describes that usually only one or a few responses 
are preferred or more relevant than others and when 
the preferred or relevant response is given no expla-
nation is needed. Teacher-led responses are a strong 
example of this. Unexplained answers are different 
from this as the reason of the answer is not given dur-
ing the turn or becoming obvious from prior turns. 
The answer might be obviously correct or incorrect to 
the teacher and skilled students, but no information 
about student thinking or how the student arrived at 
the answer is given. The answer seems to come out of 
a black box. One such example could be when a teacher 
asks how much 1/4 added to 1/3 is, and a student only 
answers 7/12. It is obvious that students that do not 
immediately see that this answer is correct would ben-
efit from an explanation about how the student was 
thinking to arrive at 7/12, and according to Franke, 
Kazemi, and Battey (2007), making details explicit is 
one of the most powerful moves a teacher can make. 
This means that unexplained answers create an op-
portunity for the teacher to focus on how to calculate 
or why an answer is correct or incorrect, either by 
telling it, asking the student to tell or challenge other 
students to explain. 

Another example of a framework describing teacher 
and student comments on a turn-by-turn basis is the 
eight communicative features suggested by Alrø and 
Skovsmose (2002); getting in contact, locating, iden-
tifying, advocating, thinking aloud, reformulating, 
challenging, and evaluating. This framework does not 
differ between student and teacher turns. Advocating 
relates to justification and student explanations, chal-
lenging relates to redirecting actions, thinking aloud 
relates to enlighten details and student explanations, 
and evaluation relates to notice, recap and put aside. 
By relating it does not mean that they are identical, 

but that these concepts seem to describe related phe-
nomenon. 

While Alrø and Skovsmose (2002) and Drageset 
(2014b, 2014c) both describe frameworks intended to 
cover all different types of teacher and student turns 
in the observed classrooms, others describe teacher 
actions related to specific purposes. One such exam-
ple is the Advancing Children’s Thinking framework 
(ACT) (Fraivillig et al., 1999). The ACT frameworks 
were developed by intensive studies of one skilled 
teacher, describing three different teacher actions; 
elicit children’s solution methods, supporting chil-
dren’s conceptual understanding, and extending chil-
dren’s mathematical thinking.  While the eliciting and 
supporting components focus on the assessment and 
facilitation of mathematics with which the students 
are familiar, the extending component is focusing on 
further development of the students’ thinking.

Another phenomenon is the tendency teachers have 
to reduce the complexity of tasks and rules. One way 
of reducing the complexity is by adding information, 
hinting or even changing the task in order to help the 
student find a (the) correct answer. Brousseau and 
Balacheff (1997) describes this as the Topaze effect, 
and the category of simplification (Drageset, 2014c) 
essentially describes the same. Anther way to re-
duce the complexity is described by Lithner (2008) 
as guided algorithmic reasoning where the teacher 
takes care of the process while the students answer 
basic questions. Closed progress details (Drageset, 
2014c) is quite similar to guided algorithmic reason-
ing, describing how the teacher splits up a task into 
smaller steps, decides the method to be used and asks 
students basic question (typically calculations) with 
just one correct answer. Such reduction of complex-
ity is seen as a hinder for students learn and under-
stand mathematics (Lithner, 2008), probably because 
it reduces their opportunities to work and struggle 
with important mathematical ideas. And according to 
Kilpatrick, Swafford, and Findell (2001), opportuni-
ties to learn is considered the single most important 
predictor of student achievement. It might be obvious 
that when students are exposed to a topic they have 
a better chance to learn it than students that are not. 
But opportunities to learn is also about how students 
are exposed to topics, and teaching plays a major role 
in creating learning opportunities through empha-
sis on different goals, expectation for learning, time 
allocated, kinds of tasks, kinds of questions, kinds of 
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responses accepted, and the nature of the discussions 
(Hiebert & Grouws, 2007).

The above frameworks relate to how learning can be 
fostered or hindered, and Wiliam (2007) offers five 
key strategies related to assessment for learning. One 
is to clarify and share learning intentions and criteria 
for success, a second is to engineer effective class-
room discussions that elicit evidence or learning, a 
third is to provide feedback that moves the learners 
forward, a fourth is to activate students as instruc-
tive resources for one another, and a fifth is to acti-
vate students as owners of their own learning. The 
frameworks offered by Alrø and Skovsmose (2002), 
Drageset (2014b, 2014c) and Fraivillig and colleagues 
(1999) provides us with tools to describe mathematical 
discourse in the classroom in detail on a turn-by-turn 
basis. But there is still an open question if and how this 
can help us understand more about how teachers can 
engineer discussions in such a way that it elicits evi-
dence for learning, how the feedback can more learn-
ers forward, and how to activate students as owners 
of their own learning. It is also an open question how 
such framework can help us describe how the oppor-
tunities to learn vary in quality between different 
situations and classrooms. The devil might lie in the 
details, and in a recent study Drageset (2014b) studied 
how students explained and teachers responded. This 
resulted in a description of three different types of 
student explanations; explaining how, explaining why 
and explaining concept. But even if the three types of 
student explanations were quite distinct, no major 
differences were found in how teachers responded 
to these. Looking for further detail, this article will 
look deeper into how teachers respond to students’ 
unexplained answers and what this might mean for 
their opportunities to learn mathematics. 

METHOD 

This study is based on the same data that were used 
to develop the redirecting, progressing and focus-
ing framework (Drageset, 2014c) and the five types 
of student comments (Drageset, 2014a). Based on a 

survey of 356 teachers, five teachers from upper pri-
mary (year five to seven, students aged 11 to 14) were 
selected for further study. These five teachers had a 
variation related to the survey constructs of math-
ematical knowledge for teaching and beliefs about 
teaching and learning. They all had several years ex-
perience as mathematics teachers and were educated 
as general teachers, which is the typical education for 
Norwegian teachers. All mathematics teaching for 
one week was filmed in each classroom (typically four 
lessons of 45 minutes). The camera followed the teach-
er, and a microphone attached to the teacher recorded 
all conversations in which the teacher was involved.

During the development of the frameworks describ-
ing teacher and student comments every turn were 
studied, describing its role in the conversation, group-
ing similar turns and developing categories gradu-
ally using a grounded theory approach. In the study 
reported in this article, the students’ unexplained 
answers were re-visited, inspecting how the teach-
ers responded to different types of unexplained an-
swers in different ways. Unexplained answers are the 
ones where no information is given about how the 
student reasoned. This means that important details 
are hidden for the teacher and fellow students. An 
overview over different types of teacher responses 
to unexplained answers give a deeper insight into 
how these teachers use, or not use, the opportunities 
to make the hidden details explicit.

FINDINGS

By simply counting different types of teacher respons-
es to unexplained answers and overall responses in 
the five classrooms, some interesting differences oc-
cur. As Table 1 illustrates, the five teachers tend to use 
progressing actions less frequently when responding 
to unexplained answer, and instead uses redirecting 
and focusing actions more often. A first impression 
is that the teachers uses the opportunity to focus on 
the answer more often when it is unexplained, but 
also more often tries to change the students approach 
by redirecting. 

Redirecting actions Progressing actions Focusing actions

Responding to unex-
plained answers 22% 36% 42%

Overall response to stu-
dent comments 11% 55% 34%

Table 1: Responses to unexplained answers versus overall responses
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In order to understand what this means it is neces-
sary to go one step deeper. The unexplained answers 
could be divided into three distinct groups or sub-cat-
egorise. One group is the correct answers that come 
without any explanations what was done, how the 
student was thinking or why this is thought to be cor-
rect. Another group is the incorrect answers, which 
vary from those close to correct to those where the 
student simply chooses a strategy than cannot work, 
and also these have in common that no information 
about the solution process or thinking is given. The 
third group of answers is those were the student is 
unable to answer or come up with a suggestion and 
where there is no information about why the student 
struggles. As Table 2 illustrates, these sub-categories 
gives us new information. 

One striking difference is how redirecting and focus-
ing actions follows different types of unexplained 
answers, which illustrates how a turn is thoroughly 
dependent of previous turns (Linell, 1998). It might 
not be surprising that redirecting actions mainly 
follows incorrect answers or strategies, as there is 
less need to redirect correct answers. Then it might 
be more interesting that focusing actions almost ex-
clusively follows correct answers and rarely follows 
incorrect answers.

In general, teachers use redirecting actions to guide 
students towards other strategies, progressing ac-
tions to help students progress towards an answer, 
and focusing actions to make students work with, 
or to point out, mathematical ideas. So far we have 
observed that redirecting, progressing and focusing 
actions are used more or less often based on how the 
prior turn looks like. But which types of redirecting, 
progressing and focusing actions were used, and 
which types of such actions are used more or less 
frequently?

Just over half of the unexplained answers were cor-
rect. The main response to these was the focusing ac-

tions, and especially requesting students to enlighten 
details or requesting justification. When a teacher 
requests students to enlighten details the teacher 
typically asks how or what (‘how did you find that 
answer?’, ‘what did you think when you solved this 
task?’). This is about making details explicit, which 
according to Franke and colleagues (2007) is one of the 
most powerful moves a teacher can make. In addition 
to this, such information is the basis on which a teach-
er can make formative assessment. A justification 
is typically requested by asking ‘why is this correct’. 
This is different from requesting students to enlight-
en details as a relevant answer to why something is 
correct involves mathematical argumentation and not 
just a description of what is done to reach the answer. 
Also justifications are important for other students to 
understand or discuss. Together, both requesting stu-
dents to enlighten details and to justify their answers 
are about making details explicit, which again might 
create opportunities to learn how to solve, think and 
reason. Requesting justifications are also vital for the 
teacher to get insight into a student’s thinking and 
sense making which again is necessary for the teach-
er to be able to carry out formative assessment. It is 
particularly interesting to see that these five teachers’ 
responds with requests for justification three times 
as often following a correct unexplained than they do 
following student comments in general. 

About one third of the unexplained answers were 
incorrect, and as Table 2 illustrates the teacher re-
sponses changes strongly. The most typical response 
was to redirect students towards another strategy, and 
the main way this was done was by asking correct-
ing questions. Typically, these were questions that 
involve a correction such as ‘yes, but what if…’. It is 
hardly a surprise that teachers tries to guide students 
when they answers incorrectly. However, it is inter-
esting to see that they are rarely exploring student 
thinking or reasoning when answers are incorrect. By 
only exploring thinking and reasoning when answers 
are correct some opportunities to learn are lost, for 

Redirecting actions Progressing actions Focusing actions

Responses to unexplained 
and correct answer 2% 17% 36%

Responses to unexplained 
and incorrect answer 20% 11% 3%

Responses to students una-
ble to answer 0% 8% 3%

Table 2: Responses to unexplained answers separated for correct, incorrect and unable to answer
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example since it is difficult to involve students in real 
discussions if only the correct are presented. Also, 
the teachers loose access to vital information about 
what students think and why they are not reaching a 
correct answer. This seems to tell us that these five 
teachers do not think such information is of any use 
to themselves or to other students. 

The least frequent of the unexplained student answers 
were when the students were unable to give an answer. 
The teachers typically responded using the progress-
ing actions of simplification and closed progress de-
tails and the focusing action of notice. Simplification 
is about making the task easier so that the student 
might be able to progress. This typically involves ex-
tra information and hints that reduces the complexity, 
and sometimes the teacher changes the entire task to 
create what Brousseau and Balacheff (1997) labels a 
Topaze effect. Closed progress details are rather equal 
to guided algorithmic reasoning (Lithner, 2008) and 
describe a situation where the teacher takes the re-
sponsibility of the process while the student contrib-
utes with answering basic tasks. Simplification and 
closed progress details describes two different ways 
to reduce complexity. It is not surprising that teachers 
try to help students that are unable to answer by re-
ducing the complexity, and this might even be a good 
idea. The danger is when teachers consistently reduce 
complexity of tasks because then the students loose op-
portunities to learn the important mathematical ideas 
at their grade or level. The focusing action of notice is 
different, as it describes actions where teachers point 
out important information during task solving. This 
seems to be done in order to help students remember 
what we already know and can use, or help them to get 
back on track. It is also typical that notice is used to 
point out important arguments or things to remember. 

In addition to the above, Table 2 also illustrates that a 
relatively large part of teacher responses to correct and 
incorrect answers are progressing actions. But looking 
into the different types of progressing actions does not 
give much information, it only reveals that it is used less 
responding to unexplained answers than in general. 

CONCLUSION

The aim of this study was to look closer into students’ 
unexplained answers and how teachers respond to 
them. Unexplained answers are defined to be those 
where information about the solution strategy or 

student thinking is not observable, neither during 
the student turn nor during prior turns. Using the 
redirecting, progressing and focusing framework 
(Drageset, 2014c) it was possible to see that teachers 
tended to more often use redirecting and focusing 
actions and less often use progressing actions than 
in general. By dividing the unexplained answers into 
three distinct sub-categories (correct, incorrect and 
unable) it became possible to observe that most redi-
recting actions came as a response to the unexplained 
answers that were incorrect and most focusing ac-
tions came as a response to the correct ones. By look-
ing into the different types of redirecting, progressing 
and focusing actions it was found that as a response 
to correct answers teachers typically requested stu-
dents to explain how and what (enlighten details) and 
why (justification). Also, it was found that responding 
to incorrect answers teachers typically guided the 
students by asking correcting questions, and when 
responding to students unable to answer the teachers 
typically reduced the complexity of the task (simpli-
fication and closed progress details) or pointed out 
important elements or earlier findings (notice). 

Kilpatrick and colleagues (2001) states that opportu-
nities to learn are the single most important predic-
tor for student achievement. If so, one should look 
at which opportunities are given during discussion 
and not. By requesting details (enlighten details and 
justification) the teachers make these explicit for 
other students to reflect upon, discuss or ask, and 
for the teacher to understand the students thinking, 
reasoning and understanding. Making details explicit 
is important for student learning in general (Franke 
et al., 2007), and this is about creating opportunities 
to learn the important mathematics by attending to 
thinking, strategies and reasoning. But it is worth to 
emphasise that these teachers often requested such 
details when responding to an unexplained answer 
that was correct, and rarely did it when the answer 
was incorrect. This means that opportunities were 
lost, both for students to explore the reasons for the 
error, and for the teacher to gather information about 
students incorrect or incomplete thinking as a basic 
for formative assessment. Also since students need to 
struggle with mathematical ideas to learn (Hiebert & 
Grouws, 2007), something important might be lost if 
the students are only struggling with understanding 
what somebody else already understands and rarely 
have to struggle with something incorrect or incom-
plete and how to develop from there. 
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This paper describes intervention resources designed to 
provide opportunities for student self-regulation, with 
a particular focus on setting subgoals when problem 
solving. Each task includes a range of pre-written inter-
related “sample student responses” that expose students 
to multiple perspectives on an unstructured non-routine 
problem. After students attempt the problem they are 
given the responses to collaboratively complete, critique 
and compare. We explore students’ capacity to adopt 
another person’s (the sample student’s) goals in order 
to complete a solution, and their capacity, through the 
use of comparison, to identify worthy criteria when cri-
tiquing the completed solutions. We then reflect on how 
we can make subsequent improvements to the resources.  

Keywords: Problem solving, comparing solutions, peer 

assessment.

INTRODUCTION

Many studies cite planning and monitoring as key 
discriminators for problem solving success (e.g., 
Schoenfeld, 1992; Carlson & Bloom, 2005). During 
the initial planning phase, the subgoals students set 
determine the mathematical and self-regulating strat-
egies used. Novice problem solvers often set vague, 
unstructured goals or their goals are flawed (Juwah 
et al., 2004). They often use naïve, inefficient strat-
egies (e.g., trial and error), rather than considering 
the more powerful methods at their disposal. They 
pursue unfruitful or inefficient lines of enquiry re-
lentlessly, without stopping to consider alternative 
strategies (Schoenfeld, 1992). Furthermore, they re-
main uncertain of the criteria to judge the quality of 
their work (Bell et al., 1997), other than checking the 
correctness of the answer. In contrast, expert prob-
lem solvers spend time setting hierarchical goals 
(Schunk & Zimmerman, 2012), carefully monitor 
their progress against these goals, and persist in the 

face of obstacles (Schunk & Zimmerman, 2012). They 
routinely use these goals to step back and ask them-
selves or their partner questions such as ‘Where is 
this strategy going?’, ‘Should it be so complicated?’, or 

‘Does this solution make sense?’ (e.g., Schoenfeld, 1992). 
Answers to which may prompt a change of direction 
in order to improve, for example, their solution’s ap-
propriateness, elegance, efficiency or generalizability. 
Furthermore, using subgoals makes progress visible, 
and their realization may sustain motivation to per-
sist (Schunk, 2006).

Empirical studies suggest that students might develop 
these self-regulating skills by critically reflecting on 
the work of others (e.g., Pintrich & Susho, 2002). In so 
doing,  students’ criteria for success are made visible 
for scrutiny (Black & Willam, 1998), differences sur-
face, and opportunities arise for students to reflect on, 
and adapt their success criteria to accommodate new 
values. Through a series of case studies Juwah and 
colleagues (2004) found that providing students with 
opportunities for peer (and self ) assessment encour-
aged the identification of goals implicit in solutions 
and judgments about how these goals related to their 
own solutions to a problem. 

We have carefully designed resources intended to 
help students develop their self-regulating skills. 
In these resources, students are asked to interpret, 
complete, compare and critique pre-prepared, hand-
written “sample student responses” to non-routine, 
unstructured problems. The responses are designed 
to simulate different ways students may solve a prob-
lem (Evans & Swan, 2014) and provide opportunities 
for students to use and reflect on the goals set by oth-
ers. We begin by explaining the theory and method 
behind the design of these resources, then discuss how 
our intentions were interpreted in the classroom and 
detail the subsequent improvements. 

mailto:Sheila.Evans%40Nottingham.ac.uk?subject=
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Developing student questioning when problem solving: The role of sample student responses (Sheila Evans and Malcolm Swan)

3016

THEORETICAL BACKGROUND

This study is rooted in a design research paradigm. 
Design research involves both the development of 
intervention resources and studying what happens 
when they are enacted in the classroom. Accordingly, 
the design process of iteratively designing, testing and 
revising a resource and the research process of con-
jecturing, collecting, analysing data and contributing 
to theory, occur simultaneously and in parallel. Thus 
the development of an intervention forms a symbiotic 
relationship with the development of the research. 
Within this flexible environment, both the interven-
tion and the initial research questions or conjectures 
may be refined. This flexibility is particularly benefi-
cial when the research base is thin and provides only 
limited guidance for the design of an intervention 
(McKenney & Reeves, 2012). 

The design of the resources emerges from the findings 
from a large design research project (Swan & Burkhardt, 
2014) but with some distinguishing features. Namely, 
the pre-written sample student responses are all in-
complete. Thus the context has been mathematized; 
the students’ task is to complete the mathematics and 
communicate results. This design structure provides 
students with an opportunity to ask themselves ques-
tions about each sample student’s goals. Questions 
such as: ‘What is this student doing?’ and ‘Why are 
they doing that? and ‘What should they do next?’ This 
awareness of goals set can positively influence their 
own performance when solving problems, promoting 
self-regulatory skills and productive goal-directed ac-
tion, engendering persistence in the face of obstacles 
(Schunk & Zimmerman, 2012). After completing solu-
tions, students attempt to explicitly compare and con-
nect them. To prevent students from simply comparing 
handwriting or checking for mistakes, responses were 
short, accessible and error-free (Evans & Swan, 2014).  

Comparing artifacts is routine practice in other disci-
plines. For example, English Language students may 
be asked to compare newspaper articles describing 
the same event. The literature suggest this practice, 
particularly if supported by a meaningful framework, 
focuses students attention on similarities and differ-
ences, and so facilitates the noticing of more features 
than if artifacts were viewed separately (e.g., Gamer, 
1974; Chazan & Ball, 1999). Accordingly, in this study, 
students are asked to compare alternative approaches 
to non-routine unstructured mathematics problems. 

Thus encouraging students to ask themselves ques-
tions such as: ‘What are the differences between these 
two responses?’; ‘How do these differences benefit or 
constrain the solution?’; ‘Why do x rather than y?’ By 
encouraging students to not only to make sense of a 
solution but to make judgments about its quality, may 
shift their perspective from viewing solutions as a 
process, to viewing them as objects to be evaluated.  
This shift can promote deeper understanding of the 
mathematics  (Sfard, 1991). 

We know from the literature that transferring learn-
ing from one problem situation to another can be 
challenging as students often form highly concrete, 
context-specific, understandings of the solution (e.g., 
Gentener, 2003). This may be partially addressed by 
exposing students to multiple solutions, particularly 
if these solutions are compared rather than consid-
ered individually (e.g., Catrambone & Holyoak, 1989). 
By comparing students’ focus on structural, often 
abstract, commonalities rather than idiosyncratic, 
situation-specific, surface features (Gentener, 2003). 
A study within mathematics education supports these 
findings. The study (Rittle-Johnson & Star, 2007) like-
wise focused on transferring methods studied in one 
context to another. Students learnt to solve equations 
by either comparing alternative methods or by re-
flecting on each method separately. The students in 
the ‘compare’ group made greater gains in procedural 
knowledge and flexibility to solve routine problems 
in multiple ways and comparable gains in conceptu-
al knowledge. Although the studies on comparing 
solutions did not involve unstructured, non-routine 
problems, (we could locate no studies of this kind) we 
conjecture that comparing solutions to these types of 
problems could help to improve students’ ‘flexibility’ 
when solving other problems. Thus increasing their 
capacity to monitor their progress against interim 
goals as their solution is slowly created. 

METHOD

The resources for each lesson include a task and a de-
tailed teacher guide. Based on materials from a larger 
US project (Swan & Burkhardt, 2014), the interven-
tions represent the initial phase in a design research 
cycle of the UK study. Feedback from this phase will 
inform the refinement of resources, methods used 
for data collection and analysis for the UK study. The 
intervention lesson described here was the first in a 
series of four taught to 30 students in a top (advanced) 



Developing student questioning when problem solving: The role of sample student responses (Sheila Evans and Malcolm Swan)

3017

set Year 9 class in a UK secondary school. The students 
had little experience of working with unstructured 
problem solving tasks or sample student responses, 
however, the teacher had taught many such tasks

Structure of the intervention lesson:

 ― Students worked on the task in a prior lesson. 
This provided the teacher with insight into the 
ways students were understanding and repre-
senting the problem.

 ― After the teacher briefly reintroduced the prob-
lem to the whole class, students worked first 
individually then in pairs, completing sample 
student responses. 

 ― Because students were not used to comparing 
responses, the teacher briefly explained, using a 
non-mathematical example, the benefits of mak-
ing comparisons. 

 ― Students then glued the now completed respons-
es to a poster and interpreted, completed and 
compared the solutions. 

 ― In a whole-class discussion students reviewed 
what they had learned. 

Figure 1 shows the problem used. Figure 2 shows 
the pre-written student responses. We carefully de-
signed the responses to encourage students to make 
connections between approaches in order to create 
or strengthen networks of related ideas (Silver et 
al., 2005) and enable students to achieve ‘a coherent, 
comprehensive, flexible and more abstract knowledge 
structure’ (Seufert et al., 2007).

We summarised students’ individual attempts to solve 
the problem.  However, the prime source of data is 
the 15 student posters, each produced by 2 students. 
Throughout this paper, the word ‘set’ defines a group 
of assessment comments on 1 poster about 1 response. 
The word ‘response’ refers to the incomplete ‘sample 
student’ work, and ‘solution’ refers to a (real) student’s 
attempt to complete a response. We used a grounded 
theory approach to assess the 45 sets of assessment 
comments made by the 15 pairs of students about the 
3 responses. To interpret the comments we used 3 
themes corresponding to the 3 tasks students under-

Figure 1: The problem

Dylan Cath Ezra

Figure 2: The three pieces of sample student work
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took: how students completed; assessed and connect-
ed the sample student responses. 

SECTION 4: RESULTS AND DISCUSSION

When initially attempting to solve the problem one 
student used a graphical method and another an al-
gebraic method. The rest of the class used a form of 

‘trial and improvement’. This concurs with our earlier 
research (Evans & Swan, 2014) that suggests students 
often prefer this method rather than, for instance an 
algebraic strategy. Trial and improvement can forge 
a way into the problem but the information available 
within answers are often limited. For instance, trends 
may not be revealed. Furthermore, most students 
failed to effectively communicate their answer to ‘Bill’, 
thus overlooking the purpose of the problem. These 
results agree with the literature that suggests students 
often disconnect mathematical representation from 
the context of the problem and make little attempt to 
reconnect them (e.g., Friel, Curcio, & Bright, 2001). As 
trial and improvement was the commonly used strate-
gy, students were to be exposed to two new approaches 
and a familiar one in the intervention lesson.

How students completed the responses
Table 1 summarises how pairs of students completed 
each response and attempted to advise ‘Bill’ (e.g., ‘Top 
Print is cheaper after 15 jerseys’).

Despite (or possibly because of ) most students 
figuring out the correct answer on their own, some 
failed to complete the sample student responses. 
For instance, one pair of students added two more 
rows to Cath’s table (Figure 3).

These students understood the context, but respond-
ed in a superficial way, by finding something proce-
dural to do. They followed the pattern in the first col-
umn, and used the procedures for calculating costs 
correctly, but did not engage in solving the problem 
using Cath’s method. Thus students did not attempt to 
understand and adopt Cath’s goals. This may be due 
to the teacher not fully explaining the purpose of the 
activity at this stage: once complete the solutions were 
to be critiqued and connected. 

Consonant with students’ original attempts to solve 
the problem there was a notable lack of attempts to 
interpret their solution in terms of the context (21 
out of a possible 45. Of these, only 3 pairs explicitly 
advise ‘Bill’, the remaining 18 simply explained what 
the solution showed). However, again not fully under-
standing the purpose of the activity may discourage 
students from providing all 3 answers (12 out of the 
15 pairs of students did attempt to recontextualise at 
least one of their solutions). Students may assume 
they would simply be repeating themselves. 

How students assessed the responses
32 of the 45 ‘sets’ of assessment comments suggested 
students were making direct comparisons between the 
responses. For example, comments such as ‘it is clear to 
see the pattern [Ezra’s response] compared to Dylan’s’. 
There were numerous other assessment comments that 

Did/did not attempt to 
advise Bill

Dylan
(Algebraic)

4 pairs of students substituted n = 15 into the expressions 21n and 
45 + 18n. Most of the remaining pairs substituted a combination of 
n = 14, n = 15 and n = 16 into the expressions. Most did not explain 
their work.  

6 / 9

Cath 
(Numerical)

7 pairs of students figured out the prices of the jerseys when n = 14, 
n = 15 and n = 16. Others figured out between one and four prices. 9 
pairs of students figured out the cross-over point, n = 15. Usually the 
existing table was extended to accommodate these figures.

7 / 8

Ezra 
(Graphical)

All pairs of students successfully plotted a 2nd line on the graph. 
There was very little written work.

8 / 7

Table 1:  Summary of how students completed the sample student work

Figure 3:  Response of two students
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implied students were making comparison. For exam-
ple one pair made the two comments ‘only talked about 
one particular value [Dylan’s response] and ‘showed 
the full range of results in a graph [Ezra’s response]. 
Our evidence suggests that most students were not 
simply considering the attributes of individual ap-
proaches to the problem, but were using comparison 
to draw out the relative advantages and disadvantages 
of each. Most students (33 of the 45 sets) were able to 
make at least two comparative comments on each re-
sponse and only 8 ‘sets’ made totally positive or totally 
negative comments; indicating students were using a 
range of questions when assessing the work and did not 
feel compelled to declare one solution as the ‘correct 
one’. This behaviour contradicts the commonly held as-
sumption that mathematical solutions always consist of 
one right response amongst a hazardous field of wrong 
ones. It appears that as students compared solutions, 
similarities, differences, advantages and disadvantag-
es were revealed, discouraging the emergence of a ‘best’ 
solution. We used 5 categories to investigate the nature 
of the assessment comments:

 ― Assessments about clarity. These comments 
referred to the personal challenges of under-
standing the response. For example,  ‘Easiest to 
understand’

 ― Assessments about accessibility. These comments 
referred to the personal challenges of using the 
method. For example, ‘Cath’s method may take a 
while to do’.

 ― Assessment about fitness for purpose. These com-
ments referred to students’ assessment of the 
legitimacy of the response given the context of 
the problem. (E.g., ‘hard to find an exact price, big 
scale, so pretty much guess work’.) 

 ― Assessment about the incompleteness of the method. 
These comments arose despite students being 

asked to complete each solution. For example, 
‘doesn’t answer the question’.

 ― Undefined assessment comments. These were com-
ments we were unable to categorise. For example, 

‘easiest’. 

We then categorised all assessment comments into 
those expressing advantages and those expressing 
disadvantages. The results of the coding are given 
in Table 2.

A large proportion of assessment comments drew on 
a student’s personal perspective (9 + 17 = 26) rather 
than on whether or not the solution was fit for pur-
pose. For example, ‘Quite complicated if you don’t 
get it’. This was unsurprising. What students’ notice 
in a solution and the questions they ask themselves 
about it are  often influenced by past experience of 
mathematics classes. In a traditional concept-focused 
classroom a problem is often used by the teacher to 
introduce a new technique, then students practise 
and illustrate the technique using similar problems; 
what Burkhardt and colleagues (1988) calls ‘exposition, 
examples, exercises.’ It follows that students may as-
sume, when critiquing solutions, their task is simply 
to decide if they understand it and if they could use 
the method to solve other problems. Accordingly, stu-
dents may ask questions such as ‘Do I understand this 
method?’ or ‘Do I have the maths needed to undertake 
this method?’, or ‘Would it take me a long time to solve 
a problem using this method?’ These are legitimate 
questions, however they do not critique the mathe-
matics used, nor the validity of the solution within 
the context. To do this, students need to ask further 
questions.  Questions such as ‘Is this method efficient, 
elegant, generalisable?’ and ‘Is this method suitable 
for the given context?’ and ‘Is the answer appropri-
ately communicated?’ We were encouraged to note 
57 comments did answer questions such as these. For 
example, Figure 5.

Assessment about: Algebra (Dylan) Table (Cath) Graph (Ezra) Total

clarity 3 (1,2) 5 (4,1) 1 (1,0) 9 (6,3)

accessibility 7 (7, 0) 5 (0,5) 5 (1,4) 17 (8,9)

fitness for purpose 11 (1,10) 16 (9,7) 30 (17,13) 57 (27,30)

incompleteness of method 3 (0,3) 0 0 3 (0,3)

Undefined 4 (3,1) 7 (5,2) 1 (0,1) 12 (5,3)

Total 28 (12,16) 35 (18,15) 37 (19,18) 98 (49,49)

Table 2: The numbers in brackets refer to the (advantages, disadvantages)
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Now we will analyse the nature of these assessments. 
Rather than critiquing the graphical solution from a 
personal perspective (6), students clearly preferred to 
focus on the suitability of the graph within the context 
(30). The positive comments include: 7 on how the 
graph allowed them to easily see a trend, 4 on the wide 
range of costs, and 3 non-specific comments about the 
appearance of the graph (e.g., ‘easy visually to see’). 
There were 11 negative comments about the graph’s 
lack of accuracy due to the scale (e.g., ‘hard to find an 
exact price, big scale so pretty much guess work’). The 
tabular method drew 16 comments about the appropri-
ateness of the solution, including positive comments 
about the accuracy of the costs (2), ease of comparing 
companies (3), and presentation of specific costs (2). 
Negative comments referred to the lack of a range of 
costs (2) and poor visual representation (2). Negative 
comments about the algebraic method referred to lack 
of values (4) and lack of detail about which company 
was cheaper (3).  Thus we can detect themes across all 
three solutions: the accuracy of the work, the range of 
values used, and the ease of comparing costs.  It is con-
ceivable that these themes were instigated through the 
act of explicitly comparing solutions. For instance, an 
advantageous property noticed in one solution, may 
then be assessed in another. 

How students connected the responses 
Most comments about how solutions were linked 
were generic. For instance, ‘The two solutions both 
used the same formula.’ This concurs with research 
suggesting the need for instructional prompts that 
draw students’ attention to how methods are linked 
(e.g., Chazan & Ball, 1999). However, time was anoth-
er important factor contributing to the quality and 
number of comments on how responses could be con-
nected. Students simply did not have enough time to 
complete the task.

CONCLUSION

To effectively complete the responses students need-
ed to adopt and use each sample student’s goals. To 
effectively critique each solution they needed to 

recognise the goal of the task (the comparison of the 
companies) and the role they were to adopt (advis-
ers to ‘Bill’). Students struggled with these activities. 
For instance, when completing responses students 
were able to follow algorithms, but sometimes failed 
to engage with their purpose, rendering insubstan-
tial solutions. Furthermore many students failed to 
effectively communicate their results to the intended 
audience, ‘Bill’. These findings highlight the difficul-
ties students have recontextualising the mathematics 
both as they complete a solution and as they commu-
nicate the results. Possibly indicating some students 
were not asking questions such as ‘Why am I figuring 
out this value?’ or ‘How does this result help Bill?’ To 
ask these questions students need to engage in the 

‘student’s’ hierarchical goals.

The findings do support the perspective that compar-
ing properties of solutions to problems does indeed 
draw out the affordances and limitations of each but 
without compelling students to decide which one is 
correct. Students often critiqued solutions from a per-
sonal viewpoint, focusing on whether they under-
stood the method and whether they would be able to 
use it again. However, many students did also critique 
the suitability of each sample student response within 
the context of the problem. This was particularly the 
case with the graphical response. 

Although we cannot make any generalisations beyond 
this classroom setting the findings from this study 
together with feedback from trials of other lessons 
will help shape a further iteration of all the resources. 
It is clear students need more support when under-
taking these activities. For example, to help students 
complete the responses we will suggest teachers 
provide opportunities for students to reflect on the 
goals ‘students’ have set. Furthermore, if teachers 
ensure students understand the purpose of this activ-
ity, then they may be motivated to not only complete 
the mathematics, but also interpret it in the context 
of the problem. In so doing, differences may emerge 
in information gained from each completed solution. 

Figure 5
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This in turn may help students undertake the next 
activity, critiquing the solutions. 

We endeavour, through the resources and teacher 
instruction to further raise awareness of what gets 
noticed when critiquing, and whether what is noticed 
and critiqued is of relevance to the context. This may 
help students move from simply noticing features of 
the solutions from a personal perspective to noticing 
them from the perspective of the context of the task. 
In this case, the ‘sample student’s’ and ‘Bill’s’ perspec-
tive. For example, it may require just a small shift in 
perspective to move from asking questions such as 

‘How long would this method take me to do?’ to ‘Is this 
an efficient and elegant method?’ We also plan to de-
sign follow-up task in which ‘Bills’ goals are slightly 
altered. Students will need to think carefully about 
the criteria for success when planning a strategy and 
monitoring its progress as it unfolds on the paper or 
in discussion. We will continue to frame these student 
tasks within the activity of comparing solutions. We 
regard this as a successful design strategy. 
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In this article, we report on an exploratory study on 
teaching practices related to problem solving of a group 
of 29 novel secondary mathematics teachers. For this 
purpose, two independent instruments were designed, 
the first one is based on lesson observations, and the sec-
ond one is a questionnaire answered by teachers about 
their teaching practices while working on non-routine 
problem solving with their students. For each instru-
ment, we perform a statistical analysis to define relevant 
dimensions regarding problem solving teaching practic-
es and we compare these new dimensions. We find that 
results from the two instruments are coherent in the case 
of quantity of problem solving in lessons and quality of 
teaching practices. These results are encouraging for 
further studies in this direction.

Keywords: Problem solving, observed teaching practices, 

self-reported teaching practices.

THE IMPORTANCE AND CHALLENGE OF 
ANALYZING TEACHING PRACTICES

No doubt that the analysis of teaching practices is cru-
cial for many aspects of education, for teacher, school 
or program evaluation, for more general purposes 
of defining and understanding good practices or for 
theoretical studies aiming to understand the teach-
ing-learning process. 

Methods used to collect teaching practices data have 
an ample variety, for example teachers/students re-
ports, lesson observations and questionnaires, just 
like the type of analysis done with these data that 
could be qualitative, quantitative or a vast variety 
of mixed approaches. Having all of them advantages 
and disadvantages, depending on the type of collected 
data and the analysis method used, the research could 
show in-depth, small-scale results as in the case of 

qualitative analysis of videotaped lessons, or a more 
general view of teaching practices as in the case of 
quantitative analysis of teachers’ surveys.

In particular, the analysis of teaching practices 
through questionnaires is of great value since it al-
lows studies with a high number of teachers. PRIMAS 
project is an example of this analysis, in which teach-
ers’ self-reported practices in inquiry based learning 
in different countries are described (Engeln, Euler, & 
Maaß, 2013). On the other hand, teaching practices 
observations by a research team, without the teacher 
intervention (external analysis), has been widely used 
in mathematics education too. These analyses have 
been conducted with different purposes: to study a 
specific feature of teaching and compare different 
types of teaching practices in relation with this fea-
ture, for example the mathematical quality of instruc-
tion (Hill et al., 2008) or the presence of mathemati-
cal elements as definitions, properties or processes 
(Badillo, Figueras, Font, & Martínez, 2013), to identify 
teachers’ participation patterns in the class (Skott, 
2013) or to analyze attributes of teachers that could 
affect their teaching practices, for example their be-
liefs about mathematics and teaching (Stipek, Givvin, 
Salmon, & MacGyvers, 2001).

Nevertheless, how self-reported practices and exter-
nally observed practices are related is not an obvious 
issue. Important differences may come from distinct 
conceptions of “practices”, that is, the researcher has 
something in mind which differs from what teacher 
have in mind or they may come from biased answers 
based in social desirability. 

To sum up, there are many important reasons to ana-
lyse teaching practices and, at the same time, collect-
ing data to do that is a critical point (Maaß & Artigue, 
2013). 

mailto:pfelmer%40dim.uchile.cl?subject=
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Our interest in methods for collecting teaching prac-
tices data is in the context of a R&D project related 
with mathematics teacher’s professional development 
on problem solving practices. In this project, teachers 
design and implement problem solving lessons with 
their students, which are later discussed jointly be-
tween teachers and researchers. In the context of two 
previous projects we have designed two instruments 
to collect data from practices from a group of sec-
ondary mathematics teachers: a Lesson Observation 
Rubric (LOR) and a Questionnaire about Problem 
Solving (QPS). We are interested in the information 
that can be obtained from each instrument separately 
and we want to explore on the information that can 
be drawn using both instruments at the same time.

The research question of this study is: Which are the 
dimensions that characterize teaching practices in 
relation with problem solving when using each of the 
two instruments and how do they correlate? To an-
swer this question is relevant from a data collection 
methodological point of view and also for deepening 
in the understanding of the teaching practices related 
with problem solving. 

TEACHING PRACTICES RELATED 
WITH PROBLEM SOLVING

The framework for designing research instruments 
and analysing data to answer our research question 
includes a conception of problem and of teaching prac-
tices that promote students’ work in a mathematical 
environment.

We agree with Schoenfeld (1985) considering that 

Being a problem is not a property inherent in a 
mathematical task. Rather it is a particular re-
lationship between the individual and the task 
that makes the task a problem for that person [...] 
if one has already accessed to a solution schema 
for a mathematical task, that task is an exercise 
and not a problem. (p. 74) 

Other characteristic that some authors give to a 
problem is that it needs more time to be solved (e.g., 
Kloosterman & Stage, 1992). 

Our experience with in-service teachers shows that 
some teachers think that a problem is just a math ex-
ercise contextualized in the “reality”, and that many 

teachers use the term “non-routine problem” to refer 
to what Schoenfeld call “problem”. In order to face 
this common misconception among Chilean teachers, 
the QPS teachers answered starts with the following 
definition:

We are going to consider that a non-routine prob-
lem is one where the person that solves it doesn’t 
know a strategy or algorithm to solve it. Some of 
the characteristics that non-routine problem usu-
ally have are: They need more reflection and time 
than regular problems or exercises; they cannot 
be solved with a simple rule or just remembering 
and applying a known fact; usually they can be 
solved using different strategies; they can have 
one or more solutions; they are challenging for 
the person that is solving them and they don’t 
have to be confused with problems with real con-
text, to have or not real context doesn’t determine 
a non-routine problem.

In relation with teaching practices the key pedagogi-
cal aspect of problem solving tradition is that students 
have to think mathematically. To accomplish this it is 
necessary to have student centred teaching practices 
and a climate that support for the autonomy. Swan 
(2006) uses the term “student-centred’ to describe 
practices where 

[T]he teacher takes students’ needs into account 
when deciding what to teach, treats students as 
individuals rather than a homogeneous body, is 
selective and flexible about what is covered and 
allows students to make decisions, compare dif-
ferent approaches and create their own methods. 
Mathematics is seen as a subject open for discus-
sion. It is not necessary to cover everything on 
the syllabus and time may be taken to explore 
and discuss. (p. 63) 

METHOD

Participating teachers
This study considers teaching practices from 29 nov-
el secondary mathematics teachers (between 1 and 
4 years of teaching) randomly selected from gradu-
ates of three of the Chilean reference universities 
for teacher formation (10 teachers from two of the 
universities and 9 from the other one). 
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Each teacher selected a class, in which he/she was 
teaching, to be observed during three consecutive 
lessons. The level of each class went from 7th to 12th 
and the topic treated during the observed lessons 
was varied, like numbers, algebra or geometry.  Some 
months later (from 6 to 12 months) teachers answered 
a questionnaire about their teaching in relation with 
problem solving practices taking into consideration 
the same class that was observed. 

Classroom observation
For each teacher, three consecutive lessons of the se-
lected class were observed and coded (2 live lessons 
and 1 video recorded lesson), completing 270 minutes 
of observation. It was chosen to observe only three 
lessons since, according to methodological research 
findings; no significant information is obtained by 
observing more than 3 lessons (Hill et al., 2008). A 
lesson observation rubric (LOR) was designed to code 
lessons by sections of 7.5 minutes. The LOR is divided 
in three main parts described next, with 14 practice 
indicators in total.

Work dynamics: in this part, the rubric identifies if 
time is dedicated to mathematics or not and the gen-
eral way teacher and students interact. It is a first 
approximation to know if the lesson focus is on the 
teacher or the students. There are 5 indicators: down 
time (DT), direct instruction (DI), individual work 
(IW), group work (GW) and class work (CW). Each 
7.5 minutes the indicator which is most observed is 
marked. 

Class management: in this part, more specific char-
acteristics of teaching practices are collected using 7 
indicators: teacher does not participate (TNP), teacher 
makes questions (TMQ ), teacher returns responsi-
bility (TRR), teacher does not answer (TNA), teacher 
gives solutions (TGS), non-routine intervention of 
a student (NRIS) and teacher promotes discussion 
(TPD). When one of these indicators was observed 
during a segment it was marked. 

Type of task: in this part, the type of mathematical task 
was collected using 2 indicators: routine task (RT) and 
non-routine task (NRT), depending if student were 
performing routine or non-routine tasks. Just one of 
them was marked in each time segment except in the 
case both were present during a very similar amount 
of time.

For our analysis we use all variables described above 
as percentages. In the case of DT, DI, IW, GW, CW, RT 
and NRT they are the percentage of segments were 
the indicator was marked, for example if for a teacher 
9 segments out of 36 were marked non routine task, 
his score in NRT was 25%. In the case all the other var-
iables, they are percentages of the total number of 
variables marked in the three lessons, for example 
if TRR was marked 3 times in the 36 segments and all 
other variables were marked  15 times, TRR was 20%

Questionnaire (QPS)
The questionnaire answered by teachers (QPS) is de-
signed to measure the quantity and quality of problem 
solving (PS) activities used by them. The QPS starts 
with the definition of non-routine problem indicated 
in the framework (section 2) and it requires teachers to 
answer considering that definition. The questionnaire 
was answered through an online form sent by e-mail.

Quantity of PS was measured asking about the fre-
quency of use of PS in their lessons with one item 
with options from 1 (never) to 5 (almost every les-
son). Quality of PS was measured with 19 items (see 
Appendix A) based in scales of autonomy support-
ive climate (Leroy, Bressoux, Sarrazin, & Trouilloud, 
2007) and scales to measure the level of student-cen-
tred approach and teacher-centred approach (Swan, 
2006). Also some items were created to complete our 
view of a good problem solving activity as indicated 
in the framework. The teachers were asked to answer 
each question with the following prompt “When I use 
non-routine problems”. Each item in this part has 6 
options in a Likert scale ranging from 1 (never) to 6 
(always).

Statistical methods
To summarize the variables from each instrument we 
made a Principal Components Analysis. The purpose 
of this analysis is to create interpretable and reliable 
scales that allow us to simplify and organize the data, 
understanding the limitations of using this method 
with low number of individuals. We made the analysis 
over the correlations matrix and, in order to have 
more interpretable results, we applied a Varimax 
rotation. The number of factors was chosen with the 
analysis of the scree plot. We define new scales aver-
aging the items that had the biggest loadings in each 
factor. If a factor had items with negative and positive 
loadings we multiplied the items with negative load-
ings by -1 after calculating averages and reliabilities.
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In the case of QPS, the principal components anal-
ysis was made with a bigger sample (N=240) of sec-
ondary and primary mathematics teachers applying 
for participating in a Problem Solving Workshop. 
Nevertheless, when we look for correlations between 
variables of both research instruments we used the 
common sample of 29 novel secondary mathematics 
teachers described at the beginning of the section.

ANALYSIS

Dimensions characterizing teaching 
practices by external observation 
The statistical method applied to data from the LOR 
retained 4 factors explaining 71.2% of the total vari-
ance. The first factor explains 27.9 % of variance and 
the items with highest loadings were GW, TNP, TMQ(-) 
and DI(-) (the items with (-) had negative high loadings). 
With these items we create the new scale or dimen-
sion Classroom Management with a Cronbach’s alpha 
of 0.681. We interpreted this factor as a dimension that 
describes the class management because a high pos-
itive score in this factor means that the teacher used 
most group work (GW) without intervention (TNP) 
and a negative score means that the teacher used most-
ly direct instruction (DI) and make questions (TMQ ).

The second factor explains 16.2% of the variance and 
the items with highest loadings were TGS(-), NRT, TRR 
and CW. With these items we create the new scale 
or dimension Quality Practices with a Cronbach’s al-
pha of 0.62. This factor put together variables that 
we presented in our framework as related with a 
good problem solving activity. First the frequency 
of non-routine tasks (NRT) and return the responsi-
bility (TRR) are key variables. To have the frequency 
of working with whole class (CW) also makes sense, 
because CW was distinguished from direct instruc-
tions (DI), and only was coded if the protagonist were 
the students and they were working in a mathematical 
task. Teacher return responsibility was coded when 
at the moment of been asked teacher answered with a 

question or guide that allows the student to build, de-
velop or discover a mathematical idea. The frequency 
of teacher gives solutions (TGS) has a negative load-
ing; this makes sense to us because a teacher that gives 
the answers kills any attempt to think. So, having a 
high score in this dimension means that a teacher has 
a high frequency (compared with the other teachers) 
of non-routine tasks, returns the responsibility to stu-
dents, uses whole class discussions and usually does 
not give the answers or solutions to their students.  

The interpretation of the other two factors was not 
clear enough so we decided not to use them in the sub-
sequent analysis. Studies with larger samples would 
be necessary to clarify these factors. 

Dimensions characterizing problem solving 
teaching practices by teachers’ self-report
The statistical method applied to data from the QPS 
retained 4 factors explaining 67.9% of the total vari-
ance (see Table 1) The first factor is formed with items 
that indicate students’ behaviour denoting student 
centred practices, for example student’s discussions 
(8,16) and work independently (3). The second factor 
was formed by items that indicate teacher’s behaviour 
describing student centred practices, for example the 
teacher promotes that students takes their time (12) 
and guides with questions (11). The third factor is 
interpreted as a teacher centred dimension because 
most of the items situated the teacher as the protag-
onist. The last factor is about class organization be-
cause a high value in the factor means that teachers 
group their students (1) and a low factor means that 
teachers set their students working individually (6). 
Since this dimension has a very low reliability we do 
not use it for the correlation analysis.

In the next two sections we will combine the infor-
mation obtained with the analysis of data from both 
research instruments: LOR and QPS. 

Factor % of Variance Items with highest load-
ings

New Dimension Reliability Cronbach’s alpha

1 31.8 8, 13, 16, 14, 19, 3, 4, 9, 7 Student centred (students) 0.919

2 16.2 12, 18, 5 11 Student centred (teacher) 0.841

3 12.9 17, 10, 2, 15 Teacher centred 0.768

4 7 6 (-), 1 Class Organization 0.291

Table 1:  Description of factors and the new dimensions from the QPS



Problem solving teaching practices: Observer and teacher’s view (Patricio Felmer, Josefa Perdomo-Díaz, Valentina Giaconi and Carmen G. Espinoza)

3026

Relation between observed and self-
reported quantity of problem solving 
Regarding the quantity of problem solving, the QPS 
has one item asking explicitly for the frequency of 
non-routine problems, and the LOR has an indicator 
of non-routine task. The correlation between the av-
erage of observed non-routine task and self-reported 
quantity of non-routine PS is r=0.447, p=0.015, N=29. 
This shows that information reported by teachers is 
not so different from information registered in les-
sons observations, in relation with the quantity of 
non-routine tasks or problems used with students of 
the observed sample. Nevertheless there are some par-
ticular cases as teachers reporting they use PS most 
of the time and where non-routine task was not coded 
during the observed 3 lessons. Cases like this require 
a deeper analysis we expect to make in a future study.

Relation between observed and self-reported 
quality of problem solving
In the analysis of the relation between the observed 
and self-reported quality of problem solving teaching 
practices we have to recall that all 19 items of QPS were 
answered under the prompt “When I use non-routine 
problems”. This lead us to consider with a different 
weight the answers to items, depending on the re-
ported frequency of use of PS in classes: we multiply 
the answer of each item by 1, 2, 3, 4 or 5 according to 
frequency of use of PS reported by the teacher.

In the following table, we present correlations be-
tween the new reliable dimensions obtained through 
principal components analysis starting with data 
from LOR and from QPS.

Regarding the dimensions from the QPS, we high-
light the significant high value between the Student 
centred (student) and Student centred (teacher), di-
mensions 1 and 2, which may be interpreted as coher-
ence in the answers of the teachers, those teachers 
that have a student centred practices have students 
performing student centred activities. In the same di-

rection the significant positive correlations between 
3 with 1 and 3 with 2 suggests a sort of incoherence 
in teacher’s answers. However, having weighted the 
items answered by teachers with a weight based on a 
question in the same QPS (quantity of RP) may have 
increased artificially the correlations between the 
variables within QPS. 

The most important result in Table 2 is the signifi-
cant correlation between the dimension 5 with the 
dimensions 1 and 2. In this case, we are correlating 
dimensions obtained through our statistical analysis 
for the two instruments, LOR and QPS. These three 
dimensions express quality in teaching practices re-
lated to problem solving measured with two different 
instruments. These findings are in the same direction 
as the positive correlation between the frequency of 
observed non-routine task and self-reported quantity 
of non-routine PS mentioned above, telling that the 
two instruments are coherent. Certainly the results 
of this analysis are not conclusive, but it encourages 
going deeper in the analysis and tuning of these two 
instruments with larger samples. 

DISCUSSION

We would like to summarize some results found with 
each LOR and QPS instrument, highlighting those 
characteristics of teaching practices related with 
problem solving where both instruments coincide. 
This is to be done having in mind that this is an ex-
ploratory study and that the instruments were not 
designed for information triangulation purposes. 
Teaching practices are multidimensional in nature, 
nevertheless a principal components analysis of both 
instruments lead us to summarize the information 
obtained through a big quantity of indicators, (14) 
and items (19), in two main types of dimensions: those 
related with classroom management or classroom 
organization and those linked with teaching practices 
promoting students development of problem solving 
skills and autonomy, in the terms described in our 

 1 2 3 4 5

QPS 1. Student centred (student) _

QPS 2. Student centred (teacher) 0.858** _

QPS 3. Teacher centred 0.549** 0.583** _

LOR 4. Classroom Management 0.143 -0.018 0.275 _

LOR 5. Quality Practices 0.369* 0.543** 0.178 -0.075 _

Table 2: Correlations between the new QPS and LOR dimensions **p < 0.01 *p < 0.05
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framework. From our point of view, this is an inter-
esting result although, since both instruments are 
new, further research is needed to prove the stability 
of these dimensions. 

Correlations indicated some coherence between the 
information obtained with both instruments. For ex-
ample, teachers that reported to use more non-routine 
problem solving activities were the same for whom 
non-routine task was coded in the external observa-
tion of the lessons.

Correlations between dimensions in the case of ob-
served teaching practices point to that there is no rela-
tionship between classroom management and quality 
practices. 

Correlations between the three dimensions express-
ing quality in teaching practices related to problem 
solving measured with two different instruments were 
high and significant, showing that the two instruments 
are coherent in this crucial dimension of our analysis. 
This is the most important finding in our study that 
encourages to conduct further studies in this direction.

To sum up, both instruments became useful to iden-
tify dimensions related with teaching practices on 
problem solving and there was coherence between 
the information obtained using each of them, what it 
is interesting from a methodological point of view, es-
pecially having in mind that classroom observation is 
very expensive in relation to questionnaire answering.

Moreover, it will be interesting to investigate if ob-
tained dimensions for problem solving teaching prac-
tices are stable or not, taking a bigger sample, and go 
deeply in some cases with a qualitative study that let us 
to understand better some of the results of this analysis.
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APPENDIX A: QPS

We present an English translation of the items. The 
original version was applied in Spanish. The items 
with an (i) are considered to measure practices that we 
hypothesized are not related to good problem solving 
activities. 

1) I organize my students working in groups

2) If my students take too much time in find the 
solution of a problem, I solve it in the board. (i)
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3) My students solve problems independently

4) My students express their different strategies to 
solve their problems even though they are wrong

5) I walk around the tables watching my students 
work

6) I organize my students working individually (i)

7) Usually I get amazed with my students ideas

8) My students are able to discuss with each other 
different ways to solve non-routine problems

9) I use plenary discussions with all the class

10) My students depend too much on my help to move 
forward with the problems (i)

11) If a student is too frustrated with a problem, I try 
to guide him/her only with questions

12) I promote students to take time to solve non-rou-
tine problems

13) My students generate different solution strat-
egies

14) My students make interesting questions

15) If a student is too frustrated with a problem, I 
show him/her how to solve it (i)

16) My students discuss their own mistakes

17) My students progress too slow in the problems 
resolution (i)

18) I ask questions all the time

19) My students explore new problems arising as a 
result of the problems we are working on
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Extended teacher-researcher collaboration is reported 
in this paper, by drawing upon cultural historical ac-
tivity theory (CHAT) perspectives. Teaching is herein 
conceived as dialectical practice in which teachers are 
both shaped by and shape instructional practices. Three 
instructional interventions conducted at a Grade four 
mathematics classroom in Sweden constitute and exem-
plify the construct of Formative Intervention. Teacher-
researcher collaboration which paralleled such conduct 
next exemplifies the construct of Expansive learning 
activity. Such transformation and change sheds light on 
how mid-level taken for granted phenomena in schools 
can be worked with and around, besides contributing to 
the motivational sphere of students and teachers.

Keywords: CHAT perspectives, collective unit of analysis, 

transformative agency, Formative intervention, Expansive 

learning activity.

TEACHER-RESEARCHER COLLABORATION

In this paper, I draw upon cultural historical activity 
theory (CHAT) perspectives and exemplify the con-
structs of Formative intervention (Engeström, 2011) 
and Expansive learning activity (Engeström, 2001). 
In doing so I draw on my extended collaboration as 
university researcher with a school teacher Lotta, 
as Charlotta is known, at her Grade four mathemat-
ics classroom. Such collaboration relates to project 
funding obtained by Lotta from the Swedish school 
authorities (Skolverket Dnr 2009:406) towards pro-
moting students’ communication in mathematics and 
includes three specific interventions. First, action re-
search in relation to students’ use of the mathematical 

= sign (Gade, 2012), second a problem posing practice in 
relation to students’ use of textbook vocabulary (Gade 
& Blomqvist, 2015) and third, Lotta’s plenary conduct 
of exploratory talk in relation to everyday measures 
(Gade, 2014). The very nature of teacher-researcher 

collaboration changed during such conduct from my 
being participant observer in Lotta’s classroom, to her 
becoming theoriser and co-author of scientific report-
ing of our collaborative research. I argue that while 
the conduct of classroom interventions exemplifies 
Formative intervention, my extended collaboration 
with Lotta exemplifies Expansive learning activity. 

Prior arguments in three research domains steer ar-
guments in this paper. In the first, mathematics edu-
cation research which seeks linkage between theory 
and practice in a comprehensive manner (Arbaugh, 
Herbel-Eisenmann, Ramirez, Knuth, Kranendonk,  
& Quander, 2010). Highlighting for reflective ra-
tionality instead of instrumental rationality, it is 
also sought that researchers become stakeholders 
in teachers' instructional practices just as teachers 
become stakeholders in classroom research (Krainer, 
2011). Second, arguments in action research recog-
nise the theory-practice relation to be a practical is-
sue, wherein personal knowledge teachers have and 
their instructional realities are often found denied 
and/or generalised in idealised theory formulated 
by researchers from outside (Elliott, 1991). Finally, 
it is recognised that most research at K-12 levels of 
schooling is not conducted by K-12 teachers, leaving 
out and silencing the voice of teachers and their world 
of teaching (Cochran-Smith & Donnell, 2006). In three 
interventions alluded to in this paper, Lotta and me 
respond to many an issue here outlined. Lotta's own 
role is conducting these included working to stride 
the theory-practice divide, become stakeholder in 
research and contribute to K-12 research as a Grade 
four mathematics teacher. In doing so Lotta took on 
two significant roles. First and as teacher she elevat-
ed the problem of students' faulty use of the = sign in 
everyday instruction to one worthy of resolution via 
action research. She also steered instruction to have 
students make explicit use of textbook vocabulary and 
conducted a plenary of talk for students to explore 

mailto:Sharada.Gade@umu.se
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understanding of everyday measures. In each of these 
Lotta was willing partner in deploying CHAT con-
structs which I brought to bear as researcher. Second 
and in this process Lotta went on to became co-author 
and theoriser of research, lending voice to its conduct 
and reporting. In such manner of reflective ration-
ality, Lotta and myself became stakeholders in each 
others’ professional practices (Krainer, 2011). More 
recently I unpacked our extended collaboration with 
different theoretical lenses (Gade, 2015). Lotta, her 
class teacher and me also report our problem posing 
practice in a teacher's journal (Persson, Blomqvist, 
& Gade, submitted). It is against this backdrop that I 
ask, What manner of change can teacher-researcher 
collaboration, identified by constructs of Formative 
intervention and Expansive learning activity, bring 
about?

CHAT BASED UNDERPINNINGS

Cultural historical activity theory (CHAT) grounds 
discussion in this paper with two arguments. First 
that the capacity to teach and benefit from teaching is 
a fundamental attribute of human beings. Second that 
educational processes are conceived as being active 
at three level – the student, the teacher and the envi-
ronment between them. In fact CHAT perspectives 
view teaching as a practice wherein a teacher and his 
or her environment are in a dialectic whole, in which 
teachers not only shape but are shaped by instruction-
al practices (van Huizen, van Oers, & Wubbels, 2005). 
With dialectical exploration of public and personal 
meanings, CHAT disavows a transmission model of 
teaching and conceives teacher subject knowledge 
to develop within instructional practices (Ellis, 2007). 
Such a conception is at odds with objectified, individ-
ualistic and dualistic conceptions of teaching, and 
proposes an alternative wherein teachers could take 
actions based on negotiated outcomes of collabora-
tion and participation in a community of learners 
(Shulman & Shulman, 2004). This latter contests the 
idea that teachers are heroic individuals given soci-
etal status in lieu of their ability to work autonomous-
ly facing all odds in everyday practice (Edwards, 2010). 

Bronfenbrenner's (1977) Transforming experiments, 
wherein environments can be restructured to bring 
unrealised potentials of participants to life is use-
ful in realising viable practitioner collaborations. 
Engeström, Sannino and Virkkunen (2014) term 
Transforming experiments as Formative interven-

tions, elucidating three assumptions that underpin 
their conduct. First the principle of double stimula-
tion, which highlights how human beings use not one 
but two stimuli to overcome the problem situation 
they find themselves in. With the first stimuli being 
the problem situation itself, the second stimuli is used 
to make a meaningless situation meaningful result-
ing in individuals regulating their own behaviour, 
for example, the ticking of a clock in a waiting area is 
used to kill time, besides leading to volition. Second 
the principle of ascending from the abstract to the 
concrete, whereby any phenomenon is studied holis-
tically from as many perspectives as possible (Luria, 
1979). In the CHAT tradition the term abstract means 
underdeveloped, lacking in connections and thin in 
content as against concrete phenomena which are 
mature, well connected and rich in content (Blunden, 
2010). Third Engeström and colleagues' (2014) princi-
ple of transformative agency,

Transformative agency differs from convention-
al notions of agency in that it stems from encoun-
ters with and examinations of disturbances, con-
flicts, and contradictions in the collective activity. 
Transformative agency develops the participants' 
joint activity by explicating and envisioning new 
possibilities. Transformative agency goes be-
yond the individual as it seeks possibilities for 
collective change efforts. (p 124)

The three assumptions outlined above which underpin 
Formative interventions, allow for non-linear, agentic 
conduct of classroom interventions. Engeström (2011) 
further outlines four distinguishing features of these. 
First the starting point of Formative interventions 
are not pre determined but found embedded in the 
life activity being studied. Second, in resolving any 
problematic the individuals involved gain agency in 
its conduct. Third, that any pedagogical idea utilised 
in a Formative intervention has potential of being 
utilised later on as well. Finally and in such conduct 
the role of the researcher is to conceptualise and sup-
port the growth of interventions, as these evolve over 
time. I highlight these very aspects in Lotta’s conduct 
of the three instructional interventions, which taken 
together constituted a Formative intervention.

The nature of teacher-researcher collaboration as re-
alised by me and Lotta not only paralleled our inter-
ventions but expanded qualitatively over time, from 
my initially being participant observer in her class-



Teacher-researcher collaboration as Formative Intervention and Expansive learning activity  (Sharada Gade)

3031

room to her becoming co-author and theoriser of re-
search reported. It is such manner of transformation 
that Engeström (2001) terms Expansive learning activ-
ity. Arguing against reactive forms of learning based 
on dualistic conceptions of the mind, Engeström (1987) 
argues for learning as an expanding and historically 
evolving activity. In line with Engeström, Lotta and 
me overcame many a contradiction we faced in her 
classroom practice, resulting in our collaboration 
becoming a case of Expansive learning activity. By 
this is meant that it was possible to view the learn-
ing that transpired during our collaboration in three 
distinct ways (Engeström, 1999). First and instead of 
benign mastery of what was already learnt hitherto 
by us as practitioners, our learning involved partial 
destruction of the old in our intentionally interven-
ing and conducting an action cycle to restore say her 
students’ faulty use of the = sign. The realisation of 
such conscious reflection was also possible in the 
problem posing practice, as well as Lotta’s plenary 
conduct of exploratory talk with respect to everyday 
measures. Second and instead of conceiving transfor-
mation and change in individualistic terms, in our 
interventions we conceived students’ development 
in collective terms involving all students in Lotta’s 
classroom. Finally and instead of vertical movement 
along hierarchical levels, it was possible to conceive 
students’ learning and development as a horizontal 
movement across subject specific borders. In addi-
tion, Lotta and me participated in each otherσs pro-
fessional practice as stakeholders. Our object was not 
to become the other but realise new activities at the 
margins of our existing practices. Our realisation of 
co-authorship and theorising with Lotta is illustrative 
of such horizontal, as against hierarchical aspects. 
Detailed in Gade (2015) and geared towards Lotta’s 
project goals, our collaboration evolved into newer 
forms of activity which grounded in her classroom 
realities were also not envisaged beforehand. As ar-
ticulated by Engeström (2001),

The object of expansive learning activity is the 
entire activity system in which the learners are 
engaged. Expansive learning activity produces 
culturally new patterns of activity. Expansive 
learning at work produces new forms of work 
activity. (p. 139) 

I now turn to outline the instructional interventions 
which together constituted our Formative interven-
tion, outlining the development of teacher-researcher 

collaboration as Expansive learning activity in the 
section that follows. 

FORMATIVE INTERVENTION 

Before detailing Lotta’s instructional interventions 
at her Grade four classroom, I mention our collabora-
tion to benefit from my conduct of a pilot study with 
her prior batch of Grade six students (Gade, 2010). It 
was during summer vacation in between that Lotta 
took the initiative of applying for funding of a project 
she conceptualised in terms of communication and 
mathematics. Yet since such a topic is broad in spirit 
and scope, it was only in some topics of the curricu-
lum that we designed and conducted instructional 
interventions. In line with Engeström (2011) the very 
starting point of the overarching Formative inter-
vention I discuss in this paper, was not determined 
ahead of time but found embedded in Lotta’s everyday 
instruction. This happened when Lotta came upon 
her students’ faulty use of the mathematical = sign. In 
Lotta reporting this to me, we designed and conducted 
an action research cycle based on CHAT perspectives 
of self-directed activity (Bodrova & Leong, 2007) and 
explicit mediation (Wertsch, 2007). While we detail 
the background, rationale and conduct of action re-
search in our reports (Gade, 2012; Blomqvist & Gade, 
2013) it is reasonable to assume the incidence of faulty 
use to transpire in other mathematics classrooms as 
well. Yet Lotta’s actions of highlighting the problem to 
me, in our collaboration, held with it an expectation 
that we address the problem by means of research. It 
was then that I drew upon CHAT constructs to con-
ceive a relevant and implementable semiotic prac-
tice. Continued participation by Lotta’s students’ in 
four stages of this practice led not only to restoring 
students’ appropriate use, but also to Lotta achiev-
ing satisfaction of such use as teacher. We realised 
two significant aspects in these actions. In the first 
we implemented a practice that was active at three 
levels – Lotta’s students, Lotta as teacher and the en-
vironment between them. In the second, we enabled 
Lotta to utilise her teaching in a dialectic manner, 
wherein she not only shaped her students’ learning 
and development but was herself shaped by the in-
structional intervention she led (van Huizen et al., 
2005). In line with Engeström (2011) Lotta’s agency was 
realised in her conduct of the action cycle, with that 
of her students as they worked in dyads and offered 
mathematical statements of equality. In this inter-
vention we handed out numbers and signs on slips 
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of paper (lappar in Swedish) asking students to pick 
these at random and offer mathematically accurate 
statements. Two excerpts from such work detailed 
in Gade (2012) are given in Table 1.

We used lappars to hand out textbook vocabulary 
in the problem posing intervention as well (Gade & 
Blomqvist, 2015). As example while conducting this 
intervention Lotta herself partnered with a student 
Noel whose problem was as follows, 

1000 people voted for president Noel but 600 vot-
ed for President Blomqvist. How many more vot-
ed for President Noel than President Blomqvist.

In the same session Ulla and Sara, two students who 
sat in desks behind Noel, posed the following problem 
almost in retort.

There is a presidential election in the United 
States for the President. Noel was dismissed. 
President Ulla received 320 votes, President Sara 
165 votes. How many people voted?

We next utilised lappars in Lotta's plenary, handing 
out improbable questions on everyday measures to 
provoke talk, for example: Can Eva and Anton meas-
ure the length of Sweden on foot?; Can Lars and Iris 
measure their age in decimetres? (Gade, 2014). An 
excerpt from Lotta's plenary conduct of the first ques-
tion is given below:

Lotta: Once more                  

Eva:  Can Eva and Anton measure Sweden's 
length with/on foot   

Many:  Nooo ... @@ 
Lotta:   No, no, not now, Eva and Anton will at-

tempt this question ... only them first                                                     
[??]: It works (Det går in Swedish)                                                                                                                 

...  ...   
Liam:  You have to go straight ahead 
Ulla:  What if you go into a building 

[??]:   Then you go over the house 
Lea:  Noel! Do you have anything good to say 
Noel:  And you can go through the house ... and 

you can go inside the house and jump off 
the balcony ... 

Leon:  And what if it is a high building 
Nils: If you have a map, you can take that, you 

can look how much a foot is and use the 
scale of the map ... 

In realising students' agency in the three interven-
tions we conducted, my own role as researcher saw 
me drawing upon relevant CHAT constructs, sharing 
these with Lotta and supporting her instructional 
practice. Where for the = sign intervention we drew 
on action research literature (Ladkin, 2004), in the 
problem posing intervention we drew upon van Oers' 
(2009) guidelines for Developmental education and 
for plenary conduct of Exploratory talk we drew on 
pioneering work of Barnes (2008). It was also the case 
that in each of the three interventions we conceived 
Lotta's teaching as a dialectical practice, in which Lotta 
shaped students' learning and development as well as 
reflect (Krainer, 2011) and be shaped by pedagogical 
actions she herself took (van Huizen et al., 2005). In 
was in this manner that Lotta was able to factor her 
practical knowledge (Elliott, 1991) besides develop 
rich nuanced understanding of pedagogical actions 
within her teaching (Ellis, 2007). Lotta went on to ac-
knowledge our extended collaboration to be equiva-
lent to her doing a professional development course 
in her classroom, which was rich preparation for her 
to foster a community of classroom learners in the 
future as well (Shulman & Shulman, 2004).  

I finally discuss the four CHAT assumptions which 
Engeström and colleagues (2014) outline as underpin-
ning any Formative intervention. First is the notion of 
double stimulation, in terms of which human beings 
resolve problem situations they find themselves in 
through a second stimulus, so as to gain volition. I 
argue that in each of the three interventions Lotta con-

Table 1: Example of students' statements of equality in lappar based activity
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ducted, her students gained both agency and volition. 
I also argue such agency to be aided by their participa-
tion in instructional practices we had set up, in which 
the second stimulus was provided by the many lappar 
we utilised in a pedagogical sense and the CHAT con-
structs we utilised in a theoretical sense. The use of 
these together served the purpose of double stimula-
tion. The understanding that Lotta and myself reached, 
was a result of observing and reflecting on each stage 
of the cyclical manner in which we deployed either 
intervention. Such an approach enabled us to view 
each of the three interventions from as many angles as 
possible and understand how various aspects were in-
terrelated (Luria, 1979) besides how each intervention 
appeared as a pedagogical whole in concrete practice 
(Blunden, 2010). Finally and importantly it was in our 
conduct of interventions as classroom practice, that 
Lotta’s students were able to jointly participate as well 
as contribute to collective transformational agency 
(Engeström et al. 2014). As example Lotta went far 
beyond treating the faulty use of the = sign by one 
of her students as a stand alone case and welcomed 
successive whole class interventions. Having shed 
light on the manner in which Lotta’s instructional 
interventions exemplified the construct of Formative 
intervention (Engeström, 2011), I now turn to examine 
the manner in which teacher-researcher collabora-
tion evolved correspondingly over time.

EXPANSIVE LEARNING ACTIVITY 

As mentioned earlier on, my pilot study with Lotta’s 
Grade six students prepared ground for teacher-re-
searcher collaboration (Gade, 2010). It was during this 
study that either of us had opportunity to gauge each 
other as working professionals and take the many 
small steps which went on to eventually realise what 
Engeström (2001) terms as Expansive learning activi-
ty. In line with CHAT perspectives such a process was 
dialectical in spirit in that we both related and under-
stood each other's actions. I was able to observe Lotta’s 
teaching as participant observer and Lotta too was 
able to gauge how I interacted with her students, shar-
ing a trick on one occasion and stoking their interest 
in mathematics on another. This led to her suggesting 
that I work with a few students who either needed spe-
cial attention she did not have time for, or to those who 
were able to comply with her instructions before all 
others. From gauging each other and in terms of these 
actions, Lotta accepted me as a professional whom 
she could trust her students with. I argue that it was 

this trust that she took for granted when applying for 
project funding, whose aims were realised over time 
in the interventions which constituted our Formative 
intervention. In these it was possible to do away with 
older relations that students had with mathematical 
signs, textbook vocabulary or even talk and build 
relationships which we considered productive and 
mathematically rich. Our reporting of these aspects 
allowed for co-authorship and theorising by Lotta as 
K-12 teacher (Cochran-Smith & Donnell, 2006). Not 
only did we come up with and carry out new forms of 
shared activity (Gade, 2015) we also changed the very 
object of our collaboration from our jointly facing 
contradictions to conceiving alternatives and con-
ducting interventions. As argued by Edwards (2010) 
and in the cumulative history of collaborative efforts, 
we brought our expertise as teacher and research-
er to bear in our joint actions. In place of individual 
autonomy we lay emphasis on thoughtful practice 
and inclusive reflexivity. Our professional expertise 
was thus a negotiated one, which was not only born 
of practitioner struggle but also altered many times 
over. In line with Engeström and colleagues (2014) 
our agency was a transformative and collective one 
which realised systemic change. Such manner of 
change is captured once again by Engeström (2010, 
p 88) in ‘Expansive learning is a process of material 
transformation of vital relations.’ 

CONCLUSION

I conclude by highlighting an outcome of significance 
about my collaboration with Lotta, which is that in our 
combined efforts we did not fail. Our actions, judge-
ments, trust as well as relationships nurtured with 
one another, students and mathematics all contribut-
ed to the manner of outcomes I report in this paper. In 
line with a CHAT driven agenda, we worked towards 
as well as achieved transformation and change. Three 
observations follow. First and as recognised by Elliott 
(1991) there is reason to view the theory-practice re-
lation as a practical issue for teachers. We saw the 
kind of efforts that Lotta and me took upon ourselves 
to bring CHAT based theoretical constructs to bear 
within everyday classroom instruction. Second and in 
line with Engeström (2001) such efforts necessitated 
expansive forms of learning, which were neither reac-
tive nor predetermined but realised in our reflective 
actions which were grounded in Lotta’s classroom. 
Such actions have potential besides of seeding as yet 
unforeseeable expansive learning in our trajectory 
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ahead. Finally, such meta-level analysis sheds light on 
two historical trajectories, that of successive inter-
ventions conducted and teacher-researcher collabo-
ration realised in parallel. Such insight in turn reveals 
how mid-level taken for granted phenomena in school, 
lying between rules and budgets on one hand and cur-
ricula and textbooks on the other can be worked with 
and around. Such actions and knowledge have poten-
tial besides to contribute to the motivational sphere 
of students and teachers within teaching-learning in 
everyday mathematics classrooms (Engeström, 2008).
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In the last decade, research on instructional practic-
es has been carried out in mathematics classrooms in 
Iceland, mostly in the lower secondary school. In this 
study, the structure of 51 mathematics lessons in all com-
pulsory school grades were analysed. The data came 
from a study called Teaching and Learning in Icelandic 
Schools, where 518 lessons from all school subjects were 
observed. To shed light on the structure of the mathe-
matics lessons, diagrams were made which included 
the categories: non-mathematical work, teachers’ public 
interaction with the whole class, individual seat work, 
assessment, group work, and playing of games. The anal-
ysis revealed that in most of the mathematics lessons the 
students were working individually in textbooks. There 
was little public interaction between the teacher and the 
class but the teacher went around the class and inter-
acted with the students. There were a few examples of 
varied instructional practices that emphasized group 
work and discussions.  

Keywords: Instructional practices, mathematics lessons, 

lesson diagrams, compulsory school.    

INTRODUCTION

Findings in research on instructional practices in 
Icelandic mathematics classrooms have indicated that 
there is little variation in teaching approaches. In re-
search by Savola (2010), where he compared lessons in 
Icelandic and Finnish schools, it was noticeable that in 
Icelandic classrooms the teacher often had no public 
interaction with the whole class and students were 
often working on their own pace in textbooks, while 
the teacher walked between the desks and interacted 
with students. 

Karlsson (2009) also observed lessons in Iceland and 
Finland. According to Karlsson’s results, Icelandic 
teachers were more likely to stay on the sideline and 

were not as central in the classroom as the Finnish 
teachers who also used more versatile teaching 
methods than the Icelandic ones. A recent study on 
the teaching of mathematics at lower secondary lev-
el in eight schools all around Iceland showed that in 
56% of lessons students were working individually 
on workbooks. In 35% cases, there were some inter-
actions between teachers and students around the 
topic followed by individual work on problems. In 
6% of lessons, students were working in groups on 
tasks and in 3% they were playing some kind of games. 
During individual work, students often helped each 
other and the teacher encouraged them to do so both 
in public and also when walking between the desks 
(Þórðardóttir & Hermannsson, 2012). The study by 
Karlsson (2009) was the only one that contained some 
data from mathematics teaching at lower levels. 

In Iceland, limited research has been done on mathe-
matics teaching and learning and it has mostly been 
done by researchers who are stakeholders in many re-
spects (teacher educators, authors of curriculum etc.). 
We therefore find it important to use available data, 
gathered by others, to add to our knowledge. In this 
paper, we use data from a recent study called Teaching 
and Learning in Icelandic Schools (Óskarsdóttir et al., 
2014). In the study, 51 lessons in mathematics at all 
grade levels from 1–10 were observed. We gained 
access to the observation protocols and wanted to 
explore what they could tell us about what goes on 
in mathematics classrooms in Iceland, or more pre-
cisely: How are mathematics lessons structured? Of 
the observations, 32 were from grade levels 1–7, which 
have not been studied much previously. We therefore 
also wanted to find out if instructional practices at 
different grade levels were similar or if we could spot 
any differences. 

We think that comparing teaching within a culture 
allows educators to examine their own teaching prac-
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tices from different perspectives by widening known 
possibilities, in a similar way as comparing teaching 
between cultures does (Hiebert et al., 2003). It can 
reveal alternatives and stimulate choices being made 
within a country. It is also important to know what 
actual teaching looks like on average so that national 
discussions can focus on what most students expe-
rience. Using data from a general study on instruc-
tional practices also allows us to examine whether 
the practices in mathematics are any different from 
practices in general.  

THEORETICAL BACKGROUND

Research on general instructional 
practices in Iceland
Various studies on general instructional practices in 
Icelandic compulsory schools have been carried out in 
recent years. According to Sigurgeirsson, Björnsdóttir, 
Óskarsdóttir and Jónsdóttir (2014), these studies all 
indicate that direct and teacher-centred methods are 
most widely used and to a much less extent methods 
where students take a more active role. Curriculum 
materials guide the teaching in academic subjects to 
a very large extent and the most common structure of 
lessons is a short introduction by the teacher followed 
by individual seatwork. There are though indications 
that instructional practices in lower grades are more 
varied than on lower secondary level. 

According to a 2013 TALIS (Teaching and Learning 
International Survey) study (Ólafsson, 2014), 
Icelandic teachers on average seldom review con-
tent recently taught, they also more rarely review 
homework or try to relate new knowledge to daily life, 
than teachers in the other TALIS countries. There is 
a considerable difference here. For instance, 38% of 
Icelandic teachers state that they often or almost in 
every lesson review content recently taught, where 
the TALIS average is 78%. 

The study Teaching and Learning in Icelandic schools 
(age levels 6–15) was conducted in 2009–2010 
(Óskarsdóttir et al., 2014). The study was done in 
cooperation with many stakeholders from universi-
ties, school authorities, schools, teachers and parent 
organisations, and partners from an architectural 
firm and an information technology firm. The study 
focused on many aspects of teaching and learning, like 
the learning environment, student learning, teaching 
strategies and internal structures. A special focus was 

put on the development towards individualised and 
cooperative learning advocated by school authorities 
both on the local and national level. The framework 
for the research project was a model of school prac-
tices developed as an evaluation tool by educational 
practitioners in Reykjavík School District. Data were 
gathered by using multiple methods like observations, 
interviews, focus groups, questionnaires and action 
research in 20 schools out of 175 schools in the country. 
Three of the schools were chosen because they had 
been designed with the aim of changing the instruc-
tional practices from traditional to more open and 
individualized learning. Other schools were random-
ly chosen. In total, 518 lessons in all school subjects 
were observed, and 240 interviews were conducted 
with students, teachers, principals and other staff in 
schools (Óskarsdóttir et al., 2014). 

The results showed that teaching strategies that can 
be labelled as “direct” are most commonly used and 
strategies like discussions, group work and project 
work which are recommended in national curric-
ulum guidelines are rarely used (Sigurgeirsson, 
Björnsdóttir, Óskarsdóttir, & Jónsdóttir, 2014). It is 
also noticeable that there is a considerable difference 
between teaching strategies depending on school lev-
el. The teaching of the youngest students seemed to 
be more varied than the teaching of upper grades. 
Schools in the study were grouped into three catego-
ries, based on whether teachers mostly worked alone 
with their class, or classes if they were subject teach-
ers (6 schools), were team teaching and responsible 
for a whole year group together or mixed age groups 
(9 schools), or a mixture of both (5 schools). The teach-
ing strategies used in schools where team teaching 
was the norm, were more versatile. The results also 
indicated that the development towards more indi-
vidualised learning in light of the frameworks used 
is not very advanced. 

International research on instructional 
practices in mathematics
In recent years, several studies have been conducted 
in different parts of the world with the aim of iden-
tifying common features of mathematics teaching 
in countries scoring relatively high in studies like 
TIMSS or PISA or by teachers who are considered out-
standing math teachers in their respective countries 
(Clarke, Mesiti, Jablonka, & Yoshinori, 2006; Hiebert et 
al., 2003). Even though it is impossible to generalize or 
identify a common lesson script on the basis of these 
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studies, some important characteristics of effective 
mathematics teaching have been located. 

The TIMSS 1999 video study brought to light that no 
single method of teaching 8th grade mathematics, was 
observed, in all the relatively high achieving coun-
tries taking part in the study (Hiebert et al., 2003). 
However, all eight-grade classrooms in all seven 
countries shared some general features. Mathematics 
was often taught through solving problems and 90% of 
lessons made use of a textbook or worksheet of some 
kind. Lessons were organized to include some pub-
lic whole class work and some private individual or 
small group work. It was most common for students 
to work individually rather than in pairs or groups. 
The lessons included some review of previous con-
tent as well as some attention to new content and the 
teachers usually talked much more than the students. 
It was also observed that a variety of methods were 
employed rather than a single shared approach of 
teaching mathematics. Each country combined and 
emphasized instructional features in various ways, 
sometimes different from all other countries and 
sometimes partially the same. 

Boaler’s (2006) long-term study of mathematics teach-
ing in three different schools in the US, showed that 
students from a school called Railside both enjoyed 
mathematics more and reached higher levels of math-
ematics than the students in the other two schools. 
According to Boaler, their success was a result of the 
unusual approach to mathematics at the school. The 
classes were heterogeneous, the students worked 
in groups on group-worthy problems that could be 
solved and represented in different ways. Moreover, 
the students spent a lot of time discussing mathemat-
ical ideas, learnt to help each other and were made 
responsible for teaching their peers. The lessons were 
90 minutes long and the teachers worked closely to-
gether while preparing their teaching and shared the 
same ideas about teaching and learning.  

Hiebert and Grouws (2007) identify, by reviewing re-
search on the impact of classroom teaching on student 
learning, two main features of classroom mathematics 
teaching that facilitate students’ conceptual develop-
ment. These features are, firstly, an explicit attention 
to mathematical concepts and connections between 
ideas, facts and procedures, and secondly, that the 
students were given opportunities to engage in and 
struggle with important mathematics. According to 

Hiebert and Grouws (2007), these features seem to 
be general and operate across various contexts and 
teaching systems.  

In their review of research on classroom practice in 
mathematics, Franke, Kazemi and Battey (2007) fo-
cus both on the teachers’ role in mathematical work 
and students’ experiences in the social context of the 
classroom. They point out that the nature of mathe-
matical discourse in classrooms is central if teachers 
are to gain opportunities to learn from their prac-
tice. Students’ individual work cannot alone provide 
such opportunities. In creating opportunities for 
discourse, teachers also need to attend to the social 
and socio-mathematical norms in the classrooms and 
develop relationships with their students where they 
take into account the students’ cultural backgrounds. 
The IRE discourse pattern (teacher initiated question, 
student response, and teacher evaluation) is still prev-
alent in many mathematics classrooms, and this needs 
to change. The IRE discourse pattern falls within 
the exercise paradigm (Skovsmose, 2001) where the 
teacher presents some mathematical ideas and the 
students work with selected tasks from textbooks. The 
teacher presentation can vary in length. It can take 
up to a whole lesson and the students could also be 
working with exercises for the duration of the lesson. 
Justifications of the relevance of the exercises are not 
a part of the lesson and there is usually only one an-
swer to the task. 

Even though it is clear that classroom practice 
is complex and many cultural differences can be 
found when studying mathematics teaching across 
cultures (Givvin, Jacobs, Hollingsworth, & Hiebert, 
2009; Franke, Kazemi, & Battey, 2007; Hiebert et al., 
2003), there seems to be consensus regarding the idea 
that both teachers and students need to play an active 
role in the mathematics classroom. It is important 
that students both actively engage in mathematical 
discussions, making sense of mathematical concepts, 
and that teachers are able to learn from their students 
and develop their practice. Students also need to be 
engaged in solving challenging problems and given 
opportunities to share and present their ideas (Givvin, 
Jacobs, Hollingsworth, & Hiebert, 2009). 

DATA AND DATA ANALYSIS
Our data consist of observation protocols from math-
ematics lessons made by researchers in the research 
project Teaching and Learning in Icelandic Schools 
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described above (Óskarsdóttir et al., 2014). The re-
searchers came from various disciplines within the 
University of Iceland and the University of Akureyri, 
mostly from general pedagogy. None of the research-
ers had specialized knowledge about mathematics 
teaching and learning. The observers made detailed 
notes in an observation protocol during the lessons. 
The focus of the observations was more on the pro-
gress of the lesson and the students’ activity during 
the lesson than on the content and how that was dealt 
with. In some of the observation protocols, it was clear 
what the focus of the lesson was but in others there 
was no mention of the content of the lesson. This has 
its limitation but nevertheless we feel the observation 
protocols give us an idea of what is happening in the 
classroom and how the teaching is organized. We, the 
authors of this paper, have been actively engaged in 
teaching math teachers and making curriculum ma-
terials for a long time and are therefore well known 
to most math teachers in Iceland. We felt that by us-
ing this data we could gain some information about 
mathematics teaching in Iceland without collecting 
the data ourselves and thereby probably influencing 
the results. 

As mentioned previously, Savola (2010) studied math-
ematics lessons in Iceland and Finland. He videotaped 
20 lessons (two from each teacher) in each country. He 
made lesson diagrams for each lesson based on the 
coding of his data. His main coding categories were re-
view, introducing new content, practice/applying, and 
other. The category ‘other’ included classroom man-
agement, mathematics management, homework, in-
terruption, social talk and independent learning (IL). 
Three different types of IL were noted, between-desk 
instruction, where the teacher walks around the class-
room and helps, and teacher or student presenting 
at the front, addressing only few students while the 
others are working individually. 

Johansson (2006) studied videotaped lessons from 
three Swedish teachers, considered competent mathe-
matics teachers in their community, at lower second-
ary level (4–5 consecutive lessons from each teacher). 
She tried to identify a common lesson script and in 
coding her data she used four main coverage codes: 
classroom interaction, content activity, organization 
of students and textbook influence. She also directed 
her attention to the teachers’ activity and how often 
specific events like problem solving, assignment of 

homework, assessment, goal statements, summary 
of lessons etc. occurred within a lesson. 

In our analysis, we started by reading carefully all 
the observation protocols. We then formed some cat-
egories on basis of the data with categories used by 
Savola (2010) and Johansson (2006) in mind. Our data 
is much more limited because it is only based on writ-
ten notes by the observers and not video recordings 
and therefore does not allow a fine-grained analysis. 
Classrooms practices are complex and by analysing 
lesson structure we try to capture some important el-
ements of both the form and the function of the lesson. 
However, it has its limitations and researchers should 
be careful not to draw too many conclusions on the 
basis of this kind of data, but it can shed some light 
on important aspects of classroom practices (Savola, 
2010; Clarke et al., 2006).  

Our main categories were: non-mathematical work 
(a), teacher’s public interaction with the whole class 
including presentation of new material and checking 
and assignment of homework (b), individual seatwork 
(c), assessment (d), group work (e), playing of games (f ). 
We made a diagram of each lesson using these codes 
and also described in few words what was happening 
in each part of the lesson, for instance, whether the 
students used textbooks or not. This made it possible 
to spot differences and similarities across the sample.    

FINDINGS

We summarize our findings according to grade levels.

Grade levels 1–4
For grade levels 1–4, we have 19 observations. Most of 
the lessons (13) were 40 minutes but six had duration 
of 60–80 minutes. In almost all the lessons it took at 
least five minutes before the actual lesson could begin 
and in ten of them the mathematical work was finished 
five minutes before the actual lesson ended. In ten 
of the lessons there was some public interaction be-
tween the teacher and the students lasting 5–15 min-
utes. In most cases the teachers explained algorithms 
and procedures or discussed and showed students 
how to work with pages from the textbook using an 
overhead projector. When explaining algorithms and 
procedures, the teachers were not using textbooks 
but supplemented the textbooks with material from 
other resources. The biggest parts of the lessons stu-
dents were working individually in textbooks or on 
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worksheets provided by the teacher. Activities like 
working with attribute blocks, playing dice games, 
working with Tangram and unit cubes were inspired 
by textbooks. During individual seatwork, the teacher 
circulated and assisted students and in nine lessons 
an unqualified assistant or another teacher/specialist 
was present either working with specific students or 
assisting in general. When working individually in 
textbooks students sometimes worked with the same 
chapter or worksheets but in at least six lessons they 
worked at their own speed but with the same textbook 
or workbook. In three lessons the students worked 
in groups. Two of these lessons were organized as 
workstations where the groups worked on different 
activities. In one class, all the workstations focused 
on practicing multiplication but in the other, a first 
grade class, the activities were unrelated but varied. 
In the third lesson with group work, all students were 
working with attribute blocks, first making a picture 
together in a group and then they got some time for 
free play with the blocks.  

Grade level 5–7
From grades 5–7 we have 13 observations. Most of the 
lessons were 40 minutes but three were 80 minutes 
long. In ten of the lessons it took about five minutes 
before the mathematical work started. Here, in six 
lessons, there was some public interaction between 
students and teachers and it centred on guiding the 
students through the textbook and reviewing home-
work. In one lesson the teacher was discussing prop-
erties of geometric forms with the students and then 
they were to make their own forms but it was not clear 
whether this was inspired by the textbook or not. In 
seven lessons the students were working individually 
on their textbooks almost the entire time of the lesson 
while the teacher was circulating and assisting them. 
In one lesson the students were working on a test for 
30 minutes and then they handed in the test and were 
given an opportunity to work on it again the next day 
with the aim of looking things up at home and then im-
proving their solutions. In one 80 minutes lesson, the 
students, after completing a self-assessment, worked 
in groups planning a table tennis tournament and 
after that they played the tournament and then came 
back to class and discussed and shared their solutions 
of the task.  

Grades 8–10
From grades 8–10 (lower secondary level), we have 
19 observations and eight of the lessons were 60–80 

minutes long. Here it took less time for teachers and 
students to get to work with the mathematics. In most 
lessons they had started within 2–3 minutes. Eight 
of the lessons started with some public interaction 
between teacher and students, either by reviewing 
homework or presenting new material or problems. 
Even though in most lessons these interactions only 
took around ten minutes, there were examples of them 
taking from 20 and up to 60 minutes, and usually the 
teachers tried to engage the students by asking ques-
tions and encouraging discussions. In three classes 
the students were divided into two groups where a 
part of them worked individually while others were 
taught by the teacher or took a test. In five lessons the 
students worked individually on textbooks during the 
whole lesson, and in six more lessons, the students 
worked individually after a short introduction by the 
teacher. In many of the lessons, the students seemed to 
be working on the same topic even though there were 
examples of individual students working on material 
from higher grade levels, even upper secondary level, 
or students working with different material from the 
rest of the class because of learning difficulties. In 
three of the classes the students worked independent-
ly according to a plan made for the chapter or a month 
with a daily quota. In one lesson, students worked 
on an assessment. In one school two lessons were ob-
served where students worked in mixed age groups 
on problem solving. Here the lesson started with some 
introduction of important concepts in relation to the 
problem at hand and then the students were divided 
into groups.  

DISCUSSION

The findings from this study support previous find-
ings on instructional practices in Iceland and add 
some new knowledge about mathematics teaching 
in compulsory schools as a whole. In many lessons 
there was a strong focus on individual seatwork 
where students worked mostly on textbooks. The 
teachers seemed to rely on textbooks and their con-
tents for the whole class, aimed at helping or guiding 
students through the problems or exercises in the 
textbooks. Students were active in their work and 
the teachers moved around the classroom and helped 
them. There were examples of teachers creating op-
portunities for whole class discussions about topics 
or ways of working sometimes in the beginning and 
sometimes in the middle of lessons in connection 
with the individual seatwork. However, there were 
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also many lessons with no public interactions and 
therefore the teachers were not creating enough op-
portunities for students to elaborate on and discuss 
with others mathematical concepts and connections. 
More whole group discussions should also help the 
teachers to develop and learn from their practice 
(Franke, Kazemi, & Battey, 2007). The socio-mathe-
matical norms in the classrooms seemed to be that 
you learn through working on problems/exercises in 
textbooks, and the communication between teachers 
and students was centred on supporting the students 
in completing the work. This is what is often termed 
as traditional mathematics teaching or the exercise 
paradigm (Skovsmose, 2001). We do not know much 
about the nature of the tasks that the students were 
working on but from the observations it seemed like 
the teacher put an emphasis on guiding the students 
through their work with the problems. In several cas-
es, the teachers in the lowest grades worked through 
the pages in the textbook by using overheads.  With 
the older students, the teacher often discussed spe-
cific problems in textbooks. In six lessons, students 
worked in groups and there the teaching was more 
in line with what many researchers (Franke, Kazemi, 
& Battey, 2007; Hiebert & Grouws, 2007; Boaler, 2006) 
claim to be important features of effective mathemat-
ics teaching.  

Our findings reveal that instructional practices in 
mathematics are similar to the general results on 
teaching practices in the study Teaching and Learning 
in Icelandic Schools (Sigurgeirsson, Björnsdóttir, 
Óskarsdóttir, & Jónsdóttir, 2014).

The lesson diagrams gave a good overview of the les-
sons and their structure and drew attention to simi-
larities and differences both within grade levels and 
between grade levels. In the lower grades, the teachers 
used more time on non-mathematical work, which is 
not surprising. It could also be seen that teachers use 
considerable more time working with the whole class 
as the children get older. 

The data consisted of observations from only one les-
son in each class. Previous research has shown that 
lesson patterns can vary considerably from lesson to 
lesson with the same teacher (Clarke, Mesiti, Jablonka, 
& Yoshinori, 2006; Hiebert et al., 2003). In the data 
there was little information about the mathematical 
content of the lessons and what the teachers chose to 
emphasize in their interactions with the students. As 

mentioned earlier, most of the observers came from 
general pedagogy and they did not note what the focus 
of the lesson was. They sometimes referred to pages or 
specific problems and from that we could see whether 
the class was working on the same problems at the 
same time or not, but it provided limited information 
about the goals with the lessons.    

From this study it is evident that Icelandic teachers 
use a considerable time walking between the desks 
interacting with students. Research has shown that 
there can be great variations in regard to what the 
teacher is actually doing when he is circulating in 
the class and that affects the quality of the teaching 
(O´Keefe, Xu, & Clarke, 2006). Therefore, it would be 
interesting and valuable to find out what characteriz-
es the teachers interactions with students in Icelandic 
mathematics classrooms. 
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We address the documentational work of two trainee 
teacher educators in the context of their practicum in 
an in-service program concerning the use of digital tools 
in mathematics. Since they drew upon the same existing 
resources, we investigated the operational invariants – 
i.e., implicit aspects of their knowledge and epistemology 
underlying their designs – that influenced and differ-
entiated their documentational work. The identified 
operational invariants were (a) their focal points during 
the observation of other teacher educators’ classrooms, 
(b) the constrains and opportunities provided by the 
educational context, (c) their epistemologies regarding 
the role of technology in the teaching of mathematics as 
well as their conceptions of trainee teachers either ‘as 
students’ or ‘of students’.

Keywords: Documentational approach, teacher educators, 

digital tools.

INTRODUCTION 

In this paper, we study the didactical design and corre-
sponding material developed by trainee teacher edu-
cators in teaching mathematics with the use of digital 
tools. The trainees drew upon existing resources as 
they started to teach in teacher education classrooms 
during their practicum and created their own docu-
ments. Our focus is on the factors that influence the 
development of the trainees’ documents based on the 
same existing resources and the classroom implemen-
tation of their design. 

The study took place in the context of an in-service 
program adopting reform-oriented perspectives to 
train teacher educators into the use of digital tools in 
the classroom of mathematics. The aim of the program 

was to provide the participants with methods, knowl-
edge and experience in in-service teacher education 
and to educate them in the pedagogical uses of digital 
technologies for the teaching and learning of math-
ematics. One of the reform aspects of the approach 
for teacher education (see Kynigos & Kalogeria, 2012) 
concerned teacher educators’ and teachers’ active 
engagement in creating their own didactical design 
and material as coherent part of their professional 
development. Taking into account that teacher ed-
ucators have very few resources to draw on directly 
(Zaslavsky, 2008), it was critical for the trainees to get 
used to developing their own material. In this course, 
the trainees were engaged in designing and generat-
ing resources in the form of microworlds and scenar-
ios (i.e., structured activity plans addressing critical 
aspects of a pedagogically sound use of technology for 
the teaching and learning of mathematics). A struc-
ture [1] for addressing these aspects was developed 
by Educational Technology Lab (http://etl.ppp.uoa.gr), 
which participated in the design of the course and the 
corresponding material. The training program took 
place in specialised University Centres (UC) for 350 
hours. The participants were experienced qualified 
mathematics teachers but the majority of them had 
no previous experience in the pedagogical use of dig-
ital tools. The plan was to employ the newly trained 
teacher educators in wide-scale 96h courses to groups 
of teachers in specific Centres for Teacher Education 
Support (CTES). The trainees in UC were given mate-
rial by the trainers after each lesson and an official 
document containing theory and a set of twelve ge-
neric scenarios as a basis for organizing their sub-
sequent teaching in CTES. During the course, the 
trainee educators gained significant experience with 
the pedagogical use of five categories of digital me-
dia: Computer Algebra Systems, Dynamic Geometry 

mailto:ekaloger@ppp.uoa.gr
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Systems, Programmable software, Simulations and 
Data Handling tools. By the end of the course the train-
ees had to have developed one scenario for each of 
these categories as well as scenarios for the practicum. 
Practicum was part of UC official structure provided 
shortly before the end of the course, so as to engage 
trainees in field activities and give them the experi-
ence of implementing their design in real classroom 
conditions and reflecting on it. Practicum took place 
in 30 hours and it was divided in two parts: teaching 
in school and observation – teaching in CTES. Here 
in focus is the second part consisted of (a) observa-
tion of other teacher educators’ teaching in CTES, (b) 
design of a 3-hour lesson for teachers in CTES under 
the supervision of a mentor, (c) implementation in 
the classroom, (d) presentation of design and imple-
mentation in whole class special reflective sessions, 
(e) activity report by the trainees.   

THEORETICAL FRAMEWORK 

Over the last years a number of researchers have in-
dicated that the study of resources in practice and 
context constitutes an important theme in mathe-
matics teacher education and deserves a focus of at-
tention (Adler, 2000). We adopt the documentational 
approach of didactics according to which the teacher’s 
work is developed with and on resources in a dialec-
tic process where design and enactment are inter-
twined (Gueudet & Trouche, 2009). An implication 
of this approach is that curriculum material is not 
conceived as a static body of resources that guides 
instruction but rather as a set of objects amenable to 
changes depending on the teacher’s didactical design. 
Gueudet and Trouche (2009) use the term resources 
to describe a variety of artifacts such as a textbook, a 
piece of software, a student’s sheet, discussions with 
colleagues etc. Through a class of professional situa-

tions and teachers’ experience, the existing resources 
are transformed into documents according to the for-
mula: Document = Resources + Schemes of Utilization.

A scheme of utilisation of a set of resources incor-
porates “practice (how to use selected resources for 
teaching a given subject) and knowledge (on mathe-
matics, on mathematics teaching, on students, on tech-
nology)” (Gueudet & Trouche, 2011, p. 401). Practice 
entails observable parts of teachers’ stable behaviour 
for a given class of situations (called usages). On the 
other hand, knowledge embodied in resources is 
implicit and can be inferred from the usages. This 
knowledge is intertwined with teachers’ beliefs and it 
is difficult to distinguish one independently of the oth-
er (Thompson, 1992). The constituent elements of this 
kind of knowledge are the operational invariants built 
through different contexts of using the resources. 

Creation of documents is considered as unfolding 
through a dual process of instrumentation (the re-
sources act on the teachers and influence their activ-
ity) and instrumentalization (teachers act upon these 
resources as they appropriate and reshape them) 
(Gueudet & Trouche, 2009). This process is named 
documentational genesis (ibid, see Figure 1) and gives 
birth to a new entity: a document, which can be fur-
ther transformed to a new document over time. 

The importance of interrelating knowledge and epis-
temology, the difficulty to distinguish them, as well 
as their influence on the everyday teaching practice 
has been stressed by many researchers (Nespor, 1987; 
Thompson, 1992; Ernest, 1994). However, the relation 
between teachers’ epistemologies and practices is 
complicated and not linear as it is strongly affected 
by constraints and opportunities afforded by social 
context (Ernest, 1994). For example, a teacher’s con-

Figure 1: Documentational genesis
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ceptions regarding the teaching of mathematics may 
be rooted in the epistemological paradigm of abso-
lutism while her/his own practices might be closer 
to the paradigm of fallibilism and vice versa. Thus, 
interconnections between teacher’s practices and 
epistemologies formulate the following different 
roles in her/his own teaching (ibid): instructor (i.e., 
targeting skills’ mastery and correct performance), 
explainer (i.e., targeting conceptual understanding 
with unified knowledge) and facilitator (i.e., targeting 
problem posing and solving). At the same time each 
role signifies a different stance towards the curric-
ulum and the corresponding teaching material and 
leads to three patterns of curriculum use (ibid): the 
strict following of a text; the modification of the text-
book approach, enriched with additional problems 
and activities; and the construction of the mathemat-
ics curriculum by the teachers themselves. As we will 
analyze later in the paper, the trainee teacher edu-
cators of our study – despite the fact that they were 
given the same initial resources – adopted different 
roles and corresponding didactical designs when they 
started teacher education themselves in the context 
of their practicum. We consider that these differenc-
es were determined by a combination of operational 
invariants that was unique for each one of them. Thus, 
in order to explain the differences between trainees’ 
design and implementation, it was our choice to in-
vestigate the underlying operational invariants both 
in the design of documents and their usages in real 
educational contexts. Existing research on teachers’ 
documentational work highlights the need to iden-
tify categories of operational invariants permitting 
refinement of the analysis of schemes of utilisation 
(Gueudet & Trouche, 2009). 

In this study, our aim is to investigate how the for-
mula Document = Resources + Schemes of Utilization 
works when different teacher educators build the 
development of their documents upon the same ex-
isting resources. Thus, we investigate the underlying 
factors (i.e., operational invariants) that influence 
trainee teacher educators’ design. We looked for these 
operational invariants within the space where the 
processes of instrumentation and instrumentalisa-
tion take place. 

METHOD

The UC class of trainee teacher educators that we ana-
lyse here consisted of 16 qualified mathematics teach-

ers (five of them had a doctoral degree, one was a PhD 
student and the rest held a Master degree). The data 
we analysed consisted of: (1) verbatim transcription 
of the discussions that took place during the 30 hours 
of the practicum in the UC classrooms, (2) the material 
constituting the trainees’ designs for their lessons 
in CTES (scenarios, worksheets, ppts, etc.) and (3) 
their activity reports. The activity reports were tem-
plates in which trainees had to insert text describing 
aspects of their designs and their experience from its 
implementation. From the analysis of the 16 trainees’ 
documentational work, in this paper, we present two 
cases with the aim to highlight differences in trainees’ 
design of documents and implementation in teacher 
education classrooms. Particularly, we chose Ian and 
Jim as exemplary cases because their teaching in CTES 
was based on the same official scenario. This allowed 
us to view comparatively the documents they created 
and thus to address the underlying operational in-
variants. Our role as academic trainers and mentors 
in the practicum allowed us to capture the evolution 
of their documentational work in all phases of the 
practicum. In resonance with Gueudet and Trouche’s 
(2011) principles regarding methodological aspects of 
research on documentational genesis we chose to (a) 
analyze Ian’s and Jim’s work in time periods in and 
out-of-class (reflexive investigation principle), (b) ad-
dress their decisions taken in order to formulate their 
design through its use (design-in-use principle), and 
(c) consider their work embedded in and influenced by 
different collectives (e.g., teachers in CTES) (collective 
principle). We used data from different time periods: 
excerpts from their observations in CTES that took 
place before their design during the reflective ses-
sions, the official material and its transformations 
by Ian and Jim including the arguments with which 
they documented their options and presented in the 
reflective sessions and finally Ian’s and Jim’s activity 
reports. In the analysis we adopted a data grounded 
approach (Strauss & Corbin, 1998). Initially, each one 
of us (the two authors) worked separately for coding 
trainees’ work and identifying operational invariants. 
After reaching a common consensus, we jointly com-
pleted the analysis.  

ANALYSIS

Ian’s and Jim’s lessons in CTES concerned the teaching 
of linear functions (y = ax) with Function Probe (FP) 
[2]. Their teaching was based on one of the twelve of-
ficial scenarios provided for the course. The problem 
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included in this scenario was: “A salesclerk sales three 
products A, B, C of different prices. After every sale he 
records the quantity x (in kg) and the amount of money 
y received. When he had completed twenty sales he 
passed the values   in two columns in the Table window 
of FP so as to check: (a) how many sales were made   by 
each product and (b) if there had been mistaken sales. 
In how many ways can he conduct the check?”. The 
indicative design of the official scenario suggested the 
following teaching sequence in three phases. 

Phase 1 (Exploring regularities – relations between dif-
ferent groups of proportional amounts): It is provided 

a ready-made table containing 20 pairs (weight, price) 
of 20 sales in two corresponding columns. Teacher 
can chose or discuss with the students the possibility 
to fill in one more column defined by the ratio z = y/x 
(Figure 2). In this case, students are expected to no-
tice that this ratio takes three particular values (0.6, 
1.2, 2.1) except one. These values can be an indication 
for the existence of linear relations y = ax. Then the 
students send the points (x, y) to the Graph window 
(Figure 3) and they are expected to notice that the 
three values of the ratios correspond to three different 
groups of collinear points. Also they are suggested to 
construct the graph of y = x and stretch it dynamically 
with the mouse so as to coincide to each of the existent 
groups of points (Figure 4). The corresponding for-
mula for each transformation of the graph appears 
in the upper right corner of the Graph window. The 
students are expected to explore the problem either 
algebraically (i.e., by linking the corresponding ratios 
to linear functions) or geometrically (i.e., by dynam-
ically manipulating the graph of y = x) and to connect 
the three ratios that encountered in the table to the 
three values of the coefficient a of y = ax respectively. 

Phase 2 (Testing the formulas of proportional amounts 
through different representations): The students can be 
engaged in generating the exact prices of each product 
in three different ways: (a) In the Table window: they 
can construct one new column corresponding to the 
weight of each product (use of command ‘Fill in’ with 
values from 0 to 10 and step 0.1). Then, they are asked 
to construct three new columns so as to calculate the 
exact prices of each these products using the formulas 
y = 0.6t, u = 1.2t, z = 2.1t. This way the salesclerk will be 
able to know the exact price for each product until 
the weight of 10 Kg without calculating it. (b) In the 

Figure 2

Figure 3: Sending points to the Graph Figure 4: Stretching y = x
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Calculator window: they can create three buttons (see 
[2]) for calculating all prices of the products through 
a functional relation. (c) From the Graph to the Table 
window: they can take points from the graph and send 
them to two columns in the Table standing for x and 
y respectively.

Phase 3 (y=ax+b as a transformation of y=ax):  y = ax + b 
can be investigated through vertically stretching y = ax 
at the Graph window and constructing new columns 
in the Table window defined by functional relations 
(e.g., w = 0.6t + 0.5). 

Ian’s documentational work
During his observation in CTES Ian, in both his activi-
ty report and the reflective sessions, concluded that in 
order to design his own lesson in CTES had to take into 
account the following aspects: (a) the different levels 
of teachers’ familiarization with digital technologies, 
(b) difficulties with particular tools/functionalities 
of FP (e.g., creation of buttons in the Calculator), (c) 
difficulties in conceiving the links between the differ-
ent representations of FP. Thus, he started his lesson 
in CTES by demonstrating particular functionalities 
of FP in a whole class session through the use of an 
interactive whiteboard. Then, he gave to the teachers 
a worksheet with the ready-made table of the official 
scenario. The worksheet covered the three phases of 
the official scenario and it was structured in the form 
of small steps-instructions insuring the correct use 
of FP tools for the requested activities. For instance, 
instructions concerning the first phase were the fol-
lowing: “Table window: Fill in the 3rd column with the 
ratio y/x and press enter”, “Write down the resulting 
values and explain what they show”, “Table window: 
Send points to the Graph”, “Graph window: Graph → 
Graph choices → Check ‘Show transformations’ → Click 
on the icon ‘y=…’ to create the graph of y = x”. In the 
second phase, Ian provided a detailed account of the 
three ways by which teachers could have the prices of 
each product through the use of the Table, the Graph 
and the Calculator window respectively. 

In his activity report Ian describes his choices in the 
design as shown in the following excerpt: “The de-
velopment of my design follows the existing official 
material of CTES with a differentiation as regards the 
worksheet which is more instructional due to a better 
time control … Though the worksheet should provide 
learners with freedom to pose and answer their own 
questions, I chose to make it more instructive – prob-

ably more than needed – so as to support teachers’ 
familiarization with the available tools while solving 
the problem … Another reason for choosing a more 
instructive perspective stemmed from the fact that 
the trainer of this particular CTES classroom had a 
similar approach in his own teaching. Thus, I targeted 
a more smooth transition from teachers’ trainer to 
myself …”. During the reflective sessions in UC, Ian 
again justified his choices in the design of the work-
sheet after being asked by another trainee if he had 
been satisfied by his teaching in CTES and if he would 
change something in it: “I would prefer a less instruc-
tive design. But I was anxious about time. Through my 
choice, the worksheet was completed by all teachers 
in time. They liked the environment and seemed to 
have learned better the FP functionalities”.  

Teachers’ and students’ engagement in exploratory 
activities with digital tools was a central idea under-
lying the design of the UC course. Ian seemed to have 
shared this view, but he finally designed a rather in-
structive lesson in CTES. Thus, Ian seems to consider 
teachers mainly ‘as students’ and his design targets 
the development of two kinds of knowledge: (a) about 
technical aspects of software and (b) about the ways by 
which the available tools can be interrelated to subject 
knowledge. For instance, he provides detailed instruc-
tions on how to approach the targeted functional rela-
tion through the different FP windows (Table, Graph, 
Calculator). 

The operational invariants underlying his design 
were related to the following factors: (a) his empha-
sis on constrains and opportunities afforded by the 
context (e.g., time restrictions, technological environ-
ment) which led him to follow instructive design and 
practices respectively, regardless of his (possibly dif-
ferent) epistemological conceptions for the teaching 
and learning of mathematics; (b) his observation in 
CTES concerning teachers’ difficulties with FP and 
the previous teaching model adopted by the trainer 
in CTES; (c) his conception of trainees mainly ‘as stu-
dents’ who need detailed instruction in order to over-
come their difficulties. All these elements influenced 
the instrumentation/instrumentalisation interplay 
in his design leading to the integration of small-step 
instructions in the worksheets. 

Jim’s documentational work
Jim observed another trainer’s lessons in CTES that 
preceded his own lesson and included teachers’ initial 
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familiarization with FP tools apart from the stretch 
tool. Thus, he started his lesson by demonstrating in 
the interactive whiteboard technical issues related 
to the use of FP with an emphasis on the use of the 
stretch tool. His worksheet included the following 
open tasks for the teachers (without any kind of in-
structions, even for aspects of the software): 1) The 
teachers were asked to work in groups of two and 
provide both an algebraic and a geometrical solu-
tion for the given problem. Construction of tables of 
values for the three products (in the Table window) 
or creation of buttons (in the Calculator window) is 
suggested. 2) Group discussions for the potential 
findings of a group of students and ways to approach 
them. 3) Whole-class discussion of the above findings. 
4) Whole-class discussion for the added value of FP. 
5) Design of indicative questions for the students by 
each group of teachers. 6) Presentation of groups’ de-
sign in the classroom.

Describing his lesson in one of the reflective sessions 
in UC, Jim mentions: “I gave to the teachers a table 
with two columns corresponding to the weights and 
the prices for 20 sales of the three products. There 
was also a third empty column. I did not tell them to 
calculate a ratio or to send the two columns to the 
Graph. I was curious to see how many groups would 
be able to find them … I asked them to solve the prob-
lem algebraically and geometrically. I recommended 
the creation of columns in the Table window for the 
values of the different products as well as the creation 
of three buttons in the Calculator … I organized the 
class in groups of two following the model of their 
trainer … All groups found at least one solution. I 
passed through the groups and encouraged them to 
find another one … They discussed in their groups, 
they explored, I showed them how to stretch the graph 
of y = x. I was stressed by the possibility of not being 
able to use the FP tools. Thus, I had prepared another 
worksheet including more detailed instructions for 
the tool use. Finally, I didn’t give it to them. If someone 
had faced problems with FP I would have given it to 
him. I believe that the level of instruction should be 
gradually decreased. When we first introduce new 
software we need to prepare a more instructive work-
sheet. But in the next lessons the worksheets should 
be as open as possible. The aim is to support teachers’ 
thinking. You cannot tell them continuously ‘press 
this’ or ‘press that’….”.  

Jim’s design is closer to the ideas favored by the UC 
course. He took the risk to organize his lesson around 
an open worksheet and to confront potential teachers’ 
difficulties with FP tools on the spot. In his design he 
initially considered teachers ‘as students’ and through 
a social process which evolved in six phases he came 
to view them as ‘teachers of students’. Particularly, 
in phase one, he engaged teachers in exploring the 
problem (geometrically and/or algebraically), while 
in all subsequent phases, the teachers were asked 
to adopt the role of ‘teachers of students’ through a 
series of activities. At the instrumentation level, he 
took into account the model of teaching adopted by 
the official trainer in CTES as well as the fact that the 
main functionalities of FP had already been taught 
in previous lessons. Besides, his conception of the 
nature of worksheets regarding the degree of instruc-
tion led him – at the level of instrumentalisation – to 
incorporate open tasks. Facing the challenge to bal-
ance the correct use of technological tools and their 
integration in creating meaningful mathematical rep-
resentations, Jim gives priority to the second. Jim is 
not interested in technological skills per se but how 
these would be incorporated in teachers’ didactical 
design. Jim’s choices reveal that he targets trainees’ 
more complicated forms of knowledge as his design 
intertwines linear functions and its pedagogy with 
technology (approaching y = ax algebraically or geo-
metrically through ratios and dynamic manipulation 
of y = x). In terms of Ernest (1994), he adopts the role 
of facilitator who targets problem posing and solving 
and favors the development of meaningful material 
by the teachers themselves.

The operational invariants underlying the instrumen-
tation/instrumentalisation processes were related to 
the following factors: (a) his epistemological concep-
tions of the ways mathematical knowledge should be 
approached though the use of technological tools; (b) 
his observation concerning the teaching agenda of the 
official trainer in CTES; (c) his conception of trainees 
initially ‘as students’ who work in groups to explore 
different solutions of the given problem with the use 
of tools and subsequently as ‘teachers of students’ who 
are facilitated by his mediation to exploit the tools 
and transform them into didactical instruments for 
mathematics teaching at the professional level. 
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CONCLUSION 

Our analysis revealed the development of two 
kinds of documents: an instructive one and an open 
one. Taking into account the formula Document = 
Resources+Schemes of Utilization, we conclude that 
differences in the nature of the two documents can be 
explained through corresponding differences in the 
trainees’ schemes of utilisation, i.e., identification of 
different operational invariants for each one of them. 
Both trainees intended to continue the CTES trainer’s 
teaching model and to address the potential teachers’ 
difficulties with FP. Ian’s instructive approach seemed 
to have also been influenced by his concerns of differ-
ences in teachers’ familiarisation with FP tools as well 
as by the time restrictions. While Ian aims to control 
all the above factors through an instructive document, 
Jim’s design emphasises teamwork and appropriate 
teaching interventions by himself. 

Thus, in the context of teacher education in technolo-
gy enhanced mathematics, operational invariants that 
influence trainee teacher educators’ documentation-
al work in the context of their practicum seem to be 
closely connected: (a) to their experiences from the 
observation in CTES classrooms (focusing either in 
the trainee teachers’ difficulties or the model adopted 
by the official trainers of the respective classrooms); 
(b) to the importance they attribute to the constrains 
and opportunities provided by the wider education-
al context; and (c) to their epistemologies regarding 
the role of technology in the teaching of mathematics 
and the ways they conceive trainee teachers, for ex-
ample, emphasis on technology per se favouring the 
conception of teachers mainly ‘as students’ or on the 
integration of technology as a coherent part of teach-
ers’ designs favouring the transition of trainees from 

‘teachers as students’ to ‘teachers of students’. The first 
two operational invariants are directly linked to the 
teaching practice taking place in a real educational 
context and it is useful to be taken into account in 
every teacher education course. The third operation-
al invariant reveals parts of the trainee teacher edu-
cators’ beliefs that seem to influence the ways they 
design and use resources for teachers’ meaningful 
integration of technology. Thus, the third seems to be 
a catalyst in favouring less instructive approaches by 
the trainee teacher educators and at the same time it 
indicates a domain for interventions in the design and 
further enrichment of the course. A potential sugges-
tion for reinforcing the reform aspect of the course 

(or similar courses at the level of educating teacher 
educators) could be an earlier introduction of practi-
cum. According to our findings, practicum provides 
a context dense of opportunities for challenging and 
questioning trainees’ beliefs as they externalise them 
through the cycle ‘design-implementation-reflection’. 
Thus, an early introduction of practicum in conjunc-
tion with appropriate mentoring could help trainees 
to negotiate and redefine their beliefs towards a ped-
agogically sound use of technology in their teaching.   
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ENDNOTES

1. 1. Title, 2. Scenario’s identity (author, subject area, 
topic), 3. Rationale (innovations, added value by 
the use of technology, students’ learning problems 
addressed), 4. Context of implementation (grade, 
duration, location, prerequisite knowledge, social 
orchestration of the classroom, goals), 5. Phases of 
implementation (sequence of activities, roles of the 



Investigating two trainee teacher educators’ transformations of the same resources… (Elissavet Kalogeria and Giorgos Psycharis)

3050

participants, anticipated teaching/learning process-
es), 6. Possible extension, 7. References.2

2. FP is a multi-representational software with three 
windows: Table, Graph and Calculator. Function 
graphs can be produced in a number of different ways, 
for example, inserting a formula for the function, “re-
ceiving” ordered pairs (x, y) from a table (“x” and “y” 
columns can be generated). Particular icons allow 
horizontal and vertical transformations of functions 
(translations, reflections and stretches) through direct 
actions on the graph. Stretching is carried out with 
the stretch tool that allows mouse-driven horizontal 
and vertical stretching. In the Calculator, the user can 
incorporate functional relations into buttons which 
reserve these relationships for future use.
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investigating in-between fractions
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In this paper, we discuss a contingent opportunity from 
a 7th grade mathematics lesson about decimal numbers, 
percentages and fractions in Norway. The question if 
adding numerators and denominators of two fractions 
was a way to find an in between fraction, occurred. The 
teacher’s response to this question, which we saw as 
contingent opportunity, is our focus here. Although 
the teacher did not have the substantive mathematics 
knowledge needed to give an answer to the problem, 
many mathematics activities took place in the lesson.   

Keywords: Contingent opportunity, teachers’ 

mathematical knowledge, mathematising activities, 

argumentation and proofs. 

INTRODUCTION AND RESEARCH QUESTIONS

When teaching mathematics, teachers are faced with 
many opportunities – both expected and unexpect-
ed. Awareness of opportunities  and teachers’ deci-
sion-making when they occur, is crucial with regard 
to students’ learning outcome (Bishop, 1976) and 
thus important issues in mathematics teacher edu-
cation. In the mathematics research literature, several 
possible responses to contingent moments are dis-
cussed (Kleve, 2010; Rowland, Huckstep, & Thwaites, 
2005; Rowland, Turner, Thwaites, & Huckstep, 2009; 
Rowland & Zazkis, 2013). In responding to contingent 
opportunities, teachers may run a risk.

In a mathematics lesson about fractions, decimal 
numbers and percentages in a 7th grade in Norway, 
which we observed, the problem finding an in between 
fraction arouse, and data from this classroom event 
create the background for this paper. 

Our research question is:

 ― How can a teacher’s decision making to an un-
planned opportunity open up for mathematics 
discussions, even if the teacher does not know 
the answer?

In order to answer this question, we focus in particu-
lar on the mathematizing activities that took place 
and how the teacher took advantage of the contingent 
opportunity when it arose. We also investigate how 
the teacher’s knowledge appeared to influence the 
course of the lesson and thereby supported the stu-
dents’ learning opportunities.

A CONTINGENT MOMENT FROM 
THE RESEARCH LITERATURE

Earlier research have suggested ways in which teach-
ers may respond when a student suggests how to find 
a fraction between two given fractions (Bishop, 1976; 
Rowland & Zazkis, 2013; Star & Stylianides, 2013; 
Stylianides & Stylianides, 2010). However, authentic 
data, which display teachers’ responses to students’ 
contributions to the task or from classroom discus-
sions, have not been presented. In these studies, how 
students may respond to the task to find a fraction 
between fractions and how teachers may respond to 
a student’s response, have created the background for 
discussions among prospective teachers. 

Referring to the fractions example1, Bishop (1976) 
asked the question: “How would you deal with that 
response?” (p. 41) and he emphasized teachers’ deci-
sion making, to be at the heart of the teaching process. 

1 Teacher: Give me a fraction which lies between ½ and ¾

 Pupil: ²⁄₃

 Teacher: How do you know that ²⁄₃ lies between ½ and ¾?

 Pupil: Because 2 is between the 1 and the 3 and 3 is between 

the 2 and the 4
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Rowland and Zazkis (2013) presented possible (tac-
it) conjectures made by the pupil who responded to 
Bishop’s fraction example2. However, they “did not 
know how the lesson proceeded mathematically nor 
whether the teacher took the advantage of the oppor-
tunity” (p. 150). 

Stylianides and Stylianides (2010) referred a sim-
ilar scenario in order to exemplify Mathematics 
Knowledge for Teaching. In this scenario, a student, 
Mark, suggested adding the numerators and denom-
inators of two fractions to find one in between, and 
he illustrated that on a number line. They focused on 
implementation of special tasks in teacher education 
and discussed how the task (a student’s response to 
finding an in between fraction) could support the de-
velopment of mathematical knowledge for teaching. 

Star and Stylianides (2013) used the fractions task for 
prospective teachers in mathematics teacher educa-
tion in order to discuss teachers’ mathematical knowl-
edge asking the question: “What can be considered as 
procedural/conceptual knowledge?” (p. 172). 

TEACHERS’ MATHEMATICAL KNOWLEDGE

In order to investigate teachers’ mathematical knowl-
edge, several frameworks have been developed (Ball, 
Thames, & Phelps, 2008; Fennema & Franke, 1992; 
Rowland et al., 2005). Both Ball et al. and Rowland 
et al. based their work on Shulman’s categories of 
knowledge (Shulman, 1986, 1987). Stylianides and 
Stylianides (2010) related their work to Ball and Bass 
(2000; 2003). Using the abbreviation, MKfT, they em-
phasised mathematical knowledge for teaching: 

This specialised kind of mathematical knowledge 
is important for solving the barrage of mathe-
matical problems of teaching that teachers face 
as they teach mathematics: offering mathemat-
ically accurate mathematical explanations that 
are understandable to students of different ages, 
evaluating the correctness of students’ methods, 
identifying mathematical correspondences be-

2  (C1): Whenever the numerators of three fractions are con-

secutive integers, and the denominators likewise, the second 

fraction will be between the two

 (C2): Whenever the numerators of three fractions are in arith-

metic progression, and the denominators likewise, the second 

fraction will be between the two

tween different student solutions of a problem 
etc. (Stylianides & Stylianides, 2010, p. 161) 

They suggested that the teacher’s mathematical 
knowledge would influence the course of the lesson 
and students’ learning opportunities. Linked to ar-
gumentation and proof they discuss both teacher’s 
mathematical knowledge, which sometimes may de-
viate from conventional mathematical knowledge 
(misconception), and knowledge, which is consistent 
with conventional mathematical knowledge. Harel 
and Sowder (2007) carried out a study, finding that 
students’ use of numerical examples, as a way of 
proving, was prominent. In everyday discourse “no 
rule without exceptions” and “the exception proves 
the rule” are accepted ways of “proving” something. 
Studies on teachers’ mathematical knowledge and 
their conceptions about proofs in mathematics, show 
similar conceptions as revealed by Harel and Sowder 
(Martin & Harel, 1989; Stylianides & Stylianides, 2010). 

Contingency is one of four dimensions in the 
Knowledge Quartet, KQ, which is a framework for 
Mathematical Knowledge in Teaching (Rowland, 2008; 
Rowland et al., 2005; Rowland et al., 2009). The KQ 
provides us with tools for analysing how teachers 
draw on different kinds of mathematical knowledge 
in order to support learners in the classroom situ-
ations. Contingency is informed by the three other 
dimensions in the KQ (Foundation, Transformation 
and Connection) and is about situations in mathemat-
ics classrooms, which are not planned for. Identifying 

“contingent moments” or contingent opportunities 
in order to analyse aspects of a teacher’s mathemati-
cal knowledge has proven to be helpful (Kleve, 2010; 
Solem & Hovik, 2012). The teacher’s choice wheth-
er to deviate from what s/he had planned and the 
teacher’s readiness to respond to pupils’ ideas, are 
important classroom events within this dimension. 
The Contingency dimension has also been expand-
ed in a later research (Rowland, 2008; www.knowl-
edgequartet.org; Rowland et al., 2009; Weston, Kleve, 
& Rowland, 2012).  One such expansion is “Teacher’s 
Insight” which is demonstrated when a teacher is real-
izing that children are constructing the mathematical 
ideas and something that sounds ‘half baked’ which 
means that they are in what Vygotsky (1978) termed 
Zone of Proximal Development (ZPD) where teach-
er can help with a scaffolding question or two (www.
knowledgequartet.org). In their article, Rowland and 
Zazkis (2013) discussed several contingent opportu-



A contingent opportunity taken investigating in-between fractions (Bodil Kleve and Ida Heiberg Solem)

3053

nities, which may occur in a mathematics classroom 
and whether they are taken or missed. One contingent 
opportunity that they discussed was similar to the one 
that actually happened in the lesson we analyse here. 

METHODOLOGY

Our data are taken from an ongoing action research 
project which is about classroom conversations in 
mathematics focusing on what questions teachers ask 
(Solem & Ulleberg, 2013). Seven experienced teachers 
participated in the project. In this project, how ques-
tions could be used reflectively in planning a lesson, 
implementing the lesson and in order to analyse the 
lesson, were investigated (Ulleberg & Solem, in press). 
All teachers were observed in teaching a mathemat-
ics lesson in own class. We have chosen an episode 
from a lesson with a teacher, here called Kim. The 
reason for choosing this episode was not that it was 
representative for the research project, but that we 
found it especially interesting with regard to the con-
tingent possibility, which occurred, and the teacher’s 
response to students’ input. Our data are field notes 
(including pictures), transcribed audio recordings 
from the lesson, and the teacher’s prepared notes for 
the lesson. The lesson is from grade 7 (12–13 years old), 
and a whole class discussion had taken place. How the 
teacher drew on his mathematical and pedagogical 
knowledge in orchestrating the whole class discussion 
in this lesson is discussed in Kleve and Solem (2014). 
The teacher’s plan for the lesson was to place fraction, 
percentages and decimal numbers on a number line. 

ANALYSIS

As a challenge, the teacher wanted the students to find 
a fraction that was bigger than 3/5 but smaller than 
4/5. According to the teacher’s notes for the lesson, 
finding the fraction in between was supposed to be 
done by finding equivalent fractions with denomina-
tor 10. A student, Lea, suggested 7/10, because “I only 
doubled both and found what was in between”. Then 
the following contributions from other students in 
class occurred: 

Stud 1: Now it is the same again. 4 plus 3 makes 7.
Stud 2: It was the same last time we did it. 
Stud 3: It happened then too, but you said it was 

a coincident. 
Kim: But, may be, there is a pattern here?
Students:  yes, yes..

Kim:  Wait a minute….
Stud 4:  But last time it wasn’t ten, but now it is 

ten, isn’t it?
Stud 5:  We can add them both, getting ten

Kim then went back to how to get from 3/5 to 6/10 
ensuring that all students were following the discus-
sion. He asked Ada to explain to the others.  Another 
student supported Ada saying:

Stud: You just multiply by 2 both in the upper 
and in the lower. 

Kim: We double. Ok. Then back to the exciting 
thing, we talked about. Some  of you are 
starting to see a pattern, which I am not 
sure I can see. Hanna?

Hanna: Yesterday we had the same, or we mul-
tiplied both with two. And then we saw 
that- that those numbers, I mean, the nu-
merators, if we added them, it became 
the same as, yes, as the answer. And it 
happened now again.

Kim did not miss this contingent opportunity 
(Rowland & Zazkis, 2013), but responded by letting the 
students come up with suggestions, and after stud 3, 
he asked if there might be a pattern. Thus, he deviated 
from his agenda, which was to find a fraction between 
two fractions through expanding the two. He eagerly 
joined the students in searching for a pattern. 

In their article, Stylianides and Stylianides (2010) 
discussed two possibilities from a similar scenario. 
One was that the teacher might consider the students’ 
method to be correct because it works in different 
examples. The other possibility was that unless the 
method was shown to work for all possible cases, it 
could not be accepted as correct. Let us see what hap-
pened in our lesson:

Kim: Ok. But if it has happened twice, are we 
then sure it will happen next time?

Tiril: No, but there is a rule which is that if it 
happens once it is a coincident, twice, it 
is especially, three times, it is Ok.

Kim: Three times, then it must be like that? 
Does such rule exist?

Students:  it is, … no, no 
Students: Can just be luck
Kim: OK, let us try
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This suggests that Kim had knowledge about the dis-
tinction between empirical argumentation and proofs 
in mathematics. Although he expressed doubt about 
Tiril’s rule (a method is correct if it works in three 
different examples), he invited his students to try a 
third time (the first was from yesterday, the second 
was 3/5 and 4/5), suggesting 1/4 and 2/4 and asked 
for a fraction in between. He challenged Januscha to 
explain:

Januscha: One plus two, I added the numerators, 
which made three, and the denomina-
tors, made eight. And to be sure, I dou-
bled it too..

Kim: And then you got 3
Januscha:  of 8
Kim: Did you all find the same? (Students con-

firmed)
Kim: OK, So we can see a pattern here now. 

But are we sure, does this apply to ab-
solutely all fractions?

Students: That we don’t know. 
Ronja: I think, I don’t know if it applies to frac-

tions with different denominators
Kim:  Ok?
Student: I think it applies to all fractions, because 

if 1/4 – if you multiply by two you get 
2/8 and then you get 4/8 and that is in 
between (explaining that 3/8 is between 
1/4 and 2/4).

Kim now suggested that they were seeing a pattern, 
but he emphasized uncertainty that it applied to all 
fractions. Thus, he exposed his students to hypothe-
size and to come up with conjectures. Ronja’s question, 
if it applied to fractions with different denominators, 
was one conjecture, which opened up the possibility 
to find a counter example.

Kim did not follow up the students’ hypotheses at this 
point, but he insisted further investigations with frac-
tions with same denominators, and drew attention to 
the distance between the numerators. Proposing 3/5 
and 5/5, he asked: “what if the distance between the 
numerators are bigger than one”? The students did 
not find this challenging at all:

Student:  But if it is bigger distance between them, 
there is no challenge. What is it that is 
between 3/5 and 5/5? It’s got to be 4/5!

Kim: Good. I agree that the challenge may 
disappear a little, but we have to check 
this out now. We are curious to know, 
aren’t we?

Here, we suggest that the task had changed. Kim’s 
point was no longer to find a fraction between two 
given fractions but to investigate if the “rule” -adding 
numerators and denominators to find an in between 
fraction- worked in different situations, also when the 
solution was obvious.  Kim’s proposal to have more 
than one between the numerators resulted in an “obvi-
ous example” (3/5 and 5/5) suggested by a student, who 
expressed that it was not challenging at all. Instead 
of being engaged in Kim’s obvious example, the stu-
dents contributed with further conjectures (which 
are partly contracting): 

 ― I think it always goes when there is one even and 
one odd numerator

 ― When there are two even numbers or two odd 
numbers there is always a number between

 ― When there is one number of each, then it goes

 ― When there are two even or two odd, it will not 
work, but if there are one even and one odd, it 
works. 

This demonstrates that the way Kim was teaching 
opened up for students’ engagement and participation 
in mathematizing activities. Making conjectures and 
hypotheses are important ingredients in the learning 
of mathematics. The conjectures the students made, 
were general (about odd, even, and different numbers) 
and not linked to concrete numbers. Kim’s response 
to these hypotheses were:

Kim: Ok- good. We are getting short of time, 
but this we have to check out. How can 
we check it all out?

Students: Do it many times
Kim: Shall we use “Tiril’s method” and try: if 

it works the third time, it is ok, or what, 
how shall we do this?

Students:  Why don’t we try? 
Kim:  Ok, Then, firstly, I would like to try once 

having more than one in between. Let 
us do that first. Afterwards we can do it 
like you suggest with different denomi-
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nators. So if we have…. We can take 3 of 
8 and 5 of 8, then we have, the distance 
here is 2.

The students now agreed to go for Kim’s suggestion 
first, for which he gave the following reason: 

Just so you do not believe…. that we can do it this 
way with the rest – that we just can add them to-
gether. 

Now an eager discussion now took place. They had 
expanded the fractions to 6/16 and 10/16. We can hear 
students saying, “yes it goes”, “it is four in between”. 
Kim asked if they could choose between 7, 8 and 9, 
when a student said: 

Student:  The middle is 8/16 and if we take 3+5 you 
get 8. 

Kim:  Yes, good, it works. 
Student: It would have been the same if we just 

took different fractions. 3 of 8, and 4 of 8, 
or 4 of whatever. Just making different 
fractions.

This discussion ended up with the following state-
ment from Kim: 

You know, now we are within an area in which I 
haven’t checked either. Neither do I know for sure 
where this entire end up. I am not in the position 
to see all the patterns here either. Therefore, I 
find it very exciting. [] At least. Here we have lots 
of material we can work on in the future. But, you 
know what? We haven’t done what we were sup-
posed to do in this lesson (to place the fractions, 
percentages and decimal numbers on a number 
line)

This statement shows that Kim neither knew if it was 
possible to find an in-between fraction generally by 
adding the numerators and denominators, and conse-
quently nor to prove it. Although he expressed that he 
did not know where it all would end up, he expressed 
excitement and was challenged to work further with 
the issue.    

DISCUSSION

In this lesson a contingent opportunity occurred. 
Several students suggested that it was possible to 

find a fraction between two fractions by adding the 
numerators and denominators (Fareys mediant). The 
analysis above shows that the teacher deviated from 
the agenda and followed up the suggestions from 
the students. In grasping this contingent opportu-
nity Kim took a risk. Although he neither knew if 
the conjectures were correct, nor had the advanced 
mathematical knowledge needed for proving the 
conjectures made, he deviated from the agenda and 
incorporated the students’ suggestions in the further 
course of the lesson. Hence we see, that the mathe-
matical knowledge he had, and also the mathematical 
knowledge missed, influenced the course of the lesson 
and thus the students’ learning possibilities. Together 
with the students, he investigated their suggestions 
and claims. In asking “But are we sure, does it apply 
to absolutely all fractions?” Kim demonstrated math-
ematical knowledge about mathematical proving and 
signaled that it is not sufficient with numerical exam-
ples to generalize in mathematics. On the contrary, 
trying out different examples could have opened up 
for a counter example, which we suggest that he was 
looking for. This indicates that his substantive content 
knowledge incorporated what is a mathematical proof. 

Since Kim did not have the mathematical knowledge 
needed to answer if adding the numerators and the 
denominators would make an in between fraction, 
he was not in a position to say “yes, it is correct”, nor 

“it is not correct”. The only tool Kim had was to try, 
and this he did in collaboration with the students. He 
encouraged his students to come up with several con-
jectures. The mathematical activities which took place 
incorporated hypothesizing if the rule, adding the nu-
merators and the denominators to find an in between 
fraction, would work in different situations: fractions 
with different denominators, fractions where both 
numerators are odd, both numerators are even,  one 
numerator is even and one is odd, different distances 
between the numerators. 

The conjectures made: 

 ― Adding numerators and denominators made an in 
between fraction (common denominators).  

 ― Does it apply to all fractions? 

 ― Does it apply to fractions with different denom-
inators?
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 ― No, but there is a rule which is that if it happens 
once it is a coincident, twice, it is especially, three 
times, it is Ok.

Formulating hypothesis, making conjectures and 
searching for patterns are important activities in 
learning mathematical thinking. The way Kim took 
advantage of students’ input and questions, offered 
possibilities for the students to participate in these 
activities. Kim was sensitive to the students’ mathe-
matical knowledge (knowledge of content and stu-
dents) and posed questions accordingly (knowledge of 
content and teaching). Posing appropriate questions 
as Kim did, is extremely demanding (Kleve and Solem, 
in press) and this episode displayed how he drew on 
his mathematical knowledge for teaching.  

Although Kim did not have the necessary command 
of substantive knowledge to prove the rule (Fareys 
mediant), he did not close the door for mathematising 
activities, and a fruitful mathematical discussion to 
take place.

IMPLICATIONS FOR TEACHER 
EDUCATION AND RESEARCH

Research referred in the beginning of this paper, have 
suggested ways in which teachers may respond to a 
similar contingent opportunity, which actually hap-
pened in the lesson we observed and have analyzed 
here. Authentic records of teaching, whether they are 
videos or transcripts of data, are extremely powerful 
sites for learning: “Teachers and researchers are find-
ing that analyses grounded in actual practice allow a 
kind of awareness and learning that has not previ-
ously been possible” (Boaler & Humphreys, 2005, p. 4). 

Our teacher did not know the answer. However, these 
data demonstrate for student teachers that taking the 
risk and grasping the contingent opportunity may 
lead to fruitful mathematising activities. In mathe-
matics teacher education, proving a

b  <  a + c
b + d  <  c

d  alge-
braically is possible. Another possibility is to show 
with functions and graphs (Stylianides & Stylianides, 
2010). However, these proofs are not accessible for 
children in 7th grade. Therefore discussions how to 
illustrate Fareys mediant for these children may be 
relevant. For example, if the juice analogy referred in 
Rowland and Zazkis (2013), is an accepted argument 
for “the adding numerators and adding denomina-

tors procedure” can lead to good discussions among 
student teachers.

In further analysis of data from this teacher’s teach-
ing, we are interested in finding out what socio-math-
ematical norms were established in his class and what 
role the norms played for the mathematical activities 
that took place, such as use of language  and classroom 
discussions, and hence students’ learning possibili-
ties. 
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This paper aims to conceptualize the work of supporting 
students’ development of mathematical explanation.  
To provide an empirical basis, I analyse instructional 
interactions managed by the same teacher for teaching 
the brown rectangle problem for different cohorts of stu-
dents across five years.  The four core tasks of teaching 
are (1) attending to the organic structure of the math-
ematical task; (2) mapping the scope of answers onto 
the targeted mathematical ideas; (3) hearing the math-
ematical needs embedded in students’ explanations; 
and (4) distributing and building a mathematical talk 
collectively.

Keywords: Decomposition, the work of teaching, 

mathematical explanation, fraction.

INTRODUCTION

Teaching is often described as a complex activity be-
cause it involves managing multiple relationships 
simultaneously with students and with content over 
time (Cohen, Raudenbush, & Ball, 2003; Lampert, 
2001).  To make this complex work doable and learn-
able for teachers, especially for beginning teachers, 
several scholars (Boerst et al., 2011; Grossman et al., 
2009; Sleep, 2012; Thames, 2009) have addressed the 
need to decompose the work of teaching into its con-
stituent components.  As a result, a core practice of 
teaching has begun to be decomposed into nested 
practices with varying grain sizes.  Despite these in-
itiatives, the call for “a specific technical language 
for describing the implicit grammar and for naming 
the parts” (Grossman et al., 2009, p. 2069) has not met 
an agreed-upon robust framework yet.  For example, 
in decomposing the work of steering instruction to-
ward the mathematical point, Sleep (2009) identifies 
seven core tasks of teaching and further decompos-

es each core task into strategies and problematic is-
sues.  The core tasks she identifies are not mutually 
exclusive but rather might be enacted simultaneous-
ly.  Furthermore, in decomposing each core task into 
strategies, she does not associate it with particular 
teaching moves.  On the other hand, in decomposing 
the work of leading a mathematical discussion, Boerst 
and colleagues (2011) start with the larger grain size of 
domains (e.g., leading a discussion) and then specify 
it into a smaller grain size of techniques (e.g., revoic-
ing), while articulating intermediate practices (e.g., 
clarifying student thinking) that connect between 
domains and techniques.  A brief review of literature 
on decomposition, despite focusing on a different do-
main of teaching practices, gives a particular prom-
inence to the structure of decomposition, the level 
of decomposition, and the link to teaching moves or 
discourse moves. 

Given the lack of agreed-on grammar for decompos-
ing the work of teaching, this study aims to decom-
pose one of the key teaching practices that are crucial 
for accomplishing the ambitious goal of developing 
mathematical power and mathematical proficiency 
for all students: the work of supporting students’ de-
velopment of mathematical explanation.  The practice 
of giving, hearing, and evaluating explanation has 
been considered an important goal for learning be-
cause it resolves cognitive dissonance and facilitates 
cognitive development in the process of knowledge 
construction.  More specifically, giving explanations 
can serve as opportunities for students to reflect on 
their own thinking and to reconstruct their existing 
knowledge, while hearing others’ explanations pro-
vides opportunities for students to appropriate lan-
guage that a teacher or more advanced students use, 
to recognize any cognitive dissonance that contradicts 
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their own understanding, and to use others’ expla-
nation as a resource to extend their own knowledge.

Despite its crucial role for learning, there is a general 
consensus that most students do not have sufficient 
opportunities to develop their own explanations in 
U.S. mathematics classrooms (e.g., Stigler & Hiebert, 
1999).  One reason might be that many teachers believe 
that giving an explanation to students is more efficient 
and less complicated than eliciting an explanation 
from students.  Even if this belief is being challenged 
as greater emphasis is being placed on eliciting an 
explanation from students, it is pedagogically de-
manding work for teachers.  This is well captured by 
Cohen’s (2011) metaphor in describing challenges in 
extending students’ knowledge as he writes:

Teachers and learners face the same gulfs of ig-
norance, but from different sides.  Learners must 
somehow build bridges across the gulf, but these 
bridges are often fragile because the learners 
work from relative ignorance.  The teacher’s as-
signment is to help learners build those bridges, 
but they work from greater knowledge. … Rather 
than helping learners construct and reconstruct 
bridges of their own, teachers present the fin-
ished results of their learning.  That reduces the 
likelihood that teachers can cultivate a practice of 
teaching, for it can limit learners’ understanding. 
(Cohen, 2011, p. 106)

This metaphor also applies to challenges in support-
ing students’ development of mathematical explana-
tion.  On the one side, students do not have sufficient 
language to explain their mathematical ideas (Forman 
& Larreamendy-Joerns, 1998) and their explanations 
are distant from disciplinary explanation (Leinhardt, 

2001).  On the other side, teachers often present the 
compressed, polished, and finished form of mathemat-
ical explanations to students rather than helping stu-
dents construct their own explanation.  Considering 
this demanding but crucial work, this study examines 
what is entailed in supporting students’ development 
of mathematical explanation, and particularly, the 
ways of using instructional resources to that end.  

METHOD

The methods for studying teaching have adopted 
terms, concepts, and techniques from other disci-
plines (e.g., grounded-theory; ethnography), but have 
not further articulated how the selected method ad-
dresses issues that particularly matter for teaching.  
To make an explicit connection between the phenom-
enon being studied and the method being chosen, I 
briefly articulate the study design, which is situated 
in the instructional triangle (Cohen et al., 2003). 

Teaching is often examined as a single case in which a 
teacher teaches a particular topic for a single group 
of students, but multiple cases of teaching are also ex-
amined.  In such an examination, a variety of methods 
are employed.  One way of examining multiple cases is 
to maximize the variation of components within the 
instructional triangle—a teacher, students, and con-
tents.  For example, to identify elements of expertise 
of teaching, Leinhardt (1985) contrasts performance 
of expert teachers with that of novice teachers.  In 
another example, in order to identify the common 
model of instructional explanation and to specify the 
features of instructional explanation in each subject, 
Leinhardt (2001) analyses instructional explanations 
in history and in mathematics.

Figure 1: The study design



Supporting students’ development of mathematical explanation: A case of explaining a definition of fraction (Minsung Kwon)

3060

This paper approaches the problem in another way, 
minimizing much of the variation among components 
of the instructional triangle in a more controlled con-
text in which only students vary (see Figure 1).  As one 
of the greatest predicaments of teaching is its depend-
ence on students (Cohen, 2011), analysing instruction-
al interactions managed by the same teacher teaching 
the same mathematical task to different cohorts of 
students without substantial differences in students’ 
mathematical abilities is crucial to identify the core 
tasks of teaching across the particulars of students 
and unfolding instructions.  This method untangles 
the ways in which the same teacher adjusts the work 
of supporting students’ development of mathematical 
explanation wherein each cohort of students brings 
different mathematical ideas, stances, issues, lan-
guage, ambiguity, and difficulties in explaining the 
same mathematical task. 

To provide an empirical basis, I analyse a longitu-
dinal data set from the Elementary Mathematics 
Laboratory (EML), a two-week summer mathematics 
program for entering fifth graders taught by Professor 
Deborah Ball at the University of Michigan’s School 
of Education, across five years (EML2007, EML2008, 
EML2009, EML2010, and EML2013).  There are no 
prerequisites to participate in the EML, but it mainly 
focuses on students who are struggling with learning 
mathematics rather than students who are outper-
formed in mathematics.  Considering the process of 
recruitment, there were no substantial differences 
in students’ abilities in mathematics across five years.  
Each year, approximately 25–30 students, who are eth-
nically, racially, linguistically, and socioeconomically 
diverse, participate in a whole-group mathematics 
class every morning during the two-week program.

As part of a large-scale study which analyses instruc-
tional interactions managed by the same teacher for 
teaching four different mathematical tasks across 
multiple years, this paper mainly focuses on the 
brown rectangle problem (see Figure 2).  The brown 
rectangle problem has been used with slight varia-
tions in the layout of the rectangle (i.e., where the 
shaded part is located; the rotation of the drawing), 
the colour of shaded parts, the inclusion of written 
problem statement on the poster, the presentation of 
two sub-problems (posting together vs. posting sepa-
rately), and the wording of the problem statement (the 
big rectangle vs. the rectangle; shaded in vs. shaded 

in brown), but the mathematical demand remains the 
same across years.

The analysis of each individual year provides detailed 
images of explanations that individual students pro-
duce, the process of constructing a mathematical 
explanation collectively by each cohort, and instruc-
tional supports that the teacher provides to develop 
a mathematical explanation for the brown rectangle 
problem.  The cross-year analysis illustrates that in-
struction for teaching the same mathematical task un-
folds somewhat differently, even by the same teacher.  
The similarities across multiple cases become strong 
candidates to be scaled up into the coherent structure 
of supporting students’ development of mathematical 
explanation, whereas the differences across multi-
ple cases offer analytical opportunities to examine 
whether or not the particular instructional feature 
plays a role in supporting students’ development of 
mathematical explanation.  In doing so, I do not treat 
such differences as discrepant or disconfirming evi-
dence, but use the differences as the data to reveal the 
underlying structure of the work of teaching to sup-
port students’ development of mathematical expla-
nation.  In addition, the differences observed across 
years do not necessarily represent the characteristics 
of the expert teacher’s teaching practice.  Looking 
at the multiple uses of the brown rectangle problem 
by the same teacher to different groups of students 
allows to elicit the demands entailed in the work of 
supporting students’ development of mathematical 
explanation and framing the underlying structure 
that serves to meet such demands.

PROBLEMS OF STUDENTS’ INITIAL 
EXPLANATIONS FOR THE BROWN 
RECTANGLE PROBLEM

In order to understand what is entailed in supporting 
students’ development of mathematical explanation, 

What fraction of the rectangle below is shaded brown?
 

What fraction of the rectangle below is shaded brown?

Figure 2: The brown rectangle problem
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it is critical to first diagnose problems that students 
have in explaining the brown rectangle problem.  
Some of these problems are more generic and apply 
to all mathematical tasks, but others are more unique 
to a particular mathematical task.  If each mathemati-
cal task would require a specialized form of reasoning 
to develop a mathematical explanation, the problems 
that students struggle with would be different and 
the supports that a teacher needs to provide would 
be different accordingly.  Identifying such problems, 
both generic and unique to the type of mathematical 
task, contributes to revealing how a mathematical 
task plays a role in the work of teaching and the use 
of instructional resources.  The following list below 
is a more general characterization and a more com-
prehensive collection of problems that individual 
students have in offering an initial explanation for 
the brown rectangle problem across five years.

 ― Having difficulties providing, hearing, and con-
structing an explanation

 ― Not establishing the mathematical grammar to 
describe the objects to be explained

 ― Using inaccurate language in which its intended 
meaning is different from the accepted mathe-
matical definition

 ― Using pre-defined mathematical terms

 ― Skipping the logical structure of naming a frac-
tion or paying attention to the partial compo-
nents of naming a fraction

 ― Losing the purpose and focus of what is being 
explained

 ― Not building correspondences between an an-
swer, an explanation, and representations

 ― Heavily using demonstrative pronouns

 ― Grounding explanation on non-mathematical 
reasons or procedural knowledge

 ― Missing the key definitional ideas of naming a 
fraction

Despite sharing these similar problems in explaining 
the brown rectangle problem, the collective process 

of constructing mathematical explanation does not 
always remain the same across five years.

THE CONSTRUCTION OF COLLECTIVE 
RESOURCES: DIFFERENCES ACROSS COHORTS 
AND IMPLICAITONS FOR TEACHING

The process of recruiting and selecting EML stu-
dents is quite similar from one year to another, so 
it is presumed that there are no substantial differ-
ences in students’ mathematical abilities across five 
years.  Despite the homogeneous features of the EML 
cohorts across five years, the cohort’s mathematical 
ideas, stances, dispositions, and issues do not always 
remain the same.  The observed differences are (1) 
the answers that the students collectively discuss in 
a public space; (2) the proportion of the students who 
produce correct answer to the students who produce 
incorrect answers; (3) the intensity of counterargu-
ments made against a competing proposal and the 
process of being convinced by a competing proposal; 
(4) when the key idea of “equal” emerges; and (5) math-
ematical issues that matter the most for each cohort.

First, the answers that each cohort discussed collec-
tively in a public space are not the same.  For the first 
part of the brown rectangle problem, only one correct 
answer (1/3) was proposed in the EML 2007, the EML 
2008, and the EML 2010, but three answers (1/3, 2/3, 
and 2/6) were proposed in the EML 2009 and two an-
swers (1/3, 1/2) were proposed in the EML 2013.  For the 
second part of the brown rectangle problem, four an-
swers (1/4, 1/3, 1 and 1/3, and 1/2) were proposed in the 
EML 2007, two answers (1/4 and 1/3) were proposed in 
the EML 2008, one answer (1/4) was proposed in the 
EML 2009, five answers (1/4, 1/3, 1/6, 2/8, and 4/16) 
were proposed in the EML 2010, and three answers 
(not a fraction, 1/4, and 1 and 1/2) were proposed in 
the EML 2013.  Even though the teacher made similar 
attempts to elicit multiple answers, different groups 
of students brought a different set of answers in a pub-
lic space.  Beyond attending to the number of answers 
elicited in a public space, an important task of teach-
ing includes (1) not dismissing any proposals made in 
a public space but unpacking the reasoning behind the 
proposals; (2) introducing the key incorrect answers 
if they are not brought by students; (3) mapping the 
proposed answers to the targeted mathematical ideas; 
(4) deciding what needs an immediate agreement or 
disagreement and what needs to be preserved; and (5) 
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customizing questions, probes, and prompts based on 
the dynamics of proposed answers. 

Second, the proportion of the students who produced 
correct answer to the students who produced incor-
rect answer is not the same across cohorts.  For the 
first part of the brown rectangle problem, nearly 
all of the students came up with the correct answer.  
On the other hand, for the second part of the brown 
rectangle problem, the incorrect answers were more 
prevalent than the correct answer in the EML 2007, 
the EML 2008, the EML 2010, and the EML 2013, but 
most of the students recorded the correct answer in 
the EML 2009.  If the proportion of correct answer 
to incorrect answers might be related to the mathe-
matical stance that students bring to the instruction, 
an important task of teaching includes (1) surveying 
the composition of students’ mathematical ideas; (2) 
ensuring that a mathematical stance is not influenced 
by the idea held either by the majority of students or 
by advanced students; and (3) customizing questions, 
probes, and prompts based on the proportion of the 
students who produce correct answer to the students 
who produce incorrect answers.

Third, the intensity of counterarguments made 
against a competing proposal and the process of be-
ing convinced by a competing proposal was not the 
same.  Except in the EML 2009, students proposed the 
key incorrect answer of 1/3 for the second part of the 
brown rectangle problem, but the degree of defend-
ing the incorrect answer and what made them being 
convinced by the correct answer was not the same.  
Some cohorts were more easily convinced by the idea 
that adding a line makes equal parts, but others were 
more resistant and hesitant to accept the idea because 
it contradicts  their non-mathematical perception that 
adding a line changes the problem.  The process of 
reconciling the competing proposals was not the same 
across five cohorts, but all of the cohorts ultimately 
arrived on the agreement that making equal parts is 
an important idea for naming a fraction and drawing 
a line provides an easy access to seeing the equal parts.  
As the intensity of counterargument and the resist-
ance of accepting the competing proposal increased, 
the cohort constructed richer collective resources to 
convince others who had a competing proposal.  It is 
not an easy task for a teacher to support students to 
have a strong stance on their mathematical ideas and 
to have them sustain their perseverance, but detecting 
such a moment, confronting competing ideas, and 

providing sufficient opportunities to defend one’s 
proposal is an important task for supporting students’ 
development of a mathematical explanation.

Fourth, the key idea of “equal” emerged at different 
stages of developing a mathematical explanation.  It 
was early proffered by a student who proposed the 
answer of 1/4 in the EML 2007 as well as by a student 
who proposed the answer of   “not a fraction” in the 
EML 2013, but emerged in the process of comparing 
between the equally partitioned rectangle and the un-
equally partitioned rectangle in the EML 2008, 2009, 
and 2010.  Eliciting the targeted mathematical idea 
and developing the accurate mathematical language 
is key for developing a mathematical explanation, but 
an important task is not just accepting the targeted 
mathematical idea offered by a single individual stu-
dent, but providing supports for students to use those 
collective resources. 

Lastly, the mathematical issues that matter the most 
for each cohort are not always the same.  For the sec-
ond part of the brown rectangle problems, the EML 
2007 cohort spent a significant amount of time to make 
sense of 1/2, the EML 2008 cohort discussed whether 
or not the line changes the problem, the EML 2010 
cohort engaged in removing the existing line or add-
ing an additional line to make unequal parts, and the 
EML 2013 cohort spent time making sense of 1 and 1/2.  
An important task of teaching is to adjust the instruc-
tional time according to the mathematical issues that 
each cohort struggles with the most.

In basic ways, the students and their mathematical 
proficiency were similar across years, but each co-
hort brought different mathematical ideas, stances, 
dispositions, and issues to explain the brown rectan-
gle problem.  Thus each cohort developed different 
collective resources that became available for use ei-
ther by the teacher or by students.  In comparing the 
mathematical ideas, stances, dispositions, and issue 
brought by different groups of students, I offer the 
following observations.  First, the mathematical scope 
and terrain of collective resources that each cohort 
establishes varies to a certain degree, but all of the 
five cohorts develop the key ideas for naming a frac-
tion.  Second, there are variations in what collective 
resources are available for use to develop a mathe-
matical explanation across cohorts, but the practice 
of constructing collective resources is quite the same.  
Third, some collective resources are for immediate or 
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necessary use, but others remain in reservoir or are 
optional for use either by a teacher of by students.  
Fourth, the same mathematical issue is treated dif-
ferently based on the established knowledge that each 
cohort constructs.  Lastly, eliciting multiple answers 
has been considered an important pedagogical prac-
tice for fostering students’ mathematical abilities and 
enriching mathematical discussion, but how the pro-
posed answers could be used as resources for maxi-
mizing the development of mathematical explanation 
needs to be further examined.

THE CORE TASKS OF TEACHING

The four core tasks in supporting students’ devel-
opment of mathematical explanation for the brown 
rectangle problem are: (1) attending to the organic 
structure of the mathematical task; (2) mapping the 
scope of answers onto the targeted mathematical idea; 
(3) hearing the mathematical needs embedded in stu-
dents’ explanation; and (4) distributing and building 
a mathematical talk collectively.

The first core task is attending to the organic structure 
of the mathematical task.  This core task includes (1) 
focusing on mathematical or non-mathematical at-
tributes which impact the construction of an explana-
tion (e.g., “big rectangle”; the affordance of sticky line; 
drawing the rectangle on the grids); (2) not attend-
ing to mathematical or non-mathematical attributes 
which substantially distract from the construction of 
an explanation; (3) recognizing how the design of the 
mathematical task creates or eliminates confusions 
and how the design of the mathematical task makes 
the key ideas implicit or explicit.

The second core task is mapping the scope of answers 
onto the targeted mathematical ideas.  This includes 
(1) being aware of the scope of answers that students 
propose; (2) deciding which of the proposed answers 
needs an immediate acceptance or denial and which 
needs to be preserved; (3) not delving into the ideas 
that students do not have a shared access to; (4) not 
diverging into the ideas that seriously deviate from 
the targeted mathematical ideas; and (5) spending suf-
ficient instructional time on scaling up the proposed 
answers to the targeted mathematical ideas.

The third core task is hearing the mathematical needs 
embedded in students’ explanation.  This core task 
includes (1) recognizing inaccurate or inconsistent 

language use that impedes building a mathematical-
ly acceptable form of common knowledge; (2) deci-
phering the vague, unclear, or implicit idea conveyed 
by students’ explanations; (3) providing supports to 
build mathematical connections or correspondences 
instead of repeatedly asking general questions; and 
(4) recognizing the skip of or the deviation from the 
logical structure of building an explanation.

The last core task is distributing and building a math-
ematical task collectively.  This core task includes (1) 
not exclusively relying on one students’ contribution; 
(2) being attentive to the trajectory of constructing a 
mathematical explanation; (3) appropriately or suffi-
ciently using a private space and a public space; and 
(4) making each other’s contribution accessible in a 
public space.

DISCUSSION

Given that one of the greatest predicaments of teach-
ing is its dependence of students, it is important to 
figure out how instruction might unfold with differ-
ent groups of students.  On the one hand, one might 
speculate that instruction would unfold in the same 
way by the same teacher teaching the same mathe-
matical task because a teacher might make the same 
decisions based on his or her knowledge, skills, dis-
position, and instructional goals.  On the other hand, 
one might suggest that instruction would unfold in a 
dramatically different way even by the same teacher 
teaching the same mathematical task because teach-
ing entails being responsive to students.  The question 
of how instruction unfolds with different groups of 
students might be answered based on one’s personal 
sensibilities or perceptions built through years of 
their own teaching experiences, but it is not yet rigor-
ously examined in the field  how instruction managed 
by a teacher teaching the same mathematical task is 
likely to unfold differently with different groups of 
students; how collective resources are likely to be 
constructed differently with different groups of stu-
dents; and what is the underlying structure of using 
collective resources with different groups of students.  
By analysing instructional interactions managed by 
the same teacher teaching the same mathematical task 
for different cohorts of students, this study contrib-
utes to identifying core tasks of teaching across the 
particulars of students and unfolding instructional 
dynamics.
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The four core tasks of teaching are not just a mere 
collection of temporal stages, general pedagogical 
strategies, instructional routines, or discourse moves, 
but devised to structurally and attentively capture 
the essential elements of instructional interactions.  
Approaching through pedagogical strategies or dis-
course moves might be one way of examining what 
is entailed in supporting students’ development of 
mathematical explanation, but it entails the risk of 
losing some key elements of instructional interac-
tions.  Instead, this study conceptualizes core tasks 
of teaching by taking into serious account the three-
pronged arrows that a teacher has relationships with 
in the instructional triangle (students, content, and 
students-content) and by anchoring the core tasks of 
teaching into these relationships.  These four core 
tasks are neither sequential nor mutually exclusive.  
Even though there exist differences in what bring to 
foreground and what leaves as background, all four 
core tasks of teaching attend to the coordination be-
tween students and mathematics.
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Exploring a framework for classroom culture: 
A case study of the interaction patterns in 
mathematical whole-class discussions
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Research is needed on frameworks that support teachers 
in the important and challenging work of orchestrat-
ing productive problem-solving whole-class discussions. 
The aim of this paper is to explore a framework for class-
room culture with the overarching goal of supporting 
teachers in conducting class discussions focused on ar-
gumentation as well as connection making. Analyses 
of video-recorded whole-class discussions result in the 
articulation of some difficulties in clearly distinguishing 
between certain interaction patterns within different 
classroom cultures. The overall findings, however, sug-
gest that the framework can be useful for characterizing 
interaction in terms of an inquiry/argument classroom 
culture.

Keywords: Interaction pattern, whole-class discussion, 

classroom culture, inquiry/argument, instructional practice.

INTRODUCTION

There is great consensus within the mathematics-ed-
ucation field that mathematical instruction needs to 
provide opportunities for students to participate in in-
structional practices that develop their mathematical 
competencies (NCTM, 2000; NRC, 2001). To understand 
mathematics, reflection and communication are key 
(Hiebert, Carpenter, & Fennema, 1997). Participating in 
whole-class discussions of multiple solutions to a chal-
lenging problem have great potential to allow students 
to reflect and communicate. However, interactions in 
various reform-oriented classrooms differ significant-
ly, and it is important to relate these differences to stu-
dents’ thinking and learning. Supporting teachers in 
engaging students in interaction that promotes their 
mathematical thinking is central, and frameworks for 
teachers’ actions can help. More research is needed on 
such supportive frameworks.

I have previously (Larsson, 2015; Larsson & Ryve, 
2011, 2012) investigated ways that teachers can plan 
and conduct productive whole-class discussions of 
students’ different solutions to challenging mathe-
matical problems and have discussed ways that Stein, 
Engle, Smith, and Hughes’s (2008) model can support 
teachers in this important and demanding work. In 
short, the model consists of five practices that build 
on each other: anticipating, monitoring, selecting, se-
quencing, and connecting student solutions. However, 
this model does not explicitly focus on how a teacher 
could productively interact with students in whole-
class discussions. 

Among frameworks that focus on interaction (e.g., 
Boaler & Brodie, 2004; Brodie, 2010), I find Wood, 
Williams, and McNeal’s (2006) proposal especially 
interesting because they have found that an inquiry/
argument classroom culture is closely associated with 
higher cognitive levels of student thinking. Moreover, 
Franke, Kazemi, and Battey (2007) see the promise of 
connecting Wood and colleagues' (2006) interaction 
patterns to Stein and colleagues' (2008) model, which 
is central to my research. Wood and colleagues (2006) 
distinguish between two types of reform-oriented 
classroom cultures: strategy-reporting and inquiry/
argument. In the latter culture, there is a “major shift 
in participation from an emphasis on the child report-
ing her/his different strategies to the children as lis-
teners taking over the role of the teacher in question-
ing, clarifying, and validating mathematical ideas” (p. 
235). The role of the listening students is hence crucial 
for distinguishing between the two types of reform 
classroom cultures. Wood and colleagues (2006) state 
that their most important finding is the differences 
between the two reform classroom cultures.

mailto:maria.larsson@mdh.se
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The overarching goal of my research is to help devel-
op frameworks that support teachers in conducting 
productive whole-class discussions that focus on 
argumentation as well as connection making (see 
Larsson, 2015). In relation to this broad aim, this par-
ticular paper explores Wood and colleagues' (2006) 
framework for interaction patterns. More specifically, 
it aims to articulate the difficulties, if any, in distin-
guishing between interaction patterns—in particular, 
reform interaction patterns. I delineate the conceptu-
al framework and the methodology that I use before 
presenting my results, illustrated by a fine-grained 
analysis of one particular whole- class discussion.

CONCEPTUAL FRAMEWORK

I use Wood and colleagues' (2006) conceptual frame-
work for investigating specific interaction patterns in 
the whole-class discussion that I analyze. The purpose 
of their framework is to better understand which op-
portunities for learning arise in various classroom 
cultures. Wood and colleagues (2006) divide the in-
teraction patterns into three categories: (i) patterns 
common to all instruction, (ii) patterns of convention-
al instruction, and (iii) patterns of reform instruction. 
The only pattern common to all instruction is Collect 
answers, in which the teacher collects answers to a 
problem with the purpose of making them public. I 
have summarized the interaction patterns that char-
acterize conventional instruction and reform instruc-
tion in Tables 1 and 2.

METHODOLOGY

The data source for this paper is a collaboration with a 
very proficient teacher regarding mathematical prob-
lem solving discussions with over 15 years of teaching 

experience. I observed this teacher during eight days 
in one academic year without making interventions, 
with a particular focus on the teacher’s orchestra-
tion of whole-class discussions of students’ different 
solutions to challenging mathematical problems. The 
teacher strives to engage students in inquiry and 
argumentation in a collaborative spirit, making it 
interesting to analyze her whole-class discussions 
with Wood and colleagues' (2006) framework. Data 
consist of transcribed video-recorded lessons focus-
ing on the teacher during whole-class discussions, au-
dio-recorded pre- and postlesson teacher interviews 
for every lesson, and collected student solutions. To 
interpret the videotaped, transcribed whole-class dis-
cussions, I performed a fine-grained analysis of four 
whole-class discussions using Wood and colleagues' 
(2006) conceptual framework. All lines were coded 
in segments, each of which was categorized into one 
interaction pattern according to Wood and colleagues' 
(2006) descriptions (see my summary in “Conceptual 
Framework,” above). One additional person coded one 
of the whole-class discussions. The categorizations 
were then compared, and we discussed them to re-
solve differences. 

ANALYSIS AND RESULTS

As an illustration of how this particular teacher in-
teracts with her students in a whole-class setting, I 
use excerpts from a discussion in sixth-grade about 
students’ solutions to the problem “Houses of Cards” 
(Larsson, 2007). Students allowed for far-reaching 
generalizations, considering that they were only in 
sixth grade. This discussion has been chosen because 
it reflects the typical way this teacher interacts with 
her students in a whole-class setting.

Interaction pattern Description Purpose Initiator

IRE (Initiate-
Respond-Evaluate)

Teacher asks a test question, students’ 
responses are confined to yes/no or right/
wrong, and the teacher evaluates.

To check what students know. Teacher

Give expected in-
formation

Similar to IRE, but students’ answers can 
be more open.

To check what students know. Teacher

Funnel Teacher leads student(s) to the answer by 
a number of test questions.

To correct an incorrect student an-
swer without telling the answer.

Teacher

Teacher explain Teacher gives (often lengthy) explana-
tions of key mathematical ideas/concepts.

To tell students what they are expect-
ed to learn and know.

Teacher

Hint to solution Teacher gives a hint that takes away the 
challenge of the problem. 

To ensure that students reach a cor-
rect answer quickly without struggle.

Teacher

Table 1: Conventional-instruction interaction patterns (summary of Wood et al., 2006)
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Houses of Cards (Larsson, 2007)
Albin and Melvin are building houses of cards as the 
picture shows.

1) How many cards does a house of cards contain 
that has

a) 3 floors?

b) 4 floors?

c) 5 floors?

d) 12 floors?

e) n floors?

2) A house of cards consists of 408 cards. How many 
floors does it have?

3) Make up a problem of your own and solve it.

Four different student solutions were discussed by 
the whole class for the general case of the problem. 
Table 3 displays the solutions in the order they were 
brought up for whole-class discussion.

Before the whole-class discussion, the students have 
worked on the problem individually and in pairs. First, 
Paula and Johanna’s unusual strategy is explored. The 
two students help each other, trying to explain their 
strategy, whereupon the teacher asks whether any-
body understands (checks for consensus) and then 
asks for the nth figure if it is odd. Johanna explains 
again and inquires: “But I don’t really know how to 
find a formula for it.” The teacher asks: “Can someone 
else find out how they could write it? The nth figure 
is n · 3· something [shows in the table]. If we have 13, 
it’s 7. If we have 11, it’s 6. If we have 9, it’s 5. If we have 
7, it’s 4.” In several turns, the students and teacher 
collaborate, which is central to inquiry instruction 
(Wood et al., 2006), to find that “something” must be (n 
+ 1) / 2, and Paula concludes, “That works. Then it’s n · 
3 times n + 1 divided by 2.” Then Axel gets to explain his 
strategy (see excerpt below). The interaction patterns 

Interaction pattern Description Purpose Initiator

Explore methods Students explain their solution strategy. To give multiple solution strate-
gies.

Teacher or 
student(s)

Inquiry Teacher or student(s) ask questions be-
cause they do not understand.

To understand. Teacher or 
student(s)

Argument A student listener challenges an idea be-
cause (s)he disagrees, after which students 
participate, taking turns.

To reach to a resolution. Student 
listener

Teacher elaborate Teacher elaborates on a student’s explana-
tion because information is lacking.

To provide more information to 
the students.

Teacher

Proof by cubes Teacher uses material either to find the 
correct answer or to gain understanding.

To get to the correct answer or pro-
vide insight.

Teacher

Proof of answer by 
student explanation

Teacher lets student(s) explain their cor-
rect solution.

To ensure that the class hears a 
correct solution.

Teacher

Focus Teacher first provides a summary before 
asking a question that focuses students on 
what they need to resolve.

To orient students toward key 
aspects.

Teacher

Build consensus Teacher tries to have the class agree on a 
key mathematical idea.

To establish common ground in the 
class.

Teacher

Check for consen-
sus

Teacher checks with students to see wheth-
er they have questions or comments on a 
student idea.

To open up for questions and com-
ments before moving on.

Teacher

Develop conceptual 
understanding

Teacher asks a question that addresses a 
specific idea or concept.

To facilitate students’ conceptual 
understanding.

Teacher

Pupil self-nominate A student voluntarily offers an idea or 
insight that goes beyond the topic and ex-
plains/justifies the idea.

To have students exercise their 
autonomy as participants. 

Student

Table 2: Reform-instruction interaction patterns (summary of Wood et al., 2006)

Figure 1
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from Wood and colleagues' (2006) framework that my 
analysis yielded are included as headings.

Explore methods
1 Axel: I thought a little like Paula, like 

she did on this one with—what was it?
2 Students:  Flowers.
3 Axel: With flowers, exactly.
4 Students: Aha.
5 Axel:  Then I thought that you have to 

add another card house—but sort of upside 
down, on top of. And then I was doing that 
for a very long time. Finally, I arrived at that 
it first gets n · 3 here [points at the tilted pile 
with four triangles]. Yeah, I have to write 
that, I think [refers to his expression]. ’Cause 
this is Figure 4. n · 3 [points at the tilted pile] 
and n · 3 plus 3 [points at the bottom row]. 
And then you see here 1, 2, 3, 4, so it’s 4—no 
it’s 1, 2, 3, 4, 5—it’s five of these stripes here. 
And then you’ve got to take times n + 1.

Check for consensus
6 Teacher:  Does anybody understand what 

he’s saying?
7 Students: No. Yes. Hmmm… 
8 Axel:  Should I explain again?

Build consensus 
9 Teacher:  We don’t understand anything.
10 Frida: Or do you mean like this? Wait, 

wait. Eeh, I think I might know what you 
mean. First n · 3. ’Cause that’s Figure 4, right?

11 Axel: Yes, it’s Figure 4.
12 Frida: Yes, Figure 4. Yes, then you see 

there on the edge that it’s four triangles go-
ing alongside there, and that’s the same thing 
as n.

13 Lena:  He counts the cards separately, 
I think.

14 Axel: No, but check this out—
15 Frida: First he calculates times, and 

then he calculates it times 3. 
16 Lena: Ahaa.
17 Frida: Do you understand? So it’s n · 3 + 

n · 3 + n · 3 + n · 3. And then you divide [.] Yeah, 
but then it gets [.]

18 Johanna: No, it’s simply to do n · (n + 1). No, 
I’m just kidding [she laughs]. Yes, but check 
this out [points at the board]—n, there on the 
edge, and then n + 1. And that times, so that’s 
like a quadrangle, but it’s nudged. And that 
divided by 2. So n · (n + 1) / 2.

19 Axel: That you’ve got to multiply by 3 
for each of these [.] It’s 3 in each: 

  n · (n + 1) · 3 / 2.
20 Johanna: Yeah. So n · (n + 1) · 3 / 2. [Teacher 

writes it on the board.]
21 Axel: It works.

Lena and Frida’s solution and Andreas’s solution 
are then explained and discussed.

Check for consensus
22 Andreas:  Do you understand? [Refers to 

his explanation of his own solution.]

Table 3: Student solutions in class discussion of “Houses of Cards,” in sequential order
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23 Students: Yes, I get it. Yeah.
24 Teacher: Do you understand? Yes?

Argument
25 Paula:  They’re a little different [refers 

to solutions 2 and 4], or I don’t know, because 
there it’s times 3, also divided by 2, but there 
it isn’t times 3 divided by 2. But maybe it 
doesn’t matter.

26 Lena: They take times 3 in the end.
27 Paula: Exactly. They take times 3 with-

out having divided it.
28 Lena: It’s the same thing.
29 Paula: But there it’s times 3 divided by 

2, and there it isn’t.
30 Lena: Yes, here it’s—
31 Paula: But maybe it doesn’t matter.
32 Teacher: Exactly. If you think of [writes 

and talks] 3 · (8 / 2), what’s that, Paula? 12 
[writes and talks]. What’s (3 · 8) / 2? 

33 Paula: It’s also 12.
34 Teacher:  Yes, that’s also 12. So it’s the same 

thing. 

Focus
35 Teacher: So now my question is—now 

we’ve got 1, 2, 3 different [points at the for-
mulas], and Andreas’s here—that’s another 
one—that’s four different. My question is: 
Are all different formulas? Are all different?

36 Lena: Actually, they’re all the same 
thing. Everything makes the same thing, 
the same answer. That means that they’re 
all equal; you just write it in different ways.

37 Teacher: Exactly, they’re all correct; it’s 
the same answer, and it’s the same card 
house. You just write it in different ways. 
This means that you can use algebra, the 
mathematical language, to express the same 
thing in different ways.

After an initial exploration of Axel’s method [1–5], 
when he tries to explain his strategy and also makes 
a connection to Paula’s solution to a previous prob-
lem, the teacher checks for class consensus by asking, 

“Does anybody understand what he’s saying?” [6], with 
the purpose of opening the floor for questions and 
comments. Since the students’ answers vary [7], Axel 
asks whether he should explain again [8], whereupon 
the teacher states, “We don’t understand anything” 
[9]. Now comes the really interesting part [10–21]: in-

stead of leaving Axel alone to try to explain once again, 
classmates help him out in a collaborative manner 
that is characteristic of an inquiry/argument culture, 
according to Wood and colleagues (2006). Together 
the students try to make sense of the ideas and build 
a shared understanding; they build consensus.

Note that the teacher does not need to say anything 
during these turns while the students build consensus. 
The pupils build upon one another’s statements. This 
must be seen as a result of the social and sociomathe-
matical norms (Yackel & Cobb, 1996) that this teacher 
had established in her classroom during a long pe-
riod of time. Since I have observed and interviewed 
the teacher in connection with many lessons, I know 
that she strives to foster collaborative discussion in 
which students help each other and “are listening and 
participating students at the same time” (Interview). 
This approach hence relates to the role of students as 
active listeners who try to understand, question, vali-
date, and build on one another’s contributions. In my 
view, this example amply illustrates the connection 
between classroom norms and the interaction pat-
terns that develop (Wood et al., 2006). On her own ini-
tiative, Frida helps Axel out, saying, “Wait, wait. Eeh, I 
think I might know what you mean” [10]. She ensures 
that they are talking about the same figure number 
and continues to explain [12]. Lena also contributes 
by describing how she thinks Axel has reasoned [13], 
which helps her understand [16] after she gets addi-
tional input from Frida [15]. Frida actually addresses 
Lena directly with her question, “Do you understand?” 
[17]. When Frida continues to explain, she hesitates 
[17], whereupon Johanna steps into the discussion [18], 
making clear that “No, it’s simply to do n · (n + 1).” To 
Johanna’s formula, n · (n + 1) / 2, Axel adds [19] “That 
you’ve got to multiply by 3 for each of these [.] It’s 3 
in each: n · (n + 1) · 3 / 2.” Johanna clearly shows her 
agreement [20]. Axel seems content in his concluding 
comment: “It works” [21]. A correct formula for Axel’s 
strategy has now been produced through the class’s 
collaboration. The students act as “listeners taking 
over the role of the teacher in questioning, clarify-
ing, and validating mathematical ideas” (Wood et al., 
2006, p. 235), a salient feature of an inquiry/argument 
classroom culture.

After Lena and Frida’s and Andreas’s solutions have 
been discussed in a whole-class setting, four algebraic 
formulas are displayed on the board for the number 
of cards. Andreas checks the class for consensus by 
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asking, “Do you understand?” [22], and the teacher 
repeats his check [24], whereupon Paula argues that 
Axel’s and Andreas’s solutions are different. Paula and 
Lena take turns [25–31] in an Argument interaction 
pattern, trying to resolve whether the two formulas 
are equivalent (the teacher steps in to help [32–34]). 
The teacher summarizes and focuses the discussion 
on a key aspect by asking whether all four formulas 
are different [35], and Lena says that “Actually, they’re 
all the same thing.” [36]. The teacher concludes the dis-
cussion by restating this key mathematical idea [37].

DISCUSSION

I find Wood and colleagues' (2006) framework straight-
forward for distinguishing between conventional and 
reform interaction patterns. The categories cover the 
interactions well. However, I see some difficulties in 
making a clear distinction between certain reform 
interaction patterns. Wood and colleagues (2006) 
state regarding the pattern Check for consensus, “The 
teacher participates by checking with the students 
and listening to find out if they have any questions 
or comments about an idea, strategy, or concept that 
a student explained.” So far so good. They continue: 

“The student explaining may be asked further ques-
tions or to re-explain by the listening students. In 
some cases, listeners give another different strategy 
for solving the problem or offer further explanation. 
The outcome is public agreement on the validity of 
an idea or concept given by the student explaining” 
(p. 255). 

I am concerned about the second part whose inter-
pretation constituted the major difference in the in-
terrater coding. In my interpretation, a Check for con-
sensus consists solely of checking with the students 
to see whether they have questions or comments on a 
student’s idea. This aligns with Wood and colleagues' 
(2006) statement that “Checking for consensus initiat-
ed by the teacher appeared to be a final attempt to open 
the discussion so any child could make comments or 
ask questions before moving on in the discussion” (p. 
235). The teacher’s check can then be followed by, for 
example, a student asking a question in order to un-
derstand (Inquiry) or challenging an idea (Argument) 
or by the teacher trying to establish common ground 
on key ideas (Build consensus) in the class (cf. the short 
Check for consensus [6–8] and [22–24], followed by 
Build consensus and Argument). However, the inter-
rater coding made clear that another interpretation 

could be that the entire interaction is a Check for con-
sensus since “the outcome is public agreement” (i.e., 
[6–21] constitutes one extended Check for consensus). 

Making clear that a Check for consensus is solely a 
check and is followed by other interaction patterns 
would render the framework more straightforward. 
Further, my analysis suggests that in addition to the 
teacher (as stated by Wood et al., 2006), a student 
might also initiate such a check (cf. Andreas’s Check 
for consensus [22]). Just as it is difficult to determine 
when the pattern Check for consensus ends, it is not 
completely clear when the Inquiry pattern ends. My 
interpretation is that the Inquiry pattern consists sole-
ly of the act of asking and does not include the clarifi-
cations that follow. Again, outlining clear criteria not 
only for when an interaction pattern starts but also 
for when it ends would make Wood and colleagues' 
framework less ambiguous.

Solutions are purposefully selected by the teacher 
when using Stein and colleagues' (2008) five-practices 
model. Therefore, the pattern Exploring methods is 
hard to distinguish from Proof of answer by student 
explanation in terms of correct solutions; only their 
purposes differ (see Table 2). The purpose of delib-
erately selecting a correct solution for display can 
be both to provide multiple solution strategies and 
to ensure that the class hears a correct solution (cf. 
solutions 3 and 4 in Table 3).

The difficulties with Wood and colleagues' (2006) 
framework relate mainly to distinguishing between 
certain interaction patterns that are specific to dif-
ferent classroom cultures. Hence, the difficulties in 
interpretation affect only the relative distribution of 
the interaction patterns within a specific classroom 
culture, not whether the culture should be regarded 
as inquiry/argument or strategy-reporting. 

Since Wood and colleagues (2006) have shown that 
an inquiry/argument classroom culture is closely re-
lated to higher cognitive levels of student thinking, I 
contend that it is desirable for teachers to strive to 
establish inquiry/argument interaction patterns. I see 
tremendous potential in using Stein and colleagues' 
(2008) model as a tool to guide teachers’ actions and 
support teachers’ development over time in their or-
chestration of whole-class discussions. My ongoing 
efforts intend to take into account argumentation as 
well as connection making in the Stein and colleagues 
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(2008) model. The exploration of Wood and colleagues' 
framework in this paper contributes to those efforts.
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This study investigates in-depth how two teachers use 
the textbook in mathematics classrooms. Their use of 
the textbook was analysed in the light of a socio-didac-
tical tetrahedron (SDT) which proved to be a powerful 
model to describe many aspects of textbook use that we 
encountered. Our results showed that the teacher acted 
as the mediator between the textbook and the students, 
but the lower part of the SDT helped us to identify the 
influence of social factors on textbook use which is an 
aspect that cannot be disregarded.

Keywords: Mediation, socio-didactical tetrahedron 

textbook, teacher, teaching.

INTRODUCTION

The issue of how textbooks shape the teaching and learn-
ing of mathematics has been the subject of many studies 
(Fan, Zhu, & Miao, 2013).Textbooks can be considered as 
artefacts which are dynamically used in classrooms, in-
fluencing the instruction (Johansson, 2006). Their con-
tent follows and largely reflects the requirements and 
intentions of the intended curriculum. Various studies 
have shown that teachers rely heavily on textbooks for 
lesson preparation, teaching new subject matter, prac-
ticing and giving homework assignments (e.g., Pepin 
& Haggarty, 2001; Johansson, 2006; Glasnović-Gracin, 
2011).This paper investigates in-depth two mathematics 
teachers’ practice in relation to the use of the textbook 
in the mathematics classroom.

THEORETICAL FRAMEWORK

Textbook-teacher-student
The teacher’s role as a mediator between the textbook 
and the students has been considered by various au-
thors (e.g., Luke, de Castell, & Luke, 1989; Love & Pimm, 
1996). Pepin and Haggarty (2001) give the research 

systematization on the use of textbooks through six 
main domains, one of which relates to the teacher 
as the mediator of the text. They assert that it is the 
teacher who decides which textbook to use, when and 
how it is used, which parts to use and in what order, 
and when and to what extent the students will work 
with the text. Traditionally, mediating between the 
students and textbook has always been the teacher’s 
function (Luke et al., 1989).

According to Remillard (2000), textbooks can alter the 
teaching strategies of teachers, but conversely it is the 
teachers who choose what to use and what not to use 
from the textbook. Sosniak and Stodolsky (1993) found 
that teachers have autonomy and that they like to me-
diate between the textbook content and their students. 
Also, teachers do not feel that the textbooks control 
their teaching. In addition, the authors believe that in 
order to understand the use of textbooks in classrooms, 
the thoughts, actions and working conditions of the 
particular teacher need to be taken into consideration. 
This brings us to the socio-didactical tetrahedron.

The socio-didactical tetrahedron
The use of textbooks in the classroom can be con-
sidered through the model of the didactical tetrahe-
dron where the vertices are student-teacher-text-
book-mathematics (Rezat, 2006). However, this model 
does not encompass societal and institutional aspects, 
which are also important factors in mathematics edu-
cation. Therefore, Rezat and Sträßer (2012) proposed a 
more comprehensive model of didactical tetrahedron, 
called the socio-didactical tetrahedron (SDT). We im-
agine the basic didactical tetrahedron (Figure 1.) where 
the vertices are artefact-student-teacher-mathemat-
ics, as being put in such a position where the vertices 
student, teacher and mathematics lay on the bottom of 
the tetrahedron. These three vertices are extended by 
the social and cultural parameters, forming a compre-
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hensive socio-didactical tetrahedron. The new bottom 
vertices in the SDT are: conventions and norms about 
being a student and about learning; conventions and 
norms about being a teacher and about teaching; and 
the public image of mathematics. These three verti-
ces are connected to each other through the bottom 
edges. Since these social and cultural parameters lay 
in a complex relationship, other points on the bottom 
edges are highlighted, such as institution, noosphere, 
and peers and family (Rezat & Sträßer, 2012).These so-
cial and institutional parameters are often considered 
to be “hidden” or “less visible” because the persons 
involved are often not conscious of them. Therefore, 
we can see the SDT as an iceberg in the water: we of-
ten only consider the “visible” didactical tetrahedron 
involving just the teacher, student, mathematics and 
artefacts, and we forget (or we are not conscious of ) 
the social and other parameters involved.

With all its highlighted points, the SDT model is a 
powerful enough tool to provide a structure for text-
book use and to show the cultural interplay between 
educational and social context. For example, Rezat 
(2013) conducted a qualitative study on students’ use 
of mathematics textbooks in Germany. The findings 
show that social impacts are important factors which 
influence students’ use of textbooks. Some aspects of 
textbook use cannot be explained without taking into 
account the whole SDT.

Previous research and research focus
The study presented in this paper is a follow-up re-
search on the large-scale study reported in Glasnović 
Gracin (2011). Using a questionnaire with multiple 
choice items, the previous study investigated the role 
of mathematics textbooks in lower secondary educa-
tion in Croatia (grades 5 to 8). The survey involved 
nearly one thousand mathematics teachers, which is 
about half of the total number of mathematics teach-
ers in grades 5 to 8 in Croatia. The results showed that 
teachers use textbooks for lesson preparation to a 
great extent. Participants said that new material is 
mainly presented by the teacher at the front of the 
class followed by students working individually on 
the textbook exercises. So, the teachers consider the 
textbook to be an important source of practice exer-
cises for students. The survey also showed that most 
teachers select a textbook mainly according to the 
quality of its examples and problems. The coherence 
between the textbook methodology and the students’ 
age was also an important factor which proved to be 
relevant for 64% of teachers.

In this new study, we wanted to examine in a more 
in-depth way how mathematics teachers use the text-
book in their teaching practice. Since the previous 
study encompassed a quantitative method, here we 
wanted to use a qualitative approach. The aim was 
to investigate how teachers use textbooks in math-
ematics classrooms and to identify potential factors 
that influence such use. The findings are observed in 

Figure 1: Socio-didactical tetrahedron
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the light of the SDT, in order to better understand the 
teaching and learning of mathematics.

METHODOLOGY

Participants
The study involved two female mathematics teachers, 
Mrs. S and Mrs. D, from lower secondary education 
in Croatia (in our education system, this is a primary 
school, grades five to eight). The teachers chosen for 
this study are both experienced teachers: Mrs. S has 
15 years of teaching experience and Mrs. D 20 years of 
teaching experience. Both participants have a degree 
in mathematics education and use the same textbook 
series. It is the most commonly used textbook series in 
Croatia, used by about 65% of the whole student popu-
lation (data retrieved from the Ministry of Education, 
Science and Sport).The structure of this textbook can 
be described as the “exposition – examples – exercises” 
model. It has been found that this kind of model pre-
dominates in the structure of mathematics textbooks 
(Love & Pimm, 1996).

The Croatian education system
In the Croatian education system, primary school 
is compulsory and lasts for eight years. Secondary 
school is not compulsory, but the majority contin-
ues to go to school after finishing primary school. 
Secondary school lasts three or four years, depend-
ing on the type of school (i.e. vocational or grammar). 
One lesson unit lasts for 45 minutes in both primary 
and secondary school. Textbooks are compulsory and 
all textbooks used in schools are authorized by an 
official group of experts appointed by the Ministry 
of Education. As of 2010, teachers jointly select au-
thorized textbooks for their school for the period of 
4 years. Textbooks are usually purchased by parents, 
except for a short period from 2006 to 2008 when the 
Ministry of Education provided free textbooks for all 
primary school students in Croatia.

Method
In this study, we used qualitative strategies in the form 
of observations and interviews. During October 2013, 
we observed several lessons given by the participants. 
In that year, Mrs. S was teaching sixth grade, and Mrs. 
D grades five and eight.

For the purposes of observation, we designed three 
main observation categories. The categories were: 

 ― Minutes of textbook use (How much time do the 
students and the teacher use the textbook?)

 ― Impact of the textbook structure on instruction 
(What is the influence of the textbook content 
and structure (title, language and symbols, or-
der of worked examples, definitions and rules, 
didactic intentions) on instruction? Does the in-
struction follow the textbook page by page? What 
is taken from the textbook?)

 ― Use of the textbook (For what purposes is the text-
book used during the lesson? How is new con-
tent introduced? Is the textbook used during the 
teaching of new mathematical content? What is a 
practice lesson like? Which sources are used for 
practicing and homework? Is the textbook used 
for practicing and reviewing? Did the teacher 
point out any specific figure, frame or picture 
from the textbook? For what purposes?)

Prior to each observation, we examined the structure 
of the mathematical content which was to be taught in 
that lesson. This helped us in making comments and 
answering the observation questions. After the class-
room observations, we conducted a semi-structured 
interview with each of the participants. The inter-
view questions come under three main categories, but 
the interviewer was able to ask additional questions 
based on the observed lessons or expand upon an in-
teresting point arising during the interview:

 ― Impact of the textbook structure on instruction 
(Describe how you usually prepare for a math-
ematics lesson. Does the textbook, in your opin-
ion, influence the structure of your instruction, 
e.g., using the same title as in the textbook for the 
lesson unit, using the same definitions, symbols, 
sequence, didactical approach, worked examples, 
figures? Explain.)

 ― Use of the textbook (Describe a typical lesson 
where new content is introduced. Describe a typ-
ical lesson with emphasis on practicing. Describe 
a typical revision lesson before a test. Describe 
how you select homework activities and from 
which sources. Do you significantly change your 
teaching style when you change the textbook?)



Teacher and textbook: Reflection on the SDT-model (Ljerka Jukić Matić and Dubravka Glasnović Gracin)

3075

 ― Strong and weak points of the textbook (What do 
you find is lacking in textbooks? What do you like 
and what do you find helpful about textbooks?)

Data analysis was conducted using the constant com-
parative method (Corbin & Strauss, 1990). Data gath-
ered from the observations and the interviews were 
coded thematically. This process allowed us to attend 
to, and report on, those aspects of textbook mediation 
that were common to both teachers as well as their 
differences.

RESULTS

Minutes of using the textbook
We observed four lessons of Mrs. S teaching grade six. 
The textbook was used intensively in all her observed 
lessons. Students had the textbook open on their desks 
all the time. In the first lesson, the textbook was used 
directly for 10 minutes when students worked on their 
own solving tasks from the textbook, and for the rest 
of the lesson the students and the teacher used it oc-
casionally. In the other three lessons, the textbook 
was used for the entire 45 minutes.We observed three 
lessons given by Mrs. D. She used the textbook directly 
only in the first observed lesson for 15 minutes. In 
the other lessons, the textbook was not used by the 
students or the teacher at all.

Impact of the textbook on instruction 
The textbook had significant impact on the lessons 
observed in Mrs. S’s classroom. In the first lesson, the 
textbook was followed page by page for more than half 
of the lesson. The influence of the textbook was also 
visible in other parts of the lesson. The rules written 
on the blackboard were the same as the rules in the 
textbook. In the second lesson, to introduce and teach 
a new topic, the teacher used the motivational exam-
ple from the textbook, as well as the worked exam-
ples and rules. The exercises for practicing were also 
from the textbook. In the third lesson, the textbook 
structure was heavily reflected in the lesson, since the 
textbook was followed page by page. The fourth lesson 
was preparation for the up-coming exam, where stu-
dents solved problems from the textbook in the exact 
order as given in the textbook. In the interview, Mrs. S 
explained that she always uses the textbook in lesson 
preparation. The textbook structure influences her 
lessons and the textbook is the main source for prac-
ticing and for homework. Mrs. S explained that in this 
way she encourages the students to use the textbooks. 

She wants her students to use textbooks actively for 
two reasons. The first reason is “so that children can 
find at home what we did in class, especially if some-
one did not understand what I said in school”. The 
other reason is so that students become independent 
and confident in using various resources, like books, 
encyclopedias or other curriculum materials. In this 
way she aims to prepare students for the active use 
of textbooks in upper secondary school, where the 
subject matter is more demanding than in the lower 
secondary grades.

Mrs. D did not follow the textbook page by page in any 
of the lessons observed. In the first lesson, rules were 
taken from the textbook, as well as some exercises for 
practicing. In another observed lesson, the textbook 
was not even open in front of the students; all the tasks 
were on a worksheet she had prepared, though some 
tasks were similar to those in the textbook. All of the 
lesson titles that she wrote on the board were the same 
as the titles in the textbooks. In the interview, Mrs. 
D said that the textbook was not her main resource 
for lesson preparation. Rather, she uses a variety of 
available materials such as the internet, a range of 
textbooks (old and new), professional journals, and 
ideas from colleagues.

The use of textbook
In the first of Mrs. S’s observed lessons, the students 
used the textbook for learning new content. They 
were required to read the new unit from the textbook 
(Reciprocal fractions), become familiar with the new 
content, and work through the examples and exercises 
from the textbook. The teacher helped those students 
who had problems with understanding the textbook’s 
content, thus she acted as mediator between the text-
book and the student. The second observed lesson 
involved the division of fractions. The new content 
was presented through a teacher-led discussion with 
the class, where the teacher relied on the textbook, 
using the model of the chocolate bar (quadrilateral 
shape) as presented in the textbook. The discussion 
brought up some rules for fraction division, and the 
teacher also introduced the case a

b  : n
 
which was not 

in the textbook, which some students remarked on. 
The practice tasks which followed were also from the 
textbook, as was the homework. The third and fourth 
lessons had a very similar structure. The teacher gave 
a long list of textbook exercises to be done, wrote the 
page number and exercise numbers on the board, and 
the students opened their textbooks and individually 
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worked through the tasks. At the end of the lessons, 
the teacher assigned the homework, which was also 
from the textbook.

In the interview, Mrs. S said that she uses the text-
book for teaching new mathematical content if she 
finds that the book covers the subject matter well. If 
it does, she does not devise her own exposition and 
examples. However, she says that she does not take all 
the definitions directly from the textbook:

“I change a definition sometimes, not because my 
way is better, but so that students can see that the 
same thing can be said in different ways...”

At the beginning of the first lesson with grade eight, 
Mrs. D checked and went over the homework from 
the previous lesson (the homework was from the text-
book).The teaching of the new content of powers was 
not related in any way to the textbook: the teacher 
used a story from the Rhind Mathematical Papyrus: 

“There are seven houses. In each house there are seven 
cats. Each cat kills seven mice. Each mouse has eaten 
seven grains of barley and each grain would have pro-
duced seven hekats. How many grains of barely will 
be saved?” The teacher pointed out the rules for the 
powers in the textbook and the exercises which stu-
dents should do during the lesson. The teacher did not 
assign homework from the textbook, but gave a link to 
a web page with numerous tasks for practicing. The 
second and third observed lessons were in the fifth 
grade and in both lessons students worked in groups. 
In the second lesson, the students competed in a quiz. 
The tasks were prepared on a worksheet and were 
not the same as the textbook items. The third lesson 
was a revision of the topic of whole numbers. Here 
students participated in a game, which consisted of 
solving various tasks. The solution to each task was 
a piece of a puzzle that contributed to the solution of 
the overall puzzle. The tasks were similar to the items 
from the review section in the textbook. The game, 
however, did not come from the textbook.

In the interview, Mrs. D explained that she rarely in-
troduces new procedures and concepts according to 
the textbook; she likes to use her own ideas. She uses 
the textbook for students to practice, but she uses 
other resources as well. For reviewing, she uses the 
textbook items, or composes similar ones herself. She 
considers that other textbooks do not greatly differ, 
having similar exercises.

Strong and weak points of the textbook
In the interview, Mrs. S described her attitude to-
wards the official textbooks she was currently using 
in the classrooms. She was dissatisfied with the in-
troductory sections of the lessons in the textbooks. 
However, she liked the selection of worked examples, 
that there are plenty of exercises from simpler to more 
complex ones, and that the exercises come right after 
the exposition.

“I think it’s right that when we learn something 
[a new concept], the exercises should follow on 
directly. Not be placed at the end of the chapter. 
This way parents can find them easily… Most of 
the parents aren’t mathematicians and they don’t 
always know what to give their children for prac-
tice, they might give them the wrong tasks.”

Mrs. D said that she is satisfied with the textbook 
structure and exercises. But she also finds some text-
book definitions and rules to be inappropriate for the 
students’ age, so she rephrases them:

“Definitions are sometimes unclear to students, 
so I translate them to be simple and clear”.

She says that the main reason for choosing the current 
textbook series was financially and socially based:

“Our school uses this textbook because… many of 
our students have brothers and sisters, we don’t 
want them to have to buy new textbooks so we 
decided to continue to use this one and not to 
change it.”

DISCUSSION AND CONCLUSIONS

Both participants consider their position as media-
tors between the textbook and students, in spite of the 
fact that they have different approaches to teaching 
mathematics and the use of textbooks. They both high-
ly control what will be learned and practiced, how and 
when it will be learned. These intentions are related 
to the norms about being a teacher and about teach-
ing because the teacher is supposed to prepare and 
shape the lesson actions. This is related to the SDT 
face textbook-teacher-student with the related social 
components placed on the bottom of the triangle: insti-
tution, conventions and norms about being a student 
and about being a teacher (see Figure 1).
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Mrs. S uses the textbook as the central tool for teach-
ing and encourages her students to use the mathemat-
ics textbook intensively. All the exercises done in the 
four observed lessons were taken from the textbook. 
Although she complained in the interview that she 
is not satisfied with the introductory sections of the 
textbook, in the observed lessons she used the mate-
rial from the textbook. It may be that she relied on the 
textbook as a guarantee of stable quality (Pehkonnen, 
2004) because the approved textbooks offer security 
and convenience for teaching (Love & Pimm, 1996). On 
the other hand, she claims that she encourages the use 
of the textbook because of the students. Learning how 
to use the textbook will help them when they attend 
the subsequent secondary school. Here we come to 
institution on the SDT. This also means that for her 
using textbooks does not mean just “learning math-
ematics from the textbook”, but also “learning how to 
use a textbook, i.e. learning for life”. Mrs. S mentioned 
another reason why she encourages the use of text-
books by her students – if the student was absent, or 
did not understand the subject matter in school, he/
she is able to look at the textbook at home with the 
help of peers or parents. Here we come to peers and 
family on the other face of the SDT. The relationship 
textbook-student-mathematics-peers and family cor-
responds to the explanation given in the interview 
that the textbook helps parents to help the students 
at home. This is one of various reasons why Mrs. S 
follows the textbook so closely. This is also connected 
with the textbook being clearly organized – so that 
students and parents can catch up. The importance 
of the contents of the textbook being set out in a clear 
and simple way was mentioned by both participants.

The second participant Mrs. D prepares lessons using 
a variety of materials, the textbook being just one of 
them. She chose different and innovative ways both of 
presenting new concepts and practicing them. This is 
related to the norms and conventions of being a teach-
er and about teaching (Remillard, 2009). She likes the 
structure and the amount of exercises in the textbook, 
but she used it directly in only one observed lesson. 
The interview and the analysis of the observed lessons 
showed that she mostly used the same titles, symbols, 
definitions and rules as found in the textbook. For 
example, after a creative introduction to the idea of 
powers, her students opened the textbooks and copied 
the rule into their notebooks. The copying of rules 
and definitions into notebooks was also observed in 
Mrs. S’s classes.

In the interviews, both participants said that they 
sometimes change the wording of the definitions and 
rules from the textbook to make them more appro-
priate for the students. This means that the teachers, 
during the lesson preparation, reflect on the didac-
tics of mathematics in the textbook. This also corre-
sponds to the norms about being a teacher, because 
the principle of compatibility of mathematical content 
with the students’ age is one of the basic principles 
in mathematics education (Kurnik, 2009). The text-
book content should be appropriate to the students’ 
age, and at the same time it should be mathematically 
correct. The teacher should reflect on this interplay 
during the lesson preparation. This finding leads to 
the tetrahedron face with the vertices teacher-text-
book-mathematics.

Mrs. D gave a reason of a social nature as to why the 
textbook is not frequently changed in their school. 
The same textbooks are used for a number of years, 
so that the younger generations can use the textbooks 
of their older siblings. This means that social and fi-
nancial reasons are important factors in choosing 
whether to change the textbook or not. Such use of 
textbooks can be explained with the relationship 
within the SDT, textbook-student-parents-public im-
age of mathematics. In Croatia, parents buy textbooks 
and this represents a great expense for them at the 
beginning of each school year. Also, from the public 
point of view, mathematics is concieved as a static 
discipline, with a long known set of concepts, prin-
ciples, and skills (Cooney, 1985), and the learning of 
mathematics is concieved through practicing various 
exercises. Thus, from this persepective, there is no 
need to change textbook if the textbook contains a 
good amount of exercises.

All these findings lead to the conclusion that the re-
flection on the actions within the SDT model can help 
in understanding the teaching and learning of math-
ematics. The survey results obtained in Glasnović 
Gracin (2011) were not sufficient in comprehending 
the deeper reasons related to the teachers’ use of math-
ematics textbooks. The qualitative approach present-
ed in this paper confirmed and extended the survey 
results: Croatian teachers use textbooks for lesson 
preparation, exercises and homework. However, the 
findings of this qualitative study show in-depth how 
and why Croatian teachers use the textbooks in the 
classroom. One particular finding is related to the 
textbook characteristics. Teachers should have good 
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mathematical knowledge for teaching, i.e. according 
to Ball and colleagues (2008), knowledge of content, 
students, curriculum and teaching, and to know the 
strong and weak points of the textbooks to be able 
to decide when to be the mediator between the text-
book and students, and when to use other instruc-
tional resources for teaching beside the textbook. 
The study implies that teachers’ use of the textbook 
is multilayered. This utilization is connected with the 
complex interaction between the STD components. 
Consequently, textbook use should not be examined 
separately from social and institutional influences.

Using the SDT model offers great potential and ide-
as for new studies. For example, the triangle stu-
dent-mathematics-textbook is a very important face 
of the SDT. This aspect needs to be examined in more 
depth in order to better understand instruction and 
to improve instructional quality in the classroom.
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Interdiscursivity and developing 
mathematical discourse for teaching
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This paper aims at further elaborating on a redefined 
theory of mathematical knowledge for teaching in terms 
of participation in discourse. This redefined theory of 
mathematical discourse for teaching is used to analyze 
data from mentoring sessions in initial teacher educa-
tion. The results indicate that the mentor teacher, who 
is a more central participant in the mathematical dis-
course for teaching, is able to more dynamically switch 
between the different discourses related to mathematics 
teaching than the pre-service teachers—referred to as 
interdiscursivity. 

Keywords: MKT, discourse, teacher education, mentoring 

dialogues.

INTRODUCTION

Learning is often defined as a process of acquiring 
knowledge; this metaphor of acquisition is popular 
in education research (Sfard, 1998). Following this 
metaphor, an aim of education is for students to learn 
something (i.e. acquire knowledge), and the teacher’s 
responsibility is to ensure that students gain the re-
quired knowledge. In order to handle the tasks that are 
involved in this work of teaching mathematics, teach-
ers need a particular kind of professional knowledge. 
Ball, Thames and Phelps (2008) have proposed a the-
ory of mathematical knowledge for teaching (MKT) 
that has become widely used. Ball and colleagues de-
fine MKT as “the mathematical knowledge needed to 
carry out the work of teaching mathematics” (p. 395). 
Following Shulman’s (1986) theory of teacher knowl-
edge, they describe several subdomains of MKT. These 
subdomains of knowledge are seen as distinguishable 
and measurable. Measuring particular subdomains 
of MKT is, however, challenging. When analyzing 
the connection between teachers’ responses to mul-
tiple-choice MKT items and additional written re-
flections, Fauskanger and Mosvold (2013) found that 

teachers use knowledge from different subdomains 
of MKT when responding to items that were designed 
to measure one particular subdomain only. Sticking 
with the metaphor of acquisition, a quandary emerg-
es: How can teachers use knowledge from different 
subdomains of MKT when responding to an item, if 
these subdomains are distinct and items have been 
developed to measure distinct subdomains only?

Instead of adhering to the acquisition metaphor to 
knowledge and learning, I follow the participation 
metaphor (Sfard, 1998; Skott, 2013) in this paper when 
I look at mathematical knowledge for teaching from 
a discourse perspective. In doing this, I adopt Sfard’s 
(2008) commognitive framework and follow Cooper’s 
(2014) suggestion of redefining MKT into “mathemat-
ical discourse for teaching”. Cooper argued that such 
a redefinition of the MKT framework is useful for 
interpreting data from professional development of 
teachers. My aim is to extend this redefined frame-
work further and apply it in analysis of example data 
from initial teacher education. With this theoretical 
framework, I will argue, the quandary with the dis-
tinct subdomains of MKT becomes obsolete. 

THEORETICAL FRAMEWORK

Before Shulman (1986) presented his ideas about 
teachers’ professional knowledge, classroom research 
often had a focus on observable behavior of teach-
ers and/or students. His main contribution was to 
focus researchers’ attention on the role of teachers’ 
knowledge. Shulman, who adhered to an acquisition 
metaphor, suggested that the knowledge required by 
teachers could be divided into several distinct catego-
ries. Among the most well-known are subject matter 
knowledge and pedagogical content knowledge, and 
these two categories are often presented as import-
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ant aspects of teacher knowledge (e.g., Baumert et 
al., 2010). When Ball and colleagues (2008) present-
ed their theory of MKT, they continued to scrutinize 
Shulman’s initial categories. Subject matter knowl-
edge and pedagogical content knowledge were divid-
ed into subdomains, and this model was depicted in a 
figure that has later been referred to with nicknames 
as “the egg” or “the oval” (Figure 1).

Sfard’s (2008) theory represents a different view. A 
main idea is that cognition and communication are 
inseparable, and she combines the two terms into a 
new theoretical term: “commognition”. She defines 
thinking as “an individualized version of (interper-
sonal) communication” (Sfard, 2008, p. 81). Knowledge 
is related to participation in discourse — not acqui-
sition of an objectified entity — and learning is seen 
as a permanent change in discourse. This change can 
be either on an object level (where new words are in-
troduced) or on a meta-level (where the rules of dis-
course change). For the researcher, then, the study 
of communication and participation in discourse(s) 
becomes pertinent. 

Cooper (2014) applied Sfard’s theory when he attempt-
ed to translate the MKT model into a discursive frame-
work. He suggested redefining MKT as “mathematical 
discourse for teaching” (p. 338), and he substituted 
subject matter knowledge with a mathematical con-
tent discourse; pedagogical content knowledge was 
replaced with what he referred to as “pedagogical dis-
course for teaching” (ibid.). Building upon the ideas of 
Sfard (2008), he suggested that the following features 
could identify these discourses: 1) main words that 
appear in the discourse, 2) visual mediators that are 
commonly used in the discourse, 3) routines that are 

distinctive to the discourse, and 4) endorsed narra-
tives. In this paper, I attempt to take Cooper’s reinter-
pretation of MKT one step further and introduce the 
subdomains of MKT. I envisage this as a revised model 
consisting of several partly overlapping discourses 
(Figure 2). 

Instead of following Cooper’s approach and investi-
gate words, mediators, routines and narratives in a 
discourse, I focus on participation in different dis-
courses. I build upon the theories of Lave and Wenger 
(1991). They focused on how learners move from being 
peripheral participants to full or central participants 
in communities of practice. Instead of discussing com-
munities of practice, however, I focus on communities 
of discourse (c.f., Sfard, 2008). I follow Sfard’s (2008) 
definition of discourse as: “The different types of 
communication, and thus of commognition, that 
draw some individuals together while excluding some 
others” (p. 91). Instead of investigating how teachers 
increase their MKT, I attempt to study the process in 
which (pre-service) teachers move towards full par-
ticipation in the mathematical discourse for teaching. 

METHODS

In this paper, I do not investigate the complete pro-
cess of becoming full participants in the mathematical 
discourse for teaching. Instead, I use data from men-
toring sessions between three pre-service teachers 
and their mentor teacher as well as classroom data 
as an exemplification of one part of the process. The 
data material was collected as part of a larger project: 
Teachers as Students (TasS). An overall aim of this 
project was to investigate how pre-service teachers 
develop knowledge, skills and competence for teach-

Figure 1: “The egg”—depicting MKT and its subdomains (Ball et al., 2008, p. 403)
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ing. In this paper, I use a discursive approach to inves-
tigate pre-service teachers’ mathematical discourse 
for teaching. 

In Norway, initial teacher education is organized as 
a four-year bachelor program. National curriculum 
guidelines require a total of 100 days of teaching prac-
tice, and teaching practice is supposed to be integrated 
in all subjects. The participants in this study were 
in the second year of their teacher education, and 
the data material was gathered in connection with 
a period of teaching practice. As example data, I use 
transcripts from two mentoring dialogues between a 
group of pre-service mathematics teachers and their 
mentor teacher before and after one lesson that was 
taught by the pre-service teachers. The group con-
sisted of three pre-service teachers: Fiona, Rachel and 
Harry (all pseudonyms). The mentor teacher—who is 
a practicing teacher—is simply referred to as this in 
order to avoid confusion.

Recordings from the mentoring dialogues were 
transcribed verbatim, and these transcripts provid-
ed the foundation for my analyses. The analyses in 
this paper are meant to illustrate a possible use of 
an extended version of Cooper’s (2014) redefinition 
of MKT into mathematical discourse for teaching as 
a framework, and I focus in particular on how the 
participants draw upon different discourses related 
to mathematics teaching in the mentoring dialogues. 

RESULTS AND DISCUSSIONS

In the following, some excerpts from the data material 
will be presented as an illustration. A main emphasis 
will be on the mentoring dialogues before and after 
a mathematics lesson in 8th grade, but data from the 
actual lesson will be included in order to contextual-
ize the mentoring discussions. The goal of the lesson 
was to enhance the students’ understanding of the 
equal sign.  

Pre-mentoring dialogue
When the three pre-service teachers met with their 
mentor teacher for a last mentoring session before 
teaching the lesson, their main focus was on discuss-
ing the lesson plan. They had discussed with the men-
tor teacher the day before, and they had agreed that 
they would have to adjust the level of the content they 
were going to present. In order to make it easier and 
more understandable for the students, they decided 
to start with a realistic problem. The context of the 
problem is that Fiona wants to go shopping, and she 
has to figure out how much money she could spend 

—given the various expenses that would be charged 
every month. With this problem as a starting point, 
Fiona explains how they are going to introduce the 
equal sign:

20.  Fiona:  And ask about how we are going 
to get that box (a), and what they did. Yeah, 
they subtract (b), and then you kind of take 
away 3500 from this side and that side, in 
order to balance [it]. And then we get to the 

Figure 2: A tentative model of mathematical discourse for teaching
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equal sign (c), and then kind of having scales 
and things like that, that kind of becomes a 
theme then, and work with the equal sign to 
really make them understand that it has to 
be balanced on both sides (d). 

As we can see, Fiona has already included the un-
known — the “box” — in this problem (a), but she is 
thinking of the equal sign as a main theme for the 
lesson (c). In this utterance, she navigates in a ped-
agogical content discourse. She describes how they 
will present the content for the students (d), and it 
can thus be interpreted as if she mainly draws upon 
a discourse of content and teaching. We can see that 
she anticipates a certain student response already (b), 
but her main focus is on the discourse of content and 
teaching. As a response to this, the mentor teacher 
goes into another discourse when she argues that they 
might be going too far too soon: 

21.  MT:  Yes, what the equal sign really 
means (e). But isolating the box on one side, 
then you have really gotten far (f ). Having 
something isolated on one side and move 
things, then you are really up there on the 
algorithm level right away (g). You might 
not have to talk about that at all, but I think 
they will see it when you say: “Okay, what’s 
missing here?” They kind of see what is 
missing (h), and that is what the unknown 
is. It is something that is missing, and that 
you’ll try to figure out. And then there are 
many ways of figuring it out. I mean, there 
are many ways of finding the unknown with-
out rearranging and getting one box isolated, 
which is really the last part [in the process] 
perhaps. So try to hang in there as long as 
possible, only focusing on the understand-
ing of what it is (i), and then one of the goals 
for the lesson is to understand the equal sign. 
Because then it is easier, and then you know 
what you want them to learn from the lesson. 
Being practical about it. 

In the beginning of her utterance, the mentor teacher 
goes into a discourse of mathematical content. She 
starts by pointing at the true meaning of the equal 
sign (e), before shifting her focus to the mathematical 
horizon (f ). Focusing on the mathematical implica-
tions of their choices in relation to the mathematical 
location of where the students are currently work-

ing, she claims that they have already moved to an 
algorithm level (g). I interpret this as an example of 
how the mentor teacher draws upon her experience 
from participating in a discourse on mathematical 
content in general and a discourse of the mathemat-
ical horizon in particular. The mentor teacher then 
draws upon her experience from the classroom and 
shifts into a discourse of content and students when 
she says that, “they kind of see what is missing” (h). 
Then she shifts again and moves into a discourse of 
content and teaching when she makes suggestions 
about how the pre-service teachers might present it to 
the students (i). The pre-service teachers still appear 
to be more peripheral participants in these discourses, 
and Fiona responds to the mentor teacher by drawing 
upon her experiences from the previous period of 
teaching practice instead (j): 

22. Fiona:  The equal sign is, in our last pe-
riod of teaching practice (j), the equal sign 
and the understanding of an unknown was 
inseparable. 

The mentor teacher follows up by confirming that the 
equal sign and the unknown constitute a sensible goal 
for the lesson. After this, they continue to discuss dif-
ferent aspects of the lesson plan until the mentoring 
session ends after 18 minutes.

Classroom discourse
In the lesson, the pre-service teachers start by pre-
senting themselves, since this is the first time they 
are in that particular class in this period of teaching 
practice. After a round of presentations, Fiona starts 
teaching the lesson. “I have a problem that I want you 
to help me solve,” she says. Then she explains that she 
wants to go shopping, but as a student in teacher ed-
ucation, there are certain expenses she needs to take 
into consideration. On the blackboard, she writes 
down the amount of money she gets from loans every 
month (6700 NOK), and then she writes down all the 
expenses below. The question is, “how much money 
is left for shopping?” After having given the students 
some time to think, one of the students presents 1200 
NOK as an answer to the question. They spend some 
time discussing this before Fiona presents another 
similar problem: “It is the national day, and we have 
200 NOK in our pocket. We want to buy ice cream, and 
an ice cream costs 20 NOK. How can we write down 
an expression that helps us calculate the number of 
ice creams we can buy?” The students come up with 
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different alternatives, and Fiona writes them down 
on the blackboard. She circles in the equal sign and 
asks if anyone knows the name of this (see Figure 3). 

When a student responds, “is equal”, Fiona contin-
ues by asking what the equal sign actually means. A 
student responds: “what comes behind it is often the 
answer”. Fiona hesitates a bit before answering that 
it is partly correct, but that this is something they will 
come back to later in the week. 

Post-mentoring dialogue
The day after having taught the lesson, the pre-service 
teachers meet with the mentor teacher for another 
mentoring session. The mentor teacher provides 
them with feedback, and they discuss different aspects 
of what they have observed in the lesson. 

45.  MT:  And then you came to: What 
does the equal sign mean?

46. Fiona:  Mhm
47. MT:  “Behind it comes the answer”, 

said one of the students. And then another 
one said: “add together and insert [an] equal 
[sign] later”

48. Fiona:  Yes, and then I thought…
49. MT:  Andrew (name of a student) said 

it.
50. Fiona:  (laughs)
51. MT:  And you didn’t make much out 

of it really, and this was perhaps, you could 
have taken it further and shown: What does 
it become then? But you decided not to make 
much of it, and in this situation I think it was 
okay. 

52. Fiona:  Yes, I didn’t really≈
53. Harry:  ≈I was thinking, when we were 

working with the cards, then he had the ex-

pression which is equal to, and the expres-
sion which is equal to, that’s what I meant.

54. Fiona:  Yes, I was thinking≈
55. MT.  ≈“If you have fifteen plus five 

equals twenty, and then minus three equals 
seventeen”, that’s how he said it.

56. Fiona:  Mhm

The mentor teacher starts by referring to the ques-
tion asked by Fiona in the lesson (45). The mentor 
teacher then follows up by presenting some of her 
observations from how students responded in the 
classroom (47). All of the pre-service teachers as well 
as the mentor teacher experienced the classroom dis-
course, but we see how the mentor teacher is the more 
central participant in the mathematical discourse for 
teaching (51) whereas Fiona and her fellow pre-ser-
vice teachers are more peripheral participants. It can 
be argued that this relates to their different roles as 
mentor teacher and students in pre-service teacher 
education, but I argue that the differences can also 
be seen in how the participants navigate between dif-
ferent discourses. When evaluating Fiona’s response, 
the mentor teacher mainly draws upon a discourse of 
content and teaching, but then the focus shifts:

57. MT:  Is this a correct use of the equal 
sign? (k) Because it is a very common thing 
to do for students, and it is a wrong use of 
the equal sign (l). 

In this follow-up question (57), the mentor-teacher 
first draws upon a subject matter discourse (k), and 
then she combines this with a comment from a dis-
course of content and students (l): “it is a very common 
thing to do for students”. In the following, Harry tries 
to go back to the classroom discourse, but the mentor 
teacher interrupts him and continues:

58. Harry:  He had≈
59. MT:  ≈especially when it is multipli-

cation and everything (m), then many [stu-
dents] often add directly to the answer (n), 
and then the balance is really all wrong.

After having briefly drawn upon her experience from 
participating in a discourse of content and students 
(57), the mentor teacher is now back in a subject mat-
ter discourse (m), but she continues to draw upon the 
discourse of content and students (n) when saying 
that many students “often add directly to the answer”. 

Figure 3: Buying ice cream
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Fiona acknowledges the mentor teacher’s statement 
with a “Mhm”, before the mentor teacher continues:

60. Fiona:  Mhm
61. MT:  So you could have taken it fur-

ther and shown: “Are both sides equal here?” 
and perhaps made them conscious about 
this already now, early on, to begin with (o). 
Because it is likely something many are go-
ing to have misconceptions about (p). 

In this utterance (61), the mentor teacher draws upon 
both a discourse of content and teaching and a dis-
course of content and students. First, she reflects about 
how Fiona could have acted differently as a teacher 
(o)—which relates to a discourse of content and teach-
ing—and then she adds a comment about this being 
something many students will probably have miscon-
ceptions about (p). The latter is part of a discourse of 
content and students. In this example, like in the other 
examples above, we clearly see that the mentor teach-
er does not stay within one of these discourses only, 
as if they were separate, but she continually switch-
es between them—often within the same sentence. 
Throughout these examples, it the mentor teacher ap-
pears more dynamic in how she shifts between these 
different discourses—all related to a mathematical dis-
course for teaching—whereas the pre-service teachers 
are more caught in one discourse at a time. 

CONCLUDING DISCUSSION

In the literature, researchers discuss supposedly 
distinct sub-domains of mathematical knowledge 
for teaching (e.g., Baumert et al., 2010). As a potential 
threat to the idea of the sub-domains of MKT being 
distinct, some studies indicate that teachers draw 
upon different aspects of knowledge when respond-
ing to MKT items (e.g., Fauskanger & Mosvold, 2013). 
When using a participation metaphor, however, it 
is unproblematic to consider that participants draw 
upon other discourses from which they have experi-
ence in participating. These discourses do not have 
to be completely separate, although they are different 
types of communication that include some partici-
pants and exclude others (Sfard, 2008).

In his attempt to bring mathematical knowledge for 
teaching under Sfard’s (2008) discursive framework 
of commognition, Cooper (2014) distinguished be-
tween two components of what he referred to as math-

ematical discourse for teaching: a mathematical con-
tent discourse and a pedagogical content discourse. In 
doing this, he switched from an acquisition metaphor 
of learning and knowledge to a participation meta-
phor (cf. Sfard, 1998). Whereas Cooper used this as a 
framework for interpreting data from professional 
development, I have attempted to use it in the context 
of mentoring dialogues in initial teacher education. I 
suggest that the mathematical discourse for teaching 
is even more complex and compound than suggested 
by Cooper (2014), and indications of this can be found 
in the results presented. 

Using a combination of Sfard’s (2008) commognitive 
framework and the theory of learning as legitimate 
peripheral participation by Lave and Wenger (1991), 
I propose that the development of a mathematical 
discourse for teaching is related to the ability to dy-
namically draw upon different discourses for teach-
ing mathematics. When discussing the planned and 
observed lesson on the equal sign, the mentor teacher 
uses a discursive move that can be referred to as in-
terdiscursivity when she continually draws upon her 
experience from different parts of the mathematical 
discourse for teaching. The pre-service teachers ap-
pear to have less ability to use interdiscursivity, and 
this might be related to less experience from partici-
pating in the different parts of the mathematical dis-
course for teaching — or, put differently, that they are 
still peripheral participants in this discourse. There 
is a possibility, however, that this apparent difference 
can be explained by the different roles of the mentor 
teacher and the pre-service teachers in the mentoring 
dialogues. Cooper (2014) found that the learning situa-
tion in professional development is more symmetrical 
than what is often found in children’s learning. In this 
study on pre-service teachers’ learning in teaching 
practice, it can be argued that the situation is more 
asymmetrical. This issue of power relations could be 
investigated further in discussions among teachers 
with different levels of experience (but who do not 
have a mentor/student relationship). I have focused 
mainly on interdiscursivity in this paper, but this is 
only one of several issues that might emerge from 
analyses where the framework of mathematical dis-
course for teaching is applied. My discussion of this 
issue is meant to serve as an example, and I suggest 
that a redefinition of MKT in terms of participation 
in discourses should be further investigated. 
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With a discursive definition, a view of MKT — and 
knowledge in general — as some kind of object or hid-
den entity can be avoided. Discourse for teaching is 
not a latent or hidden trait, but something researchers 
can investigate and analyze more directly. I acknowl-
edge that the framework of mathematical discourse for 
teaching is still in development, and further studies 
could for instance investigate a merging of this frame-
work with Skott’s (2013) framework of patterns of par-
ticipation. Applying such a participatory and discur-
sive approach to investigate MKT could then be seen 
as part of a larger initiative to develop a more coherent 
approach to understanding the work of teaching math-
ematics where acquisitionist terms are avoided.
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Teachers’ initiating change in practice due to 
variation of progression of didactical time
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This study aims at identifying situations where time 
can act as a condition for change in teacher practice. 
A design based research methodology was applied and 
teachers where offered help designing mathematics 
tasks they would want to use in the classroom. All the 
discussions from this collaboration were analysed us-
ing timescales as analytical categories as described by 
Assude (2005). The findings show that in a diverse class, 
the difference in learning pace between students can 
condition change in the teachers practice. 

Keywords: Teacher practice, change, diversity, time.  

INTRODUCTION

This research report emerges from a PhD-study on 
teachers’ perception of what makes a ‘good’ task in 
vocational school mathematics lessons. I have worked 
closely with different teachers over a school year de-
signing tasks they would want to use in the classroom 
in order to learn more about the teachers’ preferences 
for mathematics tasks. One of the concepts emerging 
from my research is ‘time’, and this paper focuses on 
how time can be a condition, i.e., a prerequisite, for 
change.

Time is a recurrent issue for many teachers, and 
time pressure is a real day-to-day classroom experi-
ence which teachers have to live with (Assude, 2005; 
Jordfald, Nyen, & Seip, 2009; Leong & Chick, 2011).  
Time can serve as an obstacle when implementing 
new reforms (Keiser & Lambdin, 1996), integrating 
new technology (Assude, 2005) and probing under-
standing through whole-class discussions (Black, 
2004). A teacher might also make didactical choices in 
the classroom based on time triggers (Leong & Chick, 
2011), and avoid lesson preparations that are too time 
demanding (Goodchild, Fuglestad, & Jaworski, 2013). 

As a summary, lack of time is often seen as an obstacle 
for change in teachers’ practices. 

In my research I have noticed that time is an issue that 
surfaces often in the conversations with the teachers, 
but not always negatively. This triggered my interest 
to explore the data using time as an analytical cate-
gory. The research question addressed in this paper 
is: When can time be a condition for change in teacher 
practice? 

I will, in the following, present my theoretical frame-
work of timescales before I give a brief summary of 
the political ideas behind the Norwegian educational 
system. With this as a background, I present my meth-
odology followed by results before I round off with a 
discussion of the results. 

THEORETICAL FRAMEWORK

In this paper, I will look at how time is viewed by the 
teacher, and how time can be seen as a condition for 
change by the teacher. In order to do this, I need to 
identify different categories of experienced time. 
Lemke (2000) argues that all human activity takes 
place on at least one timescale and in complex sys-
tems more than one timescales. For instance, an ut-
terance of a single word can be viewed as a timescale 
even if it takes less than a second to articulate. Also 
one school lesson or a year curriculum can be viewed 
as timescales. Every process that stretches out over 
time can be viewed as a timescale.  In my work I study 
how time can be a condition for change and, given 
that change is a process, it will be helpful to identify 
timescales for analyzing my material. With the help 
of timescales it is possible to identify at which point 
time is a condition for change. 

Assude (2005) describes three theoretical timescales, 
and I will present and use the same timescales with a 
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slight modification.  The three timescales are didactic 
time, time capital and the pace of a course. The concept 
of didactic time is related to the work of Chevallard, 
and is defined as “related to scheduling the teaching 
of some knowledge” (Assude, 2005, p. 185). However, 
Assude (2005) also makes the claim that: “Didactic time 
is used as a gauge of the advancement of knowledge, 
and, in this sense, it’s a framework, which regulates 
the activity of the teacher” (Assude, 2005, p. 185). This 
last quote is referring to learning (advancement of 
knowledge) and not only the scheduling of teaching. 
As I see it, the concept of didactic time might be used as 
referring to a teacher’s scheduling of some knowledge 
for a whole class of students, or the concept might be 
related to the scheduling of teaching with respect to 
individual students’ learning. I will in my analysis use 
both of these interpretations of didactic time.

The second concept which Assude (2005) identifies is 
time capital. This refers to the ‘objective’ time availa-
ble for classroom work, for example, the lesson is 45 
minutes long. The third concept Assude (2005) applies 
is the pace of a course or a part of it, which is viewed as 
how didactical time is advancing with respect to time 
capital. This is demonstrated by showing different 
linear graphs of how courses can be fast-paced, mod-
erate-paced or slow-paced. This last concept might 
be viewed slightly different in many Norwegian 
classrooms, and I will give some information of the 
Norwegian educational system to demonstrate this. 

THE NORWEGIAN EDUCATIONAL SYSTEM

Education for all and equality are important con-
cepts in the Norwegian educational policy across 
political party lines, with a goal to reduce social 
inequality. (Markussen, Frøseth, & Sandberg, 2011) 
In the Norwegian educational system we also have 

“the comprehensive school” as an important politi-
cal concept (Department of Education and Training, 
2006–2007). We do not have special needs schools in 
Norway, and every pupil is entitled to be in a normal 
classroom. As a result, a typical class in Norway will 
have children with high and low achievers, different 
diagnoses and handicaps. The Education Act (1998) 
specifies: “Education shall be adapted to the abilities 
and aptitudes of the individual pupil, apprentice and 
training candidate” (§1–3). All pupils are entitled by 
law to get adapted teaching according to their abilities, 
and this is the teacher’s responsibility.

The political concept of the comprehensive school has 
also influenced upper secondary school, and since 
1994 every teenager has a statutory right of second-
ary schooling regardless of abilities and academic re-
sults. As a consequence, near to every teenager is now 
starting upper secondary school and many of the low 
achieving students apply for the vocational programs 
(Department of Education and Training, 2006–2007). 
The Education Act also applies to upper secondary 
school, and adapted teaching is a requirement for all 
the courses in the vocational programs. As a result, 
many teachers take it personally when their pupils 
fail subjects or quit secondary school. They have as 
a goal to give adapted teaching to all of their pupils, 
but the classes are diverse and the pace of a course 
can be viewed quite different from student to student. 
It is therefore difficult to make a general claim about 
the course being slow-paced, moderate-paced or fast-
paced. 

Norway is a country where accountability systems 
have never been approved for use in the education 
sector, even if there are some accountability devices 
in local quality-assurance systems (Christophersen, 
Elstad, & Turmo, 2010). Still, the Norwegian Prime 
Minister said in a speech in 2008 that “Teachers 
should have a clear responsibility for what students 
learn in school” (Christophersen et al., 2010, p. 2). It 
has not been made clear how a Norwegian teacher 
can be made accountable for students’ learning and 
Christophersen and colleagues (2010) argue that this 
is not possible. The Prime Minister’s speech might 
indicate a political shift when it comes to accounta-
bility in the future, but as of today the main focus in 
Norwegian schools are still on adapted teaching and 
not on the pupils’ test results.   

In this paper, I focus on two teachers working at an 
upper secondary vocational school in Norway, which 
is a school with diversity and where adapted teach-
ing is mandatory (the Education Act, 1998). Both of 
the teachers reported in this paper, have read and 
approved of the paper before it was submitted for 
the conference. I will, in the following, show how an 
analysis of the advancement of different timescales 
previously identified can act as condition for change. 

METHODOLOGY

In the PhD-project I was collaborating with four 
teachers; however only two of them are considered 
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in this paper. The reason is that the initial analysis re-
vealed that the concept of time was much more seldom 
mentioned by two of them, in addition these two are 
working at University level where adapted teaching 
is not required by law. The two teachers considered 
in this paper teach mathematics at a vocational upper 
secondary school. They both volunteered to be part 
of the research, and the aim of the PhD-project is a 
greater understanding of the choices teachers make 
when it comes to mathematical tasks and not to change 
the teaching. Findings from the TIMSS advanced 2008 
study, show that the most dominating activity in 
Norwegian classrooms is by far solving mathematical 
tasks similar to those in the textbook, and this is also 
a predominant classroom activity in other countries 
(Mullis, Martin, Robitaille, & Foy, 2009, p. 162). This 
is one of the reasons I view mathematical tasks as an 
important issue to research.

To accomplish a greater understanding of the choices 
teachers make when it comes to mathematical tasks, a 
design based research methodology (van den Akker, 
Gravemeijer, McKenny, & Nieveen, 2006) was applied 
in the PhD study, and the teachers were offered help 
designing tasks they wanted to use in the mathematics 
classroom and which they felt would improve their 
students’ learning. The collaboration lasted a school 
year, and all conversations between the researcher 
and teachers were audio recorded. A total of 20 hours 
and 49 minutes of audio recordings with the two 
teachers have been used in the analysis; the record-
ings consist of interviews, and discussions about the 
tasks, refining tasks and evaluation of implementing 
the tasks. 

All of the recordings have been imported into NVivo 
and data reduced concurrently with data generation. 
Data reduction entails writing down what is happen-
ing and what is being said without transcribing word 
for word. The data reductions are detailed facilitating 
retrieval of relevant data material at a later point, but 
they are also the first phase of analyzing, serving as 
a guide, focus and help when collaborating with the 
teachers. The data has not been transcribed; rather 
all analyses have been done using the original audio 
recordings. 

The data has been analyzed using techniques from 
grounded theory (Corbin & Strauss, 2008), and time 
emerged as a recurring issue. As a consequence, I 
went back to the data and isolated all the parts where 

time had been mentioned. This data have then been 
analyzed according to Assude’s timescales as analyt-
ic categories. I have in the analysis considered how 
didactical time advances with respect to time capital, 
and how this can be a condition for change. For in-
stance, could there be a point where didactical time 
is advancing so slowly that it conditions changes in 
the teacher’s practice?

As before mentioned, my research question is when 
can time be a condition for change in teacher practice? 
Given my research design, I have unique data for ana-
lyzing reasons for wanting change from a teacher’s 
perspective. The teachers are offered help to design 
new mathematical tasks to use in their classrooms 
without the researcher trying to influence them, and 
the reasons provided for the new tasks are therefore 
a good gauge of what the teacher sees as important to 
change. The research was not designed to bring about 
big changes, just adjustments to what was already 
being done. Teacher change is mostly viewed as a slow 
and difficult process (Sowder, 2007), however, some 
of the teachers in this project expressed clearly that 
they participated in the research because they wanted 
changes and they wanted to improve. 

The teachers participating in the project want some 
changes, but it might differ how important this is to 
them. In order to view if the changes are something 
that really are important to them, I am also looking 
at the time and effort the teachers are putting into 
this project and how they view this investment. We 
know that time to prepare lessons is a valuable asset 
for the teachers, and they are often protective of how 
this time is used (Goodchild et al., 2013; Jordfald et al., 
2009). So if the teachers are expressing that they want 
to invest time into my project, I view this as changes 
being rather important to the teachers.

RESULTS

I will start this section by presenting excerpts which 
are related to the teachers wanting changes, as ex-
plained above. One of the teachers expressed at the 
very beginning of our cooperation that: “I am doing 
this (participating in the research) because I feel I 
can benefit from it. I’m not doing this because I have 
a heart of gold”. This is a clear statement from the 
teacher seeing this cooperation as beneficial for him, 
and he is looking for help to make changes. The other 
teacher is open and honest about how he is struggling 
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with time management in his job at the moment, and 
expresses:

I am not happy with how I’ve been doing my job 
now. I am underperforming. It’s not satisfactory. 
I have been stressed, but I don’t have any more 
to do than everybody else in this world. This is 
resulting in me not being able to ‘be present’; I 
forget things and have an extremely bad memory 
at the moment.

Given that I have spent a total of about ten hours of 
discussions with this teacher in my project, I feel bad 
for costing him so much of his preparation time and 
I express this, but he responds: 

Yes, but... no! I’ve never had a thought of that. I’ve 
been thinking it’s been beneficial for me all the 
time. Because then I get the help, and if I didn’t 
have the pressure to make the index task, the les-
son would have been extremely boring. So for me 
it’s only been good. 

With a teacher expressing so strongly that he has been 
lacking preparation time, but still views our cooper-
ation as beneficial and as an asset, speaks volumes 
of the need for help to change. This teacher actually 
ended our last conversation with: “You should just 
make contact if you need it again, and this year has 
been very good for me and a help, so no burden for me.” 

To summarize this part, the teachers are expressing 
that this is a research project they see as beneficial to 
them, and they do not mind that it cost them time. They 
view it as an investment to get help to make changes 
in their practice. When analyzing what might condi-
tion this change, I have used the analytical categories 
didactic time (with respect to the whole class or to in-
dividual students), time capital and the pace of the 
course.  I will, in the two following sections, present 
results from the analysis of how the pace is viewed 
both with respect to the whole class and individuals, 
and how time capital and didactic time is relevant in 
these examples. 

Pace of the whole class
I argue above that it is difficult to view the general 
pace of a course in vocational programs in Norway, 
but sometimes the teachers make references to it. In 
this section, I will present teacher comments related 
to the pace of the whole class, i.e. didactic time with 

respect to time capital, and identify how didactic time 
and time capital are being viewed by the teacher. 

In my recordings I found three categories of comments 
related to the pace of the class as a whole. These were:

 ― The curriculum in general: These comments are 
related both to being ahead of schedule or being 
on time. “I have found out that I’m almost a chap-
ter ahead of the others. So I wonder if I need to 
slow down a bit.”

 ― Time needed for open tasks: The teacher com-
ments on the difficulty in knowing how much 
time the students will need for an open task. 

 ― Structure or chaos in a specific lesson: For in-
stance a teacher is commenting on the need for 
better structure in a task because the students 
are spending too much time on irrelevant stuff 
for learning mathematics

None of the teachers I talked to expressed any con-
cerns about having enough time capital for the given 
curriculum, so it doesn’t seem like they view this as a 
fast paced course, especially since one of the teachers 
even comments that he is ahead of time. When it comes 
to the pace for the whole class, the only concerns of 
the teachers were related to smaller sequences, i.e. a 
lesson or a task, and they are making suggestions for 
adjustments to improve themselves. I am therefore 
not considering these as big issues for the teachers 
in my research project. None of the teachers have 
mentioned the pace of the whole class as reasons for 
wanting changes in the mathematics tasks.

Pace of individual students
As I have expressed above, the teachers did not seem 
very concerned about the overall pace for the class 
as a whole group, however they did express concerns 
when it came to individuals. These concerns could be 
divided into two different types of comments: one 
related to students not doing anything at all in the 
lessons, and the other one related to students not un-
derstanding from the teaching. Here is one example of 
a teacher expressing concerns of students not doing 
anything in the lessons: 

I think the idea [of the task] is good, but it re-
quires that the students actually engage in the 
task… And that is kind of the roadblock. When 
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you asked me if we could cooperate, my idea was… 
What should I do to get the very lowest achievers 
of the students to have some kind of benefit? And 
what should I do to get them to do something?

These students are not only performing poorly, they 
are not doing anything at all during the lessons. The 
teacher talks about getting the students engaged as a 
roadblock and one of his main goals with this project 
is to get the low achievers to do something. Given that 
didactical time can be viewed as the advancement of 
knowledge, this teacher is here expressing that this 
is not happening at all for some of the students. This 
means that for these students, a graph of the pace of 
the course would look something like the diagram 
Assude (2005, p. 187) uses for a slow paced course (see 
Figure 1). 

Students who are not doing anything at all during the 
lessons are the most extreme cases, but the teachers 
are also talking about students who are not benefiting 
from the teaching. This excerpt is from a conversation 
with a teacher where he is evaluating a ratio task we 
had designed and implemented:

…if I do it the “quicker” way which is: Hey, here is 
the formula, now do task one, two and three. And 
then there are those who manage to keep up with 
the explanations, they are done in five minutes. 
And then I use the rest of the time to explain to 
those who never get any of the things I explain 
(to the full class).

The teacher is here referring to a “quicker” way of 
teaching a formula, but where many of his students 
do not understand the explanation so he has to use the 
rest of the lesson trying to help them understand. This 
example shows how the teacher is struggling with stu-
dents experiencing different levels of advancement of 
knowledge, or didactical time. Some of the students 

do not understand the mathematics from this type of 
teaching while others get it straight away. 

The pace of individual students in a class is also what 
the teacher refers to when it comes to whether a new 
task is successful or not. Below is how a teacher is 
describing why he is happy with the task we designed:

While here, here there is something everyone 
can do basically, and they have something tangi-
ble which they even can count if they need to. I 
even experienced that some of the low achievers 
seemed to have some Aha-moments, which they 
normally don’t have. To sum up the benefits of 
the task: they get quickly started, everyone can 
manage something, they get active straight away.

Everyone being active and being able to manage some-
thing in the task, are success criteria according to this 
teacher. So didactic time is advancing at some level 
for all of the students, and these are the reasons the 
teachers are giving for the task being good. 

DISCUSSION

Assude (2005) was, in her article, addressing the class 
as a whole when it came to the pace of a course, howev-
er I have shown that this is not necessarily sufficient 
for all classes. The teachers in this research project 
are mostly referring to individual students or a sub-
group of students when they are talking about the 
pace of the mathematics course. The pace for the class 
as a whole does not seem to worry the teachers, but 
they are expressing concern when it comes to the pace 
of individuals or a subgroup of students. 

I will argue that this difference in perspective is relat-
ed to the diversity of a class. The more homogeneous a 
class is, the easier it becomes to talk about the general 
pace of the course. However, given the political ideal 
of the comprehensive school in Norway, there is great 
diversity in the classrooms of vocational schools. In 
addition to this, the teachers are obliged to give adapt-
ed teaching, which makes the differences in the pace 
of the course from student to student more obvious. 
In these classrooms there does not really exist one 
pace of a course, and the learning outcomes among 
the students might be very different.

This diversity of a class is, as explained by the teacher, 
a reason for their desire for changes in the mathemat-

Figure 1: Diagram of a slow-paced course
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ics tasks. Didactical time is not advancing for all of the 
students even if time is passing, so changes need to be 
made if they shall fulfill the requirements of the law 
when it comes to adapted teaching.  If a student group 
is rather homogeneous and can keep up with the re-
quirements of the curriculum, I assume the teacher 
will not worry much about didactical time. On the 
other hand, when a student group is very diverse, the 
teacher will be a lot more concerned about didactical 
time, given that it is so different within the same class. 

If the student group is diverse, the teacher can choose 
to view this from two different perspectives. It is pos-
sible to have the perspective that the students will 
need to adjust to the teaching and the pace of the 
course, or you can have adapted teaching as a focus. 
The difference between these two perspectives comes 
from either a focus on the advancement of didacti-
cal time for each student as an individual or just an 

‘ideal’ advancement of didactical time for the course. 
The teachers in this research projects were volun-
teers, and this might indicate a greater willingness to 
change, however the issues of diversity are present 
in the classrooms no matter the teachers’ intensions.

The diversity of some of the Norwegian classrooms 
are extreme, however, there is some degree of diversi-
ty in every classroom. We might think that grouping 
students into ability groups in the form of setting, as 
they have been doing in England and Wales might give 
a more unanimous progress of didactical time with 
respect to time capital, but research shows that even 
in these classrooms, students feel the work they are 
given is either too hard or too easy (Boaler, Wiliam, 
& Brown, 2000). This shows that even if the problem 
might be more evident in the Norwegian comprehen-
sive classrooms, there is evidence that this is also a 
universal classroom issue. Wilkinson and Penny 
(2013) argue that 

Within even the narrowest setting system, a set 
will contain students with considerable varia-
tions in attainment as well as learning style. It 
is therefore highly problematic to assume and 
treat setted students as intellectual homogenous. 
(Wilkinson & Penney, 2013, p. 10). 

I have shown that some teachers feel the need to make 
changes, and I have argued that this is related to di-
verse classes where didactic time is not advancing for 
all of the students with respect to time capital, and this 

serves as a condition for change. Given that teacher 
change is mostly viewed as a slow and difficult process, 
identifying teachers who are so clearly expressing 
that they want change, can be of great value to further 
research. 

REFERENCES

Assude, T. (2005). Time Management in the Work Economy 

of a Class, a Case Study: Integration of Cabri in Primary 

School Mathematics Teaching. Educational Studies in 

Mathematics, 59(1–3), 183–203. doi:10.2307/25047170

Black, L. (2004). Teacher–Pupil Talk in Whole-class Discussions 

and Processes of Social Positioning within the Primary 

School Classroom. Language and Education, 18, 347–360. 

doi: 10.1080/09500780408666888

Boaler, J., Wiliam, D., & Brown, M. (2000). Students’ Experiences 

of Ability Grouping: Disaffection, Polarisation and the 

Construction of Failure. British Educational Research 

Journal, 26, 631–648. doi:10.2307/1501995

Christophersen, K. A., Elstad, E., & Turmo, A. (2010). Is Teacher 

Accountability Possible? The Case of Norwegian High 

School Science. Scandinavian Journal of Educational 

Research, 54, 413–429. doi:10.1080/00313831.2010.508

906

Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative re-

search: techniques and procedures for developing ground-

ed theory. Thousand Oaks, CA: Sage.

Department of Education and Training. (2006–2007). … og in-

gen sto igjen. Tidlig innsats for livslang læring.  Retrieved 

from http://www.regjeringen.no/nb/dep/kd/dok/regpubl/

stmeld/2006-2007/stmeld-nr-16-2006-2007-.htm-

l?id=441395.

Goodchild, S., Fuglestad, A., & Jaworski, B. (2013). Critical align-

ment in inquiry-based practice in developing mathematics 

teaching. Educational Studies in Mathematics, 84(3), 393–

412. doi:10.1007/s10649-013-9489-z

Jordfald, B., Nyen, T., & Seip, Å. A. (2009). Tidstyvene. En beskriv-

else av lærernes arbeidstidssituasjon Fafo-rapport (Vol. 

2009, 23).

Keiser, J. M., & Lambdin, D. V. (1996). The Clock Is Ticking: 

Time Constraint Issues in Mathematics Teaching Reform. 

The Journal of Educational Research, 90, 23–31. doi: 

10.2307/27542065

Lemke, J. L. (2000). Across the Scales of Time: Artifacts, 

Activities, and Meanings in Ecosocial Systems. 

Mind, Culture, and Activity, 7, 273–290. doi: 10.1207/

s15327884mca0704_03

Leong, Y., & Chick, H. (2011). Time pressure and instruction-

al choices when teaching mathematics. Mathematics 

http://www.regjeringen.no/nb/dep/kd/dok/regpubl/stmeld/2006-2007/stmeld-nr-16-2006-2007-.html?id=441
http://www.regjeringen.no/nb/dep/kd/dok/regpubl/stmeld/2006-2007/stmeld-nr-16-2006-2007-.html?id=441
http://www.regjeringen.no/nb/dep/kd/dok/regpubl/stmeld/2006-2007/stmeld-nr-16-2006-2007-.html?id=441


Teachers’ initiating change in practice due to variation of progression of didactical time (Linda G. Opheim)

3092

Education Research Journal, 23, 347–362. doi:10.1007/

s13394-011-0019-y

Markussen, E., Frøseth, M. W., & Sandberg, N. (2011). Reaching 

for the Unreachable: Identifying Factors Predicting Early 

School Leaving and Non-Completion in Norwegian 

Upper Secondary Education. Scandinavian Journal of 

Educational Research, 55, 225–253. doi:10.1080/0031383

1.2011.576876

Mullis, I. V. S., Martin, M. O., Robitaille, D. F., & Foy, P. (2009). 

TIMSS Advanced 2008 International Report. Chestnut Hill, 

MA: TIMSS & PIRLS International Study Center, Boston 

College.

Sowder, J. T. (2007). The Mathematical Education and devel-

opment of Teachers. In F. K. Lester, Jr. (Ed.), Second hand-

book of research on mathematics teaching and learning. 

Charlotte, NC: Information Age.

Act relating to Primary and Secondary Education, §1–3 C.F.R. 

(1998).

van den Akker, J., Gravemeijer, K., McKenny, S., & Nieveen, N. 

(2006). Introducing educational design research. In J. van 

den Akker, K. Gravemeijer, S. McKenny, & N. Nieveen (Eds.), 

Educational design research (pp. XI, 163 s.). London, UK: 

Routledge.

Wilkinson, S. D., & Penney, D. (2013). The effects of setting on 

classroom teaching and student learning in mainstream 

mathematics, English and science lessons: a critical review 

of the literature in England. Educational Review, 66, 411–

427. Doi:10.1080/00131911.2013.787971



3093CERME9 (2015) – TWG19

Teaching actions conducting mathematical 
whole class discussions

Joana Mata-Pereira, João Pedro da Ponte and Marisa Quaresma

University of Lisbon, Institute of Education, Lisbon, Portugal, joanamatapereira@campus.ul.pt

The aim of this paper is to understand teacher prac-
tice conducting whole class mathematical discussions. 
Teaching practice is seen as an activity based on a mo-
tive and carried out through a set of actions. The study 
is carried out in a grade 9 classroom of an experienced 
teacher. Data is gathered by classroom observations 
(video and audio recorded), and by discussions with the 
teacher. Data analysis is carried out based on a model 
about teachers’ actions. The results show that a central 
challenging action embodies all discussion segments 
and that teacher’s actions are deeply related to students’ 
knowledge about the situation being discussed.

Keywords: Teachers’ practice, teachers’ actions, 

mathematical discussions.

INTRODUCTION

Nowadays, inquiry based or exploratory learning is 
regarded as a fruitful learning environment in school 
mathematics. It differs from other environments by 
the ways in which challenging tasks are used and whole 
class discussions are conducted. However, proposing 
such tasks and providing students’ opportunities to 
present and discuss their reasoning poses teachers 
many challenges (Stein, Engle, Smith, & Hughes, 2008). 
Organizing and conducting whole class discussions is 
particularly important to students’ learning, being an 
important feature of teachers’ professional practice.

In an exploratory setting, working on a task typically 
involves the students working on a task individually 
or in small groups (Ponte, 2005). That is not the case of 
the task presented in this paper, as it is proposed, dis-
cussed and solved within a discussion, making this a 
rather special whole class discussion. With this study, 
by analysing this particular whole class discussion, 
we aim to understand teachers’ practice during whole 

class discussions, focusing on the teachers’ actions 
and on the mathematical processes involved.

TEACHER’S PRACTICE IN WHOLE 
CLASS DISCUSSIONS

Teachers’ practice may be characterized as the activity 
developed by the teacher (Jaworski & Potari, 2009) 
that unfolds in actions established according to an 
action plan (Schoenfeld, 2000). In traditional classes 
the teacher control is very high and students’ inter-
ventions are very limited. In contrast, exploratory 
classes have many inquiry and divergent moments. In 
such learning environment, conducting whole class 
mathematics discussions is not only challenging for 
the teacher, but essential to students’ learning.

Features of teachers’ practice during whole class dis-
cussions have been highlighted by several authors. 
Wood (1999) states the relevance of involving students 
in presenting their solutions and in discussing those 
of their colleagues. Potari and Jaworski (2002) refer 
that the level of challenge of teachers’ questioning 
during whole class discussion is an important fea-
ture of teachers’ practice. Stein, Engle, Smith and 
Hughes (2008) point out that an essential feature of 
teachers’ practice is to shape students’ incomplete or 
poorly phrased ideas into more precise and power-
ful mathematical ideas. They argue that a productive 
mathematics discussion (i) is supported by students’ 
thinking, and (ii) provides important mathematical 
ideas. They also present a model to prepare and con-
duct mathematics discussions that include actions of 
anticipating likely students’ responses, monitoring 
students’ responses, selecting students to present 
their responses, sequencing students’ responses, and 
making connections between students’ responses and 
key mathematical ideas. More recently, Cengiz, Kline, 
and Grant (2011) identify as main teachers’ actions in 
whole class discussions aiming to extend students 
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thinking: (i) eliciting actions that aims to elicit stu-
dents’ methods, (ii) supporting actions that aims to 
support students’ conceptual understanding; and (iii) 
extending actions that aims to extend students’ think-
ing. With a similar intent, Scherrer and Stein (2013) 
present a guide to analyze teachers actions (moves) 
during whole class discussion of cognitively demand-
ing tasks that includes (i) begin a discussion, (ii) elab-
orate or deepen students’ knowledge by furthering 
the discussion, (iii) elicit information, and (iv) other 
moves, like providing information and thinking aloud.

Teachers’ actions during whole class discussions can 
be distinguished between actions directly related to 
mathematical topics and processes and actions that 
mainly relate to management of learning. Ponte, Mata-
Pereira, and Quaresma (2013) identify four main cat-
egories related to mathematical aspects: (i) inviting 
actions – leading students to engage in the discussion, 
(ii) guiding/supporting actions – conducting students 
along the discussion in an implicit or explicit way in 
order to continue the discussion; (iii) informing/sug-
gesting actions – introducing information, providing 
an argument or validating students’ interventions; 
and (iv) challenging actions – leading students to 
add information, provide an argument or evaluate 
an argument or a solution. Guiding/supporting, in-
forming/suggesting, and challenging actions, are the 
main support to develop whole class mathematical 
discussions, and involve key mathematical process-
es such as (i) representing – provide, revoice, use, 
change a representation (including procedures), (ii) 
interpreting – interpret a statement or idea, make 
connections, (iii) reasoning – raise a question about 
a claim or justification, generalize a procedure, a con-
cept or a property, justify, provide an argument, and 
(iv) evaluating – make judgments about a method or 
solution, compare different methods. A model that 

relates teachers’ actions in whole class mathemati-
cal discussions and these mathematical processes is 
presented on Figure 1.

RESEARCH METHODOLOGY

This study follows an interpretative and qualitative 
methodology. It is developed in a grade 9 class of a 
teacher with 13 years of experience. According to the 
teacher, the class has a very productive working envi-
ronment and fruitful whole class discussions are pos-
sible because some of the students have a high perfor-
mance and all of them are usually eager to participate. 
Data collection was conducted by the first author in 
the classroom and used direct observation (with audio 
and video recording of class) and document collection. 
Data analysis is based on the categories of the model 
presented in Figure 1, and is done with the support 
of NVivo software.

The situation analysed is a whole class discussion 
that aims to introduce how to solve incomplete 2nd de-
gree equations generically represented as ax2 + bx = 0. 
Before this situation, the students solved and dis-
cussed a problem that, implicitly, involves the zero 
product rule, but that was not explored with the aim 
of generalizing this rule to solve incomplete 2nd degree 
equations. Moreover, the teacher reminded how to 
solve incomplete 2nd degree equations as ax2 = 0 and 
ax2 + c = 0, that students had worked on in the previous 
lesson.

THE WHOLE CLASS DISCUSSION

We present some of the segments of the whole class 
discussion in order to analyse the teacher’s actions 
to promote students’ interpretation of the issues, rea-
soning and evaluation of solutions.

Figure 1: Framework to analyze teachers’ actions (adapted from Ponte et al., 2013)
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The first invitation
The teacher begins by writing down on the blackboard 
the equation 4x2 – 12x = 0 and, right after, she invites 
the students to solve this equation:

Teacher: . . . You have this equation, OK? An in-
complete one, we are dismissing c. Who 
want to try to solve this equation with 
me? Just with what you already know. 
You already know how to solve 1st degree 
equations, how to solve some 2nd degree 
equations. I could tell you: Let’s try to 
solve this equation. Irina, what would 
you do?

Irina: I would... Probably, I would get minus 12 
to plus 12 in the other side [of the equal 
sign].

Teacher: So, I will write down [on the blackboard], 
4x2 equals 12x.

Irina: Exactly.
Teacher: It is true, this equation [4x2 – 12x = 0] is 

equivalent to this one [4x2 = 12x].

In this introduction, the teacher begins by inviting 
students to solve an equation. She also prompts stu-
dents’ answers by challenging them to make connec-
tions with their previous knowledge about equations. 
As Irina begins solving the equation, the teacher in-
forms students by representing on the blackboard 
what she said. As this is the first time that students are 
solving this sort of equation, the teacher also suggests 
that Irina is going in the right direction by stating 
that both equations are equivalent. This suggesting 
action by the teacher leads Irina to keep going on her 
proposal to solve the equation:

Irina: Then, I would do the same procedure as 
usual. I would do squared x equals 12x 
divided by 4.

Teacher: [Writes down x2 = 12x/4] Perfectly equiv-
alent. Five stars. [Waits but Irina stands 
quiet.] Now the question is, when I am 
solving an equation, what is the aim?

Students: Find the value of the unknown.
Teacher: [Questioning Irina] Did you found the 

value of the unknown?

Once more, the teacher represents on the blackboard 
what Irina said and suggests that she is moving for-
ward on her solving process. As Irina seems not to 
know how to continue, the teacher decides to high-

light the aim of solving an equation, aiming to guide 
students on moving forward.

In this segment, the teacher’s actions are marked by 
challenging the students on making connections be-
tween previous knowledge and this new situation. As 
students begin solving the equation, the teacher most-
ly uses guiding and suggesting actions to lead stu-
dents to achieve the envisioned aim of using previous 
knowledge. Despite the aim of making connections, 
these guiding and suggesting actions are mostly rep-
resenting actions, allowing students to stay focused 
on the solving process.

Overcoming misconceptions
As Irina does not know how to continue the solving 
process, the teacher selects Hugo from the students 
who want to participate:

Hugo: x2 less x equals zero less 4 plus 12. 
Teacher: Is that possible?
Students: No.
Teacher: Why? He would do this [writes down on 

the blackboard x2 – x = 12 – 4]

Despite suggesting before that Irina was going in 
the right direction, the teacher does not suggest that 
Hugo is presenting an invalid proposal. Instead, she 
challenges the class to interpret Hugo’s intervention 
and to further justify that interpretation. The teacher 
represents Hugo’s proposal on the blackboard along-
side with Irina’s. Then, the teacher upturns the valida-
tion of Hugo’s answer and, to do so, she suggests the 
students to establish connections with the monomial 
operations:

Teacher: Is this possible? This expression 
[4x2 – 12x = 0] is equivalent to this one 
[Hugo’s equation]? Remember that this 
is like a whole, a monomial, I cannot dis-
connect the coefficient from the literal 
part. I do not have something like this 
Hugo. 

Towards this, Hugo presents another way to solve the 
equation, letting no time to his colleagues to justify 
why his first proposal was invalid:

Hugo: So… What if I add the x from 12 to x2?
Teacher: So, first of all, can I add this two small 

monomials [x2 and 12x]?
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Students: No!
Guilherme: You can.

Once more, the teacher challenges the students to in-
terpret Hugo’s statement, aiming to clarify the prop-
erties of operations with monomials. Most students 
seem to know that one cannot add two monomials 
with different degrees, but Guilherme states the op-
posite. So, the teacher promotes the analysis of this 
mistake, indicating that he can continue the solving 
process:

Teacher: So, do it.
Guilherme: 4x2 is the same has having 4x times 

4x.
Teacher: Is it?
Students: No.
Teacher: Guilherme asked if 4x2 is the same as 

having 4x times 4x.
Students: No.
Teacher: Why not?

As Hugo, Guilherme proposes an invalid procedure, 
so, the teacher keeps challenging students to interpret 
his proposal and, to support students, she revoices 
Guilherme’s statement. Again, the teacher challenges 
the students to justify their answer, but Guilherme 
realizes his mistake and corrects it right away:

Guilherme:  But we could get, for example, 2x 
times 2x, 4x2. And then, we would get 
2x times 2x less 12x equals zero.

Teacher:  OK, to that point it is OK. I will write 
down for you. 2x times 2x, less 12x 
equals zero. It is also equivalent, OK?

With this new statement, the teacher suggests that 
Guilherme is doing a right procedure, arguing that 
this equation is equivalent to the previous ones. She 
also informs students about Guilherme’s proposal 
by representing it on the blackboard. Then, despite 
being asked to keep going on his solving process, the 
student does not know what to do. So, in order to guide 
Guilherme, the teacher revisits the aim of solving an 
equation, which allows him to continue:

Guilherme:  Not to stand again 2x times 2x, after 
one would get… I do not know if I could 
divide by k. 2x less 12x equals zero divid-
ed by 2x.

Teacher:  This one here [2x] is multiplying the 
whole expression?

Students:  No.
Teacher:  When I divide, when I move to here 

dividing by 2x, it means I divided the 
whole expression.

As the new proposal of Guilherme is not valid, the 
teacher suggests a reinterpretation of his statement 
and recalls the use of an equivalence principle of solv-
ing equations in order to show that he cannot do the 
procedure he is proposing.

In this segment, the students did several wrong proce-
dures, highlighting that they do not have yet a mastery 
of monomial and polynomial properties. These wrong 
procedures led the teacher to challenge students to 
make connections with polynomial operations. As 
students have some knowledge about this topic, the 
teacher keeps using challenging actions instead of 
suggesting and guiding actions as she did in the previ-
ous segment. Nevertheless, when needed, the teacher 
uses suggesting and some guiding actions to move 
the discussion forward. All these actions are mostly 
around interpreting and reasoning about that inter-
pretation.

An unexpected proposal
As before with Irina, Guilherme cannot move forward 
on solving the equation, so, the teacher invites another 
student to continue:

Teacher: Maria.
Maria: Teacher, getting back to that one [refer-

ring to x2 = 12x/4].
Teacher: Getting back to this [pointing out the 

equation on the blackboard].
Maria: Is it possible to do x2 divided by x equals 

12 dived by 4?
Teacher: Oh, Maria did this... Have you seen what 

she has done?
Students: Yes.
Teacher: I am going to do what she has done, this 

x [on the left side of the equal sign]… She 
wrote this, I will continue [writes down 
x2/x = 12/4].

As Maria begins where Irina stopped, the teacher 
guides students to focus their attention by revoicing 
and pointing out what Maria is referring to. As Maria 
presented her proposal, the teacher informs students 
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by representing it on the blackboard. Before moving 
forward, a student states that Maria cannot separate 
12 from x in 12x, which leads to a segment of the discus-
sion very similar to the segment Overcoming miscon-
ceptions. After clarifying some monomial properties, 
the teacher asks Maria to proceed with her way to 
solve the equation:

Teacher: And now what? Maria, I stopped here, 
what’s next?

Student: x equals 3.
Teacher: In the other lesson we didn’t get to this 

point. Now I am curious. Look here. If I 
would go this way, x2 divided by x…

Students: It’s x.
Teacher:  Equals...
Students:  Three!
Maria:  So, it is possible!

Maria does not get to answer as there is a colleague 
that anticipates the response. The teacher asks again 
the question, suggesting students to develop the rep-
resentation of the equation made by Maria. At this 
point, several students are following Maria’s rea-
soning and completed solving the equation with no 
further support from the teacher. Thereby, Maria 
concludes that her way to solve the equation is valid. 
Nevertheless, the teacher explores the situation a lit-
tle bit further by challenging the students to interpret 
the situation and then to justify their interpretation:

Teacher: Is it possible?
Students:  It is.
Teacher: How can I see if the solution is correct?
Student: Replacing.

As a student readily answers how to justify that the 
value they found is a solution of that equation, the 
teacher suggests most of the computational proce-
dures needed:

Teacher: So, let’s do it slowly. Do it with me, slow-
ly. Jorge, can you do it slowly? Here is 3 
[referring to x]. x2...

Lourenço:  It’s 9.
Teacher: 9 times 4...
Lourenço:  36.
Teacher: 36. 3 times 12…
Students: 36.
Teacher: 36 less 36...
Students: Is going to be zero.

This segment develops around Maria’s proposal that 
emerge from the teacher’s first challenge to solve the 
equation through making connections with previous 
knowledge. As students engage in the discussion 
about Maria’s proposal, the teacher mostly suggests 
procedures that lead students to find a solution of 
the equation and, later, to justify that solution. In 
between, the teacher challenges students to justify 
that the value found is an equation’s solution, which 
students easily do.

Comparing solutions
At this point, a student, by trial and error, figures out 
that zero could also be a solution, which led the teach-
er to introduce a discussion aiming the generalization 
of the zero product rule. This segment of the discus-
sion had a first section where students factorized the 
proposed equation and a second section where the 
students figured out its solutions. Then, the teacher 
proposed some problems involving the zero product 
rule to students to solve in small groups. Previously to 
the discussion of those problems, the teacher recalls 
Maria’s solving process:

Teacher: Earlier, I’ll call it now “Maria’s process”. 
By Maria’s process how many solutions 
have we found?

Student: That has one [solution].
Teacher: One solution. But when we did it by fac-

torizing, we got two. My question is… 
We saw, we confirmed, that actually this 
equation has two solutions. The question 
is, what happened in this process, why 
zero does not emerge as a solution? This 
would be . . . x equals zero or x equals 3, 
two possibilities. Here [in Maria’s pro-
cess] only emerges x equals 3. Suddenly 
it looks like a solution has been hidden. 
Luís readily said that there was another 
despites this one . . . Why doesn’t the solu-
tion show up here? [No student reacts.] 
Why did I found here x equals 3 and there 
I found out two solutions, zero and 3?

The teacher begins by saying what is going to be dis-
cussed, challenging students to evaluate the two pro-
cesses of solving the equation. Mário says that solving 
using the zero product rule is the way to “obtain all 
possibilities”, so the teacher guides the students to 
interpret Maria’s process. But the students centre 
their attention on zero, referring to zero on the sec-
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ond member of the equation 4x2 – 12x = 0. At some 
point, Mário asks the following question:

Mário: Teacher, a question. Is zero the second 
solution in equation that… c equals zero 
[referring to c in ax2 + bx + c = 0]

Teacher: That is a very good question. But my 
question… That is really a good question, 
it is very relevant. But my question here 
is why doesn’t zero appear here? Before 
we go to that one. Why doesn’t it appear 
here? And there it appeared.

Mário’s intervention represents a very interesting 
generalization about zero being a solution of any 2nd 
degree equation like ax2 + bx = 0. The teacher decides 
not to explore it but to move back to Maria’s solving 
process, challenging students to get some justification 
on the lack of one of the solutions in Maria’s process. A 
student gets back to the zero rule process’ solution but 
the teacher guides students again to focus on Maria’s 
process. Hélder intervenes:

Hélder: Because one cannot divide by zero. 
Student: Yes you can!
Teacher: [Writes a huge 2/0] Question to the 

class…
Student: What a huge 2!
Teacher: It really is to be seen. Hélder said, here 

does not appear zero as a solution be-
cause Maria, when did this step, divides 
by x. And, if I place here a zero, what 
Hélder is saying is that it doesn’t make 
sense to place here a zero. My question 
is, why? This equals to what?

Student: Zero. 
João: Undetermined.

As Hélder’s answer to the teacher prior challenge lead 
to a disagreement, the teacher challenges students to 
justify if Helder’s statement leads to a justification or 
not. This discussion leads the students to conclude 
that it is not possible to divide by zero, as Madalena 
states (“Even so, no number can be divided by zero”) 
and the teacher supports reinforcing (“No number 
can be divided by zero).

As the evaluation of the solving processes relies on the 
reason why Maria’s process leads to just one solution, 
and that reason is justified, the teacher ends this whole 
class discussion.

In this last segment of the discussion, the teacher main 
action is challenging students to evaluate both solving 
processes. To promote students’ activity towards eval-
uation aim, the teacher guides the students to focus 
on Maria’s process and challenges them to justify the 
single solution it yields. In this segment there are few 
informing actions, and teacher’s challenging actions 
lead to many students’ reactions.

CONCLUSION

In this whole class discussion, we identify a variety of 
teachers’ actions. We note that each segment is struc-
tured by a main action. As this class discussion aims to 
introduce new knowledge, one could expect that cen-
tral actions would be mostly guiding, subtly or explic-
itly leading students to a solving procedure using the 
zero product rule. Nevertheless, attending this class 
characteristics, the teacher begins all four segments 
with a challenging action leading to quite unpredicta-
ble students’ responses. This teachers’ choice provid-
ed rich learning opportunities that would probably 
not occur if guiding would be the central action in 
each segment. We also note that, albeit marked by a 
main challenging action, all segments differ in their 
nature. Teachers’ actions seem to depend on students’ 
knowledge about the situation, as challenging actions 
are followed by other challenging actions when the 
students have the tools to embrace those actions and 
are followed by guiding or suggesting actions when 
the mobilization of students’ knowledge needs further 
support. 

Regarding mathematical processes, the teachers’ 
central actions mostly rely on interpreting process-
es. Nevertheless, more demanding processes also 
occur as in Comparing solutions, where challenging 
evaluating actions assume great importance. As with 
the actions themselves, the mathematical processes 
addressed also depend on students’ knowledge. New 
situations to students require a focus in representing 
and interpreting processes, while segments where 
students have some previous knowledge to rely on, 
reasoning and evaluating processes are more likely to 
occur, as in Overcoming misconceptions or Comparing 
solutions. 

In summary, the model used to analyse teachers’ 
actions (Figure 1), extending the previous models 
of Stein and colleagues (2008) and Cengiz, Kline 
and Grant (2001), contributed to better understand 
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teachers’ practice. Also, an interesting relationship 
between teachers’ actions, mathematical processes 
and the situation itself emerged from the analysis 
with this model, which suggests the need of further 
research of teachers’ practice during whole class dis-
cussions focusing on these features.
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We analyse teacher’s actions during whole class dis-
cussions in exploratory classes (in which students are 
asked to design their own strategies) and their relation to 
students’ learning. Data is collected through participant 
observation, with videotaping of lessons. The results 
show that the exploratory approach favours the emer-
gence of disagreements among students and their for-
mulation of generalizations and justifications provided 
that the teacher intertwines guiding and suggesting ac-
tions and makes appropriate challenging actions at key 
points. In such whole class discussions, the teacher has 
to make important decisions in relation to problematic 
situations raised by students’ difficulties or unforeseen 
responses as well as by the need to figure out productive 
ways of continuing a discussion.

Keywords: Teacher practice, mathematical discussions, 

communication, reasoning.

INTRODUCTION

An exploratory approach to mathematics teaching 
seeks to propose students situations where they 
have to deal with tasks for which they do not have 
an immediate solution method or in which a new 
representation, concept or procedure may be useful. 
This approach creates opportunities for students 
to build or deepen their understanding of concepts, 
representations, procedures, and mathematical ideas. 
The students are called to play an active role in inter-
preting the questions proposed, in representing the 
information given and in designing and implement-
ing solving strategies which they are called to present 
and justify to the whole class. This teaching approach 
is based in the fundamental distinction between task 
(the objective to be achieved) and activity (the work to 
be done to achieve this goal) (Christiansen & Walther, 
1986). The work on exploratory classes develops usu-
ally in three phases (Ponte, 2005): (i) presenting and 

interpreting the task; (ii) carrying out the task individ-
ually, in pairs, or in small groups; and (iii) presenting 
and discussing results and doing a final synthesis. 

In this study, we focus our attention in the work of the 
teacher in leading whole class discussions, in which 
students present and justify their solutions and ques-
tion the solutions of their colleagues. We do not seek 
to establish a normative framework, saying what the 
teacher “must” do, but rather to analyze the phenom-
ena that take place in the classroom, in order to un-
derstand the situations that occur and the actions that 
the teacher can do to promote students’ learning. As 
students carry out exploratory work, the diversity of 
situations that may arise is very large and depends 
on the age level of the students, their mathematics 
ability, the culture of the classroom, and the mathe-
matical topics under study. In addition, one must keep 
in mind the influence of other factors such as teach-
ers’ and students’ concerns about assessments, school 
guidelines on curriculum management, textbooks 
and other resources available, physical conditions 
of the room, etc. In this way, our study has essentially 
an analytical stance, aiming to examine the diversity 
of actions that the teacher is called to undertake in 
whole class discussion moments and their relation 
to student learning.

THE DYNAMICS OF DISCUSSION 
MOMENTS IN THE CLASSROOM

Teachers’ practices have an important influence on 
students’ learning (Ponte & Chapman, 2006). An im-
portant aspect of such practices is the nature of the 
tasks that the teacher proposes to their students. If a 
task only requires students to select and apply a solu-
tion method that they already know, they have just to 
identify and carry out this method. By contrast, a task 
with challenging features (Ponte, 2005) or involving 
a high cognitive demand (Stein, Remillard, & Smith, 
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2007; Stein & Smith, 1998) may lead to a diversity of 
strategies that can be compared and evaluated, result-
ing in interesting classroom discussions. 

Another aspect that frames teachers’ practices is the 
nature of the classroom communication (Bishop & 
Goffree, 1986; Franke, Kazemi, & Battey, 2007). A fun-
damental aspect of communication are the questions 
posed by the teacher. Among these, inquiry questions 
that admit a range of legitimate responses are particu-
larly useful. In addition, another important feature 
of classroom communication is the process of nego-
tiation of mathematical meaning (Bishop & Goffree, 
1986), leading students to make new connections 
among mathematics ideas, and helping the teacher 
to recognize their sometimes unforeseen points of 
view. Franke, Kazemi, and Battey (2007) stress the im-
portance of processes that support students’ language 
development, like revoicing. Whole class discussions 
provide opportunities for particular forms of com-
munication, such as explanations and argument and 
are attracting a growing interest of mathematics ed-
ucation researchers (Bartolini-Bussi, 1996; Cengiz, 
Kline, & Grant; 2011; Fraivillig, Murphy, & Fuson, 1999; 
McCrone, 2005; Scherrer & Stein, 2013; Sherin, 2002; 
Stein, Engle, Smith, & Hughes, 2008; Wood, 1999). 

The teacher role is to prepare the moment of discus-
sion, taking into account the work carried out by the 
students and the class time available. In order to do 
this, Stein, Engle, Smith and Hughes (2008) highlight 
the importance of anticipating how students might 
think, to monitor their work, to gather relevant in-
formation, to select aspects to note during the discus-
sion, to sequence the students’ interventions and to 
establish connections among the different solutions 
during the discussion. A preparation made under 
these conditions is an important support for con-
ducting a discussion. However, the actual develop-
ment of a discussion involves other issues beyond the 
establishment of connections. Many of these issues 
cannot be fully predicted prior to the discussion, but 
create problems that the teacher must be prepared 
to face. As Sherin (2002) indicates, the teacher needs 
to be able to balance aspects relating to mathematics 
knowledge, which requires filtering ideas focusing 
students’ attention in fundamental ideas, and aspects 
related to mathematical processes that require a fre-
quent attention.

Seeking to identify situations of particularly produc-
tive discussions, both Potari and Jaworski (2002) and 
McCrone (2005) emphasize the value of challenging 
students mathematically. Wood (1999) underlines 
the potential of exploring disagreements among stu-
dents, as teachers lead them to justify their positions 
and encourage other students to join the discussion. 
Fraivillig, Murphy and Fuson (1999) and, subse-
quently, Cengiz, Kline and Grant (2011) developed a 
framework of analysis for the teacher’s actions in con-
ducting mathematical discussions that distinguishes 
three main types of actions: (i) eliciting actions, to 
lead students to present their methods, (ii) supporting 
actions, to promote their conceptual understanding, 
and (iii) extending actions, to widen or deepen stu-
dents’ thinking. In another study, Scherrer and Stein 
(2013) developed an intervention to support teachers 
in analyzing whole class discussions based in four 
main coding categories of moves: (i) those that begin 
a discussion; (ii) those that further the discussion by 
elaborating or deepening students’ knowledge; (iii) 
those that elicit information; and (iv) other moves.

With a similar intent, Ponte, Mata-Pereira and 
Quaresma (2013) developed a framework that assumes 
that the teacher performs actions directly related to 
the topics and the mathematical processes as well as 
actions that have to do with management of learning 
(Figure 1). Focusing their attention on actions relat-
ed to the mathematical aspects, they point out that 
inviting actions are used to start a discussion and 
guiding actions allow leading students on solving a 
task through questions or observations that implic-
itly point the way forward. In informing/suggesting 
actions the teacher introduces information, presents 
arguments or validates students’ answers. Finally, 
challenging actions seek to lead students to produce 
new mathematical knowledge. In informing/suggest-
ing, guiding, and challenging actions it is possible to 
identify fundamental aspects of mathematical pro-
cesses such as (i) representing (constructing, using, 
or transforming a representation), (ii) interpreting, 
including the establishment of connections, (iii) rea-
soning, including formulating a strategy to achieve a 
goal, producing a statement, generalizing procedure 
and justifying, and (iv) evaluating, making judgments 
about a concept, representation, or solution. A gen-
eralization may concern a definition, a statement or 
a procedure and a justification may be informal and 
related to the context of the situation or more formal 
as is the hallmark of mathematical work.
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RESEARCH METHODOLOGY

This study follows a qualitative and interpretive ap-
proach (Denzin & Lincoln, 1989) using participant 
observation. Both authors assumed the role of teach-
ers (striving to follow an exploratory approach) and 
researchers – as one conducted the class, the other 
acted as a participant observer. The grade 6 class, with 
19 students, is in a rural elementary public school, in a 
deprived area. The students, usually, show little com-
mitment to school activity and do not get themselves 
much involved in working in the mathematics class. 
The study involves five 90-minute lessons, in which 
students carried out several tasks presented in three 
worksheets. The first worksheet included diagnos-
tic questions on comparing, ordering, adding and 
subtracting rational numbers, the second aimed to 
introduce the multiplication of a natural number by 
a fraction and the multiplication of two fractions, and 
the third was intended to develop the notion of opera-
tor in the context of problem solving. After the intro-
duction of the task, the students began by working in 
pairs and the teacher monitored their work, helping 
them to move on, when necessary, but striving to not 
provide direct responses to the questions stated in the 
task. Finally, there was a whole class discussion, in a 
register of dialogical communication (Ponte, 2005).

The classes were recorded on video and the whole 
class discussions were integrally transcribed. Data 
analysis began by identifying the segments in the 
discussion of the solution of each task, coding the 
teacher’s actions according to the categories shown 
in Figure 1. Then, we sought to establish relationships 
between these actions and specific events as regards 
interpretations, representations, and reasoning made 
by the students. For this paper, we selected two epi-

sodes that illustrate several aspects of these relation-
ships.

DEALING WITH STUDENTS’ DIFFICULTIES

In this episode we find two rather common situations 
in the classroom: (i) students with difficulty in under-
standing a written mathematical question and, (ii) 
students with difficulty in expressing their thinking. 
We show a first situation with several guiding and 
suggesting actions but where a challenging action 
proves to be critical and a second situation in which 
guiding and suggesting assume an identical role and 
there is a very low level of challenging. This takes 
place as students work on a task in a mathematical 
context (Figure 2) that asks to evaluate the validity 
of a statement involving two fractions. This task is a 
problem that requires the students to figure out that 
they either must find counterexamples or justify that 
the statement is always true.

As students begun working individually, they imme-
diately show difficulty in understanding what is asked 
in the question and the teacher realizes the need to 
promote a whole class interpretation of the statement 
and in helping students find a solution strategy: 

Teacher:  The two cases are true. (…) OK, this and 
this [ 2

4  < 1
3   and 4

5  < 3
4 ] are true. May I 

Figure 1: Framework to analyse teachers’ actions (adapted from Ponte et al., 2013)

Task 1.  2
4  is larger than 1

3 , 4
5  is larger than 3

4 . Do you 
think it is possible to make the following statement: “If 
we want to compare two fractions and we verify that 
one of them has the numerator and the denominator 
larger than the other fraction, we can immediately 
conclude that this is the larger fraction”? Justify your 
answer.

Figure 2: True or false? (task based on Lin & Tsai, 2012)



Conducting mathematical discussions as a feature of teachers’ professional practice (João Pedro da Ponte and Marisa Quaresma)

3103

always say that whenever the numera-
tor and the denominator of a fraction 
are larger than the numerator and the 
denominator of the other fraction, then 
[the fraction] which has larger numer-
ator and denominator is always larger 
than the second [fraction]? Does this 
always happen?

A student:  No…
Teacher:  How can you know if it always happens 

or not?
Daniel:  Doing more fractions…
Teacher:  Finding more examples… It may be a 

good suggestion from Daniel…

The teacher recalls the main aspects of the statement 
(“this and this are true”) and then makes a more gen-
eral statement (“when the numerator and the denom-
inator of a fraction are larger than . . .”). The students 
realize that the statement is true in some cases but 
have difficulty in knowing what to do to know whether, 
in general, the statement is true or not. The teacher 
makes an inquiry question (“How can you know if 
it happens always or not?”) and this leads Daniel to 
suggest a promising strategy. The teacher supports 
this idea and she revoices it formally in more appro-
priate terms. 

In this first segment, as the students show difficulty 
in finding a strategy to answer the question, the first 
intervention of the teacher helps them to interpret the 
statement and is a guiding action, which is followed 
by an inquiry questiona challenging action. The final 
intervention, supporting the proposal of Daniel, is a 
suggesting action. The emphasis of the teacher’s in-
tervention is in interpreting (the task and its different 
elements) as a basis to support students’ reasoning as 
the aim is knowing and justifying whether a given 
statement is mathematically valid or not.

In the sequence of this exchange, during the whole 
class discussion of the results, Guilherme, presents 
a counterexample for the statement, identifying frac-
tions that satisfy the given conditions ( 2

4  and 3
16 ) but 

which do not verify the inequality. To compare these 
fractions he converts them in percent. The teacher 
considers interesting that the whole class observe 
this solution, but some students do not understand it: 

Teacher:  So, Guilherme found… a way to trans-
form fractions in percent and… He 

found that 2
4   is 50%, right? And what 

did you find about 2
4 , 2

4   was how much? 
Some of you discovered… Changed the 
fraction into a decimal…

Jaime:  It was 0.5.
Teacher:  Oh! It was 0.5. And so, 0.5 in percent is…
Guilherme:  It is 50%.
Teacher:  Oh! It is 50%. Oh, so that means that he 

arrived to the same conclusion as you 
did, but using a different representation 

. . . So Guilherme prefers to work with 
percent . . . So, he discovered that 2

4  is 
50% and 3

16   is 18,75%… Why have you 
done this, Guilherme?

The teacher leads the students to compare the repre-
sentations used by Guilherme (percent) and by the 
remaining students (decimal). With a final question, 
the teacher seeks to guide Guilherme, supporting him 
in explaining his solution.

In this second segment the teacher asks a student to 
present his solution, which she found to have a re-
markable originality, but is faced with the problem 
that the student has great difficulty in explaining 
his reasoning. As many students are confused, the 
teacher’s actions alternate between guiding and sug-
gesting, with no challenging actions. There is much 
attention to representations and their transforma-
tions (converting between decimals and percent) but 
the focus of the teacher’s interventions is in inter-
preting, revoicing the student’s statements in a more 
understandable and correct way, in order to allow an 
interpretation and understanding of the other stu-
dents in the class.

CHALLENGING STUDENTS

Next we show a situation that begins with a teacher 
challenge which is then followed by inviting, guiding 
and informing/suggesting actions, which lead the stu-
dents to establish a first generalization connecting 
multiplication of an integer by a fraction with suc-
cessive addition of fractions and a second generaliza-
tion that highlights an understanding of equivalent 
fractions. It takes place when students work on the 
task shown in Figure 3 that asks for the value corre-
sponding to seven repetitions of a certain magnitude 
in a contextualized situation. The students had not yet 
learned to multiply a whole number by a fraction. It 
was expected that they would solve the task through 
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repeated addition, perhaps proposing by themselves 
a definition for the multiplication of a whole number 
by a fraction.

Two students solved the task using repeated addi-
tion of seven equal fractions. However, in their solu-
tion they wrongly indicate that 1

4  +  1
4   is equal to 2

8  . 
During the whole class discussion, in a first segment, 
the teacher decides then to question how much is 

1
4  +  1

4 . The students indicate several answers, some 
correct, such as 2

4  and 0.50, and some incorrect such 
as 1

8  and 2
8 . To guide the students in distinguishing 

among correct and incorrect answers, the teacher 
draws a pictorial representation (a rectangle divided 
in four equal parts) and asks again the students what 
will be the response.

Daniel, who had already presented a response to the 
question 1

4  +  1
4  as 2

4  and as a decimal (0.50), suggests 
a new answer, using the equivalent fraction 4

8 . The 
teacher notes that the student is thinking in fractions 
equivalent to , decides to validate his solution and asks 
for a justification (a challenging action):

Teacher:  Exactly, 4
8  would be also an answer. 

Why? Why is 4
8  equal to 2

4 ?…
Guilherme:  Because it is 0.50.

Guilherme’s justification is based on a change of rep-
resentation. At this moment teacher decides to take 
the opportunity to recall equivalent fractions, empha-
sizing the relationship that exists among 2

4 , 4
8  and 1

2 , 
and this leads to a new discussion segment.

Driven by the intervention of Guilherme and the 
suggestion of the teacher, Edgar suggests another 
equivalent fraction. The following dialog takes place: 

Edgar:  Oh! Teacher, I know another… 8 divided 
by 16 also does it!

Teacher:  Also does it… 8
16  also does it… Very good… 

Any other that also does it?

As two students (Juliana and Edgar), in the last class, 
had also made an interesting discovery related to 
this issue, the teacher encourages them to indicate 
it. Juliana corresponds to this invitation, stating a 
generalization: 

Juliana:  A number divided by its double will al-
ways yield its half.” 

The teacher challenges then the students to give more 
fractions equivalent to 1

2 , and they correspond in an 
enthusiastic way:

Teacher:  Very well… 2
4  is equal to 1

2  that is equal 
to 8

16 … And I want another one! 
Rui:  So, now 16 divided by 32…
Teacher: 16

32 . And I want still another one…
Students: 32 by 64.
Teacher:  Ah… Very good, 32

64. Still another…?
Students:  64 and 128…

Other students join the discussion and suggest more 
fractions equivalent to 1

2 . The teacher supports this 
enthusiasm, revoices their suggestions using a cor-
rect fraction language and challenging them to find 
other fractions that satisfy the same condition.

In summary, at the beginning of this episode several 
students show that they do not recall the procedure 
to add two fractions with the same denominator. The 
teacher seeks to lead them to understand the rule to 
add two unit fractions, using for that purpose a pic-
torial representation. When all agreed that 1

4  +  1
4  = 2

4 , 
and assuming the opportunity provided by the fact 
that different correct responses were already pro-
vided, the teacher begun challenging the students to 
provide justifications regarding equivalent fractions 
and to find further equivalent fractions. In this epi-
sode, the teacher’s most important actions are chal-
lenging, although one recognizes inviting, guiding 
and informing/suggesting actions as well. Starting 
from a simple procedural question, the teacher ends 
up leading an inquiry-oriented reasoning, with the 
establishment and use of a generalization to produce 
equivalent fractions. 

CONCLUSION

This paper shows how teachers’ actions may unfold 
during whole class discussions conducted within an 
exploratory approach. In the first episode the teacher 

Task 2. In the grade 6 class of the school Wide Horizon, 
the teacher made the following problem: “Every morn-
ing, Raquel drinks 1

4  of liter of milk. How much milk 
does she drink in a week?” You must solve the problem 
yourself and justify your answer.

Figure 3: Task involving the multiplication of a natural number by 

a rational number
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seeks to support students in interpreting a written 
mathematical statement and leads those who solved 
a question correctly to explain it to their colleagues. 
The teacher provides some challenge but uses mainly 
guiding and suggesting actions, without indicating 
the solution to the students. Drawing on counter-
examples, the teacher seeks to make the elements 
available to the whole class so that the students can 
figure out that the statement is false. In the second 
episode, after some work on pictorial representations 
to figure out a correct answer, the teacher challenges 
the students to present more answers, seeking the 
emergence of disagreements and, in response, the 
students produce a sequence of equivalent fractions. 
That is, in both episodes challenging is a critical action 
(Potari & Jaworski, 2002; McCrone, 2005) but needs to 
be underpinned by other types of actions. The way 
the teacher intertwines guiding and suggestion ac-
tions and makes appropriate challenging actions at 
key points is critical to foster students’ involvement 
and to achieve the learning goals, notably, (i) when 
students present promising conjectures, (ii) when 
there is room for important justifications, and (iii) 
in situations that may prompt fruitful conjectures 
from the students. In addition, both episodes show 
how the teacher may promote the interconnection of 
representing and interpreting and create opportuni-
ties to foster students’ reasoning, notably asking them 
for generalizations and justifications (Ponte, Mata-
Pereira, & Quaresma, 2013).

These whole class discussion moments provide many 
opportunities for interpreting statements and using 
representations (Bishop & Goffree, 1986), for improv-
ing the students’ language revoicing their claims 
(Franke, Kazemi, & Battey, 2007), for establishing 
disagreements (Wood, 1999), and formulating gen-
eralizations and justifications (Lannin, Ellis, & Elliot, 
2011). However, whole class discussion moments also 
create many problems for the teacher, requiring the 
ability to deal with unforeseen situations and to no-
tice opportunities for promoting students’ learning 
(Scherrer & Stein, 2013). The discussion episodes 
presented in this paper include many moments in 
which the teacher needs to make decisions with re-
spect to different situations, which are constituted 
as problems that she has to deal with in the course of 
the action. Some of these problems have to do with 
students’ difficulties in understanding what they 
can do in a proposed task or in interpreting some 
aspect of a solution provided by another student. 

Other problems arise from unexpected responses 
from students, sometimes correct and other times 
incorrect. There are also problems which arise from 
the students’ difficulty in explaining their reasoning. 
Finally, other problems arise from the need to manage, 
in a productive way, the range of students’ responses 
and in keeping an appropriate pace for the classroom 
work. That is, besides planning the discussions and 
anticipating possible students’ difficulties (Stein et al., 
2008), the teacher must be ready to make important 
decisions in relation to problematic situations raised 
by students’ difficulties in understanding the tasks, 
in figuring out strategies, in expressing themselves 
and by unforeseen students responses. In addition, at 
many points the teacher needs to figure out what is 
the most productive way of continuing a discussion. 
Such problems that conducting whole class discus-
sions raise to teachers’ practice creates an important 
agenda for research concerning mathematics teacher 
professional development.
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In this paper, I use interviews with two teachers, drawn 
from a small scale study of four schools, to illustrate 
the way in which mathematics assessment is used as a 
form of capital in teachers’ wider professional lives and 
the effect that this is likely to have on teaching practices 
in mathematics. Assessment is high-stakes for English 
schools and outcomes are increasingly measured nu-
merically in terms of annual ‘pupil progress’. I use an 
analysis based on Bourdieu to illustrate how this affords 
competition between teachers for grades and potentially 
brings them into conflict with each other. I argue that 
the effect of this kind of professional capital is likely to 
be unhelpful in relation to what is known to be effective 
use of assessment in mathematics teaching.

Keywords: Assessment, Bourdieu, professional capitals, 

competition.

INTRODUCTION

The focus of this work is mathematics assessment 
from the perspective of teachers in English primary 
schools (5–11yrs) in relation to the significant part it 
plays in their teaching. This is set in the context of 
massive investment in mathematics education over 
the last 15 years, but with modest improvement and 
concern that English pupils are not keeping up with 
their international peers (e.g., Gove, 2013). Research 
(e.g., Boaler, 2005) is clear that one vital issue in ef-
fective learning of mathematics is that teachers, and 
pupils themselves, see the potential for learning as 
flexible and mutable; and that its opposite – perceiv-
ing it as objectified and immutable – leads to teaching 
practices which hold learners back. Pupils should be 
involved in understanding what they can and cannot 
yet do and involved in mathematics as a process of 
exploring interconnecting ideas. Despite this clarity, 
practices in English classrooms tend not to reflect it; a 
view of mathematical ability as a fixed characteristic 

of individuals, setting by such ability and teaching 
that is negatively differentiated so that weaker pu-
pils (and the highest achieving) are not challenged 
mathematically, all prevail (Boaler, Wiliam, & Brown, 
2000; Marks, 2014). This paper explores some of the 
reasons for this contradiction by trying to understand 
teachers’ mathematics assessment practices from the 
perspective of professional status as a whole. In doing 
so it makes use of Alexander’s definition of pedago-
gy as ‘the act of teaching together with its attendant 
discourse’ (Alexander, 2004, p. 11). Crucially, from 
this perspective, teaching practices can only be un-
derstood in relation to the politics of daily life within 
which teachers act; research which decontextualizes 
teaching and learning in this way is unlikely to affect 
practice in any significant manner.

THEORETICAL FRAMEWORK

Assessment judgments in the UK take place within a 
high-stakes environment of increasing competition at 
both school and individual level with quantified test 
outcomes being the key commodity for recognition of 
success and high status. Schools, and the individual 
teachers within them, are now judged on the basis 
of standardised numerical outcomes; ubiquitously 
referred to as ‘data’ by those who work with them. 
For anyone not associated with education in English 
schools it may be hard to appreciate just how much 
of a hold this assessment-driven culture has over the 
lives of those who work in them; to a large extent it 
dominates the way they think and talk about their 
work, with numerical assessment data being used 
as a proxy for the overall standard of education in a 
highly politicised landscape. The term ‘progress’ has 
been adopted by successive governments and policy 
makers to stand for the rise in pupils’ attainment over 
time. Pupils’ progress over stages of their education-
al life against subdivisions of National Curriculum 
levels has become the key measure by which schools 
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are judged during inspection (Office for Standards in 
Education, 2012a) and schools can only be graded as 

‘outstanding’ if the progress from Key Stage 1 (KS1 – 7 
years old) to Key Stage 2 (KS2 – 11 years old) fits the 
approved pattern, regardless of the perceived quality 
of teaching during an inspection1. This means that the 
quality of teaching is understood to be validly and 
reliably represented by the measured progress. In 
turn this means that teaching tends to get constructed 
backwards; if the progress is not as much as it should 
be then teaching cannot be good, regardless of what 
is seen on the ground. Furthermore, the UK Coalition 
government has recently introduced new arrange-
ments for performance-related pay for individual 
teachers (Hodgson, 2012) in which successful teaching 
gauged at an individual level is defined as all pupils 
making a specific number of points of progress across 
a year, regardless of circumstances. Assessment is 
therefore naturally very much part of teachers’ every-
day mathematics discourse and so, on the assumption 
that human activity is object-orientated (Vygotsky, 
1978), this discourse and acts of teaching and learning 
mathematics will be mutually constituting in peda-
gogy.

To try to understand this relationship between as-
sessment and teaching I draw on Bourdieu’s notions 
of field, habitus and capitals. As Colley (2013) notes, 
though imperfect by Bourdieu’s own admission the 
idea of the game as a metaphor is important in un-
derstanding how field and habitus interact with each 
other. The field (here the work of school assessment) 
is ‘a space of conflict and competition constructed 
only through the human doings of human people’ (p. 
10) so that it ‘is not only a set of external conditions 
which themselves have been devised or imposed ... 
[but] is also the agentic and partly subjective playing 
of the game through our habitus’. Field and habitus 
are not therefore separable, and certainly not rep-
resentative of structure and agency respectively. 
Rather, they are mutually constitutive of each other, 
each produced through the other: habitus developed 
through repeated activity in the field; field developed 
through the playing out of activity through habitus. 
Thus, the question here is how the changing nature of 
mathematics assessment as a high-stakes, politicised 
element of schooling affects the ways in which teach-

1  At the time of writing the UK government is consulting on the 

removal of this system and its replacement by one in which 

pupils are judged against ‘age-related expectations’.

ers and pupils ‘play out’ schooling. In this respect, two 
other Bourdieusian ideas are relevant: doxa which 
refers to the dominant discourse of a field, separating 
what is thinkable from what is unthinkable; and illusio, 
a more conscious belief in the stakes (enjeux) of the 
game and the belief that it is worth playing.

METHODOLOGY

The project forms part of a wider study based in 
Plymouth University, UK, looking at the socially-con-
structed nature of teaching (see, e.g., Kelly, Hohmann, 
Pratt, & Dorf, 2013). It involves extended semi-struc-
tured interviews with primary teachers in four dif-
ferent schools (12 teachers in total) aimed at exploring 
their use and understanding of mathematics assess-
ment (though inevitably, as non-subject specialists 
teaching the primary curriculum, teachers spoke 
about assessment in general too). In this sense it is a 
case study, exploring assessment as an aspect of the 
field of teaching and learning in the four case schools. 
Both teachers and schools were chosen purposively, 
the latter with different characteristics that might rea-
sonably affect the way in which assessment takes place, 
including: inspection gradings; different arrange-
ments of governance; and different proximities to 
competing schools. Data from all the interviews were 
analysed using a constructed, grounded approach 
following Charmaz (2006) and themes were developed. 
These themes are incorporated into the account that 
follows, but using examples from just two interviews, 
Tony and Sasha, to illustrate the claims, accepting that 
in such a short paper only a partial account of these 
themes is possible. Both interviewees are classroom 
teachers at the same urban school of 550+ pupils and 
have been teaching for 9 and 6 years respectively. 
Tony trained via a one-year postgraduate course and 
teaches Year 3 (7–8 yrs); Sasha trained on a four-year 
Bachelors course and teaches Year 5 (9–10 yrs). The 
school has had successful inspection outcomes over 
the last 15 years, based on attainment that is above 
the national average, but was recently downgraded 
from ‘outstanding’ to ‘good’ on account of progress 
not being consistent across the whole school. Such 
consistency, judged through assessment, is therefore 
a focus for all staff.

THE DISCOURSES OF SCHOOL ASSESSMENT

Despite the points about assessment used for insti-
tutional and professional monitoring made in the 
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introduction above, England has a long tradition of 
child-centred, progressive education and, more re-
cently, assessment for learning in which the ‘first prin-
ciple of learning, is to start from where the learner is’ 
(Hogden & Wiliam, 2006, p. 1). The inalienable nature 
of this as it relates to assessment is nicely exemplified 
by Tony who, right at the start of his interview is asked 
what ‘role assessment plays in what you have to do to 
be a successful maths teacher’. He responds:

Tony: Ok. For me the only [hesitating and 
thinking] thing assessment’s for, obvi-
ously we’re measured against it and the 
children are measured against it, but to 
be a successful teacher, for me, the only 
reason is to see what you need to teach 
the children and teach to their ability … 
um … and find those gaps and fill them 
and bring them on. … what you want to 
do is only assess for what you are plan-
ning, what you are teaching.

But asked whether this is representative of how as-
sessment is used in the school as a whole he declares:

Tony: I think the trouble is that not everyone 
would agree with that. I think there 
would be some teachers who see assess-
ment as a measure of progress, rather 
than assessment for learning. And I 
think all teachers would see those two 
things as part of assessment but where 
they put, where they see the emphasis 
might be slightly different.

In these two statements Tony describes the two con-
trasting discourses of assessment that were apparent 
in the data set, as well as the tension between old and 
new traditions. On the one hand assessment is form-
ative, for teaching and learning; on the other it is a 
summative measure of progress. However, for both 
of these discourses there is also a question of who 
controls the information that assessment generates 
and therefore who makes use of it and what is expect-
ed from them. Children are certainly involved in this 
respect. Formative assessment is routinely used to 
set targets, usually in very systematic ways such that 
children know what they are meant to achieve next; 
and summative assessment outcomes are shared too 
so that my own son, for example, will routinely tell 
me that ‘I am a level 5b’. 

The language is interesting here as children are ob-
jectified ‘as’ their perceived ability level. Objectifying 
children in relation to ‘their ability’ has a considerable 
literature critiquing it (see, e.g., Boaler, 2008; Boaler 
et al., 2000; Cooper & Dunne, 2000; Muijs & Dunne, 
2010), and the increasing emphasis on accountability 
seems to drive the need to become auditable, which in 
turn drives objectification of pupils as numbers on an 
assessment scale. Thus, in interviews we hear Tony 
describing the moderation of assessment, saying that 
the teachers in his year group ‘looked at our level 4s’. 
Whilst this does not, of course, imply that teachers 
only see children in these terms, nor that there may 
not be benefits from doing so anyway, it does illustrate 
a creeping objectification of pupils in the discourse of 
schooling as their assessment level and runs counter 
to the research pointing to the value of a flexible view 
of learning potential. I argue that this is a necessary 
part of a system of high-stakes accountability since 
objectifying pupils as assessment levels enables them 
to be measured, and hence to create a narrative of 

‘progress’ as also measurable. However, for this to be 
used to account for (and increasingly measure) teach-
ers’ work a second aspect of the narrative is necessary, 
which is the imposition of personal responsibility 
for this measure on teachers themselves. If one is to 
link pay to progress one must not only have a reliable 
measure of progress but must also believe that this is 
the result of the teacher’s actions, so that these can be 
assessed and understood as the teacher-performance. 
So, for example, Sasha describes performance man-
agement meetings with the school’s senior manage-
ment team as ‘a scary meeting’, but says,

Sasha: I’ve always quite looked forward to it. 
But again, I wonder if that’s because 
I’m a successful teacher – it feels very 
strange saying that. If I’m a successful 
teacher, and if maybe I wasn’t a success-
ful teacher it would maybe be more 
worrying. And I know teachers in the 
past who’ve been hauled before heads or 
governors to kind of go ‘your children 
have not made appropriate progress 
this year, why not?’ … the performance 
management cycle ensures that no-one’s 
rubbish at their job.

In this light, aspects of the discourse that is created 
around school assessment include:



Mathematics assessment, competition and professional capital (Nick Pratt)

3110

 ― The belief in a version of success defined in nar-
row, data-led terms

 ― The belief that progress is predictable and con-
trollable across time

 ― The creation of official expectations of such prog-
ress

 ― Making individual teachers responsible for 
learning outcomes through their teaching

I argue that this discourse constitutes a doxa because 
as teachers spoke of their experiences in interviews 
these descriptions of assessment practice were gen-
erally ‘granted [a] recognition that escapes question-
ing’ (Bourdieu & Wacquant, 1992, p. 98). We see the 
attributes of control and predictability described here 
exemplified by Tony as he describes the typical shape 
of the graph of mathematics data for his class.

Tony: Probably [the slope is] less gradual, very 
gradual, in the first term and then sec-
ond term goes up a bit and then maybe 
curves over because you wouldn’t go 
any higher than your SATs in May be-
cause you can’t make any progress after 
that can you [laughs ironically]!

Note how the expectation on Tony and his own as-
sessment practices constitute each other and control 
what is possible. Assessment does not just describe 
progress; it defines what is possible and what is not. 
Moreover, the doxa affords another shift, namely a 
move from assessment as a public good for the school, 
or more widely society as a whole, to also being a pri-
vate good for the teacher. Teachers ‘own’ the data, in 
the sense that they both are made responsible for it 
and can make use of it as capital in their professional 
work. These are at work in the way Sasha describes 
mathematics assessment targets.

Sasha:  So the school target is something that 
everyone in the whole school is working 
towards. So whether that is a set amount 
of progress in a particular aspect of 
maths or just developing something, 
you kind of think about just that one 
thing. … The class [assessment target] 
is progress of the children in your par-
ticular class or set and so again, obvious-

ly your assessment links up. And with 
the new pay and conditions thing, if you 
don’t hit every one of your professional 
development targets you can’t progress 
up the pay threshold…

NP: Do you feel responsible for them [chil-
dren’s SAT scores]?

Sasha: [immediately] Yes, really responsible, 
completely … and some children you 
will be like, oh they were so close and 
then you feel a sense of disappointment 
for them and then you question whether 
or not you could have done more.  

Moreover, this data is used and contested as capital 
by different parties.

Tony: I mean like government need to be look-
ing like they are doing a good job govern-
ing. It gets onto heads [headteachers] 
and they need to be monitoring that pro-
gress and they would say ‘my school has 
made a lot of progress’. Deputies look 
at their key stage and say ‘my key stage 
has done really well this year’ [laughs]. 
And then teachers, ‘my progress it is, it 
is’ … you’re responsible for that data, so 
you have ownership over that data, but 
I suppose the stupid thing is … is the 
children who are at the centre of it are 
the ones who are almost most removed 
from the talk of targets and data and  …. 
Yes, it’s ridiculous isn’t it.

Again, Tony illustrates how the doxa of assessment 
works in opposition to the stated policy of assessment 
for learning with pupils at its heart.

ASSESSMENT: TEACHING AND MERITOCRACY

The culture of audit and accountability which pro-
motes this doxa of assessment affords another idea; 
that teaching is meritocratic. The ‘best’ teachers 
are those whose children make the most progress, 
which, according to the doxa, can be reliably meas-
ured through assessment outcomes and attributed 
to individual teachers and their teaching. Thus, in de-
scribing herself as a successful teacher above, Sasha is 
not being immodest or arrogant. Rather, she is stating 
a fact since her outcomes are simply the right ones; 
though she seems aware of the possible social unac-
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ceptability of saying so (‘it feels very strange saying 
that’). Habitus, the way actors are disposed towards 
the pedagogy of assessment, and field, the way they 
position themselves and are positioned by others in 
the professional setting, combine to normalize the 
practice of measuring outcomes and using these in 
particular ways. These outcomes can be understood 
as les enjeux (Bourdieu & Wacquant, 1992), the stakes 
in the meritocratic game of promoting one’s profes-
sional status. That teachers adopt this position is not 
an example of either being forced to do so by structure 
or choosing freely to do so agentically. Instead it rep-
resents teachers’ illusio, their sense of being caught 
up in the game and committed to it in a belief that it 
is worth their investment. Where doxa is a non-con-
scious participation in the dominant discourses of a 
field, illusio is a more aware sense of ‘simply acting 
sensibly’ (Colley, 2013, p. 11) in relation to the stakes 
of the game. By acting this way teachers implicitly say 
to themselves that they will be able to achieve things 
of value, and this may even outweigh acts of symbolic 
violence that they experience as a result.

Teachers therefore express their illusio in the man-
ner in which they commit to the apparently merito-
cratic business of teaching and assessment because 
they believe it brings rewards, but also because the 
doxa within which pedagogy takes place appears to 
provide no alternative. It is important to understand 
that these work together. Just as it is not the case that 
teachers are unconscious of their actions, so neither 
do they exercise fully-conscious choice. The notions of 
doxa and illusio therefore try to represent the ‘dance’ 
of awareness that the teachers can move in and out of 
and, consciously or non-consciously, the way their 
actions are affected. For Sasha her illusio seems fairly  
straightforward and aligned with the doxa.

Sasha: and [my assessment] is all monitored re-
ally closely [in meetings with managers] 
in terms of percentages and progress in 
terms of points and any children who 
are flagged up as having regressed or 
not making as much progress as we’d 
have hoped, they’re then flagged up and 
we put things in place, interventions 
and what-not. And similarly we do it to 
challenge [pupils] as well. Who do we 
need to challenge more?

In this instance at least, Sasha seems satisfied that as-
sessment is valid, can legitimately be used to make 
decisions about teaching and that such decisions lead 
directly to outcomes such that teachers’ work can be 
judged on a meritocratic basis.

In his interview however, Tony suggests a more ar-
bitrary and political side to assessment, for example:

Tony: our stress is we should be recording chil-
dren [with the grade] they are because 
then the [next] teacher could teach them 
effectively, and you feel like you are 
letting the children down if you don’t 
record them accurately, but you know 
the stress of the school where it needs 
to look like a perfect gradual line. And 
we know that Ofsted would want that …

Tony: Um, I don’t think it [assessment] nec-
essarily has an impact on progress on 
children. I think it helps people com-
municate the progress that people think 
children are making, but … stress is nec-
essary to some extent to perform to an 
optimum level, isn’t it. But too much 
stress might tip people over, which… 
some people I know feel that way. And 
if the situation is where [pupils] are not 
moving, that’s where the stress is bad, 
isn’t it, but if they are succeeding then 
those meetings [about pupil outcomes] 
are usually quite rewarding, so it’s usu-
ally quite … it’s never negative if you are 
jumping through those hoops.

Tony shows his awareness of, and challenge to, the 
doxa in his slight cynicism and way he seems to be 
questioning the effect of assessment for teaching and 
learning, but his comments still express his sense of 
illusio regarding the validity and use of assessment 
grades. Nonetheless, contrary to Sasha’s view of as-
sessment as supportive of learning, Tony describes 
his teaching practice as distorted by assessment in 
having to ‘jump through hoops’ with little ‘impact on 
progress’. 

ASSESSMENT: MERITOCRACY 
AND COMPETITION

Meritocracies, usually implicit in any neoliberal 
system, are essentially competitive. One rises up by 
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being successful in whatever terms the dominant 
group in the system creates through the doxa; but as 
the stakes get higher obstacles to progress take on a 
greater significance. In a system where one’s perfor-
mance is judged mainly by being able to demonstrate 
a certain number of points of progress annually on an 
assessment scale, anything which makes this harder 
will be seen as a challenge; and since progress for one 
teacher starts where it left off for the previous teacher, 
end of year assessment has become a major focus and 
an issue of potential stress and anxiety for teachers. 

Sasha: ... if you are in a position where actual-
ly you need that [grade] then it’s very 
stressful because you then go ‘but it’s 
one child and it’s one point and if I do 
it [alter the score] I’ll get that’ and you 
kind of go ‘but professionally I can’t do 
it, but I really need it …’ it’s that kind of 
whole, that real inner-turmoil about it.

Tony: At the start of the year you look at data 
and you think how do I make progress 
with this lot and at the end of year you 
are stressing, I can’t send them up like 
this they’ve done quite well, I’ll put them 
down [laughs, but serious]. Every mo-
ment’s stressful when you look at pro-
gress because you … I always found the 
stress of sending up children and how 
that would be perceived by [the next 
teacher] with the whole value-added 
thing, and I was always extremely care-
ful that [it was] moderated with KS2. So 
sending up is incredibly stressful …and 
my stress at this moment is how my re-
sults which are relatively good are going 
to be perceived by the next teacher in 
year 4.

Despite the competition that assessment generates, 
Sasha’s illusio suggests a stronger sense of investment 
in the practice of assessment. Perhaps because she is 
so successful within it and, regardless of the ‘inner 
turmoil’ described above, she notes that:

Sasha:  [The children] have no comprehension 
that you want to know how they’ve done 
and so you’re stood over them [as they 
do tests] going  ‘yes, yes, yes, yes, nooo! 
Keep counting, keep counting’ [laughs] 
and then you’re like ‘brilliant’ or you’re 

filling in their [marking] grids going 
‘amaaazing, look what they can do’. Very 
definite positives to it.

It seems that her habitus involves a strong commit-
ment to these forms of high stakes assessment and 
despite her descriptions of stress she describes as-
sessment as ‘cathartic’ because ‘it confirms what I 
think about them’ and ‘it reassures you as a teacher’. 
This investment (illusio) requires a belief in the va-
lidity of the system of testing. For other teachers the 
illusio is just as strong, but is effected through other 
means, and where their pupils appear less successful 
the temptation to manage the system is clear. Indeed, 
more than just managing it, Tony claims that:

Tony: I’d use the word manipulation! [laughs]. 
It is manipulated … for … for because of 
all the pressures. It’s never manipulated 
up, it’s certainly manipulated down. I’ve 
never manipulated up at all and that’s, 
you know, I’m sure of that. 

The best teachers were described above as those who 
made the ‘most progress’, but this is not quite the case. 
A better description is those who create the impres-
sion of having achieved the ‘right progress’. Tony’s ma-
nipulation is actually a decrease in the scores obtained 
at the end of the year and Sasha also reports ‘moving 
their level back’ so as not to be treated with suspicion 
by colleagues. However, whilst this seems altruistic, 
two further factors are important to appreciate. 
Firstly, Tony notes the robustness of the moderating 
system, saying that ‘I don’t know actually anyone who 
would send them up higher than you think because 
of the pressure of it being um [moderated]’. Similarly, 
Sasha claims that ‘there is a tendency to perceive that 
a generous marker is bad’. End of year assessment 
appears well policed. However, progress is measured 
between two ends, and if you cannot move as far for-
ward as you would like then you can simply start 
making progress from further back by challenging 
the judgements of colleagues.

Tony: If you drop them [the previous teach-
er’s transferred grades] four points [in 
your first assessment of the new year] 
then you are saying the other teacher’s 
incompetent or a cheat and there is no 
other reason for doing that really. Some 
teachers, naturally ... this thing really 
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bugs me … that some teachers don’t trust 
other teachers and you see four points 
dip at the start of years. And they con-
sistently do it.

Again, assessment is not simply the practice of record-
ing mathematical achievement. It has the potential to 
distort teaching practices, requiring teachers to gen-
erate fictions to manage their own progress (not just 
that of pupils), and in doing so discover themselves in 
competition, even conflict, with each other. 

IMPLICATIONS OF THE ASSESSMENT DOXA

As was noted at the start of this piece, research is 
clear about what we know to be effective mathemat-
ics teaching and the role of assessment in this; above 
all encouraging learners to treat mathematics as a 
network of related ideas and learning as flexible and 
mutable. Yet we also know that in England this is far 
from the case in practice and despite years of pro-
fessional training and countless millions of pounds 
spent trying, pupils’ experiences of mathematics are 
largely the same as they have always been; on average, 
these fail to extend those who are moving on with it 
and leave a long tail of those who are not (Office for 
Standards in Education, 2012b). Standing back and 
examining assessment from the perspective of teach-
ers’ wider professional lives offers some insights into 
this conundrum.  

Teachers clearly work within a strong doxa surround-
ing assessment in mathematics and the evidence from 
the teachers here suggests that this doxa promotes a 
belief in a particular epistemological position: that 
mathematical knowledge is individual, not socially 
distributed; that it is largely propositional; and that 
learning is the business of its acquisition. This posi-
tion then implies several implications for teaching: 
that acquisition should be predictable; that teaching 
should control and monitor this acquisition; that this 
takes place smoothly over time; and that teachers are 
responsible and accountable for it. No wonder then 
that whilst on the one hand teachers attempt to use 
assessment formatively to consider the learning of 
every child, on the other this is overlaid by practices 
that are designed to do professional work for them-
selves, as well as for the pupils. Whilst teachers still 
undertake assessment for formative purposes, ulti-
mately the system requires them to objectify pupils’ 
progress and to manipulate this into the ‘right shape’. 

As we have seen, this is not a simple case of overinflat-
ing scores; it also involves downgrading them such 
that, potentially, ‘the personal is used for the sake 
of the functional: students are included or excluded, 
valued or not, primarily on the basis of whether they 
contribute to the performance of the school’ (Fielding 
& Moss, 2011, p. 52). Though this research has not ob-
served these teachers’ classroom practices directly 
it is not hard to speculate that, in general: teaching 
is likely to encourage pupils to see their mathemat-
ics learning as objectified and fixed rather than as 
constructed and mutable; and, rather than freeing 
children to explore the world of mathematics, teach-
ers may well want to control mathematical thinking. 
Rather than simply being the business of evaluating 
pupils’ mathematical achievements, assessment is a 
politicized process which alters classroom practice 
and through which both teachers and pupils are con-
structed as winners or losers. 
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This paper describes some characteristics of the peda-
gogy informing the teaching of anglophone teachers in 
Québec, on the basis of focus group interviews conducted 
as part of a Canada-wide comparative study. The pa-
per also illustrates research methods embedded in an 
enactivist methodology that permit researchers to take 
advantage of the observer dependence of interpretations 
to gain insight into phenomena, like pedagogies, that are 
not directly observable. The dependence of results on 
methods used is illustrated in the case of the anglophone 
Québec focus group.

Keywords: Pedagogy, methodology, comparative research, 

teachers’ beliefs.

INTRODUCTION

Large-scale international and national assessments 
have revealed a considerable range of student achieve-
ment in mathematics across Canada. When compared 
to international results, some Canadian provinces, no-
tably Québec, rank among the top countries, while oth-
er provinces, especially in the Atlantic region, are sig-
nificantly below the Canadian average. There are also 
some difference by the language of the school system. 
Students from the francophone (French speaking) 
system in Québec and from the anglophone (English 
speaking) system in Ontario achieved a higher aver-
age than their peers in the other language group in 
the same province (Brochu, Deussing, Houme, & Chuy 
2013). A number of factors have been suggested to 
explain these differences including curriculum, gen-
der, attitudes, beliefs, aspirations, time spent work-
ing outside school, parents’ education, involvement 
and socio-economic status and school resources (see, 
e.g., Anderson et al., 2006; Beaton & O’Dwyer, 2002;
Schmidt et al., 2001; Wilkins, Zembylas, & Travers,
2002). Teaching, which might be expected to have the 

most direct effect on student achievement, is consid-
ered less often. In a comparative research project 
(see http://www.acadiau.ca/~dreid/OT/) we seek to 
account for some of these disparities through a focus 
on pedagogy. 

The nature of pedagogy
We make a distinction between teaching and pedagogy. 
Teaching refers to the observable practices of teach-
ers and their interactions with learners. Pedagogy 
refers to what Tobin and colleagues (2009) call the 

“‘implicit cultural practices’ of teachers [...] practices 
that though not taught explicitly in schools of educa-
tion or written down in textbooks reflect an implicit 
cultural logic” (p. 19). As Tobin et al. note, these im-
plicit practices are related to teachers’ “knowledge 
in practice” (Anderson-Levitt, 2002, p. 109) and “em-
bodied knowledge” (Anderson-Levitt, 2002, p. 8). Such 
knowledge is related to Bruner’s (1996) concept of 
folk pedagogy, the “taken-for-granted practices that 
emerge from embedded cultural beliefs about how 
children learn and how teachers should ‘teach’” (p. 46).  
We see pedagogy as characteristic both of communi-
ties of teachers (grouped linguistically and region-
ally in our research) and of the individual teachers 
in those communities, being both a ‘domain’ and an 
‘orientation’ in Maturana’s (1988) sense. The two key 
features of pedagogy are that it is implicit and that it 
guides practice.

METHODOLOGY

The data analysed here comes from a larger project 
comparing regional pedagogies in middle school 
mathematics in four regions of Canada that show 
significant differences in student achievement. The 
regions chosen for comparison are Atlantic Canada, 
Québec, Ontario and Western Canada. In most regions 
two focus groups of teachers were formed, one whose 

mailto:dreid%40uni-bremen.de?subject=
http://www.acadiau.ca/~dreid/OT/
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language of instruction is English and one whose lan-
guage of instruction is French. This was done as large 
scale assessments have revealed that there are differ-
ences of achievement along linguistic lines in some 
regions of Canada (Brochu, Deussing, Houme, & Chuy 
2013) and this suggests there may also be differenc-
es in pedagogy along linguistic lines. Data from the 
anglophone focus group in Québec is analysed here.

Recalling Maturana’s (1987) statement that, “every-
thing said is said by an observer”, we study teachers’ 
pedagogies by examining teachers’ observations of 
teaching. Our approach is similar to the multivocal eth-
nography approach described by Tobin (1999; Tobin, 
Hsueh, & Karasawa, 2009; Tobin, Wu, & Davidson, 
1989) and we have adopted their terminology to de-
scribe the phases of research. Tobin and colleagues 
(1989) describe a layered process of documenting the 
implicit criteria of members of a community. This pro-
cess involves working with members to construct a 
visual ethnography, an auto-ethnography and an eth-
no-ethnography. At each stage the teachers in the focus 
groups observe either their own or others’ practices, 
first by creating a video record of their own practice, 
then by commenting on video recordings of classroom 
teaching within their region, and finally discussing 
video recordings of classroom teaching from other 
regions.

Visual ethnographies: Each teacher was asked to 
choose three lessons to be video recorded: a lesson 
that the teacher judged to be a “typical” lesson in her/
his classroom; a lesson the teacher considered “exem-
plary”; and a lesson in which a topic related to frac-
tions is introduced. Each teacher with a researcher 
collaboratively selected segments to be included in 
an edited video. An edited video of 20 minutes or less 
was produced by a research assistant for each lesson 
recorded by each teacher. These edited videos provide 
the visual ethnography of the teacher’s teaching.

Auto-ethnographies: The teachers in each focus group 
viewed the edited videos from their classrooms and 
attempted to identify three that they feel show “rep-
resentative” teaching in their region. The recordings 
of these focus group discussions form the first data 
set: as responses of regionally and linguistically in-
ternal observers they provide an auto-ethnography 
of mathematics teaching in each region. The three 
representative videos were used as stimuli for the 
other groups in the ethno-ethnography phase. 

Ethno-ethnographies: Each focus group viewed and 
discussed videos from other regions, and in some case 
from other language groups. Encounters with other 
pedagogies offer the participants a way to reflect on 
their own familiar beliefs and practices, by compari-
son with others. The recordings of these focus group 
discussions form the second data set and constitute 
the ethno-ethnography of the pedagogy revealed in 
the videos. 

The overall methodology for our research is enactivist 
(Reid, 1996). As noted above a key element of this per-
spective is that “everything said is said by an observer” 
(Maturana, 1987). This insight allows us to overcome a 
limitation of other studies of teaching practice, such 
as the TIMSS video studies (e.g., Hiebert et al., 2003). 
Pedagogy cannot be studied using approaches that 
involve external observers, as they have no access to 
what is implicit to the teachers themselves. However, 
by positioning the teachers as observers, one gains 
insight through what they observe and how they 
observe it into the implicit criteria that guide their 
observations.

In addition the research design includes self-obser-
vation by the researchers. In an enactivist approach, 
the process of analysis of data is an interrelationship, 
in which researchers find themselves learning new 
things within a context which is partially of their own 
creation. The changes which can be triggered in us, 
that is, what we can learn about the research context, 
are determined by our theories, beliefs and biases. 
What we learn is determined by what we know (Reid, 
1996, pp. 205–206). In this paper, the analysis of the 
data was done by the first author, and so it is important 
to take into account his background as someone who 
himself was once an anglophone teacher in Québec, 
and whose teacher education occurred in Québec. 
However, he did not himself go to school in Québec, 
and so he is unlike the teachers in the focus group who 
experienced the Québec schools first as students and 
then as teachers. His teaching experience in Québec 
is also now two decades old, and things are no doubt 
different now. And his perspective has no doubt been 
modified by his more recent experiences doing school 
based research in other parts of Canada, and working 
with colleagues on school based research in England, 
France and Germany, as well as his main research fo-
cus on proof and reasoning. 
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ANALYSIS

The data analysed in this paper is drawn from the au-
to-ethnography of the anglophone teachers in Québec. 
The four teachers in this focus group all teach in the 
same school, at the grade 7–8 level (called “secondary 
cycle one” in Québec). They recorded their videos in 
their grade 8 classes. All the teachers have at least 
five years of experience teaching mathematics. Their 
school population is low income and low-middle class, 
with mostly homogeneous ethnicity. The rate of diag-
nosed learning difficulties in the school is high.  One 
teacher left the group because of a stress leave, but 

gave permission for her videos to be used by the re-
maining three teachers.  

The focus is the transcript of one focus group session, 
in which the teachers discuss first what exemplary 
and typical teaching is like, and then select the video 
about fractions they will share. The transcript can be 
divided into episodes based on breaks imposed by T, 
the interviewer. These are described in Table 1. 

The transcript was analysed by coding it for the topic 
of the discussion. Teaching is complex, and so any 
discussion of teaching necessarily addresses some 

Episode
Transcript line 
numbers Description of episode

1 5–201 Responses to the question “What do you think a typical class in Québec in the English 
system looks like?”

2 203–266 Responses to the question “You’re saying wow this is a really exceptional lesson.  
What would you be looking at?” 

3 269–290 Following a pause, reactions to “It’s interesting. I don’t know if you guys are interested.”

4 296–354 Discussion following T’s responses to being asked by S, “What do you think T? About 
exceptional-”

5 373–405 Discussion following viewing of the first part of Video 1

6 409–419 Discussion following viewing of the second part of Video 1

7 423–444 Discussion following viewing of the third part of Video 1

8 449–494 Discussion following viewing of the first part of Video 2

9 499–611 Discussion following viewing of the second part of Video 2

Table 1: Episodes 

Teaching re-
lated topics

Gr Grouping (groups or pairs, think-pair-share)

I Interaction (student involvement, teacher prompting, brainstorming, student feedback)

F Format (chalk and talk, lecture, modelling, tell me what you need, student-centred approach)

B Basis (problem based, skill based, language based, reform, multiple solutions, examples)

Pa Pacing (working at the pace of the student, pressure to get through presentation)

T Technology & materials (Smartboard, Powerpoint presentation, notebook, worksheet)

A Assessment (student accountability, summative evaluation, monitoring, competition)

Go Goals of teaching 

Learning re-
lated topics

E Emotion (motivation, engagement, anxiety)

H How learning happens (memorising, repetition, activity, representations, creativity)

W What is learned (organisational skills, study skills, real world applications)

Pr Prior knowledge and experience

Co Specific mathematical concepts (equations, fractions)

Institution 
related topics

Cu Curriculum (order of topics, goals)

Ct Communication between teachers

Q Teacher qualifications and perceptions (generalists, specialists, reputation)

S Stratification (difference, weaker groups, enriched kids, the strongest kids)

Table 2: Topics used in coding transcripts
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aspects of teaching and neglects others. The topics 
addressed reflect a teacher’s pedagogy, even before a 
particular position is taken. For example, referring 
to how students are grouped indicates that the top-
ic of grouping is significant, whether preference is 
expressed for pairs, small groups, whole class con-
struction or some pattern of combining groupings. 
The topics used in coding the transcripts are listed 
in Table 2.

These topics were generated from the data in an initial 
reading of the transcript, asking “What are the topics 
of this utterance?” for each speaker’s turn. The tran-
script was then read a second time, and each utterance 
was coded with as many topics as fit. After this read-
ing, several topics were only rarely used, and a third 
reading was done to check if additional occurrences 
of those topics had been missed. 

Visualisations were then created to assist in in seeing 
patterns in the topics. For example, Figure 1 shows the 
topics discussed at the beginning of Episode 1, when 
the teachers were asked to describe a “typical class”. 
The main focus is on Grouping (Gr), Format (F) and 
later Stratification (S). Interaction (I), the Goals of 
teaching (Go) and How learning occurs (H) also come 
up. The main focus is on topics related to teaching. 

Figure 2 shows the topics discussed at the beginning 
of Episode 2, when the teachers were asked to dis-
cuss what an “exceptional lesson” looks like. Again, 
the main focus is on Grouping and Format as well as 
Interaction, topics related to teaching. As in Episode 

1, Stratification also comes up later. Communication 
between teachers (Ct) is also mentioned.

These two sub-episodes display a pattern, of focussing 
on teaching related topics, and stratification, with lit-
tle or no mention of learning related topics. This pat-
tern was observed in five sub-episodes (1a, 2a, 4a, 7b, 
and 8c). Of these sub-episodes, four of the five occur 
in reaction to prompts to describe a typical lesson 
or an exceptional lesson. This suggests that teaching 
related topics are the first to come to mind when these 
teachers describe lessons. 

Other topics related to teaching are discussed in 
sub-episode 1b (focussed on technology use) and 
sub-episodes 2b, 2c, 3b and 8b, focussed on the basis 
of teaching. 

Episodes focussed on learning
Figure 3 shows the topics discussed in sub-Episode 
1c. The focus shifts ways from teaching related topics, 
although technology, the basis of teaching, assessment 
and format of lessons are all mentioned. Instead the 
main focus is on an aspect of learning, specifically 
what is learned. The teachers are discussing the im-
portance of learning good organisational skills in this 
sub-episode. “What is learned” is also the focus of dis-
cussion in sub-episode 4b, where the topic is learning 
about real world applications of mathematics and ep-
isode 9, the discussion of the second part of Video 2.

In sub-episode 1d, the main focus is on learning about 
integers, and the students’ prior knowledge (see 

Figure 2: Topics discussed at the beginning of Episode 2Figure 1: Topics discussed at the beginning of Episode 1
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Figure 4). At one point the topic shifts to communica-
tion between teachers. The most extended discussion 
in which the focus is on specific concepts occurs in 
Episodes 5, 6 and 7, in reaction to watching Video 1. 
There the topics are the difference between negative 
numbers and subtraction in the context of algebraic 
expressions (in Episode 5), order of operations (in 
Episode 6) and equivalent fractions (in sub-episode 7a). 

Other topics discussed related to learning include 
how learning occurs (sub-episode 8a) and students’ 
prior knowledge (sub-episode 9b). 

Other topics
In sub-episode 1e the topic of the intended curriculum 
came up very strongly. Topics related to learning, and 
assessment, also came up. Curriculum is also the top-
ic of the discussion in sub-episode 4c. Again, topics 
related to learning (especially prior knowledge) and 
assessment also come up. 

The discussion in episode 3 began with reflections 
on the experience of discussing teaching in the focus 
group, so the initial topics are emotions and communi-
cation between teachers. This shifts into reflections on 
the status of “Cycle 1” (grades 7–8) teachers compared 
to Cycle 2 (grades 9–11) teachers, who tend to be more 
specialised.  The teachers returned to this topic at the 
end, in sub-episode 9c.

OBSERVATIONS

Table 3 shows an overview of the topics discussed. It 
makes visible a pattern in the teachers’ discussions. 
In Episodes 1 and 2, when the teachers are first asked 
to describe typical lessons and exceptional lessons, 
they focus first on teaching related topics, especially 
format of lessons, student interaction, grouping, and 
the basis of teaching.  The interviewer, T,  also focusses 
on these topics in Episode 4 when the teachers ask 
her what she feels is exceptional. In Episodes 1 and 

Figure 3: Sub-Episode 1c, focussed on  what is learned

Figure 4: Discussion in sub-episode 1d,  focussed on learning 

about integers and the students’ prior knowledge, with a digression 

on communication between teachers
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4 however, the focus shifts as the discussion goes on, 
to topics related to learning: prior knowledge of stu-
dents, specific mathematical concepts, what is learned 
and how it is learned. 

In Episodes 5–7, after watching the videos, there is a 
striking inversion. The first topics the teachers dis-
cuss are related to learning, especially, in the case of 
Video 1, learning specific concepts. It is only briefly at 
the end of the teachers’ discussion of Video 1 that they 
mention topics related to teaching (in sub-episode 7b). 
The discussion of Video 2 (Episodes 8–9) also begins 
with the topic of how learning occurs and learning a 
concept, but it then turns to topics related to teaching, 
before returning to topics related to learning after 
watching the second part of the video. 

A further observation is that the topic of reasoning 
does not occur. This is noticeable primarily in that 
the observer in this case (the first author) has a strong 
interest in reasoning and so would be likely to notice 
any discussion of it by the teachers. The absence of 
this topic is an example of a finding that arises out of 
our methodological awareness that everything said 
is said by an observer. 

CONCLUSIONS

These results are interesting in several ways. They 
reflect on the topics teachers themselves find most 
relevant when describing and reacting to teaching, 
and on the research methods used and the nature of 
teachers’ pedagogies revealed by them. 

The topics the teachers discussed overall are unlikely 
to be very surprising to researchers who are inter-
ested in teachers’ pedagogies, beliefs and identities. 
However, it may be valuable to compare these specific 
results with results from elsewhere, and to consider 
sources of differences in both research methods and 
regional differences. We have made one such com-
parison, between this anglophone Québec group and 
the francophone Québec group and found agreement 
on the format of the typical lesson, the importance of 
mathematical vocabulary as the basis for teaching, the 
use of multiple representations (at least in exemplary 
lessons) and a belief that a high level of knowledge of 
the curriculum is important in planning exemplary 
lessons. However, there were also differences related 
to questioning, synthesis, and attention to student 
ability (see Manuel, Savard, & Reid, 2014, for more 
details). 

From a methodological perspective it is thought-pro-
voking and important that the topics the teachers dis-

1a 1b 1c 1d 1e 2a 2b 2c 3a 3b 4a 4b 4c 5 6 7a 7b 8a 8b 8c 9a 9b 9c 9d 9e

T Gr X X X

I X X X X

F X X X X X X

B X X X X X

Pa X X

T X X

A X X X

Go

L E X X X X X X X

H X X X X

W X X X X

Pr X X X X

Co X X X X X X X

In Cu X X

Ct X X X X

Q X X

S X X X

Table 3: Overview of topics discussed 
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cussed were different when asked to describe typical 
and exceptional lessons, and when reacting to videos 
of lessons. The teachers do not simply say different 
things in these two contexts, they focus on different 
topics. This means that a research design that relies on 
a single way of ascertaining teachers’ views of teach-
ing will miss some topics and overemphasise others. 
Within our larger research project, the other focus 
group sessions were run somewhat differently in the 
different regions, and in most cases teachers reacted 
to videos without having any prior discussions of typ-
ical and exemplary teaching. It will be interesting to 
compare the topics discussed in those focus groups 
with the topics discussed by this group. 

REFERENCES

Anderson-Levitt, K. M. (2002). Teaching cultures: Knowledge 

for teaching first grade in France and the United States. 

Cresskill, NJ: Hampton Press. 

Anderson, J., Rogers, T., Klinger, D., Ungerleider, C., Glickman, V., 

& Anderson, B. (2006). Student and school correlates of 

mathematics achievement: Models of school performance 

based on pancanadian student assessment. Canadian 

Journal of Education, 29(3), 706–730. 

Beaton, A. E., & O’Dwyer, L. M. (2002). Separating school, 

classroom and student variances and their relationship 

to socioeconomic status. In D. F. Robitaille & A. E. Beaton 

(Eds.), Secondary analysis of the TIMSS data (pp. 211–231). 

Boston, MA: Kluwer Academic Publishers. 

Brochu, P. Deussing, M-A., Houme, K., & Chuy, M. (2013). 

Measuring up: Canadian results of the OECD PISA study. 

Ottawa, Canada: Council of Ministers of Education, Canada 

(CMEC).

Bruner, J. (1996). The Culture of Education. Cambridge, MA: 

Harvard University Press. 

Hiebert, J., Gallimore, R., Garnier, H., Bogard Givvin, K., 

Hollingsworth, H., Jacobs, J., Miu-Ying Chui, A., Wearne, D., 

Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, 

W., Manaster, C., Gonzales, P., & Stigler, J. (2003). Teaching 

mathematics in seven countries: Results from the TIMSS 

1999 video study, (NCES 2003–013 Revised). Washington, 

DC: U.S. Department of Education, National Center for 

Education Statistics. 

Lampert, M. (2003). Teaching problems and the problems of 

teaching. New Haven, CT: Yale University Press.

Manuel, D., Savard, A., & Reid, D. (2014). Observing teachers: 

The mathematics pedagogy of Québec francophone and 

anglophone teachers. Poster. In S. Oesterle,   C. Nicol, P. 

Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting 

of PME 38 and PME-NA 36 (Vol. 6, p. 360). Vancouver, 

Canada: PME.

Maturana, H. (1987). Everything said is said by an observer. In 

W. Thompson (Ed.), Gaia: A way of knowing (pp. 65–82). 

Hudson, NY: Lindisfarne Press.

Maturana, H. (1988). Reality: The search for objectivity or the 

quest for a compelling argument. The Irish Journal of 

Psychology, 19(1), 25–82.

Reid, D. (1996). Enactivism as a methodology. In L. Puig & A. 

Gutiérrez (Eds.), Proceedings of the Twentieth Annual 

Conference of the International Group for the Psychology 

of Mathematics Education, (Vol. 4, pp. 203–210). Valencia, 

Spain: PME. 

Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H., Wiley, D. 

E., Cogan, L. S., & Wolfe, R. G. (2001). Why schools matter: A 

cross-national comparison of curriculum and learning. San 

Francisco, CA: Jossey-Bass. 

Tobin, J. (1999). Method and Meaning in Comparative 

Classroom Ethnography. In R. Alexander, P. Broadfoot, & D. 

Phillips (Eds.), Learning from Comparing: New directions 

in comparative educational research. Volume 1: Contexts, 

Classrooms and Outcomes (pp. 113–134). Oxford, UK: 

Symposium Books.

Tobin, J., Hsueh, Y., & Karasawa, M. (2009). Preschool in three 

cultures revisited: China, Japan, and the United States. 

Chicago, IL: University of Chicago Press.

Tobin, J., Wu, D., & Davidson, D. (1989). Preschool in three cul-

tures: Japan, China, and the United States. New Haven, NJ: 

Yale University Press. 

Wilkins, J. L. M., Zembylas, M., & Travers, K. J. (2002). 

Investigating correlates of mathematics and science liter-

acy in the final year of secondary school. In D. F. Robitaille 

& A. E. Beaton (Eds.), Secondary analysis of the TIMSS data 

(pp. 291–316). Boston, MA: Kluwer Academic Publishers. 



3122CERME9 (2015) – TWG19

Teacher alignment of values in 
mathematics classrooms

Wee Tiong Seah1 and Annica Andersson2

1 University of Melbourne, Melbourne, Australia, wt.seah@unimelb.edu.au 

2 Stockholm University, Stockholm, Sweden

Teacher-student and student-student interactions in 
mathematics classrooms reflect what teachers and 
students value in mathematics teaching and learning 
respectively. These interactions shape and fine-tune de-
veloping values systems, which in turn affect the quality 
of the students’ learning experiences. We propose that 
these teacher responses represent values alignment pro-
cesses. We show three examples of teacher strategies, 
namely, redefining, reprioritising, and complementing. 
We will argue for the importance of teachers being able 
to develop strategies to facilitate values alignment in 
mathematics lessons.

Keywords: Values alignment, values, critical incidents, 

volition, teacher-student interaction.

INTRODUCTION

‘When are we ever gonna use this maths?’ (or its 
equivalent) must have been one of the most commonly 
posed questions by students all over the world. It 
seems that students find it important that there is 
utility in the knowledge or skill they are learning. 
They may be said to value application and/or relevance 
when learning mathematics.

It can also be assumed that the quality of students’ 
mathematics learning will be affected by their 
teachers’ responses to such a question, whether 
it is one in support of the student’s valuing of 
application/relevance, one which implies a valuing 
of understanding (“this knowledge enhances your 
understanding of related mathematics content”), or 
one which reflects the valuing of rationalism (see 
Bishop, 1988). 

Although it may generally be felt that teacher 
responses such as those above are guided by 

cognitive reasoning and/or affective dispositions, 
we argue here that importantly, these cognitive and 
affective functions are governed by the volitional 
variable of values. That is, what the teacher him/
herself considers important – and indeed, values – 
concerning mathematics and mathematics pedagogies 
are embedded in the response offered to the students. 

Accordingly, the teacher-student and student-
student exchanges that take place in each and every 
mathematics lesson represent numerous negotiations 
of what the students and/or their teachers value, which 
may or may not result in agreements. Importantly, 
each of these represents an example of a critical 
incident (see Tripp, 1993) in that responses and 
outcomes affect the direction of subsequent classroom 
discourses and the extent to which planned lesson 
objectives are achieved. If successful negotiations 
about such critical incidents require that everyone 
concerned are satisfied with the outcomes of these 
negotiations, then the competing values would have 
become aligned in some way during the process.

This paper draws on empirical data to investigate what 
such values alignment incidents might look like in 
mathematics classrooms. We identify and categorise 
three values alignment strategies. To contextualise 
this discussion, we first review what is known about 
values as these relate to mathematics pedagogy and 
teacher-student / student-student interactions in 
mathematics classes.

THE ROLE OF VALUES AND VALUING 
IN MATHEMATICS PEDAGOGY

We consider values in the context of mathematics 
learning and teaching as a volitional construct. We 
have proposed elsewhere that:

mailto:wt.seah%40unimelb.edu.au?subject=
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values are the convictions which an individual 
has internalised as being the things of importance 
and worth. What an individual values defines 
for her/him a window through which s/he views 
the world around her/him. Valuing provides 
the individual with the will and determination 
to maintain any course of action chosen in the 
learning and teaching of mathematics. They 
regulate the ways in which a learner’s/teacher’s 
cognitive skills and emotional dispositions are 
aligned to learning/teaching. (Seah & Andersson, 
2015, p. 169) 

The philosopher Ayn Rand wrote, “a being of volition-
al consciousness has no automatic course of behav-
iour. He [sic] needs a code of values to guide his actions” 
(1961, p. 97). Values guide decisions and actions (e.g., 
Park et al., 2011), and people and organisations de-
fend or fight with passion for what they value. That 
is, values are expressions of will and convictions that 
provide us with a certain degree of ‘stubbornness’ to 
stay motivated and to persevere when we encounter 
barriers. This is not to say, however, that values are 
always expressed in the form of observable actions. 
Rather, the potential for action is the basis for valuing. 
Whether it is expressed in observable action or not de-
pends on the context. This can be seen in Andersson’s 
(2011) recent study, in which the upper secondary stu-
dent participants indicated that they disliked – even 
hated – mathematics. However, Andersson’s analysis 
show that their stories of mathematics learning expe-
riences were connected to the context in which they 
were told. The students’ stories and actions for learn-
ing mathematics changed as the contexts evolved. 

As volitional variables, values have both cognitive 
and affective components as well. The cognitive com-
ponents are visible through the choosing dimension 
of the valuing process (Raths, Harmin, & Simon, 1987). 
Valuing also has an affective dimension which can be 
seen in the way we often find ourselves embracing 
what we value in a passionate way, supported by as-
sociated emotions, attitudes and beliefs.

Considering any classroom interaction, then, what is 
conveyed (verbally or otherwise) and the subsequent 
responses would reflect what the teacher or student is 
valuing. These interactions represent negotiation at-
tempts by all involved; students are aware of their ca-
pacities to adopt, resist or reject discursive positions. 
Given that there exists considerable within-class and 

within-school diversity of student cognitive and af-
fective variables (Sullivan, 2015), the (mathematics) 
classroom discourses between teachers and their 
students – and amongst students – represent peda-
gogical spaces of contestation and conflicts. This is 
inevitable, and after all, the consistent domination 
of one particular (person’s) goals and interests in any 
social gathering is very likely not desirable anyway, 
as discussed by Gutierrez (2007).

As a volitional variable, values (in mathematics ed-
ucation) not only motivate and guide decisions and 
actions; they also provide one with the will and deter-
mination to maintain courses of action in the face of 
competing actions and obstacles. In this way, values 
do more than what motivations do. In Kivinen’s (2003) 
words, 

there is a distinguishing line between volition and 
motivation. Volition promotes the intent to learn 
and protects the commitment and concentration 
from competing action tendencies and other 
distractions. For example, a student may be 
motivated to read a book in the evening. He or 
she is more or less motivated to do so. The student 
takes the book and starts to read (motivation has 
done its work). Volitional processes (will) keep 
him or her reading, in spite of the fact that there 
is an interesting football match on TV. (pp. 26–27) 

It is this sense of will and determination that is 
associated with valuing which would account for 
an individual bringing what s/he values to any 
interaction s/he is involved in. When such an 
interaction brings together different and potentially 
competing values that are embraced by teachers and 
students, this may involve resisting or rejecting 
decisions or actions representing the competing 
values. Thus, when a student asks when a particular 
mathematical concept or skill might be useful, the 
question reflects his/her valuing of, say, application 
or relevance. In the same way, the teacher’s response 
will reflect particular values too, which demonstrate 
if these values are aligned with each other or not. In 
turn, anyone involved in the interaction can choose 
to pursue what s/he values with regards to the topic 
being discussed, although this will often be subjected 
to sociocultural norms and conventions such as power 
distance (Hofstede, 2011). We suggest that in order 
for a lesson to ‘move forward’ productively, teachers 
would have negotiated about the competing values 
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such that there is achieved a certain level of alignment 
amongst the values concerned.

While values may indeed be stable when compared 
with variables such as interests and beliefs, we argue 
that the extent to which a value is embraced and 
prioritised is responsive to one’s environment and 
is thus not fixed. In other words, opportunities for 
values teaching in mathematics education exist across 
all school years. Whereas values may be absorbed 
when one is young (Court, 1991), value priorities 
continue to be considered and evaluated throughout 
one’s life in school and beyond. This may be seen in 
the valuing process conceptualised by Raths, Harmin 
and Simon (1987). Made up of three stages, that is, 
choosing, prizing, and acting, the first stage is related 
to choosing freely and amongst several alternatives, 
bearing in mind the consequences of adopting any one 
of these alternatives. We believe that it is this choosing 
activity that is periodically stimulated by phenomena 
that allows for one’s value priorities to be monitored, 
assessed and fine-tuned.

VALUES ALIGNMENT IN THE 
MATHEMATICS CLASSROOM

Values alignment is a central feature of Senge’s (2006) 
five disciplines of learning organisations (that is, 
personal mastery, building shared vision, team 
learning, mental models, and systems thinking). In 
particular, the discipline of building shared vision 
calls for aligned values in an organisation in order for 
the shared vision of the future to be co-created. The 
value of values alignment lies in the observation that 

all relationships  – between one person and 
another, between the present and the future, 
between customer and product, a team and its 
goals, a leader and a vision – are claimed to be 
strengthened by aligned values. (Branson, 2008, 
p. 381)

Thus, for a teacher, being able to facilitate values 
alignment between what s/he values and what his/
her students’ value promises to strengthen the 
relationships, and is one of the keys to nourishing 
teaching and learning practices. Indeed, MacDonald 
and Shirley (2009) had proposed that the mindful 
teacher is one who, amongst other things, is proficient 
in establishing authentic alignment between his/her 
own values and professional practice, and is also 

successful in harmonising these values and policy. 
If some teachers are ‘effective’ in different classrooms 
whereas others perform well in particular classrooms 
only, this could be because the former have been 
successful in attaining values alignment in whatever 
classroom situation they find themselves in. 

However, values alignment is not about ensuring that 
students’ values are the same as their teachers’. It is 
thus different from values inculcation. Rather,  

building … values alignment is about providing 
a cooperative and collaborative process whereby 
the members of the organisation can develop 
strategies, systems and capabilities that not 
only support those values that have previously 
been clarified as being essential for the ultimate 
success of the group as a whole but also are 
supported by the majority of the people within 
the group as acceptable guidelines for directing 
their behaviour. (Branson, 2008, p. 383)

That is, values alignment facilitates the co-existence 
of different values that are held by different people 
interacting together. In so doing, students can 
perceive that their knowledge, skills and dispositions 
are valued, and they can also feel inclusive in relation 
to their learning of mathematics. 

IDENTIFYING AND INTERPRETING VALUES 
ALIGNMENT CRITICAL INCIDENTS

So, how do teachers and students negotiate the 
differences in what they value generally and in 
mathematics education in particular, so as to achieve 
values alignment in order to facilitate mathematics 
learning? In the absence of prior educational research 
on this topic, we referred to available data that were 
collected from a prior research involving values and 
valuing in the classroom (see Seah, 2005) as seen from 
the perspectives of classroom teachers of mathematics. 

This prior research was conducted in secondary 
schools across Victoria, Australia. The methodology 
of the research then involved the identification of 
critical incidents (Tripp, 1993) in mathematics lessons 
when the teacher participants and their respective 
students were observed to be valuing different 
attributes of mathematics or of mathematics pedagogy. 
Lesson observations and teacher interviews were 
the methods employed. The research objective was 
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to map out the range of strategies teachers employed 
to negotiate about differences in valuing between 
themselves and their respective students. The focus 
was on the various types of actions employed by the 
teachers, of which there were 7 (e.g., helplessness, 
amalgamation, appropriation). In the current study, 
however, the teacher responses to the episodes of 
values differences in the lesson transcripts were re-
examined and re-analysed at a deeper level: instead 
of listing what the teachers did, here we have been 
attempting to interpret how the teachers’ own valuing 
changed in the process of their negotiating about and 
aligning the value differences. The patterns observed 
amongst the 8 teacher participants suggested three 
such values alignment strategies, which we name 
redefining, reprioritising, and complementing. These 
are presented below. 

Values alignment strategy: Redefining
Case 1. Michael (a pseudonym), a mathematics 
teacher in a secondary school, noticed that his 
Year 10 students had been unwilling to work with 
concrete manipulatives such as geoboards and 
pattern blocks. “These are for young kiddies, sir!” 
they would say. Yet, Michael felt that learning is 
more effective when students are able to visualise 
the relevant concepts. Michael has since found 
a way round this issue, and his students are 
now exploring and understanding geometrical 
concepts using software programs such as 
dynamic geometry software, as well as online 
resources such as those hosted by the National 
Library of Virtual Manipulatives.

In this case, Michael’s use of concrete manipulatives 
reflects his valuing of visualisation. However, this 
teaching approach was resisted by his students whose 
values were not aligned with the image of teenagers 
‘playing with blocks’. There was a potential here of 
a value conflict between Michael and his students, 
which could possibly result in the students being 
disengaged in his lessons. Michael resolved the 
potential value conflict through redefining what he 
and his students valued, coming to understand that 
in effect, his valuing of visualisation was underlied 
by a valuing of exploration. This was crucial, since the 
students’ values were aligned with exploration as well; 
it was just that they did not want to feel like small kids 
playing with blocks and teddy bears. By redefining his 
valuing of visualisation with the use of digital learning 
technologies, Michael was able to plan and execute 

his lessons such that the dynamic geometry software 
and the online websites provided the students with 
opportunities to explore – and thus visualise – the 
relevant geometrical ideas and concepts in a form 
that was aligned with what the students value. 
Michael’s valuing of visualisation had given him the 
will to resolve the value difference situation in ways 
which still allow for student visualising to take place, 
only that the means of actualising this valuing were 
now acceptable to the teenage students, who were 
understandably wanting to behave more adult-like 
and doing adult tasks. For his students, their positive 
response to the ICT use was an endorsement of their 
common valuing of exploration. 

In this instance, values alignment was achieved 
through Michael’s redefining what he values, such 
that its expression now is aligned with what his 
students value.

Values alignment strategy: Reprioritising
Case 2 Diane was an immigrant secondary school 
mathematics teacher from Canada, teaching in a 
small country town in Australia. When one of her 
students answered one of her questions about an 
algebraic equation by saying “just chuck in c, just 
chuck in the c”, she responded that he was being 
too casual with his use of mathematical language. 
Diane’s own mathematics learning experience 
in Canada had instilled in her a valuing of the 
formality in mathematics, a tradition that she 
felt needed to be upheld but which most students 
today would perceive as dry and boring. Thus she 
would have preferred her students to talk about 

“adding the constant, c”.

Yet, Diane was deeply aware and concerned that 
she was teaching a class of mainly disengaged and 
underperforming students, and that meant that it 
would not be wise to get ‘too caught up in those formal, 
scary things’. She was mindful that for these students, 
a valuing of fun would be a key motivator for them. 
In Diane’s words,

We see too many kids that’s just, they come to the 
class and they are beaten already. Because they 
found it a difficult subject, and they don’t enjoy 
it, they feel frustrated. It makes them, you know, 
they feel out of their depth, and that’s just awful. 
If you’re [i.e. the students] starting out that way, 
you know, I think we’ve got to really try. And if 
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it’s not [about] being so sticky about notations, 
then, you know, having a bit of fun with it then. 

As such, she made a conscious effort to ‘sacrifice ‘plus 
c’ for ‘chuck in c’ ‘.

Here, Diane realised that ‘pushing’ her students to 
share her valuing of formality and to use formal 
terminology would be counter-productive. This 
group of students needed first and foremost to be 
able to be interested enough in the subject, and to 
develop some confidence to acquire the skills and 
concepts required of them. The students’ valuing 
of fun was a volitional force, which supported the 
cognitive and affective growth that they needed. 
Diane’s understanding of this, and her subsequent 
reprioritisation of her valuing of formality and fun, 
resulted in values alignment between herself and her 
students. This reprioritisation of Diane’s values is 
evident when she talked about the relative importance 
of notations/formality and fun/enjoyment, and how it 
would be her willing sacrifice to interchange the order 
of priority for the sake of facilitating her students’ 
learning.

In this second case, values alignment was achieved 
when Diane in interaction reprioritised what she 
valued to achieve a common valuing with her students. 
Diane had not given up her valuing of formality. 
However, she also shared her students’ valuing of fun, 
demonstrated through her provision of space for a 
different mathematical discourse in class. As a result 
of this reprioritisation between the two values within 
herself, Diane had achieved an alignment of what she 
and her students valued.

Values alignment strategy: Complementing
Case 3. Amy taught Year 7 mathematics in a 
south-eastern suburb in Melbourne, in an area 
with a high concentration of Asian migrant 
professionals amongst its residents. Most of the 
students in her school were Asian, most of whose 
parents valued competition and grades. The school 
has also embraced the community’s valuing 
of these two orientations. However, Amy had 
grown up valuing co-operation and (conceptual) 
understanding. For Amy, the need to confront the 
value differences between herself and the school/
community was quite urgent, for she knew that 
she would not be able to teach mathematics 
effectively and professionally satisfyingly if she 

did not negotiate these differences soon enough. 
She talked to colleagues and some parents, and 
she referred to relevant literature. While she 
was not ready to give up what she had grown to 
value, she was also getting to understand how 
the students’ and their parents’ values were 
culturally powerful agents of engagement and 
motivation. At the same time, she felt that her 
students needed to learn to value co-operation too 
as a means of humanising competition, and that 
their developing meaningful understanding of 
(mathematical) concepts would further enhance 
their capacity to achieve even better grades in 
assessments. So in the last two years, Amy has 
developed mathematics lessons, which reflect the 
valuing of both grades and understanding, and 
more difficultly, competition and co-operation. 
Thus, her students strive to understand concepts 
while/before practising hard to attain proficiency. 
They are also able to work together and help one 
other, while enjoying pitting their mathematical 
skills against one another.

In this case, values alignment for Amy and her students 
was achieved through an acknowledgement of the 
different values, and a purposeful consideration of 
how they could co-exist and indeed, complement each 
other. Over two years, Amy developed pedagogical 
strategies that allowed for these pairs of potentially 
conflicting values to not just co-exist, but also to 
further support the inculcation of the other value 
in each pair. This complementarity reflects one of 
Hofstede’s (2001) cultural value continua, masculinity 
/ femininity. Here, the students’ valuing of masculinity 
in the form of grades and competition has struck 
a balance through alignment with Amy’s valuing 
of femininity, in the form of understanding and co-
operation.  

CONCLUDING IDEAS

In this paper, we have focussed on the day-to-day 
teacher-student and student-student interactions 
in mathematics classrooms, envisaging these as 
potentially critical incidents involving different 
and possibly conflicting values. We have drawn on 
empirical data to illustrate how teachers’ facilitation 
of these critical incidents can actually be regarded as 
involving values alignment. 
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The examples listed above have been sourced from 
existing data given that there has not been any 
values alignment research study in our knowledge, 
an indication that values alignment in its various 
forms take place often enough during mathematics 
lessons. This highlights the importance for teachers’ 
awareness of what they themselves value with regards 
to mathematics, to mathematics pedagogies, and to 
school education. With this self-knowledge, teachers 
are better empowered to respond to value differences/
conflicts as critical incidents with effective values 
alignment approaches, thus maintaining a harmonious 
environment in the classroom. At the same time, such 
values alignment episodes also support students’ 
cognitive and affective developments in a different 
way, that is, through the ways in which their own 
values systems evolve and mature.

Although it is not within the scope of discussion of this 
paper, it is also important to remind ourselves that 
not all values alignments attempt lead to productive 
learning/teaching. We observed in our data that 
despite the values being aligned and harmonious 
interactions being maintained, the aligned values 
might not support effective or productive mathematics 
learning/teaching. We also came across situations in 
which the values alignment attempts failed.

Although the values alignment strategies discussed 
above may well also take place in lessons other 
than mathematics ones, it is important that their 
deployment in mathematics lessons is highlighted 
to emphasise that the strategies can be as useful in 
mathematics pedagogy. The contexts within which 
Michael, Diane and Amy operated were uniquely 
mathematics educational. More importantly, the 
cases presented above relate values and valuing 
to mathematics pedagogies in very different ways. 
Indeed, the findings here which showcase the three 
values alignment strategies could well also address 
similar classroom tensions reported in Wester, 
Wernberg and Meaney (2015). The research reported 
here thus calls on the mathematics education research 
agenda to promote the need for a deeper knowledge 
of valuing as a volitional variable, and also of the 
values alignment process in the context of school 
mathematics pedagogy. Studies in this area represent 
cutting-edge, innovative mathematics education 
research; they promise to provide researchers and 
practitioners with a third, volitional approach to 
further understanding and improving mathematics 

learning in schools, complementing and strengthening 
existing cognitive and affective strategies.
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The main objective of this study was to describe math-
ematics teachers’ profiles on factors affecting their pro-
motion of students’ metacognition through developing 
profiling tools. In the light of this aim, four factors from 
the Framework for Analysing Mathematics Teaching for 
the Advancement of Metacognition -FAMTAM- (Ader, 
2009) were used. The factors were (1) teachers’ conceptu-
alization of metacognition, (2) teachers’ perceptions of 
students’ features and needs, (3) distribution of mathe-
matical authority in the classroom and (4) the external 
pressure perceived by teachers. The sample consisted of 
314 middle and secondary school mathematics teach-
ers. In this study, descriptive, correlational and causal 
comparative research designs were used. The main 
findings indicated that most mathematics teachers 
were conceptualized what metacognition is. They were 
aware of students’ features and needs. They supported 
a learning environment where mathematical authority 
was exercised by students. They perceived high external 
pressure from various factors influencing their promo-
tion of students’ metacognition.

Keywords: Mathematics, metacognition, teaching of 

metacognition.

INTRODUCTION

Metacognition is briefly defined as the regulation 
of and knowledge about cognitive activities (Flavell, 
1979). It has an important place in mathematics ed-
ucation (Lucangeli & Cornoldi, 1997). It appears in 
early stages of problem solving process with accurate 
representations and the planning of problem solving 
(Desoete & Veenman, 2006). Metacognitive activities 
improve students’ mathematical learning (Jacobse & 
Harskamp, 2012). Therefore teachers must arrange 

learning environments where learners are encour-
aged to learn mathematics through exercising meta-
cognition (Lombaerts, Engels, & Athanasou, 2007).

There are various teaching practices for the devel-
opment of students’ metacognition by taking their 
needs and the learning environment into account. The 
promotion of metacognition should be examined in 
a broader sense in order to contribute the develop-
ment of students’ metacognition. For example, why 
teachers promote or not promote metacognition in 
their classrooms should be considered in order to help 
teachers to create effective learning environments 
(Lombaerts, Engels, & van Braak, 2009).

Several factors affecting teachers’ promotion of 
metacognition or self-regulation has emerged in 
recent studies (Dignath-van Ewijk & van der Werf, 
2012; Lombaerts et al., 2009; Lombaerts, Engels, & 
Vanderfaellie, 2007).  Mainly three different deter-
minants namely, teacher characteristics, school con-
text characteristics and pupil characteristics were 
described as factors affecting teaching practices of 
teachers on promotion of self-regulation (Lombaerts 
et al., 2009). Teacher beliefs, previous teaching ex-
periences and educational experiences are given as 
teacher characteristics that affect the introduction 
of metacognition in teachers’ teaching practices. 
Furthermore, curricular changes, timetables, num-
ber of students, textbooks, the relationship among 
teachers are certain examples for school context 
characteristics. Lastly, pupil characteristics affecting 
teaching practices on stimulation of metacognition 
or self-regulation are cognitive and metacognitive 
abilities of learners. 

mailto:vuslat.seker@boun.edu.tr
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Ader (2009) developed a framework for analyzing 
mathematics teaching for the improvement of meta-
cognition of students. The reason for developing 
such a framework came from “the lack of emphasis 
on teacher’s role and teaching practices within the 
efforts to incorporate metacognition into mathemat-
ics classrooms” (Ader, 2013, p. 7). The framework con-
sists of four factors; (1) teachers’ conceptualization of 
metacognition, (2) teachers’ perceptions of students’ 
features and needs, (3) distribution of mathematical 
authority in the classroom and (4) external pressures 
perceived by teachers FAMTAM was believed to be a 
good source for “exploring the teachers’ approaches 
to promotion of students’ metacognition” (Ader, 2009, 
p. 282). 

The conceptualization of metacognition (Flavell, 1979) 
is defined as a factor in FAMTAM. Conceptualization 
of such complex and multifaceted phenomenon is im-
portant to investigate since the complex phenomena 
can be interpreted and implemented in a different 
perspective because of the structure (Ader, 2009). 
Secondly, teachers’ perceptions of students’ features 
and needs is another component of FAMTAM since 
it is an indicator of how teachers act with respect 
to the features and needs of students for effective 
mathematics teaching (Jaworski, 1992). Therefore, 
the perceptions give encouragement for students to 
use metacognition in their learning progress. Thirdly, 
the distribution of mathematical authority is a factor 
described as the way teachers encourage learners to 
use mathematics since mathematics or discipline of 
mathematics can be taken as authority where mem-
bers of mathematical communities are working on 
mathematics (Schoenfeld, 1992). Boaler (2002) iden-
tified the members of a community of a classroom 
that lack mathematical authority (i.e. mathematical 
problem solving) as not contributors in each other’s 
mathematical learning, not doing mathematics, but 
as only receivers of mathematical knowledge.  Hence, 
metacognition can be conceptualized as a way of prac-
ticing mathematical authority because metacogni-
tive and problem solving processes are intertwined 
(Ader, 2009). Lastly, external pressures perceived by 
teachers were given as another factor in FAMTAM. 
External pressures stemmed not from classroom 
practices, but from policies of educational system and 
demand or expectations of educational institutions 
that make teachers feel pressure on their teaching 
practices, such as curriculum content, national exam, 

time constraint and so on (Ader, 2013; Lombaerts et 
al., 2009).  

The purpose of the study is to describe mathemat-
ics teachers’ profiles on factors affecting promo-
tion of metacognition through developing profiling 
tools which were developed and validated based on 
FAMTAM.  It is aimed to explore mathematics teach-
ers’ approaches to promotion of students’ metacogni-
tion considering the four factors in FAMTAM. This 
study is significant in a way the developed scales 
describe a teacher profile with regard to the factors 
affecting metacognitive implications or promotion in 
their classrooms. As a result of the study, such profile 
identification may help researchers and policymakers 
to make sense of the effects of teachers’ promotion of 
metacognition for future actions. When the profile of 
teachers based on pre-determined reasons or factors 
are determined, this can also help teachers to tackle 
some of the issues that influence their promotion of 
metacognition by eliminating negative conditions 
and supporting positive ones.

METHOD

Three research questions were investigated; (1) What 
is the teacher profile on the factors affecting math-
ematics teachers’ promotion of metacognition?  (2) 
Are there significant correlations between variables 
derived from FAMTAM as conceptualization of meta-
cognition, perceptions of students’ features and needs, 
distribution of mathematical authority and perceived 
external pressure affecting mathematics’ promotion 
of metacognition? (3) Is there a difference in the four 
variables derived from FAMTAM according to teach-
ers’ demographic variables?

Sample
For the description of profiles of mathematics teach-
ers on the factors affecting promotion of metacog-
nition, the main study was conducted with 314 (161 
from middle school and 153 from secondary school) 
mathematics teachers from Turkey. There were 175 
female and 139 male participants. Of these, 34 partici-
pants were from private schools and 280 participants 
were from public schools. Moreover, 116 of 163 middle 
and 43 of 153 secondary school mathematics teachers 
were graduates of faculties of education. 4 middle 
school mathematics teachers did not state the faculty 
they graduated. Remaining teachers graduated from 
faculties of science and got a teaching certificate. The 
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sample of main study was chosen conveniently. 199 of 
314 mathematics teachers filled out web-version of the 
instruments. 105 of 314 mathematics teachers filled 
out hard-copy version of the instruments.

Instruments
Four profiling tools addressing the four factors in 
FAMTAM were developed and validated for reach-
ing the purpose of the study.  The factors affecting 
promotion of metacognition within FAMTAM were 
supported by related literature as discussed in pre-
vious section. Within the process of development of 
four profiling tools, two pilot studies were conduct-
ed. The first sample was used in order to develop the 
four scales. The second sample was used for assessing 
psychometric qualities of the instruments that were 
revised after the pilot study. 

The Teachers’ Conceptualization of Metacognition 
Scale consists of 9 items. The teachers are asked to 
state to what extent they agree with the importance of 
addressing the statements given in the items in their 
teaching (e.g., “students’ planning of their thought”). 
The individual total score for this scale indicated the 
level of fit between teachers’ conceptualization of 
metacognition and what has been mainly documented 
in literature (e.g., Flavell, 1979). The Cronbach’s alpha 
level of this scale is .91 for reliability and two struc-
tures as metacognitive knowledge and metacognitive 
skills were observed through factor analysis so there 
was an evidence for construct validity.

The Teachers’ Perceptions of Students’ Features and 
Needs Scale consists of 6 items (e.g., “Teacher should 
help learner to improve metacognitive skills and 
knowledge by using various teaching methods (e.g., 
modeling, think aloud, direct teaching”). The items of 
this scale asked to what extent teachers agreed with 
the statements in the items. Cronbach’s alpha level of 
this scale is .81 for reliability. Experts agreed on the 
items that within this scale they covered important 
issues regarding content provided through litera-
ture on teachers’ perceptions of students’ features 
and needs. Therefore, it was an indicator of content 
validity for this scale.

The Distribution of Mathematical Authority Scale 
consists of 10 items (e.g., “A learning environment 
should be constructed where teacher and students 
reason together”). The questions in this scale asked 
teachers to code the items according to the following 

criteria: “by considering the power of determining 
what is right or wrong should be on mathematics; such 
a classroom environment, state to what extent you 
agree or disagree the statements below”. Cronbach’s 
alpha level of this scale is .65. Four factors were ob-
served in factor analysis and this was accepted as ev-
idence for construct validity of this scale since each 
factor was derived from the definition of where math-
ematical authority resides in.

The External Pressure Perceived by Teachers Scale 
consists of 9 items (e.g., “change in curricular and 
teaching approach”). The questions in the items asked 
for teachers to state to what extent they agree or dis-
agree with the listed factors about their effect on their 
teaching practices. Cronbach’s alpha level of this scale 
is .73. Two dimensions obtained from the exploratory 
factor analysis supported the construct so there was 
evidence of construct validity for this scale.

STATISTICAL ANALYSIS

Since the aim of the study is to determine mathematics 
teachers’ profile on factors affecting their promotion 
of metacognition through developing profiling tools, 
descriptive and inferential analysis were used.  

For descriptive statistical analysis, means, standard 
deviations and possible range for four scales were cal-
culated in order to describe the data set. Furthermore, 
the distribution of data for each scale was demon-
strated through histograms. For correlational analy-
sis, Pearson Product Moment correlation coefficient 
was carried out in order to seek answers for to what 
extent four variables were related to each other.

Group comparisons were done in order to observe 
how the profiling tools discriminated between scores 
of groups of teachers according to certain variables 
as gender, age, years of experience, education level, 
teaching level, school type.  It was aimed to explore 
different aspects of the profiling tools. For this reason, 
firstly, normality test was also conducted. When the 
assumption of homogeneity of variances was satisfied, 
a one-way Analysis of Variance (ANOVA) was used. 
When the assumption of homogeneity of variances 
was violated, Brown-Forsythe F- ratio was used.  In 
order to explore effect size, partial eta squared was 
calculated.



A study for profiling mathematics teachers regarding factors affecting promotion of students’ metacognition  (Vuslat Şeker and Engin Ader)

3132

RESULTS

The results showed that most mathematics teachers 
conceptualized metacognition in accordance with 
the commonly accepted conceptualizations in the 
literature. They were aware of students’ features and 
needs. They supported a learning environment where 
mathematical authority was exercised by students. 
However, they perceived high external pressure from 
various factors influencing their promotion of stu-
dents’ metacognition. 

Secondly, it was seen that there was a significant cor-
relation between conceptualization of metacognition 
variable and distribution of mathematical authority 
variable. Although there was a significant relation-
ship between these variables, the correlation coef-
ficient was relatively low. Therefore, it was a weak 
positive relationship, r=.16, p < .01. It was same with 
the relationship between conceptualization of meta-
cognition variable and perceived external pressure 
variable, r =.20, p < .01.  Perceptions of students’ fea-
tures and needs variable was significantly, but weakly 
correlated with distribution of mathematical authori-
ty variable, r=.21, p < .01. Furthermore, same situation 
can be observed in the relationship between percep-
tions of students’ features and needs variable and 
perceived external pressure variable, r=.23, p < .01. 
Only non-significant correlation was found between 
distribution of mathematical authority variable and 
perceived external pressure variable. The relation-
ship between conceptualization of metacognition 
variable and perceptions of students’ features and 
needs variable was found as significant, but there was 
moderate correlation between them, r= .43, p < .01. The 
result indicated that when the teachers had high con-
ceptualization of metacognition that they got high 
scores in The Conceptualization of Metacognition 
Scale, then they better perceived students’ features 
and needs based on metacognition.  

Significant gender differences were observed on 
teachers’ claims about their distribution of mathemat-
ical authority, F(1,312)=8.86, p=.05, partial  , perceived 
external pressure, F(1,312)=18.052, p=.00, partial , and 
conceptualization of metacognition, F (1, 263.96) = 8.24, 
p= .00, partial,  in favor of female teachers. Significant 
differences according to age, F(3,310)=15.127, p=.00, 
partial , and years of experience, F(3, 282.90)=6.57, 
p=.00, partial, were observed only on teachers’ distri-
bution of mathematical authority in favor of teachers 
with 20–29 age group and 1–5 years of experience 
respectively. There were also significant differences 
on distribution of mathematical authority, F (1,312) = 
8.06, p=.00, partial, and perceived external pressure, 
F(1,148.78) = 1.76, p =.01, partial, according to teachers’ 
educational background. Teachers with a master’s 
degree supported the distribution of mathematical 
authority more and perceived less external pressure 
than teachers with a bachelor degree. In addition, sig-
nificant teaching level differences were found on each 
factor in favor of middle school mathematics teach-
ers. Lastly, perceived external pressure, F(1,312)=5.75, 
p=.02, partial, and teachers’ conceptualization of 
metacognition, F(1,59.22)=.01, partial, also signifi-
cantly differed on school types. Teachers working at 
a public school perceived higher external pressure 
and their conceptualization of metacognition’s scores 
were lower than teachers working at a private school.

Most participants were found to conceptualize meta-
cognition as a multiphase phenomenon which include 
those commonly accepted principles in the relevant 
literature. It shows that teachers’ beliefs about the 
presence of metacognition in their teaching are pos-
itive. Although the positive results might be a result 
of social desirability, it is important to keep in mind 
that the teachers are aware of the importance of meta-
cognition in mathematics classrooms. The awareness 
of teachers might lead them to introduce and promote 
metacognitive activities within their teaching practic-
es (Lombaerts et al., 2009).  It can be stated that better 
teachers’ conceptualization of metacognition paral-

FAMTAM Variables N Possible Range Mean Standard Deviation

Conceptualization of Metacognition 314 9–45 38.53 7.06

Perceptions of Students’ Features and Needs 314 6–30 25.89 3.23

Distribution of Mathematical Authority 314 25–50 38.83 5.55

Perceived External Pressure 314 9–45 34.07 6.36

Table 1: Descriptive statistics
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lel to those in the literature reflecting the details and 
sophistication might influence teachers’ promotion 
of metacognition positively when hampering factors 
were diminished or eliminated.  As a remarkable and 
significant difference on teachers’ conceptualization 
of metacognition was observed on teachers working 
at different school types which could be a result of 
the fact that secondary school mathematics teachers 
are mostly graduates of  faculties of science (111 out 
of 153), not of faculties of education (42 out of 153).

Secondly, most participants perceived students’ fea-
tures and needs in terms of metacognition. They most-
ly stated they were aware of metacognitive charac-
teristics of students and acting upon it. In order to 
promote metacognition and self-regulation, learn-
ing environments should be arranged accordingly 
(Lombaerts et al., 2007). Teachers who give priority 
to students’ characteristics in terms of their develop-
mental milestones, their way of knowledge construc-
tion, and participation of the learning process, are 
described as the ones taking “learning needs and ex-
periences of students as starting point” (Vandevelde, 
Vandebussche, & Van Keer, 2012, p. 1563). Therefore 
the results showed that there is a positive approach 
to promote metacognition with respect to this issue. 
Furthermore, in perceptions of students’ features and 
needs variable, only significant difference was found 
according to teaching level in favor of middle school 
level.  The reason might be the nurturing, parent-like 
nature of primary education (Louis, Marks, & Kruse, 
1996). As they stated, the concerns in high school shift 
to a more academic plane.

Thirdly, mathematical authority is rather a new 
concept that provides a student-centered learning 
environment for teachers and learners (Wilson & 
Llyod, 2000).  As Amid and Fried (2005) pointed out 
when authority in classroom is discussed, most peo-
ple including teachers imagine the teacher as “the 
head of a classroom” (p. 145). However, mathemati-
cal authority in the classroom might exist within a 
classroom when teacher authority as expert author-
ity is eliminated (Amid & Fried, 2005). The results of 
the study showed the majority of participants stated 
a distribution of mathematical authority in which 
mathematics teachers guide learners to use mathe-
matical concepts and procedures in order to reach 
conclusions through creating an environment where 
learners share their knowledge, discuss their mathe-
matical thinking and form communities of practices 

(Schoenfeld, 1992). The results might be interpreted 
such that most participants might provide learners 
with a learning environment where mathematical 
activities, processes or problems can be interpreted 
and conceptualized through multiple viewpoints and 
where learners share and discuss their mathematical 
ideas through taking responsibility of their learning 
(Wilson & Lloyd, 2000).  When group comparisons 
were investigated on distribution of mathematical 
authority variable, there are remarkable results 
found with respect to gender, age and education level. 
Younger and less-experienced teachers distributed 
mathematical authority well since the reason might be 
that they have more positive towards integrating edu-
cational innovations into teaching practices (Ghaith 
& Yaghi, 1997). Furthermore, teachers’ educational 
background also contributed their adaptation to 
new perspectives in their teaching practices through 
learning more about reform changes. Therefore, as 
a further investigation, it is important to examine 
teachers’ varying backgrounds in (e.g. ,their age, ca-
reer stage, generational identity of teachers) with 
respect to authority within the classroom to have an 
idea about the effectiveness of educational changes 
(e.g., student-centered learning) (Hargreaves, 2005).

Lastly, external pressure is highly perceived by most 
teachers in the sample. Especially change in curricu-
lum, timing, content, and students’ attitudes towards 
mathematics, classroom size, parental expectations 
and achievement test were found to be important 
factors affecting teaching practices such as promo-
tion of metacognition. School context characteristics 
consisting of classroom size, curriculum, parental 
expectations, expectations from principal and timing 
creates occupational stress or pressure on teachers 
that affect promotion of self-regulation or metacogni-
tion negatively (Lombaerts et al., 2009). When group 
comparisons were taken into account in terms of per-
ceived external pressure, on the contrary to literature 
(Karaköse & Kocabaş, 2006), public school mathemat-
ics teachers perceived higher external pressure than 
private school teachers in this study. Furthermore, 
the study indicated middle and secondary school 
mathematics teachers also differed with respect to 
perceived external pressure in favor of middle school 
mathematics teachers. The reason for this result could 
be given as the characteristics of age-group taught 
and primary learning environment (Kokkinos, 2007).  
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For this study, four instruments as the profiling tools 
were developed and validated. The data were gathered 
from 314 middle and secondary school mathematics 
teachers. The results indicated that most mathemat-
ics teachers’ current thoughts on three factors name-
ly as teachers’ conceptualization of metacognition, 
teachers’ perceptions of students’ features and needs, 
the distribution of mathematical authority were 
positive. However, most mathematics teachers felt 
external pressures on their teaching practices. The 
results indicated that although most teachers have 
positive approaches towards promotion of metacog-
nition, external pressure they perceived might have 
a negative influence on promotion of metacognition 
as an educational innovation. The negative factors 
created pressure or stress on teachers so especially 
teachers hesitating integrating educational changes 
in their classrooms may have problems with adjust-
ing their learning environment for example with 
respect to promotion of metacognition (Lombaerts 
et al., 2009).  One limitation of this study is the use 
of self-report instruments as the single data source. 
Group comparisons for factors affecting promotion 
of metacognition are significant, but effect sizes of the 
group comparisons were relatively small. The small 
amount of explained variances is a limitation for ex-
plaining the factors affecting promotion of metacogni-
tion (Lombaerts et al., 2009). It would be informative 
to describe such data in-detail through using quali-
tative methods (Dignath-van Ewijk & Van der Werf, 
2012). The researchers would investigate FAMTAM 
variables based on the items of the scales through 
qualitative methods to check whether such variables 
included in these scales and teachers’ statements on 
FAMTAM match with teachers’ existing practices. For 
the further studies, it would be better to describe the 
profiles of mathematics teachers with a larger sample 
size in order to improve the generalizability of find-
ings derived from the profiling tools. All in all, the 
study showed that mathematics teachers have already 
had positive approaches towards promotion of meta-
cognition with respect to conceptualization of meta-
cognition variable, perceptions of students’ features 
and needs variables and distribution of mathematical 
authority variable. However, perceived external pres-
sure might have negative influence on their teaching 
practices.  As a possible next major step in research 
on teachers’ promotion of metacognition, the investi-
gation to what extent the variables affect promotion 
of metacognition can be suggested. 
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This paper is part of a larger study which investigates 
how a highly-accomplished teacher and two beginning 
teachers notice student thinking and respond to stu-
dents’ mathematical thinking as they teach concepts of 
multiplication and division in a third-grade classroom. 
The focus of this paper is on describing highly-accom-
plished teacher’s instructional actions in response to 
student thinking which are different than that of the 
beginning teachers. The participant teachers’ instruc-
tional actions were analysed utilizing a framework de-
veloped by Cengiz, Kline and Grant (2011). The results 
revealed that the highly-accomplished teacher chal-
lenged student thinking with counter arguments and 
introduced alternative representations more frequently, 
but complimented students less frequently than the be-
ginning teachers. 

Keywords: Instructional actions, responding to students’ 

mathematical thinking.

INTRODUCTION

Creating instruction based on student understanding 
and thinking of mathematics is one of the essential 
practices underlying teaching for understanding 
(Ball, Lubienski, & Mewborn, 2001; Fennema, Franke, 
Carpenter, & Carey, 1993). Research shows that attend-
ing to mathematical thinking of students in profes-
sional development programs can help improve both 
teaching quality and student achievement (Carpenter, 
Fennema, Franke, Levi, & Empson, 1999; Kazemi & 
Franke, 2004). Although these findings establish the 
importance of mathematics teachers’ understanding 
of student thinking and their pedagogical decisions 
based on this understanding, responding to student 
thinking in appropriate ways is a complex skill, which 
requires hearing and interpreting student thinking 

(Wallach & Even, 2005). Therefore, there is a need to 
understand this core practice of teaching and help 
teachers improve in their practices.   

Due to the interactive and clinical nature of teaching, 
Grossman and McDonalds (2008) call for studies that 
investigate details of teachers’ practices instead of 
their knowledge or beliefs. Grossman and McDonalds 
(2008) argue that research in teaching lacks “common 
pedagogies for helping novices learn to respond to 
student thinking in the moment,” even though teach-
ers’ responses to students during interactive teach-
ing is one of the major components of the teaching 
practice.

Berliner (2001) identified flexibility and adapting the 
lesson according to students’ responses as one of the 
major skills that differentiate experts from novices. 
Among other studies, Borko and Livingston (1989) 
provided further evidence for this argument by ob-
serving and interviewing student teachers and their 
cooperating teachers before and after they taught 
lessons for a week. Researchers found that the coop-
erating teachers were much better than their student 
teachers at improvising the lesson according to unex-
pected student questions or comments. 

There are relatively few studies that specifically focus 
on how teachers respond to student thinking during 
mathematics instruction (Even & Gottlib, 2011; Pierson, 
2008). While many studies document different ways 
the way teachers respond to student thinking, these 
studies are either focused on classroom discourse 
(Even & Schwarz, 2003), teacher practices as they im-
plement a specific curriculum (Fraivillig, Murphy, 
& Fuson, 1999), as part of an intervention program 
(Doerr, 2006), or in the context of a professional de-
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velopment program outside classrooms (Jacobs, Lamb, 
Philipp, & Schapelle, 2011).

Cengiz, Kline and Grant (2011) investigated how six 
elementary school teachers elicited, supported and 
extended students’ mathematical thinking through 
classroom observations and interviews. The au-
thors developed a framework building on the work 
by Fraivillig and colleagues (1999) that focused on 
instructional actions related to extending student 
thinking during whole class discussions. The authors 
conceptualized extending student thinking as “help-
ing students move beyond their initial mathematical 
observations and further develop an understanding 
of a mathematical phenomenon” (p. 356). The most 
common instructional actions of extending student 
thinking were grouped under categories of encour-
aging mathematical reflection, going beyond initial 
solution methods, and encouraging mathematical 
reasoning. Using counter-speculation and introduc-
ing representations and contexts that are familiar to 
students were the least frequently observed instruc-
tional actions that supported or extended student 
thinking. 

The purpose of this study is to describe characteris-
tics of a highly-accomplished teacher’s instructional 
actions, specifically in response to students’ mathe-
matical thinking. This kind of research may offer in-
sights in teachers’ learning as well as helpful learning 
experiences for novice teachers in improving their 
practices of building instruction on students’ math-
ematical thinking. In this study, I prefer to use the 
term highly-accomplished teacher rather than expert 
teacher because the latter is not clearly defined and 
has many different connotations (Li & Kaiser, 2011). 
I draw upon Schoenfeld’s (2011) definition of a high-
ly-accomplished teacher as one who spends minimal 
time on classroom management issues and engages 
in diagnostic or responsive teaching most of the time. 

METHOD

The case study methodology was used in the current 
study. Using this methodology allows the researcher 
to answer questions such as “how?” and “why?” while 
considering the influence of context on a phenome-
non within which it is situated (Baxter & Jack, 2008). 
The purpose of the larger study (Taylan, 2013) is to 
characterize third-grade teachers’ practices of notic-
ing of student thinking and instructional actions in re-

sponse to student thinking during teaching. Because 
the larger study explores noticing of children’s math-
ematical thinking and teaching practices among three 
different third-grade teachers, one experienced and 
two in their first-year, it represents a multiple-case 
study which allows the researcher to explore differ-
ences and similarities within and among cases (Yin, 
2003). The findings in this paper focus on the case of 
the highly-accomplished teacher. 

The researcher observed and videotaped each teach-
er’s mathematics classes for a week. Each third-grade 
teacher worked on topics of multiplication and divi-
sion in the same school district during the time of data 
collection. The teachers wore portable cameras and 
selected moments of their instruction as they taught 
and reflected on the selected video clips during the 
interviews that followed each class. The interviews 
and teacher-selected video clips provided additional 
insights on the teachers’ instructional decision mak-
ing processes. The researcher’s observation notes and 
transcribed video observations of each class together 
with teacher interviews and lesson plans allowed the 
researcher to have a robust understanding of teachers’ 
instructional actions as they responded to student 
thinking in the context of each classroom. 

Selection of case and background
Brooke was nominated for participation as a high-
ly-accomplished teacher by the district mathematics 
coordinator and school principal, both of whom have 
observed her teaching before. Brooke has been teach-
ing third grade for 6 years and she has 3 years experi-
ence of attending a contextualized and an intensive 
professional development program where she worked 
one-on-one with a prominent teacher educator and 
educational researcher.  

Brooke taught at a school where many students came 
from low socio economical backgrounds. With re-
gards to mathematics instruction in her classroom, 
Brooke aimed for her students to comfortably share 
their mathematical thinking and “think for them-
selves” (Brooke, the first interview) instead of seeking 
her approval. Brooke believed her students needed 
multiple types of opportunities in order to under-
stand the content she planned to introduce. 

The research project took place when Brooke’s class 
was making a transition from learning multiplica-
tion to division. The activities that Brooke created 
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and planned together with her colleagues involved 
different models of multiplication and division: stu-
dents jumping on the number line taped on the floor 
to represent skip-counting situations, and cutting 
ribbons of equal length for wrapping gifts. Brooke 
described her teaching goals in the following way:

One of our district objectives right now is having a 
variety of models for division and multiplication 
and make connections between multiplication 
and division and so we have done like discrete 
models and then we are supposed to introduce 
number line models. For some of my kids that 
have difficulties with number sense number lines 
are helpful, which we did in multiplication. Some 
of the things they used for multiplication might 
help them solve division problems more efficient-
ly rather than having to repeatedly subtract and 
be inaccurate in their computation (Brooke, the 
first interview). 

Brooke aimed to create meaningful experiences for 
her students so that they could make connections be-
tween the new topic of learning division and what they 
already knew in multiplication.

Data Analysis
Instructional actions examined in this study con-
sisted of responses to student thinking (any spoken 
or written mathematics related ideas, justifications 
or generalizations) exhibited by teachers during 
instruction (Fogarty, Wang, & Creek, 1983). The na-
ture of instructional actions as teachers responded 
to students’ mathematical thinking was investigated 

by analyzing whole-class videos of classroom obser-
vations and field notes. Classroom talk pertaining to 
each lesson was transcribed, and instructional actions 
were analyzed only when they occurred as a response 
to student’s mathematics related question, answer, 
comment or claim. 

Guided by the frameworks of Fraivillig and colleagues 
(1999), Pierson (2008) in general and, Cengiz and col-
leagues (2011) in particular, teachers’ instructional 
actions were analyzed in two steps. First, chunks were 
identified that indicated existence of instructional ac-
tions responding to a student idea or question. Second, 
these chunks of teacher responses were subdivided 
into more detailed segments. 

By using the conceptual framework shown in Figure 
1, teachers’ instructional actions were categorized as 
supporting instructional actions, extending instruc-
tional actions and others. To ensure reliability, clas-
sification of instructional actions within one lesson 
was also checked by another educational researcher 
until reaching an agreement about the coding scheme. 

RESULTS

The results of this study emerged mostly through 
the use of the conceptual framework (Figure 1) and 
observing instructional actions across teachers for 
different instructional actions. Apart from the anal-
ysis of individual instructional actions, observation 
of a phenomenon that was emphasized in previous 
research, flexibility of an expert (or a highly-accom-

Supporting actions Other

Repeating student idea, claim, question Complimenting or evaluating

Suggesting an interpretation Clarifying questions

Introducing different representations Requesting basic information

Reminding of the goal Redirecting to a peer

Recording student thinking Providing hints

Acknowledging student thinking

Extending actions

Inviting students to evaluate a claim

Inviting students to provide reasoning and probing

Challenging/providing counter arguments to student 
claims

Pushing for alternative ways

Figure 1: Instructional actions framework (Adapted from Cengiz et al., 2011)
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plished) teacher with regards to adapting instruction 
based on student thinking, deserved attention. 

Although all three teachers provided evidence of no-
ticing student thinking and employing instructional 
actions that supported student thinking, beginning 
teachers failed to introduce new tasks in modification 
to their lessons plans based on student strengths and 
weaknesses as they taught. 

Brooke had the flexibility of changing the lesson plans 
by providing additional tasks she considered to be 
necessary. For instance, on the second day of obser-
vation some students used multiplication instead of 
division. On the third day, Brooke presented the fol-
lowing task given in Figure 2.

Most students who agreed with this misconception 
in the beginning of the lesson (more than half of the 
students in class) subsequently changed their think-
ing towards the end of the class as observed in student 
worksheets collected and teacher’s assessment dur-
ing interviews. Implementation of this task (Figure 2) 
could be considered as responding to student thinking 
based on the teacher’s noticing. 

In analysing classroom transcriptions of Brooke 
based on the analytical framework, several patterns 
emerged. First, Brooke exhibited instructional ac-
tions that had the potential to support and extend 
student thinking. In particular, repeating a student 
idea, acknowledging student thinking and suggesting 
interpretation were the most frequently used instruc-
tional actions that supported student thinking. With 
regards to instructional actions that had the potential 
of extending student thinking, the most frequently 
observed actions were inviting students to provide rea-
soning and probing, inviting students to evaluate claims 
and also challenging/providing counter arguments. 

Brooke introduced multiple representations of math-
ematical concepts in her teaching and challenged stu-
dents more frequently than the two beginning teach-
ers did.  On the other hand, Brooke did not compliment 
student thinking as frequently as the beginning teach-
ers did in the study. Although most of the instruction-
al actions were observed across both the highly-ac-
complished teacher’s class and the beginning teachers’ 
classes, some of the instructional actions almost solely 
occurred in Brooke’s class. Therefore, it is important 
to provide details of how those instructional actions 
are enacted in order to understand the differences 
between the highly-accomplished and the two begin-
ning teachers. 

Challenging / providing counter arguments
Brooke challenged her students more frequently than 
did beginning teachers in this study, mostly by asking 
questions that helped students realize their own mis-
takes. Brooke specifically challenged her students in 
the first class, when she observed many misconcep-
tions in her students’ understanding of multiplication 
and division.  Most of student misconceptions were 
revealed after Brooke introduced the task of finding 
the patterns between multiplication and division sen-
tences. For example, the students worked on under-
standing the relationship between the two number 
sentences, such as 5 times 7 is 35, and 35 divided by 7 
is 5. Several misconceptions came to surface during 
this discussion. For instance, some students thought 
that in division sentences, numbers are sequenced 
from the largest to the smallest number; such as in 
the example of 35, 7 and 5 (35 divided by 7 equals 5) 
while multiplication sentences go from the smallest 
to the largest numbers (such as 5 times 7 equals 35). 
Especially during the first lesson when Brooke ob-
served that most students had this misconception, 
she challenged the students and provided counter 
explanations. The following excerpt from the first 

Mrs. Paul has got this kid in her classroom named Sam. Here is the problem that she gave him: 
Mrs. Paul had 24 inches to wrap two presents. How long will each piece of ribbon be? 

I want you to look at Sam’s work and then I am gonna ask you whether you agree or disagree with 
Sam and to tell me why. Alright so here is his work. Sam wrote 24 + 24 =48 and 24 x 2=48. 

If you agree with Sam’s work you are going to go ahead and tell me why you agree. If you don’t 
agree with Sam’s work and his ideas, I want you to tell me why (Brooke, third lesson transcrip-
tion). 

Figure 2: A supplemental task after coming across a misconception 
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classroom observation transcription is a typical ex-
ample of how Brooke challenged a student:

Student: I know that division starts with the big 
number and the first number in the mul-
tiplication sentence is the answer. And 
the multiplication goes from smaller to 
bigger. 

Brooke: So is that pattern always true? What 
about this, what if I write 7 x 5 =35, is 
that number sentence true? Is it always 
gonna go from small to big? [challenging, 
providing counter argument].

As evident above, Brooke does not directly tell the 
student that his answer is problematic but instead 
she challenges his misconception by providing a 
counterexample in order for this student to arrive 
at this understanding himself. During the interviews 
Brooke noted that she avoided evaluative language 
such as “that is a wrong answer” because she wanted 
her students to think for themselves, independent of 
her approval or disapproval. 

Introduction of multiple representations 
of mathematical concepts
Being aware of her students’ weaknesses, Brooke used 
alternative representations to make the concepts 
more meaningful to them. Additionally, she believed 
that each student had a different way of learning and 
some models/representations made more sense than 
others to some students. Accordingly, she believed in 
using a variety of representations in her teaching, as 
evidenced in the following interview excerpt:

The number line makes a lot of sense to some 
kids. It really helps them. For some kids it does 
not really make any sense. And some kids with 
the discrete model they are like “well, this is great.”  
It makes complete sense, and for other kids it 
makes no sense. So sometimes that’s why I like 
introducing a few ways to visualize it because 
I feel like different kids have different ways of 
thinking about it so it is nice to find something 
comfortable for them (Brooke, the first interview). 

Further evidence of introducing different representa-
tions can be found in the following excerpt given be-
low where Brooke helps two students by suggesting 
use of different representations when they have diffi-

culties of cutting 45 inches of ribbon into 9-inch strips 
and finding the total number of strips. 

Student: I know it is going to be 45 divided by 9 
but I can’t figure out the answer. 

Brooke: Okay. What could you guys do, what 
tools could you use to figure that out? 
Could you use a meter stick or do you 
want to try number line that is erasa-
ble? [suggesting use of/introducing dif-
ferent representations] (Brooke, third 
lesson).

DISCUSSION

Analysis of the highly-accomplished teacher’s instruc-
tional actions in responding to student thinking re-
vealed distinct qualities. Although all teachers in the 
study worked towards building their instruction on 
student thinking via asking students to provide their 
reasoning, and restate and evaluate peer’s thinking, 
the highly accomplished teacher’s repertoire of in-
structional actions included challenging/providing 
counter arguments and introducing multiple rep-
resentations, unlike novice teachers. 

The highly-accomplished teacher’s flexibility in build-
ing instruction based on her noticing of student think-
ing during teaching was a finding that was not sur-
prising based on previous research findings (Berliner, 
2001; Borko & Livingston, 1989). The task presented in 
Figure 2 was not included in Brook’s weekly teaching 
plan. However, she developed and implemented this 
task based on what she believed students needed. 

Some instructional actions were more common than 
others across all teachers. For instance, inviting stu-
dents to provide reasoning behind their answers and 
probing, repeating student answers, and inviting to re-
state peer’s claims were among the most common in-
structional actions that followed up student thinking. 
On the other hand, challenging and providing counter 
arguments to what students said was the least frequent 
instructional action for teachers. This result may 
not be surprising given the fact that it was observed 
rarely even among experienced teachers in Cengiz 
and colleagues' (2011) study. Lack of this particular 
instructional action, namely, challenging and provid-
ing counter arguments to what students said in begin-
ning teachers’ teaching was one of the most important 
distinctions compared to the highly-accomplished 
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teacher’s teaching. Challenging students’ thinking 
with counter arguments is considered an important 
component of extending student thinking although 
it is not easy to come up with this type of arguments 
in the actual moment of teaching (Cengiz et al., 2011; 
Fraivillig et al., 1999). Being able to engage in this par-
ticular instructional action likely required Brooke to 
listen to students carefully and to be able to generate 
a counterexample in the moment that would confront 
their misconception by learning that it would not hold 
in every case. It may be the case that Brooke was able to 
challenge her students more frequently because her 
experience allowed her to develop certain schemata 
for providing responses when students had miscon-
ceptions (Borko & Livingston, 1989). 

The instructional actions that require students to pro-
vide reasoning and evaluating peer’s answers may 
not be enough to create discussions that would really 
benefit student learning if they do not take place dur-
ing a well-planned math discussion. The selection and 
sequence of student ideas to be shared with the whole 
class are the key components to a quality instruction 
(Stein, Engle, Smith, & Hughes, 2008). The experienced 
teacher was confident in her choices as she selected 
particular students to share their thinking with the 
whole class and their sequence of appearance (Brooke, 
the third interview). This may be a difficult task for 
novice teachers. 

Brooke introduced different representations of the con-
cepts of multiplication and division frequently in her 
class. Brooke’s experience in both teaching and pro-
fessional development where she created curriculum 
materials and thought about appropriate models for 
student learning may have helped her to develop a 
larger repertoire of representations. According to 
Shulman (1986) being able to understand and present 
different representations of the same concept is an 
important component of teacher’s pedagogical con-
tent knowledge.

CONCLUSION

Adapting instruction based on student thinking, chal-
lenging/providing counter arguments, and introduc-
ing multiple representations were characteristics of 
the highly-accomplished teacher’s instructional ac-
tions in response to student thinking in this study. The 
findings have the potential to contribute to research 
in teachers’ professional development, especially in 

creating schemata of instructional actions that novice 
teachers may learn from to become better teachers. 

Providing illustrations of how experienced teachers 
employ a variety of instructional actions may prove 
valuable for novice teacher learning. Watching video 
cases of highly-accomplished teachers such as in this 
study, reading transcribed teaching or learning to 
provide hypothetical responses in the form of chal-
lenging students or providing multiple representa-
tions may be valuable tools for beginner teacher’s 
learning of the profession of teaching.

There is a need for studies that investigate instruc-
tional actions of other experienced and highly-accom-
plished teachers as they teach different mathemati-
cal topics in different contexts. Considering future 
research, it may also be worthwhile to explore the 
relationship between specific instructional actions 
in response to student thinking and their impact on 
students’ participation in mathematics discussions 
and achievement levels in mathematics. 
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This paper aims to understand how two grade 3 teachers 
promote students’ learning of graph representations. 
The conceptual framework addresses representations 
and teachers’ actions as students work on a task involv-
ing graph comprehension. Data collection includes ob-
servation and video recording of two classes. The results 
show that to promote the understanding of the graph 
representation teachers supported students in reading 
the data and in reading between the data, mostly by 
questioning.

Keywords: Teachers’ practices, graph representations, 

graph comprehension.

INTRODUCTION

Representations are a key element on students’ learn-
ing. Several authors have been studying the role of 
representations in mathematics learning (Bruner, 
1999; Thomas, Mulligan, & Goldin, 2002). The NCTM 
(2000) indicates that representations help students to 
interpret, organize and understand the information 
given in a problem statement, to figure out how to 
reach the answer, and to monitor and evaluate their 
work. Therefore, it is important that teachers provide 
students with opportunities to learn and understand 
different types of representations (Bishop & Goffree, 
1986). 

Research regarding interpreting and using graphs 
has been receiving more attention. According to Friel, 
Curcio and Bright (2001) graphs are “used for data 
analysis function as discovery tools at the early stages 
of data analysis when the student is expected to make 
sense of data” (p. 132). They also refer that this side 
of the use of graphs in the classroom is related to the 
school curriculum. In 2012 Portuguese teachers were 
starting to use a new school curriculum (Ministério 
da Educação, 2007), that emphasized for the first time, 

the importance of working statistics from the early 
ages. In this paper, we aim to understand how two 
grade 3 teachers promote students’ learning of graph 
representations.

REPRESENTATIONS AND TEACHERS’ PRACTICE

A representation is a mental or physical construct that 
describes aspects of the structure of a concept, and 
its interrelationships with other concepts (Tripathi, 
2008). Bishop and Goffree (1986) say that, to foster stu-
dents’ understanding of representations, the role of 
teachers is to facilitate “the interpretation of the many 
representations commonly used [and] encourage the 
connections to be exposed, so that pupils can share 
that knowledge” (pp. 335–336). Stylianou (2010) refers 
the importance of understanding more than one rep-
resentation related to the same concept and states that 
teachers may select those which they regard as more 
appropriate to promote their students’ understand-
ing. When students explain their solutions this pro-
vides the teacher with the opportunity to understand 
students’ answers and to know how they interpret a 
representation. As students work or present their 
representations, teachers may ask them to explain 
such representations, thus supporting the establish-
ment of connections between representations and 
making conversions and treatments (Duval, 2006). 

Statistical graphs are an important kind of representa-
tion. Goldin (2000) says that graphs may promote new 
learning, providing students opportunities to build 
their own knowledge and to participate in discus-
sions. According to Friel, Curcio and Bright (2001) 
although all graphs have a similar framework, each 
type of graph has its own specifications and its own 
language. When a student reads a graph he or she 
must be able to describe, organize, represent, ana-
lyse, and interpret data, and relate it to its context. 
They state that “graph instruction within a context 
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of data analysis may promote a high level of graph 
comprehension that includes flexible, fluid and gen-
eralizable understand of graphs and their use” (p. 133). 
The authors also refer that students’ difficulties in 
reading and understanding graphs are associated 
(i) to establishing connections between data, (ii) to 
the graph with known situations, and (iii) to the task, 
students, and class characteristics. To map students’ 
understanding of graph representation, Curcio (1987) 
proposed a framework with three levels of graph com-
prehension: (i) reading the data, responding to simple 
questions that just require direct readings; (ii) reading 
between the data, finding relationships in the data and 
making simple inferences; and (iii) reading beyond 
the data, answering questions based on extensions, 
inferences or predictions based on the interpretation 
of the data. Friel, Curcio and Bright (2001) suggest that, 
when students work on a task, teachers may question 
them, in order to promote the different levels of graph 
comprehension. 

Teachers’ practices strongly influence students’ learn-
ing, and in particular the way they use mathematical 
representations in the classroom (Stylianou, 2010). 
Saxe (1999) states that practices may be regarded as 
recurrent and socially organized everyday life activi-
ties. An important aspect of teachers’ practice is how 
they use tasks in the classroom (Ponte & Chapman, 
2006). Often this is done through three moments: in-
troduction of the task (which can be made by teacher 
or by actively involving the students), students’ work 
(individually or in small groups) and whole class dis-
cussion and systematization of representations re-
sults (Ponte, 2005). 

Regarding whole class discussions, Ponte, Mata-
Pereira and Quaresma (2013), identify four types of 

teachers’ actions (inviting, challenging, supporting or 
guiding and informing or suggesting). They give spe-
cial attention to challenging actions by which teachers 
support students in discovering new information. 
Based on this perspective, we analyse the students’ 
work on a task and we connect their activity and teach-
ers’ actions, focusing on how teachers promote the 
understanding of representations (Table 1).

Students’ activity may involve designing a representa-
tion, using and transforming a representation or re-
flecting about used representations. Teachers’ actions 
are closely related to students’ activity. To support 
the students’ in designing a representation teachers 
may (i) promote the students’ free choice about an 
adequate representation, (ii) give students some hints 
about a representation, or (iii) give a suggestion or 
example that students should use. To promote the use/
transformation of a given representation, the teacher 
may (i) challenge students using open questions to 
promote students’ thinking about transforming their 
representations, (ii) ask students to explain their solu-
tions in a structured way, or (iii) suggest students an 
alternative to their representations. In the reflection 
phase teachers can guide or challenge students to (i) 
establish connections between the used representa-
tions or others that could be used as well and (ii) do 
conversions and treatments of representations. The 
difference between guiding and challenging depends 
on the questions that teachers make (in a more open or 
structured way). Teachers can also involve students 
into (i) evaluating the work that has been done and 
(ii) systematizing information.

Students’ activity regarding rep-
resentations

Teachers’ actions

Designing/Choosing
Promoting free choice
Hinting through questioning
Providing explicit suggestions or examples

Using/Transforming
Challenge students through open questioning 
Asking to explain in a structured way 
Suggesting alternatives

Reflecting
Guiding or challenging to establish further connections
Guiding or challenging to find conversions or treatments

Promoting the evaluation of the work done
Promoting systematizations

Table 1: Teachers’ actions regarding students’ representations
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RESEARCH METHODOLOGY

This study is part of a qualitative research on the 
practices of a working group of four primary school 
teachers that in 2013 were in a school cluster in the 
surroundings of Lisbon, all teaching grade 3. The 
teachers of this working group were striving to pro-
mote problem solving with graph representations 
in their classes. The participants in this paper are 
two of those teachers, Rui and Catarina. We choose 
them because in their classes we observed episodes 
illustrative of a wide variety of interesting situations. 
Both teachers had less than 5 years of experience and 
already knew the students in their classes from the 
previous school year. 

Data was gathered by video recording during class 
observations (whole class moments and individual 
teacher-student interactions). The first author collect-
ed the data and was a non-participant observer in the 
classes. Data was analysed trough content analysis 
regarding the different moments of classroom work 
on a task (Ponte, 2005), teachers’ actions concerning 
the understanding of representations (Table 1), and 
the different levels of students’ graph comprehension 

(Curcio, 1987). After transcribing all the audio and 
video data, we analysed teachers’ and students’ inter-
actions and coded their actions with the categories of 
Table 1 and the levels of Curcio (1987). In this paper, we 
analyse the work carried out on a task on two different 
classes. The task was planned by the teachers’ working 
group. At the beginning of the research, the teachers 
identified some topics that they wanted to teach (from 
January to June of 2013) and the first author suggested 
them some tasks. As the students had done some pre-
vious work with pictograms and graphs, the teachers 
chose a task involving a bar graph striving to address 
students’ needs and difficulties in reading the data and 
reading between the data. 

RESULTS

The task “The favourite meal” included a bar graph 
and a set of seven statements. Two questions (with 
sub questions) were made regarding the information 
provided in the graph and in the statements.

Interpreting statements a), d), f ) and g) involve read-
ing the data and interpreting statements b), c), e) in-
volve reading between the data. As the information 

Figure 1: Task presented to students (based in Martins & Ponte, 2010)
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is already represented in a graph, the students do not 
have to design or choose representations – they are 
called upon to use, transform and reflect on given 
representations and on their own work.

Catarina’s class
In the presentation of the task, Catarina begins by 
addressing the graph conventions (title, categories, 
vertical axis, horizontal axis) with her students, 
questioning them and providing some hints (“Why 
are graphs necessary?... What is the meaning of the 
numbers in the graph?...”). By doing this, she helps 
students in reading the data.

During the students’ autonomous work, depending on 
their difficulties, Catarina walks around the room and 
asks students to explain their answers through open 
questioning or in a more structured way, seeking to 
understand their work. For example, regarding state-
ment a), through open questioning, she challenges 
Jorge, a student who apparently does not have diffi-
culty in solving the task, about his answer (he answers 
that the hamburger and fries matches to the second 
column). However, she is not sure how he read the 
data and continues questioning him about how many 
students chose this meal: 

Jorge: Well… If this is twelve [points to the 
number twelve on the vertical axis], this 
should be thirteen…! Right?

That way Catarina could notice that although Jorge’s 
written answer is correct, and his initial explanation 
seemed right, he does not have a proper understand-
ing of the graph, assuming that the scale was of one 
element. The teacher continues to question him in a 
more structured way (“Let’s look closer to the num-
ber of students…”, “Where is the number zero?”, “Let’s 
complete the scale [in the vertical axis]”…). In this way, 
she leads the student to recall the graph conventions, 
focusing him in how to read the data, and guiding him 
to take a closer look at the graph scale on the vertical 
axis. Finally, Jorge discovers for himself his mistake.

In the whole class discussion, Catarina asks the stu-
dents to present their solutions. She calls upon stu-
dents according to their difficulties in reading the data 
and in reading between the data, especially reading 
the vertical axis scale and comparing graph bars 
that she had noticed in students’ work. For example, 
Catarina had realized that António justified his an-

swer to statement e) using just part of the information 
provided (if one column is greater than another one 
and if codfish has more votes than baked fish, codfish 
will be one column and baked fish another one). This 
prompts her ask him to present his solution to the 
class:

António: [as he points to the fifth column] [This 
is] the codfish…

Catarina: Why? 
António: Because it has more than this one [he 

points to the third column].
Catarina: Hum… How many [votes]?
António: Two…
Catarina: But the codfish has plus four votes than 

the baked fish . . . How many votes does 
this has? [she points to the column cho-
sen by the student]

António: Two…
Catarina: You have two votes...? So two plus four 

... How much is it?
Antonio: Six...
Catarina: Do you have any [column] with six? . . .
António: No... Just five...!!

With this sequence of structured questions Catarina 
leads the student to read between the data, and António 
realizes that his answer was wrong. Afterwards, she 
continues to question him, focusing in how to read 
the data, and reviewing some elements of the graph 
representation that are necessary to solve the task, 
such as analysing the value of the remaining columns 
(reading the data) and comparing the with the scale 
of the graph.

In the discussion of the second question of the task, 
Catarina focuses in how to read the data, guiding stu-
dents in reviewing the conventions of graphs. She uses 
open questioning, challenging students to find what 
they could improve (“What’s missing?”). Some stu-
dents say that “the graph is incomplete” and identify 
the two missing elements. Vanessa points to the miss-
ing categories on the horizontal axis (“It does not say 
the name of each meal (…) Here!”) and another student 
refers to the missing title of the graph. At this point 
Catarina decides to challenge students, testing them 
about the size of the columns with a “bad example”. 
On the black board, she erases some of the original 
columns and enlarges their width. As the students 
respond negatively to what she did, the teacher asks 
them: “Why are you reacting like that?! Why can’t I 
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do it like this?” The students’ answers (“Because it 
would seem like a super meal”, “It is occupying too 
much space!”, “They must have the same width!”) show 
that they know that all columns must have the same 
width. In the end the whole class discussion, Catarina 
systematizes with the students the information dis-
cussed and writes it on the board.

Rui’s class
During the presentation of the task Rui provides some 
examples of how to read the data and questions stu-
dents in a structured way. The teacher talks with them 
about graph conventions (role of horizontal and verti-
cal axis) and states that it is important to understand 
what the axes represent (“This graph has . . . It has two 
axes... This axis here [points to the vertical axis] is the 
number of students that voted, right? And that [points 
to the horizontal axis], indicates the favourite meal”). 

During the students’ autonomous work, most of them 
show great difficulty in understanding the graph rep-
resentation and in reading the data. They have trouble 
in identifying the scale on the vertical axis and in re-
lating the data on the graph to the sentences. As Rui 
realizes those difficulties, he decides to solve the task 
in a whole class discussion, asking students to explain 
their answers in a structured way. This decision mo-
tivates the class, prompting the students to reflect on 
the task and to participate in the discussion. Some of 
them start to read between the data. For example, on 
statement a), Bernardo justifies his answer saying 
that if the hamburger and fries is the most voted meal, 
then the corresponding bar would be the higher one 
(“The first [statement] indicates that the most voted 
meal was the hamburger and fries... So [the bar] that 
is the uppermost is this [meal]). 

At this point, Rui invites all students to participate in 
the discussion and to present their solutions, and he 
challenges them through open questioning. For ex-
ample, in statement b) he inquires a group of students 
that are talking about their solution:

Rui: Double of roasted chicken… What does 
it means? Explain me that!

Ulysses: The number of students who chose ham-
burger and fries was twice... Of those 
who chose roasted chicken... . . .

Rui: … So what can I take from this? … How 
am I going to do that?

Carolina: We have to go to the other [column of 
hamburger and fries]...

André: We have to see the numbers in this table 
[graph]!

Rui: We have to see the number in the graph, 
how?

André: Well... We have to see what number is 
[in each column]... We have to [compare 
columns and] see if [which] is twice of 
the roasted chicken . . .

Carlos: It’s [the column] standing next to the 
hamburger with fries!

Rui: Come here to explain me how do you see 
that...

Carlos [as he goes to the black board]: I am telling you 
that... This [the second column] is the hamburger with 
fries and [the roasted chicken] is this [the first] one... 
Because…This [the first column] is eight and eight is 
the half of the double [the column that values four-
teen]...

Rui begins by challenging students to read between 
the data and interpret the statement, namely the 
meaning of “double”. Through open questioning 
(“Explain me that!”, “How?”, “What does it mean?...”) 
he realizes that there were two strategies for dealing 
with statement b): comparing column size, such as 
Carolina suggests, or comparing column values, as 
André indicates. Prompted by Rui, André explains 
his answer. 

Almost at the same time, Carlos insists that the first 
column is the right answer and Rui decides to ques-
tion him in a structured way. For Carlos it is clear that 
he has to find the column which value is half of the 
hamburger and fries column (“half of the double”) and 
he knows that half of fourteen is seven. However, as he 
could not find the column that corresponds to seven 
meals (because the number seven it is not identified 
on the vertical axis), he tries to compare column sizes 
and chooses the one that he thinks it is closer to seven. 
That way, he chooses the first column that he thinks 
it worth eight meals. Rui notices that Carlos is hav-
ing difficulties in reading the data, and he promotes 
a comparison between the two strategies trying to 
make everyone understand why only one of them is 
reliable. Using Carlos as a representative of the us-
ers of the first strategy, Rui challenges him to explain 
how he can be sure that the value of the column that 
he chose is half of the column corresponding to the 
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hamburger and fries. The student tries to read be-
tween the data, not acknowledging that he is not able 
to read the data. As the vertical axis does not have all 
the numbers identified, Carlos tries to compare the 
size of the columns, measuring them with his hands. 
Rui continues to challenge him through open ques-
tioning and asks Carlos and his classmates (“Do you 
think that column [first column] is half of the one of 
hamburger and fries?”). With this question, all the 
students begin talking at the same time, trying to pick 
the right column. 

As Catarina did, Rui also realizes that the class is strug-
gling to read the data (namely the vertical axis scale). 
He decides to explore the graph with his students mak-
ing questions in a structured way. He points to the 
intersection between the two axes (“Which number is 
this one?”) and that guides students to look at the scale 
of the vertical axis and to read the data. Leonardo, says 

“Oh! It’s two by two!” and Miguel completes the answer 
of his colleague saying “It is two, four, six, eight, ten 
and twelve!” which makes the whole class understand 
the scale and therefore the graph representation. As a 
consequence, Rui decides that students can return to 
work autonomously. As the work goes on, the teach-
er analyses students’ solutions and questions some 
of them through open questioning and structured 
questioning. Afterwards, during the whole class dis-
cussion of results, the students have no difficulties in 
explaining their answers. 

In the second part of the task, Rui challenges the stu-
dents through open questioning and they easily indi-
cate what could be improved in the graph. For example, 
Bernardo states that the given scale (that he considers 
incomplete) made the graph difficult to read (“Because 
it had not all the numbers!”) and André indicates that 
the graph should have a title (“The title!! It is missing 
the graph title!”).

After the whole class discussion, Rui systematizes 
with the students the relevant information related 
with reading the data and reading between the data 
(title, scale, y-axis and x-axis, categories, size of col-
umns) and he promotes the evaluation of the work 
done as well as what students have learned.

CONCLUSION

Teachers’ actions as the students seek to use and trans-
form the information provided on the graph and the 

statements mainly involved open questioning and 
questioning in a structured way to lead students to ex-
plain their answers. They also questioned students in 
a structured way to discuss the graph conventions and 
rules in order to lead them to understand the main 
characteristics of that representation. 

As the students identified the relevant graph conven-
tions they could read the data. This also allowed them 
to read between the data (Curcio, 1987). When the 
students were having trouble in reading between the 
data, the teachers decreased their questioning level in 
terms of graph comprehension (Friel, Curcio, & Bright, 
2001), and sought to make sure that students could 
read the data by questioning them in a structured 
way about the graph conventions. When the students 
were able to read the data, the teachers increased the 
questioning level and challenged them through open 
questions. Rui and Catarina had to decide how and 
when to intervene, and how and when to increase or 
decrease their questioning level, helping students to 
understand the graph representation without jeop-
ardizing the activity on the task, making it too easy 
or too hard. 

During the discussion phase the teachers tended to 
guide and challenge students. Both of them system-
atized the most important information at the end of 
the discussion. As Bishop and Goffree (1986) suggest, 
the teachers chose students with right and wrong an-
swers depending on what they wanted to explore. For 
example, Rui picked a situation when a student had a 
different solution from everyone else.

In conclusion, to help students to read the data teach-
ers tended to question in a structured way and to help 
students to read between the data teachers tended to 
use open questioning. Both teachers used the whole 
group discussion in which students presented their 
solutions as an important learning moment in which 
they challenged and guided the students to explain 
their solutions, so that all of them could understand 
their colleagues’ solutions. As the teachers recognized 
the students’ answers, it was easier to help them to 
identify and correct their mistakes. The teachers used 
mostly open questioning and questioning in a struc-
tured way during the introduction, the students’ au-
tonomous work and whole class discussion, with very 
little resource to suggesting alternatives. The results 
that we present in this paper supports idea that the 
teachers’ choice of tasks and handling classroom com-
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munication are crucial aspects of their practice (Ponte 
& Chapman, 2006), providing the required opportuni-
ties to develop students’ mathematical learning.
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This paper explores tensions between the teacher’s in-
tention and the students’ interpretation of a reformed 
classroom practice. Focus for this paper is particular 
on the social and socio-mathematical norms. The ex-
ample presented in the paper is connected to the use of 
resources, such as manipulatives, to catch both explicit 
and implicit tensions between the students’ perceptions 
of existing norms and teacher´s intention of supporting 
norms. These tensions could form and cause a barrier to 
students’ opportunities to learn. Reform teaching is like-
ly to fail if students do not share a similar understanding 
to that of their teacher in regards to their contribution 
to mathematics learning. 

Keywords: Reformed teaching, tensions, social norms, 

socio-mathematical norms, students’ perspective.

INTRODUCTION

School Inspection’s quality review (Skolinspektionen, 
2009) of Swedish mathematics teaching reveals that 
teaching in general is strongly connected to the use 
of textbooks. Students working individually in text-
books dominate Swedish mathematic teaching prac-
tice (Bergqvist et al., 2010; Kjellström, 2005). Alrø and 
Skovsmose (2002) term such teaching as the exercise 
paradigm. In the exercise paradigm, students are ex-
pected to learn how to master tasks by executing a se-
ries of procedures in order to gain the correct answer. 
According to Alrø and Skovsmose, an alternative to 
the exercise paradigm is a landscape of investigation. 
In that setting, students are encouraged to ask ques-
tions and to work together to investigate issues. The 
starting point is the students’ previous understanding 
and that students are active seekers of learning.

In Sweden, a new syllabus (Skolverket, 2011) for math-
ematics education was implemented in 2011. It focuses 

on developing students’ mathematical competences. 
The idea of mathematical competences in syllabus 
originates from the Adding Up report (Kilpatrick, 
2001) and the KOM-project (Niss & Højgaard Jensen, 
2002). Competencies provide another way to explain 
what it means to master mathematics. Both of these 
previous projects had the intention of changing teach-
ing practice in schools (Boesen et al., 2014), by creating 
a broader view of what school mathematics means. 

As a consequence of the introduction of the new cur-
riculum and the reports such as the one by School 
Inspection, professional development in Sweden has 
concentrated on supporting mathematics teachers 
to adopt teaching practices which are less-textbook 
focused and require students to be more actively en-
gaged. Although many teachers have been involved 
in extensive professional development of the kind 
advocated as best practice by mathematics educa-
tion researchers (Rodgers et al., 2007), the impact on 
classrooms seems to be minimal. This follows a world-
wide indication that changing mathematics teaching 
is challenging. For example, since the publications of 
NCTM’s standards at the end of the 1980s, there has 
been a world-wide push to reform teacher-directed 
mathematics classrooms but this has met with limited 
success (Jacobs et al., 2006).

In trying to understand why this is the case, much 
research has focused on teacher change (see, for exam-
ple, Clarke & Hollingsworth, 2002). There has been lit-
tle research which investigates students’ perspectives 
on reform teaching practices and whether their per-
spectives might contribute to the status quo remain-
ing. One of the few studies is that of Graue and Smith’s 
(1996), who investigated students and their parents’ 
perceptions of reform mathematics classrooms. 
Graue and Smith showed that different students in 
the same class described the new teaching practices 
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in various ways, almost as if they had experienced 
different things. There were often strong similari-
ties between the students and their parents’ stories. 
Graue and Smith concluded that when the students 
interpreted the teaching practices, they related them 
to their previous experiences of mathematics, some of 
which were shared with their parents. The students’ 
stories also showed links between their perceptions of 
the reform classrooms and how they succeeded with 
the earlier practices. Those who considered that they 
were successful with the previous practices seemed 
averse to accepting the new teaching practices where-
as those who had previously performed poorly talked 
more positively about the possibilities with the new 
practices. 

THEORETICAL FRAMEWORK

There are many rules and routines that guide and 
frame the classroom practice (Jablonka, 2011). Without 
these, teaching would not be possible. Some rules are 
explicit, while others are unspoken and thus hidden. 
The hidden rules, you learn by participating in the 
practice. The rules are not fixed, but are changing con-
tinuously by the participants. To succeed as a student 
in school mathematics, it is not enough to know the 
mathematics thought. You must also cope with what 
it means to be a student in a mathematics classroom. 
One must be able to follow the rules of the classroom, 
both explicit and hidden.

To successfully reform a teaching practice means that 
there is a change in the prevailing teaching culture 
available in the mathematics classroom. Old under-
standings about teaching of mathematics are shat-
tered and needs to be renegotiated in different ways. 
Cobb and Yackel (1996) describe the agreed rules that 
operate in a mathematics classroom as norms; social 
norms and socio-mathematical norms.

Social norms operate in all classrooms to regulate and 
frame the social interaction between teachers and 
their students. These norms are established, often 
implicitly, as agreements in the group, rather than 
by a single individual. However, individuals may 
have their own ideas about how the norms operate. 
Examples of social norms are expectations about ex-
plaining and justifying solutions, listening and trying 
to understand others’ thoughts, etc.

In mathematics classrooms, there are ways of doing 
things that are specific to mathematics teaching and 
these Cobb and Yackel labelled socio-mathematical 
norms. Some examples of socio-mathematical norms 
are what is valued as an effective mathematical solu-
tion or what should be included in an acceptable math-
ematical solution. From participating in classroom 
practice the individual’s perception are influenced 
by these socio-mathematical norms. The individual’s 
perceptions will then affect the group’s socio-mathe-
matical norms. 

In the examples scrutinised for this paper, Cobb and 
Yackel’s (1996) framework provides as the analytical 
tool. Originally, this framework was used to analyse 
mathematics classroom interactions so that the tak-
en-as-granted ways of behaving, norms, could be rec-
ognised and their role in determining what occurred 
in the classroom better understood (see, for example, 
Kazemi & Stipek, 2001). Cobb and Yackel found the 
framework had great potential for systematically 
structuring an examination of an otherwise com-
plex and messy classroom. This framework therefore 
seemed relevant for exploring tensions between stu-
dents and teachers.

DATA COLLECTION AND ANALYSIS

The data examined in this paper come from a larger 
study (Wester, 2015), investigating students’ inter-
pretation of their reformed classroom practice. The 
study was situated in a classroom where the teacher 
had made a major effort to change her teaching as 
suggested by the Swedish National Agency, defined 
earlier. Data from the students’ perspective were gath-
ered through semi-structured focus group interviews. 
These groups consisted of three or four students and 
were put together randomly. A round of interviews 
occurred during the spring semester of grade 8, the 
autumn semester of grade 9 and the spring semester 
of grade 9. The students were part of the first cohort 
to experience a new curriculum and a grading system 
which were implemented to support teacher change. 

The extracts should be considered as illustrations, 
which exemplify how students from this classroom 
talked about their new teaching practice. Students’ 
perceptions were compared with teacher’s intensions. 
The different ways the issues were discussed were 
compared in order to identify tensions. These dif-
ferences identified tensions operating. Three kinds 
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of tensions occurred: explicit tension, tension inside 
a norm and tension between different kinds of norms.

Explicit tension
The explicit tensions are easy to get hold off. When 
discussing classroom practice, students express that 
they have a different opinion than the teacher about 
the practice in the mathematical classroom. That is 
an explicit tension.

The students described how they experienced the 
mathematics teaching had changed from previous 
school years. Working in textbooks was no longer 
seen as the obvious activity connected to a mathemat-
ics lesson. Instead, using manipulatives had become 
increasingly prevalent. 

Student 1: Yes, it’s very practical subject at the 
moment, which I think is wrong. So 
those blocks and so, even drawing and 
so, which I think is wrong. It’s really 
very practical. And then it’s too little, 
there is very little with books. It’s not 
so much calculating in books nowadays. 
And then it’s very much like visualizing 
the numbers in front of you (2012-05-31). 
[Ja, det är väldigt praktiskt ämne just nu 
som jag tycker är fel då. Så de med klotsar 
och så, även rita och så tycker jag är fel. 
Det är väldigt mycket praktiskt.  Och sen 
är det för lite, det är väldigt lite med böcker. 
Det är inte så mycket man räknar i böcker 
nu för tiden. Och sen är det väldigt mycket 
vi ska se talet framför oss.]

Students stated that teaching was no longer just about 
calculating in textbooks. The student gave examples of 
various practical activities. The first sentence in the 
quote shows explicitly that there is an explicit tension 
between the student’s view about mathematical teach-
ing and the new practice. The student draws on his 
previous experiences about mathematical teaching, 
working individually in textbooks (Kjellström, 2005; 
Skolinspektionen, 2009) to criticise the new practices. 
The student was not convinced about the value of a 
new teaching practice towards learning mathematics.  

Potential tensions 
The hidden tensions that are not expressed explicitly 
by the students are more difficult to detect. Just be-
cause students do not express tensions, do not impose 

they do not exist. We call these, potential tensions. Two 
kinds of potential tensions were found in the data; 
potential tensions inside a norm and potential tensions 
between different kinds of norms.

Potential tensions inside a norm
In next extracts, students discussed a task where they 
could use manipulatives. The task instructions were:

Student 4: You get to understand exactly how big 
a cubic decimetre is. And you realize it 
can have different shapes. [Man förstår 
hur stor en kubikdecimeter är. Och att 
den kan se ut på olika sätt.]

Student 1: It is rather basic in the beginning. You 
start with number one. Do one thing. 
[Det är en rätt grundläggande början. 
Alltså att man börjar med ettan. Gör en 
sak.]

Student 2: It will take some time to cut and paste. 
[Det tar ju tid också att klippa och klistra.]

Student 4: Yes. It takes a lot of time to put the 
whole thing together. Folding and 
taping. [Ja. Det tar mycket tid att hålla 
ihopa den. Vika och massa tejp.]

Student 3: I think this is rather good, when you 
are supposed to make different shapes, 
to get to know which sizes are possible 
to have making a cubic decimetre. You 
have to understand how big or small a 
cubic decimetre really is (2012-12-19). 
[Sen är det rätt bra tycker jag när man 
ska börja göra olika former på dem att 
man lär sig vilka mått man måste ha för 
att få just en kubikdecimeter. Så man 
förstår hur stort eller litet en kubikde-
cimeter är.]

Students indicated that they knew what it was they 
were supposed to understand from participating in 
the activity; getting to visual the actual size of a shape 
which could hold a cubic decimetre. They also have to 
understand how the shape could vary. Seeing the dif-
ferent representations of a cubic decimetre is valued 
by the students, at least early in the group discussion. 
As the discussion continued, the interpretation of the 
task above changed. The given task was now discussed 
in relationship to its teaching context by the students.

Student 1: That was what it was about in our 
lesson before. How to do to make a correct 
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calculation. How to get a cubic decime-
tre. All connected to this task. [Det fick 
vi hela lektionen innan. Hur man skulle 
räkna ut det. Få fram en kubikcentimeter. 
Se vad det var till uppgiften.]

Student 2: You have it all in the textbook. [Och det 
stod ju i matteboken.]

Student 4: Yes, but this is of course rather … basic. 
[Ja men det här är ju väldigt ... grunden.]

Student 1: Actually. This task is connected to 
exactly what we were discussing in the 
lesson before. We had a whole lesson 
on how to calculate it. How to calculate 
volume of 1 cubic decimetre, and others. 
And the next lesson was about this task. 
[Egentligen. Det här är en uppgift på det 
vi gick igenom på hela den lektionen. Så 
vi hade fått egentligen en hel lektion på 
hur vi skulle kunna räkna ut kubikdec-
imetern. Eller hur man skulle räkna ut 
kubikmetern, och massa sånt. Och sen 
efter det kom uppgiften.]

Student 4: This task is typical at the beginning 
of a new chapter (2012-12-19). [Den här 
uppgiften är vad man gör i början av ett 
område.]

The students now connected the task to what they had 
done in the previous lesson, which had been about 
how to calculate volumes. The manipulative activity 
now shifted into a task about supporting to calculate 
volume of objects, even though calculations are not 
mentioned in the task instructions. Understanding 
the need to visualise the decimetre, discussed by the 
students in the first part, is now something you just 
need to do in order to do the calculation properly. The 
existing socio-mathematical norm expressed by the 
students is to be able to do the calculations (see Table 
1). The students experience calculations are easier 
to do when they have produced representations of 
the different objects with manipulatives. They thus 
interpret the purpose of the manipulatives to support 
calculations and not the understanding of concept 
of volumes. The students´ beliefs about what school 
mathematics is about do not allow such an interpre-
tation. In students´ beliefs and values, concepts have 
a secondary importance in relationship to mathemat-
ical procedures. Manipulatives are thus tools doing 
the mathematics (see Table 1).

The teacher’s intentions with the specific task are not 
in the interviews with her. However, the teacher had 
expressed elsewhere how she considers manipula-
tives to support students´ understanding of mathe-
matical concepts.

Teacher: I was teaching multiplication of 
fractions. The given task was 1/3 
multiplied to 3/4. It is really handy if 
you know how to do it.  1/3 multiplied to 
3/4 is just multiplication straight ahead 
and it will be 3/12. It is easy to rewrite 
as 1/4. That´s the way. Super easy. But 
I didn´t stop there. Why does it works? 
Then we used paper strips. (The teacher 
explained how the multiplication of 
fraction will be represented through the 
paper stripes). We visualized, made it 
concrete and explained. Yes it was not 
so smooth, if you compared it to the 
procedure (2013-02-01). [Vi skulle köra 
multiplikation av bråk. Då ville jag att 
vi skulle titta på 1/3 gånger 3/4. Det är ju 
jättelätt att ställa upp ju. 1/3 gånger 3/4 
är ju bara att gånga varandra. Det blir 
ju 3/12. Det kan man snabbt och enkelt 
göra om så blir det 1/4. Så gör man ju. Det 
var ju supersmidigt. Men så försökte jag 
liksom varför blir det så då? Och så tog 
vi pappersremsor. (Läraren förklarar 
hur man kan illustrera uppgiften med 
pappersremsor) Vi visualiserade, gjorde 
konkret det det var. Men det är klart lite 
krångligare. Det andra är bara att ta och 
gånger varandra.] 

In this quote, the teacher compared the learning of 
the procedure with explaining and understanding 
the concepts behind the multiplication of fractions. 
For the teacher the manipulatives is a tool helping 
students to gain mathematical understanding of con-
cepts. Developing understanding requires more effort 
from the students than memorizing a procedure. As 
the teacher wanted to develop students’ mathematical 
understandings, memorizing procedures was consid-
ered a contradiction to this. The socio-mathematical 
norm intended by the teacher is that mathematics 
is much more than calculating. School mathematics 
also aims to develop mathematical understanding and 
thinking (see Table 1).
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The socio-mathematical norm suggested by the stu-
dents and confirmed by the teacher, is that manipula-
tives are useful tools in mathematical teaching as they 
can represent and visualize mathematical concepts. 
But there is a tension in relationship to this norm. 
Students considered manipulatives useful as a primi-
tive form for solving tasks, and thus less valuable than 
calculating. The teacher on the other hand, considered 
them to be a tool for gaining understandings. This 
is an example when both students and teacher talks 
about the same norm but give this norm different 
meaning. There is an example on a potential tension 
inside a norm (see Table 1; tension between students 
and teacher inside socio-mathematical norm).

Potential tension between 
different kinds of norms
Teacher’s intentions of new socio-mathematical 
norms described above require a different teaching 
approach. The new socio-mathematical norms need 
supporting social norms containing teacher’s role, 
students’ role and general activity (Cobb & Yackel, 
1996). The teacher wants students to be active seekers 
of learning through discovering and discussing while 
working with manipulatives in groups.

Teacher: From there I put up different kinds 
of tasks that used manipulatives, we 
try to use the computers part because 
they actually have their own computers, 
much discussion and group tasks so 
they should learn to communicate 
mathematics, is also trying to get away 
so that math does not become a writing 
topic (2012-06-13). [Och därifrån lägger 
jag upp olika sorters uppgifter med la-
borativa övningar, vi försöker använda 
datorerna en del eftersom de faktiskt 
har egna datorer, mycket diskussion och 
gruppuppgifter så dom ska lära sig att 
kommunicera matematik, försöker ock-
så komma ifrån så att matte inte blir ett 
skrivämne.]

The students’ own thinking challenged and developed 
through reasoning and discussion. The teacher wants 
social norms containing a student role, teacher’s role 
and a role of activity adapted to a learning landscape 
(see Table 1; teacher’s intensions of new social norms).

In the interviews, students easily express different 
ways of their new teaching practice. But they never 
talk about changes in their role as students or the 
teacher’s new role. Instead they keep suggesting tra-
ditional roles to the teacher, which they believe make 
their learning more efficient.

Student 3 It is better, I think, to work with exer-
cises from the textbook instead of blocks 
and stuff like that. I think they are hard 
to learn from. Instead I want somebody 
to show me how to do it. Then I have to 
practice on my own. [Det är bättre tycker 
jag att arbeta med uppgifter man får och 
inte hålla på med klossar och sådant. Jag 
lär mig heller ingenting utav det, utan jag 
vill ha någon som visar så här gör du så 
får jag träna själv.]

…

Math should be something to cal-
culate. If you manage to do it in 
your head it is good. It should not 
be necessary to lay it out. (2012-06-
06) [Matte ska vara någonting du räknar 
ut. Tänker så blir det bra. Du ska inte be-
höva lägga ut det.]

In these quotations, the student is talking about what 
mathematics is about (socio-mathematical norm). 
From their socio-mathematical norm the students 
suggest a supportive social norm; the role of the 
teacher is to show them how to calculate. Since they 
keep repeating the supportive social norm it could 
be seen as an indication of their awareness of the non 
established social norm.

In the same way have manipulatives has a role sup-
posed to help students to calculate. Students believe 
using manipulatives is a good method if you do not 
know how to calculate. For instance, if you are on 
your way learning something new. But you are later 
supposed not to use manipulatives if you are able to 
calculate. This kind of value is an example on a so-
cio-mathematical norm (see Table 1). 

Students’ suggestions of traditional social norms are 
heavily connected to their view of socio-mathematical 
norms. There is a tension between students’ view of 
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socio-mathematical norms and teachers intention of 
new social norms (see Table 1).

CONCLUSION

Changes in mathematics teaching from a traditional 
setting toward reform practices give rise to changes 
in social and socio-mathematical norms. However, it 
appeared hard for students to understand teacher’s 
intentions of new classrooms norms. Hence a new 
curriculum and grading system, the change from 
mastering procedures to developing competences is 
not discerned by the students. They still believe that 
school mathematics is mainly about learning proce-
dures. There is a tension between students’ interpre-
tation, and the teachers’ intention of the reformed 
classroom practice. This teacher wanted her students 
to develop mathematical competences and not just 
learn the procedures. Nevertheless, for the students 
it is not yet a norm that conceptual understanding 
should be learned from teaching. This will affect what 
it is possible for students to learn from using differ-
ent teaching resources. Students consider the use of 
manipulatives as interfering with their learning of 
mathematics. The resources are somehow able to do 
what the students are supposed to learn from activi-
ties. Thus, the students think it is better if they can do 
the mathematics without them. This is in contrast to 
the teacher, who is using these resources to support 
students developing mathematical thinking (Table 1, 
tension between socio-mathematical norm and social 
norm). 

Students’ interpretation of operating socio-mathe-
matical norms interfere students’ possibility to catch 
up teacher´s intention of new social norms. When 
students are not aware of new student roles and new 
teacher roles, they are hindered to participate in 
practise. Even if it looks like they are participating, 
tensions of this kind works as resistance. Without 
students are able to understand, there cannot be any 
agreement which provides new classroom’s norms. 

This might be one explanation to limited success of 
reform teaching (Jacobs et al., 2006).   

Understanding the inherent differences between 
viewing these resources as part of a social or a so-
cio-mathematical norm, or conceptions of a so-
cio-mathematical norm, provides an indication of why 
some students might resist reform teaching practices 
in their mathematics classroom and this will have an 
impact on the reality of their mathematics learning. 
This difference could be an explanation to why stu-
dents do not learn from these resources what teachers 
aiming for.
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Relating arithmetical techniques of proportion 
to geometry: The case of Indonesian textbooks
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The purpose of this study is to investigate how textbooks 
introduce and treat the theme of proportion in geometry 
(similarity) and arithmetic (ratio and proportion), and 
how these themes are linked to each other in the books. 
To pursue this aim, we use the anthropological theory 
of the didactic. Considering 6 common Indonesian text-
books in use, we describe how proportion is explained 
and appears in examples and exercises, using an explicit 
reference model of the mathematical organizations of 
both themes. We also identify how the proportion themes 
of the geometry and arithmetic domains are linked. Our 
results show that the explanation in two domains has 
different approach, but basically they are mathemati-
cally related.

Keywords: Proportion, arithmetic, geometry, textbooks, 

Indonesia.

INTRODUCTION

Trend of fragmentation of the school curriculum 
makes students visit a theme after the other, but 
somehow the rational for visiting them or the way 
they are related to each other does not become clear. 
Chevallard (2012) defined this trend as “visiting mon-
ument” in which students are encouraged to admire 
and enjoy without knowing about its raisons d’être, 
now or in the past. Thus, relation among themes is 
necessary, particularly for an important theme such 
as proportion. This theme appears in many different 
domains, such as arithmetic and geometry. When it 
goes across domain, the relationship is important 
because it is easier to relate a theme within a domain 
than across domains or across grades. Making those 
links could help students having the experience that 
mathematics is a connected body of knowledge not 
just a collection of tricks that teachers play out to sat-
isfy the children. 

The notion of “proportional reasoning” is often used 
to indicate what is needed to fully operate with a vari-
ety of mathematical objects and models such as scales, 
probabilities, percentage, rates, trigonometry, plane 
geometry, linearity, fractions, etc. The so-called “miss-
ing value problems” are a common way to introduce 
proportion problems to the students. For example, if 
it requires two hours of work to make 3 puppets, how 
many hours are needed to make 25 puppets? Here we 
can find three values in the task (2, 3, and 25) and one 
missing value to be found. In general, proportion is 
considered as a relationship between quantities. More 
abstractly, proportion is about two n-tuples of quan-
tities related in the same way to each other (constant 
ratio), for instance the ingredients in two recipes of 
the same cake or the sides in two similar triangles.

The mathematical notion of proportion is antique and 
goes back as far as to Euclid (about 300 BC). In book 
V, definition VI it is said that magnitudes having the 
same ratio are called proportional (Fitzpatrick, 2008). 
In book VI, Euclid also defines the geometric notion of 
similarity. It is also said that similar figures are those 
which have their corresponding angles equal and the 
corresponding sides about the equal angles propor-
tional. This definition is still used in the elementary 
curriculum, although it adopts a more modern for-
mulation. In particular, according to Miyakawa and 
Winsløw (2009), it can be said that Euclid’s notion of 
proportion is static (about a property of given quan-
tities) rather than dynamic (in terms of a functional 
relationship between variables). The dynamic defi-
nition is common in the algebraic domain which has 
become dominant in scholarly mathematics over the 
past four centuries and has been conceived in terms 
of linear functions between real numbers. 

In the Indonesian school, the proportion theme in 
arithmetic is introduced as ratio equality: given four 
numbers a, b, c and d, the equality (a, b) ~ (c, d) indi-
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cates that a and b are in the same proportion as c and d. 
At the beginning of the seventh grade, students start 
to work with missing value problems. However, pro-
portion also appears in the geometry and statistics 
domain and mostly in upper secondary school, in the 
introduction of functions. 

The fact that proportion is found not only in arithme-
tic, but also in geometry, makes it interesting to inves-
tigate how textbooks introduce and treat the theme of 
proportion in geometry (similarity) and arithmetic 
(ratio & proportion), and especially how these themes 
are linked to each other. To formulate and  investi-
gate this phenomenon with more precision, we use 
the anthropological theory of the didactic (ATD) by 
(Chevallard, 1999, 2002) in particular the notion of 
praxeology. It is not our aim to address the issue of 
how proportion in arithmetic and geometry should 
be taught in lower secondary education (in Indonesia), 
or how it should be treated in textbooks. However, we 
expect that our research into the approaches chosen 
in textbooks will contribute to this discussion and 
give it more precision.

PROBLEM BACKGROUND

The research about how teachers use resources for 
teaching is increasing. Gueudet and Trouche (2012) 
point out that documentation work where teachers 
interact with resources, selects them and work on 
them is a central in teachers’ professional activity. 
Considering textbooks as an example of resources, 
this study implies that the textbooks are not only seen 
by teacher as a text to follow, but also it can be used as a 
resources for teacher learning. However, Pepin (2012) 
argues that it is still less clear what kind of textbooks 
that can help teacher learning. In her study she used 
tool analysis for reflection and feedback to help teach-
ers develop further understanding and enrichment of 
mathematical tasks. Pepin’s study inspired me to use 
another tool to analyse task in order to enrich teach-
ers’ point of view of quality materials for teaching.

A textbooks analysis developed by González-Martín, 
Giraldo, and Souto (2013) who consider the case of the 
introduction of real numbers in Brazilian textbooks 
and found an unintegrated mathematical organiza-
tion as knowledge to be taught. Furthermore, Hersant 
(2005) conducted a historical study of how the arith-
metic of proportion appears in the French compulso-
ry education from 1884 to 1988. Based on an elaborate 

reference model, she demonstrated how the teaching 
approach is changing over time. Finally, García (2005) 
proposed a reference epistemological model in terms 
of a sequence of praxeologies to study linear systems 
and linear functions, and he used it to identify propor-
tional relations, both in arithmetic and in the study of 
functions, showing a quite poor coherence between 
the two as they appeared in school mathematics. Our 
proposal to look at proportions as they are treated 
in the arithmetical and geometrical domain has to be 
considered as an extension of Hersant’s and Garcia’s 
work relying on González-Martin and colleagues' 
methodology.

THEORETICAL APPROACH

According to ATD, knowledge is produced, communi-
cated, learned and used in institutions, and depends on 
them. The relationship between knowledge in schol-
arly institutions and school institutions is described 
using the notion of didactic transposition  (Chevallard 
& Bosch, 2014). Even though our study does not aim 
at analysing the full transposition problem, the no-
tion of reference model enables us to analyse specific 
textbook transpositions of scholarly knowledge in a 
wider framework, without assuming this scholarly 
knowledge as a universal or fixed measure.

In ATD, mathematical activity is identified into two 
blocks. First, there is practical block (praxis) which is 
made of the type of task and technique to solve. Second, 
there is knowledge block (logos) formed by technology 
and theory to explain and justify the praxis. We refer 
to Barbé, Bosch, Espinoza, and Gascón (2005) for more 
details on these notions. The aim of this paper (and 
my thesis) is to develop a textbook analysis method 
based on ATD. 

Our analysis of textbooks mainly considers math-
ematical praxeology, but the textbook itself is also 
a rich resource for developing didactic praxeology. 
Specifically, textbooks contain a wealth of explicit 
mathematical tasks, demonstration of techniques us-
ing specific technologies, and also theoretical discourse 
which explains, relates and justifies the technologies. 

Reference model 
Proportion appears as themes (collections of math-
ematical praxeologies that are unified by a common 
technology) with different theoretical frameworks 
(sectors) that appear in different school mathemati-
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cal domains; we consider here mainly the domains of 
arithmetic and geometry, while related themes appear 
also in other domains, especially algebra and proba-
bility. We now present  parts of our reference model 
to analyse the two themes separately. We mainly use 
a categorization of techniques which are sufficient to 
explain praxis (as the types of tasks are also evident) 
in this model. 

Proportion in the arithmetic theme is defined as fol-
lows, for pairs of numbers: (x1, x2) ~ (y1, y2) if x₁

x₂  =  y₁
y₂ . 

More generally, (x1, …, xn) ~ (y1, …, yn) if (xi, xj) ~ (yi, yj)  
for all i, j = 1, …,n. There are three main types of task 
that are categorized: 

T1
Ar: given (x1, …, xn) and (y1, …, yn) decide if 

(x1, …, xn) ~ (y1, …, yn)

T2
Ar: given (x1, …, xn) and (y1, …, yn) compare xi

xj
 for 

i = 1, …,n

T3
Ar: given (x1, …, xn), y1 find y2, …, yn so that 

(x1, …, xn) ~ (y1, …, yn)

The actual tasks in textbooks are usually given 
through the description of a daily situation, such as 
using scales on a map, buying and selling goods. tech-
nique that is used for T1

Ar is to calculate the ratios of 
related terms and conclude about the proportionality. 
In T2

Ar, the technique consists in comparing ratio of 
corresponding numbers or magnitudes. For T3

Ar, the 
detail technique  can be categorised as proposed by 
Hersant (2005). We illustrate these types of tasks with 
typical textbooks task:

T1
Ar: The price of 2 kg rice in shop ‘A’ is Rp. 5.000,- 

and the price of 5 kg rice in shop ‘B’ is  Rp. 12.500,- . 
Do both shops have the same price of rice?

T2
Ar: In Bu Ina’s grocery, the price of a package con-

taining 2 kg of sugar is Rp. 9.400,-and the price of 
a package containing 5 kg of sugar is Rp. 22.750,-. 
Which package is cheaper? 

T3
Ar: Two students can carry 15 books. How many 

books can 8 students carry?

In geometry, proportion is connected to the notion of 
“similarity”. Two polygons of the same kind (triangles, 
quadrilateral, etc.) are defined as similar if the cor-
responding angles have the same measures and the 

ratio of the lengths of corresponding sides are equal. 
Common types of tasks in the textbooks treatment 
of similarity include the following which are closely 
related to T1

Ar and T3
Ar

 respectively: 

T1
G: Given two polygons with the same angles and 

also given the side lengths of two polygons, de-
cide if the polygons are similar. 

T3
G: Given similar figures with corresponding 

sides (x1, …, xn) and (y1, …, yn) with x1, …, xn and y1 
known. Find the unknown sides y2, …, yn. 

There are some textbooks examples of the types of 
tasks T1

G and T3
G, together with corresponding tech-

niques:

T1
G: One rectangle is 12 cm in length and 8 cm in 

width. Another rectangle is 6 cm in length and 
4 cm in width. Are they the similar?

T3
G:  Quadrilaterals ABCD and LMNO are similar. 

The side of ABCD are 6 cm, 10 cm, 12 cm and 14 cm 
in length, respectively. The shortest side of LMNO 
is 9 cm. Find the length of other side of LMNO. 

To analyse the praxeologies proposed in the textbooks, 
we will mainly use the categorization of types of tasks 
explained above (the basic reference model). 

CONTEXT AND METHODOLOGY

Indonesia is a big country with 252 million people 
inhabitant. It is a big market for publishing com-
panies and makes among them are competing with 
each other. Furthermore, the fact that Indonesia still 
lacks of teachers and some of them have a weak edu-
cational background makes them dependent on the 
textbooks. Thus, it is the reason why the quality of 
textbooks should be controlled or become a priority 
for the ministry of education. 

The proportion theme in arithmetic (Ar) is intro-
duced in grade 7. In Indonesian, proportion is called 

“perbandingan” which literally means proportion. 
Proportion in geometry (G) is introduced in grade 9 
as “kesebangunan dan kekongruenan” (similarity and 
congruence). We study two themes in three different 
textbooks for each of the two grade levels. We refer 
to the textbooks as shown in Table 1 and 2.
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To analyze the data, we studied how the above men-
tioned themes in the arithmetic and geometry domain 
were introduced in the textbooks (that is in the main 
text, rather than in the collection of exercises). We 
considered how proportion is introduced through 
examples (praxis), with explanations of techniques 
and use of theoretical justifications (logos). This way 
we identified the main elements of the mathemati-
cal organization to be developed by students in both 
themes, according to the textbooks. Furthermore, we 
were also interested in how much student autonomy 
was foreseen in solving tasks; for this, we considered 
the variety of tasks that are proposed for student work 
(in the exercise sections of the textbook) and also their 
degree of similarity to examples given in the main 
text. Obviously, the analysis of exercises as tasks is 
incomplete because there are no given techniques, 
unlike in the working examples. Furthermore, we 
identified how the proportion themes in arithmetic 
and geometry are linked, based on the characteristics 
of mathematical organization and the presence or 
absence of explicit cross references in the text.

RESULTS AND DISCUSSION

How proportion is introduced 
in the arithmetic theme
We first provide some informal remarks about the the-
oretical structure of the relevant chapters. The title 
of proportion theme was different in each textbook: 
application of algebra (Ar1), ratio and proportion (Ar2), 
proportion and daily life  arithmetic (Ar3). 

There were three subchapters in the Ar1: 1. linear 
equations with one variable; 2. problem solving in 
daily life arithmetic; 3. proportion. Between these 
three subchapters we find connecting sentences such 

as: “we often use algebra to solve economic activity’ 
and ‘in the daily activity a lot of things correspond 
to proportion”  (Wagiyo, Surati, & Supradiarini, 2008, 
p. 108 & 115).  Furthermore, the authors also relate 
proportion to fractions with a brief sentence.  In Ar3, 
there were two main subchapters: daily life arithmetic 
and proportion, and there was no explicit connection 
between them. However, the authors use fractions as 
a tool to introduce proportion: “in the last chapter you 
already learned that a fraction can be considered as 
a proportion of two numbers” (Nuharini & Wahyuni, 
2008, p. 152). In contrast to Ar1 and Ar3, the authors 
in Ar2 did not relate proportion with linear equations 
and daily life  arithmetics. They directly discussed a 
new terminology called ‘ratio’ to introduce propor-
tion. Due to the focus of research, we will only con-
sider the proportion subchapters. 

To explain what proportion is, the authors tried to 
avoid formal explanations. For example: 

the price of one book
the price of fives books  =  500

2500  =  1
5

Comparison between the amount of the books 
and the prices give the same numbers, so that the 
amount of the book  and the price are proportion-
al (Wagiyo, Surati, & Supradiarini, 2008, p. 120).

The authors used daily life situations to introduce 
proportion, for example, selling and buying price. 
Furthermore, the technologies that cover proportion 
in these three textbooks were very similar. For further 
explanation, the following table shows the number of 
examples  in three textbooks, given to the two figures 
of task T1

Ar and T3
Ar.

Code textbook title Authors, year of publication

Ar1 Book for studying  mathematics  1 Wagiyo, Surati, and Supradiarini (2008)

Ar2 Contextual teaching and learning mathematics Wintarti and colleagues (2008)

Ar3 Mathematics 1: concept and application Nuharini and Wahyuni (2008)

Table 1: Lower secondary textbooks grade 7, analysed in this paper

Code textbook title Authors, year of publication

G1 Book for studying mathematics 3 Wagiyo, Mulyono, and Susanto (2008)

G2 Contextual teaching and learning mathematics Sulaiman and colleagues (2008)

G3 Easy way to learn mathematics 3 Agus (2007)

Table 2: Lower secondary textbooks grade 9, analysed in this paper
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From the table above, we noticed that the textbooks 
have more T3

Ar than T1
Ar. Also, we found a considerable 

number of techniques related to T3
Ar. For example: 

reduction of unit, multiplication by ratio, proportion, 
graph and etc. (for further study, we refer to Hersant, 
2005, techniques). 

Task type T2
Ar appeared  in the two textbooks (Ar1 and 

Ar2),  but it was only as an exercise. In the exercise 
section, we also found a variation of T3

Ar that is sym-
bolised as T3

Ar¹. The example of this type of task is: 

T3
Ar¹: A contractor estimates a bridge to be com-

pleted within 108 day, if it is done by 42 workers. 
After working 45 days, the work is stopped for 
9 days for some reasons. Determine how many 
workers, which must be added to finish on times 
(Nuharini & Wahyuni, 2008, p. 159).

To solve this type of task requires considerate student 
autonomy. They should master in mathematics mod-
elling before they apply technique from T3

Ar.

We can point out four important observations from 
the discussion above: 1. proportion is located in one 
subchapter with a connecting sentence to the previ-
ous subchapter and there is a large variation in the 
titles of chapter where proportion is explained; 2. the 
authors tend to use informal examples (daily activity 
case) to introduce the notions of proportion; 3. there 
are two types of task that are provided by textbooks 
in the main texts (T1

Ar and T3
Ar); 4. to work with exer-

cises, students sometimes require to develop new 
variations of techniques demonstrated in the main 
task (T3

Ar).

How proportion is introduced 
in the geometry theme 
Proportion was introduced as similarity in the geome-
try domain. Similarity was always explained together 
with congruence. Due to the focus of research, we 
will only consider the similarity theme. We found 
connecting sentences in G1 and G3 which support 
students to relate arithmetic techniques to geometry 
techniques. G1 tries to connect similarity with propor-

tion using scale , whereas this theme is also discussed 
in arithmetic domain. For further explanation, see 
the example bellow: 

We already studied about scale in the seventh 
grade. Pictures that are of same scale can be 
found by magnification or reduction. So that 
scaled picture has the same proportion as the 
real picture. We can say that the scaled picture 
and real picture are similar (Wagiyo, Mulyomo, 
& Susanto, 2008, p. 7)

However, G3 used plane geometry  to introduce sim-
ilarity and there was no connecting sentence in G2.: 

We already learned about triangles, rectangles, 
squares, trapezoids and kites. In this chapter, we 
will discuss about the similarity of those figures 
(Agus, 2007, p. 1).

To explain similarity, the authors of three textbooks 
used more formal definitions such as: 

Two figures are similar if the corresponding an-
gles have the same measure and the ratio of the 
leghts of corresponding side is equal (Sulaiman 
et al., 2008, p. 10).

We counted the number of examples of the two types 
of task T1

G and T3
G: 

From Table 4, we can see that the number of T3
G 

was smaller than T1
G, because in many examples  

T3
G is explicitly given that the two figures are simi-

lar. Therefore, students only need to compute the 
unknown side. On the other hand, student need to 
consider the property of similar figures to solve T1

G. 
Furthermore, there is also T4

G

 whereas students need 
to develop their own technique: 

Type of task Ar1 Ar2 Ar3

T1
Ar 2 1 1

T3
Ar 5 4 7

Table 3: Number of examples in the main text

Type of task G1 G2 G3

T1
G

6 3 4

T3
G

4 1 4 

Table 4: Number of examples in the main text
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T4
G: A rectangular frame of photographs is 

40 cm × 60 cm, and a rectangular photograph is 
30 cm × 40 cm. Are the frame and the photograph 
similar? Suppose we modify the size of the frame 
so that the frame and the photograph are similar. 
What is the size? (Sulaiman et al., 2008, p. 8) .

Students need to elaborate new techniques to solve 
task T4

G because they face a new type of task which is 
different from the example.

From the above, we can conclude four things: 1. sim-
ilarity is introduced together with congruence; 2. to 
explain similarity, the authors use formal definitions; 
3. there are two types that appear as examples in the 
textbooks (T1

G

 and T3
G); 4. students sometimes require 

autonomy to develop new variations of techniques 
demonstrated in the main task T4

G in the exercise.

How the arithmetic and geometry 
themes are connected to each other
Based on the discussion, we can see the relation be-
tween two themes, especially the use of arithmetic 
techniques as a part of geometry techniques. There 
are two types of tasks in arithmetic (T1

Ar

 and T3
Ar) 

which correspond to geometry type of task (T1
G

 and T3
G). 

There is a relation between arithmetic and geometry 
themes, but we consider it to be relatively weak. From 
the data, there is only one textbook (G1) in the 9th grade 
which refers explicitly to 7th grade proportion. The 
other textbooks discuss about plane geometry (G3) and 
there is not even a connecting sentence in G2. 

CONCLUSION

We have identified the main types of tasks related to 
proportion in the domain arithmetic and geometry 
as they appear in the textbooks. The introduction of 
proportion in arithmetic theme is more informal than 
for the geometric theme. For example, in arithmetic 
the authors use daily life activity as a tool to explain 
what proportion is. While in geometry, the definition 
of similarity is based on formal definition. However, 
we also found that both themes have varied types of 
tasks, including tasks with a considerable variety as 
concerns the student autonomy required: from tasks 
that require techniques to be reproduced from an ex-
ample to  main tasks that require a technique to be 
developed independently by the students.

We found that textbooks establish two mathematically 
related types of tasks in each of two themes within 
different domains, and found that the explicit link be-
tween these types of tasks is relatively weak. Making 
this link is seen explicitely by students could help 
them experience mathematics as connecting body 
knowledge. Furthermore, we point out that method-
ology of this study can contribute as a new approach 
to analyse textbooks or a new approach to choose a 
textbook. 
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This poster presents a study on the voice of two Swedish 
mathematics teacher guides. We have made a content 
analysis of teacher guides to the two most commonly 
used mathematics textbooks in Swedish lower second-
ary school Grades 7 to 9. Our theoretical stance is that 
curriculum resources can support teachers pedagogical 
design capacity. Our analysis shows that the voice of 
both guides speaks through the teacher with narratives 
and scripted instructions, instead of making visible the 
strengths and weaknesses with different teaching de-
sign considerations. The results could be used to further 
elaborate on how the teacher guides can be designed to 
support the pedagogical design capacity for a range of 
different teachers. 

Keywords: Sweden, teacher guides, voice.

RESEARCH TOPIC

Mathematics curriculum resources are teachers’ 
most important tools in mathematics education all 
over the world (Fan, Zhu, & Miao, 2013). Emerging 
research shows potential in curriculum resources to 
support teachers’ pedagogical design capacity (PDC), 
i.e., support teachers to find productive ways to adapt 
curriculum resources to reach instructional goals 
(cf. Brown, 2009; Davis & Krajcik, 2005). This poster 
presents one piece of a larger study where the support 
for the teachers in their teacher guides’ is investigat-
ed. Our research question is: What characterizes the 
voice of two dominating Swedish mathematics teacher 
guides? 

THEORETICAL FRAMEWORK AND METHOD

Davis and Krajcik draw on the work of Ball and Cohen 
and present five high-level guidelines for how to de-
sign educative curriculum materials, i.e., with the in-
tention to promote teacher as well as student learning. 

We used these guidelines to develop an analytical tool 
to analyze the content of mathematics teacher guides 
(Hemmi, Koljonen, Hoelgaard, Ahl, & Ryve 2013). In 
this poster, we focus on one of five categories in that 
framework, namely to make the developers pedagog-
ical judgments visible to the reader. This category is 
manifested by the Voice of the teacher guide; how the 
authors communicate with the teacher. They can 
speak either through the teacher or to the teacher. 
The difference in addressing the teacher by through 
or to is nicely explained by Remillard (2012) in the 
following quote: 

Despite the invisibility of the authors, curric-
ulum resources have a voice that is manifested 
through the way they communicate with the 
teacher. Most curriculum resources place pri-
mary emphasis on what the teacher should do. I 
think of this as talking through teachers. That is, 
the authors communicate their intent through 
the actions they suggest the teacher takes. Few 
resources speak to the teacher by communicat-
ing with teachers about the central ideas in the 
curriculum. (p. 112)

RESEARCH RESULTS AND IMPLICATIONS

Our analysis shows that the voice of the investigated 
guides mostly speaks through the teacher as narratives 
and scripted instructions, and only occasionally to 
the teacher about the strengths and weaknesses with 
different teaching designs that could facilitate teach-
ers to make choices and to keep their autonomy. The 
results could be used to further elaborate on how the 
teacher guides can be designed to support the PDC for 
a range of different teachers. 

mailto:linda.ahl@mdh.se


Investigating the voice of two Swedish mathematics teacher guides  (Linda Ahl and Tuula Koljonen)

3166

REFERENCES

Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is-or 

might be-the role of curriculum materials in teacher learn-

ing and instructional reform? Educational Researcher, 25(9), 

6–8, 14.

Brown, M. W. (2009). The teacher–tool relationship: Theorizing 

the design and use of curriculum materials. In J. T. 

Remillard, B. A. Herbel-Eisenmann, & G. M. Lloyd (Eds.), 

Mathematics teachers at work. Connecting curriculum 

materials and classroom instruction (pp. 17–35). New York, 

NY: Routledge.

Davis, E. A., & Krajcik, J. S. (2005). Designing educative curric-

ulum materials to promote teacher learning. Educational 

Researcher, 34(3), 3–14.

Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in math-

ematics education, development status and direc-

tions. ZDM – The International Journal on Mathematics 

Education, 45(5), 633–646.

Hemmi, K., Koljonen, T., Hoelgaard, L., Ahl, L., & Ryve, A. (2013). 

Analyzing mathematics curriculum materials in Sweden 

and Finland: Developing an analytical tool. In B. Ubuz, Ç. 

Haser, & M. A. Mariotti (Eds.), Proceedings of the Eight 

Congress of the European Society for Research in 

Mathematics Education (pp. 1875–1884). Ankara, Turkey: 

Middle East Technical University and ERME. 

Remillard, J. T. (2012). Modes of engagement: Understanding 

Teachers’ transactions with mathematics curriculum re-

sources. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From 

text to ‘lived’ resources: Mathematics curriculum mate-

rials and teacher development (pp. 105–122). Dordrecht, 

The Netherlands: Springer.



3167CERME9 (2015) – TWG19

Formative assessment in Swedish 
mathematics classroom practice

Catarina Andersson and Erika Boström

Umeå University, Umeå Mathematics Education Research Centre, Umeå, Sweden, catarina.andersson@umu.se

Using formative assessment has woken interest in many 
countries because of the potential effect on student 
achievement. To investigate Swedish teachers’ use of 
formative assessment in mathematics, this study used 
classroom observations and teacher interviews of 38 
mathematics teachers. The teachers used formative 
assessment, but additional formative activities could 
support teachers to better take advantage of the poten-
tial in using formative assessment.

Keywords: Formative assessment, mathematics 

education.

BACKGROUND 

Several studies have demonstrated that substantial 
learning gains are possible when teachers introduce 
effective formative assessment (e.g., Black & Wiliam, 
1998; Hattie, 2009). Despite many reform initiatives 
concerning formative assessment taken in different 
parts of the world (Tierney, 2006) a more extensive 
use of formative assessment is still desirable (Cizek, 
2010). To be able to estimate possible learning gains 
for Swedish students in mathematics, and need for 
additional content in teacher education and in-ser-
vice training we need to know the characteristics of 
current Swedish mathematics teaching in relation to 
formative assessment. 

Effective formative assessment can be conceptualized 
as practice based on an adherence to the fundamen-
tal idea of using evidence about student learning to 
adjust instruction to better meet student needs, and 
a competent use of the following five key strategies 
(Wiliam, 2010):

1) Clarifying, sharing and understanding learning 
intentions and criteria for success;

2) Engineering effective classroom discussions, 
questions, and tasks that elicit evidence of learn-
ing;

3) Providing feedback that moves learners forward;

4) Activating students as instructional resources 
for one and another; 

5) Activating students as the owners of their own 
learning.

PROJECT DESCRIPTION

The study is a part of a larger research project on 
professional development in formative assessment 
in mathematics. Participants were 38 randomly se-
lected primary and secondary school teachers. Using 
interviews and classroom observations, we investi-
gated those teachers’ classroom practices to answer 
the following research question: How do mathematics 
teachers in the municipality use formative assessment 
in their classroom practices? Using the framework of 
one fundamental idea and five key strategies in the 
analysis, we identified actions of the teachers that we 
called formative assessment activities.

RESULTS

The findings show that most teachers use 11 to 15 
formative assessment activities, distributed over the 
five key strategies as well as the fundamental idea 
of formative assessment. There are only minor dif-
ferences between the primary school and secondary 
school teachers in the extent and the ways the teach-
ers use formative assessment. The overall picture of 
the mathematics teachers’ current use of formative 
assessment shows both strengths and weaknesses. 
For example, the teachers adjust their instruction in 
several ways as a consequence of information about 
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students’ learning. However, the potential of the ad-
justments are not fully utilized since the teachers of-
ten collect such information rather seldom and not 
from the whole class. In addition, the teachers do not 
use questions or tasks consciously connected to spe-
cific learning intentions.

DISCUSSION 

The study shows that the mathematics teachers use 
formative activities in their classrooms and that sim-
ilarities predominates differences between the two 
groups of teachers. However, additional formative 
activities could support teachers to better take advan-
tage of the potential in using formative assessment. 
For example, the teachers could use more goal-target 
questions and tasks that all students answer on mini 
whiteboards. The identified room for improvement 
implicates the need for formative assessment to be 
included in teacher education and in-service training 
for teachers. 
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The present study sought to identify the previous knowl-
edge a group of students possessed about trigonometry so 
that educational activities could be developed in order to 
teach, clarify and help students comprehend the related 
concepts. As an educator, I delved into Ausubel’s and 
Vergnaud’s theories in an attempt to help my students 
with conceptual and procedural difficulties to relate 
trigonometry to real life. Results show that identifying 
the students’ previous knowledge and making the knowl-
edge-in-action explicit results in a change of attitude 
both on the part of the student and on the part of the 
teacher.

Keywords: Mathematics education, high school, 

knowledge-in-action.

RESEARCH TOPIC

This applied study focused on the possibility of pro-
moting learning in trigonometry by using a method 
based on the theory of meaningful learning and the 
theory of conceptual fields.

THEORETICAL FRAMEWORK AND METHOD

Ausubel and colleagues (1980) in his meaningful learn-
ing theory emphasizes the knowledge the learner 
possesses. According to it, teachers can identify the 
knowledge learners have in order to draw a map and 
outline a plan of how to teach them in an appropriate 
and significant way. Thus, meaningful learning is a 
process by which new information interacts with a 
structure of existing and specific knowledge, and 
as a result, there is a new piece of information, with 
new meaning. Vergnaud (2007) proposed a theory to 
provide a coherent structure and some basic princi-
ples to the study of the development of complex skills. 
Conceptual field is the set of situations, problems, rela-
tionships, contents, thoughts, and procedures that the 

learners use to give meaning to a given topic to com-
prehend the real world. In this realm, both theories 
contribute to comprehend how empirical knowledge 
evolves into scientific one as well as how pedagogical 
activities support the process. A group of students 
from the 2nd year high school of a private institution 
answered a questionnaire with 6 questions aimed at 
clarifying the students’ prior conceptions of trigo-
nometry. The answers helped developing educational 
activities about (1) the definition of the trigonometric 
ratios; (2) the contextualization of the trigonometric 
ratios for the construction of an instrument capable 
of measuring heights; (3) the definition of the number 
π; (4) the definition of the trigonometric functions in 
the trigonometric circumference; (5) the relationship 
between the congruous arches and the reduction to 
the first quadrant; and (6) the construction of plots 
for the sine, cosine and tangent functions. Right af-
ter the completion of each activity, there was a class 
discussion and the teacher intervened.

RESEARCH RESULTS AND IMPLICATIONS

Outcome analysis reveals that identifying the stu-
dents’ previous knowledge and making explicit the 
knowledge-in-action result in a change of attitude 
both on the part of the student and on the part of the 
teacher. The activities engaged the students, favored 
concentration as well as the clarification of doubts. 
They represented a possibility for the debate of ideas, 
an opportunity for reflection. Conceptual and proce-
dural aspects of knowledge evolved from empirical 
knowledge into scientific knowledge.
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The external evaluation systems for the assessment of 
mathematical learning are increasingly widespread in 
the educational context, nationally and internationally. 
They actually affect the teachers and their teaching prac-
tices with different effects. The poster shows a qualitative 
research in order to explore teachers’ attitudes toward 
the external evaluation in Italy, with particular atten-
tion to their emotions.

Keywords: Teachers’ practices, assessment, affective 

factors.

INTRODUCTION AND THEORETICAL 
PERSPECTIVE

Research in mathematics education has focused its 
attention on teacher education rather recently: math-
ematics teacher education is considered “an emerging 
field” (Adler et al., 2005). In this emerging but growing 
field there has been little space for study about the 
teachers’ attitudes towards the external evaluation 
systems for the assessment of mathematical learning. 

In the present age, the issue of evaluation system has 
become central in the discussions on education and 
external evaluations are increasingly present in many 
school systems. Therefore we believe that it is crucial 
to give voice on this important educational issue to 
one of the main actors of the educational process, the 
teachers, collecting their beliefs, emotions and atti-
tudes. As a matter of fact, these affective reactions 
seem deeply to affect the emotions of teachers, also 
influencing their educational choices. In this perspec-
tive we believe that understanding teachers’ attitudes 
towards the external evaluation of students’ mathe-
matical competencies can be the first step in order to 
exploit at the best from a didactical point of view the 

important feedback that an external evaluation can 
return to teachers and students. 

In our theoretical framework, we assume a multi-
dimensional definition of attitude where attitude is 
characterized by emotions and beliefs towards the 
object and their mutual interactions (Di Martino & 
Zan, 2010).

FOCUS OF THE POSTER

Our research focuses on the Italian teachers’ at-
titudes towards the evaluation system for the as-
sessment of mathematical learning promoted by 
INVALSI (National Institute for the Assessment of 
the Educational and Instructional System). In the 
Italian context, the impression is that many teachers 
suffer this kind of evaluations also because they feel 
the external evaluations as something “ready-made”, 
far from “real school” and imposed from above with-
out listening to teachers’ opinions. This impression 
is largely perceived in many unofficial occasions but 
not scientifically analysed in Italy until now. 

To understand the range, but above all the causes 
of the sometimes strongly negative reactions by the 
Italian teachers to this external evaluation, we have 
planned a research in two stages. A first stage based on 
the elaboration of an on-line questionnaire addressed 
to all teachers of every school level and a second stage 
that foresees the development of personalized inter-
views to the teachers who voluntarily share their 
e-mail for that in the online questionnaire.

The focus of the poster will be the first stage. We will 
introduce the methodological choice at the basis of 
the development of the questionnaire and discuss the 
first analysis of the data collected. 
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Concerning the methodological choices, they are 
in line with recent studies about teachers’ attitude 
(Coppola et al., 2013): the survey was voluntary and 
anonymous, formed mostly by open questions in or-
der to allow everyone to choose what he feels is the 
most important to say, with the words he feels as the 
best. Regarding the analysis of the data, the research 
is now in its first stage but we are developing what 
Demazière and Dubar (2000) call analytical approach: 
the text is analyzed in order to systematically pro-
duce sense starting from people’s words. The final 
outcome of this process is the construction of a set 
of categories, properties, relationships: what Glaser 
and Strauss (1967) call grounded theory. A first result 
is surely the participation of Italian teachers beyond 
any expectations: in less than 2 months, about 2 thou-
sands of teachers have filled our open questionnaire, 
confirming the teachers’ desire to express their view 
about the current external evaluation of mathemati-
cal competencies. Among the first results of the data 
analysis, we have seen the differences between teach-
ers’ attitudes according to the school level, but also 
some different motives that origin a negative attitude 
toward the external evaluation.   

CONTENT OF THE POSTER 

The poster was divided in two sections: in the first we 
illustrated the argument, the conceptual framework 
and the methodological choices at the basis of the de-
velopment of the used questionnaire; the second sec-
tion was focused on the conducted analysis, providing 
the first results of the data analysis.
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The study investigates a teacherʼs use of activities, 
knowledge and skills when conducting formative as-
sessment during interaction in whole-class. This form-
ative assessment practice includes eliciting informa-
tion about student learning, interpreting the responses, 
and modifying teaching and learning activities based 
on elicited information. Results show that the teacher 
used activities that help students to engage in common 
learning activities and take co-responsibility for their 
learning. Furthermore, while orchestrating the activi-
ties the teacher used knowledge and skills that are com-
plex, demanding and difficult. 

Key words: Formative assessment, teacher knowledge, 

mathematics.

BACKGROUND 

Several studies have demonstrated that substantial 
learning gains are possible when teachers use form-
ative assessment in their classroom practice (Black 
& Wiliam, 1998; Hattie, 2009). At the heart of most 
definitions of formative assessment lies the idea of 
collecting evidence of students’ thinking and learning, 
and based on this information modifying teaching to 
better meet students’ learning needs. Such regulation 
of learning processes would require skills to elicit 
the thinking underlying students’ oral and written 
responses, and the capacity to make suitable instruc-
tional decisions based on this thinking. Sufficient 
knowledge about the character and use of mathe-
matics teachers’ knowledge and skills when practic-
ing formative assessment is lacking (Heritage, Kim, 
Vendlinski, & Herman, 2009). The aim of this study is 
to identify activities, and characterize the knowledge 
and skills, that a teacher of mathematics uses in her 
formative assessment practice during whole-class 
lessons. The definition of formative assessment by 
Wiliam (2010) was used as analytic tool to identify the 

formative activities. A framework based on Shulman 
(1986), and Ball, Thames and Phelps (2008) was used 
to characterize the knowledge and skills used by the 
teacher.

METHOD

The study is a case study of a teacher’s formative as-
sessment practice during mathematics lessons in year 
5. This teacher is one of 23 teachers that participated 
in a professional development program in formative 
assessment during spring 2010. The students of these 
teachers significantly outperformed a control group 
at a distal post-test in the end of the school year com-
pared with a pre-test in the beginning of the same 
school year (Andersson, Vingsle, & Palm, 2013). The 
lessons in mathematics was observed and audio-re-
corded for 2 months. In the study a number of exam-
ples of situations involving formative assessment 
have been analysed. The situations were chosen from 
interactive whole-class lessons from three different 
time cycles. The examples represent situations where 
the teacher elicits information of student thinking 
and learning in different ways. 

RESULTS AND CONCLUSION

The main result of the study shows that the formative 
assessment practice is a very complex, demanding 
and difficult task for the teacher in several ways. For 
example, during short-cycle minute-by-minute form-
ative assessment practice the teacher used knowledge 
and skills to elicit, interpret and use the elicited infor-
mation to modify instruction to better meet student 
learning needs.  In the minute-by-minute formative 
assessment practice the teacher handled new math-
ematics (to her), unpredictable situations and made 
decisions about teaching and learning situations in 
a matter of seconds. In addition, she also helped stu-
dents’ to engage in common learning activities and to 
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take co-responsibility of their learning. Specialized 
content knowledge and Knowledge of students and 
teaching where the most useful characters of teacher 
knowledge used when the teacher searched to under-
stand students’ answer and to formulate questions 
based on incorrect answers. 
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This analysis of several mathematics lessons in two 
teachers’ classrooms looks for characteristic patterns 
of argumentation and justification, specifically at the 
presence and types of warrants required, provided, and 
accepted – in the social environment of the classrooms – 
for mathematical claims. A question is posed whether 
these could be useful as descriptors of distinct justifica-
tion-related teaching practices. 

Keywords: Argumentation, teaching practices, middle 

school, warrant types, participation.

THEORETICAL FRAMEWORK 
AND RELATED RESEARCH

The process of mathematical argumentation, expla-
nation and justification in mathematics education 
has long been an important subject of study. Toulmin 
(1969) proposes a framework of analysis for argu-
ments in general, and his model of argumentation has 
been successfully adopted, adapted and accepted as a 
useful tool in analysis of qualities of (students’) math-
ematical argumentation itself as well as of the collec-
tive learning experiences in a classroom (e.g., Yackel, 
2002; Rasmussen & Stephan, 2008; Krummheuer, 1995, 
2007; Tabach, Hershkowitz, Rasmussen, & Dreyfus, 
2014), helping to shed light on students’ learning in 
a social context. 

Yackel (2002) points out two different roles that 
teachers play in collective argumentation (in an in-
quiry-oriented environment): that of using it as a 
means to start introducing new concepts and that 
of carefully supplementing either data, warrants or 
backings for claims that would otherwise not be ex-
plicit to all students, and/or that help students make 
connections between mathematical concepts.  

Krummheuer (2007) analyses argumentation in a 
mathematics classroom and adds the criteria of par-
ticipation. He is then able to reconstruct “different 
grades of autonomy according to the interactional 
contribution of a student” (p. 60) as well as his status 
as a participant in the argumentation process.

Our own study also looks at the use of argumenta-
tion and justification in a mathematical classroom as 
a whole, i.e. a closed learning community, but through 
the lenses of two teachers’ distinct beliefs and their 
respective teaching practices. 

THE METHOD

Data were collected from two different classrooms: 
a cycle of teacher interview-lesson observation-in-
terview was conducted for a sequence of 5 lessons 
in two lower-secondary classrooms with different 
teachers (the lessons were about percentage in one 
classroom and operations on fractions in another). 
The two teachers were selected as professing distinct 
beliefs about mathematics teaching and learning, one 
characteristically leaning towards an inquiry-based 
conception of the norms for mathematics teaching 
and learning (as described in Yackel, 2002). 

Data collected from observations (transcripts of col-
lective interaction) were analysed for episodes involv-
ing the justification of mathematical claims. Cases of 
argumentations were further characterized using 
Toulmin’s model (especially for data, warrants, and 
backing) and analysis of participation on warrants 
and backing. 

RESULTS AND IMPLICATIONS

While pupils’ participation in providing warrants 
was proportionally similar in both classrooms, the 
differences that emerged concerned especially the 
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types (forms) of warrants. Those varied more in the 
inquiry-oriented classroom, while argumentation in 
the other classroom was typically centred around pro-
cedures. There is evidence that backing for warrant 
forms and relevance (although not always correct-
ness), is provided by the teacher in both classrooms. 
These results show that patterns of argumentation 
are partly useful as descriptors of a teacher’s prac-
tice, however, more investigation is necessary in the 
connection between teacher’s beliefs about the role 
of argumentation and the socio-mathematical norms 
of argumentation as well as the impact of mathemat-
ical tasks on argumentation patterns in a particular 
classroom. 
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In this introductory chapter for the Thematic Working 
Group “Mathematics teacher knowledge, beliefs, and 
identity” (TWG20) at CERME9, we address the main 
issues discussed during our working sessions. We aim 
to provide a critical and broader view on the work being 
done, including the work undertaken at previous con-
ferences, although not extensively. We also seek to take a 
new look at areas of potential improvement with regard 
to the focus of, discussion about, and problems inherent 
to research in the area of teacher knowledge, beliefs and 
identity, all with the goal of improving teacher educa-
tion and practices. This paper brings to the forefront 
some critical features of this area of research and aims 
to contribute to the genesis of a new focus on our research 
and a new vision of our own roles as researchers and 
teacher educators.

Keywords: Teachers’ knowledge, beliefs, identity, teacher 

practices.

INTRODUCTION

In considering possible theoretical and analytical 
perspectives with regard to teacher knowledge, beliefs, 
and identity, a long list emerges that includes different 
aspects and foci. Even so, having a TWG dedicated 
exclusively to these areas allows the simultaneous 
amplification and synthesis of such a list—both in 
depth and on a broader scale—in terms of theoretical 
and analytical approaches, as well as the goals of the 
research presented.

A broader and deeper view of the multitude of pos-
sible perspectives on teacher knowledge, beliefs, and 
identity is facilitated by an in-depth discussion of, and 
reflection on, different contexts, such as the variety 
of knowledge frameworks and conceptualizations 
among different teachers, evaluating versus under-
standing teacher knowledge, belief changes, and the 
existence of a mathematics teacher identity and its 
content. Focusing on the content and on the aims of 
such a multitude of approaches to these three areas, 
gives a deeper awareness of possible potentialities 
and misunderstandings within the area of mathemat-
ics education. The existence of a multiplicity of ways 
to perceive the same aspect is in itself a potential area 
for improving research (and education), and should 
also be a focus in order to better understand each of 
the three factors addressed in the TWG. The misun-
derstandings come, for example, from the different 
contexts and cultural heritage of the researchers 
themselves, which leads to the use of different inter-
pretations of a notion (e.g., teacher knowledge) being 
linked with the aims of the research itself (e.g., un-
derstanding versus evaluating teacher knowledge). 
Examples are the discussions presented by Kuntze, 
Dreher, and Friesen (2015); Vasco, Climent, Escudero-
Ávila and colleagues (2015); and Pizarro, Gorgorió, 
and Albarracín (2015) around teacher knowledge 
in different contexts and using different theoretical 
and analytical approaches. Overcoming such misun-
derstandings allows a broader view of the landscape, 
leading to a better understanding of where we are 
coming from and where we envisage going in the fu-
ture. Obviously, diverse paths can be taken, and we 
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consider this beneficial; but the different ways such 
approaches can contribute to the end goal should al-
ways be explicitly considered.

The creation of a unified understanding of the work 
being developed around the three focuses of the TWG 
requires evidence of how the multiplicity of theoreti-
cal and analytical approaches might contribute to the 
ultimate end point — the (student) teachers’ learning. 
Knowing where we are heading — as well as where we 
are coming from —, this introduction will present and 
reflect upon the core aspects discussed in the TWG, 
expanding upon the content of the papers included in 
the proceedings and the already developed work. We 
note that although theoretical and analytical perspec-
tives are perceived as intertwined, and thus incapable 
of being considered as two disjointed sets, we opted 
to deal with them in separate sections for operational 
purposes. In doing so, we advocate the need for more 
careful attention to the importance of attending to 
different perspectives and the roles they can play in 
research (process, findings, recommendations, and 
implications). Additionally, the large predominance 
of current research focusing on teacher knowledge 
also influenced the discussions we elaborate on here.

With this introductory chapter, the work developed 
in the TWG (focus upon problematic and core aspects 
of/for discussion when working in the area of teacher 
knowledge, beliefs, and identity) is discussed with some 
clarifications, and we call attention to the need for a 
further step forward in research in this area and its 
impact on education. We will also discuss the possible 
structure of future research.

SOME CORE THEORETICAL ASPECTS

When looking at the theme of our TWG, three areas 
of study are considered to deeply influence teacher 
practices: knowledge, beliefs, and identity. These can 
be considered as the core of a teacher’s practices, with 
each area influencing and being influenced by the 
others (Ribeiro & Carrillo, 2011a). In doing so, our aim 
was to shed some light on the paths that still need to be 
devised to allow for a better understanding of teach-
ers’ beliefs, identity, and knowledge.

Beliefs
When teachers became a focus of research, one of the 
first attributes studied was their beliefs (e.g., Pajares, 
1992), along with the inconsistencies that could be 

found between discourse and practice. Afterwards, 
the interest shifted to the ways teachers change their 
beliefs, leading in turn to a change in their teaching 
methods and awareness of their own practices—all 
influenced by their own experiences as students (e.g., 
Ebbelind, 2015; Sayers, 2013). Going a step further, 
another relevant point addressed was the develop-
ment of teacher awareness about how and why they 
teach what they teach (e.g., Schueler, Roesken-Winter, 
Weißenrieder et al., 2015), making this transparent 
through the analysis of beliefs and thus making change 
possible.

Although a large amount of research has focused on 
beliefs and their manifestations in teacher actions, 
questions, or answers (e.g., Ribeiro & Carrillo, 2011b; 
Sayers, 2013), it is important to consider in conjunc-
tion with this the competencies and practices of teach-
ers. Although beliefs have been a focus of research for 
a long time, there remains a lack of information lead-
ing to better and deeper understandings of the role, 
impact, and connection between teacher beliefs and 
the remaining core aspects of mathematics teacher 
practices (e.g., Potari, Berg, Charalambous et al., 2013) 
in order to improve student learning, understanding, 
and results. When addressing research being done on 
teacher beliefs (as well as their knowledge and identity), 
a core aspect of discussion in the TWG was the need 
to re-emphasize the human aspect of mathematics in 
the classroom—humanizing without de-mathematiz-
ing. Such foci would bring mathematics to the front, 
and is one of the core ways to bring more consistency 
(both internal and external) to the area, eradicating 
the question “Where is the mathematics in this math-
ematics education research?”.

Identity
In researching identity, the particular aspects focused 
on within this multifaceted notion must be made ex-
plicit. In particular, the transformations involved in 
moving from student to teacher have to be taken into 
consideration. And, in an intertwined manner, the 
changes that occur over time in teacher practices, 
goals, and levels of awareness must also be examined, 
especially because some authors argue this leads to 
the development of a teacher identity (e.g., Adler, Ball, 
Krainer, Lin, & Novotná, 2005). Assuming the exist-
ence of such an identity, research on its development 
must consider the need to move from dealing with 
mathematics as a scientific discipline (as it is tradi-
tionally presented at university) to understanding 
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it as primary and secondary school mathematics 
and the diversity of processes involved; or, in other 
words, teacher professional development as a learn-
ing process. In that process, the concept of teaching 
and its dynamic nature plays an essential role in the 
development of a mathematics teacher’s identity (e.g., 
Rø, 2015). Thus, when attempting to contribute to the 
study of teacher identity development as a learning 
process, our own practices and knowledge as educa-
tors should also be examined (e.g., Mellone, Jakobsen, 
& Ribeiro, 2015; Superfine & Lin, 2014) in order to allow 
for placing the scientific discipline into a primary and 
secondary school context. Such inquiry can lead to an 
expansion of the notion of awareness as perceived by 
Mason (2002), taking into consideration the possi-
ble focus on differences and similarities between the 
identity of mathematics teachers and those of teach-
ers of other disciplines. It is of special importance to 
consider the specificity of the content being taught 
and how that influences teacher identity, particularly 
when a teacher must teach several disciplines, as is 
often the case for elementary school teachers. This 
once more brings mathematics and its specificities 
in and for teaching to the front.

When thinking in terms of mathematics teacher iden-
tities, and considering research as a way of making 
us stop and think (Kilpatrick, 1981), some questions 
naturally emerged during discussion and reflection 
in the TWG. Some of these discussions and reflec-
tions are concerned whether identity is a self-concept, 
leading to a broader question about the concept of 
identity itself, particularly what identity is and what 
comprises it1, as well as its dynamic versus static na-
ture. Taking a broader view of our own practices as 
teacher educators and researchers (as if looking at 
our own work from a distance), the need is evident 
to address the importance and helpfulness of the con-
cept of identity(ies), clarifying its content as well as 
its developmental process(es).

Knowledge
Research of teacher knowledge began, and in some 
cases remains, in the domain of identifying lack of 
knowledge—assuming a deficit. In order to overcome 

1 This same question can be asked concerning knowledge and 

many other concepts we work with and sometimes take for 

granted. Indeed, in a TWG focusing on teachers, this was one 

of the problems discussed (see part of the proceeding with 

TWG18 papers). 

such a deficit perspective and, further, contribute to 
the creation of improved education (Potari et al., 2013), 
research should be done that works with teachers to 
develop and expand upon what they already know. 
Although the papers in the TWG mainly adopted this 
perspective, it is clearly one area where research, and 
a rethinking of the foci of such research, is still most 
needed. Thus, a step forward is still required when 
rethinking the foci to lead away from the deficit per-
spective and toward an understanding of what teach-
ers know and how they know it (nature and type) (e.g., 
Fauskanger & Mosvold, 2015; Montes & Carrillo, 2015). 
This can then lead to the development of practices 
that enrich the levels of awareness and connections 
that contribute to improved education and, ultimately, 
practice. Bridging theory and practice is essential for 
such improvement, and core to building such bridges 
is defining the nature and goals of proposed tasks (e.g., 
Jakobsen, Ribeiro, & Mellone, 2014; Tirosh & Wood, 
2008) for enhancing teacher acquisition of ideal 
knowledge that would allow them to foster fruitful 
mathematical understanding in their students.

A large number of teacher knowledge conceptualiza-
tions—visible in the different papers of this chapter—
are grounded in Shulman’s (1986) seminal work. The 
discussed conceptualizations also assume the Subject 
Matter Knowledge (SMK) and Pedagogical Content 
Knowledge (PCK) domains, but with different interpre-
tations of its content. Such interpretations associated 
with the devised focus of attention lead the research 
being done in different directions. Examples of such are 
the Mathematical Knowledge for Teaching (MKT) (Ball, 
Thames, & Phelps, 2008); the Mathematics Teachers’ 
Specialized Knowledge (MTSK) (Carrillo, Climent, 
Contreras, & Muñoz-Catalán, 2013), the Knowledge 
Quartet (KQ ) (Rowland, Huckstep, & Thwaites, 2005) 
and the multi-layer model presented by Kuntze (2012). 
The use and development of such diverse conceptual-
izations can be perceived from one side as a richness 
of the field, and from another side as a constraint when 
discussing the core aspects of teacher knowledge. Such 
diversity contributes to enriching views on the content 
and factors that influence the development of teacher 
knowledge, contributing scaffolding for the necessary 
bridges to improving student results. But they can also 
be problematic from the viewpoint of the language used 

—the same wording with different meanings (Bardelle, 
2010) — making it difficult to find a common ground 
when discussing the core aspects of teacher knowledge.
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Although the conceptualizations of teacher knowl-
edge have different points of views and foci, as well 
as different elements at their cores, what they all have 
in common is considering teacher knowledge as too 
complex to be examined on its own, as well as the im-
possibility of considering the different subdomains 
in an isolated manner. In that sense, the existences 
of subdomains are justified for analytical reasons —
facilitating description and a deep understanding of 
teacher knowledge and practices. The subdomains 
are also considered to be a core element for devising 
and conceptualizing teacher education tasks that are 
focused on improving teacher knowledge and aware-
ness (Jakobsen et al., 2014).

The existence of such a diversity of concepts of teacher 
knowledge, as well as the diversity of dimensions as 
core elements, is one of the reasons for the continued 
lack of consensus on what comprises ideal knowledge. 
In the TWG discussions, such lack of consensus led to 
reflection and research on a number of topics. These 
included the advantages and disadvantages of con-
sidering different subdomains in teacher knowledge 
conceptualizations (subdomains versus global knowl-
edge); whether or not there is a need to measure teacher 
knowledge, and if so, how to best do so (effectiveness 
of instruments designed and the nature of the knowl-
edge measured); the nature of the claims the researcher 
makes about teacher knowledge and the learning out-
comes with such a foci of analysis (e.g., deficit, descrip-
tive, understanding, measurement perspective); and 
the potentialities and constraints of each conceptual-
ization in and for analyzing teacher practices.

SOME CORE ANALYTICAL AND 
CONTEXTUALIZED ASPECTS

In practice, the theoretical aspects focused on cannot 
and should not be taken separately from the analytical 
approaches considered. In that sense, in accordance 
with the different theoretical perspectives explored 
in this chapter’s papers, a diversity of analytical ap-
proaches was used. Such diversity was linked not only 
to the different frameworks considered, but also to the 
specific aim of the particular research. In this section, 
rather than discussing the type and nature of the analyt-
ical approaches used in the papers (e.g., different nature 
of the case studies – what concerns the cases; different 
foci of analysis and instruments used; the nature of 
the research aim – evaluate or understand knowledge/
practices, contribute for change, understand aware-

ness), we will address and reflect upon some of the more 
crucial aspects that emerged when discussing research 
focused on teacher knowledge, beliefs, and identity, in-
cluding sharing the processes and results.

One of the most pertinent topics is the content of ana-
lytical and contextualized aspects, commonly termed 
methods or methodology. On the one hand, this section 
should include the description, justification, and ex-
planation of the methods used in the research (with 
or without an example of how they were used). On the 
other hand, it should also include other contextual-
ized information that would allow the reader to better 
understand the hows and whys of the decisions made 
and the specific context in which these were made 
(minimizing misunderstandings). Although this has 
already been a topic of discussion in previous con-
ferences (e.g., Potari et al., 2013), it still remains an 
underinvestigated area. In that sense, there are some 
essential, though often unmentioned, aspects needing 
to be addressed and taken into account when thinking 
and writing about analytical and contextualization 
options. Among these, we can consider aspects from 
(i) why a certain analytical process was chosen over 
any other, (ii) the particularities of the method used 
(e.g., taking into consideration the theoretical perspec-
tive used or developed), and (iii) the different analyses 
done (e.g., qualitative, quantitative, particular case 
study, or going beyond the particular case study).

With regard to (i), the reasons for selecting a certain 
analytical process must be made explicit, including 
not only justification for the process chosen, but also 
factors that led to the exclusion of other approaches. 
This allows for building common ground. Some of 
the aspects to take into account are the minimal re-
quirements for writing about the analysis and results 
obtained so others effectively understand them and 
the degree of detail needed for describing the context, 
assumptions, and each theoretical perspective.

For (ii), the particularities of the specific analytical 
processes used and the implications of a descriptive 
versus analytical approach must be made clear. Such 
particularities and implications are linked with the 
potential for, or limitation of, work being done to im-
pact education and steer toward a change in teacher 
beliefs and knowledge, allowing the development of 
teacher identity, and thus its impact in practice. See, 
for example, Ferreira and Ponte (2015) for teacher 
learning after a teaching experience or Zoitsakos, 
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Zachariades, and Sakonidis (2015) for teacher diffi-
culties in conceptualizing and suggesting mathemat-
ically correct instructional practices for an issue at 
hand. With regard to different subdomains in teacher 
knowledge, the subdimensions one might encounter 
and their impact (potentialities and limitations) on 
research, as well as for education and practice, must 
be taken into consideration. For example, what impact 
would they have in the elaboration of mathematics 
teacher identities? How can they be used as a resource 
to conceptualize tasks for teacher education? How can 
they refine the theoretical concept assumed? Keeping 
these questions in mind would contribute to an aware-
ness of the need for developing further both theoret-
ical and/or analytical methods used as well as ways 
to bridge research and practice, explicitly fulfilling 
the already identified gap concerning the need for 
clarification of the context and analytical procedures.

Concerning the different focus and processes of anal-
ysis (iii), and its impact on future research and knowl-
edge generated, at least two perspectives must be kept 
in mind. One is how to feed back the research findings 
to inform the theoretical and analytical framework(s) 
used/developed. The other concerns a focus on what 
aspects can be brought into the discussion in order to 
go a step beyond merely describing the particulars of 
the situation(s) under study. When aiming at taking 
a step forward through the research to have a more 
effective impact on education, practice, and ultimately 
on student learning and understanding (e.g., Ebbelind, 
2015), the previously mentioned two components need 
to be assumed in an intertwined manner. Considering 
the need for such an intertwined approach leads to re-
inforcing the connections and filling the gaps between 
such dimensions. Such reinforcement, and the asso-
ciated step forward, seem to be crucial to clarifying 
the role, impact, and importance of case studies and 
large qualitative studies in improving education and 
promoting a deeper understanding of what seems to 
happen, and why, in the context of each study.

Thus, a need exists to clarify the choices made in re-
search, keeping in mind the requirement of a balanced 
way of doing so, considering the broad range of re-
search foci and analytical processes—all while also 
being aware of the different information required 
and the results obtained.

CONCERNS, POSSIBILITIES, 
AND FUTURE NEEDS

There is a diversity of theoretical and analytical 
approaches in the chapter’s papers associated with 
different contexts and research aims. In this intro-
ductory paper, our aim was not merely to address 
the issues discussed during the working sessions. 
Rather, starting from these and thinking backward, 
our foremost concern was the possible horizons we 
could envisage moving toward at that time. With such 
an approach, we hope to lead the reader to think and 
reflect on the role of the diversity, depth, lenses, and 
aims associated with each of these studies. In doing so, 
we ultimately hope to contribute to thinking outside 
of the box in order to break the chains that constrain 
us, which ultimately restrict the effective potential of 
the work being developed.

During the TWG discussion of the papers and possible 
content and structure for this introductory chapter, 
a lot of questions for future research emerged. This 
provides evidence of the need for more focused atten-
tion to the what, how, and why of what we do, leading 
to envisioning potential impacts of the work with 
teachers and students to foster a more literate and 
numerate society globally. In that sense, addressing 
the different aspects and foci of needs (theoretical, 
analytical, and of context) is essential in order to allow 
a broader impact on the work of teaching (rather than 
merely remaining with particular successful cases). 
Such needs are of a diverse nature and associated 
with different aims, and therefore are associated with 
different target groups. When analyzing the papers 
and the questions raised from its discussion (e.g., the 
need for emphasizing teacher potential rather than 
deficiencies; bringing teachers and the mathematical 
content to the front; attending to teacher voices in 
the research being done — see, for example, Takker, 
2015; Toor & Mgombelo, 2015) reflection on the re-
searcher’s role in the research and education process 
arises. There is thus the need for rethinking our own 
role—our own beliefs, knowledge, and identity — in 
the research being developed. Have they influenced 
the choices made and, necessarily, the path followed 
and results presented? We must consider ourselves 
and the work we develop not only as part of the pos-
sible solution to the problems addressed, but also as 
part of the challenges.
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Possible points of focus for future research can be, 
for example: (a) having a profound understanding of 
a specific mathematical content (its meaning — core 
aspects of its content, ways to measure/develop it, an-
alytical approaches and its implications); (b) connect 
the mathematical content knowledge (e.g., universi-
ty mathematics) to the mathematical knowledge in 
primary and secondary school (changes and impact 
on teacher education — including their educators); 
(c) meaningful communication among communities 
with different professional identities (communicate 
findings to practitioners and policy makers to steer 
change); (d) development of theoretical and analytical 
tools to break some of the chains that constrain us 
(leave the known space of solutions and bring novel-
ty to theoretical and methodological aspects, both as 
objects of and for research).

Having an open mind, developing an awareness 
(Mason, 2002) to pay attention to granular aspects, 
and making connections to better perceive and un-
derstand the big picture allows us to take a further 
step toward freeing research from the description 
and interpretations of particular cases (even when 
quantitative research is considered).
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Systemic Functional Linguistics as 
a methodological tool when researching 
Patterns of Participation 
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This study highlights the role, if any, that teacher educa-
tion programmes and experiences from other practices 
play in influencing generalist student teachers’ tales of 
themselves as emergent primary mathematics teachers. 
The conceptual framework Patterns of Participation, 
PoP, is used when theorising and interpreting student 
teachers’ becoming, and analysing the processual and 
dynamic character of immediate social interaction re-
lated to practice on a macro level. Therefore, this paper 
evaluates whether Systemic Functional Linguistics, SFL, 
can be a methodological tool used on the micro level. 
This paper shows that SFL structures the data in a way 
that makes interpretations through PoP possible. 

Keywords: Methodology, Patterns of Participation, 

Systemic Functional Linguistics, teacher education, 

student teachers.

INTRODUCTION 

Methodology can be understood as methods used for 
gathering information and the specific reasons for us-
ing such methods. Furthermore, methodology should 
concern aspects of how gathered information is trans-
formed into data and why the transformed data are 
relevant in relation to a framework (Skott, 2014). The 
process of transforming gathered information into 
data is done in steps. Gathered information needs to 
be structured. Structured information is used when 
generating data. The generated data is then interpret-
ed by using a conceptual framework. This means that 
there is a relationship between methodology and the-
ory (Gee, 2014). This paper focuses on the first step 
of this transformation, the choice of methodological 
tool in relation to a conceptual framework, and on 
how this methodological tool is used for structuring 
information on a micro level in a study concerning 

student teachers at the primary level. Microanalysis 
allows access to finer details of gathered information 
(Jarowski & Potari, 2009), in this case highlighting the 
functionality of language.

In this study, concerning primary student teachers, 
the overall aim is to contribute insights about the 
role, if any, that teacher education programmes and 
experiences from other relevant past, present and 
future practices play in influencing generalist student 
teachers’ tales of themselves as emergent primary 
mathematics teachers. Tales refer to stories teachers 
tell about themselves and can imply more creative 
or imaginative storytelling. Other relevant practices 
include those related to the teaching and learning of 
school mathematics, but they may also be non-math-
ematical and not institutionalised. Furthermore this 
study seeks to understand how these different practic-
es and experiences are related, if at all, to each other. 

This means that the methodological tool needs to dis-
entangle elements of teacher education and relevant 
practices in relation to different entities, experiences 
related to these elements of teacher education and 
relevant practices, the tense in which these experi-
ences are described, what role these experiences play 
in terms of degree of certainty and the relationship 
between these different practices. This interest draws 
on the highlighted concern that primary generalist 
teachers within their first years in the profession may 
not prioritise, or may have no opportunity to prior-
itise, the subject of mathematics itself (Palmer, 2013).

Emergent student teachers at the primary school level 
are typically generalists, expected to teach a range of 
different subjects in the future. Consequently, their 
level of education in each of the school subjects is 
modest, and their professional background is less 
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linked to the teaching of specific subjects than to the 
profession as a whole. In Sweden, for instance, the 
combined course in mathematics and mathematics 
education for primary school student teachers is a 30 
ECTS point course in the four-year teacher education 
programme (240 ECTS). 

Recently, there has been extensive interest in student 
teachers’ image of teaching mathematics, their knowl-
edge gained during teacher education and how their 
image of themselves as teachers evolves in relation 
to practice. Standard procedures for assessing these 
have involved research about student teachers’ beliefs, 
mathematical knowledge for teaching, and identity 
(Skott, 2013). The first two research fields have gen-
erally interpreted human behaviour as something 
enacted within a person and it is generally explained 
by acquisitionist research perspectives. The last re-
search field has generally interpreted human behav-
iour as situated in practice and explains it using par-
ticipatory research perspectives (Sfard, 2008).

However, in all three research perspectives attention 
to student teachers themselves as the unit of analysis 
has decreased over the years. The main focus is not 
on the student teacher. Instead, the focus is on, for 
example, the domain-specific beliefs, the knowledge 
needed for practice and the specific community of 
practice. In contrast, this study intends to focus on 
the student teacher as the unit of analysis and there-
fore uses the PoP framework. This is because PoP in-
tends to describe the pre-reified processes that are 
said to precede the so-called construction of beliefs, 
knowledge and identity (Skott, 2013) and, above all, 
PoP places the student teacher at the centre of the 
analysis (Skott, 2014). 

PATTERNS OF PARTICIPATION

When theorising and interpreting the role that teach-
er education programmes and experience from other 
relevant past, present and future practices play in 
influencing generalist student teachers’ tales of them-
selves as emergent primary mathematics teachers, 
the conceptual framework Patterns of Participation, 
PoP (Skott, 2013) is used. PoP “seeks to understand 
how a [student] teacher’s interpretations of and con-
tributions to immediate social interaction relate dy-
namically to her prior engagement in a range of other 
social practices” (Skott, 2013, p. 549). Lerman (2013) 
highlights the need for frameworks that emphasise 

emergence and regards PoP as such a framework. He 
implies that Skott, through the PoP framework, tries 
to go beyond the demarcation of the acquisitionist 
and participatory perspectives. 

PoP provides the researcher with thinking tools (Gee, 
2014) to use when planning and designing a study, and 
also when interpreting the patterns in the immediate 
emerging social practice on a macro level. The con-
ceptual framework is therefore used to go beyond the 
micro level in order to focus on the social practice and 
situation (Jarowski & Potari, 2009). PoP draws on two 
main theoretical sources, symbolic interactionism 
and social practice theory. Symbolic interactionism 
views humans as actors and reactors in situations, and 
it positions meaning as something that one engages in 
when experiencing things in the situation. Humans 
respond to the situation by interacting with others 
and with the self, and by taking the role of others (Prus, 
1996). In social practice theory, student teachers’ iden-
tity formation and learning results from shifting par-
ticipation in relevant practices (Skott, 2013). Identity 
is viewed as imaginings of selves expressed in actions 
and created in immediate social interaction. Identities 
develop and are expressed in social practice (Holland, 
Skinner, Lachicotte, & Cain, 1998).

PoP focuses on immediate emerging social interac-
tion. Immediate social interaction is concerned with 
the relationship between a social practice and a text 
produced within it. A text is considered any instance 
of language used as part of a situation. The situation 
is regarded as the “environment in which meanings 
are being exchanged” (Halliday & Hasan, 1989, p. 12). 
Individuals’ interpretations of the situation emerge 
as they interact symbolically in past, present and fu-
ture practices (Skott, 2013), intra-personally as well 
as inter-personally (Sfard, 2008), and this interac-
tion contributes to the production of texts (Halliday 
& Hasan, 1989). This means that every situation is 
unique and the gathered information is situated in 
time and place. 

Skott (2013) and Palmer (2013) use a qualitative ap-
proach inspired by grounded theory to disentangle 
prior engagement in immediate social interaction. 
Inspired by social semiotics, this study turns the dis-
entangling of immediate social interaction in a differ-
ent direction, that of linguistics (Ebbelind & Segerby, 
2015). It does so for several reasons, for example, to 
focus the analysis on the functions of language while 
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highlighting the uniqueness of the situation, and to in-
corporate a systemic way of structuring the gathered 
information on a micro level that specifically focuses 
on the text itself while highlighting the relations be-
tween different experiences in terms of language as 
functional. 

To conclude, PoP has an interpretive stance that im-
plies that human behaviour is different from objects 
that can be measured statistically. An interpretive 
stance also implies that there is no intention, in this 
study, to discuss cause and effect through different 
variables in relation to teacher education. However, 
questions of validity and trustworthiness need to be 
addressed. According to Gee (2014) and Skott (2014), 
validity in this kind of social research concerns the 
relation between theory and methodology, how they 
work together. This recognises that the macro level 
includes the micro level (Jarowski & Potari, 2009).

Therefore, the specific aim with this paper is to 
evaluate whether Halliday’s Systemic Functional 
Linguistics, SFL (Halliday & Hasan, 1989) can be a 
proper methodological tool for disentangling the 
information gathered for this study. The reason for 
exploring SFL is that SFL is suggested and regarded as 
a powerful tool for visualising context in text (Herbel-
Eisenmann & Otten, 2011; Morgan, 2006). To explore 
SFL, a short transcript will be analysed with this tool 
and then related to PoP in the discussion. 

METHODOLOGY

The present study adopted a theory driven, multi-sit-
ed ethnographic approach. It involved three student 
teachers and followed them before, during and after 
different situations such as lectures, seminars, intern-
ships, study groups and examination work related to 
mathematics education. 

The study was theory driven (Walford, 2009) because 
PoP (Skott, 2013) guided the choices made during the 
ongoing project. The study was multi-sited because 
the mode of construction was not a single site; instead, 
the mode of construction was a process, the emer-
gent generalist teacher, that took place in multiple 
sites (Pierides, 2010). The ethnographic approach 
implies the use of multiple methods for gathering 
information, including field notes, interviews and 
the collection of other text material. The reason for 
using multiple methods is based on the assumption 

that different types of material contribute different 
types of information.

The gathered information needed to be structured 
in relation to the aim and conceptual framework. For 
this purpose SFL was used. Among research that has 
been conducted internationally in mathematics edu-
cation studying the role of language, Morgan’s (2006) 
use of SFL to visualise experience in school mathe-
matical assessments is the most well known. Another 
example is Herbel-Eisenmann and Otten (2011), who 
set out to reveal mathematical meaning potentials 
construed in discourse and used SFL to visualise se-
mantic structures of mathematical content. SFL views 
language as a resource that people use to accomplish 
specific purposes through the functions of language 
(Halliday & Hasan, 1989). The functions can be ana-
lysed at the clause level to understand how contexts 
are reflected in the linguistic choices that participants 
make in their text production. 

Systemic Functional Linguistics
SFL states that every speech act is about something 
(ideational meta-function), is addressed to someone 
(interpersonal meta-function), and is presented and 
connected in a specific way (textual meta-function). 

The ideational meta-function relates to the main verb 
and concerns how actions or experiences are articu-
lated through the transitivity system. The transivity 
system illustrates how actors are connected to actions 
or objects (Halliday & Hasan, 1989). The main verb 
can either be a material process, in which there is an 
actor that does something; a mental process, where a 
senser is addressing a phenomenon; a verbal process, 
expressing something that has been said; or a relation-
al processes, emphasising relations between objects. 

The interpersonal meta-function relates to voice, 
tense and modality. Voice highlights the personal pro-
noun and entities visible in the text. Tense highlights 
whether the proposition is valid for the present, past 
or future. Modality relates to the degree of certainty 
in an utterance. This function answers the questions: 
What persons and entities are visible in the text and 
how are persons and entities connected to the text? 

Finally, the context and language structures used to 
carry the meanings of the text are components of the 
textual meta-function. This function concerns the 
process of structuring the way information is con-
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veyed. By looking at the theme and rheme one can 
view how clauses follow each other in thematic bind-
ings. When several of these thematic bindings occur, 
a lexical chain is created. One can also view the use 
of conjunctions. Conjunctions show how different 
experiences are related to each other. For an extended 
description of the meta-functions see Ebbelind and 
Segerby (2015).

Background of the student and the text 
The texts selected for analysis in this paper come from 
a semi-structured interview with a student teacher 
during her second internship, after two years and 
three months of study in the programme. The student 
teacher, who was in her early 20s at the time of the in-
terview, began the teacher education course immedi-
ately after high school. During the first internship and 
the later 30-credit course in mathematics education, 
she did not talk much. When she did speak, her tone 
was low and her body language withdrawn. This was 
also observed during several interviews and obser-
vations. During the second internship the researcher 
was present, attending lessons and meetings. The ob-
servations made on these occasions marked a major 
shift in the student teacher’s participation related 
to the mathematics classroom, from shy and quiet to 
straightforward and self-confident. The selected text 
from this interview, presented below, was then ana-
lysed through SFL. 

The transcript
Researcher: So, in some way, you felt more se-

cure. [Yes] Or if you were not secure, 
then you were at least much more de-
termined. [Yes (content in intonation)] 
How do you experience this? Secure or 
determined, or the difference from last 
time.

Evie: I have got more training to stand in front 
of pupils and speak. More teaching 
hours on this internship than the other, 
that is probably the biggest difference.

Researcher: But have you spoken much about 
[the changes in] your voice? That you 
use your voice in a totally different way 
now than you did before. Is that some-
thing you have been speaking about or 
something that you have been trained 
in?

Evie: No, I think that a lot of this is from my 
soccer referee career and from different 

referee courses and refereeing at dif-
ferent levels. That comes naturally, how 
one uses one’s voice for speaking to the 
players on the field in the same way one 
speaks to pupils in the classroom. 

Researcher: But when did you begin this referee 
initiative?

Evie: I began refereeing at a senior level dur-
ing the summer of 2010, but then the in-
itiative began during the winter when 
I found out, found out that I was nomi-
nated to the next level in connection to 
the “elite camp for girls” this summer. 

Researcher: Has anyone besides me pointed this 
out, about your voice?

Evie: No, no one from the course, but the in-
spectors when I referee (laughing), they 
point out that I speak well and distinctly 
when I speak with the players. 

ANALYSIS

Ideational meta-function 
The transcript is a sample of an interview between 
two people where the researcher guides the conver-
sation. The student teacher makes linguistic choices 
when discussing her engagement in past, present 
and future practice. The researcher asks the student 
teacher about the perceived change through the men-
tal processes felt and were and opens the interview 
and addresses this perceived change with the mental 
process experience. When describing the origin of this 
experience, the verbal process speak and the material 
processes got and stand are used. The researcher’s 
sensing is answered with examples from the physical 
world. The researcher tries to identify the origin of 
the changed voice, or relationship, through the verbal 
process spoken and the material process trained. 

The student teacher then uses the mental process 
think; however, think is used to describe the relation 
between “soccer referee career” and the researcher’s 
utterance “you use your voice in a totally different way” 
and is therefore regarded as a relational process. 
Furthermore, the student teacher uses the material 
processes referee and use in relation to the first rela-
tional process think. The choice of saying “one speaks 
to pupils” is important in this transcript. Here, speak 
is a relational process between the management of a 
soccer field and a mathematics classroom. Speaking 
with soccer players and pupils learning mathematics 
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can, through this choice of words, be interpreted as 
equal ways of communicating. 

The researcher then uses the material process begin 
to locate the tense of the “referee initiative”, and the 
student teacher answers twice with the same word; 
however, began in the answer is considered a relation-
al process. In the last interference by the research-
er the verbal process “point this out” is used to see if 
someone else has registered the change. The student 
teacher emphasises that no one from the educational 
side has highlighted this change, but uses the verbal 
processes point out and speak in relation to inspectors 
from the Swedish Soccer Association. 

Interpersonal meta-function 
The researcher poses questions with prompts such 
as “do you experience”, “have you spoken” and “when 
did you begin”, and the student answers the questions. 
The student teacher’s prior and present internships, 
the change as perceived by the researcher and soccer 
referee career appear in the interview as entities. 

In the first section two questions and answers are 
concerned with this change that the researcher has 
recognised. In the third question, the researcher uses 
the mental process experience. When answering this 
question, the student teacher uses I and draws on her 
past and present experience through internship. In 
the second section the researcher uses the personal 
pronoun you five times. The first two you are related 
to the verbal process spoken and involve the intern-
ship supervisor, and the last three address the student 
teacher. In the answer, the student teacher uses I and 
relates to the fact that one needs to use one’s voice both 
as an referee and as a teacher in the classroom. They 
is used to emphasise that the inspectors are the ones 
that have highlighted her way of behaving, “I speak 
well and distinctly”. 

As already indicated, the modality is strong at the be-
ginning when the student refers to having “got more 
training”. The tense is used to refer to the difference 
between the present and the past internship “on this 
internship than the other”. When the student teach-
er first mentions the “referee initiative”, the validi-
ty becomes low through think; however the validity 
becomes stronger and ends with strong linguistic 
validity with “they point out”.

Textual meta-function 
The researcher links the first and second questions 
together with the disjunctive conjunction or and the 
interrogative if. The comparative conjunction then is 
used to relate the two internship experiences to each 
other. The additive conjunction and is used to turn the 
low validity of the clause to provide the clause with 
stronger validity. The conjunction but, used in the last 
answer, is used to exclude the teacher education from 
the discussion and promote the inspectors. This is an 
adversative conjunction, which means that there is 
something contrary to what one might expect. 

Looking at the theme and rheme in the transcript re-
veals that the feeling promoted by the researcher is 
followed up by the student teacher in relation to the 
different internship experiences (first and second 
internship). The researcher uses this rheme to for-
mulate a question, theme, about whether the student 
teacher has articulated this difference. In the rheme 
the researcher asks if it might be something the stu-
dent has been trained in (during internship). At this 
point the lexical chain is broken by the student teacher 
when adding the “referee initiative”. 

DISCUSSION

This paper focused on methodology and the transfor-
mation of gathered information into data, more spe-
cifically on the use of Systemic Functional Linguistics 
as a methodological tool for structuring gathered 
information on a micro level, enabling interpreta-
tions using the conceptual framework Patterns of 
Participation on a macro level. 

PoP seeks to understand how teachers’ interpretation 
of and contribution to immediate social interaction 
relate dynamically to what Skott (2013) calls prior 
engagement in a range of other practices. This is in 
line with the aim of the study, which problematises 
the role, if any, that teacher education programmes 
and experience from other relevant past, present and 
future practices play in influencing generalist student 
teachers’ tales of themselves as emergent primary 
mathematics teachers and how these different rele-
vant practices and experiences are related, if at all, 
to each other.

As indicated in the first section, the methodological 
tool needed to: disentangle elements of teacher ed-
ucation and relevant practices in relation to differ-
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ent entities; identify the tense of these experiences; 
disentangle the role these experiences play in terms 
of degree of certainty; and visualise the relationship 
between these different practices and experiences.

Through the voice, interpersonal meta-function, 
persons, entities and social practices became visible 
in the text, for example, the referee inspectors they; 
the student teacher herself, “I speak”; the “referee in-
itiative”; and the student teacher’s participation in 

“different referee courses” and internship related to 
mathematics education. 

The transivity system, ideational meta-function, in-
dicated how actions or experience were related to 
persons, entities and social practices. This was done 
through the main process verb, for example, the ver-
bal process speak when describing the origin of the 
experience indicated by the researcher, the mental 
process think when relating to the “referee initiative” 
and the material process referee relating to refereeing 
soccer games and how to act in classrooms.

The tense highlighted whether the proposition was 
valid for present, past or future time. An example of 
this is when differentiating between the present and 
the past internship “on this internship than the other”.

When disentangling the role that persons, entities 
and social practices play in terms of degree of cer-
tainty, modality was used. One can see, for example, 
that modality is strong in the utterance “have got more 
training” and low through the mental process think.

Finally, the methodological tool needed to visualise 
the relationship between these different practices and 
experiences, if any. This was done by looking at the 
relational process, ideational meta-function, through 
the use of conjunctions and theme/rheme. For exam-
ple speak was used to describe the relation between 
the management of a soccer field and a mathematics 
classroom. Another example was the adversative con-
junction but that was used to promote the referee in-
spectors instead of teacher education. Looking at the 
theme and rhyme in this transcript it can be seen that 
the lexical chain was broken by the student teacher 
when adding the “referee initiative”.

CONCLUSION

On a theoretical level Morgan (2006) highlights that 
SFL is a systemic way of visualising the relation be-
tween text and practice. Through the structuring of 
the information it is clear that the student teacher’s 
contribution to an interpretation of immediate emerg-
ing social interaction can be linked in a fine-grained 
manner to the “prior engagement in a range of other 
social practices”, for example, internship (past and 
present) and the current referee initiative. It is also 
clear that the fine-grained analysis highlights small 
but important parts in relation to the aim of the study. 
However, PoP does not highlight relevant practices, 
but sets out to highlight the way the re-engagement 
is conveyed and connected. In this perspective, the 
textual meta-function models links between practices, 
experience and entities, but maybe more important, 
the relational process links do not just go forward 
in chronological order. The relational process also 
indicates links back in the patterns that are created 
in the emergent social immediate interaction. These 
different links combine the re-engagement in prior 
and present practices into patterns. 

I hold that I am coordinating two different perspec-
tives. Prediger, Bikner-Ahsbahs, and Arzarello (2008) 
make a distinction between coordinating and combin-
ing theories. They define coordinating as a term for 
bringing theories together that contain interpreta-
tions of notions that are compatible, whereas combin-
ing is when theories are only juxtaposed. In both PoP 
and SFL, immediate social interaction is central; more 
important, PoP set out to describe practices that are 
within the text produced in the immediate situation. 
SFL not only visualises the practices, it clearly shows 
how the different practices, in Skott’s terminology, 
are linked together. 

To conclude, SFL used as a methodological tool allows 
a text analysis on the micro level of the text, and PoP 
allows an analysis on the macro level related to prac-
tice. In this sense the theory and method seem to work 
together. The validity in Gee’s terms is, from this per-
spective, strong.
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Why are Laura and Jane “not sure”?
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The mathematical knowledge for teaching (MKT) meas-
ures have been widely adopted by researchers. This pa-
per reports on a case study of two mathematics teach-
ers. The aim of the study was to investigate challenges 
regarding extensive use of “I’m not sure” as a suggested 
solution in the multiple-choice items. The connection be-
tween teachers’ responses to multiple-choice MKT items, 
their written responses to corresponding open-ended 
questions (long responses) and group discussions are 
analyzed. The findings indicate that teachers’ responses 
to multiple-choice items do not always correspond with 
the understanding revealed in responses to open-ended 
questions and in group discussions. 

Keywords: MKT, measuring teachers’ knowledge, multiple-

choice items.

INTRODUCTION

This paper has a focus on measuring teachers’ math-
ematical knowledge for teaching (MKT), and it builds 
upon the practice-based theory of MKT that was de-
veloped by researchers in the US (Ball, Thames, & 
Phelps, 2008). In connection with the development 
of this theory, sets of multiple-choice items were de-
veloped to measure MKT (e.g., Hill, Sleep, Lewis, & 
Ball, 2007). These items—which are often referred 
to as MKT items—were developed in the Learning 
Mathematics for Teaching project (LMT). 

A multiple-choice item includes a correct answer—
referred to as the key—and several wrong answers 
or distractors. In order to reduce the possibility of 
guessing, “I’m not sure” was included as a suggested 
solution in MKT items formatted yes/no (see Figure 1) 
in 2001 (Hill, 2007). In 2002, the researchers who de-
veloped these items were required to include “I’m not 
sure” on all number and operations content knowl-
edge items that were piloted. To avoid changes in item 
parameters, “I’m not sure” was also included in the 
forms from 2004—which were later translated and 

adapted for use in the Norwegian context (Fauskanger, 
Jakobsen, Mosvold, & Bjuland, 2012). “I’m not sure” is 
always coded as incorrect, and teachers who are expe-
rienced with such tests would therefore immediately 
know that this suggested solution is a distractor. Some 
teachers would thus avoid this suggested solution, 
whereas other teachers might select it to avoid giving 
a wrong answer or to avoid guessing. In his often-cited 
handbook of development and validation of multi-
ple-choice test items, Haladyna (2004) recommends 
that all distractors in multiple-choice items should 
be plausible, and, as a consequence, the suggested 
solution “I’m not sure” should be avoided. Many is-
sues regarding the MKT items have been investigated 
already, but possible challenges related to the use of 

“I’m not sure” have not received much attention. 

Previous studies conclude that teachers seem to have 
different reasons for selecting this alternative solu-
tion; some select “I’m not sure” based on uncertainty, 
whereas other teachers reveals instrumental and 
even relational understanding of the content of the 
items—but still select this alternative (Fauskanger & 
Mosvold, 2014). In this paper, we analyze data from 
a collective case study in an attempt to approach the 
following research question:  

What differences can be found between teachers’ 
arguments for choosing the suggested solution 

“I’m not sure” in multiple-choice items?

This question is important in order to reveal chal-
lenges of extensive use of “I’m not sure” as a suggest-
ed solution in multiple-choice items developed to 
measure MKT. We focus in particular on two teach-
ers’ written long responses and discussions in group 
interviews regarding MKT items where they selected 
the alternative “I’m not sure”. Cross case displays were 
constructed from teachers’ long responses and their 
multiple-choice response supplemented with data 
from the interviews.

mailto:janne.fauskanger@uis,no
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MEASURING TEACHER KNOWLEDGE

Teacher knowledge is imperative to high-quality 
teaching (e.g., Davis & Simmt, 2006), and it is thus 
relevant to gain insight into methods used to access 
and assess different aspects of teachers’ knowledge 
(e.g., Hill et al., 2007). At the University of Michigan, 
researchers have developed a practice-based theo-
ry of mathematical knowledge for teaching (MKT). 
Hill, Rowan and Ball (2005, p. 373) define MKT as “the 
mathematical knowledge used to carry out the work 
of teaching mathematics”. In the LMT project, con-
siderable resources were invested in developing and 
validating sets of multiple-choice items in order to as-
sess and access teachers’ MKT (e.g., Schilling, Blunk, & 
Hill, 2007). Based on these efforts, Hill and colleagues 
(2004) suggest that the MKT measures can be used to 
measure growth in teachers’ knowledge. The teacher 
knowledge that is measured by the MKT items further 
relates to the mathematical quality of instruction (Hill 
et al., 2008) and—to a certain extent—to student learn-
ing (Hill et al., 2005). Inspired by these promising re-
sults, researchers have adapted the measures for use 
both in and outside the US (Blömeke & Delaney, 2012). 

Responses from multiple-choice items are expeditious-
ly analyzed and they can be used at scale. Developing 
multiple-choice items that are intended for measur-
ing something beyond procedural skills is, however, 
both tedious and demanding (e.g., Haladyna, 2004; 
Osterlind, 1997). When discussing measurement of 

teacher knowledge, researchers have argued that use 
of multiple-choice items might result in trivialization 
of the complexities of teaching and thus threaten va-
lidity (Beswick, Callingham, & Watson, 2012; Haertel, 
2004). In his critical discussion of the MKT measures, 
Schoenfeld (2007) argued that these measures might 
test something other than they are supposed to. He 
further suggested that the multiple-choice format 
might complicate the content for the test takers, and 
confirming evidence of this was found in a Norwegian 
context (Fauskanger, Mosvold, Bjuland, & Jakobsen, 
2011). An additional aspect of Schoenfeld’s (2007) crit-
icism was that the items actually measure a type of 
knowledge that is more procedural than intended, and 
more recent studies in Norway support this criticism 
(Fauskanger & Mosvold, 2015).

A standard multiple-choice item consists of two parts: 
a problem (often referred to as stem) and a list of sug-
gested solutions. In the MKT items, the stem is typi-
cally situated in the context of the work of teaching 
mathematics. The list of suggested solutions contains 
a key and one or more distractors (often incorrect 
alternatives). Some MKT items differ from more 
standard multiple-choice items in that mathemati-
cally incorrect alternatives are not always included; 
the correct solution might then be: “all of the above” 
or “none of the above”. The use of such items are often 
discouraged (Haladyna, 2004); if used, they should at 
least be used with caution (Osterlind, 1997). Another 
way in which MKT items differ from more standard 

Figure 1: MKT testlet including “I’m not sure” as a suggested solution in all three 

items (Ball & Hill, 2008, p. 5)
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multiple-choice items is the extended use of the sug-
gested solution “I’m not sure” (Fauskanger & Mosvold, 
2014)—first included in items that were formatted yes/
no and later for all number and operations content 
knowledge items (Hill, 2007). 

Different approaches have been made to distinguish 
between different categories of teachers’ knowledge 
and understanding of the mathematical content; 
Skemp’s (1976) distinction between instrumental and 
relational understanding is an archetype. Rote mem-
orization of algorithms for two-digit multiplication 
(Figure 1) is an example of instrumental understand-
ing, whereas relational understanding encompasses a 
deep, conceptual understanding. Skemp argued that 
students cannot develop relational understanding 
from instrumental teaching. Recent research has in-
vestigated this connection empirically and concludes 
that teachers’ knowledge of facts and procedures have 
less positive effect on the quality of instruction and 
students’ achievement relative to knowledge of con-
cepts and connections (Tchoshanov, 2011). For this rea-
son, the importance of exploring teacher knowledge 
accessed by measures as well as possible challenges 
regarding the use of multiple-choice items to inves-
tigate something as complex as teacher knowledge, 
becomes evident. It is relevant to carefully investi-
gate these challenges—in particular the challenges 
revealed from extensive use of “I’m not sure” as a 
suggested solution.

METHODOLOGY

This study is part of a collective case study (Silverman, 
2006), and two in-service teachers were chosen as cas-
es to investigate the topic under investigation. When 
adopting a case-oriented approach, we considered 
the case as an entity and first looked for configura-
tions and characteristics within the case before we 
searched for similarities and patterns across cases. 
The two teachers, who have been assigned the pseu-
donyms Laura and Jane, were participants in a pro-
fessional development course. A total of 38 in-service 
teachers participated in the course, and 30 of these 
teachers agreed to submit multiple-choice responses 

to 28 MKT items (including the testlet in Figure 1). All 
of these items had a focus on number concepts and 
operations, and 18 of the items included “I’m not sure” 
as a suggested solution. In addition to submitting their 
multiple-choice responses to the items, the teachers 
also agreed to submit long responses related to each 
item and to discuss the items in groups afterwards. 
The questions prompting long responses were devel-
oped to tap into teachers’ instrumental and relational 
understanding (Skemp, 1976) and varied across the 
28 items. The group discussions were based on the 
same 28 items. 

In a previous publication, we have reported on results 
from analysis of multiple-choice responses and long 
responses for all the teachers who selected “I’m not 
sure” as a response to a particular item (Fauskanger 
& Mosvold, 2014). Those analyses revealed that three 
groups of teachers could be distinguished between 
(see Table 1). 

Laura and Jane both responded “I’m not sure”, but 
their long responses indicated that Jane did so due 
to insecurity (group 1), whereas Laura indicated rela-
tional understanding in her long response (group 3). 
In our attempt to investigate different arguments for 
selecting “I’m not sure” as a response to MKT items, 
we therefore selected these two teachers as contrast-
ing cases. 

According to the official coding manuals from the LMT 
project, the suggested solution “I’m not sure” should 
be coded as incorrect. An underlying hypothesis 
would then be that teachers who select this response 
do not have the proper level of MKT to identify the 
key; they select “I’m not sure” to avoid guessing. In 
order to learn more about what challenges are re-
vealed from extensive use of “I’m not sure” in mul-
tiple-choice items, we focus on what types of under-
standing could be found in teachers’ long and oral 
responses when they select the answer “I’m not sure” 
on a multiple-choice item. 

The unit of analysis is the individual teachers’ multi-
ple-choice responses, their long responses and their 

Group Group 1: not sure Group 2: instrumental under-
standing

Group 3: relational under-
standing

Name of teacher Erna, Frøya, Jane, Jan, 
Ada and Nina

Pia, Mons, Harald, Ola and Are Sara, Inge, Ragna and 
Laura

Table 1: Teachers grouped according to their long responses
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individual voices as revealed in group discussions. 
The group discussions were recorded and transcribed. 
We have applied an iterative strategy weaving back 
and forth between the empirical material and theories 
(Alvesson & Karreman, 2011).

We used Skemp’s (1976) categories for our coding 
of the textual data. Excerpts from teachers’ written 
and oral responses reflecting memorization of facts 
or rules, procedural computations or other aspects 
related to instrumental understanding were coded 
as instrumental, whereas excerpts reflecting under-
standing of concepts and connection between them, 
multiple solutions to non-routine problems or other 
aspects related to relational understanding were cod-
ed as relational. A third code, low/no MKT, was used 
to code excerpts where teachers’ explicitly wrote or 
said that they did not know the content of the item(s) 
or excerpts revealing low level of MKT. In order to 
increase the reliability of the coding, the two authors 
coded the data independently and reconciled. In the 
few instances where there was a mismatch between 
our initial coding, we discussed and reached agree-
ment.  

THE CAse of Jane

Jane’s long responses indicated insecurity related 
to the content in focus, and she responded “I’m not 
sure” to all three items in the testlet in Figure 1 (6a, 
6b and 6c in our form). When asked how she would 
approach students who used methods like A, B and C, 
Jane wrote: “It is difficult to know when you do not un-
derstand the methods [the students have] used.” This 
long response—along with the other long responses 
written by Jane—thus seems to support the hypoth-
esis that the selection of “I’m not sure” implies lack 
of knowledge or insecurity. Coding her responses to 
the multiple-choice items in this testlet as incorrect 
thus seems reasonable. It can also be argued that the 
inclusion of “I’m not sure” has reduced the possibility 
of guessing with Jane, and that was the intention of 
including this suggested solution in the MKT items 
(Hill, 2007). 

In the interview, Jane explains that she wants to teach 
an algorithm she is more comfortable with herself:

Jane:  There is a point to explaining that your 
own way [of calculating it] is all right, in 
a way. I have used it for calculating for 

years, so it is natural to me. But, then 
again, we are different. Some like this 
and some like that. And it is similar to 
subtraction, when you borrow 10, if you 
say for instance 15 minus, or if you say 
three minus and then add the 5. We have 
shown both ways, and then it is up to 
them [the students] what they… Then 
we have said that it relates to what they, 
some like this and some like that, and≈

Ragna:  ≈Open for all [to choose]≈
Inga:  ≈And then, many [students] have the par-

ents show it to them in a different way 
than the one they have been taught. Yes, 
that is difficult.

Interviewer: But do you experience that the par-
ents have a common [algorithm]?

Jane:  No. I haven’t asked about that, but I know 
that many [parents] help their children 
setting it up, and with subtraction it is 
quite similar – with borrowing (...)

Interviewer: Anything else you want to say in re-
lation to the items that were concerning 
different algorithms?

Jane:  No, and we have been taught that there 
isn’t only one standard algorithm 
(laughter)

As displayed in this excerpt, the reason why Jane 
selected “I’m not sure” seems to be that she is inse-
cure about the mathematical content, and she wants 
to teach the students an algorithm with which she is 
familiar. The excerpt thus indicates that Jane’s knowl-
edge related to multi-digit multiplication is instru-
mental (Skemp, 1976). She reveals, however, that the 
professional development course has made her aware 
of the existence of multiple algorithms, and she seems 
to agree that different algorithms might be useful for 
different students. 

THE CASE OF LAURA

Laura also selected “I’m not sure” as her response to 
several multiple-choice items. In contrast with Jane, 
however, Laura’s long responses indicates that this 
was not due to low level of MKT or insecurity. On 
the contrary, Laura’s long responses indicate deep 
conceptual knowledge (Skemp, 1976). In her long re-
sponse related to a particular testlet — with a content 
focus related to place value and non-standard ways of 
decomposing three-digit numbers (items 1a-d in our 
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form) — Laura argued that the stem could be inter-
preted in different ways and that the choice of key for 
each item would depend on this interpretation. The 
following is an excerpt from what Laura wrote: “Item 
a) is wrong by all means. Items b), c) and d) are wrong 
if it [the problem presented in the stem] is a closed 
problem, but they are correct if it is an open problem.” 
By “closed problem” Laura seemed to have in mind the 
standard decomposition, and by “open problem” she 
meant “open” to non-standard ways of decomposing 
three-digit numbers. When highlighting testlet 1 as 
mirroring knowledge important for her as a teacher 
Laura wrote:

To be able to do arithmetic one has to think 
flexibly when it comes to decomposing a num-
ber. 574 is not only 500 + 70 + 4. It could also be 
400 + 170 + 4. 500 is 5 hundreds, 50 tens or 500 
ones, etc. The students need to be familiar with 
this [non-standard ways of decomposing num-
bers] in order to be able to understand the four 
arithmetical operations [addition, subtraction, 
multiplication and division] and in order to devel-
op flexible strategies for multi-digit arithmetic.

Laura is one of the teachers whose long respons-
es—by relating the decomposition of numbers to 
understanding of “the four arithmetical operations” 
and “the development of flexible strategies”—indi-
cate relational understanding (Skemp, 1976) of the 
content. In her long responses, Laura relates multi-
ple decompositions to arithmetic, and multiple de-
compositions seem to be just as important for her as 
standard decompositions (cf., Jones et al., 1996). Her 
incorrect multiple-choice responses are thus incon-
sistent with her long response, and she responds “I’m 
not sure” despite of a high level of MKT. Laura seems 
to have responded “I’m not sure” due to the wording 
of the items included in this testlet. This brings forth 
issues related to item development and translation (cf., 
Fauskanger et al., 2012).

When analyzing Laura’s utterances from the inter-
views, it also appears that she has a deep understand-
ing—both in terms of mathematical content knowl-
edge and pedagogical content knowledge. The inter-
view data thus, seems to support the long responses 
from Laura. 

Laura:  I want to argue that these items are very 
much about understanding. (...) You 

have these [MKT items], which relate 
to understanding what the students ac-
tually do. And being able to identify it. 
And it is what they were able to divide 
into, I mean, normally we divide into 
all the hundreds, all the tens and all the 
ones. That is how to do it. And then they 
don’t remember that they can change 
into ones and tens, and then they are 
stuck there. So this is very relevant. 

(…)
Laura:  It relates to what grade level it is in. 

So you could say, now I work in third 
grade, and we have approached the 
bigger numbers. The first point then is 
that they know that the numbers have 
different value if they are in the one, ten 
or hundred place. Then they know this, 
and this is the first thing they have to 
know. And then they know the place 
value system. But if they are not able to 
calculate, for instance 200 minus 4, be-
cause that doesn’t work since there are 
no ones there [to subtract from in 200]. 
Then there is something they don’t know 
after all, about knowing that they have 
different value. That is the first point. 
And then it is concerning the flexibility 
that this item implies. To see if they have 
[this]. This also has to become natural 
eventually. But I think it is important 
to know that there and there and there 
[points to the digits in the three-digit 
number] the values are different. 

As displayed in these excerpts, Laura selected “I’m not 
sure” despite being secure about the mathematical 
content. The voice of Laura in the group discussion 
thus seems to support findings from her long respons-
es and the reason why she responded “I’m not sure” in 
the multiple-choice items does not relate to her low 
level of MKT but rather her relational understanding 
(Skemp, 1976) of the content.

CONCLUDING DISCUSSION 

In a previous study, we analyzed 15 teachers’ long 
responses related to a set of multiple-choice items 
from the LMT project (Fauskanger & Mosvold, 2014). 
Based on those results, two teachers were chosen as 
contrasting cases in the present study. We analyzed 
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the teachers’ responses to multiple-choice MKT items, 
written long responses as well as discussion of the 
items in group interviews in order to learn more 
about the challenges related to extensive use of “I’m 
not sure” as a suggested solution in the MKT multi-
ple-choice items. 

The results from our analysis indicate that we need 
to be careful about how we interpret it when teachers 
select “I’m not sure” as a multiple-choice response. 

“I’m not sure” is always coded as incorrect, and our 
analysis of teachers’ long responses as well as their 
interview discussions reveals that this alternative 
was indeed selected by some teachers who explicitly 
indicated that they could not identify the key due to 
their low level of local MKT (as Jane, see Table 1). This 
seems to be in line with the intention of introducing 

“I’m not sure” to the items, and the suggested solution 
reduces the possibility of guessing for these teachers 
(Hill, 2007). Other teachers, however, selected “I’m not 
sure” as a response to multiple-choice items although 
their long responses as well as their discussions in 
group interviews indicated that they had relation-
al understanding (e.g., Laura). Teachers might draw 
on deep conceptual or relational knowledge (Laura), 
procedural or instrumental knowledge (Schoenfeld, 
2007), or their lacking knowledge (Jane) when re-
sponding “I’m not sure”. Our results thus indicate that 
the knowledge teachers utilize in long responses or 
discussions does not necessarily mirror the knowl-
edge (that seems to be) used when selecting a certain 
multiple-choice response. The assumption that the 
multiple-choice response “I’m not sure” is correct-
ly coded as incorrect should therefore be subject to 
further scrutiny, and the inclusion of this alterna-
tive response in MKT items should also be critically 
discussed.

Our analysis of teachers’ long responses as well as 
their discussions in group interviews indicate that 
none of the 30 participating teachers were guessing—
thus conforming to the intention of including “I’m 
not sure”. This suggested solution is still problemat-
ic, however, since one cannot conclude whether the 
choice of this suggested solution is based on lack of 
knowledge as one extreme point or deep conceptual 
knowledge as the other extreme. One might advocate 
removal of the “I’m not sure” option from the items, 
but this would change item parameters and should 
not be done hastily. Instead, we call for cross-cultural 
studies that investigate teachers’ motivation for se-

lecting a suggested solution like “I’m not sure” when 
responding to MKT items. Recontextualizing the MKT 
items into scenarios for use in qualitative studies re-
lated aspects of teachers’ MKT as done by Adler and 
Patahuddin (2012) might be a fruitful approach. These 
researchers argue that the carefully constructed MKT 
items provokes teachers’ mathematical reasoning in 
relation to practice-based scenarios. 
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We aim to identify the knowledge that a prospective 
teacher, Maria, uses in practice, focusing on her strug-
gles and what she learned from her practical experience 
teaching rational number multiplication. Data was col-
lected from lesson plans, observations, written reflec-
tions and semi-structured interviews. Maria developed 
her knowledge for teaching when anticipating solutions 
and errors and selecting representations. Reflecting on 
her practice, she realised that she was able to solve some 
tasks with symbolic procedures but could not represent 
them pictorially.

Keywords: Knowledge, practice, rational numbers, 

representations. 

INTRODUCTION

The knowledge for teaching mathematics that pro-
spective teachers need to develop and the way they 
develop it are controversial issues (Ball, Thames, & 
Phelps, 2008; Ponte & Chapman, 2015; Shulman, 1986). 
The practicum is a particularly important site to study 
such knowledge since prospective teachers are faced 
with circumstances that allow noticing important 
weaknesses and strengths. 

To foster students’ understanding of mathematics con-
cepts and procedures, teachers are called to engage 
them in making connections among representations 
(NCTM, 2007). They need to support students’ fluent 
use of symbols, grounded in informal representations 
(Ball et al., 2008; Ma, 1999; Ponte & Chapman, 2015). 
Rational numbers raise many difficulties for students 
and challenge teachers to promote conceptual learn-
ing (Lamon, 2006; Ma, 1999). Research has brought at-
tention to prospective teachers’ knowledge of rational 
numbers in different ways. For example, Isiksal and 
Cakiroglu (2011) studied prospective teachers’ peda-
gogical content knowledge of fraction multiplication. 

Findings indicated that teachers have different per-
ceptions of children’s mistakes and employ different 
strategies including using multiple representations, 
using problem solving strategies, making clear ex-
planations of questions, and focusing on meaning of 
concepts. However, no study has been found focusing 
on the use of informal and formal representations in 
teaching fraction multiplication and the struggles 
prospective teachers may experience in providing 
representations that enable students to develop their 
knowledge on this topic. The aim of this study is to 
identify the knowledge of a prospective teacher in the 
teaching and learning of rational number multiplica-
tion, with a focus on the use of informal and formal 
representations, analysing the knowledge mobilized 
in teaching practice, the struggles, and the knowledge 
built from the first practical experiences.

PROSPECTIVE TEACHERS’ KWOWLEDGE

Teachers’ knowledge includes mathematical and 
pedagogical content or didactical knowledge, both of 
which are of critical importance for teaching practice 
(Ball et al., 2008; Ponte & Chapman, 2015; Shulman, 
1986). Mathematics knowledge involves conceptual 
and procedural aspects (Hiebert, 1988; Rittle-Johnson 
& Schneider, 2012). Conceptual knowledge is a net-
work of concepts and procedural knowledge con-
sists in rules or procedures for solving mathemati-
cal problems (Bartell, Webel, Bowen, & Dyson, 2012). 
Procedural knowledge may be part of conceptual 
knowledge. Procedures may be performed without 
understanding or may be performed knowing why 
and when, in which case we have mathematical con-
ceptual knowledge. Conceptual mathematical knowl-
edge of rational numbers involves knowing different 
representations and meanings and in order “to cre-
ate one representation first we have to know what to 
represent” (Ma, 1999, p. 135). Conceptual knowledge 
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allows us to connect topics (e.g., seeing multiplication 
as repeated addition). 

Didactical knowledge concerns with how teachers 
teach (Ponte & Chapman, 2015). Teachers must antic-
ipate students’ common mistakes and misconceptions 
(e.g., generalizing addition procedures in multipli-
cation), to anticipate students’ solutions in specific 
tasks, and also know what students will find challeng-
ing, interesting or confusing. Teachers also have to 
be able to sequence tasks, to recognize the value of 
using certain representations, to pose questions, and 
to explore students’ strategies. In addition, they need 
to understand the main ideas of current curriculum 
documents, identifying principles of teaching (e.g., 
NCTM, 2007).

Ponte, Quaresma and Branco (2012) characterize 
teacher’s practice into two main aspects: the tasks 
proposed to students and the communication estab-
lished in the classroom. In respect to tasks, teachers 
may choose to offer just simple exercises or also pro-
pose challenging exploratory tasks, problems and 
investigations in which students need to design and 
implement solution strategies based on their previ-
ous knowledge (Ponte, 2005). Classroom communi-
cation may be univocal or dialogic, depending on the 
roles assumed by the teacher and the students and 
the types of teachers’ questions, including inquiry, 
focusing or confirmation questions (Ponte et al., 2012). 
Representations are an important feature of tasks, 
and may be categorized as pictorial (images), iconic 
(points, lines, circles), and notational (number line, ar-
rows, vertical columns, symbols) (Thomas, Mulligan, 
& Goldin, 2002).

RESEARCH METHODOLOGY

This study takes a qualitative and interpretative ap-
proach (Erickson, 1986), using a case study design. The 
participant is Maria, a prospective elementary school 
teacher. She always wanted to be a teacher but is in 
a higher education program at a late stage of her life. 
In school she had mathematics up to grade 9. Maria 
reflects with ease, addressing her difficulties in an ex-
plicit way. She said that she had to study hard to know 
the content that she was going to teach and to figure 
out how to implement the didactical ideas that she had 
learned at university. During teaching program, she 
experienced exploratory learning and she wishes to 
provide such approach to her students. Maria already 

knew the grade 6 class with 28 students, in which her 
practicum took place. She interacted informally with 
her school mentor to discuss who would teach the dif-
ferent topics, deciding that they would give a total of 
six classes on rational numbers, three of each taught 
by each one of them, with Maria introducing the con-
cepts and the school mentor providing practice. 

Maria’s lesson was observed and videotaped (Li). In 
addition, data was collected and analysed from initial 
(II) and final (FI) semi-structured interviews, and be-
fore (BIi) and after lesson (AIi) interviews. We also an-
alysed the documents that she produced (lesson plans 
and reflections) and the field notes written by the first 
author during data collection. The interviews and vid-
eos were fully transcribed. The analysis is descriptive, 
seeking to characterize Maria’s teaching. The tran-
scribed conversations were first analysed according 
to four dimensions (conceptual/procedural mathe-
matical knowledge and didactical knowledge about 
tasks and students). At a second moment the analysis 
was based on categories built from data. The intersec-
tion of the four dimensions enables us to highlight 
communication moves (Charmaz, 2006). We consider 
knowledge to be conceptual when there is evidence of 
understanding the reasons for using procedures and 
for knowing different representations and meanings 
of a situation. We consider knowledge as procedural 
when the teacher cannot relate informal and formal 
representations or when she cannot explain in the 
interviews why she did it. We also give attention to 
didactical knowledge in practice, focusing on knowl-
edge about tasks, students and communication that 
takes place in the classroom. For example, teachers 
must design appropriate tasks, know what they will 
explore and relate the representations, anticipate stu-
dent’s solutions and plan how to orchestrate them. In 
addition, teachers should anticipate questions to help 
students understand the concepts in the context of 
productive classroom communication.

THE PRACTICE OF MARIA: 
LEARNINGS AND STRUGGLES

Despite her willingness to follow an exploratory ap-
proach and carry out considerable planning, Maria 
did not anticipate how to relate different representa-
tions. Comparing her agenda with her teaching prac-
tice, she realized that she did not clearly explore the 
concepts. That is, Maria is a case of a prospective 
teacher seeking to perform exploratory teaching 
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but with trouble in preparing and carrying it out as 
intended.

Mapping the topic and anticipating practice
Maria taught three lessons on rational numbers. She 
wanted to introduce fraction multiplication with an 
emphasis on understanding: “I’m more interested 
that students understand the why of the result and 
the meaning of the result. What it represents…” (BI3). 
She made decisions about the tasks to propose, con-
sidering their nature and value, and chose a pictorial 
rectangular representation and different symbolic 
representations of rational numbers. She intended 
to promote discussions with inquiry questions. Next 
Maria had to negotiate the tasks with the school men-
tor who wanted her to use the textbook. She used the 
tasks of the textbook, but felt that her choices were 
limited. She also read articles and documents about 
rational number multiplication. She reviewed pro-
cedures and solved several tasks: “I saw everything 
always supported what was in the textbook” (BI1). She 
tried to include ideas that represent “good practice”. In 
the end, she decided to explore first the multiplication 
of a natural number by a fraction and then the mul-
tiplication of fractions. However, she still had some 
unresolved questions and sought out the professors 
from her teacher education college: “It was only when 
the professor began making pictorial representation 
that it occurred to me! Only when I looked at this rep-
resentation did I associate pictorial and symbolic rep-
resentations” (BI3).

In her lesson plan, Maria anticipated students’ solu-
tions, errors and explanations to prepare her to help 
students overcome these errors. She thought, “If they 
ask this, what will I say? If I ask this, what might they 
say?” (BI). And she added:

I consider students’ possible solutions (…) in the 
multiplication of fractions, whether they follow 
the rule denominator times denominator and 
numerator times numerator (…) multiply denom-
inators and maintain the numerators, [or gen-
eralize ideas from] addition, finding common 
denominator … (BI).

In her view, pictorial representations might serve as 
a useful support for solving the tasks because “some-
times... I think we do the mathematics, we give the 
results, but what are we talking about? Which unit? 
What part? Part of what?” (BI3). As she explored the 

tasks, she encountered difficulties and said: “It’s very 
difficult to imagine students’ thinking, what will hap-
pen... Imagine them... It is a difficult exercise but very 
necessary for further practice” (BI2). In the lesson 
plan, she solved all tasks with fractions and pictorial 
representations except in the first task.

Maria used didactical knowledge when she considered 
the kind of tasks to propose, established a sequence 
of tasks, and anticipated students’ potential solutions 
and common mistakes. However, when anticipating 
the solutions of the tasks she did not fully realize 
how challenging and powerful they could be. As a 
result of a learning experience with her university 
professor, she recognized the value of using pictorial 
representations; thus, it seems that she had developed 
didactical knowledge. Yet when she anticipated differ-
ent symbolic solutions for the tasks and some pictorial 
representations, her procedural knowledge became 
evident. However, her conceptual knowledge would 
only show up in the practical experience.

Instructional practice
Maria began the lesson reviewing the homework. 
Then, she told a story to engage students in solving 
a problem: “With the candy that came in a box, Luís 
separated 6 bags of 2/5 kg each. Does the box weigh 
more or less than 3 kg?” This task combines discrete 
quantities (6 bags) and continuous quantities (weight 
of the bags). Dealing with these quantities requires 
suitable representations. Maria invited students to 
present their ideas, saying “How can we solve this 
problem? Who wants to help? Pedro!” The student 
proposed immediately “add 2/5 six times”. She re-
corded Pedro’s idea and asked the result. After 5 
seconds she wrote the sum with the students’ help 

“2/5+2/5+2/5+2/5+2/5+2/5=12/5”. Immediately Pedro 
said “12/5 isn’t more than 3 kg”. Maria again record-
ed this on the board and posed inquiry and focusing 
questions to help others students to understand it:

Maria:  Pedro said that 12/5 is not more than 3 kg. 
Pedro, how did you think?

Pedro:  Because 5/5 = 1; 5/5 + 5/5= 10/5=2; 15/5=3.
Maria:  Exactly! And what do I have (pointing to 

12/5)?
Pedro:  12/5.
Maria:  Then we know that we have at least 

2  kg! Because 5/5 more 5/5 are 10/5! 
And there is 2/5 missing to one [more 
unit]. But how can we see that? Is there 
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another way of seeing this? And if we 
tried… (Turns to the board) How many 
bags do we have?

To illustrate Pedro’s answer, she began the explana-
tion with the support of a rectangular representation 
(Figure 1) and said:

Let’s suppose we have here a rectangle and each 
part of the rectangle is a bag. How much does each 
bag weigh? (…) 2/5 kg. And with the second bag? 
(…) 4/5. So we have… (Together with the students) 
4/5, 6/5, 8/5 and the result is 12/5. (L3)

This representation is rather confusing and students 
began complaining that they did not understand. 
Figure 1 illustrates that Maria was saying one thing 
and symbolically representing another. On a second 
trial, she divided each part in five parts unsuccessful-
ly. Then she erased the figure and explained symbol-
ically “we have to do 2/5+2/5+2/5+2/5+2/5+2/5=12/5”. 
The teacher did not relate the pictorial and symbolic 
representations. She went on posing focusing and 
inquiry questions:

Francisco: Ok! And what if we do… Six times two 
and the five stays the same?

Maria:  Ok! How can we do it?
Francisco: Six times two is twelve and the five 

stays the same.
Maria:  Why don’t you multiply the 5 too? And 

what if I do like this (6/1×2/5)? Now we 
have the numerator!

Pedro:  Five times one is five…
Maria:  And if I said that I multiply the (…) nu-

merator and keep the denominator. Can 
I always do this? (L3)

The students rejected the rule and Maria, attempting 
to convince them, used another example with another 

denominator, stressed the rule comparing the proce-
dure with the result, and moved to the synthesis and 
final answer:

The problem said that Luís has six bags and each 
bag has 2/5 of a kilo. Then we do 2/5+2/5=4/5 and 
4/5+2/5= 6/5 (…) 12/5. Then Francisco said it would 
be faster to do 6 times 2/5 which gives 12/5. And, 
finally, we see that we can multiply numerator 
and numerator and keep the denominator. (…) 
Pedro said in the beginning that the answer is 
less than 3 kilos because 12/5 isn’t as much as 3 
kilos… (L3)

In the sequence, Maria proposed a second task: “Rita 
cut a cake into 4 equal parts. But one quarter of the 
cake seemed to be a very big slice! After all, she only 
wants half a slice, or half of one quarter. Which part 
of the cake does Rita eat?”

Immediately a student explained that “1/2 represents 
half and one quarter is the final measure when we 
divide in 4 pieces. One half of a quarter is half of 1/4”. 
Again, Maria asked how to represent this situation 
and drew a rectangle divided in four parts (Figure 2). 
She went on asking confirmation and focusing ques-
tions:

Maria:  Is this what Rita eats? (Pointing to half 
of a quarter of the cake)

Francisco:  It is half of a quarter! (…) She only 
wants half!? Since all the pieces were 
the same... I have to divide everything 
in the middle...

Maria:  Oh! Interesting, Francisco! (…) What 
Francisco is saying is very important! 
But maybe it is better to divide in col-
umns! It’s the same reasoning! (L3)

At this point, using the projector, Maria illustrated 
Francisco’s idea. A student said:

Figure 1: Representation of the first problem

Figure 2: Different representations of the second problem
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She eats one eighth. Rita divided the unit and 
only ate one part… The cake was divided into four 
parts and then divided in eighth parts… Halves 
that gives eighths… She ate one out of eight parts! 
(L3)

In her teaching practice Maria mobilized mathemat-
ical and didactical knowledge and showed weakness-
es in both. When she explored the first problem, she 
used fractions and she did not consider the pictorial 
representation of multiplying a whole number by a 
rational number. She showed a procedural nature of 
mathematics knowledge and revealed some weakness-
es in her conceptual knowledge when she was not able 
to pictorially represent the operation. In the second 
task she anticipated the pictorial representations and 
showed conceptual knowledge. However, she did not 
explore the connections between the pictorial and 
symbolic representations. Her discourse had changed. 
In the beginning, she had a dialogue with three stu-
dents (one at a time) and tried to focus the attention 
of all students on the emerging ideas. She posed dif-
ferent types of questions, including inquiry, focusing 
and confirmation questions. In the second moment, 
she posed fewer focusing and confirmation questions.

Evaluating, reflecting critically, reviewing, 
and restructuring knowledge
In her reflection, Maria considered that this lesson 
had presented unexpected difficulties with the pic-
torial representation of the task and regarding the 
exploration of mathematical ideas related to the 
representations and their connections. This aspect 
caused her great anxiety at the end of the lesson:

I shouldn’t have used this kind of representation 
because they [the students] weren’t used to it (…) 
Although I think that this representation helps 
explain why. The goal is for them to realize why 
in that case the result 12/5 appeared. It didn’t fall 
from the sky! (AI3)

Maria recognized the value of using certain rep-
resentations but considered giving up on the use of 

pictorial representation, which reveals some insecu-
rity regarding her didactical ideas. She did not notice 
the mistakes that she had made on the board (shown 
in Figure 1) and merely felt that she had not handled 
the situation well and the students did not understand. 
After visualizing the lesson video she said: “I think this 
approach [using pictorial representations] is better 
for everyone, I am convinced. (...) The problem is not 
in the explanation of the problem! It’s in me!” (AI3). 
She identified her mistakes in the first task: “What I 
wrote was not the same as what I was saying! And may-
be that was the confusion! I caused the confusion be-
cause, in fact, what they are seeing is 2/5+4/5+...” (AI3).

During the interview, Maria tried to explain why 
she should not use this pictorial representation. She 
agreed that the reason was that she did not recog-
nize the differences between quantities and that the 
result was an improper fraction. These difficulties 
raise questions about her conceptual mathematical 
knowledge.

Confronting the plan and the practice in the second 
task, Maria realized that she used different pictorial 
representations and different symbolic representa-
tions of the proposed problem (Figure 3). At the end 
of this lesson she evaluated her practice recognizing 
that: “I knew the procedure, I mastered the procedure! 
I memorized the procedure back and forth and not 
how to represent the concept [multiplication]!” (AI3).

Reflecting on her agenda and comparing it with her 
teaching practice, Maria concluded that the end 
result was positive but could have been better. She 
recognized that, although she had invested heavily 
in planning the lesson, she had not achieved her de-
sired result. She noticed that in order to prepare these 
lessons she had mobilized her mathematics content 
knowledge that she learned in the teacher education 
program: 

I see rational numbers in a different way (…) 
Before I had fractions and decimals arranged in 

Figure 3: Representation of the second problem in the plan and in practice
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different drawers (…) Now I see that they are dif-
ferent representations of the same number (FI).

When she studied the literature, she learned the rela-
tions between operations and said “when we multiply 
a whole number with a fraction we are simplifying 
repeated addition (like in 6×2/5, when I work with 
students starting from 2/5 +2/5 +…)” (FI). She did not 
explore the relationships between representations 
and she was able to see, during the interview, that the 
arithmetic expression that she wrote on the board did 
not represent the problem proposed.

Maria recalled general didactical ideas and these be-
came meaningful for her. She realized the importance 
of planning and that her lesson plan was better after 
each practical experience. She realized that in order to 
be successful in her practice “the plans have to evolve 
(…). In the first plan [lesson before], I thought that it 
was perfect and then I went to practice and I realized 
that it could have been better…” (FI). She developed 
knowledge when anticipating solutions, errors and 
representations. Maria knew that a teacher must 

“lead students to understand the why of something” 
(FI) and that is why she knows that it is important to 

“unpack the pictorial representations” (FI). After the 
teaching practice, she continued to believe that good 
teaching leads to learning with understanding. She 
assumed that the teacher must support students in 
learning, by listening, asking good questions and 
helping them to build their knowledge.

CONCLUSION

Maria felt that she developed significant aspects of 
her knowledge about rational numbers during these 
lessons. Regarding her mathematics knowledge, she 
become more aware of the concepts related to ration-
al number multiplication in fraction representation. 
Early in the lesson, her weakness in conceptual 
knowledge led her to take a procedural approach 
(Ma, 1999). However, she showed conceptual knowl-
edge when she said that rational numbers may be 
represented by fractions and decimals and related 
addition and multiplication. However, she struggled 
to connect these with pictorial representations. As 
in other studies, we see issues related to connecting 
real-world situations and symbolic representations 
and connecting different representations of a concept 
(Ponte & Chapman, 2015). At the end of this teaching 
experience, Maria had learned about: how to repre-

sent improper fractions; the complexity of using both 
discrete and continuous quantities; connecting picto-
rial and symbolic representations; and the meanings 
of different expressions. 

Concerning didactical knowledge, Maria was able to 
sequence tasks using ideas of several articles and rec-
ognized the value of using pictorial representations 
as tools to develop mathematical ideas. She mentioned 
that she had become more aware of anticipating stu-
dents’ questions, common mistakes, and solutions 
(Bartell et al., 2012). She also became more aware 
of when she needed to explain. In her instructional 
practice she posed questions and explored students’ 
strategies, seeking to lead them to connect pictorial 
and symbolic representations. As in other studies, we 
see issues related to conceptual understanding, using 
multiple representations and curriculum materials 
and textbooks, planning, assessing students, and ana-
lysing mathematics teaching (Ponte & Chapman, 2015).

This study illustrates the struggles and learning 
that prospective teachers may experience when they 
strive to engage in an exploratory approach that re-
quires strong mathematical and didactical knowledge 
(Ponte & Chapman, 2015). In order to propose chal-
lenging tasks and to use different representations, 
they need to develop a deep understanding of rational 
numbers. They must engage in analyzing students’ 
strategies, offering student-focused responses, antic-
ipating practice by solving the tasks and discussing 
common mistakes (Son & Crespo, 2009). This study 
shows how anticipating practice in a careful way is 
essential for prospective teachers. 

These results show us that some aspects may only be-
come explicit in practice. Teachers have perceptions 
of children’s mistakes and different strategies that 
may be used including using multiple representations, 
using problem-solving strategies, providing clear ex-
planations and focusing on the meaning of concepts 
(Isiksal & Cakiroglu, 2011). In this study we focused 
on the use of informal and formal representations in 
teaching fraction multiplication and on the struggles 
that a prospective teacher experienced in providing 
representations to help students to develop their 
knowledge about this topic. For example, Maria an-
ticipated the solutions of the tasks in symbolic and pic-
torial representations but in class had trouble relating 
the two representations. In another words, practice 
was an appropriate context to see what she could do 
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and the nature of her knowledge. These issues are im-
portant to know how teacher educators may prepare 
and support prospective teachers who are learning to 
teach for meaningful conceptual learning.
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This paper describes and analyses two 8th grade math-
ematics instructions, delivered by two teachers on the 
slope and its algebraic representation. The focus of 
analysis is on teacher content knowledge which was 
analysed with Knowledge Quartet model (Rowland et al., 
2005). The study examined whether teachers’ responses 
to students’ comments indicate the quality of teachers’ 
content knowledge. Findings indicated that teacher’ re-
action to students’ comments would significantly reflect 
teachers’ depth and breadth of mathematics content 
knowledge.  
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contingency, slope, responding to students’ ideas.

TEACHER KNOWLEDGE AND TEACHING

Enhancing students’ mathematics thinking and 
learning is the utmost aim of overall mathematics 
education. One of the most important influences on 
students’ learning and mathematics thinking is the 
teachers and their professional knowledge (Even, 
1993; Darling-Hammond & Ball, 1998). Teachers’ 
knowledge is crucial since teachers’ effectiveness is 
influenced by that knowledge (Gilbert & Gilbert, 2011; 
Wagner et al., 2007). In addition to its effect on stu-
dents’ learning, teachers’ knowledge is influential in 
shaping their practices (Borko & Putnam, 1996; Even, 
1993; Fennema & Franke, 1992; Rowland & Ruthven, 
2011; Sherin, 2002; Shulman, 1986).

Shulman’s study (1986) opened a way to understand 
teachers’ complex and multi-dimensional character 
of knowledge. Shulman suggested seven knowledge 
categories. Among them, the first four were con-
tent-free and the last three ones were on content-spe-
cific knowledge (Rowland & Turner, 2007). Subject-
matter knowledge (SMK), curricular knowledge 

(CK), and pedagogical content knowledge (PCK) con-
stitute the content-specific knowledge that teachers 
have (Shulman, 1986). The work of Shulman (1986) 
suggested that content-specific knowledge becomes 
important in studying teachers’ knowledge.

Shulman’s conceptualization on teachers’ knowledge 
has been heavily used by mathematics education re-
searcher community. Almost all study on mathemat-
ics teacher knowledge assumes Shulman’s categori-
zation and conceptualization of teacher knowledge 
that is why we do not present a detailed account of 
Shulman’s ideas in this paper. 

Researchers have studied mathematics teachers’ 
knowledge from several perspectives. While some 
researchers conducted research on teachers’ under-
standing of various concepts in mathematics (e.g., 
Ball, 1990), others have focused on investigating the 
relationship between SMK and PCK and teaching (e.g., 
Even, 1993; Rowland, Huckstep, & Thwaites, 2005; Hill, 
Rowan, & Ball, 2005).

Apart from the perspectives summarized above, dis-
cussions on the nature of teachers’ knowledge deserve 
an exclusive attention. The discussion on the nature 
of teachers’ knowledge yield a consensus that the 
knowledge employed in teaching is dynamic, more 
visible through practice, and should be studied in 
actual classroom setting (Fennema & Franke, 1992; 
Hodgen, 2011; Rowland & Ruthven, 2011; Wagner et 
al., 2007). Conceptualizing a mathematical knowledge 
for teaching would unlikely to be successful unless it 
carefully takes the classroom context of teachers’ pro-
fessional work into account (Hodgen, 2011; Rowland & 
Ruthven, 2011; Sherin, 2002).  The reason behind this 
failure may originate from the de-contextualization 
of teachers’ knowledge (Hodgen, 2011). Focusing the 
use of teacher knowledge in the practice of teaching 
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may lead more sound results in investigating teachers’ 
knowledge (Hodgen, 2011; Rowland & Turner, 2007).

Considering our concerns on the nature of teachers’ 
professional knowledge, one framework which may 
provide studying teachers’ content knowledge during 
instruction is the Knowledge Quartet (KQ ) (Rowland 
et al., 2005). The framework suggests four broad units 
in investigating teachers’ mathematical knowledge in 
teaching. These are (i) foundation, (ii) transformation, 
(iii) connection, and (iv) contingency.  

The first unit of the KQ is rooted in the foundation 
of teachers’ knowledge, beliefs and understanding 
of mathematics and teaching. The remaining three 
units originate from a foundational underpinning. 
The second unit of the KQ, transformation, is knowl-
edge-in-action which is visible throughout planning 
and teaching. The unit includes a teacher’s capacity 
in transforming the content knowledge into pedagogi-
cally powerful forms. Connection concerns the depth, 
breadth and coherence of relationships demonstrated 
in a lesson or between lessons. The fourth unit of the 
framework, contingency, encompasses to responding 
appropriately to the events and ideas which occur 
in classroom during instruction. It is about contin-
gent action of teachers in the classroom (Rowland 
et al., 2005). Each of these KQ units is represented 
with codes. For example, there are three codes for 
contingency (responding to students’ ideas, use of 
opportunities, and deviation from agenda). There 
are eight-teen codes in total for four units (Rowland 
& Turner, 2007). Within its current form, the units of 
the framework are not directly linked to Shulman’s 
conceptualization of subject matter knowledge and 
pedagogical content knowledge. However, within the 
units, the framework aims to cover those knowledge 
types. The KQ has been grounded in classroom prac-
tice, and the findings have been open to enhancement 
and revision in the case of new research data.  In this 
sense, the KQ can be effectively used to investigate 
the way content knowledge enacts during instruction. 
A detailed account of the framework may be reached 
from the researchers previous studies (Rowland et 
al., 2005). 

THE TEACHING AND LEARNING 
SLOPE OF A LINE 

In order to examine and evaluate teachers’ knowledge 
on a topic, it is important to address crucial mathemat-

ical ideas for the topic and literature on teaching and 
learning of it. Therefore, in this part of the paper, we 
will highlight mathematical importance of the topic 

‘slope’ and some literature on teaching and learning 
of it. Slope is a deep and multi-faceted concept (Stump, 
1999). Learning slope requires proper comprehension 
of important concepts such as ratio, rate of change, 
proportionality, covariation, and synthesis of differ-
ent representations. Hence, understanding slope of 
a line in early grades is especially crucial for future 
learning. Comprehension of slope through algebrai-
cally, geometrical or by other representation as well 
as the connections between them requires conceptu-
alizing an important set of concepts.

Slope is a fundamental but a conceptually complex 
concept for students in learning algebra (Lobato et al., 
2003; Stump, 1999, 2001). Rasslan and Vinner (1995) 
investigated that majority of the nine graders did not 
realize that “the slope is an algebraic invariant of the  
line and  therefore  does not  depend  on  the  coordi-
nate  system  in which  the line is drawn” (p. 264). In 
addition, Saldanha and Thompson (1998) suggested 
that it may be challenging for students to understand 

“graphs as representing a continuum of states of cova-
rying quantities” (p. 7). 

Lobato and Bowers (2000) provided that students have 
various difficulties in learning quantitative complex-
ity of slope. For example, majority of the participants 
in the study showed difficulty in understanding the 
role of change in rise and run on steepness of a line. 
In addition, students have difficulties in regarding 
slope as a ratio (Bell & Janvier, 1981; Leinhardt et al., 
1990; Lobato et al., 2003).

The previous studies showed that there exist a number 
of misconceptions among learners on slope concept. 
Some of the incorrect ideas mentioned in the litera-
ture were: the quadrant where the line is located is re-
lated to slope value, changing slope alters y-intercept 
of the line, slope is the scale of the x-axis, and slope is 
the difference in y-axis (Lobato et al., 2003). Among 
them, slope-height confusion is very common. Being 
aware of those misconceptions is crucial in teaching 
slope.
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THE STUDY

The aim of the study was to investigate teachers’ re-
sponses to students’ unanticipated questions as an 
indicative of their content knowledge. In other words, 
in this paper, findings about teachers’ knowledge of 
contingency (as defined in KQ ) will be examined.  
Therefore, the research question is that How does 
mathematics teachers’ responding to students’ ideas 
indicate their content knowledge in teaching slope of 
a line?

The original study focused on two pre-service, two 
early novice (0–2 years of experience), and two more 
experienced novice (3–5 years of experience) middle 
school mathematics teachers` content knowledge on 
slope at 8th grade in Turkey. One of the researchers 
conducted individual pre-interviews, recorded 1–2 
lesson hours of slope instruction, and finally con-
ducted post-interviews. Pre and post interview data 
were used for triangulation but main data source was 
video-tapes of classroom instruction and researchers’ 
observation notes of the instruction. Instruction data 
were transcribed and open-coded. In data analysis, the 
researchers attempted to reach themes for the open 
coded data. Then, for each theme, one of the eighteen 
codes of the KQ has been assigned. Since assigned KQ 
codes belong to the units, we were able to categorize 
each significant episode of instruction in terms of the 
KQ framework units. Lastly, findings were compared 
between groups and similarities and differences were 
discussed. A detailed account of the framework, meth-
odology, and findings may be reached from the thesis 
study (Koklu, 2012).

The aim of the current paper is to discuss teachers’ 
responses to students’ unanticipated questions to ex-
amine their knowledge on students` mathematical 
thinking. For the purpose, contingency episodes were 
used to investigate research question. Furthermore, 
data from two teachers (Akif and Merve, pseudonyms) 
was used because their instruction had clear contin-
gency episodes; they encouraged students to share 
their opinions in the classroom. For each teacher, first, 
the instructions will be summarized briefly then one 
contingency episode will be provided. It should be 
noted that there were more contingency instances 
for teachers but because qualitative research findings 
report less raw data but more interpretation, we will 
give only one example for each teacher. Further ex-

amples and detailed information about the analysis 
can be found in Koklu (2012). 

A PRE-SERVICE TEACHER’S CASE: ALGEBRAIC 
REPRESENTATION OF A VERTICAL LINE

Akif was a pre-service teacher in senior year who 
was practicing in 8th grade mathematics course.  He 
described the aim of the lesson in the lesson plan as 

“Students will be able to explain the relationship between 
slope and equation of a line.” Akif segmented lesson 
into three phases. In the first phase, Akif introduced 
the slope concept. The second phase based on a task. 
The task included a scenario and a numerically rep-
resented tabular data and asked students to; (i) graph 
a line, (ii) write its equation in slope-intercept form, 
(iii) compute slope on graph, and (iv) investigate that 
slope and the coefficient of x are same in a slope-inter-
cept form of line equation. The lesson followed by a 
computation on a series of exercises in which students 
were asked to match line equations and graphs of lines 
in coordinate plane. The line equations given for the 
exercise were as follows: y = 8 – 4x, y = 2x – 2, y = 3x + 6, 
and y = -x + 2. The teacher preferred first to find slope 
of lines on the equations. Then, he found the slope 
of lines on the graphs and related these slopes to the 
equations by using the relationship discussed. 

The below episode was coded as contingency because 
of the teacher’s reaction to a student’s comment. The 
teacher applied the algebraic relationship between 
slope and the coefficient of x in slope-intercept form 
of line to compute slope. Then, a student raised an 
important idea.

Teacher: We said that the coefficient of x would be 
the slope, okay the coefficient of x since 
y stands separately [in one side of the 
line equation].

Student: If there would be a number instead of y 
what would be the answer?

Teacher: If there would be a number [he repeats 
student’s idea and waits a second] you 
mean no y [he meant the case in which 
no y appears in line equation]. 

Student: Yes.
Teacher: When we are write such an equation 

[he indicates the graph of y = 2x] we need 
to write in terms of x and y, think when 
we graph a linear equation you should 
remember that [he graphs a line which 
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has a negative x-intercept and positive 
y-intercept] let’s x-intercept would be 
a and y-intercept would be b. When we 
write it, we were saying x over a plus y 
over b equals to 1 [he wrote x/a + y/b = 1].

Student: I do not know it.
Teacher: Okay, let’s skip it. Why there should be y 

here [thinks a second] if there was not a 
y, then how can we indicate the number 
of goods produced [he refers to the ac-
tivity of the lesson] based on the number 
of employees. 

Student: Right.
Teacher: One variable needs to depend on the 

other there is a relationship between 
the variables there is a combination of 
two hence I cannot assume that one [in-
dicates the variable] is missing. Two of 
them [indicates the variables] have to 
exist at the same time. As a conclusion 
we write in this way.

This episode indicated that even though the teacher 
tried to respond student’s idea in multiple ways, he 
was unable to suggest a correct explanation. In other 
words, Akif was unable to recognize that a line equa-
tion does not need to include two variables. A vertical 
line, for example, is expressed by one variable. The 
data suggested that in the first explanation the teacher 
was unable to address student’s comment because his 
explanation already necessitates the existence of two 
variables. The teacher’s second explanation referred 
to his activity. According to his activity, a case such 
as the student proposed would not be possible. The 
explanation made by the teacher seemed to satisfy the 
student even though the explanation does not address 
the student’s question.

The data suggested that the teacher responded to stu-
dent’s idea willingly even though his responses did 
not address the question. It seems that the teacher was 
not able to remember vertical lines. It was remarkable 
that the teacher did not resort to slope concept. The 
basic idea that the teacher should know is that slope 
is a concept which is defined on non-vertical lines. 
Mathematically, slope of a vertical line is undefined. 

During data analysis we labelled the above case and 
the similar ones as our themes. Then, for each theme, 
codes of the contingency unit of the KQ have been 
assigned. Since assigned codes belong to the units of 

the KQ, we were able to categorize each significant 
episode of instruction in terms of the framework. 
To illustrate, the above episode suggested a student 
involvement to instruction hence we assumed that 

“responding to student ideas” code from the contin-
gency unit of the framework would be an appropriate 
coding. Revisiting the episode several times suggested 
that the other two codes of the unit, “use of oppor-
tunities” and “deviation from agenda” might also be 
involved to the episode. As a result, this single epi-
sode suggested a very fruitful conclusion for our data 
analysis. Teacher’s inability to respond student idea 
refrained him using it as an opportunity and deviate 
from his plan. Even though, the data does not yet allow 
us to claim that the observed teacher lacks necessary 
knowledge on vertical lines and their representation, 
our finding in this part helped us to speculate the 
teacher’s current state of knowledge on vertical line, 
its connection to slope, and the necessary skills and 
professional knowledge on how to teach it in such 
a context. Overall, we claimed that the episode of a 
student asking a question and the way the teacher 
reacted enables us to say more about the teacher’s 
content knowledge on teaching slope.

A NOVICE TEACHER’S CASE SELECTING 
TWO POINTS ON A LINE IN ANY ORDER 

Merve started instruction with the graph of y=2x and 
yield the slope by first forming a right triangle on the 
coordinate plane and second by creating a table in 
which x and corresponding y values are inserted from 
the points got from graph. She showed that the slope of 
the line is same as the coefficient of x in the equation. 
As a second phase, the teacher provided four lines 
that pass through origin in the same coordinate plane. 
The teacher formed a whole class discussion on the 
inclination of the lines and the sign of the slope. She 
used slopes of lines graphed (m = 1, m = 4, m = -4, m = -1) 
to help students compare lines. The teacher summa-
rized the findings. Then instruction on finding slope 
from the graphs was given. For the next phase, Merve 
asked students to find the equation of a line which giv-
en graphically. Merve indicated that the slope value 
and the coefficient of x are same. Then, the teacher 
asked further exercise questions to apply the newly 
learned relationship on y = 3x, y = -2x + 1, y = 12 – 3/4, 
2y = 12x + 6, 5y = 10 - 7x, 3x + 4y – 8 = 0 and 8x + 2y = 9.  In 
these examples students reached the slopes by using 
the relationship. Lastly, Merve asked students to find 
slope of a line in which only two coordinate points are 
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given, (1,2) and (3,6). The students had difficulties in 
reaching both the intercept points of the line and its 
equation. The teacher reminded that they knew how 
to write equation of a line from its intercept points.  
The last exercise question was about finding slope 
of a line which passes through (-2,4) and (-1,-5) and 
write the equation of the line by using the points and 
calculated slope.

To compute slope, the teacher used the tabular data 
(Table 1). Merve told that students should be careful in 
considering the first point. According to her, between 
two selected coordinate points, students should take 
the point as first if its x-value is smaller than the other 
point’s. In brief, Merve chose (0,2) as the first and (3,0) 
as the second point in computing slope. 

A student objected to Merve by claiming that it is not 
necessary to fix a point as first or second. The below 
episode indicate the teacher’s reaction to a student’s 
comment.

Student: If we did not take 2 as the first value for 
y [in the formula]

Teacher:  Every time from left [teacher indicated 
to the left side of the graphed line which 
has smaller apsis]

Teacher: Hey kids Ali again asked a good question 
he said that if I would write (3,0) at first 
what would be the conclusion he said 
that he found the inverse hey kids if you 
recognize I start writing with smaller 
x values from this side  [pointing from 
(0,2) to right side] in writing the change 
I start with the smallest x values. 

Student: The point where x is smaller.
An. student: From left to right.
Teacher: Got it. I start where x is smaller.
Student: If we had written it would turn out the 

same thing since we again would write 
y’s first.

Teacher: Let’s try [the teacher applies the slope 
formula again and reaches the same 
conclusion]

Student: Yes same
Teacher:  Okay good
Student: I already did in this way [the student 

indicates that he used the last way]
Teacher: Okay good, yes we have reached the 

same conclusion.

The episode indicates that though the teacher did not 
suggest the rationale explicitly, she showed it proce-
durally on an exercise question. It was particularly 
interesting that the teacher did only resort to a proce-
dure that may be regarded as a pure idea in teaching 
slope concept. To check whether the student’s idea 
is correct she only applied the procedure. There is 
a fundamental knowledge that two arbitrary points 
on a line may possibly give its slope. Lines are not as 
vectors though there is a resemblance in shape. A vec-
tor is a directed quantity so it has initial and ending 
points. In contrast, lines do not start or finish any-
where. All of these arguments suggest that we are not 
restricted to behave a point say A, as the first point and 
B as the second. In either order, the slope will be equal. 
All of these important ideas may be showed through 
slope formula. This episode reminded Saldanha and 
Thompson’s (1998) suggestion that it may be challeng-
ing for students to understand “graphs as represent-
ing a continuum of states of covarying quantities” (p. 
7). There is some evidence here that teacher’s overall 
knowledge of line and skills for teaching slope of a 
line has some slightly weak parts. However, she was 
also able to use students’ ideas as teaching opportu-
nity. Though this single episode does not indicate a 
big problem, it helped us to put more attention on the 
issue throughout the full video recorded data. 

CONCLUSION

To conclude, responding to students’ ideas, first of 
all, requires active and careful listening of students’ 
content related expressions (Davis, 1997; NCTM, 
2000). The study supports Sherin (2002) that stu-
dents’ behaviors such as elaboration of their ideas 
may be regarded as a chance for teachers to revise 
their content knowledge. Knowledge of students 
ideas is regarded as pedagogical content knowledge 
(Shulman, 1986, Ball et al., 2008) however teachers’ 
responses to student ideas also indication of their 
subject matter knowledge too. Using Knowledge 
Quartet as the framework for analysis, we were able 
to focus on episodes of contingency which reflected 
teachers’ knowledge on slope. Teachers may effective-

x y

0 2

3 0

Table 2: Tabular data used for coordinate points of the line
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ly use those episodes to increase their and students’ 
knowledge (Franke et al., as cited in Sherin, 2002). 
The results are very consistent with the claims made 
by Rowland, Thwaites, and Jared (2011) that teachers’ 
contingent action provide valuable information on 
the effect of teachers’ content knowledge in teach-
ing. Furthermore, as authors addressed contingen-
cy episodes are not isolated from other units rather 
includes them. The contingency episodes that were 
discussed in this paper not only show teachers’ way 
of responding to students’ ideas but also their knowl-
edge of the subject too. 
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Using multiple representations for mathematical ob-
jects in the classroom is a key for fostering students’ un-
derstanding. As teachers have to analyse both mathe-
matical content and classroom situations in order to 
effectively accompany learning processes, they need 
corresponding professional knowledge and resourc-
es. As specific empirical research is scarce, this study 
aims at collecting first evidence about whether and how 
different samples of pre-service and in-service teach-
ers analyse content against the idea of using multiple 
representations and whether these content-related re-
sources interdepend with their awareness of the role of 
dealing with representations in classroom situations. 
The findings indicate expected differences in resources 
and interdependencies between CK and PCK.

Keywords: Teachers’ analysing, PCK, CK, multiple 

representations.

INTRODUCTION

Teacher expertise is related to personal resources 
in various domains of content knowledge (CK) and 
pedagogical content knowledge (PCK, cf. Shulman, 
1986). A reservoir of such CK and PCK is needed in 
particular when teachers have to analyse learning 
opportunities and subject matter on the one hand or 
specific interaction situations with learners in the 
mathematics classroom on the other hand. Making 
connections with professional knowledge in these 
two contexts belongs to the core of what is required 
from mathematics teachers in their profession. This 
holds in particular for being able to analyse content 
matter and classroom situations against criteria relat-
ed to the use of multiple representations, as abstract 
mathematical objects can hardly be accessed without 
any representations (cf. Duval, 2006). 

Consequently, there is a high interest in investigating 
whether secondary teachers from different school 
types are able to analyse (A) how mathematical con-
tent affords using multiple representations and 
(B) how problems for learners may emerge from a 
non-optimal use of multiple representations in class-
room situations. To our knowledge this is the first 
study with a quantitative empirical scope on the po-
tential interrelatedness of these domains of teachers’ 
profession-related analysing. 

In order to clarify our focus on teachers’ analysing, 
we will in the following introduce into the theoretical 
background of this study, derive the research ques-
tions from these thoughts, inform about sample and 
methods, present results and discuss their implica-
tions for the theoretical and practical contexts.

THEORETICAL BACKGROUND 

As mathematical objects are only accessible through 
representations (Duval, 2006), representations play an 
important role in the process of mathematical learning 
and its support in the classroom. Different representa-
tions can stand for a mathematical object (Goldin & 
Shteingold, 2001), so using multiple representations 
may support learners in learning more about the 
mathematical object behind these different representa-
tions (Lesh, Post, & Behr, 1987) and in distinguishing 
the mathematical object from its representations. As 
different representations mostly emphasise different 
aspects of the corresponding mathematical object, the 
use of multiple representations enables learners to 
build up a rich concept image (Tall, 1988; Ainsworth, 
2006). Connecting different representations as well 
as changing between representations provide thus 
crucial learning opportunities (e.g., Ainsworth, 2006; 
Duval, 2006; Lesh, Post, & Behr, 1987; Ainsworth, 2006). 

mailto:kuntze%40ph-ludwigsburg.de?subject=
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Using multiple representations for mathematical 
objects in the classroom is hence a key for foster-
ing students’ conceptual learning (see also Dreher 
& Kuntze, 2013). Accordingly, teachers need profes-
sional knowledge so as to foster their students’ learn-
ing – and they have to be able to use this knowledge in 
analysis processes. Analysing mathematical content 
against the background of multiple representations 
(A) is probably as important as analysing related to 
ways of dealing with representations in the learning 
process (B). In the following, we will concentrate on 
the teachers’ analysing and the underlying profes-
sional knowledge they refer to. 

As a framework, this study uses a multi-layer mod-
el (Kuntze, 2012), which combines Shulman’s (1986) 
domains with the spectrum between knowledge and 
prescriptive convictions/views (Pajares, 1992), which 
are considered as individual professional knowledge 
as well. As a third dimension, the degree to which pro-
fessional knowledge is bound to content or classroom 
situations is used to distinguish different levels of 
globality (cf. Törner, 2002), resp. situatedness (ver-
tically ordered layers in Figure 1). The cells of the 
model in Figure 1 should not be seen as completely 
separable – indeed, the extent to which components 
of professional knowledge are consistent across dif-
ferent cells may even be interpreted as an indicator of 
teacher expertise (cf. Doerr & Lerman, 2009). A more 
detailed description of this theoretical background is 
given in Kuntze (2012) and Dreher and Kuntze (2015a).

Professional knowledge related to using multiple 
representations is a resource (Schoenfeld, 2011) for 
teachers, which is the base on which they can draw 
when they analyse content matter related to learn-
ing opportunities or the interaction with students 
in classroom situations. By analysing we understand 
an awareness-driven, knowledge-based process which 

connects the subject of analysis with relevant criterion 
knowledge and is marked by criteria-based explanation 
and argument ation. The subject of analysis can be 
for instance an area of content knowledge (A) or a 
classroom situation (B). Both of these are in the focus 
of this study.

Analysing mathematical content with respect of criteri-
al knowledge related to using multiple representations 
(A) means in particular that teachers can identify and 
connect different representations of mathematical 
objects, but also that they can think of examples of con-
tent in which the use of multiple representations plays 
an important role  for example, for gaining in-depth 
conceptual insight or for simplifying problems (cf. 
Kuntze et al., 2011). Such analysis steps draw above all 
on content knowledge (CK). An example of a question 
which requires analysing content in such a way is giv-
en in Figure 2 (in the methods section): For answering 
this task, teachers have to be able to review examples 
of content matter according to criterial knowledge 
related to using multiple representations and hence 
to make connections between examples of content 
matter according to this criterial knowledge. 

Analysing classroom situations against the background 
of dealing with repres enta tions (B) is more based on 
aspects of pedagogical content knowledge (PCK). In 
particular, the following processes play a role which 
are also connected to aspects of teacher noticing (cf. 
Friesen et al., in this proceedings book): 1) Identifying 
relevant situations concerning the use of representa-
tions, which marks the “starting point” of an analysis, 
2) evaluating such situations in a critical way which 
is based on connecting relevant situations and argu-
ments to corresponding elements of theory regarding 
the use of representations, and 3) presenting/artic-
ulating the results of the analysis. These processes 
should not be considered as ordered or completely 

Figure 1: Multi-layer model for components of professional knowledge
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separable, as there may be jumps or simultaneous 
processes. 

In both cases, the analysis needs an initial awareness 
of criteria linked with using multiple representations. 
Moreover, making connections between this criterial 
knowledge on the one hand and specific content or 
characteristics of a specific classroom situation on 
the other hand is needed. Drawing on criterial knowl-
edge affords explaining the subject of analysis and 
identifying arguments for the conclusions which are 
necessary for an appropriate answer. For this reason, 
potential interdependencies between teachers’ per-
sonal resources in analysing merit attention.

Despite a clear relevance of the requirement of ana-
lysing the use of multiple representations in content 
matter and classroom situations for teaching math-
ematics, research focusing on teachers’ analysing 
related to these aspects is scarce (cf. overviews in 
Dreher & Kuntze, 2015a, 2015b). More specifically, to 
our knowledge this is the first quantitative empirical 
study which focuses on interdependencies of teachers’ 
analysing related to these domains of professional 
knowledge. For exploratory insight and against the 
background of differences (cf. Dreher & Kuntze, 2015a, 
2015b), it is also necessary to explore whether there 
are differences between teachers from different 
school types and between in-service and pre-service 
teachers.

RESEARCH QUESTIONS

Against the background outlined in the previous sec-
tion, there is a need of research exploring teachers’ 
analyses of content matter (A) and of classroom situ-
ations (B) related to using multiple representations. 
Using multiple representations is thus an overarching 
concept (cf. Kuntze et al., 2011) which affords analysing 
and making connections between professional knowl-
edge and the subjects of analysis, namely examples of 
content and classroom situations. 

This study hence aims at answering the following 
research questions: 

 ― To what extent do in-service teachers have pro-
fessional knowledge necessary for analysing 
whether content matter can be connected with 
the overarching concept of using multiple rep-
resentations?

 ― Are there differences between in-service teach-
ers from different school types?

 ― How big are these differences in comparison 
with the knowledge and analyses of pre-service 
teachers? 

 ― Does the quality of analysing content matter 
regarding the use of multiple representations 
interdepend with the in-service teachers’ analy-
sis of classroom situations based rather on PCK? 

SAMPLE AND METHODS

The in-service teachers participating in this study 
belonged to two sub-samples: There were in total 58 
German in-service teachers which consisted of:

 ― 34 teachers from academic-track secondary 
schools (20 female, 14 male; mean teaching ex-
perience 14.8 years, SD=13.4 years ) 

 ― 24 teachers from secondary schools for lower-at-
taining students  (9 female, 15 male; mean teach-
ing experience 10.7 years, SD=9.5 years)

Moreover for answering the third research question, 
117 German pre-service teachers were included (78 fe-
male, 35 male, 4 without data; mean age of 22.33 years, 
SD = 3.56 years) who had been studying on average 
for 2.19 semesters (SD = 1.12). Within this sub-sam-
ple of pre-service teachers, 61 were preparing for 
being teachers in primary schools, 32 in secondary 
schools for lower-attaining students (HSWRS), and 
15 for working in schools for students with special 
needs (9 without data). An additional sample of 42 
Austrian pre-service teachers preparing for teaching 
in academic-track schools were included for explora-
tory comparisons.

In order to tap the teachers’ analyses of contents, a test 
was conceived with a focus on analysing contents and 
perceiving links across contents according to over-
arching concepts. The instrument concentrated on 
CK-related analyses connected with the overarching 
concepts using multiple representations, dealing with 
infinity, and giving arguments/proving. (cf. Kuntze 
et al., 2011). This study only focuses on the teachers’ 
answers to two tasks related to using multiple rep-
resentations, a sample task is presented in Figure 2. 
The answers were collected in an open format, the 
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teachers were given as much time as they required 
to complete the test. 

The answers were coded according to a top-down cod-
ing method (see Kuntze et al., 2011, for details and sam-
ple answers). Among others, the coding categories 
existence of a codable answer, quality and transfer level 
of the examples, and embedding of examples provided 
were used. An indicator score was generated in the 
following way: If the teachers gave at least one appro-
priate example, their answer was coded with 1 point, if 
at least one of the examples was from a different con-
tent area than the example given in the task, the full 
score of two points was assigned to the corresponding 
answer, as in this case we can assume that the teacher 
had shown awareness of criterial knowledge related 
to using multiple representations and analysed suc-
cessfully at least one example of content matter. 

In classroom situations, the quality of the use of mul-
tiple representations often depends on how carefully 

teachers link different representations and whether 
they accompany the students’ understanding with this 
respect. For tapping the teachers analyses in this area, 
we used an instrument which is described in detail 
in (Dreher & Kuntze, 2015a). In this instrument, the 
teachers are given fictitious transcripts of classroom 
situations (related to the content area of fractions) in 
which the teacher changes the representation register 
unnecessarily and without explicitly providing help 
or explanation for linking the corresponding repre-
sentations. In the situation in Figure 3, this is the case 
for the teachers’ change to the pizza representation. 
The participating teachers were asked to evaluate how 
the given teacher’s reaction supports the student’s 
understanding in this situation and to give reasons 
for their evaluation. According to the design of the 
classroom situations, the participating teachers’ anal-
yses of these situations based on their PCK related 
to using multiple representations should hence lead 
to a critical evaluation of the way how multiple rep-
resentations are used (Dreher & Kuntze, 2015a). A 

 
 
6.  On the right, there is a graphical representation of the 

definition of “square number”. This representation 
affords an additional access compared to the symbolic 
definition (“if q=n2 for a positive integer n, the q is called 
a square number”).  

 
Can you think of other mathematical concepts, for which 
a symbolic definition can complement with a non-
symbolic representation in a similar way? 

 
Please give as many examples as possible. 
 

„A number that can be 
visualised like shown 
here in the form of a 
square is called a square 
number.“ 

Figure 2: Sample task for analysing and connecting content according to the over arching concept 

of using multiple representations (Kuntze et al., 2011, p. 2722)

Figure 3: Classroom situation to be analysed according to the use of multiple representations (Dreher & 

Kuntze, 2015a)
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corresponding top-down coding was consequently 
done with the teachers answers which were collected 
in an open format. Based on these codes, a score was 
calculated by counting successful answers. As there 
were four classroom situations, these scores ranged 
from 0 to 4 points (Dreher & Kuntze, 2015a).

For answering the fourth research question which 
focuses on interdependencies between the two anal-
ysis scores, correlations (Pearson) were calculated. 
As there was the possibility of controlling for specific 
CK related to changing between representations of 
fractions (for details about this additional instrument 
see Dreher & Kuntze, 2015a), this variable could be 
included in a regression model which affords describ-
ing the interdependencies in the focus of the fourth 
research question.

RESULTS

The first, second, and third research questions focus 
on the extent to which different samples of in-ser-
vice and pre-service teachers analyse content matter 
against the background of the overarching concept 
of dealing with multiple representations. Figure 4 
shows an overview of these results. The in-service 
teachers working at academic track secondary 
schools reached on average about two thirds of the 
full test score related to analysing and connecting 
content matter through the concept of using multiple 
representations. In contrast, the in-service teachers 
from HSWRS secondary schools were significantly 
less successful in these analyses (T-test; T=3.40; df=56; 
p=.001, d=0.90). However, each sub-sample of in-ser-
vice teachers scored significantly better than the 
corresponding sub-sample of pre-service teachers 
(academic-track teachers: T=3.32; df=74; p=.001, d=0.76); 
HSWRS teachers: T=4.75; df=54; p<.001, d=1.23). The val-
ues of Cohen’s d indicate that these are strong effects. 

The average score of the academic-track pre-service 
teachers was very similar to the score of the HSWRS 
in-service teachers. 

As the data in Figure 4 is rather connected to the teach-
ers’ CK it may be of additional interest that we found 
in a corresponding study (Dreher & Kuntze, 2015a, 
2015b) that there was a relatively similar pattern for 
teachers’ analyses of classroom situations against the 
background of dealing with multiple representations, 
which is rather based on teachers’ PCK. This points 
to the fourth research question, which concentrates 
on connections between CK-related and PCK-related 
variables. 

CK, especially CK related to the particular content, is 
probably important for analysing classroom situa-
tions. For this reason specific CK (in this case related 
to the use of multiple representations with fractions) 
was also included in the study as an additional var-
iable. Table 1 shows correlations, which suggest that 
for academic-track teachers the more overarching 
CK-related variable has played a more important role 
than the more specific CK variable (fractions) which 
is more close to the classroom situations the teachers 
had to analyse. 

Deepening this insight, we included the variables 
in regression analyses (cf. Table 2). The results show 
that analysing contents according to the overarching 
concept of using multiple representations (B) interde-
pended more strongly with the quality of the analy-
ses of classroom situations (A, i.e., the corresponding 
score as independent variable), than specific CK relat-
ed to using multiple representations of fractions – and 
that in particular it plays a significant role even if the 
data is controlled for the fraction-related “local” CK 
component, as far as the in-service academic-track 
teachers are concerned.

 
0% 20% 40% 60% 80% in-service teachers (academic-track

secondary schools, N=34)
in-service  teachers (HSWRS secondary
schools, N=24)
pre-service teachers (academic-track
secondary schools, Austria, N=42)
pre-service teachers (HSWRS secondary
schools, N=32)
pre-service  teachers (primary schools,
N=61)
pre-service  teachers (schools for
students with special needs, N=15)

Figure 4: Analysing contents against the overarching concept of using multiple representations: Means and their standard errors
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DISCUSSION AND CONCLUSIONS

Before discussing the results in detail, it is important 
to recall that the study has clear limitations, as the 
findings hardly allow for generalisation. For instance, 
the samples are not representative for German 
teachers, and the research instruments should be 
extended in follow-up research. However, the findings 
afford answering the research questions and call for 
further investigation in related empirical studies. 

The following key findings can be summarised: 

 ― The results related to the first research question 
indicate that many of the academic-track second-
ary teachers were not able to connect the over-
arching concept using multiple representations 
to at least one example of mathematical content. 
Analysing content against this criterial knowl-
edge appears hence to be very difficult even for 
in-service teachers from academic-track second-
ary schools.

 ― Teachers from HSWRS schools showed, however, 
even less elaborated analyses and a significantly 
lower professional knowledge related to connec-

tions with the overarching concept of using mul-
tiple representations. In line with findings from 
Dreher and Kuntze (2015b), the findings related 
to the second research question thus suggest that 
the culture associated with different school types 
or selection effects of teachers might play an im-
portant role and that there are school-type-spe-
cific professional development needs. 

 ― As appropriate answers of the pre-service teach-
ers were – as expected (cf. Kuntze et al., 2011) – 
even less frequent, the findings associated with 
the third research question point to a substantial 
need for teacher education. 

 ― As far as the fourth research question is con-
cerned, the results related to interdependencies 
may be seen as consistent with corresponding 
findings from the COACTIV study (e.g., Kunter et 
al., 2013), suggesting that there might be general 
interdependencies between CK and PCK. This 
study can add preliminary, but more specific in-
sight by focusing on the teachers’ analysing.

Follow-up questions arising from the findings open 
up several directions for further research: First of 

Correlations with score related to analysing classroom situa-
tions with respect to using multiple representations (B) 
(Dreher & Kuntze, 2015a)

Subsample of 
all  
in-service 
teachers 
(N=58)

academic-track  
in-service 
teachers 
(N=34)

HSWRS  
in-service 
teachers 
 
(N=24)

CK-related score „using representations in the content area of 
fractions“  
(Dreher & Kuntze, 2015a)

,128
,333

-,031
 ,863

,217
,309

Score “analysing content matter with respect of using multiple 
representations” (A)  
(Kuntze et al., 2011)

,319*
,014  

,365*
,034  

-,021
 ,922

Table 1: Correlations (Pearson) and significance values (2-sided)

   B  St. error     Beta        t      p

HSWRS  
in-service 
teachers

(Intercept) ,235 ,077 3,046 ,006

CK-related score „using representations 
(fractions)“

-,206 ,197 -,238 -1,050 ,306

Score “analysing content matter with re-
spect of using multiple representations”

,028 ,105 ,061 ,269 ,791

academ-
ic-track  
in-service 
teachers

(Intercept) ,201 ,132 1,523 ,138

CK-related score „using representations 
(fractions)“

-,146 ,195 -,129 -,752 ,458

Score “analysing content matter with re-
spect of using multiple representations”

,300 ,130 ,396 2,318 ,027

Table 2: Regression analyses for subsamples of in-service teachers
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all, there is a clear relevance for the development 
of theory: What status does analysing related to 
overarching concepts (cf. Kuntze et al., 2014) have as 
a component of mathematics teacher expertise and 
to what extent do different contexts of profession-
related analysing interdepend? But there are also 
more practice-related follow-up questions, such as: 
How can CK and PCK related to overarching concepts 
be supported best in professional development 
programs? When and how can growth in the 
corresponding domains of professional knowledge 
take place? Which role may be played by classroom 
experience or curricular knowledge? Finally, also 
aspects of the further development of the test 
instrument are in the focus (e.g., extensions to more 
overarching concepts, other test formats) and may 
contribute to a deepened understanding of the 
findings and teachers’ profession-related analysing.
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What does it mean as a teacher to “know 
infinity”? The case of convergence series
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This paper aims to explore the knowledge of infinity 
that three teachers deploy in making methodological 
suggestions for dealing with the convergence of a ge-
ometric series in a secondary level lesson. We will also 
illustrate the potential of the model of professional 
knowledge known as Mathematics Teacher’s Specialised 
Knowledge (MTSK) as a tool for analysing the knowledge 
of infinity underpinning the three proposals. The math-
ematical knowledge revealed is considered, alongside 
suggestions for further exploration of the pedagogical 
knowledge of the three teachers regarding infinity.

Keywords: Infinity, professional knowledge, MTSK, series, 

secondary teacher knowledge.

INTRODUCTION

It is widely acknowledged that the nature of a mathe-
matics teacher’s knowledge of the subject is different 
to that of other people involved in mathematics. To this 
end, Ball, Thames and Phelps (2008) specifically iden-
tify the sub-domain Specialised Content Knowledge 
within their analytical model, MKT, in contrast to that 
of Common Knowledge, with the aim of underlining 
the kind of knowledge about certain topics required of 
a teacher, but not necessarily required of others who 
habitually draw on mathematical knowledge. An al-
ternative model was recently presented, Mathematics 
Teacher’s Specialised Knowledge, henceforth MTSK 
(Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013), 
the premise of which is that the specialisation derives 
not from the unique nature of the teacher’s knowledge 
in itself, but from the use to which this knowledge 
is put in teaching. It is from this perspective of spe-
cialisation, following Montes, Carrillo and Ribeiro 
(2014), that we consider the concept of infinity and 
its significance to the teacher’s store of professional 
knowledge.

The concept of infinity is an interesting case because 
it touches many areas of the secondary curriculum, 
and is hence especially relevant to analysing teachers’ 
mathematical knowledge. From our perspective, a 
teacher’s knowledge of infinity is specialised by vir-
tue of the fact that, as practitioners, they need to know 
how to deploy their knowledge in contexts of teaching 
and learning. This paper applies this perspective to 
the question of how this knowledge influences the 
methodological considerations involved in planning 
a lesson on the convergence of a series generated by 
successive powers of ½. In doing so, it hopes to illus-
trate the effectiveness of the MTSK model in reveal-
ing the specialised knowledge underlying teachers’ 
decisions.

THEORETICAL FRAMEWORK

The MTSK model (Figure  1), which provides the 
theoretical background to this paper, consists of 
six sub-domains divided between Shulman’s (1986) 
original dichotomy of Subject Matter Knowledge and 
Pedagogical Content Knowledge. 

In terms of purely mathematical knowledge, it pro-
poses three sub-domains. The first of these, Knowledge 
of Topics, brings together all topics involved in the 
teaching-learning binomial, including many aspects 
which are seldom made explicit to students, but can 
nevertheless be understood as fundamental to the 
teacher’s knowledge. The second, Knowledge of the 
Structure of Mathematics, concerns the connections 
between areas, such as concepts which range across 
the curriculum (as in the case of the concept of infin-
ity). Finally, Knowledge of Practices in Mathematics 
encompasses ways of doing and proceeding with 
mathematics. There are likewise three sub-domains 
within Pedagogical Content Knowledge, which aim 
to enhance the specifications proposed by Ball and 
colleagues (2008). The first of these, Knowledge of 

mailto:miguel.montes%40ddcc.uhu.es?subject=
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Mathematics Teaching, refers to knowledge about 
ways of presenting mathematical content in the 
classroom. The second, Knowledge of the Features of 
Learning Mathematics, concerns knowledge about 
how pupils learn, understand and interact with math-
ematical content. The last, Knowledge of Mathematics 
Learning Standards, includes knowledge relating to 
the curriculum and learner expectations in respect 
of year group, age and educational stage.

A professional understanding of infinity
The concept of infinity, as an item of human knowl-
edge, has been widely studied over the centuries and 
at the present time is understood as a property of vari-
ous sets (Moreno & Waldegg, 1991). With respect to re-
search into infinity and learning, studies have consid-
ered the intuition of infinity (Fishbein, Tirosh, & Hess, 
1979), the relation between conceptions of infinity and 
understanding the notion of limit (e.g., Sierpinska, 
1987), how infinity is dealt with in class (e.g., Hannula, 
Pehkonen, Maijala, & Soro, 2006; Roa-Fuentes, 2013), 
and the development of students’ understanding of 
situations closely associated with the concept (Arnon, 
Cottrill, Dubinksy, Oktaç, Roa-Fuentes, Trigueros, & 
Weller, 2014). Nevertheless, the concept of infinity 

has received scant attention as a component of pro-
fessional knowledge, that is as something useful for 
education as opposed to a mathematical item to be 
studied in depth.

Efforts to research teachers’ knowledge of infinity 
have thus tended towards regarding their subjects 
as “possessors of advanced knowledge” on account 
of their training background, including mathematics 
training, and their familiarity with the various con-
cepts pertaining to school mathematics. But interest 
in teachers’ knowledge also derives from their capac-
ity to satisfy their students’ curiosity and provide 
valid responses to their questions. As Hannula and 
colleagues (2006) state, “Most primary children are 
very interested in infinity, and they enjoy discussing 
the concept, if the teacher is only ready for it” (p. 1). 
Any such responses must be founded on mathematics; 
the teacher needs to be aware of what to say and why 
this is valid. In this respect, there have been numerous 
studies into the misconceptions about infinity of dif-
ferent groups of teachers, focusing on the epistemo-
logical basis for their thinking (e.g., Kattou, Michael, 
Kontoyianni, Christou, & Philippou, 2009), the nature 
of the misconceptions themselves, including taxonom-

Figure 1: Mathematics Teacher’s Specialised Knowledge
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ical analysis (e.g., Yopp, Burroughs, & Lindaman, 2011), 
and the degree of cognitive development in relation to 
concepts associated with infinity (e.g., Weller, Arnon, 
& Dubinsky, 2009). Finally, some studies give special 
emphasis to how such misconceptions can be trans-
mitted to students (Tall & Schwarzenberger, 1978). 
However, we would argue that the mere fact of being 
in possession of a valid response does not account for 
the full range of knowledge that a teacher mobilises 
when they construct an example, as shall be seen in 
the following section.

The potential of various models has recently been 
illustrated in relation to teachers’ knowledge of infin-
ity (Montes, Carrillo, & Ribeiro, 2014). In this paper, 
we consider the use of one such model, MTSK, in re-
vealing the impact of the teachers’ understanding of 
infinity on their planning for a lesson on the addition 
of geometric progressions. 

METHOD

The data used in this paper are drawn from two sep-
arate but related case studies (Montes, 2011; Montes, 
in press), studying the knowledge of infinity of three 
teachers by means of an interview structured around 
the question,  “How would you approach the addition 
of successive powers of ½ with a class of 16-year-olds?” 

Here, we consider the different approaches adopted 
by the three teachers in response to this question. The 
first two, Sandro and Aaron, are mathematics gradu-
ates with 5 and 8 years’ teaching experience behind 
them respectively, whilst the third, Manuel, also a 
mathematics graduate, was following a teacher train-
ing course at the time of the study. As noted above, all 
three were taking part in studies into their knowledge 
of infinity, and this meant that all of them took for 

granted that the interview about successive powers 
was concerned with the notion of convergence of an 
infinite series. Their suggestions for dealing with the 
concept in class are given below: 

Sandro:  The usual thing is you say that they have 
a cake [draws a rectangular cake], and 
you eat half, and then half of the remain-
ing bit, and then half again, and carry on 
like that a few times, and you see [...] You 
can also do it with a piece of paper, which 
you cut again and again, and each time 
you are left with a smaller piece, and they 
see that there comes a moment when the 
piece left over is so small as to be negligible 
(Figure 1).

Aaron:  I’d take a piece of paper a metre wide as 
reference, and then one of half a metre, 
which I’d place on top. After that, another 
of a quarter of a metre, which I’d place on 
the right, and then one of an eighth, which 
I’d also lay on top. At some point, I’d get 
them to see that if you zoom in on the pro-
cess, you get back to what was essentially 
the starting point, making a comparison 
between the piece left over and the origi-
nal half-metre piece. I’d continue a few 
more times in the same way and get them 
to see that you can never get beyond that, 
however close you get (Figure 2).

Manuel:  I’d get them to cut a sheet of paper in 
half, and then one of the halves in half 
again, and carry on like that five or six 
times until they see that you could con-
tinue with some ‘super-sharp scissors’ 
as many times as you like. Then I’d get 
them to write on each piece the fraction 
it represents, put all the pieces together 

Figure 1: Graphical reconstruction of the explanation of Sandro

Figure 2: Graphical reconstruction of the explanation of Aaron



What does it mean as a teacher to “know infinity”? The case of convergence series (Miguel Montes and José Carrillo)

3223

and imagine them all together, including 
the ones we could have cut but didn’t, so 
that they became aware that all the pieces 
together comprise the whole sheet, which 
has an area of 1 (Figure 3).

ANALYSIS

This section takes the examples of three teachers talk-
ing about the same exercise and suggesting ways of 
dealing with it in class, and illustrates the potential 
these situations offer for exploring the knowledge 
displayed by the teachers beyond the strictly math-
ematical.

The three teachers take the same methodological 
approach in that they all recommend cutting paper 
in half, albeit that two – Sandro and Manuel – sug-
gest the pupils themselves do the cutting, whilst in 
Aaron´s version it is the teacher who does this. In 
terms of the mathematical knowledge deployed, all 
three responses show understanding of the proposed 
scenario, predicated on convergence when adding a 
geometric series. However, the three scenarios reflect 
different understanding of the concept of infinity.

In the case of Sandro, his argument is based on the fact 
that after repeatedly cutting the sheet in half (in order 
to represent division by two) and putting the result-
ant pieces together, there comes a moment when the 
remaining piece “is so small as to be negligible.” This 
alludes to a significant property of the remaining item 
in a series, underlying which is the idea of the infin-
itesimal. The knowledge revealed by the answer is a 
clear example of Knowledge of Topics, in which the top-
ic in question is ‘convergence of series’. Nevertheless, 
the concept underlying the solution and making it 
coherent, although not actually explicitly articulat-
ed, is that of the tendency to zero of the remainder in 
a series. This suggests a potential understanding of 
infinity (as the process is unfinished) which, given 
that the concept ranges across topics, is most appro-
priately located in the sub-domain Knowledge of the 
Structure of Mathematics. 

Turning now to Aaron’s answer, we can see that the 
mathematical foundation of his answer concerns the 
limiting effect of adding successive halves. Aaron 
diverts attention away from the total value of the 
addition towards the impossibility of this total ever 
reaching the total dimensions of the sheet. In mathe-
matical terms, the element underlying this procedure 
is the concept of convergence of a sequence (of partial 
additions). Aaron makes the process a recurrent one 
so as to illustrate the fact that, however many times 
one cuts the paper in halves, there will always be one 
half lacking to complete the whole. The completion 
point constitutes a limit, which can be approached as 
closely as one wishes, but which can never actually be 
reached. This process view reflects a process-oriented 
and iterative perspective of infinity, again also associ-
ated with a potential understanding (Lakoff & Nuñez, 
2000). Once again we are in the domain of Knowledge of 
Topics, in this case the topic being convergence of se-
ries. Aaron’s familiarity with the definition of conver-
gence means he puts the emphasis on the possibility of 
choosing any term and recognising that it never goes 
beyond the established limit, although it might be very 
close. This familiarity, rooted in his understanding of 
infinity, is likewise associated with Knowledge of the 
Structure of Mathematics.

Finally, Manuel’s answer is suggestive of elements 
which are different from the previous answers, less 
in terms of the knowledge mobilised as the nature of 
this knowledge itself. It follows the same dynamic as 
the previous two in that it generates the (½)n series 
via the expedient of dividing a sheet of paper in two. 
During the procedure, Manuel introduces the idea of 

‘super-sharp scissors’ to achieve the required degree 
of abstraction suggested by being able to cut the paper 
indefinitely, beyond the physical limitations. To the 
extent that this approach illustrates awareness of po-
tential difficulties in the students’ capacity for abstrac-
tion, the extract pertains to the sub-domain Knowledge 
of Features in Learning Mathematics. Afterwards, 
Manuel introduces an element which diverges sig-
nificantly from the previous suggestions. Instead of 
centring attention on the process of repeatedly di-

Figure 3: Graphical reconstruction of the explanation of Manuel

…
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viding in two, he pieces the sheet together again. This 
helps the students to make sense of the final result, 
graphically illustrating that the process of addition 
has a finite result equivalent to the surface area of 
the original sheet. The knowledge involved in this 
instance is that of Knowledge of Topics, which enables 
him to construct an example based on the meaning of 
the convergence of a series, and to take into consid-
eration the implicit role of infinity in the expression 

‘all the pieces together’, which provides an objective 
correlative for the notion of convergence of a series.

In each case, the proposed activity is underpinned by 
an understanding of the role of the concept of comple-
tion in demonstrating convergence, which is most per-
tinent to the sub-domain of Knowledge of Practices in 
Mathematics. Sandro makes use of the characteristic 
of series that if the remainder tends to zero, then the 
series is convergent. Aaron, for his part, draws on the 
fact that the annotation of partial additions implies 
convergence. On the other hand, Manuel bases his 
approach on the result of the addition, and as such it 
does not constitute a demonstration in the strictest 
sense of the word, although it is an interesting strat-
egy to use with students.

Opportunities for further research
The analysis above is concerned chiefly with the pure-
ly mathematical considerations brought into play by 
the three teachers. Nevertheless, this is not the only 
kind of knowledge we believe they mobilise. The fact 
that the three suggestions are significantly different, 
in terms of both the mathematics involved and the 
manner of understanding infinity alerts us to the 
presence of opportunities for further research (Flores 
et al 2013), specifically into the responses which these 
three teachers might give to different questions about 
the appropriateness of their suggestions for dealing 
with this topic. With a view to developing teacher 
training materials such as vignettes for discussion, 
we think that further research into other aspects of 
these three teachers’ knowledge is of interest as it will 
enhance the consistency of analysis. Some of the areas 
we feel would reward study are indicated below.

We think it would be interesting to ask the three 
teachers about the effectiveness of their approaches 
in terms of the students’ potential understanding of 
the scenario. In this respect, although the first two ap-
proaches demand an understanding of the concept of 
limit if they are to be successful, they imply a potential 

understanding of infinity, something usually expect-
ed amongst students. By contrast, the third scenario 
implies considering the process as a whole, given that 
it demands an actual understanding of the infinite 
process, which is a more difficult concept to acquire. 
Exploring with teachers the use of the paper-cutting 
technique as a means of approaching the task also 
has the potential to reveal useful information about 
mathematics teachers’ knowledge, going beyond the 
purely manipulative dimension of the technique 
towards understanding how it might help pupils to 
understand the concept in question. Finally, it would 
be interesting to go into greater depth regarding the 
suitability of the lesson plans in relation to the pu-
pils’ age, previous learning experiences of the topic, 
and syllabus expectations regarding the concept of 
infinity.

CONCLUSIONS

Infinity matters for teaching certain concepts, many 
associated with the area of mathematical analysis. 
For certain items on the syllabus, its importance to 
mathematical procedures at a conceptual level, such 
as the calculation of limits, is explicit. In the exam-
ples above, each teacher’s consideration of infinity 
leads them to tackle the same question from different 
mathematical perspectives, each of which provides 
the epistemological underpinnings for the chosen ap-
proach, specifically the infinitesimal of the remainder, 
the iterative and recurrent elements of the limiting 
process, and the conceptualization of a sequence as 
a whole. We are aware that the examples covered in 
this paper offer nothing more than an initial consider-
ation of the knowledge of infinity brought into play by 
teachers when they plan a lesson around the concept 
at an epistemological level. Nevertheless, we believe 
that they demonstrate the involvement of infinity in 
the teaching process, and explore a little further the 
big idea of ‘dealing with infinity’ (Kuntze, Lerman et al., 
2011). The examples also enable us to map the contours 
of the knowledge of infinity which the teachers bring 
to bear in their classes, which is extremely closely 
related to how they conceive of infinity, and comple-
ments studies of a purely cognitive nature (e.g., Weller 
et al., 2009). 

Nevertheless, beyond purely mathematical consider-
ations, we would argue that it is necessary to further 
explore those aspects of infinity which come under 
the auspices of Pedagogical Content Knowledge, as it is 
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these that make the mathematical content relevant to 
the classroom. There are, too, the questions of the po-
tential of different methodological approaches for dif-
ferent concepts, and the features of the pupils’ learn-
ing of concepts involving infinity, as well as those of a 
curricular nature or associated with the performance 
expected at a particular age or level, all of which are 
also important for the teacher to be aware of.

In this paper, we have outlined some of the areas of 
pedagogical content knowledge associated with in-
finity which we believe merit further attention and 
which are of special interest to our work. The under-
standing and awareness of infinity which a teacher 
is required to acquire is necessarily one which takes 
a specialised perspective of mathematics teaching. 
The role of PCK is relevant from this perspective in 
terms of opportunities for further research beyond 
the purely mathematical aspects of the concept, such 
as understanding which features of the concept are 
involved in the process of learning. It is in this respect 
that the MTSK model is especially useful.

The different aspects arising from analysing teach-
ers’ professional practice with regard to infinity or 
related items should also be taken into account in the 
training of both primary and secondary teachers. For 
example, paradoxes could be used to nudge teachers 
to develop their understanding of key mathematical 
concepts, especially those associated with infinity, 
or could be a “vehicle for raising their pedagogical 
awareness of the development of mathematical knowl-
edge” (Moshovitz-Hadar & Hadass, 1990). 
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Estimation appears as a relevant aspect to the new 
Curricular Guidelines of year 2012 of the Chilean 
Ministry of Education. In this paper, we analyze the 
mathematical knowledge for teaching of 112 Chilean 
teachers of Primary Education to deal with a classroom 
activity of discreet measurement estimation proposed 
in governmental curricular orientations. The qualita-
tive-descriptive analysis developed in our study is sup-
ported by a reconstruction of the concept of measure-
ment estimation. The results show that the knowledge 
of a significant part of the participant teachers presents 
some deficiencies, since they either propose to develop 
the activity without including perceptive abilities or they 
propose an action limited to a measurement exercise. 
Only 13.1% of the teachers state that when using the ex-
ample given for estimation a perceptive-type exercise 
is required.

Keywords: Mathematical knowledge for teaching, 

measurement estimation, perception, referent. 

INTRODUCTION

At the beginning of the 80’s, the teaching of meas-
urement gained emphasis in the curricula of some 
schools that answered to the guidelines of interna-
tional organizations linked to the teaching of math-
ematics (Cockcroft Report, 1982; ICMI, 1986). These 
orientations were included by the Chilean Ministry 
of Education in the Curricular Guidelines of the year 
2012, in which measurement has become the new cur-
ricular axis in primary education. In order to com-
plement these guidelines, the Ministry itself has pub-
lished some activity proposals in its study program.

The new Chilean curriculum considers estimation in 
more than twelve learning objectives in measurement 
and geometry. However, previously to this reform, 
measurement estimation hadn’t had its own space in 

Chilean study programs. For this reason, probably, 
current teachers have never received training in this 
respect, neither in their school years nor in their fur-
ther professional training. Therefore, we are facing a 
situation in which a mathematical concept bursts into 
the classrooms without any specific training being 
provided to the educators.

Considering the shortcomings identified by interna-
tional mathematics studies regarding the teaching 
skills of teachers on the estimation of measurement 
(Chamorro, 1996, 1998; Joram et al., 2005; Forrester 
& Pike, 1998), estimation measurement is a concept 
that has not been investigated in depth, and in which 
difficulties have been detected in the learning of the 
students (Jones, Forrester, Gardner, Grant, Taylor, & 
Andre, 2012). At the same time, there are studies that 
claim that teachers work in estimating measurement 
is superficial and that they do not feel confident about 
working with students (Lang, 2001)

If to this we add that Chilean teachers have not had 
training in this respect, we consider it important to 
focus on how teachers interpret the estimation meas-
urement activities proposed in government docu-
ments and official textbooks. Developing different 
learning objectives for the Chilean curriculum should 
be the main reference point for this. 

As an orientation for our work we ask ourselves: 
How are measurement estimation activities treated 
by primary school teachers? In order to answer this 
question we take the Mathematical Knowledge for 
Teaching (MKT) proposed by Ball, Thames and Phelps 
(2008) as a theoretical referent and we carry out a 
qualitative-descriptive study in Santiago de Chile 
with 112 in-service Primary School teachers, who have 
taught or will be teaching measurement estimation 
to their pupils at a certain point in time.
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Our aim is to investigate the possible treatment of 
measurement estimation activities in the classroom. 
Conversely, we intend to study which MKT will be 
needed by the teachers when introducing the new 
content in the mathematics curriculum. Our final 
aim is to establish guidelines that may back up fu-
ture improvement actions of initial and continued 
training of teachers.

MATEMATHICAL KNOWLEDGE FOR TEACHING

The work of Ball and colleagues (2008), rests on 
Shulman (1986), emphasizes the use of knowledge in 
teaching and for teaching. They focused on the analy-
sis of knowledge for teaching from the observation of 
the teacher’s work in the classroom and outside, thus 
introducing the line of research of MKT. In the cur-
rent study, we focus only on one component of MKT, 
Knowledge of Content and Teaching (KCT), which 
combines knowledge of mathematics and knowledge 
of its teaching. Examples of this type of knowledge are 
found in the ability to sequence content, propose start-
ing, deepening and closure examples, and knowledge 
of the advantages and drawbacks of representations 
used to teach a specific idea.

MEASUREMENT ESTIMATION

When revising the literature on measurement esti-
mation we often observe that different definitions of 
estimation include a wide range of tasks related to 
different fields of mathematical knowledge. These 

tasks may include mentally assigning a value to a mag-
nitude measurement, an agile mental calculation of an 
arithmetic operation, or the calculation of the likely 
value of a statistical measurement, amongst others. 
Table 1 shows different definitions of estimation pro-
posed by different authors.

Segovia and colleagues (1989) establish that meas-
urement estimation differs from computational es-
timation due to methodological reasons. Hogan and 
Brezinski (2003) differentiate three types of estima-
tion, according to the abilities they develop:

 ― Numerosity: refers to the ability to visually esti-
mate the number of objects arranged on a plane 
within a limited amount of time. 

 ― Measurement estimation: is based on the percep-
tive ability to estimate different magnitudes in 
common objects.

 ― Computational estimation: refers to the process 
by which an approximate value is rapidly deter-
mined for the result of a mathematical operation.

For Hogan and Brezinski (2003), computational esti-
mation is a skill which evolves together with the rest 
of mathematical abilities. On the other hand, numer-
osity and measurement estimation are abilities that 
develop independently from that of estimating a cal-
culation and are not grouped in the category of usual 
mathematical abilities. These authors explain that 

Definition Relevant aspects

1 “A process to reach a measurement or measure without the help 
of measuring tools. It corresponds to a mental process that in-
cludes visual or manipulative aspects.” (Bright, 1976, p. 89).

Mental process used to obtain a meas-
urement.
Visual perception or use of sense of 
touch.

2 “the ability to judge whether the result of a calculation which has 
been carried out or a measurement which has been taken seems 
to be reasonable and ability to make subjective judgements about 
a variety of measures” (Cockcroft Report, 1982, pp. 22–23).

Evaluation of the adequacy of results 
of calculations or measurements. 
Subjective evaluation of a measure-
ment.

3 “assessment of the value of the result of a numerical calculation 
or of the measurement of a quantity, as a function of the individu-
al circumstances of who forms it” (Segovia et al., 1989, p. 18).

Subjective evaluation of the results of 
calculations or measurements.

4 “the skill of making an educated guess as to the value of a dis-
tance, cost, size, etc. or arithmetic calculation” (Clayton, 1996, p. 
87).

Conjecture on measure-ments and 
arithmetic ope-rations.

5 “Refers to a number that is a suitable approximation for an exact 
number given the particular context” (Van de Walle et al., 2010, p. 
241).

Adequate approximation of a number.

Table 1: Definitions of estimation
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in terms of the human brain, we have an accumula-
tor that stores quantities in an approximate way. For 
instance, we know what a meter is, we can identify 
this concept in an object or in part of it and we can 
describe it using our body. This is possible due to the 
fact that we are aware of the adequate measurement 
of the length of a meter. This quantity “accumulator” 
may contribute to the development of people’s visual 
perception by relating measurement estimation and 
numerosity with spatial abilities. We understand that 
this “acquisition” of the unit of measurement in use 
when performing estimations does not appear in the 
definitions shown above.

ESTIMATION IN EDUCATION

An important part of teaching measurement is focused 
on the development of their estimation. In the first 
place, this is due to the fact that estimation will further 
develop perceptive abilities (Inskeep, 1976; Cockcroft 
Report, 1982; Hogan & Brezinski, 2003). In addition, 
estimation comprises the foundation of the teaching 
of physical magnitudes such as length, surface area, 
volume or weight, amongst others (Hogan & Brezinski, 
2003; Joram, Subrahmanyam, & Gelman, 1998; Joram, 
Gabriele, Bertheau, Gelman, & Subrahmanyam, 2005). 
When working on measurement estimation numer-
ical abilities are also exercised (Boulton-Lewis, Wils, 
& Mutch, 1996; Joram et al., 1998; Sarama & Clements, 
2009), in the sense of measurement (Clements, 1999) 
and in the numerical and spatial senses (Lang, 2001).

Despite the emphasis mathematics education attrib-
utes to measurement estimation, there are few studies 
that refer to the way estimation is developed in the 
classroom. Forrester and Piké (1998) observed that 
in the teachers’ speech in the classroom there was 
a significant separation between measurement and 
estimation. Estimation was treated as a predictive 
hypothesis, in a vague and superfluous way, as a pro-
cess failing to produce satisfactory answers to solve 
situations that only a measuring tool would be able 
to answer.

These authors observed that estimation was treated 
as a means of “thinking reasonably” that included rid-
dles more often than value judgments based on refer-
ents, without the requirement of evidence of concept 
understanding. This outlook suggests mathematics 
is a synonym of rigor and exactitude. Therefore, an 
estimate should always be checked with a measuring 

instrument. Segovia and Castro (2009) explain that 
in most dictionaries the meaning of mathematics is 
characterized by exactitude and rigor. Following 
these criteria, estimation would be far away from 

“real mathematics”, since the results it provides are 
not exact. 

In our literature revision we have found few studies 
on teacher training related to measurement estima-
tion. However, Joram and colleagues (2005) suggest 
the use of the estimation strategy of the reference 
point, as a seemingly appropriate didactic strategy.

GOAL OF THE STUDY

Since the Chilean Curricular Guidelines of the year 
2012 include measurement estimation, it would be 
desirable to for Chilean teachers to have the ade-
quate knowledge to use the activities proposed in the 
study programs provided by the Chilean Ministry of 
Education. In this context, the aim of our study is the 
following:

 ― To characterize the Knowledge of Content and 
Teaching (KCT) on measurement estimation to 
allow teachers to apply the activities proposed 
by the Ministry’s guidelines in their classrooms.

THE STUDY

As a data collection tool, we have elaborated a ques-
tionnaire of ten open questions that were oriented 
by the different categories of MKT (Ball et al., 2008). 
The questionnaire was answered by 112 in-service 
Primary School teachers in Santiago de Chile. In this 
presentation we only analyze the answers to a ques-
tion based on a task proposed in the guidelines for the 
curriculum of 7-year-old children (Figure 1).

The task proposed in the guidelines is an example of 
a measurement estimation activity for the teachers 
to develop in the classroom. The aim of this activity 
is estimate quantities up to one-hundred in concrete 
situations using a referent. With this question, we 
try to collect information about Knowledge Content 
and Teaching, because it can show how the teachers 
manage the content and activities in the classroom, 
and consider that the referent is a strength of the ac-
tivity and that students should not be permitted to 
measure using the square as the unit of measurement.
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In our questionnaire we ask teachers to explain how 
they would approach the activity shown in the class-
room

DATA ANALYSIS

Since we are interested in identifying aspects of 
teachers’ MKT around measurement estimation, the 
analysis of the data collected is qualitative. Therefore, 
based on the different views teachers have of activity 
4, we have created several categories to characterise 
the knowledge of measurement estimation detect-
ed. When making a first reading of the answers, we 
prove the need to establish elements that determine 
if a task is actually about measurement estimation 
in order to back up our analysis. For this reason, we 
decided to elaborate a definition of the concept that 
included the fundamental elements identified during 
our literature review. 

Our definition of measurement estimation is the fol-
lowing:

To perceptively assign a value, or an interval of values, 
together with a unit that corresponds to a discrete or 
continuous magnitude, by means of previous knowledge 
or by an indirect comparison to an auxiliary object.

This definition is based on three essential elements:

 ― Assigning a numerical value (V): in order to con-
sider the task an estimation, the assignment of a 
numerical value is required; otherwise, the task 
only requires perceptive work. For instance, if 
when touching the water of a swimming pool 
we state that it is pleasant to swim in, the task is 
exclusively perceptive, given that we have not 
assigned any value to temperature and mea-
surement units do not play a part in the activity 
(Bright, 1976; Informe Cockcroft, 1982; Segovia et 
al., 1989; Joram et al., 2005).

 ― Executing the task perceptively (P): in order to es-
timate it is necessary to use the senses, avoiding 
counting or the direct use of any measurement 
tool, standardized or not. When a measurement 
tool is used and a direct comparison is made, the 
action taking place is measuring, not estimating, 
even though the result may be expressed approx-
imately (Bright, 1976; Hogan & Brezinski, 2003; 
Joram et al., 2005; Sarama & Clements, 2009).

 ― Relating perception to previous knowledge or 
to the mental image of an auxiliary object (R): In 
order to estimate referents are required, or to 
ideally possess a mental notion of a measurement 
unit; otherwise the activity would only require 
to guess or give a random result (Clements & 
McMillen, 1996; Hogan & Brezinski, 2003; Joram, 
2003; Sarama & Clements, 2009).

Given that in the activity used in our question, the 
referent considered in the estimation has been given 
in the formulation, in our analysis we consider only 
how this referent has been used, the main analysis 
aspect of which is the perceptive component (P). Below 
we give an example of the analysis process and we 
introduce the different categories that organize the 
different ways teachers suggest approaching the ac-
tivity in the classroom.

Use of the activity based on providing tools
Some teachers limit themselves to answering to what 
type of material will be used during the activity, with-
out reporting particularly how these resources are 
planned to be used. For instance, one of the teachers 
answers: “The students will be given both shapes (1 of 
each) made of paper card.”

We observe that the teacher’s attention is focused on 
the material he will use in the activity instead of what 
is going to be done with it, which makes it impossible 

Figure 1: Estimation activity
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to guess how the teacher is going to develop the activ-
ity in the classroom. 

Use of the activity as evaluation
Some of the answers given by the teachers suggest 
using the activity described as an evaluation exercise 
without a backup of mathematical processes associ-
ated to estimation. For instance, one of the teachers 
answers: “First I would show the children this rectangle 
and after that I would hand in a piece of colored paper 
to each of them and would ask them to estimate how 
many squares can fit into the rectangle.”

We observe that the teacher is focused on the amount 
of squares that fit into the rectangle (V), but without 
offering any didactic instructions nor any other type 
of information that may allow us to understand how 
he plans to direct and develop the activity in the class-
room. Therefore, we have no evidence that perceptive 
aspects may be included in the activity (absence of P).

“Children: I invite you to estimate the area of the rectan-
gle using the little square as the unit of measurement”. 
The teacher does the same as the teacher above, both 
give space for students to measure, estimate or guess.

Use of the activity as measurement
In the proposals of some of the teachers, we observe 
that they intend to go about the activity as a meas-
urement task, with the use of non-conventional tools, 
explaining the way these are going to be used for the 
activity. This allows us to see that their proposal cor-
responds to a measuring activity. Answers in this 
category evidence a misunderstanding between the 
use of a referent to carry out an estimation and the 
use of a non-conventional measuring tool. Into this 
category we included answers such as: “We need to 
know how many squares we need to cover the rectangle. 
After constructing the rectangle we should place squares 
of equal size on top of the former.”

We see that the teacher points out that the surface 
area of the rectangle should be covered by squares of 
the same size as the one given, suggesting a counting 
activity. Based on this idea, the referent then becomes 
a non-standardized unit of measurement. In this case, 
the students would reach an evaluation (V) that is not 
supported by a perceptive act (absence of P) but by a 
measurement.

Another example is this answer: “Place the square on 
the rectangle to complete the rectangle with squares. 
The rectangle with the superimposed squares will be 
presented by the students”

In this task, there is no perceptive work (absence of 
P) because the students must complete the rectangle 
with squares, perhaps drawn on it, to count how many 
squares fit. As with the teacher above, the square was 
used as a non-standardized unit of measurement.

Use of the activity as a 
measurement estimation
Some of the teachers regarded the evaluation of the 
amount of squares that fit into the rectangle as a 
perceptive activity, by using the square shape of the 
problem’s formulation as a referent. We consider that 
answers of this type suggest using the activity as a 
measurement estimation exercise. Among them we 
find: “Boys and girls, on the blackboard you can see a 
red square and a blue rectangle. Without standing up or 
leaving your seats, or as you prefer, please estimate how 
many times the red square fits into the blue rectangle, by 
placing the squares next to each other.”

We have identified that the intention of reaching an 
evaluation (V) is supported by a perceptive action (P), 
since the teacher does not allow a physical interaction 
between the students and the representations of the 
figures on the blackboard. In this case, the students 
would be obliged to carry out a visual perception ex-
ercise.

Another teacher answer: “Without making any move-
ment, think about how many squares you estimate will 
fit in the rectangle”

We observe that when the teacher says “making any 
movement”, s/he indicates that the student must not 
handle the square, thus steering the student away 
from measurement and supporting the perceptive 
action (P). In this way, the evaluation (V) rests on the 
perceptive action. 

RESULTS

Table 2 shows the answer frequency for the different 
categories.

We see that only 16 of the 112 surveyed teachers have 
made a proposal that includes the development of per-



Primary teacher’ approach to measurement estimation activities  (Noemí Pizarro, Núria Gorgorió and Lluís Albarracín)

3232

ception and evaluation. Given that the referent used 
is found explicitly in the formulation, their proposal 
corresponds to an estimation task. These teachers 
show an adequate Knowledge of Content and Teaching 
for the development of the activity in the classroom. 

On the other hand, 38 of the teachers make a proposal 
in which estimation is a synonym of evaluation of a 
magnitude, without justifying how the task is carried 
out. This makes us think that in the concept of esti-
mation used by these teachers, perceptive processes 
are not relevant and estimation is not supported by 
mathematical processes. The development of the ac-
tivity proposed is incomplete, presenting an incom-
plete Knowledge of Content and Teaching regarding 
measurement estimation.

A third group of 25 teachers considers that estimating 
a measurement is a synonym of measuring, using the 
referent as a unit of measurement. For these teach-
ers, measurement estimation seems to be the same 
as measuring with a non-standard tool. In this last 
category, we include the answers to the questions that 
are exclusively based on providing the students with 
measurement tools without specifying their didactic 
use. This group is comprised of 4 teachers, who we 
may also consider to confuse estimation with meas-
urement. Finally, the categories that include other 
answers and empty answers represent 28 of the 112 
teachers, which represent a non-negligible percent-
age (25.0%) of the teachers surveyed.

General research results
This research is part of a wider study. We have used 
a variety of questions focused on different aspects 
of MKT estimation of measurement. In this way, we 
have found that there are gaps at different levels, 
e.g., teachers confused estimation of measurement 
with measurement itself, using non-standard units 
of measurement; teachers consider that the estimate 
of measurement is a superfluous task, like a guess; 

teachers do not observe the weaknesses of estimation 
measurement activities.

CONCLUSIONS

In the present study we have observed large differenc-
es in Knowledge of Content and Teaching on measure-
ment estimation between Chilean teachers. Based on 
one of the activities proposed by the Chilean Ministry 
of Education to exemplify measurement estimation 
work in the classrooms, we note that a large part of the 
teachers do not possess an adequate specific knowl-
edge to use these activities with the purpose for which 
they have been designed.

Specifically, only 13.2% approaches the activity with 
the required conditions to work on estimation in an 
effective manner. A significant part of the group does 
not acknowledge the importance of perception when 
estimating and do not mention perception explicitly. 
This allows the student to handle the activity both 
directly or indirectly, which would not be consid-
ered estimation. It should be noted that a large part 
of the teachers confuse measurement estimation and 
measurements based on the use of non-standardized 
measurement tools. This type of confusions can be 
related to the absence of estimation in the curriculum 
to this date. The surveyed teachers have not received 
any training that allows them to distinguish these two 
types of tasks.

In order to solve this situation of lack of knowledge, 
we consider that measurement estimation should be 
included in teacher-training curricula. It would be 
interesting for pre-service and in-service teachers 
training to include activities that required for them 
to carry out their own estimations and compare them 
to measurement processes It would also be useful for 
teachers to observe mathematical processes that dis-
tinguish the different types of estimation presented 
in our literature review, as a way of reinforcing their 

Category Frequency

Use of the activity based on the supply of tools. 4 (3.6%)

Use of the activity as an evaluation with a possible estimation or measurement. 38 (32.7%)

Use of the activity as a measurement. 25 (22.3%)

Use of the activity as a measurement estimation. 26 (13.1%)

Other answers 5 (4.5%)

No answer 23 (20.5%)

Table 2: Frequencies and categories of teachers’ answers
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specific mathematical content. On the other hand, a re-
vision of current curricular guidelines is paramount, 
in order to avoid creating larger ambiguities. If we 
consider it acceptable to verify the result obtained 
from early-stage estimation activities with the exact 
result, it is fundamental that teachers regard estima-
tion as a task in itself, with its own validation proce-
dures according to the context’s requirements

Finally, we consider it crucial to define a mathematical 
concept precisely when introduced into an education-
al system. In addition, official programs and didactical 
guidelines accompanying textbooks should provide 
examples from appropriate activities, distinguishing 
them from those that are not. Otherwise, it is highly 
likely that the curricular changes the country wants 
to achieve may not be transferred to the classrooms 
effectively.
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The paper discusses a theoretical framework for inves-
tigating the process of becoming a mathematics teacher, 
based on the need to better understand how mathemat-
ics and teaching combine in developing mathematics 
teacher identities. Identity is understood as a function 
of participation in and at the boundaries of various 
communities of practice, during university teacher ed-
ucation and at school. In order to reveal possible rela-
tionships between developing teacher identities and the 
discipline of mathematics, teachers’ changing concept 
images of mathematics are embedded within the defi-
nition of identity.

Key words: Identity, identity development, transition, 

situated concept images.

INTRODUCTION

Becoming a secondary school mathematics teacher 
can be described as a role change, as one goes from be-
ing a university student who is learning and knowing 
mathematics for oneself, to becoming a mathematics 
teacher in school and being able to enable others to 
know it (Rowland, Huckstep, & Thwaites, 2005). It is 
about carving out a space for one’s identity as a math-
ematics teacher (Alsup, 2006), as one is negotiating 
shifting conceptions of what mathematics teaching 
is or should be (Beauchamp & Thomas, 2009). In par-
allel with undergoing the transition from university 
teacher education to a professional debut in school, 
the character of the mathematics content is changing. 
It goes from being a scientific discipline represented 
by the discourse taking place between mathemati-
cians and mathematics students at the university, to 
becoming a school subject as part of general educa-
tion, preparation for everyday life and as a basis for 
higher education. Hence, the process of becoming a 
mathematics teacher is concerned with both; changes 
in practices and changes in the mathematics content.

The purpose of this paper is to understand better 
how mathematics and teaching combine in teachers’ 
development of identities (Adler, Ball, Krainer, Lin, & 
Novotná, 2005). From research on mathematics teach-
er education, there is known a great deal about some of 
the specialty of mathematics teachers’ knowledge (e.g., 
Ball, Lubienski, & Mewborn, 2001) and their beliefs 
(Phillip, 2007). However, there is a need to understand 
better the dynamics of mathematics teachers’ learn-
ing, as they move across different practices in univer-
sity and school and unite their experiences into a role 
as a professional teacher. According to Lerman (2000), 
this requires an extension of the unit of analysis from 
concerning the individual mathematics teacher, her 
mathematical knowledge and beliefs, to also including 
the social practices in which the teacher participates. 
In order to study how learning takes place within and 
across practices and institutions, I present a theoret-
ical framework for investigating how prospective 
mathematics teachers make sense of undergoing the 
transition between university teacher education and 
school. Learning is here understood as identity de-
velopment, when a person participates within and at 
the boundaries of communities of practice (Wenger, 
1998). Further, I assume that the discipline of mathe-
matics is a distinguishing characteristic of the learn-
ing context, meaning that the nature of practices of 
mathematics is fundamentally different from other 
disciplines. Consequently, developing an identity as 
a mathematics teacher is different from developing 
a teacher identity in other subjects.

In order to study identity development through the 
profession of a secondary school mathematics teacher, 
I offer for critique a situated understanding of teach-
ers’ concept images in mathematics as being part of 
their professional identity and development. The 
framework is used in a longitudinal interview study 
of a group of prospective secondary school mathe-
matics teachers’ accounts of their ongoing transition 

mailto:kirsti.ro%40uia.no?subject=


Investigating mathematics teacher identity development: A theoretical consideration (Kirsti Rø)

3235

into the mathematics teacher profession. It is based on 
the assumption that the teachers’ accounts provide a 
window into the sort of learning they can experience 
as they move from one setting into another (Jansen, 
Herbel-Eisenmann, & Smith III, 2012). Embedded in 
the learning process are the teachers’ situated concept 
images in mathematics. Hence, the focus of the study 
is the teachers’ meaning making when participating 
in different communities of practice, rather than iden-
tifying possible impact from communities on their 
concept images. 

OUTLINING A FRAMEWORK FOR 
INVESTIGATING MATHEMATICS 
TEACHER IDENTITY 

Identity in teaching has been explored from a range of 
theoretical approaches (Beauchamp & Thomas, 2009). 
It spans from categorising aspects of teacher identi-
ty in order to better understand and describe it and 
possible influences on teachers and their practice, 
to viewing identity as a function of participation in 
different communities (Wenger, 1998). The latter is in 
line with what Lerman (2000) has denoted as the social 
turn in mathematics education research, identified by 
the rise of theories viewing learning as participation 
in practices rather than as acquisition of new knowl-
edge structures or beliefs. Following Wenger (1998), 
identity  develops through “negotiated experiences 
of self ” (p. 150), as a person interacts with others and 
regulate her participation according to the reactions 
of others to her. In other words, mathematics teacher 
identities exist both in teachers and in their relations 
with others (Ponte & Chapman, 2008). Consequently, 
mathematics teaching can be considered a complex 
personal and social set of embedded processes and 
practices that concern the whole person (Olsen, 2008). 

Wenger’s (1998) theorisation of identity in communi-
ties of practice enables me to study individual mathe-
matics teachers through their social settings. Hence, 
the primary unit of analysis is neither the individual 
mathematics teacher, nor the learning communities 
in the transition from university teacher education 
to school, but instead the teacher-in-the-learning-
community-in-the-teacher (Graven & Lerman, 2003; 
Lerman, 2000). The first part, teacher-in-the-learn-
ing-community, acknowledges that the object of study 
is more than individual cognition and affect, because 
learning is the development of modes of participating 
with others in society. The second part, learning-com-

munity-in-the-teacher, implies that participation de-
velops identity in such a way that the practice becomes 
part of the individual. In other words, the focus is 
neither directed towards categories of mathematics 
teacher knowledge, nor is it directed towards meas-
ures of teachers’ mathematical knowledge for teach-
ing. Instead, I study mathematics teachers’ developing 
sense-making of mathematics and mathematics teach-
ing in light of their experience of participating within 
and at the boundaries of communities of practice in 
university and school. 

In the following, I willpresent a framework that al-
lows me to change the focus on the object of study, by 
placing respectively the collective and the individual 
in the foreground (Palmér, 2013b). With the collective 
in the foreground, I am interested in the mathematics 
teachers’ community memberships in terms of modes 
of belonging: engagement, imagination and alignment 
(Wenger, 1998). Further, becoming a mathematics 
teacher is about reconciling various memberships 
across communities, and consequently, trying to es-
tablish continuity across community boundaries. By 
placing the individual in the foreground, I assume that 
when a teacher is stepping into a practice, the teacher 
is somehow changed. By orienting towards the prac-
tice, taking up new practices or marking a distance 
towards it, the teacher consequently develops new 
understandings of herself as a learner and doer of 
mathematics and mathematics teaching.

Wenger (1998) provides a general theorisation of 
learning and a superior framework for this paper, and 
I will in the following section elaborate on an under-
standing of mathematics teacher learning within and 
between communities of practice. In order to adapt 
the framework to mathematics teacher identities, I 
will argue for the necessity of combining Wenger’s 
notion of identity with a situated understanding of 
Tall and Vinner’s (1981) definition of concept image. 
This is built upon a sociocultural understanding of 
concept images (Bingolbali & Monaghan, 2008), and 
its compatibility with Wenger’s concept of reification. 

MATHEMATICS TEACHER LEARNING WITHIN 
AND BETWEEN COMMUNITIES OF PRACTICE

Based on the assumption that learning is located in 
the relationship between a person and the world in 
which the person participates, Wenger (1998, 2010) 
considers meaning making as a dual process. On the 
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one hand, a person engages in different forms of par-
ticipation, referring to the social experience of living 
in the world in terms of membership in social commu-
nities and active involvement in social enterprises. 
On the other hand, reification accounts for the way in 
which a person of a community builds her own mean-
ing for her participation. For Wenger (1998), reifica-
tion and participation are viewed as complementary 
concepts naming the process whereby individual and 
community experiences are shared and lead to the 
production of shared ideas and concepts. A mathe-
matics teacher’s identity can therefore be understood 
as the intersection of individual and social aspects of 
learning. Individual aspects represent who one is as 
a mathematics teacher due to one’s knowledge and 
views about mathematics and mathematics teaching 
and learning. However, these individual aspects are 
continuously negotiated through the teacher’s partic-
ipation in different communities of practice. 

For prospective mathematics teachers, learning can 
take place when they enter communities of practice 
during teacher training as peripheral participants 
and gradually develop as central participants (Lave 
& Wenger, 1991). A gradual change in participation, 
from the periphery towards the centre, can be de-
scribed in terms of engagement, imagination and 
alignment (Wenger, 1998). Within the community, 
the prospective mathematics teacher engages with 
ideas about mathematics and mathematics teaching 
through engagement in communicative practice and 
develops the ideas through exercising imagination. 
Further, the prospective teacher aligns with condi-
tions or characterisations of the practice. The term 
alignment has later been challenged by Jaworski 
(2006) in terms of critical alignment, a means of not 
just aligning with practice as established in the com-
munity, but of looking critically at that practice while 
aligning with it. The boundary of the community is 
constitutive of what counts as central participation 
and what does not. Other learning opportunities will 
therefore occur at the boundaries, as the mathematics 
teachers are exposed to foreign competences when 
they enter other communities in school and may try to 
create bridges across them and former communities 
(Wenger, 1998). I explore the transition between math-
ematics teacher education and the professional debut 
in school in terms of boundary crossing, as prospective 
mathematics teachers become participants in commu-
nities of practice in school and do the work of reconcil-
iation of different forms of memberships in various 

communities. Hence, different forms of knowledge 
and understanding of mathematics and mathemat-
ics teaching may coexist. Developing a mathematics 
teacher identity during boundary crossing is then 
about continuously synthesizing what counts as 
legitimate knowledge within various communities. 
Simultaneously, the teacher is striving towards con-
tinuity across boundaries by maintaining a sense of 
self through time (Abreu, Bishop, & Presmeg, 2002). 

Wenger (1998) discusses how participation and reifi-
cation have the potential to create continuities across 
boundaries in terms of brokering and boundary ob-
jects. Brokering, as participation across communities, 
is provided by people who can introduce elements of 
one practice into another. A prospective mathematics 
teacher may act as a broker when moving between 
communities in university and school, and bringing 
ideas of mathematics and mathematics teaching stated 
in teacher education into communities of mathemat-
ics teachers in school. However, acting as a broker 
is challenging and uncomfortable, since it requires 
enough legitimacy to influence the development of 
practice within a community, and enough courage to 
address conflicting interests. Hence, entering school 
as a novice mathematics teacher can be described as 
an experience of confrontations between own ex-
pectations about teaching and expectations stated 
by teacher education, students in the classroom and 
colleagues. Another dimension of continuities across 
boundaries is constituted by boundary objects, being 
reified connections between communities (Wenger, 
1998). An example is the guidance paper that student 
teachers are supposed to write and submit to a teacher 
educator at the university and their tutor in school 
prior to their lessons during teacher training. The 
paper may act as a boundary object when it bridg-
es views and knowledge of mathematics teaching in 
university with experiences of classroom practice 
in school. 

In Akkerman and Bakker’s (2011) review of research 
on literature on boundary crossing, boundaries are 
defined as “sociocultural differences leading to dis-
continuities in action and interaction” (p. 133). The 
definition highlights that boundaries are not about 
sociocultural differences per se.  Instead, boundaries 
are “real in their consequences” (p. 152). Thus, unlike 
describing sociocultural differences in university and 
school, I am interested in how the differences play out 
in and are being shaped by the process of developing 
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mathematics teacher identities. By overcoming dis-
continuities, boundary crossing carries a potential 
to learn about practices and about one’s own identity. 
Akkerman and Bakker (2011) present potential learn-
ing mechanisms that may occur when crossing bound-
aries, two of them concerning processes of making 
sense of practices in multiple contexts. Identification 
entails a renewed sense making of different practices 
and related identities, by encountering and recon-
structing boundaries but not being able to overcome 
discontinuities. Learning in terms of reflection will 
result in an expanded set of perspectives and a new 
construction of identity, which in turn will have an 
impact on future practice. Here, reflection is the desir-
able learning outcome, when one is establishing conti-
nuity across boundaries by reconciling memberships 
across communities. For prospective mathematics 
teachers, crossing boundaries is both a valuable and a 
risky process. On the one hand, they are in a position 
to introduce elements of one practice into the other. 
On the other hand they face the risk of never fully 
belonging to or being acknowledged as a participant 
in any one practice.

MATHEMATICS TEACHER IDENTITY 
AND SITUATED CONCEPT IMAGES

As have been emphasised by other researchers (e.g., 
Palmér, 2013a), Wenger (1998) does not focus specif-
ically on mathematics education and mathematics 
teaching, but on learning in its broadest sense. Yet 
others have discussed the possibility of Wenger’s 
framework to take into account the full spectrum of 
locations of cognitive development, from in-the-brain 
to socially dependent (Van Zoest & Bohl, 2008). In or-
der to comply with this request, Van Zoest and Bohl 
(2008) combine Wenger’s (1998) theory of commu-
nities of practice with Shulman’s (1987) heuristic of 
teacher knowledge, and an understanding of knowl-
edge and beliefs as cognitive in nature. However, 
unlike viewing identity as dynamic and in continu-
ous development, they describe it as something the 
teachers “carry with themselves as they move from 
context to context” (Van Zoest & Bohl, 2008, p. 338). 
Consequently, their framework is not consistent with 
my investigation of how teachers make sense of their 
ongoing transition, due to their present situation of 
participating in communities of practice. 

Taking a different theoretical approach, Palmér 
(2013a, 2013b) connects Wenger’s notion of identity 

with Skott’s (2010) and Skott, Larsen and Østergaard’s 
(2010; 2011) theory of patterns of participation. This 
is done in order to describe primary school mathe-
matics teachers’ professional identity development, 

“by including both the individual and the social parts 
of identity development” (Palmér, 2013a, p. 2851). 
Further, the theories are argued to be consistent 
within a situated learning perspective. However, in 
Palmér’s (2013b) study of primary school mathematics 
teachers’ way into their profession, the discipline of 
mathematics do not appear as a prominent part of the 
teachers’ developing identities. Even so, I claim that 
prospective secondary school mathematics teachers 
need to some extent relate to and cope with mathe-
matics both during university studies and in their 
profession. Hence, there is a need for developing an 
analytic tool which makes the mathematics within the 
teacher identity more visible. Inspired by Bingolbali 
and Monaghan (2008), I consider the notion of concept 
image (Tall & Vinner, 1981) as being a helpful construct 
when placing the individual mathematics teacher in 
the foreground (Palmér, 2013b). Tall and Vinner (1981) 
describe concept image as the total cognitive struc-
ture associated with a concept in an individual’s mind, 
which includes mental pictures, associated properties 
and processes, strings of words and symbols. Unlike 
a concept’s definition, the concept image is dynamic 
and develops differently among persons and through 
a multitude of experiences. Although concept image 
and concept definition are terms originating from 
cognitive theories of learning and a focus on individ-
ual student mathematical constructions, Bingolbali 
and Monaghan (2008) argue that the dynamic nature 
of concept image is consistent with a sociocultural 
perspective on learning:

Indeed, the construct can be viewed in terms of 
Vygotsky’s (1934/1986) complexes, a ‘phase on the 
way to concept formation’ (ibid, p. 112) and the 
original view of concept images as developing 
differentially over students through a multitude 
of experiences is essentially a contextual view-
point. (p. 21) 

Bingolbali and Monaghan (2008) base their argument 
on a study of undergraduate students’ learning  of 
the derivative, in which the context of learning is re-
garded as paramount. They found that students’ devel-
oping concept images are closely related to teaching 
practices and departmental perspectives, respective-
ly within mechanical engineering and mathematical 
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sciences. I will take a step further by claiming that 
the dynamic nature of concept image is compatible 
with a situated perspective on learning. According 
to Wenger (1998), different types of memberships in 
various communities entail opportunities and limi-
tations for developing practice, which consequently 
affects a mathematics teacher’s knowing. Hence, I 
assume that situated concept images in mathemat-
ics are embedded in a mathematics teacher identity. 
It is about knowing mathematics for oneself and for 
teaching, which is related to one’s views and emo-
tions about mathematics and mathematics teaching. 
Further, concept images are dynamic in the sense that 
they are negotiated through interaction with other 
participants within various communities of practice. 

A further argument for the compatibility of Wenger’s 
notion of identity and a situated understanding of 
concept images can be found by the term reification. 
As part of the negotiation of meaning, reification is a 
way of giving form to our experience “by producing 
objects that congeal this experience into ‘thingness’” 
(Wenger, 1998, p. 58). Simultaneously, reification 
shapes our experience, since forming a certain un-
derstanding about a topic brings a new focus for ne-
gotiating meaning within a community, leading to new 
ways of reasoning or acting. Reification of practice can 
appear as abstractions, symbols, concepts and tools, 
and becoming a participant in a community is then 
about growing into the practice in which one engages, 
including its reifications. Regarding the prospective 
mathematics teacher, she takes up new practices in 
mathematics and mathematics teaching by participat-
ing in different communities of mathematics students 
at university, mathematics student teachers during 
teacher training and teacher colleagues at school. 
These practices include knowledge of mathematics 
concepts, skills, and beliefs about mathematics and 
mathematics teaching, which I further assume pro-
vide a basis for developing situated concept images 
in mathematics. 

Nevertheless, reification in terms of situated concept 
images does not mean that they are simply objects of 
knowledge and beliefs in mathematics that teachers 
have or gain, but instead they are both “a process and 
its product” (Wenger, 1998, p. 60). In other words, a 
situated understanding of concept image highlights 
its location in social practices, being continuously ne-
gotiated through participation. Further, situated con-
cept images are only “the tip of an iceberg” (Wenger, 

1998, p. 61), being indications of larger contexts of 
meaning realised in human practices. This is in line 
with Tall and Vinner’s (1981) notion of evoked concept 
images, which is the part of a person’s memory evoked 
in a given context, and which is not necessarily all that 
a person knows about a certain topic or area. Hence, 
there is a problem of gaining insight into mathematics 
teachers’ concept images. However, based on a longi-
tudinal interview study, including interview tasks in 
mathematics, I gain insight into an ongoing process of 
identity development on given times and over a pro-
longed period of time. I am therefore able to describe 
the dynamic nature of mathematics teacher identities 
and associated concept images, not as objects within 
teachers, but as objectifications of ongoing processes 
(Palmér, 2013b).

Taking a situated perspective on concept images, 
they do not count for comparing a teacher’s knowl-
edge and/or beliefs before and after undergoing the 
transition between university and school. Instead, 
the underlying question is under which conditions 
successful participation in university communities 
facilitates successful participation in school commu-
nities (Greeno, 1997). This re-establishment of par-
ticipation across settings may lead to experiences of 
discontinuities, e.g., experiences of shifts in practices 
of mathematics teaching and in the mathematics con-
tent. By overcoming them, boundary crossing carries 
a learning potential of developing one’s identity as a 
mathematics teacher and consequently one’s concept 
images in mathematics. 

FINAL REFLECTIONS

I have presented a framework for investigating 
teacher learning in the transition between univer-
sity teacher education and the professional debut in 
school, using Wenger’s  (1998)  theory of community 
of practice as a starting point. In addition to recog-
nise the learning potential that resides within a com-
munity, the framework takes into account learning 
during boundary crossing, where reflection is the 
desirable learning outcome (Akkerman & Bakker, 
2011). Developing an identity as a mathematics teacher 
is then about negotiating what counts as legitimate 
knowledge within various communities in university 
and school, comprising shifting conceptions of what 
mathematics teaching is or should be. Based on the 
assumption that the discipline of mathematics is a 
distinguishing characteristic of the learning context, I 
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have argued for the necessity of combining Wenger’s 
notion of identity with a situated understanding of 
mathematics concept images. They are related to the 
teachers’ knowledge and views about mathematics 
and mathematics teaching, and continuously negoti-
ated through their participation in various commu-
nities of practice. 

I take the mathematics teacher’s perspective and 
investigate identity development based on how pro-
spective mathematics teachers make sense of their on-
going transition between university and school. This 
meaning making is situated within a context, based on 
the teachers’ participation in various communities of 
practice. Hence, the way the teacher looks back and 
reflects on being a student teacher in mathematics and 
a novice mathematics teacher in school, and how she 
discusses mathematics and mathematics problems, 
may change and develop due to her present situation. 
In addition, the teachers’ accounts provide a means 
for them to create continuity across time, in terms of 
maintaining a sense of self. I thus assume that possible 
changes or development in the mathematics teachers’ 
accounts constitutes evidence for their identity de-
velopment, in which the teachers’ situated concept 
images of mathematics are embedded.
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In the study presented here, we address the issue of how 
to investigate future primary school teachers’ responses 
to more or less expected children’s answers and ques-
tions. We observe future primary teachers exposed to 
contingent situations mediated by an educational tool 
called Concept Cartoons, and analyse their responses 
with respect to mathematics subject knowledge. The 
Concept Cartoons presented in this article deal with 
addition of natural numbers. 

Keywords: Concept Cartoons, teachers’ knowledge, 

mathematics subject knowledge, knowledge quartet, 

contingency.

INTRODUCTION

The study presented here is a part of a three-year 
project focusing on opportunities to influence pro-
fessional competences of future primary teachers 
through experienced inquiry based mathematics ed-
ucation. We realize a set of university mathematics 
courses for future primary teachers in which they 
can experience inquiry based education as students, 
and analyse its impact on their content knowledge. 
An integral part of the project consists of repeated di-
agnosis of mathematics subject knowledge of project 
participants. We generally observed inquiry based 
education from the perspective of the knowledge quar-
tet, and realized that this kind of education is extreme-
ly rich in contingent (unpredictable) situations. As far 
as contingent situations are unpredictable, and it is 
difficult to simulate them systematically, we decided 
to imitate such situations by an educational tool called 
Concept Cartoons. We use this tool as one of the diag-
nostic tools in our project.

In this particular study we observe future primary 
teachers exposed to contingent situations mediated 
by Concept Cartoons, and analyse their responses. 

Our research question is: What aspects of future 
teachers’ mathematics subject knowledge can we in-
vestigate using Concept Cartoons?

THEORETICAL BACKGROUND 
OF THE RESEARCH

Teachers and their knowledge
Describing and analysing teacher work is a very at-
tractive field of recent international research in math-
ematics education. Starting with Shulman’s widely 
accepted concepts of subject matter content knowl-
edge (SMK) and pedagogical content knowledge (PCK) 
(Shulman, 1986), researchers try to analyse different 
kinds of teachers’ knowledge, its content, relations, 
and obstacles in their formation.

An extensive research on mathematics subject knowl-
edge of future primary teachers has been conducted 
by a group around Rowland. Their research resulted 
in the identification of aspects of the behaviour that 
seems to be significant as information about one’s 
SMK or PCK in mathematics. They introduced 20 
categories which were subsequently grouped into 
four broad dimensions: foundation, transformation, 
connection, and contingency – the so-called knowl-
edge quartet (Rowland, Huckstep, & Thwaites, 2005; 
Rowland, Turner, & Thwaites, 2013, 2014). Knowledge 
quartet and its subsequent categories can now be used 
as a tool for conceptualizing the ways in which teach-
ers’ knowledge comes into play in the classroom.  

As for the particular dimensions, foundation refers 
to teacher’s theoretical background and beliefs, trans-
formation concerns knowledge-in-action with central 
focus on representations (analogies, examples, expla-
nations, etc.), connection refers to ways the teacher 
achieves coherence within and between lessons. The 
last dimension, contingency, involves aspects dealing 
with unpredictable (contingent) events in the class-
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room. It concerns teachers’ responses to events that 
were not anticipated in the planning. The dimension 
of contingency consists of five subcategories: respond-
ing to students’ ideas (RSI), deviation from lesson agen-
da, teacher insight, use of opportunities, and responding 
to the (un)availability of tools and resources (Rowland 
et al., 2014). 

In our study, we shall investigate responses related 
to the RSI code: 

This code includes the ability to make cogent, 
reasoned, and well-informed responses to un-
anticipated ideas or suggestions from students. 
These teachers’ responses are to students’ con-
tributions to the (mathematical) development 
of the lesson. These contributions are typically 
oral, but could be written. Our analysis of the 
data available to us identifies three sub-types of 
triggers in this category: 1) student’s response to 
a question from the teacher; 2) student’s sponta-
neous response to an activity or discussion; 3) 
student’s incorrect answer – to a question or 
as a contribution to a discussion. (‘Knowledge 
Quartet’, 2012) 

In addition to knowledge quartet we also observe 
future teachers’ knowledge from procedural and 
conceptual perspectives. Hiebert and Lefevre (1986) 
characterized conceptual knowledge as a connected 
network of facts and propositions, and procedural 
knowledge as a structured set of mathematical sym-
bols and conventions for their use, rules, algorithms 
and procedures. This construct was attacked by some 
researchers for inconsistency, and reconceptualised 
several times. We find the most suitable the recon-
ceptualization given by Baroody, Feil, and Johnson 
(2007, p. 123):  

Procedural knowledge consists of mental actions 
or manipulations, including rules, strategies, 
and algorithms, for completing a task. 

Conceptual knowledge is knowledge about facts, 
generalizations, and principles.

Concept Cartoons
In our research we make use of an educational (and 
in this study diagnostic) tool called Concept Cartoons 
(CCs). CCs were developed in 1991 by Keogh and 
Naylor as a tool for learning and teaching science 

(Keogh & Naylor, 1993); lately they have been created 
also for other school subjects, for example, mathe-
matics (Dabell, Keogh, & Naylor, 2008). Each CC is a 
cartoon-style picture showing a group of children 
in a bubble-dialogue based on an everyday situation, 
the children presenting different viewpoints on the 
situation (Figure 1). The alternatives displayed in 
bubbles may be based on real events, on classroom 
scenarios, on common conceptions and misconcep-
tions, or might be prepared intentionally. 

CCs are used mainly in the classroom to support teach-
ing and learning by generating discussion, stimulat-
ing investigation, and promoting learners’ involve-
ment and motivation, i.e., as a tool oriented mainly on 
pupils (Naylor & Keogh, 2012). In the study presented 
here, we aspire to use CCs innovatively for investi-
gating future primary teachers’ content knowledge. 

In view of the fact that each CC offers a situation not 
invented by the teacher, and children’s various re-
sponses on this situation, a suitably chosen CC can 
provide the teacher an educational model of a contin-
gent situation. In the context of the RSI code, each CC 
is an artificial reality that partially imitates triggers 
of the 1st type (it shows children’s responses to a ques-
tion, but the question was not asked directly by the 
teacher, and sometimes the question is not explicitly 
expressed in the cartoon), and with an appropriate 
choice of the content of bubbles it can partially imitate 
triggers of the 2nd type (children in the picture can 
response to other children’s answers; this case would 
serve Peter’s bubble in Figure 1 changed to “Kevin, 
you are not right, they scored more.”), and entirely 
imitate triggers of the 3rd type (some answers in bub-
bles are incorrect). 

As the RSI code admits not only oral but also written 
contributions from children (see the characteristics 
of RSI above), we place CCs on worksheets, and let the 
respondents react to them in written form. 

DESIGN OF THE STUDY

Participants
Participants of the research are two groups of mas-
ter students of primary teacher training from our 
Faculty of Education. This master’s degree training 
lasts 5 years, and covers all the primary curriculum 
subjects. We involved 29 students of the 2nd year, 
and 35 students of the 3rd year. The 2nd year students 
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have recently completed the “Natural numbers” part 
of Arithmetic courses, but have not attended any 
Didactics yet. The 3rd year students have recently 
completed the “Natural numbers” part of Didactics 
of mathematics courses. 

Course of the study
In the data collection stage of the research we gave 
each respondent a worksheet consisting of four CCs 
on addition and subtraction of natural numbers (two 
of them are in Figure 1), with four common questions:

1) Which child do you strongly agree with?

2) Which child do you strongly disagree with?

3) Decide which ideas are right and which are 
wrong. Give reasons for your decision.

4) Try to discover the cause of the mistakes, and 
advise the children how to correct them. 

Respondents were asked to fill in the worksheet indi-
vidually. For all respondents it was the first occasion 
to work with CCs.

We processed this output qualitatively, using ground-
ed theory methods (Strauss, 1987): we started with 
open coding, then grouped the codes according to 
similarities and internal relation into categories, and 
marked codes with plus or minus sign to denote posi-
tive or negative aspects (good or poor knowledge, cor-
rect or incorrect recognition, etc.). Then we several 
times reinspected all the output, looked for new frag-
ments and new contexts, rearranged existing frag-

ments and codes, and debugged the coding process 
as well as the process of sorting codes into categories. 

As relevant for our study appeared the following code 
categories:

A) respondent’s spontaneous response (the very 
first opinion) on ideas in bubbles

B) respondent’s subsequent response on ideas in 
bubbles 

 ― recognition of right and wrong answers 

 ― recognition of procedures used by children, 
identification of the causes of mistakes 

C) the way how the CC was composed, i.e. the nature 
of the CC 

We distinguish between A and B categories, because 
in relation to contingency we consider as important 
an immediate response to the content of bubbles. 
We assume that such immediate response can be 
triggered by worksheet questions 1 and 2, while sub-
sequent response is rather a matter of questions 3 
and 4. More precisely, thought processes caused by 
questions 1 and 2 are different from those caused by 
questions 3 and 4 – respondents do not need to go into 
a deeper analysis while looking for a child with whom 
they strongly (dis)agree. Therefore, aspects related 
to A codes are mainly triggered by questions 1 and 
2, aspects related to B codes are mainly triggered by 
questions 3 and 4.

Figure 1: Two examples of Concept Cartoons; taken from (Dabell et al., 2008), slightly modified
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In the next stage of the analysis we examined relation-
ships between codes and between categories, from 
the perspective of the content of particular bubbles 
as well as from the perspective of particular respond-
ents. 

FINDINGS

The initial finding we made during the coding pro-
cess was that participants’ responses are substantially 
affected by the nature of the individual CC (i.e., by 
aspects hidden under the C codes). The effect is clear-
ly seen when comparing the two CCs from Figure 1 – 
both of them show a situation that need to be trans-
formed to mathematics, mistakes displayed in bubbles 
are standard, and each bubble contains no more than 
one type of mistake. But their other features differ, 
for example:

Figure 1a

-	 the arithmetic task is not explicitly stated, 
it needs to be revealed from the picture 

-	 each bubble describes the procedure of 
calculation, and the result

Figure 1b

-	 the arithmetic task is outlined, numbers to 
sum are aligned below each other 

-	 each bubble shows only the result of cal-
culation 

Thus, with the first CC respondents can comment re-
sults and procedures described in bubbles, and look 
for errors in procedures leading to incorrect results 
(and also in procedures leading to correct results). 
While with the second CC respondents can comment 
only results; it simplifies decision at a bubble with a 
correct result, but complicates decision at a bubble 
with an incorrect result: the procedures hidden be-
hind the incorrect result are not described, and re-
spondents have to make an attempt to discover them. 

In the first CC, majority of the 2nd year respondents 
failed to decode the David’s procedure, many of them 
even mentioned David as the child with whom they 
strongly disagree:

P28 Where did David take the 40? 
P11 I strongly disagree with David.
 David  – I do not understand how he 

came to the 40.

But the David’s procedure is very inventive, with only 
a small mistake in the final. The bigger compliment 
goes to these respondents who praised David for his 
procedure, and advised him the right ending:

P31 David has a good tactic, but he mistook 
a sign, instead of adding there should be 
subtracting.

 David, you do not have those 2 x 40, you 
have less, so you must subtract.

On the contrary, the 3rd year respondents managed 
the David’s issue without hesitation. Here the PCK 
acquired in Didactics courses comes into play – these 
respondents already attended Didactics on natural 
numbers where they learned how to utilize various 
counting procedures in the classroom. 

Some 2nd year respondents had also difficulties with 
the Eve’s procedure; they were not able to discover 
why she started with 3 + 3:

P22 Eve counted wrong from the start.
P20 Eve makes a sum of random.
P31 Eve does not watch orders, she is short 

of tens.
P27 Eve counted tens incorrectly; she took 

3 + 3 instead of 30 + 30.
P12 Eve has a problem with counting of tens.
 Eve, we decompose 38 to 30 and 8, not 

to 3 and 8. 
P33 Eve handled incorrectly the numbers; 

she did not take them as wholes, but sep-
arately. She did not realize that 39 is 30 
and 9, and made 3 and 9 of it.

 Eve, you messed ones and tens, 39 must 
be expressed as 30 and 9.

To clarify the situation we should mention that count-
ing tens separately during mental addition is not a 
standard procedure in our schools. On the other hand, 
the respondents recently attended Arithmetic cours-
es on decimal numeral system, so that the excerpts 
above point to inflexible thinking of their authors. 
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In the second CC, respondents often succeeded in find-
ing the procedure hidden behind the results, some of 
them suggested really credible rationale for why the 
mistake happened:

P14 Kevin completely eliminated the column 
with zeros.

P27 Kevin, if you count 0 + 0, you must enter 
the final 0 to the calculation.

P14 Peter probably thought that 0 is not a 
number, and added 1 to the next sum.

P37 Peter forgot to add 1 to the tens place, 
and added it later to the hundreds.

But there appeared also rationales that do not look 
likely:

P13 Peter swapped 0 and 1.

The tendency not to seek the procedure but only com-
pare the bubble and the correct result, which is notice-
able on the last line of the transcript above, appeared 
even stronger in some 3rd year students’ outputs:

A03 Peter wrote the third ‘1’ to the wrong 
place.

A10 Peter is coming to accuracy, but his re-
sult is 90 more.

 Peter, recount it again, your result is 90 
more than the correct result.

 Pepe has 2 more zeros in his result.
 Pepe, your result is too high compared to 

the computed numbers. Recount again 
the example, and remove some numbers. 

Among 2nd year respondents we found two who con-
fused terms ‘number‘ and ‘digit’ in their explanations. 
Further analysis of their responses showed that the 
problem might not be only terminological: 

P24 Tina is right. If I add 17 to a digit 60, I get 
6017. But if I count up, I would get 77. 

P18 Tina and Jane are right, they followed 
the instructions exactly. 

 David’s bubble should be corrected: 2 x 
40 = 80, add 3 makes 803.

These statements can be signals of deep misunder-
standing of the concept of number. To be sure, we 
would need further data from these respondents.   

During the analysis of completed worksheets it be-
came apparent that in some responses to the first 
CC it is possible to distinguish between procedural 
and conceptual knowledge. This fact was especial-
ly evident for the following two respondents; both 
are 2nd year students, with average performance in 
Arithmetic. The first respondent answered the ques-
tions as follows:

P33 ad 2)   I strongly disagree with 
David.

 ad 3)   David is wrong. He confused 
it all.

 ad 4)   Instead of subtracting 3 from 
40 · 2 = 80, he added it. 

    He needs to have the whole 
counting explained again.  

In the beginning, David is the only child in reply to 
a question with whom the respondent strongly disa-
gree. Then we can see that the respondent knows the 
procedure that David used; she even says where the 
mistake is and what the correct version of this part of 
procedure is. Yet in the end she states that David needs 
to learn the whole procedure again. This respondent 
probably got her knowledge by rote learning. She does 
not understand the procedure as a sequence of indi-
vidual steps, but as one indivisible whole. She knows 
the procedure very well; she is even able to compare 
her calculation with David’s, and find the mistake. But 
she is not able to divide the procedure into individual 
steps, and repair just the wrong one. In her kind of un-
derstanding the only way how to repair the procedure 
is to learn it again as a whole. Summarized, in this task 
the respondent displayed no conceptual knowledge, 
and only superficial procedural knowledge.

With this respondent we can also clearly illustrate the 
difference between SMK and PCK: she knows how to 
count the example for herself (an indicator of SMK) 
but is not able to help the child (an indicator of a lack 
of PCK). 

The second respondent wrote:

P37 ad 2)  I strongly disagree with 
David and Tina. 

 ad 3) Eve is wrong.
 ad 4)  Eve, you can calculate this 

way, but you have to write 
the second number under 
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the first, digits lined up in 
columns.

    David, you must not round 
the numbers. If you round, 
you have to sum the num-
bers, and subtract their dif-
ference from the result.

This respondent has her knowledge too closely tied 
to the context in which it was learned (e.g., counting 
of numbers that are written below each other), so that 
the knowledge cannot generalize to other situations. 
As Hiebert and Lefevre (1986, p. 8) note, also this kind 
of knowledge used to be obtained by rote learning. 
Again, this respondent shows no conceptual knowl-
edge, and superficial procedural knowledge. As in 
the previous case, the respondent displays SMK but 
no PCK.

CONCLUSIONS

In this study we introduced an educational tool called 
Concept Cartoons (CCs), and used it innovatively for 
investigating future primary teachers’ mathematics 
content knowledge. For this purpose we prepared a 
set of CCs on an essential topic “addition and subtrac-
tion of natural numbers”. These CCs imitate contin-
gent situations, and we may observe future teachers’ 
responses to more or less expected children’s ideas.

As the results show, CCs are a very flexible tool, and 
we may investigate various aspects of knowledge with 
them. If the CC contains bubbles showing both proce-
dures and results, then we might be able to distinguish 
clearly between procedural and conceptual knowl-
edge, and between SMK and PCK (David & P33, Eve & 
David & P37). This kind of CCs also reveals when re-
spondents have troubles to decode a simple procedure 
containing a mistake (David’s and Eve’s cases). The 
incorrect procedures presented by children might 
be ambiguous at first glance, and some respondents 
could display inappropriate spontaneous reactions – 
disagree strongly with an idea they do not understand 
(David & P11), or wrongfully blame the child to count 
randomly (Eve & P20). Moreover, the description of 
an incorrect procedure in the bubble can influence 
some respondents to incorporate the mistake into 
their own responses (David & P18, Tina & P24).   

The CC containing bubbles with results only can 
serve as a useful supplement to the previous type. 

Respondents can display good transformation knowl-
edge when looking for examples of procedures that 
could fit to incorrect results in bubbles (Kevin & P27, 
Peter & P14). On the contrary, some respondents can 
show a lack of PCK by just comparing the incorrect 
result in the bubble with the correct result, and giving 
the child advice without looking for the procedure 
hidden behind the mistake (Peter & P13, Peter & Pepe 
& A10).

The analysis of the data obtained during the research 
led us to the need to investigate deeper the question 
how different kinds of knowledge can be displayed 
through the mediation of CCs. This is the direction we 
will continue our research. We found out that further 
systematic triangulation from different perspectives 
(responses to CCs, Arithmetic tests, interviews) is nec-
essary for the creation of a grounded theory.

We appreciate the advantage that CCs offer in compar-
ison to other diagnostic tools such as videos or class-
room scenarios: the possibility to prepare the content 
of the bubbles intentionally, on a chosen purpose. We 
expect that this feature shall allow us to investigate 
teachers’ knowledge more deeply through presenting 
bubbles with alternatives that are able to reveal im-
portant aspects of teachers’ knowledge but sometimes 
might remain unspoken in a real classroom.     
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This paper attempts to capture some of the breath of 
frameworks and models on mathematics teachers’ 
knowledge in order to identify central lessons we have 
(not yet) learned from past and current approaches in 
theorizing and conceptualizing a knowledge base for 
teaching mathematics: there are accounts of the complex 
and multidimensional nature of teachers’ knowledge 
but no accounts as to the reorganization of dimensions 
of teachers’ knowledge in order to be more consistent 
with a constructivist view on learning and teaching; 
there are accounts of what teachers’ knowledge is about 
but no accounts as to a structural description of teachers’ 
knowledge. The paper highlights several unsettled issues 
of this research field and certain profitable directions 
for advancement. 

Keywords: Teacher education/development, teacher 

knowledge. 

MAPPING THE TERRAIN OF RESEARCH 
ON TEACHERS’ KNOWLEDGE

With his influential construct of dimensions of teach-
ers’ knowledge in the 1980’s, Lee S. Shulman (1986) 
at Stanford University has guided the research on 
teachers’ knowledge in a new direction and, simulta-
neously, proposed an approach to educational reform 
that labelled teaching a profession (Shulman, 1987). 
Shulman (1986) promoted a paradigm shift in educa-
tional research by assuming the existence of a knowl-
edge base that is special for the purposes of teaching. 
Since then, several interesting approaches, partly 
distinct and partly overlapping, have been devel-
oped that shape the current theoretical landscape in 
mathematics education research on teachers’ knowl-
edge. In the research literature, it is common to follow 
Shulman’s (1987) conceptualization of a knowledge 

base for teaching including (1) content knowledge, 
(2) general pedagogical knowledge, (3) curriculum 
knowledge, (4) pedagogical content knowledge, (5) 
knowledge of learners, (6) knowledge of education-
al contexts, and (7) knowledge of educational ends, 
purposes, and values, and their philosophical and 
historical grounds. Several researchers have made 
attempts to identify features of mathematics teach-
ers’ knowledge that (may) matter in the work of teach-
ing – in many ways, making Shulman’s (1986, 1987) 
conceptualization of domains of teachers’ knowledge, 
and, in particular, subject matter knowledge (SMK) 
and pedagogical content knowledge (PCK) specific to 
teaching mathematics.

The frameworks and models that shape the theoretical 
landscape in the conceptualization of and research on 
mathematics teachers’ knowledge are within a broad 
spectrum of specificity, ranging along general, disci-
pline-specific, domain-specific, and concept-specific 
frameworks and models. Various general frameworks 
contributed to the field, for instance, in (a) document-
ing teachers’ resources (including knowledge), ori-
entations (including beliefs), and goals as critically 
important determinants of what teachers do and why 
they do it (Schoenfeld, e.g., 2010), (b) highlighting that 
besides subject matter knowledge per se there is sub-
ject matter knowledge specific for teaching (Shulman, 
1986, 1987), and (c) providing insights in teacher pro-
ficiency including the identification of various di-
mensions such as knowing students as thinkers and 
learners, reflecting on one’s practice, among many 
others (Schoenfeld & Kilpatrick, 2008). Schoenfeld 
and Kilpatrick’s (2008) contribution builds the bridge 
to discipline-specific frameworks since their work has 
been initially developed for identifying dimensions 
of mathematics teachers’ proficiency but can and has 
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been extended to a general (discipline-unspecific) 
framework. 

A considerable number of research work is located 
in mathematics education research, providing both 
discipline-specific and domain-specific frameworks 
and models (e.g., Ball et al., 2008; Baumert et al., 2010; 
Blömeke et al., 2014; Fennema & Franke, 1992; Hill et al., 
2008; Kilpatrick et al., 2006; Rowland et al., 2005; Tatto 
et al., 2008, 2012). These contributions, among others, 
are of interest in this paper since each contribution 
introduces and examines a particular approach in the-
orizing and conceptualizing the construct of mathe-
matics teachers’ knowledge. They are chosen because 
of their complementary power and their potential to 
study teachers’ knowledge in a more comprehensive 
manner. Instead of reviewing each contribution in 
detail, the following section presents some central les-
sons we have (not yet) learned from these approaches. 

Notice that, with few exceptions (e.g., Even, 1990), 
the mathematics education research community 
has almost neglected concept-specific frameworks. 
However, from the author’s perspective, investigating 
teachers’ knowledge at the level of specific concepts 
is an important issue that needs more attention in 
future research on teachers’ knowledge.

THE RECENT DIVERSITY OF 
CONCEPTUALIZATIONS AS A RESOURCE FOR 
CURRENT AND FUTURE RESEARCH ATTEMPTS

The mathematics education research literature con-
tains a broad range of approaches in theorizing and 
conceptualizing a knowledge base for teaching math-
ematics. The diversity of approaches is, of course, a 
reflection of the complexity of the research field that 
cannot be described, understood, or explained by only 
one theoretical framework. Different frameworks 
evolve for multiple purposes due to different needs in 
given contexts with different implications – some on 
a theoretical, methodological, and/or empirical level. 
The diversity of frameworks may provide a rich re-
source for future research attempts – the frameworks 
and models are important in their own right and may 
prove to be productive in some contexts. 

The broad diversity of approaches starts with the ver-
satile function of frameworks and models of teachers’ 
knowledge: (a) as tools or (b) as objects. While most of 
the frameworks and models of teachers’ knowledge 

are used as tools for guiding research practices, in 
particular for analysing data in empirical investiga-
tions, only a few function as an object of research – 
they are the aim of research practices. This distinction 
between ‘tools for research’ and ‘objects of research’ 
has already been made by Assude and colleagues 
(2008) with reference to theories in mathematics ed-
ucation. While the conceptualization by Ball and her 
colleagues (2008), for instance, can be understood 
as the result of an intensive ‘job analysis’, where 

‘conceptualizing a knowledge for teaching’ was one 
of the goals, the conceptualizations by Blömeke and 
her colleagues (2014) and Tatto and her colleagues 
(2008, 2012) provide tools for empirical investigations 
in an international comparative, large-scale study. 
However, the distinction between frameworks as tools 
or as objects is rather inclusive (than exclusive) since 
the ways in which teachers’ professional knowledge is 
understood and conceptualized impact on how teach-
ers’ knowledge is investigated, and vice versa.

THE KNOWLEDGE BASE FOR 
TEACHING MATHEMATICS IS COMPLEX 
AND MULTIDIMENSIONAL

The different approaches converge in an understand-
ing that teachers’ knowledge is complex and multidi-
mensional. Although the discipline-specific models 
and frameworks mentioned above differ in detail, 
many of them converge in efforts to further refine 
the construct of subject matter knowledge (SMK) and 
pedagogical content knowledge (PCK). The following 
is an attempt to shed light on ways how Shulman’s 
dimensions of SMK and PCK have been refined in the 
above mentioned contributions. 

Subject Matter Knowledge (SMK)
The literature suggests that subject matter knowl-
edge (SMK) can be further differentiated in terms 
of substantive and syntactic structures (Schwab, 
1978), in terms of ways of understanding and ways 
of thinking (Harel, 2008), in terms of school mathe-
matical knowledge and academic content knowledge 
(Bromme, 1994), among others. Each further distinc-
tion has shed light into important issues: Shulman 
(1986, 1987), for instance, emphasized Schwab’s (1978) 
distinction between substantive and syntactic struc-
tures of a discipline. Substantive structures are the 
key principles, theories, and explanatory frameworks 
that guide inquiry in the discipline, while syntactic 
structures provide the procedures and mechanisms 
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for the acquisition of knowledge, and include the 
canons of evidence and proof. As already noticed by 
Rowland and Turner (2008), the term ‘syntactic’ is 
mainly associated to the formal structure, thus, it 
seems that Schwab’s (1978) choice of the word ‘syntac-
tic’ is unfortunate since it does not capture the heart 
of the intended meaning that is, as argued by Rowland 
and Turner (2008), the heuristics of inquiry. However, 
Schwab’s distinction has been an initial point to think 
about various dimensions of SMK. 

In synthesis, it can be stated that several researchers 
have refocused on the centrality of SMK in teaching. 
However, crucial in the literature is the assumption 
that there is unique content knowledge for teaching 
mathematics and that having such knowledge is key to 
the enactment of rich mathematics. The notion of ‘spe-
cialized content knowledge’ introduced by Ball and her 
colleagues, described as pure content knowledge “that 
is tailored in particular for the specialized uses that 
come up in the work of teaching” (Hill et al., 2008, p. 
436), is a key contribution in efforts to examine dimen-
sions of mathematical knowledge considered as being 
crucial for the purposes of teaching. In contrast to the 
former refinements of SMK, the notion of ‘specialized 
content knowledge’ has the potential to go beyond just 
differentiating mathematical content knowledge in 
various (qualitatively different) sub-facets (such as to 
think about content knowledge in terms of procedural 
and conceptual knowledge, school mathematical and 
academic content knowledge, etc.). This ‘specialized 
content knowledge’ is not the kind that disciplinary 
experts would necessary possess. As a consequence, 
in contrast to Shulman (1986) treating ‘subject matter 
knowledge for teaching’ as equivalent to PCK, these 
considerations lead to the claim that there is pure 
mathematical knowledge specialized for teaching 
mathematics. Furthermore, it is argued that this kind 
of mathematical knowledge is not merely qualitatively 
but may be fundamentally different to SMK per se. 
This argument is rooted in the observation that SMK 
per se is primarily aimed at creating new knowledge, 
while SMK for teaching is essentially aimed at pro-
moting students’ mathematical thinking and learning. 
In this work, the former kind of knowledge is called 
mathematical content knowledge per se (MCK per se) 
and the latter kind of knowledge is called mathemati-
cal content knowledge for teaching (MCK for teaching). 

Notice that ‘mathematical content knowledge per se’ 
is not equal to what Ball and her colleagues (e.g., 2008) 

described as ‘common content knowledge’ since it is 
not limited to the knowledge ‘held or used by an av-
erage mathematically literate citizen’ but may also 
include academic content knowledge, for instance. 
Mathematical content knowledge per se can be con-
sidered as not only including basic factual knowledge 
of mathematics but also the conceptual knowledge of 
structuring and organizing principles of mathematics 
as a discipline as described and operationalized in the 
TEDS-M framework (Tatto et al., 2008).  Moreover, it 
can be described in terms of Kilpatrick, Blume, and 
Allen’s (2006) mathematical proficiency with content 
including conceptual understanding, procedural flu-
ency, strategic competence, adaptive reasoning, pro-
ductive disposition, and knowledge of structure and 
conventions, among others.

Pedagogical Content Knowledge (PCK)
Since Shulman’s (1986) introduction of the construct 
of PCK, many researchers have added and further 
elaborated attributes and components of PCK. The 
above mentioned contributions provide various ways 
to refine the construct PCK, including, but not limited 
to, knowledge of cognitive requirements for learn-
ing, knowledge of students’ conceptions, knowledge 
of epistemological obstacles of particular mathemat-
ical concepts, and knowledge of instructional strate-
gies. Although even representing refinements of PCK, 
these subcategories are quite broad and often remain 
unspecified. Rowland and his colleagues’ (e.g., 2005) 
work let to the identification of several subcategories 
that could be grouped into four units. Although their 
units are broad, the underlying subcategories pro-
vide some specificity. Another example is the work 
by Hill, Ball, and Schilling (2008) in making effort to 
conceptualize, develop, and test measures of teachers’ 
knowledge of content and students (KCS). The same 
authors, although providing with KCS a subdivision 
of pedagogical content knowledge, state that even 
their subcategory is multidimensional (see Hill, Ball, 
& Schilling, 2008). Thus, various researchers assume 
that it is reasonable to further refine the various sub-
categories. 

The subcategories of PCK identified in the above men-
tioned frameworks and models can be clustered into 
three dimensions, namely (1) an epistemological di-
mension, (2) a cognitive dimension, and (3) a didactical 
dimension. The epistemological dimension refers to 
knowledge about the epistemological foundations of 
mathematics and mathematics learning (see Bromme, 
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1994). For instance, Harel (e.g., 2008) calls for teachers’ 
knowledge of epistemological issues involved in the 
learning of specific mathematical concepts, including 
knowledge of epistemological obstacles. The cognitive 
dimension refers to knowledge of students’ cognitions 
(Fennema & Franke, 1992), in particular, knowledge of 
students’ common conceptions (see Shulman, 1987), 
knowledge of students’ cognitive difficulties involved 
in concept construction (Harel, 2008), and the inter-
pretation of students’ emerging thinking (Ball et al., 
2008). In other words, it includes knowledge of how 
students think, learn, and acquire specific mathemat-
ical knowledge (Fennema & Franke, 1992). The didac-
tical dimension refers to what Shulman (1986, p. 9) 
described as knowledge of “the most useful ways of 
representing and formulating the subject that make 
it comprehensible to others”, including teachers’ illus-
trations and alternative ways of representing concepts 
(and the awareness of the relative cognitive demands 
of different topics) (Rowland et al., 2005) and knowl-
edge of the design of instruction (Ball et al., 2008). 

In summary, it can be stated that the frameworks 
and models about teachers’ knowledge mentioned 
above can be understood as elaborating rather than 
replacing Shulman’s (1986; 1987) contribution within 
this field. The approaches taken and the conceptu-
alizations of teachers’ knowledge proposed are not 
inconsistent, nor are the identified dimensions of 
mathematics teachers’ knowledge mutually exclusive. 
In contrast, the identified dimensions are complemen-
tary and provide, taken together, a more refined pic-
ture of conceptualizing the teachers’ knowledge base. 

The considerations proposed above demonstrate the 
multidimensional nature of mathematics teacher 
knowledge, in particular, the multidimensionality 
of SMK and PCK. Although the distinction between 
SMK and PCK is ambitious, several scholars take the 
view that the two categories, and, in particular, their 
corresponding subcategories, are useful tools in de-
scribing teachers’ knowledge for research purposes 
and particularly in devising teachers’ professional 
development programs.

MOVING AWAY FROM SHULMAN’S 
ORIGINAL CONCEPTUALIZATION 

The above mentioned contributions present strong 
cases that progress can and has been made in the con-
ceptualization of teachers’ knowledge. As mentioned 

above, several scholars have particularly reformulat-
ed the concept of PCK, by refining sub-dimensions or 
identifying dimensions of teachers’ knowledge and 
adding them to the construct of PCK. Thus, it can be 
seen that researchers have assimilated the notion of 
PCK and redefined it according to their beliefs or to 
findings from empirical studies. Although the men-
tioned studies represent reformulations of the concept 
of PCK, Shulman’s conceptualization of PCK was still 
the theoretical starting point for these studies. In this 
process of further refinement and extension, howev-
er, researchers’ understanding and interpretation of 
PCK have moved away from Shulman’s original con-
ceptualization. For instance, the concept of PCK has 
almost lost its most important characteristic, namely 
its topic specificity (Hashweh, 2005). PCK, according to 
Shulman’s definition, is not only specifically related to 
topics within certain disciplines, but also research on 
PCK typically does not result in a description of ‘expert 
teaching’ as if there would be one optimal way to teach 
certain subject matter (see, Shulman, 1987). From the 
author’s perspective, recent research on mathematics 
teachers’ knowledge tend to ignore the complex nature 
of PCK as a form of teachers’ professional knowledge 
that is highly topic, person, and situation specific (for 
overviews see, e.g., Abell, 2007; Van Driel & Berry, 2010).

A NARROW FOCUS ON THE DISCIPLINE 

Many in the field of teacher education today take 
Shulman’s conceptualization of the knowledge base for 
teaching for granted – accepting the view of pedagogi-
cal content knowledge (PCK) as an adaption of subject 
matter knowledge for the teaching enterprise, a pro-
cess Shulman (1987) called transformation. However, 
with restricting PCK to the capacity to transform the 
subject matter of the discipline to subject matter of 
the school subject, Shulman places the subject matter 
content at the centre of conceptualizing the knowledge 
base for teaching. As a consequence, past and recent 
research on mathematics teachers’ knowledge limit-
ed their focus on teachers’ unpacking of mathematics 
content in ways accessible to their students. In doing 
so, the attention is focused entirely on the discipline. 
However, in being more consistent with a constructiv-
ist view of learning, the emphasis needs to be shifted 
from knowledge of the discipline to knowledge about 
how students’ knowing and learning actually progress-
es. Thus, a reconceptualization of the knowledge base 
for teaching mathematics is needed toward a theory of 
teaching grounded in research on students’ learning.
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FROM REFINEMENT TO REORGANIZATION: 
TURNING THE REFINEMENTS ON THEIR HEADS

We have learned a great deal of the necessity for re-
fining Shulman’s initial work toward more specific 
descriptions of the knowledge base for teaching math-
ematics. Whereas it was important to initially identi-
fy and define various sub-dimensions of SMK and PCK 
and making progress in obtaining empirical evidence 
to support each piece of the puzzle, interpreting them 
in light of a model of cognition and learning certain 
subject matter may allow for the integration of the 
various pieces into one framework for mathemat-
ics teachers’ knowledge. Thus, the time has come to 
move from further refining to reorganizing sub-di-
mensions of teachers’ knowledge. As indicated above, 
the various refinements of PCK seem to converge in 
three domains, namely (1) knowledge of students’ un-
derstandings (KSU), (2) knowledge of learning math-
ematics (KLM), and (3) knowledge of teaching mathe-
matics (KTM). KSU refers to a cognitive perspective, 
KLM to an epistemological perspective, and KTM to 
a didactical perspective on this issue. In this work, 
knowledge of students’ understanding (KSU), knowl-
edge of learning mathematics (KLM), and knowledge 
of teaching mathematics (KTM), together with math-
ematical content knowledge per se (MCK per se) and 
mathematical content knowledge for teaching (MCK 
for teaching) build the knowledge bases that constitute 
the particular kind of knowledge that is considered as 
specialized for the purposes of teaching mathematics. 
In doing so, past and current approaches in research 
on mathematics teachers’ knowledge are turned on 
their heads in the sense of taking the identified (and 
refined) knowledge dimensions as building blocks for 
the construct of ‘knowledge for teaching mathematics’. 

GOING BEYOND WHAT TEACHERS’ KNOWLEDGE 
IS ABOUT: A WINDOW TO A STRUCTURAL 
DESCRIPTION OF TEACHERS’ KNOWLEDGE

While the subcategories of mathematics teachers’ 
knowledge identified in the above mentioned contri-
butions are crucial pieces of the puzzle, we have not 
learned how these pieces fit together. In the past, the 
primarily focus was on what knowledge is held by 
teachers, and how that knowledge is used in practice. 
It seems that, with few exceptions, the literature has 
limited its focus on the content teachers do or should 
possess. However, a key theoretical concern aris-
ing in the realm of theorizing and conceptualizing 

mathematics teachers’ knowledge is the question on 
how the knowledge is structured and organized. To 
put it in other words, what is missing in the current 
landscape of the conceptualization of mathematics 
teachers’ knowledge are attempts to go beyond what 
the teachers’ knowledge is about to include a struc-
tural description of teachers’ professional knowledge. 
Drawing on the ‘knowledge in pieces’ framework de-
veloped by diSessa (e.g., 1993), Scheiner (2014) pro-
poses to consider teachers’ professional knowledge 
as a complex system of ‘knowledge atoms’. 

‘Knowledge for teaching mathematics’ is consid-
ered as the repertoire of ‘knowledge atoms’ that 
have been transformed along (1) knowledge of 
students’ mathematical understandings (KSU), 
(2) knowledge of learning mathematics (KLM), 
and (3) knowledge of teaching mathematics 
(KTM), taking (4) mathematical content knowl-
edge per se (MCK per se) and (5) mathematical 
content knowledge for teaching (MCK for teach-
ing) as the cornerstones. (Scheiner, 2014, in press) 

With this perspective, several angles for theoretical 
reflection on the nature and form of teachers’ knowl-
edge are presented, including those concerning the 
degree of integration, size, specificity, and source of 
teachers’ knowledge. The notion of ‘transformation’, 
for instance, indicates that the constituent knowledge 
bases are inextricably combined into a new form of 
knowledge that is more powerful than the sum of its 
parts (concerning degree of integration), while the no-
tion of ‘knowledge atom’ indicates that knowledge 
is of a microstructure, highly context-sensitive, and 
concept-specific and has to be considered as of a fine-
grained size (concerning size and specificity). Notice 
that in contrast to Shulman and his proponents’ work 
taking content knowledge and pedagogical knowl-
edge as the constituent knowledge bases for teach-
ing, it is KSU, KLM, and KTM, together with MCK per 
se and MCK for teaching that build the constituent 
knowledge bases for teaching mathematics (concern-
ing source). A more detailed elaboration of first at-
tempts towards a structural description of teachers’ 
knowledge can be found in Scheiner (in press). 
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In recent years, some efforts have been made to consol-
idate out-of-field-teaching as research field in mathe-
matics education. Taking teachers’ professional knowl-
edge as reference frame, out-of-field-teachers seem less 
qualified regarding CK and PCK in mathematics than 
teachers that were especially trained to teach their sub-
ject. In this paper, we approach the phenomenon of out-
of-field-teaching by focusing on both teachers’ beliefs 
and competencies while the latter is operationalized 
as skills in designing mathematical tasks for written 
exams. Data was collected throughout a qualification 
program particularly focusing on out-of-field-teachers’ 
domain-specific professional knowledge. We discuss in 
detail design aspects of our on-going research and give 
first insights into the changes of out-of-field-teachers’ 
beliefs reflecting their professional development in the 
course of the qualification program.

Keywords: Out-of-field-teaching, beliefs, competencies, 

CPD. 

INTRODUCTION

Current developments in mathematics education 
show an interesting phenomenon: A considerable 
body of mathematics lessons is taught by teachers 
who have not been qualified as mathematics teach-
ers through certified courses of studies at university 
(cf. Törner & Törner, 2010). In the following, we re-
fer to this heterogeneous group of teachers by using 
the term “out-of-field”. Due to a thin research base, 
there are barely information about the range of this 
phenomenon which strongly varies across different 
countries, educational systems and school types. In 
the U.S. for instance some efforts by Ingersoll (1999) 
have been made to estimate the amount of out-of-
field-teaching in a large-scale study which reveals 

that up to one third of all high school mathematics 
teachers do not hold a teaching certificate in mathe-
matics. For Germany, Törner and Törner (2010) state 
that almost 80% of primary mathematics lessons are 
taught by teachers who have not taken any mathe-
matics courses during their professional education. 
Although, in higher education the average percent-
age of out-of-field-teachers in mathematics educa-
tion decreases, it still remains on an estimated level 
of 15% referring to lower secondary grades (cf. Bosse 
& Törner, 2013). Against this backdrop, the issue of 
out-of-field-teaching is undertheorized and underre-
searched in reference to crucial aspects that charac-
terize out-of-field-teachers’ professional knowledge 
and practices. Within this contribution, we discuss 
an initial approach to address this lack of research. 

Considering out-of-field-teaching in the light of 
models of teachers’ professional competencies (cf. 
Blömeke, Suhl, & Döhrmann, 2012) we encounter a 
twofold problematic scenario: Due to missing courses 
of studies it can be assumed that – put carefully – out-
of-field-teachers are faced with considerable knowl-
edge-gaps concerning different facets of their pro-
fessional competence. These gaps in turn affect their 
capability to act effectively in the classroom, to pro-
vide high quality mathematics lessons, and to support 
sustainably students’ performances (Richter, Kuhl, 
Haag, & Pant, 2013). In our study, we thus put emphasis 
on key-aspects of out-of-field teachers’ professional 
knowledge to understand which categories are deci-
sive for describing their specific situation. Reflecting 
on research about out-of-field-teachers’ profession-
al identity we additionally focus on teachers’ beliefs 
about mathematics and the teaching and learning of 
mathematics, as these are crucial parameters consid-
ering teachers’ decision-making and lesson practice 
(cf. Bosse & Törner, 2012; Hobbs, 2012). In our study we 
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address this aspect by focusing on out-of-filed-teach-
ers’ skills to design mathematical tasks for written 
exams. In sum, we will consider the issue of out-of-
field-teaching from two perspectives: 

(1) First, we outline some key aspects of the theoretical 
foundations, in particular on mathematics-related 
beliefs and on designing mathematical tasks as one 
crucial aspect of teachers’ competencies. 

(2) Second, we discuss in detail our methodological 
approach using mixed methods to capture teachers’ 
beliefs and their competencies, displayed by design-
ing mathematical tasks. As core element of this per-
spective we describe and validate a category system 
which has been developed to characterize out-of-field-
teachers’ decisions while choosing mathematical tasks 
for class assessment. 

In this paper, we give preliminary results of our 
on-going research while accompanying a group of 
out-of-field teachers throughout a one-year qualifi-
cation program.

THE ROLE OF BELIEFS AND COMPETENCIES

Teachers’ professional knowledge has been re-
searched in depth and from various perspectives 
considering both cognitive and affective-motivational 
aspects (cf., Shulman, 1986). Drawing on key findings 
of these studies teachers’ professional knowledge is 
conceptualised as interplay of Content Knowledge 
(CK), Pedagogical Content Knowledge (PCK), General 
Pedagogical Knowledge (PK), professional motivation, 
beliefs and self-regulation. Large-scale empirical stud-
ies capture the interplay of these cognitive facets and 
affective-motivational characteristics and underpin 
efforts to capture classroom practices with regard 
to both dimensions (cf. Blömeke et al., 2012). Ball and 
Bass (2000) further work on a domain-specific concep-
tualization when focussing on mathematical knowl-
edge needed for teaching. They elaborate on teachers’ 
knowledge of mathematics as the decisive parameter 
for improving their instructional quality. One prom-
ising attempt to conceptualize teachers’ profession-
al knowledge from a more situative perspective is 
provided by Lindmeier and colleagues (2013). In par-
ticular, she stresses that a subject-specific model for 
teacher cognition encompasses three components: 
basic knowledge (CK, PCK), and the two complemen-
tary components reflective competences and action-re-

lated competences. In particular, the action-related 
competencies comprise the abilities needed to per-
form in the classroom. What is more, Lindmeier and 
colleagues (2013) stress that for both reflective and 
action-related components, basic knowledge plays a 
key role for enactment. 

Considering in addition the role of teachers’ beliefs, 
one can conclude that these play a key role for deci-
sion-making in the classroom (Törner, Rolka, Roesken, 
& Sriraman, 2010). Our research refers to the dimen-
sions of beliefs presented by Grigutsch, Raatz, & 
Törner (1988): beliefs about the nature of mathematics, 
the teaching and learning of mathematics and students’ 
mathematics achievement. Beliefs are often robust and 
therefore difficult to change or as Sowder (2007) puts 
it “many of teachers’ core beliefs need to be challenged 
before change can occur” (p. 160). What this quota-
tion stresses is that any change or development in 
teachers’ beliefs is a long-term process. Accordingly, 
Toerner, Rolka, Roesken and Schoenfeld (2006) ana-
lyse the teaching practice of an experienced teacher 
after having participated in an in-service training 
course on using open-ended task in mathematics 
teaching. Since it was not the focus of the study to 
examine the effectiveness of the professional devel-
opment event, it turned out that the teacher’s beliefs 
built a hindrance to successfully implementing new 
ideas. Nevertheless, other studies report about quick 
changes in beliefs while teachers participated in a 
professional development program. 

DZLM QUALIFICATION PROGRAM: PROFFUNT

The German Centre of Mathematics Education offers 
various qualification programs and training cours-
es for multipliers and out-of-field-teachers in order 
to foster their Continuous Professional Development 
(CPD). The project ProFFunt1 is a certification course 
especially designed to support out-of-field teachers 
in lower secondary school, and is a collaborative 
project of the Universität des Saarlandes, of the 
Landesinstitut für Pädagogik und Medien of the 
Federal State of Saarland and the DZLM. The course 
has lasted one year, and addressed teaching in grade 
five and six, and will be extended to grades seven and 
eight in the next year. ProFFunt draws on the success-

1 ProFFunt = „Professionalisierung fachfremd Unterrichtender“ 
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ful KOSINUS program2 that so far has reached more 
than half of the respective schools in the Saarland. 
Support for teachers for probing issues in practice is 
provided by the chair of mathematics and its didactics. 

The ProFFunt project especially focuses on the devel-
opment of out-of-field teachers’ competencies which 
are considered as being decisive in regards of teachers’ 
professional knowledge (cf. Blömeke et al., 2012). The 
content was developed throughout analyses based on 
Stoffdidaktik including relevant mathematics topics 
in grade five and six such as algebra, geometry and 
basic ideas in stochastics. Throughout the ProFFunt 
project teachers additionally received a profound 
overview on PCK issues and were supported in im-
plementing these aspects into their teaching, ranging 
from task design to planning of teaching sequences. 
Teachers were required to participate in teams of two 
(tandem) in order to foster collaboration in their re-
spective school. Furthermore, the course consisted 
of six modules with a total workload of 200 hours. 
ProFFunt follows a so-called sandwich-structure with 
alternating theoretical and practical phases in which 
the participants experience a combination of learning, 
implementation and reflecting phases, comprising 
also e-learning and working on a portfolio. The in-
tention of this structural design is to foster long-term 
changes in teachers’ views on mathematics learning 
and to enable sustainable competence development. 
In this regard, it appears promising to stress teachers’ 
beliefs and action related-competencies, as these are 
long-term developing aspects of teachers’ profession-
al knowledge.  

2 http://didaktik-der-mathematik.de/pdf/gdm-mitteilungen-90.

pdf, http://www.saarland.de/114409.htm

RESEARCH ON PROFFUNT 

A broad research plan has been developed in order to 
cover various aspects of out-of-field teachers’ profes-
sional knowledge. The research design acknowledges 
the researchers are not involved in conducting the 
course and that out-of-field teachers’ development 
should not be bothered by intensive testing. An over-
view on the research design is given in Figure 1 and 
is briefly explained hereafter.

Our approach is twofold and addresses teachers’ be-
liefs and competencies: On the first level we focus on 
out-of-field-teachers’ development of beliefs through-
out the qualification program. On the second level 
we scrutinize teachers’ competencies in designing 
mathematical tasks for written exams. Both con-
structs are investigated in a pre-post-comparison 
design referring to the period before and after the 
ProFFunt course. In addition, we evaluate our results 
in view of a control group of teachers who studied 
mathematics as a school subject at university so that 
we are able to describe and understand crucial dif-
ferences between in-field and out-of-field-teachers. 
Finally, the connection between out-of-field teachers’ 
beliefs and the way of designing mathematical tasks 
before and after the qualification program is consid-
ered in order to check for correlation between these 
two categories (Figure 1). In particular we focus on 
the following research questions:

a) What categories do out-of-field-teachers consider 
in designing mathematical tasks for written ex-
ams? What influence has a one-year qualification 
program on the development out-of-field of teach-
ers’ competencies in designing tasks? 

Figure 1: Overview on the research plan

http://didaktik-der-mathematik.de/pdf/gdm-mitteilungen-90.pdf
http://didaktik-der-mathematik.de/pdf/gdm-mitteilungen-90.pdf
http://www.saarland.de/114409.htm
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b) What mathematics-related beliefs do out-of-field-
teachers possess? What influence has a one-year 
qualification program on the development of out-
of-field teachers’ beliefs?

c) What differences between out-of-field-teachers 
and in-field teachers could be detected with refer-
ence to both constructs beliefs and action-related 
competencies? 

In this paper, we do not fully answer our research 
questions, but outline our research design, carefully 
describe our instruments and present preliminary 
results.

METHOD

In the one-year ProFFunt course, 13 out-of-field-
teachers participated, representing a highly heter-
ogeneous group of teachers which non-mathematics 
educational practice varies from less than 5 years to 
up to 15 years. Working as a teacher within the educa-
tional system in Germany requires studies in CK and 
PCK in at least two different subjects complemented 
by pedagogical courses. Hence, participants of our 
study have a considerable body of previous knowl-
edge concerning pedagogical aspects like for example 
learning theories and implementation strategies, but 
established in a different context than mathematics. 
Combined with the fact that the participants’ knowl-
edge differs in the specific subjects they have stud-
ied, these circumstances increase the heterogeneity 
of the sample and makes working with the group of 
out-of-field-teachers in terms of CPD-training and 
research challenging. As a control group we refer 
to data raised within the scope of the MT21 research 
program (Blömeke, Kaiser, & Lehmann, 2008), where 
prospective and in-service teachers (N=139) who stud-
ied mathematics at university participated. 

Data was collected through combining qualitative and 
quantitative methods to capture the complexity of 
out-of-field-teachers’ specific situation. Their math-
ematics-related beliefs have been revealed by using a 
questionnaire which has been developed and validat-
ed in the scope of the TEDS-M study (cf. Blömeke, Suhl, 
& Kaiser, 2011). This instrument displays a shortened 
and slightly modified version of the items originally 
developed by Grigutsch and colleagues (1988). The 
questionnaire was distributed to the participants be-
fore and after the DZLM qualification program. The 
questionnaire consists of 33 items that are rated on 
a six-point Likert-Scale, ranging from strongly disa-
gree to strongly agree. Considering various aspects 
of teachers’ beliefs the instrument encompasses the 
following five subscales: nature of mathematics as 
rules and procedures (6 items), nature of mathematics 
as process of inquiry (5 items), learning mathematics 
through teacher direction (8 items), learning mathe-
matics through active learning (6 items) and mathe-
matic achievement as fixed ability (8 items). A short 
excerpt from this questionnaire is shown in Figure 2. 
Applying the TEDS-M belief questionnaire ensures 
a stable instrument with sufficient scale reliability.

Focusing on designing mathematical tasks for writ-
ten exams as a core aspect of teachers’ action-relat-
ed competencies, we developed a category system 
which refers to key findings from current research 
in mathematics education. Throughout the qualifica-
tion program, participants of our study were asked 
to allocate and provide the written exams they deliv-
ered in grade five. Concerning content, the written 
exams mainly focussed on arithmetic and geometry 
in grade 5. As a result of this procedure we are able 
to gain theory-based insights into crucial aspects of 
out-of-field-teachers’ professional knowledge. In the 
developmental process of the category system we 
brought together various findings from research 
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Mathematics is a collection of rules and procedures that 
prescribe how to solve a problem.

☐ ☐ ☐ ☐ ☐ ☐

In mathematics many things can be discovered and 
tried out by oneself.

☐ ☐ ☐ ☐ ☐ ☐

Figure 2: Exemplary items of the belief questionnaire
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on mathematics education and pedagogical theory 
concerning learning and achievement through tasks. 
The instrument consists of four domains reflecting 
key-aspects of teachers’ professional knowledge: 

(OCS): Orientation toward task-related competen-
cies and educational standards,

(OPK): Orientation towards task-related PCK 

(OCP): Orientation towards task-related cognitive 
processes

(ODC): Orientation towards task-related difficulty 
and complexity

For the sake of brevity, we do not discuss every do-
main in detail, and limit ourselves to shortly describ-
ing our methodical procedure for analysing mathe-
matical tasks. In the first domain (OCS) we focus on 
three categories referring to the learning standards 
in mathematics education in Germany (cf. Blum, 2006). 
In particular, we regard the design of a task from the 
perspective of content-related and process-related 
competences. An example of categories used in the 
domain OCS is shown in Figure 3. Categories located 
in OPK deal with key aspects of pedagogical content 
knowledge in mathematics. In the context of our re-
search, we choose 4 categories in this domain: First, 
we take a look on how the structure of the task moti-
vates students’ learning processes (cf. Bruder et al., 
2008), second we concentrate on which strategies in 
designing a task are used to foster students’ active 
engagement in a comprehensive learning process (cf. 
Büchter & Leuders, 2005). While the third category in 
this domain emphasises the form of representation, 
the fourth category considers linguistic aspects of 
the task (cf. Meyer & Prediger, 2012). Reflecting on 
students’ cognitive processes working on a mathe-
matical task in the domain OCP, we include categories 
dealing with Blooms taxonomy of learning domains 

(cf. Bloom, 1976) to cover a more pedagogical perspec-
tive. The second category in this domain deals with 
the question what level of mathematics-related cogni-
tive processes like generalising or using formal and 
abstract expressions are required for solving the task 
(cf. Cohors-Fresenborg, Sjuts, & Sommer, 2004). In the 
last domain ODC we include several complementary 
categories covering key aspects of difficulty and com-
plexity of a mathematical task (cf. Bruder et al., 2008). 
In particular we focus on students’ required time to 
solve the task, amount of steps to provide a correct 
solution, the response format, and finally mathemat-
ical correctness. 

Three experts in mathematics education from our 
research team independently used the developed cat-
egory system to analyse 10 exams (60 tasks) in order 
to check the quality and sensitivity of our instrument. 
The degree of agreement was calculated by estimating 
the inter-rater reliability in terms of Cohen’s kappa 
for each category. In regard of the constructed in-
strument we estimated Cohen’s kappa between 0.72 
and 0.95 for tasks which shows satisfying agreement 
(Hallgren, 2012). 

PRELIMINARY RESULTS AND DISCUSSION

Reflecting on our broad research plan, we will limit 
ourselves to preliminary results respecting the de-
velopment of out-of-field-teachers’ beliefs before and 
after participating in the ProFFunt course, in compar-
ison to a group of “in-field” mathematics teachers. In 
addition, we would like to stress several aspects of our 
research questions, to draw some conclusions con-
cerning our methodical approach and to anticipate 
expectable results of our on-going research process. 

First, we concentrate on the results derived by the 
TEDS-M beliefs questionnaire. An overview showing 
means and standard deviation of out-of-field teach-
ers’ beliefs on the five subcategories before and after 

Figure 3: Exemplary item of the domain OCS of the category system
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participating in the qualification program is given in 
Table 1. Considering beliefs about the nature of math-
ematics it becomes apparent that the participants are 
strongly oriented towards the nature of mathematics 
as process of inquiry at the beginning and even more 
at the end of the ProFFunt course, showing a small 
effect size. On the contrary the nature of mathematics 
as rules and procedures is rated less frequently before 
the course and decreases afterwards, showing a me-
dium effect size. With reference to the beliefs about 
learning mathematics we can find that out-of-field-
teachers in this study before and after the ProFFunt 
course lay a strong emphasis on learning mathematics 
through active learning whereas learning mathematics 
through teacher direction is considered minor rele-
vant. In addition, mathematics achievement as fixed 
ability is rated low before and after the qualification 
program. Our results support the assumed change-
ability of out-of-field teachers’ mathematics-related 
beliefs after participating in a qualification program. 

In comparison to the sample of “in-field” teachers de-
rived from the MT21 study, the group of out-of-field 
teachers in ProFFunt shows minor differences when 
it comes to their mathematics-related beliefs (Table 2). 
Out-of-field teachers consider mathematics learning 
through teacher direction as minor relevant compared 
to “in-field” teachers. 

These findings show an interesting phenomenon: 
Despite the fact, that being out-of-field in most cases 
comes along with considerable knowledge gaps in CK 
and PCK, participants in this study strongly empha-
size mathematics’ dynamic character and its potential 
as source of effective and active learning opportuni-
ties at the start of the qualification program. These 
results are remarkable because they contradict the 
popular assumptions that out-of-field-teachers feel 
less competent in mathematics and teaching mathe-
matics and therefore preferably refer to structures, 
rules and procedures. We take these surprising as-
pects in our findings to contemplate on one essen-
tial issue: Who are we talking about when labelling 

Dimension of beliefs pre post effect size

Nature of mathematics as rules and procedures
Mean
StD

3.8
.81

3.4
.89

-0.29

Nature of mathematics as process of inquiry
Mean
StD

5.0
.43

5.3
.61

0.11

Learning mathematics through teacher direction
Mean
StD

2.4
.75

2.5
.68

0.05

Learning mathematics through active learning
Mean
StD

5.1
.49

5.2
.60

0.01

Mathematic achievement as fixed ability
Mean
StD

2.5
.70

2.5
.82

-0.08

Table 1: Out-of-field-teachers beliefs before and after the qualification program

Dimension of beliefs Sample 
(n=11)

MT21-Germany 
(n=139)

Nature of mathematics as rules and procedures
Mean
StD

4.0
.67

3.9
.98

Nature of mathematics as process of inquiry
Mean
StD

5.1
.48

4.9
.87

Learning mathematics through teacher direction
Mean
StD

2.4
.74

3.2
.88

Learning mathematics through active learning
Mean
StD

5.2
.41

5.3
.71

Mathematic achievement as fixed ability
Mean
StD

2.6
.68

2.2
.82

Table 2: Out-of-field-teachers and in-field-teachers mathematic-related beliefs
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teachers as being “out-of-field”? What is missing is a 
concise definition who out-of-field teachers are and 
what out-of-field teaching is about. In the light of these 
thoughts our paper enables an innovative approach 
to characterize key aspects of out-of-field-teachers’ 
professional knowledge on the basis of cognitive and 
affective competencies. In our further research we 
take up these findings and compare our results on 
out-of-field teachers’ beliefs to their action-related 
competences. The category system described and 
validated in this paper provides a sustainable basis 
concerning the approach to characterize the issue of 
out-of-field-teaching more precise. 

REFERENCES

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy 

in teaching and learning to teach: Knowing and using math-

ematics. In J. Boaler (Ed.), Multiple perspectives on teach-

ing and learning of mathematics (pp. 83–104). Westport, 

CT: Ablex.

Blömeke, S., Kaiser, G., & Lehmann, R. (2008). Professionelle 

Kompetenzen angehender Lehrerinnen und Lehrer, 

Wissen, Überzeugungen und Lerngelegenheiten deut-

scher Mathematikstudierender und referendare. Erste 

Ergebnisse zur Wirksamkeit der Lehrerausbildung. Münster, 

Germany: Waxmann.

Blömeke, S., Suhl, U., & Döhrmann, M. (2012). Zusammenfügen 

was zusammengehört. Kompetenzprofile am Ende der 

Lehrerausbildung im internationalenVergleich. Zeitschrift 

für Pädagogik, 58(4), 422–440.

Bloom, B. S., (1976). Human characteristics and school learning. 

New York, NY: McGraw-Hill.

Blum, W. (2006). Teil1: Die Bildungsstandards Mathematik. 

1. Einführung. In Blum, W., Drüke-Noe, C., Hartung, 

R., & Köller, O. (Eds.), Bildungsstandards Mathematik: 

konkret. Sekundarstufe I: Aufgabenbeispiele, 

Unterrichtsanregungen, Fortbildungsideen (pp. 14–32), 

Berlin, Germany: Cornelsen Scriptor.

Bosse, M., & Törner, G. (2013). Out-of-field Teaching 

Mathematics Teachers and the Ambivalent Role of 

Beliefs – A First Report from Interviews. In M. S. Hannula, P. 

Portaankorva-Koivisto, A. Laine, & L. Näveri (Eds.), Current 

state of research on mathematical beliefs XVIII. Procedings 

of the MAVI-18 Conference (pp. 341–355). Helsinki, Finland.

Bruder, R., Leuders, T., & Büchter, A. (2008). 

Mathematikunterricht entwickeln. Bausteine für kompe-

tenzorientiertes Unterrichten. Berlin, Germany: Cornelsen 

Scriptor.

Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst 

entwickeln. Lernen fördern – Leistung überprüfen. Berlin, 

Germany: Cornelsen Scriptor.

Cohors-Fresenborg, E., Sjuts, J., & Sommer, N. (2004). 

Komplexität von Denkvorgängen und Formalisierung 

von Wissen. In M. Neubrand (Ed.), Mathematische 

Kompetenzen von Schülerinnen und Schülern in 

Deutschland: Vertiefende Analysen im Rahmen von PISA-

2000 (pp. 09–144). Wiesbaden, Germany: VS-Verlag für 

Sozialwissenschaften.

Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen 

gegenüber Mathematik von Mathematiklehrern. Journal für 

Mathematikdidaktik, 19(1), 3–45.

Hallgren, K. A. (2012). Computing Inter-Rater Reliability for 

Observational Data: An Overview and Tutorial. Tutor Quant 

Methods Psychology, 8(1), 23–34.

Hobbs, L. (2012) Teaching ‘out-of-field’ as a boundary-crossing 

event: factors shaping teacher identity. International jour-

nal of science and mathematics education, 11(2), 271–297.

Ingersoll, R. (1999). The problem of underqualified teachers 

in American secondary schools. Educational Researcher, 

28(2), 26–37.

Lindmeier, A., Heinze, A., & Reiss, K. (2013). Eine 

Machbarkeitsstudie zur Operationalisierung aktionsbezo-

gener Kompetenzen von Mathematiklehrkräften mit video-

basierten Maßen. Journal für Mathematik-Didaktik, 34(1), 

99–119. 

Meyer, M., & Prediger, S. (2012). Sprachenvielfalt im 

Mathematikunterricht –Herausforderungen, Chancen und 

Förderansätze. Praxis der Mathematik in der Schule, 54(45), 

2–9.

Richter, D., Kuhl, P., Haag, N., & Pant, H. A. (2013). Aspekte 

der Aus- und Fortbildung von Mathematik- und 

Naturwissenschaftslehrkräften im Ländervergleich. 

In H. A. Pant, P. Stanat, U. Schroeders, A. Roppelt, T. 

Siegle, & C. Pöhlmann (Eds.), IQB-Ländervergleich 2012. 

Mathematische und naturwissenschaftliche Kompetenzen 

am Ende der Sekundarstufe I (pp. 367–390). Münster, 

Germany: Waxmann.

Sowder, J. (2007). The Mathematical Education and 

Development of Teachers. In F. K. Lester Jr. (Ed.), Second 

handbook of research on mathematics teaching and 

learning: A project of the national council of Teachers 

of Mathematics (Vol. 1, pp. 157–223). Charlotte, NC: 

Information Age Publishing.

Shulman, L. S. (1986). Those who understand: knowledge 

growth in teaching. Educational Researcher, 15(2), 4–14.

Törner, G., Rolka, K., Roesken, B., & Schoenfeld, A. (2006). 

Teacher monologue as a safety net: Examining a German 

mathematics classroom situation through the lens of 

Schoenfeld’s theory of teaching in context. Paper pre-



Characteristics of out-of-field teaching: Teacher beliefs and competencies (Thorsten Scheiner)

3261

sented at the 2006 Annual Meeting of the American 

Educational Research Association, Chicago, IL, April 7–11, 

2006.

Törner, G., & Törner, A. (2010). Fachfremd erteilter 

Mathematikunterricht – ein zu vernachlässigendes 

Handlungsfeld? Mitteilungen der DMV (MDMV), 18, 

244–251.

Törner, G., Rolka, K., Roesken, B., & Sriraman, B. (2010). 

Understanding a teacher’s actions in the classroom by ap-

plying Schoenfeld’s theory Teaching-In-Context: Reflecting 

on goals and beliefs. In B. Sriraman & L. English (Eds.), 

Theories of mathematics education: Seeking new frontiers 

(pp. 401–420). Berlin, Germany: Springer.



3262CERME9 (2015) – TWG20

Contradictions and shifts in teaching with 
a new curriculum: The role of mathematics

Konstantinos Stouraitis1, Despina Potari1 and Jeppe Skott2, 3

1 University of Athens, Athens, Greece, kstouraitis@math.uoa.gr 

2 Linnaeus University, Kalmar, Sweden

3 Aarhus University, Aarhus, Denmark

In the framework of Activity Theory (AT), contradictions 
are sources of change and development. Borrowing con-
cepts from AT, we attempt an interpretation of identified 
contradictions in a collaborative context where teachers 
plan and evaluate their teaching in the process of en-
acting a new curriculum. We examine the connection 
between contradictions and shifts in teaching activity, 
with a special focus on the mathematical character of 
these contradictions. We claim that dialectical opposi-
tions lying in the background of these contradictions 
promote teachers to broaden their teaching activity by 
embedding into it new mathematical and pedagogical 
possibilities.

Keywords: Activity theory, contradictions, curriculum, 

teacher choices.

INTRODUCTION

A new, reform oriented curriculum was introduced 
and piloted in a small number of schools in Greece. 
During the year 2012–13 we collaborated with the 
teachers of three of these schools supporting them 
to enact the new curriculum in their classrooms. This 
collaboration was taking place in group meetings at 
the school where the teachers worked. During the 
meetings they planned and evaluated their teaching 
while the first author, who was also a member of the 
team that developed the curriculum, supported them 
by providing explanations about the rationale of the 
curriculum as well as teaching resources. Our main 
research goal is to understand the teachers’ decisions 
and choices in relation to the curriculum documents 
and resources and the factors that framed them. 
Analysing the data we found that a variety of contra-
dictions appeared to trigger discussions in most cases. 
Drawing on AT we explored further the possible role 

of these contradictions for teachers’ choices and the 
development of the teaching activity. In general, the 
development of mathematics teaching has been stud-
ied in the context of planned interventions aiming 
to teachers’ professional development. Few studies 
though investigate teachers’ professional learning 
and the shift of their teaching activity in contexts 
where learning is not promoted by an expert. Some 
of them refer to teachers’ learning through reflection 
on their own teaching (Chapman & Heater, 2010) or 
to joint reflection in collaborative contexts (Potari, 
Sakonidis, Chatzigoula, & Manaridis, 2010). In these 
contexts professional learning is a complex and long 
process framed by many different factors and con-
ditions. Our study attempts to contribute in under-
standing of this complexity by using contradictions 
as a tool for our analysis.

In this paper, we refer to the emerged contradictions 
“as sources of change and development” (Engeström, 
2001, p. 137). Especially, we focus on contradictions 
that seem to challenge teachers’ choices and on pos-
sible shifts in their teaching activity.

THEORETICAL FRAMEWORK

Current research in mathematics education recog-
nizes that in the context of reform teachers are not 
expected to implement a predefined set of methods 
in their classroom, because there are not such meth-
ods. On the contrary, teachers are required to play a 
substantial role as a link between the curricular and 
other reform priorities and their classroom (Skott, 
2004). This requirement, which Skott calls “forced 
autonomy”, brings the teacher at the center of the cur-
riculum enactment but also creates new challenges 
and conflicts. Within this perspective, teachers are 
not considered as mere transmitters of a curriculum 

mailto:kstouraitis%40math.uoa.gr?subject=


Contradictions and shifts in teaching with a new curriculum: The role of mathematics (Konstantinos Stouraitis, Despina Potari and Jeppe Skott)

3263

formulated by some experts outside their classroom, 
but as active agents and designers. Teachers’ instruc-
tional actions are influenced by curricular materials 
but also shaped by their interactions with the students 
in the classroom (Remillard, 2005).

Analyzing data through a grounded theory approach 
we found ourselves trying to understand and inter-
pret the emerged contradictions and we turned to 
AT for this purpose. AT is trying to capture the com-
plexity of teaching, integrating dialectically the in-
dividual and the social – collective and focusing on 
the activity of the subject. The activity is driven by 
subject’s motivation and directed towards an object 
(Leont’ev, 1978). The unit of analysis in this context is 
the activity system (AS) that incorporates social fac-
tors that frame the relations between the subject and 
the object with the mediation of tools. These factors 
are related to the communities in which the subject 
acts, the rules of these communities and the division 
of labor (Engeström, 2001).

In the present study we consider the activity of the 
participating teachers to be the teaching of mathe-
matics in the context of introducing a new set of cur-
ricular materials. As the subject of this activity we see 
teachers as a group and as individuals. A main object 
and motive of the teachers’ activity is their students’ 
mathematical learning, in combination with other 
professional obligations such as implementing the 
mandates of the educational authorities. Their activi-
ty is mediated by tools such as curricular documents, 
school textbooks and other teaching-learning mate-
rials, instructional strategies, and lesson plans. They 
constantly balance school community, students’ and 
parents’ communities, mathematics teachers’ com-
munity and other communities that influence the 
teaching activity. Teachers’ activity is framed by rules 
such as institutional commitments (e.g., examinations, 
time constraints, timetables) or traits of mathematics 
as discipline and as a school subject. The division of 
labor refers to the teacher’s role in the classroom or 
in the school and to the distribution of classrooms 
among the mathematics teachers in their school.

One of the fundamental characteristics of every AS 
is contradictions. They emerge when an AS adopts 
new elements from the outside, such as a new tool or 
a new rule, causing a conflict with the old elements. 
Contradictions are neither everyday solvable prob-
lems nor temporary conflicts that may easily be 

overcome. Moreover, the term “contradiction” in AT 
has not at all the meaning of a logical contradiction. 

“Contradictions are historically accumulating struc-
tural tensions within and between activity systems” 
(Engeström, 2001, p. 137). Roth and Radford (2011) refer 
to a special type of contradictions as “inner contradic-
tions” to describe the often mutually exclusive aspects 
of the same phenomenon that coexist dialectically and 

“cannot be removed”. Contradictions create learning 
opportunities for the subject and may broaden its 
activity to a wider horizon of possibilities (Engeström, 
2001; Potari, 2013). 

There is an increasing amount of research literature 
about contradictions in mathematics education. Some 
of them use the concepts of AT to identify, describe 
and interpret contradictions in teaching (for example, 
Barab, Barnett, Yamagata-Lynch, Squire, & Keating, 
2002; Jaworski & Potari, 2009) and in teachers’ pro-
fessional development (Potari, 2013). In these studies 
contradictions refer mainly to pedagogical or pro-
fessional issues, paying less attention to mathemati-
cal and epistemological ones. Another dimension of 
this research is related to the use of contradictions to 
stimulate expansive learning in developmental inter-
ventions with groups of teachers (Engeström, 1994; 
Jaworski & Goodchild, 2006). Our initial research goal 
although developmental, was not based on stimulat-
ing contradictions as the ground of expansive learn-
ing. So, our view in this paper related to expansive 
learning is restricted in a snapshot of what is called 
expansive cycle. However, we adopt Engeström’s po-
sition that professional learning often is “something 
that is not stable, not even defined or understood 
ahead of time” and “there is no competent teacher” 
who knows what must be learned (Engeström, 2001, 
p. 137–138).

In this study we understand contradictions in two 
ways. First, as conflicting elements of the teach-
ing-learning activity. Such is the contradiction 
between the tools and the rules of the activity (e.g., 
between the choice of computer based instruction-
al tools and time restrictions). Second, we identify 
contradictions as conflicting opinions, practices or 
choices between two teachers or a teacher and some 
external agent (e.g., the curriculum, the students, etc.). 
An example of the latter is the contradiction between 
the use of tasks that require conceptual understand-
ing of divisibility (promoted by the new curriculum) 
and, the use of tasks that can be solved using key-
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words such as “less than” or “at least” that indicate 
LCM or GCF.

Some of the emerging contradictions are character-
ized by a dialectical opposition. Here, as dialectical 
opposition we consider some opposing aspects of a 
mathematical concept or of how it is transformed in 
teaching. Often, these opposing aspects are comple-
mentary, they can’t be separated, and both constitute 
the concept. For example, the distributive property 
encompasses two opposing but complementary uses: 
it can be used to transform a product to a sum or a 
sum to a product. In our analysis such oppositions 
appeared in some cases underlying a contradiction. 
Dialectical oppositions of this kind allow us to con-
sider more deeply in our analysis the mathematical 
dimensions (e.g., content, processes) of teaching. 

METHODOLOGY

The research was conducted during the pilot imple-
mentation of the new curriculum in three junior high 
schools (grades 7–9). The new curriculum emphasizes 
students’ mathematical activity that promotes math-
ematical reasoning and argumentation, connections 
within and outside mathematics, communication 
through the use of tools and metacognitive aware-
ness. It also attributes a central responsibility for the 
teacher in the process of designing teaching. In this 
study, the mathematics teachers at each participating 
school (school A, B and C) worked together to enact the 
new curriculum with the support of the first author. 
The main tasks undertaken in the groups were plan-
ning lessons and reflecting on their experiences with 
teaching some modules of the designed curriculum 
in the classroom.

For this paper data consist of transcriptions of au-
diotaped conversations and written documents 
(worksheets, lesson plans) from 8 meetings with the 
5 mathematics teachers of school A.  This school is 
an experimental and model school where participat-
ing teachers have long teaching experience and are 
familiar with educational innovations. In general, 
the school culture is characterized by an innovative 
spirit. In this paper, we refer to two teachers, Marina 
and Linda, with over 25 years of teaching experience, 
with extra qualifications (both have masters degree, 
Marina in mathematics and Linda in mathematics 
education) and both with experience of innovative 
teaching approaches in their classrooms. In the past, 

both had participated in teacher collaborative groups 
developing classroom materials or writing papers for 
mathematics teacher journals and conferences. In 
general, Marina was more informed than Linda about 
the research activities of the mathematics education 
community in Greece.  Both had a critical stance to 
innovations in general, adopting some of them and 
rejecting others and had strong views about their 
teaching choices. Concerning the new curriculum, 
in an interview at the beginning of this research study 
they had said that it came as a legitimizing umbrella 
over their practice. 

The transcribed conversations were analyzed with 
grounded theory methods (Charmaz, 2006). The writ-
ten documents were used to exemplify the conversa-
tions.  The initial open coding resulted in the identifi-
cation of discussion themes for each meeting, forming 
thematic units. In each unit teachers’ choices, their ra-
tionale and emerging contradictions were identified. 
As indicators of a contradiction were disagreements 
among the participants or between the participants 
and an external source. Each identified contradiction, 
was formulated as a dichotomy (e.g., the choice of tasks 
aimed at conceptual understanding or at procedural 
fluency). For every identified contradiction we used 
descriptive codes related to its content, the agents (e.g., 
a contradiction between participants and the curric-
ulum) and teachers’ awareness (whether or not they 
recognise the contradiction). Then, contradictions 
were categorized and traced through data for possible 
effects on teaching. 

RESULTS

The content of the identified contradictions con-
cerned issues such as: teaching planning and strate-
gies, students’ activity and difficulties, institutional 
constraints, teacher collaboration, classroom man-
agement and epistemological issues. Data analysis 
showed that in some cases contradictions led teachers 
to question their own teaching and start transforming 
it. Below we elaborate two of these cases as exemplars 
of shifts in teaching activity. The first exemplar un-
derlies a dialectical opposition in the teaching of a 
mathematical property, while the second shows an 
epistemological opposition concerning the validation 
of school mathematical knowledge.
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Contradicting goals and dialectical 
oppositions in teaching the distributive law
In the second meeting at school A (A2, turn 138) 
Marina described her teaching plans for algebraic 
transformations in grade 9 (operations with polyno-
mials, identities and factorization). Starting from her 
observations on students’ mathematical activity she 
said that in the expression 3 · (a + b + c) “children see 
completely different things than us ... they see addi-
tion and multiplication [while] we see … a product with 
two factors”. Seeking to obtain “a common language” 
with the children about the structure of algebraic ex-
pressions Marina decided to emphasize this issue in 
her teaching. She designed to teach multiplication of 
polynomials in parallel to the factorization of a pol-
ynomial. In the meeting Marina presented the work-
sheet she used in the classroom and described that she 
divided the blackboard in two parts, with the expres-
sion 3·(a + b + c) = on the left and the 3a + 3b + 3c = on the 
right.  With this approach she hoped to make clearer 
to the students that the use of distributive property 
depends on the structure of the expression we have 
and the structure we want to get.

At the next meeting (A3, turns 105–114) Marina said 
that she used this approach in the teaching of alge-
braic identities and she expressed her satisfaction 
commenting:

I think … they have understood better that this 
way or the other is in fact about polynomials’ 
operations. Until now identities have been pre-
sented as something to be learned by heart, and 
it was a special thing, completely away from the 
other operations, as well as the factorization was 

… say these things were not connected at all. And 
I think that their connection helped students to 
understand them and to use them in a flexible 
way. (A3, 113)

In this episode a contradiction comes to the fore: the 
teacher has the goal for the students to identify the 
structure of an algebraic expression as sum or prod-
uct, while the students recognize only the operations 
that the expression calls them to do, a well-known 
problem in learning algebra (Sfard, 1991). In the 
background of this contradiction lays a dialectical 
opposition concerning the use of the mathematical ob-
ject: distributive property may be used to transform 
a product to a sum or to factorize a sum to a product. 
Recognition of this contradiction by Marina was based 

on her past experience and observation of students’ 
mathematical activity. However, it was triggered by 
the new curriculum, which called to emphasize the 
structure of algebraic expressions, and by the dis-
cussions in the group related to the new curriculum. 
Marina also recognized the dialectical opposition in 
the distributive property and based on this her teach-
ing attempts to overcome the contradiction between 
her goals to emphasize the algebraic structure and 
her students’ tendency to see the tasks operationally.

A “traditional” teaching approach leads to two sepa-
rated readings of distributive property, attempting 
to plan teaching based once on the first (operations to 
get a sum) and then on the other (factorization to get a 
product). This is the structure of the school textbook, 
as there was not a new textbook in the philosophy 
of the new curriculum. This was also the approach 
of the other teachers in the group, as with different 
rationale everyone adopted the well known teach-
ing sequence. Especially Linda explained her choice 
saying that she believed that students needed time to 
consolidate their knowledge in operations with pol-
ynomials. However, she also valued the recognition 
of the algebraic structure: “I also ask the students: is 
this a sum or a product?” (A3, 251)

So, Marina’s instructional choice on this topic can be 
regarded as a change to what she was doing before and 
to what usually her colleagues and most mathematics 
teachers in Greece used to do. The new perspective 
that Marina adopted considers the two usages of 
distributive property as two dialectically opposite 
ways that need to become explicit to the students and, 
consequently, to highlight the structure of algebraic 
expression. This perspective, stemming from the rec-
ognition of the initial contradiction, can be considered 
as an indication of broadening the horizon of Marina’s 
teaching activity, encompassing new possibilities to it. 
On the other hand, Linda recognized the same contra-
diction but she did not choose to change her teaching, 
following the mainstream approach. 

Contradicting tools and dialectical 
oppositions in using geometrical 
transformations in teaching congruence
Although some elements of reflectional and rotational 
symmetry existed in the previous curriculum and in 
the textbook, the geometrical transformations, name-
ly translation, reflection and rotation were introduced 
as a distinct topic in the new curriculum mainly in 



Contradictions and shifts in teaching with a new curriculum: The role of mathematics (Konstantinos Stouraitis, Despina Potari and Jeppe Skott)

3266

the 8th grade. The rationale of this introduction was 
connected with the development of students’ spatial 
sense and with the value of transformations in tack-
ling congruence and similarity. The topic emphasized 
the transformation of a figure as a whole supporting 
more intuitive and dynamic approaches to the ge-
ometric shapes and their properties. The focus was 
on the relationship between the two figures (original 
and image), highlighting the relation of congruence 
or similarity and attributing to the transformations 
the character of a proving tool (for further discussion 
on this relationship see Battista, 2007).  Therefore, ge-
ometrical transformations constitute an alternative 
approach to the Euclidean perspective in school ge-
ometry indicating a different epistemology: the use of 
the moving figure as a proving tool is not compatible 
with the rigorous deductive rationale of Euclidean 
geometry.

In the discussion in the fourth meeting (A4), Marina 
referred to her introductory lesson on the congru-
ence of triangles (grade 9) and she was pleased that in 
her question “how could we ascertain that these two 
triangles are congruent?” some students answered 

“if the triangles match after translation or reflection 
or rotation”. She refers to Freudenthal’s claim that 
Euclidean geometry is abused in school and she says 
that she is thinking to use tasks with geometrical 
transformations in teaching the congruence of tri-
angles (A4, 132). However, she was questioning how 
this could be introduced in her teaching: “but there 
is a need of investigation and inquiry before doing so” 
(A4, 126); “I want them [the students] to understand 
that when we compare angles or segments or general-
ly elements of polygons, we have two tools. One is the 
transformation and the other the criteria of triangle 
congruence” (A4, 136).

Linda listened to what Marina said and asked for 
clarifications. Finally, she commented that Marinas’ 
thoughts were interesting but “every topic has its 
purpose”. She did not criticize Marina’s choices, but 
she claimed that “there is a purpose to learn to write, 
to observe the shape, to distinguish the given from 
the required, to make conclusions, and to prove … 
[Congruence] has its meaning” (A4, 137).

In the next meeting (A5) Marina described the way 
that students of grade 9 worked with the congruence 
of triangles in parallel to geometrical transforma-
tions to prove the congruence of segments or angles. 

She argued that there are tasks that can show to the 
students when one approach is more appropriate 
than the other. For example, the task “the two trian-
gles formed by three pairs of diametrically opposing 
points, are congruent” can be easily tackled by a 180° 
rotation, while the use of the criteria of triangle con-
gruence is very complex (A5, turns 7, 9). On the basis 
of these special tasks, epistemological issues were 
also discussed in the meeting, about the rigor and the 
intuition of different approaches (A5, turns 11–15). 
Marina’s descriptions show that her students used 
transformations as an alternative way to triangle con-
gruence. This happened regularly in the classroom 
she had also taught in the previous year, but with more 
difficulty in a classroom she has been teaching only 
this year (A5, turn 7). Linda follows the discussion 
expressing positive opinions on Marina’s strategies 
(turns 8, 10, 16, 20).

In the sixth meeting (A6) Marina said that in a test she 
asked her students to prove the congruence of two 
segments with two ways and many of them referred 
to rotation. Reflecting on her attempt to use trans-
formations as an alternative to triangle congruence, 
Marina admitted:

the introduction of transformations in the 8th 
grade gives you the opportunity to change the 
framework [of proving] in the 9th grade … [for the 
students] to see that you can cope with the proof 
of geometrical properties with two strategies … 
using transformations and  the triangle congru-
ence … And it was done easily … it came from the 
students. … And I think it is very nice that for the 
first time it is given the possibility to get away 
from Euclidean geometry… (A6, turns 324–334)

In the 8th meeting (A8) Marina mentioned that some 
students used transformations in other topics, such 
as trigonometry, indicating that they used them as an 
operational tool to visualize and prove congruence. 
Reflecting on her favour for transformations, she 
mentioned a seminar on transformations she had at-
tended three years ago and her experimental teaching 
in another school. Linda expressed her disagreement 
to such intertwining of different topics. She said: “I 
like transformations per se. I don’t like overusing 
them later in congruence … I don’t find the reason to 
[do so]” (A8, turns 123,125)
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In our interpretation, the discussions on transforma-
tions and triangle congruence reveal a contradiction 
between these two concepts as two different tools that 
a student can use to prove geometrical properties. 
In the background of this contradiction lies the epis-
temological difference between rigorous, deductive 
foundation of knowledge in Euclidean geometry and 
more intuitive, visual, dynamic aspects of geometrical 
transformations. We see this epistemological differ-
ence as a dialectical opposition, because the oppos-
ing aspects can be synthesized in a way that benefits 
students in grasping the concepts and properties of 
congruence. This is the intention of the new curricu-
lum. Marina recognizes the contradiction between the 
two tools and their epistemological differences (as a 
dialectical opposition) although she does not use this 
terminology. This allows her to attempt a shift in her 
teaching by using the two tools in parallel and syn-
thesizing them in the students’ mathematical activity. 
This shift is a change in comparison with Marina’s 
previous teaching and with the other teachers’ teach-
ing, for example, Linda’s. 

Any attempt to interpret Marina’s shift, must incor-
porate social and cultural factors. Here we discuss 
some of them, trying to operationalize some concepts 
from AT. First of all is the obligation of implementing 
the mandated curriculum (rules) to which Marina’s 
perspective was in accordance. The idea of using 
transformations in parallel to triangle congruence 
was triggered by students (community) on the basis of 
the curriculum philosophy (tools) and Marina’s con-
tent knowledge and professional experiences (tools). 
The distribution of classrooms among the teachers 
(division of labor) led Marina to teach students she 
had taught transformations in the previous year. 
Marina’s conversations in the group of teachers and 
with other mathematics teachers (community) helped 
her to clarify and identify her approach. The specific 
approach was consistent with the norms of classroom 
and the active role of students (division of labor). The 
aforementioned factors embed historical evolution, 
both in the teachers’ biography and in the formation of 
the tools, rules and communities, but the space limits 
hinder any further reference on this.

Linda seemed to like the introduction of geometrical 
transformations by the new curriculum, and recog-
nized them as a proving tool. However, she chose not 
to synthesize the two tools, pursuing the benefits of 
emphasizing the deductive approach of congruence in 

Euclidean geometry. Linda and Marina share similar 
perspectives about the new curriculum and similar 
experiences on teaching geometrical transformations. 
Both work in the same school with innovative culture 
and participate in the same collaborative group for 
planning and reflecting on teaching. The apparent 
differences can be possibly explained by the different 
tools they use (e.g., content knowledge on the topic of 
transformations) or the different communities they 
had participated). But what is making the difference in 
their activity are the different learning and teaching 
goals the two teachers set for their students concern-
ing geometrical transformations. 

DISCUSSION

Activity theory views contradictions as a prerequisite 
for the transformation of activity through an expan-
sive cycle (Engeström, 2001). Here, we cannot follow 
the expansive cycle of the teaching activity but we 
observe some snapshots, some instances of “creative 
externalization … in the form of discrete individual 
violations and innovations” (Cole & Engeström, 1993, 
p. 40). This is the way we see the shifts in Marina’s 
teaching. In the two presented examples, dialectical 
oppositions of epistemological character underlie 
the identified contradictions. In the first example, the 
contradiction is between the teacher’s goals and stu-
dents’ operational understandings while the dialec-
tical opposition is in the use of distributive property. 
In the second, the two contradictory proving tools are 
underpinned by opposing epistemologies that can be 
dialectically synthesized.

Barab and colleagues (2001, p. 104) argue that “when 
systemic tensions are brought into a healthy balance 
they can facilitate a meaningful interplay that enrich-
es and adds dynamism to the learning process”. These 
claims highlight the dialectical dimension of tensions 
and contradictions that have emerged in our study. It 
appears from our analysis that recognizing the con-
tradiction and deciding to incorporate both opposite 
aspects dialectically, has an effect on “broadening the 
horizon of the activity” (Engestrom, 2001; Potari, 2013) 
as in the case of Marina. The dialectical oppositions 
attribute mathematical and epistemological charac-
teristics to the contradictions that can form the basis 
for a shift to the teaching activity. The above claims 
are in accordance with Chapman’s and Heater’s po-
sition (2010) that key issues on teacher change are: 
the experience of authentic tensions based on actual, 
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personal classroom experiences, the willing to take 
ownership of the change and the acceptance of a de-
gree of uncertainty. Although from the AT analysis 
we see commonalities in the social factors that frame 
both Linda’s and Marina’s teaching activity, we iden-
tified different teaching and learning goals for their 
students. In other words, their activity is motivated 
by different objects as “images of thought” (Leont’ev, 
1978, p. 86), that is, they hold different anticipations 
about students’ learning.

We don’t know if the identified shifts in Marina’s 
teaching will be sustained and if they can be expand-
ed in the collective activity of mathematics teaching 
in Greek schools. Such an investigation requires long 
periods of time and different research methods. What 
we can claim from this study is that contradictions 
may be overcome in a dialectical way that challenges 
dichotomies between “effective” and “non effective” 
teaching towards a more dynamic view of teaching.
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The complexity of research and teaching itself influ-
ences education in myriad ways. The insulation be-
tween research and teaching is counterproductive to 
the growth of mathematics education as a field in gen-
eral and in developing a grounded understanding of 
teaching in particular. This study aims to understand 
teachers’ knowledge about students’ mathematical 
thinking in situ. Next, an attempt is made to enhance 
teachers’ knowledge through contextually appropriate 
intervention using artefacts from teachers’ practice. The 
collaboration between researcher and teacher to unpack 
students’ thinking and make informed teaching deci-
sions guided learning among students, teachers, and the 
researcher. This paper argues for the value of a situated 
approach to theories about teaching and also develops 
opportunities to support teacher learning from practice.  

Keywords: Mathematics teacher learning, professional 

development, situated approach, teacher knowledge and 

practice, teacher-researcher collaboration.  

INTRODUCTION 

The gap between research and teaching has been 
widely acknowledged by researchers in mathematics 
education (Lerman, 1990). The insulation between the 
communities of teachers and researchers is unfortu-
nate for there is a major overlap between their inter-
ests and focus. Concerns like understanding students’ 
thinking, identifying and testing learning trajectories, 
trying out different teaching methodologies, focus 
on content and its connections, etc. are some of the 
research areas that are directly linked to teachers and 
teaching. In contrast to these, theorising about teacher 
knowledge, beliefs and practices has extensively been 
a domain of researchers or educationists. There has 
been lesser participation from teachers in unpacking 
their own knowledge and beliefs for that requires 
metacognitive awareness about their work. Teachers 

primarily focus on their routines of everyday class-
room which leaves little time for them to reflect on 
what is being taught. Teachers make decisions about 
the content to be taught and ways in which this it can 
to be communicated to make it accessible for learn-
ers of specific age groups. This distinctive feature 
of teacher knowledge, choice of representations or 
mathematical tools along with the knowledge of stu-
dents is described by Shulman (1986) as pedagogical 
content knowledge (PCK). In teacher education pro-
grammes in India, we are yet to think about ways in 
which PCK can be discussed and enhanced in teachers 
in ways that they become instrumental in their own 
learning from practice. 

A framework that is particularly useful in identify-
ing the relationship between teacher knowledge and 
practice for teacher learning is proposed by Cochran-
Smith and Lytle (2000). They distinguish between 
knowledge for practice, knowledge in practice and 
knowledge of practice. Knowledge for practice sepa-
rates the knowledge producers from knowledge us-
ers. Knowledge is generated by experts (researchers 
and teacher educators) and then selectively shared 
with teachers (practitioners) for implications in class-
room. Knowledge in practice is the practical wisdom 
that teachers or practitioners gain from their practice 
of teaching over the years. Teacher deliberation and 
reflection on the experience of teaching is the source 
of this knowledge. Knowledge of practice is the knowl-
edge generated in the field and connected with the 
existing theoretical knowledge. In a way, knowledge 
of practice combines knowledge in and for practice 
to suit the needs of classroom and support teacher 
reflection and learning. 

In the Indian context, research geared towards identi-
fying meaningful connections with the teacher com-
munity is scarce (Batra, 2005) and initiatives and in-
terventions in the area of mathematics teaching have 

mailto:shikha@hbcse.tifr.res.in


Confluence of research and teaching: Case study of a mathematics teacher (Shikha Takker)

3270

not been documented and analysed (Banerjee, 2012). 
More common approaches of working with in-ser-
vice teachers are short term workshops and sessions 
where the knowledge from research is made acces-
sible to teachers (Kumar, Dewan, & Subramaniam, 
2012). The reforms in education are communicated 
to teachers in a top-down manner. Teachers are ex-
pected not to engage in matters of policy and theory 
(Kumar, 2008) but to implement the changes proposed 
by reforms in education. The agency of the teacher in 
actively informing curriculum change or policy is 
missing. Within this socio-political scenario, teachers 
perceive their role as ‘teaching’ (translated into tell-
ing) students to pass the examinations by completing 
the stated syllabi and assessments. Learning from the 
experience of teaching is assumed but not explicated 
or harnessed. More so, teachers actively taking part 
in their own professional development is not a part of 
this imagination. Practical difficulties of convincing 
authorities, teachers, and their sustained participa-
tion adds to the reluctance among researchers to work 
in collaboration with teachers or schools. The increas-
ing insulation between research and teaching in India 
is mutual. Teachers criticise research for its apparent 
disconnectedness with the reality of classroom and 
the lack of its practical utility. A serious considera-
tion of the gap between research and teaching has 
been identified by the recent policy documents (NCF, 
2005; NCFTE, 2009) and efforts to bridge it in ways 
conducive to classroom teaching and learning are 
being explored. There is a need for models of teacher 
education where the community of teachers and re-
searchers can work together to create opportunities 
for students as well as their own learning.    

This study tries to identify and provide opportunities 
to teachers to generate knowledge of practice by reflect-
ing on their practice using research based knowledge 
about students’ thinking in a particular topic domain. 
Central to this research has been the collaboration of 
researchers and teachers to facilitate student learn-
ing in classroom. The process of generation of knowl-
edge of practice gave researchers an opportunity to 
build a relationship with teachers and connection 
between research and teaching.  

THE STUDY

The study was carried out in an English medium 
school in Mumbai, India. The school is a part of net-
work of schools run by an autonomous body under 

the Government of India and caters to students and 
teachers from different locales of the country. Four 
elementary school mathematics teachers participated 
in the study which was carried out in 2012–2013. 

Objectives and Context 
The study aimed to understand the nature of teachers’ 
knowledge of students’ thinking gained from the ex-
perience of teaching mathematics and explore ways 
in which this knowledge can be supported and en-
hanced in situ. The observations of teaching practice 
and literature on students’ thinking in the same topic 
domain, were utilised to design contextually embed-
ded tasks to support teacher reflection and learning. 
Qualitative changes in teaching practice and ways in 
which teachers discussed about students and mathe-
matics were noticed.

Knowledge of mathematics and about students’ learn-
ing mathematics guides teachers in planning lessons 
as well as in taking in-the-moment decisions while 
teaching in the classroom. Knowing about students’ 
mathematical thinking supports opportunities for 
asking questions linked to students’ ideas, eliciting 
multiple strategies, drawing connections across 
strategies, and so on (Franke, Kazemi, & Battey, 2007). 
Unfortunately, knowledge of content and students’ 
thinking are dealt separately in the teacher education 
programmes in India (NCFTE, 2009). The psychology 
courses deal with the components of students’ think-
ing and learning. The concept-related discussions are 
confined to the subject related methods courses. It is 
believed that the experience of teaching would help 
teachers to integrate the two knowledge pieces to-
gether and blend them in their teaching. The nature 
of knowledge that teachers gain from experience 
remains hidden, unarticulated and mostly unchal-
lenged. Discussions on concept-specific students’ 
thinking and learning in teacher education needs 
exploration in the Indian context. Concept-specific 
students’ thinking was chosen as an artefact for dis-
cussion with teachers because it is close to the work 
of teaching, provides opportunities for teachers to 
formulate hypothesis and creates opportunities in 
classroom to explore teaching possibilities (Takker & 
Subramaniam, 2012). The dynamic approach enables 
teachers to be more thoughtful and informed in their 
decision-making. 
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Methodology and data 
The investigation adopted a case study methodology 
which included exploration and intervention. Four 
elementary school mathematics teachers, each with 
a teaching experience of more than ten years, partic-
ipated in a two year long study. Two of these teachers 
teach mathematics and environment studies from 
Grades 1 to 5, and the other two teach mathematics and 
physics from Grades 6 to 10. The objectives of the study 
were explained to the teachers. The school time-table 
had 8 lessons per day. The participating teachers were 
assigned 6 (or more) lessons to teach everyday by the 
school. This made it difficult to maintain a follow up 
with each teacher immediately before and after a les-
son. Data was collected through classroom observa-
tions, task based interviews before and after teaching 
a lesson, two long interviews with individual teachers, 
and after school meetings with all the teachers. The 
data is in the form of thick descriptions (Geertz, 1994), 
audio and/or video records which are in the process 
of being transcribed for the purpose of analysis. 

Preliminary data analysis
The data from diverse sources is triangulated to make 
meaningful interpretation of the classroom events 
and then analysed for qualitative patterns. Thick de-
scriptions allowed for a microscopic interpretation 
of the flow of discourse in classroom. Theoretical 
propositions that guided the study and description 
of each case (Yin, 2009) were used to analyse data from 
classroom observations and teacher interviews. In 
this paper, I discuss the case of one teacher, teaching 
division in a Grade 4 classroom.

Teaching division at Grade 4
Pallavi (pseudonym) is a primary school teacher. She 
has been teaching mathematics and environment 
studies to students from Grades 1 to 5 for over 15 years. 
In the years 2012–13, she was teaching mathematics to 
Grade 1, 4 and 5. Her class size varies between 30–38 
students, including girls and boys. She appears con-
fident about the content to be taught in a lesson. She 
does not plan her lessons because she thinks that with 
experience a teacher knows the content and its se-
quence. She is unhappy with the new textbooks intro-
duced after the National Curriculum Framework 2005 
(henceforth NCF 2005) because “they appear more 
like story books and less like mathematics textbooks”. 
She likes the old textbooks as there were “sufficient 
number of problems for practice”, concepts were neat-
ly arranged with no overlaps, and “the teacher knew 

where to start and where to stop teaching [a topic]”. 
In our initial interactions, Pallavi was reluctant to 
spend any time outside the classroom to talk about 
the teaching. Her classroom observations revealed a 
disciplined classroom where rules were laid down by 
the teacher. Over a period of time, the relationship be-
tween Pallavi and researcher changed. Pallavi became 
more reflective about her teaching and the researcher 
became a co-teacher.  

Pallavi has been teaching division to fifth graders 
for almost as long as she started teaching. She has 
always ‘taught’ them long division beginning with 
division of a single digit number with another single 
digit number, double digit divided by a single digit, 
three digit by a single digit, two digit by a two digit 
and so on (see Year 2012 in Figure 2). She believes that 
children should be taught the algorithms as they are 
an important part of school mathematics. The revised 
textbooks (post NCF 2005) however do not provide a 
single method for division but suggests learners to 
think of different ways to solve division problems. 
These ways include repeated subtraction or subtrac-
tion using chunking of twos, repeated addition of 
the divisor, multiplication facts, etc. (NCERT, 2006a, 
2006b). Pallavi has a clear opinion on these methods, 
which is captured in the following vignette from the 
interview transcript.  

Pallavi: Different methods confuse a child. 
You know they are very young for 
understanding all this [methods]. 
Understanding comes later when their 
brain has grown a bit. In these [prima-
ry] classes, children should be clearly 
told what to do so that they can follow. 
And there are different methods to solve 
different problems. Like when I teach 
division, I don’t teach anything else. I 
just teach long division and give lot of 
practice, sums [mathematical problems]. 
The more sums they do the more they 
learn. You can’t expect them to learn so 
many methods like the new textbook 
gives. It says you teach this method also 
that method also. It is very confusing for 
students and then when you ask a ques-
tion, which method do you want them to 
use? They should use long division. It is 
what we have been doing for ages, I did it 
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when in school. And it is the systematic 
way. (P.I, 2012)

On several occasions, Pallavi was asked to think about 
why the long division algorithm works. In one of our 
(researcher and Pallavi) interactions, Pallavi was en-
couraged to unpack the algorithm by studying it in 
parts through questions like why take one digit at a 
time, what is the meaning of multiplying divisor with 
a number, what is the number being subtracted, etc. 
Pallavi is convinced about the digit-based approach 
(taking one digit in each step and dividing it by the 
divisor). She was taught the same algorithm as a stu-
dent and once memorised it works for all numbers. 
Like many teachers, Pallavi ‘operates in the field based 
on her old biases and prejudices formed through her 
schooling’ (Mahapatra, 2004). 

Apart from the discussions centred around her teach-
ing, researcher had meetings with Pallavi and three of 
her fellow teachers teaching mathematics to middle 
grades. Tasks during teacher meetings involved think-
ing about students’ responses and unpacking students’ 
thinking in their (incorrect and correct) explanations. 
For instance, one of the tasks was to identify differ-
ences in the explanation of two students who both 
gave a different wrong answer for the same problem. 
The discussions around the task included talking 
about the errors, reasons for response, information 
they convey about student’s knowledge or difficulty, 
and exploring connections between different topic 
areas of mathematics to identify possible thinking 
trajectories that students’ might take with this kind 
of thinking. Teachers were engaged in the process 
of creating problems which would address different 
kinds of students’ thinking.

Pallavi considers the new textbooks ‘telling’ her a 
number of methods to be ‘taught’ in the class. Looking 
at the methods from the perspective of something to 
be taught and ensure that it is learnt by all students, 
Pallavi was not confident on the rationale for using 
the grouping method. It was hard to convince her to 
try to use different methods for solving a division 
problem. She strongly held the belief that the alter-
native methods would be confusing for students and 
therefore should not be dealt with in the class.

Pallavi: Now I have tried this method given in 
the book but see it is confusing... have 
always done long division only with 
children. So I am not sure how to intro-
duce it, how to actually do it in class. I 
am comfortable in long division and it 
is shorter you know. It is a step by step 
process, take one digit at a time so they 
[students] can easily divide. Why don’t 
you [to researcher] take this [division 
by grouping] in my class? Tell them 
what this method is. [After a pause] Yes 
we can see how they pick it and decide 
then only which method. I don’t know 
if they will understand. I tried around 
8 to 10 numbers, dividing them using 
that method. The bigger the number, 
the more confusing it was. I think it can 
confuse. But you try and let me see how 
they try to do it.  (Pre-Class Interview, 
P119N10, 2013)

Several considerations seem to be guiding Pallavi’s 
choice of a method for teaching division. These in-
clude her competence to use a method as a teacher, 
systematicity of the method i.e. one step follows from 
another, comprehensiveness and the cognitive de-
mand it places on students while not being confusing, 
belief in the legitimacy of the established method, etc. 
At the same time it was clear that she is looking for 
support and some evidence of learning using differ-
ent methods. As a result, she suggested an exchange of 
roles, where she becomes the observer and researcher 
becomes the teacher. The role reversal is an important 
event in this interaction as the teacher gives an op-
portunity to the researcher to collaborate in teaching 
which is at the core of the shared interest. As a re-
searcher, there were two kinds of concerns emerging 
from this decision. Firstly, the teaching goal was to 
engage students with the grouping method as a way 

Figure 1: (a) Long division algorithm, (b) Grouping using convenient 

numbers
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of solving division problems. This goal was partially 
shared with Pallavi who wanted to assess students’ en-
gagement with the method. Secondly, it was important 
to support Pallavi in teaching different methods as 
well as engage with students’ struggles while they use 
the alternative routes in their attempt to solve a divi-
sion problem. An important teaching decision was to 
think of a relevant context where students would find 
the need to use grouping in order to solve the problem. 

Pallavi started teaching the lesson by revising long 
division using number problems (two-digit number 
divided by a one-digit number). Then she called upon 
the researcher to teach and explain a ‘new’ method to 
the students. The researcher started with the context 
of distributing money among three friends equally 
to find the share of each friend (Rupees 75 among 
3 friends). Students were asked to think about the 
amount that can be safely given to each friend from 
the total amount to be shared. Students began by sug-
gesting different combinations on how the money can 
be distributed “give them 10 each, 20 each or 15”. When 
asked to justify their answers, students explained 
different combinations of numbers to distribute the 
money equally. In the second problem, the number 
of friends was increased to 5 while the amount to 
be shared remained the same. Even before solving 
the problem, students figured out that the share of 
each friend would be lesser and used grouping with 
convenient numbers to justify their answer. As the 
lesson was progressing, Pallavi gradually stepped in, 
helped in eliciting different combinations from stu-
dents, making them think of efficient combinations 
and asking students for reasons for their choice. Later 
on she completely took over to use the method with 
different numbers (115 divided by 3 in Figure 1). It 
seemed that along with the learners, Pallavi was also 
testing whether this method works for different num-
bers, the appropriate choice of numbers (dividend 
and divisor), and its linkages with related concepts 
like multiplication. After the class, Pallavi reflected 
on the use of method and its affordances by comparing 
it with the long division algorithm.  

Pallavi: I think the method is good. They can 
use different ways to get it. Also it is 
very clear, this vertical arrangement of 
numbers. And grouping by tens they are 
aware also. Then slowly they can move 
to choosing bigger numbers. Actually 
you know the number of steps increases 

if you take small numbers [multiples]. 
But it doesn’t matter because they any-
way get it. They can use 8 directly or if 
not 4 and 4 or 5 and 3, it doesn’t matter. 
This method is better and they [students] 
picked it up faster also. As a teacher, I 
can see how they are liking it. Taking it 
as a full number [number as a whole] 
is clear to them. They find it more easy. 
Easy only, no? They can make as many 
groups and how much they want. This 
also tells us about their multiplication 
knowledge. But you know one more dif-
ference is there. In long division I have 
to teach them for each increasing digit 
like dividing by one digit, then 2 [digit 
number] and 3, all are different. But in 
this they have to use the same method 
for big numbers, by themselves and 
they can do also. (Post-Class Interview, 
P120N10, 2013)

While reflecting on the lesson, Pallavi was consid-
ering the affordance of the grouping method mathe-
matically as well as from the view point of students. 
Mathematically, she unpacks the idea of grouping 
using convenient numbers, flexibility in the num-
ber of steps, efficient choice of combinations, treat-
ing dividend as a whole, and workability of solution 
for other sets of numbers. She noticed that students 
came up with the method themselves and were using 
it flexibly without making a common error, skipping 
a digit while using long division algorithm without 
understanding. In the next lesson, Pallavi asked stu-
dents to choose any method to solve the division prob-
lem and identify the similarities in long division and 
grouping. Further, Pallavi made a decision to include 
the grouping and other methods in her teaching of 
division henceforth.

In the course of intervention, Pallavi realised the im-
portance of listening to students not just to evaluate 
what they do not know but to make it a part of her 
decision making in teaching. Pallavi engaged with the 
basic principles of analysing a given method of solv-
ing arithmetic problems. The structure that underlies 
the method and its connection with the algorithm was 
discovered by Pallavi along with the students. Thus, 
the choice of method(s) is not guided by the author-
ity of the method given in the textbook but from an 
engagement with the structure of a method and its ra-
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tionale. Another evidence of change noticed in Pallavi 
is the difference in her teaching trajectory over these 
two years (refer Figure 2).

The episodes reported in this paper are used to exem-
plify one of the ways in which knowledge from teach-
ers’ classroom was utilised to mediate teacher reflec-
tion and learning around the content of mathematics. 
The role of researcher was to notice opportunities for 
communicating important mathematical ideas from 
teachers’ teaching and bring these for discussion with 
the teacher(s). The discussions centred around the 
rationale of mathematical procedures, conceptual un-
derstanding, and identifying important mathematical 
ideas to be communicated. 

DISCUSSION 

The paper presents preliminary analysis of a case 
study where teacher’s knowledge of students’ think-
ing was utilised to support her reflection and learn-
ing. Although a more rigorous analysis is in process, 
some interesting patterns are reported in this paper. 
Evidences of students’ thinking from teachers’ class-
rooms as well as from research served as concrete 
artefacts to talk about mathematics, making interven-
tion more grounded and connected to the classroom 
reality. Teachers’ explorations in their classroom gave 
them an opportunity to test propositions emerging 
from meetings with other teachers and researchers. 
The change in the positioning of teacher and research-
er marked an important learning turn in the collabo-
ration. The methodology allowed for the researcher to 
engage with teaching and students’ learning directly. 
The impact of such collaborations on learning needs 
further investigation. 

Researcher’s own experience as a teacher and work 
with teachers and teacher educators has indicated 
the need for building teacher communities. Teachers 
need spaces to articulate their struggles of teaching 
mathematics, their conjectures about students’ learn-
ing and its interaction with the content, etc. A model 
for affording such an interactive space to discuss the 
work of teaching needs to be created in our country. 
Research which focuses on students’ thinking is a be-
ginning to an attempt towards building communities 
of teachers for sustained interactions. In this study, 
an exploration into knowledge required for teaching 
mathematics with a focus on practice created space 
for teachers and researchers to work together. More 
focused efforts are required to connect knowledge 
in and for practice to generate knowledge of practice 
through teacher-researcher collaboration. The voice 
and agency of teachers in programmes aimed at their 
professional development needs to be respected for 
making interventions meaningful. 
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The paper draws from a hermeneutic phenomenological 
research study, which aimed at exploring the meaning of 
teachable moments from the lived experiences of grades 
6–8 mathematics teachers. A primary and important 
stage of hermeneutic phenomenological study is for re-
searchers to begin their research with a personal story. 
This paper presents the results of this primary stage, 
which focused on one of author’s experiences of storytell-
ing in a grade 6 to 8 mathematics classes for the purpose 
of humanizing mathematics as a way of engaging both 
the ‘being’ of mathematics students and their cognitive 
faculties. Data was collected from personal teaching 
stories of one of the researcher/author. The paper argues 
that teacher’s storytelling humanizes mathematics in 
ways that engages both the ‘being’ and cognitive faculties 
of a student. 

Keywords: Humanizing mathematics, teaching, learning, 

storytelling.

INTRODUCTION

What does it mean to teach mathematics? Researchers 
in mathematics education address this question in 
various ways. On one side, mathematics education 
researchers tackle this question by focusing on the 
question of how one can be an effective mathematics 
teacher. With regard to the question of an effective 
mathematics teacher, research tends to focus on teach-
ers’ content knowledge and/or pedagogical knowl-
edge, or an integration of the two. Foote, Smith and 
Gillert (2011) suggest that teachers seeking to com-
municate a subject effectively and comprehensively 
should be equipped with an in-depth understanding of 
content knowledge, whereby they are able to provide 
alternative explanations for the same concept or topic 
in order to fully explain the subject. However, having 
an in-depth understanding of content knowledge in 
mathematics does not necessarily equate to or result 

in teaching mathematics effectively. Researchers ar-
gue that in order to be a successful mathematics teach-
er, “[one] must develop multiple expertise in knowl-
edge of mathematical content, pedagogy for teaching 
mathematics, and knowledge of students”(Foote et 
al., 2011, p. 71). Some researchers are concerned with 
the question of how the two categories of knowledge, 
mathematics (subject matter) and teaching (or peda-
gogy) can be integrated. An initial articulation of this 
integration comes from Shulman’s (1986) work on ped-
agogical content knowledge. Building on Shulman’s 
work, Ball and Bass (2000) elaborated on pedagogi-
cal content knowledge using the term ‘mathematics 
knowledge for teaching’ to capture the complex rela-
tionship between knowledge of mathematics content 
and knowledge of teaching. Even though researchers 
seem to agree on the importance of teachers’ knowl-
edge, there is little agreement over what teachers 
actually need to know in order to become effective 
mathematics teachers. 

On the other side, mathematics educators and re-
searchers suggest that to effectively teach mathemat-
ics means to humanize mathematics for its learners. 
While talking about the role of education, Doxiadis 
(2003) states that, “[it] should be, at its best – a process 
involving the complete human being” (p. 2). In this 
sense, humanizing mathematics requires teaching 
mathematics in a way that focuses on the ‘being’ of 
a student as a participant in mathematics, which is 
beyond delivering content of mathematics or teach-
ing certain skill sets. From a humanistic perspective, 
Chapman (2008) reveals that, storytelling is “… a way 
of specifying experience, a mode of thought, a way of 
making sense of human actions or a way of knowing” 
(p. 16). Therefore, storytelling humanizes mathemat-
ics, where students are able to relate to mathematics 
at a personal level. Humanistic mathematics involves 
interdisciplinary connections between mathematics 
and other worlds of thought and methods of learning 
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(Tennant, 2014). According to Cernajeva (2012), it is 
important to humanize a study process, which means 
to approach educational content and its acquisition 
process using the principles of humanistic recogni-
tions, while taking into consideration the interests 
and abilities of its learners. Consequently, humanistic 
approach to education may allows for one to develop 
human values, self-confidence, self-values, and gives 
room for self-reflections while at the same time it may 
increase awareness of others’ need, which may result 
in sense of belonging in mathematics for students. 

Doxiadis (2003) states that mathematics education 
will not change for its perspective learners unless 
what counts as mathematics changes. He adds that 
what counts as mathematics needs to include the sto-
ries of doing mathematics, where its participants are 
able to relate to the subject by talking about mathemat-
ics. Without stories, mathematics is striped off of its 
humanity. Students need to be involved in complex 
mathematics, where they are given the opportuni-
ties to think in depth, rather than to adopt easy to 
use mathematical procedures. Stories in mathemat-
ics provide such opportunities. In his presentation, 
Mathematics through an Arts lens, Gadanidis stated 
that students in mathematics crave to be surprised, 
where they can flex their imagination and gain new 
mathematical insights. Further, Gadanidis indicated 
that story is a biological necessity, an evolutionary 
adaptation that prepares and trains one to explore 
the possibility of mathematics in actuality, effortlessly 
and playfully, which in turn has the capacity to make 
all the difference for mathematics students. Stories 
in mathematics highlight one as a human ‘being’ and 
enhance one’s experience of learning mathematics 
(Gadanidis, 2012).  Storytelling provides opportuni-
ties to solve puzzles in artistic way where the story-
teller creates situations for its audience to experience 
the pleasure of surprise and insight in mathematics 
(Gadanidis, 2012). 

Our work aligns with this research which is prem-
ised on the idea that to teach mathematics effectively, 
means humanizing it for learners. By humanizing 
we mean making the subject more humane and re-
latable so that learners appreciate mathematics by 
developing a personal connection with it. This pa-
per draws from a hermeneutic phenomenological 
research study, which addresses the question: what 
does it mean to teach mathematics? The purpose of 
the research is to explore the meaning of teachable 

moments from the lived experiences of grades 6 to 8 
mathematics teachers.  Here, the term teachable mo-
ment is defined as an opportunity that arises when 
connections have been made to advance learning by 
a learner and/or an educator. More specifically, the 
term moment is distinctly defined as an expected or 
unexpected occurrence that allows learners and/or 
educators to deepen their understanding. The paper 
presents findings from one of the author’s experienc-
es of storytelling in a grade 6 to 8 mathematics classes 
for the purpose of humanizing mathematics in ways 
that engage both students’ ‘being’ and cognitive fac-
ulties in mathematics

STORYTELLING AS A WAY FOR 
HUMANIZING MATHEMATICS

From the beginning, storytelling has been used as 
a fundamental method for transferring knowledge. 
While discussing about the reason for many cul-
tures to retain their storytelling legacy, Zazkis and 
Liljedahl (2009) state that storytelling, a traditional 
way of transferring knowledge, provides a unique 
way of looking at and understanding the world. On 
one side where mode of storytelling such as fairy tales, 
poems, nursery rhymes are entertaining, however, 
on the other side, they transfer essential informa-
tion in a memorable way for its listeners (Zazkis & 
Liljedahl, 2009). Storytelling in mathematics is an 
approach for creating a safe-learning environment 
where a learner might openly appreciate, understand 
and enjoy mathematics (Modi, 2012). Storytelling in 
mathematics makes learning more accessible, where 
students are more engaged with their learning. Modi 
(2012) states that, “the value of story to teaching is 
precisely its power to engage the students’ emotions 
and also, connecting their imaginations in material 
of curriculum (p. 31). Modi suggests that storytelling 
in mathematics classroom creates an environment 
of imagination, emotion, and thinking, which makes 
mathematics more enjoyable and more memorable 
for its participants. Storytelling provides ground for 
its participants to engage in a mathematical activity, 
which provides them with the opportunities to think, 
explore, and understand mathematical concepts and 
ideas (Modi, 2012). Further, storytelling creates a com-
fortable and supportive atmosphere in the classroom, 
and builds a bond between an educator and learners 
(Modi, 2012).  
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According to Schiro (2004), type of stories a society 
narrates, is a mirror of what information is considered 
important by that society, which contributes to the be-
liefs and the values it members adhere. Evidentially, 
type of stories that are narrated in mathematics class-
room, might contributes to the beliefs and the values, 
which the learners may hold onto. For example, sto-
rytelling in mathematics classes that highlights the 
importance of failure as essential step to master a 
mathematical skill and/or to be successful in mathe-
matics might influence one’s perception of mathemat-
ics more so as a humanistic subject. According to Modi 
(2012), stories emerge in various places, where some 
are real while others are fictional, which may pro-
voke one to think and wonder about the things which 
they may not have thought before. Though ‘story’ is 
defined at times as a ‘sequence of events’, it is not the 
events that are of interest here, rather the outcomes, 
in terms of impact, of storytelling on students in 
mathematics classroom (Modi, 2012). Modi believes 
that there are various types of stories that one might 
experience in mathematics. First type of story pro-
vides the background for a mathematical activity. For 
example, a historical content on mathematics, where 
the mathematician is given an image of a hero, while 
highlighting the importance of their initial struggle 
with a mathematical concept or idea.  Second type 
of story provides explanation. For example, a story 
which may explain students about Pythagorean’s tri-
angle, division by zero, division by a fraction, and the 
manipulation of negative integers. Third type of story 
poses a question, for example, ‘word problems such 
as ‘does equal mean fair?’ 

RESEARCH FRAMEWORK 

The epistemology of phenomenology centers on di-
dactic meaning as opposed to arguing or developing 
abstract theory. In their discussion of the theoretical 
and conceptual framework for a phenomenologi-
cal study, Savin-Baden and Major (2012) stated that 

“the essence experience is so central and is to be un-
covered before it is categorized, researchers do not 
tend to use a theoretical or conceptual framework… 
[because] doing so could impose presuppositions on 
the meaning of the experiences” (p. 221). Additionally, 
Patton (2002) informs that phenomenology intends 
to acquire a deeper understanding of the nature or 
meaning of one’s everyday experiences. Subsequently, 
the objective of the study here is not to make broad 
generalizations about experiences of all mathematics 

teachers, but instead to examine individual teachers’ 
personal experiences associated with a very specif-
ic phenomenon, and to compare and contrast their 
experiences as well as lived realities. In order to 
understand what it means to teach mathematics, it 
is necessary to first gain insight into teachers’ lived 
experiences of teaching mathematics.

Van Manen (1990) considers phenomenology as the 
most appropriate method to research the phenome-
na of pedagogical significance, which elaborates phe-
nomenology as a response to how one orients to lived 
experience and questions the way one experiences the 
world.  Van Manen states that “ a phenomenological 
researcher cannot just have a question – he or she 
must live it” and that “ …lived experiences is the start-
ing point and end point of phenomenological research. 
The aim of phenomenology is to transform lived expe-
rience into a textual expression of its essence – in such 
a way that the effect of the text is at once a reflexive 
re-living and a reflective appropriation of something 
meaningful: a notion by which a reader is powerfully 
animated in his or her own lived experience” (p. 36). 
Van Manen informs that “the questions of knowledge 
always refers us back to our world, our lives, to who 
we are, and to what makes us write, and read, and talk 
as educators: it is what stands ironically behind the 
words, the speaking and the language” (p. 46). A true 
phenomenological questioning is not possible until 
the researcher displays his or her interest in the phe-
nomenon as lived. Additionally, Van Manen states 
that, lived human experiences cannot be captured in 

“deadening abstract concepts and in logical systems 
that flatten rather than deepen our understanding 
of human life” (p. 17). 

METHODOLOGY 

The question, what does it means to teach mathematics, 
is a highly subjective phenomenon, which calls for a 
hermeneutic phenomenological research design. A 
phenomenological research describes a “lived experi-
ence” of a phenomenon. Phenomenology becomes her-
meneutical when its method is taken as interpretive 
manner compared to descriptive as in other forms 
of phenomenology such as transcendental phenom-
enology. Heidegger (Savin-Baden & Major, 2012) ar-
gues that all descriptions are based on interpretation 
and every form of human awareness is interpretive. 
Drawing from Heidegger, Van Manen (Savin-Baden & 
Major, 2012) offers a methodological structure encom-
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passing six themes as a helpful guide to hermeneutic 
phenomenological research: (a) turning to the nature 
of lived experience in formulating a research ques-
tion that concerns a phenomena of deep interest—in 
this case teachable moments in mathematics; (b) inves-
tigating lived experiences by collecting descriptions 
of lived experience of the phenomena under study; (c) 
reflecting in a hermeneutic phenomenological sense, 
by recovering themes constituting the essence of the 
phenomena (d) writing hermeneutically, describing 
phenomenological experience of the emerged themes; 
(e) preserving a strong and oriented relation by main-
taining a true interest to the phenomenon; and (f ) bal-
ancing the research context by considering parts and 
whole, by creating a structure and a planning work for 
carrying out the phenomenological research.

These six themes guided our primary data collection 
and data analysis while mindfully dealing with any 
ethical concern regarding the study. In “Researching 
Lived Experiences”, Van Manen (1997) notes that to 
investigate the notion of teachable moments – in par-
ticular storytelling one needs to orient themselves to 
the question of meaning of teachable moments. And 
this meaning of the teachable moments needs to be 
found in the experience of teachable moments. “And 
so we need to search everywhere in the lifeword for 
lived experience material that, that upon reflective 
examination, might yield something of it fundamen-
tal nature” (p. 53). Van Manen offers a number of ap-
proaches to gathering or collecting lived experience 
materials of different forms such as personal experi-
ences, interviews, observations and fictional texts. In 
our work in this paper we focused on personal expe-
rience of teaching mathematics as a lived experience 
material for reflection on teachable moments.

Van Manen (1990) recommends that phenomenologi-
cal researchers to begin their research with a personal 
story as a starting point for a phenomenological study. 
Further, Mason (2002) states that, “in order to turn 
from professional development to research, you have 
to address the questions of convincing others of what 
you claim to have found out” (p. 176). Keeping this is 
in mind, as a focus of this paper, as well as a prima-
ry observation to the research question, we decided 
to explore one of the author’s teaching experiences 
of storytelling in her teaching of grade 6 to 8 mathe-
matics classes. Data in this sense was collected from 
the personal stories of the teacher/author. For the 
purpose of this paper we present two stories where 

the author utilized storytelling in her teaching for 
the purpose of humanizing mathematics. As in any 
phenomenological study, the author’s personal ex-
periences of teachable moments are immediately ac-
cessible to her in a way that others are not. However 
as Van Manen (1997) argues, the focus for a phenom-
enologist is not on private or autobiographical facts 
but rather “in drawing from personal descriptions of 
lived experiences, the phenomenologist knows that 
one’s own experiences are also the possible experienc-
es of others” (p. 54). The stories presented in this paper 
were selected by the author based on what she thought 
to be teachable moments and also in collaboration 
with the second author as what we thought could be 
possible experiences for others. In describing these 
stories we tried to align with the phenomenological 
tradition by trying to describe them in experiential 
terms focusing on classroom situation and events and 
refraining from abstractions.  

First story
During my first year of teaching mathematics, I tried 
to make math more realistic and humanistic through 
storytelling. It was for the first Halloween as a teacher 
that I decided to talk about the invention of a concept 
of circle and the impact of such an invention on the 
world. Therefore, I dressed up like Cleopatra to bring 
the historical perspective and started talking about 
how the circle might have developed. First, I talked 
about how one day someone might have realized that 
there is a thing called line, which might have led to the 
idea of two lines intersecting and developing a corner. 
Next, I talked about the idea of four lines where two 
lines at a time, intersect, led to the development of 
four-sided figure like rectangles and squares.  Further, 
I said, that there might have be one day that someone 
might have asked ‘can a line intersect itself?’ and in the 
process of examining that they might have connected 
the two ends of the line and might have made a circle, 
and this invention of a circle might have contributed 
to the invention of wheels. The moment I made the 
connection of circles and wheels, a lively class discus-
sion ensued where one student said, “it may also be 
the reason why Christopher Columbus discovered the 
world because he might have realized that there are 
other shapes than four sided figures”. Then the other 
student made a reference to spirituality and said, “It 
could also be when people realized the karma …you 
know what goes around is what comes around”. At this 
point, I was aware that my role was no longer didactic. 
The students have changed from being passive con-
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sumers of mathematics to participants in knowledge 
creation, a change may see as empowering. As their 
teacher, I was amazed with this class discussion, but 
did not know what to do with it other than to say, “ 
That’s interesting…” And what did it have to do with 
teaching mathematics? Even though my intention was 
to bring a humanistic aspect to mathematics, I knew 
then that what had just happened was bigger than 
my intention.

Second story
During one of my lesson on geometry to my grade 6’s, 
I was showing a 3-dimensional objects to my students. 
The purpose of the lesson was to help student devel-
op understand of the relationship between an object 
and its net. While using real life examples like choc-
olates boxes and lunch boxes, I demonstrated for my 
students (while holding a 3 dimensional object in my 
hand) that if we open up all the sides of this objects and 
lay it flat, it would result in a net. And  (while demon-
strating) that if we put together all the sides of the net 
together, it will result in a 3 dimensional object. Next, 
as  a class, we discussed about the characteristics of a 
net, which upon folding can result into a 3 dimension-
al object. In addition, we talked about what type of net 
may not make a 3-dimensional object (i.e. missing face 
in net). After discussion, students were challenged 
to create various type of net and then to check what 
type of 3-dimension object their net would turns into.

While students were working, a student asked me, “ Ms. 
Toor, what is a side?” I responded to her by saying, “ it 
is one of the faces of an object.” She asked again, “ no 
Ms Toor, what is a definition of side...is a side always 
straight...because if it is straight, then why do we call a 
side of a road side when the road is curvy?” At this point 
I knew that she was thinking beyond what I intended 
to teach. I was aware that without knowing about dif-
ferent braches of mathematics, she was talking about 
the difference between Euclidian and non Euclidean 
geometry. Consequently I knew that had also become 
a participant in knowledge creation of mathematics. 
However, I did not know how to guide her thinking so 
that she would not be overloaded with difference of 
Euclidian and non Euclidean geometry, causing her to 
become a knowledge consumer of mathematics. 

ANALYSIS, DISCUSSION AND CONCLUSION 

The purpose of hermeneutic phenomenological re-
flection is to try to grasp the meaning of a phenome-

non under study.  In order to come to terms with the 
meaning of the phenomenon like teachable moments 
a phenomenologist has to engage in a reflective activ-
ity and think of the phenomenon described in terms 
of structures of meaning, meaning units or themes 
(Van Manen, 1997). Phenomenological themes may 
be understood as structures of experience and can 
be uncovered from any description of lived experi-
ence such the above stories. More importantly the 
meaning of phenomenon can only be communicat-
ed textually. So in order uncover the theme for this 
paper we reflected on the concrete situations in the 
above stories by asking questions such as what does 
this mean for this student, situation or action while 
focusing on the meaning of teachable moments. We 
then proceeded in describing the phenomenological 
experience of the theme.   

Teacher’s storytelling has its place in mathematics 
teaching. Storytelling as a method of humanizing 
mathematics, in ways that touches the ‘being’ of a stu-
dent, was the common reoccurring theme in both of 
the stories mentioned earlier. In both of the stories 
there are three different personal experiences, from 
which students draw their humanistic connection to 
mathematics. These personal experiences are exam-
ples of the aspects that make these students human 
beings participating in mathematics.  From close 
observation of the first story, we see that there are 
two personal experiences, historical curiosity and 
spiritual need, from which students make their hu-
man connection to mathematics. For example, in the 
first story, a student makes reference to Christopher 
Columbus by connecting it to the invention of circle. 
Here the student makes connection between mathe-
matics with his historical curiosity. This connection 
allows for this student to be a human being, partici-
pating in mathematics, where he is able to talk about 
mathematics beyond the classroom boundaries. The 
spiritual need is another personal experience, an as-
pect of ‘being’ human, where a student talks about kar-
ma: “It could also be when people realized the karma 

…you know what goes around is what comes around”.   
Here, once again, the student draws connections 
between his personal experience and mathematics, 
which touches and deepens his connection with his 

‘being’. This connection, humanizes mathematics for 
this student where the student is able to explore his 
spiritual world by participating in mathematics. 
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Just as the first story, second story also highlights 
similar connections. In the second story, a student 
is curious about something that is beyond the cur-
riculum expectation. Here the element that makes 
her ‘being’ in mathematics is the process where she 
question mathematical definitions. The student won-
ders about the definition of a side and relates it to her 
everyday life. Just like the other two students from the 
first story, this student also humanizes mathematics 
by making a connection to an element that makes her 
human. In all three cases students are engaged both 
cognitively and as human beings as they participate 
in mathematics. 

From the researcher’s storytelling experiences as a 
teacher, we have found that stories allow for one to 
teach and to learn about the things, which perhaps 
in the purposeful lesson plan would be lost. Near the 
end of the school year, the students from these classes 
where storytelling was utilized, often through volun-
tary verbal feedback inform their teacher that they 
(the students) viewed stories as a valuable learning 
tool, which enhanced their understanding of math-
ematics by acting as memory joggers and in some 
cases enticed them to further explore mathematics. 
All too often education becomes the consumption by 
students of defined knowledge presented by the teach-
er in a transmission model.  Education should involve 
an exchange of knowledge between the learners and 
educators, where these experiences can enhance both 
teachers and students’ mathematical understanding. 
Storytelling as a pedagogical practice is a method 
where both the teacher and students learn from one 
another, while engaging in mathematics. The stories 
that we have presented in this article show that stu-
dents are able to relate to mathematics in ways that 
they are able to see themselves as mathematical ‘be-
ings’ who have abilities to explore and to be curious 
about mathematics. 

The findings for this study, as discussed above, have 
implications for both educators and further research. 
This study contributes to mathematics education re-
search by focusing on lived experiences of teachers’ 
storytelling to humanize mathematics, a certain ele-
ment of teaching which most theories, models, and 
methods of mathematics teaching tend to ignore or to 
not address. This study brings awareness for math-
ematics education researchers and practitioners by 
highlighting the need for humanization of mathe-
matics through utilizing storytelling as a teaching 

tool. Further, the findings from this study allows one 
to see mathematics teaching (and learning for stu-
dents) possibilities in ordinary incidents, and to be 
able convert these seemingly unimportant incidents 
into significant mathematics teaching (and learning 
for students) moments – teachable moments.

As much as these stories had positive impact on the 
students, the teacher/author often found herself ques-
tioning her role as a teacher while utilizing storytell-
ing in her classes. As a teacher, the author questioned 
her decision, and reason behind acting in a certain 
way especially when facing and dealing with the out-
come of storytelling. She wondered if she was guiding 
her students in right direction, especially when stu-
dents were engaged beyond the initial aim of story 
that the researcher intended. Van Manen (1990) states:

In all of our interaction with children, we are con-
stantly involved, whether we like it or not, in dis-
tinguishing between what is good and what is not 
good for them (in contrast, educational research 
is usually more interested in distinguishing be-
tween what is effective and what is in- effective). 
Yet even (or especially) the best educators temper 
their practice with the knowledge that we all of-
ten fall short and do not know what is best. (p. xii) 

There is little research that focuses on the particular-
ity and uniqueness of the day-to-day, moment-to-mo-
ment nature of teaching mathematics. It is clear from 
researcher’s experiences of storytelling, that there is 
a need for further research where the focus needs to 
be on how decisions are made in a mathematics classes 
while focusing on, what it means to teach mathemat-
ics on day-to-day and moment-to-moment bases. This 
question will be explored in the bigger research study 
from which this paper was derived. The authors plan 
on conducting interviews with mathematics teach-
ers in order to collect other experiences of teachable 
moments so as to deepen the understanding of the 
question, what does it mean to teach mathematics.  
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This paper analyses the classroom practice of a uni-
versity lecturer in Linear Algebra under the model 
Mathematics Teacher’s Specialised Knowledge (MTSK). 
The knowledge revealed, related to the topic of Matrices 
and Determinants, is found to pertain chiefly to the 
sub-domain Knowledge of Topics (KoT). The categories 
of classification which comprise this sub-domain are of 
particular utility in the identification of this knowledge. 
Evidence of knowledge associated with other sub-do-
mains comprising Subject Matter Knowledge and 
Pedagogical Content Knowledge is also found.

Keywords: Specialised knowledge, linear algebra, 

university lecturer.

Studies into university lecturers’ knowledge remain 
quite rare in the context of Mathematics Education, 
and thus it is that our study sets out to explore the 
specialised knowledge in evidence in the course of a 
lecturer’s classroom practice while teaching Linear 
Algebra in the first year of a degree course. We use the 
model denominated Mathematics Teacher’s Specialised 
Knowledge (MTSK) (Carrillo, Climent, Contreras, & 
Muñoz-Catalán, 2013) to analyse the lecturer’s teach-
ing sessions, with the aim of achieving a better under-
standing of the knowledge brought into play by topic 
Matrices and Determinants. 

THEORETICAL BACKGROUND

In the field of research into teachers’ content knowl-
edge of a particular subject, Shulman’s (1986) study 
has proved particularly influential for its manner 
of differentiating components. Various models have 
drawn on Shulman’s groundwork to describe the kind 
of knowledge deployed by mathematics teachers (e.g., 

Fennema & Franke, 1992; Bromme, 1994; Rowland, 
Huckstep, & Thwaites, 2005; Ball, Thames, & Phelps, 
2008), most notable amongst which has been the mod-
el developed by Ball and associates (Mathematical 
Knowledge for Teaching  – MKT), which applies 
the basic distinctions made by Shulman (Subject 
Matter Knowledge – SMK – and Pedagogical Content 
Knowledge – PCK) to the specific demands of teaching 
this subject. Based on our experiences of using the 
MKT model, and specifically the difficulties encoun-
tered in specifying and demarking certain sub-do-
mains when applying it to teacher research (Flores, 
Escudero, & Carrillo, 2013), the Research Group for 
Mathematics Education at the University of Huelva 
is currently developing an alternative model denom-
inated Mathematics Teacher’s Specialised Knowledge 
(MTSK) (Carrillo et al., 2013), the aim of which is to 
capture the specialised nature of the teacher’s knowl-
edge as a whole. This specialisation is intrinsic to the 
teaching of mathematics, and as such permeates both 
SMK and PCK.

The MTSK model consists of two principle domains. 
The first of these is  Mathematical Knowledge (MK), 
which covers “the whole universe of mathematics, 
comprising concepts and procedures, structuring 
ideas, connections between concepts, the reason 
for, or origin of, procedures, means of testing and 
any form of proceeding in mathematics, along with 
mathematical language and its precision” (Carrillo 
et al., 2013, p. 2990). MK is divided into the following 
subdomains: knowledge of topics (KoT); knowledge 
of the structure of mathematics (KSM); and knowl-
edge of practices in mathematics (KPM). The second, 
Pedagogical Content Knowledge (PCK) concerns the 
teacher’s knowledge of teaching and learning math-
ematics. PCK includes the subdomains knowledge of 
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mathematics teaching (KMT); knowledge of features 
of learning mathematics (KFLM); and knowledge of 
mathematics learning standards (KMLS). The MTSK 
model also contemplates teachers’ conceptions about 
mathematics, its teaching and its learning (in line with 
Bromme, 1994).

KoT supposes a thoroughgoing, well founded knowl-
edge of mathematical content. In order to facilitate 
the identification of this knowledge, five categories 
have been demarked. The first of these, Procedures, re-
sponds to the questions How is something done?, Under 
what conditions can something be done?, Why is some-
thing done in this particular way?, and What are the key 
features of the result? The second, Phenomenology and 
applications, concerns awareness of phenomena and 
contexts with which a particular topic is associated 
(Freudenthal, 1983) and relevant applications. As the 
name suggests, Definitions, the third category, refers 
to knowledge for describing and defining concepts, 
including appropriate examples and images. Fourthly, 
Representations comprise the knowledge of the differ-
ent ways that a topic can be represented (Duval, 1995) 
including the associated notation and mathematical 
terminology. Finally, Properties and fundamentals 
encompasses knowledge of the properties inherent 
to a mathematical item or necessary for carrying out 
a particular procedure. This sub-domain receives a 
more detailed attention in comparison with the other 
sub-domains comprising MTSK for the reason that, as 
seen below, it has greatest relevance to the analysis 
of the work of the teacher participating in the study.

KSM consists of the connections between different 
contents. It implies being able to view content from 
different perspectives, that is, basic mathematics 
from a more advanced vantage point (connections 
of increasing complexity) and advanced mathematics 
from a more basic viewpoint (connections of increas-
ing simplicity); it also includes connections between 
distinct concepts (Fernández, Figueiras, Deulofeu, & 
Martínez, 2010). 

KPM corresponds to knowledge of the ways of pro-
ceeding in mathematics, such as the role of definitions, 
how to establish relations, correspondences and 
equivalences, the means of selecting representations, 
and forms of argumentation, generalisation and the 
examination of concepts (Carrillo et al., 2013).

KMT enables the teacher to select material appropri-
ate to teaching a specific concept or procedure, and 
includes the categories of theories of teaching; material 
and virtual resources; activities, tasks and examples 
for teaching.

KFLM concerns the ways by which mathematical 
knowledge is acquired, with a clear focus on mathe-
matical content as the object of learning. Categories 
in this sub-domain include learning styles, areas of 
strengths and weaknesses associated with learning, 
students’ forms of interacting with the content, and 
students’ motivation with regard to mathematics.

KMLS largely consists of knowledge of the curric-
ulum and its varying demands, and the objectives 
and performance measures established by external 
agencies such as examination boards, professional 
associations and research groups.

A useful reference in the case of teachers of Linear 
Algebra is the study by McCrory, Floden, Ferrini-
Mundy, Reckase, and Senk (2012), which places sec-
ondary teachers expertise on two planes, the first 
mapping their Knowledge of Algebra for Teaching, and 
the second describing their performance in terms of 
Mathematical Uses of Knowledge in Teaching. Some 
of the categories comprising the first of these dimen-
sions overlap with corresponding categories within 
MTSK, for example Knowledge of School Algebra, de-
tailing knowledge of the basics of the area, Knowledge 
of Advanced Mathematics, which establishes connec-
tions between contents, and Mathematics for Teaching 
Knowledge, in which elements of PCK and other teach-
ing-specific content can be identified.

METHODOLOGY

The study followed a qualitative and interpretative 
methodology, with a case-study design (Yin, 1989), fo-
cussing on the specialised knowledge of a university 
lecturer teaching Linear Algebra to first year stu-
dents. The research question was, ‘What specialised 
knowledge does a Linear Algebra lecturer reveal in 
the course of teaching matrices and determinants?’ 

The lecturer was invited to participate for his dispo-
sition and willingness to collaborate. Also relevant 
was that he worked at the same university as the lead 
author of this paper, whose professional interests lie 
in exploring the knowledge of mathematics teachers 
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working in university contexts, with a view to possi-
ble follow-up action.

The topic of Matrices and Determinants was chosen 
as it was the first topic in the programme for Linear 
Algebra and essential for subsequent topics. The lec-
turer had originally studied Educational Sciences 
(specialising in mathematics) at degree level, and 
could draw on 18 years’ experience at secondary lev-
el and 10 years at the university. The main data col-
lection instrument was non-participatory teaching 
observation. In total thirteen classes of around two 
hours each were video recorded. The observations 
were conducted in two blocks over two consecutive 
academic years (October 2011 to January 2012, and 
October 2012 to January 2013) to coincide with when 
the lecturer was teaching the topic of matrices and 
determinants. A semi-structured interview was also 
conducted to provide a degree of triangulation for the 
evidence garnered via the observation.

Data analysis followed the methodology of content 
analysis (Bardin, 1977), in which meant sifting the 
teacher’s actions and utterances for evidence of the 
MTSK sub-domains. The theoretical basis for the 
analysis consisted of the categories outlined above 
in the background section. These categories, which 
we consider still somewhat in development, derive 
from the intersection between the theoretical read-
ings and joint reflections of the research group and 
the practical application of the model to teachers’ 
knowledge in various research projects in progress. 
Finally, it should be noted that although MTSK also 
contemplates teachers’ conceptions about teaching 
and learning mathematics, this aspect of the model 
is not considered here. 

ANALYSIS OF THE KNOWLEDGE OF A 
TEACHER OF LINEAR ALGEBRA

In terms of the definitions of the MTSK sub-do-
mains and constituent categories, the analysis of 
the teaching sessions revealed a predominance of 
KoT, although evidence of KFLM, KMT and KPM 
were also found. By contrast, there was no evidence 
of knowledge which could be attributed to the KSM 
and KMLS sub-domains. Emphasis is thus given below 
to the consideration of KoT and its corresponding 
categories. The units of information which form the 
basis of the discussion are drawn directly from the 
analysis of the teacher’s performance over various 

teaching sessions; in the case of KMT, these have been 
complemented by units of information taken from the 
interview so as to provide a degree of triangulation.

Knowledge of Topics (KoT)
Of the categories comprising this sub-domain, there is 
evidence of the teacher’s knowledge in all five, albeit 
somewhat scant with regard to Phenomenology and 
applications. In terms of Definitions, those provided 
by the teacher generally tend towards the conven-
tional. Examples include definitions of unitary ma-
trices, equal matrices and orthogonal matrices. At 
the same time, he also shows knowledge of Properties, 
such as the fact that the determinant of a triangular 
matrix equals the product of the diagonal entries. The 
excerpts below illustrate these points: 

Teacher: The unitary matrix is the identity ma-
trix. The matrices which are the same 
are those with the same dimension and 
the elements placed in the same location 
and with the same value. When the in-
verse coincides with the transpose, we 
get the orthogonal matrix.

Teacher: This is a triangular matrix. What is the 
determinant of this matrix A? Well, we 
can compute the determinant using the 
properties; if we have a determinant 
with all its elements, we can make it 
triangular with the elementary trans-
actions between rows and then we can 
calculate the determinant by multiply-
ing the principle diagonal.

With regard to Representations, there is evidence of 
knowledge of the notation of mathematical objects, 
such as the notation for matrices and determinants.

Teacher: An important point. The 2x2 matrix is 
like this […] When we calculate the de-
terminant we no longer write it this way. 
I’m going to calculate the determinant of 
the matrix A, so here instead of brackets 
we have to put vertical bars […] The de-
terminant is denoted like this <det (A)> 
or like this <|A|>.

The teacher uses algebraic and arithmetic registers 
(D’Amore, 2004) for representing basic operations 
between rows and for matrix algebra. In addition, and 
connected to the algebraic register, he reveals knowl-
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edge of the matrix register (Ramírez, Romero, & Oktaç, 
2013) for different types of matrices, linear equation 
systems and determinants; and finally the verbal reg-
ister for setting exercises where the students apply 
their understanding. His knowledge allows him to 
encourage different types of representation, although 
he is not observed to go into the significance of these. 
However, he does make his awareness of the conven-
tions of notation explicit, an element of knowledge 
pertaining to the subdomain Knowledge of Practices 
in Mathematics (see the section on KPM below).

There is little evidence for the teacher’s knowledge 
of Phenomenology and applications of matrices. He 
makes mention, albeit briefly, of applications outside 
mathematics, such as real situations or situations 
connected to the degree course he teaches. In terms 
of examples of his knowledge of applications within 
mathematics itself, we can mention the determinant 
for finding the inverse matrix or for solving systems 
of linear equations using Cramer’s rule, basic opera-
tions between rows applied in calculating the deter-
minant, obtaining stepped and canonical matrices, 
inverse matrices by the Gauss Jordan method, and the 
solution to systems of linear equations by the Gauss 
and Gauss Jordan methods. 

With respect to knowledge of Procedures, he shows 
that he knows the procedures appropriate to the topic, 
and is able to give a full description of them (How is 
something done?). Likewise, he knows where these 
procedures have their limits, and what is required 
to be able use them (Under what conditions can some-
thing be done?), which can be exemplified with his 
knowledge of the necessary conditions for multiply-
ing matrices:

Teacher: We have matrix A. What are the dimen-
sions of this matrix? […] The dimension 
of this matrix is 2x3. In order to be able 
to multiply two matrices we need the 
number of columns of the first matrix to 
be the same as the number of rows of the 
second matrix. If A is like that, B needs 
to have three rows, it doesn’t matter how 
many columns.

In some instances, he shows that he knows why cer-
tain procedures are used (especially in relation to 
ways of simplifying a procedure) (Why is something 
done in this particular way?). An example of this can 

be seen in his explanation for calculating the deter-
minant of a matrix:

Teacher: Likewise, you take the column or the row 
that you want, but here’s an interesting 
thing. Here, there’s a zero; this zero 
helps us to reduce the degree of difficul-
ty because you are always going to mul-
tiply the determinant of the submatrix 
you’ve got by the value of the element 
you’re focusing on, so it is always a good 
idea to take a row or a column which has 
a zero or lots of ones.

Regarding deeper knowledge relating to the mathe-
matical foundations underpinning the procedures, 
no evidence came to light. It should be noted that the 
teacher emphasised the features of the result obtained 
by following certain procedures, as in the example 
below, summarising the characteristics of the product 
of matrices:

Teacher: The product of matrices has the same 
number of rows as the first matrix and 
the same number of columns as the sec-
ond.

In his teaching, a tendency to rely on exercises of a 
mechanical nature was observed. This was closely 
connected to the learning of algorithms and syntac-
tic conventions for the representation of the content, 
before conceptual aspects (in the terms of Hiebert 
& Lefevre, 1986). That said, the teacher does call the 
students’ attention to connections between proper-
ties, different registers for representation, certain 
features and reasons for the procedures and their 
results. As can be seen, analysis of actual instances 
of the teacher’s practice reveals knowledge pertaining 
chiefly to categories pertaining to KoT. Nevertheless, 
evidence of other sub-domains was found and this 
shall be discussed in the following sections.

Knowledge of Features of Learning 
Mathematics (KFLM)
We also found evidence of the teacher’s KFLM, in the 
category of areas of strengths and weaknesses asso-
ciated with learning concerning unforeseen pitfalls 
associated with the topic. This knowledge prompts the 
teacher to warn his students about potential problems 
in putting certain procedures into effect. The unit of 
information below illustrates this knowledge with 
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a warning about changing rows in a matrix and in a 
determinant:

Teacher: So you need to be careful here. When 
we’re working with matrices we can 
say that the matrices are equivalent if 
we change one row for another. But if 
we’re working with determinants and 
we change one row for another, the de-
terminant changes sign […] Matrices 
and determinants are not the same 
thing. […] I repeat, with determinants 
it’s not the same as with matrices, with 
determinants a change in rows means 
a change in its sign. 

There is abundant evidence of this category in the 
teacher’s reiterated warnings about aspects of the 
topic which can easily lead to error.

Knowledge of Mathematics Teaching (KMT)
In this sub-domain, the teacher’s Knowledge of 
Mathematics Teaching (KMT) is reflected in the ex-
amples he selects in his teaching. In this instance, we 
can take his introduction to row echelon forms of 
matrices, in which his approach aims to ensure that 
students receive a broad coverage of the features of 
this type of matrix (as expressed in interview):

Teacher: Now, I’d like you to look this way at the 
blackboard. What do you notice about 
the first matrix? First, they are not 
square. […] What do you notice about 
the zeros? […] The zeros increase as you 
go down the rows. The important thing 
to note is that in this row there are vari-
ous zeros before a non-zero element. […] 
What do you notice in this second ma-
trix? […] What about the third matrix? 
Take good note that it is of no interest to 
us if there is a zero here, what is impor-
tant is that in this row there are zeros 
before a non-zero element. This type of 
matrix is called the row echelon form. 
As you go down the rows, the number 
of zeroes increases until you get to the 
non-zero element or the whole row is 
zeroes.

Teacher: My intention was to give them three 
different matrices, each with a differ-
ent row echelon form. I gave them those 

so that the students would realise that 
there are different kinds of row echelon 
forms and realise what it is that funda-
mental to the row echelon form (inter-
view excerpt).

The choice of these three examples constitutes evi-
dence of the teacher’s knowledge for teaching regard-
ing the relevance and variability of examples, specifi-
cally three matrices of the same order, although with 
different row echelon forms.

Knowledge of Practices in Mathematics (KPM)
Finally, as mentioned above, we have the example 
of Knowledge of Practices in Mathematics (KPM), re-
garding mathematical notation, to which the teacher 
attaches great importance and mentions several times 
over the course of the observed sessions. Here is just 
one of the examples: 

Teacher: We need to be careful when we write on 
the blackboard, and not put signs and 
strokes in any old place, because there 
are signs in mathematics which mean 
something. Write the symbols properly. 
If you are going to calculate the deter-
minant, don’t put it in square brackets, 
you have to put it between vertical bars. 
This way, like that, is a matrix. But if you 
are going to calculate the determinant 
you need to put vertical bars instead of 
square brackets.

With respect to the two broad domains comprising 
MTSK, we have been able to note evidence of knowl-
edge corresponding to both in the teacher’s profes-
sional practice. In terms of MK, there is KoT and KPM 
(but not KSM, for which we failed to find evidence); 
and in terms of PCK, there is KFLM and KMT (but 
again, no KMLS).

CONCLUSIONS

The purpose of this study has been to get a picture 
of the specialised knowledge in evidence during the 
observation of a university lecturer’s teaching of 
Linear Algebra. The purpose was not to make any 
evaluation of the teaching that took place in terms of 
what might be considered desirable practice. The final 
picture that emerged is essentially one predominated 
by KoT, with indications of KFLM, KMT and KPM. We 
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failed to find evidence of knowledge related to the 
sub-domains KSM and KMLS, and it should be noted 
that the teacher’s conceptions, whilst forming part 
of the model, were not made subject of the study. We 
can say that the teacher’s practice is characterised 
by procedural knowledge, not only in terms of how 
to proceed, but also with regard to the conditions 
for proceeding, why to proceed and what character-
istics can be expected as a result. In addition to this, 
he demonstrates knowledge of standard definitions, 
different representations of content, and applications 
to other areas within mathematics. His choice of ex-
amples, and his warnings to students of unforeseen 
pitfalls provide examples of his knowledge of the dif-
ficulties associated with learning certain content, and 
questions of exemplification.

The knowledge above was revealed through analysis 
of classroom observation (in conjunction with com-
plementary data drawn from interview, and comment-
ing on the former). To this extent, we cannot claim that 
the resultant snapshot corresponds to the teacher’s 
knowledge of the topic, merely what was deployed 
in the course of his classroom practice. Evidence 
of knowledge pertaining to other sub-domains and 
categories of specialised knowledge might well be 
revealed through the use of other data collection tools. 
By the same token, the knowledge on display might 
be closely linked to teaching style and the teacher’s 
beliefs and conceptions with regard to teaching and 
learning. To this end, the study aims to continue its 
investigation into better understanding the teacher’s 
practice by bringing his conceptions into the analyt-
ical procedure.

Finally, we would highlight the utility of the MTSK 
model and its corresponding analytical categories, 
above all those relating to KoT, in enabling us to de-
tail the knowledge in evidence during this teacher’s 
classroom performance.
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Our study focuses on kindergarten teachers’ and prima-
ry school teachers’ professional competencies related 
to mathematics and didactics of mathematics, more 
precisely on the competencies which are absolutely 
necessary to support children in learning mathematics 
during their transition from kindergarten to primary 
school. To measure these competencies in a situated way, 
a computer based assessment using image vignettes and 
video vignettes was developed. The results of n = 123 kin-
dergarten teachers and primary school teachers show 
a crucial aspect: the insufficient mathematics-related 
competencies of kindergarten teachers and primary 
school teachers who did not study mathematics but 
practise out-of-field-teaching in mathematics.

Keywords: Image vignettes, video vignettes, teachers’ 

professional competence, mathematics, out-of-field 

teaching.

THEORETICAL BACKGROUND 

The concept of teachers’ professional competence was 
progressively differentiated in the past decades (e.g., 
Shulman, 1986; Weinert, 2001; Ball et al., 2008). In the 
following, we refer to a model developed in the context 
of COACTIV (cf. Figure 1, Baumert & Kunter, 2013). 
Thus teachers’ professional competence comprises 
several interwoven aspects: professional knowl-
edge (especially content knowledge, pedagogical 
content knowledge, pedagogical and psychological 
knowledge), beliefs, values and goals as well as moti-
vational orientations and self-regulation. Regarding 
knowledge and beliefs, there is empirical evidence for 
their impact on the quality of teaching and students’ 
achievement (cf. Staub & Stern, 2002; Hill et al., 2004; 
Richter et al., 2012; Kunter et al., 2013). 

Overlooking current research, there can be found 
two approaches to acquire teachers’ professional com-
pentecies. On the one hand, questionnaires with mul-
tiple-choice-items aim at professional knowledge and 
beliefs in large populations, the comparison of par-
tial groups of these populations and the correlation 
of different aspects of professional competence (e.g., 
Blömeke et al., 2010; Tatto et al., 2012). On the other 
hand, image vignettes and video vignettes are nowa-
days seen as the preferred method to reveal teachers’ 
competencies in situations close to everyday profes-
sional life (e.g., Lindmeier, 2011). In contrast to a paper-
and-pencil-test with multiple choice items the gain is 
obvious: Image vignettes and video vignettes do not 
only capture data regarding teachers’ knowledge and 
beliefs but refer to teachers’ acting in situations which 
are quite realistic and thus closer to their everyday 
practice.

To consider the math-related professional competence 
of kindergarten teachers and primary school teachers, 
there exist many differences in professional training 
of the two groups. Using the situation in Germany 
as an example, kindergarten teachers are mainly 
educated in vocational schools where mathematics 
and didactics of mathematics usually play a minor 
role. In contrast, primary school teachers study at 
university and therefore have an academic degree. 
Although primary school teachers study only two or 
three subjects, they usually teach more subjects. As 
a result, out-of-field-teaching in mathematics has been 
estimated as a key problem for mathematics educa-
tion in primary school (for the situation in Germany 
cf. Richter et al., 2012; Törner & Törner, 2012; for an 
international report cf. Tatto, 2012). 

mailto:gerald.wittmann%40ph-freiburg.de?subject=
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Due to this contemporary situation in professional 
training, it is an open question whether kindergarten 
and primary school teachers are able to initiate and 
foster mathematical learning processes in the transition 
from kindergarten to school. We expect differences 
not only between kindergarten and primary school 
teachers but also between primary school teachers 
who studied mathematics and primary school teach-
ers (without studies in mathematics) who practise 
out-of-field teaching.

RESEARCH QUESTIONS

With regard to the three professional groups aimed 
above – primary school teachers who studied math-
ematics, primary school teachers who did not study 
mathematics but practise out-of-field teaching in 
mathematics and kindergarten teachers  – our re-
search questions are the following:

1) To what extent do the three professional groups 
recognise the mathematical potential of typical 
situations in the last year of kindergarten or the 
beginning of the first year of primary school? 

2) To what extent do the three professional groups 
make use of the range of the five main ideas (for 
example “number and operations” or “space and 

shape”) in a reasonable way while analysing the 
mathematical potential of these situations? 

3) To what extent are the three professional groups 
able to foster children’s mathematical learning 
in these situations?

4) To what extent are the three professional groups 
able to foster process ideas (for example “prob-
lem solving” or “reasoning”) in these situations?

As we are interested in the competencies of kinder-
garten teachers as well as primary school teachers, we 
need to focus on the last year of kindergarten and the 
first year of primary school. Of course, we are aware of 
the fact that our research objective only hits a small 
part of teachers’ professional competencies, even 
with regard to mathematics education (e.g., we do 
not consider primary school teachers’ knowledge in 
written arithmetic). 

The reported study is part of a larger research project 
which aims at professional knowledge and beliefs of 
kindergarten and primary school teachers (Carle & 
Wittmann, 2015). Both knowledge and beliefs are seen 
as an indispensable prerequisite not only for their 
everyday practice but also for the cooperation of the 
two professions. 

Figure 1: Teachers’ professional competence (Baumert & Kunter 2013, p. 29)
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DESIGN OF OUR STUDY

The computer based assessment includes six image 
vignettes and four video vignettes. All five main ideas 
(similar to curricular topics) “number and operations”, 

“space and shape”, “quantities and measurement”, “pat-
tern and structure”, “data analysis, frequency and 
probability” are covered. Each of the ten situations 
is followed by two questions concerning one of the re-
search questions. All in all, the assessment consisted 
of 20 questions for these ten situations. 

An example of a video vignette might illustrate the 
setting. The introduction reads: “Three children (6 
years old) got the task to build as many different tow-
ers composed of a red, a yellow and a green LEGO 
DUPLO brick as possible. The video shows a detail of 
one of the children dealing with this task.” The video 
shows a boy who has already found three different 
towers (cf. Figure 2, left side) and additionally tries 
to build a fourth one (cf. Figure 2, right side). After a 
short moment he removes this tower again and says: 

“I’m done. I found them all.” 

Afterwards, the teachers were asked two questions: 
(1) “How would you react in this situation?” (2) “How 
can you prompt mathematical problem solving and 
reasoning in the given situation?” The first question 
aims at the teachers’ reaction to the child’s error and 
the second at an analysis of the situation regarding the 
learning of mathematics. To meet this situation in an 
adequate way, a teacher needs knowledge about basic 
enumerative combinatorics (there are six possible 
towers, not only three) and didactics of mathematics 
(e.g., how to give a stimulus) as well as the attitude 
that it does make sense to use the child’s error as a 
fruitful learning chance.

The teachers typed their answers into the computer; 
the test took about 1.5 hours. From February to June 
2013 in sum N = 161 assessments were led; for n = 123 
detailed information about the teachers’ profession-

al training was given (especially whether a primary 
school teacher studied mathematics or not). The sam-
ple was drawn in two federal states in Germany (cf. 
Carle & Wittmann, 2015). It is a stratified sample (rel-
evant criteria were sociodemographic aspects like the 
number of inhabitants of the community the kinder-
garten respectively school is located) and hence can 
be estimated as representative for both professions. 

We rated the teachers’ answers regarding the ad-
equateness of the situational analysis concerning 
didactics of mathematics (research question 1). We 
coded which of the five main ideas the answers refer 
to (even in an indirect way) and counted how often 
each of the main ideas was allocated in total (research 
question 2). Furthermore we rated the quality of the 
intended action concerning didactics of mathematics 
(research questions 3) and to what extent they meet 
the criterion of fostering process competencies (re-
search question 4).

Each answer was rated or coded by two researchers in 
an independent way; in the case of a divergence they 
yielded a common result in a consensual way. The 
interrater reliability was determined by the relative 
frequency (in percent) of the number of consensuses. 
It is 0.88 and can be estimated as satisfying.

RESULTS

(1) To what extent do the three professions recognise the 
mathematical potential of typical situations? Primary 
school teachers who studied mathematics recognise 
significantly more often the mathematical potential of 
a given situation than primary school teachers with-
out studies of mathematics and kindergarten teachers 
(cf. Tables 1 and 2). The post-hoc test of Scheffé disclos-
es two groups (primary school teachers who studied 
mathematics versus primary school teachers without 
studies of mathematics and kindergarten teachers; 
major effect: σ2 = .13). With regard to the whole sample 
the quality of the given answers is quite low (M = 0.88; 

Figure 2: Situations given in the described video vignette
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thereby 0 signifies “no answer or no reasonable an-
swer” and 3 signifies “reasonable answer considering 
the situation in a multi-perspective way”) with a broad 
variance (SD = 0.53). Thus, the sampled teachers only 
rudimentarily recognise the mathematical potential 
of the situations on average and the quality of answers 
differs considerably not only between but also within 
the professional groups.

(2) To what extent do the three professions make use of 
the range of the five main ideas in a reasonable way 
while analysing the mathematical potential of these 
situations? The three groups do not differ significantly 
in the number of reasonable interpretations related 
to the main ideas “number and operations”, “space 
and shape” as well as “quantities and measurement”. 
Yet regarding the main idea “patterns and structure”, 
primary school teachers (regardless whether they 
studied mathematics or did not) show significantly 

higher correct allotments than kindergarten teach-
ers (cf. Tables 3 and 4). The post-hoc test of Scheffé 
distinguishes two groups (primary school teachers 
who studied mathematics versus primary school 
teachers without studies of mathematics and kinder-
garten teachers; major effect: η2 = .16). Regarding the 
main idea “data analysis, frequency and probability”, 
primary school teachers who studied mathematics 
allocate the given situations significantly more often 
in a correct way than primary school teachers without 
studies of mathematics and kindergarten teachers 
(cf. Tables 5 and 6). Again the post-hoc test of Scheffé 
shows two groups which are different though (pri-
mary school teachers versus kindergarten teachers; 
major effect: η2 = .17).

(3) To what extent are the three professions able to fos-
ter children’s mathematical learning in typical situ-
ations? As above, major effects are found between 

Profession M SD

Kindergarten teachers (n = 82) 0.79 0.45

Primary school teachers without studies of mathematics 
(n = 20)

0.82 0.55

Primary school teachers who studied mathematics (n = 21) 1.23 0.55

Overall sample (n = 123) 0.88 0.53

Table 1: Recognition of the mathematical potential of typical situations

Source of variance df Fa Sig η2

Profession 2 8.65*** .00 .13

Error within the two groups 120 (0.24)
aOne-way analysis of variance, *p < .05; **p < .01; ***p < .001

Table 2: Effect of the profession on the recognition of the mathematical potential of typical situations

Profession M SD

Kindergarten teachers (n = 82) 2.26 0.87

Primary school teachers without studies of mathematics (n = 20) 2.95 1.23

Primary school teachers who studied mathematics (n = 21) 3.19 .75

Overall sample (n = 123) 2.53 1.00

Table 3: Number of reasonable allocations of typical situations to the main idea “patterns and 

structures”

Source of variance df Fa Sig η2

Profession 2 11.10*** .00 .16

Error within the two groups 120 (.85)
aOne-way analysis of variance, *p < .05; **p < .01; ***p <. 001

Table 4: Effect of the profession on the number of reasonable allocations to the main idea “patterns and structures”
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the professions: The quality of the intended action 
is significantly higher for primary school teachers 
who studied mathematics than for primary school 
teachers without studies of mathematics and kinder-
garten teachers (cf. Tables 7 and 8). The post-hoc test 
of Scheffé shows two groups (primary school teach-
ers who studied mathematics versus primary school 
teachers without studies of mathematics and kinder-
garten teachers; large major effect: η2 = .25). Again, the 
standard derivation indicates differences within the 
professional groups as well.

(4) To what extent are the three professions able to fos-
ter process ideas? Based on four video vignettes, we 
could prove to some extent whether teachers are 
able to foster process-oriented ideas: “mathematical 
communication” and “reasoning” (video vignette 1), 

“reasoning” (video vignette 2), “reasoning” and “prob-

lem solving” (video vignette 3), “using mathematical 
representations” (video vignette 4). Regarding our 
previous results, it was not in all cases possible to con-
catenate each process idea to a specific video vignette 
as process ideas often are interwoven. Due to this fact 
and several other impediments (normal distribution 
of the data was not given, floor effects occurred, the 
number of situations in total was quite small), the 
comparison of the three groups could not be done in 
the same way as above. Instead, nonparametric tests 
were used: The comparison of the three groups (pri-
mary school teachers with studies of mathematics vs. 
primary school teachers without studies of mathemat-
ics vs. kindergarten teachers) is done by the H-test of 
Kruskal and Wallis whereas the U-Test of Mann and 
Whitney is used to analyse which of the groups differ 
significantly from each other. 

Profession M SD

Kindergarten teachers (n = 82) 1.68 0.97

Primary school teachers without studies of mathematics (n = 20) 2.10 1.07

Primary school teachers who studied mathematics (n = 21) 2.81 .87

Overall sample (n = 123) 1.94 1.05

Table 5: Number of reasonable allocations of typical situations to the main idea “data analysis, 

frequency and probability”

Source of variance df Fa, b Sig η2

Profession 2 11.84** .00 .17

Error within the two groups 120 (.94)
aOne-way analysis of variance, *p < .05; **p < .01; ***p < .001; bAdjustment of the significance level as the 
variances are not homogeneus, *p < .01; **p < .001 

Table 6: Effect of the profession on the number of reasonable allocations to the main idea “data analysis, frequency and 

probability”

Profession M SD

Kindergarten teachers (n = 82) 0.57 0.37

Primary school teachers without studies of mathematics (n = 20) 0.58 0.42

Primary school teachers who studied mathematics (n = 21) 1.15 0.49

Overall sample (n = 123) 0.68 0.46

Table 7: Teachers’ mathematics-related action in typical situations

Source of variance df Fa Sig η2

Profession 2 19.69** .00 .25

Error within the two groups 120 (0.16)
aOne-way analysis of variance, *p < .05; **p < .01; ***p < .001

Table 8: Effect of the profession on the teachers’ mathematics-related action in typical situations
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The results of kindergarten teachers show a floor 
effect as many answers do not comprise any refer-
ence to the designated process ideas. Similarly, the 
perception and support of process ideas of prima-
ry school teachers is quite low. Nevertheless, there 
can be found differences between the professional 
groups. Regarding the two video vignettes “using 
mathematical representations” (χ² = 12.03, df = 2; p < .01) 
and “reasoning and problem solving” (χ² = 9.08, df = 2; 
p < .05), primary school teachers who studied math-
ematics act significantly better than primary school 
teachers without studies of mathematics and kinder-
garten teachers. The following U-test confirms these 
two groups (U= 126.00, z = –2.45, p < .05; U = 636.00, 
z = –2.79, p < .01).

DISCUSSION

The documented results are rather disillusioning. All 
three professionals groups are barely able to initiate 
and foster mathematical learning processes of children 
in the laboratory situation of the computer-based as-
sessment. Indeed, we can assume that the acquired 
math related competencies are even overestimated 
as the situations presented by the image vignettes 
and video vignettes are characterised by a reduced 
complexity in comparison to real teaching practice 
(e.g., interaction with just one child or a small group 
of children instead of a whole class). On the other 
hand, we cannot exclude that the given situations do 
not really hit the teachers’ professional experiences 
with the consequence that they might act considerably 
better in real classroom situations.

The differences between primary school teachers who 
studied mathematics and who did not study mathe-
matics are in line with well-known research results. 
Whereas TEDS-M shows this differences for future 
primary school teachers who are still in teacher train-
ing (Blömeke et al., 2010), we can approve them for 
primary school teachers being in service. Hence our 
study emphasizes that even teachers’ professional 
practice (in many cases for a number of years) cannot 
solve the reported problems of out-of-field teaching in 
mathematics. Obviously, the combination of everyday 
life mathematics, general didactics and pedagogical 
knowledge (which teachers who practice out-of-field 
teaching in mathematics for some years can refer to) 
is not fruitful enough for adequate mathematics in-
struction und does not lead to mathematics related 
competencies. The inclusion of kindergarten teachers 

into our sample furthermore shows that this profes-
sion has substantial deficits, too. This fact confirms 
the problem of out-of-field teaching in a drastic way 
because primary school teachers show only a grad-
ual better performance than their colleagues from 
kindergarten. 

Subsequently, two demands regarding educational 
policy seem to be reasonable: First, both the educa-
tion and the in-service training of kindergarten and 
primary school teachers must be improved: Every 
kindergarten teacher should be educated and con-
tinuously trained in initiating and fostering mathe-
matical learning processes for the age from three to 
six and the transition from kindergarten to primary 
school. Every primary school teacher should attend 
lectures and in-service training in elementary math-
ematics and didactics of mathematics to decrease the 
frequency of out-of-field teaching. Notably, we cannot 
say which elements of mathematics teacher education 
(for example which lectures of mathematics and didac-
tics of mathematics or rather the practical training at 
school) and in which combination are really essential 
to improve the quality of teachers’ acting. Second, the 
support of children while the transition from kinder-
garten to primary school should not be dedicated to 
individuals but needs professional teams (language, 
mathematics, physical development, …) who are able 
to foster children in their special field.
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Teachers’ content knowledge for teaching mathematics 
has been the focus of considerable research that aims to 
identify this knowledge and to explore the ways in which 
it is related and affects teachers’ initial and professional 
learning. The paper presents a study which examines 
secondary teachers’ mathematical knowledge emerging 
in their interpretations of and instructional manage-
ment suggestions for four hypothetical students’ miscon-
ceptions regarding the decimal representation ‘0.3999…’. 
The results show that teachers’ mathematically correct 
conceptions do not guarantee instructional approaches 
free of erroneous mathematical ideas.

Keywords: Procept, teacher knowledge, decimal number.

INTRODUCTION 

Teachers’ knowledge for teaching has attracted a lot of 
research attention in mathematics education, giving 
rise to finer specifications of the initial categoriza-
tion suggested by Shulman (1986). For example, Ball, 
Thames and Phelps (2008) subdivided Subject Matter 
Knowledge (SMK) into Common Content Knowledge 
(CCK), Specialized Content Knowledge (SCK) and 
Horizon Content Knowledge (HCK); and Pedagogical 
Content Knowledge (PCK) into Knowledge of 
Content and Students (KCS), Knowledge of Content 
and Teaching (KCT) and Knowledge of Content and 
Curriculum (KCC). Some researchers (e.g., Huillet, 
2009) question the appropriateness of the distinction 
between content knowledge and pedagogical content 
knowledge to help us understand the diversity of the 
mathematical knowledge for teaching. 

Most studies dealing with the question of ‘what 
mathematics knowledge is needed for teaching’ 
focused on primary teachers (e.g., Ball et al., 2008; 
Rowland, Turner, Thwaites, & Huckstep, 2009; Ma, 
1999). However, there are few relevant studies that 
concentrated on secondary mathematics teachers. For 
example, Zazkis and Lekin (2010) call for a more artic-
ulated relationship between Advanced Mathematical 
Knowledge (AMK) and mathematical knowledge for 
teaching. Hossain, Mendick and Adler (2013) adopt a 
poststructuralist approach to explore what positions 
of “understanding mathematics in-depth” makes avail-
able to prospective secondary mathematics teachers 
their participation in a training course. 

The present study is part of a broader study that ex-
amines secondary teachers’ knowledge for teaching 
decimal numbers of infinite digits and especially of 
period 9. The choice of focus is due to the importance 
of the idea for both primary and secondary mathemat-
ics curriculum and also to the difficulty of its under-
standing by students of all ages (e.g., Dubinsky, Weller, 
McDonald, & Brown, 2005; Giannakoulias, Sougioul, 
& Zachariades, 2007). 

In particular, teachers’ knowledge related to decimal 
representation of numbers with infinite digits of peri-
od 9, due to its special relationship with infinity, brings 
to the forth broader cognitive, epistemological and 
didactical issues. With respect to the former, these 
representations, their comparison rules, sequences, 
series and their limit, as well as important properties 
of the real number set, like density, are all relevant 
and cognitively challenging ideas for students and 
teachers alike. Epistemologically speaking, these 
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representations raise questions connected to their 
nature (process – number), their multiple meaning 
and to potential and actual infinity. Finally, in terms 
of teaching, the focus on these representations per-
mit a close examination of fine mathematical ideas 
widely used, like this of the infinity, for which strict 
definitions cannot be employed due to pedagogical 
considerations, unavoidably allowing for a range 
of interpretations. To this direction, our research 
aims at identifying teachers’ broader mathematical 
knowledge required for a careful and deep classroom 
negotiation of these matters. In specific, we examine 
the involved teachers’ conceptions of these numbers 
studied in a previous work (Zoitsakos, Zachariades, & 
Sakonidis, 2013) in relation to the mathematical con-
tent knowledge emerging through their instructional 
proposals concerning the effective teaching manage-
ment of the relevant idea within the classroom.

THEORETICAL FRAMEWORK

Despite the significance attributed to teachers’ 
content knowledge for teaching, its categorization 
suggested to date has been criticized in many ways. 
Huillet (2009) advocates that “the distinction between 

‘purely mathematical’ knowledge (SMK or CCK) and 
mathematical knowledge adapted for teaching (PCK 
or SCK) is not appropriate” (p. 10). Davis and Simmt 
(2006) argue against the distinction between formal 
disciplinary knowledge and instructional knowledge 
as “mathematics – for – teaching is neither a matter of 

‘more of ’ nor ‘to a greater depth than’ the knowledge 
expected of students. It is qualitatively different … (it) 
might properly be regarded as a distinct branch of 
mathematics” (p. 294). We adopt this latter view in the 
present study and attempt to gain some insights into 
this ‘distinct branch of mathematics’ by concentrating 
on teachers’ mathematical knowledge ‘adapted’ to the 
needs and the limitations of the learning and teaching 
processes.  

Research has identified that one of the main difficul-
ties in making sense of representations like ‘0.999…’ is 
that are seen as referring to a process-sequence which 
tends simultaneously to a limit and to the value of 
the limit itself (Gray & Tall, 1994). This dual nature of 
mathematical notions operating as processes and ob-
jects at the same time has been recognized as a source 
of power but also of difficulties.

Sfard (1989) claims that the ability to conceive notions 
as processes and objects at the same time, although 
ostensibly incompatible, it is, in fact, complementary. 
Much along the same line, Gray and Tall (1994) argue 
that “[all those who are successful in mathematics] 
employ the simple device of using the same notation to 
represent both process and the product of the process” 
(p. 118). They proposed “the portmanteau word ‘pro-
cept’ to refer to this amalgam of concept and process 
represented by the same symbol. […] An elementary 
procept is the amalgam of three components: a process 
which produces a mathematical object and a symbol 
which is used to represent either process or object” 
(Gray & Tall, 1994, p. 120). 

Gray and colleagues (1999) suggested a model for the 
performance spectrum of different individuals in 
different contexts, when using mathematics proce-
dures, processes and procepts. Gray and Tall (2001) 
expanded this model, providing four possible out-
comes of progressively higher level of sophistication: 
pre-procedure (no solution or partial solution), pro-
cedure (step-by-step solution for a routine problem), 
process (flexible solution with conceptual alterna-
tives) and procept (ability to think about mathematics 
symbolically). 

In Zoitsakos and colleagues (2013), adopting the above 
theoretical framework, we found that, despite their 
strong mathematical background, 106 secondary 
teachers of mathematics, all mathematics graduates, 
discussing four hypothetical students’ answers as 
to the meaning of the representation ‘0.3999…’ pro-
vided a rather disappointing picture as to their own 
understanding of the representation: almost 3 to 10 
appeared to view the representation ‘0.3999…’ only 
as a process, about 4 to 10 argued for a combination 
of process and concept (number) with deficiency(ies) 
somewhere, while nearly 2 to 10 considered the given 
representation correctly both as a process and as a 
concept (procept). Embarking from this, we wanted to 
examine how this outcome, related to these teachers’ 
content knowledge for teaching, might differ when 
looked at in another context, which comes closer to the 
teaching practice itself: in teachers’ instructional sug-
gestions for dealing with the above hypothetical stu-
dents’ thinking. This, we believe, may provide some 
access to the qualitatively distinct content knowledge 
for teaching held by the teachers of the sample.
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METHODOLOGY

We developed the following hypothetical classroom/ 
teaching scenario for research purposes. The ques-
tions raised in the scenario were answered by 106 
practicing secondary school mathematics teachers 
in writing (36 male and 70 female, with teaching ex-
perience ranging from 0 to more than 15 years). The 
answers were provided in the context of an entry ex-
amination paper for a Master’s degree in Didactics 
and Methodology of Mathematics. The scenario had 
as follows:

A final year secondary school teacher gave the 
following question to his students: ‘What is the 
meaning of the representation 0.3999... (infinite 
number of 9)’?

Four students gave the following answers: (i) 
Student A: The representation 0.3999... means a 
process that tends to 0.4, (ii) Student B: 0.3999... is 
a number that tends to 0.4, (iii) Student C: 0.3999... 
is the number just before the 0.4 and (iv) Student 
D: The representation 0.3999... is the sum of 
0.3+0.09+0.009+... but, as it continuously increas-
es, it cannot be equal to a number. (a) What could 
be the teacher’s goal in asking this question? (b) 
Comment each student’s answer according to the 
thought process articulated, the positive and the 
negative points imprinted in his/her view and his 
possible misconceptions (if there are any) and (c) 
If you were a teacher in this class, how would you 
help these students to overcome the misconcep-
tions, you identified?

Teachers’ responses to a scenario such as the above 
can serve as a means a) to study their understandings 
related to subtle differences of meaning through stu-
dents’ (mis) conceptions and b) to explore their teach-
ing practices of helping students overcome their pos-
sible misunderstandings (Biza, Nardi, & Zachariades, 
2007). 

In a previous study (Zoitsakos et al., 2013) we exam-
ined teachers’ own conceptions of the representa-
tion ‘0.3999…’ through their written reaction to the 
hypothetical students’ relevant misconceptions. The 
analysis of the data gave rise to five categories of con-
ceptions: a) No response/irrelevant (10 teachers gave 
no or irrelevant answers); b) Process (30 teachers un-
derstood ‘0.3999…’ mainly as a process); c) Process & 

Concept (number), with at least one of the two false (31 
teachers viewed ‘0.3999…’ as a process and the result 
of a process, but there was somewhere an error); d) 
Process & Concept (number), wavering between the 
two (12 teachers held a correct view of the notation 

‘0.3999…’ (procept) together with incorrect ones) and 
e) Procept (23 teachers expressed a correct view of 
the notation ‘0.3999…’). 

In the present study, we attempt to relate teachers’ 
understanding of the representation ‘0.3999…’ with 
their teaching suggestions for helping students to 
make sense of it. To this purpose, we analyze these 
suggestions with regard to two criteria, mathematical 
correctness and level of formalism adopted, following a 
grounded theory technique (repeated cycles of read-
ing, coding, recoding and grouping and re-grouping 
of the data leading to the identification of categories 
of answers for each criterion) (Corbin & Strauss, 2008). 
For each criterion, three types of instructional sug-
gestions were identified, forming a spectrum extend-
ing from no to full agreement to the feature indicated 
by the criterion. 

Specifically, with respect to the mathematical cor-
rectness, the teaching proposals were distinguished 
in two types: a) mathematically correct, b) mixed (a 
combination of apparently correct and incorrect 
ideas or ideas that could be seen either as correct or 
as incorrect because of dubious articulations) and c) 
problematic (clearly mathematically mistaken ideas 
or thinking). As far as the criterion of formalism is 
concerned, the teaching propositions were character-
ized as a) formal (when adopting mainly purely formal 
mathematical methods), b) combined (when employ-
ing both formal and informal methods, directly or 
indirectly) and c) informal (when resorting to mainly 
empirical, descriptive and even intuitive approaches).

RESULTS

Table 1 below presents the results of the combined 
analysis of the teachers’ conceptions emerging in 
their instructional suggestions for helping students 
understand the representation ‘0.3999…’ with their 
conceptions of it according to the spectrum suggested 
by Gray and Tall (2001). There are ten teachers who 
provided no answer to any of the scenario questions 
and have been excluded. 
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As it can be seen from Table 1, ten teachers offered 
no teaching suggestion, whereas eleven teachers’ 
responses were impossible to classify in terms of 
mathematical correctness and also with respect to 
the formalism level employed.

The 75 teaching suggestions that were possible to 
classify are almost equally distributed between the 
three types of correctness (23 correct, 24 mixed and 
28 problematic). However, this is less the case for the 
criterion of formalism, where informal teaching prac-
tices appear to dominate and formal to be the least 
popular (17 formal, 33 informal and 25 combined). 

It noticeable that as the teachers’ conceptions of the 
representation ‘0.3999…’ range from ‘process’ to ‘pro-
cept’, their instructional suggestions shift from math-
ematically problematic to correct and from employing 
informal to drawing on formal mathematical meth-
ods. Furthermore, in their attempt to transform their 
mathematical knowledge to teaching practice, some 
of the teachers with a complete understanding of the 
representation ‘0.3999…’ (i.e., among the 23 teachers 
in the category ‘procept’) move to mathematically par-
tially correct teaching suggestions (18 correct and 4 
mixed). Finally, the majority of the 23 teachers who 
articulate mathematically correct instructional pro-
posals (16 teachers) employ a formalistic approach, 
while the remaining incorporate also informal meth-
ods of dealing didactically with the particular idea.

In the following, some characteristic excerpts from 
the data are presented in order to substantiate each 
category of answers, to clarify its specific features and 
to highlight the complexity of the teaching practices 
suggested by the teachers of the sample.  

T37 (male, limited teaching experience, PhD student 
in Mathematics) is one of the 23 teachers who were 
found to hold a procept conception for the represen-
tation ‘0.3999…’. The passage that follows comes is his 
actual instructional proposal and constitutes a typical 
example of a proposition characterized as mathemat-
ically correct and formal. 

I would argue (using the knowledge related to 
the geometric progression studied in the second 
year of the Lyceum) that, since: 

0.09 + 0.009 + … + 0.00…09 =  9
102  +  9

103  + … +  9
10n + 2  =  

= 9
102 (1 +  1

10  + … +  1
10n) =  9

102  ⋅ 
1 − ( 1

10 )n + 1

1 −  1
10

 = 1
10  ⋅ (1 − ( 1

10 )n + 1) 

and ( 1
10 )n + 1 =  1

10n + 1  → 0 as n → +∞ then:

0.39 = lim (0.3 + 0.09 + 0.009 + … + 0.00…09) = 
0.3 + 0.1 = 0.4. That is, that the number 0.4 is the 
number 0.39 which is the limit of the sum 0.3 + 0.
09 + 0.009 + … + 0.00…09

We concentrate more on the case of teacher T4 (male, 
about 10 years of teaching experience), whose answer 
was classified in the ‘procept’ category and his teach-

n + 1

n n + 1

n + 1

Process Process & con-
cept number, at 
least one of the 
two false

Process & concept 
number, wavering 
between the two

Procept Sum

30 31 12 23 96

Correct
 
23

Formal 4 12 16

Combined 1 6 7

Informal 

Mixed
 
24

Formal 1 1

Combined 2 6 4 3 15

Informal 3 4 1 8

Problematic
 
28

Formal

Combined 1 2 3

Informal 12 13 25

Incoherent 7 4 11

No-suggestions 5 2 2 1 10

Table 1: Classification of teaching proposals to the correctness and formalism
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ing suggestion as mathematically correct and combin-
ing formal and informal methods. The teacher begins 
to present (a little hesitantly) a (formalistic) proof of 
the equality 0.3999… = 0.4, being aware though of the 
limited persuasion power this approach might have 
for the students. This can be seen as an element of the 
Knowledge of Content and Students (KCS) suggested 
by Ball and colleagues (2008). In particular, he writes:

I would probably present to them the following 
process initially: x = 0.3999… [then] 10x = 3.999…, 
[so] 10x – x = 3.999… – 0,3999… [consequently] 
9x = 3.6 [thus] x = 0.4 [that is] 0.3999… = 0.4. This 
would surely seem strange to them. They usu-
ally react. They would say that there has been a 
mistake …. 

He then goes on arguing that “I would use the strengths 
of the students’ views in order to help them under-
stand what is happening” and stating specifically: 

Student B says that 0.3999… is a number in con-
trast with students A and D. The exchange of 
views between the students will help everybody 
understand that 0.3999 ... is one notation for a 
number. 

At this point T4 highlights the question of the nature 
of the representation 0.3999... (number-process) given 
rise by the hypothetical students’ views and proposes 
the development of a discussion among them about 
this issue guided appropriately by himself. He carries 
on attempting to respond to the students’ misconcep-
tions, restating them on a more theoretical form and 
using appropriate intuitive arguments. In particular, 
he argues: 

We must address the following misconceptions: 
a) A sum of infinite terms may tend to a number. 
This is done by way of example: cutting a paper 
in half and the half again in half etc. ... ”. Of course, 
this particular suggestion refers to a theoretical 
possibility rather than to a real application; b) 
The notion of succession does not exist in real 
numbers. 0.4 is not next to the number 0.3999... 
This can be addressed by asking students which 
number is next to 0.4. They may say that we put 
1 after infinite zeros.  However, there exists the 
contradiction after infinite ….

In the last part of his answer, after highlighting a 
key element of the students’ misunderstanding, T4 
provides a descriptive argument for the equality 
0.3999 ... = 0.4. He advocates:

…c) Finally, students ought to understand that 
0.3999… is the limit of the process they have in 
mind (and not the process itself ). Once we have 
concluded that there is no successiveness in real 
numbers and that there is no number between 
0.3999 ... and 0.4, the numbers are identical, 
therefore 0.3999 ... = 0.4. That is, the limit is equal 
to 0.4 “(his own emphasis).

The analysis of the responses to the questions of the 
scenario provided by teacher T6 (male, 12 years of 
teaching experience) showed that he conceptualizes 
the representation ‘0.3999…’ as a procept. However, his 
teaching proposal included mathematically correct 
and incorrect elements and employed a formalistic 
approach, showing that formalism and mathematical 
correctness do not always go together. In particular, 
he states in his instructional suggestion: 

I would use the reduction ad absurdum. Let 
0.3999… ≠ 0.4. Then given the completeness of R, 
we should be able to find a number between them. 
If such a number exists, then the number of its 
[decimal] digits would have been finite. Absurd. 

Teacher’s T13 (male, more than 15 years of teaching 
experience) conception was categorized as indicating 

‘process and concept number, with at least one of the 
two false’. His teaching practices, as exposed in the 
following excerpt, were identified as mixed mathe-
matically and as informal methodologically: 

A suggestion would be to introduce students to 
the paradox of Zenon with Achilles and the tor-
toise [draws a line with the indicative positions of 
Achilles and the tortoise]. In this way they could 
understand the convergence process and accept 
that an infinite process can lead to a finite result, 
since experience tells that Achilles will definitely 
reach the tortoise”. 

Essentially, teacher T13 cites an empirical-informal 
argument (Achilles will definitely reach the turtle) 
to substantiate a correct mathematical idea (a sum 
of infinite terms leads to a finite result) for which he 
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does not appear to be clear about (hence its classifi-
cation as above).

Teacher T23 (female, almost no teaching experience) 
was classified as holding a ‘process’ conception and 
her teaching suggestions were seen as problematic 
as far as mathematical correctness is concerned and 
as using informal mathematical methods.  In her in-
structional recommendations she states: 

I would explain to the students that this rep-
resentation has infinite terms (exactly like a 
sequence has infinitely many terms tending to 
a limit, and there is always a previous and a sub-
sequent term). Thus, 0.3999 ... is not immediately 
previous number of 0.4 since these two numbers 
are separated by thousands digits. 

Here, there is a correct idea (0.3999… is not the pre-
vious of 0.4) but the justification is incorrect. Then, 
trying to explain to the students the representation 

‘0.3999…’, the teacher uses only intuitive approaches 
and glides to fundamental errors concerning the na-
ture of numbers.

This number can be continuously increased, 
but this is why it never becomes 0.4. In addition, 
we are not talking about a number, as student B 
states, approaching another number, but for a 
representation that gives us new terms ‘tending’ 

→ [connection to limit] to a number. I would also 
show to student D that the terms of this repre-
sentation, if seen as corresponding to images of 
a function, certainly it would not be a continuous 
function, so no need to confuse them. A good idea 
is to show to the students functions as the one 
with the following graph [has drawn the graph of 
a function of the type f(x) =  a

b , which tend, have a 
limit but do not coincide with a value, they have 
infinite terms. 

DISCUSSION AND CONCLUSIONS

It is clear from the preceding analysis that a significant 
part of the teachers with an accurate understanding 
of the representation ‘0.3999…’ (12 teachers: procept, 
correct, formal) resort to purely formal approaches 
in articulating a teaching strategy for dealing with 
pupils’ relevant misunderstandings. To this direction, 
they overdraw their ontological concerns and the 
mental paradoxes that emerge from the hypothetical 

students about whether the representation is ‘0.3999 
...’ is a process or a number as well as if the infinite 
sum of positive numbers can be a number rather than 
infinity. This phenomenon of teaching mathematics 
decontextualized from the problems that gave rise 
to the corresponding ideas has been identified by 
Chevallard (1991) some years ago.

There is, however, a smaller number of teachers (6 
teachers: procept, correct, combined) who, like teach-
er T4, recognize limited persuasiveness for the stu-
dents of purely formalistic techniques and accompany 
them by appropriate intuitive arguments and narra-
tive explanations. 

It is also noticeable that of the 23 teachers who have 
good understanding of the specific representation, 
only 18 maintain accuracy in their teaching propos-
als. This means that there is a slippage of mathemat-
ical correctness when transforming knowledge for 
didactical purposes. The subtlety of the idea under 
consideration (the mathematical meaning of the rep-
resentation ‘0.3999…’) appears to contribute to this 
slippage, making clear the special attention needed 
during its didactical transformation. Furthermore, 
highlights the qualitatively distinct character of the 
content knowledge for teaching mathematics (Davis 
& Simmt, 2006).

On the other hand, the majority of the teachers were 
unable to both conceptualize and suggest instruc-
tional practices to the issue at hand that are mathe-
matically correct. They adrift in informal and vague 
approaches which fail to respond effectively to the 
hypothetical students’ relevant misconceptions. This 
is the reverse problem of the one reported in the be-
ginning of this section: we have here a strong effort 
of embedding mathematical knowledge within an 
empirical-intuitive context, however, stripped of its 
mathematical content.

The above findings show clearly the specificity of 
the mathematical knowledge needed for teaching, 
especially at the advanced level. Also, highlight the 
importance of further searching for those features 
that make it distinct as well as for the reasons that 
mathematically correct conceptions do not guarantee 
instructional approaches free of erroneous mathe-
matical ideas.
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The purpose of this poster is to present a proposal for the 
study of the mathematics teacher reflection. For that, we 
consider reflection as that which contributes to a change 
in relation to mathematics knowledge. In this text, we 
present some theoretical ideas that support the study 
and an outline of the methodology to be used. 

Keywords: Reflection, social development of thought, 

school mathematical knowledge.

INTRODUCTION

Our problematic centres its attention on mathematics 
teacher reflection. It is recognized that in the research 
carried out reflection has been related with the didac-
tic and pedagogic aspects; however, mathematics itself 
has not been the object of reflection for the discipline 
(Jaworski, 2014). Given the universality of mathemat-
ics, it does not seem to have sense to avoiding reflect-
ing about it, focusing on the issues around it, such as 
teaching. What is the meaning about reflecting on 
mathematics? With this question, we do not pretend 
to question the knowledge of the teacher, but to un-
derstand how the thought is developed when the focus 
of reflection is mathematics itself. 

That is how we make the general objective: to typify 
reflection of mathematics teacher about school math-
ematics. How to provoke this reflection? We consider 
a scenario of meanings confrontation is appropriate. 
Therefore, we highlight two research questions we 
intend to answer: (a) What reflections features about 
school mathematical knowledge are configured in a 
scenario of meanings confrontation? (b) What role 
does school mathematics play in the generation and 
depth of reflection?

CONCEPTUAL FRAMEWORK

As the basis of this paper, we have considered taking 
a social stance of the thought development, and there-
fore, of reflection. For example, for Radford (2006) 
thinking is more than a mental activity, where cultural 
artefacts are an integral part of it, so thinking has a 
close relationship with objects. Similarly, awareness is 
considered fundamental in the reflective process. For 
Freire (1982), reflection gives way to awareness, i.e. to 
a process of cultural action that seeks the liberation 
of individuals from the limitations and alienations 
which they are subjected to, affirming themselves as 
conscious subjects and co-creators of their historical 
future: a break of boundaries to be participants of the 
creation of new knowledge.

Regarding mathematics, we have also considered a 
stance of social construction, the Socioepistemology 
(Cantoral, 2013). This theoretical perspective is cen-
tered on studying the problematization of mathemat-
ical knowledge, taking into account the historical and 
contextual aspects which give sense and meaning to 
mathematics itself. Thus, the development of reflec-
tive thinking towards mathematics will deal with the 
relationship with it when meanings are constructed or 
reconstructed. The analysis of instances of reflections 
from this perspective will allow to identify elements 
to understand and explain the relationship between 
teachers regarding school mathematics and how re-
flections occurs.

THE STUDY

With qualitative style, we have considered making a 
case study (Merriam, 1998). Thus, the consideration 
of context is critical because it particularizes the how 
of the case study. The participant population is high 
school mathematics teachers in Mexico, with whom 
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there will be working sessions with meanings con-
frontations: their own ones and those which were 
shed in the socioepistemology investigation, in the 
issue of proportionality (Reyes, 2014). We will also 
apply a semi-structured interview that allows us to 
know with acuity other aspects that influence in the 
teacher’s thinking. We are interested in studying 
the moment of confrontation to identify the teacher 
reflection about the proportionality regarding their 
conceptions, their uses and the contexts or situations 
where the teacher is present.  For this purpose, we 
construct categories of the pilot test.

CONCLUDING REMARKS

From our point of view, studying of reflection from 
the planned perspective will allow the teacher to 
question the school meanings and concepts in order 
to create conditions (arguments, instruments, strat-
egies, etc.) that enable them, firstly, to modify their 
actions on the teaching of proportionality; and sec-
ondly, deepen their learning of mathematics.
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This project concerns the impact of the belief system of 
teachers on their algebra teaching practices in second-
ary education. The first step is to reconstruct this belief 
system. The methodological framework is provided by 
the Research Project Subjective Theories (RPST). The 
research design is described here.

Keywords: Algebra, teachers’ beliefs, subjective theories. 

INTRODUCTION AND 
THEORETICAL FRAMEWORK

The main prerequisite for research on subjective the-
ories of teachers are the assumptions of teachers as 
crucial factors for learning success (Nye et al., 2004) 
as well as the necessity to consider teachers’ beliefs 
to understand their actions, planning decisions and 
behaviour in class (Ernest, 1989). Typical questions 
that correspond to these actions are: Why is a special 
content chosen, emphasized or denied? What are the 
reasons why a teacher decides to use a special method? 
Stein and colleagues (2007) have shown that planning 
decisions and the realisation of teaching depend high-
ly on teachers’ beliefs. The following figure illustrates 
the model of Stein and colleagues (2007) that describes 
the different phases of curriculum use (Figure 1).

Ontological beliefs of teachers and their impact on 
teaching have been studied in detail for the areas of 
elementary geometry (Girnat, 2011) as well as of statis-
tics and probability (Eichler, 2004). There are already 
some hints that subjective theories of teachers differ 
in dependence of specific disciplines in mathematics 
(Eichler, 2011). This is why the project focuses on the 

research concerning the impact of subjective theories 
of teachers on the teaching of algebra. 

Algebra is regarded as one of the most difficult and at 
the same time most important topics in school mathe-
matics. It can be considered as the language of mathe-
matics. Algebra is used in every case of generalization 
or in case of simplifying a complex situation (Usiskin, 
1995). For this process it has to be clear what the initial 
situation, what the target is and which role the varia-
ble is playing in it. In this context it is most important 
for students to understand the use of variables and 
their meaning (Arcavi, 1994).  

METHODOLOGY

To reconstruct the structure of the intended curricu-
lum the Research Project Subjective Theories (RPST) 
is used. Subjective Theories are defined as „complex 
cognition aggregates of the research object, in which 
their cognitions relating to the self and the world be-
come manifest and which show an at least implicit 
argumentational structure“ (Groeben & Scheele, 2001, 
p. 2). The outcome of this is the dialogue-hermeneu-
tic method. The researcher has to communicate with 
his research object to understand the cognitions 
behind his actions. The study was conducted by in-
terviewing nine teachers by using half-structured 
interview-guidelines, based on an interview-study 
that was conducted before. Afterwards teachers were 
visited twice in their algebra classes unheralded. To 
remain as impartial as possible in the observation 
of the classroom situation, the visits took place be-
fore the interviews were analysed. The observation 
records will be used to investigate how the intended 
and enacted curriculum relate. 

Figure 1: Four phases of curriculum use according to Stein and colleagues (2007) 
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The aim of mathematics education courses in both un-
dergraduate and post graduate programmes in Malawi 
is to improve teacher’s mathematical knowledge for 
teaching. Although the number of colleges and universi-
ties offering secondary mathematics education courses 
is increasing in Malawi, the quality of teaching has not 
improved to a greater extent (Government of Malawi, 
2009). The capacity of the teachers to teach geometric 
proof in particular is still inadequate. The purpose of 
the study in progress, is to explore the knowledge that 
teachers require in order to teach geometric proof well 
in Malawian context. The initial findings of document 
analysis and the pilot study results will be presented in 
the poster.

Keywords: Geometry, geometric proof, teacher knowledge, 

teacher education.

THEORETICAL FRAMEWORK

Many studies have been conducted in different areas 
in reaction to Shulman (1986) notion of pedagogical 
content knowledge (PCK). Such studies aimed at de-
veloping content knowledge (CK) for specific subjects. 
In mathematics education, most of the studies aimed 
at developing models of mathematical knowledge 
for teaching (MKT) and developing instruments 
for measuring its domains (Ball, Thames, & Phelps, 
2008). Professional Knowledge for Secondary School 
Mathematics Teachers (PKSSMT) is one of the recent 
models that build on Shulman’s and Ball’s models 
of teacher knowledge. PKSSMT was developed by 
Baumert and Kunter (2013) from the COACTIV pro-
ject. It shares a common theoretical approach with 
Ball’s mathematical knowledge for teaching (MKT) 
model, to the extent that its focus is on mathematical 
knowledge needed for understanding of instruction. 
Unlike MKT, PKSSMT regards CK as including sec-
ondary mathematics only. It views CK as a prerequi-

site for PCK. There are basically three categories of 
PKSSMT model which are CK, PCK and pedagogical/
psychological knowledge (PPK). My research is guid-
ed by this model and it only concentrates on CK and 
PCK because PPK is mainly about individual and class 
management. In my view, PPK is common knowledge 
needed by every teacher hence not in the interest of 
this study. PCK emphasizes on three aspects; knowl-
edge of cognitive activating tasks and their sequence, 
knowledge of student’s cognitions and ways of assess-
ing them, and knowledge of explanations and multiple 
representations. This shows that PCK mainly empha-
sise on tasks, student cognitions, representations and 
explanations (Baumert & Kunter, 2013). CK and PCK 
imply that research on the teaching of mathematics 
has to focus on teacher’s conceptual understanding, 
tasks used for explaining and assessing teaching, how 
the teacher evaluate the tasks, and how the teacher 
explains and represent concepts to students. Based on 
this view, I developed these questions for my research; 
1. How is secondary geometric proof conceptualised 
by the teachers? 2. What is the nature of the prob-
lems that are selected and used to enhance students’ 
geometric thinking? 3. How do teachers interpret 
student productions/solutions of geometric proofs? 
4. How are geometric proof concepts represented and 
explained to secondary school students?

METHOD

Data collection is being done in phases. During the 
first phase which was a baseline survey, I analysed 
the Malawi National Examinations Board (MANEB) 
chief examiners mathematics reports of both junior 
and senior secondary school for the past five years 
(2008 to 2013). The reports show that students fail 
mathematics mainly due to poor performance in 
geometric proof questions. The chief examiners at-
tribute students’ poor performance in geometry to 
teachers’ lack of knowledge to teach this particular 
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branch of mathematics. Students do not understand 
geometric proof because they are not taught properly 
how to construct and apply a proof.  The Government 
of Malawi (2009) highlights that one of the challenges 
facing the education sector is limited human capacity 
and material resource. The challenge of limited hu-
man capacity is in both quantity and capability and 
is worse in mathematics and science. Challenges in 
terms of capability entail that teacher education is not 
equipping the pre-service teachers with proper skills 
that can enable them teach mathematics, in this case 
geometry proof, very well. That is why there is need to 
study MKT-geometry proof. The second phase of the 
study will use qualitative case studies on in-service 
teachers. Best and worst teachers will be involved in 
the study to ensure variety in data collection.

During the CERME9 conference, I will present the 
results of pilot findings which will be done using tests, 
individual interviews and lesson observations. The 
poster will be composed of the introduction, problem 
statement, conceptual framework, methodology, data 
analysis and results.
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